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Abstract 
 
Potassium uptake efficiency is the ability of plants to take up sufficient K under low 

soil K availability. Plant species differ in their K uptake efficiency. This study was 

done with the objective to investigate the possible mechanisms responsible for the 

differences in K uptake efficiency of crop species. Potassium uptake efficiency and 

K dynamics in the rhizosphere of maize, wheat and sugar beet were evaluated by 

a pot experiment which was conducted on K deficient soil with and without K 

fertilization. Sugar beet and wheat can take sufficient K under low soil K supply 

and therefore are uptake efficient for K. High K uptake efficiency in wheat was 

mainly due to its large root system. Sugar beet has few roots, but it could acquire 

more K per unit shoot dry weight, because of higher K influx. The nutrient uptake 

model (NST 3.0) could satisfactorily predict K influx in all the crops under high K 

supply, however under low K supply; the model prediction was 0.64, 0.68 and 0.31 

times the measured K influx for maize, wheat and sugar beet, respectively. The 

severe under prediction in case of sugar beet indicated that processes not 

considered in the model were important for the high K uptake efficiency. Results of 

sensitivity analysis showed that initial soil solution K concentration (CBLiB) is the most 

important parameter responsible for the differences in the measured and 

calculated K influx of wheat, maize and sugar beet. However, the mechanisms 

responsible for increasing CBLiB in rhizosphere of different plant species is not clear 

yet, whether it is due to the capacity of plant root to release some organic 

compounds, which can solubilize K from the non-exchangeable fraction of soil or it 

is due to the indirect effect of higher IBmaxB (maximum K uptake capacity) of the root 

and/or root hairs.  

To study the root exudation pattern, wheat and sugar beet plants were grown in 

quartz sand supplied with modified Hoagland nutrient solution of low and high K 

levels at two growing conditions, one in screen house under natural environmental 

conditions and another in growth chamber under control conditions. Root exudates 

were collected by percolation method. Root exudation rate was many-fold higher 

under low K compared to high K supply in both the crops and was higher in young 
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plants and at natural sun light, perhaps due to higher light intensity in the screen 

house. HPLC analysis of the root exudates showed that exudation rate of organic 

acids, amino acids and sugars was higher under low K supply in both the crops 

and it was higher in wheat compared to sugar beet. Arginine was the amino acid 

detected only in root exudates of sugar beet. The results of mobilization of K in a K 

fixing soil by amino acids, as found in root exudates showed that total K desorbed 

by Arginine was the highest. Arginine might work like long chain n-alkyl ammonium 

compound, which could widen the interlayer of clay mineral resulting in a higher 

soil solution K concentration. Though amino acids can desorb K in K fixing soil, but 

degree of desorption does not seem to be sufficient to explain the differences in 

soil solution K concentration in the rhizosphere of wheat and sugar beet grown on 

low K soil. 

Non-targeted metabolite profiling was done by separating the root exudates 

collected from plants grown in the growth chamber by HPLC coupled with ESI-MS. 

Several signals and change in intensity of certain signals specific for root exudates 

from K deficient plants were found. Signal corresponding to m/z value 475 was 

relatively stronger under low K supplied sugar beet. From KEGG data base, one of 

the possible structures for m/z 475 was Amastatin (CB21BHB38BNB4BOB8B), which resembles 

to n-alkyl ammonium compound in chemical structure. Further investigation is 

needed to identify the compounds corresponding to the signals and to study their 

effect in desorbing K in low K soil. 



Abstract, Zusammenfassung, Contents, List of Tables, Figures and Appendices 

 

iii

Zusammenfassung 
 
Pflanzenarten unterscheiden sich in ihrer Kaliumaufnahmeeffizienz, d.h. der 

Fähigkeit auch bei geringer K-Verfügbarkeit im Boden ausreichend K 

aufzunehmen. In dieser Arbeit wurden mögliche Ursachen für die Unterschiede in 

der Effizienz untersucht. In einem Topfexperiment mit einem gedüngten und 

ungedüngten K-Mangelboden wurde die K-Aufnahme von Mais, Weizen und 

Zuckerrübe sowie die K-Dynamik im Boden bestimmt. Zuckerrübe und Weizen 

zeigten sich aufnahmeeffizient, da sie auch ohne Düngung genügend K 

aufnehmen konnten. Die hohe Aufnahmeeffizienz von Weizen war in seinem 

großen Wurzelsystem begründet. Zuckerrübe hatte vergleichsweise wenig 

Wurzeln, konnte aber dennoch höhere K-Sprossgehalte als Weizen erzielen, weil 

sein K-Influx hoch war. Der gemessene K-Influx wurde mit Ergebnissen eines 

Nährstoffaufnahmemodells (NST 3.0) verglichen, das die Sorption, den 

Bodentransport und die Aufnahmephysiologie beschreibt. Bei hohem K-Angebot 

im Boden stimmten Mess- und Simulationsergebnisse gut überein, jedoch unter K-

Mangel errechnete das Modell für Mais, Weizen und Zuckerrübe nur 64%, 68% 

bzw. 31% der gemessenen Aufnahme. Die deutliche Unterschätzung bei 

Zuckerrübe deutet darauf hin, dass weitere Prozesse als die im Modell 

berücksichtigten für die K-Aufnahmeeffizienz verantwortlich waren. Eine 

Sensitivitätsanalyse zeigte, dass die K-Konzentration der Bodenlösung ein 

wichtiger Parameter ist, so dass die Erhöhung dieser Konzentration eine mögliche 

Ursache für die Aufnahmeeffizienz darstellt. Allerdings ist bislang nicht bekannt, in 

welcher Weise Pflanzen die K-Konzentration in der Bodenlösung beeinflussen 

können. Eine Möglichkeit wäre die Exsudation organischer Stoffe, die 

nichtaustauschbares K in Lösung bringen könnten. Ein weiterer 

Effizienzmechanismus könnte die Erhöhung der Aufnahmekapazität (ein erhöhtes 

IBmaxB) der Wurzel und/oder Wurzelhaare sein. 

Zur Untersuchung der Wurzelexsudation wurden Zuckerrübe und Weizen bei 

niedriger und hoher Kaliumversorgung in Quarzsand angezogen. Die Pflanzen 

standen sowohl im Freiland (Drahthaus) als auch in der Klimakammer. Die 
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Wurzelexsudate wurden durch Perkolation gewonnen. Die Exsudationsraten 

beider Arten waren bei K-Mangel um ein mehrfaches erhöht im Vergleich zu gut 

versorgten Pflanzen. Zudem waren sie höher bei jüngeren Pflanzen und im 

Freiland, vermutlich wegen der höheren Einstrahlung. Die Analyse der Exsudate 

mittels HPLC zeigte, dass unter K-Mangel die Ausschüttung an organischen 

Säuren, Aminosäuren und Zucker erhöht war. Dies galt für beide Pflanzenarten, 

allerdings war die Exsudation bei Weizen stärker erhöht als bei Zuckerrübe. 

Arginin wurde ausschließlich in den Ausscheidungen der Zuckerrübe gefunden. 

Inkubationsversuche, in denen die Fähigkeit der Aminosäuren untersucht wurde, K 

im Boden zu mobilisieren, zeigten, dass Arginin die höchste 

Mobilisierungskapazität hat. Die Wirkung des Arginin könnte ähnlich der von 

langkettigen n-alkyl Ammoniumverbindungen sein, die die Zwischenschichten der 

Tonminerale aufweiten und so die Desorption nichtaustauschbaren Kaliums 

erhöhen. Obwohl Aminosäuren die Kaliumdesorption in stark fixierenden Böden 

anregen, ist die resultierende Erhöhung der K-Bodenlösungskonzentration nicht in 

der Größenordnung wie sie gemäß der Modell-Sensitivitätsanalyse sein müsste, 

um die Aufnahmeeffizienz von Weizen und Zuckerrübe zu erklären.  

Die Wurzelexsudate der Klimakammerpflanzen wurden mittels HPLC gekoppelter 

ESI-MS getrennt, um weitere Bestandteile zu charakterisieren. Es wurden einige 

Signale gefunden, die bei K-Mangel auftraten, bspw. das Signal mit dem m/z-Wert 

475 war bei Zuckerrübe deutlich erhöht. Laut der KEGG-Datenbank könnte dies 

Amastatin (CB21BHB38BNB4BOB8B) sein, das ähnliche Strukturen wie n-Alkyl Ammonium 

aufweist. Weitere Untersuchungen sind nötig, diese Substanz genau zu 

bestimmen und ihre K-Mobilisierungskapazität im Boden zu messen. 
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1 General introduction 

 

Potassium (KP

+
P) is an essential macronutrient and the most abundant cation in 

higher plants. Potassium plays an essential role for enzyme activation, protein 

synthesis and photosynthesis. It also mediates osmoregulation during cell 

expansion and stomatal movements. Furthermore, KP

+
P is necessary for phloem-

solute transport and for the maintenance of cation: anion balance in the cytosol as 

well as in the vacuole (Mäser et al., 2002). With the progressive intensification of 

agriculture and introduction of high yielding varieties, the soils are getting depleted 

in reserve K at a faster rate. As a consequence, K deficiency is becoming one of 

the major constraints to crop production. A key question is whether present K 

management recommendations are adequate to meet future needs. Recent 

research suggests that (i) commonly used soil tests may not always reflect the 

actual crop response to K, (ii) crop K requirements per unit yield are not constant, 

but vary with the absolute yield levels and crop management factors, (iii) spatial 

variability of soil K affects K management strategies, (iv) genotypic differences 

exist in response to soil and fertilizer K and (v) non-yield traits such as stalk 

strength or product quality must be taken into account in K management decisions. 

Therefore future K management recommendations should be more robust and 

accommodate different crops, cropping systems, crop management technologies, 

soil conditions, and climate-driven yield potential (Dobermann, 2001). Screening K 

efficient cultivars and growing those under low K supply conditions could be one of 

the major components contributing to more specific K management 

recommendations. 

 

1.1 Potassium availability and nutrient dynamics in the rhizosphere 

 
Potassium is the fourth most abundant nutrient, constituting about 2.5% of the 

lithosphere. However, actual soil concentrations of this nutrient vary widely, 

ranging from 0.04 – 3% (Sparks and Huang, 1985). The availability of potassium to 

the plant is highly variable, due to complex soil dynamics, which are strongly 
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influenced by root–soil interactions. In accordance with its availability to plants, soil 

K is ascribed to four different pools: (i) soil solution, (ii) exchangeable K, (iii) non-

exchangeable K and (iv) lattice K (Syers, 1998). As plants can only acquire KP

+
P 

from solution, its availability is dependent upon the K dynamics as well as on total 

K content. The exchange of K between different pools in soil is strongly dependent 

upon the concentration of other macronutrients in the soil solution, for example, 

nitrate (Yanai et al., 1996). The release of exchangeable K is often slower than the 

rate of KP

+
P acquisition by plants (Sparks and Huang, 1985) and consequently, soil 

solution KP

+
P concentration in some soil is very low (Johnston, 2005). Plant K status 

may further deteriorate in the presence of high levels of other monovalent cations 

such as NaP

+
P and NHB4PB

+
P that interfere with K uptake (Qi and Spalding, 2004). Apart 

from long-term deprivation, plant roots can experience transient shortages of K 

because of spatial heterogeneity and temporal variations in the availability of this 

nutrient. The main source of soil heterogeneity is often the plant roots themselves, 

the KP

+
P transport activity of which creates zones with elevated or reduced nutrient 

concentration. Contact between a root and nutrient may occur because of (i) root 

growth into the area where a nutrient is located (root interception), and (ii) 

transport of a nutrient to the root surface through the soil (Jungk and Claassen, 

1997). Root interception constitutes less than 1-2% of total KP

+
P uptake because of 

rapid removal of KP

+
P at the root surface (Barber, 1985; Rosolem et al., 2003). The 

second process, KP

+ 
Ptranslocation through the soil to the root surface, is facilitated 

by diffusion and mass flow (Barber, 1962). Diffusion is the most dominant 

mechanism of KP

+
P delivery to the root surface (Seiffert et al., 1995) and constitutes 

up to 96% of total soil KP

+
P transport (Oliveira et al., 2004). Therefore, KP

+
P depletion 

around the root is the most frequently observed phenomenon associated with 

plant-evoked soil K perturbations. If KP

+
P delivery by diffusion is always associated 

with the reduction of KP

+
P content in the areas adjacent to the root surface, mass 

flow may conversely result in KP

+
P accumulation around the root if transpiration and 

K concentration in soil solution is high (Ca-lactate extractable K of the soil was 366 

µmol K kgP

-1
P soil) (Vetterlein and Jahn, 2004). Experimentally, development of a 

depletion profile around individual maize root segments has been demonstrated 
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using P

86
PRb as a potassium tracer (Jungk and Claassen, 1997). These data are 

consistent with results obtained by Yamaguchi and Tanaka (1990), who 

demonstrated that roots compete for K if half distance between them is less than 4 

mm. Similar results were obtained with flat mats of maize (Zea mays L.), rape 

(Brassica napus L.), and rice (Oryza sativa L.) roots (Jungk and Claassen, 1997; 

Hylander et al., 1999; Vetterlein and Jahn, 2004).  

Variations in soil density may also affect potassium availability. Soil compaction is 

associated with higher volumetric water content and therefore tends to facilitate KP

+
P 

transport to the root surface (Kuchenbuch et al., 1986). However, the dense soil 

may also cause a reduction in the root length and so the higher bulk density does 

not necessarily result in increased KP

+
P accumulation (Seiffert et al., 1995). The 

spatial heterogeneities in KP

+
P distribution encountered by a root are often 

superimposed with temporal variations in KP

+
P availability, caused by continuously 

changing soil moisture content. In dry soils, bulk KP

+
P content is normally higher, but 

mass flow and diffusion are restricted (Seiffert et al., 1995; Vetterlein and Jahn, 

2004; Kuchenbuch et al., 1986). The negative effects of drought on KP

+
P transport in 

soil are likely to be more significant than increases in KP

+
P concentration and 

therefore these environmental conditions lead to reduced availability of the nutrient 

(Seiffert et al., 1995; Liebersbach et al., 2004).  

Potassium starvation is known to activate KP

+
P uptake in plants (Fernando et al., 

1990; Shin and Schachtman, 2004). This activation has been conventionally 

associated with induction of expression of high affinity transporters, and was 

considered as a major mechanism of adaptation to KP

+
P starvation. Growing roots 

continuously experience variations in potassium availability, to which they have to 

adjust their physiology and growth pattern. In order to optimize their performance 

as nutrient uptake organs and to compete for KP

+
P uptake in the dynamic and 

heterogeneous environment, plant roots developed mechanisms of acclimation to 

the current KP

+
P status in the rhizosphere. All these acclimation strategies enable 

plants to survive and compete for K in a dynamic environment with a variable 

availability of K (Ashley et al., 2006). 
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1.2 Potassium efficiency mechanisms 

 
It is known from long term experiments that plants differ in their K efficiency, i.e. 

some plant species obtain higher yield despite a low soil K supply whereas other 

species fail (Meyer, 1993; Trehan and Claassen, 1998; Sadana and Claassen 

1999; Zhang et al., 1999; Steingrobe and Claassen, 2000). This efficiency can be 

due to different mechanisms i.e. use and uptake efficiency. Use efficient plants can 

obtain relative high yield with a low K concentration in their dry matter, whereas 

uptake efficient plant can take up sufficient K despite a low soil K supply level. The 

size of the root system, the physiology of uptake and the ability of plants to 

increase K solubility in the rhizosphere are considered as mechanisms of uptake 

efficiency. Sugar beet and wheat both are uptake efficient for K (Dessougi et al., 

2002). However, both species use different mechanisms.  

Potassium uptake and supply level of the soil can be described by a mechanistic 

model. The model calculates the diffusive and convective transport of nutrients 

towards the root under consideration of sorption and desorption processes. The 

uptake rate is calculated by Michaelis-Menten kinetics (Claassen et al., 1986; 

Claassen and Steingrobe, 1999). Applying nutrient uptake model calculations 

(Claassen and Steingrobe, 1999) on wheat, it can be shown that the high K uptake 

efficiency of wheat is mainly due to its large root system, where calculated 

transport and uptake agreed well with measured data. However, sugar beet could 

realize much higher uptake rate than calculated by the model despite of having 

few roots. This indicates besides diffusion, convection and desorption, other 

processes may be important for K supply, which are not described by the model. 

Sugar beet seems to increase the chemical availability of K in the soil. Usually, 

only K in solution and K sorbed at clay minerals, which is in equilibrium with 

solution K, counts as plant available. Only this exchangeable K is considered in the 

model calculations. However, it has been shown that non-exchangeable K can 

also be used by plants when the available fraction is too low for sufficient supply. 

Until now, it is not known in which way plants increase the availability of non-

exchangeable K and why some plant species perform better than others. Plant 
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species with increased capacity to render sparingly soluble nutrient forms into 

plant available ones or with a higher capacity to transport nutrients across the 

plasma membranes are considered to possess high nutrient uptake efficiency 

(Rengel, 1999). However, if the rate of nutrient replenishment at the root surface is 

much lower than the capacity of the root cells to take up nutrients, uptake will be 

governed by the nutrient supply rather than by the nutrient uptake capacity of the 

root cells (Rengel, 1993). Hence greater uptake capacity of the root cells such as 

high affinity nutrient uptake systems would have an insignificant contribution to 

higher uptake efficiency for transport limited nutrients, for example, P, K, Zn, Mn 

and Cu (Rengel, 1999).  

Chemical mobilisation of nutrients in the rhizosphere is reported to be caused by (i) 

changes in pH through HP

+
P release which is related to increase in cation: anion 

uptake ratio, (ii) root exudates and (iii) the presence of micro-organisms and their 

interactions with plant roots and/or exudates (Marschner, 1995). The released 

protons take part in the exchange processes at the edges of the inter-layers of clay 

minerals, widen them and increase the exchangeability of the interlayer K. The 

occurrence of root-induced release of K from K bearing minerals has been 

frequently associated with the lowering of K concentration in the solution resulting 

from root uptake as a result of dynamic equilibrium reaction between the phases of 

soil K (Hinsinger and Jaillard, 1993). The decrease of K-concentration in the 

vicinity of rye grass roots shifts the exchange equilibrium between internal- and 

external-K at the mica-solution interface. When K-concentration in the solution fell 

below a threshold value of about 80 µmol LP

-1
P, the release of interlayer-K became 

significant. The release of interlayer K increases when the concentration of soil-

solution K and/or exchangeable K decreases due to K uptake by plants and 

leaching (Hinsinger and Jaillard, 1993; McLean and Watson, 1985). In rape 

(Brassica napus cv Drakkar) after 8 days of cropping, the contribution of non-

exchangeable K to K uptake ranged from 50% in the fine clay to 80-100% in the 

coarser fractions. The silt fractions provided a major part of the supply of K by 

these soils due to their high supplying power and their relative abundance (Niebes 

et al., 1993). Meyer and Jungk (1993) reported that 64 and 79% of the K taken up 
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by wheat and sugar beet plants, respectively, grown on luvisol in pot experiment 

was derived from the rapidly released 'exchangeable' and 21-36% from the less 

mobile 'non-exchangeable' soil K fraction. Wang et al. (2000) reported that the net 

release of K from the mineral K pool was significantly enhanced when the crops 

grew in feldspar and the enhanced mobilization of mineral K might be attributed to 

the release of organic acids from the plant roots. When gneiss of various particle 

sizes was exposed to malic and tartaric acids, both acids had a direct positive 

influence on the release of mineral K from gneiss. 

 

1.3 Role of KP

+ 
Ptransporters and KP

+
P channel in K uptake 

 
Potassium is the most abundant cation in plants and is required for plant growth. 

To ensure an adequate supply of KP

+
P, plants have developed a number of highly 

specific mechanisms to take up KP

+ 
Pfrom the soil; these include the expression of KP

+
P 

transporters and KP

+
P channels in root cells. Potassium channels play an important 

role in KP

+
P uptake as well as the control of membrane potential (Brüggemann et al., 

1999), growth and turgor driven movements (Moran et al., 1988; Schroeder et al., 

1984). Potassium channels can be divided into outward rectifiers (KBoutB) which 

excrete potassium from the cell, inward rectifiers (KBinB) which transport potassium 

ions into the cell and largely voltage-independent channels (KBin/outB) which are able 

to catalyze both processes. Despite the fact that root epidermal and hair cells are 

in direct contact with the soil, the role of these tissues in KP

+
P uptake is not well 

understood. Downey et al. (2000) reported the molecular cloning and functional 

characterization of a novel potassium channel KDC1, which forms part of a new 

subfamily of plant KBinB channels. KDC1 was isolated from carrot root RNA and in 

situ hybridization experiments show KDC1 to be highly expressed in root hair cells. 

A combination of in situ hybridization experiments and comparative 

electrophysiological studies of the gene product expressed in Chinese Hamster 

Ovary (CHO) cells and KP

+
P channels in root hair cells, identified KDC1 as the major 

inwardly rectifying KP

+
P channel of carrot root hair cell plasma membranes. Root 

hairs and the endodermis with the casparian strip are exposed places for 
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potassium uptake (Tester and Leigh, 2001). In TArabidopsisT root hairs, AtKC1 and 

AKT1 are part of a functional KP

+
P-influx channel. As AtKC1 influences the apparent 

KP

+
P conductance of whole-cell inward currents and has a maximum expression in 

root hairs and endodermis with the casparian strip, AtKC1 is likely to be a KP

+
P-

uptake modulator subunit needed to adjust the characteristics of plant potassium 

uptake channels such as AKT1 (Reintanz et al., 2002). A family of 13 genes, 

named AtKT/KUP is involved in KP

+
P transport and translocation. In Arabidopsis, ten 

AtKT/KUPs were expressed in root hairs, but only five were expressed in root tip 

cells which suggested an important role for root hairs in KP

+
P uptake (Ju et al., 2004).  

Even though not much research has been done on effect of root hairs on K uptake 

of different crop species, but there are some evidences for phosphorus. Several 

researchers reported the contribution of root hair to total P uptake in different plant 

species. Root hairs increased P uptake over that due to the plant root alone in six 

different plant species that varied widely in root hair length, density and radius and 

sensitivity analysis showed a significant contribution of root hairs to P uptake (Itoh 

and Barber, 1982). The basis for large proportion of P uptake by root hairs was 

explained by several researchers as (i) root hairs increase the absorbing surface 

area- in case of spinach, it was 1.9-fold higher than that of the root cylinder (Föhse 

et al., 1991), (ii) root hairs have a very small radius (approximately 0.005 mm; 

Barber, 1995), so that P concentration at the root hair surface remains higher than 

that at the root cylinder, which leads to a higher influx per unit surface area, (iii) 

root hairs grow into soil perpendicular to the root surface and thereby increase the 

radius of the P absorbing body (root cylinder plus root hairs). This causes greater 

transport of P to the root (Föhse et al., 1991; Claassen, 1990; Kovar and 

Claassen, 2005). 

 

1.4  Root exudates- an overview 

 
The hidden half of a plant system thrives in a diverse, ever changing environment 

with bacteria, fungi, and other microorganisms feeding on an array of organic 

material (Ryan and Delhaize, 2001). Thus, the area of soil surrounding a plant root 
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represents a unique physical, biochemical, and ecological interface between the 

roots and the external environment. This so-called rhizosphere is in part regulated 

by the root system itself through chemicals exuded/ secreted into the surrounding 

soil. The release of all forms of carbon from roots has been termed as 

rhizodeposition (Marschner, 1995). Rhizodeposition products, which are available 

for microbial metabolism in the rhizosphere (zone adjacent to the root) and on the 

rhizoplane (root surface), can be categorized as exudates, lysates, secretions and 

gases. The difference between exudates and secretions is that, exudates are 

passively released and secretions are actively released. Secretions include 

polymeric carbohydrates and enzymes (Whipps, 1990). The products of extensive 

cell degeneration have been termed “root lysate” for example: sloughed-off root 

hairs or root cap, epidermal, and cortical cells (Liljeroth et al., 1990). The most 

common definition of the term “root exudates” is the substances which are 

released into the surrounding medium by healthy and intact plant roots (Rovira, 

1969) and is the definition used in our study.  

Root exudates include high and low molecular weight compounds. High molecular 

weight compounds in root exudates include the mucilage, gelatinous material 

covering root surfaces, and ectoenzymes. Phosphatase is an ectoenzyme that 

mobilizes organic P in the soil for plant use. Low molecular weight root exudates 

are released in larger quantities and include organic acids, sugars, phenolics, 

amino acids, phytosiderophores, flavonoids (Marschner, 1995), and vitamins 

(Whipps, 1990). Phytosiderophores are natural chelating agents known to be 

important for plant iron nutrition. The term “root exudates” is used in the literature 

to describe all organic compounds released from roots. An inclusive list of root 

exudates component found in the literature (Uren, 2001), which includes over 100 

different compounds, is also representative of a list of potential cell chemical 

constituents. The major source of the addition of cell contents to the rhizosphere is 

root border cells, formerly known as sloughed off root cells. These cells are living 

when released from the root and act as an interface between the soil and root 

through protection of the root as it grows though the soil and interacts with soil 

microbes (Hawes et al., 1998). Although quantitative comparisons of exudates 



Chapter I- General Introduction 

 

10

vary widely, average estimates have been reported in the literature. Using axenic 

wheat, Prikryl and Vancura (1980) expressed root exudates as 50% of the root dry 

weight or 12% of the whole plant dry weight over a growing season. Based on a 

compilation from the literature, Lynch and Whipps (1990) described 

rhizodeposition as 4-70% of carbon allocated to the roots, which is 30-60% of net 

photosynthetic carbon. Soil-chemical changes related to the presence of these 

compounds and products of their microbial turnover are important factors affecting 

microbial populations, availability of nutrients, solubility of toxic elements in the 

rhizosphere and thereby, enabling the plants to cope with adverse soil-chemical 

conditions. 

Organic acids are low-molecular weight compounds which are found in all 

organisms and which are characterized by the possession of one or more carboxyl 

groups. Depending on the dissociation properties and number of these carboxylic 

groups, organic acids can carry varying negative charge, thereby allowing the 

complexation of metal cations in solution and the displacement of anions from the 

soil matrix. For this reason, they have been implicated in many soil processes 

including the mobilisation and uptake of nutrients by plants and microorganisms 

(e.g., P and Fe), the detoxification of metals by plants (e.g., Al), microbial 

proliferation in the rhizosphere, and the dissolution of soil minerals leading to 

pedogenesis (e.g., podzolisation) (Marschner, 1995). A full assessment of their 

role in these processes, however, cannot be determined unless the exact 

mechanisms of plant organic acid release and the fate of these compounds in the 

soil are more fully understood (Jones, 1998). Typically the total concentration of 

organic acids in roots is around 10-20 mM (1–4% of total dry weight) which can be 

compared, at least for maize, with the other main organic solutes present in root 

cells, namely amino acids (10–20 mM) and sugars (90 mM) (Jones and Darrah, 

1994, 1996). 

Root exudation is affected by multiple factors such as light intensity, temperature, 

nutritional status of the plants, various stress factors, mechanical impedance, 

sorption characteristics of the growth medium and microbial activity in the 

rhizosphere. When plants are nutrient deficient, the amount of exudates released 
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by the root often increases (Kraffczyk et al. 1984). Differences in root exudation 

have been reported for different crop species (Neumann et al., 1999; Subbarao et 

al., 1997). Amino acid content of root exudates of maize genotypes was higher 

than those reported for legumes (Singh, 2000). Only limited information is available 

on effects of K supply on root exudation. Increased exudation of sugars, organic 

acids and amino acids has been detected in maize as a response to K limitation 

(Kraffczyk et al., 1984). Root exudation of organic acids, amino acids and sugars 

generally occurs passively via diffusion and may be enhanced by stress factors 

affecting membrane integrity such as nutrient deficiency (e.g. K, P, Zn), 

temperature extremes or oxidative stress (Rovira, 1969; Cakmak and Marschner, 

1988; Bertin et al., 2003). This may be related to preferential accumulation of low 

molecular weight N and C compounds at the expense of macromolecules 

(Marschner, 1995). Soil extraction experiments with carboxylates, amino acids and 

sugars revealed that only citrate applied in extraordinary high concentrations (6 

mmol gP

-1
P soil) was effective in K desorption (Gerke, 1995; Steffens and Zarhoul, 

1997). The composition of root-derived substances is of great importance for the 

understanding of processes in the rhizosphere. Therefore, methods allowing a 

comprehensive collection and chemical analysis of the organic root exudates are 

necessary. 

 

1.5 Methods used in root exudates research 

 
1.5.1 Collection of root exudates 

 
1.5.1.1 Root washing method 

 
The most common way to collect water soluble root exudates is by immersing the 

root systems into aerated trap solutions for a defined time period and afterwards 

collecting the root washings. The technique is easy to perform and allows kinetic 

studies by repeated measurements using the same plants (Neumann and 

Römheld, 2000). It is possible to get a first impression about qualitative exudation 

patterns and even quantitative changes in response to different pre-culture 
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conditions, the technique also includes several restrictions which should be taken 

into account for the interpretation of experimental data. Application should be 

restricted to plants grown in nutrient solution, since removal of root systems from 

solid media (soil, sand) is almost certainly associated with mechanical damage of 

root cells, resulting in overestimation of exudation rates. On the other hand, it has 

been frequently demonstrated that the mechanical impedance of solid growth 

media leads to alterations in root morphology and stimulates root exudation 

(Boeuf-Tremblay et al., 1995; Groleau-Renaud et al., 1998). In liquid culture 

media, simulation of the mechanical forces imposed on roots of soil-grown plants 

may be achieved by addition of small glass beads (Groleau-Renaud et al., 1998; 

Barber and Gunn, 1974).  

 

1.5.1.2 Percolation method 

 
Collection of root exudates from plants grown in sand culture may be performed by 

percolating the culture media with de-ionized water for a defined time period, after 

removal of rhizosphere products accumulated during the preceding culture period 

by repeated washings (Johnson et al., 1996). For this approach, however, 

recovery experiments and comparison with results obtained from experiments in 

liquid culture are essential, since sorption of certain exudate compounds to the 

matrix of solid culture media cannot be excluded. Root exudates recovery is only 

about half of that in the dipping method in maize, but the analyzed group (sugars, 

amino acids and carboxylic acids) was the same in both the methods (Gransee 

and Wittenmayer, 2000). As a modification of the percolation technique, cartridges 

filled with selective adsorption media (e.g. XAD resin for hydrophobic compounds, 

anion exchange resins for carboxylates), which are installed in the tube below the 

plant culture vessel, can be employed for the enrichment of distinct exudate 

constituents (Petersen and Böttger, 1992). After adsorption to a resin, exudate 

compounds are also protected against microbial degradation.  

Trap solutions employed for collection of water soluble root exudates are nutrient 

solutions of the same composition as the culture media (Johnson et al., 1996), 
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solutions of 0.5-2.5 mM CaSOB4B or CaClB2B to provide CaP

2+
P for membrane 

stabilization (Ohwaki and H. Hirata, 1992) or simply distilled water (Lipton et al., 

1987; Neumann et al., 1999). Since the osmotic strength of nutrient solutions is 

generally low, short term treatments (1-2 h) even with distilled water are not likely 

to affect membrane permeability by osmotic stress. Accordingly, comparing 

exudation of amino acids from roots of Brassica napus L. into nutrient solution, 20 

mM KCl, or distilled water respectively, revealed no differences during collection 

periods between 0.5 and 6 hours (Shepherd and Davies, 1994). In contrast, 

Cakmak and Marschner (1988) reported increased exudation of sugars and amino 

acids from roots of wheat and cotton during a collection period of 6 h when distilled 

water instead of 1 mM CaSOB4 Bwas applied as trap solution. Thus, for longer 

collection periods or for repeated measurements, only complete or at least diluted 

nutrient solutions should be employed as trap solutions in order to avoid depletion 

of nutrients and excessive leaching of Ca P

2+
P. Long-term exposure of plant roots to 

external solutions of very low ionic strength is also likely to increase exudation 

rates due to an increased transmembrane concentration gradient of solutes (Jones 

and Darrah, 1993).  

Exudates collection in trap solutions usually requires subsequent concentration 

steps (vacuum evaporation, lyophilization) due to the low concentration of exudate 

compounds. Depending on the composition of the trap solution, the reduction of 

sample volume can lead to high salt concentrations, which may interfere with 

subsequent analysis or may even cause irreversible precipitation of certain 

exudate compounds (e.g. Ca-citrate, Ca-oxalate, proteins). Therefore, if possible, 

removal of interfering salts by use of ion exchange resins prior to sample 

concentration is recommended. Alternatively, solid phase extraction techniques 

may be employed for enrichment of exudate compounds from the diluted trap 

solution (Johnson et al., 1996). High molecular weight compounds may be 

concentrated by precipitation with organic solvents (methanol, ethanol, acetone 

80% (v/v). 
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1.5.1.3 Localized sampling techniques 

 
In several cases, exudation is not uniformly distributed along the plant roots and 

considerable longitudinal gradients or hot spots of exudation can exist in different 

root zones. Thus, collection techniques based on root washings or percolation with 

trap solutions, integrating root exudation over the whole root system, can only give 

limited information for rhizosphere processes, which frequently depend on the local 

concentrations of root exudates in the rhizosphere of distinct root zones (e.g. 

apical root zones, root hairs, cluster roots). Therefore, localized sampling 

techniques can be done by applying various sorption media onto the root surface 

(Grierson, 2000; Neumann and Römheld, 1999) or by collecting rhizosphere soil 

solution by micro-suction cups (Wang et al., 2004; Göttlein et al., 1996). 

The root washing method is mainly confined to plants grown in hydroponics. 

Percolation with trap solutions can be applied for plants cultivated in solid 

substances, such as sand. All these techniques mentioned so far are applicable 

for laboratory studies if no spatial resolution is required, e.g.: for demonstration of 

basic physiological reactions related to changes in root exudation; for collection of 

exudate compounds on a preparative scale or for quantification of total carbon flow 

from roots by use of isotopic labeling techniques (Neumann and  Römheld, 2000). 

A major problem of all techniques used for collection of root exudates is the risk of 

microbial degradation during the collection period and the difficulties to differentiate 

between root exudates and microbial metabolites in the rhizosphere. In hydroponic 

systems, axenic culture can be employed to avoid microbial degradation of root 

exudates. Root washing and percolation methods are important for basic model 

studies, but the localized collection techniques with soil grown plants provides 

opportunity for rhizosphere studies under more realistic conditions. 

 

1.5.2 Analysis of root exudate samples 

 
Determination of low-molecular weight compounds in root exudates is usually 

based on standard analytical methods used in biochemistry. Analytical techniques 
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for determination of different classes of compounds, such as sugars, amino acids, 

phenolics are mainly based on derivatization reactions with subsequent 

spectrophotometric detection and calibration with representative standards for the 

respective group of compounds. These methods give a first overview concerning 

quantitative relations of low molecular weight organic compounds present in the 

root exudates. For more detailed information, individual compounds are analyzed 

after chromatographic separation. High performance liquid chromatography 

(HPLC) systems with stationary phases, based on reversed-phase silica or ion-

exchange resins and subsequent spectrophotometric, fluorescence or conductivity 

detection with or without derivatization are most frequently employed in 

rhizosphere research (Weiß, 2004; Harborne, 1998). Gas chromatography (GC) 

(Tang and Young, 1982) and most recently capillary electrophoresis (CE) 

(Weinberger, 2000) and with alternative detection modes, such as mass 

spectrometry (MS) have been introduced (Walker et al., 2003; Roepenack-Lahaye 

et al., 2004). 

 

1.6 Outline of the thesis and objective of the study 

 
Crop species differ widely in their K efficiency. Wheat and sugar beet can take up 

sufficient K under low K supply, therefore are uptake efficient for K. Applying 

nutrient uptake model (Claassen, 1994) on wheat, it can be shown that the high K 

uptake efficiency of wheat is mainly due its large root system, where calculated 

transport and uptake agreed well with measured data. Sugar beet had fewer roots, 

but it could realize much higher uptake rate than calculated by the model 

(Dessougi et al., 2002). The mechanisms enabling sugar beet to obtain a high K 

influx need to be studied. In sugar beet, the K concentration in soil solution was 

approximately six times (94.2 µmol K LP

-1
P) the concentration found in un-planted soil 

under low K supply [Initial soil solution concentration (CBLiB), 15 µmol K LP

-1
P] 

(Dessougi, 2001). Whether the increase in soil solution K concentration was due to 

chemical mobilisation of K by sugar beet root exudates or it was due to the 

problems in measuring K in soil solution i.e. K was not actually in solution, instead 
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in fine soil particles dispersed in the soil solution and was measured by flame 

emission? Further question is whether chemical mobilisation plays a role or it is 

due to the efficient uptake kinetics of root or both the mechanisms contribute to 

high K uptake efficiency. 

In the present investigation three experiments were conducted in order to study the 

K efficiency mechanisms in different crop species. General introduction is given in 

the first chapter. 

In the second chapter, K uptake efficiency and dynamics in the rhizosphere of 

maize, wheat and sugar beet were studied and evaluated by a mechanistic model. 

Potassium uptake was simulated by a nutrient uptake model NST 3.0 including 

root hairs (Claassen, 1994). Sensitivity analysis was done to study the importance 

of uptake kinetics responsible for the differential K uptake efficiency of different 

crop species. 

In the third chapter, experimental set up was designed to grow K deficient and 

sufficient plants in sand culture to collect root exudates under different growth 

conditions. First experiment was conducted in screen house under natural 

environmental conditions in which wheat and sugar beet plants were grown in 

coarse quartz sand with continuous supply of nutrient solution of low and high K 

concentration. Cold and warm water soluble root exudates were collected from 

plants by percolation method at different growth stages. Organic acid, amino acid 

and sugar composition of root exudates were analyzed quantitatively by High 

Performance Liquid Chromatography (HPLC). Second experiment was conducted 

in growth chamber under controlled environmental conditions, where wheat and 

sugar beet plants were grown in medium coarse quartz sand with nutrient solution 

of low and high K supply and root exudates were collected in similar manner. Non-

targeted metabolite profiling was done by separating the root exudates by HPLC 

coupled with Electrospray Ionisation-Mass Spectrometry (ESI-MS). 

In the fourth chapter, mobilization of K by amino acids component of root exudates 

was studied in a K fixing soil. The study is summarized in the fifth chapter.  
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C h a p t e r  I I  

Potassium uptake efficiency and dynamics in the 
rhizosphere of maize, wheat and sugar beet evaluated by a 

mechanistic model
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2 Potassium uptake efficiency and dynamics in the rhizosphere of maize, wheat 

and sugar beet evaluated by a mechanistic model 

 
2.1 Introduction 

 
Potassium uptake efficiency is the ability of plants to take up more K under low soil 

K availability. Plant species differ in their K uptake efficiency. It has been reported 

that K uptake efficiency of potato is less as compared to that of wheat and sugar 

beet (Trehan and Claassen, 1998). Dessougi et al. (2002) studied the K efficiency 

of spring wheat, spring barley and sugar beet under controlled conditions on a K 

fixing sandy clay loam soil and reported that at low K concentration (5-20 µmol LP

-1
P) 

in soil solution, sugar beet had a 7-20 times higher K influx (K uptake per cm of 

root per second) than wheat and barley, indicating that sugar beet was more 

efficient in removing low available soil K. To understand the differences in K 

uptake efficiency of different crop species one has to look for the underlying 

mechanisms. The size of the root system, the physiology of uptake and the ability 

of plants to increase K solubility in the rhizosphere are considered as mechanisms 

of uptake efficiency (Steingrobe and Claassen, 2000).  

From models for simulating of nutrient flux from soil to plant roots (Claassen, 

1990), which consider soil solution concentration as a main input parameter, the 

factors influencing soil solution concentration with decreasing distance from the 

root can be derived. Apart from buffer capacity for a specific ion, which is related to 

binding sites for an ion in soil, solubility of related salts and chemical equilibrium in 

soil solution, soil moisture, transport distance and nutrient uptake capacity of the 

root are important. Transport distance depends on root length density and 

distribution. Nutrient uptake capacity of a certain unit of root length depends on 

root diameter (surface area), root/shoot ratio and affinity of the transporters for the 

ion (Engels and Marschner, 1993; Rodriguez-Navarro, 2000). To ensure an 

adequate supply of KP

+
P, plants have developed a number of highly specific 

mechanisms to take up KP

+ 
Pfrom the soil; these include the expression of KP

+
P 

transporters and KP

+
P channels in root cells especially in root hair cells (Brüggemann 
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et al., 1999; Ju et al., 2004; Reintanz et al., 2002). Even though not much research 

has been done on effect of root hairs on K uptake of different crop species, but 

there are some evidences for phosphorus. Root hairs increased P uptake over that 

due to the plant root alone in six different plant species that varied widely in root 

hair length, density and radius. A sensitivity analysis showed a significant 

contribution of root hairs to P uptake (Itoh and Barber, 1982). Diffusion conditions 

around a root are cylindrical. Therefore, the soil volume that can be depleted is 

influenced by root radius and is much greater for root hairs than for the same 

surface area of root cylinder. Assuming the same uptake rate for roots and root 

hairs, the depletion zone around root hairs is less extended due to the greater soil 

volume for nutrient supply (Δx is smaller). Hence, the concentration gradient 

(ΔC/Δx), necessary for any rate of uptake can be established with a lower ΔC. 

Therefore, the concentration at the surface remains higher for a root hair or a thin 

root compared to thicker one. A higher concentration at the root surface enables a 

greater decrease of this concentration by an increasing IBmaxB, resulting in a greater 

gradient, a higher influx, and a higher uptake rate. Root hairs achieve a higher 

proportion of IBmaxB and are therefore more efficient in nutrient uptake from soil at low 

solution concentration (Claassen and Steingrobe, 1999).  

Potassium uptake and supply level of the soil can be described by a mechanistic 

model. The model calculates the diffusive and convective transport of nutrients 

towards the root under consideration of sorption and desorption processes and the 

uptake rate is calculated by Michaelis-Menten kinetics (Claassen et al., 1986; 

Claassen and Steingrobe, 1999). Applying nutrient uptake model (Claassen, 1994) 

on wheat, it can be shown that the high K uptake efficiency of wheat is mainly due 

to its large root system, where calculated transport and uptake agreed well with 

measured data. Sugar beet has fewer roots, but it could realize much higher 

uptake rate than calculated by the model (Dessougi et al., 2002). The mechanisms 

enabling sugar beet to obtain a high K influx need to be studied. In sugar beet, the 

K concentration in soil solution was approximately six times (94.2 µmol K LP

-1
P) the 

concentration found in un-planted soil under low K supply [Initial soil solution 

concentration (CBLiB), 15 µmol K LP

-1
P] (Dessougi, 2001). Whether the increase in soil 
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solution K concentration was due to chemical mobilisation of K by sugar beet root 

exudates or it was due to the problems in measuring K in soil solution i.e. K was 

not actually in solution, instead on fine soil particles dispersed in the soil solution 

and was therefore measured by flame emission could not be cleared definitely.  

The objective of this study was to better understand the K uptake mechanisms of 

maize, wheat and sugar beet under low K supply by the help of nutrient uptake 

model calculations which also take into account the contribution of root hairs for 

nutrient uptake (NST 3.0). Soil and plant parameters were determined from three 

different plant species grown on a silty clay loam soil of low K status at two K 

levels. Where simulated K influx differed from measured K influx, a sensitivity 

analysis was done by changing different soil and plant parameters influencing K 

uptake, alone or by combination. The purpose was to have some clue regarding 

what actually occur in the rhizosphere of sugar beet, whether uptake kinetics alone 

could explain the differences in measured and calculated influx under low K supply 

or we need to study the chemical mobilisation in the rhizosphere. 

 

2.2 Materials and Methods 

 
A pot culture experiment was conducted to study K uptake efficiency and 

dynamics in the rhizosphere of maize (Zea mays L. cv. 8481IT), wheat (Triticum 

aestivum L. cv. Thasos), and sugar beet (Beta vulgaris L. cv. Monza) and to 

determine the soil and plant parameters for nutrient uptake model calculations. 

The experiment was conducted in a growth chamber located in the U.S. 

Department of Agriculture - Agricultural Research Service (USDA-ARS) National 

Soil Tilth Laboratory in Ames, Iowa. A light/dark regime of 16/8 hours at 25/18P

o
PC, 

relative humidity of 60/75 % and PAR (photosynthetic active radiation during the 

day time) of 41 W mP

-2 
Pwere utilized for the study. Taintor-silty clay loam soil (Fine, 

smectitic, mesic, Vertic, Agriaquolls) of low K status [soil solution K concentration, 

58 µmol LP

-1
P; pH (0.01 M CaClB2B), 7.8] was collected from the upper 15 cm at the 

edge of a production farm near Washington, Iowa.  Field-moist samples were 

sieved to 2-mm particle size. Soil was fertilized with 0 and 250 mg K kgP

-1
P soil as
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 KCl. A basal dose of 340 mg N kgP

-1
P soil as NHB4BNOB3B and water up to field capacity 

(-33 kPa) moisture content (27% by weight) was applied to all the pots and the 

pots were incubated for one week. The experiment was designed for two harvests. 

The plants were grown in pots filled with soil equivalent to 1.6 kg at oven-dryness 

for the first harvest and 3.0 kg for the second harvest. Before transplanting, seeds 

were pre-germinated in folded tissue paper placed vertically in a glass beaker 

containing aerated tap water in the growth chamber. Number of plants per pot was 

6 and 3 for the first and second harvest, respectively. Each treatment was 

replicated three times. Three pots per treatment were left un-planted as control for 

measurement of soil parameters and to determine the moisture loss through 

evaporation. Maize plants were harvested at 15 and 21 days of germination for first 

and second harvest, respectively. Wheat and sugar beet plants were harvested at 

19 and 26 days of germination for first and second harvest, respectively. At 

harvest, shoots were cut at the soil surface and roots were carefully separated 

from the soil by gently shaking and sieving. Collected roots were washed 

repeatedly with distilled water by flooding over a sieve. The roots were stored in 

glass jar for root scanning. After removal of roots, total soil weight was recorded. A 

sub sample of 500 g soil was taken for washing by a hydro pneumatic elutriation 

method as described by Smucker (1982) to make sure that no fine roots were left 

on the soil. A second soil sub sample was taken for determination of soil solution 

K, exchangeable K and pH. 

 

2.2.1 Soil chemical analysis 

 
2.2.1.1 Soil solution K concentration 

 
A column displacement method was used to determine soil solution K. This 

method permits accurate determination of the unaltered composition of soil 

solution (Adams, 1974). A sample of moist soil equivalent to 500 g at oven-

dryness was packed into a Plexiglass column with a hole at the bottom to a density 

of approximately 1.3 Mg mP

-3
P. Filter paper was placed on the top of each soil 
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column to avoid the evaporation loss of moisture during the collection. De-ionized 

water was added to each column at a rate of 4 mL hP

-1
P until the soils reached "field 

capacity" water content. The samples were allowed to equilibrate for 24 h and then 

40 mL of de-ionized water were added at a rate of 4 mL hP

-1
P. The displaced solution 

was collected and filtered through a 0.20 µm filter. The solutions then were 

analyzed for K by atomic emission spectroscopy in the Iowa State University Soil 

Testing Laboratory. 

 

2.2.1.2 Exchangeable K and pH 

 
Two grams of field moist soil were weighed into an extraction flask. Appropriate 

number of blanks and reference samples was taken.  20 mL of extracting solution 

(1 molar NHB4BOAc solution, pH 7) were added to the extraction flask and shaken for 

5 minutes on a reciprocating shaker at 200 epm (excursions per minute). The 

suspension was filtered through Whatman No. 2 filter paper. The K concentration 

in the extracts was determined by Inductively Coupled Plasma (ICP) Spectroscopy 

in MDS Harris Labs in Lincoln, Nebraska (Carson, 1980). The soil exchangeable K 

content was calculated on dry weight basis. 

To determine pH, five g of soil were weighed into a paper cup and 5 mL of 0.01 M 

CaClB2B were added to the sample. The slurry was stirred vigorously for 5 seconds 

and then allowed to stand for 30 minutes with occasional stirring. pH meter was 

calibrated over the appropriate range using the manufacturer’s instructions. 

Electrodes were placed in the slurry, swirled carefully and the pH reading was 

taken.  

 

2.2.1.3 Soil parameter for model calculation 

 
B BInitial soil solution concentration (CBLiB): For the first harvest, plants were grown in 

soil equivalent to 1.6 kg at oven-dryness, but for the second harvest it was 3.0 kg. 

Model calculates the K influx for the duration between first and second harvest. It 

means model will calculate the influx for the plants grown in larger pot because at 
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second harvest plants were growing in larger pot. Soil solution concentration (CBLiB) 

was measured for planted and unplanted pot at the time of each harvest. 

Therefore the measured CBLiB at the time of first harvest from the smaller pot 

(planted pot) was lower than the actual CBLiB. For which CBLiB was calculated from the 

calibrated curve plotted between measured soil solution K concentration and the 

corresponding shoot K uptake for low and high K supplied plants and low and high 

K supplied control pot (no plant) at both the harvest.  Two curves were plotted, one 

curve for low K supplied treatment for both the harvest and from the equation; CBLi 

Bfor low K treatment was calculated. Second curve was plotted for high K supplied 

treatment for both the harvest for calculating CBLiB for high K treatment (Fig 2.1). 

 

DBLB: Diffusion coefficient of K in water at 25P

°
PC, cmP

2 
PsP

-1
P (Parsons, 1959). 

θ: Volumetric water content of the soil in cmP

3 
PcmP

-3
P. 

f: Impedance factor, calculated from formula: f = 0.97θ-0.17 ( Kaselowsky,1990) 

b: Buffer power for high and low K supply conditions was calculated as the ratio of 

soil exchangeable K and the soil solution K concentration of soil with (+K) and 

without (-K) K fertilization, respectively.  
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Figure 2.1: Soil solution K concentration (CBLiB) and corresponding K uptake of no plant, 
maize, wheat and sugar beet grown on soil of low and high K supply at first and second 
harvest.  

Pot size for first harvest (I) was smaller than that of second harvest (II). K uptake 

given in the figure is calculated per kg soil. Therefore for wheat and maize the K 

uptake per kg soil at second harvest was smaller than that of first harvest.  
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2.2.2 Plant chemical analysis 

 
At harvest, after taking the fresh weight, shoot samples were dried at 60P

º
PC for 24 

hours and then dried at 105P

º
PC till a constant weight. Sub samples of ground shoot 

material were wet digested under pressure using concentrated HB2BSOB4B and 30% 

HB2BOB2 Band K concentration was measured by Inductively Coupled Plasma (ICP) 

Spectroscopy in the Analytical Lab of the USDA-ARS National Soil Tilth 

Laboratory.  

 

2.2.2.1 Root length and root surface area 

 
Collected roots were washed repeatedly with distilled water by flooding over a 

sieve. Separation of fine roots from 500 g of soil sub sample was done using 

water, air and 530 µm mesh screens in a hydro pneumatic elutriation system. 

Debris was removed manually and roots were stored at 5P

°
PC in 20% (v/v) ethanol in 

glass jar. The roots were removed from the storage solution and rinsed with water 

to remove most of the ethanol. The roots were then stained dark blue by placing 

them for 5 min in a heated (50P

°
PC) crystal violet solution made at a ratio of 1 g of 

crystal violet stain to 100 mL of water. After staining, the roots were returned to 

storage. Immediately before scanning, the stained roots were rinsed thoroughly 

with water. To determine the root length and root surface area, binary image of the 

stained root was acquired by a desktop scanner and then image analysis was 

done by using ROOTEDGE software (Kaspar and Ewing, 1997). Compared with 

most digitizing video cameras, desktop scanners have the advantage of greater 

resolution over a large area. ROOTEDGE is a computer program written for DOS 

machines that uses the edge chord algorithm (Ewing and Kaspar, 1995) to 

measure areas, perimeters, lengths and widths of objects in binary images. Ratios 

of ROOTEDGE length measurements to manual line-intersection length 

measurements (Newman, 1966) ranged from 0.98 to 0.88 for four corn root 

samples of different sizes (Kaspar and Ewing, 1997).  
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2.2.2.2 Average half distance between neighboring roots 

 
Average half distance between neighboring roots (rB1B) was calculated from the 

formula: 

 

r
soil volume cm

root length cm)1

3

=
×

( )
(π

 

 
2.2.2.3 Water influx 

 
Water influx ( 0v ) was calculated from the formula:  

 
2 1 2 1

0
2 1 2 1

ln( / )T T RA RAv
RA RA t t

−
=

− −
 

 
Where TB2B-TB1B is the amount of water transpired between tB1B and tB2B, cmP

3
P and RA is 

root surface area, cmP

2
P. Total evapo-transpiration loss of water was determined 

from the water loss from the planted pot and total evaporation loss of water was 

determined from the water loss from the unplanted pot. Transpiration loss of water 

was calculated by deducting the evaporation loss of water from the evapo-

transpiration loss of water. 

 

2.2.2.4 Mean root radius 

 
Mean root radius (rB0B) was calculated from fresh root weight (FRW) and root length 

(RL) assuming specific gravity of root 1 g cmP

-3
P.  

 

RL
FRWr

.0 π
=  
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2.2.2.5 Relative shoot growth rate 

 

Relative shoot growth rate (RGR) was calculated from the formula:  

 
2 1

2 1

ln( / )SDW SDWRGR
t t

=
−

 

 
Where SDW is shoot dry weight in g and is the average of three replications, t is 

time of harvest in seconds. 

 

2.2.2.6 Plant parameters related to K uptake kinetics 

 
The K uptake kinetics describe the relationship between the net K influx (IBnB) and its 

concentration at the root surface (CBL0B). This relation can be described by a 

modified Michaelis-Menten function (Nielsen, 1972): 

 
max 0 min

0 min

( )L L
n

m L L

I C CI
K C C

−
=

+ −
 

 
Where IBmaxB, KBmB and CBLminB are described below: 

 

2.2.2.6.1 Maximum net influx 

 

Maximum net influx (IBmaxB) was obtained from the influx measured from the 

treatment with the highest K level for each crop. As the influx was calculated per 

cm of root, it was recalculated per cmP

2
P of total root surface area including the 

surface area of root hairs per cm root. Root and root hair surface area were 

calculated from the formula:  

Root surface area = 2πrB0BRL 

Where rB0B is the root radius and RL is root length. In this case total surface area 

was calculated for 1 cm of root, therefore RL was 1 cm. 

Root hair surface area = 2πrhB0BRHL 
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Where rhB0B is the root hair radius (0.0005 cm as reported by Drew and Nye, 1969 

and Barber 1984) and RHL is the total root hair length per cm of root. The RHL 

value was taken from Hofbauer (1990) and given in Appendix 1-3, where similar 

experiment was conducted in a comparable growth condition. 

Since IBmaxB is extrapolated for infinite concentration, the measured value was 

increased by 10%.  

 

2.2.2.6.2 Minimum solution concentration 

 
Minimum solution concentration (CBLminB) is the concentration at which net influx 

equals zero. The value was taken from Meyer (1993). 

 

2.2.2.6.3 Michaelis-Menten constant 

 
Michaelis-Menten constant (KBmB) is the difference between concentration at which 

influx is half of IBmaxB and CBLminB. The values were taken from Meyer (1993). 

 

2.2.2.6.4 Net K influx 

 
The influx is the net amount of K taken up per unit root length (or root surface 

area) per unit time. Assuming that young plants have exponential root growth, the 

net K influx (IBnB) was calculated from formula of Williams (1948): 

 
2 1 2 1

2 1 2 1

ln( / )
n

U U RL RLI
RL RL t t

−
=

− −
 

   
Where U is K content in µmol plantP

-1
P, RL is root length per plant in cm; t is time of 

harvest in seconds; subscripts 1 and 2 refer to first and second harvest, 

respectively. 

 

2.2.3 Nutrient uptake model calculation- basis of the model 

 
Nutrient uptake model is useful to improve the understanding of the processes 
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governing soil supply and plant uptake of mineral nutrients. To simulate K uptake 

by different plant species, the model (NST 3.0) of Claassen (1994), which 

encompasses nutrient uptake by root hairs as well, was used in this study. The 

model is based on three basic processes: (i) release of nutrients from the solid 

phase into the solution which is governed by sorption and desorption processes, 

(ii) transport of nutrients to roots in the soil liquid phase by mass flow and diffusion 

(Barber, 1962), (iii) nutrient uptake into the root which is dependent on the nutrient 

concentration in the soil solution at the root surface and can be described by a 

modified Michaelis-Menten equation derived from enzyme kinetics and applied by 

Epstein and Hagen (1952) and modified later by Nielsen (1972). 

 
2.2.4 Data analysis  

 
Statistical analysis were performed by using two way analysis of variance 

(ANOVA), where significant difference were found, mean values were compared 

by using Tukey’s procedure.  

 

2.3 Results 

 
2.3.1 Root-shoot relations in acquiring K from soil 

 
2.3.1.1 Root length and shoot K concentration 

 
Under low K supply, K deficiency symptoms were observed in maize leaves at 9 

days after transplanting, where as in wheat and sugar beet till the second harvest 

no K deficiency symptoms were detected. The results pertaining to root length and 

shoot K concentration of maize, wheat and sugar beet at second harvest are given 

in Figure 2.2. At second harvest, under low K supply, shoot K concentration was 

2% in maize, but that of wheat and sugar beet was 3.5 and 4.0%, respectively.
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 Under high K supply, shoot K concentration was increased significantly in all the 

crops. The crop species varied widely in their root length both under low and high 

K supply. Under low K supply, absolute root length of maize was 2 and 6 times 

higher compared to wheat and sugar beet, respectively. Potassium supply resulted 

in an increased root length in all the crops. The root length of maize was 72% of its 

maximum, but that of wheat and sugar beet was 98 and 87 % of maximum. Root 

length of sugar beet was only 18% of that of maize in no K treatment, but the shoot 

K concentration was two times higher than that of maize.  
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Figure 2.2: Root length and shoot K concentration of maize, wheat and sugar beet grown on 
low and high K supply at second harvest.  

Data are mean of 3 replicates. Lower case letters indicate significant difference of root length and 
shoot K concentration among main effect of different crops at the same K level (P ≤ 0.001, Tukey-
test). Upper case letters indicate significant difference of root length and shoot K concentration 
between different K levels for the same crop species (P ≤ 0.001, Tukey-test). 

 



Chapter II- Results 

 

31

2.3.1.2 Shoot dry weight, root length to shoot dry weight ratio and K uptake 

 
Results pertaining to shoot dry weight (SDW), root length to shoot dry weight ratio 

(RL/SDW) and shoot K uptake of maize, wheat and sugar beet at second harvest 

are given in table 2.1. Absolute SDW was different for different crops. Maize 

attained highest dry matter yield i.e. 2 and 3 times higher than that of wheat and 

sugar beet. Applying K there was not significant increase in SDW. Shoot dry 

weight was 91, 94 and 78 % of their maximum in maize, wheat and sugar beet 

respectively.  

 
Table 2.1: Shoot dry weight (SDW), root length to shoot dry weight ratio (RL/SDW) 

and K uptake of maize, wheat and sugar beet grown on K deficient soil with (+K) 

and without (-K) K fertilization at second harvest. 

 
SDW RL/SDW K uptake  Crop species K levels 

g plantP

-1
P
 m gP

-1
P
 µmol PlantP

-1
P
 

Maize -K 1.29 a A 53 b A 678 a B 
 +K 1.42 a A 67 b A 1633 a A 
Wheat -K 0.58 b A 68 a A 524 b B 
 +K 0.62 b A 66 a A 759 b A 
Sugar beet -K 0.43 b A 29 c A 434 b B 
 +K 0.55 b A 26 c A 1035 b A 

 
Data are mean of 3 replicates. Lower case letters indicate significant difference of SDW, RL/SDW 

and K uptake among main effect of different crops at the same K level (P ≤ 0.001, Tukey-test). 

Upper case letters indicate significant difference of SDW, RL/SDW and K uptake between different 

K levels for the same crop species (P ≤ 0.001, Tukey-test). 

 
Root length to shoot dry weight ratio was significantly higher in wheat as compared 

to maize and sugar beet under low K supply.  In case of sugar beet, RL/SDW was 

only 29 m gP

-1
P, but in wheat and maize it was 68 and 53 m gP

-1
P, respectively. With 

high K supply there was no significant increase in RL/SDW. 
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Potassium uptake i.e. the shoot K content was significantly higher in maize as 

compared to wheat and sugar beet. There was no significant difference in 

potassium uptake in wheat and sugar beet. Under high K supply, K uptake was 

increased significantly in all the crops, but the increase was more in maize and 

sugar beet compared to wheat. 

 

2.3.1.3 Relative shoot growth rate and shoot demand on root 

 
The data pertaining to relative shoot growth rate and shoot demand on root (SD) of 

maize, wheat and sugar beet are given in table 2.2. During the growth period 

between first and second harvest, relative shoot growth rate of sugar beet was 

23% higher than that of wheat and maize. Shoot demand on root is the K 

acquisition loads imposed by shoot growth on each cm of root and is calculated by 

dividing the shoot growth rate by the average root length assuming that the roots 

of young plant shows exponential growth. 

 

12

12

12

12

tt
)RLln()RLln(

RLRL
SDWSDWSD

−
−

−
−

=  

 
Under low K supply, shoot demand of sugar beet was 3 and 2 times higher as 

compared to wheat and maize and this increase was even more under high K 

supply. 
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Table 2.2: Relative shoot growth rate and shoot demand on root of wheat, maize 
and sugar beet grown on K deficient soil with (+K) and without (-K) K fertilization. 
 

Relative shoot growth rate Shoot demand on root  Crops K 

levels  10P

-6 
PsP

-1
P
 10P

-10 
Pg sP

-1
P cmP

-1
P
 

Maize -K 2.25 b A 3.84 b A  

 +K 2.22 b A 3.46 b A 

Wheat -K 2.24 b A 3.00 b A 

 +K 1.89 b A 2.64 b A 

Sugar beet -K 2.76 a A 8.66 a A  

 +K 2.86 a A 10.2 a A 

    

Data are means of 3 replicates. Lower case letters indicate significant difference of shoot growth 

rate and shoot demand among main effect of different crops at the same K level (P ≤ 0.05, Tukey-

test). Upper case letters indicate significant difference of Shoot growth rate and shoot demand 

between different K levels for the same crop species (P ≤ 0.05, Tukey-test). 
 

2.3.2 Soil parameters 

 
The soil properties of interest that are required for K uptake model calculations are: 

potassium concentration in the soil solution (CBLiB), it’s buffering by the solid phase 

(b) i.e. desorption and sorption of K and diffusion coefficient in water (DBLB). The data 

pertaining to soil parameters are presented in Table 2.3. 
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Table 2.3: Plant and soil parameters used for nutrient uptake model calculations. 
 
Parameters K applied 
 0 250 0 250 0 250 

 mg kgP

-1
P soil 

 Maize  Wheat  Sugar beet 

Plant parameters 

IBmax , B 10P

-6
P µmol cmP

-2
P sP

-1
P
 5.02 4.00 3.73 3.55 21.6 22.5 

KBmB ,  10P

-2
P µmol cmP

-3
P
 3.2 3.2 1.0 1.0 1.2 1.2 

CBLminB , 10P

-3
P µmol cmP

-3
P
 2.0 2.0 2.0 2.0 2.0 2.0 

rB0B ,  10P

-2
P cm 1.01 1.13 1.05 1.08 1.05 0.96 

vB0B ,  10P

-7
P cmP

3
P cmP

-2
P sP

-1
P
 4.33 6.30 38.05 34.40 95.38 120.04 

rB1B ,  10P

-2
P cm 18.8 18.7 27.2 24.4 56.6 55.9 

k ,  dP

-1
P
 0.1517 0.2086 0.1584 0.1321 0.2008 0.2169 

RLB0B, cm                   2703 2719 1298 1601 299 306 

Soil parameters 

CBLiB , µmol cmP

-3
P
 0.085 0.833 0.092 0.916 0.097 0.933 

θ , cmP

3
P cmP

-3
P
 

0.30 0.30 0.30 0.30 0.30 0.30 

f  0.12 0.12 0.12 0.12 0.12 0.12 

DBLB , 10P

-5
P cmP

2
P sP

-1
P
 1.98 1.98 1.98 1.98 1.98 1.98 

b 16.1 6.2 16.1 6.2 16.1 6.2 
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2.3.2.1 Soil solution K concentration  

 
Results of soil solution K concentration of the mixture of rhizosphere and bulk soil 

of maize, wheat and sugar beet and unplanted pot at time of each harvest are 

given in table 2.4. 

  
Table 2.4: Soil solution K concentration of the soil (mixture of rhizosphere and bulk 

soil) of maize, wheat and sugar beet grown on K deficient soil with (+K) and 

without (-K) K fertilization at time of harvest. Control - Soils collected from 

unplanted pot. 

 
Soil solution K 

- K + K 

Harvest Crops 

µmol LP

-1
P
 

First Maize 32 c A 470 c B 

 Wheat 62 b A 695 b B 

 Sugar beet 74 b A  741 b B 

 Control 109 a A 1030 a B 

Second Maize 37 c A 462 c B 

 Wheat 46 b A 768 b B 

 Sugar beet 60 b A 764 b B 

 Control 105 a A 994 a B 

 
Data are means of 3 replicates. Lower case letters indicate significant difference of soil solution K 

among main effect of different crops at the same K level (P ≤ 0.001, Tukey-test). Upper case letters 

indicate significant difference of soil solution K between different K levels for the same crop species 

(P ≤ 0.001, Tukey-test). 
 

Soil solution K concentration was lower in the soil of all the crops as compared to 

that of unplanted pot in both the harvest. However it varied among the crops. Soil 

solution K concentration in case of sugar beet was 3 and 1.5 times higher 

compared to that of maize and wheat in no-K treatment. The difference might be 
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due to lower uptake of K by sugar beet as compared to maize and wheat. The 

difference in soil solution concentration was in accordance to K uptake difference 

between the crops i.e. uptake of K per pot in sugar beet was 2.3 and 1.6 times 

lower than that of maize and wheat.  Applying K to the soil, there was a significant 

increase in soil solution K concentration in both planted and unplanted pot. 

 

2.3.2.2 Soil exchangeable K concentration 

 
Exchangeable K concentration of the soil was measured from the mixture of 

rhizosphere and bulk soil collected from all the three crops and also from 

unplanted pot at the time of first and second harvest for calculating buffer power 

(Table 2.5). At second harvest, there was no significant difference between the soil 

exchangeable K of wheat, sugar beet and unplanted soil, but in maize the 

difference from unplanted soil was significant. To know whether the change in 

exchangeable K after plant growth was in accordance to the plant K uptake, both 

the parameters were compared by a scattered plot. Surprisingly all the dots 

corresponding to both the parameters for low K soil after first and second harvest 

were above the 1:1 symmetry line (Figure 2.3). This result indicated that about 

50% of the K taken by plants was from non-exchangeable source. 
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Table 2.5: Exchangeable K of the soil (mixture of rhizosphere and bulk soil) of 

maize, wheat and sugar beet grown on K deficient soil with (+K) and without (-K) K 

fertilization at time of harvest. Control - Soils collected from unplanted pot. 

 
Exchangeable K 

- K + K 

Harvest Crops 

µmol kgP

-1
P soil 

First Maize 949 c A 3043 c B 

 Wheat 1068 b A 3889 b B 

 Sugar beet 1111 b A 3889 b B 

 Control 1256 a A 4538 a B 

Second Maize 863 b A 3299 b B 

 Wheat 1026 a A 4111 a B 

 Sugar beet 1103 a A 3940 a B 

 Control 1231 a A 4154 a B 

 

Data are means of 3 replicates. Lower case letters indicate significant difference of soil 

exchangeable K among main effect of different crops at the same K level (P ≤ 0.001, Tukey-test). 

Upper case letters indicate significant difference of soil exchangeable K between different K levels 

for the same crop species (P ≤ 0.001, Tukey-test). 
 



Chapter II- Results 

 

38

Change in exchangeable K, µmol kg-1 soil

0 200 400 600 800 1000

K 
up

ta
ke

, µ
m

ol
 k

g-1
 s

oi
l

0

200

400

600

800

1000

Maize I

Maize II

Wheat I

Wheat II

Sugar beet I

Sugar beet II

 
Figure 2.3: Potassium uptake and corresponding change in exchangeable K in soil (average 
bulk and rhizosphere) of maize, wheat and sugar beet grown on K deficient soil (-K) at first 
and second harvest. 

2.3.3 Simulation of K uptake by a computer model 

 
The measured soil and plant parameter (Table 2.3) were used to simulate K influx 

by maize, wheat and sugar beet using nutrient uptake model (NST 3.0) which 

includes the contribution of root hairs for K uptake.  

 

2.3.3.1 Measured and calculated K influx 

 
Potassium influx is a measure of the physiological activity of the roots. Results 

pertaining to measured and calculated K influx by maize, wheat and sugar beet 

are summarized in table 2.6.  In no-K treatment, measured K influx was 8.45 µmol 
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cmP

-1
P sP

-1
P in sugar beet, which was 4 and 3 times higher than that of maize and 

wheat, respectively. With increasing K supply, measured K influx was increased by 

approximately two times in maize and sugar beet and 1.2 times in wheat. Under 

high K supply, K influx in sugar beet was 5 and 6 times higher than that of maize 

and wheat, respectively. The results show that under both low and high K supply, 

sugar beet had a higher K influx than the other crops.  

 
Table 2.6: Measured and calculated K influx in the roots of maize, wheat and 

sugar beet grown on K deficient soil with (+K) and without (-K) K fertilization. 

 
K influx  

Calculated Measured Calculated/ Measured 

Crops K levels 

10P

-7
P µmol cmP

-1
P sP

-1
P
 

-K 1.27 1.99 0.638 Maize 

+K 4.33 3.87 1.119 

-K 1.77 2.59 0.683 Wheat 

+K 3.90 3.22 1.211 

-K 2.64 8.45 0.312 Sugar beet 

+K 15.10 19.00 0.795 

 
 
In order to find an explanation for the different K influx of the crops, model 

calculations that included root hairs were done. Results in figure 2.4 show the 

calculated depletion of K in the rhizosphere of maize, wheat and sugar beet after 

different days of uptake at low and high K supply. Sugar beet could decrease the K 

concentration at the root surface to a lower value of 3x10P

-3
P µmol cmP

-3
P as compared 

to wheat (7.6x10P

-3
P µmol cmP

-3
P) and maize (9.9x10P

-3
P µmol cmP

-3
P) after 7 days of 

uptake at low K supply (for maize it was 6 days of uptake). Under high K supply, at 

CBLi Bof 933x10P

-3
P µmol cmP

-3
P, sugar beet could decrease K concentration at the root 

surface to 110x10P

-3
P µmol cmP

-3
P, whereas wheat decreased it to 608x10P

-3
P µmol cmP

-3
P 

and maize to 320x10P

-3
P µmol cmP

-3
P. 
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Figure 2.4: Calculated K depletion in the rhizosphere of maize, wheat and sugar beet grown 
on K deficient soil with (+K) and without (-K) K fertilization. 
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These results suggest that higher influx of sugar beet was due to its capability to 

decrease the K concentration at the root surface to a relatively much lower value 

thereby increasing the concentration gradient and so the transport to the root 

surface. Furthermore, the average half distance between the roots (rB1B) in sugar 

beet was more than two times as compared to wheat and maize, irrespective of K 

supply. Therefore the inter root competition was much lower in sugar beet than 

that of wheat and maize. 

As per the model calculation, there was a close prediction for K influx under high K 

supply for wheat and maize, but a slight under prediction was there for sugar beet. 

Under low K supply there was under prediction for K influx in all the crops. 

However the prediction was very low for sugar beet and that was only 31% of the 

measured influx and that of wheat and maize was 68 and 64% (Table 2.6). Which 

emphasized either incorrect measurement of the input parameters or there are 

some other processes which played a role and that had not been considered in the 

model. To find the reason for this under prediction, a sensitivity analysis was done 

by changing CBLiB, IBmaxB and buffer power alone and in combination of IBmaxB and buffer 

power. 

 

2.3.3.2 Sensitivity analysis 

 
Evaluation of soil and plant properties can be done by using the model in a 

sensitivity analysis. In such an analysis, several calculations are performed by 

changing one input parameter while keeping the other input data constant. This 

enables evaluation of the influence of an input parameter on the calculated influx. 

Sensitivity analysis for soil solution K concentration (CBLiB) shows that, increasing 

(CBLiB) by a factor of 1.6 we could get 100% prediction for measured K influx in 

wheat and maize, but in sugar beet the same was achieved by increasing CBLi Bby a 

factor of 3.5 (Figure 2.5).  
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Figure 2.5: Effect of initial soil solution concentration (CBLiB) on calculated influx. Measured 
influx of respective crop species is represented as a straight line. 
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As CBLiB is a parameter which can be measured very precisely, it is a very reliable 

model input parameter. The parameters like IBmaxB and buffer power cannot be 

measured very accurately. There are several ways to calculate IBmaxB and buffer 

power of the soil. With plant growth, soil buffer power may also change because of 

the plant influence e.g. through root exudation, which mobilize K from solid phase, 

uptake of K from non-exchangeable fractions by cation exchange or simply by 

chemical desorption of K from the solid phase due to the steeper concentration 

gradient created by plant root uptake. Maximum uptake capacity (IBmaxB) is 

sometimes taken from solution experiments, where the growing conditions are 

totally different from soil experiments. Therefore a sensitivity analysis for these 

parameters is justified. Increasing the buffer power by a factor of 10, there was 100 

% prediction by the model for wheat and maize, however in sugar beet the same 

was achieved by increasing the buffer power 50 times (Figure 2.6). 

Figure 2.7 shows the effect of increasing IBmaxB on calculated influx by total root, root 

cylinder and root hairs of maize, wheat and sugar beet under low K supply. 

Sensitivity analysis for IBmaxB showed that increasing IBmaxB increased the influx for all 

the three crops. However, even by increasing IBmax Bby 25 times, the model 

prediction for K influx was 0.33, 0.53 and 0.83 times the measured K influx for 

sugar beet, wheat and maize, respectively. It is interesting to note that the effect of 

IBmaxB in increasing calculated K influx was only due to the root hairs and increasing 

IBmaxB did not affect much K influx of the root cylinder. In case of sugar beet the root 

hair K influx was higher than that of root cylinder for all the IBmaxB change ratio, but in 

wheat and maize, root hair K influx was lower than that of root cylinder, but 

increasing IBmaxB gradually increased the root hair K influx.  

In order to know why increasing IBmax Bincreased root hair influx but not that of root 

cylinder, we run the model for wheat without including root hairs, where only root 

radius parameter was changed. In order to know the effect of IBmaxB on root cylinder 

K influx, the actual root radius was taken and to know the effect of IBmaxB on root hair 

K influx, instead of root radius, root hair radius (0.0005 cm) was taken. The 

purpose was to look at the concentration profile around the root and root hair 

surface (Figure 2.8). 
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Figure 2.6: Effect of change in buffer power (b) on calculated influx. Measured influx of 
respective crop species is represented as a straight line. 
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Figure 2.7: Effect of IBmaxB on calculated influx per cm of root through the root cylinder, the 
root hairs and the sum of both of maize, wheat and sugar beet grown on low K supply. 
Measured influx of respective crop species is represented as a straight line. 
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Sensitivity analysis for IBmaxB of root cylinder showed that increasing IBmaxB 10 times did 

not affect much the calculated K influx. But in case of root hair, increasing IBmaxB by a 

factor of 10 resulted in 6 times increase in calculated K influx. To explain the 

reason, the K depletion curve for wheat was drawn for root and root hairs from the 

model output. At the root surface the soil solution K concentration was already very 

low with the original IBmaxB (control) i.e. 10x10P

-3
P µmol cmP

-3
P, so by increasing IBmaxB to a 

higher value, which means increasing the K uptake capacity of the root cylinder, 

there was not much possibility for the root cylinder to further decrease the K 

concentration at the root surface i.e. soil transport was limiting K uptake. In 

contrast at the root hair surface, the K concentration of the control was much 

higher i.e. 80x10P

-3
P µmol cmP

-3
P, therefore root hairs had a large possibility to 

decrease the concentration further thereby creating the concentration gradient for 

higher transport of K towards the root and resulting in higher K influx.  

A sensitivity analysis of single parameter could be insufficient, because sometime 

they are interrelated (Claassen and Steingrobe, 1999). Sensitivity analysis was 

done by increasing IBmaxB and b at the same time and by doing so there was a closer 

prediction of K influx. By increasing both the parameters by 2.5 times there was 

100% agreement for measured K influx in wheat and maize (Figure 2.9). But in 

sugar beet 100% agreement was achieved by increasing both the parameters by 

25 times. Increasing IBmax Balone by a factor of 25 times, prediction was only 33% in 

sugar beet.  
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Figure 2.8: Effect of IBmax Bon soil solution concentration at different distances from the root 
and root hair surfaces of wheat. 
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Figure 2.9: Effect of simultaneous change of IBmax Band buffer power (b) (for example IBmaxB and b, 
both are increased by 5 times) on calculated influx. Measured influx of respective crop 
species is represented as a straight line. 
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2.4 Discussion 

 
This study focuses on K uptake efficiency mechanisms of maize, wheat and sugar 

beet by the help of a nutrient uptake model calculations and a sensitivity analysis. 

Sugar beet and wheat were found to have a higher K uptake efficiency as 

compared to maize. 

The shoot K concentration was higher in sugar beet and wheat than that of maize 

(Figure 2.2). Wheat could take higher K from low K supplied soil because of having 

higher root length to shoot dry weight ratio (Table 2.1). Steingrobe and Claassen 

(2000) reported that in both soil and solution experiment wheat and sugar beet 

were more K efficient than potato because wheat had a large root system and both 

species had an efficient uptake physiology. Root length of sugar beet was only 

18% of that of maize in no K treatment, but the shoot K concentration was two 

times higher than that of maize. Sugar beet could acquire more K per unit shoot 

dry weight because of having 4 and 3 times higher K influx (K uptake per cm of 

root per second) as compared to maize and wheat, respectively and thereby able 

to compensate the higher shoot demand on unit root length (Table 2.6). The higher 

K uptake efficiency of wheat was due to higher root length to shoot dry weight ratio 

and lower shoot demand as compared to sugar beet and maize (Table 2.2). 

Dessougi and coworkers (2002) studied the K efficiency of spring wheat, spring 

barley and sugar beet under controlled conditions on a K fixing sandy clay loam 

soil and reported a higher shoot K concentration with only 30-50% of the root 

length and 15-30% of the relative shoot growth rate in sugar beet as compared to 

wheat and barley. Sugar beet had a 7-20 times higher K influx than wheat and 

barley, indicating that sugar beet was more efficient in removing low available soil 

K. Sadana and Claassen (1999) from one pot culture experiment with K fixing 

sandy clay loam soil reported lowest root/shoot ratio and highest shoot growth rate 

in sugar beet resulting in 3.2 and 2 times higher shoot demand on root than wheat 

and maize, respectively.  

From the calculated concentration profile around the root surface of maize, wheat 

and sugar beet it was deduced that the higher K influx in sugar beet was due to the 
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capacity of the sugar beet root to reduce the concentration at the root surface to a 

lower value as compared to wheat and maize thereby increasing the concentration 

gradient and so the transport of K to the root surface. Furthermore, the average 

half distance between the roots (rB1B) in sugar beet was more than two times as 

compared to wheat and maize, irrespective of K supply, which means that the 

volume of soil that supply K to root of sugar beet was more than that of wheat and 

maize, resulting in greater concentration gradient for K influx (Figure 2.4). 

The nutrient uptake model could satisfactorily predict K influx in maize and wheat 

under high K supply conditions and even in sugar beet, prediction was 80% (Table 

2.6). The close agreement between model calculated and measured K influx under 

high K supply indicated that the concept of diffusion, mass flow and K uptake 

physiology as the most important processes for K transport and uptake are 

appropriate and the model input parameters were accurately measured. However 

under low K supply, the model prediction was 0.64, 0.68 and 0.31 times the 

measured K influx for maize, wheat and sugar beet, respectively.  

Initial soil solution concentration (CBLiB) is a parameter which can be measured very 

precisely; it is a reliable model input parameter. But CBLiB is an average value for the 

whole soil, but in rhizosphere may be it is different, therefore sensitivity analysis for 

CBLiB was done. By increasing CBLiB by factor of 1.6 times for wheat and maize and 3.5 

times for sugar beet, there was 100 % prediction for K influx (Figure 2.5). Which 

indicate the possibilities of chemical mobilization of K by plant root. Maximum net 

influx (IBmaxB), KBm Band b are the parameters which cannot be measured directly in soil 

so there are chances of error in determining these values. 100% model prediction 

for K influx was achieved by increasing buffer power by a factor of 10 in maize and 

wheat and by a factor of 50 in sugar beet (Figure 2.6). In maize and wheat the K 

concentration at the root surface was 2.5 and 3 times higher than that of sugar 

beet, therefore increasing buffer power by a factor 10, the concentration gradient 

needed for driving flux could be established. Because by increasing b, we are 

increasing the soil replenishing power for K i.e. more K is coming to the 

exchangeable fraction from non-exchangeable fraction for example from the 

interlayer K. In our results we also found on an average about 50% of the total K 
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uptake by plant was from non-exchangeable fractions, but close to the root it was 

probably much more (Kuchenbuch and Jungk, 1984) and this would cause a much 

higher b in the rhizosphere (Figure 2.3). But in sugar beet, K concentration at the 

root surface was already very low i.e. 3x10P

-3
P µmol cmP

-3
P, for which 100% prediction 

achieved at a very high buffer power. Increasing buffer power, though we were 

increasing the soil supplying capacity for K, plant could not reduce the K 

concentration at the root surface further unless IBmaxB of the plant increased.  

In case of wheat and maize at the original b, inter root competition was already 

there, which resulted in a lower concentration gradient. At a higher b, more K was 

coming to soil solution and there was no inter root competition which resulted in a 

steeper concentration gradient for K influx. Therefore increasing b by only a factor 

of 10 in maize and wheat, model could simulate K influx 100%. But in case of 

sugar beet, at a low b, there was no inter root competition hence the influence of 

soil K transport to the root surface or the buffer power was less. For which similar 

K influx could be achieved at a higher value of b in sugar beet. Steingrobe et al. 

(2000) reported that in situations of root competition, the difference between the K 

depletion at a low and high value of buffer power became important and the 

influence of buffer power on K uptake increased. 

Similar was the case if we increase the IBmaxB alone keeping buffer power constant. 

By increasing IBmaxB,B Bwe are increasing the K uptake capacity of root and root hairs 

which results in a very low soil solution K concentration at the root surface. The 

equilibrium between K in solution and K in exchangeable and non- exchangeable 

fractions is disturbed when root absorbs more K. To re-establish the equilibrium, K 

from non-exchangeable fraction is released into the solution and solution 

concentration is thus buffered. For which even increasing IBmaxB by a factor of 25, we 

could not achieve 100% prediction in all the crops in low K supplied plants (Figure 

2.7). By doing so only we were increasing the maximum uptake capacity of plant 

without increasing the soil supplying capacity. But to maintain this high IBmaxB, buffer 

power of the soil has to be increased. In soil-plant system (rhizosphere) probably 

these are interrelated parameters. Plants develop mechanisms to survive under 

low nutrient supply conditions for example by increasing the maximum uptake 
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capacity i.e. may be through expression of genes of high affinity K transporters, K 

channels in root or root hair surface. As a consequence it can deplete K at the root 

surface to a very low value thereby creating a concentration gradient for diffusive 

flux of K from the non-exchangeable sources.  

Several researchers reported that plants have developed a number of highly 

specific mechanisms to take up KP

+ 
Pfrom the soil; these include the expression of KP

+
P 

transporters and KP

+
P channels in root cells especially in root hair cells to ensure an 

adequate supply of KP

+
P under low K supply (Brüggemann et al., 1999; Ju et al., 

2004; Reintanz et al., 2002). Even though not much research has been done on 

effect of root hairs on K uptake of different crop species, but there are some 

evidences for phosphorus. Root hairs increase P uptake over that due to the plant 

root alone in six different plant species that varied widely in root hair length, 

density and radius and sensitivity analysis showed a significant contribution of root 

hairs to P uptake (Itoh and Barber, 1982). The basis for large proportion of P 

uptake by root hairs was explained by several researchers as (i) root hairs 

increase the absorbing surface area- in case of spinach, it was 1.9-fold higher than 

that of the root cylinder (Föhse et al., 1991), (ii) root hairs have a very small radius 

(approximately 0.005 mm) (Barber, 1995), so that P concentration at the root hair 

surface remains higher than that at the root cylinder, which leads to a higher influx 

per unit surface area, (iii) root hairs grow into soil perpendicular to the root surface 

and thereby increase the radius of the P absorbing body (root cylinder plus root 

hairs). This causes greater transport of P to the root (Föhse et al., 1991; Claassen, 

1990; Kovar and Claassen, 2005). In our study, we observed from the sensitivity 

analysis that the increase in model prediction for K influx by increasing IBmaxB was 

due to the root hairs only. It was due to the fact that the K concentration at the root 

hair surface was considerably higher as compared to that of root surface. Diffusion 

conditions around a root are cylindrical (Claassen and Steingrobe, 1999). 

Therefore, the soil volume that can be depleted is influenced by root radius and is 

much greater for root hairs than for surface area of root cylinder. Assuming the 

same uptake for roots and root hairs, the depletion zone around root hairs is less 

extended due to the greater soil volume for nutrient supply. Hence, the 
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concentration gradient necessary for any rate of uptake, can be established with a 

lower difference in concentration between root surface and bulk soil (Figure 2.8). 

Therefore concentration at the root surface remains higher for a root hair. A higher 

concentration at the root hair surface enables a greater decrease of this 

concentration by an increase of IBmaxB. For which in maize and wheat better 

prediction was there by increasing IBmaxB as compared to sugar beet.  

Sensitivity analysis was done by increasing IBmaxB and b at the same time. 

Surprisingly, only by increasing IBmaxB and b by a factor of 2.5 times, model could 

predict measured K influx 100% in maize and wheat under low K supply conditions 

(Figure 2.9). However the same was achieved for sugar beet by increasing both 

the factor by 25 times. To maintain this high IBmaxB, soil solution concentration had to 

be increased. But now the question is whether because of the steeper 

concentration gradient created by the roots and/or root hairs, more K is desorbing 

to soil solution from non-exchangeable fraction i.e. b is higher or it is due to some 

organic compounds secreted by sugar beet roots which can solubilize K from soil 

minerals and increase K concentration in soil solution close to the root surface. 

Springob and Richter (1998) reported that an exudation of organic acids and/or 

protons seems to be not necessary to make non-exchangeable K available. 

Already the decrease of the K concentration in soil solution below 3.5 µmol LP

-1 

Pinitiated a release of interlayer K of a Luvisol. The minimum concentration of most 

of the plant species is well below 3.5 µmol LP

-1
P. Hinsinger and Jaillard (1993) 

demonstrated that release of interlayer K in phlogopite occurred in the rhizosphere 

of ryegrass (Lolium perenne L.) when the K concentration in the rhizosphere 

solution decreased below a threshold of about 80 μmol LP

-1
P and the release 

involves exchange of interlayer K by cations of high hydration energy and the 

consequent expansion of the inter layer space. The source and the releasing 

processes of non-exchangeable K from the maize rhizosphere were evaluated by 

Moritsuka et al. (2004) and they reported that interlayer K in 2:1 type phyllosilicate 

was the main source of non exchangeable K for maize and K was releasing 

through cation (CaP

2+
P, MgP

2+
P and NaP

+
P accumulated in the rhizosphere) exchange of 

the K rather than mineral dissolution by protons. The occurrence of root-induced 
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release of K from K bearing minerals has been frequently associated with the 

lowering of K concentration in the solution resulting from root uptake as a result of 

dynamic equilibrium reaction between the phases of soil K (Hinsinger and Jaillard, 

1993). 

As per the earlier model calculations, for the under prediction of K influx under low 

K supply, attention always goes towards the chemical mobilisation of K in the 

rhizosphere based on the fact that soil solution concentration increases in the 

rhizosphere, but actually we never measure directly the soil solution concentration 

in the rhizosphere. On the other hand, root hair uptake kinetics may be different 

from that of roots. Therefore in the future study, attempts should be taken to 

measure directly the K depletion around the root and root hair surface and to 

measure the uptake kinetics (IBmaxB, KBmB and CBLminB) for root hairs. 
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C h a p t e r  I I I  

Root exudates composition and release rate of wheat and 
sugar beet at low and high K supply 
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3 Root exudates composition and release rate of wheat and sugar beet at low 

and high K supply 

 
 
3.1 Introduction 

 
The release of all forms of carbon from roots has been termed as rhizodeposition 

(Marschner, 1995). Rhizodeposition products, which are available for microbial 

metabolism in the rhizosphere (zone adjacent to the root) and on the rhizoplane 

(root surface), can be categorized as exudates, lysates, secretions and gases. The 

difference between exudates and secretions is that, exudates are passively 

released and secretions are actively released compounds. However, the most 

common definition of the term “root exudates” is all the substances which are 

released into the surrounding medium by healthy and intact plant roots (Rovira, 

1969) and is the definition used in this chapter. Root exudates include high and 

low molecular weight compounds. High molecular weight compounds in root 

exudates include the mucilage, gelatinous material covering root surfaces, and 

ectoenzymes. Low molecular weight root exudates are released in larger 

quantities and include organic acids, sugars, phenolics, amino acids, 

phytosiderophores, flavonoids and vitamins (Marschner, 1995; Whipps, 1990).  

Root exudation is affected by multiple factors such as light intensity, temperature, 

nutritional status of the plants, various stress factors, mechanical impedance, 

sorption characteristics of the growth medium and microbial activity in the 

rhizosphere. Root exudation of organic acids, amino acids and sugars generally 

occurs passively via diffusion and may be enhanced by stress factors affecting 

membrane integrity such as nutrient deficiency (e.g. K, P, Zn), temperature 

extremes or oxidative stress (Rovira, 1969; Cakmak and Marschner, 1988). This 

may be related to preferential accumulation of low molecular weight N and C 

compounds at the expense of macromolecules (Marschner, 1995). When plants 

are nutrient deficient, the amount of exudates released by the root often increases 

(Kraffczyk et al., 1984; Neumann et al., 1999; Subbarao et al., 1997). Root 
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exudates composition and exudation rate varies among plant species. Singh and 

Pandey (2003) reported that green gram, a legume crop, had greater root 

exudation compared to maize. However, the amino acid content of the total root 

exudates in maize was two-fold as compared to green gram. Root exudates play a 

role in chemical mobilization of nutrients in the rhizosphere (Marschner, 1995; 

Wang et al., 2000). Soil extraction experiments with carboxylates, amino acids and 

sugars revealed that only citrate applied in extraordinary high concentrations (6 

mmol gP

-1
P soil) was effective in K desorption (Gerke, 1995; Steffens and Zarhoul, 

1997). The composition of root-derived substances is of great importance for the 

understanding of bio-chemical processes in the rhizosphere.  

Sugar beet and wheat both are uptake efficient for K. However, both species use 

different mechanisms. Applying nutrient uptake model on wheat, it could be shown 

that the high K uptake efficiency of wheat was mainly due its large root system, 

where calculated transport and uptake agreed well with measured data. However, 

sugar beet could realize much higher K uptake rate than calculated by the model. 

In the previous chapter, results of sensitivity analysis showed that by increasing 

soil solution K concentration (CBLiB) or buffer power, model prediction for K influx was 

100% under low K supply. Which indicates that sugar beet probably increase the 

soil solution K concentration in the rhizosphere by exuding some organic 

compounds under K deficiency. Root exudates may mobilize K from non-

exchangeable source and an enhanced mobilization of K increases soil solution K 

concentration, which in turn increases transport of K towards the root. Wang et al. 

(2000) reported that the net release of K from the mineral K pool was significantly 

enhanced when the crops were grown in feldspar. The enhanced mobilization of 

mineral K might be attributed to the release of organic acids from the plant roots. 

When gneiss of various particle sizes was exposed to malic and tartaric acids, both 

acids had a direct positive influence on the release of mineral K from gneiss. 

This chapter will focus on the release of water soluble organic root exudates in 

response of low and high K nutrition and characterization of their composition. The 

purpose was to check if sugar beet is releasing some specific compound under 

low K supply, which might be responsible for solubilizing K from non-exchangeable 
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sources. For this an experimental set up was designed to grow K deficient and 

sufficient plants in sand culture and to collect root exudates under different growth 

conditions. The first experiment was conducted in a screen house in which wheat 

and sugar beet plants were grown in coarse quartz sand with continuous supply of 

nutrient solution of low and high K concentration. Cold and warm water soluble 

root exudates were collected from plants by a percolation method at two different 

growth stages. Organic acid, amino acid and sugar composition of root exudates 

were analyzed quantitatively by High Performance Liquid Chromatography (HPLC) 

coupled with different detectors. For quantitative analysis of organic acids, HPLC 

was coupled with photodiode array detector; for amino acids with Fluorescence 

detector and for sugars with differential refractometer. The second experiment was 

conducted in a growth chamber under controlled environmental conditions, where 

wheat and sugar beet plants were grown in medium coarse quartz sand with 

nutrient solution of low and high K supply and root exudates were collected in 

similar manner. Non-targeted metabolite profiling was done by separating the root 

exudates by HPLC coupled with electro-spray mass spectrometry (ESI-MS). 

 
3.1.1 Screen house experiment 

 
3.1.1.1 Materials and methods 

 
3.1.1.1.1 Experimental set up 

 
Wheat (Triticum aestivum L. cv. Thasos) and sugar beet (Beta vulgaris L. cv. 

Semper) plants were grown in inverted open mouth bottles containing 1400 g of 

quartz sand in a screen house. Three seeds of wheat or sugar beet were placed 

over 1200 g of coarse sand (1-2 mm diameter) and covered by 200 g of medium 

coarse sand (<0.7 mm diameter) to reduce the evaporation loss of moisture. The 

bottles were completely covered with aluminium foil in order to avoid transmission 

of light through the bottle.  The plants were supplied with modified Hoagland 

solution with two K levels (K was supplied as KCl) of the following composition [in 

mmol LP

-1
P]: NHB4B(HB2BPOB4B) [1], Ca(NOB3B)B2B [7], MgSOB4B [2]; [in µmol LP

-1
P]: Fe(III)-EDTA
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 [100], HB3BBOB3 B[46], MnClB2 B. 4HB2BO [9], ZnSOB4 B. 7HB2BO [0.8], CuSOB4B . 5HB2BO [0.3], 

(NH4)B6BMoB7BOB24B . 4HB2BO [0.014]. Plants were supplied with nutrient solution drop wise 

continuously through plastic tubes graduated from a plastic pot containing 14 L of 

nutrient solution. Loss in nutrient solution was replenished by fresh nutrient 

solution in every alternate day. For deficient K level wheat and sugar beet plants 

were supplied with all the nutrients except K for one week after germination. 

Afterwards plants were supplied with 50 µmol K LP

-1
P for deficient K level and 1000 

µmol K LP

-1
P for sufficient K level. Potassium concentration of the leachate collected 

in every alternate day from the bottom of each pot and K concentration was 

measured to determine the K depletion in the nutrient solution. Accordingly low 

and high level of K applied to wheat and sugar beet was increased from 50 to 100, 

150, 200 and 300 µmol K LP

-1
P for low K level and 1000 to 1500 and 2000 µmol K LP

-1
P 

for high K level. As the rate of exudation of each plant is very low, in order to 

collect sufficient amount of root exudates for further chemical analysis, each 

treatment was replicated 21 times. Root exudates of wheat and sugar beet were 

collected two times at 21 and 42 days of growth. Three pots from each treatment 

were harvested at 21 days of growth after first collection of root exudates for 

determining root length, shoot dry weight (SDW) and shoot K concentration of 

wheat and sugar beet and the same parameters were determined for rest of the 

replications (18) at 42 days of growth after second collection of root exudates.  
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Picture 3.1: Experimental set up to grow K deficient and sufficient sugar beet plants in 
quartz sand with continuous supply of modified Hoagland nutrient solution of low and high 
K levels. 
 

3.1.1.1.2 Collection of root exudates by percolation method 

 
Cold water soluble root exudates (CRE) were collected after 21 days of 

germination. Supply of nutrient solution was stopped before collection of root 

exudates. The growing media was washed with distilled water in order to make the 

sand free from nutrient ions especially KP

+
P and NOB3PB

-
P. As NOB3PB

-
PB Bdisables the accurate 

determination of organic acid anions by HPLC (High Pressure Liquid 

Chromatography) and the root exudates were collected to study their effect in 

mobilizing K in soil. Potassium and nitrate concentration of the leachate was 

measured and washing was continued till no KP

+
P and NOB3PB

- 
Pwas detected. Mouth of 

each bottle was closed from the bottom for one hour. 200 mL of double distilled 

Low K 
High K 
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water was added to the growing medium to allow the roots to exude. In order to 

avoid OB2B stress in the roots the cap of the bottles was opened after one hour and 

leached root exudates were collected from bottom of each bottle and immediately 

the collected root exudates were refilled to the growing medium and mouth of each 

bottle was again closed from the bottom for another one hour to allow the roots to 

exude. Just before 5 minutes of collection, 50 mL of double distilled water was 

added in order to displace the root exudates from top portion of the growing 

medium. After two hours, the cap of the bottles was opened and root exudates 

were collected from bottom of each bottle. Root exudates were filtered through 

Schleicher and Schuell folded filter paper of ∅ 150 mm to make them free from 

any foreign particles. The weight of the cold water soluble root exudates (Root 

exudates with 250 mL water) was recorded and it was frozen at -32P

º
PC. The frozen 

root exudates were transferred to the freeze dryer (Epsilon 2-40 – Christ and LPC-

16 was the software used to run the freeze dryer). Weight of freeze dried exudates 

was recorded. At 42 days of germination both cold and warm water soluble 

exudates (WRE) were collected. For WRE, the double distilled water was heated 

to 60P

º
PC and 200 mL of warm water (60P

º
PC) was added to each pot and the leachate 

was collected from the bottom and again heated to 60P

º
PC and added to the bottle 

and it was repeated three times and finally WRE was collected. Warm water 

soluble exudates are assumed to be high molecular weight mucilage, which are 

not soluble in cold water.  

 

3.1.1.1.3 HPLC analysis of organic acids, amino acids and sugars 

 
The organic acids, amino acids and sugars present in the root exudates sample 

were analyzed with HPLC for CRE collected at 21 days of germination, but only 

organic acids and sugars were analyzed for CRE and WRE collected at 42 days of 

germination.  

 

3.1.1.1.4 Analysis of organic acids  
 

For analyzing organic acids, 10 mg of freeze dried root exudates were weighed in 
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an eppendorf cup and dissolved in 1 mL of 18 mmol LP

-1
P KHB2BPOB4B (adjusted to pH 

2.5 with HB3BPOB4B) solution. It was mixed by an ultrasonic mixer, centrifuged and 

filtered through Teflon membrane filter (0.2 µm) for HPLC injection. The organic 

acid anions in root exudates samples were analyzed by reversed phase HPLC in 

the ion suppression mode. Separation was conducted on a reversed phase 

column, Li ChroCART 250 x 3 mm, Purospher STAR RP-8, 5 µm particle size, 

equipped with a Li ChroCART 4 x 4 mm, Purospher STAR RP-8, 5 µm particle 

size, guard column (Merck, Darmstadt, Germany). Sample solutions of 20 µL were 

injected into the column, and 18 mmol LP

-1 
PKHB2BPOB4B pH adjusted to 2.5 with HB3BPOB4B 

was used for isocratic elution, with a flow rate of 0.15 mL minP

-1
P at 30° C and 

detection was done by photodiode array detector 996 (Waters, Milford, MA, USA). 

Identification of organic acids was done by comparing retention times and 

absorption spectra with those of known standards. 

 

3.1.1.1.5 Analysis of amino acids and sugars 

 
For analyzing amino acids, 10-20 mg of freeze dried root exudates were weighed 

in an eppendorf cup and dissolved in 500 µL of HPLC water. It was mixed by an 

ultrasonic mixer, centrifuged and filtered through Teflon membrane filter (0.2 µm) 

for HPLC injection. The amino acids in root exudate samples were analyzed by 

reversed phase HPLC in the ion suppression mode. Separation was conducted on 

a reversed phase column (Li ChroCART 250 x 3 mm, Purospher STAR RP-8, 5 

µm particle size) equipped with a Li ChroCART 4 x 4, Purospher STAR RP-8, 5 

µm particle size, guard column (Merck, Darmstadt, Germany). Sample solutions of 

10 µL were injected into the column and eluent gradient of 50 mmol LP

-1
P 

CHB3BCOONa (pH 7.0) and methanol (71/29 - 20/80, v/v) was used for elution, with a 

flow rate of 0.6 mL minP

-1
P at 45° C and detection was done by fluorescence detector 

474 (Waters, Milford, MA, USA) for amino acids. For sugar analysis, separation 

was done by reversed phase column, LiChroCART 250 x 4 mm, LiChrospher 100 

NHB2B, 5µm particle size, equipped with a LiChroCART 4 x 4 mm, LiChrospher 100 

NHB2B, 5 µm particle size, guard column (Merck, Darmstadt, Germany). Sample 
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solutions of 20 µL were injected into the column, and Acetonitrile and water (80/20, 

v/v) was used for elution, with a flow rate of 1 mL minP

-1
P at 30° C and detection was 

done by differential refractometer 198.00 (Knauer, Berlin, Germany). Identification 

of amino acids and sugar was done by comparing retention times and absorption 

spectra with those of known standards.  

 

3.1.1.1.6 Data analysis  

 
Statistical analysis were performed by using two way analysis of variance 

(ANOVA), where significant difference were found, mean values were compared 

by using Tukey’s procedure.  

 

3.1.1.2 Results 

 
3.1.1.2.1 Shoot dry weight, root length and shoot K concentration 

 
Wheat and sugar beet showed K deficiency symptoms under low K supply at both 

first and second harvest. At first harvest, under low K supply, shoot dry weight 

(SDW) and root length (RL) was 9.7 and 10% of the maximum, respectively with 

shoot K concentration of 1.22% in wheat (Table 3.1). Shoot dry weight and RL was 

21% and 19% of the maximum, respectively with shoot K concentration of 0.97% 

in sugar beet. Considering relative shoot dry weight as a measure of K efficiency, 

sugar beet was found to be more K efficient as compared to wheat. Under high K 

supply conditions, shoot K concentration was increased by 3.7 and 4.7 times in 

wheat and sugar beet, respectively. At second harvest, relative shoot yield was 

similar as reported at first harvest in both wheat and sugar beet, where as relative 

root length was greater in sugar beet than in wheat i.e. it was 9.3 and 35% of the 

maximum in wheat and sugar beet respectively under low K supply. At second 

harvest, the shoot K concentration was increased by 1.5 and 2.3 times as
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compared to first harvest in wheat and sugar beet, respectively. 

 

Table 3.1: Shoot dry weight (SDW), root length (RL) and shoot K concentration of 

wheat and sugar beet at low and high K levels after 21 and 42 days of growth. 

 
Harvest Crops K levels SDW RL Shoot K concentration 

   g potP

-1
P
 cm  plantP

-1
P
 % 

First Wheat Low 0.086 a B 141 a B 1.22 a B 

  High 0.885 a A 1409 a A 4.48 a A 

 Sugar beet Low 0.096 b B 150 b B 0.97 a B 

  High 0.451 b A 798 b A 4.53 a A 

Second Wheat Low 0.44 b B 399 b B 1.89 b B 

  High 4.87 b A 4280 b A 4.78 b A 

 Sugar beet Low 3.48 a B 4062 a B 2.27 a B 

  High 15.49 a A 11506 a A 5.72 a A 

 
Data are means of 3 replicates for first harvest and 5 replicates for second harvest. Lower case 

letters indicate significant difference of SDW, RL and shoot K concentration between main effect of 

wheat and sugar beet at the same K level (P ≤ 0.001, Tukey-test). Upper case letters indicate 

significant difference of SDW, RL and shoot K concentration between different K levels for the same 

crop species (P ≤ 0.001, Tukey-test). 
 

3.1.1.2.2 Root exudation rate of CRE and WRE 

 
Results indicate the differences in root exudation between wheat and sugar beet at 

low and high K supply (Figure 3.1). At first harvest, under low K supply, the rate of 

exudation of cold water soluble root exudates (CRE) was 19 times higher 

compared to high K supply in both wheat and sugar beet. At second harvest, rate 

of root exudation was decreased in wheat and sugar beet as compared to first 

harvest both under low and high K supply. The rate of exudation was also 

significantly greater under low K supply compared to high K supply at second 

harvest. However, reduction in exudation rate due to high K supply was greater in 



Chapter III- Screen house Experiment- Results 

 

65

wheat compared to sugar beet. At second harvest after collection of cold water 

soluble root exudates, warm water soluble exudates (WRE) were collected. Under 

low K supply, the rate of exudation of WRE was 9.2 and 2.5 times higher than 

under high K supply in wheat and sugar beet, respectively. The rate of exudation 

of both CRE and WRE was higher in wheat than in sugar beet both at first and 

second harvest. However differences were remarkable at second harvest.  
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Figure 3.1: Exudation rate of cold water soluble root exudates at first harvest (CRE I) and 
cold and warm water soluble root exudates at second harvest (CRE II and WRE II) of wheat 
and sugar beet under low and high K supply grown in the screen house under natural 
sunlight.  

Data are mean of 3 replicates for first harvest and 5 replicates for second harvest. Lower case 
letters indicate significant difference of exudation rate between main effect of different crops at the 
same K level (P ≤ 0.001, Tukey-test). Upper case letters indicate significant difference of exudation 
rate between different K levels for the same crop species (P ≤ 0.001, Tukey-test). 
 

3.1.1.2.3 HPLC analysis of organic acids, amino acids and sugars 

 
Organic acids and sugars detected in root exudates of wheat and sugar beet and 

their exudation rate are given in table 3.2 and 3.3. Under high K supply, the rate of 

exudation of organic acids and sugars was decreased by many folds as compared 

to that of low K supply and this decrease was higher in wheat than in sugar beet. 

Lactic acid exudation rate was highest followed by acetic, malic, citric and fumaric 

acid. Citric acid exudation rate was higher in WRE than in CRE in both wheat and 

sugar beet at second harvest and acetic acid exudation rate was higher in WRE 
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than in CRE only in wheat. Sucrose and t-aconitic acid were detected only in WRE 

in both wheat and sugar beet.   

Aspartic acid (ASP), glutamic acid (GLU), serine (SER), arginine (ARG), glycine 

(GLY), threonine (THR), alanine (ALA), valine (VAL), phenylalanine (PHE), 

isoleucine (ILE), leucine (LEU) and lysine (LYS) were the twelve amino acids 

detected in root exudates of wheat and sugar beet collected at first harvest (Figure 

3.2). Arginine was detected only in root exudates of sugar beet both under low and 

high K supply. Amino acids exudation rate was greater in wheat as compared to 

sugar beet. Under low K supply amino acids exudation rate was greater than 

under high K supply in both wheat and sugar beet.   

The proportion of the reported organic acids, sugars and amino acids was only 2, 

2 and 0.2% of the collected root exudates, respectively.  
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Table 3.2: Organic acids exudation rate of wheat and sugar beet at low and high K 

supply.  

Crops K levels Exudation rate 

  I CRE II CRE II WRE 

Organic 

compounds 

  nmol m-1 root h-1 

Malic acid Wheat Low 5.67 a A 1.61 a A 1.06 a A 

  High 0.34 a B 0.05 a B 0.04 a B 

 Sugar beet Low 3.92 a A 0.06 b A 0.02 b A 

  High 0.37 a B 0.04 b B 0.01 b B 

Citric acid Wheat Low 4.73 a A 0.92 a A 4.05 a A 

  High 0.24 a B 0.21 a B 0.23 a B 

 Sugar beet Low 0.66 b A 0.07 b A 2.32 a A 

  High 0.06 b B 0.03 b B 0.18 a B 

Lactic acid Wheat Low 149 b A  49.6 a A 54.9 a A 

  High 17.0 b B 2.92 a B 3.96 a B 

 Sugar beet Low 298 a A 1.66 b A 5.60 b A 

  High 19.5 a B 0.72 b B 0.97 b B 

Acetic acid Wheat Low 49.4 a A 1.68 a A 3.91 a A 

  High 0.41 a B 0.17 a A 0.04 a B 

 Sugar beet Low 3.77 b A 0.16 a A 0.09 b A 

  High 0.30 b B 0.22 a A 0.38 b B 

Fumaric acid Wheat Low 0.2562 a A 0.0047 a A 0.0042 a A 

  High 0.0017 a B 0.0005 a B 0.0037 a B 

 Sugar beet Low 0.0280 b A 0.00007 b A  0.0007 b A 

  High 0.0004 b B 0.0001 b B 0.00007 b B 

t-Aconitic acid Wheat Low *ND ND 0.011 a A 

  High ND ND 0.005 a A 

 Sugar beet Low ND ND 0.014 a A 

  High ND ND 0.001 a A 
*ND- not detected.  
Data are means of 3 replicates for first harvest and 5 replicates for second harvest. Lower case 

letters indicate significant difference of organic acids exudation rate between main effect of wheat 

and sugar beet at the same K level (P ≤ 0.001, Tukey-test). Upper case letters indicate significant 

difference of organic acids exudation rate between different K levels for the same crop species (P ≤ 

0.001, Tukey-test). 
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Table 3.3: Sugars exudation rate of wheat and sugar beet at low and high K 

supply. 

 
Sugar Crops K levels Exudation rate 

   I CRE II CRE II WRE 

   nmol m-1 root h-1 

Glucose Wheat Low 134 a A 35 a A 42.5 a A 

  High 11 a B 6.2 a B 6.0 a B 

 Sugar beet Low 113 a A 2.0 b A 8.7 b A 

  High 24 a B 1.5 b B 2.5 b B 

Sucrose Wheat Low ND ND 2.32 b A 

  High ND ND 0.36 b B 

 Sugar beet Low ND ND 2.93 a A 

  High ND ND 1.30 a B 

 

*ND- not detected 

Data are means of 3 replicates for first harvest and 5 replicates for second harvest. Lower case 

letters indicate significant difference of sugar exudation rate between main effect of wheat and 

sugar beet at the same K level (P ≤ 0.001, Tukey-test). Upper case letters indicate significant 

difference of organic acids exudation rate between different K levels for the same crop species (P ≤ 

0.001, Tukey-test). 
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Figure 3.2: Amino acid exudation rate of wheat and sugar beet under low and high K supply. 

Data are mean of 3 replicates. Lower case letters indicate significant difference of amino acid 
exudation rate between main effect of different crops at the same K level (P ≤ 0.001, Tukey-test). 
Upper case letters indicate significant difference of amino acid exudation rate between different K 
levels for the same crop species (P ≤ 0.001, Tukey-test). 
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3.1.1.3 Discussion 

 

At first harvest, shoot K concentration was approximately 1% in wheat and sugar 

beet, which is lower than the critical shoot K concentration of 2% which shows that 

the plants were severely K deficient (Table 3.1). Shoot K concentration at second 

harvest was around 2% in wheat and sugar beet which shows K deficiency was 

more severe at first harvest as compared to second harvest. Under high K supply 

shoot K concentration was more than 4%, which was far above the critical 

concentration for K deficiency. Results of relative shoot dry weight and root length 

shows that, K deficiency was more severe in wheat as compared to sugar beet 

through out the growth period.  

Under low K supply, the rate of exudation of cold water soluble root exudates 

(CRE) was several-fold higher as compared to high K supply in wheat and sugar 

beet at both the harvest (Figure 3.1). When plants are nutrient deficient, the 

amount of exudates released by the root often increases (Kraffczyk et al., 1984). 

Differences in root exudation have also been reported for different crop species 

(Neumann et al., 1999; Ohwaki and Hirata, 1992; Subbarao et al., 1997). With age 

of plant, the rate of exudation was decreased in wheat and sugar beet both under 

low and high K supply. However, at second harvest, reduction in exudation rate 

due to high K supply was greater in wheat as compared to sugar beet. Kamh et al. 

(2001) observed a decrease of the organic anions exudation rate with time under 

P deficiency. Rovira (1956) demonstrated differences in the exudates of different 

plants and differences were due to the age of the plant.  

The rate of root exudation in wheat was significantly higher as compared to sugar 

beet at both the harvests; however this difference was remarkable at second 

harvest. As the K deficiency was more severe in wheat, it released more organic 

compounds as compared to sugar beet. Singh and Pandey (2003) reported both 

inter- and intra-species differences among maize and green gram in terms of root 

exudation, P uptake, and shoot and root P content and in general, green gram, a 

legume crop had greater root exudation compared to maize. There was no 

noticeable difference between the rate of release of cold and warm water soluble 



Chapter III- Screen house Experiment- Discussion 

 

71

root exudates. The rate of root exudation of WRE was higher under low K supply 

as compared to high K supply and it was higher for wheat than sugar beet as 

reported in CRE.  

Exudation rate of all reported organic acids except lactic and t-aconitic acid was 

higher in wheat compared to sugar beet (Table 3.2). Glucose was the only sugar 

detected in CRE; where as in WRE, glucose and sucrose were detected. Sucrose 

and t-aconitic acid was only detected in WRE (Table 3.3). Plants are capable of 

releasing large amounts of organic acids into the rhizosphere in response to P 

deficiency (Hoffland et al., 1992; Gerke, 1994). Enhanced release of organic acids 

has been reported under P deficiency in dicots in general and legumes in particular 

(Lipton et al., 1987). Malate and citrate appear to be the primary components 

released by roots under P deficiency (Jones, 1998). Iron deficiency induces a 

substantial accumulation of organic acids in root tissues and also induces 5-10 fold 

increase in organic acid excretion (Ohwaki and Sugahara, 1997). Neumann and 

Römheld (1999) reported that P-deficiency induced exudation of carboxylic acids 

in chickpea and white lupin and was associated with a larger increase of carboxylic 

acid concentrations in the roots and lower accumulation of carboxylates in the 

shoot tissue and this depends on the ability to accumulate carboxylic acids in the 

root tissue, which in turn is determined by biosynthesis, degradation and 

partitioning of carboxylic acids or related precursors between roots and shoot. In 

some plants such as white lupin, there are indications for a specific transport 

mechanisms (anion channel) involved in root exudation of extraordinary high 

amounts of citric acid. Exudation rate of amino acids was significantly higher in 

wheat compared to sugar beet both under low and high K supply (Figure 3.2). 

Singh and Pandey (2003) reported that amino acid content of the total root 

exudates in maize was two-fold as compared to green gram. Amino acids 

exudation rate was significantly higher under low K supply as compared to high K 

supply. Arginine was detected only in root exudates of sugar beet under both low 

and high supply. Rovira (1956) reported that Peas excreted considerable amounts 

of amino material during 21 days growth with 22 different amino compounds, while 

oats excreted less consisting of 14 amino compounds. The proportions of the 
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various amino acids in the exudates differed between peas and oats. The 

proportion of the reported organic acids, sugars and amino acids was only 2, 2 and 

0.2% of the collected root exudates, respectively. The results show that only 4.2% 

of the total root exudates were analyzed by HPLC. The very low proportion of 

organic acids, sugars and amino acids indicate the possibility of microbial 

degradation of the root exudates during the time of collection and filtration.  

Root exudation rate was many-fold higher under low K supply as compared to high 

K supply conditions in both wheat and sugar beet. However, rate of root exudation 

was higher in wheat as compared to sugar beet. Rate of exudation decreased with 

plant age. Exudation rate of organic acids (acetic acid, malic acid, citric acid and 

fumaric acid) except lactic acid and t-aconitic acid was higher in wheat compared 

to sugar beet. Exudation rate of amino acids was higher in wheat compared to 

sugar beet. Glucose was the only sugar detected in CRE; where as in WRE, 

glucose and sucrose were detected.  

 

3.1.2 Growth chamber experiment 

 
3.1.2.1 Materials and methods 

 
3.1.2.1.1 Experimental set up 

 
Wheat (Triticum aestivum L. cv. Thasos) and sugar beet (Beta vulgaris L. cv. 

Semper) plants were grown in inverted open mouth bottles containing 1400 g of 

medium course quartz sand (0-7 mm diameter) in a growth chamber with day/night 

regime of 16/8 hours, temperature of 25/18 P

º
PC and relative humidity of 70 %. The 

photosynthetic active radiation during the day time was 250 µE mP

-2
P sP

-1
P. The bottles 

were completely covered with aluminium foil in order to avoid transmission of light 

through the bottle. Number of plants per pot was 3 and 2 for wheat and sugar beet, 

respectively. The plants were supplied with modified Hoagland solution with two K 

levels with similar composition as described in the earlier screen house 

experiment. From the beginning all the plants were supplied with 500 µmol K LP

-1
P 

from one liter bottle placed immediately below the bottom of inverted bottle in
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which plants were grown. The mouth of the inverted bottle and the bottle 

containing 1 L of solution which serve as reservoir for nutrient solution were 

connected by black color plastic tubes. Everyday nutrient solution was recycled 

from the 1 L bottle placed at the bottom and after recycling the weight loss from the 

growing medium was replenished by distilled water. Every alternate day, K 

concentration from the reservoir bottle was measured. Plants were allowed to grow 

under sufficient K for some days and afterwards K concentration in nutrient 

solution was gradually reduced to 100 µmol K LP

-1
P (low K supplied plants) for half of 

the pots and for other half it was gradually increased to 4000 µmol K LP

-1
P (high K 

supplied plants). 

As the rate of exudation of each plant is very less, in order to collect sufficient 

amount of root exudates for further chemical analysis, each treatment was 

replicated 20 times. Root exudates of wheat and sugar beet were collected two 

times at 21 and 42 days of growth. Three pots from each treatment were 

harvested at 21 days of growth after first collection of root exudates for determining 

root length, shoot dry weight (SDW) and shoot K concentration of wheat and sugar 

beet and the same parameters were determined for rest of the replications (17) at 

42 days of growth after second collection of root exudates.  
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Picture 3.2: Experimental set up to grow K deficient and sufficient sugar beet plants in 
quartz sand supplied with modified Hoagland nutrient solution of low and high K levels. 

 
3.1.2.1.2 Collection of root exudates by percolation method 

 
Root exudates were collected from wheat and sugar beet at 21 and 42 days of 

growth, respectively by percolation method as described earlier. The weight of the 

cold and warm water soluble root exudates (Root exudates with 250 mL water) 

was recorded and it was frozen at -32P

º
PC. The frozen root exudates were 

transferred to the freeze dryer (Epsilon 2-40 – Christ and LPC-16 was the software 

used to run the freeze dryer). Weight of freeze dried exudates was recorded. 

Differential metabolite profiling for comparative analysis of organic components in 

root exudates was done by HPLC-MS (High Pressure Liquid Chromatography – 

Mass Spectrometry) in department of Crop Sciences- Molecular Plant Pathology 

and Mycotoxins research group, Georg-August-Universität, Göttingen. The 

purpose was to identify the metabolic signals which occur or change with 

potassium deficiency. The analytical strategy was to separate and detect as many 

 
High K 

Low K 
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metabolites as possible in a single analysis, but only the signals which were 

different for different treatments were considered for characterization. Therefore 

metabolic profiles were recorded using the separation of dissolved root exudates 

samples by HPLC on reversed phase material in combination with mass 

spectrometry and photometric detectors. Profiling schemes for Arabidopsis and 

other plants have been developed in recent years (Roessner et al., 2000, 2001; 

Fiehn et al., 2000; Wagner et al., 2003). The main focus of these mostly gas 

chromatography (GC)-mass spectrometry (MS)-based approaches have been 

metabolites of the primary metabolism such as sugars, amino acids and organic 

acids. Several hundred compounds can be robustly and reliably detected. 

However, these first pioneering reports already emphasize the need for 

complementary liquid chromatography (LC)-MS based approaches to allow a more 

comprehensive profiling of metabolites (Roessner et al., 2000). The coupling of 

electrospray ionization (ESI) MS with capillary (Cap) electrophoresis (Soga et al., 

2002) and hydrophilic interaction chromatography (Tolstikov and Fiehn, 2002) has 

been successfully applied to metabolomics problems. Every analytical procedure 

is necessarily limited as to what type of compounds can be separated and 

detected. GC-MS is predominantly applied to very polar or unpolar substances and 

the main application range of LC-MS is more related to compounds of medium 

polarity. Furthermore, LC coupled to an MS technique providing soft ionization and 

high mass accuracy has the potential to generate information useful for the 

identification of unknown compounds because molecular ions and characteristic 

fragments can be detected (De Hoffmann, 1996; Niessen, 1999). Roepenack-

Lahaye and coworkers (2004) described a profiling approach in Arabidopsis that 

combines separation by capillary liquid chromatography with the high resolution, 

high sensitivity, and high mass accuracy of quadrupole time-of-flight mass 

spectrometry. About 2,000 different mass signals could be detected in extracts of 

Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary 

metabolites. Detection based on retention times and exact masses was robust and 

reproducible. The dynamic range was sufficient for the quantification of 

metabolites. Assessment of the reproducibility of the analysis showed that 
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biological variability exceeds technical variability.  

 

3.1.2.1.3 Advantages of linking High Performance Liquid Chromatography with 

Mass Spectrometry 

 
Mass Spectrometry (MS) coupling with the separation power of High Pressure 

Liquid Chromatography (HPLC) has become a widely used analytical technique for 

qualitative and quantitative analysis of semi-volatile, thermo labile and polar 

substances. The mass spectrometer acquires mass to charge ratio (m/z) of ions. 

In many analyses, the compounds of interest are found as part of a complex 

mixture and the role of the chromatographic technique is to provide separation of 

the components of that mixture to allow their identification or quantitative 

determination and identification is based on retention time of an unknown with 

those of reference materials. Even if the retention characteristics of an unknown 

and a reference material are identical, the analyst cannot say with absolute 

certainty that the two compounds are the same. It is not always possible to effect 

complete separation of all the components of a mixture and which prevent precise 

and accurate quantitative determination of the analyte of interest. The mass 

spectrometry lies in the fact that the mass spectra of many compounds are 

sufficiently specific to allow their identification with a high degree of confidence. 

The combination of the separation capability of chromatography to allow pure 

compounds to be introduced into the mass spectrometer with the identification 

capability of the mass spectrometer is therefore advantageous, particularly as 

many compounds with similar or identical retention characteristics have quite 

different mass spectra and therefore be differentiated (Snyder and Kirkland, 1974).  

 

3.1.2.1.4 Sample preparation for HPLC-MS analysis 

 
About 0.5 mg of freeze-dried root exudates was weighed in a 1.5 mL capacity 

HPLC Vial. 100 µL Methanol was added to let dissolve the less polar compound, 

after few minutes, 900 µL of double distilled water was added. The vial was 
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shaken with a vortexer. The dissolved root exudates solution was filtered through a 

Teflon membrane filter (0.2 µm). Vials were covered by screw cap with a Teflon 

septum. Samples were analyzed within 6 hours of its preparation. Autosampler 

was cooled to 8°C. 

 

3.1.2.1.5 Instrumental Analysis 

 
High Performance Liquid Chromatography – Photometric detector - Electrospray-

Ionization/Mass Spectrometry (HPLC-DAD-ESI/MS) 
Injection: 

• injection volume: 10 µL 

 

Separation: 

• stationary phase: reversed phase column  

• mobile phase solvents: water with 5 % acetonitrile (A), methanol (B) 

• gradient elution: increase of methanol starting at 10% to 98%,  0.2 mL  

minP

-1
P
 

• column oven: 40°C  

 

Detection: 

Diode array detector (DAD): UV absorption 200-800 nm 

The eluate runs through a cell where the UV-Absorption is measured without 

changing or destroying the analytes, so that afterwards the eluate can be 

submitted to electrospray ionization for mass spectrometric detection. 

 

Electrospray-Ionisation interface hyphenated to Triple Quadrupole Mass 

spectrometer: 

• Electrospray-Ionisation 

ESI negative: Needle Voltage – 4400V, Shield Voltage -600 V 

ESI positive: Needle Voltage +5000V, Shield Voltage +250 V 

Drying Gas: NB2B, pressure18 psi, at 250°C 
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Nebulizing Gas: Air, pressure 50 psi 

• Scan-Mode: Full Scan from m/z 50 to m/z 500, Scan time 1 sec, 

Centroid. 

 

Data analysis: 
 

• Analysis Software for chromatograms with mass spectrometric detection: 

MS Data Review 

• Analysis of DAD chromatograms and UV-Spectra: Polyview 

 
Solvents and materials 
 
Syringe filter with Teflon membrane 0.2 µm (WICOM, Heppenheim, Germany). 

HPLC column: Polaris C18-A, 150 x 2 mm, Particle size 5 µm (Varian, Darmstadt, 

Germany). 

Solvents: Methanol, HPLC Gradient Grade (VWR, Darmstadt, Germany) and 

double distilled water. 

  

Instruments and software 
 
Autosampler: ProStar 430 Autosampler (Varian, Darmsatdt, Dtl.) 

HPLC-Pumps: ProStar 210 Solvent Delivery Module (Varian, Darmstadt, Dtl.) 

Column oven: Mistral, ProStar 510 column oven (Varian, Darmstadt, Dtl.)  

Diodearray-Detector (DAD): ProStar 330 Photodiode Array Detector (Varian, 

Darmstadt, Dtl.) 

Mass Spectrometer: 1200 LC/MS Triple Quadrupole- Mass spectrometer coupled 

with Electrospray Ionisation-Interface (Varian, Darmstadt) 

Software for acquisition: MS Workstation Version 6.41 (Varian, Darmstadt) 

Software for data analysis: Polyview, MS Data Review, MS Workstation Version 

6.41 
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3.1.2.1.6 Purification of freeze dried root exudates  

 
5 mg of cold water soluble root exudates, collected from low K supplied sugar beet 

at second harvest was loaded onto the column containing Sephadex LH-20. 

Analytes were eluted with 10% methanol: 90% water. Several fractions of 0.5 mL 

each were collected and analyzed by direct infusion into the ESI-MS. 

 

3.1.2.2 Results 

 
In the earlier experiment the low K supplied plants were severely K deficient, 

because for deficient K level, wheat and sugar beet plants were supplied with all 

the nutrients except K for one week after germination. Afterwards plants were 

supplied with nutrient solution of very low K concentration i.e. 50 µmol K LP

-1
P. As K 

is the major essential nutrient for plant growth, the plant stopped growing after 15 

days of supplying solution of 50 µmol K LP

-1
P. Afterwards increasing K concentration 

had no effect in mitigating the severe K deficiency. To avoid that, the present 

experiment was designed to grow the plants with sufficient K for some days and 

afterwards K concentration in nutrient solution was gradually reduced (low K 

supplied plants) for half of the pots and for other half it was gradually increased 

(high K supplied plants). 

 
3.1.2.2.1 Shoot dry weight, root length and shoot K concentration 

 
Wheat and sugar beet plants showed K deficiency symptoms under low K supply 

at both first and second harvest. At first harvest, under low K supply shoot dry 

weight (SDW) and root length (RL) was 77% and 55% of the maximum, 

respectively with shoot K concentration of 1.9% in wheat (Table 3.4). Shoot dry 

weight and RL was 46% and 39% of the maximum, respectively with shoot K 

concentration of 1.4% in sugar beet. The shoot K concentration was lower than the 

critical concentration of 2% which shows that the plants were K deficient. Under 

high K supply, shoot K concentration was increased by 2.3 and 1.9 times in wheat 

and sugar beet, respectively. At second harvest, relative shoot yield was
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reduced in wheat and it was 58% of the maximum, but in sugar beet it was similar 

as reported at first harvest i.e. 46.5% of the maximum. Relative root length was 

greater in sugar beet than in wheat i.e. it was 45 and 50% of the maximum in 

wheat and sugar beet, respectively under low K supply. At second harvest shoot K 

concentration was 2.0 and 1.8% in wheat and sugar beet, respectively under low K 

supply. Under high K supply, shoot K concentration was increased by 2.0 times in 

both wheat and sugar beet.  
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Table 3.4: Shoot dry weight (SDW), root length (RL) and shoot K concentration of 

wheat and sugar beet at low and high K levels after 21 and 42 days of growth. 

 
Harvest Crops K levels SDW RL Shoot K concentration 

   g potP

-1
P
 cm  plantP

-1
P
 % 

First Wheat Low 1.2 b B 1833 b B 1.9  a B 

  High 1.5 b A 3351 b A 4.3  a A 

 Sugar beet Low 1.1 a B 1726 a B 1.4  b B 

  High 2.4 a A 4468 a A 2.6  b A 

Second Wheat Low 9.2 a B 5708 b B 2.0  a B 

  High 15.7 a A 12624 b A 4.3  a A 

 Sugar beet Low 6.1 b B 7893 a B 1.8  b B 

  High 12.9 b A 15749 a A 3.8  b A 

 
Data are means of 3 replicates for first harvest and 5 replicates for second harvest. Lower case 

letters indicate significant difference of SDW, RL and shoot K concentration between main effect of 

wheat and sugar beet at the same K level (P ≤ 0.001, Tukey-test). Upper case letters indicate 

significant difference of SDW, RL and shoot K concentration between different K levels for the same 

crop species (P ≤ 0.001, Tukey-test). 
 

3.1.2.2.2 Root exudation rate of CRE and WRE 

 
Results indicate the differences in root exudation between wheat and sugar beet at 

low and high K supply (Figure 3.3). At first harvest, under low K supply, the rate of 

exudation of cold water soluble root exudates (CRE) was 1.6 times higher 

compared to high K supply in wheat, but in sugar beet it was 7.0 times higher. The 

rate of exudation decreased with time. At second harvest the exudation rate of 

CRE was 1.2 and 2.7 times higher in low supply plants compared to high K supply 

in wheat and sugar beet, respectively. The exudation rate of WRE was 3.6 and 7.0 

times higher in low K supply plants compared to high K supply in wheat and sugar 

beet, respectively. The exudation rate was higher in sugar beet, because K 

deficiency was more severe in sugar beet compare to wheat.  
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Figure 3.3: Exudation rate of cold water soluble root exudates at first harvest (CRE I) and 
cold and warm water soluble root exudates at second harvest (CRE II and WRE II) of wheat 
and sugar beet under low and high K supply grown in growth chamber under controlled 
condition.  

Data are mean of 3 replicates for first harvest and 5 replicates for second harvest. Lower case 
letters indicate significant difference of exudation rate between main effects of different crops at the 
same K level (P ≤ 0.001, Tukey-test). Upper case letters indicate significant difference of exudation 
rate between different K levels for the same crop species (P ≤ 0.001, Tukey-test). 

 
In growth chamber experiment, root exudation rate of cold water soluble root 

exudates of wheat and sugar beet was reduced by approximately 100 times as 

compared to screen house experiment under low K supply and reduced by 

approximately 20 times under high K supply at first harvest. But this reduction in 

root exudation rate was lower at second harvest i.e. the rate of exudation of wheat 

and sugar beet was reduced by 15 and 2 times in the growth chamber experiment 

as compared to screen house experiment under low and high K supply, 

respectively. 

 

3.1.2.2.3 HPLC-MS analysis 

 
During sample preparation it was observed that part of the weighed root exudates 

samples was not dissolved in the solvent. They were removed by filtration. May be 

those were unpolar waxes from the roots or silica polymer of the quartz sand. 

Samples were measured within 6 hours of preparation to avoid degradation and 
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transformation of some signals. 

Comparison of HPLC-MS profiles of root exudates showed some signals specific 

to root exudates collected from low and high K supplied wheat and sugar beet. 

Total ion current for the cold and warm water soluble root exudates were recorded 

at ESI (Electro spray ionization) positive and negative mode. But the major 

differences in signals between low and high K supply and between wheat and 

sugar beet at the same K level were observed in the ESI negative mode.  

 
ESI negative mode 
 
The total ion current (TIC) recorded in ESI negative mode for mass range (m/z 

values) 50 to 500 D for the cold water soluble root exudates (CRE) collected at first 

harvest and for both cold and warm water soluble root exudates (CRE and WRE) 

collected at second harvest from wheat and sugar beet under low and high K 

supply are given in figure 3.4 and 3.5. Several signals were detected in root 

exudates samples, but not in the HPLC mobile phase (10% methanol). There was 

difference between TIC of CRE collected at first and second harvest and also 

between TIC of cold and warm water soluble root exudates. There were several 

signals detected specific to CRE collected at first and second harvest and also 

some signals were specific to WRE. The intensity of the signal also varied from 

first harvest to second harvest and from CRE to WRE. In this chapter the m/z 

values for cold water soluble root exudates collected at second harvest are 

described in detail.  
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Figure 3.4: Total ion chromatogram (Full scan m/z 50-500 D) at ESI negative mode of CRE 
collected from wheat and sugar beet under low and high K supply at first (I) and second (II) 
harvest. 

     
 
Figure 3.5: Total ion chromatogram (Full scan m/z 50-500 D) at ESI negative mode of WRE 
collected from wheat (Four replicates each for low and high K supply) and sugar beet (3 
replicates for low K and four replicates for high K supply) under low and high K supply at 
second harvest.  

Mass spectrometric signals of CRE at second harvest 
 
Out of the several signals, detected in CRE collected at second harvest, only 18 

were different in their intensities in root exudates of wheat to sugar beet at same K 

level and also in low and high K supply for the same crop. The m/z values with 

their retention time (tBRB) and the corresponding intensities (which is represented as 

areas per mg of freeze dried root exudates) of those 18 signals are given in figure 

3.6 and 3.7. The intensity of the signals corresponding to m/z values- 62, 225, 89, 
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210, and 119 were relatively stronger among all the signals detected in CRE. The 

intensity of the signals corresponding to m/z values- 210, 119, 164, 179, 189, 147 

(tBR B= 5.22 minutes), 173, 116, 145 (tBR B= 7.19 minutes), 191 and 254 were relatively 

higher in CRE collected from low K supplied wheat and sugar beet as compared to 

high K supply. For CRE collected from high K supplied wheat and sugar beet, the 

intensity of the signals corresponding to m/z values- 59 and 89 were relatively 

higher as compared to that of low K supply and that of 225 was higher under high 

K supply as compared to low K supply only in sugar beet. The intensity of the 

signals corresponding to m/z values- 225, 179, 210, 159, 59, 145 (tBR B= 6.00 

minutes), 62 and 254 were relatively higher in CRE of sugar beet as compared to 

that of wheat and the intensity of the signal of m/z value 119, 116, 173, 103 (only 

under low K), 145 (tBR B= 7.19 minutes), 191 were relatively higher in wheat as 

compared to sugar beet under both low and high K supply.  
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Figure 3.6: Areas of signal corresponding to m/z value 62 detected in cold water soluble root 
exudates collected from wheat and sugar beet under low and high K supply at second 
harvest.  
 
Data are mean of 4 replicates for wheat and 3 replicates for sugar beet. Standard error is given in 
the error bar. 
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Figure 3.7: Different m/z values with corresponding areas detected in cold water soluble root 
exudates collected from wheat and sugar beet under low and high K supply at second 
harvest.  

Data are mean of 4 replicates for wheat and 3 replicates for sugar beet. Standard error is given in 
the error bar. 
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Mass spectrometric signals of CRE at first harvest 
 
Twenty five signals were detected in cold water soluble root exudates collected at 

first harvest which varied in their intensities in wheat and sugar beet at the same K 

level and under low and high K supply for the same crop species. The m/z values 

with their retention time (tBRB) and the corresponding intensities (which is 

represented as areas per mg of freeze dried root exudates) of those 25 signals are 

given in table 3.5. Several peaks corresponding to m/z values 176, 97, 261, 193, 

199, 242, 175, 199, 277, 356, 385, 376 were detected in cold water soluble root 

exudates at first harvest which were not detected in CRE collected at second 

harvest. Surprisingly, intensities of all the peaks detected except m/z values 189 

and 191 were higher in sugar beet as compared to wheat under low K supply. 

Under high K supply, the intensities of the signals corresponding to m/z values 

356, 189 and 191 were relatively higher in wheat as compared to sugar beet in 

CRE. As compared to CRE collected at second harvest, the intensity of the 

dominant signals [m/z 97 (tBR B- 4.8), 119, 116, 210, 62, 147 and 226] were relatively 

stronger in CRE collected at first harvest. The intensities of almost all detected 

signals were higher under low K supply as compared to high K supply in both 

wheat and sugar beet. The m/z values 145, 147, 189, 191 eluted at the same 

retention time. All these masses may belong to one compound. The m/z values 62, 

147, 210 eluted at the same retention time, possibly belong to one compound. 

Similar for m/z values 179 and 242 which eluted at the same retention time, may 

belong to one compound.  
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Table 3.5: Areas of mass spectrometric signals corresponding to m/z values 
detected in cold water soluble root exudates (CRE) at first harvest under low and 
high K supply. 
 

Areas 

Wheat Sugar beet 

Retention time 

Low K High K Low K High K 

m/z values 

minutes 10P

6 
PmgP

-1
P CRE 

97 4.8 1208 (105) 646 (41)* 9430 (546) 6131 (2146) 

119 4.9 234 (12) 138 (18) 1162 (106) 609 (211) 

116 4.8 10 (3) 6 (1) 204 (28) 139 (57) 

210 5.7 809 (75) 325 (105) 1318 (201) 512 (187) 

62 5.7 239 (17) 101 (16) 4605 (1342) 993 (340) 

147 5.7 71 (24) 13 (4) 103 (35) 70 (26) 

226 5.7 133 (18) 14 (9) 228 (76) 35 (17) 

176 4.7 4.61 (0.77) 5.88 (1.36) 6.96 (1.85) 4.37 (1.52) 

261 4.9 22.67 (8.19) 13.51 (1.33) 39.49 (4.73) 20.82 (7.06) 

356 5.2 5.93 (2.58) 29.31(13.13) 3.03 (1.26) 0.71 (0.23) 

97 5.4 13.68 (4.32) 8.06 (1.43) 0 (0) 7.37 (1.66) 

193 5.6 1.98 (0.62) 1.48 (0.13) 8.93 (1.95) 6.25 (2.65) 

199 5.7 7.6 (2.55) 3.75 (1.04) 18.42 (3.95) 10.75 (3.84) 

242 6.0 0.61 (0.15) 1.13 (0.47) 1.23 (0.16) 4.8 (2.69) 

179 6.0 1.13 (0.44) 2.43 (0.17) 4.15 (1) 10.09 (5.17) 

175 7.0 0.83 (0.29) 7.83 (2.18) 1.45 (0.28) 4.4 (1.6) 

145 7.2 26.45 (5.52) 23.08 2.96) 82.15 (13.8) 50.43 (16.03) 

189 7.2 43.92 (8) 51.55 (5.72) 35.66 (5.83) 31.97 (7.6) 

147 7.2 15.15 (2.9) 11.69 (3.38) 37.13 (3.58) 37.62 (4.64) 

191 7.3 21.13 (5.12) 21.99 (1.31) 11.27 (3.84) 11.28 (4.81) 

199 7.8 2.03 (0.44) 2.58 (0.42) 33.04 (18.26) 2.07 (0.44) 

225 9.8 6.2 (1.99) 5.55 (2.76) 9.01 (2.81) 28.2 (5.17) 

385 11.5 0.43 (0.11) 0.45 (0.12) 1.48 (0.82) 4.45 (2.05) 

376 11.5 4.75 (2.07) 6.84 (3.6) 17.34 (7.15) 7.94 (3.95) 

277 13.9 3.43 (0.48) 8.95 (3.24) 13.42 (2.25) 10.05 (1.95) 

 
*Standard error is given in the bracket 
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Mass spectrometric signals of WRE at second harvest 
 
Twenty four signals were detected in warm water soluble root exudates collected 

at second harvest which varied in their intensities in wheat and sugar beet at the 

same K level and under low and high K supply for the same crop species. The m/z 

values with their retention time (tBRB) and the corresponding intensities of those 

signals are given in table 3.6. Several peaks corresponding to m/z values 344, 

120, 104, 367, 129, 130 and 134 were detected in warm water soluble root 

exudates at second harvest which were not detected in CRE. The intensities of 

signals corresponding to m/z values 367, 129, 130 and 134 were relatively higher 

in WRE collected from wheat as compared to sugar beet at both low and high K 

supply. Intensities of these four signals were relatively higher under low K supply 

as compared to high K supply. This result indicates that WRE might contain 

different compound than CRE. As the warm water soluble root exudates contain 

some high molecular weight compounds like mucilage, the composition of WRE 

could be different from CRE. Rests of the signals were common to both CRE and 

WRE. The intensity of the signal corresponding to m/z value 164 was remarkably 

higher in wheat as compared to sugar beet both under low and high K supply. For 

all the dominant signals, the trend for change in intensities was similar as reported 

in CRE i.e. the intensities of those signals were higher in WRE collected from 

sugar beet as compared to wheat both under low and high K supply and were 

higher under low K than that of high K supply for both wheat and sugar beet.  
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Table 3.6: Areas of mass spectrometric signals corresponding to m/z values 

detected in warm water soluble root exudates (WRE) at second harvest under low 

and high K supply. 

 
Areas 

Wheat Sugar beet 

Retention time 

Low K High K Low K High K 

m/z values 

minutes 10P

6 
PmgP

-1
P WRE 

97 4.4 2136  (1122) 789  (386)* 2295  (1458) 2222  (359) 

119 4.4 279  (152) 57  (28) 227  (156) 170  (28) 

116 4.4 78  (40) 4.5  (2.3) 44  (27) 18  (8.9) 

344 4.6 15  (6.9) 12  (4.1) 7.7  (3.8) 12  (4.7) 

210 5.3 152  (29) 1.1  (0.4) 246  (157) 240  (103) 

62 5.4 2167  (1131) 50.4  (27) 3018  (1980) 1594  (108) 

120 5.4 5.4  (2.1) 0.2  (0.1) 5.8  (3) 8.5  (2.5) 

147 5.5 37  (6.9) 1.8  (1.1) 77  (50) 41  (5.7) 

89 5.7 59  (7.9) 17  (11) 121  (56) 293  (96) 

242 6.0 6.9  (3.2) 0.6  (0.3) 6.8  (4.5) 2.1  (0.3) 

145 6.0 36  (12) 0.8  (0.4) 28  (12) 43  (25.8) 

104 6.1 13  (2.3) 2.4  (2.3) 3  (1.2) 7.7  (3.1) 

179 6.1 40  (7.1) 5.8  (5.1) 27  (15) 35  (7.1) 

367 6.2 30  (4.4) 13  (8.5) 8.8  (4.1) 19  (5.9) 

116 6.3 8.9  (2.7) 2.2  (1.3) 5.9  (3.5) 12  (1) 

129 6.3 42  (17.1) 4.5  (2.4) 2.3  (0.9) 1.8  (0.3) 

130 6.9 42  (6.4) 8.4  (4.7) 11.9  (8.1) 11  (2) 

134 7.0 14  (3.4) 0.3  (0.1) 6.8  (4.1) 8.9  (3.3) 

147 7.2 43  (9.5) 20  (13) 15  (11) 30  (4.8) 

225 9.0 227  (100) 412  (133) 762  (242) 1524  (166) 

261 9.0 13  (3.1) 15  (3.3) 30  (10) 53  (5) 

164 13 250  (74) 44  (13) 0.2  (0.1) 0.3  (0.2) 

197 17 16  (2.6) 9.8  (2.3) 15  (5.6) 14  (1.3) 

 
*Standard error is given in the bracket 
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ESI positive mode 
 
Signals corresponding to m/z values 475, 197, 363 and 429 were different for CRE 

collected from wheat and sugar beet under low and high K supply at second 

harvest in ESI positive mode (Figure 3.8). For CRE collected from low K supplied 

wheat and sugar beet, the intensity of the signal corresponding to m/z value 475 

was relatively higher as compared to high K supply and that of 363 was higher 

under high K supply as compared to low K supply. For m/z value 197, the intensity 

was higher under low K supply as compared to high K supply only in wheat and 

there was no change in intensity from low to high K supply in sugar beet. In wheat, 

the intensity of the signal corresponding to m/z value 429 was higher under high K 

supply than that of low K supply. 
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Figure 3.8: Different m/z values with corresponding areas detected in cold water soluble root 
exudates collected from wheat and sugar beet under low and high K supply at second 
harvest.  

Data are mean of 4 replicates for wheat and 3 replicates for sugar beet. Standard error is given in 
the error bar. 
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3.1.2.2.4 Purification and preliminary identification of root exudates components 

 
Root exudates samples were purified to collect the pure fractions of different 

components for further identification. Dominant peaks were found in the early 

fractions from purification column (Sephadex LH-20). In fractions 5-7, signals 

corresponding to m/z values 119, 116, 191 and 171 and in fractions 8-12, signals 

corresponding to m/z 62, 147, 210 and 226 were detected. Highly polar 

compounds used to come out of the purification column early which indicates the 

compounds were very polar. Figure 3.9 shows the relation between m/z values 

210, 62, 147 and 226. The maximum intensity of all these four m/z values were 

detected at the same retention time, which means all these m/z values belong to 

one substance. The signal corresponding to m/z value 210 was also detected in 

agar which contains KNOB3B. To confirm whether m/z 210 belongs to KNOB3B or not, 

the mass spectrum of KNOB3 Band CRE collected from wheat at second harvest 

were compared both in positive and negative  ionization mode. Figure 3.10 and 

3.11 shows the mass spectrum of m/z 210 of CRE collected from wheat at the 

second harvest and KNOB3B. It was found that in both positive and negative 

ionization mode there was a peak at 5.9 minutes in negative mode m/z  210 and in 

positive mode m/z 102 (Figure 3.14). Mass spectrums of m/z 102 of CRE collected 

from wheat at second harvest and KNOB3B are given in figure 3.12 and 3.13. From 

these results it was confirmed that the dominant peak which was detected in 

relatively higher amount in low K supplied sugar beet was KNOB3B. As the objective 

of our study was to find some organic compounds which may play a role in 

mobilizing K under low K supply, it was of minor importance for our study. But at 

least it shows the importance of mass spectrometry like how the mass spectrum of 

certain m/z value could be helpful for further identification of the compound. 
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Figure 3.9: Relation between m/z values 210, 62, 147 and 226. 

 
 
Figure 3.10: Mass spectrum of m/z value 210 in CRE collected from wheat at the second 
harvest in ESI negative mode. 
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Figure 3.11: Mass spectrum of m/z 210 KNOB3B in ESI negative mode. 

 
 
Figure 3.12: Mass spectrum of m/z 102 of CRE collected from wheat in ESI positive mode. 
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Figure 3.13: Mass spectrum of m/z 102 KNOB3B in ESI positive mode. 

 

 
 
Figure 3.14: Full scan of m/z 210 (ESI negative) and m/z 102 (ESI positive) overlaid. 
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Possible structure for different m/z values from KEGG data base 
 
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a "biological systems" 

database integrating both molecular building block information and higher-level 

systemic information. Molecular building blocks are distinguished between genetic 

building blocks (KEGG GENES) and chemical building blocks (KEGG LIGAND), 

while the systemic information is represented as molecular wiring diagrams 

(KEGG PATHWAY) and hierarchies and relationships among biological objects 

(KEGG BRITE). KEGG LIGAND contains the knowledge on the universe of 

chemical substances and reactions that are relevant to life. It is a composite 

database consisting of compounds, drugs, glycans, reactions and enzymes. From 

this data base one of the possible compounds for m/z value 475 (Exact mass 

474.24) was found to be Amastatin (CB21BHB38BNB4BOB8B): 3-amino-2-hydroxy-5-

methylhexanoyl-L-valyl-L-valyl-L-aspartic acid with molecular weight 474.26. As 

m/z 475.24 was detected in positive mode the actual molecular weight of the 

possible compound is 474.24. 

 

Amastatin (3-amino-2-hydroxy-5-methylhexanoyl-L-valyl-L-valyl-L-aspartic acid) 
 
Other possible structures for m/z values 89, 164 and 173 from the KEGG data 

base are Lactic acid, Phenylalanine and t-Aconitic acid, respectively. 

 
3.1.2.3 Discussion 

 
Wheat and sugar beet plants were K deficient under low K supply condition; 

however K deficiency was relatively more severe in case of sugar beet as
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compared to wheat at both first and second harvest. Results of relative shoot dry 

weight and root length shows that, K deficiency was more severe in sugar beet 

than in wheat throughout the growth period.  

It was observed that the rate of root exudation was several folds higher when 

wheat and sugar beet were grown under natural environmental conditions in 

screen house as compared to controlled conditions in the growth chamber under 

both low and high K supply; however this difference in exudation rate was 5 times 

higher under low K supply as compared to high K supply. The difference in 

exudation rate between natural and controlled condition could be because of 

difference in light intensity. Probably under screen house condition, the light 

intensity was higher as compared to the growth chamber. Since a large proportion 

of the organic carbon released into the rhizosphere is derived from photosynthesis, 

changes in light intensity are likely to modify the intensity of root exudation 

(Johnson et. al., 1996). Rovira (1959) demonstrated changes in quantity and 

quality of amino acids in exudates of tomato and clover with decreasing light 

intensity. Rovira (1956) also reported that the number of micro-organisms which 

developed on the surfaces of tomato roots was less with plants grown in artificial 

light than in day light suggested that light could also influence exudation. In P-

deficient white lupin, citrate release from proteoid roots followed a diurnal rhythm 

with exudation peaks during the light period (Watt and Evans, 1999). This behavior 

might reflect the diurnal variations in carbohydrate (sucrose) supply by the shoot 

as precursors for citrate biosynthesis (Richter, 1996). 

The rate of root exudation of CRE was significantly higher in sugar beet as 

compared to wheat at both the harvest as the K deficiency was more severe in 

sugar beet than in wheat. Potassium deficiency increased the root exudates 

release rate several folds both in wheat and sugar beet; however the increase in 

exudation rate was higher in sugar beet as compared to wheat. Similar to CRE, 

the rate of exudation of WRE was higher under low K supply as compared to high 

K supply in both the crops; however the rate of exudation was significantly higher 

in wheat as compared to sugar beet both under low and high K supply.  

Comparative analysis of the signals recorded by mass spectrometer was applied 
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to identify the subtle differences between metabolites found in root exudates of 

wheat and sugar beet grown with low and high K level. Several signals and 

changes in intensity of certain signals specific for root exudates from K deficient 

plants were found. At both first and second harvest, several signals detected which 

were relatively stronger under low K supply as compared to high K supply both in 

wheat and sugar beet and was also different from wheat to sugar beet at the same 

K level. At first harvest almost all signal detected were stronger in CRE collected 

from sugar beet as compared to wheat both under low and high K supply. As 

compared to first harvest, the signals were relatively less strong at second harvest. 

There were several signals detected specific to first harvest and some specific to 

second harvest. Most dominant signals (m/z 210, 62, 147) were detected in 

negative mode and those belong to one compound. Other important signals which 

were different between samples were m/z 119 and 116. Besides these dominant 

signals around 20 other mass signals were detected in ESI negative mode, which 

were different in their intensities under low and high K levels and between sugar 

beet and wheat samples at the same K level. One interesting peak was found in 

ESI positive mode was m/z value 475 and the intensity of the signal was relatively 

stronger in sugar beet as compared to wheat both under low and high K supply. 

MS spectra were used for preliminary characterization of these metabolites. Lists 

of possible compounds were given for some mass signals by search in database 

(KEGG). Selective metabolites specific for K deficiency were purified for 

characterization by passing through Sephadex LH-20. Dominant peaks were also 

found in the early fractions from purification column which indicated those are very 

polar compounds. It was confirmed that m/z 62, 147, 210, 226 belong to the mass 

spectrum of KNOB3B. The amount of root exudates left was not enough for structural 

elucidation by nuclear magnetic resonance spectroscopy (NMR-spectroscopy) to 

identify the different m/z values detected in root exudates. For which further 

analysis could not be done.  

Possible structure for some of the m/z values were found from KEGG data base. 

From the data base the possible compound for m/z value 475 was Amastatin (3-

amino-2-hydroxy-5-methylhexanoyl-L-valyl-L-valyl-L-aspartic acid). The chemical 
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structure of Amastatin resembles to long carbon chain n-alkyl ammonium 

compounds. It has been reported that long chain n-alkyl ammonium compounds 

can penetrate through the inter layer of clay mineral and widen the interlayer space 

and making the inter layer K accessible to the plants. With increasing chain length 

of n-alkyl ammonium compounds, the ability to expand the interlayer increases 

(Stanjek et al., 1992). Further investigation is needed to confirm whether m/z 475 

belong to Amastatin.  

Non-targeted metabolite profiling of the root exudates collected from wheat and 

sugar beet by HPLC coupled with ESI-MS showed some strong signals which 

were specific to root exudates collected from low K supplied wheat and sugar beet; 

however further identification of those signals could not be done because the 

amount of collected root exudates was not sufficient for the structural elucidation 

by nuclear magnetic resonance spectroscopy (NMR-spectroscopy). Further 

investigation is needed to identify the compounds corresponding to those signals 

and to run K desorption experiment in soils of low available K with those 

compounds which may explain the differences in measured and calculated K 

uptake of wheat and sugar beet. 
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C h a p t e r  I V  

Mobilization of potassium in K fixing soil by amino acids 
component of root exudates 
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4 Mobilization of potassium in K fixing soil by amino acids component of root 

exudates 
 

4.1 Introduction 

 
The availability of potassium to the plant is highly variable, due to complex soil 

dynamics, which are strongly influenced by root–soil interactions. In accordance 

with its availability to plants, soil K is ascribed to four different pools: (i) soil 

solution, (ii) exchangeable K, (iii) fixed K, and (iv) lattice K (Syers, 1998). As plants 

can only acquire KP

+
P from solution, its availability is dependent upon the K dynamics 

as well as on total K content. The release of exchangeable K is often slower than 

the rate of KP

+
P acquisition by plants (Sparks and Huang, 1985) and consequently, 

soil solution KP

+
P concentration in some soil is very low (Johnston, 2005). In order to 

optimize their performance as nutrient uptake organs and to compete for K P

+
P uptake 

under low K supply conditions, plant roots developed mechanisms of acclimation 

to the current KP

+
P status in the rhizosphere. The size of the root system, the 

physiology of uptake and the ability of plants to increase K solubility in the 

rhizosphere are considered as mechanisms of K uptake efficiency. Earlier 

research on K efficiency of different crop species indicated that sugar beet seems 

to increase the chemical availability of K in the soil (Dessougi et. al., 2002; Sadana 

and Claassen, 1999) and in the previous chapter; results of sensitivity analysis 

also indicated the same. Usually, only K in solution and K sorbed at clay minerals, 

which is in equilibrium with solution K, counts as plant available. However, it has 

been reported that non-exchangeable K can also be used by plants when the 

available fraction is too low for sufficient supply (Hinsinger and Jaillard, 1993; 

Moritsuka et al., 2004). Until now, it is not clear in which way plants increase the 

availability of non-exchangeable K and why some plant species perform better 

than others. Chemical mobilization of K in the rhizosphere by the plant through root 

exudation could be the possible mechanism of K efficiency.  

It has been reported that long chain n-alkyl ammonium compounds can penetrate 
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the inter layer of clay mineral and widen the interlayer space and making the inter 

layer K accessible to the plants. With increasing chain length of n-alkyl ammonium 

compounds, the ability to expand the interlayer increases (Stanjek et al. 1992). 

Arginine was the only amino acid detected in root exudates of sugar beet, but not 

in that of wheat in the earlier experiment. Arginine, Lysine, Glutamic acid and 

Aspartic acid are polar (charged) long chain amino acids and in the previous 

experiment it was reported that these amino acids are component of root exudates 

collected from wheat and/or sugar beet at low and high K supply. These four 

amino acids were selected for the K mobilization study as they resemble to the n-

alkyl ammonium compounds in their chemical structure. To investigate the 

possibility of K mobilization by amino acids component of root exudates, high K 

fixing Anglberg soil was desorbed by these four amino acids. The hypothesis 

concerning why the following 4 amino acids were chosen for K desorption study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The soil-root system for K- Schematic representation of the hypothesis 
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and how it might work in soil-root system for K is represented by a schematic 

diagram. 

The proportion of soil solution K concentration is too low (0.03-0.30 mmol kgP

-1
P soil) 

as compared to exchangeable K (1-10 mmol kgP

-1
P soil) and interlayer K (0-400 

mmol kgP

-1
P soil). Plants can only acquire KP

+
P from soil solution; therefore KP

+
P 

availability is dependent upon the K dynamics in soil. Plant root may influence the 

K dynamics by chemical mobilization of K through root exudation. The chemical 

structure of Arginine and Glutamic acid are given in the schematic diagram, which 

resemble to n-alkyl ammonium compound in their chemical structure. The 

objective of this experiment was to study whether these four amino acids (Arginine, 

Lysine, Aspartic acid and Glutamic acid) could chemically mobilize K in the similar 

way as n-alkyl ammonium compound does. 

 

4.2 Materials and methods 

 
4.2.1  Calculation of the ratio between root exudates and rhizosphere soil that 

they can affect during two hours 
 

• The concentration gradient of carboxylic acids can range 0.2 to 1 mm from 

the rhizoplane into the soil (Jones, 1998). Accordingly, it was assumed that 

the root exudates can affect a cylinder with radius of 0.5 mm around the 

roots. 

• For a root radius of 0.12 mm, calculated soil volume was 0.012 cm P

3
P or 

0.015 g soil (Bulk Density = 1.3 g cmP

-3
P) around 1 cm of root. 

• During two hours of exudation the plants exuded at the rate of 0.1 - 28 μg 

cmP

-1 
Proot. 

• Root exudates to soil ratio 0.006 - 1.87 mg gP

-1
P soil. 

• According to these assumptions and calculations and by taking into account 

that the concentration of root exudates is higher near the root tips, four 

treatments were decided i.e. 0.5, 2.0, 8.0 and 16.0 mg root exudates gP

-1
P

 

soil. 
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4.2.2 Preparation of amino acids solution 

 
Amount of amino acids present in 0.5, 2.0, 8.0 and 16.0 mg root exudates were 

calculated as per the amino acids concentration detected in root exudates 

collected from wheat and sugar beet plants in the screen house experiment as 

mentioned in the previous chapter (Figure 3.2). Accordingly four different amino 

acid solutions were prepared designated as amino acids 1 to 4 with increasing 

concentration for example Arginine 1 to Arginine 4 (ARG 1- ARG 4) (Table 4).  

 

Table 4.1: Concentration of amino acids solution used for mobilization of K in K 
fixing Anglberg soil. 

Concentration of amino acids 

1 2 3 4 

Amino acids 

nmol LP

-1
P
 

Arginine (ARG) 4 16 64 128 

Lysine (LYS) 13 52 208 416 

Aspartic acid (ASP) 28 112 448 896 

Glutamic acid (GLU) 21 84 336 672 

 

 

4.2.3 Desorption of K by Amino acids in K fixing Anglberg soil 

 
Two gram of soil was weighed in 50 mL centrifuge tubes and 30 mL of amino acid 

solution was added to it and was shaken for 6 hours and centrifuged for 10 

minutes at the rate of 8000 revolution per minute. 20 mL of clear supernatant was 

pipette out and K concentration was measured by flame photometry. Again 20 mL 

of fresh amino acid solution was added to the residual soil solution and kept in the 

cool room for further desorption of K. Control was run where two gram of soil was 

treated with double distilled water. Every day, the tube was shaken for 30 minutes 

and the above mentioned procedure was done for 14 days till desorption rate of K 
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became constant. At 14 days, 20 mL of 1.5 molar Ammonium acetate was added 

to the residual soil solution and after shaking and centrifugation the K 

concentration of the clear supernatant was measured. Two gram of soil was 

treated with 30 mL of 1 molar Ammonium acetate and K concentration was 

measured to determine the total exchangeable K present in the soil.  

 

4.2.4 Data analysis 

 
Statistical analysis were performed by using two way analysis of variance 

(ANOVA), where significant difference were found, mean values were compared 

by using Tukey’s procedure.  

 

4.3 Results  

 
The results of soil solution K concentration of the filtrate after different days of K 

desorption by amino acids of increasing concentration and the control without 

amino acids are shown in figure 4.1 and 4.2. After 6 hours of desorption, the soil 

solution concentration in the filtrate was 35.3 µmol LP

-1
P in control and 44.6, 41.1, 

36.4, 34.1 µmol LP

-1
P in case of desorption by lowest concentration of Arginine, 

Lysine, Aspartic acid and Glutamic acid, respectively. Soil solution K concentration 

was highest after one day of desorption for all the four amino acids of four 

increasing concentrations and also for the control. The soil solution K 

concentration in the filtrate after desorption with amino acids and control without 

amino acids were decreased with time and became constant after 10 days of 

desorption. Through out the study, the soil solution K concentrations in the filtrate 

after desorption with Arginine and Lysine was higher than that of control and for 

Aspartic and Glutamic acid, the increase in soil solution K concentration as 

compared to control was reported after 3 days of desorption. The soil solution K 

concentration in the filtrate was highest by desorbing soil with the solution of 

lowest amino acid concentration for Arginine and Lysine (ARG 1 and LYS 1), but 

for Aspartic and Glutamic acid, the highest soil solution K concentration was
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reported for the second lowest concentration i.e. (ASP 2 and GLU 2) through out 

the study.  
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Figure 4.1: Effect of Arginine, Lysine and control (double distilled water without amino acid) 
on amount of soil solution K concentration after different days of desorption. 
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Figure 4.2: Effect of Aspartic acid, Glutamic acid and control (double distilled water without 
amino acid) on soil solution K concentration after different days of desorption.  

 

The results of desorption of K by amino acids of increasing concentration at 

different time interval are shown in figure 4.3 and 4.4. From the data of soil solution 

K concentration in the filtrate recorded after different days of desorption,  
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Figure 4.3: Effect of Arginine, Lysine and control (double distilled water without amino acid) 
on amount of K desorbed after different days of desorption. 

corresponding amount of K desorbed was calculated. Desorption of K was highest 

after one day of desorption for all the four amino acids of four increasing 

concentrations and also for the control without amino acids. The rate of K 

desorption was decreased with time and became constant after 10 days of 

desorption. 
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Figure 4.4: Effect of Aspartic acid, Glutamic acid and control (double distilled water without 
amino acid) on amount of K desorbed after different days of desorption. 

The total desorbed K by the lowest concentration of Arginine and Lysine (ARG 1 

and LYS 1) were increased by 31 and 20% as compared to control (Figure 4.5). 

This increase in K desorption from inter layer K was even higher i.e. it increased by 

45 and 39% due to desorption by ARG 1 and LYS 1 as compared to the control.  



Chapter IV- Results 

 

110

Total K desorbed

ARG 1

ARG 2

ARG 3

ARG 4
LY

S 1
LY

S 2
LY

S 3
LY

S 4
ASP 1

ASP 2
ASP 3

ASP 4
GLU

 1
GLU

 2
GLU

 3
GLU

 4

Con
tro

l
0

1

2

3

4

Interlayer K desorbed

Amino acids and control

ARG 1

ARG 2

ARG 3

ARG 4
LY

S 1
LY

S 2
LY

S 3
LY

S 4
ASP 1

ASP 2
ASP 3

ASP 4
GLU

 1
GLU

 2
GLU

 3
GLU

 4

Con
tro

l

Po
ta

ss
iu

m
 d

es
or

be
d,

 µ
m

ol
 g

-1
 s

oi
l

0

1

2

3

4

aA

aA
aA

aB

aA

aB
bB

aB
aB

aBaBaBaBaB

aB
aAaA

aB aB

bB
bA

aC aCbC cB

cA

cA cA

cB
cBcB

c

dcC

 

Figure 4.5: Total and interlayer K desorbed by different amino acids and control with only 
double distilled water without amino acid.  

Data are mean of 2 replicates. Lower case letters indicate significant difference of total and 
interlayer K desorbed among main effect of different amino acids treatments at the same amino 
acid level (P ≤ 0.001, Tukey-test). Upper case letters indicate significant difference of total and 
interlayer K desorbed among different levels of the same amino acid (P ≤ 0.001, Tukey-test). 
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However in case of Aspartic and Glutamic acid, maximum K desorption (Total and 

inter layer K) occurred by the second lowest amino acid concentration (ASP 2 and 

GLU 2). The total K desorption were increased by 19 and 10% by ASP 2 and GLU 

2 as compared to control and that of inter layer K was increased by 32 and 14%, 

respectively (Figure 4.5). With increasing concentration of Arginine and lysine, the 

rate of total and inter layer K desorption decreased. But for Aspartic acid and 

Glutamic acid the K desorption was highest for ASP 2 and GLU 2, respectively and 

further increasing concentration has negative effect in desorbing K from soil. 

Among the amino acids studied, total K desorbed by Arginine was the highest 

followed by Aspartic acid, Lysine and Glutamic acid and the difference in K 

desorption by different amino acids was significant. 

 

4.4 Discussion 

 
Through out the study, the soil solution K concentrations in the filtrate after 

desorption with Arginine and Lysine was higher than that of control and for 

Aspartic and Glutamic acid, the increase in soil solution K concentration as 

compared to control was reported after 3 days of desorption. Soil solution K 

concentration was highest after one day of desorption for all the four amino acids 

of four increasing concentrations and also for the control. This could be due to the 

fact that the equilibrium between the soil solution and soil solid was not established 

after 6 hours of desorption. 

Desorption of K was highest after one day of desorption for all the four amino acids 

of four increasing concentrations and also for the control without amino acids. The 

rate of K desorption decreased with time and became constant after 10 days of 

desorption. The total and inter layer K desorbed was significantly higher as 

compared to the control, however the difference was greater in Arginine and 

Lysine than in Aspartic acid and Glutamic acid. The results indicate that Arginine 

and Lysine behaves differently than Aspatic and Glutamic acid in desorbing K. 

This may be due to the differences in their chemical structure. Aspartic acid and 

Glutamic acid has only one amino group and short carbon chain as compared to 4
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and 2 amino group with relatively longer carbon chain in Arginine and Lysine, 

respectively.  

The increase in K desorption by amino acids as compared to control was more 

pronounced in inter layer K than in total K. Which show that amino acids could 

mobilize more K from the inter layer. Earlier research on K desorption study 

showed no significant solubilization of K by different amino acids. The role of 

proteinaceous amino acids in rhizosphere nutrient mobilization was assessed both 

experimentally and theoretically. The degree of adsorption onto the soil solid 

phase was dependent on both the amino acid species and on soil properties. On 

addition of amino acids to soil, no detectable mobilization of nutrients (K, Na, Ca, 

Mg, Cu, Mn, Zn, Fe, S, P, Si and Al) was observed, indicating a very low 

complexation ability of the acidic, neutral and basic amino acids (Jones et al., 

1994). Soil extraction experiments with carboxylates, amino acids and sugars 

revealed that only citrate applied in extraordinary high concentrations (6 mmol gP

-1
P 

soil) was effective in K desorption (Gerke, 1995; Steffens and Zarhoul, 1997). It 

has been reported that long chain n-alkyl ammonium compounds can penetrate 

into the inter layer of clay mineral and widen the interlayer space and making the 

inter layer K accessible to the plants. With increasing chain length of n-alkyl 

ammonium compounds, the ability to expand the interlayer increases (Stanjek et 

al., 1992). Like long chain n-alkyl ammonium compounds, these amino acids might 

widen the interlayer space and therefore more interlayer K could come to the soil 

solution. The maximum amount of K was already desorbed at lower amino acid 

concentration and further increasing the concentration had negative effect in 

desorbing K from soil. This could be due to the blocking of the interlayer space by 

amino group of the amino acids after certain concentration and also with time; 

therefore further K could not come out of interlayer. Stanjek et al. (1992) reported 

that once a single layer is occupied with alkyl ammonium chains, K in adjacent 

layers may be bound more strongly due to the polarizing effect of K depleted or 

alkyl ammonium-occupied layers on to the adjacent layers.  

The results also showed that Arginine could desorb significantly higher amount of 

K than other amino acids and the increase in K desorption from that of control was 
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more pronounced at the lower concentration. This might be due to its chemical 

structure. It might work like long alkyl ammonium compound which could widen the 

interlayer resulting in a higher soil solution K concentration. The results of root 

exudates composition in the previous experiment showed that Arginine was the 

amino acid, which was detected only in root exudates of sugar beet not in wheat; 

however the rate of exudation was low as compared to other amino acids (Figure 

3.2). But in the present study, the influence of Arginine was pronounced under 

lowest concentration. This result shows that even though the rate of exudation of 

Arginine is low in sugar beet, it may increase the soil solution concentration in its 

rhizosphere. The results of sensitivity analysis in the previous chapter showed that 

increasing CBLiB by a factor of 3.5, 100 % prediction could be achieved in case of 

sugar beet. In the present study, we observe that amino acid at the lowest 

concentration could increase the soil solution K concentration by 27% as 

compared to control (Figure 2.5) which shows Arginine may play a considerable 

role in increasing soil solution concentration in low K soil.  

Amino acid can desorb K in the K fixing soil but the degree of desorption does not 

seems to be sufficient to explain the differences in measured and calculated K 

influx by sugar beet in soil of very low K supply. It is also not clear why the 

maximum K desorption attained at lower amino acid concentration. Further 

investigation is needed to identify the component present in root exudates of sugar 

beet which may explain the differences between the soil solution K concentration 

in the rhizosphere of wheat and sugar beet. 
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5 Summary 

 

Potassium uptake efficiency is the ability of plants to take up high K under low soil 

K availability. Plant species differ in their K uptake efficiency. Growing roots 

continuously experience variations in K availability, for which they have to adjust 

their physiology and growth pattern. In order to optimize their performance as 

nutrient uptake organs and to compete for K uptake in the dynamic and 

heterogeneous environment, plant roots develop mechanisms of acclimation to the 

current KP

 
Pstatus in the rhizosphere. This study was done with the objective to 

investigate the possible mechanisms responsible for the differences in K uptake 

efficiency of crop species.  

Potassium uptake efficiency and K dynamics in the rhizosphere of maize, wheat 

and sugar beet were evaluated by a pot experiment which was conducted on K 

deficient soil with and without K fertilization. Sugar beet and wheat could acquire 

more K per unit shoot dry weight as compared to maize. The higher K uptake 

efficiency of wheat was due to higher root length to shoot dry weight ratio and 

lower shoot demand on root as compared to sugar beet and maize. Root length of 

sugar beet was only 18% of that of maize under low K supply, but the shoot K 

concentration was two times higher than that of maize. Sugar beet could acquire 

more K per unit shoot dry weight because of having 4 times higher K influx (K 

uptake per cm of root per second) as compared to maize.  

Potassium uptake by different crop species was simulated by the nutrient uptake 

model NST 3.0, which calculate nutrient transport towards the root by mass flow 

and diffusion and nutrient uptake by the root following a Michaelis-Menten kinetic 

taking into account nutrient uptake by root including root hairs. From the calculated 

concentration profile around the root of maize, wheat and sugar beet it was 

deduced that the higher K influx in sugar beet was partly due to the capacity of the 

sugar beet root to reduce the concentration at the root surface to a lower value as 

compared to wheat and maize thereby increasing the concentration gradient and 

so the transport of K to the root surface. The nutrient uptake model could 

satisfactorily predict K influx in all the crops under high K supply conditions. 
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However under low K supply, the model prediction was 0.64, 0.68 and 0.31 times 

the measured K influx for maize, wheat and sugar beet, respectively. The severe 

under prediction in case of sugar beet indicated that processes not considered in 

the model were important for the high K uptake efficiency. 

A sensitivity analysis was done by changing different soil and plant parameters 

influencing K uptake, alone or in combination. Increasing soil solution 

concentration (CBLiB) by a factor of 1.6 for wheat and maize and 3.5 for sugar beet, 

resulted in a 100 % prediction for K influx. This indicates the possibilities of 

chemical mobilization of K by plant roots. Increasing IBmaxB by a factor of 25 had only 

limited effect on calculated K influx, but 100% model prediction was achieved by 

increasing buffer power by a factor of 10 to 50. However, it is unlikely that plant 

can change soil buffer power to this extent. Surprisingly, only by increasing IBmaxB 

and b both by a factor of 2.5 times, model could predict measured K influx 100 % 

in maize and wheat under low K supply conditions and the same was achieved in 

case of sugar beet by increasing IBmaxB and b by 25 times. An increased b at a 

constant CBLi Bwould denote a higher available K concentration in the soil. This might 

be due to a higher exploitation of non-exchangeable K, which was confirmed by 

the fact that on average of about 50% of the total K uptake by the plants was from 

the non-exchangeable fractions, but close to the root it was probably much more 

and this would cause a much higher b in the rhizosphere. The increase in model 

prediction for K influx by increasing IBmaxB was due to an increased K uptake of root 

hairs only. It was due to the fact that the K depletion at the root hair surface was 

much lower than at the root cylinder surface.  

To study the root exudation pattern of wheat and sugar beet under deficient and 

sufficient K supply, an experimental set up was designed to grow low and high K 

supplied wheat and sugar beet plants in quartz sand at two different growing 

conditions, one in a screen house under natural environmental conditions and 

another in a growth chamber under controlled conditions. Cold and warm water 

soluble root exudates (CRE and WRE) were collected at two different growth 

stages. Root exudation rate was many-fold higher under low K supply compared to 

high K supply conditions in both wheat and sugar beet. However, rate of exudation 
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was higher in wheat compared to sugar beet. Rate of exudation was higher in 

young plants and at natural light conditions, perhaps due to the higher light 

intensity under natural sun light conditions in the screen house than that of growth 

chamber. Results of HPLC analysis of the root exudates collected from wheat and 

sugar beet grown in the screen house showed that exudation rate of organic acids 

(acetic acid, malic acid, citric acid and fumaric acid) except lactic acid and t-

aconitic acid was higher in wheat compared to sugar beet. Glucose was the only 

sugar detected in CRE; where as in WRE, glucose and sucrose were detected. 

Also exudation rate of amino acids was higher in wheat as compared to sugar 

beet. Arginine was the amino acid detected only in root exudates collected from 

low and high K supplied sugar beet. Mobilization of K by amino acids component 

of root exudates was studied in a K fixing soil and the results showed that though 

amino acids can desorb K in K fixing soil, but the degree of desorption does not 

seem to be sufficient to explain the differences in soil solution K concentration in 

the rhizosphere of wheat and sugar beet grown in soil of very low available K.  

Non-targeted metabolite profiling was done by separating the root exudates 

collected from wheat and sugar beet grown in the growth chamber by HPLC 

coupled with Electrospray Ionisation-Mass Spectrometry (ESI-MS). Several signals 

and change in intensity of certain signals specific for root exudates from K deficient 

plants were found. Mostly differences in mass signals were detected in ESI 

negative mode. Mass signals with m/z values 210 and 62 were most dominant, but 

belonged to the mass spectrum of KNOB3B, which cannot explain the differences in K 

efficiency of different crop species. In addition, there were around 24 mass signals 

in ESI negative mode, which showed differences under low and high K supply and 

between sugar beet and wheat root exudates under similar K supply.  

In positive ESI mode, only few signals were detected which were different in their 

intensities in root exudates collected from wheat and sugar beet under low and 

high K supply. Among these, signal corresponding to m/z value 475 was found to 

be interesting and was relatively stronger under low K supply sugar beet. From the 

KEGG (Kyoto Encyclopedia of Genes and Genomes) data base, one of the 

possible structure for m/z 475 was Amastatin (CB21BHB38BNB4BOB8B) which resembles to n-
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alkyl ammonium compound in chemical structure. Further investigation is needed 

to confirm whether m/z 475 belong to Amastatin. 

Non-targeted metabolite profiling of the root exudates collected from wheat and 

sugar beet by HPLC coupled with ESI-MS showed some strong signals which 

were specific to root exudates collected from low K supplied wheat and sugar beet; 

however further identification of those signals could not be done because the 

amount of collected root exudates was not sufficient for the structural elucidation 

by nuclear magnetic resonance spectroscopy (NMR-spectroscopy). Further 

investigation is needed to identify the compounds corresponding to those signals 

and to run K desorption experiment in soils of low available K with those 

compounds which may explain the differences in measured and calculated K 

uptake of wheat and sugar beet.  
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7 Appendices 

 

Appendix 1: Parameters of maize root hairs used for calculating K uptake at 

different K levels between first and second harvest. 

K applied 

0 250 

mg kgP

-1
P soil 

Distance from root, cm 

NP

(1)
P
 rB1BhP

(2)
P, 10P

-3
P cm NP

(1)
P
 rB1BhP

(2)
P, 10P

-3
P cm 

0.00-0.02 304 11.7 316 10.3

0.02-0.03 44 46.6 134 26.0

0.04-0.06 5 159.0 23 82.4

0.06-0.08 1 385.5 3 253.8

0.08-0.10 1 963.3 - -

Total length, cm cmP

-1
P root 7.8  9.4

Average length, cm 0.022  0.020

  

NP

(1)
P = number of root hairs per cm root. 

rB1BhP

(2)
P = half distance between neighboring root hairs. 

NP

(1)
P and rB1BhP

(2)
P are from Hofbauer (1990). 
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Appendix 2: Parameters of wheat root hairs used for calculating K uptake at 

different K levels between first and second harvest. 

K applied Distance from root, cm 

0 250 

 mg kgP

-1
P soil 

 NP

(1)
P
 rB1BhP

(2)
P, 10P

-3
P cm NP

(1)
P
 rB1BhP

(2)
P, 10P

-3
P cm 

0.00-0.02 196 11.3 226 11.3

0.02-0.03 112 26.3 81 26.8

0.04-0.06 25 73.4 28 54.1

0.06-0.08 4 241.4 10 104.5

0.08-0.10 1 924.6 6 206.9

0.10-0.12 - - 1 985.5

Total length, cm cmP

-1
P root 8.9  9.5

Average length, cm 0.026  0.027

 

NP

(1)
P = number of root hairs per cm root. 

rB1BhP

(2)
P = half distance between neighboring root hairs. 

NP

(1)
P and rB1BhP

(2)
P are from Hofbauer (1990). 
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Appendix 3: Parameters of sugar beet root hairs used for calculating K uptake at 

different K levels between first and second harvest. 

K applied 

0 250 

mg kgP

-1
P soil 

Distance from root, cm 

NP

(1)
P
 rB1BhP

(2)
P, 10P

-3
P cm NP

(1)
P
 rB1BhP

(2)
P, 10P

-3
P cm 

0.00-0.02 328 9.9 513 9.2

0.02-0.03 91 30.2 79 35.8

0.04-0.06 13 84.6 5 145.3

0.06-0.08 3 140.3 2 422.5

0.08-0.10 2 202.0 - -

0.10-0.12 2 336.1 - -

0.12-0.14 1 663.4 - -

Total length, cm cmP

-1
P root 8.0  9.0

Average length, cm 0.017  0.015

 

NP

(1)
P = number of root hairs per cm root. 

rB1BhP

(2)
P = half distance between neighboring root hairs. 

NP

(1)
P and rB1BhP

(2)
P are from Hofbauer (1990). 
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