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ABSTRACT 
 

 

Rhizomania (beet necrotic yellow vein virus, BNYVV) represents an important sugar beet disease, 

which is transmitted by the biotrophic plasmodiophoromycete Polymyxa betae. As long as the 

disease is not controlled it can lead to yield losses up to 90%. To date yield losses due to BNYVV 

infestation are inhibited by cultivating resistant sugar beet genotypes, which restrict the virus 

replication and translocation from infected hair-roots to the taproot. The BNYVV resistance is 

provided in marketable sugar beet varieties by two major resistance sources (Rz1 and Rz2 which 

either occur singular or in combination). But meanwhile on sugar beet genotypes carrying one 

(Rz1) as well as two resistance genes (Rz1+Rz2) resistance breaks could be observed at several 

BNYVV A-type infected sites in the USA and in Spain. To confirm these observations a 12 weeks 

greenhouse resistance test with three different cultivars (two partial resistant genotypes containing 

either Rz1 or Rz1+Rz2 resistance sources as well as a susceptible genotype) under standardized 

conditions with naturally infested soils from 6 locations was performed. The single resistance (Rz1) 

was compromised in soils from Spain (D), France (P-type, RNA-5 containing), and the USA (IV 

and MN); in reference soils from Italy (R, A-type) and Germany (GG, B-type) Rz1 resistant sugar 

beets were not affected. Overcoming of Rz1+Rz2 resistance after 12 weeks could only be observed 

in D soil. Over and above the genomic region that encodes for the pathogenicity factor (P25) of the 

BNYVV RNA3 from beets grown in all soils was analysed.  

Previously suggested correlation between “valine” on position 67 of P25 and a higher virulence 

could not be confirmed. Isolates in one of the soils as well as experiments previously published, 

where overcoming of resistance could be observed, contain several other aa67 than valine. Analyses 

of additional soil borne pathogens using ITS sequencing and database comparison showed the 

presence of three pathogens (Rhizoctonia solani Keskin, Fusarium sp., Pythium sp.). Synergism 

between BNYVV, Rhizoctonia solani Keskin and Pythium sp. could lead to severe virus symptoms 

and weight reductions particularly in the Spanish soil.  

To determine if resistance breaks are correlated with the BNYVV inoculum concentration a “Most 

Probable Number“(MPN) - tests was conducted where same soils as in the resistance tests were 

examined. Thereby, D soil revealed the highest BNYVV density, the GG soil on the other hand 

displayed 520 times lower MPN. In order to obtain information on the aggressiveness of particular 

virus isolates an additional MPN with Rz1+Rz2 genotypes was performed. Within this test D, IV, 

MN and P resulted again in high BNYVV densities even able to infect Rz1+Rz2 plants after 4 

weeks cultivation. These results give strong evidence that high inoculum doses are not responsible 

for the observed resistance breaks. To prove this conclusion another experiment with normalised 



 

 

inoculum added to sterile soil was carried out. Within this test three time harvests were conducted 

after 4, 8 and 12 weeks. Obviously, a significant differentiation of virus isolate vs. genotype corre-

lating to tap root weight was only observed after 12 weeks. Consistently, applying adjusted inocu-

lum density, D, IV, MN and P produced the highest virus contents at 12 weeks. Thus, resistance 

breaks must be connected to high BNYVV pathogenicity and not to inoculum density. 

Additional, experiments were conducted to test the influence of viruliferous P. betae zoospore 

concentrations from various origins, carrying different BNYVV-types. But due to uncertainty how 

many of the zoospores are actually viruliferous, the data resulted in highly different outcomes, not 

correlating to the results from tests in naturally infected soil.  

Moreover, efforts were undertaken to shorten resistance tests and replace them with time saving 

artificial sugar beet leaf inoculation via co-infiltration of a BNYVV RNA3 encoding P25 infectious 

cDNA clone and a red fluorescing marker gene (mRFP). Although, the method itself worked very 

well in young sugar beet leaves, no differences concerning the sugar beet genotype could be 

detected. The expected variability of fluorescence intensity comparing susceptible and resistant 

sugar beet cultivars was not given. 
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1. GENERAL INTRODUCTION 

 

1.1. Summary 

 

Rhizomania represents also in the future a risk to the world-wide sugar beet production. Although 

at present the disease can be successfully controlled with natural derived resistances, the virus itself 

possesses the potential to extremely reduce yield and sugar content. BNYVV can be divided in four 

major subgroups by means of sequence divergence (A, B, P, and J-type) with different geographic 

distribution and number of RNA-segments. The disease can be controlled by cultivating partial 

resistant sugar beet genotypes. The few resistance genes used in practice at present do not prevent 

the infection with beet necrotic yellow vein virus (BNYVV) and its vector Polymyxa betae (a 

biotrophic plasmodiophoromycete). Thus, the disease spreads to further sugar beet production areas 

world-wide. By far more important is the fact that inoculum concentration is increasing on several 

infested sites. Hence, no long-term recovery from BNYVV in the soil can be expected at those 

locations. A high selection pressure is exerted on BNYVV by the widespread cultivation of 

genetically-uniform resistant plant material, which could promote the occurrence of resistance-

breaking isolates. Above all, this interaction complexity is related to the fact that the naturally 

occurring resistances used at present do not grant complete immunity against the virus. The 

resistance in sugar beet only inhibits virus spread from primary infected lateral to tap roots. 

Further, high viruliferous P. betae inoculum in soil, which is able to overcome existing resistances, 

has already been observed. Concerns about selection of resistance breaking BNYVV isolates are 

supported by repeated observations of weaknesses regarding yield and sugar content in variety tests 

of partial resistant Rhizomania varieties. In addition a detailed molecular characterisation of the 

virus led to the identification of viral pathogenicity factors (P25 and P26) responsible for the 

development of typical Rhizomania symptoms like small yellow leaf veins, T-shaped tap roots, 

brownish vascular and the development of lateral root beard growth. P25 and P26 (only occurring 

in P- and J-isolates) are also known to be responsible for virus movement from infected lateral 

roots into the tap root. Sequencing P25 genes of several different BNYVV isolates revealed a high 

variability depending on the geographic origin of the virus. In geographically separated BNYVV 

infested sites an independent emergence of resistance-breaking isolates, which exhibit a divergent 

composition of viral pathogenicity factors, were already detected under certain conditions. The J- 

and P-types that only occurs in a small region around Pithiviers in France, in Kazakhstan, in Japan 

and on some sites in England is able to cause severe damage on partial resistant sugar beet. Higher 

virus titres were detected in lateral and tap roots of sugar beet plants cultivated in P-type soil, 
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compared to sugar beet grown in A and B soil. At present no information on the involvement of the 

fungal vector, which provides pathogenicity to the virus in the infection cycle as it enables the virus 

to cause exponentially increasing multiple secondary infections and thus, increases viral primary 

infection, exists. To understand these high-complex interactions of virus, vector and host, which all 

have impact on virus pathogenicity, studies to estimate the impact of inoculum concentration and 

an establishment of artificial infection procedures are urgently required.  

 

High concentrations of viruliferous P. betae can overcome resistance. In addition the vector 

infection is unaffected by the virus resistance. Thus, verification of occurring resistance breaks in 

partial resistant Rhizomania varieties due to a high variability of pathogenicity genes in different 

BNYVV-isolates, which developed independently, was needed. Apparently other soil-borne 

pathogens like Rhizoctonia solani, Pythium sp., Heterodae schachtii and Fusarium sp. also 

influence the severity of the disease. In order to estimate the current and future disease potential 

and the durability of BNYVV resistance sources used at present correctly several studies of 

Rhizomania pathogenicity, depending on the genetic composition of virus and parts of the vector, 

the vector transmission, the inoculum densities of virus and vector and the influence of other soil 

borne pathogens, were conducted (manuscripts I and II). 

 

1.2. Disease history 

Rhizomania represents one of the economically most important diseases affecting sugar beet 

production. It is caused by beet necrotic yellow vein virus (BNYVV) (TAMADA & BABA, 1973), 

belonging to the genus Benyvirus (ICTV, 1997) and transmitted by the soil-borne biotrophic 

plasmodiophoromycete Polymyxa betae Keskin (KESKIN, 1964; DESSENS & MEYER, 1996; ADAMS 

et al., 2001, RUSH, 2003). The original description of the disease took place in Italy in the 50's in 

the last century (CANOVA, 1959). Ever since the virus spread into numerous sugar beet production 

areas world-wide (Asia, the USA, South and Central Europe, Scandinavia) (ASHER, 1993; 

TAMADA, 1999; LENNEFORS et al., 2000; NIELSEN et al., 2001). It can be assumed that the 

propagation speed of the disease is still increasing. To date, 1.6 millions hectares were examined 

for the occurrence of the disease within Europe; 1990 15%, 2000 38% and for 2010 56% of the 

sugar beet production area were predicted to be BNYVV infected (RICHARD-MOLARD & 

CARIOLLE, 2001).  

 

1.3. The vector of BNYVV: Polymyxa betae Keskin 

Polymyxa betae Keskin is a biotrophic plasmodiophorid that is hardly influencing plant growth in 

the field. Greenhouse experiments displayed slight differences in virulence of various virus-free 
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P. betae isolates where some isolates apparently reduced tap root growth in sugar beet (GERIK & 

DUFFUS, 1988, BLUNT et al., 1991; KASTIRR et al., 1994). 

 

1.3.1. Vector taxonomy 

 

Polymyxa betae, P. graminis, and Spongospora subterranea were considered to be economically 

unimportant. A proper taxonomy of these soil-borne pathogens was long-term disregarded and led 

to uncertainness in the last decades when investigations proved the capability of this group to 

vector viruses. Molecular characterisations proved this group to be unrelated to Ascomycetes, 

Basidiomycetes, Oomycetes, or Myxomycetes, a placement within the Protozoa was favoured 

(BRASELTON, 1995; WARD et al., 2003). Due to characteristics similar to those of 

plasmodiophorids the recognition as a valid taxonomic group was justified. Typical characters are: 

obligate intracellular parasitism, cruciform nuclear division, zoospores with two, anterior, unequal 

whiplash flagella, multinucleate plasmodia, and environmentally resistant, long-living resting 

spores (cysts) that are often clustered together to form a sporosorus (cystosorus). Development of 

zoospores and long-living sporosori are also typical for plasmodiophorids (ADAMS, 1990; BARR, 

1992; BRASELTON, 1995/2001; LITTELFIELD & WHALLLON, 1999; SHERWOOD & RUSH, 1999). 

 

1.3.2. Life cycle of Polymyxa betae and host range 

 

The life cycle of P. betae has been well documented (ADAMS, 1991; BARR & ASHER, 1996; 

CAMPBELL, 1996; LITTELFIELD & WHALLON, 1999). The protist is able to survive in thick-walled 

clustered resting secondary spores (sporosori) in the soil for years. There is no indication for virus 

multiplication in these sporosori (CAMPBELL, 1996). This implies that fields, once infested with 

viruliferous P. betae, neither recover from Rhizomania infestation through the lengthening of crop 

rotation nor the cultivation of nonhost crops. As soon as a host for P. betae is present and a soil 

displays near-saturated moisture conditions and the temperatures are suitable (ideal for P. betae 

propagation are temperatures around 25°C) the resting spores start to germinate and release virus 

carrying primary zoospores. Once the primary zoospores contact host cells they encyst immediately 

and inject the zoospore contents within approx. 2 hours. The primary zoospore develops into a 

multinucleate plasmodium. Then following two developments are possible either it develops to a 

sporogenic plasmodium and transforms to a zoosporangium releasing secondary zoospores or it 

changes into a sporogenic plasmodium converting to a sporosorus to rest in the soil. If secondary 

zoospores are released, they are actively swimming to new roots cells to infect them. Under 

favourable conditions (+25°C, high moisture soil at pH 6-8) one cycle can be completed within 60 

h (reviewed in ASHER & BLUNT, 1987). The P. betae life cycle is schematically demonstrated in 

Fig. 1. 
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Fig. 1 

 
Fig. 1:  Life cycle of viruliferous Polymyxa betae (mod. after Ruppel, unpublished) 

 

Polymyxa betae and P. graminis are morphologically hardly distinguishable, thus both 

plasmodiophorids were separated by their host range (BARR, 1979; BARR & ASHER, 1992; 

BRASELTON, 1995). Today, the classification is done after molecular characterisation, strictly 

separating both plasmodiophorids and eliminating the hypothesis P. betae being a forma specialis 

of P. graminis (ADAMS & WARD, 1999; LEGRÉVE et al. 1998, 2000, 2002). P. betae possesses a 

rather small host range that is limited to species within Chenopodiaceae, Amaranthaceae, 

Caryophyllaceae, and Portulacaceae. P. graminis has a much greater host spectrum and is capable 

to infect both monocotyledonous as well as dicotyledonous species. Most P. graminis are able to 

infected sorghum and millet but vary in their ability to infect wheat, barley, and rye. 

 

1.3.3. Molecular characterization of Polymyxa species 

 

LEGRÉVE et al. (2002) conducted studies on a region of the nuclear ribosomal DNA containing the 

internal transcribed spacer 1 (ITS1), the 5.8S DNA and the internal transcribed spacer 2 (ITS2) for 

molecular characterisation of Polymyxa betae and P. graminis. In theses studies ITS sequences 

from isolates of Olpidium brassicae, Spongospora subterranea, Plasmodiophora brassicae and 

Ligniera spp. were compared to Polymyxa graminis and P. betae. However, LEGRÉVE et al. (2002 / 

2003) suggested a grouping of P. graminis into five different distinct forma specialis: P. graminis f. 
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sp. temperata, P. graminis f. sp. tepida, P. graminis f. sp. tropicalis, P. graminis f. sp. 

subtropicalis, and P. graminis f. sp. colombiana. P. betae was also included in this sequence 

comparison. It was strictly separated from P. graminis. Further phylogenetic diversification within 

P. betae regarding its origin and the BNYVV-type carrying were not studied. Marginal sequence 

distinctions within P. betae isolates concerning the geographical origin were studied in manuscript 

I. 

 

1.3.4. Vector detection and quantification 

 

Polymyxa spp. are biotrophic organisms so that isolation and artificial cultivation on culture 

medium is impossible. GERIK (1992) described a selective growing media to grow the soil borne 

parasite in vitro on selective media in association with root cultures. After inoculating young sugar 

beet seedlings with Agrobacterium rhizogenes, which stimulates proliferation of fine rootlets, these 

cultures could be established. Because this in vitro method was not very reliable, most scientists 

use in practice naturally infested soil or infected sterile soil with infested dried root pieces to 

conduct field and greenhouse experiments (BOAG, 1986; GERIK & DUFFUS, 1988; TUITERT & 

HOFMEESTER 1992; TUITERT, 1993; TUITERT & BOLLEN, 1993;HARVESON et al., 1996; WISLER et 

al. 2003). 

 

1.3.5. P. betae detection methods 

 

Bait plant test: A rather simple test to prove the presence of Polymyxa spp. in soil by planting host 

into naturally infested soils. After only 8 days the sporosori can usually be observed on lateral hair 

roots by microscopy. For good Polymyxa spp. propagation the soils should be watered to near-

saturation (ABE, 1987; GERIK, 1992). Soils for bait plant test should be used fresh as long-term 

storage influence the initiation to germinate (SHIRAKO & BRAKKE, 1983; LEGRÉVE et al., 1999). 

 

Most probable number (MPN): Dealing with naturally infested soil the inoculum density of 

Polymyxa spp. is difficult to estimate. One solution is the determination of P. betae concentration 

in soil via MPN (CIAFARDINI, 1991; ADAMS & WELHAM, 1995, TUITERT & HOFMEESTER, 1992; 

TUITERT & BOLLEN, 1993). This technique has often been used to conduct ecological but also 

epidemiological studies. Combining the MPN with serological virus tests it is possible to estimate 

the percentage of viruliferous Polymyxa spp. in soils (TUITERT, 1990; CIAFARDINI, 1991). The 

MPN always delivers relative values that need to be statistically analysed to check the reliability of 

each test (manuscript II). 
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Serological methods: MUTASA-GOTTGENS et al. (2000) and DELFOSSE et al. (2000) developed 

serological methods to detect soil-borne pathogens using antiserum. Both enzyme-linked 

immunosorbent assays (ELISA) are suitable for qualitative and quantitative analyses of infected 

lateral roots, no matter which stage of fungal life development. 

 

Molecular techniques: In general there are two different ways to detect Polymyxa spp. by means of 

nucleic acid based techniques On the one hand, the successful infestation of Polymyxa spp. in 

planta can be detected qualitatively via Polymerase chain reaction (PCR) (LEGRÉVE et al., 2003), 

quantitatively by real-time PCR (rtPCR) (LEES et al, 2003) or by means of DNA-probes (MUTASA 

et al., 1993). Polymyxa spp. can also be identified and quantified directly from the soil (CAMPBELL, 

1996; WARD et al., 2003). Detecting Polymyxa spp. directly from the soil is difficult due to the 

inhomogeneous distribution of the soil-borne pathogen inhibiting the choice of a representative 

sample as only small amounts of soil (<10 g) for nucleic acid extraction are needed (CIAFARDINI, 

1991; TUITERT & HOFMEESTER 1992). In fact often only a marginal percentage of zoospores are 

viruliferous (WORKNEH & RUSH, 2004). With molecular methods it is easily possible to diagnose 

single development stages of the soil-borne pathogen. GITTON et al. (1999) and MUMFORD et al. 

(2000) developed the verification and quantification by rtPCR for two viruses in parallel (soil borne 

wheat mosaic virus and wheat spindle streak mosaic virus as well as potato mop top virus and 

tobacco rattle virus, respectively) but similar methods for vectored viruses are missing for P. betae 

and BNYVV. A qualitative detection of different pathogens (BNYVV, beet soil borne virus, beet 

virus Q, and P. betae) via multiplex reverse transcriptase PCR (mRT-PCR) is published by 

MEUNIER et al. (2003b).  

 

1.3.6. Virus-vector relationships 

 

Two different ways of virus transmission via fungal vectors are known (CAMPBELL, 1996), first in 

vitro transmission and secondly in vivo transmission. BNYVV exhibits in vivo transmission (BARR, 

1982; ABE & TAMADA, 1986; ADAMS, 1991; CAMPBELL, 1996). Typical in vitro virus 

transmission is demonstrated between Olpidium brassicae and tobacco necrosis virus (TNV), 

where virus transmission is much more independent from the vector. Once, O. brassicae transmits 

TNV virions, which are only absorbed to the surface of fungal membrane, the virus propagates in 

the host-cell and further spread is independent from the vector. If the host cell dies, fungal 

independent TNV virions get released into the soil (CAMPBELL, 1996). In vivo transmission is 

characterised by much more efficient virus spread than in vitro transmission. As soon BNYVV 

infected zoospores are released from resting spores and they contact a susceptible host, they start to 

inject the virus particles into the plant cell. The virus enters the cytoplasm to complete infestation 

of the cell with BNYVV and starts its replication and genome expression cycle, including virus 
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movement to adjacent cells. The opposite way around, if a virus-free zoospore infects a cell, which 

is already infected by BNYVV, the virus will be incorporated by the developed plasmodium what 

forms a zoosporangium, whereof secondary zoospores will be viruliferous. If the zoosporangium 

develops a sporogenic plasmodium it will convert to sporosori to rest in the soil, released 

zoospores, even after years resting in the soil, will be viruliferous. Recently, VERCHOT LUBICZ et 

al. (2007) proved by immunofluorescence labelling that BNYVV is accumulating in resting and 

zoospores of its vector P. betae. This would lead to the conclusion that P. betae is also a host for 

BNYVV since the virus lives and propagates inside the vector for more than one life cycle. Still 

most of the virus vectoring process/transfer is unknown; published data has been reviewed by 

DESSENS & MEYER (1996), REAVY et al. (1998), TAMADA et al. (1996), DIAO et al. (1999) and 

ADAMS et al. (2001). Any comparable virus-vector relationship as described for P. betae and 

BNYVV and their host the sugar beet are not puplished, yet. 

 

1.4. BNYVV 

In field BNYVV symptoms can be observed as yellow patches that are spread in the same direction 

of farm machinery movement. Due to ploughing, tillage, sowing and harvesting operations, 

infested soil is spread not only within the field but also to other sites. Thus the acreage of 

Rhizomania infested field is continuously increasing (RICHARD MOLARD & CARIOLLE, 2001). On 

weaker damaged sugar beets, pale, long and upright growing leaves can be observed. Whereas 

severe symptoms like rudimentary developed tap roots and extreme root beard development 

consisting of dark brownish lateral roots as well as systemic spread to leaves, causing yellow veins 

(TAMADA & BABA, 1973; TAMADA, 1975; JOHANSSON, 1985; ASHER, 1993) are nowadays rarely 

monitored since the cultivation of partially resistant sugar beet in most of the infested sugar beet 

growing areas. White sugar and root yield can be reduced up to 90% in susceptible cultivars 

(JOHANSSON, 1985). ASHER (1993) reported the broad possibilities of Rhizomania to spread into 

none or less infested field via seed potatoes and onions, farm machinery, irrigation, flooding and 

wind erosion. 

 

1.4.1. Virus taxonomy 

 

Since 1997 BNYVV is accepted by the International Committee on Taxonomy of Viruses (ICTV) 

as member of the genus Benyvirus. BNYVV consists of 4-5 rod-shaped particles, which 

encapsidate 4-5 genomic ss (+) strand RNAs, depending on the isolates (BOUZOUBAA et al., 1985, 

1986, 1987; TAMADA et al. 1989; KIGUCHI et al., 1996; KOENIG et al. 1997). 
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1.4.2. Genome organisation of BNYVV 

 

The BNYVV genome organisation and the known functions of the viral gene products expressed is 

displayed in Fig. 2.  

 
Fig. 2 

 
Fig. 2:  Beet necrotic yellow-vein virus (BNYVV) genome expression und translation strategy, subdivided in five RNA 

segments, whereas only P- and J- types obtain the fifth RNA. All segments possess a cap structure at the 5´end 

and a poly A-tail (A) at the 3´end. Each box displays an open reading frame (ORF) in the genome, colours 

indicate the gene functions (blue = replication, yellow = coat protein, green = vector interaction, orange = cell-

to-cell movement, red = pathogenicity, light green = connected to pathogenicity, but further functions are still 

unknown, lilac = cell-to-cell movement (vector transmission). RdRp = RNA dependent RNA polymerase, 

CP = coat protein, RT = readthrough protein, TGB = triple gene block, N = ORF inducing tissue necrosis only 

when sequences upstream are deleted. 

 

RNA1 

 

The RNA1 (in total 6746 nucleotides long, excluding the poly(A)-tail) encodes an ORF for a 237 

kDa polypeptide possessing motifs for methyl transferase, helicase and RNA dependent RNA 

polymerase (RdRp). Thus the RNA1 is assumed to function as viral replicase protein (BOUZOUBAA 

et al., 1987). By a papain-like protease activity between the helicase and RNA dependent RNA 

polymerase (RdRp) motifs this protein is processed into a 150-kDa and 66-kDa product (the latter 

containing the polymerase domain) (HEHN et al., 1997).  
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RNA2 

 

On the RNA2, 4612 nucleotide in length [excl. the poly(A)-tail] are genes located for fundamental 

viral functions such as replication, cell-to-cell movement, encapsidation and suppression of post-

transcriptional gene silencing (PTGS) (TAMADA, 1999; DUNOYER et al., 2002). RICHARDS et al. 

(1985) and ZIEGLER et al. (1985) have demonstrated that the Mr 22 000 (P22) viral coat protein 

(CP) is encoded by RNA2. Together with an 85 kDa polypeptide both proteins are 

immunoprecipitated by antiserum against BNYVV (e.g. in ELISA). In total the RNA2 possess 6 

open reading frames (ORF). The first 5´ORF codes for a 21 kDa (P21) CP with a rather weak UAG 

termination codon (RICHARDS et al., 1985; ZIEGLER et al., 1985). A 75 kDa protein following P21 

is a read-through (RT) protein that is involved in virus assembly and vector transmission (ZIEGLER 

et al., 1985). The next three 3´-located ORFs represent the triple gene block (TGB) encoding 3 

movement proteins (MP) and perform in a highly specific manner (LAUBER et al., 1998). The P42 

is able to bind single and double stranded RNA and DNA and thus it can bind the viral genomic 

RNA (BLEYKASTEN et al., 1996), P13 and P15 both may be able to connect to the plasmodesmata 

to allow the P42 to enter and modify the plasmodesmata to enable BNYVV-particle cell-to-cell 

movement (NIESBACH-KLÖSGEN et al., 1990, LAUBER et al., 1998; ERHARDT et al., 2000). GILMER 

et al. (1992) described the last ORF, a 14 kDa (P14) protein, which obtains regulatory functions. 

P14 is known to be able to suppress a natural virus defence mechanism of plants called RNA 

silencing (DUNOYER et al., 2002). 

 

RNA3 

 

The RNA3 [1175 nucleotide in length excluding the poly(A)-tail containing in total 3 ORFs] is 

responsible for symptom development in sugar beet roots and the formation of local lesions in 

experimental hosts like Chenopodium quinoa (TAMADA et al., 1989; COMMANDEUR et al., 1991; 

KOENIG et al., 1991; JUPIN et al., 1992). Especially P25 (a 25 kDa protein, nucleotide position 445-

1102) is considered to be the most important functional protein on RNA3 regarding BNYVV 

symptom severity in roots.  

 

An efficient BNYVV translocation in the root system of susceptible sugar beet genotypes is only 

possible if an intact P25 is present (KOENIG & BURGERMEISTER, 1989). TAMADA et al. (1989) 

proved via ELISA that partial resistant sugar beet seedlings impede the BNYVV spread from 

primary infected lateral roots to the tap root. However, CHIBA et al. (2003) inoculated different 

susceptible and partial resistant sugar beet leaves and observed on partial resistant cultivars only 

with the presence of RNA3 the formation of necrotic lesions (hypersensitive resistance, HR) or the 

absence of lesions (infection resistance). Hereupon, the authors concluded a close correlation 
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between leaf-reactions and resistance abilities in roots of sugar beet plants. These investigations are 

supporting the hypothesis that BNYVV P25 acts in resistant genotypes as avirulence gene product 

(avr gene) and in susceptible genotypes it represents the BNYVV pathogenicity factor. Thus, the 

authors concluded that P25 could be responsible for systemic infections in susceptible sugar beet 

genotypes. P25 is a highly variable protein that mainly diversifies between a specific amino acid 

(aa) tetrad position 67-70 (SCHIRMER et al. 2005). Additional high variability could be observed on 

aa position 135 (RUSH et al., 2006). First predicted correlations between specific tetrad 

compositions and the pathogenicity of BNYVV could not be evidenced (LIU & LEWELLEN, 2007). 

 

HEABERLÉ & STUSSI-GARAUD (1995) demonstrated the presence of P25 in cytoplasm and nuclei of 

infected cells via immuno-gold electron microscopy. VETTER et al. (2004) examined P25-functions 

depending on its subcellular localisation in C. quinoa. By confocal laser scanning microscopy 

analysis of wild-type and mutated P25 fused to green fluorescent protein (GFP) a nuclear 

localization signal (NLS) in the N-terminal part of the protein could be identified. Hereupon, a 

nuclear export signal (NES) was characterized by mutagenesis. The development of necrotic 

lesions depends on the subcellular localization of P25. Studies revealed that accession of P25 into 

both, the cytoplasm and nuclear compartments, led to enhanced symptom severity in C. quinoa 

(VETTER et al., 2004). 

 

The influence on symptom severity of additional ORFs (N and 4.6) (BOUZOUBAA et al., 1985, 

JUPIN et al., 1991) are still unknown. ORF N may result in strong necrotic symptoms on leaves 

when overlapping sequences of 3´terminal P25 are deleted. JUPIN et al. (1992) also stated that ORF 

N could induce leave and root symptoms under natural infestation of BNYVV. Moreover P4.6 did 

not show any influence on symptom severity in the same publication. 

 

RNA4 

 

The BNYVV RNA4 is a rather small RNA segment (1431 nucleotides) and encodes the P31 

protein (BOUZOUBAA et al., 1985). P31 is necessary for vector transmission by P. betae (TAMADA 

& ABE, 1989). RAHIM et al. (2007) describes that P31 posesses next to vector transmission also 

suppressor of gene silencing function. The role of an additional ORF containing a 6.5 kDa protein 

is unknown, yet (JUPIN et al., 1991). 

 

RNA5 

 

The RNA5 occurs only seldom in Western Europe (France and the UK) it is more common in 

Japan (MIYANISHI et al., 1999). Both in France and in the UK, BNYVV isolates containing a fifth 
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RNA are spread on limited geographic regions (KOENIG et al., 1997; HEIJBROEK et al., 1999; 

KOENIG & LENNEFORS, 2000; HARJU & RICHARD-MOLARD, 2002, WARD ET AL., 2007). RNA5 

encodes protein of 26 kDa in size (P26), likely to act in synergistic manner with P25 thus involved 

in symptom development and symptom severity, too (KIGUCHI et al., 1996; TAMADA et al., 1996; 

KOENIG et al., 1997; MIYANISHI et al., 1999). Sequence homology between P25 (RNA3) and P26 

(RNA5) as well as a highly conserved aa motif support the hypothesis to deal with an additional 

pathogenicity factor in BNYVV-P-isolates, responsible for resistance breaking abilities of RNA5 

containing strains (KOENIG et al., 1997). SCHIRMER et al. (2005) proved high aa variability at 

positions 9, 81 and 143 in P26. If variable pathogenicity between single BNYVV RNA5 containing 

isolates exist has not been experimentally proven, yet. TAMADA et al. (1996) reported about 

synergistic effects of RNA3 and RNA5 that result in stronger symptom severity compared to 

BNYVV isolates that only contain RNA1 to 4 (KOENIG et al., 1997b; HEIJBROEK et al., 1999; LINK 

et al., 2005). It can be assumed that this synergism is confined to P25 and P26. 

 

P26 was also examined concerning the subcellular localization and its pathogenicity functions in 

C. quinoa were characterized in detail (LINK et al., 2005). The authors could prove the localisation 

of P26 in the cytoplasm and nuclear compartments of infected cells, similar to P25. Beyond that, 

transcriptional activation and the involvement of P26 in BNYVV formation of local lesions in 

C. quinoa were demonstrated. 

 

1.4.3. BNYVV variability 

 

Over the last decades the existence of different genotypic BNYVV groups became obvious, they 

correspond to differences in pathogenicity and specific geographical regions (KOENIG et al. 1995; 

KOENIG et al., 1997; KOENIG & LENNEFORS, 2000; MEUNIER et al., 2003a; TAMADA et al., 2003) 

as demonstrated in Fig. 3.  
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Fig. 2 

Fig. 3: Distribution of different BNYVV-types depending on the geographic origin 

 

In Europe three different strains of BNYVV were characterized as A-, B- and P-types. Firstly, the 

separation of strains was based on restriction fragment length polymorphism (RFLP) analysis or 

single-strand conformation polymorphisms (SSCP) analysis of the CP region from BNYVV 

isolates originating from all over the world (KOENIG et al., 1995; KRUSE et al., 1994). The A-type 

is widespread in Europe, the United States, Japan and China. The B-type is less prevalent; it is 

mainly concentrated on fields in Germany, France and in Switzerland. Differences in nucleotide 

sequence between A and B range from 3 to 6 %, depending on the genomic RNA analysed. 

Sequences within A- and B-types are highly conserved and very stable what is also displayed in 

≥99% sequence identity (KOENIG & LENNEFORS, 2000). Nucleotide differences cannot be 

distinguished serological, since aa changes in the viral CP between A and B strains are located in 

regions that are unrecognized by BNYVV antibodies. SSCP analyses or detection of the additional 

RNA5 / P26 via PCR are used to distinguish BNYVV-P from -A and -B (KOENIG et al., 1997). 

Recently, SCHIRMER et al. (2005) conducted analyses of the nucleotide sequences of the RNA2-

encoded CP, RNA3-encoded P25 and RNA5-encoded P26 proteins. Phylogenetic trees showed a 

clear classification of various BNYVV-isolates into different groups which are closely correlated 

between the virus clusters and geographic origins. Whereas the CP showed to be most conserved in 

all BNYVV isolates, P26 was less restrained and P25 had by far the highest variability in its 

nucleotide composition. Especially the tetrad composition 67-70 (as above mentioned) possesses 

highly variable nucleotides depending on the BNYVV isolate. 
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Several studies have been conducted to investigate the increased virulence of BNYVV isolates 

containing RNA5. MIYANISHI et al. (1999) and TAMADA et al. (2003) accomplished experiments to 

characterize if variability is associated to virulence or geographical distribution. MIYANISHI et al. 

(1999) established three groups of RNA5 containing isolates after sequence comparison of P26. 

Most isolates from China and Japan were belonging to group I, two further isolates from Japan 

were summarized as group II and the French isolate pertain to group III. Differences in the genome 

within one group were only marginal (approx. 0.6%), between groups sequences varied up to 8%. 

SCHIRMER et al. (2005) distinguished the Japanese RNA5 groups and the French RNA5 isolates 

from Pithiviers due to the high sequence variability into BNYVV-P and BNYVV-J isolates. 

 

The genetic variability of RNA plant viruses represents a main factor of virus pathogenicity. 

Undirected mutations as genetic adaptation take place constantly due to changing environmental 

condition. Nonviable mutants develop continuously; in addition, emergence of variability retains 

the fitness of the pathogens (DRAKE & HOLLAND, 1999; GARCIA-ARENAL et al., 2003). The 

extensive and exclusive cultivation of hosts with only few resistance sources inhibit the virus to 

replicate and efficiently to produce severe symptoms on sugar beet plants. But as in partial 

resistance sugar beets the virus can replicate at least in small rates, the selection of isolates 

overcoming resistance can be more probable than in plants possessing BNYVV immunity. 

 

1.5. Virus-host interaction 

1.5.1. Factors influencing disease spread and severity 

 

In field, Rhizomania starts with appearance of single sugar beets that display fluorescent yellow 

leaves in the mid-growing season. In fields where no BNYVV was observed previously these 

single “Rhizomania-spots” usually appear due to dumped infested soil from farm machinery, tare 

soil or after flooding events near rivers etc. Once viruliferous P. betae was introduced in a non-

infested field via infested soil or sugar beet residues, the protist exhibits an extremely high 

multiplication potential. Under suitable conditions P. betae possesses the capability to multiply 

more than 10.000-fold within one growing season (TUITERT & HOFMEESTER, 1992). Studies 

revealed that high BNYVV densities in soil (high concentrations of viruliferous P. betae) are 

closely related to symptom severity (TUITERT, 1990; CIAFARDINI, 1991; TUITERT & HOFMEESTER, 

1992; TUITERT et al., 1994). Regarding a whole field, the inoculum density is often determined to 

be rather low, only in local spot it results in tremendous densities due to the fact, that P. betae is in 

general not widespread (RUSH & HEIDEL, 1995). As soon a field with few diseased spots is 

machined (tillage, ploughing, sowing operations), soil including viruliferous vector is spread 

further on and the multiplication of P. betae extraordinary increases again once a host is cultivated. 
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Rhizomania spread in field via zoospores migration is negligible compared to tillage, sowing, 

irrigation and harvest operations (HARVESON et al., 1996). TUITERT (1993) demonstrated that 

viruliferous P. betae zoospores are not able to bridge a distance of 5 cm between infected and 

virus-free sugar beet roots. Thus, a high density of resting sporosori which are capable to spread by 

soil movement is more sufficient to distribute Rhizomania in field than the plant-to-plant 

infestation via secondary zoospores. 

 

The performance of viruliferous P. betae in soil is influenced by many different biotic and abiotic 

factors. Soil temperature, moisture and structure play important roles in the infection and virus 

transmitting process. ABE (1987) and BLUNT et al. (1991) reported about an optimal temperature 

between +25°C and +30°C. Temperatures of +10°C to +15°C inhibit the infection with the 

BNYVV vector. Especially, sandy soils enforce the P. betae zoospore release due to quicker 

warming (WEBB et al., 2000). While sowing and in young seedling age, seldom temperatures rise 

to temperatures above 15°C in sugar beet production areas, thus infestation in early stages are 

uncommon in field. But greenhouse experiments showed that higher temperatures resulted in 

strong infestation of BNYVV and in maximum symptom severity and weight loss of sugar beet 

seedlings cultivated in soil with viruliferous P. betae (manuscript II) depending on P. betae 

population. In the field this incidence may occur if sugar beets are replanted later in the vegetation 

period, cultivated as winter crop (sowing in August / September) or if the spring is extremely hot 

compared to average years. Soil moisture is one of the most important factors to add up to 

successful P. betae zoospore release, the initiation of sufficient host infestation. Soil moisture near-

water saturation is indispensable to stimulate germination of sporosori (HARVESON & RUSH, 1993; 

PICCINNI & RUSH, 2000). TUITERT & HOFMEESTER (1992) reported about a significant higher 

BNYVV infestation of sugar beet cultivars in irrigated than not irrigated soils. Thus, the more 

viruliferous zoospores are released due to cultivation of susceptible cultivars or due to overcoming 

of resistance, the higher is the inoculum density, symptom severity and proximate yield loss (RUSH, 

2003). 

 

Biotic factors that influence disease incidence are manifold. Not only inoculum density but also 

P. betae origin (population), presence of aviruliferous P. betae and the availability of hosts 

susceptible to P. betae and BNYVV are fundamental factors for successful infestation. GERIK & 

DUFFUS (1988) described differences in vectoring abilities of P. betae populations depending on 

their origin. They also reported that viruliferous vector multiplied much more efficient when an 

indigenous avirulent population was already present in soil, compared to soil where no P. betae 

population is existent, whereas a virulent population is out-competing aviruliferous P. betae. In 

contrast, KASTIRR et al. (1994) reported that viruliferous vectors are less aggressive and the final 

Rhizomania inoculum density in soils and sugar beet roots is decreasing. TUITERT & HOFMEESTER 
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(1992) demonstrated that viruliferous P. betae are capable to extremely increase its density within 

one growing season when an avirulent population already exists; still the percentage of viruliferous 

zoospores were estimated on only 5% to 20% (CIAFARDINI, 1991; TUITERT et al. 1994). The host 

plant susceptibility to BNYVV has an immense impact on the development of virus inoculum 

densities. As soon susceptible hosts are cultivated the inoculum concentration increased quickly 

and as long resistant sugar beets are cultivated the inoculum density was estimated to be lower 

(ABE & UI, 1986; ABE, 1987; TUITERT et al. 1994; BÜTTNER et al., 1995; HUGO et al., 1996). 

Unless new virulent strains of BNYVV are developed, or the primary inoculum in soil is that high 

that even resistance can break. Experiments have shown that resistance against BNYVV does not 

apply for P. betae. 

 

1.5.2. Genetic resistance against Rhizomania 

 

First resistance breeding programs to select Rhizomania partial resistant sugar beets within variety 

tests started already in the late 1970s. Reduced or missing virus symptoms, increased sugar beet 

and white sugar yield as well as processing quality served as selection criteria (FUJISAWA et al., 

1982; BÜRCKY, 1987). Genotypes that were chosen for further breeding processes displayed like 

susceptible sugar beet a high BNYVV content, still they suffer the virus infestation in lateral roots 

but showing little less symptoms and better field performance (BÜRCKY, 1987). Thenceforward, 

sugar beets that tolerated the virus infection in lateral roots but accomplished better yield were 

described as partial resistant sugar beets. JOHANNSON (1985) described a correlation of BNYVV 

partial resistant sugar beets to resistance of Cercospora beticola. Onward, sugar beet varieties like 

“Dora” and “Lena” (BOLZ & KOCH, 1983; HECHT, 1989) were merchandised as partial resistant 

cultivars. The first variety showing higher resistance against the disease was the cultivar “Rizor” 

that was developed from Italian germplasm (DE BIAGGI, 1987). After GIUNCHEDI et al. (1985 & 

1987) published a correlation between virus concentration in sugar beet tap roots and white sugar 

yield the BNYVV content was used as suitable selection criteria in resistance breeding processes. 

Time and labour intensive selection for partial resistant sugar beets could even be shortened as 

sugar beet seedlings distinguish already after four weeks in virus content of lateral roots concerning 

the resistance abilities (BÜRCKY & BÜTTNER, 1985; BÜTTNER & BÜRCKY, 1990). This criterion 

was comprised when testing one of the most important Rhizomania resistance sources. The so 

called “Holly” resistance was first identified in 1983 in a sugar beet field trial conducted by the 

Holly Sugar Company in California, USA (LEWELLEN et al., 1987). The “Holly” source contains 

the partially dominant resistance gene named Rz1 as well as further minor genes which have not 

been identified yet (LEWELLEN et al. 1987; SCHOLTEN et al., 1996; PELSY & MERDINOGLU, 1996). 

Rz1 is today’s most important BNYVV resistance gene (BIANCARDI et al. 2002). However, Rz1 is 

not performing equally in all genetical backgrounds or hybrid cultivars (RUSH et al., 2006). 
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Occurrence of lower resistance stability and severity under high inoculum densities of diploid 

compared to triploid hybrid cultivars can be explained by the additive effects of minor genes 

(BIANCARDI et al., 2002). Marker assisted selections make control and succession of Rz1 in 

breeding programs easy and accelerate breeding progress in backcrossing and population 

improvement programs (FRANCIS et al., 1998; PELSY & MERDINOGLU, 1996; SCHOLTEN et al. 

1997). Although breakthrough marketable partial resistant sugar beet genotypes have been 

developed, including Rz1, sugar beets are still BNYVV hosts and the virus is able to replicate in 

lateral hair roots. Thus, Rhizomania inoculum is continuously increasing in soil. SCHOLTEN et al. 

(1994) described that resistance is depending on inoculum density in soil, high BNYVV 

concentrations are overcoming Rz1 resistance after in vitro inoculation with high numbers of 

viruliferous P. betae zoospores.  

 

Since single dominant resistance genes (Rz1) loose resistance abilities due to selection pressure 

they exert on the pathogen population (reviewed in RUSH et al., 2006) the search of additional 

natural occurring resistance genes was indispensable. The search was expanded to additional 

germplasms from Beta vulgaris susp. maritima e.g. from Denmark. Within germplasm specific 

individual accessions (plant introductions, pi) were backcrossed into sugar beet lines, thereinafter it 

was identified in greenhouse (WHITNEY, 1989) and in field (LEWELLEN, 1995; LEWELLEN & 

WRONA, 1997). The resistance was generated from the wild beet (WB) WB42 and inbred as 

described above thereinafter it was released as accession C48 (LEWELLEN & WHITNEY, 1993). 

Since the resistance source displayed a higher degree of resistance towards Rhizomania (WHITNEY, 

1989) and SCHOLTEN et al. (1994 & 1999) could show that this resistance was located at a different 

locus on chromosome 3 only few centiMorgan (cM) apart from Rz1 it was named Rz2. Most other 

resistance sources published are either Rz1 or Rz2. In mass selection individually screened resistant 

plants were pooled and different populations were developed wherein the actual resistance source 

of each population was unknown (DONEY et al., 1990). Recently, GIDNER et al. (2005) identified 

an additional major resistance gene (Rz3) in WB41. Rz3 is also mapped on chromosome 3 of the 

sugar beet genome separately from Rz2. The influence on resistance performance of other minor 

genes next to Rz3 cannot be excluded, too. An association of different quantitative trait loci (QTL) 

with BNYVV resistance independent from Rz resistance genes on linkage group 3 has been 

observed (KRAFT, pers. comm.). GIDNER et al. (2005) demonstrated lower BNYVV contents in 

partial resistant sugar beets possessing a combination of Rz1 and Rz3 in a heterozygous condition, 

than in plants containing only Rz1. 

 

Since the multiplication rate of BNYVV in partial resistant sugar beets is much lower than in 

susceptible cultivars, ASHER & KERR (1996) forecasted a stabilisation of inoculum density in soil. 

The cultivation of partial resistant Rhizomania varieties is increasing continuously (in Germany 
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2007 almost 70% of sugar beets grown possessed at least one resistance gene (LADEWIG pers. 

comm.). This would include a reduction of the velocity of propagation in soil but experimental 

evidence is missing. 

 

A further possibility to achieve BNYVV resistance can be realised by generation of transgenic 

virus resistant plants (LENNEFORS, 2007). Previously, coat protein mediated resistance was 

generated by using translatable coat protein genes to transform the sugar beet plant. This 

mechanism is based on the disruption of functions in viral multiplication and provided good 

Rhizomania resistance in field and greenhouse (MANGOLD et al., 1998; MECHELKE & KRAUS, 

1998; SCHOLTEN & LANGE 2000). Nontranslatable genes and gene-fragments are also used to 

generate virus resistance in sugar beets. By expressing double stranded RNA (dsRNA) or specific 

RNA concentration, an internal resistance mechanism in planta named “RNA silencing” is 

activated (BAULCOMBE, 2004 / 2005; FILIPOWICZ et al., 2005). “RNA silencing” is initiated by 

dsRNA, it causes sequence specific degradation of virus RNA what acts as adaptive resistance 

mechanism. The temporary production of dsRNA, which induces this resistance mechanism as 

soon the virus multiplies in planta, functions almost in every plant. That “RNA silencing” is not 

always successfully inhibiting virus spread is depending on the virus. The virus is able to suppress  

“RNA silencing” by evolving proteins which interfere with the resistance mechanism (SILHAVY & 

BURGYAN, 2004; VOINNET 2005). By transgenic expression or induction of viral dsRNA 

genetically transformed plants are able to initiate the resistance mechanism against viruses before 

the actual virus infection takes place (WATERHOUSE et al., 1998; SMITH et al., 2000; CHEN et al., 

2004; HELLIWELL & WATERHOUSE, 2005). To generate this kind of virus resistance only fragments 

of viral genes are expressed what is promising and much more sustainable, since discussed 

biological risk of transgenic virus-resistant plants due to recombination and complementation are 

minimised (AAZIZ & TEPFER, 1999). However, at present transgenic BNYVV-resistant sugar beet 

based on the “RNA silencing” mechanism are tested (KRAUS, pers. comm.). Concerning the 

acceptance and political situation towards genetically modified organisms - besides the USA - 

genetic resistance from naturally occurring resistance sources via classical sugar beet breeding and 

selection seems to be the favoured way to control the disease. 

 

1.5.3. Other soil-borne pathogens 

 

In naturally BNYVV infested soils additional soil-borne pathogens always occur, which also have 

sugar beet as host. It can be assumed that additional infections (primary or secondary) are affecting 

the BNYVV content, also in partial resistant sugar beets (STEVENS & ASHER, 2005). The authors 

have shown in field trials, that co-infection with beet mild yellowing virus (BMYV) led to 

increased Rhizomania symptoms even in partial resistant plants. In contrary LENNEFORS (2007) 
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reported about BNYVV co-infection with beet yellows virus (BYV) which did not lead to 

significant influence on the BNYVV content in lateral beet roots. But BYV displayed higher 

multiplication rates when secondary viruses are present what can be explained due to competition 

in the phloem (SMITH, 1991; SMITH & KARASEV, 1991). Combining BMYV and BYV with 

following soil-borne viruses BNYVV, beet soil borne virus (BSBV) and beet virus Q (BVQ) no 

interaction or increasing virus titres could be detected (LENNEFORS, 2007). Already in the 1980s 

CUI (1988) reported about high yield reductions and severe beet black scorch virus (BBSV) 

symptoms on leaves and tap roots in China. Further spread to other western countries could not be 

observed since then. But recently, WEILAND et al. (2007) reported about the occurrence of BBSV 

in the USA that displayed severe symptoms and influenced sugar beet growth similar to 

Rhizomania. Investigations if BBSV is involved in the intensifying Rhizomania disease in the USA 

are necessary.  

 

Fungal soil-borne pathogens like Rhizoctonia solani Keskin, Aphanomyces ssp., Fusarium ssp. and 

Pythium ssp. are often occurring parallel to BNYVV (manuscript I). An influence of co-infection 

with these fungi can be assumed. Rhizoctonia solani Keskin, Aphanomyces ssp. and Pythium ssp. 

are known to infect the sugar beet seedlings in very early stages (5 days after inoculation) 

(LUTERBACHER et al., 2005) thus it seems plausible that the fungus could set primary infection and 

BNYVV secondarily damages the plant due to previous impairment, although it is BNYVV 

resistance. But up to date, no evidence for synergisms between BNYVV and other fungal soil 

borne pathogens regarding symptom severity could be shown. 

 

1.6. Rhizomania-resistance tests in practice 

In general two different kinds of Rhizomania-resistance tests are published. On the one hand there 

are field trails (often conducted as variety test for commercial seed or seed where registrations are 

applied). On the other hand Rhizomania-resistant tests are often conducted in greenhouse, either 

with naturally infested soil or via artificial inoculation.  

 

Former resistance test were conducted always in field which were known to be infested with 

Rhizomania. The sugar beet plants were scored for yellowing leaves and veins, for crinkling, root 

rot, brownish vascular and root beards at harvest date after a whole vegetation period (approx. 7 

month) (FUJISAWA et al. 1982). Little later GUINCHEDI et al. (1985, 1987) reported about 

negatively significant correlations between sugar beet yield and virus concentration in the tap root 

of fully developed sugar beets, a criterion that was also used to describe quality of resistance in 

susceptible and partial resistant sugar beets. BÜRCKY (1987) proved, that BNYVV infestation not 

only decreased sugar beet yield but also increased the sodium and potassium contents. These 
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concentrations were also used to evaluate the severity of Rhizomania infection. After BÜRCKY & 

BÜTTNER (1985) demonstrated that virus content vs. sugar beet genotypes distinguishes in seedling 

state, the development of time saving greenhouse tests with standardised climate conditions was 

encouraged. First resistance test with individually planted sugar beets in naturally infested soil were 

conducted for six weeks in greenhouse. The virus could only be detected in the lateral roots, not in 

sugar beet tap roots, anyhow the different genotypes examined distinguished significantly in their 

virus content. In field tests, however, the virus content in tap roots stayed first choice, because of 

decreasing virus concentrations in lateral roots over the vegetation period (BÜRCKY & BÜTTNER, 

1991). 

 

A couple of greenhouse resistance tests have been published over the years, ABE & TAMADA 

(1987) developed a greenhouse experiment in which undefined amounts of resting spores and 

zoospores were added to Rhizomania free soil to infect sugar beet seedlings. Also independent 

from inoculum concentration trials were conducted by BÜRCKY & BÜTTNER (1985) and PAUL et al. 

(1992), who used a mixture of naturally infested soil and sand in equal parts and cultivated 

seedlings for six and four weeks, respectively. Most resistance tests conducted nowadays are 

following PAUL et al. (1992a) concerning temperature (22/17°C, day/night) and vegetation period 

(4 weeks). PAUL et al. (1993c) discovered also a correlation between virus content in sugar beet 

rootlets with sodium and α-amino nitrogen concentration in tap roots of infected sugar beets grown 

in field. To test for general level of infestation in field / naturally infested soil PAUL et al. (1993c) 

recommend a bait plant test with a susceptible cultivar. Whereas the number of individually 

infected susceptible sugar beets serves as criterion to estimate the actual inoculum density in soil 

using the Most Probable Number (MPN) method (TUITERT, 1990; CIAFARDINI, 1991). Resistance 

tests with specific inoculum densities were conducted by HEIJBROEK et al. (1999) and SCHOLTEN 

et al. (1994) in defined amounts of naturally infested soil containing different BNYVV-types or in 

hydroponics using a defined number of P. betae zoospores, respectively. Via inoculum suspensions 

higher BNYVV inoculum concentrations than in naturally infested soil could be established since 

overcoming of Rz1 resistance could be observed (PETERS & GODFREY-VELTMAN, 1989; PAUL et 

al., 1993b; SCHOLTEN et al., 1994). KOENIG & STEIN (1990) developed a method to artificially 

inoculate sugar beet seedlings by vortexing without the vector P. betae after passaging the virus on 

Chenopodium quinoa leaves. Resistance tests based on mechanical leaf inoculation of sugar beets 

resulted in very low sensitivity thus they are nowadays uncommon to use (FUJISAWA & SUGIMOTO, 

1979; GRASSI et al.; 1988). Up to date, 5-6 weeks resistance test in naturally infested soil prepared 

as described by PAUL et al. (1993c) but with high numbers of sugar beet seedling per pot (100 

sugar beet seeds on 280 ml soil) are widespread to test resistance abilities (LIU at et al., 2005; LIU 

& LEWELLEN, 2007). Additional attempts to conduct resistance tests following PAUL et al. (1993b) 

with dried rootlets from infested sugar beets in sterile sand were modified. The analyses for virus 



INTRODUCTION 

 

31

presence were accomplished through ELISA (CLARK & ADAMS, 1977) or tissue print amino assay 

(TPIA) (KAUFMANN et al. 1992). 
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2. AIMS OF THE STUDY 
 

 

The cultivation of BNYVV resistant varieties in Rhizomania infested fields is indispensable to 

conduct profitable sugar beet production. But, in few sites in the USA and in Spain the cultivation 

of resistant sugar beet cultivars containing the present available resistance genes like Rz1, Rz2 or a 

combination of Rz1+Rz2 are not withstanding the virus infection and display severe symptoms and 

high yield losses. 

 

The aim of this study was to evaluate the reason for resistance breaks in partial resistant sugar beet 

cultivar under specific consideration of virus and vector inoculum density, to analyse the role of the 

BNYVV vector Polymyxa betae, to examine the influence of an extremely variable pathogenicity 

factor (P25) encoding on the virus RNA3 and to display the temporal development of virus 

infestation after artificial inoculation.  
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3. RESULTS AND DISCUSSION 

 

After overcoming resistance (Rz1) has been reported in several sugar beet production areas (USA, 

Spain and France) in greenhouse and field experiments a resistance test including these soils from 

the USA (IV and MN), Spain (D) and France (P) as well as less aggressive standard soils from Italy 

(R) and Germany (GG) under standardized greenhouse conditions was conducted in order to clarify 

the performance of Rz1 as well as Rz1+Rz2 sugar beet cultivars. As control a BNYVV susceptible 

genotype was also included. The sugar beet was analysed after 12 weeks of greenhouse cultivation 

for tap root weight, virus concentration and relative Polymyxa glutathione-S-transferase (GST) 

content. The amino acid composition of the pathogenicity factor P25 at position 67-70 (aa67-70) was 

determined and additional soil-borne pathogens naturally occurring in these soils were identified. 
 

3.1. Cultivation-time-dependent resistance tests 

 

In contrast to commonly accomplished greenhouse resistance tests of four to six weeks following 

PAUL et al. (1992) with slight modifications (TUITERT et al., 1994; BÜTTNER et al., 1995; 

SCHOLTEN et al. 1996; HEIJBROEK et al., 1999; LIU et al., 2004; LUTERBACHER et al., 2005; 

LENNEFORS, 2007) a 12 weeks resistance test was conducted. The cultivation time was extended 

due to previously performed resistance tests. In this previous test a strong negative correlation of 

BNYVV content in lateral roots and tap root weight was found after artificial inoculation following 

a 12 week greenhouse cultivation period (Fig. 4).  
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Fig. 4:  BNYVV content in lateral sugar beet roots (A) and tap root weight (B) after vortex inoculation with 4 different 

BNYVV isolates as well as a non-infested Mock-control and cultivation for 12 weeks in greenhouse (R = 

Inoculum
R GG P RNA1+2 Mock

B
N

YV
V 

co
nt

en
t [

ng
 m

l-1
]

0

20

40

500
1000
1500
2000
2500
3000
3500

A B 



RESULTS AND DISCUSSION 

 

34

Rovigo – Italy; GG = Groß Gerau – Germany; P = Pithiviers – France; only RNA1+2 from an B-type isolate 

without the pathogenicity factor on RNA3). 

 

A very strong negative correlation between tap root weight and BNYVV content in lateral roots of 

different sugar beet genotypes after vortex inoculation (KOENIG & STEIN, 1990) with wild-type 

BNYVV propagated on C. quinoa leaves was obtained (Fig. 4). For this artificicial inoculation 20 

sugar beet seedlings were inoculated with 1:4 infected plant sap : 0.05M phosphate buffer (pH 7.2) 

by vortexing with 0.09 g carborund in a 2.2 cm diameter centrifuge tube. The seven-days-old 

seedlings were transferred into hydroponics for two weeks to recover from vortexing stress und 

thereinafter they were transplanted ino sterile soil. After 12 weeks under standardised green house 

conditions the sugar beet plants were harvested and the tap roots were weighed. Sugar beet 

hair-roots were separately harvested and analysed for BNYVV content via DAS-ELISA. 

Additionally, the systemic spread within sugar beet tap roots could be proven via Tissue Print 

Immuno Assay (TPIA) following KAUFMANN et al. (1992). Generally, this kind of resistance test is 

difficult to evaluate due to the fact that no adjusted inoculum concentration can be produced with 

C. quinoa plant sap. This led in these studies to non-reproducible results because of highly variable 

virus contents. But with regard to methodical approaches the plants differentiated well after 12 

weeks cultivation time. Only the consistency in virus content after inoculating with various 

aggressive BNYVV isolates could not always be shown. However, if the harvest had have been at 

an earlier stage (4 to 8 weeks, respectively) the tap root would have been too small to display 

significant weight effects of virus infection. Moreover TPIA is quite difficult to conduct with very 

small tap roots. 12 week-old sugar beet plants have passed the physiological juvenile phase and 

have formed already a real tap root comparable to beet grown in practice. Thus beet weight and 

ELISA values are closer connected to realistic yield and ELISA performance under natural 

growing conditions. BÜRCKY & BÜTTNER (1991) already reported, that the virus content in partial 

resistant sugar beet rootlets is decreasing over the vegetation period in field trials, thus they 

suggested conducting virus quantification only from tap roots instead of lateral roots independent 

from cultivar resistance abilities. In these trials (manuscript II) similar observations of decreasing 

virus content could also be shown comparing harvests after 4, 8 and 12 weeks in artificially 

inoculated soil. With relation to a four weeks trial, where only lateral sugar beet roots are analysed 

in ELISA, it must be considered if the roots are developed enough for resistance testing at all. To 

date cultivar tests to show the performance in Rhizomania infested soils were usually conducted in 

naturally infested soil where overcoming of resistance has not yet been observed. The underlying 

resistance mechanisms as well as reasons for resistance breaking are still completely unknown, thus 

new set ups to test cultivars need to be developed in the face of testing more aggressive BNYVV 

isolates. 
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3.2. Overcoming of resistance depending on different BNYVV isolates 

Resistance breaks in four different soils from D, IV MN and P concerning the Rz1 cultivar were 

demonstrated in a 12 weeks trial (manuscript I). Results of relative virus content were also 

correlating to field trials and six weeks greenhouse tests (HEIJBROEK et al., 1999; LIU et al., 2005; 

RUSH et al., 2006; LIU & LEWELLEN, 2007; AYALA-GARCIA pers. comm.; LENNEFORS pers. 

comm.). However in the study described here, overcoming of resistance was not only documented 

by ELISA values obtained in lateral roots (which were invariably higher or at least similar to the 

ELISA contents measured in susceptible plants) but also by TPIA (manuscript II). Additional 

reduction of tap root weight indicated a higher BNYVV damage (manuscript II), but this weight 

decline could also be connected to different primary nutrition supply in various soils or by other 

soil-borne pathogens infecting the plants. The tap root weight was reduced significantly after 12 

weeks cultivation time compared to weight values obtained in less aggressive soils from Italy (R) 

and Germany (GG) (manuscripts I + II). The reduction of tap root weight under severe BNYVV 

infestation in soil from D, IV, MN and P has not yet been demonstrated in a greenhouse before. In 

contrary to experiments published here, HEIJBROEK et al. (1999) displayed weighing results after 9 

weeks cultivation period in naturally infested soils from GG, R and P. However, no significant 

differences were determined between the less aggressive Italian soil and the French BNYVV-P 

isolate concerning the Rizor and an Rz1 sugar beet variety, although the P-isolate is known to be 

much more aggressive than the R-isolate due to its additional RNA5 encoded pathogenicity factor 

P26 (MIYANISHI et al. (1999) and TAMADA et al., (2003) concerning results shown in manuscripts I 

+ II. It seems sensible to consult not only ELISA values but also tap root weight as an additional 

criteria regarding resistance compromising BNYVV-isolates in soil. Especially, as demonstrated in 

the experiments of this study (manuscripts I + II) ELISA values of lateral roots in susceptible beets 

contain less BNYVV than the Rz1 plants. Inferential, the stronger the infection pressure is and thus 

lateral root damage due to the virus, the slower the secondary infection with BNYVV is, as not 

enough newly developing root cells are available for P. betae and BNYVV multiplication. To 

confirm results obtained with susceptible and Rz1 genotypes in soils showing heavy virus contents 

and very low tap root weights a TPIA was conducted with heavily affected sugar beet to prove if 

the virus is also systemically distributed within the tap root. In soils from D, IV, MN and P the 

TPIA of susceptible and Rz1 plants resulted in systemic virus spread within the whole tap root. 

Regarding the Rz1+Rz2 partial resistant genotype significant weight reduction compared to the 

same cultivar grown in other soils could only be demonstrated in D. Interestingly, the presence of 

BNYVV in lateral roots could be detected in D-, IV-, MN- and P-soils but spread of BNYVV into 

the tap root was only observed again in D and P. Therefore, it can be concluded that BNYVV D-

soil isolate is compromising Rz1 but also Rz1+Rz2 resistance in naturally infested soil under the 

greenhouse conditions applied here. BNYVV-P is distributed systemically in Rz1+Rz2 tap roots 
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and thus able to multiply but significant weight reduction of the tap root was not observed in the 

double resistant genotype. 

 

3.3. Influence of variable P25 composition on virus pathogenicity 

On closer examination of the pathogenicity factor P25, the high variability of tested BNYVV 

isolates became obvious. Particularly the amino acid tetrad aa67-70 as already published in 

SCHIRMER et al. (2005) showed high variability between different BNYVV-isolates (manuscript I). 

However the predicted relation between valine on position 67 (V67) and resistance breaking was not 

confirmed. These results are supported by recently published data from LIU & LEWELLEN (2007), 

who did not find any correlation between a specific tetrad composition and overcoming of 

resistance. In the experiments shown here the most aggressive soil contained two different BNYVV 

isolates with the following tetrad compositions: ACHG and VCHG (manuscript I). 

 

3.4. Phylogenetic analyses of Polymyxa betae 

Besides virus content in lateral roots and composition of the viral pathogenicity factor analyses of 

the naturally occurring vector densities of Polymyxa betae should clarify if a higher vector 

concentration in soil is correlating to successful virus transmission and thus eventually to observed 

resistance breaks. In these experiments (manuscripts I + II) the MN soil was analysed for 

astonishing high content of secondary P. betae zoospores. All other soils vs. genotypes resulted in 

about 10 to 40 times less P. betae inoculum. As the BNYVV infestation of sugar beet in MN soil 

tends to decline compare to D, IV and P, the density of viruliferous zoospores must be marginal in 

MN. Further investigations concerning the percentage of viruliferous P. betae were conducted in 

manuscript II. Due to these highly variable results concerning P. betae contents in soil and the 

great geographical distance between different soil origins the internal transcribed spacer ribosomal 

DNA region (ITS1+5.8+ITS2) was amplified, sequenced and aligned for phylogenetic analysis to 

examine if P. betae diversifies in its genomic composition. WARD (1994) published that the 

ribosomal DNA has proven to be a suitable region to study these genomic diversities. This region 

contains genes like 5.8S and 18S that differ only marginally between species and other regions, 

such as the ITS region that is more variable (WARD et al., 1994; WARD & ADAMS, 1996; LEGRÈVE 

et al., 1998/2002). WARD & ADAMS (1998) and MORALES et al. (1999) conducted studies on ITS1, 

5.8S gene and ITS2 sequences from Polymyxa isolates and described diverse subspecies of 

P. graminis that differed only minimal from P. betae. Therefore, LEGRÈVE et al. (2002) showed 

much larger diversity in P. graminis regarding ITS sequences of isolates from separate 

geographical origins. But as soon larger distinctions could be detected after completing 

phylogenetic analyses of Polymyxa graminis spp. groups were developed that always had the same 
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host but originated from totally different locations. Surprisingly, in manuscript I only very few 

nucleotide exchanges could be detected between sequenced P. betae ITS1+5.8+ITS2 from different 

countries and continents. Apparently deletions, insertions and other mutations, which could appear 

due to higher genomic diversification, were not detected and thus not correlated to its geographic 

spread. P. betae could be distributed via its host the sugar beet. Due to the same host world-wide a 

genomic adaptation to a changing environment was not necessary. Transferring this knowledge to 

P. betae means that the probability to mutate but still infecting the same host (the sugar beet) seems 

to be unlikely no matter if P. betae originates from Germany or the USA. It can be assumed that 

P. betae has been spread coeval with sugar beet production first within Europe, onwards from 

Europe to America and Asia not more than 100 – 150 years ago. 

3.5. Other soil-borne fungal pathogens 

Additional pathogens in various densities are always occurring in naturally infested soils 

(manuscript I). In some soils the inoculum density of soil-borne pathogens was so high that an 

additional effect due to primary or secondary infection by Pythium spp., Fusarium spp. and 

Rhizoctonia solani cannot be disregarded. In our studies (manuscript I + II) a plantlet treatment 

with Tachigaren (Hymexazol + Thiram) could not entirely prevent seedling infection by soil-borne 

fungi. Especially in D soil the inoculum potential of Rhizoctonia solani and Pythium spp. had an 

impact on plant development and disease severity. Experiments with artificial BNYVV inoculated 

seedlings transplanted into Rhizoctonia solani, Fusarium spp. or Pythium spp. infested soil could 

provide information if these diseases possess an impact on BNYVV symptom severity. However, 

experimental proof is lacking yet. 

 

3.6. BNYVV and Polymyxa betae inoculum potential 

3.6.1. Attempts for artificial infection with viruliferous P. betae 

 

BNYVV and Polymyxa betae inoculum in soil can be either estimated via bait plant test (Most 

Probable Number test – MPN) with susceptible sugar beet cultivars in naturally infested soil 

accomplishing a serial soil dilution (TUITERT, 1990) or by polymerase chain reaction (PCR) 

(MUTASA et al., 1995, 1996, MUTASA-GOTTGENS et al. 2000; KINGSNORTH et al., 2003; WARD et 

al., 2004). However, in assays where P. betae was quantified directly from soil via (time-saving) 

real-time PCR (WARD, 2004) the number of P. betae units actually able to infect the sugar beet 

remained unknown. TUITERT (1990) used for the MPN soil from the Netherlands which is most 

likely to contain a BNYVV-A-type. The aim of the study was to determine the inoculum densities 

and the effect of adjusted inoculum under standardised greenhouse conditions from different 

BNYVV-types (manuscript II). BNYVV isolates which were known to be able to overcome Rz1 
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resistance in sugar beet in field or greenhouse trials (HEIJBROEK et al., 1999; LIU et al., 2005; RUSH 

et al., 2006; LIU & LEWELLEN, 2007; AYALA-GARCIAS pers. comm.; LENNEFORS pers. comm.) 

were investigated. To exclude the influence of other soil-borne pathogens, viruliferous P. betae 

zoospore suspensions in automatic immersion systems were developed (ADAMS et al., 1988; 

LEGRÉVE et al., 1998) from P. betae isolates originating from R, GG, D, IV, P as well as P. betae 

that remained virus-free (vf). To obtain single spore P. betae suspension, cystosori developed from 

infected sugar beet lateral roots were selected with a micromanipulator and incubated in the dark 

for 24 h at room temperature in 0.05 M phosphate buffer (pH 7.2). The suspension was replenished 

with nutrient solution (pH 7.2) in an automatic immersion system (LEGRÈVE et al., 1998), wherein 

susceptible sugar beet plantlets were transplanted in silica sand filled poly-vinyl-chloride culture 

tubes. The tubes were closed at the bottom side with a mesh that avoid the silica sand to fell into 

the hydroponics but still offering the P. betae zoospores the opportunity to infect the sugar beet. By 

irrigating the filled tubes every 6 h for 6 h time the P. betae zoospores were able to enclose and 

swim to the sugar beet rootlets to propagate. The hydroponics-solutions were replaced each week, 

until the plantlets were incubated three weeks. Thereinafter the lateral roots were harvested and 

under dark and warm (25-30°C) conditions the P. betae zoospores were evolving from the lateral 

roots. The amount of living zoospores were counted by light microscopy in a Fuchs-Rosenthal 

haemocytometer and the suspensions were diluted down to 100 and 1000 zoospores per ml, 

respectively. Afterwards susceptible and Rz1+Rz2 partial resistant sugar beet cultivars were 

infected with 100 and 1000 zoospores ml-1, respectively. The inoculation method followed 

SCHOLTEN et al. (1994) inoculating with different P. betae carrying various BNYVV isolates. For 

analyses of single beet grown in different zoospore concentrations a qualitative ELISA after four 

weeks of cultivation in zoospore suspension was conducted. After analysing the data by using SAS 

10.0 (SAS Systems, Cary, NC) with the PROC GLM procedure the data resulted to be normal 

distributed but the sugar beet cultivars often did not differ significantly concerning the zoospore 

density and their resistance potential (Fig. 5).  
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Fig 5:  Means of BNYVV ELISA absorption at 405 nm after 4 weeks seedling cultivation in hydroponics containing 

either 100 P. betae zoospores per ml (zp ml-1) or 1000 P. betae zoospores per ml originating from Rhizomania 

infested soils from R (Rovigo – Italy), GG (Groß Gerau – Germany), D (Daimiel – Spain), IV (Imperial Valley 

– USA), P (Pithiviers – France) as well as an virus-free (vf) P. betae control originating from Reutershof 

(Germany). Means within the same inoculum with a letter in common are not significantly different at the 5% 

level. 

 

In P and IV the partial resistant cultivar obtained higher virus titres than the susceptible genotype. 

After several efforts to repeat the experiment only very low or no infestations with BNYVV were 

observed, whereas successful root infection of P. betae could be proven by light microscopy in all 

plantlets. Thus, it can be concluded that P. betae is probably loosing the virus or it forfeits the 

ability to transmit the virus into the sugar beet when propagated in hydroponics. Consequently, 

after adjusting the amount of secondary zoospores to conduct resistance tests with a defined vector 

inoculum dose as presented in SCHOLTEN et al. (1994), the actual BNYVV transmission and sugar 

beet infection is absolutely unknown. In addition, contamination with other pathogens could not be 

excluded although using hydroponics generated from single-spore suspensions. Thus, to optimise 

the zoospore culture the hydroponics need to be completely contamination free. But still the 

amount of viruliferous P. betae would stay unknown, what leads to unidentified BNYVV-inoculum 

dose. Further efforts to develop virus-free P. betae zoospores to load them with artificially 

BNYVV-infested sugar beets and thereinafter inoculate again with defined P. betae zoospores 

however cannot exclude the problem of inoculating with variable BNYVV-inoculum densities, 

since the percentage of viruliferous zoospores is highly variable.  

 

 

n=10 
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3.6.2. BNYVV and P. betae inoculum density in naturally infested soils 

 

Due to the unreliable results from the artificial inoculation with viruliferous P. betae a primary 

determination of the BNYVV and P. betae inoculum potential in all naturally infested soils used 

(R, GG, D, MN, IV, P) was necessary. Secondary it was possible to estimate the percentage of 

viruliferous P. betae and latter to accomplish a resistance test with Rz1+Rz2, Rz1 and susceptible 

sugar beet cultivars with adjusted inoculum in sterile soil (manuscript II). 

 

The MPN (manuscript II) revealed significant differences between soil origins (5200 in D and only 

11 in GG) with susceptible cultivars that redound to conduct the same serial soil dilution also with 

a Rz1+Rz2 partial BNYVV resistant genotype. By measuring the BNYVV content in Rz1+Rz2 

sugar beet the effect of primary inoculum potential in soil could be tested and compared to 

common MPNs with susceptible genotypes. Displaying that even in high dilutions, up to a ratio of 

5-4 in D, partial resistant sugar beets were infected with BNYVV. Primary inoculum potential in 

soil cannot just underlie resistance breaks, although, a high primary inoculum potential as 

demonstrated in D, seems to enhance further virus propagation. Taking the same into account for 

MN, which displays a comparable low BNYVV MPN (98), it also infects resistant plants when the 

soil is diluted down to 1 / 625 (infested soil / sterile sand). Thus, BNYVV multiplication is 

operating much more sufficient than in D. In reference soils, as R and GG, BNYVV is restrained 

latest in the second dilution step concerning the Rz1+Rz2 genotype. This indicates that the 

infestation of BNYVV is inhibited in less aggressive Rhizomania infested soils like R and GG 

when the inoculum dose is low and resistance in sugar beet maintains. To test the influence of 

specific primary inoculum under standardised soil and climate conditions, finally a resistance test 

was conducted in which the inoculum was added to sterile sand by dried sugar beet rootlets 

(manuscript II). Three harvests were carried out: after 4 weeks, after 8 weeks and finally after 12 

weeks. ELISA values and sugar beet weight differed significantly. It was obvious that tap root 

weight did not differ after 4 weeks within the genotypes and BNYVV-origin. After 8 weeks the tap 

root weight differed moderately between BNYVV-origin and very little in between genotypes 

within the same BNYVV-origin (data not shown). Comparing both, the resistance test in natural 

infested and the resistance test in artificially inoculated soil, the results are closely correlated 

regarding ELISA values, tap root weight and virus distribution in the tap root via TPIA. Thus, 

quantitative ELISA and tap root weight after 12 weeks cultivation with an adjusted BNYVV dose 

in sterile soil are still the best criteria to test sugar beet cultivars for their resistance potential. 

Reduced experimental time also result in differential data (PAUL et al. 1992; TUITERT et al., 1994; 

BÜTTNER et al., 1995; SCHOLTEN et al. 1996; HEIJBROEK et al., 1999; LIU et al., 

2004;LUTERBACHER et al., 2005; LENNEFORS, 2007;). However, the ability of resistant sugar beet 

to recover from BNYVV infestation is not considered. 
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3.7. Genetic variability of BNYVV and its relation to virus spread 

Interestingly, the German soil with the lowest potential to produce severe BNYVV symptoms 

harbours an BNYVV B-type which displays the least variability regarding its pathogenicity factor 

P25 (SCHIRMER et al., 2005). Whereas soils that recently displayed resistance breaks when partial 

resistant sugar beet were cultivated are always BNYVV-A-types, which are known to display 

higher genomic variability regarding the RNA3. Thus, overcoming resistance could be correlated to 

the higher variability in the virus genome. Apparently the A-type virus does frequently mutate in 

some locations as observed in Spain and the USA. This could also imply that the occurrence of 

resistant breaking isolates increases. In contrary the French BNYVV-P-type that contains an 

additional RNA5 and is known to be able to overcome Rz1 resistance for almost two decades 

shows much lower P25 variability. However, the BNYVV-P-type did not spread further from a 

small district around Pithiviers also known to be more aggressive than the neighbouring BNYVV-

A-type isolates all around this Pithiviers area. It can be speculated that soils infested with BNYVV-

A-type vectoring P. betae are already saturated with the virus and multiply even in partial resistant 

cultivars, thus the further spread and establishment of BNYVV-P-type is inhibited. Similar 

thoughts are also published by WARD et al. (2007). 

 

3.8. Infiltration of BNYVV-P25 + mRFP into sugar beet leaves  

To shorten time-consuming resistance tests for practical application several experiments were 

conducted to co-infiltrate a BNYVV RNA3 encoding P25 infectious cDNA clone and a red 

fluorescing marker gene (mRFP) on sugar beet leaves. To achieve this, P25 and mRFP genes were 

cloned into the binary plant vector pBIN61S. Additional, the binary vector carried Kanamycin 

(Ka), Rifampicin (Rif) and Tetracyclin (Tc) resistance to survive on selective LB-Ka-Rif-Tc media. 

A. tumifaciens were incubated for 48 h at 28°C. After further 24 h incubation the optical density 

was measured and diluted to an optical density (600nm) of 0.5 to 0.6. The infiltration was 

accomplished with a 2 ml syringe. To characterise BNYVV pathogenicity, P25 (35S-P25) was 

expressed together with mRFP (35S-mRFP) by transient Agrobacterium tumefaciens in leaves of 

susceptible, Rz1 and Rz1+Rz2 partial resistant sugar beet cultivars. Expressions could already been 

seen at 5 days post inoculation (dpi) using epifluorescence microscopy. It was expected to be able 

to show cell-death as a consequent of a resistance reaction and subsequently a decrease of 

fluorescing cells at 8 dpi in leaves of resistant sugar beet. CHIBA et al. 2003 showed, subject to the 

tetrad composition on P25, a hypersensitive reaction (HR) after sugar beet leaf inoculation. 

Unfortunately, following the reduction of marker expression due to cell death at approx. 8 dpi, cell-
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death revealed to be independent from BNYVV resistance in sugar beet cultivars (Fig. 6). Thus, 

this approach to simplify and cheapen labour intensive resistance tests in soil failed.  
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Fig. 6A 

 
Fig. 6B 

 
Fig. 6:  Pictures made by epifluorescence microscopy with an mRFP-filter (red) of BNYVV susceptible, Rz1 and 

Rz1+Rz2 partial resistant sugar beet leaves after 5 dpi agroinfiltration (A) and 8 dpi agroinfiltration (B) with, 

35S-mRFP as positive control (PC), BNYVV-P25 (35S-P25+35S-mRFP) both including the vital-marker 

(fluorescent marker gene mRFP) as well as a negative control (NC)- 35S-P25 without the vital marker to 

display background fluorescence. To prove the vitality of leaf pictures via light microscopy (green) with equal 

resolution has been taken.. 

 

 

Against the background of: 

i) the uncertainty of virus-vector multiplication in soil by growing “Holly”-material in the 

field, 

ii) the insecurity if and when resistance-breaking isolates are spreading in large scale to 

further sugar beet growing areas, 

iii) the general concern, how long natural derived resistant genes like Rz1, Rz2 and Rz3 will be 

able to control BNYVV infestation in sugar beet and the 
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iv) knowledge of additional diseases occurring in soil that could play a synergistic role with 

BNYVV after sugar beet infestation 

   further investigations on BNYVV, its vector and the soil where the isolates are present are 

indispensable.  
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4. CONCLUSIONS AND FUTURE PROSPECTS 
 

 

The main conclusions achieved in these studies are that 

i) Rz1 resistance in sugar beet is compromised in soils from Spain, the USA and 

Pithiviers  

ii) the vector P. betae did not differentiate in a specific genomic compositions that would 

indicate evolutionary development after geographic distribution of Rhizomania to 

various sugar beet productions areas. Vector variability could have been correlated to 

overcoming resistance.  

iii) the vector concentration in the soil is very variable with regards to different soil origins  

iv) other soil-borne pathogens (viruses and fungi) are playing an important role in respect 

of disease severity. However, experimental evidence is yet lacking.  

 

In addition the results obtained give strong evidence that  

v) there is a high variability in BNYVV content in soils from different origin,  

vi) most soil samples (Spanish, American and French soil) analysed in this study which 

display the ability to produce BNYVV infections under controlled conditions of a 

certain titre, possess an increased inoculum concentration but  

vii) the potential to overcome resistance is not correlated to the inoculum concentration  

viii) neither the P. betae concentration itself nor the concentration of viruliferous P. betae is 

invariable correlated to resistance-breaking.  

 

Apparently, all above mentioned factors as well as genetically related aggressiveness leads to 

overcoming of Rz1 and Rz1+Rz2 resistant genotypes in greenhouse and in field trials. To be able to 

prevent Rhizomania infestation and resistance breaks in field, the selection of new natural 

occurring resistance sources is indispensable. Additionally sugar beet cultivars with high multiple 

resistance against BNYVV and different soil-borne pathogens should be developed. Transgenic 

sugar beets obtaining these multiple resistances are good approaches, but consumer and political 

acceptance is not attained, yet. Further is the better understanding of virus-host interaction very 

important to be able to analyse why resistance breaks occur with several BNYVV isolates in 

different genotypes. Detailed information about the virus-vector interaction needs also further 

investigation. For sugar beet growers it would be important to get knowledge on the level of 

resistance in marketable sugar beet cultivars to be able to inhibit supplementary virus-vector 

accumulation in soils. 
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APPENDIX 
 

Summary of Manuscripts I and II 

 

Manuscript I presents resistance tests in naturally infested soils after 12 weeks greenhouse 

cultivation. Thereinafter beet weight, virus content in lateral roots (ELISA) and virus distribution 

(TPIA) were analysed. Additional different BNYVV isolates were molecular characterised and 

beets were investigated for secondary fungal soil-borne pathogens. Since the resistance test resulted 

in huge differences concerning soil vs. sugar beet genotypes, the BNYVV inoculum density of each 

soil was estimated by MPN (manuscript II). The same serial soil dilution as accomplished for the 

BNYVV MPN calculation with susceptible cultivars was done with Rz1+Rz2 partial resistant 

genotypes. Since the vector density plays an important role for successful virus transmission, 

P. betae inoculum density was estimated, too. Subsequently, the virus-vector performance after 

artificially infected sterile soil with a defined number of viruliferous P. betae was analysed. 

Different stages of P. betae and BNYVV multiplication could be described due three harvest dates 

(4, 8 and 12 weeks). 
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MANUSCRIPT I 

 

Submitted to European Journal of Plant Pathology 

 

Identification of Rhizomania infected soil in Europe able to overcome Rz1 resistance in 

sugar beet and comparison to other resistance breaking soils from different geographic 

origins 

 

 

Authors: Pferdmenges, Friederike; Helmut Korf and Mark Varrelmann 

Institute for Sugar Beet Research, Holtenser Landstr. 77, 37079 Göttingen, Germany 

Corresponding author: Mark Varrelmann 

E-mail: varrelmann@ifz-goettingen.de 

 

 

Abstract 

 

Rhizomania, caused by beet necrotic yellow vein virus (BNYVV) is vectored by Polymyxa betae 

Keskin. It can only be controlled by growing partial resistant sugar beets which quantitatively 

reduce the virus replication and spread. However, none of the known major resistant genes (Rz1, 

Rz2, Rz3), alone or in combination, is able to prevent BNYVV infection entirely. Hence, a 

permanent increase of BNYVV inoculum potential in soil seems to be inevitable. We are reporting 

here for the first time about the identification of a European soil, containing A-type BNYVV with 

RNA1-4 which displays Rz1 resistance breaking abilities comparable to soils from the USA and 

RNA5 expressing BNYVV French P-type. First, under standardised conditions, a resistance test 

with several soils vs. sugar beet cultivars was conducted. Sugar beets were analysed after 12 weeks 

greenhouse cultivation for tap root weight, virus and relative Polymyxa content. Soils from Spain, 

France and the USA displayed the ability to overcome Rz1 resistance. The Rz1+Rz2 cultivar grown 

in soil from Spain displayed strong Rhizomania disease symptoms. Additionally, the main 

pathogenicity factor P25, which is responsible for the formation of BNYVV-symptoms, revealed 

high sequence variability with regard to the amino acid tetrad at position 67-70. No correlation of 

P25 tetrad composition and resistance breaking abilities were found. The results demonstrate the 
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geographically independent selection of BNYVV resistance breaking isolates after uniform 

cultivation of Rz1-containing sugar beet cultivars. 

 

Key words: sugar beet, Beta vulgaris L. ssp. vulgaris, Beet necrotic yellow vein virus, BNYVV, 

Polymyxa betae, resistant cultivars, Rz1, Rz2 

 

Introduction 

 

Rhizomania is one of the economically most important sugar beet diseases world-wide. Beet 

necrotic yellow vein virus (BNYVV) causing Rhizomania was identified in 1958 in Italy (Canova, 

1959) to be the causal agent for severe yield reduction in sugar beet. Analogue to other soil-borne 

pathogens as beet soil-borne virus (BSBV), beet soil borne mosaic virus (BSBMV) and beet virus 

Q (BVQ), BNYVV is transmitted by the biotrophic plasmodiophoromycete Polymyxa betae Keskin 

(Keskin, 1964; Tamada, 1975; Ivanović et al., 1983; Abe & Tamada, 1986; Wisler et al., 1994; Stas 

et al., 2001). While the vector itself hardly affects sugar beet growth (Rush, 2003), severe 

symptoms on foliage (fluorescent yellow) and drastic reduction of tap root development are 

induced by the virus (Rush & Heidel, 1995; Tamada, 1999; Scholten & Lange, 2000; Acosta-Leal 

& Rush, 2007). Over the last decades, BNYVV was spread to all important sugar beet growing 

areas in Asia, USA and Europe (Asher, 1993; Tamada, 1999; Lennefors et al., 2000; Nielsen et al., 

2001). A permanent increase of Rhizomania infested fields in Europe is expected; Richard-Molard 

& Cariolle (2001) calculated an augmentation from 610 000 ha in 2000 to approximately 900 000 

ha BNYVV infected sugar beet fields in 2010.  

 

BNYVV belongs to the genus Benyvirus and possesses a multipartite genome. It typically consists 

of four to five RNA segments in the field. The genome organisation and gene functions of each 

RNA segment have been recently reviewed by Schirmer et al. (2005), Link et al. (2005) and Rush 

et al. (2006). Molecular analysis of the BNYVV genome disclosed three major pathotypes (Kruse 

et al., 1994; Koenig & Lennefors, 2000; Schirmer et al., 2005). The A-type occurs in Greece, 

former Yugoslavia, Slovakia, Austria, Italy, Spain, France, Belgium, the Netherlands, England, 

Turkey, Kazakhstan, China, Japan and the USA. BNYVV-B-type appears in Germany, in the upper 

Rhine valley, in France and in Switzerland. In Europe, BNYVV-P-type occurs only in a small 

region near Pithiviers in France (Koenig et al., 1997) and in two sites in the UK (Ward et al., 2007). 

BNYVV-P is the only European pathotype that contains an additional RNA5, A and B possess four 

RNA segments (Koenig et al., 1986; Richards & Tamada, 1992). In Asia BNYVV isolates 

(BNYVV-J) with an additional RNA5 were identified which display sequence variability to French 

P-type as well as to the classical A- and B-types (Koenig & Lennefors, 2000; Schirmer et al. 2005). 

Compared to BNYVV-A and -B, a BNYVV-P isolate, containing RNA5, is characterised by its 
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more rapid spread in plants (Heijbroek et al., 1999). Tamada et al. (1996) identified increased 

virulence of Asian RNA5 containing BNYVV isolates in sugar beet roots. RNA3 encoded P25 is 

highly variable, acts as the main pathogenicity factor and is responsible for BNYVV-symptoms on 

sugar beet roots and development of necrotic lesions on Chenopodium quinoa leaves (Koenig et al., 

1991; Jupin et al. 1992; Schirmer et al., 2005). Phenotypic local lesions on mechanical inoculated 

sugar beet leaves are depending on P25 composition and vary highly within different BNYVV 

isolates and resistance sources (Tamada et al., 1989; Chiba et al., 2003). Vetter et al. (2004) 

described P25 as a nucleoplasmic shuttling protein and demonstrated that the C. quinoa local lesion 

phenotype is influenced by the subcellular localisation of the protein. P25 displays high variability 

in a specific amino acid (aa) tetrad at position 67-70 (aa67-70) which correlates with the BNYVV 

geographic origin (Schirmer et al., 2005). Link et al. (2005) detected the RNA5 encoded 26kDa 

protein P26 that serves as additional pathogenicity protein. It can be assumed that P25 acts in a 

synergistic manner with P26 (Tamada et al., 1996; Link et al., 2005). Yet, severe sugar beet yield 

losses could only be prevented by growing partial resistant genotypes. However, for keeping sugar 

beet growth profitable, BNYVV resistant and high-yielding cultivars are necessary. The first 

partially resistant sugar beets were developed in the mid 1980s, the variety “Rizor” showed 

significant partial resistance and achieved good yield improvements under Rhizomania infection 

compared to yields in non-infested soil (De Biaggi, 1987). Little later Lewellen et al. (1987) 

reported partial resistant material from the Holly Sugar Company identified in field trials. The 

“Holly” source still contains the most important major dominant gene named Rz1 (reviewed by 

Scholten & Lange, 2000 and Biancardi et al., 2002). Additional, wild beet (WB) accessions served 

as further sources for the identification of other major resistance genes, such as Rz2 and Rz3 

resistance genes (Whitney, 1989; Scholten et al. 1994 / 1999; Gidner et al., 2005). However, all 

known major resistant genes, alone or in combination, provide only partial resistance and are 

unable to prevent BNYVV infection entirely. Rz1, Rz2 and Rz3 only possess the ability to reduce 

the virus replication in hair roots and inhibit virus spread to the tap root (Luterbacher et al., 2005). 

Thus, a permanent increase of BNYVV inoculum potential in soil, although cultivating partial 

resistant sugar beets, seems to be inevitable.  

 

In soils from the USA BNYVV A-type isolates occurred, that were able to infect cultivars carrying 

Rz1 as well as Rz1+Rz2 resistance genes (Liu et al., 2005, Liu & Lewellen, 2007). Within these 

isolates a P25 aa motif with valine instead of an alanine on position 67 was determined, but 

evidence of P25 aa67-70 composition effect on pathogenicity in sugar beet is lacking. In addition, the 

influence of the vector P. betae (density in soil, ability to transmit BNYVV, mobility in soil etc.) is 

unknown.  
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Recently in Spanish variety trials severe BNYVV symptoms were observed in resistant cultivars 

(Ayala, pers. comm.). In order to prove the resistance breaking abilities, this soil was included in a 

resistance test comprising different sugar beet genotypes with soils from different origins with 

known resistance breaking abilities (Liu et al., 2005) under standardised greenhouse conditions. 

The BNYVV content of beets grown in these soils was quantified by ELISA. To study a possible 

effect of P. betae its concentration in plants and its genomic composition regarding the ribosomal 

DNA internal transcribed spacer (ITS) region were determined. The ITS region is often variable in 

fungal isolates of a single genus and in some cases in isolates of a single species (White et al., 

1990) and allows to determine phylogenetic diversity to possibly resolve the P. betae taxonomy 

from different origins. To identify additional soil-borne pathogens that may affect sugar beet 

growth and BNYVV content in lateral hair roots through synergism with BNYVV the ITS region 

of fungal isolates recovered from beets grown in the different soils analysed was determined. 

 

Materials and methods 

 

Plant material 

 

Different sugar beet cultivars and lines were used for BNYVV greenhouse resistance tests towards 

various BNYVV-types in naturally infested soils: a BNYVV-double resistant variety 

(Rz1rz1+Rz2rz2, referred to as Rz1+Rz2), a single-resistant variety (Rz1rz1, referred to as Rz1) (Liu 

et al., 2005) and a susceptible sugar beet line (rz1rz1) as a control. The Rz1rz1 resistance is also 

known as the Holly source, described in 1987 by Lewellen et al. selected from B. vulgaris subsp. 

vulgaris, whereas Rz2rz2 originates from the B. vulgaris subsp. maritima accession WB42 

(Whitney, 1989). 

 

Soil samples and greenhouse conditions 

 

Soil samples used for resistance tests in naturally infected soils, collected from different locations 

in Europe and the USA, were evaluated for disease induction in greenhouse tests. Soil samples 

from Italy (Rovigo, referred to as R), Germany (Groß-Gerau; GG), Spain (Daimiel; D), USA 

(Imperial Valley - IV and Minnesota - MN), France (Pithiviers; P) and an autoclaved sand control 

were diluted in equal parts with autoclaved sand and mixed thoroughly (for 10 min). 700 ml plastic 

pots were filled with 100 ml clay granulate for drainage conditions and topped up with 650 g soil 

sample. To avoid contamination between different soils, pots were arranged soil-wise in disinfected 

plastic containers. Within containers, all samples were randomised in a complete block design with 

ten replications per genotype vs. soil origin. Soil sample containers placed at least 30 cm apart to 
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avoid contamination by splashing during irrigation. Seven days old seedlings, previously sown in 

sterile sand, were transplanted into fully water saturated soil. Seven days after planting the beets 

were sprayed with fungicides (0.2 g/l Tachigaren 70, registered trade mark, Bayer, Germany) to 

stem damping-off due to Aphanomyces spp., Pythium spp. and Rhizoctonia spp. The climate 

chamber was maintained at +23°C during daytime and +20°C at night, and 16h of supplementary 

light.  

 

BNYVV ELISA detection and quantification 

 

After 12 weeks of greenhouse cultivation sugar beets were harvested individually. Beets were 

carefully taken out of the pot and root-adhering soil was thoroughly washed away with water. 

Sugar beets were scored for BNYVV symptoms (yellowish leaf veins and dark brown lateral 

roots), before hair roots were separated from the beet body with a knife and dried on paper towels. 

Leaves were cut off below the hypocotyledone and discarded. Fresh beet bodies were individually 

weighed and shape and discolouration was recorded and scored from 0-9. The complete absence of 

BNYVV-symptoms was recorded as 0 whereas 9 displays a heavily BNYVV infected plant 

displaying  typical severe Rhizomania symptoms (a small “T-like” tap root with brownish 

vasculature and dark brown lateral roots, as well as yellowing of leaf veins). For BNYVV ELISA 

plant sap from hair roots of each beet was obtained via a Pollähne leaf juice press (MEKU GmbH, 

Germany) and PVP-Tween-buffer and diluted 1:15 in extraction buffer. 96 well ELISA plates were 

used from Nunc A/S, Roskilde Denmark. Besides blanks and buffer-controls, the following control 

samples were included: 2 samples of each, healthy and infected plant sap, respectively and an 

additional dilution series from a Chenopodium quinoa BNYVV- purification. The total virus 

protein concentration of the purified BNYVV preparation was determined using the Bradford assay 

(Perkin Elmer Instruments; Lambda 25 UV VIS Spectrometer, USA). Protein contents in samples 

were adjusted to 4000 ng/ml and aliquots kept at -20°C. The dilution series for generation of a 

standard curve consisted of 4000, 2000, 1000, 500, …, 1,95ng virus protein / ml buffer. The 

BNYVV detection limit (0 ng ml-1) resulted from a mean of tested healthy controls plus three times 

the standard error. Antibodies used for ELISA detection were obtained from Loewe (Sauerlach, 

Germany) and DSMZ (Braunschweig, Germany) and the assay was carried out following the 

manufacturers’ instructions. The absorption at 405nm (abs405nm) was measured using a Titertek 

Multiskan Plus (Magarete Malar, Nauheim, Germany) after an incubation period of one hour at 

37°C. 
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Polymyxa betae quantitative ELISA 

 

Beet samples harvested from each soil origin were visually examined for presence of P. betae 

zoospores and cystosori through microscopy before P. betae quantitative ELISA detection was 

conducted. Specific detection of P. betae zoospores was achieved with mono- and polyclonal 

antibodies against recombinant expressed fungal glutathione-S-transferase (GST) as described by 

Kingsnorth et al. (2003) with slight modifications. All incubation steps of the P. betae TAS-ELISA 

were performed for 1 h at 37°C. As alkaline phosphatase tagged antibody, the whole molecule 

anti-rabbit antibody (IgG Sigma A3937) was used. To quantify the expressed glutathione-S-

transferase (GST) from P. betae, a standard curve with purified GST (Broom´s Barn, England) 

dilutions series with the ratio 2 from 2048 to 1, respectively, was prepared and analyzed in parallel. 

Total protein concentration of the GST standard was determined using the Bradford assay as 

already mentioned above. The highest concentration (abs405nm 1.2, calibration 2048) refers to a 

relative P. betae protein ratio of GSTconc.log3000 the calibration 1 (abs405nm 0.007) displays a 

GSTconc.log0, respectively.  

 

BNYVV RT-PCR detection and determination of BNYVV type / P25 sequencing 

 

Total RNA was extracted from sugar beet lateral roots derived from the resistance test using 

RNeasy (Qiagen, Hilden, Germany) and used for RT-PCR amplification of RNA-3 encoded P25 

RNA. Primers P25-up (5´-TCGGAATATCCATTTAAAAG-3´) and P25-low (5´- 

GTCCCAACCAGATC AACAA-3`) designed on BNYVV RNA-3 B-type sequence (Acc. no. 

M36894) amplified a 906 bp fragment (nt. 302 – 1207). The following PCR program was 

conducted: 96°C for 2 min, 36 cycles of 96°C for 45 s, 50°C for 45 s and 72°C for 1 min and final 

synthesis for 10 min 72°C. For BNYVV detection PCR-products were visualized on agarose gels 

and sequenced without further cloning to detect mixed infections of BNYVV with P25 sequence 

variants.  

 

Detection and identification of Polymyxa betae 

 

The DNA extraction from dried lateral roots grown in each soil was done following Liu et al. 

(2000) with slight modifications. For DNA extraction lateral roots (1g) were N2-liquid frozen and 

disrupted to a fine powder in lysis buffer (400 mM Tris-HCl [pH8.5], 60 mM EDTA [pH 8.5] 

150 mM NaCl, 1% sodium dodecyl sulphate) using mortar and pestle. All centrifugation steps were 

conducted at 11000 x g for 5 min at 4°C. DNA was used for Polymyxa specific nuclear ribosomal 

DNA amplification of a fragment of 454 bp between the ITS1, 5.8 gene and the ITS2 region from 
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P. betae using primers Psp1 and Psp2rev as described by Legrève et al. (2003) [Psp1 (5´- 

TAGACGCAGGTCATCAACCT-3´) and Psp2rev (5´- AGGGCTCTCGAAAGCGCAA-3´)]. To 

determine Polymyxa specific sequences of this region, the PCR-products were cloned and 

sequenced using standard primers. 

 

Identification of other soil-borne pathogens 

 

To analyse the presence of other soil-borne pathogens, that might have influenced the sugar beet 

growth due to secondary infection, tissue from the inside of sugar beet tap roots displaying root rot 

symptoms were surface sterilized with EtOH and incubated on Potato dextrose agar (PDA, Roth, 

Karlsruhe, Germany) +150 mg/l Streptomycin Applichem, Darmstadt, Germany) for isolation of 

fungal pathogens. From each genotype vs. soil variant 5 beets were chosen to analyse any 

additional soil-borne pathogens. After 9 days the outgrown mycelia was grouped using 

morphological criteria. In addition, total DNA extraction (DNeasy, Quiagen, Hilden, Germany) 

was performed and extracts were subjected to PCR amplification of ribosomal DNA with ITS4 and 

NS7 primer containing the 3´-end of the 18S, the 5.8S gene and two internal transcribed spacer 

ITS1 and ITS2 (White et al., 1990). PCR fragments were directly sequenced with NS7 primer. For 

sequencing PCR-products were purified with SureClean (Bioline, Mannheim, Germany) following 

the manufacturers protocol. Sequencing was done by MWG Biotech AG, Germany. Sequences 

were used for Basic Local Alignment Search Tool (BLAST) 

(http://www.ncbi.nlm.nih.gov/BLAST) of the nucleotide database to identify the fungal species. 

 

Sequencing 

 

DNA sequences obtained by PCR from samples originating from each soil sample were used to test 

for polymorphisms in a region that corresponds to ITS1+5.8S gene+ITS2. To perform multiple 

nucleotide sequence alignments, the CLUSTALX algorithm using the Kimura correction 

(Thompson et al., 1997) was applied. The phylogenetic tree was drawn using TreeView 1.5.2 

software (http://taxonomy.zoology.gla.ac.uk). P. betae sequence [GenBank Acc. no. Y12827 

(Ward & Adams, 1998)] was used for sequence comparison of P. betae from different geographical 

origins. Additional sequences of several Polymyxa graminis subspecies and other 

plasmodiophorids were taken for sequence comparison [P. graminis f. sp. temperata (GenBank 

Acc. no. Y12824), P. graminis f. sp. tropicalis (GenBank Acc. no. Y12825), P. graminis f. sp. 

colombiana (GenBank Acc. no. AJ010424), P. graminis f. sp. tepida (GenBank Acc. no.Y12826), 

Ligniera sp. (GenBank Acc. no. AJ010425), Plasmodiophora brassicae (GenBank Acc. no. 

Y12831)]. 
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Phylogenetic trees 

 

In this study, DNA sequences obtained by PCR from samples originating from each soil sample 

were used to test for polymorphisms in a region that corresponds to ITS1+5.8S gene+ITS2. To 

perform multiple nucleotide sequence alignments, the CLUSTALX algorithm using the Kimura 

correction (Thompson et al.; 1997) was applied. The phylogenetic tree was drawn using TreeView 

1.5.2 software (http://taxonomy.zoology.gla.ac.uk). P. betae sequence [EMBL accession no. 

Y12827 (Ward & Adams, 1998)] was used for sequence comparison of Polymyxa betae from 

different geographical origins. Additional sequences of several Polymyxa graminis subspecies and 

other plasmodiophorids were taken for sequence comparison [P. graminis f. sp. temperata (EMBL 

accession no. Y12824), P. graminis f. sp. tropicalis (EMBL accession no. Y12825), P. graminis f. 

sp. colombiana (EMBL accession no. AJ010424), P. graminis f. sp. tepida (EMBL accession 

no.Y12826), Ligniera sp. (EMBL accession no. AJ010425), Plasmodiophora brassicae (EMBL 

accession no. Y12831)]. 

 

Data analyses 

 

The data were analysed using SAS 10.0 (SAS Systems, Cary, NC). The PROC GLM and an 

unvaried procedure (PROC UNIVARIATE) to test for normality were conducted. A boxcar macro 

transformation (Anonymous, 2007) followed until all data displayed a normal distribution. The 

ANOVA was conducted with transformed data PROC MIXED procedure. The data are presented 

in the reverted transformed form. 

Results 

 

Sugar beet weight and scoring for Rhizomania symptoms 

 

Greenhouse resistance tests were conducted to test different Rhizomania infested soils for their 

ability to infect resistant sugar beet cultivars, to produce virus symptoms and affect plant growth. 

After 12 weeks cultivation, the fresh harvested tap roots (Fig. 1) were weighed (Fig. 2) and scored 

for root discolouration due to infection with viruliferous P. betae (Tab. 1). An extension of the test 

period from four (data not shown) to twelve weeks led to more significant differences between the 

different genotypes. In all soils the susceptible genotype displayed significantly lower beet weights 

compared to the non-infected (sterile) sand control (Fig. 2). Especially sugar beets grown in soil 

from D only accomplished an average weight (aw) of only 0.27 g, IV 1.04 g, MN 0.75 g and P 0.9 

g, respectively and displayed severe weight reduction.  
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Fig. 1 

Fig. 1:  Phenotypic appearance of harvested sugar beet bodies (with different resistance towards BNYVV: Rz1+Rz2; 

Rz1 and susceptible genotypes) after 12 weeks greenhouse cultivation in Rhizomania infested soils from R 

(Rovigo/Italy), GG (Groß Gerau/Germany), D (Diamiel/Spain), MN (Minnesota/USA), IV (Imperial 

Valley/USA), P (Pithiviers/France) and an autoclaved sand control. 

Fig. 2 

Fig. 2:  Average beet body weight from different sugar beet cultivars (black: Rz1+Rz2; grey: Rz1 and white: 

susceptible) after 12 weeks greenhouse cultivation in infested Rhizomania soils from R (Rovigo/Italy), GG 

(Groß Gerau/Germany), D (Diamiel/Spain), MN (Minnesota/USA), IV (Imperial Valley/USA), P 

(Pithiviers/France)) and an autoclaved sand control. Means within the same soil type (minuscule) and means 

within genotypes (capital) with a letter in common are not significantly different at the 5% level. 
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In contrast, soils from R (4.07 g) and GG (2.84 g) also influenced the plant growth significantly 

compared to the sand control (17.58 g) but not as strong as the soils mentioned above. Rz1 beets 

grown in R- and GG-soils were hardly affected by BNYVV, on the contrary, aw was increased in 

GG-soils (25.45 g) or similar to the susceptible control as in R-soils (aw 17.26 g) compared to the 

sand control (14.90 g). However, immense root weight reduction was observed for this sugar beet 

cultivar in soils from D (2.93 g), IV (1.40 g), MN (4.81 g) and P (4.47 g). Furthermore, the same 

kind of beet discoloration indicative for additional infection with fungal root rotting pathogens was 

observed as in the susceptible genotype (Fig. 1). In comparison, plants of the Rz1+Rz2 genotype 

displayed the highest aw for each soil beside sand (15.62 g). However, all genotypes in sand 

achieved similar weights. Remarkably, Rz1+Rz2 beets grown in soils from R (24.58 g), GG (33.35 

g), IV (23.39 g), MN (6.93 g) and P (30.21 g), obtained higher aw than plants grown in sterile sand. 

Only Rz1+Rz2 sugar beets in D-soil gained slightly less root weight (11.82 g) than plants grown in 

sterile sand and several beets showed discoloration and rotten tissue. BNYVV symptom scores are 

displayed in Tab. 1. In general, infested beets did not show the ordinary beet shape, but developed 

a very small “T-like” phenotype. Frequently, leaves displayed typical yellow veins and brownish 

vascular system. The scoring of all genotypes in various soils was closely connected to beet weight. 

All soils caused severe symptoms on the susceptible genotype (scoring 7-9). Again, D, IV, MN and 

P produced high scores in the Rz1 genotype (scoring 6-9). In the Rz1+Rz2 cultivar typical virus 

symptoms were displayed on plants grown in D, IV and marginally in MN. Peculiar, despite 

fungicide treatment Rhizoctonia solani symptoms were identified especially on tap roots of 

Rz1+Rz2 and Rz1 sugar beets cultivated in D soil. 

 
Tab. 1: Beet scoring for BNYVV symptoms [discolouration of the tap root, dark brownish hair roots, brown vascular, leaf 

symptoms (yellow veins)] on fresh harvested sugar beets cultivars 

Soil Rz1+Rz2 Rz1 susceptible 
R 0 0 7 

GG 0 0 8 
D 3 8 9 
IV 2 7 9 

MN 1 8 9 
P 0 6 9 

Sand 0 0 0 
 

Quantitative BNYVV contents measured by ELISA 

 

To measure the absolute BNYVV content in infested sugar beet hair roots as an attribute to 

resistance (Giunchedi et al., 1985 & 1987; Bürcky & Büttner, 1985, Büttner & Bürcky, 1990) a 

quantitative BNYVV ELISA was conducted. Results from quantitative ELISA (Fig. 3) were 

negatively correlated to sugar beet weight. In all naturally infested soils, hair roots from susceptible 
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cultivar displayed symptoms of severe BNYVV infection, root weight reduction and also high virus 

contents. Comparing all soils analysed, particularly P produced the highest averaged 

BNYVV-content (105.25 ng ml-1) in lateral roots of the susceptible cultivar. In R-, GG-, IV- and 

MN-soils BNYVV susceptible beets exhibited mean virus contents between 40.31 ng ml-1 (IV) and 

74.48 ng ml-1 (R), whereas the same cultivar in D- soil displayed significant lower average 

BNYVV content (26.85 ng ml-1). As observed in tap root weight analysis, for the Rz1 containing 

sugar beet cultivar, the virus content correlated strongly negative, since only beets grown in D-, IV-

, MN- and P- soils (46.99 ng ml-1 MN to 112.43 ng ml-1 IV in average) were heavily infected. In 

contrast Rz1 plants grown in R- (mean virus content of 0.01 ng ml-1) and GG-type (in average 0.04 

ng ml-1) soil displayed only negligible BNYVV concentrations. Regarding the Rz1+Rz2 genotype 

virus content plants in all infected soils displayed significantly lower virus contents than both Rz1 

or susceptible genotypes. In detail, soil from R and GG (both 0 ng ml-1) strongly differed compared 

to mean values of IV (12.69 ng ml-1), D (6.15 ng ml-1) and MN (4.69 ng ml-1). The ELISA 

absorbance for P can be neglected, as it displays a virus content of only 0.03 ng ml-1. In resistance 

tests with four weeks cultivation time in D-, IV-, MN- and P-soils with an Rz1+Rz2 genotype 

BNYVV contents were observed to be 10 to 20 times higher (data not shown). Sterile sand served 

as control for both ELISA background and contamination between soils and as anticipated, no virus 

could be detected in plants of all three different genotypes (Tab. 1 and Fig. 3).  
 

Fig. 3 

Fig. 3:  Average BNYVV content [ng ml-1] after quantitative ELISA from different sugar beet cultivars (black: 

Rz1+Rz2; grey: Rz1 and white: susceptible) after 12 weeks greenhouse cultivation in infested Rhizomania soils 

from R (Rovigo/Italy), GG (Groß Gerau/Germany), D (Diamiel/Spain), MN (Minnesota/USA), IV (Imperial 

Valley/USA), P (Pithiviers/France) and an autoclaved sand control. Means within the same soil type 

(minuscule) and means within genotypes (capital) with a letter in common are not significantly different at the 

5% level. 
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Identification of different BNYVV isolates and sequence analysis 

 

The identification of BNYVV type was carried out by BNYVV-P25 RT-PCR amplification 

followed by sequencing. Hair-roots from sugar beets grown in R, GG, D, IV, MN and P soils 

contained BNYVV that was detected by P25 RT-PCR (Fig. 4). In the sterile sand (S) control as 

well as the water control (NC) no BNYVV-P25 amplification and thus no band could be shown. 

The positive control (PC; a P25 gene containing plasmid) and the infested soil samples exhibited a 

single band at 657 bp. The P25 PCR fragments were sequenced and the amino acid (aa) tetrad 

position 67-70 was determined (Tab. 2). Sequences of R-soil derived P25 displayed AHHG 

composition, P25 from GG was sequenced as AYHR, beets cultivated in D showed a mixed 

infection with P25 tetrad ACHG and VCHG. The US-soils IV (VLHG) and MN (VCHG) 

exclusively possessed valine on position 67 and P differed from all other types displaying an 

SYHG tetrad. Furthermore in P-soil samples the additional RNA-5 was detected using P26 open 

reading frame specific RT-PCR (data not shown). 

 
Fig. 4  

 
Fig. 4:  Detection of a 657 bp BNYVV RNA3 RT-PCR fragment from beets cultivated in R (Rovigo/Italy), GG (Groß 

Gerau/Germany), D (Daimiel/Spain), MN (Minnesota/USA), IV (Imperial Valley/USA), P (Pithiviers/France) 

and an autoclaved sand control (S) separated on agarose gel. An RNA3 cDNA containing plasmid served as 

positive control (PC) and a water control as negative control (NC). 

 

Tab. 2: Sequenced aa67-70 motif on RNA3 encoded P25 

BNYVV source Nucletide position number 
 67 68 69 70 

R A H H G 
GG A Y H R 
D A/V C H G 
IV V L H G 

MN V C H G 
P S Y H G 
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Relative quantification of Polymyxa betae via Polymyxa specific GST ELISA 

 

An assay to determine the potential to multiply and produce secondary zoospores was conducted, 

as there was evidence from previous studies that enhanced viruliferous vector multiplication and 

BNYVV transmission might be involved in resistance breaking (Scholten et al., 1994). Lateral 

roots of test plants were used to determine the concentration of P. betae zoospores by means of 

Polymyxa specific GST ELISA. In a test for presence and relative quantity of P. betae zoospores 

the ELISA displayed significant differences in P. betae progeny potential in different soils analysed 

(Fig. 4). MN soil samples resulted in the highest P. betae concentration (from 1747.44 to 4018.24 

GST ml-1 root sap). D and P obtained on average five to nine times less P. betae GST protein 

content compared to MN. R and GG contained 16 times less P. betae in comparison to MN. A 

dependence of different genotypes within different soils however was not evident.  
Fig. 5 

 

Fig. 5: Average ELISA values of relative P .betae protein content from different sugar beet genotypes (black: 

Rz1+Rz2; grey: Rz1 and white: susceptible) after 12 weeks greenhouse cultivation in infested Rhizomania soils 

from R (Rovigo/Italy), GG (Groß Gerau/Germany), D (Daimiel/Spain), MN (Minnesota/USA), IV (Imperial 

Valley/USA), P (Pithiviers/France) and an autoclaved sand control. Means within the same soil type with a 

letter in common are not significantly different at the 5% level. 

 

P. betae variability - Sequence and phylogenetic analysis 

 

All tested soils originated from different regions worldwide. As P. betae isolates were derived from 

the same host, possibly sequence variability might be connected to proximate adaptation to climatic 

conditions etc. Genomic variability might influence i.e. virus transmission efficiency, the ability to 

multiply and the ability for long-term survival in soil. Within this study, ITS1+5.8S+ITS2 rDNA 
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sequences from all P. betae isolated (R, GG, D, IV, MN and P) were determined and sequence 

alignment with rDNA sequences from one English P. betae isolate (Ward & Adams, 1998, Acc. no. 

Y12827), different P. graminis ssp. and other plasmodiophorids (Ligneria sp. and Plasmodiophora 

brassicae) was carried out. ClustalX alignment resulted in three different main branches which 

were assigned to group 1-3 (Fig. 6). Group 1 shows P. betae isolates which originated from 

different soils in Europe and the USA. Remarkably, there was a very high homology of P. betae for 

this specific sequence within this group. Only very few single nucleotide exchanges were detected 

in the ITS1+5.8S+ITS2 region, leading to a very close phylogenetic distance between the different 

P. betae isolates in this study. However, P. betae could be distinctly separated from P. graminis 

(group 2). Within group 2, alignment resulted in clear separation of two subgroups (P. graminis 

f.sp. temperate & P. graminis f.sp. tropicalis and P. graminis f.sp. colombiana & P. graminis f.sp. 

tepida) after pairwise comparison. The third group was build by two other plasmodiophorids 

(Ligneria sp. and P. brassicae).  
Fig. 6 
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Fig. 6:  Phylogenetic analysis of different Plasmodiophoromycetes based on rDNA ITS1+5.8S+ITS2 gene. The 

sequences were aligned and neighbour-joining trees were constructed using the CLUSTAL X program. Boot 

strap values were calculated from 1000 replicates and are indicated at each node. The scale bar indicates 0.1 % 

substitution per bp. P. betae (GenBank Acc. no Y12827 and isolated from A-, B-, P-, D-, IV- and MN-soil in 

this study), P. graminis f. sp. temperata (GenBank Acc. no. Y12824), P. graminis f. sp. tropicalis (GenBank 

Acc. no. Y12825), P. graminis f. sp. colombiana (GenBank Acc. no. AJ010424), P. graminis f. sp. tepida 

(GenBank Acc. no.Y12826), Ligniera sp. (GenBank Acc. no. AJ010425), Plasmodiophora brassicae 

(GenBank Acc. no. Y12831). 
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Identification of other soil-borne pathogens  

 

Although seed treatment was conducted to prevent damping off diseases, an infestation with soil 

borne pathogens could not be inhibited entirely. The ITS region (ITS1+5.8S+ITS2) of extracted 

total DNA from fungi growing out of surface-sterilized sugar beet tap root pieces were PCR 

amplified. Following cloning and sequencing, the PCR product sequences were used for BLAST-

search comparisons. The ITS1+5.8S+ITS2 genes obtained from beets cultivated in R- and GG-soils 

were identified to originate mainly from Fusarium sp. In Spanish D-soil different pathogens were 

detected from several sugar beet pieces: R. solani (mainly in Rz1+Rz2 and Rz1 genotypes), 

Fusarium sp. and Pythium sp. The US-soils from MN and IV contained similar to D different 

Fusarium species and Pythium sp, but no R. solani was isolated. In addition, several different 

Fusarium sp. isolates were detected in every sugar beet analysed in the French P-soil. 

 

Discussion 

 

The occurrence of soils containing aggressive BNYVV strains which display the ability to cause 

reductions in root yield and quality in Rhizomania resistant cultivars have been reported from 

several sugar beet growing areas throughout the world (Tamada et al., 1996; Heijbroek et al. 1999; 

Liu et al., 2005; Liu & Lewellen 2007). This study describes the first comparative investigations on 

resistance breaking abilities of BNYVV infected soils, which contain four RNAs, from European 

and North American sugar beet growing areas under standardised greenhouse conditions in a 

resistance test. BNYVV resistance is characterised by reduced virus titres in lateral roots of sugar 

beets (Bürcky & Büttner, 1985). Thus, relative ELISA absorption value of hair-root sap and 

absolute quantification of BNYVV structural coat protein was used to test whether resistance 

breaking occurred. Additionally the cultivation time of identical genotypes was prolonged from 4 

weeks (Liu et al., 2005) to 12 weeks in the greenhouse resistance test to observe the influence of 

virus infection on root development, to determine if the virus titre correlated with the degree of 

resistance and whether symptomatic root development occurred. 

 

For this study three different genotypes were examined in soils including soils that were known to 

produce severe symptoms on partial resistant sugar beets. As controls two reference soil samples 

were applied, a German BNYVV B-type (GG) and an Italian A-type containing soil (R), for which 

Heijbroek et al. (1999) had already demonstrated minor BNYVV effects on Rz1 and Rizor 

cultivars, and a sterile sand control. The root yield of susceptible genotypes differed only 

marginally between treatments. However, P seems to show stronger inhibition of root development. 

Heijbroek et al. (1999) reported that GG seems to be least pathogenic; this is also supported by our 
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study although different genotypes (varieties and lines) were used. The extreme reduction of Rz1 

plant root weight (similar to control plants) in P-soil compared to R is remarkable. Contrary to 

previous observations this might be explained by the longer growth time (12 weeks instead of 9 

weeks) and the different plant genotypes used in our study. Root development of Rz1 + Rz2 plants 

did not reflect differences in BNYVV pathogenicity derived from R-, GG- and P-soil. The 

differences in beet weight corresponded to the variations in BNYVV contents measured in lateral 

roots. BNYVV-P produced the highest virus concentration in Rz1, comparable to virus titres in the 

susceptible controls in R and GG (which both did not produce detectable BNYVV infections in Rz1 

plants). The French P-type is phylogenetically classified as an A-type carrying an additional 

RNA5. In addition to our observations, several studies reported evidence for a synergism of RNA3 

encoded P25 pathogenicity factor and RNA5 encoded P26 for the ability to overcome Rz1 (Tamada 

et al., 1996; Miyanishi et al., 1999; Heijbroek et al., 1999). However, we did not observe resistance 

breaking in plants carrying the combination of Rz1 and Rz2 after 12 weeks. But finally only pseudo 

recombinant isolates of different BNYVV-A- and P-type isolates and efficient artificial inoculation 

techniques of sugar beet roots will help to give the final proof for this hypothesis. Whether stable 

resistance is solely based on the presence of Rz2 or due to a quantitative effect of both major genes 

play a decisive role needs further investigation. Altogether, these results support a possible 

interaction of RNA5 encoded P26 with the Rz1 resistance gene. 

 

Regarding the root development and virus multiplication data of Rz1+Rz2 plants grown in D-soil, a 

reduction of tap root weight and a positive BNYVV ELISA value was demonstrated. No yield 

reduction but detectable virus contents were also measured in the American soils. Thus, 

overcoming of resistance seems to be time-dependent, as in resistance tests cultivated for four 

weeks all BNYVV isolates from D, IV, MN and P were able to induce higher virus contents in 

lateral sugar beet roots. Although D-, IV- and MN-isolates possess only four RNAs, increased 

pathogenicity represented by root weight and BNYVV content of infected Rz1 plants was 

comparable to the P-treatment. Since all soils tested were used in the same dilution without 

determining and adjusting inoculum density, we cannot state whether inoculum density has an 

influence on the resistance breaking abilities of P-type and D-isolate as it was reported previously 

(Scholten et al., 1994). 

 

The D-soil from the south of Spain, characterised in this study, contains BNYVV-A-type (Schirmer 

et al., 2005). As P25 represents the virus pathogenicity factor due to its impact on the development 

of root symptoms, the composition of the highly variable amino acid motif 67-70 (naturally present 

in 12 different combinations, Schirmer et al., 2005; Ward et al., 2007) is supposed to influence 

virus pathogenicity. D-isolate P25 possesses the tetrad composition VCHG/ACHG. The soils in 

this study containing resistance breaking isolates from the United States derived from IV and MN 
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obtained in both cases valine on position 67. However, Liu & Lewellen (2007) described soils 

within small geographical regions in the Imperial Valley and Minnesota district that contained 

BNYVV isolates possessing the aa V67 on P25, which were not able to overcome resistance in 

sugar beet as well as BNYVV isolates expressing varying amino acids on position 67, which 

produced severe Rhizomania symptoms on partial resistant sugar beets. In this study, the authors 

characterized resistance breaking abilities in young seedling assays. In a four weeks resistance test 

we could confirm these data, obtaining high ELISA values for MN and IV, but also for beets grown 

in European soils like D and P (data not shown). To analyze the recovering abilities of resistant 

cultivars from BNYVV infestation, we compared the soils after 12 weeks cultivation time. Both 

American and the Spanish isolates were able to produce detectable ELISA-values in Rz1 and 

Rz1+Rz2 cultivars, respectively under these experimental conditions. Root weight and virus 

content results obtained with Rz1 plants strongly supported previously published data, however, in 

double resistant plants cultivated in IV, MN and D, higher BNYVV levels were detected than in 

plants grown in R- and GG- soils, but orders of magnitude lower than detected in Rz1 plants. Virus 

contents obtained showed a good correlation to the (resistance breaking) influence of both the US-

isolates on Rz1 but not Rz1+Rz2 cultivars. This might be explained by the different experimental 

setup used in our study. However, it corresponds to the reported reduction of white sugar yield in 

Rz1+Rz2 cultivars grown in the Imperial Valley region (Liu et al., 2005). These observations allow 

the speculation, that Rz1+Rz2 could be compromised, once this combination is commonly 

cultivated in most sugar beet production areas, similar to the resistance breaks in various soils with 

Rz1 genotypes. The data obtained in our study give evidence that further multiplication of BNYVV 

is still occurring in sugar beets possessing both resistance genes, possibly increasing the 

accumulation of virus potential in soil. 

 

For successful BNYVV-transmission a sufficient number of viruliferous P. betae zoospores in soil 

is a prerequisite (Asher et al., 2003). The vectors ability to multiply in sugar beet roots plays a 

significant role regarding a possible resistance break (Scholten et al., 1994). Different vector 

concentrations in soil were used, thus it was essential to compare P. betae concentration and 

propagation potential. Obviously, cultivars in R, GG and IV did not differentiate significantly 

within the same soil, whereas plants grown in D, MN and P displayed variable P. betae contents. 

Regarding R, GG and IV, P. betae propagated similarly in susceptible and partial resistant 

cultivars. P. betae augmentation was different in susceptible and partial resistant genotypes grown 

in D, MN and P, whereas no generalisation concerning the cultivar was shown. However, the 

noticeable high P. betae contentrel. in MN soils (in average 10 times more P. betae than in all other 

measured soils) shows quite effective P. betae propagation. Hence, the correlation of vector 

densities and virus content in lateral sugar beets as described by Asher et al. (2003) and Scholten et 

al. (1996) cannot be implicated in this soil, since the virus content as described above, was not 
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extraordinary high. MN soil contained high numbers of zoospores which are either non-viruliferous 

or have a low ability to transmit BNYVV. The low P. betae contentrel. in the BNYVV susceptible 

(only a tenth of all other measurements) and the Rz1 cultivar in D soil is impressive. It is suggested 

that the great deterioration of lateral and tap roots due to BNYVV infestation after initial infection 

inhibit P. betae from emerging and propagating in cells surrounding the initial zoospore infection 

site (Kaufmann et al., 1992). 

 

However, the P. betae content in lateral hair roots cannot be the only significant factor for the 

vectors successful transmission of BNYVV. As consequence, sequencing of ribosomal ITS1, 5.8S 

gene and ITS2 genomic region of P. betae was carried out to see if Polymyxa from various origins 

might show phylogentic diversification.Legrève et al. (2002) showed genomic diversity in 

P. graminis regarding ITS sequences, leading to the proposal of subspecies, but no differences 

between two geographically distinct P. betae isolates (Belgium and Turkey). Differences between 

P. graminis and P. betae in the region amplified with Polymyxa specific primers were obvious, as 

well as diversity within P. graminis subspecies. Interestingly, all P. betae types, although 

originating from different places worldwide, hardly differed in the sequence analysed, not allowing 

phylogenetic differentiation. However, this does not exclude differences in the ability to multiply, 

take up and transmit BNYVV and therefore more detailed genetic analysis is necessary to unravel 

variability in these virus vector properties. 

 

Several beets displaying discolouration were tested for additional infestation by other soil born 

fungi since additional soil born pathogens must be considered to influence sugar beet yield and 

BNYVV content. Beets grown in D-soil contained secondary soil-borne pathogens that may play 

an important role concerning compromised performance of partial resistant cultivars. Sugar beets in 

this soil showed extremely diminished growth throughout the cultivation period. Typical black 

discoloration of hypocotyls and early damping-off are symptoms for infestation with Pythium, 

Fusarium and Rhizoctonia solani. Seed treatment and usage of Tachigaren seven days after 

planting did not prevent the fungal damage. Especially, severe infections with R. solani and 

Pythium sp. in synergism with BNYVV independent of the genotype could lead to extreme weight 

reduction and increased virus titres, as long as the beet is not completely destroyed as demonstrated 

in D. A possible explanation for resistance-breaking phenotypes in highly infected soils like D 

could be a preliminary infection by above mentioned pathogens. Proximate, viruliferous P. betae 

may affect beets which are not able to genetically defend vector and virus multiplication in lateral 

roots due to heavy primary damage. Remarkably, secondary soil-borne pathogens (Pythium and 

Fusarium) were also detected in the other soils, but did not induce these severe symptoms observed 

in D. Presumably, the density of other pathogens and BNYVV is lower, and only marginal 

discolouration on beets in all soils other than D may be an explanation for the concentration of 
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infectious pathogenicity units in the soil. This results in soil-born pathogen infections beside 

BNYVV in all soils, but apparently sugar beets recover or use a genetic defence mechanism against 

the penetrating organisms, whereas in D-soil the pathogenicity pressure is so high, that resistance 

against BNYVV is compromised.  

 

Taken together this study shows that i) Rz1 resistance in sugar beet is compromised in soils from 

Spain, the USA and Pithiviers ii) the vector P. betae from soils of different regions worldwide did 

not differentiate in the ITS1+5.8S+ITS2 rDNA region that would indicate evolutionary 

development after geographic distribution of Rhizomania to various sugar beet productions areas. 

iii) the vector concentration in soil shows a strong variation regarding different soil origins iv) 

other soil-borne fungi might play an important role regarding disease severity of BNYVV, but 

experimental evidence is lacking, yet.  
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Abstract 

 

Beet necrotic yellow vein virus (BNYVV) is transmitted by Polymyxa betae to sugar beet. For 

almost three decades, sugar beet yield was kept more or less stable by cultivating partial resistant 

sugar beet varieties. These sugar beet cultivars contain single (Rz1) or double (e.g. Rz1+Rz2) 

resistance genes. Recently, resistance breaks in Rz1 and Rz1+Rz2 genotypes, respectively, have 

been observed in North America and in Europe. An approach to clarify whether breaking of 

resistance is dependent on inoculum density was done by estimating inoculum concentration of 

BNYVV and Polymyxa betae using the most probable number method (MPN) for soils from 

Europe and North America. Since the MPN resulted in highly significant differences regarding the 

virus concentration in various soils, the same MPN was conducted with Rz1+Rz2 partial resistant 

sugar beets. Similarly, the concentration of P. betae developing zoospores in roots was determined 

via specific detection of fungal glutathione-S-transferase in serial diluted soils. Experiments with 

normalised virus inoculum added to sterile soil showed that resistance breaking does not correlate 

with virus concentration in soil. Apparently, BNYVV isolates from specific regions in Spain, the 

USA and France seem to be able to overcome Rz1 derived resistance in sugar beet by specific host 

interactions. 
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Introduction 

 

Economically, Rhizomania is one of the most important sugar beet diseases world-wide. In 1958 

beet necrotic yellow vein virus (BNYVV) - commonly known as Rhizomania - was identified in 

Italy (8) to be the causal agent for severe yield and sucrose reductions in sugar beet. Until today the 

disease has spread to all important sugar beet growing areas in Asia, North America and Europe (3, 

27, 34, 46). BNYVV is transmitted by the obligate biotrophic plasmodiophoromycete Polymyxa 

betae Keskin (1, 16, 45, 52). Yield reduction and Rhizomania symptoms in susceptible cultivars are 

dependent on the presence and density of viruliferous P. betae (48). The vector itself hardly affects 

sugar beet growth (40). Along with P. betae and hence BNYVV density in soil, factors like soil 

moisture and soil temperature also play an important role in respect to Rhizomania symptom 

severity (48). 

 

To date, Rhizomania is controlled by growing sugar beet cultivars which contain partial resistance. 

Meanwhile, the Holly source that contains an important major dominant gene named Rz1 is the 

main BNYVV resistance gene in commercially used varieties (4, 28, 36, 43). Additionally, wild 

beet accessions like Beta vulgaris ssp. maritima WB41 and WB42 served as sources for additional 

resistance genes Rz2 and Rz3, respectively (10, 28, 42, 44, 51). Thus, marketable Rhizomania 

resistant sugar beet varieties contain Rz1 or a combination of two resistance genes (Rz1+Rz2) to 

improve resistance stability through their additive effects. Nevertheless, all known major resistant 

genes against the virus, either on their own or in combination, provide only partial resistance and 

are unable to prevent BNYVV infection entirely. Usually they possess the ability to reduce the 

virus replication in hair roots and inhibit virus spread to the tap root. Thus, the inoculum potential 

in soils apparently increases continuously.  

 

Molecular analysis of the BNYVV genome resulted in the identification of three major pathotypes: 

BNYVV-A, -B, and -P, whereas the sequence of A and P within their types display higher variation 

than those of different B-type isolates (18, 23, 25, 41, 38). The A-type occurs mainly in southern 

Europe, Benelux, Asia and the USA, whereas the BNYVV-B-type is mainly found in Germany, the 

upper Rhine valley in France and Switzerland. Koenig et al. (21) initially described the European 

BNYVV-P-type, which occurs only in a small region near Pithiviers in France and recently at two 

sites in the UK (11, 50). BNYVV-P is the only European pathotype that contains an additional 

RNA5, whereas the other two BNYVV-types (A and B) possess only four RNA segments (20, 37). 

Compared to BNYVV-A and –B, BNYVV-P isolates are characterised by their rapid spread in 

plants due to the additional RNA5 encoding a second pathogenicity factor (12, 47). 
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The current methods to detect viruliferous P. betae in soil are quite limited. Either bait plant 

bioassays using soil dilutions are applied to estimate the most probable numbers (MPN) of 

infective propagules (48) or polymerase chain reaction (PCR) is used to estimate P. betae content 

in plant material and soil (17, 31, 32, 33, 49). In soil from The Netherlands Tuitert (48) estimated 

that 10-15% of the root infecting P. betae population is viruliferous but experiments to describe the 

inoculum concentration in soils with resistance breaking abilities are still lacking. Same applies for 

trials to test different inoculum densities.  

 

The objective of this work was to examine P. betae and BNYVV densities in soils from Italy, 

France, Germany, Spain and the USA by MPN and to determine the percentage of viruliferous 

P. betae. In the experiments described here soils that were known to break Rz1 resistance displayed 

high MPN values. However, subsequent resistance tests with normalised virus inoculum showed 

that the inoculum density is not responsible for overcoming of resistance, although the MPN 

resulted in highly variable virus and vector concentrations in soils.  

 

Materials and methods 

 

MPN method - Sample preparation and serial dilutions 

 

To estimate the number of infective BNYVV units and P. betae zoospores in soils from different 

origins the most probable number (MPN) test as described by Tuitert (48) was used in a modified 

form. The dilution ratio for the serial soil dilution was reduced from 10 to 5. Moreover, the number 

of dilution steps was raised from 5 to 6 for a better coverage of different inoculum densities. 

 

In the experiments described here, 10 plants were planted into single pots to serve as independent 

repetitions for each dilution step. Soil samples were air dried and sieved over 2 mm sieves. 

Autoclaved sand (coarse sized 1-2 mm) served as control. Each soil was thoroughly mixed with 

dried sterile sand in 40 l plastic bags, starting with the highest concentration (5-1) down to the 

lowest concentration (5-6). Per test plant 300g of mixed soil of each dilution was filled in plastic 

folding boxes (sized 4 cm x 4 cm x 16 cm). The MPN calculation was conducted using an MPN 

calculator, based on maximum likelihood equations following the MPN calculations of Hurley and 

Roscoe (13). This equation was used for the development of the MPN calculator (MPN Calculator 

version VB6) which was used to generate the data of this study (http://www.i2workout.com/ 

mcuriale/mpn/index.html). 
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Soil origin 

 

Soil samples from sugar beet growing areas in Italy (Rovigo, referred to as R), Germany (Groß-

Gerau; GG), Spain (Daimiel; D), USA (Imperial Valley - IV and Minnesota - MN), France 

(Pithiviers; P) were chosen for serial dilution experiments. The occurrence of the following 

BNYVV-types was described earlier in the different soils and confirmed in our studies by 

sequencing of the RNA3-PCR products from plants cultivated in described soils (data not shown): 

BNYVV A-types in R, D, MN and IV soils (12, 39, 41), the B-type in GG soil and the P-type in P 

soil (12).  

 

Plant material 

 

To analyse the concentration of infectious BNYVV and P. betae units in soil a BNYVV-

susceptible sugar beet line (rz1rz1) and a BNYVV double-resistant variety [Rz1rz1+Rz2rz2, 

referred to as Rz1+Rz2; (30)] were applied. In experiments using an adjusted BNYVV inoculum a 

third single-resistant variety [Rz1rz1, referred to as Rz1; (30)] was included. 

 

Bioassay 

 

Seven days old seedlings, which had been germinated in sterile silica sand, were transplanted into 

fully water saturated soil. Seven days after planting, sugar beets were sprayed with fungicides (0.2 

g/l Tachigaren 70 W.P., Sumitoma, Düsseldorf, Germany) to prevent Aphanomyces spp. and 

Pythium spp infections. Plants were grown in a climate chamber at day and night temperatures of 

24°C and 20°C, respectively, and 16 h of assimilation light. 

 

BNYVV DAS-ELISA 

 

After 4 weeks of greenhouse cultivation, sugar beet plants were harvested individually. Sand and 

soil were thoroughly removed by washing with running tap water. Lateral roots were separated 

from the tap root and dried with paper towels. Leaves and the hypocotyls were discarded. 

 

The quantitative DAS-ELISA was conducted following the method described by Gidner et al. (10), 

with slight modifications. Plant sap from lateral roots of each plant was gained via a Pollähne leaf 

juice press (MEKU GmbH) and PVP-Tween-buffer (24) at a ratio of 1:15 (root weight/buffer in 

g ml-1). Each ELISA plate (Nunc A/S, Roskilde Denmark) besides blanks and buffer-controls 

contained the following sample allocation: 2 samples of healthy and infected plant sap, 

respectively, and an additional dilution series from a Chenopodium quinoa BNYVV purification 
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prepared following the method described by Koenig et al. (22). The dilution series, used to develop 

a standard curve, was based on 4000, 2000, 1000, 500, …, 1,95 ng virus protein per ml buffer, 0 

ng ml-1 with reference to the mean of tested healthy controls plus three times the standard error. To 

keep comparability between subsequent tests, aliquots of the standard (4000 ng ml-1) were kept at 

-20°C until further processing. BNYVV specific antisera with similar sensitivity were obtained 

from Loewe (Sauerlach, Germany) and DSMZ (Braunschweig, Germany) and used in DAS-ELISA 

following the manufacturers’ instructions. The absorption (405nm) of the colour reaction was 

measured after one hour incubation at 37°C using a Titertek Multiskan Plus photometer (Magarete 

Malar, Nauheim, Germany). Samples were considered to be infected if the absorption resulted 

positive (BNYVV content > 0) after subtracting the absorption of healthy controls, plus three times 

standard deviation, plus blanks. 

 

Quantification of Polymyxa betae zoospores (by quantitative ELISA) 

 

The quantification of P. betae by TAS-ELISA via specific detection of fungal 

glutathione-S-transferase (GST) was carried out according to Kingsnorth et al. (17) with some 

modifications. The same lateral root samples used for BNYVV quantification were applied in the 

P. betae ELISA. All incubation steps of the P. betae TAS-ELISA were performed at 37°C for 1 h. 

As alkaline phosphatase tagged antibody, the anti-rabbit antibody (IgG whole molecule, Sigma-

Aldrich, Munich, Germany) was used. To quantify P. betae expressed GST, a standard curve with 

purified GST [described in Kingsnorth et al. (17) and kindly supplied by Broom´s Barn research 

station, UK] in a dilution series from 1/2048, 1/1024, 1/512, … , to 1 was analyzed parallel on the 

ELISA plates. The highest concentration (abs405nm 1.2, calibration 1/2048) corresponded to a 

fungus ratio of GSTconc.log3000, the calibration 1 (abs405nm 0.007) displayed a GSTconc.log0, 

respectively. 

 

Inoculum preparation (Resistance tests with standardized inoculum) 

 

Lateral sugar beet roots from susceptible sugar beet cultivars, previously cultivated for 12 weeks in 

R, GG, D, IV, MN and P soils and in sterile sand, were used to standardize the BNYVV inoculum. 

For that, beets were harvested, washed with tap water and leaves were discarded. Lateral roots were 

separated from the tap root, collected and air dried at room temperature for three days. Dried lateral 

roots were cut into small pieces (max. 2 mm) and thoroughly mixed. An aliquot was used for 

determining the BNYVV concentration by quantitative DAS-ELISA. After quantification of the 

virus content in each homogenized lateral root bulk from beets grown in R, GG, D, IV, MN and P 

soils, the samples were diluted in damped soil to a final concentration of 70 ng BNYVV per 1 kg 

sterilized damped soil [sand: clay mixture (1:2)]. Plants which were harvested after four and eight 
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weeks were potted into 1 kg of soil and plants which were harvested after 12 weeks into 2.5 kg of 

soil per pot. Homogeneous dispersal of the inoculum was achieved by equally pouring a mixture of 

dried root samples and 150 ml tap water onto the top soil layer in each pot. 10 sugar beet seedlings 

were planted into each pot. For each variant (root origin*harvest date) 10 single sugar beet plants 

served at harvest as repetitions. 

 

Bioassay with lateral root inoculum and BNYVV analysis 

 

The bioassay was conducted corresponding to the MPN tests. After 4, 8 and 12 weeks of 

greenhouse cultivation sugar beet plants were harvested individually. Soil and inoculum were 

thoroughly removed from tap and lateral roots by washing with running tap water. Plants were 

subsequently dried with paper towels and the whole variant was scored from 1 (no infection) to 9 

(fully infested tap roots) for BNYVV and occurrence of Rhizoctonia solani (data not shown) 

symptoms. After scoring, lateral roots were separated from the beet body, leaves and hypocotyls 

discarded and the BNYVV concentration determined by quantitative DAS-ELISA as described 

above.  

 

Tissue print immuno assay 

 

The systemic spread within sugar beet tap roots was analysed using Tissue Print Immuno Assay 

(TPIA). Longitudinal sections of 12 week old sugar beet tap roots from the resistance test with 

standardized inoculum were firmly pressed on positive charged nylon membrane (Whatman, UK). 

TPIA was carried out exactly as described by Kaufmann et al. (15). 

 

Data analyses 

 

The data were analysed using SAS 10.0 (SAS Systems, Cary, NC). The PROC GLM and an 

unvaried procedure (PROC UNIVARIATE) were conducted to test for normality. A boxcox-macro 

transformation (Anonymous, 2007) followed until all data displayed a normal distribution. The 

ANOVA was conducted with transformed data using the PROC MIXED procedure. All statistically 

analysed data of this study are presented in the reverted transformed form. 

Results and Discussion 

 

For final proof whether resistance breaks depend on BNYVV inoculum concentration experiments 

were carried out using different BNYVV origins known to overcome resistance. The BNYVV 

inoculum density and the performance of various sugar beet genotypes in presence of these 
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BNYVV isolates were determined. Afterwards the virus concentration was equalised and served as 

inoculum for the infestation of sterile soil. A time series harvest was conducted within this test 

under standardized inoculum densities to observe the temporal virus propagation and systemic 

spread in sugar beet. The data obtained by identical analyses of all sugar beet cultivars within 

different soil dilutions and inoculum densities were comparable and explain the high variability and 

diverse pathogenicity. 

 

BNYVV inoculum density in resistance breaking soils and virus content in infected susceptible 

plants 

 

After four weeks greenhouse cultivation, BNYVV susceptible sugar beet plants displayed obvious 

differences in phenotype and strength of BNYVV symptoms, depending on soil origin and serial 

dilution. Due to these severe infections with BNYVV or other soil-borne pathogens (data not 

shown) and the resulting plant death, the number of test plants in some soil vs. dilution variants was 

reduced to 9. To determine the number of infected plants in each treatment, the virus content was 

assayed using quantitative ELISA to detect in addition to MPN determination correlations of 

inoculum concentration with the symptom severity observed in the different soil dilution steps. 

 

Lateral root samples were evaluated using ELISA as follows: The calculated MPN-values 

displayed in Tab. 1 indicate great variations of the BNYVV concentration in different soil origins 

analysed. German GG-soil showed the lowest inoculum concentration of estimated 11 infective 

units per g soil (iu g-1), followed by the MN-soil and Italian R-type soil showing 10 to 11 orders of 

magnitude higher MPNs. In BNYVV-P and -IV soils 30-50 times higher inoculum density was 

measured. Remarkably, D-soil contained a BNYVV concentration that was 520 orders of 

magnitude larger than the one detected in GG-soil. When Tuitert (1990) compared different MPN 

calculation methods in one Dutch soil containing unknown BNYVV-type the results differed 

between 40-100 iu g-1. Although, different MPN tests are thought to be incomparable due to 

different calculation methods (48), 40-100 iu g-1 represent a BNYVV density comparable to GG, R 

and MN in our experiments. Similar to Tuitert (48), our trial proved that MPN values up to 

approximately 100 iu g-1 are sufficient to infect susceptible sugar beet plants in up to 5-4 diluted soil 

(R and MN). As MPN determination revealed soils with similar MPN values (i.e. MN and R) but 

differences in previous reported resistance breaking abilities (29), pathogenicity does not seem to 

correlate well to inoculum concentration. To our knowledge, this is the first comparison of 

BNYVV content of different standard and resistance breaking soils under standardized conditions. 



APPENDIX 

 

92

 

Tab. 1: BNYVV concentration in soils from different geographic origins measured with a susceptible sugar beet genotype and 

determined by DAS-ELISA after four weeks greenhouse cultivation time to calculate the MPN by means of number of 

infected plants / number of harvested plants shown for each soil variant in different dilution steps. 

Dilution ratio = 5                 Genotype: susceptible sugar beet line (rz1rz1) 
Soil origin 

Dilution R GG D IV MN P 
5-1 10*/10** 9/10 10/10 10/10 9/9 10/10 
5-2 9/10 3/10 10/10 10/10 10/10 10/10 
5-3 6/10 1/10 10/10 9/10 4/10 10/10 
5-4 5/10 0/10 10/10 7/10 3/10 2/10 
5-5 0/10 0/10 9/10 3/10 0/10 2/9 
5-6 0/10 0/10 1/9 0/10 0/10 0/10 

MPN/g 
soil 110 a*** 11 b 5200 c 510 d 98 a 340 d 

* Number of infected sugar beets 

** Number of single harvested sugar beets 

*** Means with the same letter (MPN/g soil) are not significantly different (LSD 0.05)  

 

In this experiment applying a susceptible line, a high variation of virus concentration among almost 

all soils was shown which did not correlate to the serial dilution of the soil (Fig. 1). Despite big 

differences concerning the inoculum density in different soils analysed with a susceptible sugar 

beet line, results of BNYVV-concentration in relation to soil-origin demonstrated in Fig. 1 show 

that only P-type soil produced a higher virus content in the lowest soil dilution which might be 

connected to the additional pathogenicity factor (P26) on RNA5. Independent of the virus inoculum 

density in soil and soil origin, virus contents in lateral sugar beet roots hardly differed (Fig. 1). 

Remarkably, in dilutions 5-1 until 5-3 plant virus contents slightly rose, besides in R and P. 

Thenceforth the BNYVV content declined to some extent until the virus was out-diluted. Only in 

D-soil an out-dilution was not achieved, although diluting the soil 5-6. This demonstrates the 

potential of P. betae derived from different soils to multiply and produce similar numbers of 

secondary infections during the 4 weeks cultivation period. Nevertheless, there was no correlation 

in the reduction of the average virus content in relation to virus content in soil after the serial 

dilutions as shown in Tab. 1. An expected correlation between the calculated MPN (Tab. 1) and the 

high virus contents in lateral roots (Fig. 1) could not be demonstrated.  
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Fig. 1 

 
Fig. 1:  Means of BNYVV content [ng ml-1] in lateral roots of infected susceptible sugar beet cultivars as determined 

by quantitative DAS-ELISA. Plants were grown for four weeks in the greenhouse in six dilutions (D1 = 5-1; D2 

= 5-2; D3 = 5-3; D4 = 5-4; D5 = 5-5; D6 = 5-6) of soils from Italy (Rovigo = R); Germany (Groß Gerau = GG); 

Spain (Daimiel = D); USA (Imperial Valley = IV and Minnesota = MN); France (Pithiviers = P) and an 

autoclaved sand control.  

 

BNYVV resistance in sugar beet is a quantitative trait reducing the virus accumulation [reviewed in 

Rush (40)]. Therefore, the non-infected sugar beet plants were excluded from the evaluation of all 

soil*dilution variants to estimate the average BNYVV-content per variation and repetition (Fig. 1). 

Since data show mean values (if more then one beet are infected) the standard variation is included 

in the figure. 

 

Determination of BNYVV inoculum density in different soils able to overcome Rz1 + Rz2 resistance 

 

A repetition of the MPN-assay applying an Rz1+Rz2 cultivar (Tab. 2 and Fig. 2) was carried out to 

investigate if various BNYVV isolates are able to overcome resistance as described by Liu et al. 

(30) and if the serial dilution might affect the BNYVV content in plants. It was assumed, if 

overcoming of resistance is depending on BNYVV concentration, the occurrence of infected plants 

would cease at a dilution step far prior to the out dilution point observed in the MPN with 

susceptible genotype. However, the results obtained did not give strong evidence for a positive 

correlation of virus concentration in soil to the ability to produce elevated BNYVV levels in 

Rz1+Rz2 plants. 
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Tab. 2: BNYVV concentration in soils from different geographic origins measured with an Rz1+Rz2 sugar beet 

cultivar and determined by DAS-ELISA after four weeks greenhouse cultivation time to calculate the MPN by 

means of number of infected plants / number of harvested plants shown for each soil variant in different 

dilution steps  

* Number of infected sugar beets 

** Number of single harvested sugar beets 

*** Number of BNYVV isolates overcoming resistance 

**** Means with the same letter are not significantly different (LSD 0.05) 

 
Fig. 2 

 

Fig. 2: Means of BNYVV content [ng ml-1] in lateral roots of infected Rz1+Rz2 partial resistant cultivars determined 

by quantitative DAS-ELISA. Plants were grown for four weeks in the greenhouse in six dilutions (D1 = 5-1; D2 

= 5-2; D3 = 5-3; D4 = 5-4; D5 = 5-5; D6 = 5-6) of soils from Italy (Rovigo = R); Germany (Groß Gerau = GG); 

Spain (Daimiel = D); USA (Imperial Valley = IV and Minnesota = MN); France (Pithiviers = P) and an 

autoclaved sand control. 

 

It was expected that in addition to the number of infected plants the virus content in lateral roots of 

Rz1+Rz2 sugar beets should be significantly reduced in higher soil dilutions. The detailed results, 

including the number of plants infected in various dilution treatments, are displayed in Tab. 2. Soils 

Dilution ratio = 5                 Genotype: BNYVV-double resistant variety  Rz1+Rz2  
Soil origin 

Dilution R GG D IV MN P 
5-1 6*/10** 1/10 7/10 4/10 10/10 6/10
5-2 2/10 1/9 8/10 5/10 5/10 5/10 
5-3 0/10 0/9 5/10 3/10 3/10 4/10 
5-4 0/10 0/10 3/10 3/10 3/10 0/10 
5-5 0/10 0/10 1/10 0/10 0/10 0/9 
5-6 0/10 0/10 0/10 0/10 0/10 0/10 

 BNYVV i. 
ovc. Rz*** 4,5 a****   0,8 a 20 b 8 ab 13 b 9,4 ab 
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with previously reported resistance-breaking abilities were shown to infect plants at much higher 

dilutions than standard BNYVV containing soils like R and GG (Tab. 2). The data indicate that 

even in the highest concentration of infested soil (dilution ratio 5-1) R- and GG-soil were unable to 

produce infections in Rz1+Rz2 plants with a significant virus titre (between 0.3 and 5 ng ml-1, 

respectively) (Fig. 2). In contrast, D-, IV-, MN- and P-type soil produced much higher BNYVV 

contents in lateral roots (99, 33, 242 and 205 ng ml-1, respectively), which are comparable to virus 

titres in susceptible plants grown in R- or GG-type soil. Different soils produced significant virus 

contents in Rz1+Rz2 sugar beet plants even at higher dilutions, although virus concentration tended 

to result in a BNYVV decline. D-, IV- and MN-type soils were still able to infect 3 out of 10 

double resistant plants at a dilution of 5-4, whereas D-type soil even infected one plant in soil 

diluted 5-5. In P-soil 4/10 plants were tested positive for BNYVV infection in soil diluted 5-3. 

Calculating with the difference between MPN of susceptible sugar beets (MPNsus Tab. 1) and 

BNYVV units per g soil overcoming resistance in the MPN with the Rz1+Rz2 genotype (MPNdiff 

Tab. 2) and thereinafter dividing the MPNsus by the MPNdiff it is possible to calculate the 

concentration of each BNYVV isolate that is necessary to cause infections in Rz1+Rz2 double 

resistant plants. Thus, D-soil still infects Rz1+Rz2 plants at a concentration of about 8.3 BNYVV 

iu g-1 soil diluted 1/3125, IV-soil at 0.8 iu g-1 and MN-soil at 0.2 iu g-1 in soil diluted 5-4. In P-soil 

Rz1+Rz2 plants were still tested positive at 2.7 iu g-1 in soil diluted 5-3. Assigning this calculation 

to the standard soil-types, R-soil was able to infect Rz1+Rz2 plants at a density of 4.4 iu g-1 and 

GG-soil at 0.44 iu g-1 but only in 5-1 diluted soil, despite no relevant virus levels were produced. 

Although, MN-soil displayed a similar BNYVV density in the susceptible test than R-soil MN-

derived BNYVV was able to overcome resistance and to successfully infect Rz1+Rz2 plants. The 

same applies for the results of IV and P. Both displaying higher MPNs than MN and R but the 

isolate was still able to infect Rz1+Rz2 resistant plants in soils diluted down to 5-3 as well as 5-4. 

Even if D shows an immense MPN the inoculum density can be excluded to be the only factor 

causing resistance breaks as Rz1+Rz2 cultivars are still infested in 5-5 diluted soil. It can be 

assumed that inoculum concentration does not play a significant role for infection of more 

aggressive soils. This is also correlating to the average virus content observed in the MPN with 

susceptible cultivars. 

 

Determination of inoculum density and percentage viruliferous Polymyxa betae in different 

resistance breaking soils 

 

As BNYVV inoculum density displayed this extreme variation among different analysed soil 

samples, a verification of data concerning a possible correlation between the concentration of virus 

and its vector P. betae in the soil was necessary. Tuitert (48) estimated the percentage of 

viruliferous P. betae in soil to be 10–15 %. Therefore, the hair-root saps used for DAS-ELISA to 
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detect BNYVV were additionally applied for TAS-ELISA based zoospore detection and 

quantification using Polymyxa GST specific antibodies. The quantitative P. betae TAS-ELISA 

allowed a determination of the P. betae multiplication rate. Initial comparisons of P. betae 

zoospore densities in BNYVV susceptible and Rz1+Rz2 plants did not display significant 

differences (data not shown). This was in agreement with previous observations (3). Although the 

genetically present BNYVV resistance in sugar beet genotypes did not influence the P. betae 

infection, samples were taken from Rz1+Rz2 plant roots only, as they suffered less under BNYVV 

infestation and displayed a similar root system phenotype throughout the experiment. 

 
Tab. 3: P. betae concentration in soils from different origins estimated by GST specific TAS-ELISA based detection of 

zoospores from hair roots of an Rz1+Rz2 sugar beet cultivar 

* Number of infected sugar beets 

** Number of single harvested sugar beets 

*** Percentage of viruliferous P. betae  

**** Means with the same letter are not significantly different (LSD 0.05) 

 

Regarding the obtained TAS-ELISA results standard R- and GG-soil were the only soils which 

fulfilled the expectations with respect to an out-dilution of P. betae within the serial dilution. These 

observations are summarised in the P. betae MPN (Tab. 3). Very low MPN of infectious P. betae 

units were demonstrated for the standard soils (R and GG). In contrast, D-soil possessed very good 

conditions for P. betae multiplication, also in highly diluted soils, and displayed by far the 

uppermost MPN (8900 iu g-1), almost 50 times more than the standard Italian soil (180 iu g-1) and 

even 130 times more than the less aggressive German soil (67 iu g-1). MN-soil possessed 2.7 times 

less iu g-1 than D-soil, which is still the second highest MPN value with 3300 iu g-1. IV- and P-soils 

contained about a tenth of infectious P. betae units compared to D-soil. 

 

Using the identical MPN-equation to determine BNYVV and P. betae concentration in the soil it is 

permitted to quote the proportion between virus and its vector. These proportions reflect the 

percentage of viruliferous zoospores. Much higher values of viruliferous zoospores could be 

Dilution ratio = 5                 Genotype: Rz1+Rz2                   Polymyxa betae 
 Soil origin 

Dilution R GG D IV MN P 
5-1 10*/10** 10/10 10/10 10/10 10/10 10/10 
5-2 10/10 9/9 10/10 10/10 10/10 10/10 
5-3 6/10 1/9 10/10 9/10 10/10 10/10 
5-4 5/10 1/10 9/9 9/10 9/9 5/10 
5-5 1/10 1/10 10/10 4/10 7/10 4/9 
5-6 0/10 1/10 3/10 1/10 1/10 3/10 

MPN/g soil 180 a**** 67 b 8900 c 840 d 3300 e 960 d 
% vir. P. betae*** 61% 16% 58% 61% 3% 35% 
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determined for R- (61%), D- (58%), IV- (61%) and P-soil (35%) than the previously reported 10–

15% (48). MN-soil displayed a very low amount of viruliferous zoospores (3%) compared to all 

other soils. Thus, the percentage of viruliferous P. betae did not correlate to resistance-breaking 

capabilities in the soil as i.e. MN is known to overcome resistance but showed only low percentage 

of viruliferous P. betae in soil. Successful BNYVV transmission by its vector P. betae, what might 

be connected to overcoming of resistance, may depend on genetically or ecological factors but 

precise information on vector variability is still lacking. Additionally, an effect of other soil borne 

pathogens naturally occurring in soil may play an important role in the virus-vector life cycle as 

they might influence the vector and inhibit BNYVV-uptake. 

 

Determination of Polymyxy betae reproduction abilities in different soil dilutions 

 

The quantitative TAS-ELISA data obtained from lateral roots were used to estimate the 

concentration of P. betae infectious units in the soil. Absolute P. betae concentrations were 

determined and compared to the different soil dilution treatments. After evaluating data obtained 

from the quantitative ELISA (Fig. 3) it became obvious that P. betae possessed strong cystosory 

reproduction abilities during the four week experiment independent from the adjusted inoculum 

density. This is reflected by similar values of Polymyxa quantification in different soil dilution 

steps, which accounts to a better P. betae propagation in planta with low prelim inoculum density 

(14). In contrast, Gerik and Duffus (9) reported that the viruliferous vector multiplied much more 

efficient when an indigenous avirulent population was already present in soil compared to soil 

where no P. betae population is existent, whereas a virulent population is out-competing 

aviruliferous P. betae. Within the dilution in D-, IV-, MN-, and P-soils the P. betae infections 

increased. In IV- MN- and partly in P – soils P. betae started to be out-diluted at the highest 

dilution (5-6) which is displayed by the vector density resulting to present more likely a bell curve 

over serial dilution. Remarkable is the quite uniform concentration of P. betae over all dilution 

steps in D-soil. Whereas, P. betae does not tend to result in concentration decline, thus D-soil is 

seemingly a soil that allows P. betae to propagate easily (Fig. 3). Comparing results from the 

highest soil concentration (5-1) from R and GG with IV, MN, and P (Fig. 3) it is obvious that the 

P. betae content in latter soils is much lower than in R and GG. This low vector content in plants 

may be caused by severe BNYVV infections that inhibit root growth and thus inhibits P. betae 

propagation by suppressing the multiplication of secondary zoospores.  
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Fig. 3  

 

Fig. 3:  Means of Polymyxa betae content [ng/ml] in lateral roots of infected Rz1+Rz2 partial resistant cultivars 

determined by quantitative ELISA. Plants were grown four weeks in the greenhouse in six dilutions (D1 = 5-1; 

D2 = 5-2; D3 = 5-3; D4 = 5-4; D5 = 5-5; D6 = 5-6) of soils from Italy (Rovigo = R); Germany (Groß Gerau = 

GG); Spain (Daimiel = D); USA (Imperial Valley = IV and Minnesota = MN); France (Pithiviers = P) and an 

autoclaved sand control. 

 

BNYVV resistance test with adjusted inoculum concentration 

 

It was reported earlier, that breakage of single Rz1 resistance was observed in naturally infested 

soils (29, 30, Ayala personal communication) or in vitro under high viruliferous vector densities 

(43). In our experiments, the densities of BNYVV and P. betae in naturally infested IV-, D-, MN-, 

and P-soils did not correlate with breaking of Rz1 or Rz1+Rz2 resistance. However, the naturally 

occurring BNYVV isolates in R and GG did not lead to resistance breaks (12). When greenhouse-

tests for selection of BNYVV resistance were developed, selection time was shortened compared to 

field tests to four to six weeks as lateral root virus content of sugar beet seedlings indicate the 

genotypic resistance potential already at that developmental stage (6, 7). Therefore this growth time 

was used in most previous studies (e.g. 10, 26, 27, 30, 35, 44). In field resistant tests, however, the 

virus content in tap roots remains first choice because of decreasing virus concentrations in lateral 

roots throughout the vegetation period (6). 

 

To consider this knowledge in a test to evaluate if BNYVV content and severe virus symptoms 

correlate, a resistance test with adjusted inoculum concentration and three harvest dates (4, 8 and 

12 weeks) was carried out. A BNYVV inoculum of 70 ng virus kg-1 soil was used. This 

concentration was averaged after determining the BNYVV content by quantitative DAS-ELISAs in 

resistance tests using different sugar beet genotypes grown in naturally infested R-, GG-, D-, IV-, 

MN and P-soils (data not shown). The four weeks test did not result in significant differences in 

virus content (data not shown) that it was assumed that the encystations of resting P. betae spores 
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from dried root material, used for artificial inoculation, took longer than infestation of viruliferous 

P. betae derived from naturally infested soil, hence, no sufficient infections could be set. 

 

After eight weeks (Fig. 4A) plants of the susceptible cultivar displayed significant virus contents in 

R-, IV- and MN-soils, indicating strong infestation induced by the different added inoculum 

sources. Remarkable were the low virus contents in Rz1 at R and GG corresponding to previous 

observations of Heijbroek et al. (12), who compared an Rz1 sugar beet genotype in naturally 

infested soil from R, GG and P and detected low virus content in R and GG. BNYVV 

concentration in D- and IV-soil grown susceptible and Rz1 sugar beets displayed to be high. 

Surprisingly, the susceptible genotype in D-soil displayed lower BNYVV content than the Rz1 

genotype, what might be related to a totally depauperated and rotten root system induced by the 

high infection pressure. Apparently the virus multiplication set in soon after the first harvest. 

Consequently the virus propagated extreme quickly, especially in the susceptible cultivar in IV-

soil. IV resulted in the highest BNYVV density in Rz1+Rz2 (40 ng ml-1) lateral sugar beet roots. 

Whereas Rz1+Rz2 in GG did not support virus multiplication (5 ng ml-1) or, at least inhibit any 

further spread into the lateral roots. Interestingly P did not produce very high virus contents, neither 

in the susceptible nor in the Rz1 (both 13 ng ml-1) cultivar, indicating that no infection had occurred 

at all.  

 
Fig. 4 

 
 

Fig. 4:  BNYVV content [ng ml -1] in lateral roots in double (Rz1+Rz2) and single (Rz1) resistant cultivars as well as in 

a susceptible control after 8 (4A) and 12 (4B) weeks greenhouse cultivation in artificially infested soil with 

different BNYVV isolates (from R-, GG-, D-, MN-, IV- and P-soil and a sand control). Means within the same 

soil type (minuscule) and means within genotypes (capital) with a letter in common are not significantly 

different at the 5% level. 
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Finally, the harvest and DAS-ELISA after 12 weeks (Fig. 4B) resulted generally in much higher 

BNYVV concentrations in sugar beet lateral roots than the 8 weeks test. Again, virus contents 

produced by the BNYVV isolates in different cultivars were significantly distinguishable. 

Comparing the virus titres in hair roots from P-soil harvested after 8 and 12 weeks of cultivation an 

immense virus increase was observed in all genotypes, nicely fitting to the above-mentioned 

observations. Thus, the susceptible genotype achieved a virus content as high as 297 ng ml-1. 

Additionally, a BNYVV content of 204 ng ml-1 in hair roots from P-soil grown Rz1 sugar beets 

indicated for resistance breaking. Surprisingly, even Rz1+Rz2 genotypes showed a high BNYVV 

content after 12 weeks in hair roots from P-soil (65 ng ml-1), but also in hair roots from beets grown 

in R-, D-, IV- and MN-soils. Applying these BNYVV isolates it was often possible to significantly 

distinguish the virus content between the susceptible and Rz1 cultivars (Fig. 4B minuscule). In 

some variants (D and IV) the Rz1 cultivar obtained even higher virus contents than the susceptible 

genotype (Fig. 4B). This can be explained by severe Rhizomania symptoms severely reduced 

lateral root growth observed in the susceptible genotype. Similar to observations made after 8 

weeks they might have inhibited further virus propagation in totally rotten roots (data not shown). 

Both reference soils (R and GG) displayed the highest BNYVV contents in the susceptible 

genotype, but in contrast to the data obtained in MPN, detectable virus contents in the both resistant 

cultivars were observed. 

 

In order to confirm the data obtained in the quantitative ELISA, total plants and sugar beet tap roots 

were also weighed after harvest (Fig. 5). Noticeable were the high sugar beet weights of all isolates 

in Rz1+Rz2 cultivars. Within Rz1+Rz2 genotype no significant weight differences could be 

measured between GG-, D-, IV-, MN- and P-soil or sand control grown tap roots. Moreover, the 

weight of tap roots grown in R-soil was even significantly higher compared to all other variants. In 

the Rz1 variants, tap root weights were strongly negatively correlated to BNYVV contents (data 

not shown). The higher the virus titre in lateral roots (Fig. 4B), the more the tap root weights were 

reduced (Fig. 5). Tap root weight in Rz1 sugar beet plants did not significantly differ between R-, 

GG-soil and sand but in D-, IV-, MN- and P-soil grown Rz1 tap roots, weight was so much 

reduced, that no significant difference compared to the susceptible genotype could be measured. 
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Fig. 5  

 

Fig. 5:  Tap root weight [g] in double (Rz1+Rz2) and single (Rz1) resistant cultivars as well as in a susceptible control 

12 weeks after greenhouse cultivation in artificially infested soil with different BNYVV isolates (from R-, GG-, 

D-, MN-, IV-, P-soils and a sand control). Means within the same soil type (minuscule) and means within 

genotypes (capital) with a letter in common are not significantly different at the 5% level. 

 

Thus, the tap root weight analysis supported the data achieved in the BNYVV DAS-ELISA and the 

data allow the conclusion that resistance breaks in resistant genotypes can be displayed also by 

weighing. Other than published results that showed no significant differences in Rz1 resistant plants 

grown in R-, GG- and P-soil (12) the tap root weight of plants grown in P could be differentiated 

clearly from R and GG after 12 weeks of cultivation in our trials. In order to demonstrate, if virus 

infection of lateral roots had led to systemic virus spread in sugar beet roots and caused weight 

reduction in Rz1 and Rz1+Rz2 genotypes a TPIA on longitudinal beet sections was carried out (Fig. 

6). The developed colour reaction showed systemic spread of BNYVV in susceptible plants grown 

in all soils. Partial systemic virus infection with unequal distribution was only detectable in Rz1 

resistant plants grown in D-, IV- MN- and P-soil. Tap roots of Rz1 plants of GG and R treatments 

displayed no detectable substrate reaction, which nicely correlated to the virus contents of lateral 

roots. Remarkably, a systemic BNYVV spread in the Rz1+Rz2 cultivar was only detectable in D- 

and P-soil grown beet roots. Despite Rz1+Rz2 lateral roots were significantly infected as shown 

above, no colour reaction above background was observed in this assay in all plants tested. Despite 

TPIA detection limit is far beyond quantitative DAS-ELISA (15) and the colour reaction can only 

be evaluated semi-quantitatively, the TPIA data obtained here allow the conclusion that BNYVV 

D-, IV-, MN- and P-soil derived isolates in addition to produce elevated virus contents in lateral 

roots are able to systemically infect Rz1 plants in this assay. Similar abilities were demonstrated for 

D- and P-isolate in Rz1+Rz2 plants.  
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Fig. 6 

Fig. 6:  Detection of systemic BNYVV spread in sugar beet tap roots after TPIA in double (Rz1+Rz2) and single (Rz1) 

resistant cultivars as well as in a susceptible control after 12 weeks greenhouse cultivation in artificially 

infested soil with different BNYVV isolates (R, GG, D, MN, IV, P and a sand control). Dark bluish 

discoloration shows the virus distribution. 

 

Conclusions 

 

The obtained results give strong evidence that i) there is a high variability in BNYVV content in 

soils from different origin, ii) most soil samples (D- , IV- and P- but not MN-soil) analysed in this 

study, which display the ability to produce BNYVV infections under controlled conditions of a 

certain titre, possess a higher inoculum concentration than soils displaying normal aggressiveness 

like in R and GG but iii) the resistance overcoming ability is not correlated to the inoculum 

concentration iv) the P. betae concentration itself and the concentration of viruliferous P. betae are 

not clearly correlated to resistance breaking. v) The tap root weight reduction can be regarded as 

additional criterion for overcoming of resistance next to high ELISA values. 

 

Since only the effect of inoculum concentration of BNYVV and P. betae were considered for 

closer investigations in this study we excluded the discussion about increased pathogenicity due to 

presence and genetic variability of a fifth RNA as occurring in the P-type. Additional, we 
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abstracted away from considerations on higher pathogenicity of BNYVV-A-types coming along 

with high variability in the amino acid tetrad position 67-70 on the pathogenicity factor P25 

encoded by RNA3. Especially the presumed connection of valine on position 67 of P25 and the 

ability for these BNYVV-A-types to overcome resistance could not be supported in recently 

published articles (29), what lead us to disregard further investigations in our studies.  
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