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hen the sunflower fell in love with the sun, all the 

other plants died laughing. ‘The sun never budges from his throne in 

the sky,’ they all said together. ‘He is mighty and unapproachable. 

Why should he spare a glance for you? Give up this folly.’ The 

sunflower didn’t say a word, just fixed her loving eyes on the sun and 

gazed with longing. For a long time the sun didn’t notice anything, 

but finally one day he felt this gaze upon him. At first he thought it 

was a passing fancy, but in time he realized he had been mistaken. 

The sunflower was so stubborn that wherever he moved his throne 

she tirelessly turned her face in that direction. 

So it went until one afternoon, fed up with this constant pursuit, the 

sun turned his yellow wrath on the sunflower and scorched her. 

While the black smoke was still curling upwards, people came 

thronging to the scene. ‘Wonderful!’ one of them said, ‘Now we’ll be 

able to nibble this love.’ 

The gaze of the sunflower is turned on the sun all day, but in Turkish 

the name is “ayçiçegi”, or "moonflower." Is this because its love for 

the sun is fed by moonlight through the hours of the night? 

Source: Elif Safak, Mahrem 
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LIST OF ABBREVIATIONS  

 

BBCH: Biologische Bundesanstalt,Bundessortenamt and CHemical industry 

BTH: Benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl-ester 

CULTAN: Controlled Uptake Long Term Ammonium Nutrition 

HO: High Oleic  

IR: Induced Resistance 

N: Nitrogen 

PGPR: Plant Growth-Promoting Rhizobacteria 

ppm: parts per million  

SAR: Systematic Acquired Resistance 

TSW: Thousand Seed Weight  

UAN: Urea Ammonium Nitrate  

UAN-N: Urea Ammonium Nitrate with Nitrification inhibitor 

UAS: Urea Ammonium Sulfate  
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INTRODUCTION 
 

1.1 Sunflowers (Helianthus annuus L.) 

Sunflower (Helianthus annuus L.) is, together with soybean, rapeseed and peanut, 

one of the most important annual crops in the world grown for edible oil. Helianthus is 

a genus in the tribe Heliantheae of the Compositae family. Helianthus annuus L. is a 

native of North America. Its introduction to Europe was made through Spain. 

Although this crop was originated in subtropical and temperate zones, through 

selective breeding, it has been made highly adaptable, especially to dry and warm 

temperate regions.  

 

1.2 High oleic (HO) sunflowers (Helianthus annuus L.) 

Regular sunflower oil is characterized by its high content of the essential linoleic acid 

(C18:2). Through conventional breeding techniques, a high oleic sunflower type has 

been developed. The high oleic sunflower oil is in appearance very similar to regular 

sunflower oil. The seed's oil content is around 50 percent, which is similar to the 

conventional sunflower. However, the fatty acid profile of the high oleic sunflower oil 

differs quite dramatically from conventional sunflower oil. The HO sunflower oil 

contains over 80 % oleic acid (C18:1), whereas the regular sunflower oils oleic acid 

content is around 20 % (Figure 1.1). 

 

In comparison to the other oleic acid sources, the high oleic sunflower oil contains 

the highest amount of the monounsaturated fat levels (Table 1.1). Typically, HO 

sunflower oil contains 82 percent oleic acid, 9 percent linoleic acid, and 9 percent 
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saturated fatty acids. In human nutrition, the fatty acid composition can be an 

important benefit to consider. In non-food applications, it is more a necessity to 

extinguish the unwanted fatty acids. 

 

Regular Sunflower Oil 20-25 % 60 % 15-20% 
 

HO Sunflower Oil 80-92 % 5-9% 9% 
 

■■Monounsaturated fatty acids  ■■Polyunsaturated fatty acids  ■■Saturated fatty acids 

 

Figure 1.1: Comparison between fatty acid composition of regular and HO sunflower 
oils. 
 

For many applications, high oleic sunflowers provide an excellent raw material 

directly from the field. Primarily, no further cost intensive processes for the HO 

sunflower oil, like distillation, crystallization or hydrogenation, are necessary. At the 

moment, mostly used oleic acid source for the industry are beef tallow and palm 

oleine. Besides higher levels of oleic acid, HO sunflower provides remarkable 

advantages, such as neutral smell, minimal coloring, lower melting point, or higher 

purity, over the traditional oleic acid sources (Käb, 2001). 

 

Table 1.1: Fatty acid composition of different oleic acid sources. *FA= Fatty Acid 
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HO-Sunflower Oil 80-92 3-10 0 2 4 1 

HO-Rapeseed Oil 75-85 6-11 3 1-2 4 1.7 

HO-Soybean Oil 75-82 2-5 2-5 3-5 6-10 0.7 

HO-Safflower Oil 75-85 14-16 0.3 1 5 0.7 

Olive Oil 73-78 9-11 0.5 3-5 10 0.7 

00-Rapeseed Oil 55-60 19-22 10 1-2 4.5 2-3 

Palm Oil 36-40 11-12 0.4 4.4 39.8 1-2 

Tallow (Fat) 36-40 4-5 0.7 20 26 11 

Tallow-Oleine (FA*) 60-70 8-12 1 1.5 3-5 13 

Palm Oleine (FA*) 47-50 13-14 0.3 3.2 31.5 2.1 

Source:  Käb, 2001, Gülzower Fachgespräche, Band 19 
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The high oleic sunflower plant needs similar growing conditions as conventional 

sunflowers. Nevertheless, there are some minor differences in cultivation of this type. 

The high oleic sunflower plants need a two weeks longer vegetation period. The seed 

yield potential of high oleic type is in general slightly lower than the regular type. Late 

ripening varieties give higher seed yield, but therefore are under higher risk of getting 

infected by the late fungal diseases.  

 

1.3 Expanding HO sunflower production area in Germany - leading studies 

The largest production area for high oleic sunflower appears in USA with 100,000 ha 

HO sunflower cultivation annually, followed by France (30,000-50,000 ha/year) and is 

primarily for the food industry. In Germany, sunflower oil with high oleic acid content 

used mainly in oleo-chemical industry. Production area showed an increasing trend 

in 2001-2002 up to 7-8 thousand ha in Germany. However it is still a less important 

oil plant in comparison to rape seed and linseed production. The main reason for this 

low interest in HO sunflower production from the farmers’ point of view is the yield 

instability which is mostly related to the agricultural constraints and lack of know-how.  

 

Crop Science Institute of Federal Agricultural Research Centre (FAL) in 

Braunschweig coordinated two previous projects with the object to secure yield and 

increase HO sunflower production in Germany. The first “model” project was 

promoted by Federal Ministry of Food, Agriculture and Consumer Protection 

(BMELV) in order to encourage HO sunflower production under the title “Expanding 

HO sunflower production in Germany” in 1997-2000. The aim of the project was to 

expand the production area and to develop new markets for the high oleic sunflower 

oil by targeting good prices for the high quality oil which shall attract the sunflower 

producers (Schlüter, 2001). In deed, the production area was significantly increased 

in 1998 and 1999 in correlation with the higher prices. However, price decrease in 

high oleic sunflower oil in 2000 caused a dramatic reduction in production area. The 

model project also showed that production risk caused by inconstant yields is also an 

important reason for the lack of interest from producer’s point of view. Project 

coordinator Dr. Schlüter points at 3 important aspects in HO sunflower production to 

be improved. A fast quality measurement method, well adopted varieties, and stabile 

yield through agricultural measures.  
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The second project on HO sunflowers coordinated by the Crop Science Institute was 

partially promoted by UFOP in 1998-2000 under the title “Yield security in HO 

sunflowers through agricultural measures”. The main objective of this project was to 

stabilize the grain yield which is mainly affected by the insect and fungal disease 

attacks as well as the late ripening behaviour of HO sunflowers. On the field, driving 

through paths were established to be able to apply the fungicide at the late 

vegetation period.  

 

1.4 Cultivation of HO sunflowers under climatic conditions of central Europe 

Environmental effects  

Sunflower is a C3 plant and adapts best to the temperate. It requires adequate light, 

has tolerance to both cold and high temperatures that contributes to sunflower’s 

adaptation in different environments (Robinson, 1978). However, in general, 

sunflowers grow best in dry and warm regions where sum of temperature reaches 

1500-1700°C in the cultivation period (Hugger, 1989). Its characteristics make the 

sunflowers suitable to the southern Europe climatic conditions. Sunflower’s 

adaptation decreases northwards starting from central Europe, which includes 

northern Germany.  

 

Sunflower is classified as a very sensitive crop to environmental influences 

(Diepenbrock, 1995). Environmental factors affect the yield and quality traits of 

sunflower seeds (Ahmad, 2001). Yield parameters such as number of full achenes 

and the achene weight (Rawson et al., 1984) as well as the oil yield (Dompert and 

Beringer, 1976) react negatively to high temperature (above 30°C). Temperature is 

also the main environmental factor affecting oil quality (Tremolieres et al., 1982). It is 

also reported in HO sunflowers that environmental factors, especially the soil 

characteristics, are the determining factors in grain yield (Vetter, 1996). HO type 

sunflowers have a comparable yield potential to the commercial type sunflowers 

(Müller-Sämann et al., 2003). However, mainly climatic factors hinder its production 

in cooler temperate climate zones including Germany. In contrast to the main 

sunflower production regions in subtropical or Mediterranean zones, main constraint 

in Germany, regarding climatic factors, is the cold and wet weather conditions during 

germination and late maturing. Therefore its cultivation in Germany is considered to 
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be problematic (Graf et al., 1999) and stabilizing seed yield and quality are the main 

objectives to the agricultural practices. Furthermore, high temperatures are 

necessary for high oil and oleic acid yield (Reinbrecht, 2003). 

 

Critical points at sowing and early plant development stages  

Actual HO sunflower varieties germinate satisfactory only above 10ºC soil 

temperature, although studies showed that there are inbred lines that germinate 

already at 8ºC (Rühl, 2003). Cultivars germinating at low temperatures with rapid 

seedling development play an important role in stable yield achievement in HO 

sunflower production. Early germinated young plants (at 6-8 leave stage) react very 

sensitive to frost (Mielke, 2002) and therefore the yield accumulation stays risk. Wet 

and cold weather conditions also at the end of vegetation period in autumn increase 

the risk of diseases caused by fungal pathogens. The fact that HO sunflower 

varieties ripen in average 14 days later than the regular ones underlines the 

importance of early sowing time.  

 

Importance of variety selection 

Choice of correct HO sunflower hybrids is an extremely important factor for securing 

high yields. Following properties are to be considered in variety selection for oil-type 

sunflower production in Germany; high grain yield potential, high oil percentage, high 

oleic and low stearic acid content, disease resistance, early maturation (Hugger, 

1989; Müller-Sämann et al., 2003).  

 

Commercially, there are two types of HO sunflower varieties available in Germany 

representing different oleic acid levels of the oil seed. The seed oil of 80+ HO 

sunflower varieties contains over 80 percent oleic acid, whereas the 90+ varieties 

achieve over 90 percent oleic acid (UFOP, 2003). 

 

Fungal diseases and their control 

The most important fungal diseases of sunflowers in Germany are Sclerotinia 

sclerotiorum (Lib.) de Bary, often called the “white mold” fungus, and Botrytis cinerea  

(Schlüter and Rühl, 1999). Sclerotinia disease is spread over all climate zones 

(Masirevic and Gulya, 1992; Porter and Clarke, 1992; Kedera, 1997; Leite et al., 
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2000; Huguet and Heiland, 2000) and can infect any part of the plant at any growth 

stage regardless of the weather conditions (Gulya et al., 1997). Sclerotinia fungus 

has a wide range of species including rape seed, tobacco, soybean, several 

vegetable and leguminous species as well as of herbs (Hugger, 1989; Kandel, 2006). 

Predominantly three diseases, Sclerotinia wilt, middle stalk rot and head rot, are 

recognized in the field (Nelson, 2000). Sclerotinia wilt is caused by soilborne fungal 

bodies, so called “sclerotia”, that infect primarily the plant roots and penetrates 

directly into the stem. This type of infection occurs only at high sclerotia intensity in 

the soil and primarily is a result of not adequate crop rotation (Hugger, 1989).  

 

Sclerotinia head rot and mid-stem infections are caused by airborne ascospores of 

fungus produced by carpogenic germination of sclerotia under saturated soil moisture 

conditions (Rashid, 2004). Stalk rot usually appears in the middle or upper portion of 

the stalk while head rot often starts as spots on the receptacle (Kandel, 2000). Both 

infections can result complete death of the plant. Sclerotinia head and stalk rot occur 

mainly in cold and wet regions (Hoffmann and Schmutterer, 1999) and are the most 

common infection type in central Europe (Schuster, 1993; Schöber-Butin et al., 

1999). Sunflowers are most susceptible to Sclerotinia head rot from full flowering until 

beginning of ripening (Duncan et al., 2003). It causes reductions in yield components 

(Gulya et al., 1989) and oil content as well as composition (Lazar et al., 1986, Chahal 

et al, 1988).  

 

Botrytis cinerea, also called “gray mould”, is a fungus disease which infects a wide 

range of annual and perennial plants. It causes infections on several parts of the 

plant such as flower parts, leaves, buds, shoots, seedlings and fruits (Schuster, 

2007; Hugger, 1989). Botrytis can attack the plant at any growth stage; however it 

preferably infects sunflowers through the conidia (infectious spores) at the end of 

flowering and ripening which causes the highest yield losses (Hugger, 1989; LfL, 

2006) as well as reduction in oil quality (CETIOM, 1989). Wet or humid weather is 

highly favourable for the spread of the disease and therefore appears mostly in 

humid autumn (Dieraurer, 2000). Botrytis disease occurs more intensively in humid 

areas of Northern Germany, but its damage on plants is less than of Sclerotinia 

diseases (Hoffmann and Schmutterer, 1999; Schöber-Butin et al., 1999). 
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Control of Sclerotinia and Botrytis diseases  

Conventional measures against Sclerotinia diseases include chemical control, 

disease resistance by breeding, and cultural control (Bardin and Huang, 2000) such 

as suitable crop rotation and selection of adequate production location (Mielke, 

2002). A 3-6 year of cultivation pause can significantly reduce the sclerotia intensity 

in the soil (Termorshuizen, 2002; Mielke, 2002). By choosing early maturing cultivars 

and/or early sowing date, early ripening of the sunflower heads in cold and wet 

autumn in temperate climates can be enhanced and thus head and stem rot of 

sclerotinia can be reduced (Clarke et al., 1992; Slatter, 1992). The level of resistance 

to Sclerotinia (Feng, 2006) and Botrytis in actual sunflower hybrids is inadequate. 

Some resistance to Sclerotinia wilt was observed among various inbred lines (Huang, 

1980) and hybrids (Huang, 1980; Rashid and Dedio, 1992). Also some inbred lines 

with a high level of resistance to Sclerotinia head rot could be identified in high oleic 

sunflowers (Rönicke et al., 2005). Yet the level of resistance to Sclerotinia in current 

sunflower hybrids is inadequate (Feng et al, 2007). To date no complete sclerotinia 

resistance is known in cultivated sunflower, although quantitative reactions against S. 

sclerotiorum have been described (Tourvieille de Labrouhe et al. 1996, Degener et 

al. 1998, 1999, Hahn 2002). 

 

The chemical control of Botrytis by Dichlofluanide or Thiophanatmethyl+Maneb, if 

sprayed at beginning of flowering, is successful only to some extend (Zimmer and 

Hoes, 1978). Selecting early maturing cultivars and/or early sowing might help 

preventing Botrytis attack (LfL, 2000). Suitable crop rotation and selection of suitable 

production location is suggested as a control method also against Bortytis (Hoffmann 

and Schmutterer, 1999).  

 

There is no fungicide registered for control of fungal diseases on sunflower in 

Germany. Folicur is a broad spectrum fungicide with special strength against 

Sclerotinia but shall also effect on Botrytis (Bayer, 2004). Commonly it is 

recommended in oil seed rape cultivation. It is reported by the producer that besides 

disease control, it shows also useful growth regulatory effects in rape by its use in 

autumn. 
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1.5 Alternative agricultural approaches in HO sunflower cultivation 

Sunflowers cultivation in Germany is associated with number of constraints affecting 

its yield and oil quality. Unsuitable weather conditions have influence on yield and 

quality factors directly or indirectly through heavy fungal susceptibility. Since yield 

and quality reduction due to fungal disease damage takes the first place in 

production constraints, it is important to screen potential disease control measures. 

Lack of registered fungicides against fungal diseases in sunflower makes the disease 

control even more problematic. Currently, biocontrol agents inducing systematic 

acquired resistance (SAR) in order to provide a wide range of control mechanism 

against diseases are a main object of research worldwide. Alternatively, a bacterial 

mixture as soil treatment is being tested with the aim of achieving healthy and high 

yielding stands in Europe. Furthermore, a N fertilization method based on the 

injection of an ammonium based solution is also being discussed by researchers with 

the aim of optimal plant nutrition from cultivation and economical point of view as well 

as achieving healthy stands.  

 

Systematic acquired resistance (SAR) by Acibenzolar-S-methyl (BTH)  

The biological phenomenon “induced resistance” (IR) has been introduced as an 

alternative or a complementary crop health management approach for conventional 

protection methods. The IR is in its broadest sense the control of a wide range of 

microorganisms like fungal pathogens or pests by activation of genetically 

programmed plant defence mechanisms (Kogel and Langen, 2005). In most plants, 

low levels of a pathogen inoculum naturally trigger a resistance response – much like 

the human body’s immune system mobilizes to fight a disease (Syngenta, 2001). 

This resistance may be expressed locally at the site of inoculation (local resistance) 

or it can also be triggered throughout the whole plant which is called “systematic 

acquired resistance” abbreviated as SAR (Sticher et al, 1997). SAR can be induced 

in plants by synthetic chemical agents (Malamy et al., 1990; Zeller et al., 2002). 

Several biocontrol agents have been shown to induce resistance in the plant (Baysal, 

2001). A chemical with the property of inducing resistance systematically is the 

benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl Ester (acibenzolar-S-methyl) 

which is also often called BTH commercialized under the trade mark Bion® 

(Kessmann et al., 1996).  
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Bion®, is a selective, systemic compound used for the disease control in many crops 

by activating the plant’s natural resistance mechanisms. It induces host plant 

resistance and has no direct activity against target pathogens. Resistance inducing 

agent Bion is a product of the company Syngenta. Induced resistance derived by 

BTH was reported against several fungal diseases (Kessmann et al., 1994; Ruess et 

al., 1995; Oostendorp et al., 1996; Baysal, 2001) in different plants (Benhamou, 

1998; Huang, 2000; Soylu, 2003), but only some in sunflowers (Buschmann, 2002; 

Fan, 2003; Prats et al., 2002). Zeller (1999) reported high decrease in fire blight 

disease rate by the plant activator Bion® in pear fruit. In sunflowers, BTH provides 

good protection against Plasmopara helianti (Tosi, 1999) and against Orobanche 

cumana (Sauerborn, 2001). BTH was also effective controlling Sclerotinia disease in 

soybean (Dann, 1998).  

 

Injection of ammonium based liquid fertilizer 

In conventional broadcast fertilization, mineral nitrogen is applied to the soil surface 

primarily in form of nitrate in number of splits. The broadcast nitrate fertilization 

associates with some ecological and economical disadvantages. Fertilization has to 

be repeated during the vegetation period depending on the N demand of the plant 

which leads to physical damage of the plant leaves as well as the soil. Nitrogen 

applied as NH3 is rather instable in the complete soil profile. N losses occur easily 

through leaching, denitrification, and votalization accompanied with environmental 

and atmospheric pollution, as well as economical losses (Sommer, 1992, 2001; 

Kücke, 2001).  

 

An alternative fertilization method was developed by Prof.Dr. K. Sommer in order to 

overcome the disadvantages of conventional fertilization method. In contrast to the 

broadcast application of N fertilizers, in this alternative method ammonium based 

fertilizer solution is placed by injection locally to the root zone. Subsurface placement 

of the liquid fertilizer method is called CULTAN (Controlled Uptake Long Term 

Ammonium Nutrition) in Germany. The nitrogen nutrition source for the plants by this 

method is mainly ammonium instead of nitrate as common application form. 

Ammonium is reported to be the “better” nitrogen form for crops, if applied correctly 
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(Sommer and Mertz, 1974). Principally, ammonium based solution is injected in liquid 

form 4-10 cm deep, depending on the crop, into the soil and forms a high 

concentrated spot. The plant roots create a dense root-net around this ammonium 

hotspot (Kücke, 2006). Only a part of the plant roots are directly in contact with the 

spots at the surface of the ammonium deposits due to its phytotoxicity, and can take 

up the nitrogen throughout the vegetation period as needed (Sommer, 2001). Thus, 

the total required nitrogen for the crop can be applied in one treatment which will also 

prevent losses through leaching and nitrification (Sommer, 1992).  

 

This plant nutrition method shall also lead to more yielding and vital plants in addition 

to its ecological benefit by mainly hindering nitrate leaching and reducing plant 

nutrition costs. In response to liquid fertilizer injection, cereals shows in general 

similar or high grain yield in comparison to the conventional broadcast fertilization 

(Sommer and Fischer, 1993; Weimar, 2001). Yield increases with this alternative 

fertilization method were reported for potato (Weimar, 2001; Schumacher, 2001), as 

well as for winter wheat and winter barley (Kücke, 2001). Blanke and Bacher (1999) 

indicated reduction in any pathogen infection potential due to the increase in light 

reflectance in cabbage.  

 

Mikro-Vital 

Recently, a new bacterial fertilizer, called “Mikro-Vital”, has been developed by 

Hungarian researchers. The Mikro-Vital is a liquid product consisting nitrogen and 

phophorus mobilizer bacteria. This bacterial mixture contains 50% Pseudomonas, 

25% Azotobacter and 25% Azospirillum strains. These microorganisms in part 

transfer N from the air into the soil in a form that is usable by plants; an average of 60 

kg N per hectares depending on the type of the soil and the vegetal residue of 

peduncle and mobilize the phosphorus absorbed between the crystal-lattices of the 

soil (180 mg P/kg soil depending on the type of the soil) and they make it available 

for the plant (BIO-NAT Kft, 2005). In parallel, other bacteria stocks decompose the 

organic surpluses in the soil and increase the quantity of the soil’s organic colloids, 

the ability of providing nourishment, the capacity of water, the volume of interstice, 

the airiness, and decrease the solidness of the soil. It is reported by the producer that 

it additionally provides a disinfection effect with an increase of the fertilizer 
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concentration. It was also proven by the producer that it disinfects the sclerotia of 

Sclerotinia sclerotiorum in the soil and decreases the infection level of Fusarium ssp. 

There is still on-going research on Mikro-Vital in Europe, but only limited information 

and research results are available until now. Nevertheless, the product is 

commercially available on the market since 1997 and widely used by farmers in 

Hungary.  

 

1.6 Objectives  

Unstable yield and oil quality as well as fungal disease susceptibility under central 

European climatic conditions are the main constraints for the HO sunflower 

production. Correct agricultural approach selection plays the most important role in 

order to stabilize the yield and quality. An integrated project financed by the Agency 

of Renewable Resources (FNR) was initiated in 2003 to identify plant production 

measures to extend the production area of HO sunflowers in Germany. In this 

respect, it is essential to screen alternative agricultural approaches that ensure stable 

kernel and oil yield, desired oil composition, and secure healthy plant development in 

the predominantly wet autumn, since HO sunflowers mature late under central 

European climatic conditions.  

 

Research objectives of this project are as following;  

a) Determine how different locations representing different climatic conditions for 

sunflower production affect HO sunflower yield and quality,  

b) Screen the potential of different HO sunflower varieties representing different 

maturity classes at two locations in Germany, 

c) Examine alternative agronomic approaches in order to achieve stable yield and 

oil quality as well as to reduce fungal disease severity. The following alternative 

applications will be focused on:  

� In order to screen any possible effect of fungicides on HO sunflowers, a 

representative fungicide, Folicur®  is tested 

� As an alternative disease control method, the resistance inducing agent, 

BTH, commercially known as Bion®, is examined under field and 

greenhouse conditions to figure out its effect on HO sunflowers, 
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� A bacterial mixture, Mikro-Vital, as soil treatment is tested in order to 

screen its effectiveness as plant nutrition and soil disinfection method 

against soil-borne fungal infections 

� Injection of ammonium based liquid fertilizer instead of conventional 

broadcast fertilization, is tested for its efficacy as plant nutrition method 

and/or for its ability to promote more vital stands. 

d) Explain the development of the fungal pathogens by screening sugar content of 

the plant parts during the late vegetation period, since fungal pathogens use 

sugar as the main nutrition source in the plant. 

 



 

 

 

 

 

2 
 

MATERIAL AND METHODS 
 

2.1 FIELD EXPERIMENTS  

A preliminary field experiment was conducted with three replications in 2002 on 

the experimental fields of the Federal Agricultural Research Centre (FAL) at 

Braunschweig. The aim of the preliminary experiment was to figure out, whether or 

not selected agricultural approaches in this study have potential in stabilizing yield 

and oil quality of HO sunflowers. The preliminary experiments consisted of two 

experimental fields that were located 100 m apart from each other. Soil properties of 

both fields were very similar. On the Field-1 Galega officinalis L. (Leguminosae) was 

grown in 2000 followed by maize in 2001. Rye, lupine and grass was grown on the 

Field-2 in 2000 and maize in 2001.  

 

The main field experiments were established at two locations, at Braunschweig 

(north Germany) and at Eckartsweier (south Germany). The different variants were 

set up in 3 (2003) or 4 (2004-2005) replications. 

 

All experiments were conducted in randomized block design with 2.5 m x 8.0 m plots. 

Number of replications as well as sowing and harvest dates is given in Table 2.1. All 

plots except of the liquid fertilizer experiments were supplied by 60 kg N/ha at 

Braunschweig and 80 kg N/ha at Eckartsweier. In order to avoid losses through bird 

attack, the plots were covered with polyester mashes at the onset of fruit 

development (Figure 2.1).  
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Table 2.1: Sowing and harvest dates in the field experiments. 

Field experiments Year 
Experimental 
site *Rep. 

Sowing 
date 

Harvest 
date 

Preliminary experiments 2002 Braunschweig 3 08.May 1-20 Oct 

Main experiments 2003 
 

Braunschweig  
Eckartsweier  

3 28-29 April 
29 April 

8-19 Sept 
09 Sept 

 2004 
 

Braunschweig  
Eckartsweier 

4 28-29 April 
29 April 

8-19 Sept 
09 Sept 

 2005 Braunschweig  
Eckartsweier 

4 25 April 
11 May 

4-13 Sept 
27 Sept 

*Rep: Replications 

 

 

Figure 2.1: HO sunflower fields covered with nets at fruit development stage against 
bird attack. 
 

2.1.1 Experimental sites 

The experimental fields of the FAL at Braunschweig (52°17` N latitude, 10°26`E 

longitude, 80 m altitude) represent, from climatic point of view, a marginal site for 

sunflower cultivation with sandy loam soil.  

 

Additional field trials were conducted at a location in Southern Germany, at 

Eckartsweier (48°7` N latitude, 7°50` E longitude, 140 m altitude) on a silty loam soil. 

The field experiments at Eckartsweier were established and managed by the State 

Plant Breeding Institute of University of Hohenheim in Stuttgart.  
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2.1.2 Weather Data  

Braunschweig: Climatic data of the experimental site Braunschweig were obtained 

from the Agronomical Research Centre Station of the German National 

Meteorological Service within FAL. Uncommon heavy rainfall was recorded in 2002 

while it was extraordinary warm and dry in 2003 (Figure 2.2). The highest monthly 

rainfall in 2002 was recorded in July (225 mm) which corresponds the mid-vegetation 

period for HO sunflowers in Europe. The highest value for total monthly rainfall in 

2003 was achieved in September with 94 mm. In comparison to the first two years, 

2004 and 2005 were moderate years with most rain at the end of the vegetation 

period and relatively higher air temperature. The highest total monthly rainfall for 

2004 and 2005 was 116 and 80 mm, respectively, in both cases in July.  
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Figure 2.2: Monthly total rainfall and average air temperature at Braunschweig 
during vegetation period in 2002.  
 

Eckartsweier: Generally, 2003 was a moderate year at the beginning (May-July) and 

drier at the late vegetation period (August-September) at Eckartsweier (Figure 2.3). 

Total monthly rainfall for this period was 63.4, 44.5, 92.7, 31.4 and 36.1 for May, 

June, July, August and September 2003, respectively. 2004 showed in comparison to 

2003 slightly higher rainfall with 287 mm in total. However, the highest precipitation 

was recorded later in the vegetation period in August. 2005 was the wettest year with 

320 mm in total during the whole vegetation period.  
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Figure 2.3: Monthly total rainfall and average air temperature at Braunschweig and 
Eckartsweier during vegetation period in 2003-2005.  
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2.1.3 Plant Material 

Three HO-sunflower varieties, Aurasol (Monsanto), Olsavil (Pioneer) and PR64H61 

(Pioneer), representing different ripening classes, were used for the study. All 

varieties selected for this study have around 90 % oleic acid. “Olsavil” is a late 

ripening variety with the highest oleic acid content. It presents high and stable yield, 

long plant height, high oil content, and good tolerance against diseases. “PR64H41” 

belongs to the mid-ripening class with high oil yield, short plant height and also good 

tolerance against diseases. The variety PR64H61 from Pioneer was used in the 

preliminary experiment instead of PR64H41. “Aurasol”, the only variety from 

Monsanto, is also mid-early type with moderate plant height. It was reported by the 

seed producer Dekalb that Aurasol shows very good resistance against fungal 

attacks especially against head sclerotinia and botrytis.  

 

2.1.4 Applications 

The resistance inducing product Bion, ammonium based liquid fertizer injection and 

bacterial mixture Mikro-Vital were tested on three HO-sunflower varieties. All 

applications were compared to untreated and conventionally fertilized (60kg N/ha) 

control plots. A fungicide application with Folicur from Bayer was also tested in all 

experimental years. Each application included different concentrations of the 

treatment medium as well as different application times, which are explained in detail 

in corresponding sub-chapters. Application times are presented as BBCH codes, 

which are shown in Figure 2.4. 

 

 

 

Figure 2.4: Phenological growth stages of sunflower and corresponding BBCH 
identification keys (Source: BBA, 2001).  

Sowing:  
End of April 

00 10 12 14 18/32 53 57 59 61 65 79 89 92 

Harvest:  
Mid-October 
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2.1.4.1 Fungicide application 

The foliar fungicide tebuconazole (Folicur, a.i. 430 g/l, Bayer) was applied 1 L/ha 

concentration with a conventional fungicide sprayer at full flowering stage (BBCH 65) 

on conventionally fertilized (60 kg N/ha) plots.  

 

2.1.4.2 Plant activator Bion  

Benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl-ester (BTH) formulated as 

Bion was obtained from the company Syngenta, Basel, Switzerland. It was applied 

as seed treatment as well as foliar spray. Treatment of HO sunflower seeds were 

done by using beer as sticking agent. Bion as foliar spray application was carried 

out with a conventional crop sprayer. Five different developmental stages were 

chosen for application time; emergence (BBCH-Code 09), 6 leaves unfolded (BBCH-

Code 16), inflorescence emergence (BBCH-Code 51), full flowering (BBCH-Code 

65), and end of flowering (BBCH-Code 69). The plants were sprayed with a water 

suspension of Bion at following concentrations: 10, 125 and 250 ppm, prepared 

from a wettable formulation containing 50% (w/w) active ingredient. Application 

scheme for the plant activator, which differed in the four experimental years, is listed 

in the Table 2.2 in detail.  

 
Table 2.2: Application scheme of the plant activator Bion  in the field experiments. 
   APPLICATION TIME 
METHOD YEAR  DOSES  DESCRIPTION   CODE 
Bion Seed Treatment 2002-2005   25ppm 

250ppm 
  

Bion Foliar Application 2002   10ppm 
125ppm 
250ppm 

inflorescence 
emergence 
full flowering 

BBCH-51 
BBCH-65 

 2003   10ppm 
125ppm 
250ppm 

emergence 
6 leaves unfolded 
inflorescence 
emergence 
full flowering 
end of flowering 

BBCH-09 
BBCH-16 
BBCH-51 
BBCH-65 
BBCH-69 

 2004   10ppm 
125ppm 

emergence 
6 leaves unfolded 
full flowering 

BBCH-09 
BBCH-16 
BBCH-65 

 2005   10ppm 
125ppm 

emergence 
6 leaves unfolded 
full flowering 

BBCH-09 
BBCH-16 
BBCH-65 
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Figure 2.5: Application of the plant activator as foliar spraying on HO sunflower plots 
with crop sprayer at full flowering stage (BBCH 65) 
 

2.1.4.3 Ammonium based liquid fertilization  

The alternative fertilization method, injection of a ammonium based liquid fertilizer, 

also called CULTAN “Controlled Uptake Long Term Ammonium Nutrition” was 

investigated for 3 years during this study. In the preliminary experiments, two 

available approaches were tested to apply the ammonium based liquid fertilizer to the 

soil. The first approach was “surface application” of the liquid fertilizer, in which the 

fertilizer solution is between the rows brought to the soil with special pipes that were 

pulled over the surface of the field. The second method is based on injection of the 

ammonium solution into the soil with “point injector” carrying wheels (Figure 2.6a). In 

the main field experiments from 2003 to 2004, an improved “closed-band-injection” of 

liquid fertilization was used (Figure 2.5b). In this method, ammonium solution was 

placed around 12 cm deep below the surface on a continuous line and immediately 

covered with soil.  

 

The detailed application scheme for this liquid fertilizer application and its 

combination with Bion is listed in Table 2.3. Plants were supplied with liquid fertilizer 

as three different concentrated solutions; urea ammonium nitrate (UAN), urea 

ammonium nitrate with nitrification inhibitor (UAN-N) and urea ammonium sulfate 

(UAS). Different nitrogen concentrations were selected for this study based on the 
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recommendations in conventional practices. Regarding soil property at the 

experimental site Braunschweig, 60 kg N/ha fertilizer solution is recommended. In the 

preliminary experiments, which was carried out only at Braunschweig, three N 

concentrations were tested, recommended N amount (60 kg/ha), 20% reduced N 

amount (48 kg/ha), and 20% increased N amount (72 kg/ha). In the main field 

experiments, 20% increased N amount was excluded from the application scheme. In 

Eckartsweier, recommended N/ha is 80 kg. Regarding the recommendation for this 

site, two N levels, 80 kg/ha and 64 kg/ha, were tested in liquid fertilizer applications.  

 

 

 

                    
 
Figure 2.6: Two different methods for injection of the liquid fertilizer (a) the point 
injection (b) closed-band injection. 
 

Table 2.3: Application scheme of the liquid fertilization method in the field   
experiments. 
    APPLICATION TIME 
METHOD YEAR  SOLUTION  N/HA DESCRIPTION CODE 
Surface application 
 

2002 UAN 48 kg  
60 kg  
72 kg  

emergence 
 

BBCH-09 

Point Injection 2002 UAN 48 kg  
60 kg  
72 kg  

emergence BBCH-09 

Closed-band-injection 2003 UAN 
UAN-N 
UAS  

48 kg  
60 kg  

6 leaves unfolded 
stem elongation 

BBCH-16 
BBCH-30 

Closed-band-injection 2004 UAN 
UAN-N 
UAS 

48 kg  6 leaves unfolded BBCH-16 

(a) (b) 
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Additionally to the liquid fertilization methods, its combination with the plant activator 

Bionwas included to the experiments in 2003. UAN (48 kg N/ha) was mixed with 

Bion and injected to the soil, offering the plant activator to be taken by the plant 

roots. In the first year of this combination, the plant activator was mixed to the liquid 

fertilizer solution in 4 different concentrations: 250, 500, 1000, and 2000 ppm at 

BBCH16 (Table 2.4). In 2004, only the two lower N concentrations were applied 

since the higher concentrations were economically not reasonable. But therefore the 

mixed solution was tested additionally at a late growth stage (BBCH-30: beginning of 

stem elongation) 

 
Table 2.4: Application scheme of liquid fertilization including Bion in the field 
experiments. 
   APPLICATION TIME 
METHOD YEAR  Bion

 DOSES  DESCRIPTION CODE 
UAN + Bion  

(Closed-band-injection) 
2003   250 ppm 

  500 ppm 
1000 ppm 
2000 ppm 

6 leaves unfolded BBCH-16 
 

 2004   250 ppm 
  500 ppm 

6 leaves unfolded 
stem elongation 

BBCH-16 
BBCH-30 

 

2.1.4.4 Mikro-Vital applications  

The bacterial mixture Mikro-Vital consists of three microorganisms (Pseudomonas, 

Azotobacter, Azospirillum), and is available at the company Bio-Nat Kft. in Hungary. 

According to the recommendation by the company, 1 liter Mikro-Vital per hectare was 

diluted into 400 liters water before application to the soil. Mikro-Vital solution was 

sprayed over the prepared soil just before sowing, and immediately mixed 5-6 cm 

deep into the soil in 2003 to 2005. In addition to the Mikro-Vital application, its 

combination with the plant activator Bion was tested in 2004 and 2005. In these 

plots, the soil was treated with Mikro-Vital solution prior to seeding and foliar treated 

with 125 ppm Bionat 6 leaves stage (BBCH 16).  
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Table 2.4: Application scheme of the liquid fertilization and Bion combination in the 
field experiments. 
   APPLICATION TIME 
METHOD YEAR  CONCENTRATION  DESCRIPTION CODE 
Mikro-Vital 2003-2005 1L/ha at soil preparation  - 
Mikro-Vital+ Bion 2004-2005 1L/ha + 

125ppm 
6 leaves unfolded BBCH-16 

 

2.1.5 Field evaluation and data collection  

Evaluation of the fungal infection by the pathogens Sclerotinia and Botrytis was 

carried out 3-4 times in 2-3 weeks intervals starting from beginning of the flowering 

and until the end of vegetation period just before harvest. Number of plants of three 

rows showing any infection symptom was recorded and calculated as percent per 

plot.  

 

All samples were harvested per hand. Grain yield was determined on total harvested 

heads, calculated as dt/ha and adjusted for 9% seed moisture. Yield related traits 

(Table 2.5) were determined on 20 plants standing next to each other in the middle 

row of the plots.  

 

Table 2.5: Evaluated parameters in the evaluation for the field experiments  
PARAMETER DESCRIPTION  

Fungal infection rate [%] % infected plants in a plot 
Yield related traits  

Grain yield [dt/ha] Calculated on plot yield (9% seed moisture) 
Plant height [cm] Averaged on 20 plants in middle row 
Head diameter [cm] Averaged on 20 plants in middle row 
Thousand seed weight [g] (TSW) Evaluated on representative samples from total 

harvested seeds 
Oil quality parameters Evaluated on representative samples from total  

Oil content [%] harvested seeds 
Oleic acid [%]  
Linoleic acid [%]  
Stearic acid [%]  

Sugar components Averaged on 10 selected plants in a plot 
Fructose [%]  
Glucose [%]  
Sucrose [%]  
Rest soluble carbohydrates [%]  
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For the oil content and fatty acid analysis, seeds from total harvest plots were mixed, 

and representative samples were taken. For sugar analysis, additional plots were 

established. 10 plants per plot were harvested, segmented, and analyzed for sugar 

content and components.  

 

2.1.6 Chemical analysis  

Oil analysis  

Sample preparation: Harvested seeds were mixed, ground with an herb mill and 

stored cold. 300 mg per sample was weighted into the centrifuge glass tubes for the 

analyses. 3 ml petroleum benzene (boiling point 40-60°C) was added to the tubes, 

closed with a lid. The samples were extracted for 20 min in an ultrasound bath and 

then centrifuged (Sonorex Super Digital 10P). 1 ml of the surface liquid were pipetted 

and transferred to a reaction tube. 20µl sodium methylate (diluted in 1.7 ml 2 mol/l 

methanol; CH3ONa is as 5.4 mol/l commercially available) was added to the tube for 

deesterification and shaken for 15 sec. After a minimum of 15 min of incubation time, 

water free calcium chloride was added with the point of a spatula and shaken. The 

surface liquid was transferred into the glass vials and made ready for gas 

chromatography (GC) analysis.  

 

Analysis: The fatty acid spectrum was determined using a HP 5890 Series II plus gas 

chromatograph fitted with an automatic sampler (HP 7673) for a split-type injection 

(280°C), a flame ionisation detector (FID) at 270°C and an isotherm oven (220°C). 

The GC was equipped with a 30 m AT-Silar capillary column (Alltech, 0.25 mm I.D., 

0.25 µm film thickness. No.: 13855). 40 ml/min nitrogen (N2) was used as carrier gas.  

 

Soluble sugar analysis 

Sample preparation: 5 plants per plot of the variety Aurasol in 2002 were hand 

harvested within the border rows of the control plots. In 2003, 10 plants per plot of all 

three studied varieties were also hand harvested in additionally established plots.  3 

sampling dates in 2002 (118, 145 and 159 days after sowing) and 5 sampling dates 

in 2003 (66, 79, 86, 109 days after sowing) were selected. Since there were both 

green and ripe plants 159 days after sowing in 2002, those were analyzed 

separately. Plants were cut into segments of a length of 30 cm starting from the 
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bottom. Each segment was cut vertically into a half and than horizontally into small 

peaces. The sunflower head was separated to four parts as receptacle centre, inner 

and outer disc and the seeds (Figure 2.7). The three head parts were also cut in 

small peaces. The samples were packed in plastic bags and immediately stored at -

20 ºC. For the analysis, samples were freeze-dried and ground to fine powder.  

Receptacle 

Inner disc

Outer disc 

 

 

Figure 2.7: Sunflower head parts used for sugar analysis.  

 

Analysis: Fructose, glucose, sucrose, and the rest water soluble carbohydrates were 

analyzed. 1.00 g per sample was weighted into 50 ml flasks. Distilled water was 

added to about 50 % volume, shaken for an hour to dissolve free sugars and filled up 

to 50 ml level. The mixture was filtered and the filtrate was poured into vial bottles. 

Sugar analysis was done by using an isocratic High Performance Liquid 

Chromatography (HPLC) of Kontron Instruments with a column Rezex RPM (300 x 

7.8 mm, Phenomenex) and RI-detection (ERMA ERC-7512) with distilled water as 

solvent at a flow rate of 0.6 ml/min at 60 ºC temperature.  

 

2.1.7 Statistical analysis  

All statistical analyses were done by the General Linear Model (GLM) procedures of 

the Statistical Analysis System (SAS) software version 8.1 (SAS Institute, 1999). All 

yield and quality parameters as well as the fungal infection rate data were analyzed 

separately for years and sites, as the concentration and the application time of the 

treatments differed. Differences between treatments were detected by the least 

significant difference based on a Tukey Kramer’s Honestly Significant Different 

(HSD) test at the P<0.05 probability level. 
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2.2 GREENHOUSE EXPERIMENTS 

Additional to the field trials, an experiment was established in 2003 in order to 

evaluate the effect of Bion on Sclerotinia sclerotiorum infection under greenhouse 

conditions. 125 ppm Bion was tested as seed treatment and foliar application at two 

growth stages (BBCH12 and BBCH16). Ten pots with a single plant of the varieties 

Aurasol and Olsavil were used per treatment.  The greenhouse conditions were 

maintained at 14 h daylight, 20±3 ºC day and 13±1 ºC night temperatures. The plants 

were irrigated as needed.  

 

The test of Bertrand and Tourvieille (1987) was modified to determine the reaction of 

sunflowers to artificial infection by Sclerotinia. At five different growth stages, with 2 

weeks intervals, starting from the first leaf pair stage, the third fully grown leaf from 

the top was infected with Sclerotinia inoculum (Figure 2.8). The Sclerotinia culture 

was supplied by the State Plant Breeding Institute Research Station in Eckartsweier. 

One cm2 was cut from the culture and placed at the extremity of the leaf. The 

mycelium was fixed with tape to the leaf. In order to keep the inoculum in a humid 

atmosphere, sprayed with about 10 ml water and covered with a transparent plastic 

bag. For data recording, the plants were observed periodically after inoculation for 

leaf lesions, diseased stems and the number of infected or dead plants. 

 

   

Figure 2.8: Artificial infection of the fully grown leaf with Sclerotinia inoculum. 
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3 
 

RESULTS 
 

3.1. LOCATION AND VARIETY EFFECT 

The locations of the main field experiments represent two different climatic conditions 

for sunflower production in Germany. The three selected high oleic sunflower 

varieties represent three different ripening classes. In the following subchapters, their 

influence on achene yield, oil content and fungal infection rate are presented.  

 

3.1.1 Changes in achene yield 

The highest yield (34.4 dt/ha at 9% seed moisture) throughout the mean of all 

varieties was achieved at Eckartsweier in dry and warm year 2003 (Table 3.1a). 

Achene yield was higher at Eckartsweier than at Braunschweig in 2003 and 2004, 

however it was only significant in 2004. In contrast to the first two years, achene yield 

was significantly lower at Eckartsweier by nearly 20% in 2005. 

 

No significant difference in achene yield between the varieties was observed in 2003, 

although the yield showed a tendency to increase from late to early ripening varieties. 

Late ripening variety Olsavil showed the lowest achene yields in all study years in 

comparison to the other the varieties. Achene yield of Olsavil was significantly lower 

in 2004 (24.0 dt/ha) in comparison to the variety PR64H41 (29.3 dt/ha), and in 2005 

(24.6 dt/ha) in comparison to Aurasol (31.3 dt/ha). The mid-early variety Aurasol 

showed higher achene yield in comparison to the moderate ripening variety 

PR64H41 and late ripening variety Olsavil, in 2003 and 2005. Achene yield of variety 

Aurasol decreased in the relatively cooler and wet year 2004.  
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Table 3.1: Mean differences for achene yield (dt/ha) in 2003-2005 between the 
locations (a) and the varieties (b) 
Factor Achene yield (dt/ha) 

 2003 2004 2005 
(a)  Locations   

Braunschweig 31.2a 24.9b 30.9a 
Eckartsweier 34.4a 28.4a 26.4b 

(b)  Varieties  
Olsavil 31.2a 24.0b 24.6b 
PR64H41 33.3a 29.3a   30.0ab 
Aurasol 34.0a   26.6ab 31.3a 

For locations and varieties, values in a column with different letters are significantly different 
at P>0.05 
 

Achene yield of all three varieties was for each experimental site as average of three 

study years is presented in Table 3.2. According to the differences in mean values, 

Olsavil showed lower achene yield at both experimental sites. Significant difference 

in yield between Olsavil and the other two varieties was observed only at 

Braunschweig. Olsavil showed with 24.3 dt/ha the lowest achene yield in comparison 

to 30.9 dt/ha in PR64H41 and 30.3 dt/ha in Aurasol. Similar results were also 

observed at Eckartsweier. Olsavil showed the lowest but the difference was 

negligible yield with 27.1 dt/ha in comparison to 29.8 dt/ha in PR64H41 and 29.5 

dt/ha in Aurasol. 

 

Table 3.2: Mean differences for achene yield (dt/ha) between the two locations 
across all varieties 
 Achene yield (dt/ha) 
 Braunschweig Eckartsweier 
Olsavil 24.3b 27.1a 
PR64H41 30.9a 29.8a 
Aurasol 30.3a 29.5a 
Values in a column with different letters are significantly different at P>0.05 
 
3.1.2 Changes in oil content and composition 

The most important quality parameters in HO sunflower are the oil content of the 

seeds and the fatty acid composition of the oil. Changes in oil content in dependence 

on the compared locations (a) and HO sunflower varieties (b) in the different study 

years are presented in Table 3.3. At the two experimental sites, the oil content varied 

between 49.3 % (Braunschweig, 2003) and 51.8 % (Eckartsweier, 2005) throughout 

the experimental years. In 2003, oil content was lower at Braunschweig than at 
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Eckartsweier. Nearly no difference in oil content at the different study locations was 

detected in 2004. Similar to the results in 2003, oil content at Braunschweig with 49.7 

% was lower than at Eckartsweier with 51.8 % in 2005. Significant difference in oil 

content between two experimental sites was only observed in this last study year. 

 

Oil content significantly differed between the varieties. In 2003, the variety Aurasol 

showed slightly higher oil content with 51.2 % in comparison to PR64H41 with 50.7 

% and Olsavil with 49.1 %. In contrast, Aurasol showed significantly lower oil content 

in 2004 with 49.7 % in comparison to Olsavil with 51.5 %, whereas 50.2 % oil was 

observed in PR64H41. Also in 2005, Aurasol showed with 49.5 %, significantly lower 

oil content in comparison to the other two varieties.  

 

Table 3.3: Mean differences for oil content (%) in 2003-2005 between the locations 
(a) and the varieties (b) 
 Oil content (%) 

 2003 2004 2005 
(a)  Locations   

Braunschweig 49.3a 50.6a 49.7b 
Eckartsweier 51.3a 50.3a 51.8a 

(b)  Varieties  
Olsavil 49.1a 51.5a   50.9ab 
PR64H41 50.7a   50.1ab 51.9a 
Aurasol 51.2a 49.7b 49.5b 

For locations and varieties, values in a column with different letters are significantly different 
at P>0.05 
 
3.1.3 Changes in fungal infection rate 

Fungal infection rate was calculated as the percentage of infected plants of the total 

number of plants irrespective of the fungal pathogen. Only 1.6 % fungal infection rate 

at Braunschweig and 1.5 % at Eckartsweier was observed in 2003 (Table 3.4a). In 

contrast, much higher fungal infection rates were observed in 2004. The average 

fungal infection rate at Braunschweig with 87.3 % was double as high as at 

Eckartsweier (40.7 %). In opposite, fungal infections were significantly higher at 

Eckartsweier than at Braunschweig in 2005. Infection rate at Braunschweig was 7.6 

% in comparison to 57.9 % at Eckartsweier.  

 

All varieties showed nearly no fungal infection in 2003 (Table 3.4b). In contrast, 

highest infection rates in the main field experiments were observed in 2004 in all 
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three varieties. The late ripening variety Olsavil, with 56.9 % in 2004 and 29.9 % in 

2005, showed lower infection rates in comparison to the two other varieties. 

PR64H41 showed the highest infection rate with 69.6 %, in 2004 and 37.8 % in 2005 

in comparison to the other varieties. Aurasol presented similar results like PR64H41 

with 65.6 % infection rate in 2004 and 30.5 % in 2005. However, the differences in 

fungal infection rate were in no case significant.  

 

Table 3.4: Mean differences for fungal infection rate (%) in 2003-2005 between the 
locations (a) and the varieties (b) 
 Fungal infection rate (%) 

 2003 2004 2005 
(a)  Locations   

Braunschweig 1.6a 87.3a 7.6b 
Eckartsweier 1.5a 40.7b 57.9a 

(b)  Varieties  
Olsavil 2.9a 56.9a 29.9a 
PR64H41 1.0a 69.5a 37.8a 
Aurasol 0.7a 65.6a 30.5a 

For locations and varieties, values in a column with different letters are significantly different 
at P>0.05 
 

3.1.4 Interactions and correlations between the experimental factors 

Variance analysis showed that the achene yield was significantly influenced 

(P<0.001) by experimental year as well as by variety (Table 3.5). Achene yield was 

also significantly changed (P<0.001) by location x year interaction. The influence of 

location as well as its interaction with the variety on achene yield was negligible. Oil 

content was significantly affected (P<0.01) by different locations but not by its 

interactions with other experimental factors. Oil content was also significantly 

influenced (P<0.01) by year x variety interaction. Fungal infection rate was 

significantly different in experimental years (P<0.001) but it was not influenced by the 

factors location, variety or its interactions. Only location x year interaction showed a 

significant effect (P<0.001) on fungal infection rate. Fatty acid composition was 

significantly influenced (P<0.001) by year, variety and its interaction. Location 

showed no significant influence fatty acid composition. However, its interaction with 

variety showed a significant effect (P<0.01) on the oleic acid content.  
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Table 3.5: Analysis of variance for factors location, year and variety 

 

 
 
DF 

Achene 
yield 

Oil 
content 

Fungal 
infection 

Oleic 
acid 

Linoleic 
acid 

Stearic 
acid 

Location 1 ns ** ns ns ns ns 
Year 2 *** ns *** *** *** *** 
Variety 2 *** ns ns *** *** *** 
Location*Year 2 *** ns *** ns ns *** 
Location*Variety 2 ns ns ns ** * ns 
Year*Variety 4 ns ** ns *** ** ** 
Location*Year*Variety 4 ns ns ns ns ns ns 
Error 42       

*, **, *** Significant at the 0.05, 0.01 and 0.001 probability levels, respectively.  

 

High correlation coefficients were revealed between the fungal infection rate and the 

achene yield as well as between the fatty acids (Table 3.6). The achene yield 

showed a significant (P<0.001) negative correlation with the infection rate. Achene 

yield was also significant (P<0.01) negatively correlated with the oleic acid percent 

but positively with the stearic acid percentage. There was a highly significant 

(P<0.001) negative correlation between the oleic acid and the linoleic and stearic 

acid content. However linoleic and stearic acid was positively correlated.  

 

Table 3.6: Pearson’s correlation coefficients between selected yield and quality 
parameters  
 Parameters (N=60) 

  
Fungal 
infection rate 

Achene 
yield Oil content Oleic acid Linoleic acid 

Achene yield -0.52***  1.00    
Oil content  0.13  0.01  1.00   
Oleic acid  0.03 -0.38**  0.07  1.00  
Linoleic acid  0.02  0.28*  0.04 -0.96*** 1.00 
Stearic acid -0.14  0.49*** -0.22 -0.82*** 0.65*** 

*, **, *** Significant at the 0.05, 0.01 and 0.001 probability levels, respectively. 
 

3.2 AGRICULTURAL APPLICATIONS  

Four different agricultural applications, a commercial fungicide, a commercial 

resistance inducing product, a new liquid fertilizer injection method, and a new 

bacterial fertilizer were tested under field conditions from 2002-2005. The field 

experiments of this study consisted of two parts;  

1) The preliminary field experiments in 2002 at the marginal site Braunschweig  

2) The main field experiments from 2003 to 2005 at two locations; Braunschweig 

and Eckartsweier.  
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3.2.1 Effect of fungicide treatment 

Changes in fungal infection rate 

Effect of Folicur®, applied at full flowering stage, on investigated agricultural 

parameters in 2002 is presented in Table A.4. Olsavil showed 100 % fungal infection 

with and without fungicide application. Variety PR64H61 showed 86 % infection with 

fungicide application in comparison to 80.2 % infection in the control plot. Aurasol 

showed the lowest infection rates in comparison to the other two varieties with 40.7 

% with control and 49.4 % with fungicide treatment. Application of the fungicide did 

not reduce the infection rate of the three compared HO sunflower varieties 

significantly.  

 

Figure 3.1 shows the fungal disease rates only for 2004 and 2005, since the infection 

rates in 2003 were much too low to show any considerable differences. At 

Braunschweig, infection rate varied from 79.0 % (Fungicide/PR64H41) to 92.8 % 

(Fungicide/Olsavil) in 2004. Fungicide application slightly decreased the fungal 

infection rate in varieties PR64H41 and Aurasol, whereas it significantly increased 

the infection in Olsavil. Fungal infection rates in 2005 were, in comparison to the 

previous year, much lower. Infection rate ranged from 18.4 % with fungicide 

application in Olsavil to 2.3 % in untreated plots in Aurasol. All varieties showed a 

slight increase in fungal infection rate with the fungicide application, however without 

statistical significance.  

 

At Eckartsweier, Olsavil showed the lowest fungal infection rates in 2004 with 29.5 % 

and 26.8 % in untreated control and fungicide applied plots, respectively. Fungicide 

application insignificantly reduced the fungal infection rate in all varieties. Similarly, 

Olsavil showed the lowest fungal infection rates also in 2005 with 47.5 % and 40 % in 

untreated control and fungicide applied plots, respectively. Fungicide application 

decreased infection rates in Olsavil and PR64H41; however, it was only significant in 

Olsavil. In contrast, an increase in infection rate was observed in PR64H41 with 

fungicide application.  
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Figure 3.1: Effect of fungicide application on fungal infection rate by Sclerotinia and 
Botrytis (%) at both experimental sites in 2004 and 2005. 
 

Changes in yield components  

Yield parameters were not significantly influenced by the fungicide application in 

2002 (Table A.4). Table 3.7 shows achene yield of all three varieties at both 

experimental sites in 2003-2005. At Braunschweig, fungicide application led to a 

slight increase in achene yield in Olsavil in all experimental years. In contrast, 

achene yield of the varieties PR64H41 and Aurasol was decreased with fungicide 

application in comparison to the untreated control. Nevertheless, no significant 

difference by fungicide application was observed in achene yield. 

 

At Eckartsweier, fungicide application caused a slight yield depression in the warm 

and dry year 2003. Achene yield was decreased on average by 30% in fungicide 

applied plots independent of the variety. Exclusively in this year, the yield reduction 
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by the fungicide treatment in Olsavil was significant. In the following experimental 

years, achene yield was not influenced significantly by the fungicide treatment.  

 

There was no significant effect on head diameter, plant height or thousand seeds 

weight by fungicide application in any year and at any site, and therefore data are not 

presented.  

 

Table 3.7: Influence of fungicide application on achene yield (dt/ha) for all three HO 
sunflower varieties at both experiment sites in 2003-2005.  

  BRAUNSCHWEIG  ECKARTSWEIER 
  Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 

2003         
Control  28.7a 31.3a 33.7a  33.7a 35.4a 34.2a 
Fungicide  30.6a 30.5a 31.0a  23.7b 26.7a 26.9a 
Mean  29.6 30.9 32.4   28.7 31.0 30.6 
LSD0.05

‡  6.0 15.6 17.4  9.0 11.6 15.1 
2004         

Control  22.9a 27.2a 24.6a  25.2a 31.4a 28.6a 
Fungicide  23.3a 26.8a 23.5a  26.0a 29.8a 30.6a 
Mean  23.1 27.0 24.0   25.6 30.6 29.6 
LSD0.05

‡  2.0 5.7 3.8  6.9 5.9 8.1 
2005          

Control  23.6a 34.5a 34.5a  25.6a 25.4a 28.1a 
Fungicide  24.4a 34.1a 33.0a  25.8a 25.9a 29.4a 
Mean  24.0 34.3 33.7   25.7 25.6 28.7 
LSD0.05

‡  8.2 6.7 7.3  4.6 4.5 3.8 
 

Changes in quality components 

Quality parameters were not significantly influenced by the fungicide application in 

2002 (Table A.4). At Braunschweig, oil content was in general not significantly 

changed with the fungicide application (Table 3.8). In 2003, only Olsavil showed a 

significant increase in oil content. Similarly, oleic, linoleic and stearic acid percentage 

in the oil was not significantly influenced with one exception of the variety PR64H41 

in 2004. Only a slight increase in oleic acid was observed in PR64H41, which 

showed statistical significance.  

 

Also at Eckartsweier, oil content of the HO sunflower seeds was not significantly 

influenced by treatment with Folicur®. Only one exception was observed in 2004 in 

the variety Olsavil. Oil content of Olsavil was decreased from 51.5 % to 50.1 % by 

fungicide application. No significant change in oleic and linoleic acid content was 
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observed at Eckartsweier. Nevertheless, the stearic acid percentage of all varieties 

showed a significant increase in 2003 with fungicide application in comparison to the 

untreated control.  

 
Table 3.8: Influence of fungicide application on oil content and composition at both 
sites in 2003-2005.  

 BRAUNSCHWEIG  ECKARTSWEIER 

 

Oil 
content 

(%) 

Oleic 
acid 
(%) 

Linoleic 
acid 
(%) 

Stearic 
acid 
(%) 

 Oil 
content 

(%) 

Oleic 
acid 
(%) 

Linoleic 
acid 
(%) 

Stearic 
acid 
(%) 

 2003 
Olsavil          

Control 46.8b 89.8a 2.8a 2.0a  51.4a 91.1a 2.4a 1.7b 
Fungicide 48.1a 89.9a 2.8a 1.9a  52.1a 89.1a 2.7a 2.4a 

PR64H41          
Control 50.0a 88.3a 3.6a 2.7a  50.6a 88.2a 4.2a 2.5b 
Fungicide 48.9a 88.7a 3.3a 2.7a  49.2a 86.8a 3.9a 3.4a 

Aurasol          
Control 51.2a 88.7a 3.2a 3.0a  48.3a 87.8a 4.3a 2.8b 
Fungicide 49.5a 87.7a 3.7a 3.3a  47.2a 85.5a 4.9a 3.7a 

 2004 
Olsavil          

Control 51.5a 91.7a 2.5a 1.4a  51.5a 91.4a 2.3a 1.8a 
Fungicide 52.1a 91.8a 2.7a 1.4a  50.1b 91.6a 2.2a 1.7a 

PR64H41          
Control 50.4a 88.1b 4.7a 2.1a  49.8a 85.9a 6.4a 2.8a 
Fungicide 50.1a 88.7a 4.1a 2.2a  49.6a 87.3a 5.1a 2.7a 

Aurasol          
Control 49.8a 87.9a 4.4a 2.6a  49.6a 89.1a 3.5a 2.7a 
Fungicide 49.0a 88.2a 4.1a 2.6a  49.9a 86.2a 6.0a 2.9a 

 2005 
Olsavil          

Control 49.1a 90.5a 3.7a 1.5a  52.7 90.9a 3.1a 1.8a 
Fungicide 49.0a 90.1a 3.9a 1.7a  52.6 90.7a 3.3a 1.8a 

PR64H41          
Control 50.8a 85.2a 7.2a 2.9a  52.9 84.3a 8.1a 2.8a 
Fungicide 51.9a 86.0a 6.6a 2.8a  53.1 84.2a 8.0a 3.0a 

Aurasol          
Control 49.3a 84.9a 7.3a 3.2a  49.7 86.6a 5.5a 3.3a 
Fungicide 49.9a 85.6a 6.6a 3.2a  50.7 86.2a 6.0a 3.2a 

 
 
3.2.2 Effect of BTH seed treatment  

Changes in fungal infection rate  

The plant activator was tested as seed treatment in two concentrations, 25 and 250 

ppm BTH (Bion®) in the main experiments. Figure 3.2 presents the fungal infection 
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rates at both locations, in 2004 and 2005. Evaluation of the fungal diseases in 2003 

is not presented due to the low infection level in this first experimental year.  

 

 

Figure 3.2: Influence of Bion® seed treatment on fungal infection by Sclerotinia and 
Botrytis (%) at both experiment sites in 2004 and 2005.  
 

The highest infection rates overall in the main experiments were observed at 

Braunschweig in 2004. Control plots showed 84.3 %, 86.6 % and 91.1 % fungal 

infection for Olsavil, PR64H41, and Aurasol, respectively. Seed treatment with 25 

ppm Bion® decreased the fungal infection rate in all varieties in this year. However, 

significant reduction in infection rate with fungicide application was only observed in 

variety Aurasol with 75.4 % infection. Increasing Bion® concentration to 250 ppm 

showed no significant effect on fungal infection rates. In general fungal disease rates 
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were much lower in 2005 than in 2004, but no significant variation was observed 

between the two concentrations of Bion® seed treatment in any variety. 

 

At Eckartsweier, 25 ppm Bion® seed treatment in Olsavil and Aurasol, as well as 

250 ppm in variety Olsavil and PR64H41 caused a raise in fungal infection rate in 

2004. In general fungal infection was not hindered by Bion® seed treatment 

independent of the two compared concentrations. Olsavil showed the lowest infection 

rates in 2005 with 47.5, 42.5 and 43.8 % for control, 25 ppm and 250 ppm Bion® seed 

treatment respectively. Nevertheless, a significant effect of seed treatment on fungal 

infection rate was not observed at this experimental site.  

 
Changes in yield components  

The seed treatment by the plant activator was not tested at Eckartsweier in 2003. 

Achene yield of all varieties at both experimental sites in 2003-2004 are listed in the 

Table 3.14. Achene yield of all varieties was increased by Bion® seed treatment 

irrespective of the applied concentration in 2003 at Braunschweig (Table 3.9). The 

highest yield increase was observed with the variety PR64H41, where the achene 

yield was raised from 31.3 dt/ha to 39.7 dt/ha by 25 ppm Bion® and to 40.1 dt/ha by 

250 ppm Bion® seed treatment. In the following experimental years, no significant 

change in yield was observed at Braunschweig, except a slight statistically 

insignificant increase in Olsavil in 2004. Similarly, changes in achene yield at 

Eckartsweier were negligible. 

 

Table 3.9: Influence of Bion® seed treatment on achene yield (dt/ha) for all three 
varieties at both experimental sites.  

  BRAUNSCHWEIG  ECKARTSWEIER 
  Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 
2003         

Control  28.7a 31.3a 33.7a  - - - 
Bion®-Seed 25ppm  34.5a 39.7a 37.3a  - - - 
Bion®-Seed 250ppm  30.9a 40.1a 36.7a  - - - 

2004         
Control  22.9a 27.2a 24.6a  25.2a 31.4a 28.6a 
Bion®-Seed 25ppm  22.2a 25.6a 24.4a  27.4a 28.7a 31.4a 
Bion®-Seed 250ppm  24.5a 27.5a 22.5a  25.4a 29.9a 32.5a 

2005         
Control  23.6a 34.5a 34.5a  25.6a 25.4a 28.1a 
Bion®-Seed 25ppm  26.4a 35.2a 34.6a  27.2a 26.0a 27.6a 
Bion®-Seed 250ppm  24.7a 34.9a 33.7a  25.4a 20.7a 27.8a 
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The other yield parameters such as head diameter, thousand seed weight and plant 

height were not observed at Eckartsweier in any year. Head diameter was not 

significantly influenced by Bion® seed treatment in general at Braunschweig (Table 

3.10). Only in 2003, it showed a slight tendency to increase with the Bion® application 

in all varieties except of 250 ppm Bion® seed treatment in Aurasol, where the head 

diameter decreased by 1 cm in comparison to the untreated control. Similarly, 

thousand seed weight of all varieties were increased in 2003. In contrast, it was not 

influenced by Bion® seed treatment in the following experimental years. 

Nevertheless, no statistical change by Bion® application was observed in any year. 

Also plant height was raised by Bion® seed treatment in all varieties irrespective of 

the applied concentration in 2003 (Figure 3.3). However, no negligible change in 

plant height was observed in the following experimental years.  

 

Table 3.10: Influence of Bion® seed treatment on head diameter and TSW of all three 
varieties at Braunschweig.  

  Head diameter (cm)  Thousand seed weight (g)  
  2003 2004 2005  2003 2004 2005 
Olsavil         

Control  13.35a 13.25a 13.90a  40.22a 42.68a 44.03a 
Bion®-Seed 25ppm  14.80a 12.70a 13.30a  42.55a 42.62a 43.38a 
Bion®-Seed 250ppm  14.70a 13.50a 13.33a  42.40a 43.54a 43.41a 

PR64H41         
Control  11.75a 13.25a 13.08a  39.25a 40.19a 49.17a 
Bion® -Seed 25ppm  14.30a 13.15a 13.40a  48.36a 39.34a 50.35a 
Bion® -Seed 250ppm  13.95a 13.45a 13.73a  44.35a 40.11a 52.48a 

Aurasol         
Control  12.95a 12.28a 12.50a  44.62a 40.83a 46.21a 
Bion® -Seed 25ppm  13.30a 12.45a 12.75a  48.06a 42.46a 47.31a 
Bion® -Seed 250ppm  11.95a 12.13a 12.73a  46.85a 42.34a 49.13a 
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Figure 3.3: Influence of Bion® seed treatment on plant height (cm) at Braunschweig 
in 2003-2005.  
 

 

Changes in quality components 

Application of the plant activator Bion® as seed treatment showed in general no 

significant influence on oil content and composition at any site in the main 

experiments (Table A.5-8). A significant change in oil composition was only observed 

in 2005 at Braunschweig (Table 3.11). In variety PR64H41, 250 ppm Bion® seed 

treatment significantly decreased oleic acid content in comparison to the untreated 

control as well as to 25 ppm Bion® treatment, whereas it increased linoleic acid 

content. In contrast, Aurasol showed a slight increase in oleic acid content with the 

Bion® seed treatment irrespective of the applied concentration.  

 

Table 3.11: Influence of Bion® seed treatment on HO sunflower oil content and 
composition (%) of all three varieties at Braunschweig in 2005.  

 
Oil content 

(%) 
Oleic acid 

(%) 
Linoleic acid 

(%) 
Stearic acid 

(%) 
Olsavil     

Control 49.1a 90.5a 3.7a 1.5a 
Bion® -Seed 25ppm 47.4a 90.2a 4.0a 1.5a 
Bion® -Seed 250ppm 49.4a 90.5a 3.7a 1.5a 

PR64H61     
Control 50.8a 85.3ab 7.2b 2.9a 
Bion®-Seed 25ppm 50.8a 85.4a 7.3b 2.7a 
Bion®-Seed 250ppm 51.9a 83.8b 8.9a 2.8a 

Aurasol     
Control 49.3a 84.9a 7.3a 3.2a 
Bion®-Seed 25ppm 50.0a 86.2a 6.1a 3.1a 
Bion®-Seed 250ppm 50.2a 86.1a 6.2a 3.1a 
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3.2.3 Effect of Bion® leaf spray application  

Changes in fungal infection rate  

In 2002, plant activator Bion® was applied at inflorescence emergence (BBCH 51) 

and at full flowering stage (BBCH 65) in three concentrations, 10, 125 and 250 ppm. 

Fungal infection rate varied with application of Bion® depending on the variety (Figure 

3.4). In general the late ripening variety Olsavil showed the least infection rate and 

lowest response to Bion® treatment. The highest fungal infection rates were detected 

in PR64H61 with over 60 % infected plants in control and around 40% with 

applications of plant activator. The lowest infection rate (38.5 %) in PR64H61 was 

achieved by spraying Bion® at inflorescence emergence stage in the lowest 

concentration of 10 ppm. The highest decrease in infection rate by Bion® application 

in 2002 was observed in the variety Aurasol. Fungal infection rate of Aurasol in 

control was 35 %, whereas it was less than 10 % with Bion® applications irrespective 

of the application time and concentration. Even though, decrease in fungal infection 

rate was recorded with the plant activator treatment, these changes were statistically 

not significant.  

 

The plant activator Bion® as leaf treatment was tested in three different 

concentrations (25, 125 and 250 ppm) and at five different application times (at 

BBCH growth stages 09, 16, 51, 65 and 69) in 2003 and only in two concentrations 

(10 and 125 ppm) and three application times (BBCH 09, BBCH 16 an BBCH 65). 

Infection rate in 2003 was very low due to weather conditions at both sites and 

therefore any observed change in infection rate was negligible (Table A.9). The 

highest fungal infection rate, 10.3 %, was detected after 250 ppm Bion® leaf spraying 

at BBCH 69 in PR64H41 at Braunschweig. Significant increases in fungal infection 

rates were observed at Eckartsweier in PR64H41 from 1 % in the untreated control to 

15.2 % in plots. Where 10 ppm Bion® was applied at BBCH 16. Aside of this 

exceptional high rate, all other values were below 10 % at both sites.  

 

The highest rate of fungal infections during the main experiments was reached in 

2004 at Braunschweig. Figure 3.5 presents the changes in infection rate with spray 

application of the plant activator at Braunschweig in 2004. All varieties showed slight 

decrease in infection rate with 10 ppm Bion® applied at BBCH 09 in comparison to 

the untreated control. An outstanding change was observed in Aurasol, where 
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infection rate decreased in 125 ppm Bion® application at BBCH 65 from 91 % to 70 

%. However, none of the applications showed any significant change in fungal 

infection rate. Lower fungal infection rates were recorded in 2005 at Braunschweig in 

comparison to the previous experimental year (Figure A.2). The rates varied from 2.3 

% in the control plots of Aurasol to 19.7 % with 125 ppm Bion® applied at BBCH 65 in 

Olsavil. In general, fungal infection rate showed a slight tendency to increase by 

Bion® application. However, changes in infection rates were negligible and 

insignificant.  

 

Figure 3.4: Influence of Bion® applications on fungal infection rate (%) in all varieties 
at Braunschweig in 2002.  
 

Fungal infection rate at Eckartsweier was in general lower than at Braunschweig in 

2004. Infections varied from 21.0 % (10 ppm Bion® at BBCH 09) in Olsavil to 52.5 % 

(control) in PR64H41 (Figure 3.6). Similar to the results at Braunschweig, 10 ppm 

Bion® sprayed at BBCH 09 explicitly decreased the fungal infection rates in all 

varieties from 29.5 % to 21 % in Olsavil, from 52.5 % to 33.1 % in PR64H41, and 

1: Control  

2: Bion® 10 ppm at BBCH-51 

3: Bion®  125 ppm at BBCH-51 

4: Bion® 250 ppm at BBCH-51 

5: Bion® 10 ppm at BBCH-65 

6: Bion® 125 ppm at BBCH-65 

7: Bion® 250 ppm at BBCH-65 
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from 40.1 to 27.3 in Aurasol. However, this decreasing effect of Bion® application at 

BBCH 09 was not observed in 2005 at Eckartsweier (Figure A.3). In contrast to the 

infection rates in 2004, higher infection rates with an overall average of 56.1 % were 

recorded at Eckartsweier in 2005. The fungal infection rates were slightly reduced in 

Olsavil and PR64H41 with Bion® spraying irrespective of the application time and 

concentration. Nevertheless, the statistical evaluation showed no significant variation 

in infection rate between different applications in 2004. 
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Figure 3.5: Influence of Bion® leaf spray application on fungal infection rate (%) at 
Braunschweig in 2004.  
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Figure 3.6: Influence of Bion® leaf spray application on fungal infection rate (%) at 
Eckartsweier in 2004.  
 

Figure 3.7 presents the fungal infection rate an  average of three experimental years 

and the two sites with Bion® leaf application. Fungal infection rates after plant 

activator application were compared to the untreated control as well as to the 

fungicide application. Olsavil showed 34.7% fungal infection in control and 34.3 % 

after fungicide application. Bion® spray applications, irrespective of the application 



RESULTS  43  
 

 

time and concentration, did not show any significant change in infection rate. Fungal 

infection rates of PR64H41 were 42.3 % in control and 41.6 % with the fungicide 

application. Bion® spray applications showed in general slightly lower fungal infection 

with sclerotinia and botrytis. Only 10 ppm Bion® sprayed at BBCH 16 stage showed 

slight increase in infection rate. Aurasol showed on average 36.3 % fungal infection 

with untreated control. The infection rate was slightly increased by fungicide 

application to 40.6 %. All Bion® spray applications caused also an increase in 

infection rate in comparison to the control. Infection rates varied from 36.6 % with 10 

ppm Bion® applied at BBCH 09 to 42.9 % with 125 ppm Bion® applied at BBCH 09.  

 

In all three varieties, 10 ppm Bion® applied at early growth stage (BBCH 09) showed 

the lowest infection rate in average of the experimental years and the locations. 

However, none of the Bion® spray applications showed any significant change in 

fungal infection rate. 
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Figure 3.7: Influence of Bion® leaf spray application on fungal infection rate (%) as 
average of both locations and all three main experimental years.  
 

Changes in yield components  

No significant variance was detected in any recorded yield parameter in 2002 (Table 

A.10-12). At both experimental sites, the most changes in yield were obtained in 

2003 (Figure 3.8 and 9). Achene yield was increased with all Bion® applications 
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irrespective of the application time and concentration in all varieties at Braunschweig. 

Especially Bion® applications at BBCH 09 as well as at BBCH 65 showed in general 

higher yield increase in comparison to the other Bion® applications. Nevertheless, 

significant increase in achene yield by Bion® applications was observed only in 

variety PR64H41. Achene yield was significantly increased by all Bion® applications 

irrespective of the application time and concentration in PR64H41.  

 

On the contrary, achene yield was in general decreased in all varieties by the Bion® 

leaf spray applications at Eckartsweier in 2003. A significant change in achene yield 

was obtained, however, only in Olsavil. Exceptionally, 125ppm Bion® application at 

stage of BBCH 16 showed an outstanding higher achene yield of 38.9 t/ha. Also 250 

ppm Bion® application at BBCH 65, unlikely the other Bion® applications, showed 

with 34 dt/ha nearly the same achene yield as the control. All the other Bion® 

applications in Olsavil decreased the achene yield at this site. Nevertheless, 

significant reduction in yield was observed only by 10 ppm Bion® application at BBCH 

65. Achene yield of PR64H41 was decreased by all Bion® applications irrespective of 

the application time and concentration, but never significant. In contrast to the yield 

results at Braunschweig, Bion® application at BBCH 09, irrespective of the applied 

concentration, showed the highest yield decrease in comparison to the other Bion® 

applications. A similar effect was also observed in Aurasol, where achene yield was 

decreased by all the three different concentrations of Bion® applied at BBCH 09. In 

opposite, applying the plant activator at the BBCH 16 stage in all tested 

concentrations revealed slight increase in achene yield, where 10 ppm Bion® 

application showed the highest yield increase. Overall in variety Aurasol, changes in 

achene yield were negligible and not significant.  

 

In the following experimental years 2004 and 2005, the variation in achene yield 

between the different Bion® applications was relatively smaller than in 2003 (Figure 

3.10-11). At Braunschweig, nearly no change in yield was obtained by the Bion® 

applications in Olsavil in 2004, while all Bion® applications slightly increased the 

achene yield in 2005. The highest increase, in comparison to the other Bion® 

applications, was revealed by 125 ppm Bion® applied at BBCH 16. In PR64H41, the 

yield was decreased with all Bion® applications in 2004, except of 10 ppm Bion® 

applied at BBCH 09, where achene yield was raised from 27.2 dt/ha to 28.6 dt/ha. In 
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opposite, the yield was not changed by 10 ppm Bion® at BBCH 09, but all the other 

Bion® applications slightly increased the achene yield. However, changes in achene 

yield by Bion® leaf treatment were statistically not significant at Braunschweig.  

 

At Eckartsweier, the yield of the variety Olsavil was not significantly changed by the 

Bion® applications in 2004. In 2005, the yield was considerably changed only by 

Bion® application at the growth stage BBCH 09. 10 ppm Bion® at this stage slightly 

increased the yield of Olsavil, whereas 125 ppm applied at the same stage 

decreased the achene yield. The other Bion® applications showed only negligible 

changes in yield. In PR64H41, the achene yield was in general decreased in 2004 

except of 10 ppm at BBCH 09 and 125 ppm at BBCH 65, where the achene yield 

was slightly increased. Only 10 ppm Bion® applied at BBCH 65 showed a remarkable 

decrease in achene yield in 2005. 125 ppm Bion® at BBCH 65 showed also in this 

experimental year a slight increase in yield. The achene yield of Aurasol was nearly 

not changed by any Bion® application in both experimental years. Overall, none of 

the Bion® applications significantly influenced the yield at Eckartsweier in 2004-2005.  

 

Head diameter and thousand seed weight were recorded only at the site 

Braunschweig. Both parameters were in general increased with the spray 

applications of Bion® in 2003 but not in 2004-2005 (Table A.13-14). Head diameter 

of the variety Olsavil was raised by Bion® applications regardless of the application 

time and concentration, with the exception of all three applied Bion® concentrations 

at BBCH 69, where the head diameter was not influenced. Similarly, PR64H41 

showed also an increase in head diameter by all the Bion® applications. This effect 

was not observed in the variety Aurasol. Although, some tendency of head diameter 

to increase by the Bion® applications was obtained, the changes in head diameter 

were statistically not significant.  
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Figure 3.8: Influence of Bion® leaf spray application on achene yield (dt/ha) at 
Braunschweig in 2003. 

1: Control  
2: Bion ® 10   ppm at BBCH-09 
3: Bion ® 125 ppm at BBCH-09 
4: Bion ® 250 ppm at BBCH-09 
5: Bion ® 10   ppm at BBCH-16 
6: Bion ® 125 ppm at BBCH-16 
7: Bion ® 250 ppm at BBCH-16 
8: Bion ® 10   ppm at BBCH-51 

  9: Bion® 125 ppm at BBCH- 
10: Bion®  250 ppm at BBCH-1 
11: Bion® 10   ppm at BBCH-65 
12 Bion®  125 ppm at BBCH-65 
13: Bion® 250 ppm at BBCH-65 
14: Bion® 10   ppm at BBCH-69 
15: Bion® 125 ppm at BBCH-69 
16: Bion® 250 ppm at BBCH-69 
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Figure 3.9: Influence of Bion® leaf spray application on achene yield (dt/ha) at 
Eckartsweier in 2003 
 

1: Control  
2: Bion®     0   ppm at BBCH-09 
3: Bion® 125 ppm at BBCH-09 
4: Bion® 250 ppm at BBCH-09 
5: Bion® 10   ppm at BBCH-16 
6: Bion® 125 ppm at BBCH-16 
7: Bion® 250 ppm at BBCH-16 
8: Bion® 10   ppm at BBCH-51 

  9: Bion®125 ppm at BBCH-51 
10: Bion® 250 ppm at BBCH-51 
11: Bion® 10   ppm at BBCH-65 
12: Bion® 125 ppm at BBCH-65 
13: Bion® 250 ppm at BBCH-65 
14: Bion® 10   ppm at BBCH-69 
15: Bion® 125 ppm at BBCH-69 
16: Bion®250 ppm at BBCH-69 
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Figure 3.10: Influence of Bion® leaf spray application on achene yield (dt/ha) at 
Braunschweig 

 

Figure 3.11: Influence of Bion® leaf spray application on achene yield (dt/ha) at 
Eckartsweier.  
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In 2003, thousand seed weight (TSW) of the variety Olsavil was raised by Bion® 

applications, except of the applications at the growth stage BBCH 69, where TSW 

was slightly decreased. A significant increase was only observed in PR64H41. 

Although all applications increased the TSW in PR64H41, only 125 ppm Bion® 

application at BBCH 09 showed highly significant raise in comparison to the 

untreated control. Similarly, TSW was also increased in Aurasol by most of the Bion® 

applications. Exceptions occurred by applications at the growth stage BBCH 69. 250 

ppm at this stage decreased TSW, whereas 125 ppm showed no influence. This 

positive effect of Bion® on TSW was not observed in the following experimental 

years. In 2004, a significant change was only obtained in Aurasol. 125 ppm Bion® 

applied at BBCH 65 significantly increased TSW from 40.8 g to 44.7 g.  

 

Plant height of all varieties was increased with the Bion® applications irrespective of 

the application time and concentration in 2003 at Braunschweig (Table A.15). The 

highest increase was observed in Olsavil with the 10 ppm Bion® at the earliest 

application date BBCH 09, where the plant height was raised from 102.5 cm to 160.6 

cm. However, evaluated increase in plant height by Bion® leaf spraying could not 

been proven statistically. Additionally, this effect of Bion® application on plant height 

was not observed in the following experimental years (Figure A.4). All varieties 

showed only negligible changes in plant height. At Eckartsweier, plant height was 

evaluated only in 2003. No influence by Bion® was observed at the southern 

experimental site Eckartsweier. The plant height in the different experimental plots 

varied between 190 and 215 cm without any significance. 

 

Changes in quality components 

Oil content of all varieties after Bion® spray applications at both experimental sites in 

the three experimental years are listed in Table A.16-17. The analysis of the oil 

content in all varieties revealed an increase by the most of the 9 different Bion® 

variations at Braunschweig in 2003. Although, the most applications raised the oil 

content of HO sunflowers, no differences were observed between variations and 

varieties. A significant change was recorded only in Aurasol. In this variety, 125 ppm 

Bion® application at BBCH 09 resulted, with 54.3 %, in the highest oil content and 

was significantly higher than 250 ppm Bion® application at BBCH 51, which showed 

50 % oil.  
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Only 6 different Bion® variations were tested in the following experimental years at 

Braunschweig. Bion® applications showed only negligible influence in respect to the 

oil content in 2004. In fact, slight but insignificant decreases were observed by most 

Bion® applications. Significant change in oil content was obtained only in Aurasol by 

10 ppm Bion® applied at BBCH 09. It revealed, with 50.2 %, significantly higher oil 

content than 125 ppm Bion® applied at BBCH 16, which showed only 47.2 % oil in 

seed, and slightly higher than the untreated control, which presented 49.8 % oil. 

Significant changes in oil content by the application of different Bion® variations were 

not observed in 2005.  

 

At Eckartsweier, changes in oil content did not show any significant effect by the 

applications in 2003. Only in Aurasol, oil content was in general decreased 

insignificantly by the Bion® applications regardless of the application time and 

concentration. In the following experimental years, no influence of Bion® application 

variations on oil content was observed.  

 

The oil composition was in general not significantly affected by leaf spraying of the 

plant activator at both experimental sites during the main experiments (Table A.18-

19). The main component of the fatty acid composition oleic acid was not changed at 

any experimental site or year. Olsavil, the variety with the highest oleic acid content, 

showed a stable high oleic acid rates. In the first main experimental year at 

Braunschweig, the lowest value for the oleic acid in Olsavil was 89.79% induced by 

125ppm Bion® applied at BBCH69, whereas the highest was 91.88% by 10ppm Bion® 

at BBCH65. Similarly, variation in oleic acid content of Aurasol and PR64H41 was 

insignificant. However, there was some significant variation in linoleic and stearic 

acid content. Linoleic acid content of Olsavil was decreased with most of the Bion® 

applications. Significant decrease was observed by application of 10 and 250 ppm 

Bion® at BBCH65. In PR64H41, stearic acid content was decreased by 250 ppm 

Bion® applied at BBCH 09. A significant but negligible variation in linoleic and stearic 

acid content was observed also in 2004 at both experimental sites. However, 

changes in stearic and linoleic acid contents were negligible and not consistent 

throughout the experiment and did not no influence the proportion of the oleic acid. 
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GREENHOUSE EXPERIMENTS ON THE BION ® AS FUNGICIDAL APPLICATION 

In the first year of the main experiments in 2003, a greenhouse experiment was 

established in order to examine if the plant activator treatment can induce resistance 

in HO sunflowers against the fungal pathogen Sclerotinia sclerotiorum. Bion® was 

tested as seed treatment and leaf spray application at two growth stages (BBCH12 

and BBCH16) on two varieties, Aurasol and Olsavil. 5 inoculation dates were 

evaluated. Ratio of died plants in total number of plants was recorded for disease 

assessment. 

 

1. Inoculation date: first pair of leaves unfolded (BBCH 12) 

The first inoculation has been carried out when the first leaf pair appeared. A week 

after inoculation, the first evaluation of the fungal infection was carried out, followed 

by 10, 13 and 14 days after inoculation. The results of the first inoculation date 

indicate that Bion® seed treatment could slightly slow down the Sclerotinia infection b 

in both tested varieties but could not avoid it (Figure 3.41-1). 90 % of Aurasol and 

100 % of Olsavil plants were dead 14 days after inoculation.  

 

2. Inoculation date: 4 leaves (second pair) unfolded (BBCH 14) 

At the second inoculation date, a 125 ppm Bion® spray application in addition to the 

seed treatment was also tested in the greenhouse experiment. Bion® seed treatment 

showed again only a slight delay in Sclerotinia infection in both varieties while Bion® 

applied at first pair of leaves stage significantly decreased infection rate in Aurasol 

(Figure 3.41-2). 17 days after inoculation, only 30 % of Bion® applied Aurasol plants 

were completely infected and dead in comparison to 100 % infected plants in the 

untreated control. In Olsavil, Bion® spray application could only slow down the 

infection until 15 days after inoculation, however all plants were dead at the end of 

the experiment.  

 

3. Inoculation date: 6 leaves unfolded (BBCH 16) 

Bion® seed treatment and 125 ppm Bion® spray application at first leave pair stage 

(BBCH 12) was tested at the third inoculation date. Plants were inoculated when they 

reached BBCH 16 stage. BION seed treatment could only slow down the infection 

until the 23 days after inoculation in Aurasol, but all plants were dead already 26 

days after inoculation (Figure 3.41-3). Only 10 % of the Bion® sprayed plants were 
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dead up to the 23rd day after inoculation, however infection rate rapidly increased 

after this day and reached 90 % at the end of the experiment. Olsavil showed a little 

different response to both seed and leaf treatment of Bion®. Seed treatment showed 

higher infection rate at the 23rd day after the inoculation. On the other hand, leaf 

spray application could decrease the infection rate until the end of the experiment.  

 

4. Inoculation date: Inflorescence emergence (BBCH 51) 

Additionally a later leaf application of Bion® was tested at the 4th inoculation date. 

Bion® was also applied when 6 leaves of the plants were unfolded. Inoculation was 

carried out at inflorescence emergence stage. Control plants showed already at the 

first evaluation day with 40 % a high infection rate in Aurasol (Figure 3.41-4). In 

contrast, all Bion® applications showed low to no infection 17 days after inoculation. 

Seed treatment delayed the infection until the 38th day of the inoculation, but than 

increased the rate. Leaf spraying at BBCH 12 and at BBCH 16 also increased the 

infection rate at the 45th day after inoculation. On the other hand, only seed treatment 

could decrease the infection in Olsavil. Both leaf applications caused a slight 

increase in infection rate.  

 

5. Inoculation date: Inflorescence clearly separated from foliage leaves (BBCH 57) 

Bion® seed treatment as well as both application times for leaf treatment were tested 

at the 5th inoculation date. Inoculation was carried out when the inflorescence was 

clearly separated from foliage leaves. In both varieties, control plants showed the 

highest infection rate and fastest infection development (Figure 3.41-5). At the end of 

the experiment, only 20 % of the seed treated plants of Aurasol were dead while all 

Olsavil plants survived. However, both varieties showed symptoms of the infection 

(data not shown). Inoculated leaf and lateral branch of all plants was completely dry 

and some of the plant’s stems showed large lesions. Leaf applications showed in 

both studied varieties a noticeable decrease in degree of infection, yet it was less 

than those which achieved by the seed treatment.  
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Figure 3.12: Infection rates by Sclerotinia sclerotioum after inoculation 1) at first 
leave pair stage, 2) at second leave pair stage, 3) at 6 leaves unfolded stage, 4) at 
inflorescence emergence stage, 5) when the inflorescence clearly separated from 
foliage leaves. 
 

3.2.4 Effect of ammonium based liquid fertilization  

Changes in fungal infection rate  

Urea ammonium nitrate was tested as liquid fertilizer in three different N 

concentrations (48kg, 60kg and 72kg N/ha) at emergence stage in the preliminary 

experiments in 2002, with two different application techniques, point injection and 

surface application. Fungal infection rate varied depending on the variety with 

ammonium based liquid fertilizer (Figure 3.13). Fungal infection reached overall 

100% in variety Olsavil with liquid fertilization irrespective of the application method 

and N concentration. Variety PR64H61 showed 80% infection rate in untreated 

control plots. Except of the application of urea ammonium nitrate solution containing 
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48 kg N/ha, all liquid fertilizer applications showed an infection rate more than 80%. 

In contrast to the other two varieties, significant increase in fungal infection rate was 

observed in variety Aurasol with liquid fertilizer. Surface application of urea 

ammonium nitrate containing the lowest N concentration (48 kg N/ha), applied at 

emergence stage resulted in a significant increase of fungal disease rates in 

comparison to the control. Surface application of the liquid fertilizer using higher N 

concentrations (60 and 71 kg N/ha), as well as injection of fertilizer solution in  all 

different concentrations caused slight increase in Sclerotinia white rot and grey 

mould, however on a lower significance level.  
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Figure 3.13: Influence of liquid fertilizer applications on fungal infection rate (%) in all 
varieties in 2002 at Braunschweig. UAN: urea ammonium nitrate solution (injected).  
 

In the main field experiments, unlike the preliminary field experiment, only fertilizer 

application by injection was used. Liquid fertilizer was tested only in 2003 and 2004. 

Due to the very low fungal infection rates in the first experimental year 2003, it was 

not possible to observe any influence by liquid fertilizers (Table A.21). Fungal 

infection rates in experimental year 2004 increased dramatically at both experiment 

sites (Figure 3.14-15). Infection rates varied from 72% to 94% at Braunschweig. In 

Olsavil and Aurasol, fungal infection rate showed in general a slight tendency to 

decrease by liquid fertilizer. However, decreases in infection rates were irregular and 

not significant. In contrast, all liquid fertilizer applications increased the fungal 

infection rates at Eckartsweier in 2004. Increase in infection rate by the UAN supply 

at the growth stage BBCH 16 was observed in all three varieties.  
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Figure 3.14: Influence of liquid ammonium fertilizer on fungal infection rate at 
Braunschweig in 2004. UAN: urea ammonium nitrate solution, UAN-N: urea ammonium 
nitrate solution with nitrification inhibitor, UAS urea ammonium sulphate solution N 
concentration: 48kgN/ha.  
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Figure 3.15: Influence of liquid ammonium fertilizer on fungal infection rate (%) at 
Eckartsweier in 2004. UAN: urea ammonium nitrate solution, UAN-N: urea ammonium 
nitrate solution with nitrification inhibitor, UAS urea ammonium sulphate solution N 
concentration :50 kgN/ha.  
 
Changes in yield components  

Application of ammonium based fertilizer solution did not result in any significant 

change in yield parameters in 2002 (Table A.22-24). In response to the different 

variations of liquid ammonium fertilizer, the achene yield of Olsavil and PR64H41 

was in general slightly higher than the conventionally fertilized control at 

Braunschweig in 2003, depending on the N-concentration and application time, 

whereas Aurasol showed a less response to the liquid fertilization (Table 3.12). In 

Olsavil, the highest yield increase, from 28.7 dt/ha to 37 dt/ha, was observed by 

UAN-N with 48 kg N applied at BBCH 30. The same ammonium solution, applied at 

the same time with higher N concentration (60 kg/ha) resulted, with 30.6 dt/ha in a 

much less yield increase in comparison to the lower N fertilization. Similarly in most 
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liquid fertilizer applications, a lower N-concentration revealed higher achene yield, 

except of UAN-N applied at BBCH 16 and UAS applied at BBCH 30. PR64H41 

responded with higher yield increases to the most of the fertilizer variations. The 

highest yield increase was obtained by UAN applied at BBCH 30, followed by the 

UAS application at BBCH 30 irrespective of the N concentration. Different N 

concentrations revealed generally similar achene yield in PR64H41. The influence of 

liquid ammonium fertilization on the achene yield of Aurasol was in general 

negligible. Exceptionally, UAN-N supply with 48 kg N at BBCH 30 caused yield 

decrease. However, changes in achene yield by liquid fertilizer could not be proven 

statistically.  

 

In contrast, all variations of liquid ammonium fertilizer, independent of the N 

concentration and application time, caused decrease in achene yield in all three 

varieties at Eckartsweier in 2003. The highest yield decrease, from 33.7 dt/ha to 23.8 

dt/ha, was observed in Olsavil by UAS with 48 kg N applied at BBCH 16. Also at 

Eckartsweier, changes in achene yield were statistically insignificant.  

 

Achene yield at Braunschweig was in general lower in 2004 than in previous 

experiment year. Figure 3.16 shows the influence of different ammonium fertilizations 

on the yield. The results indicate that the application of ammonium based fertilizers at 

different growth stages does not change achene yield significantly. However, a 

general tendency towards a yield increase by liquid fertilization, irrespective of the N 

concentration and application time could be observed in Olsavil. In contrast, 

PR64H41 and Aurasol responded negatively to all variations of liquid fertilization in 

respect to the achene yield. 

 

At Eckartsweier, achene yield of sunflowers were slightly higher than at 

Braunschweig. Olsavil showed nearly no response to the liquid ammonium 

fertilization (Figure 3.17). Achene yield of PR64H41 was slightly decreased with all 

types of ammonium fertilization. The highest decrease was observed by UAN-N 

application, where the achene yield was reduced from 31.4 dt/ha by the conventional 

fertilization to 27.4 dt/ha. In contrast, liquid fertilization slightly increased the achene 

yield in Aurasol. Nevertheless, changes in yield by application of three different liquid 
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fertilizers were only negligible in all varieties and generally not significant. There were 

no consistent results in achene yield regarding ammonium based liquid fertilization.  

 

Table 3.12: Influence of liquid ammonium fertilizer on achene yield (dt/ha) at both 
experiment sites in 2003.  

  BRAUNSCHWEIG  ECKARTSWEIER 
  Olsavil  PR64H41 Aurasol  Olsavil  PR64H41 Aurasol 
Control  28.7a 31.3a 33.7a  33.7a 35.4a 34.2a 
*UAN BBCH-16 48kgN  30.6a 35.2a 32.5a  28.2a 23.4a 31.0a 
UAN BBCH-16 60kgN  26.6a 35.9a 35.3a  24.8a 27.6a 31.9a 
†UAN-N BBCH-16 48kgN  30.2a 32.3a 30.9a  27.5a 24.7a 31.4a 
UAN-N BBCH16 60kgN  26.0a 36.6a 31.8a  25.7a 27.4a 32.4a 
††UAS BBCH-16 48kgN  31.2a 30.7a 32.6a  23.8a 27.4a 30.4a 
UAS BBCH-16 60kgN  28.0a 33.4a 29.5a  28.5a 25.4a 32.1a 
UAN BBCH-30 48kgN  29.4a 38.9a 30.6a  - - - 
UAN BBCH-30 60kgN  32.6a 38.0a 33.1a  - - - 
UAN-N BBCH-30 48kgN  37.0a 34.8a 27.8a  - - - 
UAN-N BBCH-30 60kgN  30.6a 34.3a 31.2a  - - - 
UAS BBCH-30 48kgN  24.1a 37.6a 34.6a  - - - 
UAS BBCH-30 60kgN  31.3a 36.5a 35.3a  - - - 

*UAN: urea ammonium nitrate solution, †UAN-N: urea ammonium nitrate solution with 
nitrification inhibitor, ††UAS urea ammonium sulphate solution, N concentration: 50 kg N/ha 
and 80 kg N/ha at Eckartsweier. 
 

Other yield parameters such as plant height, TSW and head diameter were only 

evaluated at Braunschweig. Although, the plant height of all varieties was in general 

slightly increased in 2003 and 2004, influence of the liquid fertilization on plant height 

was insignificant (Table A.25).  

 

Thousand seed weight was slightly increased by the liquid fertilization in all varieties 

in 2003, however, significant increase was observed only in Olsavil (Table A.26). 

UAS with 60 kg N applied at BBCH 16 showed, with 52 g, significantly higher TSW 

than the same ammonium solution with 48 kg N injected at BBCH 16, which revealed 

only 37 g TSW. In comparison, conventionally fertilized control showed 40.2 g TSW. 

Both injection time of UAN-N with 48 kg N showed noticeable increase in TSW, 

however was statistically insignificant. Also, PR64H41 and Aurasol showed 

insignificant increase in TSW with most of the liquid fertilizer applications. Similarly, in 

2004 TSW was slightly increased by all liquid ammonium fertilizer applications 

(Figure A.4). Overall, effect of ammonium injection on TSW was with one exception 

insignificant and not consistent. Head diameter revealed no change in response to 
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the liquid ammonium fertilization in any variety in 2003 (Table A.26). Similar results 

were observed also in the following experimental year 2004 (data not shown).  
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Figure 3.16: Influence of liquid ammonium fertilizer on achene yield (dt/ha) at 
Braunschweig in 2004. UAN: urea ammonium nitrate solution, UAN-N: urea ammonium 
nitrate solution with nitrification inhibitor, UAS urea ammonium sulphate solution, N 
concentration: 48 kgN/ha 
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Figure 3.17: Influence of liquid ammonium fertilizer on achene yield (dt/ha) at 
Eckartsweier in 2004. UAN: urea ammonium nitrate solution, UAN-N: urea ammonium 
nitrate solution with nitrification inhibitor, UAS urea ammonium sulphate solution. N 
concentration: 50kgN/ha 
 
Changes in quality components 

Table 3.13 shows the changes in oil content of the three varieties by different liquid 

fertilizer applications at both experimental sites in 2003. The results indicate that the 

oil content of all varieties was in general raised by the ammonium based liquid 

fertilizer supply. A significant change in oil content, however, was observed only in 

variety Olsavil. UAS with 60 kg N applied at BBCH 16 and UAN-N with 48 kg N 

applied at BBCH 30 increased the oil content of the HO sunflower variety 
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significantly. In contrast, UAN-N with 60 kg N applied at BBCH 30 showed the lowest 

oil content and was significantly lower than most of the other liquid fertilizer 

applications, however, was not significantly lower than the control. Also the oil 

content of PR64H41 showed a tendency of the oil content to increase by most of the 

liquid ammonium injections. However, the increase in oil content in this variety was 

negligible and insignificant. Unlike the variety Olsavil, the highest raise was observed 

by UAN-N with 48 kg N applied at BBCH 16 followed by UAS with 48 kg N applied at 

BBCH 16. Different from the first two varieties, Aurasol showed nearly no response to 

the liquid fertilization method.  

 

In 2004, oil content of all varieties was increased by the liquid ammonium fertilizer of 

the application time and N concentration at Braunschweig (Table 3.14). Highest 

increase in oil content was observed in variety Olsavil, where the control revealed 

51.5 % oil and all liquid fertilizer applications around 55 %. However, significant 

increase was obtained only in Aurasol. In contrast to the results at Braunschweig, oil 

content was slightly decreased by most of the liquid ammonium fertilizer applications 

regardless of the N concentration and application time at Eckartsweier in 2003-2004. 

However, the reduction in oil content by ammonium based liquid fertilizer applications 

was negligible and statistically not significant.  

 

Table 3.13: Influence of liquid ammonium fertilizer on oil content (%) at both 
experimental sites in 2003.  

 BRAUNSCHWEIG  ECKARTSWEIER 
 Olsavil  PR64H41 Aurasol  Olsavil  PR64H41 Aurasol 
Control 46.8 bc 50.0a 51.2a  51.4a 50.6a 48.3a 
*UAN BBCH-16 48kgN 50.7abc 52.6a 53.7a  50.4a 46.4a 47.1a 
UAN BBCH-16 60kgN 45.9bc 51.8a 53.7a  50.5a 46.8a 49.6a 
†UAN-N BBCH-16 48kgN 51.6ab 54.6a 51.9a  49.4a 47.2a 49.1a 
UAN-N BBCH16 60kgN 52.3ab 52.9a 51.2a  52.3a 49.1a 45.0a 
††UAS BBCH-16 48kgN 51.9ab 54.4a 53.8a  50.7a 48.2a 48.3a 
UAS BBCH-16 60kgN 54.0a 51.4a 51.9a  47.3a 46.5a 45.4a 
UAN BBCH-30 48kgN 49.6abc 51.2a 49.7a  - - - 
UAN BBCH-30 60kgN 48.8abc 53.4a 50.9a  - - - 
UAN-N BBCH-30 48kgN 54.5a 51.9a 50.3a  - - - 
UAN-N BBCH-30 60kgN 44.6c 50.0a 50.5a  - - - 
UAS BBCH-30 48kgN 45.9bc 51.9a 50.6a  - - - 
UAS BBCH-30 60kgN 49.6abc 51.3a 51.9a  - - - 

*UAN: urea ammonium nitrate solution, †UAN-N: urea ammonium nitrate solution with 
nitrification inhibitor, ††UAS urea ammonium sulphate solution, N concentration: 50 kg N/ha 
and 80 kg N/ha at Eckartsweier. 
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Table 3.14: Influence of liquid ammonium fertilizer on oil content (%) at both 
experimental sites in 2004.  

 BRAUNSCHWEIG  ECKARTSWEIER 
 Olsavil  PR64H41 Aurasol  Olsavil  PR64H41 Aurasol 
Control 51.5a 50.4a 49.8b  51.5a 49.8a 49.6a 
*UAN BBCH16 48kgN 54.9a 51.4a 51.9ab  50.1a 48.4a 48.0a 
†UAN-N BBCH16 48kgN 54.9a 51.6a 52.5a  49.9a 47.0a 48.2a 
††UAS BBCH16 48kgN 55.0a 51.7a 51.4ab  51.4a 49.1a 48.6a 
UAN BBCH30 48kgN 55.1a 51.9a 52.2a  - - - 
UAN-N BBCH30 48kgN 55.2a 52.3a 52.3a  - - - 
UAS BBCH30 48kgN 55.1a 52.4a 51.8ab  - - - 
*UAN: urea ammonium nitrate solution, †UAN-N: urea ammonium nitrate solution with 
nitrification inhibitor, ††UAS urea ammonium sulphate solution, N concentration: 50 kg N/ha 
and 80 kg N/ha at Eckartsweier. 
 
In response to the different liquid fertilizer applications, fatty acid composition was in 

general not changed at Braunschweig in 2003 (Table A.27). Statistically significant 

changes were observed in oleic acid content of Olsavil. 60 kg N/ha UAS application 

at BBCH16 significantly increased oleic acid content in this variety. Liquid fertilizer 

applications showed no significant influence on the oleic content of PR64H41 and 

Aurasol (data for Aurasol not shown). Similarly, oleic acid content was also not 

effected in the following experimental year (Figure A.6-8). Changes in linoleic and 

stearic acid in both experimental years were negligible and mostly insignificant. 

UAN-N with 80 kg N and UAS with 50 kg N both applied at BBCH 16 caused a 

significant decrease in oleic acid in Olsavil at Eckartsweier in 2003 (Figure 3.18). 

Also other liquid fertilizer applications decreased oleic acid content but only slightly. 

Oleic acid of PR64H41 and Aurasol was also decreased by most of the liquid 

fertilizer applications, however this loss was statistically not significant. Linoleic and 

stearic acid content was in general not influenced by the applied fertilizer method. 

Only UAS application with 50 kg N at BBCH 16 increased stearic acid content 

significantly in Olsavil.  

 

In contrast to the previous experimental year, fatty acid composition of Olsavil was 

not influenced by the liquid ammonium fertilizer applications in 2004 at Eckartsweier 

(Figure 3.19). But in PR64H41, oleic acid content was significantly increased by UAN 

as well as UAS both with 50 kg N applied at BBCH 16. The same applications 

increased also the linoleic acid content of this variety. In Aurasol, a slight decrease in 

oleic acid and an increase in linoleic acid content was observed. However, changes 
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in oil composition were statistically insignificant. The stearic acid content was not 

influenced significantly in any variety.  

 

Figure 3.18: Influence of liquid ammonium fertilizer on oil composition (%) at 
Eckartsweier in 2003. UAN: urea ammonium nitrate solution, UAN-N: urea ammonium 
nitrate solution with nitrification inhibitor, UAS urea ammonium sulphate solution.  
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Figure 3.19: Influence of liquid ammonium fertilizer on oil composition (%) at 
Eckartsweier in 2004. UAN: urea ammonium nitrate solution, UAN-N: urea ammonium 
nitrate solution with nitrification inhibitor, UAS urea ammonium sulphate solution. N 
concentration: 50kgN/ha 
 

3.2.5 Effect of ammonium based liquid fertilization method in combination 

with Bion® application  

Changes in fungal infection rate  

A combination of ammonium based liquid fertilizer with plant activator aplication 

resulted in similar effects on yield and quality parameters as the liquid fertilizer 

applications alone in 2002. Figure 3.20 shows the effect of these combined 

approaches on fungal infection rate. Variety Olsavil was 100 %infected by the fungal 
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pathogens Sclerotinia and Botrytis independent of N application type and 

concentration, as well as Bion® concentration. Only a slight increase in fungal 

infection rate was recorded in PR64H61. In comparison to the 80.2 % fungal infection 

with the control, the combined approach showed from 81.3 % up to 97 % fungal 

infection rate. With 40.7 % infection, untreated control with conventional 60 kg N/ha 

showed the lowest infection rate in Aurasol, whereas all applications with liquid 

fertilizer and the plant activator showed more than 60 % infection. Changes in fungal 

infection were overall statistically not significant with any of the liquid fertilizer and 

Bion® combination irrespective from application type and concentration in comparison 

to the control. 

 

2002 (Braunschweig)

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a a

a

a
a

a

0

10

20

30

40

50

60

70

80

90

100

OLSAVIL PR64H61 AURASOL

F
u

n
g

al
 In

fe
ct

io
n

 [
%

]

CONTROL

UAN+BION 10ppm

UAN+BION125ppm

UAN+BION 250ppm

SurfaceN+BION 10ppm

SurfaceN+BION 125ppm

SurfaceN+BION 250ppm

 

Figure 3.20: Influence of liquid fertilizer+ Bion® combinations on fungal infection rate 
(%) in all varieties in 2002 at Braunschweig. (UAN: urea ammonium nitrate solution)  
 

Since the fungal infection rate was too low in 2003, no significant change could be 

observed at both experiment sites (Table A.28). Application of plant activator was 

restricted to two concentrations, 250 and 500ppm, in 2004 at both experimental sites. 

Additionally, a later application time (BBCH 30) was included to the application 

scheme at Braunschweig. Figure 21 shows the influence of these combinations on 

fungal infection rate in 2004 at Braunschweig. The results indicate, although no 

significant influence was observed statistically, application of UAN combined with 

500ppm Bion® injected at BBCH 16 decreased the infection rate clearly in both 

Olsavil and PR64H41. These applications were not tested at Eckartsweier.  
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Figure 3.21: Influence of liquid fertilizer - Bion® combination on fungal infection 
rate (%) at Braunschweig in 2004. UAN: urea ammonium nitrate solution (48kgN/ha).  

 

UAN mixed with 250 and 500ppm Bion® was applied only at the earlier growth stage 

(BBCH16) at Eckartsweier in 2004. From statistical point of view, there was no 

significant change in fungal infection (Figure 3.22). However there was, in contrast to 

the results at Braunschweig, a tendency to increase in infection by the application of 

the combination method in all varieties. The highest raise in fungal infection was 

observed in Olsavil. Infection rate was increased from 30 % to 50 % by UAN+250 

ppm  Bion® and to 43 % by UAN+500 ppm Bion®. Similar results were observed also 

in PR64H41 and Aurasol, however raise in infection was lower in comparison to 

Olsavil.  
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Figure 3.22: Influence of liquid fertilizer - Bion® combination on fungal infection rate 
(%) at Eckartsweier in 2004. UAN: urea ammonium nitrate solution (50kgN/ha) 
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Changes in yield components  

Yield parameters were not significantly influenced by the tested combinations in 2002 

(Table A.29-31). Achene yield of Olsavil in response to the application of liquid 

fertilizer - Bion® combination was not changed significantly in 2003 at Braunschweig 

(Figure 3.23). All applications, except of UAN combined with 250 ppm Bion® applied 

at BBCH 16, caused only a slight decrease in yield.  Also in PR64H41 only a 

tendency of the yield to decrease was observed by most applications except of UAN 

with 1000 ppm Bion®. Similarly, Aurasol responded with slight decrease to the 

combine applications, although the changes were insignificant. Highest increase in 

both PR64H41 and Aurasol was observed by the UAN combination with 250 ppm 

Bion®. In the following experimental year 2004, only 250 and 500 ppm Bion® 

combinations were tested. Additionally, a second application time was included to the 

application scheme.  

 

 

Figure 3.23: Influence of liquid fertilizer - Bion® application combination on achene 
yield (dt/ha) at Braunschweig in 2003 and 2004. UAN: urea ammonium nitrate solution 
(48kgN/ha). 
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At Eckartsweier, yield response to the combined application was negative in 2003 

(Figure 3.24). Achene yield of Olsavil and PR64H41 was significantly decreased by 

the liquid fertilizer + Bion® applications regardless of the Bion® concentration and 

application time. Highest reduction in achene yield was observed in PR64H41 where 

the yield was decreased from 36 dt/ha to about 25 dt/ha by the combined 

applications. Yield reductions occurred in Aurasol were however not significant. In 

2004, the second year of this application, only one application time (BBCH 16) was 

tested at Eckartsweier. Results indicate very low change in achene yield regarding 

the application liquid fertilizer + Bion®. Yield was only slightly increased in Olsavil and 

Aurasol by both Bion® concentrations, while it was slightly decreased in PR64H41. 

There were no significant changes in achene yields by any of the combined 

applications.  

 

 

 

Figure 3.24: Influence of CULTAN - Bion® combination on achene yield (dt/ha) of all 
varieties at Eckartsweier in 2003. UAN: urea ammonium nitrate solution (50kgN/ha). 
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Plant height of all varieties was increased by all liquid fertilizer + Bion® applications 

regardless of the application time and Bion® concentration at Braunschweig in 2003 

(Figure 3.25). However, changes in plant height were insignificant from statistical 

point of view. In the following year, similar results were observed regarding plant 

height. An additional application time revealed no remarkable change in comparison 

to the untreated control or to the other applications.  

 

Plant height was recorded only in the first year 2003 for Eckartsweier. Figure 3.26 

shows the changes in height with application of combined method. Opposite to the 

changes at Braunschweig, plant height was reduced in all varieties by all applications 

irrespective of the application time and Bion® concentration. Significant changes, 

however, were observed only in Aurasol. Plant height of Aurasol was significantly 

reduced by 25cm by the application of UAN mixed with 250 and 1000 ppm Bion®.  

 

 

Figure 3.25: Influence of liquid fertilizer - Bion®. combination on plant height (cm) at 
Braunschweig in 2003 and 2004. UAN: urea ammonium nitrate solution (48kgN/ha).  
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Figure 3.26: Influence of liquid fertilizer - Bion® combination on plant height (cm) at 
Eckartsweier in 2003. UAN: urea ammonium nitrate solution (50kgN/ha).  
 

Combining urea ammonium nitrate solution with plant activator in different 

concentrations did not show any influence on the other yield components in any 

experiment site (data not presented), except of the thousand seed weight at 

Braunschweig in 2004 (Figure 3.27). Combined applications raised TSW of all 

varieties regardless of the application time and Bion® concentrations. Changes in 

TSW were statistically not significant in Olsavil. PR64H41 and Aurasol revealed 

significant increase in TSW in respond to the applications with Bion® added liquid 

fertilizer. UAN with 500 ppm.  Bion® in PR64H41 and UAN with 250 as well as 500 

ppm Bion® in Aurasol revealed significant increases.  
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Figure 3.27: Influence of liquid fertilizer - Bion® combination on thousand seed 
weight (g) at Braunschweig in 2004. UAN: urea ammonium nitrate solution (48kgN/ha).  
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Changes in quality components 

Other yield and quality parameters were not influenced by the tested combinations in 

2002 except of oleic acid content of the oil (Figure 3.28). Oleic acid percentage was 

negatively affected in variety PR64H61. Injection of 10ppm Bion® in combination with 

urea ammonium nitrate and surface application of 250ppm Bion® combined with urea 

ammonium nitrate significantly decreased the oleic acid content in comparison to the 

control.  
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Figure 3.28: Influence of liquid fertilizer- Bion® combinations on oleic acid content 
(%) of all varieties in 2002 at Braunschweig. (UAN: urea ammonium nitrate solution) 
 

In the first year of the main field experiments, oil content showed a tendency to 

increase in Olsavil by the application of liquid fertilizer mixed with the plant activator 

at Braunschweig (Figure 3.29). All applications but UAN with 2000 ppm Bion® applied 

at BBCH 16 raised the oil content slightly. It was only the application UAN with 1000 

ppm Bion® that showed a noticeable change in oil content in PR64H41. Influence of 

this application on Aurasol was negligible and not consistent. However, none of the 

changes were statistically significant. On the contrary, combination of both methods 

significantly changed oil content in 2004. It was significantly raised in Olsavil and 

Aurasol by all the combined applications independent of the application time and 

Bion® concentration. Changes in oil content of the variety PR64H41 were statistically 

not significant, however, it showed also tendency to increase by all applications.  

 

At Eckartsweier, opposite of the results observed at Braunschweig, oil content of HO 

sunflower varieties was in general decreased (Figure 3.30). In 2003, the most 

applications influenced the oil content negatively in all varieties. However, no 

significant change could be observed. Also in 2004, oil content of all varieties showed 
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a negative response to all applications with UAN + Bion®. Significant difference was 

however observed only in Olsavil. Oil content was reduced from 51.5 % to 49.2 % by 

application of UAN with 500 ppm  Bion® at BBCH 16.  

 

 

Figure 3.29: Influence of liquid fertilizer - Bion® combination on oil content (%) at 
Braunschweig in 2003-2004. UAN: urea ammonium nitrate solution (48 kgN/ha).  
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contrast, it was increased significantly by both applied Bion® concentrations in UAN 

at Eckartsweier.  

 

 

Figure 3.30: Influence of liquid fertilizer - Bion® combination on oil content (%) at 
Eckartsweier in 2003-2004. UAN: urea ammonium nitrate solution (50 kgN/ha).  
 

3.2.6 Effect of Mikro-Vital  

Changes in fungal infection rate  
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infection rates were much lower irrespective of the applications. Also in 2005, no 

significant change occurred.  

 

In response to Mikro-Vital application, fungal infection rate was slightly increased in 

Olsavil in 2004 at Eckartsweier. In contrast, a noticeable decrease was observed in 

PR64H41 and Aurasol. This slight effect was however not observed in 2005. Fungal 

infection showed nearly no response regarding Mikro-Vital + Bion® combination in 

both experimental years. Statistically, none of these applications showed any 

significant influence on fungal infection rate.  

 

 

Figure 3.31: Influence of Mikro-Vital and its combination with Bion® on fungal 
infection rate (%) of all varieties at both experiment sites.  
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highest plant height in comparison to the other two varieties. The most important 

quality parameter, the oleic acid content, was significantly increased only by the 

application of Mikro-Vital in PR64H61. In contrast linoleic acid amount was 

significantly decreased. 

 

Table 3.15: Influence of Mikro-Vital application on yield and quality parameters for all 
three varieties in 2002 at Braunschweig.  

 OLSAVIL PR64H61 AURASOL 
 Control Mikro-Vital Control Mikro-Vital Control Mikro-Vital 

Achene yield (dt/ha) 30.5a 27.1a 31.1a 29.2a 31.3a 30.2a 
Plant height (cm) 161.8a 150.6b 148.5a 138.3a 135.2a 135.3a 
Head diameter (cm) 13.3a 14.3a 14.7a 15.1a 12.8a 12.5a 
TSW* (g) 45.1a 51.4a 57.7a 66.1a 59.8a 54.4a 
Oil content (%) 55.7a 54.8a 54.4a 52.8a 51.6a 52.6a 
Oleic acid (%) 92.4a 92.5a 89.1b 91.1a 87.9a 88.1a 
Linoleic acid (%) 2.5a 2.5a 5.2a 3.2b 4.8a 4.8a 
Stearic acid (%) 1.1a 1.2a 1.5a 1.6a 2.9a 2.8a 
*TSW: Thousand seed weight. 
 

Yield data achieved by the bacterial fertilizer applications in 2004 and 2005 are 

presented in the Figure 3.32. The yields were not significantly changed by Mikro-Vital 

treatment in 2003 (data not shown). Also in 2004, there were no statistically 

significant differences by the two different treatments using the bacterial fertilizer. 

Only a slight increase in achene yield could be observed by pure Mikro-Vital alone in 

Olsavil. This effect could be reproduced in 2005. Additionally, combined application 

of Mikro-Vital and Bion® also slightly increased the achene yield of Olsavil. The other 

two varieties showed nearly no response to the treatments.  

 

At Eckartsweier, both treatments showed an increase in achene yield in Olsavil and 

Aurasol in 2004. However this yield increase was higher and only significant in 

Aurasol in contrast to Olsavil. Yield was insignificantly decreased by Mikro-Vital 

treatment in PR64H41. Similar results were observed also in the following 

experimental year. Both Mikro-Vital treatments showed a slight increase in Olsavil 

and Aurasol while they caused a slight decrease in PR64H41.  
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Figure 3.32: Influence of Mikro-Vital and its combination with Bion® on achene yield 
(dt/ha) at both experiment sites in 2004-2005. 
 

Other yield parameters such as plant height, head diameter, and thousand seed 

weight were evaluated for Mikro-Vital treatments only at Braunschweig. Results of 

yield parameters are presented in detail in Table 3.16. Statistical analysis of the 

results indicates that, there were no significant differences among bacterial mixture 

treatments on any yield component, except of a decrease in head diameter of Olsavil 

in 2005. However, it was not a reproduced in the following experimental year or by 

any other variety. Also TSW was slightly decreased by Mikro-Vital treatment in 

Olsavil in the same experimental year, was however insignificant.   
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Table 3.16: Influence of Mikro-Vital and its combination with Bion® on yield 
components at both experimental sites.  

  2004  2005 

  

Plant 
height 
(cm) 

Head 
diameter 
(cm) 

TSW  
(g)  

Plant 
height 
(cm) 

Head 
diameter 
(cm) 

TSW  
(g) 

OLSAVIL         
Control  160.83a 13.25a 42.68a  194.23a 13.90a 44.03a 
Mikro-Vital  170.25a 12.98a 42.92a  195.18a 12.75b 41.58a 
Mikro-Vital+* Bion®  166.75a 12.85a 42.19a  196.45a 13.30ab 44.14a 

PR64H41         
Control  150.40a 13.25a 40.19a  176.23a 13.08a 49.17a 
Mikro-Vital  157.20a 13.30a 42.36a  178.88a 12.95a 50.05a 
Mikro-Vital+ Bion®  144.80a 13.30a 38.56a  178.63a 13.38a 48.88a 

AURASOL         
Control  136.93a 12.28a 40.83a  178.25a 12.50a 46.21a 
Mikro-Vital  139.40a 12.30a 42.86a  180.43a 12.45a 47.56a 
Mikro-Vital+ Bion®  146.90a 12.50a 41.82a  185.20a 12.58a 46.35a 

* Bion®: 125ppm applied at BBCH16 growth stage  
 

Changes in quality components 

Oil content of all three varieties was slightly increased by Mikro-Vital treatment in 

2003 (Figure 3.33). In the following experimental years, oil content was not 

significantly changed by either Mikro-Vital or its combination with the plant activator 

at both experimental sites (Figure A.9). Evaluation of the important fatty acids such 

as oleic acid, linoleic acid, and stearic acid at both experiment sites showed also no 

significant variation in both experimental years except of oleic acid content in 

Aurasol. At Eckartsweier, oil content in Aurasol was significantly reduced by 

application of Mikro-Vital in combination with the plant activator in 2004 (Table A.34-

35). 
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Figure 3.33: Influence of Mikro-Vital on oil content (%) of all varieties at 
Braunschweig in 2003.  



RESULTS  77  
 

 

3.3 SUGAR CONTENT AND SUGAR COMPOSITION OF THE PLANT PARTS 

3.3.1 Total sugar content  

Total sugar content consisted of the sum of all analyzed water soluble carbohydrates. 

Aurasol, total sugar content of all analyzed plant parts was the highest at the first 

harvest date, 118 days after sowing, and was reduced consistently with time until 

ripeness in 2002 (Figure 4.34). Nearly all sugar content was degraded in all plant 

parts in the fully ripe plants. Sugar content of the inner disc was the highest 118 and 

145 days after sowing in comparison to the stem segments and the other head parts. 

Due to different maturity times, there were both not ripe (green) and ripe plants at the 

harvest. Therefore, those were analyzed separately. The sugar budget of the green 

and ripe plants differed at the last sampling date 159 days after sowing. Green plants 

had the highest sugar content in the inner disc. At this date, the ripe plants contained 

nearly no sugar in all plant parts but only some in seeds.  

 

In 2003, all selected varieties were analyzed for sugars starting from the earlier 

vegetation stages. All three varieties showed similar sugar content in different plant 

parts at the first two sampling dates, 66 and 79 days after sowing (Figure 3.47). 

Sugar content of the plant head increased at 86 days after sowing whereas it 

decreased in the stem segments. At 109 days after sowing, the highest total sugar 

content was in the plant heads in all varieties. At this date, Olsavil showed the 

highest sugar content in the plant head as well as in the stem segments. No sugars 

were left in any stem segment of PR64H41 and only low amount of sugars. At the 

last sample date, 122 days after sowing, Aurasol contained no sugars in any plant 

parts but some in seeds. Olsavil and PR64H41 had only a small percentage of 

sugars in the stem segments and higher sugar content in the head parts. The highest 

sugar content at this date was revealed in Olsavil. It showed relatively higher amount 

of sugars in the outer and inner discs.  

 

3.3.2 Fructose 

In the analyses in 2002, the highest fructose was observed in the discs during the 

total measurement except at the harvest in Aurasol (Figure 3.46). Fructose content 

was the highest at the first sample date measured in all plant parts. Also in 

comparison to the other sugar types, fructose was in general higher. Outer and inner 

discs as well as the second stem segment showed high fructose content in 
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comparison to the other plant parts. Also in the other stem segments, relatively high 

fructose content was measured at the first date. Seeds contained fructose only at this 

first sample date. Fructose was reduced dramatically at the second sample date in 

the stem segments. Inner and outer discs showed still higher amount of fructose 

content. In the green plants at 159 days after sowing, no fructose was left in the first 

two segments of the stem and only a small amount in the upper segments. But plant 

head excluding the seeds showed still a noticeable amount of fructose. No fructose 

was measured in the seeds at the dates later than 118 days after sowing. Fructose 

was in general the highest sugar type in all plant parts at the measured dates.  

 

In 2003, fructose was higher in stem segments than in the plant head for all varieties 

at 66 days after sowing (Figure 3.35). However, fructose was not the highest sugar 

type in any plant part at this date. Fructose content was reduced at 79 days after 

sowing in the stem segments while it was increased in the plant head. Only in 

Olsavil, fructose was reduced in the plant head as well. At 86 days after sowing, 

fructose content rose in all plant parts throughout all three varieties. In comparison to 

the other sugar types and to the other plant parts, the highest fructose was measured 

in the first three stem segments from the bottom. At 109 days after sowing, fructose 

content again dropped down in all plant parts. However, it was still the highest sugar 

type in most of the plant parts except the seeds. Only in Olsavil, Fructose was nearly 

the same amount in the plant head parts as Glucose. At 122 days after sowing, there 

was still a higher amount of fructose in the inner and outer discs of Olsavil, while 

there was only a small amount of it in the other plant parts. Also PR64H41 revealed 

some fructose in the discs but none in the other plant parts. Only very small amount 

of fructose was measured in the seeds in Aurasol at this last date.  

 

3.3.3 Glucose 

Higher glucose content was measured in the discs in comparison to the other plant 

parts at all sample dates in 2002 (Figure 3.46). A great part of the glucose content in 

the discs and in the receptacle was reduced with the time except in the outer disc. 

The glucose was increased from 145 to 159 days after sowing in the green plants in 

outer discs. In the seeds, only less than 1% glucose was found at 118 days after 

sowing. After this date, the seeds contained no glucose anymore. Also in the stem 

segments, only small amount of glucose was detected from the beginning of the 
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measurement date, and it slowly degraded until the harvest. No glucose was 

measured in any ripe plant parts.  

 

Glucose content of the plant parts slightly differed between the selected varieties 

(Figure 3.47). Olsavil showed in general higher glucose content in all parts 

throughout the experiment in 2003. Higher glucose content in all selected varieties 

was measured in the stem segments at 66 days after sowing. Particularly the last 

segment from the bottom contained the highest glucose at this date and also at 79 

and 86 days after sowing. At 109 days after sowing, there was only a small amount 

of glucose was left in the stems of Olsavil and Aurasol. No glucose was left in the 

stem in PR64H41 after this date. In contrast, high amount of glucose was measured 

in the plant head parts. The highest glucose was observed in the discs followed by 

the receptacle for all varieties. The seeds contained only a small amount of glucose 

in Olsavil and Aurasol but none in PR64H41. At the last sample date, no glucose was 

left in stems and in seeds in any variety. Only some glucose was detected in the 

discs of Olsavil and PR64H41.  

 

3.3.4 Sucrose 

The Sucrose content showed a different behavior and overall was lower in all plant 

parts in comparison to the other two sugar types in 2002 (Figure 3.46). Different from 

the other sugar types, the highest sucrose was measured in the upper stem 

segments at 118 days. It was then slowly degraded in the stem at the measurement 

date of 145 days after sowing while it increased in the seeds. Starting from this 

measurement date, sucrose was the only existing sugar type in the seeds. Green 

plants 159 days after sowing showed an equal amount of sucrose in the upper stem 

segments and the disc parts. In ripe and dried plants still a low amount of sucrose 

was detected in the 4th stem segment and but higher amount in the seeds.  

 

Similar to the previous year the sugar analyses in 2003 showed that the sucrose was 

the lowest sugar type in plants in all varieties during the all sample dates (Figure 

3.47). At 66 days after sowing, the sucrose content was higher in the stem segments 

than in the plant head. Sucrose was decreased in all plant parts at the second 

sample date. The least sucrose amount at this date was measured in Aurasol. It was 

increased at the 86 days after sowing in all plant parts. At this date, sucrose content 
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was still higher in the stem, particularly in the first 3 segments. Only in Aurasol, 

sucrose content was higher in the plant head than the stem. At 109 days after 

sowing, sucrose content increased in the head parts but therefore decreased in the 

stem segments. Olsavil contained the highest sucrose in the seeds while PR64H41 

and Aurasol showed the highest sucrose in the inner discs. At the last sample date, 

the highest sucrose content was measured in the seeds for all varieties. At this date, 

sucrose was the main and highest sugar type in the seeds.  
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Figure 3.34: Sugar content of the stem segments and head parts sampled at 3 
different growth stages in Aurasol in 2002. S: Stem segments starting from the bottom.  
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Figure 3.35: Sugar content of the stem segments and head parts sampled at 5 
different growth stages in 2003. S: Stem segments starting from the bottom 
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3.3.5 Other water soluble carbohydrates  

Different from the sugar analyses 2002, additionally, fraction of remaining water 

soluble carbohydrates (rWSC) was also analyzed in 2003. Analysis results showed 

that rWCS existed in the plants mainly in the earlier sample dates (Figure 3.47). At 

66 days after sowing, high amount of rWCS was measured in the first 3 segments of 

the stems and also in the plant head. rWCS content was lower in the last stem 

segment in all varieties at this date. It was even more decreased at 79 days after 

sowing in the 4th segment and also in the plant head whereas it highly increased in 

the first 3 stem segments. At 86 days after sowing, most of the rWCS in the stem 

were dramatically decreased. In the meanwhile, it was increased in the plant head in 

Olsavil and PR64H41. At the last two sample dates, no rWCS at all was left in the 

stem and even the plant head parts and the seeds contained only a very small 

amount (less than 1%).  

 



 

 

 

 

 

4  
 

DISCUSSION  

 

4.1 Achene and oil yield of HO sunflowers 

HO sunflowers are reported to have comparable achene yield potential to the 

conventional sunflower yields (Lühs and Friedt, 1999). In fact, Monotti et al. (2003) 

reported that some high oleic varieties produce similar or even higher achene yield 

than the regular varieties, and different variety trials confirm that HO sunflowers have 

a quite similar achene yield potential to the regular type (Table 4.1). However, the 

promising yield potential of HO sunflowers is not achievable in practice. Actual 

achene yield values of this study show a great difference in comparison to the variety 

trials. With 29 dt/ha, our field trial results stand far below the yield potential of the 

high oleic sunflowers which is around 40 dt/ha (UFOP, 2005, 2006). However, it is a 

general phenomenon that the predicted yields are higher in sunflowers compared to 

the actual yields because the countries in northwestern Europe like Germany are 

marginal for production and therefore there is high yield insecurity caused by 

environmental factors (Harrison, 1996; Lühs et al., 1999).  

 

Oil content of HO sunflowers is quite the same as that of regular types as it was 

reported by the variety trials of the TLL (2007). Nevertheless, UFOP (2005-2006) and 

DLR (2007) reported a slightly lower oil content of HO sunflowers. Interestingly, our 

study results reached higher oil contents than the reported oil content levels for both 

regular and HO sunflowers. Although it was reported that some HO cultivars tend to 

have lower oil yield than the conventional sunflower cultivars (Monotti, 2004), 

evaluation trials also show that some HO varieties can produce higher oil yield 
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(Monotti, 2003). As regards the fatty acid composition, HO sunflower hybrids show 

very stable fatty acid composition (Monotti et al., 2003), whereas the regular 

sunflower hybrids present a larger variation in oleic acid (Izquierdo et al., 2002) 

 

Table 4.1: Achene yield (dt/ha) and oil content (%) of regular and high oleic 
sunflowers reported by different research units. 

 FAL UFOP(1) TLL(2) DLR(3) 
Achene yield (dt/ha)     

Regular sunflowers - 41.0 36.0 39.5 
HO sunflowers 29.0 38.4 38.4 38.5 

Oil content (%)     
Regular sunflowers - 48.0 46.5 48.5 
HO sunflowers 50.5 46.8 46.8 46.9 

(1) UFOP (2005-2006), variety trials.  
(2) Jentsch et al. (2007), Thüringer Landesanstalt für Landwirtschaft (TLL), variety trials  
(3) Weimar et al. (2007), Dienstleistungszentrum Ländlicher Raum (DLR), variety trials.  
 

4.1.1 Influence of environment and location  

Achene yield 

The two different locations selected for this study represent two different climatic 

conditions for sunflower production in Germany. Unlike our expectations, location as 

influencing factor on the achene yield was not significant. Although the research 

fields near Braunschweig represent a marginal site for sunflower production, achene 

yield seems to be satisfactory and not strongly influenced by the unfavorable location 

in comparison to the warmer area with a slightly better soil quality at Eckartsweier. In 

contrast, Reinbrecht and Claupein (2004) observed greater differences between the 

achene yields at different locations. Furthermore, it was argued by Vetter (1996) that 

the location and soil differences have more influence on the HO sunflower yield than 

its genetic potential. Since our findings are not in agreement with those reported in 

both regular and HO sunflowers, it is essential to discuss changes in the achene 

yield at different locations corresponding different environmental factors in different 

years. The meteorological data shows that 2003 was the hottest and driest year 

whereas the following study years were moderate and in comparison colder with 

higher rainfall. These significant differences in the weather conditions during the 

sunflower growing period were mainly responsible for the modifications in grain yield. 

HO sunflower achene yields were higher in 2003 where nearly no fungal diseases 
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were observed at both locations. This positive effect of dry weather and higher 

temperatures on the yield was confirmed by Reinbrecht and Claupein (2004). Due to 

the missing fungal diseases in this year, the slightly higher achene yield at 

Eckartsweier might be associated with the location advantage.  

 

In the more unfavorable year 2004 with higher precipitation and colder temperatures 

great yield loss was experienced at both locations and at the same time the influence 

of location became more obvious. Only in this year, the less favorable location 

Braunschweig was disadvantaged mainly due to the weather conditions and showed 

significantly less achene yield than at Eckartsweier. This dramatic yield loss is not 

only a result of the worse weather condition for sunflower cultivation, but to a high 

extent also of more intensive fungal disease attack, which will also be discussed 

more precisely in the corresponding subchapter. Dramatically higher fungal disease 

rates were observed at Braunschweig in comparison to the second experimental site 

Eckartsweier as well as to the other study years, mainly caused by the heavy rainfall 

at the end of the of vegetation period at the ripening. On the other hand, totally the 

opposite results were achieved in 2005 with significant higher achene yield and lower 

fungal disease rates at Braunschweig than at Eckartsweier. A clear conclusion 

derived from the yield results obtained at different locations is that the HO sunflower 

yield stability is very much dependent on the fungal disease level associated with the 

wet and cold weather conditions at the second half of the vegetation period. 

Irrespective of being marginal or favorable for sunflower production, cultivation areas 

in Germany are generally under production risk due to high precipitation and cooler 

temperatures at the end of summer and the beginning of autumn. Therefore, 

locations more southwards of Germany with better soil quality might have only a 

small advantage for security in HO sunflower production. Furthermore, cultivation 

areas at northern Germany show inadequate temperature sum during the critical 

growing period as a limiting factor whereas it is inadequate precipitation in southern 

areas. 

 

Oil content and oil composition 

Higher oil content in sunflowers are the result of a high green matter production 

during the flowering, not too high summer temperatures and a good water supply 
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during the flowering and seed filling stage (Hugger, 1989). These criteria are 

principally given at the northern production areas. However, a positive significant 

effect of location on the level of oil content was revealed in this study with the 

southern site showing a higher oil content than the northern site. This result is not 

necessarily a contradiction but rather a positive reflection of the sunflower’s oil 

productivity to the better water availability at the flowering stage at the southern 

location Eckartsweier in the study years 2003 and 2005. It was also found by Pinthus 

(1963) that the high temperatures together with the high evaporation during the 

flowering cause decreases in oil yield components. Despite of the higher 

temperatures, the precipitation was also higher at Eckartsweier which probably led to 

the higher oil contents.  

 

It is reported that not only oil content but also the oil composition is highly dependent 

on environmental differences, irrespective of the genotype (Ayerdi-Gotor et al., 

2007). Another study describes that, oleic, linoleic, and stearic acid contents were 

significantly affected by the growth year but the oil content was stable throughout all 

experimental years (Robinson, 1978). In this study, the main effect of the year 2005 

with moderate rainfall was an obvious decrease in oleic acid content and a 

concurrent increase in linoleic acid. Although the fatty acid composition of the HO 

cultivars shows a greater stability in comparison to the regular ones (Salera and 

Baldini, 1998; Flagella, 2002), it is also known to differ between cultivars and by 

varying environmental conditions (Connor and Sadras, 1992). Especially the 

temperature (Rondanini et al., 2003; Tremolieres et al., 1982; Robertson et al., 1978) 

and the water regimes (Flagella et al., 2006; Flagella et al., 2000; Baldini et al., 2000) 

may have a major influence on the fatty acid characteristics during seed filling. Some 

authors explain the decrease in oleic acid with higher water availability in both high 

oleic (Flagella, 2002; Baldini et al., 2000) and regular genotypes (Talha and Osman, 

1974). On the other hand, Unger (1982) and Tonev (2006) found an increase in 

oleic/linoleic acid ratio with higher water availability during the seed filling period. 

Additionally, it is found that higher temperatures during seed filling cause an increase 

in oleic acid content (Flagella, 2002; Jones, 1984; Unger, 1982). Since the individual 

growth stages during the field trials were not recorded in this study, it is not possible 
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to interpret the year influence on the oil composition by differences in the observed 

parameters.  

 

4.1.2 Influence of genotype 

Achene yield and disease tolerance 

The results of this study demonstrate a strong variation in the achene yield as well as 

the fatty acid composition between different cultivars. As representative of the late 

maturing varieties Olsavil showed the lowest achene yield. Additionally, the yield of 

Olsavil seems to vary quite dramatically with changing weather conditions, since the 

yield dropped down drastically in colder years with higher rainfall in comparison to 

the more optimal sunflower production year 2003. These results conflict with 

Hebeisen (2006) and Sämann (2002) who argued that a longer vegetation period is 

generally associated with higher yields. The reason for the yield decrease might be 

colder temperatures and high humidity around harvest time (Meyer, 2005). It is also 

known that late maturity is a disadvantage in central Europe due to low temperature 

sum and higher rainfall in autumn and especially due to the fungal disease attack at 

the end of the vegetation period (Lühs, 1999). Therefore, the late maturing varieties 

are under higher yield risk due to the late fungal disease susceptibility. However our 

results agreed with this hypothesis, since the latest maturing variety Olsavil showed 

also the least disease severity in the most favorable study years for fungal infections 

proving its better tolerance against the critical fungal diseases. Additionally, the fact 

that Olsavil showed lower yield in the southward location Eckartsweier proves its bad 

adaptability to more favorable locations with higher average summer temperatures. 

Concerning the quality parameter, Olsavil was the only variety that showed instable 

oil content. The higher temperatures and lower rainfall caused a decrease in oil 

content. Although it has the highest oleic acid within the tested varieties, even the 

oleic acid of this late variety was negatively influenced by the warm and dry weather 

in 2003. However it was only a 1% absolute difference in oleic acid content. 

 

The moderate maturing variety PR64H41 showed the highest yield stability 

throughout the study years and at both locations, and so the least variation during the 

different environmental conditions. Even though, yield losses occurred in the critical 

production year 2004 where the disease severity appeared to be the highest in 
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comparison to the other years. Unfortunately, this moderate variety also shows the 

highest fungal disease susceptibility. Even the mid early variety Aurasol showed 

similar results with high disease susceptibility in unfavorable years and a high yield 

loss as the conclusion. In contrast to several authors (Crowley, 1998; Askew, 1993, 

1992), the earlier maturity does not necessarily secure less susceptibility to the 

Botrytis and Sclerotinia diseases. They both showed very good oil content stability 

but poor stability in oleic acid content. The environmental conditions in 2005 caused 

in both varieties a high loss in oleic acid content. Irrespective of the variety selection, 

environmental conditions cause variations in the yield and quality parameters as well 

as the disease levels. Although, an appropriate choice of variety could be an effective 

mean to produce sunflower oil with high and stable oleic acid content (Monotti, 2003), 

additional agricultural approaches are necessary in order to secure the yield and 

quality, regardless of the production location.  

 

4.1.3 Fungal diseases and their influence 

In the field experiments of 2002, more precise fungal disease evaluations of 

Sclerotinia sclerotiorum and Botrytis cinerea were carried out at different 

developmental stages in order to observe the development of the disease severity 

(Figure A.1). Results of this evaluation showed the appearance of the severe fungal 

infections much later in the vegetation period prevalently at the harvest. Apparently, 

most of the infections were caused by the air-borne pathogens which attacked 

sunflowers probably during the flowering stage and infected prevalently the plant 

heads followed by the stems at the ripening stage. In fact, the susceptibility of 

sunflowers to both head rot and grey mould increases already at the flowering 

(Church et al., 1992, Prats et al., 2003), only their damage in the field is visualized 

when the plants are at the physiological maturity stage. The late infections causes 

even more risk for HO sunflower cultivars since they stay approximately two weeks 

longer on the field. In spite, plants were harvested much later in 2002, due to a delay 

in sowing time which also triggered the increase in infection rate.  

 

The highest variation in this study was found in year, and in location x year 

interaction. Severity of both diseases was rather dependent on the environmental 

conditions than the study location and the selected varieties. In the comparable 
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studies of head rot disease, Rönicke et al. (2005) found highly significant genotype x 

environment interactions. In contrast, in the studies of Hahn (2002) and Rönicke et 

al. (2004) the variances of genotype x environment were below the genotypic 

variance. The higher variance in experimental year in the study may be because of 

more pronounced differences of the environments for the experiments and also the 

less difference between the selected cultivars in respect to the disease tolerance. 

2003 has been an extreme year from climatic point of view, with only 244 mm 

precipitation and relatively high temperatures during the vegetation period that lasted 

from end of April till mid September. Only some root Sclerotinia was observed in this 

year with no influence on the achene yield, which was mainly caused by the soil 

borne pathogens, since the environmental conditions were probably not favorable for 

air-borne pathogen infections. The unusual cool and wet conditions throughout the 

2004 season were ideal for Sclerotinia head rot and Botrytis grey mould infections 

and development, especially at Braunschweig. The higher rainfall after flowering at 

Eckartsweier in 2005 probably increased the disease severity at this location. High 

negative correlation between the disease rate and the achene yield proves the 

negative influence of fungal infections on the sunflower yield. In fact, the main 

influencing factor found to be the fungal infection rate. To some extend, the high 

difference between the actual and potential yield may be associated with the severity 

of the fungal diseases in locations where diseases are the major constraint in 

sunflower production. Such decrease in yield loss due to Sclerotinia diseases is 

reported in sunflower (Sadras et al., 2000; Pereira et al., 1999), in peanut (Marinelli 

et al., 1998), in soybean (Wrather et al., 2001). Grey mould causes also significant 

yield loss in sunflower (Church, 1992) and e.g. in linseed (Mercer et al., 1994). 

Concerning the quality parameters, the fungal diseases showed no influence on the 

oil content and the fatty acid composition. Our results confirm the result of Hahn 

(2002) who found no correlations between oil content and Sclerotinia head rot 

reactions, and are also mostly consistent with those of Gulya et al. (1986) who found 

only small reduction in oil content but no change in fatty acid composition.  

 

4.1.4 Fungicide application 

Significant negative correlation between the fungal infection rate and achene yield 

shows the importance of disease management in high yielding HO sunflower 
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production. A significant reduction in fungal diseases will significantly reduce losses 

in yield and quality (Rashid, 2005). Although, there is no permitted fungicide in 

Germany against leaf and stem diseases of sunflowers, we tested a systemic 

fungicide Folicur® as a conventional plant protection approach in order to examine its 

potential against HO sunflower’s fungal pathogens.  

 

The selected fungicide tebuconazole appears not effective against the fungal 

diseases of sunflowers. Our findings are in agreement with Halley (2005) who also 

tested Folicur, among other fungicides, against Sclerotinia head rot in sunflower and 

found no differences neither in the severity of the head rot nor in the yields by any 

fungicide treatments. Heier et al. (2005) even found an increase in disease severity 

with the fungicide treatment rather than a decrease. In contrast, Rashid (2005) 

reported that several other fungicides are effective against head rot disease in 

sunflowers, when applied twice, however only at high levels of infection. He also 

demonstrated high yield increases as a conclusion of the disease reduction. The 

results of this study concluded the fact that the treatment of Folicur causes yield 

suppression when applied at warm and dry weather conditions but only at southern 

location. Fungicide application at flowering together with the warm temperatures 

might have caused a stress in sunflower plants and led to a yield decrease. However 

there is no report available proving this hypothesis.  

 

4.2 Alternative agricultural approaches  

4.2.1 The plant activator BTH (Bion®) 

Efficacy on fungal diseases 

BTH is the most studied resistance inducer and several available data concern the 

effects of this compound on foliar pathogens (Vallad and Goodman, 2004). It is 

reported to be by far the best studied chemical elicitors available, and activates a 

systemic induced resistance across a broad range of plant–pathogen interactions 

(Lawton et al., 1996; Maleck et al., 2000; Uknes et al., 1992; Ward et al., 1991). A 

resistance induction of BTH was reported against fungal diseases (Baysal, 2001; 

Ruess et al., 1995; Kessmann et al., 1996; Fritz, 1996; Görlach et al., 1996), against 

bacterial diseases (Zeller and Zeller, 1998; Louws et al., 2001), and against viral 

diseases (Anfoka, 2000). BTH in form of Bion® is usually applied as foliar spray but it 
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can also induce resistance when applied as seed treatment e.g in sunflowers 

(Sauerborn et al., 2002), bean (Siegrist et al., 1997), oilseed rape (Jensen et al., 

1998), cashew (Lopez and Lucas, 2002) and melon (Buzi et al., 2004). Our results of 

the greenhouse experiments show that the use of BTH as a seed treatment can 

induce an increased level of resistance to Sclerotinia in HO sunflowers, when the 

infection occurs after inflorescence emergence. However, BTH shows nearly no 

influence on the earlier infections. Similarly, Iriti and Faoro (2003) argued that BTH 

has proved to be a very efficient resistance inducer in bean cultivars against rust with 

a single application when a long induction phase elapsed before challenge 

inoculation. They also found that the resistance activated by BTH is long-lasting, as 

bean plants were fully protected for at least 1 month. It is as well reported that plants 

need only 2-7 days of interval after application of the inducing agent for the 

development of resistance (Baysal, 2001; Schweizer et al., 1989; Jenns et al., 1979) 

and are protected against diseases for up to 3-6 weeks (Prats et al., 2002; 

Kessmann et al., 1994). The fact that the BTH did not provide protection against 

sclerotinia infections earlier during plant development (from first leave pairs until 6 

leaves stage) can be explained by the young plants being more sensitive against the 

severe pathogen attacks.  

 

Our field experiments were carried out under conditions of natural infection pressure 

with conventional agricultural practices to obtain a more objective view on efficacy of 

BTH treatment if used in practice. Study results revealed that BTH seed treatment 

does not provide any significant reduction in Sclerotinia or Botrytis diseases when 

applied under field conditions, since most probably the environmental factors 

interfere with the efficacy. Zeller and Laux (2002), and Fried (1999) also reported that 

BION does not provide a consistent protection levels on the field trials, shows strong 

fluctuations in efficacy and therefore is not recommended in practice. Another 

explanation to the not existence of the seed treatment’s efficacy is that, since air-

borne fungal infections occur much later in the vegetation period, induced resistance 

by seed treatment does last long enough to provide a protection in the last critical 

period for fungal infections being the developmental stage just before maturity.  
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Foliar application of BTH under controlled conditions in the greenhouse experiments 

induced resistance against Sclerotinia and provided good levels of disease control 

(>60% less disease rate at the last observation date), when plants were inoculated at 

the pre-flowering stage, although foliar spraying was done at the leaf development 

stage. It proves the long lasting activated resistance. However, in the field trials 

expression of induced resistance by BTH foliar spraying was inconsistent. It 

provided, depending on the experimental year, location and the variety, from none to 

90% disease reduction. Derived from the study results, the BTH was more effective 

in years subjected to moderate disease pressure and least effective in years with 

very high disease pressure, which showed similarities to findings of Allen (2007) who 

found the same results with the BTH seed treatment influence on cotton seedlings.  

 

Increasing the concentration of BTH does not necessarily increase the resistance 

level; quite the contrary, the lowest dose of BTH foliar application at the earliest 

application stage provided the best control against the fungal diseases, when the 

disease levels were the highest. In case of moderate and low fungal infection levels, 

the dosage and the application time showed no influence on the protection level. 

Similarly, Rühl (2003) reported that foliar application of Bion® induces good levels of 

resistance against Sclerotinia and especially against Botrytis, irrespective of the 

application time and concentration, however strongly dependent on the variety. Dann 

et al. (1998) argued that the greatest reductions by BTH foliar treatment are 

observed in the more susceptible cultivars. Our findings agreed with this hypothesis, 

as we found that BTH treatments were particularly effective in more susceptible 

varieties PR64H41 and Aurasol.  

 

In contrast to several reports, BTH found to be not consistently effective on the field 

experiments against both fungal diseases. Its efficacy differed quite dramatically in 

different trial years and slightly at different experimental locations. Apart from these, 

its efficacy was affected when it was applied under field conditions instead of 

controlled greenhouse conditions. Indeed, there are several examples of induced 

resistance providing lower levels of disease control (Miles et al., 2004) or also many 

reports of induced resistance not providing disease control (Graham and Leite, 2004; 

Huth and Balke, 2002; Si-Ammour et al., 2003). Because induced resistance is a 
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plant response to attempted infection, it stands to reason that the expression of this 

response will be affected by a range of factors, including genotype and the 

environment (Walters et al., 2005). Generally, on monocots the induced resistance 

by BTH appears to be much longer lasting than that on dicots (Oostendorp et al., 

2001). Environmental stress can influence plant resistance to pathogens (Ayres, 

1984) and therefore such interactions have to be taken into account when induced 

resistance is used in a field situation (Walter s et al., 2005). Concluding from the 

study results as well as from several reports, the efficacy of BTH treatment in the 

field conditions is not reliable, and therefore cannot be used as a complete control 

against fungal pathogens in HO sunflower. There is still a lack of understanding what 

factors may be interfering with its efficacy under field conditions.  

 

Influence on the yield and quality components 

Regardless from any change in disease levels, BTH foliar application showed a 

tendency to increase (up to 55%) the achene yield in northern experimental location 

(Braunschweig) and vice versa to decrease (up to 54%) in southern location 

(Eckartsweier), particularly expressed in a warm and dry year. A reduction in dry 

matter production after BTH treatment was confirmed by Sauerborn et al. (2001) 

which agrees with our results from Eckartsweier. Heil et al. (2000) explained the 

growth depression as a consequence of the associated allocation costs which then 

occur as a result of de novo production of compounds leading to pathogen resistance 

and those proteins that are involved in growth related processes. Faessel et al. 

(2008) found a dose-dependant growth inhibition after BTH treatment, under 

pathogen-free conditions in the first stage of soybean development. However, this 

inhibition was temporary and recovered rapidly in optimal growth conditions, as also 

reported by Zhu et al. (2003). The growth inhibition after chemical induction by BTH 

has been confirmed also in cauliflower (Godard et al., 1999), tomato (Louws et al., 

2001) however was not observed in bean (Iriti and Faoro, 2003). Although the results 

revealed from Eckartsweier agreed quite well with some reports, the results from 

Braunschweig conflicted with both our and those authors’ findings. As a matter of 

fact, BTH induced plants produced more achene yield coupled with a higher head 

diameter and thousand seed weight as well as a higher plant height. Although, such 

an increase was observed by most of the BTH applications and in all varieties, in 
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particular, the foliar applications at emergence and at flowering, as well as PR64H41 

the variety with the more stable yield showed the highest increase in yield. These 

different results can be explained by the nutritional status of the plant and the 

environmental conditions. In fact, in wheat, fitness cost of BTH-treated plants was 

greater in poor nitrogen conditions (Heil et al., 2000). In a recent work of Dietrich et 

al. (2005), the effect of different environmental conditions on seed production of 

Arabidopsis treated with BTH was investigated. Authors observed in deed a growth 

depression during the first week after resistance induction. However, the induced 

plants partly or overcompensated and exhibited improved plant growth depending on 

the cultivation conditions such as nitrogen supply or length of the growing period. Our 

study results seem to be the only report which agrees on the beneficial effect of 

inducing resistance in case of pathogen lack.  

 

Not only were the yield components influenced by the BTH application but also oil 

content. In this extreme year (almost pathogen-free conditions), a dose-independent 

increase in oil content (up to 16%) by BTH foliar application was observed 

particularly in variety Olsavil followed by PR64H41 and Aurasol at Braunschweig. As 

in case of achene yield, the oil content was also decreased at Eckartsweier, however 

in comparison to the northern location, the change in oil content was relatively low 

(up 8% reduction). It should be noted that there is no study on the investigation of the 

BTH influence on the quality components. Negative association between the oil and 

protein content has been reported for sunflower (Connor and Sadras, 1992). An 

increase in oil content could be explained by the production of SAR related proteins 

competing with that of the synthesized for grain composition resulting reduction in 

protein content and increase in oil content. Indeed, Dietrich et al. (2005) reported that 

induced plants cultivated under high N conditions reached higher protein contents. 

Due to cultivation system differences, the plants received lower N fertilization at 

Braunschweig, which probably influenced the protein/oil ratio and thus led to an 

increase in oil content.  
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4.2.2 Ammonium based liquid fertilization 

Influence on fungal diseases 

Nitrogen supply can influence disease development. Application of nitrogen above 

the recommended rate has often been shown to significantly increase disease 

incidence (Solomon et al., 2003; Snoeijers et al. 2000; Agrios, 1997). Snoeijers et al. 

argued that in the case of nitrogen availability in high concentrations, pathogens can 

easily acquire nitrogen and will cause more severe diseases on these plants than on 

host plants with limited nitrogen supply. Sochting and Verreet (2004) reported that a 

reduced N fertilization reduced the appearence of Sclerotinia sclerotiorum in oilseed 

rape. The form of nitrogen available to plants and pathogens also affects the severity 

of fungal diseases (Huber and Watson, 1974). Ammonium increases the level of 

diseases caused by Sclerotinia on tomato, Botrytis on broad bean, as well as 

Fusarium and Rhizoctonia on citrus, wheat, cotton, and sugar beet.  

In agreement with these reports, ammonium based liquid fertilizer caused either no 

change or an increase in fungal disease rate depending on the variety and the 

environmental conditions. Aurasol, the variety with the least disease susceptibility 

was severely affected by ammonium fertilization.  

 

In contrast to many reported studies, increasing N concentration does not necessarily 

cause an increase in disease level. In particular, Felgentreu (2003) reported no 

negative effect on infection level by ammonium based liquid fertilization. 

Furthermore, the method of application appears to have an impact on the severity of 

infections. The surface application of urea ammonium nitrate showed the most 

severe effect on disease severity. According to the conventional fertilization methods, 

60-80 kg N/ha is recommended for sunflowers depending of the soil properties. 

Interestingly, the reduced N fertilization variant (48 kg N/ha) of the surface application 

technique caused the highest infection level, probably due to the fact that sub-optimal 

nitrogen availability might weaken the plants and lead to more diseases.  

 

In the grey mould pathogen Botrytis cinerea, the formation of primary lesions on 

tomatoes was more frequent with low nitrogen levels (Hoffland et al., 1999). Thus, 

either insufficient or superabundant N fertilization can lead to an increase in fungal 

diseases (Solomon et al., 2003). Insufficient N weakens the plant and leads to higher 
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susceptibility. Vice versa, high nitrogen availability provides excess nutrient that is 

also available for pathogens, promotes the growth of ill-defended plant tissue, or 

diverts metabolic resources into the assimilation of the nutrient.  

 

Influence on yield and quality 

Techniques of ammonium based liquid N-application as deep placement in the soil - 

termed CULTAN - has been intensively investigated (Sommer, 2003). This method is 

well studied in cereals but rather sparse in winter oilseed rape and canola production, 

and not at all in sunflowers. Information on the influence of liquid N soil placement 

method on seed yield and yield quality are contradictory. Boelcke (2003) reported no 

change in achene yield in oilseed rape but increases and decreases in cereals 

depending on the application conditions. Kuecke (2003) found an increase in achene 

yield of winter wheat and rye, however, it was not investigated which yield 

parameters might have caused the yield increase. Our findings agree with those 

authors, since an increase in yield was observed as a result of an elevated thousand 

seed weight (TSW). Although achene yield showed also decreases depending on the 

experimental year and location, increase in TSW was almost predominant and mainly 

reproducible. Achene yield decrease in varieties PR64H41 and Aurasol in 2004 at 

Braunschweig probably occurred due to severe fungal disease losses in this 

particular year.  

 

Rathke et al. (2006) argued that deep placing of N liquid fertilizer at the main root 

depth can enhance plant growth and increase yield, particularly under drought 

conditions when the water potential of the surface soil decreases but ample water is 

available in the subsoil. Our findings from warm and dry year are in conflict with his 

argument since yield level fluctuated with liquid N fertilization method at 

Braunschweig, whereas yield was reduced by all N applications at Eckartsweier. 

Significantly different yields at different locations were also reported and explained as 

a result of soil differences by Boelcke (2003). The results of this study proves the 

hypothesis that liquid N fertilizer injection method leads to higher yields on sites 

characterized by light soils, since yields were consistently higher at Braunschweig 

than at Eckartsweier with loamy soils. An elevated N fertilizer level showed no yield 

increase, unlike it is reported in regular fertilization studies (Zubillaga et al., 2002), 
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which is apparently a positive effect of liquid fertilization soil placement in respect of 

reducing fertilizer demand.  

 

The influence of the fertilization method on the quality parameters is contradictory. 

The variation of the N-form had no effect on the oil content of winter oilseed rape 

(Franck and Becker, 1982; Bailey, 1990). Felgentreu (2003) reported a decrease in 

oil content of oilseed rape and an increase in protein content by CULTAN method. In 

this study, oil content was decreased by most of the liquid fertilizer applications, 

however, this was apparent only at the southwards located site Eckartsweier. In 

contrast, oil content was predominantly increased at Braunschweig. In contrast to 

Behrens (2002) who found no significant change by changing the N-form on the fatty 

acid composition in the seed, oleic acid content significantly increased and 

decreased depending on the year, location and application time.  

 

4.2.3 Combination of Bion® and Ammonium Fertilization  

Influence on fungal diseases 

A combined application of both Bion® and liquid fertilization leading to a slow uptake 

of both nutrients and the resistance inducing agent through the plant roots did not 

result the expected synergy effect on disease severity. In contrast, a decreased 

resistance was observed, despite lower N supply. It is documented that increasing 

nitrogen supply causes decreasing resistance against fungi (Kiraly, 1976). Our 

results were supported by Wieseet et al. (2003), who also found decreasing 

resistance even at the lowest N supply when Bion® was applied 12 days after sowing. 

An increase in disease severity could be explained by the fact that in interactions 

between the plant and the pathogen, the fungus relies on the nutrients derived from 

the host plant and living tissue (Mendgen et al., 2000; Hampp et al., 1999). Therefore 

differences in plant nutrition approach my directly affect the nutrients delivered to the 

pathogen and thus the resistance of the plant (Graham, 1983; Marschner, 1995). 

Additionally, since it has not been investigated before, we have also no information 

about the affect of liquid fertilizer on the Bion® solution and it’s uptake by the plant. 

Regarding to the root uptake of BTH by the plants, Tosi et al (1999) reported an 

increased resistance in sunflower plants against Plasmopara, when BTH was applied 

as a soil drench.  
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Influence on the yield and quality 

The most remarkable affect of the combination method was nearly constant decrease 

in achene yield which was prevailing at southwards location. The yield depression 

can be explained by higher concentration of BTH which was discussed 

comprehensively under influence of Bion®. This effect was interpreted as a 

consequence of the associated allocation costs which occur as a result of production 

of compounds leading to pathogen resistance and those proteins that are involved in 

growth related processes. However, increasing the Bion® concentration in the 

fertilizer solution up to 2,000ppm resulted no significant difference in its influence. 

Furthermore, yield reducing effect of this method was lower at the northwards 

location, although the thousand seed weight was significantly increased. In contrast, 

applying chemical fertilizers with BTH produced an increase in yield of cucumber 

(Bayoumi and Hafez, 2006).  

 

Another remarkable effect of the combination method was on the seed quality, where 

location dependent significant changes were observed. The combined application 

caused a decrease in oil content at Eckartsweier whereas it was increased at 

Braunschweig. These results are quite similar to the single Bion® application results 

of this study which was discussed previously. Since Bion® uptake through the roots 

took place slowly over the vegetation due to high concentration spot effect of the 

liquid fertilization placement, its influence on oil content might have been enhanced. 

Apart from this, soil differences between the locations might have played also an 

important role causing contradictory results. Interactions between the soil properties 

and induced resistance by BTH (Wiese et al, 2003) and liquid fertilizer placement 

(Boelcke, 2003) have been well documented.  

 

4.2.4 Mikro-Vital 

Influence on fungal diseases 

The bacterial mixture Mikro-Vital containing 3 different bacterial strains has not been 

investigated as a disease control approach in Europe except its production country 

Hungary. However, many strains of soil plant growth-promoting rhizobacteria (PGPR) 

including also Pseudomonas spp., Azotobacter spp.and Azospirillum spp are well 
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documented to show an antagonistic mechanism that have biological control effect in 

the rhizosphere (Cook, 1993; Emmert and Handelsmann, 1999; Paulitz and 

Belanger, 2001; Whips, 2001). Disease-suppressive microorganisms commonly 

share certain important properties such as effective and competitive colonization in 

the soil, stimulation of host defence by induced systemic resistance (ISR) and 

systemic acquired resistance (SAR), or direct antagonistic effects on the pathogens. 

The use of PGPR strains to induce resistance in plants against diseases has been 

widely studied (Biles and Martyn, 1989; Liu et al., 1995; Wei et al., 1996). Haas and 

Keel (2003) especially focused on the antagonistic mechanisms of certain 

Pseudomonas spp. strains and reported that, when added to the soil in sufficient 

numbers, those bacterial strains cause a significant reduction of root disease caused 

by different pathogenic organisms. Furthermore, bio-control strains of pseudomonas 

have received particular attention because they are easy to grow in vitro. 

Pseudomonas spp. takes up 50% of Mikro-Vital bacterial mixture. The producer 

company BIO-NAT (1998) reported significant decreases in soil-borne Sclerotinia 

diseases in sunflowers, however, with much higher concentrations such as 10, 20, 

and 30 l/ha. The most actually, the company produces the concentrated formulation 

with 1, 2 and 3 l/ha recommended dosages, which was also used in this study. It was 

also observed in the product trials by the company that significant reductions 

occurred in Fusarium spp. pathogens in soil after both 1 l/ha and 3 l/ha Mikro-Vital 

treatments. The results of this study, however, showed no significant influence in 

Sclerotinia and Botrytis diseases by Mikro-Vital applications. Although, some slight 

reductions in disease rates in a year or location were observed, those effects were 

not reproducible. It must be noted that the most of the infections occurred in this 

study were air-borne head and/or stem infections. Therefore it is not possible to 

interpret whether or not the application showed positive effect as a disease control 

mechanism. However, we carried out an additional experiment on Mikro-Vital on HO 

sunflowers in 2006 with 1, 2 and 3 l/ha concentrations (data not shown and not 

published). Indeed, the highest dosage showed a good reduction in both head (26%) 

and stem (53%) disease rate, although, even these positive results were not 

applicable for all selected varieties. Nevertheless, these unofficial results agree with 

the argument that bacterial strains may cause a reduction in fungal diseases when 
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applied in higher concentrations. But the recommended low dosage does not show a 

reliable control mechanism.  

 

Influence on the yield and quality 

The strains of PGPR are found to increase plant growth and productivity and can be 

classified as yield enhancers (Kannaiyan, 2003; Fages, 1994; Hartmann and 

Zimmer, 1994; Okon and Labandera-Gonzalez, 1994). Evaluation on field inoculation 

experiments with Azospirillum singly or in combination with dinitrogen fixers leads to 

the conclusion that these bacteria strains are capable of promoting the yield of 

important agricultural crops in different soils and climatic regions (Tilak and Singh, 

2002). Fages and Arsac (1991) reported positive plant growth-promoting effect on 

sunflowers by inoculation of Azospirillum and other PGPR strains. The results of this 

study was not entirely in agreement with those reports, since the treatment of Mikro-

Vital containing three different PGPR strains showed no significant change in yield in 

dry weather conditions. Nevertheless, the bacterial mixture was capable of increasing 

the yield under higher water availability. The investigations of Bensalim et al. (1998) 

showed also normalization of the plant performance besides yield improvement 

which agrees with our findings, since achene yield was not changed by Mikro-Vital 

treatment even under low water availability. Although, PGPR strains are reported to 

improve plant performance in stressful environments (Jaleel et al., 2007), water 

deficit might have affected bacterial activity in the soil. Forchetti et al (2007) reported 

that the growth of bacterial strains was negatively influenced by water stress.  

 

Result of this study also showed that Mikro-Vital treatment slightly increased oil 

content, especially in warm and dry year. This effect was however was not consistent 

over the experimental years. Effect of PGPR on the quality performance of the crops 

is relatively less investigated. An increase in oil content might be a result of a direct 

growth promotion which can be explained by the production of plant growth 

regulators by PGPR (Lifshitz et al. 1987; Frankenberger and Arshad 1995) Asghar et 

al. (2002 and 2004) reported consistent increase in oil content of rapeseed by 

rhizobacteria. They found a high correlation between auxin production by PGPR and 

several yield components.  
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4.3 Sugar content of sunflower plant parts 

4.3.1 Role of sugars in fungal infections 

The infection process of Botrytis cinerea and Sclerotinia sclerotiorum comprises the 

attachment of conidium (Botrytis) or ascospores (Sclerotinia), germination, 

penetration of host surface, degradation of the cell walls, killing of the host tissue, 

tissue maceration and sporulation (van Kan, 2006; Prins, et al, 2000; Cerboncini, 

2003). Sugars in form of glucose, fructose, and sucrose, as sole carbon sources 

support high fungal growth and sporulation (Calvo et al., 2002; Luchese and 

Harrigan, 1993). In gray mold fungus Botrytis cinerea, spore germination and plant 

infection are stimulated in the presence of nutrients particularly sugars (Doehlemann 

et al., 2005). Of the sugars, fructose has been pointed out as the best inducer of 

germination in B. cinerea, being more effective than glucose and other hexoses or 

disaccharides (Blakeman, 1975), although glucose is usually the most efficient 

hexose not only as a nutrient, but also as a signaling compound. For a better 

understanding on the mechanisms of fungus infection in sunflower plants, it is 

important to stress on the role of the specific sugars as nutrient source in all stages 

of Botrytis and Sclerotinia pathogenesis, and to observe the distribution and the ratio 

of specific sugars in entire plant.  

 

4.3.2 Dynamics of sugars in the plant 

Because of the fact that both Botrytis gray mold and Sclerotinia head rot infections 

occur mainly in sunflower plant heads, it is important to investigate the amount, 

distribution and the dynamics of their C- and energy- source being sugars in the plant 

and plant head during the period between flowering and harvest when sunflower 

plants are most susceptible to fungal pathogens. For a better understanding of its 

dynamics, sugars in form of fructose, glucose, and sucrose of stem segments and 

plant heads were analyzed during the late vegetation period starting from the 

flowering stage using HPLC. After seed filling, the plant heads were analyzed 

separately as receptacle, outer and inner discs, and seeds. A sugar analysis of 

sunflower plant parts as such has not been investigated before. There are, however, 

a couple of similar reports, which in part analyzed sugar content of sunflower plant 

parts. Shiroya (1977) investigated the translocation of the sugars in 14C-glucose fed 

and illuminated plants (≥5 weeks old) in successive sections of the stems by 
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examining the radioactivity. He found a higher glucose percentage in the upper stem 

parts than sucrose and fructose, whereas the sucrose content was higher than that of 

glucose and fructose in the lower stem parts. His study also showed that sucrose is 

the main substance of translocation. Moreover, he argued that glucose is 

translocated to the upper parts of the stems while mainly sucrose was translocated to 

the lower parts. A more recent study on the phloem transport sugars by using 13C 

and 14C-pulse labeled plants was carried out by Alkio et al. (2002). They reported that 

glucose, fructose and sucrose are the most abundant sugars in leaf blade, petiole 

and stem of sunflower during seed filling, while sucrose is the main transport sugar in 

the sunflower phloem. The most recent findings were reported by Pereira et al. 

(2008) who investigated stems and receptacles at seed filling and post-physiological 

maturity phase for non-structural carbohydrates (NSC) including sugars, and their 

dynamics. Pereira et al. concluded that stem NSC content decreases from early grain 

filling to maturity while receptacle NSC content first rises and then decreases during 

grain filling. They also found cultivar differences in stem and receptacle NSC content 

in parts from anthesis till maturity. 

 

Since the reports reviewed above are not entirely comparable with the current study, 

they will be discussed only in part when suitable. The current study results show that 

the fructose and glucose content is higher than sucrose content in all stem segments 

from full flowering till maturity, which conflicts in part with Shiroya’s findings. Fructose 

and glucose are the main sugars until physiological maturity, as it was also discussed 

by Alkio et al. (2002), whereas there was also a high amount of fructan observable 

until seed filling. In contrast, sucrose was the least sugar during the complete late 

vegetation period in all plant parts except seeds, and seems to be the main sugar 

only in seeds. Similar to the results of Pereira et al. (2008), total sugar content of the 

plant head decreased during the flowering stage and increased again during early 

seed filling. Interestingly, the content of fructose and glucose, the most attractive 

sugars from the point of view of fungus germination and nutrition, increases at seed 

filling stage in most plant parts. Particularly, the receptacle as well as the plant discs 

contains at this stage a high amount of those sugars, which are the main nutrient 

sources for both studied fungal pathogens, which varied in studied cultivars as it was 

also reported by Pereira et al. (2008). The late maturing variety Olsavil showed still a 
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quite high fructose and glucose content in plant heads as well as in stems at seed 

filling and maturation stage, which theoretically makes this variety more susceptible 

to the pathogens at the late stage of the vegetation period. Considering the typical 

hanging position of the sunflower head just before or at maturity, the receptacle 

easily keeps the precipitation water on its top and therefore stays moist. Thus, 

sunflower heads, enriched with sugars as C and energy source for fungal pathogens 

in combination with the conserved humidity provide very good growing conditions for 

fungal development at the end of the vegetation period, when the autumn rainfall is 

additionally favorable for diseases. For sunflower breeding, it therefore can be 

recommended to select for earlier varieties and cultivars with strait or curved but not 

dropping stems. 
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CONCLUSION  
 
The results presented in this study demonstrate that high oleic sunflowers as an 

alternative oleic acid source is only conditionally suitable for its production in central 

Europe, more specifically in Germany. HO sunflower’s yield and quality is strongly 

related to the environmental conditions. Irrespective of being marginal (northwards) 

or favorable (southwards) for sunflower production, cultivation areas in Germany are 

generally under production risk due to high precipitation and cooler temperatures at 

the end of vegetation period. An appropriate choice of variety with correct maturing 

time provides only insufficient yield stability. The main influencing factor on the yield 

appears to be the fungal disease severity. Appropriate disease management is 

essential in high yielding HO sunflower production. The selected fungicide 

tebuconazole (Folicur) is found to be not effective against the fungal diseases of 

sunflowers. The efficacy of BTH (Bion®) treatment under controlled conditions is 

moderate, however, not reliable in the field conditions, and therefore cannot be used 

as a complete control against fungal pathogens in HO sunflowers. There is still a lack 

of understanding what factors may be interfering with its efficacy under field 

conditions. The ammonium based liquid fertilizer (CULTAN method) might increase 

the disease severity but does not influence yield significantly, and therefore could be 

recommended as an alternative fertilizer method considering its environmental and 

economical advantages. The bacterial mixture does also not provide any control 

against fungal diseases. Due to its nutrient providing advantage, it can be used as a 

plant nutrition method. Since neither location and/or variety choice nor the studied 

approaches provide a reliable disease control method, further researches should 

stress on breeding for disease resistance. For sunflower breeding, it can be 



 

 

recommended to select for earlier varieties and cultivars with strait or curved but not 

dropping stems, in order to avoid late fungal infections.  
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SUMMARY 
“Agronomic approaches in yield and quality stability of high oleic (HO) 
sunflowers (Helianthus annuus L.)” 
 

Sunflower (Helianthus annuus L.) is, together with soybean, rapeseed and peanut, 
one of the most important annual crops in the world grown for edible oil. Regular 
sunflower oil is characterized by its high content of the essential linoleic acid (C18:2). 
The high oleic (HO) sunflower oil is in appearance very similar to regular sunflower 
oil. However, the fatty acid profile differs quite dramatically from the regular type. The 
HO sunflower oil contains over 80 % oleic acid (C18:1), whereas the regular 
sunflower oils oleic acid content stays around 20 %. 
 
The high oleic sunflower has a high potential for industrial use such as oleo 
chemistry, bio lubricants or bio diesel. Oil from recent high oleic sunflower varieties 
contains up to 90 % oleic acid and more. Although the HO sunflower has a yield 
potential comparable to the conventional sunflowers, there are certain constraints 
that hinder its production in Germany. Cold and wet weather conditions affect 
sunflower’s potential during the period of seedling establishment as well as the 
harvest. Fungal diseases especially Sclerotinia sclerotiorum (white rot) and Botrytis 
cinerea (grey mould) are prevalent. Therefore it is essential to explore and test 
alternative agricultural approaches that ensure stable kernel and oil yield, desired oil 
composition, and promote healthy plant development in the predominantly wet 
autumn, since HO sunflowers mature late under central European climatic conditions. 
 
Three different HO sunflower varieties representing different ripening classes were 
examined for yield, quality and fungal disease rate at two different locations, 
Braunschweig and Eckartsweier, representing two different climatic regions in central 
Europe. Following approaches were tested in this study: Since there is no registered 
fungicide for sunflowers in Germany, a broad spectrum fungicide Folicur, which is 
predominantly used on rape seeds, was examined for its potential in controlling 
fungal diseases in sunflowers. As an alternative disease control method, the 
resistance inducing agent Benzo (1,2,3) thiadiazole-7-carbothioic (BTH) as the 
commercial available product BION (Syngenta) was tested under field conditions. 
Additionally, greenhouse experiments were conducted at Braunschweig in 2003 in 
order to observe the effect of BTH application on Sclerotinia infection at different 
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growth stages under controlled conditions. Ammonium based liquid fertilizer injection, 
commonly called as CULTAN in Germany, was examined as an alternative plant 
nutrition method and for its potential to reduce fungal attacks. The bacterial mixture 
“Mikro-Vital” has been developed to supply the plants with nutrients and to suppress 
soil-borne fungal pathogens by soil application. 
 
Since fungal pathogens use sugar as the carbohydrate and energy source, sugar 
content of different plant parts was analyzed at different growth stages to find out 
possible correlation between the time fungal infection and the sugar content in these 
plant parts.  
 
The three HO sunflower varieties showed good kernel and oil yield performance 
under both climatic conditions. However, the varieties showed low tolerance against 
fungal diseases and were severely infected in cold and wet years.  
 
Results indicate that the commercial fungicide does not reduce fungal infection rate 
and even showed in some cases yield suppression. Quality parameters were not 
affected by fungicide application.  
 
The resistance inducing product BION could suppress fungal disease severity only in 
the first experimental year, but not in the following experimental years in 2003-2005. 
It slightly increased the oil content in the first year, whereas no significant change in 
oil content and composition was observed in a mean of all experimental years. Under 
greenhouse conditions, it could slow down the Sclerotinia infection but did not hinder 
it.  
 
Ammonium based liquid fertilization in general did not reduce fungal infection rate. 
Slight increases and decreases were observed in grain yield depending on the 
variety, location and year. It caused increase in oil content at Braunschweig and a 
decrease at Eckartsweier. Oil composition was not changed by the alternative 
fertilization method.  
 
Mikro-Vital application also could not proof as a method for control of fungal 
diseases. It resulted a slight increase in yield but only depended on the variety and 
this increase was not constant through the years. Only in warm and dry year, oil 
content was increased but in general neither oil content nor the composition was 
changed.  
 
Sugar analysis showed that there is still a high amount of sugar in the plant head at 
the end of the vegetation period which acts as attraction center for fungal pathogens. 
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ZUSAMMENFASSUNG 
“Pflanzenbauliche Ansätze zur Ertrags- und Qualitätssicherung bei 
hochölsäurehaltigen (HO) Sonnenblumen (Helianthus annuus L.)” 
 

Die Sonnenblume (Helianthus annuus L.) ist zusammen mit Sojabohne, Raps und 
Erdnuss eine der bedeutendsten einjährigen Kulturpflanzen, die weltweit zur 
Erzeugung von Speiseöl angebaut werden. 
 
Konventionelles Sonnenblumenöl ist durch seinen hohen Anteil an der essentiellen 
Linolsäure (C18:2) gekennzeichnet. Das Öl der hochölsäurehaltigen (HO)-
Sonnenblume ähnelt visuell dem der konventionellen Sonnenblume zwar sehr, 
allerdings unterscheidet sich die Fettsäurezusammensetzung beider Öle hingegen 
sehr deutlich. Das Öl der HO-Sonnenblume beinhaltet mehr als 80 % Ölsäure 
(C18:1), während der Anteil dieser Fettsäure in Sorten der konventionellen 
Sonnenblume lediglich etwa 20 % beträgt. 
 
Die hochölsäurehaltige Sonnenblume besitzt ein großes Potential für eine industrielle 
Verwendung z. B. in der Oleochemie, für biologische Schmierstoffe oder als 
Biodiesel. Das Öl der derzeitigen Sorten von HO-Sonnenblumen enthält sogar bis zu 
90 % und mehr Ölsäure. Obwohl das Ertragspotential der HO-Sonnenblume ähnlich 
dem konventioneller Sonnenblumen ist, gibt es einige Einschränkungen, die der 
Ausdehnung ihres Anbaus in Deutschland entgegenstehen. Kühle und feuchte 
Wetterbedingungen beeinträchtigen das Ertragspotential der Sonnenblume 
vorwiegend während der frühen Keimlingsentwicklung und der späten Abreife vor der 
Ernte. Typisch ist das Auftreten pilzlicher Krankheiten, besonders Sclerotinia 
sclerotiorum (Stängel- und Korbfäule) und Botrytis cinerea (Grauschimmel), 
vorwiegend zum Ende der Vegetationsperiode. Daher ist es bedeutsam alternative 
pflanzenbauliche Ansätze zu erarbeiten und prüfen, die eine Korn- und 
Ölertragsstabilität sowie die gewünschte Ölkomposition garantieren und die 
Gesunderhaltung der Pflanzenbestände im vorwiegend feuchten Herbst 
sicherstellen, da HO-Sonnenblumen unter mitteleuropäischen Klimabedingungen 
spät abreifen. 
 
Drei HO-Sonnenblumensorten, die unterschiedliche Reifegruppen repräsentieren, 
wurden an zwei Standorten, Braunschweig und Eckartsweier, die zwei 
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unterschiedliche Klimaregionen Mitteleuropas widerspiegeln, auf ihren Ertrag, ihre 
Qualität und den Befall mit pilzlichen Schaderregern untersucht. Folgende Ansätze 
wurden im Rahmen dieser Studie untersucht: Da zurzeit kein Fungizid für den 
Einsatz an Sonnenblumen in Deutschland zugelassen ist, wurde das 
Breitbandfungizid Folicur, welches vorwiegend im Rapsanbau eingesetzt wird, auf 
seine Wirksamkeit zur Kontrolle pilzlicher Krankheiten bei Sonnenblumen untersucht. 
Als ein alternatives Verfahren zur Unterdrückung pilzlicher Krankheiten wurde das 
resistenzinduzierende Mittel Benzo (1,2,3) thiadiazole-7-carbothioic (BTH) in Form 
des kommerziell verfügbaren Produkts BION (Syngenta) unter Feldbedingungen 
getestet. Zusätzliche Gewächshausversuche in Braunschweig im Jahr 2003 dienten 
dazu, die Wirkung einer BION-Anwendung auf künstlich mit Sclerotinia infizierte 
Pflanzen unterschiedlichen Entwicklungsstadiums unter kontrollierten Bedingungen 
zu beobachten. Ammonium-basierte Flüssiginjektionsdüngung, üblicherweise in 
Deutschland als CULTAN abgekürzt, wurde als alternative Form der 
Pflanzenernährung auf ihr Potential zur Unterdrückung pilzlicher Angriffe untersucht. 
Außerdem sollte die Bodenapplikation der Bakterienmischung „Mikro-Vital“, deren 
Hauptzweck die Verfügbarmachung von Nährstoffen für Kulturpflanzen ist, zeigen, ob 
sie zusätzlich bodenbürtige pilzliche Schaderreger unterdrücken kann.  
 
Da pilzliche Schaderreger Zucker als Kohlenstoff- und Energiequelle nutzen, wurde 
der Zuckergehalt unterschiedlicher Pflanzenteile zu unterschiedlichen 
Entwicklungsstadien analysiert, um herauszufinden, ob eine Korrelation zwischen 
dem Zeitpunkt der Pilzinfektion und dem Zuckeranteil in diesen Pflanzenteilen 
existiert. 
 
Die drei HO-Sonnenblumensorten zeigten in beiden geprüften klimatischen Regionen 
gute Korn- und Ölerträge. Allerdings offenbarten sie auch eine geringe Toleranz 
gegenüber Pilzkrankheiten und waren in kühlen und feuchten Jahren stark infiziert. 
 
Die Ergebnisse zeigen weiterhin, dass das geprüfte kommerzielle Fungizid die 
Pilzinfektionsrate nicht verringert, teilweise sogar eine Verschlechterung verursachte. 
Die bedeutendsten Qualitätsparameter wurden durch eine Fungizidbehandlung 
hingegen nicht beeinträchtigt. 
 
Der Resistenzinduktor BION konnte nur im ersten Versuchsjahr den Pilzbefall 
vermindern, nicht jedoch in den Folgejahren 2003-2005. Seine Anwendung steigerte 
im ersten Jahr leicht den Ölgehalt, allerdings traten im Mittel der Versuchsjahre keine 
signifikanten Veränderungen des Ölgehalts und der Ölzusammensetzung auf. Unter 
Gewächshausbedingungen konnte das Mittel eine Sclerotinia-Infektion verzögern, 
jedoch nicht verhindern.  
 
Ammonium-basierte Flüssigdüngung reduzierte generell nicht die Infektionsrate. 
Geringe Zu- und Abnahmen des Kornertrags in Abhängigkeit von Sorte, Standort und 
Jahr konnten beobachtet werden. Sie verursachte des Weiteren eine Zunahme des 
Ölgehalts in Braunschweig, jedoch eine Abnahme in Eckartsweier. Die 
Ölzusammensetzung wurde generell nicht beeinflusst. 
 
Die Ausbringung von Mikro-Vital konnte als Verfahren der Kontrolle von 
Pilzinfektionen nicht überzeugen. Das Mittel resultierte in einem geringfügigen 
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Ertragszuwachs, der jedoch lediglich sortenabhängig und nicht stabil über alle 
Versuchsjahre auftrat. Nur in warmen und trockenen Jahren wurde der Ölgehalt 
angehoben, jedoch blieben sonst üblicherweise Ölgehalt und –zusammensetzung 
unverändert. 
 
Die Zuckeruntersuchung zeigte beträchtliche Zuckermengen im Korb am Ende der 
Vegetationsperiode, die als Attraktionszentrum für pilzliche Schaderreger fungieren 
können. 
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APPENDIX 
 
Table A.1: Pearson’s correlation coefficients between all evaluated parameters across all 
varieties in Braunschweig.  

 Evaluated parameters (N=10) 

 

Fungal 
infection 

rate 
Plant 
height 

Head 
diameter 

Grain 
yield TSW 

Oil 
content 

Oleic 
acid 

Linoleic 
acid 

Olsavil 
Plant height  0.09  1.00       
Head diameter -0.24  0.21  1.00      
Grain yield -0.26 -0.30  0.25  1.00     
TSW  0.03  0.59  0.22  0.10  1.00    
Oil content  0.79**  0.27 -0.01 -0.57  0.19  1.00   
Oleic acid  0.90***  0.26 -0.22 -0.25  0.25  0.88***  1.00   
Linoleic acid -0.64*  0.54  0.57 -0.11  0.33 -0.35 -0.59  1.00 
Stearic acid -0.63* -0.64* -0.21  0.45 -0.46 -0.88*** -0.79**  0.00 

PR64H41 
Plant height  0.10  1.00       
Head diameter  0.48  0.44  1.00      
Grain yield -0.70*  0.07  0.19  1.00     
TSW -0.49  0.55  0.41  0.85**  1.00    
Oil content -0.02 -0.16  0.43  0.55  0.44  1.00   
Oleic acid  0.55 -0.67* -0.25 -0.59 -0.78** -0.05  1.00  
Linoleic acid -0.35  0.68*  0.50  0.64*  0.86**  0.34 -0.94***  1.00 
Stearic acid -0.81**  0.27 -0.50  0.34  0.36 -0.48 -0.62  0.33 

Aurasol 
Plant height -0.20  1.00       
Head diameter -0.32 -0.29  1.00      
Grain yield -0.84**  0.20  0.66*  1.00     
TSW -0.65*  0.24  0.79**  0.91***  1.00    
Oil content -0.05 -0.70*  0.36  0.11  0.14  1.00   
Oleic acid  0.50 -0.94***  0.21 -0.39 -0.37  0.60  1.00  
Linoleic acid -0.44  0.94*** -0.20  0.36  0.40 -0.50 -0.98***  1.00 
Stearic acid -0.76*  0.50  0.13  0.70*  0.46 -0.49 -0.66*  0.53 

*, **, *** Significant at the 0.05, 0.01 and 0.001 probability levels respectively.  
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Table A.2: Pearson’s correlation coefficients between all evaluated parameters across all 
varieties in Eckartsweier.  
 Evaluated parameters (N=10) 

 
Fungal 

infection rate 
Grain 
yield 

Oil 
content 

Oleic 
acid 

Linoleic 
acid 

Olsavil 
Grain yield -0.64*  1.00    
Oil content  0.49 -0.28  1.00   
Oleic acid -0.27 -0.18 -0.12  1.00  
Linoleic acid  0.58 -0.04  0.34 -0.88***  1.00 
Stearic acid  0.21 -0.10 -0.08 -0.71*  0.50 

PR64H41 
Grain yield -0.64*  1.00    
Oil content  0.21 -0.35  1.00   
Oleic acid -0.67*  0.60 -0.39  1.00  
Linoleic acid  0.69* -0.65*  0.41 -1.00***  1.00 
Stearic acid  0.54 -0.21  0.05 -0.60  0.56 

Aurasol 
Grain yield -0.57  1.00    
Oil content -0.55  0.45  1.00   
Oleic acid -0.18 -0.05 -0.18  1.00  
Linoleic acid  0.30 -0.14  0.09 -0.98***  1.00 
Stearic acid  0.27  0.19  0.04 -0.76*  0.67* 
*, **, *** Significant at the 0.05, 0.01 and 0.001 probability levels respectively.  

 
Table A.3: Oil content and composition in dependent of the experimental year 

 
Oil 

content 
Oleic 
acid 

Linoleic 
acid 

Stearic 
acid  

Braunschweig 
2003 49.3a 88.9a 3.2b 2.6a  
2004 50.6a 89.2a 3.9b 2.0b  
2005 49.7a 86.9b 6.0a 2.5a  
Eckartsweier 
2003 51.3ab 89.0a 3.6b 2.3b  
2004 50.3b 88.8a 4.1b 2.4ab  
2005 51.8a 87.3b 5.6a 2.6a  

 
Table A.4: Influence of fungicide application on yield and quality parameters in all three 
varieties in preliminary field experiments at Braunschweig.  

 OLSAVIL PR64H61 AURASOL 
 Control Fungicide Control Fungicide Control Fungicide 

Fungal infection (%) 100.0a 100.0a 80.2a 86.0a 40.7a 49.4a 
Grain yield (dt/ha) 33.9a 28.2a 26.4a 28.2a 28.1a 34.2a 
Plant height (cm) 166.8a 171.4a 145.7a 146.3a 140.8a 151.4a 
Head diameter (cm) 17.5a 16.8a 17.3a 18.3a 15.5a 15.2a 
TSW* (g) 63.3a 63.7a 66.6a 73.5a 63.1a 65.4a 
Oil content (%) 53.9a 52.9a 52.4a 50.4a 50.9a 49.9a 
Oleic acid (%) 92.8a 92.7a 91.6a 90.7a 85.4a 86.7a 
Linoleic acid (%) 2.1a 2.3a 2.9a 3.7a 7.5a 6.1a 
Stearic acid (%) 1.2a 1.2a 1.5a 1.7a 2.8a 2.9a 
*TSW: Thousand seed weight. 
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Figure A.1: Fungal infection rates (%) at four different sunflower growth stages of three 
varieties in 2002 at Braunschweig (Harvest: 155±5 days after sowing,  
 
Table A.5: Influence of BION® seed treatment on oil content and composition (%) for all 
three varieties at Braunschweig in 2003.  

 
Oil content 

(%) 
Oleic acid 

(%) 
Linoleic acid 

(%) 
Stearic acid 

(%) 
Olsavil     

Control 46.8a 89.8a 2.7a 1.9a 
BION®-Seed 25ppm 48.4a 90.3a 2.4a 1.8a 
BION®-Seed 250ppm 48.8a 90.5a 2.3a 1.8a 

PR64H61     
Control 49.9a 88.3a 3.6a 2.7a 
BION®-Seed 25ppm 52.6a 87.9a 4.4a 2.4a 
BION®-Seed 250ppm 51.8a 88.2a 4.1a 2.4a 

Aurasol     
Control 51.1a 88.6a 3.2a 3.0a 
BION®-Seed 25ppm 51.6a 88.3a 3.5a 2.8a 
BION®-Seed 250ppm 51.3a 88.0a 3.7a 2.9a 

 

Table A.6: Influence of BION® seed treatment on oil content and composition (%) for all 
three varieties at Braunschweig in 2004.  

 
Oil content 

(%) 
Oleic acid 

(%) 
Linoleic acid 

(%) 
Stearic acid 

(%) 
Olsavil    

Control 51.5a 91.6a 2.5a 1.4a 
BION®-Seed 25ppm 52.5a 92.0a 2.2a 1.4a 
BION®-Seed 250ppm 51.7a 91.5a 2.5a 1.4a 

PR64H61     
Control 50.4a 88.0a 4.7a 2.1a 
BION®-Seed 25ppm 49.5a 88.7a 3.8a 2.2a 
BION®-Seed 250ppm 50.1a 88.2a 4.6a 2.0a 

Aurasol     
Control 49.7a 87.9a 4.3a 2.5a 
BION®-Seed 25ppm 49.3a 88.2a 4.1a 2.5a 
BION®-Seed 250ppm 48.8a 88.3a 3.9a 2.5a 
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Table A.7: Influence of BION® seed treatment on oil content and composition (%) 
conditions for all three varieties at Eckartsweier in 2004.  

 
Oil content 

(%) 
Oleic acid 

(%) 
Linoleic acid 

(%) 
Stearic acid 

(%) 
Olsavil     

Control 51.5a 91.3a 2.3a 1.8a 
BION®-Seed 25ppm 50.6a 91.2a 2.3a 1.7a 
BION®-Seed 250ppm 51.3a 91.0a 2.4a 1.7a 

PR64H61     
Control 49.8a 85.8a 6.3a 2.8a 
BION®-Seed 25ppm 49.1a 86.8a 5.4a 2.7a 
BION®-Seed 250ppm 50.1a 87.4a 4.9a 2.6a 

Aurasol     
Control 49.5a 89.1a 3.5a 2.6b 
BION®-Seed 25ppm 48.9a 87.6a 4.2a 3.2a 
BION®-Seed 250ppm 48.8a 87.6a 4.2a 3.1ab 

 
Table A.8: Influence of BION® seed treatment on oil content and composition (%) for all 
three varieties at Eckartsweier in 2005.  

 
Oil content 

(%) 
Oleic acid 

(%) 
Linoleic acid 

(%) 
Stearic acid 

(%) 
Olsavil     

Control 52.7a 90.8a 3.1a 1.7a 
BION®-Seed 25ppm 52.5a 90.7a 3.2a 1.6a 
BION®-Seed 250ppm 53.1a 90.8a 3.2a 1.7a 

PR64H61     
Control 52.9a 84.2a 8.1a 2.8a 
BION®-Seed 25ppm 52.2a 85.2a 7.2a 2.8a 
BION®-Seed 250ppm 52.0a 86.9a 5.5a 2.7a 

Aurasol     
Control 49.7a 86.6a 5.5a 3.2a 
BION®-Seed 25ppm 49.9a 87.2a 4.9a 3.1a 
BION®-Seed 250ppm 50.6a 86.1a 6.0a 3.0a 

 
Table A.9: Influence of BION® leaf spray application on fungal infection rate (%) for all three 
varieties at both experiment sites in 2003.  

 Braunschweig  Eckartsweier 
 Olsavil  PR64H41 Aurasol  Olsavil  PR64H41 Aurasol 
Control 3.3a 0.9a 0.4a  2.5a 1.0b 1.0a 
BION®Spray 10ppm/BBCH09 0.0a 3.0a 1.3a  3.0a 0.5b 0.9a 
BION®Spray 125ppm/BBCH09 4.0a 3.5a 0.8a  0.4a 1.5b 2.5a 
BION®Spray 250ppm/BBCH09 9.1a 6.0a 0.4a  2.0a 6.5ab 3.0a 
BION®Spray 10ppm/BBCH16 0.0a 0.4a 0.4a  4.5a 15.2a 1.0a 
BION®Spray 125ppm/BBCH16 0.5a 1.0a 0.0a  2.5a 4.5b 0.5a 
BION®Spray 250ppm/BBCH16 1.7a 3.0a 0.0a  6.5a 1.0b 0.5a 
BION®Spray 10ppm/BBCH51 0.5a 2.5a 0.9a  4.0a 5.6ab 2.5a 
BION®Spray 125ppm/BBCH51 5.4a 0.5a 0.0a  4.5a 2.5b 0.0a 
BION®Spray 250ppm/BBCH51 3.2a 2.7a 0.9a  0.5a 3.0b 1.0a 
BION®Spray 10ppm/BBCH65 5.7a 0.5a 0.0a  7.0a 2.9b 0.9a 
BION®Spray 125ppm/BBCH65 0.5a 2.2a 1.0a  3.5a 2.5b 0.4a 
BION®Spray 250ppm/BBCH65 0.5a 9.1a 0.4a  3.5a 5.1ab 2.5a 
BION®Spray 10ppm/BBCH69 1.7a 3.9a 2.8a  4.0a 3.1b 0.0a 
BION®Spray 125ppm/BBCH69 2.9a 0.4a 0.4a  3.5a 3.0b 1.0a 
BION®Spray 250ppm/BBCH69 1.9a 10.2a 0.4a  1.5a 2.5b 2.5a 
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Figure A.2: Influence of BION® leaf spray application on fungal infection rate (%) at 
Braunschweig in 2005.  
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Figure A.3: Influence of BION® leaf spray application on fungal infection rate (%) at both 
experiment sites at Eckartsweier in 2005.  
 
Table A.10: Influence of BION® leaf spray application on yield and quality parameters of all 
three varieties in Olsavil in 2002 at Braunschweig.  

 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW* 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 30.5a 161.8a 13.3a 45.1a 55.7a 92.4a 2.5a 1.2a 
BBCH-51† 10ppm 31.9a 161.7a 14.5a 52.9a 55.3a 92.7a 2.5a 1.2a 
BBCH-51 125ppm 32.2a 154.7a 14.6a 51.7a 55.5a 91.9a 2.4a 1.2a 
BBCH-51 250ppm 35.2a 159.0a 14.5a 50.6a 55.4a 92.6a 2.6a 1.2a 
BBCH-65 10ppm 32.4a 165.9a 14.5a 55.5a 54.6a 92.5a 2.4a 1.2a 
BBCH-65 125ppm 32.9a 157.8a 14.6a 53.6a 54.2a 92.6a 2.2a 1.3a 
BBCH-65 250ppm 33.5a 161.4a 13.9a 55.1a 54.1a 92.5a 2.4a 1.3a 
Mean 32.6 160.3 14.3 52.1 54.9 92.5 2.4 1.2 
LSD0.05 6.1 30.0 2.7 15.8 2.6 1.7 0.7 0.4 
*TSW: Thousand seed weight, †BION® application times  
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Table A.11: Influence of BION® application on yield and quality parameters in PR64H61 in 
preliminary field experiments in 2002 at Braunschweig.  

 
Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW* 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 31.1a 148.5a 14.7a 57.7a 54.4a 89.1a 5.2a 1.5a 
BBCH-51† 10ppm 27.6a 132.6a 17.7a 65.9a 50.3a 90.1a 3.8a 1.8a 
BBCH-51 125ppm 27.7a 138.7a 18.0a 74.4a 50.1a 89.8a 4.2a 1.8a 
BBCH-51 250ppm 25.5a 133.1a 18.0a 71.7a 50.1a 90.7a 3.4a 1.7a 
BBCH-65 10ppm 28.8a 137.9a 17.6a 65.7a 52.4a 90.4a 3.8a 1.6a 
BBCH-65 125ppm 29.1a 142.9a 16.2a 64.4a 52.4a 89.5a 4.7a 1.7a 
BBCH-65 250ppm 32.0a 139.9a 14.6a 59.1a 54.2a 90.5a 3.6a 1.7a 
Mean 28.8 139.1 16.70 65.55 51.99 90.01 4.13 1.69 
LSD0.05 17.5 16.8 10.55 24.32 8.89 3.54 3.30 0.52 
 
Table A.12: Influence of BION® application on yield and quality parameters in Aurasol in 
preliminary field experiments in 2002 at Braunschweig.  

 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW* 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 31.3a 135.2a 12.8a 59.8a 51.6a 87.9a 4.8a 2.9a 
BBCH-51† 10ppm 31.6a 137.4a 14.3a 57.9a 51.6a 87.4a 5.3a 3.0a 
BBCH-51 125ppm 32.9a 136.8a 12.9a 57.2a 51.9a 87.9a 4.7a 3.0a 
BBCH-51 250ppm 32.2a 132.5a 13.5a 61.1a 51.5a 88.4a 4.4a 3.0a 
BBCH-65 10ppm 33.4a 143.7a 13.0a 56.3a 51.5a 87.6a 4.9a 3.0a 
BBCH-65 125ppm 31.1a 136.2a 14.0a 60.2a 50.8a 88.2a 4.5a 2.9a 
BBCH-65 250ppm 32.2a 132.8a 13.3a 57.9a 50.8a 87.2a 5.1a 3.1a 
Mean 32.1 136.4 13.4 58.6 51.4 87.8 4.8 3.0 
LSD0.05 8.6 21.4 3.8 18.9 3.8 3.9 3.7 0.3 
 
Table A.13: Influence of BION® leaf spray application on head diameter and TSW for all three 
varieties at Braunschweig in 2003.   

 Head diameter (cm)  Thousand seed weight (g)  
 Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 
Control 13.4a 11.8a 13.0a  40.2a 39.3b 44.6a 
BION®Spray 10ppm/BBCH09 15.8a 14.7a 14.6a  48.9a 49.3ab 51.4a 
BION®Spray 125ppm/BBCH09 15.3a 14.8a 13.2a  48.6a 54.3a 49.0a 
BION®Spray 250ppm/BBCH09 15.9a 14.3a 12.9a  49.8a 49.1ab 51.5a 
BION®Spray 10ppm/BBCH16 15.1a 14.3a 12.8a  41.2a 50.5ab 47.0a 
BION®Spray 125ppm/BBCH16 14.2a 13.5a 12.8a  42.6a 48.1ab 46.4a 
BION®Spray 250ppm/BBCH16 14.2a 12.9a 13.4a  43.2a 47.3ab 51.9a 
BION®Spray 10ppm/BBCH51 14.2a 13.7a 12.7a  42.0a 43.9ab 47.8a 
BION®Spray 125ppm/BBCH51 15.3a 14.0a 13.0a  43.0a 47.2ab 47.7a 
BION®Spray 250ppm/BBCH51 14.8a 13.1a 13.5a  42.4a 42.4ab 45.0a 
BION®Spray 10ppm/BBCH65 15.9a 14.5a 12.7a  51.8a 50.3ab 49.5a 
BION®Spray 125ppm/BBCH65 15.4a 14.1a 13.0a  45.2a 49.8ab 50.4a 
BION®Spray 250ppm/BBCH65 15.2a 14.2a 14.2a  44.4a 49.2ab 49.1a 
BION®Spray 10ppm/BBCH69 13.3a 12.6a 13.1a  38.2a 42.6ab 45.6a 
BION®Spray 125ppm/BBCH69 13.7a 13.7a 12.9a  36.0a 46.6ab 44.7a 
BION®Spray 250ppm/BBCH69 13.7a 13.1a 11.9a  42.4a 42.1ab 42.1a 
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Table A.14: Influence of BION® leaf spray application on head diameter and TSW for all three 
varieties at Braunschweig in 2004-2005.  

 Head diameter (cm)  Thousand seed weight (g)  
 Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 

2004        
Control 13.3a 13.3a 12.3a  42.7a 40.2a 40.8b 
BION®Spray 10ppm/BBCH09 13.1a 13.2a 12.1a  43.8a 42.2a 40.6b 
BION®Spray 125ppm/BBCH09 12.9a 13.2a 11.7a  44.0a 42.7a 42.5ab 
BION®Spray 10ppm/BBCH16 12.4a 13.2a 12.4a  41.6a 39.8a 42.3ab 
BION®Spray 125ppm/BBCH16 12.8a 12.7a 12.6a  42.7a 38.9a 39.9b 
BION®Spray 10ppm/BBCH65 12.6a 12.5a 11.7a  43.2a 39.3a 40.8b 
BION®Spray 125ppm/BBCH65 12.9a 12.6a 12.3a  43.1a 40.0a 44.7a 

2005        
Control 13.9a 13.1a 12.5a  44.0a 49.2a 46.2a 
BION®Spray 10ppm/BBCH09 13.3a 13.3a 12.4a  43.7a 51.8a 46.3a 
BION®Spray 125ppm/BBCH09 13.5a 13.1a 12.9a  43.1a 52.6a 48.3a 
BION®Spray 10ppm/BBCH16 13.1a 13.3a 12.1a  42.6a 52.5a 46.6a 
BION®Spray 125ppm/BBCH16 13.4a 13.3a 12.4a  45.2a 50.2a 47.1a 
BION®Spray 10ppm/BBCH65 13.4a 13.4a 12.8a  42.8a 49.0a 47.3a 
BION®Spray 125ppm/BBCH65 13.8a 13.4a 12.5a  43.9a 52.8a 46.7a 
 

Table A.15: Influence of BION® leaf spray application on plant height (cm) for all three 
varieties at both experiment sites in 2003.  

 Braunschweig  Eckartsweier 
 Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 
Control 102.5a 89.0a 97.4a  205.0a 195.0a 205.0a 
BION®Spray 10ppm/BBCH09 160.6a 118.7a 130.7a  215.0a 195.0a 205.0a 
BION®Spray 125ppm/BBCH09 134.6a 138.7a 136.2a  210.0a 180.0a 210.0a 
BION®Spray 250ppm/BBCH09 144.2a 125.5a 152.8a  162.5a 195.0a 195.0a 
BION®Spray 10ppm/BBCH16 139.1a 137.8a 147.7a  210.0a 185.0a 195.0a 
BION®Spray 125ppm/BBCH16 149.5a 123.5a 130.2a  205.0a 200.0a 200.0a 
BION®Spray 250ppm/BBCH16 142.2a 127.6a 143.5a  190.0a 195.0a 195.0a 
BION®Spray 10ppm/BBCH51 131.7a 120.3a 133.5a  205.0a 190.0a 195.0a 
BION®Spray 125ppm/BBCH51 145.6a 132.4a 135.6a  200.0a 185.0a 195.0a 
BION®Spray 250ppm/BBCH51 147.4a 135.0a 113.5a  190.0a 185.0a 195.0a 
BION®Spray 10ppm/BBCH65 119.2a 132.9a 148.9a  205.0a 190.0a 220.0a 
BION®Spray 125ppm/BBCH65 152.1a 140.8a 132.9a  215.0a 190.0a 200.0a 
BION®Spray 250ppm/BBCH65 149.5a 145.5a 139.0a  200.0a 205.0a 210.0a 
BION®Spray 10ppm/BBCH69 142.2a 119.0a 150.3a  200.0a 185.0a 195.0a 
BION®Spray 125ppm/BBCH69 145.3a 131.9a 138.1a  205.0a 175.0a 185.0a 
BION®Spray 250ppm/BBCH69 145.9a 135.5a 123.2a  215.0a 190.0a 200.0a 
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Figure A.4: Influence of BION® leaf spray application on plant height (cm) at Braunschweig.  
 
Table A.16: Influence of BION® leaf spray application on oil content (%) for all three varieties 
at both experiment sites in 2003.  

 BRAUNSCHWEIG  ECKARTSWEIER 
 Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 
Control 46.8a 50.0a 51.2abcd  51.3a 50.5a 48.2a 
BION®Spray 10ppm/BBCH09 50.7a 54.6a 53.8abc  51.4a 52.5a 44.2a 
BION®Spray 125ppm/BBCH09 53.2a 54.6a 54.3a  51.2a 50.0a 48.4a 
BION®Spray 250ppm/BBCH09 54.4a 55.0a 53.7abc  51.8a 51.9a 46.7a 
BION®Spray 10ppm/BBCH16 51.3a 53.7a 51.9abcd  49.6a 52.4a 46.4a 
BION®Spray 125ppm/BBCH16 49.2a 52.7a 53.6abc  47.9a 52.2a 46.8a 
BION®Spray 250ppm/BBCH16 49.3a 52.5a 52.8abcd  48.8a 49.1a 46.0a 
BION®Spray 10ppm/BBCH51 48.9a 51.0a 50.8dc  49.3a 50.4a 48.2a 
BION®Spray 125ppm/BBCH51 48.4a 52.0a 51.7abcd  49.6a 51.0a 47.5a 
BION®Spray 250ppm/BBCH51 48.3a 51.8a 50.0d  49.6a 48.4a 47.4a 
BION®Spray 10ppm/BBCH65 52.7a 53.1a 54.1ab  51.1a 51.0a 47.8a 
BION®Spray 125ppm/BBCH65 51.6a 54.1a 52.1abcd  51.6a 51.8a 50.1a 
BION®Spray 250ppm/BBCH65 52.3a 53.6a 53.4abc  47.4a 53.0a 47.6a 
BION®Spray 10ppm/BBCH69 51.3a 52.7a 53.0abcd  48.8a 50.9a 46.9a 
BION®Spray 125ppm/BBCH69 46.6a 52.4a 51.1bcd  52.2a 50.2a 47.8a 
BION®Spray 250ppm/BBCH69 49.9a 52.6a 53.0abcd  52.0a 46.6a 47.9a 
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Table A.17: Influence of BION® leaf spray application on oil content (%) for all three varieties 
at both experiment sites in 2005.  

 BRAUNSCHWEIG  ECKARTSWEIER 
 Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 

2004        
Control 51.5a 50.4a 49.8ab  51.5a 49.8a 49.6a 
BION®Spray 10ppm/BBCH09 51.7a 50.6a 50.2a  51.4a 50.3a 49.7a 
BION®Spray 125ppm/BBCH09 50.6a 47.7a 47.4ab  51.4a 50.4a 48.9a 
BION®Spray 10ppm/BBCH16 51.8a 48.0a 49.4ab  50.1a 49.6a 50.3a 
BION®Spray 125ppm/BBCH16 50.7a 48.3a 47.2b  52.4a 50.8a 49.2a 
BION®Spray 10ppm/BBCH65 51.4a 47.6a 49.9ab  51.3a 50.9a 48.9a 
BION®Spray 125ppm/BBCH65 52.0a 48.3a 49.7ab  49.9a 50.4a 49.2a 
2005        
Control 49.1a 50.8a 49.3a  52.7a 52.9a 49.7a 
BION®Spray 10ppm/BBCH09 48.8a 51.0a 50.2a  52.7a 52.6a 49.3a 
BION®Spray 125ppm/BBCH09 50.4a 52.2a 51.0a  52.8a 53.1a 50.1a 
BION®Spray 10ppm/BBCH16 49.2a 51.8a 50.2a  53.6a 52.6a 49.9a 
BION®Spray 125ppm/BBCH16 48.8a 51.2a 50.6a  53.3a 53.4a 50.5a 
BION®Spray 10ppm/BBCH65 49.9a 51.8a 50.7a  52.8a 52.9a 51.1a 
BION®Spray 125ppm/BBCH65 49.4a 51.1a 49.3a  53.0a 52.7a 50.4a 

 

Table A.18: Influence of BION® leaf spray application on oil composition (%) of Olsavil and 
PR64H41 at Braunschweig in 2003.  

 OLSAVIL  PR64H41 

 

Oleic 
acid 
(%) 

Linoleic 
acid 
(%) 

Stearic 
acid 
(%)  

Oleic 
acid 
(%) 

Linoleic 
acid 
(%) 

Stearic 
acid 
(%) 

Control 89.8a 2.7a 1.9a  88.3a 3.6a 2.7a 
BION®Spray 10ppm/BBCH09 91.2a 2.1ab 1.6a  88.9a 3.9a 2.3ab 
BION®Spray 125ppm/BBCH09 91.3a 2.1ab 1.6a  88.9a 3.8a 2.3ab 
BION®Spray 250ppm/BBCH09 91.7a 2.1ab 1.4a  89.6a 3.4a 2.2b 
BION®Spray 10ppm/BBCH16 90.9a 2.2ab 1.7a  89.6a 3.3a 2.2ab 
BION®Spray 125ppm/BBCH16 90.6a 2.3ab 1.8a  89.3a 3.1a 2.4ab 
BION®Spray 250ppm/BBCH16 90.4a 2.4ab 1.8a  88.6a 3.7a 2.4ab 
BION®Spray 10ppm/BBCH51 90.1a 2.6ab 1.8a  88.3a 3.6a 2.6ab 
BION®Spray 125ppm/BBCH51 90.4a 2.4ab 1.8a  88.8a 3.5a 2.5ab 
BION®Spray 250ppm/BBCH51 90.0a 2.5ab 1.9a  88.8a 3.6a 2.4ab 
BION®Spray 10ppm/BBCH65 91.8a 1.9b 1.5a  88.6a 3.8a 2.4ab 
BION®Spray 125ppm/BBCH65 90.9a 2.1ab 1.6a  89.4a 3.4a 2.3ab 
BION®Spray 250ppm/BBCH65 91.5a 1.9b 1.6a  88.8a 4.0a 2.3ab 
BION®Spray 10ppm/BBCH69 90.9a 2.3ab 1.7a  89.0a 3.1a 2.5ab 
BION®Spray 125ppm/BBCH69 89.7a 2.5ab 2.0a  88.9a 3.4a 2.4ab 
BION®Spray 250ppm/BBCH69 90.6a 2.3ab 1.8a  88.9a 3.5a 2.3ab 
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Table A.19: Influence of BION® leaf spray application on oil composition (%) of all varieties 
at both experiment sites in 2004.  

 BRAUNSCHWEIG  ECKARTSWEIER 

 

Oleic 
acid 
(%) 

Linoleic 
acid 
(%) 

Stearic 
acid 
(%)  

Oleic 
acid 
(%) 

Linoleic 
acid 
(%) 

Stearic 
acid 
(%) 

OLSAVIL        
Control 91.7a 2.5a 1.4a  91.4a 2.3a 1.8a 
BION®Spray 10ppm/BBCH09 91.9a 2.3a 1.4a  91.4a 2.4a 1.7ab 
BION®Spray 125ppm/BBCH09 91.6a 2.3a 1.6a  91.4a 2.2a 1.7ab 
BION®Spray 10ppm/BBCH16 91.7a 2.3a 1.5a  91.0a 2.6a 1.8ab 
BION®Spray 125ppm/BBCH16 91.6a 2.4a 1.5a  91.6a 2.3a 1.6b 
BION®Spray 10ppm/BBCH65 91.7a 2.3a 1.5a  91.4a 2.3a 1.7ab 
BION®Spray 125ppm/BBCH65 91.8a 2.4a 1.5a  91.5a 2.3a 1.6ab 

PR64H41        
Control 88.1a 4.7a 2.1ab  85.9a 6.4a 2.8a 
BION®Spray 10ppm/BBCH09 88.0a 5.0a 2.0b  86.2a 6.2a 2.6a 
BION®Spray 125ppm/BBCH09 87.9a 4.5a 2.3ab  87.5a 5.0a 2.6a 
BION®Spray 10ppm/BBCH16 87.9a 4.5a 2.3ab  87.0a 5.5a 2.5a 
BION®Spray 125ppm/BBCH16 88.5a 4.0a 2.3ab  86.9a 5.5a 2.7a 
BION®Spray 10ppm/BBCH65 87.7a 4.6a 2.4a  86.9a 5.6a 2.7a 
BION®Spray 125ppm/BBCH65 88.0a 4.4a 2.3ab  88.1a 4.4a 2.6a 

AURASOL        
Control 87.9a 4.4a 2.6a  89.1a 3.5a 2.7a 
BION®Spray 10ppm/BBCH09 87.4a 5.0a 2.5a  88.7a 3.9a 2.7a 
BION®Spray 125ppm/BBCH09 87.7a 4.2a 2.8a  87.6a 4.7a 3.0a 
BION®Spray 10ppm/BBCH16 88.7a 3.7a 2.6a  88.2a 4.2a 2.8a 
BION®Spray 125ppm/BBCH16 87.9a 4.0a 2.9a  87.7a 4.6a 2.9a 
BION®Spray 10ppm/BBCH65 88.3a 4.1a 2.5a  87.6a 4.8a 2.7a 
BION®Spray 125ppm/BBCH65 88.2a 4.2a 2.6a  88.9a 3.6a 2.7a 
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Table A.20: Influence of BION® leaf spray application on oil composition (%) of all varieties 
at both experiment sites in 2005.  

 BRAUNSCHWEIG  ECKARTSWEIER 

 
Oleic 

acid (%) 
Linoleic 
acid (%) 

Stearic 
acid (%)  

Oleic 
acid (%) 

Linoleic 
acid (%) 

Stearic 
acid (%) 

OLSAVIL        
Control 90.4a 3.6a 1.5a  90.4a 3.6a 1.5a 
BION®Spray 10ppm/BBCH09 90.6a 3.8a 1.4a  90.6a 3.8a 1.4a 
BION®Spray 125ppm/BBCH09 90.3a 3.9a 1.5a  90.3a 3.9a 1.5a 
BION®Spray 10ppm/BBCH16 90.2a 3.9a 1.5a  90.2a 3.9a 1.5a 
BION®Spray 125ppm/BBCH16 90.9a 3.5a 1.4a  90.9a 3.5a 1.4a 
BION®Spray 10ppm/BBCH65 90.7a 3.5a 1.5a  90.7a 3.5a 1.5a 
BION®Spray 125ppm/BBCH65 90.3a 3.9a 1.5a  90.3a 3.9a 1.5a 

PR64H41        
Control 85.2a 7.1a 2.8a  85.2a 7.1a 2.8a 
BION®Spray 10ppm/BBCH09 84.9a 7.5a 2.8a  84.9a 7.5a 2.8a 
BION®Spray 125ppm/BBCH09 85.3a 7.3a 2.8a  85.3a 7.3a 2.8a 
BION®Spray 10ppm/BBCH16 84.6a 7.7a 2.8a  84.6a 7.7a 2.8a 
BION®Spray 125ppm/BBCH16 85.1a 7.4a 2.8a  85.1a 7.4a 2.8a 
BION®Spray 10ppm/BBCH65 85.2a 7.5a 2.6a  85.2a 7.5a 2.6a 
BION®Spray 125ppm/BBCH65 85.7a 6.9a 2.8a  85.7a 6.9a 2.8a 

AURASOL        
Control 84.8a 7.3a 3.1a  84.8a 7.3a 3.1a 
BION®Spray 10ppm/BBCH09 85.6a 6.8a 3.0a  85.6a 6.8a 3.0a 
BION®Spray 125ppm/BBCH09 86.2a 6.4a 2.9a  86.2a 6.4a 2.9a 
BION®Spray 10ppm/BBCH16 85.4a 6.8a 3.1a  85.4a 6.8a 3.1a 
BION®Spray 125ppm/BBCH16 86.3a 6.1a 3.0a  86.3a 6.1a 3.0a 
BION®Spray 10ppm/BBCH65 85.1a 7.1a 3.1a  85.1a 7.1a 3.1a 
BION®Spray 125ppm/BBCH65 85.8a 6.5a 3.1a  85.8a 6.5a 3.1a 
 
 
Table A.21: Influence of liquid ammonium fertilizer on fungal infection rate (%) compared to 
control conditions for all three varieties at both experiment sites in 2003.  
  BRAUNSCHWEIG  ECKARTSWEIER 
  Olsavil  PR64H41 Aurasol  Olsavil  PR64H41 Aurasol 
Control  3.3a 0.9a 0.4a  2.5a 1.0a 1.0a 
*UAN BBCH16 48kgN  1.5a 0.0a 0.4a  1.0a 15.0a 1.4a 
UAN BBCH16 60kgN  0.0a 3.9a 1.8a  4.0a 1.9a 5.5a 
†UAN-N BBCH16 48kgN  0.5a 0.5a 0.0a  5.6a 10.3a 2.0a 
UAN-N BBCH16 60kgN  0.0a 0.4a 0.8a  7.0a 5.0a 0.5a 
††UAS BBCH16 48kgN  1.4a 1.0a 0.0a  6.6a 7.0a 4.0a 
UAS BBCH16 60kgN  3.2a 3.8a 0.0a  4.0a 6.1a 0.5a 
UAN BBCH30 48kgN  2.1a 1.9a 2.7a  - - - 
UAN BBCH30 60kgN  0.0a 4.3a 0.8a  - - - 
UAN-N BBCH30 48kgN  0.0a 7.9a 2.0a  - - - 
UAN-N BBCH30 60kgN  2.0a 0.4a 0.0a  - - - 
UAS BBCH30 48kgN  1.5a 3.4a 0.4a  - - - 
UAS BBCH30 60kgN  6.1a 0.0a 10.5a  - - - 

*UAN:urea ammonium nitrate solution, †UAN-N:urea ammonium nitrate solution with nitrification 
inhibitor, ††UAS:urea ammonium sulphate solution, N concentration at Eckartsweier: 50/80 kgN/ha. 
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Table A.22: Influence of liquid ammonium fertilizer application on yield and quality parameters 
for Olsavil in preliminary field experiments in 2002 at Braunschweig.  

 

Fungal 
infec. 
(%) 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW* 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 100.0a 33.9a 166.8b 17.5a 63.3ab 53.9a 92.8a 2.1a 1.2ab 
UAN† 48N 100.0a 33.2a 170.0ab 16.3ab 59.9ab 53.2a 92.2a 2.6a 1.3ab 
UAN 60N 100.0a 35.1a 180.8ab 17.1a 64.3ab 53.3a 92.8a 2.3a 1.2b 
UAN 72N 100.0a 30.1a 179.6ab 15.5ab 62.3ab 53.1a 92.3a 2.6a 1.3ab 
Surface 48N 100.0a 34.0a 183.6a 15.2ab 61.7ab 53.8a 92.3a 2.4a 1.2ab 
Surface 60N 100.0a 29.2a 181.7ab 14.1b 58.2b 54.0a 92.5a 2.5a 1.2ab 
Surface 72N 100.0a 38.1a 182.1a 16.5ab 67.3a 51.7a 92.2a 2.5a 1.4a 
Mean 100.0 33.6 177.8 16.1 62.4 53.3 92.5 2.4 1.3 
LSD0.05 0.0 15.3 14.9 2.7 9.1 2.5 0.8 0.9 0.2 

*TSW: Thousand seed weight, †UAN: urea ammonium nitrate solution, 
 

Table A.23: Influence of liquid ammonium fertilizer application on yield and quality parameters 
for PR64H61 in preliminary field experiments in 2002 at Braunschweig.  

 

Fungal 
infec. 
(%) 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW* 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 80.2a 26.4a 145.7a 17.3a 66.6a 52.4a 91.6a 2.9a 1.5a 
UAN† 48N 71.3a 26.8a 149.0a 19.1a 72.3a 50.4a 90.6a 3.7a 1.6a 
UAN 60N 83.8a 30.4a 148.3a 19.5a 70.8a 50.4a 90.4a 3.8a 1.6a 
UAN 72N 82.8a 31.3a 146.3a 18.8a 66.5a 50.8a 90.4a 3.9a 1.6a 
Surface 48N 85.7a 21.9a 146.0a 18.4a 76.3a 49.6a 90.4a 3.8a 1.8a 
Surface 60N 90.7a 32.5a 150.8a 17.7a 71.2a 51.0a 89.0a 5.0a 1.7a 
Surface 72N 90.6a 33.4a 153.9a 18.4a 79.1a 48.3a 90.4a 3.7a 1.8a 
Mean 83.6 28.9 148.5 18.5 71.8 50.4 90.4 3.8 1.6 
LSD0.05 32.0 12.5 17.5 4.1 16.4 5.3 2.8 2.5 0.3 

 

Table A.24: Influence of liquid ammonium fertilizer application on yield and quality parameters 
for Aurasol in preliminary field experiments in 2002 at Braunschweig.  

 

Fungal 
infec. 
(%) 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW* 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 40.7b 28.1a 140.8a 15.5a 63.1a 50.9a 85.4a 7.5a 2.8ab 
UAN† 48N 50.5ab 31.0a 151.2a 13.9a 59.2a 51.4a 88.2a 5.1a 2.6b 
UAN 60N 58.5ab 33.2a 145.4a 16.6a 69.1a 48.4a 88.1a 4.7a 2.9ab 
UAN 72N 43.4ab 37.6a 147.1a 14.8a 61.0a 50.7a 87.7a 5.1a 2.8ab 
Surface 48N 67.1a 34.0a 151.3a 15.5a 66.5a 49.6a 88.4a 4.6a 2.8ab 
Surface 60N 55.5ab 37.3a 162.9a 14.5a 62.1a 48.7a 86.8a 5.8a 3.1a 
Surface 72N 59.2ab 33.2a 152.4a 16.1a 69.0a 47.9a 86.7a 5.9a 2.9ab 
Mean 53.6 33.5 150.2 15.3 64.3 49.7 87.3 5.5 2.8 
LSD0.05 24.8 9.8 24.1 3.1 13.7 5.1 3.4 3.5 0.4 
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Table A.25: Influence of liquid ammonium fertilizer on plant height (cm) for all three varieties 
at Braunschweig in 2003-2004.  

  2003  2004 
  Olsavil  PR64H41 Aurasol  Olsavil  PR64H41 Aurasol 
Control  102.5a   89.0a   97.4a  160.8a 150.4a 136.9a 
*UAN BBCH16 48kgN  114.5a 102.3a 110.8a  169.7a 145.2a 139.1a 
UAN BBCH16 60kgN  113.5a   98.8a 104.4a  - - - 
†UAN-N BBCH16 48kgN  114.3a   90.1a   90.8a  173.5a 152.6a 139.4a 
UAN-N BBCH16 60kgN  123.1a 103.0a 107.7a  - - - 
††UAS BBCH16 48kgN  116.6a   99.3a 104.1a  169.1a 155.3a 147.9a 
UAS BBCH16 60kgN  127.5a   95.7a   97.1a  - - - 
UAN BBCH30 48kgN  109.9a 111.1a 110.2a  169.5a 144.6a 138.2a 
UAN BBCH30 60kgN  112.4a 100.6a 103.6a  - - - 
UAN-N BBCH30 48kgN  120.7a   91.3a   91.1a  170.3a 147.1a 138.7a 
UAN-N BBCH30 60kgN  121.2a 104.8a 107.3a  - - - 
UAS BBCH30 48kgN  118.5a 103.3a 118.2a  166.6a 153.7a 149.6a 
UAS BBCH30 60kgN  121.0a 101.9a 107.7a  - - - 
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Figure A.5: Influence of liquid ammonium fertilizer on thousand seed weight (g) at 
Braunschweig in 2004.  
 
Table A.26: Influence of liquid ammonium fertilizer on yield for all three varieties at 
Braunschweig in 2003.  
  Thousand seed weight (g)  Head diameter (cm) 
  Olsavil PR64H41 Aurasol  Olsavil PR64H41 Aurasol 
Control  40.2ab 39.3a 44.6a  13.4a 11.8a 13.0a 
*UAN BBCH16 48kgN  43.8ab 43.4a 50.6a  13.4a 12.0a 12.3a 
UAN BBCH16 60kgN  38.4ab 44.2a 47.5a  13.4a 12.7a 12.9a 
†UAN-N BBCH16 48kgN  46.0ab 44.1a 47.5a  14.0a 13.4a 12.1a 
UAN-N BBCH16 60kgN  40.6ab 40.2a 41.7a  13.1a 11.8a 12.2a 
††UAS BBCH16 48kgN  42.3ab 42.7a 50.5a  13.8a 12.5a 12.6a 
UAS BBCH16 60kgN  52.0a 41.3a 43.6a  14.6a 12.2a 11.5a 
UAN BBCH30 48kgN  39.9ab 46.2a 40.2a  12.8a 13.1a 11.3a 
UAN BBCH30 60kgN  40.3ab 46.7a 47.1a  13.0a 13.7a 12.4a 
UAN-N BBCH30 48kgN  49.9ab 39.2a 42.0a  14.1a 12.2a 11.1a 
UAN-N BBCH30 60kgN  38.3ab 38.8a 45.3a  14.0a 12.3a 12.4a 
UAS BBCH30 48kgN  37.0b 46.2a 45.0a  12.7a 12.6a 11.6a 
UAS BBCH30 60kgN  42.8ab 46.7a 51.2a  14.4a 13.0a 12.7a 
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Table A.27: Influence of liquid ammonium fertilizer on oil composition (%) for Olsavil and 
PR64H41 at Braunschweig in 2003.  

  OLSAVIL  PR64H41 

  
Oleic 

acid (%) 
Linoleic 
acid (%) 

Stearic 
acid (%)  

Oleic 
acid (%) 

Linoleic 
acid (%) 

Stearic 
acid (%) 

Control  89.8abc 2.7a 1.9ab  88.3a 3.6a 2.7a 
*UAN BBCH16 48kgN  90.8abc 2.4a 1.6ab  89.1a 3.2a 2.4a 
UAN BBCH16 60kgN  89.6abc 2.8a 2.0a  88.4a 3.9a 2.5a 
†UAN-N BBCH16 48kgN  90.9abc 2.5a 1.6ab  89.1a 3.3a 2.2a 
UAN-N BBCH16 60kgN  90.9abc 2.1a 1.5ab  89.1a 3.6a 2.3a 
††UAS BBCH16 48kgN  91.2abc 2.2a 1.5ab  89.3a 3.5a 2.2a 
UAS BBCH16 60kgN  92.0a 2.0a 1.3b  87.8a 4.0a 2.6a 
UAN BBCH30 48kgN  90.1abc 2.3a 1.8ab  88.7a 3.6a 2.5a 
UAN BBCH30 60kgN  90.6abc 2.3a 1.8ab  88.1a 4.4a 2.4a 
UAN-N BBCH30 48kgN  92.0ab 2.1a 1.3b  88.1a 3.7a 2.5a 
UAN-N BBCH30 60kgN  89.5bc 2.7a 2.1a  87.7a 3.8a 2.8a 
UAS BBCH30 48kgN  89.2c 3.0a 2.1a  87.4a 4.6a 2.6a 
UAS BBCH30 60kgN  90.8abc 2.4a 1.6ab  88.1a 3.7a 2.5a 
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Figure A.6: Influence of liquid ammonium fertilizer on oil composition (%) of Olsavil at 
Braunschweig in 2004. UAN: urea ammonium nitrate solution, UAN-N: urea ammonium nitrate 
solution with nitrification inhibitor, UAS urea ammonium sulphate solution N concentration: 48 
kgN/ha.  
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Figure A.7: Influence of liquid ammonium fertilizer on oil composition (%) of PR64H41 at 
Braunschweig in 2004.  
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Figure A.8: Influence of liquid ammonium fertilizer on oil composition (%) of Aurasol at 
Braunschweig in 2004.  
 
 



144 APPENDĐX 
 

 

Table A.28: Influence of liquid ammonium fertilizer and BION® combination on fungal 
infection rate (%) of all varieties at both experiment sites in 2003.  

 Fungal Infection Rate (%)  
 OLSAVIL PR64H41 AURASOL 
BRAUNSCHWEIG    
Control 3.3a 0.9a 0.4a 
*UAN+BION® 250ppm/BBCH16 1.4a 0.9a 0.5a 
UAN+BION® 500ppm/BBCH16 2.9a 3.0a 5.7a 
UAN+BION® 1000ppm/BBCH16 0.4a 7.1a 6.8a 
UAN+BION® 2000ppm/BBCH16 0.9a 1.9a 1.3a 
ECKARTSWEIER    
Control 2.1a 1.0a 1.0a 
UAN+BION® 250ppm/BBCH16 9.3a 5.9a 3.5a 
UAN+BION® 500ppm/BBCH16 1.5a 5.0a 1.0a 
UAN+BION® 1000ppm/BBCH16 5.6a 4.6a 1.0a 
UAN+BION® 2000ppm/BBCH16 2.1a 3.0a 2.0a 

*UAN: urea ammonium nitrate solution (48kgN/ha at Braunschweig and 50kgN/ha at 
Eckartsweier) 
 
Table A.29: Influence of BION®-liquid ammonium fertilizer combination on yield and quality 
parameters for Olsavil in preliminary field experiments in 2002 at Braunschweig.  

 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 33.9a 166.8b 17.5a 63.3a 53.8a 92.8a 2.1a 1.2a 
UAN+BION®10ppm 32.8a 171.9ab 16.5a 63.0a 53.1a 92.6a 2.2a 1.3a 
UAN+BION®125ppm 34.9a 172.0ab 18.0a 67.8a 52.4a 92.5a 2.3a 1.3a 
UAN+BION®250ppm 33.0a 173.4ab 17.1a 65.2a 53.4a 92.4a 2.5a 1.3a 
SurfaceN+BION® 10ppm 35.8a 181.0a 16.5a 66.5a 51.6a 92.2a 2.4a 1.4a 
SurfaceN+BION® 125ppm 29.3a 171.0ab 16.9a 69.0a 51.9a 92.2a 2.6a 1.3a 
SurfaceN+BION® 250ppm 33.6a 173.5ab 15.3a 67.5a 51.4a 92.4a 2.3a 1.3a 
Mean 33.3 172.8 16.8 66.0 52.5 92.4 2.3 1.3 
LSD0.05

‡ 9.40 13.2 3.6 17.0 4.3 0.8 0.9 0.3 
 

Table A.30: Influence of BION®-liquid ammonium fertilizer combination on yield and quality 
parameters for PR64H61 in preliminary field experiments in 2002 at Braunschweig.  

 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 26.4a 145.6a 17.3a 66.6a 52.4a 91.5a 2.9b 1.5b 
UAN+BION® 10ppm 30.5a 147.7a 19.1a 74.1a 51.1a 89.5ab 4.6ab 1.6ab 
UAN+BION® 125ppm 30.7a 149.3a 19.7a 74.7a 50.1a 88.5b 5.5a 1.7ab 
UAN+BION® 250ppm 28.3a 154.0a 18.1a 70.1a 51.0a 90.2ab 4.0ab 1.5ab 
SurfaceN+BION® 10ppm 28.8a 150.4a 19.6a 77.0a 47.6a 89.5ab 4.5ab 1.7ab 
SurfaceN+BION® 125ppm 29.4a 151.0a 19.3a 73.2a 48.0a 90.4ab 3.7ab 1.7ab 
SurfaceN+BION® 250ppm 22.2a 143.5a 22.7a 80.4a 46.1a 87.9b 5.8a 1.9a 
Mean 28.0 148.8 19.4 73.7 49.5 89.7 4.4 1.6 
LSD0.05

‡ 18.7 28.0 8.1 23.5 9.0 2.5 2.2 0.4 
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Table A.31: Influence of BION®-liquid ammonium fertilizer combination on yield and quality 
parameters for Aurasol in preliminary field experiments in 2002 at Braunschweig.  

 

Grain 
yield 

(dt/ha) 

Plant 
height 
(cm) 

Head 
diam. 
(cm) 

TSW 
(g) Oil (%) 

18:1 
(%) 

18:2 
(%) 

18:0 
(%) 

Control 28.3a 140.7a 15.5a 63.1a 50.9a 85.4a 7.5a 2.7a 
UAN+BION® 10ppm 30.7a 137.9a 17.8a 71.5a 47.5a 88.72a 4.3a 2.8a 
UAN+BION® 125ppm 31.0a 136.3a 18.0a 74.9a 48.1a 88.8a 4.1a 2.8a 
UAN+BION® 250ppm 35.0a 144.4a 16.0a 69.9a 50.1a 88.5a 4.4a 2.7a 
SurfaceN+BION® 10ppm 30.5a 144.9a 15.9a 73.1a 47.7a 87.3a 5.4a 2.9a 
SurfaceN+BION® 125ppm 33.5a 141.37a 16.6a 77.1a 46.1a 86.6a 6.0a 2.9a 
SurfaceN+BION® 250ppm 36.0a 145.7a 15.2a 67.9a 49.5a 86.9a 6.0a 2.8a 
Mean 32.1 141.6 16.4 71.1 48.6 87.4 5.4 2.8 
LSD0.05

‡ 10.9 18.2 5.1 18.0 6.7 4.1 4.0 0.4 
 

 
Table A.32: Influence of liquid ammonium fertilizer and BION® combination on oil 
composition (%) for all three varieties at both experiment sites in 2003.  

  BRAUNSCHWEIG  ECKARTSWEIER 

  
Oleic 

acid (%) 
Linoleic 
acid (%) 

Stearic 
acid (%)  

Oleic 
acid (%) 

Linoleic 
acid (%) 

Stearic 
acid (%) 

OLSAVIL         
Control  89.8a 2.7a 1.9a  91.1a 2.3a 1.7c 
*UAN+BION® 250ppm  91.5a 2.0b 1.5a  90.2a 2.5a 1.9bc 
UAN+BION® 500ppm  90.9a 2.1ab 1.5a  89.5a 2.7a 2.2ab 
UAN+BION® 1000ppm  90.2a 2.4ab 1.9a  89.5a 2.5a 2.3a 
UAN+BION® 2000ppm  89.7a 2.6a 2.0a  90.1a 2.4a 2.0ab 

PR64H41         
Control  88.3a 3.6a 2.7a  88.2a 4.1a 2.5b 
UAN+BION® 250ppm  87.9a 3.8a 2.6a  85.9a 5.2a 3.1a 
UAN+BION® 500ppm  88.5a 3.4a 2.6a  86.7a 4.7a 2.9ab 
UAN+BION® 1000ppm  88.7a 3.8a 2.3a  87.9a 3.6a 2.9ab 
UAN+BION® 2000ppm  88.2a 3.7a 2.6a  87.4a 4.0a 2.8ab 

AURASOL         
Control  88.6a 3.2a 3.0a  87.7a 4.2a 2.7a 
UAN+BION® 250ppm  88.0a 3.5a 3.0a  86.7a 4.4a 3.2a 
UAN+BION® 500ppm  87.4a 4.2a 2.9a  85.0a 5.9a 3.3a 
UAN+BION® 1000ppm  88.3a 3.4a 2.9a  85.3a 5.5a 3.3a 
UAN+BION® 2000ppm  88.9a 2.9a 2.8a  87.3a 4.0a 3.1a 

*UAN: urea ammonium nitrate solution (48kgN/ha at Braunschweig and 50kgN/ha at 
Eckartsweier) applied at BBCH16 growth stage. 
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Table A.33: Influence of liquid ammonium fertilizer and BION® combination on oil 
composition (%) for all three varieties at both experiment sites in 2004.  

  BRAUNSCHWEIG  ECKARTSWEIER 

  
Oleic 

acid (%) 
Linoleic 
acid (%) 

Stearic 
acid (%)  

Oleic 
acid (%) 

Linoleic 
acid (%) 

Stearic 
acid (%) 

OLSAVIL         
Control  91.6a 2.19a 1.4a  91.3a 2.3a 1.8a 
*UAN+BION® 250ppm/BBCH16  91.9a 2.43a 1.4a  91.3a 2.1a 1.8a 
UAN+BION® 500ppm/BBCH16  92.0a 2.35a 1.4a  91.0a 2.4a 1.8a 
UAN+BION® 250ppm/BBCH30  91.9a 2.51a 1.4a  - - - 
UAN+BION® 500ppm/BBCH30  91.9a 2.56a 1.3a  - - - 

PR64H41         
Control  88.0a 4.74a 2.1a  85.8a 6.3a 2.8a 
UAN+BION®  250ppm/BBCH16  88.9a 3.89a 2.2a  87.1a 5.1a 2.7a 
UAN+BION® 500ppm/BBCH16  88.6a 4.36a 2.1a  87.6a 4.4a 2.8a 
UAN+BION® 250ppm/BBCH30  88.5a 4.52a 2.2a  - - - 
UAN+BION® 500ppm/BBCH30  89.2a 3.79a 2.1a  - - - 

AURASOL         
Control  87.9a 4.37a 2.5a  89.1a 3.5b 2.6a 
UAN+BION® 250ppm/BBCH16  89.5a 3.54ab 2.2b  87.8b 4.3a 3.0a 
UAN+BION® 500ppm/BBCH16  88.9a 3.90ab 2.4ab  87.4b 4.5a 3.0a 
UAN+BION® 250ppm/BBCH30  89.0a 3.90ab 2.3b  - - - 
UAN+BION® 500ppm/BBCH30  89.4a 2.88b 2.4b  - - - 

*UAN: urea ammonium nitrate solution (48kgN/ha at Braunschweig and 50kgN/ha at 
Eckartsweier),  
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Figure A.9: Influence of Mikro-Vital and its combination with BION® on oil content (%) of all 
varieties at Braunschweig in 2004-2005.  
 

Table A.34: Influence of Mikro-Vital and its combination with BION® on oil composition (%) 
for all three varieties at both experiment sites in 2004.  

  BRAUNSCHWEIG  ECKARTSWEIER 

  
Oleic 

acid (%) 
Linoleic 
acid (%) 

Stearic 
acid (%)  

Oleic 
acid (%) 

Linoleic 
acid (%) 

Stearic 
acid (%) 

OLSAVIL         
Control  91.6a 2.1a 1.4a  91.3a 2.3a 1.8a 
Mikro-Vital  91.8a 2.3a 1.4a  91.6a 2.3a 1.6a 
Mikro-Vital+*BION®  91.9a 2.3a 1.3a  91.1a 2.1a 1.7a 

PR64H41         
Control  88.0a 4.7a 2.1a  85.8a 6.3a 2.8a 
Mikro-Vital  88.5a 4.1a 2.1a  87.8a 4.7a 2.6a 
Mikro-Vital+BION®  87.6a 4.9a 2.1a  87.3a 5.1a 2.6a 

AURASOL         
Control  87.9a 4.3a 2.5a  89.1a 3.5b 2.6a 
Mikro-Vital  88.5a 3.9a 2.5a  88.8ab 3.4b 2.9a 
Mikro-Vital+BION®  88.2a 3.9a 2.6a  87.2b 4.8a 2.9a 

*BION®: applied 125ppm at BBCH16 growth stage 
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Table A.35: Influence of Mikro-Vital and its combination with BION® on oil composition (%) 
for all three varieties at both experiment sites in 2005.  

  BRAUNSCHWEIG  ECKARTSWEIER 

  
Oleic 

acid (%) 
Linoleic 
acid (%) 

Stearic 
acid (%)  

Oleic 
acid (%) 

Linoleic 
acid (%) 

Stearic 
acid (%) 

OLSAVIL         
Control  90.4a 3.6a 1.5a  90.8a 3.1a 1.7a 
Mikro-Vital  90.0a 3.9a 1.6a  91.0a 3.0a 1.6a 
Mikro-Vital+*BION®  90.5a 3.6a 1.5a  90.8a 3.1a 1.7a 

PR64H41         
Control  85.2a 7.1a 2.8a  84.2a 8.1a 2.8a 
Mikro-Vital  84.9a 7.4a 2.8a  84.8a 7.5a 2.8a 
Mikro-Vital+BION®  85.1a 7.4a 2.7a  85.2a 7.1a 2.9a 

AURASOL         
Control  84.8a 7.3a 3.1a  86.6a 5.5a 3.2a 
Mikro-Vital  86.0a 6.3a 3.0a  84.9a 6.9a 3.3a 
Mikro-Vital+BION®  85.5a 6.7a 3.1a  86.1a 6.0a 3.1a 

*BION®: applied 125ppm at BBCH16 growth stage 
 



 

 

ACKNOWLEDGEMENTS  
It would not have been possible to write this thesis without the help and support of 
the great people around me, to only some of whom I can give particular mention 
here. I am very thankful to Prof. Dr. Jörg Michael Greef for guiding me through the 
dissertation process with his most inspiring and creative suggestions and with his 
outstanding knowledge. As my co-referee, I would like to thank Prof. Dr. Elke 
Pawelzik for her valuable ideas and quick reading of my thesis. I also thank Prof. Dr. 
Andreas von Tiedemann for willingly accepting to be my second examiner.  
 
This thesis would not have been possible without the help and patience of my 
dearest supervisor, Dr. Gerhard Rühl who never accepted less than my best efforts. 
His support and contribution has been invaluable on both academic and personal 
level during my complete PhD and even during my scientific career starting from my 
internship at the FAL, for which I am extremely grateful.  
 
My special acknowledgement goes to the most friendly and competent support of all 
scientific collages at the Institute of Crop and Soil Science of JKI. I appreciate very 
much the help of Barbara Graff and Martina Liehr with the evaluation and 
organization of my data during the field trials and Christina Methner, Martina 
Küchental, Dirk Hillegeist, and Bernd Arnemann with the biochemical analyses. My 
warmest thanks go to Dagmar Strerart and Claudia Lüders for the excellent team 
work at the laboratory and for their patience and diligence. I also would like to thank 
Dieter Strauss for his support with the statistical analysis with his friendly attitude.  
 
I would like to acknowledge the financial support of the Agency for Renewable 
Resources (FNR) that provided the necessary funds for this research.  
 
My warmest thanks go to my collages Andreas Bramm, Martin Kücke, and Frank 
Höppner who believed in me, motivated and supported me through my PhD. I also 
would like to thank the lovely Family Häußler as a stepstone in my career and as the 
starting point of my new life in Germany. They’ve been a great help and encourage. I 
still appreciate the grand academic and personal support of my very first mentor Prof. 
Dr. Turan Saglamtimur of the Cukurova University in Turkey, who encouraged my 
‘studying abroad’ idea, pushed me out, and guided me with his brilliant experiences 
through my academic career. 
 
I want to thank my family for accepting my choices, for supporting me financially and 
morally, for bearing my absence from home and choosing a new home for myself in 
Germany. I would like to thank my friends for the power they gave me, even when I 
was exhausted and past hope, in particular my dearest friend Güçlü for his 24/7 
available motivation speeches and for believing in me more than anyone in my life, 
also Victor for his great motivation boosts, and Fazi and Çiğdem for keeping me 
strong and cheerful. Last but definitely not least, I’m thanking my loving partner 
“Mike, thank you for being there for me at the last and the most stressful stage of my 
dissertation, for your understanding, for self made food deliveries to my office in the 
middle of the night, for continuous Red Bull supply when I had to stay awake, and for 
going through the hardest bit with me.” 



 

 

 

 
 
CURRICULUM VITAE 
 
 
 
 
PERSONAL DATA Name  Burcin Dilci 
 Birth 28.01.1978 Ankara, Turkey 
 Nationality Turkish 
 Marital status Single 
 
SCHOOL EDUCATION  1983-1988 Gazipasa Primary School, Kayseri. 
 1988-1989 Dedeman Elementary School, Kayseri 
 1989-1991 Central Elementary School, Izmit 
 1991-1993 Central Gymnasium, Izmit 
 1993-1994 Askale Gymnasium, Erzurum 
 
UNIVERSITY EDUCATION 1994-1998 B.Sc. University of Cukurova, Agriculture, 

Crop Science, Adana, Turkey 
 1999-2002 M.Sc. University of Hohenheim, Agricultural 

Sciences, „Food Security and Natural 
Resource Management in the Tropics and 
Subtropics“, Stuttgart, Germany 

 
PRACTICAL TRAINING 1996 University of Cukurova, Research Station of 

Agricultural Faculty, Adana, Turkey 
 1997 Bioland, Franz Häußler, Schwörzkirch, 

Germany 
 1998 Federal Agricultural Research Centre, 

Institute of Crop and Grassland Science, 
Braunschweig, Germany 

 
EMPLOYMENT 2003-2006 Research Scientist, Federal Agricultural 

Research Centre (FAL), Institute of Crop 
and Grassland Science, Braunschweig, 
Germany 

 2008-date Research Scientist, Federal Research 
Centre for Cultivated Plants – Julius Kuehn 
Institute (JKI), Institute of Crop and Soil 
Science, Braunschweig, Germany 

 


	1 INTRODUCTION
	1.1 Sunflowers (Helianthus annuus L.)
	1.2 High oleic (HO) sunflowers (Helianthus annuus L.)
	1.3 Expanding HO sunflower production area in Germany - leading studies
	1.4 Cultivation of HO sunflowers under climatic conditions of central Europe
	Environmental effects
	Critical points at sowing and early plant development stages
	Importance of variety selection
	Fungal diseases and their control
	Control of Sclerotinia and Botrytis diseases

	1.5 Alternative agricultural approaches in HO sunflower cultivation
	Systematic acquired resistance (SAR) by Acibenzolar-S-methyl (BTH)
	Injection of ammonium based liquid fertilizer
	Mikro-Vital

	1.6 Objectives

	2 MATERIAL AND METHODS
	2.1 FIELD EXPERIMENTS
	2.1.1 Experimental sites
	2.1.2 Weather Data
	2.1.3 Plant Material
	2.1.4 Applications
	2.1.4.1 Fungicide application
	2.1.4.2 Plant activator Bion
	2.1.4.3 Ammonium based liquid fertilization
	2.1.4.4 Mikro-Vital applications

	2.1.5 Field evaluation and data collection
	2.1.6 Chemical analysis
	2.1.7 Statistical analysis

	2.2 GREENHOUSE EXPERIMENTS

	3 RESULTS
	3.1. LOCATION AND VARIETY EFFECT
	3.1.1 Changes in achene yield
	3.1.2 Changes in oil content and composition
	3.1.3 Changes in fungal infection rate
	3.1.4 Interactions and correlations between the experimental factors

	3.2 AGRICULTURAL APPLICATIONS
	3.2.1 Effect of fungicide treatment
	3.2.2 Effect of BTH seed treatment
	3.2.3 Effect of Bion® leaf spray application
	3.2.4 Effect of ammonium based liquid fertilization
	3.2.5 Effect of ammonium based liquid fertilization method in combinationwith Bion® application
	3.2.6 Effect of Mikro-Vital

	3.3 SUGAR CONTENT AND SUGAR COMPOSITION OF THE PLANT PARTS
	3.3.1 Total sugar content
	3.3.2 Fructose
	3.3.3 Glucose
	3.3.4 Sucrose
	3.3.5 Other water soluble carbohydrates


	4 DISCUSSION
	4.1 Achene and oil yield of HO sunflowers
	4.1.1 Influence of environment and location
	4.1.2 Influence of genotype
	4.1.3 Fungal diseases and their influence
	4.1.4 Fungicide application

	4.2 Alternative agricultural approaches
	4.2.1 The plant activator BTH (Bion®)
	4.2.2 Ammonium based liquid fertilization
	4.2.3 Combination of Bion® and Ammonium Fertilization
	4.2.4 Mikro-Vital

	4.3 Sugar content of sunflower plant parts
	4.3.1 Role of sugars in fungal infections
	4.3.2 Dynamics of sugars in the plant


	5 CONCLUSION
	6 SUMMARY
	7 ZUSAMMENFASSUNG
	8 REFERENCES
	9 APPENDIX
	ACKNOWLEDGEMENTS
	CURRICULUM VITAE



