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Summary 

 

For the biological control of the cassava green mite (Mononychellus tanajoa, Bondar), 

Brazilian strains of the entomopathogen Neozygites tanajoae were recently introduced into 

Africa to improve the control achieved by predatory mites. In order to monitor the 

establishment of the Brazilian strains two PCR primer pairs, NEOSSU_F / NEOSSU_R and 

8DDC_F / 8DDC_R were tested on N. tanajoae strains collected from several locations in 

Brazil and from three countries in Africa, Benin, Ghana and Tanzania. The first primer pair 

enabled the species-specific detection of N. tanajoae, while the second differentiated the 

Brazilian isolates from those of other geographical origin. The results confirmed that the two 

primer pairs tested are suitable for the detection of N. tanajoae and the differential 

identification of Brazilian and African strains. PCR can therefore be used to monitor the 

establishment and spread of the Brazilian strains in Benin and in other African countries 

where they have been introduced recently in order to improve cassava green mite (CGM) 

control. 

In this work the establishment and spread of Brazilian strains of N. tanajoae were followed in 

a countrywide survey in Benin in which a total of 141 cassava fields were inspected. Samples 

of M. tanajoa suspected of being infected by N. tanajoae were found in 60 fields distributed 

between the coastal Southern Forest Mosaic (SFM) and the Northern Guinea Savannah (NGS) 

zones. PCR analysis of DNA samples extracted from samples from these fields revealed that 

N. tanajoae is well distributed in Benin and that Brazilian strains were effectively established 

and have spread throughout the country. However, the highest rates of infection due to 

Brazilian strains were observed in the sub-humid and humid savannah zones of the country.  

Identification of N. tanajoae strains using molecular tools, however, is very costly. Hence, 

development of alternative techniques is desirable. Therefore, the difference in biocontrol 

performance and in host ranges was compared to discriminate between African and Brazilian 

strains of N. tanajoae. The results suggest that the biocontrol potential and the host ranges 

bioassays are suitable for evaluating the infectiveness of N. tanajoae on cassava green mite. 

However, those methods were not suitable for differentiating among different origins of 

strains of the entomopathogenic fungus. 

The establishment of N. tanajoae in Benin after its introduction for the control of cassava 

green mite resulted in co-occurrence with the predatory mite Typhlodromalus aripo in cassava 

fields. However, little is known on the interaction of the two antagonists and on the biological 

control potential of M. tanajoa. In a series of greenhouse experiments, effects of single and 
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combined releases of N. tanajoae and T. aripo on their respective population dynamics and on 

the suppression of M. tanajoa populations were evaluated. In order to complement the 

greenhouse experiments, laboratory experiments were conducted to evaluate the feeding, 

oviposition and longevity of T. aripo fed with healthy or N. tanajoae-infected M. tanajoa. The 

results showed that simultaneous release of T. aripo and N. tanajoae in the same cassava field 

may be detrimental to the biological control of the cassava green mite. It is therefore 

preferable to release in each area only the antagonist species known to be well adapted to the 

prevailing environmental conditions.  

In conclusion, this thesis shows that molecular techniques are the most suitable 

methods to detect infection of CGM by N. tanajoae and to differentiate among strains. 

Molecular techniques are also useful for monitoring the establishment and dispersal of 

introduced N. tanajoae species in the field. Furthermore, this study increased our knowledge 

on the performance and host ranges of the African and Brazilian strains of N. tanajoae. It also 

improves our understanding of the interaction between N. tanajoae and the most effective 

predatory mite T. aripo as both biocontrol agents are sharing the same habitats. 

Future research should focus on in vitro production and cryopreservation of African 

strains of N. tanajoae in order to develop specific primers for detecting African isolates. 

Furthermore, studies of the genetic diversity of N. tanajoae populations in the cassava fields 

using molecular techniques could strongly improve our understanding of the interaction 

between exotic and native fungi in the cassava ecosystem. Further investigations are required 

on the interaction between the predatory mite T.aripo and the pathogen N. tanajoae at a larger 

spatial scale and under natural conditions, and on factors affecting the loss in biocontrol 

potential of exotic species of N. tanajoae when introduced in their new environment.
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Introduction 
 

Cassava (Manihot esculenta Crantz, Euphorbiaceae) is an important perennial crop that serves 

as an important source of carbohydrates to over 200 million people in Africa (Herren and 

Bennett, 1984). It was introduced into Africa from South America by Portuguese traders in 

the late sixteenth century (Jones, 1959; Cock, 1985). Until the early 1970s, the crop was 

relatively free of serious pests at which time the cassava green mite (CGM), Mononychellus 

tanajoa (Bondar) (Acari: Tetranychidae), a native to Southern America was accidentally 

introduced into sub-Saharan Africa, causing significant reduction in crop yields (30-80%) and 

threatening food security throughout much of the African cassava belt (Lyon 1973; Herren 

and Bennett 1984; Yaninek and Herren 1988). Biological control of the cassava green mite 

has been favoured over chemical control given the fact that with biocontrol the farmer does 

not incur any additional production costs, and that damage to non-target organisms and 

environmental pollution possibly associated with chemical control are prevented. In the early 

attempts of biological control against CGM in Africa exotic natural enemies were used, 

particularly various phytoseiids, introduced from South America. Unfortunately, none of the 

predatory mites species consistently established in the arid, semi-arid, and mid-altitude areas 

of Africa. And where the establishment was successful, the reductions of M. tanajoa 

populations by the introduced phytoseiids were estimated no higher than 50% (Yaninel and 

Hanna, 2003).  

On the other hand, numerous species of arthropod-pathogenic fungi are known to cause 

naturally-occurring epizootics that decimate host population in the native home of cassava 

green mite. The entomopathogenic fungus, Neozygites sp. was reported to be causing 

epizootics among populations of M. tanajoa in South America (Agudelo-Silva, 1986; 

Delalibera et al., 1992). Therefore, N. tanajoae Delalibera Jr., Humber & Hajek 

(Zygomycetes: Entomophthorales) has become an important natural regulator of populations 

of M. tanajoa in northeastern Brazil (Delalibera Jr. et al., 1992, 2000, 2002). Hence, 

introduction of the Brazilian isolates of the fungus N. tanajoae into Africa was envisaged to 

complement the phytoseiids’ activities. The pathogenic fungus N. tanajoae, one of the most 

efficient natural enemies of CGM in Brazil (Delalibera 2002), was experimentally introduced 

in Benin (West Africa) in 1998/1999 for the control of cassava green mite. N. tanajoae is 

highly specific to CGM as it is not known to infect another host (Delalibera et al. 2004). This 

fungus was initially referred to as Neozygites sp. (Delalibera et al. 1992) and later as the broad 

mite fungus Neozygites floridana (Oduor et al. 1995, Keller 1997, Elliot et al. 2000).  
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N. tanajoae isolates from Brazil are morphologically similar to those found in Africa and 

other countries of South America (Delalibera et al., 2004). Consequently it is difficult to 

conduct post-release monitoring of introduced species in Africa. Although post-release 

monitoring studies conducted in experimental fields in Benin in 2000 revealed higher 

infection rates in plots where the Brazilian isolates had been released compared with the 

indigenous species (Hountondji et al. 2002), there is only vague evidence of establishment 

and better performance of the Brazilian isolates, as no reliable techniques have been available 

until recently to differentiate between African and Brazilian strains of N. tanajoae. In the 

search for more suitable means to separate different strains or species of the fungus, molecular 

tools were thought to help overcoming the weaknesses of the classical (epizootiological and 

phenotypical) diagnostic methods (e.g. Lee et al. 1993; Bonants et al. 1997; Brasier et al. 

1999; Judelson and Tooley, 2000). In fact, molecular probes were developed that overcome 

the constraints of morphology-based assessments (Ersek et al. 2003; De Merlier et al. 2005). 

Polymerase chain reaction (PCR)-based techniques have, since, become widely used for the 

detection of plant pathogens (Gachon et al. 2004; Lievens et al. 2005; McCartney et al. 2003) 

as well as herbivore pathogens (Tigano et al. 2006; Baek et al. 1998; Peres et al. 2006).  

Attempts were also made to use molecular techniques for the differentiation of N. tanajoae 

isolates from Brazil and Africa (Delalibera et al., 2004). Among the available molecular 

techniques, the PCR technique based on amplification of the ITS region of the ribosomal 

DNA (18S rDNA) was first tried, however, without success. Alternatively, Amplified 

Fragment Length Polymorphism (AFLP) technique, that integrates larger parts of the genome 

and that is able to detect even minor differences, was tried (Delalibera et al. 2002). The 

possibility of culturing N. tanajoae in vitro has greatly facilitated genetic studies aiming at 

developing molecular probes for strain detection (Delalibera Jr. et al., 2003). In spite of that, 

appropriate tools for an effective monitoring of N. tanajoae establishment were lacking. To 

correct this weakness, two specific pairs of oligonucleotide primers were designed in 2003 for 

PCR detection and determination of geographic strains of N. tanajoae from Brazil and Africa. 

The development of the probes was based on Brazilian strains and on only one African strain 

from Benin (West Africa). A need to test this probe against several indigenous strains from 

Africa was necessary to prove its suitability in post-release studies of N. tanajoae. In this 

thesis, after validating the probe, we tested the performance of molecular techniques to 

monitor the establishment and dispersal of Brazilian isolates of N. tanajoae that had been 

released in cassava fields in Benin to control M. tanajoa. This is the first major study on the 

occurrence, establishment and distribution of Brazilian isolates of N. tanajoae in the main 
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cassava production areas in Benin. Information presented here provide is a key element for an 

appropriate post-release monitoring of N. tanajoae and will allow to improve follow-up 

strategies for the use of pathogenic fungi in any microbiological control program. 

Although the molecular technique was reliable for differentiating among N. tanajoae strains, 

the need for alternative methods still exists due to the high cost of molecular assays. Among 

the possible methods, attention was turned to the biocontrol potential and host ranges of 

Brazilian and African isolates of N. tanajoae. While many studies have concluded on the 

specificity of the Brazilian strain of N. tanajoae to CGM (Moraes and Delalibera, 1992; 

Hountondji et al., 2002; Delalibera et al., 2004), little is known about differences in the 

performance of the African and Brazilian strains of N. tanajoae on CGM. It is also not known 

whether the host range of the African strain of N. tanajoae in Africa differs from that of 

Brazilian strains. Therefore, differences in biocontrol performance or host ranges were 

assessed on cassava plants in Africa and evaluated for their suitability to discriminate between 

indigenous and exotic strains of N. tanajoae. Furthermore, besides entomopathogens, a 

natural population of arthropod enemies exists in the cassava fields where CGM occurs. After 

the establishment and spread of N. tanajoae in Benin, it has been found that the predatory 

mite T. aripo and the fungus N. tanajoae are sharing the same cassava agroecosystems. 

However, no data existed about the outcome of the interactions between the fungus and the 

predatory mites, especially with regard to the impact on their own population dynamics and 

on the suppression of M. tanajoa populations. Therefore, there is an urgent need to determine 

the relative contribution of each natural enemy species to the  biological control of M. tanajoa 

on a short and long term and how far both antagonists could be used in an integrated pest 

management system.  

 

Outline of the thesis 

In the first part of the present study (Chapter 1), a series of molecular studies was conducted 

to test a molecular probe developed in 2003 by Delalibera for detection of N. tanajoae. Two 

specific oligonucleotide primer pairs were tested on DNA extracted from isolates collected 

from several locations in Brazil and on several indigenous strains from Benin, Ghana, and 

Tanzania in order to determine their suitability in the detection and differentiation of N. 

tanajoae.  

In Chapter 2 the effective establishment of Brazilian isolates of N. tanajoae in Benin 

was monitored by using previously validated specific primer pairs. To understand how the 

dispersal of the Brazilian isolates released in Benin affected the infection rate of the fungus in 



Introduction                  10  

cassava fields, a country-wide survey was conducted and samples for molecular investigation 

were collected and analysed.  

In the search for alternative methods to separate exotic from indigenous strains of N. 

tanajoae, (Chapter 3), the performance of two Brazilian isolates was compared to two African 

strains, at individual (leaf disc experiment) and at population level (whole plant experiment). 

In addition, the host ranges within the main mite species commonly found on cassava plants 

in Africa were tested.  

In greenhouse and laboratory experiments (Chapter 4), attempts were made: (1) to 

determine the impact of interactions between T. aripo and N. tanajoae on the population 

densities of M. tanajoa, and (2) to explain how feeding on fungus-infected prey could affect 

the population dynamics of the predatory mites and, consequently, the biological control of 

M. tanajoa. In addition, in order to understand how the predatory mite and the fungus affect 

each other, laboratory experiments were conducted to evaluate the feeding, oviposition and 

longevity of T. aripo fed on healthy or on N. tanajoae-infected M. tanajoa.  
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 Objectives 
 

This thesis reports on post-release studies of Neozygites tanajoae, a pathogenic fungus used in 

classical microbial biocontrol of the cassava green mite (Mononychellus tanajoa). The study 

mainly addresses the molecular characterization and ecological aspects of N. tanajoae. 

Specific aspects addressed are: 

 

1. Suitability of two specific oligonucleotide primer pairs using polymerase chain 

reaction for detecting and differentiating N. tanajoae strains collected from several 

locations in Brazil and in cassava fields in  Africa (Chapter 1), 

 

2. the use of molecular techniques to monitor the establishment and spread of Brazilian 

strains of N. tanajoae that were released in cassava fields in Benin against M. tanajoa 

(Chapter 2), 

 

3. the possibility of using differences in performance or host ranges to discriminate 

between indigenous and exotic isolates of N. tanajoae (Chapter 3) and 

 

4. the impact of the co-occurrence in same cassava agroecosystem of the pathogen (N. 

tanajoae) and a predatory mite (Typhlodromalus aripo) on biological control of M. 

tanajoa in an integrated pest management system (Chapter 4). 
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Abstract - Neozygites tanajoae is an entomopathogenic fungus which has been used for 

biocontrol of the cassava green mite (Mononychellus tanajoa, CGM) in Africa. Establishment 

and dispersal of Brazilian isolates which have been introduced into some African countries in 

recent years to improve CGM control was followed with specific PCR assays. Two primer 

pairs, NEOSSU_F / NEOSSU_R and 8DDC_F / 8DDC_R, were used to differentiate isolates 

collected from several locations in Brazil and from three countries in Africa, Benin, Ghana 

and Tanzania. The first primer pair enabled the species-specific detection of Neozygites 

tanajoae, while the second differentiated the Brazilian isolates from those of other 

geographical origin. PCR assays were designed for detection of fungal DNA in the matrix of 

dead infested mites since N. tanajoae is difficult to isolate and culture on selective artificial 

media. Our results show that all isolates (Brazilian and African) that sporulated on 

mummified mites were amplified with the first primer pair confirming their Neozygites 

tanajoae identity. The second pair amplified DNA from all the Brazilian isolates, but did not 

amplify any DNA samples from the African isolates. None of the two primers showed 

amplification neither from any of the non-sporulating mite extracts nor from the dead 

uninfected mites used as negative controls. We confirmed that the two primer pairs tested are 

suitable for the detection and differential identification of N. tanajoae isolates from Brazil and 

Africa and that they are useful to monitor the establishment and spread of the Brazilian 

isolates of N. tanajoae introduced into Benin or into other African countries for improvement 

of CGM biocontrol. 
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Keywords: Mononychellus tanajoa, Neozygites tanajoae, molecular differentiation, 

microbiological control, Cassava 

 

Introduction 

 

The fungal pathogen Neozygites tanajoae Delalibera Jr., Humber & Hajek (Zygomycetes: 

Entomophthorales) is being used in Africa as a biological control agent against the introduced 

cassava green mite (CGM), Mononychellus tanajoa (Bondar) (Acari: Tetranychidae). This 

fungus was initially referred to as Neozygites sp. (Delalibera et al. 1992) and later as 

Neozygites floridana (Oduor et al. 1995, Keller 1997, Elliot et al. 2000). Since 1988, when 

this pathogen was first found in Brazil, considerable data have been accumulated on the 

epizootiological, morphological and physiological aspects of strains from Brazil, Colombia 

and Benin (West Africa). Knowledge about CGM-pathogenic Neozygites has been well 

documented. Consistent differences appeared with N. floridana (Weiser & Muma) Remaud. 

& Keller, which has been found to be a common pathogen of many tetranychid mites. Indeed, 

N. tanajoae is specific to CGM (Delalibera et al. 2004) and has been therefore released as a 

biocontrol agent at various sites in West African cassava fields. Post-release monitoring in 

Benin has shown much higher infection rates in CGM populations in release fields compared 

to pre-release infection rates (Delalibera 2002, Hountondji et al. 2002a). However, although 

observations from experimental release fields provided evidence for establishment and better 

performance of the Brazilian isolates, accurate techniques for differentiating N. tanajoae 

isolates from post-release field collections were lacking. Morphological observations of N. 

tanajoae isolates from Brazil generally revealed similarities with N. floridana and also with 

other mite pathogenic species of Neozygites, including African strains (Delalibera et al. 2004). 

Furthermore, phenotypic similarities occurred also among fungal species coexisting in the 

same habitat. In the search for means to separate different isolates or species of the fungus, 

molecular tools were thought to help in overcoming the weaknesses of the phenotypic 

diagnostic methods (‘e.g.’ Lee et al. 1993; Bonants et al. 1997; Brasier et al. 1999; Judelson 

and Tooley, 2000). Therefore, molecular techniques have been recently put in place for the 

differentiation of N. tanajoae isolates from Brazil and Africa (Delalibera et al. 2004). PCR 

assays based on amplification of the ITS region of the ribosomal DNA (18S rDNA) and 

Random Amplified Polymorphic DNA (RAPD) techniques with several primers were tested 

to differentiate N. tanajoae isolates, however without success (Delalibera et al. 2004). 

Alternatively, an Amplified Fragment Length Polymorphism (AFLP) technique that integrates 
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larger parts of the genome and that is able to detect even minor differences was developed 

(Delalibera 2002). As a result, oligonucleotide primers for PCR based detection of N. 

tanajoae have been designed that are capable of both differentiating this fungus from other 

fungal organisms and to distinguish Brazilian from African isolates. However, the 

development of these probes was based on Brazilian strains and the only African strain, which 

was collected in Benin. In the present study, we aimed at validating these probes on a larger 

collection of isolates from several locations in Brazil and on indigenous strains from Benin, 

Ghana and Tanzania collected before the introduction of Brazilian strains of N. tanajoae to 

West Africa 

 

 Materials and methods 

 

Fungal isolates  

Of the 18 isolates (Table 1) used in this study, three were obtained recently from Brazil 

(collected by G.J. de Moraes in 2007), while the remaining 15 were received from the 

International Institute of Tropical Agriculture (IITA, Biological Control  

 

Table 1. Viability of Neozygites tanajoae on various mite samples tested with the in vivo 

sporulation assay 
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Center for Africa in Benin). Among the 15 isolates, 2 were supposed to be also of Brazilian 

origin (labelled Altal and Colal) that had been subcultured at IITA in preparation for field 

releases. These two isolates were imported by IITA from Alto Alegre and Cruz das Almas 

(both in state of Bahia in Brazil) in 1995 and kept in culture on M. tanajoa. The remaining 13 

isolates were collected through IITA by R. Hanna from Ghana, Tanzania and Benin. 

Uninfected mites (Mononychellus tanajoa, Oligonychus gossypii, Tetranychus urticae and 

Typhlodromalus aripo) were used as negative controls for the species-specific primers. The 

isolates were preserved at 4°C as hyphal bodies in mummified mites on dry cotton wool 

inside tightly sealed vials containing glycerol in the laboratory of the Division of Plant 

Pathology and Plant Protection at the Georg-August University, Germany. To prevent loss of 

fungal viability, cultures were renewed at approximately six-month intervals by infecting 

healthy mites (in vivo culture; see below).  

 

Viability testing of samples by sporulation test  

A laboratory test for viability was conducted at the Division of Plant Pathology and Plant 

Protection in Göttingen, Germany, during 2006/2007 with each of the 18 isolates used in this 

study. Viability was assessed with a sporulation test, in which at least five CGM mummies 

per fungal isolate were incubated singly on a cassava leaf disc (1.5 cm in diameter) placed on 

a moist cotton pad on the bottom of a plastic bottle (190 x 150 x 50 mm). Bottles were placed 

in a climate chamber for 24 hours at 19 ± 1°C, 95 ± 5% RH and 12h:12h (light : dark) 

photoperiod as used successfully for N. tanajoae sporulation by Oduor et al. (1996). After 24 

hours of incubation, mummies were checked under the binocular microscope for sporulation 

(‘e.g.’ production of capilliconidia). The presence of spores released on leaf discs was an 

indicator of sample viability. Isolates for which at least 5 mummies sporulated were 

considered viable. Viable samples were multiplied in vivo (see below) and stored separately 

for DNA extraction. 

 

In vivo multiplication of N. tanajoae 

Members of the genus Neozygites (Gustafsson, 1965; Le Rü et al. 1985; Saito et al. 1989), and 

particularly N. tanajoae (Delalibera et al. 2003), are difficult to culture on artificial media. 

Although in vitro culture of N. floridana is possible (Butt and Humber, 1989; Leite et al. 

2000), attempts to grow N. tanajoae on the same media as used for N. floridana from T. 

urticae were not successful (Delalibera et al. 2003). Therefore, N. tanajoae isolates used for 

DNA extraction were obtained by in vivo production following Dara et al. (1998b). M. 
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tanajoa killed and mummified by N. tanajoae were put on cassava leaf discs under conditions 

to enable fungal sporulation as described above. At the end of this period, leaf discs were 

checked under a compound microscope, and those found with capilliconidia (infective N. 

tanajoae spores) spread over about two thirds of the leaf disc surface were retained for CGM 

exposure. Twenty healthy adult females of M. tanajoa were exposed to capilliconidia on each 

leaf disc inside 150-mm diameter Petri dishes containing moist cotton wool and incubated at 

28°C under a 12h:12h light-dark regime for 24 h for infection. After 4 to 7 days, fresh 

mummies were collected and stored for use in DNA extraction. These experimental 

conditions normally resulted in a 60 to 70% infection rate (Dara et al. 1998a; Hountondji et al. 

2002b). With this technique, large numbers of freshly infected mites (mummies) were 

produced and immediately stored at 4°C or at -20°C for long-term storage depending on when 

they were to be used for DNA extraction.  

 

 Preparation of samples for DNA extraction 

A single mummified mite was used for DNA extraction because of the unavailability of pure 

fungal material. Each mummified or non-infected mite cadaver was placed inside a PCR tube 

(0.5ml) containing 10µl of autoclaved distilled water. The PCR tubes were then covered with 

a thermal adhesive sealing film and left at 25°C overnight to soften the cadavers and to 

promote sporulation by the fungus (I. Delalibera, unpublished). Nucleic acids of each sample 

were extracted using the InstaGeneTM Matrix, Easy DNA kit (Bio-Rad Laboratories, Hercules, 

CA). DNA extraction followed the manufacturer’s instructions for fungal tissues with slight 

modifications. The same procedure was used for DNA preparation from uninfected mites that 

were used as negative controls. A total of 180 samples (10 replicate samples from each of 18 

isolates) was prepared for PCR analysis. 

 In the following step of DNA extraction, 50-100µl of InstaGene Matrix (Bio-Rad 

Laboratories, Hercules, CA) were added to each PCR tube (0.5ml) using a 1 ml pipette tip. 

Total DNA of each isolate was extracted from the sample prepared with InstaGene Matrix 

according to the manufacturer’s instructions given for fungal DNA extraction. The procedure 

was as follows: the content of PCR tubes (0.5ml) was incubated at 56°C for 15-30 min, 

vortexed at high speed for 10 s and were placed at 100°C in a boiling water bath for 8 min, 

then vortexed again at high speed for 10 s and centrifuged at 10 000-12 000 rpm for 2-3 min. 

Finally, the DNA was dissolved in 20-40µl of the resulting supernatant, saved in a new tube 

and stored at -20°C until use.  
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PCR for detection and differentiation of Neozygites tanajoae isolates 

The genomic DNA obtained from uninfected and infected mites was used in a PCR assay 

with a pair of primers, NEOSSU_F / NEOSSU_R, designed for identification of N. tanajoae 

using 18S rRNA sequences from different isolates of the fungus (I. Delalibera et al. 

unpublished). The primer sequences of NEOSSU_F were 5’-GGT TTG ATT CCG GAG 

ATG GA-3’ and of NEOSSU_R 5’-ATA CAA CCT GCT AAG GC T GCA-3’. The 

amplification reactions were performed in a PTC-100TM thermocycler (MJ Research, Inc.) in 

25-µl volume containing 0.2µl each of forward and reverse primers (20µM), 12.5µl of 

Promega Master Mix (Promega PCR Master Mix, 2X: 50 units/ml of Taq DNA Polymerase 

supplied in a commercial reaction buffer: pH 8.5, 400µM of each dATP, dGTP, dCTP and 

dTTP, 3mM MgCl2), 10.1µl of nuclease-free water (deionised) and 2µl of DNA sample 

pipetted into 23µl of PCR master mix. The sterile deionised water and DNA of uninfected 

mites were used as negative controls and in this case, 2µl of corresponding DNA from an 

uninfected mite and 2µl of sterile water (instead of template DNA) were pipetted into the 0.5 

ml microcentrifuge tube containing 23µl of PCR master mix. All reaction components, except 

for the primers, were purchased from MBI Fermentas (St. Leon Roth, Germany). 

Thermocycler reactions were programmed as follows: hot start at 94°C; initial denaturation at 

94°C for 4 min; 38 cycles of denaturation at 94°C for 1 min; annealing at 50°C or 52°C for 

1.5 min, and extension at 72°C for 2.5 min; final extension at 72°C for 5 min and cool down 

to 8°C. The PCR product was stored at -20°C until use.  

 Differentiation of Brazilian and African isolates was done with the oligonucleotide primer 

pair 8DDC_F / 8DDC_R. The primer sequences were based on the sequencing of a randomly 

amplified polymorphic DNA fragment proven to be specific for Brazilian isolates (Delalibera 

et al. unpublished data). The respective primers were based on the sequence elements 

8DDC_F: 5’-TCG TGT TGG AAG CAC GTT TA-3’ and 8DDC_R: 5’-TTG ACG AAA 

TAG AGG CGA AAA-3’. PCR conditions and amplicon storage followed the same protocol 

as for the procedure described above for NEOSSU primers.   

 In addition, both oligonucleotide primer pairs NEOSSU_F / NEOSSU_R and 8DDC_F / 

8DDC_R were combined in a multiplex PCR for detection and differentiation of fungal 

samples. For this reaction, PCR amplification was performed under the same conditions as 

described above.  

 All PCR analyses were performed and reproduced at least six times for each DNA sample 

under two annealing temperatures (50°C or 52°C). The photographed bands that were 
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consistently amplified were scored. GeneRulerTM100bp ladder Plus (Fermentas, St. Leon 

Roth, Germany) was used as the DNA size marker. 

 To visualize amplicons, 10µl of the PCR products from each isolate were loaded in a gel 

containing 1.5% agarose in 0.5 x TBE buffer (Tris pH 8, boric acid, EDTA). Gels were run 

for 1h at 60 V, stained with ethidium bromide, visualized with UV light and photographed.  

 

Results  

 

Viability of samples 

A series of 180 DNA extracts was tested derived from 18 mite samples infected or uninfected 

with different isolates of N. tanajoae in order to check the specificity of the two pairs of N. 

tanajoae primers (Table 1). Samples exposed to sporulation conditions showed two types of 

responses. The first type consisted of dead cadaver mites with absence of capilliconidia 

(Table 1). These were dead uninfected mites from different species (Mononychellus tanajoa, 

Olygonychus gossypii, Tetranychus urticae and Typhlodromalus aripo) and represented the 

negative control for primer evaluation. The second type comprised 14 isolates with the 

presence of capilliconidia representing infected CGM mites which were used as positive 

controls in the primer evaluation.  

 

PCR product optimization using specific primers 

The optimal annealing temperature, a critical factor for optimal PCR product formation, 

differed with the template-primer system (Peres et al. 2006). PCR analysis performed for each 

DNA sample with two annealing temperatures (50°C or 52°C) indicated that the highest 

yields of specific products based on NEOSSU and 8DDC primers were obtained at 52°C, 

where all expected bands were clearly developed. At 50°C, only faint non-specific bands were 

detected (image not shown).  

 

Evaluation of species-specific primers NEOSSU  

The NEOSSU primer pair was evaluated for its ability to detect DNA from N. tanajoae in a 

matrix of mite cadavers and to differentiate uninfected from infected mites (mummies). 

Among 180 DNA samples obtained from 18 mite samples (10 separate DNA extracts per 

sample origin) which included African isolates, Brazilian isolates and uninfected mites, 

NEOSSU primers amplified only DNA from infected mites (Table 2). PCR amplification of 

DNA from infected mites with (NEOSSU_F / NEOSSU_R)  resulted in reproducible bands of 
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the expected size (800 bp) with 140 DNA samples out of 180 samples tested, thus separating 

the total of 14 infected mites (African and Brazilian isolates) from DNA samples from 

uninfected mites (Figure 1). Thus, the NESSOU primers yielded clear and specific amplicons 

for DNA of N. tanajoae at 52°C annealing temperature (Table 2, Figure 1). 

 

Evaluation of 8DDC primers for differentiating the origin of fungal strains 

The 8DDC_F / 8DDC_R primer pair was evaluated for the differentiation of Brazilian and 

African isolates in samples that had been previously tested positive  

 

Table 2. Isolates of Neozygites tanajoae amplified by the two specific pairs of primers 

NEOSSU_F / NEOSSU_R and 8DDC_F / 8DDC_R in a polymerase chain reaction (PCR) at 

52°C annealing temperature. 

 
 

for the presence of N. tanajoae. Among the 14 isolates scored as positive by the NEOSSU 

primer pair, DNA of five isolates was amplified with the 8DDC primer pair yielding a typical 

band of 600 bp (Figure 2). In fact, all the five isolates detected in this PCR were of Brazilian 

origin (samples Colal, Altal, Alto Alegre, Cruz and Piritiba) whereas the DNA from the nine 
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remaining isolates did not amplify with 8DDC, as well as uninfected mites as negative control 

(Table 2, Figure 2). 

 

Evaluation of primer pairs in a multiplex PCR 

In the multiplex reaction with NEOSSU and 8DDC primers, all samples from isolates of N. 

tanajoae which were found viable during the sporulation test yielded the species-specific 800 

bp amplicon with the NEOSSU primer pair (Figure 3). In contrast, neither sterile water nor 

DNA samples from uninfected mites displayed the 800 bp N. tanajoae diagnostic band 

(Figure 3). In addition, only Brazilian isolates of N. tanajoae produced a second band at 600 

bp with the 8DDC primers in the PCR reaction (Figure 3).  

 

Discussion 

The objective of our research was to test DNA probes for identifying and differentiating N. 

tanajoae isolates collected from a broader range of locations, allowing for a large-scale 

analysis of the entomopathogen population in the cassava-growing regions of the world. For 

this, we used an international collection of N. tanajoae isolates collected from Brazil and 

three African countries: Benin, Tanzania and Ghana. 

 

Figure 1. Detection of an 800-bp DNA fragment after polymerase chain reaction (PCR) using the 

oligonucleotide primers NEOSSU_F / NEOSSU_R species-specific to Neozygites tanajoae. Lanes F to S 

correspond to the amplified products while those from A to E represent the no amplified ones. The lane λ is the 

marker lane. Red mite is Oligonychus gossypii and uninfected mite corresponds to non infected cadaver  of the 

cassava green mite (CGM). 

 



Chapter 1: Molecular detection of Neozygites tanajoae                                                23  

 

Figure 2. Detection of a 600-bp DNA fragment after polymerase chain reaction (PCR) using the oligonucleotide 

primer pair 8DDC_F / 8DDC_R specific to Brazilian isolates of Neozygites tanajoae. Lanes F to J correspond to 

the amplified products with the Brazilian primer pair; lanes K to S correspond to African isolates that were not 

amplified with the same primer pair. Lane λ is the marker lane. Red mite is Oligonychus gossypii and 

uninfected mite corresponds to a non infected cassava green mite cadaver (CGM) 

 

 

Figure 3. Detection of 800 and 600-bp DNA fragments after multiplex PCR using two pairs of oligonucleotide 

primers, one species-specific to Neozygites tanajoae (NEOSSU_F / NEOSSU_R) yielding 800-bp bands and the 

second (8DDC_F / 8DDC_R) specific for Brazilian isolates of N. tanajoae with 600-bp amplicons. Both 

amplification products were obtained from 5 isolates (lanes F-J) confirming the Brazilian origin of the isolates. 

The nine remaining samples (lanes K-S) were amplified only by NEOSSU primers confirming their assignment 
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to isolates of N. tanajoae from outside Brazil. Lane λ is the marker lane. Red mite is Oligonychus gossypii and 

uninfected mite corresponds to a non infected cassava green mite cadaver (CGM) 

 

 Molecular detection and differentiation of N. tanajoae is hampered by the fact that the fungus 

is extremely difficult to isolate and to culture on artificial media. Once pure cultures are 

available, they may be grown in fetal bovine serum, which is expensive and unavailable in 

many developing countries (Delalibera, et al. 2003). Therefore, in this study, DNA of N. 

tanajoae was obtained from in vivo-produced isolates, and a PCR assay was established 

capable of detecting fungal DNA within the complex matrix of infected mites. A similar 

example of conidia being successfully used for ITS-based PCR identification is the 

Leptosphaeria maculans species complex (Balesdent et al. 1998). Thus, mummified mites 

from several geographic regions in Brazil and Africa were tested for their capacity to produce 

infective capilliconidia of N. tanajoae, which was taken as characteristic of a viable sample.  

The sporulation test used in this study therefore served a dual purpose, as a suitable method 

for the detection of N. tanajoae infected mites and as a check for viability of the fungus.  

It has been demonstrated that N. tanajoae associated with cassava green mite in Brazil and 

Africa is highly specific to its host and different geographical origins of the fungus cannot be 

distinguished with the available taxonomic tools based on fungal morphology (Delalibera 

2002). The molecular markers used in this study were developed to overcome these 

constraints in order to enable reliable differentiation of African and Brazilian isolates of N. 

tanajoae. The present study independently validated the two primer pairs for the first time and 

determined that 52°C was a suitable annealing temperature in a PCR assay to materialize the 

specificity of the used primers.  

The primary purpose of our study was to validate the probe developed by Delalibera et al. 

(unpublished data) using a pair of species-specific primers for N. tanajoae detection deduced 

from 18S rDNA sequences of different isolates of the fungus. In addition, a second pair was 

based on a RAPD fragment specific for Brazilian isolates, which suggested its utilization for 

separating Brazilian isolates among N. tanajoae isolates from African ones. Similar 

techniques have been used by Ersek et al. (2003) for identifying hybrids within Phytophthora 

alni with PCR-based DNA markers. In fact, PCR with genomic DNA extracted from mites 

infected with different strains of N. tanajoae produced a clear banding pattern while 

uninfected mites and sterile water did not produce any such signals (Figure 1). These results 

confirm the high specificity of NEOSSU primers as a key for N. tanajoae detection, thus 

confirming previous work by Delalibera et al. (unpublished) on a limited number of isolates. 

A similar study was conducted by Bonants et al. (2003) on detection and identification of 



Chapter 1: Molecular detection of Neozygites tanajoae                                                25  

Phytophthora fragariae with polymerase chain reaction by using species-specific primers. 

More importantly, the NEOSSU primer pair was also effective in detecting N. tanajoae in a 

complex natural matrix including infected mummified mites. Nonetheless, the successful 

amplification was only possible through the propagation of infective capilliconidia inside 

infected mummified mites under appropriate in vivo conditions prior to the PCR assay. 

In addition, the 8DDC primer pair amplified only the five Brazilian strains among 

fourteen N. tanajoae isolates identified by NEOSSU on the species level before. The results 

indicate the specificity of this pair of primers to identify N. tanajoae isolates collected from 

different locations (Table 2). The nine remaining isolates not showing an 8DDC amplicon 

were all collected from various locations in Africa. However, compared with Delalibera et al. 

(unpublished data) more isolates from Africa (Benin, Ghana and Tanzania) were amplified by 

NEOSSU primers and did not amplify with 8DDC (Table 2), which supports the specificity of 

8DDC primers to Brazilian strains. Although the number of isolates tested is still limited, we 

conclude that the 8DDC primer pair may serve as a reliable tool to separate Brazilian from 

African isolates in their natural habitat.  

Finally, the multiplex PCR with both primer pairs together, further allowed us to show the 

effectiveness of NEOSSU and 8DDC primers for detecting and differentiating the Brazilian 

and African specimens of N. tanajoae in cassava green mite in one PCR run (Figure 3). Our 

findings also concur with earlier reports which demonstrated the power of multiplex PCR in 

the rapid identification of several pathogenic fungi in a complex matrix (Luo et al. 2002).  

Altogether, this study demonstrates that N. tanajoae can effectively be propagated on 

mites with a sporulation assay in vivo and detected within the matrix by PCR, thus 

circumventing costly biochemical media and the problems incurred when isolating the 

entomopathogen from the saprotrophic colonizers of mummified mites. Thus, this assay also 

allows for a separation of simple dead uninfected mites collected in the field from mites 

infected with the entomopathogen.  

The two oligonucleotide primer pairs are presently being used to follow the establishment 

and spread of Brazilian isolates already introduced into Benin (Hountondji et al. 2002a) and 

Tanzania (Hanna et al. unpublished data) and will be used in the future for following the 

establishment and spread of Brazilian isolates that will be introduced into other countries in 

sub-Saharan Africa in the framework of the campaign on biocontrol of the cassava green mite. 
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Abstract - Molecular techniques were used to monitor the establishment and dispersal of 

Brazilian isolates of Neozygites tanajoae Delalibera, Humber & Hajek (Entomophthorales: 

Neozygitaceae) released in Benin for the biological control of the cassava green mite, 

Mononychellus tanajoa (Bondar) (Acari: Tetranychidae). A total of 141 cassava fields were 

visited and samples of M. tanajoa suspected to be infected by N. tanajoae were collected in 

60 fields distributed between the coastal Southern Forest Mosaic (SFM) and the Northern 

Guinea Savanna (NGS) zones of Benin, West Africa. Samples were analyzed using two 

specific primer sets, one species specific for N. tanajoae (NEOSSU) and another one specific 

for Brazilian isolates of this fungus (8DDC). Analysis of DNA samples of dead mites using 

the NEOSSU primers revealed the presence of N. tanajoae in 46 fields. The second specific 

pair of primers 8DDC revealed the presence of Brazilian isolates of N. tanajoae in 36 fields, 

representing 78.3% of fields positive for N. tanajoae. Brazilian isolates occurred from SFM to 

NGS zones in Benin, however, they were concentrated in fields located within former release 

zones (e.g. Department of Ouémé in the South and of Borgou in the North). In contrast, the 

indigenous African isolates of N. tanajoae were evenly distributed in the sub-humid and 

humid savannah zones of the country. However, mean infection rate of M. tanajoa with 

indigenous isolates of N. tanajoae was relatively low (5.3%) compared to Brazilian isolates 

(28%), indicating a higher biocontrol potential of the latter. This first post-release monitoring 

using PCR technique showed that Brazilian strains of N. tanajoae have been well established 

in Benin and spread effectively in this area. 

 

Keywords: Entomopathogenic fungi; biocontrol; Neozygites tanajoae; Mononychellus 

tanajoae; Manihot esculenta 
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Introduction 

The cassava green mite (CGM), Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), a 

native to South America was accidentally introduced into sub-Saharan Africa in the early 

1970s causing significant reduction in crop yields (30-80%) and threatening food security 

throughout much of the African cassava belt (Lyon 1973; Herren and Bennett 1984; Yaninek 

and Herren 1988). Numerous species of arthropod-pathogenic fungi are known to cause 

naturally-occurring epizootics that may decimate host population in the native region of 

cassava green mite. The possibility of introducing biological control agents from South 

America into Africa was since investigated. Neozygites tanajoae Delalibera, Hajek & Humber 

(Entomophthorales: Neozygitaceae), one of the most efficient natural enemies of the CGM in 

Brazil (Delalibera 2002) was introduced experimentally into Benin (West Africa) in 

1998/1999 for the biocontrol of cassava green mite. N. tanajoae is highly specific to CGM as 

it is not known to infect any other host (Delalibera et al. 2004). N. tanajoae isolates from 

Brazil are morphologically similar to mite pathogenic isolates in Africa and other countries in 

South America (Delalibera and Hajek 2004). Post-release monitoring conducted in an 

experimental field in Benin in 2000 revealed the highest infection rates on the plots with the 

Brazilian isolates compared with the indigenous ones (Hountondji et al. 2002). However, 

although observations from experimental release fields gave vague evidence of establishment 

and better performance of the Brazilian isolates, no reliable techniques were available for 

differentiating these isolates of N. tanajoae from the indigenous (African) ones among post-

release field collections. Moreover, no post-release field studies were conducted to 

differentiate N. tanajoae isolates in the field and to monitor their effective establishment in 

West Africa. Until recently, such studies were hampered by a lack of techniques to reliably 

separate introduced from indigenous isolates in the field. Molecular tools may overcome this 

shortcoming of traditional (epizootiological and phenotypical) diagnostic methods (e.g. Lee et 

al. 1993; Bonants et al. 1997; Brasier et al. 1999; Judelson and Tooley 2000). Polymerase 

chain reaction (PCR)-based techniques have become widely used for the detection of plant 

pathogens (Gachon et al. 2004; Lievens et al. 2005; McCartney et al. 2003) as well as 

pathogens of herbivores (Tigano et al. 2006; Baek et al. 1998; Peres et al. 2006). Therefore, 

two specific pairs of oligonucleotide primers have been recently designed for PCR detection 

of N. tanajoae and the differential determination of the geographic origin of isolates of the 

fungus from Brazil and Africa. In previous works (Agboton et al. submitted), the primers 

have been evaluated with the result that they were suitable for identifying and monitoring 

Brazilian isolates on infested mites.  
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In the present study we tested the molecular techniques to monitor the establishment and 

dispersal of Brazilian isolates of N. tanajoae that were released in cassava fields in Benin as 

biocontrol agents against M. tanajoa. This is the first major study on the occurrence, 

establishment and distribution of Brazilian isolates of N. tanajoae in the main cassava 

production areas in Benin as compared to indigenous isolates of the fungus. Information 

obtained by this study will be a key element for an appropriate post- release monitoring of N. 

tanajoae and improve follow-up strategies for the biocontrol of CGM African cassava fields.  

 

Materials and methods 

 

Survey routes and sample collection 

The surveys were conducted in January, April and July 2007 and covered ten of the twelve 

departments in Benin. During these surveys, a total of 141 cassava fields were visited. The 

survey routes were selected across the main cassava-growing areas to include as many 

cassava fields for sampling as possible. Along the routes, cassava fields were visited at 

intervals of 10 to 15 km in southern Benin, where cassava fields are more frequent. In the 

north, where cassava fields are more sparse, sampling intervals were about 20 to 30 km.  

Geographic latitude and longitude coordinates were recorded from each cassava field using a 

handheld Global Positioning System (GPS-Magellan 2000 XL) in order to map the 

distribution of Neozygites tanajoae isolates in Benin. In each field, 30 plants were randomly 

selected and the first fully expanded leaf collected from each plant. The leaves were placed 

separately in a paper bag and incubated in an icebox (at about 8°C) overnight for inducing the 

mummification process of accompanying mites. After the incubation, leaves were examined 

under the dissecting microscope. Dead mummified mites suspected to be infected with N. 

tanajoae were collected from the leaves and mounted on microscope slides in lactophenol 

Amman’s blue stain and examined under a phase contrast microscope for the presence of 

pathogens. The numbers of living CGM and dead CGM infected by N. tanajoae were 

recorded. If mummified dead mites were found the field was considered colonized by N. 

tanajoae and sampled mites were collected from the leaves and stored at 4°C in Eppendorf 

tubes (2 ml) on dry cotton wool on top of silica gel. Rate of infection was calculated per field 

according to the number of leaves with presence of mites infected with the entomopathogenic 

fungus.  
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Sample preparation and DNA extraction 

Ten random samples of dead mites from the 60 sampled fields where N. tanajoae was 

suspected after the microscopic check were used for DNA extraction. Mummified mites were 

placed each individually in a PCR plate well (0.5ml). Each sample was thoroughly submersed 

in 10 µl of autoclaved distilled water. The PCR plate with the cadavers was covered with an 

adhesive sealing film and incubated at 25°C overnight. This allowed the cadavers to soften 

and the fungus to sporulate. In total, 600 samples of suspected mummified mites were 

prepared for DNA extraction. All the fields and locations from where isolates were sampled 

and analysed during this study are listed in Table 1.  

Genomic DNA was extracted using the InstaGeneTM Matrix, Easy DNA kit (Bio-Rad 

Laboratories, Hercules, CA, USA), following the procedure described by the manufacturer for 

fungal DNA extraction. InstaGeneTM Matrix (50-100µl) was added to each PCR tube (0.5ml). 

DNA was dissolved in 20-40µl of the resulting supernatant which was saved and stored at -

20°C until use. From each sampled field, 10 independent DNA samples were prepared from 

infected mites.  

 

PCR analysis of field samples 

All samples in this study were analysed by PCR assays using the two specific pairs of primers 

tested previously (Agboton et al. submitted), which have been proven to be suitable for 

detection of N. tanajoae species and differential identification of Brazilian isolates of the 

fungus. Therefore, DNA samples extracted from field collections were checked by PCR using 

at first NEOSSU_F / NEOSSU_R primers for N. tanajoae species detection followed by 

8DDC_F / 8DDC_R for Brazilian isolates identification. Each DNA sample was examined  

with PCR using separately the two primer pairs. PCR amplification was performed in a PTC-

100TM thermocycler (MJ Research, Inc.) in a 25-µl volume containing specific primers (0.4 

µl), Promega Master Mix (12.5µl), nuclease-free water (10.1µl) and 2µl of DNA sample. 

Sterile deionised water and DNA extracted from uninfected cassava green mite cadavers were 

used as negative controls. Amplification was performed using the following conditions: Set 

up the thermocycler to hot start at 94°C, initial denaturation at 94°C for 4 min, 38 cycles of 

denaturation at 94°C for 1 min, annealing at 52°C for 1 min 30s and extension at 72°C for 2 

min 30s, final extension at 72°C for 5 min, cool down at 8°C and storing of the PCR product 

at -20°C until use. To visualize the DNA amplicons, 10µl of the PCR products from each 

isolate was loaded on a gel containing 1.5% agarose in 0.5 X TBE buffer. Gels were run for 1 

hour at 3Volt/cm, stained with ethidium bromide, visualized with UV light and photographed. 
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GeneRulerTM100bp ladder Plus was used as DNA size marker and consistently amplified 

bands were scored for data analysis. All reaction components except for the primers were 

purchased from MBI Fermentas (St. Leon Roth, Germany). 

 

Data analysis and isolate mapping  

Proportions of infected mites were normalized by arcsine-transformation and used to estimate 

the rate of infection. Average numbers of mites and percent infection were obtained using 

PROC MEANS of SAS software (SAS, Institute 2007, Inc, Cary, NC, USA). Mapping of the 

distribution of N. tanajoae and mainly Brazilian isolates within Benin was done with ARC-

VIEW software associated with African boundary data using the corresponding GPS 

coordinates.   

 

Results  

 

Survey on distribution of N. tanajoae 

The survey covered the whole country of Benin except for the Sudan Savannah Zone where 

cassava is not produced. Within the 10 provinces covered, a total of 141 cassava fields were 

surveyed, ranging from the coastal Southern Forest Mosaic (SFM) to the Northern Guinea 

Savannah (NGS) vegetation zones (Fig. 1). Out of the 141 cassava fields surveyed, mite 

samples suspected of N. tanajoae infection were found and collected in 60 cassava fields 

representing 9 departments in the SFM and NGS agro-ecological zones, except Atacora 

(Table 1 and 2). However, infection rates of M. tanajoa by the fungus were not uniform 

across the surveyed fields. While in some fields infection rates were low (1%) they exceeded 

97% in other fields (Table 1). The highest infection rates were observed in the departments of 

Mono, Ouémé, Collines and Borgou, with 95.6%, 96.7%, 78.6% and 89.7%, respectively 

(Table 1). The first two departments where the infection rates were the highest are located in 

the SFM zones while the two others are in the NGS zones (Fig. 1).  

 

Molecular detection of N. tanajoae of native and Brazilian origin 

All samples yielding an amplicon of the expected size following PCR with NEOSSU primers 

were considered as positive for N. tanajoae infection and those amplified with 8DDC primers 

were considered positive for Brazilian species of N. tanajoae (Table 1). 

  Out of 60 fields sampled, 46 were positive for the presence of N. tanajoae indicated by 

amplicons of 800 bp with the species-specific primer pair (NEOSSU) (Fig. 2; A1, B1, C1, 
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D1). Samples from the remaining 14 fields showed no PCR bands with NEOSSU primers, 

indicating a lack of N. tanajoae in those fields (Fig. 2; A1, B1, C1, D1).  

 Further investigations of DNA samples from the 46 fields tested positive for the 

presence of N. tanajoae with additional 8DDC primers revealed 36 fields indicating the 

presence of Brazilian isolates on these sites (Table 1; Fig. 2; A2, B2, C2, D2). Thus, the 

double amplification generated by NEOSSU and 8DDC primers (Table 1; Fig. 2) enabled the 

detection and differentiation of Brazilian strains of N. tanajoae on real field samples 

(Agboton et al. in submission). In conclusion, 36 fields were tested positive for Brazilian 

isolates representing 78.3% of all fields where N. tanajoae was detected. 

The number of fields with presence of N. tanajoae was high in Mono, Oueme, Colline and 

Borgou (7 fields at least), while in the other departments the highest number of positive fields 

was 4 (amplification with NEOSSU; Table 2). Overall, the 46 fields tested positive for the 

presence of N. tanajoae represented 76.7% of the 60 fields sampled for PCR investigation. 

 

Geographic distribution of Brazilian isolates in Benin 

The 36 fields with presence of Brazilian isolates of N. tanajoae were distributed from the 

SFM zone to the NGS zones and more or less concentrated around to the former release 

points (Table 2; Fig. 1). While Brazilian isolates of N. tanajoae were present in 9 of the 10 

departments surveyed, none was observed in the Atacora department (Table 2). The number 

of fields with presence of Brazilian isolates was higher in Mono, Ouémé, Collines and Borgou 

departments compared to the other departments (Table 2). In fact, the Brazilians strains were 

more present throughout the humid and seasonally moist agro-ecological zones of the cassava 

growing regions in Benin than in the drier zones (Fig. 1). Moreover, a significant correlation 

was obtained between the rate of CGM infection with the entomopathogen and the prevalence 

of Brazilian isolates in cassava fields (p < 0.01 and R2 = 0.755) (Fig. 3).  

 

Discussion 

The results presented here provide the evidence of the establishment and dispersal in Benin of 

Brazilian strains of N. tanajoae found associated with the cassava green mite upon PCR 

detection with specific primers. Our results also showed that the PCR assay with specific 

markers is sensitive enough to detect the infection of cassava green mites by N. tanajoae as 

sampled from commercial cassava fields. This accurate detection and identification of DNA 

samples with PCR using specific primer pairs demonstrates that Brazilian and African isolates 

of N. tanajoae are genetically diverse, although morphologically similar and can be separated 
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with molecular techniques. A similar molecular approach has been used by Nakabonge et al. 

(2006) on different pathogens of Chrysoporthe spp. to follow their distribution in Eastern and 

Southern Africa. Indeed, PCR-based techniques have become widely used for the detection of 

plant pathogens (Gachon et al. 2004; Lievens et al. 2005; McCartney et al. 2003) as well as 

herbivore pathogens (Baek et al. 1998; Tigano et al. 2006; Peres et al. 2006). 

With the aid of molecular detection methods the present study provides a first insight 

into distribution in Benin of the most important entomopathogen of Mononychellus tanajoa 

currently known. This is the first time that molecular markers were used for monitoring the 

status of N. tanajoae dispersal in Benin, where the Brazilian isolates have been released in 

1999. Our PCR results showed that N. tanajoae was present in 46 out of 60 fields proving that 

the fungus has reached a wide geographic distribution in Benin. The absence of N. tanajoae in 

the Department of Atacora may be due to the relatively short rainy season, a dryer season and 

the scarcity of cassava fields in this department (Yaninek et al. 1991). While N. tanajoae was 

present in nine provinces, its occurrence on CGM was not homogenous among all sampled 

fields. Similar to the finding of Yaninek et al. (1996), this suggests that certain locations may 

be more favourable for the establishment and survival of the pathogen (Larsen et al. 2007) 

and infection of CGM. Moreover, the number of cassava fields associated with N. tanajoae 

was higher in the south where the agro-ecological conditions are more favourable for cassava 

production.  

After having been released in Benin in January 1999 to control CGM (Hountondji et al. 

2002), the main constraint to follow establishment and dispersal of the Brazilian isolates of N. 

tanajoae was the lack of reliable tools of detection and distinguishing them from endogenous 

African strains. In the present field evaluation the molecular markers developed and tested in 

our previous work confirmed their potential to solve that problem. The results presented here 

provide the first molecular detection of Brazilian isolates of N. tanajoae released in 

commercial cassava fields in Benin.  

The present results reveal the successful establishment and dispersal of Brazilian isolates 

throughout the seasonally humid ecological zones of the cassava agro-ecosystems in Benin. 

According to Yaninek et al. (1996) the annual precipitation is generally greater in southern 

than northern Benin that could enhance the fungal growth and may explain the higher 

infection rates found in southern Benin. Oduor et al. (1995) demonstrated that the determining 

factors of an epizooty are the climatic conditions (temperature, humidity) governing infection 

of mites and the fungus survival. In Brazilian conditions, nearly 100% of the adult female 
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population of CGM has been shown to be infected with N. tanajoae depending on mite 

density, location, season and climate (Delalibera & de Moraes, 1992).  

The rate of 78.3% of Brazilian isolates recorded from samples infested with N. tanajoae in 

Benin provides evidence for the effective establishment and dispersal of those isolates in 

Africa, mainly in Benin. Most cassava fields with Brazilian isolates present were found 

around the former release regions in northern and southern Benin, however, nine years after 

the release of exotic isolates in only two departments, Ouémé (Adjohoun) and Borgou (Ina) in 

Benin, Brazilian isolates of N. tanajoae have spread to further 7 departments due to 

favourable environmental conditions in different regions in Benin.  

Interestingly, overall infection rates of CGM were significantly correlated with the 

prevalence of Brazilian isolates in cassava fields indicating a stronger biocontrol potential of 

the exotic pathogen strains to the suppression of CGM populations. This is in contrast to 

laboratory studies which showed very little or no difference in virulence between the local 

African isolates of N. tanajoae and the introduced Brazilian isolates (Dara et al. 1998a). 

Additional studies on the specific biopotential of indigenous and exotic entomopathogenic 

strains on common CGM and their relatedness to environmental conditions in the cassava 

growing areas in Africa are required to further improve implementation and management of 

this biocontrol strategy in practical use.  

 

Acknowledgments 

We are grateful to the Deutscher Akademischer Austauschdienst (DAAD), the International 

Institute of Tropical Agriculture (IITA), for a field work grant from the International Fund for 

Agricultural Development (IFAD), and the University of Göttingen in Germany for 

supporting this research. Thanks are due to Italo Delalibera Jr, Birger Koopmann, Alexis 

Onzo, and Ignace Zannou for their advices on the work and their comments on an earlier 

version of the manuscript. 



Chapter 2: Molecular investigation on the establishement of Brazilian isolates in Africa       37  

References  

Baek SCMD, Chae HJMD, Dong HMD, Byun DGMD, Cho BKMD (1998) Detection and 

differentiation of causative fungi of onychomycosis using PCR amplification and 

restriction enzyme analysis. Internat. J. Derm. 37: 682-686 

Bonants P, Hagenaar-de WM, van Gent-Pelzer M, Lacourt I, Cooke D, Duncan J (1997) 

Detection and identification of Phytophthora fragariae Hickman by the polymerase chain 

reaction. Europ. J. Pl. Pathol. 103: 345-355 

Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophtora pathogen through 

interspecific hybridization. Proceedings of the National Academy of Sciences of the USA 

96: 5878-5883 

Dara SK, Lomer CJ, Hountondji FCC, Yaninek JS (1998a) Fungal pathogens of mites on 

cassava: Field and laboratory studies. VIIth International Colloquium on Invertebrate 

Pathology and Microbial Control (abstract), Sapporo, Japan 

Delalibera JrI, Sosa Gomez DR, de-Moraes GJ, Alentar JA de, Farias Araujo W (1992) 

Infection of Mononychellus tanajoa ( Acari : Tetranychidae) by the fungus Neozygites sp. 

(Entomophthorales) in Northeastern Brazil. Florida Entomol. 75: 145-147 

Delalibera JrI (2002) Investigations towards implementation of Neozygites tanajoae sp. nov. 

as a classical biological control agent against the cassava green mite in Africa. PhD. 

Thesis, Cornell University, Ithaca, New York, 141 pp 

Delalibera JrI, Hajek AE, Humber RA (2004) Neozygites tanajoae sp. nov, a pathogen of the 

cassava green mite. Mycologia 96: 1002-1009 

Gachon C, Mingam A, Charrier B (2004) Real-time PCR: What relevance to plant studies? J. 

Exp. Bot. 55:1445-1454 

Herren HR, Bennett FD (1984) Cassava pests, their spread and control. In: Advancing 

agricultural production in Africa, Arusha, Tanzania. Common Agricultural Bureau, 

Slough, UK. 

Hountondji FCC, Lomer CJ, Hanna R, Cherry AJ, Dara SK (2002) Field evaluation of 

Brazilian isolates of Neozygites floridana (Entomophthorales: Neozygitaceae) for the 

microbial control of cassava green mite in Benin, West Africa. Biocont. Sc. Tech. 12: 

361-370 

Judelson HS, Tooley PW (2000) Enhanced polymerase chain reaction methods for detecting 

and quantifying Phytophthora infestans in plants. Phytopath. 90: 1112-1119 



Chapter 2: Molecular investigation on the establishement of Brazilian isolates in Africa       38  

Larsen JE, Hollingsworth CR, Flor J, Dornbusch MR, Simpson NL, Samac DA (2007) 

Distribution of Phoma sclerotioides on alfalfa and winter wheat crops in the North Central 

United States. Pl. Dis. 91: 551-558 

Lee SB, White TJ, Taylor JW (1993) Detection of Phytophthora species by oligonucleotide 

hybridization to amplified ribosomal DNA spacers. Phytopath. 83:177-181 

Lievens B, Thomma BPHJ (2005) Recent developments in pathogen detection arrays: 

Implications for fungal plant pathogens and use in practice. Phytopath. 95: 1374-1380 

Lyon WF (1973) A plant-feeding mite Mononychellus tanajoa Bondar (Acarina: 

Tetranychidae) new to the African continent threatens cassava (Manihot esculenta Crantz) 

in Uganda, East Africa. Pest. Artic. And News Summ. 19: 36-37 

McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant 

pathogens. Pest Manag. Sci. 59: 129-142 

Nakabonge G, Roux J, Gryzenhout M, Wingfield MJ (2006) Distribution of Chrysoporthe 

canker pathogens on Eucalyptus and Syzygium spp. in eastern and southern Africa. Pl. 

Dis. 90: 734-740 

Oduor GI, Yaninek JS, van der Geest LPS, de-Moraes GJ (1995) Survival of Neozygites cf. 

floridana (Zygomycetes: Entomophthorales) in mummified cassava green mites and the 

viability of its primary conidia. Exp. Appl. Acarol.19: 479-488 

Peres NA, Harakava R, Carroll GC, Adaskaveg JE, Timmer LW (2006) Comparison of 

molecular procedures for detection and identification of Guignardia citricarpa and G. 

mangiferae. Pl. Dis. 91: 525-531 

SAS Institute 2007. SAS system for Windows, Statistics. Release 6.12, version 9.1. SAS 

Institute Inc, Cary, NC, USA 

Tigano MS, Adams B, Maimala S, Boucias D (2006) Genetic diversity of Hirsutella 

thompsonii isolates from Thailan AFLP analysis and partial β-tubulin gene sequences. 

Genetics and Molecular Biology. doi: 10.1590/S1415-47572006000400022  

Yaninek JS, Baumgaertner J, Gutierrez AP (1991) Sampling the cassava green mite, 

Mononychellus tanajoa (Bondar), in Africa. Bull. Entomol. Res. 81: 201- 208 

Yaninek JS, Saizonou S, Onzo A, Zannou I, Gnanvossou D (1996) Seasonal and habitat 

variability in the fungal pathogens: Neozygites cf. floridana and Hirsutella thompsonii, 

associated with cassava mites in Benin. Biocont. Sc. Tech. 6: 23-33 

Yaninek JS, Herren HR (1988) Introduction and spread of the cassava green mite, 

Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), an exotic pest in Africa and the 

search for appropriate control methods: a review. Bull. Entomol. Res. 78:1-13 



Chapter 2: Molecular investigation on the establishement of Brazilian isolates in Africa       39  

Table 1. N. tanajoae infection rates of CGM (M. tanajoa) within cassava fields in Benin related to the presence 

of Brazilian isolates detected by species-specific primers (NEOSSU) and differentiated by country specific 

primers (8DDC;  + and - correspond to the presence and absence of amplified bands, respectively) 

 

Field 

code 

 

Location surveyed 

 

Department 

GPS Infection 

rate (%) 

DNA 

code 

PCR test 

Longitude Latitude NEOSSU 8DDC 

F1 12 km N Come Mono 1.84 6.48 14.20 1 + - 

F2 4 km E Se Mono 1.86 6.48 2.75 2 + + 

F3 1 km W Se Mono 1.81 6.53 67.28 3 + + 

F4 3 km S Atchannou Mono 1.75 6.56 8.90 4 + - 

F5 4 km N Se Mono 1.82 6.54 3.15 5 + - 

F6 Kpinnou (Epicentre) Mono 1.78 6.58 86.66 6 + + 

F7 1 km S Bopa Mono 1.96 6.59 78.33 7 + + 

F8 2 km N Zoungbonou Mono 1.79 6.57 95.56 8 + + 

F9 3 km W Comé Mono 1.90 6.43 12.50 9 + + 

F10 0.7 km E Doutou Mono 1.89 6.57 24.10 10 + + 

F11 20 km N Comé Mono 1.84 6.49 0.73 11 - - 

F12 Lokossa Mono 1.72 6.65 0.00 a   

F13 3 km N Comé Mono 1.86 6.42 0.00 a   

F14 17.2 km E Dogbo Mono 1.89 6.89 0.00 a   

F15 13.9 km NE Lokossa Mono 1.77 6.76 0.00 a   

F16 1 km E Doutou Mono 1.89 6.57 0.00 a   

F17 2.8 km W Lalo Mono 1.87 6.94 0.00 a   

F18 4 km N Akassato Atlantique 2.35 6.53 6.50 12 + + 

F19 8 km N Glodjegbé Atlantique 2.26 6.61 4.62 13 - - 

F20 22 km S Ouidah Atlantique 1.90 6.40 0.47 14 + + 

F21 9 km S Allada Atlantique 2.21 6.64 0.60 15 - - 

F22 1 km N Ouidah Atlantique 2.07 6.37 0.13 16 - - 

F23 9 km S Ouidah Atlantique 2.16 6.38 0.80 17 + + 

F24 Pahou Atlantique 2.20 6.38 0.03 18 + - 

F25 9 km Sèdjè Dénou Atlantique 2.30 6.74 0.00 a   

F26 4 km N Agon Atlantique 2.24 6.88 0.00 a   

F27 3 km S Sèhouè Atlantique 2.26 6.92 0.00 a   

F28 25 km S Sèhouè Atlantique 2.17 6.75 0.00 a   

F29 2 km N Houégbo Atlantique 2.19 6.82 0.00 a   

F30 36 km S Sèhouè Atlantique 2.15 6.67 0.00 a   

F31 15 km S Sèhouè Atlantique 2.20 6.83 0.00 a   

F32 13 km S Sékou Atlantique 2.31 6.55 0.00 a   

F33 33 km N Parakou Borgou 2.69 9.71 6.76 19 - - 

F34 4.5 km Parakou Borgou 2.59 9.28 0.65 20 + - 
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Table 1 Continued (1) 

Field 

code 

 

Location surveyed 

 

Department 

GPS Infection 

rate 

DNA 

code 

PCR test 

Longitude Latitude NEOSSU 8DDC 

F35 5 km Parakou Borgou 2.67 9.33 1.11 21 + - 

F36 30 km W Parakou Borgou 2.36 9.23 0.61 22 + + 

F37 16 km E Tchachou Borgou 2.70 9.08 11.97 23 + + 

F38 45 km W Parakou Borgou 2.23  9.21 3.25 24 + + 

F39 4 km E Bembereke Borgou 2.69 10.19 89.66 25 + + 

F40 6 km W N’Dali Borgou 2.68 9.83 18.49 26 + + 

F41 Ina station Borgou 2.71 9.96 0.27 27 - - 

F42 139 km S Parakou Borgou 2.64 8.21 0.00 a   

F43 15km W Parakou Borgou 2.49 9.29 0.00 a   

F44 17 km E Bemberekè Borgou 2.80 10.18 0.00 a   

F45 3 km S Parakou Borgou 2.60 9.30 0.00 a   

F46 88 km S Parakou Borgou 2.60 8.61 0.00 a   

F47 47 km Parakou Borgou 2.70 9.77 0.00 a   

F48 1km N. Kpaouignan Colline 2.22 7.69 3.65 28 + + 

F49 9km W. Bétékoukou Colline 2.36 7.76 8.50 29 + + 

F50 3km S. Bantè Colline 1.91 8.38 10.37 30 - - 

F51 1km Alafia (Savè) Colline 2.64 8.20 1.75 31 + - 

F52 5km S. W Savè Colline 2.44 8.01 3.77 32 + + 

F53 80 Km S Bassila Colline 1.84 8.46 78.57 33 + + 

F54 5 Km N Bassila Colline 1.64 9.07 75.66 34 + + 

F55 8km N. Diho (Savè) Colline 2.56 8.12 7.85 35 + - 

F56 1 km S Dassa Colline 2.18 7.77 2.75 36 + + 

F57 109 km S Parakou Colline 2.60 8.44 0.00 a   

F58 16 km W Dassa Colline 2.10 7.89 0.00 a   

F59 52 km S Bassila Colline 1.68 8.61 0.00 a   

F60 2km N Savalou Colline 1.97 8.12 0.00 a   

F61 56km N Savalou Colline 1.96 8.28 0.00 a   

F62 34km W Savalou Colline 1.71 7.84 0.00 a   

F63 4.1 km SE Adjohoun Ouémé 2.52 6.72 13.00 37 + - 

F64 1 km 7 SE Adjohoun Ouémé 2.51 6.75 18.13 38 + + 

F65 40m Apres pillon Ouémé 2.50 6.70 13.32 39 + + 

F66 4 Km NE Adjohoun Ouémé 2.49 6.73 56.75 40 + + 

F67 1 Km E Adjohoun Ouémé 2.49 6.71 67.27 41 + + 

F68 3 km NE Adjohoun Ouémé 2.50 6.73 96.66 42 + + 

F69 Azowlisse carefour Ouémé 2.51 6.65 18.56 43 + + 

F70 8 km E Adjohoun Ouémé 2.56 6.69 46.29 44 + + 
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Table 1 Continued (2) 

Field 

code 

 

Location surveyed 

 

Department 

GPS Infection 

rate 

DNA 

code 

PCR test 

Longitude Latitude NEOSSU 8DDC 

F71 2.1 km SE adjohoun Ouémé 2.50 6.71 15.27 45 - - 

F72 15 km N Onigbolo Ouémé 2.46 7.28 0.00 a   

F73 Missérété Ouémé 2.59 6.56 0.00 a   

F74 1km N Gbékandji Ouémé 2.55 6.69 0.00 a   

F75 4km N Gbékandji Ouémé 2.56 6.86 0.00 a   

F76 3km S Tatonoukon Ouémé 2.49 6.91 0.00 a   

F77 23km S Tatonoukon Ouémé 2.48 6.81 0.00 a   

F78 34km S Tatonoukon Ouémé 2.49 6.73 0.00 a   

F79 Ayetedjou Plateau 2.72 6.66 0.77 46 + + 

F80 5km W Igolo Plateau 2.70 6.68 0.83 47 + + 

F81 15km N. Onigbolo Plateau 2.46 7.28 3.10 48 - - 

F82 61 km E Bohicon Plateau 2.56 7.27 0.13 49 - - 

F83 1km N. Takon  Plateau 2.62 6.66 5.49 50 + + 

F84 29km S Pobè Plateau 2.62 6.79 0.00 a   

F85 21km S Pobè Plateau 2.63 6.94 0.00 a   

F86 1km E. Yoko  Plateau 2.62 6.71 0.00 a   

F87 30 km S Pobè Plateau 2.62 6.78 0.00 a   

F88 3km N. Ikpinlè Plateau 2.63 6.91 0.00 a   

F89 43 km S Ketou Plateau 2.66 7.01 0.00 a   

F90 49 km S Pobè  Plateau 2.61 6.65 0.00 a   

F91 6km N Sakété Plateau 2.63 6.75 0.00 a   

F92 8 km S Pobè Plateau 2.63 6.94 0.00 a   

F93 4km S Bonou Plateau 2.46 6.86 0.00 a   

F94 4km W Ikpinlè Plateau 2.59 6.89 0.00 a   

F95 10 km S Ketou Plateau 2.63 7.28 0.00 a   

F96 1km S. Massi Zou 2.25 6.97 3.67 51 + + 

F97 2km E. Kotokpa Zou 2.19 7.09 3.24 52 + + 

F98 34 km S Dassa Zou 2.12 7.55 0.17 53 - - 

F99 40 km E Bohicon Zou 2.41 7.23 0.07 54 - - 

F100 54 km S Dassa Zou 2.07 7.40 0.38 55 - - 

F101 22 km E Bohicon Zou 2.26 7.20 0.00 a   

F102 23 km S Zogbodomey Zou 2.26 6.95 0.00 a   

F103 2km E. Avlamé  Zou 2.15 7.10 0.00 a   

F104 3 km S Zogbodomey Zou 2.13 7.05 0.00 a   

F105 3km S Djidja Zou 1.85 7.31 0.00 a   

F106 31km N Bohicon Zou 2.07 7.45 0.00 a   
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Table 1 Continued (3) 

Field 

code 

 

Location surveyed 

 

Department 

GPS Infection 

rate 

DNA 

code 

PCR test 

Longitude Latitude NEOSSU 8DDC 

F107 4km E Cove Zou 2.37 7.22 0.00 a   

F108 500m W  Kinta  Zou 2.03 7.08 0.00 a   

F109 7km N. Dan  Zou 2.08 7.38 0.00 a   

F110 9km SE Zogbodomey Zou 2.17 7.02 0.00 a   

F111 Bohicon / rondpoint  Zou 2.09 7.17 0.00 a   

F112 57km S. Natitingou Donga 1.74 9.78 3.08 56 + + 

F113  75 km W Paoukon Donga 2.12 9.38 0.03 57 - - 

F114 1km S. W Onklou Donga 1.98 9.50 0.62 58 + + 

F115 0.5km S Ouaké Donga 1.39 9.68 0.00 a   

F116 10km W. Djougou Donga 1.57 9.68 0.00 a   

F117 122km W Parakou Donga 1.79 9.59 0.00 a   

F118 13km S. E Djougou Donga 1.76 9.62 0.00 a   

F119 16km S.W Wewe I Donga 2.19 9.24 0.00 a   

F120 21 km S Djougou Donga 1.64 9.53 0.00 a   

F121 2km E Patargo Donga 1.93 9.53 0.00 a   

F122 2km E. Djougou Donga 1.69 9.68 0.00 a   

F123 2km S. Pezebina  Donga 1.64 9.46 0.00 a   

F124 3 km S Djougou Donga 1.65 9.68 0.00 a   

F125 45 km S Djougou Donga 1.57 9.36 0.00 a   

F126 5km W Djougou Donga 1.62 9.69 0.00 a   

F127 60km S. W Djougou Donga 2.12 9.37 0.00 a   

F128 78 km S Djougou Donga 1.62 9.10 0.00 a   

F129 12 km N Lokossa Couffo 1.77 6.74 2.15 59 + - 

F130 1 km S Atieme Couffo 1.68 6.59 0.10 60 + + 

F131 11km N Dogbo Couffo 1.73 6.89 0.00 a   

F132 46km N Azove Couffo 1.95 7.17 0.00 a   

F133 1 km N Dogbo Couffo 1.77 6.82 0.00 a   

F134 11km S. Azovè Couffo 2.25 6.86 0.00 a   

F135 12 km N Lokossa Couffo 1.77 6.74 0.00 a   

F136 21 km N Azové Couffo 1.82 7.06 0.00 a   

F137 3km S. Azovè Couffo 1.71 6.92 0.00 a   

F138 7.6km W Klouékamè Couffo 1.81 7.04 0.00 a   

F139 16km N.E Natitingou Atacora 1.46 10.41 0.00 a   

F140 30km S Natitingou Atacora 1.50 10.01 0.00 a   

F141 3km N. Natitingou Atacora 1.39 10.34 0.00 a   

 
DNA code: (a) indicates fields in which no fungus was detected and therefore no DNA sample was tested ; DNA 
samples are numbered consecutively 
Infection rate: Percentage of leaves (n = 30) per field carrying infected mites  
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Table 2. PCR results on samples collected from 60 fields in different Departments of Benin in 2007, 

identified by PCR using NEOSSU and 8DDC primers 

 

 

 

Department 

No. of 

fields 

surveyed

No. of 

sampled 

fields*) 

No. of fields with 

amplicons for 

 

Percentage  of 

fields with 

infected 

mites**) 

Percentage  of 

fields with 

Brazilian 

isolates**) NEOSSU 8DDC 

Couffo 10 2 2 1 20.00 10.00 

Mono 17 11 10 7 58.82 41.18 

Atlantique 15 7 4 3 26.67 20.00 

Ouémé 16 9 8 7 50.00 43.75 

Plateau 17 5 3 3 17.65 17.65 

Zou 16 5 2 2 12.50 12.50 

Colline 15 9 8 6 53.33 40.00 

Borgou 15 9 7 5 46.67 33.33 

Dongo 17 3 2 2 11.76 11.76 

Atacora 3 0 0 0 0.00 0.00 

Total 141 60 46 36   

 

*) Number of fields sampled per department (fields selected following microscopic check of mite 

infection; 10 independent samples were taken from each field and assayed with PCR)  

**) Percentage of fields with presence of African or Brazilian isolates per department compared to the 

total number of surveyed fields. 
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Figure 1. Distribution of African and Brazilian isolates of N. tanajoae associated with cassava 

green mite in different agroecological zones of Benin. Agroecological zones, departments, 

former release points, surveyed field sites and sample identification are indicated (scale bar 

gives distances in km). 
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Figure 2. Polymerase chain reaction (PCR)-based detection of Neozygites tanajoae by 

species-specific oligonucleotide primer pair NEOSSU_F/NEOSSU_R (A1, B1, C1 and D1). 

A1, B1, C1 and D1 show the species-specific amplicon of 800bp. Lanes are labelled 

corresponding to the field labels in Table 1. With primer pair 8DDC_F/8DDC_R specific to 

the Brazilian isolates, A2, B2, C2 and D2 show amplicons of 600bp indicating fields with 

presence of the exotic isolates. GeneRuler DNA ladder Mix (MBI Fermentas) is included in 

marker lane N (fragment sizes are indicated in bp). 
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Figure 3. Infection rate of cassava green mite populations with N. tanajoae in cassava fields 

in Benin as related to the prevalence of Brazilian isolates of the entomopathogenic fungus. 
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Abstract - Neozygites tanajoae is a host-specific acaropathogen introduced in the late 1990s 

from Brazil into cassava fields in West Africa for biocontrol of the cassava green mite 

(Mononychellus tanajoa). Local African isolates of Neozygites tanajoae are morphologically 

similar to introduced Brazilian strains but the two origins can be distinguished by diagnostic 

PCR. In this study suitable bioassays were established in order to explore whether differential 

traits in acaropathogenic performance and host specificity exist between Brazilian and African 

isolates. Biocontrol performance and host specificity of two Brazilian and two African 

isolates of N. tanajoae were compared on leaf discs in vivo or on whole cassava plants in the 

greenhouse by exposing adult female mites to inoculum delivered from N. tanajoae infested 

mite mummies. The results show that all four N. tanajoae isolates significantly reduced the 

population of M. tanajoa, both on leaf discs and on whole plants. However, on leaf discs the 

Brazilian isolate collected directly from Alto Alegre in Brazil had a significantly stronger 

biocontrol efficacy on M. tanajoa than the Brazilian isolate collected about nine years post 

release from a field in Adjohoun (Benin). The two African isolates performed less effectively 

on a level similar to the African-Brazilian isolate. On whole cassava plants, the four fungal 

isolates did not show any significant differences in incidence of M. tanajoa infection. The 

pathogenicity assays run on leaf discs against a collection of mite species typically associated 

with cassava plants in Africa, Typhlodromalus aripo, Euseius fustis, Tetranychus urticae and 

Oligonychus gossypii, demonstrated that the tested African and Brazilian isolates of N. 

tanajoae had similar host specificity for M. tanajoa. In conclusion, the bioassays applied in 

vitro and on whole cassava plants were suitable to assess the biocontrol potential and host 

range of N. tanajoae, however, these methods can not replace molecular techniques for 

differentiation among different origins of this entomopathogenic fungus. 
 

Keywords: Host specificity, Neozygites tanajoae, Mononychellus tanajoa, Typhlodromalus 

aripo, Euseius fustis, Tetranychus urticae, Oligonychus gossypii, Cassava. 
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Introduction 

Neozygites tanajoae Delalibera Jr., Humber & Hajek (Zygomycetes: Entomophthorales), 

previously known as N. floridana and renamed by Delalibera et al. (2004), is a pathogen of 

Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) (Delalibera Jr. et al., 1992, 2000, 

2002). It infects the mite through body contact and emission of a germ tube that penetrates the 

cuticle of the mite and develops into hyphal bodies, which multiply through binary division 

and progressively fill the haemocoel of mites (Hountondji, 2008). Infected mites can still 

move the first and the second day, and may thus help in the dissemination of the pathogen. 

They die within 3-5 days at ca. 28°C (Oduor et al. 1995). Freshly dead infected mites dry out 

and become mummified (hence called ‘mummies’) within a few hours, after which they 

sporulate under favorable conditions. Sporulation starts with the process of conidiation which 

results in ejection of non-infective spores (conidia) from the mummies and ends with 

development of conidia into infective spores (capilliconidia). Production and distribution of 

haloes of spores and host density are therefore important factors of the transmissibility of N. 

tanajoae. Occurrence of N. tanajoae is poorly investigated due to geographically limited 

research on this acaropathogen. Neozygites tanajoae was first discovered as a cause of 

infection in M. tanajoa populations in South America, where it showed high prevalence in 

Columbia and particularly in Northeastern Brazil (Delalibera Jr. et al. 1992; Alvarez et al. 

1993). In Africa, however, lower prevalences have generally been observed with especially 

low infection levels in Benin before the acaropathogen was field released in 1999 (Yaninek et 

al. 1996; Dara et al. 2001; Hountondji, 2008). The epizootic potential of Brazilian isolates of 

N. tanajoae has led research at International Institute of Tropical Agriculture (IITA) to 

consider introducing Brazilian isolates against CGM. Therefore, Brazilian isolates have been 

experimentally introduced to Benin, West Africa in 1998 and 1999 for the control of CGM 

(Hountondji et al., 2002). Precise discrimination among the closely related N. tanajoae 

isolates from Brazil and Africa was not possible using classical taxonomic criteria (Delalibera 

Jr., 2008). Also, conventional methods based on epizootiological and phenotypical 

diagnostics (e.g. Lee et al. 1993; Bonants et al. 1997; Brasier et al. 1999; Judelson and Tooley 

2000) were not suitable.  Molecular probes to distinguish exotic from native isolates were still 

not available at that time, making it impossible to monitor the success of introductions of 

exotic isolates in regions where endemic isolates of the pathogen already existed. Samples of 

indigenous isolates collected before the releases as well as isolates from Brazil were used in 

molecular characterization of the pathogen. The availability of in vitro culturing techniques 

for N. tanajoae has greatly facilitated studies aiming at developing molecular probes for the 
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specific detection of isolates of the fungus (Delalibera Jr. et al., 2003). Polymerase chain 

reaction (PCR)-based techniques are now widely used for the detection of plant pathogens 

(Gachon et al. 2004; Lievens et al. 2005; McCartney et al. 2003) as well as mycelia as source 

materials (Tigano et al. 2006; Baek et al. 1998; Peres et al. 2006). Recently, specific primers 

have been designed for the detection of indigenous and exotic isolates of N. tanajoae 

(Delalibera Jr., 2008; Delalibera et al. unpublished data) and successfully applied on field 

samples for the PCR based detection and differentiation of Brazilian and African isolates of 

the fungus (Agboton et al., 2008). These primers have been validated using samples collected 

from several states of Brazil and from African countries where the Brazilian isolates had 

never been released (Agboton et al., 2008). As a result of the monitoring study, Brazilian 

isolates were found to be prevalent in the former release zones, suggesting that they exhibit a 

stronger fitness and biocontrol potential in the field than the local strains. In order to confirm 

this previous observation by searching to separate African isolates from Brazilian one’s, the 

need for alternative technique still exists. Among the possible methods, attention was turned 

to the biocontrol potential assay and host ranges comparison of Brazilian and African isolates 

of N. tanajoae. Whereas many studies have concluded on the specificity of the Brazilian 

isolates of N. tanajoae to CGM (Moraes and Delalibera, 1992; Hountondji et al., 2002; 

Delalibera and Hajek, 2004), little was known about differences in the performance of African 

and Brazilian isolates of N. tanajoae on CGM. It was also not known if the host range of the 

African isolates of N. tanajoae in Africa will differ from that of the Brazilian isolates. 

In this article we have compared indigenous and exotic isolates of N. tanajoae on the basis of 

their biocontrol performance and host specificity in order to discriminate between them. For 

that we compared the performance of two Brazilian isolates to that of two African isolates, on 

leaves discs and on whole cassava plants application. In addition we tested their host range 

within main mite species commonly found on cassava plants in Africa. 

  

Materials and Methods 

  

Fungal isolates  

Two African and two Brazilian isolates of N. tanajoae were used in experiments. One 

Brazilian isolate was collected directly in Brazil (Brazil-Brazil isolate), while the second was 

sampled from fields in Adjohoun, Benin, West Africa (Brazil-Benin isolate) about nine years 

post release. The two Africans isolates were collected from fields in Tanzania and Benin prior 

to the release of exotic isolates of N. tanajoae. The host range was assessed using those 
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Brazilian and African isolates of N. tanajoae against two predatory mites (Typhlodromalus 

aripo and Euseius fustis) and three herbivores (Mononychellus tanajoa, Tetranychus urticae, 

Oligonychus gossypii) commonly found on cassava. The identity and geographic origin of the 

fungal isolates were confirmed with specific PCR as described previously (Agboton et al., 

2008). The list of isolates is presented in Table 1. Samples from each strain were stored as 

mummified mites (so-called mummies) at -10°C in low relative humidity (20%) in sealed 

plastic vials filled with cotton wool and silica gel on the bottom.     

 

In vivo cultivation of fungal isolates  

Isolates were propagated and sub-cultured in vivo on live cassava green mites (CGM; 

Mononychellus tanajoa) as described previously (Delalibera Jr., 2002; Agboton et al., 2008). 

For the multiplication of each stock of isolates used in this study, single mummies were 

incubated on cassava leaf discs (1.5 cm in diameter) placed on moist cotton wool on the 

bottom of a large tightly closed plastic box (190 x 150 x 50 mm). Plastic boxes were kept in a 

climate chamber for 24h at 19±1°C, 95±5% RH and 12h:12h (light:dark) photoperiod 

following Oduor et al. (1996). At the end of this period, leaf discs were checked under a 

compound microscope and those found with capilliconidia (infective N. tanajoae spores) 

spread over about two-third of the leaf disc surface were retained for exposure to live mites 

(M tanajoa). Twenty healthy adult females of M. tanajoa with similar body size were placed 

per leaf disc and exposed to capilliconidia inside 150-mm diameter Petri dishes containing 

moist cotton wool. After exposure of the mites, the leaf discs were put to a source of light for 

about 30 min in order to stimulate the mobility of mites and get them contaminated. Then 

dishes were incubated at 28°C under a 12h:12h light:dark regime for 24h to allow infection to 

establish. Infected mites died within 4 to 7 days and resulting mummies were systematically 

collected, labeled and stored in a freezer at -10°C for short-term storage or at -20°C for long-

term storage depending on when they were to be used in subsequent experiments. These 

experimental conditions resulted in a 60 to 70% infection rate similar to previous reports 

(Dara et al., 1998; Hountondji et al., 2002). 

 CGM used in the experiments were collected from cassava fields in south-west Benin free 

of N. tanajoae and reared in cohorts from eggs (the mite stage not susceptible to N. tanajoae) 

to adults for one generation. Emerging adults were transferred to 2-3 week-old potted cassava 

plants placed in small, fine-mesh cages in a greenhouse for mass rearing. Weekly, sixty live 

mites were mounted in 0.1% cotton blue dissolved in lactophenol and checked under a 

compound microscope to ensure the mites were uninfected and healthy. Using this protocol, a 
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large number of mummies carrying inoculum of the particular entomopathogenic fungal 

isolates were produced and maintained for the biocontrol experiments and host range studies. 

 

Bioassay on leaf discs 

The two Brazilian and African isolates of N. tanajoae (see table1) were tested on CGM for 

their pathogenicity. The assay consisted of placing a single mummified mite of a particular 

fungal isolate in the center of a cassava leaf disc (1.7 cm diameter) on a sponge bed soaked 

with water in a 9-cm Petri dish. The dishes were incubated as mentioned above to allow the 

mummies to sporulate. The sporulation was checked by placing the leaf disc on a slide and 

searching for capilliconidia under a compound microscope at 100x magnification. Leaf discs 

with high densities of capilliconidia were then selected and used for mite exposure. Twenty 

young adult females were transferred to the edges of each leaf disc using a single hair 

paintbrush. Petri dishes were incubated at 70±10% RH, 12:12h light:dark, and 27±1°C. For 

the first 3 days, the plates were kept at 100% RH during the dark phase to induce further 

conidiogenesis and infection. During the following 3 days, the mites were transferred to fresh 

2-cm cassava leaf discs. Dead mites and mummies were recorded daily for 8 days. All dead 

mites except for the mummified ones were stained with lactophenol/cotton blue and mounted 

under the phase contrast microscope at 400x in order to identify hyphal bodies which indicate 

infection with N. tanajoae. Mortality was determined from the number of dead infected mites, 

and the number of mummies was used to quantify the mummification rate of each isolate.   

 

Efficacy of isolates on cassava plants  

The performance of two Brazilians and two Africans isolates of N. tanajoae was compared on 

potted mite infested cassava plants. The study was conducted from March to June 2007 at the 

Benin station of the IITA. The experiments were carried out in a greenhouse with 15 wooden 

cages (100 x 100 x 120 cm, length x width x height) fitted each with a transparent fine-mesh 

cover. The cages were arranged in a 3 x 5 cages design, thus each cage representing one 

treatment and each group of cages one replicate. Each cage contained one pot with 6 cassava 

plants (ca. 18 days old) that were infested by pinning two cassava leaf discs (2 cm diameter) 

with 25 adult uninfected female mites on the first expanded leaf of each plant. Ten days later, 

plants were inoculated with N. tanajoae (ca. 17 infected mites per disc) to the first expanded 

leaf of each infested potted cassava plant. Each treatment consisted in the application of a 

particular isolate of N. tanajoae. A total of five treatments were applied and repeated three 

times simultaneously under the same greenhouse conditions. The treatments were as follows: 
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(1) Adjohoun1, (2) Alto-Alegre, (3) Coton, (4) T8 and (5) control (untreated). Mite infection 

was determined on the first fully expanded leaves (top leaf). The follow-up evaluations were 

done each week on one cassava plant per pot and cage, with each plant being used only once.   

 

Host specificity of isolates  

The method used in this study was similar to that described above. Mites were exposed to 

capilliconidia of each isolate of N. tanajoae and the infection was recorded. All strains listed 

in Table 1 were tested against two phytoseiid mite species, Typhlodromalus aripo and Euseius 

fustis, and two tetranychid mite species, Tetranychus urticae, Oligonychus gossypii.  

Mononychellus tanajoa was used as control. From each mite species, 8 leaf discs with 10 

mites each were used for each isolate. In the case of phytoseiid mites, maize pollen was 

provided to feed them during the time of the experiment, while T. urticae, O. gossypii and M. 

tanajoa were fed directly on cassava leaf discs. After 2 to 3 days, leaf discs were renewed in 

order to provide fresh food to the herbivorous mites. The experiments were conducted in the 

laboratory at 25.5±3.5°C, 70% RH and 12:12h light:dark regime. The trial was monitored for 

8 days and any infection by the fungus was recorded. The dead mites were mounted in 

Amman’s lactophenol-cotton blue (1%) and examined under a compound microscope for the 

presence of germinated and non-germinated capilliconidia on their body. At the end of the 

experiment, remaining live mites were mounted in lactophenol-cotton blue and examined for 

the presence of hyphal bodies. 

 

Statistical analyses 

Average numbers of mites and of percent infection were obtained using PROC MEANS of 

SAS software (SAS, Institute 2007). To compare the isolates based on their prevalence in the 

mite populations, proportions of infected mites were normalized by arcsine-transformation. 

For the individual level experiment, the treatment effects on CGM densities were compared 

with ANOVA (PROC GLM, SAS Institute 2007) stratified by sampling date. Among-

treatment (strains) differences were compared with Student-Newman-Keuls (SNK) multiple 

range test, only where ANOVAs showed a significant treatment effect (P < 0.05). For the 

whole cassava plants experiment, a Mixed Model ANOVA (Proc Mixed, SAS Institute, 2007) 

with repeated statement (Littell et al., 2000) was used to determine the effect of treatment 

(i.e., isolate) and date of sampling on changes in population size of CGM. In the Mixed 

Model, isolate treatments and dates were the fixed effect factors, while plants (nested per 

isolate treatment) were the random effect factor, and plot (i.e. a group of plants with the same 
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isolate treated) was the subject (repeated) factor. Treatment effects on CGM were compared 

pair-wise using pre-planned orthogonal contrasts. 

 

Results  

 

Effect of different isolates on cassava green mite in the leaf disc assay 

All isolates caused some degree of infection to cassava green mites. Differences in mortality 

among isolates were obvious from the third day up to the sixth day after incubation, when 

mite mortality became stable (Figure 1). The final cumulative mean number of infected CGM 

by the Brazil-Brazil isolate was greater than 80% while those induced by the Tanzania isolate, 

Brazil-Benin isolate and Benin isolate were 61.3%, 61.3% and 62.3%, respectively (Figure 1). 

Those three latter values were not statistically different among each other (P>0.05). From day 

4 to 7, the cumulative mean number of CGM infected by the Benin isolate was higher than 

that observed with the Brazil-Benin isolate or Tanzania isolate (Figure 1). From 4 to 7 days 

after inoculation, the GLM ANOVA analysis showed a significant difference (P<0.05) 

between Brazil-Brazil and Tanzania, Brazil-Benin and Benin isolates, but no significant 

differences between the three latter isolates (Table 2, Figure 1). The Brazil-Brazil isolate 

produced more mummies (67.5%) than the second Brazilian isolate (Brazil-Benin; 47.5%) 

collected from Benin and also than the two African isolates Tanzania (45.0%) and Benin 

(43.8%).    

 

Impact of different isolates on potted infested cassava plants 

Thirty-eight days after infesting the plants, mite population decreased considerably in the 

control treatment and for that reason effects of the different treatments were analyzed from 

the first to the third week, representing 17, 24 and 31 days after plant infestation with CGM, 

corresponding to 7, 14 and 21 days after fungus application (Figure 2a). During that period, 

all isolates caused some degree of infection to cassava green mites. After the second week  

following inoculation, the peak mite population density on the control plants was much higher 

(268.0 live mites per plant) than on plants treated with Brazil-Brazil, Brazil-Benin, Benin and 

Tanzania isolates resulting in an average of 82.0, 103.3, 128.3 and 139.7 live mites per plant, 

respectively. Although the mean counts of CGM strongly differed, statistical analyses using 

the mixed model procedure with repeated measures showed no significant differences among 

the different strains inoculated (df = 4, F = 2.25, P = 0.0880). From the 1st to the 3rd week the 

cumulative proportion of infected mites increased on inoculated plants while no infection was 
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observed in the non-inoculated plants (Figure 2b). The highest prevalence of the fungus was 

associated with Brazilian isolates with 25% for the Brazil-Brazil isolate and 20% for the 

Brazil-Benin isolate, while the two African isolates (Tanzania and Benin) reached hardly 13% 

infection rates (Figure 2b).   

 

Host specificity of Brazilian and African isolates of N. tanajoae 

None of the alternative hosts tested besides CGM were found susceptible to Brazilian or 

African isolates of N. tanajoae. However, in the positive controls 55.6, 35.7, 28.8 and 42.2% 

of CGM were infected with Brazil-Brazil, Brazil-Benin, Tanzania and Benin isolates, 

respectively. Observations made under the phase-contrast microscope showed no infection of 

the phytoseiid mites T. aripo and E. fustis. Similarly, no infected O. gossypii and T. urticae 

mites were observed with any of the fungal isolates applied.   

   

Discussion 

The present results revealed an effective suppression of cassava green mite populations by 

both Brazilian and the African isolates of N. tanajoae on cassava leaf discs and on whole 

cassava plants. However, the Brazilian strain collected directly from Alto-Alegre in Brazil 

(Brazil-Brazil isolate) showed the highest incidence on CGM in the bioassay on leaf disc 

compared to the three other isolates (Brazil-Benin, Tanzania and Benin) that were similar 

with regards to their entomopathogenic potential. In fact, the Brazil-Benin isolate collected 

from a post-release field in Benin was not different from the local African isolates although it 

has been identified as a Brazilian isolate by using PCR. This is in accordance with previous 

reports, where the Brazilian isolates in general caused the highest levels of mortality in CGM 

populations (Delalibera and Hajek, 2004; Hountondji et al. 2007, Delalibera Jr., 2008; 

Hountondji, 2008; Agboton et al. submitted). Interestingly, the Brazilian isolate (Adjohoun1,  

Brazil-Benin isolate) collected from a post-release field in Benin (West-Africa) induced a 

lower level of mortality similar to the African isolates in the laboratory bioassay. In fact, 

Adjohoun1 was collected in its new environment (post-release field) where it spent about nine 

years and was compared with an original isolate from Brazil (Alto Alegre, Brazil-Brazil 

isolate). Both isolates have been identified by specific PCR primers as originating from 

Brazil. Whether the lower efficacy of Brazil-Benin compared to the original isolate (Brazil-

Brazil) can be explained by abiotic effects from its new environment or by natural variability, 

is difficult to determine. Although the work of Delalibera et al. (2004) revealed a similar level 

of virulence of African and Brazilian isolates at the individual mite level (leaf disc trial), 
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confirming our results with the Brazil-Benin isolate compared the African isolates, there was 

a significant difference between Brazil-Brazil and Brazil-Benin isolates with regards to their 

impact on CGM. Although, the Brazilian isolate collected from post release field in Benin 

showed a difference compared to Brazil-Brazil isolate, there were not different to African 

isolates, which confirm the complexity of entomopathogenic fungus N. tanajoae to be 

separated by bioassays evaluation. Previous virulence studies in the laboratory also failed to 

reveal significant differences between Brazilian isolates and the African isolates (Hountondji, 

2008). This finding was corroborated by our results on whole cassava plants that were not 

able to show significant differences between African and Brazilian isolates although the 

highest level of fungal infection was observed with the Brazilian isolate. Other studies 

conducted by Delalibera et al. (2004) with 23 isolates including the two Brazilian isolates and 

one of the African isolates found that most isolates were highly virulent causing more than 

90% infection. A similar investigation by Delalibera and Hajek (2004) using one African 

isolate (collected from Benin) and one Brazilian isolate (collected from Brazil) tested against 

CGM from Benin at different levels of inoculum showed no differences in virulence. All 

those previous finding demonstrate the difficulties in differentiating indigenous and exotic 

isolates of N. tanajoae on the basis of their biocontrol performance and host specificity. 

Therefore, bioassays comparing important attributes of the pathogen can be used first to 

eliminate the less appropriate isolates (Delalibera Jr., 2008), but not to differentiate isolates.  

Host range is an important characteristic in the selection of biocontrol candidates 

(Hountondji, 2008). The present results showed that Brazilian and African isolates of N. 

tanajoae were similar in their host range as all failed to infect any of the non-target mite 

species tested. This confirms earlier observations that Neozygites species are in general host-

specific and do not affect beneficial organisms (Moraes and Delalibera, 1992; Alvarez et al., 

1993; Hountondji et al., 1995; Yaninek et al., 1996; Hajek et al., 2001). Similarly, N. 

tanajoae has been demonstrated to be highly specific to CGM while not being known so far to 

infect any other host (Moraes and Delalibera, 1992; Hountondji et al., 2002; Delalibera et al., 

2004). Our results therefore corroborate the previous findings and add that this is similarly 

true for isolates both with Brazilian and African origin. Thus, host range is not an appropriate 

characteristic to differentiate the origin of N. tanajoae isolates from Africa or Brazil.  

Overall, this study attempted to find characteristics in pathogenicity and host range of 

Brazilian and African isolates in order to separate them according to their geographic origin. 

This could have added options for alternative techniques of differentiating N. tanajoae 

isolates and support or partly replace molecular genetic differentiation. However, the present 
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work has not verified these expectations, which is in line with previously found diagnostic 

limitations (Lee et al. 1993; Bonants et al. 1997; Brasier et al. 1999; Judelson and Tooley. 

2000), and emphasizes the requirement of molecular genetic tools for the differentiation of N. 

tanajoae isolates as has been recently demonstrated (Agboton et al., 2008). In addition, this 

work provided some suitable in vivo methods to test the biocontrol potential and host 

specificity of N. tanajoae isolates under controlled conditions, on an individual and 

population level. A further important finding of this study is that there is no direct adverse 

impact by N. tanajoae on other beneficial mite species prevalent in the cassava 

agroecosystem. This is particularly important for the beneficial phytoseiid mite 

Typhlodromalus aripo, an important predator of M. tanajoa on cassava in Africa and suggests 

follow-up investigations on potential synergistic interactions of both natural enemies (T. aripo 

and N. tanajoae) of CGM in the same habitat.    

   

Acknowledgments 

We are grateful to the Deutscher Akademischer Austauschdienst (DAAD), the International 

Institute of Tropical Agriculture (IITA) through a field work grant from the International 

Fund for Agricultural Development (IFAD), and the University of Göttingen in Germany for 

supporting this research. We thank Italo Delalibera, Alexis Onzo, Muaka Toko, Ignance 

Zannou, Désiré Gnanvossou and Birger Koopmann for constructive comments on an earlier 

version of this manuscript. We are also grateful to Sam Korie for providing assistance on the 

statistical analysis of the data and to Honoré Dossounon and Kevin Yenou for their technical 

assistance. 

 

Literature Cited 

 

Agboton VB, Delalibera JrI, Hanna R, von Tiedemann A, 2008. Molecular detection and 

differentiation of Brazilian and African strains of the entomopathogen Neozygites 

tanajoae (Entomophthorales: Neozygitaceae) with PCR using specific primers. Biocontrol 

Sci. Tech. (in press). 

Alvarez Afanador JM, Acosta A, Bellotti AC, Braun AR, 1993. Pathogenicity studies of a 

fungus associated to the cassava (Manihot esculenta Crantz) pest Mononychellus tanajoa 

(Bondar). Rev. Colomb. Entomol. 19, 10-20.  



Chapter 3: Brazilian and African Neozygites tanajoae isolates                    57  

Baek Seung-Cheol MD, Chae Hee-Jae MD, Dong Houh MD, Byun Dae-Gyoo MD, Cho 

Baik-Kee MD, 1998. Detection and differentiation of causative fungi of onychomycosis 

using PCR amplification and restriction enzyme analysis. Int. J. Dermatol. 37, 682-686. 

Bonants P, Hagenaar-de Weerdt M, van Gent-Pelzer M, Lacourt I, Cooke D, Duncan J, 1997. 

Detection and identification of Phytophthora fragariae Hickman by the polymerase chain 

reaction. Eur J Plant Pathol 103, 345-355. 

Brasier CM, Cooke DEL, Duncan JM, 1999. Origin of a new Phytophtora pathogen through 

interspecific hybridization. Proc Natl Acad Sci USA 96, 5878-5883. 

Dara SK, Lomer CJ, Hountondji FCC, Yaninek JS, 1998. Fungal pathogens of mites on 

cassava: Field and laboratory studies. VII th International Colloquium on Invertebrate 

Pathology and Microbial Control (abstract), Sapporo, Japan. 

Dara SK, Lomer CJ, Hountondji FCC, Yaninek JS, 2001. Seasonal incidence of two fungal 

pathogens Neozygites floridana (Zygomycotina: Zygomycetes) and Hirsutella thompsonii 

(Deuteromycotina: Hyphomycetes), in mite populations on cassava in Benin. In: Akoroda, 

M. O., and Ngeve, J. M. (Eds.), Root crops in the 21st century. Proceedings of 7th 

Triennial Symposium of the International Society for Tropical Root Crops-Africa Branch, 

October 11-17, 1998, Cotonou, Benin, pp. 503-507.  

Delalibera JrI, Sosa Gomez DR, de Moraes GJ, Alencar JA, Farias AW, 1992. Infection of 

Mononychellus tanajoa (Acari: Tetranychidae) by the fungus Neozygites sp. 

(Entomophthorales) in northeastern Brazil. Florida. Entomol. 75, 145-147. 

Delalibera JrI, de Moraes GJ, Lapointe SL, da Silva CAD, Tamai MA, 2000. Temporal 

variability and progression of Neozygites sp.(Zygomycetes: Entomophthorales) in 

populations of Mononychellus tanajoa (Bondar) (Acari: Tetranychidae). Ann. Soc. 

Entomol. Brasil 29, 523-535. 

Delalibera JrI, 2002. Investigations towards implementation of Neozygites tanajoae sp. Nov. 

as a classical biological control agent against the cassava green mite in Africa. PhD. 

Thesis, Cornell University, Ithaca, New York, 141 pp. 

Delalibera JrI, Hajek AE, Humber RA, 2003. Use of cell culture media for cultivation of the 

mite pathogenic fungi Neozygites tanajoae and Neozygites floridana. J.  Invertebr. Pathol. 

84, 119-127. 

Delalibera JrI, Hajek AE, Humber RA, 2004. Neozygites tanajoae sp. Nov., a pathogen of the 

cassava green mite. Mycologia 96, 1002-1009. 



Chapter 3: Brazilian and African Neozygites tanajoae isolates                    58  

Delalibera JrI and Hajek AE, 2004. Pathogenicity and specificity of Neozygites tanajoae and 

Neozygites floridana (Zygomycetes: Entomophthorales) isolates pathogenic to the 

Cassava Green Mite. Biological Control 30, 608-616 

Delalibera JrI, 2008. Biological control of the cassava green mite in Africa with Brazilian 

isolates of the fungal pathogen Neozygites tanajoae. In: Hajek AE, Glare TR, O Callaghan 

M. (Org.). Use of microbes for control and eradication of invasive arthropods. New York: 

Springer, 2008, v. 6, p. 259-269. 

Gachon C, Mingam A, Charrier B, 2004. Real-time PCR: What relevance to plant studies? J. 

Exp. Bot. 55, 1445-1454. 

Hajek AE, Wraight SP, Vandenberg JD, 2001. Control of Arthropods using Pathogenic fungi, 

pp. 309-347. In (S.B. Pointing & K.D. Hyde, Eds.) Bio-Exploitation of Fungi.  Fungal 

Diversity Press, Hong Kong. 

Hountondji FCC, De Nardo EAB, Tamai MA, 1995. Nào susceptibilidade de abelhas à 

infeccào pelo fungo Neozygites sp. Agente de control do ácaro verde da mandioca. In:  

Anaís do 15° Congresso de Entomologia, 12-17 Marco 1995, Caxambú-MG, Brazil. 

Hountondji FCC, Yaninek JS, de Moraes GJ, Oduor GI, 2002. Host specificity of the cassava 

green mite pathogen Neozygites floridana. Biocontrol 47, 61-66. 

Hountondji FCC, Hanna R, Cherry AJ, Sabelis MW, Agboton VB, Korie S, 2007. Scaling up 

tests on virulence of the cassava green mite fungal pathogen Neozygites tanajoae 

(Entomophthorales: Neozygitaceae) under controlled conditions: first observations at the 

population level. Exp. Appl. Acarol 41, 153-168. 

Hountondji FCC, 2008. Lessons from interaction within the cassava green mite fungal 

pathogen Neozygites tanajoae system and prospects for microbial control using 

Entomophthorales. Exp. Appl. Acarol 46, 195-210. 

Judelson HS, Tooley PW, 2000. Enhanced polymerase chain reaction methods for detecting 

and quantifying Phytophthora infestans in plants. Phytopathol. 90, 1112-1119. 

Lee SB, White TJ, Taylor JW, 1993. Detection of Phytophthora species by oligonucleotide 

hybridization to amplified ribosomal DNA spacers. Phytopathol. 83, 177-181.  

Lievens B, Thomma BPHJ, 2005. Recent developments in pathogen detection arrays: 

Implications for fungal plant pathogens and use in practice. Phytopathol. 95, 1374-1380.  

Littell RC, Pendergast J, Natarajan R, 2000. Tutorial in biostatistics: Modelling covariance 

structure in the analysis of repeated measures data. Statist. Med. 19, 1793-1819. 

McCartney HA, Foster SJ, Fraaije BA, Ward E, 2003. Molecular diagnostics for fungal plant 

pathogens. Pest Manag. Sci. 59, 129-142.  



Chapter 3: Brazilian and African Neozygites tanajoae isolates                    59  

Moraes GJ, Delalibera JrI, 1992. Specificity of a strain of Neozygites sp. (Zygomycetes: 

Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). Exp. Appl. Acarol. 

14, 89-94. 

Oduor GI, de Moraes GJ, van der Geest LPS, Yaninek JS, 1996. Production and germination 

of primary conidia of Neozygites floridana (Zygomycetes: Entomophthorales) under 

constant temperatures, humidities, and photoperiods. J. Invertebr. Pathol. 68, 213-222. 

Oduor GI, de Moraes GJ, Yaninek JS, van der Geest LPS, 1995. Effect of temperature, 

humidity and photoperiod on the mortality of Mononychellus tanajoa infected by 

Neozygites floridana. Exp. Appl. Acarol. 19, 571-579. 

Peres NA, Harakava R, Carroll GC, Adaskaveg JE, Timmer LW, 2006. Comparison of 

molecular procedures for detection and identification of Guignardia citricarpa and G. 

mangiferae. Plant Dis. 91, 525-531. 

SAS Institute, 2007. SAS system for Windows, Statistics. Release 6.12, version 9.1. SAS 

Institute Inc., Cary, NC, USA. 

Tigano MS, Adams B, Maimala S, Boucias D, 2006. Genetic diversity of Hirsutella 

thompsonii isolates from Thailand based on AFLP analysis and partial β-tubulin gene 

sequences. Genet. Mol. Biol. 29 (4), 715-721.  

Yaninek JS, Saizonou S, Onzo A, Zannou I, Gnanvossou D, 1996. Seasonal and habitat 

variability in the fungal pathogens: Neozygites cf. floridana and Hirsutella thompsonii, 

associated with cassava mites in Benin. Biocontrol Sci. Tech.  6, 23-33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Brazilian and African Neozygites tanajoae isolates                    60  

Table 1. List of isolates of N. tanajoae used in the study 

 

 

Isolates 

 

Name 

 

Origin 

Molecular identification Identity of 

Strains 

(NEOSSU)a (8DDC)b  

Adjohoun1 Brazil-Benin Adjohoun, Benin + + Brazilian 

Alto-Alegre Brazil-Brazil Alto-Alegre, Brazil + + Brazilian 

Coton Benin Cotonou, Benin + - African 

T8 Tanzania Kayenze, Tanzania + - African 
 

a molecular marker specific for detecting the infected mummified mites (mummies) of N. tanajoae. 
b molecular marker specific for differentiating the Brazilian isolates of N. tanajoae to African ones. 

 

 

Table 2. Percentage of dead mite recorded from day 4 to 7 after mites exposure to the spores 

of different isolates of N. tanajoae 

 

 

 

Isolates 

 

 

Number 

Least Square Means (%) 

Days after fungal exposure 

4 5 6 7 

Alto Alegre 1 42.1 a* 51.5 a 63.6 a 65.8 a 

Adjohoun1 2 36.9 ab 47.1 ab 51.6 b 52.3 b 

Coton 3 33.0 b 45.7 b 51.5 b 51.5 b 

T8 4 24.5 c 37.7 c 51.5 b 51.5 b 

Control 5 00.0 d 00.0 d 00.0 c 00.0 c 

 
* Values within columns followed by the same letter are not significantly different at the 5% significance level 

(Student-Newman-Keuls test). 
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Figure 1. Mean counts (± SE) of dead cassava green mites killed by different strains of N. 

tanajoae (Alto Alegre, Brazilian; Adjohoun1, Brazilian-Benin; T8, Coton, African origin). 
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Figure 2. Average densities of cassava green mites (CGM) on cassava plants after inoculation 

with Brazilian (Alto Alegre), Brazilian-Benin (Adjohoun1) and African (T8, Coton) strains of 

N. tanajoae (A), and the cumulative percentage of CGM infected by different isolates (B). 
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Abstract - Following the introduction of Neozygites tanajoae in Benin for control of cassava green 

mite (CGM, Mononychellus tanajoa) this entomopathogenic fungus co-occurs with the predatory 

mite Typhlodromalus aripo in cassava fields. However, studies on mutualistic or antagonistic 

interactions of the two biocontrol agents with regard to enhancing the biological control of CGM 

populations are lacking. In a series of greenhouse experiments, effects of single and combined 

releases of N. tanajoae and T. aripo on their respective population dynamics and on the suppression 

of CGM populations were evaluated. In the single species treatments, both T. aripo and N. tanajoae 

significantly reduced CGM densities, however, T. aripo appeared to perform superior than N. 

tanajoae. The co-application of the two natural enemy species on cassava plants reduced their 

respective abundance as compared to single applications, and resulted in a significantly reduced 

biocontrol effect on CGM density 2 weeks after treatments. Laboratory experiments conducted on 

feeding activity, oviposition and survival of T. aripo fed with healthy or N. tanajoae-infected CGM 

showed that T. aripo preferred feeding on infected CGM. Concomitantly, the oviposition and 

survival rates of T. aripo were lower when fed with infected as compared to healthy mites, thereby 

reducing the reproduction rate of the predatory mite. Moreover, by feeding preference on infected 

mites, T. aripo reduced the entomopathogenic inoculum. Both effects may explain the reduced 

biocontrol efficacy of the two antagonistic species when applied simultaneously. The results 

suggest that simultaneous releases of T. aripo and N. tanajoae in the same field may reduce the 

efficacy of the biological control of CGM. It may be therefore preferable to apply single agents 

selected according to their adaptation to the prevailing environmental conditions in the specific 

geographical area. 
 

Keywords: Typhlodromalus aripo, Neozygites tanajoae, Predator-pathogen interactions, 

Mononychellus tanajoa, cassava. 
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Introduction 

The issue of introducing single or multiple natural enemy species for classical biological control has 

been since long a matter of debate among ecologists and biological control practitioners (Polis et al. 

1989; Sih et al. 1998; Losey and Denno 1999; Gnanvossou et al. 2003; Onzo et al. 2004; Onzo et al 

2005b). Several authors have argued for screening natural enemies and releasing only the most 

effective species (Briggs 1993; Ehler and Hall 1982). This strategy has been challenged, however, 

by others who found little evidence that one natural enemy species provides higher suppression than 

two or more natural enemy species applied together (Croft et al. 1992; Huffaker et al. 1971; Lang 

2003; Riechert and Lawrence 1997). Interactions among natural enemy species can take two 

opposite directions with respect to their impact on the target pest populations (Losey and Denno 

1999; Wekesa et al. 2007). Two predator species may act in a complementary fashion thereby 

increasing predation risk to the prey (Heinz and Nelson 1996; Losey and Denno 1998; Onzo et al. 

2004; Riechert and Lawrence 1997). On the other hand, two predators may also interfere with each 

other through intra-guild predation or some other forms of interspecific interactions, thereby 

decreasing predation risk to the prey (Rosenheim 2001; Spiller 1986). 

Natural enemies interactions are particularly relevant to classical biological control of cassava green 

mite (CGM), Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) in Africa, as this pest mite is 

attacked by several natural enemies. Two of these, Typhlodromalus aripo De Leon and 

Amblydromalus (Typhlodromalus) manihoti Moraes (Acari: Phytoseiidae) have been introduced 

from Brazil, established and widely spread in African cassava fields (Yaninek et al. 1998; 

Gnanvossou et al. 2001; Onzo et al. 2003; Yaninek and Hanna 2003; Zannou et al. 2007). However, 

none of these two predatory mite species have consistently established in the arid, semi-arid, and 

mid-altitude areas. Furthermore, although establishment was successful, reduction of CGM 

populations due to the exotic phytoseiids were estimated not more than 50% (Hanna, personal 

communication). Introduction of Brazilian isolates of the entomopathogenic fungus Neozygites 

tanajoae (Entomophthorales: Neozygitaceae) was envisaged to complement and improve the 

phytoseiid impact (Hountondji et al. 2002a). Neozygites tanajoae is an important natural regulator 

of CGM populations in northeastern Brazil (Delalibera et al. 1992, 2000, 2002). Hountondji et al. 

(2002b) investigated the pathogenicity of Brazilian isolates of N. tanajoae on several beneficial and 

non-target species before its introduction in Benin and observed that N. tanajoae is specific to CGM 

(Hountondji et al. 2002b; Delalibera et al. 2004; Hountondji, 2008). Particularly, these isolates are 

known not to infect T. aripo which has become the most effective exotic predator for control of 

CGM in Africa (Yaninek et al. 2003). Those two exotic natural enemies of GCM on cassava in 

Africa therefore constitute a suitable system for assessing the impact of predator-pathogen 
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interactions on suppression of pest populations. Pathogens and predators may contribute to the 

suppression of their target pest population either as individual species or as species complexes. T. 

aripo and N. tanajoae are currently sharing the same cassava field agroecosystem and may be 

utilized in an integrated control system against CGM.  However, until now no data are available on 

the outcome of simultaneous fungus and predatory mite applications in the same field, especially 

with regard to their efficacy in CGM suppression. In order to evaluate the potential biocontrol 

efficacy in an IPM approach to control CGM, there is an urgent need to determine the relative 

contribution of each natural enemy species in comparison to their interactive performance in the 

biological control of CGM in the short and long term.  

We conducted greenhouse and laboratory experiments in order to (1) determine the impact of the 

interaction between T. aripo and N. tanajoae on the population density of CGM, and (2) to 

understand how feeding on fungus-infected mites affects the population dynamics of the predatory 

mite and thereby influences the biological control of CGM. 

 

Materials and methods 

 

Studied organisms 

Adult CGM females used in the experiments were obtained in a laboratory culture initiated from 

egg cohorts laid by an initial population collected in south-west Benin from cassava fields free of N. 

tanajoae. Adult females that emerged from these eggs were transferred to 2-3 week-old potted 

cassava plants placed in small, fine-mesh cages in a greenhouse for mass rearing. Every week, sixty 

live mites were mounted in 0.1% cotton blue dissolved in lactophenol and checked under a 

compound microscope for the presence or absence of fungal infections.  

Adult females of T. aripo used in this study were collected from cassava fields near the town of Sè, 

Department of Mono, Southwestern Benin, and maintained in a laboratory at IITA-Benin Station on 

a diet made of all stages of CGM. The predatory mites were continuously reared on potted cassava 

plants in a greenhouse before being used.  

Fungal isolates were preserved as N. tanajoae-infected mummified CGM referred to as ‘mummies’. 

Mummies were collected from Alto Alegre in the state of Bahia, Brazil in 2007 and shipped to 

IITA-Benin, where they were maintained in the laboratory at 4°C. The stored mummies were 

propagated and sub-cultured in vivo on live CGM as described previously (Delalibera, 2002; 

Delalibera and Hajek, 2004; Agboton et al., 2008; Delalibera, 2008). For each experiment, a new 

batch of mummies was produced to be used within a maximum of two weeks in order to minimize 

loss of viability. 
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Experimental set-up in the greenhouse  

The experiments were conducted on potted cassava plants inside cages in a greenhouse at the 

Biological Control Center for Africa, International Institute of Tropical Agriculture, located in 

Cotonou, Benin, from April to September 2007. The greenhouse (length x width x height =  24m x 

8.5m x 5m) was equipped with a canopy of Teflon plastic and the sides covered with an amber 

screen of 32 µm x 32 µm mesh size. To prevent excessive heat build-up, windows at the opposite 

ends of the greenhouse were opened to allow for air circulation. Temperature inside the greenhouse 

ranged from 25 to 38°C with relative humidity varying between 44 and 94%. The experiments were 

carried out using 12 cages (100 x 100 x 120 cm in length x width x height) fitted each with a 

transparent fine-mesh cover. 

The cassava plants used in the experiments were obtained from farmer’s fields around Lokossa in 

southwestern Benin. Six cassava cuttings (20 cm long) of the variety “Agric” were planted in each 

of 12 plastic pots (24 cm high and 20 to 26 cm in diameter from the base to the top). The pots were 

filled with ca. 12 kg of topsoil collected from a field under fallow for more than 4 years, where no 

fertilizers and pesticides have been used for at least the past 14 years. Pots with cassava plants were 

transferred into the cages inside the greenhouse within 48h after planting and placed on iron 

benches. The cages (Fig. 1a) were arranged in 3 groups of 4 cages each containing one pot with six 

plants. Each group represented one replicate of a treatment. Treatments were assigned to each group 

of cages at random.  

Each side of a cage was disinfected overnight with 70% alcohol and rinsed with distilled water the 

next day before starting the experiment. The fine-mesh covers were also sprayed with 70% alcohol 

to minimize the risk of unexpected infections by a fungal isolate.  At the start of the experiment (Fig 

1a, 1b), the potted plants were infested with CGM by pinning two cassava leaf discs (2 cm in 

diameter) with 25 uninfected adult female CGM on each of the first expanded leaves of each plant. 

Each plant was therefore infested with 50 adult female CGM. Ten days later, CGM-infested plants 

were assigned to each of the following four treatments: (1) release of 25 T. aripo adult females, (2) 

release of 25 live N. tanajoae-exposed CGM, (3) release of 25 T. aripo adult females plus 25 live N. 

tanajoae-exposed CGM and (4) a control that remained free of predatory mites and the fungus.  

The appropriate number of predators for each plant in each treatment was placed directly on the first 

fully expanded leaf of each cassava plant using a camel-hair brush. The fungus was inoculated by 

pinning cassava leaf discs with N. tanajoae-infected CGM to the first fully-expanded leaf of each 

potted plant. The N. tanajoae-infected CGM were obtained by exposing 30 healthy female CGM 

from the greenhouse colonies to fresh capilliconidia produced by a sporulating mummy on a 2-cm 

diameter leaf disc as described previously  (Delalibera, 2002; Delalibera and Hajek, 2004; Agboton 

et al., 2008; Delalibera Jr., 2008; Hountondji, 2008). 
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From each treatment, one whole plant was sampled per week, starting on the day when the natural 

enemies were added, in order to determine the initial CGM population levels. The plants were 

removed from the cutting, placed in a plastic bag and brought to the laboratory for counting. Eggs 

and active stages (larvae, nymphs and adults) of CGM, active stages of T. aripo in the apex and on 

all the leaves and all N. tanajoae-infected CGM (infected and mummified CGM) from each plant 

were counted in the laboratory with a binocular microscope.  

 

Laboratory investigations 

The laboratory experiment consisted of an evaluation of the oviposition and survival of T. aripo fed 

with healthy or N. tanajoae-infected CGM. Cohorts of 50 T. aripo gravid females (6-7 days after 

egg hatching) were reared for use in the experiments. The T. aripo gravid females were starved for 

24h prior to the start of the experiments. The experimental unit consisted of a cassava leaf disc (2-

cm diameter) with the abaxial surface placed up on water-saturated cotton wool in an open Petri 

dish (13-cm- diameter). The two treatments made were as follows: (1) one juvenile gravid female of 

T. aripo fed with 20 healthy mites per day; (2) one juvenile gravid female of T. aripo fed with 20 

infected mites per day. Each treatment was repeated 10 times. Food supply was renewed every 24h 

after counting the number of eggs laid in each treatment as well as the number of CGM (uninfected 

and infected). In each treatment, all eggs laid within 24h were removed from the experimental unit 

before the next feeding. The predator mites were fed until they died and their life span was 

recorded. Because of the considerable attention needed in setting up and following up the 

treatments, all 10 replicates of each treatment were established in same time as described above and 

placed in the same experimental condition in the laboratory. All treatments were conducted 

simultaneously in a growth chamber at 25-27°C and at 70-90% RH for a maximum of 17 days.  

The number of CGM (healthy and infected) consumed on each cassava leaf disc by T. aripo and 

eggs laid were recorded every 24h until the test female predator died. The daily consumption and 

number of eggs laid by each T. aripo were calculated and averaged for the ten replicates. 

 

Statistical analyses  

For statistical analyses, CGM (lives); T. aripo (lives) and Neozygites tanajoae (infected and 

mummified mites) were summed on a per plant basis. Average and standard errors were calculated 

from the log-transformed sums per plant and plotted against sampling dates. A Mixed Model 

ANOVA (Proc Mixed, SAS Institute, 2007) with repeated statement (Littell et al. 2000) was used to 

determine the effect of treatment (i.e., natural enemy release) and date of sampling on changes in 

population sizes of CGM, T. aripo, and N. tanajoae. In the Mixed Model, treatment, date, and 

interaction between treatment and date were the fixed effect factors, while replicate and plant were 
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the random effect factors, and replicate nested in treatment was the subject (repeated) factor. 

Treatment effects on prey and predator densities were compared pair-wise using pre-planned 

orthogonal contrasts. All statistical analyses were carried out for CGM (actives), T. aripo (actives) 

and N. tanajoae (infected and mummified mites). For the two natural enemies’ species treatments, 

proportions of T. aripo were calculated for each treatment, to detect if the natural enemies’ 

combination negatively affected any of the two enemies species. Densities of T. aripo and N. 

tanajoae might differ according to the different treatment applied, then, their densities in the single 

and combined species treatments were pooled per sampling date and means were calculated. These 

fractions were used as expectations under the null hypothesis that the predator species did not affect 

each other. A regression analysis was carried out on the population of T. aripo and N. tanajoae in 

the combined treatment to check for the effect of the presence of both natural enemies in one 

ecosystem. In the laboratory investigations, ANOVA with Student-Newman-Keuls multiple range 

test (SAS Institute, 2007) was used to compare each diet preference by T. aripo and its oviposition 

related to the two food types. Using life table analysis in SAS program, the test of equality over 

food type was performed. The effect of treatment (i.e., type of diet given to T. aripo) on survival of 

T. aripo was tested using the coefficient of Wilcoxon. 

 

Results  

 

Impact of T. aripo and N. tanajoae on CGM populations 

Densities of CGM differed significantly among treatments (Table 1) throughout the experimental 

observation period. In the control, CGM densities passed through three distinct phases, an increase 

during the first 8 days after the natural enemy release, followed by a relatively stable population 

growth phase between day 8 and 16, which was followed by a decline finally (Fig. 2a). In contrast, 

the two antagonists (T. aripo and N. tanajoae) substantially reduced CGM densities from the start 

of the experiment, as compared with the control (Fig. 2a, Table 1). However, there were significant 

differences in CGM abundance between the two natural enemy treatments (Fig. 2a). T. aripo alone 

had a significantly greater effect in reducing CGM densities as compared to the single treatment 

with N. tanajoae (Fig. 2a; Table1) and was also superior to the combined treatment (T. aripo & N. 

tanajoae). This effect became clearly noticeable 16 days post starting the experiment. The factors 

involved in this interaction were further illustrated in the laboratory experiments on cassava leaf 

discs.     
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Development of T. aripo and N. tanajoae 

Densities of natural enemy species always increased soon after being released and continued to 

increase even after the onset of the decline in prey or host populations. However, towards the end of 

the experiment, antagonist densities decreased with declining CGM populations (Fig. 2b).  

Throughout the experiment, population size of T. aripo significantly differed among treatments. 

Densities of T. aripo were significantly higher when released alone as compared to the combined 

application with N. tanajoae (Fig. 2b). Sixteen (16) days after enemy release, T. aripo passed from 

28 to 25 lives in single treatment, but in the combined treatment T. aripo passed from 26 to 6 

actives (Fig. 2b). The proportion of N. tanajoae infected mites, indicating the propagation and 

spread of the fungus, increased in both treatments (N. tanajoae alone or combined with T. aripo) 

until 16 days post application of the antagonist. However after 8 days, the proportion of N. tanajoae 

infected mites in single treatments significantly surmounted that of the combined treatment (Fig. 2c, 

Table 1), reaching a peak of 51% as compared to the combined treatment which never exceeded 

30% until the last sampling date (Fig. 2c). 

Moreover, the high level of mite infection with N. tanajoae was observed with a lower density of T. 

aripo in the combined application (T. aripo with N. tanajoae). 

 

Food preferences and oviposition rates of T. aripo  

In general, T. aripo consumed both healthy and infected CGM. However, the daily consumption of 

CGM by T. aripo significantly differed according to the infection stage of the prey mites (P < 0.05). 

In the choice experiment T. aripo preferred to consume infected cassava green mites as compared to 

healthy ones (Fig. 3). The oviposition rate of T. aripo also significantly differed between the two 

mite categories consumed (P < 0.05). However, numbers of eggs laid by T. aripo were significantly 

lower when fed with infected cassava green mites as compared to healthy mites (Fig. 3). Also, the 

survival of T. aripo was affected by the quality of prey mites, being significantly different  (P < 

0.01; df = 1; P = 0.0042 and 0.0048 for log-rank test and Wilcoxon test, respectively) with T. aripo 

living two days longer when subjected to a diet of healthy mites than infected mites (Fig. 4). Thus, 

the life span of T. aripo was significantly shorter on a diet of infected cassava green mite as 

compared to healthy mites. 
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Discussion 

Our experiments demonstrate that, being separately applied, T. aripo and N. tanajoae are able to 

suppress CGM populations, confirming previous observations on the biocontrol potential of T. 

aripo (Hanna et al. 2001; Onzo et al. 2003; Yaninek and Hanna 2003), or of N. tanajoae (Alvarez et 

al. 1993; Hajek et al. 2001; Delalibera et al. 2004; Hountondji et al. 2002a; Hountondji et al. 2007; 

Hountondji, 2008). Comparisons between the two neotropical natural antagonist species in single 

treatments showed that the suppression caused by T. aripo on CGM densities was significantly 

higher than that caused by N. tanajoae suggesting that in our experimental conditions T. aripo has 

been more effective than N. tanajoae in suppressing CGM populations. The superior performance 

of T. aripo is likely due to its ability to feed immediately on CGM, while N. tanajoae as an 

entomopathogen requires some time to develop an infection inside CGM before individuals start to 

dye from infection (Hajek et al. 2001). In fact, it is known for many entomopathogenic fungal 

species, that hosts are killed only after entire colonization of the arthropod (Hajek et al. 2001). 

However, successful transmission of pathogens from infected to healthy hosts such that epizootics 

can occur in the host’s populations requires time and conducive environmental conditions (Hajek et 

al. 2001). In the greenhouse experiments, such conditions are not 100% guarantied, and this may 

explain why T. aripo has been superior to N. tanajoae in reducing CGM densities in our 

experiments. 

 Previous research on T. aripo (Onzo et al. 2003; Yaninek and Hanna 2003; Onzo et al. 

2005a) and on N. tanajoae (Delalibera et al. 2004; Hountondji et al. 2002a; Hountondji et al. 2007) 

demonstrated that their biocontrol efficacy in single use is based on completely different 

mechanisms of CGM suppression. While the predator attacks directly the CGM by killing it, the 

pathogen develops an infection inside the mite, and colonizes its entire body. In this study we tested 

the hypothesis that the presence of both natural enemy species on the same cassava plant should 

result in additive or more-than-additive effects on the suppression of CGM populations. This 

hypothesis was further based on the different sites of impact of the two natural enemy species, as T. 

aripo inhabits the plant apex during the day and forages on upper leaves only during the night 

(Onzo et al. 2003), whereas N. tanajoae is found mostly on cassava leaves (Yaninek et al. 1996; 

Hountondji et al. 2002a). Thus, the two antagonist species occupy different niches and therefore 

should not compete with each other. However, our greenhouse experiments demonstrate that the co-

occurrence of T. aripo and N. tanajoae on the same cassava plant had a less-than-additive efficacy 

in suppressing CGM as compared to the level of suppression achieved by T. aripo or N. tanajoae 

alone. As a consequence, CGM populations increased in the combined treatment (T. aripo and N. 

tanajoae) two weeks after natural enemy release which was accompanied by lower densities of the 

two natural enemy species. These data indicate that the two antagonist species affect each other in a 
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negative way, although N. tanajoae is not entomopathogenic on T. aripo, and thus concur with 

previous work suggesting an indirect interspecific interaction between T. aripo and N. tanajoae 

(Hountondji et al. 2002b; Agboton et al. in preparation). Ariori et al. (2007) demonstrated that the 

consumption of pathogen-infected pest mites by predatory mites can reduce the effectiveness of the 

microbial control agent. This effect may be enhanced by a preference of the predator for feeding on 

infected hosts, thereby reducing the entomopathogenic inoculum which otherwise would be 

dispersed among living host mites. This purported mechanism has been confirmed in our study as in 

the combined treatments high T. aripo densities were associated with decreased N. tanajoae 

infections. This mechanism may also explain the variability observed when both enemies were 

released together in the same habitat, as well as the failure of the mite-pathogenic fungus N. 

tanajoae and the other predatory mite Neoseiulus idaeus to control a population of CGM in central 

Bahia, Brazil (Elliot et al. 2008).  

Our understanding of reduced T. aripo densities in the combined treatment was further corroborated 

by the laboratory experiments conducted on cassava leaf discs with females of T. aripo fed either 

with CGM infected by N. tanajoae or healthy CGM. These data indicate that T. aripo consumed 

significantly more infected CGM than healthy ones. This may be due to the fact that infected mites 

are less mobile as compared to the mobility of healthy mites. This may have allowed T. aripo to 

feed more easily on these prey items than on fast moving healthy ones. By feeding on infected 

mites, T. aripo reduced the density of fungal inoculum, thereby, however, impairing its own 

reproduction and longevity because of the poor quality of the diet consumed. It has been reported 

for other entomopathogenic Hyphomycetes species, that hosts can be killed by fungus-produced 

toxins (Boucias and Pendland 1998). Such toxins could also be produced by N. tanajoae inside 

infected CGM that are consumed by T. aripo, resulting in reduced T. aripo densities. Therefore, 

when both natural enemies are applied in combination in the same habitat, they may affect their 

own populations thereby weakening their biological efficacy with the result of increased pest 

populations. Hence, our findings reported here strongly support strategies proposed previously to 

release only the most effective and best adapted species in a given geographic area according to the 

climatic conditions (Briggs 1993; Ehler and Hall 1982). This is particularly critical, because most 

prey arthropods are attacked by more than one natural enemy species (Briggs 1993), and because 

the use of multiple natural enemy species in biological control of arthropod pests is still a matter of 

debate (Briggs 1993; Spiller 1986). On the other hand, this argument has been challenged by 

findings which provided little evidence that one natural enemy species provided higher prey 

suppression as compared with two or more natural enemy species together (Croft et al. 1992; 

Huffaker et al. 1971; Lang 2003; Riechert and Lawrence 1997). Interactions among natural enemy 

species can take two opposite directions with respect to their impact on pest populations (Losey and 
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Denno 1999; Onzo et al. 2004; Onzo et al. 2005b). T. aripo and N. tanajoae species may act in a 

complementary way thereby increasing predation risk to the prey when they are released in different 

geographic areas. However, when they are released in the same field, the two natural enemy species 

will negatively interact with each other, thereby decreasing the predation risk to the prey as has 

been observed with some generalist insect predators of herbivore populations (Rosenheim 2001; 

Spiller 1986; Roy et al. 2000).  

While predation of T. aripo on infected CGM may reduce the potential level of fungus inoculum, 

the predator, under field conditions, may also enhance spreading of the fungus inoculum while in 

contact with fungus-killed CGM during its foraging on cassava plants. The relevance of this aspect 

on a larger spatial scale and under natural conditions remains to be studied in future research. 
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Table 1. Mixed Model repeated measures ANOVA of treatment and sampling date on densities of 

Mononychellus tanajoa, Typhlodromalus aripo and Neozygites tanajoae in the greenhouse 

experiments. Neo indicates N. tanajoae, Ta indicates T. aripo (df, degrees of freedom).   

 
 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 1. Cages placed on iron benches inside a greenhouse in 3 groups (replicates) of 4 cages, each 

corresponding to one treatment. Each group (A) of cages represents one replicate of the experiment. 

Each treatment consisted on release of a particular natural enemy (T. aripo or N. tanajoae) to host 

mites on potted cassava plants inside each cage (B). 

 M. tanajoa T. aripo  N. tanajoae 

Source of variation df F P df F P  df F P 

Natural enemies  3 5.25 0.0271 1 2.22 0.2287  1 11.28 0.0284

Date  2 1.45 0.2908 2 10.70 0.0095  2 4.68 0.0451

Natural enemies*Date  6 3.28 0.0620 2 2.32 0.1761  2 2.33 0.1590

Contrasts            

Neo vs. Control  1 1.10 0.3254 - - -  1 - - 

Ta vs. Control  1 14.52 0.0052 - - -  1 - - 

Neo+Ta vs. Control  1 1.49 0.2575 - - -  1 - - 

Neo vs. Ta  1 7.64 0.0245 - - -  1 - - 

Neo+Ta vs. Ta  1 6.72 0.0320 1 3.15 0.2287  1 - - 

Neo vs. Neo + Ta  1 0.03 0.8680 - - -  1 11.28 0.0284

A B

Pot with 6

Casava plants

Each treatment
Group of cages kept inside the 
screenhouse at IITA-Benin

A B

Pot with 6

Casava plants

Each treatment
Group of cages kept inside the 
screenhouse at IITA-Benin
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Figure 2. Population densities of CGM, T. aripo, and N. tanajoae, respectively on plants in the 

different treatments in the greenhouse experiment: (A) CGM (actives), (B) T. aripo (actives) and 

(C) N. tanajoae (infected and mummified mites). Counts were log-transformed; proportions of N. 

tanajoae-infected CGM were arcsine-transformed for normalizing the data and averaged per plant. 

Day 0 is the day on which natural enemies were added. 
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Figure 3. Food preference of T. aripo per day, and the effect of diet type on the oviposition rate in 

the laboratory experiment. Significant differences (P<0.05; ANOVA, with SNK mean separation; 

SAS Institute, 2007) are indicated with different letters. 
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Figure 4. Survival curves of Typhlodromalus aripo feeding on two different diets (infected 

mite by N. tanajoae and healthy mite) tested in a laboratory experiment. 
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General Discussion 

In order to complement the biocontrol activities of phytoseiid predators, the pathogenic 

fungus N. tanajoae, one of the most efficient natural enemies of the CGM in Brazil 

(Delalibera 2002) has been introduced experimentally in Benin (West Africa) in 1998/1999 

for the control of cassava green mite. N. tanajoae strains from Brazil are morphologically 

similar to strains found in Africa and other countries in South America (Delalibera et al., 

2004). Consequently, it is difficult to conduct a post-release monitoring of introduced species 

in Africa as no reliable techniques were available for differentiating among African and 

Brazilian isolates of N. tanajoae. To overcome this constraint, two specific pairs of 

oligonucleotide primers were designed in 2003 for Polymerase Chain Reaction (PCR) 

detection and determination of geographic strains of N. tanajoae from Brazil and Africa. The 

development of the probes was based on a collection of Brazilian strains and on only one 

African strain from Benin (West Africa). Therefore, there was a requirement to verify the 

applicability of the probes with more indigenous strains of N. tanajoae from post-release 

fields in Africa. 

 In the first step of this research the probes were tested for identifying and 

differentiating N. tanajoae strains collected from a broader range of locations, allowing for a 

large-scale analysis of the entomopathogen population in various cassava-growing regions. 

DNA of N. tanajoae was obtained from in vivo produced isolates and a PCR assay was 

established capable of detecting fungal DNA within the complex matrix of infected mites. A 

similar example of conidia being successfully used for ITS-based PCR identification is the 

Leptosphaeria maculans species complex (Balesdent et al. 1998). Thus, mummified mites 

from several geographic regions in Brazil and Africa were tested for their capacity to produce 

infective capilliconidia of N. tanajoae, which was taken as characteristic of a viable sample.  

The sporulation test used in this study therefore served a dual purpose, as a suitable method 

for the detection of N. tanajoae infected mites and as a check for viability of the fungus and 

for the inoculation of host mites under controlled conditions.  

The present study independently validated the two primer pairs for the first time and 

determined that 52°C was a suitable annealing temperature in a PCR assay to materialize the 

specificity of the used primers. Similar techniques have been used by Ersek et al. (2003) for 

identifying hybrids within Phytophthora alni with PCR-based DNA markers. In fact, PCR 

with genomic DNA extracted from mites infected with different strains of N. tanajoae 

produced a clear banding pattern according to the correspondent primer while uninfected 

mites and sterile water did not produce any such signals. These results confirmed the high 
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specificity of NEOSSU and 8DDC primers as a key for N. tanajoae detection and 

differentiation, thus confirming previous work by Delalibera et al. (unpublished) on a limited 

number of isolates. A similar study was conducted by Bonants et al. (2003) on detection and 

identification of Phytophthora fragariae with polymerase chain reaction by using species-

specific primers.  

As a result of the present studies, the two oligonucleotide primer pairs turned out to be 

suitable for following the establishment and spread of Brazilian strains in the framework of 

the campaign on biocontrol of the cassava green mite in cassava fields in Benin. In fact, the 

results presented here provide evidence of the establishment in Benin of the Brazilian 

entomopathogenic fungal strains found associated with cassava green mite upon PCR 

detection with specific primers. A similar molecular approach has been used by Nakabonge et 

al. (2006) on different pathogens of Chrysoporthe spp. to follow their distribution in Eastern 

and Southern Africa. Moreover, this study has greatly increased our knowledge on the 

distribution in Benin of the most important pathogen of Mononychellus tanajoa currently 

known. This is the first time that molecular markers were used for monitoring the status of N. 

tanajoae in the Republic of Benin, where the Brazilian isolates have been released since 1999. 

Similarly to the finding of Yaninek et al. (1996), our results suggest that certain locations may 

be more favourable for the establishment and survival of the pathogen (Larsen et al. 2007) 

and infection of CGM. Thus, the number of cassava fields associated with N. tanajoae was 

higher in the south where the agro-ecological conditions are more favourable for cassava 

production. The annual precipitation is generally greater in southern than northern Benin 

which could enhance the fungal pathogenicity and may explain the highest infection rate 

found in southern Benin (Yaninek et al. 1996). Interestingly, overall infection rates of CGM 

were significantly correlated with the prevalence of Brazilian isolates in cassava fields 

indicating a stronger biocontrol potential of the exotic pathogen strains to the suppression of 

CGM. 

Information presented here will be a key element for an appropriate post-release 

monitoring of N. tanajoae, which will improve follow-up strategies for the use of 

entomopathogenic fungi in any microbiological control program. 

Although the molecular technique was reliable for differentiating among N. tanajoae 

strains and for following their dispersal in the release areas, the need for alternative methods 

still exists due to the high cost of molecular assays. Among the possible methods, attention 

was turned to the biocontrol potential and host ranges comparison of Brazilian and African 

isolates of N. tanajoae. Our investigations have demonstrated that the evaluation of biocontrol 
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potential at individual and population levels show the biological capacity of each isolate 

studied, however, this did not offer an opportunity differentiate among isolates of different 

origin due to the variability obviously existing in N. tanajoae populations. On the whole, the 

expectation of this work was that Brazilian and African isolates, both tested at individual and 

population level against CGM and also evaluated for their host range specificity, would reveal 

distinct differences according to their geographic origin. This could have opened options for 

alternative methods of differentiating between Brazilian and African strains. However, while 

the present work has not verified these expectations, which is in line with previously found 

diagnostic approaches (Lee et al. 1993; Bonants et al. 1997; Brasier et al. 1999; Judelson and 

Tooley. 2000), it emphasizes the requirement of applying molecular genetic assays for the 

differentiation of these strains as recently demonstrated (Agboton et al. 2008). In addition, 

this work gives proof of the suitability of in vivo methods to test the biocontrol potential and 

host range of different N. tanajoae isolates in order to evaluate the biocontrol effectiveness of 

this entomopathogen against cassava green mite under controlled conditions.  

Finally, the important finding in this work is that there is no adverse 

entomopathogenic impact by N. tanajoae on phytoseiid mites, particularly beneficial ones like 

Typhlodromalus aripo, an important predator for the control of M. tanajoa on cassava in 

Africa. This suggests a follow-up investigation on potential synergistic interactions of both 

natural enemies (T. aripo and N. tanajoae) of M. tanajoa in the same habitat.  

T. aripo and N. tanajoae are used in Africa in an integrated pest management system 

against the cassava green mite in the same cassava agroecosystems. Pathogens and arthropod 

natural enemies may concomitantly contribute to the suppression of the CGM population 

either as individual species or as species complexes. Our investigation of the interaction of 

both natural enemies (T. aripo and N. tanajoae) sharing the same host (M. tanajoa) on 

cassava showed that in separate applications, T. aripo and N. tanajoae can significantly 

suppress M. tanajoa populations, hereby confirming previous observations on impact of T. 

aripo (Hanna et al. 2001; Onzo et al. 2003; Yaninek and Hanna 2003), or on impact of N. 

tanajoae (Alvarez et al. 1993; Hajek et al. 2001; Delalibera et al. 2004; Hountondji et al. 

2002a; Hountondji et al. 2007). However, in our experimental conditions, T. aripo is more 

effective than N. tanajoae in suppressing CGM populations. This higher performance of T. 

aripo is likely due to its ability to feed directly on M. tanajoa, while N. tanajoae is an 

entomopathogen which takes some time to develop an infection inside M. tanajoa before 

killing it (Hajek et al. 2001). Indeed, for many species of entomopathogenic fungi, hosts are 

killed only after full colonization resulting in depletion of nutrients (Hajek et al. 2001). 
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Moreover, our hypothesis was that the two natural enemy species would complement each 

other in suppressing M. tanajoa, as both share the same host. This expected complementarity 

was however not evident in our experiments, as the co-occurrence of T. aripo and N. tanajoae 

on the same cassava plant in the screenhouse did not add significantly to the suppression of 

M. tanajoa achieved by T. aripo alone. On the contrary, our results suggest an indirect 

interspecific interaction between T. aripo and N. tanajoae, because in our previous research 

N. tanajoae did not directly affect T. aripo (Hountondji et al. 2002b; Agboton et al. 

submitted). Indeed, by preferred feeding on infected mites, T. aripo reduces the fungal 

inoculum and negatively affects its own reproduction rate, which in turn increases M. tanajoa 

densities. Our findings are supported by Ariori et al, (2007), who suggested that the 

consumption of pathogen-infected pest mites by predatory mites can reduce the effectiveness 

of the microbial control agent. In our study the regression analysis between proportions of 

both natural enemies in mixed treatments revealed that high T. aripo densities were associated 

with low N. tanajoae infection rates. This could partly explain the variations observed when 

both enemies were released together in the same habitat; as well as the failure of the mite-

pathogenic fungus N. tanajoae and another predatory mite, Neoseiulus idaeus, to control a 

population of cassava green mite in central Bahia, Brazil (Elliot et al. 2008). Overall, by 

releasing in the same fields, the two natural enemy species will interfere indirectly with each 

other through interspecific interactions thereby decreasing the predation risk to the prey like it 

has been observed in other works with generalist insect predators on the suppression of an 

herbivore population (Rosenheim 2001; Spiller 1986; Roy et al. 2000).  

In conclusion, this thesis has shown how molecular techniques are indispensable for 

post-release studies of the introduced entomopathogenic fungal N. tanajoae in Africa. The 

research presented has led to validate a probe for N. tanajoae detection and its different 

strains differentiation. Furthermore, the research has led also to better understanding of the 

biology and ecology of both exotic natural enemies (pathogens and arthropod) that are used to 

control the cassava green mite in the cassava habitat in Africa. 

 

There are more questions to be answered with Neozygites tanajoae in order to improve the 

understanding of the use of entomopathogenic fungi in the biological control of herbivores. 

Future investigations will have to address the following aspects:  

1- Impact of Brazilian strains of N. tanajoae on population dynamics of local Africans 

strains under field conditions. 
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2- Factors affecting the loss in biocontrol potential of exotic species of Neozygites 

tanajoae in their new introduced environment. 

3- Investigation on the genome of post release collection and African collection. 

4- Determine the relative contribution of each natural enemy species to biological control 

of M. tanajoa in the short and long term and their interaction at a larger spatial scale 

and under natural conditions. 

5- Study the potential role of the predator (T. aripo) in spreading fungal inoculum while 

in contact with fungus-killed M. tanajoa during its foraging process on cassava plants.  
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