One-pot, Two-step Queuing Cascades Involving a Heck Coupling, π-Allylpalladium Trapping and Diels-Alder Reaction

DISSERTATION

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen
vorgelegt von

Barış Yücel
aus
Ankara, Türkei

D7

Referent:
Korreferent:

Prof. Dr. Armin de Meijere
Prof. Dr. Hartmut Laatsch

Tag der mündlichen Prüfung: 01-11-2005

Die vorliegende Arbeit wurde unter der Leitung von Herrn Prof. A. de Meijere in der Zeit von März 2002 bis September 2005 im Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen angefertigt.

Meinem Lehrer, Herrn Prof. A. de Meijere, möchte ich an dieser Stelle für die Überlassung des interessanten Themas, seine hilfreichen Anregungen, seine Diskussionsbereitschaft und die stete Unterstützung während der Anfertigung dieser Arbeit herzlich danken.

Knowledge should mean a full grasp of knowledge:
Knowledge means to know yourself, heart and soul.
If you have failed to understand yourself, Then all of your reading has missed its call.

Dervish Yunus Emre
13th century

To

Seyhan and
Kadir Öztürk

Contents

A. Introduction 1
B. Main Part 15

1. Some Modifications on Domino Heck-Diels-Alder Reaction Involving Bicyclopropylidene 15
1.1. Introduction 15
1.2. Domino Heck-Diels-Alder reaction with substituted bicyclopropylidenes (66B- E) 17
1.3. A modification on the spiro[2.5]octene derivative 127: the effective construction of dispiroheterocyclic system 130. 26
2. A Two-Step Four-Component Queuing Cascade Involving a Heck Coupling, т-Allylpalladium Trapping and Diels-Alder Reaction 29
2.1. Introduction 29
2.1.1. The formation of π-allylpalladium complexes in the palladium- catalyzed reaction of bicyclopropylidene (66) with arylhalides. 32
2.2. One-pot, two-step, four-component queuing cascade of bicyclopropylidene (66) with iodoethene, amine nucleophiles (78a-e) and dienophiles (68a-g) 33
2.3. One-pot, two-step, four-component queuing cascade of bicyclopropylidene (66) with iodoalkene derivatives, morpholine (78a) and dienophiles (68a-g) 39
2.4. An inter-intra-intermolecular queuing cascade involving bicyclopropylidene 66, a functionalized iodoalkene and a dienophile 47
3. Two-Step Queuing Cascade Reactions with Methylenespiropentane Involving a Heck Coupling, т-Allylpalladium Trapping and Diels-Alder Reaction 50
3.1. Introduction 50
3.2. A two-step, four-component queuing cascade with methylenespiropentane (81) involving nucleophilic trapping of π-Allylpalladium intermediates. 53
3.3. A two-step, three-component queuing cascade with methylenespiropentane (81) involving intramolecular nucleophilic trapping of п-Allylpalladium intermediates; a direct access to benzoxepine and benzoazepine derivatives 55
3.4. Preparation of functionalized aryl iodides (231b-g) 59
C. Experimental 61
4. General 61
1.1. Physical and spectroscopic measurements 61
1.2. Reagents and solvents 61
1.3. Preparation of known compounds 62
5. Procedures, spectroscopic and physical identifications of new compounds 62
2.1. Domino Heck-Diels-Alder reaction with substituted bicyclopropylidenes (66A-D)62
2.1.1. General procedure for the one-pot, one-step Heck-Diels-Alder reaction involving a mono-substituted bicyclopropylidene (66A-D), an iodoarene, a dienophile (GP-1) 62
2.1.2. Synthesis of spirooctenes. 63
2.1.2.1. An attempt for the synthesis of tert-Butyl 8-phenyl-1- (tributylstannyl) spiro[2.5]oct-7-ene-5-carboxylate (cis/trans, trans-104C) and/or (cis/trans, cis-105C) 66
2.1.2.2. An attempt for the synthesis of tert-Butyl 1- (hydroxydimethylsilanyl)-8-phenylspiro[2.5]oct-7-ene-5- carboxylate (cis/trans, trans-104D) and/or (cis/trans, cis- 105D) 67
2.2. The synthesis of Bicyclopropyliden-2-yl-dimethylsilanol (66D) 67
2.3. Preparation of allylidenecyclopropanes trans-119E, cis-120E and 121E* 68
Methyl 2-[1-(2,6-dimethylphenyl)allylidene]cyclopropanecarboxylate [trans-119E, cis-120E] and Methyl 2-[cyclopropylidene-(2,6-dimethylphenyl)- methyl]acrylate (121E): 68
2.4. Hetero-Diels-Alder reaction of allylidenecyclopropanes trans-119E, cis-120E and 121E with N-phenyltriazolinedione (122) 69
2.5. A modification on the spiro[2.5]octene derivative $\mathbf{1 2 7}$ 71
2.5.1. Two attempts for the direct preparation of spiro[2.5]octene 130. 74
2.6. A two-step four-component queuing cascade with bicyclopropylidene (66) 75
2.6.1. General procedure for the one-pot, two-step queuing cascade involving bicyclopropylidene (66) an iodoalkene, a secondary amine 78 and a dienophile under conditions A (GP-A): 75
2.6.2. General procedure for the one-pot, two-step queuing cascade involving bicyclopropylidene (66) an iodoalkene, a secondary amine 78 and a dienophile under conditions $B(G P-B)$: 75
2.6.3. Synthesis of spiro[2.5]octenes (175aa-ad and 175bb-eb) 76
2.6.4. Attempts for the synthesis of spiro[2.5]octenes 175af-ag 88
2.6.5. Synthesis of spiro[2.5]octenes (176ab-179ab) 89
2.6.6. Synthesis of spiro[2.5]octenes (180a-188a) 96
2.6.7. An attempt for the synthesis of tert-Butyl 8-Benzyl-13-(1-morpholin-4- ylethyl)-8-azadisipiro[2.2.5.2]tridec-12-ene-5-carboxylate (205) 106
2.7. Preparation of 5-(1-lodovinyl)benzo[1,3]dioxole (192) 107
2.8. An inter-intra-intermolecular queuing cascade involving bicyclopropylidene (66) a functionalized iodoalkene $(206,208)$ 108
2.9. Two-step queuing cascade reactions with methylenespiropentane (81) 110
2.9.1. The one-pot, two-step queuing cascade involving methylenespiropentane (81) iodobenzene 67, morpholine 78a and dimethyl fumarate 68d. 110
2.9.2. The one-pot, two-step queuing cascade involving methylenespiropentane (81) functionalized iodoarenes 231a-g, 240 and dimethyl fumarate 68d 112
2.9.2.1. General procudere (GP) 112
2.9.2.2. Attempts for the synthesis of heterocycles 237 and 239 122
2.9.3. Preparation of functionalized aryliodides 231e and $231 f$. 122
D. Conclusion and Outlook 124
E. References and Notes 127
F. Spectra 135
G. Crystal Data 156

A. Introduction

Initially, organic chemistry began like many other branches of the natural sciences with the investigation of natural products. However, it started to be accepted as an unambiguous and unique branch of science only after the artificial creation of its own material independently at the beginning of the last century. Emergence of this creative ability made organic chemistry a more distinguishable science which produces its own individual laws and utilizes them for its self-development. The creative potential of organic chemistry in contrast to many other branches of natural sciences resembles only that of the arts. Similar to those of colors or music notes, the unlimited capacity of carbon atoms to combine with each other as well as with other atoms allows for the creation of numberless structures, from the very simple to the complex each with its own unique appearance and chemical properties. The main goal of organic chemistry can be easily summarized as the synthesis of new molecules having specific functions which serve 'usefulness' to any part of life. In this respect, organic chemists have synthesized thousands of structurally diverse compounds which find numerous applications, particularly in medicine, agriculture and textile industry (Scheme 1). ${ }^{[1]}$

1

2

3

Scheme 1. Three examples of biologically active compounds: anti-tumor agent, Daunomycinone (1) ${ }^{[2]}$; antibiotic, (-)-Ovalicin (2) ${ }^{[3]]}$; insecticide, Brevioxime (3). ${ }^{[4]}$

However, to evaluate the organic synthesis only in terms of 'usefulness' might not be realistic. On the other hand, a statement like the following "As the arts can be performed only for arts' sake, an organic synthesis can be also realized only for its own sake!" might be also quite pretentious. Some of the structurally fascinating compounds have been synthesized firstly for
purely academic interest such as catenanes $\mathbf{4}$ (composition of interlocking carbon rings), adamantane 5 ('monomeric' building block of diamond) and its higher analogs (6) without expecting any applicable 'usefulness' (Scheme 2). ${ }^{[1]}$ Nevertheless, we now are aware of catenane constitution of DNA in its replication process ${ }^{[5]}$ and adamantane derivatives having antiviral activity. ${ }^{[6]}$ One of the most interesting examples in this context has been recently demonstrated with the synthesis of several anthropomorphic molecules which are named as nanoputians ($\mathbf{7}$ and $\mathbf{8}$), inspired by the Lilliputians in Swift's famous novel. 3-D animations of these man-shaped molecules are being utilized for educational purposes (Scheme 2). ${ }^{[7]}$

Scheme 2. Adamantane (4), Trimantane (5), Catenane (6) and NanoPutians (7, 8)

Today, modern synthetic organic chemistry not only deals with target of synthesis but also methods to reach it. The increasing interests in more complex structures enriched in chemo- or stereoselective respects require more elegant approaches which must be designated to give the most efficient results yet in the shortest time. In addition to this, they must be flexible protocols in terms of chemical diversity of ingredients to elaborate target molecules with a variety of slightly different substituent patterns. Any suggested methodology should also fulfill needs of modern synthesis from the standpoint of rising attentions in environmental issues. Under these
circumstances, traditional stepwise synthetic methods which, particularly, need several tedious individual steps for the construction of target molecules, are no longer desirable. ${ }^{[8]}$ Actually, these modern requirements of organic synthesis were recognized about a century ago. One-pot synthesis of tropinone $\mathbf{1 2}$ starting from simple substrates - succindialdehyde $\mathbf{9}$, methylamine $\mathbf{1 0}$ and acetonedicarboxylic acid $\mathbf{1 1}$ - can be shown as an one of the earliest examples of today's synthetic strategies (Scheme 3). ${ }^{[9]}$

Scheme 3. One-pot synthesis of tropinone (12)

However, the idea of putting all starting materials in a one pot and carrying out the reaction without isolating the intermediates have started to appear as a distinctive methodology at the very beginning of the sixties. An important contribution to this concept came from isocyanide based chemistry by Ugi et al. So called four-component Ugi reaction (Ugi 4CR) have been emerged as direct access to peptides in a one step (Scheme 4). ${ }^{[10]}$ Today, the Ugi reaction and its other variations play a major role in the synthesis of natural or non-natural biologically active compounds. This methodology has been improved with combination of Ugi 4CR with other reactions; some examples containing seven and more adducts have even been demonstrated. ${ }^{[11]}$

Scheme 4. An Ugi reaction

The reaction proceeding in a one-pot by combination of more than one individual step in a concurrent fashion can be generally defined as a domino or cascade reaction. By definition onepot multicomponent reactions like the Ugi reaction above have to be accepted as a cascade reaction. However, not all cascade reactions do necessarily involve more than one component. ${ }^{[8]}$ The formation of spiroepoxide $\mathbf{2 3}$ by termolysis of 4-alkynylcylobutenone $\mathbf{1 8}$ is one of the fascinating examples of such an unimolecular cascade reaction. After electrocyclic ring opening of cyclobutenone ring, rearrangement of occurring enynylketene 19 via diradicalic intermediates (20,21 and 22) makes this reaction possible in a high yield (Scheme 5). ${ }^{[12]}$

19

20

23

22

21

Scheme 5. An example of unimolecular cascade reaction.

In domino processes, even though in some cases individual steps might be performed separately (i.e., in a stepwise fashion), this is usually neither applicable nor preferable due to formation of unstable intermediates after each step ${ }^{[8]}$. Moreover, according to the strict definition by Tietze a domino reaction must be performed "under the same conditions without adding additional reagents and catalyst. ${ }^{\prime[8 a]}$ Domino reactions can be classified with respect to mechanistic pathways of individual steps such as anionic-pericyclic or anionic-anionic. Among these, transition metal-catalyzed domino reactions occupy an important position, since diverse range of substrate toleration of transition metals and their unusual reactivity patterns to elaborate complex structures selectively match with expectations from a domino reaction ${ }^{[13]}$. Generally, transition metal catalyzed cascade reactions start with coordination of the metal species to carbon-carbon multiple bonds or oxidative addition of reactive bonds to the metal and subsequent insertion of various π-bonds to the metal complex. Occurring reactive σ-metalcarbon bond in these pathways can easily undergo reductive elimination or β-elimination processes. In order to perform sequential reactions in the presence of metal catalysts, these elimination processes must be blocked to transform the chemical information from one step to another. In the case of slow elimination processes, this transformation can be obtained by following insertion mechanisms or nucleophilic trapping of the intermediate metal-carbon complex. Furthermore, with an appropriate conditions and substrates lacking of available β hydrogen for elimination are utilized for this purpose. ${ }^{[13 c, d, 14]}$

Rhodium is one of the most commonly used metals for transition metal mediated cascade reactions. ${ }^{[13 c, d, 15]}$ Recently, $\mathrm{Rh}(\mathrm{II})$-catalyzed cyclization of acetylenic diaza carbonyl compounds has been developed as a general key strategy for the total synthesis of strychnine 32 (Scheme 7). ${ }^{[16]}$ In the model study, treatment of catalytic amount rhodium(II) perfluorobutyrate with α-diazoamide 27 has initially afforded rhodium carbene complex like 25 in Scheme 6. This complex reacts immediately with alkyne moiety to generate the vinyl carbene intermediate 26. Actually, many other transition metal reactions proceed via intermediates similar to $\mathbf{2 5}$ and $\mathbf{2 6}$ in Scheme 6. After electrocyclic ring closure and reductive elimination of rhodium complex to afford 26, furan derivative 28 has been accomplished in 94\% yield in a model study (Scheme 7). Subsequent intramolecular Diels-Alder reaction of furan 28 with cyclopentene moiety and opening of the oxybridge in intermediate 29 has furnished polycyclic structure 31. This approach can be utilize for the construction of strychnine $\mathbf{3 2}$ after necessary modifications are made to the precursor $\mathbf{2 7}$.

Scheme 6. The formation of rhodium vinyl carbene complex 26

Scheme 7. Rh(II)-catalyzed cyclization of α-diazoamide 27 and the construction of polycyclic structure 31; the model study for the synthesis of strychnine 32.

Since their initial preparation in $1964,{ }^{[17]}$ Fischer carbene complexes have become one of the most useful tools in organic synthesis. In particular, $\alpha-\beta$ unsaturated Fischer carbenes (including aryl carbene complexes) have gained increasing attention since they undergo cycloadditions with alkynes to afford different ring systems such as phenols, cyclopentanones, indenes, furans and cyclobutenones under appropriate conditions. Fischer carbenes have found numerous applications in the construction of various structures, such as the promotion of sequential multi-cyclizations with acetylenes. ${ }^{[18]}$
A striking example of metal assisted cascade reactions is the reaction performed by Fischer type tungsten carbene complex 33. Two folds intramolecular annulation protocol with alkyne moieties has been used to produce a steroidal ring system 37 . After the first annulation, the generated second $\alpha-\beta$ unsaturated carbene complex 34 undergoes one more annulation with alkyne rest to afford the tetracyclic product $\mathbf{3 7}$ in 62% yield (Scheme 8). ${ }^{[19]}$

Scheme 8. The formation of stereoidal ring system 37 by $\alpha-\beta$ unsaturated Fischer type tungsten carbene complex 33 in a one-pot.

Ruthenium carbene complexes have emerged as valuable reagents in organic synthesis over the last two decades. They have been extensively utilized to couple diverse range of dienes or dienynes in a way to give unsaturated carbo- and heterocycles. This methodology now generally is referred to ring closing metathesis (RCM) reactions. ${ }^{[20]}$ By designation of proper substrates, it is also possible to perform the ring closing metathesis in a concurrent fashion to obtain polycyclic structures. ${ }^{[21]}$

For instance, recently, the production of another stereoidal backbone 39 has been achieved by ruthenium mediated polycyclization of highly branched precursor 38. The mechanism initiated with ruthenium alkylidene formation involves three subsequent intramolecular carbeneacetylene metatheses via metallacyclobutene and ruthenium carbene intermediates similar to $\mathbf{4 0}$ and 41 respectively (Scheme 9). ${ }^{[22]}$

38

Scheme 9. The construction of steroidal backbone 39 by ruthenium carbene complex; an example of sequential ring closing metathesis (RCM).

Palladium-catalyzed reactions are certainly one of the most deeply studied families of transition metal reactions. So called cross coupling reactions based on palladium catalysts have become a cornerstone in organic synthesis since they first emerged as a powerful methodology to build up a new bond between unsaturated carbon bonds about 25 years ago. ${ }^{[23]}$ Today, palladiumcatalyzed cross coupling reactions, particularly the Heck variant, provide both mechanistically and experimentally very well established protocols. The application area of these protocols ranges from synthesis of very simple substrates even to that of natural products. ${ }^{[23,24]}$

Obviously, it is very beneficial to take palladium-catalyzed cross coupling reactions as part of a domino process in order to explore its potential by liberating advantages of these catalysts. Especially, when the Heck reaction is realized in intramolecular fashion, depending on the complexity of substrates, exceptional structural changes can be created in one operational step. ${ }^{[14 a, 25]}$ An impressive example of this has been recently demonstrated by Overman et al. Carbopalladation of the 1,1 -disubstituted alkenyl unit as in conventional Heck cross coupling, yet in this case intramolecularly, affords the intermediate 43. The lack of β-hydrogen in this intermediate suppresses the β-dehydropalladation. The first occurring alkylpalladium complex is trapped by insertion of alkenyl rest to form spirocyclic ring system 45 after the elimination of the second alkyl palladium complex with available β-hydrogen in the intermediate 44 (Scheme 10). ${ }^{[26]}$

Scheme 10. An example of intramolecular Heck reaction cascade by Overman et al. Synthesis of the spirocyclic ring system 45

In addition to unimolecular cascades, the Heck reaction has been extensively utilized as a key step in multicomponent one-pot transformations. ${ }^{[24 b,}{ }^{25 a]}$ Grigg et al. has demonstrated an exciting example of multicomponent domino-Heck reaction involving four components and overall five sequential steps. In this example, the domino reaction initiating with oxidative addition of alkenyl iodide $\mathbf{4 6}$ onto palladium(0) goes on with two subsequent CO insertion, since insertion of CO is faster than that of allenes. The insertion of allene $\mathbf{5 1}$ in the fourth step generates π-allylpalladium intermediate 52 and nucleophilic trapping of this intermediate at the least substituted terminus gives the compound $\mathbf{5 4}$ in $\mathbf{7 8 \%}$ yields (Scheme 11). ${ }^{[27]}$

46
$\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$
$\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCl}$
Toluene

47

50

53

54

Scheme 11. A multicomponent domino Heck reaction by Grigg et al.

In addition to these, domino reactions involving combinations of the Heck coupling with other types of palladium-catalyzed cross coupling processes such as Suziki and Stille as well as with classics of organic synthesis like aldol, Michael and Diels-Alder reactions have been also designated as well. ${ }^{[28]}$
In recent years, a number of valuable examples of domino Heck-Diels-Alder reactions has been demonstrated by de Meijere et al (Scheme 12). ${ }^{[29]}$ In these domino reactions, constructions of bi- and oligocycloc structures have been realized starting with synthesis of dienes (57, $\mathbf{6 1}$ and 64) by an intramolecular Heck reaction (Equation 1) ${ }^{[29 b]}$ or palladium-catalyzed eneyne cycloisomerization (Equations 2 and 3). ${ }^{[30]}$ Constructed dienes by these processes have been immediately trapped by dieneophiles present in the mixture from the beginning (one-pot, onestep protocol) or in two steps by addition of the dienophile right after the palladium-catalyzed process has been completed finally to give the ultimately desired cyclic structures.

Eqn. 1

Eqn. 3

Scheme 12. Some examples of domino Heck-Diels-Alder reactions by de Meijere et al.
A: $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, 90^{\circ} \mathrm{C}, 48 \mathrm{~h}-\mathrm{B}: \mathrm{Pd}(\mathrm{OAc})_{2}$, bbeda, $\mathrm{C}_{6} \mathrm{H}_{6}, 70^{\circ} \mathrm{C}, 48 \mathrm{~h}-\mathrm{C}$:
$\mathrm{Pd}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}, \mathrm{PPh}_{3}, \mathrm{AcOH}, \mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}, 100 \mathrm{~min} .-\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{E}^{1}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}=\mathrm{TBDMS}$

Moreover, the Diels-Alder step has been carried out intramolecularly. For instance, the diene afforded by cycloisomerization of dieneyne $\mathbf{6 3}$ has produced the bisheterotricycle $\mathbf{6 5}$ in 80% yield under the conditions of the eneyne cycloisomerization via an intramolecular Diels-Alder reaction (Equation 3 in Scheme 12). ${ }^{[30 b]}$
Heck-Diels-Alder cascades have been also performed to synthesize spiro[2.5]octene derivatives which constitute main core of various natural products such as the cytotoxic illudines, carcinogenic ptaquitosides or the antibiotic leaianafulvene. ${ }^{[31]}$ Generally in such cascades, dienes having a cyclopropane ring at the methylene terminus have been achieved by a Heck reaction of alkenes bearing cyclopropane subunits and following Diels-Alder reactions of these dienes produce various spiro[2.5]octenes (Equations 1 and 2 in Scheme 13). ${ }^{[29 a-d]}$

Eqn. 2

Scheme 13. Synthesis of spiro[2.5]octene derivatives (70, 73) by domino Heck-Diels-Alder reactions. A: $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCl}, \mathrm{MeCN}, 80^{\circ} \mathrm{C}, 48 \mathrm{~h}-\mathrm{B}: \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, 90^{\circ} \mathrm{C}, 48$ $h-E^{1}=\mathrm{CO}_{2} \mathrm{Me}$

In this context, bicyclopropylidene (66) has appeared as one of the most ideal precursors readily available in preparative scales by three efficient steps starting from methyl cyclopropanecarboxylate 74 (Scheme 14). ${ }^{[32]}$ Unlike the many other tetrasubstituted alkenes, bicyclopropylidene (66) exhibits high reactivity towards carbopalladations in the Heck reaction conditions even more rapidly than acrylates. ${ }^{[29 a,}$ b] As has been shown recently, bicyclopropylidene (66) reacts with wide range of aryl and alkyl halides in high yields. For example, one-pot reaction of bicyclopropylidene (66) with phenyl iodide 67 in the presence of methyl acrylate 68a has afforded spiro[2.5]octene 70 in 100\% yield in a single step (Equation 1 in Scheme 13).

Scheme 14. Synthesis of bicyclopropylidene (66) by de Meijere et al.

In this study, with the full details of the scope and limitations, a two step, one-pot queuing cascade with bicyclopropylidene (66) will be introduced as a novel access to spiro[2.5]octene derivatives having thoroughly different substituent patterns. This reaction constitutes the Heck coupling of bicyclopropylidene (66) with iodo alkenes 77, trapping of π-allylpalladium intermediates with nucleophiles 78 and the subsequent Diels-Alder reaction of dienes 79 in the presence of various dienophiles 68 (Scheme 15). ${ }^{[33]}$

2)

68

80
Scheme 15. A New one-pot, two-step four-component queuing cascade involving bicyclopropylidene (66), iodoalkenes 77, nucleophiles 78 and dienophiles 68; synthesis of spiro[2.5]octene derivatives 80. A: $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{NEt}_{3}, 2 \mathrm{~h}, 80^{\circ} \mathrm{C}, \mathrm{DMF} .-\mathrm{B}: \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCI}, 2 \mathrm{~h}, 8{ }^{\circ} \mathrm{C}, \mathrm{MeCN}$.

Moreover, some modifications performed on the domino Heck-Diels-Alder reaction with bicyclopropylidene (66) (equation 1 in Scheme 13) to enrich this already powerful methodology will be presented.

The last chapter of this study will focus on another one-pot yet three-component sequential reaction for the construction of heterocyclic fused ring systems $\mathbf{8 4}$ as depicted generally in Scheme 16. This reaction involves the Heck coupling of methylenespiropentane (81) with functionalized aryl iodides 82, intramolecular trapping of respective π-allylpalladium complexes and subsequent Diels-Alder reactions of dienes like $\mathbf{8 3}$ with dimethyl fumarate $\mathbf{6 8 d}$ (Scheme 16).

84
Scheme 16. A New one-pot, two-step three-component queuing cascade involving methylenespiropentene (81), functionalized aryliodides 82 and dimethyl fumarate 68d; synthesis of heterocyclic fused ring systems $84 .-E^{1}, E^{3}=\mathrm{CO}_{2} \mathrm{Me}$

B. Main Part

1. Some Modifications on Domino Heck-Diels-Alder Reaction Involving Bicyclopropylidene

1.1. Introduction

The starting step of all cascade reactions in this study is carbopalladation of the reactive double bond in substrates (i.e., bicyclopropylidene 66 and methylenespiropentane 81) in Heck crosscoupling conditions. The Heck reaction can be very generally described as insertion of alkenes as well as alkynes into aryl- or alkenylpalladium species formed by oxidative addition of usually aryl- or alkenylhalides to a $\operatorname{Pd}(0)$ complex. Today, the Heck reaction is one of the most studied and versatile methods with an enlarging substrate spectrum for carbon-carbon bond formation , particularly, between sp^{2} carbons. ${ }^{[23]}$

Scheme 17. Mechanism of the Heck reaction.

The mechanism of the Heck reaction involves five main steps. The first step (A in Scheme 17) is oxidative addition of an aryl- or alkenylhalide to a coordinatively unsaturated 14 -electron palladium(0) complex, giving a σ-alkenyl- or σ-arylpalladium(II) complex $\mathbf{8 8}$. The next step (B in Scheme 17) is insertion of an unsaturated bond into σ-alkenyl- or σ-arylpalladium complex 88 (this term can be also referred to carbopalladation of an unsaturated bond by σ-alkenyl- or σ-arylpalladium complex 88). This addition occurs in syn stereochemistry and generates a σ-(β -alkenyl)- or σ-(β-aryl)alkyl-palladium(II) complex 89. Then in the third step (C in Scheme 17), internal rotation around the previous double bond occurs which provides the necessary synperiplanar oriented β-hydrogen with respect to the halopalladium moiety for the subsequent syn- β-hydride elimination. The β-H elimination (step D) produces the thermodynamically stable (E)-alkene $\mathbf{8 7}$ and the hydridopalladium halide 91 which undergoes reductive elimination in step E with the help of bases and regenerate active palladium complex 92 . ${ }^{[13 \mathrm{a}, 24 \mathrm{a} \text {, }}$ 34]

Bicyclopropylidene (66) undergoes the Heck reaction with ring opening. After the initial carbopalladation of the highly strained double bond in bicyclopropylidene (66) by aryl or alkenylpalladium halides, opening of the cyclopropyl ring via a cyclopropylcarbinyl to homoallyl rearrangement affords the homoallylpalladium species 94, which rapidly undergoes a β-hydride elimination to yield the diene 95 (Scheme 18). ${ }^{[29 a-b]}$

66

93

94

Scheme 18. Recently developed three-component domino Heck-Diels-Alder reaction involving bicyclopropylidene (66). - A: $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCl}, \mathrm{MeCN}, 80^{\circ} \mathrm{C}, 48 \mathrm{~h} .-\mathrm{B}: \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

In domino Heck-Diels-Alder reaction with bicylopropylidene (66), in situ-formed allylidenecyclopropanes similar to 95 were allowed to react with dienophiles 96 present in the mixture from the beginning to produce spiro[2.5]octene derivatives 97. Although 1,1disubstituted dienes are known to be sluggish in the Diels-Alder reaction, allylidenecyclopropanes were found to undergo facile cycloaddition with various carbon dienophiles in moderate to very good yields. In the case of alkyl acrylates as dienophiles, only quasi-meta constituted spirooctenes were regioselectively obtained.

This domino Heck-Diels-Alder reaction was extensively studied and generalized for the preparation of spiro[2.5]octenes as a powerful methodology. It was widely explored by employing aryl- heteroaryl halides as well as variety of dienophiles. Furthermore, by using oligoiodoarenes via multiple Heck couplings with bicyclopropylidene (66) and following multifold Diels-Alder reaction even up to four spiro[2.5]octenes could be attached to the benzene ring in a single operation. The combinatorial potential of this process was demonstrated with the automated preparation of a structurally diverse set of spirooctene derivatives. $\left.{ }^{[29 b}, 35\right]$

1.2. Domino Heck-Diels-Alder reaction with substituted bicyclopropylidenes (66B-E)

To enrich combinatorial potential of domino Heck-Diels-Alder reaction with bicyclopropylidene even further, substituted bicyclopropylidenes were also used. ${ }^{[29 b,}{ }^{35]}$ However, to fill the gap in our understanding of the whole scope and limitations of this process, it must be deeply studied and supported by more accurate results. In this respect, final developments on domino Heck-Diels-Alder reaction with substituted bicyclopropylidenes (66B-E) are documented here.

Substituted bicyclopropylidenes are easily available by lithiation of bicyclopropylidene and subsequent addition of various electrophiles at low temperature. ${ }^{[36]}$ In this study, five different mono-substituted bicyclopropylidenes ($\mathbf{6 6 A} \mathbf{A} \mathbf{E}$) were prepared according to known literature methods (Scheme 19). ${ }^{[36 a-b]}$ Except for 66A, the other bicyclopropylidenes 66B-E were utilized in the domino Heck-Diels-Alder process. Carboxylic acid substituted bicyclopropylidene 66A was converted to methyl bicyclopropylidenecarboxylate 66E applying the procedure of Seebach et al. (Scheme 19). ${ }^{[37]}$

C $\mathrm{SnBu}_{3} \mathrm{Cl} \quad \mathrm{SnBu}_{3} 81$
D $\quad\left(\mathrm{Me}_{2} \mathrm{SiO}\right)_{3} \quad \mathrm{Me}_{2} \mathrm{SiOH} 39$

Scheme 19. Preparation of mono-substituted bicyclopropylidene derivatives (66A-E)

In the Heck reaction of a substituted bicyclopropylidene, with respect to the initial attack of arylpalladium species onto the double bond and subsequent opening of the substituted or the unsubstituted cyclopropane ring via a cyclopropylcarbinyl-homoallyl rearrangement up to four different regioisomeric dienes $\mathbf{1 0 0} \mathbf{- 1 0 3}$ are possible. In the intermediate $\mathbf{9 8}$, opening of the unsubstituted cyclopropane moiety by cleavage of different proximal bonds of the ring produces regioisomers $\mathbf{1 0 0}$ and $\mathbf{1 0 1}$ called trans and cis respectively according to the positions of R and aryl rests in these dienes. Similarly, in the intermediate 99 , opening of the substituted cyclopropane ring by cleavage of different proximal bonds gives dienes 102 and 103. Indeed, when the successive Diels-Alder reaction is taken into account, unless it is completely selective, regiodiastereomeric mixture of four spiro[2.5]octene derivatives 104-107 can appear at the same time (Scheme 20). ${ }^{[29 b, ~ 35]}$

Scheme 20. The mechanistic pathway for the formation of regioisomeric dienes 100-103 via carbopalladated intermediates 98 and 99 starting with monosubstituted bicyclopropylidenes 66B-E and possible regiodiastereomeric mixture of spiro[2.5]octenes (104-107) after a Diels-Alder reaction.

Surprisingly, the one-pot domino Heck-Diels-Alder reaction of methyl bicyclopropylidenecarboxylate 66E gave only regiodiastereomeric mixture of cis, trans-104E and trans, trans104E together with cis, cis-105E and trans, cis-105E in 69% and 6% yields respectively (Scheme 21). (Spirooctenes were also called as cis or trans according to position of ester groups with respect to each other.) The configuration of both diastereomers cis/trans, trans104E was rigorously proved by an X-ray crystal structure analysis (Figures 1 and 2). In both structures, the ester functionality on the cyclopropane ring is oriented towards the phenyl group which is perpendicular to the plane of the double bond due to steric interaction between its ortho hydrogens and the cyclopropane ring. Also the configuration of diastereomers cis/trans, cis-105E was proved by NOESY NMR measurements. Thus, this results showed that clearly the formation of intermediate $\mathbf{9 8 E}$ is superior to that of intermediate $\mathbf{9 9 E}$. The primary reason
for the selectively formation of intermediate $\mathbf{9 8 E}$ must be straightforward complexation of palladium species with heteroatoms of the ester group on cyclopropyl ring in the carbopalladation step (Scheme 21). ${ }^{[38]}$

Scheme 21. One-pot domino Heck-Diels-Alder reaction involving methyl bicyclopropylidene carboxylate (66E), iodo benzene 67 and t-butyl acrylate 68b. $-\mathrm{E}^{1}=\mathrm{CO}_{2} t \mathrm{Bu}$

Figure 1. Structure of compound cis, trans-104E (major diastereomer) in the crystal.

Figure 2. Structure of compound trans, trans-104E (minor diastereomer) in the crystal.

Figure 3. Structure of compound cis, trans-104B (major diastereomer) in the crystal.

However, the same reaction was performed with the sterically encumbered boranate substituted bicyclopropylidene 66B, as a major product, spirooctene 109a and mixture of diastereomers cis/trans, trans-104B were obtained in 38% and 25% yields respectively (Scheme 22). The formation of product 109 a can be attributed to opening of the boranate substituted cyclopropane ring in intermediate 99B affording homoallylpalladium species $\mathbf{1 0 8}$ that immediately undergo deboropalladation rather than dehydropalladation. ${ }^{[39]}$ The exact configuration of diastereomers cis/trans, trans-104B was proved by NOESY NMR measurements and as well as by X-ray structure analysis of major diastereomer cis, trans104B (Figure 3).

Scheme 22. One-pot domino Heck-Diels-Alder reaction involving boronate substituted bicyclopropylidene (66B), iodo benzene 67 and methyl acrylate 68a. $-\mathrm{E}^{1}=\mathrm{CO}_{2} \mathrm{Me}$.

Moreover, isolated products cis/trans, trans-104B having boronate ester functionality on the cyclopropane ring are possible precursors for the Suziki-coupling. The Suziki reaction is one of the most utilized $\mathrm{C}-\mathrm{C}$ bond forming cross-coupling reactions, which occurs in the presence of a base with a Pd^{0} catalyst and involves transmetalation between $\mathrm{R}-\mathrm{Pd}-\mathrm{X}$ and organoboron compounds $\mathrm{R}^{1}-\mathrm{B}\left(\mathrm{OR}^{2}\right)_{2}$ as a key step (Scheme 23). ${ }^{[40]}$

R-X	$+\mathrm{R}^{1}-\mathrm{B}\left(\mathrm{OR}^{2}\right)_{2}$	$\frac{\text { " } \mathrm{Pd}^{0}{ }^{\text {" }}}{\text { Base }}$	
110	111		112

R = alkenyl, aryl, alkynyl; X = I, Br, CI, OTf.
$R^{1}=$ aryl, alkyl, alkenyl,alkynyl
$\mathrm{R}^{2}=\mathrm{H}$, alkyl, c-alkyl

Scheme 23. General representation of the Suziki reaction

In this respect, spirooctenes cis/trans, trans-104B were further reacted with iodobenzene (67) in Suziki-coupling conditions. The coupling condition was selected from effective literature protocols in which cyclopropylboronate esters were coupled with aryl halides (equation 1) ${ }^{[366,41]}$ and iodocylopropanes (equation 2$)^{[42]}$ in good yields (Scheme 24).

Scheme 24. Two recent examples of Suziki reaction with cyclopropylboronate esters 113 and 115 (equation 1, 2) and the reaction of boronate substituted spirooctenes cis/trans, trans-104B with iodo benzene 67 in the condition of equations 1 and 2. ${ }^{[a]} 1 \mathrm{M}$ solution of KOtBu in $t \mathrm{BuOH} .-\mathrm{E}^{1}=\mathrm{CO}_{2} \mathrm{Me}$.

However, in the same conditions the reaction of boronate substituted spirooctenes cis/trans, trans-104B with iodobenzene $\mathbf{6 7}$ did not give desired compound 118 and at the end of the reaction even the initial spirooctenes cis/trans, trans-104B could not be recovered.
To realize the idea of using functionalized spiro[2.5]octenes as a precursor for the other types of cross-coupling reactions, the preparation of spirooctene derivatives having organostannane and organosilicon functionalities, starting with respective monosubstituted bicyclopropylidenes 66C and 66D, was also tried, since such spirooctene derivatives would be coupled with iodobenzene 67 by Stille and Hiyama cross-coupling reactions to yield compound 118. ${ }^{[43]}$ Unfortunately, domino Heck-Diels-Alder rections with bicylopropylidenes 66C and 66D were mainly produced structure 109b in 49% and 25% yields respectively. Although, in both reactions, some amount of functionalized spirooctene derivatives cis/trans, trans-104C-D and/or cis/trans, cis-105C-D were observed, they could not be isolated and their exact configurations as well as their yields could not be determined (Scheme 25).

Scheme 25. One-pot domino Heck-Diels-Alder reactions involving substituted bicyclopropylidenes (66C-D), iodo benzene 67 and t-butyl acrylate 68b. $-\mathrm{E}^{1}=\mathrm{CO}_{2} t \mathrm{Bu}$

Furthermore, the preparation of spiro[2.5]octene derivatives having a substituent on the cyclopropane ring was also performed in two individual steps. For this purpose, the mixture of allylidenecyclopropane derivatives trans-119E, cis-120E and 121E produced by the Heck reaction of methyl bicyclopropylidenecarboxylate $\mathbf{6 6 E}$ with 2-iodo-1,3-dimethylbenzene $\mathbf{1 2 4}$ was allowed to react with dienophile N-phenyltriazolinedione $\mathbf{1 2 2}$ at room temperature for 24 h. The reaction produced expected regioisomeric mixture of spiro[2.5]octenes trans-123E, cis124E and 125E in 61% yield. The configuration of spirooctene derivatives trans-123E and cis-124E was confirmed by NOESY NMR measurements. The strong correlation of cyclopropyl proton adjacent to the ester functionality with one of the methyl groups of the aryl ring in the NOESY spectrum of cis-124E and correspondingly, the correlation of methylene
proton of cyclopropane ring in the spectrum of trans-123E with the same methyl substituent were accepted as proofs for the determination of these structures. Although in this reaction, the carbopalladated intermediate similar to 98 E was favorable, spirooctene 125 E via diene $\mathbf{1 2 1 E}$ also appeared by opening of the substituted cyclopropyl ring in an intermediate resembling 99E.

Scheme 26. The preparation of allylidenecyclopropanes trans-119E, cis-120E and 121E by the Heck reaction of methyl bicyclopropylidenecarboxylate 66E with 2-iodo-1,3-dimethylbenzene 124 and the formation of spiro[2.5]octenes trans-123E, cis-124E, 125E by Diels-Alder reaction of allylidenecyclopropanes trans-119E, cis-120E, 121E with N-phenyltriazolinedione 122.

1.3. A modification on the spiro[2.5]octene derivative 127: the effective construction of

 dispiroheterocyclic system 130.It is known that some derivatives of itaconic acid such as mono- and diesters, amides and imides have fungicidal, herbicidal and insecticidal properties. Especially, N-arylitaconimides exhibits high activity as soil and foliage fungicides. ${ }^{[44]}$ In domino Heck-Diels-Alder reaction with bicyclopropylidene (66), dimethyl ester of itaconic acid 126 was used as dienophile for the synthesis of spiro[2.5]octene derivative $\mathbf{1 2 7}$ (Scheme 27). ${ }^{[296,35]}$

Entry	Reac. Conditions	Yield (\%) $^{\text {a }}$
$\mathbf{1}$	B $80 \mathrm{C}, 72 \mathrm{~h}$	$\mathbf{4 7}$
$\mathbf{2}$	A $80 \mathrm{C}, 48 \mathrm{~h}$	$\mathbf{2 0}$
$\mathbf{3}$	A $120 \mathrm{C}, 24 \mathrm{~h}$	$\mathbf{2 9}$
$\mathbf{4}$	A $140 \mathrm{C}, 36 \mathrm{~h}$	$\mathbf{3 3}$
$\mathbf{5}^{\text {b }}$	A $180 \mathrm{C}, 48 \mathrm{~h}$	$\mathbf{1 0}$
$\mathbf{6}$	A $140 \mathrm{C}, 48 \mathrm{~h}$	$\mathbf{1 0}$
$\mathbf{7}^{\text {c }}$	A $80 \mathrm{C}, 48 \mathrm{~h}$	$\mathbf{7 2}$

Scheme 27: The synthesis of spiro[2.5]octene 127. - A: 5% mol $\mathrm{Pd}(\mathrm{OAc})_{2}, 15 \% \mathrm{~mol}_{\mathrm{PPh}}^{3}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$. - B: $5 \% \mathrm{~mol} \mathrm{Pd}(\mathrm{OAc})_{2}, 15 \% \mathrm{~mol}_{\mathrm{PPh}}^{3}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCI}, \mathrm{MeCN} .-{ }^{\mathrm{a}}$ Isolated yield are given. $-{ }^{\mathrm{b}} \mathrm{NMP}$ was used as solvent instead of DMF. $-{ }^{\text {c }} 4,5 \mathrm{ml}$ DMF was used for 2.00 mmol bicyclopropylidene 66, 1.00 mmol iodo benzene 67 and 2.00 mmol dienophile 126.

This suggested that the incorporation of the essential structural features of itaconic acid derivatives with a spirooctene skeleton might provide compounds with enhanced biological activity. Further synthetic manipulations on the diester moiety of spirooctene $\mathbf{1 2 7}$ would be useful to enrich substitution pattern of the main spirooctene frame in terms of combinatorial aspects as well. For these purposes, via series of transformation, the ester moiety was converted to N-phenylimide (Scheme 28). However, firstly, the yield of spiro[2.5]octene 127 had to be improved. Among several attempts, the best result was achieved in high pressure condition which accelerates the Heck coupling ${ }^{[45]}$ as well as the Diels-Alder reaction ${ }^{\text {[46] }}$ (Scheme 27).

1) $\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$
2) $\mathrm{PhNH}_{2}, 23^{\circ} \mathrm{C}, 3 \mathrm{~h}$

Scheme 28. Three-step synthesis of dispirocyclic structure 130.

By using already described literature procedures, ${ }^{[44 \mathrm{a}, 47]}$ the convenient preparation of dispiroheterocyclic structure $\mathbf{1 3 0}$ was performed in three steps in high yields. After basic hydrolysis of compound 127, generated crude diacid structure 128 without further purification was transformed into amicacid containing spirooctene $\mathbf{1 2 9}$ by two subsequent operations. When the spirooctene $\mathbf{1 2 9}$ was heated at $80^{\circ} \mathrm{C}$ for 1 h , desired structure $\mathbf{1 3 0}$ was readily isolated in 76% yield (Scheme 28).

Scheme 29. Two attempts for the direct preparation of spiro[2.5]octene 130.

Alternatively, direct preparation of $\mathbf{1 3 0}$ was also tried by using domino Heck-Diels-Alder methodology involving N-phenylitaconimide $\mathbf{1 3 1}$ as the dienophile in conditions similar to those which gave spiro[2.5]octene 127 in 47% yield. However, this reaction did not produce the desired spirooctene 130. Heating the mixture of dienophile 131 and crude allylidenecylopropane derivative 69 generated by the Heck reaction of bicyclopropylidene $\mathbf{6 6}$ and iodobenzene 67, at high temperature to promote the Diels-Alder reaction, did not also furnish the expected result (Scheme 29).

2. A Two-Step Four-Component Queuing Cascade Involving a Heck Coupling, mAllylpalladium Trapping and Diels-Alder Reaction

2.1. Introduction

Palladium-catalyzed reactions involving π-allylpalladium intermediates have emerged as one of the most useful applications in organic chemistry since these intermediates undergo different types of transformations. For instance, π-allylpalladium unit can be easily substituted with a variety of nucleophiles (Scheme 30). Indeed, this process is performed successfully in an asymmetric manner with highly selective chiral ligands. π-Allylpalladium complexes occur readily by both palladium(0) and palladium(II) catalysts in various substrates that contain at least one double bond (Scheme 30). ${ }^{[48]}$ However, the $\mathrm{Pd}(\mathrm{II})$ catalyzed reaction of allylic substrates generates π-allylpalladium intermediates by consuming stoichiometric amount of $\operatorname{Pd}(\mathrm{II})$ salts. ${ }^{[48 \mathrm{a}, 49]}$ Produced $\mathrm{Pd}(0)$ species should be re-oxidized to $\operatorname{Pd}(\mathrm{II})$ to make this reaction catalytic. For this purpose CuCl_{2} and benzoquinone are extensively used. ${ }^{[50]}$

136

$$
\mathrm{R}^{1}=\mathrm{OAr}, \mathrm{OCOR}, \mathrm{OH}
$$

$\mathrm{NO}_{2}, \mathrm{NR}_{2}, \mathrm{SO}_{2} \mathrm{R}$
Phosphonate

137
$X=$ halogen

138
$R^{2}=$ Alkyl, Aryl etc.

139

140

141

Scheme 30. An example of palladium(0) catalyzed allylic substitution via π-allylpalladium complex 134 and typical substrates 136-141 which can generate π-allylpalladium intermediates.

Allenes ${ }^{[51]} 138$ as well as conjugated dienes ${ }^{[52]} 139$ with aryl or alkenyl halides in the presence of $\operatorname{Pd}(0)$ catalysts produce also π-allylpalladium complexes 144 and 147 respectively (Scheme 31). Carbopalladation of these substrates by initially formed aryl- or alkenylpalladium species 142 gives a σ-allylpalladium complexes $(143,145)$ which are expected to be in equilibrium with their canonical forms (i.e., π-allylpalladium complexes 144 and 147). Generally, the reaction of π-allylpalladium species as $\mathbf{1 4 7}$ in scheme 31 with various nucleophiles can furnish two regioisomeric products $\mathbf{1 4 6}$ and $\mathbf{1 4 8}$ by attacking of a nucleophile to different terminus of the π-allylpalladium core. In the absence of nucleophiles, β-hydrogen elimination takes place to afford the coupling product $\mathbf{1 5 0}$.

Scheme 31. $\operatorname{Pd}(0)$ catalyzed reaction of allene 138 and conjugated diene 139; the formation of $\pi-$ allylpalladium complexes 144 and 147.

The formation of π-allylpalladium complexes in the reaction of strained building blocks usually goes together with a ring opening or a ring expansion process. ${ }^{[53]}$ For instance, in the presence of $\operatorname{Pd}(0)$, alkenyloxirans $\mathbf{1 5 1}$ generates a π-allylpalladium complex $\mathbf{1 5 2}$ with the opening of the epoxy ring (Scheme 32). ${ }^{[54]}$ The occurring alkoxide ion gains a proton from the nucleophile to form α-hydroxy- π-allylpalladium 153. Correspondingly, the carbopalladation of allenylcyclobutanols $\mathbf{1 5 4}$ by initially formed arylpalladiumiodides affords first π-allylpalladium complex 155; and following rearrangement, ring expansion processes produce cyclopentanone derivatives 157 (Scheme 32). ${ }^{[55]}$

Scheme 32. Palladium(0) catalyzed reactions of strained substrates 151 and 154 ; the formation of $\pi-$ allylpalladium intermediates 152 and 155.

Recently, Larock et al. have demonstrated that palladium-catalyzed reaction of 2-iodophenol 158 with a vinyl cyclopropane $\mathbf{1 4 1}$ proceeds via an intermolecular trapping of π-allylpalladium intermediates $\mathbf{1 6 5}$, $\mathbf{1 6 6}$ to furnish the heterocyclic product $\mathbf{1 5 9}$ (Scheme 33). ${ }^{[56]}$ In this process, a typical carbopalladation of the carbon-carbon double bond in the alkene results in the immediate ring-opening of cyclopropylcarbinyl palladium species $\mathbf{1 6 1}$ to the corresponding homoallylpalladium complex 162. Following β-hydride elimination and reverse regioselective addition of hydridopalladium species generate the key intermediate, π-allylpalladium complex 165.

Scheme 33. The preparation of heterocyclic product 159 via intermolecular nucleophilic trapping of π allylpalladium intermediates 166.

2.1.1. The formation of π-allylpalladium complexes in the palladium-catalyzed reaction of bicyclopropylidene (66) with arylhalides.

In the course of detailed studies on the domino Heck-Diels-Alder reaction with bicyclopropylidene (66) by the isolation of the side product 167, a second reaction mode was recognized. ${ }^{[57]}$ The formation of the allylidenecylopropane 167 was attributed to an intermolecular nucleophilic trapping of the π-allylpalladium intermediate $\mathbf{1 7 1}$ at the sterically less hindered position by attacking of an acetate anion stemming from the catalyst precursor. Thus, in the absence of dienophiles and favored by the presence of tris(2-furyl)phosphane (TFP), which is known to retard β-hydride elimination, ${ }^{[58]} 69$ undergoes hydridopalladation with the reverse regioselectivity to form the σ-allylpalladium intermediate $\mathbf{1 7 0}$ in equilibrium with the π-allylpalladium complex 171. By the additional source of LiOAc, the yield of the allylidenecylopropane was inceased to 50%. Moreover, this methodology was further developed using nitrogen, oxygen as well as carbon nucleophiles to prepare
allylidenecyclopropane derivatives of type 167. Among them, the best results were achieved with amine nucleophiles in a few hours. ${ }^{[57]}$

69

Scheme 34. The trapping of π-allylpalladium complex 171 with an acetate anion and the formation allylidenecyclopropane 167; the Heck reaction of bicyclopropylidene (66) with iodo benzene 67 in the presence of TFP.

2.2. One-pot, two-step, four-component queuing cascade of bicyclopropylidene (66) with iodoethene, amine nucleophiles (78a-e) and dienophiles (68a-g).

In this study, a new dimension was added to the overall concept of bicyclopropylidene based cascade reactions via an extension of the second reaction mode into a four-component queuing cascade by coupling an alkenyl iodide with bicyclopropylidene (66) in the presence of TFP. After trapping of the formed π-allylpalladium intermediates with a nucleophile, this gave a conjugated diene, which was allowed to react with an added dienophile to furnish 8-(1'aminoethyl) substituted spiro[2.5]oct-7-ene derivatives. Firstly, this cascade reaction was performed by coupling of bicyclopropylidene (66) with iodoethene (173) in the presence of
amine nucleophiles (78) in two different conditions and subsequent addition of various dienophiles. The results are summarized in Scheme 36 and Table 2.
The palladium-catalyzed cross coupling with rearrangement and nucleophilic trapping cannot be carried out with the dienophile being present from the beginning, since a Michael addition of the nucleophile onto the dienophile would compete with the desired reaction. Therefore, at the beginning, it was decided to perform the reaction in two steps. In the light of the previous studies, ${ }^{[57,59]}$ for the first part of the reaction in which the formation of a conjugated diene takes place, two different rection conditions were utilized. The first one was typical Heck-coupling conditions, i.e. a mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}$ and NEt_{3}, yet in this case, necessarily using TFP as a ligand instead of PPh_{3} in dimethylformamide. The second one generally referred to "Jeffery Conditions" was the palladium catalyst cocktail involving $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{K}_{2} \mathrm{CO}_{3}$, and the phase transfer reagent $\mathrm{Et}_{4} \mathrm{NCl}$ with solvent acetonitrile. ${ }^{[60]}$ The application of these conditions in the presence of one equivalent of various amine nucleophiles at $80^{\circ} \mathrm{C}$ for 2 h was enough to complete the coupling of bicyclopropylidene (66) with iodoethene 173 and trapping of π allylpalladium intermediates to furnish reactive dienes, allylidenecyclopropanes, for the subsequent Diels-Alder step. A variety of reaction conditions was also examined by the addition of tert-butyl acrylate $\mathbf{6 8 b}$ after 2 h into the model reaction of bicyclopropylidene $\mathbf{6 6}$, iodoethene $\mathbf{1 7 3}$ and morpholine 78a to find out the best condition for the second step (Scheme 35). To reach the maximum yield of the spiro[2.5]octene 175ab, the reaction mixture had to be heated at $80^{\circ} \mathrm{C}$ for 48 h after the first step (entries 4,5 in Table 2). Since cyloaddition reactions take place more effectively in high concentrations, the amount of the solvent was reduced in some attempts (entries 2, 3 and 6). However, performing the reaction in 1 mL DMF for the conditions A and in 2 mL for the conditions B were ideal to obtain the highest yields. On the other hand, the reaction performed with only one equivalent bicyclopropylidene caused a sharp decrease in the yield of the spirooctene 175ab (entry 9). Moreover, at elevated temperatures the reaction gave poorer yields, particularly in extended reaction times (entries 6, 7 and 8). Finally, to accelerate the Diels-Alder reaction, the Lewis acid $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ was also added with tert-butyl acrylate into the mixture. ${ }^{[61]}$ After 12 h , this reaction did not gave the desired product 175ab and the diene 174a could not be observed (entry 10 in Table 1).

2) NE^{1} 68b

175ab
Scheme 35. The synthesis of spiro[2.5]octene 175ab. - A: $5 \% \mathrm{~mol} \operatorname{Pd}(\mathrm{OAc})_{2}, 10 \% \mathrm{~mol}$ TFP, $\mathrm{Et}_{3} \mathrm{~N}$, DMF. - B: $5 \% \mathrm{~mol} \operatorname{Pd}(\mathrm{OAc})_{2}, 10 \% \mathrm{~mol}$ TFP, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCI}, \mathrm{MeCN} .-\mathrm{E}^{1}=\mathrm{CO}_{2} t \mathrm{Bu}$, For details see Table 1.

Entry	Reaction Conditions ${ }^{\text {a }}$		Yield ${ }^{\text {b }}$ (\%)	d.r. ${ }^{\text {c }}$
	Step 1	Step 2		
1	A, 1 mL DMF	$80^{\circ} \mathrm{C}, 12 \mathrm{~h}$	19	- ${ }^{\text {d }}$
2	A, 0.5 mL DMF	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	53	1:1
3	A, 0.5 mL DMF	$90^{\circ} \mathrm{C}, 24 \mathrm{~h}$	48	1:1
4	A, 1 mL DMF	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	66	1.3:1
5	B, 2 mL MeCN	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	64	1.3:1
6	A, 0.5 mL DMF	$110^{\circ} \mathrm{C}, 6 \mathrm{~h}$	49	1.1:1
7	A, 1 mL DMF	$110^{\circ} \mathrm{C}, 6 \mathrm{~h}$	53	1:1
8	A, 1 mL DMF	$120^{\circ} \mathrm{C}, 48 \mathrm{~h}$	16	_d
$9^{\text {e }}$	A, 1 mL DMF	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	34	1.1:1
$10^{\text {f }}$	A, 1 mL DMF	$23{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$	_g	-

Table 1. Optimization of reaction conditions. $-{ }^{\text {a }} 4.00 \mathrm{mmol}$ bicyclopropylidene 66, 2.00 mmol iodoethene 173, 2.00 mmol morpholine 78 a and 4.00 mmol tert-butyl acrylate $\mathbf{6 8 b}$ were used. ${ }^{\text {b }}$ Isolated yield are given. - ${ }^{\text {c }}$ Diastereomeric ratios were determined by integration of relevant ${ }^{1} \mathrm{H}$ NMR signals in the spectra of the crude products. - ${ }^{\mathrm{d}}$ Only one diastereomer was isolated. $-{ }^{\mathrm{e}} 2.00 \mathrm{mmol}$ bicyclopropylidene 66 was used. $-{ }^{\mathrm{f}} 2.00 \mathrm{mmol} \mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ was added in the second step of the reaction. ${ }^{\text {g }}$ No product.

Scheme 36. A new one-pot, two-step four-component queuing cascade involving bicyclopropylidene (66), iodoethene (173), nucleophiles 78a-e and dienophiles 68a-g. A: $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{NEt}_{3}, 2 \mathrm{~h}, 80$ ${ }^{\circ} \mathrm{C}, \mathrm{DMF} .-\mathrm{B}: \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCI}, 2 \mathrm{~h}, 80^{\circ} \mathrm{C}, \mathrm{MeCN}$. For further details see Table 2.

With morpholine (78a) as a secondary amine, well known to be a good nucleophile, ${ }^{[62]}$ the yields in this one-pot, two-step queuing cascade were generally good (39-66\%). Exceptionally, reactions in which dienophiles $\mathbf{6 8 f}-\mathbf{g}$ were used did not yield expected products 175af-ag. (Table 2). With piperidine (78b), pyrrolidine (78c), N-benzylpiperazine (78d), and N-tertbutoxycarbonylpiperazine (78e) in combination with 66, 173 and the best yielding tert-butyl acrylate ($\mathbf{6 8 b}$), the cascade reaction gave the corresponding products $\mathbf{1 7 5 b b} \mathbf{- e b}$ mostly in moderate yield ($21-49 \%$). In all cases, the products from unsymmetrical dienophiles $\mathbf{6 8 a} \mathbf{- c}$ were only 5 -substituted spiro[2.5]oct-7-ene derivatives as assigned on the basis of their NMR spectra. This is in agreement with the previously observed regioselectivities in Diels-Alder additions of acrylates to allylidenecyclopropanes. ${ }^{[29 b, 63]}$

Nucleophile 78 NuH	Cond.	DienoPhile	E	E^{2}	E^{3}	Product	$\begin{aligned} & \text { Yield } \\ & (\%)^{\mathrm{a}} \\ & \hline \end{aligned}$	
a Morpholine	B	68a	$\mathrm{CO}_{2} \mathrm{Me}$	H	H	175aa	65	1.1:1
a Morpholine	A	68a	$\mathrm{CO}_{2} \mathrm{Me}$	H	H	175aa	40	1.3:1
a Morpholine	A	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175ab	66	1.3:1
a Morpholine	B	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175ab	64	1.3:1
a Morpholine	B	68c	$\mathrm{SO}_{2} \mathrm{Ph}$	H	H	175ac	62	1.2:1
a Morpholine	A	68c	$\mathrm{SO}_{2} \mathrm{Ph}$	H	H	175ac	46	1.1:1
a Morpholine	B	68d	$\mathrm{CO}_{2} \mathrm{Me}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	cis/trans- 175ad	58	1.2:1
a Morpholine	B	68e	H	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	cis/trans- 175ad	52	1.7:1
a Morpholine	A	68d	$\mathrm{CO}_{2} \mathrm{Me}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	cis/trans- 175ad	39	1.3:1
b Piperidine	A	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175bb	33	1:1
b Piperidine	B	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175bb	27	1:1
c Pyrrolidine	A	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175cb	29	1:1
c Pyrolidine	B	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175cb	21	1:1
d N-Bn-	B	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175db	48	1.1:1
Piperazine d N-Bn- Piperazine	A	68b	CO_{2} tBu	H	H	175db	44	1.4:1
e N-BocPiperazine	B	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175eb	49	1:1
e N-BocPiperazine	A	68b	$\mathrm{CO}_{2} t \mathrm{Bu}$	H	H	175eb	39	1:1
a Morpholine	B	68 f	CN	H	CN	175af	-	-
a Morpholine	A	68 f	CN	H	CN	175af	trc.	-
a Morpholine	B	68g	$\mathrm{SO}_{2} \mathrm{Ph}$	H	$\mathrm{SO}_{2} \mathrm{Ph}$	175ag	-	-

Table 2. One-pot, two-step four-component queuing cascade involving bicyclopropylidene (66), iodoethene 173, nucleophiles 78a-e, dienophiles 68a-g (see Scheme 36). ${ }^{\text {a }}$ Isolated yields are given. ${ }^{\mathrm{b}}$ Diastereomeric ratios were determined by integration of relevant ${ }^{1} \mathrm{H}$ NMR signals in the spectra of the crude products.

The reaction with dimethyl fumarate 68d and dimethyl maleate 68e both gave mixtures of dimethyl cis- and trans-spiro[2.5]octenedicarboxylates (cis- and trans-175ad) in slightly different ratios (Table 2), irrespective of the conditions (A or B in Scheme 36) used. Control experiments confirmed that simple heating in dimethylformamide at $80{ }^{\circ} \mathrm{C}$ causes $\mathbf{6 8 e}$ to isomerize to $\mathbf{6 8 d}$, (50% conversion after $1.5 \mathrm{~h}, \sim 98 \%$ conversion after 6 h), whereas heating of 68e in acetonitrile at $80^{\circ} \mathrm{C}$ did not lead to any isomerization even after 24 h . Attention was then turned to the reaction of isolated diene 174a with dimethyl maleate (68e) to explain the formation of the trans-spirooctenedicarboxylate trans-175ad along with cis-175ad under conditions B (i.e., in acetonitrile), since isomerization of $\mathbf{6 8 e}$ to $\mathbf{6 8 d}$ during the course of the Heck reaction is well known. ${ }^{[64]}$ In other words, in the absence of the catalyst ingredients, cis-175ad would be expected as a single product if the cycloaddition of dimethyl maleate (68e) to the 1,3-diene 174a occurred in a concerted mode. Surprisingly, however, the reaction of a fourfold excess of dimethyl maleate (68e) with diene 174a in acetonitrile at $\quad 80^{\circ} \mathrm{C}$ after 24 h again gave virtually the same mixture of cis- and trans-175ad in a ratio of 1.4:1 in quantitave yield (based on the diene 174a) along with a $3: 1$ mixture of $\mathbf{6 8 d}$ and 68 e .
The reaction of 174a with a twofold excess of 68e was also performed in deuterated acetonitrile and monitored by NMR spectroscopy. After 1 h , some dimethyl fumarate ($\mathbf{6 8 d}$) was detectable, but none of the cycloadduct cis- or trans-175ad from the diene 174a. The concentration of $\mathbf{6 8 d}$ continued to increase until the formation of cis- and trans-175ad set in. Thus, the second order rate of the cycloaddition of 68d to $\mathbf{1 7 4 a}$ at the given temperature becomes comparable to that of the first order or pseudo-first order rate of isomerization of 68e to $\mathbf{6 8 d}$ only when the concentration of $\mathbf{6 8 d}$ has reached a certain level (almost one third of that of 68 e after 7 h). It is well known that dimethyl fumarate ($\mathbf{6 8 d}$) is more reactive as a dienophile than dimethyl maleate ($\mathbf{6 8 e}$) by a factor of about $82 .{ }^{[65]}$ Most probably, the diene 174a, which is a tertiary amine, catalyzes the isomerization of 68 e to $\mathbf{6 8 d}$. Indeed, in a control experiment, N allylmorpholine as a model for 174a was shown to cause this isomerization.

Altogether these results imply that the cycloaddition of dimethyl fumarate (68d) to 174a must proceed in two steps through the zwitterionic intermediate trans-175a-zw, just as has been suggested for the reaction of (1 '-arylallylidene)cyclopropanes with 68d and 68e (Scheme 3). ${ }^{[296]}$ Rather than undergoing immediate cyclization, the initial zwitterion trans-175a-zw by internal rotation can go to cis-175a-zw and then cyclize to furnish the cycloadduct of dimethyl maleate (68e). Since only two diastereomers were obtained from both 68d and 68e, the stereocenter present in the diene 174a most probably controls the approach of the dienophile 68d in such a
way as to only form the zwitterion trans-175a-zw as shown, and this undergoes rotation only to cis-175a-zw or ring closure to trans-175a.

Scheme 37. Rationalizing the formation of both diastereomeric cycloadducts trans-175a and cis-175a from the allylidenecyclopropane 174a and dimethyl fumarate (68d). $\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$.

2.3. One-pot, two-step, four-component queuing cascade of bicyclopropylidene (66) with iodoalkene derivatives, morpholine (78a) and dienophiles (68a-g).

The complexity of the product structure was further increased by the use of heteroatomcontaining dienophiles $\mathbf{1 2 2}$ and $\mathbf{1 8 9}$ with various substituted vinyl iodides 191-196 (Scheme 38 and Table 3), which were prepared according to published procedures. In most of these cases, however, the yields were only moderate and, in general, lower than with iodoethene (173). In the reactions of α-iodostyrene (191) (entries 3, 5 and 17 in Table 3) and 5-(1iodovinyl)benzo[1,3]dioxole 192 (entry 2 in Table 2), more than one equivalent of morpholine had to be added, and the reaction mixture with the palladium catalyst had to be heated for more than two hours to drive the first section of the sequential reaction to completion. Indeed, when the reactions of iodoalkenes 191 and 192 were carried out with sterically encumbered dienophiles such as tert-butyl acrylate (68b) (entries 3, 4 in Table 3), prolonged reaction times and higher temperatures than $80^{\circ} \mathrm{C}$ were necessary for the Diels-Alder reaction in the second step to be successful.

186a-187a

1) A or B
2) 189,80

66 173, 191-196
78a
3) A or B
4)

(1) A or B
2) $190,80^{\circ} \mathrm{C}, 48 \mathrm{~h}$

176ab-179ab

188a

Scheme 38. One-pot, two-step four-component queuing cascade involving bicyclopropylidene (66), iodoalkenes 173 and 191-196, morpholine 78a and dienophiles 68b, 122, 189 and 190. $\mathrm{A}: \mathrm{Pd}(\mathrm{OAc})_{2}$, TFP, $\mathrm{NEt}_{3}, 80^{\circ} \mathrm{C}, 48 \mathrm{~h}, \mathrm{DMF} .-\mathrm{B}: \mathrm{Pd}(\mathrm{OAc})_{2}$, TFP, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCI}, 8{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, \mathrm{MeCN} . \mathrm{E}=\mathrm{CO}_{2} \mathrm{tBu}$, For details see Table 3.

Entry	Cond.	Time [h]	Alkenyl Iodide	R ${ }^{1}$	${ }^{1}$	R^{2}	Dienophile	Product	Yield ${ }^{\text {a }}$ (\%)	d.r. ${ }^{\text {b }}$
1	A	2	191	Ph	Ph	H	68b	176ab	18	1:1
2	A	4	191		Ph	H	68b	176ab	23	1:1
3	$\mathrm{B}^{\mathrm{c}, \mathrm{d}}$	3	191		Ph	H	68b	176ab	36	1.1:1
4	$B^{\text {c,d }}$	3	192		1	H	68b	177ab	44	1.2:1
5	B	3.5	193				68b	178ab	10	$-^{\text {e }}$
6	$B^{\text {f }}$	3.5	193				68b	178ab	26	2.5:1 ${ }^{\text {e }}$
$7^{\text {g }}$	B	3.5	194				68b	179ab	-	-
8	$B^{\text {f }}$	3.5	194				68b	179ab	25	1:1
9	$\mathrm{A}^{\text {h }}$	5	194				122	180a	33	4.6:1
10	B	3	193				122	181a	17	$-^{\text {e }}$
11	A	3	195	H	H	2-thienyl	122	182a	26	1:1
12	A	2	196	H	H	Ph	122	183a	35	1.4:1
13	B	2	196	H	H	Ph	122	183a	32	1.4:1
14	B	2	173	H	H	H	122	184a	50	$-^{\text {e }}$
15	$\mathrm{B}^{\text {d }}$	3	191	Ph	Ph	H	122	185a	35	$-^{\text {e }}$
16	A	2	173	H	H	H	189	186a	40	1:1
17	$A^{\text {d }}$	3	191		Ph	H	189	187a	40	1.18:1
18	B^{i}	2	173	H	H	H	190	188a	30	$-^{\text {e }}$
19	A	2	173	H	H	H	190	188a	24	$-{ }^{\text {e }}$

Table 3. One-pot, two-step four-component queuing cascade involving bicyclopropylidene (66), iodoalkenes 173 and 191-196, morpholine 78a and dienophiles 68b, 122, 189 and 190. (see Scheme 38). ${ }^{a}$ Isolated yields are given. - ${ }^{b}$ Diastereomeric ratios were determined by integration of relevant ${ }^{1} \mathrm{H}$ NMR signals in the spectra of the crude products. $-{ }^{\circ} 100^{\circ} \mathrm{C}, 65 \mathrm{~h}$ for the second step. $-{ }^{\mathrm{d}} 1.5$ equiv. of morpholine (78a) used in the first step.- ${ }^{e}$ Only one diastereomer was isolated. - ${ }^{f} 1.2$ equiv. of morpholine (78a) used in the first step. - ${ }^{9}$ Products could not be isolated. $-{ }^{h} 100^{\circ} \mathrm{C}$ for the first step. ${ }^{i}$ $80^{\circ} \mathrm{C}, 4 \mathrm{~h}$ for the second step.

For example, the reaction of α-iodostyrene (191) with 66 and one equivalent of morpholine (78a) under the usual conditions $\left(80^{\circ} \mathrm{C}, 2 \mathrm{~h}\right.$ for the first step and $80^{\circ} \mathrm{C}, 48 \mathrm{~h}$ for the second step) yielded the diene 197 (8\%) and the styryl[2.5]spirooctene derivative 198 (27\%) along with the expected product $\mathbf{1 7 6 a b}(18 \%)$ (entry 1 in Table 3, Scheme 39). Although, the yield of the spirooctene 176ab was increased to 23% by prolongation of the reaction time to 4 h , structures 197 and 198 still existed in the reaction mixture (entry 2 in Table 3). Formation of the by-product 197 and $\mathbf{1 9 8}$ could only be eliminated by applying 1.5 equivalents of 78a in the first step and prolonged heating (65 h) at elevated temperature $\left(100^{\circ} \mathrm{C}\right)$ for the second step (entry 3 in Table 3).

Scheme 39. The reaction of α-iodostyrene (191) with 66 and one equivalent of morpholine (78a) under the usual conditions; formation of the by-product 197 and 198. - $\mathrm{A}: \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{NEt}_{3}, 80^{\circ} \mathrm{C}, \mathrm{DMF} .-$ $\mathrm{E}=\mathrm{CO}_{2} \mathrm{tBu}$, For details see Table 3.

Similarly, when iodocyclohexene (194), with 66 and one equivalent of morpholine (78a) were heated at $80{ }^{\circ} \mathrm{C}$ for 3.5 h in the first step and for a further 48 h after the dienophile $\mathbf{6 8 b}$ was added, the by-product $\mathbf{2 0 0}$ and $\mathbf{2 0 1}$ have been observed along with diastereomeric mixture of desired product 179ab. However, these structures could not be isolated and diastereomeric ratio of the $\mathbf{1 7 9 a b}$ could not be determined (entry 7 in Table 3 and Scheme 40). In the same conditions, by applying 1.2 equivalents morpholine, formation of $\mathbf{2 0 0}$ and $\mathbf{2 0 1}$ could be eliminated. Although, in the reaction mixture, two diastereomers were observed, only one of
them could be isolated in 25% yield (entry 8 in Table 3 and Scheme 40). Correspondingly, the reaction of N-benzyl-4-iodotetrahydropyridine 193 with bicyclopropylidene (66) in one equivalent morpholine (78a) gave both structures 199 and 178ab in 12% and 10% yields respectively (entry 5 in Table 3 and Scheme 40). When the reaction was performed again with 1.2 equivalents morpholine, only desired product 178ab appeared as mixture of diastereomers. Unfortunately, only one of them could be isolated in 26% yield (entry 6 in Table 3 and Scheme 40). Interestingly, however, in the case of (E)-1-iodo-2-phenylethene (196) (entries 12 and 13 in Table 3) 2 h without using more than one equivalent of morpholine were enough to complete the first step of the reaction.

1) B
2)

Scheme 40. The reaction of N -benzyl-4-iodotetrahydropyridine (193) and iodocyclohexene (194), with 66 and one equivalent of morpholine (78a); formation of the by-product 199, 200 and 201. - B: $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCl}, 80^{\circ} \mathrm{C}, \mathrm{MeCN} . \mathrm{E}=\mathrm{CO}_{2} \mathrm{tBu}$, For details see Table 3.

Yet, even spirocyclopropanated heterooligocyclic systems 180a and 181a (entries 9 and 10 in Table 3) were accessible by the use of iodocyclohexene 194 and N-benzyl-4iodotetrahydropyridine 193, respectively. For the first step of the sequential reaction of iodocyclohexene (194), the mixture had to be heated for an exceptionally long time, i.e. for 5 h at $100^{\circ} \mathrm{C}$, to reach the maximum yield, whereas the reactions of other iodoalkenes gave lower yields when the temperature for the first steps exceeded $80^{\circ} \mathrm{C}$. The configuration of the major diastereomer 180a was rigorously proved by an X-ray crystal structure analysis (Figure 4).

Scheme 41. The preparation of spirocyclopropanated heterooligocyclic systems 180a and 181a. A: $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{NEt}_{3}, 100^{\circ} \mathrm{C}, 5 \mathrm{~h}, \mathrm{DMF} .-\mathrm{B}: \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCl}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}, \mathrm{MeCN}$. For details see Table 3.

Figure 4. Structure of compound 180a in the crystal. ${ }^{[66]}$

A heterocyclic substituent could also be attached to the spirooctene core as in 182a by means of 2-(2-iodovinyl)thiophene 195 in the cross-coupling step (entry 11 in Table 3). Furthermore, heteroatoms could be incorporated in the spirooctene moiety of the Diels-Alder products by employing the highly reactive dienophile N-phenyltriazolinedione (PTAD) $\mathbf{1 2 2}$ as in structures 183a and 184a (entries 12, 13 and 14 in Table 3). The spirooctene 184a was obtained in 50\% yield and its configuration could be rigorously proved by an X-ray crystal structure analysis (Figure 5). Whereas with N-phenylmaleimide (189) the cycloaddition could be completed at $80^{\circ} \mathrm{C}$ in 4 h , the reaction with $\mathbf{1 2 2}$ gave better yields when carried out at $20^{\circ} \mathrm{C}$ for prolonged times (up to 2 d).

Furthermore, the reaction of 66 with (E)-1-Benzyl-3-iodomethylenepiperidine (202) in the presence of 1.2 equivalents morpholine (78a) at $80^{\circ} \mathrm{C}$ for 3.5 h gave only the spirooctene 203 in 20% yield after addition of dienophile $\mathbf{6 8 b}$ and heating of the mixture for another 60 h at the same temperature. Interestingly, when this procedure was repeated with 1.5 equivalents of morpholine in longer reaction times (4 h for the first step and 72 h for the second one), again only $\mathbf{2 0 3}$ was obtained in 26% yield. In spite of high concentration of nucleophile (78a) in the reaction mixture, the intermediate diene 204 and desired product $\mathbf{2 0 5}$ could not be observed (Scheme 42).

Figure 5. Structure of compound 184a in the crystal.

204

Scheme 42. The reaction of (E)-1-Benzyl-3-iodomethylenepiperidine (202) with 66 in the presence of 1.5 equivalents of morpholine (78a); formation of the spiro[2.5]octane 203. $-\mathrm{E}=\mathrm{CO}_{2} t \mathrm{Bu}$

2.4. An inter-intra-intermolecular queuing cascade involving bicyclopropylidene 66, a functionalized iodoalkene and a dienophile

To extend the scope of this cascade reaction even further, functionalized vinyl iodides 206 and 208 were employed to provide, by intramolecular π-allylpalladium trapping in the first step after the cross-coupling and rearrangement, spirocyclopropanated heterobicycles 207, 209, albeit in moderate yields only (at best 25 and 38%, respectively) (Scheme 43). ${ }^{[67]}$ Although this is not a four-component reaction, this inter-intra-intermolecular queuing cascade proceeds by the same number of individual steps and with formation of the same number of carbon-carbon and carbon-heteroatom bonds (altogether four) as the four-component cascades discussed above. Interestingly, the iodohomoallyl alcohol 206 gave the best results under conditions B in acetonitrile with potassium carbonate and the phase transfer agent ($\mathrm{Et}_{4} \mathrm{NCl}$) (entry 7 in Table 4), whereas the N-tosylhomoallylamine 208 gave the best yield of 38% under conditions A $\left(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{TFP}, \mathrm{NEt}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$ (entry 3 in Table 5) and the product $\mathbf{2 0 9}$ was obtained as a single diastereomer along with the tosylaminobutenylspiro[2.5]octenecarboxylate $\mathbf{2 1 0}$ resulting from β-hydride elimination in the intermediate of type $\mathbf{1 6 9}$ as in Scheme 34 and immediate Diels-Alder addition of $\mathbf{6 8 b}$. The configuration of $\mathbf{2 0 9}$ was also rigorously proved by an X-ray crystal structure analysis (Figure 6) All attempts to suppress the formation of $\mathbf{2 1 0}$ by increasing the reaction temperature or the time were unsuccessful.

Scheme 43. An inter-intra-intermolecular queuing cascade involving bicyclopropylidene (66), a functionalized iodoalkene 206, 208 and a dienophile 68b. - $\mathrm{E}=\mathrm{CO}_{2} \mathrm{tBu}$

Entry	Reaction Conditions ${ }^{\text {a }}$		Yield ${ }^{\text {b }}$	d.r. ${ }^{\text {c }}$
	Step 1	Step 2	(\%)	
1	A, 1 mL DMF	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	6	1:1
	$80^{\circ} \mathrm{C}, 3 \mathrm{~h}$			
2	A, 1 mL DMF	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	10	1:1
	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$			
3	B, 1 mL MeCN	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	18	1.2:1
	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$			
4	B, 1 mL DMF	$100{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$-{ }^{\text {d }}$	-
	$100{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$			
$5^{\text {e }}$	B, 1 mL MeCN	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	11	1.1:1
	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$			
6	B, 2 mL DMA	$100^{\circ} \mathrm{C}, 24 \mathrm{~h}$	- ${ }^{\text {d }}$	-
	$100{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$			
7	B, 2 mL MeCN	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	25	1.3:1
	$80{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$			
8	B, 2 mL MeCN	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	17	1.1:1
	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$			

Table 4. Optimization of the reaction conditions for the cascade involving bicyclopropylidene (66), a functionalized iodoalkene 206 and a dienophile 68b. - ${ }^{\text {a }} 4.00 \mathrm{mmol}$ bicyclopropylidene 66, 2.00 mmol iodoalkene 206 and 4.00 mmol tert-butyl acrylate 68b were used. - ${ }^{\text {b }}$ Isolated yield are given. Diastereomeric ratios were determined by integration of relevant ${ }^{1} \mathrm{H}$ NMR signals in the spectra of the crude products. - ${ }^{\mathrm{d}}$ No product. - ${ }^{e} 5 \% \mathrm{~mol} \operatorname{Pd}(\mathrm{dba})_{2}$ was used. - A: $5 \% \mathrm{~mol} \operatorname{Pd}(\mathrm{OAc})_{2}, 10 \% \mathrm{~mol}$ TFP, $\mathrm{Et}_{3} \mathrm{~N}$. - B: $5 \% \mathrm{~mol} \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \% \mathrm{~mol}$ TFP, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{4} \mathrm{NCl}$.

Entry	Reaction Conditions ${ }^{\text {a }}$		Products ${ }^{\text {b }}$	
	Step 1	Step 2	209 (\%)	210(\%)
1	$\begin{aligned} & \mathrm{B}, 2 \mathrm{~mL} \mathrm{MeCN} \\ & 80^{\circ} \mathrm{C}, 3 \mathrm{~h} \end{aligned}$	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	8	$-^{\text {c }}$
2	$\begin{aligned} & \mathrm{B}, 2 \mathrm{~mL} \mathrm{MeCN} \\ & 80^{\circ} \mathrm{C}, 24 \mathrm{~h} \end{aligned}$	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	13	_ ${ }^{\text {c }}$
3	A, 1 mL DMF $80^{\circ} \mathrm{C}, 3 \mathrm{~h}$	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	38	36
4	$\begin{aligned} & \mathrm{A}, 1 \mathrm{~mL} \text { DMF } \\ & 80^{\circ} \mathrm{C}, 24 \mathrm{~h} \end{aligned}$	$80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	17	24
5	$\begin{aligned} & \mathrm{A}, 2 \mathrm{~mL} \text { DMF } \\ & 100^{\circ} \mathrm{C}, 24 \mathrm{~h} \end{aligned}$	$100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$	28	18
6	A, 2 mL DMF $120^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$	18	17

Table 5. Optimization of the reaction conditions for the cascade involving bicyclopropylidene (66), a functionalized iodoalkene 208 and a dienophile 68b. - ${ }^{\text {a }} 4.00 \mathrm{mmol}$ bicyclopropylidene 66, 2.00 mmol iodoalkene 208 and 4.00 mmol tert-butyl acrylate 68b were used. - ${ }^{\text {b }}$ Isolated yield are given. $-{ }^{\text {c }}$ No product. - A: $5 \% \mathrm{~mol} \operatorname{Pd}(\mathrm{OAc})_{2}, 10 \% \mathrm{~mol}^{2} \mathrm{TFP}, \mathrm{Et}_{3} \mathrm{~N} .-\mathrm{B}: 5 \% \mathrm{~mol} \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \% \mathrm{~mol}$ TFP, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{Et}_{4} \mathrm{NCl}$.

Figure 6. Structure of compound 209 in the crystal. ${ }^{[66]}$

3. Two-Step Queuing Cascade Reactions with Methylenespiropentane Involving a Heck Coupling, m-Allylpalladium Trapping and Diels-Alder Reaction

3.1. Introduction

Another highly strained building block, methylenespiropentane (81), is easily available in preparative quantities by rearrangement of bicyclopropylidene (66) at $350{ }^{\circ} \mathrm{C}$ in a flow system (Scheme 44). ${ }^{[68]}$

Scheme 44. The thermal rearrangement of bicyclopropylidene (66) to methylenespiropentane (81) in the gas phase.

Since the strain energy of methylenespiropentane (81) ($74.6 \mathrm{kcal} / \mathrm{mol}$) is only $2.8 \mathrm{kcal} / \mathrm{mol}$ lower than that of bicyclopropylidene $(\mathbf{6 6})^{[69]}$, methylenespiropentane $(\mathbf{8 1})$ is expected to undergo similar types of carbopalladation reactions as bicyclopropylidene (66) does, which include the immediate opening of strained cyclopropyl rings after the carbopalladation process.

In this respect, previous studies have demonstrated that the coupling of methylenespiropentane (81) with iodobenzene 67 in the usual Heck conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Et}_{3} \mathrm{~N}\right)$ in DMF gave the mixture of cross-conjugated triene $\mathbf{2 1 3}$ and allylidenecyclopropane derivatives $\mathbf{2 1 4}{ }^{[70]}$. A reasonable mechanism that accounts for the formation of products $\mathbf{2 1 3}$ and $\mathbf{2 1 4}$ involves firstly cleavage of two different proximal bonds (A and B) in cyclopropane ring adjacent to the carbopalladated former exomethylene in the intermediate 215. The complex $\mathbf{2 1 6}$ occurred in path A undergoes one more cyclopropyl-carbinyl to homoallyl rearrangement affording the homoallyl palladium species 217, which yields the conjugated triene 213 after a β-hydride elimination. On the other hand, the homoallylpalladium complex 218 arising from cleavage of the proximal bond B, undergoes immediately a β-hydride elimination to produce the diene 214 (Scheme 45).

$213: 214=5.3: 1$

217

213

Scheme 45. The Heck reaction of methylenespiropentane (81) with iodobenzene 67.

Moreover, when the coupling of methylenespiropentane (81) with iodobenzene 67 was performed in the presence of a dienophile such as dimethylfumarate 68d (i.e., a domino Heck-Diels-Alder reaction with methylenespiropentane (81), the reaction yielded the mixture of mono- and transmissive cycloaddition products (219-222) ${ }^{[71]}$ of the conjugated triene 213 along with the spirooctene $\mathbf{2 2 3}$ arising from allylidenecyclopropane 214. However, this domino process could not be further investigated due to formation of several isomeric mixtures in low yields.

Scheme 46. The domino Heck-Diels-Alder reaction involving methylenespiropentane (81), iodobenzene 67, dimethyl fumarate 68d. $-\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

3.2. A two-step, four-component queuing cascade with methylenespiropentane (81) involving nucleophilic trapping of r-Allylpalladium intermediates.

In this study, the utility of methylenespiropentane (81) in cascade reactions was significantly enhanced by carrying out the carbopalladation in the presence of tris(2-furyl)phosphane (TFP) which stimulates the formation of π-allylpalladium complexes. These complexes were successfully trapped as in the four-component, two-step cascade involving morpholine 78a as a nucleophile (Scheme 47).

Scheme 47. A new one-pot, two-step four component queuing cascade involving methylenespiropentane (81), iodobenzene 67 , morpholine 78a and dimethyl fumarate. $-\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

In the corresponding mechanism (Scheme 48), the π-allylpalladium complex 225 must be formed after a β-hydride elimination and readdition of the hydridopalladium species via a σ allylpalladium intermediate 224 and trapped with morpholine 78a from two different terminuses affording dienes 226 and 228. Subsequently, the diene 226 undergoes a cycloaddition with dimethyl fumarate 68d to yield cyclohexene derivative 227. On the other hand, the formation of the π-allylpalladium complex 229 most probably is originated from distal $\mathrm{C}-\mathrm{C}$ bond cleavage of the cyclopropane ring in the intermediate 218 and trapped by morpholine $\mathbf{7 8}$ a to give the compound $\mathbf{2 3 0}$.

Scheme 48. The mechanism for the formation of dienes 226, 228 and 230 via trapping of π allylpalladium intermediates 225 and 229. $-\mathrm{NuH}=$ Morpholine (78a). $-\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

Even though, in this reaction the yield was not high enough, the concept of novel cascades involving methylenespiropentane (81) proved to be feasible with limited numbers of products. Another important outcome of the reaction constitutes selectively formation of the diene 226 having appropriate configuration for the consecutive Diels-Alder reaction.

3.3. A two-step, three-component queuing cascade with methylenespiropentane (81) involving intramolecular nucleophilic trapping of m-Allylpalladium intermediates; a direct access to benzoxepine and benzoazepine derivatives.

Taking these results into account, functionalized aryl iodides (231a-g) were coupled with methylenespiropentane (81) with a typical palladium catalyst cocktail (e.g. $\mathrm{Pd}(\mathrm{OAc})_{2}$, TFP, NEt_{3}) at $80{ }^{\circ} \mathrm{C}$ for 3 h to provide intermolecular π-allylpalladium trapping, which furnish a cyclization in the first step and yields various heterocycles with respect to the identity of aryl iodides. A dienophile (dimethyl fumarate, 68d) added right after cross coupling with rearrangement and nucleophilic trapping processes gave final structures (234a-g and 235b) in low yields by building a cyclohexene ring on intermediate dienes (232a-g and 233b). Related results are summarized in Scheme 49 and in Table 6.
Inspiring by successful literature protocols utilized for palladium-catalyzed annulations involving an intramolecular trapping of π-allylpalladium intermediates, ${ }^{[72]}$ numerous reaction conditions were tried to improve the yield of this cascade reaction. All attempts for this purpose were performed with a model reaction involving methylenespiropentane (81), o-iodobenzyl alcohol 231a and dimethyl fumarate 68d.
Since the nature of the base is one of the most critical factors for the success of palladiumcatalyzed annulation reactions, ${ }^{[72 a]}$ the optimization work was mainly focused on this issue. Attempts were rather disappointing in the conditions having a phase transfer agents $\left(\mathrm{Et}_{4} \mathrm{NCl}\right.$ or $n \mathrm{Bu} u_{4} \mathrm{NCl}$) with various acetate and carbonate bases ($\mathrm{NaOAc}, \mathrm{KOAc}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$). Moreover, amine bases such as $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{EtN}(i \operatorname{Pr})_{2}$ were utilized with or without phase transfer catalysis. Among them, conditions having only $\mathrm{Et}_{3} \mathrm{~N}$ gave more reasonable yields. However, these conditions never furnished better yields than 22%. Although $\operatorname{Pd}(\mathrm{OAc})_{2}$ is known as very effective catalyst for these type of annulation reactions, ${ }^{[72 a]} \operatorname{Pd}(\mathrm{dba})_{2}$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ were also tried in some cases. Also all efforts to tune the reaction temperature or the time for both steps could not increase the yield.

77

231a-g

234a-g

Scheme 49. A two-step, three component queuing cascade involving methylenespiropentane (81), functionalized iodoarenes (231a-g) and dimethyl fumarate 68d.

Entry	Aryl Iodide	R ${ }^{1}$	R^{2}	R^{3}	X	Product	Yield ${ }^{\text {a }}$ (\%)	d.r. ${ }^{\text {b }}$
1	231a	H	H	H	OH	234a	22	1:1
2	231b	H	H	H	HNPh	234-235b	27	1.6:1
3	231c	H	OCH_{3}	OCH_{3}	OH	234c	18	1.6:1
4	231d	H	$-\mathrm{OCH}_{2} \mathrm{O}-$		OH	234d	21	1:1
5	231e	H	$-\mathrm{OCH}_{2} \mathrm{O}-$		HNPh	234e	20	1.5:1
6	231f	H	$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}-$		OH	234f	23	1.1:1
7	231g			H	OH	234g	29	1.1:1

Table 6. ${ }^{\text {a }}$ Isolated yield are given. $-{ }^{\text {b }}$ Diastereomeric ratios were determined by integration of relevant ${ }^{1} \mathrm{H}$ NMR signals in the spectra of the crude products.

The new three-component, two-step cascade involving an intramolecular trapping of π allylpalladium intermediates was highly selective. Oligoheterocycles 234a-g mainly arised from dienes of type 232a-g. Only in one case (entry 2 in Table 6), the benzoazepine derivative 235b bearing the methyl substituent on the cyclohexene moiety was isolated in 5% yield. Like the formation of diene $\mathbf{2 2 8}$ in Scheme 48, the formation of benzoazepine 235b must be initiated with attacking of the amine to the other terminus of the corresponding π allylpalladium intermediate. Thus, the intermediately formed diene 233b via this pathway gave 235b by undergoing immediate Diels-Alder reaction with dimethyl fumarate 68d in the second step.

The reaction was also selective with respect to employed functionalized aryl iodides. o-Iodo benzylic alcohols and amines (231a-g) gave successfully corresponding benzoxepine and benzoazepine derivatives ($\mathbf{2 3 4 a - g}$), whereas attempts with o-iodoaniline $\mathbf{2 3 6}$ and 2-iodophenetyl alcohol $\mathbf{2 3 8}$ to obtain structures involving six and eight membered heterocycles (237 and $\mathbf{2 3 9}$, respectively) were not successful. On the other hand, the reaction performed with o iodo benzoic acid 240 produced a seven membered lactone derivative 241, albeit in only 8% yield (Scheme 50). Despite having generally low yields (18-29\%), this cascade reaction produced valuable fused heterocycles (234a-g), commonly found in the framework of numerous natural and synthetic biologically active compounds. ${ }^{[73]}$ Moreover, one of the benzoxepine derivatives ($\mathbf{2 3 4 g}$) was strictly proved by X-ray structure analysis (Figure 7).

Figure 7. Structure of compound 234c (major diastereomer) in the crystal.

81

240

241

Scheme 50. Attempts for the synthesis of six and eight membered heterocycles (237 and 239) and the preparation of seven membered lactone derivative 241.

3.4. Preparation of functionalized aryl iodides (231b-g)

Functionalized aryl iodides were prepared starting with corresponding aldehydes by following reduction and iodination processes (Scheme 51). Aldehydes $\mathbf{2 4 3 f}$ and $\mathbf{2 4 3} \mathbf{g}$ were obtained from commercially available respective catechol derivatives $\mathbf{2 4 2 f}-\mathbf{g}$ in a single operation. Reduction of aldehydes $\mathbf{2 4 3} \mathbf{c}-\mathbf{d}$ and $\mathbf{2 4 3 f}-\mathbf{g}$ by NaBH_{4} in dry MeOH produced benzyl alcohol derivatives $\mathbf{2 4 4} \mathbf{c}-\mathbf{d}$ and 244f-g in quantitative amounts. Subsequently, selective iodination was performed by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Ag}$ and I_{2} couple to yield o-iodobenzylic alcohols 231c-d and 231f-g. Yields were generally very high for this process, only $\mathbf{2 3 1} \mathrm{g}$ was obtained in moderate yield (60\%). Iodoarenes having benzylamine functionality (231b and 231e) were achieved easily by application of two different protocols on structures 231a and 231d. Interestingly, the reaction of o-iodobenzylic alcohol 231d with methanesulfonyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ did not give desired mesylate. The o-iodobenzylic amine 231e could be obtained via chlorination of alcohol 231d in 83% yield.
Iodoarenes, particularly those involving dioxole moiety are considerably important, since dioxole subunits take place in the structure of natural and non-natural biologically active compounds. ${ }^{[74]}$ In this respect, benzoxepine and benzoazepine derivatives together with dioxole subunits might offer new perspectives for the preparation of structures that possess pharmacological properties.

242f: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
242g: $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$

Scheme 51. Prepartion of functionalized aryl iodides 231b-g

C. Experimental

1. General

1.1. Physical and spectroscopic measurements

NMR spectra were recorded with a Varian Mercury $200\left(200 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 50.3 MHz for ${ }^{13} \mathrm{C}$), a Bruker AM 250 (250 MHz for ${ }^{1} \mathrm{H}$ and 62.9 MHz for ${ }^{13} \mathrm{C}$ NMR), a Varian UNITY-300 (300 MHz for ${ }^{1} \mathrm{H}$ and 75.5 MHz for ${ }^{13} \mathrm{C}$ NMR) or a Varian Inova $600\left(600 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 151 MHz for ${ }^{13} \mathrm{C}$ NMR) instruments. Chemical shifts δ were given in ppm relative to residual peaks of deuterated solvents and coupling constants, J, were given in Hertz. The following abbreviations are used to describe spin multiplicities in ${ }^{1} \mathrm{H}$ NMR spectra: $\mathrm{s}=$ singlet; $\mathrm{bs}=$ broad singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{dd}=$ doublet of doublets; $\mathrm{ddd}=$ doublet of doublet of doublets; $\mathrm{dt}=$ doublet of triplets; $\mathrm{dq}=$ doublet of quartets; $\mathrm{m}=$ multiplets. Multiplicities in ${ }^{13} \mathrm{C}$ NMR spectra were determined by DEPT (Distortionless Enhancement by Polarization Transfer): $+=$ primary or tertiary (positive DEPT signal), $-=$ secondary (negative DEPT Signal), $\mathrm{C}_{\text {quat }}=$ quaternary carbon atoms] or APT (Attached Proton Test) measurements. HMQC (Heteronuclear Multiple Quantum Coherence) spectra were also measured. IR spectra were recorded on a Bruker IFS 66 spectrometer and measured as KBr pellets or as oils between KBr plates. Low resolution mass spectra (EI at 70 eV or DCI with NH_{3}) were obtained on a Finnigan MAT 95 spectrometer. High resolution mass spectra (HRMS) were obtained on a Finnigan MAT 95 spectrometer by preselected-ion peak matching at $R \approx 10000$ to be within ± 2 ppm of the exact masses. Elemental analyses were carried out by the Mikroanalytisches Laboratorium des Instituts für Organische und Biomolekulare Chemie der Universität Göttingen. Chromatographic separations were performed with Merck Silica 60 (200-400 or $70-230 \mathrm{mesh}$). The dimensions of the columns are given as "diameter \times height of the silica gel column". TLC was performed with Macherey-Nagel TLC Alugram ${ }^{\circledR}$ Sil G/UV 254 plates, detection was under UV light at 254 nm and development with MOPS reagent $(10 \%$ molybdophosphoric acid in ethanol). Melting points were obtained with a Büchi apparatus according to Dr. Totto1i; values are uncorrected.

1.2. Reagents and solvents

All reagents were used as purchased from commercial suppliers without further purification unless otherwise indicated. Acetonitrile was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$, DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled
from CaH_{2}. Ether and THF were freshly destilled from sodium/benzophenone ketyl. Solvents for column chromotography, ethyl acetate and light petroleum were distilled in a rotatory evaporator.

1.3. Preparation of known compounds

The following compounds were prepared according to known literature methods: bicyclopropylidene $(66)^{[32]}$, methyl bicyclopropylidenecarboxylate $(66 E)^{[36 a]}$, 2-($1^{\prime}, 1^{\prime \prime}-$ bicyclopropylidene-2'-yl)-4,4,5,5,-tetramethyl-1,3-dioxa-2-borolan (66B) ${ }^{[366]}$, 2-(Tributylstan nyl)bicyclopropylidene $(\mathbf{6 6 C})^{[366]}, ~ N$-phenylitaconimide $(\mathbf{1 3 1})^{[44 a]}$, N-allylmorpholine ${ }^{[75]}$, iodoethene (173) ${ }^{[76]}$, 1-benzyl-4-iodo-1,2,3,6-tetrahydropyridine (193) ${ }^{[77]}$, (1-iodovinyl)benzene $(\mathbf{1 9 1})^{[78]}, 5$-(1-iodovinyl)benzo[1,3]dioxole $(192)^{[78]}$, 1 -iodo-cyclohexene (194) ${ }^{[78]}$, 2-(2iodovinyl)thiophene $(\mathbf{1 9 5})^{[79]}$, (E)-1-iodo-2-phenylethene $(\mathbf{1 9 6})^{[80]}$, (E)-1-Benzyl-3-iodo methylenepiperidine $\quad(\mathbf{2 0 2})^{[77]}, \quad 3$-iodobut-3-en-1-ol $\quad(\mathbf{2 0 6})^{[81]}, \quad N$-(3-iodobut-3-enyl)-4methylbenzenesulfonamide (208) ${ }^{[82]}$, N -phenyltriazolinedione (122) ${ }^{[83]}$, 5-[(1-diethoxyphos-phinyl)oxo-vinyl]-benzo[1,3]dioxole ${ }^{[84]}$, methylenespiropentane (81) ${ }^{[68]}$, 2,3-dihydro-benzo[1,4]dioxine-6-carbaldehyde $(\mathbf{2 4 3 f})^{[85]}$, benzo[1,3]dioxole-4-carbaldehyde $(\mathbf{2 4 3 g})^{[85]}$, (3,4-dimethoxy-phenyl)-methanol (244c) ${ }^{[86]}$, piperonylic alcohol (244d) ${ }^{[87]}$, (2,3-dihydro-benzo[1,4]dioxin-6-yl)-methanol (244f) ${ }^{[88]}$, benzo[1,3]dioxol-4-yl-methanol ($\left.\mathbf{2 4 4 g}\right)^{[88]}$, 2-iodo-4,5-dimethoxybenzyl alcohol (231c) ${ }^{[89]}$, (6-iodo-benzo[1,3]dioxol-5-yl)-methanol (231d) ${ }^{[90]}$, (5-iodo-benzo[1,3]dioxol-4-yl)-methanol (231g) ${ }^{[88]}$, 5-chloromethyl-6-iodo-benzo[1,3]dioxole (245d) $)^{[91]}$, methanesulfonic acid 2-iodo-benzylester (246) ${ }^{[92]}$, benzyl-(2-iodobenzyl)amine (231b) ${ }^{[77]}$, 2-(2-iodo-phenyl)-ethanol (238) ${ }^{[93]}$

2. Procedures, spectroscopic and physical identifications of new compounds

2.1. Domino Heck-Diels-Alder reaction with substituted bicyclopropylidenes (66A-D)

2.1.1. General procedure for the one-pot, one-step Heck-Diels-Alder reaction involving a mono-substituted bicyclopropylidene (66A-D), an iodoarene, a dienophile (GP-1)

A screw-cap Pyrex bottle was charged with anhydrous acetonitrile (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equivalent) and $\mathrm{Et}_{4} \mathrm{NCl}$ (1 equivalent). Argon was bubbled through the mixture for 5 min , $\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, and triphenylphosphane ($15 \mathrm{~mol} \%$) were added, and the mixture was stirred once more for an additional 5 min with argon bubbling through, before the respective
iodoarene (1 equivalent), mono-substituted bicyclopropylidene (66A-D) (2 equivalent) and respective dienophile (2 equivalent) were added. The bottle was tightly closed, and the mixture was stirred for the given period of time at the stated temperature. After cooling to room temperature, the reaction mixture was taken up in 20 mL of diethyl ether. The solution was washed with water $(2 \times 20 \mathrm{~mL})$, the aqueous phase was extracted with diethyl ether $(2 \times 20$ $\mathrm{mL})$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator, the residue was subjected to chromatography on silica gel.

2.1.2. Synthesis of spirooctenes

5-tert-Butyl-1-methyl 8-phenylspiro[2.5]oct-7-ene-1,5-dicarboxylate (cis/trans, trans104E) and (cis/trans, cis-105E)

According to $\mathrm{GP}-1, \mathrm{Pd}(\mathrm{OAc})_{2}(20.3 \mathrm{mg}, 90 \mu \mathrm{~mol})$, triphenylphophane $(71.3 \mathrm{mg}$, $271 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(500 \mathrm{mg}, 3.62 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(300 \mathrm{mg}, 1.81 \mathrm{mmol})$, iodobenzene (67,369 $\mathrm{mg}, 1.81 \mathrm{mmol}$), methyl bicyclopropylidenecarboxylate ($66 \mathbf{E}, 500 \mathrm{mg}, 3.62 \mathrm{mmol}$) and tertbutyl acrylate ($\mathbf{6 8 b}, 464 \mathrm{mg}, 3.62 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 10:1) to yield cis/trans, trans-104E ($427.5 \mathrm{mg}, 69 \%$, colorless solid) as a mixture of two diastereomers (ratio 1.25:1 according to NMR) and cis/trans, cis-105E ($37 \mathrm{mg}, 6 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.1:1). Diastereomers cis/trans, trans-104E have been partially separated from each other as crystals by slow evaporation of solvents of two-phase 1:1 ethyl acetate/diethyl ether solution of these compounds.

cis, trans-104E trans, trans-104E

Major diastereomer (cis, trans-104E): $R_{\mathrm{f}}=0.37$ (light petroleum/ethyl acetate 10:1); IR (KBr): \tilde{v} $=3064,3027,2997,2977,2956,2919,2876$, $1732,1723,1495,1481,1440,1389,1370,1351$, 1320, 1280, 1265, 1226, 1212, 1194, 1169, 1068, 1048, 946, 892, 846, 757, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.19(\mathrm{dd}, J=5.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.49\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.58(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.74-2.13\left(A B\right.$ system, $\delta_{A}=2.08, \delta_{B}=1.78, J_{A}=7.9,13.5 \mathrm{~Hz}, J_{B}=5.3$, $13.5 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 1.97-2.03(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.47-2.53(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.64-$ $2.75(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.94(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.13-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$;
${ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=18.27(-, c \operatorname{Pr}-\mathrm{C}), 27.49(-, \mathrm{C}-4$ or $\mathrm{C}-6), 28.07[+$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.39(+, c \operatorname{Pr}-\mathrm{C}), 29.62\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 37.42(-, \mathrm{C}-4$ or $\mathrm{C}-6), 40.03(+, \mathrm{C}-5), 51.25$ $\left(+, \mathrm{OCH}_{3}\right), 80.50\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 126.52(+, \mathrm{Ph}), 127.56(+, 2 \times \mathrm{Ph}), 127.62(+, 2 \times \mathrm{Ph})$, $129.30(+, \mathrm{C}-7), 140.96\left(\mathrm{C}_{\text {quat }}\right), 141.70\left(\mathrm{C}_{\text {quat }}\right), 170.88\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.53\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 eV, EI), m/z (\%): 342 (11) [$\left.M^{+}\right], 327$ (4) [$\left.M^{+}-\mathrm{CH}_{3}\right], 311$ (6), 286 (26), 240 (48), 226 (46), 209 (17), 181 (100), 167 (22), 154 (11), 57 (26); elemental analysis* calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ (342.4): C 73.66, H 7.65; found: C 73.56, H 7.43.

Minor diastereomer (trans, trans-104E): $R_{\mathrm{f}}=0.37$ (light petroleum/ethyl acetate 10:1); IR (KBr): $\tilde{v}=3080$, 3027, 2996, 2978, 2955, 2927, 2867, 1733, 1723, 1494, 1481, 1437, 1387, $1370,1351,1318,1280,1258,1226,1212,1192,1170,1068,947,893,846,829,756,697 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.29-1.36(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 1.46[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.63-1.68(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.76-1.81(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.23(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.39-2.67(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.89-3.03(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.76$ $(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.06-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.20-7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=19.92(-, c \operatorname{Pr}-\mathrm{C}), 28.06\left[+, \mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 29.0(-, \mathrm{C}-4 \text { or } \mathrm{C}-6), 30.38}\right.$ $\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 30.50(+, c \mathrm{Pr}-\mathrm{C}), 38.80(-, \mathrm{C}-4$ or $\mathrm{C}-6), 40.37(+, \mathrm{C}-5), 51.32\left(+, \mathrm{OCH}_{3}\right), 80.38$ $\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 126.39(+, \mathrm{C}-7), 127.40(+, 2 \times \mathrm{Ph}), 128.07(+, 2 \times \mathrm{Ph}), 130.16(+, \mathrm{Ph})$, $138.97\left(\mathrm{C}_{\text {quat }}\right), 141.59\left(\mathrm{C}_{\text {quat }}\right), 170.90\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.34\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z$ (\%): 342 (4) $\left[M^{+}\right], 286(22), 240(42), 226(44), 181$ (100), 167 (24), 154 (16), 115 (9), 57 (82), 41 (39); elemental analysis* calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ (342.4): C 73.66, H 7.65; found: C 73.56, H 7.43. Elemental analysis was carried out for the mixture of diastereomers.

cis/trans, cis-105E:* $\quad R_{\mathrm{f}}=0.46$ (light petroleum/ethyl acetate 10:1); IR (Film): $\tilde{v}=$ 3079, 3056, 3003, 2977, 2951, 2931, 2846, 1729, 1492, 1479, 1441, 1392, 1368, 1335, $1316,1258,1212,1192,1170,1152,1070$, 990, 904, 849, 829, 764, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.93-0.97(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-$ H), $1.13(\mathrm{dd}, J=4.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.19(\mathrm{dd}, J=4.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.28-1.32$ $(\mathrm{m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.43\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.44\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.55-1.60(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, 1.75 (dd, $J=6.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), 1.89-2.19 (m, $4 \mathrm{H}, 4-\mathrm{H}$ or 6-H), 2.34-2.44 (m, $4 \mathrm{H}, 4-\mathrm{H}$ or 6-H), 2.48-2.60 (m, $1 \mathrm{H}, 5-\mathrm{H}), 2.68-2.78(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $5.59-5.64(\mathrm{~m}, 2 \mathrm{H}, 2 \times 7-\mathrm{H}), 6.99-7.04(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.19-7.29(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (50.3 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): ~ \delta=17.80(-, c \operatorname{Pr}-\mathrm{C}), 18.59(-, c \operatorname{Pr}-\mathrm{C}), 24.65(+, 2 \times c \operatorname{Pr}-\mathrm{C})$,
$28.03\left[+, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.32(-, \mathrm{C}-4$ or $\mathrm{C}-6), 28.60(-, \mathrm{C}-4$ or $\mathrm{C}-6), 29.25\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right)$, 29.90 (- , C-4 or C-6), 30.06 ($\mathrm{C}_{\text {quat }}$, CPr-C), 30.99 (- , C-4 or C-6), 40.24 (+, C-5), $40.43(+$, C5), $51.68\left(+, \mathrm{OCH}_{3}\right), 51.72\left(+, \mathrm{OCH}_{3}\right), 80.09\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 80.21\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 126.48$ (,$+ \mathrm{C}-7$), $126.81(+, \mathrm{C}-7), 126.94(+, \mathrm{Ph}), 126.99(+, \mathrm{Ph}), 127.71(+, 2 \times \mathrm{Ph}), 127.77(+, 2 \times$ $\mathrm{Ph}), 129.34(+, 2 \times \mathrm{Ph}), 129.42(+, 2 \times \mathrm{Ph}), 139.07\left(\mathrm{C}_{\text {quat }}\right), 139.48\left(\mathrm{C}_{\text {quat }}\right), 140.66\left(\mathrm{C}_{\text {quat }}\right)$, $140.87\left(\mathrm{C}_{\text {quat }}\right), 171.87\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 172.09\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.25\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.50\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O}$); MS (DCI), $m / z(\%): 702.7$ (12) [2M $\left.+\mathrm{NH}_{4}{ }^{+}\right], 360(100)\left[M+\mathrm{NH}_{4}{ }^{+}\right], 343(14)\left[M+\mathrm{H}^{+}\right]$ 304 (61); HRMS-ESI for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ (342.43): $[M+\mathrm{H}]^{+}$343.19047, calcd. 343.19039; $[M+$ $\mathrm{Na}]^{+} 365.17244$, calcd. 365.17233 . *For all measurements pure mixture of diastereomers cis/trans, cis-105E was used.

Methyl 8-phenyl-1-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)spiro[2.5]oct-7-ene-5carboxylate (cis/trans, trans-104B), Methyl 8-phenylspiro[2.5]oct-7-ene-5-carboxylate

cis, trans-104B trans, trans-104B (109a): According to GP-A, $\mathrm{Pd}(\mathrm{OAc})_{2}(19.3 \mathrm{mg}$, $85 \mu \mathrm{~mol}$), triphenylphophane ($67 \mathrm{mg}, 254 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(470 \mathrm{mg}, 3.40 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(281.5 \mathrm{mg}$, 1.70 mmol), iodobenzene ($\mathbf{1 7 3}, 347 \mathrm{mg}, 1.70$ mmol), 2-(1', $1^{\prime \prime}$-Bicyclopropyliden-2'-yl)-4,4,5,5,-tetramethyl-1,3-dioxa-2-borolan (66B, $700 \mathrm{mg}, 3.40 \mathrm{mmol}$) and methyl acrylate (68a, $293 \mathrm{mg}, 3.40 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 10:1) to yield cis/trans, trans-104B ($156.5 \mathrm{mg}, 25 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.4:1 according to NMR) and ${ }^{*} \mathbf{1 0 9 a}$ ($156 \mathrm{mg}, 38 \%$, yellowish oil). Diastereomer cis, trans-104B has been crystallized by slow evaporation of solvents of twophase 1:1 ethyl acetate/diethyl ether solution of this compound. *For the spectroscopic identification of compound 109a see: references 29b and 35a.
Major diastereomer (cis, trans-104B): $R_{\mathrm{f}}=0.18$ (light petroleum/ethyl acetate 10:1); IR (KBr): $\tilde{v}=3075,2979,2924,2882,2827,1737,1632,1599,1492,1421,1389,1379,1381$, 1359, 1334, 1261, 1233, 1190, 1171, 1142, 1073, 1045, 1001, 973, 959, 914, 903, 867, 844, 812, 757, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.14(\mathrm{dd}, J=7.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, $0.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 0.97(\mathrm{dd}, J=4.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.28$
(dd, $J=3.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), $1.52(\mathrm{dd}, J=4.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.31(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1$ $\mathrm{H}, 4-\mathrm{H}), 2.42-2.64(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 3.04-3.15(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.62(\mathrm{t}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.09-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$) $: ~ \delta=18.44(-$, $c \operatorname{Pr}-\mathrm{C}), 24.35\left(+, 2 \times \mathrm{CH}_{3}\right), 25.03\left(+, 2 \times \mathrm{CH}_{3}\right), 26.96\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.78(-, \mathrm{C}-6), 39.73(+$, $\mathrm{C}-5), 40.69(-, \mathrm{C}-4), 51.57\left(+, \mathrm{OCH}_{3}\right), 82.76\left(2 \times \mathrm{C}_{\text {quat }}\right), 126.09(+, \mathrm{Ph}), 127.08(+, 2 \times \mathrm{Ph})$, $127.67(+, \mathrm{C}-7), 128.84(+, 2 \times \mathrm{Ph}), 141.08\left(\mathrm{C}_{\text {quat }}\right), 142.24\left(\mathrm{C}_{\text {quat }}\right), 175.93\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$. * Peaks belong to C-2 could not be observed because of ${ }^{13} \mathrm{C}_{-}{ }^{10 / 11} \mathrm{~B}$ coupling. MS ($70 \mathrm{eV}, \mathrm{EI}$), m / z (\%): 368 (25) $\left[M^{+}\right], 308$ (10), 268 (26), 240 (60), 213 (21), 180 (100), 167 (38), 153 (19), 115 (16), 101 (30), 85 (65), 55 (18), 41 (22); elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ (342.4): C 71.75, H 7.94; found: C 71.46, H 7.68.

Minor diastereomer (trans, trans-104B): $R_{\mathrm{f}}=0.21$ (light petroleum/ethyl acetate 10:1); IR (Film): $\tilde{v}=3079,3054,3026,2998,2977,2929,2857,1738,1599,1492,1437,1407,1373$, 1330, 1256, 1230, 1196, 1171, 1143, 1115, 1016, 963, 907, 857, 760, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.22-0.25(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.96-0.99(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}, 2 \times$ CH_{3}), $1.07\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.20(\mathrm{dd}, J=3.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.80(\mathrm{dd}, J=5.8,13.4 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}), 2.17(\mathrm{dd}, J=6.4,12.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 2.48-2.54(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H}$, $6-\mathrm{H}), 2.83-2.89(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.80(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.20-7.29$ $(\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right)^{*}: \delta=16.66(-, c \operatorname{Pr}-\mathrm{C}), 24.42\left(+, 2 \times \mathrm{CH}_{3}\right)$, $25.12\left(+, 2 \times \mathrm{CH}_{3}\right), 25.84\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 27.61(-, \mathrm{C}-6), 39.44(+, \mathrm{C}-5), 39.55(-, \mathrm{C}-4), 51.78$ $\left(+, \mathrm{OCH}_{3}\right), 82.70\left(2 \times \mathrm{C}_{\text {quat }}\right), 126.19(+, \mathrm{Ph}), 127.30(+, 2 \times \mathrm{Ph}), 128.08(+, \mathrm{C}-7), 128.54(+, 2$ $\times \mathrm{Ph}), 141.40\left(\mathrm{C}_{\text {quat }}\right), 143.58\left(\mathrm{C}_{\text {quat }}\right), 175.72\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$. * Peaks belong to $\mathrm{C}-2$ could not be observed because of ${ }^{13} \mathrm{C}^{-10 / 11} \mathrm{~B}$ coupling. MS (70 eV, EI), $m / z(\%): 368$ (36) [$\left.M^{+}\right], 336$ (10), 308 (12), 268 (35), 240 (64), 224 (27), 205 (39), 181 (100), 167 (43), 154 (20), 141 (17), 115 (18), 85 (72), 69 (29), 55 (44); $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BO}_{4}$ (368.29): calcd. 368.2159 (correct HRMS).

2.1.2.1. An attempt for the synthesis of tert-Butyl 8-phenyl-1-(tributylstannyl) spiro[2.5]oct-7-ene-5-carboxylate (cis/trans, trans-104C) and/or (cis/trans, cis-105C)

According to $\mathrm{GP}-1, \mathrm{Pd}(\mathrm{OAc})_{2}(15.2 \mathrm{mg}, 67 \mu \mathrm{~mol})$, triphenylphophane ($53.2 \mathrm{mg}, 202 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(374.4 \mathrm{mg}, 2.7 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(250 \mathrm{mg}, 1.35 \mathrm{mmol})$, iodobenzene ($67,276 \mathrm{mg}, 1.35$ mmol), 2-(Tributylstannyl)bicyclopropylidene ($\mathbf{6 6 C}, 1 \mathrm{~g}, 2.7 \mathrm{mmol}$) and tert-butyl acrylate ($\mathbf{6 8 b}, 347 \mathrm{mg}, 2.7 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl
acetate, 14:1) to yield mixture of cis/trans, trans-104D and/or cis/trans, cis-105D* along with some amount of unidentified compounds (33 mg , yellowish oil) and *tert-Butyl 8-phenylspiro[2.5]oct-7-ene-5-carboxylate (109b) ($187 \mathrm{mg} .49 \%$, yellowish oil). *These spirooctenes could not be isolated purely and their exact configurations could not be determined. For the spectroscopic identification of compound $\mathbf{1 0 9 b}$ see: references 29 b and 35a.

2.1.2.2. An attempt for the synthesis of tert-Butyl 1-(hydroxydimethylsilanyl)-8-phenylspiro[2.5]oct-7-ene-5-carboxylate (cis/trans, trans-104D) and/or (cis/trans, cis105D)

According to $\mathrm{GP}-1, \operatorname{Pd}(\mathrm{OAc})_{2}(18.2 \mathrm{mg}, 80 \mu \mathrm{~mol})$, triphenylphophane ($64 \mathrm{mg}, 243 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(448 \mathrm{mg}, 3.24 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(300 \mathrm{mg}, 1.62 \mathrm{mmol})$, iodobenzene ($67,330 \mathrm{mg}, 1.62$ mmol), bicyclopropyliden-2-yl-dimethylsilanol (66D, $500 \mathrm{mg}, 3.24 \mathrm{mmol}$) and tert-butyl acrylate ($415 \mathrm{mg}, 3.24 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 14:1) to yield mixture of cis/trans, trans-104D and/or cis/trans, cis-105D* along with some amount of unidentified compounds (214 mg , colorless oil) and *tert-Butyl 8-phenylspiro[2.5]oct-7-ene-5-carboxylate (109b) (116 mg. 25\%, yellowish oil). *These spirooctenes could not be isolated purely and their exact configurations could not be determined. For the spectroscopic identification of compound 109b see: references 29 b and 35a.

2.2. The synthesis of Bicyclopropyliden-2-yl-dimethyIsilanol (66D).

To an solution of n Buli ($5.25 \mathrm{~mL}, 2.5 \mathrm{M}$ in Hexane) in 15 mL anhydrous THF at $-30^{\circ} \mathrm{C}$ Bicyclopropylidene (66) ($1 \mathrm{~g}, 12.5 \mathrm{mmol}$) in 2 mL anhydrous THF was added dropwise with a syringe. After stirring 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched at $-78{ }^{\circ} \mathrm{C}$ by slow addition of Hexamethylcyclotrisiloxane ($0.92 \mathrm{~g}, 4.125 \mathrm{mmol}$) in 5 mL anhydrous THF and stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 2 h . After cooling to $-78{ }^{\circ} \mathrm{C}, 10 \% \mathrm{HCl}(10 \mathrm{~mL})$ was added into the mixture and allowed to warm to room temperature. The mixture was poured into 100 mL ether and extracted. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in a rotatory evaporator. The residue was subjected to column chromatography on silica gel (100 g ,
$3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 10:1) to yield 66D ($0.75 \mathrm{~g}, 39 \%$, colorless oil). IR (film): $\tilde{v}=3282,3050,2979,2958,1270,1251,1192,1075,998,954,904,862,840,819$, $777,686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.72-$ $0.80(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.22-1.09(\mathrm{~m}, 5 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.34-1.41(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 2.03$ (br.s, 1 H , $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=-1.53\left(+, \mathrm{CH}_{3}\right),-1.07\left(+, \mathrm{CH}_{3}\right), 2.86(-, c \operatorname{Pr}-$ C), 3.33 (,$- c \operatorname{Pr}-\mathrm{C}$), $5.15(+, c \operatorname{Pr}-\mathrm{C}), 5.85(-, c \operatorname{Pr}-\mathrm{C}), 107.56\left(\mathrm{C}_{\text {quat }}\right), 112.43\left(\mathrm{C}_{\text {quat }}\right)$; $\mathrm{MS}(\mathrm{DCI})$, $m / z(\%): 172.1(100)\left[M+\mathrm{NH}_{4}^{+}\right], 155(37)\left[M+\mathrm{H}^{+}\right], 109(13)$.

2.3. Preparation of allylidenecyclopropanes trans-119E, cis-120E and 121E*

Methyl 2-[1-(2,6-dimethylphenyl)allylidene]cyclopropanecarboxylate [trans-119E, cis-120E] and Methyl 2-[cyclopropylidene-

121E (2,6-dimethylphenyl)-methyl]acrylate (121E): According to $\mathrm{GP}-1, \mathrm{Pd}(\mathrm{OAc})_{2}(55 \mathrm{mg}, 250$ $\mu \mathrm{mol})$, triphenylphophane (200 mg , $750 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($1382 \mathrm{mg}, 10.0 \mathrm{mmol}$), $\mathrm{Et}_{4} \mathrm{NCl}(828 \mathrm{mg}, 5.0 \mathrm{mmol})$, 2-iodo-1,3dimethylbenzene $(\mathbf{1 2 4}, 1160 \mathrm{mg}, 5.00 \mathrm{mmol})$, methyl bicyclopropylidenecarboxylate (66E, $1382 \mathrm{mg}, 10.0 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(6 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was taken up in 60 mL of diethyl ether. The solution was washed with water $(2 \times 40 \mathrm{~mL})$, the aqueous phase was extracted with diethyl ether $(2 \times 40 \mathrm{~mL})$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator, the residue was subjected to chromatography on silica gel $(250 \mathrm{~g}, 5 \times 40 \mathrm{~cm}$, light petroleum/ethyl acetate, 12:1) to yield trans-119E, cis-120E, and 121E ($1090 \mathrm{mg}, 90 \%$, yellowish oil) as a mixture of three regioisomers (ratio 67:23:10 according to GC). For all spectral analysis, pure mixture of these regioisomers have been used. In ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the mixture, individual data for every single structure have been demonstrated by structure numbers (119E, 120E and 121E) whenever this is possible.* Preparation of these compounds was firstly performed by Daniel Frank. Full spectroscopic idendification of compounds firstly has been given in this study. Bp. $=0.1$ Torr, $112{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.26$ (light petroleum/ethyl acetate 12:1); IR (Film): $\tilde{v}=$ 3088, 3005, 2951, 2921, 2857, 1734, 1608, 1582, 1464, 1436, 1412, 1378, 1346, 1291, 1261,

1233, 1195, 1169, 1138, 1112, 1079, 1049, 1030, 988, 970, 944, 911, 863, 812, 771, 736, 668 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.96-1.00(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}){ }^{\mathbf{1 2 1 E}}, 1.30-1.33(\mathrm{~m}, 2 \mathrm{H}$, $c \operatorname{Pr}-\mathrm{H})^{121 \mathrm{E}}, 1.61-1.63(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})^{119 \mathrm{E}}, 1.75(\mathrm{dd}, J=4.0,79.8 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})^{119 \mathrm{E}}, 2.00-$ $2.03(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H})^{\mathbf{1 2 0 E}}, 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right)^{\mathbf{1 2 0 E}}, 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right)^{\mathbf{1 2 0 E}}, 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-$
 $\left.{ }_{c} \mathrm{Pr}-\mathrm{H}\right)^{120 \mathrm{E}}, 2.54(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H})^{\mathbf{1 1 9 E}}, 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)^{\mathbf{1 2 0 E}}, 3.72(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right)^{119 \mathrm{E}}, 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)^{121 \mathrm{E}}, 4.71\left(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, vinyl-H) ${ }^{119 \mathrm{E}}, 4.73(\mathrm{~d}, J=17.3$ $\mathrm{Hz}, 1 \mathrm{H}$, vinyl-H) ${ }^{120 \mathrm{E}}, 4.90\left(\mathrm{~s}, 1 \mathrm{H}\right.$, vinyl-H) ${ }^{121 \mathrm{E}}, 5.05\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, vinyl-H) ${ }^{119 \mathrm{E}}, 5.09$ $\left(\mathrm{d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, vinyl-H) ${ }^{120 \mathrm{E}}, 5.53\left(\mathrm{~s}, 1 \mathrm{H}\right.$, vinyl-H) ${ }^{121 \mathrm{E}}, 6.60(\mathrm{dd}, J=10.3,17.3 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl-H) ${ }^{120 \mathrm{E}}, 6.72\left(\mathrm{dd}, J=10.4,17.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, vinyl-H) ${ }^{119 \mathrm{E}}, 6.98-7.14(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}){ }^{119-121 \mathrm{E}} ;{ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) : $\delta=2.44(-, c \operatorname{Pr}-\mathrm{C})^{\mathbf{1 2 1 E a}}, 5.02(-, c \operatorname{Pr}-\mathrm{C})^{\mathbf{1 2 1 E}}, 11.61(-, c \operatorname{Pr}-$ $\mathrm{C})^{\mathbf{1 2 0 E}}, 11.73(-, c \operatorname{Pr}-\mathrm{C})^{119 \mathrm{E}}, 17.68(-, c \mathrm{Pr}-\mathrm{C})^{\mathbf{1 2 0 E}}, 17.82(-, c \mathrm{Pr}-\mathrm{C})^{119 \mathrm{E}}, 19.14(+, 2 \times \mathrm{Ar}-$ $\left.\mathrm{CH}_{3}\right)^{\mathbf{1 2 1 E}}, 19.31\left(+, 2 \times \mathrm{Ar}-\mathrm{CH}_{3}\right)^{\mathbf{1 1 9 E}}, 19.58\left(+, 2 \times \mathrm{Ar}-\mathrm{CH}_{3}\right)^{\mathbf{1 1 9 E}}, 51.50\left(+, \mathrm{OCH}_{3}\right)^{\mathbf{1 2 0 E}}, 51.74(+$, $\left.\mathrm{OCH}_{3}\right)^{\mathbf{1 2 1 E}}, 51.80\left(+, \mathrm{OCH}_{3}\right)^{119 \mathrm{E}}, 115.5\left(-\right.$, vinyl-C) ${ }^{\mathbf{1 1 9 E}}, 115.8(- \text {, vinyl-C })^{120 \mathrm{E}}, 118.5(-$, vinylC) ${ }^{\mathbf{1 2 1 E}}, 124.48\left(\mathrm{C}_{\text {quat }}\right)^{\mathbf{1 2 0 E}}, 125.01\left(\mathrm{C}_{\text {quat }}\right)^{\mathbf{1 2 1 E}}, 125.07\left(\mathrm{C}_{\text {quat }}\right)^{\mathbf{1 1 9 E}}, 126.9(+, 3 \times \mathrm{Ar}-\mathrm{C}), 127.0(+$, $\operatorname{Ar}-\mathrm{C}), 127.02(+, 2 \times \mathrm{Ar}-\mathrm{C}), 127.13(+, \operatorname{Ar}-\mathrm{C}), 127.16(+, 2 \times \mathrm{Ar}-\mathrm{C}), 127.43\left(\mathrm{C}_{\text {quat }}\right)^{\mathbf{1 2 1 E}}$, $128.44\left(2 \times \mathrm{C}_{\text {quat }}\right)^{\mathbf{1 2 1 E}}, 130.21\left(\mathrm{C}_{\text {quat }}\right)^{119 \mathrm{E}}, 130.58\left(\mathrm{C}_{\text {quat }}\right)^{\mathbf{1 2 0 E}}, 135.38(+ \text {, vinyl-C })^{\mathbf{1 1 9 E}}, 135.7(+$, vinyl-C) $)^{120 \mathrm{E}}, 135.9\left(\mathrm{C}_{\text {quat }}\right)^{120 \mathrm{E}}, 136.2\left(\mathrm{C}_{\text {quat }}\right)^{119 \mathrm{E}}, 136.4\left(\mathrm{C}_{\text {quat }}\right)^{120 \mathrm{E}}, 136.48\left(\mathrm{C}_{\text {quat }}\right)^{119 \mathrm{E}}, 136.65$ $\left(\mathrm{C}_{\text {quat }}\right)^{120 \mathrm{E}}, 136.98\left(\mathrm{C}_{\text {quat }}\right)^{119 \mathrm{E}}, 138.16\left(\mathrm{C}_{\text {quat }}\right)^{121 \mathrm{E}}, 141.50\left(\mathrm{C}_{\text {quat }}\right)^{121 \mathrm{E}}, 169.22\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)^{121 \mathrm{E}}$, $171.73\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)^{120 \mathrm{E}}, 172.30\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)^{119 \mathrm{E}}$; MS (70 eV, EI), $m / z(\%): 242(80)\left[M^{+}\right], 227$ (20), $\left[M^{+}-\mathrm{CH}_{3}\right], 210$ (22), 195 (20), 183 (85), 167 (100), 153 (33), 128 (14), 115 (8); elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ (242.3): C 79.31, H 7.49; found: C 79.24, H 7.37.

2.4. Hetero-Diels-Alder reaction of allylidenecyclopropanes trans-119E, cis-120E and 121E with N-phenyltriazolinedione (122)

Methyl 6'-(2,6-dimethylphenyl)-2'-phenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo
[1,2-a]pyridazine]-1',3'-dione-1-carboxylate [trans-123E, cis-124E] and
Methyl 6'-(2,6-dimethylphenyl)-2'-phenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo [1,2-a]pyridazine]-1',3'-dione-7'-carboxylate (125E):
The mixture of allylidenecyclopropanes (119-121E) ($242 \mathrm{mg}, 1.00 \mathrm{mmol}$) and dienophile N phenyltriazolinedione $\mathbf{1 2 2}(350 \mathrm{mg}, 2.00 \mathrm{mmol})$ was stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ and 1 $\mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ at $20{ }^{\circ} \mathrm{C}$ for 24 h . After then, the reaction mixture was taken up in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with water $(2 \times 20 \mathrm{~mL})$, the aqueous phase was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After
removal of the solvent in a rotatory evaporator, the residue was subjected to chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield trans-123E, cis124E $\left[R_{\mathrm{f}}=0.72\right.$ (light petroleum/ethyl acetate 1:1)] and 125E $\left[R_{\mathrm{f}}=0.61\right.$ (light petroleum/ethyl acetate $1: 1$)] ($255 \mathrm{mg}, 61 \%$, yellowish oily solid) as a mixture of three regioisomers (ratio 7.1:1:1.4 according to crude NMR).

trans-123E

cis-124E
trans-123E*: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.70(\mathrm{dd}, J$ $=6.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{3}\right), 2.31(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$), $2.41(\mathrm{t}, J=9.23 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 3.21(\mathrm{dd}, J$ $=6.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.31-4.63$ (AB-system, $\delta_{\mathrm{A}}=4.60, \delta_{\mathrm{B}}=4.35, J_{A}=3.7,17.3 \mathrm{~Hz}, J_{B}=$ $3.4,17.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H}), 5.89(\mathrm{t}, J=3.43 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{b}-\mathrm{H})$, 7.02-7.16 (m, 3 H, Ar), 7.34-7.48 (m, 5 H, Ph); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=16.68(-, c \operatorname{Pr}-\mathrm{C}), 20.63(+$, $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 20.82\left(+, \mathrm{Ar}^{2} \mathrm{CH}_{3}\right), 30.07$ (,+ cPr-C), 44.76 (- , $\mathrm{C}-$ a), $48.30\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 52.11\left(+, \mathrm{OCH}_{3}\right), 124.68(+, \mathrm{C}-\mathrm{b})$, $125.54(+), 127.52(+), 127.67(+), 127.90(+), 128.34(+)$, $129.12(+), 130.76\left(\mathrm{C}_{\text {quat }}\right), 135.34\left(\mathrm{C}_{\text {quat }}\right), 135.71\left(\mathrm{C}_{\text {quat }}\right)$, $136.81\left(2 \times \mathrm{C}_{\text {quat }}\right), 149.44\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 152.37\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 168.14\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$. cis $-\mathbf{1 2 4 E}$ *: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25-1.28(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.82(\mathrm{dd}, J=7.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}$, ${ }_{c} \mathrm{Pr}-\mathrm{H}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right.$), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.39(\mathrm{t}, J=7.14 \mathrm{~Hz}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 3.66(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.23-4.60\left(\mathrm{AB}-\right.$ system, $\delta_{\mathrm{A}}=4.56, \delta_{\mathrm{B}}=4.27, J_{A}=4.4,16.8 \mathrm{~Hz}, J_{B}=2.4,16.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{a}-\mathrm{H}), 5.77$ (dd, $J=2.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{b}-\mathrm{H}), 7.01-7.17$ (m, $3 \mathrm{H}, \mathrm{Ar}$), $7.33-7.58$ (m, 5 H , $\mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=17.07(-, c \mathrm{Pr}-\mathrm{C}), 19.94\left(+, \mathrm{Ar}-\mathrm{CH}_{3}\right), 20.32(+$, $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 25.39(+, c \mathrm{Pr}-\mathrm{C}), 46.85(-, \mathrm{C}-\mathrm{a}), 46.30\left(\mathrm{C}_{\text {quat, }}, c \mathrm{Pr}-\mathrm{C}\right), 52.20\left(+, \mathrm{OCH}_{3}\right), 121.36(+, \mathrm{C}-$ b), $126.23(+), 127.58(+), 128.09(+), 128.31(+), 129.08(2 \times+), 131.24(+), 133.28\left(\mathrm{C}_{\text {quat }}\right)$, $136.18\left(\mathrm{C}_{\text {quat }}\right), 136.76\left(\mathrm{C}_{\text {quat }}\right), 137.59\left(\mathrm{C}_{\text {quat }}\right), 149.88\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 154.91\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 170.04$ ($\mathrm{C}_{\text {quat, }} \mathrm{C}=\mathrm{O}$). IR (KBr): $\tilde{v}=3116,3065,2994,2951,2923,2853,1768,1736,1703,1494$, $1453,1423,1376,1356,1294,1260,1201,1181,1166,1143,805,768,754,711,692 \mathrm{~cm}^{-1}$; MS (70 eV, EI), m/z (\%): 417 (100) [$\left.M^{+}\right], 402$ (12), $\left[M^{+}-\mathrm{CH}_{3}\right], 385$ (18), 370 (5), 357 (6), 342 (10), 330 (25), 240 (16), 211 (26), 181 (11), 167 (25), 154 (18), 128 (25), 91 (17), 55 (14); elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ (417.5): C 69.05 , H 5.55 , N 10.07 ; found: C 68.83, H 5.79, N 9.89.

IR, EI mass and elemental analysis were carried out for the mixture of regioisomers trans-123E and cis-124E.

125E: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50{ }^{\circ} \mathrm{C}$): $\delta=0.86-0.90$
 (m, $2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), $2.08-2.13$ (m, $2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), 2.18 ($\mathrm{s}, 6 \mathrm{H}, 2$ $\left.\times \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{a}-\mathrm{H}), 7.0-$ 7.52 (m, $8 \mathrm{H}, \mathrm{Ar}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($50.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=12.45(-, 2 \times c \operatorname{Pr}-\mathrm{C}), 19.91\left(+, 2 \times \mathrm{Ar}-\mathrm{CH}_{3}\right), 43.28$ $\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 45.11(-, \mathrm{C}-\mathrm{a}), 51.79\left(+, \mathrm{OCH}_{3}\right), 120.9\left(\mathrm{C}_{\text {quat }}\right), 122.1\left(\mathrm{C}_{\text {quat }}\right), 125.7(+), 127.4$ $(+), 128.2(+), 128.3(+), 129.1(+), 129.2(+), 131.2\left(\mathrm{C}_{\text {quat }}\right), 132.9\left(\mathrm{C}_{\text {quat }}\right), 135.8\left(\mathrm{C}_{\text {quat }}\right), 148.4$ $\left(\mathrm{C}_{\text {quat }}\right), 150.4\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$, $153.1\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$, $164.2\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; IR (KBr$): \tilde{v}=3066,3020$, 2951, 2923, 2851, 1779, 1734, 1711, 1634, 1621, 1597, 1564, 1507, 1415, 1344, 1276, 1230, 1166, 1028, 765, 712, $688 \mathrm{~cm}^{-1}$; MS (70 eV, EI), m / z (\%): 417 (38) [$\left.M^{+}\right], 402$ (18), [$M^{+}-$ CH_{3}], 358 (5), 269 (5), 212 (16), 181 (14), 167 (19), 128 (17), 119 (18), 93 (100), 77 (19), 65 (12); HRMS-ESI for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ (417.5): $[M+\mathrm{H}]^{+} 418.17619$, calcd. 418.17613 .

2.5. A modification on the spiro[2.5]octene derivative 127

Methyl 8-phenyl-5-(methoxycarbonylmethyl)spiro[2.5]oct-7-ene-5-carboxylate (127):

A sealable Teflon tube with anhydrous DMF (4.5 mL) was charged under argon with $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 49.9 \mu \mathrm{~mol})$ and $\mathrm{PPh}_{3}(39.3 \mathrm{mg}, 150 \mu \mathrm{~mol})$. Argon was bubbled through the mixture for 5 min and the mixture was treated with iodo benzene ($\mathbf{6 7}, 204 \mathrm{mg}, 1.00 \mathrm{mmol}$) and itaconic acid dimethyl ester $(\mathbf{1 2 6}, 316 \mathrm{mg}, 2.00 \mathrm{mmol})$, bicyclopropylidene ($\mathbf{6 6}, 160 \mathrm{mg}, 2.00 \mathrm{mmol}$). After heating at $80^{\circ} \mathrm{C}$ for 48 h at 10 kbar , the solution was cooled to ambient temperature, added to water (50 mL) and extracted with diethyl ether $(5 \times 20 \mathrm{~mL})$. The combined organic phases were washed with water $(4 \times 10 \mathrm{~mL}), \mathrm{NaCl}$ solution (10 mL) and being dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator the residue (578 mg) was subjected to chromatography on silica gel (column 3×30 cm , pentane/diethyl ether $10: 1$) yielded 127 as a colorless oil ($228 \mathrm{mg}, 72 \%$). For the spectroscopic identification of this compound see: references 29 b or 35 .

5-Carboxymethyl-8-phenylspiro[2.5]oct-7-ene-5-carboxylic acid (128):

Spirooctene $\mathbf{1 2 7}(0.819 \mathrm{~g}, 2.6 \mathrm{mmol})$ was heated in the mixture of 80 mL 1 N NaOH and 40 mL MeOH under reflux for 6 h . After solution was cooled to ambient temperature, it was carefully acidified with 2 N HCl and then added into 100 ml ethyl acetate.

The solution was washed with brine $(3 \times 30 \mathrm{~mL})$. The separated organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under vacuum in a rotatory evaporator. The remaining white solid ($\mathbf{1 2 8}, 0,663 \mathrm{~g}, 89 \%$) was used without further purification for the next step.

IR (KBr): $\tilde{v}=3189,2937,2646,1734,1704,1491,1441,1409,1379,1343,1271,1256,1239$, 1171, 1129, 1059, 1024, 991, 915, 824, 760, 702, $685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-acetone): δ $=0.43-0.57(\mathrm{~m}, 4 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.73(\mathrm{dd}, J=1.5,13.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.23(\mathrm{~d}, J=13.9 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.35$ (ddd, $J=1.5,5.0,17.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.76$ (dd, $J=2.7,17.7 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.81-3.04\left(\mathrm{AB}-\mathrm{system}, \delta_{\mathrm{A}}=3.0, \delta_{\mathrm{B}}=2.84, J_{A B}=17.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOH}\right)$, 5.47 (dd, $J=2.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.04-7.07$ (m, $2 \mathrm{H}, \mathrm{Ph}$), $7.23-7.31$ (m, $3 \mathrm{H}, \mathrm{Ph}$), 9.6-11.2 (b.s, $2 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{d}_{6}$-acetone, DEPT): $\delta=10.26(-, c \operatorname{Pr}-\mathrm{C}), 12.58(-, c \operatorname{Pr}-$ C), $18.80\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 34.35(-, \mathrm{C}-4$ or $\mathrm{C}-6), 39.59\left(-, \mathrm{CH}_{2} \mathrm{COOH}\right), 41.51(-, \mathrm{C}-4$ or C-6), $43.96\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-5\right), 123.79(+, \mathrm{C}-7), 127.5(+, \mathrm{Ph}), 128.3(+, 2 \times \mathrm{Ph}), 130.2(+, 2 \times \mathrm{Ph}), 141.0$ $\left(\mathrm{C}_{\text {quat }}\right), 142.9\left(\mathrm{C}_{\text {quat }}\right), 172.2\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right), 177.3\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(\mathrm{DCI}), m / z(\%): 304(54)[M+$ $\left.\mathrm{NH}_{4}{ }^{+}\right], 303$ (56), 286 (100) [$\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4}{ }^{+}\right], 242$ (22), 197 (16), 134 (19).
8-Phenyl-5-phenylcarbomoylmethylspiro[2.5]oct-7-ene-5-carboxylic acid (129):

stirred at room temperature for 3 h . After then, all material was dissolved in $150 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $150 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and washed with brine $(3 \times 20 \mathrm{~mL})$. The separated organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under vacuum in a rotatory evaporator. The remaining brown solid (129, $875 \mathrm{mg}, 97 \%$) was used without further purification for the next step. IR (KBr): $\tilde{v}=$ $3.287,3081,2942,2913,1733,1649,1598,1549,1498,1446,1422,1393,1364,1319,1257$, 1211, 1192, 1072, 1056, 1025, 987, 976, 822, 755, 701, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}-$ acetone): $\delta=0.43-0.59(\mathrm{~m}, 4 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.79(\mathrm{dd}, J=1.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.24(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.40(\mathrm{ddd}, J=1.9,4.8,17.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.78(\mathrm{dd}, J=$ $2.8,17.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}$), 2.93-3.14 (AB-system, $\delta_{\mathrm{A}}=3.11, \delta_{\mathrm{B}}=2.96, J_{A B}=15.6 \mathrm{~Hz}, 2$
$\mathrm{H}, \mathrm{CH}_{2} \mathrm{CONPh}$), 5.49 (dd, $\left.J=3.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}\right), 7.00-7.07$ (m, $3 \mathrm{H}, \mathrm{Ph}$), 7.22-7.30 (m, 5 $\mathrm{H}, \mathrm{Ph}), 7.61-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}, \mathrm{DEPT}\right): \delta=9.85(-, c \mathrm{Pr}-\mathrm{C})$, 11.97 (,$- c \operatorname{Pr}-\mathrm{C}$), $18.13\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 33.45(-, \mathrm{C}-4$ or $\mathrm{C}-6), 41.47(-, \mathrm{C}-4$ or $\mathrm{C}-6), 42.99(-$, $\left.\mathrm{CH}_{2} \mathrm{CONPh}\right), 119.1(+, 2 \times \mathrm{Ph}), 122.9(+, \mathrm{C}-7), 123.2(+, \mathrm{Ph}), 126.7(+, \mathrm{Ph}), 127.6(+, 2 \times$ $\mathrm{Ph}), 128.7(+, 2 \times \mathrm{Ph}), 129.0(+, 2 \times \mathrm{Ph}), 139.3\left(\mathrm{C}_{\text {quat }}\right), 139.9\left(\mathrm{C}_{\text {quat }}\right), 141.6\left(\mathrm{C}_{\text {quat }}\right), 169.5\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O}), 177.2\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$.

7,12-Diphenyl-7-azadispiro[2.1.4.3]dodec-11-ene-6,8-dione (130):

The mixture of $\mathbf{1 2 9}$ ($778 \mathrm{mg}, 2.15 \mathrm{mmol}$), acetic anhydride (2 mL ,
 $21.5 \mathrm{mmol})$ and sodium acetate ($177 \mathrm{mg}, 2.15 \mathrm{mmol}$) was heated at $80{ }^{\circ} \mathrm{C}$ for 1 h . After heating, the solution was cooled to ambient temperature, added to water (50 mL) and extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$. The combined organic phases were washed with brine $(4 \times 20 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator the residue was subjected to chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 6:1) yielded $\mathbf{1 3 0}$ as a colorless solid (562 mg , 76\%).
$R_{\mathrm{f}}=0.33$ (light petroleum/ethyl acetate 6:1), IR (KBr): $\tilde{v}=2915,1775,1706,1593,1492$, 1454, 1396, 1288, 1196, 1166, 1072, 1018, 989, 972, 912, 991, 843, 827, 752, $699 \mathrm{~cm}^{-1} ; \quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.38-0.42(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.51-0.63(\mathrm{~m}, 3 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.18(\mathrm{dd}$, $J=2.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.17(\mathrm{ddd}, J=2.4,5.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.63$ (d, J $=13.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.83(\mathrm{dd}, J=2.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$ or $6-\mathrm{H}), 2.73-3.13(\mathrm{AB}-$ system, $\delta_{\mathrm{A}}=3.07, \delta_{\mathrm{B}}=2.74, J_{A B}=18.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{CONPh}_{2}$), $5.49(\mathrm{dd}, J=2.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, 7-H), 6.95-6.97 (m, $2 \mathrm{H}, \mathrm{Ph}), 7.16-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.29-7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.38-7.41(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=8.78(-, c \operatorname{Pr}-\mathrm{C}), 13.71(-, c \operatorname{Pr}-\mathrm{C}), 18.19$ ($\left.\mathrm{C}_{\text {quat, }}, c \mathrm{Pr}-\mathrm{C}\right), 35.11\left(-, \mathrm{C}-4\right.$ or C-6), $40.14\left(-, \mathrm{CH}_{2} \mathrm{CONPh}\right), 40.89(-, \mathrm{C}-4$ or $\mathrm{C}-6), 44.12$ ($\mathrm{C}_{\text {quat, }}$, C-5), $121.73(+, \mathrm{C}-7), 126.40(+, 2 \times \mathrm{Ph}), 126.9(+, \mathrm{Ph}), 127.6(+, 2 \times \mathrm{Ph}), 128.5(+$, $\mathrm{Ph}), 129.1(+, 2 \times \mathrm{Ph}), 129.2(+, 2 \times \mathrm{Ph}), 131.9\left(\mathrm{C}_{\text {quat }}\right), 139.5\left(\mathrm{C}_{\text {quat }}\right), 143.7\left(\mathrm{C}_{\text {quat }}\right), 175.4\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O}$), 181.4 ($\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}$); MS (70 eV, EI), $m / z(\%): 343$ (100) [$\left.M^{+}\right], 314$ (7), 209 (46), 188 (16), 167 (19), 156 (14), 141 (12), 128 (7); $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2}$ (343.42): calcd. 343.1572 (correct HRMS).

2.5.1. Two attempts for the direct preparation of spiro[2.5]octene 130.

1) A screw-cap Pyrex bottle was charged with anhydrous acetonitrile (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, $4.00 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$. Argon was bubbled through the mixture for 5 $\mathrm{min}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$, and triphenylphosphane ($78.7 \mathrm{mg}, 15 \mathrm{~mol} \%$) were added, and the mixture was stirred once more for an additional 5 min with argon bubbling through, before iodobenzene ($67,408 \mathrm{mg}, 2.00 \mathrm{mmol}$), bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) and N-phenylitaconimide ($\mathbf{1 3 1}, 749 \mathrm{mg}, 4.00 \mathrm{mmol}$) were added. The bottle was tightly closed, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the reaction mixture was taken up in 20 mL of diethyl ether. The solution was washed with water (2×20 $\mathrm{mL})$, the aqueous phase was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator, the residue was subjected to chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, $6: 1$). Separated fractions could not be identified and desired product $\mathbf{1 3 0}$ could not be observed.
2) A screw-cap Pyrex bottle was charged with anhydrous acetonitrile (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, $4.00 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$. Argon was bubbled through the mixture for 5 $\mathrm{min}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$, and triphenylphosphane ($78.7 \mathrm{mg}, 15 \mathrm{~mol} \%$) were added, and the mixture was stirred once more for an additional 5 min with argon bubbling through, before iodobenzene ($\mathbf{6 7}, 408 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were added. The bottle was tightly closed, and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 15 h . After cooling to room temperature, the reaction mixture was taken up in 20 mL of diethyl ether. The solution was washed with water (20 mL), the aqueous phase was extracted with diethyl ether (2 $\times 20 \mathrm{~mL})$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator, the residue was dissolved in 1 mL DMF and taken into a screw-cap Pyrex bottle. After addition of N-phenylitaconimide (131, $749 \mathrm{mg}, 4.00 \mathrm{mmol}$), the mixture stirred at $120{ }^{\circ} \mathrm{C}$ for 10 h . After cooling to room temperature, the solvent was removed in a rotatory evaporator. The residue was subjected to chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30$ cm , light petroleum/ethyl acetate, $6: 1$). Separated fractions could not be identified and desired product $\mathbf{1 3 0}$ could not be observed. Only $390 \mathrm{mg} N$-phenylitaconimide (131) was recovered.

2.6. A two-step four-component queuing cascade with bicyclopropylidene (66)

2.6.1. General procedure for the one-pot, two-step queuing cascade involving bicyclopropylidene (66) an iodoalkene, a secondary amine 78 and a dienophile under conditions A (GP-A):

Palladium acetate ($22.4 \mathrm{mg}, 100 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%$), were suspended in anhydrous DMF (1 mL) in a screw-cap pyrex bottle. Argon was bubbled through the mixture for 5 min , and then the respective amine (2.00 mmol or 2.50 mmol), triethylamine ($202 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoalkene (2.00 mmol) and bicyclopropylidene (66) $(320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were added. After having stirred the mixture for the given time at the stated temperature the bottle was cooled to ambient temperature, the respective dienophile (4.00 mmol) was added, (N-phenyltriazolinedione was added to the ice-cooled mixture), and then the mixture was stirred for an additional time as stated at the given temperature in a preheated oil bath. After cooling to room temperature, the reaction mixture was taken up in 20 mL of diethyl ether. The solution was washed with water $(2 \times 20 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator, the residue was subjected to chromatography on silica gel.

2.6.2. General procedure for the one-pot, two-step queuing cascade involving bicyclopropylidene (66) an iodoalkene, a secondary amine 78 and a dienophile under conditions $B(G P-B)$:

A screw-cap Pyrex bottle was charged with anhydrous acetonitrile (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, 4.00 mmol) and $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$. Argon was bubbled through the mixture for 5 $\mathrm{min}, \operatorname{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$, and tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}, 10$ $\mathrm{mol} \%$) were added, and the mixture was stirred once more for an additional 5 min with argon bubbling through, before the respective iodoalkene (2.00 mmol), the nucleophile (2.00 mmol or 2.50 mmol) and bicyclopropylidene ($\mathbf{6 6}$) ($320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were added. The bottle was tightly closed, and the mixture was stirred for the given period of time at the stated temperature. After the bottle was cooled to ambient temperature, the respective dienophile (4.00 mmol) was added, (N-phenyltriazolinedione was added to the ice-cooled mixture), and then the mixture was stirred for the additional time at the given temperature in a preheated oil bath. After cooling to room temperature, the reaction mixture was taken up in 20 mL of diethyl ether. The solution was washed with water $(2 \times 20 \mathrm{~mL})$, the aqueous phase was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$, and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After
removal of the solvent in a rotatory evaporator, the residue was subjected to chromatography on silica gel.

2.6.3. Synthesis of spiro[2.5]octenes (175aa-ad and 175bb-eb)

Methyl 8-(1-morpholin-4-ylethyl)spiro[2.5]oct-7-ene-5-carboxylate (175aa):

1) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (556 mg , 4.00 mmol), $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, $174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00$ mmol) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous MeCN (2 mL) at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature methyl acrylate (68a, 344 $\mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h. After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield 175aa ($363 \mathrm{mg}, 65 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.1:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}$, $200 \mu \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine ($78 \mathrm{a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, methyl acrylate ($\mathbf{6 8 a}, 344 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 3:1) to yield 175aa ($223 \mathrm{mg}, 40 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.3:1 according to NMR).
Major diastereomer: $R_{\mathrm{f}}=0.27$ (light petroleum/ethyl acetate, 3:1); IR (film): $\tilde{v}=3076$, 2973, 2851, 2809, 1738, 1653, 1456, 1329, 1160, 1120, $911,866 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.32-0.39(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.47-0.54(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.77-0.95(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.02(\mathrm{~d}$, $J=6.23 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.24 (ddd, $J=12.75,2.72,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $\left.6-\mathrm{H}\right), 2.03$ (ddd, $J=12.5$, $12.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.12\left(\mathrm{q}, J=6.23 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{I}^{\prime}-\mathrm{H}\right), 2.29-2.45\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 4-\right.$ or 6-H), 2.67-2.80 (m, 1 H, 5-H), 3.63-3.69 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), $3.66\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 5.77$ (dd, $J=4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=10.74(-, c \operatorname{Pr}-\mathrm{C})$, $13.23(-, c \operatorname{Pr}-\mathrm{C}), 17.78\left(+, \mathrm{CH}_{3}\right), 19.47\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.34(-, \mathrm{C}-4$ or -6$), 38.56(-, \mathrm{C}-4$ or -6
), $39.29(+, \mathrm{C}-5), 50.74\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 51.56\left(+, \mathrm{OCH}_{3}\right), 59.17(+, \mathrm{C}-1 '), 67.20\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $124.8(+, \mathrm{C}-7), 140.73$ ($\left.\mathrm{C}_{\text {quat, }}, \mathrm{C}-8\right), 176.09\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 279$ (29) [$\left.M^{+}\right], 264$ (100) $\left[M^{+}-\mathrm{CH}_{3}\right], 250$ (11) $\left[M^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 133$ (21), 114 (86), 91 (24), 86 (12); $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3}$ (279.38): calcd. 279.1834 (correct HRMS); elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3}$: C 68.79, H 9.02; found: C 68.63, H 9.10.
Minor diastereomer: $R_{\mathrm{f}}=0.23$ (light petroleum/ethyl acetate, 3:1); IR (film): $\tilde{v}=3079,2952$, 2851, 2805, 1740, 1650, 1457, 1257, 1194, 1172, $945,861 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.35-0.51(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.59-0.66(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.03\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.02-1.14(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.48(\mathrm{dd}, J=12.8,3.1, \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.90(\mathrm{dd}, J=10.2,13$ $\mathrm{Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.20\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{l}^{\prime}-\mathrm{H}\right), 2.32-2.48\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 4-\right.$ or $\left.6-\mathrm{H}\right)$, 2.69-2.80 (m, 1 H, 5-H), 3.63-3.71 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.71(\mathrm{t}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=11.75(-, c \operatorname{Pr}-\mathrm{C}), 12.39(-, c \operatorname{Pr}-\mathrm{C})$, $16.99\left(+, \mathrm{CH}_{3}\right), 18.51\left(\mathrm{C}_{\text {quat, }}, c \operatorname{Pr}-\mathrm{C}\right), 27.80(-, \mathrm{C}-4$ or -6), $38.16(-, \mathrm{C}-4$ or -6$), 38.72(+, \mathrm{C}-5)$, $50.38\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 51.42\left(+, \mathrm{OCH}_{3}\right), 58.51(+, \mathrm{C}-1 '), 67.24\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 121.4(+, \mathrm{C}-7)$, 143.67 ($\left.\mathrm{C}_{\text {quat, }}, \mathrm{C}-8\right), 175.84\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 279(26)\left[M^{+}\right], 264$ (100) [$\left.M^{+}-\mathrm{CH}_{3}\right], 250$ (16) $\left[M^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 133$ (19), 114 (94), 91 (22), 86 (16); $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3}$ (279.38): calcd. 279.1834 (correct HRMS).

tert-Butyl 8-(1-morpholin-4-ylethyl)spiro[2.5]oct-7-ene-5-carboxylate (175ab):

1) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-
 2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene ($\mathbf{6 6}, 320$ $\mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}$, 4.00 mmol) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate $3: 1$) to yield 175ab ($426 \mathrm{mg}, 66 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.3:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($78 \mathrm{a}, 174 \mathrm{mg}$, 2.00 mmol), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ mmol) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to
room temperature tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield $\mathbf{1 7 5 a b}(413 \mathrm{mg}, 64 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.3:1 according to NMR).

Major diastereomer: $R_{\mathrm{f}}=0.34$ (light petroleum/ethyl acetate, 3:1); IR (film): $\tilde{v}=3077,2977$, 2851, 2809, 2689, 1731, 1455, 1367, 1339, 1253, 1150, 1119, 942, $855 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.32-0.39(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.47-0.54(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.77-0.92(\mathrm{~m}, 2 \mathrm{H}$, $c \operatorname{Pr}-\mathrm{H}), 1.02\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.19 (ddd, $J=12.4,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or 6- H), 1.43 $\left[\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.98(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.09\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{H}\right), 2.27-$ 2.42 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 4-$ or $\left.6-\mathrm{H}\right), 2.53-2.68(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.65(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), $5.76(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=10.75(-$, $c \operatorname{Pr}-\mathrm{C}), 13.16(-, c \operatorname{Pr}-\mathrm{C}), 17.87\left(+, \mathrm{CH}_{3}\right), 19.45\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.00\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.53(-, \mathrm{C}-$ 4 or -6$), 38.51(-, \mathrm{C}-4$ or -6$), 40.32(+, \mathrm{C}-5), 50.75\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 59.11(+, \mathrm{C}-1 '), 67.15(-$, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 79.78\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 120.7(+, \mathrm{C}-7), 140.64\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-8\right), 174.98\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 eV, EI) $m / z(\%): 321(46)\left[M^{+}\right], 306(68)\left[M^{+}-\mathrm{CH}_{3}\right], 250(60)\left[M^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 133$ (30), 114 (100), 100 (22), 86 (20); elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}$ (321.5): C 70.99, H 9.72; found: C 70.78, H 9.52.

Minor diastereomer: $R_{\mathrm{f}}=0.29$ (light petroleum/ethyl acetate, 3:1); IR (film): $\tilde{v}=3079,2977$, 2851, 2804, 2689, 1730, 1454, 1367, 1329, 1256, 1150, 1119, 945, $863 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.35-0.42(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.46-0.54(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.57-0.64(\mathrm{~m}, 1 \mathrm{H}$, $c \operatorname{Pr}-\mathrm{H}), 1.03\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08-1.17(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.43\left[\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 4\right.$ - or $\left.6-\mathrm{H}^{*}\right], 1.87(\mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.20\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{1}^{\prime}-\mathrm{H}\right), 2.31-2.42(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NCH}_{2}, 4-$ or $6-\mathrm{H}$), $2.57-2.68(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.64\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $5.71(\mathrm{t}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$. *The peak of this proton sits under the broad singlet of the tert-butyl group, thus the spin coupling constant of this proton could not be determined. This proton correlates clearly with the carbon peak at 38.14 ppm in the HMQC spectrum. ${ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=12.13(-, c \operatorname{Pr}-\mathrm{C}), 12.43(-, c \operatorname{Pr}-\mathrm{C}), 17.15\left(+, \mathrm{CH}_{3}\right), 18.63\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\right.$ C), $28.01\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.01$ (-, C-4 or -6), 38.14 (-, C-4 or -6), $39.85(+, \mathrm{C}-5), 50.47(-$, $\left.\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 58.58(+, \mathrm{C}-1 '), 67.17\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $79.88\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 120.68(+, \mathrm{C}-7)$, $140.58\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}-8\right), 174.81\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 321$ (49) [$\left.M^{+}\right], 306$ (94) [M^{+} $\left.-\mathrm{CH}_{3}\right], 250(80)\left[M^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 133(30), 114$ (100), 100 (26), 86 (22); elemental analysis calcd
(\%) for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}$: C 70.99, H 9.72; found: C 70.72, H 9.98. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}$ (321.46): calcd. 321.2304 (correct HRMS).

4-[1-(7-Benzenesulfonylspiro[2.5]oct-4-en-4-yl)-ethyl]-morpholine (175ac):

1) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri- $2-$
 furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00$ $\mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, 174 $\mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature phenyl vinyl sulfone ($\mathbf{6 8 c}, 672 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, $1: 1$) to yield $\mathbf{1 7 5 a c}(450 \mathrm{mg}, 62 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.2:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene ($\mathbf{1 7 3}$, $308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, phenyl vinyl sulfone ($68 \mathrm{c}, 672 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate $1: 1$) to yield 175ac ($334 \mathrm{mg}, 46 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.1:1 according to NMR).

Major diastereomer: $R_{\mathrm{f}}=0.45$ (light petroleum/ethyl acetate, 1:1); IR $(\mathrm{KBr}): \tilde{v}=3064,2972$, 2955, 2856, 2814, 1448, 1311 ($\mathrm{S}=\mathrm{O}$), 1275 ($\mathrm{S}=\mathrm{O}$), 1152 ($\mathrm{S}=\mathrm{O}$), 1116 ($\mathrm{S}=\mathrm{O}$), 1023, 938, 861, $726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.30-0.39(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.52-0.62(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-$ H), $0.74-0.84(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.92-1.00(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.99\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.38$ (ddd, $J=12.4,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ or $8-\mathrm{H}), 2.04-2.17\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}, 6-\right.$ or $\left.8-\mathrm{H}\right), 2.29-2.41(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 6$ - or $\left.8-\mathrm{H}\right), 3.28-3.45(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.65\left(\mathrm{t}, J=4.56 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $5.72(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.52-7.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.86-7.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=10.74(-, c \operatorname{Pr}-\mathrm{C}), 13.37(-, c \operatorname{Pr}-\mathrm{C}), 17.34\left(+, \mathrm{CH}_{3}\right), 19.49\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\right.$ C), $25.57(-, \mathrm{C}-6$ or -8$), 34.67(-, \mathrm{C}-6$ or -8$), 50.46\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 59.00(+, \mathrm{C}-1$), $59.77(+$,

C-7), $66.99\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 118.60(+, \mathrm{C}-5), 128.71$ (+, Ph-C), 128.99 (+, Ph-C), 133.56 (+, PhC), $137.02\left(\mathrm{C}_{\text {quat }}\right), 141.18\left(\mathrm{C}_{\text {quat }}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 361(11)\left[M^{+}\right], 346(38)\left[M^{+}-\right.$ CH_{3}], 204 (35), 117 (28), 114 (100), 91 (33); elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$ (361.5): C 66.45, H 7.53; found: C 66.24, H 7.61.

Minor diastereomer: $R_{\mathrm{f}}=0.38$ (light petroleum/ethyl acetate, 1:1); IR (film): $\tilde{v}=3057,2967$, 2858, 2812, 1447, 1306 ($\mathrm{S}=\mathrm{O}$), $1273(\mathrm{~S}=\mathrm{O})$, $1147(\mathrm{~S}=\mathrm{O}), 1114(\mathrm{~S}=\mathrm{O}), 944,751,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.24-0.38(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.45-0.55(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.92(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.17-1.23 (m, 1H, $\left.c \operatorname{Pr}-\mathrm{H}\right), 1.33(\mathrm{ddd}, J=12.7,2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ or $8-$ H), $2.04(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ or $8-\mathrm{H}), 2.16-2.45\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, ~ 1 '-\mathrm{H}, 6-\right.$ or $\left.8-\mathrm{H}\right), 3.20-$ $3.36(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.54\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 5.72(\mathrm{dd}, J=5.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, 7.44-7.63 (m, $3 \mathrm{H}, \mathrm{Ph}$), 7.77-7.82 (m, $2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=$ 11.83 (,$- c \operatorname{Pr}-\mathrm{C}$), $13.85(-, c \operatorname{Pr}-\mathrm{C}), 16.31\left(+, \mathrm{CH}_{3}\right), 19.06\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 25.65(-, \mathrm{C}-6$ or -8$)$, 34.36 (-, C-8 or -6), $50.19\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 58.56$ (+, C-1'), 59.67 (+, C-7), 67.25 (-, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), 120.09 (+, C-5), 128.82 (,$+ \mathrm{Ph}-\mathrm{C}$), 129.13 (,$\left.+ \mathrm{Ph}-\mathrm{C}\right), 133.68$ (,$\left.+ \mathrm{Ph}-\mathrm{C}\right), 137.23$ $\left(\mathrm{C}_{\text {quat }}\right), 141.61\left(\mathrm{C}_{\text {quat }}\right)$; MS (70 eV, EI), $m / z(\%): 361$ (13) $\left[M^{+}\right], 346$ (47) $\left[M^{+}-\mathrm{CH}_{3}\right], 204$ (42), 117 (37), 114 (100), 91 (33) 77 (61); elemental analysis calcd. (\%) for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$ (361.5): C 66.45, H 7.53; found: C 66.21, H 7.62.

4,5-dimethyl 8-(1-morpholin-4-ylethyl)spiro[2.5]oct-7-ene-carboxylate (cis-/trans-175ad):

trans-175a

cis-175a

1) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00$ mmol), $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine (78a, 174 $\mathrm{mg}, 2.00 \mathrm{mmol})$, iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, dimethyl fumarate (68d, 576 $\mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying over MgSO_{4}, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield cis-/trans-175ad ($391.7 \mathrm{mg}, 58 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.2:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}), \mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene (173, $308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}, 576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 1:1) to yield 175ad ($263 \mathrm{mg}, 39 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.3:1 according to NMR).
3) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($78 \mathrm{a}, 174 \mathrm{mg}$, 2.00 mmol), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ mmol) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, dimethyl maleate ($\mathbf{6 8 e}, 576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying over MgSO_{4}, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield cis-/trans-175ad ($351 \mathrm{mg}, 52 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.7:1 according to NMR).

Major and minor diastereomers*: $R_{\mathrm{f}}=0.27$ (light petroleum/ethyl acetate, 3:1); IR (film): \tilde{v} $=3083$, 2953, 2850, 2809, 2691, 1739, 1466, 1349, 1265, 1197, 1172, 1119, 1021, 945, 918 $864 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.43-0.50(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.59-0.68(\mathrm{~m}, 3 \mathrm{H}, c \operatorname{Pr}-$ H), 0.70-0.81 (m, 2 H, $c \operatorname{Pr}-\mathrm{H}), 0.93-0.99(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.04\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04$ (d, $\left.J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{l}^{\prime}-\mathrm{H}\right), 2.19-2.52\left(\mathrm{~m}, 13 \mathrm{H}, 2 \times\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right)\right.$, $\left.2 \times 6-\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.58(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 2.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.12(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.21-3.26(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.62-3.68\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.65(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.67\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{OCH}_{3}\right), 5.75(\mathrm{q}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , CDCl_{3}, DEPT): $\delta=9.77(-, c \operatorname{Pr}-\mathrm{C}), 9.86(-, c \operatorname{Pr}-\mathrm{C}), 10.65(-, c \operatorname{Pr}-\mathrm{C}), 11.61(-, c \operatorname{Pr}-\mathrm{C}), 16.95$ $\left(+, \mathrm{CH}_{3}\right), 17.22\left(+, \mathrm{CH}_{3}\right), 18.61\left(\mathrm{C}_{\text {quat, }}, c \operatorname{Pr}-\mathrm{C}\right), 19.29\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 24.51(-, \mathrm{C}-6), 26.51(-, \mathrm{C}-$ 6), $40.56(+, \mathrm{C}-5), 41.33(+, \mathrm{C}-5), 49.77(+, \mathrm{C}-4), 50.52\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 50.66\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, 50.77 (+, C-4), $51.59\left(+, 4 \times \mathrm{OCH}_{3}\right), 58.93\left(+, \mathrm{C}-1\right.$ '), $59.56(+, \mathrm{C}-1 '), 67.22\left(-, 2 \times \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, 120.04 (+, C-7), 121.09 (+, C-7), $138.76\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-8\right), 139.65\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}-8\right), 173.11\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$, $173.24\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.04\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right), 174.72\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 337$ (10) $\left[M^{+}\right], 322$ (47) $\left[M^{+}-\mathrm{CH}_{3}\right], 262$ (5), 191 (11), 131 (24), 114 (100), 91 (24) 59 (26);
elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5}$ (337.4): C 64.07, H 8.07; found: C 64.26, H 7.86. *Proton and carbon chemical shifts were given for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not proper to classify all of the peaks for major and minor diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.
tert-Butyl 8-(1-piperidin-4-ylethyl)spiro[2.5]oct-7-ene-5-carboxylate (175bb):

1) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-

2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), piperidine ($\mathbf{7 8 b}, 170.3 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene (173, $308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{1}, 320$ $\mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL), at $80{ }^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30$ cm , light petroleum/ethyl acetate 1:1) to yield $\mathbf{1 7 5 b b}$ ($209 \mathrm{mg}, 33 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et} \mathrm{NCl}^{2}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, piperidine ($78 \mathrm{~b}, 170.3 \mathrm{mg}$, 2.00 mmol), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ $\mathrm{mmol})$ were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield $\mathbf{1 7 5 b b}$ ($171 \mathrm{mg}, 27 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.1:1 according to NMR).

Diastereomer I: $R_{\mathrm{f}}=0.28$ (light petroleum/ethyl acetate, 1:1); IR (film): $\tilde{v}=3075$, 2975, 2932, 2852, 2793, 2747, 1729, 1456, 1391, 1367, 1320, 1255, 1153, 1060, 932, $851 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.29-0.34(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.45-0.49(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.82-0.91$ (m, $2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.99\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13-1.19(\mathrm{~m}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.36-1.51(\mathrm{~m}, 6$ H , piperidine), $1.43\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.98(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.19-2.45(\mathrm{~m}, 7 \mathrm{H}$, 4- or 6-H, piperidine, $\left.1^{\prime}-\mathrm{H}\right), 2.58-2.71(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.68-5.71(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=10.77(-, c \operatorname{Pr}-\mathrm{C}), 13.70(-, c \operatorname{Pr}-\mathrm{C}), 16.41\left(+, \mathrm{CH}_{3}\right), 19.91\left(\mathrm{C}_{\text {quat }}\right.$,
cPr-C), 24.75 (-, piperidine), 26.19 (- , piperidine), $28.02\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.64(-, \mathrm{C}-4$ or -6$)$, 38.79 (-, C-4 or -6), 40.41 (+, C-5), 50.91 (-, piperidine), 59.49 (+, C-1'), $79.71\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right.\right.$ $\left.)_{3}\right], 120.29(+, \mathrm{C}-7), 141.16\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}-8\right), 175.21\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 319$ (18) $\left[M^{+}\right], 304(58)\left[M^{+}-\mathrm{CH}_{3}\right], 248$ (60), 234 (12), 112 (100), 84 (26); elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}$ (319.5): C 75.19, H 10.41; found: C 74.97, H 10.66.
Diastereomer II: $R_{\mathrm{f}}=0.18$ (light petroleum/ethyl acetate 1:1); IR (film): $\tilde{v}=3078,2975,2932$, 2852, 2790, 2748, 1729, 1456, 1391, 1367, 1332, 1257, 1153, 1117, 933, $850 \mathrm{~cm}^{-1} ; \quad{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.27-0.34(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.40-0.48(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.51-0.58(\mathrm{~m}, 1$ $\mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.98\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09-1.19(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.29-1.51(\mathrm{~m}, 7 \mathrm{H}, 4-\mathrm{or}$ 6-H, piperidine), 1.37 [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.79-1.89(\mathrm{~m}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.18-2.40(\mathrm{~m}, 7 \mathrm{H}, 4-$ or $6-\mathrm{H}$, piperidine, $\left.1^{\prime}-\mathrm{H}\right), 2.51-2.63(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.68(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\mathrm{CDCl}_{3,}$ DEPT): $\delta=12.24(-, c \operatorname{Pr}-\mathrm{C}), 12.60(-, c \operatorname{Pr}-\mathrm{C}), 16.36\left(\mathrm{C}_{\text {quat, }}, c \operatorname{Pr}-\mathrm{C}\right), 18.76$ $\left(+, \mathrm{CH}_{3}\right), 24.62\left(-\right.$, piperidine), $26.12\left(-\right.$, piperidine), $27.94\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.09(-, \mathrm{C}-4$ or -6$)$, 38.25 (-, C-4 or -6), 39.92 (+, C-5), 50.75 (-, piperidine), 58.76 (+, C-1'), $79.68\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right.\right.$ $\left.)_{3}\right], 121.45(+, \mathrm{C}-7), 141.00\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}-8\right), 174.87\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 319$ (18) $\left[M^{+}\right], 304(58)\left[M^{+}-\mathrm{CH}_{3}\right], 248$ (60), 234 (12), 112 (100), 84 (26); elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}$ (319.5): C 75.19, H 10.41; found: C 74.97, H 10.66.

tert-Butyl 8-(1-pyrrolidin-4-ylethyl)spiro[2.5]oct-7-ene-5-carboxylate (175cb):

1) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-
 2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), pyrrolidine ($\mathbf{7 8 c}, 142 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene ($\mathbf{6 6}, 320$ $\mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate/methanol 3:1:1) to yield $\mathbf{1 7 5 c b}$ ($176 \mathrm{mg}, 29 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, pyrrolidine ($78 \mathrm{c}, 142 \mathrm{mg}$, 2.00 mmol), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ mmol) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to
room temperature tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate/methanol 3:1:1) to yield $\mathbf{1 7 5 c b}(127 \mathrm{mg}, 21 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1:1 according to NMR).

Diastereomer I: $R_{\mathrm{f}}=0.33$ (light petroleum/ethyl acetate/methanol, 3:1:1); IR (film): $\tilde{v}=3075$, 2971, 2932, 2875, 2776, 2712, 1728, 1478, 1457, 1256, 1152, $985,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.34-0.38(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.46-0.49(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.62-0.66(\mathrm{~m}, 1 \mathrm{H}$, $c \operatorname{Pr}-\mathrm{H}), 0.80-0.84(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.07\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.14-1.17 (m, $1 \mathrm{H}, 4-$ or 6H), 1.39 [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.66-1.71\left(\mathrm{~m}, 4 \mathrm{H}\right.$, pyrrolidine), $1.81\left(\mathrm{q}, J=6.11 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$, $1.96(\mathrm{td}, J=1.8,12.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.21(\mathrm{ddd}, J=17.5,11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H})$, 2.33-2.38 (m, 3 H, 4- or 6-H, pyrrolidine), 2.42-2.44 (m, 2 H , pyrrolidine), $2.55-2.60(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{H}), 5.79(\mathrm{dd}, J=2.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=10.59(-$, $c \operatorname{Pr}-\mathrm{C}), 13.17(-, c \operatorname{Pr}-\mathrm{C}), 18.66\left(\mathrm{C}_{\text {quat, }}, c \operatorname{Pr}-\mathrm{C}\right), 22.72\left(+, \mathrm{CH}_{3}\right), 23.35(-$, pyrrolidine $), 28.04[+$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.55(-, \mathrm{C}-4$ or -6$), 38.30(-, \mathrm{C}-4$ or -6$), 40.43(+, \mathrm{C}-5), 52.66$ (- , pyrrolidine), $59.31\left(+, \mathrm{C}-1\right.$ '), $79.78\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 119.74(+, \mathrm{C}-7), 142.42\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-8\right), 175.16\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O}$); MS (70 eV, EI), $m / z(\%): 305(20)\left[M^{+}\right], 290(56)\left[M^{+}-\mathrm{CH}_{3}\right], 234$ (44), 220 (10), 98 (100), 70 (22); elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$ (305.5): C 74.71, H 10.23; found: C 74.41, H 10.01.

Diastereomer II: $R_{\mathrm{f}}=0.25$ (light petroleum/ethyl acetate/methanol, 3:1:1); IR (film): $\tilde{v}=$ 3078, 2971, 2875, 2776, 2710, 1728, 1478, 1457, 1391, 1367, 1256, 1054, 947, $850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.36-0.42(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.44-0.51(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.55-0.61$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.96-1.03(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.07\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.47(\mathrm{~m}, 1 \mathrm{H}$, 4- or 6-H), $1.41\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.67-1.71(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine), 1.82-1.89 (m, 1' H, 4- or 6H), $1.98\left(\mathrm{q}, ~ J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.27-2.34(\mathrm{~m}, 2 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.43-2.54(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine), 2.54-2.63 (m, 1 H, 5-H), $5.79(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz , CDCl_{3}, DEPT): $\delta=12.11(-, c \operatorname{Pr}-\mathrm{C}), 12.27(-, c \operatorname{Pr}-\mathrm{C}), 18.42\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 22.64\left(+, \mathrm{CH}_{3}\right)$, 23.33 (-, pyrrolidine), 28.03 [,$\left.+ \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 38.07$ (-, C-4 or -6), 39.88 (+, C-5), 52.67 (-, pyrrolidine), 58.19 (+, C-1'), $79.80\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 120.97$ (+, C-7), $142.54\left(\mathrm{C}_{\text {quat }}, \mathrm{C}-8\right)$, 174.86 ($\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}$); MS (70 eV, EI), $m / z(\%): 305$ (4) [$\left.M^{+}\right], 290(24)\left[M^{+}-\mathrm{CH}_{3}\right], 234$ (28), 220 (12), 98 (100), 70 (35), 57 (30), 41 (18); elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$ (305.5): C 74.71, H 10.23; found: C 74.41, H 10.01.
tert-Butyl 8-[1-(4-benzylpiperazin-1-yl)ethyl]spiro[2.5]oct-7-ene-5-carboxylate (175db):

1) According to GP-B, $\operatorname{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$,
 tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556$ $\mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol}), \mathrm{N}-$ benzylpiperazine (78d, $352.5 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene $(\mathbf{1 7 3}, \quad 308 \mathrm{mg}, \quad 2.00 \mathrm{mmol})$ and bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, $3: 1$) to yield $\mathbf{1 7 5 d b}(395 \mathrm{mg}, 48 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.1:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($202 \mathrm{mg}, 2.00 \mathrm{mmol}$), N-benzylpiperazine (78d, $352.5 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF (1 mL), at $80{ }^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30$ cm , light petroleum/ethyl acetate 3:1) to yield $\mathbf{1 7 5 d b}$ ($362 \mathrm{mg}, 44 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.4:1 according to NMR).

Major diastereomer: $R_{\mathrm{f}}=0.39$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3063$, 2975, 2932, 2808, 2689, 1727, 1495, 1391, 1367, 1330, 1258, 1153, 1013, 910, 849, 823, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.33-0.40(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.45-0.52(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.56-$ $0.64(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.03\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11-1.18(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H})$,
1.36-1.43 (m, $1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.43\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.88(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H})$, $2.09\left(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{l}^{\prime}-\mathrm{H}\right), 2.31-2.42(\mathrm{~m}, 10 \mathrm{H}$, piperazine, $4-$ or $6-\mathrm{H})$, $2.56-2.67(\mathrm{~m}, 1 \mathrm{H}$, $5-\mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}), 5.68(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.21-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=12.11(-, c \operatorname{Pr}-\mathrm{C}), 12.61(-, c \operatorname{Pr}-\mathrm{C}), 17.37\left(+, \mathrm{CH}_{3}\right), 18.73\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\right.$ C), $28.03\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.12(-, \mathrm{C}-4$ or -6$), 38.30(-, \mathrm{C}-4$ or -6$), 39.99(+, \mathrm{C}-5), 49.81(-$, piperazine), 53.51 (-, piperazine), 58.23 (+ , $\mathrm{C}-1$ '), $63.10(-, \mathrm{Bn}), 79.77\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 121.5$ (+, C-7), 126.87 (+, Ph-C), 128.08 (+, Ph-C), 129.21 (+, Ph-C), 138.21 ($\mathrm{C}_{\text {quat }}$), 141.16 ($\mathrm{C}_{\text {quat }}$), 174.88 ($\mathrm{C}_{\text {quat, }}$ C=O); MS (70 eV, EI), $m / z(\%): 410(26)\left[M^{+}\right], 395$ (6) [$\left.M^{+}-\mathrm{CH}_{3}\right], 203$ (10),

175 (100), 91 (42); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}$ (410.6): C 76.06, H 9.33; found: C 75.81, H 9.14.

Minor diastereomer: $R_{\mathrm{f}}=0.55$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3063,3026$ 2974, 2931, 2807, 1727, 1495, 1455, 1391, 1367, 1318, 1256, 1150, 1013, 906, 849, 825, 736 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.29-0.35(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.47-0.52(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, $0.80-0.89(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.02\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.21(\mathrm{~m}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.43$ $\left[\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.98(\mathrm{t}, J=12.30 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.17\left(\mathrm{q}, J=6.42 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{H}\right), 2.24$ $2.56(\mathrm{~m}, 10 \mathrm{H}$, piperazine, $4-$ or $6-\mathrm{H}), 2.56-2.68(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}), 5.73(\mathrm{t}, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ; 7.21-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=10.79(-$, $c \operatorname{Pr}-\mathrm{C}), 13.38(-, c \operatorname{Pr}-\mathrm{C}), 17.71\left(+, \mathrm{CH}_{3}\right), 19.62\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 28.05\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.59(-, \mathrm{C}-$ 4 or -6), 38.68 (- , C-4 or -6), 40.41 (+, C-5), 49.99 (- , piperazine), 53.43 (- , piperazine), 58.88 $\left(+, \mathrm{C}-1\right.$ '), $63.09(-, \mathrm{Bn}), 79.76\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 120.48(+, \mathrm{C}-7), 126.88(+, \mathrm{Ph}-\mathrm{C}), 128.09(+$, Ph-C), 129.18 (+, Ph-C), $138.22\left(\mathrm{C}_{\text {quat }}\right), 141.04\left(\mathrm{C}_{\text {quat }}\right), 175.09\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI})$, $m / z(\%): 410(36)\left[M^{+}\right], 395(8)\left[M^{+}-\mathrm{CH}_{3}\right], 337$ (19), 203 (14), 175 (100), 91 (35); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}$ (410.6): C 76.06, H 9.33; found: C 75.81, H 9.14.
tert-Butyl 4-[1-(7-tert-butoxycarbonylspiro[2.5]oct-4-en-4-yl)ethyl]piperazinecarboxylate (175eb):

1) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100$ $\mu \mathrm{mol})$, tri-2-furylphosphine (46.4 mg, $200 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol})$, $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol}), N$-Boc-piperazine (78e, $372 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene ($\mathbf{1 7 3}, 308$ $\mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}$, $320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield 175eb ($410.7 \mathrm{mg}, 49 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}), \mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol}), N$-Boc-piperazine ($\mathbf{7 8 e}, 372 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in
anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature tertbutyl acrylate (68b, $512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 3:1) to yield $\mathbf{1 7 5 e b}$ ($327 \mathrm{mg}, 39 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.4:1 according to NMR).

Diastereomer I: $R_{\mathrm{f}}=0.54$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3076,2976,2931$, 2814, 1727, 1698, 1455, 1422, 1366, 1291, 1248, 1170, 1003, 923, $733 \mathrm{~cm}^{-1} ;{ }^{1} H$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.31-0.38(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.47-0.54(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.77-0.92(\mathrm{~m}, 2 \mathrm{H}$, $\left.{ }_{c} \mathrm{Pr}-\mathrm{H}\right), 1.02\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16-1.21(\mathrm{~m}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.43\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.44\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.98(\mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.18(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{l}-\mathrm{H})$, 2.25-2.38 (m, 6 H ; piperazine, $4-$ or $6-\mathrm{H}), 2.57-2.69(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.35(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}$, piperazine), 5.75 (dd, $J=2.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=$ $10.65(-, c \operatorname{Pr}-\mathrm{C}), 13.19(-, c \operatorname{Pr}-\mathrm{C}), 17.22\left(+, \mathrm{CH}_{3}\right), 19.46\left(\mathrm{C}_{\text {quat, }}, c \operatorname{Pr}-\mathrm{C}\right), 27.85\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $28.21\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.39(-, \mathrm{C}-4$ or -6$), 38.41(-, \mathrm{C}-4$ or -6$), 40.13(+, \mathrm{C}-5), 43.19(-$, piperazine) $)^{*}, 49.59(-$, piperazine $), 58.60\left(+, \mathrm{C}-1^{\prime}\right), 79.08\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 79.58\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right.\right.$ $\left.)_{3}\right], 120.63(+, \mathrm{C}-7), 140.59\left(\mathrm{C}_{\text {quat }}\right), 154.51\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) .174 .79\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; *It appears as a multiplet of low intensity. This carbon correlates clearly with the triplet at 3.35 ppm in the HMQC spectrum. MS (70 eV, EI), m / z (\%): 420 (3) [$\left.M^{+}\right], 397$ (8), 284 (17), 213 (52), 157 (100), 57 (48), 41 (14); elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}$ (420.6): C 68.54, H 9.59; found: C 68.30, H 9.42.

Diastereomer II: $R_{\mathrm{f}}=0.48$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3078$, 2975, 2931, 2811, 2756, 1727, 1699, 1455, 1422, 1366, 1291, 1248, 1167, 1003, 923, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.34-0.42(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.46-0.54(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.56-0.64$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.02\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08-1.21(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.38-1.44(\mathrm{~m}, 1 \mathrm{H}$, 4 - or $6-\mathrm{H}), 1.43\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.44\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.88(\mathrm{dd}, J=10.7,12.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or 6-H), 2.22-2.43 (m, 7 H, piperazine, $4-$ or $\left.6-\mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.57-2.69(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.35(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 4 \mathrm{H}$, piperazine), $5.68(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): δ $=12.10(-, c \operatorname{Pr}-\mathrm{C}), 12.39(-, c \operatorname{Pr}-\mathrm{C}), 16.43\left(+, \mathrm{CH}_{3}\right), 18.51\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 27.89\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 27.89 (-, C-4 or -6), $28.27\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 38.09(-, \mathrm{C}-4$ or -6$), 39.75(+, \mathrm{C}-5), 43.58(-$, piperazine)*, 49.32 (-, piperazine), 59.74 (+, $\mathrm{C}-1$ ' $), 79.14\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 79.69\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right.\right.$ $\left.)_{3}\right], 121.65(+, \mathrm{C}-7), 140.58\left(\mathrm{C}_{\text {quat }}\right), 154.61\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.64\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$. *It appears as a multiplet of low intensity. This carbon correlates clearly with the triplet at 3.35 ppm in the

HMQC spectrum. MS (70 eV, EI), $m / z(\%): 420$ (13) $\left[M^{+}\right], 405$ (18) $\left[M^{+}-\mathrm{CH}_{3}\right], 293$ (22), 279 (10), 213 (18), 157 (32), 133 (50), 57 (100), 41 (34); elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}$ (420.6): C 68.54, H 9.59; found: C 68.30, H 9.42.

2.6.4. Attempts for the synthesis of spiro[2.5]octenes 175af-ag

8-(1-morpholin-4-ylethyl)spiro[2.5]oct-7-ene-4,5-dicarbonitrile (175af):

1) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($78 \mathrm{a}, 174 \mathrm{mg}$, 2.00 mmol), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ mmol) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature trans-2-butenedinitrile ($\mathbf{6 8 f}, 312 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1). Separated fractions could not be identified and desired product 175af could not be observed.
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}$, $200 \mu \mathrm{~mol}), \mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine ($78 \mathrm{a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, trans-2-butenedinitrile ($\mathbf{6 8 f}, 312 \mathrm{mg}, 4.00 \mathrm{mmol}$) added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h. After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate $3: 1$). Separated fractions could not be identified and desired product 175af could not be observed.

4-[1-(7,8-Bis-benzenesulfonylspiro[2.5]oct-4-en-4-yl)-ethyl]-morpholine (175ag):

1) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($78 \mathrm{a}, 174 \mathrm{mg}$, 2.00 mmol), iodoethene ($\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ $\mathrm{mmol})$ were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature trans-1,2-Bis-(phenylsulfonyl)ethylene ($\mathbf{6 8 g}, 1.23 \mathrm{~g}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed. The residue was subjected to column chromatography on
silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1). Separated fractions could not be identified and desired product 175ag could not be observed.

2.6.5. Synthesis of spiro[2.5]octenes (176ab-179ab)

tert-Butyl 8-(1-morpholin-4-ylethyl)-7-phenylspiro[2.5]oct-7-ene-5-carboxylate (176ab):

1) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00$ mmol), $\mathrm{Et}_{4} \mathrm{NCl}$ ($332 \mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine (78a, 261 $\mathrm{mg}, 3.00 \mathrm{mmol}$), (1-iodovinyl)benzene (191, $460 \mathrm{mg}, 2.00$ mmol) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous MeCN (2 $\mathrm{mL})$ at $80^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}$, $512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $100{ }^{\circ} \mathrm{C}$ for 65 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, $10: 1$) to yield $\mathbf{1 7 6 a b}$ ($286 \mathrm{mg}, 36 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.1:1 according to NMR).
Major diastereomer: $R_{\mathrm{f}}=0.48$ (light petroleum/ethyl acetate, 10:1); IR (film): $\tilde{v}=3003$, 2980, 2951, 2853, 2803, 1723, 1450, 1263, 1149, 1113, 943, 849, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.29-0.36(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.59-0.66(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.83-0.95(\mathrm{~m}, 1 \mathrm{H}$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 1.05-1.13(\mathrm{~m}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.11\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.63-1.70 (m, 1 H, cPr-H), 2.02-2.37 (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 4$ - or 6-H), 2.37-2.59 (m, $2 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.75-2.93(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 1-\mathrm{H}), 3.57\left(\mathrm{t}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$), $7.05(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{Ph}), 7.19-7.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=13.78$ (,$- c \mathrm{Pr}-\mathrm{C}$), $14.83(-, c \operatorname{Pr}-\mathrm{C}), 18.04\left(+, \mathrm{CH}_{3}\right), 19.14\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 28.02\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.85(-, \mathrm{C}-4$ or -6$)$, $40.35\left(-, \mathrm{C}-4\right.$ or -6), $40.99(+, \mathrm{C}-5), 51.86\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 61.86(+, \mathrm{C}-1), 67.00(-$, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 79.98\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 126.12(+, \mathrm{Ph}-\mathrm{C}), 128.09(+, \mathrm{Ph}-\mathrm{C}), 128.17(+, \mathrm{Ph}-\mathrm{C})$, $135.69\left(\mathrm{C}_{\text {quat }}\right), 136.43\left(\mathrm{C}_{\text {quat }}\right), 144.11\left(\mathrm{C}_{\text {quat }}\right), 174.77\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 397$ (30) $\left[M^{+}\right], 382(8)\left[M^{+}-\mathrm{CH}_{3}\right], 254$ (36), 209 (31), 114 (100), 100 (26), 57 (39); elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{3}$ (397.6): C 75.53, H 8.87; found: C 75.59, H 8.64

Minor diastereomer: $R_{\mathrm{f}}=0.44$ (light petroleum/ethyl acetate 10:1); IR (film): $\tilde{v}=3077$, 2975, 2851, 2806, 1726, 1450, 1367, 1265, 1151, 1122, 943, 864, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.37-0.45(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.54-0.62(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.02-1.09(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.32(\mathrm{dd}, J=12.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.43[\mathrm{~s}, 9 \mathrm{H}$,
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 1.83-1.98 (m, $2 \mathrm{H}, 4-$ or $\left.6-\mathrm{H}, \mathrm{cPr}-\mathrm{H}\right), 2.22$ (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 1.83-1.98 (m, 2 H, 4- or $6-\mathrm{H}$), $2.73-2.88(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 1-\mathrm{H}), 3.55\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 7.04(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.18-7.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=13.07(-$, $c \operatorname{Pr}-\mathrm{C}), 14.13(-, c \operatorname{Pr}-\mathrm{C}), 18.78\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 19.07\left(+, \mathrm{CH}_{3}\right), 27.97\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.56(-, \mathrm{C}-$ 4 or -6), $39.69(-, \mathrm{C}-4$ or -6$), 40.56(+, \mathrm{C}-5), 51.55\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 61.11\left(+, \mathrm{C}-1{ }^{\prime}\right), 67.06(-$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), $79.93\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 125.91(+, \mathrm{Ph}-\mathrm{C}), 127.98(+, \mathrm{Ph}-\mathrm{C}), 128.17(+, \mathrm{Ph}-\mathrm{C})$, $135.63\left(\mathrm{C}_{\text {quat }}\right), 136.66\left(\mathrm{C}_{\text {quat }}\right), 144.35\left(\mathrm{C}_{\text {quat }}\right), 174.65\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 397$ (22) $\left[M^{+}\right], 382$ (8) $\left[M^{+}-\mathrm{CH}_{3}\right], 254$ (32), 209 (28), 114 (100), 100 (25), 57 (30); elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{3}$ (397.6): C 75.53, H 8.87; found: C 75.57, H 8.56.
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine $(46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}), \mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($78 \mathrm{a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), ($1-$ iodovinyl)benzene ($\mathbf{1 9 1}, 460 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF (1 mL) at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30$ cm , light petroleum/ethyl acetate $10: 1$) to yield $\mathbf{1 7 6 a b}(142.5 \mathrm{mg}, 18 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1:1 according to NMR), 197 ($45.6 \mathrm{mg}, 8 \%$, yellowish oil) and 198 ($170 \mathrm{mg}, 27 \%$, yellowish oil).

4-(2-Cyclopropylidene-1-methyl-3-phenyl-but-3-enyl)-morpholine (197):

$$
R_{\mathrm{f}}=0.33 \text { (light petroleum/ethyl acetate, 10:1); IR (film): } \tilde{v}=3078
$$

 3052, 2972, 2851, 2807, 1724, 1597, 1492, 1445, 1265, 1118, 1009, 942, $777,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.76(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38-2.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 3.39(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.65(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), $5.25(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), $5.60(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), $7.21-7.32$ (m, $5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=2.98(-, c \mathrm{Pr}-\mathrm{C}), 3.82(-, c \operatorname{Pr}-\mathrm{C}), 14.70(+$, $\left.\mathrm{CH}_{3}\right), 50.04\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 63.22(+, \mathrm{C}-1), 67.34\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 114.04$ (- , vinyl), $125.49\left(\mathrm{C}_{\text {quat }}\right), 126.66(+, \mathrm{Ph}-\mathrm{C}), 127.56(+, \mathrm{Ph}-\mathrm{C}), 127.80(+, \mathrm{Ph}-\mathrm{C}), 129.78\left(\mathrm{C}_{\text {quat }}\right), 142.56$ $\left(\mathrm{C}_{\text {quat }}\right), 149.51\left(\mathrm{C}_{\text {quat }}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}) m / z(\%): 269$ (18) [$\left.M^{+}\right], 268$ (37), 183 (4) [$M^{+}-$ morpholinyl], 114 (100)
tert-Butyl 8-(1-phenylvinyl)spiro[2.5]oct-7-ene-5-carboxylate (198):

$R_{\mathrm{f}}=0.76$ (light petroleum/ethyl acetate, 10:1); IR (film): $\tilde{v}=$ 3081, 2977, 2931, 1726, 1367, 1255, 1152, 903, $780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.29-0.61(\mathrm{~m}, 4 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.37$ (dd, $J=2.9,13.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.46\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $2.09(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.47(\mathrm{dd}, J=3.7,7.9 \mathrm{~Hz}, 2$ H, 4- or $6-\mathrm{H}), 2.71-2.86(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), $5.42(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1$ H, vinyl), $5.65(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.23-7.32(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.37-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=12.80(-, c \operatorname{Pr}-\mathrm{C}), 13.69(-, c \operatorname{Pr}-\mathrm{C}), 19.44\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right)$, $28.07\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.47(-, \mathrm{C}-4$ or -6$), 37.29(-, \mathrm{C}-4$ or -6$), 40.37(+, \mathrm{C}-5), 79.97\left[\mathrm{C}_{\text {quat }}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 114.22(-$, vinyl), $124.82(+, \mathrm{C}-7), 126.04(+, \mathrm{Ph}-\mathrm{C}), 127.48(+, \mathrm{Ph}-\mathrm{C}), 128.22(+$, Ph-C), $140.16\left(\mathrm{C}_{\text {quat }}\right), 142.22\left(\mathrm{C}_{\text {quat }}\right), 147.56\left(\mathrm{C}_{\text {quat }}\right), 174.88\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}) \mathrm{m} / \mathrm{z}$ (\%): 310 (3) [$\left.M^{+}\right], 254$ (60), 209 (41), 181 (30), 167 (39), 115 (19), 103 (32), 91 (46), 77 (27), 57 (100), 41 (52).
tert-Butyl 7-(benzo[1,3]dioxol-5-yl)-8-(1-morpholin-4-ylethyl)spiro[2.5]oct-7-ene-5carboxylate (177ab):

According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, 4.00 mmol), $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, $261 \mathrm{mg}, \quad 3.00 \mathrm{mmol}$), 5-(1iodovinyl)benzo[1,3]dioxole (192, $548.1 \mathrm{mg}, 2.00$ $\mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for 3 h. After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated with stirring at $100^{\circ} \mathrm{C}$ for an additional 65 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, $\mathbf{4 : 1}$) to yield $\mathbf{1 7 7 a b}$ ($386 \mathrm{mg}, 44 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.2:1 according to NMR).
Major diastereomer: $R_{\mathrm{f}}=0.44$ (light petroleum/ethyl acetate 4:1); IR (KBr): $\tilde{v}=2976,2952$, 2806, 1726, 1606, 1485, 1452, 1433, 1367, 1266, 1238, 1211, 1152, 1121, 1039, 939, $810 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.27-0.34(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.57-0.65(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H})$, $0.78-0.95(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.05(\mathrm{dd}, J=12.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 1.41\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.62-1.69(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.03(\mathrm{td}, J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{or}$ 6-H), 2.22 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 2.34-2.55 (m, $2 \mathrm{H}, 4-$ or $6-\mathrm{H}$), $2.77-2.89(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 1-\mathrm{H})$, 3.57 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), $5.94-5.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.47(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, $6.53(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=13.69(-, c \operatorname{Pr}-\mathrm{C}), 14.78(-, c \operatorname{Pr}-\mathrm{C}), 17.96\left(+, \mathrm{CH}_{3}\right), 19.04\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 27.93[+$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.81(-, \mathrm{C}-4$ or -6$), 40.18(-, \mathrm{C}-4$ or -6$), 40.84(+, \mathrm{C}-5), 51.80\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, $61.77(+, \mathrm{C}-1), 66.89\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 79.86\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 100.72\left(-, \mathrm{OCH}_{2} \mathrm{O}\right), 108.05(+$, Ph-C), 108.59 (+, Ph-C), 120.94 (,+ Ph-C), 135.79 ($\left.\mathrm{C}_{\text {quat, }}, \mathrm{Ph}-\mathrm{C}\right), 136.05$ ($\left.\mathrm{C}_{\text {quat }}, \mathrm{Ph}-\mathrm{C}\right), 137.70$ $\left(\mathrm{C}_{\text {quat }}, \mathrm{Ph}-\mathrm{C}\right), 145.69\left(\mathrm{C}_{\text {quat }}\right), 147.27\left(\mathrm{C}_{\text {quat }}\right), 174.64\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 441$ (12) $\left[M^{+}\right], 426(5)\left[M^{+}-\mathrm{CH}_{3}\right], 298$ (56), 131 (22), 114 (95), 100 (28), 57 (100), 41 (45); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{5}(441,6)$: C 70.72, H 7.99; found: C 70.55, H 7.72.
Minor diastereomer: $R_{\mathrm{f}}=0.39$ (light petroleum/ethyl acetate 4:1); IR (KBr): $\tilde{v}=3077$, 2975, 2852, 2805, 1725, 1505, 1485, 1433, 1367, 1239, 1150, 1121, 1039, 938, $810 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.36-0.44(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.53-0.61(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.77-0.90(\mathrm{~m}, 1$ $\mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.99\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30(\mathrm{dd}, J=12.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.43[\mathrm{~s}, 9$ $\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $1.85-1.94(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}, 4-$ or $6-\mathrm{H}), 2.24$ (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), $2.35-2.58(\mathrm{~m}$, $2 \mathrm{H}, 4-$ or $6-\mathrm{H}), 2.72-2.89(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 1-\mathrm{H}), 3.58\left(\mathrm{t}, J=4.3 \mathrm{~Hz} 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 5.92-5.97$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.48(\mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.54(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.76(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=13.14(-, c \operatorname{Pr}-\mathrm{C}), 14.17(-, c \operatorname{Pr}-\mathrm{C})$, $18.76\left(+, \mathrm{CH}_{3}\right), 19.03\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 27.97\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.55(-, \mathrm{C}-4$ or -6$), 37.67(-, \mathrm{C}-4$ or $-6), 40.51(+, \mathrm{C}-5), 51.59\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 61.18(+, \mathrm{C}-1), 67.12\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 79.98$ [Cquat, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 100.74\left(-, \mathrm{OCH}_{2} \mathrm{O}\right), 107.98(+, \mathrm{Ph}-\mathrm{C}), 108.80(+, \mathrm{Ph}-\mathrm{C}), 121.14(+, \mathrm{Ph}-\mathrm{C}), 136.07$ $\left(\mathrm{C}_{\text {quat, }}, 2 \times \mathrm{Ph}-\mathrm{C}\right), 138.06\left(\mathrm{C}_{\text {quat, }}, \mathrm{Ph}-\mathrm{C}\right), 145.62\left(\mathrm{C}_{\text {quat }}\right), 147.24\left(\mathrm{C}_{\text {quat }}\right), 174.67\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 eV, EI), m / z (\%): 441 (29) [$\left.M^{+}\right], 426$ (14) $\left[M^{+}-\mathrm{CH}_{3}\right], 298$ (100), 253 (17), 131 (14), 114 (42), 100 (13), 57 (22), 41 (5); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{5}$ (441.6): C 70.72, H 7.99; found: C 70.55, H 7.72

tert-Butyl 2'-benzyl-5'-(1-Morpholin-4-ylethyl)-1',2',3',4',6',7',8',8a'-octahydrospiro [cyclopropane-1,6'(7'H)-isoquinoline]- 8'-carboxylate (178ab):

According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, $4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, $209 \mathrm{mg}, 2.40 \mathrm{mmol}$), 1-benzyl-4-iodo-1,2,3,6tetrahydropyridine ($\mathbf{1 9 3}, 600 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for 3.5 h ., tert-butyl
acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the mixture, and then it was stirred at $80{ }^{\circ} \mathrm{C}$ for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel (100 g , $3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield 178ab ($242.6 \mathrm{mg}, 26 \%$, colorless solid). The reaction gave actually mixture of two diastereomers (ratio $2.5: 1$ according to NMR). However, only major diastereomer could be isolated. $R_{\mathrm{f}}=0.42$ (light petroleum/ethyl acetate 3:1); IR (KBr): $\tilde{v}=3082,2977,2852,2796,1725,1496,1453,1395,1368,1321,1272,1147$, 1120, 1056, 1027, 983, 947, 916, 864, 846, 821, 741, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=0.38$ (bs., $2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.62-0.65(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.77-0.83(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.10(\mathrm{~d}, J=$ $\left.6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.53(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.95-$ 2.04 (m, 1 H), 1.12-2.21 (m, 1 H), 2.34 (bs., $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 2.57 (dt, $J=4.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.85-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.58\left(\mathrm{AB}\right.$ system: $\delta_{\mathrm{A}}=3.56, \delta_{\mathrm{B}}=3.35, J_{A B}=$ $13.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}), 3.62\left(\mathrm{t}, J=4.11 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$), 3.64-3.94(m, 1 H), 7.16-7.32 (m, 5 $\mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): ~ \delta=10.06(-, c \operatorname{Pr}-\mathrm{C}), 11.85(-, c \operatorname{Pr}-\mathrm{C}), 17.36(+$, $\left.\mathrm{CH}_{3}\right), 19.65\left(\mathrm{C}_{\text {quat, }}, c \mathrm{Pr}-\mathrm{C}\right), 27.78\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.34(-), 30.54(-), 41.55(+, \mathrm{CH}), 45.56(+$, $C \mathrm{H}), 51.71\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 54.07(-), 58.10(+, \mathrm{CH}), 59.49(-), 62.78(-, \mathrm{Bn}), 67.15(-$, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 80.03\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 126.76(+, \mathrm{Ph}), 128.05(+, 2 \times \mathrm{Ph}), 128.94(+, 2 \times \mathrm{Ph})$, $131.33\left(\mathrm{C}_{\text {quat }}\right), 132.60\left(\mathrm{C}_{\text {quat }}\right), 138.45\left(\mathrm{C}_{\text {quat }}\right), 174.52\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 466$ (30) $\left[M^{+}\right], 379$ (78), 323 (54), 288 (15), 232 (18), 159 (14), 134 (28), 114 (25); 91 (100), 57 (29), 42 (12); elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ (466.7): C 74.64, H 9.07; found: C 74.63, H 8.95.
tert-Butyl 8-(1-Benzyl-5'-1,2,3,6-tetrahydropyridin-4-yl)-spiro[2.5]oct-7-ene-5-carboxylate (199):

According to GP-B, $\mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-
 2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, $4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, $\quad 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), 1-benzyl-4-iodo-1,2,3,6tetrahydropyridine ($193,600 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for 3.5 h ., tert-butyl acrylate $(\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol})$ was added to the mixture, and then it was stirred at $80^{\circ} \mathrm{C}$ for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, $3: 1$) to yield $\mathbf{1 7 8 a b}(93.3 \mathrm{mg}, 10 \%$, colorless solid) and 199 ($91 \mathrm{mg}, 12 \%$, yellowish oil) $R_{\mathrm{f}}=0.5$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3061,3024,2977,2932,2795,2745,1726,1493,1455,1390,1368,1329$, 1280, 1268, 1150, 1173, 1017, 984, 962, 904, 845, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $0.33-0.38(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.47-0.58(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.68-0.73(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.26-1.31$ $(\mathrm{m}, 1 \mathrm{H}), 1.41\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.97(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.32(\mathrm{~m}$, $2 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.69(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.82-3.03(\mathrm{~m}, 2 \mathrm{H})$, 3.54 (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine), $5.16-5.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H)$, $5.40-5.42$ (m, $1 \mathrm{H}, \mathrm{CH}), 7.19-$ 7.32 (m, $5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=11.90(-, c \mathrm{Pr}-\mathrm{C}), 13.59(-, c \operatorname{Pr}-\mathrm{C})$, $18.89\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 28.02\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.35(-), 31.60(-), 37.22(-), 40.35(+, \mathrm{C}-5), 49.52$ $(-), 52.50(-), 62.59(-$, pyridine $), 79.82\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 121.60(+, \mathrm{CH}), 122.14(+, \mathrm{CH})$, $126.95(+, \mathrm{Ph}), 128.13(+, 2 \times \mathrm{Ph}), 129.11(+, 2 \times \mathrm{Ph}), 136.36\left(\mathrm{C}_{\text {quat }}\right), 138.10\left(\mathrm{C}_{\text {quat }}\right), 143.35$ ($\mathrm{C}_{\text {quat }}$), $174.95\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 379$ (199) [$\left.M^{+}\right], 322$ (35), 306 (4), 278 (10), 172 (10), 91 (97), 57 (20); elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2}$ (379.6): C 79.11, H 8.76; found: C 79.21, H 8.63.

tert-Butyl 1'-(1-Morpholin-4-ylethyl)-4',4a',5',6',7',8'-hexahydrospiro[cyclopropane-1,2'(3'H)-naphthalene]- 4'-carboxylate (179ab):

According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-
 furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00$ mmol), $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, 209 $\mathrm{mg}, 2.40 \mathrm{mmol}$), 1-iodo-cyclohexene ($\mathbf{1 9 4}, 416 \mathrm{mg}, 2.00$ mmol) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for 3.5 h ., tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the mixture, and then it was stirred at $80^{\circ} \mathrm{C}$ for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield 179ab ($188 \mathrm{mg}, 25 \%$, yellowish oil). The reaction gave actually mixture of two diastereomers (ratio $1: 1$ according to NMR). However, only one diastereomer could be isolated. $R_{\mathrm{f}}=0.45$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3076,2922,2853,2801,2686,1726,1479,1455,1430,1391,1367,1322$, 1270, 1150, 1123, 1049, 1027, 994, 978, 951, 864, 843, 802, $793 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=0.36$ (bs., $\left.2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 0.60-0.63(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.69-0.83(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 096$ (dd, $J=2.3,12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.09\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.30-1.49$ (m, 1 H$), 1.61-1.77\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{CH}_{2}+\mathrm{CH}\right), 1.83-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}+\right.$ $2 \times \mathrm{CH}), 3.63\left(\mathrm{t}, J=4.38 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.84-3.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz , CDCl_{3}, DEPT): $\delta=10.31(-, c \operatorname{Pr}-\mathrm{C}), 11.62(-, c \mathrm{Pr}-\mathrm{C}), 17.36\left(+, \mathrm{CH}_{3}\right), 19.79\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right)$, $26.19(-), 26.51(-), 28.05\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.45(-), 34.60(-), 39.06(-), 42.03(+, \mathrm{CH}), 48.59$ $(+, \mathrm{CH}), 51.87\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 58.39(+, \mathrm{CH}), 62.28\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 79.85\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $130.13\left(\mathrm{C}_{\text {quat }}\right), 135.65\left(\mathrm{C}_{\text {quat }}\right), 175.34\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 375$ (20) [$\left.M^{+}\right]$, 232 (100), 203 (38), 187 (55), 145 (30), 114 (22), 88 (14), 57 (20); elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{3}$ (375.6): C 73.56, H 9.93; found: C 73.55, H 9.64.

2.6.6. Synthesis of spiro[2.5]octenes (180a-188a)

6'-[1-Morpholin-4-ylethyl]-2'-phenylspiro[cyclopropane-1,5'(10a'H)-5',7',8',9',10',10a'-hexahydro-[1,2,4]triazolo[1,2-a]cinnoline]-1,3-dione (180a):

According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}$ (202 $\mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00$ mmol), 1-iodo-cyclohexene ($\mathbf{1 9 4}, 416 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for $5 \mathrm{~h} . \mathrm{N}$ Phenyltriazolinedione ($\mathbf{1 2 2}, 700 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the ice-cooled mixture, and then it was stirred again at room temperature for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield 180a ($280 \mathrm{mg}, 33 \%$, colorless solid) as a mixture of two diastereomers (ratio 4.6:1 according to NMR).
Major diastereomer: m.p. $151^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.446$ (light petroleum/ethyl acetate, 3:1); $\operatorname{IR}(\mathrm{KBr}): \tilde{v}$ $=3033$, 2961, 2926, 2856, 1762, 1709, 1504, 1459, 1415, 1301, 1270, 1128, 1117, 1069, 1033 $866,765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 100^{\circ} \mathrm{C}$): $\delta=1.22-1.36(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.28(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.37-1.48(m, 1 H, $c \operatorname{Pr}-\mathrm{H}$), $1.51-1.67$ ($\mathrm{m}, 1 \mathrm{H}$, cychex), 1.75 (dt, $J=$ $3.6,13.1 \mathrm{~Hz}, 1 \mathrm{H}$, cychex), 1.88-2.00 (m, $5 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$, cychex), 2.06-2.14 (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 2.47-2.54 (m, $1 \mathrm{H}, 1-\mathrm{H}), 2.49\left(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.65-2.71(\mathrm{~m}, 1 \mathrm{H}$, cychex), 3.71 ($\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), 3.77 (br.s, 1 H , cychex), 4.23 (dd, $J=4.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}$, cychex), $7.35-7.52(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 100^{\circ} \mathrm{C}$, DEPT): $\delta=10.03(-$, $c \operatorname{Pr}-\mathrm{C}), 10.48(-, c \operatorname{Pr}-\mathrm{C}), 18.04\left(+, \mathrm{CH}_{3}\right), 24.28$ (- , cychex), 26.80 (- , cychex), 29.91 (cychex), 31.99 (-, cychex), $40.88\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 51.88\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 57.68(+, \mathrm{C}-1), 58.66(+$, cychex), $66.79\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 125.46(+, \mathrm{Ph}-\mathrm{C}), 127.66(+, \mathrm{Ph}-\mathrm{C}), 127.85\left(\mathrm{C}_{\text {quat }}\right), 128.62(+$, Ph-C), $131.36\left(\mathrm{C}_{\text {quat }}\right), 133.92\left(\mathrm{C}_{\text {quat }}\right), 149.51\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 151.98\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI})$, m / z (\%): 422 (54) [$\left.M^{\dagger}\right], 393$ (16), 337 (22), 336 (100), 217 (16), 114 (14), 100 (42); elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}$ (422.5): C 68.22, H 7.16; found: C 67.91, H 7.07.
Minor diastereomer: $R_{\mathrm{f}}=0.108$ (light petroleum/ethyl acetate 3:1); IR (KBr): $\tilde{v}=3071$, 2932, $2853,1772,1714,1546,1504,1413,1295,1264,1130,1117,1029,985,766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.60-0.67(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.70-0.77(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.82-0.89(\mathrm{~m}$, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.99-1.06(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.13-1.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cychex}), 1.36$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 1.46(\mathrm{td}, J=3.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}$, cychex), $1.57(\mathrm{tt}, J=3.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}$, cychex), $1.71(\mathrm{td}$, $J=3.5,13.7 \mathrm{~Hz}, 1 \mathrm{H}$, cychex), $1.82-1.86(\mathrm{~m}, 2 \mathrm{H}$, cychex), 2.56 (t, $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NCH}_{2}$), 2.98-3.03 (m, 1 H , cychex), $3.25(\mathrm{~d}, J=13.60 \mathrm{~Hz}, 1 \mathrm{H}$, cychex), $3.58(\mathrm{q}, J=3.9$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), $4.17(\mathrm{dd}, J=4.1,11.2 \mathrm{~Hz}$, cychex), $4.67(\mathrm{q}, ~ J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.29-$ 7.34 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ph}$), 7.46-7.51 (m, $4 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.478 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=11.25$ $(-, c \operatorname{Pr}-\mathrm{C}), 13.51(-, c \operatorname{Pr}-\mathrm{C}), 19.87\left(+, \mathrm{CH}_{3}\right), 23.83(-$, cychex), $27.25(-$, cychex), $30.26(-$, cychex), 34.44 (- , cychex), $44.07\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 49.66\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 51.37(+, \mathrm{C}-1), 58.39(+$, cychex), $67.30\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 125.37$ (+ , Ph-C), $126.99\left(\mathrm{C}_{\text {quat }}\right), 127.80(+, \mathrm{Ph}-\mathrm{C}), 128.95(+$, Ph-C), 131.33 ($\mathrm{C}_{\text {quat }}$), 136.57 ($\mathrm{C}_{\text {quat }}$), 149.67 ($\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}$), 152.78 ($\left.\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI})$, $m / z(\%): 422$ (79) [$\left.M^{+}\right], 407$ (11) $\left[M^{+}-\mathrm{CH}_{3}\right], 336$ (55), 261 (18), 247 (30), 246 (100), 232 (27), 218 (24), 178 (20), 119 (39), 91 (42), 77 (20), 41 (22) for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}$ (422.53); HRMS (EI):calcd 422.2318 (correct HRMS).

6'-[1-morpholin-4-ylethyl]-9'-(N)-benzyl-2'-phenylspiro[cyclopropane-1,5'(10a'H)-

 5',7', 8', $\mathbf{9}^{\prime}, 10^{\prime}, 10 a^{\prime}-h e x a h y d r o-[1,2,4]$ triazolo[1,2-a]cinnoline]-1,3-dione (181a):

According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$,
 tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556$ $\mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), 1-benzyl-4-iodo-1,2,3,6-tetrahydropyridine (193, $600 \mathrm{mg}, 2.00$ mmol) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $\quad 80^{\circ} \mathrm{C}$ for 3 h . N-Phenyltriazolinedione ($\mathbf{1 2 2}, 700 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the ice-cooled mixture, and then it was stirred at room temperature for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield 181a ($180 \mathrm{mg}, 17 \%$, colorless oil), $R_{\mathrm{f}}=0.17$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3028,2956,2850,2798,1770,1713,1503,1456,1412,1361,1265,1120,1071$, 1029, 936, 863, 736, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 100^{\circ} \mathrm{C}$): $\delta=1.24-1.33(\mathrm{~m}, 1 \mathrm{H}$, $\left.{ }_{c} \operatorname{Pr}-\mathrm{H}\right), 1.29\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36-1.43(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.79-1.87(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H})$, 2.02-2.15 (m, 2 H , tetrahydropyridine), $2.24(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$, tetrahydropyridine), 2.29$2.35(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.39-2.51(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.47\left(\mathrm{q}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.94-2.99$ $\left(\mathrm{m}, 1 \mathrm{H}\right.$, tetrahydropyridine), 3.56-3.78 (AB system: $\delta_{\mathrm{A}}=3.6, \delta_{\mathrm{B}}=3.8, J_{A B}=13.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Bn}), 3.56-3.78\left(1 \mathrm{H}\right.$, tetrahydropyridine)*, $3.68\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.98-4.02(\mathrm{~m}$,

1 H , tetrahydropyridine), 4.47 (dd, $J=4.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}$, tetrahydropyridine), $7.28-7.48$ ($\mathrm{m}, 10$ $\mathrm{H}, \mathrm{Ph})$; * The peak of this proton sits under the peaks of the AB system, thus the spin couplings of this proton could not be determined. This proton correlates clearly with the carbon peak at 28.49 ppm in the HMQC spectrum. ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 100{ }^{\circ} \mathrm{C}, \mathrm{DEPT}$): $\delta=9.40(-$, c Pr-C), $10.67(-, c \operatorname{Pr}-\mathrm{C}), 17.85\left(+, \mathrm{CH}_{3}\right), 28.49\left(-\right.$, tetrahydropyridine), $40.74\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right)$, $51.80\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 52.61(-$, tetrahydropyridine), 57.06 (+, tetrahydropyridine), 57.32 (-, tetrahydropyridine), $57.71(+, \mathrm{C}-1), 61.61(-, \mathrm{Bn}), 66.70\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 125.52(+, \mathrm{Ph})$, $126.86(+, \mathrm{Ph}), 127.77(+, \mathrm{Ph}), 127.98(+, \mathrm{Ph}), 128.53(+, \mathrm{Ph}), 128.66(+, \mathrm{Ph}), 128.81\left(\mathrm{C}_{\text {quat }}\right)$, $130.99\left(\mathrm{C}_{\text {quat }}\right), 131.19\left(\mathrm{C}_{\text {quat }}\right), 137.72\left(\mathrm{C}_{\text {quat }}\right), 149.24\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 152.27\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 $\mathrm{eV}, \mathrm{EI}), m / z(\%): 513(34)\left[M^{+}\right], 427$ (26) [M^{+}- morpholinyl], 397 (9), 307 (6), 134 (46), 100 (46), 91 (100), 42 (14); elemental analysis calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{3}$ (513.6): C 70.15, H 6.87; found: C 69.98, H 6.71.

6'-(1-Morpholin-4-ylethyl)-2'-phenyl-8'-(thiophen-2-yl)spiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo[1,2-a]pyridazine]-1',3'-dione (182a):

According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-
 furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ $\mathrm{mmol})$, morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), 2-(2iodovinyl)thiophene ($\mathbf{1 9 5}, 472 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL) at $80{ }^{\circ} \mathrm{C}$ for 3 h . N-Phenyltriazolinedione ($\mathbf{1 2 2}, 700 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the ice-cooled mixture, and then it was stirred again at room temperature for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield $\mathbf{1 8 2 a}$ ($232 \mathrm{mg}, 26 \%$, colorless solid) as a mixture of two diastereomers (ratio 1:1 according to NMR).

Diastereomer I: m.p. $160^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.15$ (light petroleum/ethyl acetate 3:1); $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=3102$, 3088, 2963, 2859, 2815, 1769, 1715, 1502, 1409, 1310, 1165, 1116, 767, $731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14-1.21(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.19\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.59-1.74$ (m, $2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 2.46-2.64 (m, $\left.6 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 1-\mathrm{H}\right), 3.70(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), $5.88\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 6.17\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}\right), 6.99(\mathrm{dd}, J=3.6$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene), 7.21 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene), $7.27-7.42(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}$,
thiophene); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=10.36(-, c \operatorname{Pr}-\mathrm{C}), 11.32(-, c \operatorname{Pr}-\mathrm{C}), 16.08$ $\left(+, \mathrm{CH}_{3}\right), 41.85\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 50.14\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 53.57(-, \mathrm{C}-8$) , $57.28(+, \mathrm{C}-1), 67.07(-$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), 121.17 (+, C-7'), $125.45(+, \mathrm{Ph}), 126.38$ (+ , thiophene), 126.93 (+ , thiophene), $127.87\left(+, \mathrm{Ph}\right.$ or thiophene), $128.01(+, \mathrm{Ph}$ or thiophene $), 128.87(+, \mathrm{Ph}), 130.76\left(\mathrm{C}_{\text {quat }}\right), 138.93$ ($\mathrm{C}_{\text {quat }}$), $139.48\left(\mathrm{C}_{\text {quat }}\right), 149.94\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right), 152.08\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 450$ (27) $\left[M^{+}\right], 364$ (100) $\left[M^{+}\right.$- morpholine $], 348$ (8), 173 (17), 114 (30), 100 (90); elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (450.6): C 63.98, H 5.82, N 12.43; found: C 63.76, H 5.71, N 12.68 .

Diastereomer II: m.p. $122{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.15$ (light petroleum/ethyl acetate 3:1); IR (KBr): $\tilde{v}=3108,3062,2963,2858,2796,1775,1714,1502,1411,1112,766,713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17-1.44(\mathrm{~m}, 3 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.25\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32$ (q, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 2.47 (br.s, $4 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 2.81-2.90 (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 3.69 (t, $\left.J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 5.89\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 6.29\left(\mathrm{~d}, J=4.86 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right)$, $6.98(\mathrm{dd}, J=3.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene), $7.19(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, thiophene), $7.27-7.42(\mathrm{~m}, 6$ H, Ph, thiophene); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=9.37(-, c \operatorname{Pr}-\mathrm{C}), 11.56(-, c \operatorname{Pr}-\mathrm{C})$, $18.22\left(+, \mathrm{CH}_{3}\right), 41.92\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 50.76\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 53.19(-, \mathrm{C}-8)$), $58.27(+, \mathrm{C}-1)$, $67.04\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 120.19\left(+, \mathrm{C}-7{ }^{\prime}\right), 125.47(+, \mathrm{Ph}), 126.49(+, \mathrm{Ph}$ or thiophene), $126.83(+$, thiophene), $127.76(+$, thiophene $), 128.06(+, \mathrm{Ph}$ or thiophene $), 128.91(+, \mathrm{Ph}), 130.75\left(\mathrm{C}_{\text {quat }}\right)$, $138.75\left(\mathrm{C}_{\text {quat }}\right), 139.31\left(\mathrm{C}_{\text {quat }}\right), 150.45\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 152.15\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z$ (\%): 450 (9) $\left[M^{+}\right], 363$ (32) $\left[M^{+}-\right.$morpholine - H], 348 (4), [M^{+}- morpholine - $\left.\mathrm{H}-\mathrm{CH}_{3}\right]$, 173 (11), 114 (36), 100 (100); elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}(450.6)$: C 63.98, H 5.82; found: C 63.90, H 6.06.

6'-(1-Morpholin-4-ylethyl)-2',8'-diphenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo-[1,2-a]pyridazine]-1', $\mathbf{3}^{\prime}$-dione (183a):

According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202$ $\mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00$ $\mathrm{mmol}),(E)$-1-iodo-2-phenylethene $(\mathbf{1 9 6}, 460 \mathrm{mg}, 2.00$ mmol) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ mmol) were stirred in anhydrous DMF (1 mL), at $80^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{N}$-phenyltriazolinedione (122, $700 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the ice-cooled mixture and then it was stirred at room temperature for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected
to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield 183a ($310 \mathrm{mg}, 35 \%$, colorless solid) as a mixture of two diastereomers (ratio 1.4:1 according to NMR).
2) According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($78 \mathrm{a}, 174 \mathrm{mg}$, 2.00 mmol), (E)-1-iodo-2-phenylethene ($\mathbf{1 9 6}, 460 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($\mathbf{6 6}$, $320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$, at $80^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{N}$ Phenyltriazolinedione ($\mathbf{1 2 2}, 700 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the ice-cooled mixture, and then it was stirred at room temperature for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield 183a ($283 \mathrm{mg}, 32 \%$, colorless oil) as a mixture of two diastereomers (ratio 1.4:1 according to NMR).
Major diastereomer: m.p. $171{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.47$ (light petroleum/ethyl acetate 1:1); IR (KBr): $\tilde{v}=$ 3106, 3058, 3026, 2977, 2857, 2818, 1763, 1706, 1506, 1411, 1290, 1174, 1112, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21-1.31(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.55-$ $1.65(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.90-2.00(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.32-2.65\left(\mathrm{~m}, 6 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 1-\mathrm{H}\right)$, $3.66\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 5.54\left(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 5.99\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\right.$ H), 7.25-7.44 (m, $10 \mathrm{H}, \mathrm{Ph}$); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=10.96(-, c \operatorname{Pr}-\mathrm{C}), 11.33$ $(-, c \operatorname{Pr}-\mathrm{C}), 15.02\left(+, \mathrm{CH}_{3}\right), 41.54\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 49.86\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 57.92(+, \mathrm{C}-1), 58.98(-$, C-8'), $67.00\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 121.82\left(+, \mathrm{C}-7{ }^{\prime}\right), 125.39(+, \mathrm{Ph}-\mathrm{C}), 127.90(+, \mathrm{Ph}-\mathrm{C}), 127.98(+$, Ph-C), 128.57 (,$+ \mathrm{Ph}-\mathrm{C}$), 128.64 (,$+ \mathrm{Ph}-\mathrm{C}$), 128.82(+, Ph-C), $130.85\left(\mathrm{C}_{\text {quat }}\right), 137.07$ ($\mathrm{C}_{\text {quat }}$), $137.80\left(\mathrm{C}_{\text {quat }}\right), 149.68\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 151.83\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 444$ (11) $\left[M^{+}\right], 358(46)\left[M^{+}\right.$- morpholinyl], 167 (12), 114 (26), 100 (100) 91 (14); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$ (444.5): C 70.25, H 6.35; found: C 70.54, H 6.26.
Minor diastereomer: m.p. $170^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.47$ (light petroleum/ethyl acetate, 1:1); IR (KBr): $\tilde{v}=$ 3065, 2962, 2854, 2811, 1769, 1711, 1502, 1414, 1301, 1265, 1116, $765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31-1.39(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.43-1.51(\mathrm{~m}, 1$ $\mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.36-2.49\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 1-\mathrm{H}\right), 2.74-2.82(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 3.69(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 5.60\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 6.15\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}\right), 7.29-7.44(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=9.61(-, c \operatorname{Pr}-\mathrm{C}), 11.59(-, c \operatorname{Pr}-\mathrm{C}), 17.83$ $\left(+, \mathrm{CH}_{3}\right), 41.97\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 50.61\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 58.18(+, \mathrm{C}-1), 58.29(-, \mathrm{C}-8)$), $67.09(-$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), 120.47 (+, C-7'), 125.43 (+, Ph-C), 128.00 (,$+ \mathrm{Ph}-\mathrm{C}$), 128.43 (+, Ph-C), 128.59 (+, Ph-C), 128.72(+, Ph-C), $128.89(+, \operatorname{Ph}-C), 130.81\left(\mathrm{C}_{\text {quat }}\right), 134.48\left(\mathrm{C}_{\text {quat }}\right), 138.44\left(\mathrm{C}_{\text {quat }}\right), 150.56$
$\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 151.60\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 eV, EI), $m / z(\%): 444$ (25) $\left[M^{+}\right], 358$ (80) $\left[M^{+}-\right.$ morpholinyl], 357 (94), 167 (14), 119 (15), 114 (26), 100 (100), 91 (16); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$ (444.5): C 70.25, H 6.35; found: C 70.43, H 6.07.

6'-(1-Morpholin-4-ylethyl)-2'-phenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo[1,2-a]pyridazine]-1',3'-dione (184a):

According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, 4.00 mmol), $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}$, 2.00 mmol) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ mmol) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . N-Phenyltriazolinedione ($\mathbf{1 2 2}$, $700 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the ice-cooled mixture, and then it was stirred at room temperature for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate, $1: 1$) to yield $\mathbf{1 8 4 a}(367.2 \mathrm{mg}, 50 \%$, colorless solid), m.p. $130{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.1: 1\right)$; $\mathrm{IR}(\mathrm{KBr}): \tilde{v}=2962,2953,2852$, 2813, 1771, 1709, 1699, 1504, 1421, 1313, 1268, 1142, 1123, 916, 860, $767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.18-1.26 (m, $\left.1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}\right), 1.34-1.43$ (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), 1.69-1.78 (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), 2.31-2.52 (m, $6 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 1-\mathrm{H}$), 3.68 (t, $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), 4.18-4.40 (m, $\left.2 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 6.01\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 7.32-$ 7.46 (m, $5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=9.76(-, c \operatorname{Pr}-\mathrm{C}), 11.58(-, c \operatorname{Pr}-\mathrm{C})$, $15.91\left(+, \mathrm{CH}_{3}\right), 41.36\left(\mathrm{C}_{\text {quat, }}, c \mathrm{Pr}-\mathrm{C}\right), 44.28\left(-, \mathrm{C}-8\right.$ '), $49.94\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right) 58.20(+, \mathrm{C}-1), 66.93$ $\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 116.49\left(+, \mathrm{C}-7^{\prime}\right), 125.29(+, \mathrm{Ph}), 127.92(+, \mathrm{Ph}), 128.87(+, \mathrm{Ph}), 130.83\left(\mathrm{C}_{\text {quat }}\right)$, $138.72\left(\mathrm{C}_{\text {quat }}\right), 149.66\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 152.62\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 368$ (20) [$\left.M^{+}\right], 281$ (100) [M^{+}- morpholine], $266(6)\left[M^{+}\right.$- morpholine $\left.-\mathrm{CH}_{3}\right], 178$ (16), 114 (10), 100 (64); elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ (368.4): C 65.20, H 6.57; found: C 64.90, H 6.25 .

6'-(1-Morpholin-4-ylethyl)-2',7'-diphenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo-[1,2-a]pyridazine]-1',3'-dione (185a):

According to GP-B, $\operatorname{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}$, 4.00 mmol), $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, $261 \mathrm{mg}, 3.00 \mathrm{mmol}$), (1-iodovinyl)benzene (191, $460 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene (66,320 $\mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for 3 h . N-Phenyltriazolinedione ($\mathbf{1 2 2}, 700 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the ice-cooled mixture and then it was stirred at room temperature for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 3:1) to yield 185 a ($311 \mathrm{mg}, 35 \%$, colorless solid), m.p. $70^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.30$ (light petroleum/ethyl acetate 3:1); IR (KBr): $\tilde{v}=3050,2956,2850,2805,1772,1713,1598,1503,1407,1265,1143,119$, 942, $863 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29-1.37(\mathrm{~m}$, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.53-1.62(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.14-2.22(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.30$ (br.s, $4 \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2}$), $3.08(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.61\left(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 4.50\left(\mathrm{~s}, 2 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 7.10-$ 7.14 (m, 2 H, Ph), 7.33-7.42 (m, 4 H, Ph), 7.45-7.50 (m, $4 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=11.77$ (,$- c \operatorname{Pr}-\mathrm{C}$), 13.69 (-, $\left.c \operatorname{Pr}-\mathrm{C}\right), 17.51\left(+, \mathrm{CH}_{3}\right), 38.24\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right)$, 48.67 (-, C-8'), $51.50\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 59.79$ (+, C-1), $66.77\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 125.33$ (+, Ph-C), 127.63 (+, Ph-C), 127.89 (+, Ph-C), 128.56 (+, Ph-C), 128.88 (+, Ph-C), 131.22 (Cquat), 133.44 $\left(\mathrm{C}_{\text {quat }}\right), 136.70\left(\mathrm{C}_{\text {quat }}\right), 137.78\left(\mathrm{C}_{\text {quat }}\right), 150.39\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 152.97\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI})$ $m / z(\%): 444$ (22) [$\left.M^{+}\right], 357$ (52) [M^{+}- morpholinyl], 254 (7), 167 (16), 114 (27), 100 (100); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$ (444.5): C 70.25, H 6.35, N 12.60; found: C 69.98, H 6.52, N 12.42.

5-[1'-(Morpholin-4"-yl)ethyl]-2-phenylspiro[cyclopropane-1',4-(3a,4,7,7a-tetrahydroiso-indole)]-1,3-dione (186a):

According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene ($\mathbf{6 6}, 320$ $\mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL) at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, 1-phenyl-pyrrole-2,5-dione (189, $693 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 4 h . After work-up and
drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield 186a ($290 \mathrm{mg}, 40 \%$, yellow solid) as a mixture of two diastereomers (ratio $1: 1$ according to NMR).
Diastereomer I: m.p. $127^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.42$ (light petroleum/ethyl acetate 1:1); $\operatorname{IR}(\mathrm{KBr}): \tilde{v}=$ 3087, 3022, 2955, 2906, 2847, 2809, 1708, 1595, 1494, 1456, 1435, 1368, 1298, 1183, 1170, $1135,1111,855,759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.30-0.34(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.72-$ $0.80(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.58\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.26(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.75-1.83(\mathrm{~m}$, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.21-2.47\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 3 \mathrm{a}-\mathrm{H}, 7-\mathrm{H}\right), 2.65\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.81$ (ddd, $J=2.0,7.2,14.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.29-3.36(\mathrm{~m}, 1 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}), 3.50(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), $5.85(\mathrm{dd}, J=2.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.32-7.45(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=7.65(-, c \operatorname{Pr}-\mathrm{C}), 13.04(-, c \operatorname{Pr}-\mathrm{C}), 15.04(+$, CH_{3}), $20.05\left(\mathrm{C}_{\text {quat, }}, c \operatorname{Pr}-\mathrm{C}\right), 24.19(-, \mathrm{C}-7), 41.59$ (+, C-3a), 50.19 (+, C-7a), 50.57 (-, $\left.\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 64.02\left(+, \mathrm{C}-1\right.$ '), $66.96\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 125.95(+, \mathrm{Ph}-\mathrm{C}, \mathrm{C}-6), 128.26(+, \mathrm{Ph})$, 128.88 (+ , Ph-C), 131.89 ($\mathrm{C}_{\text {quat }}$), 144.11 ($\mathrm{C}_{\text {quat }}$), 177.07 ($\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}$), 178.88 ($\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}$); MS (70 eV, EI), $m / z(\%): 366$ (46) [$\left.M^{+}\right], 351$ (93) $\left[M^{+}-\mathrm{CH}_{3}\right], 152$ (6), 133 (8), 117 (18), 114 (100), 91 (16), 86 (27); elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ (366.5): C 72.11, H 7.15; found: C 71.96, H 7.02.
Diastereomer II: m.p. $140^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.38$ (light petroleum/ethyl acetate 1:1); IR (KBr): $\tilde{v}=$ 3064, 2965, 2891, 2846, 2815, 1773, 1702, 1597, 1500, 1455, 1435, 1390, 1301, 1189, 1172, 1115, 1040, 944, 923, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.35-0.43(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H})$, $0.79-0.87(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.98\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06-1,18(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.47-$ 1.55 (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), 2.31-2.50 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, 3 \mathrm{a}-\mathrm{H}, 7-\mathrm{H}$), 2.80-2.92 (m, $2 \mathrm{H}, 1 \mathrm{l}-\mathrm{H}, 7-$ H), 3.32-3.40 (m, $1 \mathrm{H}, 7 \mathrm{a}-\mathrm{H}$), 3.52-3.63 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}$), 5.93 (br.s, $1 \mathrm{H}, 6-\mathrm{H}$), 7.13-7.17 (m, $2 \mathrm{H}, \mathrm{Ph}), 7.34-7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=6.71(-, c \operatorname{Pr}-$ C), $11.87\left(+, \mathrm{CH}_{3}\right), 12.73(-, c \operatorname{Pr}-\mathrm{C}), 22.29\left(\mathrm{C}_{\text {quat, }}, c \mathrm{Pr}-\mathrm{C}\right), 24.56(-, \mathrm{C}-7), 41.60(+, \mathrm{C}-7 \mathrm{a})$, $49.16\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 50.05(+, \mathrm{C}-3 \mathrm{a}), 60.80\left(+, \mathrm{C}-1\right.$ '), $67.28\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 123.30(+, \mathrm{C}-6)$, 126.33 (,+ Ph-C), 128.49 (,$+ \mathrm{Ph}-\mathrm{C}$), 129.05 (+ , $\mathrm{Ph}-\mathrm{C}$), $131.98\left(\mathrm{C}_{\text {quat }}\right), 143.59\left(\mathrm{C}_{\text {quat }}\right), 177.74$ ($\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}$), $178.96\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 366$ (25) [M+], 351 (77) [$M^{+}-$ $\left.\mathrm{CH}_{3}\right], 133$ (6), 114 (100), 86 (16); elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ (366.5): C 72.11, H 7.15; found: C 71.96, H 7.02.

5-(1'-(Morpholin-4"-yl)ethyl)-2,6-diphenylspiro[cyclopropane-1',4-(3a,4,7,7a-tetra-hydroisoindole)]-1,3-dione (187a):

According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-
 furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), (1-iodo-vinyl)-benzene (191, $460 \mathrm{mg}, \quad 2.00 \mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF (1 mL) at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, 1 -Phenyl-2,5-dihydropyrrole-2,5-dione (189, $693 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 4 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel (100 g , $3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 3:1) to yield $\mathbf{1 8 7 a}$ ($353 \mathrm{mg}, 40 \%$, colorless solid) as a mixture of two diastereomers (ratio 1.18:1 according to NMR).
Major diastereomer: m.p. $165^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.18$ (light petroleum/ethyl acetate 3:1); IR (KBr): \tilde{v} $=2969,2847,2802,1777,1713,1597,1493,1388,1185,1115,862 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.41-0.49(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.78-0.86(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.21-1.28 (m, $1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}$), 2.17 (br.s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), 2.31 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}$), $2.41-2.49(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.95-2.98(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 3.08\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{H}\right), 3.42-3.49$ (m, 1 H, 7a-H), $3.55\left(\mathrm{t}, J=4.45 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$), 6.94-6.97 (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.22-7.52 (m, 8 $\mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=8.44(-, c \mathrm{Pr}-\mathrm{C}), 13.47(-, c \mathrm{Pr}-\mathrm{C}), 16.75(+$, $\left.\mathrm{CH}_{3}\right), 21.33\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 31.72(-, \mathrm{C}-7), 42.07(+, \mathrm{C}-7 \mathrm{a}), 51.11(+, \mathrm{C}-3 \mathrm{a}), 51.42(-$, $\mathrm{CH}_{2} \mathrm{NCH}_{2}$), $59.89\left(+, \mathrm{C}-1\right.$ '), $67.01\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 126.11(+, \mathrm{Ph}), 126.66(+, \mathrm{Ph}), 127.58(+$, Ph), $128.26(+, \mathrm{Ph}), 128.43(+, \mathrm{Ph}), 129.15(+, \mathrm{Ph}), 131.99\left(\mathrm{C}_{\text {quat }}\right), 138.10\left(\mathrm{C}_{\text {quat }}\right), 139.28$ ($\mathrm{C}_{\text {quat }}$), $141.69\left(\mathrm{C}_{\text {quat }}\right), 177.43\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right), 178.44\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 442$ (35) $\left[M^{+}\right], 427(33)\left[M^{+}-\mathrm{CH}_{3}\right], 355(20)\left[M^{+}-\right.$morpholinyl -H$], 209$ (14), 165 (15), 114 (100), 88 (10); elemental analysis calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ (442.6): C 75.99, H 6.83; found: C 75.70, H 7.03.

Minor diastereomer: m.p. $168{ }^{\circ} \mathrm{C}, R_{\mathrm{f}}=0.22$ (light petroleum/ethyl acetate 3:1); IR (KBr): \tilde{v} $=3077,3051,2965,2852,2791,1779,1709,1596,1492,1390,1181,1151,1120,1113,861$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.41-0.49(\mathrm{~m}, 2 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.08(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.21-1.29(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.61(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 2.12\left(\mathrm{br} . \mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, $2.53(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 2.83-2.99(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}) 3.05\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 3.28-$ $3.46\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}, 7 \mathrm{a}-\mathrm{H}\right), 7.05-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.24-7.49(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=9.28(-, c \operatorname{Pr}-\mathrm{C}), 12.94(-, c \operatorname{Pr}-\mathrm{C}), 17.53\left(+, \mathrm{CH}_{3}\right), 21.10\left(\mathrm{C}_{\text {quat }}\right.$,
$c \mathrm{Pr}-\mathrm{C}), 32.11$ (-, C-7), 42.40 (,$+ \mathrm{C}-7 \mathrm{a}$), 49.71 (+, C-3a), $51.45\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 60.62(+, \mathrm{C}-1$ '), $66.84\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 126.07(+, \mathrm{Ph}-\mathrm{C}), 126.59(+, \mathrm{Ph}-\mathrm{C}), 127.75(+, \mathrm{Ph}-\mathrm{C}), 128.17$ (+, Ph-C), $128.46(+, \mathrm{Ph}-\mathrm{C}), 129.07(+, \mathrm{Ph}-\mathrm{C}), 131.82\left(\mathrm{C}_{\text {quat }}\right), 138.98\left(\mathrm{C}_{\text {quat }}\right), 139.27\left(\mathrm{C}_{\text {quat }}\right), 141.98\left(\mathrm{C}_{\text {quat }}\right)$, $177.60\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 178.57\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 442$ (34) [$\left.M^{+}\right], 427$ (66) $\left[M^{+}-\mathrm{CH}_{3}\right], 355(30)\left[M^{+}-\right.$morpholinyl - H], 208 (16), 165 (15), 114 (100), 88 (16); elemental analysis calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ (442.6):C 75.99, H 6.83; found: C 75.70, H 6.90.

Dimethyl 8-(1-morpholin-4-ylethyl)spiro[2.5]octa-4,7-diene-4,5-dicarboxylate (188a):

According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00$ $\mathrm{mmol}), \mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine (78a, 174 $\mathrm{mg}, 2.00 \mathrm{mmol})$, iodoethene $(\mathbf{1 7 3}, 308 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(2 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature dimethyl acetylenedicarboxylate (190, $568 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated again with stirring at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield $\mathbf{1 8 8 a}$ ($200 \mathrm{mg}, 30 \%$, yellowish oil).
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($\mathbf{7 8 a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodoethene ($\mathbf{1 7 3}$, $308 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL) at $80{ }^{\circ} \mathrm{C}$ for 2 h . After cooling the mixture to room temperature, dimethyl acetylenedicarboxylate $(\mathbf{1 9 0}, 568 \mathrm{mg}, 4.00 \mathrm{mmol})$ was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30$ cm , light petroleum/ethyl acetate $1: 1$) to yield $\mathbf{1 8 8 a}$ ($160 \mathrm{mg}, 24 \%$, yellowish oil).
$R_{\mathrm{f}}=0.5$ (light petroleum/ethyl acetate, 1:1), IR (film): $\tilde{v}=3056,2953,2895,2857,2824$, 1733, 1630, 1587, 1436, 1371, 1266, 1162, 1118, 1033, 737, $704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.00-1.15(\mathrm{~m}, 3 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.06\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25-1.35(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-$ H), $2.22(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 2.35-2.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 3.15(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}, 6-$ H), $3.65\left(\mathrm{t}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.85(\mathrm{t}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=13.46(-, c \operatorname{Pr}-\mathrm{C}), 14.15(-, c \operatorname{Pr}-\mathrm{C})$, $17.14\left(+, \mathrm{CH}_{3}\right), 22.21\left(\mathrm{C}_{\text {quat, }}, c \mathrm{Pr}-\mathrm{C}\right), 26.51(-, \mathrm{C}-6), 50.31\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 51.93\left(+, \mathrm{OCH}_{3}\right)$, $52.13\left(+, \mathrm{OCH}_{3}\right), 57.91(+, \mathrm{C}-1), 67.10\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 119.91(+, \mathrm{C}-7), 124.75\left(\mathrm{C}_{\text {quat }}\right), 136.82$
($\mathrm{C}_{\text {quat }}$), $146.69\left(\mathrm{C}_{\text {quat }}\right), 165.78\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right), 168.46\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 eV, EI), $m / z(\%): 335$ (41) $\left[M^{+}\right], 334$ (100) $\left[M^{+}-H\right], 320(12), 276$ (16), 216 (13), 189 (17), 157 (11), 114 (26), 100 (34); elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{5}$ (335.4): C 64.46, H 7.51; found: C 64.19, H 7.76 .

2.6.7. An attempt for the synthesis of tert-Butyl 8-Benzyl-13-(1-morpholin-4-ylethyl)-8-azadisipiro[2.2.5.2]tridec-12-ene-5-carboxylate (205)

1) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($202 \mathrm{mg}, 2.00 \mathrm{mmol}$), morpholine ($\mathbf{7 8 a}, 209 \mathrm{mg}, 2.40 \mathrm{mmol}$), (E)- 1-Benzyl-3iodomethylenepiperidine $(\mathbf{2 0 2}, 626 \mathrm{mg}, 2.00 \mathrm{mmol})$ and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ $\mathrm{mmol})$ were stirred in anhydrous DMF $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3.5 h . After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 60 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel (100 g , $3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 1:1). In isolated fractions, desired compound 205 could not be observed. The reaction gave only the spirooctene $\mathbf{2 0 3}$ ($157 \mathrm{mg}, 20 \%$, yellowish oil).
2) According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol})$, morpholine ($78 \mathrm{a}, 261 \mathrm{mg}, 3.00 \mathrm{mmol}$), (E)- 1-Benzyl-3iodomethylenepiperidine (202, $626 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene $(\mathbf{6 6}, 320 \mathrm{mg}, 4.00$ mmol) were stirred in anhydrous DMF (1 mL) at $80^{\circ} \mathrm{C}$ for 4 h . After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 72 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel (100 g , $3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 1:1). In isolated fractions, desired compound 205 could not be observed. The reaction gave only the spirooctene 203 ($204 \mathrm{mg}, 20 \%$, yellowish oil).
tert-Butyl 8-(1-benzyl-piperidin-3-ylidenemethyl)-spiro[2.5]oct-7-ene-5-carboxylate (203):
IR (film): $\tilde{v}=3063,3026,2976,2932,2793,2744$,
 1726, 1494, 1454, 1391, 1367, 1314, 1287, 1258, 1151, 1170, 1019, 986, 968, 904, 848, 739, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.29-0.37(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.38-$ 0.46 (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), $0.54-0.60$ (m, $1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}$), 0.79$0.85(\mathrm{~m}, 1 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 1.34-1.39(\mathrm{~m}, 1 \mathrm{H}, 4-$ or $6-\mathrm{H}), 1.42\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.52-1.63(\mathrm{~m}, 2$ H), 1.93-2.02 (m, 1 H, 4- or 6-H), $2.19(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine), $2.31-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.49$ ($\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine), $2.59-2.69(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}$, pyridine), $3.51(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn})$, 5.29 (bs., $1 \mathrm{H}, \mathrm{CH}$), $5.38-5.41(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.29-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , CDCl_{3}, DEPT): $\delta=10.98(-, c \operatorname{Pr}-\mathrm{C}), 12.56(-, c \operatorname{Pr}-\mathrm{C}), 19.81\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 25.93(-), 27.50(-$, pyridine), $27.99\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.36(-), 36.99(-, \mathrm{C}-4$ or -6$), 40.22(+, \mathrm{C}-5), 53.86(-$, pyridine), $61.48(-$, pyridine $), 62.58(-, \mathrm{Bn}), 79.80\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 120.99(+, \mathrm{CH}), 123.1(+$, C-7), $126.8(+, \mathrm{Ph}), 128.0(+, 2 \times \mathrm{Ph}), 129.1(+, 2 \times \mathrm{Ph}), 136.98\left(\mathrm{C}_{\text {quat }}\right), 138.02\left(\mathrm{C}_{\text {quat }}\right), 138.58$ ($\mathrm{C}_{\text {quat }}$), $174.85\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}) m / z(\%): 393$ (40) [M+, 337 (25), 320 (9), 172 (38), 91 (100), 57 (17); elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{2}$ (393.6): C 79.35, H 8.96; found: C 78.90, H 8.78.

2.7. Preparation of 5-(1-lodovinyl)benzo[1,3]dioxole (192)

To an ice-cold solution of 5-[(1-diethoxyphosphinyl)oxo-vinyl]benzo[1,3]dioxole* ($2 \mathrm{~g}, 6.66 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Me}_{3} \mathrm{SiI}(2.85 \mathrm{~mL}, 20.0 \mathrm{mmol})$ dropwise with a syringe. After stirring 15 min at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$ solutions. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The vinyl iodide was purified by column chromatography using n-pentane as an eluent. 192 was isolated as a very sensitive pink oil ($1.092 \mathrm{~g}, 60 \%$) and immediately used after isolation. * This precursor was prepared according to a known procedure from the corresponding ketone and directly used for the preparation of $\mathbf{1 9 2}$ without further purification.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.35(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), $6.71-$ 6.75 (m, 1 H , vinyl), $7.01-7.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=101.36$
$(-), 106.68\left(\mathrm{C}_{\text {quat }}\right), 107.49(+, \mathrm{Ph}), 108.16$ (+, Ph-C), 122.13 (+, Ph-C), 126.13 (-), 135.84 $\left(\mathrm{C}_{\text {quat }}\right), 147.16\left(\mathrm{C}_{\text {quat }}\right), 147.93\left(\mathrm{C}_{\text {quat }}\right)$.

2.8. An inter-intra-intermolecular queuing cascade involving bicyclopropylidene (66) a functionalized iodoalkene $(206,208)$

2-Methyl-8-tert-butoxycarbonylspiro[cyclopropane-1',10-(3-oxabicyclo[4.4.0]dec-1(6)ene)] (207):

According to $\mathrm{GP}-\mathrm{B}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(556 \mathrm{mg}, 4.00 \mathrm{mmol})$, $\mathrm{Et}_{4} \mathrm{NCl}(332 \mathrm{mg}, 2.00 \mathrm{mmol}), 3$-iodobut-3-en-1-ol (206, 396 mg , 2.00 mmol) and bicyclopropylidene ($\mathbf{6 6}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous $\mathrm{MeCN}(4 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 24 h . After cooling the mixture to room temperature, tert-butyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was heated with stirring at $80{ }^{\circ} \mathrm{C}$ for an additional 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 4:1) to yield 207 ($140 \mathrm{mg}, 25 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.3:1 according to NMR).
Major and minor diastereomers*: $R_{\mathrm{f}}=0.56$ (light petroleum/ethyl acetate, 4:1); IR (film): \tilde{v} $=3081,2977,2932,1726,1452,1392,1367,1318,1259,1153,1107,1036,984,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.34-0.72(\mathrm{~m}, 6 \mathrm{H}, c \mathrm{Pr}-\mathrm{H}), 0.76-0.89(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.11(\mathrm{~d}, J$ $\left.=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.28\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44[\mathrm{~s}, 18 \mathrm{H}, 2 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.69-2.27(\mathrm{~m}, 10 \mathrm{H}), 2.68-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.80-3.99(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=10.23(-, c \operatorname{Pr}-\mathrm{C}), 11.87(-, c \operatorname{Pr}-\mathrm{C}), 13.08(-, c \operatorname{Pr}-\mathrm{C})$, $13.43(-, c \operatorname{Pr}-\mathrm{C}), 18.37\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 19.03\left(\mathrm{C}_{\text {quat }}, c \mathrm{Pr}-\mathrm{C}\right), 19.80\left(+, \mathrm{CH}_{3}\right), 20.58\left(+, \mathrm{CH}_{3}\right)$, $28.02\left[+, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.09(-), 30.08(-), 32.69(-), 33.54(-), 38.06(-), 39.32(-), 40.13$ $(+), 40.43(+), 57.45(-), 54.49(-), 66.13(+), 68.77(+), 79.99\left[\mathrm{C}_{\text {quat }}, 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 124.40$ $\left(\mathrm{C}_{\text {quat }}\right), 127.22\left(\mathrm{C}_{\text {quat }}\right), 132.29\left(\mathrm{C}_{\text {quat }}\right), 133.58\left(\mathrm{C}_{\text {quat }}\right), 174.68\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.79\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (DCI), $m / z(\%): 296(100)\left[M+\mathrm{NH}_{4}{ }^{+}\right], 279$ (2) $\left[M+\mathrm{H}^{+}\right], 240$ (73), 232 (20); elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}$ (278.4): C 73.35, H 9.41; found: C 73.59, H 9.41. *Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for major and minor
diastereomers. IR, DCI mass and elemental analysis were carried out for the mixture of diastereomers.

2-Methyl-3-(toluene-4-sulfonyl)-8-tert-butoxycarbonylspiro[cyclopropane-1',10-(3-aza-

 bicyclo[4.4.0]dec-1(6)-ene)](209) and 2,2-Dimethylpropionic acid 8-[1-methylene-3-toluene-4-sulfonylamino)-propyl]spiro[2.5]oct-7-en-5-yl ester (210) :According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200$ $\mu \mathrm{mol}$), $\mathrm{Et}_{3} \mathrm{~N}$ (202 mg, 2.00 mmol), N-(3-iodobut-3-enyl)-4-methylbenzenesulfonamide (208, $702.4 \mathrm{mg}, 2.00 \mathrm{mmol}$) and bicyclopropylidene ($66,320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (2 mL), at $80^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature tertbutyl acrylate ($\mathbf{6 8 b}, 512 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 4:1) to yield 209 ($328 \mathrm{mg}, 38 \%$, colorless solid) and 210 (311 mg , 36%, yellowish oil).

209: m.p. $110{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.35$ (light petroleum/ethyl acetate 4:1); IR (KBr): $\tilde{v}=3097,3072,3002,2978,2909,2869,2829$, 1716, 1597, 1448, 1433, 1372, 1367, 1338, 1263, 1158, 1089, 1033, 942, 815, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 0.36-0.44 (m, 1H, $c \operatorname{Pr}-\mathrm{H}$), $0.49-0.67(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.80-0.89(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 1.05-1.11$ (m, 1H), $1.18\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.42\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.63-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.03-2.18$ (m, 1 H), $2.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47-2.59(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.79(\mathrm{~m}, 2 \mathrm{H}), 7.25$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, DEPT): δ $=11.91(-, c \operatorname{Pr}-\mathrm{C}), 13.17(-, c \operatorname{Pr}-\mathrm{C}), 18.75\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 20.21\left(+, \mathrm{CH}_{3}\right), 21.10\left(+, \mathrm{CH}_{3}\right), 28.01$ $\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.25(-), 33.09(-), 37.42(-), 38.15(-), 40.47(+), 46.93(+), 79.52\left[\mathrm{C}_{\text {quat }}\right.$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 125.59\left(\mathrm{C}_{\text {quat }}\right), 127.45(+, \mathrm{Ph}-\mathrm{C}), 129.42(+, \mathrm{Ph}-\mathrm{C}), 132.62\left(\mathrm{C}_{\text {quat }}\right), 139.07\left(\mathrm{C}_{\text {quat }}\right)$, 142.67 ($\mathrm{C}_{\text {quat }}$), $174.13\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), m / z(\%): 431$ (4) [M$\left.{ }^{+}\right], 416$ (4) $\left[M^{+}-\mathrm{CH}_{3}\right]$, 375 (6), 361 (17), 360 (100), 220 (26), 204 (10), 174 (18), 133 (11), 105 (15), 91 (66), 57 (52), 41 (24); elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$ (431.6): C 66.79, H 7.71; found: C 66.68, Н 7.50.

210: $R_{\mathrm{f}}=0.31$ (light petroleum/ethyl acetate 4:1); IR (film): $\tilde{v}=3275(\mathrm{~N}-\mathrm{H}), 3080,3003,2976,2924,2872$, 1728 ($\mathrm{C}=\mathrm{O}$), 1599, 1457, 1421, 1392, 1367, 1337, 1257, 1167, 1095, 985, 903, 847, 814, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.20-0.28(\mathrm{~m}, 1 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.37-0.44(\mathrm{~m}, 2 \mathrm{H}, c \operatorname{Pr}-\mathrm{H}), 0.46-0.57$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 1.14-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.35\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.80(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-$ 2.09 (m, 2 H), 2.11-2.18 (m, 2 H), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.48-2.58(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.77-2.99(\mathrm{~m}$, 2 H), 4.27 (t, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.53 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 4.66 (br.s, 1 H , vinyl), $5.00-$ $5.03(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=11.71(-, c \operatorname{Pr}-\mathrm{C}), 13.12(-, c \operatorname{Pr}-\mathrm{C}), 18.43\left(\mathrm{C}_{\text {quat }}, c \operatorname{Pr}-\mathrm{C}\right), 21.26(+$, $\left.\mathrm{CH}_{3}\right), 27.81(-)^{*}, 27.81\left[+, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.50(-), 36.81(-), 39.94(+, \mathrm{C}-5), 40.82(-), 79.78$ $\left[\mathrm{C}_{\text {quat }}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 115.14$ (-, vinyl), 122.46 (+, C-7), 126.91 (+, Ph-C), 129.44 (+, Ph-C), 136.56 $\left(\mathrm{C}_{\text {quat }}\right), 141.52\left(\mathrm{C}_{\text {quat }}\right), 143.08\left(\mathrm{C}_{\text {quat }}\right), 144.14\left(\mathrm{C}_{\text {quat }}\right), 174.50\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$. *The peak of this carbon sits under the broad singlet of the tert-butyl group. This carbon peak correlates clearly with the multiplet between $2.11-2.18 \mathrm{ppm}$ in the HMQC spectrum. MS (ESI, MeOH) $m / z(\%)$: $885(100)[2 M+\mathrm{Na}]^{+}, 454(63)[M+\mathrm{Na}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}[M+\mathrm{H}]^{+}$ 432.22031 ; found 432.22036

2.9. Two-step queuing cascade reactions with methylenespiropentane (81)

2.9.1. The one-pot, two-step queuing cascade involving methylenespiropentane (81) iodobenzene 67, morpholine 78a and dimethyl fumarate 68d.

1,2-dimethyl 4-(1-morpholin-4-ylethyl)-5-phenyl-cyclohex-4-ene-carboxylate (227), 4-[2-(1-Phenylvinyl)-but-2-enyl]-morpholine (228), 4-(2-Methylene-4-phenyl-pent-4-enyl)morpholine (230):
Palladium acetate ($22.4 \mathrm{mg}, 100 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%$), were suspended in anhydrous DMF (1 mL) in a screw-cap pyrex bottle. Argon was bubbled through the mixture for 5 min , and then the morpholine ($\mathbf{7 8} \mathbf{a}, 174 \mathrm{mg}, 2.00 \mathrm{mmol}$), triethylamine ($202 \mathrm{mg}, 2.00 \mathrm{mmol}$), iodobenzene ($67,408 \mathrm{mg}, 2.00 \mathrm{mmol}$) and methylenespiropentane ($\mathbf{8 1}$) ($320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were added. After having stirred the mixture at $80{ }^{\circ} \mathrm{C}$, for 3 h the bottle was cooled to ambient temperature, dimethyl fumarate (68d, 576 $\mathrm{mg}, 4.00 \mathrm{mmol}$) was added, then the mixture was stirred at $80^{\circ} \mathrm{C}$, for 48 h in a preheated oil bath. After cooling to room temperature, the reaction mixture was taken up in 20 mL of diethyl ether. The solution was washed with water $(2 \times 20 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator, the residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate, 1:1) to yield $227(240 \mathrm{mg}, 31 \%$, colorless oil), $\mathbf{2 2 8}$ ($39 \mathrm{mg}, 8 \%$, colorless oil) and $\mathbf{2 3 0}$ ($25 \mathrm{mg}, 5 \%$, colorless oil).

227: $R_{\mathrm{f}}=0.61$ (light petroleum/ethyl acetate 1:1); IR (film): $\tilde{v}=3054,3020,2952,2849,2805,2688,1734,1600,1492$, 1437, 1379, 1346, 1331, 1297, 1259, 1221, 1162, 1117, 1070, 1004, 911, 864, 798, 771, 744, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.97$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.10-2.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.34-$ $2.40(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}$ or $6-\mathrm{H}), 2.49-2.58(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}$ or $6-\mathrm{H}), 2.67-2.91\left(\mathrm{AB}\right.$ system: $\delta_{\mathrm{A}}=2.89$, $\delta_{\mathrm{B}}=2.70, J_{A B}=13.0 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$ or $\left.6-\mathrm{H}\right), 2.96-3.12(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH}), 3.56-3.61(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.95-6.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.17-7.29(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=15.66\left(+, \mathrm{CH}_{3}\right), 31.01(+, \mathrm{CH}), 35.80(-, \mathrm{C}-3$ or C-6), $36.75(+, \mathrm{CH}), 46.08(+, \mathrm{CH}), 51.65\left(+, \mathrm{OCH}_{3}\right), 51.79\left(+, \mathrm{OCH}_{3}\right), 53.22(-$, $\left.\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 57.89(-, \mathrm{C}-3$ or $\mathrm{C}-6), 60.82\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 126.61(+, \mathrm{Ph}), 128.00(+, 2 \times \mathrm{Ph})$, $128.13(+, 2 \times \mathrm{Ph}), 133.69\left(\mathrm{C}_{\text {quat }}\right), 133.41\left(\mathrm{C}_{\text {quat }}\right), 141.70\left(\mathrm{C}_{\text {quat }}\right), 174.06\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.86$ ($\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}$); MS (70 eV, EI), m/z (\%): 387 (100) [$\left.\mathrm{M}^{+}\right], 356$ (8), 328 (10), 268 (8), 241 (14), 181 (40), 100 (12); elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}$ (387.5): C 68.20, H 7.54; found: C 67.97, H 7.69.

228: $R_{\mathrm{f}}=0.71$ (light petroleum/ethyl acetate 1:1); IR (film): $\tilde{v}=3056$,
 3023, 2954, 2850, 2804, 2759, 1737, 1496, 1458, 1437, 1411, 1381, $1349,1329,1298,1206,1223,1197,1162,1117,1066,1004,982,915$, 864, 801, 771, 742, $706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.68(\mathrm{~d}$, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.91(\mathrm{~s}, 2$ H), $3.65\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 5.05(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl-H), $5.58(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, 1 H , vinyl-H), 5.78 (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl-H), 7.17-7.39 (m,5 H, Ph); ${ }^{13} \mathrm{C}$ NMR (50.3 MHz , CDCl_{3}, DEPT $): ~ \delta=14.56\left(+, \mathrm{CH}_{3}\right), 53.39\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 64.47\left(-, \mathrm{CH}_{2}\right), 66.99\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, $114.78(-$, vinyl-C), $125.83(+$, vinyl-C), $126.41(+, 2 \times \mathrm{Ph}), 127.36(+, \mathrm{Ph}), 128.20(+, 2 \times$ $\mathrm{Ph}), 137.59\left(\mathrm{C}_{\text {quat }}\right), 139.79\left(\mathrm{C}_{\text {quat }}\right), 146.76\left(\mathrm{C}_{\text {quat }}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}(\%): 243(48)\left[\mathrm{M}^{+}\right], 228$ (8), 198 (8), 143 (8), 128 (9), 115 (8), 100 (100), 56 (10).

230: $R_{\mathrm{f}}=0.60$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3081,3023,2958,2912,2853,2805,1739,1701,1650,1626$, $1574,1495,1453,1346,1329,1290,1268,1243,1118,1071,1035$, 1012, 965, 867, 779, 733, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=2.35\left(\mathrm{t}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.86(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), $4.94(\mathrm{~d}, J=15 \mathrm{~Hz}, 2 \mathrm{H}$, vinyl-H), $5.14(\mathrm{~s}, 1 \mathrm{H}$, vinyl-H), $5.45(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl-H), 7.24-7.34 (m, $3 \mathrm{H}, \mathrm{Ph}$), 7.44-7.48 (m, $2 \mathrm{H}, \mathrm{Ph}$); ${ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=40.01\left(-, \mathrm{CH}_{2}\right), 53.56\left(-, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 63.94\left(-, \mathrm{CH}_{2}\right), 67.13\left(-, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 114.55$
$(-$, vinyl-C), $114.81(-$, vinyl-C), $126.12(+, 2 \times \mathrm{Ph}), 127.31(+, \mathrm{Ph}), 128.08(+, 2 \times \mathrm{Ph})$,
$140.98\left(\mathrm{C}_{\text {quat }}\right), 143.70\left(\mathrm{C}_{\text {quat }}\right), 145.65\left(\mathrm{C}_{\text {quat }}\right) ; \mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}(\%): 243(74)\left[\mathrm{M}^{+}\right], 228(15)$,
$213(10), 198(13), 184(8), 143(23), 138(46), 115(20), 100(100), 95(18), 77(12), 56(14)$.

2.9.2. \quad The one-pot, two-step queuing cascade involving methylenespiropentane (81) functionalized iodoarenes 231a-g, 240 and dimethyl fumarate 68d.

2.9.2.1. General procudere (GP)

Palladium acetate ($22.4 \mathrm{mg}, 100 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%$), were suspended in anhydrous DMF (1 mL) in a screw-cap pyrex bottle. Argon was bubbled through the mixture for 5 min , and then triethylamine ($202 \mathrm{mg}, 2.00 \mathrm{mmol}$), the respective iodoarene (231a-g, 2.00 mmol) and methylenespiropentane ($\mathbf{8 1}$) ($320 \mathrm{mg}, 4.00$ $\mathrm{mmol})$ were added. After having stirred the mixture for the given time at the stated temperature the bottle was cooled to ambient temperature, dimethyl fumarate (68d, $576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and then the mixture was stirred for an additional time as stated at the given temperature in a preheated oil bath. After cooling to room temperature, the reaction mixture was taken up in 20 mL of diethyl ether. The solution was washed with water $(2 \times 20 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. After removal of the solvent in a rotatory evaporator, the residue was subjected to chromatography on silica gel.

2,3-Dimethyl 5-methyl-1,2,3,4,5,7-hexahydro-dibenzo[c,e]oxepine-dicarboxylate (234a) :

According to $\mathrm{GP}, \operatorname{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), 2-iodobenzyl alcohol (231a, $468 \mathrm{mg}, 2.00 \mathrm{mmol}$) and methylenespiropentane $(\mathbf{8 1}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF (1 mL) at $80{ }^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}$, 576 mg , 4.00 mmol) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 3:1) to yield 234a ($145 \mathrm{mg}, 22 \%$, colorless solid) as a mixture of two diastereomers (ratio 1:1 according to NMR). $R_{\mathrm{f}}=0.32$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=2953,2857$,

1735, 1487, 1437, 1381, 1333, 1246, 1198, 1176, 1083, 1036, 914, 843, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.16\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $1.17\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19-$ $2.49(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.54-2.65(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.79-3.13[\mathrm{~m}, 7 \mathrm{H}, 2 \times(2-\mathrm{H}+3-$ H), 1-H or $4-\mathrm{H}], 3.68\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76-3.89(\mathrm{~m}, 2 \mathrm{H}, 2 \times 5-\mathrm{H})$, $4.17(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.21(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.37(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H})$, 4.41 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.19-7.37(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): δ $=16.22\left(+, \mathrm{CH}_{3}\right), 16.63\left(+, \mathrm{CH}_{3}\right), 26.99(-, \mathrm{C}-1$ or $\mathrm{C}-4), 28.07(-, \mathrm{C}-1$ or $\mathrm{C}-4), 30.39(-, \mathrm{C}-1$ or C-4), $31.20(-, \mathrm{C}-1$ or C-4), $40.92(+, \mathrm{C}-2$ or C-3), $40.93(+, \mathrm{C}-2$ or C-3), $41.55(+, \mathrm{C}-2$ or C3), $41.78(+, \mathrm{C}-2$ or $\mathrm{C}-3), 52.00\left(+, 2 \times \mathrm{OCH}_{3}\right), 52.04\left(+, 2 \times \mathrm{OCH}_{3}\right), 67.72(-, \mathrm{C}-7), 67.77(-$, C-7), 69.51 (,$+ \mathrm{C}-5$), 70.17 (+, C-5), 125.19 (+ , Ar), 125.55 (+, Ar), 127.59 (,+ Ar), 127.89 (+, Ar), 128.23 (+ , Ar), 128.25 (+ , Ar), 128.88 (+ , Ar), 129.27 (+ , Ar), 132.38 ($\mathrm{C}_{\text {quat }}$), 132.84 $\left(\mathrm{C}_{\text {quat }}\right), 133.60\left(\mathrm{C}_{\text {quat }}\right), 134.26\left(\mathrm{C}_{\text {quat }}\right), 136.04\left(\mathrm{C}_{\text {quat }}\right), 136.45\left(\mathrm{C}_{\text {quat }}\right), 140.80\left(\mathrm{C}_{\text {quat }}\right), 141.94$ ($\mathrm{C}_{\text {quat }}$), $174.49\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.53\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.77\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.11\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 eV, EI), m/z (\%): 330 (30) [$\left.\mathrm{M}^{+}\right], 315$ (11) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 299$ (17), 270 (22), 252 (70), 227 (38), 211 (18), 195 (22), 193 (66), 167 (100), 165 (34), 105 (34), 84 (85), 79 (38), 53 (24), 43 (38); elemental analysis calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$ (330.4): C 69.07, H 6.71; found: C 68.77, H 6.56. Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for each diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.

2,3-Dimethyl 6-benzyl-5-methyl-2,3,4,5,6,7-hexahydro-1H-dibenzo[c,e]azepinedicarboxylate (234b) and 2,3-Dimethyl 6-benzyl-5-methyl-2,3,4,5,6,7-hexahydro-1H-dibenzo [c,e]azepinedicarboxylate (235b)

According to $\mathrm{GP}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00 \mathrm{mmol})$, benzyl-(2-iodobenzyl)amine (231b, $\left.646 \mathrm{mg}, 2.00 \mathrm{mmol}\right)$ and methylenespiropentane ($\mathbf{8 1}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF $(1 \mathrm{~mL})$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}$, 576 mg , 4.00 mmol) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 1:1) to yield 234b ($186 \mathrm{mg}, 22 \%$, colorless oil) as a mixture of two diastereomers (ratio 1.6:1 according to NMR) and 235b ($43 \mathrm{mg}, 5 \%$ colorless oil).

Major diastereomer (234b): $R_{\mathrm{f}}=0.54$ (light petroleum/ethyl
 acetate 1:1); *IR (film): $\tilde{v}=3064,3037,2991,2895,2798$, $1734,1726,1455,1437,1373,1325,1300,1242,1202,1175$, 1154, 1130, 1088, 1067, 1029, 1007, 911, 877, 836, 807, 755, $734,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.33-2.45 (m, $2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}$), 2.73$2.80(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.88-3.02$ [m, $4 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}, 2-$ $\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}], 3.24-3.38$ (AB system: $\delta_{\mathrm{A}}=3.35, \delta_{\mathrm{B}}=3.27$,
$\left.J_{A B}=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}\right), 3.58(\mathrm{~s}, 2 \mathrm{H}, 7-\mathrm{H}), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.14-$ 7.41 (m, $9 \mathrm{H}, \mathrm{Ar}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=16.26\left(+, \mathrm{CH}_{3}\right), 30.79(-, \mathrm{C}-1$ or C-4), $31.63(-, \mathrm{C}-1$ or $\mathrm{C}-4), 41.81(+, \mathrm{C}-2$ or $\mathrm{C}-3), 41.89(+, \mathrm{C}-2$ or $\mathrm{C}-3), 52.03\left(+, \mathrm{OCH}_{3}\right)$, $52.06\left(+, \mathrm{OCH}_{3}\right), 54.81(-, \mathrm{Bn}), 55.63(-, \mathrm{C}-7), 56.72(+, \mathrm{C}-5), 125.50(+, \mathrm{Ar}), 126.88(+, \mathrm{Ar})$, $127.10(+, \mathrm{Ar}), 127.37(+, \mathrm{Ar}), 128.36(+, 2 \times \mathrm{Ph}), 128.98(+, 2 \times \mathrm{Ph}), 129.73(+, \mathrm{Ph}), 133.26$ $\left(\mathrm{C}_{\text {quat }}\right), 133.54\left(\mathrm{C}_{\text {quat }}\right), 135.54\left(\mathrm{C}_{\text {quat }}\right), 140.01\left(\mathrm{C}_{\text {quat }}\right), 141.04\left(\mathrm{C}_{\text {quat }}\right), 175.04\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.40$ ($\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}$); * $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}(\%)$: 419 (8) [$\left.\mathrm{M}^{+}\right], 404$ (100) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 388$ (5), 91 (40); *elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4}$ (419.5): C 74.44, H 6.97; found: C 74.21, H 6.72. Minor diastereomer (234b): $R_{\mathrm{f}}=0.49$ (light petroleum/ethyl acetate $1: 1$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.00\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45-2.75(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}+4-\mathrm{H}), 3.05-3.16$ $(\mathrm{m}, 3 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}], 3.20-3.37\left(\mathrm{AB}\right.$ system: $\left.\delta_{\mathrm{A}}=3.35, \delta_{\mathrm{B}}=3.22, J_{A B}=11.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}\right)$, $3.51-3.86$ (AB system: $\left.\delta_{\mathrm{A}}=3.83, \delta_{\mathrm{B}}=3.54, J_{A B}=13.1 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.17-7.41(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=$ $17.92\left(+, \mathrm{CH}_{3}\right), 30.57(-, \mathrm{C}-1$ or $\mathrm{C}-4), 31.13(-, \mathrm{C}-1$ or $\mathrm{C}-4), 41.28(+, \mathrm{C}-2$ or $\mathrm{C}-3), 41.32(+$, $\mathrm{C}-2$ or $\mathrm{C}-3), 52.07\left(+, 2 \times \mathrm{OCH}_{3}\right), 55.95(-, \mathrm{Bn}), 57.10(+, \mathrm{C}-5), 57.45(-, \mathrm{C}-7), 125.05(+$, Ar), 126.89 (+, Ar), 127.03 (+, Ar), $127.39(+, \mathrm{Ar}), 128.30(+, 2 \times \mathrm{Ph}), 128.87(+, 2 \times \mathrm{Ph})$, $129.42(+, \mathrm{Ph}), 131.45\left(\mathrm{C}_{\text {quat }}\right), 132.95\left(\mathrm{C}_{\text {quat }}\right), 136.00\left(\mathrm{C}_{\text {quat }}\right), 139.83\left(\mathrm{C}_{\text {quat }}\right), 142.01\left(\mathrm{C}_{\text {quat }}\right)$, $174.79\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.86\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$. *IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.

235b: IR (film): $\tilde{v}=3061,3025,2950,2799,1734,1495$,
 1436, 1362, 1265, 1198, 1174, 1121, 1063, 1027, 912, 848, 755, 736, 700, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.30\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H), $2.40-2.50(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.59-2.67(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}$ or $3-\mathrm{H}$ and $4-\mathrm{H}), 2.80(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 2.93(\mathrm{dd}, J=4.8$, $17.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.03-3.12(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}$ or $3-\mathrm{H}), 3.35-$ $3.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bn}$ or $7-\mathrm{H}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.63-3.77 (m, 2 H, Bn or 7-H), 7.19-7.36 (m, $\left.9 \mathrm{H}, \mathrm{Ar}, \mathrm{Ph}\right) ;{ }^{13} \mathrm{C}$ NMR (50.3 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right): ~ \delta=19.22\left(+, \mathrm{CH}_{3}\right), 30.80(-, \mathrm{C}-1), 38.21(+, \mathrm{C}-2$ or C-3), $42.54(+, \mathrm{C}-2$ or $\mathrm{C}-$ 3), $50.40(+, \mathrm{C}-4), 51.90\left(+, \mathrm{OCH}_{3}\right), 51.97\left(+, \mathrm{OCH}_{3}\right), 52.90(-, \mathrm{C}-5), 55.50(-, \mathrm{Bn}$ or $\mathrm{C}-7)$, $59.71(-, \mathrm{Bn}$ or $\mathrm{C}-7), 125.70(+, \mathrm{Ar}), 126.94(+, 2 \times \mathrm{Ar}), 127.30(+, \mathrm{Ar}), 128.24(+, 2 \times \mathrm{Ph})$, $128.81(+, 2 \times \mathrm{Ph}), 129.92(+, \mathrm{Ph}), 132.99\left(\mathrm{C}_{\text {quat }}\right), 134.94\left(\mathrm{C}_{\text {quat }}\right), 135.94\left(\mathrm{C}_{\text {quat }}\right), 139.31\left(\mathrm{C}_{\text {quat }}\right)$, $141.00\left(\mathrm{C}_{\text {quat }}\right), 174.53\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.34\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}(\%): 419$ (42) $\left[\mathrm{M}^{+}\right], 388$ (8), 327 (16), 318 (12), 268 (14), 220 (20), 192 (23), 182 (34), 165 (32), 150 (22), 105 (83), 91 (100), 84 (78), 59 (54), 45 (35); HRMS-ESI for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4}$ (419.53): $[M+\mathrm{H}]^{+}$ 420.21705 , calcd. 420.21693 .

2,3-Dimethyl 9,10-dimethoxy-5-methyl-1,2,3,4,5,7-hexahydro-dibenzo[c,e]oxepinedicarboxylate (234c) :

According to GP, $\mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}$, 2.00 mmol), 2-iodo-4,5-dimethoxybenzyl alcohol (231c, $588 \mathrm{mg}, 2.00 \mathrm{mmol})$ and methylenespiropentane ($\mathbf{8 1}$, $320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL) at $80^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}, 576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30$ cm , light petroleum/ethyl acetate 3:1) to yield $\mathbf{2 3 4 c}(142 \mathrm{mg}, 18 \%$, colorless solid) as a mixture of two diastereomers (ratio 1.6:1 according to NMR). $R_{\mathrm{f}}=0.51$ (light petroleum/ethyl acetate 3:1); IR (KBr): $\tilde{v}=2952,2854,1736,1605,1573,1515,1437,1375,1248,1199,1174,1131$, 1081, 1023, 863, 803, $768 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.16\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15-2.41(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.52-2.61(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}$
or $4-\mathrm{H}), 2.71-3.08[\mathrm{~m}, 7 \mathrm{H}, 2 \times(2-\mathrm{H}+3-\mathrm{H}), 1-\mathrm{H}$ or $4-\mathrm{H}], 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68(\mathrm{~s}, 6 \mathrm{H}, 2$ $\left.\times \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73-3.82(\mathrm{~m}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 3.84\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09-4.22(\mathrm{~m}, 4 \mathrm{H}, 2 \times 7-\mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.78(\mathrm{~s}, 2 \mathrm{H}$, Ar), $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=16.52\left(+, \mathrm{CH}_{3}\right), 17.46(+$, CH_{3}), $26.91(-, \mathrm{C}-1$ or $\mathrm{C}-4), 28.01(-, \mathrm{C}-1$ or $\mathrm{C}-4), 30.45(-, \mathrm{C}-1$ or $\mathrm{C}-4), 31.31(-, \mathrm{C}-1$ or $\mathrm{C}-4)$, $40.91(+, \mathrm{C}-2$ or $\mathrm{C}-3), 40.96(+, \mathrm{C}-2$ or $\mathrm{C}-3), 41.55(+, \mathrm{C}-2$ or $\mathrm{C}-3), 41.82(+, \mathrm{C}-2$ or $\mathrm{C}-3)$, $52.00\left(+, 4 \times \mathrm{OCH}_{3}\right), 55.78\left(+, 2 \times \mathrm{OCH}_{3}\right), 55.84\left(+, 2 \times \mathrm{OCH}_{3}\right), 67.31(-, \mathrm{C}-7), 67.40(-, \mathrm{C}-$ 7), 69.39 (+, C-5), 69.95 (+, C-5), 108.07 (+, Ar), 108.48 (+, Ar), 111.65 (+, Ar), 111.99 (+, $\operatorname{Ar}), 128.84\left(\mathrm{C}_{\text {quat }}\right), 129.32\left(\mathrm{C}_{\text {quat }}\right), 131.56\left(\mathrm{C}_{\text {quat }}\right), 132.08\left(\mathrm{C}_{\text {quat }}\right), 133.19\left(\mathrm{C}_{\text {quat }}\right), 133.61\left(\mathrm{C}_{\text {quat }}\right)$, $134.21\left(\mathrm{C}_{\text {quat }}\right), 134.49\left(\mathrm{C}_{\text {quat }}\right), 148.07\left(\mathrm{C}_{\text {quat }}\right), 148.30\left(\mathrm{C}_{\text {quat }}\right), 148.72\left(2 \times \mathrm{C}_{\text {quat }}\right), 174.47\left(\mathrm{C}_{\text {quat }}\right.$, $\mathrm{C}=\mathrm{O})$, $174.59\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$, $174.77\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right)$, $175.11\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS ($70 \mathrm{eV}, \mathrm{EI}$), m/z (\%): 390 (100) $\left[\mathrm{M}^{+}\right], 375$ (47) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 359$ (22), 312 (16), 287 (55), 253 (9), 227 (12), 59 (10); elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{7}$ (390.4): C 64.60 , H 6.71; found: C 64.35 , H 6.41. Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for each diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.

2,3-Dimethyl 5-methyl-2,3,5,7-tetrahydro-1H,4H-6,9,11-trioxa-benzo[3,4]cyclohepta[1,2-f]indene-dicarboxylate (234d) :

According to $\mathrm{GP}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($202 \mathrm{mg}, 2.00$ mmol), (6-iodo-benzo[1,3]dioxol-5-yl)-methanol (231d, $556 \mathrm{mg}, 2.00 \mathrm{mmol}$) and methylenespiropentane ($\mathbf{8 1}, 320$ $\mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL) at $80{ }^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}, 576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30$ cm , light petroleum/ethyl acetate $3: 1$) to yield $\mathbf{2 3 4 d}(155 \mathrm{mg}, 21 \%$, colorless solid) as a mixture of two diastereomers (ratio 1.6:1 according to NMR). $R_{\mathrm{f}}=0.24$ (light petroleum/ethyl acetate 3:1); IR (KBr): $\tilde{v}=2977,2953,2907,2857,1724,1504,1484,1436,1381,1324,1267,1242$, 1195, 1155, 1077, 1039, 1014, 976, 934, 871, 820, 793, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.17\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17-2.41(\mathrm{~m}, 2 \mathrm{H}$,

1-H or $4-\mathrm{H}), 2.52-2.64(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.74-2.89(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.91-3.05[\mathrm{~m}, 3$ $\mathrm{H}, 2 \times(2-\mathrm{H}$ or $3-\mathrm{H}), 1-\mathrm{H}$ or $4-\mathrm{H}], 2.08-3.13[\mathrm{~m}, 2 \mathrm{H}, 2 \times(2-\mathrm{H}$ or $3-\mathrm{H})], 3.72(\mathrm{~s}, 9 \mathrm{H}, 3 \times$ $\left.\mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77-3.90(\mathrm{~m}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.10(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}), 4.27$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.32(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}, 10-\mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}, 10-$ H), $6.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=16.47\left(+, \mathrm{CH}_{3}\right), 17.34\left(+, \mathrm{CH}_{3}\right), 26.73(-, \mathrm{C}-1$ or $\mathrm{C}-4), 27.96(-, \mathrm{C}-1$ or C-4), $30.33(-, \mathrm{C}-1$ or C-4), $31.30(-, \mathrm{C}-1$ or C-4), $40.84[+, 2 \times \mathrm{C}-2$ or C-3)], $41.51(+, \mathrm{C}-$ 2 or C-3), $41.74(+, \mathrm{C}-2$ or $\mathrm{C}-3), 52.04\left(+, 4 \times \mathrm{OCH}_{3}\right), 67.24(-, \mathrm{C}-7), 67.36(-, \mathrm{C}-7), 69.28(+$, C-5), 69.74 (+, C-5), 101.16 (-, C-10), 101.23 (-, C-10), 105.48 (+, Ar), 105.87 (+, Ar), 109.09 $(+, \operatorname{Ar}), 109.45(+, \operatorname{Ar}), 130.03\left(\mathrm{C}_{\text {quat }}\right), 130.57\left(\mathrm{C}_{\text {quat }}\right), 131.67\left(\mathrm{C}_{\text {quat }}\right), 132.23\left(\mathrm{C}_{\text {quat }}\right), 133.60$ $\left(\mathrm{C}_{\text {quat }}\right), 134.17\left(\mathrm{C}_{\text {quat }}\right), 134.77\left(\mathrm{C}_{\text {quat }}\right), 136.02\left(\mathrm{C}_{\text {quat }}\right), 146.71\left(\mathrm{C}_{\text {quat }}\right), 146.97\left(\mathrm{C}_{\text {quat }}\right), 147.64$ $\left(\mathrm{C}_{\text {quat }}\right), 147.73\left(\mathrm{C}_{\text {quat }}\right), 174.42\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.50\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.75\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.10$ ($\mathrm{C}_{\text {quat, }} \mathrm{C}=\mathrm{O}$); MS (70 eV, EI), m/z (\%): 374 (64) $\left[\mathrm{M}^{+}\right], 359$ (34) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 343$ (16), 314 (21), 296 (34), 271 (100), 239 (20), 237 (28), 211 (35), 181 (64), 153 (27), 128 (12), 115 (11), 57 (26), 43 (73); elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7}$ (374.4): C 64.16, H 5.92; found: C 64.39, H 5.80. Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for each diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.

2,3-Dimethyl 6-benzyl-5-methyl-2,3,4,5,6,7-hexahydro-1H-9,11-dioxa-6-aza-benzo[3,4] cyclohepta[1,2-f]indene-dicarboxylate (234e) :

According to $\mathrm{GP}-\mathrm{A}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol) benzyl-(6-iodo-benzo[1,3]dioxol-5-ylmethyl)amine (231e, $734 \mathrm{mg}, 2.00 \mathrm{mmol}$) and methylenespiropentane ($\mathbf{8 1}$, $320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL) at $80^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate (68d, $576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate $1: 1)$ to yield 234e ($185 \mathrm{mg}, 20 \%$, colorless solid) as a mixture of two diastereomers (ratio $1.5: 1$ according to NMR). $R_{\mathrm{f}}=0.52$ (light petroleum/ethyl acetate 1:1); *IR (KBr): $\tilde{v}=2948$, 2891, 2789, 1732,

1502, 1483, 1457, 1437, 1369, 1325, 1261, 1239, 1177, 1129, 1035, 930, 884, 826, 749, 730, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.01\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.27-2.73[\mathrm{~m}, 8 \mathrm{H}, 2 \times(1-\mathrm{H}+4-\mathrm{H})], 2.79-3.00(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}), 3.06-3.23$ $[\mathrm{m}, 7 \mathrm{H},(2-\mathrm{H}+3-\mathrm{H}),(\mathrm{Bn}$ or $7-\mathrm{H}), 5-\mathrm{H}], 2.48-3.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Bn}$ or $7-\mathrm{H}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70-3.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Bn}$ or 7H)*, 5.91-5.94 (m, $4 \mathrm{H}, 2 \times 10-\mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.78$ (s, 1 H, Ar), 7.24-7.29 (m, $10 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=16.12(+$, $\left.\mathrm{CH}_{3}\right), 17.62\left(+, \mathrm{CH}_{3}\right), 30.50(-, \mathrm{C}-1$ or $\mathrm{C}-4), 30.61(-, \mathrm{C}-1$ or $\mathrm{C}-4), 30.79(-, \mathrm{C}-1$ or $\mathrm{C}-4), 31.82$ (-, C-1 or C-4), $41.18(+, \mathrm{C}-2$ or C-3), 41.21 (,$+ \mathrm{C}-2$ or C-3), $41.80(+, \mathrm{C}-2$ or C-3), $41.86(+$, $\mathrm{C}-2$ or $\mathrm{C}-3), 52.03\left(+, 4 \times \mathrm{OCH}_{3}\right), 54.31(-, \mathrm{Bn}$ or $\mathrm{C}-7), 55.38(-, \mathrm{Bn}$ or $\mathrm{C}-7), 55.46(-, \mathrm{Bn}$ or C-7), 56.88 (+, C-5), 57.23 (,$+ \mathrm{C}-5$), 57.23 (- , Bn or C-7), 100.94 (,$- \mathrm{C}-10$), 100.99 (,$- \mathrm{C}-10$), 105.55 (+, Ar), 105.97 (+ , Ar), 109.66 (+, Ar), $109.90(+, \mathrm{Ar}), 126.85(+, 2 \times \mathrm{Ph}), 128.27(+, 2$ $\times \mathrm{Ph}), 128.33(+, 2 \times \mathrm{Ph}), 128.79(+, 2 \times \mathrm{Ph}), 128.87(+, 2 \times \mathrm{Ph}), 129.39\left(\mathrm{C}_{\text {quat }}\right), 129.79$ $\left(\mathrm{C}_{\text {quat }}\right), 131.23\left(\mathrm{C}_{\text {quat }}\right), 132.06\left(\mathrm{C}_{\text {quat }}\right), 132.58\left(\mathrm{C}_{\text {quat }}\right), 133.21\left(\mathrm{C}_{\text {quat }}\right), 134.65\left(\mathrm{C}_{\text {quat }}\right), 135.65$ $\left(\mathrm{C}_{\text {quat }}\right), 139.83\left(\mathrm{C}_{\text {quat }}\right), 139.95\left(\mathrm{C}_{\text {quat }}\right), 146.24\left(\mathrm{C}_{\text {quat }}\right), 146.34\left(\mathrm{C}_{\text {quat }}\right), 146.95\left(\mathrm{C}_{\text {quat }}\right), 146.97$ $\left(\mathrm{C}_{\text {quat }}\right), 174.68\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.78\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right), 174.95\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.35\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 eV, EI), m/z (\%): 448 (100) $\left[\mathrm{M}^{+}\right], 432$ (4) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 91$ (72); elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{6}$ (463.5): C 69.96, H 6.31; found: C 70.22, H 6.11. Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for each diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers. * This multiplet sits under singlets of methoxy groups.

2,3-Dimethyl 5-methyl-2,3,5,7,10,11-hexahydro-1H,4H-6,9,12-trioxa-benzo[3,4] cyclohepta[1,2-b]naphthalene-dicarboxylate (234f) :

According to $\mathrm{GP}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), (7-iodo-2,3-dihydro-benzo[1,4]dioxin-6-yl)methanol (231f, $584 \mathrm{mg}, \quad 2.00 \mathrm{mmol}$) and methylenespiropentane $(\mathbf{8 1}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF $(1 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}$, $576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue
was subjected to column chromatography on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate $3: 1$) to yield $\mathbf{2 3 4 f}$ ($178 \mathrm{mg}, 23 \%$, colorless solid) as a mixture of two diastereomers (ratio 1.1:1 according to NMR). $R_{\mathrm{f}}=0.55$ (light petroleum/ethyl acetate 3:1); IR (KBr): $\tilde{v}=2952,2849,1728,1573,1500,1437,1370,1309,1248,1197,1177,1156,1067,1041$, $1002,978,948,926,901,887,847,783,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.20(\mathrm{~d}, J$ $\left.=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18-2.42(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.54-2.56$ (m, $2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}$), 2.63-2.65 (m, $1 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.74-2.87(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.91-$ $3.05[\mathrm{~m}, 3 \mathrm{H}, 2 \times(2-\mathrm{H}$ or $3-\mathrm{H}), 1-\mathrm{H}$ or $4-\mathrm{H}], 3.08-3.13[\mathrm{~m}, 2 \mathrm{H}, 2 \times(2-\mathrm{H}$ or $3-\mathrm{H})], 3.73(\mathrm{~s}, 9$ $\mathrm{H}, 3 \times \mathrm{OCH}_{3}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83-3.98(\mathrm{~m}, 2 \mathrm{H}, 2 \times 5-\mathrm{H}), 4.11-4.34(\mathrm{~m}, 4 \mathrm{H}, 2 \times 7-$ H), $4.26[\mathrm{~s}, 8 \mathrm{H}, 2 \times(10-\mathrm{H}+11-\mathrm{H})], 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 6.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT): $\delta=16.59\left(+, \mathrm{CH}_{3}\right), 17.58\left(+, \mathrm{CH}_{3}\right), 26.93(-, \mathrm{C}-1$ or $\mathrm{C}-4)$, 28.04 (-, C-1 or C-4), 30.38 (-, C-1 or C-4), 31.33 (-, C-1 or C-4), $40.82[+, 2 \times \mathrm{C}-2$ or C3)], $41.53(+, \mathrm{C}-2$ or $\mathrm{C}-3), 41.76(+, \mathrm{C}-2$ or $\mathrm{C}-3), 51.95\left(+, \mathrm{OCH}_{3}\right), 51.99\left(+, 3 \times \mathrm{OCH}_{3}\right), 64.28$ $[-, 2 \times(\mathrm{C}-10+\mathrm{C}-11)], 67.07(-, 2 \times \mathrm{C}-7), 69.45(+, \mathrm{C}-5), 70.31(+, \mathrm{C}-5), 114.09(+, \mathrm{Ar})$, $114.46(+, \operatorname{Ar}), 117.45(+, \operatorname{Ar}), 117.77(+, \operatorname{Ar}), 129.86\left(\mathrm{C}_{\text {quat }}\right), 130.13\left(\mathrm{C}_{\text {quat }}\right), 131.51\left(\mathrm{C}_{\text {quat }}\right)$, $131.83\left(\mathrm{C}_{\text {quat }}\right), 133.04\left(\mathrm{C}_{\text {quat }}\right), 133.85\left(\mathrm{C}_{\text {quat }}\right), 134.08\left(\mathrm{C}_{\text {quat }}\right), 135.23\left(\mathrm{C}_{\text {quat }}\right), 142.61\left(\mathrm{C}_{\text {quat }}\right)$, $142.88\left(\mathrm{C}_{\text {quat }}\right), 143.29\left(\mathrm{C}_{\text {quat }}\right), 143.36\left(\mathrm{C}_{\text {quat }}\right), 174.46\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.55\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.80$ ($\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}$), $175.16\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}(\%): 388(54)\left[\mathrm{M}^{+}\right], 373(22)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{3}\right], 357$ (14), 328 (22), 310 (44), 285 (100), 251 (32), 225 (45), 59 (32), 49 (45), 43 (51); elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7}$ (388.4): C 64.94, H 6.23; found: C 64.64, H 6.03. Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for each diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.

10,11-Dimethyl 8-methyl-6,8,9,10,11,12-hexahydro-1,3,7-trioxa-benzo[6,7]cyclohepta

[1,2-e]indene-dicarboxylate ($\mathbf{2 3 4} \mathrm{g}$) :

According to $\mathrm{GP}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-
 furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), (5-iodo-benzo[1,3]dioxol-4-yl)-methanol (231g, 556 $\mathrm{mg}, 2.00 \mathrm{mmol}$) and methylenespiropentane ($\mathbf{8 1}, 320 \mathrm{mg}$, 4.00 mmol) were stirred in anhydrous DMF (1 mL) at $80^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}, 576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate $1: 1$) to yield $\mathbf{2 3 4 g}(219 \mathrm{mg}, 29 \%$, colorless solid) as a mixture of two diastereomers (ratio 1.1:1 according to NMR). $R_{\mathrm{f}}=0.56$ (light petroleum/ethyl acetate 1:1); IR (KBr): $\tilde{v}=2972,2953,2686,1725,1503,1480,1457$, 1437, 1379, 1275, 1247, 1197, 1176, 1102, 1082, 1070, 1041, 1014, 977, 933, 887, 859, 797, $744 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.17\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17-2.41(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}$ or $12-\mathrm{H}), 2.46-2.58(\mathrm{~m}, 3 \mathrm{H}, 9-\mathrm{H}$ or $12-\mathrm{H}), 2.71-3.10[(\mathrm{~m}$, $7 \mathrm{H},, 2 \times(10-\mathrm{H}+11-\mathrm{H}), 9-\mathrm{H}$ or $12-\mathrm{H})], 3.69\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86-$ $3.97(\mathrm{~m}, 2 \mathrm{H}, 2 \times 8-\mathrm{H}), 3.97(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.04(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.68(\mathrm{t}$, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{H}), 5.95(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times 2-\mathrm{H}), 6.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.78$ (s, $2 \mathrm{H}, \mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=16.53\left(+, \mathrm{CH}_{3}\right), 17.43\left(+, \mathrm{CH}_{3}\right), 26.65(-$, C-9 or C-12), 28.03 (-, C-9 or C-12), 30.54 (-, C-9 or C-12), 31.61 (,$- \mathrm{C}-9$ or C-12), 40.78 (,$+ \mathrm{C}-10$ or $\mathrm{C}-11$), $40.84(+, \mathrm{C}-10$ or $\mathrm{C}-11), 41.55(+, \mathrm{C}-10$ or $\mathrm{C}-11), 41.86(+, \mathrm{C}-10$ or $\mathrm{C}-11)$, $52.00\left(+, 2 \times \mathrm{OCH}_{3}\right), 52.05\left(+, 2 \times \mathrm{OCH}_{3}\right), 59.84(-, 2 \times \mathrm{C}-6), 69.83(+, \mathrm{C}-8), 70.41(+, \mathrm{C}-8)$, $101.11(-, \mathrm{C}-2), 101.20(-, \mathrm{C}-2), 107.81(+, \mathrm{Ar}), 107.85(+, \mathrm{Ar}), 117.48\left(\mathrm{C}_{\text {quat }}\right), 117.73\left(\mathrm{C}_{\text {quat }}\right)$, $118.61(+, \operatorname{Ar}), 119.07(+, \operatorname{Ar}), 131.18\left(\mathrm{C}_{\text {quat }}\right), 131.61\left(\mathrm{C}_{\text {quat }}\right), 133.45\left(\mathrm{C}_{\text {quat }}\right), 134.04\left(\mathrm{C}_{\text {quat }}\right)$, $135.19\left(\mathrm{C}_{\text {quat }}\right), 136.51\left(\mathrm{C}_{\text {quat }}\right), 145.31\left(\mathrm{C}_{\text {quat }}\right), 145.64\left(\mathrm{C}_{\text {quat }}\right), 146.46\left(\mathrm{C}_{\text {quat }}\right), 146.75\left(\mathrm{C}_{\text {quat }}\right)$, $174.46\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.51\left(\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}\right), 174.81\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 175.17\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$; MS (70 $\mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}(\%): 374$ (74) [$\left.\mathrm{M}^{+}\right], 359$ (13) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 343$ (17), 314 (26), 296 (83), 271 (100), 255 (30), 237 (40), 211 (46), 207 (24), 181 (66), 153 (28), 128 (15), 43 (22); elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7}$ (374.4): C 64.16, H 5.92; found: C 64.12, H 5.74. Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for each diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.

2,3-Dimethyl 5-methyl-7-oxo-1,2,3,4,5,7-hexahydro-dibenzo[c,e]oxepine-dicarboxylate (241) :

According to $\mathrm{GP}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.00$ mmol), 2-iodobenzoic acid ($\mathbf{2 4 0}, 468 \mathrm{mg}, 2.00 \mathrm{mmol}$) and methylenespiropentane ($\mathbf{8 1}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF (1 mL) at $80{ }^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate ($\mathbf{6 8 d}, 576 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added, and the mixture stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel (100 g , $3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 3:1) to yield $241(55 \mathrm{mg}, 8 \%$, yellowish oil) as a mixture of two diastereomers (ratio 1.8:1 according to NMR). $R_{\mathrm{f}}=0.30$ (light petroleum/ethyl acetate 3:1); IR (film): $\tilde{v}=3064,2978,2951,2847,1734,1601,1437,1382,1327,1285$, $1259,1198,1175,1125,1093,1058,1025,1010,936,917,769,714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.42\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26-2.39(\mathrm{~m}$, $2 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.56-2.63(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}$ or $4-\mathrm{H}), 2.80-3.14[\mathrm{~m}, 7 \mathrm{H}, 2 \times(2-\mathrm{H}+3-\mathrm{H}), 1-\mathrm{H}$ or $4-\mathrm{H}], 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.71-4.79 (m, $2 \mathrm{H}, 2 \times 5-\mathrm{H}), 7.30-7.41(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.48-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.82-7.86(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=15.82\left(+, \mathrm{CH}_{3}\right), 16.48\left(+, \mathrm{CH}_{3}\right), 26.79(-, \mathrm{C}-$ 1 or C-4), 27.47 (-, C-1 or C-4), 30.25 (-, C-1 or C-4), 31.11 (-, C-1 or C-4), 40.75 (+, C-2 or C-3), $40.86(+, \mathrm{C}-2$ or C-3), $41.05(+, \mathrm{C}-2$ or C-3), $41.28(+, \mathrm{C}-2$ or C-3), $52.15(+, 4 \times$ $\left.\mathrm{OCH}_{3}\right), 72.80(+, 2 \times \mathrm{C}-5), 125.37(+, \mathrm{Ar}), 125.97(+, \mathrm{Ar}), 128.08(+, \mathrm{Ar}), 128.30(+, \mathrm{Ar})$, $130.73(+, \operatorname{Ar}), 130.85\left(\mathrm{C}_{\text {quat }}\right), 131.03(+, \mathrm{Ar}), 131.82\left(\mathrm{C}_{\text {quat }}\right), 132.02(+, \mathrm{Ar}), 133.81\left(\mathrm{C}_{\text {quat }}\right)$, $134.08\left(\mathrm{C}_{\text {quat }}\right), 134.37\left(\mathrm{C}_{\text {quat }}\right), 134.49\left(\mathrm{C}_{\text {quat }}\right), 136.76\left(\mathrm{C}_{\text {quat }}\right), 137.95\left(\mathrm{C}_{\text {quat }}\right), 169.95\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right)$, $170.07\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 173.92\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.06\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.45\left(\mathrm{C}_{\text {quat }}, \mathrm{C}=\mathrm{O}\right), 174.60$ ($\mathrm{C}_{\text {quat, }}, \mathrm{C}=\mathrm{O}$); $\mathrm{MS}(70 \mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}(\%): 344$ (10) $\left[\mathrm{M}^{+}\right], 312$ (29), 284 (30), 267 (37), 253 (86), 239 (28), 207 (41), 181 (100), 165 (49), 152 (26), 115 (13), 59 (16); HRMS-ESI for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}$ (344.37): $[M+\mathrm{H}]^{+} 345.13314$, calcd. 345.13326, $\left[M+\mathrm{NH}_{4}\right]^{+} 362.15974$, calcd. 362.15981. Proton and carbon chemical shifts are given in one series for both diastereomers together because ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were not appropriate to classify all of the peaks for each diastereomers. IR, EI mass and elemental analysis were carried out for the mixture of diastereomers.
2.9.2.2. Attempts for the synthesis of heterocycles 237 and 239

8,9-Dimethyl 6-methyl-5,6,7,8,9,10-hexahydro-phenanthridine-dicarboxylate (237):
According to $\mathrm{GP}, \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol})$, tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N} \quad(202 \mathrm{mg}, \quad 2.00 \mathrm{mmol})$, 2-iodo-aniline (236, $\left.438 \mathrm{mg}, \quad 2.00 \mathrm{mmol}\right)$ and methylenespiropentane $(\mathbf{8 1}, 320 \mathrm{mg}, 4.00 \mathrm{mmol})$ were stirred in anhydrous DMF $(1 \mathrm{~mL})$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate (68d, 576 mg , 4.00 mmol) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 3:1). Separated fractions could not be identified and desired product 237 could not be observed.

2,3-Dimethyl 5-methyl-1,3,4,5,7,8-hexahydro-2H-6-oxa-dibenzo[a,c]cyclooctene -dicarboxylate (239):

According to GP-A, $\mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 100 \mu \mathrm{~mol}$), tri-2-furylphosphine ($46.4 \mathrm{mg}, 200 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}$ (202 mg, 2.00 mmol), 2-(2-iodo-phenyl)-ethanol (238, $496 \mathrm{mg}, 2.00 \mathrm{mmol}$) and methylenespiropentane ($\mathbf{8 1}, 320 \mathrm{mg}, 4.00 \mathrm{mmol}$) were stirred in anhydrous DMF $(1 \mathrm{~mL})$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 h . After cooling the mixture to room temperature, dimethyl fumarate (68d, 576 mg , 4.00 mmol) was added, and the mixture stirred at $80^{\circ} \mathrm{C}$ for 48 h . After work-up and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed in a rotatory evaporator. The residue was subjected to column chromatography on silica gel ($100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate 3:1) . Separated fractions could not be identified and desired product $\mathbf{2 3 9}$ could not be observed.

2.9.3. Preparation of functionalized aryliodides 231e and 231f

Benzyl-(6-iodo-benzo[1,3]dioxol-5-ylmethyl)amine (231e):

A solution of 5-chloromethyl-6-iodo-benzo[1,3]dioxole (245d, $0.785 \mathrm{~g}, 2.65 \mathrm{mmol})$, benzylamine ($1.16 \mathrm{~mL}, 10.6 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.82 \mathrm{~g}, 13.2 \mathrm{mmol})$ in DME $(15 \mathrm{~mL})$ was refluxed. The reaction was checked with TLC during reflux process, when the starting dioxole disappeared (4 h), it was stopped and cooled to room temperature. The reaction mixture was filtrated and concontrated in a rotatory evaporator. The residue was subjected to on silica gel $(100 \mathrm{~g}, 3 \times 30 \mathrm{~cm}$, light petroleum/ethyl acetate $3: 1)$ to yield $234 \mathrm{e}(0.812 \mathrm{~g}, 84 \%$, yellowish oil). IR (film): $\tilde{v}=3315,3084,3061,3025,2893,2829,1500,1476,1453,1406,1385,1363$,

1230, 1113, 1039, 933, 864, 829, 738, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.78(\mathrm{bs}, 1$ $\mathrm{H}, \mathrm{NH}), 3.75\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 5.96\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.24-7.36(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{Ar}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\left.62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right): \delta=52.93\left(-, \mathrm{CH}_{2}\right), 57.36\left(-, \mathrm{CH}_{2}\right), 87.09$ $\left(\mathrm{C}_{\text {quat }}\right), 101.51\left(-, \mathrm{OCH}_{2} \mathrm{O}\right), 109.86(+, \mathrm{Ar}), 118.52(+, \mathrm{Ar}), 126.95(+, \mathrm{Ph}), 128.14(+, 2 \times$ $\mathrm{Ph})$, 128. $34(+, 2 \times \mathrm{Ph}), 135.62\left(\mathrm{C}_{\text {quat }}\right), 139.99\left(\mathrm{C}_{\text {quat }}\right), 147.37\left(\mathrm{C}_{\text {quat }}\right), 148.33\left(\mathrm{C}_{\text {quat }}\right)$; MS (70 $\mathrm{eV}, \mathrm{EI}), \mathrm{m} / \mathrm{z}$ (\%): 367 (26) [$\left.\mathrm{M}^{+}\right], 276$ (14), 261 (42), 240 (41), 135 (74), 106 (18), 91 (100), 76 (14). elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{INO}_{2}$ (330.4): C 49.07, H 3.84; found: C 48.95, H 3.83.

(7-iodo-2,3-dihydro-benzo[1,4]dioxin-6-yl)methanol (231f):

To a solution of (2,3-dihydro-benzo[1,4]dioxin-6-yl)methanol ($\mathbf{2 4 4 f}, 2.15 \mathrm{~g}, 12.93 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$ were successively added silver trifluoroacetate $(3.14 \mathrm{~g}, 14.2 \mathrm{mmol})$ and iodine ($3.61 \mathrm{~g}, 14.2 \mathrm{mmol}$). After stirring for 5 min , the resulting heterogeneous mixtire was filtered through a celite pad. The filtrate was than washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, dried with MgSO_{4}, filtered and concentrated in vacuo to give pale yellow solid. Recrystallization from CHCl_{3} afforded $231 \mathrm{f}(3.5 \mathrm{~g}, 92 \%$, white solid). IR (KBr): $\tilde{v}=3283,2977,2922,1734,1576,1483,1456,1401,1299,1273,1260,1180,1147$, $1070,1051,1042,986,962,917,892,874,852,705,664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.90(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.24\left[\mathrm{~s}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right], 4.56(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar})$; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$): $\delta=64.13\left[-, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right], 68.34(-, \mathrm{Bn}), 85.44\left(\mathrm{C}_{\text {quat }}\right)$, $117.17(+, \operatorname{Ar}), 127.00(+, \mathrm{Ar}), 135.56\left(\mathrm{C}_{\text {quat }}\right), 143.42\left(\mathrm{C}_{\text {quat }}\right), 143.71\left(\mathrm{C}_{\text {quat }}\right), 155.37\left(\mathrm{C}_{\text {quat }}\right) ; \mathrm{MS}$ (70 eV, EI), m/z (\%): 392 (100) [M $\left.{ }^{+}\right], 137$ (40), 93 (9), 65 (14), 53 (18), 50 (15). elemental analysis calcd (\%) for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO}_{3}$ (292.1): C 37.01, H 3.11; found: C 36.81, H 2.85 .

D. Conclusion and Outlook

The first part of this study focused on new developments in the domino Heck-Diels-Alder reaction with bicyclopropylidene (66) as an extension of this already powerful methodology. Although, in previous studies ${ }^{[29 b]}$, mono-substituted bicyclopropylidenes such as methyl bicyclopropylidene carboxylate ($\mathbf{6 6 E}$), and n-pentylbicyclopropylidene were utilized as coupling partners of iodobenzene (67), this new version of the domino reaction was limited only one successful example. To establish this concept as another dimension of the domino reaction involving all scope and limitations, four differently substituted bicyclopropylidenes (66B-E) were coupled with aryl iodides in the presence of a dienophile. Among them, the most impressive result was achieved by methyl bicycopropylidenecarboxylate ($\mathbf{6 6 E}$). The reaction yielded regiodiastereomeric mixture of spiro[2.5]octenes (cis/trans, trans-104E and cis/trans, cis-105E) stemming from the opening of the only unsubstituted cyclopropane ring. The result was supported with X-ray crystal structure analyses of major diastereomers (cis/trans, trans104E). Another interesting result was obtained by employing the boronate substituted bicylopropylidene (66B). In this case, the reaction mainly produced the spiro[2.5]octene (109a) lacking the boronate substituent together with the mixture of diastereomers cis/trans, trans104B. The formation of 109a was attributed to opening of the substituted cyclopropyl ring and following deboropalladation process. Moreover, the reaction of methyl bicyclopropylidenecarboxylate ($\mathbf{6 6 E}$) with sterically encumbered aryl iodide, 2-iodo-1,3dimethyl benzene, without a dienophile produced regioisomeric mixtures of allylidenecyclopropane derivatives trans-119E, cis-120E and 121E. The minor component 121 E was only allylidenecyclopropane arising from opening of the substituted cyclopropane ring. In the light of these results, it has been concluded that the domino Heck-Diels-Alder reaction with mono-substituted bicyclopropylidenes was quite selective with respect to the identity of substituents. Reactions performed with methyl bicyclopropylidenecarboxylate ($\mathbf{6 6 E}$) produced a mixture of spirooctenes occuring by opening of unsubstituted cyclopropane moiety. This must be caused by complexation of palladium species with heteroatoms of the ester in carbopalladation step. Correspondingly, reactions with bicyclopropylidenes having no available heteroatoms in their substituents such as the reaction of 2-(tributylstannyl)bicylopropylidene (66C) furnished mainly the spiro[2.5]octene 109b occurring by the opening of the substituted cyclopropane ring. Therefore, by this study, not only combinatorial potential of domino Heck-Diels-Alder reaction with bicyclopropylidene (66) was enriched but also valuable perspectives for this domino reaction was gained.

Another avenue was opened up by employing series of transformations to the spiro[2.5]octene derivative 127 prepared by the domino Heck-Diels-Alder reaction involving bicyclopropylidene (66), iodobenzene (67) and itaconic dimethyl ester (126). The diester functionality in this spirooctene was converted to N-phenylimide by three simple operations to achieve dispiroheterocyclic structure 130. Thus, this work demonstrated that the domino process of bicyclopropylidene by appropriate selection of adducts can serve various precursors that allow further valuable synthetic manipulations.

In the second part of this study, a new one-pot, two-step, four-component queuing cascade was introduced. The cascade produced in the first step allylidenecyclopropane derivatives (174a-e) generated by nucleophilic trapping of respective π-allylpalladium intermediates. In the second step, these allylidenecyclopropanes ($\mathbf{1 7 4 a - e}$) were allowed to undergo immediate Diels-Alder reactions upon addition of various dienophiles. Palladium-catalyzed cross-coupling of bicyclopropylidene (66) with iodoethene (173) in the presence of a secondary amine 78 and addition of dienophiles 68a-e in the second step, 8-(1'-aminoethyl)-substituted spiro[2.5]oct-7ene derivatives ($\mathbf{1 7 5 a a} \mathbf{- a d}$ and $\mathbf{1 7 5 b b}-\mathbf{e b}$) were obtained in $29-66 \%$ yield. The same one-pot, two-step queuing cascade could be carried out with other iodoalkenes including cyclic ones (191-196) and with cyclic dienophiles such as N-phenylmaleimide 189 and N phenyltriazolinedione $\mathbf{1 2 2}$ to furnish highly substituted spirooctenes and spirocyclopropanated oligoheterocycles (176-179ab and 180-188a). Furthermore, spirocyclopropanated heterobicycles such as 207, 209 (25 and 38% yield, respectively) were also obtained by an inter-intra-intermolecular version of this queuing cascade involving 1-hydroxyethyl and 1aminoethyl substituted iodoethenes 206, 208. In conclusion, another dimension of diversity has been added to an already powerful combinatorial approach to libraries of spiro[2.5]octene derivatives ${ }^{[296]}$. The new one-pot, two-step four-component queuing cascade led to a particularly rich pattern of substituents by variation of the iodoalkenes, the nucleophiles and the dienophiles, exceeding those of the previously described spirocyclopropanated carbo- and heterocyclic skeletons ${ }^{[29 b]}$. This sequential transformation may also open up new approaches to natural products containing spiro[2.5]octene substructures. ${ }^{[31]}$

In the last chapter, another one-pot, two-step yet three-component queuing cascade involving methylenespiropentane (81), functionalized aryliodides 231a-g and dimethyl fumarate 68d was presented as a general methodology for the construction of benzoxepine and benzoazepine derivatives 234a-g. Palladium-catalyzed cross-coupling of methylenespiropentane (81) with o-
iodo benzylic alcohols or amines 231a-g, firstly generated seven-membered heteroexocyclic dienes 232a-g via series of rearrangements and intramolecularly trapping of respective π allylpalladium intermediates. These dienes (232a-g), in the second step, upon addition of dimethyl fumarate 68d underwent Diels-Alder reactions to furnish benzoxepine and benzoazepine derivatives 234a-g in 18-29\% yield. Numerous attempts to increase the yield of this cascade reaction were unsuccessful. Despite having low yields, the new three-component, two-step cascade provided valuable fused heterocyclic ring systems 234a-g commonly found in the structure of biologically active natural and synthetic compounds ${ }^{[73]}$. Moreover, this approach might be pioneering study for the next generation of palladium-catalyzed reactions with methylenespiropentane (81).

E. References and Notes

[1] (a) W. A. Smit, A. F. Bochkov, R. Caple, Organic Synthesis: The Science behind the Art, Royal Society of Chemistry, Cambridge, 1998, 1-39. (b) H. Hopf, Classics in Hydrocarbon Chemistry, Wiley-UCH, Weinhem, 2000. 5-40. (c) I. Hargittai, M. Hargittai, Symmentry through the Eyes of a Chemist, WCH Publishers, inc., New York, 1987, 1-7.
[2] (a) W. D. Wulff, Y. C. Xu, J. Am. Chem. Soc. 1988, 110, 2312-2314. (b) M. G. Dolson, B. L. Chenard, J. S. Swenton, J. Am. Chem. Soc. 1981, 103, 5263-5264. (c) T. R. Kelley, J. Vaya, L. Ananthasubrananian, J. Am. Chem. Soc. 1980, 102, 5983-5984.
[3] (a) E. J. Corey, J.P. Dittami, J. Am. Chem. Soc. 1985, 107, 256-257. (b) E. J. Corey, A. Gozman-Perez, M. C. Noe, J. Am. Chem. Soc. 1994, 116, 12109-12110.
[4] D. L. J. Clive, S. Hisaindee, J. Org. Chem. 2000, 65, 4923-4929.
[5] D. L. Nelson, M. M. Cox, Lehninger Principles of Biochemsitry, W. H. Freeman and Company, New York, 2004, 948-994.
[6] W. L. Davies, R. R. Grunert, R. F. Haff, J. W. McGahen, E. M. Neumayer, M. Paulshock, J. C. Watts, T. R. Wood, E. C. Hermann, C. F. Hoffman, Science 1964, 144, 862-863.
[7] S. H.Chanteau, J. M. Tour, J. Org. Chem. 2003, 68, 8750-8766.
[8] (a) L. F. Tietze, Chem. Rev. 1996, 96, 115-136. (b) L. F. Tietze, A. Modi, Med. Res. Rev. 2000, 20, 304-322. (c) S. F, Mayer, W. Krutil, K. Faber, Chem. Soc. Rev. 2001, 30, 332339. (d) R. Schobert, G. J. Gordon, Curr. Org. Chem. 2002, 6, 1181-1196. (e) G. H. Posner, Chem. Rev. 1986, 80, 831-844.
[9] R. Robinson, J. Chem. Soc. 1917, 11, 762-768.
[10] (a) I. Ugi, R. Meyr, Angew. Chem. 1958, 70, 702-703. (b) I. Ugi, R. Meyr, C. Steinbrückner, Angew. Chem. 1959, 71, 386.
[11] (a) I. Ugi, B. Werner, A. Dömling, Molecules 2003, 8, 53-56. (b) Z. Jieping, Eur. J. Org. Chem. 2003, 1133-1144. (c) L. Weber, Curr. Med. Chem. 2002, 9, 1241-1253. (d) A. Dömling, Current Opinion in Chemical Biology 2000, 4, 318-323.
[12] (a) H. W. Moore, H. Xra, J. Org. Chem. 1992, 57, 3765-3766. (b) Y. Xiong, H. Xia, H. W. Moore, J. Org. Chem. 1995, 60, 6460-6467.
[13] (a) A. de Meijere, S. Bräse, in Transition Metal Catalyzed Reactions (Eds.: S.-i. Murahashi, S. G. Davies), Blackwell Science, Oxford, 1999, 99-131. (b) B.M. Trost, in Transition Metals for Organic Synthesis (Eds.: M. Beller, M. Bolm), Wiley WCH,

Weinhem, 2004, Vol.1, 3-14. (c) B. M. Trost, M. J. Krische, Synlett, 1998, 1-16. (d) A. de Meijere, M. Schelper, l'actualité Chimique 2003, avril-mai, 51-56.
[14] (a) A. Heumann, M. Réglier, Tetrahedron 1996, 52, 9289-9346. (b) J. Tsuji, Palladium Reagents and catalysts - New Perspectives for the $21^{\text {st }}$ Century, John Wiley, Cornwall, 2004, 1-26.
[15] (a) R. Shintani, K. Okamoto, T. Hayashi, J. Am. Chem. Soc. 2005, 127, 2872-2873. (b) P.A. Wender, D. Sperandio, J. Org. Chem. 1998, 63, 4164-4165. (c) P. A. Wender, G. G. Gamber, R. D. Hubbard, L. Zhang, J. Am. Chem. Soc. 2002, 124, 2876-2877. (d) P. A. Wender, A. J. Dychman, C. O. Husfeld, D. Kadereit, J. A. Love, H. Rieck, J. Am. Chem. Soc. 1999, 121, 10442-10443. (e) H. Wegner, Studies on Rhodium-Catalyzed [5+2] Cocylization Reactions, Cuvillier Verlag, Göttingen, 2004.
[16] (a) A. Padwa, C. S. Straub, J. Org. Chem. 2003, 68, 227-239. (b) A. Padwa, C. S. Straub, Org. Lett. 2000, 2, 2093-2095.
[17] E. O. Fischer, A. Maasböl, Angew. Chem., Int. Ed. Engl. 1964, 3, 580.
[18] For recent reviews, see: (a) J. Barluenga, A. M. Fernandez-Rodriguez, E. Aguilar, J. Organomet. Chem. 2005, 690, 539-587. (b) Y-T. Wu, A. de Meijere, Top. Organomet. Chem. 2004, 21-57. (c) J. Barluenga, J. Santamaria, M. Tomas, Chem. Rev. 2004, 104, 2259-2283.
[19] (a) J. Bao, V. Dragisich, S. Wenglowsky, W. D. Wulff, J. Am. Chem. Soc. 1991, 113, 9873-9875. (b) J. Bao, W. D. Wulff, V. Draisisch, S. Wenglowsky, R. G. Ball, J. Am. Chem. Soc. 1994, 116, 7616-7630.
[20] (a) A. Fürstner, Angew. Chem., Int. Ed. 2000, 39, 3012-3043. (b) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29.
[21] (a) G. Coates, R. H. Grubbs, J. Am. Chem. Soc. 1996, 118, 230-231. (b) P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100-110. (c) E. L. Dras, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1997, 119, 3887-3897. (d) W. J. Zuercher, M. Hashimoto, R. H. Grubbs, J. Am. Chem. Soc. 1996, 118, 6634-6640. (e) N. Chatani, K. Kataoka, S. Murai, N. Furukawa, Y. Seki, J. Am. Chem. Soc. 1998, 120, 9104-9105. (f) B. M. Trost, F. D. Toste, H. Shen, J. Am. Chem. Soc. 2000, 122, 2379-2380. (g) B. M. Trost, H. Shen, Org. Lett. 2000, 2, 2523-2525.
[22] W. J. Zuercher, M. Scholl, R. H. Grubbs, J. Org. Chem. 1998, 63, 4291-4298.
[23] (a) R. F. Heck, Palldium Reagents in Organic Synthesis, Academic Press, London, 1985. (b) J. Tsuji, Palldium Reagents and Catalysts - New Perspectives for the 21st

Century, John Wiley, Cornwall, 2004. (c) F. Diederich, P. J. Stang, (Eds.), Metalcatalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 1998.
[24] (a) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009-3066. (b) A. de Meijere, S. Bräse, J. Organomet. Chem. 1999, 976, 88-110.
[25] (a) R. Grigg, V. Sridharan, Pure Appl. Chem. 1998, 70, 1047-1057. (b) J. T. Link, L. E. Overman, in Metal-Catalyzed Cross-Coupling Reactions (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, 99-154.
[26] N. E. Carpenter, D. J. Kucera, L. E. Overman, J. Org. Chem. 1998, 54, 5846-5848.
[27] R. Grigg, R. Pratt, Tetrahedron Lett. 1997, 38, 4489-4492.
[28] (a) A. Kojima, T. Takemoto, M. Sodeoka, M. Shibasaki, J. Org. Chem. 1996, 61, 48764877. (b) J. M. Nuss, B. H. Levine, R. A. Rennels, M. M. Heravi, Tetrahedron Lett. 1991, 32, 5243-5246. (c) G. Dyker, P. Grundt, Tetrahedron Lett., 1996, 37, 619-622. (d) G. Dyker, H. Markwitz, Synthesis, 1998, 1750-1754. (e) G. Dyker, A. Thone, J. Prakt. Chem. 1999, 341, 138-141.
[29] (a) S. Bräse, A. de Meijere, Angew. Chem., 1995, 107, 2741-2743; Angew. Chem. Int. Ed. Engl., 1995, 34, 2545-2547. (b) H. Nüske, S. Bräse, S. I. Kozhushkov, M. Noltemeyer, M. Es-Sayed, A. de Meijere, Chem. Eur. J. 2002, 8, 2350-2369. (c) K. H. Ang, S. Bräse, A. G. Steinig, F. E. Meyer, A. Llebaria, K. Voigt, A. de Meijere, Tetrahedron, 1996, 52, 11503-11528. (d) L. Bhat, A. G. Steinig, R. Appelbe, A. de Meijere, Eur. J. Org. Chem. 2001, 1673-1680. (e) F. E. Meyer, K. H. Ang, A. G. Steining. A. de Meijere. Synlett, 1994, 191-193. (f) M. Knoke, A. de Meijere, Synlett, 2003, 195-198.
[30] (a) L. J. von Boxtel, S. Körbe, M. Noltemeyer, A. de Meijere, Eur. J. Org. Chem. 2001, 2283-2292. (b) L. Verhoever, A. Steinig, L. Bhat, A. de Meijere, unpublished results.
[31] K. Yamada, M. Ojika, H. Kigoshi, Angew. Chem. 1998, 110, 1918-1926; Angew. Chem. Int. Ed. Engl. 1998, 37, 1818-1826. (b) U. Harttig, T. Anke, A. Scherer, W. Steglich, Phytochemistry, 1990, 29, 3942-3944.
[32] A. de Meijere, S. I. Kozhoshkov, T. Späth, Org. Synth. 2000, 78, 142-151.
[33] B. Yucel, L. Arve, A. de Meijere, Tetrahedron, in Press.
[34] J. Tsuji, Palldium Reagents and Catalysts - New Perspectives for the 21st Century, John Wiley, Cornwall, 2004, 109-113.
[35] H. Nüske, Dissertation, 2000, Universität Göttingen.
[36] (a) A. de Meijere, S. I. Kozhushkov, N. S. Zefirov, Synthesis, 1993, 681-683. (b) S. Löhr, Dissertation; Synthese und biologiscer Abbau von gesättigten und ungesättigten Fettsäuren mit Oligocyclopropyl-Einheiten-Palladium-vermittelte Kreuzkupplungen von

Bicyclopropyl-substituierten Boronaten, Cuvillier Verlag, Göttingen, 2000. (c) M. Brandl, S. I. Kozhushkov, D.S. Yufit, J. A. K. Howard, A. de Meijere, Eur. J. Org. Chem. 1998, 2785-2795. (d) T. Heiner, S. I. Kozhushkov, M. Noltemeyer, T. Haumann, R. Boese, A. de Meijere, Tetrahedron, 1996, 52, 12185-12196. (e) S. Löhr, C. Jacobi, A. Johann, G. Gottschalk, A. de Meijere, Eur. J. Org.Chem. 2000, 2979-2984.
[37] D. Seebach, E. Hungerbühler, R. Naef, P. Schnurrenberger, B. Weidmann, M. Züger, Synthesis 1982, 138.
[38] For regioselective palladium-catalyzed reactions via coordination of palladium species with hetroatoms see: J. Tsuji, Palldium Reagents and Catalysts - New Perspectives for the 21st Century, John Wiley, Cornwall, 2004, 79-86 and references therein.
[39] A. de Meijere, M. Schelper, M. Knoke, B. Yucel, H. W. Sünnemann, R. P. Scheurich, L. Arve, J. Organomet. Chem. 2003, 687, 249-255.
[40] (a) N. Mijaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483. (b) A. Suzuki, J. Organomet. Chem. 1999, 576, 147-168. (c) N. Miyaura, Topics in Current Chemistry, 2002, 219, 12-59.
[41] S. Löhr, A. de Meijere, Synlett 2001, 489-492.
[42] A. B. Charette, R. P. De Freites-Gil, Tetrahedron Lett. 1997, 38, 2809-2812.
[43] (a) T. N. Mitchell, in Metal-Catalyzed Cross-Coupling Reactions. (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, 167-168. (b) T. Hiyama, in Metal-Catalyzed Cross-Coupling Reactions. (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, 421-452.
[44] (a) J. Světlik, M. Veverka, Liebigs Ann. Chem. 1990, 111-112. (b) J. Světlik, T. Liptaj, V. Hanuš, Liebigs Ann. Chem. 1992, 591-593. (c) M. Veverka, E. Královičová, Collect. Czech. Chem. Commun. 1989, 54, 2731-2737.
[45] (a) M. Buback, T. Perkovic, S. Redlich, A. de Meijere, Eur. J. Org. Chem. 2003, 23752382. (b) K. Voigt, U. Schick, F. E. Meyer, A. de Meijere, Synlett 1994, 189-190. (c) B. M. Trost, J. R. Parquette, A. L. Marquart, J. Am. Chem. Soc. 1995, 117, 3284-3285. (d) L. F. Tietze, O. Burkhardt, M. Henrich, Liebigs Ann./Recueil 1997, 1407-1413. (e) L. F. Tietze, O. Burkhardt, M. Henrich, Liebigs Ann./Recueil 1997, 887-891.
[46] K. Matsumoto, A. Sera, T. Uchida, Synthesis 1985, 997-1027.
[47] S. A. Ashraf, J. Hill, A. M’Hamedi, H. Zerizer, Tetrahedron 1992, 48, 6747-6756.
[48] (a) A. Heumann, M. Réglier, Tetrahedron 1995, 51, 975-1015. (b) J. Tsuji, Palladium Reagents and Catalysts-New Perspectives for the 21st. Century, John Wiley, Cornwall, 2004, 431-511. (c) B. M. Trost, C. Lee, in Catalytic Asymmetric Synthesis (Ed.: I.

Ojima), Wiley-VCH, New York, 2000, 593-649. (d) B. M. Trost, D. L. Van Vranken, C. Bingel, J. Am. Chem. Soc. 1992, 114, 9327-9343. (e) J-E. Bäckvall, Pure Appl. Chem. 1992, 64, 429-437.
[49] (a) B. M. Trost, Acc. Chem. Res. 1980, 13, 385-393. (b) R. W. Bates, V. Satcharoen, Chem. Soc. Rev. 2002, 31, 12-21.
[50] (a) M. Rönn, P. G. Andersson, J-E. Bäckvall, Tetrahedron Lett. 1997, 38, 3603-3606. (c) J. Löfstedt, J. Franzén, J-E. Bäckvall, J. Org. Chem. 2001, 66, 8015-8025. (d) Y. I. M. Nilson, R. G. P. Gatti, P. G. Andersson, J-E. Bäckvall, Tetrahedron 1996, 52, 7511-7523.
[51] A comprehensive review for palladium-catalyzed reaction of allenes; see: R. Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan, Chem. Rev. 2000, 100, 3067-3126.
[52] A comprehensive review for palladium-catalyzed reaction of conjugated dienes; see: J-E. Bäckvall, in Metal-Catalyzed Cross-coupling Reactions (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, 339-385.
[53] (a) R. C. Larock, Ch. K. Reddy, Org. Lett. 2000, 2, 3325-3327. (b) H. Nemoto, M. Yoshida, K. Fukumoto, J.Org. Chem. 1997, 62, 6450-6451. (c) M. Yoshida, K. Sugimoto, M. Ihara, Tetrahedron Lett. 1999, 40, 8583-8586. (e) I. Nakamura, H. Itagaki, Y. Yamamoto, Chem. Heterocycl. Compd. 2001, 37, 1532-1540. (f) B. M. Trost, T. Yasukata, J. Am. Chem. Soc. 2001, 123, 7162-7163.
[54] (a) J. Tsuji, H. Kataoka, Y. Kobayashi, Tetrahedron Lett. 1981, 22, 2575-2578. (b) B. M. Trost, G. A. Molander, J. Am. Chem. Soc. 1981, 103, 5969-5972.
[55] R. C. Larock, Ch. K. Reddy, J. Org. Chem. 2002, 67, 2027-2033.
[56] R. C. Larock, E. K. Yum, Tetrahedron 1996, 52, 2743-2758.
[57] H. Nüske, M. Noltemeyer, A. de Meijere, Angew. Chem. 2001, 113, 3509-3511; Angew. Chem. Int. Ed. 2001, 40, 3411-3413.
[58] V. Farina, S. R. Baker, D. A. Benigni, C. SapinoJr. Tetrahedron Lett. 1988, 29, 57395742. (b) M. Cavicchioli, D. Bouyssi, J. Goré, G. Balme, Tetrahedron Lett. 1996, 37, 1429-1432. (c) K. J. Szabó, Organometallics 1996, 15, 1128-1133. (d) A compherensive review for 2-Furyl Phosphines as ligands in palladium-catalyzed reactions see: N. G. Andersen, B. A. Keay, Chem. Rev. 2001, 101, 997-1030.
[59] L. Arve, Diplomarbeit, 2002
[60] (a) T. Jeffery, J. Chem. Soc. Chem. Commun. 1984, 1287-1289. (b) T. Jeffery, Tetrahedron Lett. 1985, 26, 2667-2670. (c) T. Jeffery, M. David, Tetrahedron Lett. 1998, 39, 5751-5754. (d) T. Jeffery, Synthesis 1987, 70-71.
[61] For the effect of Lewis Acid on Diels-Alder reactions, see: (a) P. Yates, P. Eaton, J. Am. Chem. Soc. 1960, 82, 4436-4437. (b) T. Inukai, M. Kasai, J. Org. Chem. 1965, 30, 35673569. (c) F. Fringuelli, F. Pizzo, A. Taticchi, E. Wenkert, J. Org. Chem. 1983, 48, 28022808. (d) F. K. Brown, K. N. Houk. D. J. Burnell, Z. Valenta, J. Org. Chem. 1987, 52, 3050-3059.
[62] R. C. Larock, C. Tu, Tetrahedron 1995, 51, 6635 - 6650.
[63] (a) S. von Angerer, In Methods of Organic Chemistry (Houben-Weyl), Vol. E 17b; (Ed.: A. de Meijere,), Thieme, Stuttgart, 1997, pp. 1533-1535. (b) F. Zutterman, A. Krief, J. Org. Chem. 1983, 48, 1135-1137.
[64] N. A. Cortese, C. B. Jr. Ziegler, B. J. Hrnjes, R. F. Heck, J. Org. Chem. 1978, 43, 2952-2958.
[65] J. Sauer, H. Wiest, A. Mielert, Zeitschrift für Naturforschung 1962, 17^{b}, 203-204.
[66] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC-269345 (for 26ac),-269346 (for 32b) Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[67] For the synthesis of heterocyclic products with functionalized iodoalkenes by intramolecular π-allylpalladium displacement reactions see: (a) R. C. Larock, Y. He, W. W. Leong, X. Han, M. D. Refvik, J. M. Zenner, J. Org. Chem. 1998, 63, 2154-2160. (b) R. C. Larock, C. Tu, P. Pace, J. Org. Chem. 1998, 63, 6859-6866.
[68] A. de Meijere, S. I. Kozhushkov, D. Faber, V. Bagutskii, R. Boese, T. Haumann, R. Walsh, Eur. J. Org. Chem. 2001, 3607-3614.
[69] A. de Meijere, S. I. Kozhushkov, A. F. Khlebnikov, Topics Curr. Chem. 2000, 207, 89147.
[70] N. Valentic, A. de Meijere, Unpublished results.
[71] (a) O. Tsuge, E. Wada, S. Kanemasa, Chem. Lett. 1983, 239-242. (b) O. Tsuge, E. Wada, S. Kanemasa, Chem. Lett. 1983, 1525-1528. (c) E. Wada, S. Kanemasa, O. Tsuge, Bull. Chem. Soc.Jpn.1989, 62, 1198-1204. (d) C. Spino, G. Liu, N. Tu, S. Griard, J. Org. Chem, 1994, 59, 5596-5608. (e) O. Tsuge, T. Hatta, H. Yoshitari, K. Kurusaka, T. Fujiwara, H. Maeda, A. Kakehi, Heterocycles 1995, 41, 225-228.
[72] (a) R. C. Larock, J. Organomet. Chem. 1999, 576, 111-124. (b) R. V. Rozhkov, R. C. Larock, J. Org. Chem. 2003, 63, 6314-6320. (c) T. Shibata, S. Kadowaki, K. Takagi, Heterocycles 2002, 57, 2261-2266. (d) C. S. Hong, J. Y. Seo, E. K. Yum, N. D. Sung,

Heterocycles 2004, 63, 631-639. (e) D. H. Camacho, I. Nakamura, S. Saito, Y. Yamamoto, J. Org. Chem. 2001, 66, 270-275. (f) A. A. Pletnev, R. C. Larock, J. Org. Chem. 2002, 67, 9428-9438.
[73] (a) H. Ohno, H. Hamaguchi, M. Ohata, S. Kosaka, T. Tanaka, Heterocycles 2003, 61, 6568. (b) Y. Nagao, S. Tanaka, K. Hiyashi, S. Sano, M. Shiro, Synlett 2004, 481-484. (c) M. W. Giese, W. H. Moser, J. Org. Chem. 2005, 70, 6222-6229. (d) M. Lautens, J-F. Paquin, S. Piquel, J. Org. Chem. 2002, 67, 3972-3974. (e) R. C. Larock, C. Tu, P. Pace, J. Org. Chem. 1998, 63, 6859-6866.
[74] (a) R. Grigg, V. Santhakumar, V. Sridharan, P. M. Thorntan-Pett, A. M. Bridge, Tetrahedron 1993, 49, 5177-5188. (b) M. M. Abelman, L. E. Overman, V. D. Tran, J. Am. Chem. Soc, 1993, 115, 8477-8478. (c) N. Chida, M. Ohtsuka, S. Ogawa, Tetrahedron Lett. 1991, 32, 4525-4528. (d) S. F. Martin, H. H. Tso, Heterocycles 1993, 35, 85-88. (e) T. Hudlicky, H. F. Olivo, B. McKibben, J. Am. Chem. Soc, 1994, 116, 5108-5115. (f) M. McIntosh, S. Weinreb, J. Org. Chem. 1993, 58, 5583-5584.
[75] M. S. R. Murty, B. Jyothirmai, P. R. Krishna, J. S. Yadav, Synth. Commun. 2003, 33, 2483-2486.
[76] J. Spence, J. Am. Chem. Soc. 1933, 55, 1290-1291.
[77] H. Arnold, L. E. Overman, M. J. Sharp, M. C. Witschel, Org. Synth. 1992, 70, 111-119.
[78] K. Lee, D. F. Wiemer, Tetrahedron Lett. 1993, 34, 2433-2436.
[79] D. Naskar, S. Roy, Tetrahedron 2000, 56, 1369-1377.
[80] (a) N. A. Petasis, I. A. Zavialov, Tetrahedron Lett. 1996, 37, 567-570. (b) H. C. Brown, C. D. Blue, D. J. Nelson, N. G. Bhat, J. Org. Chem. 1989, 54, 6064-6067.
[81] N. Kamiya, Y. Chikami, Y. Ishii, Synlett. 1990, 675-676.
[82] K. Takasu, H. Ohsato, J. Kuroyanagi, M. Ihara, J. Org. Chem. 2002, 67, 6001-6007.
[83] M. J. Bausch, B. David, J. Org. Chem. 1992, 57, 1118-1124.
[84] T. Calogeropoulou, G. B. Hammond, D. F. Wiemer, J. Org. Chem. 1987, 52, 4185-4190.
[85] S. Koul, J. L. Koul, S. C. Taneja, K. L. Dhar, D. S. Jamwal, K. Singh, R. K. Reen, J. Singh, Biorg. Med. Chem. 2000, 8, 251-268.
[86] A. Rosowsky, A. T. Papoulis, A. R. Forsch, F. S. Queener, J. Med. Chem. 1999, 42, 1007-1017.
[87] A. van Oeveren, J. F. G. A. Jansen, B. L. Faringa, J. Org. Chem. 1994, 59, 5999-6007.
[88] K. R. Roesch, R. C. Larock, J. Org. Chem. 2002, 67, 86-94.
[89] R. Olivera, R. SanMartin, E. Dominguéz, X. Solans, M. K. Urtiaga, M. I. Arriortua, J. Org. Chem. 2000, 65, 6398-6411.
[90] J. Cossy, L. Tresnard, D. G. Pardo, Eur. J. Org. Chem. 1999, 1925-1933.
[91] M. M. Abelman, L. E. Overman, V. D. Tran, J. Am. Chem. Soc. 1990, 112, 6959-6964.
[92] T. Harada, T. Kaneko, T. Fujiwara, A. Oku, Tetrahedron 1998, 54, 9317-9322.
[93] L. Ripa, A. Hallberg, J. Org. Chem. 1996, 61, 7147-7155.

F. Spectra

1. ${ }^{1} \mathrm{H}$-NMR Spectra
2. ${ }^{13} \mathrm{C}$-NMR Spectra

5-tert-Butyl-1-methyl 8 -phenylspiro[2.5]oct-7-ene-1,5-dicarboxylate (cis, trans-104E)

5-tert-Butyl-1-methyl 8-phenylspiro[2.5]oct-7-ene-1,5-dicarboxylate (trans, trans-104E)

7,12-Diphenyl-7-azadispiro[2.1.4.3]dodec-11-ene-6,8-dione (130)

tert-Butyl 8-(1-morpholin-4-ylethyl)spiro[2.5]oct-7-ene-5-carboxylate (175ab)
Major diastereomer

tert-Butyl 8-(1-morpholin-4-ylethyl)spiro[2.5]oct-7-ene-5-carboxylate (175ab)
Minor diastereomer

4-[1-(7-Benzenesulfonylspiro[2.5]oct-4-ene-4-yl)-ethyl]-morpholine (175ac)
Major diastereomer

4-[1-(7-Benzenesulfonylspiro[2.5]oct-4-ene-4-yl)-ethyl]-morpholine (175ac)
Minor diastereomer

tert-Butyl 8-(1-morpholin-4-ylethyl)-7-phenylspiro[2.5]oct-7-ene-5-carboxylate (176ab)
Major diastereomer

tert-Butyl 8-(1-morpholin-4-ylethyl)-7-phenylspiro[2.5]oct-7-ene-5-carboxylate (176ab)
Minor diastereomer

6'-(1-Morpholin-4-ylethyl)-2'-phenyl-8'-(thiophen-2-yl)spiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo[1,2-a]pyridazine]-1',3'-dione (182a)

1. diastereomer

6'-(1-Morpholin-4-ylethyl)-2'-phenyl-8'-(thiophen-2-yl)spiro[cyclopropane-1,5'(8'H)-
[1,2,4]triazolo[1,2-a]pyridazine]-1',3'-dione (182a)
2. diastereomer

6'-(1-Morpholin-4-ylethyl)-2',8'-diphenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo-[1,2-a]pyridazine]-1',3'-dione (183a)

Major diastereomer

6'-(1-Morpholin-4-ylethyl)-2',8'-diphenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo-
[1,2-a]pyridazine]-1',3'-dione (183a)
Minor diastereomer

6'-(1-Morpholin-4-ylethyl)-2'-phenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo[1,2-a] pyridazine]-1',3'-dione (184a)

5-(1'-(Morpholin-4"-yl)ethyl)-2,6-diphenylspiro[cyclopropane-1',4-(3a,4,7,7a-tetrahydroisoindole)]-1,3-dione (187a)

Major diastereomer

5-(1'-(Morpholin-4"-yl)ethyl)-2,6-diphenylspiro[cyclopropane-1',4-(3a,4,7,7a-tetrahydroisoindole)]-1,3-dione (187a)

Minor diastereomer

Dimethyl 8-(1-morpholin-4-ylethyl)spiro[2.5]octa-4,7-diene-4,5-dicarboxylate (188a)

2-Methyl-8-tert-butoxycarbonylspiro[cyclopropane-1',10-(3-oxabicyclo[4.4.0] dec-1(6)-ene)] (207)

2,3-Dimethyl 5-methyl-2,3,5,7,10,11-hexahydro-1H,4H-6,9,12-trioxa-benzo[3,4] cyclohepta [1,2-b]naphthalene-dicarboxylate (234f)

10,11-Dimethyl 8-methyl-6,8,9,10,11,12-hexahydro-1,3,7-trioxa-benzo[6,7]cyclohepta [1,2-e]indene-dicarboxylate ($\mathbf{2 3 4}$)

G. Crystal Data

1. 5-tert-Butyl-1-methyl 8-phenylspiro[2.5]oct-7-ene-1,5-dicarboxylate (cis, trans-104E)
2. 5-tert-Butyl-1-methyl 8-phenylspiro[2.5]oct-7-ene-1,5-dicarboxylate (trans, trans-104E)
3. Methyl 8 -phenyl-1-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)spiro[2.5]oct-7-ene-5carboxylate (cis, trans-104B)
4. 6'-[1-Morpholin-4-ylethyl]-2'-phenylspiro[cyclopropane-1,5'(10a'H)-5',7',8', $9^{\prime}, 10^{\prime}, 10 a^{\prime}-$ hexahydro-[1,2,4]triazolo[1,2-a]cinnoline]-1,3-dione (180a)
5. 6^{\prime}-(1-Morpholin-4-ylethyl)-2'-phenylspiro[cyclopropane-1,5'(8'H)-[1,2,4]triazolo[1,2-a]pyridazine]-1',3'-dione (184a)
6. 2-Methyl-3-(toluene-4-sulfonyl)-8-tert-butoxycarbonylspiro[cyclopropane-1',10-(3-aza-bicyclo[4.4.0]dec-1(6)-ene)] (209)
7. 2,3-Dimethyl 9,10-dimethoxy-5-methyl-1,2,3,4,5,7-hexahydro-dibenzo[c,e]oxepine-dicarboxylate (234c)

Table 1. Crystal data and structure refinement for cis, trans-104E

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=24.97^{\circ}$
Max. and min. transmission
Refinement method
adm173
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$
342.42

200(2) K
71.073 pm

Monoclinic
P2(1)/n
$\mathrm{a}=1718.9(3) \mathrm{pm} \quad \alpha=90^{\circ}$.
$\mathrm{b}=637.12(13) \mathrm{pm} \quad \beta=94.58(3)^{\circ}$.
$\mathrm{c}=1748.3(4) \mathrm{pm} \quad \gamma=90^{\circ}$.
$1.9085(7) \mathrm{nm}^{3}$
4
$1.192 \mathrm{Mg} / \mathrm{m}^{3}$
$0.081 \mathrm{~mm}^{-1}$
736
$0.50 \times 0.50 \times 0.50 \mathrm{~mm}^{3}$
3.58 to 24.97°.
$-20<=\mathrm{h}<=20,-7<=\mathrm{k}<=7,-20<=\mathrm{l}<=20$
6956
$3342[\mathrm{R}(\mathrm{int})=0.0781]$
99.6 \%
0.9605 and 0.9605

Full-matrix least-squares on F^{2}

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$3342 / 0 / 231$
1.043
$R 1=0.0548, w R 2=0.1398$
$R 1=0.0765, w R 2=0.1560$
0.0078 (10)
0.350 and -0.169 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for cis, trans-104E. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$4538(1)$	$-1703(4)$	$6873(1)$	$59(1)$
$\mathrm{C}(2)$	$4619(1)$	$-203(4)$	$6223(1)$	$56(1)$
$\mathrm{C}(3)$	$3878(1)$	$-265(3)$	$6664(1)$	$49(1)$
$\mathrm{C}(4)$	$3153(1)$	$-1102(4)$	$6208(2)$	$62(1)$
$\mathrm{C}(5)$	$2680(1)$	$661(4)$	$5780(1)$	$59(1)$
$\mathrm{C}(6)$	$3040(2)$	$2824(4)$	$5925(1)$	$60(1)$
$\mathrm{C}(7)$	$3270(1)$	$3080(4)$	$6763(1)$	$54(1)$
$\mathrm{C}(8)$	$3695(1)$	$1598(3)$	$7133(1)$	$47(1)$
$\mathrm{C}(9)$	$3909(1)$	$1692(3)$	$7970(1)$	$47(1)$
$\mathrm{C}(10)$	$4161(1)$	$3563(4)$	$8321(1)$	$58(1)$
$\mathrm{C}(11)$	$4313(1)$	$3675(4)$	$9106(1)$	$67(1)$
$\mathrm{C}(12)$	$4219(2)$	$1952(5)$	$9556(1)$	$69(1)$
$\mathrm{C}(13)$	$3978(2)$	$87(5)$	$9219(1)$	$68(1)$
$\mathrm{C}(14)$	$3827(1)$	$-39(4)$	$8434(1)$	$58(1)$
$\mathrm{C}(21)$	$5144(1)$	$1594(4)$	$6347(1)$	$59(1)$
$\mathrm{O}(21)$	$5420(1)$	$2221(4)$	$6953(1)$	$94(1)$
$\mathrm{O}(22)$	$5278(1)$	$2530(3)$	$5688(1)$	$71(1)$
$\mathrm{C}(22)$	$5798(2)$	$4312(5)$	$5747(2)$	$86(1)$
$\mathrm{O}(51)$	$2776(1)$	$-1319(4)$	$4611(1)$	$107(1)$
$\mathrm{C}(51)$	$2558(1)$	$205(4)$	$4921(1)$	$61(1)$
$\mathrm{O}(52)$	$2124(1)$	$1699(3)$	$4578(1)$	$71(1)$
$\mathrm{C}(52)$	$1922(2)$	$1760(4)$	$3738(1)$	$66(1)$
$\mathrm{C}(53)$	$2654(2)$	$1786(8)$	$3322(2)$	$129(2)$
$\mathrm{C}(54)$	$1457(3)$	$3763(5)$	$3654(2)$	$120(2)$
$\mathrm{C}(55)$	$1411(2)$	$-63(5)$	$3506(2)$	$86(1)$

Table 3. Bond lengths [pm] and angles [deg] for cis, trans-104E.

$\mathrm{C}(1)-\mathrm{C}(3)$	148.1(3)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	118.32(18)
$\mathrm{C}(1)-\mathrm{C}(2)$	150.1(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	114.89(19)
$\mathrm{C}(2)-\mathrm{C}(21)$	146.3(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.10(19)
$\mathrm{C}(2)-\mathrm{C}(3)$	154.2(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(51)$	110.9(2)
$\mathrm{C}(3)-\mathrm{C}(8)$	149.0(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	112.78(18)
$\mathrm{C}(3)-\mathrm{C}(4)$	152.2(3)	$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{C}(4)$	111.3(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	154.4(3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	109.4(2)
C(5)-C(6)	152.3(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.5(2)
$\mathrm{C}(5)-\mathrm{C}(51)$	152.8(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122.4(2)
$\mathrm{C}(6)-\mathrm{C}(7)$	149.6(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	115.40(19)
C(7)-C(8)	133.0(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(3)$	121.94(18)
C(8)-C(9)	148.1(3)	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	117.9(2)
$\mathrm{C}(9)-\mathrm{C}(14)$	138.3(3)	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	121.2(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	139.3(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.87(19)
$\mathrm{C}(10)-\mathrm{C}(11)$	137.9(3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.6(2)
$\mathrm{C}(11)-\mathrm{C}(12)$	136.7(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.6(2)
$\mathrm{C}(12)-\mathrm{C}(13)$	137.5(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.6(2)
$\mathrm{C}(13)-\mathrm{C}(14)$	137.9(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.2(2)
$\mathrm{C}(21)-\mathrm{O}(21)$	119.5(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	121.1(2)
$\mathrm{C}(21)-\mathrm{O}(22)$	133.3(3)	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{O}(22)$	122.2(2)
$\mathrm{O}(22)-\mathrm{C}(22)$	144.4(3)	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(2)$	126.1(2)
$\mathrm{O}(51)-\mathrm{C}(51)$	118.7(3)	$\mathrm{O}(22)-\mathrm{C}(21)-\mathrm{C}(2)$	111.6(2)
$\mathrm{C}(51)-\mathrm{O}(52)$	132.4(3)	$\mathrm{C}(21)-\mathrm{O}(22)-\mathrm{C}(22)$	116.0(2)
$\mathrm{O}(52)-\mathrm{C}(52)$	148.1(3)	$\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{O}(52)$	124.6(2)
C(52)-C(55)	149.3(4)	$\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{C}(5)$	125.5(2)
$\mathrm{C}(52)-\mathrm{C}(54)$	150.7(4)	$\mathrm{O}(52)-\mathrm{C}(51)-\mathrm{C}(5)$	109.7(2)
C(52)-C(53)	150.3(4)	$\mathrm{C}(51)-\mathrm{O}(52)-\mathrm{C}(52)$	123.2(2)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	62.27(15)	$\mathrm{O}(52)-\mathrm{C}(52)-\mathrm{C}(55)$	109.6(2)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(1)$	118.7(2)	$\mathrm{O}(52)-\mathrm{C}(52)-\mathrm{C}(54)$	101.5(2)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(3)$	118.03(19)	$\mathrm{C}(55)-\mathrm{C}(52)-\mathrm{C}(54)$	109.6(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	58.25(14)	$\mathrm{O}(52)-\mathrm{C}(52)-\mathrm{C}(53)$	110.0(2)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	123.24(18)	$\mathrm{C}(55)-\mathrm{C}(52)-\mathrm{C}(53)$	112.0(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	119.4(2)	$\mathrm{C}(54)-\mathrm{C}(52)-\mathrm{C}(53)$	113.7(3)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	111.58(18)		
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	59.48(14)		

Table 4. Anisotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for cis, trans-104E. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$73(2)$	$54(1)$	$50(1)$	$5(1)$	$6(1)$	$10(1)$
$\mathrm{C}(2)$	$68(1)$	$60(1)$	$42(1)$	$-3(1)$	$9(1)$	$1(1)$
$\mathrm{C}(3)$	$56(1)$	$47(1)$	$43(1)$	$8(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(4)$	$75(2)$	$47(1)$	$63(2)$	$6(1)$	$-8(1)$	$-8(1)$
$\mathrm{C}(5)$	$63(1)$	$61(2)$	$52(1)$	$-1(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(6)$	$74(2)$	$53(1)$	$50(1)$	$6(1)$	$-5(1)$	$5(1)$
$\mathrm{C}(7)$	$64(1)$	$49(1)$	$49(1)$	$1(1)$	$-1(1)$	$4(1)$
$\mathrm{C}(8)$	$50(1)$	$45(1)$	$44(1)$	$5(1)$	$4(1)$	$-3(1)$
$\mathrm{C}(9)$	$49(1)$	$50(1)$	$43(1)$	$3(1)$	$5(1)$	$2(1)$
$\mathrm{C}(10)$	$66(1)$	$52(1)$	$55(1)$	$1(1)$	$1(1)$	$1(1)$
$\mathrm{C}(11)$	$74(2)$	$67(2)$	$58(2)$	$-15(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(12)$	$77(2)$	$88(2)$	$40(1)$	$-2(1)$	$1(1)$	$8(2)$
$\mathrm{C}(13)$	$85(2)$	$70(2)$	$48(1)$	$13(1)$	$5(1)$	$-3(1)$
$\mathrm{C}(14)$	$71(1)$	$54(1)$	$48(1)$	$5(1)$	$3(1)$	$-6(1)$
$\mathrm{C}(21)$	$56(1)$	$73(2)$	$47(1)$	$-1(1)$	$9(1)$	$1(1)$
$\mathrm{O}(21)$	$98(1)$	$127(2)$	$56(1)$	$-7(1)$	$-4(1)$	$-42(1)$
$\mathrm{O}(22)$	$84(1)$	$75(1)$	$57(1)$	$4(1)$	$15(1)$	$-13(1)$
$\mathrm{C}(22)$	$87(2)$	$77(2)$	$98(2)$	$1(2)$	$31(2)$	$-15(2)$
$\mathrm{O}(51)$	$131(2)$	$113(2)$	$74(1)$	$-23(1)$	$-10(1)$	$63(2)$
$\mathrm{C}(51)$	$62(1)$	$62(2)$	$56(1)$	$-3(1)$	$-5(1)$	$4(1)$
$\mathrm{O}(52)$	$103(1)$	$63(1)$	$44(1)$	$-5(1)$	$-10(1)$	$14(1)$
$\mathrm{C}(52)$	$98(2)$	$60(2)$	$39(1)$	$-3(1)$	$-5(1)$	$-5(1)$
$\mathrm{C}(53)$	$130(3)$	$182(4)$	$78(2)$	$18(3)$	$25(2)$	$-48(3)$
$\mathrm{C}(54)$	$220(4)$	$71(2)$	$60(2)$	$0(2)$	$-44(2)$	$33(2)$
$\mathrm{C}(55)$	$107(2)$	$77(2)$	$69(2)$	$5(2)$	$-19(2)$	$-10(2)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\mathrm{pm}^{2} \times 10^{-1}$) for cis, trans-104E.

Atom	x	y	z	U(eq)
H(1A)	4465	-3207	6745	71
H(1B)	4856	-1430	7361	71
H(2A)	4574	-818	5695	68
H(4A)	2818	-1822	6561	75
H(4B)	3311	-2147	5831	75
H(5A)	2153	684	5984	70
H(6A)	3505	2980	5629	72
H(6B)	2658	3922	5752	72
H(7A)	3114	4291	7028	65
H(10A)	4229	4773	8016	70
H(11A)	4484	4962	9337	80
H(12A)	4319	2043	10097	82
H(13A)	3916	-1118	9528	81
H(14A)	3664	-1338	8207	69
H(22A)	5847	4901	5235	129
H(22B)	6312	3863	5970	129
H(22C)	5587	5381	6077	129
H(53A)	2926	441	3397	194
H(53B)	2995	2924	3524	194
H(53C)	2518	2010	2773	194
H(54A)	1035	3727	4000	180
H(54B)	1233	3901	3123	180
H(54C)	1799	4962	3785	180
H(55A)	986	-157	3847	128
H(55B)	1719	-1358	3543	128
H(55C)	1192	130	2976	128

Table 1. Crystal data and structure refinement for trans, trans-104E.

Identification code	adm175	
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$	
Formula weight	342.42	
Temperature	$140(2) \mathrm{K}$	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	Cc	
Unit cell dimensions	$\mathrm{a}=628.33(13) \mathrm{pm}$	$\alpha=90^{\circ}$.
	$\mathrm{b}=2413.4(5) \mathrm{pm}$	$\beta=99.42(3)^{\circ}$.
	$\mathrm{c}=1274.9(3) \mathrm{pm}$	$\gamma=90^{\circ}$.
Volume	$1.9073(7) \mathrm{nm}^{3}$	
Z	4	
Density (calculated)	$1.192 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.081 \mathrm{~mm} \mathrm{~m}^{-1}$	
$\mathrm{~F}(000)$	736	
Crystal size	$0.70 \mathrm{x} 0.20 \mathrm{x} 0.20 \mathrm{~mm}{ }^{3}$	
Theta range for data collection	1.69 to 24.77°.	
Index ranges	$-7<=\mathrm{h}<=7,-28<=\mathrm{k}<=28,-14<=1<=15$	
Reflections collected	5426	
Independent reflections	$3037[\mathrm{R}($ int $)=0.0498]$	
Completeness to theta $=24.77^{\circ}$	98.7%	
Max. and min. transmission	0.9839 and 0.9453	
Refinement method	Full-matrix least-squares on F^{2}	

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

3037 / 2 / 230
1.057
$\mathrm{R} 1=0.0375, \mathrm{wR} 2=0.1052$
$R 1=0.0383, w R 2=0.1062$
-1.0(9)
0.156 and -0.131 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for trans, trans-104E. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{Uij}^{\mathrm{I}}$ tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$9712(3)$	$2486(1)$	$2021(2)$	$28(1)$
$\mathrm{C}(2)$	$8199(3)$	$2559(1)$	$2804(1)$	$24(1)$
$\mathrm{C}(3)$	$7725(3)$	$2837(1)$	$1705(1)$	$23(1)$
$\mathrm{C}(4)$	$7997(3)$	$3459(1)$	$1733(2)$	$26(1)$
$\mathrm{C}(5)$	$5927(3)$	$3727(1)$	$1961(2)$	$26(1)$
$\mathrm{C}(6)$	$4072(3)$	$3593(1)$	$1048(2)$	$30(1)$
$\mathrm{C}(7)$	$4144(3)$	$3002(1)$	$674(2)$	$26(1)$
$\mathrm{C}(8)$	$5786(3)$	$2648(1)$	$947(1)$	$23(1)$
$\mathrm{C}(9)$	$5599(3)$	$2077(1)$	$485(1)$	$23(1)$
$\mathrm{C}(10)$	$3778(3)$	$1761(1)$	$551(2)$	$28(1)$
$\mathrm{C}(11)$	$3463(4)$	$1246(1)$	$61(2)$	$35(1)$
$\mathrm{C}(12)$	$4999(4)$	$1039(1)$	$-502(2)$	$35(1)$
$\mathrm{C}(13)$	$6833(3)$	$1344(1)$	$-565(2)$	$30(1)$
$\mathrm{C}(14)$	$7139(3)$	$1861(1)$	$-73(1)$	$25(1)$
$\mathrm{O}(21)$	$7375(3)$	$1594(1)$	$2917(1)$	$41(1)$
$\mathrm{C}(21)$	$6916(3)$	$2070(1)$	$3035(1)$	$25(1)$
$\mathrm{O}(22)$	$5137(2)$	$2225(1)$	$3416(1)$	$29(1)$
$\mathrm{C}(22)$	$3783(4)$	$1771(1)$	$3658(2)$	$36(1)$
$\mathrm{O}(51)$	$4641(2)$	$4544(1)$	$2621(1)$	$29(1)$
$\mathrm{C}(51)$	$6154(3)$	$4349(1)$	$2090(2)$	$29(1)$
$\mathrm{O}(52)$	$7465(3)$	$4623(1)$	$1743(2)$	$52(1)$
$\mathrm{C}(52)$	$4303(3)$	$5149(1)$	$2732(2)$	$29(1)$
$\mathrm{C}(53)$	$2420(4)$	$5169(1)$	$3331(2)$	$42(1)$
$\mathrm{C}(54)$	$3691(6)$	$5404(1)$	$1640(2)$	$61(1)$
$\mathrm{C}(55)$	$6251(4)$	$5407(1)$	$3393(3)$	$55(1)$

Table 3. Bond lengths [pm] and angles [deg] for trans, trans-104E.

$\mathrm{C}(1)-\mathrm{C}(2)$	149.7(3)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	118.06(15)
$\mathrm{C}(1)-\mathrm{C}(3)$	150.8(3)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	58.85(12)
$\mathrm{C}(2)-\mathrm{C}(21)$	148.5(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	114.10(15)
$\mathrm{C}(2)-\mathrm{C}(3)$	153.8(2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	109.20(15)
$\mathrm{C}(3)-\mathrm{C}(8)$	149.7(3)	$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{C}(4)$	111.89(15)
$\mathrm{C}(3)-\mathrm{C}(4)$	151.1(2)	$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{C}(6)$	109.63(15)
$\mathrm{C}(4)-\mathrm{C}(5)$	152.2(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	109.31(15)
$\mathrm{C}(5)-\mathrm{C}(51)$	151.4(3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	112.28(15)
$\mathrm{C}(5)-\mathrm{C}(6)$	154.1(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	125.64(17)
$\mathrm{C}(6)-\mathrm{C}(7)$	150.7(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	118.50(16)
$\mathrm{C}(7)-\mathrm{C}(8)$	134.1(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	118.93(16)
$\mathrm{C}(8)-\mathrm{C}(9)$	149.6(2)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(3)$	122.57(16)
$\mathrm{C}(9)-\mathrm{C}(10)$	138.9(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	118.23(17)
$\mathrm{C}(9)-\mathrm{C}(14)$	139.4(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.70(17)
$\mathrm{C}(10)-\mathrm{C}(11)$	139.0(3)	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	121.94(17)
$\mathrm{C}(11)-\mathrm{C}(12)$	138.7(3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	121.48(18)
$\mathrm{C}(12)-\mathrm{C}(13)$	138.1(3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	119.65(19)
$\mathrm{C}(13)-\mathrm{C}(14)$	139.5(3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	119.75(18)
$\mathrm{O}(21)-\mathrm{C}(21)$	120.1(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.36(18)
$\mathrm{C}(21)-\mathrm{O}(22)$	134.3(2)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	120.52(18)
$\mathrm{O}(22)-\mathrm{C}(22)$	145.0(2)	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{O}(22)$	122.89(17)
$\mathrm{O}(51)-\mathrm{C}(51)$	133.9(2)	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(2)$	125.91(17)
$\mathrm{O}(51)-\mathrm{C}(52)$	148.6(2)	$\mathrm{O}(22)-\mathrm{C}(21)-\mathrm{C}(2)$	111.19(15)
$\mathrm{C}(51)-\mathrm{O}(52)$	119.7(3)	$\mathrm{C}(21)-\mathrm{O}(22)-\mathrm{C}(22)$	114.78(15)
$\mathrm{C}(52)-\mathrm{C}(55)$	150.3(4)	$\mathrm{C}(51)-\mathrm{O}(51)-\mathrm{C}(52)$	121.19(15)
C(52)-C(53)	151.0(3)	$\mathrm{O}(52)-\mathrm{C}(51)-\mathrm{O}(51)$	125.53(18)
$\mathrm{C}(52)-\mathrm{C}(54)$	151.2(3)	$\mathrm{O}(52)-\mathrm{C}(51)-\mathrm{C}(5)$	124.50(18)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	61.60(12)	$\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{C}(5)$	109.94(15)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(1)$	117.64(15)	$\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(55)$	110.15(18)
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(3)$	119.81(16)	$\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	102.46(15)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	59.55(12)	$\mathrm{C}(55)-\mathrm{C}(52)-\mathrm{C}(53)$	109.6(2)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(1)$	123.52(16)	$\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(54)$	109.30(17)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	113.28(15)	$\mathrm{C}(55)-\mathrm{C}(52)-\mathrm{C}(54)$	114.2(2)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	117.78(16)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(54)$	110.5(2)

Table 4. Anisotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for trans, trans-104E. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U33	U^{23}	U^{13}	U^{12}
C(1)	25(1)	31(1)	26(1)	-4(1)	3(1)	2(1)
C(2)	26(1)	25(1)	19(1)	-3(1)	$0(1)$	3(1)
C(3)	23(1)	26(1)	20(1)	0 (1)	6(1)	1(1)
C(4)	26(1)	27(1)	24(1)	-2(1)	5(1)	-2(1)
C(5)	29(1)	23(1)	27(1)	1(1)	8(1)	-1(1)
C(6)	29(1)	26(1)	34(1)	-1(1)	3(1)	6(1)
C(7)	26(1)	27(1)	23(1)	-1(1)	$0(1)$	2(1)
C(8)	24(1)	26(1)	19(1)	-1(1)	5(1)	$0(1)$
C(9)	28(1)	23(1)	18(1)	0(1)	$0(1)$	2(1)
C(10)	25(1)	30(1)	29(1)	-1(1)	6(1)	3(1)
C(11)	34(1)	31(1)	40(1)	-2(1)	4(1)	-4(1)
C(12)	43(1)	25(1)	34(1)	-6(1)	1(1)	4(1)
C(13)	34(1)	31(1)	24(1)	-4(1)	4(1)	8(1)
C(14)	24(1)	28(1)	22(1)	1(1)	2(1)	5(1)
$\mathrm{O}(21)$	56(1)	24(1)	47(1)	-1(1)	20(1)	5(1)
C(21)	30(1)	24(1)	18(1)	$0(1)$	1(1)	5(1)
$\mathrm{O}(22)$	28(1)	24(1)	34(1)	3(1)	$6(1)$	1(1)
C(22)	37(1)	34(1)	37(1)	6(1)	8(1)	-5(1)
$\mathrm{O}(51)$	33(1)	18(1)	36(1)	$0(1)$	11(1)	$0(1)$
C(51)	33(1)	25(1)	31(1)	0 (1)	10(1)	$0(1)$
$\mathrm{O}(52)$	60(1)	29(1)	79(1)	-4(1)	43(1)	-7(1)
C(52)	38(1)	16(1)	36(1)	-1(1)	11(1)	1(1)
C(53)	42(1)	24(1)	62(2)	-4(1)	21(1)	-1(1)
C(54)	106(2)	35(1)	45(1)	12(1)	22(2)	26(1)
C(55)	42(1)	36(1)	89(2)	-26(1)	11(1)	-4(1)

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\mathrm{pm}^{2} \times 10^{-1}$) for trans, trans-104E.

Atom	x	y	z	U(eq)
H(1A)	9751	2119	1678	33
H(1B)	11121	2679	2170	33
H(2A)	8703	2810	3418	29
H(4A)	8320	3592	1041	31
H(4B)	9217	3563	2292	31
H(5A)	5570	3567	2635	31
H(6A)	2677	3660	1291	36
H(6B)	4158	3845	444	36
H(7A)	2920	2869	205	31
H(10A)	2724	1899	939	33
H(11A)	2203	1037	113	42
H(12A)	4790	688	-842	42
H(13A)	7892	1201	-945	36
H(14A)	8408	2067	-120	30
H(22A)	2505	1920	3909	53
H(22B)	4596	1538	4213	53
H(22C)	3333	1549	3017	53
H(53A)	2840	5001	4034	63
H(53B)	1202	4964	2934	63
H(53D)	1998	5555	3413	63
H(54A)	4936	5394	1268	91
H(54D)	3240	5789	1712	91
H(54B)	2499	5193	1234	91
H(55D)	6678	5187	4040	83
H(55A)	5903	5785	3588	83
H(55B)	7441	5417	2984	83

Table 6. Torsion angles [deg] for trans, trans-104E.

$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	$110.07(18)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$124.53(19)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	$-105.01(18)$	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$-55.9(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$102.76(17)$	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-1.0(3)$
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$7.7(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$174.97(18)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$114.14(18)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$0.3(3)$
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	$-106.46(18)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$0.5(3)$
$\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$144.49(17)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-0.6(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-109.04(17)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$0.9(3)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$54.18(19)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-174.98(17)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-150.83(16)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$-0.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-84.71(19)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	$23.3(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)$	$175.29(14)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	$92.2(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-63.08(19)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{O}(22)$	$-157.52(16)$
$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$164.08(16)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{O}(22)$	$-88.58(19)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$41.1(2)$	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{O}(22)-\mathrm{C}(22)$	$-1.0(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-11.0(3)$	$\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{O}(22)-\mathrm{C}(22)$	$179.73(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-179.01(17)$	$\mathrm{C}(52)-\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{O}(52)$	$6.6(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$1.4(3)$	$\mathrm{C}(52)-\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{C}(5)$	$-171.64(16)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$-176.59(17)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(52)$	$22.0(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$-23.3(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(52)$	$-99.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$113.90(19)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(51)$	$-159.69(16)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$3.8(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(51)$	$78.87(19)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$157.18(16)$	$\mathrm{C}(51)-\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(55)$	$-65.8(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$-65.7(2)$	$\mathrm{C}(51)-\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	$177.63(18)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-51.3(2)$	$\mathrm{C}(51)-\mathrm{O}(51)-\mathrm{C}(52)-\mathrm{C}(54)$	$60.4(3)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$128.27(19)$		

Table 1. Crystal data and structure refinement for cis, trans-104B.

Identification code	adm174	
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BO}_{4}$	
Formula weight	368.26	
Temperature	$200(2) \mathrm{K}$	
Wavelength	71.073 pm	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2(1)$	
Unit cell dimensions	$\mathrm{a}=623.87(7) \mathrm{pm}$	$\alpha=90^{\circ}$.
	$\mathrm{b}=1643.88(13) \mathrm{pm}$	$\beta=97.141(10)^{\circ}$.
	$\mathrm{c}=1005.23(8) \mathrm{pm}$	$\gamma=90^{\circ}$.
Volume	$1.02293(16) \mathrm{nm}^{3}$	
Z	2	
Density (calculated)	$1.196 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.080 \mathrm{~mm}-1$	
F(000)	396	
Crystal size	$1.00 \times 0.60 \times 0.40 \mathrm{~mm}^{3}$	
Theta range for data collection	$3.52 \mathrm{to} 24.91^{\circ}$.	
Index ranges	$-7<=\mathrm{h}<=7,-3<=\mathrm{k}<=19,-11<=1<=11$	
Reflections collected	2344	

Independent reflections	$2209[\mathrm{R}($ int $)=0.0541]$
Completeness to theta $=24.91^{\circ}$	99.7%
Max. and min. transmission	0.9688 and 0.9245
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$2209 / 1 / 249$
Goodness-of-fit on F2	1.064
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0373$, wR2 $=0.0975$
R indices (all data)	$\mathrm{R} 1=0.0387$, wR2 $=0.0991$
Absolute structure parameter	$0.0(12)$
Largest diff. peak and hole	0.160 and -0.210 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for cis, trans-104B. ${ }^{\prime}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$7336(3)$	$6014(2)$	$3355(2)$	$30(1)$
$\mathrm{C}(2)$	$5436(4)$	$6147(1)$	$2268(2)$	$28(1)$
$\mathrm{B}(2)$	$4018(4)$	$6917(2)$	$2187(2)$	$26(1)$
$\mathrm{C}(3)$	$5435(3)$	$5457(2)$	$3325(2)$	$25(1)$
$\mathrm{C}(4)$	$5568(4)$	$4614(2)$	$2730(2)$	$30(1)$
$\mathrm{C}(5)$	$3263(4)$	$4301(2)$	$2235(2)$	$32(1)$
$\mathrm{C}(6)$	$1956(4)$	$4245(2)$	$3418(2)$	$35(1)$
$\mathrm{C}(7)$	$2410(3)$	$4921(2)$	$4414(2)$	$31(1)$
$\mathrm{C}(8)$	$3955(3)$	$5480(2)$	$4407(2)$	$26(1)$
$\mathrm{C}(9)$	$4342(4)$	$6057(2)$	$5556(2)$	$28(1)$
$\mathrm{C}(10)$	$2697(4)$	$6554(2)$	$5908(2)$	$35(1)$
$\mathrm{C}(11)$	$3013(5)$	$7051(2)$	$7029(3)$	$46(1)$
$\mathrm{C}(12)$	$4990(5)$	$7055(2)$	$7829(3)$	$47(1)$
$\mathrm{C}(13)$	$6628(5)$	$6568(2)$	$7501(3)$	$47(1)$
$\mathrm{C}(14)$	$6327(4)$	$6073(2)$	$6370(2)$	$37(1)$
$\mathrm{O}(21)$	$3380(3)$	$7329(1)$	$3237(2)$	$42(1)$
$\mathrm{C}(21)$	$2436(4)$	$8096(2)$	$2733(2)$	$35(1)$
$\mathrm{C}\left(21^{\prime}\right)$	$4210(6)$	$8733(2)$	$2961(4)$	$65(1)$
$\left.\mathrm{C}(21)^{\prime \prime}\right)$	$560(6)$	$8301(2)$	$3494(3)$	$59(1)$
$\mathrm{O}(22)$	$3316(3)$	$7264(1)$	$979(1)$	$33(1)$
$\mathrm{C}(22)$	$1804(4)$	$7903(2)$	$1213(2)$	$29(1)$
$\left.\mathrm{C}(22)^{\prime \prime}\right)$	$2094(6)$	$8599(2)$	$266(3)$	$53(1)$
$\mathrm{C}\left(22^{\prime}\right)$	$-453(5)$	$7546(2)$	$903(3)$	$55(1)$

$\mathrm{O}(51)$	$646(3)$	$5283(1)$	$1239(2)$	$39(1)$
$\mathrm{C}(51)$	$2173(3)$	$4851(2)$	$1148(2)$	$28(1)$
$\mathrm{O}(52)$	$3110(3)$	$4785(1)$	$18(2)$	$38(1)$
$\mathrm{C}(52)$	$2298(5)$	$5335(2)$	$-1056(3)$	$47(1)$

Table 3. Bond lengths [pm] and angles [deg] for cis, trans-104B.

$\mathrm{C}(1)-\mathrm{C}(3)$	$149.5(3)$	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	$61.94(14)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$152.4(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(2)$	$123.1(2)$
$\mathrm{C}(2)-\mathrm{B}(2)$	$154.1(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$58.11(15)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$155.4(3)$	$\mathrm{B}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$125.96(19)$
$\mathrm{B}(2)-\mathrm{O}(21)$	$135.4(3)$	$\mathrm{O}(21)-\mathrm{B}(2)-\mathrm{O}(22)$	$113.1(2)$
$\mathrm{B}(2)-\mathrm{O}(22)$	$136.3(3)$	$\mathrm{O}(21)-\mathrm{B}(2)-\mathrm{C}(2)$	$126.2(2)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$151.2(3)$	$\mathrm{O}(22)-\mathrm{B}(2)-\mathrm{C}(2)$	$120.6(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$151.6(3)$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	$121.6(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$155.0(3)$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.00(18)$
$\mathrm{C}(5)-\mathrm{C}(51)$	$151.3(3)$	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.04(19)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$152.6(3)$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$59.95(15)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$149.8(4)$	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.70(19)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$133.3(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$113.16(17)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$149.0(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$109.62(18)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$139.2(3)$	$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.29(19)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$139.7(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$109.47(19)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$138.6(4)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$113.7(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$138.6(4)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$125.8(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$137.0(4)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$118.9(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$139.1(4)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$119.5(2)$
$\mathrm{O}(21)-\mathrm{C}(21)$	$145.7(3)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(3)$	$121.26(19)$
$\mathrm{C}(21)-\mathrm{C}(21 ")$	$151.4(4)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$117.9(2)$
$\mathrm{C}(21)-\mathrm{C}\left(211^{\prime}\right)$	$151.9(4)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$121.1(2)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$156.2(3)$	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.8(2)$
$\mathrm{O}(22)-\mathrm{C}(22)$	$145.1(3)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$121.2(2)$
$\mathrm{C}(22)-\mathrm{C}(22 ")$	$151.3(4)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.0(3)$
$\mathrm{C}(22)-\mathrm{C}\left(222^{\prime}\right)$	$152.2(4)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$119.6(2)$
$\mathrm{O}(51)-\mathrm{C}(51)$	$120.1(3)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(14)$	$120.6(2)$
$\mathrm{C}(51)-\mathrm{O}(52)$	$134.4(3)$	$120.7(3)$	
$\mathrm{O}(52)-\mathrm{C}(52)$	$145.0(3)$		

$\mathrm{B}(2)-\mathrm{O}(21)-\mathrm{C}(21)$	$107.87(18)$	$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime}\right)$	$106.9(2)$
$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}\left(21^{\prime \prime}\right)$	$108.7(2)$	$\mathrm{C}\left(22{ }^{\prime \prime}\right)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime}\right)$	$110.0(2)$
$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}\left(21^{\prime}\right)$	$106.8(2)$	$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}(21)$	$102.46(17)$
$\mathrm{C}(21 ")-\mathrm{C}(21)-\mathrm{C}\left(21^{\prime}\right)$	$111.4(3)$	$\mathrm{C}\left(22^{\prime \prime}\right)-\mathrm{C}(22)-\mathrm{C}(21)$	$115.3(2)$
$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(22)$	$101.89(19)$	$\mathrm{C}\left(22^{\prime}\right)-\mathrm{C}(22)-\mathrm{C}(21)$	$113.2(2)$
$\left.\mathrm{C}(21)^{\prime \prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)$	$115.0(2)$	$\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{O}(52)$	$123.0(2)$
$\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)$	$112.2(2)$	$\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{C}(5)$	$126.0(2)$
$\mathrm{B}(2)-\mathrm{O}(22)-\mathrm{C}(22)$	$107.54(16)$	$\mathrm{O}(52)-\mathrm{C}(51)-\mathrm{C}(5)$	$111.0(2)$
$\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime \prime}\right)$	$108.32(19)$	$\mathrm{C}(51)-\mathrm{O}(52)-\mathrm{C}(52)$	$115.5(2)$

Table 4. Anisotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for cis, trans-104B.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*}\right.$ $\left.U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$25(1)$	$32(1)$	$34(1)$	$1(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(2)$	$31(1)$	$28(1)$	$26(1)$	$0(1)$	$6(1)$	$-2(1)$
$\mathrm{B}(2)$	$28(1)$	$24(1)$	$27(1)$	$0(1)$	$5(1)$	$-3(1)$
$\mathrm{C}(3)$	$25(1)$	$24(1)$	$26(1)$	$3(1)$	$1(1)$	$5(1)$
$\mathrm{C}(4)$	$32(1)$	$24(1)$	$33(1)$	$1(1)$	$2(1)$	$6(1)$
$\mathrm{C}(5)$	$38(1)$	$22(1)$	$36(1)$	$-4(1)$	$2(1)$	$0(1)$
$\mathrm{C}(6)$	$40(1)$	$28(1)$	$35(1)$	$5(1)$	$1(1)$	$-7(1)$
$\mathrm{C}(7)$	$31(1)$	$36(1)$	$26(1)$	$6(1)$	$3(1)$	$1(1)$
$\mathrm{C}(8)$	$26(1)$	$26(1)$	$23(1)$	$4(1)$	$-1(1)$	$3(1)$
$\mathrm{C}(9)$	$33(1)$	$30(1)$	$22(1)$	$4(1)$	$6(1)$	$-2(1)$
$\mathrm{C}(10)$	$37(1)$	$38(2)$	$29(1)$	$4(1)$	$5(1)$	$3(1)$
$\mathrm{C}(11)$	$63(2)$	$39(2)$	$39(1)$	$-3(1)$	$20(1)$	$1(1)$
$\mathrm{C}(12)$	$68(2)$	$41(2)$	$33(1)$	$-9(1)$	$12(1)$	$-17(2)$
$\mathrm{C}(13)$	$49(2)$	$54(2)$	$36(1)$	$-4(1)$	$-2(1)$	$-17(2)$
$\mathrm{C}(14)$	$39(1)$	$40(2)$	$30(1)$	$-2(1)$	$2(1)$	$-4(1)$
$\mathrm{O}(21)$	$59(1)$	$42(1)$	$24(1)$	$3(1)$	$4(1)$	$23(1)$
$\mathrm{C}(21)$	$42(1)$	$29(1)$	$33(1)$	$-4(1)$	$-2(1)$	$9(1)$
$\mathrm{C}\left(21^{\prime}\right)$	$58(2)$	$43(2)$	$88(2)$	$-27(2)$	$-18(2)$	$6(2)$
$\mathrm{C}(21 ")$	$74(2)$	$64(2)$	$41(2)$	$1(2)$	$18(1)$	$35(2)$
$\mathrm{O}(22)$	$44(1)$	$29(1)$	$26(1)$	$1(1)$	$7(1)$	$10(1)$
$\mathrm{C}(22)$	$33(1)$	$26(1)$	$29(1)$	$2(1)$	$3(1)$	$8(1)$
$\mathrm{C}(22 ")$	$68(2)$	$43(2)$	$51(2)$	$19(1)$	$15(1)$	$17(2)$

$\mathrm{C}\left(22^{\prime}\right)$	$40(1)$	$57(2)$	$64(2)$	$-8(2)$	$-11(1)$	$-4(1)$
$\mathrm{O}(51)$	$39(1)$	$40(1)$	$36(1)$	$1(1)$	$3(1)$	$9(1)$
$\mathrm{C}(51)$	$29(1)$	$24(1)$	$31(1)$	$-6(1)$	$0(1)$	$-3(1)$
$\mathrm{O}(52)$	$45(1)$	$36(1)$	$34(1)$	$2(1)$	$8(1)$	$4(1)$
$\mathrm{C}(52)$	$60(2)$	$44(2)$	$37(1)$	$7(1)$	$8(1)$	$1(2)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for cis, trans-104B.

Atom	x	y	z	U(eq)
H(1A)	8681	5787	3076	36
H(1B)	7559	6417	4090	36
H(2A)	5720	5945	1369	33
H(4A)	6286	4238	3416	36
H(4B)	6437	4633	1971	36
H(5A)	3382	3743	1852	39
H(6A)	399	4251	3074	42
H(6B)	2276	3720	3881	42
H(7A)	1518	4953	5112	37
H(10A)	1333	6553	5370	41
H(11A)	1874	7389	7250	55
H(12A)	5209	7393	8600	56
H(13A)	7982	6568	8051	56
H(14A)	7482	5743	6150	44
H(21A)	4761	8754	3917	98
H(21B)	3625	9266	2669	98
H(21C)	5387	8589	2445	98
H(21D)	1093	8384	4443	88
H(21E)	-482	7853	3406	88
H(21F)	-144	8799	3125	88
H(22A)	1553	8436	-653	80
H(22B)	3630	8736	318	80
H(22C)	1286	9074	519	80
H(22D)	-633	7319	-5	83
H(22E)	-1529	7974	966	83
H(22F)	-651	7115	1550	83
H(52A)	3156	5274	-1803	70

$\mathrm{H}(52 \mathrm{~B})$	2405	5897	-727	70
$\mathrm{H}(52 \mathrm{C})$	783	5206	-1363	70

Table 6. Torsion angles [${ }^{\circ}$] for cis, trans-104B.

$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(2)$	114.8(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	175.6(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(2)-\mathrm{O}(21)$	-38.1(4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-0.4(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{B}(2)-\mathrm{O}(21)$	34.1(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	0.2(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{B}(2)-\mathrm{O}(22)$	140.3(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	0.3(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{B}(2)-\mathrm{O}(22)$	-147.5(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	-0.7(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	-110.9(2)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	0.5(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	101.5(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	-175.1(2)
$\mathrm{B}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	-110.1(3)	$\mathrm{O}(22)-\mathrm{B}(2)-\mathrm{O}(21)-\mathrm{C}(21)$	-9.5(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	110.7(2)	$\mathrm{C}(2)-\mathrm{B}(2)-\mathrm{O}(21)-\mathrm{C}(21)$	169.0(2)
$\mathrm{B}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	0.6(3)	$\mathrm{B}(2)-\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}\left(21{ }^{\prime \prime}\right)$	143.8(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-111.2(2)	$\mathrm{B}(2)-\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}\left(21^{\prime}\right)$	-95.9(3)
$\mathrm{B}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	138.7(2)	$\mathrm{B}(2)-\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(22)$	22.0(2)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-155.34(19)	$\mathrm{O}(21)-\mathrm{B}(2)-\mathrm{O}(22)-\mathrm{C}(22)$	-8.8(3)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	54.1(2)	$\mathrm{C}(2)-\mathrm{B}(2)-\mathrm{O}(22)-\mathrm{C}(22)$	172.6(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-88.0(2)	$\mathrm{B}(2)-\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}\left(22{ }^{\prime \prime}\right)$	143.9(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)$	61.5(2)	$\mathrm{B}(2)-\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime}\right)$	-97.6(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-61.3(2)	$\mathrm{B}(2)-\mathrm{O}(22)-\mathrm{C}(22)-\mathrm{C}(21)$	21.7(2)
$\mathrm{C}(51)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-84.9(2)	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(22)$	-26.1(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	37.5(3)	$\mathrm{C}(21 \mathrm{\prime})-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(22)$	-143.5(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-7.4(3)	$\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{O}(22)$	87.8(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-173.4(2)	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}\left(22{ }^{\prime \prime}\right)$	-143.5(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	-0.3(3)	$\mathrm{C}\left(21{ }^{\prime \prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime \prime}\right)$	99.1(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	-173.4(2)	$\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime \prime}\right)$	-29.6(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	-23.7(3)	$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime}\right)$	88.7(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	114.8(2)	$\mathrm{C}\left(21{ }^{\prime \prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime}\right)$	-28.7(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	-0.4(3)	$\mathrm{C}\left(21^{\prime}\right)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}\left(22^{\prime}\right)$	-157.4(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	149.2(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(51)$	9.6(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	-72.3(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(51)$	-112.2(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-57.6(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(52)$	-169.01(19)
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	129.4(2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(52)$	69.2(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	117.9(3)	$\mathrm{O}(51)-\mathrm{C}(51)-\mathrm{O}(52)-\mathrm{C}(52)$	6.0(3)
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	-55.1(3)	$\mathrm{C}(5)-\mathrm{C}(51)-\mathrm{O}(52)-\mathrm{C}(52)$	-175.3(2)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	0.1(4)		

Table 1. Crystal data and structure refinement for 180a (Major diastereomer).

Identification code	adm 168	
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}$	
Formula weight	422.52	
Temperature	$200(2) \mathrm{K}$	
Wavelength	71.073 pm	
Crystal system	Orthorhombic	
Space group	$\mathrm{P} 2(1) 2(1) 2(1)$	
Unit cell dimensions	$\mathrm{a}=919.67(18) \mathrm{pm}$	$\alpha=90^{\circ}$.
	$\mathrm{b}=1352.8(3) \mathrm{pm}$	$\beta=90^{\circ}$.
	$\mathrm{c}=1733.3(4) \mathrm{pm}$	$\gamma=90^{\circ}$.
Volume	$2.1565(7) \mathrm{nm}^{3}$	
Z	4	
Density (calculated)	$1.301 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.087 \mathrm{~mm}^{-1}$	
$\mathrm{~F}(000)$	904	
Crystal size	$0.50 \mathrm{x} 0.50 \mathrm{x} 0.50 \mathrm{~mm}{ }^{3}$	
Theta range for data collection	$3.56 \mathrm{to} 24.96^{\circ}$.	
Index ranges	$-2<=\mathrm{h}<=10,-16<=\mathrm{k}<=16,-20<=1<=20$	
Reflections collected	2892	
Independent reflections	$2575[\mathrm{R}(\mathrm{int})=0.0374]$	

Completeness to theta $=24.96^{\circ}$
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
99.4%
0.9577 and 0.9577

Full-matrix least-squares on F^{2}
2575 / 0/281
1.037
$\mathrm{R} 1=0.0374, \mathrm{wR} 2=0.0912$
$\mathrm{R} 1=0.0400, \mathrm{wR} 2=0.0943$
0.00
0.144 and -0.227 e. \AA^{-3}

Table 2. Atomic coordinates $\left(x 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for $\mathbf{1 8 0 a} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U \mathrm{U}^{\mathrm{j}}$ tensor.

Atom	X	y	Z	U(eq)
$\mathrm{C}\left(1{ }^{\prime}\right)$	-4279(3)	7583(2)	12542(1)	30(1)
$\mathrm{C}(1)$	-117(3)	4983(2)	12108(1)	40(1)
C(2)	919(3)	5759(2)	11825(1)	38(1)
$\mathrm{C}\left(2^{\prime}\right)$	-5656(3)	7249(2)	12727(1)	36(1)
C(3)	-447(3)	5557(2)	11374(1)	28(1)
C(3')	-6543(3)	7823(2)	13190(1)	40(1)
N(4)	-1553(2)	6334(1)	11405(1)	29(1)
C(6')	-3766(3)	8469(2)	12833(1)	36(1)
C(4')	-6051(3)	8712(2)	13484(1)	41(1)
$\mathrm{N}(5)$	-2864(2)	6061(1)	11042(1)	27(1)
C(5')	-4658(3)	9021(2)	13306(1)	38(1)
C(6)	-2765(3)	5842(2)	10215(1)	26(1)
C(7)	-1464(3)	5200(2)	10074(1)	26(1)
C(8)	-427(3)	5048(2)	10601(1)	27(1)
$\mathrm{O}(9)$	-1131(2)	7138(1)	12577(1)	47(1)
C(9)	-1921(3)	6861(2)	12067(1)	31(1)
$\mathrm{N}(10)$	-3422(2)	7019(1)	12014(1)	31(1)
$\mathrm{O}(11)$	-5231(2)	6597(1)	11122(1)	37(1)
C(11)	-3996(3)	6558(2)	11359(1)	27(1)
C(61)	-2717(3)	6768(2)	9706(1)	33(1)
C(62)	-2635(3)	6462(2)	8857(1)	39(1)
C(71)	-1470(3)	4838(2)	9249(1)	$33(1)$
C(72)	-1409(3)	5741(2)	8709(1)	40(1)
$\mathrm{N}\left(81{ }^{\prime}\right)$	1688(2)	4578(1)	9786(1)	27(1)

$\mathrm{O}\left(81^{\prime}\right)$	$4300(2)$	$5161(1)$	$9013(1)$	$43(1)$
$\mathrm{C}\left(81^{\prime}\right)$	$2888(3)$	$3891(2)$	$9652(1)$	$33(1)$
$\mathrm{C}(81)$	$826(3)$	$4317(2)$	$10475(1)$	$30(1)$
$\mathrm{C}(82)$	$239(3)$	$3256(2)$	$10436(2)$	$46(1)$
$\mathrm{C}\left(82^{\prime}\right)$	$3714(3)$	$4192(2)$	$8938(2)$	$40(1)$
$\mathrm{C}\left(83^{\prime}\right)$	$3145(3)$	$5841(2)$	$9146(2)$	$41(1)$
$\mathrm{C}\left(84^{\prime}\right)$	$2305(3)$	$5576(2)$	$9862(1)$	$33(1)$

Table 3. Bond lengths [pm] and angles [deg] for 180a.

$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$138.2(3)$	$\mathrm{C}(71)-\mathrm{C}(72)$	$154.0(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$138.3(3)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)$	$146.2(3)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(10)$	$142.8(3)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(84^{\prime}\right)$	$147.1(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$149.9(4)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}(81)$	$147.5(3)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$152.1(3)$	$\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)$	$142.2(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$150.4(3)$	$\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)$	$142.5(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$138.4(3)$	$\mathrm{C}\left(81^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)$	$150.8(3)$
$\mathrm{C}(3)-\mathrm{N}(4)$	$146.4(3)$	$\mathrm{C}(81)-\mathrm{C}(82)$	$153.5(3)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$150.6(3)$	$\mathrm{C}\left(83^{\prime}\right)-\mathrm{C}\left(84^{\prime}\right)$	$150.5(3)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$138.2(4)$		
$\mathrm{N}(4)-\mathrm{C}(9)$	$139.2(3)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$120.8(2)$
$\mathrm{N}(4)-\mathrm{N}(5)$	$140.9(3)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(10)$	$120.6(2)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$137.9(3)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(10)$	$118.6(2)$
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$138.4(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$59.75(16)$
$\mathrm{N}(5)-\mathrm{C}(11)$	$135.6(3)-\mathrm{C}(3)$	$60.83(16)$	
$\mathrm{N}(5)-\mathrm{C}(6)$	$146.6(3)$	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$119.4(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$149.9(3)$	$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$115.49(19)$
$\mathrm{C}(6)-\mathrm{C}(61)$	$153.3(3)$	$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$111.63(18)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$133.5(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$122.4(2)$
$\mathrm{C}(7)-\mathrm{C}(71)$	$151.3(3)$	$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(1)$	$118.28(19)$
$\mathrm{C}(8)-\mathrm{C}(81)$	$153.5(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	$59.42(17)$
$\mathrm{O}(9)-\mathrm{C}(9)$	$120.5(3)$	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(1)$	$120.63(19)$
$\mathrm{C}(9)-\mathrm{N}(10)$	$140.0(3)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$120.7(3)$
$\mathrm{N}(10)-\mathrm{C}(11)$	$139.9(3)$	$\mathrm{C}(9)-\mathrm{N}(4)-\mathrm{N}(5)$	$107.11(18)$
$\mathrm{O}(11)-\mathrm{C}(11)$	$120.9(3)$	$\mathrm{N}(5)-\mathrm{N}(4)-\mathrm{C}(3)$	$124.53(18)-\mathrm{C}(3)$
$\mathrm{C}(61)-\mathrm{C}(62)$	$153.1(3)$	$112.98(17)$	
$\mathrm{C}(62)-\mathrm{C}(72)$	$151.3(4)$	$\mathrm{C}\left(1^{\prime}\right)$	$118.9(2)$

$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$118.9(2)$	$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{C}\left(1^{\prime}\right)$	$125.75(19)$
$\mathrm{C}(11)-\mathrm{N}(5)-\mathrm{N}(4)$	$110.26(16)$	$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{N}(5)$	$127.2(2)$
$\mathrm{C}(11)-\mathrm{N}(5)-\mathrm{C}(6)$	$123.00(19)$	$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{N}(10)$	$127.8(2)$
$\mathrm{N}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	$115.89(18)$	$\mathrm{N}(5)-\mathrm{C}(11)-\mathrm{N}(10)$	$105.08(19)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$121.3(2)$	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(6)$	$109.56(19)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$109.05(18)$	$\mathrm{C}(72)-\mathrm{C}(62)-\mathrm{C}(61)$	$111.9(2)$
$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(61)$	$113.49(18)$	$\mathrm{C}(7)-\mathrm{C}(71)-\mathrm{C}(72)$	$108.56(19)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(61)$	$110.87(19)$	$\mathrm{C}(62)-\mathrm{C}(72)-\mathrm{C}(71)$	$112.4(2)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$123.19(19)$	$\mathrm{C}\left(81^{\prime}\right)-\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(84^{\prime}\right)$	$107.86(19)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(71)$	$126.9(2)$	$\mathrm{C}\left(81^{\prime}\right)-\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}(81)$	$112.49(17)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(71)$	$109.79(19)$	$\mathrm{C}\left(84^{\prime}\right)-\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}(81)$	$110.77(17)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$122.0(2)$	$\mathrm{C}\left(82^{\prime}\right)-\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)$	$109.1(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(81)$	$122.50(19)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)$	$109.83(19)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(81)$	$115.47(19)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}(81)-\mathrm{C}(8)$	$111.38(17)$
$\mathrm{O}(9)-\mathrm{C}(9)-\mathrm{N}(4)$	$128.2(2)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}(81)-\mathrm{C}(82)$	$112.16(19)$
$\mathrm{O}(9)-\mathrm{C}(9)-\mathrm{N}(10)$	$126.5(2)$	$\mathrm{C}(8)-\mathrm{C}(81)-\mathrm{C}(82)$	$110.2(2)$
$\mathrm{N}(4)-\mathrm{C}(9)-\mathrm{N}(10)$	$105.3(2)$	$\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)$	$111.41(19)$
$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{C}(9)$	$110.90(19)$	$\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)-\mathrm{C}\left(84^{\prime}\right)$	$111.3(2)$
$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{C}\left(1^{\prime}\right)$	$123.3(2)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(84^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)$	$110.05(18)$

Table 4. Anisotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for 180a. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}\left(1^{\prime}\right)$	$34(1)$	$31(1)$	$24(1)$	$-4(1)$	$-2(1)$	$7(1)$
$\mathrm{C}(1)$	$43(2)$	$48(1)$	$28(1)$	$5(1)$	$-1(1)$	$12(1)$
$\mathrm{C}(2)$	$29(1)$	$54(1)$	$32(1)$	$-8(1)$	$-4(1)$	$7(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$44(2)$	$29(1)$	$35(1)$	$-3(1)$	$7(1)$	$0(1)$
$\mathrm{C}(3)$	$25(1)$	$32(1)$	$27(1)$	$2(1)$	$2(1)$	$6(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$42(2)$	$41(1)$	$38(1)$	$2(1)$	$15(1)$	$2(1)$
$\mathrm{N}(4)$	$24(1)$	$34(1)$	$29(1)$	$-6(1)$	$-4(1)$	$3(1)$
$\mathrm{C}\left(6^{\prime}\right)$	$35(1)$	$39(1)$	$33(1)$	$-5(1)$	$-5(1)$	$1(1)$
$\mathrm{C}\left(4^{\prime}\right)$	$50(2)$	$41(1)$	$31(1)$	$-6(1)$	$6(1)$	$14(1)$
$\mathrm{N}(5)$	$23(1)$	$32(1)$	$27(1)$	$-6(1)$	$-2(1)$	$1(1)$
$\mathrm{C}\left(5^{\prime}\right)$	$45(2)$	$36(1)$	$33(1)$	$-11(1)$	$-4(1)$	$6(1)$
$\mathrm{C}(6)$	$26(1)$	$28(1)$	$23(1)$	$-3(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(7)$	$26(1)$	$26(1)$	$27(1)$	$-1(1)$	$4(1)$	$-5(1)$

$\mathrm{C}(8)$	$26(1)$	$26(1)$	$28(1)$	$1(1)$	$5(1)$	$-1(1)$
$\mathrm{O}(9)$	$36(1)$	$63(1)$	$42(1)$	$-24(1)$	$-10(1)$	$9(1)$
$\mathrm{C}(9)$	$31(1)$	$34(1)$	$29(1)$	$-5(1)$	$-1(1)$	$2(1)$
$\mathrm{N}(10)$	$29(1)$	$34(1)$	$30(1)$	$-7(1)$	$-1(1)$	$4(1)$
$\mathrm{O}(11)$	$27(1)$	$43(1)$	$40(1)$	$-12(1)$	$-4(1)$	$5(1)$
$\mathrm{C}(11)$	$27(1)$	$26(1)$	$29(1)$	$-5(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(61)$	$35(1)$	$30(1)$	$34(1)$	$3(1)$	$-4(1)$	$-3(1)$
$\mathrm{C}(62)$	$40(1)$	$46(1)$	$30(1)$	$8(1)$	$-3(1)$	$-9(1)$
$\mathrm{C}(71)$	$30(1)$	$38(1)$	$32(1)$	$-9(1)$	$-1(1)$	$-3(1)$
$\mathrm{C}(72)$	$39(2)$	$56(2)$	$26(1)$	$1(1)$	$2(1)$	$-6(1)$
$\mathrm{N}\left(81^{\prime}\right)$	$26(1)$	$23(1)$	$31(1)$	$-3(1)$	$5(1)$	$-2(1)$
$\mathrm{O}\left(81^{\prime}\right)$	$36(1)$	$42(1)$	$51(1)$	$-8(1)$	$16(1)$	$-8(1)$
$\mathrm{C}\left(81^{\prime}\right)$	$34(1)$	$29(1)$	$37(1)$	$-2(1)$	$7(1)$	$5(1)$
$\mathrm{C}(81)$	$28(1)$	$28(1)$	$32(1)$	$2(1)$	$6(1)$	$4(1)$
$\mathrm{C}(82)$	$47(2)$	$30(1)$	$61(2)$	$7(1)$	$20(2)$	$0(1)$
$\mathrm{C}\left(82^{\prime}\right)$	$43(2)$	$33(1)$	$43(1)$	$-6(1)$	$16(1)$	$-4(1)$
$\mathrm{C}\left(83^{\prime}\right)$	$39(2)$	$33(1)$	$49(1)$	$1(1)$	$9(1)$	$-6(1)$
$\mathrm{C}\left(84^{\prime}\right)$	$31(1)$	$27(1)$	$42(1)$	$-8(1)$	$6(1)$	$-5(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\mathrm{pm}^{2} \times 10^{-1}$) for 180a.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1 \mathrm{~A})$	-703	5135	12573	48
$\mathrm{H}(1 \mathrm{~B})$	177	4283	12056	48
$\mathrm{H}(2 \mathrm{~A})$	1852	5534	11602	46
$\mathrm{H}(2 \mathrm{~B})$	973	6386	12118	46
H(2'A)	-5990	6630	12537	43
H(3'A)	-7500	7605	13306	48
H(6'A)	-2816	8693	12709	43
H(4'A)	-6660	9103	13805	49
H(5'A)	-4308	9626	13513	46
H(6A)	-3649	5455	10068	31
H(61A)	-3598	7172	9795	40
H(61B)	-1856	7172	9842	40
H(62A)	-3568	6154	8703	46

$\mathrm{H}(62 \mathrm{~B})$	-2490	7058	8534	46
$\mathrm{H}(71 \mathrm{~A})$	-2364	4452	9147	40
$\mathrm{H}(71 \mathrm{~B})$	-619	4406	9156	40
$\mathrm{H}(72 \mathrm{~A})$	-468	6085	8781	48
$\mathrm{H}(72 \mathrm{~B})$	-1458	5513	8167	48
$\mathrm{H}(81 \mathrm{~A})$	2502	3213	9586	40
$\mathrm{H}(81 B)$	3549	3892	10102	40
$\mathrm{H}(81 \mathrm{C})$	1484	4361	10933	35
$\mathrm{H}(82 \mathrm{~A})$	1052	2788	10464	69
$\mathrm{H}(82 \mathrm{~B})$	-285	3161	9950	69
$\mathrm{H}(82 \mathrm{C})$	-423	3141	10870	69
$\mathrm{H}(82 \mathrm{D})$	4514	3717	8845	47
$\mathrm{H}(82 \mathrm{E})$	3054	4171	8487	47
$\mathrm{H}(83 \mathrm{~A})$	2480	5841	8697	49
$\mathrm{H}(83 \mathrm{C})$	3549	6516	9202	49
$\mathrm{H}(84 \mathrm{C})$	2958	5601	10316	40
$\mathrm{H}(84 \mathrm{~A})$	1513	6061	9943	40

Table 1. Crystal data and structure refinement for 184a

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.04^{\circ}$
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I $>2 \operatorname{sigma}(\mathrm{I})$]
adm165x
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$
368.43

200(2) K
71.073 pm

Orthorhombic
Pbca
$\mathrm{a}=1465.6(2) \mathrm{pm} \quad \alpha=90^{\circ}$.
$\mathrm{b}=836.46(14) \mathrm{pm}$
$\beta=90^{\circ}$.
$\mathrm{c}=2988.6(4) \mathrm{pm}$
$\gamma=90^{\circ}$.
$3.6638(10) \mathrm{nm}^{3}$
8
$1.336 \mathrm{Mg} / \mathrm{m}^{3}$
$0.092 \mathrm{~mm}^{-1}$
1568
$0.80 \times 0.80 \times 0.80 \mathrm{~mm}^{3}$
3.70 to 25.04°.
$-2<=\mathrm{h}<=17,0<=\mathrm{k}<=9,-35<=\mathrm{l}<=35$
3239
$3204[\mathrm{R}(\mathrm{int})=0.1306]$
99.2 \%
0.9301 and 0.9301

Full-matrix least-squares on F^{2}
3204 / 0 / 246
1.072
$\mathrm{R} 1=0.0602, \mathrm{wR} 2=0.1657$

R indices (all data)	$\mathrm{R} 1=0.0667, \mathrm{wR} 2=0.1757$
Extinction coefficient	$0.0071(12)$
Largest diff. peak and hole	0.351 and $-0.293 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for 184a. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$5212(1)$	$2449(3)$	$7866(1)$	$32(1)$
$\mathrm{C}\left(1^{\prime}\right)$	$3618(1)$	$261(3)$	$6294(1)$	$32(1)$
$\mathrm{C}(2)$	$5220(1)$	$665(3)$	$7905(1)$	$32(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$3394(2)$	$-1236(3)$	$6130(1)$	$40(1)$
$\mathrm{C}(3)$	$4328(1)$	$1542(2)$	$7863(1)$	$27(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$3506(2)$	$-1536(3)$	$5675(1)$	$50(1)$
$\mathrm{N}(4)$	$3823(1)$	$1472(2)$	$7443(1)$	$29(1)$
$\mathrm{C}\left(4^{\prime}\right)$	$3852(2)$	$-375(4)$	$5396(1)$	$53(1)$
$\mathrm{N}(5)$	$3038(1)$	$466(2)$	$7458(1)$	$30(1)$
$\mathrm{C}\left(5^{\prime}\right)$	$4072(2)$	$1105(4)$	$5564(1)$	$51(1)$
$\mathrm{C}(6)$	$2340(1)$	$1002(3)$	$7773(1)$	$35(1)$
$\mathrm{C}\left(6^{\prime}\right)$	$3938(2)$	$1441(3)$	$6014(1)$	$41(1)$
$\mathrm{C}(7)$	$2794(2)$	$1435(3)$	$8203(1)$	$33(1)$
$\mathrm{C}(8)$	$3690(1)$	$1642(2)$	$8250(1)$	$29(1)$
$\mathrm{O}\left(9^{\prime}\right)$	$4925(1)$	$1843(2)$	$6893(1)$	$37(1)$
$\mathrm{C}(9)$	$4189(1)$	$1378(2)$	$7021(1)$	$28(1)$
$\mathrm{N}(10)$	$3532(1)$	$579(2)$	$6763(1)$	$29(1)$
$\mathrm{O}\left(11^{\prime}\right)$	$2121(1)$	$-612(2)$	$6906(1)$	$43(1)$
$\mathrm{C}(11)$	$2808(1)$	$70(3)$	$7024(1)$	$31(1)$
$\mathrm{N}\left(81^{\prime}\right)$	$3702(1)$	$938(2)$	$9048(1)$	$32(1)$
$\mathrm{O}\left(81^{\prime}\right)$	$3939(2)$	$-1408(2)$	$9740(1)$	$56(1)$
$\mathrm{C}(81)$	$4089(1)$	$2038(2)$	$8709(1)$	$30(1)$
$\mathrm{C}\left(81^{\prime}\right)$	$3971(2)$	$1373(3)$	$9504(1)$	$43(1)$
$\mathrm{C}(82)$	$3924(2)$	$3793(3)$	$8816(1)$	$39(1)$
$\mathrm{C}\left(82^{\prime}\right)$	$3613(2)$	$148(4)$	$9830(1)$	$59(1)$
$\mathrm{C}\left(83^{\prime}\right)$	$3674(2)$	$-1851(3)$	$9299(1)$	$49(1)$
$\mathrm{C}\left(84^{\prime}\right)$	$4029(2)$	$-680(3)$	$8960(1)$	$39(1)$

Table 3. Bond lengths [pm] and angles [deg] for 184a.

$\mathrm{C}(1)-\mathrm{C}(2)$	149.7(3)	$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	110.66(16)
$\mathrm{C}(1)-\mathrm{C}(3)$	150.2(3)	$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(1)$	117.63(16)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	137.6(3)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(1)$	120.53(17)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	138.4(3)	$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.59(16)
$\mathrm{C}\left(1^{\prime}\right)$-N(10)	143.3(2)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	120.45(16)
$\mathrm{C}(2)-\mathrm{C}(3)$	150.4(3)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	59.73(14)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	139.3(3)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	120.5(2)
$\mathrm{C}(3)-\mathrm{N}(4)$	145.7(2)	$\mathrm{C}(9)-\mathrm{N}(4)-\mathrm{N}(5)$	108.16(15)
$\mathrm{C}(3)-\mathrm{C}(8)$	149.1(3)	$\mathrm{C}(9)-\mathrm{N}(4)-\mathrm{C}(3)$	126.46(17)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	137.7(4)	$\mathrm{N}(5)-\mathrm{N}(4)-\mathrm{C}(3)$	113.91(15)
$\mathrm{N}(4)-\mathrm{C}(9)$	137.2(3)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	120.0(2)
$\mathrm{N}(4)-\mathrm{N}(5)$	142.6(2)	$\mathrm{C}(11)-\mathrm{N}(5)-\mathrm{N}(4)$	107.95(15)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	137.5(4)	$\mathrm{C}(11)-\mathrm{N}(5)-\mathrm{C}(6)$	120.49(16)
$\mathrm{N}(5)-\mathrm{C}(11)$	138.1(3)	$\mathrm{N}(4)-\mathrm{N}(5)-\mathrm{C}(6)$	113.90(16)
$\mathrm{N}(5)-\mathrm{C}(6)$	146.0(3)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	120.3(2)
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	138.9(3)	$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	108.44(17)
$\mathrm{C}(6)-\mathrm{C}(7)$	149.1(3)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	119.4(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	133.1(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	124.29(19)
$\mathrm{C}(8)-\mathrm{C}(81)$	152.7(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	121.88(18)
$\mathrm{O}\left(9^{\prime}\right)-\mathrm{C}(9)$	120.9(2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(81)$	120.09(18)
$\mathrm{C}(9)$-N(10)	140.4(3)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(81)$	118.01(17)
$\mathrm{N}(10)-\mathrm{C}(11)$	138.4(3)	$\mathrm{O}\left(9^{\prime}\right)-\mathrm{C}(9)-\mathrm{N}(4)$	128.45(19)
$\mathrm{O}\left(11^{\prime}\right)-\mathrm{C}(11)$	121.0(2)	$\mathrm{O}\left(9^{\prime}\right)-\mathrm{C}(9)-\mathrm{N}(10)$	126.23(18)
$\mathrm{N}\left(811^{\prime}\right)$-C(84')	145.9(3)	$\mathrm{N}(4)-\mathrm{C}(9)-\mathrm{N}(10)$	105.30(16)
N(81')-C(81')	146.5(3)	$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{C}(9)$	111.21(16)
$\mathrm{N}\left(81{ }^{\prime}\right)$-C(81)	148.1(3)	$\mathrm{C}(11)-\mathrm{N}(10)-\mathrm{C}\left(1^{\prime}\right)$	124.25(17)
$\mathrm{O}\left(811^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)$	141.2(4)	$\mathrm{C}(9)-\mathrm{N}(10)-\mathrm{C}\left(1^{\prime}\right)$	124.47(17)
$\mathrm{O}\left(811^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)$	142.2(3)	$\mathrm{O}\left(11^{\prime}\right)-\mathrm{C}(11)-\mathrm{N}(5)$	126.28(19)
$\mathrm{C}(81)-\mathrm{C}(82)$	152.2(3)	$\mathrm{O}\left(11^{\prime}\right)-\mathrm{C}(11)-\mathrm{N}(10)$	128.08(19)
$\mathrm{C}\left(811^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)$	150.8(4)	$\mathrm{N}(5)-\mathrm{C}(11)-\mathrm{N}(10)$	105.62(16)
$\mathrm{C}(83$ ')-C(84')	150.4(3)	$\mathrm{C}\left(84{ }^{\prime}\right)$ - $\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)$	108.02(17)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	60.23(13)	$\mathrm{C}\left(84{ }^{\prime}\right)-\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}(81)$	109.11(17)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	121.0(2)	$\mathrm{C}\left(81^{\prime}\right)$-N(81')-C(81)	112.22(17)
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(10)$	119.37 (19)	$\mathrm{C}\left(82^{\prime}\right)-\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)$	108.9(2)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}(10)$	119.58(19)	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}(81)-\mathrm{C}(82)$	113.26(17)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	60.04(13)	$\mathrm{N}\left(81{ }^{\prime}\right)-\mathrm{C}(81)-\mathrm{C}(8)$	109.38(16)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	118.8(2)	C(82)-C(81)-C(8)	109.70(17)

$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)$	$109.8(2)$	$\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)-\mathrm{C}\left(84^{\prime}\right)$	$111.1(2)$
$\mathrm{O}\left(81^{\prime}\right)-\mathrm{C}\left(82^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)$	$112.7(2)$	$\mathrm{N}\left(81^{\prime}\right)-\mathrm{C}\left(84^{\prime}\right)-\mathrm{C}\left(83^{\prime}\right)$	$111.6(2)$

Table 4. Anisotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for 184a. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U 13	U 12
$\mathrm{C}(1)$	$33(1)$	$37(1)$	$26(1)$	$0(1)$	$0(1)$	$-6(1)$
$\mathrm{C}\left(1^{\prime}\right)$	$34(1)$	$42(1)$	$20(1)$	$-5(1)$	$-2(1)$	$3(1)$
$\mathrm{C}(2)$	$29(1)$	$38(1)$	$31(1)$	$1(1)$	$-1(1)$	$1(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$44(1)$	$47(1)$	$29(1)$	$-8(1)$	$0(1)$	$-3(1)$
$\mathrm{C}(3)$	$32(1)$	$32(1)$	$18(1)$	$0(1)$	$-4(1)$	$0(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$55(2)$	$61(2)$	$34(1)$	$-21(1)$	$-2(1)$	$-2(1)$
$\mathrm{N}(4)$	$29(1)$	$37(1)$	$20(1)$	$1(1)$	$-1(1)$	$-4(1)$
$\mathrm{C}\left(4^{\prime}\right)$	$57(2)$	$79(2)$	$23(1)$	$-11(1)$	$-3(1)$	$4(1)$
$\mathrm{N}(5)$	$26(1)$	$41(1)$	$23(1)$	$-1(1)$	$0(1)$	$-4(1)$
$\mathrm{C}\left(5^{\prime}\right)$	$58(2)$	$70(2)$	$25(1)$	$7(1)$	$-1(1)$	$0(1)$
$\mathrm{C}(6)$	$27(1)$	$52(1)$	$25(1)$	$-1(1)$	$1(1)$	$1(1)$
$\mathrm{C}\left(6^{\prime}\right)$	$52(1)$	$45(1)$	$25(1)$	$1(1)$	$-4(1)$	$-1(1)$
$\mathrm{C}(7)$	$33(1)$	$45(1)$	$22(1)$	$0(1)$	$2(1)$	$1(1)$
$\mathrm{C}(8)$	$32(1)$	$31(1)$	$23(1)$	$2(1)$	$-1(1)$	$2(1)$
$\mathrm{O}\left(9^{\prime}\right)$	$39(1)$	$48(1)$	$25(1)$	$-2(1)$	$4(1)$	$-12(1)$
$\mathrm{C}(9)$	$34(1)$	$31(1)$	$21(1)$	$1(1)$	$1(1)$	$-1(1)$
$\mathrm{N}(10)$	$33(1)$	$35(1)$	$20(1)$	$-3(1)$	$-1(1)$	$-1(1)$
$\mathrm{O}\left(11^{\prime}\right)$	$33(1)$	$64(1)$	$34(1)$	$-11(1)$	$0(1)$	$-10(1)$
$\mathrm{C}(11)$	$28(1)$	$37(1)$	$27(1)$	$-2(1)$	$-1(1)$	$2(1)$
$\mathrm{N}\left(81^{\prime}\right)$	$40(1)$	$37(1)$	$18(1)$	$2(1)$	$-1(1)$	$2(1)$
$\mathrm{O}\left(81^{\prime}\right)$	$85(1)$	$51(1)$	$31(1)$	$13(1)$	$-12(1)$	$-2(1)$
$\mathrm{C}(81)$	$35(1)$	$37(1)$	$18(1)$	$1(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}\left(81^{\prime}\right)$	$64(2)$	$45(1)$	$21(1)$	$0(1)$	$-4(1)$	$0(1)$
$\mathrm{C}(82)$	$52(1)$	$37(1)$	$28(1)$	$-1(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}\left(82^{\prime}\right)$	$93(2)$	$62(2)$	$21(1)$	$5(1)$	$2(1)$	$-3(2)$
$\mathrm{C}\left(83^{\prime}\right)$	$67(2)$	$43(1)$	$37(1)$	$9(1)$	$-11(1)$	$-4(1)$
$\mathrm{C}\left(84^{\prime}\right)$	$52(1)$	$38(1)$	$29(1)$	$2(1)$	$-2(1)$	$2(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\mathrm{pm}^{2} \times 10^{-1}$) for 184a.

Atom	x	y	z	U(eq)
H(1A)	5422	2925	7580	39
H(1B)	5362	3080	8136	39
H(2A)	5374	197	8200	39
H(2B)	5434	42	7644	39
H(2'A)	3169	-2044	6324	48
H(3'A)	3341	-2549	5556	60
H(4'A)	3940	-597	5087	64
H(5'A)	4317	1901	5372	61
H(6A)	1890	139	7824	41
H(6B)	2015	1942	7650	41
H(6'A)	4067	2477	6128	49
H(7A)	2420	1571	8460	40
H(81A)	4763	1858	8696	36
H(81B)	3722	2440	9579	52
H(81C)	4644	1427	9524	52
H(82A)	4261	4084	9087	59
H(82B)	3270	3972	8864	59
H(82C)	4134	4454	8566	59
H(82D)	3796	459	10137	71
H(82E)	2938	143	9818	71
H(83A)	3000	-1893	9281	59
H(83B)	3913	-2931	9231	59
H(84A)	4705	-686	8966	47
H(84B)	3831	-1015	8657	47

Table 1. Crystal data and structure refinement for 209.

Identification code	adm185
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	431.57
Temperature	133(2) K
Wavelength	71.073 pm
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$\mathrm{a}=1135.4(2) \mathrm{pm} \quad \alpha=90^{\circ}$.
	$\mathrm{b}=1289.1(3) \mathrm{pm} \quad \beta=108.00(3)^{\circ}$.
	$\mathrm{c}=1632.3(3) \mathrm{pm} \quad \gamma=90^{\circ}$.
Volume	$2.2723(8) \mathrm{nm}^{3}$
Z	4
Density (calculated)	$1.262 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.172 \mathrm{~mm}^{-1}$
F(000)	928
Crystal size	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	1.89 to 24.82°.
Index ranges	$-13<=\mathrm{h}<=13,-15<=\mathrm{k}<=15,-19<=1<=18$
Reflections collected	33280
Independent reflections	3897 [$\mathrm{R}(\mathrm{int}$) $=0.0774$]
Completeness to theta $=24.82^{\circ}$	99.1\%
Max. and min. transmission	0.9664 and 0.9502

Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3897 / 0 / 276$
Goodness-of-fit on F^{2}	1.021
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0536$, wR2 $=0.1333$
R indices (all data)	$\mathrm{R} 1=0.0873$, wR2 $=0.1439$
Largest diff. peak and hole	0.974 and -0.403 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\mathrm{pm}^{2} \times 10^{-1}$) for 209. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{Uij}^{\mathrm{i}}$ tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$7263(3)$	$724(2)$	$2483(2)$	$23(1)$
$\mathrm{C}(2)$	$7513(3)$	$1890(2)$	$2486(2)$	$28(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$9425(3)$	$244(2)$	$3559(2)$	$33(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$8666(3)$	$548(3)$	$4105(2)$	$50(1)$
$\mathrm{N}(3)$	$7100(2)$	$2319(2)$	$1599(1)$	$26(1)$
$\mathrm{C}(4)$	$5812(3)$	$2054(2)$	$1121(2)$	$35(1)$
$\mathrm{C}(5)$	$5591(3)$	$884(2)$	$1071(2)$	$32(1)$
$\mathrm{C}(6)$	$6396(3)$	$285(2)$	$1829(2)$	$24(1)$
$\mathrm{C}(7)$	$6167(3)$	$-869(2)$	$1755(2)$	$33(1)$
$\mathrm{C}(8)$	$7266(4)$	$-1474(2)$	$2403(2)$	$51(1)$
$\mathrm{C}(9)$	$7578(4)$	$-984(3)$	$3267(2)$	$47(1)$
$\mathrm{C}(10)$	$8046(3)$	$86(2)$	$3220(2)$	$30(1)$
$\mathrm{C}(21)$	$6872(4)$	$2513(2)$	$3032(2)$	$44(1)$
$\mathrm{S}(31)$	$8104(1)$	$2403(1)$	$1067(1)$	$35(1)$
$\mathrm{O}(31)$	$7492(3)$	$2951(2)$	$290(2)$	$54(1)$
$\mathrm{C}(31)$	$8448(3)$	$1139(2)$	$778(2)$	$28(1)$
$\mathrm{C}(32)$	$7765(3)$	$708(2)$	$-2(2)$	$35(1)$
$\mathrm{O}(32)$	$9215(2)$	$2812(2)$	$1659(2)$	$50(1)$
$\mathrm{C}(33)$	$7997(3)$	$-306(3)$	$-185(2)$	$36(1)$
$\mathrm{C}(34)$	$8894(3)$	$-900(2)$	$395(2)$	$33(1)$
$\mathrm{C}(35)$	$9585(3)$	$-436(3)$	$1162(2)$	$39(1)$
$\mathrm{C}(36)$	$9369(3)$	$576(3)$	$1350(2)$	$36(1)$
$\mathrm{C}(37)$	$9116(4)$	$-2015(3)$	$196(3)$	$51(1)$
$\mathrm{C}(81)$	$6873(3)$	$-2616(2)$	$2391(2)$	$40(1)$
$\mathrm{O}(82)$	$6880(2)$	$-3048(2)$	$1650(1)$	$45(1)$
$\mathrm{C}(82)$	$6590(3)$	$-4147(2)$	$1455(2)$	$28(1)$

$\mathrm{O}(83)$	$6627(2)$	$-3074(2)$	$2970(1)$	$40(1)$
$\mathrm{C}(83)$	$6751(4)$	$-4264(3)$	$573(2)$	$46(1)$
$\mathrm{C}(84)$	$5287(3)$	$-4386(3)$	$1431(3)$	$61(1)$
$\mathrm{C}(85)$	$7532(3)$	$-4814(3)$	$2094(2)$	$45(1)$

Table 3. Bond lengths [pm] and angles [deg] for 209.

$\mathrm{C}(1)-\mathrm{C}(6)$	$133.4(4)$	$\mathrm{C}(82)-\mathrm{C}(84)$	$150.0(4)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$150.2(4)$	$\mathrm{C}(82)-\mathrm{C}(85)$	$151.0(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$152.9(4)$	$\mathrm{C}(82)-\mathrm{C}(83)$	$151.4(4)$
$\mathrm{C}(2)-\mathrm{N}(3)$	$148.5(4)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(10)$	$121.1(3)$
$\mathrm{C}(2)-\mathrm{C}(21)$	$153.9(4)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$120.7(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$147.1(5)$	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.1(2)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(10)$	$150.4(4)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$111.1(2)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(10)$	$151.9(5)$	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(21)$	$107.9(2)$
$\mathrm{N}(3)-\mathrm{C}(4)$	$146.9(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(21)$	$113.2(2)$
$\mathrm{N}(3)-\mathrm{S}(31)$	$163.6(2)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(10)$	$61.4(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$152.8(4)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(10)$	$60.4(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$150.4(4)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(2)$	$113.2(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$150.9(4)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{S}(31)$	$118.5(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$157.1(5)$	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{S}(31)$	$118.7(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$148.5(5)$	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.2(2)$
$\mathrm{C}(8)-\mathrm{C}(81)$	$153.8(5)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$114.5(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$149.0(4)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$123.4(3)$
$\mathrm{S}(31)-\mathrm{O}(32)$	$143.1(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$123.3(3)$
$\mathrm{S}(31)-\mathrm{O}(31)$	$143.1(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$113.2(2)$
$\mathrm{S}(31)-\mathrm{C}(31)$	$177.3(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$110.7(3)$
$\mathrm{C}(31)-\mathrm{C}(36)$	$137.4(4)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(81)$	$113.7(3)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$138.7(4)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$109.6(3)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$138.5(4)$	$\mathrm{C}(81)-\mathrm{C}(8)-\mathrm{C}(7)$	$107.4(3)$
$\mathrm{C}(33)-\mathrm{C}(34)$	$138.6(5)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$109.2(3)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$139.1(5)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	$114.6(3)$
$\mathrm{C}(34)-\mathrm{C}(37)$	$151.1(4)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}\left(2^{\prime}\right)$	$117.0(3)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$137.9(5)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}\left(2^{\prime}\right)$	$120.8(2)$
$\mathrm{C}(81)-\mathrm{O}(83)$	$121.8(4)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}\left(3^{\prime}\right)$	$112.5(3)$
$\mathrm{C}(81)-\mathrm{O}(82)$	$133.4(4)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}\left(3^{\prime}\right)$	$122.2(3)$
$\mathrm{O}(82)-\mathrm{C}(82)$	$146.7(3)$	$\mathrm{C}(10)-\mathrm{C}\left(3^{\prime}\right)$	$58.2(2)$

$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{O}(31)$	$120.07(16)$	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(37)$	$121.2(3)$
$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{N}(3)$	$106.28(13)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	$121.2(3)$
$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{N}(3)$	$106.01(14)$	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	$119.9(3)$
$\mathrm{O}(32)-\mathrm{S}(31)-\mathrm{C}(31)$	$107.30(15)$	$\mathrm{O}(83)-\mathrm{C}(81)-\mathrm{O}(82)$	$124.7(3)$
$\mathrm{O}(31)-\mathrm{S}(31)-\mathrm{C}(31)$	$107.73(14)$	$\mathrm{O}(83)-\mathrm{C}(81)-\mathrm{C}(8)$	$126.2(3)$
$\mathrm{N}(3)-\mathrm{S}(31)-\mathrm{C}(31)$	$109.10(12)$	$\mathrm{O}(82)-\mathrm{C}(81)-\mathrm{C}(8)$	$109.1(3)$
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	$120.3(3)$	$\mathrm{C}(81)-\mathrm{O}(82)-\mathrm{C}(82)$	$122.4(2)$
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{S}(31)$	$119.2(2)$	$\mathrm{O}(82)-\mathrm{C}(82)-\mathrm{C}(84)$	$110.9(3)$
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{S}(31)$	$120.4(2)$	$\mathrm{O}(82)-\mathrm{C}(82)-\mathrm{C}(85)$	$109.7(3)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	$119.1(3)$	$\mathrm{C}(84)-\mathrm{C}(82)-\mathrm{C}(85)$	$112.6(3)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$121.6(3)$	$\mathrm{O}(82)-\mathrm{C}(82)-\mathrm{C}(83)$	$102.5(2)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$117.9(3)$	$\mathrm{C}(84)-\mathrm{C}(82)-\mathrm{C}(83)$	$111.2(3)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(37)$	$121.0(3)$	$\mathrm{C}(85)-\mathrm{C}(82)-\mathrm{C}(83)$	$109.4(3)$

Table 4. Anisotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for adm185. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$27(2)$	$20(1)$	$24(2)$	$1(1)$	$12(1)$	$-2(1)$
$\mathrm{C}(2)$	$39(2)$	$24(2)$	$22(2)$	$0(1)$	$11(1)$	$-7(1)$
$\mathrm{C}\left(2^{\prime}\right)$	$32(2)$	$34(2)$	$31(2)$	$-1(1)$	$5(1)$	$0(1)$
$\mathrm{C}\left(3^{\prime}\right)$	$51(2)$	$69(3)$	$26(2)$	$4(2)$	$7(2)$	$20(2)$
$\mathrm{N}(3)$	$40(1)$	$19(1)$	$23(1)$	$1(1)$	$14(1)$	$-3(1)$
$\mathrm{C}(4)$	$43(2)$	$29(2)$	$31(2)$	$4(1)$	$7(2)$	$2(1)$
$\mathrm{C}(5)$	$37(2)$	$27(2)$	$29(2)$	$4(1)$	$5(1)$	$-4(1)$
$\mathrm{C}(6)$	$28(2)$	$23(2)$	$21(2)$	$0(1)$	$8(1)$	$-2(1)$
$\mathrm{C}(7)$	$47(2)$	$24(2)$	$26(2)$	$-2(1)$	$5(2)$	$-7(1)$
$\mathrm{C}(8)$	$92(3)$	$21(2)$	$39(2)$	$3(2)$	$19(2)$	$9(2)$
$\mathrm{C}(9)$	$59(2)$	$35(2)$	$41(2)$	$5(2)$	$6(2)$	$3(2)$
$\mathrm{C}(10)$	$32(2)$	$26(2)$	$30(2)$	$5(1)$	$5(1)$	$-6(1)$
$\mathrm{C}(21)$	$84(3)$	$23(2)$	$33(2)$	$-3(1)$	$31(2)$	$-7(2)$
$\mathrm{S}(31)$	$58(1)$	$22(1)$	$36(1)$	$-2(1)$	$30(1)$	$-7(1)$
$\mathrm{O}(31)$	$104(2)$	$29(1)$	$43(2)$	$15(1)$	$44(2)$	$11(1)$
$\mathrm{C}(31)$	$40(2)$	$26(2)$	$24(2)$	$1(1)$	$19(1)$	$-3(1)$
$\mathrm{C}(32)$	$46(2)$	$35(2)$	$25(2)$	$1(1)$	$13(2)$	$4(2)$
$\mathrm{O}(32)$	$57(2)$	$39(1)$	$67(2)$	$-22(1)$	$40(1)$	$-25(1)$
$\mathrm{C}(33)$	$39(2)$	$41(2)$	$31(2)$	$-10(2)$	$14(2)$	$-6(2)$

$\mathrm{C}(34)$	$37(2)$	$30(2)$	$41(2)$	$-4(1)$	$22(2)$	$-2(1)$
$\mathrm{C}(35)$	$39(2)$	$45(2)$	$36(2)$	$0(2)$	$14(2)$	$10(2)$
$\mathrm{C}(36)$	$34(2)$	$46(2)$	$29(2)$	$-12(2)$	$10(1)$	$-3(2)$
$\mathrm{C}(37)$	$59(2)$	$34(2)$	$67(3)$	$-7(2)$	$31(2)$	$3(2)$
$\mathrm{C}(81)$	$66(2)$	$20(2)$	$29(2)$	$-1(1)$	$5(2)$	$5(2)$
$\mathrm{O}(82)$	$89(2)$	$18(1)$	$28(1)$	$-4(1)$	$17(1)$	$-10(1)$
$\mathrm{C}(82)$	$35(2)$	$18(1)$	$30(2)$	$-6(1)$	$8(1)$	$-2(1)$
$\mathrm{O}(83)$	$58(2)$	$30(1)$	$33(1)$	$-3(1)$	$15(1)$	$0(1)$
$\mathrm{C}(83)$	$68(2)$	$36(2)$	$34(2)$	$-6(2)$	$15(2)$	$-6(2)$
$\mathrm{C}(84)$	$39(2)$	$76(3)$	$71(3)$	$-38(2)$	$20(2)$	$-16(2)$
$\mathrm{C}(85)$	$55(2)$	$42(2)$	$38(2)$	$-4(2)$	$13(2)$	$17(2)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for 209.

Atoms	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2A)	8427	2002	2731	34
H(2'A)	9952	-380	3729	40
H(2'B)	9787	805	3299	40
H(3'A)	8551	1298	4184	60
H(3'B)	8716	112	4614	60
H(4A)	5606	2339	530	42
H(4B)	5253	2383	1406	42
H(5A)	4712	752	1022	39
H(5B)	5733	618	541	39
H(7A)	6077	-1097	1159	40
H(7B)	5387	-1031	1878	40
H(8A)	8007	-1430	2195	61
H(9A)	8218	-1399	3689	56
H(9B)	6832	-959	3459	56
H(21A)	7132	3240	3057	66
H(21B)	7105	2226	3617	66
H(21C)	5972	2469	2771	66
H(32A)	7146	1104	-407	42
H(33A)	7531	-603	-719	44
H(35A)	10216	-823	1564	47

$\mathrm{H}(36 \mathrm{~A})$	9857	883	1875	43
$\mathrm{H}(37 \mathrm{~A})$	9087	-2458	677	76
$\mathrm{H}(37 \mathrm{~B})$	9930	-2075	111	76
$\mathrm{H}(37 \mathrm{C})$	8473	-2234	-329	76
$\mathrm{H}(83 \mathrm{~A})$	7596	-4067	601	69
$\mathrm{H}(83 \mathrm{~B})$	6159	-3813	162	69
$\mathrm{H}(83 \mathrm{C})$	6602	-4987	384	69
$\mathrm{H}(84 \mathrm{~A})$	5212	-4313	2010	92
$\mathrm{H}(84 \mathrm{~B})$	5079	-5098	1227	92
$\mathrm{H}(84 \mathrm{C})$	4717	-3902	1038	92
$\mathrm{H}(85 \mathrm{~A})$	8368	-4601	2111	68
$\mathrm{H}(85 B)$	7402	-5543	1919	68
$\mathrm{H}(85 \mathrm{C})$	7438	-4730	2667	68

Table 1. Crystal data and structure refinement for 231c (Major diastereomer).

Identification code	adm 183	
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{7}$	
Formula weight	390.42	
Temperature	$133(2) \mathrm{K}$	
Wavelength	71.073 pm	
Crystal system	Triclinic	
Space group	$\mathrm{P}-1$	$\alpha=109.904(7)^{\circ}$.
Unit cell dimensions	$\mathrm{a}=727.68(7) \mathrm{pm}$	$\beta=93.316(8)^{\circ}$.
	$\mathrm{b}=1188.90(12) \mathrm{pm}$	$\gamma=106.331(8)^{\circ}$.
	$\mathrm{c}=1290.95(12) \mathrm{pm}$	
Volume	$0.99306(17) \mathrm{nm}^{3}$	
Z	2	
Density (calculated)	$1.306 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.098 \mathrm{~mm}^{-1}$	416
$\mathrm{~F}(000)$	$0.30 \mathrm{x} 0.30 \mathrm{x} 0.30 \mathrm{~mm}{ }^{3}$	
Crystal size	1.70 to 24.79°.	
Theta range for data collection	$-8<=\mathrm{h}<=7,-13<=\mathrm{k}<=13,-15<=1<=15$	
Index ranges	11159	
Reflections collected	$3356[\mathrm{R}(\mathrm{int})=0.0370]$	
Independent reflections	98.3%	
Completeness to theta $=24.79^{\circ}$		

Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
0.9713 and 0.9713

Full-matrix least-squares on F^{2}
3356 / 0 / 253
1.115
$R 1=0.0505, w R 2=0.1480$
$\mathrm{R} 1=0.0672, \mathrm{wR} 2=0.1562$
0.839 and -0.314 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\mathrm{pm}^{2} \times 10^{-1}$) for 231c. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$3714(3)$	$3313(2)$	$10699(2)$	$23(1)$
$\mathrm{C}(2)$	$5087(3)$	$3080(2)$	$10011(2)$	$24(1)$
$\mathrm{C}(3)$	$7168(3)$	$3920(2)$	$10403(2)$	$26(1)$
$\mathrm{O}(4)$	$8176(2)$	$3736(2)$	$11302(1)$	$28(1)$
$\mathrm{C}(5)$	$6992(4)$	$3502(2)$	$12112(2)$	$28(1)$
$\mathrm{C}(6)$	$5908(3)$	$4454(2)$	$12499(2)$	$24(1)$
$\mathrm{C}(7)$	$4328(3)$	$4327(2)$	$11825(2)$	$23(1)$
$\mathrm{C}(8)$	$1762(3)$	$2531(2)$	$10328(2)$	$24(1)$
$\mathrm{C}(9)$	$1218(3)$	$1517(2)$	$9325(2)$	$24(1)$
$\mathrm{C}(10)$	$2601(4)$	$1289(2)$	$8623(2)$	$25(1)$
$\mathrm{C}(11)$	$4499(4)$	$2078(2)$	$8970(2)$	$26(1)$
$\mathrm{C}(12)$	$6627(4)$	$5490(2)$	$13643(2)$	$27(1)$
$\mathrm{C}(13)$	$5095(4)$	$6121(2)$	$14064(2)$	$38(1)$
$\mathrm{C}(14)$	$4123(4)$	$6394(2)$	$13166(2)$	$37(1)$
$\mathrm{C}(15)$	$3095(4)$	$5181(2)$	$12159(2)$	$26(1)$
$\mathrm{C}(16)$	$2673(4)$	$7065(2)$	$13599(2)$	$31(1)$
$\mathrm{O}(17)$	$1841(3)$	$7012(2)$	$14373(2)$	$46(1)$
$\mathrm{O}(18)$	$2390(3)$	$7720(2)$	$12988(1)$	$37(1)$
$\mathrm{C}(19)$	$6090(4)$	$7328(2)$	$15069(2)$	$35(1)$
$\mathrm{O}(20)$	$6497(4)$	$8390(2)$	$15086(2)$	$57(1)$
$\mathrm{O}(21)$	$6469(3)$	$7059(2)$	$15952(1)$	$35(1)$
$\mathrm{C}(22)$	$7465(4)$	$8130(2)$	$16955(2)$	$33(1)$
$\mathrm{C}(23)$	$1079(5)$	$8441(3)$	$13326(2)$	$45(1)$
$\mathrm{C}(24)$	$8331(4)$	$3437(3)$	$13023(2)$	$36(1)$
$\mathrm{O}(25)$	$-611(2)$	$649(2)$	$8945(1)$	$30(1)$

$\mathrm{C}(26)$	$-1946(4)$	$722(2)$	$9716(2)$	$30(1)$
$\mathrm{O}(27)$	$1909(3)$	$254(2)$	$7650(1)$	$32(1)$
$\mathrm{C}(28)$	$3244(4)$	$-19(2)$	$6909(2)$	$37(1)$

Table 3. Bond lengths [pm] and angles [deg] for 231c.

$\mathrm{C}(1)-\mathrm{C}(2)$	$139.9(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	$119.0(2)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$140.9(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$120.2(2)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$148.1(3)$	$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(7)$	$120.7(2)$
$\mathrm{C}(2)-\mathrm{C}(11)$	$140.1(3)$	$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.5(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$150.4(3)$	$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(3)$	$121.4(2)$
$\mathrm{C}(3)-\mathrm{O}(4)$	$144.8(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.1(2)$
$\mathrm{O}(4)-\mathrm{C}(5)$	$144.2(3)$	$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$114.09(17)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$152.1(3)$	$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)$	$113.93(17)$
$\mathrm{C}(5)-\mathrm{C}(24)$	$152.0(3)$	$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.89(17)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$134.2(3)$	$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(24)$	$106.10(19)$
$\mathrm{C}(6)-\mathrm{C}(12)$	$151.0(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(24)$	$115.86(19)$
$\mathrm{C}(7)-\mathrm{C}(15)$	$151.0(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(12)$	$122.4(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$137.7(3)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.0(2)$
$\mathrm{C}(9)-\mathrm{O}(25)$	$137.3(3)$	$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.6(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$141.5(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	$120.2(2)$
$\mathrm{C}(10)-\mathrm{O}(27)$	$136.7(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(15)$	$122.9(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$137.9(3)$	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(15)$	$116.87(19)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$153.7(3)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(1)$	$120.9(2)$
$\mathrm{C}(13)-\mathrm{C}(19)$	$151.9(4)$	$\mathrm{O}(25)-\mathrm{C}(9)-\mathrm{C}(8)$	$124.6(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$149.7(4)$	$\mathrm{O}(25)-\mathrm{C}(9)-\mathrm{C}(10)$	$115.30(19)$
$\mathrm{C}(14)-\mathrm{C}(16)$	$151.7(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.1(2)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$152.8(3)$	$\mathrm{O}(27)-\mathrm{C}(10)-\mathrm{C}(11)$	$125.7(2)$
$\mathrm{C}(16)-\mathrm{O}(17)$	$120.9(3)$	$\mathrm{O}(27)-\mathrm{C}(10)-\mathrm{C}(9)$	$115.3(2)$
$\mathrm{C}(16)-\mathrm{O}(18)$	$132.6(3)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$119.0(2)$
$\mathrm{O}(18)-\mathrm{C}(23)$	$144.5(3)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(2)$	$121.4(2)$
$\mathrm{C}(19)-\mathrm{O}(20)$	$120.5(3)$	$\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(13)$	$112.6(2)$
$\mathrm{C}(19)-\mathrm{O}(21)$	$131.9(3)$	$\mathrm{C}(19)-\mathrm{C}(13)-\mathrm{C}(14)$	$110.7(2)$
$\mathrm{O}(21)-\mathrm{C}(22)$	$143.9(3)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$108.4(2)$
$\mathrm{O}(25)-\mathrm{C}(26)$	$142.9(3)$	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{C}(16)$	$111.3(2)$
$\mathrm{O}(27)-\mathrm{C}(28)$	$142.8(3)$	$111.1(2)$	
		$\mathrm{C}(14)-\mathrm{C}(15)$	$111.0(2)$

$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{C}(15)$	$109.6(2)$	$\mathrm{O}(20)-\mathrm{C}(19)-\mathrm{O}(21)$	$123.5(2)$
$\mathrm{C}(7)-\mathrm{C}(15)-\mathrm{C}(14)$	$112.7(2)$	$\mathrm{O}(20)-\mathrm{C}(19)-\mathrm{C}(13)$	$126.4(2)$
$\mathrm{O}(17)-\mathrm{C}(16)-\mathrm{O}(18)$	$123.4(2)$	$\mathrm{O}(21)-\mathrm{C}(19)-\mathrm{C}(13)$	$110.1(2)$
$\mathrm{O}(17)-\mathrm{C}(16)-\mathrm{C}(14)$	$126.3(2)$	$\mathrm{C}(19)-\mathrm{O}(21)-\mathrm{C}(22)$	$115.39(19)$
$\mathrm{O}(18)-\mathrm{C}(16)-\mathrm{C}(14)$	$110.3(2)$	$\mathrm{C}(9)-\mathrm{O}(25)-\mathrm{C}(26)$	$116.58(17)$
$\mathrm{C}(16)-\mathrm{O}(18)-\mathrm{C}(23)$	$116.47(19)$	$\mathrm{C}(10)-\mathrm{O}(27)-\mathrm{C}(28)$	$117.62(19)$

Table 4. Anisotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for 231c. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$26(1)$	$23(1)$	$22(1)$	$8(1)$	$2(1)$	$10(1)$
$\mathrm{C}(2)$	$27(1)$	$25(1)$	$22(1)$	$11(1)$	$4(1)$	$10(1)$
$\mathrm{C}(3)$	$26(1)$	$29(1)$	$23(1)$	$10(1)$	$4(1)$	$9(1)$
$\mathrm{O}(4)$	$23(1)$	$36(1)$	$25(1)$	$11(1)$	$5(1)$	$11(1)$
$\mathrm{C}(5)$	$30(1)$	$31(1)$	$25(1)$	$10(1)$	$7(1)$	$12(1)$
$\mathrm{C}(6)$	$24(1)$	$24(1)$	$23(1)$	$9(1)$	$4(1)$	$6(1)$
$\mathrm{C}(7)$	$26(1)$	$23(1)$	$22(1)$	$9(1)$	$6(1)$	$7(1)$
$\mathrm{C}(8)$	$26(1)$	$25(1)$	$23(1)$	$9(1)$	$4(1)$	$11(1)$
$\mathrm{C}(9)$	$25(1)$	$24(1)$	$24(1)$	$9(1)$	$1(1)$	$7(1)$
$\mathrm{C}(10)$	$30(1)$	$23(1)$	$20(1)$	$6(1)$	$3(1)$	$10(1)$
$\mathrm{C}(11)$	$31(1)$	$28(1)$	$22(1)$	$10(1)$	$7(1)$	$13(1)$
$\mathrm{C}(12)$	$28(1)$	$26(1)$	$24(1)$	$6(1)$	$0(1)$	$9(1)$
$\mathrm{C}(13)$	$40(2)$	$35(1)$	$35(1)$	$6(1)$	$2(1)$	$15(1)$
$\mathrm{C}(14)$	$39(2)$	$37(1)$	$31(1)$	$5(1)$	$3(1)$	$18(1)$
$\mathrm{C}(15)$	$28(1)$	$26(1)$	$24(1)$	$7(1)$	$2(1)$	$10(1)$
$\mathrm{C}(16)$	$32(2)$	$27(1)$	$26(1)$	$1(1)$	$2(1)$	$10(1)$
$\mathrm{O}(17)$	$58(1)$	$47(1)$	$49(1)$	$26(1)$	$16(1)$	$30(1)$
$\mathrm{O}(18)$	$38(1)$	$41(1)$	$36(1)$	$15(1)$	$11(1)$	$19(1)$
$\mathrm{C}(19)$	$36(2)$	$30(1)$	$33(1)$	$3(1)$	$0(1)$	$14(1)$
$\mathrm{O}(20)$	$84(2)$	$38(1)$	$35(1)$	$12(1)$	$-14(1)$	$5(1)$
$\mathrm{O}(21)$	$36(1)$	$25(1)$	$33(1)$	$3(1)$	$-6(1)$	$7(1)$
$\mathrm{C}(22)$	$38(2)$	$30(1)$	$24(1)$	$3(1)$	$-1(1)$	$7(1)$
$\mathrm{C}(23)$	$63(2)$	$40(2)$	$50(2)$	$24(1)$	$20(2)$	$31(2)$
$\mathrm{C}(24)$	$40(2)$	$40(1)$	$35(1)$	$16(1)$	$7(1)$	$21(1)$
$\mathrm{O}(25)$	$26(1)$	$28(1)$	$26(1)$	$3(1)$	$2(1)$	$4(1)$
$\mathrm{C}(26)$	$26(1)$	$29(1)$	$33(1)$	$8(1)$	$6(1)$	$8(1)$

$\mathrm{O}(27)$	$35(1)$	$28(1)$	$23(1)$	$0(1)$	$4(1)$	$8(1)$
$\mathrm{C}(28)$	$45(2)$	$33(1)$	$26(1)$	$3(1)$	$12(1)$	$12(1)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for 231 c .

Atom	x	y	z	U(eq)
H(3A)	7874	3764	9763	32
H(3B)	7201	4811	10658	32
H(5A)	6000	2647	11739	34
H(8A)	810	2705	10776	29
H(11A)	5427	1939	8494	31
H(12A)	7802	6139	13613	32
H(12B)	7000	5132	14180	32
H(13A)	4089	5538	14304	45
H(14A)	5142	6959	12915	44
H(15A)	1875	4719	12339	31
H(15B)	2746	5402	11518	31
H(22A)	7684	7838	17562	50
H(22B)	6672	8690	17164	50
H(22C)	8717	8590	16823	50
H(23A)	988	8889	12823	68
H(23B)	1570	9053	14093	68
H(23C)	-211	7869	13290	68
H(24A)	8947	2795	12690	54
H(24B)	7575	3215	13570	54
H(24C)	9335	4261	13398	54
H(26A)	-3196	62	9357	45
H(26B)	-2130	1553	9947	45
H(26C)	-1426	602	10374	45
H(28A)	2570	-778	6249	55
H(28B)	4309	-161	7292	55
H(28C)	3769	695	6677	55

Table 6. Torsion angles [deg] for 231c.

$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$-0.1(3)$	$\mathrm{C}(19)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(16)$	$-57.0(3)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$176.88(18)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(16)$	$-177.6(2)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$179.65(18)$	$\mathrm{C}(19)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-179.2(2)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-3.4(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$60.2(3)$
$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)$	$-108.6(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(15)-\mathrm{C}(14)$	$16.4(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)$	$71.7(2)$	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(15)-\mathrm{C}(14)$	$-163.86(19)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)$	$-38.1(2)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(7)$	$-45.2(3)$
$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-48.5(3)$	$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(7)$	$-168.21(19)$
$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(24)$	$-175.72(18)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{O}(17)$	$-25.4(4)$
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$76.9(3)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{O}(17)$	$97.6(3)$
$\mathrm{C}(24)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-161.3(2)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{O}(18)$	$156.0(2)$
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(12)$	$-104.5(2)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{O}(18)$	$-81.0(3)$
$\mathrm{C}(24)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(12)$	$17.3(3)$	$\mathrm{O}(17)-\mathrm{C}(16)-\mathrm{O}(18)-\mathrm{C}(23)$	$3.0(4)$
$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	$178.41(19)$	$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{O}(18)-\mathrm{C}(23)$	$-178.3(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	$-3.0(3)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{O}(20)$	$-17.3(4)$
$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(15)$	$-1.8(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{O}(20)$	$105.0(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(15)$	$176.71(19)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{O}(21)$	$162.8(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$-44.9(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{O}(21)$	$-74.8(3)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$132.0(2)$	$\mathrm{O}(20)-\mathrm{C}(19)-\mathrm{O}(21)-\mathrm{C}(22)$	$-1.5(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(15)$	$135.3(2)$	$\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{O}(21)-\mathrm{C}(22)$	$178.3(2)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(15)$	$-47.8(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(25)-\mathrm{C}(26)$	$-8.6(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$2.8(3)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(25)-\mathrm{C}(26)$	$169.35(18)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$-174.13(19)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(27)-\mathrm{C}(28)$	$-2.0(3)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(25)$	$174.38(19)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(27)-\mathrm{C}(28)$	$179.92(19)$
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-3.5(3)$		
$\mathrm{O}(25)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(27)$	$1.6(3)$		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(27)$	$179.68(18)$		
$\mathrm{O}(25)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-176.64(18)$		
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$1.4(3)$		
$\mathrm{O}(27)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(2)$	$-176.73(19)$		
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(2)$	$1.3(3)$		
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$-2.0(3)$		
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$178.31(19)$		
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(13)$	$15.8(3)$		
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(13)$	$-162.7(2)$		
$\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(19)$	$-166.78(19)$		
$\mathrm{C}(6)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-44.8(3)$		

Acknowledgements

I would like to express my sincere appreciation to Prof. Dr. Armin de Meijere for his unceasing interest in my work and his valuable comments and suggestions throughout this study. His enthusiasm for organic chemistry always encouraged me.
I am very grateful to Assoc. Prof. Dr. Metin Zora for his encouragement and support. He has a very special place in my scientific life.
I wish to express my deep gratitude to Prof. Dr. Axel Zeeck and Prof. Dr. Jörg Magull for their enlightening lectures.

I would like to thank Mr. Reinhard Machinek for his valuable discussions on NMR spectra and his suggestions for necessary measurements to obtain optimum results.
I am also grateful to Dr. Mathias Noltemeyer for the efforts he put into the X-ray crystal structure analyses.
I would like to thank Dr. Holm Frauendorf for the measurement of mass spectra and Mr. Frank Hambloch for the measurement of elemental analyses.
I am also thankful to Mrs. G. Keil Knepel for her help.
I am especially indebted to Dr. Andrei I. Savchenko for his help in the laboratory and the interesting, fruitful discussions.
I would like to thank all members of the de Meijere group for their friendship. I am very grateful to Heiko Schill for his friendly helps to bring this study appropriate format to publish. I am grateful to Sarah Bailey and Dr. Gidon Felsen for the careful proof-reading of this thesis. I am also very grateful to Seyhan and Kadir Öztürk for their help, hospitality and support during my stay in Göttingen. I really owe much to them.

Finally, I would like to thank my wife, Yasemin. I could not have completed this study without her help, support and love. She will forever be my only 'Kimya'.

Curriculum Vitae

Name:	Barıs YÜCEL
Address:	Hannoversche Str. 8
	37075 Göttingen
	Germany
	+49 5515030648
	byuecel@gwdg.de
Date of birth:	20.09.1976
Place of birth:	Ankara
Marital status:	married
Nationality:	Turkish
Education:	
03/2002-9/2005	Institute of Organic and Biomolecular Chemistry,
	Georg-August-Universität Göttingen
	Thesis: " One-pot, Two-step Queuing Cascades Involving π Allylpalladium Trapping and Diels-Alder Reaction "
	Advisor: Prof. Dr. Armin de Meijere
09/1999-02/2002	Department of Chemistry,
	Middle East Technical University (METU), Ankara
	Degree: Master of Science (M.S.)
	Thesis: "The Reaction of Ferrocenyl Chromium Carbene Complex with Cyclobutenediones"
	Advisor: Assoc. Prof. Dr. Metin Zora
09/1994-09/1999	Department of Chemistry,
	Middle East Technical University (METU), Ankara
	Degree: Bachelor of Science (B.S.)
1990-1993	Yıldırım Beyazıt Technical Highschool, Ankara

1. Teaching Experience

10/2003-06/2005	Teaching Assistant
Institute of Organic and Biomolecular Chemistry,	
	Georg-August-Universität Göttingen

2. Practical Training

06/1998 - 08/1998 Weber \& Broutin Building Solutions, Izmir

Presentations:

Metin Zora, Bekir Peynircioğlu, Barış Yücel, "Ferrosenilsiklopentendion ve ferrosenilalkilidenfuranon türevlerinin sentezi," XV. National Chemistry Congress, Boğaziçi Üniversitesi, İstanbul; 4-7 Eylül 2001; OK-S63.

Metin Zora, Barış Yücel, Serdar Açıkalın, "Amin sübstitüe kinon türevlerinin sentezi," XV. National Chemistry Congress, Boğaziçc Üniversitesi, İstanbul; 4-7 Eylül 2001; OK-P90.

Publications

"Reaction of 4-methoxy-4-(1-methylethenyl)-2-cyclobutenone derivatives with 2-lithiopropene and α lithiostyrene: Synthesis of eight-membered ring carbocycles" M. Zora, İ. Koyuncu, B. Yucel, Tetrahedron Lett. 2000, 41, 7111-7114.
"Coupling of ferrocenyl chromium carbene complex with cyclobutenediones," M. Zora, B. Yucel, N. B. Peynircioğlu, J. Organomet. Chem. 2002, 656, 11-17.
"Synthesis of ferrocenyl quinones," M. Zora, B. Yucel, S. Açıkalın Tetrahedron Lett. 2003, 44, 22372241.
"Palladium-catalyzed Cross-coupling Reactions and Electrocyclizations - Efficient Combinations for New Cascade Reactions" A. de Meijere, M. Schelper, M. Knoke, B. Yucel, H. W. Sünnemann, R. P. Scheurich, L. Arve, J. Organomet. Chem. 2003, 687, 249-255.

[^0]
Lebenslauf

Ich wurde am 20.09.1976 als Sohn von Ülkü und Orhan Yücel, beide Lehrer, in Ankara geboren; ich bin türkischer Staatsangehöriger. Nach meinem Abschluss an dem Yildirim Beyazit Berufsgymnasium für die Technische Industrie (1993), nahm ich im September 1994 mein Studium der Chemie an der Middle East Technical University (METU) in Ankara auf. Während meines Studiums absolvierte ich u.a. ein Praktikum bei der Weber \& Broutin Markem Bau-Chemikalien AG in Izmir (1998). Im Anschluss an meinen ersten Studienabschluss, Bachelor of Science (B.S.), im September 1999, folgte im Januar 2002 mein Abschluss als Master of Science (M.S.); Thema der Masterarbeit: „The Reaction of Ferrocenyl Chromium Carbene Complex with Cyclobutenediones". Von März 2002 bis November 2005 war ich Doktorand am Institut für Organische und Biomolekulare Chemie an der Georg-August-Universität Göttingen. Unter Leitung von Prof. Dr. Armin de Meijere fertigte ich meine Dissertation mit dem Titel „One-pot, Two-step Queuing Cascades Involving π-Allylpalladium Trapping and Diels-Alder Reaction" an und war währenddessen als wissenschaftlicher Assistent für die Betreuung verschiedener Praktika und Tutorien zuständig.

[^0]: "A Two-Step Four-Component Queuing Cascade Involving a Heck Coupling, π-Allylpalladium Trapping and Diels-Alder Reaction" B. Yucel, L. Arve, A. de Meijere, Tetrahedron 2005, 61, 1135511373.

