Aluminum (I, II, III) Compounds with Multidentate

Ligands: Syntheses, Reactivity, and Structures

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Chunming Cui

aus Shaanxi (CHINA)

Göttingen 2001

Referent:	Prof. Dr. Dr. h.c. mult. H.W. Roesky
Korreferent:	Prof. Dr. U. Klingebiel
Tag der Mündlichen Prüfung:	02.05.2001

D7

Acknowledgement

The work described in this doctoral thesis has been carried out under the guidance and supervision of Professor Dr. Dr. h.c. mult. H. W. Roesky at the Institute of Inorganic Chemistry of the Georg-August-University in Göttingen between January 1998 and December 2000.

My sincere thanks and gratitude are due to

Prof. Dr. Dr. h.c. mult. H. W. Roesky

for his constant guidance, motivation, suggestions, and discussions throughout this work.

I thank Dr. M. Noltemeyer, H.-G. Schmidt, and Mrs. S. Köpke for their help in the X-ray crystal structural investigations and their friendship. I thank W. Zolke, R. Schöne, Dr. G. Elter (NMR spectra), Dr. D. Böhler, T. Schuchardt (mass spectra), M. Hesse, H.-J. Feine (IR spectra), J. Schimkowiak and the staff of the analytical laboratories for their timely support during this research work. I thank all my colleagues in our research group for the good and motivating working atmosphere. I would like to express my special thanks to H. Hao, Dr. P. Yu, G. Bai, Mrs. Dr. Y. Yang, Dr. S. Varkey, Dr. M. Schormann, M. Schiefer, Dr. K. Klimek, Dr. K. Wraage, Mrs. Dr. S. Menkovic, Y. Ding, J. Prust, Y. Peng for their friendliness. The help offered by Dr. M. Witt for final proof-reading is gratefully acknowledged.

I thank my former graduate advisors Prof. J.-T. Wang, Prof. Y. Zhang, and Prof. Y. Xu, my former colleagues and leaders Prof. Z.-H. Jing, Prof. X. Hong and others in the polymer department of Research Institute of Petroleum Processing SINOPEC from whom I learnt my early lessons of research.

The full support and encouragement from my wife Xiaoke Guan, my son Kairui Cui, my parents, and other relatives made this work possible.

Abbreviations

Ar	aryl, aromatic group
av	average
Вр	boiling point
bipy	2,2'-bipyridine
<i>i</i> -Bu	iso-butyl
<i>t</i> -Bu	tert-butyl (tertiary butyl)
Calcd	calculated
Cp*	pentamethylcyclopentadienyl
d	day(s)
d	density
D	donor
dec	decompose
deg	degree
Dipp	2,6- <i>i</i> -Pr ₂ C ₆ H ₃
DME	dimethoxyethane
η	hapto
EI	electron impact ionization
Et	ethyl
IR	infrared
J	coupling constant
Κ	Kelvin
L, L'	β -diketiminato groups (ligands)
NMR	nuclear magnetic resonance
m/e	mass/charge

Me	methyl
Mes	2,4,6-trimethylphenyl (mesityl)
Mes*	2,4,6-tri(<i>tert</i> -butyl)phenyl
min	minute(s)
Мр	melting point
MS	mass spectrum
Ph	phenyl
ppm	parts per million
<i>i</i> -Pr	<i>iso</i> -propyl
R, R', R^1, R^2	organic groups
tbp	trigonal bipyramidal
THF	tetrahydrofuran
TMEDA	N, N, N`, N`-tetramethylethylenediamine
TMS	tetramethylsilane
Trip	2,4,6-tris- <i>iso</i> -propylphenyl
μ	bridging
V	volume
V	wave number
<i>V</i> _{1/2}	width of half peak
Ζ	number of molecules in the unit cell

Table of Contents

1 Introduction	1
1.1 Aluminum hydrides	2
1.2 Aluminum chalcogenides	4
1.3 Low valent aluminum compounds	5
1.4 Hydroalumination and carbalumination of unsaturated compounds	6
1.5 Aims and objectives of this dissertation	8
2 Results and Discussion	9
2.1 1-Aza-allyl complexes of aluminum, gallium and bismuth	9
2.1.1 Synthesis of mono(1-aza-allyl)-complexes of auminum	9
2.1.2 Dynamic behavior of 7	11
2.1.3 Molecular structure of $[RAlF(\mu-F)]_2 \cdot 0.5 C_6 H_{14} (7 \cdot 0.5 C_6 H_{14})$	12
2.1.4 X-ray crystallographic analyses of compounds 3 and 6	15
2.1.5 Syntheses of the bis(1-aza-allyl) aluminum complexes 9, 10, 11	18
2.1.6 Synthesis and characterization of complexes 12 and 13	20
2.1.7 X-ray structure of [{N(SiMe ₃)C(<i>t</i> -Bu)CH(SiMe ₃)} ₂ AlCl] (9)	21
2.1.8 Synthesis and molecular structure of $[RAlH(\mu-H)]_2$ (14)	22
2.1.9 Synthesis and structures of $[RAl(\mu-E)]_2$ (E = S, (15), Se (16), Te (17))	24
2.1.10 Reduction of aluminum dihalides	28
2.2 Aluminum compounds with chelating aryl ligands	30
2.2.1 Synthesis of aryl aluminum dihydrides	30
2.2.2 Synthesis of aryl aluminum chalcogenides	31
2.2.3 Characterization of 21 - 23 and X-ray structures of 21 \cdot C ₇ H ₈ and 23	32
2.3 The Chemistry of β -diketiminato ligands	35

2.3.1 Synthesis of aluminum hydride $LAlH_2$ (24) and chalcogenides (25, 26)	5) 36
2.3.2 Molecular structures of 25 and 26	
2.3.3 Aluminum diiodide $LAII_2$ (27) (L = HC[(CMe)(NAr)]_2, Ar = 2, 6- <i>i</i> -Pr	$r_2C_6H_3$)40
2.3.4 Reduction of $LAII_2$ – synthesis of a monomeric Al(I) compound LAI	(28)41
2.3.5 Reaction of LAl (28) with bulky organic azides	
2.3.6 Reductive coupling reaction of $LAll_2$ (27) in the presence of alkynes.	
2.3.7 Reductive coupling reaction of $LAII_2$ in the presence of Ph_2CO	53
2.3.8 Reaction of LAI[η^2 -C ₂ (SiMe ₃) ₂] with CO ₂ , Ph ₂ CO, PhCN, and <i>t</i> -BuC	² N 55
2.3.9 Syntheses and characterization of L'AlI ₂ (40) and L'GaCl ₂ (41) (L' =	
$HC[(CMe)(NAr')]_2, Ar' = 2,6-Me_2C_6H_3)$	
2.4 Synthesis of aluminum methanediide complex	
2.5 Aluminum compounds with the bulky amidinato ligand <i>t</i> -BuC(NAr) ₂	
2.6 Reactions of aluminum hydride and hydroaluminate with bulky amides	
2.6.1 Reaction of DippNH ₂ with AlH ₃ ·NMe ₃	
2.6.2 Reactions of sterically demanding amides with LiAlH ₄	67
2.6.3 Synthesis of lithium hydridoaluminum chalcogenides	
3 Summary	
4 Experimental Section	
4.1 General procedures	
4.2 Physical measurements	
4.3 Starting materials	
4.4 Synthesis of 1-aza-allyl complexes of aluminum, gallium and bismuth (R	. =
$[N(SiMe_3)C(Ph)C(SiMe_3)_2], R' = [N(SiMe_3)C(t-Bu)CH(SiMe_3)]) \dots$	77
4.5 Synthesis of aryl aluminum dihydrides and chalcogenides	

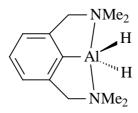
4.6 Synthesis of β -diketiminato aluminum and gallium compounds (L = HC[(CMe)-
$(NAr)]_2, Ar = 2,6-i-Pr_2C_6H_3; L' = HC[(CMe)(NAr')]_2, Ar' = 2,6-Me_2C_6H_3) \dots 87$
4.7 Synthesis of C[(PPh ₂)(NSiMe ₃)] ₂ Al ₂ Me ₄ (42)97
4.8 Synthesis of aluminum compounds incorporating the bulky amidinato ligand [t-
BuC(NAr) ₂] (Ar = 2,6- <i>i</i> -Pr ₂ C ₆ H ₃)
4.9 Aluminum Compounds Incorporating the Bulky Amide Ligand
5 Handling and Disposal of Solvents and Residual Waste
6 Crystal Data and Refinement Details
7 References

1 Introduction

Aluminum is the most abundant metal in the lithosphere. As an extremely reactive metal it is easily oxidized so that it is only found in its oxidized form in nature. The most important minerals are the aluminosilicates which form the matrix upon which plant life grows and terrestrial animals roam. By contrast, the soluble aluminum cation is now recognized to be the cause of severe damage to plants and animals.^{1a}

Already in 1859 ethylaluminum sesquiiodide (a 1:1 mixture of EtAlI₂ and Et₂AlI) was obtained from ethyl iodide and aluminum.² Not until the studies of Ziegler et al. in the early 1950's was the potential of the organoaluminum reagents for organic synthesis and polymerization recognized.^{1b} Systematic studies of both the coordination and organometallic chemistry of aluminum have expanded rapidly over the last three decades.^{1c} The stereoselective catalytic behavior of many aluminum compounds has proved to be of considerable commercial value for stereospecific industrial syntheses of organic compounds. In some ways, such properties are also related to the stereochemical specificity of biological systems.^{1a}

Main features of interest in aluminum chemistry include the dependence of Lewis acidities on both R and X ligands of compounds R₃Al, R₂AlX and RAlX₂, affecting the behavior of these species towards potential ligands, and selectivity of donor sites in cases of multidentate ligands. One of the most unusual properties of simple aluminum alkyls and halides is their tendency to associate through alkyl or halide moieties due to the electron deficiency of the aluminum atom. The bonding situations in these simple systems have been well documented as models for nonclassical three-center or even four-center electron pair bonds.^{1b}


Neutral aluminum complexes, such as alklys or halides, are widely used as reagents or catalysts for Lewis acid-mediated reactions (Friedel-Crafts, Diels-Alder, etc.), alkylating agents, initiators for cationic polymerizations, and cocatalysts/activators in transition metal

catalyzed olefin polymerizations.^{1b} Additionally, aluminum alkyls catalyze the oligomerization of ethylene to α -olefins at elevated temperatures and ethylene pressures.³ In recent years, modifications of aluminum systems for these applications have attained much attention. Especially the studies of cationic aluminum species have led to an extensive research on their applications in organic and catalytic transformations since they possess enhanced Lewis acidity due to the positive charge on the aluminum center.⁴ They may also be rendered coordinatively unsaturated by the use of labile ligands. One of the important results is the fact that low-coordinated cationic aluminum alkyls could act as the catalysts for olefin polymerization to generate high molecular weight polyolefins although the activity of the known systems is relatively low.⁵ Methylaluminoxane (MAO) has proved to be the most efficient activator for homogeneous metallocene catalyzed olefin polymerization reactions.⁶ Another important approach is the modification of the steric factors of coordinatively unsaturated aluminum compounds to improve the stereo- and regioselectivity of aluminum complexes to promote organic reactions, for example reduction of cycloketones or prochiral carbonyls.⁷ In all these cases, design and choice of the ligands are important for these purposes. In the following part, some of the work which is related to the contents of the present thesis will be discussed in detail.

1.1 Aluminum hydrides

Simple aluminum hydrides usually have oligomeric structures in condensed phases. However, it has been shown recently that low-aggregated aluminum hydrides are accessible by using either multidentate or bulky organic groups. Examples of monomeric aluminum dihydrides stabilized by intramolecular coordination include $2,6-(Me_2NCH_2)_2C_6H_3AlH_2^8$ and $[(iPr)_2ATI]AlH_2$ (ATI = 2-aminotroponiminate).⁹ Only one example of an aluminum hydride with a three-coordinated aluminum atom (Mes^{*})₂AlH (Mes^{*} = 2,4,6-t-Bu₃C₆H₂) is known.¹⁰ The other known hydrides which are stabilized by bulky, donor-free ligands are dimers or higher aggregates in the solid state.

Scheme 1

The synthetic routes for neutral aluminum hydrides are various depending on the starting materials or ligands employed. However, they can be rationalised as follows.

(1) Reduction of aluminum halides with LiAlH₄

 $RAlX_2 + 2LiAlH_4 \rightarrow RAlH_2 + 2LiAlH_3X$

(2) AlH₃·NMe₃ as aluminum hydride source.

 $[R]EH \ + \ AlH_3 \cdot NMe_3 \ \rightarrow \ [R]EAlH_2 \ + \ H_2 \ + \ NMe_3$

E = O, N; [R] = organic group or groups directly bonded to E

(3) Lithium hydridoaluminates as aluminum hydride sources

 $RAlH_3Li(D)_x + SiMe_3Cl \rightarrow RAlH_2 + SiMe_3H + LiCl + x D$

The first route is generally applicable for the synthesis of aluminum hydrides where the appropriate aluminum halides are easily available. The second can be used when the substrates contain acidic hydrogen atoms. The last one may be employed when the aluminum halides are not easily accessible. Other routes involve alkene elimination from triorganoaluminum compounds, redistribution of triorganoaluminum compounds and aluminum hydrides, and hydrogenolysis of triorganoaluminum compounds.⁸

Aluminum hydride moieties have been detected on surfaces during thin film growth from organoaluminum sources.⁸ They are also well-known reducing agents for unsaturated molecules such as ketones, nitriles, alkenes, and alkynes.^{1b} In addition, some the aluminum hydrides can be used as starting materials for the preparation of new classes of aluminum

compounds by condensation of small molecules. For example, the reaction of the sterically crowded dimeric arylalane (Mes^{*}AlH₂)₂ with some aryl amines, phosphanes, or arsanes afforded interesting Al-N (P, As) ring systems by elimination of H_2 .¹¹ (Mes^{*}AlH₂)₂ also reacts with [O(SiMe₂)]₃ and S(SiMe₃)₂ to generate Al-O or Al-S ring compounds by elimination of SiMe₂H₂ or SiMe₃H respectively.¹²

$$3(\text{Mes*AlH}_2)_2 + 2(\text{Me}_2\text{SiO})_3 \longrightarrow 2(\text{Mes*AlO})_3 + 3\text{Me}_2\text{SiH}_2$$

1.2 Aluminum chalcogenides

Group 13 - 16 binary systems are of interest for the preparation of Group 13 - 16 materials and catalysis.¹³ Synthetic and structural studies of these compounds are of fundamental interest as they exhibit a variety of structural types depending on the metal, the chalcogen, and the substituents on both. Chalcogens (S, Se, Te) can insert into Al-C bonds of aluminum trialkyls or triaryls very easily; however, the products are of polymeric nature with small alkyl groups. In case of bulky trialkyl or triaryl aluminum compounds, low aggregated products have been isolated. With very bulky alkyl groups (*t*-Bu, EtMe₂C, (SiMe₃)₃C) the insertion of chalcogens (Se, Te) occurs only into one Al-C bond to afford compounds R^1R^2AIER which have been isolated. Under thermal conditions these compounds eliminate small molecules to give (RAIE)₄ compounds with a cubic core structure.^{14c} An alternative route for the preparation of this type of compounds is the reaction of (Cp^{*}Al)₄ (Cp^{*} = C₅Me₅) with elemental chalcogens (E = Se, Te).¹⁵ However, the two routes mentioned above have limitations for the application for the synthesis of group 13 - 16 compounds with the formula of (RAIE)_n.

$$(Cp^*Al)_4 + 4/xE_x \rightarrow (Cp^*AlE)_4$$

1.3 Low valent aluminum compounds

The aluminum chemistry is dominated by the prevailing oxidation state Al(III), low valent Al (I, II) compounds are less documented. Only in 1988, the first well characterized divalent organoaluminum compound $\{[(SiMe_3)_2CH]Al\}_2$ was reported.¹⁶

$$2 [(SiMe_3)_2CH]_2AlCl + 2 K \rightarrow \{ [(SiMe_3)_2CH]_2Al \}_2 + 2 KCl$$

The first stable organometallic Al(I) compound (Cp^{*}Al)₄ was reported by Schnöckel in 1991, which was prepared by the reaction of the meta-stable high temperature species AlCl with Cp^{*}MgCl.¹⁷ The more convenient route developed by our group involved the reduction of Cp^{*}AlCl₂ by potassium in refluxing toluene.¹⁵

$$4 \operatorname{Cp}^* \operatorname{AlCl}_2 + 8 \operatorname{K} \rightarrow (\operatorname{Cp}^* \operatorname{Al})_4 + 8 \operatorname{KCl}$$

The synthesis of this unique species has stimulated much interest in exploring Al(I) chemistry in the following years. It has been shown that Al(I) species can be used as Lewis bases and reducing reagents. In recent years, other stable tetrahedral Al(I) compounds were reported, prepared either by reduction of the corresponding dihalides or by reaction of AlX species with appropriate ligand transfer reagents.¹⁸ Obviously, reduction of aluminum dihalides is the more facile way to prepare low valent aluminum compounds. Since Al(I) species are kinetically unstable, very bulky ligands are necessary to stabilize these unusual compounds.

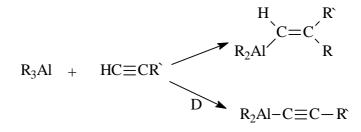
For several known homogeneous Al(II) compounds Al-Al bond lengths range from 2.6 - 2.7 Å.¹⁹ A radical anion [TripAl-AlTrip]⁻⁻ (Trip = 2,4,6-*i*-Pr₃C₆H₂) which has the shortest Al-Al bond distance (2.46 Å) reported to date was suggested to have an Al-Al bond order of 1.5.²⁰ The structurally characterized neutral Al(I) compounds all are tetramers in the solid state, the Al-Al bond lengths in these compounds differ largely depending on the ligands, for example in (Cp^{*}Al)₄ the average Al-Al bond length is 2.78 Å,¹⁷ and in (*t*-Bu₃SiAl)₄, 2.58

Å.^{18a} In the gas phase or in solution at higher temperatures, $(Cp^*Al)_4$ dissociates to monomeric Cp^*Al^{21} which can act as a donor ligand possessing a lone pair of electrons.²²

$$(Cp*Al)_4 + 4 B(C_6F_5)_3 \rightarrow 4 Cp*AlB(C_6F_5)_3$$
$$Cp*AlCl_2 + K_2[Fe(CO)_4] \xrightarrow{-2 KCl} Cp*AlFe(CO)_4$$

In addition, $(Cp^*Al)_4$ has been used as an insertion reagent to prepare interesting aluminum compounds.²³

$$(Cp^*Al)_4 + 4 N_3Si(t-Bu)_3 \rightarrow 2 [Cp^*AlNSi(t-Bu)_3]_2 + 4 N_2$$


Despite of the interesting perspectives of monovalent aluminum compounds, wellcharacterized monomeric and dimeric Al(I) species stable at room temperature have not yet been described in the literature. In this connection, one can realize that the ligand design combined with the corresponding synthetic methodology for these unique species is an exciting challenge.

1.4 Hydroalumination and carbalumination of unsaturated compounds

The reactions of aluminum alkyls or hydrides with alkenes and alkynes can generate different products depending on the nature of the aluminum precursors and the unsaturated molecules. Using donor-free aluminum alkyls or hydrides in hydrocarbon solvents normally addition to alkenes or alkynes takes place. This is due to possible complexation of the aluminum species to the unsaturated units. However the addition reaction is retarded by donors such as ethers and amines, in addition, in the case of unsubstituted acetylene metallation is dominant.²⁴

Vinylaluminum compounds resulting from the hydroalumination of alkynes are capable of undergoing further insertion into alkynes, in which the vinyl-aluminum bond undergoes preferential reaction. Usually the reaction ceases after the cyclotrimerization of the alkyne to yield a benzene derivative.²⁵

Scheme 2

R, R' = alkyl or aryl group

Aluminum alkyls or hydrides can react with carbonyl derivatives to give aluminum alkoxides.²⁶ Often alkylation and reduction of the carbonyl group occur. The carbalumination is generally achieved cleanly only when the aluminum reagent cannot eliminate R₂AlH, as with Me₃Al, Ph₃Al, (PhCH₂)₃Al, and when the carbonyl substrate has no α -hydrogen atoms. Usually only one Al-C bond of R₃Al will insert into the C=O bond. The use of β -branched aluminum alkyls like *i*-Bu₃Al, with ketones or hindered carbonyls especially at high temperature with nickel promotors generally favors hydroalumination. The solubility of R₃Al or R₂AlH in hydrocarbons makes such reducing agents valuable alternatives to LiAlH₄ for converting ketones to secondary alcohols.²⁷

Scheme 3

$$R-CH=C=NAIR_{2} \quad \underbrace{R_{3}Al}_{RH} \quad R-CH_{2}-C\equiv N \quad \underbrace{R_{3}Al}_{R} \quad R-CH_{2}-C \quad \underbrace{R_{3}Al}_{$$

R, R' = alkyl or aryl group

Aluminum alkyls or hydrides also react with nitriles to lead either to carbalumination products or substitution of their α -hydrogen atoms as a side reaction.²⁸ With some nitriles carbalumination leads to satisfactory yields of ketones by the hydrolysis of intermediates (**B**). This addition is significantly promoted by the presence of nickel salts. Hydroalumination predominates with *i*-Bu₂AlH, where stepwise reduction followed by hydrolysis can lead to aldehydes or amines through intermediate **A**.

1.5 Aims and objectives of this dissertation

Based on the above introduction, it can be summarized that by carefully selecting or designing ligands it is possible to synthesize low aggregated, low-valent aluminum species or aluminum group 16 (or 15) multiple bonded species and low-coordinated cationic aluminum alkyls. In addition, low-aggregated aluminum fluorides or hydrides can also be obtained by the same strategy. The aims of this thesis are the following by designing the appropriate ligand systems:

- (1) Examination of the reactivities of intramolecular stabilized aluminum hydrides, especially towards chalcogens, and investigation of the reaction mechanism.
- (2) Synthesis of low-valent aluminum (I, II) compounds by alkali metal reduction.
- (3) Reactions of low valent aluminum compounds.
- (4) Reductive coupling reactions of aluminum halides in the presence of unsaturated molecules for the synthesis of strained aluminum containing cyclic systems.
- (5) Applications of aluminum compounds in C-C bond formation.

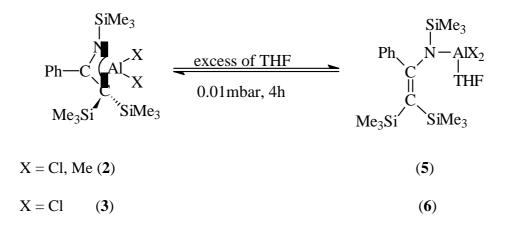
2 Results and Discussion

2.1 1-Aza-allyl complexes of aluminum, gallium and bismuth

The important series of first-row triatom-centered, monoanionic ligands (XYZ)⁻ include allyl, triazenide and amidinate, with the carboxylates as the archetype, which have been widely used in coordination and organometallic chemistry. The 1-aza-allyl ligands are of recent date,²⁹ only a few main group (K, Li, Na, Pb, Sn) and transition metal (Cu, Hg, Zr, Sm, Yb, Th) complexes have been reported so far.³⁰⁻³⁵ One of the most interesting features of these ligands is their various bonding modes, including chelating, η^2 -bridging, and η^1 enamido, depending strongly on the metal centers, substituents on the ligand backbone, and the supporting ligands on the central atom. However, to the best of our knowledge, aluminum, gallium and bismuth complexes with 1-aza-allyl ligands have not been described previously. We hoped by using very bulky 1-aza-allyl ligands on aluminum compounds to prepare some unique compounds (low-coordinated aluminum cations and low-valent aluminum species).

2.1.1 Synthesis of mono(1-aza-allyl)-complexes of auminum

The reaction of RLi-THF (R = $[N(SiMe_3)C(Ph)C(SiMe_3)_2])^{30}$ with AlMe₂Cl, AlMeCl₂, AlCl₃, and AlBr₃ in ether or *n*-hexane afforded RAlMe₂ (**1**), RAlMeCl (**2**), RAlCl₂ (**3**), and RAlBr₂ (**4**), respectively, in high yield (Scheme 4). Initially, these products are in equilibrium with their corresponding THF adducts as confirmed by ¹H NMR analysis. The solvent-free compounds were accessible by sublimation or pumping for a prolonged time in high vacuum at ambient temperature, and crystallization from *n*-hexane yielded solvent-free products. Pure THF adducts have been obtained by dissolving the compounds **1** - **4** in an excess of THF. According to this procedure, we prepared the adducts RAlMeCl-THF (**5**) and RAlCl₂·THF (**6**) (Scheme 5). Both compounds are not stable, they are easily oxidized and hydrolyzed on exposure to air as indicated by an immediate color change from colorless to red. The different stabilities of compounds 1 - 4 and their corresponding THF adducts can be explained by the different bonding modes of the ligand as demonstrated by the X-ray structure analyses of compound 3 and 6.


Scheme 4

Ph-C

$$Me_3Si$$
 $Vint (THF)$
 $(1) AlX_2Y, 15 h RT$
 $(2) 0.01 mbar, 4h$
 Me_3Si
 $Vint (2) 0.01 mbar, 4h$
 Me_3Si
 $Vint (2) Nint (2) Nint$

The solvents seem to be important for the synthesis of compounds 1 - 4. Complex 1 has been obtained in ether in high yield (85 - 98 %). For 2 - 4, the synthesis in ether resulted in low yields (around 20 %), but in *n*-hexane gave satisfactory yields (61 - 84 %) for all compounds.

Scheme 5

The reaction of RAlMe₂ (**1**) with 2 equivalents of Me₃SnF in toluene yielded the dimeric difluoride [RAlF(μ -F)]₂ (**7**), while the reaction of **1** with 2 equivalents of I₂ in toluene at room temperature generated the diiodide RAlI₂ (**8**).

$$2 \text{ RAlMe}_2 + 4 \text{ Me}_3 \text{SnF} \rightarrow [\text{RAlF}(\mu\text{-F})]_2 + 4 \text{ SnMe}_4$$

$$7$$

$$RAlMe_2 + 2 I_2 \rightarrow RAlI_2 + 2 \text{ MeI}$$

$$8$$

Unlike the trimeric aminoalane difluorides $[(2,6-i-Pr_2C_6H_3)N(SiMe_3)AlF_2]_3^{36}$ and $[(Me_3Si)_3CAlF_2]_3^{37}$ compound **7** is a dimer in the solid state as demonstrated by X-ray crystallography, representing the first example of a dimeric aluminum difluoride.

2.1.2 Dynamic behavior of 7

The ¹⁹F NMR spectra of **7** at room temperature in C₆D₆ and d₈-toluene both show only one broad singlet, indicating rapid exchange of the bridging and terminal fluorine atoms. This intramolecular exchange was also observed for the previously reported compounds [(2,6-*i*-Pr₂C₆H₃)N(SiMe₃)AlF₂]₃ and [(Me₃Si)₃CAlF₂]₃. When a solution of **7** in d₈-toluene was cooled below 213 K (to 193 K), five separated signals in the ¹⁹F NMR spectrum (δ -159.69 (t, J = 15.0 Hz), -158.36 (t, J = 13.4 Hz), -141.13 (d, J = 82.4 Hz), -133.29 (s), -120.61 ppm (d, J= 81.9 Hz)) in an intensity ratio of 2 : 3 : 1 : 3 : 1 were observed. The ambient temperature ¹H NMR spectrum of **7** exhibits only one broad singlet for the CSiMe₃ protons and one singlet for the NSiMe₃ protons in d₈-toluene. When the solution was cooled to 273 K, the former became broad, and separated into two singlets at 253 K. The singlet for the NSiMe₃ protons at ambient temperature clearly splitted at 238 K. At 213 K, two separated singlets for the CSiMe₃ protons and two for the NSiMe₃ protons were observed while the singlet for the cSiMe₃ protons at 0.30 ppm became broad at 193 K. Based on ¹H NMR shifts for the CSiMe₃ at 193 K at δ 0.62 and 0.31 ppm, respectively, we conclude that partial change in the ligand backbone takes place since the chemical shifts differ largely. Thus a rapid dissociation/association of the Al-C bonds can be considered responsible for the fluxional process of **7** in solution. This dynamic process achieves equilibrium at 213 K between fiveand four-coordinated species while the [Al-(μ -F)]₂ core is maintained at this temperature, forming a mixture of several possible isomers. The broadening of the singlet at 0.31 ppm for the CSiMe₃ protons is probably caused by the formation of a C = C bond in a four-coordinated species. The dissociation/association process is rapid at ambient temperature, therefore only one singlet can be observed for the CSiMe₃ protons on the NMR time scale. This conclusion is supported further by the splitting of the Ph proton signals in the ¹H NMR spectra at low temperatures. An analogous M-C bond cleavage mechanism was also suggested for the compounds (RMCl)₂ (M = Sn, Pb; R = [N(SiMe₃)C(Ph)C(SiMe₃)₂]).³⁰ Herein, assignment of the two signals (δ -159.69 and -158.36 ppm) to the bridging F atoms and the others to the

terminal F atoms seems reasonable due to the large coupling constant difference of the two groups of signals as well as their correct integration (2:2).

Compounds **1** - **8** have been fully characterized by ¹H NMR, ¹³C NMR spectra as well as elemental analyses (see Experimental Section). It is interesting to note that the ¹³C chemical shifts of C(1) atom in the compounds **2** and **3** are significantly high field of those found for compounds **5** and **6**, representing the most typical characteristics of a chelating mode of the ligand in these compounds due to the delocalization of the electrons in the backbone of the ligand. ²⁷Al NMR and MS spectra demonstrate that compounds **1** - **4** and **8** have the coordination number four at the aluminum centers in solution and are monomeric in the gas phase, respectively.

2.1.3 Molecular structure of [RAlF(µ-F)]₂·0.5 C₆H₁₄ (7·0.5 C₆H₁₄)

The molecular structure of 7.0.5 C₆H₁₄ was determined by X-ray diffraction. Single crystals were obtained from *n*-hexane/toluene at -20 °C. The structure of 7 with the atomlabeling scheme is shown in Figure 1 (solvent molecules in the unit cell have been omitted for clarity) with selected bond distances and angles. Compound 7 adopts a dimeric structure in which the two bridging F atoms link two RAIF units in a planar four-membered ring (Al(1)-F(2)-Al(2)-F(3)) with the mean deviation of the ring ($\Delta = 0.0002$ Å), and has approximately C₂ symmetry with the bridging F(2) and F(3) residing on a two-fold axis. Thus, each Al atom is bonded to a chelating R ligand, one terminal F atom and two bridging F atoms, resulting in three fused four-membered rings (Al(1)-C(2)-C(1)-N(1), $\Delta = 0.0052$; Al(2)-C(4)-C(3)-C(2), $\Delta = 0.0431$ Å).

An important structural feature is the observation that every Al atom is penta-coordinated and the geometry of each aluminum coordination sphere can be described best as a distorted trigonal-bipyramid (tbp). A terminal fluorine, a bridging fluorine atom, and a carbon atom occupy the equatorial plane with bond distances to Al of average 1.668 Å, 1.835 Å, and 2.053 Å, respectively. The Al atom lies almost exactly in this plane with a negligible displacement. The sum of bond angles involving Al in this plane is 359.33° for Al(1) and 359.66° for Al(2), the angles F(1)-Al(1)-F(3) (102.23(15)°) and F(3)-Al(2)-F(4) (102.56(15)°) are significantly smaller than the angles F(3)-Al(1)-C(2) (142.2(3)°) and F(3)-Al(2)-C(4) (137.1(2)°), resulting from crowded environments around C(2) and C(4). The apical positions of this array are occupied by the bridging fluorine atom for both tbp geometries and the N(1) for Al(1) and N(2) for Al(2) with bond angles of N(1)-Al(1)-F(2) 152.4(2)° and N(2)-Al(2)-F(2) 153.6(2)°. The deviation of the apical axis N(1)-F(2) is 13.8° arising from the constraints caused by the specific angles in the chelating bidentate monoanionic ligand (average 71.4°) as well as in the acute F(2)-Al-F(3) angles of average 75.8° in the (μ -F)₂Al₂ ring.

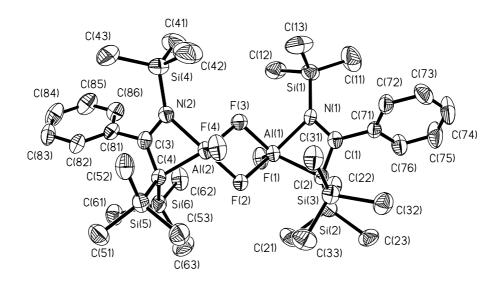
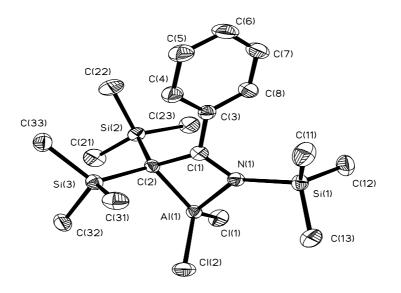


Figure 1. ORTEP drawing of 7 (50 % probability). Hydrogen atoms and solvent molecules have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-F(1) 1.665(3), Al(1)-F(2) 1.837(3), Al(1)-F(3) 1.841(3), Al(1)-N(1) 1.977(4), Al(1)-C(2) 2.051(5), Al(2)-F(4) 1.670(3), Al(2)-F(2) 1.850(3), Al(2)-F(3) 1.829(3), Al(2)-N(2) 1.964 (4), Al(2)-C(4) 2.055(5), Al(1)-Al(2) 2.902(2); F(1)-Al(1)-F(2) 101.40(14), F(1)-Al(1)-F(3) 102.23(15), F(2)-Al(1)-F(3) 75.86(13), F(1)-Al(1)-N(1) 105.6(2), F(2)-Al(1)-N(1) 152.4(2), F(3)-Al(1)-N(1) 92.7(2), F(1)-Al(1)-C(2) 114.9(2), F(2)-Al(1)-C(2) 102.5(3), Al(1)-F(2)-Al(2) 103.81(14), Al(1)-F(3)-Al(2) 104.52(15), N(1)-Al(1)-C(2) 71.3(2), F(3)-Al(2)-F(4) 102.56(15), F(2)-Al(2)-F(4) 99.10(15), F(2)-Al(2)-F(3) 75.81(12), F(3)-Al(2)-N(2) 92.6(2), F(4)-Al(2)-N(2) 106.6(2), F(2)-Al(2)-N(2) 153.6(2), F(4)-Al(2)-C(4) 120.0(2), F(3)-Al(2)-C(4) 100.9(2), N(1)-C(1)-C(2) 114.2(4), Al(1)-N(1)-C(1) 91.1(3), Al(1)-C(2)-C(1) 83.4(3), N(2)-C(3)-C(4) 114.2(4), Al(2)-N(2)-C(3) 90.8(3), Al(2)-C(4)-C(3) 82.8(3), N(2)-Al(2)-C(4) 71.4.


The most unique and interesting feature in this structure is that the bridging F(2) and F(3) atoms connect the two units in such a way that F(2) occupies the same apical position and F(3) lies in the same equatorial position in the two tbp coordination spheres, resulting in a

slightly longer Al-F(2) distance (average 1.844 Å) than Al-F(3) (average 1.836 Å). The distance of Al(1)-F(2) (1.837(3) Å) is shorter than that of Al(2)-F(2) (1.850(3) Å), leading to a longer Al(1)-N(1) distance (1.977(4) Å) than Al(2)-N(2) (1.964(4) Å), and to the slightly unequal environments around Al(1) and Al(2). The N(1)-Al(1)-C(2) and N(2)-Al(2)-C(4) angles are very acute (average 71.3°), slightly smaller than that found in compound **3** (73.68(10)°) because of the different coordination number of the Al atoms of the two The acute angles of F(2)-Al(1)-F(3) (75.86(13)°) and F(2)-Al(2)-F(3)compounds. (75.81(12)°) lead to a rather long Al-Al distance (2.902(2) Å). Compared to compound **3**, the Al-N (average 1.971 Å) and Al-C (average 2.053 Å) bond lengths in the chelating plane are longer than those observed in 3 (Al-N, 1.918(2) Å; Al-C, 2.015(3) Å). The average Al-F distance (bridging, 1.839 Å) is consistent with those found in compound $[(Cp^*AlF_2)_2SiPh_2]_2$ (average 1.846 Å)³⁸ and slightly longer than those found by electron diffraction for $(Me_2AlF)_4$ $(1.808 \text{ Å})^{39}$ or by X-ray diffraction for $[(Me_3Si)_3CAlF_2]_3 (1.785 \text{ to } 1.815 \text{ Å})^{37}$ and for [(2,6-i- $Pr_2C_6H_3$)N(SiMe_3)AlF_2]_3 (1.770 to 1.815 Å).³⁶ The terminal Al-F distances are 1.665 Å (Al(1) -F(1)) and 1.670 Å (Al(2)-F(4)), and are somewhat longer than those observed in [(2,6*i*-Pr₂-C₆H₃)N(SiMe₃)AlF₂]₃ (1.634 to 1.642 Å), and AlF₃ (1.63 Å)⁴⁰ determined by electron diffraction due to the higher coordination number of aluminum in compound 7. No examples of five-coordinated aluminum compounds containing both bridging and terminal F atoms can be found in the literature for comparison.

2.1.4 X-ray crystallographic analyses of compounds 3 and 6

The molecular structures of compounds **3** and **6** are shown in Figures 2 and 3, respectively, with selected bond distances and angles. Single crystals of compounds **3** and **6** suitable for X-ray diffraction analyses were obtained by recrystallization from *n*-hexane at -8 °C. Compound **3** adopts a distorted tetrahedral structure. The core angle (N(1)-Al(1)-C(2)) is

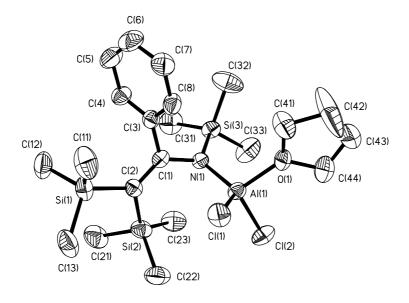

acute (73.68(10)°), which is compensated by opening of the N-Al-Cl and C-Al-Cl angles. The structure of **3** is similar to that of a reported amidinato aluminum dichloride Ph-C(NSiMe₃)₂AlCl₂.⁴¹ Because the chelating backbones in the two compounds are different, some differences in the structures are obvious: (1) The core angle N(1)-Al(1)-C(2) (73.68(10) °) is slightly larger than N-Al-N (72.9(7)°) in compound Ph-C(NSiMe₃)₂AlCl₂; (2) the Al(1)-C(2)-Si(2, 3) (118.75(13) and 108.84(12)°) angles in **3** are significantly smaller than the Al-N-Si angles in Ph-C(NSiMe₃)₂AlCl₂ (average 139°), indicating that the ligand R is more shielding than the amidinate.

Figure 2. ORTEP drawing of **3** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Al(1)-N(1) 1.918(2), Al(1)-C(2) 2.015(3), Al(1)-Cl(1) 2.1321(10), Al(1)-Cl(2) 2.1276, C(1)-C(3) 1.484(4); N(1)-Al(1)-C(2) 73.68(10), N(1)-Al(1)-Cl(2) 113.05(7), C(2)-Al(1)-Cl(2) 124.28(8), N(1)-Al(1)-Cl(1) 114.57(7), C(2)-Al(1)-Cl(1) 120.70(8), Cl(2)-Al(1)-Cl(1) 106.53(4).

The structure of compound **6** was also determined by X-ray crystallography for comparison (Figure 3). Interestingly, in the monomeric molecule of **6** the geometry of the aluminum coordination sphere is distorted tetrahedral, while the aluminum atom is surrounded

by two chlorine atoms, one oxygen atom and one nitrogen atom. The ligand R in this compound, in contrast to **3**, is η^1 -coordinated. The Al(1)-N(1) distance (1.806(3) Å) in **6** is much shorter than that in compound **3** (1.918(2) Å).

Figure 3. ORTEP drawing of **6** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-N(1) 1.806(3), Al(1)-O(1) 1.872(3), Al(1)-Cl(1) 2.135(2), Al(1)-Cl(2) 2.134 (2), C(1)-C(2) 1.356(6); N(1)-O(1)-Al(1) 109.0(2), N(1)-Al(1)-Cl(2) 118.98(13), O(1)-Al(1)-Cl(2) 99.61(11), N(1)-Al(1)-Cl(1) 114.00(12), O(1)-Al(1)-Cl(1) 102.64(11), Cl(1)-Al(1)-Cl(2) 110.34(8), Al(1)-N(1)-C(1) 117.7(2), N(1)-C(1)-C(2) 124.9(4).

The different bonding modes in **3** and **6** are also reflected in the different bond distances in the backbone of the ligand (long C(1)-N(1) and short C(1)=C(2) distances for **6** versus short C(1)-N(1) and long C(1)-C(2) contacts for **3**). The long C(1)-C(2) and short C(1)-N(1) distances in compound **3** are indicative of the delocalization of the electrons in the N(1)-C(1)-C(2) unit. The Al-Cl distances are comparable to those of compound **3**, while the Cl-Al-Cl angle (110.34(8)°) is slightly larger than that of compound **3** (106.53(4)°), reflecting the

greater steric demand for the chelating mode even though a THF molecule is coordinated to Al in compound 6. The Al-O distance (1.872(3) Å) is in agreement with that observed for $(Me_3Si)_3CAlCl_2(THF)$ (1.887 Å).³⁷ Although in the solid state, the THF in compound 6 seems as tightly coordinated to the aluminum atom as in (Me₃Si)₃CAlCl₂(THF) by comparison of the Al-O bond lengths of the two compounds, its instability is obviously due to the easy removal of the THF molecule in vacuo. Thus, the bonding fashions of the ligand change from η^1 to chelating so as to stabilize the AlCl₂ unit. The distances between Al(1) and C(1) as well as Al(1) and C(2) are ca. 2.79 and 3.50 Å, respectively, which are in the range of the sum of van der Waals interactions, indicating that the C(1)=C(2) bond is not free in the solid state. This observation is in accordance with the fact that only one signal for the protons of the two CSiMe₃ groups on C(2) is present in the ¹H NMR spectrum of **6** in C₆D₆ at ambient temperature and the 13 C NMR signal for C(2) is significantly shifted downfield compared to those of normal C=C bonds. The ²⁷Al NMR spectrum shows a broad signal at δ 62.66 ppm. which is low field from those in other four-coordinated compounds described herein, indicating enhanced electron density on Al atom and partial interactions between Al and the C=C bond in solution, which may result from the acidic aluminum center attached by four electron-withdrawing groups, leading to flexibility of the C=C bond, indicating fluxional

behavior of the two SiMe₃ groups.

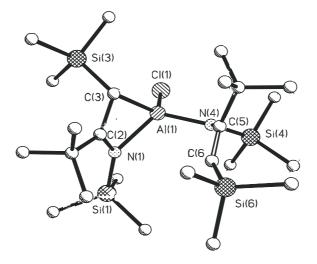
2.1.5 Syntheses of the bis(1-aza-allyl) aluminum complexes 9, 10, 11

Reaction of the 1-aza-allyl lithium salt $(R'Li)_2 (R' = N(SiMe_3)C(t-Bu)CH(SiMe_3))^{29}$ with AlCl₃ and AlMeCl₂ in diethyl ether afforded the bis(1-aza-allyl) aluminum complexes R'₂AlCl (9) and R'₂AlMe (10) in good yield, respectively. Compounds 9 and 10 were fully characterized by ¹H, ¹³C and ²⁹Si NMR, mass spectroscopy, and elemental analyses. Spectroscopic data for 9 indicate that two ligands are coordinated to the aluminum center in

different bonding modes: one is chelating and the other is η^1 -amido. The NMR spectra of 10 are rather complicated due to rapid exchange of the ligands in solution compared to 9 with a more polarized Al-Cl bond. EI-MS spectra show both 9 and 10 to be monomers in the gas phase. Initial efforts to examine the reactivities of the two compounds showed that 10 did not react with the fluorinating reagent Me₃SnF in CH₂Cl₂ or toluene to give the corresponding fluoride; 9 was not reduced by alkali metals (Na or K) in hydrocarbon solvents even at elevated temperatures as indicated by recovery of 70 - 80 % of 9 after refluxing for 24 h in *n*hexane. Treatment of 9 with the Lewis acid $AlCl_3$ in toluene afforded a vellow oil that separated from the solvent. Obviously a liquid clathrate (an oil containing 11 and solvent) Many ionic aluminum compounds exhibit a similar behavior in aromatic was formed. solvents yielding a two phase system.⁴² A white solid **11** has been obtained after treating the crude product with pentane, extremely air-sensitive and unstable in THF and CH₂Cl₂. Attempts to crystallize the solid from THF or CH_2Cl_2 led to the formation of $AlCl_3(THF)_2^{43}$ and 9 or decomposition of 11 into AlCl₃ and 9 respectively. The formation of AlCl₃(THF)₂ from 11 in THF is particularly noteworthy since the direct interaction of aluminum trichloride, Al₂Cl₆, and THF has been shown to give the ionic compound [AlCl₂(THF)₄](AlCl₄).⁴⁴ The mechanism may involve the initial interaction of the cation R'_2Al^+ with THF, which is in contrast to the related cation-anion pair [(2-C(SiMe₃)-C₅NH₄)₂Al][AlCl₄] which could be crystallized from THF.⁴⁵ The different stabilities may be due to the flexibility of the 1-azaallyl ligand. Compound 11 can be dissolved in CD_2Cl_2 , the solution is stable for a few days allowing characterization of the product by NMR spectroscopy. The ¹H NMR spectrum of **11** contains four singlets ($\delta 0.30, 0.42, 1.39$, and 3.03 ppm) which are assigned to the NSiMe₃, CSiMe₃, t-Bu, and CH protons, respectively. The chemical shift for the CH proton indicates that the ligand is coordinated to the aluminum atom in a chelating fashion indicated by the high field signal compared to those found for the protons of 'normal' C=C double bonds. Further evidence for the formation of a cationic species was provided by the ²⁷Al NMR spectrum, in which two signals are observed: one at δ 103 ppm is indicative for the AlCl₄⁻ anion;⁴⁶ the second (δ 111 ppm) is assigned to R₂Al⁺, in the typical range for a four-coordinated aluminum center.

Attempts to synthesize bis(1-aza-allyl) aluminum compounds containing the more bulky ligand R (R = N(SiMe₃)C(Ph)C(SiMe₃)₂) in solvents such as diethyl ether, *n*-hexane, THF and toluene even under reflux conditions were unsuccessful.

2.1.6 Synthesis and characterization of complexes 12 and 13


The reaction of RLi·THF (R = [N(SiMe₃)C(Ph)C(SiMe₃)₂]) with GaCl₃ and BiBr₃ in toluene/*n*-hexane afforded the corresponding mono(1-aza-allyl) gallium dichloride RGaCl₂ (**12**) and bismuth dibromide RBiBr₂ (**13**), respectively.

RLi·THF + MX₃
$$\rightarrow$$
 RMX₂ + LiX + THF
M = Ga, X = Cl (12); M = Bi, X = Br (13)

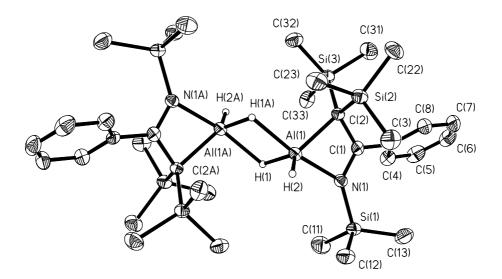
The two compounds have been characterized by MS, multinuclear NMR spectra, and elemental analysis. The MS spectra of **12** and **13** indicate that the two compounds are monomers in the gas phase. The ¹H and ²⁹Si NMR spectra of **12** and **13** contain only one singlet for the CSiMe₃ protons (see Experimental) indicating that R is coordinated to the central atom in a chelating mode as proved for the corresponding compound RAlCl₂ (**3**) by X-ray structural analysis. Compound **12** is soluble in hydrocarbon solvents while **13** has only very limited solubility in *n*-hexane but is soluble in aromatic solvents. **13** is not stable in solution and slowly decomposes even under an inert atmosphere. Reduction of **13** with potassium in toluene afforded a yellowish oil, which we were not able to characterize completely. Compounds **12** and **13** represent the first

known 1-aza-allyl compounds of gallium and bismuth. Further investigation of the chemistry of 1-aza-allylgallium and -bismuth compounds is in progress.

2.1.7 X-ray structure of [{N(SiMe₃)C(*t*-Bu)CH(SiMe₃)}₂AlCl] (9)

Figure 4. Molecular structure of **9** in the crystal. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-N(1) 1.9701(15), Al(1)-N(4) 1.8194(15), Al(1)-C(3) 2.003(2), Al(1)-Cl(1) 2.1504(8), C(2)-C(3) 1.478(2), C(5)-C(6) 1.349(2), N(1)-C(2) 1.321(2), N(4)-C(5) 1.450(2); N(1)-Al(1)-Cl(1) 116.66(5), N(1)-Al(1)-C(3) 71.44(6), N(1)-Al(1)-N(4) 115.59(7), N(1)-C(2)-C(3) 111.82(14), N(4)-Al(1)-Cl(1) 108.81(5), N(4)-Al(1)-C(2) 116.87(6), N(4)-Al(1)-C(3) 119.93(7), C(6)-C(5)-N(4) 119.2(2).

Single crystals of **9** were obtained from *n*-hexane solution at -30 °C. The structure of **9** with the atom labeling scheme is shown in Figure 4 followed by selected bond lengths and angles. Compound **9** adopts a distorted tetrahedral structure with aluminum bonded to C(3), Cl(1), N(1) and N(4), thus one ligand R is coordinated to the aluminum atom in a chelating fashion with an acute core angle N(1)-Al(1)-C(3) (71.44(6)°), the other ligand acts as an amido ligand only with N(4) being coordinated to the aluminum atom. The different bonding modes of the ligands can be further rationalized by comparing selected bond parameters. The


Al(1)-N(1) (1.9701(15) Å) distance is longer than Al(1)-N(4) (1.8194(15) Å)), moreover, the C(2)-C(3) (1.478(2)Å) bond length is longer than C(5)-C(6) (1.349(2) Å) while N(1)-C(2) (1.321(2) Å) is shorter than N(4)-C(5) (1.450(2) Å) due to electron delocalization in the chelating ligand backbone. The bond angle C(3)-C(2)-N(1) (111.82(14)°) reflects an sp^3 electron distribution at C(2) while the angle N(4)-C(5)-(C(6) (119.2(2)°) indicates an sp^2 electron distribution at C(5). These data are in agreement with the different bonding modes of the ligands.

The ¹H NMR spectrum of **9** clearly shows two sets of signals for the R' groups, indicating that the solid state structure is maintained in C_6D_6 solution at room temperature. The singlets ($\delta 2.33$ and 4.94 ppm) for the CH protons in the ¹H NMR spectrum are also indicative for the different bonding interactions in the compounds incorporating this ligand.

2.1.8 Synthesis and molecular structure of $[RAlH(\mu-H)]_2(14)$

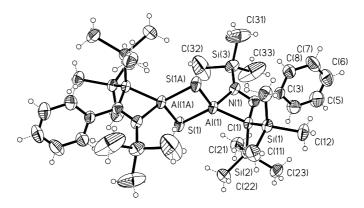
The reaction of RAlBr₂ (**4**) with an excess of LiAlH₄ in diethyl ether afforded [RAlH(μ -H)]₂ (**14**) in nearly quantitative yield. **14** was characterized by ¹H, ¹³C, and ²⁹Si NMR spectra, elemental analysis, and X-ray structural analysis. Single crystals of **14** have been grown from *n*-hexane at 0 °C. The molecular structure of **14** is shown in Figure 5 with selected bond distances and angles. It adopts a dimeric structure in the solid state, as a consequence, the whole structure features three fused four-membered rings with asymmetric 1-aza-allyl ligands in *trans* configuration. Each aluminum atom is five-coordinated, and the geometry of the Al atoms can be described as trigonal bipyramidal with the axis going through H(1A)-Al(1)-N(1) (165.6°). The two bridging Al-H bonds at the same aluminum atom differ in length by 0.363 Å due to the asymmetry of the bulky ligand, which is in sharp contrast to the compound (Mes^{*}AlH₂)₂, where the two bridging Al-H bonds are nearly equal.⁴⁷ The terminal Al-H bonds (1.509 Å) are comparable to those (1.52(2) Å) in the compound [HAl(NMe₂)₃]^{-,48} while

the two bridging Al-H bonds (1.603 Å) are shorter than those observed in the compounds [(*t*-Bu)₂Al(μ -H)]₂ (1.68(2) Å)⁴⁹ and [*o*-(Me₂NCH₂)C₆H₄]AlH(μ -H)]₂ (1.688 Å).⁵⁰ The two other bridging Al-H separations (1.966 Å) of **14** are much longer than the sum of the covalent radii of Al and H (1.67 Å) and the longest observed in organoaluminum dihydrides, indicating weak bonding interactions between two loosely associated monomers.

Figure 5. ORTEP drawing of **14** (50 % probability): Hydrogen atoms except those in central core have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-H(1) 1.603, Al(1)-N(1) 2.026(2), Al(1)-H(2) 1.509, Al(1)-H(1A) 1.966, Al(1)-C(1) 2.418(2), C(1)-C(2) 1.495(2), C(1)-N(1) 1.301(2), Al(1)-Al(1A) 2.8154(11), Al(1)-C(2) 2.058(2); H(1)-Al(1)-H(2) 117.2, H(1)-Al(1)-H(1A) 76.3, H(1A)-Al(1)-N(1) 165.6, H(1)-Al(1)-N(1) 100.1, N(1)-Al(1)-C(2) 70.39.

The ¹H NMR spectra (C_6D_6 and d_8 -toluene) at room temperature show only one sharp signal for AlH protons, and the ²⁷Al NMR resonance (δ 131.6 ppm) indicates a fourcoordinated aluminum center present in solution. Therefore a monomeric structure of **14** in solution can be assumed. At lower temperatures (233 K, 193 K) the signal for AlH only broadens as well as the other singlets in the spectra, indicating that the monomeric structure is maintained in solution at these temperatures.

2.1.9 Synthesis and structures of $[RAl(\mu-E)]_2$ (E = S, (15), Se (16), Te (17))


The reactions of 14 with sulfur (S_8), selenium or metallic tellurium proceeded smoothly in toluene at elevated temperature to afford dimeric aluminum sulfide (15), selenide (16) and telluride (17) in good yields, respectively.

$$[RAlH(\mu-H)]_2 + 2/x E_x \longrightarrow [RAl(\mu-E)]_2 + 2 H_2$$

E = S (15), Se (16), Te (17)

This reaction type obviously represents a new and facile route to organoaluminum chalcogenides. The detailed reaction pathway is not yet understood. The reactions may be comparable to those of group 13 alkyls with elemental S, Se and Te, where products $[R'_2M(\mu-ER')]_2$ (R' = alkyl; E = S, Se, Te; M = Al, Ga) have been isolated.⁵¹ In a similar way, this reaction presumably involves a hydrochalcogenide (SH, SeH, TeH) intermediate,⁵² followed by elimination of hydrogen. The related cleavage reactions of element-element bonds of group 16 using aluminum hydrides include the reactions of diorganodiselenides or – ditellurides with *i*-Bu₂AlH⁵³ or Me₃N·AlH₃.⁵⁴

Compounds **15** - **17** are very air and moisture sensitive, but thermally quite stable as indicated by their high melting points and EI mass spectra, where the molecular ions were observed for the three compounds as the base peaks. In addition they have been characterized by ¹H and ²⁹Si NMR spectroscopy and elemental analysis.

The structures of the three compounds have been determined by X-ray diffraction analyses. The structure of **15** is shown in Figure 6 with important bond lengths and angles. It consists of a dimeric structure with an Al_2S_2 core. Its structure is related to the dimeric (Mes*AlS)₂ (Mes* = 2,4,6-*t*-Bu₃C₆H₂)^{12a} synthesized by the reaction of (Mes*AlH₂)₂ with S(SiMe₃)₂ except that in the latter compound the aluminum atoms are three-coordinated. The insertion of S into Al-H bonds has not been observed previously. The Al-S bond length (av 2.22 Å) is in agreement with the reported aluminum sulfides $Al_4S_5H_2(NMe_3)_4$ and $Al_4S_6(NMe_3)_4$ (av 2.22 Å)⁵⁵, and only slightly longer than those of $(Mes^*AlS)_2$ (2.21 Å). The tetrameric Al-S species ($(Me_2Et)CAlS)_4$ has an Al_4S_4 cubane structure with Al-S distances in the range from 2.295(8) to 2.319(9) Å.^{14c} The longer Al-S distances in that compound are due to the higher coordination number of S. The Al(1)-S-Al(1A) angle (79.84(6)°) is much more acute compared to those of (Mes^*AlS)_2 (101.91°) due to the higher coordination number of Al in **15**.

Figure 6. ORTEP drawing of **15** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Al(1A)-S(1) 2.2169(15), Al(1)-S(1) 2.2198(17), Al(1)-N(1) 1.950(3), Al(1)-C(1) 2.052(4), Al(1)-S(1A) 2.2170(15), Al(1)-C(2) 2.359(4); Al(1)-S(1)-Al(1A) 79.84(6), N(1)-Al(1)-C(1) 71.82(14), S(1A)-Al(1)-S(1) 100.16(6).

The molecular structure of **16** is shown in Figure 7 (**16** and **17** are isostructural) with the atom-labeling scheme and selected bond lengths and angles. X-ray quality crystals of **16** (colorless) and **17** (greenish) were obtained from a toluene/*n*-hexane solution at -20 °C and a benzene/*n*-hexane at 6 °C, respectively. Both compounds crystallize in the triclinic space

group P-1. The two molecules in the unit cell, only marginally different in bond lengths and angles, are crystallographically centrosymmetric (Figure 7 shows only one of two independent molecules of 16). The structure of 16 consists of three fused four-membered rings with a central Al(1)-Se(1)-Al(1A)-Se(1A) core (the sum of the internal angles = 360.0° , the central core of the other molecule in the unit cell is represented by Al(2)-Se(2)-Al(2A)-Se(2A) nearly perpendicular to the two other rings (the angles between two adjacent planes in the two different molecules are 92.7° and 91.8°, respectively). The internal angles at Al (102.42(3)°, $102.39(3)^{\circ}$) are wider than at Se (77.58(3)°, 77.61(3)°) due to the acute angles N-Al-C ($72.01(10)^{\circ}$, $71.74(10)^{\circ}$), which are only slightly larger than those in the five coordinated aluminum atoms of **14**. The Al-Se distances (2.3424 to 2.3563 Å) are shorter than those in the compounds $(Cp^*AlSe)_4$ (2.462- 2.497 Å)¹⁵ and $(Me_2EtCAlSe)_4$ (2.444 to 2.481 Å)^{14a} with a cubic core due to the lower coordination number of Se (two) atoms in 16. The Al-Al separations (2.9412(16) Å, 2.9473(15) Å) are slightly longer than that in the starting material 14 (2.8154(11) Å) due to longer Al-Se bonds compared to the bridging Al-H bonds even though the aluminum atoms in the latter are five-coordinated. Only one isomer is present in the crystal investigated with the backbone of the ligands in *trans* configuration.

Compound **17** is the second example of a monoorganoaluminum telluride to be fully structurally characterized. The other example is the tetrameric $(Cp^*A|Te)_4$ reported by our group, which has an Al₄Te₄ cubane core with Al-Te distances in the range from 2.688 to 2.750 Å.¹⁵ The longer Al-Te bond lengths in the latter are due to the higher coordination number of Te (three). The short Al-Te distances (2.5619(12) to 2.5768(14) Å) in **17** are similar to those found for the compound {[(SiMe₃)₂HC]₂Al}₂Te (2.549 Å).⁵⁶ It is noteworthy that the internal angles at Al and at Te in **17** are quite similar to those at Al and at Se in **16**, respectively, despite the longer Al-Te bond lengths compared to the Al-Se bonds (the central cores of the

two different molecules in the unit cell of **17** are represented by Al(1)-Te(1)-Al(1A)-Te(1A) and Al(2)-Te(2)-Al(2A)-Te(2A), respectively).

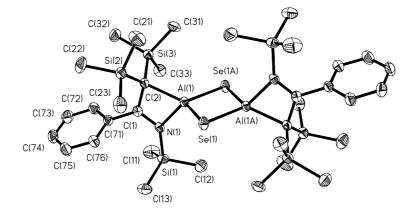
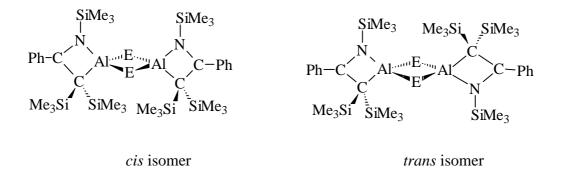
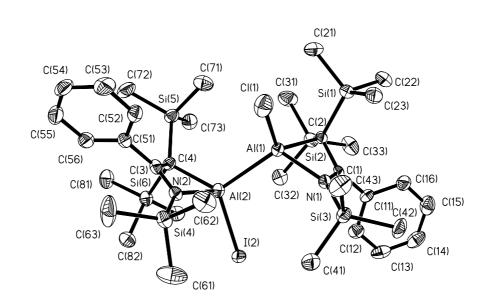



Figure 7. ORTEP drawing of 16 (50 % probability). Hydrogen atoms have been omitted for clarity. Compound 17 is isostructural with 16. Selected bond lengths (Å) and angles (deg) for one of two independent molecules of 16: Al(1)-Se(1) 2.3424(8), Al(1)-Se(1A) 2.3527(9), Al(1)-N(1) 1.948(2), Al(1)-C(2) 2.051(3), Al(1)-Al(1A) 2.9412(16), N(1)-C(1) 1.308(3), C(1)-C(2) 1.491(4), Al(2)-Se(2) 2.3469(8), Al(2)-Se(2A) 2.3563(2), Al(2)-N(2) 1.953(2), Al(2)-C(4) 2.052(3), Al(2)-Al(2A) 2.9473(15); Se(1)-Al(1)-Se(1A) 102.42(3), Al(1)-Se(1)-Al(1A) 77.58(3), N(1)-Al(1)-C(2) 72.01(10), Se(2)-Al(2)-Se(2A) 102.39(3), Al(2)-Se(2)-Al(2A) 77.61(3), C(2)-Al(1)-Se(1A) 123.17(8). One of two indipendent molecules of 17: Al(1)-Te(1) 2.5619(12), Al(1)-Te(1A) 2.5768(14), Al(2)-Te(2) 2.5753(12), Al(2)-Te(2A) 2.5765(14), Al(1)-N(1) 1.946(3), Al(1)-C(2) 2.064(4), N(1)-C(1) 1.319(5), C(1)-C(2) 1.484(6); N(1)-Al(1)-C(2) 71.80(15), N(1)-Al(1)-Te(1) 110.03(11), Te(1)-Al(1)-Te(1A) 103.12(4), C(2)-Al(1)-Te(1) 123.06(12), Te(2)-Al(2)-Te(2A) 102.79(4), Al(2)-Te(2)-Al(2A) 77.21(4), Al(1)-Te(1)-Al(1A) 76.88(4).

Both ¹H and ²⁹Si NMR spectra indicate the existence of an equilibrium of two isomers of **15 - 17** in C_6D_6 solution, which is probably caused by the relative orientation of the chelating ligands. The variable temperature (295 to 193 K) ¹H NMR spectra of **16** indicate that the

conversion of the two isomers in d₈-toluene becomes slow at 193 K as indicated by only one singlet for the NSiMe₃ and CSiMe₃ protons each present at this temperature. Due to the ligand backbone, which is arranged nearly perpendicularly to the central core, two isomers (*trans* and *cis*) are possible shown in Scheme 6. The ratio of the two isomers (approximately 1 : 2) for both **16** and **17** at room temperature was estimated from the ¹H NMR intensities. Due to the flexibility of the ligand R, an M-C bond cleavage mechanism has been proposed to explain the dynamic processes in compounds (RMCl)₂ (M = Sn, Pb)³⁰ and [RAIF(μ -F)]₂. In analogy, the Al-C bond dissociation/association process might also be responsible for the interconversion of the two isomers in solution.

Scheme 6



2.1.10 Reduction of aluminum dihalides

The 1-aza-allyl-aluminum dihalides RAIX₂ (X = Cl, Br, I) have been reduced with potassium. The diiodide derivative was found to be reduced more easily than the dichloride and dibromide. No products could be isolated or identified in the case of using pure halides. However, when a mixture of RAII₂ and RAICII was used for the reduction, the first example of a divalent aluminum species RCIAI-AIIR (**18**), which contains both organic and halide ligands, was obtained. The EI-MS spectrum clearly shows (RAICI)⁺ and (RAII)⁺ fragments. The ¹H and ²⁹Si NMR spectra are complicated due to the different halogens on the two aluminum atoms, which may give rise to several species in solution (RCIAI-AICIR, RIAI-

AlIR, RCIAI-AIIR). The formation of **18** may be explained by the simultaneous reduction of RAII₂ and RAICII. RAICII might have formed by the reaction of I₂ with RAICIMe generated by the reaction of RLi(THF) with MeAlCl₂ (commercially available Me₂AlCl solutions normally contain some MeAlCl₂). However, attempts to isolate pure RAICII from the reaction of RAICIMe and I₂ were unsuccessful.

 $RAlI_2 + RAlClI + 2 K \rightarrow (R)IAl-AlCl(R) + 2 KI$

18

Figure 8. ORTEP drawing of **18** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): I(1)-Al(1) 2.553(3), I(2)-Al(2) 2.546(2), Cl(1)-Al(1) 2.286(11), Cl(2)-Al(2) 2.347(11), Al(1)-Al(2) 2.593(2), Al(1)-N(1) 1.960, Al(1)-C(2) 2.095(4); N(1)-Al(1)-C(2) 71.14(13), N(1)-Al(1)-Cl(1) 108.6(3), C(2)-Al(1)-Cl(1) 120.7(4), N(1)-Al(1)-I(1) 113.08(12), N(1)-Al(1)-Al(2) 113.45(10), Cl(1)-Al(1)-Al(2) 111.9(3), I(1)-Al(1)-Al(2) 110.40.

The structure of this unique divalent species was determined by single crystal X-ray structural analysis shown in Figure 8 with selected bond lengths and angles. The two ligands are bonded to the aluminum atom in a chelating fashion in *trans* conformation, leading to four

coordinated Al centers with distorted tetrahedral geometry. The Al(1)-Al(2) bond distance (2.593(2) Å) is the shortest one reported so far for neutral Al compounds.⁵⁷ The Al-Cl bond length (2.347(11) Å) is longer by ca. 0.2 Å than those in the Al(III) compound RAlCl₂ (average 2.13 (10) Å).

2.2 Aluminum compounds with chelating aryl ligands

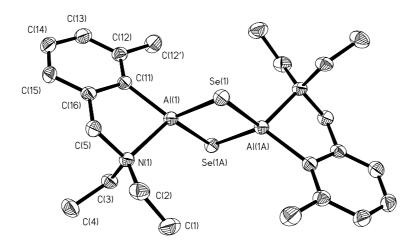
Aryl ligands of the type 2,6-(R₂NCH₂)₂C₆H₃ and 2-(R₂NCH₂)C₆H₄ (R = Me, Et, *i*-Pr or other organic groups) with one or two donor side arms have been widely used in late transition metal chemistry,⁵⁸ some group 13 and 14 element compounds with this type of ligands have also been reported.⁵⁹ These ligands can effectively control the geometry of the metal centers and prevent association. This has been demonstrated by the synthesis of monomeric aluminum and gallium hydrides using the tridentate 2,6-(Me₂NCH₂)₂C₆H₃ ligand.^{8,60} However, aluminum chalcogenides with this type of ligands have not been reported so far. The only related compound is the dimeric (Mes^{*}AlS)₂ (Mes^{*} = 2,4,6-(*t*-Bu)₃C₆H₂).^{12a} In this part we describe the first examples of aryl aluminum selenides and a telluride of formula (ArAlE)_n.

2.2.1 Synthesis of aryl aluminum dihydrides

Aluminum dihydrides can be easily prepared by the reduction of the corresponding dihalides.⁸ The reactions of 2-(Et₂NCH₂)-6-MeC₆H₃Li and 2,6-(Et₂NCH₂)₂C₆H₃Li with equimolar of AlCl₃ yielded the aluminum dichlorides and the reduction with an excess of LiAlH₄ in diethyl ether afforded the intramolecular stabilized aryl aluminum dihydrides 2-(Et₂NCH₂)-6-MeC₆H₃AlH₂ (**19**) and 2,6-(Et₂NCH₂)₂C₆H₃AlH₂ (**20**), respectively, in moderate yields. The dichlorides were not isolated and characterized but directly reduced *in situ* to yield **19** and **20**. The similar aluminum dichlorides 2,6-(Me₂NCH₂)₂C₆H₃AlCl₂ and 2-

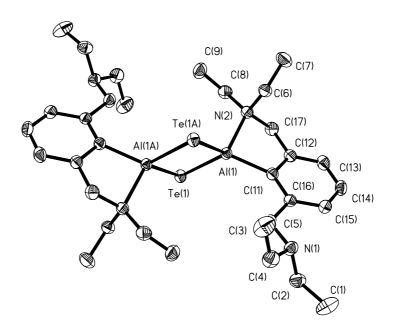
 $(Me_2NCH_2)C_6H_4AlCl_2$ have been prepared in an analogous way.^{8, 59a} The dihydrides **19** and **20** have been characterized by ¹H and ¹³C NMR, EI–MS spectroscopy as well as elemental analysis. The EI-MS spectra of **19** and **20** show the peak of the highest mass corresponding to the $(M^+ - H)$ fragments, indicating both compounds are monomeric in the gas phase. The ¹H NMR spectra of **19** and **20** both show broad hydride resonances, characteristic for aluminum hydrides. Compound **20** might also be monomeric in the solid state like the structurally characterized compound 2,6- $(Me_2NCH_2)_2C_6H_3AlH_2$.⁸

2.2.2 Synthesis of aryl aluminum chalcogenides


Reactions of 19 and 20 with selenium at 80 °C afforded the first examples of arylaluminum selenides $\{[2-(Et_2NCH_2)-6-MeC_6H_3]AlSe\}_2$ (21) and $\{[2,6-(Et_2NCH_2)_2C_6H_3]AlSe\}_2$ (22) in good yields, respectively. We have briefly mentioned the mechanism of this type of reaction The isolation of an aluminum SeH compound $LAl(SeH)_2$ (L = in section 2.1.9. $HC[C(Me)N(Ar)]_2$, $Ar = 2,6-i-Pr_2C_6H_3$ (section 2.3) suggests that this reaction proceeds through an aryl Al-SeH intermediate. It was supposed that the coordination of a Se₂ unit to the aluminum atom forms an hypervalent aluminum center⁶¹ and the activated Se₂ unit is concertedly reduced by the two hydride ligands to yield ArAl(SeH)₂, which reacts immediately with another molecule of ArAlH₂ to eliminate hydrogen (Scheme 7). When two equivalents of selenium were used for the reaction, only half of the selenium was consumed. This observation indicates that in this case the reaction of ArAl(SeH)₂ with ArAlH₂ is much faster. In contrast, when a very bulky chelating group L is used, the reaction of LAl(SeH)₂ with LAIH₂ is markedly slowed down due to the steric effect of the ligand. Unfortunately, we were unable to monitor this reaction by NMR spectroscopy due to its heterogeneous nature. Reaction of 2 with tellurium in refluxing toluene gave an aryl aluminum telluride $\{[2,6 (Et_2NCH_2)_2C_6H_3$ AlTe $_2$ (23) in good yield. The mechanism might be similar to the reaction of the hydrides with selenium. Compounds **21** and **22** are inert to donor reagents such as phosphanes, pyridine and tmeda $[(Me_2NCH_2)_2]$ and are only poorly soluble in toluene, THF and DME, and have a limited solubility in CHCl₃.

Scheme 7

ArAlH₂
$$\xrightarrow{2 \text{ Se}}$$
 ArAl(SeH)₂ $\xrightarrow{\text{ArAlH}_2}$ (ArAlSe)₂
Ar = 2-(Et₂NCH₂)-6-MeC₆H₃ (**21**), 2,6-(Et₂NCH₂)₂C₆H₃ (**22**)


2.2.3 Characterization of 21 - 23 and X-ray structures of 21 · C₇H₈ and 23

The three compounds were fully characterized by multinuclear NMR spectroscopy, EI mass spectra and elemental analysis. The MS spectra of the compounds **21 - 23** show the molecular ion peaks of the dimers. The NMR spectra give the expected resonances. In order to elucidate the role of the NEt₂ donors, single crystal X-ray structural determinations of compounds **21** and **23** were carried out. Single crystals suitable for X-ray crystal studies of **21** and **23** were obtained from toluene at -20 °C and room temperature, respectively. Compound **21** crystallizes as a dimer with a crystallographically imposed inversion center in the solid state (Figure 9). The NEt₂ arms are coordinated to the aluminum atoms with a Al-N distance of 2.052(3) Å, which is in accordance with that of compound (Me₂NCH₂)C₆H₄AlCl₂.^{59b} The Se(1)-Al(1) and Se(1)-Al(1A) distances differ in length (ca 0.014 Å) probably due to different steric effects at the two sides of the aryl ligands. They are slightly longer that those of the previously described dimeric compound {[N(SiMe₃)C(Ph)C(SiMe₃)₂]AlSe}₂ (**16**, average 2.35 Å). The internal angle Al(1)-Se-Al(1A) is acute (77.52(4)°) is close to that of {[N(SiMe₃)C(Ph)C(SiMe₃)₂]AlSe}₂ (**16**).

Figure 9. ORTEP drawing of **21** (50 % probability). Solvent C_7H_8 and hydrogen atoms have been omitted for clarity. Selected bond length (Å) and angles (deg) for two independent molecules in the unit cell: Se(1)-Al(1A) 2.352(7), Se(1)-Al(1) 2.366(4), Al(1)-C(11) 1.960(3), Al(1)-N(1) 2.052 (3); Al(1)-Se(1)-Al(1A) 77.52(4), C(11)-Al(1)-N(1) 86.79(12), C(11)-Al(1)-Se(1) 119.58 (12), C(11)-Al(1)-Se(1A) 122.99(11), N(1)-Al(1)-Se(1) 108.70, N(1)-Al(1)-Se(1A) 115.58(8), Se(1)-Al(1)-Se(1A) 102.48(4), C(11)-Al(1)-Al(1)-Al(1A) 146.00(11).

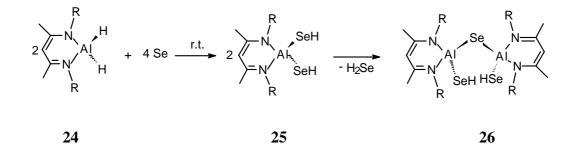
Compound **23** crystallizes in the monoclinic space group $P2_1/c$, as a centrosymmetric dimer (Figure 10). The most interesting structural feature is that only one arm of the two NEt₂ sites of both aryl ligands is coordinated to one aluminum atom and the other arm is dangling freely. In contrast, the ¹H and ¹³C NMR spectra show only one set of signals for the Et₂NCH₂ groups, it can be assumed that in solution a rapid exchange of coordination and dissociation of the two NEt₂ groups takes place. Due to the poor solubility of these compounds we were not able to perform low temperature NMR studies. A similar behavior has already been observed with the dimeric gallium compound (2,6-(NMe₂CH₂)₂C₆H₃GaPSiPh₃)₂.⁶²

Figure 10. ORTEP drawing of **23** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg) for two independent molecules in the unit cell: Te(1)-Al(1) 2.588(7), Te(1)-Al(1A) 2.581(8), Al(1)-C(11) 1.976(3), Al(1)-N(2) 2.054(2), Al(1)-Te(1)-Al(1A) 76.30(3), C(11)-Al(1)-N(2) 86.74(9), C(11)-Al(1)-Te(1A) 122.62(8), N(2)-Al(1)-Te(1A) 113.80(6), C(11)-Al(1)-Te(1) 119.59(7), N(2)-Al(1)-Te(1) 109.22(6), Te(1)-Al(1)-Te(1A) 103.70(3).

Compound 23 is the third structurally characterized organoaluminum telluride with formula $C_5Me_5)^{15}$ (RAlTe)_n, the others are (Cp*AlTe)₄ (Cp* and $\{ [N(SiMe_3)C(Ph)C(SiMe_3)_2] A | Te \}_2$ (17). The Te(1)-Al(1) (2.588(7) Å) and Te(1)-Al(1A) (2.581(8) Å) distances are only marginally different from each other. They are shorter than those of the (Cp*AlTe)₄ (2.688 to 2.750 Å) due to the lower coordination number of the Te atom in compound 23, and only slightly longer than those in compound 17 (2.562 to 2.577 Å). The Al(1)-C(11) distance (1.976(3) Å) is only slightly longer than that of compound 21 (1.960 Å), and both are in the range of those reported for [(Me₂NCH₂)C₆H₄]AlCl₂·THF (1.987 Å) and dimeric $\{[(Me_2NCH_2)C_6H_4]AlCl_2\}_2 (1.941 Å).^{59b}$ The Te-Al-Te $(103.70(3)^\circ)$ and Although the Al_2Te_2 core binds to quite different ligands in the two compounds. In addition, the angles of the Al_2Te_2 unit are also nearly equal to those of Al_2Se_2 in compound **21** (102.48(4)°, 77.52(4)°) and {[N(SiMe_3)C(Ph)C(SiMe_3)_2]AlSe}₂ (**16**) (average 102.4°, 77.6°) despite the longer Al-Te distances.

The result of the synthesis of compounds **22** and **23** indicates that the dimeric form with one dangling NEt₂ group is energetically favored in comparison to the corresponding monomeric species with two chelating arrangements at the aluminum atom. With the bulkier aryl ligand 2,6-[(*t*-Bu)(Me)NCH₂]₂C₆H₃, a dimer was also obtained (according to the mass spectrum of the compound {2,6-[(*t*-Bu)(Me)NCH₂]₂C₆H₃AlSe}₂ (**c**)). The ¹H NMR spectrum shows broad singlets for the *t*-Bu and Me protons, indicating that the bulky substituents at the nitrogen atoms are responsible for the slower exchange (coordination and dissociation) on the NMR time scale. The dimeric compounds **21** - **23** as well as compounds {[N(SiMe₃)C(Ph)C(SiMe₃)₂]AlE}₂ (E = Se (**16**), Te (**17**)) are thermally quite stable systems. They do not dissociate in polar solvents (THF, DME), even under reflux conditions. In addition, strong donors such as pyridine, TMEDA or phosphanes have no effect on the dissociation of the dimer. The utilization of the bulky bidentate ligand HC[(CMe)(NAr)]₂ (Ar = 2,6-*i*-Pr₂C₆H₃) unexpectedly led to the isolation of the first example of an aluminum SeH compound. This compound will be discussed in detail in the following section.

2.3 The Chemistry of β -diketiminato ligands


The β -diketonate ligands have long held an important place in coordination chemistry, the acetylacetonate (acac) and the conjugate base of dibenzoylmethane (dbzm), among many others, being the most widely used.⁶³ The isoelectronic β -diketiminato ligands (NCCCN backbone) have received scant attention, although their potential should be considerable, not

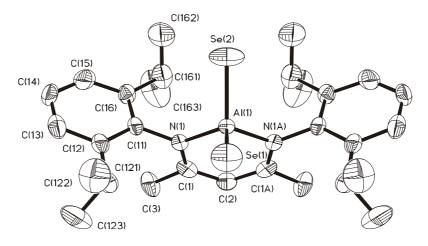
only because the groups on the nitrogen atom on the ligand backbone may be varied. In the following sections, aluminum compounds with bulky β -diketiminato ligands are described.

2.3.1 Synthesis of aluminum hydride LAIH₂ (24) and chalcogenides (25, 26)

Reaction of the β -diketimine LH (L = N(Ar)C(Me)CHC(Me)N(Ar), Ar = 2,6-*i*-Pr₂C₆H₃)⁶⁴ with AlH₃·NMe₃ at room temperature in *n*-hexane led in high yield to the corresponding dihydride LAlH₂ (**24**). The IR spectrum shows typical asymmetric and symmetric Al-H absorptions⁸ at 1832 and 1795 cm⁻¹, and the mass spectrum gives the peak of highest mass for $[M^+-H]$, indicating the formation of monomeric dihydride (**24**). Compound **24** is related to the [(*i*-Pr)₂ATI]AlH₂ (ATI = 2-aminotroponiminate) with a monomeric structure in the solid state.⁹ Compound **24** reacted smoothly with two equivalents of elemental selenium at room temperature to afford the bis(hydroselenide) LAl(SeH)₂ (**25**) in medium yield. It is noteworthy that **25** was also formed when only one equivalent of Se was used for the reaction. **25** has been found unstable in solution over a longer period of time (*n*-hexane, THF) at room temperature and slowly eliminates H₂Se to give orange L(HSe)AlSeAl(SeH)L (**26**) (Scheme 8). Compound **26** has also been obtained by the reaction of **24** with two equivalents of Se at 60 °C.

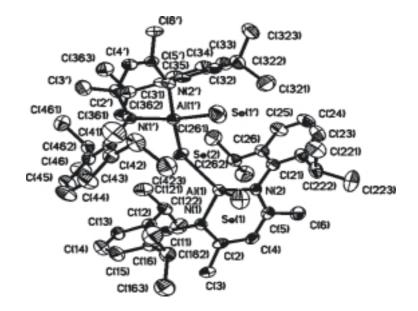
Scheme 8

Compounds **25** and **26** have been characterized by multinuclear NMR spectroscopy, mass spectra as well as elemental analyses. The ¹H NMR spectra of **25** and **26** both show high field


singlets at δ -2.82 and -2.83 ppm, respectively, which can be assigned to SeH.⁶⁵ The IR spectra also give weak SeH stretching frequencies at 2318 cm⁻¹ for **25** and at 2276 and 2292 cm⁻¹ for **26**, respectively.⁶⁶ The ¹H NMR spectrum of **26** shows two sets of singlets for the CHMe₂ protons, indicating C_s symmetry of the molecule. The ⁷⁷Se NMR spectrum of **26** gives two broad signals (δ -341 and -535 ppm) in an approximate intensity ratio of 2 : 1, the former can be assigned to SeH (A ⁷⁷Se NMR spectrum of **25** could not be obtained because of the decomposition of the compound in solution).

In contrast, the reaction of **24** with metallic tellurium needed more vigorous condition. No reaction was observed at room temperature. However, when the mixture was refluxed in toluene for several hours, a green solution was obtained. After work-up green needles could be isolated which were characterized by EI-MS spectrum to be dimeric (LAITe)₂ (**d**)

$$LAlH_2 + Te \rightarrow (LAlTe)_2 + H_2$$
24 d


2.3.2 Molecular structures of 25 and 26

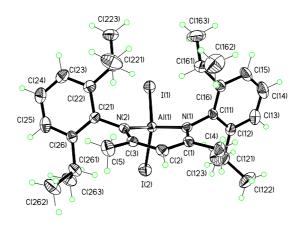
The molecular structures of **25** and **26** were determined by single crystal X-ray structural analysis. Pale yellow crystals of **25** suitable for single crystal X-ray structural analysis were grown from *n*-hexane at -30 °C. Unfortunately, the quality of the crystal structure did not allow to locate the hydrogen atoms on the selenium atoms. Nevertheless, the presence of terminal SeH groups was established unequivocally by IR and ¹H NMR spectra. The molecular structure of **25** is shown in Figure 11 with important bond lengths and angles. The Al-Se bond lengths (2.340(3) and 2.331(3) Å) are in accordance with those of the dimeric $\{[N(SiMe_3)C(Ph)C(SiMe_3)_2]AlSe\}_2$ (**16**) (average 2.35 Å). The Al-N bond distances of **25** are equal and the Al atom resides slightly out of the ligand NCCCN plane.

Figure 11. ORTEP drawing of **25** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å)and angles (deg): Al(1)–N(1) 1.899(6), Al(1)–N(1A) 1.899(6), Al(1)–Se(2) 2.331(3), Al(1)–Se(1) 2.340(3); N(1)–Al(1)–N(1A) 97.1(4), N(1)–Al(1)–Se(2) 113.5(2), N(1A)–Al(1)–Se(2) 113.5(2), N(1)–Al(1)–Se(1) 114.8(2), N(1A)–Al(1)–Se(1) 103.73(12).

Compound **26** crystallizes in the monoclinic space group $P2_1/n$. The structure is shown in Figure 12 with selected bond lengths and angles. The bridging Al-Se bond distances (2.326(2) and 2.333(2) Å) of the Al-Se-Al unit are among the shortest reported so far. They are slightly shorter than the Al-SeH bonds (2.375(2) and 2.371(2) Å) due to the more highly polarized Al-Se-Al bonds. The internal angle at Se(2) (116.77(7)°) is much more open compared to those of the dimeric Al₂Se₂ core compounds (average 78°) and is only slightly larger than that of {[(SiMe₃)₂CH]₂Al}₂Se (114.71°)⁶⁷ probably due to the bulky nature of the ligand L. The hydrogen atoms could be located at the selenium atoms (the Se-H distances are ca. 1.50 Å), free refinement, however, shortens these distances (as expected for the hydrogen atoms on heavy atoms). There is very little information in the literature concerning Se-H bond. The computed Se-H bond lengths (with the MINI-1, 3-21-G/LWD and STO-3G basis sets) for organic RSeH compounds range from 1.42 to 1.57 Å.⁶⁸ Compounds **25** and **26** are well separated monomers in the solid state, which excludes any intermolecular hydrogen bonds, and represent the first structurally characterized organometallic compounds which contain covalent metal-SeH units.

Figure 12. ORTEP drawing of **26** (50% probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Al(1')-N(2') 1.912, Al(1')-N(1') 1.918(5), Al(1')-Se(2) 2.326(2), Al(1')-Se(1') 2.375(2), Al(1)-N(2) 1.906(5), Al(1)-N(1) 1.906(5), Al(1)-Se(2) 2.333(2), Al(1)-Se(1') 2.371(2); N(1')-Al(1')-N(2') 96.7(2), N(2')-Al(1')-Se(2) 108.2(2), N(1')-Al(1')-Se(1') 109.5(2), N(1')-Al(1')-Se(1') 106.0(2), Se(2)-Al(1')-Se(1') 117.29(9), N(2)-Al(1)-N(1) 97.3(2), N(2)-Al(1)-Se(1) 107.5(2), Se(2)-Al(1)-Se(1) 118.69(8), Al(1)-Se(2)-Al(1') 116.77(7).

The X-ray structural analyses of **25** and **26** disclose the lability of the Se-H bonds⁶⁹ and provide the direct evidence that the tendency of forming hydrogen bonds is much lower than in the case of the lighter congeners (S, O). The stabilization of **25** and **26** might be attributed to the bulky chelating ligand. Due to the acidic nature of the SeH protons, compounds **25** and **26** may be useful synthons for preparing Se bridged heterometallic compounds. Moreover,


the synthesis of **25** and **26** also suggests that the selenium atom can insert very easily into the Al-H bond.

Why the reaction of LAlH₂ with one equivalent of selenium only yields **25** instead of LAl(H)SeH is presently not clear. It is difficult to monitor the reaction by NMR spectroscopy due to its heterogeneous nature. However, it was supposed that a Se₂ unit is involved in this reaction. It has been argued^{70c} that the reactions of diorgano-diselenides with AlH₃·NMe₃ proceed via initial complexation of a selenium species creating a hypervalent aluminum center.^{70a, 70b} Following this argument the reaction proceeds via coordination of a Se₂ unit to the aluminum center, followed by a concerted reduction of the activated Se₂ by the two hydride ligands to cleave the Se₂ unit. This assumption can well explain our experimental results that the product is always **25** at room temperature independently of the amount of selenium used for this reaction. The conversion of **25** to **26** clearly indicates that intermolecular elimination of H₂Se is more favored than the intramolecular one.

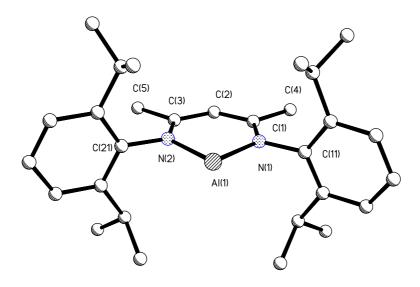
2.3.3 Aluminum diiodide LAII₂ (27) (L = HC[(CMe)(NAr)]₂, Ar = 2, 6-i-Pr₂C₆H₃)

The dimethyl compound LAlMe₂ has been easily prepared by the condensation reaction of LH with equivalent amount of AlMe₃ at room temperature.⁶⁴ Reaction of the dimethyl compound with 2 equivalents of I_2 proceeded under mild conditions to afford the diiodide LAlI₂ (**27**) in high yield.

$$[HC(CMeNAr)_2]AlMe_2 + 2 I_2 \rightarrow [HC(CMeNAr)_2]AlI_2 + 2 MeI$$

Figure 13. ORTEP drawing of **27** (50 % probability). Selected bond lengths (Å) and angles (deg): Al(1)-N(1) 1.872(2), Al(1)-N(2) 1.892(3), Al(1)-I(1) 2.5010(12), Al(1)-I(2) 2.541(2); N(1)-Al(1)-N(2) 99.93(10), N(1)-Al(1)-I(1) 111.31(7), N(2)-Al(1)-I(1) 116.89(8), N(1)-Al(1)-I(2) 112.66(7), N(2)-Al(1)-I(2) 107.53(8), I(1)-Al(1)-I(2) 108.40(5).

Compound **27** has been characterized by multinuclear NMR spectroscopy, EI-MS and elemental analysis. The EI mass spectrum shows the peak of the highest mass at (M^+ - I). The formation of **27** was finally confirmed by single crystal X-ray structural analysis, its structure is shown in Figure 13, followed by selected bond distances and angles. The aluminum atom is four coordinated and has a distorted tetrahedral environment. The Al-I distances (2.5010(12), 2.541(2)Å) lie in the range of the few known structurally characterized organoaluminum iodide compounds.³⁷ The Al-N bond lengths (1.872(2), 1.892(3)Å) are shorter than those of the corresponding dimethyl compound LAIMe₂.⁶⁴


2.3.4 Reduction of LAII₂ – synthesis of a monomeric Al(I) compound LAI (28)

Reduction of **27** with potassium for 3 days afforded the first example of a monomeric Al(I) species LAl (**28**) stable at room temperature in ca. 21 % yield.

 $\{[HC(CMeNAr)_2]AII_2\} + 2 K \rightarrow \{[HC(CMeNAr)_2]AI\} + 2 KI$

Compound 28 crystallized as orange-red crystals from toluene and is soluble in aromatic solvents but only little soluble in aliphatic solvents. It is stable at room temperature under an inert atmosphere, however significant decomposition has been observed above 150 °C. 28 has been characterized by ¹H and ¹³C NMR spectroscopy, EI-mass spectroscopy, elemental analysis, and a single crystal X-ray structural analysis. The NMR spectra of 28 show the expected pattern, which are different from those of the colorless dihydride {[HC(CMeNAr)₂]AlH₂} (24). Single crystals suitable for X-ray structural analysis were obtained from toluene at -30 °C. It crystallizes in the monoclinic space group $P2_1/n$. The structure is shown in Figure 14 with selected bond lengths and angles. It consists of well separated {[HC(CMeNAr)₂]Al} monomers. No close contacts between Al and other atoms are present as indicated by the closest Al-H distance (*i*-Pr, 3.142 Å). As expected, the Al-N bond lengths (1.957(2) Å) are longer than those of the Al(III) compounds $[HC(CMeNAr)_2]AlMe_2$ (av 1.922 Å)⁶⁴ and $[HC(CMeNAr)_2]Al(SeH)_2$ (25) (av 1.899 Å). A similar lengthening has been noted for InC_6H_3 -2,6-Trip₂ (Trip = 2,4,6-*i*-Pr₃C₆H₂) where the In-C distance is ca. 0.10 Å longer than that of the corresponding In(III) derivative.⁷¹ Similarly, the In-N distance in monomeric In(I) tri(pyrazolyl)borates are up to ca. 0.20 Å longer than those in related In(III) derivatives.⁷² Furthermore, the N-Al-N angle (89.86(8)°) in [HC(CMeNAr)₂]AlMe₂ $(96.18(9)^{\circ})^{64}$ 28 is more acute than those of and $[HC(CMeNAr)_2]Al(SeH)_2$ (25) (97.1(4)°). The lengthening of the N-Al bonds and the nearly perpendicular N-Al-N angle indicate that two 3p orbitals on the aluminum are essentially involved in the bonding to the two nitrogen atoms. It has been argued that Al-N bonds in aluminum(III) amide derivatives are largely ionic, which usually leads to relatively short Al-N distances due to the Lewis acidic Al(III) centers.⁷³ The lengthening of the Al-N bonds in **28** also indicates that these bonds are more covalent than those of the Al(III) derivatives and the Al(I) center is much less acidic. It is noteworthy that in 28 the Al atom and the ligand

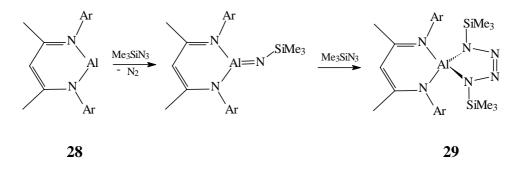
backbone (NCCCN) form an essentially planar six-membered ring, which is in contrast to the Al(III) compounds [HC(CMeNAr)₂]AlMe₂ and [HC(CMeNAr)₂]Al(SeH)₂ (**25**), in which the Al atoms are located outside the planar ligand backbone.

Figure 14. Molecular structure of **28** in the crystal. The hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Al(1)-N(1) 1.957(2), Al(1)–N(2) 1.957(2), N(1)–C(1) 1.340(3), N(2)–C(3) 1.342(3), C(1)–C(2) 1.391(3), C(2)–C(3) 1.391(3); N(1)–Al(1)–N(2) 89.86(8), C(1)–N(1)–Al(1) 128.87(15), C(1)–C(2)–C(3) 126.8(2), N(1)–C(1)–C(2) 122.8 (2).

A further noticeable aspect of the structure of **28** is the coordination number two at the Al center. Compounds with three- and four-coordinated aluminum centers are well established,⁷⁴ however no compounds having aluminum atoms with a two coordinated environment at ambient conditions are reported so far. The unique two-coordinated nature of the Al atom in **28** is undoubtedly due to the protection rendered by the aryl groups and the presence of a non-bonding lone pair of electrons at the Al atom.

A preliminary insight into the peculiarities of the aluminum heterocycle has been gained from *ab initio* calculations,⁷⁵ analyzing the Laplacian of electronic density⁷⁶ within the plane.

First of all, it is noteworthy that a lone pair located at the metal atom is present⁷⁷ forming a quasi-trigonal-planar arrangement around the Al atom with the two Al-N bonds, which allows to argue that the electrons originating from s^2 configuration of the Al(I) atom are stereochemically active, leading to a *sp*-like hybrid. In this connection, one may assimilate the off-cycle side of the aluminum(I) atom to a Lewis base. At the same time, the charge deficiency close to the Al atom in the semi-plane of the cycle can be described as a Lewis acid type of behavior.


In summary, we have prepared and structurally characterized the first example of a monomeric Al(I) compound stable at room temperature. The existence of a non-bonding lone pair of electrons at aluminum indicates a singlet carbene-like character of the aluminum atom. The other reported group 13 carbene is the anionic $[CHN(t-Bu)]_2Ga^{-.78}$ Compound **28** could be used in carbene type reactions and as a Lewis base as well as a reducing reagent, which may result in a broad and interesting chemistry.

2.3.5 Reaction of LAI (28) with bulky organic azides

The reactions of $[Cp^*Al]_4$ ($Cp^* = C_5Me_5$) with various organic azides at elevated temperatures have been reported to yield four-membered Al₂N₂ ring systems.²³ Being interested in binary Al-N systems, we began to explore the reactivity of compound **28** with selected organic azides. Reaction of **28** with 2 equivalents of trimethylsilyl azide SiMe₃N₃ at low temperatures (-78 °C to room temperature) afforded the first Group 13 metalloid MN₄ ring system {HC[(CMe)(NAr)]₂}Al[(NSiMe₃)₂N₂] (**29**) (Scheme 9).

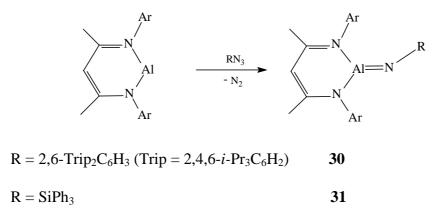
The higher reactivity of **28** compared to $[Cp^*Al]_4$ toward the azide at low temperature may be attributed to the monomeric nature of **28**. The formation of an aluminum containing tetrazole **29** is particularly interesting since the heavier Group 14 elements containing tetrazoles were prepared by [2+3] cycloaddition reactions of R₂M=NR' (M = Si, Sn; R, R' = organic group) unit with organic azides.⁷⁹ Similarly, we therefore assume that the reaction of **28** with Me₃SiN₃ proceeds through transient '{HC[(CMe)(NAr)]₂]Al=NSiMe₃}', although stable compounds containing an Al=N unit have not yet been reported (Scheme 9). When only one equivalent of Me₃SiN₃ was employed, the sole isolated products were **29** and unreacted **28**, indicating that the transient '{HC[(CMe)(NAr)]₂]Al=NSiMe₃}' is highly reactive. No dimerization of the intermediate has been observed due to the bulky chelating β -diketoiminato ligand which obviously prevents association.

Scheme 9

Compound **29** has been characterized by ¹H, ¹³C, and ²⁹Si NMR spectroscopy, EI mass spectrum, and elemental analysis. The EI mass spectrum shows a peak of highest mass which is consistent with the formulation as **29**. The NMR spectra all give two distinct singlets for the SiMe₃ groups, indicating the two groups in different environments. This is also reflected from the ¹H NMR pattern of the β -diketiminato ligand, in which two sets of signals for the γ *CH* and four doublets for *CH*Me₂ protons are observed. In order to confirm the bonding in the AlN₄ ring system, it was important to perform single crystal X-ray structural analysis. Yellow crystals of **29** suitable for X-ray analysis were obtained from toluene at -30 °C. **29** crystallizes in the monoclinic space group *P*2₁/*n*. Its structure is shown in Figure 15 with selected bond distances and angles. The aluminum atom is coordinated by four nitrogen atoms and connects the two rings in a distorted tetrahedral arrangement. The Al(1)-N(5) (1.896(2) Å) and Al(1)-N(6) (1.8997(14) Å) distances fall within the range of those in other β -diketoiminato aluminum derivatives. The Al(1)-N(4) distance (1.8152(15) Å) is shorter (ca. 0.036 Å) than that of Al(1)-N(1) (1.851(2) Å), which is in accordance with the NMR signals for the SiMe₃ nuclei, indicating the solid state structure of **29** is maintained in solution. Similar short Al-N bond lengths have only been found in three coordinated aluminum amide complexes⁸⁰ and a few four coordinated aluminum amide dihalides.⁸¹ However, they are unusual for the very crowded molecule **29**. The shortening of the Al-N bond length and the N(1)-Al(1)-N(4) angle (87.15(7)°) are indications of increased ionic interactions between Al and the N₄ unit. The N(2)-N(3) bond length (1.263(2) Å) is consistent with a N=N double bond. The N(1)-N(2) and N(3)-N(4) (1.414(2) Å) bond lengths are slightly shorter than a N-N single bond (ca 1.50 Å).

It is interesting to note that the five-membered AlN₄ ring is essentially planar and that the geometries at N(1) and N(4) are both trigonal planar (sums of angles 360.0° and 359.7°, respectively). This planar arrangement of the AlN₄ ring may be comparable to Group 13 element diazabutadiene complexes which feature planar C₂N₂M (M = B, Ga) five-membered rings. In the latter case, a 6π -electron system for the C₂N₂M ring is suggested to explain the bonding situation of the diazabutadiene derivatives.⁸²

Compound **29** represents the first structurally characterized Group 13 element MN_4 system although various binary M-N (M = Group 13 element) rings have been reported, which show unique structural features.⁸³ Boron tetrazoles have been reported previously, but not structurally characterized.⁸⁴ The synthesis of **29** under mild conditions indicates that **28** is very reactive toward organic azides.

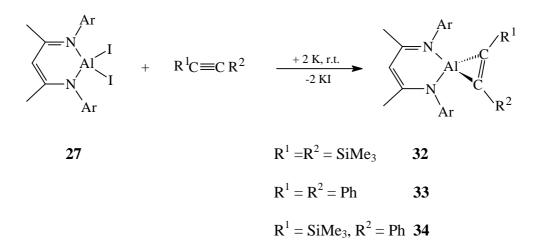

Figure 15. ORTEP drawing of **29** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Al(1)-N(1) 1.851(2), Al(1)-N(4) 1.8152(15), Al(1)-N(5) 1.896(2), Al(1)-N(6) 1.8997(14), N(1)-N(2) 1.414(2), N(2)-N(3) 1.263(2), N(3)-N(4) 1.414(2), Si(1)-N(1) 1.749(2); N(1)-Al(1)-N(4) 87.15(7), N(1)-Al(1)-N(5) 117.01(7), N(2)-N(1)-Al(1) 109.10(11), N(2)-N(1)-Si(1) 108.20(11), N(2)-N(3)-N(4) 116.44(14), N(3)-N(2)-N(1) 116.68(15), N(4)-Al(1)-N(6) 117.70(7), N(5)-Al(1)-N(6) 96.50(6), Si(1)-N(1)-Al(1) 142.66(9).

Indeed, reactions of **28** with the extremely bulky aryl azide 2,6-Trip₂C₆H₃N₃ (Trip = 2, 4, 6-i-Pr₃C₆H₂)⁸⁵ and the silyl azide Ph₃SiN₃ ^{23b} afforded LAINC₆H₃-2,6-Trip₂ (**30**) and LAINSiPh₃ (**31**) in good yields, respectively. Both compounds are soluble in aromatic solvents CH₂Cl₂, and THF, but sparingly soluble in hydrocarbon solvents. The compounds have been characterized by EI-MS, IR and multinuclear NMR spectra. The EI-MS spectra for both compounds show the molecular ions which is consistent with the formulations of **30** and **31** as monomers. The NMR spectra of **30** suggest a highly asymmetric molecule which may arise from steric factors. Unfortunately attempts to grow single crystals of the two interesting

48

compounds in various solvents (toluene, benzene, CH_2Cl_2 , $CHCl_3$, THF) at different temperatures were unsuccessful to date.

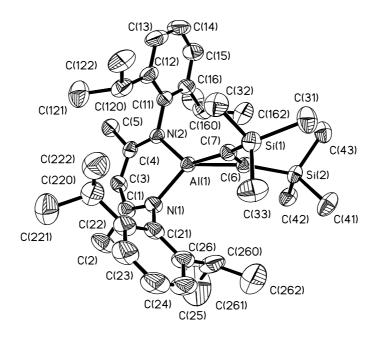
Scheme 10



2.3.6 Reductive coupling reaction of LAII₂ (27) in the presence of alkynes

The compound LAII₂ (27) is the first aluminum dihalide that can be reduced to a monomeric Al(I) compound at room temperature. We benefitted from this precursor to prepare some unique species by facile alkali metal reduction which otherwise are not easily available. Reduction of 27 with potassium in the presence of bis(trimethylsilyl)alkyne, diphenylalkyne and 1-phenyl-2-trimethylsilylalkyne at room temperature afforded the aluminum η^2 -alkine complexes LAI[η^2 -C₂(SiMe₃)₂] (32), LAI[η^2 -C₂Ph₂] (33) and LAI[η^2 -C(Ph)C(SiMe₃)] (34) in modest yields, respectively (Scheme 11). Compound 32 was isolated as red-black crystals. It is soluble in hydrocarbon solvents and extremely air- and moisture-sensitive as indicated by the immediate color change from red black to yellow when crystalline 32 was exposed to air. Yellow crystals of 33 and orange crystals of 34 were obtained from toluene, they are only little soluble in *n*-hexane. Reductive coupling reactions in the presence of alkynes have been widely used for the preparation of various Group 4 metallocene alkine complexes⁸⁶ and have also been employed for trapping reactive silylene

intermediates.⁸⁷ In order to gain insight into the possible reductive coupling mechanism, the straightforward reaction monomeric aluminum(I) compound of the 28 with bis(trimethylsilyl)alkyne was attempted. The reaction was carried out under the same conditions as the reductive coupling reaction, and after work-up only the starting materials were recovered. This result indicates that reductive coupling does not occur through a [1+2]cycloaddition of 28 with the alkyne. A different route involving in a stepwise reduction of 27 to generate an intermediate aluminum(II) species, which subsequently couples with alkynes, might be a plausible mechanism.


Scheme 11

Compounds 32 -34 have been characterized by EI-mass, ¹H, ¹³C NMR, and IR spectra. The EI-MS spectrum of 32 shows the (M⁺ - SiMe₃) ion as the fragment with the highest mass, while those of 33, 34 give the parent ions. The ¹³C NMR spectrum of 32 shows a weak resonance at δ 228.5 ppm, corresponding to the coordinated C=C group. In the ¹³C NMR spectrum of 33 the corresponding resonance appears at δ 177.2 ppm, and in that of 34 two resonances (δ 211.9, 187.2 ppm) for the carbon atoms of the coordinated C=C group were observed. The IR spectra for the three compounds all show a characteristic absorption band centering 1590 cm⁻¹, which could be assigned to the stretching frequencies of the coordinated C=C groups.

The variable temperature ¹H NMR investigations of **32** (193 - 373 K) show that **32** does not dissociate up to 373 K, indicating that the C=C moiety is strongly bonded to the aluminum atom of **32** and the Al-C-C ring is intact in toluene solution even at high temperature. This result suggests that the compound can be described as rather a metallocyclopreopene (Al(III)) than an aluminum alkyne complex (π complexation). The assumption is also supported by ESR studies of compounds **32** and **33**, in those spectra no signals were observed for both compounds. Furthermore the ²⁷Al NMR spectrum of **32** shows a resonance (90 ppm) in the range of those for four coordinated aluminum compounds. In contrast, the Al(I) compound **28** gives the most highly shieded singlet (590 ±40 ppm, $v_{1/2} \approx 30,000$ Hz) experimentally observed so far. The detailed explanation for this data is currently unavailable although the ²⁷Al NMR resonaces for monovalent aluminum compounds have been computed ranging from -170 to 850 ppm.

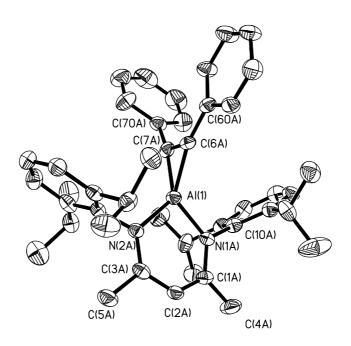
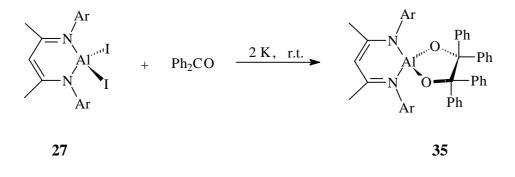

The UV spectra of the colored solution of compounds 32 and 33 in *n*-hexane show several maxima in the range of 240 to 400 nm. A maximum at 320 nm ($\varepsilon \approx 4000 \text{ M}^{-1}\text{cm}^{-1}$) for 32 as well as a maximum at 340 ($\varepsilon \approx 3000 \text{ M}^{-1}\text{cm}^{-1}$) for 33 disappears when the solutions are exposed to air. The absorptions might be due to electronic transitions within the Al-C-C three-membered ring system.

Figure 16. ORTEP drawing of **32** (50% thermal ellipsoids). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-N(1) 1.889(2), Al(1)-N(2) 1.892(2), Al(1)-C(6) 1.899(3), Al(1)-C(7) 1.908(3), C(6)-C(7) 1.382(4); C(6)-Al(1)-C(7) 42.56(11), N(1)-Al(1)-N(2) 97.34, Al(1)-C(6)-C(7) 69.1(2), C(7)-C(6)-Si(2) 134.0(2), Al(1)-C(7)-C(6) 68.4(2), C(6)-C(7)-Si(1) 133.8(2).

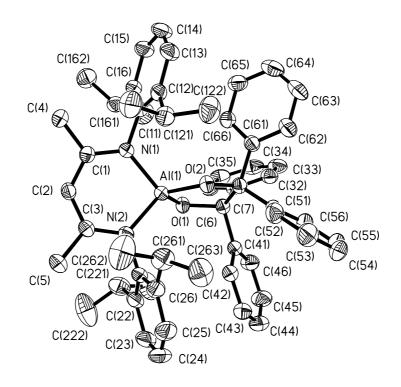
Finally the structures of **32** and **33** were established unambiguously by single crystal X-ray structural analyses. The structures are shown in Figures 16 and 17 with important bond lengths and angles, respectively. The C(6)-C(7) bond length (1.382(4) Å) in **32** is consistent with a double bond character. The Al(1)-C(6) and Al(1)-C(7) distances (average 1.90 Å) are shorter than those of the corresponding dimethyl derivative $\{HC[(CMe)(NAr)]_2\}AIMe_2$ (average 1.95 Å)⁶⁴ and also much shorter than those of the aluminum alkynyl-bridging carbon distances (av 1.992 Å) in $[Ph_2Al(CCPh)]_2^{88a}$ and vinyl-bridging carbon distances (av 2.11 Å) in $\{i$ -Bu₂Al[(CHCH(*t*-Bu))]_2.^{88b} Similar short bond lengths have been found only in a few neutral organoaluminum compounds containing electron withdrawing as well as small groups.⁸⁹. The angles C(6)-C(7)-Si(1) (133.8(2)°) and C(7)-C(6)-Si(2) (134.0(2)°) are

comparable to those in η^2 -silylalkyne Group 4 metallocene complexes.⁸⁶ The Al(1) atom resides outside of the β -diketiminato ligand backbone NCCCN (by 0.42 Å), the two fused planes (N(1)-Al(1)-N(2) and C(6)-Al(1)-C(7) (angle 93°) are arranged nearly perpendicular to each other. The C(6)-Al-C(7) angle (42.56(11)°) is very acute.

Figure 17. ORTEP drawing of **33** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg) for one of the four independent molecules in the unit cell: Al(1)-N(1A) 1.885(3), Al(1)-N(2A) 1.875(4), Al(1)-C(6A) 1.889(4), Al(1)-C(7A) 1.894(3), C(6A)-C(7A) 1.356(5); C(6A)-Al(1)-C(7A) 42.02(14), C(7A)-C(6A)-Al(1) 69.2(2), C(6A)-C(7A)-Al(1) 68.80(19), N(2A)-Al(1)-N(1A) 97.03(13), Al(1)-C(6A)-C(60A) 160.0(2), Al(1)-C(7A)-C(70A) 160.9(3), C(6A)-C(7A)-C(70A) 129.8, C(7A)-C(6A)-C(60A) 130.4(3).


Compound **33** crystallizes in the monoclinic space group $P2_1$. The unit cell contains four molecules only marginally different in bond lengths and angles. Figure 17 shows one of the four independent molecules in the unit cell. The structure of **33** is similar to that of **32**. The Al(1)-C(6A) and Al(1)-C(7A) bond lengths are quite similar to those of **32**. The C(6A)-

C(7A) distances (1.356(5) Å) is slightly shorter than that of **32** (1.382(4) Å), consequently the C(6A)-Al(1)-C(7A) angle (42.02(14)°) is slightly smaller than that of **32** (42.56(12)°). The C(60A)-C(6A)-C(7A) and C(70A)-C(7A)-C(6A) angles (av 130°) are smaller than those of **32** (average 134°). We reason that compounds **32 - 34** should show high reactivities due to the highly strained three-membered C-C-Al ring, which is not only reactive but also makes the aluminum center accessible to other unsaturated molecules although the Al atom in this compound is four coordinated.

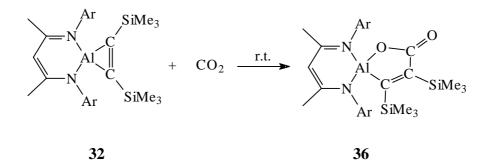

2.3.7 Reductive coupling reaction of LAII₂ in the presence of Ph₂CO

Reduction of $LAII_2$ (27) with potassium in the presence of benzophenone at room temperature unexpectedly afforded an aluminum pinacolate LAl[O₂(CPh₂)₂] (35) despite of the fact that only a 1 : 1 molar ratio of LAII₂/Ph₂CO was employed. Coupling of two carbonyls has been well investigated with various reduction systems, in which either pinacols or alkenes (McMurry reaction) have been obtained depending on the reduction systems and carbonyls used.⁹⁰ Many examples of carbonyl coupling reactions have been demonstrated with electron-rich *d*-block metals, lanthanoides, and actinoides.⁹⁰ Organometallic compounds of early transition metals also have been used for reductive coupling of carbonyls in investigating the mechanism of carbonyl coupling and stereospecific carbonyl coupling reactions.⁹¹ However, to the best of our knowledge the use of aluminum compounds for carbonyl coupling has not been reported to date. It is well known that benzophenone reacts with Na and K to form a stable radical anion (ketyl), which does not dimerize under normal conditions due to steric and electronic factors. It can be rationalized that the potassium ketyl formed reacts with 27 with concomitant potassium reduction to afford the η^2 -ketone intermediate (LAIOCPh₂),⁹² which is highly reactive and couples with another molecule of the ketone.

Scheme 12

Compound **35** has been characterized by NMR and EI-MS spectra, which are consistent with the proposed structure. The molecular array was finally established by single crystal X-ray structural analysis. The structure is shown in Figure 18 with selected bond distances and angles. The aluminum atom is four coordinated and acts as the center atom for the two fused rings. The Al-N distances (average 1.90 Å) are similar to those of LAl(SeH)₂ (**25**) (av 1.90 Å) and LAl[(NSiMe₃)₂N₂](**29**) (average 1.89 Å). The Al-O distances (av 1.73 Å) are among the shortest known Al-O distances (1.65 - 2.0 Å).⁸¹ It is noteworthy that the C(6)-C(7) bond length (1.670(3) Å) is longer by 0.13 Å compared to normal C-C single bond distances (ca. 1.54 Å) due to the electronic and steric effects afforded by two phenyl groups on each carbon atom. The O(1)-Al(1)-O(2) angle (92.70(7)°) is the smallest among the internal angles of the five-membered AlOCCO cycle, consequently the Al-O-C angle (average 116 °) is larger than the average internal angle of a five-membered ring (108°). A smaller O-Al-O angle would increase the ionic character of the Al-O bonds.

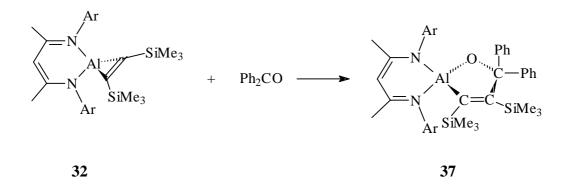
Figure 18. ORTEP drawing of **35** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-O(1) 1.7326(15), Al(1)-O(2) 1.7350(14), Al(1)-N(1) 1.8987(18), Al(1)-N(2) 1.9038(14), O(1)-C(6) 1.430(2), C(6)-C(7) 1.670(3); N(1)-Al(1)-N(2) 96.89(8), O(1)-Al(1)-O(2) 92.70(7), O(1)-Al(1)-N(1) 124.69(7), O(2)-Al(1)-N(1) 111.39(7), O(1)-Al(1)-N(2) 110.57(7), O(2)-Al(1)-N(2) 123.09(7).

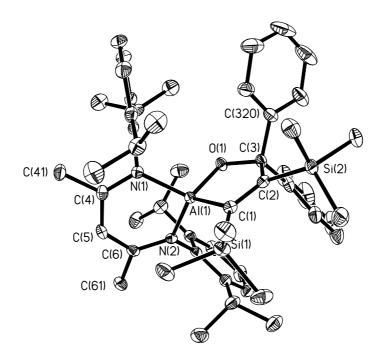

2.3.8 Reaction of LAI[η^2 -C₂(SiMe₃)₂] with CO₂, Ph₂CO, PhCN, and *t*-BuCN

Reductions of carbonyls by activated metals or metal complexes constitute a powerful strategy for C-C bond formation reactions.⁹⁰ We have shown that the LAI moiety can activate alkynes by forming strained ring systems. Therefore it is possible that the LAI moiety as a template allows unsaturated molecules to couple with each other and leads to organic chain growing reactions. It has been reported that aluminum alkyls or hydrides are excellent reducing reagents for carbonyls, nitriles and alkynes.^{1b} Using strained ring systems for this

reductions should result in different reaction patterns. In the first place, we examined the reaction of **32** with some selected unsaturated compounds.

Reaction of **32** with CO₂ at room temperature leads to C-C coupling with the formation of a new class of aluminum heterocycles, LAI[OC(O)C(SiMe₃)C(SiMe₃)] (**36**), in high yield (Scheme 13). The EI-MS spectrum shows the molecular ion with high intensity consistent with the formulation as a monomer. The ¹H, ¹³C and ²⁹Si NMR spectra all gave two distinct singlets for the Me₃Si nuclei, indicating that CO₂ only inserts into one of the Al-C bonds. The IR spectrum shows a very strong band at 1666 cm⁻¹, suggesting the formation of an α,β unsaturated ketone unit. The ease of CO₂ insertion at a four-coordinated aluminum center may be attributed to the high strain of the three membered alumirene ring structure. CO₂ insertion reactions with aluminum trialkyls were studied by Ziegler *et al.* a few decades ago.⁹³ Subsequently it was found that CO₂ can insert selectively into vinylalanes. The insertion products can be converted to unsaturated acids with complete retention of the geometrical configuration through hydrolysis.⁹⁴ However, very little attention has been drawn to unsaturated ring systems for such transformations.⁹⁵


Scheme 13



Reaction of **32** with Ph₂CO in diethyl ether at room temperature also led to C-C coupling with the formation of an aluminadihydrofuran LAI[OCPh₂C(SiMe₃)C(SiMe₃)] (**37**) despite of the bulkiness of the ketone (Scheme 14). It has been observed previously that trialkyl aluminum compounds can reduce carbonyls with either alkyl insertion or β -hydrogen insertion to form aluminum oxides.^{1b} The neat insertion of carbonyls into an Al-C (vinyl) bond was observed in this case. This reaction pattern is different from that of zirconocene alkyne complexes in which displacement of the coordinated alkyne by the ketone afforded an zirconocene η^2 -ketone complex.^{92b} Compound **37** is the first example of an aluminum compound with a metalladihydrofuran ring structure.

Compound **37** has been characterized by spectroscopic methods and single crystal X-ray structure analysis. The structure is shown in Figure 19 with important bond distances and angles. The aluminum atom is four coordinated and has a distorted tetrahedral geometry as the angles N(1)-Al(1)-N(2) (98.16(6)° and O(1)-Al(1)-C(1) (93.68(6)°) are smaller than 109.28° for an ideal tetrahedral array. The Al(1)-O(1) distance (1.7278(12) Å) is comparable to those of **35** (av 1.73 Å) and shorter than the sum of covalent radii of Al and O, indicating increased ionic interaction between the two atoms. The bond length C(1)-C(2) (1.359(2) Å) is consistent with a C=C double bond character though shorter than that of **32** (C(6)-C(7) (1.382(2) Å) due to the strained three-membered Al(1) C(6)-C(7) ring in **32**. The Al(1)-C(1) bond length (1.9901(16) Å) is longer by ca. 0.09 Å than those of the parent compound **32** (av 1.90 Å).

Scheme 14

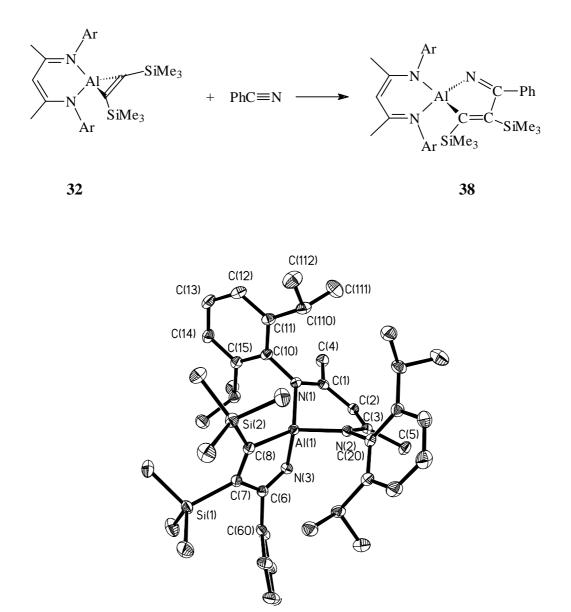


Figure 19. ORTEP drawing of **37** (50 % probability). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-O(1) 1.7278(12), Al(1)-N(1) 1.9189(15), Al(1)-N(2) 1.9169(14), Al(1)-C(1) 1.9901(16), O(1)-C(3) 1.4287(11), C(1)-C(2) 1.359(2), C(2)-C(3) 1.578(2); O(1)-A(1)-C(1) 93.68(6), N(1)-Al(1)-N(2) 98.16(6), O(1)-Al(1)-N(2) 119.90(6), C(2)-C(1)-Al(1) 104.46(11).

Compound **32** also reacted with benzonitrile PhCN at room temperature to give a new aluminum containing unsaturated ring system LAI[NC(Ph)C(SiMe₃)C(SiMe₃)] (**38**) in moderate yield (Scheme 15). Compound **38** crystallized from diethyl ether as orange crystals, well soluble in aromatic solvents but only sparingly soluble in *n*-hexane. The EI-MS spectrum shows a peak of highest mass at (M⁺ + H). The ¹H and ²⁹Si NMR spectra give two distinct singlets for the SiMe₃ nuclei respectively, indicating that PhCN inserts only into one of the Al-C bonds in **32**. The ¹³C NMR spectrum of **38** shows a singlet (δ 183.8 ppm) corresponding to the unsaturated carbon of the Al-C unit.

Scheme 15

Figure 20. ORTEP drawing of **38** (50% probability). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-N(1) 1.9109(13), Al(1)-N(2) 1.8887(13), Al(1)-N(3) 1.8678(15), Al(1)-C(8) 1.9917, N(3)-C(6) 1.2741(19), C(6)-C(7) 1.552(2), C(7)-C(8) 1.366(2); N(1)-Al(1)-N(2) 96.39(6), N(3)-Al(1)-C(8) 93.33(7).

The X-ray structure determination of **38** (Figure 20) presents the detailed molecular array and important structural parameters. The aluminum atom is coordinated to a terminal iminato group and a vinyl group forming a planar five-membered AINCCC ring (sum of internal

angles 538.24°). The Al-N(3) distance (1.8678(15) Å) is significant shorter than those reported for the aluminum iminato complexes $\{(i-Bu)_2Al[\mu^2-N=C(H)(C_6H_3-2,6-Me_2)]\}_2$ (1.248(7) Å),⁹⁶ and $\{Me_2Al[\mu^2-N=CMe(t-Bu)]\}_2$ (1.96 Å),⁹⁷ in which the iminato groups are bridging two aluminum atom, due to the low coordination number (2) of the iminato moiety in **38**. The N(3)-C(6) (1.2741(19) Å) and C(7)-C(8) (1.366(2) Å) distances are consistent with N=C and C=C double bonds.

Unexpectedly, the reaction of **32** with equivalent of *t*-BuCN at room temperature led to the displacement of the alkyne moiety with the formation of the first aluminum bis(iminato) complex LA1[N₂C₂(*t*-Bu)₂] (**39**) (Scheme 16), which features an unprecedented aluminum containing imidazole ring. The detailed mechanism for the different reaction patterns of **32** towards PhCN and *t*-BuCN is currently not clear. It is possible that initial coordination of a nitrile molecule to **32** takes place, as a consequence of steric bulk and electron donation capacity of the *t*-Bu group, the carbon of the CN group is not easily attacked by the acetylene carbon as in the case of PhCN, instead, *t*-BuCN replaces Me₃SiCCSiMe₃ to give a metal η^2 nitrile intermediate (Scheme 16),⁹⁸ which is highly reactive and immediately couples with another molecule of *t*-BuCN to give **39**. The isolation of this interesting intermediate is under investigation.

Aluminum iminato complexes prepared by reduction of nitriles with trialkylalane or alkylaluminum hydrides have been employed as intermediates in the preparation of aldehydes, primary amines, Schiff-bases, and azacyclic compounds.^{99,100} However, the utilization of unsaturated aluminum ring systems for the reduction of nitriles has not been reported to date. Here formally coupling of an unsaturated molecule with a nitrile induced by an aluminum complex was observed for the first time. Obviously, this is a new approach to synthesize novel cyclic aluminum iminato complexes.

Scheme 16

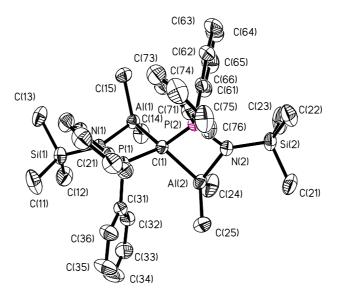


Figure 21. Molecular structure of 39 in the crystal. No exact bonding parameters are available due to the poor quality of the crystal investigated.

The ¹H NMR spectrum of **39** does not show low field singlets for SiMe₃ protons, a singlet (δ 1.25 ppm) can be assigned to *t*-Bu protons. The integration of all signals is consistent with the formulation of **39**. The EI-MS spectrum gives a peak of highest mass at [M⁺-*t*-Bu]. The molecular structure of this unique compound was determined by single crystal X-ray structure analysis. Single crystals of **39** were obtained from diethyl ether. Unfortunately the quality of the crystal measured was not satisfactory to enable determination of precise bond

parameters, however, the molecular array of **39** has been elucidated and is shown in Figure 21. The structure is consistent with the spectroscopic data of **39**.

2.3.9 Syntheses and characterization of L'AlI₂ (40) and L'GaCl₂ (41) (L' =


$\{HC[(CMe)(NAr')]_2\}^{-}, Ar' = 2,6-Me_2C_6H_3)$

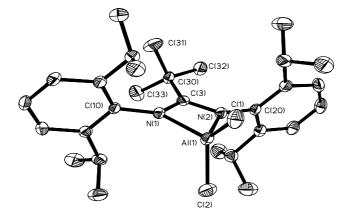
A colorless product obtained from the reaction of L'H (L' = { $HC[(CMe)(NAr')]_2$ }, Ar' = 2,6-Me₂C₆H₃) with equivalent amount of AlMe₃ at room temperature followed by reaction with two equivalents of I₂ in refluxing toluene afforded the aluminum diiodide L'AlI₂ (**40**) in high yield. The L'GaCl₂ (**41**) was prepared by the reaction of LiL' with GaCl₃ in diethyl ether. The EI-MS spectra of the two compounds both show the parent ions consistent with a monomeric nature in the gas phase.

Reductions of **40** and **41** with potassium in toluene afforded an orange powder and a red viscous oil, respectively, which could not be crystallized nor characterized to date.

2.4 Synthesis of aluminum methanediide complex (42)

It has been reported that the bis(iminophosphorano)methane $CH_2(Ph_2PNSiMe_3)_2$ can be doubly lithiated by MeLi or PhLi.¹⁰¹ Several interesting Group 4 carbene complexes were obtained with the doubly lithiated ligand.¹⁰² Being interested in employing various multidentate ligands in aluminum chemistry, we tried to use aluminum alkyls or hydrides to deprotonate the ligand. The reactions of AlMe₃ and AlMe₂H with $CH_2(Ph_2PNSiMe_3)_2$ in refluxing toluene both afforded the bimetallic compound **42** with the elimination of CH_4 and H_2 , respectively. The ³¹P NMR spectrum consists of one sharp singlet at δ 27.6 ppm substantially shifted downfield (ca. 33 ppm) relative to the free ligand. The ¹H NMR deprotonated. Its molecular structure was determined by single crystal X-ray structure analysis. The structure is shown in Figure 22 with important bond lengths and angles. The compound has a spirocyclic dimetallic framework which consists of two nearly planar four-membered rings with a spirocyclic carbon atom connecting two dimethylaluminum units. The dihedral angle between these two planes is 75.28(5)°. The central carbon atom C(1) has a flattened tetrahedral environment. The Al-C bond lengths in the bridging carbene center (Al(1)-C(1) 2.122(3), Al(2)-C(1) 2.114(2) Å) are slightly longer than the Al-C (methyl) distances (average 1.963 Å).

Figure 22. ORTEP drawing of **42** (50% probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Al(1)-C(1) 2.122(3), Al(2)-C(1) 2.114(2), Al(1)-N(1) 1.927(2), Al(2)-N(2) 1.926(2); Al(1)-C(1)-Al(2) 129.02(12), Al(1)-C(1)-P(1) 83.97(10), Al(2)-C(1)-P(2) 84.00(10), N(1)-Al(1)-C(1) 79.93(10), N(2)-Al(2)-C(1) 80.32(9).


2.5 Aluminum compounds with the bulky amidinato ligand *t*-BuC(NAr)₂

Jordan and co-workers have reported that dimethyl aluminum compounds incorporating bulky amidinate ligands can act as precursors for generating low-coordinate aluminum cationic species when they were reacted with $B(C_6F_5)_3$.¹⁰³ However, no stable three coordinated aluminum cations have been obtained with relatively bulky amidinato ligands.¹⁰⁴ We therefore prepared an extremely bulky amidinato ligand *t*-BuC(NAr)(NHAr) (Ar = 2,6-*i*-Pr₂C₆H₃) with the expectation of obtaining stable cationic systems. In addition, we have shown in earlier work that it is possible to generate species with low-valent aluminum by using very bulky bidentate ligands.

The synthesis of the aluminum complex *t*-BuC(NAr)₂AlMe₂ (**43**) was accomplished by the direct reaction of *t*-BuC(NAr)(NHAr) with equivalent amounts of AlMe₃ at room temperature. The compound has been characterized by NMR and EI-MS spectra. Its molecular structure was determined by single crystal X-ray structure analysis and is shown in Figure 23 with selected bond lengths and angles. The amidinato ligand is coordinated to the aluminum atom in a chelating mode and forms a planar four-membered heterocyclic AlNCN ring. The N(1)-Al(1)-N(2) angle (68.07(6)°) is acute and comparable to those of other known amidinato aluminum compounds.¹⁰⁵

The reaction of **43** with 2 equivalents of I₂ in refluxing toluene afforded the corresponding diiodide compound *t*-BuC(NAr)₂AlI₂ (**44**) in high yield. It has been characterized by NMR, EI-MS spectra, and single crystal X-ray structure analysis. Its structure is shown in Figure 24 with important bond lengths and angles. The structure of **44** resembles closely to that of **43**. However, the core angle N(1)-Al(1)-N(2) (70.50(10)°) is more open than that of **43**. Consistently the Al-N bond lengths (average 1.897 Å) are shorter than those of **43** (average 1.933 Å). This is probably due to the fact that the halide ligand is more electrophilic than the methyl group, which leads to a more acidic aluminum center and increases the ionic character

of the aluminum atom. The Al-I distances (average 2.50 Å) are only marginally shorter than those of $LAlI_2$ (27) (av 2.52 Å).

Figure 23. ORTEP drawing of **43** (50% probability). Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Al(1)-C(1) 1.955(2), Al(1)-C(2) 1.952(2), Al(1)-N(1) 1.9386(15), Al(1)-N(2) 1.9277(15); N(1)-Al(1)-N(2) 68.07(6)

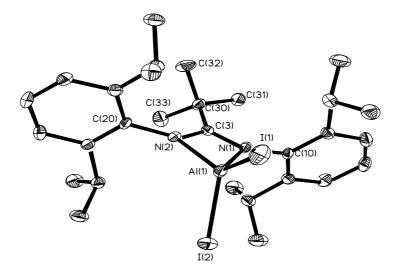


Figure 24. ORTEP drawing of 44 (50% probability). Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al(1)-I(1) 2.5163(10), Al(1)-I(2) 2.4941(10), Al-N(1) 1.895(3), Al(1)-N(2) 1.898(2); N(1)-Al(1)-N(2) 70.50(10).

Reduction of **44** with potassium led to isolation of white crystals, which were characterized by EI-MS probably to be the potassium salt of the ligand.

2.6 Reactions of aluminum hydride and hydroaluminate with bulky amides

2.6.1 Reaction of ArNH₂ with AlH₃·NMe₃

Bulky aryl amide ligands of the type ArN^{106} or Ar(R)N ($Ar = 2,6-i-Pr_2C_6H_3$)¹⁰⁷ have been employed for the stabilization of some interesting main group compounds.

The reaction of ArNH₂ with AlH₃·NMe₃ in refluxing toluene afforded the dimeric aluminum amide hydride (ArNAlH)₂ (**45**). Compound **45** has been characterized by ¹H and ²⁷Al NMR spectra and elemental analysis and its structure has been determined by single crystal X-ray structure analysis. Unfortunately some atoms are disordered. The Al-N (amide) distances (av 1.827 Å) are very short for a four coordinated aluminum center. The Al-N (NMe₃) distances (av 1.970 Å) are in the range of normal Al-N distances (1.8 - 2.0 Å).¹⁰⁶

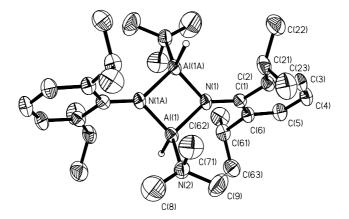
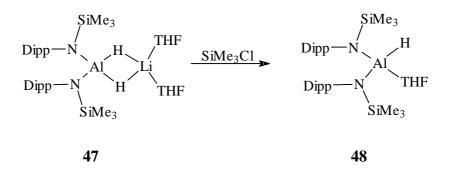


Figure 25. ORTEP drawing of 45. No exact bonding parameters are available due to disorders.

2.6.2 Reactions of sterically demanding amides with LiAlH₄

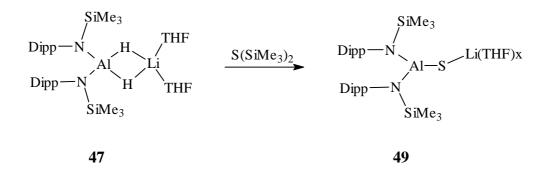

LiAlH₄ is a very important reducing reagent and has a polymeric structure in the solid state. Recent studies have demonstrated that dimeric or monomeric lithium hydridoaluminates can be obtained with bulky ligands. Furthermore, these ligands could render hydridoaluminates soluble in hydrocarbon solvents and increase the reactivities and selectivities of the hydrides as reducing agents. Substituted trihydridoaluminates are normally difficult to isolate because the species (RAlH₃) readily dissimulate in solution to give (R₂AlH₂) and (AlH₄) when the organic groups R are small.¹⁰⁸ Well characterized low-aggregated hydridoaluminates are rare.¹⁰⁹ In this section the reactions of LiAlH₄ with Mes^{*}NH₂ (Mes^{*} = 2,4,6-*t*-Bu₃C₆H₂) and Dipp(SiMe₃)NH (Dipp = 2,6-*i*-Pr₂C₆H₃) are presented.

The reaction of Mes^{*}NH₂ with LiAlH₄ in THF at 40 °C gave Mes^{*}NHAlH₃Li(THF)₃ (**46**) in high yield. Additional refluxing does not promote further deprotonation. Its ¹H NMR spectrum shows a singlet for the NH proton (δ 3.49 ppm), and the IR spectrum a sharp band for the N-H vibration (ν = 3411 cm⁻¹) and a broad Al-H absorption (ν = 1691 cm⁻¹). These spectral data are consistent with the formulation of **46**.

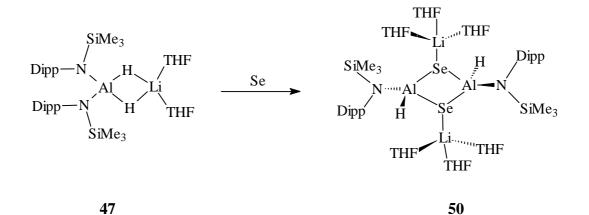
The reaction of LiAlH₄ with 2 equivalents of amide Dipp(SiMe₃)NH in refluxing THF afforded [Dipp(SiMe₃)N]₂AlH₂Li(THF)₂ (**47**) in modest yield. Compound **47** may have a monomeric structure as [N(SiMe₃)₂]₂AlH₂Li(OEt)₂ in the solid state.^{109a}

47 was reacted with SiMe₃Cl in *n*-hexane to afford solvated neutral aluminum hydride [Dipp(SiMe₃)N]₂AlH(THF) (**48**, Scheme 17). It has been characterized by NMR spectra. Attempts to desolvate the coordinated THF at high temperature led to the decomposition of the hydride.

Scheme 17

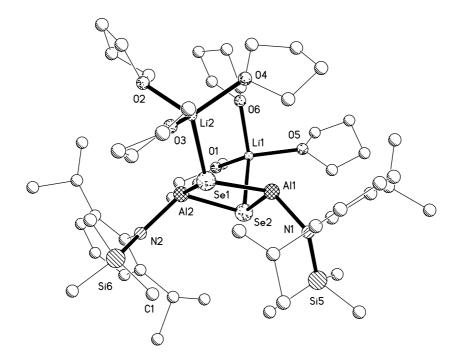

2.6.3 Synthesis of lithium hydridoaluminum chalcogenides

We have shown previously that neutral aluminum hydrides are excellent precursors for the preparation of aluminum chalcogenides by the reactions of elemental chalcogens with selected hydrides (Section 2.3). We reasoned that it is possible to prepare charged aluminum chalcogenides by the reactions of hydridoaluminates with elemental chalcogens (S, Se, Te) or $E(SiMe_3)_2$ (E = S, Se) by chalcogen insertion or elimination of SiMe₃H molecules due to the increased reactivity of hydridoaluminates compared to neutral aluminum hydrides. In the quest for π -bonded systems anionic species seemed to be suited candidates to examine. Indeed, previously reported complexes [Mes₂B=PRLi(Et₂O)₂]¹¹⁰ and [Mes₂B=AsPhLi(THF)₃] (Mes = 2,4,6-Me₃C₆H₂) and the corresponding complex with the lithium atom separated from the anion by complexion, (Mes₂B=AsPh)⁻[Li(TMEDA)₂]⁺,¹¹¹ have been shown to possess B=P and B=As multiple bonds, respectively. However, no analogues of binary group 13 - 16 systems have been reported to date.


The dihydridoaluminate **47** reacted with $S(SiMe_3)_2$ in THF at 60 °C to give $[Dipp(SiMe_3)N]_2AlSLi(THF)_x$ (**49**) (Scheme 18), soluble in THF, less soluble in diethyl ether, and insoluble in hydrocarbon solvents. It could be crystallized from diethyl ether or THF/*n*-hexane as colorless crystals. The compound has been characterized by ¹H, ⁷Li, ¹³C, and ²⁹Si NMR spectra, the ¹H NMR spectrum in d₈-THF gives correct integration for the formulation

as **49** except for the number of THF molecules. Unfortunately, the crystals obtained so far were not suited for single crystal X-ray structure analysis. Compound **49** might be a monomer as its EI-MS and FI-MS spectra only show fragments smaller than the molecular ion.

Scheme 18



Scheme 19

The reactions of **47** with elemental S, Se, Te proceeded smoothly at room temperature to afford colorless crystals after crystallization, respectively. However, only the selenium derivative [Dipp(SiMe₃)NAlHSeLi(THF)₃]₂ (**50**) (Scheme 19) was fully characterized by multinuclear NMR spectra and single crystal X-ray structure analysis. Compound **50** is the first example of a dilithiated dimeric aluminum chalcogenide. Interestingly, the reaction of **47** with selenium proceeds via elimination of one molecule of Dipp(SiMe₃)NH and not of hydrogen. Its IR spectrum shows a typical Al-H absorption (v 1776 cm⁻¹). The ⁷⁷Se NMR

spectrum gives one high field singlet (δ -420.1 ppm) due to the increased negative charge on the selenium atoms.

Figure 26. Molecular structure of **50** in the crystal. Hydrogen atoms have been omitted for clarity. Only a few bond lengths and angles are available due to THF disorder. Selected bond lengths (Å) and angles (deg) for central atoms: Al(1)-Se(1) 2.408 (2), Li(1)-Se(1) 2.48(5), Al(1)-N(1) 1.86 (7).

The molecular structure of **50** is shown in Figure 26.with important bond distances and angles. Despite the disorders of the coordinated THF molecules, the other heavy atoms can be refined and positioned. The Al-Se distances (average 2.40 Å) are slightly longer than those of dimeric Al₂Se₂ core compound (RAlSe)₂ (**16**) (av 2.36 Å) and longer by 0.08 Å than those of LAl(SeH)₂ (**25**) due to the higher coordination number (3) of the Se atoms. However they are shorter than those of (Cp^{*}AlSe)₄ (2.462 - 2.497 Å)¹⁵ and (Me₂EtCAlSe)₄ (2.444 - 2.481 Å)⁵¹ in which the Se atoms and Al atoms are three-coordinated and four-coordinated, respectively,

similar to those of **50**. The shortening of the Al-Se distances is probably due to the increased negative charge on the Se atoms leading to an enhanced ionic bonding interaction between Al and Se atoms. The Li-Se distances (2.48 and 2.52 Å) are similar to that of [Mes^{*}SeLi(THF)]₃ (2.476(12) Å) (Mes^{*} = 2,4,6-*t*-Bu₃C₆H₂),¹¹² but little shorter than those of lithium-2,2,6,6-tetramethylpiperidinoselenolate (2.532(7) and 2.563(8) Å)¹¹³ and [Li(bipy)SePh]₂ (2.552 and 2.588 Å).¹¹⁴ The Al-N distances (average 1.86 Å) are in the range of known aluminum amides.¹⁰⁶

The lithium aluminum oxides $[Mes_2AlOLi(THF)_2]_2$, $[Ph_2AlOLi(THF)_2]_3$ and $\{[Me_2AlOLi)_4(THF)_7(LiCl)\}$ have been prepared by careful hydrolysis of Mes_3Al and Ph_3Al, respectively.¹¹⁵ The three compounds are the only known examples of lithium chalcogenaluminates so far. However, heavier group 16 element (S, Se, Te) aluminates have not been reported to date.

3 Summary

In this thesis, bulky bidentate 1-aza-allyls, β -diketiminates, amidinates, tridentate aryl and monodentate amido ligands have been employed as supporting moieties in aluminum compounds. The experimental results demonstrate that steric bulk and additional intramolecular coordination of these ligands could stabilize some unusual and unique aluminum compounds which otherwise are inaccessible. Another advantage is that these bulky ligands render aluminum compounds soluble in hydrocarbon solvents and as a result, more detailed characterization of these compounds is possible. In addition, these compounds may be useful as unique starting materials for further reactions in donor free solvents.

1-Aza-allyl aluminum dimethyl and dihalides RAIX₂ (R = [N(SiMe₃)C(Ph)C(SiMe₃)₂], X = halides or methyl) were easily obtained from the reactions of RLi·THF and selected simple aluminum halide precursors. The difluoride (RAIF₂)₂ (**7**) and diiodide RAII₂ (**8**) were prepared by the reaction of RAIMe₂ (**1**) with Me₃SnF and I₂, respectively. Reduction of RAICl₂ (**3**) or RAIBr₂ (**4**) with LiAlH₄ gave the corresponding aluminum dihydride (RAIH₂)₂ (**14**). In RAICl₂ (**3**) and RAICl₂·THF (**6**), the 1-aza-ally1 ligand shows different bonding modes. (RAIH₂)₂ (**14**) was reacted with chalcogens (S, Se, Te) to afford aluminum chalcogenides (RAIE)₂ (E = S (**15**), Se(**16**), Te(**17**)). This reaction type is a new route for the preparation of aluminum chalcogenides. The molecular structures of **3**, **6**, **7**, **14**, **15**, **16**, and **17** have been determined by X-ray structure analysis.

Reduction of crude $RAII_2$ with potassium afforded an unique divalent aluminum species R(I)AI-AI(CI)R (18), in which the Al atoms bear one organic group and one halide ligand. The compound has the shortest Al-Al distance (2.59 Å) compared to other known neutral Al(II) species.

Reactions of the aryl aluminum dihydride $2,6-(Et_2NCH_2)_2C_6H_3AlH_2$ with Se and Te yielded dimeric $[2,6-(Et_2NCH_2)_2C_6H_3AlE]_2$ (E = Se (21), Te (22)). The molecular structure

of **22** reveals that one amino substituent is coordinated to the Al atom and the other in a dangling position, indicating that the monomeric form ArAlE is energetically unfavorable over the dimeric one.

The reaction of the very bulky β -diketimine LH (L = HC[(CMe)(NAr)]₂, Ar = 2,6-*i*-Pr₂C₆H₃) with AlH₃·NMe₃ afforded a monomeric aluminum dihydride LAlH₂ (**24**). It reacted with elemental selenium to give the first examples of group 13 element SeH compounds, LAl(SeH)₂ (**25**) and L(HSe)AlSeAl(SeH)L (**26**), which were characterized by X-ray structure analysis.

As demonstrated by the unique protection of the ligand L, my attention was directed to the reduction of $LAII_2$ (27) with the expectation to generate low-aggregated Al(I) species. As anticipated, this reaction afforded the first two-coordinated aluminum compound LAI (28). The molecular structure of this compound was determined by single crystal X-ray structure analysis. *Ab initio* calculations indicate the Al atom possesses one pair of electrons and an empty orbital, its electronic structure being similar to a singlet carbene.

Reaction of **28** with the organic azide Me₃SiN₃ afforded an aluminum containing tetrazole ring system LAI[(NSiMe₃)₂N₂] (**29**). Its molecular structure shows a unique planar metallatetrazole cycle. The synthesis of this compound proceeds presumably through a [3 + 2] cycloaddition of an Al=N intermediate with Me₃SiN₃. This implies the possibility to generate stable Al=N compounds using bulkier azides. Indeed, the reaction of **28** with 2,6-Trip₂C₆H₃N₃ (Trip = 2,4,6-*i*-Pr₃C₆H₃) and Ph₃SiN₃ afforded the expected LAl=NC₆H₃-2,6-Trip₂ (**30**) and LAl=NSiPh₃ (**31**) as indicated by their spectroscopic data. Unfortunately, single crystals suitable for X-ray structure analysis for both compounds could not be obtained so far.

Reduction of 27 in the presence of alkynes (SiMe₃CCSiMe₃, PhCCPh, and PhCCSiMe₃) afforded aluminum cyclopropene analogues LAl[η^2 -C₂(SiMe₃)₂] (32), LAl(η^2 -C₂Ph₂) (33),

and LAI[η^2 -C₂Ph(SiMe₃)] (**34**). Reduction of **27** in the presence of Ph₂CO led to carbonyl coupling to give an aluminum pinacolate LAI[O₂(CPh₂)₂] (**35**) which is supposed to have formed through an intermediate LAI(η^2 -OCPh₂), which is highly reactive and couples with another molecule of Ph₂CO despite the steric bulk of Ph₂CO.

The alumirene **32** features an Al-C-C three-membered ring and shows high reactivity toward carbonyls and nitriles. The reactions can be regarded as aluminum promoted coupling of unsaturated molecules, in which the LAl moiety acts as a template and opens up a new facet chemistry of aluminum. The reaction of **32** with CO₂ and Ph₂CO afforded the new aluminum heterocycles $LAI[OC(O)C(SiMe_3)C(SiMe_3)]$ (**36**) and $LAI[OC(Ph)_2C(SiMe_3)C(SiMe_3)]$ (**37**) via carbonyl insertion into the Al-C bond.

Interestingly, **32** displays different reaction patterns toward PhCN and *t*-BuCN. In the former case insertion of PhCN into one of the Al-C (alkyne) bonds was observed to give LAl[NC(Ph)C(SiMe₃)C(SiMe₃)] (**38**). In the latter, elimination of the alkyne took place, leading to unprecedented *t*-BuCN coupling at a *p*-block metal atom. The different reaction patterns may result from both steric and electronic factors inflicted by the Ph and *t*-Bu groups. Bulky azides 2,6-Trip₂C₆H₃N₃ and Ph₃SiN₃ also replace the alkyne in **32** to give aluminum imides **30** and **31**.

In order to prepare three-coordinated anionic aluminum chalcogenides, starting from $[Dipp(SiMe_3)N]_2AIH_2Li(THF)_2$ (**47**) (Dipp = 2,6-*i*-Pr₂C₆H₃) and either S(SiMe_3)₂, the ionic species $[Dipp(SiMe_3)N]_2AISLi(THF)_x$ (**49**) has been obtained. Compound **49** was supposed to be monomeric as suggested from its spectroscopic data. Compound **47** reacted with selenium with elimination of Dipp(SiMe_3)NH instead of H₂ to give the charged group 13-16 dimeric species $[Dipp(SiMe_3)NAIHSeLi(THF)_3]_2$ (**50**). The molecular structure of **50** shows relatively short Al-Se bond lengths compared to those of cubic core Al₄Se₄ compounds.

4 Experimental Section

4.1 General procedures

All experiments were carried out under an atmosphere of dry nitrogen or argon using Schlenk techniques or inside a MBraun MB 150-GI glove-box filled with dry nitrogen, where the O_2 and H_2O level were strictly maintained below 1 ppm. All solvents were dried using standard methods prior to use.¹¹⁶ The samples for analytical measurements were prepared inside the glove box

4.2 Physical measurements

The *melting points* of all compounds described in this thesis were measured on a Bühler SPA-1 apparatus in sealed capillaries and are uncorrected.

¹H, ⁷Li, ¹³C, ¹⁹F, ²⁷Al, ²⁹Si, and ⁷⁷Se *NMR spectra* were recorded on Bruker-Avance-500, Avance-200, MSL-400, AM-250 and AM-200 instruments. The chemical shifts are reported in ppm with reference to external standards, positive shifts being downfield, SiMe₄ for ¹H, ¹³C and ²⁹Si nuclei, CFCl₃ for ¹⁹F, LiCl for ⁷Li, AlCl₃ for ²⁷Al NMR, and Me₂Se for ⁷⁷Se nuclei. Heteroatomic spectra were recorded ¹H-decoupled. If not otherwise stated, the operation temperature was in the range from 293 to 300 K. The single types are assigned as follows: s = singlet, d = dublet, t = triplet, q = quartet, m = mutiplet.

Mass spectra were obtained on a Finnigan MAT 8230 or a varian MAT CH5 instrument by EI-, FI- and FAB-MS techniques. Only the highest peak of an isotope distribution is given.

Elemental analysis were performed at the Analytical Laboratory of the Institute of Inorganic Chemistry, University of Göttingen.

IR spectra were recorded on a Bio-Rad Digilab FTS-7 spectrometer as Nujol mulls on KBr plates. Intensities were abbreviated as follows: s (strong), m (medium), w (weak). Only the characteristic absorptions are listed.

X-ray structure determinations and refinements. Data for crystal structures of 3, 6, 7, 9, 14, 15, 16, 17, 23, 25, 26, 27, 28, 29, 32, 35, 42, 45, 50 were collected on a Stoe-Siemens-Huber four-circle diffractometer and data for the structures of 18, 21, 33, 36, 38, 39, 43, 44 were collected on a STOE-AED2 four circle diffractometer using Mo-K α radiation (λ = 0.71073 Å). All structures were solved by direct methods (SHELXS-96)¹¹⁷ and refined against F^2 using SHELXL-97.¹¹⁸ All heavy atoms were refined anisotropically. Hydrogen atoms were included using the riding model with U_{iso} tied to the U_{iso} of the parent atom. Crystal data, data collection details, structural solution and refinement procedures for all compounds are summarized in the tables of section 6.

4.3 Starting materials

Commercially available chemicals were purchased from Fluka or Aldrich and used as received. The other compounds used in this thesis were prepared according to published procedures: Me₃SnF,¹¹⁹ [N(SiMe₃)C(Ph)C(SiMe₃)₂]Li·THF,³⁰ AlH₃·NMe₃,¹²⁰ {[N(SiMe₃)C(*t*-Bu)CH(SiMe₃)]Li]₂,²⁹ 2,6-(Et₂NCH₂)₂C₆H₃Br and its lithium salt,^{58a} H₂C{(CMe)(NAr)}₂ (Ar = 2,6-*i*-Pr₂C₆H₃),^{64,121} Ph₃SiN₃,^{23b} 2,6-Trip₂C₆H₃N₃ (Trip = 2,4,6-*i*-Pr₃C₆H₂),⁸⁵ *t*-BuC(NAr)(HNAr) (Ar = 2,6-*i*-Pr₂C₆H₃),¹²² H₂C{PPh₂)(NSiMe₃)}₂,¹²³ Ar(SiMe₃)NH (Ar = 2,6-*i*-Pr₂C₆H₃).¹²⁴

4.4 Synthesis of 1-aza-allyl complexes of aluminum, gallium and bismuth (R = [N(SiMe₃)C(Ph)C(SiMe₃)₂], R' = [N(SiMe₃)C(*t*-Bu)CH(SiMe₃)])

RAIMe₂ (1): AlMe₂Cl (10 mL, 1M in *n*-hexane, 10 mmol) was added to a stirred suspension of RLi-THF (4.14 g, 10 mmol) in diethyl ether (30 mL) at -78 °C. The mixture was allowed to warm to room temperature and stirred for additional 15 h. The volatiles were removed *in vacuo*. The crude product was extracted with pentane (30 mL) and the extract evaporated to dryness *in vacuo*. Pure samples of **1** were obtained by sublimation (65 °C, 0.005 mbar) (3.5 g, 85 %). Mp: 60 - 62 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ -0.19 (s, 6 H, Al*Me*₂), -0.06 (s, 9 H, NSi*Me*₃), 0.20 (s, 18 H, CSi*Me*₃), 6.90 - 7.00 (m, 3 H, Ph-*H*), 7.25 (d, 2 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ -5.50 (Al*Me*₂), 0.83 (NSi*Me*₃), 3.61(CSi*Me*₃), 49.5 (CSi₂), 127.1, 128.1, 130.3 (Ph), 143.1 (*ipso-C*), 208.5 (CN). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 161.2 ($v_{1/2}$ = 2920 Hz). ²⁹Si NMR (C₆D₆, 79.46 MHz): δ -4.11 (SiMe₃), 15.7 (NSiMe₃). EI-MS: *m/e* (%) 391 (M⁺, 3), 376 (M⁺ - Me, 36), 73 (SiMe₃⁺, 100). Anal. Calcd for C₁₉H₃₈AlNSi₃ (391.75): C, 58.3; H, 9.8; N, 3.6 %. Found: C, 58.2; H, 9.4; N, 3.7 %.

RAIMeCl (2): AlMeCl₂ (3 mL, 1M in *n*-hexane, 3 mmol) was added to a suspension of RLi-THF (1.24 g, 3 mmol) in *n*-hexane (20 mL) at –78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 15 h. A colorless precipitate was filtered off and volatiles were removed. The crude product was sublimed (70 °C, 0.002 mbar) to give analytically pure **2** (0.96 g, 78 %). Mp: 120 - 122 °C. ¹H NMR (C₆D₆, 200.13 MHz) : δ –0.03 (s, 9 H, NSi*Me*₃), -0.01 (s, 3 H, Al*Me*), 0.18 (d, 18 H, CSi*Me*₃), 6.83-6.96 (m, 3 H, Ph-*H*), 7.22 (d, 2 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ -5.7 (AlC), 0.60 (NSi*Me*₃), 2.98 , 3.41 (CSi*Me*₃), 53.5 (CSi₂), 126.7, 128.0, 130.5 (Ph), 141.9 (*ipso-C*), 210.1 (CN). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 138.8 ($v_{1/2}$ = 2120 Hz). EI-MS: *m/e* (%) 411 (M⁺, 8), 396 (M⁺–Me, 36), 376 (M⁺–Cl, 4), 73 (SiMe₃⁺, 100). Anal. Calcd for C₁₈H₃₅AlClNSi₃ (412.17): C, 52.23; H, 8.56; N, 3.34. Found: C, 51.6; H, 8.6; N, 2.9.

RAICl₂ (3): A solution of RLi-THF (0.83 g, 2 mmol) in *n*-hexane (20 mL) was added to a stirred suspension of AlCl₃ in *n*-hexane (10 mL) at -78 °C. The mixture was allowed to warm to room temperature and stirred for 15 h. After filtration from LiCl, the solvent was removed *in vacuo* and the residue was kept *in vacuo* (0.01 mbar) for 4 h. The crude product was crystallized from *n*-hexane (-8 °C) to give colorless crystals (0.73 g, 84 %). Mp: 170 °C dec.. ¹H NMR (C₆D₆, 200.13 MHz): δ 0.00 (s, 9 H, NSi*Me*₃), 0.24 (s, 18 H, CSi*Me*₃), 6.85 - 6.95 (m, 3 H, Ph-*H*), 7.23 (d, 2 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ 0.65 (NSi*Me*₃), 3.16 (CSi*Me*₃), 54.6 (CSi₂), 126.6, 128.4, 131.1 (Ph), 140.7 (*ipso-C*), 212.8 (CN). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 111.5 ($v_{1/2}$ = 772 Hz). ²⁹Si NMR (C₆D₆, 49.69 MHz): δ -1.14 (SiMe₃), 9.72 (NSiMe₃). EI-MS: *m/e* (%) 431 (M⁺, 10), 416 (M⁺–Me, 27), 73 (SiMe₃⁺, 100). Anal. Calcd for C₁₇H₃₂AlCl₂NSi₃ (432.56): C, 47.20; H, 7.45; N, 3.24. Found: C, 47.5; H, 7.5; N, 3.2.

RAIBr₂ (4): This compound was prepared using the same procedure described for **3**, RLi·THF (0.62 g, 1.5 mmol) in *n*-hexane (15 mL) and AlBr₃ (0.40 g, 1.5 mmol) in *n*-hexane (5 mL). The crude product was crystallized from *n*-hexane to give colorless crystals (0.48 g, 61%). Mp: 105 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 0.02 (s, 9 H, NSi*Me*₃), 0.27 (s, 18 H, CSi*Me*₃), 6.80 - 6.95 (m, 3 H, Ph-*H*), 7.25 (d, 2 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ 0.85 (NSi*Me*₃), 3.54 (CSi*Me*₃), 41.0 (CSi₂), 126.6, 128.6, 131.2 (Ph), 140.7 (*ipso*-*C*), 212.4 (CN). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 107.8 ($v_{1/2}$ = 875 Hz). ²⁹Si NMR (C₆D₆, 79.46 MHz): δ -1.02 (SiMe₃), 10.3 (NSiMe₃). EI-MS: *m/e* (%) 521 (M⁺, 10), 506 (M⁺–Me, 30), 422 (M⁺– Br, 15), 73 (SiMe₃⁺, 100). Anal. Calcd for C₁₇H₃₂AlBr₂NSi₃ (521.48): C, 39.15; H, 6.18; N, 2.68. Found: C, 39.2; H, 6.5; N, 3.0.

RAIMeCI-THF (5): **2** (0.20 g, 0.48 mmol) was dissolved in THF (5 mL). After 30 min of stirring at room temperature, excess of THF was removed *in vacuo*. The crude product was crystallized from pentane to give colorless crystals (0.20 g, 85 %). Mp: 45 - 46 °C. ¹H NMR

(C₆D₆, 200.13 MHz): δ -0.14 (s, 3 H, AlCH₃), 0.12 (s, 9 H, NSiMe₃), 0.23 (br s, 18 H, CSiMe₃), 1.17 (m, 4 H, THF), 3.48 (m, 4 H, THF), 6.88 - 6.98 (m, 3 H, Ph-*H*), 7.28-7.35 (d, 2 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ -6.0 (AlCH₃), 0.81, 1.69 (NSiMe₃), 3.44 (CSiMe₃), 25.3 (THF), 41.2 (CSi₂), 69.6 (THF), 126.2, 128.8, 129.8 (Ph), 144.7 (*ipso-C*), 196.0 (*C*N). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 130.2 ($v_{1/2}$ = 980 Hz). Anal. Calcd for C₂₂H₄₃AlClNOSi₃ (484.17): C, 54.54; H, 8.88; N, 2.89. Found : C, 54.2; H, 8.6; N, 3.1.

RAICl₂·THF (6): This compound was prepared using **3** (0.43 g, 1 mmol) and THF (10 mL) as described for **7.** After work-up, colorless crystals (0.45 g, 89%) were obtained from *n*-hexane at -8 °C. Mp: 88 - 89 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 0.16 (s, 9 H, NSi*Me*₃), 0.28 (s, 18 H, Si*Me*₃), 1.16 (m, 4 H, THF), 3.55 (m, 4 H, THF), 6.84 - 6.95 (m, 3 H, Ph-*H*), 7.32 (d, 2 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ 1.00 (NSi*Me*₃), 2.96 (CSi*Me*₃), 25.7 (THF), 40.9 (CSi₂), 67.9 (THF), 126.2, 128.6, 129.9 (Ph), 147.3 (*ipso*-C), 182.1 (CN). ²⁷Al NMR (C₆D₆): δ 62.66 ($v_{1/2}$ = 5600 Hz). ²⁹Si NMR (C₆D₆): δ -6.18 (SiMe₃), 1.68 (NSiMe₃). Anal. Calcd for C₂₁H₄₀AlCl₂NOSi₃ (504.69): C, 49.98; H, 7.99; N, 2.77. Found: C, 49.4; H, 8.1; N, 2.7.

[**RAIF**(*μ*-**F**)]₂ (7): Toluene (20 mL) was added to a mixture of **1** (0.55 g, 1.4 mmol) and Me₃SnF (0.48 g, 2.8 mmol) at room temperature. The mixture was stirred for 15 h , resulting in a clear solution. All volatiles were removed *in vacuo* to leave a white solid, which was crystallized from toluene / *n*-hexane (1 : 10) and stored at -20 °C for 2 days to afford colorless crystals (0.35 g, 63 %). Mp: 185 °C dec. ¹H NMR (C₆H₆, 200.13 MHz): δ 0.14 (s, 9 H, NSi*Me*₃), 0.41 (br s, 18 H, Si*Me*₃), 6.87 - 7.00 (m, 3 H, Ph-*H*), 7.32 (d, 2 H, Ph-*H*). ¹H NMR (d₈-toluene, 200.13 MHz, 303 K): δ 0.13 (s, 9 H, NSi*Me*₃), 0.35 (s, 18 H, Si*Me*₃), 7.01-7.09 (m, 3 H, Ph-*H*), 7.32 (d, 2 H, Ph-*H*). ¹H NMR (d₈-toluene, 200.13 MHz, 303 K): δ 0.18 (s, NSi*Me*₃), 0.14 (s, NSi*Me*₃), Ph-*H* was not recorded. ¹H NMR(d₈-toluene, 200.13 MHz, 193 K), δ 0.15 (s, NSi*Me*₃), 0.20 (s, NSi*Me*₃), 0.31 (s, Si*Me*₃),

0.62 (s, Si*Me*₃), 6.81 (m, Ph-*H*), 6.93 (m, Ph-*H*), 7.27 (d, Ph-*H*), 7.34 (d, Ph-*H*). ¹³C NMR (C₆H₆, 100.60 MHz): δ 0.63 (NSiMe₃), 2.98 (CSi*Me*₃), 40.9 (CSi₂), 125.7, 128.4, 131.1(Ph), 147.2 (*ipso*-*C*), 212.8 (*C*N). ¹⁹F NMR (C₆D₆, 188.32 MHz): δ -160.2 (br s, $v_{1/2}$ = 400 Hz). ¹⁹F NMR (d₈-toluene, 188.32 MHz, 293 K): δ -160.6 (br s, $v_{1/2}$ = 400 Hz). ¹⁹F NMR (d₈-toluene, 188.32 MHz, 293 K): δ -160.6 (br s, $v_{1/2}$ = 400 Hz). ¹⁹F NMR (d₈-toluene, 188.32 MHz, 258 K): δ -160.3 (s), -159.5 (s), -140.4 (br s, $v_{1/2}$ = 180 Hz), -132.6 (br s, $v_{1/2}$ = 140 Hz), -120.5 (s br, $v_{1/2}$ = 180 Hz). ¹⁹F NMR (d₈-toluene, 188.32 MHz, 213 K): δ -159.7 (t, 0.8 F, *J* = 15.0 Hz), -158.4 (t, 1.2 F, *J* = 13.4 Hz), -141.1 (d, 0.4 F, *J* = 82.4 Hz), -133.3 (s, 1.2 F), -120.6 (d, 0.4 F, *J* = 81.9 Hz). Anal. Calcd for C₃₄H₆₄Al₂F₄N₂Si₆ (799.34): C, 51.09; H, 8.07; N, 3.50. Found: C, 50.7; H, 7.7; N, 3.2.

RAII₂ (8): A solution of **1** (4.02 g, 10.3 mmol) in toluene (20 mL) was added to a solution of I₂ (5.25 g, 20.6 mmol) in toluene (40 mL) at room temperature. The mixture was stirred for 18 h at room temperature, resulting in a slightly brown yellow solution. All volatiles were removed *in vacuo* and the residue was extracted with *n*-hexane (2 x 60 mL), and the extract was concentrated and stored at -20 °C overnight to give yellowish crystals, which were collected by filtration and dried (5.2 g, 92 %). Mp: 84 - 85 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 0.06 (s, 9 H, NSi*Me*₃), 0.30 (s, 18 H, Si*Me*₃), 6.85 - 6.94 (m, 3 H, Ph-*H*), 7.21 (d, 2 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ 1.25 (NSi*Me*₃), 4.22 (CSi*Me*₃), 41.95 (CSi₂), 126.1, 128.4 and 131.3 (Ph), 140.8 (*ipso-C*), 211.7 (CN). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 80.1. ²⁹Si NMR (C₆D₆, 79.46 MHz): δ -0.96 (SiMe₃), 11.1 (NSiMe₃). MS: *m/e* (%) 615 (M⁺, 1.6), 600 (M⁺-Me, 21), 488 (M⁺ -I, 75), 73 (SiMe₃⁺, 100). Anal. Calcd for C₁₇H₃₂AlI₂NSi₃ (615.57): C, 33.14; H, 5.24; N, 2.27: Found: C, 32.7; H, 5.4; N, 2.0.

R'₂AlCl (9): (LiR')₂ (0.75 g, 1.5 mmol) in diethyl ether (20 mL) was added to a suspension of AlCl₃ (0.40 g, 1.5 mmol) in diethyl ether (10 mL) at -78 °C. The reaction mixture was allowed to warm to room temperature and then stirred for 18 h. The volatiles were removed *in vacuo* and the residual was extracted with pentane (3 × 20 mL). The extract

was concentrated and stored at -30 °C overnight to afford colorless crystals of **1** (0.72 g, 88%). Mp: 136-137 °C. ¹H NMR(C₆D₆, 200.13 MHz): δ 0.25, 0.29 (s, 9 H, NSi*Me*₃), 0.36, 0.47 (s, 9 H, Si*Me*₃), 1.07, 1.30 (s, 9 H, *t*-Bu), 2.33, 4.94 (s, 1 H, C*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ 1.99, 2.93 (NSi*Me*₃), 3.51, 4.12 (CSi*Me*₃), 29.04, 31.83 (*t*-Bu), 39.22, 42.38 (*t*-Bu), 119.1, 47.4 (CH), 172.8, 222.0 (CN). ²⁹Si NMR (C₆D₆, 79.46 MHz): δ -14.6, 0.81 (CS*i*Me₃), 3.20, 3.49 (NS*i*Me₃). EI-MS: *m/e* (%) 531 (M⁺–Me, 8), 489 (M⁺–*t*-Bu, 81), 304 (M⁺–R⁺,100). Anal. Calcd for C₂₄H₅₆AlClN₂Si₄ (547.20): C, 52.65; H, 10.31; N, 5.11. Found: C, 52.4; H, 10.2; N, 5.1.

R'₂AlMe (10): This compound was prepared using (LiR')₂ (2.00 g, 4 mmol) and AlMeCl₂ (3 mL, 1 M in *n*-hexane, 4 mmol) as described for **1**. After work-up, colorless crystals (1.90 g, 90%) were obtained. Mp: 115-116 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ -0.12 (s, 3 H, Al*Me*), 0.25-0.37 (m, Si*Me*₃), 1.07-1.29 (m, *t*-Bu), 2.32, 4.95(s, C*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ -3.57 (Al*Me*), 1.37, 2.01, 2.25, 2.95, 3.53, 3.72, 4.13 (NSi*Me*₃ and Si*Me*₃), 29.25, 31.04 (*t*-Bu), 45.88, 42.39, 45.88 (*t*-Bu), 116.64 (CH), 174.4, 222.0 (CN). EI-MS: *m/e* (%) 526 (M⁺, 5), 511 (M⁺–Me, 20), 469 (M⁺–*t*-Bu, 56), 284 (M⁺–R', 100). Anal. Calcd for C₂₅H₅₉AlN₂Si₄ (526.75): C, 56.95; H, 11.29; N, 5.32. Found: C, 56.2; H, 11.4; N, 5.4.

[(**R'₂Al)AlCl₄**] (11): A mixture of 1 (0.55 g, 1 mmol) and AlCl₃ (0.13 g, 1.0 mmol) in toluene (10 mL) was stirred at room temperature for 2 h. Two phases (a yellowish oil separated) developed upon complete consumption of AlCl₃. The volatiles were removed to leave a semi-solid product, which after tribulation with pentane (2 × 5 mL) gave compound 11 as a white solid (0.47 g, 69 %). ¹H NMR (CD₂Cl₂, 200.13 MHz): δ 0.30 (s, 18 H, NSi*Me*₃), 0.42 (s, 18 H, Si*Me*₃), 1.39 (s,18 H, *t*-Bu), 3.03 (s, 2 H, C*H*). ²⁷Al NMR(CD₂Cl₂): δ 103.0 (s, AlCl₄⁻), 111.8 (br, R'₂Al⁺).

RGaCl₂ (12): A solution of RLi·THF (0.83 g, 2 mmol) in toluene (15 mL) was added to a stirred suspension of GaCl₃ (0.35 g, 2 mmol) in *n*-hexane (10 mL) at -78 °C. The mixture was

allowed to warm to room temperature and stirred for 15 h and then filtered. The filtrate was concentrated and stored at -30 °C for 2 d to afford colorless crystals (0.62 g, 65 %). Mp: 165 °C. ¹H NMR(C₆D₆, 200.13 MHz): δ -0.01 (s, 9 H, NSi*Me*₃), 0.24 (s, 18 H, Si*Me*₃), 6.82 -7.00 (m, 5 H, Ph-*H*). ¹³C NMR (C₆D₆), 100.60 MHz): δ 0.69 (NSi*Me*₃), 2.55 (CSi*Me*₃), 63.6 (CSi₂), 126.4, 128.7, 130.8 (Ph), 139.3 (*ipso*-C), 207.3 (CN). ²⁹Si NMR (C₆D₆, 49.69 MHz): δ -0.42 (CSiMe₃), 9.73 (NSiMe₃). EI-MS: *m*/*e* (%) 475 (M⁺, 90), 460 (M⁺–Me, 100), 440 (M⁺–Cl, 70). Anal. Calcd for C₁₇H₃₂Cl₂GaNSi₃ (475.04): C, 42.90; H, 6.78; N, 2.94. Found: C, 42.7; H, 6.5; N. 3.0.

RBiBr₂ (13): A solution of RLi-THF (0.83 g, 2 mmol) in toluene (20 mL) was added to a suspension of BiBr₃ (0.90 g, 2 mmol) in *n*-hexane (10 mL) at -78 °C. The mixture was allowed to warm to room temperature and stirred for 20 h, and then filtered. The filtrate was concentrated and stored at -30 °C overnight to give orange crystals (0.97 g, 69 %). Mp: 90 °C(dec.). ¹H NMR(C₆D₆, 200.13 MHz): δ -0.08 (s, 9 H, Si*Me*₃), 0.33 (s, 18 H, CSi*Me*₃), 6.82-7.00 (m, 5 H, Ph-*H*). ²⁹Si NMR(C₆D₆, 79.46 MHz): δ -2.17 (CSiMe₃), 4.00 (NSiMe₃). EI-MS: *m/e* (%) 703 (M⁺, 4), 624 (M⁺–Br, 90), 73 (Me₃Si⁺, 100). Anal. Calcd for C₁₇H₃₂BiBr₂NSi₃ (703.22): C, 29.03; H, 4.59; N, 1.99. Found: C, 29.8; H, 4.9; N, 2.3.

[RAIH(μ -H)]₂ (14): A solution of RAIBr₂ (5.22 g, 10 mmol) in diethyl ether (30 mL) was added to a suspension of LiAlH₄ (1.14 g, 30 mmol) in diethyl ether (10 mL) at 0 °C. The mixture was allowed to warm to room temperature and stirred overnight. Volatiles were removed *in vacuo*, and the residue was extracted with toluene (30 mL). The extract was concentrated, and then stored at –30 °C overnight to give white crystals (3.4 g, 94 %). Mp: 82 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ -0.40 (s, 9 H, NSiMe₃), 0.25(s, 18 H, SiMe₃), 4.72 (s, 2 H, Al*H*), 6.9-7.0 (3 H, Ph-*H*), 7.3 (d, 2 H, Ph-*H*). ¹H NMR (d₈-toluene, 200.13 MHz, 295 K): δ -0.03 (s, 9 H, NSi*Me*₃), 0.22 (s, 18 H, Si*Me*₃), 4.61 (s, 2 H, Al*H*), 7.01, 7.20 - 7.30 (m, 5 H,

Ph-*H*). ¹H NMR (d₈-toluene, 200.13 MHz, 233 K): δ 0.04 (s, 9 H, NSi*Me*₃), 0.35 (s, 18 H, Si*Me*₃), 4.75 (s, 2 H, Al*H*), 7.06, 7.20 - 7.30 (m, 5 H, Ph-*H*). ¹H NMR (d₈-toluene, 200.13 MHz, 193 K): δ 0.13 (s, 9 H, NSi*Me*₃), 0.48 (s br, 18 H, Si*Me*₃), 4.80 (s br, 2 H, Al*H*), 7.07, 7.27 (s br, 5 H, Ph-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ 0.34 (NSi*Me*₃), 2.74 (Si*Me*₃), 48.8 (CSi₂), 127.0, 128.2, 130.6 (Ph), 142.9 (*ipso-C*), 209.8 (s, *C*N). ²⁷Al NMR (d₈-toluene, 296 K): δ 131.6 ($v_{1/2} = 2100$ Hz). ²⁹Si NMR (C₆D₆, 49.69 MHz): δ 3.59 (CSi₂), 5.69 (NSiMe₃). Anal. Calcd for C₃₄H₆₈Al₂N₂Si₆ (726.91): C, 56.09; H, 9.42; N, 3.85. Found: C, 56.14; H, 9.56; N, 3.89.

[RAI(μ -S)]₂ (15): To a mixture of 14 (0.72 g, 1 mmol) and sulfur (0.064 g, 2 mmol) was added toluene (20 mL). The suspension was refluxed for 4 h. It was filtered, the filtrate was concentrated and stored at -30 °C to afford colorless crystals of 15 (0.40 g, 32 %). Mp: 220 °C. ¹H NMR (CDCl₃, 200.13 MHz): δ 0.24 (s, 18 H, NSi*Me*₃), 0.26 (s br, 36 H, Si*Me*₃), 7.2 (m, 10 H, Ph-*H*). ²⁹Si NMR (CDCl₃, 99.36 MHz): δ -2.71, -2.49 (s, SiMe₃), 7.57, 7.83 (s, NSiMe₃). EI-MS: *m/e* (%) 786 (M⁺, 100), 771 (M⁺–Me, 48), 713 (M⁺–SiMe₃, 10). Anal. Calcd for C₃₄H₆₄Al₂N₂S₂Si₆ (787.00): C, 51.89; H, 8.20; N, 3.56. Found: C, 51.7; H, 8.2; N, 3.7.

[RAl(μ-Se)]₂ (16): To a mixture of 14 (0.64 g, 0.89 mmol) and selenium (0.14 g, 1.79 mmol) was added toluene (15 mL) at room temperature. After the mixture was heated to 80 °C and stirred for 8 h, it was filtered. The filtrate was concentrated (3 mL) and *n*-hexane (5 mL) was added. Cooling the solution to -30 °C overnight afforded colorless crystals, which were collected by filtration and dried (0.56 g, 71 %). Mp: 247 °C (dec). ¹H NMR (C₆D₆, 200.13 MHz): δ 0.28 (d, 18 H, NSi*Me*₃), 0.48 (br s, 36 H, Si*Me*₃), 6.82 - 6.90 (m, 6 H, Ph-*H*), 7.35 (m, 4 H, Ph-*H*). ¹H NMR (d₈-toluene, 200.13 MHz, 295 K): δ 0.25 (d, 18 H, NSi*Me*₃), 0.44 (d, 36 H, Si*Me*₃), 7.01, 7.30 - 7.50 (m, 10 H, Ph-*H*). ¹H NMR (d₈-toluene, 200.13 MHz, 233 K): δ 0.27 (d, 18 H, NSi*Me*₃), 0.50 (br s, 36 H, Si*Me*₃), 7.06, 7.30-7.50 (m, 10 H, Ph-*H*).

¹H NMR (d₈-toluene, 200.13 MHz, 193 K): δ 0.29 (s, 18 H, NSi*Me*₃), 0.55 (s, 36 H, Si*Me*₃), 7.08, 7.35 (br s, 10 H, Ph-*H*). ²⁹Si NMR (C₆D₆, 79.46 MHz): δ -2.5, -2.2 (SiMe₃), 7.9, 8.4 (NSiMe₃). EI-MS: *m/e* 882 (M⁺, 100%), 867 (M⁺–Me, 4%), 441 (M⁺/2, 5%). Anal. Calcd for C₃₄H₆₄Al₂N₂Se₂Si₆ (880.80): C, 46.34; H, 7.32; N, 3.18. Found: C, 45.9; H, 7.2; N, 3.3.

[**RAI**(*μ*-**Te**)]₂ (**17**): A mixture of **14** (0.56 g, 0.8 mmol) and tellurium (0.20 g, 1.6 mmol) in toluene (15 mL) was heated to 80 °C for 8 h and then refluxed for 4 h. After filtration the solvent was evaporated to dryness and the green residue crystallized from benzene/pentane (2 : 1) to give greenish crystals (0.60 g, 78.6 %). Mp: 176 °C (dec). ¹H NMR (C₆D₆, 200.13 MHz): δ 0.34 (d, 18 H, NSi*Me*₃), 0.48 (d, 36 H, Si*Me*₃), 6.82 - 7.00 (m, 6 H, Ph-*H*), 7.30-7.40 (m, 4 H, Ph-*H*). ²⁹Si NMR (C₆D₆, 49.69 MHz): δ -2.7, -2.4 (Si*Me*₃), 8.6, 9.1 (NSi*Me*₃). EI-MS: *m*/*e* 976 (M⁺, 100%), 488 (M⁺/2, 10%). Anal. Calcd for C₃₄H₆₄Al₂N₂Si₆Te₂ (976.08): C, 41.70; H, 6.59; N, 2.86. Found: C, 41.0; H, 6.7; N, 3.1.

Synthesis of R(Cl)Al-Al(I)R (18): To crude RAIMe₂ (which contains RAICIMe, ca. 3.0 mmol) in toluene (10 mL) was added I₂ (1.52 g, 6 mmol) in toluene (30 mL). The solution was stirred at room temperature for 2d. It was filtered to remove residual amount of I₂ to yield a dark yellow solurion. This solution was added to a suspension of finely divided potassium (0.20 g, 5.6 mmol)in toluene (10 mL), and the suspension was vigorously stirred at room temperature for 3 d and additional 1 d at 60 °C to give a deep red solution containing a large amount of precipitate. After the mixture was filtered, the deep red filtrate was evaporated to dryness and the residual solid was recrystallized from diisopropyl ether at -30 °C to give bright yellow, almost orange crystals (0.20 g, 25%). Mp: 196 °C. ¹H NMR (C₆D₆, 200.13 MHz) : δ 0.12, 0.13, 0.14 (s, 18 H, NSi*Me*₃), 0.18, 0.28, 0.29, 0.33, 0.58, 0.66 (s, 36 H, Si*Me*₃), 6.8 - 7.0 (m, 6 H, Ph-*H*), 7.2 - 7.4 (m, 4 H, Ph-*H*). ²⁹Si NMR (C₆D₆, 99.36 MHz): δ - 3.9, -3.7, -3.1, -0.51, -0.17, 0.24, 1.5 (SiMe₃), 7.9, 8.2, 9.2 (NSiMe₃). EI-MS: *m/e* (%) 488 (RAII⁺, 52), 396 (RAICI⁺, 20), 73 (Me₃Si⁺, 100). FI-MS: *m/e* (%) 722 (M⁺-Cl-I, 1), 361

(M⁺/2–Cl, 100). Anal. Calcd for C₃₄H₆₄Al₂ClIN₂Si₆ (885.73):C, 46.13; H, 7.29; Al, 6.11; N, 3.17. Found: C, 45.4; H, 7.3; Al, 6.2; N, 2.9.

4.5 Synthesis of aryl aluminum dihydrides and chalcogenides

2-(Et₂NCH₂)-6-MeC₆H₃Br (a): 2-(Et₂NCH₂)-6-(Me)C₆H₃Br was obtained as a byproduct in the synthesis of 2,6-(Et₂NCH₂)₂C₆H₃Br in ca.10 % yield. Bp: 76 °C/0.05 torr. ¹H NMR (C₆D₆): δ 0.78 (t, CH₂CH₃), 2.23 (q, CH₂CH₃), 2.60 (s, Me), 3.45(s, CH₂), 6.8 - 7.25 (m, Ph).

[2-(Et₂NCH₂)-6-MeC₆H₃]AlH₂ (19): A solution of [2-(Et₂NCH₂)-6-MeC₆H₃]Li prepared from **a** (0.76 g, 3 mmol) and BuLi (3 mL in *n*-hexane, 3 mmol) in diethyl ether (20 mL) was added to a solution of AlCl₃ (0.40 g, 3 mmol) in diethyl ether (10 mL) at -78 °C. The mixture was allowed to warm to room temperature and stirred overnight. After filtration the filtrate was added to a suspension of LiAlH₄ (0.30 g, 8 mmol) in diethyl ether (10 mL) at room temperature and stirred for 15 h. All volatiles were removed *in vacuo* and the residue was extracted with *n*-hexane (50 mL). The extract was concentrated to incipient crystallization at -30 °C to give white crystals of **19** (0.40 g, 65 %). Mp:92–93 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 0.62 (t, 6 H, *J* = 7.3 Hz, CH₂CH₃), 2.35 (q, 4 H, *J* = 6.2 Hz, CH₂CH₃), 2.57 (s, 3 H, Me), 4.60 (s br, 2 H, AlH₂), 7.02–7.23 (m, 3 H, Ar-*H*). ¹³C NMR (C₆D₆, 100.60 MHz): δ 8.75 (CH₂CH₃), 25.7 (Me), 45.8 (CH₂CH₃), 61.1 (CH₂), 121.1, 127.8, 128.3, 144.2, 146.5 (Ph), 149.3 (AlC). EI–MS: *m/e* 204 (M⁺–H). Anal. Calcd for C₁₂H₂₀AlN (205.29): C, 70.24; H, 9.76; N, 6.83. Found: C, 69.5; H, 9.8; N, 6.7.

 $[2,6-(Et_2NCH_2)_2C_6H_3]AlH_2$ (20): $[2,6-(Et_2NCH_2)_2C_6H_3]AlH_2$ was prepared in a similar way as 19. 2,6-(Et_2NCH_2)_2C_6H_3Br (3.26 g, 10 mmol), BuLi (10 mL in *n*-hexane, 10 mmol), AlCl₃ (1.33 g , 10 mmol), and LiAlH₄ (0.85 g, 22.5 mmol) were used. The crude product was

crystallized from toluene/pentane (1 : 1) to give white crystals (1.8 g, 65.2 %). Mp: 65–67 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 0.90 (t, 12 H, J = 7.2 Hz, CH₂CH₃), 2.75 (q, 8 H, J = 7.1 Hz, CH₂CH₃), 3.42 (s, 4 H, CH₂), 4.4 (s br, 2 H, AlH₂), 6.90 (d, 2 H, J = 7.3 Hz, Ar-H), 7.31 (t, 1 H, J = 7.2 Hz, Ph). ¹³C NMR (C₆D₆, 100.60 MHz): δ 9.27 (CH₂CH₃), 46.3 (CH₂CH₃), 60.0 (CH₂), 122.2, 128.3, 146.0 (Ph), 150.1 (AlC). EI–MS: *m/e* 275 (M⁺–H). Anal. Calcd for C₁₆H₂₉AlN₂ (276.41): C, 69.53; H, 10.57; N, 10.13. Found: C, 69.4; H, 10.5; N, 9.9.

{[2-(Et₂NCH₂)-6-MeC₆H₃]AlSe}₂ (21): To a mixture of 19 (0.25 g, 1.2 mmol) and selenium (0.10 g, 1.3 mmol) was added toluene (20 mL) at room temperature. The mixture was stirred at 80 °C for 10 h, then it was filtered to remove small amounts of precipitate. The filtrate was concentrated and stored at–20 °C for 2 d to give colorless crystals of 21·2 C₇H₈, which easily lose solvents under vacuum to give 21 as a white solid (0.27 g, 78.2 %). Mp: 220-222 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 0.85 (t, 6 H, CH₂CH₃), 2.72 (q, 4 H, CH₂CH₃), 2.94 (s, 3 H, Me), 3.43 (s, 2 H, CH₂), 7.00–7.30 (m, 3 H, Ar-H). ¹³C NMR (C₆D₆, 100.60 MHz): δ 9.01 (CH₂CH₃), 25.1(Me), 46.6 (CH₂CH₃), 58.9 (CH₂), 121.6, 128.7, 129.3, 142.8, 146.2 (Ph), 147.7 (AlC). EI–MS: *m/e* 566 (M⁺). Anal. Calcd for C₂₄H₃₆Al₂N₂Se₂ (564.40): C, 51.06; H, 6.38; N, 4.96. Found: C, 50.7; H, 6.3; N, 5.0.

{[2,6–(Et₂NCH₂)₂C₆H₃]AlSe}₂ (22): Compound {[2,6–(Et₂NCH₂)₂C₆H₃]AlSe}₂ was prepared in a similar way as 21. Compound 20 (0.33 g, 1.2 mmol) and selenium (0.10 g, 1.2 mmol) were used for the preparation. Crystallization from hot toluene (10 mL) gave colorless crystals of 22 (0.28 g, 66 %). Mp: 160 - 162 °C. ¹H NMR (CDCl₃, 200.13 MHz): δ 1.08 (t, 12 H, *J* = 7.2 Hz, CH₂CH₃), 2.97 (q, 8 H, *J* = 7.1 Hz, CH₂CH₃), 3.96 (s, 4 H, CH₂), 7.2 (m, 3 H, Ar-*H*). ¹³C NMR (CDCl₃, 100.60 MHz): δ 11.06 (CH₂CH₃), 47.29 (CH₂CH₃), 59.70 (CH₂), 124.2, 128.7, 145.5 (Ph), 145.8 (AlC). EI–MS: *m/e* 708 (M⁺). Anal. Calcd for C₃₂H₅₄Al₂N₄Se₂ (706.69): C, 54.38; H, 7.70; N, 7.93. Found: C, 54.2; H, 7.7; N; 7.9. {[2,6–(Et₂NCH₂)₂C₆H₃]AITe}₂ (23): A suspension of 20 (0.28 g, 1.04 mmol) and tellurium (0.13 g, 1.04 mmol) in toluene (20 mL) was refluxed for 8 h. After filtration to remove small amounts of precipitate, the filtrate was concentrated and stored at room temperature for one week to give large plates of 23 suitable for X-ray single crystal analysis (0.33 g, 79 %). Mp: 233–235 °C. ¹H NMR (CDCl₃, 200.13 MHz): δ 1.20 (t, 12 H, *J* = 7.1 Hz, CH₂CH₃), 3.03 (q, 8 H, *J* = 7.2 Hz, CH₂CH₃), 3.96 (s, 4 H, CH₂), .23 (m, 3 H, Ar-H). ¹³C NMR (CDCl₃, 100.60 MHz): δ 11.3 (CH₂CH₃), 47.4 (CH₂CH₃), 59.1(CH₂), 124.1, 128.6, 145.3 (Ph)., 144.6 (AlC). EI–MS: *m/e* 804 (M⁺). Anal. Calcd for C₃₂H₅₄Al₂N₄Te₂ (803.97): C, 47.85; H, 6.78; N, 6.97. Found: C, 48.6; H, 6.8; N, 7.0.

2,6-[(*t*-**Bu**)(**Me**)**NCH**₂]₂**C**₆**H**₃**AlH**₂ (**b**): This compound was prepared similar to compound **19**. Mp: 91 - 92 °C. EI–MS: m/e 303 (M⁺–H).

{2,6-[(*t*-Bu)(Me)NCH₂]₂C₆H₃AlSe}₂ (c) : This compound was prepared in a similar way as compound 21. Mp: 322 - 323 °C. ¹H NMR (CDCl₃): δ 1.35 (s, 18 H, CMe₃), 2.57 (s, 6 H, Me), 4.04 (s, 4 H, CH₂), 7.21 (m, 3 H, Ar-H). ⁷⁷Se NMR (CDCl₃): δ -14.2, -13.8. EI–MS: *m/e* 764 (M⁺).

4.6 Synthesis of β -diketiminato aluminum and gallium compounds (L = HC[(CMe)(NAr)]₂, Ar = 2,6-*i*-Pr₂C₆H₃; L'= HC[(CMe)(NAr')]₂, Ar' = 2,6-Me₂C₆H₃)

LAIH₂ (24): To a solution of AlH₃·NMe₃ (0.56 g, 6.3 mmol) in *n*-hexane (10 mL) was added a solution of LH (2.50 g, 6.0 mmol) in *n*-hexane (40 mL) at room temperature and the resulting mixture was stirred for 48 h. All volatile materials were removed *in vacuo*, and the crude product crystallized from *n*-hexane to afford colorless crystals of **24** (2.3 g, 86 % based on LH). Mp:194 °C. ¹H NMR (C₆D₆, 200 MHz): δ 7.18 (d, 2 H, Ar-H), 7.10 (m, 1 H, Ar-H), 4.86 (s, 1 H, γ CH), 3.42 (sept, 4 H, CHMe₂), 1.54 (s, 12 H, CMe), 1.37 (d, 12 H, CHMe₂), 1.12 (d, 12 H, CH*Me*₂). ¹³C NMR (C₆D₆, 125.75 MHz): δ 170.2 (CN), 144.6, 139.4, 124.8 (Ph), 96.2 (γ -CH), 28.48 (*C*HMe₂), 25.5, 24.5 (CH*Me*₂), 22.9 (*CMe*). EI-MS : m/z (%): 445 (M^+ -H, 100). Anal. Calcd for C₂₉H₄₃AlN₂ (446.66): C, 78.0; H, 9.7; N, 6.3. Found: C, 78.2; H, 9.7; N, 6.7. IR (KBr, Nujol): $\tilde{v} = 1832$, 1795 cm⁻¹ (m, AlH);

LAI(SeH)₂ (25): To a mixture of 24 (0.45g, 1 mmol) and selenium (0.16 g, 2 mmol) was added toluene (20 mL). The mixture was stirred at room temperature for 15 h, and a light orange solution formed with trace amounts of unreacted selenium. After filtration, the solvent was removed and the residue was extracted with *n*-hexane (20 mL). The extract was stored at -30 °C for 2 days to give yellowish crystals of 25 (0.35 g, 58 %). Mp: 220 °C (dec.). ¹H NMR (C₆D₆, 500 MHz,): δ 7.15-7.09 (m, 6 H, Ar-H), 4.93 (s, 1 H, γ -CH), 3.52 (sept, ³*J*_{HH} = 6.8 Hz, 4 H, C*H*Me₂), 1.51 (s, 6 H, C*Me*), 1.35 (d, ³*J*_{HH} = 6.8 Hz, CH*Me*₂), 1.10 (d, ³*J*_{HH} = 6.8 Hz, 6 H, CH*Me*₂), -2.82 (s, 2 H, SeH). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ = 122 (*v*_{1/2} = 260 Hz). EI-MS: *m/e* (%): 604 (*M*⁺-H, 8), 525 (*M*⁺-SeH, 20), 403 (L⁺-Me, 100). Anal. Calcd for C₂₉H₄₃AlN₂Se₂ (604.58): C, 57.63; H, 7.21; N, 4.63. Found: C, 58.0; H, 7.5; N 4.6. IR (KBr, Nujol): $\tilde{\nu}$ = 2318 cm⁻¹ (w, SeH).

L(HSe)AlSeAl(SeH)L (26): This compound was prepared in a similar manner as 2 except that the mixture was stirred at 60 °C for 15 h. After removal of the solvent, the residual was recrystallized from THF at -30 °C to give pale yellow crystals of **26** (0.26 g, 46 %). Mp: 250 °C (dec). ¹H NMR (CDCl₃, 500 MHz): δ 7.13, 7.03, 6.92 (m, 12 H, Ar-H), 5.17 (s, 2 H, γ -CH), 3.21 (sept, ³*J*_{HH} = 6.7 Hz, 4 H, C*H*Me₂), 2.98 (sept, ³*J*_{HH} = 6.8 Hz, 4 H, C*H*Me₂), 1.61 (s, 12 H, C*Me*), 1.10 (d, ³*J*_{HH} = 6.75 Hz, 6 H, CH*Me*₂), 0.95 (d, ³*J*_{HH} = 6.65 Hz, 6 H, CH*Me*₂), 0.90 (d, ³*J*_{HH} = 6.82 Hz, 6 H, CH*Me*₂), 0.84 (d, ³*J*_{HH} = 6.82 Hz, 6 H, CH*Me*₂), -2.83 (s, 2 H, SeH). ²⁷Al NMR (CDCl₃, 65.17 MHz): δ 116 ($v_{1/2}$ = 680 Hz). ⁷⁷Se NMR (C₆D₆, 500 MHz): δ = -341 (SeH, $v_{1/2}$ = 120 Hz), -535 (Al₂Se, $v_{1/2}$ = 90 Hz). EI-MS: *m/e* (%): 1126 (*M*⁺-2 H, 7), 1048 (*M*⁺-H–SeH, 90), 443 (LAl⁺ + H, 100). Anal. Calcd for C₅₈H₈₄Al₂N₄Se₃ (1128.20):

C, 61.82; H, 7.54; N, 5.01. Found: C, 62.2; H, 7.1; N, 5.0. IR (KBr, Nujol): $\tilde{v} = 2276$, 2292 cm⁻¹ (w, SeH);

(LAITe)₂ (d): A suspension of 24 (0.45 g, 1.0 mmol) and metallic tellurium (0.13 g, 1 mmmol) in toluene (20 mL) was refluxed for 10 h to develop a green colored solution. It was filtered to remove a small amount of precipitate and the green filtrate was concentrated (10 mL) and stored at -10 °C for 1 week to give green needles of d: Mp: 330 °C. EI-MS: m/e (%) 1144 (M⁺, 8), 572 (M⁺/2, 15), 445 (M⁺/2–Te–H, 100).

LAII₂ (27): To a mixture of [HC(CMeNAr)₂]AlMe₂ (4.74 g, 10 mmol) and I₂ (5.08 g, 20 mmol) was added toluene (60 mL) at room temperature. The deep red solution was stirred for 3 d to develop a slightly brown yellow solution. The solution was concentrated (ca. 20 mL) and stored at -30 °C in a freezer overnight to afford yellowish crystals of **27** (5.8 g, 83 %). Mp: 251 - 252 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.11 (m, 6 H, Ar-H), 5.05 (s, 1 H, γ -CH), 3.58 (sept, 4 H, *J* = 6.75 Hz, C*H*Me₂), 1.49 (s, 6 H, Me), 1.43 (d, 12 H, *J* = 6.80 Hz, CHMe₂), 1.08 (d, 12 H, *J* = 6.80 Hz, CHMe₂). ¹³C NMR (C₆D₆, 100.60 MHz): δ 172.5 (CN), 144.9, 138.9, 125.1 (Ph), 100.4 (γ -C), 29.2 (CHMe₂), 26.6 (CHMe₂), 24.5 (CHMe₂), 24.3 (Me). ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 83.2 ($v_{1/2}$ = 620 Hz). EI-MS: *m/e* (%) 571 ((M–I)⁺, 100). Anal. Calcd for C₂₉H₄₁AlI₂N₂ (698.46): C, 49.87; H, 5.92; N, 4.01. Found: C, 50.1; H, 5.8; N, 3.9.

LAI (28): A solution of 27 (2.08 g, 3.0 mmol) in toluene (30 mL) was added to a suspension of finely divided potassium (0.25 g, 6.4 mmol) in toluene (10 mL) at room temperature. The mixture was vigorously stirred at room temperature for 3 d. The solution developed an orange-red color and almost all potassium was consumed. After filtration the orange red filtrate was concentrated (ca. 5 mL), and on standing overnight at -30 °C X-ray quality red crystals of 28 (0.28 g, 21 %) were obtained. Further products in the solution could not be characterized. Mp: >150 °C (dec.). ¹H NMR (C₆D₆, 200.13 MHz): δ 7.16 (m, 6 H, Ar-H), 5.18 (s, 1 H, γ -CH), 3.16 (sept, 4 H, J = 6.80 Hz, CHMe₂), 1.65 (s, 6 H, Me), 1.38 (d, 12

H, J = 6.80 Hz, CH Me_2), 1.13 (d, 12 H, J = 6.80 Hz, CH Me_2). ¹³C NMR (C₆D₆, 100.60 MHz): δ 165.3 (CN), 143.7, 142.3, 124.2 (Ph), 100.9 (γ -C), 29.0 (CHMe₂), 25.1 (CH Me_2), 23.9 (CH Me_2), 23.8(Me). ²⁷Al NMR (C₆D₆): could not be observed. EI–MS: m/e 444 (M⁺, 12), 429 (M⁺–Me, 100). Anal. Cacld for C₂₉H₄₁AlN₂ (444.62): C, 78.3; H, 9.3; N, 6.3. Found: C, 77.9; H, 9,7; N, 6.3.

LAI [(NSiMe₃)₂N₂] (29): To a solution of 28 (0.44 g, 1 mmol) in toluene (20 mL) was added neat Me₃SiN₃ (0.23 g, 2 mmol) at -78 °C and an immediate color change from red to orange yellow was observed. The mixture was allowed to warm to room temperature and stirred for 1 h. The yellow solution was concentrated (ca. 5 mL) and stored at -30 °C overnight to give yellow crystals of 29 (0.37 g, 58 %). Mp: 130 °C (dec). ¹H NMR (C₆D₆, 500 MHz): δ 7.08 (m, 6 H, Ph), 5.04 (s, 1 H, γ CH), 3.48 (sept, 2 H, *J* = 6.8 Hz, C*H*Me₂), 3.02 (sept, 2 H, *J* = 6.8 Hz, C*H*Me₂), 1.52 (s, 6 H, Me), 1.30 (d, 6 H, CH*Me*₂), 1.20 (d, 6 H, CH*Me*₂), 1.14 (d, 6 H, CH*Me*₂), 1.02 (d, 6 H, CH*Me*₂), 0.48 (s, 9 H, SiMe₃), -0.14 (s, 9 H, SiMe₃). ¹³C NMR (C₆D₆, 100.60 MHz): δ 172.49 (CN), 145.78, 142.68, 140.11, 125.67, 124.28 (Ph), 101.08 (γ C), 28.91, 28.83, 25.22, 25.20 (CHMe₂), 24.07 (Me), 1.64, 0.62 (SiMe₃). ²⁹Si NMR (C₆D₆, 79.46 MHz): δ 4.89, 3.08 (SiMe₃). EI-MS: *m/e* (%) 646 (M⁺, 20), 631 (M⁺-Me, 100). Anal. Calcd for C₃₅H₅₉AlN₆Si₂ (646.86): C, 65.00; H, 9.19; N, 12.99. Found: C, 64.6; H, 9.4; N, 13.2.

{HC[(CMeNAr)₂]}AlNC₆H₃-2,6-Trip₂ (30): To a mixture of {HC[(CMe)(NAr)]₂}Al (28) (0.22 g, 0.5 mmol) and 2,6-Trip₂C₆H₃N₃ was added toluene (15 mL) at -60 °C. The mixture was allowed to warm to room temperature and a slow color change from orange red to yellow was observed during 1 h. After stirring at room temperature for additional 3 h, the solution was concentrated (ca. 5 mL) and stored at room temperature for 2 days to afford pale yellow solid of **30** (0.26 g, 52 %) (attempts to grow single crystals of this compounds in toluene, benzene, THF, CH₂Cl₂ were unsuccessful). Mp:342 °C . ¹H NMR (C₆D₆, 500 MHz): δ 7.21

(m, 1 H, Ph), 7.13 (m, 1 H, Ph), 7.08 (m, 6 H, Ph), 6.97 (m, 3 H, Ph), 6.95 (m, 1 H, Ph), 6.61 (t, 1 H, Ph), 4.82 (s, γ-CH), 3.51, 3.41, 3.10 (sept, 9 H, CHMe₂), 2.96-2.83 (m, 3 H, CHMe₂), 2.46, 2.32 (sept, 4 H, CHMe₂), 1.51, 1.45 (s, 12 H, β-Me), 1.38-1.14 (m, 36 H, CHMe₂), 0.95 (dd, 8 H, CHMe₂), 0.87 (d, 4 H, CHMe₂), 0.50 (d, 4 H, CHMe₂), 0.42 (dd, 8 H, CHMe₂). ¹H NMR (CDCl₃, 500 MHz):δ7.35 (s, 1 H, Ph), 7.19 (t, 1 H, Ph), 7.14 (m, 1 H, Ph), 7.07 (m, 2 H, Ph), 7.00 (m, 2 H, Ph), 6.93 (m, 1 H, Ph), 6.86 (m, 1 H, Ph), 6.78 (d, 1 H, Ph), 6.71 (m, 1 H, Ph), 6.64 (d, 1 H, Ph), 6.56 (m, 1 H, Ph), 6.40 (t, 1 H, Ph), 5.02 (s, 1 H, γ-CH), 3.25 (sept, 1 H, CHMe₂), 2.94 (sept, 2 H, CHMe₂), 2.79 (sept, 1 H, CHMe₂), 2.62 (sept, 1 H, CHMe₂), 2.45 (sept, 1 H, CHMe₂), 2.29 (sept, 2 H, CHMe₂), 1.95 (sept, 1 H, CHMe₂), 1.70 (s, 3 H, Me), 1.64 (s, 3 H, Me), 1.44 (d, 3 H, CHMe₂), 1.34 (dd, 6 H, CHMe₂), 1.24 (dd, 6 H, CHMe₂), 1.20 (dd, 6 H, CHMe₂), 1.16 (d, 3 H, CHMe₂), 1.09 (d, 3 H, CHMe₂), 1.04 (d, 3 H, CHMe₂), 0.92 (m, 6 H, CHMe₂), 0.69 (d, 3 H, CHMe₂), 0.44 (d, 3 H, CHMe₂), 0.24 (d, 3 H, CHMe₂), 0.09 (d, 3 H, CHMe₂), 0.03 (d, 3 H, CHMe₂). ¹³C NMR (CDCl₃, 500 MHz): δ 169.1 (CN), 168.9 (CN), 150.8, 149.9, 147.9, 147.6, 147.5, 146.7, 146.6, 146.1, 145.3, 143.7, 143.4, 142.3, 140.0, 138.4, 135.4, 133.4, 130.8, 127.5, 126.3, 125.9, 125.3, 125.2, 124.3, 122.9, 122.6, 122.1, 121.7, 120.7, 119.6, 113.7 (Ph), 98.8 (y-C), 34.4, 33.9, 33.6, 31.4, 30.9, 29.6, 29.4, 28.3, 28.2, 27.4 (CHMe₂), 24.3, 24.2 (β-Me), 23.9, 23.7, 23.4, 23.3, 22.8, 22.7, 22.3, 22.0, 21.8, 21.1 (CHMe₂). ²⁷Al NMR (C₆D₆): not observable. EI-MS: m/e (%) 939 (M⁺, 10), 443 (M⁺-H-NC₆H₃-2,6-Trip₂, 100). Anal. Calcd for C₆₅H₉₀AlN₃ (940.43): C, 82.94; H, 9.65; N, 4.46. Found: C, 82.6; H, 9.5; N, 4.3. IR (KBr, Nujol): v (cm⁻¹) 3296.8(w), 3068.7 (w), 1606.3 (m), 1558.5 (s), 1525.2 (s), 1408.5 (s), 1314.3 (m), 1264.0 (s), 1170.3 (m), 1100.6 (s), 1084.5 (s), 1021.2 (s), 985.6 (m), 937.5 (m), 867.2 (s), 804.8 (s), 765.7 (m), 757.7 (s), 723.0 (w), 708.6 (m), 665.4 (m).

LAINSi(Ph)₃ (31): This compound was prepared similarly to compound 30. 28 (0.22 g, 0.5 mmol) and N_3 SiPh₃ (0.15 g, 0.5 mmol) were used. The compound was obtained as white solid

4.18 (s, 1 H, γ -CH), 3.40 (sept, 2 H, CHMe₂), 2.35 (sept, 2 H, CHMe₂), 1.47 (s, 6 H, Me), 0.85 (d, 6 H, CHMe₂), 0.68 (d, 6 H, CHMe₂), 0.56 (d, 6 H, CHMe₂), 0.49 (d, 6 H, CHMe₂). ¹³C NMR (CDCl₃, 500 MHz): δ 172.0 (CN), 145.3, 143.6, 140, 4, 137.1, 136.5, 128.4, 127.3, 125.4, 124.8 (Ph), 102.3 (γ -C), 28.4, 28.1 (CHMe₂), 25.4 (Me), 24.8, 24.7, 24.6, 24.5 (CHMe₂). ²⁹Si NMR (CDCl₃, 49.69 MHz): δ -21.1. EI-MS: *m/e* (%) 717 (M⁺, 100). Anal. Calcd for C₄₇H₅₆AlN₃Si (717.96): C, 78.63; H, 7.86; N, 5.85. Found: C, 78.2; H, 8.0; N, 5.8.

LAI[η^2 -C₂(SiMe₃)₂] (32): A solution of [HC(CMeNAr)₂]AlI₂ (27) (1.40 g, 2 mmol) and bis(trimethylsilyl)acetylene (0.34 g, 2 mmol) in toluene (20 mL) was added to a suspension of finely divided potassium (0.16 g, 4.1 mmol) at room temperature. The mixture was stirred at room temperature for 2 d. The solution developed a red-black color and all the potassium appeared consumed. Subsequently all volatiles were removed under vacuum, and the residue was extracted with *n*-hexane (20 mL). After filtration the red black filtrate was concentrated (ca 6 mL) and stored at -30 °C overnight affording red-black crystals of **32** (0.68 g, 55.4 %). Mp: 182 - 184 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.15 (m, 6 H, Ar-H), 4.79 (s, 1 H, γ -CH), 3.37 (sept, 4 H, *J* = 6.80 Hz, CHMe₂), 1.45 (d, 12 H, *J* = 6.80 Hz, CHMe₂), 1.41 (s, 6 H, Me), 1.10 (d, 12 H, *J* = 6.80 Hz, CHMe₂), 0.17 (s, 18 H, SiMe₃). ¹³C NMR (C₆D₆, 100.60 MHz): δ 174.1(CN), 143.5, 140.4, 124.3 (Ph), 97.2 (γ -C), 28.7 (CHMe₂), 25.6, 24.1 (CHMe₂), 24.0 (Me), 1.82 (SiMe₃). ²⁷Al NMR(C₆D₆): not observable. ²⁹Si NMR (C₆D₆, 79.46 MHz): δ - 24.7. EI-MS: *m*/e (%) 541 (M⁺–SiMe₃, 20), 444 (M⁺–C₂(SiMe₃)₂, 25), 155 ([C₂(SiMe₃)₂–Me]⁺, 100). Anal. Calcd for C₃₇H₅₉AlN₂Si₂ (614.88): C, 72.28; H, 9.67; N, 4.55. Found: C, 72.1; H, 9.8; N, 4.3. IR (Nujol, KBr): v = 1663 cm⁻¹(m, C=C).

LAI(η^2 -C₂Ph₂) (33): Compound 33 was prepared in a similar way as 32. [HC(CMeNAr)₂]AII₂ (27) (1.4 g, 2 mmol), Ph₂C₂ (0.36 g, 2 mmol) and potassium (0.16 g, 4.1 mmol) were used. After filtration and partial removal of the solvents, storage at -30 °C overnight gave orange crystals of **33** (0.86 g, 70 %). Mp: 260 °C (dec). ¹H NMR (C₆D₆, 500 MHz): δ 6.8-7.15 (m, 16 H, Ar-H), 4.89 (s, 1 H, γ -CH), 3.39 (sept, 4 H, CHMe₂), 1.53 (s, 6 H, Me), 1.21 (d, 12 H, J = 6.8 Hz, CHMe₂), 1.11 (d, 12 H, J = 6.8 Hz, CHMe₂). ¹³C NMR (C₆D₆, 100.60 MHz): δ 173.1 (CN), 144.2, 144.0, 139.2, 131.9, 128.6, 128.4, 124.5, 124.0 (Ph), 97.3 (γ -C), 29.1 (CHMe₂), 25.0, 24.4 (CHMe₂), 23.5 (Me). ²⁷Al NMR (C₆D₆): not observable. EI-MS: *m/e* (%) 622 (M⁺, 36), 607 (M⁺-Me, 69), 579 (M⁺-*i*Pr, 16). Anal. Calcd for C₄₃H₅₁AlN₂ (622.87): C, 82.92; H, 8.25; N, 4.50. Found: C, 82.5; H, 8.3; N, 4.7.

LAI[η^2 -C₂Ph(SiMe₃)] (34): Compound 34 was prepared similarly to 32: [HC(CMeNAr)₂]AII₂ (1.4 g, 2 mmol) and 1-phenyl-2-(trimethylsilyl) acetylene (0.35 g, 2 mmol), and potassium (0.16 g, 4.1 mmol) were employed. Crystallization from toluene gave orange crystals of 34 (0.74 g, 60 %). Mp. 242 °C. ¹H NMR (CDCl₃, 200.13 MHz): δ 7.05-7.30 (m, 11 H, Ar-H), 5.50 (s, γ CH), 3.41, 3.08 (sept, 2 H, CHMe₂), 1.85 (s, 6 H, Me), 1.27 (m, 12 H, CHMe₂), 1.20 (q, 6 H, CHMe₂), 1.05 (q, 6 H, CHMe₂), -0.36 (d, 9 H, SiMe₃). ¹³C NMR (CDCl₃, 100.60 MHz): δ 211.9 (Al-C), 171.7 (CN), 144.97, 143.17, 139.46, 139.30, 128.73, 128.01, 127.80, 125.32, 124.12, 116.47, 115.60 (Ph), 99.56 (γ C), 29.02, 27.96 (CHMe₂), 25.9 (Me), 24.75, 24.72, 23.86, 23.76 (CHMe₂), 0.008 (SiMe₃). EI-MS: *m/e* (%) 618 (M⁺, 20), 603 (M⁺–Me, 9), 545 (M⁺–SiMe₃, 77), 429 (M⁺–CPhCSiMe₃–Me, 100). Anal. Calcd for C₄₀H₅₅AlN₂Si (618.88): C, 77.63; H, 8.96; N, 4.52. Found: C, 77.8; H, 9.0; N, 4.5.

LAI[O₂(CPh₂)₂] (35): A solution of [HC(CMeNAr)₂]AII₂ (27) (1.4 g, 2 mmol) and Ph₂CO (0.36 g, 2 mmol) in toluene (15 mL) was added to a suspension of finely divided potassium (0.16 g, 4.1 mmol). Immediately a purple color was observed. The mixture was stirred at room temperature for 2 d and the solution finally developed a red color. After filtration the filtrate was concentrated and stored at -30 °C overnight to afford yellow crystals of **35** (0.56 g, 35 %). Mp: 272 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.01 - 6.58 (m, 26 H, Ar-H), 5.04 (s, 1 H, γ CH), 3.55 (sept, 4 H, CHMe₂), 1.39 (s, 6 H, Me), 1.11 (d, 12 H,

CH*Me*₂), 1.07 (d, 12 H, CH*Me*₂). ¹³C NMR (C₆D₆, 125.78 MHz): δ 174.17 (CN), 149.62, 143.94, 142.53, 130.36, 129.27, 128.51, 126.12, 125.64, 124.86, 124.75 (Ph), 99.26 (γ -C), 92.66 (CO), 28.77 (*C*HMe₂), 25.19, 24.57, 23.97 (CH*Me*₂), 23.06 (Me). EI-MS: *m/e* (%) 808 (M⁺, 15), 626 (M⁺–Ph₂CO, 100). Anal. Calcd for C₅₅H₆₁AlN₂O₂ (809.08): C, 81.65; H, 7.60; N, 3.46. Found: C, 81.0; H, 7.3; N, 3.4.

LAI[OC(O)C(SiMe₃)C(SiMe₃)] (36): When a solution of 32 (0.31 g, 0.5 mmol) in *n*-hexane (15 mL) was exposed to dry CO₂ at room temperature, the red-black color changed to yellow within 10 min. The solvent was removed under vacuum to give a slightly yellow powder, which was subsequently washed with cold pentane (5 mL) to give analytically pure 36 (0.30 g, 91 %). Mp: 258-260 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.03 (m, 6 H, Ar-H), 5.11 (s, 1 H, γ -CH), 3.10, 3.35 (sept, 4 H, CHMe₂), 1.51 (s, 6 H, Me), 1.23 (quad, 12 H, CHMe₂), 1.02 (quad, 12 H, CHMe₂), 0.49, -0.09 (s, 9 H, SiMe₃). ¹³C NMR (C₆D₆, 100.60 MHz): δ 178.1 (β -CSiMe₃), 172.9 (CN), 161.5 (CO), 145.4, 143.1, 142.8, 139.8, 125.8, 125.2, 124.2, 123.6 (Ph), 100.7 (γ -C), 29.0, 28.6, 28.1, 25.6, 24.9, 24.7, 24.5, 24.4, 23.8, 23.4 (CHMe₂ and Me), 2.37, 2.29 (SiMe₃). ²⁷Al NMR (C₆D₆): not observable. ²⁹Si NMR (C₆D₆, 79.46 MHz): δ -7.90, -12.04 (SiMe₃). EI-MS: *m/e* (%) 658 (M⁺, 50), 643 (M⁺-Me, 48), 585 (M⁺-SiMe₃, 60), 429 (M⁺-C(SiMe₃)C(SiMe₃)CO₂ -Me, 100). Anal. Calcd for C₃₈H₅₉AlN₂OSi₂ (658.89): C, 69.27; H, 9.03; N, 4.25. Found: C, 69.3; H, 9.1; N, 4.0. IR (Nujol, KBr): ν = 1665.6 cm⁻¹ (s, C=O).

LAI[OC(Ph)₂C(SiMe₃)C(SiMe₃)] (37): To a mixture of 32 (0.61 g, 1 mmol) and Ph₂CO (0.18 g, 1 mmol) diethyl ether (20 mL) was added. The mixture was stirred at room temperature for 30 min. The solution was concentrated and stored at -30 °C overnight to give colorless crystals of 37(0.59 g, 74 %). Mp: 215 °C . ¹H NMR (C₆D₆, 200.13 MHz): δ 7.70 (m, 2 H, Ar-H), 7.07-6.84 (m, 14 H, Ar-H), 4.91 (s, 1 H, γ -CH), 3.20 (sept, 4 H, CHMe₂), 1.38 (s, 6 H, Me), 1.33 (d, 6 H, CHMe₂), 1.20 (d, 6 H, CHMe₂), 1.12 (d, 6 H, CHMe₂), 1.02 (d, 6 H,

CH*Me*₂), 0.64 (s, 9 H, SiMe₃), 0.14 (s, 9 H, SiMe₃). ¹³C NMR (C₆D₆, 100.60 MHz): δ 190.8 (CO), 171.5 (CN), 165.8 (Al-C), 148.47, 144.71, 143.50, 141.75, 132.01, 130.16, 129.97, 127.26, 126.62, 125.57, 125.16, 124.31 (Ph), 99.88 (γ -C), 28.71, 28.55 (CHMe₂), 25.30, 25.22, 25.06, 24.74 (CH*Me*₂), 24.39 (Me) 5.72, 4.13 (SiMe₃). EI-MS: *m/e* (%) 781 (M⁺–Me, 3), 626 (M⁺–C₂(SiMe₃)₂, 100). Anal. Calcd for C₅₀H₆₉AlN₂OSi₂ (796.96): C, 75.36; H, 8.73; N, 3.51. Found: C, 74.9; H, 8.8; N, 3.3.

LAI [NC(Ph)C(SiMe₃)C(SiMe₃)] (38): To a solution of 32 (0.31 g, 0.5 mmol) in diethyl ether (20 mL) neat PhCN (0.052 g, 0.5 mmol) was added at room temperature, and the mixture was stirred at room temperature overnight. The solution was concentrated (ca 5 mL) and stored at -30 °C overnight to give orange crystals of **38** (0.22 g, 61 %). Mp: 235-236 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.65 (m, 2 H, Ar-H), 7.15-7.05 (m, 7 H, Ar-H), 5.27 (s, 1 H, γ -CH), 3.25 (sept, 4 H, CHMe₂), 1.60 (s, 6 H, Me), 1.34 (d, 6 H, CHMe₂), 1.31 (d, 6 H, CHMe₂), 1.13 (d, 6 H, CHMe₂), 1.06 (d, 6 H, CHMe₂), 0.09 (s, 9 H, SiMe₃), 0.03 (s, 9 H, SiMe₃). ¹³C NMR (C₆D₆, 500.13 MHz): δ 183.8 (Al-C), 181.5 (PhCN), 177.3, 172.4 (CN), 149.7, 145.2, 143.5, 141.3, 127.4, 127.3, 127.2, 124.8, 124.4 (Ph), 102.0 (γ -C), 28.7, 28.2 (CHMe₂), 25.9, 25.1, 25.0 (CHMe₂), 24.0 (Me), 3.38, 3.20 (SiMe₃). ²⁹Si NMR (C₆D₆, 99.36 MHz): δ -10.3, -11.8. EI-MS: *m/e* (%) 718 (M⁺ + H, 5), 614 (M⁺–PhCN, 15), 429 (M⁺–PhCN–C₂(SiMe₃)₂–Me, 100). Anal. Calcd for C₄₄H₆₄AlN₃Si₂ (718.00): C, 73.61; H, 8.98; N, 5.85. Found: C, 73.3; H, 9.0; N, 5.4.

LAI{N₂[C(*t*-Bu)]₂} (39): To a solution of 32 (0.31 g, 0.5 mmol) in diethyl ether (20 mL) *t*-BuCN (0.042 g, 0.5 mmol) was added at room temperature. The black-red color disappeared during 2 h. The solution was stirred for additional 4 h. The solvents were partially removed (ca 10 mL) and stored at -5 °C for 2 days to give colorless crystals (0.10 g, 42 %). Mp: 249 -250 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.01 (m, 6 H, Ar-H), 5.08 (s, 1 H, γ -CH), 3.42 (sept, 4 H, C*H*Me₂), 1.58 (s, 6 H, Me), 1.47 (d, 12 H, *J* = 6.7 Hz, CH*Me*₂), 1.25 (s, 18 H, *t*-Bu), 1.06 (12 H, J = 6.8 Hz, CH Me_2). EI-MS: m/e (%) 553 (M⁺–t-Bu, 10), 470 (M⁺–t-Bu–t-BuCN, 55), 461 (LAl⁺ + Me, 100). Anal. Calcd for C₃₉H₅₉AlN₄ (610.90): C, 76.68; H, 9.73; N, 9.17. Found: C, 76.1; H, 9.7; N, 9.2.

L'H (e): This compound was prepared similarly to LH. 2,6–Me₂C₆H₃NH₂ and H₂C(COCH₃)₂ (2 : 1) were used. After work-up, a white powder of **e** was obtained. Mp: 78 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 12.2 (s, 1 H, NH), 7.03-6.98 (m, 6 H, Ar-H), 4.86 (s, 1 H, γ -CH), 2.16 (s, 12 H, Ar-Me), 1.70 (s, 6 H, Me).

L'AII₂ (40): To a solution of compound **e** (3.06 g, 10 mmol) in *n*-hexane (60 mL) was added AlMe₃ (7 mL, 1.42 M in *n*-hexane, 10 mmol) at room temperature. The mixture was stirred at room temperature for 24 h. All solvents were removed and subsequently the white residue was dissolved in toluene (15 mL). This solution was transferred to a solution of I₂ (5.08 g, 20 mmol) in toluene (40 mL). The mixture was refluxed for 6 h and then filtered. The filtrate was concentrated (ca. 20 mL) and stored at -30 °C overnight to give off-white crystals of **40** (4.7 g, 81 %). Mp: 240-241 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 6.92 (m, 6 H, Ar-H), 4.95 (s, 1 H, γ CH), 2.38 (s, 12 H, Ar-Me), 1.34 (s, 6 H, Me). ¹³C NMR (C₆D₆, 100.60 MHz): δ 171.53 (CN), 141.10, 134.12, 129.51, 127.39 (Ph), 99.73 (γ -C), 23.41 (Ar-Me), 21.11 (Me). ²⁷Al NMR (C₆D₆): δ 75.92 ($\nu_{1/2}$ = 980 Hz). EI-MS: *m/e* (%) 586 (M⁺, 2), 459 (M⁺–I, 100).

L'GaCl₂ (41): To a solution of e (1.53 g, 5 mmol) in diethyl ether (20 mL) was added MeLi (3.1 mL, 1.6 M in diethyl ether, 5 mmol). The solution was stirred at room temperature for 15 h. This solution was transferred to a solution of GaCl₃ (0.88 g, 5 mmoL) in diethyl ether (10 mL) at -78 °C. The mixture was allowed to warm to room temperature and stirred for 15 h. The solvent was removed under vacuum and the residue was extracted with toluene (2 x 10 mL). The extract was concentrated (10 mL) and stored at -30°C for 2 d to give colorless crystals of 41 (1.60 g, 72 %). Mp: 233-5 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 6.92 (s, 6 H,

Ar-H), 4.74 (s, 1 H, γ -CH), 2.32 (s, 12 H, Ar-Me), 1.36 (s, 6 H, Me). ¹³C NMR (C₆D₆, 100.60 MHz): δ 171.09 (CN), 141.32, 134.07, 129.28, 127.37 (Ph), 96.63 (γ -C), 22.88 (Ar-Me), 19.02 (Me). EI-MS: *m/e* (%) 446 (M⁺, 80), 411 (M⁺-Cl, 35), 395 (M⁺-Cl-Me, 100).

4.7 Synthesis of C[(PPh₂)(NSiMe₃)]₂Al₂Me₄ (42)

To a solution of CH₂[(PPh₂)(NSiMe₃)]₂ (0.58 g, 1 mmol) in toluene (20 mL) was added AlMe₃ (1.4 mL, 1.42 M in *n*-hexane, 2 mmol) or AlMe₂H (2 mL, 1 M in *n*-hexane, 2 mmol), and the solution was refluxed for 6 h. Cooling the solution slowly to room temperature afforded colorless crystals of **42**. (0.38 g, 60 %): Mp: 265 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.35 (m, 4 H, Ar-H), 7.14 (m, 4 H, Ar-H), 7.02 (m, 8 H, Ar-H), 6.67 (m, 4 H, Ar-H), 0.28 (s, 6 H, AlMe), -0.11 (s, 18 H, SiMe₃), -0.75 (s, 6 H, AlMe). ¹³C NMR (C₆D₆, 100.60 MHz): δ 132.75, 131.44, 131.38, 129.27, 125.64 (Ph), 2.38 (SiMe₃), -2.49, -4.06 (Al-C). ²⁹Si NMR (C₆D₆, 79.46 MHz): δ 28.07.

4.8 Synthesis of aluminum compounds incorporating the bulky amidinato ligand [*t*-BuC(NAr)₂] (Ar = 2,6-*i*-Pr₂C₆H₃)

[*t*-BuC(NAr)₂]AlMe₂ (43): To a solution of *t*-BuC(NAr)(HNAr) (6.3 g, 15 mmol) in *n*-hexane (60 mL) was added AlMe₃ (10.6 mL, 1.42 M in n-hexane, 15 mmol). The mixture was stirred at room temperature overnight. All volatiles were removed under vacuum. The white solid was recrystallized from *n*-hexane to give colorless crystals of 43 (6.1 g, 85 %). Mp: 191 - 192 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.10 (m, 6 H, Ar-H), 3.6 (sept, 4 H, CHMe₂), 1.32 (d, 12 H, CHMe₂), 1.20 (d, 12 H, CHMe₂), 0.9 (s, 9 H, *t*-Bu), -0.2 (s, 6 H, Al-Me). ¹³C NMR (C₆D₆, 100.60 MHz): δ 180.5(CN), 144.8, 139.4, 126.3, 123.8 (s, Ph), 42.1

(*C*Me₃), 29.6, 28.7 27.2 (*C*HMe₂), 22.8 (*C*HMe₂), -8.1 (s br, AlMe). EI-MS: *m/e* (%) 461 (M⁺–Me, 100).

[*t*-BuC(NAr)₂]All₂ (44): To a solution of 43 (4.76g, 10 mmol) in toluene was added a solution of I₂ (5.08g, 20 mmol) in toluene (50 mL). The mixture was stirred at room temperature for 1 day and subsequently refluxed for 10 h. The solution was concentrated and stored at -30 °C overnight to give pale yellow crystals of 44 (5.3 g, 76 %). Mp:236 °C. ¹H NMR (C₆D₆, 500.13 MHz): δ 7.0 - 7.08 (m, 6 H, Ar-H), 3.71 (sept, 4 H, CHMe₂), 1.35 (d, 12 H, CHMe₂), 1.27 (d, 12 H, CHMe₂), 0.82 (s, 9 H, *t*-Bu). ¹³C NMR (C₆D₆, 100.60 MHz): δ 187.3 (CN), 145.5, 136.5, 127.7, 124.5 (s, Ph), 42.6 (CMe₃), 29.9, 29.5, 29.4, 28.9 (CHMe₂), 23.1 (CHMe₂). ²⁷Al NMR(C₆D₆): δ 85.6.

Reduction of 44 with potassium: To a mixture of 44 (1.4 g, 2 mmol) and finely divided potassium (0.16 g, 4.1 mmol) was added toluene (20 mL). The mixture was stirred at room temperature for 2 d during which time it developed a red color. After filtration, the filtrate was concentrated and stored at -30°C overnight to give colorless crystals, which were characterized as the potassium salt of the ligand by EI-MS spectrum.

4.9 Aluminum Compounds Incorporating the Bulky Amide Ligand

(**DippNAIH**)₂ (**Dipp** = 2,6-*i*-**Pr**₂C₆H₃) (45): To a solution of H₂NC₆H₃-2,6-*i*-Pr₂ (0.35 g, 2 mmol) in toluene (20 mL) was added a solution of AlH₃·NMe₃ (2 mL, 2 mmol) in benzene, and the mixture refluxed for 15 h. On cooling to room temperature, X-ray quality plates of 45 were obtained (0.32 g, 61 %). Mp: 258 °C. ¹H NMR (C₆D₆, 200.13 MHz): δ 7.25-6.90 (m, 6 H, Ar-H), 4.44 (sept, 4 H, C*H*Me₂), 3.54 (s br, 2 H, Al-H), 1.77 (s, H, NMe₃), 1.50, 1.35 (d, 12 H, *J* = 6.80 Hz, CH*Me*₂). Anal. Calcd for C₃₀H₅₄Al₂N₂: C, 68.70; H, 10.39; N, 10.69. Found: C, 68.6; H, 10.4; N, 10.5.

2,4,6-t-Bu₃C₆H₂NHAIH₃ Li(THF)₃ (46): To a solution of LiAlH₄ (0.114 g, 3 mmol) in THF (10 mL) was added a solution of 2,4,6-*t*-Bu₃C₆H₂NH₂ (0.78 g, 3 mmol) in THF (20 mL). The mixture was heated to 60 °C and stirred for 6 h. After removal of the solvent, the residue was crystallized from *n*-hexane to give white crystals of **46** (1.3 g, 81 %). ¹H NMR (C₆D₆, 200.13 MHz): δ 7.52 (s, 1 H, Ar-H), 7.15 (s, 1 H, Ar-H), 3.53 (m, 12 H, THF), 3.49 (s, 1 H, NH), 1.84 (s, 18 H, Ar-*o*-*t*-Bu), 1.82 (s, 9 H, Ar-*p*-*t*-Bu), 1.37 (m, 12 H, THF). ⁷Li NMR (C₆D₆, 97.21 MHz): δ -0.25. ²⁷Al NMR (C₆D₆, 65.17 MHz): δ 110.35 (*v*_{1/2} = 1100 Hz). IR (KBr, Nujol): \tilde{v} = 3411.3 (m, NH), 1691.8 (br m, Al-H) cm⁻¹.

[**Dipp**(**SiMe**₃)**N**]₂**AIH**₂**Li**(**THF**)₂ (**47**): To a solution of LiAlH₄ (0.38 g, 10 mmol) in THF (50 mL) was added Dipp(SiMe₃)NH (5.0 g, 20 mmol). The mixture was heated to 50 °C for 15 h. The solvent was removed and the residue crystallized from *n*-hexane to give white crystals of **47** (5.0 g, 74 %). ¹H NMR (C₆D₆, 500.13 MHz): δ 7.15 - 7.0 (m, 6 H, Ar-H), 4.12 (sept, 4 H, CHMe₂), 3.50 (m, 8 H, THF), 1.42 (d, 12 H, CHMe₂), 1.38 (m, 8 H, THF), 1.18 (d, 12 H, CHMe₂), 0.42 (s, 18 H, SiMe₃), 0.09 (s, 2 H, Al-H). ²⁹Si NMR (C₆D₆, 99.36 MHz): δ - 2.20.

[**Dipp**(**SiMe**₃)**N**]₂**AIH**(**THF**) (**48**): To a solution of **47** (0.68 g, 1 mmol) in *n*-hexane (15 mL) was added neat SiMe₃Cl (0.11 g, 1 mmol). The mixture was stirred at room temperature overnight and subsequently filtered to remove white precipitate. The filtrate was concentrated and stored at -30 °C for 2 d to give white crystals of **48** (0.31 g, 52 %). Mp: 120 °C (dec). ¹H NMR (C₆D₆, 200.13 MHz): δ 7.30 - 7.10 (m, 6 H, Ar-H), 3.76 (sept, 4 H, CHMe₂), 3.55 (t, 4 H, THF), 1.32 (d, 12 H, CHMe₂), 1.21 (d, 12 H, CHMe₂), 1.02 (m, 4 H, THF), 0.26 (s, 18 H, SiMe₃). ¹³C NMR (C₆D₆, 100.60 MHz): δ 146.9, 146.8, 124.1, 123.5 (Ph), 27.69 (CHMe₂), 26.16, 25.56 (CHMe₂), 4.39 (SiMe₃). ²⁹Si NMR (C₆D₆, 79.46 MHz): δ 0.83.

 $[Dipp(SiMe_3)N]_2AlSLi(THF)_x$ (49): To a solution of 47 (0.68 g, 1 mmol) in THF (20 mL) was added S(SiMe_3)_2 (0.18 g, 1 mmol). The mixture was heated to 60 °C and stirred for

8 h. After removal of all volatile materials, the residue was crystallized from THF/*n*-hexane (1 : 4) at -30 °C to give colorless crystals (0.42 g). Mp: 103 - 105 °C. ¹H NMR (d₈-THF, 200.13 MHz): δ 6.75-6.55 (m, 6 H, Ar-H), 3.95 (sept, 4 H, C*H*Me₂), 3.60 (m, 9 H, THF), 1.75 (m, 9 H, THF), 1.07 (d, 12 H, CH*Me*₂), 1.00 (d, 12 H, CH*Me*₂), 0.09 (s, 18 H, SiMe₃). ⁷Li NMR (d₈-THF): δ -0.34. ¹³C NMR (d₈-THF): δ 152.5, 147.2, 122.5, 120.0 (Ph), 68.2, 67.8, 67.4, 67.0 (THF), 27.6 (CHMe₂), 26.2, 25.6 (CH*Me*₂), 26.3, 25.7, 25.3, 24.9 (THF). 4.06 (SiMe₃). ²⁷Al NMR (d₈-THF): δ 116.4 ($v_{1/2}$ = 630 Hz). ²⁹Si NMR (d₈-THF): δ -6.2.

{Dipp(SiMe₃)NAIHSeLi(THF)₃}₂ (50): To a mixture of 47 (0.68 g, 1 mmol) and selenium (0.08 g, 1 mmol) was added THF (15 mL) at room temperature. The selenium was completely consumed after 2 h. After removal of the solvent, the residue was crystallized from THF/*n*-hexane (1 : 4) at -30 °C to give colorless crystals of 50 (0.26 g, 45 %). ¹H NMR (d₈-THF, 200.13 MHz): δ 6.90 - 6.65 (m, 6 H, Ar-H), 4.13 (sept, 4 H, CHMe₂), 3.57 (m, THF), 1.68 (m, THF), 1.22 (d, 12 H, CHMe₂), 1.10 (d, 12 H, CHMe₂), 0.15 (s, 18 H, SiMe₃). ⁷Li (d₈-THF): δ 0.39. ¹³C NMR (d₈-THF): δ 149.5, 148.3, 123.2, 121.4 (Ph), 68.2, 67.8, 67.6, 67.4, 67.2, 67.1 (THF), 27.7 (CHMe₂), 26.9, 26.0 (CHMe₂), 26.4, 25.6, 25.5, 25.3, 25.1, 25.0 (THF), 5.0 (SiMe₃). ²⁹Si NMR (d₈-THF): δ -5.03 . ⁷⁷Se NMR (d₈-THF): δ -420.1. IR (KBr, Nujol): v^{-} = 1776 cm⁻¹ (br m, Al-H).

5 Handling and Disposal of Solvents and Residual Waste

The recovered solvents were distilled or condensed into cold-traps under vacuum, collected in halogen-free or halogen-containing solvent containers, and stored for disposal.

Used NMR solvents were classified into halogen-free or halogen-containing solvents and were disposed as heavy metal wastes and halogen-containing wastes, respectively.

The heavy metal residues were dissolved in nitric acid and after neutralization stored in the container for heavy metal wastes.

Drying agents such as KOH, $CaCl_2$, $MgCl_2$, and P_4O_{10} were hydrolyzed and disposed as acid or base wastes.

Wherever possible, sodium metal used for drying solvents was collected for recycling.¹²⁵ The non-reusable sodium metal was carefully hydrolyzed in cold ethanol and potassium in cold *iso*-propanol and collected into the base-bath for cleaning glassware.

Ethanol or acetone used for cooling baths were subsequently used for cleaning glassware.

The acid bath for cleaning glassware was neutralized with Na_2CO_3 and the resulting NaCl solution was washed off in the water drainage system.

The residual of the base both for cleaning glassware was poured into the container for base wastes.

Amount of various types of disposable wastes generated during the work.

Metal containing wastes:	6 L
Halogen-containing wastes:	5 L
Halogen-free solvent wastes:	40 L
Acid wastes:	12 L
Base wastes:	10 L.

6 Crystal Data and Refinement Details

Formula / Code	$C_{17}H_{32}AlCl_2NSi_3/\ \boldsymbol{3}$	$C_{37}H_{71}Al_2F_4N_2Si_6\;/\;\textbf{7.}0.5\;C_6H_{14}$
Fw	432.59	842.46
Temp (K)	150(2)	200(2)
Cryst syst	Orthorhombic	Triclinic
Space group	Pbca	<i>P</i> -1
a , b, c (Å)	16.895(2),16.129(2),	10.916(3),13.712(6), 242(6)
	17.769(2)	
$\alpha, \beta, \gamma(^{\circ})$	90, 90, 90	79.13(3), 80.207(13),
		69.784(15)
$V(\text{\AA}^3), Z$	4842.3(10), 8	2499.9(15), 2
d (calcd) Mg / m ³	1.187	1.119
Abs coeff (mm ⁻¹)	0.454	0.243
F (000)	840	906
Cryst size (mm)	$0.70\times0.40\times0.20$	$0.50 \times 0.50 \times 0.50$
θ range (deg)	3.56 - 25.05	3.55 - 20.04
No. Of reflns collected	10178	8628
No.of indep.reflns	4273 ($R_{\rm int} = 0.0502$)	4653 ($R_{\rm int} = 0.0498$)
Data/Restraints/Parameters	4266 / 0 / 226	4634 / 319 / 493
GOF/F^2	1.091	1.040
<i>R</i> indices $[I > 2\sigma(I)]$	$R1 = 0.0380 \ wR2 = 0.0844$	R1 = 0.0493, wR2 = 0.1130
R indices (all data)	$R1 = 0.0590 \ wR2 = 0.1007$	R1 = 0.0744, $wR2 = 0.1390$
Largest diff peak/hole (eÅ ⁻³)	0.1 / -0.231	0.272 / -0.323

Formula / Code	$C_{21}H_{40}AlCl_2NOSi_3/\pmb{6}$	$C_{24}H_{56}AlClN_2Si_4/\operatorname{\boldsymbol{9}}$
Fw	504.69	547.50
Temp (K)	203(2)	150(2)
Cryst syst	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	<i>P</i> 2 ₁ /n
<i>a, b, c</i> (Å)	14.290(2), 11,217(2),	11.3848(13), 20.020(3),
	18.358(3)	5.355(2)
α, β, γ(°)	90, 98.268(11), 90	90, 102.647(12), 90
$V(\text{\AA}^3), Z$	2912.1(9), 4	3414.9(9), 4
d (calcd) Mg / m ³	1.151	1.065
Abs coeff (mm ⁻¹)	0.389	0.292
F (000)	1080	-1200
Cryst size (mm)	$0.60 \times 0.60 \times 0.50$	1.00 x 1.00 x 0.70
θ range (deg)	3.63 - 21.95	3.56 to 25.02
No. Of reflns collected	3809	8721
No.of indep.reflns	3519 ($R_{\rm int} = 0.1363$)	$6010 (R_{int} = 0.0231)$
Data / Restraints / Parameters	3500 / 0 / 271	6001/ 0/ 307
GOF/F^2	1.063	1.068
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0518, wR2 = 0.1100	R1 = 0.0343, wR2 = 0.0854
<i>R</i> indices (all data)	$R1 = 0.0518, \ wR2 = 0.1384$	R1 = 0.0410, wR2 = 0.0937
Largest diff peak / hole ($e^{A^{-3}}$)	0.266 / -0.258	0.333 and -0.259

Formula / Code	$C_{34}H_{68}Al_2N_2Si_6/\textbf{14}$	$C_{37.5}H_{68}Al_2N_2S_2Si_6/\ \textbf{15}{\cdot}0.5\ C_7H_8$
Fw	727.40	833.56
Temp (K)	153 (2)	203 (2)
Cryst syst	Monoclinic	Triclinic
Space group	$P2_{1}/n$	<i>P</i> -1
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.014(2), 9.1980(13),	10.969(4), 14.957(6), 16.240(6)
	18.175(3)	
α , β , γ (°)	90, 106.760(15), 90	79.62(3), 81.07(2), 73.04(3)
$V(\text{\AA}^3), Z$	2243.3(6), 2	2491.7(16), 2
d (calcd) Mg / m ³	1.077	1.111
Abs coeff (mm^{-1})	0.249	0.313
F (000)	792	898
Cryst size (mm)	$0.90 \times 0.70 \times 0.40$	$0.80 \times 0.40 \times 0.40$
θ range (deg)	3.67 - 22.52	3.51 - 25.04
Limiting indices	$-15 \le h \le 15, -8 \le k \le 9,$	$-12 \le h \le 7, -17 \le k \le 17,$
	$-18 \le l \le 19$	$0 \le l \le 19$
No. Of reflns collected	3590	7345
No.of indep.reflns	2912 ($R_{\rm int} = 0.0449$)	7252 ($R_{\rm int} = 0.0592$)
Data / Restraints / Parameters	2911 / 0 / 216	7252 / 306 / 475
GOF/F^2	1.038	1.085
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0289, wR2 = 0.0733	R1 = 0.0513, wR2 = 0.1274
<i>R</i> indices (all data)	$R1 = 0.0310, \ wR2 = 0.0757$	$R1 = 0.0708, \ wR2 = 0.1425$
Largest diff peak / hole ($e^{A^{-3}}$)	0.246 / -0.193	0.387 / -0.531

Formula / Code	$C_{34}H_{64}Al_2N_2Se_2Si_6/\ 16$	$C_{34}H_{64}Al_2N_2Si_6Te_2/\ {\rm 17}$
Fw	881.29	978.57
Temp (K)	150(2)	213(2)
Cryst syst	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a, b, c</i> (Å)	8.7959(10), 11.6070(15)	9.0522(15), 11.666(2)
	23.153(4)	23.149(7)
$\alpha, \beta, \gamma(^{\circ})$	100.984(10),92.014(13)	99.55(3), 91.415(14)
	91.248(9)	92.158(12)
$V(\text{\AA}^3), Z$	2318.1(6), 2	2407.8(9), 2
d (calcd) Mg / m ³	1.263	1.350
Abs coeff (mm ⁻¹)	1.813	1.421
F (000)	920	992
F (000) Cryst size (mm)	920 $1.00 \times 0.70 \times 0.60$	992 $0.60 \times 0.40 \times 0.20$
. ,		
Cryst size (mm)	$1.00\times0.70\times0.60$	$0.60 \times 0.40 \times 0.20$
Cryst size (mm) θ range (deg)	$1.00 \times 0.70 \times 0.60$ 3.51 - 25.04	0.60 × 0.40 × 0.20 3.51 - 25.05
Cryst size (mm) θ range (deg)	$1.00 \times 0.70 \times 0.60$ 3.51 - 25.04 $-10 \le h \le 10, -13 \le k \le 13,$	$0.60 \times 0.40 \times 0.20$ 3.51 - 25.05 $-10 \le h \le 10, -13 \le k \le 13,$
Cryst size (mm) θ range (deg) Limiting indices	$1.00 \times 0.70 \times 0.60$ 3.51 - 25.04 $-10 \le h \le 10, -13 \le k \le 13,$ $-24 \le l \le 27$	$0.60 \times 0.40 \times 0.20$ 3.51 - 25.05 $-10 \le h \le 10, -13 \le k \le 13,$ $-10 \le l \le 27$
Cryst size (mm) θ range (deg) Limiting indices No. of reflns collected	$1.00 \times 0.70 \times 0.60$ 3.51 - 25.04 $-10 \le h \le 10, -13 \le k \le 13,$ $-24 \le l \le 27$ 9658	$0.60 \times 0.40 \times 0.20$ 3.51 - 25.05 $-10 \le h \le 10, -13 \le k \le 13,$ $-10 \le l \le 27$ 8518
Cryst size (mm) θ range (deg) Limiting indices No. of reflns collected No.of indep.reflns	$1.00 \times 0.70 \times 0.60$ 3.51 - 25.04 $-10 \le h \le 10, -13 \le k \le 13,$ $-24 \le l \le 27$ 9658 8160 ($R_{int} = 0.0323$)	$0.60 \times 0.40 \times 0.20$ 3.51 - 25.05 $-10 \le h \le 10, -13 \le k \le 13,$ $-10 \le l \le 27$ 8518 8518 ($R_{int} = 0.0000$)
Cryst size (mm) θ range (deg) Limiting indices No. of reflns collected No.of indep.reflns Data/ Restraints/Parameters	$1.00 \times 0.70 \times 0.60$ 3.51 - 25.04 $-10 \le h \le 10, -13 \le k \le 13,$ $-24 \le l \le 27$ 9658 $8160 (R_{int} = 0.0323)$ 8160 / 0 / 433	$0.60 \times 0.40 \times 0.20$ 3.51 - 25.05 $-10 \le h \le 10, -13 \le k \le 13,$ $-10 \le l \le 27$ 8518 8518 ($R_{int} = 0.0000$) 8518 / 0 / 435
Cryst size (mm) θ range (deg) Limiting indices No. of reflns collected No.of indep.reflns Data/ Restraints/Parameters GOF/F ²	$1.00 \times 0.70 \times 0.60$ 3.51 - 25.04 $-10 \le h \le 10, -13 \le k \le 13,$ $-24 \le l \le 27$ 9658 $8160 (R_{int} = 0.0323)$ 8160 / 0 / 433 1.047	$0.60 \times 0.40 \times 0.20$ 3.51 - 25.05 $-10 \le h \le 10, -13 \le k \le 13,$ $-10 \le l \le 27$ 8518 $8518 (R_{int} = 0.0000)$ 8518 / 0 / 435 1.032

Formula / Code	$C_{34}H_{64}Al_2Cl_{0.86}I_{1.42}N_2Si_6/\ \textbf{18}$	$C_{19}H_{26}AlNSe / (0.5 \ 21) \cdot C_7H_8$
Fw	898.30	374.35
Temp (K)	133(2)	133(2)
Cryst syst	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /n	$P2_{1}/n$
<i>a, b, c</i> (Å)	15.536(3), 18.201(4)	12.498(3), 11.556(2)
	17.155(3)	14.256(3)
α, β, γ(°)	90, 108.15(3), 90	90, 114.03(3), 90
$V(\text{\AA}^3), Z$	4610(2), 2	1880.4(7), 4
d (calcd) Mg / m ³	1.294	1.187
Abs coeff (mm ⁻¹)	1.056	2.041
F (000)	1868	776
Cryst size (mm)	$0.50 \times 0.50 \times 0.20$	$1.00\times0.80\times0.70$
θ range (deg)	2.41 - 27.78	2.36 - 27.50
Limiting indices	$-20 \le h \le 20, -23 \le k \le 15,$	$-16 \le h \le 14, 0 \le k \le 14,$
	$-22 \le l \le 22$	$0 \le l \le 18$
No. of reflns collected	70718	4301
No.of indep.reflns	10729 ($R_{\rm int} = 0.1281$)	4301 ($R_{\rm int} = 0.0000$)
Data/Restraints/Parameters	10727 / 0 / 453	4296 / 0 / 203
GOF/F^2	0.949	1.117
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0513, wR2 = 0.0868	R1 = 0.0435, wR2 = 0.1016
<i>R</i> indices (all data)	$R1 = 0.1155, \ wR2 = 0.0985$	R1 = 0.0627, wR2 = 0.1147
Largest diff peak / hole ($e^{A^{-3}}$)	4.39 / -0.399	0.880 / -0.563

Formula / Code	$C_{16}H_{27}AlN_{2}Te\ /\ 0.5\ \textbf{23}$	$C_{29}H_{43}AlN_2Se_2 / 25$
Fw	401.98	604.55
Temp (K)	203(2)	203(2)
Cryst syst	Monoclinic	Orthorhombic
Space group	$P2_{1}/c$	Pnma
<i>a, b, c</i> (Å)	10.542(2), 11.726(3),	13.065(3), 22.049(4),
	14.580(4)	10.577(2)
α, β, γ(°)	90, 105.04(2), 90	90, 90, 90
$V(\text{\AA}^3), Z$	1740.8(7), 4	3046.7(11), 4
d (calcd) Mg / m ³	1.534	1.318
Abs coeff (mm ⁻¹)	1.753	2.475
F (000)	808	1248
Cryst size (mm)	$0.60 \times 0.60 \times 0.20$	$1.00\times0.80\times0.40$
θ range (deg)	3.52 - 25.01	3.63 - 25.01
Limiting indices	$-12 \le h \le 12, -13 \le k \le 13,$	$0 \le h \le 15, -21 \le k \le 26,$
	$-17 \leq l \leq 17$	$0 \le l \le 12$
No. of reflns collected	9371	2769
No.of indep.reflns	3066 ($R_{\rm int} = 0.0479$)	2760 ($R_{\rm int} = 0.0348$)
Data / Restraints / Parameters	3066 / 0 / 185	2756 / 0 / 165
GOF/F^2	1.111	1.044
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0282, wR2 = 0.0759	R1 = 0.1020, wR2 = 0.2787
<i>R</i> indices (all data)	R1 = 0.0289, wR2 = 0.0768	R1 = 0.1282, wR2 = 0.3188
Largest diff peak / hole (e Å ⁻³)	0.984 / -1.234	1.706 / -1.408

Formula / Code	$C_{58}H_{84}Al_2N_4Se_3 \ / \ {\bf 26}$	$C_{29}H_{41}AlI_2N_2/{\bm 27}$
Fw	1128.13	698.42
Temp (K)	203(2)	200(2)
Cryst syst	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n
<i>a, b, c</i> (Å)	12.255(3), 27.347(6),	18.927(10), 8.690(5),
	17.753(4)	20.137(15)
α , β , γ (°)	90, 98.29(3), 90	90, 113.45(4), 90
$V(\text{\AA}^3), Z$	5888(2), 4	3038(3), 4
d (calcd) Mg / m ³	1.273	1.527
Abs coeff (mm ⁻¹)	1.942	2.118
F (000)	2352	1392
Cryst size (mm)	$1.00\times0.80\times0.40$	$0.80 \times 0.40 \times 0.40$
θ range (deg)	3.53 - 22.53	3.71 - 25.04
Limiting indices	$-13 \le h \le 13, -2 \le k \le 29,$	$-22 \le h \le 22, -10 \le k \le 10,$
	$-19 \le l \le 19$	-23≤ <i>l</i> ≤23
No. Of reflns collected	8425	8642
No.of indep.reflns	7712 ($R_{\rm int} = 0.0364$)	5357 ($R_{\rm int} = 0.0184$)
Data/Restraints/Parameters	7700 / 1 / 630	5351 / 0 / 317
GOF/F^2	1.076	1.088
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0595, wR2 = 0.1253	R1 = 0.0248, wR2 = 0.0608
<i>R</i> indices (all data)	R1 = 0.894, wR2 = 0.1510	R1 = 0.0281, wR2 = 0.0647
Largest diff peak / hole ($eÅ^{-3}$)	1.847 / -0.900	0.654 / -0.966

Formula / Code	$C_{29}H_{41}AlN_2$ / 28	$C_{35}H_{59}AlN_6Si_2\;/\;{\bm 29}$
Fw	444.62	647.04
Temp (K)	153(2)	200(2)
Cryst syst	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n
<i>a, b, c</i> (Å)	12.576(3), 15.949(5),	18.4571(11), 22.037(6),
	13.962(3)	14.136(2)
α , β , γ (°)	90, 104.84(2), 90	90, 91.358(11), 90
$V(\text{\AA}^3), Z$	2707.1(12), 4	3879.3(12), 4
d (calcd) Mg / m ³	1.091	1.108
Abs coeff (mm ⁻¹)	0.093	0.145
F (000)	968	1408
Cryst size (mm)	$0.50 \times 0.30 \times 0.20$	$0.70 \times 0.60 \times 0.20$
θ range (deg)	3.54 - 25.03	3.51 - 25.05
Limiting indices	$-14 \le h \le 14, -1 \le k \le 18,$	$-14 \le h \le 14, -9 \le k \le 26,$
	$-16 \le l \le 16$	-16≤ <i>l</i> ≤16
No. Of reflns collected	4978	10122
No.of indep.reflns	4759 ($R_{\rm int} = 0.0283$)	6843 ($R_{\rm int} = 0.0510$)
Data / Restraints / Parameters	4736 / 0 / 299	6835 / 0 / 413
GOF/F^2	1.128	1.050
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0471, wR2 = 0.0914	R1 = 0.0436, wR2 = 0.1110
<i>R</i> indices (all data)	R1 = 0.860, wR2 = 0.1202	R1 = 0.0511, wR2 = 0.1201
Largest diff peak / hole ($eÅ^{-3}$)	0.262 / -0.218	0.320 / -0.256

Formula / Code	$C_{37}H_{59}AlN_{2}Si_{2}/\textbf{32}$	$C_{43}H_{51}AlN_2 \ / \ {\bf 33}$
Fw	615.02	622.84
Temp (K)	200(2)	133(2)
Cryst syst, Space group	Triclinic, P-1	Monoclinic, $P2_1$
<i>a, b, c</i> (Å)	11.160(4), 11.978(5),	18.785(3), 20.832(4),
	16.460(7)	18.823(3)
α, β, γ(°)	85.68(3), 80.20(2), 64.11(2)	90, 90.08(3), 90
$V(\text{\AA}^3), Z$	1950.6(13), 2	7366(2), 8
d (calcd) Mg / m ³	1.047	1.123
Abs coeff (mm ⁻¹)	0.138	0.086
F (000)	672	2688
Cryst size (mm)	$1.00 \times 0.60 \times 0.30$	$0.70 \times 0.40 \times 0.15$
θ range (deg)	3.51 – 25.12	2.23 - 27.50
Limiting indices	$-12 \le h \le 13, -14 \le k \le 14,$	$-23 \le h \le 23, -26 \le k \le 26,$
	-14≤ <i>l</i> ≤19	$0 \le l \le 24$
No. of reflns collected	7806	143864
No.of indep.reflns	6894 ($R_{\rm int} = 0.0708$)	32699 ($R_{\rm int} = 0.0839$)
Data / Restraints / Parameters	6885 / 0 / 395	32699 / 1 / 1699
GOF/F^2	1.045	1.028
R indices $[I > 2\sigma(I)]$	R1 = 0.0698, wR2 = 0.1845	R1 = 0.0506, wR2 = 0.1045
R indices (all data)	R1 = 0.0849, wR2 = 0.2090	R1 = 0.0780, wR2 = 0.01177
Largest diff peak / hole ($e^{A^{-3}}$)	0.490 / -0.485	0.249 / -0.270

Formula / Code	$C_{59}H_{71}AlN_2O_3 \ / \ \textbf{35} \cdot OEt_2$	$C_{54}H_{79}AlN_2O_2Si_2 \ / \ \textbf{37} \cdot OEt_2$
Fw	883.16	871.35
Temp (K)	203(2)	133(2)
Cryst syst, Space group	Monoclinic, <i>P</i> 2 ₁ /n	Orthorhombic, P212121
<i>a, b, c</i> (Å)	22.027(4), 11.4636(12),	12.803(3), 17.176(3),
	20.857(4)	23.578(5)
α , β , γ (°)	90, 105.023(13), 90	90, 90, 90
$V(\text{\AA}^3), Z$	5086.4(14), 4	5184.9(19), 4
d (calcd) Mg / m ³	1.153	1.116
Abs coeff (mm^{-1})	0.086	0.125
F (000)	1904	1896
Cryst size (mm)	$0.80 \times 0.60 \times 0.50$	$0.40 \times 0.30 \times 0.20$
θ range (deg)	3.52 - 25.03	2.10 - 27.86
Limiting indices	$-26 \le h \le 26, -13 \le k \le 13,$	$-16 \le h \le 16, 0 \le k \le 22,$
	-24≤ <i>l</i> ≤24	$0 \le l \le 30$
No. of reflns collected	12230	109910
No.of indep.reflns	8973 ($R_{\rm int} = 0.0434$)	12113 ($R_{int} = 0.0710$)
Data / Restraints / Parameters	8973 / 577 / 598	12113 / 0 / 568
GOF/F^2	1.030	1.050
R indices $[I > 2\sigma(I)]$	R1 = 0.0523, wR2 = 0.1161	R1 = 0.0394, wR2 = 0.0852
R indices (all data)	R1 = 0.0760, wR2 = 0.1325	R1 = 0.0485, wR2 = 0.0894
Largest diff peak / hole ($e^{A^{-3}}$)	0.407 / -0.352	0.238 / -0.224

Formula / Code	$C_{44}H_{64}AlN_{3}Si_{2}/{\bm 38}$	$C_{42}H_{58}Al_2N_2P_2Si_2 \ / \ \bm{42}$
Fw	718.14	762.98
Temp (K)	133(2)	200(2)
Cryst syst, Space group	Triclinic, P-1	Triclinic, P-1
<i>a, b, c</i> (Å)	11.445(2), 12.591(3),	11.787(3), 14.151(4),
	16.521(3)	14.454(4)
α, β, γ (°)	106.30(3), 90.82(3),	83.47(2), 70.18(2),
	108.90(3)	79.501(13)
$V(\text{\AA}^3), Z$	2147.3(7), 2	2226.6(10), 2
d (calcd) Mg / m ³	1.111	1.138
Abs coeff (mm^{-1})	0.135	0.221
F (000)	780	816
Cryst size (mm)	$0.50 \times 0.30 \times 0.30$	$1.00\times0.60\times0.40$
θ range (deg)	2.17 - 27.76	3.51 - 25.02
Limiting indices	$-14 \le h \le 14, -16 \le k \le 15,$	$-12 \le h \le 14, -16 \le k \le 16,$
	$0 \le l \le 21$	-17≤ <i>l</i> ≤17
No. Of reflns collected	9997	13488
No.of indep.reflns	9997 ($R_{\rm int} = 0.0519$)	7801 ($R_{\rm int} = 0.0662$)
Data / Restraints / Parameters	9997 / 0 / 467	7791 / 645 / 446
GOF/F^2	1.065	1.036
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0437, wR2 = 0.1030	R1 = 0.0543, wR2 = 0.1550
<i>R</i> indices (all data)	R1 = 0.548, wR2 = 0.1084	R1 = 0.0600, wR2 = 0.1649
Largest diff peak / hole ($eÅ^{-3}$)	0.394 / -0.308	1.252 / -0.889

Formula / Code	$C_{31}H_{49}AlN_2/{\bm 43}$	$C_{29}H_{43}AlI_2N_2$ / 44
Fw	476.70	700.43
Temp (K)	133(2)	133(2)
Cryst syst, Space group	Triclinic, P-1	Orthorhombic, <i>P</i> na2 ₁
<i>a, b, c</i> (Å)	10.138(2), 10.927(2),	18.087(4), 10.241(2),
	14.344(3)	17.118(3)
α , β , γ (°)	74.44(3), 77.77(3), 74.27(3)	90, 90, 90
$V(\text{\AA}^3), Z$	1456.8(5), 2	3170.7(11), 4
d (calcd) Mg / m ³	1.087	1.467
Abs coeff (mm^{-1})	0.090	2.030
F (000)	524	1400
Cryst size (mm)	$0.50 \times 0.40 \times 0.20$	$0.30 \times 0.20 \times 0.10$
θ range (deg)	2.11 - 27.72	2.25 - 27.96
Limiting indices	$-12 \le h \le 13, -13 \le k \le 14,$	$0 \le h \le 23, 0 \le k \le 13,$
	$0 \le l \le 18$	$-22 \le l \le 22$
No. Of reflns collected	22263	57704
No.of indep.reflns	6728 ($R_{\rm int} = 0.0495$)	7456 ($R_{\rm int} = 0.0514$)
Data/Restraints/Parameters	6728 / 0 / 320	7456 / 0 / 319
GOF/F^2	1.036	1.044
<i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0548, wR2 = 0.1344	R1 = 0.0271, wR2 = 0.0657
<i>R</i> indices (all data)	R1 = 0.0711, wR2 = 0.1433	R1 = 0.0315, wR2 = 0.0680
Largest diff peak/hole (eÅ ⁻³)	0.431 / -0.231	1.157 / -0.828

7 References

- (a) K. B. Starowieyski, In Chemistry of Aluminum, Gallium, Indium and Thallium, Ed: A. J. Downs, Chapman & Hall: London, UK, **1993**. (b) J. J. Eisch, In Comprehensive Organometallic Chemistry II, Eds: E. W. Abel, F. G. A. Stone, G. Wilkinson, Elsevier: Oxford, UK, **1995**; Vol.11, Chapter 6. (c) M. Witt, H. W. Roesky, Curr. Sci. **2000**, 78, 410.
- 2. W. Hallwachs, A. Schafarik, Liebigs Ann. Chem. 1895, 109, 206.
- (a) K. Ziegler, H. G. Gellert, *Liebigs Ann. Chem.* 1950, 567, 195. (b) J. Skupinska, *Chem. Rev.* 1991, 91, 613. (c) M. Bochmann, D. M. Dawson, *Angew. Chem.* 1996, 108, 2371;
 Angew. Chem., Int. Ed. Engl. 1996, 35, 2226.
- 4. (a) D. A. Atwood, J. A. Jegier, D. J. Rutherford, J. Am. Chem. Soc. 1995, 117, 6779. (b) J.
 A. Jegier, D. A. Atwood, Inorg. Chem. 1997, 36, 2034. (c) N. Emig, H. Nguyen, H.
 Krautscheid, R. Reau, J. B. Cazaux, G. Bertrand, Organometallics 1998, 17, 3599. (d) D.
 A. Atwood, Coord. Chem. Rev. 1998, 176, 407.
- (a) M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 1997, 119, 8125. (b) E. Ihara, V. G. Young Jr., R. F. Jordan, J. Am. Chem. Soc. 1998, 120, 8277. (c) M. Bruce, V. C. Gibson, C. Redshaw, G. A. Solan, A. J. P. White, D. J. Williams, Chem. Commun. 1998, 2523.
- 6. See for example (a) J. A. Ewen, M. S. Elder, *Eur. Pat. Appl.* 0426637, 1991 (Fina Technology, Inc.); *Chem. Abstr.* 1991, 115, 136988d. (b) J. C. W. Chien, W.-M. Tsai, M. D. Rausch, *J. Am. Chem. Soc.* 1991, 113, 8570.
- 7. (a) M. B. Power, J. R. Nash, M. D. Healy, A. R. Barron, *Organometallics* 1992, *11*, 1831.
 (b) M. B. Power, S. G. Bott, J. L. Atwood, A. R. Barron, *J. Am. Chem. Soc.* 1990, *112*, 3446.
 (c) K. Maraoka, T. Itoh, M. Sakuria, K. Nanoshita, H. Yamamoto, *J. Am. Chem. Soc.* 1988, *110*, 3588.

- 8. L. Contreras, A. H. Cowley, F. P. Gabbai, R. A. Jones, C. J. Carrano, M. R. Bond, J. Organomet. Chem. 1995, 489, C1.
- 9. H. V. R. Dias, W. Jin, R. E. Ratcliff, Inorg. Chem. 1995, 34, 6100.
- 10. A. H. Cowley, H. S. Isom, A. Decken, Organometallics 1995, 14, 2589.
- 11. R. J. Wehmschulte, P. P. Power, J. Am. Chem. Soc. 1996, 118, 791.
- 12. (a) R. J. Wehmschulte, P. P. Power, *Chem. Commun.* 1998, 335. (b) R. J. Wehmschulte,
 P. P. Power, *J. Am. Chem. Soc.* 1997, *119*, 8387.
- 13. A. R. Barron, Comments Inorg. Chem. 1993, 14, 123.
- 14. (a) A. H. Cowley, R. A. Jones, P. R. Harris, D. A. Atwood, L. Contreras, C. J. Burek, *Angew. Chem.* 1991, 103, 1164; *Angew. Chem., Int. Ed. Engl.* 1991, 30, 1143. (b) M. B. Power, A. R. Barron, *J. Chem. Soc., Chem. Commun.* 1991, 1315. (c) C. J. Harlan, E. G. Gillan, S. G. Bott, A. R. Barron, *Organometallics* 1996, 15, 5479. (d) S. L. Stoll, S. G. Bott, A. R. Barron, *J. Chem. Soc., Dalton Trans.* 1997, 1315.
- S. Schulz, H. W. Roesky, H.-J. Koch, G. M. Sheldrick, D. Stalke, A. Kuhn, *Angew. Chem.* 1993, 105, 1828; *Angew. Chem.*, *Int. Ed. Engl.* 1993, 32, 1729.
- 16. W. Uhl, Z. Naturforsch. (B) 1988, 43, 1113.
- 17. C. Dohmeier, C. Robl, M. Tacke, H. Schnöckel, Angew. Chem. 1991, 103, 594; Angew. Chem., Int. Ed. Engl. 1991, 30, 564.
- 18. (a) A. Purath, C. Dohmeier, A. Ecker, H. Schnöckel, K. Amelunxen, T. Passler, N. Wiberg, Organometallics 1998, 17, 1894. (b) C. Schnitter, H. W. Roesky, C. Röpken, R. Herbst-Irmer, H.-G. Schmidt, M. Noltemeyer, Angew. Chem. 1998, 110, 2059; Angew. Chem., Int. Ed. 1998, 37, 1952. (c) H. Sitzmann, M. F. Lappert, C. Dohmeier, C. Üffing, H. Schnöckel, J. Organomet. Chem. 1998, 561, 203. (d) A. Purath, H. Schnöckel, J. Organomet. Chem. 1999, 579, 373.
- 19. P. P. Power, J. Chem. Soc., Dalton Trans. 1998, 2939.

- 20. R. J. Wehmschulte, K. Ruhlandt-Senge, M. M. Olmstead, H. Hope, B. E. Sturgeon, P. P. Power, *Inorg. Chem.* **1993**, *32*, 2983.
- 21. (a) J. Gauss, U. Schneider, R. Ahlrichs, C. Dohmeier, H. Schnöckel, J. Am. Chem. Soc.
 1993, 115, 2402. (b) A. Haaland, K.-G. Martinsen, S. A. Shlykov, H. V. Volden, C. Dohmeier, H. Schnöckel, Organometallics 1995, 14, 3116.
- 22. (a) J. Weiss, D. Stetzkamp, B. Nuber, R. A. Fischer, C. Boehme, G. Frenking, *Angew. Chem.* 1997, 109, 95; *Angew. Chem., Int. Ed. Engl.* 1997, 36, 70. (b) J. D. Gordan, A. Voigt, C. L. B. Macdonald, J. S. Silverman, A. H. Cowley, *J. Am. Chem. Soc.* 2000, 122, 950.
- 23. (a) S. Schulz, L. Häming, R. Herbst-Irmer, H. W. Roesky, G. M. Sheldrick, *Angew. Chem.* **1994**, *106*, 1052; *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 969. (b) S. Schulz, A. Voigt, H. W. Roesky, L. Häming, R. Herbst-Irmer, *Organometallics* **1996**, *15*, 5252.
- 24. G. Wilke, H. Müller, Liebigs Ann. Chem. 1960, 629, 222.
- 25. J. J. Eisch, R. L. Arrell, Jr., J. Organomet. Chem. 1969, 20, 257.
- 26. (a) K. Ziegler, K. Schneider, J. Schneider, *Liebigs Ann. Chem.* 1959, 623, 9. (b) A. E. G.
 Müller, J. W. Biss, L. H. Schwartzman, *J. Org. Chem.* 1959, 24, 627.
- 27. (a) P. Teisseire, B. Corbier, M. Plattier, *Recherches* **1967**, *16*, 5. (b) P. Teisseire, A. Galfre, M. Plattier, B. Corbier, *Recherches* **1967**, *16*, 59.
- 28. (a) J. E. Lloyd, K. Wade, J. Chem. Soc. 1965, 2662. (b) S. Pasynkiewicz, W. Kuran, Rocz. Chem. 1965, 39, 1199.
- 29. P. B. Hitchcock, M. F. Lappert, D.-S. Liu, J. Chem. Soc., Chem. Commun. 1994, 2637.
- 30. P. B. Hitchcock, M. F. Lappert, M. Layh, Inorg. Chim. Acta 1998, 269, 181.
- 31. P. B. Hitchcock, M. F. Lappert, M. Layh, J. Chem. Soc., Dalton Trans. 1998, 1619.
- 32. P. B. Hitchcock, J. Hu, M. F. Lappert, M. Layh, J. Severn, J. Chem. Soc., Chem. Commun. 1997, 1189.

- 33. D. R. Armstrong, W. Clegg, L. Dunbar, S. T. Liddle, M. MacGregor, R. E. Mulvey, D. Reed, S. A. Quiss, J. Chem. Soc., Dalton Trans. 1998, 3431.
- 34. M. F. Lappert, M. Layh, Tetrahedron Lett. 1998, 39, 4745.
- 35. P. C. Andrews, D. R. Armstrong, M. MacGregor, R. E. Mulvey, D. Reed, J. Chem. Soc., Chem. Commun. 1989, 1341.
- 36. S.-D. Waezsada, F.-Q. Liu, E. F. Murphy, H. W. Roesky, M. Teichert, I, Uson, H.-G. Schmidt, T. Albers, E. Parisini, M. Noltemeyer, *Organometallics* 1997, 16, 1260.
- 37. C. Schnitter, K. Klimek, H. W. Roesky, T. Albers, H.-G. Schmidt, C. Röpken, E. Parisini, *Organometallics* **1998**, *17*, 2249.
- 38. S. Schulz, T. Schoop, H. W. Roesky, L. Häming, A. Steiner, R. Herbst-Irmer, Angew. Chem. 1995, 107, 1015; Angew. Chem., Int. Ed. Engl. 1995, 34, 919.
- 39. G. Gundersen, T. Haugen, A. Haaland, J. Chem. Soc., Chem. Commun. 1972, 708.
- 40. G. Shanmugasundaram, G. Nagarajan, Z. Phys. Chem. 1969, 240, 363.
- 41. C. Ergezinger, F. Weller, K. Dehnicke, Z. Naturforsch. B 1988, 43, 1621.
- 42. J. L. Atwood, In *Inclusion Compounds*, Eds: J. L. Atwood, J. E. D. Davies, D. D. MacNicol, Academic: London, UK, **1984**, Vol.1, 375.
- 43. (a) AlCl₃(THF)₂ has been characterized by X-ray crystal structural analysis by us. (b) AlCl₃(THF)₂ was also formed from the adduct (Me₂N)₃SiCl·AlCl₃, see A. H. Cowley, M. C. Cushner, R. E. Davis, P. E. Riley, *Inorg. Chem*, **1981**, *20*, 1179.
- 44. (a) N. C. Means, C. M. Means, S. G. Bott, J. L. Atwood, *Inorg. Chem.* 1987, 26, 1466. (b)
 J. Derouault, M. T. Forel, *Inorg. Chem.* 1977, 16, 3207.
- 45. L. M. Engelhardt, U. Kynast, C. L. Raston, A. H. White, Angew. Chem. 1987, 99, 702; Angew. Chem., Int. Ed. Engl. 1987, 26, 681.
- 46. J. Derouault, P. Granger, M. T. Forel, Inorg. Chem. 1977, 16, 3214.
- 47. R. J. Wehmschulte, P. P. Power, Inorg. Chem. 1994, 33, 5611.

- 48. G. Linti, H. Nöth, P. Rahm, Z. Naturforsch. B 1988, 43, 1101.
- 49. W. Uhl, Z. Anorg. Allg. Chem. 1989, 570, 37.
- 50. H. S. Isom, A. H. Cowley, A. Decken, F. Sissingh, S. Corbelin, R. J. Lagow, Organometallics 1995, 14, 2400.
- 51. M. B. Power, J. W. Ziller, A. N. Tyler, A. R. Barron, Organometallics 1992, 11, 1055.
- 52. F. Bottomley, R. W. Day, Organometallics 1991, 10, 2560.
- 53. (a) K. Sasaki, Y. Aso, T. Otsubo, F. Ogura, *Chem. Lett.* 1989, 607. (b) K. Sasaki, T. Mori,
 Y. Doi, A. Kawachi, Y. Aso, T. Otsubo, F. Ogura, *Chem. Lett.* 1991, 415. (c) T. Inoue, T.
 Takeda, N. Kambe, A. Ogawa, I. Ryu, N. Sonoda, *Organometallics* 1994, 13, 4543.
- 54. M. G. Gardiner, C. L. Raston, V.-A. Tolhurst, J. Chem. Soc., Chem. Commun. 1995, 1457.
- 55. R. J. Wehmschulte, P. P. Power, J. Am. Chem. Soc. 1997, 119, 9566.
- 56. W. Uhl, U. Schütz, Z. Naturforsch. B 1994, 49, 931.
- 57. N. Wiberg, K. Amelunxen, T. Blank, H. Nöth, J. Knizek, Organometallics 1998, 17, 5431.
- See for example (a) J. A. M. van Beek, G. van Koten, G. P. C. M. Dekker, E. Wissing, J. Organomet. Chem. 1990, 394, 659. (b) J. A. M. van Beek, G. van Koten, M. J. Ramp, N. C. Coenjaarts, D. M. Grove, K. Goubitz, M. C. Zoutberg, C. H. Stam, W. J. J. Smeets, A. L. Spek, *Inorg. Chem.* 1991, 30, 3059. (c) L. A. van de Kuil, H. Luitjes, D. M. Grove, J. W. Zwikker, J. G. M. van der Linden, A. M. Roelofsen, L. W. Jenneskens, W. Drenth, G. van Koten, *Organometallics* 1994, 13, 468.
- See for example (a) J. Müller, U. Englert, *Chem. Ber.* 1995, *128*, 493. (b) M. A. Dam, O. S. Akkerman, F. Bickelhaupt, N. Veldman, A. L. Spek, *Main Group Met. Chem.* 1995, *18*, 633. (c) R. Probst, C. Leis, S. Gamper, E. Herdtweck, C. Zybill, N. Auner, *Angew. Chem.* 1991, *103*, 1155; *Angew. Chem., Int. Ed. Engl.* 1991, *30*, 1132.
- 60. A. H. Cowley, F. P. Gabbai, D. A. Atwood, J. Am. Chem. Soc. 1994, 116, 1559.

- 61. C. L. Raston, J. Organomet. Chem. 1994, 475, 15.
- A. H. Cowley, R. A. Jones, M. A. Mardones, J. Ruiz, J. L. Atwood, S. G. Bott, Angew. Chem. 1990, 102, 1169; Angew. Chem., Int. Ed. Engl. 1990, 29, 1150.
- 63. R. C. Mehrotra, R. Bohra, D. P. Gaur, *Metal β-Diketonates and Allied Derivatives*, Academic: New York, **1978**.
- 64. B. Qian, D. L. Ward, M. R. Smith III, Organometallics 1998, 17, 3070.
- 65. U. Svanholm, In Organic Selenium Compounds: Their Chemistry and Biology, Eds: D. L. Klayman, W. H. H. Günther, Wiley-Interscience: New York, 1973, 903.
- 66. (a) J. H. Shin, G. Parkin, Organometallics 1995, 14, 1104. (b) W. Hoffmann, H. Werner, Angew. Chem. 1981, 93, 1088; Angew. Chem., Int. Ed. Engl. 1981, 20, 1014. (c) H. J. Gysling, in The Chemistry of Organic Selenium and Tellurium Compounds, Vol.1, Eds: S. Patai, Z. Rappoport, John Wiley & Sons Ltd.: New York, 1986, 741, and references therein.
- 67. W. Uhl, R. Gerding, I. Hahn, S. Pohl, W. Saak, Polyhedron 1996, 15, 3987.
- 68. R. A. Poirier, I. G. Csizmadia, in *The Chemistry of Organic Selenium and Tellurium Compounds*, Vol.1, Eds: S. Patai, Z. Rappoport, John Wiley & Sons Ltd.: New York, 1986, 30, and references therein.
- 69. The Se–H bond energy in H₂Se is 73 kcal·mol⁻¹, see S. R. Gunn, *J. Phys. Chem.* 1964, 68, 949.
- 70. C. Jones, G. A. Koutsantonis, C. L. Raston, Polyhedron 1993, 12, 1829.
- 71. S. T. Haubrich, P. P. Power, J. Am. Chem. Soc. 1998, 120, 2202.
- 72. (a) A. Frazer, B. Piggott, M. B. Hursthouse, M. Mazid, J. Am. Chem. Soc. 1994, 116, 4127. (b) M. C. Kuchta, H. V. R. Dias, S. G. Bott, G. Parkin, Inorg. Chem. 1996, 35, 943.
 (c) H. V. R. Dias, L. Huai, W. Jin, S. G. Bott, Inorg. Chem. 1995, 34, 1973.

- K. Knabel, I. Krossing, H. Nöth, H. Schwenk-Kircher, M. Schmidt-Amelunxen, T. Seifert, *Eur. J. Inorg. Chem.* 1998, 1095.
- 74. C. E. Holloway, M. Melnik, J. Organomet. Chem. 1997, 543, 1.
- 75. The calculations were perfprmed with the GAMESS package (see M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, *J. Comput. Chem.* 1993, *14*, 1347.) in the RHF limit based on STO-3G.
- 76. R. F. W. Bader, Chem. Rev. 1991, 91, 993.
- 77. The lone pair at the Al(I) atom is located in the HOMO orbital whose canonical shape is very close to that of the lone pair obtained through the localization procedures.
- 78. E. S. Schmidt, A. Jockisch, H. Schmidbaur, J. Am. Chem. Soc. 1999, 121, 9785.
- 79. (a) G. Ossig, A. Meller, S. Freitag, R. Herbst-Irmer, J. Chem. Soc., Chem. Commun. 1993, 497. (b) H. Grützmacher, H. Pritzkow, Angew. Chem. 1991, 103, 976; Angew. Chem., Int. Ed. Engl. 1991, 30, 1017. (c) W. P. Neumann, Chem. Rev. 1991, 91, 311.
- 80. D. S. Brown, A. Decken, A. H. Cowley, J. Am. Chem. Soc. 1995, 117, 5421.
- 81. P. P. Power, Chem. Rev. 1999, 99, 3463.
- 82. M. J. Zaworotko, J. L. Atwood, Inorg. Chem. 1980, 19, 268.
- 83. See for example (a) D. W. Peters, M. P. Power, E. D. Bourret, J. Arnold, *Chem. Commun.* 1998, 753. (b) K. M. Waggoner, P. P. Power, *J. Am. Chem. Soc.* 1991, *113*, 3385. (c) A.-A. I. Al-Wassil, P. B. Hitchcock, S. Sarisaban, J. D. Smith, C. L. Wilson, *J. Chem. Soc., Dalton Trans.* 1985, 1929.
- 84. (a) J. B. Leach, J. H. Morris, J. Organomet. Chem. 1968, 13, 313. (b) J. H. Morris, P. G. Perkins, J. Chem. Soc. (A) 1966, 580. (c) N. N. Greenwood, J. H. Morris, J. Chem. Soc. 1965, 6205.

- 85. B. Twamley, C.-S. Hwang, N. J. Hardman, P. P. Power, J. Organomet. Chem. 2000, 609, 152.
- 86. See for example (a) N. Peulecke, W. Baumann, R. Kempe, V. V. Burlakov, U. Rosenthal, *Eur. J. Inorg. Chem.* 1998, 419. (b) U. Rosenthal, A. Ohff, M. Michalik, H. Görls, V. V. Burlakov, V. B. Shur, *Angew. Chem.* 1993, 105, 1228, *Angew. Chem. Int. Ed. Engl.* 1993, 32, 1193.
- 87. K. Sakamato, S. Tsutsui, H. Sakurai, M. Kira, Bull. Chem. Soc. Jpn. 1997, 70, 253.
- 88. For related structurally characterized neutral aluminum alkynyl and vinyl complexes see for example (a) G. D. Stucky, A. M. McPherson, W. E. Rhine, J. J. Eisch, J. L. Considine, *J. Am. Chem. Soc.* **1974**, *96*, 1941. (b) M. J. Albright, W. M. Butler, T. J. Anderson, M. D. Glick, J. P. Oliver, *J. Am. Chem. Soc.* **1976**, *98*, 3995.
- 89. (a) C. J. Harlan, S. G. Bott, A. R. Barron, J. Chem. Soc., Dalton Trans. 1997, 637. (b)
 A. Herzog, H. W. Roesky, F. Jäger, A. Steiner, M. Noltemeyer, Organometallics 1996, 15,
 909. (c) J. M. Smith, S. G. Bott, J. Chem. Soc., Chem. Commun. 1996, 377. (d) C. J.
 Harlan, M. R. Mason, A. R. Barron, Organometallics 1994, 13, 2957. (e) S. G. Bott, H.
 Elgamal, J. L. Atwood, J. Am. Chem. Soc. 1985, 107, 1796.
- 90. B. E. Kahn, R. D. Rieke, Chem. Rev. 1988, 88, 733.
- 91. M. Pasquali, C. Floriani, A. Chiesi-Villa, C. Guastini, Inorg. Chem. 1981, 20, 349.
- 92. (a) J. E. Hill, P. E. Fanwick, I. P. Rothwell, *Organometallics* 1992, 11, 1771. (b) N.
 Peulecke, A. Ohff, A. Tillack, W. Baumann, R. Kempe, V. V. Burlakov, U. Rosenthal, *Organometallics* 1996, 15, 1340.
- 93. K. Ziegler, F. Krupp, K. Weyer, W. Larbig, Liebigs Ann. Chem. 1960, 629, 251.
- 94. (a) J. J. Eisch, M. W. Foxtan, J. Organomet. Chem. 1968, 11, 7. (b) G. Zweifel, R. B.
 Steele, J. Am. Chem. Soc. 1964, 86, 883.

- 95. CO₂ insertion has been reported for an aluminacyclopent-3-ene compound, see L. H.
 Shepherd, US Pat. 3872144, 1975 (Ethyl Corp); Chem. Abstr. 1975, 83, 10376p.
- 96. J. A. Jensen, J. Organomet. Chem. 1993, 456, 161.
- 97. G. E. Coates, K. Wade, In Organometallic Compounds Vol 1, The Main Group Elements, Methuen: London, UK, **1967**, 311.
- 98. For few well characterized η²-nitrile metal complexes see for examples (a) T. C. Wright,
 G. Wilkinson, M. Motevalli, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1986, 2017.
 (b) P. A. Chetcuti, C. B. Knobler, M. F. Hawthorne, Organometallics 1988, 7, 650.
- 99. (a) G. Cainelli, M. Panunzio, P. Andreoli, G. Martelli, G. Spunta, D. Giacomini, E. Bandini, *Pure Appl. Chem.* 1990, 62, 605. (b) S. L. Buchwald, B. T. Watson, M. W. Wannamaker, J. C. Dewan, *J. Am. Chem. Soc.* 1989, 111, 4486.
- 100. (a) H. L. Goering, C. C. Tseng, J. Org. Chem. 1981, 46, 5252. (b) P. Andreoli, L. Billi, G. Cainelli, M. Panunzio, G. Martelli, G. Spunta, J. Org. Chem. 1990, 55, 4199. (c) B. Bogdanovic, S. Konstantinovic, *Liebigs Ann. Chem.* 1970, 738, 202. (d) L. E. Overman, R. M. Burk, *Tetrahedron Lett.* 1984, 25, 5737.
- 101. C. M. Ong, D. W. Stephan, J. Am. Chem. Soc. 1999, 121, 2939. (b) A. Kasani, R. P. Kamalesh Babu, R. McDonald, R. G. Cavell, Angew. Chem. 1999, 111, 1580; Angew. Chem., Int. Ed. 1999, 38, 1483.
- 102. R. G. Cavell, R. P. Kamalesh Babu, A. Kasani, R. McDonald, J. Am. Chem. Soc. 1999, 121, 5805.
- 103. C. E. Radzewich, M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 1998, 120, 9384.
- 104. S. Dagorne, I. A. Guzei, M. P. Coles, R. F. Jordan, J. Am. Chem. Soc. 2000, 122, 274.
- 105. M. P. Coles, D. C. Swenson, R. F. Jordan, Organometallics 1997, 16, 5183.
- 106. K. M. Waggoner, P. P. Power, Angew. Chem. 1988, 100, 1765; Angew. Chem., Int. Ed.
 Engl. 1988, 27, 1699.

- 107. (a) R. Murugavel, A. Voigt, M. G. Walawalkar, H. W. Roesky, *Chem. Rev.* 1996, 96, 2205. (b) R. Murugavel, V. Chandrasekhar, H. W. Roesky, *Acc. Chem. Res.* 1996, 29, 183.
- 108. V. V. Gavrilenko, M. I. Vinnikova, V. A. Antonovich, L. I. Zakharkin, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1982, 31, 2084.
- 109. (a) A. Heine, D. Stalke, Angew. Chem. 1992, 104, 941; Angew. Chem., Int. Ed. Engl.
 1992, 31, 854. (b) C. Eaborn, I. B. Gorrell, P. B. Hitchcock, J. D. Smith, K. Tavakkoli, Organometallics 1994, 13, 4143. (c) R. J. Wehmschulte, W. J. Grigsby, B. Schiemenz, R.
 A. Bartlett, P. P. Power, Inorg. Chem. 1996, 35, 6694.
- 110. R. A. Bartlett, X. Feng, P. P. Power, J. Am. Chem. Soc. 1986, 108, 6817.
- 111. M. A. Petrie, S. C. Shoner, H. V. R. Dias, P. P. Power, Angew. Chem. 1990, 102, 1061;Angew. Chem., Int. Ed. Engl. 1990, 29, 1033.
- 112. K. Ruhlandt-Senge, P. P. Power, Inorg. Chem. 1993, 32, 4505.
- 113. T. Nothegger, K. Wurst, M. Probst, F. Sladky, Chem. Ber. 1997, 130, 119.
- 114. D. V. Khasnis, M. Buretea, T. J. Emge, J. E. Brennan, J. Chem. Soc., Dalton Trans. 1995, 45.
- 115. J. Storre, C. Schnitter, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, R. Fleischer, D. Stalke, J. Am. Chem. Soc. 1997, 119, 7505.
- 116. D. D. Perrin, W. L. F. Armarego, *Purification of Laboratory Chemicals*, 3rd Edn, Pergamon: London, UK, **1988**.
- 117. G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
- 118. G. M. Sheldrick, *SHELXL*, *Program for Crystal Structure Refinement*, University of Göttingen, Göttingen, Germany, **1997**.
- 119. E. Krause, Ber. Dtsch. Chem. Ges. 1918, 51, 1447.
- 120. J. K. Ruff, M. F. Hawthorne, J. Am. Chem. Soc. 1960, 82, 3125.
- 121. D. H. M. Budzelaar, A. B. van Oort, A. G. Orpen, Eur. J. Inorg. Chem. 1998, 1485.

- 122. R. T. Boere, V. Klassen, G. Wolmershäuser, J. Chem. Soc., Dalton Trans. 1998, 4147.
- 123. R. Appel, I. Ruppert, Z. Anorg. Allg. Chem. 1974, 406, 131.
- 124. (a) P. A. T. W. Porskamp, B. Zwanenburg, *Synthesis* 1981, 368; (b) H. W. Roesky, D. K. Kennepohl, G. M. Sheldrick, *Chem. Ber.* 1991, *124*, 2223.
- 125. B. Hübler-Blank, M. Witt, H. W. Roesky, J. Chem. Educ. 1993, 70, 408.

8 Lebenslauf

Name:	Chunming Cui	
Geboren:	31. Juli 1967 in Shaanxi, China	
Staatsangehörigkeit: chinesisch		
Familienstand:	verheiratet, ein Sohn.	
Schulausbildung		
02/1974 - 06/1979:	Grundschule in Shaanxi, China	
08/1979 - 06/1982:	Wugong Middleschool in Shaanxi, China	
09/1982 - 06/1985:	Studium am Shaanxi Chemical Engineering College, Xi'an, China	
Hochschulausbildung		
09/1986- 07/1990:	Studium Chemie am Fachbereich Chemie der Universität Northwest,	
	Xi'an, China	
07/1990:	Bachelor of Science	
09/1990 - 06/1993:	Studium der Organische Chemie am Universität Nankai, Tianjin,	
	China	
06/1993:	Master of Science	
06/1993 - 10/1997:	Forschungsmitarbeiter am Research Institute of Petroleum	
	Processing, SINOPEC, Beijing, China	
10/1997 - 12/1997:	Äquivalenzprüfung zum Diplomexamen - Fach Chemie	
01/1998 - 01/2001:	Anfertigung der Dissertation unter Anleitung von Prof. Dr. Dr. h.	
	c. mult. H. W. Roesky am Institut für anorganische Chemie der	
	Georg August Universität zu Göttingen	
07/12/2000:	OTTO-WALLACH-preis	