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ABSTRACT 
 
This study describes the anatomical properties of Prosopis laevigata trees found in 

northeast Mexico. The chemical composition and the topochemical distribution of 

lignin and phenolic compounds are described along with the deposition of extractives 

in pit canals, parenchyma cells, and the fiber S2 layer using UV 

microspectrophotometry (UMSP). The main physical and mechanical characteristics 

of trees from four different areas of northeast Mexico are presented. The natural 

durability of wood samples from various regions is determined through use of the 

soil-bed test ENpr 807. The durability of extractive-free wood specimens toward 

basidiomycetes is investigated as is the growing inhibition of Coniophora puteana 

and Trametes versicolor caused by extractives obtained by using hot water, ethanol-

water, acetone-water, and cyclohexane. The shear strength of the wood after being 

glued with melamine formaldehyde (MF) and Polyvinyl acetate (PVAc) is measured. 

The effect of artificial weathering is also discussed. 

 

The Prosopis genus normally grows on arid and semi-arid land. It is used as a source 

of fodder for domestic animals, of flour for human consumption, and as a source of 

gums, mulch or compost. It also plays an important role in the production of honey. 

The wood is used to produce parquet lumber, furniture and decorative hand-crafted 

items; however, its main use is still as a source of fuel. 

 

The importance of the Prosopis species, both within Mexico and around the globe, is 

presented in Chapter 1. Its use, distribution and ecological importance are also 

discussed. An anatomical description and an analysis of its chemical composition are 

given in Chapters 2 and 3, respectively. The size, proportion and distribution of the 

wood’s fiber structure, of its vessels and of its ray parenchyma cells are discussed 

and compared with those of other Prosopis species. The chemical wood composition 

reveals a holocellulose content of between 61.7 - 64.5% and a Klason lignin content 

of between 29.8 - 31.4% within the heartwood tissue. A large percentage of 

extractive compounds (14.1 to 16.0 %) are found within the wood, including catechin, 

epicatechin and taxifolin. 
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The characteristics of the trees and, consequently, the properties of the wood are 

influenced by weather conditions in its natural habitats. Chapter 4 deals with the 

physical and mechanical properties, including density, swelling and shrinkage, as 

well as the modulus of elasticity, and the modulus of rupture and hardness. The 

results reveal that this wood is very stable with regard to dimensional changes and 

that it has medium to high wood strength. Differences in properties of wood grown in 

different areas are also presented. 

 

P. laevigata wood is highly resistant to decay. As described in Chapter 5, its 

heartwood has a very low mass loss and a dynamic modulus of elasticity loss after 

32 weeks of soil contact. Low mass loss (0.4 to 1.5 %) is also found after 16 weeks 

of exposure to the basidiomycetes Coniophora puteana, Trametes versicolor, Irpex 

lacteus and Pleurotus ostreatus in a modified EN 113.The natural durability is 

classified as Class 1 (very durable) according to European Standard EN 350-1. 

Extractives have a moderate to large effect on C. puteana and T. versicolor growth 

after dissolving in a malt-agar medium; the extractives are most effective at 1000 

ppm concentration.  

 

Artificial weathering and bonding properties are presented in Chapters 6 and 7. The 

wood has high stability with respect to dimensional changes and displays a great 

resistance to artificial weathering. The general appearance of P. laevigata changed 

from brown to white; Delta C (change of colour) increased from 5.6 to 9.6 and there 

were fewer crack formations than in Fagus sylvatica species but more than in 

Tectona grandis. Shear strength results obtained after gluing Prosopis wood 

(normally used for indoor applications) with Melamine Formaldehyde (MF) adhesives 

under wet condition demonstrate that Prosopis is suited for use in outdoor 

application. 

 

In summary, it must be emphasised that the density, the wood stability with regard to 

moisture changes and artificial weathering, the high natural durability, and, finally, the 

high amount of shear strength after bonding are parameters which point to an almost 

limitless number of indoor and outdoor applications for this wood. The analyses of 

the properties of P. laevigata wood as well as those of feasible wood uses done in 
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this study have revealed some very important elements worthy of further research 

and development within the forestry and wood sciences. 
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Chapter 1 

INTRODUCTION 

1.1 General 

 

It has been estimated that there are currently more than 50,000 plant species world 

wide. The largest number of native tree species found in a single country is 7,880 in 

Brazil. Astonishingly, only about 1000 different tree species are utilized globally 

(Sutton 1999; FAO 2006a). Thus, thousands of tree species are either, not utilized, 

under utilized, or used inappropriately. The present human population, estimated at 

approximately 6.5 billion in 2005 (Aktuell 2007), has wood consumption needs within 

the range of 0.3 to 0.6 m3/year/habitant. As a result, the annual wood and wood 

based products consumption have been calculated to be around 3.5 billion m3, 

approximately 66% of which are hardwoods used mainly as fuel; the rest are 

softwoods used principally in industry (Youngquist & Hamilton 1999).  

 

In order to satisfy wood needs, forestry has been focussed on increasing wood 

production by improving forestry management. Plantations provide another option. In 

areas of Venezuela and Brazil between 5 to 90 m3/ha/year of Pinus caribea and 

Eucalyptus grandis are produced, respectively (FAO 2006a); however, the material 

obtained from these plantations is “different” quality-wise in comparison to wood 

coming from natural forests (Zobel 1984). Plantation wood might show some 

unexpected characteristics, e.g., the anatomical structure and chemical composition 

can demonstrate fewer but wider annual rings. There is a different proportion of 

earlywood and latewood, a higher percent of juvenile wood and a different amount of 

extractives, all of which might effect such physical and mechanical properties as 

density, swelling, shrinkage, strength and hardness (FAO 2006b). 

 

For the reasons mentioned above, one of the tasks of wood science and the wood 

industry must be to concentrate on increasing research to ensure a better utilization 

of lesser-known tree species from around the world. This should particularly apply to 
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trees grown on arid and semi-arid land which have shown desirable characteristics, 

making them good alternatives for a variety of wood, wood-based and non-wood 

products. 

 

 

1.2 Forest resources in Mexico 

 

Mexico is located between longitude 86°42’36’’ W and 118°22’00’’ W and latitude 

32°43’06’’ N and 14°32’27’’ N (INEGI 2007); its overall area is 1,964,375 km2, 60% of 

which are mountains and 40% of which is considered hilly to flat (Rodríguez & 

Maldonado 1996). According to an inventory of land use in Mexico completed in 

2000, vegetation is dominated by xerophytes (27.0%), followed by agriculture lands 

(23.5%), forest lands (16.9%), rain forest (15.8%) (Palacio-Prieto et al. 2000). The 

variable vegetation types are a result of a variety of factors. These include the 

geographical location: Mexico lies between the Nearctic and Neotropical zones; the 

different types of climate; the geologic and orographic location which produces great 

differences in environmental conditions, habitats and microhabitats.  

 

Even though the area covered by forest and rain forest lands was calculated as more 

than 0.6 million km2 (32.75% of Mexico), the wood production in 1994 was only about 

2.8 x109 m3 stock; in 2003 the annual harvest was approximately 6.9 x106 m3 

(SEMARNAT 2007b). The wood industry in Mexico is not highly developed. In 2003 

the production volumes of major wood products were as follows: saw wood (4.5 x106 

m3), cellulose (0.8 x106 m3), veneer and plywood (0.4 X106 m3), and firewood and 

charcoal (0.7 x106 m3) (SEMARNAT 2007b). There are approximately 1230 sawmills; 

most of them are small with a daily production of less than 94 m3 and an 

effectiveness of 60%. The veneer industry in 2000 consisted of 48 veneer and 

plywood factories and 17 particle board factories. In 2000 there were seven pulp 

factories with an annual production of 2x106 and 57 paper factories (Torres-Rojo 

2004)  
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For many years the wood industry has faced numerous problems. Those most worthy 

of note include:  

• High cost for transport from the cut areas to the processing plants over an 

average distance of 200 to 250 km with bad road conditions. 

• Use of old machinery and under-trained workers. 

• Limited usage of the various species due to a lack of knowledge with respect 

to the physical and mechanical wood properties of new or alternative species 

(Torres-Rojo 2004). 

 

All of these factors have a large impact on the market. 

 

 

1.3 Importance of Prosopis species 

 

1.3.1 Prosopis worldwide 

 

The Prosopis genus comprises about 44 species of trees and shrubs; the number 

could be as high as 77 since similar species are now included in other genera like 

Acacia (Burkart 1976; USDA 2007). It occurs naturally in arid and semi-arid areas 

where it has been used by local populations as a good source of timber, fuel and 

fodder. The taxonomy is very complex (Burkart 1976); the species have been divided 

into five sections, distributed in North America, Central/South America, Africa, and 

Asia (Pasiecznic et al. 2001). The species from the Prosopis section are native to 

Asia and North Africa; the Anonychium section is composed of a single species P. 

africana, which is found on arid lands of North Africa. The species from the 

Strombocarpa, Monilicarpa and Algarobia sections are indigenous to Central and 

South America where the largest Prosopis forests are also found (Lopez et al. 2006).  

 

Tropical Africa could be where Prosopis originated. As all species are closely related 

to Adenanthera L. and Pseudoprosopis Harms, all species may have evolved from 

these two genera (Burkart 1976). The name Prosopis comes from the ancient Greek 

word “Prosopis”, which means “bark used for tanning sheep skins” (Rodríguez & 
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Maldonado 1996). This particular type of tree is known as “mesquite“ in Mexico. The 

word “mizquitl” comes from the native language Náhuatl and also means “bark for 

tanning” (Pennington & Sarukhan 1968; Rodríguez & Maldonado 1996).  

 

The importance of Prosopis trees have been confirmed in many ecosystems around 

the world. These species have the capacity to positively influence soils, thus 

improving the environmental conditions for themselves as well for other plants and 

animal species. And, even under the poorest conditions, they are still able to produce 

multiple products. For that reason they have been grown on plantations in a number 

of habitats. Even though there are no exact records about the distribution of 

Prosopis, the common belief is that the first travellers across America used the sweet 

pods during their journeys. They could have also been spread indirectly by domestic 

animals consuming the sweet pods. In the last 200 years the Prosopis species have 

been introduced or reintroduced in certain areas of Argentina, Chile, Peru, Mexico 

and the USA (Pasiecznic et al. 2001), as well as in some regions of Asia, Africa, 

India and Australia. 

 

There are contradicting opinions regarding the use of some species in reforestation 

programs. As a result of their fast colonizing behaviour, they have been considered 

as problematic trees. In fact, some users consider these tree species to be amongst 

the worst invasive weeds. Prosopis have already infested areas of Africa, Australia, 

Brazil, and Hawaii, where large amounts of money have been spent on eradication 

by mechanical, chemical or biocontrol means (Richardson 1998; Hughes 2001). In 

the USA an eradication program lasting more than 50 years has been employed to 

remove Prosopis from grasslands; however, neither herbicides nor mechanical 

means have proved successful. After a period of time the Prosopis has always 

returned (Pasiecznik 2002). 
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1.3.2 Prosopis in Mexico 

 

Throughout history the Mexican people have associated themselves with the 

Prosopis. Several eras of Mexican history are in fact related to forest uses. The pre-

Hispanic era before 1500 A.D. was characterized by rational use as a result of low 

demand and religious beliefs. During this period the forest was only used to supply 

the most important necessities. In contrast, the era of Spanish Conquest was 

characterized by an increase in the use of forest products due to mining activities. 

When Mexico became independent at the beginning of the 19th Century, forest 

resources were used without any regard to any technical criteria. Finally, prior to the 

revolution at the onset of the 20th century, the forest area was reduced drastically as 

the people felt they had infinite resources (Rodríguez & Maldonado 1996). Today, the 

Prosopis species are managed under forest programs which rationally determine the 

volume of the wood to be harvested. 

 

Prosopis vegetation covers almost 3 million hectares from sea level to 2,200 m, 

corresponding to 1.51% of Mexico’s area (Palacio-Prieto et al. 2000). 9 Prosopis 

species grow naturally forming the complex named North American or “Mexico-

Texano”. These species are P. palmeri, P. reptans, P. pubescens, P. articulate, P. 

tamaulipana, P. vetulina, P. juliflora, P. laevigata, P. glandulosa var. glandulosa and 

var. torreyana (INE 1994). P. laevigata is especially prominent in some localities of 

Guerrero, Queretaro, Estado de Mexico, Michoacan, Morelos, Oaxaca, Puebla, San 

Luis Potosi, Veracruz, Nuevo Leon, Aguascalientes, Durango, Guanajuato, Hidalgo, 

Jalisco and Zacatecas, Mexico (INE 1994). 

 

Although various factors, such as cattle management, excess harvesting and general 

agriculture, have reduced tree numbers, the Prosopis species still play a very 

important role in the economy and the environment. The most recognised uses of 

Prosopis are illustrated in Fig.1. 
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Wood products 
 

Firewood 

Charcoal 

Fence posts 

Tool handles 

Sawn timber 

Furniture 

Flooring 

Craft items 

 
 

Non-wood 
Products 

 

Flour 

Pod syrups 

Coffee substitute 

Seed gum 

Animal feed 

Honey 

Wax 

Exudate gum 

Fig. 1: Uses of Prosopis species. Based on Pasiecznik et al. (2004) 

 

Natural Prosopis stands have been use as fodder for domestic animals, e.g., cows 

and goats. In 1965 approximately 40,000 mt (metric tons) of Prosopis pods were 

used to feed cattle, sheep, goats, horses, donkeys and mules (Felker 1981a).  

 

It is also possible to produce flour for human consumption and due to its sugar 

content even an alcoholic brew. Some fairly recent studies have found that Prosopis 

seeds are comparable to soybeans (Waggle et al. 1989). Prosopis flour absorbs 

185% of its weight in water, which is quite similar to the results obtained for 

Phaseolus sp. (Barba de la Rosa et al. 2006). 

 

As Prosopis trees produce an abundance of blossoms, they play an important role in 

quality honey production (Pasiecznik et al. 2004). Gums are also produced in large 

amounts from wounds to the bark; the gum quality has been compared to 

commercial arabic gum (from Acacia senegal), which is mainly used as an emulsion 

stabilizer, colloid protector and flavour encapsulating agent in the food, cosmetic, 

pharmaceutical and petrochemical industries (Beristain et al. 1996).  

 

The leaves of some native Prosopis species which grow in India are rarely browsed 

by livestock; this is seen as an advantage during its initial establishment. Some 
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African and a few American species are valued as leaf fodder. Sometimes the leaves 

are gathered and used as a mulch or compost on cultivated fields; they display some 

noteworthy fungicidal and insecticidal qualities. The bark is a source of tannins, dyes 

and fibers. Various plant parts are used in the preparation of medicines, mostly for 

eye, skin and stomach ailments (Felker 1979; Galindo & García 1986; Gérardin et al. 

2004). 

 

Because of its high density, Prosopis has been widely recognized as a source of 

wood. Its wood has been used for agricultural tool handles, the hubs for cart wheels, 

poles for mining, in house construction, for fence posts, door and window frames, 

furniture, parquet flooring, fire wood, and charcoal. Without a doubt, these last two 

products are the ones most often utilized. This results from the fact that these trees 

have a small growth pattern, thus producing lumber of small dimension. In addition, 

these two products are relatively cheap to produce (Felker 1979; 1981a). 

 

Mexico’s charcoal exports increased from 2,000 to 20,000 mt from 1982 to 1992 

(Meraz et al. 1998) with the United States being its main buyer. Five cubic metres of 

wood are needed to produce 1 metric ton of charcoal, which means that 100,000 m3 

of wood were used in only one year. In two traditional Prosopis harvesting 

municipalities of northwest Mexico the logging of only approx 50,000 m3 was 

authorized from 1990 to 1997 (León-Luz et al. 2005). The official statistics regarding 

nation-wide Prosopis harvesting do not reflect the actual harvest, since this wood is 

grouped together with other species such as Populus sp., Liquidambar sp., Fraxinus 

sp. and Juglans sp. Records for these show an overall wood production of 135,563 

m3 in 2003 (SEMARNAT 2007a). 

 

 

1.4 State of the Art 

 

Research on the Prosopis species has been very broad since it is a multi-purpose 

tree with many ecological interactions. Since the taxonomy with regard to the number 

of species and subspecies is still under discussion, initial taxonomic work 
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concentrated on phenological characteristics, e.g. leafe size (Pasiecznik et al. 2004). 

The great amount of cross-linking has produced various hybrids, making 

identification more difficult. A detailed description of Prosopis distribution in North 

America divides the population into three segments: the plain-mountain area 

“Altiplanicie”, the depression area “Balsas Depression” and the plain area “Northwest 

Cost Plain”, which are separated by humid mountains (Johnston 1962; Burkart 1976). 

 

The geographic distribution has been changing. In some areas the coverage of 

several species has been increased by plantation, and in others reduced by overuse. 

This explains why Prosopis ecology has become a widely studied issue. Frequent 

topics are the floral patterns, germination, and fruit production as well as the 

ecological interactions between microclimatic conditions, water relations, soil 

modification, and nitrogen fixation.  

 

In forest management, research topics have included seed collecting and 

scarification, germination, pests and diseases, density of plantation, silviculture 

pruning and species selection. The wood volume of a single tree has also been 

determined from the diameter and height using regression tables. Prosopis has been 

traditionally managed by using range management guidelines which require the 

cutting of the total stand rather than the application of silvicultural techniques. 

Nowadays, in some northern states of Mexico Prosopis is managed under short cut 

periods of 10 years (Sanchez & Leal 2003). 

 

 

1.5 Objectives of the thesis 

 

The environmentally sound use of trees and shrubs has become a necessity, making 

the use of trees growing under difficult conditions that much more urgent. Semi-arid 

and arid lands cover 38.3 x 106 km2 worldwide. For many years the research on 

Prosopis in Mexico has played an important role. CONAFOR, the National Forestry 

Commission of Mexico, published an assessment of research needs in the forest 

sector in 2002. Prosopis research has priority status. Until recently research topics 
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focused on why Prosopis trees were dying out in some areas of the state of Nuevo 

Leon, Mexico. Developing new technologies is needed for the genetic conservation, 

for production as well as for the use of these trees. Attention needs to be paid to 

using Prosopis wood in a rational and sustainable manner as well as to finding new 

worthwhile products. 

 

In an effort to reassess the available information and to establish a basis for the 

better utilization of Prosopis laevigata wood grown in northeast Mexico, the present 

work begins with an in-depth anatomical description of the wood, emphasizing the 

differences in size and distribution of cell types compared to other Prosopis species. 

This is followed by a determination of the wood’s chemical composition, including a 

description of the topochemical distribution of lignin and the phenolic compounds 

within the cell walls. The quantity and identification of wood extractives are also 

determined. Physical and mechanical properties, such as density, swelling and 

shrinkage, compression, hardness, modulus of elasticity (by use of both the static 

and dynamic method) are then investigated. The modulus of rupture of wood 

stemming from four different localities is also determined. The natural durability of the 

wood are tested under laboratory conditions in soil containers and includes exposure 

to wood decay fungi. The effect of artificial weathering on lightness and cracking in 

Prosopis laevigata, Tectona grandis and Fagus sylvatica are examined and 

compared. In addition, the bonding properties of two different glues under five 

conditions are tested. Finally, an in-depth discussion, including proposed alternatives 

uses, is presented.  
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Chapter 2 

WOOD ANATOMY 

Summary 

 

Anatomical heartwood characteristics of Prosopis laevigata species grown naturally 

in northeast Mexico were determined; the histometrical evaluations were carried out 

by light microscopy coupled with a digitized-image analysis system. It was found that 

the growth ring boundaries of semi-ring-porous or diffuse-porous wood are often 

marked by a marginal parenchyma band. The vessels are arranged in non-specific 

patterns and there are differences between the average (tangential) diameter of 

earlywood (116 µm) and latewood (44 µm). In these samples most of the vessels 

were filled with an amber-coloured gum; crystals were found in both ray cells and 

axial parenchyma cells but no silica compounds were observed. The average fiber 

length was 975 µm and the thickness of a single cell wall of a fiber was 13 µm on 

average. 
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2.1 Introduction 

 

For centuries wood has been used as a building material. Wood is composed of 

many ‘small’ cell structures. The structure is determined by the cell’s type, size, 

shape and arrangement. Wood tissue is anisotropic and has been described as an 

orthotropic material, producing different material in three main directions (Schachner 

et al. 2000; Reiterer et al. 2002). The characteristics of the wood structures are not 

only different within a genus and species but within a tree itself. It is possible that 

specimens of wood from one tree might differ if they are obtained at different heights 

or distances from the pith (Forest Products Laboratory 1999; Leal et al. 2006). The 

variance in wood formation effects the wood structure, chemical composition, 

physical and mechanical properties, resistance to decay, and ultimately the quantity 

and quality of the wood products (Butterfiel 2003). The determination of the wood 

anatomy is the first step toward establishing possible uses of a particular wood. 

 

Several authors, including Iqbal & Ghouse (1983), Villalba (1985), Castro (1994), 

Villagra & Roig (1997), Lopez et al. (2005) and Scholz et al. (2005), have described 

the wood anatomy of several Prosopis species; their results have shown great 

differences in wood structures within these species. The growth patterns of the 

species studied are compared to that of species from a relatively wet environment. 

Especially P. juliflora displays a diffuse porous structure, whereas species such as P. 

caldenia and P. chilensis from low rainfall zones are ring-porous and semi-ring-

porous, respectively (Gomes & Muñiz 1986). 

 

The various species of Prosopis grow mainly in semi-arid areas and under poor soil 

conditions throughout the world (Juárez-Muñoz et al. 2002). Prosopis species have 

been able to survive drought by developing deep roots or adapting physiologically to 

ensure more efficient water uptake and minimal water loss (Pasiecznic et al. 2001). A 

microscopical examination of P. laevigata = “Mesquite” (trade name) wood produced 

in the northeast area of Mexico, reveals anatomical structures, such as vessel 

diameter, vessel distribution patterns, size and width of ray cells. The results will help 
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to characterize this wood species and to relate it to the environmental factors. This 

will also make it possible to study the effect of the wood anatomy on the physical and 

mechanical properties. Finally, the results could aid in developing other uses for the 

wood. 

 

The objectives in this chapter are i) to characterise the microscopic wood structure of 

P. laevigata, ii) to determine the relation of some wood structures to the 

environmental conditions where P. laevigata grows and iii) to find other uses for this 

wood. 

 

 

2.2 Wood description 

 

This section provides a brief general description of wood as well as wood 

characteristics. Wood-producing trees can occur in both angiosperms and 

gymnosperms. The angiosperms, or hardwoods, are the most diverse group. This 

group includes ring-porous species of trees such as the oak, or diffuse porous 

species like beech, ash and birch. The gymnosperms or softwoods consist of about 

600 perennial species (Lev-Yadun & Sederoff 2000). This group includes commercial 

timber such as pine, fir, and spruce.  

The wooden tissues of trees have been divided into various sections. The pith is in 

the centre of the tree and is formed by dead cells; the outer section of the pith is the 

heartwood section, also formed by dead cells. In most cases, synthesis and the 

accumulation of extractives give heartwood a darker colour and make this wood 

section more resistant to decay. The sapwood provides a line for water movement 

and storage (living cells) in the tree trunk and is the area where the young tissues are 

found. The cambium = “meristematic tissue” is comprised of two kinds of cells: the 

fusiform initials and the ray initials. The bark is the outer section of the tree which 

provides for the transport and storage of carbohydrates (products of assimilation) as 

well as offering physical protection. 
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The anatomical characterization of wood generally consists of three major wood 

sections (transversal, tangential, and radial). In Fig. 2 it is possible to see the 

sections of a hardwood structure. 1) The transversal section, also called cross-

section, is perpendicular to the longitudinal axis of the tree; its surface exposes the 

concentric growth of the rings. 2) The radial section is perpendicular to the annual 

growth ring and displays the parenchyma rays. 3) The tangential section is the 

longitudinal section of wood; it is parallel to the growth rings of the tree and is 

perpendicular to the annual rays’ growth. In this section the rays and the vessels are 

visible and are oriented vertically. 

 

 

 

 

Fig. 2: Segment of hardwood tissue showing 1) transversal section, 2) radial section, 3) 
tangential section, 4) annual growth ring, 5) earlywood, 6) latewood, 7) wood ray, 8) vessels 
and 9) perforation plate. (Foulger 1969). 
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2.2.1 Wood structures 

 

2.2.1.1 Vessels 

 

Hardwoods are called porous wood because of the presence of vessels. The vessels 

in living trees conduct water and dissolved minerals from the roots to the leaves 

(Akachuku 1985; Eaton & Halle 1993). The proportion of vessels and their diameters 

is different within individual species and the vessels proportions have a high 

correlation between site indexes or area quality (Maeglin 1976). The vessels 

proportion and size are also a result of environmental conditions. Their fundamental 

function is to ensure water supply. In yellow-poplar, as in many other tree species, 

the vessel proportion from pith to bark varies (Taylor 1968). The wood density and, 

consequently, the mechanical properties are also determined by the vessels’ 

diameter and the number of vessels per square millimetre (Leal et al. 2006). If the 

vessel proportion of a tree species is high and the vessel diameter is large, the wood 

produced by such trees has a lower density and, as a consequence, lower strength 

properties.  

 

2.2.1.2 Rays 

 
Further important wood elements which offer metabolic pathways for short-distance 

transport and storage are the xylem rays. These structures, also known as wood 

rays, have been described as parenchyma cells which extend radially inward from 

the cambium (Jane 1970). The rays are subdivided into uniseriate and multiseriate. 

The uniseriate are the rays which are only one cell wide; the multiseriate rays are two 

or more cells wide at the widest point (Carlquist 1988). The most important anatomic 

characteristics worthy of mention are ray width, ray length, and the kinds of cells 

(heterocellular or homocellular structure) which rays are formed by. Hardwood 

species with wide rays have 50% more proportional limit stress in radial compression 

(Kennedy 1968). 
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2.2.1.3 Fibers 

 
Fibers are described as long and pointed elements with a simple pit. The structure 

and chemical composition of the fibers are responsible for most wood properties. A 

schematic representation of a fiber is shown in Fig. 3. The fiber is subdivided into 

several layers. The outer is known as the primary wall; it is thinner than the other 

layers. The inner layer is the secondary wall. It is thicker and is composed of three 

layers: the thin S1 which is the first formed layer next to the primary wall; the thick S2 

and the inner S3. The S2 layer of the secondary wall contributes the most to the bulk 

of wall material, as well to its physical and mechanical properties. The cell lumen is 

the cavity close to S3. The function of fibers is to provide mechanical support to the 

tree. Libriform cells and tracheids form two different kinds of fibers. The latter provide 

support and conduct water. Fibers are the most important material in the pulp and 

paper industry. This industry is the controlling force behind the demand for tree 

species with different attributes, including fiber length and diameter, and wall fiber 

thickness (Igartúa et al. 2000). 

 

 

 

Fig. 3: Microscopic structure of a wood cell showing the primary wall (PW) secondary cell walls 
S1 and S2, and the S3 wall. Based on imaged by Timell (1967). 
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2.2.1.4 Axial parenchyma 

 
This structure generally appears as axially oriented strands or light coloured areas 

surrounding the vessels. It is composed of elongated cells. The axial parenchyma is 

normally observed in a cross-section of a piece of wood; it is formed by maturing 

living cells. They are derived from fusiform cambial initials. The cells that compose 

the axial parenchyma are usually thinner than the imperforated tracheid elements. 

Each individual cell is normally surrounded by a secondary wall. 

 

2.2.1.5 Gums 

 
Gums are mainly produced by exudation from the stem of the tree. They are solids 

consisting of polysaccharides and are considered a pathological response to injury to 

the tree, caused either by accident or by insects.  

 

2.2.1.6 Crystals 

 
The presence of crystals on plant tissues is common and is a distinctive 

characteristic in some groups of trees. The crystals are considered as “waste” 

products from the metabolism of plant cells (Rao & Dave 1983). Prismatic crystals, 

composed of calcium oxalate, are located in rays and axial parenchyma cells. 

Crystal-laden rays are upright and/or square and procumbent; upright and/or square 

ray cells are not chambered. Crystals in procumbent ray cells are not radially aligned. 

Crystals-laden axial parenchyma cells are chambered in various species. 

 

The relative abundance of crystals varies. In some species crystals are consistently 

abundant; in others, they are consistently present, but not abundant, and in yet other 

species, they are present in some, but absent in other samples. The chambered 

crystal feature comprises a considerable diversity of chambered or subdivided cell 

types (cf. Parameswaran & Richter 1984). The same holds true with regard to the 

length of the chains of crystalliferous chambers or subdivisions. In some taxa there 

are only a few chambers in a series, in others there are long chains. 
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2.3 Material and methods 

2.3.1 Origin of wood samples 

 

The wood samples were obtained at a height of 0.3 m to 2 m from twelve P. laevigata 

trees from four areas in northeast Mexico (three per locality); the diameters of the 

trees were greater than 0.3 m at breast height (DBH). The location of the study area 

is given in Fig. 4. Further information on the trees and their origins are provided in 

Tab. 1. 

 

 

 

    

Fig. 4: Localisation of the sampling areas of P. laevigata wood in northeast Mexico. 1) local 
area Rancho Saltilleros, 2) local area Rancho San Lorenzo, 3) local area Ejido la Reforma and 4) 
local area Ejido Santa Gertrudis. 
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Tab. 1: Height and diameter of the trees at breast height, annual average temperature, 
precipitation, position, latitude and longitude of the areas where the trees were logged for 
sample elaboration. 

  Rancho Rancho Ejido Ejido 
Origin 
(No.) 

Saltilleros  
1 

San Lorenzo 
2 

La Reforma  
3 

Santa Gertrudis  
4 

Municipality China General Teran Linares Doctor Arroyo 

Latitude 25° 24'23" 25° 20'18" 24° 42'05" 23° 54'48" 

Longitude 99°10'22"’ 99°31'00’’ 99°32’05’’ 100°10’14’’ 

Temperature °C * 22 - 24 22 - 24 20 - 22 16 - 20 

Precipitation (mm)* 512 631 759 300 - 600 

Tree height (m) 6.24 8.20 8.44 6.70 

Tree DBH** (m) 0.35 0.34 0.36 0.50 
*  Source: INEGI (2000) 
** DBH: diameter at breast high. 

 

 

2.3.2 Preparation of wood samples for microscopical analysis 

 

2.3.2.1 Wood softening and slicing 

 

Wood samples to determine the anatomical characteristics were from trees in locality 

3; the specimens were softened1 according to the following procedure:  

 

Cubic-shape P. laevigata wood specimens were boiled in water for one hour. 

The samples were then sliced with a sliding microtome into 10 - 20 µm thick 

sections along their transversal, tangential, and radial axis. To determine the 

fiber size and length, the tissue was macerated with Jeffrey solution2. Very thin 

tooth-pick sharp specimens of wood were prepared and immersed in Jeffrey 

solution. During this process the middle lamella dissolved; neither the primary 

nor secondary walls were damaged.  
 

                                                 
1 Microscopy studies were performed at the Department of Wood Biology, Hamburg University, 
Germany  
2 The Jeffrey solution is a mixture of nitric acid (HNO3) and chromic acid (CrO3) – 10% in water at 
60°C. The time is dependent on wood density. 1 h was required for Prosopis laevigata wood. 
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2.3.2.2 Staining 
 

For a histochemical characterisation of the wood tissue, the slices obtained with the 

microtome were stained according to the following procedure: 

 

1. The sections (slices) were fixed 1 minute in 96% alcohol. 

2. The slices were put in a safranin + alcohol 1% solution for 3 min. 

3. The section was washed twice with ethanol. 

4. The samples were immersed in astrablue and alcohol for 5 min. 

5. They were once again washed in ethanol. 

6. For microscopic examination three sections -radial, tangential and 

transversal- were embedded in euparal. 

 

2.3.3 Laboratory equipment and tools 

 

The microscopy investigations were carried out using two different microscopes. An 

Olympus AX70 was used which was equipped with a DC 300 digital imaging camera. 

The wood structures were histometrically evaluated with a digitised image analysis 

system (analySIS®, Olympus) at different magnifications (4x, 10x, 20x and 40x). The 

Nikon Eclipse E600 light microscope was equipped with a Dxm1200 digital imaging 

camera and image analysing software (LUCIA image version 4.82). 

 

The data generated was exported to a Microsoft Excel spreadsheet. Subsequently, 

the data was analysed according to the International Association of Wood Anatomists 

(IAWA) standard list of characters for hardwoods. The basic standard statistics were 

evaluated including the average and standard deviation, the range and number of 

observations for vessel diameter, number of vessels per square millimetre, ray 

height, ray width, and fiber length. Other wood characteristics, e.g., the types of 

intervessel pits were also obtained. 
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2.3.4 Microscopical analysis  

 

2.3.4.1 Diameter of the vessels and vessel per square millimetre 

 

The diameter of the vessels and the number of vessels per square millimetre was 

determined after measuring 400 vessels using light microscope images of the 

transverse surface at 4x magnification. This level of magnification provided an 

appropriate resolution in the field of view. Fig. 5a shows the measurement procedure 

determined by the IAWA standards (IAWA Committee 1989) whereby the diameter of 

the vessel in the tangential direction is recorded at its widest point. The vessel walls 

were also measured in the same manner in 50 vessels. The number of vessels per 

square millimetre was determined by counting all individual vessels in a single field of 

view and then dividing that number by the area in mm2. In the case of multiple 

vessels composed of groups of two or more vessels, each vessel was counted as an 

individual vessel. 50% of the incomplete vessels visualized in each image were 

counted as well. The data with respect to the vessel diameter and the number of 

vessels per square millimetre obtained using Lucia Software were first exported to 

Notepad, and then to Excel Microsoft. The average values, standard deviations, and 

frequency graphs were generated from this data. 

 
 

2.3.4.2 Width and height of rays 

 

The width of rays was determined from images on tangential surfaces as shown in 

Fig. 5b. The width of the ray value corresponds to the average number of cells from 

150 rays, which were counted along the perpendicular axis at the widest part of the 

rays. 

 

The ray height was measured at 4x magnification along the parallel axis in the 

tangential surface sections (Fig. 5c). The average values, standard deviations and 
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frequencies of ray width and height were calculated from 150 rays and summarized 

in figures and tables. 

 

2.3.4.3 Fiber length 

 

After maceration with the Jeffrey solution, fibers were put on microscopic slides and 

embedded with glycerine. The length of a fiber was determined by establishing four 

measurement points on each of the 50 fibers tested. Fig. 5d shows the data for 

several fibers. 

 

 

Fig. 5: Schematic representation showing the procedure used to record the data gathered 
through microscopic observation. a) measurement of the diameter of earlywood and latewood 
vessels and determination of the number of vessels per mm2, b) determination of the width of 
the ray by counting the number of cells at the widest part (here width comprised of 6 cells), c) 
determination of ray height and d) a view field during fiber length measurement. Scale bars 
length: a = 500 µm, b = 50 µm, c = 500 µm and d = 500 µm. 

 



__________________________________________________________________________________________ 
 

 22

2.3.4.4 Axial parenchyma 

 

A characterisation of the axial parenchyma and the distribution of the earlywood and 

latewood were included in the wood anatomy description.  

 

 

2.4 Results and discussion 

 

2.4.1 Microscopical analysis  

 

P. laevigata wood displays very pronounced differences between the sapwood and 

heartwood. The sapwood is yellowish in colour, whereas the heartwood is 

characterized by a light to dark brown colour containing streaks (Fig. 6). The annual 

growth rings of the tree are distinct and are demarcated by discontinuous marginal 

parenchyma bands composed of smaller cells. Fig. 7 shows the distribution of 

vessels with no specific pattern in vessel arrangement.  

 

 
 

 

Fig. 6: Macroscopic view of P. laevigata, a) heartwood is brownish and sapwood (arrow) is very 
narrow and yellowish in colour, b) bark, c) cross section. 
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Fig. 7: Microscopic view of P. laevigata. The arrow shows the axial parenchyma band. Several 
vessels are filled with amber-coloured gum. Scale bar length = 500 µm.  

 
 

2.4.1.1 Diameter of the vessels and vessels per square millimetre 

 

The function of vessels in the living tree is to conduct water and minerals from the 

roots to the leaves (Akachuku 1985). The vessel diameter, vessel distribution and 

vessel length might have an effect on water conduction efficiency (Zimmermann 

1982). The efficiency of water movement is reduced in hardwood species which 

show a decrease in the width of the vessels (Stamm 1972) 

 

The environmental conditions in the areas throughout which P. laevigata trees are 

distributed are marked by a moderate to low rainfall. The tissues analyzed reveal a 

semi-ring-porous and diffuse-porous structure with no specific pattern in vessel 

arrangement. Two different patterns of porous arrangement related to rainfall have 

been generally described for P. species. P. juliflora trees growing in areas with a high 

rainfall display a diffuse porous structure while species from lower rainfall areas such 

as P. caldenia and P. chilensis are ring porous and semi-ring porous, respectively 

(Gomes & Muñiz 1986).  
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Most of the vessels in P. laevigata tissue are arranged in groups of two, three and 

four. As shown in Fig. 8, the diameter of the vessels varies between earlywood and 

latewood. At the beginning of the rainfall season the earlywood vessels in the test 

samples had an average diameter of 116 µm (maximum 224 µm, minimum 20 µm 

and standard deviation = 60). This is much wider compared to the latewood vessels 

whose average diameter was 44 µm (maximum 141 µm, minimum 13 µm and 

standard deviation = 27). The frequency of classes (histogram) of vessel diameters in 

earlywood is shown in Fig. 9. The diameter classes with the highest (absolute) 

frequency are those of 40, 100 and 140µm. In latewood the 40 µm class has the 

highest frequency of the fibres (Fig. 10). The average vessel diameter in earlywood 

and latewood of P. laevigata is indeed similar to other Prosopis species; however, 

the maximum diameter (224 µm) is higher than in the other species. See Tab. 2. 

 

 

Fig. 8: Prosopis laevigata heartwood. The size of earlywood and latewood vessels differs. 
Scale bar length = 500 µm. Image by Carrillo et al. (2007). 
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Fig. 9: Distribution of earlywood vessel diameter classes (histogram) of P. laevigata. The 
classes with highest frequency are 40, 100 and 140µm. 
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Fig. 10: Distribution of latewood vessel diameter classes (histogram) of P. laevigata. The class 
with highest frequency is 40 µm. 
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In dry climate zones the density of vessels is an important factor with regard to water 

transport in plants. P. laevigata exhibited an average value of 10 vessels/mm2 

(maximum 12 µm, minimum 7 µm and standard deviation = 2). Varying results have 

been reported for others species: P. kunzei 12 vessels/mm2, P. pallida 5 

vessels/mm2, P. alpataco 52 vessels/mm2, P. argentina 142 vessels/mm2, P. 

flexuosa 30 vessels/mm2, and P. chilensis 94 vessels/mm2 and P. strombulifera 193 

vessels/mm2 (Castro 1994; Villagra & Roig-Juñent 1997; López et al. 2005; Scholz et 

al. 2005). 

 

The average value for individual vessel wall thickness in P. laevigata is 3.0 µm with a 

range in values from 1.4 to 4.4 µm and a standard deviation of 0.9. The average 

vessel length is 99.4 µm (minimum 52.4, maximum 192.3 µm and standard deviation 

= 23.1).  

 

2.4.1.2 Width and height of rays  

 

The tissue formed by the rays is known as ray parenchyma. The rays are important 

for the horizontal transport and storage of carbohydrates and starch (food reserves); 

they are also involved in the biosyntheses of extractives. The profile of the rays is 

visible in the tangential surface; the lateral walls are visible in the radial section. Fig. 

11 shows the ray profiles in tangential sections of P. laevigata at low magnification. 

The microscopic studies reveal that the rays are not aggregated. Most of the rays 

were classified as multiseriate with medium width since the ray width was formed by 

3 to 6 cells. A lower percentage of multiseriate rays formed by more than 6 cells was 

detected.  

With regard to the cellular composition of ray tissue, rays of P. laevigata are 

homocellular and/or heterocellular (Heterocellular rays are sporadic.). The 

heterocellular rays are square upright cells which are restricted to marginal rows; in 

most instances there is one marginal row of upright or square cells. The homocellular 

ray cells are procumbent. There is an absence of sheath cells as well as of tile and 

perforated ray cells. Disjunctive ray parenchyma end walls are also indistinct or 

absent.  
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Rays had an average width of 5 cells (maximum 6, minimum 3 and standard 

deviation = 1) and an average height of 283 µm (maximum 884 µm, minimum 43 µm 

and standard deviation = 176). The statistical distribution of the ray height classes is 

presented in Fig. 12. The higher frequencies are displayed by the classes of 50 and 

150 µm ray height; the lowest found in the 850 µm class. 

 

Fig. 11: Tangential view of a section of P. laevigata wood. The rays do not form aggregates. 
Scale bar length = 200 µm. Image from Carrillo et al. (2007). 
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Fig. 12: Distribution of the ray height classes (histogram) of P. laevigata.  
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2.4.1.3 Fiber length 

 
Wood-fiber characteristics of hardwood tissues, including length, diameter, and 

special indices such is the L/D ratio, have often been tied to wood and paper 

properties (Horn 1978). The results of the fiber characteristics of P. laevigata 

described in this section show that the fibers are non-septate and thick-walled. The 

average thickness of single wall fibers is 13 µm. The average fiber length is 975 µm 

(maximum: 1312 µm, minimum: 589 µm and standard deviation = 158). For other 

Prosopis species average fiber lengths vary from 532 µm for P. argentina (Villagra & 

Roig-Juñent 1997) to 1257 µm for P. kuntzei (Scholz et al. 2005). The frequency 

distribution classes of the parameter fiber length are shown in Fig. 13. The statistical 

evaluation reveals that more than 80% of the fibers are distributed in the class of 

1000 µm, 1200 and 1400 µm in length.  
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Fig. 13: Distribution of the fiber length classes of P. laevigata. More than 80% of the fibers 
measured fall into the higher classes (1000, 1200 and 1400 µm).  
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2.4.1.4 Axial parenchyma 

 
The axial parenchyma of P. laevigata is mainly apotracheal. Paratracheal 

parenchyma associated with the vessels also exists. The apotracheal axial 

parenchyma occurs in diffusing aggregates or in longer bands. The bands are 

marginal or seemingly marginal. The paratracheal axial parenchyma might be 

vasicentric, aliform, or confluent. Aliform parenchyma displays a lozenge form. Axial 

parenchyma occurs as a fusiform and as strands. The average number of cells per 

axial parenchyma strand is 2 - 4. Unlignified axial parenchyma is absent. 

 

2.4.1.5 Gums 

 
Gums are formed as a result of wounds caused by mechanical injury or physiological 

stresses (in the living tree). Microscopic studies have revealed that numerous vessels 

of P. laevigata are filled with amber coloured gums. The black arrow in Fig. 14a 

points to a representative vessel of P. laevigata with deposits of gums; the white 

arrows point to the same compounds in ray parenchyma cells. The presence 

(deposition) of gums in P. species synthesised from vascular cambium serves as a 

means of protection for the tree from water loss and microbial attack (Greenwood & 

Morey 1979). Chapters 3 and 5 contain more detailed information on wood 

extractives and their chemical composition and their role in the resistance of P. 

laevigata to wood decay. 

 

2.4.1.6 Crystals 

 
Sharp prismatic calcium oxalate crystals are present in the tissue of P. laevigata, as 

shown in Fig. 14b. The crystals are located in both ray cells and axial parenchyma 

cells. The rays containing the crystals are upright and/or squared and procumbent. 

The crystals occurring in procumbent ray cells are not in radial alignment. The 

crystal-laden axial parenchyma cells are chambered. There is a single crystal per cell 

or chamber. The crystals are of normal size; cystoliths are absent. In addition, 

compound crystals (twins) occur in procumbent and square ray cells; the size of 
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these crystals and crystalliferous cells vary. Silica was not observed in P. laevigata 

tissue. 

 

 

 

Fig. 14: Prosopis laevigata heartwood: a) earlywood cross section, phenolic deposits in the 
lumina of vessels (black arrows), in parenchyma (white arrows) and fiber cells, b) radial section 
with crystals in axial parenchyma cells (arrows). Scale bars length: a = 200 µm and b = 100 µm. 
Images from Carrillo et al. (2007). 

 

 

2.5 Overview of the anatomic structures within Prosopis species 

 

The histometrical data of individual wood structures (parameters) of Prosopis species 

is summarized in Tab. 2. According to this table different species of Prosopis reveal a 

great variability with respect to the size of wood anatomical structures. The 

publications reviewed gave very few results on the diameters of various vessels 

types (earlywood and latewood vessels). Villalba (1985) reports average vessels 

diameters of 130 µm for earlywood and 40 µm for latewood in P. flexuosa. In this 

study the difference between earlywood and latewood in P. laevigata are similar. 

Earlywood vessels have an average diameter of 116 µm and the latewood vessels 

an average diameter of 44 µm 

 

The average diameter reported by other authors ranges from 40 µm for P. argentina 

(Villagra & Roig-Juñent 1997) to 140 µm for P. pallida (López et al. 2005). The 
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density of vessels in P. laevigata was determined to be 10 vessels/mm2. Varying 

values have been reported: P. kunzei 12 vessels/mm2, P. pallida 5 vessels/mm2, P. 

alpataco 52 vessels/mm2, P. argentina 142 vessels/mm2, P. flexuosa 30 

vessels/mm2, and the highest value P. strombulifera 193 vessels/mm2 (Iqbal & 

Ghouse 1983; Castro 1994; Villagra & Roig-Juñent 1997; López et al. 2005; Scholz 

et al. 2005) 

 

The fibers in P. laevigata are non-septated and thick-walled. The average thickness 

of a single wall fiber is 13 µm. Average fiber length is 975 µm (maximum: 1.312 µm, 

minimum: 589 µm). For other Prosopis species average fiber lengths vary from 532 

µm for P. argentina (Villagra & Roig-Juñent 1997) to 1.257 µm for P. kuntzei (Scholz 

et al. 2005).  

 

Most of the characteristics observed in this study in P. laevigata are analogous to 

other Prosopis species already described by Iqbal & Ghouse (1983), Villalba (1985); 

Castro (1994), Villagra & Roig (1997), Richter & Dallwitz, López et al. (2005) and 

Scholz et al. (2005). 
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Tab. 2: Anatomic wood structures values in Prosopis species. Vessel diameter (µm), number of vessel mm-2, vessel element length (µm), 
intervessel pit size (µm), fibre length (µm), number of rays mm, ray height (µm), ray width (number of cells), presence of crystals and tyloses. 
 

b c d d e f f g h

average min max std1

Vessel diameter (µm)* 116 20 224 60 63 (11-93) 140 +/- 5 58 (10-152) 40 (8-127) 80 (20-140) 94 (27-200) 104 (10-191)
Number of vessels mm-2 10 7 12 2 12 (5-18) 5.19 +/- 2.42 52 (14-80) 142 (69-230) 30 (13-47) 94 (20-256) 193 (120-304)
Vessel element length (µm) 100 52 192 23 200 (82-322) 72-248 76-294 140 (100-170) 172 (80-243) 136 (64-216) 116-220
Intervessel pit size (µm) 3 2 5 1 5…7
Fiber length (µm) 975 589 1312 158 1775) 752 (404-1015) 532 (279-838) 920 100 (648-1680) 667 (391-1606) 448-1600
Number of rays mm 8 6 10 1 6.5 +/- 1.2 8.5 7.6 5 48 per mm2 90 mm2

Ray height (µm) 283 43 884 176 244 (129-380) 500…1000 282 (56-856) 438 (51-1000) 300 (150-450)
Ray width (number of cells) 5 3 6 1 4 (1-6) 3…5
Crystals Ca2C2O4

Tyloses ─ ─

P. chilensis P. strombulifera P. spicigeraP. nigra P. pallida P. alpataco P. argentina

**
─

Structure P. flexuosa
P. laevigata                  

a

P. kuntzei 

 
 
Sources: a) from this research, b) Scholz et al. (2005), c) Richter & Dallwitz (2000), d) Lopez et al. (2005), e) Villagra & Roig (1997), f) Villalba (1985), g) 
Castro (1994) and h) Iqbal & Ghouse (1983). 1Standard deviation, * earlywood vessels** Calcium oxalate crystals 
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2.6 Conclusion 

 

Based on the results discussed in this chapter with regard to the anatomy of P. 

laevigata wood, several aspects concerning the wood structures of this important 

semi-arid and arid land tree are worthy of special note. The information obtained for 

each specific wood structure provides a sound database for comparison to other 

Prosopis species which have already been studied. 

 

With respect to the environmental factors effecting the anatomical wood 

characteristics of P. laevigata from northeast Mexico, differences were observed 

among anatomic wood structures. Growth ring boundaries of the semi-ring-porous or 

diffuse-porous wood were often marked by a marginal parenchyma band. The 

differences in size and distribution of vessels between earlywood and latewood and 

within a specific growth year indicate that wood formation is also dependent on 

climatic conditions (rainy seasons), since these structures reveal distinctive 

anatomical features of tree species growing in semi-arid or arid conditions. 

 

The anatomical characteristics of wood and its chemical composition have a great 

influence on its physical and mechanical properties. The earlywood —composed of 

wider vessels and thin-walled cell fibers— in semi-ring porous or diffuse porous 

species such as P. laevigata has the same area even when weather conditions result 

in varied ring widths. In contrast, the area of latewood —composed of narrow vessels 

and thick-walled cell fibers— is dependent on growth patterns (FAO 2006b). In areas 

where weather conditions lead to wider annual rings, wood density is increased. 

Species displaying long wide rays are stronger and have greater dimensional stability 

along the radial axis even when subjected to changes in moisture content. 

 

The structural elements of P. laevigata reveal several differences to Prosopis species 

already described. The average fiber length is 975 µm and the fibers are also quite 

thick (13 µm). The percent of fibers of this length or longer is high (> 80%). Crystals 

are found in both ray cells and axial parenchyma cells as has already been reported 

for P. kuntzei and P. juliflora. Other results concerning the deposits of gums which fill 
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the vessels and concerning vessel wall and fiber wall thickness are noteworthy as 

they might negatively effect the glue capacity of the wood. As far as the colour of the 

gums is concerned, the amber, brown tones still fall within the quality parameters of 

the furniture industry. 
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Chapter 3  

CHEMICAL WOOD COMPOSITION 
 

Summary 

 
The heartwood tissue of Prosopis laevigata was studied to determine the chemical 

composition and the topochemical distribution of lignin and phenolic compounds. The 

deposition of extractives in vessels, pit canals, parenchyma cells, fiber lumina, and 

the S2 fiber layer was detected using scanning UV microspectrophotometry (UMSP). 

Borate complex anion exchange chromatography was used to determine the quantity 

and quality of monosaccharides. The results show that holocellulose content is 

between 61.7 - 64.5% and Klason lignin content between 29.8 - 31.4% in the 

heartwood tissue. Subsequent extractions of the soluble compounds were performed 

with petrolether, acetone-water and methanol-water by accelerated solvent extraction 

(ASE). Total extractive content in the heartwood ranges between 14.1 to 16.0% on a 

dry weight basis. Major compounds in acetone-water extracts were identified as (-)-

epicatechin, (+)-catechin, and taxifolin and were quantified by liquid chromatography 

(RP-HPLC-UV). 
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3.1 Introduction  

 

Prosopis laevigata is one of 44 described species of the Prosopis genus; it is 

naturally distributed in semi-arid to arid lands from central to northeast Mexico. The 

timber of P. laevigata is used for elaborate a range of products. The bark is used for 

tanning; the wood is used for parquet flooring and for furniture because of its 

decorative properties and durability (Felker 1979; 1981a; 1981b). Still, the main 

utilisation of P. laevigata is for firewood, fence posts, and charcoal. Other uses have 

most likely remained small scale because it is difficult to find enough large logs to 

produce long straight timber and because firewood and charcoal production is 

relatively cheap. 

 

The physical and mechanical properties as well as the natural durability of P. 

laevigata depend on its anatomic structure and chemical composition. The 

percentage of cellulose, hemicelluloses, lignin, and of the extractive content in wood 

cells are important factors in wood properties for solid wood products (Bertaud & 

Holmbom 2004). 

 

A number of studies on P. laevigata have been carried out on fuel wood, charcoal 

production, fodder, food, fruit dispersion, association between insects and fruits, 

forest management, timber, and soil retention (Graham 1960; Felker et al. 1981a; 

Ffolliot & Thames 1983; Cantú 1991); moreover, there has been research done 

investigating P. laevigata wood as a feasible material to produce excellent charcoal. 

Such charcoal has a specific weight of 0.41g/cm3 and a caloric value of 29.7kJ/g. 

(Maldonado-Aguirre 2000). There have, however, been far fewer studies concerning 

the heartwood chemistry, the chemical composition of the extractives, and the 

topochemical distribution of lignin and phenolic compounds of the Prosopis species 

(Gomes & Muñiz 1986).  
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The objectives of this chapter are to characterize the chemical wood composition of 

P. laevigata heartwood, to describe the topochemical distribution of lignin and 

phenolic compounds and to identify the wood extractives. 

 

 

3.2 Chemical wood composition and distribution within individual 

cell layers 

 

Wood is a complex and non-uniform material; the chemical compounds of wood are 

distributed throughout the cells wall in varying amounts. The varied chemical 

composition within trees depends on local origin, age, climate, and soil conditions 

(Han & Rowell 1996). Cellulose, hemicelluloses and lignin are the three main 

constituents of wood (Timell 1967; Fengel & Wegener 1989; Willför et al. 2005). 

Lignin makes up 18 to 35% of dry wood; the two major polymeric (aliphatic) 

materials, cellulose and hemicelluloses, constitute 65 to 75% (Han & Rowell 1996). 

Extractives occur in minor amounts (4 – 10%); these include organic compounds and 

inorganic minerals also known as extraneous materials. On an elemental level, wood 

is composed of about 50% carbon, 6% hydrogen, 44% oxygen, and trace amounts of 

several metal ions (Fengel & Wegener 1989). 

 

 

3.2.1 Carbohydrates 

 

The most abundant compounds in nature are carbohydrates (Bemiller 1989; 

Sjöström 1993). Cellulose, the mayor carbohydrate component of wood, is known as 

the structural component of the cell wall (Fengel & Wegener 1989). It makes up to 40 

- 45% of the dry weight of a wood. It is a polymer with high molecular weight and 

consists exclusively of β-1,4-glycosidic linked D-glucopyranose units (Fig. 15). The 

hemicelluloses are the second most prominent carbohydrate compounds; they are 

branched and have a polymer with a lower molecular weigh than cellulose. The 

hemicelluloses are mixtures of polysaccharides and are synthesized in wood almost 
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entirely from glucose, mannose, galactose, xylose, arabinose, 4-O methylglucuronic 

acid, and galacturonic acid residues. Some hardwoods contain trace amounts of 

rhamnose (Sjöström 1993). Fig. 16 shows hemicellulose structures. 

 

 

 

 

 

 

Fig. 15: Chemical structure of cellulose; two D-glucose monomers forming a “glucan”. Image 
based on Rowell (2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: Sugar monomer components of wood hemicellulose. a) ß-D-Glucose, b) ß-D-Mannose, 
c) ß-D-Galactose, d) ß-D-Xylose, e) α-L-Arabinose and f) 4-0-Methylgucuronic acid. Images 
based on Rowell (2005). 
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3.2.2 Lignin 

 

Lignin is an amorphous polyphenolic polymer, consisting of an irregular array of 

variously bonded hydroxy- and methoxy-substituted phenylpropane units (Timell 

1967). The lignin serves as a ‘cementing’ substance between cells. For this reason it 

occurs mainly in cell corners, compound middle lamella and the secondary wall S1 

(Fergus et al. 1969). Many properties of wood and its reactivity under chemical 

treatments are the result of the lignin composition and the ultrastructural distribution 

within cell walls (Koch 2004). Fig. 17 shows the lignin precursors. 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Structures of the lignin precursors: a) p-coumarylalcohol, b) Coniferylalcohol and c) 
Sinapylalcohol. Images based on Rowell (2005) and Fengel & Wegener (1989). 

 
 

3.2.3 Extractives 

 

Extractives are present in varying amounts in wood. They influence a variety of 

properties, including colour, smell, ranges in swelling and shrinkage and decay 

resistance (Hillis 1968; Gutiérrez-Oliva et al. 2006). Extractives are organic 

compounds or inorganic elements and do not contribute to the cell wall structure. In 

the wood of species which grow in temperate climates they make up 4 - 10% of the 

wood composition. In tropical species this can rise to as much as 20% in normal 

wood. The extractives encompass a wide variety of organic compounds such as fats, 
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waxes, alkaloids, proteins, simple and complex phenolics, simple sugars, pectins, 

mucilages, gums, resins, terpenes, starches, glycosides, saponins and essential oils.  

Although the extractives contribute only a small proportion to the wood mass (Fengel 

& Wegener 1989), they are essential to trees as defence mechanisms against 

microbial attack. They are also important with regard to wood properties such as 

swelling and shrinkage and to processing wood qualities such as colour, odour and 

pitch factors in pulp production. 

 

Gums are important wood extractives. They are considered metabolic end-products 

generated in response to injures to prevent the loss of moisture and to provide 

protection against infections (Hillis 1987). Gums found in the wood of several 

Prosopis species have been related to the natural resistance of these species; 

however, little research has been done on this topic. Gum arabic is one of the most 

often studied extractives; it is obtained from the Acacia senegal species. It has a 

mixture of compounds with a molecular distribution similar to that of the other plant 

polysaccharides, except for the fact that it has very few linear polymers. The Prosopis 

gums which are highly branched arabinogalactan acidic exudates resemble the 

Acacia gums. 

 

 

3.2.4 Distribution of chemical compounds on cell layers 

 

The chemical composition within the cell wall layers of the wooden tissue varies from 

one structure to the next as shown in Fig. 18. The middle lamella is mainly composed 

of lignin and of smaller amounts of cellulose, hemicelluloses and pectin. The primary 

wall has a very small amount of lignin but more cellulose and hemicelluloses than do 

middle lamella, yet less than the secondary wall. The percentage of lignin decreases 

from the S1 layer through to the S3 layer. The S1 layer is composed mostly of lignin 

and hemicelluloses. The major component of the S2 layer is cellulose followed by 

hemicelluloses and lignin. The S3 layer contains mostly cellulose, but a larger fraction 

of hemicelluloses; it contains little lignin. 
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Fig. 18: The distribution of the main chemical wood compounds in the cell layers. Image based 
on Panshin & Zeeuw (1970). 

 
 

3.3 Material and methods 

 

3.3.1 Origin of wood samples 

 

The wood samples for chemical and topochemical analyses were obtained at a 

height of 0.3 to 2 m from one P. laevigata tree collected from locality three. The 

diameter of the tree was greater than 0.3 m at breast height (DBH). The location of 

the study area is given in Section 2.3.1. 
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3.3.2 Quantitative determination of the chemical wood components 

 

Before analysing the polysaccharide content and the lignin content of the tissue, a 

gradual extraction was performed to remove the soluble extractives. Wood shavings 

from selected P. laevigata heartwood tissue were used. Two sections of a tree trunk 

disk free of knots were prepared according to Fig. 19. Wood fractions were obtained 

from middle heartwood (Section A) and Section B was obtained very close to the pith 

in the inner heartwood. The samples were freeze dried and ground in a mill with 

rotating knives (Retsch) using a 3 mm screen. The gradual extraction was performed 

on 2 g freeze dried wood powder using an accelerated solvent extraction Dionex 

ASE 200 (Dionex, Sunnyvale, CA, USA): (a) solvent petrol-ether, temperature 50 °C, 

pressure 100 bar, heating time 5 min, static time 10 min, flush volume 100%, purge 

time 120 s, static cycles: 1; (b) solvent acetone-water (9:1), temperature 60 °C, 

pressure 100 bar, heating time 5 min, static time 10 min, flush volume 100%, purge 

time 120 s, static cycles: 1; (c) solvent methanol-water (3:1), temperature 60 °C, 

pressure 100 bar, heating time 5 min, static time 10 min, flush volume 100%, purge 

time 120 s, static cycles: 1.  
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Fig. 19: Schematic representation of areas from which samples were taken for chemical 
analysis of P. laevigata wood. 

After hydrolysation with 72% sulphuric acid, the Klason lignin content was 

determined for an acid-insoluble residue. Monosaccharides were qualitatively and 

quantitatively determined by borate complex anion exchange chromatography (Puls 

1993). The tests were performed in triplicate. 

 

 

3.3.3 Topochemical distribution of lignin and phenolic extractives in wood tissues 

 

Cellular UV microspectrophotometry (UMSP) has been established as useful 

technique for the topochemical detection (analysis) of lignin and phenolic extractives 

within individual cell wall layers (Koch 2001).  

The lignin absorption spectrum shows three weak asymmetrical bands. They are the 

resulting absorbance of five types of chromophore systems based on p-

hydroxyphenylpropane groups (Lozovik & Kaflyuk 2005). The spectrum presented 

between 270 - 280 nm is the second band and depends on the delocalisation of the 

π-electron in aromatic ring structures (Koch & Kleist 2001).  

 

An improved UV microspectrophotometry-scanning-device developed by Zeiss 

(Oberkochen, Germany) was used to determine, in more detail (resolution 0.25 µm2), 

the distribution of lignin and aromatic phenolic compounds within cell walls in P. 

laevigata wood. This technique is based on the differential UV absorbance of lignin 

and phenolic compounds.  

 

For the topochemical analyses, transverse sections of 1 µm thickness from selected 

heartwood samples were prepared using a diamond knife. The sections were 

transferred to quartz microscope slides, immersed in a drop of non-UV absorbing 

glycerine and covered with a quartz cover slip. The analyses were carried out with a 

ZEISS UMSP 80 micro spectrophotometer equipped with a scanning stage, which 

makes it possible to image profiles at constant wavelengths with the (ZEISS) scan 

software APAMOS® (Automatic-Photometric-Analysis of Microscopic Objects by 

Scanning, Zeiss). This scan programme digitises rectangular fields on the tissue with 
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a local geometrical resolution of 0.25 µm2 and a photometrical resolution of 4096 

grey scale levels. These are then converted into 14 basic colours making absorbance 

intensities visible. 

 

 

3.3.4 Quantitative determination of the extractive content 

 

The amount of extractives content can be determined in three ways: gravimetric 

determination of total extractives, determination of different compound groups and 

analysis of individual compounds (Sjöström & Alén 1998). The extractive content of 

P. laevigata was determined gravimetrically; the solvent was subsequently removed 

from the extracts with a rotary evaporator under vacuum. 

 
 

3.3.5 Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) 

 

Reversed phase HPLC (RP-HPLC) consists of a non-polar stationary phase and a 

moderately polar mobile phase. The retention time is longer for molecules which are 

more non-polar in nature, allowing polar molecules to elute more readily. Retention 

time is increased by the addition of polar solvent to the mobile phase and decreased 

by the addition of additional hydrophobic solvent.  

RP-HPLC functions on the principle of hydrophobic interactions which result from 

repulsive forces between a relatively polar solvent, between the relatively non-polar 

analyte, and between the non-polar stationary phase. The driving force in the binding 

of the analyte to the stationary phase is the decrease in the area of the non-polar 

segment of the analyte molecule which is exposed to the solvent. This hydrophobic 

effect is dominated by a decrease in free energy through entropy associated with the 

minimization of the ordered molecule-polar solvent interface. The hydrophobic effect 

is decreased by adding more non-polar solvent to the mobile phase. This shifts the 

partition coefficient so that the analyte spends a certain portion of time moving down 

the column in the mobile phase, eventually eluting from the column. 
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To identify the chemical composition of P. laevigata extractives, 5 ml of acetone-

water extract from inner heartwood fractions were directly injected without 

derivatisation into a Jasco system (Japan Spectroscopic Company). An Aquasil 5 µ 

C18 column (250 x 4.6 mm) was used. The temperature of the column was set at 

30°C. Solvent A (0.001 M H3PO4) and Solvent B (Acetonitrile 100%) served as the 

mobile phase in a gradient mode described in Tab. 3. 

 

Tab. 3: Operation condition during the Reversed-Phase High Performance Liquid 
Chromatography. 

Time Solvent A Solvent B Flow rate Wave length 
(min) (%, v/v) (%, v/v) (ml/min) (nm) 
0.0 92.5 7.5 1 280 

30.0 85.0 15.0 1 280 

40.0 80.0 20.0 1 280 

60.0 60.0 40.0 1 280 

65.0 0.0 100.0 1 280 

 

 

The separate compounds were analysed with a photo-diode array detector (Jasco). 

The detection wavelength was set at 280 nm; UV spectra from 200 to 650 nm were 

also recorded for peak identification. Peak identification was performed by 

comparison of retention times and UV spectra with purchased standards (Sigma 

Aldrich Co.). For quantification, calibration curves with four calibration points for each 

substance were set. Quantification was performed in triplicate. 

 

 

3.4 Results and discussion  

 

3.4.1 Chemical composition of Prosopis laevigata wood 

 

The monosaccharide composition of P. laevigata is given in Tab. 4. As is the case 

with regard to the hemicellulose composition in other hardwoods, a high value for 

xylose (about 12%) content and a low value for mannose (0.2%) content were 
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determined in P. laevigata. The glucose level, mainly derived from cellulose, 

increases from 45.7% (outer heartwood) to 48.6% (inner heartwood). Klason lignin 

content ranges from 29.8% (inner heartwood) to 31.4% (outer heartwood). The total 

carbohydrate content is higher in inner heartwood (64.5%) than in outer heartwood 

(61.7%). For comparative purposes, the chemical composition of P. juliflora 

determined by Patel & Safaya (1986) was as follows: 25 to 30% hemicellulose, 40 – 

50% cellulose and 11 – 28% lignin. An independent study by Rajput & Terari (1986) 

found the levels to be 54% cellulose and 31% lignin. 

 

Tab. 4: Monosaccharide and lignin content of P. laevigata heartwood (the values are based on 
percentage of oven dry weight). Table based on Carrillo et al. (2007) 

 
Section Chemical compound Unit 

Outer heartwood Inner heartwood 

Xylose % 12 12.4 

Arabinose % 0.9 0.6 

4-O-methyl-glucuronic acid  % 0.9 0.9 

Rhamnose  % 0.3 0.3 

Galactose % 1.7 1.5 

Mannose  % 0.2 0.2 

Glucose  % 45.7 48.6 

Σ Carbohydrates % 61.7 64.5 

Klason-Lignin % 31.4 29.8 
 
 

3.4.2 Distribution of lignin and phenolic extractives in wood tissues 

 

The topochemical distribution and semi-quantitative determination of lignin and 

phenolic extractives were ascertained through scanning UV microspectrophotometry. 

The applicability of this technique for the topochemical detection of lignin within the 

individual cell wall layers of several hardwoods and phenolic deposits has been 

demonstrated by various authors (Koch & Kleist 2001; Koch & Grünwald 2004). 
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Fig. 20 shows representative UV scanning profiles of heartwood tissue of P. 

laevigata at a defined wavelength of 278 nm. Secondary walls (S2) of fibers offer a 

non-uniform UV absorbance within a range of 0.20 to 0.65 AU (absorption units). 

Compound middle lamella (CML) is characterized by UV absorbance within a range 

of 0.45 - 0.65 AU, whereas absorbance above 1.0 AU is detectable in cell corners. 

The different absorbance values correlate strongly with various levels of lignin in the 

individual cell wall layers. 

 

 

Fig. 20: UV microscopic scanning profiles of heartwood tissue of P. laevigata. The colour 
pixels represent different UV absorption values of the cell wall layers and phenolic extractives 
measured at 278 nm. The arrow marks extractives deposited within a pit canal. LP = axial 
parenchyma cell, F = fiber, V = vessel (Scanning field: left 37.0 µm x 38.5 µm, right 26.75 µm x 
36.75 with a geometrical resolution of 0.25 µm x 0.25 µm). Image from Carrillo et al. (2007). 

 

The deposition of extractives in the fiber lumen is also made evident by applying the 

UV scanning technique. The deposits are characterised by high absorbance values 

within the range of up to 0.85 AU, which is significantly higher than in adjacent cell 

wall layers (Fig. 21). In addition, UV line scans across fiber cell walls with non-

uniform absorbance were carried out on representative S2 fiber layers. The scan 

presented in Fig. 21 shows the fiber cell wall viewed horizontally across the cell. 

Evaluation of this scan reveals a high local UV absorbance within the S2 layer, which 

is visible as a clear peak with a numerical value of 0.64 AU. This peak demonstrates 

the local impregnation of S2 with phenolic extractives. Within the cell wall of vessels, 

local spots of high absorbance (0.8 - 1.0-overflow) can also be detected (Fig. 20, 

arrow). These areas are localised in the region of pit canals and pit membranes. 

Similar findings were achieved earlier by Koch et al. (2006) for merbau (Intsia spp.) 
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and afzelia (Afzelia spp.) and verified as an impregnation of the pit membranes and 

canals by phenolic extractives synthesised by pit membrane-associated enzymes.  

Fig. 21 displays a UV scanning line across the cell wall with the extractive, illustrating 

deposits; their presence is visible in the S2 cell wall layer of fibers of P. laevigata 

heartwood. Fig. 22 shows the UV microspectrophotometrical analysis of lignin and 

phenolic deposits distribution in an axial parenchyma cell. 

 

Fig. 21: UV microspectrophotometrical analyses of lignin and phenolic deposit distribution in 
fibers from a cross section (1 µm thickness) of P. laevigata heartwood. Left: two-dimensional 
UV scan (280 nm); right: line scan (280 nm) across the fiber wall and the deposits in the S2 
layer (scanning field: 15.25 µm x 20.75 µm with a geometrical resolution of 0.25 µm x 0.25 µm). 
Image from Carrillo et al. (2007). 

 

 

Fig. 22: UV microspectrophotometrical analyses of lignin and phenolic deposits distribution in 
an axial parenchyma cell from Prosopis laevigata heartwood. Left: histogram of frequency of 
absorbance; right: absorbance of parenchyma cell; the high picks are the corner and 
secondary middle lamella (scanning field: 15.25 µm x 20.75 µm with a geometrical resolution of 
0.25 µm x 0.25 µm). 
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The lignification of individual cell wall layers can also be studied by evaluating the UV 

absorption spectra within a wavelength range of 240 to 400 nm (Koch 2001). In Fig. 

23 typical UV absorption spectra of individual cell wall layers and phenolic extractives 

in P. laevigata heartwood are presented. The UV spectra of the cell corner and 

compound middle lamella show typical absorbance behaviour of a hardwood lignin 

with a distinct maximum at 278 nm and a local minimum at about 250 nm (Fergus et 

al. 1969). The cell corners of the fibers are generally characterised by higher 

absorbance values (0.75 AU) as compared to the compound middle lamella (0.48 

AU). The phenolic extractives detected in the fiber wall display a bathochromic shift 

to a wavelength of 284 nm and a slight shoulder at a wavelength range of 320 nm. 

This spectral behaviour can be explained by the presence of chromophoric groups, 

e.g., conjugated double bonds (Hon et al. 1986; Feist & Hon 1990). 
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Fig. 23: Absorption spectra in different sections of cell wall layers from P. laevigata wood. CC: 
cell corner; CML: compound middle lamella; CWE: condense wood extractives. 
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3.4.3 Quantitative determination of extractive content 

 

Fig. 24 displays the different extracts of P. laevigata. The content of organic 

accessory compounds (extracted gradually with petrolether, acetone-water and 

methanol-water) is rather high in P. laevigata heartwood: 14.1% in the inner 

heartwood and 16.0% in the outer heartwood in relation to oven dry weight (Tab. 5). 

The amount of extractives determined in the acetone-water fractions was 11.6% and 

12.8%, respectively. Similar amounts of extractive content were determined in the 

acetone extracts of P. africana heartwood (Gérardin et al. 2004), namely 11.7%. 

 

Fig. 24: Extracts of P. laevigata heartwood. A: Petrol-ether extract; B: Acteone-water (9:1); C: 
Methanol-water (3:1) 

 

Tab. 5: Extractive content of P. laevigata heartwood (values are given in percentage on a dry 
weight basis of the original wood sample). Table from Carrillo et al. (2007) 

Section Petrolether Acetone-water 
(9:1) 

Methanol-water 
(3:1) 

Σ Extractives 

Inner heartwood 0.3 11.6 2.2 14.1 

Outer heartwood 0.4 12.8 2.8 16.0 

 

3.4.4 Characterisation of soluble phenolic compounds 

 

Few major compounds were detected in acetone-water-extracts of P. laevigata 

heartwood. Three flavonoid compounds were identified as flavan-3-ols (+)-catechin 

(retention time 14.7 min), (-)-epicatechin (retention time 16.26 min), and the flavonol 



__________________________________________________________________________________________ 

 51

taxifolin (retention time 35.5 min) (Fig. 25). The content of the identified compounds 

in heartwood of P. laevigata, calculated from their concentration in the acetone-water 

extracts, were established as follows: (-)-epicatechin: 5.33%, (+)-catechin: 0.51%, 

taxifolin: 0.05% on a dry weight basis. Fig. 26 shows the compounds identified. 
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Fig. 25: HPLC chromatogram monitored at 280 nm of heartwood extract of P. laevigata. 1: (+)-
catechin, 2: (-)-epicatechin, 3: taxifolin. Image from Carrillo et al. (2007). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 26: Molecular structures identified in wood extractives of P. laevigata heartwood. a) (+)-
catechin, b) (-)-epicatechin and c) taxifolin. 
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3.5 Conclusion 

 

The chemical wood composition of P. laevigata investigated in two sections of 

heartwood reveals a high proportion of carbohydrates in both the outer (61.7%) and 

inner heartwood (64.5%). A reduction of glucose concentration (the only building 

molecule of cellulose) was also found between inner and outer heartwood (48.6 to 

45.7%). In the case of hemicelluloses the xylose content is similar in both sections: 

12.0 - 12.4% as well as 4-O-methyl-glucuronic acid (0.9%), rhamnose (0.3%), and 

mannose (0.2%). A reduction in the concentration of arabinose (0.9 to 0.6%) and 

galactose (1.7 to 1.5%) was, however, observed. The concentration of lignin is 31.4% 

in the outer and 29.8% in the inner heartwood.  

 

Prosopis laevigata heartwood in acetone-water extractions contains a high 

concentration of extractives in the inner and outer sections (11.6 and 12.8%). The 

main phenolic compounds identified following acetone-water extraction are (+)-

catechin, (-)-epicatechin and taxifolin.  

Topochemical analyses applying UV microspectrophotometry scanning show that 

lignin is mainly localised in the cell corners and the compound middle lamella of 

fibers. Wood extractives were topochemically detected in the lumen of vessels, 

parenchyma cells and in pit canals; they were locally impregnated in the S2 of fibers. 

These compounds and their distribution might be contributing factors to the decay 

resistance of P. laevigata. 
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Chapter 4  

PHYSICAL AND MECHANICAL PROPERTIES OF 
PROSOPIS LAEVIGATA WOOD 
 

Summary 

 

Mesquite wood (Prosopis laevigata) is used for a wide range of constructive and 

decorative purposes and also serves as a source of energy; however, basic research 

of the physical and mechanical properties are still needed to establish additional uses 

of the wood and thereby increase its value to the timber industry. This chapter gives 

a detailed technological characterisation of P. laevigata and reports on the main 

physical and mechanical wood characteristics of trees from four different areas of 

northeast Mexico. These wood specimens have an average density values of 

equilibrium moisture content (EMC) of 11.2%, ranging from 0.79 to 0.91 g/cm3, and 

from 0.72 - 0.84 g/cm3 under oven dry conditions. The tangential shrinkage varies 

from 2.2 - 3.3%, radial shrinkage and the ratio (t/r) of the wood were 1.6 - 1.9% and 

1.2 - 2.0, respectively. The average values of the modulus of rupture (MOR) lie 

between 97-126 N/mm2; the static and dynamic modulus of elasticity (MOEstat, 

MOEdyn) range from 6580 to 9669 N/mm2 and 6678 to 9984 N/mm2, respectively. The 

coefficient of correlation between MOEstat and MOEdyn is 0.96. The range of average 

values for compression strength parallel to the fiber is 63 - 68 N/mm2. The statistical 

differences found between different physical and mechanical properties within local 

areas provide useful feedback which forestry biologists and the timber industry 

should consider in selecting a) the best parts of the tree for a variety of proposes, b) 

the local areas for further plantation programs and c) in implementing new forestry 

production measures. 
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4.1 Introduction 

 

Trees are influenced by many factors such as insects, wildlife, climate, soil 

conditions, and land management. Each of these lends to a great variability in the 

properties of a particular wood (Forest Products Laboratory 1999). Different 

ecological conditions and anthropogenic intervention can induce the development of 

varied forms of trees, varied leaf size and thickness, and varied bark colour. They 

can also influence the durability as well as other physical and mechanical properties 

of the wood (Graham 1960; Johnston 1962; Galindo & García 1983; Hapla et al. 

2000; Juárez-Muñoz et al. 2002; Pasiecznik et al. 2004; Raiskila et al. 2006). The 

Prosopis genus is known to be very adaptable genetically, which fact accounts for its 

widespread populations (Peacock & McMillan 1965; Rzedowski 1988). It is 

comprised of more than 44 species naturally distributed in arid and semi-arid climates 

of North America, Central and South America, Africa and Asia (Burkart 1976; USDA 

2007). 

 

Prosopis laevigata can be found in a variety of environmental areas. In Mexico it is 

most predominate in Guerrero, Michoacan, Morelos, Oaxaca, Puebla, San Luis 

Potosi, Veracruz, Nuevo Leon, Durango, Guanajuato, Hidalgo, Jalisco, and 

Zacatecas (INE 1994). In these areas the timber is used for furniture, wagons, tool 

handles, utensils in rural households and as firewood or charcoal (Ffolliott & Thames 

1983; Rodríguez & Maldonado 1996; Meraz et al. 1998).  

 

Recently, studies have been carried out to determine the physical and mechanical 

properties of several Prosopis species, especially P. juliflora, P nigra and P. pallida 

(Tortorelli 1956; Berni et al. 1979; Universidad Nacional del Nordeste 1979; Ffolliott & 

Thames 1983; Galindo & García 1986; Perpiñal & Pietrarelli 1995; Tewari et al. 

2000). The results reveal that the physical properties are very homogeneous; its 

wood is characterised by high density and low levels of swelling and shrinkage. It is 

highly durable with regard to compression; it is very hard, but displays low strength 

values for modulus of elasticity and modulus of rupture (Tortorelli 1956; Berni et al. 
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1979; Universidad Nacional del Nordeste 1979; Ffolliott & Thames 1983; Galindo & 

García 1986; Perpiñal & Pietrarelli 1995; Tewari et al. 2000). Inspite of the economic 

and ecologic importance of Prosopis and the increasing interest to plant and harvest 

these tree species, information describing the quality of the wood from different P. 

laevigata forest areas is very limited. The main objective of this chapter is to describe 

the physical and mechanical properties of P. laevigata wood from different areas of 

northeast Mexico. These properties include density, rate of swelling and shrinkage, 

hardness, static modulus of elasticity (MOEstat), dynamic modulus of elasticity 

(MOEdyn), modulus of rupture (MOR) and compression strength.  

 
 

4.2 Material and methods 

 

Wood specimens were collected from four areas in northeast Mexico. Information 

about the trees and their habitats was provided in Section 2.3.1. Tab. 6 shows the 

types of tests performed, the standards applied and the number of specimens and 

specimen dimensions used to determine physical and mechanical properties. 

 

Tab. 6: Physical and mechanical standards performed, overall number of specimens and 
specimen dimensions used to determine the physical and mechanical properties of P. 
laevigata. 

Test type No. 
specimens

Specimens 
dimension1 

(mm)  
Standard 

Density (g/cm3) 120 20X20X20 DIN 52 182 

Swelling (%) 120 10X20X20 DIN 52 184 

Shrinkage (%) 80 10X20X20 DIN 52 184 

Modulus of elasticity (static) (N/mm2) 120 100X5X10 DIN 52 186 

Modulus of elasticity (dynamic) (N/mm2) 120 100X5X10 * 

Modulus of rupture (N/mm2) 120 100X5X10 DIN 52 186 

Compression strength (N/mm2) ** 120 30X10X10 DIN 52 185 

Janka hardness (N/mm2) 40 50X50X50 ASTM D143-94 

Brinell hardness (N/mm2) 40 50X50X50 EN 1534 
1  longitudinal x radial x tangential; *  Hearmonn 1966; ** Parallel to the fiber 
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4.2.1 Physical properties 

 

4.2.1.1 Wood density 

 

Density defined as the mass per unit volume is a good indicator with respect to the 

resistance of wood and the amount of cell wall substance. The value of density 

depends on many endogenous and exogenous, factors including rate of growth as 

well as cellulose and lignin content. There is thus a strong correlation between 

density and the mechanical properties (Kollmann & Cote 1968; Forest Products 

Laboratory 1999). The density of 120 P. laevigata specimens from four different local 

areas (30 replicates per local area) was determined under two conditions: oven-dry 

(103± 3°C) and at 20±1°C, 65±3% relative humidity (RH). To calculate the density 

Formula 4-1 was used. 

 

Formula 4-1 

N

N
N v

m
=ρ  

Where: 

ρN  = density under climate condition (20±1°C, 65±3% RH) in g/cm3 

mN= mass under climate condition (20±1°C, 65±3% RH) in g 

vN  = volume under climate condition (20±1°C, 65±3% RH) in cm3 

 

4.2.1.2 Swelling and shrinkage 

 

All hygroscopic materials swell and shrink to a lesser or greater degree depending on 

climatic conditions, but the proportions are different in each (Kollmann & Cote 1968; 

Mantanis et al. 1994). Wood is exposed to changes in humidity and temperature of 

the surrounding air. As wood is an anisotropic material, the changes in humidity 

produce different values for swelling and shrinkage in each of the three main 

directions. The absorption and the release of the different percentages of humidity 

within wood produce larger changes tangentially than radially and longitudinally. 
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There are many factors involved in the proportion of swelling and shrinkage; these 

include anatomical characteristics, cellulose content, wood density, cell wall 

thickness and the proportion of earlywood and latewood (Sekhar & Rajput 1967; 

Cave 1972; Eligon et al. 1992). Some problems are related to the swelling and 

shrinkage of the wood; among these are warping, checking, splitting, and, in the case 

of tool handles, loosening (Forest Products Laboratory 1999).  

 

The swelling of 120 P. laevigata specimens (30 replicates per local area) was 

calculated according to Formula 4-2. This formula related the change in percent of a 

certain anatomical direction of wood from the oven-dry condition to a predetermined 

moisture condition (20±1°C, 95% RH). The shrinkage was calculated in 80 

specimens (20 replicates per local area) using Formula 4-3 to determine the change 

in percent of a certain wood-anatomical direction from a determined moisture 

condition (20±1°C, 95% RH) to oven dry condition. The wood swelling, shrinkage and 

the ratio between tangential/radial (t/r) directions were determined for the tangential 

and radial directions.  

All calculations were performed at a constant weight; the equilibrium moisture 

content was also determined by applying Formula 4-4. 

 

Formula 4-2 

100⋅
−

=
o

ow

l
ll

α   

Where: 

α = maximum swelling in % 

lw = dimension of the specimen at saturation point 

l0 = dimension of the specimen under oven-dry condition 

 

Formula 4-3 

100⋅
−

=
w

ow

l
llβ   

Where: 

β = maximum shrinkage in % 

lw  = dimension of the specimen under saturation point 
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l0  = dimension of the specimen under oven-dry condition 

 
Formula 4-4 

100
0

0 ⋅
−

=
m

mmEMC c  

 

Where: 

EMC= equilibrium moisture content in % 

mc = mass of the specimen at specific moisture content 

m0 = mass of the specimen under oven dried condition 

 
 

4.2.2 Mechanical properties 

 

Mechanical properties are used to describe the wood strength and the ability of the 

wood to resist applied or external forces (Record 2004). The final use of the wood is 

dependent on these properties. The mechanical properties of P. laevigata wood were 

tested on wood specimens free from defects under controlled climatic conditions 

(65±3% RH and 20±1°C, DIN 52 180). The tests were focused on determining static 

and dynamic modulus of elasticity, modulus of rupture, compression strength and 

Janka and Brinell hardness. The results were evaluated to determine differences 

between the local areas. 

 

 

4.2.2.1 Modulus of elasticity (MOE) 

 

Elasticity is defined as the property which enables a loaded material to recover its 

original form after the load is removed; if the load is greater than a certain value, the 

material will displays a plastic deformity or even failure. The elasticity properties, as 

well as the density, are fundamental in determining the quality of wood (Ilic 2003). 

The value of elasticity of P. laevigata was obtained by applying both the dynamic 
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MOE (MOEdyn) and the static MOE (MOEstat) bending strength tests. The coefficient 

of correlation between the MOEdyn and MOEstat was also measured. 

 

Dynamic modulus of elasticity (MOEdyn) 
 

The MOEdyn is a non destructive test which is quick and easy to perform and which 

does not require installed equipment to determine elasticity (Hearmon 1966; Machek 

et al. 1998b). The test technique is used to determine the mechanical properties of 

the wood without destroying the samples (Ying et al. 1994; Bucur 2006). It is possible 

to test the same wood specimens more than once; moreover, tests can be carried 

out to establish whether differences occur over time or whether treatments have any 

effect. The strong relationship between static and dynamic MOE shows, in most of 

the cases, a coefficient of correlation greater than 95% (Pellerin 1964; Görlacher 

1984; Machek et al. 1998b; Ilic 2003; Grinda & Göller 2005). 

 

The MOEdyn of P. laevigata was determined at the fiber saturation point on 120 

specimens with resonant frequencies. Two flexible sponges located at a distance of 

0.224 x length from each end supported the specimens; the vibrations were 

produced by hitting the mid-point on the upper surface of the specimens with a 

hammer (Machek et al. 1997; Machek et al. 1998a; Machek et al. 1998b; 2001). The 

vibration test is presented schematically in Fig. 27, showing the antinode (an), the 

impact point (ip) and the position of the transducer (tr). The latter sends a signal to 

the Grindo Sonic device which displays the fundamental resonant frequency (kHz). 

These values were used in Formula 4-5. 

 

 

 

 

 

 

 

Fig. 27: Schematic representation of the MOEdyn test on the P. laevigata specimen. In the 
flexure mode: antinode (an), node line (nl), impact point (ip), transducer (tr). Image based on 
Machek et al. 2001. 
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Formula 4-5 
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         (N/mm2) 

Where: 

 

MOEdyn= dynamic modulus of elasticity (N/mm2) 

I   = moment of Inertia (mm4) 

A  =  area of the cross section (mm2) 

f   = frequency (kHz) 

ρ  = mass density (g/mm3) 

l   = length (mm) 

K1 = 49.48 

m1= 4.72 

 

Static modulus of elasticity (MOEstat) 
 

Elasticity is the physical property which describes the deformation caused by a low 

level stress from which recovery can be complete once the stress is suspended 

(Kollmann & Cote 1968). The stiffness and strength of the wood is normally 

determined in a static-bending test (Formula 4-6). The wood specimen is supported 

at both ends by rollers and the resistance is measured as a slow load is applied at 

the centre of the specimen. The annual rings are horizontally orientated. Fig. 28 

shows the three point static bending test. 

 
 
 
 
 
 
 
 

Fig. 28: Representation of static bending test: load (F), specimen height (h), specimen area (b), 
span length (l). Image based on DIN 52 186. 
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Formula 4-6 

f
F

hb
lMOE

∆
∆
⋅

⋅⋅
= 3

3
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           (N/mm2) 

 

Where: 

MOEstat =static modulus of elasticity of three point bending test (N/mm2) 

∆F = load (N) 

l  = span length of the specimen (mm) 

∆f= deflection (mm) 

b = width of the specimen (mm) 

h = thickness of the specimen (mm) 

 

The normal behaviour of wood specimens during the test is shown in Fig. 29. During 

the first part of the test a straight-line is produced, which indicates that the deflection 

of the specimen is directly proportional to the load. If the load is withdrawn at this 

point in time, the sample returns to its original state with out any damage. Otherwise, 

if the load is not stopped but is increased, the limit point of proportionality will be 

reached. This increase continues, the material loses its elasticity and becomes 

plastic. Then even, if the load is removed, the deformation caused by deflection will 

be permanent.  

 

At the point of maximum load, ultimate load or ultimate strength the material begins 

to yield and will fracture unless the load is substantially reduced. In P. laevigata, the 

modulus of elasticity was determined on 120 specimens by testing static bending 

strength; the test was performed with a universal machine (ZWICK / Roell, Ulm, 

Germany, Software TestExpert). The load (F) was applied at a uniform rate (5 

mm/min) in the direction of the narrow side at the centre of the sample span. 
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Fig. 29: Stress and strain curve of wood specimens. Represented are the elastic zone, limit of 
proportionality, plastic zone, elastic limit and maximum load. Image based on Brandon (2005). 

 

 

4.2.2.2 Modulus of rupture (MOR) 

 

Modulus of rupture or bending strength is defined as the maximum load capacity of a 

member; it is proportional to the maximum moment borne by the specimen (Kollmann 

& Cote 1968). This modulus was computed for 120 specimens by applying Formula 

4-7. P. laevigata wood specimens were also examined to determine the type of 

failure after their rupture. Drawings are shown in Fig. 30. 

 

Formula 4-7 

22
3

hb
lFMOR

⋅⋅
⋅⋅

=        (N/mm2) 

Where: 

MOR= modulus of rupture (N/mm2) 

F = load (N) 

l  =   span length (mm) 

b = width of the specimen (mm) 

h = thickness of the specimen (mm) 
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Fig. 30: Type of failures in static bending, according to ASTM 143-94: a) simple tension, b) 
cross-grain tension, c) splintering tension, d) brash tension, e) compression and f) horizontal 
shear. Image based on ASTM 143-94. 

 

 

4.2.2.3 Compression strength 

 

The compressive behaviour of wood is measured parallel to the fiber; this determines 

the amount of weight that structural wood systems can support prior to failure (Gong 

& Smith 2004). Fig. 31 shows the typical slip plane formation in late wood cells after 

compression stress. The compression strength analysis in a parallel direction to the 

fiber of P. laevigata was evaluated with 120 replicates 30 x 10 x 10 mm (l x r x t) 

according to DIN 52 185. 
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Fig. 31: Formation of a slip plane in latewood and in earlywood following failure of 
compression strength. The arrow shows the failure zone. Figure by Clorius et al. (2000). 

 

 

4.2.2.4 Brinell and Janka hardness 

 

Hardness is defined as the resistance of one solid body to the force of another solid 

body. In wood this mechanical property is related to tensile strength and toughness 

(Fig. 32). The Brinell hardness test uses a hardened steel ball 10 mm in diameter to 

produce an indentation on the surface of the wood material; the applied load is 

known and the resulting indentation value is used to determine the hardness per 

square millimetre. 

 

Janka hardness was proposed in 1906. In this test a steel ball with a diameter of 

11.284 mm is indented into a test piece to a depth equivalent to that of the 

hemisphere, producing a projection area of 1 cm2. The applied load thus equals the 

hardness value (Hirata et al. 2001). In this test the load (F) was applied until the 

indentation equalled half of the diameter of the steel ball (Kollmann & Cote 1968; 

Green et al. 2006). 
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Fig. 32: Determination of Janka hardness according to ASTM D143-94. 

 

 

The hardness of P. laevigata wood was determined on 40 specimens applying both 

the Janka and the Brinell tests in all three directions (r, t, l) to 50 mm specimens. The 

measurements for the Brinell test were preformed with a load of 3000 N (Formula 4-

7). The maximal load (F) was reached within 15 sec, kept constant over a period of 

30 sec and then reduced to zero within another 15 sec.  

 

Formula 4-7 

22

2
-dD D(D-

FHB
π

=   

 

 

Where: 

HB = Brinell hardness (N/mm2) 

F = load (N) 

D = Diameter of steel ball (mm) 

d  = diameter of impression (mm) 
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4.2.3 Statistical analysis 

 

The results obtained from the physical and mechanical tests were subjected to a 

variance analysis (ANOVA); the average of each property from each local origin was 

then compared to the corresponding analyses of other origins by applying the Tukey 

test to determine statistical differences between the habitats (Tables showing the 

results are in the Appendix). The coefficients of correlation (r) between both MOEstat-

MOEdyn and MOR-MOEdyn were also calculated. Two graphs depicting these 

relationships were plotted (Fig. 33 and Fig. 34). 

 

 

4.3 Results and discussion 

4.3.1 Physical properties 

 

4.3.1.1 Wood density 

 

The density of wood is the result of various factors including growth rate, proportion 

of earlywood and latewood and cellulose content (Simpson 1993; Forest Products 

Laboratory 1999). The wood densities of P. laevigata specimens (oven-dry and 

standard climate) originated from the four areas listed in Tab. 7. The average density 

under oven-dry conditions was 0.76 g/cm3, and for 65±3% RH conditions 0.84 g/cm3 

at 20±1°C (11.2% EMC). As shown in Tab. 12, the values obtained are relatively high 

compared to three well-known and commercially important European species: Fagus 

sylvatica, Quercus robur and Fraxinus excelsior. The high density in all of the 

specimens tested might be a result of the wood structure which is characterised by 

thick fiber cell walls. Based on the ANOVA test, both conditions (oven dry and 11.2% 

EMC) were statistically different (P <0.0001); the density under oven dry conditions 

shows that all areas of origin differ. Areas 1 and 4 are statistically different with 

respect to the other two (11.2% EMC). 
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Tab. 7: Average density (g/cm3) and standard deviation values of P. laevigata wood specimens 
from four different local areas. 

 (11.2% EMC)1  (0% EMC)2 Local 
area No. Specimens 

 g/cm3  g/cm3 

1 30 0.79 ± 0.01 0.72 ± 0.01 

2 30 0.91 ± 0.04 0.84 ± 0.04 

3 30 0.84 ± 0.01 0.78 ± 0.01 

4 30 0.81 ± 0.02 0.73 ± 0.05 

Average 0.84 ± 0.05 0.76 ± 0.06 
1 20±1°C, 65±3% RH 
2 Oven dry 

 
 

4.3.1.2 Swelling and shrinkage 

 

The swelling and shrinkage behaviours of this wood are used as comparative 

parameters to indicate the degree of wood stability during utilisation. These values 

represent the amount of deformation through the absorption and desorption of 

external humidity. It was found that the equilibrium moisture content (EMC) of P. 

laevigata wood at 20±1°C, 65± 3% RH is 11.2%. When the temperature is 20±1°C 

and the relative humidity is increased to 95±3%, the EMC is 18.8%.  

 

The values for swelling in the radial and tangential directions and the ratio 

(tangential/radial) from oven-dry to 18.8% EMC are summarized in Tab. 8. The same 

table shows the shrinkage values from 18.8% EMC to oven-dry. The results for 

swelling and shrinkage in the tangential direction display relatively low average 

values (2.8 and 2.6% respectively). Similar results have already been presented for 

other Prosopis species: 2.7 and 4.8% of shrinkage in the radial and tangential 

directions, respectively, for P. glandulosa (Pasiecznik et al. 2001). The same 

research pointed out that the accordant values for P. juliflora from Pune, India were 

2.3 and 4.0%.  

 

Research examining the swelling and shrinkage of P. juliflora wood planted in 

different areas verifies the low values of wood shrinkage for specimens from the 

driest area (Sekhar & Rawat 1960). In contrast, it was found in this study that P. 
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laevigata from local origin No. 4 (the driest area) has the highest tangential values for 

shrinkage. The ANOVA tests (α ≤ 0.05) reveal that the swelling as well as the 

shrinkage of P. laevigata woods are statistically similar in the radial direction in all 

areas; however, the same test reveals differences between local origins in the 

tangential direction. Consequently, there are also differences (P<0.0001) in the t/r 

ratios. 

 

Wood density and extractive content are factors which might be involved in high 

dimension stability as discussed for P. laevigata in Chapter 3. The chemical analyses 

revealed a high concentration of extractives (14.1 to 16.0% related to the dry mass) 

in the wooden tissue of P. laevigata. The effect of extractives on swelling and 

shrinkage is explained by the fact that extractives occupy the spaces which are 

normally used by water, thus reducing the water absorption and desorption (Tortorelli 

1956; Stamm 1964; Mantanis et al. 1994). 

 

Tab. 8: Average and standard deviation of swelling and shrinkage in the tangential and radial 
directions and ratio (t/r) of P. laevigata wood from different local areas.  

 
1Shrinkage % 2Swelling % Local 

origin 
No. 

specimens Tang Rad t/r Tang Rad t/r 

1 20 2.2 ± 0.2 1.8 ± 0.3 1.3 ± 0.3 2.8 ± 0.2 1.6 ± 0.3 1.6 ± 0.3 

2 20 2.4 ± 0.2 1.9 ± 0.2 1.2 ± 0.2 2.3 ± 0.2 1.8 ± 0.2 1.3 ± 0.2 

3 20 2.8 ± 0.5 1.8 ± 0.6 1.6 ± 0.6 3.6 ± 0.5 1.8 ± 0.6 2.0 ± 0.5 

4 20 3.3 ± 0.6 1.6 ± 0.2 2.0 ± 0.4 2.6 ± 0.5 2.0 ± 0.2 1.2 ± 0.2 

Average   2.6 ± 0.6 1.8 ± 0.4 1.6 ± 0.4 2.8 ± 0.6 1.8 ± 0.4 1.6 ± 0.44 
1 From 20±1°C, 95±3% RH to oven dry. 
2 Form oven dry to 20±1°C, 95±3% RH. 

 
 

4.3.2 Mechanical properties 

4.3.2.1 Modulus of elasticity (MOE) 

 

The results of the static bending test and the frequency resonance performance of P. 

laevigata specimens from different local areas are given in Tab. 9. The average value 

for MOEstat is 8504 N/mm2 and the average for MOEdyn is 8835 N/mm2. The values 
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are relatively low compared to other commercially utilized timber species presented 

in Tab. 12.  

 

The fact that the strength decreases as bending in the MOE static and dynamic test 

as well as in the MOR is increased might be the result of the cross spiral grain 

(interlocked grain) which occurs in P. laevigata wood. The exclusive selection of 

those specimens containing the interlocked grain (34%) displayed a breaking pattern 

in accordance with ASTM 143-94. The static MOE increased to 9112 N/mm2 and the 

dynamic MOE to 9473 N/mm2. 

 

No investigations have been carried out with regard to the relationship between 

MOEdyn and MOEstat in P. laevigata. Based on the results found in this investigation, it 

is feasible to deduce the strength properties of P. laevigata wood as measured by 

MOEdyn. A good coefficient of correlation (r= 0.96) was found between MOEstat and 

MOEdyn (Fig. 33). Coefficients relating MOEstat and MOEdyn parameters range from 

poor (r = 0.71) to very high r= 0.95 in different species (Pellerin 1964; Larsson et al. 

1988; Ilic 2001; 2003). 

 

The ANOVA test produced a statistical difference (P<0.0001) between areas with 

respect to two moduli. Values of the local area No. 4 were always statistically 

different than those for other habitat areas.  

 

4.3.2.2 Modulus of rupture (MOR) 

 

Modulus of rupture is the maximum load carrying capacity of a member in bending 

strength; it is proportional to the maximum moment borne by the specimen. In P. 

laevigata the MOR test reveal an average value of 114 N/mm2 (Tab. 9). This value is 

relativised when compared to other commercially utilized timber species (Tab. 12). 

The ANOVA test shows statistical differences (P<0.0001) between local origins in the 

MOR. In the later test local area No. 4 displays a lower value. The coefficient of 

correlation (r) between MOEdyn and MOR is 0.89 (Fig. 34). 
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Tab. 9: Average and standard deviation values of static and dynamic MOE and MOR for P. 
laevigata from four different local origins. 

MOEstat MOEdyn MOR Local area No. samples 
N/mm2 N/mm2 N/mm2 

1 30 8526 ± 1711 9252 ± 1312 112 ± 19 

2 30 9242 ± 2165 9427 ± 2246 122 ± 26 

3 30 9669 ± 1885 9984 ± 2332 126 ± 26 

4 30 6580 ± 1708 6678 ± 1828 97 ± 19 

Average 8504 ± 2201 8835 ± 2329 114 ±25 
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Fig. 33: Relationship between MOEdyn and MOEstat at 95% confidence intervals of P. laevigata 
wood from different localities; the different colours represent the values from each locality (r = 
0.96). 
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Fig. 34: Relationship between MOEdyn and MOR at 95% confidence intervals of P. laevigata 
wood from different localities, the different colours represent the values from each locality (r = 
0.89) 

 

 

Depending on the kind of failure evaluated according to ASTM 143-94, it was found 

that typical patterns which occur in P. laevigata wood are cross-grain tension and 

compression (Fig. 35). These types of failure are normally found in wood of tree 

species with grain which changes direction.  

 

1 

2 

3 
Fig. 35: Type of failures in static bending of P. laevigata wood according to ASTM 143-94. 1 and 
2 are typical failures from cross-grain tension and 3 from wood tension. 
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4.3.2.3 Compression strength 

 

The compression strength applied parallel to the fiber direction is higher than that 

applied perpendicularly. The average compression strength value for P. laevigata is 

66±6 N/mm2 (Tab. 10).  

 

It was found that the lower value occurred in specimens from local area No. 4 (63 

N/mm2) and the highest were in those from No’s 2 and 3 (68 N/mm2). An analysis of 

the results using the ANOVA test revealed significant differences between the 

localities. Localities 1, 2 and 3 are similar; No 4 is statistically different than local 

areas 2 and 3 but similar to No. 1. 

 

Tab. 10: Average and standard deviation values of compression strength parallel to the fiber of 
P. laevigata wood from different local areas. 

Local  
origin 

No.  
Specimens 

Compression  
(N/mm2) 

1 30 65 ± 4.3 

2 30 68 ± 7.0 

3 30 68 ± 5.2  

4 30 63 ± 5.2 

Average 66 ± 5.8 
 

4.3.2.4 Janka and Brinell hardness 

 

The hardness values for P. laevigata in cross sections, radial sections and tangential 

sections are presented in Tab. 11. The values for the cross section expressed as 

Janka hardness (91 N/mm2) and Brinell hardness (74 N/mm2) are similar to values 

reported for P. juliflora (Sekhar & Rawat 1960). The average values for Janka and 

Brinell hardness reveal statistical differences between local origins as well as 

sections. The Janka and Brinell values for locations 1 and 4 are similar as they are 

for locations 2 and 3; however, compared to each other these two groups are 

statistically different.  
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Tab. 11: Average and standard deviation values of Janka and Brinell hardness in cross, radial 
and tangential directions of P. laevigata from four different local areas. 

Janka hardness (N/mm2) Brinell hardness (N/mm2)  Local 
origin 

No. 
Specimens cross  Radial tangential cross  radial tangential

1 10 84 ± 8.4 68 ± 3.9 69 ± 2.7 70 ± 2.3 40 ± 3.5 43 ± 3.1 

2 10 101 ± 4.0 89 ± 6.1 92 ± 5.2 78 ± 6.7 44 ± 3.9 50 ± 6.1 

3 10 96 ± 3.7 86 ± 5.4 84 ± 4.7 78 ± 8.3 52 ± 7.4 44 ± 4.6 

4 10 82 ± 4.8 67 ± 3.2 68 ± 3.3 69 ± 2.6 50 ± 8.5 44 ± 2.6 

Average 91 ± 9.7 78 ±11.3 78 ± 10.8 74  ± 6.9 46 ±7.8 46 ± 5.2 
 

 

Tab. 12: The results for physical and mechanical properties of P. laevigata obtained in this 
research in comparison to three well known, commercially important hardwood species. 

Wood characteristic Prosopis 
laevigata 

Fagus 
sylvatica 

Quercus 
robur 

Fraxinus 
excelsior 

Density r0  (g/cm3) 0.76 0.68 0.65 0.65 

Density r12-15 (g/cm3) 0.84 0.72 0.69 0.69 

Shrinkage1 radial (%) 1.8 5.8 4.0…4.6 4.6…5.0 

Shrinkage1 tangential (%) 2.6 11.8 7.8…10.0 8.0…8.4 

Compression strength2 N/mm2  66 62 61 52 

Hardness Brinell3 N/mm2 74 72* 66* 65 

Hardness Janka3 N/mm2 91 83 47…78 74 

MOEstat N/mm2 8504 16000 11700 13400 

MOR N/mm2 114 123 88 105 
1 Shrinkage from 20±1°C, 95±3% RH to oven dry 
2 Parallel to the fiber 
3 Cross section 
* Rough value. 

 

 

4.4 Conclusion 

 

The results for the physical and mechanical properties of P. laevigata from different 

local habitats show noteworthy values, e.g. high density, low shrinkage and swelling, 

low equilibrium moisture content, and high compression and bending strength. Due 

to this compression strength parallel to the fiber, P. laevigata wood is suitable for 
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uses in which such strength is needed or for applications in which high changes in 

moisture conditions prevail. Its use in high strength applications is, however, only 

recommended if the selection of timber excludes the interlocked grain pattern. Wood 

with interlocked grain, resulting from the natural growth characteristics of P. 

laevigata, has a relative low bending strength and therefore tends to break. 

 

The statistical differences found within P. laevigata wood between its local origins 

and the variance in its physical and mechanical properties (density, swelling and 

shrinkage, static and dynamic modulus of elasticity and hardness) should remind the 

potential user that a given material should be selected for a specific use according to 

its origin. A characterization of the physical and mechanical properties of P. laevigata 

from the country as a whole will eventually provide more information about the 

influences of environmental conditions. 
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Chapter 5 

NATURAL DURABILITY 

Summary 

 

Natural durability of Prosopis laevigata (Mesquite) wood from different regions was 

investigated using a soil bed test (ENpr 807) and a resistance to basidiomycetes test 

(modified EN 113). In the latter the durability of extractive-free wood specimens 

toward basidiomycetes was tested. The inhibition in Coniophora puteana and 

Trametes versicolor caused by extractives obtained by applying hot water and 

ethanol-water, acetone-water and cyclohexane solutions at concentrations of 100 

ppm and 1000 ppm was also determined. The results for natural durability after 32 

weeks of soil contact showed a very low mass loss (17.2%) and MOEdyn loss (40%) 

compared to the control, Fagus sylvatica (mass loss 84% and MOEdyn loss 90%). 

The mass loss of specimens exposed for 16 weeks to Coniophora puteana, 

Trametes versicolor, Irpex lacteus and Pleurotus ostreatus in a modified EN 113 

ranged from 0.3 to 1.5%. The results classify P. laevigata wood as Class 1 (very 

durable) according to EN 350-1. The growth inhibition caused by ethanol-water 

extractives at 1000 ppm suspended in a malt-agar medium was 33.3% for 

Coniophora puteana.  
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5.1 Introduction 

 
Wood is the most widely used construction material in the world. It can be used with 

excellent results under almost any type of environmental conditions; however, in its 

natural state wood and wood products are compromised by deterioration through a 

number of sources. Its service life can be reduced by physical, mechanical or 

chemical means (Kollmann & Cote 1968). Natural durability is defined as the 

resistance of wood to biological degradation (Eaton & Halle 1993). Several factors, 

including its microscopic structure, certain physical properties and, above all, wood 

extractives, influence the natural wood resistance within wood. Wood extractives 

−those low-molecular-weight substances found in very low amounts (2 – 10%) 

(Mantanis et al. 1995)− are responsible for a large number of wood properties 

(Fengel & Wegener 1989). 

 

Extractives are present in heartwood and sapwood; the largest proportions are in 

heartwood. They are mostly located in parenchyma cells but they can also be found 

in vessels, fibers and specialized cells (Hillis 1971). The extractives are produced 

during the wood maturation process, in which the cambium creates differentiated 

sapwood and heartwood cells. Some extractives are produced as part of defence 

mechanisms after a tree has been mechanically injured by insects or has suffered a 

microbial attack (Rowell 2005). The way in which the extractives act has been 

described in several studies. The durability of some trees has been ascribed to 

bioactive extractives (Schultz et al. 1995). A wood which has a worldwide reputation 

for its extraordinary durability with regard to fungi and insects, including termites, is 

teak (Tectona grandis L.f.). This wood, which is classified as Class 1 according to EN 

350-1, can have a service life of to 40 years. The anti-decay compound is 

tectoquinone (Haupt et al. 2003; Thulasidas & Bhat 2007).  

 

The Prosopis genus, a very common tree-like shrub or shrub-tree known as Prosopis 

laevigata in Mexico. has a wide-spread population (Burkart 1976; Alden 1995; 

Juárez-Muñoz et al. 2002). Some species are considered undesirable because they 

can become invasive in agricultural and pastoral areas competing for soil nutrients 
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and space (Pasiecznik et al. 2004). Other species are considered a valuable natural 

resource for use in food production, fuel, furniture, and environmental protection 

(Ffolliott & Thames 1983; INE 1994; Meraz et al. 1998; Giménez et al. 2000).  

 

The physical, mechanical and the natural durability properties of P. laevigata wood 

have been highlighted in several research projects; however, neither the natural 

durability, nor the agent responsible for producing that durability has been sufficiently 

investigated (Donoso et al. 1984; Rodríguez & Maldonado 1996; Ríos et al. 2001; 

Gérardin et al. 2004). 

 

The main objectives of this chapter are: a) to determine and classify the natural 

durability of P. laevigata heartwood from different areas of northeast Mexico, b) to 

test the natural durability of P. laevigata wood extracted with water, acetone-water 

(9:1), ethanol-water (8:2), and cyclohexane, and c) to determine whether the 

extracted solutions affect the growth of Coniophora puteana and Trametes versicolor 

fungi. 

 

 

5.2 Material and methods 

 
The P. laevigata wood specimens were obtained from four localities already 

described in Section 2.3.1. In addition, Scot pine sapwood specimens (Pinus 

sylvestris L.) and European beech specimens (Fagus sylvatica) were obtained from 

the Institute of Wood Biology and Technology in Göttingen, Germany. All wood 

specimens and wood-degrading fungi used during the tests were cultivated and 

maintained according to European standards. The sample sizes and modifications 

made during the tests will be described in their respective sections. 

The natural durability of P. laevigata wood was determined in reproducible laboratory 

tests and through a rapid initial screening of the decay process (Nilsson & Edlund 

1995). 
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5.2.1 Soil-bed test (ENpr 807) 

 
Unsterile soil, soil bed test, terrestrial microcosmos (TMCs), accelerated field 

simulators (AFS), or fungus cellars are the different names used to describe the 

European pre-standard test, ENpr 807. This test is used to determine the 

effectiveness of wood preservatives with respect fungi (ascomycetes and fungi 

imperfecti) responsible for soft rot. The unsterilised soil is also colonized by several 

microorganisms, including bacteria, basidiomycetes and the fungi responsible for 

moulds. 

 

In this study, the test was used to determine the natural durability of P. laevigata from 

different local origins. Twenty-five samples of P. laevigata wood (100mm x 10mm x 

5mm, l x r x t) per local origin were selected. 30 reference specimens of F. sylvatica 

and 30 reference specimens of P. sylvestris were randomly distributed 20 mm apart 

and then buried so that approximately 20% of each piece protruded above the 

surface of the unsterile soil-beds in 2 plastic containers (32cm x 40cm x 22cm) (Fig. 

36). The containers were supplied with three different soil layers: 20mm gravel, 

20mm river sand, 150mm of loam-based horticultural soil. The samples were 

incubated in a culture chamber at 20±2 °C with 65±5% relative humidity (RH). The 

soil was kept at 95% of its water holding capacity (WHC). After periods of 8, 16, 24 

and 32 weeks the degradation of the wood specimens was recorded as mass loss 

calculated by Formula 5-1. The loss in the dynamic modulus of elasticity (MOEdyn) 

was calculated by applying MOEdyn after incubation. These results were then related 

to MOEdyn of sound specimens before they were exposed to decay. The MOEdyn of 

specimens which had been cleaned and then water-saturated with a vacuum pump 

were determined according to Formula 4-5. 
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Fig. 36: Plastic container used to expose P. laevigata test specimens to unsterile soil. 

 

Determination of mass loss: 

 

Formula 5-1 

100
1

21 ×−=
w

wwWl  

Where: 

Wl = mass loss in percent 

w1= mass at beginning of the test in g 

w2= mass at the end of the test in g 

 

5.2.2 Resistance to basidiomycetes 

 
To determine the natural durability of P. laevigata with respect to basidiomycetes, a 

modification of the EN113 test was developed; in this modified version the sample 

size was changed to 100mm x 10mm x 5mm (l x r x t) to quantify the decay as loss of 

strength which was determined by MOEdyn with Formula 4-5. Nine replicates of P. 

laevigata wood from each local origin were exposed to the four basidiomycetes: T. 

versicolor, C. puteana, I. lacteus and P. ostreatus. In addition, 12 samples of F. 

sylvatica were used as a control; 12 replicates of F. sylvatica were used as a 

virulence control. 32 P. laevigata replicates from each locality and 40 replicates of F. 

sylvatica specimens were tested to determine the leaching effect. All specimens were 

autoclaved for 20 minutes at 121°C in a Tuttnauer Systec Type 5075 ELVC. As 

shown in Fig. 37, each 50 ml-Kolle flask contained eight wood specimens; six P. 
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laevigata specimens from any of the four local origins and two specimens of F. 

sylvatica were distributed randomly. The specimens were exposed to decay for 16 

weeks in a culture chamber at 20±2°C and 65±5% RH. After the test period the loss 

of MOEdyn caused by fungi was determined on P. laevigata specimens, on control 

specimens as well as on virulence specimens using Formula 4-5. The mass loss was 

also calculated by applying Formula 5-1 and the data were corrected by subtracting 

the average mass loss for the specimens from agar control. Finally, the natural 

durability of P. laevigata wood was classified in accordance to EN 350-1. 

 

Fig. 37: Preparation of wood specimens, a) Kolle flask, b) sample distribution on two levels, c) 
Kolle flask with malt-agar medium and wood samples after their inoculation. 

 

 

5.2.3 Growth inhibition caused by extractives suspended in malt-agar medium 

 
The extractives present in heartwood have a large influence on the natural durability 

of wood (Donoso et al. 1984; Gérardin et al. 2004). In order to determine the effect of 

extractives on the natural durability of P. laevigata, the wood was extracted with a 

Soxhlet extraction apparatus (Fig. 38a). This is a standard method imployed to 
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determine the extractive content and chemical composition of wood (Demirbaş 1991; 

Schwanninger & Hinterstoisser 2002). Air-dry sawdust from P. laevigata wood (20 g) 

was put through 0.4 mm (40 mesh) sieves. The P. laevigata sawdust was added to 

Soxhlet extraction flasks and filled with 200 ml solvent. Four different solvents with 

increasing polarity were used: hot water, ethanol-water (8:2), acetone-water (9:1) and 

cyclohexane. The oil oven was kept at 135°C providing a minimum boiling rate of 24 

cycles during a 6 hour period. The extractives were then isolated from the solvent in 

a vacuum rotary evaporator (Rotavapor Type R-114 Büchi) at 40°C as shown in Figs. 

38b and 38c.  

 

The extractives were dissolved in acetone at 100 and 1000ppm concentrations. To 

ensure that the mixture remained stable, the solution was stirred with a mixer 

(Heidolph Type Mr 3003 Control G.) for 10 min. Subsequently, the extractives which 

had been diluted with acetone were transferred to 140 mm petri dishes. Then 50 ml 

of malt-agar medium at 60°C was added to the petri dish. The plates were inoculated 

by placing a 10 mm diameter plug in the centre of each plate. The plugs were 

obtained from the edge of a colony in the growth phase of the brown rot fungus, C. 

puteana, and the white rot fungus, T. versicolor. Five replicates of each extractive 

were used; five of the acetone-control (only acetone in the medium) and five with the 

medium served as a control. The cultures were kept in a growth chamber at 25°C 

until the mycelium of the control had reached the rim of the plates. For C. puteana it 

took 8 -10 days and for T. versicolor 10 - 12. The inhibition effect was determined at 

the end of the period by calculating the average of diametric growth in the two 

perpendicular directions as shown in Fig. 39. The growth inhibition was determined 

using Formula 5-2 (Gérardin et al. 2004). 

 

Formula 5-2 

( )
d
d1100 Gi

0

1−⋅=  

Where: 

Gi = Growing inhibition effect in percent 

d1= average diameter of the culture in the presence of extractives in mm 

d0= average diameter of the control culture in mm 
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Fig. 38: a) Soxhlet apparatus used to extract P. laevigata wood, b) vacuum rotary evaporator, c) 
acetone extractives after evaporation of solvent, d) wood extractives diluted in acetone, (from 
left to right: extracted with water, acetone-water, ethanol-water and cyclohexane). 

 

              a                   b                 c                d 
Fig. 39: I) Schematic representation of fungi growing on P. laevigata extractives diluted in malt 
agar, II) Fungi growing on malt agar (control): a) first day after inoculation, b) 2-4 days after 
inoculation, c) 4-6 days after inoculation, d) 10-12 days after inoculation. The perpendicular 
lines in “d” represent the measurement direction. 

II 

I 
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5.2.4 Growth inhibition caused from extractives impregnated on cellulose discs 

 
Ten replicates of 99%-pure cellulose discs (15mm, 750 g/m2 Munktell, Ederol) were 

used as a matrix for P. laevigata wood extractives (Lennette 1985). Extractions of P. 

laevigata wood using the Soxhlet apparatus were performed according to TAPPI T 

204 cm-97. These were similar to the extractions described in Section 5.2.3. The 

resulting solution was used to impregnate the cellulose discs for 1h by immersion. 

Subsequently, the discs were dried for 2 days at 103 ± 2 °C. The discs were placed 

in malt-agar plates freshly prepared with two-week-old circular fungal plug inoculates 

(C. puteana and T. versicolor). Six discs were arranged around the fungal inoculums 

on a 140mm petri dish: 2 untreated discs (control), 2 acetone-impregnated discs 

(acetone control) and 2 discs with extracted solution (Fig. 40). Five petri dishes used 

as replicates were incubated for 15 days in the case of T. versicolor and for 18 days 

in the case of C. puteana. Thereafter, the plates were examined for inhibition zones 

and ranked as follows:  

 

0 = no covering by mycelia nor inhibition zone visible 

1 = up to half of the specimen covered with fungal mycelium 

2 = disc totally covered with fungal mycelium. 
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Fig. 40: Distribution of cellulose discs in petri dish (diameter 140 mm): I) cellulose discs 
impregnated with P. laevigata extractives, II) cellulose discs impregnated with acetone 
(acetone control), III) cellulose discs not impregnated (control discs). The circle in the center 
corresponds to the fungus.  

 

5.2.5 Durability of extracted specimens with respect to basidiomycetes  

 
P. laevigata wood specimens (30mm x 10mm x 5mm (l x r x t)) were extracted using 

a Soxhlet apparatus and by applying the aforementioned method and the solvent 

systems described in Section 5.2.3. Prior to extraction the specimens were 

conditioned at 20±2°C and 65±5% RH. After extraction and oven drying for 24 h at 

103°C the dry mass and the amount of extractives were determined. Following 

autoclavation as described in Section 5.2.2, the specimens were exposed to C. 

puteana and T. versicolor in 140 mm petri dishes on a malt agar medium (Fig. 41). 

Twelve F. sylvatica replicates served as controls; 12 replicates of extracted P. 

laevigata specimens and 12 non-extracted P. laevigata specimens were used to 

determine the degree of decay inhibition. 12 replicates of P. laevigata were used to 

determine the moisture content and leaching and 12 F. sylvatica replicates to 

determine the virulence of the fungi tested. The natural durability of P. laevigata 

wood was calculated with regard to the mass loss after 16 weeks. 
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Fig. 41: Distribution of wood specimens: I) P. laevigata wood specimens extracted, II) P. 
laevigata wood specimens not extracted, III) F. sylvatica wood specimens (control) and centre 
fungus inoculums.  

 

 

5.3 Results and discussion 

 

5.3.1 Soil bed test (ENpr 807) 

The soil bed test ENpr 807 was used to determine the natural durability of P. 

laevigata wood with regard to soft-rot, which is mainly caused by ascomycetes, and 

deuteromycetes in soil under favourable moisture conditions; a succession of 

detoxifying wood extractives is hereby formed (Scheffer & Cowling 1966). As 

indicated in Fig. 42, the mass loss in F. sylvatica specimens after 32 weeks was 

84%, in P. sylvestris specimens 35% and in P. laevigata from all origins from 9.9 to 

17.2%. Local origin No. 4 displayed the highest mass loss of the P. laevigata 

sources, whereas none of the other P. laevigata wood origins had mass loss values 

higher than 12.2% within the same time period. In contrast, Fig. 43 depicts losses in 

MOEdyn of approx. 90% and 60% with F. sylvatica and P sylvestris specimens, 

respectively. It also shows an early loss in MOEdyn after 16 weeks. The losses in F. 
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sylvatica and P. sylvestris were 80% and 43%. Similar results (86 and 27%) were 

detected after 12 weeks (Machek et al.). The loss of MOEdyn in P. laevigata was 10 - 

25% following the 16th week and 18 - 40% after 32 weeks. The results for mass loss 

and MOEdyn loss in P. laevigata exposed to decay for 32 weeks in a soil-bed verify a 

high level of natural durability for this wood species. The difference in natural 

durability within specific origins might be due to different rates in durable heartwood 

formation. The variation in the natural resistance of species from different origins is 

explained in the literature: some teak trees begin to develop a mature heartwood 

earlier than other trees, thus influencing differential natural durability (Bhat & 

Florence 2003). 

 

 

Fig. 42: Average of mass loss of P. laevigata wood from different localities after 32 weeks.  
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Fig. 43: MOEdyn loss of P. laevigata wood from different local origins and the controls P. 
sylvestris and F. sylvatica. 

 
 

5.3.2 Resistance to basidiomycetes 

 

The natural resistance of P. laevigata wood to basidiomycetes was ascertained, 

compared, and classified because this group of organisms produced the most 

important types of decay (Scheffer & Cowling 1966). Tab. 13 shows the outcomes for 

mass loss of P. laevigata after subtracting 1.68% to compensate for mass loss due to 

the leaching effect. The virulence of the fungi tested was confirmed by the average 

mass loss of 40 to 61% for F. sylvatica wood. P. laevigata wood revealed losses in 

mass of 0.3 to 1.5% caused by the white-rot fungi P. ostreatus, I. lacteus and T. 

versicolor and by the brown-rot fungus C. puteana. Local origin 1 was the most 

resistant (in all fungi tested) with mass losses of 0.4 to 0.8%. High levels of 

resistance (mass loss of 4%) to Trametes versicolor and Lentinus lepideus were 

established in the heartwood of P. tamarugo and P. alba (Donoso et al. 1984). With 

respect to the classification methods of EN 350-1 mass loss criteria shown in Tab. 14 

where the natural durability is expressed according to a class grading scale, all P. 

0

20

40

60

80

100

0 8 16 24 32
Weeks

M
O

E d
yn

 lo
ss

 (%
)

Locality 1
Locality 2
Locality 3
Locality 4
Pinus sylvestris sapwood
Fagus sylvatica



__________________________________________________________________________________________ 

 88

laevigata wood origins were classified as Class 1 (high durability) due to its low mass 

loss (Tab. 15). 

 

Tab. 13: Average values and standard deviation of mass loss of P. laevigata from different 
localities and F. sylvatica after 16 weeks of fungal incubation. 

Mass loss (%) Wood species (locality) 
P. ostreatus I. lacteus C. puteana T. versicolor 

P. laevigata (1) 0.4 ± 0.8 0.8 ± 0.3 0.4 ± 0.5 0.5 ± 0.4 

P. laevigata (2) 1.2 ± 0.6 1.3 ± 0.8 1.2 ± 0.5 1.2 ± 0.4 

P. laevigata (3) 0.9 ± 0.8 1.5 ± 0.9 0.7 ± 0.5 0.8 ± 0.5 

P. laevigata (4) 0.3 ± 0.5 1.1 ± 0.6 0.5 ± 0.7 0.6 ± 0.5 

F. sylvatica 40.4 ± 7.5 43.7 ± 16.4 61.1 ± 2.7 49.2 ± 19.8 

 

 

Tab. 14: Wood durability classification system according to mass loss criteria and EN 350-1  

Criteria  Durability 
class Description 

Mass loss (%) EN 350-1 (x value) 1 

1 Very durable ML ≤ 5 x ≤ 0.15 

2 Durable 5 < ML ≤ 10 0.15 < x ≤ 0.30 

3 Moderately durable 10 < ML ≤ 20 0.30 < x ≤ 0.60 

4 Slightly durable 20 < ML ≤ 30 0.60 < x ≤ 0.90 

5 Not durable ML > 30 x > 0.90 
1 value x = average corrected mass loss of test specimens/average mass loss of reference 
specimens. 

 

Tab. 15: x values calculated from mass loss of P. laevigata from different localities divided by 
the average of mass loss of F. sylvatica after 16 weeks of fungal incubation.  

x value Prosopis laevigata 
(locality) P. ostreatus I. lacteus C. puteana T. versicolor 

Durability class 
(EN 350-1) 

1 0.01 0.02 0.01 0.01 1 

2 0.03 0.03 0.02 0.02 1 

3 0.02 0.03 0.01 0.02 1 

4 0.01 0.02 0.01 0.01 1 
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The durability of P. laevigata wood specimens expressed as MOEdyn loss from 

different origins after 16 weeks are shown in Tab. 16. The control specimens of F. 

sylvatica displayed high losses of MOEdyn of 67.6 to 87.2%, P. laevigata from local 

origin No. 2 revealed the highest MOEdyn losses (15.0 to 28.0%) followed by 

specimens from locality No. 3 with losses of 2.0 to 13.2%. The most resistant local 

origin was locality No. 1.  

 

Tab. 16: Average and standard deviation values for MOEdyn losses of different P. laevigata 
origins and F. sylvatica control specimens after 16 weeks of exposure. 

MOEdyn loss (%) Wood species 
(locality) P. ostreatus I. lacteus C. puteana T. versicolor 

P. laevigata (1) 0.2 ± 5.2 9.6 ± 8.8 1.4 ± 8.0 4.0 ± 12.2  

P. laevigata (2) 15.0 ± 17.0 28.0 ± 11.8 18.1 ± 34.4 18.8 ± 10.4 

P. laevigata (3) 13.2 ± 22.4 9.4 ± 6.0 3.4 ± 16.3 2.0 ± 4.8 

P. laevigata (4) 6.2 ± 13.6 5.9 ± 5.6 4.1 ± 23.6 3.7 ± 32.8 

F. sylvatica 80.0 ± 9.2 87.2 ± 9.6 67.6 ± 7.8 78.3 ± 14.2 
 

 

5.3.3 Growth inhibition caused by extractives diluted in malt-agar medium 

 
The biocidal effect of P. laevigata extractives obtained in four different polarity 

solvents of two different concentrations was determined with regard to the growth of 

C. puteana and T. versicolor. Tab. 17 shows higher growth inhibition at 1000 ppm 

after 10 and 12 days of growth. Growth of the brown decay fungus C. puteana was 

inhibited from 28.0 - 33.6% and 13.8 - 26.8% with respect to the white decay fungus 

T. versicolor. Table 17 also displays high standard deviation values due to irregular 

fungi growth behaviour. Fig. 44 shows the effect of wood extractives in two different 

solvents at two concentrations. These inhibition effects are relatively high considering 

that 1000 ppm is 0.1% m/m. Acetone-control solvents used as a control do not inhibit 

the growth of C. puteana; however, the growth of T. versicolor was inhibited by 1.1% 

in acetone-control solvents. The growth of C. puteana was always reduced by more 

than 28% by all extractives at the higher concentration. Different patterns evolved for 

T. versicolor. Its growth was more highly effected by ethanol-water extractives at 

1000 ppm; lesser effects were observed for extractives dissolved in water, acetone-
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water and cyclohexane. In comparison, an inhibition effect of up to 50% was found 

for water extractives and acetone extractives from P. africana heartwood diluted at 

concentrations of 1000 ppm. The use of diethylether extractives as an inhibition 

agent effected the growth up to a level of 80% at 1000 ppm (Gérardin et al. 2004). A 

real inhibition effect is only observed at concentrations of up to 5000 ppm (Reyes-

Chilpa et al. 1998).  

 

Fig. 44: Growing inhibition of P. laevigata extractives on C. puteana fungus after 8 days of 
inoculation: a) water-extractives at 100 ppm and b) water-extractives at 1000 ppm, c) ethanol-
water-extractives at 100 ppm and d) ethanol-water-extractives at 1000 ppm and. 

 
 

Tab. 17: Average and standard deviation values of antifungal activity expressed as percentage 
of growth inhibition produced by different concentrations of P. laevigata wood extractives on 
C. puteana and T. versicolor.  

Solvent Concentration 
[ppm]1 C. puteana  T. versicolor 

100 17.5 ± 12.4  1.7 ± 2.0 Water 
1000 33.6 ± 12.9  17.8 ± 13.8 

100 13.6 ± 3.5  10.3 ± 7.5 Ethanol-water 
1000 33.2 ± 13.4  26.8 ± 11.2 

100 12.9 ± 2.4  9.3 ± 3.6 Acetone-water 
1000 31.8 ± 28.4  18.2 ± 7.6 

100 7.3 ± 6.0  2.8 ± 1.2 Cyclohexane 
1000 28.0 ± 12.4  13.8 ± 3.0 

1 parts per million. 

 

 

a b

c d
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5.3.4 Growth inhibition caused by extractives impregnated on cellulose discs 

 

Cellulose discs were used to determine the inhibition effect of P. laevigata wood 

extractive on fungal growth. As shown in Tab. 18, the growth of fungi tested is 

affected by the concentration of the wood extractives. The acetone controls do not 

have an effect on the growth of the fungi tested; all of them were ranked 2. The 

ranking value shows that all extractives had an inhibition effect on the growth of C. 

puteana and T. versicolor. On C. puteana ethanol-water extractives (1000 ppm) had 

a high inhibition effect (low rank values), as did acetone-water and cyclohexane 

wood extractives on T. versicolor. The grading procedure used here was inadequate 

to carefully evaluate the inhibition effect of P. laevigata wood extractives after 8 or 12 

days. 

 

 

Tab. 18: Average and standard deviation values of growth inhibition ranking system in C. 
puteana and T. versicolor caused by different wood extractives of P. laevigata wood. 

  T. versicolor C. puteana 
[ppm]1 100 1000 100 1000 

 a2 b3 a b a b a b 

Water 1.3 ± 0.4 2 ± 0.0 1.5 ± 0.5 2 ± 0.0 1.8 ± 0.4 2 ± 0.0 1.6 ±0.5 2 ± 0.0 

Ethanol-water 1.4 ± 0.5 1.9 ± 0.3 1.7 ± 0.4 2 ± 0.0 1.6 ± 0.5 2 ± 0.0 1 ± 0.0 2 ± 0.0 

Acetone-water 1.7 ± 0.4 2 ± 0.0 1.4 ± 0.5 2 ± 0.0 1.5 ± 0.5 2 ± 0.0 1.6 ± 0.5 2 ± 0.0 

Cyclohexane 1.2 ± 0.4 2 ± 0.0 1.4 ± 0.5 2 ± 0.0 1.6 ± 0.5 2 ± 0.0 1.3 ± 0.4 2 ± 0.0 
1 parts per million 
2 Cellulose discs impregnated 
3 Cellulose discs non-impregnated. 

 

5.3.5 Durability of extracted specimens with respect to basidiomycetes  

 
In order to study the effect of extractives on the natural resistance of P. laevigata 

wood, extractive-free P. laevigata wood specimens were exposed to C. puteana and 

T. versicolor during a period of 16 weeks (Bravery 1978). The results, which are 

expressed as mass loss of extracted specimens after using different polar solvents, 

are presented in Tab. 19. The test was validated through the mass losses observed 

for the F. sylvatica control specimens; these show a mass loss of 39 - 59%. All 
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extracted wood specimens displayed low mass loss values; the extracted P. 

laevigata specimens showed even lower mass losses than non-extracted specimens. 

The same pattern was also observed with respect to extracted and non-extracted P. 

africana specimens when toluene-acetone (2/1), diethyl ether and acetone were used 

as solvents (Gérardin et al. 2004).  

 

The residual decay resistance of extracted P. laevigata wood specimens might be a 

result of the following factors: 

a) The extraction of solid P. laevigata specimens was not completed since only 3.8 

to 10.3% of extractives were removed, whereas the total extractive content is 14.1 

- 16.0% (Section 3.4.3). The heartwood still displays a high fungicidal effect after 

exhaustive extractions (Schultz et al. 1995). 

b) The extractives which cause fungal inhibition are bonded to the cell wall and do 

not permit total extraction (Smith et al. 1989). 

c) The fungal decay of non-extracted specimens is overrated because of a leaching 

effect; losses in mass were not detected during fungal exposition of non-extracted 

agar specimens. 

Tab. 19: Average and standard deviation of mass loss of extracted P. laevigata wood 
specimens, non-extracted P. laevigata specimens and F. sylvatica exposed to C. puteana and 
T. versicolor. 

P. laevigata Solubility Fungus 
Extracted Non-extracted 

Fagus sylvatica

C. puteana 1.9 ± 0.9 4.8 ± 1.4 40.0 ± 24.6 Water      
T. versicolor 2.0 ± 1.5 3.9 ± 1.1 52.4 ± 14.4 

C. puteana 3.6 ± 1.2 4.2 ± 1.8 39.7 ± 27.4 Acetone-water 
T. versicolor 3.6 ± 1.2 4.1 ± 1.2 56.1 ± 11.8 

C. puteana 3.1 ± 0.8 4.6 ± 1.1 50.5 ± 26.4 Ethanol-water 
T. versicolor 3.2 ± 0.6 4.0 ± 1.2 59.5 ±  8.2 

C. puteana 4.8 ± 1.0 4.4 ± 2.0 47.8 ± 25.9 Cyclohexane 
T. versicolor 4.8 ± 1.0 3.8 ± 1.6 59.5 ±  8.2 
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5.4 Conclusion 

 
The results for the natural durability of P. laevigata wood specimens with regard to 

decay caused by brown-rot and white-rote fungi and with respect to decay in a soil 

bed used in this study demonstrated that P. laevigata is highly durable and that its 

heartwood can be considered Class 1 (very durable) according to EN 350-1. Its 

durability is not effected by ecological differences in the origins of the wood. The 

natural durability of wood was not affected after extraction with different solvents; the 

residual antifungal agents were still active in the wood in sufficient amounts to impart 

resistance to decay fungi. 

 

The inhibition pattern of wood extractives could not be clearly identified. The effect 

with regard to C. puteana and T. versicolor fungi was present at higher 

concentrations (1000 ppm) for all kinds of wood extractives. The biocidal effect of 

ethanol-water extractives in both concentrations displayed highest efficacy for T. 

versicolor.  

 

The natural durability of P. laevigata wood might be the result of various factors, 

including high density and low swelling and shrinkage; however, they are primarily 

due to the antifungal effect of extractives. With respect to the latter factor (-)-

epicatechin, (+)-catechin, and taxifolin in concentrations of 5.33, 0.51, and 0.05%, 

respectively, were identified in P. laevigata wood (Section 3.4.4). Taxifolin, a 

substance also found in species of the genus Larix, Cedrus and Pseudotsuga (Eaton 

& Halle 1993), has been described as an antifungal agent (Kennedy 1956); yet, 

taxifolin is mainly responsible for the high durability of the species mentioned above 

(Rudman 1962). 
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Chapter 6 

THE BONDING PROPERTIES OF PROSOPIS LAEVIGATA 
WOOD 

Summary 

 

Two adhesives, polyvinyl acetate (PVAc) and melamine formaldehyde (MF), were 

used at a spread rate of 250 g/m2 and 350 g/m2, respectively, to determine the 

bonding properties of Prosopis laevigata under five different conditions according to 

EN 302-1. The bonding properties were measured by a shear tensile strength test on 

a Zwick/Roell Z100 testing machine. These results were then compared to the 

minimum failing load determined by the EN 301 test of bonded Fagus sylvatica 

specimens. The results were analyzed using ANOVA and then the averages were 

compared by applying the Tukey test. High shear strength values were detected in 

specimens glued with MF under all of the five conditions tested. The specimens 

glued with PVAc also produced high values; however, under wet conditions A4 (6 h 

in boiling water and 2 h soaking in water at 15 ± 5°C) they had lower values. 

Statistical differences were observed between adhesives as well as between 

conditions. Gluing P. laevigata wood with MF adhesive is recommended for structural 

use and for use under outdoor conditions because its shear strength values are quite 

high. P. laevigata wood glued with the thermoplastic adhesive PVAc is recommended 

for indoor applications; the use of PVAc is recommended for use in the furniture 

industry where the thermoplastic qualities are not required. 
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6.1 Introduction 

 

In the wood industry the use of solid wood for lumber and veneer is decreasing. The 

main reason for this is the increasing volume of trees with small dimensions taken 

from natural stands and from the first cuts on plantation sites. P. laevigata trees are a 

good example. They come from arid and semi-arid lands and are short (6 -10 m) and 

have small diameter (0.3 - 0.5 m); in addition, they are sometimes damaged by 

insects or other microbial agents. As only quality logs are selected and sawn, the 

wood is not used efficiently. As a result, only a small portion of the tree is used to 

manufacture lumber and the remaining portion is used as fuel. Using adhesives to 

reduce structural problems and to increase efficiency is playing an increasingly larger 

role in the wood industry. Similarly, the use of adhesives in Prosopis could increase 

the range and number of possible applications of this wood. 

 

Adhesives have played an important role as far as wood-based products are 

concerned. Today, up to 70% of the wood industry uses adhesives (Marra 1984). 

Applying adhesives to engineered wood products (EWP) helps use forest resources 

more efficiently. Sawmill efficiency is around 40%; oriented strand boards and 

timberstrand have an efficiency level of 75 and 76%, respectively (Schuler 2000). 

Adhesives and EWP make both the use of short dimension logs possible as well as 

the use of species that have not been previously utilized (Mckeever 1997). The wood 

industry has been able to lend their products more consistent properties than those 

of sound wood. 

 

Information related to non-structural glue use on Prosopis species is scarce. Among 

the few examples is a study done on particle boards made from P. nigra trees which 

had been damaged by insects. Wood particles of Prosopis were glued with urea 

formaldehyde (Medina & Martínez 1988). Good results have also been obtained with 

P. juliflora (Khali et al. 2005). Nevertheless, information regarding the structural use 

and bonding properties of Prosopis species is either not available or non-existent. 

For this reason, it is essential for the elaboration of EWP’s from P. laevigata, to test 

its bonding properties. This could lead to an increase in the amount of wood used 
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from this tree and at the same time minimise waste. A more effective production 

process would provide benefits to the people living in arid and semi-arid areas. In this 

chapter the bonding properties of P. laevigata were measured to help establish a 

basis in an effect to find more uses for this wood.  

 

 

6.2 Material and methods 

 

6.2.1 Experimental design and description of adhesives  

 

Prosopis laevigata specimens were glued with melamine formaldehyde (MF) and 

polyvinyl acetate (PVAc). Melamine formaldehyde is formed by the reaction between 

melamine and formaldehyde; MF must be dissolved in water prior to utilization. The 

curing process can be carried out under several conditions: A hardener such as 

ammonium sulphate can be added. An acid condition can be created by adding, e.g., 

maleic acid; formic acid or phosphoric acid (Cognard 2005).  

 

PVAc is one of the most important adhesives in the wood industry; it is known as 

“white glue”. This type of adhesive has many advantages. It is fast setting and easily 

applied and it has high bonding strength and minimal environmental impact. Since it 

is a water-based emulsion and thermoplastic glue, PVAc has several disadvantages, 

including a low resistance to humidity and heat. The specifications of this adhesive 

are given in Tab. 20. Sixteen replicates were used in each of the five conditions 

showed in Tab. 21. 
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Tab. 20: Adhesive description. 

Adhesive Polyvinyl Acetate Melamine Formaldehyde 
Resin/hardener ratio (parts) 100/5 100/50 

Spreading rate (g/m2) 250 350 

Open assembly (min)1 7 to 10 5 

Pressure time (min) 120 75 

Pressure (N/mm2) 0.5 0.7 

Viscosity (mPas)2 8000 Resin 15000, Hardener 2200 

Density (g/m3) 1.04 Resin 10 Hardener 1.7 

pH 5.2 - 

Hardener (resin)3 102.26/195.35 1247/2526 
1 Minutes 
2 Viscosity in millipascal 
3 Trade name 

 
 
 
 
Tab. 21: Description of condition specimens of P. laevigata wood tested after gluing according 
to EN 302-1. 

Treatment Description 

A1 7 days in standard atmosphere1 

7 days in standard atmosphere 
A2 

4 days soaking in water at (15 ± 5) °C 

7 days in standard atmosphere 

4 days soaking in water at (15 ± 5) °C A3 

7 days in standard atmosphere 

7 days in standard atmosphere 

6 h in boiling water A4 

2 h soaking in water at (15 ± 5) °C 

7 days in standard atmosphere 

6 h in boiling water 

2 h soaking in water at (15 ± 5) °C 
A5 

7 days in standard atmosphere 
 

1 20°C and 65% RH (Relative humidity) 
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6.2.2 Prosopis laevigata wood specimens 

 

The bonding properties of P. laevigata heartwood were tested by joining specimens 

from natural habitats of northeast Mexico (Section 2.3.1). Lumber samples were 

sawn and planed to dimensions of 600 mm x 50 mm x 8 mm (l x r x t). They were 

then conditioned at standard atmosphere (20±1°C, 65±3% RH) until constant weight 

was reached. Before the gluing process, the wood was planed once again to 

dimensions of 600 mm x 50 mm x 5 mm (l x r x t) to create a fresh surface and thus 

ensure a good bond with the adhesive. A sponge-roller was used to apply the 

adhesive to both wood surfaces. After bonding, the specimens were cut to their final 

dimensions 150 mm x 20 mm x 10 mm as shown in Fig. 45. A general view of the 

specimens used in the test is shown in Fig. 46. 

 

 

 

 

 

 

 

Fig. 45: Schematic representation of a P. laevigata assembly: a) glue line thickness, b) width of 
the sample (20mm), c) cut groove, l1) length of the specimen (150mm), l2) 75 mm, l3) bonding 
area (10mm), s) thickness of a single panel (5mm). The dotted lines represent the cut lines; the 
shady areas represent a specimen. Figure based on EN 301. 

 

 

 

 

 

 

 

 

 

Fig. 46: Sample according to EN 302-1: a) glue line, b) width of the sample, c) cut groove, l1) 
150mm, l2) 75 mm, l3) 10mm, s) thickness of a single panel, α) angle between annual rings and 
surfaces (30° to 90°). Figure based on EN 301. 
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The bonding properties were measured with respect to shear strength according to 

EN 302-1. The reference parameter for evaluating the bonding properties of the 

adhesive was tensile shear force. Tensile shear force was used because it is the 

most common interfacial stress under service conditions and because it also 

provides a useful criterion for estimating the mechanical compatibility between the 

wood and the adhesive (Lavisci et al. 2001; Pizzo et al. 2003a; Pizzo et al. 2003b).  

 

The maximum tensile force needed to shear the wood specimens was determined on 

a Zwick/Roell Z100 testing machine. The loading rate was 1 mm/min. Once the crack 

begins to extend, the load is reduced. When a 5% decrease in load is detected, the 

test machine maintains that condition for 45 seconds. An example of the shear test is 

pictured in Fig. 47. 

 

 

Fig. 47: A general view of tensile shear test according to EN 302-1; Zwick/Roell Z100 testing 
machine. 

 

 

6.2.3 Statistical design and analysis  

Sixteen bonded replicates from each adhesive and each condition were tested (160 

specimens overall); the wood failure was also determined under dry conditions 

(20±1°C, 65±3% RH). The results were examined by applying the analysis of 
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variance test (ANOVA) and the difference between the averages was determined 

with the Tukey test. 

 

 

6.3 Results and discussion 

 

The results of the bonding properties of P. laevigata glued with two different 

adhesives are presented in Tab. 22; this table reveals that the two glues tested 

displayed the highest values of shear tensile strength under Condition A3. Both 

adhesives produced the lowest shear strength values under Condition A4; MF 

produced higher values in comparison to PVAc except under Condition A1 (due to 

the thermoplastic characteristics of PVAc). 

 

Tab. 22: Average and standard deviation of shear tensile strength of bonding 
properties of P. laevigata under five different conditions. 

Condition Adhesive Unit 
A1 A2 A3 A4 A5 

MF 11.2 ± 1.9 10.4 ± 1.7 13.2 ± 3.4 5.8 ± 1.8 9.8 ± 1.4 

PVAc 
N/mm2

11.4 ± 0.8 4.6 ± 0.6 12.0 ± 2.6 2.4 ± 1.2 9.7 ± 2.6 
 

 

Based on the results and the nature of the adhesive, the use of P. laevigata wood 

glued with MF is recommended for outdoor and damp conditions. The PVAc 

application is limited to indoor conditions because of low shear strength values under 

damp conditions.  

 

As shown in Fig. 48 the wood failure under most of the conditions ranged from 50 to 

100%.  
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Fig. 48: Prosopis laevigata wood specimen showing the percentage of wood failure after shear 
tensile strength test. 

 

 
 

Fig. 49 presents the minimum tensile shear failing loads for close contact joints which 

should be reached by standard bonding specimens of F. sylvatica according to EN 

301. Except under Condition A4, the average of the failing loads of P. laevigata was 

higher than the minimum load required. 
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Fig. 49: Average of shear tensile strength of P. laevigata specimens glued with two adhesives 
under five different conditions. The red line shows the minimum standardized failing load of F. 
sylvatica according to EN 301. 
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The analysis of variance of the shear tensile strength values produced statistical 

differences between adhesives and conditions (p < 0.0001). The higher results for 

MF under A1, A2, A3 and A4 conditions could be attributed to the fact that it is a 

thermosetting adhesive, whereas PVAc is a thermoplastic adhesive. 

 

6.4 Conclusion 

 

The results of tests determining the bonding properties of P. laevigata wood show 

that this wood can be glued with structural adhesives such as melamine 

formaldehyde as well as with the non-structural adhesive polyvinyl acetate. 

According to EN 301, which tests adhesive efficiency, the shear strength obtained 

through the MF bonding of P. laevigata specimens was higher than the minimum 

load required under four of the five conditions tested.  

 

Utilising the high natural resistance of P. laevigata species for bonding products is 

feasible. Due to its adhesive properties, the use of melamine formaldehyde in 

structural application is recommended over polyvinyl acetate for outdoor proposes. 

The results also confirm that P. laevigata heartwood can be used as a source 

material for wood-based products. 
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Chapter 7 

EFFECTS OF ARTIFICIAL WEATHERING ON PROSOPIS 

LAEVIGATA 
 

Summary 

 

The effects of artificial weathering on Prosopis laevigata wood were studied on eight 

replicates (150 x 72 x 15mm (l x t x r)) free of knots, cracks and resin. The samples 

were exposed tangentially to UV light and to water spray during three cycles (1 cycle 

corresponded 1 week of artificial weathering). The conditioning time between each 

cycle was thirty days. The effects were measured according to visual appearance, 

crack formation, and colour changes; the results were then compared to two other 

well known timber species, namely teak (Tectona grandis) and beech (Fagus 

sylvatica). The specimens displayed changes in colour after three cycles of 

exposure. P. laevigata changed from brown to white. Delta C (Delta colour) 

increased from 5.6 to 9.6. There was less crack formation than in F. sylvatica but 

more than in T. grandis. Lightness was reduced from 61 to 37 after the first cycle; the 

lightness value of 35 was maintained at the end of the second and third cycles. The 

P. laevigata specimens showed several changes in colour after artificial weathering. 

The Delta C was higher due to the photodegradation of lignin and phenolic 

compounds caused the UV light and the leaching caused by water.  
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7.1 Introduction 

 

The appearance of weathered wood depends on exposure conditions (Feist & Mraz 

1978). Prosopis laevigata wood displays high natural durability to basidiomycetes as 

well as to soil contact under laboratory conditions. The structural bonding properties 

are also high. In order to expand the possible uses of P. laevigata wood in outdoor 

applications, weathering tests need to be carried out. 

 

It is well known that environmental conditions cause significant damage to wood and 

wooden materials (Rowell 2005). Besides sunlight, other weather factors can cause 

degradation of the wood; these include moisture, hot and cold conditions, and wind 

(abrasion). The effect of sunlight is limited to a 200 µm thick surface layer because of 

the low degree of penetration of light into wood (Browne & Simonson 1957; Kataoka 

& Depth 2001). Natural weathering causes a chemical degradation of lignin, cellulose 

and hemicelluloses. Rain increases this effect by washing out the degraded 

compounds (Feist 1982; Kalnins & Feist 1993). 

 

The effect of weathering differs among wood species. The most easily detectable 

effect is change of colour; wood erosion is more difficult to observe. The sunlight 

effect differs for each wood species; some species adopt different shades or display 

light colour changes such as bleaching or greying (Sandermann & Schlumbom 1962; 

Sell & Leukens 1971; Fengel & Wegener 1989). In general, light-coloured woods 

become darker, and dark-coloured woods become lighter. If the weathering 

continues, the change to grey results from the growth of mycelia fungi (Feist & Mraz 

1978). The erosion process has been described as a slow mechanism; 5 – 8 mm of 

wood surface is lost per 100 years (Feist & Mraz 1978). 

 

This chapter describes the changes of appearance in colour and lightness caused by 

artificial weathering on P. laevigata heartwood from natural areas of northeast 

Mexico and compares the results with two well-known timber species. 
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7.2 Material and methods 

 

7.2.1 Wood specimens and exposition parameters 

 

Eight replicates (150 x 72 x 15 mm, (l x t x r)) free of knots, cracks, and resin from P. 

laevigata, T. grandis, and F. sylvatica were obtained from logs as shown in Fig. 50. 

The tangential section of straight grained specimens was exposed in a UV cabinet 

with a spray option (QUV, Q Panel, Lab Products, Cleveland, USA). The specimens 

were alternately stressed with UV (A)-irradiation and water spray for a total of three 

cycles using the parameters presented in Tab. 23. At the end of each exposure 

cycle, the specimens were conditioned for three weeks at 20±1°C, 65±3% relative 

humidity (RH) until they reached constant weight. The three weeks of conditioning 

was necessary since P. laevigata reaches its equilibrium moisture content (EMC) 

slowly. 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 50: Representation of samples of P. laevigata wood: a) cross section of a log (black area 
corresponds to sampling section “c”), b) tangential section (area exposed to artificial 
weathering), c) cross section of the sample, d) radial section of the sample. 
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Tab. 23: Parameters used during artificial weathering of P. laevigata wood and of two control 
species. 

Step Function Temperature Duration Condition 
1 Condensation 45±3°C 24h 100% RH 

2 Subcycle step 3+4  48x  

3 UV 60±3°C 2.5h 0.77 W/(m2nm) at 340 nm 

4 Spray  0.5 h 61 - 71, UV off 

 

7.2.2 Evaluation of the effect of artificial weathering  

 

Weathering has a slow degrading effect on wood; it is caused by abiotic factors. 

Such an effect can be measured by various means. The following effects were 

evaluated: visual appearance, crack formation and colour change  

 

 

7.2.2.1 Visual appearance 

 

Visual assessment is a subjective way of determining weathering effects; 

nevertheless, it is one of the most used means. Some visual differences appear in 

the form of bleaching or greying or in other changes in colour (Sandermann & 

Schlumbom 1962). Comparison of the effects with respect to other species leads to 

more realistic results. The visual appearance of P. laevigata wood in comparison to 

other species was ranked according to the parameters shown in Tab. 24. 

 

Tab. 24: Ranking system for visual appearance ENpr 927-6 

 
Class Classification 

0 Unchanged 

1 Very slight 

2 Slight 

3 Moderate 

4 Considerable 
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5 Severe 

7.2.2.2 Crack characterization 

 

The loss of surface wood cells is influenced by defibrization; this effect starts with the 

degradation of lignin and water absorption. Consequently, stress fields form micro 

cracks which become visible on the wood surface (Sandberg & Söderström 2006). 

These cracks can be measured and ranked according to their size. The effect of 

artificial weathering on P. laevigata wood has been determined by surface crack 

characterisation (Schulte et al. 2004). The classes and the classification description 

of each class are presented in Tab. 25. 

 

Tab. 25: Crack classification, according to the length of the crack. 

Class Classification Length of the cracks  

0 No cracks 0 

1 Fine and small cracks <1/3 of L1 

2 Long and wide cracks 1/3 to 2/3 of L 

3 Continuous cracks <2/3 of L 
1 Exposed area 

 

7.2.2.3 Colour change 

 

The change of surface colour was determined according to coordinates which were 

established by the International Commission on Illumination (CIE L*a*b* coordinates) 

and which are based on the lab colour space. The data for “L”, “a” and “b” were 

obtained using Adobe Photoshop 7.0 software after scanning specimen surfaces with 

a Canon CanoScan 3000 scanner (image solution: 300 dpi). The “L” axis represents 

lightness and runs from 0 (black) to 100 (white); the coordinate +a* stands for red, -a* 

for green, +b* for yellow, and - b* for blue. Any colour can thus be characterized 

(Brock et al., 2000).  

 

The chroma change (∆C) was calculated from the data following the initial scan (a1, 

b1) and after each successive scan (a2, b2) for weathering according to Formula 7-1. 
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Formula 7-1 
 

 

( ) ( )221
2

21 bbaaC −+−=∆   

Where: 

 

∆C = Change of colour 

a1= coordinate value before exposition representing red to green colour 

a1= coordinate value after exposition representing red to green colour 

b1= coordinate value before exposition representing yellow to blue colour 

b2= coordinate value after exposition representing yellow to blue colour 

 

7.3 Results and discussion 

7.3.1 Visual appearance 
 
Appearance changes were detected in wood specimens as depicted in the following 

figures. After the first exposure cycle, all species changed their appearance as 

shown in Fig. 51. P. laevigata as well as F. sylvatica and T. grandis displayed 

bleaching. The ranking after this cycle was from 1 to 2 (Fig. 52). The effect was more 

pronounced after the third cycle. 
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F. sylvatica 

 

 

 

 

P. laevigata 

 

 

 

 

T. grandis 

 

a                  b                   c                  d    

Fig. 51: The artificial weathering effect in P. laevigata, F. sylvatica and T. grandis after three 
cycles of exposure, a) before cycle 1 - cycle 0 -, b) after cycle 1, c) after cycle 2 and d) after 
cycle 3. 
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Fig. 52: Artificial weathering effect determined by a visual observation ranking of P. laevigata, 
F. sylvatica and T. grandis after three cycles of exposure. The numbers correspond to cycles 1, 
2 and 3. 

 

7.3.2 Crack characterization 
 

The cracks were evaluated at the end of each of the 3 conditioning cycles. Fig. 53 

shows the cracking effect induced by artificial weathering for the three wood species. 

F. sylvatica was used as a control; it exhibited a crack classification of 0.4 in the initial 

stage of exposure; and 1.1 and then 2.2 after the second and third cycles. In 

contrast, P. laevigata received a classification of 0.25 after the third cycle. Tectona 

grandis did not reveal any effect after the third cycle. 
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Fig. 53: The effect of artificial weathering determined by crack evaluation in P. laevigata, F. 
sylvatica and T. grandis after three cycles of exposure. The numbers correspond to cycles 1, 2 
and 3. 

7.3.3 Colour Change 
 

Colour change induced by artificial weathering after each of the three cycles is shown 

in Fig. 54. The results exhibit a great change in colour after the first and second 

cycles for P. laevigata (5.6 to 9.6) as well as for the control, F. sylvatica (4.0 to 8.6). 

The colour change in the second control, T. grandis, was lower than for the other two 

species (3.0 to 6.7). 
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Fig. 54: Colour change according to the CIE-Lab system after 1, 2 and 3 cycle(s) of artificial 
weathering in OUV device. The numbers correspond to cycles 1, 2 and 3 

 

It was observed that the change in lightness was dependent on the species treated 

(Fig. 55). After the first cycle all the species were darker, after the second cycle F. 

sylvatica was lighter. Following the third cycle the results were very similar to the first. 

T. grandis was also darker compared to the beginning even though it had begun to 

lighten after the second cycle. After the third cycle the lightness level was higher than 

it was initially. P. laevigata wood, which had darkened after the first cycle, continued 

to darken through the third cycle. The results show that the lignin content was 

oxidised after the first cycle in all wood samples. In F. sylvatica and T. grandis three 

cycles of weathering washed out the wood constituents. Different effects were 

observed in P. laevigata, whose high content of phenolic compounds had not been 

washed out by the end of the third cycle.  
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Fig. 55: Comparison of lightness according to the CIE-Lab system initially (0 = before cycle 1) 
and after each of the three cycles of artificial weathering in a QUV device.  

 
 

7.4 Conclusion 

 

Based on artificial weathering results, P. laevigata wood can be classified as a 

species with moderate to high resistance. The lower crack formation in comparison to 

F. sylvatica, corresponds to the high dimensional stability retained despite humidity 

changes (low swelling and shrinkage). 

 

The effects of UV light were observed with regard to the oxidation of phenolic 

compounds in P. laevigata. A colour change from brown to white was detected after 

the first cycle; a leaching effect from the upper areas to the lower areas was 

observed. The relatively high density of P. laevigata, the finely textured diffuse 

porosity and the gums which fill the vessels lend proof to the weathering effects. 
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Chapter 8  

GENERAL DISCUSSION 
 

8.1 Wood anatomy 
 

The anatomical wood characteristics of Prosopis species are varied; its diversity can 

be related to its worldwide distribution. Viewed macroscopically, a typical cross 

section of the stem of a P. laevigata tree contains an outer region which is comprised 

of a yellowish, very narrow (2 to 3 cm wide in a radial direction) sapwood section. 

The heartwood section displays a darker colour than sapwood and occupies a major 

area of the cross section. The growth ring pattern is narrow and is related to 

environmental zone conditions. In areas with relatively low rainfall (Average 

precipitation per year in the habitat areas studied varies from 300 to 760 mm.), the 

growth rings exhibit vessels arranged in ring-porous or semi ring-porous forms. 

Vessels of greater diameter are found in earlywood and vessels of lesser diameter 

are concentrated in latewood tissue (Gomes & Muñiz 1986; Bowyer et al. 2003). 

According to Zimmermann (1982), the differences between the diameters of vessel in 

earlywood and latewood and their distribution within the annual rings have an effect 

on water conduction efficiency. The number of vessels per square millimetre, their 

distribution, and the average vessel diameter within the growth ring are all 

characteristics which contribute to the ability of Prosopis trees to establish 

themselves in arid and semi-arid areas. 

 

The vessel diameter found in P. laevigata, ranging from 13 to 224 µm, is the largest 

vessel diameter among the Prosopis species. Water conduction efficiency is, 

however, greater in tree species with vessels of lesser diameter (Stamm 1972). The 

range of P. laevigata vessel length elements (52 - 192 µm) is similar to P. flexuosa 

(100 - 170 µm); both species exhibit shorter vessel length elements in comparison to 

P. kuntzei (82 - 322 µm) and P. chilensis (80 - 243 µm) (Villalba 1985; Castro 1994; 

Scholz et al. 2005). 

 



__________________________________________________________________________________________ 

 115

The pattern of vessel length elements and vessel diameter can be described as 

follows: While P. laevigata has the largest vessel diameter, P. kunzei has the 

smallest. The inverse is true with regard to the length of a vessel element since P. 

kunzei has the longest vessel length element and P. laevigata the second shortest. 

 

Rays in hardwood are normally comprised of more than one individual ray 

parenchyma cell. They provide horizontal movement of nutrients from the periphery 

towards the centre of the tree. Rays also contribute to carbohydrate storage. P. 

laevigata displays multiseriate rays ranging from 3 to 6 cells. Rays composed of more 

than 6 cells are seldom present. Similar numbers from ray parenchyma cells are also 

found in P. nigra and P. kunzei. The rays in these species range from 3 to 5 and from 

3 to 6 cells wide, respectively.  

 

The main function of fibers in hardwood trees is to provide strength and support. The 

average fiber length of P. laevigata is 975 µm (range: 589 to 1.312 µm). There is a 

great difference in fiber length between Prosopis species. For instance, the fiber 

length of P. kuntzei ranges from 557 to 1775 µm (average 1257 µm); P. argentina 

ranges from 279 to 838 µm with an average of 532 µm (Villagra & Roig-Juñent 1997; 

Scholz et al. 2005). The range among fiber lengths within the same tree species is 

also great.  

 

The proportion of different types of wood tissues affects chemical wood composition, 

as well as physical and mechanical wood properties. The effect of the climate, e.g., 

arid and semi-arid, on the growth pattern of hardwood trees is distinctive. Since P. 

laevigata wood has a ring-porous or semi ring-porous pattern, it follows that the 

growth rate affects wood density. Those local habitats in which environmental 

conditions increase wood formation produce denser and stronger wood. This is due 

to the fact that the earlywood section of one annual year ring (Earlywood is more 

porous and of lower density than latewood.) is less prevalent than the latewood 

section, which is formed by small diameter vessels and thick cell walls. 
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8.2 Wood chemistry 
 

Chemical wood composition varies within the tree’s individual parts (roots, trunk or 

branches), between the types of wood (sapwood or heartwood) and between 

geographic and climatic conditions (Pettersen 1984). Composed of cellulose and 

hemicellulose polymers, holocellulose comprises the major carbohydrate portion of 

wood (Fengel & Wegener 1989; Rowell 2005). The chemical wood composition of 

heartwood from P. laevigata reveals that holocellulose content ranges from 61.7 to 

64.5%. The usual amount of holocellulose is from 65 to 70% of the dry weight (Han & 

Rowell 1996). The range of glucose, the main component of cellulose, in P. laevigata 

is from 45.7 to 48.6%. In comparison, the hemicelluloses, which are associated with 

cellulose and which contribute to the structural component of the tree, contain xylose 

(12.0 - 12.4%), arabinose (0.6 - 0.9%), 4-O-methyl-glucuronic acid (0.9%), rhamnose 

(0.3%), galactose (1.5 -1.7%) and mannose (0.2%). Reports on the chemical wood 

composition of other Prosopis species reveal that 70% of the wood tissue of P. 

juliflora is composed of holocellulose (Pasiecznic et al. 2001; Scholz et al. 2005). 

 

Lignin is considered an encrusting substance; it is highly complex and is mainly 

composed of aromatic polymers in phenylpropane units (Rowell 2005). The lignin 

content of heartwood trees is usually 25 to 35%. P. laevigata lignin content 

determined by Klason-lignin lies between 29.8 and 31.4%. The lignin concentration in 

P. glandulosa has been reported at 25%, which is in accordance with the results in 

this study. In P. juliflora a wide range of lignin content (11.5 - 31%) was reported by 

Pasiecznic et al. (2001). 

 

Extractives are comprised of a large number of compounds and can be classified 

according the solvent used to extract them. The function of extractives in trees is not 

completely clear; however, it is known that the extractives increase the resistance of 

the tree to microbial attack (Hillis 1987). Overall extractives of P. laevigata heartwood 

range from 14.1 to 16.0%. The range of petrol-ether extractives is 0.3 - 0.4%, 

acetone-water 11.6 - 12.8%, and methanol-water 2.2 to 2.8%. The extractive 

concentration in P. juliflora ranges from 3 to 15% (Patel & Safaya 1986). A 

concentration of 9% was established in P. glandulosa (Pasiecznic et al. 2001). The 
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content of acetone extractives in P. africana heartwood is 11.7% (Gérardin et al. 

2004); this value is similar to that for P. laevigata acetone-water extracts (11.6 - 

12.8%). The extractive compound, taxifolin, makes up 0.05% of hardwood acetone-

water extractives. (-)-epicatechin was detected at a level of 5.33% through ethanol-

water extracting; (+)-catechin comprises 0.51% of P. laevigata extractives. Both of 

the two aforementioned are phenolic compounds from the flavonoid class and are 

condensed tannins (Hillis 1987). They are also known for their antioxidant function. A 

topochemical characterization of P. laevigata wood reveals that the high phenolic 

compound content (including lignin) is distributed in axial parenchyma cells and 

within the pit canals.  

 
 

8.3 Physical and mechanical properties 
 

The physical and mechanical properties of P. laevigata wood vary within local 

habitats. The average density (0.76 g/cm3, oven dry condition) which is considered a 

good estimator of physical and mechanical properties (Kollmann & Cote 1968) was 

greater than in F. sylvatica and Q. robur (0.68 and 0.65 g/cm3, respectively). Local 

origins No.’s 1 and 4 produced lower oven dry density values than did other localities. 

Local origin No. 4 also revealed lower values than other localities in physical and 

mechanical tests. 

 

Volume changes in wood while absorbing or desorbing humidity is described as the 

swelling and shrinkage effect. The size change occurs before the fiber saturation 

point is reached because the bonded water is absorbed from the environment into 

the hemicellulose and the chains of cellulose (Bowyer et al. 2003). P. laevigata wood 

demonstrates a higher dimensional stability than other wood; this tree species has a 

very low swelling and shrinkage rate compared to F. sylvatica and Q. robur. As the 

results in this study indicate, the low swelling and shrinkage values for P. laevigata 

are comparable to the results for other Prosopis species. Radial and tangential 

shrinkage values of P. chilensis are 0.8 and 2.3%, respectively. Similar results have 

been presented for P. tamarugo (2.8 and 5.6%) (Pasiecznic et al. 2001). Low to 
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medium equilibrium moisture content of 11.2 and 18.8% was found at 20±1°C, 

65±3% RH and 20±1°C, 95±3% RH, respectively.  

 

The physical and mechanical properties of P. laevigata wood result from its anatomy 

and chemical composition. Vessel patterns (semi-ring or diffuse porous) influence the 

physical results. Extractive content also plays an important role, as some of them are 

antioxidant and thus reduce the water uptake. They can also form physical barriers 

and occupy free space in to which water could otherwise flow.  

 

Average values for bending strength obtained by static modulus of elasticity are 

moderately lower than for well known commercial timbers. The factors negatively 

affecting the bending strength values are the cross grain and the spiral grain. The 

average value obtained according to modulus of rupture, however, reveals that grain 

pattern does not considerably affect the modulus of rupture. The MOR value for P. 

laevigata is higher than for Q. robur and F. excelsior and similar to F. sylvatica. The 

wood hardness values for the three directions (parallel, radial and tangential) and the 

compression values parallel to the grain are high in comparison to other well known 

timber species because of the high density of oven dry P. laevigata (0.76 g/cm3 oven 

dry condition). 
 
 

8.4 Natural durability 
 

Wood as a biological material is subject to damage imparted in different ways. The 

effect of fungi on wood can limit a wood’s use, as well as decrease its aesthetic value 

and impair its mechanical properties (Schmidt 2006). The determination of the 

natural durability of timber species is a step forward providing information for 

adequate uses of the wood. 

 

In soil bed test ENpr 807, in which the resistance P. laevigata wood to 

basidiomycetes was investigated, the P. laevigata specimens demonstrated a high 

level of natural durability. The portion of each specimen buried in soil revealed low 
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strength loss and a low loss of mass (18 to 40% and 9.9 to 17.2%, respectively). The 

results obtained from a modified EN113 standard test classified P. laevigata wood as 

Class 1 (very durable) according to EN 350-1, because the amount of decay caused 

by basidiomycetes led “x” values of less than 0.15. Similar resistance were 

determined for P. tamarugo and P. alba heartwood (Donoso et al. 1984). 

The natural durability of P. laevigata wood could result from numerous factors 

producing multiple effects. Its anatomical characteristics could be one such factor. 

There is a low proportion of vessels per square millimetre. The vessels filled with 

gums form a physical barrier, which effects the water uptake. Cell wall thickness also 

represents an influential factor, for it is more difficult to degrade a thick cell wall than 

a thin one. The low moisture content as well as a low level of swelling and shrinkage 

reduce cracking and thus create fewer opportunities for fungi to start a colony. 

 

Extractives in P. laevigata reduce the decay caused by fungi in different ways. This 

has been confirmed through analyses of its chemical composition, topochemical 

characterization, and microscopical observations. One way is through a high 

concentration of extractives (up to 16.0%). Another is the localisation of phenolic 

compounds (including lignin) which are mainly found in vessels, pit canals and 

impregnated on the S2 layer. The nature of extractive compounds also plays a role. 

Three of these were identified chemically during the HPLC test as (+)-catechin, (-)-

epicatechin and taxifolin. All are known as antioxidant substances which can reduce 

the hygroscopicity of the wood (Zulaica-Villagomez et al. 2005). Taxifolin extractives 

together with three other compounds extracted from Pseudotsuga menziesii are 

known to demonstrate an antifungal effect (Rudman 1962). 

 

Subjecting extracted P. laevigata specimens to fungi decay has supported the notion 

that a cumulative effect occurs. The mass losses were similar to or less than those in 

the non-extracted specimens. Extraction with water, ethanol-water, acetone-water, 

and cyclohexane did not prove efficient enough to extract deposited elements 

because the inhibition “agents” (cell thickness, lignin content, low equilibrium 

moisture content) could be continuing to provide resistance to decay. Wood 

extractives dissolved in a malt agar medium inhibit the growth of fungi. The same 

results were produced with extractives on extractive-impregnated cellulose discs. 
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Similar findings were also observed with P. africana extractives which inhibited the 

growth of T. versicolor (Gérardin et al. 2004). 

 

 

8.5 Bonding properties 
 

Test in which the bonding properties of P. laevigata were investigated demonstrated 

that this particular species can be used for wood-based products. According to the 

Forest Products Laboratory (1999), wood from species with wide cell wall thickness, 

low vessel proportion, high density values, as well as high extractive content normally 

present problems during the bonding process; however, in the case of P. laevigata 

the bonding strength is relatively high. After testing two different glues under five 

different conditions, it was established that P. laevigata has a high shear strength 

value. A high level of resistance was recorded with the thermosetting adhesive (MF) 

on P. laevigata under conditions A4 and A5 (outdoor and structural applications). The 

values for P. laevigata under all conditions (except A4) were higher than the minimal 

shear load values for F. sylvatica measured by the EN 301 test (standard adhesive 

test). Shear strength values under all test conditions with PVAc, a semi-thermoplastic 

adhesive or “white glue” which is used to bond P. laevigata, is appropriate for wood-

based products in indoor applications. 

 

 

8.6 Artificial weathering 
 

The effect of weathering on the surface of wood is extremely slow. It has been 

estimated that a 100 year exposure period leads to a loss, due to erosion, of 5 to 8 

mm on the wood’s surface (Feist & Mraz 1978). A change in colour is a more 

noticeable effect; such changes vary depending on the species. Some light-coloured 

wood species become darker and some dark-coloured wood species become lighter. 

Ultimately, the surface of all wood species turns to some shade of grey (Feist & Mraz 

1978). 
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Results obtained for artificial weathering which were analysed by applying three 

different testing systems provide complementary information. For example, the colour 

change of wood specimens affected by artificial weathering, resulted from the 

degradation of phenolic compounds.  

 

At the beginning of this research project, the surface of P. laevigata wood specimens 

was brown; it became white after three cycles of exposure. The degraded wood 

compounds were washed and bleached with water. There was an increase in the 

lightness values in the exposed areas. After three exposure cycles, P. laevigata still 

retained a very high degree of structural stability. Low amounts of swelling and 

shrinking were observed and, as a result, fewer cracks were found in comparison to 

F. sylvatica but a somewhat higher number than in T. grandis. This effect occurs as a 

result of lignin bonds breaking down when exposed to UV light. The residue was also 

washed away with water. The lack of cracks reduced water penetration into deeper 

sections of the wood. This is a consequence of the physical barriers formed by 

extractives in vessels and pit canals as previously explained. 

 
 

8.7 Application 
 

Timber obtained from P. laevigata trees normally has small dimensions as a result of 

the growing conditions. The height of trees ranges from 4 to 10 m, but the lumber is 

generally only 1 to 2 m in length. The growth pattern also produces cross and 

interlocked grain affecting the strength and elasticity of the wood products. Lumber 

pieces for structural application should be chosen according to graded qualities. Up 

to now, P. laevigata timber has only been used for indoor applications, e.g., furniture 

production.  

 

The applications of P. laevigata need not be limited to specific forest industries; its 

density values show that the development of additional structural uses is possible. 

The wood also has other positive attributes; it has great natural durability, a low 
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equilibrium moisture content, good dimensional stability (low swelling and shrinking), 

few cracks and good bonding strength.  

 

Prosopis laevigata is of limited use in the pulp and paper industry (high extractive 

content and high density); however, it could be a feasible source of material for 

applications demanding short to medium long fibers as well as thick cell walls. The 

thickness of the fibers could provide the strength necessary for some kinds of paper. 

 

Based on results obtained in testing bonding properties, the production of laminated 

wood from relatively short P. laevigata logs is possible, as is the production of 

laminated wood (glulam) after the gluing and finger-jointing of relatively short-timber 

boards. Tree branches from silvicultural operations, wood residues, and sawdust 

from the sawmill industry can be used in wood-based products such as 

particleboards (mixed with other species).  

 

Information which has been collected with regard to various properties of this wood 

such as density, wood stability −with regard to moisture changes− and artificial 

weathering, high natural wood durability of trees from different habitats, and the high 

amount of shear strength after bonding, are all parameters which point to an almost 

limitless number of indoor and outdoor applications. The analyses of the properties 

and possible used of P. laevigata wood done in this study have led to some very 

important insights worthy of further research. Such research could lead to the 

development of wood-based products from P. laevigata as well as to the use of 

extractives within the forestry and wood sciences.  
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APPENDIX 
 
 

Analysis of variance (ANOVA) of Prosopis laevigata wood from four local areas. 

 
Physical properties 
 
Wood density 

Source DF SS MS F Value P  
Density (20±1°C, 65±3%)(locality) 3 0.2546998 0.08489993 84.45 0.0001
Residual 116 0.0533947 0.0004603   
Total 119 0.3080945    
          
Density (Oven dry)  3 0.25419745 0.08473248 78.37 0.0001
Residual 116 0.12541548 0.00108117   
Total 119 0.37961293       
    
Swelling  

Source DF SS MS F Value P  
Radial direction (locality) 3 1.32042448 0.44014149 2.59 0.0593
Residual 76 12.9361112 0.17021199   
Total 79 14.2565357    
            
Tangential direction (locality) 3 17.1171887 5.70572957 31.41 <.0001 
Residual 76 13.8077087 0.18168038   
Total 79 30.9248974       
      
Shrinking  

Source DF SS MS F Value P  
Radial direction (locality) 3 0.8683591 0.289453 2.19 0.0959
Residual 76 10.038242 0.1320821   
Total 79 10.906601       
    
Tangential direction (locality) 3 13.761047 4.58701 24.54 <.0001 
Residual 76 14.203443 0.18688   
Total 79 27.964489       
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Analysis of variance (ANOVA) of Prosopis laevigata wood from four local areas. 

 
Mechanical properties 
 
Compression 

Source DF SS MS F Value Pr > F 
Compression (locality) 3 40.89827 136.96609 4.28 0.0066 
Residual 116 3709.84037 31.981382   
Total 119 4120.73864       
      
Modulus of elasticity 

Source DF SS MS F Value Pr > F 
MOEstat (Locality) 3 168132917 56044305.7 15.91 <.0001 
Residual 116 408639627 3522756   
Total 119 576772544       
      
MOEdyn (Locality) 3 195008058 65002685.9 16.73   <.0001 
Residual 116 450810424 3886296.8   
Total 119        
      
Modulus of Rupture 

Source DF SS MS F Value Pr > F 
MOR (Locality) 3 14874.6388 4958.21295 9.3 <.0001 
Residual 116 61831.447 533.02972   
Total 119 76706.0859       
      
Hardness           

Source DF SS MS F Value Pr > F 
Brinell Hardness (locality) 3 988.08731 329.3624 11 <.0001 
Direction 2 20391.755 10195.88 340.67 <.0001 
Local origin*direcction 6 1068.6703 178.1117 5.95 <.0001 
      
Janka Hardness (locality) 3 10528.1328 3509.378 146.76 <.0001 
Direction 2 4123.0824 2061.541 86.22 <.0001 
Local origin*direcction 6 175.8144 29.3024 1.23 0.2989 
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