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1. INTRODUCTION 

1.1 FORESTS IN SOUTH KOREA 

Forests in South Korea were mostly destroyed by over-cutting and illegal harvesting 
during the Colonial Period (1910-1945) and the Korean War (1950-1953). However, 
since the early 1960s, an organized investment has been made in the forestry sector 
as part of a National Economic Development Plan. 

Additionally tree planting, forest protection, and nature conservation practices of the 
“New Villages Movement” played a major role in the restoration of forest land (FAO, 
1997). Currently, the forest covers an area of about 64,063km2, representing about 
64% of the total land area (about 99,600km2), whereas the area for farming 
represents 20% and other uses total 16%. In recent years, the forest area has been 
decreasing with an average annual reduction of about 72 km2 (KFS, 2004a). 

Forest cover maps from interpretation of aerial photographs show that coniferous 
forests account for 41.9% of the total forest, while deciduous, mixed, and other forests 
comprise 28.9%, 25.5%, and 3.7%, respectively (Figure 1.1). In natural forests, 
however, the area of coniferous forest (mainly, Pinus densiflora) has been 
continuously diminishing, while that of deciduous forest has been increasing over time 
through ecological succession (Chung, 1996; Lee et al., 2004b). The main tree 
species are Japanese red pine (Pinus densiflora), Korean white pine (Pinus 
koraiensis), Japanese larch (Larix leptolepis), and oak species (Quercus mongolica, 
Quercus variables, and Quercus acutissima) (KFS, 2004a). 

Most of the forested areas were planted after the heavy forest depletion that followed 
the Korean War. Thus, almost 60% of the forest stands are less than 40 years old and 
the total growing stock is merely 468 million m3, with growing stock volume per 
hectare estimated to be approximately 73 m3/ha. The density of forest roads is less 
than 4 m/ha, although these roads are crucial for forest management as well as for 
reaching field sample plots for forest inventories (KFS, 2004a). 
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The topography of Korea is dominated by low hills in the southern and the western 
regions, which grow gradually larger as one progresses toward the eastern and 
northern regions. On the whole, the western and southern slopes of the Korean 
Peninsula are wide, with some plains and basins along the rivers, while the eastern 
slope is very steep with high mountains that border the East Sea. The mean altitude 
is 482 meters above sea level, and forests over 1,000 m are mostly in the 
northeastern districts. 

According to a forest soil report (KFRI, 2004), the areas suitable for intensive forest 
management are those with slopes up to 25 degrees (or 47%), which cover about 
40% of the total forest area, whereas forest areas with a slope of greater than 31 
degrees (or 60%) account for about 31% where it is difficult to practice silviculture. 

 

 

Figure 1. 1: Distribution of forest (left) and forest cover type (right) in South Korea 
(KFS, 2004a). The forest cover type is divided into three types; coniferous forest (C), 
deciduous forest (H), and mixed forest (M). 
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1.2 NATIONAL FOREST INVENTORY 

The principal goal of National Forest Inventories (NFIs) is to produce statistically 
sound and reliable forest resource information of an entire country, which is relevant 
and required for forest policy decision-making and monitoring at the national level and 
forestry monitoring and related sectors such as environmental studies, land use 
management, biodiversity, and assessment of environment impact (KFS, 2004b). 

There is a NFI system in South Korea, which has been developed in the 1960s and 
first implemented in 1972 (Table 1.1). Currently, the NFI is in its fifth cycle and has 
been reorganized and expanded to support sustainable forest management planning 
and to provide basic data and information for international processes and conventions 
such as Montreal Process, Conservation on Biological Diversity, and the UN 
Framework Convention on Climate Change (KFS, 2002). 

 

Table 1. 1: History of the National Forest Inventory in South Korea 

Survey period Source Content 

1917-1961 Forest management document 

1961-1964 Field survey Forest status inventory 

1972-1975 The 1st NFI, entire country  

1978-1980 The 2nd NFI, entire country  

1986-1992 The 3rd NFI, national annually inventory 

1996-2005 The 4th NFI, national annually inventory 

2006-2010 

Aerial photograph 

+ Field survey 

The 5th NFI, national annually inventory 

 

In the fourth NFI cycle, the entire country was divided into 10 sub-areas based on 
districts that comprise 9 provinces. The NFI was carried out in one sub-area per year 
over a 10-year period and the KFRI published a report for the implemented province 
annually. The main goal of the NFI was to provide information for the reforestation 
plan and to support in decision-making for the forest policy at a specific point in time 
(KFRI, 1996). Since the NFI was implemented through a rotation system by province, 
it was hardly possible to provide current information for the entire country at the same 
time. Critical information included only timber-oriented attributes: area and growing 
stock by forest cover types, age classes, dominant tree species, etc. for forest 
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conditions, ownerships, and administrative units. 

The NFI also provides data for sub-national geographical or administrative units and 
is a basis for global forest assessments and other international processes in the 
context of sustainable management of natural resources. With the increasing use of 
the forest resource for purposes other than timber production, the scope of the NFI 
has been expanded to provide more information about forest resources, including 
biodiversity, regeneration, soil, etc. (KFRI, 2006). 

In the Korean Land Management Act of Forest, the forest is defined, for example, as 
collectively standing and growing trees and bamboos, and the land that contains them. 
Beyond those definitions, the forest is also defined according to land use. However, it 
is impossible to completely adapt this definition to the Korean NFI, as some 
ambiguities are generally involved. Whenever large area forest inventories are carried 
out, a clear and quantitative definition of the forest is required. The definition of that 
can vary with countries and purposes (FAO, 2004; EC, 1997; Lund, 2007). In the 
Korean NFI, its definition has changed to correspond to the FAO’s definition. Its 
components are area, proportion of crown cover, tree height, and width (Table 1.2). 

 

Table 1. 2: Examples of forest definition in some countries and the FAO. 

Minimum threshold values Countries 
& 

FAO Area (ha) Crown Cover 
(%) 

Tree Height
(m) 

Width 
(m) 

Number of trees 
per ha 

Germany 0.1 50 10  

United States 0.4 10 4 36  

FRA 2000 0.5 10 5 20  

Korea 
(KFRI, 1996) 1 30 1,200 or 1,600 

(dbh≥6 cm) 

Korea 
(KFRI, 2006) 0.5 10 5 30

Source: http://home.comcast.net/~gyde/DEFpaper.htm#forest (09/2007)

http://home.comcast.net/~gyde/DEFpaper.htm#forest
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1.3 SATELLITE REMOTE SENSING 

Forests cover large areas and are mostly located in mountain ranges and/or in out-of-
the-way areas. Due to the high variability and complexity of the resources, the 
information about forest resources is extensive. Moreover, it is required that the 
information should be updated from time to time because of the changes in forest 
resources over time. In order to address these issues, satellite remote sensing that 
allows for frequent measurement and monitoring at lower cost has been widely used 
in the forestry sector. 

In general, satellite-based remotely sensed data can be distinguished into Low-, 
Medium- and High-resolution satellite (Table 1.3). Low-resolution satellite data have 
proved useful for a continental view, generating small-scale maps of the forested 
landscape and detecting hot spots of severe deforestation within densely forested 
landscapes. Medium-resolution satellite data are relatively inexpensive, and are also 
suitable for larger areas. Much research has been performed, particularly for Landsat 
imagery, where customized approaches are available. High-resolution satellite data 
are suitable for interpreting and analyzing smaller sites. In particular, South Korea has 
launched KOMPSAT-1 and KOMPSAT-2. 

Table 1. 3: Examples of current earth observation satellites by spatial resolution 

Classification Satellite Launched Bands Spatial 
resolution (m) 

Swath 
(km) 

AVHRR-3 05/1998 6 1,090 2,700

MODIS 12/1999 2 / 5 / 29 250/500/1000 2,330Low 
Resolution 

OrbView-2 07/1997 8 1,000 2,800

Landsat-5 03/1984 6 / 1 30/120 185

Landsat-7 04/1999 1 / 6 / 1 15/30/60 185

SPOT-4 03/1998 1 / 4 10/20 60
Medium 

resolution 

ASTER 12/1999 4 / 6 / 5 15/30/90 60

IKONOS-2 09/1999 1 / 4 1/4 11

Quickbird-2 10/2001 1 / 4 0.6/2.5 16

SPOT -5 05/2002 1 / 4 2.5 or 5 /10 120
High 

Resolution 

KOMPSAT-2 07/2006 1 / 4 1/4 15

http://www.asprs.org/news/satellites/index.html (Stoney, 2006)

http://www.asprs.org/news/satellites/index.html
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For forest inventory applications, satellite data may be used in principle (i) for the 
entire population of interest (the entire country and its forests) or (ii) for sample 
regions only, where the sample regions (i.e., the “remote sensing imagery sample 
plots”) can be placed around the field sample plots. In the first case, low- or medium-
resolution satellite imagery is commonly applied; with medium-resolution imagery, one 
can use multivariate statistical approaches to produce predictions of specific forest 
characteristics at any forest location. These approaches lead to a regionalization of 
estimations. Forest cover maps can then be produced for the entire inventory region. 
In the latter case, the imagery is essentially utilized to improve the precision of area 
estimation of forest and forest cover types. 

From the early 1990s, low- and medium spatial resolution satellite image data have 
been employed to produce land cover/use type map by the KFRI and some other 
studies (Kim et al., 1989; Kim, 1991; Rho and Lee, 1995; Lee et al., 1994). Currently, 
the research on satellite remote sensing is increasing, particularly for the monitoring of 
the land/forest cover change over the Korean Peninsula including North Korea (Lee, 
1994; Lee et al., 1998; Kim and Park, 2000), as well as forest health and forest fire 
monitoring (Kim et al, 2003). Furthermore, with the enhancement of remote sensors, 
the use of satellite imagery having high spatial resolutions is increasing to identify 
dominant tree species at a local or landscape unit (Lee and Kim, 2000; Cho, 2002; 
Chung et al., 2001). 

The implementation of remote sensing techniques is closely related to Geographic 
Information System (GIS) applications. For a variety of applications, remote sensing, 
as one source of potential input to a GIS, is very valuable. It represents a powerful 
technology for providing input data for measurement, mapping, monitoring, and 
modeling within a GIS context (Wilkinson, 1996). Since 1995, as part of the NGIS 
(National Geographic Information System) in South Korea, a Forest Geographic 
Information System (FGIS) has been implemented in the forestry sector. The principal 
objectives of the FGIS are digital mapping of thematic maps related to forestry sectors 
and developing application for forest and natural resources management. In recent 
years, several digital thematic maps relevant and related to the forest resource, 
including forest cover types, land use classes, forest soil types, and forest roads over 
the whole country have been digitalized for application in the FGIS (Kim, 2004; KFRI, 
2004). 
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1.4 PROBLEM STATEMENT AND RESEARCH QUESTIONS 

In South Korea, the NFI was implemented at a 10-year interval by province in its 
fourth cycle (1996-2005). The main goal of this NFI was to provide fundamental 
information for the reforestation plan and to support in decision-making for forest 
management and policy at the national level. In order to achieve these goals, forest 
inventory techniques were developed based on both field sampling and aerial photo 
interpretation. This system, however, leaves room for optimization as follows: 

i. Despite increasing information on forest resources to support sustainable 
forest management planning, the goal of this NFI was mainly to provide 
information on the timber-production function of forest resources. 

ii. Despite the development of remote sensors and their extended application 
techniques, there has so far not been an attempt to fully integrate satellite 
remote sensing into the NFI system. 

iii. The NFI provides information for national and regional geographical or political 
units, which is relevant and required for national-level decision-making and 
monitoring. Since the information for smaller area units is available only as 
mean values from this NFI, it is difficult to support management planning at a 
small-area unit. 

iv. The cluster plot was designed completely on empirical findings rather than 
scientific grounds. Thus, the most efficient cluster plot design for the Korean 
forest conditions is needed, and must be designed based on both statistical 
soundness and cost-effectiveness. 

v. Since this NFI was implemented using a rotation system, it is hardly possible 
to provide reliable information over the entire country at the same time. 

 

In order to solve the first point on the list, the fifth NFI (2006-2010) has been 
expanded to provide more information about natural resources in the forest (KFRI, 
2006). Therefore, this thesis addresses the other points that focus on the integration 
of satellite remotely sensed data with forest inventory data, and sampling and plot 
design optimization. 
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1.5 OBJECTIVES 

The overall objective of this thesis is to develop efficient inventory techniques for large 
area forest resource assessment in South Korea, which essentially address the 
application of satellite remote sensing and sampling issues for field surveys, as well 
as their efficient integration and combination. 

This entailed designing efficient forest inventory techniques, which allow the collection 
of the required forest resource information within a specific time and budget 
framework. In this thesis, the specific biophysical conditions of South Korea are taken 
into consideration. In order to address the overall objective, the technical aspects are 
organized into the following four chapters: 

 

I. Mapping of forest cover types: Forest cover maps are a key product of the NFI 
system in South Korea. The objective of this chapter is to delineate forest 
cover types by integrating forest inventory data and digital satellite imagery.  

 
II. Estimation of forest attributes: The main aim of this chapter is to estimate key 

forest attributes over a test area by integrating forest inventory data and digital 
satellite imagery using the k-Nearest Neighbor technique. 

 
III. Plot design optimization: This chapter is aimed at determining the most 

efficient cluster plot as sampling unit design considering both statistical 
soundness and cost-effectiveness for forest resource assessment in the 
Korean forest. 

 
IV. Sampling design optimization: By applying a simulation study using an 

artificial forest population, various sampling design options shall be simulated 
and compared to determine the most efficient sampling design, while 
integrating findings and results from the technical objectives (I), (II), and (III). 
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2. MAPPING OF FOREST COVER TYPE 

2.1 INTRODUCTION 

Forest cover maps are an important element in both forest resource management and 
scientific research. As different forest types are associated with different economic 
and environmental values, there is a need for detailed maps that provide the current 
status of forest types. Therefore, these maps provide an important baseline for forest 
managers and other policy makers. 

Forest cover maps are a key product of the Korean NFI system. Since the early 
1970s, aerial photographs have been used to identify forest cover types in the Korean 
NFI system. However, the use of aerial photography is waning because interpretation 
and processing is laborious and aerial photographs are often out-of-date (Kim et al., 
1989). Moreover, the forest cover classification using aerial photos has traditionally 
relied on subjective decisions through a visual interpretation process. This process is, 
therefore, neither “transparent” nor “reproducible” (Drǎgut and Blaschke, 2006). 

Since the launch of the Landsat-1, satellite remotely sensed data have been widely 
used to enhance natural resources information and to detect their change over time. 
Digital satellite data acquired from sensors with different characteristics (e.g., spatial, 
temporal, and spectral resolutions) have been used for land cover classification. The 
ability to repeatedly obtain digital satellite imagery, continuity of the obtained images, 
and their wide availability are some characteristics of satellite imagery that have 
contributed to the current development of remote sensing, image processing, and GIS 
technologies (Holmgren and Thuresson, 1998; Kleinn, 2002). 

Besides, with the development of Global Positioning System (GPS), accurate 
information on the location of each field point can be acquired. Since this 
development, supervised classifiers have been widely proliferated for land cover/use 
classification by combining digital satellite data and ground truth data. Within forestry, 
GPS-based field plot data from forest inventories can serve as training data for forest 
cover type mapping (Tokola et al., 1996; Haapanen et al., 2004). There are numerous 
supervised classifiers, all of which can be grouped in a number of ways. Franklin et al. 
(2003) divided them into four groups: parametric, non-parametric, image 
segmentation, and spectral-temporal classification. 
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In image classification process, while parametric classifiers are done dependent upon 
some assumptions that input data are drawn from a given probability distribution; non-
parametric classifiers do not rely on the assumptions. Much research has indicated 
that non-parametric classifiers may provide better classification results than 
parametric classifiers, mostly Maximum Likelihood Classifier (MLC), for complex 
landscapes (Hardin, 1994; Paola and Schowengerdt, 1995). 

The Nearest Neighbor Classifier (NNC), which represents one of non-parametric 
classifiers, has been mostly used for land cover classification due to its several 
advantages based both statistical and practical grounds (Zhang et al., 2006): 

(i) it is simple and easy to categorize new observations based on distances in 
feature spaces (e.g., as high or infinitely dimensional); 

(ii) it is feasible to categorize a large number of classes that occur within the 
characteristic of interest; and 

(iii) from a statistical point of view, the error rate of the NNC is guaranteed to 
approach Bayes rule, as the sample size approaches infinity. 

Ince (1987) found that the NNC produced higher accuracies than the MLC and was 
more robust. Hardin (1994) compared the performance of parametric and non-
parametric classifiers, particularly the NNC, and concluded that the neighborhood-
based classifiers (in particular a distance-weighted neighbor classifier) were superior 
to parametric classifiers, particularly when a training dataset was large and contained 
the same class proportions as the population to be classified. On the other hand, this 
classifier requires a relatively large amount training data and a high processing time 
(Hardin and Thomson, 1992). 

In the application of pixel-wise classifiers, the following major error sources have 
been discussed (Chen and Stow, 2002; Maselli et al., 2005): (i) spatial match between 
field plots and pixels on digital satellite images, (ii) quality of training samples, and (iii) 
mixed pixel problem. The first error relates to the fact that pixel-level applications are 
sensitive to field plot locations and rectification errors. Thus, in the selection of 
satellite data, the spatial resolution of the satellite data must be considered to 
correspond to an observation unit for field sampling: if the spatial resolution is much 
smaller or larger than a plot size defined, digital numbers per pixel cannot be 
representative of field plots. The second error source is the availability and variability 



 
 

                                                                                               MAPPING OF FOREST COVER TYPE
 

 11

of training data used in a test area. Finally, the mixed pixel problem due to the 
heterogeneity of landscapes, the complexity of tree species composition, and the 
limitation in spatial resolution of satellite data is common when using low- and 
medium resolution data. Foody (2002) pointed out that the presence of mixed pixels 
is to be a major problem for land cover classification. 

In South Korea, Low-resolution satellite data (e.g., AVHRR) was used to identify 
vegetation cover classes over the Korean Peninsula (Lee, 1994). Most studies on 
land use/cover classification at a regional level used Medium-resolution satellite data, 
in particular Landsat MSS and TM. Kim et al. (1989) compared the results of 
classification using Landsat TM with digital forest maps from aerial photographs, but 
the accuracy was modest. This result was also found in a case study by Kim (1991). 
In his study, the result with ancillary information (DTM) was more accurate than 
without. Cho (2002) compared different classifiers using Landsat TM and IKONOS, 
pixel-based and segment-based with the maximum likelihood and majority principle. 
His results showed that the best classifier differed according to satellite imagery; the 
majority principle was superior using Landsat TM while the segment-based with the 
MLC was superior using IKONOS. Park et al. (2001) used multi-temporal Landsat TM 
data to identify land cover categories. Rho and Lee (1995) used Landsat MSS and 
TM data to detect the change in forest cover over time. In recent years, the research 
using High-resolution satellite data is increasing, in particular IKONOS (Cho, 2002; 
Chung et al., 2001) and KOMPSAT-1 (Lee and Kim, 2000). 

However, satellite data have not been fully integrated into the Korean NFI. Moreover, 
although the NFI field data are able to serve as training data, these data have not yet 
directly contributed to the forest cover classification because they do not define the 
forest strata per field observation unit. The aim of this chapter is to evaluate the 
possibility of combining digital satellite data and forest inventory data from the Korean 
NFI, for forest cover classification. 
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2.2 MATERIALS AND METHODS 

2.2.1 Study area 

The study area, Pyeong-Chang County, is located in northeastern South Korea and 
covers an area of approximately 1,463 km2. The county lies between 37°16′N and 
37°49′N, and between 128°14′E and 128°46′E (Figure 2.1). Approximately 82% (or 
1,199 km2) of the county area is covered by forests; the farming area is only 10% and 
land for other uses covers about 6% (KFS, 2004a). The county lies over a relatively 
hilly mountain range; the average slope is approximately 20 degrees (or 36 %). The 
altitude ranges from 210 to 1,570m and the average altitude is approximately 670m. 
The main tree species are Japanese red pine (Pinus densiflora), Korean pine (Pinus 
koraiensis), Japanese larch (Larix leptolepis), Mongolian oak (Quercus mongolica), 
and other deciduous tree species. 

 

 

Figure 2. 1: Location of the study area (left) and distribution of field sample points for 
the 3rd NFI on the Digital Elevation Model (right). 
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2.2.2 Field data 

The field plot data for the test area were extracted from the 3rd NFI database, 
conducted by the KFRI. This NFI employed a stratified systematic sampling with 
clusters consisting of four sub-plots. As shown in Figure 2.2, both permanent and 
temporary sub-plots, with a fixed-area of 0.05 ha, were used. 

The clusters were systematically established at every intersection of 1 km x 1 km 
grids on 1:50,000 topographic maps. These clusters were located within the forest 
boundary by land cover/use situations. The temporary sub-plots were established on 
the northern, the eastern, and the southern aspects of a selected center sub-plot 
(permanent sub-plot) within a cluster, at a distance of 50 m. 

For the study area, the field inventory was carried out in the 1986 year. A total of 227 
clusters fell into the area for which DEM data were available (Figure 2.1). Since the 
coordinates of the center points of the field plots were recorded on 1:50,000 
topographic maps without GPS recordings, the field plots needed to be geo-
referenced so that they could be matched to the digital satellite data (Figure 2.3). 

 

 
Figure 2. 2: Plot design for the 3rd and 4th NFI cycles in South Korea; each cluster 
plot consists of 4 sub-plots (right). 
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(a) Location of field points on the topographic map (Source from KFRI) 

 
(b) Geo-referenced field points on the Digital Elevation Model 

Figure 2. 3: Geo-referencing of field sample plots; coordinates of the permanent sub-
plots measured on 1:50,000 topographic maps (a) and coordinates of those on 
1:25,000 DEM data (b). 
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2.2.3 Satellite data 

Landsat TM imagery was selected for its spatial resolution and spatial scale during 
the field survey period. The dataset was stored in an image file format and processed 
by the KFRI. The thermal band (band 6) was not used because of its poor spatial 
resolution and low contrast in the forest area. The image was relatively cloud-free and 
geometrically corrected to an overall RMSE of one pixel (25 m). Other metadata for 
the satellite image are presented in Table 2.1. 

 

Table 2. 1: Technical information for the satellite image used 

Sensor Landsat TM-5 

Acquisition date  02. May 1989  

Path / Row 115 / 34 

Sun elevation / azimuth 57.45 / 126.01 

Map projection / Datum Transverse Mercator / Tokyo (Korea) 

Spheroid Bessel_1841 

Latitude of origin 38 

Central meridian 129° 00´ 10.405 E 

Re-sampling method Nearest neighbor 

 

2.2.3 Map data 

The Digital Elevation Model (DEM) data were produced from 1:25,000 digital 
topographic maps. They were then used to extract topographic variables for reducing 
the topographic effects on satellite imagery. The spatial resolution of the DEM was 
25m, corresponding to one pixel of the Landsat TM. 

In order to compare the classification results from the combination of field plot data 
and satellite imagery with a “true map”, we took digital forest maps of the study area 
from the KFRI. They were assembled from the photo interpretation of 1:15,000 black 
and white aerial photographs, and the follow-up field checking. These maps were 
digitized and converted into a GIS layer with polygons that can directly be overlaid 
with the geo-coded image data (Kim, 2004). 
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2.2.5 Topographic correction 

Digital satellite data for mountainous regions include radiometric distortions known as 
topographic effects. The image classification of multi-spectral data over mountainous 
terrain is often unsuccessful because surfaces of the same class but with different 
slope angles (s) and aspects reflect differently, as shown in Figure 2.4.  

These effects have been seen to vary considerably with small changes in solar 
elevation and azimuth, and slope angle in terrain. To eliminate these effects, the 
Minnaert constant method has been frequently used. It was outlined by Smith et al. 
(1980), based on a principle developed by Minnaert (1941) that is given by the 
following equation: 

))cos()(cos(
)cos(
ei

eLL k

T
H =  (2-1) 

where      LH     = the normalized brightness value, 

                LT     = the observed brightness value, 

              = the cosine of the incidence angle,  )cos(i

             = the cosine of the exitance angle or slope angle, and )cos(e

                k   = the empirically derived Minnaert constant. 

The Minnaert constant (k) can be estimated by the backward radiance correction 
transformation model (Colby, 1991). The k value is the slope of the regression line: 

)).cos()log(cos()log())cos(log( iekLe HLT +=  (2-2) 

To estimate the Minnaert constants for each spectral feature (hereafter defined as 
band), the DNs for all bands from the Landsat TM imagery and topographic variables, 
such as elevation, slope, and aspect from the DEM data were extracted at centre 
points of the field plots within the forest area. 

The value of the Minnaert constant lies usually between 0 and 1, which is used to 
describe the roughness of the surface. When phenomena on the surface of the earth 
reflect incident radiation equally in all directions, it is called the Lambertian behavior, 
and then the value of the Minnaert constant is equal to 1 (Tokola et al., 2001). 
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Figure 2. 4: Representation 

of the incident solar angle (i) 

and the solar zenith angle 

(θ0), where LT is the 

observed value and LH is 

the normalized value 

(modified from Jensen, 

1996).  

 

2.2.6 Classification 

Forest cover types must be clearly defined before they can be identified. In this study, 
the types per sub-plot were defined according to the definitions in the 4th NFI (see 
Annex 1). The available field plot data per forest stratum served as training data. Sub-
sets of field plots were selected to train a classifier before classifying pixels on digital 
satellite data. 

All 798 sub-plots from the 227 clusters were classified into three forest types. The 
types depend on the number of trees by dominant tree species per sub-plot. Then, 
172 points within non-forest areas were randomly selected from digital topographic 
maps. Table 2.2 indicates that the distribution of field points per sub-plot unit that 
served as training data for each stratum. 

 

Table 2. 2: Distribution of field points for each stratum 

Forest 
Stratum 

Coniferous Deciduous Mixed* 
Non-forest Total 

Number of 
points 366 327 105 172 970 



 
 
MAPPING OF FOREST COVER TYPE 

 

 18 

Mixed forest*: 24-74 % of number of trees by deciduous tree species 

The Maximum Likelihood Classifier (MLC) that is a parametric classifier considers not 
only the average numbers in assigning classification but also their variability in each 
class (Lillesand et al., 2004). Despite the assumption of input data, it is mostly used 
as a baseline in land cover/use classification and forest cover classification as well as 
other remote sensing applications (Kim et al., 1989; Cho, 2002). 

However, since remotely sensed measurements of forest cover types mostly do not 
meet the assumptions of such as the MLC, it is useful to perform non-parametric 
classifiers. In this study, the Nearest Neighbor classifier (NNC) was used to identify 
the forest classes. This classifier is similar to the Minimum Distance Classifier (MDC) 
in the parametric approach. In the MDC, an un-classified pixel is assigned to a closest 
training class centroid, whereas the NNC requires distances between the un-
classified pixel and every training pixel in feature spaces (Koukal, 2004), as shown in 
Figure 2.5. To select the nearest neighbor class at an un-classified pixel in the NNC, 
the distances in feature spaces were computed by the Euclidean distance metric. For 
a detailed algorithm of the NNC, see next chapter. 

 

  

Figure 2. 5: Comparison of the minimum distance (left) and the nearest neighbor 
(right) classifiers: for instance, an un-classified pixel (+) belongs to class B by the 
NNC (modified from Koukal, 2004). 
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2.2.7 Evaluation 

The “leave-one-out cross-validation” is enabling to assess accuracy even when 
limited ground truth samples are available for training and accuracy assessment. This 
analysis allows for an accuracy statement for the digital forest map and both classified 
images. The accuracy can be defined in terms of the degree of misclassification, 
which can be computed from the confusion or error matrix (Congalton, 1991). 

Additionally, the Kappa statistic was also used as a measure of the classification 
accuracy. This statistic measures the strength of agreement of the row and column 

variables. The value of kappa ( k̂ ) is computed as: 
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where   r : the number of rows in the error matrix, 

  x ii : the number of observations in row i  / column i, 

  xi+ : the total of observations in row i, 

  x+i : the total of observations in column i , and 

  N : the total number of observations included in matrix. 

 

The distributions of classification results from different data sources; aerial photos and 
satellite images, and the two classifiers were also compared with the classification 
result from field plot data as an expected distribution. For this, the chi-square 
goodness-of-fit test was used (Rencher, 1993; Koukal, 2004). If a classification result 
significantly differs from an expected distribution, the classification result is biased. 
The test statistic is defined as: 

∑ −
=

expected
expectedobserved 22 )(χ  (2-4) 

where the expected classes are the number of plots per stratum from field plot data, 
while the observed classes are extracted from the digital forest map and classified 
images. 
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2.3 RESULTS 

2.5.1 Topographic correction 

Table 2.3 shows the empirically calculated k values for each band for the study area. 
The estimated values can be used to describe the roughness of the surface. In our 
case, the estimated values of k ranged from 0.2402 to 0.5237. The greatest range of 
difference was observed between bands 3 (red) and 4 (near infrared). When 
comparing different bands, the band 7 (thermal infrared) had the highest value of k. 

 

Table 2. 3: Estimated values of the Minnaert constant for each band 

Band 1 2 3 4 5 7 

Minnaert 
constant 0.2402 0.2587 0.3682 0.5035 0.5083 0.5237 

 

After the Minnaert constant k was derived, the topographic correction was performed. 
A reduction of the topographic effects was visually apparent in the normalized image. 
The topographically normalized image shows that the dark sides (shadowed areas) 
on the raw image become brighter whereas the solar facing slopes appear in a rather 
darker tone on the normalized image (Figure 2.6b). 
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(a) Raw image 

 
(b) Topographically normalized image 

Figure 2. 6: Comparison between (a) raw and (b) topographically normalized images 
(Landsat TM 4:3:2). 
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2.3.2 Classification 

Figure 2.7 depicts the mean digital numbers (DNs) for the different forest classes and 
bands. At bands 4 and 5, the spectral differences among forest classes could easily 
be identified, whereas the differences at the other bands were not so obvious. In the 
case of the deciduous forest (H), the mean value was lowest at band 4 and highest at 
band 5. 

Figure 2.8 illustrates the distribution of DNs by forest classes in bands 4 and 5. In the 
classification process, coniferous and deciduous forests can clearly be discriminated 
while the mixed forest (M) can hardly be distinguished from those. 
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Figure 2. 7: The mean digital 

numbers for the different forest 

classes and bands (C: coniferous 

forest; H: deciduous forest; and 

M: mixed forest). 

 

 

 

 

 

 

Figure 2. 8: Distribution of digital 

numbers by forest classes in 

bands 4 and 5. 
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2.3.3 Evaluation 

Digital forest map 

The digital forest map was derived from the interpretation of aerial photos in which the 
forest was divided into the three forest classes with a minimum area of 1 ha. Table 2.4 
presents the error matrix for assessing the classification accuracy of the digital forest 
map with field plot data. In the accuracy analysis, the coniferous (C) and deciduous 
forests (H) had higher accuracy than the mixed forest (M). The user and producer 
accuracies of the mixed forest were 26% and 36%, respectively. The overall accuracy 
was about 70%. User and producer accuracies ranged from 26 to 80% and from 36 to 
93%, respectively. The value of kappa was estimated to be 0.58. 

 

Table 2. 4: Error matrices for assessing the classification accuracy of the digital forest 
map and the classified images for both classifiers with field plot data 

Field plot data 
Classification results 

C H M Non 
Total User 

accuracy 

C 280 43 37 9 366 76 % 
H 29 199 22 1 250 80 % 
M 37 70 48 2 149 26 % 

Non 21 15 8 160 205 78 % 

Digital 
forest map 

Total 366 327 105 172 970 

Producer accuracy 77 % 61 % 36 % 93 %  

Overall 
accuracy 

70 % 
Kappa value = 0.58 

C 196 123 45 27 391 50 % 
H 43 135 23 10 211 64 % 
M 98 59 33 15 205 16 % 

Non 29 10 4 120 163 74 % 

Classified 
image  

by MLC 
Total 366 327 105 172 970 

Producer accuracy 54 % 41 % 31 % 70 %  

Overall 
accuracy 

50 % 
Kappa value = 0.31 

C 288 32 21 23 364 79 % 
H 39 272 13 8 332 82 % 
M 27 13 63 5 108 58 % 

Non 12 10 8 136 166 82 % 

Classified 
image  

by NNC 
Total 366 327 105 172 970 

Producer accuracy 79 % 83 % 60 % 79 %  

Overall 
accuracy 

78% 
Kappa value = 0.69 
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Classified images 

Classified images were produced using both classifiers (Figure 2.9). Classification 
results from the cross validation are presented in Table 2.4. The accuracy for the MLC 
was modest; the user and producer accuracies ranged between 16 and 74%, and 
between 31 and 70%, respectively. The accuracy for the NNC was greatly improved 
compared to that for the MLC; its user and producer accuracies ranged between 58 
and 82%, and between 60 and 83%, respectively. Particularly in the case of the mixed 
forest (M), the accuracy for the NNC was appreciably improved. Overall accuracies 
for the MLC and the NNC were 50% and 78%, respectively. The estimated kappa 
value for the NNC (0.69) was about twice as large as for the MLC. 

 

Digital map vs. classified image by the NNC 

The accuracy of the classification result by the NNC was assessed using the digital 
forest map as a reference (Table 2.5). Here, the pixel size was a square grid of 25 m 
(0.0625 ha). Compared with other classes in the classification accuracy assessment, 
the accuracy of the mixed forest class was lowest. Within the classified image, most 
of the mixed forest class on the digital forest map was divided into the deciduous 
forest (about 43%) and the coniferous forest classes (about 36 %). On the contrary, 
the accuracy of the non-forest class was highest. As a result, the overall accuracy 
was modest (48%). User and producer accuracies ranged from 19 to 60% and from 
12 to 63%, respectively. The estimated value of kappa was to be 0.28. 

Figure 2.9 shows the digital forest map (a) and the classified images by the MLC (b) 
and the NNC (c) for the study area. Due to the relatively large minimum area that was 
defined, forest cover types on the digital forest map can more clearly be discerned 
than those within both classified images. 
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Table 2. 5: Error matrix for assessing the classification accuracy of the NNC classified 
image and digital forest map over the entire test area per pixel 

Digital forest cover map 
Classification 

C H M Non 
Total User 

accuracy 

C 401081 169179 135135 90358 795753 50% 

H 240009 411964 158982 52129 863084 48% 

M 86692 75142 42541 18889 223264 19% 
Classified 

Image 

Non 106590 48389 31267 275584 461830 60% 

Total 834372 704674 367925 436990 2343931 
Producer 
accuracy 48% 59% 12% 63%  

Overall 
accuracy 

48% 

Kappa value = 0.28 

 

The classification result of field plot data compared with the digital forest map and 
both classified images by the Chi-square goodness-of-fit test is presented in Table 2.6. 
The goodness-of-fit test indicates that the digital forest map and the MLC classified 
image differ significantly from the classification result of the field plot data, but there is 
no statistically significant difference found between the field plot data and the NNC 
classified image. 

 

Table 2. 6: The result of the chi-square test for field plot data with digital map and 
both classified images 

 Digital forest map MLC NNC 

Field plot data 42.9* 138.5* 0.38 NS
 

* : significant at 5% level,              NS : not significant,              degree of freedom = 3 

815.72

3,05.0
=χ  
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igure 2. 9: Comparison of forest cover maps for different approaches 
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2.6 DISCUSSION AND CONCLUSION 

The main objective of this chapter was to evaluate the potential of digital satellite 
imagery for forest cover mapping by combining them with field plot data from the NFI. 
In order to address this objective, field plot data available from the 3rd NFI and digital 
satellite imagery (Landsat TM-5) were combined through pixel-wise classifiers and 
then the results were compared with the existing digital forest map as a reference. 

Topographic correction 

Topographic characteristics, in particular over mountainous area, have an influence 
on the natural spectral variability, which varies by band within a single satellite image. 
Radiometric correction of topographic effects is required in the Korean Peninsula, 
where two-thirds of the territory is covered with forests on hilly terrain (KFRI, 2004). 

The Minnaert constant method, which has produced the most reliable results for 
normalizing these effects in most studies for Korean forest conditions, was applied 
(Lee and Yoon, 1997; Cho, 2002). Generally, in order to reliably estimate the Minnaert 
constant (k), all pixels in a DEM-masked image are used. However, this requires a 
high processing time when the area of interest is too large and/or high spatial-
resolution imagery is applied. In this study, since the test area is relatively large, a 
small number of pixels for forest inventory plots (n=227) were used. The estimated 
values of k ranged from 0.24 to 0.52 were fulfilled in the range expected (0.2-0.6) for 
that of Korean forest conditions (Lee and Yoon, 1997). 

Although the effectiveness of applying the Minnaert constant has not been realized in 
all cases, it must be performed to reduce topographic effects on satellite imagery in 
the image pre-processing stage. Considering that the Minnaert constant is relevant to 
the surface roughness of the area of interest, the use of forest inventory points that 
may cover varying topographical characteristics is feasible to reliably estimate the 
Minnaert constant. Furthermore, to successfully reduce topographic effects, the 
Minnaert constants should be estimated per forest stratum since original DNs under 
the same topographic condition also reflect differently according to forest strata and 
therefore the topographic effects vary considerably with forest strata (Lee and Yoon, 
1997). In this study, however, the sample size did not allow for such stratification. 
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Supervised classification 

Despite the geo-referencing process for field points, their locations were still 
unreliable because this process was performed on the basis of marked points on 
topographic maps (Figure 2.3). With respect to spatial match, if a GPS receiver is 
used for locating the field points, the spatial matching error between field plots and 
pixels on the Landsat TM can be reduced. This is because the spatial resolution of 
Landsat TM, a square of 25 m, is nearly comparable to the defined plot size (500 m2). 

The quality of the training data is related to the definition of the forest types of interest 
and their variability. In this study, the definition of the proportion of the number of trees 
by dominant tree species was taken to classify field plots per sub-plot as an 
observation unit into the forest cover types. However, this procedure is neither a 
laborious task nor does it produce dubious classification results, even under the 
complexity of the composition of tree species per sub-plot. Consequently, for field 
data from a forest inventory to be used directly, there is a need for clearly defined the 
forest strata of interest per field observation unit. 

In order to successfully achieve the NNC, it is necessary to have a sufficient training 
dataset. This dataset must cover all variations of the strata of interest, and an equal 
number of available reference samples for each stratum (Davies, 1988). In the given 
training dataset, the number of reference samples varied with the forest cover types. 
In particular, the number of samples available for mixed forest was relatively small 
(Table 2.2), which caused the high classification errors (Table 2.4). 

From an ecological point of view, most mixed forests in South Korea are composed of 
Japanese red pine and oak species. The Japanese red pine forests (coniferous 
forest) are mostly located in mountainous areas without any artificial disturbance, and 
have gradually changed into the mixed forests through ecological succession (Chung, 
1996; Lee et al., 2004b). Thus, the mixed forest may encroach on the range of the 
coniferous forest in the feature spaces, as shown in Figure 2.8. 

Additionally, with respect to the of forest disturbance history in South Korea, most 
forests were planted after the Korean War. In the reforestation plan, coniferous tree 
species, like the Korean pine and Japanese larch, were mostly planted over large 
areas. Most of the mixed forest was generated by natural regeneration, without 
artificial disturbance due to its inaccessibility (Park 1986). Thus, the forest structure is 
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more complex and highly fragmented. In order to eliminate the uncertainty about 
mixed forests, satellite data showed that the mixed forest class for the forest cover 
classification belonged to other forest classes (Cho, 2002; Chung et al., 2001). These 
different disturbances may also be a major obstacle in improving the accuracy of 
classification. 

The accuracy of the NNC classified image was assessed using the existing digital 

forest map as a reference. The accuracy, however, was modest ( κ̂=0.28) and similar 
to the results of the case study by Kim et al. (1989). According to them, this may be 
related to (i) different definitions of the observation unit and (ii) the different dates for 
acquisition from remote sources and from field survey. From a spatial scale point of 
view, for aerial photo interpretation, the forest is defined as an area of 1 ha. This is 
much larger than the area used for satellite data classification (a square grid of 25 m 
in this study), which depends upon the spatial resolution of the satellite data. 

Accordingly, each forest class on the digital forest map is split into different forest 
classes within the classified image. In other words, the classified images manifested 
“salt-and-pepper” effects due to the smaller observation unit, as shown in Figure 2.9. 
In this context, there is a need for suitable spatial resolution (i.e., definition of the 
observation unit). In addition, because of the large definition in the fifth NFI (KFRI 
2006), 0.5 ha, there is a need for more research on post-classification processing to 
improve correspondence with the definition as well as the accuracy of the 
classifications. 

Even though there are a variety of errors in the image classification process, digital 
satellite data can represent a reasonably useful and more cost-effective data source 
over a large area for forest cover classification. The classification accuracy can be 
improved with the application of new classification techniques, an understanding of 
historical disturbances for the area of interest, sufficient ground truth data for each 
forest stratum, and clear definitions of forest strata. 
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3. ESTIMATION OF FOREST ATTRIBUTES  

3.1 INTRODUCTION 

There are two main types of forest inventory in South Korea: national and 
management forest inventories. The national forest inventory (NFI) provides data and 
information for national and regional or administrative units, and international 
processes, which is relevant and required for national-level decision making and 
monitoring (KFS, 2002). The latter inventory has been implemented to provide 
baseline information for forest management planning at a single stand unit. 

However, these inventory types cannot easily be combined due to their different 
scales and objectives. In addition, since the information for regional and municipal 
units is only available as mean values from the NFI, it would require complex small-
area estimation procedures to support management planning at a regional or 
municipal level (KFS, 2004a). The NFI field data at a municipality level is less useful 
for municipal purposes due to a small number of samples. Thus, to acquire 
information for forest management planning in a small-area unit, the conventional 
procedure is to independently carry out a field-based survey. Hence, the inventory 
cost will be comparatively high. Moreover, the last NFI implemented a rotation system 
by province so that current and reliable information cannot be provided over the entire 
country at the same time (KFS, 2002). 

Field measurements in combination with remotely sensed data are of interest for 
forest inventory, offering the possibility to use accurate field data together with full 
image coverage from digital satellite and/or airborne sensors. Since the launch of 
Landsat TM in 1982, a correlation has been found between forest characteristics and 
the spectral response of multi-spectral satellite data based on: 

• statistical regression approach (Ahern et al., 1991; Lee et al., 2004a) and  

• k-Nearest-Neighbor (k-NN) technique (Tomppo, 1991; Tokola et al., 1996).  

This correlation between forest characteristics and spectral features on satellite 
imagery is not high in all cases, but can frequently be used to establish statistical 
models. A developed model for a forest characteristic can be used to estimate 
unobserved points.  
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On the other hand, the k-NN technique is to combine forest characteristics from forest 
inventories with remotely sensed data (Tomppo, 1991). In the k-NN technique, field 
plots observed across an entire area covered by satellite imagery serve as training 
data for any unobserved area, and that satellite imagery can be used as an indicator 
dataset for estimating the areas represented (Tokola et al., 1996). 

For the estimation of forest attributes, this technique has been operational in the 
Finnish NFI since 1990 and has been extensively used and advanced. In the last 
decade, it has successfully contributed to large area forest inventories, particularly in 
the Nordic countries and the United States (Nilsson, 1997; Katila and Tomppo, 2001; 
Franco-Lopez et al., 2001; McRoberts et al., 2002). 

 

3.2 BASICS OF THE k-NEAREST NEIGHBOR TECHNIQUE 

3.2.1 General information 

The k-Nearest Neighbor technique represents one of the simplest techniques in 
statistical discrimination and is also used as an instance-based learning algorithm in 
pattern recognition. It is a non-parametric approach, wherein a new observation is 
identified as a pre-defined class of observations from a learning or training dataset 
that is closest to the new observation (Mitchell, 1997). 

In order to achieve this technique, the similarity between previous observations and 
the new observation, which can usually be determined based on distances computed 
from ancillary information such as remotely sensed data, is required. Training data of 
the form (X, f(x)) are used to train a discrete-valued or real-valued target function Y = 
f(x). There is no general description of the target function in the training stage, so that 
the training data are just stored regardless of any assumptions. Accordingly, in order 
to produce reliable estimates of new observations by this technique, a large and 
representative training dataset is required. The training dataset should cover “the full 
range of variability” that occurs within the class or characteristic of interest (Mitchell, 
1997; Koukal, 2004). 
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3.2.2 Characteristics 

In the estimation of forest characteristics, the major steps involved in performing the 
k-NN technique are shown in the flowchart (Figure 3.1). To do these steps, three data 
sources such as ground truth data, remotely sensed data, and mask map data are 
usually required. The key advantage of this technique is that all inventory variables 
can be estimated at the same time. 

On the other hand, one disadvantage is the requirement for sufficient training data. 
Accordingly, to successfully achieve this technique, the key is to obtain a sufficient 
training dataset. It also requires a high processing time when a large number of 
training data and/or a complicated operational option are applied, as well as when 
several test runs are needed. 

 

 

Figure 3. 1: Research flowchart for the k-NN technique. 
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Some weaknesses of this technique have been discussed. Altman (1992) pointed out 
that it may give biased estimates with increasing the number of k. The biased 
estimates can also appear along the borders in feature spaces, because the nearest 
neighbor distances tend to be greater and the neighbors may be concentrated in one 
direction only (Katila, 2004). In the last decade, various alternative operational options 
have been discussed and evaluated to overcome the weaknesses and to improve the 
precision of estimates for the k-NN technique: 

• Use of remotely sensed data: With respect to remotely sensed data as a data 
source, medium resolution imagery (e.g., Landsat TM and ETM+) is regarded 
as the most suitable satellite source for large area inventories due to the 
spatial and spectral resolution and spatial scale. In addition to the data source, 
different digital satellite data may be used not only individually, but several 
remotely sensed data can be combined as well, including digital aerial 
photographs, Lidar imagery, and radar imagery. 

• Distance metrics: To compute the similarity among reference plots and target 
plots in feature spaces, different distance metrics have been applied (Nilsson, 
1997; Franco-Lopez et al., 2001). The results by Franco-Lopez et al. (2001) 
showed that the Mahalanobis distance did not improve the quality of the 
estimation as compared to the Euclidean distance; this result was contrary to 
the result reported by Nilsson (1997). Additionally, to reduce the processing 
time for searching large numbers of reference samples, Finley et al. (2006) 
used a squared mean distance. Since a complicated distance metric can 
require more processing time, the Euclidean distance metric is frequently 
preferred due to its time-efficiency in the k-NN process. The distance, dt,r, is 
computed as follows:  
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where and  are digital numbers of target plot t and reference plot r for 

each band i, respectively and m is a number of bands within a single image. 
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• Distance-weighting for neighbors: Altman (1992) demonstrated that the bias in 
the estimates can be reduced with distance-weightings (a). For this, several 
weightings were tested in the k-NN estimator. In most studies, estimates with 
distance-weightings for neighbors were more precise (Katila and Tomppo, 
2001). In contrast, some studies showed that non- or small weighting for 
neighbors gave better results (Franco-Lopez et al., 2001; Tokola et al., 1996).  

Distance-weighting 
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• Weights for each band within a single image: The correlation between bands 
and forest characteristics may not be equal for all bands within a single image. 
Assuming that there exists a linear combination of bands that can provide 
better results, additional weights can be computed and applied to the original 
digital numbers. For this, a weighted Euclidean distance has been applied 
(Equation 3-3). A weighting parameter (bi) for a band (i) can be derived from 
the downhill optimization method (Franco-Lopez et al., 2001), genetic 
algorithm (Tomppo and Halme 2004), and empirical constants (Tokola et al., 
1996). 
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• Reference windows for stratification: Forest characteristics are sensitive to 
specific situations such as topographical or structural conditions. In other 
words, estimates based on the similarity only in feature spaces can be 
unreliability and highly biased due to heterogeneous conditions between the 
reference and target plots. To address this challenge, various ancillary 
information, such as site quality maps, land-use maps, and soil class maps, 
have been considered to search reference plots that are restricted within an 
identical class to a target plot. 
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Another approach restricts an area (or window) that is searched for neighbors 
within the geographical horizontal and vertical boundaries (Tokola, 2000; 
Katila and Tomppo, 2001; Koukal, 2004). 

• Image enhancement technique: Spatial filtering techniques have been applied 
for improving the spatial match between field plots and pixels on satellite 
imagery (Halme and Tomppo, 2001: Franco-Lopez et al., 2001). Additionally, 
an image enhancement technique, called transformation, is also frequently 
used to generate new features (e.g., NDVI, VIs and others using tasseled cap 
transformation and PCA) from a single imagery because new features may 
have a stronger correlation with forest characteristics (Franco-Lopez et al., 
2001; Tomppo and Halme, 2004). 

• The value of k: A number of studies have proposed different optimal values of 
k ranged from 1 to 15 (Franco-Lopez et al., 2001; Tokola et al., 1996; Nilsson, 
1997; Reese et al., 2003). McRoberts et al. (2002) found that a small k (k < 5) 
may result in RMSE values larger than a standard deviation of observations 
when estimating forest proportion. The optimal value of k is affected by the 
number of available reference samples, their variation, satellite imagery and 
forest conditions at a specific area of interest. In addition to the optimum value 
of k, Franco-Lopez et al. (2001) contended that an optimal number of k was 
dependent upon user objectives: if the objective is to produce a thematic map, 
the use of only the nearest neighbor (k=1) should be preferred because the 
variability of samples can be retained, while if the objective is to provide 
estimates, the value of k is determined having the minimized estimation error. 

 

The main aim of this chapter is to analyze the potential of the k-NN technique in the 
Korean NFI. To address this aim, a pilot field inventory based along the new NFI 
design is implemented in a test area. The k-NN technique is used to estimate 
growing stock per unit within the forest area for the entire test area. Moreover, to 
improve the precision of estimates, more alternative options in the k-NN process are 
tested, including stratification, image enhancement, and weighting for neighbors and 
spectral features. 

 



 
 

ESTIMATION OF FOREST ATTRIBUTES
 

 37

3.3 MATERIALS AND METHODS 

3.3.1 Study area 

The study area, Yang-Pyeong County, is centrally located in the Korean Peninsula, 
covering about 87,446 ha. The county consists of about 72% (or 63,242 ha) of forest, 
whereas the area for farming is only 15% and that for other uses is about 13% (Table 
3.1). The county lies between 37°22′N and 37°40′N, and 127°18′E and 127°51′E 
(Figure 3.2). The county is in the hilly region with a complex topography, as shown in 
Figure 3.3. The elevation ranges from 20 to 1,157 m above sea level. According to a 
forest soil inventory report (KFRI, 2004), the areas with slopes greater than 21° cover 
about 82% of the total forest area. The main tree species are Japanese red pine 
(Pinus densiflora), Korean pine (Pinus koraiensis), Japanese larch (Larix leptolepis), 
Mongolian oak (Quercus mongolica) and other deciduous tree species. 

 

Table 3. 1: Distribution of land use/cover classes for the study area (KFS, 2004a) 

Land-use* 
Class 

Area (ha) Proportional (%) 

Coniferous 42,025 48   (66.4)

Deciduous 16,293 19   (25.8)

Mixed 4,436 5    (7.0)

Un-stocked 488 1    (0.8)

Forest 

Total 63,242 72   (100)

Non-forest 24,204 28

Total 87,446 100
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Figure 3. 2: Location of the test area and distribution of field plots for the study area 
in the current NFI cycle (2006-2010), where the samples are established with a 
systematic square grid of 4km. 

 

3.3.2 Field data 

In the fifth Korean NFI, a systematic cluster sampling design is applied, wherein the 
samples are established with a systematic square grid of 4km (Figure 3.2). This pilot 
study was carried out during 2005/2006. A total of 39 samples fall within forests in the 
test area. In this study, two cluster plots were used; one cluster having 4 sub-plots (30 
clusters, plot design A) and the other cluster having 10 sub-plots (9 clusters, plot 
design B), as shown in Figure 3.3. A total of 191 sub-plots can serve as training data. 
Each sub-plot was composed of two concentric circular plots; all trees with diameter 
at breast height (DBH) of 6 to 20cm and with DBH above 20 cm were registered at 
10m and 15m radii, respectively. The coordinates for each sub-plot centre were 
recorded by a GPS receiver (Garmin V DELUXE). 
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On each of the concentric circular plots, the basal area of individual trees was 
multiplied by the extension factors related to each radius for calculating the basal 
area per hectare. The volumes of individual trees were calculated using the stem 
volume functions for Japanese red pine, Korean pine, larch and oak (the oak function 
was used for all deciduous tree species) (see Annex 3). Table 3.2 presents summary 
statistics based on field plots. 

 

 

Figure 3. 3: Field points on the DEM and the two cluster plot designs used.  

 

Table 3. 2: Summary statistics based on field plot data (n=191 sub-plots) 

Variables V (m3) / ha BA (m2) /ha N / ha 

Number of 

observed tree 

species per plot 

Mean 112.9 17.7 1,009 4.6

Min. 3.3 0.9 113 1.0

Max. 239.1 35.4 2,576 9.0

Standard 
deviation 47.2 6.7 529 2.1
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3.3.3 Satellite data 

For this study, different digital satellite images were acquired from different satellite 
sensors, Landsat ETM+ and ASTER. 

Landsat ETM+ 

Landsat ETM+ data, which are widely employed in the k-NN estimation, was acquired 
on 28 April 2002. The thermal infrared (Band 6) was not used because of its poorer 
spatial resolution (60m) and low contrast in the forest area. More detained information 
is presented in Table 3.3. The imagery was relatively cloud-free and geometrically 
corrected with an overall RMSE of 1 pixel (25m). 

 

Table 3. 3: Technical information of the satellite images 

Sensor Landsat 7 ETM+ ASTER 

1 0.45-0.52 (B) 0.52-0.60 
2 0.52-0.60 (G) 0.63-0.69 
3 0.63-0.69 (R) 0.76-0.86 
4 0.76-0.90 (NIR) 1.60-1.70 
5 1.55-1.75 (MIR) 2.145-2.185 

6 10.4-12.50 (TIR-L) 
10.4-12.50(TIR-H) 2.185-2.225 

7 2.08-2.35 (MIR) 2.235-2.285 
8 - 2.295-2.365 

Band (µm) 

9 - 2.360-2.430 

Acquisition date 28. April 2002 22. September 2003 
Path / Row 115 / 34 115 / 034 

Sun elevation / azimuth 59.4 / 134.6 50.3 / 155.4 
Bands 1 / 6 / 1 3 (1) / 6 / 5 

Swath width (km) 185 60 
Spatial resolution (m) 15 / 30 / 60 15 / 30 / 90 

Map projection / Datum Transverse Mercator / Tokyo (Korea) 
Spheroid Bessel_1841 

Latitude of origin 38 
Central meridian 127° 00´ 10.405 E 

Re-sampling method Nearest neighbor 
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ASTER 

ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) is a 
medium spatial resolution multi-spectral imager onboard spacecraft Terra, a satellite 
launched in December 1999 (Abrams, 2000). ASTER has three subsystems 
operating in different feature spectral ranges, namely the visible and near infrared 
(VNIR), shortwave infrared (SWIR) and thermal infrared (TIR). The spatial resolution 
is 15, 30 and 90 m for VNIR, SWIR and TIR, respectively (Table 3.3). 

An imagery (AST_L1B.003:2017513589) acquired on 22 September 2003 and 
processed into Level 2 was taken. In this study, TIR bands having a spatial resolution 
of 90m were not used (Table 3.3). The imagery was relatively cloud-free and 
geometrically corrected with an overall RMSE of 1 pixel (15m and 30m) for each 
subsystem. 

 

3.3.4 Map data 

Digital Elevation Model (DEM) was produced for topographic analysis of elevation, 
slope and aspect from 1:25,000 digital topographic maps. The spatial resolution of the 
DEM was 25 m corresponding to that of the Landsat ETM+. In order to generate 
realistic thematic maps of forest attributes as derived by the k-NN technique, a 
thematic map of forest/non-forest classes is required as a mask map at first. As 
mentioned in the previous chapter, even though a digital forest map for the study area 
exists, it has not yet been updated. Therefore, a thematic map of forest and non-
forest classes was produced based on the previous chapter. 

 

3.3.5 Application of k-NN technique 

The similarity between reference and target plots in feature spaces can be computed 
using different distance metrics. In this study, the similarity was computed with the 
Euclidean distance metric (Equation 3-1). With respect to the distance-weighting 
approach, three weightings were tested, including no weighting (a=0), inversely 
proportional to the distance (a=1) and inversely proportional to the square of the 
distance (a=2) in equation 3-2. The sum of weights (wt,r) is equal to 1. 
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Once the distances among neighbors and their weights were calculated, the k-NN 
technique was applied to each pixel. An estimated value  for a target plot t can be 

expressed as the weighted sum of the observed values  at the selected reference 
plots. The value for the target plot t is computed as: 
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Reference window 

In South Korea, forests represent a highly variable and complex structure due to 
varying ecological and topographical conditions, cultivation practices and site quality. 
Therefore, reference windows that are sensitive to these changes have been applied 
to select reference samples, which have similar conditions to a target plot. 

 Horizontal reference area: The relationship between growing stock and image 
features depends on site conditions. When a large HRA is applied, estimates 
may be biased because plots within the training dataset on different site 
conditions can be selected as reference plots, and it also requires a high 
processing time. In this sense, a minimum HRA that may cover all the local 
variations in the forest attributes of interest is needed. The study area is 
relatively small, and thus the HRAs were divided into five areas from 10km to 
50km radius. In this case, a target plot close to the boundary of the study area 
can use only a small number of available reference plots. For this, the distances 
between the XY-coordinates of target and reference plots were calculated by 
the Euclidean distance metric. 

 Vertical reference area: Over complex terrain, forest structures are affected by 
micro-climates related to local topographic variables such as altitude, slope, and 
aspect (Shin et al., 2001). The altitude above sea level varies from 20 to 
1,157m, which should influence forest structure and growth (Park, 1988). 

 Stratification by forest cover types: Ancillary information based on existing digital 
maps or field plots can be used either pre- or post-stratification, respectively. In 
this study, the field data were classified into three forest strata in terms of the 
proportion of the number of trees by the dominant tree species per sub-plot; 
coniferous, deciduous, and mixed forests (see Annex 1). 
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Image filtering 

An image enhancement technique called spatial filtering was applied. The goal of the 
spatial filtering is to improve spatial matching between field plots and pixels on the 
imagery. For this purpose, a 3 x 3 window mean filter, which corresponds to the plot 
design defined for each sub-plot point, was constructed, as shown in Figure 3.4. 

 

 

Figure 3. 4: Original digital number (left) and mean digital number for the 3 x 3 
window filtering (right) for each sub-plot centre within the plot design defined using 
Landsat ETM+. 

 

Weighting parameters for each band 

Not all of the bands in a single image share the same influence on the estimation of a 
forest attribute. The development of weighting parameters for each band was carried 
out by applying the downhill simplex optimization method developed by Nelder and 
Mead (1965). The weighting parameters (bi) for each band (i) were computed to 
minimize RMSE with a value of k and the reference windows (Equation 3-3). 
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3.3.6 Evaluation 

For determining an optimal operational option and for selecting an optimal value of k 
in the k-NN technique, two evaluation techniques were applied: 

• Minimum RMSE (Root Mean Square Error) and bias by the leave-one-out 
cross-validation method and 

• Confusion matrix by attributes’ classes. 

After obtaining an independent estimate from different operational options within the 
k-NN model for each of the pixels in the training dataset, the estimates were 
evaluated using an estimation error, which measures how well a model estimates the 
response value of a new observation. For every trial, the precision of estimates was 
examined using the RMSE, relative RMSE (RMSE%), and bias: 

∑
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where yi and ŷ i are the observed values and the estimated values on plot i, 
respectively, ŷ is the estimated mean of the estimates, and n is the number of plots. 
The RMSE% and bias for each operational option were compared to determine an 
optimal value of k and operational option. 

In addition, the confusion matrix was also used to evaluate the accuracy of estimates 
for growing stock classes. The estimated and observed values were divided into four 
classes; 0-50, 50-100, 100-150, and above 150 m3/ha. The overall accuracy (OA) 
was compared for different reference windows and different numbers of neighbors. 
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3.4 RESULTS  

3.4.1 Satellite images 

The digital numbers (DNs) corresponding to each field point were extracted from both 
images, while topographic variables such as elevation, aspect and slope were 
extracted from the produced DEM data. They were used to calculate Minnaert 
constants for each band (Table 3.4). The estimated values of k ranged from 0.2731 to 
0.5173 and from 0.2994 to 0.5181 for Landsat ETM+ and ASTER, respectively. With 
the estimated Minnaert constants, topographic effects on both images could be 
reduced. 
 

Table 3. 4: Estimated values of the Minnaert constant for the satellite images 

Bands Constant 
(k) 1 2 3 4 5 6 7 8 9 

Landsat 
ETM+ 0.4299 0.4428 0.7473 0.2731 0.5173 - 0.4299 - - 

ASTER 0.2994 0.3813 0.5181 0.4531 0.3994 0.4573 0.4144 0.433 0.3349 

 

With the two topographically normalized images, the relationship between the 
growing stock and their DNs (Table 3.5) was analyzed. The correlation was very low; 
this result is similar to a study that used Landsat TM for the Korean forest (Lee et al., 
1994). When comparing the correlation by satellite data, Landsat ETM+ proves to 
have higher correlations than does ASTER, except for the band 3. In particular, the 
shortwave infrared (SWIR) bands for ASTER have the lowest correlation with the 
growing stock. 

 

Table 3. 5: Correlation coefficients between DNs on the topographically normalized 
images and the growing stock based on field plot data (p 0.05 = 0.138, p 0.01 = 0.181) 

Band 
 

1 2 3 4 5 6 7 8 9 
Landsat 
 ETM+ 0.20**

     0.14* 0.16* -0.18* 0.06 - 0.14* - -

ASTER 0.10 0.01 -0.19**
 -0.08 0.01 -0.01 0.01 0.02 0.01

Notes: * and ** are significant at the 0.05 and 0.01 probability levels, respectively.  
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Two different satellite data were employed independently and in combination as data 
source. Analyzes were conducted using common operation options in the k-NN 
process, inverse distance weighting for neighbors and the non-reference window.  

The precision using the combined data set could be slightly improved as compared to 
using the images separately when k < 12. Estimates using ASTER were more precise 
than those using Landsat ETM+ for any number of neighbors, as shown in Figure 3.5. 
The difference in RMSE% between the two images was approximately 10% (10 
m3/ha) when k = 1, and it tended to decrease with increasing k. 

Although the estimation that used ASTER was more precise, the identification of the 
optimal operational options in the k-NN technique was performed using Landsat 
ETM+ only. With regard to their spatial extends, Landsat imagery allows for 
estimating for a large area at a provincial level, while ASTER is only available for a 
smaller area at a municipal level (see Figure 3.2). 
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Figure 3. 5: Comparison of relative RMSE for different images and different numbers 
of neighbors (k). 
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3.4.2 Characteristics in the k-NN process 

Selection of reference window 

Horizontal reference area (HRA) 

Table 3.6 shows the summary of the number of available reference plots by horizontal 
radius. When the minimum radius (10 km) was applied, the number of available 
reference plots at a target plot ranged from 26 to 78 plots. 

 

Table 3. 6: The radii of the horizontal reference areas and the minimum, maximum 
and mean number of the field plots as a reference plot 

Radius Minimum number of 
reference plots 

Maximum number of 
reference plots 

Mean number of 
reference plots 

10km 26 78 50

20km 70 184 117

30km 120 190 171

40km 177 190 189

50km 190 190 190

 

The variation in estimates depends more on the numbers of neighbors rather than on 
the HRAs, as shown in Figure 3.6. The RMSE% decreased rapidly as the value of k 
increased from 1 to 4, and decreased only slightly for larger k for all HRAs. Despite 
the small number of available reference plots at the 10 km radius of HRA (HRA-10km), 
the RMSE% was slightly smaller or similar to the other HRAs. The highest RMSE% 
was observed at the 40 km radius for any number of neighbors.  

The biases of the estimates decreased with increasing number of available reference 
plots, i.e., larger reference radius when 3 < k < 15. The biases with the HRA-10km 
were below ±1 m3/ha when k > 3. This result was similar to the maximum HRA (50 km 
radius). The difference between the two HRAs was no more than ±1 m3/ha when 3 < 
k < 12. As a result, the HRA-10km was found to be the most efficient HRA in the given 
sampling intensity. 
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Figure 3. 6: Relative RMSE (RMSE%) and bias for the horizontal reference areas 
and different numbers of neighbors (k). 
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Stratification of field data by VRA and forest cover type 

The vertical reference area (VRA) was divided into four altitude classes based on the 
number of available reference samples: 0-150m (44 sub-plots), 150-300m (85 sub-
plots), 300-450m (47 sub-plots), and above 450m (15 sub-plots); thus the maximum 
number of reference plots at the above 450m altitude class was only 14 plots. Figure 
3.7 shows the distribution of the number of field plots for the altitude classes. The 
reference samples for each forest cover type was also unequally used; coniferous (72 
sub-plots), deciduous (66 sub-plots), and mixed forests (53 sub-plots).  

The trend in the RMSE for both stratification windows was similar to that observed 
with the HRAs (Figure 3.8). The RMSE% for the stratification by forest cover types 
was lower than that for the VRA by approximately 2%. The biases of estimates for 
both approaches were lower than ±2 m3/ha when k > 1. Accordingly, the stratification 
by forest cover types gave more precise results than the VRA. 
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Figure 3. 7: Distribution of the number of field plots for the altitude classes. 
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Figure 3. 8: Estimated mean (a), RMSE (b), RMSE% (c), and bias (d) for the HRA-
10km and stratifications by the VRA and forest cover types and different numbers of 
neighbors (k), where the “true” mean value was computed based on field plot data. 

 

 

Comparison of stratification vs. HRA-10km 

The means of the estimates for the HRA-10 km were underestimated when k > 3 and 
they slightly decreased with increasing value of k, whereas the means of the 
estimates for the VRA and stratification were overestimated, except for the k = 3 and 
4 nearest neighbors. The difference in RMSE% between the HRA-10km and 
stratification increased with additional neighbors when k > 4.  
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The estimation for stratification was more precise than that of the HRA-10km. With 
regard to the bias of estimates, however, the estimation with the HRA-10km had a 
lower bias when k > 2. The bias of the estimates for the HRA-10km was slightly lower 
than that for stratification. The difference, however, was small. 

 

Distance-weightings  

The results of applying the three different distance-weighting functions for growing 
stock estimation are shown in Figure 3.9 (a). With weighting functions, estimates 
were more accurate than without the weighting function (a = 0). The weighting with 
the inversely proportional to the distance (a = 1) gave slightly better results when k < 
10. 
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Figure 3. 9: Relative RMSE for the different neighbor weighting functions (a) and 
image filtering technique (b) with the HRA-10km and Landsat ETM+. 

 

Image enhancement 

The result of the spatial filtering technique is shown in Figure 3.9 (b). Slightly more 
precise results can be obtained by using the 3 x 3 pixel window mean filtering in the 
estimation. The precision increased as the number of neighbor plots decreased when 
neighbors were smaller than k = 12. There were no benefits when using more than k 
=12 nearest neighbors as the RMSE% were similar from this point. 
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Selection of number of nearest neighbors 

Different criteria were taken into account to select an optimal value of k: RMSE, 
RMSE%, bias and overall accuracy. The optimal value of k was determined such that 
the RMSE% and the bias of the estimates were minimized or stabilized, and the 
overall accuracy was high. 

The RMSE decreased with increasing value of k until a minimum RMSE was reached 
with the HRA-10 km (Figure 3.6) and for the stratification (Figure 3.8). The minimum 
may not be reached before k = 20, depending on the size of field data as reference 
data. In particular, the RMSE% rapidly decreased when the value of k increased from 
1 to 5 for both reference windows. The RMSE varied from 46.8 to 63.9 m3/ha and 
from 45.1 to 60 m3/ha, respectively. The minimum RMSE was 46.8 m3/ha when k = 14 
with the HRA-10km, and 45.05 m3/ha when k = 20 for the stratification. However, at k 
= 5 nearest neighbors for both windows, the RMSE showed little tendency to level off, 
and the values were 48.4 and 47.9 m3/ha, respectively. 

The variation in RMSE% at values of k larger than k = 5 were nearly stable. When the 
RMSE% for k = 5 was compared to those for k = 14 and k = 20 that gave the 
minimum RMSE, their difference was no more than 2 % for both windows. Therefore, 
for selecting the optimum value of k using the cross-validation, the relatively stable  
RMSE, which has leveled off at a value of k, could be a more effiecient method than 
the minmum RMSE. 

The growing stock in the confusion matrix consisted of four classes: 0-50, 50-100, 
100-150 and above 150 m3/ha. The overall accuracy (OA) in classification comparing 
the HRA-10km and stratification is shown in Figure 3.10. The OA ranged from 0.35 to 
0.41 and from 0.35 to 0.42, for HRA-10km and for stratification, respectively. The 
results of this study were modest because the study area and the training data set 
were relatively small. The estimation for the stratification also gave a higher accuracy 
than that with the HRA window when k > 2. The highest OA was observed for k = 5 
and k = 18 for stratification, resulting in a value of 0.42. 
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Figure 3. 10: Overall accuracy for different reference windows and different numbers 
of neighbors (k). 

 

Weighting parameters for each band 

As presented in Table 3.5, the relationships to growing stock were different for the 
Landsat ETM+ bands. In order to find weighting parameters for each band, the 
downhill simplex optimization method was applied for both reference windows with 
the value of k = 5. The estimation errors for both windows decreased by less than 1% 
only through the weighting parameters, as presented in Table 3.7. 

 

Table 3. 7: Weighting parameters for each band and reference window 

Landsat ETM+ bands 
 

1 2 3 4 5 7 

RMSE 

(m3/ha) 

HRA-10km (k=5) 1.0521 0.9355 1.0311 1.0253 1.0149 1.0309 48.42 
(48.21)* 

Stratification 
(k=5) 1.3659 1.4473 0.9463 1.0356 0.3602 0.6688 47.93 

(45.41)* 

*The values in parentheses are the RMSEs using equal weightings (b=1) for each band. 
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3.4.3 Map production 

Forest map 

The study area map was drawn from the existing digital forest map, which was 
produced from the 3rd NFI cycle, because changes have been small. The forest/non-
forest map was produced based on the finding in chapter 2 by combining the Landsat 
imagery and field plot data used in this chapter. 

The 191 sub-plots from 39 clusters were classified into three forest cover types and 
served as training data. The forest strata of each sub-plot were defined by the 
proportion of number of trees by dominant tree species (see Annex 1). Table 3.8 
shows the number of field plots for each stratum: coniferous (72 sub-plots), deciduous 
(66 sub-plots) and mixed (53 sub-plots). In addition, 39 points within the non-forest 
area such as water, road and agricultural and residential land were extracted from the 
digital forest map. The pixel-wise classification by the NNC (k = 1) that gave the most 
accurate result in chapter 2 was applied. The Landsat image was classified into forest 
and non-forest and then the forest was subdivided into three forest cover types 
(Figure 3.11). Table 3.8 presents the result of the error matrix of the NNC classified 
image and field plot data. Overall accuracy reached 74% and the estimated value of 
kappa was 0.65. This result is similar to other studies that used Landsat TM for the 
Korean forest conditions (Lee, 1991; Cho, 2002). 

 

Table 3. 8: Error matrix for assessing the classification accuracy of the NNC classified 
image and field plot data 

Field plot data 
Classification 

C H M Non 
Total User 

accuracy 

C 55 9 5 0 69 80 % 
H 9 44 6 3 62 71 % 
M 5 7 36 0 51 75 % 

Classified 
Image 

Non 3 6 6 36 51 71 % 
Total 72 66 53 39 230 

Producer accuracy 76 % 67 % 68 % 92 %  

Overall 
accuracy 

74 % 

Kappa value = 0.65 
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Growing stock map 

In order to produce a thematic map of growing stock over the entire study area, 
coordinate information and digital numbers of center points for each pixel within the 
study area were extracted. Then, with the selected number of neighbors (k = 5) that 
were determined for the selected reference window (HRA-10km), estimates of the 
growing stock per pixel unit over the study area were computed with the operational 
options given in Table 3.9, producing a continuous digital layer (Figure 3.11).  

 

Table 3. 9: Characteristics for growing stock and forest maps in the k-NN process 

Operational options Growing stock map 
(continuous) 

Mask map  

2 classes: forest, non-forest 

Satellite source Landsat ETM+ 

Distance metric Euclidean distance metric 

Distance-weighting for 
neighbors 

Inversely proportional to the 
distance (a = 1) - 

Value of k  5 1 

Spatial filtering No filtering No filtering 

Reference window Horizontal Reference Area of 
10km radius - 

Feature weighting Equal (a = 1) Equal (a = 1) 
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Figure 3. 11: Continuous thematic map of growing stock (a), forest and non-forest 
map as mask map (b), and growing stock map within the forest (c) over the study 
area, which can be used as an artificial model forest in chapter 5. 



 
 

ESTIMATION OF FOREST ATTRIBUTES
 

 57

3.5 DISCUSSION AND CONCLUSION 

Since 1990, the k-NN technique has been widely used in large area forest inventories 
to produce geo-referenced information, forest thematic maps, stratified area 
estimation, and small-area statistics by integrating forest inventory data and remotely 
sensed data. This chapter was conducted to analyze the possibility of the k-NN 
technique in the Korean NFI. To address this objective, a pilot study was implemented 
for a small area. Several operational options were tested, including different satellite 
sources, reference windows for the selection of reference samples, distance-
weightings for neighbors, image filtering, and weightings for spectral features. 

Data sources for the k-NN technique 

In most previous studies, the estimation error measured with RMSE% was between 
50-80% when estimating growing stocks. Despite a small number of reference plots 
(n=191) used in this study, the RMSE% for growing stock was relatively small, 
ranging from 40 to 60%. The estimation error may be sensitive to forest development; 
that is, the forest of the test area has a relatively small variation in growing stocks 
since it is relatively young, mostly less than 50 years old (KFS, 2004a). 

In order to successfully achieve the k-NN technique, the key is to obtain a sufficient 
training data set that have to be involved in all variations that occur within a 
characteristic of interest.  In the current Korean NFI, GPS-based field data have been 
collected every year in about 800 clusters (3200 sub-plots) over the entire country. If 
the field data serve as training data in the k-NN estimation, this may be sufficient. 

Two satellite images (Landsat ETM+ and ASTER) were used independently as data 
source, as well as in combination. Since the combined data set allowed more 
variations in feature spaces over a single image, the precision with the combined data 
set was slightly better than using each independently. In addition to combined data 
set, as the spectral responses at a target point vary by season under natural 
conditions, if multi-seasonal satellite data are used as the data source, the precision 
should improve (Tokola et al., 2001). 

The comparison between the two images is difficult because the images were 
acquired during different seasons. When the two sensors were compared, the 
estimation using ASTER was more precise than that using Landsat ETM+. However, 
when the spatial scale is considered, the swath width of ASTER is approximately 60 
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km, which is smaller than that of Landsat ETM+ (185 km), and may be adequate to 
provide estimates for a small-area when sufficient field data is available. The use of 
ASTER imagery for large area inventories is expensive and there is a trade-off 
between precision and budget. When considering the spatial match between the field 
plot and its spatial resolution, the plot size (500m2) is nearly comparable to the spatial 
resolution of Landsat ETM+. 

Characteristics in the k-NN process 

The k-NN technique is very flexible for combining ancillary information. In this study, 
forest cover types and geographical variables were used as reference windows to 
search reference plots at a target plot. The RMSE% for the smallest HRA (a 10 km 
radius) was higher than that for the stratification by forest cover types, but the bias 
was small. This indicates that the forest attributes in a complex landscape may be 
affected more by geographically neighboring forests than by homogeneous conditions. 
The VRA for the altitude classes, however, did not improve the precision. It may be 
related to the availability and variability of reference samples for each class. In order 
to fully achieve stratification to the k-NN estimation, a training set includes equal 
numbers of training data sets for each stratum. The number of available reference 
samples for each class by the VRA, however, was different and relatively small so 
that the precision did not improve. 

Nilsson (1997) pointed out that the estimates from the k-NN technique tend towards 
the mean with an increasing value of k. This can also be observed in this study, as 
shown in Figure 3.12; most of the estimates were aggregately classified into the 100-
150 m3/ha class around the mean, by increasing of the value of k. This means that 
the variability of estimates is to be decreased with increasing k. This problem can be 
overcome by stratification, since the tendency towards the mean does not affect the 
estimates for each stratum equally. This result was shown in Figure 3.10. The overall 
accuracy for the HRA-10km tend to decrease with increasing number of neighbors 
when k > 5, whereas for the stratification, it oscillated more or less around a trend 
when k > 2, i.e., the variability of estimates was preserved. 
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Figure 3. 12: Distribution of frequencies for the growing stock classes and different 
numbers of neighbors with the HRA-10km. 

 

Stratification can be applied either individually or in combination with different 
stratification criteria. Katila and Tomppo (2001) applied a two-stage stratification by 
soil classes and horizontal boundaries as a reference window, and the precision of 
estimates improved. They found that stratification can also reduce the bias of 
estimates when reference samples for each stratum are sufficient. In this study, 
however, the training data did not allow for such stratification. Currently, digital maps 
via the Korean FGIS are increasing. If the current NFI data serve as training data and 
various digital maps can be used as a basis for stratification, more reliable information 
can be produced.  

Although the locations of field plots were recorded by a GPS receiver, a spatial 
filtering technique for reducing spatial matching error was applied because it is 
difficult to obtain accurate location information in the Korean forest conditions. The 
estimation error for the 3 X 3 window mean filter improved. The spatial filtering, 
however, causes changes in original digital numbers of satellite images. This means 
that the filter’s smoothing effect can mask small differences between digital numbers. 
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Considering that the k-NN technique is sensitive to their differences, spatial filtering 
method is inappropriate for a pixel-based approach. Consequently, spatial filtering has 
a trade-off between spatial matching errors and a loss of original information in 
feature spaces. 

The correlation between bands and forest attributes may not be equal for all bands 
within a single image. To address this concern, the weighted Euclidean distance was 
tested. The estimation error, however, was not affected by these weights in the 
downhill optimization method because the weighting parameters computed were quite 
similar or small. This result was also presented by Franco-Lopez et al. (2001). The 
weighting parameters for bands must be related to the relationship with the forest 
attributes of interest and the spectral variability in feature spaces. 

Even though there are several errors and drawbacks involved in the k-NN technique, 
the k-NN maps, by integrating forest inventory data and satellite data, allow to support 
forest management planning and forest statistics reporting for small- and large area 
units. However, to successfully apply the k-NN technique in the Korean NFI, the 
following points must be considered:  

(i). Considering the complexity of landscape in the Korean forest conditions, 
location error of field plots is a major error source for matching them to satellite 
data. Above all, accurate locations of field plots have to be acquired; 

(ii). With regard to the number of reference samples, if field data from the current 
NFI serve as training data it may be sufficient. In addition, if management 
inventory data at a regional level are available, the precision for a small area 
unit can be improved; and  

(iii). Finally, the application of stratification for the selection of reference samples can 
improve the precision of estimates and can preserve the range of variability of 
estimates. In recent years, digital maps applicable for stratification in the forestry 
sector are increasing and topographic factors over mountainous area can also 
be considerable as ancillary information. 



 
 

PLOT DESIGN OPTIMIZATION  
 

 61

4. PLOT DESIGN OPTIMIZATION 

4.1 INTRODUCTION 

Forest management requires reliable current data on the forest resources. In forest 
inventories, sampling techniques are used for data collection and estimation because 
a complete census would require an enormous expense in terms of time and money 
(Johnson, 2000). It thus becomes necessary to develop the most efficient sampling 
strategy for a forest inventory, for which three basic design elements must be 
considered: (a) the overall design of selecting sample units (sampling design; see 
chapter 5), (b) the design of individual sample units themselves and the method of 
selecting individual trees within these units (plot design), and (c) the estimation 
design for estimating attributes of interest. In this context, the plot design defines how 
to select sample trees to be observed around the sample points, or variables to be 
observed at the sample sites selected by a given sampling design. Thus, plot design 
considerations refer to the characteristics of the observation unit under a sampling 
design (Kleinn et al., 2002). 

Clustering of samples is an appropriate tool for increasing the efficiency of a field 
data-collection since cluster plots can reduce travel time considerably by 
concentrating measurements, although setting up separate sub-plots can increase the 
costs. Cluster plots have been widely applied as sampling unit or plot designs for 
natural resources assessment, e.g. large area forest inventories (EC, 1997; BMVEL, 
2001; Khunrattansiri, 2005). 

This is especially true for large and/or inaccessible areas. In large area forest 
inventories, much of the expense (often 50%) is incurred by traveling to the clusters 
(Scott, 1991), so it is often more efficient to sample one large cluster than to sample 
two smaller clusters in one working day (Arvanitis and O’Regan, 1972). Scott (1998) 
demonstrated cluster plots can provide the opportunity to “spread out” the sampling 
unit; thus, more “independent” or “new” information can be collected at each plot as 
opposed to simply measuring one large plot. In most forest inventories, a cluster plot 
gives more accurate information per unit cost than any other plot designs (Tokola and 
Shrestha, 1999). Furthermore, it is also possible to research into spatial variability. 
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When planning a cluster plot design, several questions are relevant to the statistical 
grounds (Scott, 1981; Kleinn, 1996): 

(i) what is the spacing between clusters? 

(ii) what is the shape of the cluster?  

(iii) what is the number of plots per cluster? and 

(iv) what is the sample plot configuration?  

For determining an optimal solution, prior information about the spatial distribution 
and correlation of the variables of interest is needed. The covariance function can be 
found by simple transformations of variograms, such as are frequently used in geo-
statistics (Kleinn and Jost, 1994). The function of distances between pairs of points 
can be used to compare the efficiencies of various sample designs (Korhonen and 
Maltamo, 1993; Scott, 1998). 

In natural resource assessment, computer simulated designs have been applied to 
compare various alternative designs. They offer a cheaper and more flexible planning 
tool. Cluster plot simulation has been studied by Köhl (1986) and Päivinen (1987). 
Köhl (1986) used the intra-cluster correlation to evaluate the efficiency of sampling 
designs, while Päivinen (1987) evaluated the variation between repeated inventories 
and costs. Kleinn (1994) compared the performance of line sampling to other forms of 
cluster sampling based on a standard covariance function. Furthermore, he also 
compared the statistical and economic efficiency of various cluster shapes (Kleinn, 
1996). Scott (1991) developed an optimal cluster plot that was derived from the 
relationship between variance and cost function for the Forest Health Monitoring 
Program of the United States. Tokola and Shrestha (1999) compared various cluster 
plot designs to determine the most efficient cluster plot by using a model forest 
population by combining field sample data and satellite image data. In that study, the 
design efficiency coefficient (DEFF), based on the intra-cluster correlation coefficient 
and cluster size, was used to compare different cluster configurations and the 
variation between repeated simulations under given sampling designs. Scheuber and 
Köhl (2003) demonstrated that cluster sampling is an appropriate tool for the 
assessment of Non-Wood-Goods and Services (NWGS), where an optimal cluster 
plot can be found by visualizing the variance structures by means of spatial statistics 
such as variograms.  
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Additionally, an appropriate cost function must be developed with regard to economic 
efficiency. With a cost function or cost map, the method would be more suitable for 
the planning of practical forest inventories. The primary cost of conducting an 
inventory is personnel time, e.g., planning, field work, supervision, and data synthesis 
and analysis. The costs associated with simple sampling can be divided into the 
following categories: total cost of the inventory (CT), overhead or non-field costs (CO), 
and field costs (CF), which include the cost of travel from a base of operations to and 
from the field (Johnson, 2000). The fundamental cost function is then 

CCC FOT += . (4-1) 

The costs of interest to the person designing a sampling operation are those 
associated with the field operations. The simple cost function provided by Hansen et 
al. (1953) is as follows: 

nmcncCF 21
+=  (4-2) 

where  c1 = sampling unit (cluster) cost, such as locating the cluster, 

            c2 = sub-sampling unit (i.e., sub-plot in cluster sampling) cost, 

            n   = number of clusters in the sample, and 

           m   = number of sub-plots within one cluster. 

In this cost function, the first cost (c1) is defined as those costs that vary in relation to 
the number of clusters (i.e., sampling intensity) taken in the sample. These costs 
include those of selecting, traveling to, and locating a cluster and designating the sub-
plots within each cluster. The second cost (c2) describes costs that also vary in 
relation to the number of sub-plots per cluster, so-called “cluster size”. These costs 
are dependent upon the inventory activities (such as measuring the trees, recording 
the information, etc.) per sub-plot, and the spatial arrangement of sub-plots within a 
cluster (Khunrattansiri, 2005). Scott (1981) demonstrated that in developing a cost 
function, some variables that are integers or continuous cannot be optimized; thus, 
prior practical information, such as the feasible cluster size (m), cluster shape, and 
distance between sub-plots, is necessary to find optimal solutions. In some studies, 
the cost function was used to determine an efficient cluster size, where the cluster 
size was derived from the relation between the cost ratio (c1/c2) and the intra-cluster 
correlation coefficient. However, if the ICC is negative, it cannot be used to compute 
the optimum cluster size (Scheuber and Köhl, 2003; Khunrattansiri, 2005). 
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There are limited studies on plot design optimization for forest resources assessment 
in South Korea. Furthermore, most studies have focused mainly on plot size and 
shape for a fixed-area plot at a specific forest stand (Kim, 1966; Lee and Han, 1984; 
Yim and Shin, 2006). Although a cluster plot was used in the 4th NFI cycle, the plot 
design was dependent on empirical findings, giving primary consideration to practical 
aspects in the field (KFRI, 1996). A small number of studies on plot design options, 
particularly the cluster plot, have been conducted, notwithstanding the need for an 
optimally sound and cost-effective plot for the Korean forest situation (KFS, 2005; 
Shin and Han, 2006). 

The objective of this chapter is to assist in determining the most efficient cluster plot 
for the Korean forest conditions. To do this, a pilot cluster is empirically designed and 
then several cluster configurations which are applicable to the Korean NFI are 
simulated. With respect to statistical soundness, several statistical factors for key 
attributes are taken into consideration. Furthermore, a cost function in terms of units 
of time is also developed to measure the economic efficiency. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Sample cluster unit 

To determine an efficient cluster plot, a pilot cluster plot was taken to collect field data. 
Figure 4.1 illustrates the pilot cluster plot, which consists of 10 sub-plots and allows 
for the evaluation of different spatial arrangements of sub-plots, varying distances 
between pairs of sub-plots and different cluster sizes. The maximum distance from 
the center sub-plot was set at 100m; this distance can be considered a maximum 
feasible distance given the steep terrain conditions (KFS, 2004b). A total of 25 
clusters were collected in the field. As the focus of this study was on plot design 
optimization, the clusters were randomly selected within one county. 

On each sub-plot, all trees with at least a 6 cm diameter at breast height (DBH) were 
measured, within a circular plot with a fixed-area of 500 m2 (Yim and Shin, 2006). The 
variables, including DBH, tree species, height, etc. were measured. 
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Figure 4. 1: Pilot cluster plot design as used in this study comprising 10 circular sub-
plots. Various standard cluster shapes can directly be formed from this design. 

 

4.2.2 Cluster configuration 

In this study, several cluster configurations frequently used for large area forest 
inventories were established on the basis of the given pilot cluster plot, as 
represented in Figure 4.2. Considering that one cluster has to be carried out by a 
field-crew within one working day, the cluster size ranged between 3 and 5 sub-plots. 

Among the given cluster configurations, the shape of cluster 3 was used in the 4th 
Korean NFI cycle (KFRI, 1996), while the modified triangular shape (like cluster 4) 
has been used in the current NFI cycle (2006-2010) and in the United States (USDA, 
2005). The square and L-shaped clusters have been adopted, for example, in the 
German (BMVEL, 2001) and Finnish NFIs (Katila and Tomppo, 2001), respectively. 
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Figure 4. 2: Cluster configurations for different cluster sizes in this study. 

 

4.2.3 Statistical Analysis 

In order to evaluate and compare the given cluster configurations, the following 
characteristics are taken into consideration: 

- covariance function for determining an efficient distance between sub-plots, 

- intra-cluster correlation for evaluating geometric arrangements of sub-plots, and 

- standard error for the cluster size. 
 

Covariance function 

The advantage of the cluster plots is that the required travel time per sub-plot is 
minimized. One disadvantage compared to a random layout of the sub-plots is that a 
possible spatial correlation of variables among the sub-plots, namely “Spatial auto-
correlation”, may influence the precision of the sampling design (Kleinn and Morales, 
2001). This disadvantage can be reduced by increasing the distance between pairs of 
sub-plots per cluster. In most studies, the spatial variation has been described with 
the average covariance function (Kleinn 1994; 1996). The most efficient distance can 
be determined by combining the covariance function between pairs of sub-plots with 
the travel cost. 
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The covariance is the measure of how two observed values at a pair of points vary in 
relation to each other. If there is little or no association between the two observations 
from a given pair of sub-plots, the covariance will be close to zero. In this case, each 
cluster provides more independent information. The covariance of the two observed 
values,  and  for a pair of sub-plots, is symbolized by  and is defined 

as: 

y1 y2 ),cov( 21 yy

( )( )[ ]μμ 221121 ),( −−= yyEyycov  (4-3) 

where 1μ and 2μ  are the means of y and , respectively. In this context, the two 
means are equal (

1 y2

21 μμ = ). For illustration, the distribution of distances between pairs 
of sub-plots in the 25 pilot clusters of 10 points is shown in Figure 4.3, where the 
distances available range from 26m to 150m, with varying frequencies. 

 

 

 
Figure 4. 3: Distance distribution between pairs of points for the 25 clusters in the 
pilot study. 

 



 
 
PLOT DESIGN OPTIMIZATION 

 

 68 

Intra-cluster correlation 

The intra-cluster correlation (ICC) is an important statistic used to determine the 
efficiency of a cluster plot (Tokola and Shrestha, 1999). The ICC measures the rate of 
homogeneity within a cluster. If sub-plots within a cluster are very similar to each 
other (high positive ICC), nothing is gained by making measurements on many sub-
plots. If they are considerably different (negative ICC), the precision is high (even 
higher than that of simple random sampling). The latter case, however, rarely occurs 
in forest inventories. In cluster sampling, the total variance is a combination of two 
components: the variances between and within clusters. This can be expressed in the 
form shown in Table 4.1. The intra-cluster correlation coefficient (ρ), ranging from -1 to 
+1, can be defined as follows in terms of the variances (Cochran, 1977): 

t

wb

SS
mSSSS )1/( −−

=ρ  (4-4) 

where   SSt   : the total sum of squares between elements in the population, 

             SSb   : the sum of squares between clusters, and  

SSw   : the sum of squares within clusters. 

 

Table 4. 1: Variance table for cluster sampling (Scheuber and Köhl, 2003) 

Source of Variation Degrees of Freedom Sum of Squares 

Between clusters ( ) 2
bs n-1 ∑

=

−
n

i
i )yy(m

1

2  

Within cluster ( ) 2
ws n(m-1) ∑∑

= =

−
n

i
i

m

j
ji yy

1 1
,

2)(  

Total ( ) 2s nm-1 ∑∑
= =

−
n

i

m

j
ji yy

1 1
,

2)(  

where   n    = the number of clusters,            m = the number of sub-plots per cluster, 

             = the observation per sub-plot j in cluster i, jiy ,

            y    = the estimated mean per sub-plot, and 

            iy   = the estimated mean per sub-plot in cluster i. 
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Standard error 

To determine an efficient cluster size, the standard error can be calculated as an 
indicator of precision, to evaluate the variability among the estimates for different 
cluster shapes and cluster sizes. This value is frequently denoted as the relative 
standard error (SE%): 

100×=
y
n
s

%SE . (4-5) 

The total variance in Table 4.1 is approximately estimated because this variance 
estimator ignores the ICC. The total variance can be expressed as a function of the 
ICC (Equation 4-6), which is another way to estimate the variance for cluster 
sampling (Cochran, 1977), ignoring the sampling fraction: 

( )[ ]ρ11
1

2 −+
−

= m
nm

SSs t  (4-6) 

where for ρ = 0, the variance estimator is identical to that of simple random sampling 
of size nm (Scheuber and Köhl, 2003). 

 

4.2.4 Cost analysis 

Cost is always an important limiting factor in forest inventory planning. In the cost 
function equation (4-2), the costs (c2) depend on the cluster size (m) and total walking 
distance per cluster. Thus, this section addresses the total walking distances, which 
depend on the distances among sub-plots, and thus on the spatial arrangement of 
sub-plots in each cluster. The results of a pilot time study (KFS, 2004) were modified 
to calculate the required times per cluster. 

First, the total walking distances within a cluster (Dw) were computed to assess the 
total times required by cluster configurations. These depend on the distances among 
sub-plots, cluster size, and spatial arrangement of sub-plots, as well as the walking 
travel route. In this study, two walking travel routes were considered: one (travel route 
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1) chosen to minimize the walking distances, and the other (travel route 2) to reduce 
the location error of sub-plots, by surveying all sub-plots from a given starting sub-plot. 
When travel route 2 is used, the total walking distances computed include the 
distances from the starting sub-plot to the remaining sub-plots and back, while only 
the return distance from the last sub-plot to the starting sub-plot is included in travel 
route 1, as shown in Figure 4.4. 

 

Figure 4. 4: Examples: walking distances for different travel routes and cluster 
configurations; the dotted lines are the return distances. 

 

Thereafter, the total times required (Tc) for each cluster configuration is computed as 
follows: 

)/(* SDmTTT wstc ++=  (4-7) 

where:    Tc  = total time for each cluster configuration, 

T t  = total travel time from the office to a starting sub-plot within a cluster 

 and back, 

               Ts  = total time of establishment and inventory activities per sub-plot, 

m   = number of sub-plots within a cluster,  

              S  = walking speed (in meters per minute), and  

               Dw  = total walking distances (in meters) within a cluster. 
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4.3 RESULTS 

4.3.1 Statistical characteristics 

Covariance function  

To determine the most efficient distance between pairs of sub-plots, distances from 26 
m to 150 m were compared, as allowed by the pilot study. For the given attributes 
(growing stock, basal area and number of trees), the covariance functions were 
calculated for all pilot clusters. Figure 4.5 depicts the covariance functions for the key 
attributes, which oscillate more or less around a trend. They show the typical shape 
expected in natural resource assessment: the covariance functions increase with 
decreasing distance (d), and for d=0, the covariance equals the population variance 
of key attributes (Kleinn and Morales, 2001). They show a similar shape, which on 
average tends to descend from the maximum to close to zero with increasing 
distance when distance d < 100 m. At the smallest distance (26 m), the covariance for 
all key attributes was highest. The covariance functions approached absolute zero at 
distances of 87 m and 120 m. 

 

 

 

 

Figure 4. 5: Covariance functions for the 
key attributes by distance between pairs of 
sub-plots based on the given pilot clusters. 
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Intra-cluster correlation 

The ICCs for clusters of 3-5 sub-plots were computed to evaluate the design 
efficiency of the cluster configurations for the key attributes, as shown in Figure 4.6. 
The ICC of the number of trees was much higher (0.46 ~ 0.74) than those of the other 
attributes regardless of cluster size. In the case of clusters of 5 sub-plots, the cross 
shaped cluster (cluster 1) was found to be more effective than the L-shaped cluster 
(cluster 2). For clusters of 4 sub-plots, the modified triangular cluster (cluster 4) gave 
better results than the other shapes on all the key attributes; the next best shape was 
the diamond shaped cluster (cluster 8). 

When comparing the L-shaped clusters of different sizes, the ICC for cluster 9 (m=3) 
was found to be smaller than that for cluster 2 (m=5). This result was also observed in 
the line clusters (clusters 7 and 13, clusters 6 and 14). In the case of the L-shaped 
clusters of 3 sub-plots (clusters 9-12) which were designed with different directions of 
sub-plots, cluster 10 (with sub-plots to the east and south) generated better results 
than the others, except for the number of trees. In the smallest cluster size (m=3), the 
triangular cluster with a distance of 87m among sub-plots (cluster 16) had the lowest 
ICCs for all key attributes: -0.01, -0.04, and 0.46 for the volume, basal area, and 
number of trees, respectively. 
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Figure 4. 6: Intra-cluster correlation coefficients for different key attributes and 
different cluster configurations (see Figure 4.2). 
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Standard error 

The relative standard errors (SE%) of the estimation were computed from the 25 
clusters of the pilot study. The SE% for each key attribute show similar trends, as 
shown in Figure 4.7. The variations for basal area and volume were small, whereas 
the number of trees had a relatively large variability. For clusters of 3 sub-plots 
(cluster 9-16), the SE% observed had higher variability than those of the other cluster 
sizes. The differences among cluster sizes, however, were not notable; this means 
that with smaller field efforts (smaller numbers of sub-plots) the precision is not 
significantly affected. 

When different spatial arrangements for clusters of 4 sub-plots (clusters 3-8) were 
compared, the variability according to their shapes varied with the forest attributes. 
For the basal area, the modified cross shape (cluster 3) used in the 4th NFI gave the 
smallest SE% (2.4%), while for the volume (cluster 6) and number of trees (cluster 7), 
line clusters resulted in the smallest SE%. A comparison of the clusters having 
identical shapes and cluster sizes but different orientations of sub-plots (like clusters 6 
and 7, clusters 9-12 and clusters 13 and 14) was especially interesting. Significant 
differences were observed between different sub-plots orientations. When comparing 
the results of the ICC, the clusters with smaller ICCs gave more precise results, 
except for number of trees (cluster 6, cluster 10, and cluster 14). 
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Figure 4. 7: Relative standard errors for each attribute by cluster configuration. 
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4.3.2 Cost analysis 

Table 4.2 summarizes the travel and inventory times based on the pilot research 
carried out by a three-person field crew (KFS, 2004). On average, the travel time from 
the office to a starting sub-plot per cluster and back was about 134 minutes. The 
walking speed in the forest was very slow, averaging 8.3 m/minute. The times for 
inventory activities and establishment of each sub-plot were about 64 minutes and 10 
minutes, respectively. In this study, the inventory activities included not only timber-
production variables such as DBH, height, and tree species for standing trees (DBH ≥ 
6cm), but also multi-resource variables such as regeneration, dead trees, understory 
vegetation, soil attributes, etc. 

 

Table 4. 2: Summary of the time study for the pilot research (modified from KFS, 
2004) 

Description 
Average time 

required  
(in minutes) 

From the office to a closed road of a cluster 30

From a closed road of a cluster to a center sub-plot within a cluster 37

To establish a sub-plot within a cluster 10

Inventory activities per sub-plot 64

From a centre sub-plot to a sub-plot (distance : 50m) 6

Walking distance per minute 8.3m

 

The total walking distances per cluster for the two travel routes and different cluster 
configurations were simulated (see Figure 4.4). In practice, closed cluster shapes 
(square and triangle) are more efficient than open cluster shapes (line-shape) for 
equal cluster sizes. This was observed in our case: for clusters of 4 sub-plots 
(clusters 3-8), the total walking distance along travel route 1 increased from the 
square (cluster 5) to the modified cross (cluster 3), the modified triangular (cluster 4), 
the diamond (cluster 8), and the line (cluster 6 and 7), as shown in Figure 4.8.  
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Figure 4. 8: Total walking distances for the two travel routes and different cluster 
configurations. 
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Figure 4. 9: Total times for the two travel routes and different cluster configurations. 
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Travel route 2 required greater walking distances than travel route 1, except for the 
line clusters. The closed shapes (square and diamond) were particularly sensitive to 
the influence of the travel route chosen. In the case of cluster 4, the difference in total 
walking distance between the two routes was only about 26 m, whereas for cluster 5 
(square shape) the difference amounted to about 142 m. 

The costs were investigated here in terms of units of time, assuming that other costs 
(such as equipment, etc.) are constant for all cluster configurations. In the total time 
function (Equation 4-7), the cluster size (m) played an important role for determining 
the most cost-efficient cluster plot. 

Figure 4.9 depicts the total times (in minutes) for the various cluster configurations. If  
the working day is defined as 8 hours (480 minutes), clusters of 5 sub-plots (clusters 
1 and 2) cannot be carried out in a single day, while clusters of 3 sub-plots (clusters 9-
16) have a residual time of about 90 minutes. As a result, with clusters of 4 sub-plots 
(clusters 3-8) the inventory activity can be fully accomplished in one working day. With 
the square cluster (cluster 5), the travel distance was minimized, but travel route 1 
was not easy to implement in difficult field conditions. In practice, the modified cross 
(cluster 3) and triangular (cluster 4) clusters were found to be more efficient shapes 
for the given forest conditions. This is because the inventory activities could be fully 
achieved in one working day, and these two cluster shapes also reduced the errors in 
location of the sub-plots. 
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4.4 DISCUSSION AND CONCLUSION 

Cluster plots are very useful as sampling units in natural resource assessment over 
large areas, such as regional and national forest inventories. This chapter was 
conducted to determine the optimum cluster plot for Korean forests, which must 
consider both statistical soundness and cost-effectiveness. In this chapter, following 
three factors in cluster plot planning were analyzed: distance between pairs of sub-
plots, geometrical arrangement of sub-plots, and number of sub-plots. 

The pilot clusters (n=25) used in this study were randomly selected within a 
municipality unit. Although the spacing between the clusters is also an important 
factor that should influence precision, it was not addressed in this chapter. 

 

What is the optimal shape of the cluster ? 

Spatial auto-correlation is very relevant for the cluster plot optimization. It can be 
described by the covariance function of the sub-plots at a distance d apart from each 
other (Kleinn, 1994). From a statistical point of view, the covariance function is 
expected to decrease with increasing distance for typical forest settings. This means 
that a longer distance between pairs of sub-plots leads to a smaller covariance 
between observed values, and then can provide more additional information per 
cluster. However, a very long distance, such that the expected value of the covariance 
function approaches to zero ( ), is obviously difficult to achieve in natural 

populations. 

0→)dcov(

In this study, the covariance functions, however, did not decrease much more with 
longer distances beyond 150 m; this might be related to forest conditions such as 
highly fragmented forests, as shown in Figure 4.10. Under the forest conditions of the 
test area, the distance of 87m between pairs of sub-plots was found to be an efficient 
minimum distance. The covariance at this distance was lower than those at the other 
distances (50m, 71m, and 100m; found in cluster 3) as used in the 4th NFI system. 
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Figure 4. 10: An example: forest 
strata per sub-plot within a cluster 
(C; coniferous forest, H; 
deciduous forest, and M; mixed 
forest) 

 

What is the optimal sample plot configuration ?  

The ICCs for the given cluster configurations were computed to evaluate the 
homogeneity among sub-plots per cluster configuration. From a purely statistical point 
of view, open shapes like the line and L-shape are superior because of their larger 
spatial arrangement and the larger average distances between pairs of sub-plots. 
Additionally, they are usually better when the intra-cluster correlation is lower (Kleinn, 
1994; 1996). In this sense, given a constant cluster size, the line-shaped clusters 
(clusters 6 and 7) are the preferable shape. However, in practice, it is better to use 
compact closed shapes such as a square (cluster 5) and a triangle (cluster 16), which 
reduce the walking distances per cluster. The cross-shaped cluster (cluster 1) is not 
preferable due to the relative proximity of the sub-plots. 

The ICC for the cross shape (cluster 1), however, was smaller than that for the open 
cluster shape (L-shape, cluster 2) at the same cluster size (m=5). This result was also 
observed in the clusters of 4 sub-plots: the ICC for the line cluster (cluster 7) was 
higher than those for the modified triangular clusters (clusters 3 and 4). This means 
that in the natural environment, the correlation between sub-plots must be more 
sensitive to the forest structure and landscape conditions than to their shape and size. 
In the given pilot cluster, despite having the smallest cluster size (m=3), the triangle 
shaped cluster (cluster 16) had a smaller ICC for all key attributes. It is concluded that 
this cluster plot can provide more information than the others. 
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However, Kleinn (1996) pointed out that it is not possible to identify one cluster shape 
as generally superior, as the cluster shape also relies on the cost function to ensure 
that it will be practical in the field. In some simulation studies on cluster plot 
optimization (Kleinn, 1994; Tokola and Shrestha, 1999), the differences in precision 
between different cluster shapes were minor. In this study, however, the SE% was 
affected more cluster shape than by cluster size (Figure 4.7). This result may be 
relevant to the Korean forest conditions such as the complexity of landscape and 
forest structure. 

 

What is the optimal cluster size ? 

In this study, the cluster sizes were limited to the range of 3 to 5 sub-plots per cluster, 
and then analyzed by relative standard errors for the cluster sizes and cluster shapes 
(Figure 4.7). The difference in SE% between the cluster sizes of 4 and 5 was merely 
about 1%. In addition to the optimal cluster size, the cost of field operations then 
becomes a major factor when determining the cluster size and allocation of a sample. 
According to the pilot time survey for the multi-resource inventory (Table 4.2), the 
inventory time per sub-plot (about 60 minutes) increases with increasing number of 
the forest variables of interest, compared to the 4th NFI system. Assuming that this 
inventory time per sub-plot is constant, this time is an important factor in determining 
the optimum cluster size. As a result, clusters of 5 sub-plots could not be surveyed in 
one working day, as shown in Figure 4.9. 

In South Korea, most of the working time is spent on reaching the target sample point 
due to the low forest road density (below 3 m/ha) (KFS, 2004a). In the pilot study, the 
traveling times accounted for about 30% of the total working time (Table 4.2). 
Moreover, it is difficult to reach the correct field location due to the complexity of the 
landscapes and forest structure. To address this concern, two travel routes were 
compared to minimize walking distance and to reduce location errors. Although the 
total walking distances for the closed shapes responded differently to the travel routes, 
the difference in total working time was small. Particularly in multi-resource forest 
inventories, the total working time is affected more by the time for inventory activities 
per sub-plot than by the traveling time. 
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Consequently, the search for the most efficient cluster plot in difficult forest conditions 
is more driven by practical restrictions of accessibility, forest conditions, and user 
objectives than by statistical characteristics. 

Although numerous forest attributes have been collected in the field, for this study 
only timber-oriented attributes were analyzed. In addition, the pilot field data were 
collected in a specific small area. There are more research needs to develop an 
efficient cluster plot for the Korean NFI: (i) field data to cover the forest conditions 
over the whole country are required; (ii) key attributes of interest in the field inventory 
must be determined before plot design planning; and (iii) the plot design cannot be 
performed independently but must be dependent on a given sampling design, i.e., 
spatial distribution of samples. 
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5. SAMPLING DESIGN OPTIMIZATION 

5.1 INTRODUCTION 

In South Korea, the process of National Forest Inventory began in 1971 and a 
stratified systematic sampling with cluster plots was applied. Forest cover types were 
identified and delineated from 1:15,000 black and white aerial photos and then used 
as stratification criteria for field sampling. Despite the increasing need for information 
on forest resources and technological development, the inventory design remained 
the same until the 4th NFI (1996-2005). The main goal of the NFI was to provide 
information for the reforestation plan over the destroyed forest areas. Thus, the NFI 
addressed estimates of the total growing stock for the entire country, as well as for 
different stratifications such as forest cover types, dominant tree species, age classes, 
etc. for forest conditions, ownerships, and administrative units. 

At the planning stage of the NFI, a total sample size for the entire country was 
determined to fulfill a specified precision requirement of the total growing stock. For 
the NFI, a rotation system by provinces was applied and therefore the total sample 
size was divided into ten sub-sample sizes by provinces. This means that the NFI was 
carried out in one province per year over a 10-year period. Thus, the NFI could not 
provide reliable information for the entire country at the same time (KFS, 2002). 

Currently, the NFI is in its fifth cycle (2006-2010) and has been reorganized and 
expanded to provide information for sustainable forest management. The inventory 
design has changed to a systematic cluster sampling and the NFI has been carried 
out in about 20% of the total sample size over the entire country per year (KFRI, 
2006). However, to search the most efficient sampling design for forest resource 
assessment, more statistically based foundational research is required. Most of the 
research on sampling design for forest resources inventory was conducted on small 
study areas in the 1960s by Kim (1965, 1966, and 1973). Since then, there have been 
few studies on this topic (KFS, 2005; Shin and Han, 2006). 

Many different sampling techniques for forest inventories have been suggested. Two 
of the basic sampling designs are random sampling and systematic sampling. In large 
area forest inventories, systematic sampling has been widely applied because 
systematic samples are well-spread across the population and give several 
advantages in practice. Another design is stratified sampling, which helps to reduce 
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the error variance in many cases. Stratification can take two forms, depending on 
whether the ancillary information is used before or after the sample selection: pre-
stratification (mostly, stratified sampling) and post-stratification. Stratified sampling is 
feasible when the entire population can be divided into different sub-populations (e.g. 
forest cover types) since samples are independently selected in each stratum. This 
can be performed on maps, aerial photographs, or satellite imagery. Post-stratification 
can be combined with different sampling designs, for example, systematic sampling 
with post-stratification (Saborowski and Cancino, 2007). In this approach, samples 
are taken under a given sampling design and are then stratified into strata; that 
means in the samples a categorical or indicator variable is recorded as stratification 
criterion. These variables indicate which sample belongs to which stratum. 
Furthermore, the three major sampling designs may be used not only individually, but 
also in combination with different sampling designs such as in two or multi-stage 
sampling and multi-phase sampling (Lanz, 2000). 

Alternative sampling designs for forest inventories can be evaluated and compared by 
several means. One way is to carry out actual inventories in a target forest (Kim, 
1973; Saborowski and Cancino, 2007). Under normal circumstances, however, the 
necessary sample sizes in the evaluation of each sampling design cannot be realized 
over a large area. Computer simulations offer a cheaper and more flexible possibility. 
The main advantages of simulations are that they allow controlled experimentation 
and sensitivity analyses. Scott and Köhl (1993) developed an interactive computer 
program for an extensive forest inventory, called SIZE, which is able to simulate 
alternative sampling designs using combinations of several characteristics such as 
sampling designs, sample sizes, cost function, and precision levels.  

In recent years, artificial populations for relatively large areas have been computed 
and generated by combining information from digital satellite data and ground truth 
data. Notwithstanding the drawbacks of artificial populations, which include deviations 
from reality, they also allow for the simulations of various sampling designs such as, 
for example, estimation of land use for systematic sampling from a land use classified 
image (Dunn and Harrison, 1993), cluster plot optimization (Tokola and Shrestha, 
1999), and sampling simulation for small area statistics using outputs of a large area 
forest inventory (Katila and Tomppo, 2006). 
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The objective of this chapter is to optimize sampling design for the Korean forest 
conditions. To achieve this objective, different sampling designs and sample grid sizes 
are simulated and compared on the basis of an artificially generated forest population 
for a municipality area. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Artificial forest population 

In order to simulate various sampling designs, an artificial forest population was 
derived from the results elaborated in chapter 3. This procedure consists of the 
following three main steps: 

• Modeling of a forest attribute of interest (growing stock map); 

• Production of a forest cover map for stratification; 

• Generation of an artificial forest population by combining the two thematic maps. 

Using the k-NN technique, thematic maps of growing stock, forest/non-forest classes 
and forest cover types over the test area (Yang-Pyeong County) were generated with 
the characteristics listed in Table 3.8. 

 

5.2.2 Simulation of sampling designs 

The following four sampling designs that have been most commonly applied to large 
area forest inventories were compared:  

 stratified systematic sampling,  

 systematic sampling,  

 systematic sampling with post-stratification, and  

 systematic cluster sampling.  

The characteristics of different sampling designs are summarized in Table 5.1. 
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Table 5. 1: Summary of characteristics for different sampling designs (Cochran, 1977; 
Johnson, 2000; Köhl et al., 2006) 

Sampling design Advantages Disadvantages 

Stratified random 

Sampling 

(STR) 

- more precise than SRS 

- estimations 

  for each stratum 

 

- need for ancillary information 

  for stratification 

- time-consuming & expensive 

- complex to organize samples 

Systematic sampling 

(SYS) 

- more precise than SRS 

- simple to implement  

- simple to explain & control 

- well distributed samples  

- easy to combine with other 

sampling designs 

- lack of randomization of  

samples 

- no general unbiased  

estimator 

- “auto-correlation” between  

samples 

Stratified systematic 

Sampling 

(sys+pre) 

- more precise than STR  

- well distributed samples  

- simple to organize samples 

  than STR 

- need for ancillary information 

  for stratification 

- time-consuming & expensive 

Systematic sampling 

with  

post-stratification 

(sys+post) 

- estimations 

for each stratum 

- meaningful sub-division 

- quicker & less expensive  

than STR  

- unknown sample sizes  

for each stratum  

- laborious & dubious  

for stratification 

- need for definitions of strata 

at a field observation level 

Systematic cluster 

Sampling 

(sys+clu) 

- more information  

- more precise for an equal 

  sample size 

- cost-effective 

- need for the optimum 

cluster plot as the sampling 

unit 
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Stratified sampling 

In the Korean NFI, there are several possible types of stratification such as forest 
cover type, age class, DBH class, etc. for forest conditions, ownership, and political 
units (KFRI, 1996). The stratification by forest conditions is performed with aerial 
photographs. This study used the generated thematic map of forest cover types as 
the basis for stratification. Since the stratum sizes in the artificial population could be 
easily calculated from the thematic map, the proportional allocation method was 
adopted. The mean of estimates was computed as follows:  

Mean ∑ ∑
= =

==
L

h

L

h
hhhhst yN

N
yWy

1 1

1
 (5-1) 

where hy : estimated mean per stratum h,  

           Nh : stratum size, and 

           Wh : stratum weight.         

 

Systematic sampling 

Systematic sampling comprises a large group of sampling designs that have one 
important characteristic from a statistical point of view: the lack of randomization of 
the sample to be selected. In other words, only the selection of a starting point is at 
random and from this random starting position, the remaining sample points of the 
sampling procedure follow a pre-defined pattern. Despite the problems with variance 
estimation, systematic sampling has a series of advantages with respect to practical 
and statistical considerations (Table 5.1). For these reasons, systematic sampling is 
popularly used for large area forest inventories in many counties. Applying the SRS 
estimators to systematic sampling produces a conservative estimation of standard 
error; that is, the true standard error is commonly over-estimated. 

When systematic sampling is applied, the spatial spacing between samples is an 
important factor that should influence precision. The spatial spacing applied for large 
area forest inventories vary with countries and forest conditions. In this study, four 
sample grid sizes (1km, 1.5km, 2km, and 4km) were compared. 
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Stratified systematic sampling 

There are cases in which the systematic sampling can be combined with stratified 
sampling. Stratified systematic sampling is similar to STR except that the sample 
points are systematically selected within each stratum, where starting points are 
independently determined for each stratum. This design was applied in the last NFI 
with a square grid size of 1km (KFRI, 1996). 

Through actual sample sizes and stratum weights for each stratum are variable 
because the starting points are randomly selected for each simulation and therefore it 
is not possible to exactly determine the sample size before the sample is selected 
(Kleinn, 2007). However, since this design uses pre-defined strata and their stratum 
weights, the estimators for stratified sampling are taken into account (Table 5.2). 

 

Table 5. 2: Mean estimators for the simulated systematic sampling designs (Cochran, 
1977; Johnson, 2000) 

Sampling designs Mean estimator 

Stratified systematic sampling ∑
=

=
L

h
h

h
sts y

N
N

y
1

 

Systematic sampling  

with post-stratification 
∑
=

=
L

h
hhpost yWy

1

'  

Systematic cluster sampling 
∑
∑=

i

i
clu m

y
y  

where   n : total sample size,                               L : number of strata,  

nh : sample size for each stratum h,      hy : estimated mean per stratum h, 

W h
' : stratum weight per stratum h for post-stratification, 

iy : total per cluster i , and  

mi : cluster size per cluster i.      
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Systematic sampling with post-stratification 

In systematic sampling with post-stratification (sys+post), samples are systematically 
selected across an entire population and the selected systematic samples are post-
stratified into strata by their indicator variable. In this technique, the stratum 
proportions are estimated from the proportion of samples in each stratum. Thus, the 
optimal sample sizes for each stratum are unknown. The stratum weight (W ) for 
each stratum (h) may then be estimated as . In this study, selected 

samples were post-stratified based on the thematic map of forest cover types such as 
pre-stratification. 

h
'

nnW hh ′′= /'

 

Systematic cluster sampling  

This design uses a cluster plot consisting of various sub-plots instead of a single plot. 
Under systematic sampling, clusters are distributed across the whole population using 
the pre-defined systematic intervals. This study employed the cluster plot design 
(m=4) developed in Chapter 4 as a sampling unit. 

In most applications of clusters for natural resources assessment, clusters contain 
different numbers of sub-plots. In this case, the ratio estimator can be applied (Table 
5.2), with the cluster size serving as an ancillary variable. 

 

5.2.3 Comparison 

Sampling error 

Because the samples are only a subset of the total population, each estimate for any 
given sampling design will contain an error, so called “sampling error”. The results of 
repeated data collections using the same sampling design have a certain variance, 
which is due to the randomness of the sample. This variance can be estimated 
through a Monte Carlo simulation with 1000 repetitions, in which samples for each 
simulation are independently and identically distributed (Engeman et al., 1994). The 
variance is most easily calculated as follows: 
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where  k  : the number of simulations,  

iy  : the estimated mean of the i-th simulation, and  

y~   : the mean of the estimated means by repeated simulations. 

In this estimator, the denominator k-1 was used to estimate an unbiased variance in 
sampling with replacement. The square root of this variance is the standard error. 

 

Relative efficiency 

The relative efficiency is given by two unbiased estimators z1 and z2 of a variable z 
with variances Var (z1) and Var (z2), respectively. The efficiency of z1 relative to z2 is 
given by 
 

( )
( )zVar
zVar
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zRE
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2
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⎞
⎜
⎜
⎝

⎛  . (5-3) 

In this study, the variance Var (z1) is calculated from SRS as a baseline and the 
variance Var (z2) is estimated for the simulated systematic sampling designs. If the 
efficiency is greater than 1, SRS is preferable; conversely, if its value for a candidate 
design is less than 1, this design is more precise than SRS. 
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5.3 RESULTS 

5.3.1 Artificial forest population 

In this study, the forest area in an artificial model forest consists of cells (or pixels) of 
25 m, and the set of cells within the forest forms the population, as shown in Figure 
5.1. In the NNC classified image, the forest area is 73,189 ha. About 38% (28,094 ha) 
of the total forest area is covered by coniferous forests, 36% by deciduous forests, 
and 25% by mixed forests (Table 5.3). 

The parametric mean of growing stock per pixel and for each stratum is summarized 
in Table 5.3. The parametric mean value are calculated to be 7.16 m3, 7.01 m3, 6.95 
m3 per unit for coniferous, broadleaved, and mixed forests, respectively. In the case of 
the mixed forest, its variance is highest, which means that the variability among 
elements is larger than the other forest cover types. The difference in variance 
between strata, however, is very small. 

 

Table 5. 3: Summary statistics of growing stock (m3) per pixel unit (0.0625 ha) for 
each stratum for the given artificial forest population 

Classification Area (ha) Mean 
(m3) 

Min. 
(m3) 

Max. 
(m3) 

Variance 
(m3)2

 

Coniferous 28,094 7.16 1.44 12.64 3.16

Deciduous 26,522 7.01 1.19 12.44 3.00Sub- 
Population 

Mixed 18,573 6.95 0.94 12.75 3.19

Population 73,189 7.06 0.94 12.75 3.12

Variance: the variance per element of the population and sub-populations  
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Figure 5. 1: Thematic maps used as an artificial forest population in this study: forest 
cover types (top) and growing stock per hectare within the forest (bottom). 
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5.3.2 Sampling simulation  

Sampling error 

Each sampling design was simulated with different sample sizes without replacement 
and was repeated 1,000 times, respectively. When systematic sampling is applied, 
sample size is a random variable that varies with sample grid size (1km, 1.5km, 2km 
and 4km) and starting point for each simulation. Thus, mean sample size was 
computed for each grid size. Simple random sampling (SRS) as a baseline was 
compared to the simulated systematic sampling designs. 

For evaluating the benefit of stratification (forest cover types), stratified random 
sampling was compared to SRS (Table 5.4). For the smallest sample size (n=50), the 
sampling error of STR was slightly less than that of SRS, while for the other sample 
sizes, the difference in sampling error was similar. 

 

Table 5. 4: Summary of estimations by simulation for different sample sizes under 
stratified random sampling and simple random sampling 

 Sample size 3,000 2,000 1,000 500 100 50 

Mean (m3) 7.053 7.054 7.053 7.052 7.047 7.055
Error 

variance 0.0011 0.0016 0.0031 0.0066 0.0318 0.0587

SE 0.03 0.04 0.06 0.08 0.18 0.24

Stratified 
random 

sampling 

SE% 0.48 0.56 0.79 1.15 2.53 3.43

Mean (m3) 7.055 7.054 7.055 7.056 7.061 7.056
Error 

variance 0.0011 0.0015 0.0033 0.0059 0.0316 0.0619

SE 0.03 0.04 0.06 0.08 0.18 0.25

Simple 
random 

sampling 

SE% 0.46 0.55 0.81 1.09 2.52 3.53

SE : standard error                    SE%: standard error of the estimated mean 
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The SE% for systematic sampling (SYS), ranging from 0.81% to 3.54%, was smaller 
than that for SRS, except for the grid size of 4km. The SE% for the largest sample 
size was about four times smaller than that for the smallest sample size. This result 
was also observed for the other simulated systematic sampling designs, as presented 
in Table 5.5. The sampling error for stratified systematic sampling was slightly higher 
than that for SYS due to pre-defined stratum weightings. 

For reducing costs and obtaining improved precision through stratification, systematic 
sampling with post-stratification was applied. The SE% for this design ranged from 
0.80% to 3.60% and was slightly less than that for stratified systematic sampling. 
Furthermore, this design yielded slightly more precise results than SYS when n ≥ 183. 

Systematic cluster sampling was superior to the other sampling designs, as 
presented in Table 5.5. Additionally, as the distance between grids gets smaller, i.e., 
as sample size increases, the precision becomes increasingly higher. In contrast to 
other sampling designs that include only one element, the cluster plot consists of four 
elements per cluster. 

With respect to the distances between samples, a greater improvement in sampling 
error was observed between the sample grid sizes of 4km and 2km for all simulated 
systematic sampling designs. The decrease in sampling error was relatively small 
compared to the increase in the number of samples from 183 to 732. 
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Table 5. 5: Summary of estimations by sample size for different sampling designs 

Sample size 732 325 183 46
Mean (m3) 7.055 7.057 7.055 7.066

Error variance 0.0039 0.0095 0.0174 0.0580
SE 0.06 0.10 0.13 0.24

Simple random 
sampling 

SE% 0.89 1.38 1.87 3.41

Grid size  1km*1km 1.5km*1.5km 2km*2km 4km*4km 

Sample size* 732 325 183 46
Mean (m3) 7.058 7.054 7.063 7.065

Error variance 0.0033 0.0083 0.0162 0.0641
SE 0.06 0.09 0.13 0.25

Systematic 
sampling 

SE% 0.81 1.29 1.81 3.54
Sample size* 734 326 185 48

Mean (m3) 7.056 7.055 7.054 7.073
Error variance 0.0038 0.0090 0.0165 0.0685

SE 0.06 0.09 0.13 0.26

Stratified 
systematic 
sampling 

SE% 0.87 1.34 1.82 3.70
Sample size* 732 326 183 46

Mean (m3) 7.056 7.056 7.057 7.067
Error variance 0.0032 0.0079 0.0158 0.0644

SE 0.06 0.09 0.13 0.25

Systematic 
sampling with post-

stratification 

SE% 0.80 1.26 1.78 3.60
Sample size* 730 325 184 46

Mean (m3) 7.011 7.004 7.008 7.01
Error variance 0.0012 0.0045 0.0071 0.031

SE 0.03 0.07 0.08 0.18

Systematic cluster 
Sampling 

SE% 0.49 0.95 1.20 2.51
Sample size* : mean sample size according to systematic selection 
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Relative efficiency 

The error variance for SRS was used as a baseline to calculate relative efficiency. 
Figure 5.2 depicts the relative efficiency as a function of sample size. The efficiency of 
the sampling designs using the pre-stratification (STR and sys+pre) was small. For 
the simulated systematic sampling designs, the efficiency was higher than SRS, 
which increased with increasing sample size. When the same sampling effort was 
used, on average systematic sampling with post-stratification (sys+post) had the 
highest efficiency. The efficiency of systematic cluster sampling for all sample sizes 
was about two times higher than that of SRS. 
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Figure 5. 2: Relative efficiency for sample sizes; sampling designs: SRS (simple 
random sampling), STR (stratified random sampling), SYS (systematic sampling), 
sys+pre (stratified systematic sampling), sys+post (systematic sampling with post-
stratification), and sys+clu (systematic cluster sampling). 
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5.4 DISCUSSION AND CONCLUSION 

The objective of this chapter was to develop the optimum sampling design in Korean 
forest conditions. In order to simulate various sampling designs, an artificial forest 
population was built from the results of Chapter 3. 

According to Scott and Köhl (1993), the most efficient sampling design is seldom 
simple and easy to understand. Hence, they suggested that despite a loss in 
statistical efficiency, a simple design can be more practical for large area forest 
inventories. In this study, five simple sampling designs were employed as candidates 
for the most efficient sampling: stratified random sampling, stratified systematic 
sampling, systematic sampling, systematic sampling with post-stratification, and 
systematic cluster sampling. 

It is a known fact that the efficiency of stratified sampling depends upon the 
stratification. In the last NFI, the characteristics of stratification (e.g., stratum weight) 
for the forest conditions, however, were not used for the allocation of the samples. 
These stratifications were only used to select samples within each stratum and to 
estimate total growing stocks (KFRI, 1996). Aerial photos were used to identify the 
information about stratification criteria for forest conditions. However, photograph-
based stratification process was laborious and expensive (Kim et al., 1989). Since 
aerial photographs were mainly used to estimate areas for different stratifications by 
forest conditions, the characteristics of the forest conditions would not contribute to 
the precision of estimates (Shin et al., 2002). 

In the given artificial forest population, the differences in mean and variance of 
growing stock between strata are similar (Table 5.3), because the forest population 
was derived from a small number of samples. This means that there is not much 
benefit to stratifying the given population by forest cover types. If each forest cover 
type is sub-stratified into age classes which are closely correlated to growing stock, 
then the benefit of stratification can be realized. 

In pre-stratification procedure, there are several factors utilized for the selection of 
samples such as stratum weight and stratum size, and sample size under stratified 
systematic sampling. These factors are sensitive to conditions of the strata at a point 
in time. If the stratification criteria change over time, the factors must change 
according to the given strata at different times. The stratifications can be divided into 
two types; political units and ownerships are time-invariant, whereas stratification 
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criteria for forest conditions are time-variant. In the last NFI, the samples were 
selected depending upon forest conditions so that they may change at a future time. 
Considering the objective of the current NFI that provides reliable information about 
forest resources and monitor their change over time as well, pre-stratification by time-
variant variables (e.g. forest types) is inappropriate to the task of monitoring forest 
resources for changes (Scott, 1998). 

Categorical information about such forest conditions can be obtained through post-
stratification. When compared to pre-stratification, the variance of the post-
stratification estimator is usually higher because strata sizes are estimated. In this 
study, post-stratified systematic sampling, however, gave more precise estimations 
than stratified systematic sampling (Table 5.5). It is concluded that post-stratification 
is to be a very useful and cost-effective approach for large area forest inventories. In 
order to apply this approach to the Korean NFI, it is necessary to have clear 
definitions of forest strata per field observation unit (e.g., forest cover types per sub-
plot). If an automated process cannot be used to stratify, or if the strata are not clearly 
defined, not only can it be a difficult and time-consuming task for the field crew, but it 
may also cause classification errors depending on the interpreter’s decision. 

The current NFI has adopted systematic sampling. In this NFI, a sample grid size of 4 
km, which is driven by the pre-defined total sample size in the last NFI, has been 
applied (KFRI, 2006). Although the spatial spacing between samples is an important 
factor that affects the precision, it was not considered in the allocation of samples, 
because the total sample size was affected more by the specified precision 
requirement and budget available. In terms of forest proportion by region over the 
country in South Korea, the southwestern region is low flat land with a small forest 
proportion on average, whereas the northeastern region (in particular Kyung-Buk and  
Kangwon provinces) includes highly mountainous areas with a large forest proportion 
(KFS, 2004a). In this context, there is a need for more research on an appropriate 
spatial spacing based on the forest characteristics of the population and provinces: for 
example, the sample grid sizes for the German NFI varied by states (BMVEL, 2001). 
The application of varying sample grid sizes via forest proportions is expected to 
improve the precision at the national and provincial levels. 
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In South Korea, most of the time within one working day has been spent to reach the 
samples due to the limited accessibility and difficult terrain. According to a pilot time 
study (KFS, 2004a), the average travel time from an office to a sample is at least two 
hours. In addition, the forest variables of interest in the field increase to provide multi-
sources information and then the inventory time per sample is required more than one 
hour. Consequently, it is hardly possible to measure more than two samples within 
one working day. In order to reduce the traveling time and obtain more additional 
information at each sample, a cluster plot as the sampling unit was applied.  When 
comparing different plot designs (one element and four elements per cluster), for 184 
samples, the one element design requires at least 92 days, whereas the cluster plot 
design requires only 46 days. Nevertheless, the difference in sampling error between 
the two plot designs was small (Table 5.5). 

The scope of the Korean NFI is expanded to support sustainable forest management 
planning. In this context, the forest variables of interest in the field are increasing and 
therefore the optimum sampling design for field data collection is needed. The NFI 
also provides data and information for the entire country, as well as for different 
stratifications. In order to obtain stratifications by forest conditions, either ancillary 
information is required (pre-stratification), or the collected samples have to be post-
stratified. While the former may be expensive and time-consuming, the latter might be 
laborious and the stratification procedure may be indefinite. If the objective is to 
obtain estimates for the entire country, systematic sampling is considered to be the 
most cost-efficient and practical sampling design. It not only achieves the objective, 
but the systematic sample is fixed and therefore allows the monitoring of net changes 
in forest resources over time. Since using a cluster plot reduces traveling costs, it can 
provide more information at lower cost. Moreover, if strata per field observation unit in 
systematic cluster sampling are clearly defined, estimates for different stratifications 
can also be provided and the precision can be improved by means of a post-
stratification procedure. 
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6. OVERALL CONCLUSION 

In large area forest inventories, methodological research is focused heavily on remote 
sensing and sampling issues and deals with the question of how to efficiently combine 
the two. In this context, this thesis addresses the integration of satellite imagery with 
forest inventory data from the Korean NFI and sampling design issues. 

With the development of remote sensing, GIS, and GPS techniques, the use of 
satellite data increases, particularly natural resources assessment over large areas. 
In this thesis, their possibility into the Korean NFI was evaluated. Even though there 
are a variety of errors in the application of satellite imagery, digital satellite data can 
represent reasonably useful and cost-effective data source for forest cover 
classification and forest attribute estimation. In the current NFI cycle, GPS-based field 
data have been collected annually over the entire country and then can easily 
combine with digital satellite data. With respect to the definition of forest, the 
difference in minimum area per observation unit may affect classification accuracy. In 
order to successfully integrate digital satellite data into the Korean NFI, there are 
needs for more research on the selection of a suitable satellite imagery regarding plot 
design and user objectives, and post-classification processing to correspond to the 
definition of the forest in the Korean NFI. 

What is the optimum sampling design for the Korean NFI? This thesis was carried out 
to assist in arriving at the answer to this question. For the NFI, sampling design would 
be determined to fulfill a specified precision and to achieve its objective for a limited 
budget. When considering difficult forest conditions in Korea, systematic sampling is 
the more efficient sampling design and allows the monitoring of net changes in forest 
resources over time. With respect to sample allocation, there is a need for more 
research relevant to spatial and forest proportions by regions over the entire country. 
The most optimal cluster plot design is driven more by practical restrictions and user 
objectives rather than statistical characteristics. 

Consequently, in order to efficiently implement a forest inventory, it requires clear 
definitions per observation unit. In the both issues, there are many advantages of 
post-stratified samples with respect to statistical and economical grounds. In order to 
fully achieve post-stratification procedures to the Korean NFI, it is necessary to have 
clear definitions of strata of interest per field observation unit. 
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7. SUMMARY 

The required information about forest resources has been gradually increased not 
only for timber-oriented attributes but also non-timber goods and services, including 
biodiversity. Frequently, however, the budget available for its implementation is not 
sufficient to fulfill all these demands. Efficient inventory techniques that help 
guarantee reliable information for a specific situation are in demand. 

Recently, the Korean NFI has been reorganized and expanded to support sustainable 
forest management also on a more small area level. Despite several advantages of 
digital satellite data, these data are still not integrated into the NFI. Sampling and plot 
designs for field surveys need more attention to research for optimization, considering 
both statistical soundness and cost-effectiveness. 

One of the major points in optimizing the Korean NFI and therefore in many other 
inventories as well is to attempt to reduce field work efforts and provide more detailed 
information about forest resources. This should be done not only at a national level 
but also at a small area level, by efficiently integrating digital satellite data and forest 
inventory data (Chapters 2 and 3) and by optimizing sampling and plot designs 
(Chapters 4 and 5). 

Forest cover maps, which are used as an important baseline for forest managers and 
other policy makers, are a key product of the Korean NFI. Sine 1970s, aerial 
photographs have been used to produce these maps. However, the use of aerial 
photographs may not be suitable for forest cover classification over large areas due to 
the ability to repeatedly obtain photographs, the uncertainty of interpretation process, 
cost-effectiveness, etc. With the development of remote sensing and GIS 
technologies, the application of digital satellite data is possible to enhance natural 
resources assessment. Despite several advantages of them, these data were not fully 
used for forest cover classification in the Korean NFI yet. In Chapter 2, the possibility 
of satellite remotely sensed data for forest cover classification in Korean forests is 
evaluated. In order to reduce radiometric distortions in mountainous regions, Landsat 
TM imagery was topographically normalized using the Minnaert constant method. In 
the image classification process, field data per sub-plot from the NFI were served as 
training data. Classified images by two pixel-based classifiers, Maximum likelihood 
(MLC, parametric approach) and Nearest Neighbor (NNC, non-parametric approach), 
were produced and compared with exiting digital forest maps from interpretation of 
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aerial photographs. The accuracy for NNC was superior to MLC and the digital forest 
maps. Moreover, a NNC-classified image was close to a classification result from field 
plot data. When comparing the NNC-classified image with the digital forest maps, it 
appears that there are different definitions of observation unit; a minimum area of the 
forest defined for aerial photograph interpretation is much larger than that for satellite 
data classification which is dependent upon the spatial resolution of satellite data to 
be used. There is a need for more research on post-classification processing to 
improve the quality of classifications and to correspond to the definition in the NFI. 

Field plot data from a large-area forest inventory may not provide reliable information 
for a small area at a municipal level, since a number of available samples is small. 
The relationship between spectral features on satellite data and forest characteristics 
is observed and then imputation procedures have been applied to estimate forest 
attributes across an entire area of interest, which is covered by remotely sensed data 
to be used. As an imputation procedure, the k-Nearest Neighbor (k-NN) estimator that 
is one of non-parametric regressions has been widely applied. In this procedure, the 
similarity between observations and un-observations is usually determined based on 
distances in feature spaces. In Chapter 3, the potentiality of the k-NN technique in 
Korean forests is analyzed, including different satellite sources, distance-weightings 
for neighbors and for spectral features, image enhancement, and stratification for the 
selection of reference samples. The forest of a test area has a relatively small 
variation in growing stocks since it is relatively young, mostly less than 50 years old. 
Despite a small sample size (191 sub-plots) that served as training data, the precision 
of estimates obtained for growing stock was relatively small, ranging from 40 to 60% 
in relative RMSE. When comparing two satellite images, the precision using ASTER 
was slightly better than that obtained using Landsat ETM+. The use of ASTER 
imagery for large area inventories, however, may be expensive and this represents a 
trade-off between precision and budget. The application of stratification for the 
selection of reference samples at a target point, particularly based on forest 
conditions, can improve the precision and preserve the variability of observations as 
well. In this study, the effectiveness of stratification, however, is not achieved because 
a number of available reference samples for each stratum is different and relatively 
small. Despite the inherent sources of errors using the k-NN technique, the k-NN map 
that is generated allows for supporting forest management plans and for reporting 
forest statistics for large- and small-area units. 
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Consequently, in order to fully integrate digital satellite data into the Korean NFI, the 
following factors must be taken into consideration: (i) selection of a suitable satellite 
sensor regarding the plot design and user objectives, (ii) accurate information of field 
plot locations for spatial matching them to digital maps and satellite data, and (iii) 
clear definitions of strata of interest per field observation unit. 

The last Korean NFI cycle (1996-2005) used a stratified systematic sampling with 
clusters. Since the inventory was implemented with a rotation system by province 
over a 10-year period, it is hardly possible to provide reliable information about the 
forest resources for the entire country at the same time. In regard to plot design, a 
cluster plot was designed completely on empirical findings rather than scientific 
grounds. Moreover, as the required information in the field is increasing, it becomes 
necessary to develop the most efficient sampling strategy for the NFI, for which three 
basic design elements must be considered: sampling design, plot design, and 
estimation design. 

In order to develop the most efficient cluster plot as a plot design, a pilot study is 
carried out in Chapter 4. When optimizing a cluster plot, several questions are 
relevant: distance between sub-plots per cluster; spatial arrangement of sub-plots; 
and cluster size with respect to statistical efficiency. To answer these questions, three 
statistical criteria are taken into account; covariance function, Intra-cluster correlation, 
and standard error as a criterion of precision. In addition, a cost function as an 
economic criterion also has to be developed. To address these criteria, a pilot cluster 
plot consisting of 10 sub-plots (n=25) was empirically designed and collected in a 
small area. In this study, 16 cluster configurations that are able to implement within a 
single working day were employed as candidates for the most efficient cluster plot. 
From covariance functions for key attributes (growing stock, basal area, and tree 
density), a distance of 87 m between pairs of sub-plots was found to be an efficient 
minimum distance. The precision was affected more by cluster shape than by cluster 
size. When clusters of 5 sub-plots were applied, the cluster size was not 
accomplished within one working day because much more inventory times per sub-
plot are needed in a multi-resource forest inventory. Accordingly, from the results of 
both statistical and practical efficiencies, a modified triangular-shaped cluster of 4 
sub-plots was found to be the most efficient cluster plot under the conditions of the 
test area. Although numerous forest attributes are collected in the field, for this study 
only timber-oriented attributes (growing stock, basal area, and tree density) were 
analyzed. Moreover, the pilot field data collected cover in a specific small area. There 
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are more research needs to develop an efficient cluster plot for the Korean NFI: (i) 
field data to cover the forest conditions over the whole country are required; (ii) key 
attributes of interest in the field inventory must be determined before plot design 
planning; and (iii) the plot design cannot be performed independently but must be 
dependent on a given sampling design, i.e., spatial distribution of samples. 

With regard to sampling design optimization, an artificial forest population for growing 
stock and forest cover types as stratification criterion was generated from the results 
in Chapter 3. Several sampling designs that have been mostly applied for large area 
forest inventories were simulated, including systematic sampling, stratified systematic 
sampling, systematic sampling with post-stratification, and systematic cluster 
sampling. When systematic sampling is applied, the spatial spacing between samples 
is an important factor that should influence precision. In this study, four sample grid 
sizes (1km, 1.5km, 2km, and 4km) were compared. Error variances for different 
sampling designs and different sample sizes were estimated through a Monte Carlo 
simulation with 1000 repetitions. In addition, relative efficiency was also compared, in 
which the error variance for simple random sampling used as a baseline. In general, 
pre-stratified sampling produces higher precision as the difference in parametric 
variance between strata is larger. In the given population, since the difference 
between strata is small, the benefit of stratification could not be realized. In addition to 
pre-stratified sampling, this procedure requires ancillary information for obtaining 
stratification criteria such as forest cover types and therefore is expensive. 
Accordingly, systematic sampling was to be the most cost-efficient and practical 
sampling design. This procedure also allows the monitoring of net changes in the 
forest resources over time. When comparing same sampling efforts, systematic 
sampling with post-stratification was superior to the others. It is concluded that post-
stratification is a very useful and cost-effective approach because it not only achieves 
the objective, but can improve the precision. In order to apply this approach to the 
Korean NFI, it is necessary to have clear definitions of forest strata per field 
observation unit. In the simulated systematic sampling design, a greater improvement 
in sampling error was observed between grid sizes of 2km and 4km. However, the 
decrease in sampling error was relatively small compared to the decrease in sample 
grid size from 2km to 1km. Due to difficult forest conditions in Korea most of the time 
within one working day is spent on reaching the samples. Since using a cluster plot 
as plot design reduces traveling costs, it allows the collection of additional information 
at lower cost. 
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9. ANNEXES 

Annex. 1: General forest strata and their description in the Korean NFI (KFRI, 1996). 

Classification Label Description 

Pinus densiflora D 

Planted Pinus 
densiflora PD 

Planted Pinus 
koraiensis PK 

Planted Larix 
leptolepis PL 

Planted Pinus 
rigida PR 

Quercus Q 

Planted 
Quercus PQ 

Populus Po 

Castanea 
crenata Ca 

Cryptomeria 
japonica Cr 

Tree 
Species 

Chamaecyparis 
obtuse Co 

Crown closure or number of trees of a 
specified tree species ≥ 75% 

Coniferous 
forest C Crown closure or number of tree of 

coniferous species ≥ 75% 
Deciduous 

forest H Crown closure or number of tree of 
deciduous species ≥ 75% 

Stocked 
Land 

Stand 
cover 
type 

Mixed forest M 
Crown closure or number of tree of 
coniferous species or deciduous species 
25-74% 

Cutover area F The land that temporarily lost standing 
trees and bamboos 

Treeless area O The land with 50% ≤ crown closure ≥ 75% 

Denuded area E The land with crown closure ≤ 50% 

Grass area LP Grass and pasture 

Un-
stocked 

land 

Cultivated area L Agriculture and orchard area 

R Road, rock, graveyard, military area, etc. 
Non-forest area 

W Water, stream, marshland, etc. 

Bare Land  The land with crown closure ≤ 30% within 
stocked area 
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Annex. 2: Regression lines for each band to estimate the Minnaert constants (k) 
using Landsat TM. 
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Annex. 3: Volume functions by tree species and DBH classes (KFRI, 1996). 

HDBHaV aa 32
1

∗∗=  

Coefficients 
Tree species DBH Class 

(cm) a1    a2 a3

≤ 10 0.00005611 1.6416 0.9137 

12 ≤ DBH ≥ 20 0.00005944 1.7927 1.0422 

22 ≤ DBH ≥ 30 0.00012246 1.5616 1.0531 

32 ≤ DBH ≥ 40 0.00002324 2.0479 1.0536 

PD 

≥ 40 0.00026321 1.6155 0.7746 

≤ 10 0.00006730 1.8523 0.9128 

12 ≤ DBH ≥ 20 0.00004947 1.9594 0.9682 PK 

≥ 22 0.00010498 1.7566 0.9050 

≤ 10 0.00087862 1.9427 0.6909 

12 ≤ DBH ≥ 20 0.00004079 2.0354 0.9056 PR 

≥ 22 0.00004263 2.1605 0.8176 

≤ 10 0.00005303 1.8553 0.9995 

12 ≤ DBH ≥ 20 0.00003623 1.8252 1.1871 PL 

≥ 22 0.00006748 1.7988 1.0025 

≤ 10 0.00005595 1.8062 1.0084 

12 ≤ DBH ≥ 20 0.00005464 1.7676 1.0602 

22 ≤ DBH ≥ 30 0.00005139 1.8254 1.0103 
Q 

≥ 32 0.00003147 1.8110 1.1957 

PD : Pinus densiflora                       PK : Pinus koriensis  

PL : Larix leptolepis                         PR : Pinus rigida 

Q   : Quercus and other deciduous tree species 
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Annex. 4: Forest strata per sub-plot unit for the 25 pilot clusters. 

Subplot 

Cluster 
1 2 3 4 5 6 7 8 9 10 

1 H H H H H H H H H H 

2 PK M PK PK PL PK M PK PK D 

3 M PL M H M M M M M H 

4 M PR H PR PR PR PR PR PR PR 

5 PL PK PL PK PL PK PK PK PK PK 

6 PL M M H PL M M M M M 

7 PK PL PK PK PK PL PL Non PK PK 

8 H PL PL H M PL M M M PK 

9 H H Non H H H H H H H 

10 H H H H H M H PL H PL 

11 M M M M PL PK M M H M 

12 PK M PK PK PK PK PK PK H M 

13 PR PR PR PR PR PR PR PR PR PR 

14 PK PK PK PK PK M PK PK PK PK 

15 PR M PR M H H H M H PR 

16 PK PK PK PK M M PR M PK PK 

17 H H M H H H H H H H 

18  H H H M PK M M H PK M 

19 PK PK PK PR PR PR PK PK PK PR 

20 H M H H M PR PR M H PR 

21 M PR PR PR PR PR PL PL PL PL 

22 PK PK PK M PK PK PK PK PK PR 

23 H H H H H H H H H M 

24 M PK PK PK PK PK PK PK PK PK 

25 M M PR PR M PR PR PR M M 

Non : non-forest,                    C : coniferous forest  (D, PK, PL, PR), 
H     : deciduous forest,          M : mixed forest. 
*Forest cover types per sub-plot are defined as the proportion of stems by dominant 
tree species (see Annex. 1). 
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