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1. General Introduction 

1.1. Family Dipterocarpaceae 

Dipterocarpaceae (“dipterocarps”) is a species-rich tree family dominating Southeast Asia’s 

tropical forests. The distribution patterns of this family reflect routes of colonization and past 

climatic conditions. They are distributed over the tropical belt of three continents of South 

America (Guyana, Venezuela and a part of the Colombian Amazon), Africa (in the northern 

hemisphere, from Mali in the west to Sudan in the east; in the southern hemisphere, south of the 

Congolese rain forests; and at an insular part in Madagascar) and Asia (from the Seychelles, Sri 

Lanka and India northeastwards to southern China and the Batan Islands, and southeastwards to 

New Guinea and D’Entrecasteaux Island) (Fig. 1) (MAURY-LECHON and CURTET, 1998). 

This family consists of three subfamilies: 1) Pakaraimoideae (one genus, one species). Genus 

Pakaraimaea is confined to South America (Guyana and Venezuela); 2) Monotoideae (three 

genera, about 40 species). The genus Marquesia grows in Africa, Monotes are distributed across 

Africa and Madagascar, and Pseudomonotes is found in the Amazonian Colombia of South 

America; 3) Dipterocarpoideae (13 genera, about 470 species). Dipterocarpoideae can be 

classified into two groups: Dipterocarpeae group (8 genera: Anisoptera, Cotylelobium, Dipterocarpus, 

Stemonoporus, Upuna, Vateria, Vateriopsis, Vatica) and Shoreae group (5 genera: Dryobalanops, Hopea, 

Neobalanocarpus, Parashorea, Shorea). This subfamily is distributed in Asia and shows much higher 

species diversity compared to other subfamilies in Africa and South America. The centre of 

species diversity is reached in Borneo (approximately 267 species) followed by Peninsular 

Malaysia (approximately 155 species) (ASHTON, 1982; LONDOÑO et al., 1995; MAURY-

LECHON and CURTET, 1998).  

In many Asian forests, which are regarded as a centre of global biodiversity, dipterocarps cover 

more than 50% of all trees including the majority of emergent trees of the canopy 

(FINKELDEY et al., 2007). Dipterocarps predominate the international tropical timber market 

(trade names: meranti, balau for Shorea spp., Keruing for Dipterocarpus spp., kapur for Dryobalanops, 

etc.), and therefore play an important role in the economy of many of the Southeast Asian 

countries. They also constitute important timbers for domestic needs in the seasonal evergreen 

forests of Asia. Additionally, these forests are sources of a variety of minor products such as nuts, 

resin, dammar, camphor, tannin, etc., on which the rural people and many forest dwellers are 

directly dependent for their survival. However, in many regions dipterocarps are critically 

endangered due to forest destruction and non-sustainable forest management (APPANAH and 

TURNBULL, 1998; SHIVA and JANTAN, 1998). 
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1.2.  Deforestation and illegal logging  

Forest destruction and degradation remain major threats to global biodiversity and cause 

enormous environmental damage in particular in developing countries (FINKELDEY et al., 

2007). Forest losses are reported between 14 and 16 million hectares yearly. Most of them are in 

tropical regions, where the highest density of species is accommodated. Deforestation contributes 

to global warming, for 20 to 25 % of global CO2 emissions. Several causes of deforestation are 

land use conversion (e.g. expansion of agriculture, livestock farming, bio-fuel and paper industry), 

settlements or infrastructure, exploitation of mineral resources and use of wood (both legal and 

illegal) (ZAHNEN, 2008; FAO, 2007). One third of global deforestation was caused by logging 

more than 50% of which was illegally done (BRACK, 2003). Global damages caused by illegal 

timber logging cost approximately 150 billion € per year as assessed by the Organization for 

Economic Co-operation and Development (OECD). According to this assessment 

approximately 50 % of timber exports from the Amazon Basin, Central Africa, South-East Asia 

and the Russian Federation originated from illegal logging (DEGEN and FLADUNG, 2008).  

Figure 1.  Distribution of Dipterocarpaceae (MAURY-LECHON and CURTET, 1998). 
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Many organizations such as donors, communities, governments and industry/wood product 

producers have initiated activities to combat illegal logging. Several associations of wood product 

manufacturers have released policy statements, in which member companies are committed to 

sourcing their wood or timber from legal and well-managed forests (AF&PA, 2002; CEPI, 2002; 

FPAC, 2002; ICFPA, 2002 and 2007; TTF, 2003). Governments have also taken similar initiatives 

which range from procurement policies to the signature of memoranda of understanding 

between countries to procurement policies of major do-it-yourself centers.  An example for an 

initiative is the Action Plan for Forest Law Enforcement, Governance and Trade (FLEGT) 

adopted by the EU in 2003 to address the problem of illegal logging and related trade. The 

Action Plan blends measures in producer and consumer countries to facilitate trade of legal 

timber, and aims to eliminate illegal timber from trade within the EU (EUROPEAN UNION, 

2002; SMITH, 2002; COMMISSION OF THE EUROPEAN COMMUNITIES, 2003). Another 

example is the policy of the Malaysian government to prohibit the import of logs from Indonesia, 

in order to assure purchasers that Malaysian wood products are taken from legal sources 

(MALAYSIAN TIMBER COUNCIL, 2002). Non-government organizations (NGOs) such as 

the Environmental Investigation Agency, Global Forest Watch, Greenpeace, TELAPAK etc. 

have played an important role as credible third-parties to ensure the correctness and effectiveness 

of the program taken by governments and industries. Due to their independency from 

government and industry and their credibility in the public, they are able to act as watchdogs 

working both in detecting illegal logging activities and in raising awareness of the issue (SMITH, 

2002).  In addition, the NGOs have proposed programs or methods to develop and implement 

sustainable forest management practices such as forest certification. A forest enterprise which has 

been certified as working in accordance to the principles of sustainability can be recognized by 

the logo of the certifying agency by end-consumers (FINKELDEY et al., 2007). Different 

certification schemes have been proposed, but the most widely recognized schemes are the 

Program for the Endorsement of Forest Certification Schemes (PEFC; http://www.pefc.org) 

and, in particular in tropical forests, the Forestry Stewardship Council (FSC; 

http://www.fsc.org/fsc) (CAULEY et al., 2001).   

A core part of any illegal logging detection and monitoring program must be field investigations 

(SMITH, 2002). A crucial component of any successful and efficient certification scheme is the 

chain of custody, i.e. the path taken by raw materials of wood, processed materials and products 

from the forest to the consumer. Attempts to manipulate the system by including wood from 

non-sustainable forest management in “certified” products became increasingly lucrative with 

increased marketing potential and commercial success of products from certified forest 

enterprises (DYKSTRA et al., 2003a and 2003b; FINKELDEY et al., 2007). An example is 
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smuggling of illegal wood products from Indonesia to Malaysia (EIA and TELAPAK, 2004). An 

evidence of the origin of timber or even finished wood products from a legal logging activity, i.e. 

from one or several certified forestry enterprise(s) is necessary. Therefore, the development of 

tools to test the origin of wood particularly to check the plausibility of statements concerning the 

origin of wood from a certain forest enterprise is required. The observation of genetic traits 

offers great potential since genetic information at the DNA-level is a non-manipulable and hence 

a trustworthy trait to evaluate any biological material at various levels (FINKELDEY et al., 2007). 

1.3.  Molecular genetic tools for the verification of wood origin 

The use of molecular genetic tools for origin identification of ancient and modern humans is 

widely reported either at the individual level or at the population level.  The potency of 

uniparentally inherited DNA markers, such as mitochondrial DNA (mtDNA) which is inherited 

only through the females of the previous generation (maternal lineage), was shown by Vernesi et 

al. (2001) in an investigation of the regional origin of the evangelist Luke (an early Christian 

leader). At the population level, the frequency of the 9-bp deletion in the cytochrome c oxydase 

subunit II (CoII/tRNALys) of the mtDNA (together with other mitochondrial markers) was used 

to investigate the colonization of the Pacific islands and the American continent. While the 9-bp 

deletion is absent in many Caucasian and many African populations, a frequency of 10-60% exists 

in Southeast Asia, the Pacific islands and native North American populations. However, in South 

American native populations, frequencies of between 90-100% are found for the deletion. In 

ancient DNA analysis this may be used, for example, to identify mummies from uncertain 

geographical origin. Beside mtDNA markers, Y-chromosomal DNA, which is inherited through 

the paternal lineage, is also widely used as a valuable tool for human migration research, because 

of regional variation of these haplotype frequencies (HUMMEL, 2003). 

Genetic methods can be also useful to infer species identity and are promising tools to control 

the geographic origin of logged timber. A spatial genetic structure for most species in natural 

forests could be observed, due to recolonisation after the last glacial periods and limited pollen 

and seed dispersal. Genetic inventories using extensive and systematic sampling over the whole 

species distribution area are the basis to identify the geographic region of timber origin. Hence, 

two basic conditions need to be met in order to apply molecular genetic methods to infer the 

origin of wood: First, protocols need to be developed to extract DNA in sufficient quantity and 

quality from unprocessed or processed wood. Second, diagnostic DNA markers need to be 

identified, i.e., genetic inventories with a high spatial resolution are needed (FINKELDEY et al., 

2007; DEGEN and FLADUNG, 2008). 
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1.3.1.  Diagnostic DNA markers 

Patterns of natural genetic differentiation among populations of forest trees have been shaped by 

the joint effects of evolutionary factors. Over time genetic structure at different spatial scales can 

result from limited pollen and seed dispersal within a population, limited gene flow between 

populations or the historic disruption of a once continuous range of a species by climatic or 

geographic changes. Each of these changes will produce genetic discontinuities or clines within a 

species that can be identified using a range of DNA-based markers. “Informative” DNA markers 

can be identified at various levels from large provenance regions to smaller subunits of 

populations for most species, if large scale inventories involving many samples and populations 

are undertaken. In many cases, only a combination of several informative markers will allow to 

come to a reliable conclusion with regard to the putative origin of tested wood. Maternally 

inherited markers (mtDNA or, in case of angiosperms, chloroplast DNA (cpDNA) markers) are 

particularly useful due to their frequently higher levels of population differentiation, because 

pollen movement is more widespread as compared to the movement of seeds in most species 

(PETIT et al., 2003; FINKELDEY et al., 2007; LOWE, 2008). 

The spatial distribution of cpDNA haplotypes has been studied in much detail for European oaks, Quercus 

spp. A clear geographical pattern among naturally regenerated oak populations in Europa has been 

observed (PETIT et al., 2002 and 2003). For European oaks of the section Lepidobalanus, in particular for 

Quercus petraea and Q. robur, the identification of the origin of wood by means of molecular genetic markers 

is well-advanced (DEGUILLOUX et al., 2003).  For tropical trees, several phylogeographic studies 

(genetic structuring due to historical gene flow and discontinuity processes) and broad scale population 

genetic differentiation have highlighted significant genetic structure across the native range of many trees 

(LOWE, 2008). A wide range of DNA marker systems was applied:  SSRs (Simple Sequence Repeat) and 

RAPD (Random Amplified Polymorphic DNA) for Swietenia macrophylla (mahogany) in the geographical 

range of Central America and southern Brazil (NOVICK et al., 2003; LEMES et al., 2003; GILLIES et al., 

1999); cpDNA and AFLP (Amplified Fragment Length Polymorphism) for Cedrela odorata (Spanish cedar) 

in Central America (Costa Rica) (CAVERS et al., 2003 and 2005); cpDNA and AFLPs for Hagenia abyssinica 

(African redwood / Rosewood) in Ethiopia (TAYE, 2008; TAYE et al., 2009). In case of the tree family 

Dipterocarpaceae, a phylogeographic study (variation between geographic regions) was reported by Cao et 

al. (2006). The AFLP marker technique was applied to analyze the variation in seven Shorea parvifolia and 

Shorea leprosula populations from Borneo and from Sumatra. Large genetic variation was observed both 

within and among populations for both species (CAO et al., 2006). AFLP markers showing strong 

differentiation among the islands of Sumatra and Borneo were successfully converted to simple SCAR 

(Sequence Characterized Amplified Region) markers (NURONIAH, 2009). This marker allows to 

unambiguously assign material of these common dipterocarps to one of the two main Indonesian islands 

(FINKELDEY et al., 2007 and 2008). Beside phylogeographic, many phylogenetic studies (variation 
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between species) have been performed in dipterocarps using different nuclear and chloroplast DNA 

markers (DAYANANDAN et al., 1999; MORTON et al., 1999; GAMAGE et al., 2003 and 2006; 

KAMIYA et al., 1998; KAJITA et al., 1998, LI et al., 2004; YULITA et al., 2005; INDRIOKO et al., 2006). 

It was observed that the combination of different markers allows an unambiguous identification of the 

species. Since some dipterocarp species are present in a relatively restricted geographic range (i.e. endemic 

species), the identification of species becomes a prerequisite to test the correctness of declaration of wood 

from unknown origin. For example, Upuna borneensis, Shorea fallax and Anisoptera reticulate, the endemic 

species of northern Borneo, could be characterized by several diagnostic (species-specific) cpDNA 

markers (INDRIOKO et al., 2006). In addition, species identification is an important requirement in 

particular for endangered taxa of the very diverse dipterocarp family (FINKELDEY et al., 2007 and 2008).  

1.3.2. Wood DNA extraction 

A standard and uncomplicated DNA extraction methodology for plant leaf, bud, root and other 

“living” tissue has been widely used and is now enhanced by application of semi- or fully 

automatic equipment (e.g. QIAGEN extraction kits combined with robotic workstations 

supporting vacuum or centrifuge components). DNA extraction from freshly harvested wood 

incorporating cambium tissue has also been found to yield DNA of high quality comparable to 

that from leaf material (COLPAERT et al., 2005). This is not the case for dried wood tissue, in 

which DNA extraction has been found to be more problematic (LOWE, 2008). Much work has 

been done on oak timber of different ages and preserved under different conditions 

(DEGUILLOUX et al., 2002, 2003 and 2004). In special designed laboratories using 

contamination-exclusion techniques, DNA fragments of up to 500 bp from ancient sources of 

timber that was up to 3600 years old had been amplified (GUGERLI et al., 2005).  

Main obstacles for DNA extraction from wood and wood products as compared to other plant 

tissues are: (1) Physical, as mechanical treatments applied to disrupt a hard wood tissue cause 

overheating that may lead to irreversible DNA degradation (FINKELDEY et al., 2007; 

RACHMAYANTI et al., 2006). (2) Chemical, as numerous agents and wood compounds 

potentially inhibit DNA extraction or result in low-quality DNA not suitable for amplification by 

PCR (LEE and COOPER, 1995; RACHMAYANTI et al., 2009). (3) Biological. Decomposition 

of wood by fungi and microorganisms due to long periods of inappropriate storage results in 

degradation of wood DNA and provides an alternative source of DNA from decaying organisms 

(FINKELDEY et al., 2007; LINDHAL et al., 1993). (4) Age, as degeneration of DNA will start 

after the death of a plant cell (the death of wood tissue), thus the size of DNA fragments which 

can be amplified is expected to continuously decrease (DEGUILLOUX et al., 2002; 

RACHMAYANTI et al., 2009). 
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1.4. Research objectives 

Sustainable management of dipterocarp forests is feasible, if harvesting is carefully controlled and 

natural regeneration promoted (LAMPRECHT, 1986).  The development of tools to identify 

dipterocarp wood from sustainably managed forests will contribute to the application of 

sustainable management practices and the conservation of dipterocarps as well as their associated 

species. Studies to identify “informative” DNA markers for species identification and for 

geographical differentiation of dipterocarps have been started and will continuously proceed 

(FINKELDEY et al., 2007 and 2008). Thus, the objective of this research is to establish DNA 

extraction methods for wood of Dipterocarpaceae. Wood probes of different species, age and 

type (unprocessed and processed) collected from different countries were included in this study 

for the optimization of DNA isolation methods. 

1.5.  Research methodology  

In this research the following methodology was applied: 

1. Test of several published DNA isolation methods and commercial kits for processed and 

unprocessed wood. 

2. Analysis of extracted DNA to confirm isolation success. 

3. Modification of methods to improve DNA isolation success. 

4. Selection and verification of the best or the most efficient method. 

5. Application of the selected method to isolate DNA from wood of different species, types 

and origins. 

6. Quantitative and qualitative analysis of DNA extracted from different zones of 

dipterocarp wood as well as analysis of the PCR inhibitor content.  

1.6.  Summary of results 

The optimized DNeasy Plant Mini Kit (Qiagen) method reported in Rachmayanti et al. (2006) is 

considered as the most efficient method and used to isolate DNA from dipterocarp woods of 

different species, type (unprocessed and processed), age and origin. It was used also for the study 

to analyze the quantity and quality of DNA extracted from different zones of dipterocarp woods 

and to analyze the PCR inhibitor content in the extracts. This method is considered simple, due 

to its size (small scale procedure) and its applicability to be carried out in a standard equipped 

genetic laboratory. Nevertheless it gives an adequate DNA quality & quantity for PCR 

amplification and other down stream molecular methodologies such as DNA genotyping, cloning 

and sequencing. The addition of polyvinylpyrrolidone (PVP) into the lysis buffer is an important 
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step in this method, since it could reduce PCR inhibition significantly (see Appendix 6 and 

RACHMAYANTI et al., 2006). To verify the method, DNA from wood and leaf collected from 

the same tree were isolated and then analyzed by PCR amplification, microsatellite genotyping 

and sequencing. The result shows that DNA extracted from wood and leaf of the same tree are 

identical and Blast analysis at Genebank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) confirmed that 

DNA sequences belong to expected regions (RACHMAYANTI et al., 2006 and 2009). 

The success of DNA isolation was confirmed by PCR amplification of DNA extracted from 

wood. The DNA isolation method is applicable for dipterocarp wood (332 samples) as well as for 

non-dipterocarp wood (74 samples). A study of chloroplast DNA markers using three primer 

pairs amplifying three fragments of different length (short fragment, ccmp2, approximately 150 bp; 

middle length fragment, trnL, approximately 600 bp; long fragment, trnLF, approximately 1,100 

bp) showed that successful amplification was achieved in 369 out of 406 PCR reactions (90.9%) 

for the short fragment, in 319 out of 406 reactions (78.6%) for the middle length fragment and in 

234 out of 406 reactions (57.6%) for the long fragment. Thus, the average success rate for the 

three fragments was 75.7% (see RACHMAYANTI et al., 2009: Fig. 3). Analysis of DNA extracts 

from three different zones of wood, i.e. outer rings of sapwood (a), transition rings of sapwood 

and heartwood (m) and inner rings of heartwood (i), shows that : 1) genomic DNA in wood 

samples is generally degraded into small fragments. It is confirmed by the tendency observed in 

all DNA extracts of a, m and i, that the amplification success rate for the longer fragment (1.1 

kb) is lower than for shorter fragments (0.6 kb and 0.15 kb); 2) DNA quantity is decreasing along 

the wood regions from outer sapwood to inner heartwood. This is indicated by the decreasing 

PCR success rate for all fragments (short, middle and long) along regions a, m and i; 3) DNA 

quality is lower along the wood regions from outer sapwood to inner heartwood, as DNA 

degradation level increases from outer sapwood to inner heartwood. This is concluded by 

comparing the decreasing level of PCR success rate between long, middle and short fragments 

along regions a, m and i. The decrease of PCR success rate for the long fragment along regions 

a, m and i is much higher than for middle-length and short fragments (see RACHMAYANTI et 

al., 2009: Fig. 1); 4), the content of PCR inhibitory substances is decreasing from the outer 

sapwood to the inner heartwood (see RACHMAYANTI et al., 2009: Fig. 2). 
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2. General Discussion 

2.1. Wood samples and success rate of DNA amplification  

Wood of different species, types (unprocessed and processed), regional origin and condition were 

analyzed in this study. A total of 406 wood samples consisting of 332 dipterocarp woods and 74 

non-dipterocarp woods were analyzed (RACHMAYANTI et al., 2009). PCR amplifications were 

done successfully (100% success rate for short, middle and long DNA fragments) for the 

following samples: all dipterocarp samples from Vietnam (n=40), all non-dipterocarp samples of 

Tectona grandis (n=12), Prunus arborea (n=1), Strombosia ceylanica (n=1), Populus spp. (n=25), Taxus 

baccata (n=2) and Salix spp. (n=1). Furthermore PCR inhibition was not found in undiluted DNA 

extracts for these samples (see Appendix 2 and RACHMAYANTI et al., 2009: Fig. 5). In case of 

dipterocarp samples from Indonesia (n=38) and the Philippines (n=50) as well as for woods 

from Costa Rica (n=3) and Pinus sylvestris (n=12) PCR inhibition was found in DNA extracts 

using PCR inhibitory tests (see Appendix 5 and RACHMAYANTI et al., 2009: Fig. 2). This 

inhibitory reaction could be eliminated by 10 or 20 times dilution of wood DNA extracts. In this 

case a successful amplification of the long fragment (1.1 kb of trnLF) could be achieved by a 

standard PCR (RACHMAYANTI et al., 2006). For some other samples dilution until 40 times 

(1:40) or higher was needed to remove the PCR inhibition. However, a successful PCR 

amplification of the middle length and the long fragment (0.6 kb of trnL and 1.1 kb of trnLF)) 

was almost impossible. For dipterocarp samples from Thailand (n=53) and for non-dipterocarp 

samples of Eusideroxylon zwageri (n=2) and Picea abies (n=8) PCR success rate for the long 

fragment (trnLF) was lower than 100% (85%, 50% and 25% respectively; see Appendix 2 and 

RACHMAYANTI et al., 2009: Fig. 5). In some samples a successful PCR amplification of the 

long fragment could not be achieved even though PCR inhibition was low or absent. Presumably 

the genomic DNA in these samples was already strongly degraded due to: 1) processing of wood 

samples (dried wood shavings in case of dipterocarp samples from Thailand); 2) long storage of 

wood samples (4 years in case of Eusideroxylon zwageri); 3) inappropriate wood storage conditions, 

i.e. wet or moist storage so that almost the whole wood was covered by wood decaying 

organisms like fungi (in case of Picea abies). Low amplification success rate was obtained in the 

samples of Meranti (Shorea; dipterocarp wood) and Abeche (Triplochiton scleroxylon) from wood 

enterprises (75 – 85% for the short fragment of ccmp2, 42 – 49% for the middle length fragment 

of trnL and about 15% for the long fragment of trnLF; see RACHMAYANTI et al., 2009: Fig. 4 

and Fig. 5), although the inhibition test revealed no PCR inhibitory substances in the DNA 

extracts. High degradation levels of the genomic wood DNA due to long storage including 
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shipment from producer to consumer countries and processing of wood such as gluing, 

pressurize and heating etc. are suspected to be the cause of these results. However, the use of 

short DNA fragments as molecular markers for the identification of processed wood seems to be 

feasible in most cases. 

2.2. Test of DNA isolation methods and analysis of DNA extract  

Five DNA isolation methods were examined for several wood samples: 1) Qiagen, DNeasy 96 

Plant Kit; 2) Qiagen, DNeasy Plant Mini Kit; 3) Plant- Molzym Kit; 4) Qiagen, EZ1 DNA Tissue 

Kit with Biorobot EZ1 Workstation; 5) Qiagen, MagAttract 96 DNA Plant Core Kit, thereby 

using the 96-Well Magnet Type A (www.Qiagen.com) or using a magnetic particle concentrator 

from Dynal Biotech (www.dynalbiotech.com). Additional methods were applied to analyze DNA 

extracts or to proof the isolation success. Electrophoresis of total DNA on agarose gels gave 

non-interpretable results, since for most samples DNA could not be visualized using UV light. 

The following reasons are considered to be the causes: 1) the DNA yield is to low to be 

visualized by this technique; 2) Wood DNA is strongly degraded into small DNA fragments, thus 

on the gel only a slight smear throughout the lane is visible under UV light. Using  

spectrophotometry, DNA yield could be quantified if the extract is pure enough as indicated by 

the optical density (OD) ratios of λ260/280 and λ260/230 are 1.8-2.0 and 2.0, respectively 

(SAMBROOK et al., 1989; Tataurov et al., 2008). In this study, spectrophotometrical analysis 

applied  to wood DNA extracts resulted in very low ratios of λ260/280 and λ260/230 in many 

cases (in 76% of the tested samples). This  indicates high impurity of the DNA extracts due to 

other plant substances such as proteins, aromatic groups, phenols, carbohydrates and also 

probably due to inhibitory substances derived from decomposing plant material which are 

potentially found in dead wood tissues such as humic acid, tannins, etc. (HUMMEL, 2003; 

FINKELDEY et al., 2007). Therefore, accurately measuring the DNA quantity by 

spectrophotometry is not possible for wood extracts. A better and reproducible technique to 

ensure DNA isolation success is by PCR amplification of extracted DNA using different primer 

pairs which amplify DNA fragments of different lengths followed by genotyping and/or 

sequencing (RACHMAYANTI et al., 2006 and 2009).  

2.3.  Modification and evaluation of DNA isolation methods  

Many modifications were tested for each method in order to improve DNA isolation success. 

The scope of modification includes: 1) the amount of wood (20, 50, 100 and 200 mg); 2) 

disruption techniques consisting of two steps. First, cutting by a scalpel or drilling by a bore 

machine in order to get small pieces of wood or shavings. Second, grinding of wood shavings by 
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a mortar or by mixer mills (Retsch) using different sizes of milling beads and jars (such as a Ø 3 

mm of tungsten carbide bead or a Ø 5 mm stainless steel bead in a 2 ml Eppendorf tube and a Ø 

12 mm agate ball in a 10 ml agate jar) and different milling frequencies and durations (such as 1 x 

1.2 min at 20 Hz by Retsch type MM300 and 1 x 5 min at 75 frequency unit or 2 x 5 min at 70 

frequency unit by Retsch type MM2); 3) lysis procedure including modification of the lysis buffer 

and incubation. Both of buffers provided by kits and other buffers such as 0.5 M EDTA pH 8.0 

and cetyltrimethyl-ammoniumbromid (CTAB) were tested (TEL-ZUR et al., 1999; KHANUJA et 

al., 1999). In addition, mixtures of kit lysis buffers with polyvinylpyrrolidone (PVP, until 5% 

(w/v)) were tested (Appendix 6). Modifications of lysis incubation was done by prolonging the 

incubation time up to 2 nights and by shaking or vertical rotating of the tube containing the lysis 

mixture; 4) DNA purification by comparing the spin column procedure of the DNeasy plant 

mini kit (Qiagen) with the magnetic-based procedure of the MagAttract 96 plant core kit (Qiagen) 

and the Dynal Biotech kit (RACHMAYANTI et al., 2006); 5) DNA elution was performed by 

separation of the second eluate from the first one. 

A modified DNeasy Plant Mini Kit (Qiagen) protocol as reported in Rachmayanti et al. (2006) 

was considered as the best and most efficient method, because it is relative simple and cheap (a 

small scale procedure and applicable to standard equipments of genetic laboratory). Nevertheless 

it gives an adequate DNA quality & quantity for PCR amplification and other down stream 

molecular methodologies (DNA genotyping, cloning and sequencing). The addition of 

polyvinylpyrrolidone (PVP) into the lysis buffer is an important step in this method, since it 

could reduce PCR inhibitors significantly (RACHMAYANTI et al., 2006). PVP can bind 

polyphenols and tannins, - chemical substances which inhibit Taq polymerase activity 

(HUMMEL, 2003) -, that may be found abundantly in dead wood tissue derived from the 

degradation of plant biomolecules such as lignin (FINKELDEY et al., 2007). During preparation of 

wood samples by any mechanical treatment, the overheating of wood material should be avoided. 

Frequently incubating the samples on ice or freezing of the sample in liquid nitrogen is required. 

It is also important that the powder of milled wood is dissolved or mixed thoroughly with the 

lysis buffer for achieving effective lysis.  This can be done by vortexing and then by shaking or 

vertically rotating the tube with the mixture inside during overnight lysis incubation (see 

RACHMAYANTI et al., 2006). Powder of some wood samples however adsorbed  the buffer 

solution with relatively high capacity (like a sponge), thus completely dissolving or mixing of 

wood powder with 500 μL of lysis buffer (see RACHMAYANTI et al., 2006: DNA isolation 

protocol, lysis) was not possible. In this case higher volumes of lysis buffer (600, 800, 1000 or 

1200 μL) were added to the powder until a good suspension was attained by shaking or rotating 

during overnight incubation. Since the incubation was carried out with a vertical tube rotation 
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and under a relatively high temperature, i.e., 65 0C, the tube should be closed very well in order to 

prevent leaking or spilling out of the lysis mixture and also to prevent the evaporation of the 

buffer solution. Sealing of the tube lid by parafilm was sometimes required (dependent on the 

tube quality) to close it safely. Grinding of wood samples using Retsch mixer mills employing a 

stainless steal bead (see RACHMAYANTI et al., 2006: DNA isolation protocol, step 3 – 6) might 

have caused a crack in the lid of the tube (dependent on tube quality), thus the wood mills should 

be transferred to a new tube before lysis.  

2.4.  Verification of method and study of DNA extracts from different wood zones  

The method was verified by comparing DNA isolated from wood and leaf collected from the 

same tree. Wood DNA was isolated following the modified method of DNeasy Plant Mini Kit 

(Qiagen) as described in RACHMAYANTI et al. (2006), while leaf DNA was isolated following 

the standard kit procedure. Nevertheless, the same procedure of PCR amplification, genotyping, 

cloning and sequencing was applied to both DNAs, isolated from wood and leaf. Wood as well 

as leave samples were collected from 48 dipterocarp trees and 6 chloroplast DNA regions were 

analyzed (ccmp1, ccmp2, ccmp3, ccmp6, ccmp10 and trnF). The results show that DNA extracted from 

wood and leaf from the same tree are identical and Blast analysis at Genebank 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) confirmed that DNA sequences belong to expected 

regions (see Appendix 3 and RACHMAYANTI et al., 2006 and 2009).  

A total of 18 wood samples from Indonesia with disk diameters between 19.0 until 32.0 cm were 

included in the study of DNA extracts from different wood zones: outer rings of sapwood (a), 

rings in the transition zone between sapwood and heartwood (m) and inner rings of heartwood 

(i). Eleven of them, - which showed no PCR inhibition when their undiluted extracts were 

tested,- were included in a comparative study of DNA quantity and quality of these three wood 

zones. The remaining samples were used for the analysis of PCR inhibitor content in different 

wood zones (see RACHMAYANTI et al., 2009: Table 2.A and 2.B). This study was performed 

based on the PCR amplification technique using three primer pairs which amplified DNA of 

different lengths (ccmp2, c. 150 bp; trnL, c. 600 bp; trnLF, c. 1,100 bp). The results suggest that 

DNA quantity and quality is higher along the wood zones from inner heartwood to outer 

sapwood (lower DNA degradation level from inner heartwood to outer sapwood) and the 

content of PCR inhibitory substances is increasing from the inner heartwood to the outer 

sapwood (see Appendix 4 – 5 and RACHMAYANTI et al., 2009: Fig. 1 and 2). 
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2.5.  Authenticity of results 

PCR is a sensitive technique which is capable of generating large amounts of amplified products 

from as little as single cells (HUMMEL, 2003), therefore contamination is a serious hazard in 

applying PCR especially for processed wood or wood products considered as a poor DNA 

source material. The occurrence of contaminating target sequences in an extract sample 

containing only small amounts of wood DNA may result in many PCR contamination problems 

such as unexpected amplicons (double bands) or irreproducibility of PCR. Therefore it is 

important to construct and to maintain sterile work conditions. In this study efforts have been 

made to combat contamination problems such as: i) preparation of wood samples, DNA 

isolation and PCR amplification were carried out in separated places or rooms; ii) use of different 

or separated micropipettes for DNA isolation and for PCR amplification; iii) sterilization of 

pipette tips, samples and PCR tubes under UV light (λ 320 nm, distance about 10 – 20 cm) for 20 

minutes to remove any contaminating DNA (HUMMEL, 2003); iv), regular cleaning of the 

surface of laboratory benches (working place) and apparatus using reagents for the removal of 

DNA contaminations (DNA-Exitus Plus, AppliChem GmbH) as well as aquabidest and EtOH 

(70%); v) cleaning of mixer mill beads with liquid detergent (Alconox powder diluted in water 

with 6 times higher concentration as prescribe), then with aquabidest  and EtOH (70%); vi) use 

of sterile gloves during working and a laboratory suit. To ensure that amplification was subjected 

only to wood DNA and not the contaminant, DNA validation was always performed using sets 

of control samples consisting of positive and negative controls. The positive control indicates 

that the reaction was set up properly and all parameters were suitably adjusted. In this study, 

good quality dipterocarp leaf DNA was used as positive control for PCR reactions. The negative 

controls have been used to observe systematic contamination. Two categories of negative 

controls were tested in this study: the extraction blanks which allowed all reagents used (during 

the entire DNA extraction phase until PCR) to be monitored and the no-template controls 

(sterile aqua bidest as PCR template) which confirmed only those reagents used in the 

amplification reaction mix.  

3. Conclusions and Outlook 

The modified method of Qiagen DNeasy Plant Mini Kit as described in RACHMAYANTI et al. 

(2006) is considered as the most efficient method which gives an adequate DNA quality & 

quantity for PCR amplification and is recommended to be firstly applied for any investigation 

involving wood DNA. In order to reduce PCR inhibitor substances, adding polyvinylpyrrolidone 

up to 2.6% (w/v) into the lysis buffer is recommended for a routine DNA isolation, since it has 
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been tested for 406 wood samples and gives a good results (high DNA amplification success rate 

as described in RACHMAYANTI et al., 2009). If required, inhibitor content could be further 

reduced by diluting DNA extract up to 10, 20 or 40 times to be used as PCR template. 

Amplification success of DNA isolated from wood depends on several factors: the length of the 

amplified target (the shorter the amplicon, the higher the success rate), wood species (strong PCR 

inhibitor substances in some species), wood zone (higher DNA quantity, lower DNA 

degradation, but higher PCR inhibitory content found in extracts from sapwood than from 

heartwood), wood storage conditions after felling until DNA extraction (wood decaying increases 

wood DNA degradation and provides microbial DNA contamination). 

The EZ1 DNA Tissue Kit from Qiagen (see General Discussion, Chapter 2.2) is also considered 

as a good method for DNA isolation from wood. This method is simpler, since most steps could 

be done automatically employing a robotic workstation (Biorobot EZ1 Workstation). However, 

this procedure is relatively expensive. 

Since DNA of wood is highly and randomly degraded, short DNA fragments are recommended 

to be employed in genetic investigation such as diagnostic PCR primers (SCARs [Sequence 

Characterized Amplified Region], RFLPs [Restriction Fragment Length Polymorphism], 

microsatellites) or sequencing in order to find diagnostic SNPs (Single Nucleotide 

Polymorphism). Therefore genetic investigation methods requiring high genomic DNA quality 

like RAPD (Random Amplified Polymorphic DNA) and AFLP (Amplified Fragment Length 

Polymorphism) techniques (WEISING et al., 2005) are not appropriate.  

In many cases wood decaying could not be prevented or recognized, therefore employing  very 

specific PCR-primers is strongly recommended, i.e., primers which amplify only plant DNA and 

not DNA from decaying microorganisms. If available, leaf DNA from the same tree or the same 

species or family as the investigated wood should be used as positive control of PCR to confirm 

the PCR results.  

Studies on common wood processing techniques in industries (plywood, window frames, wood 

chips or particle boards etc.) is required in order to analyze the effect of each wood treatment 

such as heating, gluing, pressing, impregnating etc. on the wood DNA degradation.  

Based on the above conclusion the following research topics are proposed: 

1. Identification of Industrial process causing degradations of DNA content in wood.  
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DNA content in the wood could be strongly degraded due to certain industrial process which in 

turn could significantly lower the success of wood origin investigation by means of molecular 

genetics. This study could be carried out by applying of the new proposed DNA Isolation 

method (RACHMAYANTI, et al., 2006) to a certain wood, which is included in the whole of 

process chain in the wood and timber industry.  A small pieces of wood sample for DNA 

isolation should be taken at every industrial step starting from raw materials (saw log or veneer 

log), intermediate form for example after log storage (wet and/or dry), debarking and cutting (as 

sawmills, veneer, plywood mills, panel, etc.), as well as after F-joining (finger jointing), glue-lam 

(Glue laminated), moulding and engineered wood veneering until end products such as flooring, 

joinery, furniture, parts, etc. Through analysing and comparing DNA extracts from those process 

steps, the identification of any steps that effectively reduce or destruct DNA content in the wood 

could be done. This effort could be directed toward the improvement of the industrial processes 

and trading of woods. 

2. Database development of the diagnostic marker for the identification of dipterocarp wood.  

This database should provide alternative of DNA markers for specific identification from sub-

family, genus until species of dipterocarpaceae as well as its geographical origin. The database 

could be developed by collecting known diagnostic DNA markers for dipterocarps (SCARs, 

RFLPs, microsatellites, SNPs, etc.) from eligible sources such as genebank, published papers or 

journals, etc. The database could be then extended by doing research to find any additional 

specific marker.  After all, as an interface to the user, computer software can be developed that 

read the input (DNA marker), compare it to the database and finally provide the information 

regarding the identity of the wood. 

4. Summary 

Dipterocarpaceae (“dipterocarps”) is a species-rich tree family distributed over the tropical belt of 

three continents of South America, Africa and Asia. This family consists of three subfamilies 

(Pakaraimoideae, Monotoideae and Dipterocarpoideae), 17 genera and more than 470 species. 

Dipterocarps predominate the international tropical timber market (trade names: meranti, balau 

for Shorea spp., keruing for Dipterocarpus spp., kapur for Dryobalanops, etc.), and therefore play an 

important role in the economy of many Southeast Asian countries. However, in many regions 

dipterocarps are critically endangered due to forest destruction and non-sustainable forest 

management.  
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Forest destruction and degradation (deforestation) remain major threats to the global biodiversity 

and cause enormous environmental damage in particular in tropical regions, where the highest 

density of species is accommodated. One third of global deforestation was caused by logging, in 

which more than 50% was illegally done (Brack, 2003). Many activities have been initiated by 

government or non-government organizations to fight illegal logging. Several associations of 

wood-product manufacturers have released policy statements, in which member companies are 

committed to sourcing their wood or timber from legal and well-managed forests. Non-

government organizations (NGOs) have proposed programs or methods to develop and 

implement sustainable forest management practices such as forest certification. However, a core 

part of any illegal logging detection and monitoring program must be field investigations. Chain 

of custody, i.e. the path taken by raw materials of wood, processed materials and products from 

the forest to the consumer, is a crucial component in this investigation. An evidence of the origin 

of timber or even finished wood products from a legal logging activity, i.e. from one or several 

legal and well-managed forest(s) is necessary. Therefore, the development of tools to test the 

origin of wood particularly to check the plausibility of statements concerning the origin of wood 

from a certain forest enterprise is required.  

Two basic conditions need to be met in order to apply molecular genetic methods: First, 

protocols need to be developed to extract DNA in sufficient quantity and quality from 

unprocessed or processed wood. Second, diagnostic DNA markers need to be identified, i.e., 

genetic inventories with a high spatial resolution. Studies to identify “informative” DNA markers 

for species identification and for geographical differentiation of dipterocarps have been started 

and will continuously proceed (FINKELDEY et al., 2007 and 2008). Thus, the objective of this 

research is to establish DNA extraction methods for wood of Dipterocarpaceae. Wood probes of 

different species, age and type (unprocessed and processed) collected from different countries 

were included in this study for the optimization of DNA isolation methods.  

This research was started by the test of several published DNA isolation methods and 

commercial kits for extraction of DNA from several processed and unprocessed woods. Wood 

extracts were then analyzed by PCR amplification to confirm the success of DNA isolation. 

Some methods, which showed successful wood-DNA extraction, were selected to be modified in 

order to improve the DNA isolation success, i.e. to get a better DNA quality and quantity. 

Finally, the best or the most efficient method was selected to be applied in the further study that 

is described as follows: Firstly, verification of the method by comparing the DNA extracted from 

wood and leaf collected from the same tree. PCR amplification, genotyping of microsatellite 

fragments and sequencing were carried out to analyze the extracted DNA. Secondly, investigation 
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of the applicability of the method to isolate DNA from wood of different species, types and 

origins. Thirdly, comparative study of the DNA quantity and quality in extracts of different zones 

of dipterocarp wood (outer rings of sapwood, rings in the transition zone between sapwood and 

heartwood and inner rings of heartwood) as well as study of the PCR inhibitor content.   

The optimized DNeasy Plant Mini Kit (Qiagen) method reported in Rachmayanti et al. (2006) is 

considered as the most efficient method. This method is considered simple, due to its size (small 

scale procedure) and its applicability to be carried out in a standard equipped genetic laboratory. 

Nevertheless it gives an adequate DNA quality & quantity for PCR amplification and other down 

stream molecular methodologies such as DNA genotyping, cloning and sequencing. The addition 

of polyvinylpyrrolidone (PVP) into the lysis buffer is an important step in this method, since it 

could reduce PCR inhibition significantly. To verify the method, DNA from wood and leaf 

collected from the same tree were isolated and then analyzed by PCR amplification, microsatellite 

genotyping and sequencing. The result shows that DNA extracted from wood and leaf of the 

same tree are identical and Blast analysis at Genebank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

confirmed that DNA sequences belong to expected regions. 

Wood of different species, types (unprocessed and processed), regional origin and condition were 

analyzed in this study. A total of 406 wood samples consisting of 332 dipterocarp woods and 74 

non-dipterocarp woods were analyzed. The success of DNA isolation was confirmed by PCR 

amplification of DNA extracted from wood. A study of chloroplast DNA markers using three 

primer pairs amplifying three fragments of different length (short fragment, ccmp2, approximately 

150 bp; middle length fragment, trnL, approximately 600 bp; long fragment, trnLF, approximately 

1,100 bp) showed that successful amplification was achieved in 369 out of 406 PCR reactions 

(90.9%) for the short fragment, in 319 out of 406 reactions (78.6%) for the middle length 

fragment and in 234 out of 406 reactions (57.6%) for the long fragment. Thus, the average 

success rate for the three fragments was 75.7%.  

A total of 18 wood samples from Indonesia with disk diameters between 19.0 until 32.0 cm were 

included in the comparative study of DNA quantity and quality in extracts of different wood 

zones: outer rings of sapwood (a), rings in the transition zone between sapwood and heartwood 

(m) and inner rings of heartwood (i). This study was performed based on the PCR amplification 

technique using three primer pairs which amplified DNA of different lengths (ccmp2, 150 bp; 

trnL, 600 bp; trnLF, 1,100 bp). The results show that: 1) genomic DNA in wood samples is 

generally degraded into small fragments. It is confirmed by the tendency observed in all DNA 

extracts of a, m and i, that the amplification success rate for the longer fragment (1.1 kb) is lower 
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than for shorter fragments (0.6 kb and 0.15 kb); 2) DNA quantity is increasing along the wood 

regions from inner heartwood to outer sapwood; 3) DNA quality is higher along the wood 

regions from inner heartwood to outer sapwood, as DNA degradation level increases from outer 

sapwood to inner heartwood.; 4) the content of PCR inhibitory substances is increasing from the 

inner heartwood to the outer sapwood.  

5. Zusammenfassung 

Bei den  Dipterocarpaceen handelt es sich um eine artenreiche Familie von Bäumen, die im 

tropischen Gürtel auf den Kontinenten Südamerika, Afrika und Asien beheimatet ist. Diese 

Familie besteht aus drei Unterfamilien (Pakaraimoideae, Monotoideae und Dipterocarpoideae), 

17 Gattungen und über 470 Arten. Die Dipterocarpaceae werden häufig auf Tropenholzmärkten 

gehandelt und nehmen somit eine bedeutende Stellung in der Wirtschaft vieler südostasiatischer 

Staaten ein. In vielen Regionen sind die Dipterocarpaceen jedoch erheblich gefährdet aufgrund 

von Entwaldung und nicht nachhaltiger Bewirtschaftung. 

Entwaldung stellt die hauptsächliche Bedrohung der globalen biologischen Vielfalt dar und 

verursacht erhebliche Umweltzerstörung insbesondere in den Tropenregionen, die die höchste 

Artendichte beherbergen. Ein Drittel der weltweiten Entwaldung ist durch Holzeinschlag 

bedingt, der zu über 50% illegal erfolgt (Brack, 2003). Gegen den illegalen Holzeinschlag wurden 

viele Maßnahmen von Regierungs- und Nichtregierungsorganisationen ergriffen. Einige 

Verbände der Holzindustrie haben Richtlinien erlassen, die ihre Mitglieder verpflichten, nur Holz 

aus legaler und nachhaltiger Wirtschaft zu beziehen. Nichtregierungsorganisationen (NGOs) 

haben Programme und Methoden vorgeschlagen, die der Entwicklung und Implementierung 

nachhaltiger Wirtschaftspraxis dienen, so die Waldzertifizierung.  Kern jeglicher Programme zur 

Erkennung des illegalen Einschlags muß jedoch in einer Überwachung vor Ort bestehen. Eine 

lückenlose Überwachungskette ist notwendiger Bestandteil solcher Programme, so daß die 

Herkunft des Rohstoffes Holz aus nachhaltiger Holzwirtschaft über die Verarbeitungsschritte bis 

zum Endprodukt nachvollzogen werden kann. Hieraus ergibt sich die Notwendigkeit, Werkzeuge 

zu entwickeln, die die  Bestimmung der Herkunft des Holzes ermöglichen und damit die Prüfung 

der Glaubwürdigkeit von Herkunftsbescheinigungen erlauben. Methoden der molekularen 

Genetik erweisen sich als nützlich, die Identität einer Art zu bestätigen und sind 

vielversprechende Werkzeuge der Bestimmung der geographischen Herkunft des geschlagenen 

Holzes.  
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Zur Anwendung des molekulargenetischen Ansatzes müssen zwei Bedingungen erfüllt sein: Zum 

Einen müssen Protokolle zur Isolierung von DNA in hinreichender Menge und Qualität aus 

rohem oder bearbeitetem Holz entwickelt werden. Zum Zweiten sind diagnostische DNA-

Marker zu identifizieren, die eine hohe räumliche Auflösung aufweisen müssen. Arbeiten zur 

Identifizierung „informativer“ DNA-Marker zur Identifizierung der Art und geographischer 

Differenzierung der Dipterocarpaceae wurden begonnen und laufend fortgeführt (Finkeldey et al., 

2007 und 2008). Das  Ziel dieser Arbeit ist die Etablierung von Methoden der DNA Extraktion 

für das Holz der Dipterocarpaceae. Proben verschiedener Arten, Alter, Typ (roh oder bearbeitet) 

wurden in verschieden Ländern zur Optimierung der Methoden gesammelt.  

Zum Beginn dieser Arbeit wurden mehrere veröffentlichte Methoden der DNA Isolierung sowie  

kommerzielle Extraktionskits an verschiedenen Proben von rohem und bearbeitetem Holz 

untersucht. Die Extrakte wurden mittels PCR analysiert, um den Erfolg der Extraktion 

nachzuweisen. Einige Methoden, die sich als erfolgreich erwiesen, wurden zwecks Optimierung 

ausgewählt, um bessere Ausbeute und Qualität der DNA zu erhalten. Schließlich wurde die beste 

oder effizienteste Methode zur Anwendung im weiteren Verlauf dieser Arbeit bestimmt: 

Zunächst erfolgte die Überprüfung der Methode durch Vergleich der aus Blättern und Holz des 

selben Baumes extrahierten DNA. PCR Amplifizierung, Genotypisierung der 

Mikrosatellitenfragmente und Sequenzierung dienten der Analyse der isolierten DNA. Weiterhin 

wurde die Anwendbarkeit der Methode zur Isolierung von DNA aus Holz unterschiedlicher 

Arten, Typen und Herkunft untersucht. Zuletzt wurden vergleichende Untersuchungen bezüglich 

der Menge und Qualität von DNA aus Extrakten aus unterschiedlichen Zonen des Holzes 

(Splintholz, Übergang zwischen Splint- und Kernholz, Kernholz) sowie Gehalt an PCR 

Inhibitoren angestellt.  

Die optimierte DNeasy Plant mini Kit (Qiagen) Methode (Rachmayanti et al., 2006) wird als die 

effizienteste Methode angesehen. Diese Methode überzeugt durch den kleinen Maßstab und die 

Anwendbarkeit in einem standardmäßig ausgestatten Genlabor. Nichtsdestotrotz erbringt sie eine 

hinreichende Menge und Qualität für PCR Amplifizierung und weitere nachfolgende Methoden 

wie DNA Genotypisierung, Klonierung und Sequenzierung. Die Zugabe von Polyvinylpyrrolidon 

(PVP) zum Lysepuffer ist wichtiger Bestandteil dieser Methode, da hierdurch die Hemmung der 

PCR signifikant vermindert werden kann. Zur Überprüfung der Methode wurde DNA  von Holz 

und Blättern des  selben Baumes isoliert und mittels PCR Amplifizierung,  Genotypisierung der 

Mikrosatellitenfragmente sowie Sequenzierung untersucht. Das Ergebnis zeigt, daß die aus 

Blättern und Holz isolierte DNA identisch ist. Die Blast-Suche in der GenBank bestätigte die 

Zugehörigkeit der DNA-Sequenzen der erwarteten genomischen Regionen. 
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Holzproben unterschiedlicher Arten, Typen (roh und bearbeitet), geographischer Herkunft und 

Zustand wurden in dieser Arbeit untersucht. Insgesamt 406 Proben, bestehend aus 332 Proben 

von Dipterocarpaceae und  74 von anderen Holzarten wurden analysiert.  Die Extrakte wurden 

mittels PCR analysiert um den Erfolg der Extraktion nachzuweisen. Eine Untersuchung  mit  

Chloroplasten-DNA-Marker unter Verwendung dreier Primerpaare zur Amplifizierung dreier 

Fragmente unterschiedlicher Länge (kurzes Fragment, ccmp2, etwa 150 bp; mittellanges Fragment, 

trnL, etwa 600 bp; langes Fagment, trnLF, etwa 1,100 bp) zeigte erfolgreiche Amplifizierung in 

369 von 406 PCR Experimenten (90,9%) beim kurzen Fragment, 319 von 406 PCR 

Experimenten (76,6%) beim mittellangen Fragment und 234 von 406 PCR Experimenten 

(57,6%) beim langen Fragment. Der durchschnittliche Erfolg für die drei Fragmente lag bei 

75,7%. 

Insgesamt 18 Holzproben aus Indonesien mit Querschnittsdurchmessern von 19,0 bis 32,0 cm 

wurden vergleichend untersucht hinsichlich der DNA Menge und Qualität in Extrakten der 

verschiedenen Zonen des Holzes: Splintholz (a), Übergangszone von Splint- zu Kernholz (m) 

und Kernholz (i). Die Untersuchung wurde unter Verwendung von PCR mit drei Primerpaaren 

zur Amplifizierung von DNA Abschnitten unterschiedlicher Längen durchgeführt (ccmp2, 150 bp; 

trnL, 600 bp; trnLF,  1,100 bp). Das Ergebnis zeigt, daß: 1) Genomische DNA in Holzproben im 

Allgemeinen in kürzere Fragmente zerfällt. Dies bestätigt sich durch die Beobachtung, daß bei 

allen Extrakten von a, m und i die Erfolgsrate der Amplifizierung des längeren Fragments 

niedriger liegt als bei den kürzeren und mittellangen Fragmenten. 2) Die DNA Menge im Verlauf 

vom Kernholz zum Splintholz zunimmt. 3) Die DNA Qualität vom Kernholz zum Splintholz 

zunimmt, da das Ausmaß des Zerfalls der DNA vom Splintholz zum Kernholz größer wird. 4) 

Der Gehalt an PCR Hemmstoffen vom Kernholz zum Splintholz zunimmt. 
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Paper I 

Extraction, Amplification and Characterization of Wood DNA from 

Dipterocarpaceae 

Authors:  Yanti Rachmayanti, Ludger Leinemann, Oliver Gailing and Reiner Finkeldey 

This paper was published in “Plant Molecular Biology Reporter”, volume 24, pages 45-55, March 2006 

(Journal homepage:  http://pubs.nrc-cnrc.gc.ca/ispmb/PR24-01.html). 

Abstract. A successful DNA extraction from wood yielding appropriate DNA quality for PCR 

amplification allows molecular genetic investigations of wood tissue. Genotypes, the origin of 

sampled material, and species can be identified based on an investigation of wood if suitable 

information on genetic variation patterns within and among species is available. Potential 

applications are in forensics and in the control of the timber and wood trade. We extracted DNA 

from wood of Dipterocarpaceae, a family that dominates rainforests and comprises many 

important timber species in Southeast Asia. Several different DNA isolation techniques were 

compared and optimized for wood samples from natural populations and from wood processing 

enterprises. The quality of the DNA was tested by spectrophotometry, PCR amplification, and 

PCR inhibitor tests. An average DNA yield of 2.2 μg was obtained per 50-100 mg of dried wood 

sample. Chloroplast DNA (cpDNA) regions of different length were amenable to PCR 

amplification from the extracted DNA. Modification of DNA isolation techniques by the 

addition of polyvinylpyrrolidone (PVP) addition up to 3.1% into lysis buffer reduced PCR 

inhibition effectively. In order to evaluate the extraction method, we analyzed leaves and wood 

from the same tree by PCR amplification, genotyping and sequencing of chloroplast 

microsatellites.  

Key words: chloroplast microsatellites, Dipterocarpaceae, DNA extraction, genotyping, PCR 

amplification, PCR inhibitor, PVP, sequencing, wood. 

Abbreviations: ccmp, consensus chloroplast microsatellite primer; cpDNA, chloroplast DNA; 

cpSSR, chloroplast simple sequence repeat. 
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Paper II 

DNA from processed and unprocessed wood: Factors influencing the 

isolation success 

Authors: Yanti Rachmayanti, Ludger Leinemann, Oliver Gailing and Reiner Finkeldey  

This paper was received at 27 September 2008, received in revised form 17 December 2008, accepted at 6 

January 2009, published online at 05 February 2009 in “Forensic Science International: Genetics”, volume 3, 

pages 185-192 (doi:10.1016/j.fsigen.2009.01.002). 

Abstract. Molecular genetic markers have numerous potential applications in environmental 

forensics if DNA can be isolated from ‘difficult’ non-human biological material such as hairs, 

feathers, or wood. The identification of the origin of wood is particularly important in order to 

identify illegally harvested and traded timber and wood products. We describe success rates of 

DNA isolation from wood based on a simple, previously published extraction protocol. The 

protocol was used to isolate DNA from a total of 406 wood samples, mainly of the important 

tropical tree family Dipterocarpaceae. The reliability of the extraction method was confirmed by 

comparing fragment sizes and sequences after isolation of DNA from leaves and wood of the 

same trees. We observed the success of amplification of chloroplast DNA (cpDNA) fragments 

of different lengths by means of PCR, investigated key factors influencing PCR, and conducted 

inhibitor tests for a subset of the samples. The average rate of successful PCR amplification was 

75.7%. Main factors influencing the success of PCR amplification were the size of the amplified 

fragment and the processing status of the wood. Short fragments and unprocessed wood resulted 

in higher success rates. The success rate was also dependent on the age (storage duration) of the 

wood probe and on the investigated species. Amplification success was higher if DNA was 

isolated from outer sapwood (without cambium) in comparison to DNA isolated from the 

transition zone between sapwood and heartwood and the inner heartwood. However, inhibitor 

tests also indicated more PCR inhibitory substances in the outer sapwood in comparison to 

transition wood and heartwood. The addition of polyvinylpyrolidone (PVP) to the lysis buffer 

proved to be highly efficient to improve the amplification success if inhibitory substances were 

present. 

Keywords: timber, wood products, DNA isolation, identification of origin, Dipterocarpaceae, 

conservation of tropical forests. 
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Paper III 

Molecular genetic tools for the identification of the origin of wood  

Authors:  Reiner Finkeldey, Yanti Rachmayanti and Oliver Gailing 

This paper was published in the book “Wood Production, Wood Technology and Biotechnological Impacts”, 

Ursula Kües (editor), Universitätsverlag Göttingen, pages 143-158, Göttingen  2007 (ISBN: 978-3-940344-

11-3, homepage: http://webdoc.sub.gwdg.de/univerlag/2007/wood_production.pdf) 

Introduction. Primary determinants of the value of wood are its dimension as well as its physical 

and chemical properties. However, additional features apart from those directly related to wood 

processing and conversion became increasingly important in the recent past. In particular, the 

management of forests during wood formation became an issue relevant for the trade of wood 

and wood products on worldwide markets (Bennett 2001). Wood in forests managed against the 

principles of sustainability can be harvested at lower costs for the forestry enterprise, but 

marketing of wood or wood products from non-sustainable forestry operations is becoming 

increasingly difficult. In Europe, the import and sale of tropical timber is greatly promoted by a 

proof of an origin from a company devoted to the principles of sustainability. The certification of 

wood, wood products, or businesses involved in forestry, wood harvest, and wood processing is 

of particular importance in this context. 
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Paper IV 

Identification of the timber origin of tropical species by molecular genetic 

markers – the case of dipterocarps 

Authors: Reiner Finkeldey, Yanti Rachmayanti, Hani Nuroniah, Nga Phi Nguyen, C. Cao and 

Oliver Gailing 

This paper was published in Proceedings of the International Workshop “Fingerprinting Methods for the 

Identification of Timber Origins”, Oct. 8-9 2007, Bonn, Germany, Bernd Degen (Ed.), Landbauforschung, vTI 

Agriculture & Forestry Research, p 20-27, Braunschweig 2008 (ISSN: 0376-0723, ISBN: 978-3-86576-046-3, 

http://www.wwf.de/fileadmin/fm-wwf/pdf_neu/Proceedings_Koenigswinter_BMELV_WWF.pdf) 

Abstract. Illegal logging continues to be a main cause for the destruction of tropical forest 

ecosystems. The development of non-manipulable tools to control the origin of timber and 

timber products from tropical tree species will greatly contribute to distinguish legally from 

illegally harvested wood. This will promote the marketing of tropical timber from sustainable 

managed forests and will eventually support the ban of illegally harvested material. We tested the 

application of molecular genetic markers to identify the origin of tropical Dipterocarpaceae. 

Dipterocarps are a very species-rich family dominating tropical forests in South- and Southeast-

Asia. They are the main source of tropical timber (trade name, for example, meranti) from this 

region. Since most species have a restricted distribution, species identification is an important and 

in many cases sufficient indication of the origin of timber. In total, more than 3000 dipterocarps 

representing over 110 different species have been sampled. Sampling has been most intensive on 

the Indonesian islands of Borneo and Sumatra. Locations from Vietnam, Thailand, and the 

Philippines are represented as well. We developed a simple and reliable method to extract DNA 

from dipterocarp wood based on a frequently used extraction kit. The success and efficiency of 

the method to extract DNA of good quality for PCR amplification from freshly cut timber and 

processed wood products was tested. The success rate for amplification was influenced by the 

age of wood, the degree of processing, and inhibitory substances. It was possible to increase the 

success rate in many cases to 100% of all investigated samples by a careful selection of the 

amplified DNA fragment (fragment length; genomic origin, repeat number), appropriate dilution 

of template DNA, repeated elution of DNA, and choice of the most suitable position for 

investigation (inner or outer wood). The method proved to be applicable for the majority of 

investigated dipterocarp wood samples and for most other investigated material as well. In a 
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parallel attempt, we developed markers to distinguish between closely related species from the 

same timber group and between geographic regions from widely distributed, common species. 

Species distinction is often possible by the investigation of cpDNA fragments of different length. 

The identification of the region of origin is hampered by a moderate degree of genetic 

differentiation for the two common dipterocarps Shorea leprosula and S. parvifolia. However, we 

observed strong geographic differentiation at several AFLP markers, which were converted to 

SCAR (Sequence Characterized Amplified Region) markers. In summary, dipterocarps are suggested as 

a suitable group of species to implement a system for the identification of the origin of tropical 

timber. 

Keywords: timber origin, DNA extraction, DNA marker, genetic variation, tropical tree, 

Dipterocarpaceae 
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Appendix 1 

Pictures of some wood samples 

Wood collected from forest (unprocessed wood) 

Wood collected from enterprises (processed wood) 

 

Obeche / Triplochiton scleroxylon 

Meranti 

Vietnamese 
dipterocarp 

Philippine dipterocarp 

Borneo ironwood / Eusideroxylon zwageri 

Indonesian dipterocarp 

Thai dipterocarp 

Scots pine / 
Pinus sylvestris 

Poplar / Populus sp. 

Indonesian teak / 
Tectona grandis 

Thai teak 



 

 

32

Appendix 2 

Diagram of successful PCR in unprocessed dipterocarps from different 

countries 
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Appendix 3 

Verification of DNA isolation method 

Verification schema 

 

Verification results 

Genotyping and sequencing results confirmed that DNA extracted from wood and leaf from the 

same tree are identical. ccmp microsatellite fragments amplified from wood DNA have the same 

length as that from its corresponding leaf. The trnF sequence obtained from wood and leaf from 

the same tree are identical with 100% homology. A Blast search against the EMBL data base 

shows that all sequences belong to the expected regions. Genotyping results from each 25 wood 

and leaf samples were described in Rachmayanti et al., 2006, Table 3. Other results such as 

genotyping of other 18 samples (woods and leaves each, Rachmayanti et al., 2009), sequencing of 

ccmp2, ccmp6 and ccmp10 fragments from the Dipterocarpus kerrii (Rachmayanti et al., 2006) and 

sequencing of trnF fragments from 5 samples of dipterocarps (Rachmayanti et al., 2009) are 

presented below. 

Sequencing procedure described in Rachmayanti et al., 2006. Sequencing 

initiated by cloning applied to three DNA fragments (ccmp2, ccmp6, ccmp10) 

and direct sequencing applied to trnF. 

Genotyping procedure described in Rachmayanti et al., 2006. Five ccmp

microsatellites were examined (ccmp1, ccmp2, ccmp3, ccmp6, ccmp10).  

PCR procedure described in Rachmayanti et al., 2006. Total of 6 cpDNA 

regions were amplified: 5 ccmp microsatellites  (100 – 150 bp) and trnF          

(± 400 bp). PCR primers described in Rachmayanti et al., 2006 and 2009. 

Wood & Leaf from the same tree (total = 43 samples).  

Wood: modified method as described in Rachmayanti et al., 2006.  

Leaf   :  DNeasy Plant Mini Kit (Qiagen). 

  Samples 

  DNA isolation 

  PCR Amplification 

  Genotyping 

  DNA sequencing 

  Genebank 

Cloning 
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Genotyping of chloroplast microsatellites of wood (W) and leaf (L) samples from the same tree of dipterocarps. 

Eighteen dipterocarp trees including 14 different species were tested. Nine haplotypes were identified 

W 14
8

15
0

15
1

15
2

10
0

10
1

10
2

10
6

11
1

11
2

11
4

12
3

13
6

94 98 10
1

Haplotype
Dipterocarpus elongatus 1 L ● ● ● A

W ● ● ● A

Shorea johorensis 2 L ● ● ● B
W ● ● ● B

Shorea leprosula 2 L ● ● ● B
W ● ● ● B

Shorea palembanica 2 L ● ● ● B
W ● ● ● B

Shorea parvifolia 1 L ● ● ● C
W ● ● ● C

Shorea ovalis 1 L ● ● ● C
W ● ● ● C

Shorea fallax 1 L ● ● ● D
W ● ● ● D

Shorea laevis 1 L ● ● ● E
W ● ● ● E

Shorea patoensis 1 L ● ● ● F
W ● ● ● F

Shorea multiflora 1 L ● ● ● F
W ● ● ● F

Shorea sp 1 L ● ● ● F
W ● ● ● F

Shorea virescens 2 L ● ● ● G
W ● ● ● G

Shorea sp 1 L ● ● ● H
W ● ● ● H

Vatica oblongifolia 1 L ● ● ● I
W ● ● ● I

L

Fragment length (bps)

ccmp 2 ccmp 3 ccmp 10 

Species N
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Alligment of ccmp2, ccmp6 and ccmp10 fragments sequenced from wood and leaf samples of Dipterocarpus kerrii. 

Fragment from wood and its corresponding leaf showed 100% sequence homology. 

Alignment of trnF fragments sequenced from wood and leaf samples of 5 dipterocarp trees (5 different species).

Sequences from wood and its corresponding leaf showed 100% homology. Polymorphic sites among species are 

highlighted. “-“ indicates insertion/deletion, “N”=missing data 
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Appendix 4 

PCR amplification of DNA extracted from three different wood zones 

 

 

PCR amplification procedure described in Rachmayanti et al., 2009 including its corresponding diagram 

(Fig.1). 

ccmp 2 trn L trn LF ccmp 2 trn L trn LF

a + + + + + +

m + + + + + +

i + + - + + -

a + + + + + +

m + + + + + +

i + + - + - -

a + + + + + +

m + + + + + +

i + + - - - -

a + + + + + +
m + + + + + +
i + + + + + +

a + + - + + +

m + - - - - -

i + - - - - -

a + + - + + +

m + - - - - -

i + - - - - -

a + + - + + +

m + + - + + +

i + - - - - -

a + + - + + +

m + - - + - -

i + - - - - -

a + + + + + +

m - - - - - -

i - - - - - -

a + + - + + -

m + + + + + -

i + + - + + -

a + + + + + +

m + + + + + +

i + - - + - -

a 11 11 6 11 11 10

m 10 7 6 8 7 6

i 10 5 1 5 3 1

a = outer rings of sapwood; m = rings transition of sapwood and heartwood; i = inner rings of heartwood

1st Eluate of wood extract 
Species name 

 Disk Diameter 
(cm)

Wood 
Zone

24.5

No

1

2

3

4

5

6

7

Shorea palembanica  Miq.

PCR result

8

9

29.5

Shorea sp. 22.5

Dipterocarpus elongatus  
Korth.

25.5

Shorea leprosula Miq. 20

Vatica oblongifolia  
Hook. F.

Shorea johorensis Foxw

10

11

Total of successful PCR amplification : 

Shorea virescens  Parijs

Shorea johorensis  Foxw

21.5

22

24.5

Shorea palembanica  Miq.

Shorea virescens  Parijs

2nd Eluate of wood extract

19

22.5

Shorea leprosula Miq. 23
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Appendix 5 

PCR inhibition by DNA extracts from three different wood zones 

 

 

PCR amplification procedure described in Rachmayanti et al., 2009 including its corresponding diagram 

(Fig.2). Inhibition of PCR by Wood DNA extracts.  + means unsuccessful amplification (approved PCR 

inhibition). - means successful amplification (no PCR inhibition) 

undiluted  1 : 10  1 : 20  1 : 40 1 : 80  1 : 160  1 : 320

a + + +  -  -  -  -

m +  -  -  -  -  -  - 
i +  -  -  -  -  -  - 

a +  -  -  -  -  -  - 

m +  -  -  -  -  -  - 
i +  -  -  -  -  -  - 

a + +  -  -  -  -  - 

m + +  -  -  -  -  - 
i + +  -  -  -  -  - 

a +  -  -  -  -  -  -

m  -  -  -  -  -  -  - 
i  -  -  -  -  -  -  - 

a +  -  -  -  -  -  -

m  -  -  -  -  -  -  - 
i  -  -  -  -  -  -  - 

a + + + + + +  - 

m + + + +  -  -  - 
i +  +  -  -  -  -  - 

a + + + +  -  -  - 

m +  +  -  -  -  -  - 
i +  -  -  -  -  -  - 

a 7 4 3 2 1 1 0

m 5 3 1 1 0 0 0

i 5 2 0 0 0 0 0

a = outer rings  sapwood; m =  transition rings of sapwood and heartwood; i = inner rings of heartwood

24

Disk Diameter 
(cm)

Wood 
zone

No

7 Shorea  sp.

Total of PCR inhibition :

22.5

6
Shorea multiflora  
(Burck) Sym.

22

5
Shorea fallax      
Meijer

30.5

4
Shorea parvifolia 
Dyer

24

3
Shorea patoensis 
Ashton

32

2
Shorea laevis       
Ridl.

28.5

1
Shorea ovalis  
(Korth.) Blume

Species name
Dilution of wood DNA extract
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Appendix 6 

Analysis of PVP (polyvinylpyrrolidone) treatment on PCR inhibition 

 

In order to study the effectiveness of PVP addition on the reduction of PCR inhibitory 

substances, three DNA isolation methods differing in the concentration of PVP in the lysis 

buffer (without, with 2.6% and with 5.0 % [w/v]) were compared (see Rachmayanti et al., 2006, 

step 8a of DNA isolation method). PCR inhibitory tests were performed using the same 

parameters as in normal PCR except that mixed DNA (DNA extract from wood plus another 

known high-quality DNA) was applied as PCR template. A total of 2.5 μl volume of PCR 

template (2 μl of wood-DNA extract + 0.5 μl of high quality leaf DNA) was applied for each 

PCR reaction. In this PCR inhibitory test, a series of 2.5 μl volume of PCR templates was 

prepared. Each template contained 0.5 μl of leaf DNA mixed with 2 μl of undiluted, 10 times, 20 

times, 40 times, 80 times and 160 times diluted wood DNA extract, respectively. This test was 

performed for the wood DNA extract from each isolation method. The figure above shows that 

DNA extraction without PVP treatment (0% PVP, A) left a high content of PCR inhibitory 

substances so that even 160 times diluted wood extract inhibited the PCR reaction. Figure B 

shows that after 80 times dilution of the extract with PVP addition up to 2.6% (w/v) the 

amplification of leaf DNA was successful. The addition of 5% (w/v) of PVP shows that a 40 

times diluted extract had no inhibitory effect (Fig. C). This test shows that PVP addition to the 

lysis buffer can effectively reduce the PCR inhibition in the DNA extract. 

PCR inhibitory test:  

Electrophoresis of PCR products on leaf DNA mixed by wood DNA (Shorea sp.) extracted with 3 

different PVP treatments: without PVP (A), with 2.6% (w/v) PVP (B) and 5% (w/v) PVP (C). PCR Template 

were leaf DNA mixed with each 0, 10, 20, 40, 80 and 160 times diluted DNA extract from wood. PCR primer =

ccmp2 (fragment length approximately 150 bp); K+ = PCR positive control (template = leaf DNA); M = DNA size

standard; K- = PCR negative control (no template). 

 
   K

-    K-    0        1        2     4       8       16    0      1       2      4       8       16    0       1       2       4       8     16      K
+  M  

wood extract dilution  (x 10 times)

AB C
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