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1 Introduction 

Since about one decade, with the adoption of the Kyoto-Protocol in 1997, climate change 

has become the focus of many scientific studies. Climate change in general, can be assigned 

to three major origins, 1) external, 2) internal and 3) human (McGregor and Nieuwolt, 

1998). The external origin being the interaction of the sun and earth where fluctuations of 

the earth orbit, among others, causes climatic changes. Natural changes of the atmosphere 

and, land surface or volcano eruptions are considered as internal origins of climate change. 

The third origin, the so called human induced climate change, is mostly related to 

atmosphere pollution, deforestation and degradation of land surfaces. 

Just as there are many unresolved questions with regards to the external and internal 

causes of climate change, there is still a lack of research when it comes to the human 

induced part of climate change. Here, one of the central questions is: How to assess 

deforestation, forest degradation and the related changes in carbon stocks? Considering 

that deforestation and forest degradation with a contribution of about 20% to the global 

greenhouse gas (GHG) emissions are the second largest emitters of GHG after the energy 

sector (UN-REDD 2011). It becomes apparent that the only chance to reduce the human 

influence on climate change is to reduce emissions, not only from the energy sector, among 

others, but also by reducing emissions from the forestry sector. 

When we speak of forest, in particular in large area & global issues, one of the first 

questions that should be asked is: What is forest, or how can we define forest and other 

land uses? Here, many efforts are being undertaken to harmonize classification for the 

whole world. While researchers around the world have tried to harmonize competing 

classifications and definitions, so far no consensus has been achieved. One possibility for 

such a harmonized land use classification scheme is the classification scheme provided by 

the United Nations Food and Agriculture Organization (FAO), which proved to be applicable 

to most regions of the world. 

The second question should be: How to correctly differentiate different land use classes on 

various scales, ranging from local level to country level or even the whole world? It has been 
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proven that terrestrial National Forest Inventories (NFI) or remote sensing based 

approaches are well suited tools for the assessment of such data. 

Many temperate countries already have established NFI’s, whereas most tropical, especially 

African countries still lack any means for a standardized reporting, data collection, analysis 

and  of their natural resources; even though it has been stated by Working Group II of the 

Intergovernmental panel on climate change (IPCC)-2007-report: “New studies confirm that 

Africa is one of the most vulnerable continents to climate variability and change because of 

multiple stresses and low adaptive capacity” (Parry et al. 2008). 

The above described existing uncertainty with regards to forest resources becomes even 

more important within the scope of new global market incentives like the United Nations 

collaborative programme on Reducing Emissions from Deforestation and Forest Degradation 

in Developing Countries (REDD), where industrialized countries can buy carbon credits from 

tropical, developing countries in order to reduce deforestation and forest degradation in the 

respective countries. For such a trading scheme to function, reliable, standardized, verifiable 

and cost effective data acquisition techniques are needed, in order to report on the current 

state and changes of land resources, especially forest and related carbon stocks. 

The second approach for the assessment of data on land resources, which has been 

mentioned before, is the application of remote sensing technologies, where many different 

systems are available that operate with a worldwide coverage. Here, much debate is on-

going about the harmonization of remote sensing based assessments and applications for 

the monitoring of forest resources. Especially within the frame of REDD, where large areas, 

which are difficult to access and measure on a terrestrial basis need to be assessed. 

 

1.1 Project affiliation 

The current study is part of a larger, international development research project. The 

project is being funded by the German Agency for International Cooperation (GIZ) and the 

Federal Ministry for Economic Cooperation and Development, Germany (BMZ). Within the 

research program “Adaptation of African Agriculture to Climate Change” nine projects were 

funded by GIZ/BMZ, each for a time period of three years (2008-2011). This study is part of 
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one of the nine projects, namely “ALUCCSA” which stands for Adaptation of Land-use to 

Climate Change in Sub-Saharan Africa. 

The main objective of ALUCCSA is to develop scenarios and recommendations for 

agroforestry and silvopastoral land use systems in Burkina Faso. The developed scenarios 

and recommendations for the agricultural sector of Burkina Faso based on climate 

projections that are calculated for a time period between 1980 and 2050.  

The climate scenario utilized, A1B, belongs to one of four groups of scenarios (IPCC 2007). 

A1 assumes a rapid economic growth and an introduction of new technologies where the 

population growth will peak in about 2050 (IPCC 2007). A1B is one of three directions the 

scenario A1 could develop to, based on the technological change; where A1B assumes a 

balanced technological development with an equal utilization of non-fossil and fossil energy 

sources (IPCC, 2007).The scenario A1B from the special Report on Climate Scenarios (IPCC 

2000) is calculated from the coupled General Circulation Model ECHAM5-MPI-OM and used 

as input for the regional climate model “Mesoscale Model Version 5” (MM5) which 

downscales the climate projections from the global scale to the regional and local scale for 

Burkina Faso. 

ALUCCSA implements an interdisciplinary approach and consists of several sub-projects (see 

Figure 1), reaching from regional climate modelling to the measurement of plant 

physiological parameters, to assess large and small scale vegetation structures (SP 4 and SP 

5)to animal husbandry (SP 8), Soil-Vegetation-Atmosphere Transfer (SP 2 and SP 7) and 

radiative transfer models (SP 3). 

The efficiency and sustainability of different land use types under conditions of climate 

projections is calculated by means of Soil-Vegetation-Atmosphere-Transfer- (SVAT)-Model 

WaNuLCAS (Water, Nutrient and Light Capture in Agroforestry Systems, Van Noordwijk and 

Lusiana 1999). 
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Figure 1: Schematic overview of the ALUCCSA project, where this study was conducted 
within SP 4, taken from project proposal. 

 

The Objective of this study, within ALUCCSA, is to describe the distribution of vegetation and 

land use on regional as well as country scale by means of a national forest and land use 

inventory. 

The data on vegetation distribution, its composition and spatial coverage can be used as 

input to the SVAT model, as impact models like WaNuLCAS, used for the analysis of the 

impacts of climate change on agricultural production are driven by climate and climate 

scenario data (Climate Local Model, Scenario A1B) and require small and large scale data on 

vegetation composition and structure, in particular on trees and forests, as input. 

  



5 

2 Goals, objectives and hypothesis 

This study was conducted within the context of international processes and conventions 

focused on climate change. The two major goals of this study were to evaluate the potential 

of large area forest inventories based on reduced sample size for the assessment of land 

use, applying standardized land use definitions, on national scale for semi-arid 

environments. The second goal is to develop a remote sensing based land use classification 

scheme, on country level that applies standardized land use definitions. Within the study we 

analyse the suitability of such a sampling scheme, combined with remote sensing data, as 

data provider to international processes. 

 

The given goals can be translated into the following research questions or hypothesis: 

I. Large area forest inventories with reduced sample size are applicable in semi-arid 

environments and are able to deliver statistically sound estimates on various 

variables, including error estimates. 

II. Current remote sensing based land use maps of Burkina Faso and other regions of 

the world do not apply standardized land use classification schemes and are 

insufficiently accurate. 

 

We would like to show that the applied sampling approach delivers high quality results on 

land resources with the possibility to calculate the level of precision at reduced costs, 

compared to similar large scale inventories, which is of much importance for many 

developing countries. Further, we would like to show that such inventories deliver 

information that can be used as valuable information source, for international processes as 

the results are based on standardized definitions and statistical grounds.  

With our remote sensing based approach for the generation of standardized land use maps 

we would like to contribute to the general discussion on up-scaling in remote sensing 

surveys, overcoming the problems of spatial resolution as well as establishing a 

standardized land use mapping scheme. 
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With regards to the above mentioned it should be remarked that, high costs are usually 

related to greenhouse gas (GHG) inventories. We hope to contribute to this discussion with 

our study, presenting a relatively cheap inventory approach, which could be extended to 

fulfil the requirements of a GHG inventory. Further, we would like to show that estimating 

above ground biomass or carbon is possible, with some limitations, with the applied 

sampling scheme. 
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3 Background and current state of science 

3.1 Forest inventories 

There is a strong need for sound data on forest and other land resources on national and 

global level, as these data are the basis for policy formulations and decision making on 

different levels. These data are also needed with regards to national reporting commitments 

to the respective international conventions. 

National forest inventories are among the most important sources of information when it 

comes to the natural resources, especially, forest related large area information (Tomppo et 

al. 2010), their implementation are connected to high costs and depend on the local 

availability of technical expertise and suitable infrastructure within the country (Fischer et 

al. 2011). Many of the developing countries that have not implemented a national forest 

resource monitoring system face significant challenges in this framework (Fischer et al., 

2011). 

Large sample sizes which are a consequence of the mostly predefined precision 

requirements lead to the high costs which associated with national forest inventories (NFIs). 

Nevertheless, it is still unclear and seldom scientifically discussed to which extent the 

required precision of estimates of NFIs have influences on their actual support to political 

decision making (Fischer et al., 2011). It is rather arguable whether the stipulated precision 

and related necessary sample size is always planned based on considerations about the final 

usefulness and credibility of results (Kleinn et al. 2010). Most estimates on natural resource 

assessments that can be obtained are even presented without any appropriate statement of 

their precision. Following FAO (2010); Tomppo et al. (2010) many of the reported country 

estimates, for tropical countries, with regards to forest, should be considered with great 

care as many of the estimates are based on ‘expert opinions’, being best guesses, rather 

than actual measurements. Baccini et al. (2008) stated that for many African countries, 

forest inventories on national or other large scales are not available, or do not meet certain 

accuracy requirements. Following Baccini et al. (2008) Africa is host to the second largest 

part of tropical rain forest in the world, being second to the Amazon, which is, with regards 

to the above mentioned, to large extents not properly researched and assessed. 
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Fischer et al. (2011) state: “The planning of the monitoring design is sometimes driven 

rather by the availability of human and financial resources, technical feasibility, individual 

expertise, preferences and convention, than by careful optimization of design elements 

towards the scale-dependent statistical precision. This is an important consideration, as 

already marginal reductions of the targeted precision have a considerable effect on the 

required sample size and related costs.” 

Much experience with low intensity sampling approaches has been gathered in the FAO 

program “Support to National Forest Assessment and Monitoring” (NFMA). In low intensity 

sampling sample size is much lower than in other NFIs approaches. Here, sample size is in 

the hundreds or even less ground plots, contrary to ten thousands of plots as used in many 

NFIs (e.g. (Thuresson 2002; Kleinn et al. 2005) (Fischer et al., 2011). The NFMA program 

focuses on helping developing countries to establish a baseline of their forest and other land 

resources by giving technical and financial help to conduct a national forest and land use 

inventory (Tomppo et al., 2010). Following Tomppo et al. (2010, chap. 38) there are three 

general standards that need to be fulfilled with in NFMA. 1.) NFMA is a demand driven 

program where the country requests help from FAO, well defining their assessment needs. 

2.) NFMA is a participatory program where a wide range of stakeholders are encouraged to 

participate in order to strengthen the cooperation between capacities within the target 

country. 3.) NFMA uses harmonized terms and definitions, which are also used on 

international level leading to comparability between countries and serving as a basis for the 

reporting to international conventions. 

 

3.2 Vegetation and climate 

The current state of science suggests that climate change is, to large extents, human 

induced. Where, following Maniatis et al. (2011), human induced climate change is largely 

influenced by emissions from forest degradation and deforestation. Several studies have 

been undertaken to quantify the amount of CO2 emissions originating from the above 

mentioned human induced processes. It was concluded, that in 2007 about 20% of the total 

CO2 emissions worldwide derived from deforestation (Achard et al. 2007; IPCC 2007). 
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Following (FAO 2008a) Africa contributes with 17% to global greenhouse gas (GHG) 

emissions from deforestation and with 40% to global GHG emissions with fires. In a study 

conducted by Landmann et al. (2008), where satellite imagery of two different sensors, 

Moderate-resolution Imaging Spectroradiometer (MODIS) and Landsat, was classified 

following the Food and Agriculture (FAO) land cover classification system (LCCS), for two 

study areas, one in Ghana and one in Burkina Faso, it was assessed that population density 

and the increase of crop land are the main drivers for the conversion of forests and 

woodlands. 

When reading such results the urgent need for action, concerning mitigation incentives 

becomes very clear. Thus, it was concluded by Gibbs et al. (2007) that one central issue with 

regards to combatting climate change is the reduction of emissions from deforestation and 

forest degradation (Gibbs et al., 2007). In order to achieve the above mentioned goals, 

harmonized monitoring systems have to be developed. It seems natural, that such 

monitoring systems usually need to provide information on many different topics, as various 

factors do influence GHG emissions. Thus, one could say that the demand for statistically 

sound information on the state and dynamics of forest resources is increasing with the 

current global challenges like mitigating climate change, conserving biodiversity, combating 

desertification and enhancing rural livelihoods. 

Bonan (2008) assessed that various biological, chemical and physical processes exist, by 

which the global climate is influenced by vegetation. It is stated in Fischer et al. (2011): “The 

changes in vegetation cover influence climate also at regional scale due to changes in 

albedo, roughness, leaf area index etc. (Copeland et al. 1996), which can lead for instance to 

alteration in spatial and temporal patterns of precipitation (Sánchez et al., 2007). Therefore, 

when regional climate is to be modelled, correspondent information on the state and 

dynamic of regional vegetation structure is required. Detailed information on vegetation 

structure is also needed for high resolution modelling of wind and radiation regimes at local 

scale (Ross 1981; Knyazikhin 1997).” 
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3.3 Assessment of carbon stocks 

With Africa being host to the world’s second largest block of rainforest (Baccini et al. 2008) 

and also, with regards to carbon stocks in the poorly researched dry forest formations, it 

becomes apparent that assessing the carbon stocks in Africa within the frame of global 

climate change is an important task. 

In many countries, National forest inventories are among the most sophisticated and most 

precise sources for data on carbon stocks, delivering high quality data (Böttcher et al., 

2009). 

Estimates on growing stock, based on diameter and height measurements, species 

composition, and the application of appropriate allometric models are available in relatively 

large number for most temperate forests. Allometric models, which are commonly used for 

the estimation of carbon stocks are based on destructive sampling measurements of tree 

diameter and tree height (Chave et al. 2005). The development of allometric models is very 

time consuming and thus expensive (Gibbs et al., 2007), as large numbers of trees have to 

be sampled. Many of the countries in the temperate zone have established permanent 

sample plots, allowing the monitoring of changes in carbon stocks over time (Böttcher et al. 

2009). 

For many tropical counties however, the above described situation is not reality. Following 

Byran et al. (2011), forest mensuration is not sufficient for accurate carbon stock estimates 

in many tropical countries. In addition very few allometric models are available for tropical 

species (Böttcher et al., 2009). Further, it was stated by Baccini et al. (2008) that carbon 

stocks and other related information is very scarce for African forests as they are the least 

researched until now. The lack of research has been attributed to various factors like 

political instability, limited infrastructure and a large ensemble of languages (Baccini et al. 

2008), leading to a large lack of data. 

It was assessed by Brown (2002) that using allometric models for forest types or ecological 

zones does work, generating results that are close to the measured results. The before 

mentioned result is of importance especially in regions, where either many unidentified 

species occur or, no allometric models are available for the species sampled. The reason, 
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why such general allometric models provide useful results is that, following Brown (2002), 

95% of the variations of above ground carbon stocks are explained by the DBH. As 

mentioned above, large numbers of trees are needed for the calculation of allometric 

models; this is where the general approach based on e.g. ecosystems is useful, as these 

allometric models are usually based on large datasets, covering a larger diameter range 

(Chave et al. 2005). The above described circumstance was used by Chave et al. (2005) to 

develop general allometric models, covering many forest types allowing accurate carbon 

estimates. Nevertheless it should be considered that the allometric models presented by 

Chave et al. (2005) do not include any data from Africa, showing the great lack of data, 

when it comes to carbon estimates for the African continent. 

 

3.4 Forest in the context of REDD 

In order to implement the United Nations Collaborative Programme on Reducing Emissions 

from Deforestation and Forest Degradation in Developing Countries (REDD) reliable data on 

the current state and also on the changes of forest carbon stocks are needed (Maniatis et al. 

2011), so called emission factors (EF). Thus, a standardized forest monitoring scheme has to 

be developed. 

As the name REDD already suggests, tropical forests are targeted by this program (Byran et 

al. 2011). At the 16th Conference of the Parties in 2010 in Cancún Mexico, REDD+ was passed 

(Decision 1/CP.16 III C). REDD+ can be seen as an extended version of REDD, where 

conservation, sustainable management and the enhancement of forest carbon stocks are 

now included (UN-REDD 2011). 

In the past, REDD has been criticized for its focus on carbon only; neglecting other important 

ecosystem functions like biodiversity conservation and for not considering social issues like 

poverty reduction (Brown et al. 2008). Usually ecosystem services are not object to global 

scale markets. Following Stickler et al. (2009), we agree that carbon, stored and sequested 

in forests might be the first ecosystem service which could be traded on the world market. 

The fact that such services can be traded on a worldwide market, producing revenues, could 

help mitigate the negative ecosystem impacts and improve lively hoods (Gibbs et al., 2007), 
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if the revenues from REDD are carefully reintegrated into society. Following the information 

provided in Stickler et al. (2009) the amount of money traded within carbon markets by 

2008 already exceeded $100 billion, whereas it should be considered that an average of less 

than one billion $ were annually spent for the funding of international conservation in the 

1990, with declining numbers (Wunder, 2006). With the above mentioned, we would like to 

show that the REDD process is about more than just about carbon. 

Countries that participate, or want to participate at REDD will have to report on the changes 

of forest area and related changes in carbon stocks (Maniatis et al., 2011) and give evidence, 

that the government measures help reducing deforestation and forest degradation. Further, 

several carbon pools have to be assessed and reported, namely: above ground biomass, 

belowground biomass, dead wood, litter and soil organic matter (Eggleston and 

Intergovernmental Panel on Climate Change 2006). Such assessments are always connected 

to monitoring costs. It was assessed that one of the key points with regards to REDD is the 

discussion on monitoring costs, which will, to a great extend influence the overall success of 

REDD. Further, we agree with Olander et al. (2007) that in addition to the monitoring costs, 

the accuracy level to which forest degradation and deforestation GHG emissions can be 

measured, will also determine the success of REDD. Following Böttcher et al. (2009) costs of 

monitoring for REDD vary largely, depending on the required precision. In their study they 

showed that monitoring costs can vary from 0.5 – 550 $ per km². A comprehensive overview 

of remote sensing products including their coverage and related cots is given in Böttcher et 

al. (2009). 

An underestimation of carbon stock as baseline, could lead to overestimations in carbon 

sequestration until a second phase assessment, leading to un-proportionally large 

payments, which could alter the functionality of the trading scheme. 

In conclusion to the above identified, initialization costs as well as the unequal access to 

monitoring techniques have to be overcome for all participating countries, in order to 

establish an internationally harmonized monitoring scheme (Böttcher et al. 2009). 

Before mitigation in any form can take place, a consistent, harmonized and transparent 

baseline for the monitoring of degradation and deforestation has to be established. 

Guidelines for such a greenhouse gas (GHG) monitoring system are provided by the 
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Intergovernmental Panel on Climate Change (IPCC) (Eggleston and Intergovernmental Panel 

on Climate Change 2006). With regards to the above mentioned it was stated in Maniatis et 

al. (2011) that until now most studies with regards to carbon stocks were carried out, either 

in the Amazon or in south-east Asia, while a great lack of data exists for Africa. 

The simplest way to report on a GHG inventory is to assess the change in forest area, so 

called activity data (AD) and multiply the AD with a coefficient for the corresponding forest 

type emission factor, which can be found in the IPCC Emission Factor Database (IPCC-NGGIP 

2011). The before described method corresponds to the accuracy level of tier 1, where 

there is a total of three tiers. Tier 2 is an improved version of tier 1, including higher 

demands on the accuracy estimates with regards to “AD” and “EF”, where “EF” needs to be 

calculated country specific. The tier which implements the strictest guidelines for the 

estimation of GHG emissions is tier 3, for detailed information please see (Eggleston and 

Intergovernmental Panel on Climate Change 2006). One of the advantages of implementing 

a flexible system, based on “tiers”, is that the technical abilities of countries can be taken 

into consideration as many countries have too limited capacities to provide REDD baselines 

on a higher tier level than level 1 (Olander et al., 2007). 

GOFC-GOLD (2008) estimated, based on six study sites distributed over the globe, that 

estimates applying the coarse tier 1 approach can lead to large underestimations (up to 

44%) as well as overestimations (up to 33%) of carbon stocks, compared to ground based 

measurements. 

 

3.5 The role of remote sensing 

With regards to the above described carbon trading scheme, it is important to monitor the 

forest area. For such monitoring the implementation and design of a standardized 

monitoring, reporting and validation (MRV) system is of utmost importance. The 

standardization of the MRV system has to result in replicable, consistent results, utilizing 

standardized methods. Benediktsson et al. (2007) state that remotely sensed data from 

various platforms has become the major source of information when it comes to earth 

observation. 
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We agree with Herold and Johns (2007), that remote sensing plays a crucial role in the 

success of REDD mechanisms. Remote sensing offers many possibilities when it comes to 

monitoring the earth surface in a continuous manner, for large areas, whereas terrestrial 

sampling can deliver precise data on smaller areas. According to DeFries et al. (2006) remote 

sensing is the only practical approach to monitor deforestation on a national level especially 

in regions with limited infrastructure. 

As mentioned above, ground measurements can deliver data with high precision, giving 

information on variables which cannot be directly measured by remote sensing. However 

the two ways of measurement can very efficiently be combined, where ground data can 

serve as so called ground truthing for data that can be remotely measured. Nevertheless it 

should be considered that how to monitor the terrestrial carbon stocks is still not 

completely clear and research far from being completed, yet. The leitmotif under which this 

topic is debated is MRV which is also discussed in Achard et al. (2007). As stated by Chave et 

al. (2005), until now, there is no method available that allows direct measurement of 

carbon; neither terrestrial nor remote sensing based. Thus, methods or tools for the 

estimation of carbon in vegetation have to be developed, like allometric functions which 

were briefly described before. 

A range of sensors is available at different costs. The costs of the imagery usually vary 

largely with the resolution, the spectral range, and technology of the sensor. Studies have 

been undertaken to evaluate the usefulness of different sensors for MRV systems (Achard et 

al. 2007; Gibbs et al. 2007). So far no conclusions were made, with regards to which sensor 

is the most suited, as each sensor has its strength and weakness, which is often determined 

by the goals set as well as the type of terrestrial sampling applied.  

Some may conclude that high resolution sensors like Ikonos or Quickbird are the best choice 

as uncertainty is lower, with regards to classification accuracy, compared to low and 

medium resolution sensors like MODIS. Where sensors like MODIS can well be used for the 

detection of deforestation, but less so for the detection of forest degradation (Gibbs et al., 

2007). 

Within the scope of this discussion it should be regarded, which level of uncertainty is 

allowed, in the context of REDD, meaning to which tier should estimates be made. Another 
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very important, but often neglected point is that the high costs, related to high resolution 

imagery can be the limiting factor for many countries, if a wall-to-wall coverage of the 

country is wished for. Just as the costs of the imagery can be limiting, much expertise is 

needed with regards to the processing of remotely sensed imagery to useful data providers, 

which is often not existent in many countries.  

Thus, it might be that for some countries it is more realistic to apply ground based 

measurements of carbon stocks, than remote sensing based studies, as labour costs are 

lower and expertise in field methods is more commonly available, compared to the costs 

and expertise related to remote sensing based approaches (Gibbs et al., 2007). 

 

3.6 Classification methods for remote sensing 

The above described REDD carbon trading scheme requires repeated measurements for the 

monitoring of change in forest area. Here remote sensing can play an important role within 

the framework of MRV, as most sensors have frequent revisiting rates and classification 

schemes can be developed for consecutive application. 

In order to achieve consistent results from a remote sensing based decision support system, 

the remotely sensed data needs to be processed to derive the information needed for a 

defined application. The processing is done; either automatically, unsupervised, or half 

automatically, supervised (Richards and Jia, 2006). Just as various remote sensing products 

have become available in the last decades, many classification methods for the 

corresponding data have been developed. A comprehensive overview of different 

classification techniques is given in Richards and Jia (2006); Jensen (2005). It was remarked 

in Gislason et al. (2006) that many of the previously used model or regression based 

classifiers are parametric classifiers. A parametric classifier relies on certain distribution of 

the data and is not suited for the classification of many geographic data (Richards and Jia, 

2006). 

In order to solve the above described, non-parametric classifiers like neural networks 

(Benediktsson et al. 1990) or Support Vector Machines (SVM) (Boser et al. 1992), among 

others, were developed. One of the drawbacks of non-parametric classifiers like neural 
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networks or SVM is, that they are often described as a “black box” as no fixed classification 

rule is generated during classification, thus repeatability for a repeated monitoring is 

limited. 

Classifiers that are able to deliver a fixed rule set, while being non-parametric are 

hierarchical decision tree methods. Hierarchical decision tree methods do not rely on an 

underlying model but apply a hierarchical splitting and are thus called “white box” (Tso and 

Mather 2009). In 2001 Breiman further developed the concept of decision trees by 

combining many decision trees into a ‘forest of decision trees’, naming this classification 

method RandomForest (Breiman, 2001).  

Following Gislason et al. (2006), the RandomForest classifier is well suited for the 

classification of remote sensing and geographical data, which has been applied in various 

remote sensing studies (Benediktsson et al. 2007; Gislason et al. 2006; Pal and Mather 2003; 

Walton 2008). 
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4 Study site description 

4.1 Study area Burkina Faso 

Geographic location 

The study area for this research is the whole country of Burkina Faso, where Burkina Faso is 

a land-locked West-African country with a total land area of 273,600 km² (FAO 2011). The 

country has six neighbouring countries, namely: Mali, Niger, Benin, Togo, Ghana and Ivory 

Coast. The size of Burkina Faso is smaller, than the other land locked neighbouring countries 

Mali and Niger, with sizes of 1,240,192 km² and 1,226,700 km² (CIA 2011), respectively. 

Considering the geographic location of the country and the absence of great natural 

resources, it becomes obvious, that Burkina Faso is strongly dependent on trade and serves 

as a transit country for transports between countries like Ivory Coast with its important port 

in Abidjan and e.g. Niger. 

 

Figure 2: Map of continental Africa where Burkina Faso is marked in grey. Map source: 
ArcGIS online data base. 
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Climate 

The climate in Burkina Faso has a strong seasonality, which is much dependent on the inner 

tropic convergence zone. The inner tropic convergence zone is the primary driving force for 

the seasonality of rainfall within the country, where one dry- and one wet season occur. The 

amount of yearly rainfall decreases with increasing distance from the equator (see Figure 3), 

which is also connected with longer dry seasons and increasing mean annual temperatures 

(Walter and Breckle 1999). Along the above described climatic gradient, climatic zones were 

defined. From north to south the climatic zones are defined as: Sahel, North and south 

Sudanian as well as Guinean zone (FAO 2000). The northern part of the country is 

dominated by a Sahelian climate (FAO 2000) with a rainfall of less than 500 mm yr-1 (Figure 

3) and a pronounced dry period of up to nine month. In the mentioned climatic zone, 

vegetation is characterized by dry savannahs with sparse tree cover, where no perennial 

crops are being grown. The central part of Burkina Faso belongs to the transitional Sudano-

Sahelian zone (FAO 2000) with an annual precipitation of about 500-900 mm, which covers 

large parts of Burkina Faso. 

 

 

Figure 3: Precipitation pattern of Burkina Faso Meteo-Burkina (2011). 
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Agriculture 

About 90% of the current 14 million inhabitants (INSD, 2010) in Burkina Faso depend on 

subsistence agriculture and livestock farming (CIA, 2011).  

Agricultural production in Burkina Faso can be subdivided into two main products. The first 

agricultural product is livestock and the second is crops produced from subsistence 

agriculture. Subsistence agriculture is practiced in form of shifting cultivation by the 

sedentary part of the rural population, which constitutes the majority of the rural 

population (König 2006). With the practiced shifting cultivation soil fertility is supposed to 

regenerate during fallow. Fire is an integral part of the land management system, following 

Laris (2002) and Goldammer (2004) fire is being used to clear land for agriculture, but also 

to improve grazing grounds. Following König (2006) only small parts of the potential 

agricultural areas are under actual use, with a mean size of 1-5 ha. Due to the described 

practice, a heterogenic and patchy landscape where cultivated and fallow areas alternate, is 

very common for many areas in Burkina Faso. 

In the northern Sahelian climate zone, the main crops being grown are millet and sorghum, 

having short growing cycles of about 90 days. Further to the south, rainfall increases to 

about 900-1100 mm yr-1, defining the Sudanian Zone (FAO 2000). This zone is strongly 

cultivated and crops as cereals, corn and also root crops like potatoes and cassava are 

grown here. Further, this part of Burkina Faso is also used to grow important cash crops like, 

mangos, cashews, sugar cane and last but not least, cotton. Here, it should be remarked 

that Burkina Faso was the largest cotton producing country in Africa in 2008 (FAO 2011), 

being number ten in the world (FAO, 2011). A small portion of the south western parts of 

Burkina Faso belong to the Guinean Zone (FAO 2000), where annual rainfall exceeds 1100 

mm (Figure 3) and dry seasons of about four month are present (Kagone, 2002). In this 

zone, agricultural production is focused on the same crops like in the Sudanian zone, but 

having a stronger focus on root crops. 

Besides agricultural in form of crops, extensive livestock farming is practiced as an important 

source of income, where animals like goats, sheep and most importantly, cattle are kept. 

The regions in Burkina Faso, where livestock plays the most important role, are the regions 

where agricultural production is not profitable any more. Due to the climatic situation in 
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Burkina Faso these regions are the northern most regions, where yearly rainfall is very low. 

It is a common practice to undertake long distance (often crossing more than the whole 

country) migrations, so called transhumanz, with the livestock, where the livestock is 

normally given to the nomadic ethnic group of the Fulbe (König, 2006), thus about 90% of 

the cattle livestock is possessed by the Fulbe (König, 2006). These migrations are 

undertaken as the fodder supply in the northern parts of the country, is often not sufficient 

during the dry season; where the described migrations to southern parts of the country 

often led to conflicts with the sedentary farmers in the corresponding regions. 

Vegetation and people 

Vegetation in Burkina Faso and the whole of West Africa changes corresponding to the 

climatic gradients. Nevertheless extreme events like the drought period from 1966 - 2000 

(Nicholson 2001) can happen and do not only severely affected livelihoods, but also lead to 

a significant loss in species diversity (Wezel and Lykke, 2006), leaving many introduced crop 

tree species in an unsuited environment.  

Under ‘normal’ conditions, in Burkina Faso, species richness increases with a southward 

trend (Linder et al. 2005). The northern parts of the country are mostly covered by a species 

poor savannah where a closed grass cover prevails and scattered woody vegetation occurs. 

Following Schmidt (2006) trees constitute larger parts of the vegetation, the further south, 

where the southern most parts of Burkina Faso are covered with dry forest formations. To 

the Global Forest Resource Assessment (FRA) of FAO Burkina Faso reported a total forest 

area estimate of 56 490 km² (21% of the national territory) where, according to the FAO, 

forest and land cover classification are based on a national remote sensing study (FAO, 

2009). 

There has been a long and unresolved dispute whether savannahs are natural ecosystems or 

if they are human induced, following disturbance in the form of fire and herbivores. For 

areas with less than 650 mm of yearly rainfall Sankaran et al. (2004) established a 

relationship between tree cover and rainfall. In areas with more than 650 mm rainfall yr-1 

the formation of forests is possible as trees would be more competitive than grasses. 

Following Fischer et al. (2011) many new studies show that natural savannah dynamics are 

increasingly disturbed by agricultural land use. This human induced disturbance is 
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associated with the prevailing fragmented landscape with its embedded farm areas. Typical 

for large parts of Burkina Faso are agroforestry parklands (Figure 7) where multi-purpose 

tree species such as Parkia biglobosa or Vittelaria paradoxa are maintained (Basset and 

Crummney, 2003; Savadogo, 2007). 

The observations above are further fortified by Landmann et al. (2008), where it was 

assessed that population density and the increase of crop land are the main drivers for the 

conversion of forests and woodlands. The conclusions of Landmann et al. (2008) were based 

on the evaluation of satellite imagery from two different sensors, 1) Moderate-resolution 

Imaging Spectroradiometer (MODIS) and 2) Landsat, that were classified following the Food 

and Agriculture (FAO) land cover classification system (LCCS), for two study areas, one in 

Ghana and one in Burkina Faso.  

Further, Eva et al. (2006) assessed that human pressure on remaining natural resources is 

increasing because of the on-going population growth. Sub-Saharan population more than 

doubled from 1960 to 1990 (Eva et al. 2006). Here, Burkina Faso is no exception where the 

population is actually growing at an annual rate of 3.8% (CIA, 2011). 

In general it can be concluded that the largest part of the population does strongly depend 

on goods provided by trees from forest, including timber, fuel wood, medicinal plants and 

animal fodder (Brännlund et al. 2009; Belem et al. 2007). DeBrie (1991) estimated that 

about 90% of the national energy supply originates from fuel wood. Burkina Faso ranges 

among the poorest countries in the world with a very low Human Development Index HDI, 

holding position 161 out of 196 countries in that list (UNDP, 2010) and natural renewable 

resource, including forest and tree resources outside forest (TOF) play, therefore, an 

superior role both for people´s livelihood and for the development of the national economy 

(Fischer et al., 2011). Due to this high level of dependency on these basic natural resources, 

changes in climate, with corresponding changes in vegetation have major impacts on 

livelihoods in Burkina Faso. 
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4.2 Study site description for four core study sites 

Next to observing the whole of Burkina Faso during the field inventory conducted, we 

established four core study sites within the ALUCCSA project (for their location see Figure 

11). The four core study sites were established to generate a common basis for all sub-

projects, where measurements were undertaken by all sub-projects. Measurements ranged 

from cattle observation to the establishment of metrological stations, among others. The 

four study sites belong to two of the four climatic zones described above, namely: Sudano-

Sahelian and Sudanian zone. Nevertheless it was assumed that the selected sites can be 

seen as representative for the four described climatic zones. Representative in this case, is 

meant as being covered by the according vegetation and land use. During the remote 

sensing part of this study the four core study sites were used as training sites for the 

development of a national land use classification method based only on remote sensing. 

1.) Sokouraba is located at the south western part of Burkina Faso. It the study site with the 

highest annual rainfall. Where an annual rainfall of about 1000 mm yr-1 is common (rainfall 

data was obtained from Meteo-Burkina). The rainfall distribution is distinct, with a clear dry 

and rainy season, where the dry season has an average length of about four month, starting 

in November. The climate with a moderate annual mean temperature of ~ 28°C (min 22°C 

and max 35°C) of the study site is also influenced by the altitude of about 500 m above sea 

level, which is among the highest elevations within Burkina Faso. The study site is strongly 

influenced by agricultural use, where corn is one of the most important crops, being 

cultivated with an agroforestry system, mainly including the species Karité or shea butter 

tree (Vittelaria paradoxa). In contrast to the other three study sites, many cash crops are 

cultivated within the area. The main cash crops, which were also encountered during the 

field work, were mangos (Mangifera indica) and cashew (Annacardium occidentale). These 

crops are cultivated in small scale plantations of few hectares. Large parts of the produced 

mangos are directly sold to the only juice manufacturer of Burkina Faso (DAFANI S.A.) that 

has its factory close by. Within the patchy mosaic of cropped areas, there are many fallow 

areas, which will be re-cultivated at some point, therefore transforming now cultivated 

areas info fallow, if one assumes that the area of cultivated land will not increase. Further, 

forest patches of varying size are retained within the cultivated landscape. 
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2.) The study site of Nobéré is located at the south-central part of Burkina Faso, at the 

southern reaches of the central plateau where the topography is flat with an average 

altitude of 250 m. This study site belongs to the South-Sudanian climate zone (FAO, 2000), 

characterized by an annual rainfall of about 880 mm yr-1 (figures provided by Meteo-

Burkina), where the dry season does not exceed a length of 5 month. The rainy season 

usually starts in early May and ends in October. Annual mean temperatures of 29°C were 

recorded with maximum temperatures of 38°C and minimum temperatures of 20°C. In 

contrast to the other three study sites, Nobéré is partly covered by a national park, the 

Kabore Tambi national park. Thus, this study site is subdivided into two main land uses; the 

northern and southern most parts are under Agricultural use, whereas the central part is 

covered by the national park. The national park is characterized by shrub land on its borders 

and forest in its core zone. Especially the shrub land on the outskirts of the national park are 

used as grazing grounds by sheep and cattle herders, even though it is prohibited by law. On 

the cultivated lands the main crops grown are Sorghum and Millet. Many agricultural areas 

are cultivated as agroforestry systems introducing the tree species Néré (Parkia biglobosa) 

and Vittelaria paradoxa into the agricultural areas. Fallow areas were not observed within 

the same frequency as in the study areas: Sokouraba and Safané, indicating an intensive and 

more permanent form of land use for agriculture. 

 

3.) The study site of Safané is located at the mid-western part of Burkina Faso. The study site 

is characterized by a yearly rainfall of about 875 mm yr-1 (data obtained from Meteo-

Burkina), where a distinct dry season of about four months on average is common. The dry 

season usually starts in October-November and extends until April-May. The climatic 

conditions present, assign this study site to the North-Sudanian zone (FAO, 2000). Maximum 

monthly temperatures reach 37°C in April and minimum temperatures of 18°C in January, 

and the mean temperature is 29°C were observed. Safané is an area of intensive agriculture. 

As assessed during the field inventory one of the main crops cultivated is cotton. Even 

though it is an area of intensive agriculture, with a long history of cultivation, which was 

perceived during field work, as some sample points were located on very old fallows; 

forested areas are still present. When comparing the study site of Safané with the study site 
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of Sokouraba, land use is less patchy, having larger homogeneous agricultural areas. In 

addition, it was observed that agroforestry systems are also applied to a lesser extent. 

 

4.) Tougouri is located in the northern part of Burkina Faso, within the South-Sudanian 

climatic zone. The South-Sudanian climate is characterized by a very distinct dry season, 

with a length of about six to seven month. The rainy season usually starts in Mai and ends in 

September – October, where the annual rainfall is about 600 mm yr-1 (figures obtained from 

Meteo-Burkina). Where mean annual temperatures of ~29°C, maximum temperatures of 

41°C and minimum temperatures of 18°C were measured, respectively Even though this 

study site belongs to the South-Sahelian (FAO, 2000) zone, agriculture is practiced. Two 

kinds of agricultural practices were observed, where the first is an agroforestry system, 

including Vittelaria paradoxa into the productions system, where millet was the dominating 

crop. The form of agriculture mentioned was mostly observed in depressions, where ground 

water is assumed to be available throughout the year. The second form of agriculture is the 

so called of “maraîchage”, being practiced along the sides of the dam, located next to the 

city of Tougouri. In the maraîchage crops with high water demand like tomatoes and green 

beans, among others are produced, as these crops in these areas are not rain fed. Besides 

the agricultural production, animal husbandry is an important source of income. Fallow 

areas were not observed, leading to the conclusion that the fields cultivated are permanent. 

This observation was further supported by the fact that lands not cultivated were both 

barren and rocky or belonged to the vegetation form “Brusse tigrée”, the “tiger bush”. This 

vegetation form is, to large parts, constituted by the shrubby species Combretum 

micranthum, growing in dense conglomerations, forming stripes that alternate with bare 

soil, aligned perpendicular to the slope (Hiernaux and Gerard 1999). The name tiger bush 

might have developed from the fact that this vegetation form looks like the stripes of a tiger 

when looked upon from the air. Further, tiger bush was observed as a typical vegetation 

form in areas where vegetation could just survive, being on the border to barren lands. 
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Figure 4: Top and Bottom: Typical mixture of new agricultural fields with adjacent fallow 
and forest areas. 
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Figure 5: Top: central part of the national park with a mixture of trees and shrubs. Bottom: 
edge of national park, dominated by shrub species. 
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Figure 6: Top: Old fallow with shrubby regeneration and single trees. Bottom: Forest as 
often observed in the study region. 
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Figure 7: Top: Agroforestry system with Vittelaria paradoxa and millet found in depressions. 
Bottom: Barren lands often found within the study region. 
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5 Methods 

5.1 Terrestrial sampling 

Most parts of the methods for the terrestrial sampling section follow the methods described 

in: Fischer et al. 2011. A national level forest resource assessment for Burkina Faso - A field 

based forest inventory in a semi-arid environment combining small sample size with large 

observation plots. Forest Ecology and Management, doi:10.1016/j.foreco.2011.07.001. 

 

5.1.1 Sampling and plot design 

The vegetation type “forest” is the focus of the inventory conducted within this study. 

Following Fischer et al. (2011) trees outside forest (TOF) were also included because of their 

importance for modelling tasks of the overall project and to establish a baseline for the 

whole of the tree resource in Burkina Faso. In addition we were able to estimate the species 

composition for different land use classes and the corresponding above ground carbon 

stocks based on single tree measurements. 

Fischer et al. (2011) mention: “The sampling design refers to the selection procedure for 

sampling locations inside a defined areal sampling frame, while the plot design is a rule-

based framework that defines which elements are to be included into the sample at each 

location.” 

For the monitoring task at hand we chose to apply a systematic two-stage sampling design. 

It has been shown in several studies that two-stage sampling is an efficient sampling 

concept, especially if cost and the precision of estimates have to be optimized (Gregoire and 

Valentine 2007). For this study, one of the major cost factors to be considered were high the 

transport costs to reach the sample plots (Fischer et al., 2011). In order to optimize the 

efficiency of our sampling approach a maximum of information on the target variables were 

to be measured at each sample plot. As the costs for measuring an additional variable on 

the sample plot is inferior to the transport costs to reach a sampling location. Following 

Fischer et al. (2011) this is why large observation plots were defined. On the first stage of 

the sampling design, a systematic square sample grid of 72 km side length was laid out in 
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north-south orientation over the total area of Burkina Faso where a random starting point 

was predefined (Figure 8) (Fischer et al., 2011). 

 

 

Figure 8: Map of Burkina Faso with the 72 km x 72 km sampling grid indicated by squares 
defining a sample size of n = 53 first stage plots (primary sampling units). The marked black 
squares are the seven primary sampling units for which field data could not be collected 
(see also text). Modified from Fischer et al. (2011). 

 

One of the reasons why to choose systematic sampling is that at the first stage a fast and 

easy implementation is possible and an even coverage of all land-use types as well as 

environmental conditions proportional to their area is guaranteed by the so called self-

stratification (Fischer et al., 2011). In addition this approach ensures that samples are drawn 

from a discrete population of non-overlapping sampling units. The decision on the grid size 

was based on the expected maximum number of field plots that were feasible to measure 

with regards to the available resources in terms of skilled labour, time and budget (Fischer 

et al., 2011). We decided to apply a sample size on the first stage of n = 53. 



31 

Each of the 53 primary sampling units (PSU) has a square shape with 10 km side length (100 

km2 area). Fischer et al. (2011) state that: “On seven of the selected PSUs, field assessments 

were not possible either because of limited access or due to security reasons, as they were 

partly overlapping or very close to the political boundary of Burkina Faso. Final sample size 

on the first stage was therefore reduced to n = 46 PSUs.” We came to the conclusion that 

there is reason why the existent non-response should lead to biased estimates on country 

level (Fischer et al., 2011). We did, therefore, not apply any imputation techniques or 

correction for non-response as suggested in McRoberts (2003). Following Fischer et al. 

(2011): “Each of the selected PSUs was subsequently subdivided into 25 secondary sampling 

units (SSU) based on a systematic square grid of 2 km side length. The second stage 

subsample consisted of selecting randomly two SSUs per PSU (Figure 9).” 

 

 

Figure 9: Schematic view of the inventory design (not to scale), including circular subplots 
(CS) with a radius of 15 m and quadratic regeneration plots of 1m² each from Fischer et al. 
(2011). 
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As described in Fischer et al. (2011): “In the selected SSUs two parallel transect lines of 400 

m length were laid out at a distance of 500 m. The orientation (N-S or W-E) of these 

transects was alternating for the two SSUs: North-South and West-East. On each transect 

line the centre points of five fixed area circular subplots (CS) of 15 m radius were placed 

equidistantly (100 m between subplot centres). The cluster of 10 CS within each SSU 

constitute one second stage sample and were treated as one observation during data 

analysis. The total number of measured subplots was 905. At each subplot location six small 

quadratic regeneration plots of 1 m² were established systematically next to the circular 

subplots (Figure 9).” Various variables on the vegetation resources were assessed on the 

different plot design elements which are listed accordingly in Table 2. As we had no 

knowledge on the species in Burkina Faso, species identifiaction was condicetd by a very 

experienced botanist of the herbarium of the Institut de l’Environnement et de Recherches 

Agricoles (INERA), Burkina Faso. Species names and identification followed Arbonnier 

(2009). Following Fischer et al. (2011): “In each CS all trees with a minimum diameter at 

breast height (DBH) of 7 cm and shrubs with a diameter at ground level larger than 3 cm 

were included in the inventory. In case that multiple shrubs were growing tangly and 

forming one connected single crown, they were recorded as one individual. The crown 

projection area for trees and shrubs was asessed by two perpendicular crown diameter 

measurements. Regeneration of trees and shrubs (tree height ≤ 1.3 m and DBH < 7 cm, and 

shrub diameter < 3 cm at ground level) was counted seperately for species in the 

regeneration plots, while for grass, herbs and crops the ground coverage in per cent was 

estimated according to a specific key.” 

The classification of land use types was done according to the definitions of the Food and 

Agriculture Organization of the United Nations (FAO, 2010) (see Table 1 and Figure 10). 
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Table 1: Land use classes with definitions as provided by the Food and Agriculture 
Organization (FAO). 

Land use category Definition 

Forest “Land spanning more than 0.5 hectares with trees higher than 5 meters and 

acanopy cover of more than 10 percent, or trees able to reach these 

thresholds in situ. It does not include land that is predominantly under 

agricultural or urban land use“(FAO, 2010). 

Other wooded land “Land not classified as “Forest”, spanning more than 0.5 hectares; with 

trees higher than 5 meters and a canopy cover of 5–10 percent, or trees 

able to reach these thresholds in situ; or with a combined cover of shrubs, 

bushes and trees above 10 percent. It does not include land that is 

predominantly under agricultural or urban land use” (FAO, 2010). 

Other land “All land that is not classified as “Forest” or “Other wooded land” (FAO, 

2010). 

Other land with tree 

cover which is a 

subcategory of “Other 

land” 

“Land classified as “Other land”, spanning more than 0.5 hectares with a 

canopy cover of more than 10 per cent of trees able to reach a height of 5 

meters at maturity” (FAO, 2010). 

Inland water bodies “Inland water bodies” generally include major rivers, lakes and water 

reservoirs (FAO 2010). 

 

 

Figure 10: Schematic view of “other land” with subclass “other land with tree cover”. 
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Based on measured criteria like crown cover, minimum height, land use, and life form (Table 

2), each circular subplot assessed was assigned to one of the described land use classes. For 

each selected cluster plot an estimate of the relative share of land use types was calculated 

based on the number of subplots assigned to the different classes (Fischer et al., 2011). By 

multiplying the relative shares for each land use class with the total area of Burkina Faso we 

were able to calculate the total area covered by the correspondent land use class. An 

unbiased estimator for the relative share of land use classes over all PSUs is given with: 

 

Following Cochran (1977), S1² is the variance among PSUs and S2² is the variance among 

SSUs within PSUs, N is the total amount of PSUs possible for the area of Burkina Faso, n is 

the number of PSUs in the sample, M is the total of SSUs in one PSU, m is the number of 

SSUs included in the sample for each PSU, respectively. Standard error and relative standard 

error calculations were made based on the variance of the estimates, following Cochran 

(1977). All statistical analyses were done in R (R Development Core Team 2011). 

 

Table 2: Selected variables assessed on different subplot levels (CP= circular cluster 
subplots, RP= regeneration plots) (Fischer et al., 2011). 

Life form Variable Plot types 

  CP RP 

Land use class (LU) X  

Living tree, standing dead tree, 
stump 

species/genus X  

DBH> 7 cm X  

total height [m] X  

Crown diameter [m] X  

Shrubs species/genus X  

diameter of crown projection area [m] X  

total height [m] X  

Tree/ Shrub regeneration species/genus  X 

number  X 

Grasses/ Crops coverage [%]   X 
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5.1.2 Estimation of aboveground carbon stocks 

We could estimate aboveground biomass and related carbon stocks only for trees, as 

reliable biomass models for shrubs are not available. We attributed the unavailability of 

biomass models for shrubs to the fact that most biomass studies focus on grasses or trees 

only, but ignore shrubs. To predict the aboveground biomass of trees (AGBTree) based on 

measurable single tree variables like DBH (cm) and tree height (m), we applied a general 

model for dry climates presented by Chave et al. (2005), as specific allometric models for 

particular tree species in the actual forest types were not available (Fischer et al., 2011): 

 

With  being wood specific gravity in g cm-3, DBH in cm, h in meter and AGB in kilo grams. 

The unavailability of wood density values for all identified species was treated by calculating 

an average value as median (Ds) for each land use class. Where Ds is based on the wood 

densities of the ten most abundant tree species (Brown 1997; Nygård and Elfving 2000; 

Ketterings 2001) (Fischer et al., 2011). Following Chave et al. (2006) mean wood density 

needs to be converted into wood specific gravity to fit the corresponding allometric models. 

This predcondition was consequently followed, applying Sallenave’s relationship with:  = 

0.872*Ds (Sallenave, 1971). For the conversion of AGBTree to carbon stocks (AGCTree) we 

applied a widely accepted approach based on the assumption that 50% of the biomass is 

carbon (Roy et al. 2001; Malhi et al. 2004), although it is known to us that Elias and Potvin 

(2003) showed that this relationship is not constant over tree species (Fischer et al., 2011). 

 

5.2 Remote sensing 

5.2.1 Regional scale land use classification 

For the land use classification on regional scale we selected four study sites, each with a size 

of 2401 km².The Study sites are located within contrasting climatic regions of Burkina Faso 

(figure 11) in order to ensure a complete coverage of all five land use classes of interest. The 

land use classes in the remote sensing survey were defined as for the terrestrial sampling 

following FAO definitions, see Table 1. 
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We used Level 3A RapidEye imagery as basis for the land use classification on regional scale. 

The imagery was obtained from the German Aerospace Center (DLR). For scientific purposes 

the imagery could be obtained free of charge within the RapidEye Science Archive (RESA), as 

RapidEye was funded within a public private partnership. 

 

Figure 11: Location of the four study sites with corresponding primary sampling unit for the 
land use classification on regional scale. 

 

RapidEye imagery is characterized by having five bands including a near-infrared (NIR) as 

well as a red edge channel (RE), in total covering a band width between 440-850 nm. The 

ground sampling distance is 6.5 m, which is then resampled to a pixel size of 5 m (RapidEye 

AG 2011). Each image tile covers an area of 25*25 km. For a full coverage of each study site 

four images are required, therefore the quality between the Level 3A products acquired 

differed. According to the RapidEye metadata, cloud coverage for all images was between 0-

3 per cent even though clouds and especially haze were present in images 1, 2, 6, and 7 

(Table 3), resulting in the mentioned quality dissimilarities. 
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Table 3: Acquisition details of the standard RapidEye Level 3A imagery products extracted 
from the metadata file (PSU= primary sampling unit). 

ID Study Site Date Time (UTC) Cloud 
Coverage 

Unusable 
Data 

Satellite 

1 PSU 4 2010-03-10 11:46:17 0% 0% RE-1 

2 PSU 4 2010-03-10 11:46:18 0% 15% RE-1 

3 PSU 4 2010-03-10 11:46:20 0% 0% RE-1 

4 PSU 4 2010-03-10 11:46:21 0% 1% RE-1 

5 PSU 13 2010-02-15  11:22:39 0% 0% RE-3 

6 PSU 13 2010-02-15  11:22:43 0% 0% RE-3 

7 PSU 13 2010-02-18  11:26:57 0% 0% RE-1 

8 PSU 13 2010-02-18  11:27:00 0% 0% RE-1 

9 PSU 20 2010-02-16 11:42:47 0% 0% RE-3 

10 PSU 20 2010-02-16 11:42:48 0% 0% RE-3 

11 PSU 20 2010-02-16 11:42:51 0% 0% RE-3 

12 PSU 20 2010-02-16 11:42:51 0% 0% RE-3 

13 PSU 43 2010-02-18 11:26:25 0% 0% RE-1 

14 PSU 43 2010-02-18 11:26:28 2% 2% RE-1 

15 PSU 43 2010-02-19 11:27:40 3% 3% RE-2 

16 PSU 43 2010-02-19 11:27:44 2% 2% RE-2 

 

5.2.2 Image preprocessing and enhancement – regional scale 

All remote sensing platforms are influenced by the composition of the earth atmosphere as 

all energy that reaches the sensor, needs to pass at least parts of the atmosphere, where 

the wavelength of the incoming sunlight can be altered by aerosols or the gaseous 

composition of the atmosphere (Campbell 2008). 

In our case, we used imagery with a bandwidth within the visible and near-infrared domain. 

Such data from a passive sensor is dependent on sun light thus is strongly affected by 

variations of the solar zenith angle and also the wavelength and the interaction of the 

atmosphere (Vermote et al., 1997). In order to minimize such negative influences on the 

imagery, which can lead to reductions in classification accuracy, we applied an atmospheric 

correction. Atmospheric correction aims at removing the atmospheric effects on the 
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imagery allowing the retrieval of the surface reflectance from the radiances measured at the 

sensor. Further, the application of atmospheric correction helps normalizing imagery taken 

at different times, improving comparison between images. 

Next to the atmospheric corrections with regards to aerosol and gaseous composition of the 

atmosphere, cloud detection was applied. Cloud cover is often the limiting factor in passive 

remote sensing, especially for the moist tropics or regions with distinct rainy seasons; where 

the seasonal variation in cloud cover has to be taken into account when planning image 

acquisition. We implemented an automatic cloud detection algorithm based on a rule set of 

threshold values (Magdon, 2011), following the methodology proposed by Richter (2008). 

For the cloud detection we used top-of-atmosphere reflectance (Magdon, 2011) and three 

classes were differentiated: (i) cloud over land, (ii) cloud over water and (iii) water (Magdon, 

2011). 

For atmospheric correction various models are available, most of them are commercial and 

their source code is not publicly available, thus adaptations of the model are not possible. 

We implemented the Second Simulation of a Satellite Signal in the Solar Spectrum - Vector 

(6SV) model (Vermote et al., 1997) where the original code can be obtained. This model was 

further extended with a new subroutine defining specific filter transmission curves for the 

five RapidEye bands (Magdon, 2011). All image specific required input variables like the 

solar zenith angle, and these were derived from the metadata files of the input imagery. 

Additional information about the surface elevation for every scene was calculated from 

SRTM (Shuttle Radar Topographic Mission) digital elevation model (DEM) (Magdon, 2011). 

For the calculation of the atmospheric correction an ideal Lambertian surface reflection as 

well as a standard atmospheric profile for the gaseous components (US62) was applied, 

using a continental aerosol model (Magdon, 2011). The 6S model also includes information 

on the water vapour column, ozone concentration, and aerosol optical depth at 550 nm. 

Information on these can be obtained from the MODIS Atmosphere data collection 

(http://modis-atmos.gsfc.nasa.gov). The MODIS Terra data on the atmospheric composition 

utilized were taken on the same date as the RapidEye data with time offsets of less than one 

hour (Magdon, 2011). 
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To further improve classification results one can derive additional features (in our case 

additional bands) from the original image bands. We calculated a total of 15 additional 

features, belonging to two groups: 1.) Image ratios, and 2.) Image textures (Table 4). 

 

Table 4: Artificial bands used in this study (Magdon et. al. 2011), where: NIR = near infra-red 
and RE = red edge. 

Artificial Band Formula Reference 

NDVI  Haas et al. (1974) 

Red Edge NDVI  Gitelson (1996) 

Green NDVI  
Buschmann and Nagel 

(1993) 

Ratio  Marx (2010) 

Chlorophyll Green Model (CGM)  Gitelson et al. (2005) 

Chlorophyll Red Edge Model (CRM)  Gitelson et al. (2005) 

Occurrence Mean See reference given Haralick et al. (1973) 

Occurrence Standard deviation   

Occurrence Variation coefficient   

Co-Occurrence Angular second moment   

Co-Occurrence Contrast   

Co-Occurrence Entropy   

Co-Occurrence Inverse difference moment   

Co-Occurrence Correlation   

Co-Occurrence Dissimilarity   

Co-Occurrence Max. probability   

Co-Occurrence Mean   

Co-Occurrence Variance   

Co-Occurrence Cluster shade   

Co-Occurrence Cluster prominance   
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We calculated a total of six ratios, which are calculated by dividing one image pixel from one 

band by the corresponding pixel of another band of the same image (Lillesand, 2008). The 

best known ratio in remote sensing of vegetation is the Normalized Vegetation Index 

(NDVI), which is one of five vegetation indices we implemented. The NDVI is calculated by 

the ratio of the sums and difference of the red and NIR bands. Vegetation indices like the 

NDVI are very efficient in segregating vegetation from non-vegetation or by making 

distinctions between vegetation cover as the NIR to red ratio is usually high for healthy 

vegetation and low where no vegetation occurs (Lillesand 2008). 

Following Lillesand (2008), texture is defined as: “The frequency of tonal change on an 

image”. Textures can increase classification when objects that need to be classified have 

similar brightness values but their structure differs, e.g. the distinction between conifer and 

broad leaf tree species. Calculations of texture are done by applying a moving window 

which passes over the whole image. We calculated a total of nine textures for band 2 of the 

RapidEye images (Table 4), which is the green band, applying a moving window with a size 

of 3 x 3 pixel (Magdon, 2011). 

 

5.2.3 Image classification scheme – regional scale 

Image classification followed the FAO land use classification scheme, segregating the five 

major FAO land cover classes: forest, other wooded land, other land, and other land with 

tree cover see (Table 1). For the classification we developed a multi-level classification 

scheme with three levels as shown in Figure 12. In a first step a level I classification with 14 

classes was done based on the spectral and textural information from the image itself 

(Magdon 2011). Out of this classification the FAO land use classes were derived (Level II) and 

a forest /non-forest map (Level III) could be generated. 
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Figure 12: Classification scheme for forest cover mapping, taken from Magdon (2011). 

 

As indicated in Figure 12, the transition from level I to level II is not injective, meaning that a 

rule set is needed to allocate level I classes to level II classes (Magdon 2011). The developed 

rule set, as shown in Figure 13, implements the FAO land use definitions, using both, 

quantitative and qualitative criteria (Magdon 2011). 

In order to apply the rule set for the FAO conform land use classification in Figure 13, a 

reference area had to be defined for which the crown cover and the predominant land use 

was determined (Magdon 2011). In this context, we explain the term predominant as stated 

in the FAO land use definitions (FAO 2010) as the majority within the reference area. As 

reference area we choose a quadratic area of 625 m² (25 pixels). The next smaller reference 

area would have had a size of 225 m² (9 pixels), being the smallest possible reference area, 

whereas the next larger possible reference area would have had an area of 1225 m² (49 

pixels). We chose the reference area with 625 m² in order to extensively harmonize our 

remote sensing survey with our field based observations, where one field plot had a size of 

706 m². Our classification resulted in a FAO conform land use map which delivers the 

possibility to create a forest /non-forest map. The forest non-forest map was generated 

following the classification scheme in Figure 12, by reassigning the FAO land uses: other 
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wooded land, other land, other land with tree cover, and water to non-forest; cloud & cloud 

shadow to no data, whereas forest remains forest. 

 

 

Figure 13: Hierarchical rule set (T=true, F=false) implementing the FAO land use definitions 
(OL = other land, OLWTC = other land with tree cover, OWL = other wooded land). With CCT 
= crown cover of trees and CCS = crown cover of shrubs. Modified following Magdon (2011). 

 

5.2.4 Training- and validation data sets – regional scale 

For consistent land use mapping the implementation of a common land use definition and a 

statistically sound accuracy assessment is needed. Further, training- and validation data 

need to be selected for the accuracy assessment. The selection of such data needs to be 

done in a randomized manner; leading to two independent data sets. Following Campbell 

(2008) training data should cover the spectral range of the images and must cover all classes 

of interest. 
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The training datasets were generated by overlaying the original images with a randomized 

systematic grid, defining n = 50 equidistant 200 m x 200 m plots following Magdon (2011). 

Within the established plots all image objects were mapped by an experienced image 

interpreter with local knowledge from field surveys; where mapping was done according to 

the level I classification key (Figure 12). After compiling the full test dataset all surface 

reflectance, vegetation indices, and texture measure pixel values were extracted from the 

train data (Magdon 2011). 

Classification errors were computed using an error matrix as described in various text books 

(Jensen 2005; Jones and Vaughan 2010). In this study we used 1.) overall accuracy, 2.) user 

accuracy, 3.) producer accuracy, and 4.) kappa statistic, to describe the classification results. 

The overall accuracy is calculated by dividing the number of correctly classified pixels by the 

total number of pixels used in the classification (Jones and Vaughan, 2010). The user 

accuracy is a measure for the classification accuracy for each class. The user accuracy is 

calculated by dividing the number of correctly classified pixels by the total number of pixels 

in this category (Jones and Vaughan, 2010). Calculating the producer accuracy also gives an 

estimate of the classification accuracy for each class, but here, we divide the number of 

correctly classified pixels by the total number validation pixels in this class. The last measure 

of classification accuracy calculated is the kappa statistic, which gives the degree of 

divergence of the classification from a random distribution of classification results. Kappa 

quantifies whether the classification renders significantly better results than a random 

classification. Where kappa is given with: 

 

Where  represents the total number of elements in the matrix,  are the diagonal cells of 

the error matrix,  are the row marginal totals, and  stands for the column marginal 

totals (Jones and Vaughan, 2010). 

When computing the classification error we did not do so for each image individually, but 

for the four images covering one PSU. Accuracies were computed on the level of the four 

images as the population of interest is not each image but the region covered by the four 

images together. This procedure resulted in different extents for the train- and validation 
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data sets. Each validation dataset was generated following Magdon (2011), where a 

systematic grid with n = 100 validation points was overlaid over the study area and the level 

I classes were determined by image interpretation. 

 

5.2.5 Classifier 

Classification of the images was done using the RandomForest method developed by 

Breiman (2001). One of the advantages of using such a non-parametric classification method 

is that no assumptions need to be made concerning data distribution and independency (Im 

und Jensen 2005). Further, classification is based on a rule set which can easily be 

interpreted (Breiman, 2001). By convention, classifiers that are able to deliver a fixed rule 

set, at the same time being non-parametric are hierarchical decision tree methods (for a 

graphical view see Figure 15). 

The RandomForest classifier is based on bagging, which is bootstrap aggregation (Gislason 

et al. 2006). Where the method of bagging was introduced by Breiman, a detailed 

description can be found in Breiman (1996). Bagging is a method that generates multiple 

versions of a predictor and combines them, to obtain an aggregated predictor. The multiple 

versions or trees of the predictor are generated by selecting a bootstrap sample from the 

training data set and using that as the training set during classification (Breiman, 1996). As a 

result each bootstrap sample, being a random sample with replacement, results in one 

version or tree of the predictor (Liaw and Wiener, 2002), where RandomForest grows a user 

defined number of decision trees and averages the results of all decision trees (Walton, 

2008). The aggregation leads to a decrease of variance in the prediction (Gislason et al. 

2006). Following Benediktsson et al. (2007) we could say that RandomForest uses an 

improved version of bagging. 

On each node of one decision tree (the branches of the tree) a random number of variables 

are chosen (in our case a subset of all available image bands) and the best split is calculated 

from these (Liaw and Wiener, 2002). This randomization leads to marginally different results 

for each classification even for the same data set (Walton, 2008). 
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Figure 14: Schematic overview of a decision tree where five classes need to be classified. 
Modified from Richards and Jia (2006). 

 

Due to the resampling method, which is not based on weighting, the RandomForest 

classifier is not sensitive to noise or over fitting (Gislason et al. 2006; Benediktsson et al. 

2007) and does not need any guidance during computation. When classes, in our case, land 

use classes have to be classified with the RandomForest classifier, the final classification of 

one class is done by applying a majority vote over all versions or trees of the classifier for 

the class of interest. 

With regards to new sensors, where the number of bands can range between just five and 

hundreds, it is important that a classifier is able to handle high dimensional data. It was 

assessed by Benediktsson et al. (2007) that RandomForest is able to handle high 

dimensional data. Not only the high level computing efficiency (Jensen 2005), but also the 

possibility to obtain an out-of-bag error estimation, without an additional dataset as well as 

variable importance calculation makes RandomForest an attractive classifier. 

The out-of-bag error estimation for each tree is calculated by cross validating the 

classification result with original data that was not included in the sample chosen for the 
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calculation of the corresponding tree (Breiman, 2001). The overall out-of-bag error is 

calculated by averaging over all trees (Breiman, 2001).  

An additional advantage of RandomForest is that the algorithm can estimate the importance 

of variables for the classification (Breiman, 1996), which can be of help to get insights into 

processes influencing classification. To determine the importance of a variable we used the 

Gini index as described by Breiman and Cutler (2011). Using the variable importance we 

were able to identify the variables with high value with regards to the classification result. 

By reducing the number of input variables (in our case the number of image bands) we were 

able to reduce computing time by about half without increasing classification errors to a 

greater extent (Table 10). 

For each train set a RandomForest with n = 500 trees was grown and its feature importance 

calculated. For the final classification a subset consisting of the 5 features with the highest 

variable importance was used. We restricted the classification to five features and n = 100 

trees as a compromise between accuracy and computational effort following Magdon 

(2011). 

The entire workflow including preprocessing, image enhancement and classification was 

implemented as the ForestEye-Processor in the interactive data language using the software 

environment IDL 8.0 (ITT VIS). The RandomForest classification was integrated using the 

open source library PARF (Centre for Informatics and Computing of RuđerBošković Institute, 

Croatia, 2004) a parallelized implementation of the original RandomForest code developed 

by Breiman (2001) (Magdon 2011). 

 

5.2.6 National scale land use classification 

One of our objectives was to create a FAO conform land use map covering the whole of 

Burkina Faso. In order to achieve this we up scaled the existing regional scale FAO conform 

land use classification based on RapidEye imagery as described in 5.2.3. For the up scaling 

we used the daily MODIS Level 1 product MOD09GA. MOD09GA is delivered 

atmospherically corrected, applying the 6-S Model already described in 5.2.2 using a 

dynamic aerosol model. Further, the MODIS imagery used has 21 bands ranging between 
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0.620 - 2155 nm, bands 1 - 9 carry sensor information like Sensor Azimuth with a resolution 

of 1 km. Bands 10 - 21 have a resolution of 500 m, where bands 10 and 18 - 21 give general 

information on the solar reflective bands number 11 - 17. For the classification we used 

bands 11- 17 with a resolution of 500 m per pixel. 

 

Table 5: MODIS MOD09GA band specifications where NIR = near-infrared and SWIR = short- 
wave length infrared. 

MODIS (MOD09GA) 

Bands 

Wavelength 

[nm] 

Band 11 (Red) 620 - 670 

Band 12 (NIR) 841 - 876 

Band 13 (Blue) 459 - 479 

Band 14 (Green) 545 - 565 

Band 15 (NIR) 1230 - 1250 

Band 16 (SWIR) 1628 - 1652 

Band 17 (SWIR) 2105 - 2155 

 

Three MODIS scenes are required to cover the whole of Burkina Faso, where one MODIS 

image tile covers an area of about 1140 x 1140 km. In order to ensure equal atmospheric as 

well as ground conditions all MODIS scenes used were taken at the same date (Table 6). All 

image tiles were of good quality with no cloud cover and homogenous illumination. The 

missing data areas (Table 6) were not within the boundary of Burkina Faso thus did not 

influence processing within our study. Further, in order to also ensure comparability with 

the imagery used for the land use classification on regional scale, the MODIS images were 

taken during the same season as the RapidEye imagery, which were used for the land use 

classification on regional scale (Table 3). 
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Table 6: Acquisition details of the standard MODIS imagery products (MOD09GA) extracted 
from the metadata file. 

ID Date Time (UTC) Cloud 

Coverage 

Missing 

data 

Tile ID 

1 2010-02-08 10:20:00 0% 22% 51017007 

2 2010-02-08 10:20:00 0% 0% 51018007 

3 2010-02-08 10:25:00 0% 7% 51017008 

 

5.2.7 Image preprocessing – national scale 

As MODIS imagery is distributed in sinusoidal projection, the acquired imagery had to be 

reprojected to Universal Transverse Mercator (UTM) coordinates to fit the FAO land use 

maps on regional scale. As mentioned above, we needed three image tiles to cover the 

whole of Burkina Faso. To obtain one seamless image covering Burkina Faso we mosaicked 

the three image tiles using the nearest neighbour method. The image reprojection and 

mosaicking were done using the MODIS Reprojection Tool (MRT) Version 4.1 (Land 

Processes DAAC, USGS Earth Ressources Observation and Science (EROS) Center 2011). The 

mosaicked MODIS image was then cropped to only cover the area of Burkina Faso. The 

preprocessing resulted in one MOIDS MOD09GA image, covering only Burkina Faso having 

the same projection as the land use maps on regional scale. 

 

5.2.8 Training and validation data sets – national scale 

The training data set used to classify the MODIS imagery was created by spatially overlaying 

the MODIS mosaic with the FAO land use maps on regional scale. Thus, a direct allocation of 

the MODIS pixels to one of the FAO land use classes was done. As one MODIS pixel has an 

extension of 500 x 500 m and one RapidEye pixel, used for the FAO land use classification on 

regional scale has an extension of 5 x 5 m, 10 000 classified pixels were needed to cover one 

MODIS pixel. With the applied overlay method we were able to extract the fraction of cover 

of each land use in one MODIS pixel, meaning the per cent of one MODIS pixel covered by a 

RapidEye based land use class. By applying the threshold value of 100 to the fraction of 
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cover of each land use within one MODIS pixel, we were able to identify MODIS pixels that 

were covered by only one single FAO land use. By this method we obtained “clear” pixels as 

recommended for training data (Jones and Vaughan, 2010) in the remote sensing domain. 

The selected MODIS pixels were then used as training data during the classification. 

In order to validate the remote sensing based classification results on the national scale; and 

to conduct a correct accuracy assessment we had to create a validation data set which is 

independent of the training data. Here, we used the data obtained during the field 

measurements, so called ground truthing data as validation data set. During validation we 

compared the FAO land use assigned to one MODIS pixel of the classified image to FAO land 

use class of the corresponding ground control point. For the validation we incorporated n = 

905 ground control points, being the number of CP sampled during the inventory as 

described in 5.1.1. 

 

5.2.9 Image classification scheme - national scale 

The pixels selected as training data were extracted, including their original information 

contained in the seven reflective bands used (Figure 5). In the following we attached the 

corresponding FAO land use class assigned to each training pixel to the original information 

in form of an additional image band. The training data was then imported into the 

RandomForest classifier which is described in 5.2.5.. During the classification we grew 500 

trees where two splits were possible at each nod. All preprocessing and classification steps 

for the land use classification on national scale were done with the software R (R 

Development Core Team 2011). The classification resulted in a FAO conform land use map 

for the whole of Burkina Faso. 
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6 Results 

6.1 Terrestrial sampling 

Most parts of the results for the terrestrial sampling section follow the results described in: 

Fischer et al. 2011. A national level forest resource assessment for Burkina Faso - A field 

based forest inventory in a semi-arid environment combining small sample size with large 

observation plots. Forest Ecology and Management, doi:10.1016/j.foreco.2011.07.001. 

 

6.1.1 Land use 

We estimated the cover of Burkina Faso by four land use classes: 1) forest, 2) other wooded 

land, 3) other land without tree cover, and 4) other land with tree cover, as defined by FAO. 

The results of our estimations are given in Table 7. The only source to compare our results 

to were the findings of the Global Forest Resource Assessment of FAO (FAO FRA), where 

were able to compare to findings from the years 1990, 2000, 2005 and 2010 (Fischer et al., 

2011). The FAO FRA estimates we base our comparison on were taken FRA 2010 (FAO, 

2010). The reason to use the estimates published in FRA 2010, even for estimates from 

earlier assessments, are that estimates vary between different FRA reports as the national 

correspondents recently made updated information available (Fischer et al., 2011). With the 

conducted inventory, applying the described methods, the forest area of Burkina Faso was 

estimated to be 116 847 km² (42.6%) of the land area, other wooded land 4 467 km² (1.6%), 

other land 146 729 km² (53.6%) of which 13 398 km² (9.1%) is with tree cover. We assessed 

that the relative standard error (SE%) of relative area proportions were substantially larger 

for the less frequent land use classes (e.g. wooded land SE%=41.4%). Whereas smaller SE%’s 

were calculated for the more frequent land use classes (e.g. forest SE%=9.9%, Table 7) 

(Fischer et al., 2011), which could be expected as SE and SE% strongly depend on the sample 

size. 
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Table 7: Comparison of area estimates from this study to others (all % values refer to the 

whole of Burkina Faso). Following Fischer et al. (2011). 

FRA 2010 

categories  

FAO 

1990 

FAO 

2000 

FAO 

2005 

FAO 

2010 
This study 

 
Cover [km2 and %] 

Cover 

[km2 and %] SE% 

Forest  68 470 

24.9%  

62 480 

22.8% 

59 490 

21.7% 

56 490 

21.0% 

116 847 

42.6% 

9.9 

Other wooded land 58 610 

21.4% 

54 350 

19.8% 

52 220 

19.1% 

50 090 

18.0% 

4 467 

1.6% 

41.4 

Forest and other 

wooded land  

127 080 

46.4% 

116 830 

42.6% 

111 710 

40.8% 

106 580 

39.0% 

121 315 

44.2% 

9.6 

Other land 146 520 

53.5% 

156 770 

57.2% 

161 890 

59.1% 

167 020 

60.9% 

146 729 

53.6% 

8.5 

... of which with 

tree cover 

51 350 

18.7% 

55 180 

20.1% 

57 100 

20.8% 

59 020 

21.5% 

13 398 

9.1% 

17.4 

Total land area 273 600 

99.9% 

273 600 

99.9% 

273 600 

99.9% 

273 600 

99.9% 

270 060 

97.8% 

- 

Inland water bodies 400 

0.1%  

400 

0.1%  

400 

0.1% 

400 

0.1% 

5 957 

2.2% 

99.2 

Total area of 

country 

274 000 

100%  

274 000 

100%  

274 000 

100% 

274 000 

100% 

274 000 

100% 

- 

 

6.1.2  Forest structure 

Following Fischer et al. (2011) a total of 4631 life sample trees and 1879 life sample shrubs 

belonging to 104 tree and 41 shrub species were measured (see annex for a detailed species 

list). Out of the 104 tree species ten tree species co-occurred in all four land use types. 

Regarding all four land use classes, the inventory result revealed that Vittelaria paradoxa is 

with a share of 12% is by far the most abundant tree species among all observed trees. Its 

extraordinary high abundance becomes clearer when considering that the second most 
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abundant species accounts for 7% of all trees only (Figure 15), being about half the 

abundance of Vittelaria paradoxa. Vittelaria paradoxa is not only the most abundant tree 

species in Burkina Faso but probably also economically the most important tree species in 

Burkina Faso, not so much for its wood (which is illegally used for charcoal production), but 

for the production of “shea butter”, extracted from the grains (Fischer et al., 2011). Fischer 

et al. (2011) conclude that the high abundance and wide distribution of Vittelaria paradoxa, 

in particular outside the forest, is an indicator for a landscape with a long history of human 

management where this tree species was favoured, forested and managed. 

 

Figure 15: Frequency distribution of ten most abundant tree species of all sampled life trees. 

 

Not only the high abundance of a single tree species was used as indicator for the 

anthropogenic influence on the landscape, but also the relative frequency of stumps, 

compared to remaining trees for all land uses. The relative frequency of cut trees was 3.6%, 

2.6%, 14.3% and 24.2% for forest, other wooded land, other land and other land with tree 

cover, respectively (Fischer et al., 2011). 
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Figure 16 illustrates the relative frequency of the ten most common species for the four 

land use types where the most common species are similar for all land use types. A major 

difference in species composition can only be found for “other wooded land” where shrub 

species are considered by definition, contrasting the other land use class definitions (Fischer 

et al., 2011). 

 

Figure 16: Frequency of the ten most abundant species for the four land use types. The 
overall most frequent species (Vittelaria paradoxa) is marked in black. For “other wooded 
land” also shrub species are included - marked in light grey. Following Fischer et al. (2011). 

 



54 

Following Fischer et al. (2011): “The “shea butter tree” Vittelaria paradoxa is by far the most 

frequent tree species in “other land” (with an estimated 23.2%) and “other land with tree 

cover” (27.2%). “Other wooded land” is dominated by shrub species where Piliostigma 

reticulatum is by far the most frequent species with an estimated share of 20.6%.” In 

accordance to the observations made with the proportion of cut vs. uncut trees, which lead 

to an unnatural species distribution, in forest the species distribution is much more uniform. 

In “forest” Vittelaria paradoxa is still the most abundant tree species, but the proportion is 

just 10.6% (Fischer et al., 2011). 

In addition to species composition we observed the structure of the land use classes where 

Table 8 gives an overview of the DBH range of observed trees, height and crown size. In 

order to illustrate the symmetry and skewness of the underlying distributions, median and 

mean values are given as measures of central tendency (Fischer et al. 2011). A correlation 

(Pearson) of rp = 0.59 between total height and DBH over all observed trees was estimated. 

The correlation can be considered typical for dry forest formations as diameter dynamics 

are more prominent than height dynamics under this climatic condition (Fischer et al., 

2011). The described relationship expresses itself in different coefficients of variation, for 

forest DBH (around 71.2%) and forest tree height (40.4%). “For all sampled trees the 

correlation between crown size, calculated from two measured crown diameters, and DBH 

was estimated as rp= 0.68, despite the common practice of pruning for fodder and other 

uses” as stated by Fischer et al. (2011). 

It should be noticed that Table 8 does not include the variable DBH for the land use class 

“other wooded land” as DBH was not measured for shrubs which, nevertheless dominate 

this land use class. We perceived that the range of DBH measurements is quite large for all 

land cover types with trees, which is due to some huge trees (e.g. Baobab (Adansonia 

digitata)), which contribute to the asymmetry of the DBH distribution (Fischer et al., 2011). 

Additionally Fischer et al. (2011) state: “Mean and median DBH are clearly lower in “forest” 

than on “other land” and “other land with tree cover”, pointing to the fact that regeneration 

and smaller trees are found only in forests and trees on non-forest land usually remain 

uncut serving specific utilization purposes.” Land use class “other wooded land” exhibits a 

markedly smaller average total height where we attribute this result to the high abundance 

of shrub species attaining lower heights compared to trees. As a direct result, a high 



55 

variability of height is apparent in these classes as trees, which are higher, and shrubs, 

which are lower, are mixed, whereas crown areas exhibit relatively small variations in “other 

wooded lands” (Fischer et al., 2011). 

 

Table 8: Estimates for variables of forest and tree cover, following Fischer et al. (2011). 

Variables/ Land use Minimum Median Maximum Mean CV% 

Diameter at breast height [cm] 

 Forest 7.0 12.0 320.0 15.0 71.3 

 Other wooded land (trees only) 7.0 12.0 132.2 24.9 67.4 

 Other land 7.0 18.1 155.0 24.3 78.2 

 Other land with tree cover 7.0 19.9 116.0 25.6 72.9 

Total height [m] 

 Forest 1.5 5.8 24.0 6.3 40.4 

 Other wooded land 0.5 4.7 14.0 5.7 70.3 

 Other land 2.0 6.5 26.3 7.0 45.6 

 Other land with tree cover 2.0 6.7 26.3 7.3 43.8 

Crown size [m²] 

 Forest 0.4 44.1 2402.0 66.8 138.1 

 Other wooded land 7.1 60.3 1072.0 141.7 152.5 

 Other land 0.2 76.7 1385.0 137.4 122.8 

 Other land with tree cover 0.2 94.1 1385.0 150.1 116.6 

 

6.1.3 Above ground carbon stocks of tree resources (AGCTree) 

We were able to calculate AGCTree stocks for the land use classes which consider trees only 

within their definition. Namely “forest”, “other land”, and “other land with tree cover”, 

where the estimates are given in Table 9. The estimates range between 5.580 and 7.222 Mg 

ha-1 with about the same relative standard errors of around 18% (Fischer et al., 2011). 

Unexpectedly, the estimate for AGCTree is highest for “other land with tree cover”, although 

not statistically significantly different from forest AGCTree, where the significance was tested 

with a simple T-test. We explain the higher value of AGCTree on “other land with tree cover” 
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by the high frequency of large solitary multi-purpose trees (see also Table 8, where “other 

land with tree cover” has the largest average DBH) (Fischer et al., 2011). 

 

Table 9: Above ground carbon (AGCTree) estimates for trees in Mg ha-1 and relative standard 
errors (SE%), following Fischer et al. (2011). 

Forest   Other land  Other land with tree cover 

Mg ha-1  SE%  Mg ha-1  SE%  Mg ha-1  SE% 

6.640  18.25  5.580  17.88  7.222  17.37 

 

6.2 Remote Sensing 

6.2.1 Regional scale land use classification 

In general the classification based on the RandomForest classifier proved to be time efficient 

and the classifier proved to be able to handle varying, sometimes very complex, vegetation 

compositions present in the study sites. It can be concluded that the classification resulted 

in high classification accuracies for all training sets (table 10), even though a high variation in 

accuracies was present between the four considered study regions: 1.) Sokouraba, 2.) 

Nobéré, 3.) Safané, and 4.) Tougouri. Hereafter, we will name the four study regions 

corresponding to the PSUs located at their centre, namely: 1.) PSU 4, 2.) PSU 13, 3.) PSU 20, 

and 4.) PSU 43. 

Mean accuracies of the classification were higher when all variables were used. Overall, an 

increase in accuracy could be observed for n = 24 features of 6.1% compared to n = 5 

features. This indicates that using more explanatory variables increases classification 

accuracy while computing time and related computing power needed increases largely. 

Mean accuracies between the four PSUs varied with 14.2%, the lowest accuracy for n = 24 

was found in PSU 20 with a mean value of 79.1%. Whereas the highest accuracy for n = 24 

was achieved in PSU 43 with 93.3%. There are several reasons for the difference in 

classification accuracy. First there is the number of land use classes present in the 

corresponding PSU, as well as the spatial distribution of the land use classes. Another reason 

is the presence of haze, clouds, cloud shadow, burned areas, and very bright areas of bare 
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soil. The RandomForest classifier often misclassifies areas where haze is present, or 

classifies burned forest areas as cloud shadow. Another difficulty in classification is the 

difference in the degree to which areas are burned. Some burned areas are black, but 

others, belonging to the same land use class, are rather a mixture between blue and black. 

This difference in reflection makes the same land use class very heterogeneous, which also 

holds true for other land use classes than “burned forest”. The last major source of 

misclassification on the regional scale is the confusion of clouds and haze with bright bare 

soils. 

 

Table 10: Average overall accuracies for level I classification from the cross-validation of the 
RandomForest classification with 100 trees per forest for the full test set (n = 24) or the 
selected test set with five features with the highest Gini-index (n = 5), PSU = Primary 
sampling unit. 

ID Study Site n = 5 n = 5 n = 24 n = 24 

  Overall Accuracy Cohen’s kappa Overall Accuracy Cohen’s kappa 

1 PSU 4 80.68 0.64 87.02 0.76 

2 PSU 4 72.89 0.58 80.02 0.69 

3 PSU 4 77.28 0.59 82.14 0.68 

4 PSU 4 74.29 0.62 81.92 0.73 

5 PSU 13 88.61 0.82 92.01 0.87 

6 PSU 13 85.06 0.62 91.30 0.78 

7 PSU 13 86.31 0.80 91.63 0.88 

8 PSU 13 67.31 0.53 82.80 0.75 

9 PSU 20 73.52 0.62 77.97 0.69 

10 PSU 20 70.32 0.55 76.72 0.64 

11 PSU 20 76.83 0.63 81.08 0.70 

12 PSU 20 75.26 0.61 80.50 0.70 

13 PSU 43 85.55 0.73 91.64 0.84 

14 PSU 43 92.59 0.87 96.19 0.93 

15 PSU 43 84.77 0.72 91.42 0.84 

16 PSU 43 88.77 0.80 93.94 0.89 

 Mean 80.00 0.67 86.14 0.77 
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By reducing the number of input features for the RandomForest, the variation of 

classification accuracy between the PSUs decreased only marginally by 0.3%, to a variation 

of 13.9%. Thus, the same trends in classification present for the whole feature space holds 

true for the reduced feature space with n = 5. The lowest accuracy for n = 5 features was 

attained in PSU 20 with 74.0% whereas the highest accuracy for n = 5 features was realized 

in PSU 43 with 87.9%, reflecting the same trend observed above, where the reasons for 

misclassification are thought to be the same as described above. 

When observing the calculated kappa values the same trends are present as for the overall 

accuracies. Mean kappa values were higher when using the whole test set with n = 24 in the 

classification, where a kappa value of 0.77 vas obtained. Whereas for n = 5 features a mean 

kappa of 0.67 was calculated. Thus, the reduction of features led to a decrease of kappa by 

0.1. 

When observing the differences in kappa between the PSUs, for the whole feature space 

kappa varied by 0.2. PSU 43 attaining the highest mean kappa value and PSU 20 

incorporating the lowest mean kappa with 0.68. This trend can be explained by the decrease 

of classification accuracy between PSU 43 and PSU 20, where not only the overall accuracy, 

but also the user- and producer accuracy are lower for PSU 20. 

Compared to the whole feature space, variation of kappa was lower for the reduced feature 

space, with a reduction of kappa by 0.18. Again, PSU 43 showed the highest kappa with 0.78 

and PSU 20 highlighted the lowest mean kappa with 0.60 for the reduced feature space. 

Thus, as for the accuracies, a reduction of features led to a very small decrease (0.03) in 

variation between PSUs for kappa. 

 

6.2.2 Feature selection for the classification with RandomForest 

As stated before, one of the advantages of the RandomForest classifier is the possibility to 

gain insights into the importance of single features, used as predictive variables during the 

classification. The Index used for the ranking of the features is the Gini index. When 

analysing our results we observed a variation in selection frequency for each feature, which 

is depicted in Figure 17. It was assessed that the RandomForest classifier utilized all original 

bands and vegetation indices, at least once during classification. Surprisingly, only two of 
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the 14 texture measures were selected by the classifier, one occurrence texture 

“Occurrence Mean”, and one co-occurrence texture “Co-occurrence Mean”. The selection of 

only two textures showed us that the spectral range of the RapidEye sensor, as well as 

vegetation indices, derived from the original bands are well suited for the classification we 

implemented. Further, it showed that most variations in texture are not large enough, in our 

case, to be of importance for the classification with the RandomForest classifier. 

It was assessed that NIR had the highest relative selection frequency with 18.75%, followed 

by the green NDVI with 13.75%. The features with the lowest selection frequency, of the 

selected features, were the chlorophyll Red Edge Model with 1.25% selection frequency and 

the original green band with 2.5% selection frequency (Figure 17). 

 

 

Figure 17: Relative selection frequency of features based on the out-of-bag cross-validation 
if n = 5 features with the highest Gini-index are selected. Abbreviations of the features are 
given in table 4. 
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For the final land cover classification, RandomForests built with the reduced feature space 

of n = 5 features were used. We decided to use the reduced feature space, changing 

dimensionality from 24 to 5 features, as this clearly outperformed the slight loss of 

classification accuracy (see Table 10). More specific, the reduction of the feature space lead 

to a reduction of computation time by more than half. An additional argument for the 

reduction of the feature space was that even with a reduced feature space all land cover 

types were detected during the classification. The results of the different classification levels 

(level 0, level I, level II, and level III) are depicted in Figure 18, Figure 19, Figure 20 and 

Figure 21, where the preprocessed images of the four PSUs and the corresponding three 

land cover/ use classification levels are shown. 

The study site of Sokouraba (PSU 4) is the south-western most study site, having the highest 

annual rainfall of the four study sites considered. This study site is under strong human 

influence and is intensively cultivated. Barren soils are seldom encountered, thus only one 

validation point was on barren soil, resulting in a patchy mosaic of land uses, where crop 

lands are often intermitted by forest areas and burned forest areas, as well as shrubby 

vegetation, respectively (Figure 18). In total 26 validation points were on crop land with a 

user accuracy of 1.00 (Table 11). Tree crown and burned forest were both assessed with 

thirteen validation points each and user accuracies of 0.63 and 0.92, respectively. In the 

upper right part of the study site clouds and cloud shadows are present in the original 

imagery, with two and three validation points (Table 11). Clouds and cloud shadows were 

classified with fewer errors than in other study sites (e.g. Nobéré (PSU 13)). User accuracies 

of 0.43 for class “cloud” and one for “cloud shadow” were achieved. The improved 

performance of the RandomForest classifier in this case of imagery with cloud cover, can 

possibly be attributed to the fact that the clouds present in the imagery were clearly 

delineated (see Figure 18) and cloud shadows were also very dark and homogeneous. The 

overall accuracy for PSU 4 was 0.83 with a kappa value of 0.78, meeting our expectations 

with regards to classification accuracy. As all images were classified independently the 

image mosaic in Figure 18 Level III shows distinct lines between the image tiles. The lines are 

present as atmospheric conditions, cloud & haze cover, training datasets and decision tress 

for the classification differ between the imagery. 
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Figure 18: Original RapidEye image and resulting land cover and FAO accordant land use 
classification levels I-III for study site Sokouraba (PSU 4). Scale of imagery 1:550.000. 
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The study site of Nobéré (PSU 13) is located at the south-central part of Burkina Faso. The 

region is strongly influenced by agricultural use in the northern half of the study site (see 

Figure 19), whereas the southern half of the study site is covered by a national park. Some 

parts of the national park are former agricultural areas, which can be seen by the high shrub 

cover within the clearly delineated boundaries of the national park (Figure 19). In the study 

region of Nobéré greater areas covered by tree crowns that are not burned, can only be 

found along the sparse rivers and natural non-wooded vegetation is nearly not present. This 

observation gives insights into the land use practices, where fire plays an important role for 

land preparation and for increasing sight for hunting purposes, among others. Further it 

shows the high human pressure on vegetation, among others. As a result only two points of 

the validation dataset are covered by tree crowns and one by natural non-wooded 

vegetation, leading to low user accuracies (Table 11). On the other hand, shrubs and burned 

forest areas are very common, with 41 and 24 validation points and user accuracies of more 

than 90%. The border of the National Park, which is, as stated before, clearly visible in the 

upper left preprocessed image as a sharp line is also evident in the level IIl and use map. 

Large areas of the southern half of the study area are classified as “cloud”, as cloud and 

much haze are evident in the original images (see Figure 19). The presence of cloud and 

haze in the original images leads to large no-data areas in the level II land use map, and do 

account for the lowest overall accuracy with 0.67 and the lowest kappa value with 0.56, 

compared to the other three study regions (see Table 11). As many features are still visible 

through the clouds but the validation points were not classified as “cloud” during the image 

interpretation, low user accuracy for clouds as shown in table 11 were achieved. The overall 

conclusion for PSU 13 is that clouds and especially haze were identified as the largest 

impediment during the classification, deteriorating the classification results. 
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Figure 19: Original RapidEye image and resulting land cover and FAO accordant land use 
classification levels I-III for study site Nobéré (PSU 13). Scale of imagery 1:550.000. 
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PSU 20 is an area of intensive agricultural use, located at the mid-western part of Burkina 

Faso, being on the western edge of the central plateau, where we had 30 validation points 

for class crop land and nine for class burned agriculture (Table 11). As fire is extensively 

used, not only for land preparation, but also for land clearing, we observed 24 validation 

points for the class “burned forest” and only five for the class “tree crown”, showing the 

high importance of fire. The class “tree crown” had an user accuracy of 0.5, whereas 

“burned forest” resulted in high user accuracy with 0.88. Shrubs, constituting an important 

part of the vegetation especially in fallow areas, were represented by 16 validation points 

and an user accuracy of 0.80. The reasons why PSU 20 is the study site with the second 

lowest overall accuracy of the four considered study sites can partly be attributed to the 

presence of clouds and haze in the original imagery. Nine validation points were assessed as 

“cloud”; the user accuracy for the class “cloud” is low with 0.25. The misclassification of 

clouds in this region can be associated with the fact that the clouds present were haze (see 

Figure 20) thus the reflectance of the vegetation underneath the clouds was visible and thus 

falsely interpreted by the RandomForest classifier. It can be concluded that an overall 

accuracy of 0.82 with a corresponding kappa value of 0.77 (Table 11) for PSU 20 is within the 

frame of our expectations with regards to classification accuracy, but higher accuracies 

could be achieved in cloud and haze free imagery. 
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Figure 20: Original RapidEye image and resulting land cover and FAO accordant land use 
classification levels I-III for study site Safané (PSU 20). Scale of imagery 1:550.000. 
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The study site of Tougouri (PSU 43) is the northern most study region considered for the 

regional scale land use classification, exhibiting the lowest annual rainfall of the four study 

sites included in the remote sensing based land use classification on regional scale. Large 

areas of uncultivated barren soils are present, which are represented by 31 validation points 

(Table 11) with a user accuracy of 0.96. The dominating vegetation class in this area is the 

class “natural non-wooded land” with 41 validation points and 0.81 as user accuracy. 

Scattered trees or groups of trees along rivers and dams are also present in the landscape 

(see Figure 21). Shrubs are a very common life form in this region; nevertheless, we only 

assessed two validation points for this class, with user accuracy of 0.93 (Table 11). The study 

site of Tougouri is the only study site where inland water bodies are present. We assessed 

one validation point for class “water”, which was misclassified leading to a user accuracy of 

0.00 (see Figure 21, Level I classification). As already observed for other study sites the 

presence of clouds and haze led to confusion with bright barren soils. Nevertheless, PSU 43 

had the overall accuracy with 0.87 and the highest kappa value with 0.81. The higher overall 

accuracy compared to the other three study sites is probably attributed to the reduced 

patchiness of land use within this study site as well as high contrast between the classes 

present and considered for classification. 
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Figure 21: Original RapidEye image and resulting land cover and FAO accordant land use 
classification levels I-III for study site Tougouri (PSU 43). Scale of imagery 1:550.000. 
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Table 11: Validation results for all four study sites. 

Study site Sokouraba  Safané  Nobéré  Tougouri 

Level–I Class 

Number of 

validation 

points 

Producer 

accuracy 

User 

accuracy 

 

 

Number of 

validation 

points 

Producer 

accuracy 

User 

accuracy 

 

 

Number of 

validation 

points 

Producer 

accuracy 

User 

accuracy 

 

 

Number of 

validation 

points 

Producer 

accuracy 

User 

accuracy 

Tree Crown 13 0.77 0.63  5 1.00 0.50  2 1.00 0.50  4 1.00 1.00 

Shrub 31 0.94 0.85  16 0.75 0.80  41 0.63 0.93  2 0.82 0.93 

Natural Non-wooded 0 - -  0 - -  1 0.00 0.00  41 0.95 0.81 

Agriculture 

Plantation 

0 - -  0 - -  0 - -  0 - - 

Pasture 0 - -  0 - -  0 - -  0 - - 

Crop Land 26 0.77 1.00  30 0.87 0.96  6 0.67 0.57  0 - - 

Urban 0 - -  0 - -  0 0.00 0.00  0 - - 

Water 0 - -  0 - -  0 - -  1 0.00 0.00 

Cloud 3 1.00 0.43  9 0.50 0.25  9 1.00 0.32  6 0.83 0.83 

Shadow 2 0.50 1.00  0 - -  0 - -  0 - - 

Burned Forest 13 0.85 0.92  24 0.88 0.88  24 0.67 0.94  0 - - 

Burned Agriculture 9 0.67 0.86  21 0.76 0.84  7 0.43 1.00  0 - - 

Barren Soils 1 1.00 1.00  1 0.00 -  0 - -  31 0.81 0.96 

Overall Accuracy 

  

0.83    0.82    0.67    0.87 

Cohen’s kappa 

  

0.78    0.77    0.56    0.81 
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When comparing the out-of-bag (OBB) accuracy estimates provided by the RandomForest 

classifier to the assessed cross validation results, one cannot observe a clear trend. Meaning 

we did not observe that the OBB estimates are always lower or higher than the cross 

validation results (Table 12). This observation leads us to the conclusion that the 

RandomForest classifier does not introduce a bias in this form, nor does over fitting occur 

following the observation of (Breiman 2001). This result further convinced us of the 

advantages of the RandomForest classifier, delivering conservative realistic classification 

results. 

 

Table 12: Comparison of out-of-bag (OBB) accuracy provided by the RandomForest classifier 
with results of cross validation from Table 11. 

 OBB estimates (5 features) Cross validation 

 Accuracy Kappa Accuracy Kappa 

PSU 4 0.76 0.61 0.83 0.78 

PSU 13 0.82 0.69 0.67 0.56 

PSU 20 0.74 0.60 0.82 0.77 

PSU 43 0.88 0.78 0.87 0.81 

 

6.2.3 National scale land use classification 

We overlaid the original MODIS MOD09GA image mosaic, covering the whole of Burkina 

Faso, with the RapidEye based FAO conform land use classification to derive the training 

data needed for the national scale classification based on the MODIS imagery (see 5.2.8). 

The RapidEye based land use classification at regional scale had a resolution of 5 x 5 m per 

pixel, while each of the MODIS pixel overlaid had a size of 500 x 500 m. As described before, 

we included four study sites into the up scaling approach. Each of the four regional scale 

study sites constituted 100,000,000 classified pixels. Each of the four study sites were 

covered by 10,000 pixels, leading to 40,000 MODIS pixels included in the overlay. We were 

able to identify n = 491 MODIS pixels that were completely covered by forest, a pure pixel 

for land use class “forest”. Further, we assessed n = 215 pure pixels for class “other land”, n 

= 4 pixels were completely covered by “other wooded land”, and n = 2 pixels were assigned 

to class “water” (see Table 13). 
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We used the n = 712 pure pixels to calculate a RandomForest (for further descriptions see 

5.2.5) with n = 500 trees, for the final land use classification on national scale. With the given 

input the RandomForest classifier calculated an out-of-bag classification error of 0.84% 

(Table 13). 

The confusion matrix in Table 13 shows that most uncertainty occurs in the two classes 

“OWL” and “water”, which are represented with only four and two pixels, respectively. Two 

out of four OWL pixels were correctly classified, leading to a classification error of 0.5 (Table 

13). The falsely assigned pixels, actually belonging to class “other wooded land” were 

assigned to class “forest”. For the class “water”, the classification results were very poor, as 

the two pixels belonging to this class, were confused, leading to a classification error of 1. 

The total misclassification of “water” is also visible in (Figure 23), where no “water” pixels 

are present, assigning pixel of class “water” to class “other land”. The misclassification of 

“water” is most probably due to the fact that the water bodies identified were coloured 

green (see Figure 21 Original RapidEye image), due to high algae concentrations. High algae 

concentrations do occur during the dry season, when the water level is low and water 

temperatures are high. The other two major land use classes included in the classification 

were “forest” and “other land”, where classification errors were very low with 0.002, and 

0.005, respectively. Confusion of forest pixel occurred only with class “OWL”, whereas pixels 

belonging to class “other land” were falsely assigned to class “forest” (Table 13). 

Overall it can be concluded that the OBB error estimate is very low, implying a very high 

classification accuracy. Classes including more training pixels such as “forest” and “other 

land” had much lower classification errors compared to classes with small training data sets. 

The higher classification accuracy can be attributed to the coverage of more inter-land use 

class variability by a higher number of training data. Further, we concluded that a low OBB 

error estimate showed that using the seven original reflective bands (Table 5) is sufficient as 

input to the classification. 
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Table 13: Confusion matrix of the RandomForest (500 trees) based on MODIS imagery (OWL 
= other wooded land). 

 Predicted  

   

 

 Forest OWL Other 

land 

Water Class. error 

O
b

se
rv

ed
 

Forest 490 1 0 0 0.002 

OWL 2 2 0 0 0.500 

Other land 1 0 214 0 0.005 

Water 0 0 2 0 1.000 

       

 Out-of-bag estimate of error rate: 0.84% 

 

In Table 14 we listed the respective mean decrease of Gini (MDG) for each band, used in the 

building of the RandomForest, for the national level land use classification. The MDG is an 

indicator for the variable importance during classification, which can be used for variable 

ranking, as described in (5.2.5). Following Calle and Urrea (2010), a high MDG stands for the 

reduction of uncertainty when selecting this variable to form a split in the RandomForest, for 

further information (see 5.2.5). Thus, variables with a high MDG are more important while 

calculating the RandomForest, carrying relevant information, than variables with a low MDG. 

It was assessed that the three most important image bands for the classification were band 

14 (green), followed by bands 13 (blue) and 11 (red), respectively (Table 14). Further, it was 

observed that band 15 (NIR) incorporated a much lower mean MDG value than all other 

image bands (Table 14). Where a value of 2.26 is about seven times smaller than the second 

smallest MDG value with 16.64 for band two (Table 14). The above stated observations lead 

us to the conclusion that the two NIR bands (bands 14 and 15) of the MODIS image product 

MOD09GA did not carry much information, in addition to what was already provided by the 

other five bands, thus did not play an important role in land use classification within this 

study. 
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Table 14: Variable importance for the MODIS imagery (MOD09GA) classification, calculated 
by the RandomForest using 500 trees. 

Original MODIS band Mean decrease Gini (MDG) 

Band 11 54.80 

Band 12 16.64 

Band 13 65.42 

Band 14 72.84 

Band 15 2.26 

Band 16 54.77 

Band 17 41.60 

 

The cross validation of the MODIS classification was carried out by comparing the results of 

the terrestrial sampling described in 5.1 with the remote sensing based classification. Thus 

the results of the field based inventory were used as ground truthing data as recommended 

in the various literature (Jensen 2005; Campbell 2008; Lillesand 2008). The cross validation 

was implemented by comparing the results of each circular plot (CP) assessed in the field 

with the corresponding MODIS pixel classification value. Here, it should be considered that 

each CP was a circle with 15 m radius, while one MODIS pixel was a square with a side length 

of 500 m, resulting in large differences in the reference area used for comparison. The 

results of the cross validation are presented in Table 16. It was assessed that the MODIS 

classification led to an overall accuracy of 64% with a kappa value of 0.31. Further, we were 

able to calculate estimates of land use class proportions for Burkina Faso. From the cross 

validation in Table 16 we calculated the following land use proportions 1.) forest = 30.76%, 

2.) other wooded land = 2.82%, and 3.) other land = 66.41% (see Table 15). 
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Table 15: Area estimates of FAO land use classes on country level, where OLWTC is “other 
land with tree cover. 

FAO land use class Source and coverage in of Burkina Faso [%] 

 FRA 2010 This study:  

terrestrial with (SE%) 

This study:  

remote sensing 

Forest 21.0 42.6 (9.9) 30.8 

Other wooded land 18.0 1.6 (41.4) 2.8 

Other land 60.9 53.6 (8.5) 66.4 

OLWTC 21.5 9.1 (17.4) - 

Inland water bodies 0.1 2.2 (99.9) - 

 

When analysing the confusion matrix in Table 16, one can see that land use class “OLWTC” 

was not predicted at all. This is due to the fact that no MODIS pixel was covered by only 

OLWTC, when applying the spatial overlay described in 5.2.8. Accordingly OLWTC was not 

included in the MODIS based remote sensing classification on national scale. Thus, no 

conclusion can be drawn with regards to the area covered by OLWTC in Burkina Faso, using 

MODIS imagery. Most of the areas covered by OLWTC, following ground data, were assigned 

to class “forest” and “other land” (see Table 16). Further, nearly half of all n = 393 CP 

assigned to class “forest“, were falsely assigned to class “other land” (Table 16), whereas the 

largest misclassification for class “other land” with n = 442 sample points was done with 

class “forest”. The previously described result leads us to the conclusion, that there are still 

major issues to solve with regards to the clear separation of these two named land use 

classes. A clear distinction of the two main land use classes in Burkina is needed to improve 

remote sensing based land use classification. As a consequence of the results presented in 

Table 13, where “water” had a classification error of one, class “water” showed an user 

accuracy of zero. The user accuracy of zero for class “water” is due to the fact that all n = 10 

CP of class “water” were assigned to class “other land” during the MODIS classification 

(Table 16). Classification results for class “OWL” were weak, as of the actual n = 15 CP 

covered by OWL zero were correctly classified. Nearly all of the falsely classified “OWL” 

pixels were assigned to class “other land”, leading to a producer accuracy of zero for class 

“OWL”. Nevertheless, the user accuracy for class “OWL” is quite high with 0.91. A total of n = 

12 pixels were falsely assigned to class “OWL”, eleven “forest” pixels and one “OLWTC” pixel, 

respectively. This observation leads to the conclusion that the area estimate for class “OWL” 
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in the final land use map (Figure 23) is in accordance with the field sampling based area 

estimate for this land use class. However, one should keep in mind that the map in Figure 23 

is not free of errors, where the accuracy assessment is given in Table 16. Nevertheless, the 

accuracy assessment does not provide information on the spatially explicit distribution of 

the classification error. 

 

Table 16: Error matrix for the MODIS based FAO conform land use classification of Burkina 
Faso (OWL = other wooded land, OLWTC = other land with tree cover). 

 Observed  

 

 Forest OWL Other 

land 

OLWTC Water  

P
re

d
ic

te
d

 

Forest 193 2 53 31 0 279 

OWL 11 0 0 1 0 12 

Other land 189 13 389 13 10 614 

OLWTC 0 0 0 0 0 0 

Water 0 0 0 0 0 0 

  393 15 442 45 10 905 

        

 User acc. 0.69 0.91 0.31 - -  

 Producer acc. 0.49 0.00 0.88 0.00 0.00  

 Overall acc. 0.64      

 Cohen’s kappa 0.31      
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Figure 22: MODIS (MOD09GA) mosaic of Burkina Faso used as basis for FAO conform land use classification.
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Figure 23: MODIS based map of Burkina Faso with land use classes following FAO definitions.  
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7 Discussion 

Most parts of the discussion for the terrestrial sampling follow the discussion described in: 

Fischer et al. 2011. A national level forest resource assessment for Burkina Faso - A field 

based forest inventory in a semi-arid environment combining small sample size with large 

observation plots. Forest Ecology and Management, doi:10.1016/j.foreco.2011.07.001. 

 

7.1 Terrestrial sampling 

7.1.1 Sampling approach and estimates of land use classes 

We applied a sampling design where we adopted a low sample size combined with large 

sample plots. Even though sample size is can be considered low, the number of measured 

field cluster subplots is quite large (n = 905). Here it is important to consider the difference 

between sample size and sample plot. As sample size is the number of samples that were 

statistically independently selected, which is n = 53 and that was further reduced to n = 46 

because of non-response (Fischer et al., 2011). We consider the conducted inventory the 

first field based sampling approach, covering the whole of Burkina Faso, which permits the 

calculation of estimates on land use classes based on statistical grounds (Fischer et al., 

2011). We were also able to estimate confidence intervals for our estimates. Fischer et al. 

(2011) state: “The results show that the methods applied are suitable for the conditions 

encountered in Burkina Faso and for the inclusion of the tree resource on other lands than 

forest. The estimated errors of estimation, though, were in the order of magnitude of 9%, 

owing to the small sample size. Comparison to other error estimates on land use area was 

not possible due to unavailability of such data.” 

Errors within the magnitude of 9% are commonly accepted in small area forest management 

inventories. Whereas large area forest inventories like the German national forest inventory 

allows error estimates within the order of magnitude of 1%, contrasting our sampling 

scheme, these inventories as commonly characterized much higher sample size (e.g. twenty 

thousand). Experiences with large area inventories based on small sample size were made in 

a FAO study conducted in Costa Rica where the relative standard error varied between 9.3% 
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and 32% for different land use classes, depending in their cover, thus samples within the 

class (Kleinn et al. 2005).  

Following Fischer et al. (2011) it was identified that it is mostly unclear to which precision 

level estimates should be made when it comes to large area forest assessments. “Based on 

the inventory design implemented in this study, one can easily estimate the required sample 

size if an area estimation with a precision level of, for example 5%, is targeted. Given a SE% 

of 9.9% for a sample size of n9.9% = 46 observed field plots and assuming simple random 

sampling with the common error probability of α = 0.05 (setting t = 2), one would estimate a 

needed sample size by the factor (9.9/5)² = 3.9 times larger than in our study, that is about 

n5% = 3.9*46 = 179” Fischer et al. (2011). 

One of the central questions, especially within the context of development research is 

whether the government of a developing country would be willing to make expenses 3.9 

times higher for a 2 times higher precision (Fischer et al., 2011). Following Kleinn et al. 

(2010) we put emphasis on the point that a great need of research is needed within this 

context as the link between the precision of estimation of data and its usefulness in political 

processes is largely unknown. 

Following Fischer et al. (2011): “It should be noted here that the area estimates mentioned 

above are based exclusively on field sampling with a relatively small sample size.” A general 

assumption is that full cover high resolution remote sensing imagery, which is very costly, or 

high resolution remote sensing support of field sampling would have allowed increasing the 

precision of estimation of land use areas (Fischer et al., 2011). When combining field based 

observations with remote sensing based observations, next to the standard error, also the 

error of observation is of importance. A good example can be found in the distinction 

between land use classes in dry areas where closed crown surfaces are not common, making 

distinction challenging. Here, field observations are supreme as they are based on direct 

observations for variables like crown cover or tree and shrub height (one criterion in the FAO 

definition of “forest” and “other wooded land”) (Fischer et al., 2011). Furthermore the 

distinction between trees and shrubs is much better possible from a ground based study. We 

consider the named uncertainties related to the application of the FAO definitions in remote 

sensing studies as the major reason for the enormous divergences between our field based 

estimates and FAO estimates for forest area (about the factor 2 higher in our study) and the 
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area of other wooded lands (about the factor 12 lower in our study) (see Table 7) (Fischer et 

al., 2011). We base this assumption on the observation that the sum of the two area 

estimates is more within the range of our estimates, with about 12% when compared to the 

standard error of estimation. Following Fischer et al. (2011): “The discrepancies in land 

classification between field based and remote sensing based studies following criteria of 

minimum tree crown cover appear to be insufficiently researched so far. This point is of 

importance also for all carbon accounting approaches where area estimates (so called 

“activity data”) are of critical relevance.” 

 

7.1.2 Forest structure and land use 

The multi-purpose “shea butter tree” Vittelaria paradoxa is the most abundant and most 

important tree species in Burkina Faso, in particular in agroforestry systems which is 

promoted by legal regulations for the protection of this species (Fischer et al., 2011). Our 

observations made with Vittelaria paradoxa are in line with the observations from several 

authors who came to the conclusion that species spatial distribution in general is largely 

affected by human intervention (Augusseau et al. 2006). Maranz and Wiesman (2003) 

analysed paleobotanical and recent data on Vittelaria paradoxa and come to the conclusion 

that its distribution is exclusively defined by human involvement. Furthermore our 

observations fortify the results of Boffa (1999) & Maranz and Wiesman (2003) who assessed 

that it is common for African semi-arid regions with a long land use history, that single 

multipurpose species are kept during land clearing. This practice leads to high abundances of 

multipurpose tree species within the land scape. Fischer et al. (2011) agree with the named 

observations, where the human influence on vegetation was assessed by measuring the tree 

stumps. Here, we assessed a highly significantly difference (p < 0.001) in proportions of cut 

trees between land use classes (3.6% for forest and 24.2% for other land with tree cover), 

which points to the importance of logging for land preparation and other uses following the 

results of Maranz and Wiesman (2003). 

Abandoned agricultural land mostly falls into the land use category “other wooded land” 

which is dominated by the shrub species Piliostigma reticulatum. Whereas the second and 

third most abundant species in “other wooded land” are the tree species Vittelaria paradoxa 
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and Lannea microcarpa which are the two most abundant species in “other land with tree 

cover”. We observed that “other wooded land” is an important land use class for herders as 

no direct ownership is valid, thus access is permitted to them, and the shrub species are an 

important fodder resource for the animals. Furthermore, we came to the conclusion that 

“other wooded land” can be seen as the source of tree species regeneration as we measured 

more regeneration from different species within this land use class than in any other, 

pointing to its ecological importance. 

 

7.1.3 Above ground carbon 

As one of the variables considered biomass calculations is wood density, which varies with 

species, it was proposed by Nygård and Elfving (2000) to take species composition into 

account when calculating woody biomass. Moreover Nygård and Elfving (2000) assessed that 

species composition varies for different forest sites in Burkina Faso and thus recommended 

to take species frequencies into account for the estimations of woody biomass. Following 

Fischer et al. (2011), we calculated a median wood density for the 10 most abundant tree 

species in each land use for biomass and carbon estimations. We were surprised that the 

estimates of above ground tree carbon AGCTree stocks do not vary much between the 

included land use classes. We were even more surprised that "other land with tree cover" 

stored more biomass than "forest". Our interpretation of this result is that farmers conserve 

and favour large, productive agroforestry trees that are known to highly contribute to 

biomass (e.g. a Baobab with a diameter of 3 m), this was also observed by Chave et al. (2003) 

and Chave et al. (2004). 

A common impediment for the comparison of data on biomass is the difference in methods 

used. We encountered similar challenges not only due to methodological issues like the 

minimum diameter to consider or where to measure the diameter or differences in land use 

definitions, but also due to the plain unavailability of other studies for the region. All studies 

we could find are small area case studies (Nygård and Elfving 2000; Woomer et al. 2004b) 

that do not need to cope with the issue of large area variability (Fischer et al., 2011). Based 

on our experiences we fully agree with Lewis et al. (2009) who state that carbon storage of 

about one-third of the world’s tropical forests, which is located in Africa, are to large parts 
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unknown simply because of the lack of spatially extensive observation networks and suitable 

biomass models, especially so for the dry tropics. 

As mentioned above, all comparisons made with other studies should be treated with care. 

Nevertheless we would like to compare our results with the some available, published 

estimates (Fischer et al., 2011): For land use classes or plant communities, ranging from 

degraded grasslands to degraded shrub lands with scattered trees Woomer et al. (2004b) 

estimated AGCTree stocks in the Sahel zone of Senegal. Here, AGCTree stock estimates were 

estimated to range between 0.419 - 6.543 Mg ha-1. In addition, Woomer et al. (2004b) 

observed a significant correlation between crown cover and total carbon stocks. Following 

Fischer et al. (2011) “They found that an increase of canopy cover to about 16% would lead 

to stocks of about 12 Mg ha-1; this, however, is far above the AGCTree of 6.640 Mg ha-1 that 

we estimated for forest area with a crown cover of more than 10% in Burkina Faso.” The 

second study we compare to by Touré et al. (2003) estimated about 1.8-5.8 Mg ha-1 of 

carbon for protected woodland in Central Senegal, being much more within the range of our 

estimates. Woomer et al. (2004a) conducted a second study where they assessed carbon 

stocks for cultivated tree parklands in Senegal. Here, Woomer et al. (2004a) calculated 

AGCTree stocks of 32 Mg ha-1; this is far above our estimates of 7.222 Mg ha-1 Fischer et al. 

(2011) and the findings of Tschakert (2004) with AGCTree stocks of 6.3 Mg ha-1. With these 

few comparisons, based on published estimates for the region give insights to the wide 

range of AGCTree stock estimates for semi-arid environments and show the urgent need for 

harmonized measurement protocols as well as land use definitions (Fischer et al., 2011). 

With our study we were able to show that both, area estimates (“activity data” in IPCC 

terminology) and estimates of carbon per hectare so called “carbon density” and “emission 

factors” for semiarid areas with tree and/or shrub cover pose manifold challenges that are 

insufficiently researched (Fischer et al., 2011). In addition Fischer et al. (2011) perceived 

that: “Large lacks of data concerning allometric functions for trees and especially shrubs 

exist, for tropical Africa. We are convinced that significant research is needed also beyond 

the current mainstream of remote sensing oriented research to achieve significant 

improvements of carbon estimates for semiarid regions like in Burkina Faso.” 
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7.2 Remote Sensing 

7.2.1 Regional scale land use classification 

With the developed classification method we were able to produce FAO conform land use 

maps for the study regions considered, based on RapidEye imagery. In addition to the 

classification, we were able to report statistically sound accuracy estimates for the 

classification.  

The developed classification method is based on the RandomForest classifier, which proved 

to be able to handle multidimensional data. The classification accuracies were high and 

within the range of other studies (e.g. Gislason et al. (2006)). 

We were able to calculate statistically sound error estimated with the applied sampling 

strategy for train- and validation datasets. With the applied approach, using a systematic 

grid, covering the whole image of interest we guaranteed an equal coverage of the whole 

scene. It should be considered that this approach does not guarantee an equal amount of 

training data; due to the self-stratification implied by systematic sampling, where each class 

is sampled proportional to its size. As a result of the before described, rare land use classes 

(e.g. inland water bodies) were covered by few training points. As the validation points were 

also assessed using systematic sampling, the same precautions have to be taken as for the 

training data, as further research is needed with regards to the effect of sampling scheme on 

classification and validation results. 

Classification errors for the regional land use maps were in the range of 13 - 33% for the 

Level I classification. With the spatial resolution of the RapidEye sensor we were able to 

detect large single trees and trees along rivers with high accuracies, contributing to the 

estimation of tree resources outside the forest.  

It can be assumed that aggregation of classes would lead to smaller classification errors, as 

described in Walker et al. (2010), where an aggregation of classes leads to reductions in 

confusion probability between classes. We observed very similar trends when comparing 

classification results of study site Nobéré with ten classes in Level I, to classification results of 

study site Tougouri with seven classes. Thus we conclude that classification accuracy results 

for Level II are higher than the given cross validation results for Level I. Even higher 
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classification results can be expected for the Level III classification results, considering the 

fact that trees and shrubs had high classification accuracies and these classes are essential 

for the forest, non- forest classification. 

In addition to the number of features and land use classes considered during the 

classification, land use spatial patchiness has to be considered as an additional factor 

influencing classification accuracy. We observed that classification accuracy results for the 

study site Tougouri were higher than for the other three study sites, as it is a more 

homogeneous area. Thus, the classification accuracy is also be influenced by the landscape 

structure. This observation is in line with the findings of Moody and Woodcock (1995), 

where a negative influence on classification results was observed with decreasing patch size 

i.e. more heterogeneity. 

As mentioned in the methods section (5.2.5), the RandomForest classifier provides the 

possibility to assess the importance of each feature for the classification (Breiman, 2001). 

We used the Gini index to rank features corresponding to their importance, even though 

other measures like the chi-square method (Mingers, 1989) are available. This procedure 

was based on the findings of Breiman (1984) where it was assessed that the classification 

level does not depend on the choice of selection measure. 

It was observed that during regional scale classification with the RandomForest classifier, all 

original image bands were chosen for the classification, where NIR was the band with the 

highest selection probability with 18.25%. Further, all vegetation indices were selected as 

well, where NDVI green was chosen with a probability of 13.75%, being the band with the 

second highest selection probability. In a study by Marx (2010), NDVI green also proved 

useful for a rule based classification when distinguishing different levels of beetle attack, 

based on RapidEye imagery. When the NDVI green was introduced by Gitelson (1996), it was 

assessed that NDVI green is on average five times more sensitive to chlorophyll 

concentration than the NDVI. We conclude that the improved sensitivity of NDVI green 

helped distinguishing vegetation, which shows very similar reflective properties and was 

helpful in the detection of vegetation, even during the dry season, where imagery was 

acquired. 

In addition to the above mentioned factors influencing classification accuracy, Achard et al. 

(2007) mentioned clouds to be one of the main obstacles for remote sensing in the tropics; 
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whereas Burkina Faso is not fully part of the humid tropics, where clouds pose a constant 

hindrance. We agree with the mentioned finding, in our study especially haze was identified 

as a major hindrance during classification, as can be seen in Figure 19. Haze does not 

incorporate a sharp border between cloud and non-cloud, making distinction difficult, her 

further research is needed. Never the less it should be noted that we did achieve good 

classification results for clouds with clear outlines. 

 

7.2.2 National scale land use classification 

With the applied method for up scaling, applying the RandomForest classifier we were able 

to produce FAO conform land use maps for the whole of Burkina Faso.  

Following Moody and Woodcock (1995), we think that the relationships between the spatial 

pattern of land use classes, the scale of observation and the corresponding classification 

error have to be considered, when it comes to the ranking of classification accuracy. With 

regards to the above mentioned, it should be noted that not all land use classes that could 

be classified on the regional scale could be up scaled using 500 m resolution MODIS imagery. 

The classes affected by this were “other land with tree cover” and “inland water bodies”. 

The reasons for the above described could lie in the fact that OLWTC is a land use class that 

is very patchy, meaning that it did not obtain a size of 500 x 500 m, within the regional scale 

land use classification, without enclosing other land uses. For the land use class “inland 

water body” the situation is different, here the reason lays in the misclassification during up 

scaling. Thus, we agree on the general findings of Moody and Woodcock (1994), who 

assessed that large classification errors can occur with increasing sensor resolution. The 

results described above, with regards to the land use classes “OLWTC” and “Inland water 

bodies” are similar to the findings of Turner et al. (1989) who describes that rare land use 

classes can disappear during up-scaling. Further it was also assessed by Moody and 

Woodcock (1994) and Turner et al. (1989) that the interaction between the scale of 

aggregation , the spatial pattern of the landscape and the initial proportion of the element of 

interest (in our case the land use classes) will constitute in the coarser resolution land cover 

map. 
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Among others, Walton (2008) described that many classification techniques, so called hard 

classifiers, cannot work with in situations were mixed pixels occur. In our case mixed pixels 

are often present, as our target variable, land use class, is often smaller than one pixel. This 

situation is often the case for sensors of moderate resolution like MODIS. Huang and 

Townshend (2003) state that non-parametric methods, like decision tree and thus also 

RandomForest, are well suited to cope with such data, resulting in more reliable results than 

results from parametric classifiers. Decision tree methods do not imply normal distribution 

of data (Breiman, 2001) and are ranked as one of the most efficient expert systems (Im and 

Jensen 2005). 

Further, it was assessed that supervised classifiers strongly depend of the data used for the 

training of the classifier (Campbell 1981). We think that the approach applied by us is well 

suited to deliver high quality data as input to the classifier, excluding mixed pixels.  

Before using the MODIS data as input for the RandomForest classifier, we did not undertake 

any image enhancement measures like calculating additional image bands e.g. NDVI, among 

others. We used that approach as it was assessed by Pal and Mather (2003) that increasing 

the number of bands does not always increase classification accuracy. Our observation is in 

the same direction as we achieved an OBB error estimate of 0.84 which is very good, without 

calculating additional bands. Another reason for not calculating any additional bands before 

the classification was based on the experiences made by Baccini et al. (2008) where carbon 

stocks were estimated with a combination of MODIS imagery and ground data using the 

RandomForest classifier. Within their study it was assessed that including ratio bands like the 

NDVI, Enhanced Vegetation Index (EVI) or the Leave Area Index (LAI) did not result in a large 

increase of classification accuracy, sometimes even having negative effects on the 

classification. Thus, in their study it was also concluded that using the original seven MODIS 

bands, which were designed to monitor landscapes would be the best approach. 

We did assess that the MODIS image product we used was well suited for the classification 

and observed that the green band was the most important band during classification, which 

is not astonishing when classifying vegetation. 

When comparing our results to a study conducted by Borak and Strahler (1999) where a 

decision tree method was applied to classify a MODIS (1 km resolution) land cover product 

for a semiarid environment with similar land use classes as the ones encountered in Burkina 
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Faso, with an achieved overall accuracy of 42%, we achieved a considerably higher accuracy. 

Further, we do not think that the classification result with 64% is related to the quality of the 

training data, but is much rather an effect of the amount of training data. In a study by Pal 

and Mather (2003), it was assessed that the classification accuracy of decision tree based 

classification methods does improve with the size of the training set, accumulating at a 

certain stage. Nevertheless it was also assessed that decision tree based do not require large 

training sets to be effective (Pal and Mather 2003). When observing the above mentioned 

findings we come to the conclusion that one of the reasons for our classification result is the 

low amount of training data e.g. for class “OWL”. A possible solution to that would be to 

include more regional scale study sites in the study, by this increasing the amount of training 

data available for the classifier. An optimal solution would be to use the field based 

inventory results, using these in a two phase sampling approach, where the remote sensing 

imagery is acquired based on the field observation information. Thus, image acquisition 

could be optimized by focusing on the coverage of all land use classes in the remotely sensed 

data. 

As mentioned above, our classification accuracy results achieved during cross validation are, 

with 65%, perhaps considered low. However, it could be shown that the up-scaling approach 

developed is applicable and suggestions for the improvement of classification accuracy were 

developed. With regards to the estimates of “forest”, “other wooded land” and “other land” 

area, where we estimated covers of 30.8%, 2.8%, and 66.4%, respectively, we observed that 

these estimates are more in line with our terrestrial sampling based estimates, than with 

estimates of FAO FRA 2010. During terrestrial sampling we estimated 42.6% with SE% of 9.9 

for Forest, 1.6% with SE% of 41.4 for OWL, and 53% with SE% of 8.5 for land use class “other 

land”. Whereas following FRA 2010 Forest area was estimated to be 21.0%, OWL 18.9% and 

other land 60.9%, respectively (see Table 15). Here we conclude that our remote sensing 

based approach delivers more realistic results than the FAO FRA remote sensing based 

approach, especially when it comes to the distinction of land use classes where shrubs are 

included (e.g. OWL). 

Further we compared our forest area findings with the results presented in (Xiao et al. 

2009), where different land cover products like Global land cover 2000 (GLC 2000) and the 

MODIS land cover product (MOD12Q1) were compared. The GLC 2000 is based on one km 
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resolution imagery, obtained from the platform “Satellite Pour l’Observation de la Terre 

(SPOT) VEGETATION”, and was developed by the Joint Research Centre (JRC) of the 

European Commission, together with more than 30 other partner institutions around the 

world (Fritz et al. 2003). The MODIS land cover product was developed by the Boston 

University, based on one km resolution MODIS imagery (Friedl et al., 2002). 

The comparison showed that GLC 2000 estimated 4.1% of “deciduous woodland” for Burkina 

Faso, if we would add land use class “deciduous shrub land with sparse trees” to “deciduous 

woodland” we would obtain a total of 21.5% coverage (see annex for map, Figure 24). 

Following MOD12Q1 an estimated 2.2% of Burkina Faso is covered with “deciduous broad 

leave trees”, if we would sum up classes “evergreen needle leave trees”, evergreen broad 

leave trees”, “deciduous broad leave trees” and “mixed forest” we would obtain a coverage 

of 2.4%, respectively (see annex for map, Figure 25). The estimates given by GLC 2000 for a 

land cover class similar to “OWL” with 21.5% for Burkina Faso are within the range of the 

findings provided by FAO FRA with 18.9%. Compared to our findings they underestimate this 

land cover, both, to our terrestrial and remote sensing based approaches, where we 

estimated “Forest” to be within the range of 42.6% and 30.8%. This result of GLC 2000 could 

be due to the confusion of shrubs with trees as already perceived for the findings of FAO 

FRA. For forest-like land cover classes MOD12Q1 underestimates the actual “Forest” cover 

of Burkina Faso about 17-fold, compared to our terrestrial sampling, and about 12-fold 

compared to our remote sensing approach indicating weaknesses within their classification. 

It should be considered that the comparison with the global land cover data sets (GLC 2000 

and MOD12Q1) should be done with care, as complete comparability is not always clear, due 

to different image sources, classifiers and training sets, and forest definitions used (Xiao et 

al. 2009; Giri, Zhu, and Reed 2005). Nevertheless we can observe that data sets that are the 

most comparable datasets, with regards to spectral and spatial resolution, to our dataset, 

very much underestimate the forest cover of Burkina Faso. 

When observing our classification results, one comes to the conclusion that the accuracy in 

terms of geographic location is not as high as in other studies, but the area totals are within 

expected margins. The observation previously described, has also been observed by Nelson 

et al. (2009), where they spatially aggregated a dataset and the total area estimates were 

not deteriorated by this approach. The observations described by Nelson et al. (2009) seem 
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to be analogue for our up scaling approach. Thus, we conclude that spatial accuracy 

decreased within the applied up-scaling approach, whereas area estimates were not so 

strongly affected by the up scaling applied. 
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8 Conclusion 

Most parts of the conclusion for the terrestrial sampling follow the conclusion described in: 

Fischer et al. 2011. A national level forest resource assessment for Burkina Faso - A field 

based forest inventory in a semi-arid environment combining small sample size with large 

observation plots. Forest Ecology and Management, doi:10.1016/j.foreco.2011.07.001. 

 

8.1 Terrestrial sampling 

With the conducted study we demonstrated that estimates on a wide range of forest related 

variables is possible on a national scale, applying a sampling approach based on small sample 

size combined with large observation plots. Furthermore we showed that estimates are 

possible at a realistic level of precision. Even though the study was part of an international 

development research project which focused on the adaptation of agriculture in Sub-

Saharan Africa to climate change where the data on vegetation, especially on forest as well 

as trees and shrubs outside forest, was needed for impact modelling, the study has many 

similarities to a national forest inventory (Fischer et al., 2011). The exact estimation of the 

costs connected to inventory as a whole can only be estimated as the inventory was 

conducted within the frame of a larger collaborative project. We estimated a total of only 

just about Euro 400 per planned field plot (n = 53) (Fischer et al., 2011)! If we compare to 

other inventories in the tropics, where low sample size approaches were applied, the cost 

effectiveness of our study becomes apparent. FAO (2008b) estimated average costs for 

other tropical country national inventories to be in the order of magnitude of about 2300 

Euro per PSU where one of the large cost factors in FAO supported inventories are the 

expenditures for consultants. 

It is clear that an increase in sample size would lead to an increase in precision accordingly 

(Fischer et al., 2011). We were able to show that not only an increase in sample size is 

needed to improve estimates in biomass and carbon stocks. Neither will modern remote 

sensing technologies be able to extensively deliver better-quality data on carbon stocks as 

developments need to be made in various other fields. Here, we follow Lewis et al. (2009) & 

Fischer et al. (2011) who concludes that much more research and development efforts need 

to be directed towards the improvement of locally specific biomass and carbon models; for 

semiarid environments like in Burkina Faso. Especially in dry regions of young secondary 
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forests it is of much importance to include shrubs which we were not able to include in our 

carbon stock estimate of “other wooded land”, although shrubs are the dominant life form 

within this land use class. We are aware that the described lack of sufficiently accurate 

carbon models for above ground stocks also is valid for all other carbon pools like 

belowground carbon stocks that were not considered in this study (Fischer et al., 2011). We 

conclude that methodologically harmonized and more sophisticated field carbon estimates 

are needed otherwise all higher order models are likely to fail. Furthermore we agree with 

Fischer et al. (2011) that: “Compared to image analysis of new remote sensing instruments, 

collecting data to improve such field biomass models is tedious and time consuming field 

work and these efforts will exhibit significant progress only after years when results of 

various biomass modelling studies can be merged.” 

 

8.2 Remote sensing at regional scale 

Our study showed that the classification method developed is able to deliver estimates on 

FAO land use classes, based on remote sensing only. 

Further it was shown that the classifier chosen was able to handle the multidimensional data 

at hand, delivering unbiased estimates. Needs for further research, with regards to training 

and validation data were identified. For a future study we would recommend to research 

into the possibilities of image pre-stratification based on the spectral composition, as basis 

for the generation of training data. After all, we conclude that the RapidEye sensor is well 

suited for land use classification and mapping, based on its spectral range and high visiting 

time, which could result in cloud and haze free imagery, which is of high importance for land 

use classification in the tropics. 

The possibility to obtain a feature importance ranking helped improving the classification 

efficiency, by reducing the number of variables needed during classification. This resulted in 

reductions of computing time and computing power need without reducing the classification 

accuracies too much. It should be considered that our classification accuracies were still very 

high, using a reduced feature space for the final classification. 

We observed that some features were of no importance for the classification, whereas 

others were of importance, giving insights into general questions with regards to vegetation 
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classification in a semiarid environment and giving hints towards the development of 

adapted vegetation indices and spectral resolution of future remote sensing platforms. 

 

8.3 Remote sensing at national scale 

We were able to show that the method developed for the national scale, FAO conform land 

use classification, is applicable, delivering sound estimates on land use classes. 

Further, the classification approach is very transparent and intuitive, meaning that 

replication is well possible. 

In addition, it was shown that the classifier chosen was able to handle the multidimensional 

data needed for the national level classification conducted. Further, it was assessed that the 

RandomForest classifier is able to deliver sound estimates even if the amount of training 

data is much reduced. 

Based on the land use classification results presented, we come to the conclusion, that the 

MODIS MOD09GA product used for the classification is well suited for the classification 

applied. Where its spectral range, which proved well suited for the classification of 

vegetation, paired with its daily revisiting time, increasing the chance of a cloud free image 

seems to be optimal. With regards to its spatial resolution it was assessed that not all land 

use classes could be detected. Here, we come to the conclusion that either an increase of 

spatial resolution, using a different MODIS product e.g. MOD09GQ with a spatial resolution 

of 250 m but only two spectral bands, or data from another platform; or an increase of 

training data, would improve our estimates. 

Nevertheless, to our knowledge, we were able to produce the first land use map for Burkina 

Faso, based on FAO definitions, also supplying error estimates. 

We were able to show that our classification method yields, for the land use classes we 

could detect, estimates that are more within the range of the estimates we assessed during 

out terrestrial inventory, as was assessed during the FAO FRA 2010 or GCL 2000, which is 

also remote sensing based. Thus we conclude that our classification approach is superior, for 

the classes we assessed, to the method applied by FAO, especially so, if the suggested 
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improvements, above all, increasing training data or pre-stratifying training data to cover all 

land use classes existent were implemented. 

 

8.4 National forest inventories as data providers for international 

processes 

Within the frame of climate change and other related global issues, information on the 

natural resources of a country, at national level became the focus of scientific and market 

related interest. 

Here, we focused on the possibility to provide input to the REDD market incentive which 

focuses on carbon trading (see 3.4) at global level, by means of a national forest and land 

use inventory, as the REDD mechanism is strongly dependent on reliable and standardized 

information on forest. Countries that want to participate at REDD will first of all need to 

report their current forest extents and later, the changes in forest area and the related 

carbon stocks. It is clear that a monitoring system for such a task generates high costs, which 

for many developing countries, can be the limiting factor for its implementation. For the 

monitoring scheme there exist three levels of accuracy (see 3.4), tiers 1-3, where tier three 

delivers the most accurate carbon estimates. 

Within this study we were able to conduct a national forest inventory for Burkina Faso at 

much reduced costs, which is able to deliver reliable information on the extend of forest and 

other land use classes, following standardized definitions. With the applied sampling scheme 

we were able to calculate the level of precision achieved for the estimation of the area of 

each land use class. Further, we were able to measure the species composition as well as 

structure of the vegetation for each land use, which allowed, with the use of allometric 

models, to calculate the aboveground carbon stocks including error estimates. Our sampling 

approach more than fulfils the requirements for the calculation of carbon stocks at Tier 1 

level and could be further extended to fulfil at least the tier 2 requirements by including 

additional carbon stock measurements like litter, dead wood and species specific carbon 

measurements into the sampling scheme. 

In the REDD+ carbon trading scheme described in 3.4 remote sensing techniques play an 

important part in the monitoring requirements. We were able to develop a consistent, 
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standardized and transparent remote sensing based land use classification scheme covering 

the whole of Burkina Faso. With the developed classification scheme we are able to classify 

forest and other land use classes and deliver the possibility for a consecutive forest cover 

monitoring system for Burkina Faso as demanded by the REDD+ requirements. 

By combining the information from the terrestrial and remote sensing based approaches 

developed, we are confident to deliver a useful tool to increase the REDD+ readiness of 

Burkina Faso and other countries that would like to utilize the developed methods. 
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9 Summary  

In this study we present a forest inventory approach on national level for Burkina Faso 

where a relatively small sample size is combined with relatively large sample plots. To our 

knowledge, we present here the first sample based inventory of forest and tree resources 

for Burkina Faso, providing national level information based upon a uniform and statistically 

consistent methodology. We hope the results of this study can contribute to the discussion 

on land-use dynamics and further planning of a more detailed national wide monitoring 

system on the tree resource.  

The inventory conducted here is one of the central components of a research project aiming 

at modelling the expected future changes in climate, vegetation and land-use on country-

level. Low sampling intensity was stipulated mainly due to limited resources in terms of 

time, budget and labour, but also because the expected precision of baseline information on 

land cover classes and their major characteristics, like species distribution or aboveground 

carbon stocks of the tree compartment (AGCTree), was found to be sufficient for the regional 

modelling goals of this study.  

With the applied inventory we were able to estimate land use, based on FAO definitions, 

where we estimated that a total of 42.6%, 1.6%, 53.6%, 9.1% and 2.2% of Burkina Faso are 

covered by “forest”, “other wooded land”, “other land”, “other land with tree cover” and 

“inland water bodies”, respectively. Further we were able to estimate precision for all land 

use proportions. 

In addition we were able to assess the vegetation structure and species composition for 

different land use classes. The results on vegetation structure could successfully be used by 

the climatological group within the project, where a model on radiation within forest stands 

is being developed. 

The assessed species data was used to derive land use specific information on wood density, 

which was further used in the calculation of above ground carbon stocks for different land 

use classes. We were also able to define urgent needs for research, especially with regards 

to carbon estimates. It was assessed that we were not able to calculate carbon stocks for 

shrubs, which are part of land use class “other wooded land”, as no suitable allometric 

models were available. 



95 

With the applications developed in the remote sensing part of our study, we were able to 

produce a land use map for Burkina Faso, based on FAO definitions, which is for the first 

time also supplying error estimates for the cover estimates and information on classification 

accuracy. For the above mentioned we developed a standardized classification scheme 

following FAO land use definitions based on the new RapidEye sensor. In a second step we 

showed the possibility to up-scale the results based on local scale land use maps, derived 

from the RapidEye imagery to country level using MODIS imagery. Herewith we established 

a cost effective monitoring system for the whole of Burkina Faso, which is based on remote 

sensing only. 

With our study we were able to show that RapidEye imagery is well suited for land use 

classification based on FAO definitions, where limited study sites were worked on. 

Classification of different vegetation forms under different climatic conditions was possible, 

achieving good classification accuracies. Thus, we proved that not only the imagery, but also 

the classification scheme applied is well suited for different vegetation as well as climatic 

conditions. 

With the developed processing chain, we achieved estimates that were much more within 

the range of our ground based study for land use class “Forest”, in Burkina Faso, than in any 

other remote sensing based study we know of. Based on the MODIS imagery we estimated a 

total of 30.8% of “forest” for Burkina Faso. Additionally we identified further needs for 

research to improve classification accuracy as well as the detection of all land use classes of 

interest. 
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11 Annex 

 

Figure 24: Land cover classification following Global Land Cover 2000 (European Commission, Joint Research Centre, 2003). 
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Figure 25: Land cover classification following MODIS (MOD12Q1) IGBP global vegetation classification scheme (USGS - U.S. geological survey).
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Species list: 

 Scientific name 

1.  Acacia albida 
2.  Acacia ataxacantha 
3.  Acacia brunaiensis 
4.  Acacia dudgeonii 
5.  Acacia gourmaensis 
6.  Acacia hockii 
7.  Acacia laeta 
8.  Acacia macrostachya 
9.  Acacia nilotica 
10.  Acacia pennata 
11.  Acacia polyacantha 
12.  Acacia raddiana 
13.  Acacia senegal 
14.  Acacia seyal 
15.  Acacia sieberiana 
16.  Adansonia digitata 
17.  Afzelia africana 
18.  Albizia chevalieri 
19.  Anacardium occidentale 
20.  Annona senegalensis  
21.  Anogeissus leiocarpa 
22.  Azadirachta indica 
23.  Baissea multiflora 
24.  Balanites aegyptiaca 
25.  Bauhinia rufescens 
26.  Berlinia grandiflora 
27.  Bombax costatum 
28.  Borassus aethiopum  
29.  Boscia angustifolia 
30.  Boscia senegalensis 
31.  Boswellia dalzielii 
32.  Bridela ferruginea 
33.  Burkea africana 
34.  Cadaba farinosa 
35.  Calotropis procera 
36.  Capparis corymbosa 
37.  Cassia albida 
38.  Cassia brunaiensis 
39.  Cassia machrostachya 
40.  Cassia sieberiana 
41.  Cassia singueana 
42.  Cedrocedrella cotchii 
43.  Celtis integrifolia 
44.  Cissus quadrangularis 

45.  Combretum aculeatum 
46.  Combretum collinum 
47.  Combretum fragrans 
48.  Combretum glutinosum 
49.  Combretum micranthum 
50.  Combretum molle 
51.  Combretum nigricans 
52.  Combretum paniculatum 
53.  Commiphora africana 
54.  Cordia myxa 
55.  Crossopteryx febrifuga 
56.  Dalbergia melanoxylon 
57.  Daniellia oliveri 
58.  Detarium microcarpum 
59.  Dichrostachys cinerea 
60.  Diospyros mespiliformis 
61.  Elaeis guineensis 
62.  Entada abyssinica 
63.  Entada africana 
64.  Eucalyptus camaldulensis 
65.  Faidherbia albida 
66.  Feretia apodanthera 
67.  Ficus capensis 
68.  Ficus glanphalocarpa 
69.  Ficus ingens 
70.  Ficus platiphylla 
71.  Ficus sp. 
72.  Ficus sycomorus 
73.  Gardenia erubescens 
74.  Gardenia sokotensis 
75.  Gardenia ternifolia 
76.  Gardenia triacantha 
77.  Grewia bicolor 
78.  Grewia flavescens 
79.  Grewia villosa 
80.  Grewiia mollis 
81.  Guiera senegalensis 
82.  Hannoa undulata 
83.  Hexalobus monopetalus 
84.  Holarrhena floribunda 
85.  Hopilia curatelifolia 
86.  Hopilia seltidifolia 
87.  Hymenocardia acida 
88.  Hyphaene thebaica 
89.  Isoberlinia dalzielii 
90.  Isoberlinia doka 
91.  Isoberlinia tomentosa 
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92.  Khaya senegalensis 
93.  Lannea acida 
94.  Lannea barteri 
95.  Lannea kerstengi 
96.  Lannea microcarpa 
97.  Lannea velutina 
98.  Leptadenia hastata 
99.  Leptadenia pyrotechnica 
100.  Lonchocarpus laxiflorus 
101.  Lophira lanceolota 
102.  Maerua angolensis 
103.  Maerua crassifolia 
104.  Maerua oblongifolia 
105.  Mangifera indica 
106.  Manilkara multinervis 
107.  Maranthes polyandra 
108.  Maytenus senegalensis 
109.  Mitragyna inermis 
110.  Monotes kerstengii 
111.  Nauclea latifolia 
112.  Oncoba spinosa 
113.  Ozoroa insignis 
114.  Parinari curatellifolia 
115.  Parkia biglobosa 
116.  Pericopsis laxiflora 
117.  Philenoptera laxiflora 
118.  Piliostigma reticulatum 
119.  Piliostigma thonningii 
120.  Prosopis africana 
121.  Pseudocedrela kotschyi 
122.  Pteleopsis suberosa 
123.  Pterocarpus erinaceus 
124.  Pterocarpus lucens 
125.  Saba senegalensis 
126.  Sarcocephalus latifolius 
127.  Sclerocarya birrea 
128.  Securidaca longipedunculata 
129.  Securinega virosa 
130.  Sterculia setigera 
131.  Stereospermum kunthianum 
132.  Strychnos spinosa 
133.  Swartzia madagascariensis 
134.  Syzygium guineense 
135.  Tamarindus indica 
136.  Tectona grandis  
137.  Terminalia avicennioides 
138.  Terminalia febrifuga 

139.  Terminalia glaucescens 
140.  Terminalia laxiflora 
141.  Terminalia macroptera 
142.  Terminalia mollis 
143.  Thevetia neriifolia 
144.  Trichilia emetica 
145.  Uapaca togoensis 
146.  Unknown 
147.  Vitellaria paradoxa 
148.  Vitex doniana 
149.  Vitex simplicifolia 
150.  Xerroderris stulhmanii 
151.  Ximenia americana 
152.  Ziziphus mauritiana 
153.  Ziziphus mucronata 
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