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1 INTRODUCTION 

1.1 BACKGROUND 

Forest inventories and ecological surveys are common and essential tools of data collection to 

support decision making in forest management and conservation. Statistical sampling based 

forest inventories date back to around a century ago. With the changing and growing needs of 

various users for statistically sound data, a wide range of statistical sampling strategies and 

techniques aiming at improving sampling efficiency have been developed, evaluated and 

translated accordingly into sampling designs, especially over the past decades. There are 

numerous sampling designs available for application to obtain precise and reliable 

information on populations of interest for a variety of purposes in forest inventories and 

ecological surveys, such as natural resources assessment, biodiversity monitoring, and 

management planning.  

In sample based forest inventories or ecological surveys, sampling design, response design 

and estimation design are three basic design elements to be taken into account. Sampling 

design refers to the procedure by which the sample of units is selected from the population of 

interest for estimating characteristics of that population, and a set of rules/protocol for all 

possible occasions needs to be explicitly specified for its appropriate implementation. The 

response design defines the sample units and the observations to make on them. In the context 

of forest inventories, response design is usually known as plot design or observation design, 

where sample plots are commonly used as sample units and described in terms of plot shape 

and plot size. The estimation design addresses what statistical estimation procedures and in 

particular what estimators will be applied to make inferences or extrapolations from the 

sample to the population. Normally the last element needs to be in compatibility with the first 

two, and thus an appropriate sampling design together with response design is integral and 

crucial to the sampling efficiency. For the convenient choice of the most effective sampling 

and plot design for the population of interest, Thompson and Seber (1996) differentiated all 

available sampling and response designs into three types: conventional designs (e.g. stratified 

random sampling and two-stage sampling), adaptive designs (e.g. inverse sampling and 

adaptive cluster sampling) and nonstandard designs (e.g. ranked set sampling). 

 In conventional designs, neither sampling design nor response design depends on any 

observation of the variable of interest. It is implied that a fixed size sample of units selected 

prior to an inventory or survey for data collection is unchangeably used as such throughout 
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that inventory or survey, and no modification to sampling design or plot design is allowable to 

be triggered by any observation. Simple random sampling (SRS), stratified random sampling, 

systematic sampling, cluster sampling, multistage sampling and relascope sampling are 

common conventional designs.  

In adaptive designs, the sample selection or plot design may depend on the observed values 

from the sample units, and the final number of sample units remains unknown to the sampler 

until the completion of a sampling mission. The development of the adaptive designs is 

motivated by the important challenge of sampling “rare events” (Thompson, 2004). Rare 

events are target objects such as plants that occur in very low density. Frequently, the 

abundance of rare species is of a particular interest for conservation and biodiversity 

monitoring. Accurate information about rare objects is difficult to achieve with conventional 

designs. The simple and intuitive philosophy underlying adaptive sampling, known also as 

informative sampling sometimes, is that more precise estimates of population parameters are 

expected to be obtained by adaptively adding more objects of interest to the sample. The 

adaptive approaches are suggested to be preferable in situations where nonadaptive designs 

are proven to be notoriously inefficient, especially when rare, clustered, unpredictable, elusive, 

spatially and temporally uneven, and hard to detect populations are of interest. A typical 

example is “inverse sampling” (Haldane, 1945; Cochran, 1977), in which a sample unit is 

sequentially selected into the sample until a prefixed number of  sample units with the 

characteristic of interest are observed. Whether the addition of an extra sample unit continues 

or not is judged following the observations made upon the current sample. 

In nonstandard designs, the selection of sample units is influenced by the observed values of 

the target variable for the units outside the sample or by unknown parameter values, which 

can be seen clearly from an example given in Thompson and Seber (1996) and ranked set 

sampling (RSS) (Dell and Clutter, 1972; Chen et al., 2004). In RSS, the ranking of potential 

sampling units on the target variable using judgment or an ancillary variable is required for 

the sample selection. Nonstandard designs are much less well known and their use needs 

serious caution in comparison with the other two types of designs owing to the complicated 

inference problem arising from the unknowns involved in designs.  

The overall performance of a sampling design depends on a variety of factors such as design 

settings, population structure, degree of homogeneity of the target variable, physical 

conditions of the inventory region for example accessibility, and available budget. A 
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comprehensive consideration of those factors is required to determine which design is suitable 

or optimal. 

In ecological systems, rare species outnumber common species (Cao et al., 1998; Magurran 

and Henderson, 2003)  and have great importance to biodiversity conservation (Raphael and 

Molina, 2007). Many of them, such as palms, shrubs, trees, and medicinal and aromatic plants, 

are not only rare in number, but also clustered in patches over a region. For such populations, 

the efficiency of nonadaptive designs tends to be even much worse in terms of relative 

standard error, including the conventional cluster sampling. The reason is that a vast majority 

of sample plots are empty and eventually the estimates of population characteristics are 

derived from the observations of the objects of interest within very few sample plots. A 

technique referred to as adaptive cluster sampling (ACS) was introduced and suggested by 

Thompson (1990) in this context.  

The principal strategy of ACS is to take the advantage of spatial clustering of individuals to 

focus the sampling effort on the locations where the target individuals concentrate so that the 

sampling precision and efficiency can be improved. From a probabilistic point of view, it is to 

assign a higher probability to be included in the sample to the individuals with more 

neighbors than those with fewer or even no neighbors in the adjacent area. 

According to the definition of ACS given by Thompson (1990), under the design of ACS, an 

initial set of units (initial sample) is selected by an ordinary probability sample e.g. by simple 

random sampling or systematic sampling, and whenever the variable of interest of a selected 

unit satisfies a predefined criterion or condition C (for instance, the presence of at least one 

object of interest in a sample plot), all units in its neighborhood not already in the sample are 

added to the sample; if an additional unit meets C once again, then further sampling of its 

unsampled neighbors is needed. The iterative sampling process continues until C is not 

satisfied any more. The condition C is often expressed in terms of a critical value (CrV), the 

minimum value to trigger the adaptive addition of neighbors, and the neighborhood can be 

defined in a variety of ways such as first-order neighborhood and second-order neighborhood 

(Christman, 2000). At the completion of ACS, a set of clusters of different sizes is finally 

formed when it is area-based.  “Area-based” (Cochran, 1977) implies that the region where 

the target objects occur is completely tessellated into squares (referred to as plots in forestry 

and quadrats in ecology) as usual. That region and the plots within it are subsequently defined 

as the population of interest and population units respectively.  In the case that the condition 

C of ACS is the presence of at least one target object, as seen in Figure 1.1, a non-empty 
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initial sample plot is step by step enlarged by adding more and more plots and becomes an 

irregularly shaped cluster of subplots. Eventually the cluster will contain the entire group of 

target objects intersected by the initial sample plot. Thus, the cluster plot adapts in size and 

shape to the group of target objects encountered at a sample location.  If no target object is 

found on the initial sample plot, then the cluster consists of the initial sample plot only. 
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   3       e     
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Figure 1.1 An adaptive cluster sample with an initial simple random sample of 10 units 

numbered from 1 to 10. The black dots denote the objects of interest. Each resultant cluster is 

outlined in bold with its network consisting of units satisfying C highlighted in shade and 

edge units labeled with e. The neighbors of a unit are defined to consist of four adjacent units 

sharing a common boundary line with it. The condition for adaptive addition of neighboring 

units is: the presence of at least one object of interest in the quadrat. 

In the context of ACS, a cluster, as seen in Figure 1.1 above, is the set of all sampled units 

resulting from the selection of an initial sample unit, and a network is such an aggregate of 

units that the selection of any of its units leads to the inclusion of all its other units in a sample. 

Any unit in a cluster not satisfying C but in the neighborhood of one that does is called an 

edge unit (Thompson, 1990).  There exist two types of networks: single-unit network and 

multi-unit network. A single-unit network consists of only one unit if that unit either simply 
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fails to fulfill C, or does fulfill C but its contiguous neighbors cannot. Apparently, a multi-unit 

network comprises at least two adjacent units and all units within it satisfy C. By definition, 

an edge unit is actually a single-unit network, namely, a network of size 1. If the same 

condition C is applied to classify all plots in a region into networks, then a certain number of 

mutually exclusive and completely exhaustive networks of various sizes will be developed. 

Then a population of interest can be uniquely partitioned into distinct, nonoverlapping 

networks. A network is also described to be a cluster with its edge units removed, if any. The 

estimation design of ACS in the original work of Thompson (1990) was based on the 

attributes of the resultant networks rather than clusters, which justifies/accounts for the 

introduction of the term “network” into ACS in addition to the term cluster. It is very obvious 

that ACS as a specific adaptive design is a technique of sampling with unequal probabilities 

from the set of networks. However, neither Horvitz-Thompson (HT) estimator (Horvitz and 

Thompson, 1952) nor Hansen-Hurwitz (HH) estimator (Hansen and Hurwitz, 1943) can be 

directly applied to ACS as usual because the inclusion probability or the draw-by-draw 

selection probability of each sampled edge unit cannot be derived unless all clusters it belongs 

to are sampled. As an alternative, the modified HT and HH estimators were developed by 

excluding the sampled edge units of clusters from the estimation process. As a result, the 

modified HT estimators use the probability that the initial sample intersects a network, while 

the modified HH estimators use the number of units in the initial sample which intersect or 

fall in a network. Both of them are design unbiased, i.e. without any assumption about the 

population of interest. 

ACS is claimed to be superior to conventional sampling techniques when the objects of 

interest are rare and geographically clustered in that it may provide more precise estimates 

with additional gain in information on the spatial distribution pattern of the population of 

interest with an equivalent amount of sampling effort (Thompson, 1990). However, it has not 

yet been used on a routine basis in field surveys for forest inventory and biodiversity 

monitoring as there are also practical difficulties in field implementation. Under the design of 

ACS, the final number of sampled units is a random variable, and thus the total sampling 

effort is not precisely predictable.  

Depending on the structure of the population and the plot design, the challenge may arise 

during the survey that the adaptive clusters become excessively large and the sampling work 

there turns out to be impractical and too costly.  Furthermore, there are numerous factors 

influencing the efficiency of ACS (Thompson, 1994), and the relationship between the  
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sampling efficiency of ACS and those factors is not straightforward (Brown, 2003) so that 

there is no explicit and workable definition about how to configure an efficient ACS design 

but some general principles from Thompson and Seber (1996) and a rule of thumb given by 

Brown (2003): the final sample size, which is the number of subplots in strict sense,  should 

not be excessively larger than the initial sample size and networks should not be so small that 

the within-network variance is very low. ACS is not uniformly better than the conventional 

designs in terms of precision, and it may be found even less efficient than simple random 

sampling without appropriate settings of design factors in the case of equivalent amount of 

sampling effort. Therefore, further research is necessary on how to reach the promising 

potential of ACS in a more practical manner without restriction from the noted drawbacks. 

1.2 OBJECTIVES 

In this methodological study with the focus on practicability of implementation, three new 

adaptive plot designs will be introduced.  The main objectives of the study are: 

 Introduction and detailed elaboration of three new adaptive plot designs including 

their sampling procedure, design factors and their difference from the conventional 

ACS design 

 Developing estimation designs for the researched adaptive plot designs based on the 

inclusion zone approach  

 Evaluation of the statistical performance as well as cost efficiency of the studied 

adaptive plot designs based on their efficiency relative to the nonadaptive designs in 

various sampling situations in one real and eleven artificial populations 

 Suggestion for the appropriate choice of design parameters to improve the efficiency 

of the new plot designs 
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2 LITERATURE REVIEW 

2.1 BRIEF INTRODUCTION TO THE STUDIES ON ACS 

ACS attracts general interest and is widely considered to be a preferable technique for 

sampling rare and geographically clustered populations since it was introduced in the 

foundational research work of Thompson (1990). There, a comprehensive description on ACS 

accompanied by illustrative examples is available and one can obtain a general and 

fundamental insight into ACS, such as justification, definition of elementary concepts, 

sampling design, estimator development, and comparative efficiency relative to simple 

random sampling. The efficiency of ACS is influenced by a number of factors, and how to fill 

the gap between the theoretical potential and actual performance is still a major concern. 

Many methodological and applied studies have been carried out for a variety of purposes; 

some of them are regularly published and some are available as gray literature. The 

methodological studies focus mainly on adapting sampling and plot designs, as well as 

designing estimators with satisfactory properties. 

2.2 VARIATIONS OF ADAPTING SAMPLING AND PLOT DESIGN 

An ACS design can be considered to consist of two sampling components: one defines the 

selection of the initial sample, and the other defines the adaptive addition of extra sampling 

units at an initial sample unit satisfying the condition of interest, which is referred to as extra 

sampling or additional sampling. According to the definition of ACS (Thompson, 1990) any 

sampling design can be used to select the initial sample theoretically, and thus there are 

various ACS designs available depending on how its initial sample is selected. The overall 

gain in precision of one form relative to another has two sources, of which one is contributed 

by the initial design component and the other by the incorporated adaptive component. Which 

component accounts more varies considerably from one sampling situation to another. Hence, 

the choice of initial sampling design is very crucial to the best yield of sampling efficiency.  

Conventional ACS 

The ACS (see Figure 1.1) first introduced in Thompson (1990) is often referred to as classical, 

conventional, standard or ordinary ACS in order to differentiate it from the other types of 

ACS designs. Throughout this dissertation, it is consistently referred to as conventional ACS 
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to avoid confusion. A comprehensive description on conventional ACS including justification, 

elementary concepts and basic terminologies can also be found in Thompson (1992) and 

Thompson and Seber (1996). The principle of conventional ACS was illustrated for quadrat-

based sampling, where the study area is usually partitioned into nonoverlapping quadrats for 

sample selection. Its initial sample is designed to be selected by SRS of fixed size either with 

or without replacement. However, no matter what it is, possible repeated observations of 

networks and their associated clusters are unavoidable as more than one initial sample unit 

may fall into a network. The larger the size of a network is, the higher its probability of 

repeated observation. Throughout the sampling procedure including initial sampling and extra 

sampling, the same sampling units, quadrats, are employed. It is natural that this design is also 

applicable in theory to other shapes of sampling units in area sampling than quadrats.  

The conventional ACS is neighborhood-based since the extra sampling units to be adaptively 

added into the sample are confined to the neighboring units of the sampled ones. In addition, 

its condition to adapt or CrV is predefined in some way prior to the initial sampling and holds 

for the entire sampling process unlike the ACS based on order statistics (Thompson, 1996), in 

which the CrV is determined at the completion of initial sampling. The design-unbiased total 

and variance estimators were developed as well as their Rao-Blackwell versions (Lehmann 

and Casella, 1998). It was noted that neither of the HT and HH estimator is uniformly better 

than the other although in the small example in Thompson (1990) the adaptive HT estimator 

performed clearly better than its HH counterpart. For a more realistic comparison as seen in 

classical cluster sampling, a reasonable cost function was also presented for the conventional 

ACS with a brief explanation. It was concluded that the conventional ACS is a promising 

sampling technique in comparison with the conventional sampling strategies.  As mentioned 

before, the main drawback of this design is that it is impossible to put the final sample size 

under control.  

The overall efficiency of the conventional ACS depends not only on its design configuration, 

but also on many other factors. Those factors were identified in Thompson (1994), including 

within-network variation, sample size, cost issue, and the degree of rarity and clustering of the 

population of interest. Some general guidelines to follow for a better efficiency were 

elaborated there. Christman (2000) notes explicitly that for the rare and clustered populations, 

quadrat-based stratified sampling is more efficient than conventional ACS when population 

stratification is possible. In Brown (2003), it was found that the design factors such as critical 
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value and neighborhood definition interact with each other and the relationships between 

them are not straightforward by analyzing in detail how they influence the efficiency.  

Dryver (2003) studied the conventional ACS in a multivariate setting where several variables 

are of interest and pointed out: a better efficiency can be achieved when the variables of 

interest are highly correlated, otherwise a function of the variables rather than a value of the 

main variable should be used as the condition to adapt. 

Tout (2007) stressed that the placement of grid and the size of the grid cells are also two vital 

factors influencing the efficiency of the conventional ACS because they affect the 

geographical clustering of the population of interest, e.g. a population is geographically 

clustered when it is tessellated with a small grid cell size, but may not any longer with a large 

enough grid cell size. These factors attracted surprisingly little attention, and should be taken 

into consideration during the evaluation of comparative efficiency.  

ACS without replacement of networks 

ACS without replacement of networks (ACSWORN) (Salehi and Seber, 1997a) is a 

modification of the conventional ACS. Its selection of networks without replacement is 

realized by excluding the already sampled network units from the selection of the next initial 

sample unit. It follows that the repeat observation under this design can still possibly occur, 

but only to edge units. The sampled networks are excluded from the selection of the next 

initial sample unit. The design unbiased estimators including Raj’s estimator (Raj, 1956), 

Murthy’s estimator (Murthy, 1957), and their Rao-Blackwell versions were presented. 

Murthy’s estimator is a modified version of Raj’s estimator and always found to be more 

efficient than Raj’s estimator. However, it requires substantial computation, especially when 

initial sample size is large. Without considering the Rao-Blackwell versions of HH and HT 

presented by Thompson (1990), ACSWORN using Raj’s estimator and Murthy’s estimator is 

found to be more efficient than the conventional ACS in two examples. Salehi and Seber 

(1997a) believe that the ACSWORN using Murthy’s estimator is more efficient than the 

conventional ACS using HH or HT estimators for most but not all populations, and consider 

that further comparative studies are needed to confirm it. It was claimed that ACSWORN has an 

obvious practical advantage over the conventional ACS when there exists a cost restriction 

and the main sampling expense is the travel cost between the sites of initial sample units, 

since the final number of networks to be sampled is fixed under the former design but variable 

under the latter design. However, from a practical point of view, this design will pose 
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difficulty to the fieldwork organization because only the location of the first initial sample 

unit can be known prior to fieldwork and other initial sample units cannot be selected until the 

sampling of all units in the cluster associated with the preceding initial sample unit is 

completed. When ancillary information is available to rapidly identify all units at low cost in a 

cluster to which an initial sample unit belongs but population stratification is still impossible, 

ACSWORN design is then preferable to the conventional ACS as its sequential selection of 

initial sample units can be easily completed in advance of fieldwork.  

ACS without replacement of clusters 

ACS without replacement of clusters (ACSWORC) (Dryver and Thompson, 2007) is an 

improvement of ACSWORN. They differ from each other in the sequential selection of the 

initial sample. The former excludes any previously sampled clusters i.e. all sampled units 

rather than merely networks as in the latter from the selection of the next initial sample unit. 

Repeat observation is hence avoided in ACSWORC in comparison with ACSWORN where repeat 

observation upon edge units is allowable by design. Two types of design-unbiased estimators 

including variance estimators were developed. One is the modified Raj estimator and the 

other is the modified Murthy estimator. The simulation study demonstrated that in the 

univariate case ACSWORC produced a modest gain in efficiency relative to ACSWORN with the 

critical value being equal to 1. According to Dryver (2003) and  Dryver and Thompson (2005), 

ACSWORC may be also noticeably more efficient than ACSWORN in the case of large CrVs or in 

a multivariate setting (i.e. more than one variable are of interest). ACSWORC shares a common 

drawback with ACSWORN due to their sequential selection of initial sample units as mentioned 

above when no ancillary information is available for the rapid identification of cluster units. 

ACSWORC is only considered to be practical and advantageous when sampling is very costly 

and thus repeated observations are undesirable. 

ACS with primary and secondary units 

Thompson (1991a) introduced the ACS designs in which the sampling units used in the initial 

sampling are different from those in the extra sampling and the initial sample is selected by 

simple random sampling without replacement. The sampling units used in the initial sampling 

and the extra sampling are referred to as primary units and secondary units, respectively. Each 

primary unit is actually a collection or cluster of an equal number of secondary units. All 

secondary units in a selected primary unit are required to be observed and whenever the 
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observation in a secondary unit satisfies condition C, then the extra sampling will be invoked 

and conducted so that a cluster of secondary units is eventually sampled. The extra sampling 

is allowed only at the secondary unit level (Turk and Borkowski, 2005), and hence the 

associated condition to adapt and neighborhood definition are secondary unit oriented. It 

implies that no extra primary unit as a whole is designed to be adaptively added into the 

sample during the survey and the boundaries of primary units impose no geographical 

restriction on the extra sampling. The secondary units in the unselected primary units may be 

involved in the extra sampling according to the given definition of neighborhood. Thompson 

(1991a) presented two types of primary units according to the spatial arrangements of 

secondary units within a primary unit, and correspondingly two specific ACS designs as seen 

in Figure 2.1. One design is called strip ACS, in which a primary unit consists of a long thin 

strip of contiguous secondary units, and the other is called systematic ACS (Acharya et al., 

2000; Christman, 2000), in which a primary unit consists of a set of systematically selected 

secondary units with a single random starting point and usually at least two primary units 

resulting from two random points to be initially sampled to ensure the design-unbiased error 

variance estimation. However, in normal practice, we select systematic sample with only one 

random starting point rather than two in order to save sampling effort, especially in large 

forest inventories due to the advantages of systematic sampling over SRS (Cochran, 1977). 

Unfortunately, how to approximate the error variance for systematic ACS with one single 

random starting point was not addressed (Christman, 2000). 

  

Figure 2.1 Illustration of strip ACS with initial random selection of five strip plots (primary 

units) (left) and systematic ACS with initial random selection of two systematic samples 

(right). The condition to adapt for both designs is the presence of at least one object of interest 

in a secondary unit, and the neighbors of a unit are defined to consist of four adjacent units 

sharing a common boundary line with it. The final sample obtained on each side is outlined 

(from Thompson, 1991a). 
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PPS strip ACS  

PPS strip ACS (ACSPPSS) (Pontius, 1997) with replacement described the strip ACS design 

where the primary units have different numbers of secondary units and the initial sample of 

primary units is selected with probabilities proportional to the sizes of primary units (see 

Figure 2.2). The PPS with replacement is achieved by dropping random points to the area of 

interest. A primary unit is selected once a random point hits onto it. Stratified ACSPPSS is a 

further development of ACSPPSS with all its primary units being stratified into strata. It is 

independently performed in each stratum. ACSPPSS is suitable for sampling situations where 

the site of interest is not ideally a rectangle and thus equal sized strips cannot be realized as 

expected.  

 

 

Figure 2.2 Illustration of ACSPPSS. The primary units are of different sizes, and the open 

circles represent the locations of plants. There are four networks but only the three numbered 

ones are sampled through the selection of primary unit 3, 4 and 7. The sampled networks and 

the edge units associated with them are highlighted with the darker shading and the lighter 

shading, respectively. The condition to adapt is the presence of at least one plant  in a 

secondary unit (from Pontius, 1997). 
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Adaptive simple Latin square sampling +1 

Adaptive simple Latin square sampling + 1 (Munholland and Borkowski, 1993; Borkowski, 

1999) as illustrated in Figure 2.3 refers to the ACS design in which the selection of the initial 

sample follows the so called simple Latin square sampling +1 (Munholland and Borkowski, 

1996) approach or SLSS+1. This initial sampling approach combines simple Latin square 

sampling (SLSS) with random sampling for the selection of 1 additional sample unit from the 

remaining unsampled units after SLSS.  

  

Figure 2.3 Illustration of adaptive SLSS+1 design. Left: the region of a tree population 

denoted by black dots is tessellated into a 9×9 simple Latin square, and the initial sample 

contains 9 simple Latin square sample plots numbered from 1 to 9 and one randomly selected 

plot with the number 10 in the circle. Right: The plots in the final sample are light-shaded for 

CrV=1.  

The simple Latin square sample consists of units selected in such ways to ensure that exactly 

one single unit is sampled from each of the rows and columns of a Latin square, for an 

instance, with a generated random permutation of rows or columns. That Latin square for the 

sample size of n can be created by tessellating the inventory region into a     grid of 

equisized quadrats. The SLSS is characterized by a good spatial coverage comparable to or 

even better than the initial systematic sampling as used in systematic ACS. Furthermore, it 

outperforms systematic sampling in general in the presence of positive spatial autocorrelation 

(Munholland and Borkowski, 1996) or periodic variation in the population of interest. The 

additional random sample of size one subsequent to SLSS is designed deliberately to enable 

the variance estimation. In the sense of the preceding two aspects, this design can be seen as a 

modification of systematic ACS with a single random start. However, from the practical 
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perspective, its potential applications are constrained by some drawbacks. First, it lacks 

flexibility in the choice of initial sample size since the initial sample size for a study or survey 

region with a given quadrat size is automatically determined following the principle of SLSS. 

Second, it requires a survey region to be a square of rectangular quadrats due to its implicit 

assumption, which is apparently not realistic especially for the forest inventories where most 

inventory regions are irregular in shape or where a grid of hexagons rather than quadrats are 

used. Borkowski (2003) extended the SLSS+1 to SLSS± k to allow an arbitrary choice of 

sample size. It is likely to expect that the adaptive counterpart of SLSS± k will provide 

another viable alternative for sampling rare and clustered populations. 

Stratified ACS 

Stratified ACS (Thompson, 1991b) (see Figure 2.4) described another class of ACS designs 

with an initial stratified random sample without replacement and proposed them for the 

sampling situations where the prior information for population stratification is available, 

whereas the locations and shapes of the population clusters are either unknown or 

unpredictable. As in its nonadaptive counterpart, the partition of the population of interest into 

strata and allocation of sample size into each stratum influence the final gain in precision in 

stratified ACS. The stratification and allocation strategies in conventional stratified sampling 

are still do hold also for stratified ACS.  However, it may take place that a natural cluster 

prior to the stratification lies across more than one stratum after the stratification. When a 

network unit of such a cluster is selected in a stratum, a confusing argument will arise 

whether the entire cluster or just those cluster units in that stratum should be adaptively 

sampled. As a solution, two specific designs were presented. One ignores the stratum 

boundaries and the extra sampling can be conducted as if the population of interest were not 

stratified, namely it allows the adaptive addition of extra sample units through crossing 

stratum boundaries, whereas the other restricts the extra sampling within the same stratum 

where it is triggered by truncating clusters lying across strata at the stratum boundaries. The 

sampling in different strata under the former design is not completely independent as under 

the latter one, and thus the corresponding estimators should be appropriately chosen with 

caution for each design. Turk and Borkowski (2005) noted that the first design is preferable to 

the second one in terms of efficiency simply because it allows the clusters that straddle 

stratum boundaries to be enumerated and thereby more target objects can be observed. This 

justification was supported only by the example given in the work of Thompson (1991b) 
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without analytic comparison, and thus not convincing enough. Additional comparative studies 

are needed to confirm whether the first design always outperforms the second one.  

  

Figure 2.4 Illustration of stratified ACS. On the left side, an initial stratified random sample 

of five units with a cross inside is taken from each of the two strata. On the right side is the 

final sample of the stratified ACS (modified from Thompson, 1991b).  

Two-stage ACS 

Two-stage ACS (Salehi and Seber, 1997b) (see Figure 2.5) was developed by integrating the 

adaptive component of ACS into conventional two-stage sampling or subsampling  with units 

of equal size (Cochran, 1977). The selection of the initial sample for two-stage ACS follows 

the same sampling procedure as in its nonadaptive counterpart, conventional two-stage 

sampling: in the first stage, selecting a fixed number of primary units by simple random 

sampling without replacement, and in the second stage, selecting a fixed number of secondary 

units in each selected primary unit also by simple random sampling without replacement. All 

selected secondary units then serve as seeds. The extra sampling in this design can be 

triggered exclusively at the secondary unit level. It implies that the condition to adapt and 

neighborhood are defined in terms of secondary units rather than primary units. During the 

extra sampling, it may happen that a secondary-unit-based cluster lies across the boundary of 

a primary unit. For such situations, two variations of this design were therefore prompted in 

order to avoid possible arguments or confusions, following a similar way as seen in the 

stratified ACS (Thompson, 1991b). One is called overlapping scheme, where a secondary unit 

based cluster is allowed to grow across primary unit boundaries; the other is called 

nonoverlapping scheme, where clusters lying across primary units are truncated at the 
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boundaries of primary units. The selected scheme should be applied consistently throughout 

the sampling, and no arbitrary shifting between the two schemes is allowed during the survey. 

It is apparent that under the nonoverlapping scheme, the probability of such a cluster lying 

across primary units to be sampled is lower than that under the overlapping scheme. However, 

the nonoverlapping design has an advantage over the overlapping one in that it can readily 

lend itself to a cost analysis based on a pilot survey aiming at a better configuration of design 

factors. The reason is that the number of the primary units in the final sample is fixed to the 

initial sample size under the nonoverlapping scheme, but varies under the overlapping scheme. 

No definite conclusion about which of the two schemes is preferable in terms of estimation 

efficiency was given by the authors, possibly because a variety of influencing factors should 

be taken into account in necessary comparative studies. From the perspective of the sampling 

procedure, two-stage ACS can be virtually conceived as a special type of ACS with primary 

and secondary units with its selected primary units being sampled but not fully surveyed or 

enumerated when the primary units are defined to consist of spatially contiguous secondary 

units.  

 

 

Figure 2.5 Illustration of two-stage ACS with a secondary-unit-based neighborhood of unit A 

(left). A secondary unit containing a circle is initially sampled from the selected one of two 

primary units. The single cluster straddles the primary unit boundary (right). The condition to 

adapt is the presence of at least one dot in a secondary unit. The adaptively added secondary 

units in the network and edge units in the cluster are light-shaded and dark-shaded  

respectively (from Salehi and Seber, 1997b). 

Two-stage ACS with encounter sampling strategy 

Naddeo and Pisani (2005) proposed another form of two-stage ACS to address the problem of 

handling the special case of imperfect detectability in conventional ACS by using a pure 
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design-based approach. The selection of its initial primary units follows the same approach as 

seen in the preceding two-stage adaptive designs. But within each selected primary unit, an 

encounter sampling strategy (Barnett, 2004), where the encounter procedure such as line 

transect needs to be replicated for a prespecified number of times, is applied. Whenever the 

estimated abundance in a selected primary unit by replicated counts satisfies a predefined 

condition, e.g. larger than a given value, then its neighboring primary units will be adaptively 

added to the sample. The adaptive addition of neighboring primary units continues until no 

more selected primary units meet the condition to adapt as usual. That is, its extra sampling is 

designed only for the primary unit level rather than the secondary unit level as seen before. 

The design-unbiased mean and variance estimators were presented. The results of empirical 

comparison based on some Monte Carlo simulations with an artificial population showed that 

the proposed sampling method was dramatically less efficient than the conventional ACS 

even with an equal final sample size in terms of the area effectively sampled. The poor 

relative statistical performance of the proposed design was interpreted to originate from the 

imperfect detectablility due to the use of the encounter sampling. As a consequence, some 

network units may not be included in the final sample even though the network itself is 

intercepted by the initial sample.  It was remarked that the assumption of perfect detectability 

may be fairly unrealistic even for conventional ACS when sampling an elusive population. 

Naddeo and Pisani (2005) suggested that the possible imperfect detectability should be taken 

into consideration in order to avoid the serious underestimation of sampling variance. 

Adaptive two-stage one-per-stratum sampling 

Adaptive two-stage one-per-stratum sampling (Christman, 2003) refers to ACS designs in 

which the initial sample is taken according to a Markov chain one-per-stratum design (Breidt, 

1995; Gruijter et al., 2006). The Markov chain one-per-stratum sampling, which was further 

developed from Markov sampling (Chandra et al., 1992), is not straightforwardly 

understandable. For the better understanding of its adaptive counterpart, a brief and general 

introduction to it in plain language is given here. Systematic sampling is the most widely used 

sampling technique in forest inventory sampling since it is easy to implement in the field and 

much more efficient than SRS on a comparable basis for positively autocorrelated populations 

without systematic features like trends and periodicities, although its error variance can only 

be approximated but not estimated.  However, it is disastrously inefficient in the presence of 

systematic features (Cochran, 1977; Bellhouse, 1988); stratified simple random sampling may 

be more efficient for the non-autocorrelated populations with systematic features than 
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systematic sampling. It is then self-explanatory that neither of them is efficient for the 

populations with positive autocorrelation plus systematic features. Markov chain one-per-

stratum sampling was devised for sampling such populations, and found to be more efficient 

than either of them if appropriately defined with a vector of initial selection probabilities and 

a stochastic transition probability matrix. For simplicity, the Markov chain one-per-stratum 

sampling can be perceived as a compromise or trade-off between strict systematic sampling 

with a single random start and stratified simple random sampling with one sample unit per 

stratum (Thompson, 2003). Strict systematic sampling itself can be interpreted to be a specific 

case of stratified sampling with one sample unit per stratum, and thus this sampling technique 

refers  indeed to a broad class of designs for one-per-stratum selection from a finite 

population. In this class, conventional systematic sampling, stratified simple random sampling 

with one sample unit per stratum and balanced systematic sampling (Murthy, 1967; Bellhouse 

and Rao, 1975) are three specific cases, of which the former two are both opposite extremes. 

The Markov chain one-per-stratum sampling is not so commonly used in forest inventories, 

which might be owing to its complications in the selection of sample units following a 

Markov process. The 1992 National Resources Inventory (NRI) in Alaska offered an example 

of its implementation (Breidt, 1995).   

Adaptive two-stage one-per-stratum sampling, as its name indicates, requires first partitioning 

the population of interest into equal-sized strata and in turn each of those strata into substrata 

of equal size. Its designs are neighborhood-free and have a non-adaptive extra sampling i.e. 

the designs adapt to the observations of interest not by the means of iterative addition of 

unsampled neighboring units into the sample until no more sampled units meet the condition 

C and thus the entire cluster is completely enumerated, as seen in those neighborhood-based 

ACS designs. Instead, when an initially sampled unit satisfies the given condition C for 

adaptive sampling, then a single additional Markov chain one-per-stratum subsample of a 

fixed size will be selected in the stratum to which the initially sampled unit belongs for 

observation, and the sampling in that stratum ends immediately thereafter. In other words, an 

adaptively added subsample is non-adaptable to any observation and the sampling in a 

stratum terminates at an initially sampled unit not satisfying the condition C or otherwise a 

single adaptively added subsample in that stratum. Such appealing characteristics make this 

adaptive sampling easier to implement and thus more practical. Furthermore, the final sample 

size becomes controllable to some degree although it is still random, which will substantially 

facilitate sampling planning and may also contribute eventually to sample efficiency (Brown, 

2003). One disadvantage of adaptive two-stage one-per-stratum sampling is that there exists 
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no design-unbiased variance estimator due to its one-per-stratum selection as in conventional 

systematic sampling (Cochran, 1977; Wolter, 2007). As an alternative, some biased 

alternative estimators (Christman, 2003), such as SRS variance estimator, have to be used.  

Adaptive two-stage systematic sampling as a specific case of adaptive two-stage one-per-

stratum sampling was described in detail as example by Christman (2003). It has two 

response designs: one uses single random-start systematic sampling for both the initial 

sampling and the extra sampling, while the other uses a single random-start systematic sample 

in the initial sampling and a single predefined systematic subsample within each stratum 

(namely a single predefined secondary systematic sample) for the possible extra sampling 

there. The latter design and its non-adaptive counterpart were empirically compared with 

three small artificial populations for which adaptive sampling is appropriate by employing 

several approximate variance estimators constructed upon all sampled units but not just those 

satisfying the condition for extra sampling. The finding is that the bias of the HT variance 

estimator is usually very small and thus it is not unreasonable to use it although the best 

variance estimator is population-dependent. But the usual approaches to the construction of 

confidence intervals based on the asymptotic normality of the point estimates is not 

appropriate for adaptive two-stage systematic sampling due to the highly skewed sampling 

distribution (Cochran, 1977; Thompson, 1992), especially when the initial sample size is 

small like in the empirical study in Christman (2003) where the initial sample size of 10 was 

used. In Christman (2003), it has not been mentioned how to improve the confidence interval 

so that it can cover the true value of a population parameter.   

Two-stage-sequential sampling 

Two-stage sequential sampling (TSS) (Salehi and Seber, 2005) (see Figure 2.6) is another 

class of neighborhood-free adaptive sampling designs. It can be understood as a 

neighborhood-free version of two-stage ACS (Salehi and Seber, 1997b). In the course of its 

initial sampling, simple random sampling without replacement is used to select both the first-

stage sample of size m and the second-stage sample of initial size ni1 (i=1, 2 … m) in the 

selected primary unit i. When at least one unit of the second-stage sample in the selected 

primary unit i satisfies the condition for extra sampling, then a predetermined fixed number of 

randomly selected secondary units, ni2, are added for observation and terminate the sampling 

in that primary unit. Thereby the second-stage sample has a final size of ni1+ ni2 adapted from 

its initial size of ni1. The extra sampling is designed to be performed only at the secondary 



Literature review 

20 

 

unit level and confined to each selected primary unit where it is launched. The design-

unbiased estimators for this adaptive sampling strategy were developed based on the Murthy’s 

estimator (Murthy, 1957), which is a RB improvement of Raj’s estimator (Raj, 1956) and  a 

trivial unbiased estimator (Salehi and Seber, 2001).  

 

Figure 2.6 Illustration of TSS with the numbers of blue-winged teal as given by Smith et al. 

(1995). Eight primary units are labeled along the left and right margins with numbers from 1 

to 8. A simple random sample of four primary units (1, 3, 5 and 6) is selected. The two 

initially selected secondary units from each selected primary unit without replacement are 

shaded with light gray, and the four secondary units added randomly without replacement are 

shaded with dark gray. The condition for the additional sequential sampling is at least 10 

blue-winged teals found in a secondary unit (from Salehi and Seber, 2005). 

TSS has two attractive advantages. One is that it can restrain the final or effective sample size 

to some degree because the size of the second-stage sample is either ni1 or ni1+ ni2 in each 

selected primary unit and the maximum of total sampling effort is predictable, which will ease 

the work to plan sampling for the best sampling efficiency, especially sampling with a given 

budget constraint; the other is that it can be more easily implemented and is thus more 

practical than those neighborhood-based designs where the adaptive addition of neighboring 

units might be fairly cumbersome and susceptible to mistake.  The sampling simulation with 

two real biological populations and one artificial population with different degrees of rarity 

and clustering demonstrated that given the same effective sampling effort, TSS is not 

uniformly, but in most cases more efficient relative to SRS, conventional two-stage sampling 
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and two-stage adaptive sampling with nonoverlapping scheme for which the modified HH and 

HT estimators were used. In particular, this sampling scheme had little or no efficiency loss 

compared to conventional two-stage sampling for the rare populations lacking clustering, for 

which the neighborhood-based designs such as conventional ACS and two-stage ACS turn out 

to be unsuitable. It implies that it can be applied to a wider range of populations than 

conventional ACS. The selection of values for ni1 and ni2 influences the efficiency of TSS. 

Accordingly, the general guidelines were provided and elaborated by the authors for the 

choice of appropriate or optimal values of ni1 and ni2 in various sampling situations, where the 

degree of rarity and clustering of the target population, availability of a priori information, 

and possibility of stratification are taken into account. It is suggested to choose a moderate or 

larger values of ni1 and relatively small values of ni2 to ensure some amount of gain in 

efficiency when no information about the degree of rarity and clustering is available.  

Adaptive two-stage sequential sampling 

Adaptive two-stage sequential sampling (ATSS) (Brown et al., 2008) is a modification of 

two-stage sequential sampling (TSS) introduced by Salehi and Seber (2005). It differs merely 

in the allocation of extra second-stage sampling units to the selected primary units when the 

extra sampling is triggered there. The number of extra second-stage sample units, ni2, is a 

predefined fixed number in TSS, but varies with the number of initial second-stage sample 

units satisfying the condition for extra sampling, denoted with gi. In ATSS, it is defined to be 

a function of gi as follows:  ni2 = gi, where  is a predefined value. Various factors need to 

be taken into account for the choice of an appropriate value for , especially the primary unit 

size since the extra sampling cannot be carried out with a ni2 larger than it. In comparison with 

the equal allocation of extra second-stage sampling units in TSS, the proportional allocation 

strategy in ATSS can direct more extra sampling effort to the primary units with a high 

concentration of target objects. The direct or analytical comparison between ATSS and TSS 

was too difficult to be conducted due to an unfeasibly large number of possible design 

combinations. The comparative simulation study with the data from the count of an extremely 

clustered population of blue-winged teal (Smith et al., 1995) showed that in general TSS was 

far more efficient than ordinary two-stage sampling and ATSS was marginally superior to 

TSS.  However, the planning of survey under ATS is more difficult than that under TSS 

because the total survey effort in terms of the final sample size is unknown prior to sampling. 

Two general rules for designing an efficient ATS were recommended to follow. One is the 
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use of a small initial sample size within a primary unit, and the other is the choice of a large 

CrV, which was also suggested but with caution for conventional ACS (Brown, 2003; Smith 

et al., 2004). 

Adjusted two-stage ACS of Muttlak and Khan 

Muttlak and Khan (2002) proposed an alternative to the conventional ACS for the sampling 

situations where an easy-to-observed auxiliary variable is available for the rapid assessment 

of a network size in the rare and clustered populations and the target variable is relatively 

costly and time-consuming to observe. The initial sample of this design is selected as in 

conventional ACS. Unlike in conventional ACS, a rapid assessment of the network size 

associated with an initial sample unit precedes the sampling in its neighborhood under this 

design. The network definition used in this design is identical to that in conventional ACS. If 

the size of a network is assessed to be larger than a given value k, then a random subsample of 

size j needs to be taken without replacement from that network. The given values of k and j 

hold unchanged throughout the sampling. Otherwise, the network should be completely 

enumerated. This design can be interpreted to be a mixture of single-stage and two-stage 

sampling when a network is considered as a primary unit. One advantage of this design over 

the conventional ACS is that it is more practical since it overcomes the difficulty of sampling 

excessively large clusters encountered in the conventional ACS by subsampling within each 

large network and excluding all less informative edge units from sampling. In addition, the 

final sample size in this design is somehow better controllable than that in the conventional 

ACS. The major problem of this design is that auxiliary information for rapid assessment of 

network sizes is often unavailable. Design-unbiased mean and variance estimators were 

developed and presented. A small comparative example from a blue-winged teal population 

given by Smith et al. (1995) reported that the conventional ACS was substantially more 

efficient than simple random sampling but only marginally more efficient than this design, 

given an equal sample size. However, some comprehensive comparative studies are necessary 

to obtain more insights into its performance.  

Adaptive cluster double sampling (ACDS) 

ACDS introduced by (Félix-Medina and Thompson, 2004) is an adaptive version of multi-

phase sampling and considered to be appropriate for sampling rare and clustered populations 

when a cheap and easy-to-measure auxiliary variable highly correlated with the expensive and 
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difficult-to-measure target variable is available. The auxiliary variable can be defined to be 

one of different variable types, e.g. metric, ordinal or Boolean, as seen in ordinary double or 

multiphase sampling (Schreuder et al., 1993). The realizations of a Boolean auxiliary variable 

are often determined by a preliminary assessment of presence or absence of the objects of 

interest, or by a rapid assessment of the target variable with a given threshold. The value of 1 

will be assigned to the auxiliary variable in the presence of at least one object of interest or 

when the threshold is exceeded, and 0 otherwise.  The sample in the first phase of ACDS is 

selected by using the conventional ACS with the condition for extra sampling defined in 

terms of the auxiliary variable; in the second phase, a set of networks will be selected from 

the resulting networks in the first phase; and in the third phase, a subsample of units will be 

selected from each selected network in the second phase. The subsamples in the last two 

phases are selected by conventional, namely, nonadaptive sampling. The regression-type 

estimators and the design-unbiased HT-type estimators were presented. Three practical 

variants from a wide variety of ACDS designs were described in detail, and designated by 

ACDS-I, ACDS-II and ACDS-III respectively. In the first two variants, each sampled 

network in the first phase should be subsampled, with a given sampling fraction for ACDS-I 

and a specified upper bound for the maximum number of measurements of target variable for 

ACDS-II. The advantage of ACDS-I is that the second-phase sampling within a sampled 

network can start once the first-phase sampling there is completed. Thereby, the travelling 

cost incurred from revisiting the same sampled network can be avoided, but the number of 

measurements of the more expensive target variable is not controllable. The situation is 

reversed for ACDS-II compared with ACDS-I. In ACDS-III, not every initially sampled 

network is designed for subsampling. Only those initially sampled networks of size larger 

than 1 are included with probability equal to 1 for subsampling when they account for not less 

than one half of the sampled networks. Otherwise, some initially sampled networks of size 1 

are needed to be additionally selected by simple random sampling without replacement to 

ensure that one half of the initially sampled networks can be subsampled. The number of 

measurements of target variable is restricted with a given upper bound as seen in ACDS-II. 

ACDS-III has the same advantage and disadvantage as ACDS-II.  

In the comprehensive simulation study with two artificial finite populations, of which one is 

more clustered than the other, SRS, conventional ACS, conventional double sampling, and 

three aforementioned variants of ACDS were compared on the basis of approximately equal 

expected total cost by taking different factors into consideration, such as the type of auxiliary 

variable, ratio of costs of measuring target variable and auxiliary variable, and type of 
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estimators. The simulation results demonstrated that ACDS-III outperformed all other designs 

considered in the simulation study, and the performances of three ACDS variants improved as 

the cost ratio or degree of correlation between target variable and auxiliary variable increased, 

and also as the degree of population clustering decreased. The regression-type estimator and 

the HT-type estimator both provided satisfactory estimates, but the former one was more 

efficient than the latter one.  It was noted that the evaluation of the considered designs in the 

study could be very different in the real sampling situations where the travelling costs 

between the random sample locations, which was not considered in the simulation, should be 

inevitably taken into account. In addition, it was confirmed that the conventional ACS is an 

appropriate sampling technique only for the populations with high level of spatial clustering, 

and turned out to be inefficient when a population’s network sizes are relatively large and the 

within network variances of the target variable are small. 

Inverse adaptive cluster sampling 

Inverse ACS is a form of ACS with its initial sample selected by inverse sampling (Haldane, 

1945; Cochran, 1977; Espejo et al., 2008) either with or without replacement to ensure the 

presence of a certain number of units satisfying a defined condition in the initial sample. It 

differs from the conventional ACS merely in that its initial sampling is also adaptive. 

Christman and Lan (2001) presented three inverse ACS designs where the condition defined 

to be satisfied by a prespecified number of units in the initial inverse sampling and the 

condition to trigger the additional sampling  of clustered units are identical. These three 

designs are associated with the following three stopping rules respectively for the selection of 

their initial samples: (i) the initial sampling continues until a given number of units satisfying 

the condition, say k (k >1), are selected; (ii) the initial sampling starts with SRS of fixed 

sample size n0. It stops if at least one unit in n0 satisfies the condition, and otherwise continues 

sequentially until totally k units satisfying the condition are sampled; (iii) the initial sampling 

starts with SRS of fixed size n0. It terminates once at least k sampled units in n0 satisfy the 

condition, and otherwise continues until k units satisfying the condition are sampled. The 

initial designs using stopping rule (i) is referred to commonly as ordinary sampling, and those 

using stopping rule (ii) and (iii) are referred to as modified or mixed inverse sampling, which 

are actually a hybrid of fixed-size random sampling (nonsequential sampling) and ordinary 

inverse sampling (sequential sampling).  
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The extra sampling in the vicinity of each selected initial sample unit satisfying the condition 

to adapt follows the procedure described in Thompson (1990). 

The design-unbiased estimators for totals were developed for the two designs using stopping 

rule (i) and (iii) whereas a biased one was presented for the design associated with (ii). 

However, no variance estimators for these designs were derived. Instead, some bounds based 

on Mikulski and Smith (1976) were provided to approximate the standard error with a 

reasonable underestimation in comparison with the true value in Lan (1999). The Monte Carlo 

simulation with four populations, three real and one artificial, of different degrees of spatial 

clustering and degrees of rarity demonstrated that the presented inverse ACS designs 

associated with (i) and (iii) statistically outperformed the nonadaptive inverse sampling 

designs only at the cost of a slight increase in final sample size for rare and clustered 

populations, and the inverse ACS design (iii) is the best in terms of having the smallest 

variance as mentioned by the authors. It was noted that for the rare and clustered populations 

the sampling error of the design using stopping rule (iii) depends mainly on the selected k 

value for the initial inverse sampling rather than the initial sample size n0. The simulation 

results confirmed that the proposed designs as a form of ACS designs is not suited for only 

rare but geographically not clustered populations.  

Salehi and Seber (2004) derived the design-unbiased total and variance estimators for all 

these three designs using Murthy’s estimator (Murthy, 1957). However, the variance 

calculated from the estimators for the two designs (ii) and (iii) tend to be excessively large 

and thus unacceptable for someone who prefers a biased estimator but with a smaller mean 

square error.  

The challenge posed by these inverse ACS designs to the sampler is the selection of an 

appropriate value for k. When the value of k is set to be too large relative to the number of 

units satisfying the condition in the population of interest, it might occur that the budget, 

which is usually limited, cannot afford sampling an unfeasibly large number of units or even a 

complete census; when it is too small, then maximally only k objects of interest can be 

sampled, which will result in a large sampling error.  

Furthermore, the final initial sample size is unpredictable and the locations of the initial 

sample units are therefore unknown prior to the sampling due the sequential selection of the 

initial sample units. This makes planning of the sampling effort extremely difficult and 

designing an efficient route to travel between those locations impossible.   
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General inverse adaptive cluster sampling 

Salehi and Seber (2004) proposed an ACS design with its initial sample being selected by 

general inverse sampling, and it differs from the conventional ACS only in the selection of the 

initial sample. General inverse sampling starts with a SRS of size n0 and stops at its 

completion if n0 contains at least k units of interest. Otherwise, a further sampling initiates 

and continues in a sequential manner until either exactly k (k >1) units of interest are selected 

or a given number of units, say n2, are sampled in total. General inverse sampling is believed 

to be more practical than the above mentioned ordinary inverse sampling or mixed inverse 

sampling in that it makes the sampling process more controllable because we can stop our 

sampling once the resources run out. It covers the inverse sampling designs using stopping 

rule (i) and (iii) in (Christman and Lan, 2001) and SRS as its special cases.  

The total and variance estimators of general inverse ACS were developed from Murthy’s 

estimator (Murthy, 1957). A small numerical example and the simulation study with the same 

populations as used by Christman and Lan (2001) were employed to investigate the influences 

of the design factors k, n0 and n2 on sampling efficiency. The results illustrated that the 

coefficient of variation (CV) depends largely on n2 and moderately on k for the most rare 

population, which is consistent with Christman and Lan (2001), and a substantial 

improvement in sampling efficiency can be achieved by using general inverse ACS even with 

considering the final sample size during the comparison.  

Constrained inverse adaptive cluster sampling 

Rocco (2003) proposed two ACS designs and referred to them as constrained inverse ACS 

(CIACS). In CIACS, two inverse sampling designs are used for initial sampling. One starts 

the initial sampling with SRS of fixed size n0. The initial sampling terminates once at least 

two sampled units in n0 satisfy the condition, and otherwise continues until two units 

satisfying the condition are sampled. It is actually a specific case of k=2 for the initial 

sampling design (iii) in Christman and Lan (2001). The other initial inverse sampling design 

is slightly different in that it excludes the last sequentially selected initial sample unit 

satisfying the condition in the first one from its initial sample. Once the initial sample is 

selected, the extra sampling proceeds in the same manner as in conventional ACS.  

It is found from the simulation study that the design including all selected initial units is 

generally less efficient even though it needs more sampling effort based on the developed 

design-unbiased total and variance estimators. 
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Adaptive cluster sampling based on an initial relascope sample 

Relascope sampling (Bitterlich, 1948; Grosenbaugh, 1952; Palley and Horwitz, 1961), known 

as a variety of names such as Bitterlich sampling, angle-count or angle-gauge sampling, 

plotless sampling, point sampling, horizontal point sampling, variable plot/radius plot 

sampling and prism sampling, is commonly used in forest inventories with a long history. For 

the purpose of consistency and clarity, the term relascope sampling is used throughout this 

dissertation in contrast to plot sampling. Relascope sampling is a sampling with unequal 

selection probability or more exactly with selection probability proportional to size (PPS), and 

it is particularly effective in obtaining precise estimates of tree basal area.  

The ACS design with its initial sample selected by relascope sampling put forth by Roesch 

(1993) for forest inventories is a combination of relascope sampling and fixed-area circular 

plot sampling (see Figure 2.7). At the beginning of its initial sampling, a fixed number of 

randomly placed points are selected. And then at each selected point, relascope sampling is 

implemented with relascope, prism or bottle-opener dendrometer to select individual trees 

into the initial sample. Whenever an initial sample tree, say tree i, exhibits the rare 

characteristic of interest, then a fixed-area circular plot sampling with the plot center at it is 

triggered, and all unsampled trees within the circular plot, referred to as search area by 

Roesch, will be selected and observed. This fixed-area circular plot sampling as performed for 

tree i continues to be launched by each adaptively added sample tree until no more sampled 

trees with the characteristics of interest are found. In addition, during the field work, 

measuring the diameter at breast height (DBH) and recording the location of each sampled 

tree with the characteristic of interest are necessary for producing estimates of sampling errors 

and statistical inference. The term cluster in this design refers to the set of all trees included in 

the sample resulting from a randomly placed sampling point, and a network is a subset of 

trees possessing the characteristic of interest in a cluster.  

Three types of design-unbiased total and variance estimators were developed for this adaptive 

design: HH, modified HH (referred to as HHM), and HT estimators.  In HH estimators, each 

network selected by a randomly placed point is counted only once regardless of the number of 

its network trees, which implies that the selection probability of a network used in the 

estimators is proportional to the union of the selection areas (Roesch, 1993) of all network 

trees, whereas in HHM estimators, each network selected by a random sampling point is 

counted as many times as the number of its network trees, which implies that the selection 
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probability of a network  used in the estimators is proportional to the sum of selection 

probabilities of all trees inside it.  

 

Figure 2.7 ACS based on an initial relascope sample for a group of six trees in a population. 

The condition to adapt is the possession of a predefined characteristic, e.g. damage. A tree is a 

positive tree if it possesses that characteristic, otherwise a negative tree. One randomly placed 

point can select the following initial samples:{ }, { }, { } , { }, { }, { }, {   }, {   }, {     }, 

{   }, and {   }. The random sample point A falls in the inclusion area of tree 1, and thus it 

is selected as an initial sample tree. A fixed-area circular plot (dashed circle) is installed 

around it for further sampling because it has the predefined characteristic. The sampling 

continues and stops at tree 6, a negative tree. As a result, tree 1, 2, 3, and 6 are finally sampled 

for sample point A (cross) (modified from Roesch, 1993). 

The sampling simulation results based on a basal area factor (BAF) of 10ft
2
/ac showed that 

the statistical performance of the proposed adaptive design depends on the size of the fixed-

area circular plot and is better than its nonadaptive counterpart, the ordinary relascope 

sampling, for the estimation of number of rare clustered tree species. The HT estimators are 

superior to the other types of estimators, and HHM estimators yield the poorest statistical 

performance. The simulation results confirmed that the adaptive sampling scheme is only 

statistically efficient for rare clustered species.  
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The influence of the size of the basal area factor (BAF), misidentification of rare 

characteristic of interest on design efficiency, and the cost incurred by the adaptive sampling 

work was not addressed. However, the author claimed that the adaptive sampling scheme is 

only applicable to those rare, clustered populations with their characteristics that can be 

identified with complete confidence. In addition, the calculation of selection area of an 

individual tree for a given BAF was not explained, and the readers who are unfamiliar with it 

may refer to Gregoire and Valentine (2008) for detailed descriptions of the calculation.  

ACS based on order statistics 

ACS based on order statistics (David and Nagaraja, 2003) (ACSord) is a special form of ACS 

design suggested by Thompson (1996) (see Figure 2.8). It differs uniquely from the 

conventional ACS in the determination of the CrV, the formulation of the condition for 

adaptive sampling. In conventional ACS, the CrV is determined prior to the initial sampling 

in some way, for instance using prior knowledge, previous studies or survey, or a pilot survey, 

and holds until the end of the entire sampling, whereas in ACSord, the CrV is determined at 

the completion of the initial sampling, and equals the k
th

 order statistic (David and Nagaraja, 

2003) of the initial sample, i.e. the k
th

 smallest observed value in the initial sample (1≤ k ≤ n, 

n denotes the initial sample size). It is apparent that in ACSord, the CrV varies from sample to 

sample and this complicates the estimation process since the network structure of the 

population of interest changes accordingly. 

The design-unbiased estimators including their Rao-Blackwell version were provided for 

ACSord.  However the design-unbiased variance estimators pose computational difficulty and 

may take on negative values in some cases. As a result, a biased but inevitably non-negative 

and easily computable ordinary variance estimator as well as a so-called combined estimator 

was proposed as an alternative. The combined variance estimator applies the design-unbiased 

variance estimators when the resulting estimates are non-negative, and otherwise the ordinary 

variance estimator, to avoid negative variance estimates. 

The advantage of ACSord over conventional ACS is that it allows concentrating sampling 

efforts in a fairly controllable and thus flexible manner on those hot-spots with high values of 

interest if there are any in an initial sample. As a result, some possible undesirable situations 

in conventional ACS can be avoided, such as all or none of initial sample units satisfies the 

condition for extra sampling according to the prespecified but inappropriate CrV. ACSord is 

considered to be recommendable when the interest of a survey is not only in estimating the 
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population parameters, such as population mean and total, but also in seeking high values for 

some purpose specific to a field of study.  

It is clear that in ACSord, those initial sample units with their observed values larger than the 

CrV should be revisited after the completion of its initial sampling. Thus, ACSord is not 

preferable in sampling situations where travel between initial sample units is very costly, such 

as forest inventories, especially large-area forest inventories. In addition, locating those initial 

sample units for revisit can be time-consuming and might involve some error. 

  

Figure 2.8 Illustration of ACSord. In the initial sampling, ten plots numbered from 1 to 10 are 

selected from the population (left). The number of trees denoted by black dots is the target 

variable. The second order statistic of the initial sample equals 2 and is used as the CrV for 

the adaptive sampling. All sampled units with the CrV of 2 are light-shaded (right). The initial 

sample plot 5 cannot trigger the adaptive sampling, although there is one tree inside it.  

Restricted Adaptive cluster sampling 

In unrestricted ACS, the number of units in the final sample is a random variable and remains 

unknown until the completion of the entire sampling since no stopping rule is introduced to 

regulate it. It might occur that a sampling cannot be carried out as planned before the 

resources available for it run out when the final sample size is excessively large. In order to 

overcome this difficulty, Brown and Manly (1998) suggested a restricted version of 

conventional ACS (see Figure 2.9), termed restricted ACS (RACS), with a hope to  predict 

the final sample size of ACS with more certainty and thereby ease the survey planning. In 

RACS, a limit L used to restrict the variability of the final sample size (total number of 
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subplots) is specified prior to sampling, and accordingly an initial sample is selected 

sequentially i.e. one after another rather than nonsequentially as seen in 

unrestricted/conventional ACS. The sequential selection of an additional unit into the initial 

sample will not stop as long as the cumulative number of sampled units is smaller than L. The 

adaptive sampling in the vicinity of a selected initial sample unit satisfying the condition 

follows the same procedure as in conventional ACS. It implies that the sampling of RACS 

continues until the number of sampled units reaches or first exceeded L. As a result, the final 

sample size equals or fluctuates more or less above the given limit L.  

  

Figure 2.9 Illustration of RACS. The predetermined limit L is 35 and CrV is set to 1. The 

sampled plots are light-shaded. The cumulative number of all sampled subplots from 10 

sequentially selected initial sample plots numbered from 1 to 10 reaches 32 (left) but is still 

smaller than L, and thus the sample plot numbered 11 (right) is randomly selected and results 

in 40 sample subplots, which is larger than L, and the entire sampling process comes to the 

end.  

As shown in the simulation with a range of populations, RACS can put its number of units in 

the final sample under better control, although at the cost of precision of estimation, compared 

with its unrestricted counterpart. The variability in final sample size and estimated variance 

under RACS increases with a decreasing level of clustering of a population. According to 

Brown and Manly (1998), RACS is preferable to its unrestricted counterpart in any of the 

following cases: (i) the level of clustering of a population is unknown prior to the sampling; 

(ii) additional sampling effort over a certain limit will become very costly or even impossible 

due to some severe logistical constraints, such as aviation fuel constraint in aerial surveys; (iii) 

a prediction of likely sampling effort is necessary or required. For those populations 
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consisting of very compact clusters, the final sample sizes in unrestricted ACS are generally 

very close to their corresponding initial sample sizes, to the given limit L in RACS or the 

initial sample sizes in unrestricted ACS. It follows that RACS is not superior or even inferior 

to its unrestricted counterpart for them when their high level of clustering is known prior to 

the sampling. 

The following are some challenges arising from RACS. The initial sample size in RACS is 

random due to the sequential selection of its initial sample, and thus it is impossible to make 

an efficient plan for the travels between sampling locations. This may be a severe problem, 

especially when the travels are difficult and/or costly. In addition, the choice of an appropriate 

restricting limit based on the resources available for sampling is very crucial and needs prior 

knowledge of the clustering level of a population, which is very often not available. RACS 

with a small restricting limit for a population of large size clusters may run into the risk that 

finally only one cluster can be fully enumerated and in consequence the variance estimation is 

impossible.  

In Brown and Manly (1998) the design-unbiased HH and HT estimators for conventional 

ACS were used for RACS and found to be biased in a similar degree. The smallest bias occurs 

to those populations consisting of small and compact clusters. The bias was demonstrated to 

be satisfactorily reduced in many cases using an easy-to-compute non-parametric 

bootstrapping approach (Efron and Tibshirani, 1993). The design-unbiased total and variance 

estimators for RACS with a better performance than those biased ones in Brown and Manly 

(1998) were then developed and introduced by Salehi and Seber (2002) based on the 

estimators proposed by Murthy (1957).  

Two-stage restricted adaptive cluster sampling 

Two-stage restricted ACS (TSRACS) (Rocco, 2008) can be considered as a restricted version 

of ordinary two-stage ACS with a nonoverlapping scheme (Salehi and Seber, 1997b), or a 

combined version of ordinary two-stage ACS and RACS. It starts first with an ordinary two-

stage ACS, where SRSWOR of fixed size is used to select initially m primary units of size N 

and n secondary units in each of them (m, n ≥ 2). At the completion of the sampling in all 

initially selected primary units, the total number of all sampled secondary units, saying υ, will 

be compared with a restricting limit l defined prior to the sampling. If υ is larger than l, then 

TSRACS stops here, and otherwise it continues by selecting some number of additional 

primary units at random in a sequential manner until υ equals exactly l or first exceeds l. the 
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design-unbiased total and variance estimators were developed from Murthy’s estimators 

(Murthy, 1957). 

The remarkable advantage of TSRACS from a practical point of view is that the upper limit of 

its final sample size, although still variable, becomes easily predictable, which is equal to max 

(m×N, υ+N-1). Moreover, the variability in final sample size and variance of estimates in 

TSRACS are smaller than those in RACS and ordinary two-stage ACS. However, it is pointed 

out that the better performance of TSRACS depends on the patchiness of the population of 

interest and appropriate sizes of primary and secondary units and it can be less efficient when 

inappropriately designed or applied. One disadvantage of TSRACS as seen in RACS is that 

the possible sequentially selected primary units cannot be located prior to the sampling and 

thus it is impossible to optimize the travel route.  

Incomplete adaptive cluster sampling 

For avoidance of a complete enumeration of prohibitively large clusters in conventional ACS, 

a different restricted version of ACS referred to as incomplete ACS was introduced by Chao 

and Thompson (1999). In incomplete ACS, a restriction is imposed on the number of 

neighborhood levels beyond each unit satisfying the condition in an initial sample of fixed 

size (Su and Quinn II, 2003), rather than on final sample size as seen in the version of Brown 

and Manly (1998), and accordingly its neighborhood definition is not symmetric, unlike in 

most ACS designs. All neighbors of the initial sample units satisfying the condition are on the 

first neighborhood level, and in turn all neighbors to be added based on those units on the first 

neighborhood level are then considered to be on the second neighborhood level, and so on. In 

brief words, a cluster defined in conventional ACS is allowed to be truncated in a 

predetermined distance to the initial sample unit intersecting it under incomplete ACS. 

However no design-unbiased total or variance estimators were presented except insights into 

the derivation of the inclusion probabilities required for construction of design-unbiased 

estimators were offered.  

Su and Quinn II (2003) and Lo et.al (1997) incorporated the component of incomplete ACS 

into the extra sampling phase of  ACSord (Thompson, 1996) and stratified ACS (Thompson, 

1991b) as a stopping rule respectively and thus two new ACS designs were produced. In the 

former one, an unbiased HH estimator and a biased HT estimator were given, and in the latter 

one, only biased estimators were available.  
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The attractive feature of these designs is that it can be easily implemented since the locations 

of its initial sample units and the maximum sampling effort are known prior to sampling. 

However, the truncation of encountered clusters in these designs may lead to the loss in 

efficiency compared to the complete versions, i.e. conventional ACS designs in some cases, 

although their performances were positively evaluated. 

Chaudhuri et al. (2005) proposed a so-called size-constrained adaptive sampling design. This 

design can be considered a mixture of  restricted ACS (Brown and Manly, 1998) and 

Adjusted two-stage ACS (Muttlak and Khan, 2002). It imposes a restriction on final sample 

size as restricted ACS, but the restriction is realized by using subsampling selected networks, 

as in adjusted two-stage ACS, where only those selected large size networks need 

subsampling. Under this design, when the size of a selected network becomes known in some 

way, for instance, by rapid assessment using auxiliary variable, a subset of units will be drawn 

by SRSWOR. The cardinality of a subset is determined by the predefined restricting limit on the 

final sample size. The unbiased estimators were given by the authors. It is very obvious that 

this design is applicable only when the rapid assessment of the sizes of the selected networks 

is possible.  

2.3 DEVELOPMENT AND IMPROVEMENT OF ESTIMATORS FOR ACS 

DESIGNS 

There are a variety of ACS designs available for our choice, but their common core is 

conventional ACS presented in Thompson (1990) as the other designs are its further 

developments by incorporating it into the existing designs, and thus the work relevant to 

estimation designs including the development of new estimators and improvement on existing 

estimators was mainly focused on conventional ACS. In Thompson (1990), the modified 

design-unbiased HH and HT estimators, which exclude the sample edge units from the 

estimation process, were first developed and referred to as conventional ACS estimators from 

here on. However neither of them is a function of the minimal sufficient statistic (Thompson, 

1990; Thompson and Seber, 1996; Lehmann and Casella, 1998), the unordered set of distinct, 

labeled sample observations in the context of finite population sampling setting because both 

of them depend on the order of selection (Christman and Pontius, 2000). According to the 

Rao-Blackwell (RB) theorem (Rao, 1945; Blackwell, 1947; Thompson and Seber, 1996), they 

can be improved by applying Rao-Blackwellization to them. That means: the information 

contained in the original sampling data is not fully utilized by the two ordinary estimators, for 
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instance, the information carried by the observations upon sample edge units is not used by 

them. Rao-Blackwellization enables the efficient use of sampling data for a reliable statistical 

inference. As a result, the RB estimators may have smaller but never larger variances than 

their original counterparts, the conventional ACS estimators. 

The RB estimators presented by Thompson (1990) can integrate the data collected from 

sample edge units into the estimation process and do outperform their original counterparts. 

However, their computation is very difficult due to the lack of a suitable method or an 

efficient algorithm for the full enumeration of all ordered samples given an unordered sample. 

Salehi (1999) worked out an easy-to-compute closed form for the RB version of the 

conventional ACS estimators and compared them. He found that the RB version of the HH 

estimator has a larger variance reduction than that of the HT estimator.  

It was noted in Thompson (1990) that neither  of the two ordinary estimators is a uniformly 

minimum variance unbiased estimator (UMVUE), namely, neither of them is uniformly better 

than the other, and further study is necessary to obtain a comprehensive insight into their 

performances and to find out in what circumstances which one of them is preferable. Salehi 

(2003) analytically compared the properties of these two estimators, and strongly 

recommended practitioners to use the modified HT estimator, which has generally smaller 

variances, although the modified HH estimator is comparatively easier to calculate. However, 

he mentioned in the end that some comprehensive study is still needed for a clear choice of an 

appropriate estimator. 

Dryver and Thompson (2005) developed two improved estimators for the conventional ACS, 

which are also design-unbiased, by applying the RB theorem to make use of the information 

from sampled edge units. The two improved estimators were derived by conditioning on the 

sufficient but not necessarily minimal statistic. It was shown that they are more efficient than, 

but as easy-to-compute as, the ordinary estimators, although they are less efficient than the 

fully Rao-Blackwellized estimators in Thompson (1990), i.e. the RB estimators based on the 

minimal sufficient statistic.  

The asymptotic normality and consistency of the conventional ACS estimators under the ACS 

designs with their initial sample selected by SRSWOR or by unequal probability sampling with 

replacement were studied by Félix-Medina (2003) under an asymptotic framework where the 

number of units in the initial sample, as well as the number of units and networks in the 

population of interest tend to infinity. It was proved that both ordinary estimators are design-
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consistent and asymptotically normally distributed, and the estimators of their variances are 

also design-consistent.  

Christman and Pontius (2000) found that the sampling distribution (namely finite-sample 

distribution) of a rare and clustered population derived from a small sample size and the 

ordinary estimators is often highly skewed and discrete and the confidence intervals based on 

the asymptotic normal theory (Cochran, 1977) may be inappropriate. Hence, for the purpose 

of constructing ACS confidence intervals, they studied the following four nonparametric, 

finite population bootstrap methods: Sitter’s mirror-match method (Sitter, 1992a, b), Gross’s 

method (Gross, 1980), Rao and Wu’s Rescaling method (Rao and Wu, 1988), and McCarthy 

and Snowden’s Bootstrap with-replacement method (McCarthy and Snowden, 1985).  The 

third method with percentile intervals was recommended when the modified HH estimator is 

employed for conventional ACS. Salehi et.al  (2010) tried to derive the confidence intervals 

for the population mean based on two pseudo empirical likelihood functions, and found that 

the obtained confidence intervals are as good as or better than those from the bootstrap 

methods of Christman and Pontius (2000) in terms of coverage rate.  

Dryver and Chao (2007) suggested two ratio estimators for conventional ACS, only one of 

which is design-unbiased. The two ratio estimators were compared with conventional ratio 

estimators for SRSWOR and existing design-unbiased ACS estimators in terms of sampling 

efficiency. It was noted that they can be robust alternatives to the conventional estimators, 

especially in the case that the correlation between the target variable and the auxiliary variable 

is not high enough for the conventional estimators to exhibit a satisfactory performance. In 

addition, in the two ACS ratio estimators, the sample edge units provide no information for 

the estimation. Further study is expected to improve the efficiency of the two ratio estimators 

by means of Rao-Blackwellization.  

In the dissertation of Dryver (1999), various ACS estimators associated with a range of ACS 

designs were described in detail, including a modified jackknife estimator for variance 

estimation.  

2.4 APPLIED STUDIES ON ACS 

ACS has been applied in a range of fields including forestry since its introduction, and the 

reported performances turn out to be diverse, despite its appeal from most of the 

aforementioned methodological or theoretical research work.  
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Acharya et al. (2000) employed the systematic ACS with two random starting points to assess 

rare tree species in Nepal, and his finding is that systematic ACS outperformed systematic 

sampling and was more efficient for the larger groups of individuals of a rare species than for 

extremely small groups. Talvitie et al. (2006) applied almost the same method for the 

inventory of spare forest populations and found that it was considerably more effective than 

SRS. Phillipi (2005) used an conventional ACS design for estimation of abundance with local 

populations of low-abundance plants and a noticeable success was achieved. Bih (2007) 

implemented ACS, under which the CrV was determined based on a pilot inventory,  for the 

assessment of non-timber forest products in off-reserve forest in Ghana. He concluded that 

ACS is more efficient than the compared design, as considered generally. Zhu et al. (2010) 

carried out a comparative study, where overlapping and nonoverlapping schemes of stratified 

ACS, conventional ACS and their nonadaptive counterparts were applied to estimate the 

density of a shrub species in a desertified area. The nonoverlapping scheme of stratified ACS 

together with modified HT estimator exhibited to be most efficient.   

In some applied studies, ACS is positively evaluated in part or non-negatively evaluated. 

Sullivan et al. (2008) conducted the conventional ACS for the purpose of estimating density 

of spatially autocorrelated larvae of the sea lamprey, and the results demonstrated that ACS is 

not always more efficient but never less efficient than SRS. Smith et al. (1995) used the 

conventional ACS and its ordinary estimator to estimate density of three species of waterfowl 

and found that it was not uniformly more efficient than SRS as theoretically expected. He 

applied it later again to low-density populations of fresh mussels (Smith et al., 2003), but 

obtained no gain over SRS in precision of estimation at all. He also tried single and two-stage 

ACS designs together with their nonadaptive counterparts (Smith et al., 2009) to estimate 

density and abundance of freshwater mussels in a large river, and noticed that all considered 

designs performed similarly in terms of precision.  Hanselman et al. (2003) and Noon et al.  

(2006) used ACS to estimate national deforestation rates and to sample Alaska rockfish 

respectively. In their studies, the gains of ACS in precision were offset by the additional cost 

incurred by the adaptively sampled units.  

In the application of ACS for estimation of abundance of rare subtidal macroalgae in the 

southern coast of Australia and for detection of terrestrial herpetofauna in a tropical rainforest, 

ACS failed to provide more precise estimates.  
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3 METHODS AND MATERIALS 

3.1 STATISTICAL METHODS 

3.1.1 Adaptive plot designs 

In this study, the following three new adaptive plot designs are proposed. Plot design I and II 

are proposed for fixed-area plot sampling and plot design III for relascope sampling. The 

principles of conditional plot expansion under plot design I and II are actually applicable to 

any fixed-area plot shape. For simplicity, only circular plots are singled out deliberately in the 

study as an example to illustrate those principles since they are very commonly used in forest 

inventories. As in conventional relascope sampling, plot design III uses exclusively virtual or 

imaginary variable-radius circular plots, i.e. relascope plots, and the choice of a plot shape is 

not an issue to consider for it.  

3.1.1.1 Plot design I 

Plot design I uses a simple and thus very practical “conditional isotropic expansion of initial 

plots” approach with only two pre-defined plot sizes: (1) a common initial plot and (2) a 

larger (adapted) but fixed sized plot whenever a predefined condition to adapt is satisfied. For 

example, a standard initial plot size of 500m² is installed at each sample point; and if the 

condition “at least one tree on the initial plot” is fulfilled, then the initial 500m² plot is 

expanded to a 1500m² plot. The principle of the conditional expansion of initial plots is 

schematically illustrated in Figure 3.1. 

The conditional expansion of initial plots under plot design I is determined by the condition 

for expansion as its name indicates, and the geometry of the expansion defined by the 

prespecified final plot size i.e. the size of the expanded plot. In the example given in Figure 

3.1, the condition to expand an initial plot is stated in terms of the number of target trees 

found on it.  The minimum number needed to trigger an expansion is defined as CrV. The plot 

size factor (PSF) defines how much larger the expanded plot area is in relation to the initial 

plot: a plot size factor of two indicates that the final plot size is a doubling of the initial plot 

area.  
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Figure 3.1 An example of plot design I: an initial sample plot of a defined size (gray shaded) 

is established at each sample point (crosses A to G). When the condition: the initial plot 

contains at least one tree (black dot) - is met, the plot is expanded to a fixed larger size 

(shown for two initial plots at sample point B and C). The final plot size is the same for all 

expanded plots (fromYang et al., 2009). 

The advantage of this plot design is that it can overcome the practical issues of differently 

sized, gradually growing and possibly very, even excessively large clusters of sub-plots 

inherent in the conventional ACS, and its field implementation is much easier in comparison 

with the conventional ACS as the same predefined simple plot expansion rule holds during a 

sampling survey for all initial plots and the adaptation process needs not to be done in a time-

consuming and error-prone sequential fashion. Meanwhile, more trees are likely to be 

included into the sample for observation with plot design I rather than with a non-adaptive 

design. However, in contrast to the conventional ACS, plot design I cannot ensure a full 

capture of all trees in an isolated cluster intercepted by an initial plot. The cluster here refers 

not to a natural cluster, but to a cluster in the sense of conventional ACS. For a natural cluster 

intercepted by an initial sample plot, the number of trees adaptively added into the sample 

from it depends only on the CrV in conventional ACS, and both CrV and PSF in sampling 

with this plot design. 
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3.1.1.2 Plot design II 

In plot design II, an initial sample of single compact fixed-area plots is installed. If the 

observed value from the initial plot at a sample point meets the condition to adapt, then a 

fixed-area cluster plot of a predefined type, which includes the initial sample plot as a subplot, 

will be installed there. In principle, any type of cluster plots can be used in this design. In this 

study, just one type of cluster plots is used uniformly as an example to explore the 

performance of this design. As seen in Figure 3.2, a cluster plot of this type consists of totally 

five compact subplots: an initial sample plot and four additional plots installed at four points 

in a prespecifed distance (referred to as subplot distance) and directions from the initial 

sample point. For example, an initial single compact plot of 500m² is installed at each sample 

point; and if the condition “at least one tree on the initial sample plot” is fulfilled, then the 

initial 500m² compact plot is directionally expanded to a 2500m² cluster plot consisting of 5 

subplots. Plot design II can be considered as a variant of plot design I in that plot design I 

turns to plot design II when a uniformly expanded plot in plot design I is replaced with a 

fixed-area cluster. The example in Figure 3.3 demonstrates the principle of plot design II.  

 

 

Figure 3.2 The plot expansion process at a sample point under plot design II. On the left hand 

side is an initial plot installed at a sample point (cross) where the condition to adapt is 

satisfied, and on the right hand side is the cluster plot at that sample point and the four 

adaptively added subplots are in the NW, NE, SW  and SE direction of the sample point. 
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Figure 3.3 An example of plot design II: an initial single compact sample plot of a defined 

size (gray shaded) is established at each sample point (crosses A to G). When the condition: 

the initial plot contains at least one tree (black dot) - is met, then a fixed-area cluster plot of 

the predefined type is installed, as seen at sample point B and C. 

The performance of plot design II will be determined by the CrV, the subplot distance, and 

other factors known also from the ordinary (nonadaptive) cluster sampling, such as the spatial 

autocorrelation of the population of interest and intracluster correlation, which is partly 

influenced by the geometric spatial arrangement of subplots. 

 Plot design II shares the common practical advantages with plot design I. However, the 

choice between plot design I and II is an issue of the trade-off between costs and efficiency, 

and hence varies from situation to situation. From a practical point of view, the field 

implementation of plot design II is not as easy as that of plot design I and causes additional 

costs because of the inevitable need to locate subplots of a cluster plot. But from an ordinary 

viewpoint of spatial statistics, plot design II is likely to be more efficient than plot design I on 

a sound comparative base because it better tackles the issue of spatial autocorrelation.  

 

3.1.1.3 Plot design III 

Plot design III is an adaptive version of relascope sampling. In conventional relascope 

sampling, a constant BAF is applied at every sample point. In plot design III, two BAFs, one 
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large and the other small, need to be predefined prior to sampling in addition to the condition 

to adapt. They are denoted by   as initial BAF and by    as final BAF. Sampling starts with 

the large BAF, namely with small initial plots. Whenever the condition to adapt is met, then a 

predefined smaller BAF    is used. The change of BAF in plot design III is actually an 

expansion of the imaginary circular plots in relascope sampling. It is known that the 

imaginary circular plot for a tree with DBH of    has an area of  
    

 
   and  

    

     for the 

BAF   and    respectively. According to the definition of PSF given in plot design I,  
 

    is 

then the PSF corresponding to the adaptive change of BAF from   and   . Therefore, plot 

design III shares the sample principle of plot expansion as plot design I and II. The concept of 

plot design III is illustrated in Figure 3.4.  

 
(a) 

  

 
(b) 

Figure 3.4 An example of plot design III. A cluster of trees around sample point A are 

labeled with numbers from 1 to 4. Tree 2 is tallied with the initial BAF corresponding to the 

critical angle of α in (a) .When  the condition that at least one tree is tallied at a sample point 

is met, then a  small BAF corresponding to the critical angle of β (β<α) is used. As a result, 

four trees in the cluster are tallied as shown in (b).  

3.1.2 Unequal probability sampling 

Plot design I, II and III are proposed based on the strategy of unequal probability sampling. In 

unequal probability sampling, the population units have different probabilities to be selected 

or included into the sample, and thereby a better efficiency relative to equal probability 

sampling is expected to be possible under certain conditions. The statistical performance of an 

unequal probability sampling design depends very much on its capability of imposing 



Methods and materials  

43 

 

reasonably high probabilities on the important units of a population. The important units are 

the units containing more information on the population parameter to be estimated than the 

others, for example, the trees with large DBH in a forest stand in the case of estimating the 

stand basal area. There are various unequal probability sampling methods being used and 

found to be efficient in forest inventories, such as relascope sampling, randomized branch 

sampling (Jessen, 1955; Pearce and Holland, 1957), importance sampling (Gregoire and 

Valentine, 2008) and probability proportional to prediction sampling (3P sampling) 

(Grosenbaugh, 1963; Van Laar and Akça, 2007).  

It is usually much more challenging to develop estimators for unequal probability sampling 

than for equal probability sampling, but fortunately there are two general unbiased estimators 

of finite population total available for unequal probability sampling, one is the Hansen-

Hurwitz (HH) estimator (Hansen and Hurwitz, 1943), and the other is the Horvitz-Thompson 

(HT) estimator (Horvitz and Thompson, 1952). The HH estimator of population total  ̂  is: 

 ̂  
 

 
∑

  

  

 

   

 

And the HT estimator of population total  ̂  is  

 ̂  ∑
  

  

 

   

 

where:  

  =value of interest for unit i, 

  =selction probability of unit i,  

n = the sample size, 

ν = the effective sample size (the number of distinct units in the sample of size n), and  

  =inclusion probability of unit i. 

The HH estimator is restricted to random sampling with replacement, while the HT estimator 

is applicable for random sampling with or without replacement. As we can see, the primary 

difference between HH estimator and HT estimator is that the former uses the selection 

probability, the probability of a unit being selected on each draw, and the latter uses the 

inclusion probability, the probability of a unit being eventually included into the sample. For a 

given with replacement sampling scheme, if the selection probability of unit i is pi, then its 
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inclusion probability for a sample size of n is            
 . The elaboration of 

difference between selection probability and inclusion probability based on an example can be 

found in (Gregoire and Valentine, 2008). Their secondary difference, which exists only in the 

case of with-replacement sampling, is that the HH estimator utilizes the value of unit i as 

many times as it is selected in the sample, whereas the HT estimator does not and each sample 

unit is utilized only once in the HT estimator regardless of how many times it has been 

selected into the sample (Thompson, 1992). If the sampling is without replacement, then the 

HH estimator is inapplicable, and the effective sample size v in the HT estimator equals the 

sample size n since it is impossible for a unit to appear more than once in the sample. These 

two estimators indicate that an unequal probability sampling design can be more efficient than 

an equal probability sampling design only when either the selection probabilities or the 

inclusion probabilities are approximately proportional to the target variable. Otherwise, it may 

turn out to be even less efficient than its counterpart. In theory, zero variance results if the 

probabilities are set perfectly proportional to the variable of interest. In this study, an infinite 

population approach is employed to derive estimators for the three proposed plot designs.   

3.1.3 Infinite population approach 

The standard technique used in fixed-area plot sampling to extrapolate the per-plot 

observations to per-hectare values cannot be applied to adaptive plot designs because it 

requires equal inclusion probability for all trees at a given sample point. In the proposed three 

adaptive plot designs, the inclusion probability of each population unit is obviously not 

constant but variable: a tree with other trees nearby has a higher inclusion probability than an 

isolated tree or a tree with fewer neighbors, because the selection of a neighboring tree in an 

initial plot may lead to the selection of that particular tree finally in the sample. 

The estimation design in this study adopts the infinite population paradigm which considers 

the dimensionless points in the area of interest as sampling elements (Eriksson, 1995). The 

paradigm is described in, for example, Gregoire and Valentine (2008) and Mandallaz (2008). 

Construction of design-unbiased estimators for various plot designs is straightforward under 

this paradigm, for example fixed count sampling (Kleinn and Vilčko, 2006), because it 

analytically determines the inclusion probability for each sample tree. Once inclusion 

probabilities of sample units are known, the HT estimator framework can be applied directly. 

A probabilistic sampling design for selection of the initial sample points is a prerequisite; in 

this study, the attention is restricted uniformly to SRS.  
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The inclusion probability of a particular tree can be derived from its inclusion zone 

constructed geometrically as the horizontal area around it that leads to its inclusion if a 

sample point falls within it. The area of its inclusion zone divided by the domain area of the 

population is a geometrical measure of that particular tree’s inclusion probability. 

The basic question becomes how to construct an inclusion zone and determine its area for a 

given sample tree under plot design I, II and III. For the conveniences of description and 

understanding, the following three new terms are introduced: relevant tree, relevant tree 

identification circle and relevant tree search circle. A relevant tree of a particular tree is a tree 

whose selection leads to the inclusion of that tree in the case of CrV=1. It implies that a tree is 

always its own relevant tree. The relevant tree identification circle or circles of a particular 

tree serves to identify its relevant neighbors and subsequent geometry operations involved in 

the inclusion zone construction. A neighboring tree is judged to be its relevant tree only when 

the initial-plot based inclusion zone of that neighbor overlaps its relevant tree identification 

circle. The relevant tree search circle or circles around a sample point demarcate the maximal 

area in the field to be searched for all relevant trees of all sample trees there. These definitions 

hold throughout the dissertation.  

In plot design I, the inclusion zone of a tree varies with the factors that define the plot design 

(initial plot size, PSF, and CrV) and the number and spatial arrangement of trees. Figure 3.5 

schematically illustrates an example for a center tree and for a fixed PSF but two CrVs (left: 

“at least one tree in the initial plot” and right: “at least two trees in the initial plot”). All 

sample points falling inside the gray filled inclusion zone leads to an inclusion of the center 

tree in the sample. The gray filled area is a direct measure of its inclusion probability. For a 

CrV of 1 (Figure 3.5, left), the center tree (target tree) is included if it is either directly inside 

an initial plot or if at least one of its neighboring trees are within an initial sample plot which 

would trigger an initial plot expansion that subsequently includes the focus tree. The two 

inclusion paths for a tree translate into the shown inclusion zones CrVs of 1 and 2 (Figure 3.5). 

To determine the inclusion zone of a tree, only that particular tree and its neighbors whose 

initial-plot based inclusion zones overlap the big dashed circle centered at it are relevant. The 

big dashed circle is of the same size as an expanded plot and serves as the relevant tree 

identification circle. For CrV=1 the inclusion zone of the centered target tree is then 

constructed from the intersection between the relevant tree identification circle and the union 

of the initial-plot based inclusion zones of all relevant trees. For CrV=2 the inclusion zone of 

the center tree can be depicted from the intersection of the union of  the initial-plot based joint 
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inclusion zones of all relevant neighbors and the initial-plot based inclusion zone of the center 

tree with the big circle. Joint inclusion zone (Gregoire and Valentine, 2008) is the region of 

the overlap between the inclusion zones of two trees, and a sample point falling in it will lead 

to the inclusion of those two trees in the sample. 

 

CrV=1 

 

CrV=2 

 Target tree  Initial-plot based inclusion zone 

 Neighboring trees  Relevant tree identification circle 

Figure 3.5 Two examples of inclusion zones for the center tree under plot design I. For 

explanation of the construction principles see text (fromYang et al., 2009). 

Obviously, as can be seen from Figure 3.5, the determination of an actual inclusion zone for a 

particular tree requires the coordinates of all trees up to a distance that equals the sum of radii 

of the expanded plot and the initial plot. In consequence, a maximal circular area of 

 
2

2 1PSF  times the size of the initial plot around a sample point has to be observed for 

coordinates when a plot is expanded. At sample point locations where the initial plot contains 

target objects but the predefined condition is not satisfied (their number is smaller than the 

defined CrV), at most a circular area of  
2

2PSF  times the initial plot size have to be 

checked. The collection of coordinates relative to the sample point causes additional efforts, 

and is indispensable unless more straightforward approaches or tools are developed to 

determine the inclusion probability or appropriate proxies. 
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In plot design II, the inclusion zone of a tree depends also on the type of cluster plot being 

used including the number and geometric spatial layout of subplots. Figure 3.6 illustrates the 

inclusion zones of a target tree under plot design II where the condition to adapt is defined to 

be the presence of at least one tree (left) and two trees (right) respectively in the initial sample 

plot. As seen in Figure 3.6, there are four relevant tree identification circles associated with 

the target tree. They are centered at four crosses in a prespecifed distance, say D, apart from 

the target tree along the four primary intercardinal directions (NE, SE, SW, and NW) 

respectively, and share the same radius as the initial sample plot.   

 

CrV=1 

 

CrV=2 

 Target tree  Initial-plot based inclusion zone 

 Neighboring tree  Relevant tree identification circle 

Figure 3.6 Two examples of inclusion zones for the target tree under plot design II with a 

subplot distance of D. The inclusion zones of the target tree are filled in gray color.  

The inclusion zone of the centered target tree in the case of CrV=1 can then be delineated 

from the intersection between the four relevant tree identification circles and the union of the 

initial-plot based inclusion zones of all relevant trees. In the case of  CrV=2, the inclusion 

zone of the target tree results from the intersection of the union of its initial-plot based 

inclusion zone and the initial-plot based joint inclusion zones of all its relevant neighbors with 

the four relevant tree identification circle. 

Accordingly, a certain number of relevant tree search circles placed around the initial sample 

point as shown in Figure 3.7 need to be searched in order to collect the coordinates of all 

relevant trees of the sampled trees. The relevant tree search circles are of the same size with a 

radius three times that of an initial plot. As seen in Figure 3.7, a total of thirteen relevant tree 



Methods and materials  

48 

 

search circles are required to be searched in the field around a sample point when the 

condition to adapt is satisfied there (left), otherwise only five (right).  

 

 

 

 

 Initial sample plot (radius r) + Circle’s center 

 Adaptively added subplot (radius r)  Relevant tree search circle 

Figure 3.7 The spatial layout of relevant tree search circles under plot design II around a 

sample point  in the center when the condition to adapt is satisfied (left) and not (right).The 

subplot distance for the design is D.  

In plot design III, BAF and CrV determine the final inclusion zone of a tree, together with its 

DBH and the spatial distribution of its neighboring trees. For a tree with a DBH of d, its initial 

inclusion zone (i.e. initial-BAF based inclusion zone) and relevant tree search circle are 

centered at it, and have a radius of      and     respectively. Here ci and cf are the plot radius 

factor corresponding to the predefined initial BAF and final BAF respectively. Two examples 

are given in Figure 3.8 to illustrate how the inclusion zone of a tree is constructed on two 

different occasions. The inclusion zone of the centered target tree in the case of CrV=1 

(namely at least one tree is tallied) is obtained from the intersection between its relevant tree 

identification circle and the union of the initial-BAF based inclusion zones of all relevant 

trees. In the case of CrV=2 (namely at least two trees are tallied), the inclusion zone of the 

target tree is derived from the intersection of the union of its initial-BAF based inclusion zone 

and the initial-BAF based joint inclusion zones of all its relevant neighbors with its relevant 

tree identification circle. 
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CrV=1 

 

CrV=2 

 Target tree  Initial-BAF based inclusion zone 

 Neighboring tree  Relevant tree identification circle 

Figure 3.8 Two examples of inclusion zones for the center tree under plot design III. The 

inclusion zones of the target tree are filled in gray color.  

It is straightforward under plot design I and II to determine in the field whether a tree is a 

relevant tree of the sampled trees based only on its distance to a reference point, such as a 

sample point and the center of a relevant tree search circle. However, such a determination 

under plot design III is remarkably complicated by the nature of plot design III: the initial-

BAF based inclusion zone and the relevant tree identification circle of a tree both vary with its 

DBH. As a consequence, the procedure below needs to be followed in the field to determine 

whether a tree is a relevant tree of a tallied tree or not: (a) measure the distance D between 

them, and the DBH of the possible relevant tree, dp and the tallied tree, dt; (b) 

calculate          , (ci and cf are the plot radius factor corresponding to the predefined 

initial BAF and final BAF respectively); (c) compare D with          . If D>=         , 

then the tree in question is a relevant tree of the tallied tree, otherwise not. This procedure 

needs to be repeated not only for each tallied tree, but also for the trees around it, until all 

relevant trees of the sampled trees are determined for the collection of coordinates.  

Once the inclusion zones of all sampled trees have been analytically determined and their 

areas calculated, the Horvitz-Thompson estimator applies for the estimation of the total of any 

obtained tree characteristic.  

Following largely the notation in Valentine et al. (2001), the estimate for the total kT  for the 

inventory region of size AT derived from the observations at sample point k is then: 
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with  

N = total number of trees in the inventory area, 

Ai = inclusion area of tree i,  

Yi = observed value of the target variable at tree i, 

1, if  sample point  falls into the inclusion zoneof tree 
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From the individual observations as produced at each sample point, the estimators for the total 

T̂  and its variance ˆˆvar( )T from n sample points are, respectively, 

 
1ˆ=

n

k

k

T

T
n




 and 

2

1

ˆ( )
ˆˆvar( )=

( 1)

n

k

k

T T

T
n n








, 

and this applies to totals of any tree variable. In the sampling simulation, estimating the 

number of stems per ha (N/ha) under plot design I and II, and basal area per ha (G/ha) under 

plot design III in the inventory regions is taken as an example.  

According to Valentine et al. (2001), the above mentioned estimator can be interpreted or 

derived by the integral geometric approach widely used in the applications of sampling 

continuous populations, such as importance sampling and crude Monte Carlo. That approach, 

called a Monte Carlo integration approach to areal sampling in Gregoire and Valentine (2008), 

is being elaborated in what follows. 

At each randomly selected sample point (here the basic situation of simple random sampling 

of sample points is exclusively dealt with), one observation kY  of the target variable is derived 

from all the measurements taken at the set of observed sample trees (for example number of 

stems or tree basal area per plot). The algorithm how to calculate that per-plot observation kY  

for plot k (the plot at sample point k) is specific for the plot design used. This calculation here 

is carried out from the inclusion zone approach and follows largely the notation in Valentine 

et al. (2001) as well. In order to start the calculation, each per-tree value of the target variable 

observed from the discrete population of individual trees needs to be re-expressed as the 

volume of an imaginary solid disc. That disc uses the inclusion zone of a tree as its bottom 
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surface and has a uniform height of  
  

  
 , which results from the value of the target variable    

of that particular tree. That is, each per-tree value is imagined to be evenly prorated over its 

corresponding inclusion zone. For example, if the target variable is “number of trees”, then, 

the observation for each tree is Yi=1, and consequently the height of all discs is 
 

  
. Discs of 

neighboring trees do, of course, overlap so that in a particular inventory area a complex 

“virtual landscape” is generated. The volume of this landscape of all piled up overlapping 

discs in the inventory region is then the total of that particular variable for the inventory 

region. The task is now to estimate this total. The total area AT of the inventory region is 

known so that only the average height of the “virtual landscape” needs to be estimated to 

produce an estimate of the total. At any sample point, a sample observation for the mean 

height is straightforwardly produced for any variable by measuring the height of the m 

overlapping discs. Actually, these m discs at one particular sample point do belong to the m 

sample trees included into the plot established at that particular sample point. 

This geometric approach to forest sampling is applicable to various plot designs for which an 

unambiguous rule can be defined how to include the sample trees from a particular sample 

point: For fixed area circular plots, the rule is defined by a constant maximum distance, for 

relascope sampling it is a maximum distance which depends on the trees´ DBH and for fixed 

count sampling it is the maximum number of neighboring trees. Figure 3.9 illustrates the 

approach. A stem map is given (top) together with the overlapping inclusion circles per tree 

(middle) and then the virtual landscape of “piled-up” discs (bottom). The example in Figure 

3.9 refers to a simple case of fixed area circular plots (that is: all inclusion zones have the 

same shape and size) for the estimation of density (that is: all trees have the same value 1 and, 

therefore, all discs have the same height). It can be observed that in those areas of the 

“inventory area” where the tree density is high, the elevation of the landscape is higher 

because many inclusion zones do overlap and pile up to a higher “elevation” that leads to 

higher observed values at these points. In this example, the issue of edge effects (plots 

overlapping the population boundary) is eliminated. The inclusion zones do not straddle the 

forest boundary. 
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(a)   

(b)  

(c)  

Figure 3.9 Graphical illustration of the geometric approach to estimation from the inclusion 

zone concept for fixed area circle plots. The target variable is density (that is, number of trees 

per area) and each tree carries the same value of observation 1; (a) gives the positions of the 

trees and (b) all the overlapping circular inclusion zones; (c) depicts the virtual landscape 

whose volume corresponds to the total of the target variable to be estimated. This figure is 

prepared by Dr. Lutz Fehrmann and its use is with his permission. 

The estimate of the mean height of this landscape of overlapping discs is the sum of the m 

disc heights at this particular sample point. In order to generalize, a 0/1 indicator variable kiZ

is introduced to indicate whether tree i of the population of N trees is included for sample 

point k or not as before. The observation of the height Hk at the kth sample point is then 

1

=
N

i
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Y
H Z
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  

The estimate for the total 
kT  for the inventory region of size AT from the observations at the 

kth sample point becomes: 
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From the individual observations as produced at each sample point, the estimators for the total 

T̂  and its variance ˆˆvar( )T from n sample points (Valentine et al., 2001) are, respectively:  
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and this applies to totals of any tree variable. It can be seen that these estimators from the 

integral geometric approach are identical to those from the non-geometric approach.  

In this study, the sample points are assumed to be constrained to fall only within the 

population boundary, i.e. inventory region. For each tree whose inclusion zone slops over the 

population boundary, the method of direct measurement of inclusion area (Gregoire and 

Valentine, 2008) is used for the edge effect correction to ensure the unbiasedness of the 

estimators. That method allows only the portion of the inclusion zone within the population 

boundary to be involved in the estimation, and thus needs an operation of geometry 

intersection between the inclusion zone of each tree and the inventory region. 

3.1.4 Estimation approach in double sampling for stratification 

In addition to the above described infinite population approach, the standard estimator for 

double sampling for stratification (DSS) (Cochran, 1977; Chojnacky, 1998; Van Laar and 

Akça, 2007; Lam et al., 2010)  was tried and investigated only for the random sampling with 

plot design I, despite the fact that the sampling with plot design I is essentially different from 

DSS. DSS is a variant of standard double sampling or namely two-phase sampling (Neyman, 

1938; Cochran, 1977) and they share a common feature: a large sample is selected in the first 

phase for the observation of a cheap-to-measure auxiliary variable and a small subsample is 

taken from the first phase sample for that of the target variable. DSS is found to be a sampling 

strategy suitable for the situations where the population of interest is heterogeneous but a 

clear prestratification is hardly possible or feasible for some reason although conducive to 

sampling efficiency. Such situations are very common in sampling rare and geographically 

clustered populations. In DSS, the strata sizes need to be estimated from the observed values 

of an auxiliary variable acquired by sampling, unlike in stratified sampling or post-stratified 

sampling (Van Laar and Akça, 2007), where they are assumed to be known prior or posterior 

to sampling.  
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Let 

    number of strata, 

    total number of sample units in the first phase sample, 

  
   number of sample units in the first phase sample falling in stratum h, 

    weight of stratum h estimated from the first phase sample, and 

 ̅   estimated mean of target variable Y in stratum h. 

Then the unbiased estimator of the population mean from DSS is  

 ̅    ∑   ̅ 

 

   

 

where    
  

 

  
. 

The standard DSS estimator is applied for random sampling with plot design I in this study in 

the following manner. The initial sample under plot design I is considered as the first phase 

sample in DSS and stratified into two strata according to the criterion whether the observed 

value of target variable on an initial sample plot is larger than the predefined CrV. If not, then 

that initial sample plot is stratified into stratum 1, otherwise stratum 2.  The weights of two 

strata can be estimated respectively as follows: 

   
   

  
 

   
   

  
 

where: 

    Initial sample size (number of initial sample plots), 

     Number of initial sample plots not satisfying the condition to adapt, 

     Number of initial sample plots satisfying the condition to adapt, and 

           

Then, the     nonexpanded initial sample plots and the     expanded ones are used as the 

second phase sample plots in stratum 1 and stratum 2 respectively, and the SRS mean 

estimator is employed to calculate  ̅ , the estimated mean of target variable Y in stratum h. 
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The estimated population mean is derived by substituting the right hand side of the DSS 

estimator as follows: 

 ̅    
   

  
 

∑    
   
   

   
 

   

  
 

∑    
   
   

   
 

 

  
 (∑   

   

   

 ∑   

   

   

) 

where: 

                                                                                 , and  

   =                                                                                . 

Both     and     are calculated by means of plot-size-dependent expansion factors EF, which 

converts the per-plot observations to per-ha observation. The sizes of the initial sample plots 

and the expanded plots are used to derive the EF for      and     respectively. 

In order to eliminate the edge effect for the DSS estimator, the mirage method (Gregoire, 

1982; Gregoire and Valentine, 2008) is employed. But for the convenience of the sampling 

simulation programming, it is implemented by generating mirage populations, instead of 

installing mirage plots across the population boundary as seen in its field applications. Figure 

3.10 illustrates the idea how to mirage a tree population. The original mapped population is 

enclosed in the rectangle ABCD. The tree u1, denoted by a black dot, is miraged across the 

four boundary lines AB, BC, CD, and AD, and reflected 180° across the four square corners 

respectively. Thereby eight mirage trees from m1 to m8 denoted by eight gray dots are 

generated from the tree u1 and finally eight mirage populations are generated when the 

population mirage approach is applied to each tree in the population. As a result, the sampling 

in a boundary plot can be carried out simply by tallying all trees including the mirage trees 

within it as in a non-boundary plot. However, the performance of edge effect correction of the 

mirage method remains unaffected.  
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Figure 3.10 Implementation of mirage method by generating mirage population units. 

3.2 COST FUNCTION 

In this study, the comparisons of the proposed plot design I, II and III with their nonadaptive 

counterparts based solely on their statistical performances without considering costs. 

Adaptive plot designs demand more time in the field and thus cause higher cost than fixed-

area plot designs for a given sample size. But in reality, the main concern in forest inventories 

especially large area forest inventories is quite often which sampling strategy can produce an 

estimate of the best precision for a given cost. A sampling strategy which is superior for a 

given number of elements in the sample may yield a less precise estimate for a given cost. In 

other words, it may not be cost efficient. One typical relevant example is SRS and 

conventional random cluster sampling. For a given number of elements in the sample, SRS is 

usually known to have a better statistical performance than conventional cluster sampling, but 

for a given cost a more precise estimate may be obtained with conventional cluster sampling 

under certain conditions (Cochran, 1977; Matérn, 1986; Thompson and Seber, 1996) since 

travelling to a new random sample point in an inventory region is generally much more time-

consuming than the observations on a cluster of subplots installed at an existing sample point 

in cluster sampling. Thus, in practice overall efficiency, which takes costs into account, is 

mostly the decisive factor for the choice of sampling strategy. For this reason, the overall 

efficiencies of the three proposed adaptive plot designs need still to be compared for their 

practical application, although they are akin to conventional cluster sampling in nature and the 
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results obtained in this study are positive for them. A comparison of overall efficiency 

requires cost functions based on the assumptions about the additional field effort. 

The cost functions here are developed from the modification of a cost function for SRS which 

is simplified from Scheuber and Köhl (2003). All costs involved in the following cost 

functions are expressed in terms of time, not money. The notations in all cost functions are 

used consistently. The cost function for SRS is: 

              

where: 

   total cost in terms of time, 

    average time requirement of the round travel between the camp and the inventory region, 

    average time requirement to travel to next sample point, 

    average time requirement for field observation within a sample plot, and 

   sample size. 

3.2.1 Plot design I 

The cost function for plot design I depends not only on its design factors but also on the 

estimator for it. When the estimator presented in this study is used, the collection of the 

coordinates of all sampled trees as well as their relevant trees and its cost must be accordingly 

added into the cost function as a new cost item. The cost function for plot design I modified 

from CT is then: 

  
         [         √   ]   [       (√     )

 
     √       ]    

where: 

  
   total cost in terms of time for plot design I, 

    average time requirement of the round travel between the camp and the inventory region, 

    average requirement to travel to next sample point, 

   average time requirement for field observation of the target variable per initial sample 

plot area, 

   average time requirement for collection of coordinates of relevant trees of the sampled 

trees per initial sample plot area, 
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   sample size or number of initial sample plots, 

    expected value of the number of initital plots with the presence of at least one tree, 

    expected value of the number of initial plots with the presence of at least i trees (i ≥1), 

   CrV (critical value set for the design), and 

                     

The values of m1 and mi can be calculated as follows:  

      ,            

where: 

    the average percentage of expanded plots for CrV of 1, and 

    the average percentage of expanded plots for CrV of i. 

This cost function will be greatly simplified by removing the last cost item from it when an 

alternative estimator without need for tree coordinate collection becomes available.  

3.2.2 Plot design II 

Following the same way as above, the cost function for plot design II with the estimator used 

in this study is developed according to the number of relevant tree search circles, which is 5 

for an initial sample plot satisfying the condition to adapt and 13 otherwise, and the size of a 

relevant tree search circle, which is 9 times larger than the area of the initial sample plot as 

shown in Figure 3.7.  It is presented as follows: 

  
                    [                   ]   

      =                                 

where: 

  
    total cost in terms of timefor plot design II, 

    average time requirement of the round travel between the camp and the inventory region, 

    average time requirement to travel to next sample point, 

    average time requirement for field observation of the target variable per initial sample 

plot area, 

    average time requirement for collection of coordinates of relevant trees of the sampled 

trees per initial sample plot area, 
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   sample size or number of initial sample plots, 

    expected value of the number of initital plots with the presence of at least one tree, 

    expected value of the number of initial plots with the presence of at least i trees (i ≥1), 

and 

   CrV (critical value set for the plot design) 

The calculation of m1 and mi can be done with the formula given for plot design I.  

The cost for the travel between subplots and relevant tree search circles is not taken into 

account as it is normally very small in comparison with the cost for travels from sample point 

to sample point.   

If an alternative estimator without need for tree coordinate collection comes into existence in 

the future, then the last cost item can be simple dropped.  

3.2.3 Plot design III 

The cost function composed for plot design III is:  

  
                    

          
    

    
  

where 

  
     total cost in terms of timefor plot design III, 

    average time requirement of the round travel between the camp and the inventory region, 

    average time requirement to travel to next sample point, 

        average time requirement for field observation using initial BAF at a sample point, 

       time requirement for field observation using final BAF at a sample point where the 

condition to adapt is met, 

  
   average time requirement for collection of coordinates of relevant trees of the sampled 

trees at a  sample point, 

   sample size or number of sample points, 

  
   expected value of the number of sample points with at least one tree tallied with an 

initial BAF, 
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   expected value of the number of sample points with at least i (i≥1) trees tallied with an 

initial BAF, and 

   CrV (critical value set for the plot design) 

The values of   
  and   

  can be calculated as follows: 

  
     

 , and   
     

  

where: 

  
   the average percentage of adapted sample points for CrV of 1, and 

  
   the average percentage of adapted sample points for CrV of i. 

Unlike    in plot design I and II,   
  in the last cost item of the cost function for plot design III 

cannot be fixed as the relevant tree search circle for a sampled tree has a variable size as 

mentioned before.  This will bring some difficulty for the comparison of overall efficiency.  

3.3 MATERIALS 

3.3.1 Real population 

A real population referred to as TR was used to evaluate the statistical performance of the 

proposed new plot designs. It consists of 268 individuals of the shrub species Tamarix 

ramosissima mapped on a rectangular study site of 500m×100m. The study site (lat 

40°15'57.6"N, long 106°56'24"E) is located at the northeast edge of the Ulan Buh Desert in 

Dengkou County of north China's Inner Mongolia Autonomous Region as seen in Figure 3.11. 

It has spare desert vegetation under a typical temperate arid and semi-arid climate, which is 

controlled by the dry, cold northwesterly monsoon in winter and by warm, moist 

southeasterly monsoon in summer. The surface temperature recorded from 1955 to 1985 had a 

maximum of 67.0°C and a minimum of -37.2°C. From 1955 to 2003, the mean annual air 

temperature was 8.6°; the mean annual precipitation was only 107.8mm whereas the annual 

evaporation reached 2956.8mm and was more than 27 times than the annual precipitation, and 

80% of the precipitation was concentrated in the four months from June to September. The 

common tree, shrub and subshrub species on the study site are Elaeagnus angustifolia, 

Haloxylon ammodendron, Nitraria tangulorum, Hedysarum scoparium and Artemisia 

arenaria in addition to Tamarix ramosissima. Like many other desert plant species, these 

species have various morphological and physiological traits to survive under harsh 
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environmental conditions in the arid and semi-arid zones in China (Chun et al., 2008), such as 

unusually strong tolerance to drought, high salinity, extreme temperature and strong wind 

(Tobe et al., 2001). They provide crucial environmental and ecological functions in the 

control and prevention of desertification and the restoration of desert ecosystem (Gao et al., 

2002), such as fixation of sand dunes, preservation of underground water table and in 

particular protection of the desert margin areas. China is one of the countries severely 

threatened by desertification and has devoted tremendous efforts and resources to combating 

desertification over the past several decades (Chen and Tang, 2005), including a variety of 

scientific and technical research in support of desert rehabilitation, e.g. this study jointly 

funded by DFG and NSFC. 

 

Figure 3.11 Location of study area in Ulan Buh desert, inner Mongolia, China (modified 

fromZha and Gao, 1997; Chun et al., 2008). 
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Field data were collected in September 2007. As seen in Figure 3.12, TR is geographically 

clustered as many other desert plant species, which is considered as their adaptation to the 

adverse desert environment (Wright and Howe, 1987; Eccles et al., 1999; Malkinson et al., 

2003). For sampling such populations, the proposed adaptive plot designs are suspected to be 

exclusively suitable if they are appropriately configured.  

TR  

Figure 3.12 The map of the real population TR of Tamarix ramosissima in Inner Mongolia, 

China (fromYang et al., 2009). 

3.3.2 Simulated populations 

In addition to the real population TR, eleven artificial populations were also used for 

comparison and further analysis. They are referred to as SIMdss, SIMrnd, SIMuni1, SIMuni2, 

SIMcl, and SIM1 to SIM6 respectively. The generation of these artificial populations is 

intended to: (1) find whether the proposed adaptive plot designs are superior exclusively for 

the clustered populations as expected, and (2) examine whether the degree of clustering of a 

clustered population strongly affects their statistical performances as in conventional ACS 

(Smith et al., 2003). 

SIMdss populates a square area of 500m×500m with 620 trees in clusters and was employed to 

check the applicability of DSS estimator for plot design I.  

As depicted in Figure 3.13, SIMrnd, SIMuni1, SIMuni2 and SIMcl each have 184 individuals 

arranged over an area of 300m×300m but in four different spatial patterns: one random 

(SIMrnd), two uniform (SIMuni1, SIMuni2) and one clustered (SIMcl). They served to investigate 

whether the proposed designs are specifically efficient for geographically clustered 

populations or not. The DBHs of the trees in each of the four populations except SIMuni2 were 

generated independently from a normal population with a mean of 50cm and a standard 

deviation of 20cm. SIMuni2 shares the same set of DBHs with SIMuni1.  
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Figure 3.13 Maps of artificially generated 

populations with different spatial patternsfor 

simulation: SIMdss, SIMrnd, SIMuni1, SIMuni2, 

SIMcl. 
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Each population from SIM1 to SIM6 is geographically clustered as shown in Figure 3.14 and 

has the same spatial domain and number of individuals as TR– only the plant locations are 

varied. These seven populations are used to investigate how the statistical performances of the 

proposed designs vary with the degree of clustering of a population.  
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Figure 3.14 Maps of the six artificial populations SIM1 - SIM6. All maps have 268 trees as in 

the real population TR; the artificially generated populations SIM1 to SIM6 are arranged in 

three major clusters of different size characterized by the scale parameter λ: SIM1 (λ=5m), 

SIM2 (λ=10m), SIM3 (λ=20m) and SIM4 (λ=30m), SIM5 (λ=100m), SIM6 (λ=100m). 

(FromYang et al., 2009). 
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The eight clustered artificial populations including SIMdss, SIMcl, and SIM1 to SIM6 were 

generated from a variation of a Poisson cluster process (Diggle, 2003). In each of them, the 

number of clusters and the number of individuals per cluster were generated at random from 

two Poisson distributions with respective means of 30 and 30 for SIMdss, 5 and 3 for SIMcl, 

and 3 and 90 for SIM1 to SIM6. The coordinates of each cluster center were generated 

randomly. In addition, the spatial extension of the clusters varied. The position of a tree 

within a cluster is then determined relative to its cluster center by a random azimuth and 

distance. The random azimuths were drawn from a uniform distribution between 0° and 360°; 

the random distances were generated from an exponential distribution with a mean of 10 and 

3 for SIMdss and SIMcl respectively and from a continuous uniform distribution with a location 

parameter 0 and a scale parameter λ for SIM1 to SIM6. The λ values used for SIM1 to SIM6 

were 5m, 10m, 20m 30m and 100m (with two different spatial arrangements) respectively. 

The resulting spatial distributions of SIM1 to SIM6 are mapped in Figure 3.14. 

3.4 DESCRIPTION OF ANALYSIS 

In order to compare the performance of the proposed adaptive plot designs, it is necessary to 

know for each of the inventory regions the variance of the estimates derived from the per-plot 

observations of the target variable for both the adaptive and the non-adaptive approach. As all 

points in the inventory area are potential sample plot centers, this population is infinite and 

the sought population characteristics are traditionally approximated by Monte-Carlo 

simulations of a large number of random samples. However, Roesch et al. (1993) introduced a 

direct approach to calculate these characteristics by finding the selection probabilities for each 

distinct set of sample trees as defined by the plot design, the so-called jigsaw-puzzle approach, 

based on the concept of inclusion zone. In this study, both approaches were used. 

The jigsaw puzzle approach is illustrated in Figure 3.15 and is used in this study to calculate 

rather than approximate the true variance of estimates of N/ha for plot design I and II, and the 

true variance of estimates of G/ha for plot design III.  
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Figure 3.15 Illustration of the jigsaw puzzle approach as introduced by Roesch et al. (1993), 

applied to fixed area circular sample plots. Around each tree there is a circular inclusion zone. 

Inclusion zones of neighbouring trees can overlap and the resulting tesselation in non-

overlapping pieces is akin to a “jigsaw puzzle” that covers the entire area without any gaps. 

All sample points within one specific ‘jigsaw” piece (A, B, C, D, E, F, G or H) lead to the 

selection of exactly the same set of trees. That is, the probability of any possible set of sample 

trees to be selected by simple random sampling with a given plot design is defined by the area 

of one particular piece of this jigsaw puzzle (fromYang et al., 2009). 

In this study, the jigsaw puzzle for the non-adaptive plot design and for the adaptive plot 

design for all possible level-combinations of design relevant factors was solved by calling the 

geoprocessing functions of ArcObjects from a self-written MS Visual Basic program. 

However, the jigsaw puzzle can be easily created with standard GIS techniques, such as 

ArcGIS Desktop without any programming effort once the inclusion zones are determined. 

The design relevant factors are initial plot size, CrV and PSF for plot design I, initial plot size, 

CrV and distance of the adaptive subplots to initial sample point for plot design II, and Initial 

BAF, final BAF and CrV for plot design III. From this tessellation, the selection probabilities 

of all possible sample trees are known and parametric values of the per-plot-observations can 

be directly calculated and need not to be approximated by Monte-Carlo simulation any more. 

The resulting inclusion probabilities for both the adaptive and the non-adaptive plots are 

design-unbiased and the populations are identical with respect to the parametric value. 

Therefore, the statistical performance for any sample size can be directly compared by means 

of any measure of variability of sample plot observations. Here, the relative standard error in 

percentage (SE%) was used.  
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According to Roesch et al. (1993), the variance    ̂  of   ̂ is: 

   ̂  (
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where: 

   sample size/the number of randomly placed sample points, 

    the total area of the inventory region, 

   the total number of jigsaw puzzle pieces, 

    the area of jigsaw puzzle piece j, 

    the value of the target variable for  jigsaw puzzle piece j, and 

   the total of the target variable 

 ̂  
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   t                                                    

The value of the target variable for jigsaw puzzle piece j is:  

   ∑(
  
  

)      

 

   

  

where: 

    the inclusion area of tree i, 

    the observed value of the target variable at tree i, and 

    {
                                                                                
                                                                                                                      

 

The relative standard error in percentage, SE%, is: 

    
√   ̂ 

 
     

 In this study, the target variable to be estimated is N/ha for plot design I and II, and G/ha for 

plot design III. Therefore, the observed value of the target variable    equals 1 under design I 

and II, and equals the basal area of tree i under plot design III. 

In addition, the average percentage of expanded plots, EP%, for each adaptive design can be 

derived also from a jigsaw puzzle:  



Methods and materials  

68 

 

1
EP% 100

M

j j

j

T

a z

A


 


 

   {
                                                                                       

                                                                                                                                                   
 

The EP% will be used for the computation of comparative efficiencies of the nonadaptive 

designs. 

The major procedures involved in the process of data analysis for all three proposed adaptive 

designs and their nonadaptive counterparts for comparison based on the jigsaw puzzle 

approach are represented in Figure 3.16. The steps from a mapped population to the 

parametric SE% for given sample size n are executed in a self-written MS Visual Basic 

program running on Windows XP Pro SP3. The control from a trial version of the ESRI 

Mapobjects-Windows Edition 2.4 and the libraries from the ESRI ArcObjects software 

development kit 9.3 are integrated into that program. The former is used for the inclusion 

zone construction, and the latter for the jigsaw puzzle creation. 

At the beginning of the inclusion zone construction, a mapped population is converted into a 

points object of Mapobjects, i.e. a collection of point objects. The initial-plot based inclusion 

zone and relevant neighbor search circle of a population unit is delineated by applying the 

buffer method to the corresponding point in the points object and then stored as polygon 

objects for subsequent geometry operations and determination of the topological relationship 

between an inclusion zone and each jigsaw puzzle piece. The relevant neighbor search circle 

acts as a cookie-cutter for the inclusion zone construction. 
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Figure 3.16 Data analysis flowchart of the jigsaw puzzle approach. All steps are classified 

into four groups: inclusion zone construction, jigsaw puzzle creation, SE% derivation and 

comparative efficiency calculation. 
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The built-in method of DistanceTo is used to identify the relevant neighbors of each target 

unit. An odometer function was written to construct the inclusion zones for CrV>1, and 

served to enumerate all possible combinations of a corresponding number of relevant 

neighbors of each target unit, aiming to depict the necessary initial-plot based joint (second 

order) or higher order inclusion zones.  

The geoprocessing operation of overlay-union on the resultant inclusion zones provides us a 

jigsaw puzzle, but with the overlapping parts duplicated. Those duplicates are deleted by the 

operation of Dissolve based on the coordinates of the centroids of the jigsaw puzzle pieces.    

In order to have a comprehensive insight into plot design I and II, plot design I and II are also 

compared with their nonadaptive counterparts on the basis of an equivalent sampling effort in 

addition to an equivalent sample size of n=20. The sampling effort in this study is measured 

in terms of the total area of sample plots. For a given sample size n, the sampling effort of 

either is a variable, but never less than that of its nonadaptive counterpart, and therefore its 

expected value is used as the baseline for comparison. The sample size of SRS with an 

equivalent sampling effort is referred to as comparable sample size for SRS and denoted by   . 

For a given sample size n and a plot size of F, the expected sampling effort under plot design 

I    and under plot design II      and their respective comparable sample size for SRS   
  and 

   
  are given as follows: 

                            [               ]   , 

  
                  , 

    = [         ]   , and 

   
           . 

The value of SE% from SRS with the comparable sample size   , SE    %,  can be derived 

from SE(  %, the one with sample size of n: 

        √
 

  
        

The traditional and commonly used approach of Monte Carlo sampling simulation was 

applied only for the purpose of investigating the suitability of the DSS estimator for plot 

design I in comparison with the SRS estimator for its nonadapitve counterpart (SRS). In each 

run of the simulation program written in MS visual basic 6, the sampling under the adaptive 

design and its nonadaptive counterpart was replicated 5000 times in parallel based on an 
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identical set of randomly placed sample points for the possible convenience of the subsequent 

analysis. The result of each replication was stored for analysis. In addition to simulation mean, 

another useful statistic for comparison, RMSE (Root Mean Square Error) was also calculated. 

The RMSE equals the standard error when an estimator is unbiased. The major steps of Monte 

Carlo sampling simulation and analysis are given in Figure 3.17. 

 

Figure 3.17 Flowchart of sampling simulation and analysis of the DSS estimator for plot 

design I.  
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4 RESULTS 

4.1 RESULTS FROM PLOT DESIGN I 

4.1.1 Double sampling for stratification estimator 

The results of Monte Carlo simulation with the population SIMdss for the adaptive designs of 

plot design I using DSS estimator to estimate stem density are presented in Figure 4.1. 

 

Figure 4.1 Simulation means and RMSEs based on the DSS estimator for the adaptive 

designs with CrV=1, PSF ranging from 1 to 5 and the initial circular plot radius R set to 3m, 

6m and 10m respectively. The sample size for all simulated designs is 20. Each simulated 

nonadaptive design shares the same size of circular plot with its adaptive counterpart. 
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All of the simulation means of the estimates from the DSS estimator for the adaptive designs 

with PSF greater than 1 were lower than not only the true density, but also those from their 

corresponding nonadaptive designs using the design-unbiased estimator (SRS estimator), 

which fluctuated around the true density. Their differences from the true density became 

larger with increased PSF and decreased size of the initial circular sample plot. The RMSEs 

from the non-adaptive designs are actually the estimated standard errors as the SRS estimator 

is design-unbiased for those designs and varied only slightly for a specific sample plot size. 

All of the RMSEs from the adaptive designs were consistently smaller than the estimated 

standard errors from their nonadaptive counterparts, and decreased with increased PSF and 

size of initial circular sample plot.  

The simulation results from the adaptive designs using the DSS estimator for a fixed CrV of 1, 

PSF of 2 and sample size of 20, but varying initial sample plot radii from 1m to 20m are 

drawn in Figure 4.2 and Figure 4.3.  

Figure 4.2 shows the mean numbers of the initial sample plots for each of the two strata. With 

increased initial sample plot radii, the average numbers of initial sample plots in stratum 1, 

into which an initial sample plot not satisfying the condition to adapt is classified, decrease, 

while those in stratum 2 increase.  

 

Figure 4.2 Mean numbers of the initial sample plots in each of the two strata from the 

adaptive plot designs for the population SIMdss with the sample plot radii ranging from 1m to 

20m. The sample size, CrV and PSF for all designs were fixed to 20, 1 and 2 respectively.  

As seen in Figure 4.3, all of the simulation means of estimates from the DSS estimator for the 

adaptive plot design increased toward the true density with the increased initial sample plot 
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radii, but were consistently smaller than the true density and the simulation means of SRS 

estimates. Their differences from the true density became smaller with increased initial 

sample plot radii. 

 

Figure 4.3 Simulation means of 

estimates from the DSS estimator 

for the adaptive plot designs with a 

fixed CrV of 1 and PSF of 2, but 

varying initial sample plot radii 

from 1 to 20m. 

 

4.1.2 HT and HH estimator 

4.1.2.1 Comparison among different spatial patterns 

The results using the HT estimator from an equivalent sample size of n=20 are presented in 

Figure 4.4. 

 

Figure 4.4 SE% of the N/ha estimates 

under plot design I with an initial sample 

plot radius of R=15m, CrV of 1 and PSF 

of 2 for four populations with different 

spatial patterns: SIMrnd, SIMuni1, SIMuni2 

and SIMcl respectively. The average 

percentages of expanded plots from the 

adaptive design are noted on the figure. 
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In comparison with its nonadaptive counterpart, the SE% derived from the adaptive design is 

much lower for the clustered population SIMcl with a fairly small average percentage of 

expanded plots of 10.5%, and only slightly lower for the other three populations but with a 

very high average percentage of expanded plots, which reaches 75% for SIMrnd, 96% for 

SIMuni1 and 98% for SIMuni2. These high average percentages of expanded plots imply that the 

vast majority of the initial sample plots need to be expanded if the adaptive plot design is 

applied to a random or especially a uniform population, which will incur a large amount of 

cost for the additional observations on the expanded plots. 

The results from an equivalent sampling effort are illustrated in Figure 4.5. It is seen that the 

SE% from the adaptive plot design is noticeably higher for SIMrnd and SIMuni1, and very 

slightly lower for SIMuni2, but much lower for the clustered population, SIMcl, in comparison 

with that from its nonadaptive counterparts. As shown in Table 4.1, the population SIMcl has 

the smallest comparable sample size for SRS among the four considered populations.  

 

Figure 4.5 SE% of the N/ha estimates 

under plot design I from equivalent 

sampling efforts for four populations 

with different spatial patterns: SIMrnd, 

SIMuni1, SIMuni2 and SIMcl respectively. 

The adaptive plot design has an initial 

sample plot radius of R=15m, CrV of 1 

and PSF of 2. 

Table 4.1 The comparable sample size for SRS from the adaptive plot design with n=20, 

CrV=1, PSF=2 and plot radius of R=15m.  

Populations  Comparable sample size for SRS 

SIMrnd  35 

SIMuni1  39.2 

SIMuni2  39.6 

SIMcl  22.1 
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4.1.2.2 Sample size 

The variability of the population SE% as a function of sample size is shown in Figure 4.6. For 

all populations, the SE% from the adaptive design is smaller than that from the nonadaptive 

counterparts, although they both displayed the same trend that is well-known in the field of 

nonadaptive random sampling: the SE% decreases with increasing sample size and levels off 

at a certain sample size, which varies from population to population. The difference in SE% 

between the two plot designs decreases with increasing sample size for each considered 

population. At a particular sample size, a large difference in SE% is observed from the 

populations SIM1 to SIM3, which have smaller cluster sizes in comparison with the other 

four populations.  

 

 

Figure 4.6 SE% of the N/ha estimates under plot design I as a function of sample size for the 

seven populations: SIM1 to SIM6 and TR. The settings for plot design I are: initial sample 

plot radius=15, CrV=1 and PSF=2. 
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4.1.2.3 Plot size factor and initial plot size 

The results for the role of the PSFs from an equivalent sample size of n=20 are given in 

Figure 4.7.  

 

 

SIM1 

 

 

SIM2 

 

 

SIM3 

 

 

SIM4 

 

 

SIM5 

 

 

SIM6 

 

 

TR 

 

 

Figure 4.7 SE% of the N/ha estimates under plot design I on the basis of an equivalent 

sample size as a function of PSF for the populations SIM1-SIM6 and TR. The SE% values of 

SRS are depicted as dotted and dashed horizontal line for the non-adaptive circular sample 

plots of 10m and 15m radius, respectively. The critical value of each adaptive design is 

CrV=1 (fromYang et al., 2009).  

Adaptive, R=10m

Non-adaptive, R=10m (for comparison)

Adaptive, R=15m

Non-adaptive, R=15m (for comparison)
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General trends are: (1) a larger initial plot size produces less variability, as expected; (2) the 

adaptive plot design lowers the variability in density estimates for all PSFs greater than 1, (3) 

the values of SE% decrease with increasing PSF but at diminishing rates of decline as PSF 

gets larger. This point of leveling-off occurs slightly earlier for the larger initial plot size 

R=15m for all maps. The PSF value beyond which the decline in SE% is small (Figure 4.7) 

was for population SIM1 about 2.5 and 2 for initial sample plot radius 10m and 15m, 

respectively, about 5 and 3 for population SIM2, and about 7 and 5 for population SIM3 and 

about 8 for both initial plot sizes in SIM4. For the other study populations the point of level-

off did not appear in the considered range of PSF. The differences in performance can be 

explained by the different size of clusters. In SIM1 a relatively small PSF-value can lead to 

capture of an entire cluster. In other populations a larger PSF is needed to accomplish the 

same (e.g. SIM4 and TR). However, in SIM5 and SIM6 where neighboring clusters may 

overlap, a very large PSF is needed to achieve a comparable reduction of SE%. 

Figure 4.8 shows the results from an equivalent sample effort, from which the following can 

be seen: (1) for all populations, the values of SE% for both adaptive and nonadaptive designs 

decrease but at different rates with increasing PSFs, on which the comparable sample sizes for 

SRS depend as seen in Table 4.2; (2) for the compactly clustered populations SIM1 to SIM3, 

and the real population TR, the adaptive design lowers the SE% at diminishing rates in a 

certain lower range of PSF and thereafter at growing rates, but with exception that the SE% 

from the adaptive design becomes larger from a certain PSF on for the populations SIM1 and 

SIM3 with the initial plot radius of R=15m, and for the population TR ; (3) for the populations 

with large sizes of clusters SIM4 to SIM6, the SE% from the nonadaptive design is smaller 

than that from the adaptive design. 
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Figure 4.8 SE% of the N/ha estimates under plot design I on the basis of equivalent sampling 

efforts as a function of PSF for the seven study populations SIM1-SIM6 and TR. The critical 

value for the adaptive designs is CrV=1. 
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Table 4.2 Comparable sample size for SRS from the adaptive plot designs with the PSFs 

ranging from 1 to 6 and CrV=1 for two initial plot radii , R=10m and R=15m, for the 

populations SIM1-SIM6 and TR.  

 

4.1.2.4 Critical value 

Figure 4.9 illustrates the interaction between CrV and PSF with respect to their effect on the 

statistical performance of the different plot designs with an equivalent sample size: (1) the SE% 

for the adaptive designs is less than that for non-adaptive designs (horizontal line in Figure 

4.9); and (2) the SE% increases (slightly) with increasing CrV. The latter rests on the fact that 

a CrV of 1 triggers the largest number of plots to be expanded. Table 4.3 gives the proportion 

of expanded plots for the different designs in Figure 4.9. 

The proportions of expanded plots depend on the spatial distribution of trees. SIM1 with its 

compact clusters has the lowest proportion of expanded plots. As well, the percentage of 

expanded clusters is smaller for larger CrVs. For population SIM1, for example, with CrVs 

=1, 2 or 3, the SE% is pretty much constant across levels of PSF. An explanation is again in 

the spatial pattern: if an initial plot intersects a compact and dense cluster, there is likely more 

PSF 

Comparable sample size for SRS 

R=10m  R=15m 

SIM1 SIM2 SIM3 SIM4 SIM5 SIM6 TR  SIM1 SIM2 SIM3 SIM4 SIM5 SIM6 TR 

1.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0  20.0 20.0 20.0 20.0 20.0 20.0 20.0 

1.5 20.4 20.7 21.4 22.3 26.3 26.3 21.7  20.7 21.1 22.0 23.1 28.3 28.2 22.4 

2.0 20.8 21.3 22.8 24.6 32.7 32.5 23.3  21.4 22.1 23.9 26.2 36.7 36.3 24.8 

2.5 21.2 22.0 24.2 27.0 39.0 38.8 25.0  22.1 23.2 25.9 29.3 45.0 44.5 27.2 

3.0 21.6 22.7 25.5 29.3 45.4 45.1 26.7  22.9 24.3 27.9 32.4 53.3 52.7 29.6 

3.5 22.0 23.3 26.9 31.6 51.7 51.3 28.3  23.6 25.4 29.8 35.5 61.6 60.9 32.1 

4.0 22.4 24.0 28.3 33.9 58.1 57.6 30.0  24.3 26.4 31.8 38.6 70.0 69.0 34.5 

4.5 22.7 24.7 29.7 36.3 64.4 63.9 31.7  25.0 27.5 33.8 41.7 78.3 77.2 36.9 

5.0 23.1 25.3 31.1 38.6 70.7 70.1 33.3  25.7 28.6 35.7 44.8 86.6 85.4 39.3 

5.5 23.5 26.0 32.5 40.9 77.1 76.4 35.0  26.4 29.6 37.7 47.9 94.9 93.5 41.7 

6.0 23.9 26.7 33.9 43.2 83.4 82.7 36.7  27.1 30.7 39.6 51.0 103.3 101.7 44.1 

6.5 24.3 27.3 35.2 45.5 89.8 88.9 38.3  27.8 31.8 41.6 54.1 111.6 109.9 46.5 

7.0 24.7 28.0 36.6 47.9 96.1 95.2 40.0  28.6 32.9 43.6 57.2 119.9 118.0 48.9 

7.5 25.1 28.6 38.0 50.2 102.5 101.5 41.7  29.3 33.9 45.5 60.3 128.2 126.2 51.3 

8.0 25.5 29.3 39.4 52.5 108.8 107.7 43.4  30.0 35.0 47.5 63.4 136.6 134.4 53.7 
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than one captured object which, everything else equal, tends to make results with CrV =1, 2 

and 3 similar. For some populations, the effect of CrV is stronger and interacts with PSF. 

Examples of this are TR, SIM3 and SIM4 which exhibit fairly similar spatial patterns (c.f. 

Figure 3.14). 

The absolute gain in precision of estimated density from the adaptive plot design is highest 

for the compactly clustered populations SIM1 and SIM2, and lowest for the scattered clusters 

in population SIM5 and SIM6. For the statistical performance, the choice of PSF is generally 

much more critical than the choice of CrV, the one exception is SIM1 with very compact 

clusters.  

 

 

Table 4.3 Average percentage of expanded plots in the seven study populations SIM1-SIM6 

and TR. The initial plot radius is 15m (fromYang et al., 2009).  

CrV 

Percentages of expanded plots  

SIM1 

λ=5m 

SIM2 

λ=10m 

SIM3 

λ =20m 

SIM4 

λ=30m 

SIM5 

λ=100m 

SIM6 

λ=100m 

TR: Mapped real population 

of Tamarix ramosissima 

1 7.13 10.72 19.65 31.00 83.25 81.70 24.10 

2 6.91 10.07 17.90 26.76 65.64 64.74 19.16 

3 6.74 9.52 16.56 23.67 48.61 50.90 16.83 
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Figure 4.9 SE% of the N/ha estimates under plot design I on the basis of an equivalent 

sample size for the seven study populations SIM1-SIM6 and TR for CrVs between 1 and 3 

and PSFs from 2 to 5. Initial sample plot radius was R=15m. For comparison, results for 

non-expanded initial plots are given as a horizontal dashed line (fromYang et al., 2009).  
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The results on the basis of equivalent sampling efforts are illustrated in Figure 4.10. It is 

found that: (1) the adaptive designs still lowers the SE% for the compactly clustered 

populations SIM1-SIM3 and the real population TR, and their absolute gain in reducing the 

SE% decreases with increasing CrV and is higher for SIM1 and SIM2 than for SIM3 and TR; 

and (2) the SE% for the nonadaptive plot designs is smaller in general for the population 

SIM4-SIM6.  

As expected, the comparable sample sizes for SRS decrease with increasing CrV, as seen in 

Table 4.4. The CrV has a stronger effect on the comparable sample size for SRS for the 

populations with large clusters, e.g. SIM5 and SIM6 than for those with small clusters. That 

gives the reason why the nonadaptive designs with comparable sample sizes turn out to be 

more statistically efficient than their adaptive counterparts. 

Table 4.4 Comparable sample sizes for SRS from the adaptive plot designs with the CrV in 

the range of 1 to 3 for the PSFs from 2 to 5 for the populations SIM1-SIM6 and TR. 

PSF CrV 

Comparable sample size for SRS 

SIM1 SIM2 SIM3 SIM4 SIM5 SIM6 TR 

 1 21.43 22.14 23.93 26.20 36.65 36.34 24.82 

2 2 21.38 22.01 23.58 25.35 33.13 32.95 23.83 

 3 21.35 21.90 23.31 24.73 29.72 30.18 23.37 

 1 22.85 24.29 27.86 32.40 53.30 52.68 29.64 

3 2 22.76 24.03 27.16 30.70 46.26 45.90 27.66 

 3 22.69 23.81 26.63 29.47 39.45 40.36 26.73 

 1 24.28 26.43 31.79 38.60 69.95 69.02 34.46 

4 2 24.14 26.04 30.74 36.05 59.39 58.84 31.50 

 3 24.04 25.71 29.94 34.20 49.17 50.54 30.10 

 1 25.70 28.57 35.72 44.80 86.60 85.36 39.28 

5 2 25.52 28.06 34.32 41.40 72.51 71.79 35.33 

 3 25.39 27.61 33.25 38.94 58.89 60.72 33.46 
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Figure 4.10 SE% of the N/ha estimates under plot design I on the basis of equivalent sample 

efforts for the seven study populations SIM1-SIM6 and TR for CrVs between 1 and 3 and 

PSFs from 2 to 5. Initial sample plot radius was R=15m.  
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4.2 RESULTS FROM PLOT DESIGN II 

4.2.1 Comparison among different spatial patterns 

The results from an equivalent sample size for the four populations with distinct spatial 

patterns SIMrnd, SIMuni1, SIMuni2  and SIMcl are presented in Figure 4.11, which demonstrates: 

(1) the adaptive plot design lowers the variability of SE%  greatly only for the clustered 

 

 

Figure 4.11 SE% of the N/ha estimates and average percentages of expanded plot under plot 

design II for four study populations with different spatial patterns on the basis of an 

equivalent sample size of n=20: SIMrnd, SIMuni1, SIMuni2 and SIMcl. The initial plot radius 

R=15m, and the subplot distance D=30m. 
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population SIMcl in the entire considered range of CrV from 1 to 4 but with a low and slightly 

varying average percentage of expanded plots; (2) the adaptive plot design lowers the 

variability of SE% very slightly only at the CrV of 1 but with a very high average percentage 

of expanded plots for the three nonclustered populations, SIMrnd, SIMuni1 and SIMuni2, 

especially for the last two, where the average percentage of expanded plot is nearly 100%; (3) 

a sharp increase and subsequent decrease in SE% occurred to the two uniform populations 

accompanies a sharp decrease in the average percentage of expanded plots in the lower range 

of CrV around 2 ; (4) the average percentage of expanded plots under the adaptive plot design 

decreases to zero at the CrV of 3 and 4 for the two uniform populations, SIMuni1 and SIMuni2 

respectively, which implies that the adaptive design is reduced to the nonadaptive design there 

as the condition to expand the plot was not fulfilled at any plot location. However, the zero 

average percentage of expanded plots is not found in the presented range of CrV from the 

random population SIMrnd, and the clustered population SIMcl, although at the CrV of 6, the 

observed average percentage of expanded plots is slightly higher than zero; (5) the variability 

of the average percentage of expanded plots under the adaptive plot design with CrV observed 

from the clustered population SIMcl is substantially lower than that from the three 

nonclustered populations.   

For the population SIMcl, the values of SE% under the adaptive plot design for the CrV of 5 

and 6 is not available simply because their computation turned out to be too time-consuming 

with the algorithm in use and finally had to be given up.  

The results on the basis of equivalent sampling efforts are given Figure 4.12 : (1) the SE% for 

the nonadaptive plot designs gets larger with increasing CrV, which reflects the decrease of 

the comparable sample sizes with increasing CrV as well, as shown in Table 4.5; (2) for the 

three nonclustered populations, the SE% for the adaptive designs is never smaller than that for 

the nonadaptive designs in the considered range of CrV; (3) no difference in SE% among plot 

designs exists any more from a certain level of CrV for the two uniform populations SIMuni1 

and SIMuni2; and (4) for the clustered population SIMcl, adaptive design lowers the SE% only 

at the CrV of 1 and thereafter its loss in estimation precision occurs, and gets heavier with 

increasing CrV. However, the loss is very slight at the CrV of 2.  
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Figure 4.12 SE% of the N/ha estimates under plot design II on the basis of equivalent 

sampling efforts for four study populations with different spatial patterns: SIMrnd, SIMuni1, 

SIMuni2 and SIMcl. The initial plot radius R=15m, and the subplot distance D=30m. The 

sample size given to all adaptive designs is n= 20. 

Table 4.5 Comparable sample sizes for SRS from the adaptive plot designs with CrV ranging 

from 1 to 6 for the populations SIMrnd, SIMuni1, SIMuni2 and SIMcl. 

CrV 
Comparable sample size for SRS 

SIMrnd SIMuni1 SIMuni2 SIMcl 

1 80 97.0 98.3 28.4 

2 52.1 52.9 50.0 26.36 

3 32.3 20.0 21.9 25.7 

4 23.8 20.0 20 25.2 

5 20.7 20 20 -- 

6 20.1 20 20 -- 
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4.2.2 Subplot distance  

The results from an equivalent sample size for the subplot distance D are given in Figure 4.13.  

It can be seen: (1) the adaptive plot design lowers the values of SE% for all the considered 

populations, but in different manners as the subplot distance D became larger; (2) the SE% 

under the adaptive plot design gets higher with increasing distances at a diminishing rate for 

SIM1 and SIM2, but at a slightly growing rate for SIM3, SIM4 and TR. But it decreases with 

increasing distances at a very slightly diminishing rate for SIM5 and SIM6; (3) for SIM1 and 

SIM2, it levels off at the distance of 40m and 45m respectively, where the difference in SE% 

from both considered designs vanishes or almost vanishes. Such a levelling off is not found 

from the other clustered populations, where the SE% from the adaptive plot design is always 

smaller than that from the nonadaptive plot design; and (4) the average percentage of 

expanded plots is independent of the distance between a subplot centre and its associated 

initial sample point for a particular population. It is remarkably lower for SIM1-SIM4 and TR 

than that for SIM5 and SIM6, which have an average percentage of expanded plots higher 

than 80%. 

The results from equivalent sampling efforts are depicted in Figure 4.14: (1) for the most 

compactly clustered population SIM1, the real population TR and the three loosely clustered 

populations SIM4-SIM6, the SE% for the adaptive designs is higher than that for the 

nonadaptive designs over the considered range of the subplot distance. The differences in SE% 

remain constantly obvious for SIM5 and SIM6 over the entire range of the subplot distance D, 

but very slight for the non-loosely cluster populations SIM1, SIM4 and TR at the smallest 

subplot distance of D=30m; (2) for the populations SIM2 and SIM3, the SE% from the 

adaptive designs is smaller in a certain lower range of the subplot distance D, and gets 

gradually equal to and then larger than that from the nonadaptive designs, with increasing 

subplot distance.  

The comparable sample sizes for SRS from the adaptive plot designs do not depend on the 

subplot distance D, as seen in Table 4.6. 
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Figure 4.13  SE% of the N/ha estimates and averaged percentages of expanded plots on the 

basis of an equivalent sample size for the seven study populations SIM1-SIM6 and TR. The 

initial sample plot radius was R=15m and the CrV was 1. 
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Figure 4.14 SE% of the N/ha estimates under plot design II on the basis of equivalent 

sampling efforts for the seven populations SIM1-SIM6 and TR. The initial sample plot radius 

was R=15m and the CrV was 1. 

Table 4.6 Comparable sample sizes for SRS for the populations SIM1-SIM6 and TR. The 

settings for the adaptive designs are the same as seen in Figure 4.13. 

Populations  Comparable sample size for SRS 

SIM1  25.7 

SIM2  28.6 

SIM3  35.7 

SIM4  44.8 

SIM5  86.6 

SIM6  85.4 

TR  39.3 
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4.2.3 Critical value 

The SE% and average percentage of expanded plots with CrV ranging from 1 to 3 for four 

predefined subplot distances for the real population is illustrated in Figure 4.15. The results 

from an equivalent sample size illustrate: (1) the SE% under the adaptive plot designs is lower 

than that under their nonadaptive counterparts (horizontal line in Figure 4.15); (2) the SE% 

increases slightly with increasing CrV for each of the four given distances D; (3) the  distance 

D has stronger effect on the SE% than CrV when D is high enough, for instance,  when D is 

increased from 30m to 50m; and (4) the average percentage of expanded plots under each 

adaptive plot design is not related to the subplot distance D, but depends on the CrV. It 

decreases with increasing CrV at a slightly diminishing rate.  

 

Figure 4.15 SE% of the N/ha estimates under plot design II for the plot designs with an 

equivalent sample size for the real population, TR. The initial sample plot radius is R=15m, 

and the subplot distance is D=30m. 
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Figure 4.16 shows the results from equivalent sampling efforts. It can be found that: (1) the 

SE% for nonadaptive designs is constantly lower than that from the adaptive designs over the 

entire considered range of CrV; (2) the SE% for the nonadaptive designs gets higher with 

increasing CrV, which is very similar to the trends observed from the adaptive designs. The 

comparable sample sizes related to the CrVs are given in Table 4.7.  

 

Figure 4.16 SE% of the N/ha estimates under plot design II on the basis of equivalent 

sampling efforts for the real population TR, for sample size n=20. The initial plot radius 

R=15m, and the subplot distance D=30m 

Table 4.7 Comparable sample sizes for SRS from the adaptive plot designs with CrV ranging 

from 1 to 3 for the real population TR.  The initial sample plot radius is R=15m and the 

subplot distance is D=30m.  

CrV 
Comparable sample size for SRS 

for the population TR 

1 39.28 

2 35.33 

3 33.46 
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4.3 RESULTS FROM PLOT DESIGN III 

4.3.1 Comparison among different spatial patterns and critical value 

The results for the four populations with distinct spatial patterns SIMrnd, SIMuni1, SIMuni2 and 

SIMcl , to which plot design III is applied to estimate the basal area per ha, are presented in 

Figure 4.17.  

 

Figure 4.17 SE% of the G/ha estimates under plot design III on the basis of an equivalent 

sample size and averaged percentages of expanded plots for the four populations with distinct 

spatial patterns, SIMrnd, SIMuni1, SIMuni2, and SIMcl. The initial BAF was 2 and the final BAF 

was 1, and n=20. 



Results  

94 

 

It is found: (1) the adaptive plot design reduces the variability of SE% greatly only for the 

clustered population SIMcl in the range of CrV from 1 to 3, but with a very low and slightly 

varying average percentage of expanded plots; and (2) the adaptive plot design reduces the SE% 

very slightly only at the CrV of 1 but with a very high average percentage of expanded plots 

for the three nonclustered populations, which is 85% for SIMrnd, 96% for SIMuni1 and SIMuni2. 

But at the CrV larger than 1, the SE% from the adaptive plot design exceeds that from its 

nonadaptive counterpart with a considerably large drop of the average percentage of expanded 

plots.  In order to be consistent with the expressions used for plot design I and II, the term 

“average percentage of expanded plots” continues to be used for plot design III, but means 

actually the average percentage of adapted initial BAF.  

4.3.2 Plot size factor and initial BAF 

The results for the role of the PSF are illustrated in Figure 4.18, from which the following is 

 

Figure 4.18 SE% of the G/ha under plot design III as a function of PSF for different initial 

BAFs in the case of CrV=1 for the population SIMcl. The sample size is n=20. 
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found: (1) the small initial BAFs produce more precise estimates of G/ha as expected; (2) the 

adaptive designs reduce the variability in G/ha estimates for all PSFs larger than 1; (3) the 

values of the SE% decrease at diminishing rates with increasing PSF. The bigger the initial 

BAFs are, the lower is the SE% levels off. The PSF values at the leveling-off points of SE% 

are about 2.5, 3.5, 4, 4.5 and 5 for the initial BAFs of 2, 3, 4, 5 and 6 respectively and their 

corresponding final PSFs are 1.25, 1.17, 1, 0.9 and 0.83.  

4.4 RESULTS FROM COMPARING PLOT DESIGN I AND II 

Figure 4.19 shows the results of comparison between plot design I and plot design II on the 

common basis that both designs have the same sample size of n=20, the same initial sample 

plot radius of 15m, the same CrV of 1 and the same size of adapted initial sample plot ensured 

by defining the PSF for Plot design I to be 5. The subplot distance is set to 30m for plot 

design II because at that distance the populations under consideration except SIM5 and SIM6 

have the lowest SE% as seen in Figure 4.13.  

 

 

Figure 4.19 Comparison between plot design I and II. PSF for plot design I is 5, and the 

subplot distance D is set to 30m for plot design II. The average percentages of adapted initial 

sample plots from both designs for populations SIM1-SIM6 and TR are noted on the top of 

each column. 
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From Figure 4.19, it is observed that: (1) plot design I provides a noticeable lower SE% for 

the two compactly clustered populations SIM1 and SIM2 and a slightly lower SE% for the 

less compactly clustered population SIM3; (2) the SE% from plot design I is slightly larger 

than that from plot design II for the scattered or widely scattered populations SIM4-SIM6, 

and hardly larger for population TR; (3) both designs exhibit no difference in the average 

percentage of adapted initial sample plots for each considered populations here as they have 

the same size of initial sample plot and an equal CrV of 1. 
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5 DISCUSSION  

Over the past several decades, a variety of adaptive sampling strategies have been developed. 

In this study, three easy-to-implement adaptive plot designs are proposed and their statistical 

performances are comparatively evaluated. The results demonstrate that the proposed plot 

designs are promising in general.   

In this study, stratification of the test populations is assumed impossible for two reasons: (1) 

stratification of rare and geographically clustered populations is usually impossible and (2) if 

it is possible, conventional stratified random sampling is more efficient than conventional 

ACS (Christman, 2000). The results of the Monte Carlo simulation for plot design I with DSS 

mean estimator indicates that for a geographically clustered population the DSS mean 

estimator is negatively biased for plot design I. The magnitude of bias depends on PSF and 

initial plot size. The DSS mean estimator is a design-unbiased estimator. It implies that the 

unbiasedness of the DSS estimator depends not on the spatial pattern in a population to be 

sampled at all, but on the strict implementation of the DSS sampling procedure. Bias can be 

introduced even into any design-unbiased estimators by edge effect (Gregoire, 1982) if it is 

not or not appropriately corrected.  

However, in this study, the edge effect across the population boundaries is believed to be 

appropriately corrected by the mirage method because the boundaries of the simulated 

population SIMdss are straight with square corners, and definitely not a source of bias. That is 

confirmed by the unbiased mean estimates from the SRS estimator for the nonadaptive 

designs as seen in Figure 4.1. In addition, a slopover of some plots into neighboring strata in 

the stratified sampling will introduce bias if it is not correctly addressed. But it is not an issue 

for DSS at all as explicitly mentioned in Lam et al. (2010). All these suggest that the bias 

originates from the difference of plot design I from DSS in the sampling procedures. 

From a DSS point of view, the initial sampling under plot design I serves the same purpose of 

estimating strata weights as the first-phase-sampling in DSS. The only difference between 

them is that the target variable rather than an ancillary variable is used to estimate the strata 

weights for plot design I. But that will not constitute a principal problem because the target 

variable can be imagined to be an ancillary variable sharing the same values with it. In 

essence, the initial sampling under plot design I is equivalent to the first-phase-sampling of 

DSS in terms of sampling design, plot design and estimation design as seen in Lam et al. 
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(2010), Chojnacky (1998), and Williams (2001). It is impossible that the bias is from the 

initial sampling for the estimation of the strata weights.  

The standard sampling procedure in the second-phase of DSS is taking a subsample of the 

first-phase sample plots to observe the target variable for the derivation of strata estimates. 

The “subsample” here implies that the sizes of the first-phase-plots and the second-phase-

plots, which is referred to as a support region (Williams, 2001) or a reference area (Lam et al., 

2010) to derive the value of a point in an infinite/continuous population, should not be 

different to ensure the unbiasedness of the DSS estimators. However, the implied principle for 

the unbiaseness is obviously violated by the expanded plots under plot design I. The size 

difference issue between the plots of two phases was discussed with respect to the 

misclassification but not the bias in Lam et al. (2010), where the second-phase-plots for two 

strata are smaller than but still within the first-phase-plots.  

The bias of the DSS estimator for plot design I can also be interpreted from the viewpoint of 

inclusion probability. In this study, the standard DSS estimator is used, which implies that all 

trees in the same stratum are assumed to have an equal inclusion probability. As a matter of 

fact, the inclusion probabilities of the trees under plot design I are different even for the trees 

in the same stratum, which can be seen very clearly from the inclusion zone concept 

illustrated in Figure 3.5. 

The RMSEs from plot design I with the DSS estimator is systematically smaller than the 

standard error derived from SRS and decrease with increasing PSFs. But on the other hand, 

the bias increases with increasing PSFs as well. That can also be easily explained using the 

HT estimator based on the inclusion zone concept illustrated in Figure 3.5 , where it can be 

seen directly that the area of the inclusion zone of a tree in a rare and geographically clustered 

population is mostly smaller than but seldom equal to that of the expanded plots. In the 

simulation with the population SIMdss, the CrV for plot design I is set to 1. That means, the 

mean estimate for the stratum where the condition to adapt is not met equals always zero 

simply because no tree is found there. The mean estimate for the stratum with the condition to 

adapt satisfied is derived from the SRS mean estimator based on the expanded plots. That 

implies the area of the inclusion zone of a tree is assumed to equal that of the expanded plots. 

It is then clear that the assumed inclusion probabilities of most trees in the population are 

more or less larger than their actual inclusion probabilities under plot design I. As a 

consequence, the negative bias occurs. To be more specific, the replacement of the actual 

inclusion probabilities with the assumed inclusion probilities introduces the bias, and the 
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cause for the bias to be negative is that the assumed inclusion probabilities are mostly larger 

but never smaller than the actual inclusion probability.  

The increase of the bias with increasing PSFs is because the assumed inclusion probabilities 

have a higher rate of increase with increasing PSFs than the actual inclusion probabilities. 

The comparison based on the inclusion zone concept for HT estimator and the jigsaw puzzle 

approach for plot design I shows that plot design I is superior to sampling with the non-

expanded initial plots on the basis of an equivalent sample size in all considered cases, 

especially for the clustered populations as demonstrated in Figure 4.4. Yet the relative 

performance for a clustered population depends (1) on the PSF, (2) on the CrV and above all 

(3) on the degree of clustering of the target objects in the study populations, as demonstrated 

in Figure 4.9: for more widely scattered clusters, as in populations SIM5 and SIM6, the 

precision of sampling with nonadapted initial plots is only slightly less than for the adaptive 

plot design. However, in compactly clustered populations the adaptive design suggests a 

potential of improvements in precision without encumbering field work by complex, 

impractical and time-consuming plot-expansion rules as typically seen in conventional ACS 

designs (Smith et al., 2003; Su and Quinn II, 2003; Turk and Borkowski, 2005) , but at the 

cost of measuring positions of all sampled trees and their relevant neighbors. 

The number of expanded plots under plot design I can be controlled, to a certain extent, by the 

choice of CrV: a higher CrV triggers fewer expansions (Table 4.3). Taking into account that 

the loss in precision by using a CrV of 2 or 3 is expected to be minor (Figure 4.9), one might 

choose a CrV larger than 1. Choosing a suitable CrV is also a strategic issue for the classic 

adaptive plot design (Brown, 2003).  

The comparison made between plot design II and its nonadaptive counterpart on the basis of 

an equivalent sample size demonstrates that plot design II outperforms its nonadaptive 

counterpart, but only for the spatially clustered populations as seen in Figure 4.11 and Figure 

4.13. The sharp increases of SE% occurred to the populations SIMuni1 and SIMuni2 with CrV 

varied from 1 to 2 are resulted from the sharp decreases in the average percentage of 

expanded plots due to the larger CrV. The sharp decreases in the average percentage of 

expanded plots implies that only a smaller proportion of trees have their inclusion 

probabilities increased and the others not. That is to say, the ratios used in the HT estimator 

remain unchanged for most trees, but decrease for the trees with its inclusion probabilities still 

increased with the CrV of 2. Hence, the variabilities in terms of SE% increase.  
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As shown in Figure 4.13 and Figure 4.15, for a clustered population, its comparative 

performance is affected by: (1) the subplot distance D; (2) the CrV and in particular, and (3) 

the degree of clustering of the target objects in the populations of interest. For the compactly 

clustered populations, the distance D of two times the initial plot radius is recommended. As a 

result, the four adaptively added subplots are tangent with the initial sample plot. For the 

populations with widely scattered clusters as SIM5 and SIM6, an increase in distance D to 

have distant adaptive subplots brings very limited gain in precision with a side effect of more 

travel time to the adaptive subplots. Plot design II is rather similar to plot design I in the 

influencing of the CrV and the degree of clustering on sampling precision as well as the 

fashion to control the number of expanded plots.  

From a geostatistical point of view, it may be better to have subplots of a cluster plot settled 

far away from each other for a better precision with respect to spatial autocorrelation. It 

follows that design II would be expected to be more efficient than design I, since the 

expanded plots under plot design I are still single compact plots unlike the cluster plots under 

plot design II. However the comparison made between plot design I and II as seen in Figure 

4.19 shows, interestingly, for the compactly clustered populations, plot design I turns out to 

be statistically more efficient. For the less compactly clustered population, plot design I 

produces only slightly more precise estimates. Even for the populations with widely scattered 

clusters, plot design I is only slightly less efficient than plot design II. Furthermore, from a 

practical point of view, the field installation of the adaptively expanded plots under plot 

design I is much easier than that of the adaptive cluster plots under plot design II since the 

positioning of the centers of subplots and relevant tree search circles costs additional time. 

Therefore, plot design I is preferable to plot design II for sampling rare and geographically 

clustered populations.  

The comparison made for plot design III on the basis of an equivalent sample size 

demonstrates that plot design III is statistically more efficient only for sampling rare and 

spatially clustered populations than its nonadaptive version and its performance depends on 

the CrV and the PSF as seen in Figure 4.17 and Figure 4.18. As in plot design I and II, the 

CrV serves to control the average percentage of adapted sample points. The choice of CrV 

among 1, 2 and 3 is actually an issue of trade-off between more sampling effort and more gain 

in precision. However, this needs to be confirmed with more clustered populations in addition 

to SIMcl.   
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The adaptation under plot design I, II and III means that more time is needed for making 

additional field observations; time that could be equally devoted to a larger nonadaptive 

sample size, namely a comparable sample size on the basis of an equivalent sampling effort as 

seen in the tables from Table 4.1 to Table 4.7. The comparison made for plot design I and II 

on the basis of equivalent sampling efforts as seen in Figure 4.5, Figure 4.8, Figure 4.10, 

Figure 4.12, Figure 4.14, and Figure 4.16 provides another insight into their statistical 

performances, which shows clearly that plot design I and II are efficient exclusively for 

sampling the clustered populations. However, in most forest inventories especially large area 

forest inventories, considerable time is spent in moving between sample locations. If a modest 

increase in the time spent on a single sample location is necessary to complete an expanded 

plot, the increase in total inventory time may not be a concern. The results obtained from this 

study only allow a rough estimation of the additional efforts: If determination of the 

coordinates of an object takes a fixed amount of time, and the number of objects to measure is 

proportional to the observed area, the additional time requirement can be obtained from the 

percentage of expanded plots as seen in the presented cost functions. 

For any complex plot design that derives inclusion probabilities from inclusion zones (e.g. 

Kleinn and Vilčko, 2006) the challenge is to find an efficient and fast numerical procedure 

that is geometrically correct. Determination of inclusion zones may, for example, be made 

easier by survey techniques that allow a rapid mapping of tree positions or models that can 

predict the inclusion zones from easy and rapidly observable features in a field plot. In this 

study the actual inclusion probabilities are derived analytically in a GIS environment, so that 

field work is restricted to the determination of polar coordinates of relevant trees. The 

determination of relevant trees is relatively easy under plot design I and II, but conspicuously 

difficult under plot design III because it is impossible to define a fixed relevant tree search 

area.   

This study provides some insights to three new easy-to-implement adaptive plot designs for 

sampling sparse yet spatially clustered populations. They can be expected to be a viable 

alternative to the conventional ACS if it conserves most of the statistical efficiency attributed 

to ACS, as a cumbersome open-ended field work is excluded. It is obvious that overall 

efficiencies of these designs and the conventional ACS design vary from case to case, and 

thus a direct analytic comparison between them simply based on the variance estimator is 

impossible. Which plot design is preferable depends on the actual conditions and cannot be 

answered in general.  
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6 CONCLUSION 

The standard DSS estimator for the mean as used for plot design I in the manner presented in 

this study is negatively biased.  

The proposed three adaptive plot designs are superior to their nonadaptive counterparts in 

sampling rare and geographically clustered populations. However, effort for estimation is 

problematic. Their statistical performances depend on the degree of clustering the population 

of interest and the settings of their design factors including initial plot size, CrV, PSF (only 

for plot design I and III), and subplot distance (only for plot design II). The subplot distance 

equal to the sample plot diameter produces the best performances for the rare and spatially 

clustered populations. 

Plot design I is preferable to plot design II in terms of sampling efficiency, flexibility in the 

choice of final sample plot size and easy field implementation for sampling rare and 

geographically clustered populations.   

Further simulation studies with populations of different degrees of spatial clustering are 

needed for plot design III to have a comprehensive insight into the influences of clustering on 

its performance.  
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7 SUMMARY 

In ecological systems, rare species have great importance to biodiversity monitoring and 

conservation. Many of them are not only numerically rare, but also geographically clustered, 

and do not allow statistically meaningful stratification. For such populations, the efficiency of 

nonadaptive designs with a predefined number of n sample plots is low because of many 

“empty plots”.  

Adaptive cluster sampling (ACS) was introduced as a strategy to address that challenge and is 

generally considered to be superior to conventional sampling techniques. Many studies on it 

have been carried out, ranging from the development of ACS designs to the appropriate 

configuration of design factors and their practical application. The major developments and 

related key issues in ACS since its introduction are reviewed in chapter two of this 

dissertation for reference in choosing an appropriate ACS design and estimators. 

ACS has not yet been used on a routine basis in field surveys due to its disadvantages leading 

to practical difficulties in field survey design and implementation. In this methodological 

study, three new and more practical adaptive plot designs, referred to as plot design I, II and 

III, are introduced and compared with their nonadaptive counterparts with an overall objective 

to improve the efficiency of sampling rare and geographically clustered populations in forest 

inventories and ecological surveys. The proposed designs are based on a simple and practical 

approach of “conditional one-off expansion of initial plots”; thereby their adaptation 

processes need not to be conducted in a time-consuming and error-prone sequential fashion as 

seen in the conventional ACS design. For simplicity, only circular plots are used in the study 

as an example. 

In plot design I, two plot sizes need to be predetermined, one small for the initial plots and the 

other large but fixed sized for the expanded plots whenever a predefined condition to adapt is 

satisfied. The size of the expanded plots is expressed in terms of a plot size factor (PSF), 

which indicates how much larger the area of an expanded plot is in relation to that of an initial 

plot.  

In plot design II, an initial sample of single compact and fixed-area plots is installed, and each 

initial plot expands to a fixed-area cluster plot whenever the condition to adapt is met. Each 

cluster plot consists of five compact subplots: an initial sample plot and four additional plots 

installed at a predefined subplot distance in the NW, NE, SW and SE direction of the initial 

sample plot respectively. 
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Plot design III is an adaptive version of relascope sampling, and a PSF for the imaginary plots 

are predefined alternatively in terms of a final basal area factor (BAF) larger than a predefined 

initial BAF. Under plot design III, an initial relascope sample is selected with the initial BAF, 

and the final BAF will be used to repeat the relascope sampling once more at each sample 

point where the condition to adapt is satisfied.  

The three plot designs are proposed based on the strategy of unequal probability sampling. 

Under them, a population unit with other units nearby has a higher inclusion probability than 

an isolated unit or a unit with fewer neighbors since the selection of a neighboring unit in an 

initial plot may lead to the selection of that particular unit finally in the sample.  Therefore, 

the standard technique used in fixed-area plot sampling to extrapolate the per-plot 

observations to per-hectare values is inappropriate for them to produce design-unbiased 

estimates.  

In this study, the estimation design adopts the infinite population approach, which considers 

the dimensionless points in the area of interest as sampling elements. Under this approach, the 

construction of design-unbiased estimators for various plot designs is straightforward, so that 

the Horvitz-Thompson (HT) estimator framework can be applied directly once the inclusion 

probabilities of sample units are computed. The inclusion probability of a population unit is 

derived from its inclusion zone, which depends on the initial plot size, PSF (for plot design I 

and III), subplot distance (for plot design II), the condition to adapt in terms of a critical value 

(CrV), and the degree of clustering of that population. In addition, the initial sample points are 

selected by simple random sampling (SRS) in order to meet the prerequisite of a probabilistic 

sampling.  

In addition to the HT estimator for the population total, the mean estimator for double 

sampling for stratification (DSS) is also tried, but only for plot design I. The initial sample, 

which serves the same purpose as the first-phase sample in DSS, is stratified into two strata, 

one where the observations of the target variable are less than the CrV (stratum 1) and the 

other where they are not (stratum 2). The estimated means for stratum 1 and stratum 2 are 

derived using the SRS mean estimator from the initial plots in stratum 1 and the expanded 

plots respectively.  

The cost function for each adaptive plot design is developed from a cost function for SRS. All 

costs are expressed in terms of time and broken down into three categories: average time 

requirement for the round trip between the camp and the inventory region, for the field 
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measurement of the target variable, and for the collection of the relevant neighbors of the 

sample units. 

The traditional Monte-Carlo simulation of a large number of random samples and the jigsaw-

puzzle approach based on the concept of inclusion zones are employed for the evaluation of 

the statistical performances of the considered adaptive plot designs and their nonadaptive 

counterparts. The former is used for the approximation of the root mean square error (RMSE) 

of the estimates from plot design I with the DSS mean estimator, the latter for the direct 

computation of parametric relative standard error (SE%) of the estimates from all three plot 

designs with the HT estimator. The parameter to be estimated is the number of stems per 

hectare (N/ha) for plot design I and II, and the basal area per hectare (G/ha) for plot design III.  

One real and eleven artificial populations are used to reveal whether the proposed designs are 

exclusively more efficient for sampling rare and geographically clustered populations than 

their nonadaptive counterparts as expected and investigate the effects of the adaptive design 

factors and the degree of clustering of the population on the statistical performances of 

different adaptive plot designs.  The simulated clustered populations are generated from a 

variation of a Poisson cluster process.  

The results from the traditional Monte-Carlo simulation for plot design I show: (1) the 

simulation means of the estimates from the DSS mean estimator for the adaptive designs with 

CrV=1 decrease with increasing PSFs (PSF    ) for a particular initial plot size and increase 

with growing initial plot size for the given PSF=2, but are always lower than the parametric 

value and those from their nonadaptive counterparts; (2) the RMSEs from the adaptive 

designs are consistently smaller than the estimated standard error from their nonadaptive 

counterparts.    

The results from the jigsaw-puzzle approach on the basis of an equivalent sample size of n=20 

demonstrate that the adaptive designs lower the SE% considerably with the low average 

percentages of expanded plots for the clustered populations, and only slightly for the random 

and uniform populations but with the high average percentages of expanded plots. For the 

considered clustered populations, it is also shown for the adaptive designs that (1) a larger 

initial plot size produces less variability as expected; (2) the SE% increases with growing CrV; 

(3) the SE% is reduced when PSFs larger than 1 for plot design I and III. It decreases with 

increasing PSF and levels off at a certain point in general; (3) for plot design II, the SE% in 

the case of CrV=1 increases with growing subplot distance, and the point of leveling-off 

occurs only to the two compactly clustered populations; (4) on a comparable basis, plot 
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design I produces a noticeable lower SE% than plot design II with its subplot distance equal 

to the diameter of the initial sample plot for the two compactly clustered populations. Only 

slight differences in SE% are observed for the other considered populations.   

The adaptation under plot design I, II and III means that more sampling effort is needed for 

making additional field observations. The results from the jigsaw-puzzle approach on the 

basis of an equivalent sample effort measured in terms of the total area of sample plots for 

plot design I with its PSF larger than 1 and plot design II with its subplot distance equal to the 

initial plot diameter illustrate that the SE% from either of them is mostly lower and seldom 

slightly higher for the populations with their clusters not widely scattered. The comparable 

sample size for SRS depends on the initial plot size and CrV, and on PSF for plot design I as 

well. 

It is concluded from this study that: (1) the DSS mean estimator used for plot design I in the 

manner of this study is negatively biased. The reason is that the objects in the population of 

interest have unequal probabilities to be included in the sample, but the SRS mean estimator 

is used to derive the strata mean estimates for the estimation of the population parameter; (2) 

the proposed three adaptive plot designs are superior to their nonadaptive counterparts in 

sampling rare and geographically populations, and their statistical performances depend on 

the degree of clustering the population of interest and the settings of their design factors 

including initial plot size, CrV, PSF (only for plot design I and III), and subplot distance (only 

for plot design II); (3) the subplot distance equal to the sample plot diameter for plot design II 

produces the best performances for the rare and spatially clustered populations; (4) plot 

design I is preferable to plot design II in terms of sampling efficiency, flexibility in the choice 

of final sample plot size and easy field implementation; (5) further simulation studies with 

populations of different degrees of spatial clustering are needed for plot design III to have a 

comprehensive insight into the influences of clustering on its performance.  
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