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Anika Roloff, Hannes Böttcher und Robert Nuske haben bei den Aussenaufnahmen

im Tiefschnee bei klirrendem Frost oder sommerlichen Wolkenbrüchen mitgeholfen,
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1 INTRODUCTION

1 Introduction

The concept of sustainability has been becoming widely popular among people of all

walks of life after the earth summit 1992 in Rio de Janeiro (United Nations, 1992),

where public awareness was raised to new heights. Sustainability has a spatial and

a time component. Assessment of this concept hinges on comparing conditions over

time.

The concept of sustainability has a long tradition in German forestry. The term

was first mentioned by Carlowitz (1713). Ever since it has been the guiding man-

agement principle and today is anchored in the federal state’s (Länder) forest law

(Niedersächsische Landesregierung, 1992). Its interpretation has been developed over

time. Originally, sustainable forest use was concerned with sufficient supply of timber.

Nowadays the concept is applied to the complex and dynamical ecosystem forest with

its multi-functional products. Criteria and quantitative indicators of sustainable use

have been proposed for temperate wood-lands (Schneider, 1995) and are applied in

the certification process of forest enterprises (Brahms and Graulich, 2000). Informa-

tion that is needed by management activities can be categorized threefold according

to Davis (1966) as follows:

1. Information that is external to the forest, e.g. property rights or weather.

2. Direct information that is derived from the forest and its condition, e.g. standing

timber volume or diversity.

3. Operational information like budget of management objectives.

The direct information is derived from field measurements. The forest management

planning is based on such direct information among other sources and surveys are

usually conducted on a 10 year cycle. In the classical survey approach, each stand is

visited by an inventory forester and, based on an ocular assessment and some mea-

surements, stand characteristics like volume per hectare are derived from a yield table.

Information at the enterprise scale is then obtained by assembling the information at

the stand level.

The introduction of silvicultural programs aiming at transforming typical single
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1 INTRODUCTION

species rotation forest management stands into mixed structured continuous forestry

system stands (Otto, 1989; Otto, 1991) renders the described approach impractical.

The yield table is no longer applicable owing to different growth patterns in temporally

and spatially mixed forests, yielding imprecise estimates (Tzschupke, 1991).These

changed conditions led to the introduction of sample based inventories at the enter-

prise level by the state forest department and by private forest owners.

Sample based inventories have advantages over classical approaches (Böckmann et al.,

1998), namely feasibility of extensive measurements because the actual surveyed area

is reduced, statistical inference of the uncertainty of the measurements, and improved

increment estimation and management control. Especially the last point has become

very important in the course of forest decline research (Beck, 1999).

However, the major drawback of sample based inventories is that they cannot replace

the stand wise assessment of classical forest management planning surveys (Bitter and

Merrem, 1997; Tzschupke, 1991). Confining target populations entails lower sampling

densities which is problematic because the variation within the target populations will

not decrease accordingly. Economically viable sample densities for forest enterprises

of around 6-7 ha per sampling unit mean that few if any stands will comprise enough

sample points to allow sound statistical inference. Some stands will even lack any

sample at all.

A global assessment of sustainability, e.g. at the country level as an extreme example,

does not conform to its definition. The normal-forest model (Hundeshagen, 1826)

implies per definitionem sustainability at the global level although it entails clear

cutting large areas. It should be clear that sustainability should be evaluated at the

spatial scale at which management or land use activities are carried out, that is, at

the stand level in case of forest enterprises.

Conventional inventories have operated at the stand level but will be gradually out-

phased due to cost constraints. The need of stand wise information demands the

development of techniques that enable a reliable and evaluable prediction of stand

characteristics based on the high quality point information of field sample plots.

2



2 OBJECTIVE

2 Objective

The objective of this study is to explore and compare different methods that allow an

estimation of characteristics at the stand level based on information surveyed at the

district level. From a theoretical viewpoint the objective is equivalent to the gener-

alization of point information (the sample plots) into the spatial domain (the forest

stands). In a statistical sense, the problem can either be regarded as a regionaliza-

tion (Journel and Huijbregts, 1978; Saborowski and Stock, 1994) or as a small area

estimation (Särndal et al., 1992; Dees, 1996).

The basic idea underlying all approaches is to consider only similar observations or

a weighted average thereof. The approaches differ with respect to how similarity is

defined. In the spatial domain, similarity between a sampling unit and an arbitrary

location refers to their spatial distance. An appropriate measure then is the spatial

correlation structure among the sampling units. Such an approach comprises not only

the values of the variables surveyed at the sample locations but also their alignment

in space. The resulting spatial interpolation is commonly called kriging.

The ”feature space similarity“ between a sample location and an arbitrary location

refers to how alike the surveyed auxiliary characteristics are. Distance can be derived

by multivariate techniques like canonical correlation analysis, can be heuristically

modeled, or can be regarded constant as done with simple mean estimators.

All introduced methods depend on auxiliary information, that is, additional infor-

mation needs to be available at the sample location as well as at all prediction lo-

cations. The use of auxiliary information in forest inventories can be regarded as

established with analog CIR imagery being the principal source (Akça et al., 1993;

Bitter and Merrem, 1997). Another source of auxiliary information is provided by the

field assessment (”Bestandesbegang“). The field assessment is implemented by forest

administrations as part of the new sample based forest management planning.

The comparison of the investigated methods comprises their complexity, ease of im-

plementation, accuracy, and demands for auxiliary information. Practitioners can

thus choose from the repertoire to tailor their implementation according to their data

at hand and needs.
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3 DATA SOURCES

3 Data sources

Three data sets of three different forest districts are investigated. The first, pro-

vided by the ”Forstplanungsamt“ (forest planning office) of the forest administration

of Lower Saxony, and the second, provided by the Forstliche Versuchsanstalt, FVA

(forest research station), of the forest administration of Baden-Württemberg serve

the model selection. The third data set, again provided by the ”Forstplanungsamt“

from the forest service of Lower Saxony, is used for model evaluation and refinement.

The first and third data sets are characterized by a rather low diversity compared to

the second data set.

Model selection is be guided by cross-validation or leave-one-out prediction (cf. sec-

tion 4.7). It should be noted that errors obtained from cross-validating point mea-

surements, that is, the BI plots, will be much larger than prediction errors of entire

stands. This is due to the relative small size of the BI plots and the inhomogeneity

of stands.

3.1 Lower Saxony: Grünenplan

The forest management planning of the forest service of Lower Saxony is based on a

2 phase sampling design. Its optimization leads to an average density of around 6 ha

per terrestrial phase 2 unit (Saborowski and Dahm, 1996).

In phase 1, plots are located on analog CIR imagery with scale 1:12500. The plot

alignment follows a 100 m × 100 m raster and plots are classified according to their

species group and their age. The arrangement of species groups is binary with ”pre-

dominantly deciduous“ and ”predominantly coniferous“ . Age classes are ”< 40 y.“,

”≥ 40 & < 80 y.“, ”≥ 80 & < 120 y.“, and ”≥ 120 y.“. The allocation of phase 1

plots to one out of the possible eight strata is determined by the conditions at the

grid-nodes, that is, the phase 1 plots are not representative for the forest stands they

are located in but only for a small circle around the node roughly covering a terrestrial

phase 2 plot.

In phase 2, a subset of the phase 1 plots are surveyed on circular plots on the ground.

4



3 DATA SOURCES 3.1 Lower Saxony: Grünenplan

The tree population is divided into three sub-populations which differ with respect to

selection probabilities. Trees with a dbh < 7 cm are counted as regeneration by height

levels on a circle with radius 3 m. Trees with a dbh ≥ 7 cm and < 30 cm are surveyed

on a circle with radius 6 m whereas trees with a dbh ≥ 30 cm are surveyed on circles

with radius 13 m. All three circles have the same center. For each phase 2 plot the

compartment, sub-compartment, and sub-sub-compartment are recorded according

to the present forest delineation. No auxiliary management units (”Hilfsflächen“) are

considered.

For each surveyed tree the species, polar-coordinates, dbh, and age are recorded.

Heights are measured only for one tree per species group as introduced above and per

layer. The height tree is chosen according to its dbh which should represent the dG

of its respective layer. The arrangement of the layers is guided by economical criteria

as follows:

• Layer 1 is the main stand with economical focus.

• Layer 2 is regeneration under the main stand that should become the next

layer 1.

• Layer 3 is under-storey, trees and shrubs underneath the main stand with mainly

tree shading or soil cover functions or to reduce hazards.

• Layer 4 are remnant trees of the former main stand with stocking density of

≤ 0.3, towering the main stand.

The missing heights are completed according to Nagel (1999).

All investigated methods depend on auxiliary information, that is, information that

is easy to obtain, that has a functional relationship with the variables to be predicted,

that should be cheap, and that must be available at the sampling locations as well as

at all prediction locations.

The CIR imagery of the forest management planning are taken one to two years in

advance of the terrestrial surveys of the phase 2 plots. In addition to the stratification

of phase 1 plots the CIR imagery form the basis of the new forest delineation. This
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delineation also comprises auxiliary management units and is reviewed in the field as

part of a field assessment (”Bestandesbegang“). The field assessment provides quan-

titative estimates of site index, species mixture proportions, and stocking densities.

All estimates rely on expert knowledge only, no measurements are carried out.

The field assessment and the phase 1 plots provide auxiliary variables as part of the

already implemented forest management planning procedure. Additional auxiliary

information stipulate additional input.

On a large scale, remotely sensed data are the only economically viable source for such

additional auxiliary information. Using remote sensing data other than the already

available CIR imagery is not considered operational owing to cost constraints. Analog

processing of the imagery is also not considered operational because of the large areas

inventoried every year and the thus resulting high costs. Digitizing the CIR imagery

is cheap (around ¤25 per image) and enables automatic processing. Therefore, the

CIR images are scanned, with a resolution resulting in a pixel size of ca. 0.3 m.

There are two principal approaches to extract auxiliary information from the digital

images at hand. The first approach employs the spectral information contained in the

three channels (red, green, and blue).

The images are ortho-rectified with the aid of a DTM provided by the cadastre service

to account for relief distortions (Hoffmann, 2001). Changes in illumination conditions

are accounted for by interactively mosaicing the images by flight path. The selection

of which part of an image should be retained in the mosaic is done on-screen. The

mosaics are then classified into seven classes using the unsupervised cluster algorithm

ISODATA of the software PCI (Tou and Gonzalez, 1974). Clusters are formed on the

basis of three variables, the spectral bands.

Super- and unsupervised classification are classical procedures of digital image pro-

cessing. They represent a mapping aiming at a reduction of dimensions thus facilitat-

ing information extraction. In the present case the mapping is from a 3 dimensional

space with 2563 values onto a 1 dimensional one with 7 values.

The selected number of clusters is based on an educated guess. For the different

features present in a CIR image, one class is reserved for non-vegetated area. The
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3 DATA SOURCES 3.1 Lower Saxony: Grünenplan

vegetated area is divided into crown matter and grass or meadows. Crown matter

should be further separated into deciduous and coniferous species. Within species,

one class should represent bright crown matter and and another shaded crown matter.

The seventh cluster is reserved for gaps occurring in stands. Of course, in general the

seven clusters will not correspond to the listed classes, rather, classes will comprise

areas of several clusters. More than seven clusters means less reduction in information

content not necessarily implying better information extraction. Also, more classes

means more data, usually in the Giga-bytes. The influence of the number of clusters

on the quality of prediction is studied during model evaluation.

The clustering algorithm selects a set of centroids evenly spaced in the space spanned

by three vectors representing the three spectral bands. Each pixel is visited at a time

and its Euclidian distances to all centroids computed. The pixel is assigned to the

closest centroid. The mean and variance of the controids are re-calculated and the

algorithm proceeds with the next pixel. Once all pixels are assigned to the centroids

mean and variances of the latter are evaluated. Clusters with close centroids may be

merged and clusters with large variances may be split dependent on thresholds set

by the user. Then the algorithm repeats the assignment of pixels to clusters. The

classification terminates once the number of re-assigned pixels falls below a threshold

or the number of iterations exceeds a threshold, both times set by the user.

Any auxiliary information must be attached to the sample plots. This is accomplished

using a GIS to produce an intersection file. This file contains circles with radius 13 m

aligned on a 100 m × 100 m grid. The size of the circles corresponds to the phase 2

plots and their alignment to the phase 1 raster. This data layer is intersected with

the classified images. Intersection means that only the geometries of the intersected

layer (the images) are retained which fall within the geometries (the circles) of the

intersection layer. In addition, the attributes of the intersection layer are attached to

the newly created geometries. One such attribute is the ID of the phase 1 plots by

which auxiliary information can be joined to the phase 2 plots.

After intersection the original raster data are converted to vector format. Adjacent

raster cells with same value are lumped into one polygon. In a classified image tree

crowns are composed of polygons of different classes. Size, shape, and frequency of

polygons differ for different species. Allocation of observed polygons to tree species is
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3.1 Lower Saxony: Grünenplan 3 DATA SOURCES

tried by own programs that compute per class total area, polygon frequency, maximum

and average polygon size, and average ratio of area to circumference.

Tree tops in digital images are often characterized by large spectral values and repre-

sent bright spots. Such bright spots get larger class values assigned by the ISODATA

algorithm than gaps or shaded crown matter. An approximation of tree frequency per

plot is tried by the number of polygons that have as neighbors polygons with lower

class value only.

The second approach for the extraction of auxiliary information from the CIR images

is based on height information. The different position of objects (parallax) on two

adjacent images with sufficient overlap enable their height derivation.

The resulting output is a digital surface model, DSM. In principal, its data format

is the same as for the spectral images except that grey values are not confined to

[0, 255] (8 bit unsigned) but have a 16 bit signed range,[−32767, 32768]. A subset of

such a DSM is displayed in Fig. 1. Calculated elevation is in meter above sea level.

The derivation of stand height requires a normalization, that is, the ground elevation

must be subtracted by means of a digital terrain model, DTM.

The normalized DSMs are imported into a GIS and intersected with the intersection

file as described above for spectral images. Further processing of the resulting poly-

gons is done by own programs. Derived characteristics are number of polygons per

plot, their average size, height difference of the 0.9 quantile to the 0.1 quantile, the

0.85 quantile as plot height, summed area of gaps, and summed area of failure pixel.

Polygons are classified as gap if their height is lower than 7
8
× 0.9-quantile. The 0.9-

quantile should model the top plot height. Maximum height values should be avoided

because of outliers. The reduction factor 7
8
× is chosen heuristically. As an example,

on plots with an estimated 0.9-quantile height of 40 m all polygons of less than 35 m

height are considered ’gap‘.

The derivation of the DSM revealed problems of the algorithms used by the employed

software Orthoengine (Brostuen et al., 2001) with pixels with large height gradient.

A pixel situated between an understorey of 7 m height and an overstorey tree of 40 m

height will most often not get an elevation but will be classified as failure. Reasons
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Figure 1. 30 m × 30 m subset of a digital surface model

are the different viewing angles and the search pattern of the matching algorithm.

For example, one image shows the view from above on the tree crown whereas the

other provides the angle from underneath.

The algorithm derives heights of a location from the radial displacement of the cor-

responding homologue pixels. A square sub-window of grey-level values with one

homologue pixel in its center is calculated from one image. Within a given search

radius this window is overlayed with the other image and correlations based on the

grey-level values are calculated. The center-pixel of the window with the highest cor-

relation is taken as the corresponding homologue pixel if the correlation exceeds a

threshold; otherwise a failure value is assigned. Number and area of failure-polygons

are a further source for the derivation of auxiliary variables.

Owing to budget constraints only part of the images covering the forest district

Grünenplan are scanned resulting in an area of approximately 2500 hectares with

441 terrestial plots. Of these terrestrial plots 368 plots are considered here, namely

the plots that comprise at least one spruce (Picea abies, (L.) Karst.) (256 plots)
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3.1 Lower Saxony: Grünenplan 3 DATA SOURCES

or one beech (Fagus sylvatica, Linné) (177 plots) in layer 1. Elevation of this subset

varies from 175 m asl. to 420 m asl. The distribution of the selected plots is shown

in Fig. 2. The two species make up around 80 % of all inventoried trees. As stand

characteristic volume per hectare serves as an example.

Data processing revealed that there is no clear cut separation between layers 1, 2,

and 4. The diameter distributions of plots with layers 1 and 2 can be quite similar

to the ones of plots with layers 1 and 4. Layer 3 contributes little to volume, cannot

be assessed in the imagery, and is not present in the investigated area. Against this

background it is decided that volume per species is calculated over the layers 1, 2,

and 4 but only for plots where spruce or beech occurs in layer 1.
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Figure 2. Lower Saxony, Grünenplan:

Distribution of BI plots; Spruce: Circles; Beech: Diamonds; Gauß-Krüger Coordinates
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3.2 Baden-Württemberg: Black Forest

The structure of the forest district as well as the sampling design differ from the ones

introduced above for Lower Saxony. Samples are laid out according to a systematic

1 phase design. The distribution of this regular grid is shown in Fig. 3. The forest

district is divided into roughly three disconnected sub-regions. Elevation of the field

plots varies from 190 m to 770 m above sea level.
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Figure 3. Baden-Württemberg:

Distribution of all sample plots; Gauß-Krüger Coordinates

According to the methodological description and the surveying instruction of the

forest service sample densities are individually derived for forest districts. The guiding

principle is a tolerable error of a feature of a given target population. Populations are

allocated mainly by age class and stand type and target feature is most often standing

volume.

Apart from a tolerable error per population the mean quadratic deviation and the

mean of the target variable influence the sample density. An additional rule stipulates

at least 500 sample units per forest district. However, cost constraints confine the

maximal sample density to 2 hectares per sample. The investigated forest district

has been sampled with maximal density and an alignment of the sample units on a
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3.2 Baden-Württemberg: Black Forest 3 DATA SOURCES

regular grid with spacing 200 m×100 m. A total of 791 plots have been surveyed.

The sampling design also divides the tree population into five sub-populations which

differ with respect to their selection probabilities. Surveying is also done on concentric

circles. Trees with a dbh < 10 cm are inventoried as regeneration by height class.

Trees with a height ≤ 1.3 m are counted on a circle with radius 1.5 m whereas taller

trees are counted on a circle with radius 2 m. Trees with a dbh ≥ 10 cm and < 15 cm

are surveyed on a circle with radius 3 m. Trees with a dbh ≥ 15 cm and < 30 cm are

inventoried on a circle with radius 6 m and yet larger trees are surveyed on a circle

with radius 12 m. For each tree with dbh ≥ 10 cm species, dbh, and polar-coordinates

are recorded.

In the main stand heights (”Oberhöhen“) are measured for two trees per species. For

the side stands, one height is taken per species. Selection of height-trees is based on

expert knowledge aiming at ”characteristic“ individuals. Age is recorded for height

trees only. All other trees are allocated to age classes. The age class is determined by

the forest management planning for the entire stand, that is, local deviations from the

stand wide age are disregarded. The age classes can be numeric with 10 year interval

length, or qualitative like ”NV“ for natural regeneration or ”US“ for understorey.

Stand layers like used at Grünenplan are not applied.

Almost every stand is visited similar to the ”Bestandesbegang“ in Lower Saxony. The

inventory forester examines delineation of new geometries. Strata are formed from

stand types of a forest district. No measurements are taken, all information is based

on statistics of the systematic sample and expert knowledge. Volume estimates of

tree species are derived from the strata means; the estimates do not necessarily cover

all species of a stand. Even species with 20% mixture proportion occur that have no

volume assigned.

Owing to the 1 phase sampling design there are no imagery taken in the course of the

forest management planning. The only source of large scale hight resolution informa-

tion are panchromatic airborne images of the cadastre service of Baden-Württemberg.

Administrative districts are regularly mapped by means of such imagery and the in-

vestigated forest district has been covered in 1998, the year the inventory took place.

Unfortunately, the nominal scale of the images is 1:18500 and they can be obtained

on paper print only. The images were scanned at 12 µm, yielding a ground resolution

12



3 DATA SOURCES 3.3 Lower Saxony: Solling

of around 22 cm. A DTM is not provided by the cadastre service nor does the forest

service provide one. An airborne laser scanning is currently carried out but will take

some more years before it covers the entire federal state or the forest district under

investigation.

3.3 Lower Saxony: Solling

In order to get a realistic assessment of regionalization, knowledge of the true charac-

teristics predicted need be available. No forest stand or compartment will comprise

enough phase 2 samples to enable sound statistical inference. The sought information

can only be obtained by exhaustive inventory or an extensive sample. Because forest

stands vary in size from 2 to 20 ha and different stand-types should be taken into

account in an evaluation, an exhaustive inventory is not feasible as part of this study.

Instead 12 stands, 4 types by 3 age-classes, were extensively sampled.

The stand types are pure beech (type-id 20), pure spruce (type-id 50), mixed beech-

spruce (type-id 25), and mixed spruce-beech (type-id 52). The age classes for the

beech dominated stands are ”≥ 60 & < 80y.“, ”≥ 80 & < 120y.“ and ”≥ 120y.“. For

the spruce dominated stands the age classes are ”≥ 50 & < 70y.“, ”≥ 70 & < 90y.“

and ”≥ 90y.“. The selection of the stand types and their age classes reflect their

economical importance to the forest service. Pure spruce stands still represent the

majority of the Solling stands and mixed stands comprising beech and spruce are

the objective of the long-term silvicultural planning. Stands younger than the ones

chosen have too low a volume to be of interest here.

The minimum size of a stand to qualify for selection is set to 2 ha and 15 samples are

chosen as initial density. The alignment of the samples adheres to the 100 m× 100 m

raster of the phase 1 plots but varies according to stand variability. In homogeneous

stands the grid can be pruned to 200 m× 100 m or can be condensed to 50 m× 100 m in

heterogeneous stands. This flexible alignment ensures that the entire surveyed stand

will be represented in the sample. The accuracy aimed at is set to a half confidence

interval length of 10 % of the estimated mean, that is,

( σ̂√
n
∗ t(n−1,1−α

2
)) ≤ (0.1 ∗ µ̂), α = 0.05, should hold.

13



3.3 Lower Saxony: Solling 3 DATA SOURCES

All trees with a dbh ≥7 cm are inventoried on only one circle. Concentric circles are

avoided to reduce variation caused by extrapolation. In young and dense stands the

radius of the circle is set to 10 m (3 stands), in old stands to 15 m (6 stands), and in

medium-dense stands it is set to 13 m.

Trees are surveyed in accordance with the inventory instructions of the forest service

of Lower Saxony. Species, polar-coordinates, and dbh are recorded for every tree.

Heights are measured for one approximate dG-tree per stand-layer and species group.

For ease of implementation the evaluation plots are selected from a sub-region of the

Solling of approximately 8000 ha, covered by 24 images. The resulting distribution

of chosen plots are displayed in Fig. 4 together with 1013 BI-plots located in the

sub-region.
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Figure 4. Solling: Distribution of sample plots

BI: points; Evaluated Stands: Crosses; Spruce: Circles, Beech: Diamonds;

Gauß-Krüger Coordinates

Elevation of the BI plots varies from 125 m to 530 m asl. Spruce is inventoried on

690 plots, 373 plots comprise at least one beech, and there are 898 plots with at least

one spruce or beech. The data material of the BI and available auxiliary information

is as described for Grünenplan except that the CIR images are scanned at 35 µm,

resulting into approximately 44 cm ground resolution.
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4 METHODS

4 Methods

The basic idea underlying all investigated approaches is to consider similar observa-

tions only or a weighted average thereof. The methods differ with respect to how

similarity is defined and can be classified by

• similarity according to feature distance

• similarity according to spatial distance.

In the feature space similarity between a sample location and an arbitrary location

refers to how alike surveyed auxiliary characteristics are. Distance can be inferred

by multivariate techniques like the canonical correlation analysis, can be heuristically

modeled, or can be regarded constant as done with simple mean estimators.

In the spatial domain, similarity between a sampling unit and an arbitrary location

refers to their spatial distance. An appropriate measure is the correlation structure

among the sampling units. Such an approach is not confined to the values of the

variates surveyed at the sample locations, but also includes their alignment in space.

The resulting spatial interpolation is commonly called kriging.

All introduced methods share the dependence on auxiliary information.

4.1 Synthetic Estimator: Allocation of target stand to an

appropriate stratum

The formal description is as follows:

zhi = µh + ehi (h = 1, ..., L; i = 1, ..., nh) (1)

where zhi is the volume per hectare of the ith sample plot in stratum h, L is the number

of strata, nh the number of samples within stratum h, and ehi are the residuals with

zero mean and variance σ2
h.
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4.2 Ordinary Kriging 4 METHODS

The predictor per stratum is the empirical mean

µ̂h = λh

λ−1
h∑
i=1

zhi (2)

obviously λh = 1
nh

. Lambda is chosen in the notation to emphasize its meaning as

a weight. The predictor (2) is based on similarity within a feature space. All ob-

servations within a stratum have zero distance to themselves and the same constant

distance to other stratum members whereas all other observations have infinite dis-

tance.

Accordingly, the weights assigned are constant within each stratum and zero else.

Rewriting (2) in this context yields

µ̂h =
n∑
i=1

λhzi with λh = 0 if zi /∈ stratum h, λh = n−1
h else (2′)

where the summation goes over all n sample plots.

The method is easy to implement. Stands are allocated to homogenous strata based

on available auxiliary information. The mean and variance of the variables of interest

are calculated and assigned to all stands of the stratum. Each stratum should roughly

comprise at least 30 observations to allow reliable variance estimation.

Bitter (1997; 1998) introduced a ”typenorientierte Kontrollstichprobe“ (stand-type

sample based forest inventory) to German forestry based on synthetic estimators.

One advantage of his approach is the integration of sample based point information

and stand wise information to provide spatially explicit information at the stand level.

So far, there hasn’t been a comparison of the synthetic estimator with other predictors

and Bitter hasn’t yet provided an evaluation in terms of accuracy nor precision.

4.2 Ordinary Kriging

Kriging is a collection of generalized regression techniques and has been developed in

geostatistics. It is explained in detail in appendix A.1 (p. 109). For further reading

Webster et al. (2001) is recommended who provide a good overview of applications

in environmental sciences whereas thorough methodological treatment is found in

Cressie (1991) or Olea (1999).
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The potential geostatistical techniques offer have found their applications in forestry.

To name only a few examples: Biondi et al. (1994) and Samra et al. (1989) model

height growth or stem size and increment within a stand, that is, with spatial struc-

tures with a range below 50 m. Jost (1993) evaluates sampling errors of systematic

samples by means of geostatistical analysis. Ramirez-Maldonado (1988) analyzes

characteristics of clusters applied by the US forest service. Fouqet and Mandal-

laz (1993) use kriging techniques in medium scale forest inventories (range below

1000 m) whereas Köhl and Gertner (1992) apply kriging to large scale forest damage

inventories (range around 8000 m).

Most sampling schemes in German forestry are design based. Kriging is model based

and thus equivalent to model based prediction approaches in survey sampling like

ratio or regression sampling (Thompson, 1992), it is even exactly equivalent in case

the covariance function of the variable under investigation is known. Kriging provides

the BLUP (best linear unbiased predictor) if the model assumptions are met.

It is worthwhile to repeat some model assumptions in more detail:

the random function R honors the intrinsic hypothesis over the sampling do-

main, that is, the following relationships hold:

E[R(s)] = m (3)

V ar(R(s)−R(s+ h)) = 2γ(h) = E[R(s)−R(s+ h)]2 (4)

where E[·] denotes the expectation operator, R(s) the random variable under in-

vestigation, γ(·) the semivariogram of R(s), s a location vector, and h a distance

vector.

The mean m is assumed constant over the sampling domain but is not known. If it

were known it could be subtracted from the observations and simple kriging would

be applied. The semivariogram is a measure of spatial self-similarity or spatial auto-

correlation and is a function of distance only. The predictor R̂(s0) at location s0 is

given by

R̂(s0) =
k∑
i=1

λiR(si) (5)
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subject to the constraint
k∑
i=1

λi = 1 (6)

Prediction is done as a weighted average of spatial neighbors. The structure of the

semivariogram determines the weights λi and usually yields larger weights for nearby

observations. The number k of neighbors considered can be set by the modeler. In

case of no autocorrelation the predictor (5) is equivalent to (2′) with L=1, that is,

there is only one stratum.

Here, ordinary Kriging cannot be applied to the raw data, Z(s). The volume estimates

don’t honor the intrinsic hypothesis of a constant mean (cf. Eq. (12), p. 109). The

semivariogram will display a structure but the data will show a trend, as volume is

heavily influenced by age. A remedy is to use an external trendfunction T (s) and to

define a random function R(s) as the difference of the original random function Z(s),

representing volume, to the trendfunction, that is

R(s) = Z(s)− T (s). (7)

The trendfunction T need not be correct as long as the residuals honor the intrinsic

hypothesis.

4.2.1 Ordinary Kriging: External Trendfunction

This simple method uses the yield table (Schober, 1995) as external trendfunction.

The yield table must be linked to the sample data. Potential link-items are age, dG,

or hG, the height of dG, as provided by a field assessment. In case no site index

information is available a mean yield class as class 2 or class 3 can be assumed,

otherwise the site index at every sample and prediction location determines the yield

table entry.

Yield tables represent pure, fully stocked stands. The observed plot volume must

be extrapolated to a potential one to represent such conditions and to account for

fluctuations in density and mixture proportions. The potential volume is the volume

the species could have achieved had it covered the entire plot. It is obtained by

multiplying the volume with the ratio of plot area to crown cover area of the species.
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4 METHODS 4.3 Universal Kriging

The latter crown area is not measured but must be modeled for example as suggested

by Nagel (1999) or Dahm (1995). The random function Z(s) in Eq. (7) is thus given

by the potential volume.

4.2.2 Ordinary Kriging: Varying Means

Assume one has auxiliary information at all sample locations that relates to a cat-

egorical attribute α with  L non-overlapping states αh, h = 1, . . . , L. The 8 strata

classified in phase 1 on the CIR in the BI of Lower Saxony would be such a cate-

gorical attribute. For each state or stratum the mean µ̂αh is computed and serves as

a crude trend function (Goovaerts, 1997). The random function Z(s) in Eq. (7) is

then represented by the measured volumes. The predicted value at any location is

the sum of the kriged residual and the prevailing mean at that location. It must be

emphasized that the kriging predictor of the residuals is based on the residuals of all

sample plots, not only on those belonging to the same stratum as the target plot.

This technique can be regarded as a generalization of (2) for it can also accommodate

spatial structure and leads over to universal kriging, introduced below.

4.3 Universal Kriging

A more formal introduction is given in appendix A.2. This method differs from

ordinary kriging in that the assumption of Eq. (3) is replaced by the assumption

that the mean itself is a function of the location vector s. It uses the residuals of the

original values to a trend function estimated from the data. The flexibility of the trend

function allows the incorporation of any auxiliary information (Gotway and Hartford,

1996) as long as the latter is available at all observed locations and locations to be

predicted, and the trend can be modeled as a linear combination. Universal kriging

is well suited for double sampling schemes (Mandallaz, 1991; Mandallaz, 1996).

The weights λi of the predictor and the coefficients of the trend function must be

estimated simultaneously. This poses a circular problem because the semivariogram

refers to the residuals which are computed after the trend has been modeled whereas
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4.4 Variography 4 METHODS

the trend model depends on the covariance structure of the residuals. All solutions

are of iterative nature and restricted maximum likelihood (REML) is given preference

based on a study of Nieschulze and Saborowski (2001).

In the REML approach a linear transformation of the observed data is sought that

has expectation zero and thus filters out the mean of the observations, facilitating

the estimation of the parameter vector of the likelihood function (Kitanidis, 1983).

This approach is analogous to intrinsic random function kriging (Christensen, 1990).

If the residuals show no spatial structure then the trend estimation is the predictor.

Otherwise the prediction is improved by incorporating the residuals (cf. Eq. (33),

p. 113).

Universal kriging is very flexible but imposes the highest demand on the quality of

auxiliary information. In general it is superior to ordinary kriging but can produce

worse results if the trend function is ill specified (Zimmerman et al., 1999). In general

universal kriging does not aim at a precise or accurate model but at a precise or

accurate model with strongly auto-correlated residuals.

For example, assume one model has a lower process variance (explained at p. 35) than

a competitor but only a nugget is present. Further assume that the competing model

has no nugget but an appropriately sized range. Then, unless the difference between

the process variances is too large, one would prefer the competing model although

the overall variation in the residuals is larger. Of course, too large and appropriately

depend on the data modeled.

4.4 Variography

Spatial structure is analyzed by means of empirical semivariograms. The same data set

is analyzed with same binning and maximum lag distance by the classical estimator

in Fig. 5 (a) and by the robust estimator in Fig. 5 (b). The classical estimator is

sensitive to outliers in the data. It doesn’t capture the spatial autocorrelation as well

as the robust estimator (cf. appendix A.1).

The semivariogram-models in Fig. 5 were fitted bye eye based on a first approxima-
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(a) Classical semivariogram estimator
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(b) Robust semivariogram estimator

Figure 5. Spatial Structure Analysis: Variogram estimators

tion by a Gauss-Newton algorithm. Zimmerman and Zimmerman (1991) found that

estimators of the semivariogram perform best when the spatial dependence is weak.

Also, all estimators investigated by them gave rise to an unbiased kriging predictor,

so the kriging predictor seems rather robust with respect to misspecification. This is

corroborated by Cressie and Zimmerman (1992) who derive that a prediction based

on a misspecified but compatible variogram is asymptotically efficient. The definition

of compatibility is based on probability measures and sets of supports, and examples

can be found in Stein and Handcock (1989).

Diamond and Armstrong (1984) oppose this view and derive analytically that the

robustness of the kriging predictor depends on the condition number of the kriging

matrix of the original semivariogram, which is usually not known. The condition

number of a matrix is calculated as the ratio of the largest to the smallest absolute

eigenvalue. The plot layout they used in their model evaluations is usually not en-

countered in forestry practice. They used three points where two points were very

close to each other. They admit, that in practice such a layout would be altered and

the two points combined.

The major differences in the kriging weights were found when a Gaussian semivari-

ogram was applied in the kriging system. Problems with the parameter estimation

of such semivariograms are well known. Gaussian variograms are not applied in this
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study. Furthermore, Diamond and Armstrong admit that even under their extreme

sampling configuration the spherical model is relatively robust.

With the encountered spatial structures fitting by eye has the advantage of precisely

capturing the behavior of the semivariogram near the origin (Olea, 1999) and is there-

fore chosen.

4.5 Nearest Neighbors

4.5.1 Most Similar Neighbor (MSN)

Moeur et al. (1995) introduced this method as a sampling inference tool for natural

resource planning. Predictions are based on most similar neighbors where similarity

is derived by canonical correlation analysis. An introduction to the latter is provided

in appendix B.

With the set up as in appendix B, p. 116, let ~X represent design attributes that

can be measured on field plots and ~Y be indicator attributes that represent auxiliary

information, derived from airborne imagery or local databases and that can be mea-

sured not only at the same locations as the corresponding design attributes but also

at all locations to be predicted. The prediction of any field site is then carried out by

searching the closest field plot and assigning its design attributes to it. The distance

measure between a location u and field plot j is similar to the mahalanobis-distance

(Mahalanobis, 1936) and derives as follows:

D2
uj = (~Yu − ~Yj)

1×q
Γ
q×p′

Λ
p′×p′

2
Γ
p′×q

′ (~Yu − ~Yj)
′

q×1

(8)

with Γ a matrix of dimension q× p′ where p′, p′ ≤ p, denotes the number of non-zero

Eigenvalues of Q and is composed of the vectors ~̂β, the canonical coefficients of ~Y ,

and Λ2 is a diagonal matrix of squared canonical coefficients. Solving Eq. (8) one

sees that the distance measure is a weighted sum of squared canonical variables. The

latter are represented by the differences of the indicator attributes, and the weights

by their squared canonical correlations.

The demand on the auxiliary information is comparable to universal kriging. Canon-

ical correlation analysis can be regarded as a (non-parametric) regression as applied
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in universal kriging. Its prediction can be biased, is confined to the range of original

values in the sample, and in general is less efficient than a regression. Its main advan-

tages are that is preserves the covariance structure among the design attributes and

does not require the specification of a parametric regression model. These features

make it particularly suitable for multivariate prediction.

4.5.2 Weighted Means

Another feature distance based approach is a generalization of Eq. (2) and resembles

the k-nearest neighbor regression proposed by Maltamo and Kangas (1998). Available

strata used in the BI are rather coarse in resolution in comparison to the small field

plots and for example do not take density into account. In theory, prediction can be

improved by applying a weighted mean within strata where the weights are inversely

proportional to a feature based distance. Within a given stratum prediction is always

based on all members of that stratum. The weights of the members applied in the

mean calculation vary for every location to be predicted according to the feature

distance to that location.

Distances are a function of available auxiliary variables and can be modeled via regres-

sion analysis (Holmström, 2002) or heuristically via normalized euclidian distances

(Maltamo and Kangas, 1998), the approach used in this study. The approach by

Holmström is much more complicated. For example, it requires the specification of a

parametric regression model and the application of generalized least squares, render-

ing it less suitable. It is therefore not supported.

Predicted values of the weighted means estimator are confined to the range of observed

sample values and the resulting predictors need not be unbiased.

4.6 Null-Variant

The forest service of Lower Saxony currently employs a regionalization method based

on stratum means similar to the synthetic estimator introduced in 4.1 but modified

by mixture proportions and stocking densities.
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The crown areas are modeled according to Nagel (1999) and summed per layer for ev-

ery sampling plot. Let A11, A12, . . . , A1l, . . . , Ak1, Ak2, . . . , Akl be such summed crown

areas for k tree species in l layers within a given stratum. All crown areas are cal-

culated with respect to the larger circle with radius 13 m, that is, crown areas are

extrapolated for trees with a dbh < 30 cm. The mixture proportion pij of species i

in layer j is derived by pij =
Aij∑k

m=1 Amj
.

If vij, i = 1, . . . , k; j = 1, . . . , l denotes volume per hectare of the species i in layer

j then the potential volume of species i is represented by Vij.pot =
vij
pij

within layer j

at the sample plot.

Prediction is now done by the stratum mean of the potential volume of all inventory

plots per species and layer, multiplied by the mixture proportion of the species in the

respective layer in the target stand (pij.target). The estimator for any given stratum

then becomes

V̂ij =
1

n

n∑
θ=1

Vij.potθ ∗ pij.target = V̄ij.pot ∗ pij.target (9)

where n is the number of sample plots of the respective stratum. The crown closure

of layer j of the target stand serves as a proxy of the stand density B◦j.target. Let B̄◦j

be the mean stocking density within a stratum and layer j, then the predicted volume

at the target location is

V̂ij.kor = V̂ij ∗
B◦j.target
B̄◦j

(10)

Equation (9) employs a ”mean of ratios“ estimator, appropriate when the variance of

the dependent variable is a quadratic function of the independent variable. Equation

(10) is based on a ”ratio of means“ estimator, appropriate when the variance of

the dependent variable is directly proportional to the independent variable (Wensel,

1996). It can be assumed that those criteria did not influence the development of the

procedure, which was based on a heuristic approach.

Mixture proportions pij and stocking densities B̄◦j are calculated from the terrestrial

phase 2 plots. The prediction relies on the respective estimation as part of the ”Be-

standesbegang“. This approach employs rather high resolution data, estimation is

done per layer. Because the latter are defined by economical criteria this method

cannot be modeled with data derived from airborne imagery.
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4.7 Cross-validation

Model selection is guided by cross-validation or leave-one-out predictions. As the

name suggests, one observation is left out at a time and its characteristics are predicted

by the remaining observations. Parameters of the different models are not recalculated

during cross-validation. Different methods can be judged relative to each other by

the variances of their prediction errors var
(
Z(s)− Ẑ(s)

)
with s = (s1, . . . , sn)′, and

Ẑ(si) =
∑

j 6=i λjZ(sj). This variance is hereafter referred to as error variance.

It should be noted that cross-validation is not a hypothesis-testing method (Davis,

1987), nor does it provide useful information about the closeness of the geostatistical

model covariance function to the true covariance function (Solow, 1990). The perfor-

mance of any given model can only be judged against competitors given the particular

data set.
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5 Applications and Results

5.1 Lower Saxony: Grünenplan

The BI field plots are rather small with 531 m2 for trees with dbh ≥ 30 cm and 113 m2

for trees with a dbh in the [7, 30) interval. Sample plots even within a stand will show

a large variability because they will be situated in dense and sparse parts of a stand.

The variability of per hectare volume of BI plots comprising beech or spruce are sum-

marized by their 0.025, 0.5 and 0.975 quantiles and by age-class in Table 1. Deviations

of the chosen quantiles from the median of up to 580 m3 occur for spruce age-class 4,

and up to 339 m3 for beech age-class 3.

Table 1. Variation of Volume of BI plots per age class
Beech Spruce

Age-class 2.5% Median 97.5% 2.5% Median 97.5%
Quantile Quantile Quantile Quantile

1 5 59 231 25 178 392

2 18 104 423 28 287 542

3 30 300 63 97 482 850

4 116 351 676 30 156 738

All methods are compared with respect to a cross-validation based evaluation (cf.

section 4.7). The large variability in the BI field plots and their size render a precise

prediction difficult. However, on a stand level it is expected that over- and under-

prediction of the field plots will partly cancel each other out. Thus, predictions

of entire stands will have smaller errors than the ones reported here for the point-

predictions during model selection.

Results for the different methods are summarized in Table 2 for spruce and Table 3

for beech.
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Table 2. Grünenplan: Results for Spruce

Method Auxiliary Variable Origin Error
Variance

Synthetic Age class Phase 1 24490
Estimator Stand type

OK: External dG ”Bestandesbegang“ 25590

Trendfunction dG; SI ”Bestandesbegang“ 22710

Age; SI ”Bestandesbegang“ 13000

OK: Varying Age class; Phase 1 15600
Means Stand type

Universal Age class Phase 1 16818
Kriging Species Proportion Imagery

Age; SI ”Bestandesbegang“ 15818
Species Proportion Imagery

Age-class (Phase 1) 11820
Species Proportion; Gap Imagery
0.85 Height Quantile

Species Proportion; Gap Imagery 12910
0.85 Height Quantile

NN: Age class Phase 1 26457
Canonical Correlation Spectral values Imagery

Spectral values; DSM Imagery 17988

Euclidian Distance Age class Phase 1 24617
Spectral values Imagery

Weighted Means Age; SI ”Bestandesbegang“ 16100
Species Proportion Imagery

OK: Ordinary Kriging; NN: Nearest Neighbors; SI: Site Index;

Error-variance from cross-validation

5.1.1 Synthetic Estimator

Age-class and species group are the auxiliary information the synthetic estimator

depends upon. These two variables are surveyed as part of the already implemented

inventory, no new information needs to be obtained. The analysis at Grünenplan is

confined to sample plots where spruce or beech is observed. The synthetic estimator

will therefore systematically underestimate their volume.

27



5.1 Lower Saxony: Grünenplan 5 APPLICATIONS AND RESULTS

Nevertheless, the variance of the prediction errors or error variance is comparable to

those of other methods. The error variance is rather large with 24490 for spruce and

15200 for beech.

Table 3. Grünenplan: Results for Beech

Method Auxiliary Variable Origin Error
Variance

Synthetic Age class Phase 1 15200
Estimator Stand type

OK: External dG ”Bestandesbegang“ 13000

Trendfunction dG; SI ”Bestandesbegang“ 16000
Age; SI ”Bestandesbegang“ 13000

OK: Varying Age class; Phase 1 NA
Means Stand type

Universal Age class; Species group Phase 1 12795
Kriging Species Proportion Imagery

Age; SI ”Bestandesbegang“ 11120
Species Proportion Imagery

Age-class (Phase 1) 11335
Species Proportion; Gap Imagery
0.85 Height Quantile

Species Proportion; Gap Imagery 9765
0.85 Height Quantile

NN: Age class Phase 1 16100
Canonical Correlation Spectral values Imagery

Spectral values; DSM Imagery 10200

Euclidian Distance Age class Phase 1 18200
Spectral values Imagery

Weighted Means Age; SI ”Bestandesbegang“ 11000
Species Proportion Imagery

OK: Ordinary Kriging; NN: Nearest Neighbors; SI: Site Index

Error-variance from cross-validation
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5.1.2 Ordinary Kriging

External trendfunction

Using the external trend-function ”yield-table“ necessitates the extrapolation of the

observed volume to a potential volume. The extrapolation should compensate for

stocking densities and mixtures not accounted for in the yield table. The concept

of potential volume follows the rationale that trees try to occupy as much growing

space as possible (Smith, 1986). Growing space is approximated by crown area, and

with crown cover has an equivalent that can readily be assessed in the field. Modeling

crown volume would be more appropriate, but requires modeling input usually not

provided by management planning inventories.

+

Figure 6. Crown cover modeling

Crown areas are modeled according to Nagel (1999),

who found a good linear relationship between crown

width and dbh. His model rests upon field trials where

several crown radii are taken per tree. The model

does not consider competition or spatial alignment of

neighboring trees. To assess the actual crown cover

every tree crown is modeled as an ideal circle as dis-

played in Fig. 6. Wildenhein (1999) summed these

crown areas per species and computed mixture pro-

portions as the fraction of total crown area. He calcu-

lated potential volume as the ratio of observed value to mixture proportion. Stocking

density is not accounted for; if a plot comprises only one tree then observed and

potential volume will coincide.

With the present data the approach of Wildenhein is not yielding any spatial structure

of the residuals. Extrapolation should be based on the ratio of covered area to total

plot area. Just summing the modeled crown areas will not yield realistic results owing

to overlapping model-crowns (cf. Fig. 6) but can produce extrapolated areas of more

than 4 times the plot area. Using such an approach the beech displayed in Fig. 6 would

have got a total crown area of 1085 m2 and larch 52 m2 on a plot of approximately

531 m2.

A more realistic crown area similar to Voronoi polygons is computed by own programs.
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Each tree crown circle is gridded into quadratic cells with 5 cm side length. If a cell-

centroid is covered by more than one tree its area is allocated according to dbh,

distance, and height. Only trees with a height difference of less than 5 m to the

tallest tree covering the cell are retained. From these remaining trees a dbh weighted

distance is calculated and the cell is allocated to the tree with smallest distance. Such

an approach yields a total crown area of 642 m2 for beech and 50 m2 for larch, the

two intersecting trees at the lower left side in Fig. 6.

The overestimation of total crown cover by 130% is due to the concentric layout

of the field plots. Plot characteristics are collated from two tree populations. All

measurements taken on trees with dbh < 30 cm need to be expanded by approximately

4.7 to be representative for the outer circle. Such an overestimation occurs for beech

but is not observed for spruce. In a final step, too large a crown area is normed to

match the actual size of the field plot.

The residuals as indicated in Eq. (7) are obtained as the difference of the extrapo-

lated volume to the corresponding yield table volume. Which yield table volume is

corresponding depends on how a field plot is linked to the table. There are three link

items age, dG, and hG and site index which will determine the appropriate yield table

volume. The first three auxiliary variables are derived from the surveyed trees for each

field plot. Site index is provided by the field assessment. The field assessment also

provides estimates of age, dG, hG, stocking density, and mixture proportion needed

at target stands to calculate standing volume from kriged residuals.

In a first trial the dG was chosen as link item because an inspection of the data

revealed that age estimates frequently come with an error. The dG is no estimate

but calculated from measured data and hence accurate. At this early modeling stage

no field assessment had been available. Linking potential to yield table volume by

assuming an average SI of yield class 2 for spruce and an average yield class 3 for

beech yields the best results.

With data taken from a yield table volume is a sigmoid function of the dG as shown

in Fig. 7 where spruce volume of yield class 2 is plotted over dG. Volume tapers off

with increasing dG, asymptotically approaching its maximum value of 640 m3.
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Figure 7.
Volume over dG

The maximum dG for spruce yield class 2 is 39.3 cm; on field plots

values of up to 60 cm are observed. This discrepancy, which also

holds for beech, and the sigmoid relationship explain the clus-

tering of residuals at the upper end of the yield table volumes

displayed for both species in the first row of Fig. 8. Spatial struc-

ture analysis yields a pronounced structure for spruce and a not

so clearly discernible structure for beech, cf. Table 4. The error

variance is quite high for spruce with 25585 but surprisingly low for beech with 13000

(cf. Tables 2 and 3). The intrinsic hypothesis is not supported for spruce by the plot

in the second row of Fig. 8; rather the residuals display a linear relationship with age.

The yield table with average yield class 2 is not a good trend function for spruce.

Modeling the yield class on a plot level by the SI from the field assessment yields

more evenly distributed residuals at the upper end of yield table volumes. However,

the residuals still show a pronounced linear relationship with age (cf. Fig. 8 left

column, third and fourth row). Nugget and sill of the empirical variogram are similar

to the fixed dG approach but the range is much smaller (cf. Table 4). The error

variance of 22710 is still quite large.

For beech, the residuals are almost exclusively negative beyond 525 m3 yield table

volume (cf. Fig. 8 right column, third row). There is no clear relationship of the

residuals with age although beyond age 120 potential volume tends to be larger than

the corresponding yield table volume. Spatial structure analysis yields quite a different

semivariogram model with a nugget almost double the one of the dG approach with

fixed SI. This increase corresponds to an increase of the error variance to 16000 (cf.

Table 3).

Linking potential volume to the yield table via the dG does not result in residuals

supporting the intrinsic hypothesis, at least not for spruce. Using the mean plot age

of that species as link item and an individual yield class per plot derived from the

field assessment produced more promising results for spruce.

As seen in Fig. 9, left column first and second row, the residuals are evenly distributed

over yield table volume and over age. The resulting empirical semivariogram has a

slightly smaller nugget of 5000 compared to the other dG approaches. The sill is less

than 1
3

of the other ones and the range is of around 590 m. The error variance of

31



5.1 Lower Saxony: Grünenplan 5 APPLICATIONS AND RESULTS

100 200 300 400 500 600

−
20

0
40

0

Spruce

Yield − table volume via dG (fixed) [m3 ha]

∆v
ol

 (d
G
)  

[m
3

ha
]

100 200 300 400 500

−
10

0
40

0

Beech

Yield − table volume via dG (fixed) [m3 ha]

∆v
ol

 (d
G
)  

[m
3

ha
]

20 40 60 80 100 120 140

−
20

0
40

0

Age

∆v
ol

 (d
G
)  

[m
3

ha
]

50 100 150

−
10

0
40

0
Age

∆v
ol

 (d
G
)  

[m
3

ha
]

200 400 600 800

−
20

0
40

0

Yield − table volume via dG (flexible) [m3 ha]

∆v
ol

 (d
G
)  

[m
3

ha
]

100 200 300 400 500 600

−
20

0
30

0

Yield − table volume via dG (flexible) [m3 ha]

∆v
ol

 (d
G
)  

[m
3

ha
]

20 40 60 80 100 120 140

−
20

0
40

0

Age∆v
ol

 (d
G
) (

fle
xi

bl
e)

  [
m

3
ha

]

50 100 150

−
20

0
30

0

Age∆v
ol

 (d
G
) (

fle
xi

bl
e)

  [
m

3
ha

]

Figure 8. Residual Analysis: Left: spruce; Right: beech; ∆vol = V olpot − V olY ield−Table

13000 is almost half the one of the fixed dG approach and less than 3
5

when the dG is

a function of SI (cf. Table 2).

Results are less promising for beech. As seen in Fig. 9, right column first and second

row, residuals display a decreasing trend with increasing yield table volume or mean

plot age of beech. The empirical semivariogram represents a less pronounced structure

than for the fixed dG approach. Nugget and range are almost twice as large whereas

the sill is comparable (cf. Table 4). However, the error variance of 13000 is identical.
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Figure 9. Residual Analysis: Left: spruce; Right: beech; ∆vol = V olpot − V olY ield−Table

Varying means

Using local means to de-trend the data is a simple approach which circumvents the

problems associated with modeling potential volume. However, a structural analysis

of the residuals of measured plot volume to their stratum means failed for beech

and spruce. The empirical semivariograms showed no discernible spatial correlation.

Varying means are a rather coarse trend; they do not take varying densities into

account.

Treating the potential volume per plot as the random function yielded an empirical

semivariogram showing spatial correlation for spruce only. The spatial structure seems

less pronounced compared to the yield table and dG based on fixed SI as link item

(cf. Table 4) but the resulting error variance of 15600 is less than 2
3

of that approach

(cf. Table 2). A plot of residuals over age shows no systematic deviation. Residuals

are evenly distributed around null with values lying within [-320,485].

5.1.3 Universal Kriging

Usually, tree volume of terrestrial plots is calculated as a function of basal area, height,

and form factor. Of these only height qualifies as an auxiliary variable because it can
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Table 4. Model parameters for ordinary kriging
Beech Spruce

Method Nugget Sill Range Type Nugget Sill Range Type

OK1 4500 8000 225 Exp 8600 19900 1975 Sph

OK2 8500 7650 265 Exp 7000 20050 300 Exp

OK3 7500 9000 400 Exp 5000 5800 590 Sph

OK4 — — — — 10913 5586 720 Exp

OK1: Ordinary kriging via dG (fixed SI);
OK2: Ordinary kriging via dG(flexible SI);
OK3: Ordinary Kriging via age (flexible SI);
OK4: Ordinary kriging: Varying means (potential volume);
Exp: Exponential semivariogram model; Sph: Spherical semivariogram model

be obtained on a large scale from air photos. If no height information is available, like

in the first phase of this study, then volume can also be modeled as a function of age,

stand density, and site index. Age and site index are regularly recorded during the

field assessment (”Bestandesbegang“). At first, the field assessment records haven’t

been available and age has been approximated by the age-classes of the phase 1

classification.

Stand density can be approximated by number of trees and by crown cover area.

Automated tree counts from digital images is not easy to implement, and even on

images with a nominal scale as large as 1:5000 results are mixed (Brandtberg and

Walter, 1998; Uuttera et al., 1998; Dralle and Rudemo, 1996). Emphasis in this

study is put on methods that are cost effective and easy to implement and apply.

This may include sophisticated techniques but only when they can be automatized

even when covering large areas. This rationale lies behind the decision to employ an

un-supervised classification approach although supervised approaches usually yield

better results (Lillesand and Kiefer, 2000; Miguel-Ayanz and Biging, 1996).

In the following, all described models are based on linear combinations of variables.

Products of auxiliary variables have also been included in the many modeling ap-

proaches but have been found less efficient in terms of error variance than the de-

scribed linear combinations.
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Crown cover area modeled according to Nagel (1999) can be estimated based on the

auxiliary information derived from the digital images. The ratio of modeled crown

cover areas per species to plot area minus area of class 1 are divided into 6 groups

with equal frequency. Class 1 refers to the first out of the seven classes classified by

ISODATA (cf. section 3.1). It is found that this class typically occurs in gaps; it

follows that crown cover area is modeled per species as a proportion of species crown

area to total crown area.

A mixture analysis is applied individually to beech and spruce to classify the phase 2

plots into one out of these 6 groups based on the auxiliary information described in

section 3.1. Final group membership is assigned as a weighted sum of the group labels,

the weights being membership probabilities. It holds for this new auxiliary variable

xspecies, species ∈ {beech, spruce}, that xspecies ∈ IR∩ [1, 6]. In the following this new

variable is referred to as species proportion.

The mixture analysis is based on the assumption that observed data derive from

multiple homogenous populations and that it is unknown which population led to

what observation. The method is similar to discriminant analysis except that group

memberships are missing. Instead, group membership is regarded as a random vari-

able. The observed distribution function is modeled as a sum, that is, a mixture of

distribution functions of the homogenous populations. The aim is the derivation of

parameters of the latter enabling a classification (Flury, 1997).

An additional auxiliary variable is the indicator variable ”species group“ of phase 1.

Including this variable improved the error variance for beech to 12795 (cf. Table 3). No

improvement is achieved for spruce and therefore it is included in the beech model only

(cf. Table 5. The error variance of 16818 is based on the species proportion measure

and the age-classes as regressors. The residuals show weak spatial correlation for beech

( sill
nugget

= 0.21) and a more pronounced autocorrelation for spruce ( sill
nugget

= 0.37) (cf.

Table 5, first row). However, the overall variation in the residuals is smaller for beech;

the process variance (sum of sill and nugget) is only 2
3

of the one for spruce.

Substituting the mean age per plot for the age-classes, excluding the binary variable

species group and including site index improved the models in terms of lower nugget,

lower process variance, and resulting lower error variance (cf. Table 2, 3; Age, SI,

Species Proportion).
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The REML approach does not allow interactive modeling of the semivariogram. Initial

estimates of nugget, sill, range, and the type of semivariogram-model of the residuals

have to be provided. Such estimates can be obtained from the analysis of an ordi-

nary least square fit. However, the semivariogram of such a fit can be misleading

(Nieschulze and Saborowski, 2001). It is recommended to run the model with dif-

ferent initial parameters because of the possibility of a multi-modal profile likelihood

(Warnes and Ripley, 1987). For both species a REML fit based on a spherical and on

an exponential semivariogram model is obtained. Results are assembled in Table 5,

rows 2 and 3.

The two approaches yield quite different parameter estimates; the nugget and sill are

lower when using an exponential semivariogram. However, the process variances are

quite similar for each species. Comparing the prediction of the two models shows very

good agreement with differences of predicted values being in the interval [-28.4,18.2]

(50% within [-6,6]) for spruce and in the interval [-19.1,18.3] (50% within [-3.5,3]) for

beech, that is, both models resulted into an almost identical prediction. The error

variances based on the spherical semivariogram model are 11120 for beech and 15818

for spruce.
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Figure 10. Grünenplan: hG over 0.85 height quantile

Left: spruce; Right: beech

In a third approach a substitution for

SI and mean age is sought. The plot

height is a proxy for the hG and mod-

eled as the 0.85 quantile of the ob-

served height values, cf. section 3.1.

In Fig. 10 the hG is plotted over the

0.85 quantile. The plot reveals sys-

tematic deviations. Terrain eleva-

tion is consistently underestimated

by ca. 20 m. Negative plot heights

are avoided by adding an offset of

100 to the nDSM, the difference of

DSM to DTM. The plots in Fig. 10

show a good linear relationship.

The hG always refers to a tree of layer 1. Observed outliers like the one for spruce
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with hG below 10 m and 0.85 quantile of 115 are mostly due to the layer concept. In

the mentioned case shading trees of layer 4 with height 35 m tower spruces in layer 1

with height 7.8 m.

Underestimation of tree heights is also reported by Kätsch and Stöcker (2000) al-

though at much smaller magnitude. Kraus (1994) lays down a rule that tree heights

derived from analogue aerial images come with an average error of around 0.70 m.

In both cases it is stipulated that ground elevation is also measured precisely from

the images. In the present case ground elevation is modeled from the DTM obtained

from the cadastre service. The DTM is based on measurements taken on a regular

grid a with side length of 12.5 m; a continuous DTM is computed by linear interpo-

lation of the grid-node elevations. The cadastre service reports mean elevation errors

of ±1.5 m and field assessment showed that such DTM has elevation errors of up

to 3.75 m (Döring, personal communication). Against this background the obtained

height measure is judged satisfactory.

A linear combination of area of class 1 of the ISODATA classification as gap, the

0.85 quantile, and the above introduced species proportion measure, fitted individually

for the 4 age-classes, yields an error variance of 11335 for beech and of 11820 for

spruce (cf. Table 3, and 2). The improvement for spruce can be explained by a

reduced process variance of 13297 with a small sill of 4135 (cf. Table 5). With this

approach in 70 out of 100 cases the differences of predicted to observed value fall

within a [-100 m3, 100 m3] interval but differences of more than 400 m3 occur. Apart

from imprecise auxiliary variables this can be attributed to the large variation within

the data which is hard to model (cf. Table 1). For beech, the process variance of

11426 is comparable to the second introduced approach.

Confining the model to auxiliary variables derived from the digital images, that is,

fitting the before-mentioned linear combination over all age-classes improved the error

variance for beech down to 9765. The improvement can be attributed to the smaller

nugget of 7421 compared to 8736 when fitting for each class individually.

37



5.1 Lower Saxony: Grünenplan 5 APPLICATIONS AND RESULTS

Lag−distance [m]

8
0

0
0

1
0

0
0

0
1

2
0

0
0

1
4

0
0

0

100 500 1000 1500 2000

S
e

m
iv

a
ri
a

n
c
e

  
γ 

[(
m

3
)2

]

Figure 11. UK4 (cf. Table 5)

structural residual analysis

For spruce, the error variance increases to 12910;

nugget, sill, and range are similar but a little less

favorable, that is, the first two are larger and the

range is smaller. The variogram of the residuals for

spruce are shown in Fig. 11 together with the fitted

model based on a spherical semivariogram. There is

a clearly discernible correlation in the residuals with

a range of around 750 m. The range reaches beyond

stand boundaries as the average stand size is well be-

low 56 ha = 750 m×750 m.

Table 5. Model parameters for universal kriging
Beech Spruce

Method Nugget Sill Range Type Nugget Sill Range Type

UK1 10545 2218 767 Sph 13577 5890 700 Exp

UK2 9575 1762 751 Sph 9318 8017 519 Sph

UK2 7178 4135 127 Exp 7449 9962 188 Exp

UK3 8736 2690 839 Sph 9162 4135 800 Sph

UK4 7421 2600 824 Sph 9496 4574 742 Sph

UK1: universal kriging via age-class and species proportion; species group included for beech
UK2: universal kriging via age, species proportion, and SI;
UK3: universal kriging via 0.85 height quantile, age-class, gap and species proportion;
UK4: universal kriging via 0.85 height quantile, gap, and species proportion: all derived
from imagery; Exp: Exponential semivariogram model; Sph: Spherical semivariogram model

5.1.4 Nearest Neighbors

Most similar neighbor (MSN)

In the first project phase a variation of the ”most similar neighbor“ method based

on euclidian distances has been incorporated. Such an approach is equivalent to

the method introduced in section 4.5.2 except that the weights are constant for all

auxiliary variables. Auxiliary information used are the phase 1 variables age-class and

species group and the variables derived from the spectral digital image (cf. section
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3.1). All variables are standardized. Nearest neighbors are searched within the eight

strata determined by the phase 1 information. The error variances of 18200 for beech

and 24617 for spruce are rather large.

Using the same auxiliary information as design attributes and as indicator attributes

modeled crown area, basal area, volume, and tree frequency the MSN based on canoni-

cal correlations yield an error variance of 16100 for beech and 26457 for spruce. Again,

nearest neighbors are assigned within the eight strata.

Substituting the phase 1 information by variables derived from the normalized digital

surface model improved the prediction. Newly included variables are the 0.85 height

quantile as described above, maximum observed height difference on a plot, and the

area of pixels below a threshold. Such an approach can be applied to all stands. This

is not the case when phase 1 information is used because roughly 5% of all stands are

not covered. The error variances decrease substantially down to 10200 for beech and

down to 18000 for spruce. For the latter species in 62 out of 100 cases the differences

of predicted to observed value fall within the [-100 m3, 100 m3] interval.

Weighted Means

As like the second investigated universal kriging approach weighted means are based

on the auxiliary variables species proportion derived from imagery, site index SI and

mean age of the species, taken from the field assessment and the phase 2 plots. The

weight function depends on distance which is a function of three auxiliary variables.

The variables are normalized to avoid an influence of scale. Distance is measured as

the weighted sum of the absolute differences. The contribution of the variables to the

weight function is heuristically modeled. The best results are obtained with a relation

of 3 to 1
2

to 1, that is, the species proportion distance gets multiplied by 3, the site

index distance gets halved, and the contribution of the mean age remains unaltered.

The error variance of for spruce is in the middle range with 16100 but quite low for

beech with 10200.
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5.1.5 Null-Variant

The data set enables only a limited evaluation of the null-variant. The delineation

of a forest district is updated at every management planning. In particular auxiliary

management units (”Hilfsflächen“) are created or merged with the compartment they

are situated in. These units are not represented by geometries like compartments; the

only location information is qualitative like ”in the north-west of sub-compartment

b“.

The phase 2 plots comprise, among other information, Gauß-Krüger coordinates, com-

partment, sub-compartment, and sub-sub-compartment. Auxiliary management units

are not recorded because of their short-lived existence. An unequivocal assignment

of phase 2 plots to the field-assessment data is possible for stands only that do not

comprise such units. This selection reduces the number of suitable spruce phase 2

plots down to 132.

If one assumes that mixture proportions and stocking densities derived from phase 2

plots are good proxies of their counterparts of the field assessment then all spruce

plots can be used in the evaluation. Based on this assumption the error variance for

spruce volume of layer 1 is 5590. This variance is very low and slightly increases to

6480 if layers 1, 2, and 4 are pooled. However, universal kriging with comparable high

resolution data, that is, stocking density, hG, and mixture proportion, all derived from

the phase 2 plots, yield a still lower error variance of 1800 only. Even employing the

0.85 quantile instead of hG yields a lower error variance of 4095.

Using the phase 2 proxies just serves as a model comparison. Conditions on phase 2

plots will differ from the average condition of the stand they lie in. The error variance

will increase when the stand information is used in lieu of the proxies. In case of the

above mentioned 132 spruce plots this increase is more than fourfold from 6375 up to

29000.
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5.2 Baden-Württemberg: Black Forest

The sampled forest stands are characterized by a large heterogeneity. Confining the

investigation to just two species like in Grünenplan where spruce and beech represent

over 80% of the population is not tenable. Beech (Fagus sylvatica, Linné) is the most

frequent species with 23% of all trees, followed by douglas fir (Pseudotsuga menziesii,

Mirbel) with 13%, spruce (Picea abies, (Linné) Karsten) with 12%, and fir (Abies

alba, Miller), with 11%. Oak (Quercus petraea, (Mattfeld) Liblein & Quercus

robur, Linné) is the second most frequent deciduous species with 9%. Frequency

with respect to the field plots, that is, percentage of plots on which a species is

observed, results in 52% for beech. Oak is the second most frequent species with 33%

followed by firs with 26%. Spruce is observed on 22 and douglas fir on 30 plots out of

100.

Accordingly, only 14% of all sample plots cover only one species. Plots with two

species are the most frequent with 37% of the population; 29% of all plots comprise

three species and four and more species are surveyed on still 19 out of 100 plots.

Results for the five species and applicable methods are summarized in Table 6. The

error variance, var(Z(s) − Ẑ(s)), is again based on predictions obtained from cross-

validation.

Table 6. Black Forest: Error-variance from cross-validation

Method

Synthetic Ordinary Universal Universal Weighted
Species Estimator Kriging Kriging1† Kriging2† Means1†

Spruce 27060 35595 22744 24226 25966

Fir 29725 31040 25757 28210 34992

Douglas Fir 49065 15240 28575 32910 46260

Beech 23015 17410 20065 20164 21556

Oak 10795 8703 9177 10206 9829

1: parameterization using field assessment data;
2: parameterization using field-plot data;
†: reduced data set; see section 5.2.3 p. 49 for explanation
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5.2.1 Synthetic Estimator

Auxiliary information is not provided by the forest inventory owing to the applied

one-phase sampling design. The only already available source for such information is

the field assessment, which is still part of the management planning process. During

the field survey plots are allocated to one stand type. The allocation is based on the

conditions of the stand the plot is situated in and need not reflect plot characteristics.

It follows that species can occur in many different stand types and sampling plots of

a stand type can be quite heterogeneous. Douglas fir for example is represented in 25

stand types, among them the type ”pure beech”.

Stand type is the only auxiliary variable suitable for strata allocation. However,

using types is impractical because most types do not comprise enough sampling units.

Instead, following the concept implemented in Lower Saxony, eight strata are formed

based on four age intervals and two species group states. Interval length and definition

of species group are as introduced in section 3.1. These strata are rather coarse but still

for all species except beech some strata have less than 30 observations. The obtained

error variances are comparable but larger for spruce and beech as the respective ones

at Grünenplan (cf. Tables 2, 3, and 6). The error variance for douglas fir is rather

large with over 49000 but surprisingly low for oak with 10795.

5.2.2 Ordinary Kriging

External trendfunction

Using the yield table as external trendfunction requires the extrapolation of observed

volumes to potential volumes as laid out in section 4.2.1. Data processing routines

of the forest research station of Baden-Württemberg compute crown cover areas,

(STR I: Standraum ideal), for every tree as a linear function of dbh (Dahm, 1995).

These models are parameterized using the yield table entries stem number per hectare

and dG. The modeled crown area is obtained as the ratio of 1 ha to corresponding

stem number, that is, crown area = 10,000 m2

stem number
. Total crown area per hectare per

plot is normed to match 10,000 m2.

Plots with low stocking densities get extrapolated crown areas whereas on over-stocked
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stands (cf. Fig. 6) crown areas are reduced. Reduction factors differ with respect to

age-class; crown area of ”regeneration“ gets more reduced and ”shading trees“ or

”under-storey“ do not get any crown area at all (FVA Baden-Württemberg, 1999).

This reduced crown area is referred to as STR R, (Standraum reduziert).

Individual age is recorded for trees only which have their heights measured. The

remaining trees are assigned to an age-class representative of the stand the sampling

plot is situated in. Variability of individual tree volume per age-class is larger than

for individual age as seen from Fig. 12, where volume of douglas firs is plotted over

age-class (left) and age (right). The many trees with age zero in the righthand side

of Fig. 12 are trees without height measurements.
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Figure 12.
Volume variability of douglas fir per

age-class (left) and age (right)

As mentioned before, potential plot volume can

be linked to the yield table by three table items,

namely dG, hG, and age. The investigated

stands are quite heterogenous rendering the dG

unsuitable. The dG is based on squared diame-

ters so large trees will have a pronounced effect

and distort the derivation. However, the corre-

sponding hG will be less affected. Heights are

completed for all trees by data processing rou-

tines of the FVA of Baden-Württemberg. Fur-

thermore, height can be estimated rather easily

at target stands rendering it a suitable link item. Age-class as a proxy for age is

also considered a link item. Using plots where only age is recorded is not appropriate.

First, the number of available plots would be significantly reduced and second, species

occur with different ages on the same plot making a reliable allocation impossible.

There are four possible approaches to model ordinary kriging with external trend:

extrapolation based on ”Voronoi“ polygons or based on STR R, and linking based on

age or height. The resulting spatial structures are displayed for douglas fir in Fig. 13.

Ordinary kriging is confined to plots having site index information allowing the ex-

ternal trend to be more flexible. This seems appropriate because there are only a few

plots without SI entries.
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Figure 13. Spatial structure analysis: Douglas Fir

Left: Extrapolation via ”Voronoi“ polygons; Upper row: link via age-class;
Right: Extrapolation via STR R; Lower row: link via height; γ: Semi-variance

The observed influences on the spatial structures of the residuals of the different input

parameters hold for all species unless specifically mentioned otherwise.

As seen in the upper right part of Fig. 13 using age-class and STR R leads to a

pronounced spatial structure of the residuals. However, the large nugget of around

18000 and sill of around 38000 at a range of 500 m do not seem to justify kriging.

Using height in lieu of age-class halves the process variance down to around 28000

which is mostly due to a reduced sill because the nugget dropped only to around

13000 (second row, righthand side).

Using age-class and ”Voronoi“ polygons (first row, lefthand side) the empirical var-

iogram has the same large process variance as in the first approach but the nugget

drops down to null. The range remains almost unaltered. This is also the case in the

last trial based on height and ”Voronoi“ polygons seen in the lower left part of Fig. 13.

The process variance of around 15000 is only 1
4

compared to approaches using age-

class and the ratio of nugget to sill is of around 1
2
, rendering a kriging interpolation

quite suitable.

Results of the spatial structure analysis are summarized for all species in Table 7. It
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holds for all species that approaches using STR R are outperformed by the respective

approach based on ”Voronoi“ polygons. Spatial structures based on height as link

item are more favorable than when based on age-class in all but one case. For spruce

modeling based on age-classes almost halved the process variance down to 46000.

There is quite a pronounced spatial structure with a ratio of sill to nugget around 1

and a range of 755 m.

Table 7. Model parameters for ordinary kriging
Height Age-Class

Species Nugget Sill Range Type Nugget Sill Range Type

Spruce 44000 34500 300 Exp 21000 25000 755 Sph

Fir 30490 — — Nug 44175 — — Nug

Doug. Fir 4800 8750 500 Sph 0 56000 550 Sph

Beech 15000 3500 1100 Sph 14000 9000 655 Sph

Oak 3528 — — Nug 6315 2905 978 Sph

Exp: Exponential semivariogram model; Sph: Spherical semivariogram model
Nug: Nugget semivariogram model; residuals to yield-table based on ”Voronoi“ polygons;

There is no discernible spatial auto-correlation within the modeled residuals for fir

and oak resulting into pure nugget semivariograms. The nugget of 30490 is quite

large for fir whereas for oak the nugget of 3528 is almost 1
9

of the former. The spatial

auto-correlation of the beech residuals is modest with a large nugget of 15000 and a

small sill of 3500 reached at 1100 m.

Looking at the process variances three groups can be distinguished which are also

reflected by their corresponding estimation variances shown in Table 6. Results in

Table 6 are obtained using the most favorable semivariogram model.

Prediction is quite precise for oaks with an error variance of 8703 (pure external trend

prediction). The next group comprises beech and douglas fir. Their error variances

are roughly two times the one for oak with 17410 and 15240. The error variance of

spruce and fir are yet again roughly double the magnitude of the former with 35595

and 31040.
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5.2 Baden-Württemberg: Black Forest 5 APPLICATIONS AND RESULTS

Residuals of douglas fir and beech are displayed in Fig. 14. Residuals based on age-

class as link item show a modest non-linear relationship with age for douglas fir (upper

left part of Fig. 14). For beech, variation in the residuals first increases until around

75 years and then decreases again (upper right part). No obvious trend with yield

table volume can be discerned for douglas fir (2nd row, lefthand side) whereas for

beech there seems to be a modest correlation with volume (2nd row, righthand side).
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Figure 14.

Residual Analysis: Douglas Fir (left) and Beech (right); ∆vol = V olpot − V olY ield−Table
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Using height as link item the residuals over age-class (3rd row) show a similar dis-

persion to their counterparts although overall variation is slightly smaller. Plotting

residuals over yield table volume displays a modest decreasing linear relationship with

volume for douglas fir and a modest increasing relationship for beech (last row). The

observed deviations do not seem to justify a transformation, kriging can be applied

directly to the modeled residuals.

Comparing the dispersions in Fig. 14 to the dispersions of the residuals of spruce and

beech shown in Fig. 8, p. 32, indicates problems in the extrapolation. There are far

less outliers for spruce and beech at Grünenplan than for douglas fir and beech at

Baden-Württemberg.

Varying means

This approach failed for all species but oak. The advantage of varying means is that

no extrapolation is needed. Using potential volume for calculating the mean-trend as

described in section 5.1.2 would counter this advantage and hence is not tried here.

The empirical semivariogram for oak is fit with a spherical model. The nugget is low

with 3744. The sill is estimated as 8589, the range as 504 m resulting into a cross-

validated error variance of 11176. The prediction is worse than the approach based on

”Voronoi“ polygons and height (cf. Table 6, Ordinary Kriging) but outperforms the

approach based on age-class and ”Voronoi“ polygons which yields an error variance

of 12960.

5.2.3 Universal Kriging

The coincidence of the field survey of the forest inventory and mapping by the cadastre

service was by chance. The cadastre service maps the entire federal state on a regular

basis but time lags of up to three years to a field survey may occur. Unless field surveys

are coordinated with the mapping the panchromatic images cannot be regarded a

regular source for auxiliary information. Considering the images in the present study

is based on the experience gained at Grünenplan that in order to draw on the strengths

of universal kriging variates of high spatial resolution must be used in the prediction

process. The variates of the field assessment reflect stand conditions and hence have

lower spatial resolution than field plots.
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The cadastre service of Baden-Württemberg does not provide a digital terrain model.

Such a DTM is needed for ortho-rectifying the images and for the normalization of a

digital surface model derived from the images. The derivation of an elevation model

from the panchromatic images as a substitute for the DTM failed. Large areas do not

get an elevation assigned. Still worse is that there are jumps in elevations of more than

100 m which cannot be attributed to a change in elevation of the landscape. Such

jumps occur in large patches of pixels which cannot be filtered out by algorithms

provided by the employed software PCI.

An explanation for the failures is the bad quality of the paper prints. The resulting

contrast in the digital images is low and the matching algorithm cannot find corre-

sponding points with high enough a correlation within the search environment. The

matching algorithm also requires values for minimum and maximum occurring eleva-

tion. The large difference of around 500 m of these limits found in most image pairs

implies a larger search environment. The latter in conjunction with the low contrast

is assumed to be the cause of the before mentioned jumps; spurious matches are found

way off sensible search distances.

No automatic derivation of auxiliary information can be obtained from the available

panchromatic images. Smoothing of the jumps would require algorithms implemented

in a higher programming language like C or C++ that work directly on the image files.

The extra expenses of such an implementation would only seem justified if the images

were a regular component of the forest management planning like in Lower Saxony.

Digital orthophotos of low geometric quality can be computed using these specially

filtered images but elevation data would still be unavailable. Of course, another

possibility would be using a sophisticated and expensive softcopy photogrammetry

station, access to which has not been available in this study.

Instead universal kriging based on variates surveyed during the field assessment has

been tried. Results are not expected to be very precise because the variates are

obtained by expert knowledge, measurements are not taken, and represent the entire

stand. Suitable variates employed are SI, age-class, and mixture proportion. Stocking

density has not been available.

Field assessment information is surveyed per spatial units (”Teilflächen”). Each unit
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has a unique ID and entries of district, compartment, sub-compartment, sub-sub-

compartment, and auxiliary management units. Field plots have description of dis-

trict, compartment, sub-compartment, sub-sub-compartment. No information on

auxiliary management units is recorded. Most often such units do not exist at this

early stage of the management planning but are allocated in the course of the field

assessment.

The two datasets are joined on a key concatenated of the four location records of

the field plots. The join failed for seven field plots; no respective key of the field

data is found in the assessment data. Twelve plots are matched to three spatial

units, 223 plots to two units, and 549, that is 70%, have a unique match. Further

analysis is confined to field plots with unique match because mixture proportion

can vary substantially between auxiliary management units even within a sub-sub-

compartment.

Species are affected differently by this reduction: there are 77 out of 149 field plots

left with douglas fir, 214 out of 340 for beech, 132 out of 172 for fir, 101 out of 142

for spruce, and the number of oak plots is reduced down to 151 from 219.

Species volume is modeled by a linear combination of SI, age-class, and mixture

proportion. All variates are provided by the field assessment but the last can also be

computed from modeled crown projection areas. However, in the prediction process

mixture proportions are provided by the field assessment only. Model parameters of

both approaches are summarized in Table 8. As expected spatial structures of the

residuals are more pronounced when mixture proportions are computed from plot

data. Process variances are half as large except for spruce and all models have a sill

although for beech it is less than 10% of the nugget. However, the gain in spatial

structure precision does not translate into a gain in prediction precision. As seen in

Table 6, p. 41, error variances are always smaller when universal kriging is based on

mixture proportions taken from the field assessment.

Predicted values employed in the error variance of Table 6 are computed as the sum of

the deterministic trend and cross-validated residuals. Both approaches have in com-

mon that the mixture proportion of the field assessment is employed at the prediction

location. They differ with respect to trendfunction and semivariogram parameters
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and residuals used in cross-validation; each approach uses its residuals, semivariogram

parameters, and trendfunction parameters.

Table 8. Model parameters for universal kriging
Field Assessment Plot Data

Species Nugget Sill Range Type Nugget Sill Range Type

Spruce 22985 — — Nug 6609 6534 232 Sph

Fir 19459 8767 647 Sph 9980 2762 582 Sph

Doug. Fir 22037 13228 2087 Sph 9870 5734 603 Sph

Beech 20162 — — Nug 10317 884 822 Sph

Oak 7002 2266 195 Nug 4151 930 399 Sph

Exp: Exponential semivariogram model; Sph: Spherical semivariogram model
Nug: Nugget semivariogram model;
Field Assessment: mixture proportion taken from field assessment
Plot data: mixture proportion derived from plot values

The nugget of the semivariogram indicates short-range components of the random

function Z(s) below the shortest sampling distance or measurement errors (Venables

and Ripley, 2002). In general, the larger the nugget the larger the variation between

adjacent neighbors is. The weighting in the prediction process is determined by the

parameters sill and range of the spatial structure. The nugget does not influence

the weights as can be seen in Eq. (24), p. 112. The semivariogram values can be

expressed as the sum of nugget and spherical or exponential semivariogram. Because∑n
i=1 λi = 1, the nugget can be factored out on the lefthand side of Eq. (24) and then

cancels with the nugget on the righthand side of the equation.

Correlations between the two mixture proportions can be as low as 0.29 (fir) and do

not exceed 0.56 (douglas fir). Hence, plot mixtures are not good proxies of the field

assessment mixtures and the cross-validated residuals will not add up sensibly with

the trend estimates. Cross-validated residuals based on field assessment mixtures

match better with the trend estimates. A reason why this approach always yields

lower error variances.

Given the coarse resolution of the employed auxiliary variables, results for universal
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kriging are quite satisfactory compared to ordinary kriging. error variances of the

latter is only 53% for douglas fir but for beech and oak out-performance is lower with

87% and 94%; in case of spruce and fir universal kriging performs better than ordinary

kriging with error variances being 64% and 83% of the latter.

5.2.4 Nearest Neighbors

Most Similar Neighbor

MSN using canonical correlation analysis is not an appropriate inference tool with

the given data. Auxiliary information is derived from the field assessment and hence

is quite coarse in resolution. Prediction of stands must be based on plots reflecting

its variation.

However, in the present case a prediction at any location within a given stand would

be based always on the same set of neighbors, where in the worst case the set would

comprise only one observation. Using just one observation as a predictor is unreliable

owing to the small plot size not being representative of a stand. A set of neighbors

can comprise more than one observation because of the discrete nature of data (eg.

age-classes, or SI). In such a case MSN would be equivalent to a synthetic estimator

with strata counts hardly above 30; prediction would be still unreliable.

Weighted Mean

The weighted mean prediction is based on the same auxiliary variables used by uni-

versal kriging: age-class, SI, and mixture proportion. The latter is also taken from

the field assessment. The variables are standardized and their contribution to the

weight function heuristically modeled. The same weighting is applied to all species.

Age-class gets multiplied by 1.5, SI is halved, and mixture proportion is multiplied by

3.5. Results are summarized in Table 6. There is a modest gain in precision compared

to the synthetic estimator for all species except for fir where the estimation variance

increases by 18% to 34992.
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5.3 Lower Saxony: Solling

The first two forest enterprises were chosen for model selection. Given the particu-

lar characteristics of the data cross-validation used in the evaluation allows only a

comparison of the different methods. Owing to the large variation within the sam-

ple plot data (cf. Table 1, p. 26) these points are hard to predict. Stands do not

grow homogeneously and the relatively small field plots will fall into dense and sparse

parts with resulting over- and under-prediction. Hence the estimation variance is but

a rough guide to the prediction quality of entire stands. On the stand level over-

and under-prediction will partly cancel out each other. This conjecture can only be

validated with fully enumerated or intensively sampled stands.

Full enumeration of a number of stands is too expensive and goes beyond the scope of

this study. Instead, 12 stands have been intensively sampled. Their characteristics are

summarized in Table 9. The chosen stand-types and their ages reflect their economical

importance expressed by the forest service. Pure beech (type 20) and spruce stands

(type 50) and different mixtures thereof (type 25: beech prevailing and 52: spruce

prevailing) are selected. The three age classes differ according to the prevailing species,

see Table 9 for details. Young stands up to 50 years age are not investigated because

of their low volume.

There is a large variation within the surveyed stands. Even for a classical pure spruce

stand with age around 55 years a minimum of 21 sample plots is needed to meet the

initial confidence interval width. In the mentioned stand the applied plot radius was

15 m so plot size was almost seven times the size of BI plots for trees with dbh < 30 cm.

The initially aimed at half confidence interval length of 10% of the mean estimate at

the α = 0.05 level proved unrealistic.

For the pure beech stands such an interval length would require from the youngest to

the oldest stand 48, 33, and 39 field plots. In mixed stands with beech prevailing the

respective number of plots are 797 (!), 368, and 107. This implies that volume cannot

be estimated from a sample given the required precision because the summed area

of the 797 plots exceeds the actual stand size. Even increasing the half confidence

interval length to 20% would require 200, 92, and 27 plots for the mixed stands. The

mixed stands with spruce prevailing are less heterogenous except for the oldest one.
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This can be attributed to the large percentage of spruce which is 80% in the first two

cases but 60% in the last case.

This large encountered variability has led to a redefinition of the initially proposed

half confidence interval length up to 20% of the estimated mean at the α = 0.05

level. The confidence interval length can be regarded as a function of the number of

samples n, ceteris paribus. The function is not linear but a function of the square root

of n. This means that there is a decreasing gain in precision with increasing n. The

maximal affordable number of sampling plots per stand is set to 30. The costs of an

increase of number of samples beyond 30 outweighs the benefits of a better precision.

Table 9. Characteristics of intensively sampled stands

Stand-Type/ n n’ µ̂B σ̂B CI/2 mix%B µ̂S σ̂S CI/2 mix%S

Age [years]

20/ 60-80 17 1 267 90 46 95 10 39 20 2

20/ 80-120 10 3 263 73 52 90 17 53 38 8

20/ >120 14 3 352 107 62 98 16 40 23 2

50/ 50-70 16 5 — — — — 352 78 42 100

50/ 70-90 17 3 6 26 13 2 655 254 131 98

50/ >90 18 4 — — — — 543 129 64 100

25/ 60-80 24 2 50 72 30 48 295 146 62 50

25/ 80-120 20 4 201 157 73 65 95 156 73 35

25/ >120 27 3 205 108 43 45 183 159 63 55

52/ 50-70 19 – 29 55 26 20 409 141 68 80

52/ 70-90 22 4 5 12 5 5 535 105 46 95

52/ >90 15 4 186 174 97 40 226 233 129 60

20: pure beech; 50: pure spruce; 25: predominantly beech; 52: predominantly spruce;

B : Beech; S : Spruce; n: number of field plots; n’: number of phase 2 BI-plots;
µ̂: mean volume [m3]; σ̂: standard deviation of volume estimates;
CI/2: half confidence interval length; mix%: mixture percentage from field assessment;

The new confidence interval length has been achieved in all pure stands. In mixed

stands the only stand with precise enough beech mean estimate is the beech prevailing
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type older than 120 years. The other mixed types are much more heterogenous with

coefficients of variation based on 22 observations up to 51% (cf. Table 10). There is

less variation found in spruce stands. The confidence interval length has also been

achieved in the youngest beech prevailing stand type and in the spruce prevailing

types except for the oldest stand. In general, the younger the stand and the higher

the proportion of spruce the lower the variance of the surveyed spruce volume is.

Only a selection of the models applied at Grünenplan and at Baden-Württemberg are

investigated here. The weighted means predictor performed rather well at Grünen-

plan. Its major drawback is the heuristic derivation of the weights. A general rec-

ommendation on which variables should be taken into the model seems feasible, but

no reasonable recommendation on the weight function can be made. The weight

function must be fitted separately for every forest district and every species, demand-

ing modeling input. In addition, the weighted means predictor is based on auxiliary

information derived from both the field assessment and the digital images. Using

information just from the former proved inefficient. Employing information only from

the digital images is not supported because with this data source the more objec-

tive ”most similar neighbor“ predictor is preferred. Mixing of data sources is not

supported either because is does not allow cost cutting.

Based on the same auxiliary information universal kriging performed equally well. It

is a more sophisticated and computationally demanding technique but requires less

user interaction. Several starting parameters should be tried but a grid search can

be implemented in an application software and thus the parameter selection can be

shielded from the user. Such an encapsulation is much harder to program for the

weighted mean predictor. For these reasons this predictor is not further studied.

The other predictor dropped is ordinary kriging. Using varying means as a coarse

trend was only applicable in two out of seven cases and is therfore not further sup-

ported. The problems with the application of a yield table as an external trend are

twofold: extrapolation and linking.

The only suitable approach to extrapolation without field measurements is via crown

cover data. The equivalent on a stand level canopy cover can be assessed quite reliably

by experienced inventory foresters. However, modeling crown cover on a plot level is
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problematic because of the concentric circles. For example, total crown cover areas

greater than the actual plot area are unavoidable. This problem has also been reported

by Gill et al. (2000). They tackled this problem by using models with an upper

asymptote.

However, the large variation introduced by the extrapolation has a much more severe

influence on the ordinary kriging performance. This variation is due to the imprecision

introduced by crown cover models. Modeling single tree crown area as a linear function

of the dbh produced good fits for Nagel (1999). Similar models studied by Gill et al.

produced much lower coefficients of determination (around 0.5). The goodness of fit

of the resulting canopy cover model at the plot level was worse.

Extrapolation is achieved by multiplying the measured volume by the ratio of plot

size to modeled canopy cover. Underestimation of the latter can result into unrealistic

high potential volumes and are one explanation of the large deviations observed in

Fig. 14. Furthermore, large variation leads to large nuggets lowering the suitability

of a kriging approach.

Linking plot data to the yield table is straightforward in pure stands. Age is difficult

to define in mixed stands and the dG of the yield tables refers to pure stands. The hG

seems more appropriate as link item but with the investigated species failed to produce

residuals in accordance with the intrinsic hypothesis (cf. Fig. 14). Furthermore,

universal kriging produced comparable error variances based on the same source of

auxiliary variables in Baden-Württemberg.

The different approaches are compared by their root mean square error (RMSE)

and their BIAS. The RMSE is computed as RMSE=

√∑n
i=1(Vi−V̂i)2

n
, and the BIAS

as BIAS=
∑n
i=1(V̂i−Vi)

n
, where V̂i and Vi are predicted and surveyed volume of stand

i = 1, . . . , n.

5.3.1 Synthetic Estimator and Null-Variant

The synthetic estimator is covered by the null-variant of the forest service. The Null

uses the same strata means but adjusts for stocking densities and mixture proportions.
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Densities and mixtures are calculated at the plot from modeled crown cover and

at the target stands are replaced by estimates obtained from field assessment. In

theory it should be superior to the synthetic estimator because it uses more detailed

information. Results for both techniques are summarized in Table 10, row one to

three for beech, and row five to seven for spruce.

Stratum membership of a stand is determined by the phase 1 plots. Allocation of a

phase 1 plot into one stratum is influenced only by the conditions found on the plot;

characteristics of the surrounding stand are ignored. It follows that a mixed stand can

comprise phase 1 plots belonging to different strata. This is indicated in Table 10 by

superscripts in Greek letters; derivation of corresponding volume estimates are listed

below the table.

Setting the mean volume of the field survey as the reference the Null always under-

predicts beech stands. Even in pure stands under-prediction can be as large as 58%

of the surveyed volume. In mixed stands under-prediction can be even as large as

73% in the oldest stand with spruce prevailing. The resulting RMSE is 84 m3, and

the BIAS 75 m3.

The synthetic estimator has also a tendency to under-predict beech stand volume

although for the stand-type 25 aged above 120 years volume is over-predicted by 8% as

222 m3. Compared to the Null in five out of ten cases the synthetic estimator produces

predictions closer to the surveyed volume. Accordingly, the RMSE with 73 m3 and

the BIAS with 53 m3 are lower than for the synthetic estimator (cf. Table 10).

No systematic deviation in the prediction by the Null or the synthetic estimator

is observed for spruce, although the bias is -15 m3 for both approaches. The Null

predictor performs quite well except for the oldest mixed stand with spruce prevailing,

where it over-predicts the surveyed volume by 58%. Relative deviations of volume

prediction are large for the ”pure“ beech stands but these stands have low spruce

volume, hence absolute deviations are small. The RMSE is rather low with 65 m3.

The synthetic estimator is inferior to the Null-variant in all but three stands. Its

RMSE is almost two times larger with 128 m3, but the BIAS is identical for both

techniques with -15 m3. Predictions are closer to the surveyed volumes in the oldest
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stands of type 20, 25, and 50. The gain in accuracy of the synthetic estimator over

the Null-variant for these three stands is lower than the loss in accuracy in the other

cases. This is especially true for stands with low spruce percentage where prediction

by the synthetic estimator is way off the surveyed value.

Overall, apart from one exception, better performance of the synthetic estimator is

found in mixed stands with beech prevailing and in the oldest variant of the pure

stands. The inferiority of the Null-variant implies that the employed estimates of

mixture proportions and stocking densities are not representative for the respective

plot values.

Table 10. Evaluation of prediction based on ”existing“ information
Stand-Type / Age-class [years]

Method 20/ 20/ 20/ 25/ 25/ 25/ 50/ 50/ 50/ 52/ 52/ 52/
60-80 80-120 >120 60-80 80-120 >120 50-70 70-90 >90 50-70 70-90 >90

Survey (µ̂B) 267 263 352 50 201 205 — 6 — 29 5 186
σ̂µ̂B
µ̂B

8 9 9 29 17 10 — 105 — 44 51 24

Null (µ̂B) 180 109α 235 15 109β 103γ — 1 — 6 2 50

SYN (µ̂B) 147 102ξ 301 12 142ν 222κ — 15 — 12 12 65

UK (µ̂B) 196 201 337 77 193 137 — 51 — 43 83 185

Survey (µ̂S) 10 17 16 295 95 183 352 655 543 409 535 226
σ̂µ̂S
µ̂S

23 31 67 10 37 17 6 9 6 8 4 26

Null (µ̂S) 5 24τ 2 255 135ε 145ζ 339 800 590 408 459 357

SYN (µ̂S) 47 141ψ 27 498 228ϕ 162φ 328 498 498 328 328 431

UK (µ̂S) 189 197 201 269 220 383 365 550 488 337 453 393

20: pure beech; 25: predominantly beech; 50: pure spruce; 52: predominantly spruce;
Beech: RMSENull: 84 m3; RMSESyn: 73 m3; RMSEUK : 44 m3;
Spruce: RMSENull: 65 m3; RMSESyn: 127 m3; RMSEUK : 132 m3;
µ̂: mean volume [m3]; σ̂µ̂µ̂ : coefficient of variation [%]; σ̂2: variance of volume predictions;

B : beech; S : spruce; α: 109=(25+2*151)/3; β: 109=(20+30+2*193)/4; γ: 103=(57+2*126)/3
ξ: 110=(12+2*147)/3; ν: 142=(12+15+2*271)/4; κ: 222=(65+2*301)/3
τ : 24=(18*2+36)/3; ε: 135=(179+257+2*52)/4; ζ: 145=(327+2*54)/3
ψ: 141=(47*2+328)/3; ϕ: 228=(328+498+2*43)/4; φ: 162=(431+2*27)/3

Of all field plots that comprise at least one spruce in layer 1 51% are pure and 32%

comprise two species. For beech, only 33% of the respective plots are pure but 45%

comprise two species. Older stands are more heterogeneous with respect to canopy
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cover. The more variation there is in stocking density and mixture, the harder these

characteristics are to predict and the less precise these estimates become.

5.3.2 Universal Kriging

Performance of the universal kriging predictor depends, among other things like align-

ment of the sample plots, on the relationship of the regressors with the variable to be

predicted. With high resolution auxiliary data it performed rather well at Grünenplan

and produced similar results compared to ordinary kriging at Baden-Württemberg

when the same source of auxiliary data was used.

As a substitute to ordinary kriging with external trend function universal kriging

employing variates from the field assessment (”Bestandesbegang“) is applied. Such

variates can only be employed if the phase 2 BI plots can be linked uniquely to the

new geometries delineated in the course of the field assessment.

Four different trend functions are investigated:

- a linear combination of SI, age, stocking density, and mixture proportion

- a linear combination of SI, age, and stocking density, each multiplied by mixture

proprotion

- linear combinations of the product of age, stocking density, and mixture pro-

portion and SI, where the linear combinations are fitted separately for two age

classes (below and above 60 years for spruce, below and above 80 years for

beech)

- the same linear combinations as before but the REML fit is based on stocking

density and mixture proportions calculated from the phase 2 plots and predic-

tions employ the corresponding variables from the field assessment

The second approach yielded the lowest RMSEs for the two species, followed by the

fourth. Results reported refer to the second model unless mentioned otherwise.

A GIS coverage with the new geometries is already available and the new description

of compartment, sub-compartment, and sub-sub-compartment is attached to the field
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plots by an intersection as outlined in section 3.1 and a subsequent join in a database

management system.

The join is based on a key concatenated from the forest district, compartment, sub-

compartment, and sub-sub-compartment. The joined data set is confined to entries of

layer 1 and where the index of the auxiliary management unit is zero. In general, man-

agement units can have characteristics different from the surrounding stand but do

not have geometries. If a sub-sub-compartment comprises an auxiliary management

unit then the index of the latter is greater than zero.

A unique join of the two datasets is still impossible. In the course of the new stand

alignment additional structural elements are classified that have associated geome-

tries. Sometimes these elements coincide with the auxiliary management units but

there is no 1:1 mapping between the two characteristics.

So, a sub-sub-compartment can comprise up to five structural elements, translating

into five different ages, site indexes, stocking densities, and mixture proportions. The

last always adds up to 100 over all species of a sub-sub-compartment, regardless of

occurring structural elements. Unique values of the field assessment are obtained for

the sub-sub-compartment as a weighted sum, the weights being mixture proportions.

Predictions are summarized in Table 10, and model parameters in Table 11. There

is pronounced spatial structure in the beech residuals with a sill of 5563 at a range

of 860 m and a ratio of sill to nugget of 0.45. The spatial structure of the spruce

residuals is much weaker with a nugget of 22409 and a sill of 3863 reached at 984 m.

Table 11. Universal kriging parameters
Species Nugget Sill Range Type

Beech 12228 5563 860 Sph

Spruce 22409 3863 984 Sph

Trend variables taken from field assessment
Sph: Spherical semivariogram model

Compared to the Null-variant for

beech, universal kriging yields always

predictions closer to the field survey es-

timates except where the beech volume

is extremely low. Apart from the old-

est beech-spruce stand the same holds

for the synthetic estimator. This bet-

ter performance is reflected by the low

RMSE of 44 m3. The BIAS of 6 m3 is also small.
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For spruce, universal kriging also over-predicts the very low volume estimates, found in

pure beech stands, but deviations are much larger. Besides, prediction is satisfactory

for the pure spruce stands. In mixed stands deviations up to 132% of the surveyed

volume occur, leading to the large RMSE of 132 m3.

Compared to Grünenplan the derivation of auxiliary information has been modified.

Mosaicing images can be done automatically but usually needs post-processing. Fur-

thermore, for larger areas flight paths will comprise many images with resulting large

mosaics but it is the file size of the mosaics that matters. Of course, there can be

multiple mosaics per flight path but only at the costs of more interactive user input.

The image data needs to be intersected with field data but with large coverages con-

taining more than a million polygons the GIS used (ESRI’s
TM

Arc/Info, Version 8.0.1

on Unix) reached internal software limits.

Instead, transformed image data are used for the Solling area. The first channel and

the ratio of first to second and first to third channel are used in the ISODATA unsu-

pervised classification. Band ratioing helps to compensate for changing illumination

conditions, surface slope, aspect, and other sources of variation (Lillesand and Kiefer,

2000), and has been applied in other applications of digitized aerial photographs

(Haara and Nevalainen, 2002; Holopainen and Wang, 1998). Thus, it serves the same

purpose as the interactive mosaicing at Grünenplan, that is, reducing radiometric

distortions. The first channel is retained because modeling experience has shown that

it carries more information than the other two channels; this is especially true for the

DSM derivation.

The ratio-channels are linearly stretched to brightness values within [0,255] to increase

contrast. After the classification is run, points with coordinates representing BI or

evaluation plots are imported per image. The coordinates of the BI plots and the

evaluation plots are stored in only two separate files. In the evaluation stands there

is a point every 50 m. These points are burned into a separate image channel and

buffered to actually cover an area of a BI phase 2 plot.

The raster data covered by these buffered regions are converted to vector data and

exported to files in Arc/Info readable formats. The entire processing described so

far is handled by one script written in EASI, GEOMATICA’s scripting language.
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The next steps are automatized by an AML script, interacting with self-developed C

and Perl programs. AML is Arc/Info’s macro language. In principle, any higher pro-

gramming language can be chosen but C and Perl are natural choices in Unix/Linux

environments and are also available for all major platforms. C does CPU intensive

calculations and the second language Perl is chosen owing to its unsurpassed text

processing capabilities, facilitating data re-formatting.

The vector data are read into GIS coverages, one image at a time. The coverages

are intersected with the BI-data or evaluation-data held in separate coverages, thus

attaching IDs. The GIS provides a native function that joins coverages into one

coverage. With the overlap in the data, usually around 60% in flight direction and 30%

perpendicular to it, this native function produced unpredictable results; geometries

and even worse polygon attribute values changed. Attribute values not existing at a

plot were introduced by the join.

The alternative uses system calls of the GIS, passing the coordinates of a bounding

box of each image-coverage to system programs. The programs individually reduce

these bounding boxes so that no overlap occurs and pass the coordinates of these boxes

via a file back to the GIS. The original image-coverages are clipped by their respective

reduced bounding box coverage and then joined using the native GIS function. The

polygon attribute data of the joined coverages are unloaded from the GIS in plain

ASCII format and further processed as described in section 3.1, p. 7.

The resulting processed data files are fed into the relational database management

system MySQL. Further joins of spectral, height, field assessment, and forest inventory

data are handled by the DBMS. The DBMS is accessed by R (Ihaka and Gentleman,

1996), the software employed for all statistical analysis in this study, locally and over

the intra-net of the sponsoring institute. R stores its objects in one binary file located

here in an environment accessible by many computers via NFS (network file system)

and Samba (acronym for server message block).

The described architecture has several advantages. The data are centrally stored, no

versioning is possible, and can be accessed from multiple computers enabling ”dis-

tributed“ computing. Even with a computer with 2.2 GHz processor speed some runs

can last more than 12 hours, so having multiple machines at one’s disposal is an asset.
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R allows batch processing, further facilitating the analysis. Once an R script is

developed, it can be applied to the different data sets described below with only

minor changes.

During model selection in Grünenplan auxiliary information from the imagery was

based on seven clusters representing spectral information and a nDSM with spatial

resolution of 0.6×0.6 m, that is, heights got derived for every other pixel. For model

evaluation and refinement these categories have been modified. As outlined in sec-

tion 3.1, seven clusters are thought of as a rather large reduction. Instead, in a first

trial, the images were classified into 25 clusters. The resulting amount of data proved

too large to be further processed in the GIS as outlined above.

In a next step 20 clusters are selected and successfully prepared for the prediction

analysis. Additional reductions are 15 and the already applied 7 clusters. Normalized

DSMs are derived with a resolution of 0.44 m (every pixel), and a resolution of 0.88 m

(every other pixel).

The higher the resolution of the nDSM the better the visual appearance in terms

of crown shapes becomes (Nuske, 2002). However, the resulting nDSM has more

variation in the height values and also contains more outliers. The latter require

extensive editing of the nDSM before the data can be further processed. A direct

consequence of the outliers are more failure pixels because large variation implies low

correlation in the image matching. Unfortunately, an entire evaluation stand is not

covered by the fully resolved nDSM, and therefore it is decided to consider only the

nDSM with 0.88 m resolution here. Of course, failure pixels occur also in this data

set but apart from meadows in the forest these areas are small (usually below a crown

diameter of a mature beech). The main difference to the fully resolved DSM is that

there is enough overlap of elevation data between images.

The height information and the spectral information is used to derive a species pro-

portion measure as described in section 5.1.3, p. 35. Additional measures describing

mixtures based on the approach by Wildenhein (cf. section 5.1) and stocking densities

are also derived by mixture analysis.

The variates used in universal kriging are the 0.85 height quantile, measures for species
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proportion, mixtures, and stocking densities, gap, and growing space. Growing space

is calculated by integrating the nDSM height values over the sample plot domain.

Only the derived auxiliary variables species proportion, mixture, and stocking density

are influenced by the number of ISODATA clusters. A hidden auxiliary information

is the occurrence of a species in a given stand; it is assumed that one knows which

stands comprise beech or spruce.

The models investigated are:

- a linear combination of gap, 0.85 height quantile, and species proportion

- a linear combination of gap and the product of 0.85 height quantile and species

proportion

- a linear combination of stocking density, 0.85 height quantile, and mixture

- the product of stocking density, 0.85 height quantile, and mixture

- a linear combination of stocking density and product of 0.85 height quantile and

species proportion

- a linear combination of stocking density, product of 0.85 height quantile and

species proportion

- a linear combination of growing space and species proportion

- a linear combination of growing space and mixture.

Of these models the first with the linear combination already applied in Grünenplan

proved to be the most efficient one. Its parameters are summarized by species and

source of auxiliary information in Table 12.

Table 12. Model parameters for universal kriging
Beech Spruce

Method Nugget Sill Range Type Nugget Sill Range Type

UK7 7079 2195 800 Sph 16046 2511 959 Sph

UK15 6867 1572 677 Sph 14058 3427 425 Sph

UK20 6773 1200 669 Sph 15203 1660 800 Sph

7,15 ,20: Spectral auxiliary information based upon 7, 15, or 20 ISODATA clusters;
Sph: Spherical semivariogram model

Compared to the respective parameters obtained in Grünenplan (cf. Table 5, p. 38),

the models for beech have lower nuggets and lower process variances. The decrease is
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from 10021 (cf. UK4 in Table 5) to 7973 (UK20). The sill of 1200 of the latter model

is rather low, implying that there is not much spatial autocorrelation in the residuals.

There is more spatial autocorrelation in the residuals of spruce but less than compared

to the models fitted in Grünenplan. Also, nuggets and process variances are larger

than the ones of the respective models in Grünenplan (cf. Table 12 and Table 5).

Results of the prediction of stand volume are summarized in Table 13 for beech and

Table 14 for spruce.

Table 13. Evaluation of UK prediction: Beech
Stand-Type/ Field Survey UK7 UK15 UK20
Age [years]

µ̂ CI/2 n’ n µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

20/ 60-80 267 46 1 31 268 7591 222 14269 285 5578

20/ 80-120 264 52 3 48 240 10193 251 12663 242 5556

20/ >120 352 62 3 60 307 3765 351 4507 313 3283

25/ 60-80 50 30 2 25 110 7796 50 2385 65 4273

25/ 80-120 201 73 4 71 169 14273 141 11417 197 3079

25/ >120 205 43 3 34 141 5634 220 5884 198 7105

52/ 50-70 29 26 – 17 81 6582 63 1138 101 3677

52/ 70-90 5 5 4 15 88 3175 104 21517 94 11567

52/ > 90 186 97 4 69 164 10487 217 13399 239 9201

50/ 70-90 6 13 3 62 61 4619 56 6763 124 4529

20: pure beech; 25: predominantly beech; 52: predominantly spruce; 50: pure spruce;
RMSE7: 49 m3; RMSE15: 45 m3; RMSE20: 57 m3;
µ̂: mean volume [m3]; CI/2: half confidence interval length; σ̂2: variance;
n’: number of phase 2 BI-plots; n: number of plots the prediction is based upon

7,15 ,20: Spectral auxiliary information based upon 7, 15, or 20 ISODATA clusters;

For beech, all three approaches perform satisfactorily in the pure beech (type 20)

and the predominantly beech (type 25) stands. The approach based on auxiliary

information derived from 15 ISODATA clusters (UK15 for short) yields predictions

always within the confidence interval of the respective surveyed volume of these stands

with large beech volume. In mixed stands with low beech volume over-prediction

beyond the upper confidence interval occurs, especially in the stands where beech

volume is less than 10 m3 (cf. Table 13).
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The UK20 beech-model performs similar in terms of predictions within the confidence

interval. However, it has the largest RMSE of 57 m3. It is outperformed by the UK7

approach with a RMSE of 49 m3 and a RMSE of 45 m3 for UK15. The RMSE of the

last model is only slightly larger than the 44 m3 of the universal kriging approach based

on auxiliary information of the field assessment and almost 1
2

of the currently applied

Null-variant. It should be noted that all RMSEs obtained for beech by universal

kriging are lower than the Null-variant (cf. Table 13 and 10). The BIASes of these

universal kriging models are (increasing cluster number) -6 m3, -11 m3, and -29 m3.

Table 14. Evaluation of UK prediction: Spruce
Stand-Type/ Field Survey UK7 UK15 UK20
Age [years]

µ̂ CI/2 n’ n µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

50/ 50-70 352 42 5 45 452 8499 341 4920 297 3457

50/ 70-90 656 131 3 62 430 5975 516 11913 512 16758

50/ >90 543 64 6 61 315 4228 462 6849 455 16603

52/ 50-70 409 68 — 17 318 10233 278 6733 290 7309

52/ 70-90 535 46 4 15 452 3393 450 18783 394 6270

52/ > 90 226 129 4 69 295 13291 332 12844 308 12764

25/ 60-80 295 62 2 25 312 13663 239 4057 234 3443

25/ 80-120 95 73 4 71 211 15275 221 8945 179 7548

25/ >120 183 63 3 34 208 3741 249 4386 225 8059

20/ 60-80 10 20 2 31 178 3168 205 1830 142 449

20/ 80-120 17 38 4 48 173 2451 217 6074 169 4875

20/ >120 16 23 3 60 186 696 224 1477 197 2264

50: pure spruce; 52: predominantly spruce; 25: predominantly beech; 20: pure beech;
RMSE7: 138 m3; RMSE15: 131 m3; RMSE20: 115 m3;
µ̂: mean volume [m3]; CI/2: half confidence interval length; σ̂2: variance;
n’: number of phase 2 BI-plots; n: number of plots the prediction is based upon

7,15 ,20: Spectral auxiliary information based upon 7, 15, or 20 ISODATA clusters;

There is an inverse proportional relationship between the number of clusters used

in the derivation of auxiliary information and the RMSE of the prediction of spruce

volume they are employed in. The RMSEs are 138 m3, 131 m3, and 115 m3 for UK7,

UK15, and UK20, respectively. The corresponding BIASes are -16 m3, -33 m3, and

-6 m3. As for beech, excessive over-prediction occurs where spruce volume is very low,
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but also for the stand type 25, age 80-120 years, with 95 m3. The closest prediction

is by UK20 with 179 m3, still beyond the upper confidence limit (cf. Table 14).

In general, predictions of all methods are not within the confidence interval of the

surveyed volume. Exceptions are found in four stands: the pure spruce stands younger

than 90 years and the oldest representative of both mixed types.

The RMSEs are very large compared to the Null with 65 m3, but of similar magnitude

of the ones of the synthetic estimator and universal kriging based on field assessment

information. This holds true except for UK20, which comes second to the Null-variant

in terms of RMSE. If one excludes the ”pure“ beech stands with very low spruce

volume then the RMSEs are reduced to 128 m3, 97 m3, and 97 m3, where the order

is as above. So, even with this exclusion of difficult to predict stands, the smallest

RMSE is still one and a half times larger than the one of the Null-variant.

Universal kriging doesn’t predict low volumes very well. This holds for both investi-

gated species, although over-prediction is less severe for beech than for spruce. The

frequencies of per hectare volume of the BI-field plots used in modeling are displayed

by histograms for both species in Fig. 15. Plots with beech volume below 50 m3 are

most frequent whereas for spruce the respective volume is around 275 m3.
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Figure 15. Volume variability within BI plots

The shape of the histograms helps to ex-

plain the different performance. The large

proportion of small beech volumes mean

larger leverage during parameter fit. The

result is that the model has a smaller

intercept in the universal kriging trend-

model and can better predict lower vol-

umes. Per hectare spruce volume of 50 m3

is less frequent than 500 m3, resulting in

lower leverage during parameter fit of the trend-function and hence larger intercepts

compared to the beech model.

66



5 APPLICATIONS AND RESULTS 5.3 Lower Saxony: Solling

5.3.3 Most Similar Neighbor

Design attributes used in the canonical correlation analysis are number of trees on

the plot, and per species hG, volume per ha, and estimated crown area as described

in section 5.1. The derivation of auxiliary variables used as indicator attributes is

explained in section 3.1, p. 7. Employed indicator attributes are total and mean area

per p-1 ISODATA classes (p=7, 15, 20), mean ratio of circumference to area of the

classified polygons, and per class the number of polygons that have larger class value

than all adjacent polygons.

Indicator attributes derived from the normalized DSM are area weighted variance of

height values, number of polygons representing failure pixels, maximum difference

in heights, the number of total polygons and their mean area, the area of polygons

classified as gap, and the 0.1 and 0.85 height quantile.

The inclusion of variables is based on expert knowledge guided by an evaluation of the

contribution of the variables to the canonical correlations. Inclusion is also influenced

by an evaluation of consistencies between correlations among indicator variables and

their respective canonical coefficients.

A selection based only on the contribution to the canonical correlations is not appro-

priate. Increasing the number of indicator attributes does not necessarily increase the

canonical correlation as is the case for the coefficient of determination in regression

analysis. However, multicollinearity among the indicator variables will be aggravated,

leading to unstable predictions. For example, a cause of instability are positively cor-

related indicator variables that have opposite sign in their canonical coefficients. This

was the case when basal area of the investigated species was included. Canonical cor-

relations increased but predictions were very unstable, which was reflected by larger

RMSEs than reported below.

Multicollinearity is a matter of degree, not kind (Dougherty, 1992). Here, the required

modeling user input is proportional to the number of polygons the spectral informa-

tion is classified into. With spectral information classified into 15 and 20 clusters

some clusters may represent the same feature like shaded crown matter. Including

all information of all classes belonging to the same feature type would increase multi-
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collinearity. Instead of using information of all classes only a subset is applied based

on a heuristic selection .

A first model looked for nearest neighbors within stands that comprised the respective

species. As for the universal kriging approach, this model assumes that one knows that

a stand comprises the species to be predicted. In such stands the species proportion

measure, explained in section 5.1.3, p. 35, can be used as an indicator attribute.

In addition, the 0.85 height quantile has been applied to divide the plots of the

target stands into two populations: below and above their mean height value. The

prediction based on two height populations is inferior to the one based on the entire

population. Furthermore, including the species proportion measure does not improve

the prediction either.

Results of the most efficient approaches are shown in Table 15 for beech and Ta-

ble 16 for spruce. Predictions are based on the indicator variables listed above and

summarized by the number of spectral classes these indicator variables are derived

from.

Prediction is quite good for beech. The RMSE is largest with 77 m3 for the approach

based on 20 ISODATA clusters (MSN20 for short) but still smaller than the one of

the Null-variant. MSN7 has a smaller RMSE with 61 m3. The RMSE of the MSN15

approach is 48 m3, only 57% of the Null-variant. The BIASes are (increasing cluster

number) 48 m3, 16 m3, and 61 m3. There seems to be a general tendency towards

over-prediction, not only for the smaller values as one would assume for this predictor

(cf. Table 15). Even the stand with the largest surveyed volume got over-predicted

by 29 m3.

The MSN predictors also seems to over-predict the volume for spruce as the BIASes

are (increasing cluster number) 38 m3, 6 m3, and 1 m3. However, in general there

is a tendency towards under-prediction, especially for stands with high volume (cf.

Table 16). The positive BIASes are due to the excessive over-prediction of the low

spruce volume in the ”pure“ beech stands. The MSN7 predictor has the lowest RMSE

with 124 m3, followed by MSN15 with 138 m3, and MSN20 with 141 m3.

The RMSEs are rather large but similar to the ones obtained by universal kriging
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Table 15. Evaluation of MSN prediction‡ : Beech
Stand-Type/ Field Survey MSN7 MSN15 MSN20
Age [years]

µ̂ CI/2 n’ n µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

20/ 60-80 267 46 1 31 337 22628 244 26739 396 54725

20/ 80-120 264 52 3 48 325 23625 253 42941 252 23789

20/ >120 352 62 3 60 328 10377 327 21606 381 7650

25/ 60-80 50 30 2 25 158 17208 76 5130 133 11877

25/ 80-120 201 73 4 71 195 24542 130 11761 195 22604

25/ >120 205 43 3 34 248 19388 236 13688 237 17015

52/ 50-70 29 26 – 17 115 19609 102 10315 87 5349

52/ 70-90 5 5 4 15 52 7376 68 4207 120 9443

52/ > 90 186 97 4 69 220 14306 210 22359 270 19288

50/ 70-90 6 13 3 62 68 5262 81 5819 105 5506
‡: prediction based upon nearest neighbor within BI plots comprising a beech
20: pure beech; 25: predominantly beech; 52: predominantly spruce; 50: pure spruce;
RMSE7: 61 m3; RMSE15: 48 m3; RMSE20: 77 m3;
µ̂: mean volume [m3]; CI/2: half confidence interval length; σ̂2: variance;
n’: number of phase 2 BI-plots; n: number of plots the prediction is based upon

7,15 ,20: Spectral auxiliary information based upon 7, 15, or 20 ISODATA clusters;

(cf. Table 14). If the ”pure“ beech stands are excluded then the RMSEs decrease to

98 m3, 111 m3, and 120 m3, where the order is by increasing cluster number.

The tendency to over-predict small and under-predict large values is a well known

characteristic of nearest neighbor techniques. The differences between the species

in the over-prediction of stands with low volume can partly be attributed to the

distribution of the BI plot-volume displayed in Fig. 15. For beech, there are more

potential neighbors at the lower tail of the distribution of BI plot-volume than for

spruce, corresponding to the smaller over-prediction of beech stand volume.

One approach to alleviate over-prediction of low species volume in mixed stands is to

search for neighbors within all BI plots, not only the plots that comprise the respective

species. Prediction results of such an approach are summarized in Table 17. MSN

based on 20 ISODATA clusters is not further investigated because it is inferior to the
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Table 16. Evaluation of MSN prediction‡: Spruce
Stand-Type/ Field Survey MSN7 MSN15 MSN20
Age [years]

µ̂ CI/2 n’ n µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

50/ 50-70 352 42 5 45 358 27981 325 13907 271 19917

50/ 70-90 656 131 3 62 484 35680 472 40879 572 76725

50/ >90 543 64 6 61 414 28484 467 36895 327 38801

52/ 50-70 409 68 – 17 389 19750 186 18186 225 19773

52/ 70-90 535 46 4 15 521 20556 461 28160 442 24041

52/ > 90 226 129 4 69 360 29328 287 33152 344 26469

25/ 60-80 295 62 2 25 235 21530 217 15426 200 17049

25/ 80-120 95 73 4 71 217 25779 164 15617 152 11028

25/ >120 183 63 3 34 249 23713 204 33875 202 16400

20/ 60-80 10 20 2 31 189 24032 122 13950 185 17497

20/ 80-120 17 38 4 48 141 12076 249 55820 211 21150

20/ >120 16 23 3 60 238 20308 254 40514 219 20500
‡: prediction based upon nearest neighbor within BI plots comprising a spruce
50: pure spruce; 52: predominantly spruce; 25: predominantly beech; 20: pure beech;
RMSE7: 124 m3; RMSE15: 139 m3; RMSE20: 141 m3;
µ̂: mean volume [m3]; CI/2: half confidence interval length; σ̂2: variance;
n’: number of phase 2 BI-plots; n: number of plots the prediction is based upon

7,15 ,20: Spectral auxiliary information based upon 7, 15, or 20 ISODATA clusters;

other two methods.

Including all BI field plots into the search actually improved the overall prediction

for beech in terms of RMSE and BIAS. The RMSE of the MSN7 predictor is 36 m3,

less than 2
3

of the approach listed in Table 15, and even outperforms the best MSN

prediction based on plots comprising beech by 25%. The reduction down to 46 m3 of

the RMSE of the MSN15 predictor is less pronounced. The BIAS is reduced to -23 m3

for MSN7 and -7 m3 for MSN15, indicating under-prediciton.

There is systematic under-prediction by MSN7 of stands where beech occurs. As for

the MSN15 predictor, the stand with the third largest beech volume, stand type 20

older between 80 and 120 years, gets over-predicted by MSN15 by 37 m3. The over-
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Table 17. Evaluation of MSN prediction based on all BI plots
Stand-Type/ Field Beech Beech Spruce Spruce
Age [years] Survey MSN7 MSN15 MSN7 MSN15

µ̂B µ̂S µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

20/ 60-80 267 10 209 36626 150 22665 45 14926 79 26914
(46) (20)

20/ 80-120 263 17 259 43194 300 34107 73 25822 63 17158
(52) (38)

20/ >120 352 16 316 28076 340 19132 25 4095 38 7431
(62) (23)

50/ 50-70 — 352 13 1613 0 0 283 17713 313 33164
(—) (42)

50/ 70-90 6 655 5 591 36 5900 511 50897 451 46500
(13) (131)

50/ >90 — 543 14 1365 53 11643 426 50990 386 31662
(—) (62)

25/ 60-80 50 295 31 6309 39 5512 217 23873 185 16906
(30) (62)

25/ 80-120 201 95 130 30902 126 22274 146 47174 115 24491
(73) (73)

25/ >120 205 183 158 19163 218 21152 113 18440 122 19165
(43) (63)

52/ 50-70 29 409 14 3333 27 6750 348 45853 229 22491
(26) (68)

52/ 70-90 5 535 0 1 10 767 489 26643 509 36641
(5) (46)

52/ > 90 186 226 139 20642 176 28472 255 67189 208 39675
(97) (129)

20: pure beech; 25: predominantly beech; 52: predominantly spruce; 50: pure spruce;
Beech: RMSE7: 36 m3; RMSE15: 46 m3; Spruce: RMSE7: 73 m3; RMSE15: 101 m3;
µ̂: mean volume [m3]; half confidence interval length in parentheses; σ̂2: variance; B : beech

S : spruce; 7,15: Spectral auxiliary information based upon 7 or 15 ISODATA clusters

prediction of stands with low beech volume is greatly reduced by both predictors (cf.

Table 17).

There is systematic under-prediction of stands with high volume and over-prediction

of stands with low volume for spruce when nearest neighbors are assigned out of all

BI field plots (cf. Table 17). Compared to the approach where the search is confined

to field plots comprising spruce overall efficiency is improved as the RMSE of MSN7

decreases to 73 m3, and the one of MSN15 to 102 m3. However, the RMSEs of a

prediction excluding the ”pure“ beech stands with low spruce volume are larger for

for MSN15 with 114 m3, but are only 98 m3 for MSN7.
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The over-prediction of stands with low spruce volume is greatly reduced; the predic-

tions for the oldest ”pure“ beech stands is even within the confidence interval of the

surveyed volume (cf. Table 17). This reduction is also reflected by the BIAS, which

is now negative for both approaches and of magnitude -33 m3 for MSN7 and -53 m3

for MSN15.

The mixed beech stand of type 25, age between 80 and 120 years, is one stand for

which the under-prediction of beech volume by both MSN7 and MSN15 is of similar

large magnitude (cf. Table 17). The distribution of the per hectare volume of the

evaluation field plots of this stand is displayed in Fig. 16 (a). The stand comprises

one plot where surveyed beech volume per hectare is much larger compared to the

others. Such a plot, with a per hectare volume of 661 m3, is hard to predict as there

is only 1 (!) BI field plot with a similar high volume (cf Fig. 15). This BI plot has a

per hectare volume of 680 m3.

The second to largest beech BI plot volume is 575 m3. So, under-prediction of this

one evaluation plot is most likely. If this plot is excluded then the mean surveyed

stand volume decreases down to 176 m3 and its under-prediction decreases from 35%

to 26% for MSN7, and from 37% down to 28% for MSN15.

It should be noted that even though these under-predictions seem large the MSN7

predictions are always within the confidence interval of the surveyed stand volume.
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Figure 16. Volume variability within evaluation stands
vertical line runs at the estimated mean

The distribution of the per hectare volume of the evaluation field plots of the spruce
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stand with the largest surveyed volume is displayed in Fig. 16 (b). The very large

stand volume of 655 m3 is under-predicted by 22% (MSN7) and 31% (MSN15) (cf.

Table 17). The stand volume is hard to predict because only 6.7% (ca. 46 plots) of all

BI plots have larger volume per hectare than 655 m3 and less than 1% (ca. 7 plots)

have a volume larger than 790 m3 (cf. Fig. 15).

When nearest neighbors are assigned out of BI plots comprising beech the MSN

predictor employing information from 15 ISODATA classes outperforms the MSN

predictor relying on 7 classes. This has been expected since the 7 classes are thought

of as rather coarse. If neighbors are assigned out of all BI plots then MSN7 performs

better in terms of lower RMSE for beech than MSN15.

In case of spruce, the latter is less efficient in both cases, but the RMSE is now 140%

of the one of MSN7, compared to 112% when neighbors are confined to BI field plots

comprising spruce.

In order to assess the influence of indicator variables derived from the spectral imagery

and from the height imagery on the prediction a MSN prediction is run excluding

indicator variables based on height information. In addition, instead of just using

the nearest neighbor as predictor, further predictors computed as distance-weighted

means of k -MSN, k = 1, . . . , 7, are evaluated, where the distance is given by Eq. (8),

p. 22.

Anttila (2002) claims that using more than one neighbor decreases the variance of the

predictor and the use of weighted means decreases bias without greatly increasing the

variance. The design variable hG is not included in the canonical correlation analysis

when the indicator variables derived from the nDSM are excluded. Results are shown

in Fig. 17 (a) for MSN7 and in Fig. 17 (b) for MSN15.

It has been expected that including height information will result into lower RMSEs,

as the estimation variances are lower for the corresponding approaches in Grünenplan

(cf. Table 2 and Table 3, pp. 27). However, this is only the case when the spectral

information is based on 7 ISODATA clusters. The RMSE of the MSN7 approach using

just one neighbor and no height information is more than one and a half times larger

than the one including height information (59 m3 to 36 m2) (cf. Fig. 17 (a)). For

spruce, excluding the height information increased the RMSE of MSN7 by 10% up to

80 m3.
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Figure 17. Root mean square error over k-nearest neighbors

×: spruce (including height information) ; ∗: spruce (excluding height information);
◦: beech (including height information) ; •: beech (excluding height information)

7,15: Spectral auxiliary information based upon 7 or 15 ISODATA clusters;
dashed line: RMSE of beech by Null-variant; dotted line: RMSE of spruce by Null-variant

For the MSN15 approach, the RMSEs of spruce are always lower when the height

information is excluded, although canonical correlations are lower compared to the

approach where height information is included. Using just one neighbor, the RMSE is

89% of the one including height information. However, the canonical correlations are

0.80, 0.48, and 0.34 compared to 0.82, 0.52, 0.41, and 0.36 when height information

is included.

The RMSE for beech, excluding height information, has a minimum for k=2 with

26 m3, the lowest RMSE observed over both species and all methods. There is an

overall decreasing tendency for increasing k using MSN15 when height information is

included (cf. Fig. 17 (a)). In case of spruce, applying k -MSN yielded the lowest RMSE

for k=3 with 77 m3 when height information is exlcuded. If the latter is included no

clear minimum is discernible (cf. Fig. 17 (b)). Overall, there is more variation in the

RMSE of MSN15 than in the RMSE of MSN7.

The is no general tendency discernible that with increasing k the BIAS decreases.

Excluding height information the BIAS of MSN7 predicting beech decreases from

−23 m3, k=1, to −11 m3 , k=7. However, for spruce there is an increase from −33 m3,

k=1 up to −38 m3, k=7. For the corresponding MSN15, the respective BIASes are

(beech) −7 m3, k=1, and −6 m3, k=7, and (spruce) −53 m3, k=1, and −53 m3, k=7.
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On average the variances of the MSN predictor decreas with increasing k. For k=1

obtained variances can be large but are within the range of the variances of the field

survey (cf. Table 9 and 17). Furthermore, even with a variance as large as 50990

the large number of prediction plots, usually ≥25, lead to confidence interval lengths

relatively small compared to the ones of the field survey.

The final ”most similar neighbor“ predictor is chosen as MSN7, k=1, including height

information. For spruce, this predictor yields the lowest RMSE. The root mean square

error of beech is 138% of the minimum obtained by MSN15, k=3. However, a general

recommendation on k employed by MSN15 is difficult as different k lead to a mini-

mum RMSE of spruce and beech. Using different k for different species is considered

impractical, also, because the small number of evaluation stands do not warrant a

general recommendation. The RMSEs of MSN7 seem more stable and the average

RMSE over the two species is only 0.5 m3 larger than the ”global“ minimum achieved

by MSN15, k=2, excluding height information.

The final predictor yields predictions of spruce stand volume five times inside the

confidence interval of the surveyed volume. There is no systematic deviation in that

predictions inside the confidence interval occurs for stands only with low, medium,

or high volume (cf. Table 17). The Null-variant predicts stand volumes inside the

confidence interval of the surveyed volume in 9 out of the 12 stands (cf. Table 10),

yet the RMSE of MSN7 is only 112% of the Null-variant.

For beech, MSN7 produces predictions 8 times inside the confidence interval of the

surveyed volume compared to 3 times of the Null-variant (cf. Table 17 and 10). This

different prediction quality is also reflected by the RMSE of the MSN7 predictor,

which is only 43% of the RMSE of the Null-variant.

The number of 7 clusters ISODATA classifies the spectral information into seems well

adapted for use by the MSN predictor applied to the given data. Predictions proved

to be more efficient than approaches based on 20 or 15 clusters. An additional model

run based on 11 clusters produced results similar to MSN15 and was thus less efficient

than the final predictor employing auxiliary information derived from 7 ISODATA

clusters.
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6 Discussion

With the analyzed data, ordinary kriging is not considered an appropriate predic-

tion tool for reasons outlined in section 5.3, p. 54. It is less flexible than universal

kriging or most similar neighbor prediction. The need of an external trend function

is its major disadvantage. Linking to the external trend function yield table is prob-

lematic. In addition, using the yield table is only appropriate as long as there is a

pronounced age structure with only a few age classes. The transition of rotation to

continuous cover forest management systems will take years, if not decades, but still,

the influence of age structure will vanish gradually over time. So, in the long run,

ordinary kriging with external trend function cannot be applied because of the lack

of an appropriate external trend function. Furthermore, based on the same source of

auxiliary information, universal kriging produced similar results in the Black Forest

(cf. Table 6, p. 41).

There are two further geostatistical techniques one might think of as appropriate in

the context of regionalization of forest inventories: cokriging and double kriging.

Both methods are applied in cases where two sets of variables are measured on a

coarse grid and one set of variables has additional measurements on a denser grid.

The data sets represent point measurements, that is, even the variables measured

on the denser grid do not cover the entire sampling domain, as must be the case in

universal kriging.

Cokriging is a multivariate prediction procedure. Suitable data are measurements

of two or more variables at the same sampling locations. There is no need of co-

occurrence of the sampled variables at every site, on the contrary, cokriging typically

performs best when some of the attributes are undersampled (Olea, 1999). The kriging

system written in matrix notation, using covariances instead of semi-variances, is

almost identical to the kriging system of ordinary kriging. The difference is that

elements of the matrices are themselves matrices (Myers, 1982).

One application of cokriging in forest inventories using remotely sensed data can be

found in Blodgett et al. (2000). They use Landsat TM images in the derivation of

auxiliary variables. The 30 m× 30 m ground resolution of such data renders them

unsuitable for application to the problem investigated in this study. Proposed methods

76



6 DISCUSSION

of Blodgett et al. are regression with cokriging of residuals, cokriging, and stochastic

simulation. They do not mention if there is spatial structure in the residuals for

then a simple ordinary least square regression would not be appropriate. Instead,

generalized least squares needs to be applied, but a circularity problem would then

arise as outlined in section 4.3. If, on the other hand, there is no spatial structure in

the residuals then cokriging would not be appropriate. Blodgett et al. do not discuss

these issues, nor do they provide results in terms of precision of prediction.

Cokriging has not been considered because of several problems. The structural anal-

ysis required by cokriging is much more demanding than that of ordinary kriging.

Besides n covariances required by ordinary kriging, the user must model additional

n(n − 1) cross-covariances, where n represents the number of regionalized variables.

The covariance matrices must be positive definite. Individual selection of permissi-

ble models for all covariances and cross-covariances is not a sufficient condition to

produce a positive definite covariance matrix (Olea, 1999). Therefore, cokriging de-

mands more user interaction during model fitting. A further disadvantage arises from

the encountered variation in the data. The resulting large nuggets do not justify the

additional modeling input.

The theoretical foundation of double kriging was laid down by Mandallaz (1996). He

developed double kriging as a regionalization tool in the context of double or two

phase sampling designs applied in forest inventories, as for example in Lower Saxony.

With the data set-up as described in section 3.1, double kriging works as follows:

classify the phase 1 plots into L=8 strata; in phase 2, measure a subset of these

phase 1 plots on the ground. Compute the L means per stratum of the variable to

be regionalized. Use these means at the phase 2 locations to compute the difference

of stratum mean to surveyed value of the variable under investigation. So far, the

approach is identical to kriging with varying means (cf. section 4.2.2). They differ

with respect to the prediction.

In double kriging, the residuals as well as the strata means are considered a realization

of a random function. A prediction at an arbitrary location s0 with unknown stratum

information is then carried out as the sum of the prediction of the residuals and the

stratum mean for that location s0. A spatial structure analysis is required for the
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trend function given by the strata means, as well as for the residuals to the trend

function.

An early application of double kriging is found in Fouquet and Mandallaz (1993).

Auxiliary information was derived from analogue airborne images. The phase 2 plots

were measured on plots with 10 m radius aligned in a systematic cluster design. Model

validation was carried out using a fully inventoried area of 17 hectares.

Variables regionalized were number of stems per unit area and basal area per unit

area over all species. For the entire validation area they obtained good results, but if

the prediction was confined to 1 ha squares deviations of more than 62% occurred in

the prediction of the number of stems.

The data analyzed by Fouquet and Mandallaz are much more detailed than the data

provided by the forest service of Lower Saxony. In addition to the four age classes

and two species groups surveyed during phase 1 in Lower Saxony, 2 levels for stocking

density are recorded. Also, the spatial grids are denser; one phase 1 plot represents

0.9 ha and a phase 2 plot 3.6 ha. The latter are sampled as clusters where one cluster

comprises 5 satellites. This set-up reduces the variation in the data, meaning lower

process variances and most likely lower nuggets than obtained by a sampling design

as applied in Lower Saxony.

The less detailed data provided by the inventory in Lower Saxony explain why a

spatial structure analysis of the residuals to the trend function strata means failed

(cf. section 5.1 and Table 4, p. 34). The spatial structures of the trend function strata

means have large nuggets greater than 13000, process variances around 20000, and a

range of around 500 m (not shown). Owing to this variability in the spatial structures

double kriging is regarded not appropriate for the given data.

All introduced methods share the need of auxiliary information. The two principal

sources considered in this study are the field assessment and digital CIR images. The

cost of the preparation of auxiliary information based on the latter source are less than

¤ 0.40 ha−1, excluding hard and software. The employed software OrthoEngine is one

of the cheapest softwares providing bundle adjustment and automatic digital elevation

model extraction, and costs around USD 9,000.- (Brostuen et al., 2001). OrthoEngine
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runs on the most common operating systems and is mainly developed for personal

computers. Assuming that a forest service is inventorying at least 20,000 hectares

per year, software costs would be around ¤ 0.50 ha−1 the first year and less in the

following years, depending on the chosen support service. With the assumed area

inventoried annually, the one time costs for a decent PC are around ¤ 0.15 ha−1. So

the total cost of the auxiliary information derived from the digital images employed

in this study add up to around ¤ 1.05 ha−1.

The field assessment of the forest service in Lower Saxony costs around ¤ 15 ha−1,

although no measurements are taken. It serves multiple purposes, not only the pro-

vision of quantitative estimates of stands characteristics. In addition, new geometries

delineated on the CIR images are counter-checked on the ground. The field assessment

also serves controlling purposes (Beck, 1999).

The difficult economical situation of the forest services of all federal states in conjunc-

tion with the introduction of continuous cover forestry systems led to the abandon-

ment of the classical forest management planning surveys. The forest services are keen

on reducing inventory related expenses, and initial sampling designs are subject to fur-

ther cost cutting optimizations (Böckmann et al., 1998). Against this background this

study has emphasized on methods that maximize the information extraction based

on existing auxiliary data, that is the field assessment, or on methods that, at lower

cost, produce similar results. Methods requiring monetary input additional to the

expenses of the field assessment are not supported, instead, alternative methods must

show a potential to replace or reduce the expensive field assessment.

There is usually a time lag of around one year between the survey of the field plots

and the release of the new forest district map. Consequently, predictions relying on

auxiliary information of the field assessment will also have a time lag of one year,

whereas predictions relying on the digital images can be made once the field survey

is completed.

The Null-variant is based on data of the field assessment. The auxiliary variables

stocking density and mixture proportion are obtained by educated guesses, no mea-

surements are taken. The Null-variant predictions of beech volume are only three

times within the confidence interval of the surveyed volume (cf. Table 10, p. 57),

always when the surveyed volume is less than 10 m3 per hectare. The RMSE of 84 m3

79



6 DISCUSSION

is the largest of all evaluated methods applied to beech.

The opposite is true for spruce. The RMSE of the Null-variant of 44 m3 is the smallest

of all evaluated methods. In 9 out of the 12 cases are predictions within the confidence

interval of the field survey. The exceptions are the middle aged pure spruce stand with

the largest surveyed volume and the two oldest mixed stands where spruce prevails.

Usually, the canopy cover gets less regular with increasing age, rendering stocking

density more difficult to estimate. Also, mixture proportions are more difficult to

assess when species are more evenly mixed. These two factors help to explain the

largest observed over-prediction of the spruce volume by 58% in the stand type 52,

older than 90 years (cf. Table 10 and 9, p. 57 and p. 53).

The difficulties in assessing mixture types also help to explain the low performance of

the Null-variant for beech. Beech grows mainly in mixed stands, 67% of all inventoried

BI-plots comprising beech comprise at least one other species.

The synthetic estimator is a simple version of the Null-variant. It does not depend

on the field assessment but employs information of the phase 1 plots. Roughly 4% of

all stands are not covered by a phase 1 plot (Böckmann, personal communication).

Without input in addition to the phase 1 plots, it cannot be assumed that forest

districts can be covered entirely by this predictor.

For beech, the synthetic estimator yields a lower RMSE than the Null-variant, but

is less efficient than the Null-variant in spruce stands. In theory, the Null-variant

should always be more efficient unless the employed additional information, that is,

stocking density and mixture proportion, is imprecise. The better performance of the

synthetic estimator in beech stands supports the assumption that stocking densities

and mixture proportions are difficult to assess in mixed stands without measurements.

The quality of predictions obtained from universal kriging is affected by several

factors like the quality of the employed auxiliary information, the plot alignment, and

the plot size.

The concentric layout of the sample plots reduces their suitability for kriging purposes.

The need to extrapolate characteristics of the smaller circle diminishes the spatial
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autocorrelation between field plots. In general, it holds that the smaller the plot

size the smaller the mean surveyed absolute plot volume is. Smaller mean absolute

plot volumes imply smaller variances. If the plot size is reduced by half then in

theory the variance per unit area remains constant as can be seen from V ar(abx) =

V ar(a b′

a
x) = V ar(b′x), where a is the plot inflation factor (here 1

2
), b and b′ are

constant multipliers to obtain a variance per unit area (unit area
plot size

), and x the plot

volume (a random variable).
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Figure 18.
Plot volume per unit area variability
vertical line runs at 113 m2

However, empirical studies even show an in-

crease of per unit area variance. This can

be attributed to the spatial inhomogeneity of

tree growth, an additional source of variation

of plot volume per unit area. The resulting

allometric relationship between plot size and

variance of plot characteristics per unit area

was first described by Smith (1938). An illus-

tration based on a subset over all species of

the evaluation stands is shown in Fig. 18.

The spatial alignment of the terrestrial sample plots will also affect their suitability for

kriging purposes. The two-phase sampling design applied in Lower Saxony had been

optimized for precise estimation of the mature stands at the entire forest district level.

The use of the sampling grid for regionalization purposes was not taken into account

(Saborowski and Dahm, 1996). Optimal sampling designs for regionalization purposes

have been developed (McBratney et al., 1981a; McBratney et al., 1981b; Olea, 1984).

These designs usually align plots on a regular systematic grid. Such an alignment

would run contrary to the optimizations developed for the sampling design applied in

Lower Saxony because any stand type would have a sampling density proportional to

its total area.

Employing auxiliary information from the field assessment requires a join of these data

to the surveyed field plots. The data sets do not necessarily refer to the same spatial

locations, because a forest district will be re-delineated in the course of the forest

management planning (cf. section 5.3.2). This problem in the data join adds variation

to the prediction because for some stands characteristics will be based on averages

comprising the main stand and the structural elements. Furthermore, variation within
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stands expressed by auxiliary management units cannot be captured because these

units are not spatially explicit.

Nevertheless, with the auxiliary information provided by the field assessment universal

kriging performed surprisingly well. For beech, this approach yields the second lowest

RMSE of 44 m3, outperforming the other universal kriging approaches using auxiliary

information obtained from the images. It is also more efficient than the Null-variant,

which is based on the same auxiliary data source.

Results for spruce stands are worse. The RMSE of 132 m3 is twice as large as the

RMSE of the Null-variant although comparable to the UK7 and UK15 approaches,

but inferior to the UK20 approach (cf. Table 10 and 14, p. 57 and 65).

The more logical trend functions based on products (cf. section 5.3.2, p. 58) are infe-

rior to the simple approach based on a linear combination of SI, stocking density, and

age, each multiplied by mixture proportion. This can be attributed to the variability

within the employed auxiliary variables. For example, in a multiplicative model if

a stocking density enters the prediction with a value of 0.6 instead of 0.3 then the

predicted volume will be doubled. With the obtained coefficients in a linear approach,

the increase of the volume estimate will be less pronounced.

For the two investigated species there is an inverse relationship between the efficiency

of the Null-variant and universal kriging based on field assessment information. If

the Null-variant performs well then universal kriging produces bad results and vice

versa. Based on this observed relationship it is recommended to regionalize beech

stand volumes via universal kriging and spruce volumes via the Null-variant if the

auxiliary data are derived from the field assessment.

The prediction quality of universal kriging based on auxiliary information derived

from the digital images is affected by additional factors.

The quality of the auxiliary information is influenced by positional accuracies of the

field plots and the spatial rectification of the images. Holopainen and Wang (1998)

report mean positional errors of rectification for the ground-control points between

2.9 m and 4.8 m. Their images were rectified using 10 to 12 ground points measured

in the field by GPS (global positioning system). In the present study the images are

rectified simultaneously via bundle adjustment. The achieved root mean square error
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of all ground-control points is below 2 m in easting and northing directions for both

the Grünenplan and the Solling images, and is considered good.

Assuming that the phase 2 BI plots had been correctly located, these positional dis-

placements imply that some of the field plots are only partly covered by the plots

on the images. Unfortunately, the field plots are not always situated where they are

believed to be. Their locations were measured by GPS but positioning errors of GPS

measurements under closed canopies are a well known problem. So, plots on the

images will match the terrestrial plots on average only.

Changes in illumination conditions caused, for example, by slopes or radial displace-

ment on the images, are accounted for by mosaicing applied to the images at Grünen-

plan and band rationing applied at the Solling. A more sophisticated procedure of

radiometric calibration based on regression analysis is proposed by Holopainen and

Wang (1998). However, their approach is based on supervised procedures and the

authors admit that they did not solve the calibration problem in practical forest

inventory.

The techniques used to derive auxiliary information from the classified images are

rather simple and easy to grasp by practitioners. The importance of the last point

should not be underestimated because the transparency of a technique furthers its

acceptance and hence implementation by practitioners.

Results of universal kriging applied to beech stand volumes are quite good. The RMSE

of this approach is always less than 32% of the one of the Null-variant. The UK15

predictor yields the third lowest RMSE, only slightly larger than the one of universal

kriging based on existing information (cf. Table 13 and 10). Results for spruce are

less satisfactory, although the RMSE of UK20 with 115 m3 is the fourth lowest out of

eleven methods (cf. Table 14). No general recommendation on the number of classes

ISODATA should classify can be made because UK20 produced the largest RMSE for

beech within this group of universal kriging predictors (cf. Table 13 and 14).

Hoffmann (2001) found a good linear relationship between growing space and total

surveyed plot volume. She used CIR images with a nominal scale of 1:5500, scanned

at 21µm. The DSM was derived with a spatial resolution of 1 m× 1 m. The studied

area was rather small, covering only 109 hectares, and is dominated by beech.
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Her good results could not be reproduced with the given data, although growing space

had the highest correlation with volume among all variables derived directly from the

imagery. Explanations are the smaller scale of the images employed in this study and

the approach to model species rather than total volume.

The lower the scale of the images the larger the errors of the derived DSM will be,

ceteris paribus. Hoffmann (2001) reports that a height error of 2 m already translated

into an under- or over-estimation of total plot volume by 10%. The 0.85 height

quantile as a proxy of the hG seems less sensitive to height errors and to the spatial

resolution of the nDSM (Nuske, 2002). This serves as one explanation why the trend

function employing this quantile proved to be more efficient than the one employing

growing space.

In order to predict volume per species the latter must be identified. Tree species

recognition from digital imagery is an active research area. Gong et al. (1999) used

a feed-forward back-propagation neural network algorithm and consistently obtained

better than 80% accuracies of discriminations of six conifer species in the Sierria

Nevada mountains in California. However, the results are based on hyperspectral data,

containing much more spectral information than the CIR images regularly employed

in forest inventories.

Nevertheless, their results point out the potential images obtained by digital cameras

have. These images will contain more spectral information than comparable digitized

analogue CIR images because spectral information is lost during the digitizing process.

With digitized analogue CIR images classification of plots into habitat types seems

a more promising approach. Holopainen and Wang (1998) employed digitized CIR

images at nominal scales of 1:5000, 1:30000, and 1:50000 for the classification of 11

habitat classes in Finnland. Using a supervised regression radiometric calibration,

they obtained stratification results better than 80%. Increasing the image scale did

not remarkably increase the classfication accuracy as one would have assumed.

Their regression based calibration needs ground-truth measurements as a priori infor-

mation. Such information is usually not provided by forest inventories. Furthermore,

the area covered was 300 hectares only, leaving open the question of performance

when multiple images are employed.
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Effects of the different parameters derived from digital images on modeling spruce

plot volume are illustrated in Fig. 19 (a) through (d). In Fig. 19 (a) plot volume is

modeled by a product of stocking density, hG, and mixture proportion, all computed

from the field plot data. Mixture proportions are derived following the approach used

in the Null-variant (cf. section 4.6, p.23).
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Figure 19. Modeling of plot-volume

(a) Regressor as product of B
◦
, hG, and

mixture; all from field plots
(b) Regressor as product of B

◦
(field plots),

0.85 height quantile, and mixture (field plots)
(c) Regressor as product of B

◦
(imagery),

0.85 height quantile, and mixture (field plots)
(d) Regressor as product of B

◦
(imagery),

0.85 height quantile, and mixture (imagery)

There is a good linear relationship between

volume and regressor. The relationship

is still quite good when the hG is substi-

tuted by the 0.85 height quantile, shown

in Fig. 19 (b). The relationship gets worse

when measured stocking density is substi-

tuted by an estimate modeled by mixture

analysis (cf. Fig. 19 (c)). Finally, if mix-

ture proportions are also substituted by an

estimate from the imagery the relationship

breaks down (cf. Fig. 19 (d)). The problem

of capturing mixtures are another expla-

nation of the severe over-prediction of the

low spruce volume in ”pure“ beech stands

(cf. Table 14).

The trend function universal kriging is

based upon is a function in three variables,

stocking density, height, and species pro-

portion. These variables are modeled from the initial information contained in the

spectral image and in the nDSM. Improving the prediction quality of the variables

requires the improvement of the initial information and the models that transform

the initial information into the said three variables.

Stocking density and height can already be modeled satisfactorily from the available

data. A better universal kriging based prediction of volume per species hinges on

a better model identifying species (cf. Fig. 19). The weak spatial autocorrelations

encountered in the final universal kriging models (cf. Table 12, p.63), may not justify

the application of this computational demanding technique. However, it is recom-
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mended to employ universal kriging instead of a simple regression approach because

the former is able to capture possible stronger spatial-autocorrelations (cf. Fig. 11,

p. 38).

The negative effects of the concentric field plot layout and positional accuracies on

the quality of the auxiliary information discussed in the context of universal kriging

prediction are also valid for most similar neighbor prediction. The two methods

differ with respect to how they are influenced by the alignment of field plots. The

quality of the MSN predictor is influenced by the alignment of the field plots in the

feature space only, that is, how the design attributes are distributed.

The most similar neighbor predictor makes direct use of the initial variables obtained

from the classified spectral image and of the variables derived from the nDSM. Im-

provements in the quality of the initial auxiliary information discussed in the context

of universal kriging will also improve the prediction quality of the MSN predictor.

However, no transformation of the inital variables and no parametric models need

to be specified as the canonical correlation analysis weights the contribution of the

initial variables to the canonical variables by their respective covariances. The only

additional modeling input necessary is a check of multicollinearity.

Let X be an n×m matrix of indicator or design attributes. Multicollinearity can be

detected by examining the eigenvalues of X ′X, where prime denotes transposition,

by their condition number κ =
√

λ1

λm
, and condition indices κj =

√
λ1

λj
, j = 1, . . . ,m,

where the λj are the eigenvalues in descending order. Condition numbers less than 100

indicate no serious problems with multicollinearity. κ in [100, 1000] implies moderate

to strong multicollinearity, and if κ exceeds 1000, severe multicollinearity is indicated

(Montgomery et al., 2001). Severe multicollinearity can be caused by only one vari-

able. Including growing space instead of the 0.85 height quantile in the approach

based on 15 ISODATA clusters resulted in 33 out of 57 condition indices being larger

than 1000 and a condition number of 26741. When the 0.85 height quantile was used

the condition indices were all below 650.

The condition indices should also be analyzed because the canonical correlation can be

misleading due to over-fit of the employed model. The problem of over-fit is also well

known for parametric regression approaches. Consequences observed during model
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evaluation are models with larger canonical correlations and larger root mean square

errors than those of more stable competitors.

In addition to the check of multicollinearity the correlation matrix of X should be

analyzed. Problems are indicated by large pairwise correlations and inconsistent signs

of corresponding canonical coefficients; for example, if two variables are positively

correlated but their canonical coefficients are of opposite sign. Correlation matrices

of both the indicator and the design attributes need to be checked as the canonical

coefficients of the latter influence the canonical coefficients of the former (cf. Eq. 36,

p. 117).

The required modeling input to MSN prediction is still less than for a parametric

regression approach. Apart from the sometimes time consuming variable selection,

regression approaches also demand checks on the residuals in addition to checking for

multicollinearity. Furthermore, checks of large condition indices and inconsistencies

of pairwise correlations and corresponding canonical correlation coefficients can be

handled by an application software and thus shielded from the less statistically inclined

practitioner.

The most similar neighbor predictor performed better for both species when nearest

neighbors are assigned out of all BI plots, not only the BI plots comprising the respec-

tive species. In the latter approach the lowest RMSE for beech is 48 m3 by MSN15,

133% of the final MSN7 prediction looking for neighbors within all BI plots (cf. Ta-

ble 15 and 17). The improvement for spruce is larger as the lowest RMSE by MSN7

based on the BI plots comprising spruce is 170% of the final MSN7 prediciton (cf. Ta-

ble 16, and 17). The improvements can be attributed to the reduced over-prediction

of stands with low volume (≤ 50 m3) of the respective species.

The following discussion refers to the MSN predictor assigning neighbors out of all BI

plots. The final MSN7 prediction yields the lowest RMSE of 36 m3 over all investigated

approaches applied to beech. The prediction systematically under-predicts beech

stand volume but in 7 out of 10 stands where beech occurs predictions are inside the

confidence interval of the surveyed volume.
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The MSN7 predictor yields the second lowest RMSE for spruce with 73 m3 which is

only 112% of the best prediction produced by the Null-variant (cf. Table 17 and 10).

Predictions of MSN7 are inside the confidence interval of the surveyed volume in 5

out of the 12 stands whereas the Null-variant predicts 9 stands inside the confidence

interval. There is a systematic over-prediction by MSN7 of stands with low spruce

volume and an under-prediction of stands with high spruce volume (cf. Table 17).

If a regionalization of a forest enterprise should be carried out and digitized CIR

images are available then, based on the above results, it is recommended to use a

MSN7 predictor employing information from both the spectral image and the nDSM.

The MSN predictor distinguishes surprisingly well between spruce and beech. Pre-

dictions by MSN7 of stands with low beech volume are always within the confidence

interval of the surveyed volume (cf. Table 17). For spruce, the ”pure“ beech stands

with low spruce volume are captured rather well by the MSN7 predictor, too. One pre-

diction is inside the confidence interval and the Null-variant is the only other predictor

yielding closer predictions for these stands (cf. Table 17 and 10, p. 71 and 57).

The two pure spruce stands without beech get volume for the latter species predicted

by MSN7, however, the predictions are moderately low with 13 m3 and 14 m3. Zero

volume predictions are possible and the MSN15 predictor correctly assigns such a

volume to one stand but predicts 53 m3 for the other stand (cf. Table 17).

Good separation of deciduous and coniferous species is also reported by Haara and

Nevalainen (2002). Their approach used a robust segmentation algorithm with sub-

sequent classification into 7 classes, one for bare ground, pine, and deciduous trees,

and four defoliation classes of spruce. Material employed were CIR images of nominal

scale of 1:5000 and two stands, 0.6 ha and 0.4 ha in size. Haara and Nevalainen stress

the importance of the quality of training data in their supervised approach, rendering

this approach unsuitable for applications investigated in this study.

Recent applications of most similar neighbor techniques using canonical correla-

tions and digitized CIR images as data source for auxiliary information are found

in Muinonen et al. (2001) and Anttila (2002). In both studies predictions of total

stand volume was based on k-nearest neighbors with respect to stands, not field plots
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as is the case in the present study. Choosing entire stands can be explained by the

small stand size, 1.87 and 1.9 ha respectively, and their homogeneity.

Muinonen et al. investigated 59 stands with a total area of 125 hectare covered by

just one CIR image with scale 1:30,000. Total stand volume was the only design

variable used. The indicator variables represented mean stand values, for example,

mean brightness value in the red channel. Empirical semivariograms were calculated

from the pixel values in the red band. The semivariogram values of the first 25 lags, lag

distance being 1 m, were used as auxiliary information. The variogram information

improved the volume predictions. However, the authors admit that if forest stands are

large the heterogeneity within the stands increases, resulting in a possible decrease of

prediction quality of their approach.

Their most efficient approach yielded a RMSE of 17.9% and a bias of -0.6%. The

relative values are obtained by dividing the RMSE and BIAS by the (unweighted)

mean volume of all stands. The RMSE is based on cross-validation. In the present

study the RMSE is 27.7% for beech and 26.3% for spruce. The biases are -17.6%

and -8%, respectively. The RMSEs obtained in this study are similar to the 29.9%

reported by Anttila, which are also based on cross-validation. It should be noted that

Muionen et al. and Antilla predicted total stand volume whereas in the present study

the harder to predict species volume is investigated.

Antilla used three CIR images with scale 1:20,000 covering 577 field stands. The

investigated stands must be rather homogeneous as less than 10 field plots with radius

≤ 10 m were sufficient to estimate stand volume reliably. Values of the empirical

semivariogram were used as indicator variables, as in the approach by Muinonen et

al. Old inventory information was also used as indicator variables. Excluding this

information and relying only on information derived from the digital images increased

the RMSE to 36.7%. The use of old forest inventory information is considered not

operational in the context of the present study because dynamic events like storm

breaks cannot be captured.

Both Muinonen et al. and Antilla report better predictions for k > 1. The best

predictions were obtained for k=7 (Muinonen et al.) and k=15 (Antilla). These

results could not be reproduced in the present study. Some predictors produce lower
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root mean square errors when more than one neighbor is considered but no general

increase in efficiency with increasing k can be observed (cf. Fig. 17).

Assuming that the variables to be predicted have some sort of bell-shaped or even

equal distribution most similar neighbors techniques are known for problems of pre-

dicting values at the tails of the distribution. Over-prediciton of values at the lower

tail and under-prediction of values at the upper-tail of the distribution are likely to

occur. This phenomenon can be explained by the lower number of suitable neighbors

at the tails. The magnitude of the bias will be inversely proportional to the canonical

correlations of the indicator and design attributes, ceteris paribus.

If the bias can be quantified according to the encountered conditions then such quan-

tification could be used to correct it. The bias of the final MSN7 predictor is plotted

over the surveyed stand volume in Fig. 20 (a) for beech and Fig. 20 (b) for spruce.

Except for the stands without beech the stand volume of this species is systemati-

cally underestimated, but there is no discernible relationship between the bias and

the surveyed volume.
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Figure 20. Bias over surveyed volume of final MSN7 predictor
∆vol: volumepredicted-volumesurveyed

There is a weak negative linear relationship between bias and surveyed spruce stand

volume (cf. Fig. 20 (b)). It is conjectured that increasing predictions for both species

above certain thresholds will improve overall efficiency. For example, a moderate

increase of predictions in [200,300) by 25 m3 and by 50 m3 if predicted volume is ≥
300 m3 is considered conservative.
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Validation of the conjecture requires further research comprising more stand types

and more observations per stand type. The stand types should also include mixtures

of coniferous and deciduous species, for example beech in oak stands or larch in beech

stands. Furthermore, the species separation capabilities of MSN should be tested on

forest districts comprising douglas fir and spruce because these species are hardest to

distinguish on CIR images.

One problem of research on most similar neighbors is the demand this technique

imposes on the data. Based on the experience gathered in this study it is recommended

to investigate only entire forest districts. Performance of the MSN depends heavily

on the number of suitable neighbors available. Regionalizations are applied at the

forest district level and restricting model evaluation to smaller areas would distort

prediction quality.

Furthermore, the suitability of cross-validation must be questioned because it cannot

capture over-fit of models. Cross-validation is well established in geostatistics but

taking spruce as an example the cross-validated error variance based on the BI-plots

of the most efficient UK20 approach is 16530 whereas the cross-validated error variance

of MSN7 is more than double as large with 34041. However, the RMSE of the MSN7

predictor is only 73% of the RMSE of UK20.

An evaluation should be based on data resembling forest stands, although this would

be difficult to accomplish with the BI data. One approach would be to pool BI

plots of same stand type and age and use these plots only during model evaluation.

One problem is the reduction of plots available for prediction. An evaluation stand

usually comprises more than 25 prediction plots (cf. Table 15 and 16, p. 68 and 70).

There are 373 BI plots comprising beech situated in the 8,000 hectares of the Solling

investigated here. Pooling data to represent 5 stands would already significantly

reduce the available number of suitable neighbors.

Despite all these obstacles and challenges further research on most similar neighbor

techniques seems justified by its good performance. Furthermore, of the methods

investigated, MSN is the only multivariate prediction technique. Variables, that are

also influenced by the canopy and height structure, can be regionalized by MSN as a

byproduct of the species volume regionalization without additional modeling input.
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This features qualify MSN as a promising tool to fulfill the information require-

ments of modern muli-functional forest managment planning, a view supported by

Anttila (2002) and Muinonen et al. (2001).
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7 Summary

The introduction of continuous cover forestry systems and the difficult economic sit-

uation of the forestry sector lead to the replacement of classical surveys by sample

based inventories. Affordable sampling densities enable statistically sound inference

at the entire district level only. However, there is a demand for reliable information at

the spatial scale of management activities: the forest stands. This demand can only

be met by a regionalization of the sample plots. Any regionalization needs auxiliary

information, provided by the already implemented inventory or by additional sources

like digital airborne images.

In the most extensive comparison of techniques, known to the author, four different

regionalization approaches have been investigated in this study in three different forest

districts. The first two forest districts in Lower Saxony and Baden-Württemberg

served a model selection guided by cross-validation. Auxiliary information has been

derived from the field assessment as part of the regular inventory and digitized CIR

images in Lower Saxony.

The digital images are an additional source of auxiliary information although analogue

CIR images are part of the regular inventory in Lower Saxony. Spectral properties of

the digital images and height information derived from digital stereo-pairs have been

employed as auxiliary information.

A selection of regionalization techniques has been evaluated in the third forest district

situated in Lower Saxony. The evaluation is based on the comparison of predicted

volume to surveyed volume of 12 intensively sampled forest stands. The evaluation

stands represent 4 different types at three different ages.

The intensive sample covers a total of 10 hectares in addition to the phase 2 BI

plots located in the evaluation stands. Stands are much more inhomogeneous than

expected. The youngest pure spruce stand already needs a minimum of 21 field plots

of size 707 m3 to obtain a half confidence interval length of 10% of the estimated mean

at the α=0.05 level. Even setting the half confidence interval length to 20% some of

the mixed stands cannot reliably be characterized by a sample but would require a

total enumeration.
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The evaluation stands were surveyed and predicted without regard of the canopy

layer concept applied in Lower Saxony. The layer concept would further increase the

variability of species volume between sample plots, rendering a regionalization much

more difficult.

The methods investigated focus on one hand on the maximization of information

extraction from existing sources. On the other hand focus is laid on approaches

that rely on additional resources but produce similar or better results at lower cost.

Techniques employing auxiliary information of both existing and additional sources

are not supported owing to scarce economical resources.

The forest management planning of the forest service of Baden-Württemberg relies

on a 1 phase sampling design. The only source of auxiliary information is field as-

sessment. Regionalization of the sample plots using this auxiliary information proved

difficult owing to the different spatial scales these two data sets refer to. A successful

regionalization of the high resolution field plots demand auxiliary information of sim-

ilar high resolution. Such information can be provided by 2 phase sampling designs.

The acquisition of CIR images costs less than ¤ 0.75 per hectare. 2 phase sampling

designs have the potential to obtain results similar to 1 phase designs with less field

plots, which are expensive and cost around ¤ 30.-.

The most similar neighbor predictor, MSN, produces the most efficient predictions

in terms of RMSE of the 12 evaluation stands over the two principal tree species

beech and spruce. MSN performes better when neighbors are sought out of all BI

plots, not only the plots comprising the respective species. The auxiliary information

employed is derived from the digitized CIR images. The derivation is achieved using

the commercial, but widely used, GIS Arc/Info and self-developed programs; is semi-

automatic, and can handle multiple images.

The heuristic regionalization approach of the forest service of Lower Saxony, based on

a modified synthetic estimator is the second most efficient predictor. Auxiliary infor-

mation employed is provided by the field assessment and consists of occular assess-

ments of stocking density and mixture proportion. The modified synthetic estimator

produced the best predictions for spruce stands but also the worst predictions for

beech stands. The investigated beech stands are more mixed than the spruce stands
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and an occular assessment of stocking density and mixture proportion seems more

difficult in such mixed stands.

The field assessment serves also the delineation of newly established structural ele-

ments and has controlling functions. The controlling function can also be fulfilled by

visiting not all stands of a forest district but only a sample of stands. A sampling

design can assure that all forest stands will be visited over time.

Assuming an area to be inventoried of 20,000 hectares annually, if the field assessment

is scaled back by 50%, that is, only every other stand is visited, the cost saving

potential of MSN is more than ¤ 120,000. Furthermore, MSN is a multi-variate

prediction technique and variables also influenced by the canopy structure can be

regionalized simultaneously with species volume. This makes MSN more appropriate

for the regionalization of multi-functional forest inventories than the Null-variant.

The structural elements are delineated in the course of the regular forest management

planning on the CIR images and checked during the field assessment. Only a subset

of the delineated elements are kept. With the current set-up the structural elements

are of little use for regionalization purposes because characteristics like mixture pro-

portions of the field assessment cannot unequivocally be linked to these elements.

It is recommended either to assess them separately in the field, like the auxiliary

management units, or to abandon the concept.

If the concept of structural elements is maintained, a field assessment based on a

sample rather than covering the entire forest district, may still be a viable option.

The elements not covered by a field check can be predicted by MSN and depending

on the predicted value of the element compared to the surrounding stand it can be

decided to keep the structural element or to dissolve it.
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8 Zusammenfassung

Waldbauliche Zielsetzungen einer modernen Forstwirstschaft sehen eine Überführung

von strukturarmen Reinbeständen in strukturreiche, nach Alter und Baumarten ge-

mischte Bestände vor. Die resultierenden Wuchsdynamiken lassen sich nur noch un-

befriedigend durch herkömmliche Ertragstafelmodelle abbilden. Daher werden klas-

sische Forsteinrichtungsverfahren zunehmend durch stichprobenbasierte Verfahren

ersetzt. Die schwierige wirtschaftliche Lage des forstlichen Sektors diktiert dabei

Stichprobendichten, die verlässliche Aussagen nur auf der gesamten Betriebsebene

ermöglichen.

Es besteht dabei weiterhin ein Bedarf an Information auf Bestandesebene, der räum-

lichen Ebene der waldbaulichen Maßnahmenumsetzungen. Dieser Informationsbedarf

kann mittels einer Regionalisierung der Stichprobendaten befriedigt werden. Unter

Regionalisierung wird die Übertragung der qualitativ hochwertigen Stichprobeninfor-

mation, die punktförmig vorliegt, in die Fläche verstanden.

Vier unterschiedliche Regionalisierungsansätze sind im Rahmen dieser Arbeit an drei

Forstbetrieben untersucht worden. Der Schwerpunkt der Arbeit liegt auf Methoden,

die entweder die Regionalisierung aufgrund von bestehenden Quellen von Hilfsinfor-

mation optimieren, oder aber auf Methoden, die auf alternativen Quellen von Hilfsin-

formation beruhen und zu ähnlichen oder besseren Ergebnissen bei geringeren Kosten

führen.

Allen Ansätzen ist gemein, dass sie nahe bzw. ähnliche Nachbarn oder ein gewich-

tetes Mittel von nahen bzw. ähnlichen Nachbarn zur Vorhersage heranziehen. Auch

benötigen alle Verfahren sogenannte Hilfsinformationen zur Vorhersage. Hilfsinformati-

onen sind dabei Variablen, die sich kostengünstig an den Feldplots der Forstinventur

sowie an allen Vorhersagepunkten erheben lassen, und die mit der Zielvariable, Vo-

lumen je Baumart (Buche und Fichte), in einem funktionalen Zusammenhang stehen

müssen.

Quellen für Hilfsinformation sind der Bestandesbegang und Luftbilder. Der Be-

standesbegang ähnelt den Aufnahmeverfahren der klassischen Forsteinrichtung, je-

doch werden keine Messungen vorgenommen. Alle Angaben beruhen auf Experten-
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einschätzung. Falschfarben–Infrarot-Luftbilder werden bereits im Rahmen der zwei-

phasigen Stichprobeninventur in Niedersachsen eingesetzt. Um eine großflächige und

möglichst automatisierte Bearbeitung zu ermöglichen, wurden die Luftbilder digita-

lisiert. Hilfsvariablen wurden anschliessend mit selbstentwickelten Programmen aus

den bearbeiteten digitalen Luftbildern abgeleitet.

Die vier Regionalisierungsansätze lassen sich in zwei Kategorien einteilen, die durch

die jeweilige Definition von Nähe charakterisiert sind. Eine Kategorie definiert Nähe

bezogen auf Merkmale. Zwei Verfahren dieser Kategorie verwenden einen syntheti-

schen Schätzer. Im einfachsten Fall erfolgt die Vorhersage über die Zuordnung des

Zielbestandes zu einem geeigneten Auswertestratum. Vorhergesagte Werte sind dann

die für das Auswertestratum geschätzten Mittelwerte.

Das von der Niedersächsischen Forstverwaltung momentan angewandte Regionali-

sierungsverfahren beruht auf einem modifizierten synthetischen Schätzer und ist in

die Untersuchung mit einbezogen. Der zur Vorhersage herangezogene Mittelwert je

Stratum wird entsprechend dem Verhältnis von mittlerem Baumartenmischungsan-

teil und mittlerem Bestockungsgrad im Stratum zu den entsprechenden Werten im

Zielbestand korrigiert.

In die gleiche Kategorie ”Nähe bezogen auf Merkmale“ gehören nächste-Nachbarn-An-

sätze. Nachbarn werden über multivariate statistische Verfahren wie der kanonischen

Korrelationsanalyse oder mittels heuristischer Modellierung bestimmt.

Die zweite Kategorie definiert Nähe durch die gewöhnliche räumliche Nähe. Ein Mass

für die Ähnlichkeit ist dann durch die räumliche Selbstähnlichkeit oder räumliche

Auto–Korrelation gegeben. Die Vorhersageverfahren sind Methoden der Geostatistik

und werden als Kriging bezeichnet. Kriging basiert auf einigen Modellannahmen. Die

Kriging-Verfahren können so zum Beispiel nicht auf die gemessenen Baumartenvolu-

men angewendet werden, da jene durch einen Alterstrend beinflusst werden.

Ein Ansatz der Trendeliminierung unter Anwendung des gewöhnlichen Krigings be-

steht in der Verwendung einer Trendfunktion, die extern bezüglich der Inventurdaten

ist, also nicht aus letzteren geschätzt werden muss. Solch eine externe Trendfunk-

tion ist durch eine Ertragstafel gegeben. Die beobachteten Inventurwerte müssen
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auf vollbestockte Werte hochgerechnet und dann über die Ertragsklasse in die Ta-

fel eingehängt werden. Die Differenz des hochgerechneten Volumens zur Ertragstafel

wird dann in die Fläche übertragen und in den Zielbständen wieder entsprechend auf

Baumartenvolumen zurückgerechnet.

Ein zweiter geostatistischer Ansatz, universelles Kriging, modelliert den Trend über

Hilfsvariablen simultan zur Bestimmung der Residuen vom Trend zu den beobachteten

Werten. Universelles Kriging ist sehr flexibel, stellt aber auch die höchsten Ansprüche

an die Qualität der Hilfsinformation.

Die ersten beiden Forstbetriebe dienten der Modellselektion durch Kreuz-Validierung.

In der Kreuz-Validierung wird sukzessive ein Stichprobenpunkt durch alle anderen vor-

hergesagt. Evaluierungskriterium ist dabei die Varianz des Fehlers, also der Differenz

des beobachteten zum vorhergesagten Wert. Die Stichprobenpunkte sind durch starke

Heterogenität selbst innerhalb von Abteilungen gekennzeichnet, da die Feldplots in

dichte oder offene Teile eines Bestandes fallen können. Solche Punktwerte sind schwie-

rig vorherzusagen, was sich auch in den grossen Fehlervarianzen der Kreuzvalidierung

widerspiegelt. Für die Baumarten Fichte und Buche ergaben sich dabei geringere Feh-

lervarianzen für das niedersächsische Forstamt Grünenplan als für das zweite Forstamt

im Schwarzwald.

Das Stichprobenverfahren in Baden-Württemberg ist einphasig und liefert somit kei-

ne hochauflösende Hilfsinformation auf Ebene der Feldplots. Zufallsbedingt konnten

zeitnahe panchromatische Luftbilder im Maßstab 1:18.500 vom Vermessungsamt be-

zogen werden. Eine Ableitung von Hilfsinformationen auf Feldplotebene aus diesen

Luftbildern scheiterte jedoch an der schlechten Qualität letzterer.

Die Bereitstellung von hochauflösender Hilfsinformation könnte flächendeckend aus

digitalisierten CIR Luftbildern erfolgen, die im Rahmen von 2-phasigen Stichprobenin-

venturen ohnehin eingesetzt werden. Die Kosten für die Verwendung von analogen CIR

Luftbildern in 2-phasigen Inventuren belaufen sich auf weniger als ¤ 0,75 je Hektar.

Bei gleichen Genauigkeitsansprüchen werden diese Kosten in der Regel durch den

geringeren Bedarf an Feldplots, die mit ca. ¤ 30,- teuer sind, mehr als kompensiert.

Universelles Kriging, beide synthetische Schätzer und ”Most Similar Neigbor“ (MSN),
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ein nächste Nachbarn Ansatz basierend auf kanonischen Korrelationen, wurden an

12 intensiv beprobten Beständen in einem 8000 ha grossen Teilgebiet des Sollings

evaluiert. Die Evaluierungsbestände umfassten vier Typen: Buche rein, Fichte rein,

und Mischungen von Buche-Fichte und Fichte-Buche. Innerhalb jeden Types wurde

drei verschiedene Altersstufen untersucht.

Die untersuchten Bestände erwiesen sich wesentlich inhomogener als erwartet. Für

einen ca. 55 jährigen Fichtenreinbestand konnte eine halbe Vertrauensintervallänge

von 10% des geschätzten Mittelwertes beim α=0.05 Level erst mit 21 Feldplots der

Grösse 707 m3 (Radius=15 m) erzielt werden. Selbst eine halbe Vertrauensinterval-

länge von 20% des geschätzten Mittelwertes erfordert in einigen Mischbeständen

Stichprobendichten, die eine Vollaufnahme des Bestandes bedeuten. Die Evaluierungs-

bestände wurden dabei ohne das in Niedersachsen angewandte Prinzip der Bestandes-

schichten inventarisiert, welches die Variabilität zwischen den Stichprobenplots noch-

mals erhöhen würde.

Die Trendfunktion im universellen Kriging wurde mit Hilfsvariablen, abgeleitet aus

den digitalisierten Luftbildern und aus dem Bestandesbegang, modelliert. In beiden

Fällen ergaben sich ähnliche Bestandesvorhersagen mit z.T. hohen Abweichungen für

Fichtenbestände aber insgesamt zufriedenstellenden Ergebnissen für Buchenbestände.

Das unbefriedigende Ergebnis für Fichten liegt in der extremen Überschätzung von

geringen Fichtenvolumen in ”reinen“ Buchenbeständen begründet.

Der modifizierte synthetische Schätzer der Niedersächsischen Landesforstverwaltung

produzierte die beste Vorhersage für Fichtenbestände über alle untersuchten Ver-

fahren. Für Buchenbestände produzierte dieser Schätzer allerdings die schlechteste

Vorhersage. Die verwendete Hilfsinformation wird bei diesem Ansatz durch den Be-

standesbegang bereitgestellt.

Die Unterlegenheit des modifizierten synthetischen Schätzer gegenüber dem normalen

synthetischen Schätzer, selbst bei Verwendung von Hilfsinformation auf Bestandes-

ebene, ist auf die geringe Qualität letzterer zurückzuführen. Buchen sind vermehrt in

Mischbeständen anzutreffen, was deren genaue Ansprache erschwert.

Der MSN-Prädiktor produzierte die effizienteste Vorhersage der 12 Evaluierungsbe-
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stände über beide Baumarten Buche und Fichte. Die besten Ergebnisse wurden erzielt,

wenn nächste Nachbarn aus dem Kollektiv aller Betriebsinventurplots ausgesucht wur-

den, nicht nur aus dem Kollektiv der Plots, die die jeweilige Baumart enthalten. Eine

distanzgewichtete Verwendung von k-nächsten Nachbarn konnte dabei die Vorhersage

nicht eindeutig verbessern.

Der ”root mean square error“ (RMSE), also die Wurzel des mittleren quadrierten

Abweichungsquadrates, ist im Falle von Buchenbeständen am geringsten und beträgt

weniger als 50% des RMSE des momentan angewandten modifizierten synthethischen

Schätzers der Niedersächsischen Forstverwaltung. Im Falle der Fichtenbestände ist der

MSN-Prädiktor nur diesem Schätzer unterlegen, allerdings ist der RMSE des MSN-

Prädiktor nur um 12% grösser.

Der MSN-Prädiktor verwendet dabei ausschliesslich Hilfsinformation, die aus den di-

gitalisierten CIR-Luftbildern der regulären Forsteinrichtung abgeleitet wurde. Unter

der Annahme, dass die jährlich zu inventarisierende Fläche mindestens 20.000 Hektar

beträgt, belaufen sich die Kosten für die Aufbereitung der Hilfsinformation aus den

schon bestehenden Luftbildern auf ca. ¤ 1,05 je Hektar. Die Kosten je Hektar für den

Bestandesbegang liegen dabei bei ca. ¤ 15,-.

Der Bestandesbegang dient nicht nur der qualitativen Beschreibung von Beständen,

sondern ist auch ein administratives Kontrollinstrument. Zusätzlich werden die auf

den Luftbildern ausgewiesenen waldbaulichen Strukturelemente auf die Richtigkeit

ihrer Ansprache überprüft. Die administrative Kontrollfunktion könnte aber auch

erfüllt werden, wenn anstatt des gesamten Forstamtes nur eine Stichprobe überprüft

würde. Ein geeignetes Stichprobendesign stellt dabei sicher, dass alle Bestände im

Laufe der Zeit im Feld aufgesucht werden.

Wird der Bestandesbegang nur noch auf 50% der Fläche ausgeführt, so beträgt das

Einsparungspotenzial des MSN-Prädiktors unter der obigen Flächenannahme mehr als

¤ 120.000,- jährlich. Zusätzlich ist der MSN-Prädiktor ein multi-variates Verfahren

und eignet sich besser zur Regionalisierung von multi-funktionalen Forstinventuren

als der angewandte modifizierte synthetische Schätzer. Variablen, die wie Speziesvo-

lumen ebenfalls durch die Kronendachstruktur beeinflusst werden, können mit Spe-

ziesvolumen in einem Arbeitsgang vorhergesagt werden und bedürfen keiner weiteren
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Modellierung.

Wird das Konzept der Strukturelemente beibehalten, so bleibt ein stichprobenba-

sierter Bestandesbegang in Kombination mit MSN-basierter Regionalisierung immer

noch eine mögliche Alternative. Die Strukturelemente, die nicht durch den Bestandes-

begang abgedeckt sind, könnten mittels des MSN-Prädiktors überprüft werden.

Bedingt durch die beobachteten systematischen Abweichungen in der Vorhersage von

Beständen mit grossem Volumen wird diesem Verfahren noch Potenzial zur Effizienz-

steigerung eingeräumt. Gelingt es, die systematischen Abweichungen in Abhängigkeit

der vorgefundenen Rahmenbedingungen zu quantifizieren, dann kann die Güte der

Volumenvorhersage nach Baumarten noch weiter gesteigert werden.
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A KRIGING

A Kriging

A.1 Ordinary Kriging

For further explanation and proofs of the following definitions see Olea (1999).

Definition I

Let D ⊂ IR2 and Ω be a non empty set with elements ω representing realizations

of a sample. A random function is then a set of random variables

{Z(s, ω) : s ∈ D,ω ∈ Ω}. (11)

For a given location si ∈ D, Z(si, ω) is a function of ω, that is, Z(si, ω) is a

random variable. In contrast, for a specific ωj ∈ Ω, Z(s, ωj) is a deterministic

function of s that represents a possible observation of the random field and

is called a realization. Finally, Z(si, ωj) is merely a number. Abbreviations

are common, equation (11) is referred to by Z(s) and z(si) is used in place of

Z(si, ωj).

Kriging is a collection of generalized linear regression techniques. The generalization

of classical regression theory comprises

• no assumption that the observations are independent and identical distributed

• the assumption of a random sample of classical statistics is not required

Kriging is based on multiple assumptions.

Assumption I:

The sample is a partial realization of a random function Z(s).

Assumption II:

The random function honors the intrinsic hypothesis over the sampling domain,

that is,

E
[
Z(s)

]
= m (12)
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V ar
(
Z(s)− Z(s+ h)

)
= E

[
Z(s)− Z(s+ h)

]2

= 2γ(h) (13)

where h is a distance vector, E[·] denotes the expectation operator, and γ(·) is

the semivariogram.

It follows that the semivariogram is a statistic that measures the average decrease

of similarity of two random variables over spatial distance. Semivariograms used in

kriging-systems are continuous functions of distance. In order to carry out kriging

a spatial structure analysis is required, semivariogram models have to be fit to the

data.

A semivariogram is modeled here as γ(h, θ), with θ ∈ Θ = IR3
+ being a vector of

spatial-dependence parameters. The semivariogram models considered are the nugget,

spherical, and exponential model where the nugget model can be nested with the two

other ones. The range is the distance at which a semivariogram reaches a constant

value, called sill. Let S be the sill and a be the range. The nugget model is of the

form

γ(h) =

{
0 , h=0

S , h > 0
(14)

The spherical model is expressed by

γ(h) =

{
S(1.5h

a
)− 1

2
(h
a
)3 , 0 ≤ h < a

S , a ≤ h
(15)

The exponential model is expressed by

γ(h) = S(1− e−( 3h
a

)) (16)

where a practical definition of the range a is the distance where the semivariogram

reaches 0.95S. The models are fit to the data by empirical variograms. The classical

estimator is expressed by

γ̂(h) =
1

2n(h)

n(h)∑
i=1

[
z(si)− z(si + h)

]2

(17)

The estimator (17) is not robust with respect to outliers. In case of such data the

following estimator

γ̂R(h) =

(
1

|N(h)|
∑

(i,j)∈N(h)

√
|z(si)− z(sj)|

)4

2(0.457 + 0.494
|N(h)|)

(18)
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is more appropriate (Cressie and Hawkins, 1980; Cressie, 1991). N(h) denotes the

number of pairs of points with a distance within an interval, a so called bin, with

mean h. Modeling the semivariogram requires a large enough number of distance

vectors with sufficient frequency of points pairs. Practitioners usually follow a recom-

mendation by Journel and Huijbregts (1978), who recommend N(h) ≥ 30. Because

such extensive data sets are seldom available pairs of points with similar distances

are grouped together into said bins. The partition of the bins influences the model fit

and is done by expert knowledge.

Definition II

Let Z be an intrinsic function. The krige predictor Ẑ(s0) at location s0 is given

by the following linear combination of random variables at locations si, i =

1, ..., n

Ẑ(s0) =
n∑
i=1

λiZ(si) (19)

subject to the constraint
n∑
i=1

λi = 1 (20)

Theorem I

The prediction variance σ2(s0) = V ar
(
Ẑ(s0)−Z(s0)

)
is the objective function

to optimize the weights λi. Let Ẑ(s0) and γ(·) be as introduced above. The

prediction variance is expressed by

σ2(s0) = 2
n∑
i=1

λiγ(si, s0)−
n∑
i=1

n∑
j=1

λiγ(si, sj) (21)

Definition III

Let N ∈ IN and let {α1, ..., αN} be a set of real or complex numbers and let

{s1, ..., sN} be a set of points in IR2. The continuous function φ(si, sj) is called

negative semi-definite if the following holds

−
N∑
i=1

N∑
j=1

αiαjφ(si, sj) ≥ 0 (22)
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Definition IV

Let σ2(s0) and λi be as in Theorem 1 and Definition 2 and let ψ be a Lagrange

multiplicator. The Lagrange function for ordinary kriging is then given by

L(λ1, ...., λn, ψ) = σ2(s0) + 2ψ(
n∑
i=1

λi − 1) (23)

Theorem II

Let λi, γ(·) and ψ be as introduced above. If the semivariogram is negative

semi-definite then the following statements hold

• the weights yielding the unique minimal prediction variance are the solu-

tions to
n∑
i=1

λiγ(si, sj)− ψ = γ(sj, s0) j = 1, ..., n (24)

n∑
i=1

λi = 1 (25)

• the kriging variance σ2
k(s0) = E[Z(s0)− Ẑ(s0)]2 is never negative.

Ordinary kriging has the following properties:

? minimum mean square error among all linear unbiased predictors,

? estimation interval not restricted to the data interval,

? screen effect: with observations approximately in line and all on the same side

of the prediction site, the closest collinear observation takes the normal amount

of weight and all other observations behind it tend to be ignored,

? declustering ability: clusters of observations get weights assigned that collec-

tively are close to the weight a single observation at the centroid of the cluster

would get assigned,

? exact interpolation with zero-kriging variance,

? inability to handle duplicate sampling sites,

? dependence upon the sampling pattern,

? and independence of the kriging variance from individual observations.
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A.2 Universal Kriging

In the universal kriging approach the random function Z(s) is divided into a determin-

istic trend and a fluctuation, Z(s) = m(s)+δ(s), where m(s) =
∑p

l=0 βlfl(s) = ~f(s)′~β

with ~β being a vector of (p+1) scalars, ~f(s)′ =
(
f0(s), ..., fp(s)

)
, f0(s) = 1, and prime

denotes transposition.

Theorem III

The Krige predictor is given as in (19). The weights yielding the unique minimal

prediction variance are the solutions to

n∑
i=1

λiγres(si, sj)− ψ0 −
p∑
l=1

ψlfl = γres(sj, s0) j = 1, ..., n (26)

n∑
i=1

λi = 1 (27)

n∑
i=1

λifl(si) = fl(s0) l = 1, ..., p (28)

where ψl l = 0, ..., p are (p + 1) Lagrange multipliers and γres(·) is the semi-

variogram of the residuals, the difference of the estimated trend to the observed

values.

The most common form of fl(s) is that of a monomial in the geographical coordinates

and although each fl(s) has been written as a function of location s they could also

be function of an explanatory variable associated with the datum at s, s ∈ D. The

distinction between the trend m and the fluctuation δ is not clear cut. In general,

m represents a large scale variation, regarded as fixed and δ a zero-mean intrinsically

random process, that is E[δ(s)] = 0 and V ar(δ(s) − δ(s + h)) = 2γ(h) = E[δ(s) −
δ(s+h)]2. A stronger assumption is second order stationarity. The semivariogram can

then be expressed as γ(h) = C(0)−C(h), where C(·) denotes the covariance function

of the random process. The krige prediction according to Eq. (19) of any location

s0 ∈ D is re-written in vector form as the linear combination of random variables at

locations si, i = 1, ...., n as

ẑ(s0) =
n∑
i=1

λiz(si) = ~λ′~zn (29)
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subject to the constraints (27) and (28). The prediction variance V ar(Ẑ(s0)−Z(s0))

is the objective function for the derivation of the optimal weights. Assume θ ∈ Θ is

known.

Let ~cu = (~c, ~x0)′ = (C(s0 − s1), ..., C(s0 − sn), f0(s0), ..., fp(s0))′ be a vector of length

(n + p + 1),
∑

(θ) =
∑

= (C(si − sj)), i, j = 1, ..., n be a n × n matrix, X =

(fl(si)), i = 1, . . . , n; l = 0, . . . , p be a n× (p+ 1) matrix, and 0 be a (p+ 1)× (p+ 1)

Null matrix.

Furthermore, let ~λu = (~λ,−~m)′, ~λ = (λ1, . . . , λn)′ be the vector of kriging weights,

~m = (~m0, ..., ~mp)
′ be the vector of Lagrange multipliers, and

∑−1
u =

[ ∑
X∑′ 0

]−1

.

Using matrix notation and the covariance of the random process the optimal weights

are obtained from (Cressie, 1991)

~λu = Σ−1
u ~cu (30)

Following Harville (1997) (p.99) (30) can be rewritten as

~λu=

( ~λ

−~m

)
= Σ−1

u ~cu =

( ∑
X∑′ 0

)−1( ~c

~x0

)
=

(
Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1 Σ−1X(X ′Σ−1X)−1

(X ′Σ−1X)X ′Σ−1 −(X ′Σ−1X)−1

)(
~c

~x0

)
(31)

from which follows that

−~m = (X ′Σ−1X)−1X ′Σ−1~c− (X ′Σ−1X)−1~x0 and

~λ = (Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1)~c+ Σ−1X(X ′Σ−1X)−1~x0.

Plugging the latter result into (29) yields

ẑ(s0) = ~c ′Σ−1~zn − ~c ′Σ−1X(X ′Σ−1X)−1~zn + ~x0
′(X ′Σ−1X)−1X ′Σ−1~zn

= ~c ′Σ−1(~zn −X(X ′Σ−1X)−1~zn + ~x0
′(X ′Σ−1X)−1X ′Σ−1~zn (32)

Recalling that the parameter vector ~βGLS of the deterministic trend is estimated by

generalized least squares (GLS) as ~̂βGLS = (X ′Σ−1X)−1X ′Σ−1~zn (32) is rewritten as

ẑ(s0) = ~c ′Σ−1(~zn −X~̂βGLS) + ~x0
′ ~̂βGLS = ~c ′Σ−1~ε+ ~x0

′ ~̂βGLS (33)

As seen from (33) prediction by universal kriging comprises the estimation of the

deterministic trend and simple kriging of the residuals.
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In practice θ is seldom known and has to be estimated. A circular problem arises

since Σ = Σ(θ) is the covariance matrix of the residuals. The residuals can only be

estimated once ~̂βGLS is obtained but the latter is based on the covariance matrix.

One approach is based on ordinary least squares (OLS) and proceeds iteratively.

First, get an approximation of ~̂βGLS by OLS, then model the residuals and take

their covariance matrix to refine ~̂βGLS in the next step. Repeat until the procedure

converges (Ripley, 1981). One disadvantage of such an approach is that the variogram

of the residuals will be biased and underestimate the true variogram even if the

true covariance matrix were known (see Cressie (1991), p.166 for an example). This

matters because although most software rely for reasons of numerical stability on the

covariance for solving kriging systems, spatial structure analysis is done by means of

the semivariogram.

The kriging variance will be much more severely affected than the prediction itself.

However, it is generally acknowledged that the bias is small at short distances (Cressie,

1991; Venables and Ripley, 2002), and kriging is usually carried out in local neighbor-

hoods, thus the variogram will only be evaluated at the smaller lags.

Another iterative approach is based on maximum likelihood (ML) estimation. If both

β and θ are unknown, then the maximum likelihood predictor is

Ê[Z(s0)|~zn] = ~c(θ̂)′Σ(θ̂)−1(~zn −X~̂β(θ̂)) + ~x0
′ ~̂β(θ̂) (34)

(Cressie and Zimmerman, 1992) where ~̂β(θ̂) = (X ′Σ(θ̂)−1X)−1X ′Σ(θ̂)−1~zn and θ̂ max-

imizes the profile likelihood

(2π)
−n

2 |Σ(θ)|
−1

2 exp
(
−1

2
(~zn −X~̂β(θ))′Σ(θ)−1(~zn −X~̂β(θ))

)
over θ ∈ Θ.

The profile likelihood can be multi-modal (Warnes and Ripley, 1987). θ̂ need not be an

unbiased estimator of θ for (34) to be an unbiased predictor (Cressie and Zimmerman,

1992). However, the bias of θ̂ can be a matter of concern in geostatistics where data

sets often comprise less than 100 observations.

As a remedy, a linear transformation T~zn of the data is sought that filters out the

mean, that is, E[T~zn] = TX~β = 0 ∀~β. This leads to the restricted maximum

likelihood estimation (REML) (Kitanidis, 1983). The transformed observation vector
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T~zn is assumed to be normally distributed with zero mean and covariance TC(θ)T ′

(Dietrich and Osborne, 1991). The REML estimate of the parameter vector θ is the

solution to

max
θ

(
−log|TC(θ)T ′| − ~zn ′T ′(TC(θ)T ′)−1T~zn

′
)
.

The likelihood based algorithms require an initial estimate of the parameter vector

θ. Most often such estimates are derived from the semivariogram of the residuals of

an OLS fit. It is not always intuitively clear what kind of semivariogram model is

appropriate but the maximum likelihood estimation seems rather robust to incorrect

specifications (Watkins and Al-Bouthiahi, 1990).

B Canonical Correlation

The objective of canonical correlation analysis is to get a simple description of the

structure between subsets of variables. Assume that two subsets of variables ~X =

(X1, . . . , Xp)
′ and ~Y = (Y1, . . . , Yq)

′ have a joint normal distribution,

( ~X

~Y

)
∼ N

(( ~µX
~µY

)
,

(
ΣXX ΣXY

ΣY X ΣY Y

))
.

Without loss of generality suppose p ≤ q < n, with n being the number of obser-

vations. The analysis searches for weights ~α = (α1, . . . , αp)
′ and ~β = (β1, . . . , βq)

′

that maximize the absolute (canonical) correlation of a pair of linear combinations

~α′ ~X and ~β′~Y (Hartung and Elpelt, 1984; Bilodeau and Brenner, 1999). These linear

combinations are called canonical variables.

The canonical correlation can be derived as the square root of the largest Eigenvalue

of the matrix product Σ−1
X ΣXY Σ−1

Y Σ′XY , with

ΣX = Cov(X1, . . . , Xp) =


σ2
X1

σX1X2 . . . σX1Xp

σX2X1 σ2
X2

. . . σX2Xp
...

...
. . .

...

σXpX1 σXpX2 . . . σ2
Xp

 , ΣY = Cov(Y1, . . . , Yq)
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and ΣXY =


σX1Y1 σX1Y2 . . . σX1Yq

σX2Y1 σX2Y2 . . . σX2Yq
...

...
. . .

...

σXpY1 σXpY2 . . . σXpYq

 .

The square roots of the remaining p − 1 Eigenvalues are also called canonical corre-

lations and the corresponding linear combinations canonical variables. The second to

largest canonical correlation is the maximum absolute correlation of all pairs of linear

combinations that are perpendicular to the first linear combination. The remaining

canonical correlations are derived accordingly.

The canonical correlations ρ(X1,...,Xp),(Y1,...,Yq) can be estimated based on a sample

of n observations out of a population. Measure the observable values x1k, . . . , xpk,

y1k, . . . , yqk , k = 1, . . . , n, of the features X1, . . . , Xp, Y1, . . . , Yq at all n objects. Esti-

mate the matrices ΣX ,ΣY and ΣXY by SX , SY and SXY by estimating for i = 1, . . . , p

the variances σ2
Xi

by s2
Xi

= 1
n−1

∑n
k=1(xik − x̄i)2, with x̄i = 1

n

∑n
k=1 xik,

the variances σ2
Yj

(j = 1, . . . , q) and the covariances σXiXj , σXiYj , and σYiYj accord-

ingly; for example

sXiYj = 1
n−1

∑n
k=1(xik − x̄i)(yjk − ȳj). Calculate

Q = S−1
X SXY S

−1
Y S ′XY (35)

and use its Eigenvalues for the derivation of the empirical canonical correlations.

The vector ~α of canonical coefficients can be estimated by any Eigenvector ~̂α of the

respective Eigenvalue of the matrix Q. The vector β̂ is estimated by ~̂β according to

S−1
Y S ′XY ~̂α = ~̂β (36)
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Apr 1993- Sep 1993 Praktikum in der Gräflich Bernstorff’sche Forstverwaltung,

Gartow/Elbe

Sep 1993- März 1994 Praktikum im Freiherrlich von Adelsheim’schen Rentamt

und Forstei, Adelsheim, Baden-Württemberg
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