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Introduction  

Problem description 
 

From currently published studies it is known that the vegetation on the surface of the 

Earth is rapidly changing. Change is occurring to the phenology, the distribution of vegetation 

on the earth surface and to the annual dynamics of photosynthetic activity (Kowabata et al., 

2001; Reed et al., 1994).  The change of vegetation cover is both naturally and 

anthropogenically influenced. This change has direct implications for human society as well 

as for the earth system, since the processes occurring in the vegetation cover are tightly 

coupled to the processes occurring in other components of this system such as meteorological, 

hydrological and biogeochemical. Thus, understanding the causes of vegetation variability 

and measurement of vegetation responses to natural and anthropogenic influences are of great 

scientific importance.  

Great magnitude changes in vegetation activity result from the contemporary global 

warming of the earth climate leading to redistribution of precipitation and temperatures on the 

earth surface (IPCC, 2001). Most of these changes are observed in the high latitudes of North 

America and Eurasia and associated with an increase in vegetation activity due to 

prolongation of the growing season caused by temperature rise, particularly throughout the 

spring months. Rapid increase of content in the atmosphere is reported to be a driving 

force of this phenomenon. Changes in vegetation activity can also result from a variety of 

other environmental factors, such as desiccation and droughts, El Nino-Southern Oscillation 

(ENSO) (Anyamba et al, 2001; Gutmann et al, 2000) or human activities (e. g. land-use). 

Inter-annual changes associated with a decrease of vegetation activity are observed in wide 

areas of Australia, South and Central Africa, South America and in some regions of Asia. 

Causes of diminishing vegetation activity are the increasing dryness of the climate in these 

regions and inadequate human influence.  

2CO

 The consequences of the contemporary climate change have been observed in all 

regions of the Earth but the most devastated consequences are to be expected in the 

ecosystems of low stability to internal forces. Such ecosystems are presented in drylands and 

cover more than 30 % of the terrestial surface. On the one hand, the natural environment of 

the drylands is highly vulnerable and fragile, variations of climate conditions here are the 

highest among all terrestrial ecosystems and that is why any unwise action of people in 

resources development can lead to a disturbance of equilibrium in nature, and accelerates 
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processes of land degradation and desertification. On the other hand, drylands are densely 

populated and extensive used for agricultural production.  

There is a great demand for a better understanding of nature of climate impacts on the 

drylands as a whole system and on the vegetation cover as an important component of this 

ecosystem at all scales from global to regional and local. This understanding requires detailed 

investigations on the vegetation response to climate factors. On the one hand, knowledge of 

this response holds the potential for discrimination of threatened areas and forecasting of 

damage grade by drought events. On the other hand, this knowledge subsequently improves 

planning of protection arrangements. Another benefit is associated with forecasting of 

regional agricultural yields for drought years which improves planning for food supply for 

times of food scarcity.  

The hot debate about the concept of dryland dynamic has its roots in the specific 

features of dry lands, namely high variability of climatic conditions and high dependence of 

ecosystem dynamics in dry lands on this variability. According to this, it is not surprising, that 

this debate is accompanied by the debate about equilibrium or non-equilibrium of the dry land 

ecosystems. Detection of vegetation cover change in drylands and understanding of its causes 

and consequences depend on the point of view in the equilibrium concept (Sillivan & Rohde, 

2002; Herrmann & Hutchinson, 2005; Vetter, 2005; Robinson et al., 2002).  

According to the equilibrium concept, the dry lands are believed to have only a weak 

mechanism of internal regulation which, consequently, enables a weak resistance to external 

factors such as climatic perturbations including drought and desiccation hazards, fire and 

human activities. Therefore, it seems likely that any trend in ecosystem conditions may be 

highly dependent on the trends in various climatic factors, mainly, precipitation and 

temperature. In order to identify changes that are attributed alone to human influence, this 

climatic component must be identified and removed from the evident ecosystem changes 

(Evans & Geerken, 2004; Li et al., 2004). Thus, an evaluation and monitoring of land 

performance may begin with an investigation of climatic factors dynamics and their changes 

over monitoring time and resilience and resistance of the ecosystem to these changes. After 

that, when this task is solved, one can look at ecosystem changes that are caused by 

anthropogenic impact.  

In the last two decades, capabilities for monitoring global and regional environmental 

phenomena were significantly improved. The dryland theory shifted to characterizing and 

understanding external forcing as possible explanations for ecosystem variability. Studies of 

relationships between satellite derived vegetation index, NDVI, and climatic data have shown 
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that most ecosystem variability in dry regions is directly dependent on rainfall variability 

(Tucker & Nicholson, 1999; Anyamba & Tucker, 2005; Olsson et al., 2005; Xiao & Moody, 

2004). It is primarily caused by changes in rainfall patterns, which leads to change in biomass 

production, that climate change will affect land degradation and desertification. Changes in 

rainfall can be controlled by regional or global processes such as global circulation changes 

related to patterns of sea-surface temperature or El Nino Southern Oscillation (Young & 

Harris, 2005; Gurgel & Ferreira, 2003; Verdin et al., 1999; Anyamba & Tucker, 2001). The 

dynamics of ecosystem in dry lands are essentially driven by climatic variability. Deficits in 

rainfall, especially during drought and desiccation events, seriously reduce biomass and 

vegetation cover. This can give a start to process of land degradation, if the ecosystem 

resources are used with the same intensity degree as during wet years. The developing 

degradation disrupts ecological and social patterns and can hinder an ecosystem recovery after 

the climatic hazards. However, it does not always follow that climatic hazards will give rise to 

desertification in every case. Much depends on the resource management (Herrmann & 

Hutchinson, 2005). 

 

Objectives and aims of the study 
 

This thesis was not only focused on a monitoring vegetation conditions and climate in 

a dry region of Kazakhstan but also on discrimination between climatic and anthropogenic 

forces in the complex of dryland dynamics. The work tried to find out what the proportion 

between them is and how they influence the dynamic and changes of ecosystems in the study 

region over the last two decades of the 20th century. On the one hand, the large size of the 

study region (approximately 3°*3° latitude/longitude) reveals problems caused by a 

significant heterogeneity of its surface features through a large quantity of landscape types. 

On the other hand, it achieved advantages for a discussion of the final results: a variety of 

ecosystems exhibited a broad spectrum of influence proportions between climatic factors and 

human impact of various types; some ecosystems demonstrated a full dependence of their 

changes on climatic change, while many others display a full prediction of their dynamics by 

human impact.   

The investigation deals with several research questions: 

1. How strong are vegetation patterns affected by the patterns of climatic 

factors both from year to year and within growing season? 
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2. What dependency exists between the within-season/inter-annual vegetation 

dynamics and the dynamics of their explanatory factors? 

3. To what extent is a change in vegetation activity over the last two decades 

predicted by a climate change? 

4. Is there a presence of any non-stationarity in the relationship between 

vegetation activity and climatic factors? How can the non-stationarity be 

overcome and used for a reduction of uncertainties in the analysis? 

5. To what extent is the change in vegetation activity predicted by a change in 

land use practices (change in anthropogenic impact)? 

6. To what extend has the constitutional change in 1991 influenced vegetation 

cover? 

 

The research questions 1-4 deal with investigation of response, resilience and 

resistance of vegetation cover to the first main external factor, climate, while the questions 5 

and 6 deal with the second main factor, human impact, and its discrimination from the 

climatic impact. The discrimination between climate-induced and human-induced change was 

made through a detection of the climatic signal in the inter-annual ecosystem dynamics and 

exclusion of it. It was proposed that after eliminating the climatic component, the remaining 

changes in ecosystem conditions are attributed to human influence. The areas displaying a 

negative trend of the remained changes in ecosystem conditions over time were considered as  

degrading.  

An introduction to drylands, their dynamics and problems of their investigation 

follows in section 1. This section also deals with remote sensing approaches for investigation 

vegetation-climate relationship. Section 2 includes an introduction to the study region. In 

section 3 and 4 a description of data used and methods of data analysis follows. In section 4  

also an introduction to a local statistical technique known as geographically weighted 

regression (GWR) is given. This technique enables us to reduce uncertainties in statistical 

analysis of spatial data very significantly. Chapter 4 also introduces to the concept of 

discrimination between two main driving forces of vegetation change, climate and human 

impact. Theoretical sections 1-4 form the basis for the analysis of the data which follows in 

chapters 5-10. Chapter 5 deals with statistical characteristics of climate factors in the study 

region. Spatial and temporal inter-annual dynamics of climate parameters will be highlighted 

and analysed. Chapter 6 reports the results of analysis of within-season dynamics of 

vegetation activity and investigated their relationship to climate parameters. Chapter 7 deals 
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with inter-annual variability in vegetation activity, while chapter 8 investigates spatial 

response of vegetation cover to climatic factors. An effort to improve the results of chapter 8 

is undertaken in chapter 9 by use of the geographically weighted regression (GWR), a new 

technique for modelling spatial relationship. In chapter 9, the GWR has been applied for a 

spatio-temporal analysis of relationship between vegetation activity and rainfall. Supervises of 

GWR over other regression models have been analysed and discussed. Sections 6-9 form a 

basis for discrimination between human-induced and climate-induced changes in vegetation. 

The results of this discrimination are presented in chapter 10. The last sections include a 

discussion of the derived results with an outlook on the further development of drylands 

monitoring as well as the potentialities of the investigated approaches and the new sensors.  
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Chapter 1 
1. Theoretical background to dry ecosystems 

1.1. Dynamics of dry ecosystems: ephemeral versus permanent changes 

1.1.1. Brief characterization of ecosystems in dry regions 
 

Dry lands include areas where rainfall does not meet the evaporative demand. They 

occupy around 45 percent of the land surface, contain about 30 per cent of the world's total 

carbon in above- and below-ground biomass (Mainguet, 1999), and include grasslands, 

shrublands, savannas, xerophytic woodlands, and hot and cold deserts (Figure 1.1). Their 

rangelands support approximately 50 per cent of the world's livestock and provide forage for 

both domestic animals and wildlife. In dry lands, the evolution developed specific 

ecosystems, whose characteristics distinguish from that of other earth regions. 

Climate of dry land shows a severe aridity, it means that potential evapo-transpiration 

is higher than precipitation. By the value of an aridity index, which is calculated as ratio of 

annual precipitation to annual potential evapo-transpiration, dry lands are classified into 

hyper-arid (< 0.05), arid (0.05 – 0.20), semi-arid (0.20 – 0.50), and dry sub-humid (0.50 – 

0.65). In dry lands, rainfall patterns within the year are characterized by a dry period whose 

length varies from region to region (2 - 10 months). One typical feature of climate is seasonal 

precipitation. Mostly time the vegetation societies are stressed by water shortages and have 

developed adaptations to cope with the phenomena. An amount of precipitation which is 

smaller than potential evapo-transpiration combined with contructed seasonal distribution 

contribute to great air dryness. High temperatures and high air dryness are responsible for 

high evaporation from soils and the surrounding atmosphere. This results in soil dryness and 

in an increase of plant transpiration.  

Drylands are generally characterized by severe deficit of surface water. Rivers in this 

geographical zone often have only irregular runoff that occurs during two to six months per 

year. The rest time of the year, their beds fall dry or lead only a few amount of water.   
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Figure 3.1. Distribution of drylands throughout the world (UNEP, 2000). 

 

1.1.2. Dynamics of ecosystems in drylands 
 

Physical-geographical processes that change the earth’s surface, its water household 

and soil conditions also greatly affected the composition and distribution of plants, caused a 

change of varieties. Because of moisture deficit throughout the vegetation period, all plant  

species living in dry lands show a high degree of adaptation to aridity factor. A large variety 

of xeromorphic, sclero-xeromorphic and ephemeric grasses, shrubs and dwarf half-shrubs are 

to be found in the vegetation cover. Ephemerals are especially abundant during the rainfall 

period or in the short period after plenty rainfall events.  

Ecosystem dynamics of dry regions are influenced by hazards such as drought and 

desiccation. Drought refers to the naturally occurring short-term (1-3 years) phenomenon 

when precipitation is significantly below the long-time mean value. A recovery of the 

ecosystem after the rain return occurs rapidly during the next 1-2 years, if the system is not 

overexploited beyond its resilience thresholds. Desiccation refers to longer-term (decadal 

order) deficits in rainfall which seriously disrupts ecological balance in the system. Recovery 

after desiccation is much slower, for vegetation cover it can take years to recover.  

Even if the current understanding of the ecological functioning of arid, semi-arid and 

sub-humid rangelands emphasizes a high dependence of the ecosystem dynamics on climatic 

perturbations, the debate about the validity of the two paradigms of vegetation dynamics in 
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rangelands is not at an end. The question debated is the so-called equilibrium or non-

equilibrium system of rangelands ecology. Implications for current interpretation of land 

degradation and desertification depend on the answer on this question (Vetter, 2005; 

Robinson et al., 2002).  

The equilibrium paradigm is based on the assumption that every environment has 

climax vegetation determined by biophysical characteristics, such as the mean annual 

precipitation, soil type and biophysical characteristics, which determine its potential primary 

productivity. The equilibrium model proclaims that internal ecosystem regulation is achieved 

by negative feedback mechanisms that move the system toward stability. When the climax is 

perturbed, vegetation is pushed back in the successional sequence to a sub-climax. Within this 

model, at a particular time vegetation development represents a stage in plant succession on 

the range line between two end states of vegetation development – poor (or very disturbed) 

and excellent (or climax). Rainfall is thought to affect the vegetation via similar mechanism 

where drought reduces range condition by pushing the vegetation community towards a 

pioneer stage. High rainfall improves range conditions. This model is believed to be 

applicable for dry ecosystems with low climate variability, but it is reported to have no 

adequacy to describe vegetation dynamics in arid and semi-arid ecosystems with high 

variability of climatic factors (Sillivan & Rode, 2002; Vetter, 2005). 

The non-equilibrium paradigm describes vegetation dynamics driven by periodic and 

stochastic climatic events, which result in discontinuous and non-reversible changes. The non-

equilibrium model is based on the suggestion that every ecosystem has a threshold of its 

conditions, crossing this threshold due any disturbance leads to irreversible changes. The 

ecosystem may not enter into its stage which it had before a disturbance. The ecosystem can 

enter into a number of other possible states. This means irreversibility of the ecosystem 

change even after removal of the disturbance causing the change. The recovered ecosystem 

would reach a new functional state via changes in physical properties and biogeochemical 

cycles. It proclaims that every ecosystem has a number of alternative equilibria (states), which 

may be entered after a disturbance (Shepherd & Caughley, 1987; Illis & Connor, 1999). 

In most cases, dry lands are believed to be far-from-equilibrium systems, because their 

dynamics of productivity and species composition are generally controlled by external factors 

such as climatic variables, depletion of above-ground biomass by herbivores or fire and 

human activities. The internal regulatory mechanism of the ecosystem in dry regions is 

weaker than the external mechanism. The ecosystem dynamics are essentially event-triggered, 

climate of arid regions is unsteady because of its high variability (Sillivan & Rohde, 2002; 
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Herrmann & Hutchinson, 2005). High variability of climate in dry regions manifests 

particularly in high precipitation variations; the coefficient of variation of rainfall is between 

25-40 %. Study results from dry regions show that long-term ecosystem behaviour is better 

explained by rainfall variability than by the mean values. For a rangeland in Australia, the 

threshold between equilibrium-type dynamics and non-equilibrium (event-triggered) 

dynamics were reported to be localized at the coefficient of variation of annual rainfall 30 %; 

for African rangelands, the threshold is formed by 400 mm annual rainfall isohyete (Shepherd 

& Caughley, 1987; Ellis et al., 1993). 

Equilibrium and non-equilibrium dynamics are not exclusive, but present two end 

sides of a wide continuum spectrum of possible types of ecosystem dynamics. Depending on 

spatial and temporal scales, most systems can exhibit both types of dynamics. There are 

examples for time shifts between equilibrium and non-equilibrium dynamics (Illius & 

O’Connor, 1999). 

 The advances of environmental monitoring strategies in the last to decades, 

particularly with the use of remote sensing, facilitate to understanding the ecosystem 

variations and ecosystem changes as well as their causal relationships. Data from satellite 

sensors reveal patterns of inter-annual and seasonal variations in land surface attributes that 

are driven by climatic variability. The results of studies from dry regions around the world 

prove a highly variable, event-triggered non-equilibrium process, and highlighted a new 

research view of the commonly accepted wisdom of land degradation and desertification. The 

variations of ecosystems are controlled by the impact of El Nino Southern Oscillation (ENSO) 

phenomena (Gutman et al., 2000), drought and desiccation (Lambin & Ehrlich, 1996; Kogan, 

1997), desiccation and rainfall fluctuations (Tucker et al., 1999; Anymba & Tucker, 2006; 

Olsson et al, 2006), and temperature growth (Xiao & Moody, 2004). The modern knowledge 

about equilibrium and non-equilibrium dynamics of ecosystem in dry regions leads to the  

perception that assessment of land degradation and desertification need to be long-term and 

take climatic variability into account. Many of the former diagnoses and forecasts of 

desertification phenomena have been revised (Thomas, 1997; Robinson et al., 2002).  

 

1.2. Remote sensing based investigations of vegetation changes and their 
explanatory factors 
 

Spatial distribution of vegetation cover is strongly related to the distribution of the 

mean climatic conditions, such as rainfall and temperature. On the other hand, the climatic 

factors vary in the space depending on the relief characteristics. Particularly in the arid 
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regions, where a lack of moisture is the permanent property of the geographical surrounding 

during the most time of the year, the relief characteristics can be the most predicting factor for 

the distribution and condition of vegetation. But the influence of the relief to vegetation is not 

direct; it acts through the climatic factors.  

Satellite derived Normalized Difference Vegetation Index (NDVI) is a convenient tool 

for monitoring of vegetation cover at all scales from global to local. It enables regular 

detection of seasonal and inter-annual changes in vegetation activity. The NDVI has 

successfully served as vegetative indicator in many studies on desert encroachment and 

desertification (Tucker et al., 1999; Wessels et al., 2004; Symeonakis and Drake, 2004), 

drought monitoring (Kogan, 1997; Song et al., 2004), El-Nino impacts on ecosystems 

(Anyamba & Tucker, 2001), global phenology and bioclimatology (Tateishi & Ebata, 2004; 

Chen et al., 2004). These and other similar studies are motivated by the appropriation of 

NDVI for the analysis of vegetation cover at a wide range of spatial scales.  

The correlation between NDVI and above-ground biomass is well established. The 

satellite derived NDVI can serve as a general surrogate for vegetation conditions (Justice et 

al., 1985; Tucker & Sellers, 1986). Temporal and spatial correlations between NDVI and 

climatic factors are investigated in many research works. Particularly well correlation in the 

arid regions, both spatial and temporal, show NDVI and rainfall (Richard & Poccard, 1998; 

Chen et al, 2004; Weiss et al, 2004; Tateishi & Ebata, 2004), the relationship between NDVI 

and temperature are reported to be weaker but also significant (Kowabata et al., 2001; Schultz 

& Halpert, 1995). According to recent studies, precipitation has a strong effect on the inter-

annual variability of vegetation activity especially in dry regions (Yang et al, 1998; Richard & 

Poccard, 1998; Wang et al, 2003; Li et al., 2002). 

Numerous studies have suggested a linear relationship between NDVI and climate 

predictors. Theoretically, NDVI can be considered as climatic recorder, mainly as a rainfall 

recorder. This assumption was used in various drought watching and drought early warning 

systems (Kogan, 1997; Song et al, 2004). However, the relationship is linear only in a limited 

range of rainfall conditions. The upper thresholds for the linear relationship between NDVI 

and rainfall were reported to be approximately 500 mm/yr for semi-arid Botswana (Nicholson 

& Farrar, 1994), 700-800 mm/yr for Senegal (Li et al, 2004), and 500-700 mm/yr for China 

(Li et al, 2002). Above these limits, NDVI increases with rainfall only at a slower rate.  

The response of NDVI to rainfall and temperature is dependent on vegetation types 

and varies by geographical region. Woodland and forest vegetation shows a lesser correlation 

between NDVI and climate factors. Shrubs and desert vegetation patterns are reported to 
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correlate stronger with temporal and spatial variations of climate factors. Vegetation patterns 

in steppe grassland and savanna show evidence of the highest correlation with that of rainfall 

and temperature (Li et al, 2002; Wang et al, 2001, Li et al, 2004). Nicholson & Farrar (1994) 

reported for Botswana the response of NDVI to rainfall to be more dependent on soil types 

than on vegetation types.  

Many studies proved a high sensitivity of NDVI to inter-annual rainfall anomalies. 

Thus NDVI can be used as a good proxy for the study of inter-annual climate variability on 

regional and global scales or for identification of climatic signal by evaluation of land 

degradation (Kuwabata et al, 2001; Evans & Geerken, 2004). However, there are limits of 

rainfall amounts beyond which only a weak NDVI sensitivity to inter-annual rainfall 

anomalies can be found. This rainfall limit varies by geographical region, but generally, a 

minimum of 200-300 mm/yr seems sufficient to induce a NDVI sensitivity to rainfall 

anomalies (Nicholson et al, 1990; Richard & Poccard, 1998). Temperature deviation from 

average reported to not correlate with NDVI deviation from average (Wang et al, 2001). 

Vegetative cover is the best measurable indicator of ecosystem change and can be easy 

detected by remote sensing methods. Vegetation cover performance is strongly predicated on 

macro- and micro-climatic factors, such as global temperature and rainfall distribution 

change, local topography characteristics etc. Therefore, discrimination between different 

causes of change in vegetation cover, climate and human activity, is very difficult. The 

neglecting of this aspect can lead to mistakes by evaluation of land conditions (Binns, 1990; 

Hellden, 1991). A few recent studies have developed methods for application of  

discrimination by use of satellite data time-series and time-series of climatic variables (Evans 

& Geerken, 2004; Li et al., 2004). These methods have been based on identification of climate 

signal in inter-annual dynamic of vegetation activity. Once the climate signal is identified, it 

can be removed from the trends in vegetation activity. The remaining vegetation changes are 

attributed to human influence and these areas considered to experience a human-induced 

degradation/rehabilitation of vegetation cover.  
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Chapter 2 

2. Study area 

2.1. Geographical location and mean characteristics 
 

The study area is located in the middle part of Kazakhstan between 46 and 50° 

northern latitude and 72° and 76° eastern longitude in the northern sector of the watershed of 

the Balkhash Lake and covers the south-western part of the Kazakh Hills as well as its 

southern margin. It consists of the whole area of the Shetsky raion (district) of Karaganda 

oblast’ (province) and the bordered areas of the neighbouring raions. In the northern section 

of the study area Karaganda is situated, the most populated (ca. 400 000 inhabitants) and the 

main industrial city of the Middle Kazakhstan (Figure 2.1). The largest part of the study area 

is only sparsely populated (population density is about 3-5 people per km²) and used as 

pasture land and for crops production. 

 In terms of surface structure the study area is divided into two large regions: a plateau 

of rolling upland in the southern, western, and northern parts with average elevations between 

300-700 meter and hills and low mountains in the central and north-eastern parts with 

elevations 700-1100 meter. 

The study region is only pure drained. In the eastern part of it, the valley of river 

Sarysu extends. The Sarysu is the largest river in the region. Most time of the year the bed of 

the Sarysu falls dry and is filled by water only during 3-4 spring and summer months. In the 

south-east there are mid-large perennial rivers that mouth to the Balkhash-lake. Some of them 

dry up completely to form dry gulches and deltas in the desert and semi-desert. 

 

2.2. Climate conditions 
 

The climate of the region is dry, cold and highly continental. According to the climate 

classification of Köppen, the climate of the study area belongs to the Cs-climate category. The 

mean annual temperature is 2.1°C (Figure 2.2). The temperature amplitude is relatively high: 

average January temperature is below –12° C and average July temperature is about 25-28° C, 

what gives an annual temperature amplitude of over 40°C. The growing season starts in April 

and continues till October. The length of vegetative season is equal to 170-190 days, whereas 

the period of active growth, during which the mean daily temperature rises above 10°C, is 

only 150-170 days (mid to late April until to late October).  

  12 
 



(a)  

(b)  

Figure 4.1. (a) The location of the study area (white square) on the map of Kazakhstan                       
(b) The study area: its relief (altitude, m), climate stations, and borders of the districts. 

 

Average annual precipitation is above 250-300 mm per year in the north of the study 

area, and below 150 mm in the south (Figure 2.3). The evaporative power of the air is very 

high. The relative humidity at the northern part of the study site averages 60% during daylight 

from June to August, and 30-35% in the southern part. The most part of precipitation falls 

during warm period from March to October, whereas the proportion in summer is 60-70%. 

The potential evapo-transpiration amounts to 1100-1200 mm. This stands for a water deficit 

throughout the year. The deficit develops slowly in the spring, reaching a peak in mid to late 

summer when the potential evapo-transpiration is highest and precipitation is low. During the 

last century, the annual rainfall shows a coefficient of variation of 20-35 %. The region is 
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often affected by drought hazard, during the last century there were many periods of two or 

more years with rainfall substantially below the average. The amount of years with negative 

annual rainfall anomaly surpasses that of years with  positive anomaly. This means that during 

most time the vegetation societies are stressed by water shortages. They have developed 

adaptation mechanisms to cope with the phenomena.  

 

 

Figure 2.2. Total rainfall amount (mm) during the growing season (April-October) for the region of 
the Balkhash lake catchment. The study area is determined with a dashed line. 

 

 
 

Figure 2.3. Mean air temperature (°C) over the growing season (April-October) for the region of the 
Balkhash Lake drainage basin. A dashed line presents the borders of the study area. 
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2.3. Soils 
 

Several external factors (soil-forming factors) – parent material, climate, plants and 

other organisms, topography or relief – are responsible for the formation of soils. The soil-

forming factors control the characteristics of the soil system. An abundance variance of the 

external factors of the study area predicts a diversity of soil types here. In spite of this 

diversity, there are a great variety in humidity percent of soil surface horizon. One can find 

here both soils with well-humified surface horizons and soils with only weakly humified 

surface horizons there.  

In the northern part of the study area, in the steppe zone kastanozem soils are 

prevalent. These are soils with brown to dark-brown, relatively thin surface horizons often 

underlained by a brown, prismatic, lime-free layer and then a calcareous layer at the depth of 

40-60 cm. The horizons are usually sharply differentiated. Reaction is neutral to slightly 

alkaline at the surface, increasing to moderately and strongly alkaline in the C horizon. 

Organic-matter content is between 1.5 and 5.0 % at the surface, decreasing with the depth. 

There are two types of kastanozem soils in the study area, - calcic and haplic kastanozems. 

Calcic kastanozems are mostly common in local areas associated with more steeply sloping 

topography or finer-textured parent materials where leaching is minimal. These areas are 

located on the border of the desert where evapo-transpiration greatly exceeds precipitation 

and therefore leaching potential is minimal. Leached kastanozems are commonest in areas 

where sodium salts are available to encourage some dispersion of clays. This must be coupled 

with enough precipitation for leaching of salt and translocation of clay. Soda salinization is 

widespread in the dry steppe zone. 

The arid climate causes a special type of soil formation in the desert zone of the study 

area. This zone is characterized by different types of grey and grey-brown desert soils 

(serozems). The soil formation process here is still in its initial stage. Water-soluble salts as 

carbonates, sulfates and sodium chloride are typically abundant in the soils. The horizons of 

these soils are slightly differentiated. Grey-brown desert soils typically have a clay-

rich crust horizon with crack net. This crust is 2-7 cm thick. horizon is underlined by a 

friable light-grey thin A horizon, less than 10-15 cm thick. Hard brown calcareous and saline 

horizons are located under the and A horizons. As the vegetation is very sparse and only 

small amounts of plants residue accumulate in the desert soils, they contain very little organic 

material (0.5-1.5 % of humus). Grey desert soils typically have more organic carbon in their 

humus horizons, 1-3.5%, than the grey-brown desert soils. The organic matter content rash 

kA kA

kA
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decreases with depth and carbonates appear in the soil profile. A powerful hard calcareous 

horizon is located at the depth of 1.5-2 m.  

 Spatial variances of groundwater table predict the genesis of azonal soil types. These 

are solonetzs and solonchaks, which are widely distributed in the study area. Solonetzic soils 

are soils whose genesis is controlled by the presence of sodium ions. A groundwater source of 

sodium is indispensable for origin of this type of soils. Solonetzic soils often have a relatively 

thin A horizon (< 15 cm), overlying a clay-rich columnar or prismatic B horizon which is very 

hard. Sodium and other salts are usually present in this horizon, and become more 

concentrated with depth. The C horizons are usually calcareous and saline. Solonetz soils 

occur in saline clays, relief depressions and alluvial deposits of valleys and are mostly 

associated with kastanozem soils in the study area. Solonchaks occur in the desert zone and 

are associated with grey and grey-brown desert soils. This soils contain usually large amounts 

of soluble salts (more than 1%) in the upper horizon. They typically have minimum profile 

development, reflecting a combination of low organic-matter production and minimal 

leaching of salts. A high water table and a high evaporation of groundwater are two necessary 

factors for genesis of solonshaks. Solonchaks are located in relief depressions and in drying 

up valleys of the southern part of the study area.  

 

2.4. Vegetation 
 

Spatial distribution of vegetation is strongly influenced by spatial patterns of 

predicting factors, i.e. climate, soil types, stage of underground water table etc. The main 

factor, which predicts the zonal types of vegetation in the study area, is rainfall amount. The 

rainfall amount in the study area decreases from 260-280 mm in the north to 100-150 mm in 

the south. It causes the change of vegetation formations from steppe in the north to semi-

desert, and to desert in the south (Figure 2.4). All vegetation features change with decreasing 

aridity. Species diversity is reduced from 40-50 species in a hectare in steppe to 12-15 species 

in semi-desert and desert. The canopy hight decreases from 60-80 cm in the north to 15-20 cm 

in the south; and foliage cover decreases from 70-90% to 10-20%, and less. Much of the 

variations within the zonal types of vegetation are related to edaphic characteristics. Some 

landscape impressions from the study area are presented in Figure 2.5.  
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Figure 2.4. Map of the land cover in the study area based on analysis of satellite imagery and a 
vegetation map from 1995. 

 

The typical vegetation classes of  northern desert and steppe are represented in the 

study area. Because of moisture deficit throughout the vegetation period, all vegetation 

species living here show a high degree of adaptation to aridity factor. A large variety of 

xeromorphic, sclero-xeromorphic and ephemeric grasses, shrubs and dwarf half-shrubs are to 

be found in the vegetation cover. Ephemerals are especially abundant in the mid and in the 

south, a few mesomorphic species are only rarely represented in the north of the study area.  

The vegetation of the desert is sparse, low-growing, and of a monotonous light grey 

colour. The desert zone is dominated by sagebrush and perennial saltwort associations. The 

most spreading vegetation species here are Artemisia terrae-albae, Artemisia pauciflora and 

various halophilous species. Ephemeroids and ephemerals are also typical: Crocus reticulates, 

Geranium tuberosum and Poa steposa. Saltwort  in complex with sagebrush occupies the 

plains in the most southern part of desert zone. Salsola arbusculiformis, Anabasis salsa and  

Artemisia turanica predominate in their communities. In basins and depressions with high 

groundwater table, were solonchaks and solonetzs develop, the halophytic species such as 

Anabasis salsa, Artiplex cana, Salsola orientalis and Salsola arbusciliformis are prevalent. 

Here they build communities in mixing with Artemisia terrae-albae. Sagebrush with grasses 

in complex with sagebrush and saltwort occupy the northern part of the desert zone. The 

prevalent species here are Artemisia semiarida, Artemisia sublessingiana, Stipa kirgisorum 

and Salsola arbusculiformis.  
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(a) (b)  

(c) (d)  

(e) (f)  

(g) (h)  

Figure 2.5. Typical landscape impressions from the study area: (a) gravely desert covered by dwarf 
shrubs of Artemisia turanica and Anabasis salsa; (b) sandy desert with Haloxylon aphulum in the first 
vegetation layer, Artemisia turanica in the second, and Carex physodes in the third layer; (c) 
solonchak in the desert zone deprived of vegetation cover; (d) semi-desert with vegetation community 
formed by Stipa lessingiana and Artemisia grasilences; (e) semi-desert with thickets of Caragana 
leucophloea; (f) dry steppe on gravely soil in low hills; (g) dry steppe in a placor dominated by grasses 
of Stipa-species and forbs Erysimum leucanthemum;  (h) typical steppe dominated by Stipa-species. 
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The dry steppes in the north of the study area are distinguished by domination of 

xerophilous species of bunch grasses and by a presence of forbs. Perennial mesophilous, 

xerophilous and sclerophilous bunch grasses predominate in steppe communities. The plant 

community here is formed by dry bunch grasses, herb-bunch grasses which provide most of 

the phytomass. It is usually composed of a combination of relatively tall bunch grasses – 

mostly species of Stipa, of shorter bunch grasses of the genera Festuca, and dwarf bunch 

species of Carex or dwarf species of Stipa. Xerophytic or mesophytic diverse forbs and 

sometimes dry caespitose grasses are mixed with the bunch grasses in the community.  

The zonal characteristics of steppe vegetation are exemplified by the plakor, - a flat, 

well-drained plain with loamy soils and a deeply location of the groundwater. The typical dry 

steppe here are characterized by the grasses Stipa lessingiana, Stipa zalesski, Festuca 

valesiaca, Festuca sulcata and forbs species such as Erysimum leucanthemum and Alyssum 

turkestanicum. Variations from the plakor petrophytic or halophytic characteristics markedly 

affect the nature of vegetation. They are found in stony and gravely soils, and in soils with 

high salt content. Areas of gravely soils in melkosopochniks (low hills) are characterized by 

communities with a dominance of dwarf half-shrubs, such as Artemisia hololeuca and 

Androsace kozopoljanskii with a dispersal bunch grasses. In some places within the steppe 

zone, shrubs of specie Caragana leucophloea occupy large areas. Thickets of Caragana 

leucophloea occur on the slopes of ravines and in gullies formed by water erosion.  

The semi-desert type of vegetation is a gradual transition from desert to steppe type. 

This transition zone is about 80-150 km wide and is located lengthways at 48° northern 

latitude. The semi-desert vegetation has a complex combination of real steppe grasses, shrubs 

and dwarf half-shrubs with a large abundance of epheroids. The typical community of the 

zonal semi-desert vegetation is dominated by bunch grasses (Stipa lessingiana – Festuca 

valesiaca) and a dwarf half-shrub (Artemisia gracilescens or Artemisia lessingiana) in 

kastanozem soils. Both the number of species of shrubs, dwarf half-shrubs and their 

proportional contribution to biomass increases from north to south within the semi-desert 

region, because of increased climate aridity. A large variance of soil characteristics (soil type, 

structure, groundwater table, depth of carbonate horizon) within the semi-desert zone predicts 

a spatial mosaic of vegetation. Thus, the places with solonetz or solonchak soils are 

dominated by halophilous dwarf half-shrubs such as Anabasis salsa, Kochia prostrata and 

Halocnemum strobilaceum. 
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2.5. Land use 
 

The land resources in the desert, semi-desert and steppe zones of Kazakhstan were 

always used by the Kazakh people as pasture. This type of land use also remained here during 

the time of Russia Empire until Kazakhstan in early 1920 was absorbed into the Soviet Union. 

Since this time, Kazakhstan became a major source of livestock products and an important 

producer of crops. During the soviet period, animal numbers in the steppe and desert regions 

grew strongly from the 1940s onwards until the 1991, the time-point of the Soviet Union 

break up. The virgin lands campaign in the 1950s lead to ploughing up the productive steppe 

zone, with rainfall above 300 mm. Since then, the major pastoral zones have moved in the 

semi-desert and desert regions. On the peak of agricultural development in the mid of 1980s, 

Kazakhstan produced over 26 million ton crops and had over 46 million stock heads. After the 

disintegration of the Soviet Union, during the period 1991-2000 Kazakhstan experienced a 

strong economical crisis, which massively reduced all agricultural and industrial productions. 

Thus, the arable land decreased from 35.2 million ha to 21.3 million ha, the crop production 

fell to 9.5 million ton. The livestock reduced to 12.7 million heads (Figure 2.6).  

The study area experienced all processes of land use dynamics described above for the 

whole Kazakhstan. Before the Soviet period, the wide grassland of the Karaganda oblast was 

used for extensive pasture by the nomadic people. There were only rare little settlements 

(especially in valleys) in the region with peasant agriculture. The increase in animal numbers 

was forced in the years of the disastrous collectivisation (1927-1933). The collectivisation 

made the nomads, which had been wandering with their herds in the study area, settle down. 

Many new rural settlements throughout the Karaganda oblast were created in form of 

kolkhozes (collective farms) and sovkhozes (state farms).  

During the virgin lands campaign in the 1950s, the most steppe regions in the north of 

the study area were ploughed up, even though the rainfall amount here are less than 300 mm. 

On these arable lands winter wheat and silage grasses were grown. Frequent drought hazards 

often killed the biggest part of the year yield. To preserve the crop yields, large areas of arable 

lands were watered by moving irrigate systems.  

After 1991, the land use system of the study area experienced a change similar to 

collapse: a large part of the arable land was abandoned, crops production massively 

decreased, and livestock rash reduced (Figure 2.7, a). The collective and state farms, 

kolkhozes and sovkhozes, were abolished. The people, having been discharged by the 

kolkhozes and sovkhozes, left their settlements and moved into the nearest cities hopping to 
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find a job. Numerous settlements were fully abandoned and nowadays stay uninhabited 

(Figure 2.7, b).  

 

 

Figure 2.6. Change in stock heads, arable area and crop production in Kazakhstan during the period 
1981-2000. After the constitutional change in 1991, a rapid drop of all agricultural indices has been 
observed. 

 

(a) (b)  

Figure 2.7. Traces of the economical crisis 1992-1998 and radical changes in land use in the study 
area. (a) Abandoned crop field. After the abandonment, the land has been rapidly conquered by 
vegetation communities dominated by Artemisia-species. (b) Abandoned settlement: a block of a large 
kolkhoz settlement in 2004. The large building in the mid part of the photo is the former school. This 
settlement had been fully abandoned during 1994-2000.  

  

 

2.6. Change in land use practices 
 

Until the last century, the nomads in Kazakhstan have used the broad areas of grass 

land especially for extensive pastoralism. Practices of pasture use were determined by nature 

conditions such as biomass amount to feed by animals and water availability in the steppe. 

The amount of fodder in the natural pasture is strongly predicted by climate, especially by 
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precipitation. As annual precipitation in the Kazakh grassland shows a high variability, the 

livestock also varies following the precipitation variations. Frequent drought years rash 

reduced the amount of animals. A kazakh term which refers to massive animal death is 

“dzhut”, and this is the word that stands for the mean misfortune of the nomadic peoples. 

During a “dzhut” various nomadic tribes fought for better pasture land. Because of hunger, 

dhzut years also reduced the population.  

In years with normal or abundant precipitation, the use of grassland pastures was 

strongly determined by rules which predict migratory routes of herds and the time of 

migration. Thus, stock wintered in sandy desert pastures (such as Moyinkum or Sary-Esik-

Otyrau in the south of Kazakhstan) due to their low snowfall and shrubby vegetation. These 

areas have dunes, the south slopes of which have a fast snow melt, and provide shelter from 

storms. The summer stock spent in the steppe and in the semi-desert of mid Kazakhstan 

(Karaganda oblast). Autumn and spring were spent in Djaylau,- mountain pastures,- along the 

rivers (Chu river just south of the study area) or in clay deserts (Betpak-dala). This way of 

pastoralism used the whole complex of the pasture resources and avoided a possible 

overgrazing and was the best method for a sustainable existence of the population in 

accordance with the nature conditions. These rules of land use practices were in force during 

the last thousand years (with the exception of dzhut years).  

In Soviet times, the migration of herds was shorter and animals only went as far as 

mid of Karaganda oblast in the semi-desert zone. This was due to the establishment of new 

state farms in the region of the former summer pastures and ploughing up wide areas in the 

steppe zone. On these new farms shorter migration took place, animals moving within the 

farm boundaries or to designed seasonal pastures nearby. The grazing organization was 

harshly altered after the 1930s, as the collectivisation had been finished and numerous state 

farm with a stock of 2,000-60,000 sheep each were created. Many of these farms blocked 

migratory routes. Pastures which formerly would have been used shortly during migration 

periods started to be used for a long time. The frequency of pastures change was reduced.  

The new form of organisation caused a massive increase of livestock and its 

production in Kazakhstan and in the study area. The goal of livestock production was to 

produce maximum meat (or wool) yields per hectare of pasture. Due to winter and summer (in 

drought years) provision the former major cause of animal death was essentially eliminated. 

Animal movements and herd sizes were determined by administrators of state farms. The 

individual herder had no free choice as to where and how grazing was organized.  

  22 
 



After abolishment of the centrally planned system in 1991, state farms collapsed or 

were sold to private farmers. The process of privatisation has been accompanied by a 

considerable reduce of livestock. The livestock amount in mid of 1990s became equal to that 

in 1900-1910s, the period preceding the collectivisation. In accordance with that change, the 

grazing practices again sharply altered. Large state farms with a livestock of many thousand 

sheep each were replaced by a numerous private stock owners, the largest amount of them 

have no more than 500 sheep. Most of the new private stock owners neglect the old rules of 

pastures change and do not migratory routes that have been existed before the Soviet period. 

The shepherds today tend to graze their animals all year round in the same place nearby the 

permanent stands for herds. These places are located in the winter or autumn pastures. Only 

few shepherds who have many animals do still conduct limited migrations.  

Socio-economic factors were the major causes for the rapid change of grazing 

practices after the end of the centrally planned system. The former customs of nomadic 

pastoralism were destroyed during the Soviet period when the Kazakh nomads were forced to 

settle down and to inhabit new settlements organized in form of state farms. The former 

nomads became “settled nomads”. This means that the most of Kazakh peoples lived in 

permanent rural settlements and did not have a possibility to rove through the land with their 

herds. Only few Kazakh people worked as shepherds at state farms and lead a nomad way of 

life, but their migratory routes and time were determined by administrators of kolkhozes and 

sovkhozes. All other former Kazakh nomads worked as drivers, combine operator, milkmaid 

etc. Many of them have moved to cities and became engineers or workers in industry. After 

1991, the Kazakh people could theoretically have been returned to the former nomadic way of 

life, but this was not possible. The customs and practices of nomadic life were lost and only 

insignificant part of the Kazakh people wish they were nomads again.  

Therefore, there is a tendency for shepherds to graze their animals all year round in the 

same place, namely around the permanent settlements where the shepherds with their families 

live. This tendency was promoted by the fact that the pastures now are either ungrazed, or 

grazed by a tiny fraction of the animals which would previously have used them (Robinson et 

al., 2002). Sheep numbers in Karaganda oblast dropped by more than two-thirds between 

1991 and 2000, the herd sizes are also greatly reduced. The area of grass pastures increased, 

because numerous crop fields are abandoned since 1991 and may be now used for grazing. 

Today, the stock number in the grassland is very low, considerably under the carrying 

capacity of  the grass ecosystem. This furthers a recovery huge parts of grassland pastures had 

been degrading in 1950-1990.  
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2.7. Problem of land degradation in Central Asia 
 

The soviet researchers of land degradation and desertification in the Central Asia and 

Kazakhstan, which published their studies in the 1970-1980s, meant that Kazakhstan 

rangelands were in a situation of permanent crisis. This crisis was caused by a too high 

amount of livestock and an incorrect grazing system that was common in the sovkhozes and 

kolkhozes. During the Soviet period, there was almost nothing to be found in the Western 

literature on Kazakhstan rangeland and its degradation status. A few research works on 

Kazakhstan dry land pastures and crop lands, published in English, appeared after the 

independence of Kazakhstan. They deals with re-evaluation of pastures degradation in the 

central Kazakhstan (Robinson et al, 2002), degradation of dry lands in Kazakhstan and 

Central Asia (Kharin et al, 2002), desert problems and desertification in Central Asia (Babaev 

& Kharin, 1999), influence of institutional change on land surface phenology in Kazakhstan 

(de Beurs & Henebry, 2004), and a feedback between inter-annual vegetation conditions and 

precipitation in the Aral See region (Nezlin et al, 2005). The first three studies published by 

Robinson et al (2002), Kharin et al. (1999) and Babaev (1999) also assessed the degradation 

status of dry lands in Kazakhstan. Both authors, who are living and working in Central Asia 

(Kharin and Babaev) suggested in their research works that the whole of Southern and a most 

part of Central Kazakhstan are currently degraded. They determined many types of 

degradation. In pastoral areas vegetation degradation and wind erosion are the most 

important; while in croplands water erosion and deflation of soils by wind are called to be the 

most prevalent.  

On the contrary, investigations carried out by scientists from the western countries 

found no catastrophic extend of desertification processes throughout the region, and even 

reported about very good conditions of pastoral lands. Robinson et al. (2002) described the 

pastures in Kazakhstan as “either ungrazed …. than overgrazed”. DeBeurs & Henebry (2004) 

found improvement of vegetation cover during the 1990s also in irrigated lands. Their results 

agree with the results from some studies of the Kazakh scientists published in Russian 

literature. These research works suggested that the rangelands in the Central Kazakhstan were 

largely in good condition, apart from areas, localized around villages. 
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Chapter 3 
 

3. Data used in the study and their preprocessing  

3.1. Climate data and their preparation 

3.1.1. Climate records 
 

Climate data were retrieved from the annual statistics by the National 

Hydrometeorological Centre of Kazakhstan (NHMCK). These data contain 10-day records of 

9 climate stations placed in the study area for growing seasons (April-October) during the 

period 1985-2004. We used two variables for our analysis: mean 10-day temperature (°C) and 

10-day rainfall total amount (mm). The climate stations are regularly distributed over the 

study area and represent all land cover types found there. The mean characteristics of the 

climate stations are shown in Table 3.1. There were a few gaps in the decade data during the 

period 1993-1998 for some stations. These gaps may be explained by a bad function of 

climate stations what characterised the period of the catastrophic economical crises of 1993-

1998. The gaps were removed by averaging data from the nearest neighbour stations or 

decades from neighbour years. 

  

Table 3.2. Geographical characteristics and principal vegetation classes for the meteorological stations 
used in the study. 

Climate station Altitude, m Geographic 
coordinates 

Principal vegetation classes 

Saryshagan 360 46.10° N, 73.60° E Saltwort-Artemisia-shrubland
Kzyltau 587 47.90° N, 71.47° E Artemisia-Stippa-shrubland 
Aktogay 692 48.30° N, 72.90° E Artemisia-Fescue-shrubland 
Agadyr 732 48.20° N, 75.10° E Fescue-Artemisia-grassland 
Jana-Arka 485 48.70° N, 71.70° E Feather-Fescue-grassland 
Aksu-Ajuly 714 48.80° N, 73.70° E Stipa-Fescue-grassland 
Jaryk 777 48.90° N, 72.90° E Fescue-Feather-grassland 
Bes-Oba 736 49.40° N, 74.50° E Mixed grassland 
Karaganda 520 49.87° N, 73.10° E Mixed grassland 
 

 

3.1.2. Preparation of gridded climate maps 
 

Preparation of gridded climate maps was made by interpolation of these records based 

on the longitude, latitude and elevation of the weather stations. Use of a secondary variable, 

elevation, for modelling gridded maps was important because there is a strong influence of 
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relief on the spatial patterns of climate parameters in the study area. The magnitude of 

elevation ranges from 340 m to 1100 m. The general increase in precipitation with elevation is 

well known, it is due to fact that hills are barriers to moist airstreams, forcing the airstreams to 

rise and they act as high-level heat sources on sunny day. Several studies have compared 

different algorithms for deriving predictions of precipitation from point data in conjunction 

with secondary data (Hevesi et al., 1992a, 1992b; Gomez-Hernandez et al., 2001; Lloyd, 

2002). These algorithms included such techniques as inverse distance weighting (IDW), 

simple kriging with locally varying means (SKlm), ordinary co-located cokriging (OCK) and 

kriging with an external drift (KED). All these techniques exploit relationship between 

primary and secondary variables by regionalizing climate data from point data and enable to 

increase the prediction accuracy essentially.  

In this study, all raster maps of precipitation and temperature for the study region were 

constructed using the interpolation method known as kriging with an external drift (KED). A 

brief description of the KED technique will be given in Chapter 4.  

 

3.2. Satellite data 

3.2.1. Data of coarse spatial resolution 
 

The most recent studies of changes in vegetation activity at global or regional scales 

have been based on the use of data time-series from Advanced Very High Resolution 

Radiometer (AVHRR) launched by the National Oceanic and Atmospheric Administration 

(NOAA) in 1981. The sensor has given a continuous spatial cover of the entire earth area on a 

regular frequency. The coarse spatial resolution (1-16 km) and fine temporal frequency have 

made products from NOAA AVHRR indispensable for use in environmental studies on 

regional to global scale. AVHRR derived data have been successfully used for monitoring 

vegetation activity and environmental changes [1, 2, 3], detection of droughts [4], 

desertification and land degradation studies [5], estimation of El-Nino Southern Oscillation 

(ENSO) impact on vegetation cover [6]. In this study, we used different NOAA AVHRR 

datasets with spatial resolution of 1 km and 8 km.  

 

8-km NOAA AVHRR NDVI 

A general surrogate of all vegetation characteristics (green biomass, ground covering 

percent, photosynthetic activity, leaves area, etc.) is Normalized Differenced Vegetation 

Index (NDVI). The vegetation absorbs a great part of incoming radiation in the visible portion 
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of the spectrum (VIS=220-680 nm) and reaches maximum reflectance in the near-infrared 

channel (NIR=730-1100 nm) (Tucker and Sellers, 1986). The NDVI, defined as ratio (NIR-

VIS)/(NIR+VIS), represents the absorption of photosynthetic active radiation and hence is a 

measurement of the photosynthetic capacity of the canopy (Tucker, 1985; Tucker & Sellers, 

1986). Negative NDVI values indicate non-vegetated areas such as snow, ice, and water. 

Positive NDVI values indicate green, vegetated surfaces, and higher values indicate increase 

in green vegetation.  

To monitor temporal variations and long-time trends of vegetation activities we used 

the Global Inventory Monitoring and Modelling System (GIMMS) NDVI dataset derived 

from the NOAA AVHRR sensor. The data, at 8-km spatial resolution, are originally 

processed as 15-day composites using the maximum value procedure to minimize effects of 

cloud contamination (Holben, 1986). For this research, we created monthly composites from 

the 15-day composites. These monthly NDVI data for consecutively three and twelve months 

were averaged to generate seasonal and annual NDVIs for each year. The data cover the 

period from 1982 to 2003. Even if the GIMMS dataset is pre-processed for radiometric and 

atmospheric corrections, calibration for sensor differences and orbital drift, slight variability 

in the NDVI records has remained in the data time-series. In order to improve the dataset, we 

have made an additional calibration of the GIMMS NDVI data against three time invariant 

desert targets located in the Big Arabian Desert, Nubia Desert and Taklamakan Desert using a 

method described by Los (1993). 
 

Table 3.2. Satellite data used in the study and their characteristics. 

Satellite 
system 

Sensor Spatial 
resolution 

Temporal 
resolution  

Time-period/  
Acquisition date

NOAA AVHRR 
 

8 km 
1 km 

10-day  
10-day 

1982-2003 
1992-93, 1995 

SPOT VEGETATION 1 km 10-day 1999-2004 
Landsat MSS 

TM 
ETM+ 

57 m 
28.5 m 
28.5 m 

 1978 
1992 
2001 

 

 

1-km NOAA AVHRR NDVI and SPOT VEGETATION NDVI 

We used two NDVI data sets of 1-km spatial resolution in this study. First, 10-day 1-

km NDVI data set from the global AVHRR archive for every growing season (April-October) 

during the years 1992, 1993, and 1995 were assembled. Second, we acquired 10-day SPOT 

Vegetation index data at 1-km resolution for growing season during 1999-2004. Both data 
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sets are generated using a maximum value composite (MVC) procedure, which selects the 

maximum NDVI value within a 10-day period for every pixel (Holben, 1986). This procedure 

is used to reduce noise signal in NDVI data due to clouds or other atmospheric factors. In 

addition to that, we removed noisy pixels which remained in the NDVI maps characterized by 

exceptionally high or low NDVI values relatively to their pixel neighbourhood. The method 

of the identification of noisy pixels used a window with a size of 3*3 pixels which was 

moving over NDVI scenes and calculated a mean value of the surrounding pixels for every 

point. After subtracting the original pixel value from the mean value of surrounding pixels, 

differences of NDVI more than 0.12 were considered as noise. Then, pixels identified as 

noisy were replaced by the surrounding mean.  

From the AVHRR NDVI and SPOT Vegetation NDVI data sets, we computed a 9-

year mean NDVI for every 10-day period beginning with April through October. At last, a 

NDVI data set accumulated over growing season, , was produced by summing the 

10-day mean values derived. Several studies used the  as a measure of the 

magnitude of greenness available through the growing season time which reflects the capacity 

of the land to support photosynthesis and net primary production for a growing season. A 

close relationship between and precipitation, especially in arid and semi-arid 

regions has been well established in the literature (Tucker & Sellers, 1986; Reed et al., 1994; 

Yang et al., 1998; Li et al., 2004; Budde et al., 2004). Therefore, we decided to use the 

 in modelling spatial relationship between vegetation activity and precipitation for 

our study.  

accumNDVI

accumNDVI

accumNDVI

accumNDVI

 

3.2.2. Data of fine spatial resolution 
 

The Landsat sensor was specifically designed for studies such as land cover mapping. 

Essentially, detection of changes in land cover involves the ability to quantify temporal 

differences using multi-temporal data sets. One of the major applications of remotely sensed 

data obtained from Earth Orbiting Satellites is change detection because of repetitive 

coverage, fine spatial resolution, and consistent image quality.  

The Landsat satellite image data employed in this study were acquired in 1979, 1991, 

and 2000. In spite of large time gap between the image acquisitions, application of the 

Landsat dataset to change detection in the Ili delta is believed to be justifiable for two main 

reasons. Firstly, the years of image acquisition corresponded well to the main phases of 
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environmental change in the study region: 1980-1991 is the phase of high human impact and 

degradation due to overgrazing and crop production under bad climate conditions; 1992-95 is 

the initial stage of situation improvement caused by a rapid diminishing the human impact; 

since 1995 is the stage of a strict land use change and rehabilitation of the most grass 

landscapes. Secondly, the intra-annual discrepancies between the images reflecting different 

phenological phases of vegetation due to months of their acquisition (July-August) were 

expected to be fewer than the long-time differences caused by the general change in the 

environment of the study region. 

The Landsat imagery was used to check out changes in surface features over the last 

three decades.  Concerning the information extraction from the Landsat data, we were  mainly 

interested in identification of changes in spatial patterns of land use and land cover in the 

study area.  

Pre-processing of the Landsat dataset included common procedures of satellite data 

treatment such as radiometric and geometric correction, rectification and co-registration of all 

images. The Landsat TM and Landsat ETM images from 1991 and 2000 were resized to the 

spatial resolution of 57 m in order to mach the Landsat MSS images. In addition, a set of 

topographic maps dated 1982 and covering the whole study area was used to compare the 

analysed satellite images.  

 

3.3. Digital terrain model 
 

A tile plot for the study area of the GTOPO30 digital terrain model with a pixel size of 

30 arc second (approximately 1000 m) was used for our work. GTOPO30 is freely available 

at http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html. The terrain model was 

indispensable for pre-processing of satellite data and the supplementary statistical analysis in 

the main part of the study. First, high relief amplitude (340 – 1180 m) in the study area can 

induce illumination effects causing variations in reflectance of similar ground features. 

Therefore, a topographic normalization of NDVI scenes was carried out to remove these 

effects. Second, by analysing spatial relationships between vegetation patterns, climatic 

factors and relief, the terrain model played an important role appearing in regression 

equations as an independent constant.  
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3.4. Maps 
 

Two types of topographic and thematic maps were used in our research work. We 

used analogue maps of topography (scale 1:100,000) from 1982, an analogue vegetation map 

(scale 1:500,000) from 1995 covered the whole study region as well as a digital map of land-

cover derived from Moderate Resolution Imaging Spectroradiometer (MODIS) by Friedl et al. 

(2001) that have been accessible in the United States Geological Survey (USGS) archive 

centre. Originally, this map has 1 km spatial resolution. The topographic maps were useful for 

geometrical correction and rectification of the satellite data, especially that of fine resolution. 

The vegetation maps were used for identification of areas covered by various vegetation types 

and validation of the results of modelling land cover change.    

 

3.5. Agrarian and population statistics 
 

Statistics of agrarian production and population were obtained from the annual state 

statistical reports of the USSR and Kazakhstan. These statistics characterize not only the 

study region but also the whole area of Kazakhstan. As the agrarian statistics clearly reflected 

the significant change in production structure and production rate which happened during the 

period 1982-2004, we considered to use these statistics to detect a general trend in human 

impact that is associated with the years before and after the constitutional change in 1991. 

Population amounts may reinforce the agrarian statistics. We used the following statistics:  

 

1. Livestock: cattle, sheep. 

2. Crop production: wheat, maize, potatoes.  

3. Area of agricultural used land: irrigated land, arable land, pasture.  

4. Population: rural, urban, structure, distribution over the land.   

 

3.6. Field data 
 

Together with a group of scientists from the Remote Sensing Institute of 

Kazakh Science Academy the author undertook two field trips (each one month) to the study 

region during the summers of 2004 and 2005. During these field trips across the entire region, 

a large amount of different field data has been collected in order to be used for further 

analysis, validation and modelling of satellite data. The author has also used some data 
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derived by the research group during other field travels. The main data set contains surveys of 

vegetation distribution (dominant species) and soil types. Contemporary land use (land use 

type, crops composition/change etc.) has been checked directly in the field.  Data for 

historical dynamics of land use have been derived by interviews with farmers or from statistic 

reports of local authorities. In order to estimate density of vegetation cover, nadir photos of 

vegetation cover have been made at every test site.  Common indicators for degradation 

processes have been noted and evaluated where any degradation of vegetation cover was 

actual.    
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Chapter 4 
 

4. Methodology of data analysis 

4.1. Analysis of vegetation distribution, variability and change in space and time 

4.1.1. Simple methods of descriptive statistic  
 

An analysis of spatial and temporal variability in vegetation cover was based on the 

use of elementary methods and variables of descriptive statistic. This methods and variables 

have been widely used and are described in every statistic book. So, we do not need to make 

any explanations to their use. We still have to make a listing of them:  

- NDVI average over the study period as well as average values for every 

season (with the exception of winter),  

- standard deviation of NDVI, ( ),  stdevNDVI

- coefficient of variation in NDVI over the space or the study period, 

( ).  cvNDVI

The variables  and  were derived for spatial averages of each 

vegetation type. In order to understand spatial patterns of variations, we also made these 

calculations for each pixel. 

stdevNDVI cvNDVI

4.1.2. Calculation of time-trends  
 

Linear time-trends were calculated by regressing a variable (for example, NDVI or 

precipitation) as a function of time over the study period, using least-squares estimation. The 

time-trend calculations included determination of both the regression slope coefficient and 

increase/decrease of the variable during the study period. Values under zero were considered 

to display a decrease in the variable, while values over zero show an increase. The time-trends 

were determined for area-averaged classes of every variable and, in order to exhibit spatial 

patterns in trends, for every grid cell.  

 

4.2. Methods of geostatistical analysis 

4.2.1. Autocorrelation  
 

One of the central tools in geostatistical analysis is autocorrelation. Autocorrelation, as 

the name implies, involves correlating a sequence of data with itself. The process only 
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becomes interesting when the correlation is calculated between duplicates of the sample data 

which are displaced relative to each other. In other words, the two sets of numbers to be 

correlated are achieved by pairing each value  with , where i  gives the time or position 

in the space and 

iy τ+iy

τ  is an integer value of displacement known as the lag. The correlation 

coefficient between the samples and a displaced copy of itself is known as the autocorrelation 

coefficient, . It can be calculated at successive lags and the resulting series of  values 

revealing useful information on the structure of the data. These are plotted on an  versus 

τr τr

τr τ  

graph called an autocorrelogram (Swan & Sandilands, 1995, pp. 246-248). Where τ  is zero, 

pairs of  values are identical and the coefficient of autocorrelation clearly equals 1. As y τ  

increases, the similarity between the pairs of  values is likely to decrease and the  

decreases. At a certain value of 

y τr

τ , we reach a point at which the  ceases to decrease: this is 

the range value. Points whose distance exceeds the range value are independent.  

τr

 

4.2.2. Spatial autocorrelation 
 

Spatial autocorrelation measures the similarity between samples for a given variable as 

a function of spatial distance. The spatial autocorrelogram describes the degree and form of 

spatial dependence, which is similarity between values separated by a given distance. Positive 

autocorrelation means that geographically nearby values of a variable tend to be similar on a 

map: high values tend to be located near high values, and low values near low values. In 

contrast, with negative spatial autocorrelation geographically nearby values of a variable tend 

to be dissimilar on a map: high values tend to be located near low values, and low values near 

high values. Totally random data will show an arbitrary small  at lag τr τ , and this will 

fluctuate randomly at higher lag. Most ecological data tend to be moderately positive spatially 

autocorrelated because of the way phenomena are geographically organized (Griffith, 2003, 

pp. 4-5). 

The coefficient of autocorrelation can be calculated on different ways. The Moran’s I 

coefficient is the most commonly used coefficient in univariate autocorrelation analysis and is 

given as:  
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where  is the number of samples,  and  are the data values in quadrats i  and , n iy jy j

y  is the average of  and  is an element of the spatial weights matrix W. under the null y ijw
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hypothesis of no spatial autocorrelation, I has an expected value near zero, with positive and 

negative values indicating positive and negative autocorrelation, respectively.  

4.2.3. Kriging with an external drift 
 

Kriging with an external drift (KED) is a geostatistical method used for regionalization 

of point data in space which takes into account one or more external influences on data 

distribution. Generally, KED is used for deriving prediction of point data in conjunction with 

secondary data. It is essential that secondary data are available at the locations of the primary 

data as well as at all locations for which predictions are required. The second condition of 

KED using is that the secondary data have to be related to the primary variable. A benefit of 

using KED for regionalization of climate data is the possibility of incorporation of relief 

variable into a kriging system as external drift function. In this chapter, only a brief 

description of the KED technique will be given. For further details see Wackernagel (1998).   

The KED predictions are a function of (i) the form of the variogram model, (ii) the 

neighbouring primary data (climate data), and (iii) the modelled relationship between the 

primary variable and the secondary variable (elevation) locally. The local mean of the primary 

variable is derived using the secondary information and ordinary kriging (OK). The KED 

prediction is given by the following equation: 

 

∑
=

=
n

a
a

KED
aKED xzxz

1
0 )()(ˆ λ            (2) 

 

The weights are determined through the KED system of linear equations: 

 

    (3) 

where y(x) are the secondary (elevation) data.  

 

In the practice, kriging with an external drift was preformed as follows: (i) deriving 

the underlying (trend-free) predictions for primary data by ordinary kriging; (ii) estimating 

external drift coefficients  at all locations as well as at the nodes of the estimation grid 
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through modelling the relationship between primary and secondary variable; (iii) pertaining 

the obtained coefficients for external drift to the trend-free predictions.  

 

4.3. Analysis of the relationship between vegetation change and its explanatory 
factors 

4.3.1. Correlation coefficient 
 

In a bivariative distribution where two variables are involved, we were interested to 

find out if any relationship exists between the variables under study. The existence of any 

relationship can be proved by calculation of correlation for the couple of variables. If the 

change of these variables is in the same direction, the correlation is said to be positive. If the 

variables deviate in the opposite direction, the correlation is negative. A measure of 

correlation strength reflects correlation the coefficient which may be given as: 
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4.3.2. Multiple correlation coefficient 
 

Multiple correlation is believed to represent the combined effect of several 

explanatory variables on a response variable. In this study, the  multiple correlation enables to 

estimate the collective influence of climatic factors on NDVI. The used equation for 

calculation of multiple correlation coefficient from the derived simple correlation coefficients 

is given as: 
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Where is multiple correlation coefficient; ,  and are simple correlation 

coefficients between variables NDVI, rainfall and temperature. 

abcR abr acr bcr
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4.3.3. Partial correlation coefficient 
 

Sometimes it happens that explanatory variables are strongly correlated among 

themselves. That means that the effect of a single variable is supported by the effect of other 

single variable and the calculated simple correlation coefficient does not show a real picture 

of relationship. This phenomenon is called multicollinearity. In order to overcome 

multicollinearity and highlight real relationship, we calculated the coefficient of partial 

correlation. This coefficient enables to exclude a role of other variables by estimation of 

strength in the relationship between two variables. The partial correlation coefficient was 

calculated by using the equation: 
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where r is correlation coefficient; a, b and c represent NDVI, rainfall and temperature. 

 

 

4.4. Modelling relationship between vegetation patterns and explanatory factors 

4.4.1. Simple linear regression model 
 

The simple linear model, usually fitted by ordinary least squares methods (OLS), is: 

εβα ++= xy *          (7) 

where a is the intercept, β represents the slope coefficient for independent variable x, 

and ε is a random error.  

In this model, the two variables to be related are y, the dependent variable (typically 

NDVI), and x, the independent variable (one of the environmental predictors, such as rainfall, 

temperature, evapo-transpiration etc.). The regression model parameters a and β derived by 

the above approach are assumed to be stationary globally over the analysis space. In other 

words, applying the conventional global regression model to studying relationships between 

vegetation distribution and its conditions and environmental parameters, one bases on the 

calculation on the assumption, that at each point of the study area this model is absolutely 

representative and the quantified relationship is constant. 
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4.4.2. Multiple linear regression model 
 

A multiple linear regression analysis was performed using the response variable, 

NDVI, and both of the climatic variables. For every year we fitted a multiple linear regression 

model described the NDVI value for each pixel in its dependence from the climatic predictors. 

The full linear model equation is expressed as: 

 

εββα +++= xxy ** 21         (8) 

 

where α  is the intercept, 1β and 2β are regression coefficients of the climatic 

predictors and ε is random error.  

The coefficients were estimated with the ordinary least squares procedure. The model 

parameters were tested sequentially: first, the term for precipitation 1β , next, the term 2β for 

temperature and then the intercept α . Where the two terms were evaluated as not 

significantly different, then these parameters were averaged and the model was refitted, using 

the averaged parameters. 

 

4.4.3. Problem of non-stationarity by analysing spatial relationship 
 

Statistical regressions and correlations have been the most common techniques used to 

quantify the relationship between a response variable (mostly NDVI) and explanatory 

variables in studies on monitoring vegetation change. The authors tended to use conventional 

ordinary least squared (OLS) simple and multiple regression analysis as the basic methods for 

definition of relationships between NDVI and biophysical variables. However, these 

conventional statistical methods, especially by quantifying spatial relationships at regional or 

global scales, are usually not adequate for spatially different data. The OLS regression implies 

a spatial stationarity in the relationship between the variables under study. This approach 

assumes the constancy of this relationship at every point of the analysis space, uniformity 

over space. Unfortunately, in many cases this relationship is not stable in space and appears to 

vary over space (Foody, 2003; Ji & Peters, 2004; Brundson et al., 2001). The differences 

between regression models established at different locations can be large with both the 

magnitude and the sign of the model parameters varying.  

In such circumstances, the parameters of the global regression model derived by 

applying conventional OLS regression, may not represent local conditions within the study 
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area. One can suppose, that especially in the areas with high variance of relief conditions, the 

local model parameters should vary more significantly.  

 Local regression techniques, such as moving window regression (MWR) and 

geographically weighted regression (GWR) overcome this problem and calculate the model 

parameters varying in space. These techniques are believed to provide a more appropriate and 

accurate basis for descriptive and predictive proposals and are quite common in geography 

(Fotheringham et al., 1996; Pavlov, 2000; Paez et al., 2002a, b; Brunsdon et al., 1996; 

Brunsdon et al., 2001). On the field of remote sensing there are only rare studies applying the 

local regression techniques for analysis of spatial relationships between NDVI and biophysical 

variables (Foody, 2003; Ji & Peters, 2004).  

 

4.4.4. Moving window regression 
 

Moving window regression (MWR) overcomes the problem of non-stationarity 

through local disaggregation of global statistics and calculates the relationship between NDVI 

and its predicting variables for every point. In this technique, a regression and its parameters 

in each point (pixel) of the study region is quantified separately and independently from other 

points. This has been achieved by moving a window of definite size over the study region. 

The size of the moving window is less than the region size and can be varied from one point 

to another. The regression model is calibrated on all data that lie within the region described 

around a regression point and the process is repeated for all regression points. The resulting 

local parameter estimates can then be mapped at the locations of the regression points to view 

possible non-stationarity in the relationship being examined. The regression model is then 

calculated on all data that lie within the moving window. With the moving window regression 

the relationship between the variables can be expressed as  

 

εβα +Θ+Θ= xy *)()(         (9) 

 

where Θ indicates that the parameters are to be estimated at a location for which the 

spatial coordinates are provided by the vector Θ.  

The resulting local parameter estimates can then be mapped at the locations of the 

regression points (usually in the middle of moving window) to view possible non-stationarity 

in the relationship being examined.  
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4.4.5. Geographically weighted regression 
 

Geographically weighted regression (GWR) being a local technique works in the same 

way as the moving window regression except that each data point is weighted by its distance 

from the regression point. This means, that a data point closer to the regression point is 

weighted more heavily in the local regression than are data points further away. For a given 

regression point, the weight of a data point is at maximum when it has the same location as 

the regression point, and is more lightly when it has a location at a range of the moving 

window. In GWR an observation is weighted in accordance with its proximity to location i so 

that the weighting of an observation is no longer constant but varies with i. The matrix form 

of parameter estimation for i is expressed as: 

 

yWXXWX TT )())(()(ˆ),(ˆ 1 θθθβθα −=       (10) 

where α̂ and are intercept and slope parameter in location i; and β̂ )(θW is weighting 

matrix whose diagonal elements represent the geographical weighting associated with each 

site at which measurements were made for location of i.  

Spatial weighting function can be calculated by several various methods. For fixed 

kernel size, the weight of each point can be calculated by applying Gaussian function 

 
2)]/(2/1exp[ bdw ijij −=         (11) 

 

where is the distance between regression point i and data point j, and b is referred 

to as a bandwidth. 

ijd

An alternative way is the bi-square function 
22 ])/(1[ bdw ijij −=          (12) 

when < b and = 0 otherwise. ijd ijw

 

The weighting of an observation in the analysis is not constant, but a function of 

location. Data from observations close to point i are weighted more than data from 

observations father away. 
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Figure 4.1. Framework explaining how the GWR works in the practice with an example of a 7*7 
kernel size. In this example, the GWR is derived for the pixel located in the centre of the kernel. 
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In the practice, for each variable from equation (2) its weighting value can be 

calculated by applying a weighting matrix W(Θ). The weighting matrix is an n by n matrix 

whose off-diagonal elements are zero and whose diagonal elements denote the geographical 

weighting of each of the n observed data for regression point i. After that, a local regression at 

each point in the analysis area can be derived by moving a kernel over the space.  

Estimated parameters in geographically weighted regression depend on the weighting 

function of the kernel selected. As the bandwidth, b, becomes larger, the closer the model 

solution to that of global OLS will be. Conversely, as the bandwidth decreases, the parameter 

estimates will increasingly depend on observations in close proximity to regression point i 

and will have increased variance. The problem is therefore how to select an appropriate 

bandwidth in GWR. The selection of the weighting function can be determined using different 

methods such as a cross-validation (CV) approach described by Brundson et al. (2001) and 

Fotheringham et al. (2002), the generalized cross-validation criterion (GCV) proposed by 

Loader (1999), or the Akaike Information Criterion (AIC) from Hurvich et al. (1998).  

To establish an appropriate bandwidth, b,  we used the cross-validation approach (CV) 

which determines b by minimisation of the sum of squared errors between predicted variables 

and those observed. According Fotheringham et al. (2002), the equation for the cross-

validation sum of squared errors CVSS is statistically expressed as: 
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        (13) 

 

where is the observed value and is the fitted value of for bandwidth b.  iy )(ˆ byi iy

As general rule, the lower the CVSS, the closer the approximation of the model to 

reality. The best model is the one with the smallest CVSS. For our regression model, the 

bandwidth of 5 pixel was decided to be the most appropriate.  

An extended description of geographic weighted regression and its treatments is 

provided by Fotheringham et al. (2002), Foody (2003) and Paez et al. (2002a, b).  

 
 

4.5. Assessment of modelling accuracy 
 

It is important to distinguish between error and accuracy. Essentially, error relates to a 

single value and is associated with a local accuracy while accuracy relates to the average of an 

ensemble of values. Accuracy analysis involves the computation of prediction uncertainty in 
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the model outputs. As a guides to the accuracy and error assessment of the model-based 

predictions we used the following variables: 

- The root mean squared error (RMSE), 

- The standard error (SE). 

- The correlation coefficient between measured NDVI and regression model 

predicted NDVI, 

- The Moran’s I of the residuals from the models.  

 

4.5.1. Root Mean Square Error (RMSE) 
 

Accuracy depends on a statistical model. It is an expectation of the overall error. 

Where an independent data set is used to assess uncertainty (in this study – measured NDVI), 

accuracy may be predicted directly. In particular, the root mean square error which is 

sensitive to both systematic and random errors, can be used to predict accuracy.  
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4.5.2. Standard error 
 

Using the standard error to estimate the prediction error (and, therefore, imprecision) 

is based on central limit theorem. This theorem says that for large sample size n the 

conditional distribution of the error should be approximately Gaussian (or normal). For a 

given sample the standard error can be calculated by the equation: 
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=           (15) 
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where, zσ  is the standard deviation of the variable zσ and n is the number of data used. 

In this case, iz  exposes the mean value of a given kernel and the number of data is depend on 

the kernel size.  

 

4.5.3. Spatial autocorrelation for accuracy assessment 
 

An accuracy assessment based on an independent data set may provide a spatially 

distributed set of errors. These errors can be analysed statistically without the local 

information. For example, one might be interested in the local pattern of over- or under-

prediction: the map of errors might show areas of over-prediction (positive errors) and under-

prediction (negative errors). It has been found that in many cases such spatially distributed 

errors are spatially autocorrelated (Wang et al., 2005;). A diagnostic statistics indicating 

problems in regression modelling with spatial data is the degree of spatial autocorrelation 

exhibited by the residuals from the model. The standard errors are usually underestimated 

when positive autocorrelation is present.  

For each regression model, we calculated the Moran’s I of the residuals to examine the 

effect of calibrating the models locally. It is proved that the local calibration removes much of 

the problems of spatially autocorrelated error terms included in traditional global OLS model 

(Wang et al., 2005; Fotheringham et al., 2003, pp. 112-117). We were interested in the 

comparison of the results from the global and local models.  

 

 

4.6. Evaluation of land cover change and its driving forces 

4.6.1. Background for discrimination between climate-induced and human-induced 
vegetation change 
 

Previous studies have shown a strong relationship between inter-annual changes in 

vegetation activity and precipitation or temperature. It is clear that climate signal in NDVI 

time series must be very strong. Climate should have a substantial control on NDVI through 

annual precipitation. This control, however, should be predictable in every point of the study 

area where the relationship between NDVI and climate change are statistically significant. 

Identification and quantification of climate signal should help to discriminate between two 

major factors of vegetation change, climatic and anthropogenic. Some examples of dealing 

with climatic signal and discrimination between human-induced and climate-induced 
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degradation have been presented in the recent literature (Li et al., 2004; Evans & Geerken, 

2004).  

A system of discrimination between climate and human driving forces in vegetation 

change has been developed in this work. This simple system is based on the concept of 

synchrony and asynchrony of time-trends in vegetation and climate factors. This concept is 

explained on an example framework (Figure 4.2). In panel (a), the upward trends in NDVI 

and precipitation are synchronous. Obviously, here we observe improving vegetation cover 

due to increasing precipitation amounts. In panel (b), the downward trends in NDVI and 

precipitation are synchronous. In this case, decreasing NDVI is driven by a decrease of 

precipitation, and one cannot speak about “human-induced” worsening of vegetation cover, 

because human impact is not evident in the trends. In (c), the trends are asynchronous. NDVI 

increases even as precipitation decreases. This would be the case when vegetation cover is 

recovering due to diminishing human impact. In (d), the trends are once more asynchronous, 

but an increase of precipitation did not cause an improving of vegetation cover. On the 

contrary, the NDVI trend is negative. Here, we can suppose human-induced degradation of 

the vegetation cover.  

 

 

Figure 4.2. Scenarios described to illustrate how the combine use of NDVI and precipitation time-
series may help to detect a vegetation cover being improved or degraded. A thick and a thin line depict 
NDVI and precipitation trends, respectively. Panel (a) displays improving vegetation cover caused by 
increase in precipitation; (b) vegetation degradation due to climate change; (c) recovering vegetation 
cover; (d) degradation of vegetation cover caused by human impact. See closer explanation in the text. 
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4.6.2. Identification of climate and anthropogenic signals in the vegetation time-series 
 

It is clear that this system would work only in areas where relationship between trends 

in vegetation and trends in climate factors are statistically significant and strong enough. In 

order to detect these areas, trends in vegetation cover were computed and compared with 

trends in climatic predictors. This task was solved in three steps. First, areas with statistically 

significant trends in vegetation activity over the study period were identified and extracted. 

Second, correlation and regression analysis with inter-annual time series of precipitation and 

temperature have been carried out for every pixel in the extracted areas. Third, synchrony or 

asynchrony between trends in vegetation conditions and trends in climate factors was 

analysed and determined by comparing the trend direction of vegetation activity and 

correlation coefficient with climate factor.  

For example, if a trend in vegetation cover is positive and this area reveals statistically 

significant positive correlation with precipitation, it considers to indicate a climate 

(precipitation) driven change in vegetation cover (Figure 4.2, a). If a trend in vegetation cover 

is positive but the area reveals negative correlation with precipitation, it considers indicating 

improvement of vegetation cover due to a decrease of human impact (Figure 4.2, c). The same 

approach was applied to identify climate-induced and human-induced degradation of 

vegetation cover (Figure 4.2, b and d).         

 

 
 
Figure 4.3. Difficult cases of trends interpretation: (a) both trends are positive but the trend in 
vegetation reveals a much lower magnitude, which should indicate a slight process of degradation in 
spite of good climate conditions; (b) opposite case presenting a slight rehabilitation of vegetation 
cover in spite of rainfall decrease. 
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4.6.3. Analysis of regression residuals for identification of areas experiencing 
anthropogenic impact 
 

The scenarios in Figure 4.2. describe idealistic conditions which are not always to be 

found in the reality. It is expected that not all trends will exhibit asynchrony or synchrony 

with values of equal magnitude. Special cases of this problem are shown in Figure 4.3. The 

trends in these panels are synchronous but exhibit different magnitudes. It means that in 4.3. 

(a) vegetation response to precipitation is getting worse. An opposite case is shown in panel 

4.3. (b). Here, vegetation cover demonstrates increasing response to precipitation.  

In order to detect these areas, an analysis of residuals from regressions between NDVI 

and climate factors was undertaken. For a given value of rainfall, a value of NDVI predicted 

by the regression, abbreviated as , was obtained for every pixel and for each year, this 

value was considered to reveal the time trend in climatic component. The observed NDVI, 

abbreviated as , may show deviations from the regression line. We suggested that 

positive deviations indicate better response of vegetation to climate while negative deviations 

indicate worse response. Deviations in  from  expressed in the regression 

residuals were computed at pixel-by-pixel basis for every year. Then we calculated temporal 

trend of regression residuals for each pixel over the study period. We suggested that any trend 

through time presented in the residuals would indicate changes in NDVI response not due to 

climatic variables. A negative trend would mean diminishing response of vegetation cover to 

climate. This reduce can be caused either by a decrease of vegetation cover or by a change in 

plant species composition. According to this suggestion, this negative trend, if it is 

statistically significant, would indicate an area experiencing human induced degradation. An 

opposite case would indicate a positive trend in residuals. This positive trend would indicate 

an area with improving vegetation cover.  

predNDVI

obsNDVI

obsNDVI predNDVI

Concerning the panels shown in Figure 4.3, positive trend in residuals would represent 

the case in panel (b), and, on the contrary, panel (a) displays a negative trend in residuals.     
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Chapter 5 
 

5. Analysis of climatic conditions 

5.1. Network of climate stations in the study region 
 

The network of meteorological observation stations in the Republic of Kazakhstan is 

administrated by the National Hydrometeorological Centre of Kazakhstan (NHMCK). The 

number of stations in the network has varied over the years with a maximum value of 257. 

The first meteorological stations in the republic were established at the end of 19. century by 

the Russian Geographical Society and with this time are associated first climate records from 

the region. During the period of Russian Empire until 1917, the network remained very thinly. 

A very rapid growth of the stations network in Kazakhstan is associated with the period of 

economical development of the region in 1930-50s, particularly with the virgin land campaign 

at the end of 1950s when wide areas of tselina (virgin land) were ploughed up and taken into 

agricultural use. During the time between 1950-1970, the network reached its maximum 

density and remained at that level untill the collapse of the Soviet Union in 1991.  

The constitutional change has had a negative influence on climate observations in the 

region of Kazakhstan and other republics of the formerly Soviet Union in Central Asia. Many 

climate stations were abolished and abandoned because of diminishing financial support by 

the country government. In the remaining stations, climate observations have revealed many 

deficiencies in measurements and reporting. At some meteorological stations, climate 

observations have been carried out not by skilled specialists but by occasional people without 

any special education and experience which are employed for a low salary. There has been 

some improvement of the implementation of the climate network within the last years but the 

entire situation remains insufficient.  

For this study, climate stations in the study area and the nearest to that were used. 

Fortunately, all the climate stations were operational both before and after the constitutional 

change in 1991. The general characteristics of the stations are listed in Table 3.1 (Chapter 3). 

Here, the spatial distribution of the climate stations is shown (Figure 5.1). The network seems 

to exhibit insufficient density of the climate stations, particularly in the southern part of the 

study area. Mean distance between the climate stations equals to approximately 85 km while 

distance from the station Saryshagan in the south to the nearest station in the north is about 

240 km. This density might appear insufficient. But we must take it into account that the 

southern portion of the study area is occupied by a straight plain with an elevation magnitude 
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of 340-380 m over 200 km. Here, we do not have to expect any significant local variances in 

climate conditions like in the northern part of the study area.   

 

 

Figure 5.1. Map showing the distribution of the climate stations used in the study. Line displays the 
borders of the Shetskiy district. The study area is presented by the light grey square.  

 
 

5.2. Modelling spatial patterns in climate parameters 
 

The spatial patterns in average temperature and precipitation are shown in Figure 5.2. 

Average precipitation increased markedly from south to north: from below 100 mm in the 

desert to over 260 mm in the steppe zone. Average growing season temperature generally 

decreased from south to north. In the south of the study region the temperature achieves 16-17 

°C and the northern area is about 3-5°C cooler.  

These results were obtained using kriging with external drift (KED). There are 

prominent anomalies in the patterns caused by influence of relief on the climate. The 

magnitude of elevation in the study region is about 700 m, the altitude ranges from 350 m to 

over 1000 m. Therefore, this external explanatory factor for spatial distribution of climate 

variables had to be incorporated in the kriging model by preparing gridded maps.   
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(a) (b)  
 
Figure 5.2. Maps showing the spatial distribution of mean temperature (a) and total amount of rainfall 
(b) over the growing season derived using elevation data as external drift in KED.  

 
 

 (a) (b)  
 
Figure 5.3. Kriging average growing season temperature (a) and total precipitation (b) without external 
drift.   

 
 

The results obtained using ordinary kriging without external drift (OK) are presented 

in Figure 5.3. They can be characterized as a near gradual upstep in rainfall and downstep in 

temperature when going northwards. This maps do not take into account any external 

influence on climate patterns. They are more smooth than that for KED  (Figure 5.2) which 

show clearly the form of the terrain, particularly in the mid and northern parts of the study 

region. In order to assess the accuracy of the data preparation, we randomly reserved 3 

weather stations from the interpolation for one of the 10-day from every year and recorded 

values. Average error was less than 6% for KED and about 9 % for OK. It means that the 

approach of kriging with external drift worked more effectively. The root mean squared error 

(RMSE) was also used as a guide to the accuracy of the prediction. For KED, the RMSE was 
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8.3 mm for 9 climate stations, while for OK it was 10.5 mm. For these data, there appear to be 

benefits in using kriging with external drift.   

 

 

5.3. Statistical analysis of climate data. 

5.3.1. The inter-annual variability of precipitation and temperature.  
 

The arid and semi-arid climates are characterized by high variability of climate 

parameters from one year to another, particularly extremely high rainfall variability. On the 

map of the inter-annual variability of rains around the globe, the areas of greatest irregularities 

correspond to the desert areas (Mainguet, 1999, pp. 84). The pronounced deserts exhibit a 

variability of above 40 %. In the northern hemisphere, these areas are associated with the 

deserts and semi-deserts of Central Asia and Kazakhstan. The high variability in precipitation 

causes high variability of ecosystem conditions and is the main cause for the difficulties of 

vegetation and animals survival in the dryland.  

The variability of climate factors may be illustrated with the aid of standard deviation 

and coefficient of variation (CV). In this study, coefficient of variation was computed for 

precipitation and temperature data for each climate station. The results are presented in Table 

5.1.  

Throughout the study region, the variability in precipitation increases from the north 

towards the south and shows a mean value of 27 % growing season precipitation. On the 

contrary, the variability in temperature increases from the south to the north with a mean 

value of 6.2 %. The variability in temperature is very low in comparison with that in rainfall, 

thus we may support that temperature plays a minor role in ecosystem dynamic in the study 

region.  

The highest CV for growing season precipitation is in Saryshagan and the lowest in 

Jaryk, with values of 32.2 and 21.5, respectively. Shepherd & Caughley (1987) determined a 

threshold value for variation of rainfall (30 %) which defines the border between equilibrium 

and non-equilibrium dynamics of drylands. Based on the results of CV analysis, the border 

between these two types of inter-annual dynamic may be proposed to be located 

approximately along the 48° N where the stations Kzyltau, Agadyr and Aktogay are situated. 

This area is associated with semi-desert zone which combines the features of desert and 

steppe. Obviously, the ecosystem of semi-desert should exhibit both types of inter-annual 

dynamics.  
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Table 5.1. Coefficient of variations of precipitation and temperature during the period 1985-2004 as 
computed for the individual climate stations from the study area.  

 
Season Spring Summer Autumn Growing season 
Parameter Rain  Tem. Rain  Tem. Rain  Tem. Rain  Tem. 
Karaganda 36.8 18.3 48.3 5.4 45.9 21.0 28.5 7.7 
Kzyltau 39.2 18.8 49 4.8 50.4 24.1 29.8 8.0 
Aksu-Ajuly 34 19.2 45.5 5.3 37.3 22.1 22.8 8.0 
Agadyr 49.2 14.1 42 3.5 44.5 19.5 30.2 6.5 
Jaryk 41.6 12.4 37 4.6 41.8 16.1 21.5 6.4 
Bes-Oba 25.4 18.9 32 5.0 35.1 21.3 25.1 7.8 
Aktogay 31.8 18.2 40 4.9 37.6 18.8 29.1 7.6 
Jana-Arka 28.2 17.1 38 4.7 36.3 21.9 28.4 7.6 
Saryshagan 37.2 10.8 51.8 3.2 33.2 11.9 32.2 4.4 
Average 29.6 14.7 30.5 4.1 36.2 17.9 27.0 6.2 

 

 

The variability of precipitation and temperature for separate seasons is higher than that 

for the entire growing season. Such, CV of precipitation for summer ranges from 37 to 52 

with a mean value of 30.5. The highest variation is associated with the climate station in 

Saryshagan whereas the lowest another time with Jaryk. Surprisingly high values of CV were 

observed in Karaganda and Aksu-Ajuly, the two stations situated on the northern edge of the 

study region. They exhibited dynamic with variability of 48.3 % and 45.5 %, correspondingly. 

Autumn was the season with the highest variations of precipitation and temperatures. The 

autumn CV for the area average amounts to 36.2  for precipitation. In comparison to other 

seasons and to the growing season, Saryshagan being the most southern station exhibited the 

lowest CV of precipitation.  

Summer temperature varied only a little over the period of 1985-2004, the CV equals 

to 4.1. High variations were observed for spring and autumn temperatures with mean CV 

values of 14.7 and 17.9 averaged for the entire region. Particularly autumn temperatures 

showed high variability for individual climate stations with values above 20 % for Karaganda, 

Kzyltau, Aksu-Ajuly, Bes-Oba and Jana-Arka. The high variability of spring and autumn 

temperatures may be explained by a current increase in year temperature throughout the 20. 

century caused by climate change. This increase is mostly associated with rising temperatures 

in cold year season. One of the consequences for this temperature rise is persistence of the 

growing season due to earlier start up and later finish of greening conditions in the northern 

latitudes (Tucker et al., 2001; Xiao & Moody, 2004).  
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5.3.2. Trends in climatic parameters 
 

Although time series of precipitation averaged over the study region for the period 

1985-2002 include drought years and to some extend also present extremely dry conditions, 

there is clear evidence of positive trend in the amount of rainfall (Figure 5.2). Altogether, the 

precipitation amount increased by 11 mm during the 18-year period. That is about 5 % from 

the precipitation mean value. There was also a slight increase in growing season temperature 

between 1985 and 2002. Even though the R² value of the trends in precipitation and 

temperature was low, only 0.10 and 0.08, correspondingly, these trends may serve as 

indicators for positive dynamic of climate conditions in the study region. During the study 

period, two severe drought episodes with duration 2 years occurred in 1985-86 and 1994-95. 

Besides, two years (1991 and 1997) exhibited dry conditions with rainfall deviation of 30-40 

% below the long-time mean. In 2000, the amount of rainfall was 20 % below the average 

value. Wet conditions were observed in 1987-88, 1994, 2001 and 2002.  
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Figure 5.4. The time series of mean temperature and total precipitation for growing season during 
1985-2002. The values are averaged over the whole study area.  

 

The trends in precipitation and temperature over the period 1985-2004 for individual 

climate stations are shown in Table 5.2 and 5.3. Magnitudes of trends varied by climate 

station and season to be analyzed. Unfortunately, the most trend values for most stations 

exhibited only low coefficient of determination, R², and can not be believed to be statistically 

significant. The reason is a relatively short period comprised for the time series analysis. 

Thus, three climate stations exhibited significant trends in growing season precipitation. 

Kzyltau showed a decrease with value of –26.70 mm, on the contrary, Jaryk and Sarishagan 
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exhibited increases in precipitation with values of 41.75 and 9.46 mm, respectively. As for 

seasonal trends of precipitation, four stations demonstrated significant changes of seasonal 

precipitation. Karaganda, Kzyltau and Aksu-Ajuly exhibited trends in spring precipitation 

with values of 26.55 mm, -8.01 mm and 13.50 mm, correspondingly. Significant downward 

trends occurred in Kzyltau also in summer and autumn while Jaryk exhibited significant 

upward trends in these season with values of 50.64 mm and 8.06 mm.  

In comparison with precipitation, temperature showed more statistically significant 

changes over the study period. Thus, all examined stations with an exception of Aktogay 

exhibited strongly significant upward trend in spring temperature. The trend magnitudes 

varied only a little by climate stations. All spring trends showed an overall increase value 

between 1.58 to 1.93°C. The results indicate a strong general tendency for spring temperature. 

On the contrary, the trends observed for other season and for the whole growing 

season have demonstrated statistical significance only in a small number of cases. Karaganda, 

Aksu-Ajuly and Saryshagan exhibited significant trends in autumn temperature. Aksu-Ajuly 

showed significant increase in growing season temperature. 

 
 
Table 5.2. Mean spring, summer, autumn and growing season amount of precipitation (mm) and their 
change (mm) over the period 1985-2004 for 6 climate stations from the study area. Fat records 
indicate statistically significant increases in precipitation.  

 
Climate station  Spring  Summer  Autumn  Growing 

season 
Mean  71.85 122.3 53.42 240.30 Karaganda 
Change 26.55 23.30 -22.36 11.85 
Mean  62.88 71.27 50.16 181.87 Kzyltau 
Change -8.01 -23.39 -36.00 -26.70 
Mean  56.87 108.38 61.28 222.68 Aksu-Ajuly 
Change 13.50 -7.41 19.63 12.24 
Mean  59.50 83.54 37.79 169.45 Agadyr 
Change 14.65 -3.31 -2.92 4.92 
Mean  69.15 97.40 56.80 214.38 Jaryk 
Change 8.15 50.64 8.06 41.75 
Mean  37.60 51.30 15.80 98.00 Saryshagan 
Change 2.00 9.39 -2.31 9.46 
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Table 5.3. Mean spring, summer, autumn and growing season temperature (°C) and their change (°C) 
over the period 1985-2004 for 6 climate stations from the study area. Fat records indicate statistically 
significant increases in temperature.  

 
Climate station  Spring  Summer  Autumn  Growing 

season 
Mean  9.17 19.23 8.15 13.20 Karaganda 
Change 1.72 0.14 1.31 0.92 
Mean  8.71 18.69 7.54 12.67 Kzyltau 
Change 1.58 0.51 0.71 0.87 
Mean  8.58 18.77 7.15 12.54 Aksu-Ajuly 
Change 1.93 0.72 1.17 1.20 
Mean  9.44 19.67 8.11 13.44 Agadyr 
Change 1.72 -0.28 0.21 0.43 
Mean  7.85 18.63 6.59 13.76 Aktogay 
Change -0.23 -0.26 -0.60 -0.40 
Mean  12.53 23.59 11.57 16.50 Saryshagan 
Change 1.65 0.51 1.24 1.04 

 

Due to the rather short time series of the climate records obtained for the stations and 

used in the study, only a shorter periods can be treated as being of significance. Certainly, the 

time series are too short to allow any reliable conclusions from the trend analysis. Only trends 

in spring temperature that were observed in most of the stations with a high probability have 

been occurred during the period 1985-2004.  

 

 

5.4. Discussion and conclusion 
 

The climate is the most important factor predicting dynamic of dryland ecosystem 

which are characterized by high inter-annual variability. High dependence of dryland  

ecosystem on climate has been already investigated in several research works and caused 

Toupet (1992) to talk about tyranny of the climate, especially, precipitation in these regions 

(cited in Mainguet, 1999). This chapter examined climate features in the study area and made 

every effort to create a basis for further analysis of vegetation dynamic and its 

interrelationship to climate factors. The parameters of precipitation and temperature, spatial 

distribution, inter-annual and inter-seasonal variability and change over the 19-year period, 

have been investigated for 9 weather stations in the study region.  

The network of climate stations in the region of Central Asia and Kazakhstan existed 

since the second half of the 20. century but its intensive constructing in the study area is 
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associated with the years of a rapid agricultural development of Kazakhstan during 1950-60s 

with the begin of the government program of tselina colonization. The constitutional change 

has had a negative influence on network functioning and climate observations in Kazakhstan 

and other republics in Central Asia. Fortunately, these transformations concerned the network 

of climate stations in the study area only marginally. All 9 stations used in the study existed 

both before and after the constitutional change. The density of the climate stations is not equal 

throughout the study region, it is scarce in the southern part, but it enabled to make prediction 

for every point and build gridded maps of precipitation and temperature.   

The spatial distribution of climate parameters in the study region is influenced by 

external force and elevation, which ranges from 340 m in the south to above 700-800 m in the 

mid part and about 600 m in the northern portion of the study region. Because of the 

relationship between elevation and climatic parameters, two methods of data interpolation 

were tested by preparation of gridded maps. The first was ordinary kriging without any 

external drift and the second was kriging with an external drift. The results of KED suggest 

that it provides more accurate predictions than OK. The degree to which KED shows higher 

accuracy is a function of the relationship between climate variables and elevation locally at a 

given time. The benefits of using KED compared with OK were demonstrated by computing 

RMSE and assessment of prediction accuracy through random selection of weather stations 

and reading their recorded values from constructed maps.   

Both climatic parameters varied during the period 1985-2004. Particularly 

precipitation amount is characterized by high variability. For the spatial average of the entire 

study area, the variability in growing season precipitation amounts to 27 %, that in mean 

temperature amounts to 6.2 %. For individual stations, coefficient of variation in precipitation 

ranged from 22.8 to 32.2. Based on the threshold value of coefficient of variation in rainfall 

reported by Shepherd & Caughley (1987), we can set the border between equilibrium and 

non-equilibrium dynamics of ecosystem approximately along the 48° N.   

High variations were observed for spring and autumn temperatures with average 

values of 14.7 % and 17.1 %, respectively. The changeability in precipitation and temperature 

strongly depends on geographical location and elevation of the station. Variability in growing 

season precipitation increases from the north to the south, whereas that in temperature 

increases in the opposite direction. Strong relationship exists between rainfall variability and 

relief. There is a decrease in precipitation amounts with increasing altitude above the sea level 

(Figure 5.5).  

  55 
 



y = -0,0175x + 38,402
R2 = 0,4765

20

22

24

26

28

30

32

34

340 440 540 640 740 840

Elevation, m

C
V

 in
 ra

in
fa

ll

 

Figure 5.5. Coefficient of variation in precipitation versus elevation (m) as computed for the weather 
stations in the study area.  

 
 

The results of analysis of trend in climate parameters exhibited low statistic inference 

of trends for the most stations and seasons. Although all stations (with exception of Kzyltau) 

exhibited upward trends in growing season precipitation, only two of them, Jaryk and 

Saryshagan, showed trends which were significant with a probability of 95 %. Trends in 

growing season, summer and autumn temperature were also insignificant in the most weather 

stations. On the contrary, spring temperatures were characterized by strongly significant 

upward trend in all stations with exception of Aktogay. Change in spring temperature ranged 

from 1.55 to 1.93 °C between individual climate stations. These results are in agreement with 

the research results from global and regional studies on contemporary climate change. 

According to these studies, the mean long-time increase in temperature occurs in winter, 

spring and autumn (Xiao & Moody, 2004; Tucker et al., 2001; Tateishi & Ebata, 2004).  
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Chapter 6 
 

6. Within-season dynamics of vegetation activity and their 

relationship to climate factors  

6.1. Spatial distribution of Normalized Difference Vegetation Index (NDVI) and 
climatic factors in the study area 

 
There are two factors influencing the spatial patterns of vegetation and climatic 

variables in the study area: the south-north direction and altitude gradient. Generally, the 

spatial variance of NDVI and both climatic variables are strongly predicted by the south-north 

factor, but the relief conditions slightly deform this rule and make the spatial patterns more 

difficult. Vegetation and rainfall variable display similar spatial patterns. Average 

precipitation increased markedly from south to north: from about 100 mm in the desert to 

over 280 mm in the steppe zone (Figure 6.1). The 10-year average of NDVI ranges from less 

than 0.05 in the southern area of the study region to more than 0.30 in the steppe zone. These 

are typical values for dominant xerophytic formations. Values lower than 0.05 in the southern 

area indicate areas with no photosynthetic activity. These are non-vegetated desert surfaces or 

solonchaks. Rare little forested islands in the steppe show NDVI values over 0.35. They are 

placed at altitudes 1000-1200 meter and manifest a presence of vertical zonality in the study 

region. Average seasonal temperature generally decreased from south to north. In the south of 

the study region the temperature achieves 16-17 °C and the northern area is about 3-5°C 

cooler.     

 

(a)  (b)  
 
Figure 6.1. (a) Mean growing season NDVI calculated from the average of 8-km NOAA AVHRR for 
the period 1982-2003. (b) Regionalized total precipitation amount throughout the growing season, the 
graph presents an average over the period 1985-2004.  
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6.2. Average characteristics of NDVI 
 

The three major types of vegetation cover in the study area are strongly distinguished 

by different values of NDVI (Table 6.1). The steppe grassland records the highest average 

NDVI values for growing season (0.26), followed by the semi-desert vegetation (0.15). The 

desert vegetation displays the lowest values (0.11). Observing the seasonal averages NDVI 

values displays other results. The highest values in spring are associated with the desert 

vegetation, NDVI = 0.13. On the contrary, the short grassland of steppe regions shows the 

lowest value, NDVI = 0.07. For summer and autumn averages, distribution of NDVI values 

between the vegetation types is similar to that described for the whole growing season, the 

NDVI value decreases from the short grassland, to semi-desert short grassland/shrub, and to 

desert shrubland. NDVI values computed for the different vegetation types are reasonable 

close to corresponding vegetation in other studies performed in the central Kazakhstan. These 

regions also showed ordinal consistency, with short grass regions highest NDVI, grass/shrub 

regions second highest, and shrubby desert regions lowest, in agreement with values in this 

study.  

 

Table 6.1. Averaged characteristics of NDVI values for various vegetation types. 

Average NDVI over 1985-2001  
Variable Spring Summer Autumn Growing season 

Steppe 0.07 0.30 0.16 0.26 

Short grassland 0.09 0.24 0.13 0.20 

Semi-desert 0.11 0.17 0.11 0.15 

Desert 0.13 0.07 0.07 0.11 

Area-average 0.09 0.19 0.12 0.16 

 
 

6.3. Temporal behaviour of climatic factors and vegetation within the growing 
season 

 
Figure 6.2 illustrates the within-season cycles of NDVI and climate factors averaged 

over the entire study region. 16-year average of 10-day NDVI values (1985-2001) increased 

rapidly during spring (early April-mid-May), peaked during the summer months (mid-May-

early July), and decreased during August-September-October. Precipitation showed two 

peaks, increasing from early April to early June and peaking in late May-early June. After that 

a slight decrease follows showing again an increase till the next peak in mid-July. Minimum 
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of precipitation occurs in August-September. The duration of the growing season is 

approximately from April to October. The growth of vegetation begins between the second 

and the third decade of April; approximately 1 decade after temperature value has risen above 

zero. The curve of temperature displays a very symmetric form with a peak value in mid-July-

early August. Generally, temperature rises during the months April-July, and then gradually 

decreases during August-October. 

Figure 6.3 (a) and (b) show the mean growing season evolution of rainfall and 

temperature for every pixel in the study region. These illustrations presenting hovmoller 

diagrams (time-latitude) provide a general overview of the dynamic of the climate parameters. 

The temporal pattern in temperature seems to be similar throughout the study area. On the 

contrary, the pattern in rainfall varies in the space. Thus, in the southern part of the region, we 

have only two peaks in precipitation in the 7 and the 15 decade, and than a precipitation lack 

during the rest of summer and autumn, whereas in the north there are 3 high peaks and 1 low 

peak in rainfall. In the middle part of the study area between 48° and 49° latitude, one can 

distinguish at least 2 high peaks and 1 low peak, at the 7, the 12, and the 21 decade. The 

hovmoller diagrams exhibit that the NDVI within-season cycle corresponds stronger with 

patterns in temperature than with that of precipitation amounts. An additional correlation 

analysis has to prove this assumption statistically (see §6.5 and 6.6).      

Considerable uniform time-series behaviour during the growing season exists in each 

year also among the vegetation types (Figure 6.3, d). All vegetation types have NDVI values 

under zero at the beginning of the growing season, in April. Generally, all vegetation types 

display increases in NDVI from April into June-July, followed by permanent decreases in 

August-October. Generally, the 16-year average NDVI time-series of the vegetation types 

show uniform behaviour through the growing season. The dry steppe grassland, semi-desert 

grassland and desert shrubland have approximately similar values during the spring months 

April-May. The separation in NDVI values begins in the first decade of June.  Despite similar 

values of NDVI during the spring, the desert shrubland and the semi-desert grassland exhibit 

lower NDVI values than the dry steppe grassland during the summer and the first month of 

the autumn, September. In October, the NDVI values of all three vegetation types become 

again almost analogous.  

Desert vegetation begins its development earlier in spring than semi-desert and steppe 

and culminates in a minimum in late July or at the beginning of August. Usually, the NDVI 

associated with the desert vegetation turns over the zero in the first decade of April. The semi-

desert vegetation begins its growing season in the second decade of April, and after that, this 
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makes the short grassland associated with the steppe areas. During the spring months a rapid 

increase of NDVI values follows. The shrub vegetation of the desert zone reaches the 

maximum value between first and third decade of May, depending on the rainfall regime of 

the associated year. After that, the values graduately decrease during the summer and autumn 

months, reaching their minimum at the end of October. The grass/shrub regions show their 

maximum NDVI value, generally, in mid June. As well as the short grassland of the steppe 

regions, then its NDVI values remain high until mid July, afterwards decreasing slowly until 

the end of the growing season. The 16-year average seasonal cycle of NDVI provides a clear 

distinction between the major vegetation types. The best distinction between the time profiles 

can be made within the summer months, from June to August. During this time, the 

vegetation types display quite different and clear distinguishable attributes of their canopy 

such as leaf area, percent coverage, and biomass. These differences in the vegetation cover 

attributes reflect in clear differences in the 10-day NDVI time-series. The highest discrepancy 

between NDVI values of the separate vegetation types is observed in the mid June when the 

vegetation types exhibit their NDVI maximums: dry steppe 0.35, semi-desert 0.25, and desert 

0.13. 

 

 

Figure 6.2. NDVI (line with squares), precipitation (pillars) and temperature (solid line) for each 10-
day period of the growing season (spatially averaged over the entire region). 
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(a)    (b)  

 
 

(c) (d) 

Figure 6.3. Within-season dynamic of climatic parameters and NDVI. (a) Hovmoller diagram of 10-
day mean temperature through April-October showing a uni-modal distribution pattern. The 
temperature steady increases from the first decade of April to the third decade of July overall in the 
study region. After that, the temperature slowly drops during the rest time of the growing season. 
Corresponding hovmoller diagram of 10-day precipitation for the same spatial domain is shown in (b) 
and that for 10-day NDVI in (c). Temporal behaviour of spatially averaged NDVI for desert, semi-
desert and dry steppe within the growing season is shown in (d). Note the drifting of the peaking time 
from May, to June, and to the beginning of August observed for desert, semi-desert and steppe 
vegetation, accordingly. 

 
 

Reasons for a large discrepancy is a large difference in moisture and temperature 

conditions over the territory of the study area and differential responses of vegetation cover to 

summer climate conditions such as responsiveness to precipitation or limitations from high 

temperatures. In this section we abandoned a description of existing influence of climatic 

predictors on vegetation development during the phenological cycle. This influence is very 

versatile and complicated, it reveals differently during various time-periods of phenological 

cycle. We carried out a detailed investigation of relationships between NDVI and ecoclimatic 

parameters during the growing season and devoted two separate sections to the results 

description. Temporal responses of vegetation cover to climatic factors within the growing 

season will be examined in detail in the following chapters.     
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6.4. Within-season relationship between NDVI and precipitation 
 

For natural vegetation, precipitation is usually a major source for soil root zone 

moisture, which is critical to plant survival and productivity. It was reported that change in 

NDVI of native vegetation during the growing season can be affected by the amount and 

timing of rainfall (Schultz & Halpert, 1995). The previous studies have also shown presence 

of a time-lag between a weather event, especially rainfall, and the vegetation response to it 

(Yang et al., 1998; Wang et al., 2003; Richard & Poccard, 1998).  Figure 6.2 illustrates that 

there is a time-lag of approximately 2-3 decades between precipitation and NDVI time-series 

averaged over the whole study area. On the contrary, the profiles of NDVI and temperature 

are synchronous. Therefore, while analysing NDVI-precipitation relationship for individual 

land-cover classes, we calculated correlation coefficients imposing different time-lags from 0 

to 2 months. Significance level of 0.95 was set for all correlation calculations. 

At the scale of the entire study area, correlations calculated with time-lags of 0-3 

decade imposed to the NDVI data have been significant and strong. The highest correlation 

coefficient was achieved by imposing a time-lag of 2 decades. Figure 6.4 shows the 

corresponding scatter plot between 10-day NDVI and 10-day rainfall amount. About 38 % of 

all variations in NDVI are explained by variations in rainfall. This devises a high dependence 

of vegetation growth on rainfall but a large amount of NDVI variance remains unexplained. It 

means that other explanatory factors may play an important role too. These predicting factors 

may be both of climatic and non-climatic nature such as air and soil temperature, evaporation, 

parent rocks, soil type or vegetation type (Farrar et al., 1994; Yang et al., 1997). Another 

problem is that a spatial average over the entire study region gives a good general impression 

of the relationship between vegetation activity and precipitation but it screens response of 

individual vegetation types and vegetation communities to the climatic factor to be 

investigated. To investigate this response, we performed correlation analysis disaggregating 

the territory into areas occupied by different vegetation types.  
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Figure 6.4. Relationship between 10-day NDVI and 10-day precipitation. The graph presents results 
derived with the area-averages of the both variables.  

 
 

 

6.4.1.  Stratification of NDVI-precipitation relationship by land cover type 
 

For the land cover types, correlation coefficients between NDVI and precipitation are 

high in specific combinations of time duration and lag. The rainfall lag periods varied up to 

six 10-day periods. It indicates the time period for which an influence of rainfall on NDVI is 

the strongest. The results exhibited that the rainfall time lag increases with an enlargement of 

partial values in grass species in vegetation cover. The imposed time lag continually increases 

from desert shrubland, over semi-desert, to short grassland, and to steppe grassland (Figure 

6.5). For desert shrubland, the best correlation between 10-day NDVI and precipitation is 

achieved by imposing no time lag, for semi-desert by imposing a time lag of 1-2, for short 

grassland and steppe grassland the best time lag is 3-4 weeks.  

In terms of the strength of the NDVI-precipitation relationship, it gradually increases 

from desert shrubland, to semi-desert, to short grassland and to steppe vegetation, with a 

maximum value of correlation coefficient of 0.49, 0.54, 0.58 and 0.67, respectively. 

Vegetation cover of irrigated cropland and tundra exhibits only weak response to 

precipitation. This seems to be explained best by the diversity that exists between the different 

vegetation species associated with each vegetation type. The results of this analysis are in 

agreement with the research results obtained by others for dry regions (Yang et al., 1997; 

Wang et al., 2003; Richard & Poccar, 1998). In accordance with the results, higher correlation 

coefficients between NDVI and precipitation are observed in landscapes with natural 
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grassland vegetation cover. Correlations are getting weaker with a decrease of grasses in the 

vegetation cover.  

 

0

0,2

0,4

0,6

0,8

0 1 2 3 4 5 6
Time lag (10-day units)

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Steppe 
Short grassland
Semi-desert
Desert shrubland

 

 

 

 

 

 

 

Figure 6.5. Dependence of correlation coefficient between 10-day NDVI and precipitation on time lag 
imposed. 

 

6.4.2. Stratification of NDVI-precipitation relationship by vegetation communities 
 

Supplementary, we computed correlation for vegetation communities prevailing in the 

land cover types. The land cover types do not exactly reflect distribution of different 

vegetation communities in the study area. Every land cover type is associated with 2 to 5 

mean combinations of plant species which depend more on orographic and edaphic conditions 

and can vary within a small space. It was very difficult to identify all these variations in 

coarse resolution of data such as the 8-km AVHRR NDVI. We tried to discriminate only the 

most typical vegetation communities within every land cover type. The discrimination can be  

considered being successful because there are variations in response of vegetation to 

precipitation as the results demonstrate.  The variation of the correlation coefficient and time-

lag between vegetation communities seems to be best explained by the combination of species 

that is associated with each ecosystem (Figure 6.6). Both the maximum correlation coefficient 

and the time-lag between precipitation and reaction of vegetation to it increase with 

decreasing amount of shrub and sagebrush species in vegetation communities.  

Although water is the most important limiting factor in plant growth in desert zone, 

the weaker correlation between NDVI and rainfall obtained for desert vegetation should not 

surprise. In desert areas, supplement of rainfall water in the soils for plant growth is highly 

depended on the local infiltration ability of soils. Sparse vegetation cover and soil crust 
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strongly influence distribution of fallen precipitation water and allow it flowing far away from 

the place of its fall. This results in lower NDVI-rainfall correlation coefficient. As the 

vegetation cover increases, plant growth and over ground biomass begins to depend more on 

rainfall. This is remarkable in dry steppe land cover category. In steppe areas, where 

vegetation cover is dense, there is no flash precipitation events and overland runoff. Rain 

water supplies at the place of precipitation fall. Only areas with degrading grass cover create 

conditions for sheet erosion and overland runoff. These areas show a weaker dependence of 

vegetation growth on rainfall.  

  

 

 
 

Figure 6.6. Dependence of correlation coefficient between 10-day NDVI and precipitation on time lag 
imposed to the NDVI data. 

 

 

6.5. Within-season relationship between NDVI and temperature 
 

The calculated NDVI-temperature correlation coefficients indicate that there is a 

significant relationship between NDVI and temperature for all vegetation types. 10-day NDVI 

was strongly correlated with temperature indices of the same period. We found no time lag in 

any vegetation type. The value of correlation coefficient between NDVI and temperature was 

0.63, 0.70, 0.76 and 0.84, for desert shrubland, semi-desert, short grassland and steppe 

grassland, respectively.  
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Temperature often serves as an indirect measure of available energy for plant growth. 

Above a certain base temperature, a plant’s rate of growth is found to be proportional to 

temperature. Figure 6.7 displays that for all vegetation types, within-season NDVI-

temperature correlation coefficient was higher than that obtained for NDVI-precipitation. This 

agrees with the results reported by Li et al. (2002) for China and by Yang et al. (1998) for 

Nebraska, U.S.A.  
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Figure 6.7. Comparison between the values of correlation coefficient obtained for NDVI-precipitation 
(left row of pillars) and NDVI-temperature (right row of pillars) relationship. 

 
 

 

6.6. Spatial patterns in NDVI-climate relationship 
 

The results of this study show that 70.52% and 94.90% of all pixels exhibited 

significant positive correlation (r > 0.48) between 10-day time-series of NDVI-rainfall and 

NDVI-temperature, respectively. The pixels with high correlation coefficients (r > 0.70) are 

mainly distributed in the north, south-west and east portion of the study area (Figure 6.9). The 

total area of pixels varied substantially by land-cover type and increased from desert 

shrubland, to semi-desert, to short grassland and to steppe.  

Significant NDVI-rainfall correlations were observed for 24.72%, 65.56%, 84.65%, 

and 98.41% of all pixels for every vegetation type, respectively (Figure 6.8). Compared with 

temperature, precipitation plays a minor role in explaining the greening patterns in these land-

cover types. Only for steppe grassland, precipitation makes a scarcely higher contribution to 

the greening patterns than temperature does.  
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The results also exhibited a clear spatial pattern in time lag duration imposed by 

calculation of correlation coefficient between NDVI and precipitation. Figure 6.8 shows that 

the time lag duration generally increases in order from south to north. If we compare the map 

on Figure 6.10 with the map of vegetation types (Figure 2.2), we will consider a strong 

association between them. The vegetation type in the south, with a shorter time lag of 1, is 

desert shrub according to the vegetation map, while the land cover type in the north, with a 

longer time lag of 3-4, is steppe grassland. This agrees with our results derived for spatially 

averaged data (see §6.1.5 and Figure 6.4). NDVI is affected by precipitation and this effect 

occurs with a time lag of 0-4 ten-day periods after the precipitation. The length of the time lag 

is dependent on land cover type and shows strong spatial patterns in the study area.  
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Figure 6.8. Complete amount of pixels, amount of pixels that exhibited significant NDVI-
precipitation, and amount of pixels with significant NDVI-temperature correlation for every vegetation 
type. 

 
 

(a)  (b)  
 

Figure 6.9. Spatial distribution of correlation coefficient for NDVI-precipitation (a) and NDVI-
temperature (b). 
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Figure 6.10. Spatial distribution of time lag (10-day units) imposed for calculation of correlation 
coefficient between NDVI and precipitation. 

 
 

 
 

Figure 6.11. Time-latitude section of within-season correlation coefficient between 10-day NDVI and 
10-day precipitation from 1982 to 1998.   

   
 
 

6.7. Inter-annual variations in within-season NDVI-climate relationship 
 

During the study period, there was considerable year-to-year variation in precipitation 

and NDVI. Variations in temperature were significantly lower. Also correlation coefficients 

between 10-day NDVI and 10-day precipitation/temperature in steppe, semi-desert and desert 

vary from year to year exposing variability in response of vegetation to rainfall. In spite of the 

great variability, a clear pattern in correlation variance was to be noted by explanation of the 

results. There was a notable association between the strength of NDVI-climate relationship 

and moisture conditions in according year. For desert and steppe vegetation communities, 

coefficients of correlation for NDVI-rainfall significantly increased in years with low rainfall 

and decreased in years with high rainfall. For semi-desert, we found only relatively slight 

decrease in NDVI-precipitation correlation during wet years. Correlation coefficient of 
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NDVI-temperature showed an opposite pattern: it was very high in dry years and decreased in 

wet years (Table 6.2).  

Analysis of the hovmoller diagram in Figure 6.11 supports these conclusions. The 

years with dry conditions exhibited higher values of the correlation coefficient. Particularly 

large increase in correlation coefficient during 1985, 1986, 1990 and 1995 one can note for 

the lower part of the diagram with which desert is to be associated.  

Time-lag of NDVI response to precipitation also had shown variability. In our analysis 

(data not shown), vegetation responded more rapidly to precipitation during 1985, 1986, 

1990, 1995 and 2001, which were dry years. By contrast, vegetation responded more slowly 

to precipitation during 1987, 1988, 1993 and 2000, which were wet years.  

   

Table 6.2. Within-season correlation coefficients between climatic parameters and NDVI for 
vegetation communities in desert, semi-desert and steppe as computed for dry and wet years.  

 
NDVI-rain correlation NDVI-tem. correl. Vegetation type/community 

Dry year Wet year Dry year Wet year

Desert Sagebrush 

Sagebrush with grass 

Halophytic sagebrush 

0.45 

0.51 

0.49 

0.35 

0.33 

0.35 

0.71 

0.73 

0.75 

0.43 

0.45 

0.48 

Semi-desert Shrubs 

Shrubs with bunchgrass 

0.60 

0.64 

 

0.55 

0.58 

0.67 

0.75 

0.33 

0.32 

Steppe Bunchgrass 

Caespitose with bunchgrass 

Herb-bunchgrass 

0.75 

0.76 

0.76 

0.63 

0.71 

0.67 

0.82 

0.81 

0.83 

0.51 

0.53 

0.58 

 

 

6.8. Discussion and conclusion 

 
This chapter examined within-season interrelations between 10-day time-series of 

NOAA AVHRR NDVI and analogous series of precipitation and temperature variables over 

the 1982-2003 growing seasons in the Northern Balkhash. Strong correspondences between 

NDVI-precipitation, and NDVI-temperature were observed. The strength of NDVI-climate 

associations depends on land-cover type but there are variations in the response of NDVI to 
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climate factors within each land-cover class on the per-pixel basis. The analysis exhibited that 

the correlations were stronger in areas dominated by grass vegetation and weaker in areas 

dominated by shrubs. This result is consistent with the observation of the relations between 

NDVI and climate parameters in other dry regions (Yang et al., 1997; Wang et al., 2001 and 

2003; Li et al., 2002). Distinct time lags associated with NDVI’s response to precipitation 

events were determined. Time lags increase in order from desert, to semi-desert and to steppe 

showing a different reaction speed of vegetation to precipitation events.  

The correlation between NDVI and temperature was found to be higher than 

correlation between NDVI and rainfall. The result is indicative of the available energy and 

heat on plant growth during the growing season. Our analyses also showed that temperature 

plays a more important role for plant growth throughout the growing season. In comparison to 

precipitation, the correlation between NDVI and temperature was for all vegetation types 

higher. This was observed both for spatially averaged data and at per-pixel scale. 

The results indicated high inter-annual variability of NDVI-climate relationship during 

the study period. Correlation coefficient between NDVI and precipitation increased 

significantly in dry years. In opposite to that, correlation between NDVI and temperature is 

low in dry years and high in wet years. This variability in vegetation response to precipitation 

is particularly remarkable for desert and steppe and insignificant for semi-desert. The 

variability in NDVI-precipitation is presented in all vegetation types equally.    
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Chapter 7 
 

7. Inter-annual change in vegetation activity and its relation to 

climate 
 

The region of Central Asia has experienced a warming trend in order of 1-2°C since 

the beginning of the 20th century. This might have a strong impact on the regional temperature 

and precipitation regimes and also on vegetation cover (Lubimtseva et al., 2005). A better 

understanding of the inter-relationships between climate, vegetation cover and land-use 

changes will help to improve our understanding of Central Asia’s dryland dynamic.  

In this chapter, changes in vegetation activity seasonally and annually were examined 

using the 8-km NDVI dataset from 1982 to 2003. Spatially averaged time series of mean 

NDVI, mean temperature, and total precipitation over the growing season (April-October), 

spring (March-May), summer (June-August), and autumn (September-November) were 

generated for all pixels, and for each land-cover type. Correlations between seasonal and 

growing season NDVI and temperature or precipitation were computed to investigate climate 

effects on inter-annual change in vegetation activities. The correlation analysis comprises the 

years between 1985 and 2003. In order to highlight variability in NDVI-climate relationship 

within vegetation types, correlations were also computed at the pixel scale. All correlation 

calculations were made with significance at the 5% confidence level. Areas with significant 

correlations were mapped and measured. 

In order to quantify the inter-annual variability, average NDVI values for the spring, 

summer, autumn and whole growing season have been calculated for each vegetation type and 

every year in previous section were used to analyse the variability of vegetation activity. We 

calculated the following variables: standard deviation of NDVI, ( ) and coefficient of 

variation, ( ). The variables  and  were derived for spatial averages 

of each vegetation type. In order to understand spatial patterns of variations, we also made 

these calculations for each pixel. This section is devoted to investigations of inter-annual and 

inter-seasonal variability of NDVI values over time.   

stdevNDVI

cvNDVI stdevNDVI cvNDVI

 
 

7.1. Patterns in monthly time-series 1982-2001 
 

The monthly time-series for the study region are presented as hovmoller diagrams 

from 1982 to 2001 as shown in Figure 7.1. The diagram in Figure 7.1 (a) shows spatial and 
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temporal patterns in maximum monthly NDVI. Every individual growing season from the 

study period can be clearly separated from others because of its patterns in NDVI. Important 

information can be obtained from these diagrams. The diagrams enable us to distinguish both 

the length of every growing season and the time of vegetation peaking. The time of greening 

up can be read up from the diagram too. A hovmoller diagram of corresponding anomalies in 

NDVI is shown in Figure 7.1 (b) and contains information about inter-annual variability in 

vegetation conditions for every month of the growing season throughout the period 1982-

2001. Interpretation of these two diagrams together with the diagram of monthly precipitation 

(Figure 7.1, c) gives an overview of climatic conditions and climate variability over the study 

period.  

Vegetation seasonality is shown by the extent of the 0.08-0.5 NDVI values over the 

region throughout the series. A pattern of these values across the study region is an indicator 

of rainfall conditions. Thus, during 1984-85, 1995-96 and 2001 the green pillars of NDVI 

values exhibit small length and are thinner than other pillars. These years should be associated 

with dry conditions. The diagram in Figure 7.1 (c) supports this assumption. Monthly values 

of precipitation in these years were not higher than 10-20 mm throughout the most area of the 

region. On the contrary, green areas in NDVI diagram exhibit the largest extend during 1987-

88, 1990, 1994, and 1998, which were wet years.  

Further examination of vegetation conditions and their variability is illustrated by the 

time-latitude section of NDVI anomalies in Figure 7.1 (b). The anomalies show departures 

from the long-term monthly means by every month in the growing season. This diagram 

provides a clear evidence of patterns in the time-series and their relationship to rainfall 

patterns. The years with favour and severe precipitation conditions are clearly distinguishable 

through analysis of anomaly distribution across the study region. In 1982, 1984, 1985, 1994, 

1995 and 2001, most of the region shows below normal NDVI, with the most severe 

conditions in 1984-85, 1995 and 2001 covering the whole region with NDVI anomaly values 

ranging from –0.06 to –0.15 indicating widespread drought conditions. The 1984 drought 

episode exhibited the largest duration and intensity. The highest impact of this episode has 

been evident in the northern part, whereas the episodes of 1985, 1995, 1996 and 2001 affected 

the whole study region. The years 1988, 1997 and 2000 are dominated by normal vegetation 

conditions, while the years 1987, 1991, 1993 and 1998 are associated with above normal 

conditions with the highest values of NDVI anomaly during the growing seasons in the north 

of the region. 
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 (a)  
  

(b)  
 

(c)  
 
Figure 7.1. Hovmoller diagram of maximum monthly NDVI throughout 1982-2001 is shown in (a). 
Panel (b) presents the corresponding NDVI anomalies and panel (c) shows monthly precipitation 
amounts from 1982 to 2001.  

 
 

7.2. Inter-annual relationship between NDVI and climatic parameters 

7.2.1. Analysis of spatially averaged NDVI versus precipitation 
 

For the study region as a whole, correlation between synchronous data of growing 

season NDVI and precipitation was strong and statistically significant, r = 0.65. At the level 

of individual vegetation types, correlations also were strong with value of 0.53, 0.57, 0.64 and 

0.74, for desert, semi-desert, short grassland and steppe, respectively (Table 7.1). 
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Figure 7.2. Spatially averaged time series of growing season NDVI and growing season precipitation 
over the period 1985-2001. 

 
 

 
 
Figure 7.3. Average growing season NDVI as a function of precipitation. The linear regression was 
computed using values for all vegetated pixels and all years from 1985-2003.  

 
 

It was reported that NDVI during an average growing season is influenced by 

precipitation of not only current growing season, but also precipitation in the months 

preceding the growing season, as well as the growing season of the preceding year (Wang et 

al., 2003). When correlation of the NDVI was computed with precipitation totalled over a 

longer time, correlation coefficients should increase. The results indicate that NDVI-

correlation peaked when the time interval reached 2 years for short grassland and for the 

entire region average. For semi-desert, totalling precipitation over two years brought no any 

significant change to the coefficient of correlation. Concerning the steppe spatial average, the 

correlation between NDVI and precipitation peaked by totalling precipitation over three years.  
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In order to find decades of the growing season whose rainfall plays the most important 

role for vegetation growth, inter-annual correlations were also computed with rainfall data 

totalled throughout 1 to all decades for every analysing year. The results are shown in Figure 

7.4. For the area average and steppe, correlation coefficient increased steadily and peaked 

when the time interval reached 16 decades. After that, the coefficient remained at the same 

level. For semi-desert, the correlation coefficient increased slowly since the first decade and 

peaked when the time interval reached 12 decades. Desert vegetation exhibited the shortest 

time interval of peaking the correlation coefficient, 2 decades. The second maximum of the 

correlation coefficient was reached when the time interval achieved 12 decades. Analysis of 

desert data shows that wet conditions at the beginning of the growing season determine the 

magnitude of the NDVI values. The desert vegetation starts its growth cycle very early in 

April and reaches the maximum NDVI values in May. Therefore, these spring decades play 

the most important role both in within-season and inter-annual dynamic. The second peak of 

correlation coefficient is exhibited when the time interval reaches 12 decades. This peak is 

associated with a maximum in precipitation in this decade. Interpretation of the desert results 

exposes that, generally, the first two-three spring decades and the last July decade determine 

the entire growth cycle of desert vegetation. On the contrary, the growth cycle of steppe 

vegetation is influenced not only by precipitation of the current growing season, but also by 

precipitation of the preceding years. Precipitation during the previous growing season 

influences vegetation conditions of perennial plants and overwintering crops which affect the  

growth cycle of the current year.   

 

Table 7.1. Inter-annual correlation coefficient between NDVI and precipitation for every land-cover 
type. Correlation coefficients were computed not only between synchronous time-series but also when 
precipitation was totalled over the current year and one-two preceding years.  

 
Totalled period Land-cover 
1 year 2 years 3 years 

Steppe grassland 0.74 0.75 0.78 
Short grassland 0.64 0.67 0.63 
Semi-desert 0.57 0.58 0.45 
Desert  0.53 0.50 0.48 
All vegetated pixels 0.65 0.73 0.47 
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Figure 7.4. Correlation coefficients between NDVI and precipitation as a function of time duration 
over which precipitation was totalled, with separate curves for desert, semi-desert, short grassland, 
steppe and the area average. Correlation coefficients were calculated using data for all years, 1985-
2003.  

 
 

 

Figure 7.5. Spatially averaged time series of spring NDVI and spring temperature over the period 
1985-2001.  

 

7.2.2. Relationship between spatially averaged NDVI and temperature.  
 

The NDVI versus temperature inter-annual correlations depicted the degree to which 

the two parameters are related over the entire study period. We calculated correlations both 

using annual average growing season values and annual average seasonal values. Inter-annual 

correlation between growing season NDVI and temperature were very weak and not 

significant. The same results were obtained for summer and autumn data.  

We found very strong association between the time-series of spring NDVI and spring 

temperature over 16-year period (Figure 7.5). The spring NDVI-temperature correlation was 
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significant in all vegetation types even though the magnitude of the correlation coefficient 

varied by land cover type. The value of the correlation coefficient was 0.67, 0.77, and 0.83, 

for desert, semi-desert and steppe, respectively. For the spatial average of the entire area, the 

coefficient of correlation was higher with a value of 0.84 (Figure 7.6). These results support 

the results of the other studies suggesting that productivity in northern high latitudes is 

increasing in response to increased temperatures during spring (Tucker et al., 2001; Xiao et 

al., 2004). This increase of temperature during spring affects the spring NDVI values in two 

ways: first, by an earlier start of the growing season; and second, by a more rapid climb of 

NDVI values during the spring months.  

 

 
 
Figure 7.6. Spring NDVI as a function of spring temperature over 1985-2003.  

 

7.2.3. Spatial patterns in inter-annual NDVI-climate relationship 
 

Over the entire study region, 45.11% of the vegetated pixels exhibited significant 

correlation between the 19-year time-series of growing-season NDVI and that of precipitation 

(Table 7.2). Most of these pixels are situated in the central and northern part of the study 

region (Figure 7.7, a). The largest NDVI-precipitation correlation coefficients (r > 0.70) occur 

in northeast and north where steppe grassland dominates the landscapes. Steppe grassland 

also exhibited the highest percentage of pixels with significant correlation, above 75% of its 

area. The percentage of pixels with significant positive correlation decreased from short 

grassland to semi-desert and to desert, with 61.75%, 23.42% and 11.54%, respectively.  

Generally, the spatial patterns of the NDVI-precipitation correlation for summer 

relations correspond to that of growing season data, but the spatial extension of areas with 

significant positive correlation coefficients is smaller. Over the entire study region, only about 
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15 % of the vegetated pixels exhibited correlation coefficients with significant values. Very 

low percentage of pixels with significant correlation is registered in the desert region, only 

about 1 %. This results from an early and very short greening phase of the desert vegetation 

which occurs at the beginning of the growing season.  

For all vegetated pixels, 75.26 % exhibited significant positive NDVI-temperature 

correlations using data from the spring season. These pixels are mainly distributed in the mid 

and northernmost portion of the study region (Figure 7.7, b). Regarding for semi-desert, short 

grassland and steppe grassland, 78 %, 74.68 %, and 79.68 % of all pixels exhibited positive 

NDVI response to spring temperatures, respectively. Desert vegetation showed a weaker 

response to spring temperatures. Only 29.06 % of this area demonstrated significant 

correlation between spring NDVI and spring temperature.   

 

Table 7.2. Number of pixels and percentage (%) of vegetated pixels exhibiting positive correlation 
with inter-annual climate change over 1985-2003.  

 
NDVI-pre correlation NDVI-

temperature 
Land cover Pixels 

Growing 
season 

% Summer % Spring % 

Desert 3967 458 11.53 43 1.08 1153 29.06 
Demi-desert 9458 2216 23.46 495 5.23 7377 77.99 
Short grassland 9101 5619 61.74 2013 22.11 6797 74.68 
Steppe grassland 3586 2703 75.37 1304 36.36 2499 79.68 
        
All pixels 26112 10996 42.11 3855 14.76 17826 75.26 

 

 

 (a) (b)  

Figure 7.7. Spatial patterns in inter-annual NDVI-climate relationship: (a) correlation coefficient 
between growing season NDVI and growing season precipitation, and (b) correlation coefficient 
between spring NDVI and spring temperature.  
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7.3. Quantifying temporal variability in vegetation conditions 

7.3.1. Standard deviation of NDVI 
 

One of the simplest methods to characterize a time-series of data and to estimate 

variability of these data through the time is to calculate the standard deviation. The standard 

deviation of NDVI values displays the scope of values calculated for individual years from 

the mean value having been calculated for the whole period. Low indicates a good 

density of values of individual years around the mean value. On the contrary, high value of 

is associated with a wide scattering of the year values from the mean value. This 

means a higher variability of NDVI over the time. 

stdevNDVI

stdevNDVI

We calculated standard deviation of spatially averaged NDVI for each vegetation class 

and for every pixel in the study region. The results are presented in Table 7.3 and Figure 7.8. 

For spatially averaged , the desert vegetation displays the lowest values for the 

growing season, spring and autumn seasons. The highest values of are associated 

with the steppe vegetation class, 0.029, 0.030, and 0.109, for spring, summer, and autumn 

seasons, accordingly. 

stdevNDVI

stdevNDVI

 

 

Figure 7.8. Spatial patterns of standard deviation of growing season NDVI throughout the study period 
1985-2000.  

 

For the whole growing season, the semi-desert vegetation displays the highest value, 

0.026, whereas this vegetation class shows the lowest values in summer.  

Generally, the spatial patterns of  correspond to that of NDVI values. Lower 

values of are associated with the southern, south-eastern and eastern sections of the 

study area. These areas are occupied by the desert shrubby and grass vegetation and 

demonstrate the lowest NDVI values. The central and northern part of the map display higher 

stdevNDVI

stdevNDVI
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stdevNDVI values. In these regions, the steppe vegetation with dominance of grass and forbs 

species are presented. There are a number of places in the map with exceptionally high values 

of . These places are parts of flood plains of valleys of perennial rivers and beds of 

temporary water streams (known as wadies in arid zone of Africa and in the Near East). The 

exceptionally high values of these places may be explained through a high 

variability of hydrological regime in the study region. The runoff varies very significantly 

from year to year, especially in the temporary water streams, and often changes its flow 

borders. Therefore, the conditions for flood plain vegetation are widely heterogeneous from 

one year to another. This is remarkable for very high values of .  

stdevNDVI

stdevNDVI

stdevNDVI

Although is a good quantity to estimate the variability of the temporal data 

over the time period, it is very inconvenient for comparing NDVI variability between the 

vegetation classes. The value of is strongly dependent on NDVI value, which is 

individual by each vegetation class or every pixel. This makes it impossible to compare 

. Therefore, coefficient of variation, , was used for comparing variability of 

NDVI between the vegetation classes and individual pixels. The  will be discussed in 

the following section.  

stdevNDVI

stdevNDVI

stdevNDVI cvNDVI

cvNDVI

 

Table 7.3. Standard deviation of spatially averaged NDVI values for different vegetation types through 
1985-2001.  

Standard deviation of NDVI  
Variable/season Spring Summer Autumn Growing season 

Steppe 0.029 0.030 0.109 0.024 

Semi-desert 0.028 0.017 0.078 0.026 

Desert 0.023 0.021 0.031 0.011 

Area-average 0.026 0.022 0.071 0.021 

 
 

7.3.2. Variance of NDVI values over the study period 
 

In order to investigate a variability of vegetation activity through the entire study 

period, we calculated the coefficient of variation for the spatially averaged seasonal and 

growing season NDVI values over the period 1985-2000, as well as these values for every 

pixel in the study area. Coefficient of variation is commonly calculated to compare the 
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amounts of variation (in % from the mean value) in different sets of data and enables to 

evaluate a robustness of vegetation to variability in climatic predictors. Thus, the coefficient 

of variation have been calculated for inter-annual time-series of growing season values may 

indicate the response of vegetation cover to inter-annual climate variability. The lower the 

variation coefficient of NDVI is, the lesser is the sensitivity of vegetation cover to climatic 

variations.  

The results indicate a pattern in temporal variability of NDVI across the study region 

(Figure 7.9). The NDVI variation coefficients have the highest values in the southern, western 

and central parts. Desert and semi-desert vegetation communities dominate these sections of 

the region. They reveal a dominance of the shrubby vegetation with a lower presence of grass 

species. The northern region of the study area is characterized by the lowest values of the 

variation coefficient. The vegetation cover of this region is dominated by forbs and grass 

species.  

The spatially averaged NDVI values derived for various vegetation types show similar 

results (Table 7.4). Desert vegetation zone is characterized by the highest values of variation 

coefficient in all separate seasons as well as in the whole growing season, 30.5, 45.0, 21.3 and 

28.5, accordingly. The lowest values are associated with the steppe zone. Here, the variation 

coefficients amount to 14.7 for spring, 14.9 for summer, 18.4 for autumn, and 13.3 for the 

growing season. Vegetation cover of steppe and semi-desert displays a higher variability 

during the autumn months. On the contrary, the highest values of variation coefficient for 

desert zone are calculated for the summer season.  

 

 

Figure 7.9. Coefficient of variation in seasonal NDVI during the period 1982-2001 calculated for 
spring, summer, autumn and for the growing season (from left to right).   
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Table 7.4 Variation coefficient of spatially averaged NDVI values over the period 1985-2001. 

 
Variation coefficient of NDVI  

Variable/Season Spring Summer Autumn Growing season 

Steppe 14.7 14.9 18.4 13.3 

Semi-desert 19.1 18.5 21.6 16.8 

Desert 30.5 45.0 21.3 28.5 

Area average 23.4 31.5 20.1 18.5 

 
 

7.3.3. Dependence of  on the relief  cvNDVI

  

Figure 7.10 visualizes the relationship between the variation coefficient of NDVI 

during the period 1982-2001 and the altitude of relief. Note that the variation coefficient 

decreases with increasing the altitude. The variation coefficient in the desert and semi-desert 

zone, where the altitude varies between 340 and 500 meter, shows higher values than in the 

zone of low hills and mountains, where the altitudes are 700-1200 meter. 

 

 
Figure 7.10. Influence of altitude on coefficient of variation of NDVI in the study area. It is to note 
that variability of NDVI increases with a decrease of altitude. 

 
 

7.3.4. Relationship between NDVI variability and climatic factors 
 

In order to evaluate how much the variability of climatic factors determines the 

variability of vegetation activity, we modelled relationships between coefficients of variation 

in NDVI, precipitation and temperature. The relationship was modelled separately for each 
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season and for the whole growing season. Firstly, the coefficient of variation for rainfall and 

temperature,  and , for every climate station from the study area was computed. 

Secondly, coefficient of variation in NDVI associated with every climate station was 

computed. For that, a 3*3 pixel rectangle surrounding a station, including an area of 72 km², 

was extracted from AVHRR NDVI time-series and used for calculations. These rectangles 

delineate the analysis areas for each climate station. Next, we plotted  against or 

 and calculated corresponding regression equations. For better visualisation, we wrote the 

names of the individual meteorological stations on the plots. These scatter plots are presented 

in Figure 7.11.  

cvP cvT

cvNDVI cvP

cvT

 

(a)  

 

(b)  
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(c)  

 

(d)  

(e)  
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(f)  

Figure 7.11. Relationships between and ,  and  for the whole growing season 
(panels a and b), for spring (panels c and d), and for summer (panel e and f). 

cvNDVI cvP cvNDVI cvT

 

 

The results display significant positive correlative relationships between  and 

 for every season and for the period April-October as a whole. The coefficient of 

determination, R², shows statistically reliable high values, 0.60, 0.79, and 0.68, for spring, 

summer, and for the whole growing season, respectively. There was no significant 

relationship between  and  for autumn season. It is remarkable, that the summer 

relationship is stronger than the relationship during other seasons. The higher inter-seasonal 

variations of precipitation amounts in summer may predict the higher R² for regression 

equation.  

cvNDVI

cvP

cvNDVI cvP

The results derived for relationships between  and variation coefficients of 

temperature are more complicated. Thus, the  for spring and for the growing season 

display a strong negative linear relationship to the variation coefficient of temperature, while 

there is no linear relationship for summer. In summer, some meteorological stations correlate 

negative (Saryshagan and Agadyr), whereas the others correlate positive with . There 

was no significant relationship between  and  for autumn season (R² = 0.04). The 

strength of the relationship increases from spring, to growing season, and to summer, with 

values of R² amount to 0.69, 0.75, and 0.84, accordingly.  

cvNDVI

cvNDVI

cvNDVI

cvNDVI cvT

If the R² values from the derived regression equations are analysed, one may draw 

remarkable conclusion. Firstly, the influence of temperature changeability on that of 

vegetation cover conditions is higher than the influence of rainfall changeability. This 
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phenomenon was observed both for inter-seasonal and inter-annual relationships. Secondly, 

the highest prediction of  by variability of climatic determinants was associated with 

the summer months. This seems to be logically for the relationship between rainfall and 

NDVI, because of the higher variability of rainfall in summer and the higher dependence of 

vegetation patterns on moisture patterns. Regarding for temperature, we can not explain why 

the relatively low variability of temperature in summer (comparing it with spring, autumn or 

growing season) displays the highest prediction of .   

cvNDVI

cvNDVI

In order to examine, whether the analysed relationships are to be observed across the 

region with other points which are not associated with the climate stations, we sampled 20 

pixels randomly distributed over the region and computed a corresponding regression 

equation. Figure 7.12 presents the obtained result. In term of the strength on relationship, the 

derived equation is very close to that computed for the data of the climate stations. The result 

indicates a high co-variation of NDVI and precipitation over the space during the study 

period,  (over 66 % of common variance).  84.0=r

 

 
Figure 7.12. Regression between coefficients of variation of growing season NDVI and that of 
growing season rainfall. 

 
 

7.4. Discussion and conclusion 
 

This chapter examines inter-annual characteristics of NOAA AVHRR NDVI and their 

relationship with analogous series of climate variables for the years 1985-2003 in the study 

region. Strong temporal correspondence between NDVI-precipitation, and NDVI-temperature 

were observed. The strength of NDVI-climate associations depends on land-cover type but 

there are variations within each land cover class at the pixel scale. The correlation between 
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NDVI and temperature was found to be higher than the correlation between NDVI and 

rainfall both for spatial averages of land cover types and at the pixel scale. The result is 

indicative of the available energy and heat on plant growth during the growing season.  

The results indicated that the correlations between precipitation and NDVI are positive 

and exhibits a clear spatial pattern. The response of vegetation to the precipitation variability 

increases in order from desert to semi-desert, to short grassland and to grassland. Inter-annual 

analyses with growing season data demonstrated that NDVI of grasslands showed a stronger 

correlation with precipitation when the precipitation was totalled over the current year and 2-3 

preceding years. These results are consistent with the observation of the relations between 

NDVI and precipitation in other dry regions (Wang et al., 2003; Yang et al., 1997; Li et al., 

2002; Li et al., 2004).  

Temperature exposed itself as the main predictor factor for inter-seasonal vegetation 

dynamics. For 75 % of the entire study area, spring NDVI were correlated with spring 

temperatures. The results from spring support the suggestion about a high increase in early-

season vegetation activity and its strong prediction by temperature established in the recent 

literature (Tucker et al, 2001; Zhou et al, 2001; Xiao & Moody, 2004).  There were no 

correlations between NDVI and temperature for any others seasons or for the entire growing 

season.  

Temporal variability in NDVI values over the period 1985-2003 has been studied 

using simple techniques of descriptive statistic. The results show high variability of climatic 

predictors and NDVI in the study region. Coefficient of variations (CV) for growing season 

NDVI varied between 10-40 %. So did also variation coefficient for precipitation. The 

magnitude of inter-annual variations depends on vegetation type and relief. The highest CV 

was observed in desert and semi-desert vegetation zones, whereas the lowest is associated 

with steppe grassland. The terrain plays an important role in the inter-annual variability; the 

variability decreased with increasing altitude. In the plain areas, the coefficient of variation of 

NDVI and that of summed rainfall amounts for growing season is about 25-40 %. In the low 

hills and mountainous areas the coefficient of variation reached only 10-15 %. This study 

considered high variability of dryland ecosystem to be explained by variability of climate. 

The results presented high association between CV for NDVI and CV for precipitation.  
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Chapter 8 
 

8. Spatial response of vegetation cover to climatic factors 

8.1. Growing season relationship between NDVI and precipitation 

8.1.1. NDVI-rainfall correlation coefficients 
 

Figures 5.1. provides a visual comparison of rainfall and NDVI averaged over the 

growing season and the entire study period. Even by the visual comparison one can support a 

significant association between spatial patterns of NDVI and precipitation. Calculations of 

correlation coefficient proved this assumption. We calculated the global spatial correlation 

between these both variables for every year within the period 1985-2000. Our calculations 

resulted in rainfall-NDVI correlations ranging from 0.45 to 0.91 with a mean value for all 

years of 0.77. The consistently high correlations indicate a strong association between rainfall 

and NDVI averaged over growing season, although there is some significant inter-annual 

variation in the magnitude of the correlation coefficients (Figure 8.1).  

 

 

Figure 8.1. Dynamic of correlation coefficient between NDVI and precipitation versus NDVI value 
(upper panel). Evolution of total precipitation amount during 1985-2000 (lower panel). 
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In order to estimate strength of influence of summer rainfall on spatial patterns of 

NDVI, we calculated correlation coefficients between rainfall amounts totalled throughout the 

summer months and mean NDVI averaged for summer. The strength of association between 

these two variables is marginally lower then that calculated for the entire growing season. 

Correlation coefficients varied from 0.30 to 0.79, with a mean value of 0.76. 

Higher correlation coefficients were associated with precipitation totalled over the  

current year and a number of previous years. Precipitation summed over 2-4 years overall 

enlarges the correlation coefficients (Figure 8.2). Only for the years 1988 and 1989 a little 

decrease of correlation coefficient in comparison to that calculated for the corresponding 

single year precipitation is to note. It is remarkable that both these years had precipitation 

values over the long time average of the study period: 1987 with 40 % and 1988 with 32 % 

over the mean value.  
 

 

Figure 8.2. Correlation coefficients as a function of number of years over which precipitation is 
summed. 

 

8.1.2. NDVI-rainfall relationships by vegetation type  
  

In order to investigate the influence of vegetation type on the NDVI-rainfall 

relationship, a statistical analysis was performed on the three vegetation types presented in the 

study region. Figure 8.3 shows the linear regressions averaged over all years between rainfall 

and NDVI for the land cover classes. With regard to vegetation type, the results indicate that 

correlation coefficient values increase from desert to semi-desert and to steppe, with mean 
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values of 0.60, 0.78, and 0.84, respectively. The components of linear regression equation 

presented in Figure 8.3 vary in a wide range: there are notable differences in regression slope 

and intercept between the vegetation types. All these facts support a different response of 

vegetation to precipitation observed by various land cover categories.  This result agrees with 

results of other research works from dry regions reporting about influence of NDVI-rainfall 

relationships by land cover type (Nicholson & Farrar, 1994; Li et al., 2002; Wang et al., 

2001; Li et al., 2004, Foody, 2004).  

One can note that the NDVI-rainfall correlation is strongly influenced by the value of 

vegetation fraction of land cover. The bigger this value, the higher the correlation coefficient. 

Desert zone with a vegetation fraction between 0.05-0.25 demonstrates a correlation 

coefficient of 0.60, while dry steppe vegetation (vegetation fraction between 0.4-0.65) shows 

the highest correlation coefficient of 0.84.   

Although water is the most important limiting factor in plant growth for desert zone, 

the weaker correlation between NDVI and rainfall obtained for desert vegetation can not 

surprise. In desert areas, supplement of rainfall water in the soils for plant growth is highly 

depended on the local infiltration ability of soils. Sparse vegetation cover and soil crust 

strongly influence distribution of fallen precipitation water and allow to flow it far away from 

the place of its fall. This results in a lower NDVI-rainfall correlation coefficient. As the 

vegetation cover increases, plant growth and over ground biomass begins to depend more on 

rainfall. This is remarkable in the dry steppe land cover category. In steppe areas, where 

vegetation cover is dense, there is no flash precipitation events and overland runoff. Rain 

water keeps supplying at the place of precipitation. Only areas with degrading grass cover 

create conditions for sheet erosion and overland runoff. These areas show a weaker 

dependence of vegetation growth on rainfall. The variation of the correlation coefficient 

seems to be best explained by the diversity that exists between the different vegetation types 

associated with each ecosystem. 
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Figure 8.3 Linear regression between long-time averages of growing season rainfall and growing 
season NDVI for the main vegetation types. 

 

8.1.3. Influence of growing season rainfall on NDVI-rainfall correlation 
 

We found a significant relationship between correlation coefficients and growing 

season rainfall for both the entire study area and vegetation types level. In order to present 

this fact we plotted the NDVI-rainfall correlation coefficients (Figure 8.4) against the rainfall 

amounts for each of the study years. There is a notable association between the spatial 

correlation coefficient and the rainfall amount for the same year. The coefficients of 

correlation significantly increased in years with high rainfall and decreased in years with low 

rainfall. At the scale of vegetation types, we also found a strong positive relation between 

these both variables in desert and steppe, in semi-desert there was no statistically significant 

relation (data not shown).  

The scatter plot demonstrates that the dependence between correlation coefficient and 

rainfall is not linear. Correlation coefficient for 1987 and 1988 were lower than they have 

been expected. That means an existence of a “saturation limit” above that the response of 

vegetation to rainfall drops. Obviously, in the study region, this limit is associated with 240-

250 mm rainfall. The results agree with the research results obtained by Nicholson & Farrar 

(1994). They reported to have found the “saturation” limit at 700-800 mm annual 

precipitation for the Botswana region in Africa. Li et al. (2002) investigated a relationship 

between NDVI-rainfall correlation and annual rainfall for China and localized the “saturation” 

limit at 450-500 mm.  
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Figure 8.4 Scatter plot of NDVI-rainfall correlation coefficients and growing season rainfall amounts 
averaged over the whole study area. 

 

8.1.4. Spatial patterns in NDVI anomalies and their relationship to rainfall 
 

The spatial NDVI anomaly patterns for the study region are shown in Figure 8.5. 

These series of images show the patterns in standardised anomaly of growing season NDVI 

for every year from the period 1982-2003. During 1982-1985, most of the region shows 

below normal vegetation conditions with anomalies ranging between –1 and –3 roughly 

extending across the entire region showing the prevalence of drought conditions across the 

region. In 1982 and 1984, most of the pronounced negative anomalies were concentrated in 

the northern part of the region. Opposite to these years, in 1983, negative anomalies were 

mostly concentrated in the southern part. In 1985, the year with the worst vegetation 

conditions from the entire study period, negative anomalies occupied the whole region with 

exception of a few pixels. This year is associated with the lowest precipitation value during 

1982-2003. In contrast to the drought years, 1986-1993 exhibited a pattern of above normal 

NDVI showing the prevalence of wet conditions. The maps of 1988, 1992 and 1993 

demonstrate particularly high positive anomalies of NDVI with maximum values of 

standardised deviation over 2-3. In the term of precipitation amount, 1988 was the wettest 

year during 1982-2003. The pattern was a little poorer in 1990-1991 because of slightly 

drought conditions in the southern part of the region. The period after 1993 was also 

characterized by prevailing dry conditions which occupied in 1995-1996, 1999 mostly in the 

south, in 1997 in the north and during 1998 in the middle part of the study region. 
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Accordingly to rainfall amount, the year 1997 should be associated with conditions close to 

normal across the most part of the region with exception of the eastern border of the Shetsky 

district, still the deviations in NDVI show that an above normal precipitation fell only in the 

south, whereas the north-east of the region was dry. 2000 and 2002 were nearly normal years 

while 2001 and 2003 can be associated with below normal precipitation conditions.  

These series of NDVI anomalies show the spatial coherence and temporal persistence 

with rainfall conditions (Figure 8.6). The magnitudes of negative/positive NDVI departures 

during the years with severe or favourite conditions agree with rainfall departures patterns. 

Thus, in term of precipitation conditions the period 1982-1985 was associated with pervasive 

drought for most part of the region and the year 1985 was the driest year during the period 

1982-2003. The patterns in NDVI anomalies showed evidence of the severe conditions. 

Pronounced high anomalies in NDVI were observed across the region during 1987, 1988 and 

1993 and they agree with above normal patterns in the precipitation amount in these years. 

High positive anomalies of precipitation with values above 2 were observed for the largest 

part of the region. 
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Figure 8.5. Evolution of vegetation conditions in the study region during the period 1982-2003: 
growing season NDVI anomaly patterns. The spatial patterns show two strong drought episodes during 
1982-85 and 1995-1996 as well drought conditions in 1998 2001.  
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Figure 8.6. Standardised anomalies in precipitation amount for the Shetsky district during the period 
1982-1999. By comparison of magnitudes and spatial patterns of the precipitation anomalies with 
NDVI anomalies shown in Figure 8.5 a clear correspondence between the two variables is evident.   

 

8.2. Within-season relations between NDVI and rainfall 

8.2.1. Spatial patterns in intra-annual dynamic of NDVI and climate parameters 
 

Figure 8.7 and 8.8 describe the intra-annual patterns of monthly NDVI and rainfall. 

The green-up begins in April, when NDVI jumps from zero to greater than 0.08 in the 

southern region, and from zero to greater than 0.12-0.16 in the north. In May, the rapid 

growth of NDVI values continued across the entire region driven by a high precipitation 

amounts overall in the region. In the north, NDVI reaches values above 0.20 and rises further, 

while in the south, NDVI reaches its maximum peak values. In June, growing higher 
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temperatures in combination with a precipitation decreased over the all part of the region 

strongly influence vegetation conditions, and cause drop of NDVI values in the south. Steppe 

vegetation in the north reaches its maximum NDVI values and peaks. July is characterized by 

higher precipitation amounts throughout the region. Even though precipitation amount is high, 

the vegetation conditions are growing poorer than in June because of maximum values of air 

temperature. NDVI values in the south drop to minimum and remain at this level during the 

rest period of the growing season. The NDVI values decrease also in the mid part of the 

region where semi-desert vegetation dominates. In the North, NDVI remains high values and 

drops significantly only in August. The rest of the growing season is characterized by 

permanent low NDVI values in the south and constant slow drop of NDVI values in the 

middle part and in the north of the region. September is characterized by dry conditions and 

low NDVI values across the region. On the contrary, in October, precipitation amount lightly 

increases in the northern part and is high in the desert zone in the south. These conditions lead 

to different vegetation development in these areas. In the north, NDVI were continuing to 

drop because of a rapid decrease in air temperature. But in the northern part of the desert 

zone, where temperature was yet sufficiently high, NDVI values were lightly increasing.  

The analysis of patterns in NDVI and precipitation in the study region proved a strong 

dependence of vegetation intra-annual cycle on climatic factors. Both precipitation and 

temperature seem to correlate strongly with NDVI dynamic. On the one hand, the temperature 

is the most important predicting factor at the beginning and the end of the growing season 

because plants can grow only under definite temperature conditions, namely, when 

temperature rises over zero. On the other hand, when the temperature continues to grow and 

reaches its maximum values in June-July, it stresses the vegetation and restrains the plant 

growth. Probably, during these months, precipitation begins to play the main role in 

determining vegetation development. At the end of the growing season the temperature 

rapidly drops across the entire region. In the areas where it does not drop below the 5° C limit 

the vegetation can rehabilitate for a short time again. This was observed in the desert zone.    
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Figure 8.7. Maps of mean monthly composite NDVI for the territory of the Shetsky district.  

 
 

 
 

Figure 8.8. Maps of averaged monthly precipitation amount (mm) for the territory of the Shetsky 
district.  
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8.2.2. Within-season NDVI-rainfall correlation coefficients 
 

Based on analyses of correlation coefficients values, we found that spatial relations 

between NDVI and precipitation were different at every decade of the growing season 

(Figures 8.9 and 8.10). Correlation coefficients were generally small in April, increased 

rapidly in May when the NDVI increased, and achieved in the third decade their maximum. 

Generally, correlation coefficients slowly decreased during June and after that increased in 

July, fluctuating only slightly and then decreased in August and September. In the first and 

second decades of October correlation coefficients again reached their maximum values 

followed by an abrupt decrease in the third decade.  

In a wet year 1988, correlation coefficients permanently increased from April to first 

decade of September and then dropped off during last five decades of growing season. On the 

contrary, in 1995, a dry year, correlation coefficients reached the maximum values in first and 

second decades of June and then decreased (with high oscillations) until October. Either in a 

wet year or in dry year correlation coefficients rashly dropped off in last decade of growing 

season and had at this time the autumn minimum values.  

Time lags (one, two, three, four or five decade period lags) between rainfall and NDVI 

values had only a weak influence on decadal correlation coefficients in years with dry and 

normal rainfall values and a higher influence in wet years (data not shown). Generally, 

correlation coefficients were worse with time lags of two or three decades in May, September 

and October, while they improved in June, July and August. 

Remarkable is the dropping of values of correlation coefficient during the summer 

months. This may be interpreted through a phase of dormancy or semi-dormancy for 

vegetation. During the summer months, a water deficit reached its peak in mid to late summer 

when temperature shows the highest values and precipitation is low or missing. The potential 

evapo-transpiration is very high and the perennial vegetation makes all possible to reduce the 

transpiration rates. The ephemeral vegetation abundant in semi-desert and desert had been 

finishing its life cycle is not present in the vegetation cover at this time. Due to absent of 

ephemeral species and dormancy of perennial species, the vegetation fraction of land cover 

significantly decreases in summer months. The decrease of vegetation density is particularly 

notable in desert and semi-desert areas. The vegetation cover with lower density exhibits a 

weaker correlation with rainfall patterns.  
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Figure 8.9. NDVI values, correlation coefficients between spatial distribution of 10-day NDVI and 
precipitation (upper diagram) and 10-day rainfall (lower diagram). The data are averaged over the 
whole study period. 

            
Figure 8.10. The same as in Figure 8.7 but for a wet year 1988. 
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Figure 8.11. The same as in Figure 8.7 but for a dry year 1995. 

 
 

8.2.3. Influence of vegetation type on within-season relations between NDVI and 
rainfall 

 

The within-season relationship between NDVI and rainfall were quite different for 

various vegetation types. Both correlation coefficient value and its time-profile had individual 

characteristics for each of the vegetation types in the study area (Figures 8.12 – 8.14). Only 

the semi-desert vegetation has shown a time-profile of correlation coefficients some like that 

calculated for the whole region.  

There is significant difference between values of the correlation coefficient and its 

time-profile in dry and wet years. We found that the strength of correlation between spatial 

pattern of the semi-desert vegetation and rainfall is always higher in wet years, 1987, 1988, 

1990, 1993 and 1998 during the entire growing season. The results derived for desert 

vegetation and steppe vegetation are more complicated. 

In wet years, desert vegetation shown higher values of correlation coefficient (r = 0.6-

0.8) exceptionally in April, May and June. During the other months coefficients remained 

low, fluctuating only slightly. The higher values of the correlation coefficient at the beginning 

of the growing season may be caused by the snowmelt in March and April, and high rainfall 

amounts in May. During these two months desert vegetation had the highest values of NDVI. 
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Vegetation reaches the maximum of cover density. As the consequence, flash precipitation 

and overland runoff are relative low. The greatest part of precipitation is utilized at the 

locality of the rainfall. This results in higher NDVI-rainfall correlation coefficients. Then the 

photosynthetic activity of vegetation decreases. As the vegetation cover decreases, plant 

growth and over ground biomass begins to depend less on rainfall pattern. In dry years, 1986, 

1995 and 1997, there was no peak of rainfall amount in the spring months. The photosynthetic 

activity of vegetation and its dependence on rainfall pattern remained low during the entire 

growing season.  

Correlation coefficient values for steppe grassland range from 0.42 to 0.81 during 

growing season in wet years. The values were very high at the beginning of the growing 

season, and then they decreased gradually until June and culminated in the growing season 

minimum at 2 or 3 June decades. After that, the correlation coefficients increased into 2-3 

July decades and remained high (r = 0.65-0.75) during August, September and October. In 

dry years, the values of the correlation coefficient showed the same time-profiles as described, 

but had a lower range amplitude (r = 0.55-0.75). Comparing a growing season time-profile of 

correlation coefficient together with that of rainfall and NDVI, we found some notable 

characteristic properties for steppe grassland. At the beginning of growing season, as NDVI 

values and rainfall amounts were very low, correlation coefficients showed high values. They 

decreased during the three spring months, while the average NDVI value gradually increased. 

During May, June and first decade of July, the average NDVI displayed the highest values, 

while correlation coefficient showed the lowest values. Then, the correlation coefficients 

rapidly increased and remained at high level as NDVI values decreased over time. The 

increase of the correlation coefficients in July were caused by high rainfall amounts in this 

month. The highest value, r = 0.81, is calculated for the July decade with the highest rainfall 

amount, 45.8 mm.   
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Figure 8.12. Correlation coefficient, 10-day NDVI values and 10-day rainfall for desert. 

 
 

 
Figure 8.13. Correlation coefficient, 10-day NDVI values and 10-day rainfall for semi-desert. 
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Figure 8.14. Correlation coefficients, 10-day NDVI values and 10-day rainfall for steppe grassland. 

 

8.2.4. Influence of precipitation amount on NDVI-rainfall relations 
 

Analysis of within-season time-series of 10-day NDVI, rainfall amounts and spatial 

correlation between these both variables showed that the within-season rainfall profile 

predicts the time profile of NDVI-rainfall correlation (Figures 8.12 – 8.14). We found a 

strong association between the decades with high rainfall amounts and that with high NDVI-

rainfall correlation coefficients. High rainfall amounts in May, June and July, especially in the 

second decades of May and July, caused a significant increase of correlation coefficients in 

the corresponding decades. On the contrary, decades with low or no rainfall predicted lower 

positive or even negative correlation coefficients. In order to understand whether there are any 

statistically significant relations between these variables, the NDVI-rainfall correlation 

coefficients were plotted against rainfall amounts. The data presented in Figures 8.15 – 8.17 

supported our suggestion. The regression graphs in these figures present the long-time 

average, a wet year (1988) and a dry year (1995).  

We found a non-linear relationship between 10-day NDVI-rainfall correlation 

coefficients and 10-day rainfall amounts in all years with exception of the years 1985, 1990, 

1997. In particular, the correlation coefficients increased as long as the 10-day rainfall does 

not exceed a definite value. Above this limit, a “saturation” response occurs and the NDVI-
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rainfall correlation coefficients decrease. The limits, above which the NDVI-rainfall 

correlation coefficients begin to decrease, are different for dry and wet years. In dry years, the 

“saturation limit” amount to 12-14 mm of 10-day rainfall. In wet years, this limit is higher, 

approximately 28-32 mm.  

The “saturation limits” for land cover categories both for dry and wet years increase as 

one movies from desert, to semi-desert and to dry steppe (Table 8.1). The levels, beyond 

which the correlation coefficients between NDVI and rainfall decrease, are lower in dry years 

and associated with 10-12 mm, 12-14 mm, and 25-27 mm for desert, semi-desert and dry 

steppe respectively. In wet years, these levels are about 70-100 % higher. One may note that 

the influence of decade rainfall on the NDVI-rainfall correlation is higher in dry years. This 

result disagrees with the result derived for growing season relationships. An explanation will 

be given in the discussion section. Our study demonstrated the influence of rainfall on NDVI-

rainfall correlation for within-season relations and existence of a “saturation limit” in this 

influence.  

 

Figure 8.15. Regression graph between 10-day NDVI-rainfall correlation coefficients and 10-day 
precipitation averaged over the study period. 
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Figure 8.16. Regression graph between 10-day NDVI-rainfall correlation coefficients and 10-day 
precipitation for a wet year 1988. 

 

 
Figure 8.17. Regression graph between 10-day NDVI-rainfall correlation coefficients and 10-day 
precipitation for a dry year 1995. 

 
Table 8.1. Strength of relationship between 10-day NDVI-rainfall correlation and 10-day rainfall 
amounts, and the “limit of saturation” (turning-point) for the three land cover categories. 

R² between NDVI-
rainfall correlation 
and rainfall amount 

Turning-point,  
mm rainfall  

 
Land cover category 

Wet year Dry year Wet year Dry year 
Desert 0.29 0.40 20-22 10-12 
Semi-desert 0.28 0.35 28-30 12-14 
Dry steppe 0.42 0.42 35-38 25-27 
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8.3. Growing season relationship between temperature and NDVI 

8.3.1. NDVI-temperature correlation coefficients 
 

The calculated global correlations between NDVI and temperature pattern for every 

year of the study period indicate a strong spatial association between these variables. Growing 

season average NDVI showed high negative correlations with average temperature and 

temperature sum, weaker correlation with minimum and maximum growing season 

temperature. Correlation coefficient values among average NDVI and average temperature 

range between -0.78 and -0.86 with the mean value of -0.82. The values are higher than that 

calculated for NDVI-rainfall relationship and this indicates a stronger dependence of NDVI 

on spatial pattern of temperature. Compared with temperature patterns, precipitation patterns 

play a minor role in explaining the pattern of vegetation. This result contradicts the research 

result obtained by Wang et al (2001) for central Grate Plains, but is in agreement with those 

obtained from China by Xiao & Moody (2004) and Li et al. (2002).  

The correlation coefficients between annual deviations of NDVI and annual deviations 

of temperature from the mean of the study period showed no significant values that could be 

interpreted. Only in 1985 and 1988 the correlation was significant (r = 0.41 and r = 0.38), but 

in other years it was very weakly negative or positive. 

 

8.3.2. NDVI-temperature correlation coefficients by vegetation type 
 

Correlation coefficients calculated for individual vegetation types are quite different 

from those obtained for global correlation. Thus, two vegetation types, desert and semi-desert, 

demonstrate a negative correlation between spatial patterns of temperature and that of the 

mean growing season NDVI. On the contrary, the spatial NDVI distribution in the steppe 

grassland correlate strongly positive with temperature (Figure 8.18), the coefficient of 

correlation is over 0.74. The correlation coefficient calculated for desert vegetation is more 

lower, only –0.64. The correlation for semi-desert is also significant (with a significance level 

0.05) but it is lower than –0.50. The semi-desert vegetation cover having been a transition 

zone between steppe and desert demonstrates the combine characteristics of NDVI-

temperature relationships observed by the both mean zones. By analysing the regression 

graph for the semi-desert vegetation in Figure 8.16, one may noted that the left part of the 

point cluster shows the characteristics like the desert point cluster (correlation is negative), 

but the right part began to like more to the steppe point cluster (correlation is weak positive or 
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zero). The vegetation cover of semi-desert consists of mix of vegetation species from desert 

and steppe. The described behaviour of its various relations to spatial patterns of temperature 

means that the part of semi-desert vegetation cover where steppe species dominate tends to 

react on temperature so as this steppe vegetation makes. On the contrary, the part of semi-

desert vegetation cover with dominance of desert species demonstrates the NDVI-temperature 

relationship like that of desert vegetation.  

We compared the correlation coefficients calculated between NDVI and temperature 

with that calculated for NDVI and rainfall. The results are presented in Table 8.2. Thus, the 

spatial patterns of NDVI in the steppe grassland are more dependent on that of rainfall. On the 

contrary, desert vegetation displays a high correlation for NDVI-temperature and a weaker 

correlation for NDVI-rainfall. Because of the different reaction of semi-desert vegetation 

cover to temperature patterns, an interpretation of results for this vegetation type would have 

no meaning.  

8.3.3. Influence of annual rainfall on NDVI-temperature correlation 
 

The correlation coefficient between NDVI and temperature varied during the study 

period in a wide range. In order to understand whether there was any significant influence of 

annual rainfall to NDVI-temperature relationships, we compared time-series of averaged 

annual rainfall amounts and that of NDVI-temperature correlations. The data presented in 

Figure 5.3.20 indicate that the strength of NDVI-temperature correlation is higher in years 

with rainfall amounts over the mean value (1987, 1989, 1992, 1993, 1996 and 1998). In 1987 

and 1996, the wettest years of the study period, the correlation coefficient displays the highest 

values. In dry years the relationship between NDVI and temperature is not as strong as in wet 

years. In 1986, 1994, 1995 and 1997, the correlation coefficient showed values lower than –

0.80. 

 
Table 8.2. Correlation between spatial patterns of growing season NDVI, growing season rainfall and 
growing season temperature for different vegetation types (calculated as mean for the study period 
1985-2003). 

 Desert  Semi-desert Steppe 
NDVI-rainfall 
correlation ( 2R ) 

0.36 0.60 0.66 

NDVI-temperature 
correlation ( 2R ) 

0.38 0.22 0.51 
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Figure 8.18. Correlation coefficients between spatial pattern of NDVI and temperature obtained for the 
data averaged over the period 1985-2001. 

 

   

 

Figure 8.19. Total growing season rainfall versus NDVI-temperature correlation coefficient. 
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Figure 8.20. Time-profile of 10-day NDVI-temperature correlation coefficient and 10-day temperature 
averaged over the study period 1985-2000. 

 

8.4. Within-season relationship between NDVI and temperature 

8.4.1. General patterns in the NDVI-temperature correlation 
 

Generally, the within-season time-profile of correlation coefficient between NDVI and 

temperature is similar to that of rainfall but it has the negative sign. Through the growing 

season, the correlation coefficients started with value about zero in April, slowly increasing 

from April to May as temperature increased and had their first peak with value of -0.58 at the 

beginning of June (Figure 8.20). After that, the value dropped to –0.38-0.42 and remained low 

during the three summer months, then increased to high values, -0.50-0.55, in September and 

October. Our results were quite similar by the use of different time lags.  

Notable is the dropping of values of the correlation coefficient during the summer 

months. These months are characterized by the highest values of decade temperature, but the 

dependence of spatial patterns of NDVI on that of temperature severely decreased.  
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8.4.2. Influence of cover types on within-season relationship between NDVI and 
temperature 
 

In order to understand whether the within-season relation between NDVI and 

temperature varies between different cover types, we calculated correlation between these 

both variables for the three vegetation types, desert semi-desert and steppe, occurring in the 

study area. The vegetation types show quite different individual time-profiles of correlation 

coefficient (Figure 8.21).  

 

   

Figure 8.21. Left: Time-profiles of 10-day correlation coefficient between spatial patterns of NDVI 
and temperature for desert, semi-desert and steppe vegetation cover. Right: Relationship between 10-
day NDVI-temperature correlation and mean 10-day temperature for different vegetation types. 

 
For desert, correlation coefficients are always negative during growing season. They 

started with value of –0.20 in April and increased rapidly until the beginning of May. After 

that, correlation coefficients continued to grow gradually but not so rapidly and achieved the 

maximum value, -0.80, at 11 decade. Then coefficients remained high, fluctuating only 

slightly during the summer and September; and finally coefficients decreased during October. 

For steppe, on the contrary, the correlation coefficients are always positive. They started with 

a value of near zero and increased promptly to the highest values. In the mid and the end of 

May the values of the correlation coefficient were equal to 0.80-0.82. After that, a graduate 
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decrease of correlation coefficients was noticed until the end of July. An increase of values 

was observed once more in August and September. October was characterized by a rapid 

dropping of correlation coefficients to lower values.  

The results derived for semi-desert vegetation are more complicated. The time-profile 

of correlation coefficients displays both positive and negative values. The correlation 

coefficient began in the growing season with a positive value, 0.40, decreasing over time and 

at the middle of May turned over to negative values. Afterwards, the course of correlation 

coefficients is almost identical to that of desert vegetation.  

 

8.5 Discussion and conclusion 
 

In this chapter, spatial distribution of vegetation associated with geographical 

environment has been studied using correlation analysis at inter-annual and within-season 

time-scales. Sensitivity of vegetation cover to inter-annual changes of climatic conditions has 

also been investigated.  

Generally, vegetation response to the climate parameters, rainfall and temperature 

proved to be strong and statistically significant both at inter-annual and within-season scales. 

The relationship between vegetation and temperature at growing season scale is negative 

while between NDVI-precipitation it is positive. Temperature played a leading role in 

vegetation patterns in the study region during the period 1985-2001. The correlation 

coefficient between NDVI and temperature exhibited a mean value of -0.83, whereas that for 

NDVI-precipitation exhibited a mean value for all years of 0.77. The results demonstrated a 

drift in correlation coefficients between different vegetation types. Both NDVI-temperature 

and NDVI-precipitation relationship was the strongest in steppe grassland and the weakest in 

desert shrubland.  

There was a high inter-annual variability in the correlation coefficient both for NDVI-

temperature and NDVI-precipitation relationship. We found influence of year rainfall on the 

NDVI-precipitation and NDVI-temperature relationship. Generally, NDVI-precipitation 

correlation increased with the rise of rainfall amount until it had achieved the “saturation” 

limit. This limit is localized at 240-250 mm growing season precipitation. Wet years with 

very high rainfall amount, 1987 and 1988, are associated with a decreasing correlation 

coefficient. The influence of temperature also depended on total rainfall per year and was 

stronger during wet years and weaker during dry years. Standardized anomalies of NDVI and 
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precipitation were computed and mapped. There was strong spatial association between inter-

annual anomalies of NDVI and rainfall at the scale of the Shetsky district.  

Within-season dynamic of NDVI-climate relationship exhibited high variability. The 

patterns in this dynamics are associated with patterns in rainfall throughout the growing 

season. In short grassland and steppe grassland, there was a lag time of 1-2 decade between 

rainfall events and increase of the correlation coefficient. Desert vegetation reacted to 

precipitation immediately. Values of the correlation coefficients for NDVI-precipitation were 

higher in decades with high rainfall amounts and low or negative in dry decades. Like the 

results for inter-annual dynamics, the within-season results also indicated the existence of a 

“saturation” limit for within-season NDVI-precipitation relationship. This limit was 

quantified separately for every vegetation type.  
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Chapter 9 
 

9. Application of the geographically weighted regression to modelling 

relationship between vegetation patterns and climate factors 

9.1. Problem of non-stationarity in modelling spatial relationship and approaches 
to overcome it 

 

The mostly used method for investigation of the relationship between vegetation 

patterns and climate is conventional ordinary least squared (OLS) regression analysis. In our 

study, both simple and multiple OLS regressions have been applied for analysis in the 

previous chapters. However, these conventional statistical methods were criticized by some 

authors for their inadequate modelling results particularly at regional and global scales 

(Brundson et al., 2001; Fotheringham, 1999).  

One should take into account that modelling the spatial NDVI-climate relationship one 

has to deal with a phenomenon of non-stationarity of this relationship in space. However, the 

global OLS method applied in the previous chapter for modelling is stationary in a spatial 

sense. Stationarity means that a single model is fitted to all data and is applied equally over 

the whole geographic space of interest. This regression model and its coefficients are constant 

across space assuming the relationship to be also spatially constant. That is usually not 

adequate for spatially differentiated data, especially by quantifying relationships at regional or 

global scales. The differences between regression models established at different locations 

can be large with both the magnitude and sign of the model parameters varying. In such 

circumstances, the parameters of the global regression model derived by applying 

conventional global regression may not represent local conditions within the study area. One 

may suppose that especially in the areas with high variance of relief conditions, vegetation 

and soil types the local model parameters should vary more significant.  

The easiest method to improve the regression model and to reduce the differences at 

localities is the fitting of an individual OLS model for each land-cover or vegetation type. By 

this method, the variance in regression parameters between land-cover types can be 

highlighted and the prediction power of the regression model increases significantly (Wang et 

al., 2001; Li et al., 2002; Ji & Peters, 2004). In chapter 5 and 6, we have already shown 

differences between the main vegetation types in their response to climate factors. But this 
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method did not highlight the local non-stationarity in the relationship within the land-cover 

type.   

An interesting and efficient alternative is to allow the parameters of the model to vary 

with space. Such non-stationary modelling has greater prediction precision because the model 

being fitted locally is more tuned to local circumstances. Local regression techniques, such as 

localized OLS (moving window regression) or geographically weighted regression (GWR) 

help to overcome the problem of non-stationarity and calculate the regression model 

parameters varying in space.  

In this chapter, we analysed spatial relationship between NDVI and rainfall amounts 

using the geographically weighed regression technique as an alternative approach for data 

modelling. The aim was to derive a regression model focusing on the accuracy of model 

prediction at the local scale. The GWR model worked at the pixel scale and highlighted non-

stationarity in the NDVI-rainfall relationship within each land-cover type. The differences 

between the results obtained by OLS with that obtained by GWR were demonstrated and 

quantified. The prediction power of these regression models, global and local was compared. 

It was also demonstrated that the prediction accuracy increases by taking into account local 

circumstances. The results produced a more accurate estimation of the NDVI-precipitation 

relationship than the conventional statistical methods used in the previous chapter.  

 

 

(a)  (b)  
 
Figure 9.1. (a) Accumulated growing season NDVI calculated from a combination of 1-km NOAA 
AVHRR and SPOT-VEGETATION for the period 1992-95/1998-2004. (b) Regionalized total 
precipitation amount throughout the growing season. The graph presents an average over the period 
1985-2004.  
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9.2. Reducing uncertainty in modelling NDVI-precipitation relationship: a 
comparison between OLS and GWR regression techniques 

9.2.1. Global OLS regression model and its deficiencies  
  

Regression analysis based on the applying of conventional global OLS regression 

revealed that there is a strong relationship between the spatial distribution of the 8-km NDVI 

and precipitation (see Chapters 6 and 7). The estimated R² of the regression equations ranges 

from 0.67 to 0.91 over the period 1985-2001 and shows a mean value for all years of 0.64. 

Figure 9.1 displays maps of the 1-km accumulated growing season NDVI, , and the 

corresponding precipitation amount. There is a strong association between spatial patterns in 

both variables. Fitting regression with 1-km NDVI data, we did not expect any great change 

in the goodness-of-fit in comparison to 8-km data. The further analysis supported this 

assumption.  

accumNDVI

Figure 9.2 shows the scatter plot between measured  and predicted 

 based on the global OLS regression. This regression model explains about 63 % of 

spatial variance in  and was expressed as: 

accumNDVI

accumNDVI

accumNDVI

 

PNDVIaccum *0258.00854.0 +=                (R² = 0.63) 

 

where  P is precipitation. 

 

The standard error used as a measure for prediction accuracy was 0.21 or about 5 % 

from the mean  value. The relatively low value of the standard error might backup 

the assumption that the derived regression model provides an accurate description of the 

relationship between variables. However, the result of the OLS analysis indicates that much 

of the variance remains unexplained, and this may drive further work that aims to increase the 

understanding of the variables responsible for this variance. One possible way how to reduce 

the amount of the unexplained variance is to introduce other variables into the model 

specification. Another way may be an improving regression model by disaggregating 

(stratification) the global regression model into a separate model for each of the main land 

cover types. 

accumNDVI

The two regression variables, both  and precipitation data contain positive 

autocorrelation (Figure 9.3). The graph shows a high positive autocorrelation over short 

accumNDVI
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distances and a low one at large distances. These autocorrelograms indicate that both 

and precipitation are positively autocorrelated up to ca. 90 km. Their Moran’s I 

values are significantly larger than the values expected under the null hypothesis of no 

positive autocorrelation. This spatial autocorrelation can be interpreted in terms of trend or 

linear gradient across the study area (Griffith, 2003). Most ecological and climatic variables 

tend to represent a positive spatial autocorrelation because of the natural phenomena are 

geographically organized.  

accumNDVI

But spatial autocorrelation is problematic for statistical analysis like OLS regression. 

When conventional OLS regression is applied to the analysis of data containing positive 

autocorrelation, there are two problems: (1) the standard error of the regression coefficient is 

underestimated, and tests of hypothesis on this coefficient may show that the indicator 

variable is significant when it really not, (2) the residual mean square may seriously 

underestimate the variance of the error term, hence the coefficient of determination (R²) is 

overestimated (Clifford et al., 1989). Recent studies tried to overcome these problems by 

applying spatial regression technique that can adjust for spatial autocorrelation inherent in the 

regression model on the basis of a variogram function (Tiefelsdorf, 2000; Ji & Peters, 2004). 

 

 
Figure 9.2. Scatter diagram between measured and predicted.  accumNDVI
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Figure 9.3. Spatial autocorrelogramms for  and precipitation. accumNDVI

 

9.2.2. Stratification of NDVI-precipitation relationship by land cover type 
 
In order to reduce the amount of  unexplained and the negative influence of 

spatial autocorrelation, the OLS regression analysis has been performed separately to the four 

main vegetation types presented in the study region. Figure 9.3 shows the results of the 

stratified OLS regression between rainfall and  fitted to the land cover classes. 

With regard to vegetation type, the results indicate that the coefficient of determination, R², 

increases from desert to semi-desert, to short grassland, and to steppe, with value of 0.36, 

0.44, 0.52, and 0.67 respectively. The components of the regression equation vary in a wide 

range: there are notable differences in regression slope and intercept between the vegetation 

types. The stratification of the OLS model by land-cover types clearly illustrates the presence 

of non-stationarity in the general relationship between  and precipitation which 

may now be written as: 

accumNDVI

accumNDVI

accumNDVI

 

PNDVIaccum *)0205.00017.0()3178.66668.0( −+−=  (R² = 0.75) 

 

Values for the range in both intercept and slope parameters are given in brackets. 

Analysing this fact leads to the conclusion that the global OLS regression can not possibly be 

considered stationary. There is spatial variation in intercept and slope parameters as well as in 
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the coefficient of determination, R², between the land-cover types. These results assume a 

different response of vegetation to precipitation by various land cover categories.  That agrees 

with the results of other research works from dry regions which reported about influence of 

NDVI-rainfall relationships by land cover type (Yang et al., 1997; Li et al., 2002; Wang et 

al., 2001).  

 

 

Figure 9.4. Scatter diagram between measured  and  predicted by the stratified 
OLS regression model. 

accumNDVI accumNDVI

 
 

All natural geographical phenomena tend to display in space rather systematic 

continual change than rapid interruptions, especially at regional scale (Griffith, 2003). Thus, 

the spatial patterns of the regression variables both  and precipitation amount 

exhibit smoothed change in the space without any contradicted jumps in their values. One of 

the best evidences for that is high positive spatial autocorrelation of the regression variables 

over short distances. Therefore, one may assume that the relationship between  and 

precipitation could systematically change from one sub-region to others. But the relationship 

may change also within each sub-region because of its non-homogeneity by scaling down 

from the sub-region scale to the pixel scale. Thus, we may expect non-stationarity in the 

relationship also within each sub-region (land-cover type). As a result of these hypothesis, we 

expect that the estimated intercept parameter will decrease systematically from the north and 

north-west to the south across the study area, while the estimated slope parameter will 

increase in the same direction.  

accumNDVI

accumNDVI
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The applying of the regression models derived for the individual land cover types 

enlarged the prediction power of the global OLS significantly, although the strength of the 

relationship between  and rainfall calculated separately for the desert, the semi-

desert and short grassland was not as high as that derived for the global OLS. A large amount 

of variance in  remains unexplained for each land cover type. But there is a 

significant decrease of standard error in comparison with the global OLS model. The smallest 

SE was 0.10 for steppe grassland, while the largest SE of prediction is equal to 0.17 and was 

calculated for short grassland.  

accumNDVI

accumNDVI

Disaggregating of global OLS regression model into four stratified OLS models has 

improved the modelling certainty and quality. Although, the unexplained amount of variance 

in  remains relatively high, but the accuracy of the prediction is significantly 

increased. Some patterns of residual distribution disappeared and become more smoothed.  

accumNDVI

 
 

9.2.3. Local variability in relationship between vegetation and precipitation  
 

The GWR method has also been applied for modelling relationship between 

 and precipitation. To obtain localized results, a 9 by 9 pixels window was placed 

over each pixel which provides 81 data points for the model calibration at each pixel location. 

This was the window size which was determined by minimisation of the cross validation 

square sum, CVSS (Fotheringham et al., 2002). The GWR model allows the regression 

parameters to vary in space and establishes considerably stronger relationship between the 

two variables. The general regression equation may be given as:  

accumNDVI

 

PNDVIaccum *)97.136.2()03.598.4( −−+−−=        (R² = 0.97) 

 

In the brackets range values for regression intercept and slope parameters are written.  

 

Figure 9.5 summarizes the results derived from the geographically weighted 

regression analysis between and rainfall. Panel a shows spatial distribution of the 

intercept which had a mean of –0.32 and a range of –4.98 to 5.03. Large positive values are 

distributed mainly in the north of the region where short grassland and steppe grassland 

accumNDVI
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dominate while low values are mainly in the mid and in the south. Here semi-desert and 

desert vegetation dominate.  

 

 

Figure 9.5. Spatial variations in regression outputs from the GWR analysis of growing season 
accumulated NDVI against precipitation: (a) model intercept, (b) model slope parameter, (c) local 
coefficient of determination, R², (d) standard error of the model prediction. 

 

Panel b shows spatial variation in the slope parameter. This parameter had a mean of 

0.0418 with a range of –2.36 to 1.97 and a standard deviation of 0.22. Negative values of the 

slope parameter indicate that in some locations  decreases when precipitation 

increases. Negative values are to be found mainly in the northern and western parts of the 

study region where crop fields/grassland mosaics dominate. The valley bottoms in the north-

east also exhibit negative values of the slope parameter. Panel c displays the spatial variation 

in the strength of the relationship. The goodness-of-fit, measured by the coefficient of 

determination, R², varied in the space and ranged from 0.016 to 0.99, with R² > 0.75 for two-

thirds of the study region. Low values of R² are mainly distributed in the west and over a 

swath of land from the east to the north-west in upper part of the map. The entire model 

performance was significantly improved both for standard error of prediction accuracy and for 

accumNDVI
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the prediction power. Figure 9.6 shows the scatter plot between measured  and 

predicted  using the GWR model.  

accumNDVI

accumNDVI

Panel d presents the standard error term which has been used as a guide to prediction 

accuracy. Standard error estimated for the GWR ranged from –0.0012 to 0.04. Values of 

standard error are several times smaller than that estimated for the global OLS (SE = 0.21) 

and stratified OLS models (SE = 0.10-0.17). The GWR model enables to estimate and map 

the standard error for every pixel. The spatial patterns in the standard error reveal the danger 

of using the single estimate for SE derived from a global OLS locally, they vary in magnitude 

from pixel to pixel. The spatial patterns of SE clearly correspond to that of land-cover 

categories. This suggests that the GWR model significantly improved prediction of 

 by rainfall over the OLS model.  accumNDVI

 

 

Figure 9.6. Scatter plot between measured  and computed from the GWR model. accumNDVI

 

The spatial patterns in the parameter estimated from the GWR analysis illustrate the 

geography of the relationship. Generally, the spatial patterns in the intercept and slope 

parameter appear to correspond with some patterns in land cover distribution. The intercept 

parameter increases in order from desert, to semi-desert, to short grassland and to steppe, 

while the slope parameter decreases in the same direction. The large spatial variation in the 

regression parameters suggests that spatial non-stationarity exists and that there are different 

responses of vegetation to precipitation not only between the land-cover types but also within 

every land-cover type. 
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In order to answer the question “Why does the -precipitation relationship 

vary from location to location within a land-cover type?”, one need detailed local knowledge 

from subsequent fieldwork and from fine resolution satellite data. According to our analysis, 

the main reasons for variation in the -precipitation relationship within the land-

cover categories are the following: (1) relief; a vegetation located on hill slope exhibits a 

lower response to precipitation than a vegetation located on plain,  (2) shift in vegetation 

species building the plant community due to change in land-use aspect or it’s intensity, (3) 

shift in vegetation species due to natural factors such as geological underground, soil type, 

groundwater table, etc., (4) land degradation of locations.  

accumNDVI

accumNDVI

 
 

9.2.4. Analysis of regression residuals 
 
Both residuals values and spatial pattern of residuals are important indices to examine 

how accurate the regression model reveals the real relationship. The validity of the regression 

statistics depends on the distribution of the residuals. There are three conditions which have to 

be fulfilled by the residuals: (a) the residuals must be normally distributed; (b) the residuals 

must be homoscedastic; (c) the residuals must not be autocorrelated (Wackernagel, 1998). 

The residuals value also serves as a measure of accuracy of the regression model estimation. 

Generally, the less is the distance between every regression point and the regression line the 

higher is the accuracy of the regression model. The residuals of a linear regression model are 

also required to be independently distributed over space with a mean of zero and constant 

variance. If the residuals exhibit some non-random patterns the model created is problematic. 

A diagnostic statistics indicating problems in regression modelling is the degree of spatial 

autocorrelation exhibited by the residuals from the model. The standard errors are usually 

underestimated when positive autocorrelation is present.  

We analysed both the values and the spatial distribution of the residuals for each of the 

three regression models created. All three models showed a normal distribution of their 

residuals with a mean of zero (Figure 9.7), but the range of the residuals value varies from 

one model to another. The residuals histograms shown on Figure 9.7 contain important 

information about the residuals value and the residuals variation. Thus, the peakedness 

(kurtosis) of the residual histograms increases in order from of the OLS model, to OLS 2 

model, and to GWR model. The residuals from the GWR show the most peaked histogram. 

That means the best concentration of the residuals about zero. The absolute values of the 

residuals from the two OLS models range between –1.2 - 1.2 and -1.0 - 1.0 respectively, 
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while that of the GWR residuals between –0.5 and 0.5. There was a significant decrease of 

standard deviation of regression residuals if one moves from the global OLS model, to the 

OLS stratified by land-cover type, and to the GWR model. For the global OLS model, the 

standard deviation of residuals was 0.48 or 9.17 % of mean  value, for the OLS 

stratified by land-cover type, the standard deviation of residuals was a few less, 0.39 or 7.11 

% of mean . The standard deviation of the GWR residuals was only 0.24 or 3.26 % 

of mean  .   

accumNDVI

accumNDVI

accumNDVI

A visual interpretation of the residual maps shown in Figure 9.7 gives us a good 

impression that there is a clear separation of the residuals from the global OLS in the space. In 

the northern part of the study area, the residuals tend to exhibit positive values, while in the 

southern part, the residuals values are mainly negative. The global OLS model underestimates 

when  is high and overestimates when NDVI is low. Patterns in the mapped 

residual values appear to correspond clearly with patterns in land-cover. The positive 

deviations are associated with the dry steppe vegetation cover, while the negative deviations 

are mainly observed in the desert zone. The spatial patterns of the residuals from the OLS 

stratified by land-cover type are not as clear as those for the global OLS model, but the 

separation in the space also remains. Only the GWR model allowed destructing the spatial 

dependence of the regression residuals (Figure 9.7, c). The GWR residuals display no clear 

spatial patterns and their distribution over the study area seems to be close to random.  

accumNDVI

Spatial autocorrelation measures the similarity between samples for a given variable as 

a function of spatial distance. For the global OLS model and the GWR model, we calculated 

the Moran’s I of the residuals to examine the effect of calibration of the models locally by 

GWR rather than globally. It is proved that the local calibration removes much of the 

problems of spatially autocorrelated error terms included in the traditional global OLS model 

(Wang et al., 2005; Fotheringham et al., 2003, pp. 112-117). We were interested in the 

comparison of the results from the global and local models.  

Figure 9.8 shows the spatial correlograms for the global OLS model residuals and the 

residuals from the GWR model. As expected, the error terms are most strongly autocorrelated 

for the global OLS model. The OLS model residuals had significant spatial autocorrelation up 

to circa 50 km. In comparison, no significant positive spatial autocorrelation was found for 

the GWR model residuals. It suggests that the calibration of a local model reduces the 

problem of spatially autocorrelated error terms. The GWR model demonstrates the ability to 

deal with spatial non-stationary problems.   
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Figure 9.7. Spatial patterns of regression residuals (upper panels) and corresponding residuals 
histograms (lower panels) for the global OLS model (a), the OLS model based on stratification by 
land-cover types (b), the GWR model (c). 

 

 
 

Figure 9.8. Spatial autocorrelograms for OLS residuals and residuals from the GWR model. The 
autocorrelogram of the OLS residuals indicates that Moran’s I values up to a lag distance of more than 
40 km are significantly larger than the value expected under the null hypothesis of no positive 
autocorrelation. The autocorrelogram of the GWR residuals displays no significant positive 
autocorrelation. 
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9.3. Analysis of temporal variations in NDVI-precipitation relationship using 
GWR 
 

Variability in the relationship between vegetation distribution and patterns in climate 

predictors has already been shown in chapter 6 and 7 by analysing data with a spatial 

resolution of 8 km. The correlation coefficient for growing season NDVI-precipitation varied 

from 0.67 to 0.91 during the period 1985-2001. The correlation coefficient for NDVI-

temperature showed variability; although the magnitude was lower (data not shown). In 

chapter 6 and 7, the scale of the analysis has been either the entire study region or a separate 

vegetation type. The OLS regression model has no possibility to model relationship at the 

local level or at the scale of a pixel. On the contrary, GWR approach enables us to analyse the 

relationship between NDVI and climatic factors at the per-pixel basis. Thus, one can use time-

series of the NDVI-climate models to analyse variability of vegetation response to external 

factors. However, the 1-km dataset cover only a period 1998-2004. Certainly, the relationship 

varies also during this relatively short period. But for this work, it was more interesting to 

monitor variance in the relationship during a longer period which would comprise the years 

before and after the constitutional change in Kazakhstan. Therefore, GWR modelling has 

been applied for every year from the 8-km dataset covering the period of 1985-2001.  

 

9.3.1. Variations in the relationship strength 
 

The results demonstrated high variability both in the strength of relationship and the 

regression parameters over the period at the scale of vegetation type and at the pixel scale. 

Figure 9.9 displays some results. Spatial patterns of the coefficient of variations of R² appear 

to correspond exactly with patterns of vegetation cover: variability of R² decreases from 

shrubs and desert vegetation in the south of the study area, to semi-desert, to steppe 

vegetation in the north. These results indicate a major degree of temporal variation in the 

relationship between NDVI and rainfall in the study area. There may be many reasons for this 

fact. One of the reasons may be different resilience strength of vegetation types to inter-

annual climate variability. Definite vegetation communities may react to rainfall inter-annual 

variations more sensitive than others. Intra-annual spatial distribution of rainfall over the 

study area can vary significantly and may distribute to variation in the relationship of NDVI-

rainfall.  
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a b c  

 
Figure 9.9. Maps demonstrating variability in NDVI-precipitation relationship during 1985-2001. (a) 
Minimum value of the determination coefficient, R², (b) its  maximum value and (c) coefficient of 
variation. 

 
 

 
 
Figure 9.10. Inter-annual variations in R² averaged for vegetation types. 

 

 

9.3.2. Trends in NDVI-rainfall relationship and their linkages to land use/land cover 
change 
 

The strength of relationship between NDVI and rainfall, along with the use of 

regression statistics, provides useful information for assessment of land cover performance. In 

the dry regions, areas with exceptionally low NDVI-rainfall correlation identify sites where 

vegetation cover is damaged and land degradation is going on (Li et al., 2004). Looking into 

time-series of regression statistics, especially such of R², the ability of the land surface to 

respond to rainfall over the time period can be implied. Thus, a decrease of R² over the study 

period would indicate a decreasing dependence of the vegetation cover on rainfall patterns 
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and an increasing dependence on others factors such as temperature patterns or human 

influence. This negative trend would indicate an area with vegetation cover being damaged. 

On the contrary, an increase of R² over time may indicate a surface with an increasingly better 

response of the vegetation cover to rainfall and a decreasing role of other predictive factors. 

There is no doubt, that any change in land cover or in land use would be reflected in a change 

of R² value. So, abandonment or expansion of cultivated areas as well as taking virgin land 

into agricultural use should be noticeable in the time-series of R².  

In order to prove this hypothesis, we selected some representative sites with noticeable 

LULC change and processed time-series of R² for these areas. Squares with a size 3*3 pixels 

were extracted for each of the test sites from the developed time-series of R². For evidence 

about changes of surface features we looked at multi-temporal Landsat images and used 

available historic reports. During field surveys in 2004 and 2005 surveys of indicators for 

land degradation have been verified in areas which had been considered degrading on the 

Landsat images.  

Basically, four trend types (fifth type is insignificant trend!) can be found in the 

NDVI-rainfall relationship in the study region. Figure 9.11 displays typical patterns of R² 

time-series for the characteristic sites: 

 

1. Panel (a) shows a site in which agricultural use was evident during the entire 

study period. Generally, for this site, the strength of the NDVI-rainfall 

relationship decreased from 1985 to 2000, implying a decreased ability of 

the land surface to respond to rainfall over this period. Clear sings of 

increasing land degradation were identified on the Landsat images and 

during the field trips.  

 

2. Panel (b) shows a site located in the steppe section and which was used as 

pasture land. Clear positive trend in R² after 1990 is associated with a rapid 

reduce of animals pressure on the pasture land because of a dramatic 

decrease of livestock caused by the collapse of the socialistic economic 

system.  

 

 

3. The clearest trends are related either to the abandonment of cultivated areas 

or to newly established cultivated areas. Panel (c) represents a site which had 
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been cultivated intensively until 1992 and then has been abandoned. The 

cultivation of the site led to land degradation and a permanent decrease of 

vegetation response to rainfall during 1985-1992. The abandonment of the 

cultivated field enhanced a rapid recovery of the vegetation cover and the 

positive trend in R², although there were two years with exceptionally low R² 

values.  

 

4. Panel (d) shows a process which is reverse to that described for Panel (c). 

The site of this panel had experienced no or very slight human influence in 

form of grazing during 1985-1992 and was taken into intensive agricultural 

use after 1992. The ploughing up of the virgin land of this site enhanced 

degradation of the upper soil layer caused by wind erosion and was 

expressed in a decrease of R² values over the period 1992-2000.   

 

(a) (b)  
  

(c) (d)  
 
Figure 9.11. Time-series of R² for four individual sites demonstrating typical linkages between the 
NDVI-rainfall relationship and LULC change (see supplementary description in the text). 
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9.4. Discussion and conclusion 
 

In this chapter spatial relationship between NDVI and precipitation have been 

analysed using a local regression technique known as geographically weighted regression. In 

order to demonstrate differences in the modelling procedures and the end results, GWR 

modelling was carried out parallel to OLS modelling. The GWR method allows the regression 

parameters and the strength of the relationship to vary over the space. The results of the GWR 

suggest that it provides more accurate predictions than the OLS regression model. 

The study found a high spatial non-stationarity in the strength of relationship and 

regression parameters both between the land-cover types and within each land-cover type. 

The ordinary least squares regression model which had been applied to the whole study area 

was superficially strong (R² = 0.63), however it gave no local description of the relationship. 

Applying the OLS at the scale of the separate land cover classes revealed a different response 

of various vegetation types to rainfall within the study area. The strength of the relationship 

between NDVI and rainfall increased in order from desert (R² = 0.36), to semi-desert (R² = 

0.44), to short grassland (R² = 0.52), and to steppe grassland (R² = 0.67). The coefficient of 

determination, R², was higher for the GWR model. The approach of geographically weighted 

regression provided considerably stronger relationships from the same data sets (R² value for 

the general regression = 0.97), as well as highlighted local variations within the land cover 

classes. The amount of variance in NDVI remaining unexplained was not as large as was 

expected from the OLS analysis. The standard error (SE) was used as a guide to accuracy of 

the predictions. For the global OLS modeling, SE was 0.21. The SE calculated through the 

stratified OLS model for the land-cover types were a few smaller than for the whole region. 

Fitting the regression model at pixel scale what was achieved through application of the GWR 

significantly reduces error terms. As expected, the errors terms shown by the results of the 

GWR are several times low ranging from 0.0012 to 0.04.  

Applying the GWR method for dealing with spatial relationship significantly reduces 

both the degree of autocorrelation and absolute values of the regression residuals. The 

residuals from the global OLS model clearly exhibited positive spatial autocorrelation with an 

area of positive residuals grouped together (in the north) and also an area of negative residuals 

grouped together (in the south). The spatial autocorrelation in the residuals from the 

equivalent GWR model was no evident. There were no obvious patterns to the residuals 

which appear randomly over the region. The results suggest that GWR provides a better 
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solution to the problem of spatially autocorrelated error terms in spatial modelling compared 

with the global regression modelling. 

Application of the GWR model on time-series of 8-km AVHRR NDVI enabled to 

analyse inter-annual variability in NDVI-precipitation relationship at per-pixel scale. This 

analysis highlighted presence of temporal variations in both regression model parameters and 

coefficients of determination R² over the period 1985-2000. Patterns in the temporal variation 

in the slope and in the intercept parameter as well as in the R² appeared to correspond with 

patterns in vegetation cover. The variation was generally large in the areas covered by desert 

vegetation and low in the areas covered by steppe vegetation. Generally, changes in NDVI-

rainfall relationship proved to be dependent on changes in land use and land cover. This 

hypothesis has been proved in the study region on examples from a number of typical test 

sites. The results indicated strong relationship between land cover change and NDVI-rainfall 

correlation coefficient. 
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Chapter 10 
 

10. Detection of climate-induced and human-induced vegetation 

change 
Vegetation cover is one of the major components of an ecosystem that is very sensitive 

to external effects. The main external effects are climate and human impact which are not 

constant in time. Due to remote sensing techniques it is possible to monitor conditions of 

vegetation cover during relatively long time periods and to compare these with climatic 

variability and variability in human influence. Theoretically, modelling vegetation dynamic 

with dynamics of climate and human influence may help to understand the combined role and 

the individual roles of these both external factors in vegetation long-time change (Richard & 

Poccard, 1998; Wang et al., 2003; Li et al., 2002). Studies by Tateishi & Ebata (2001) and 

Xiao & Moody (2004) found evidences that in many cases, climate change was a driving 

force for trends in vegetation activity.  

But the discrimination between climate-induced and human-induced vegetation 

changes remains difficult and uncertain. There are a number of modern studies that tried to 

discriminate between these two factors and described methods to solve this problem (for 

example, Li et al., 2004; Evans & Geerken, 2004). All these studies have offered a problem 

solution through identification of climate signal in time-series of NDVI and removing it. After 

the climate signal had been removed, changes remaining in NDVI time series may be 

associated with anthropogenic factor. If these changes are positive, one may speak about 

improvement of vegetation cover due to changes in land use and agricultural practices. In case 

of these changes being negative, in that case vegetation cover is degrading due to human 

influence. 

In the main, discrimination between climate-induced and human-induced changes in 

vegetation cover should start on with identification of climate signal in the changes of 

vegetation activity. After this signal is identified, we may attribute defined vegetation changes 

to climate change. If this attribution is not possible, the changes may be associated with 

human or other external influence. The preceding chapters investigated the inter-relationship 

between vegetation cover and climatic effect at both within-season and inter-annual time-

scales. The results of those chapters proved a presence of a strong climatic signal in the inter-

annual dynamic of vegetation cover in the study region. But the inter-annual dynamic is not 

always equal to inter-annual change. Under the term dynamic we have to understand inter-

annual oscillations of vegetation cover near the long-time value. The term “inter-annual 
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change” refers to a shift of this long-time mean value over a defined time. Mathematically this 

is expressed through time trend. Generally, the results of the previous chapters showed that 

we have a great chance to detect the climatic signal in changes of vegetation cover if they 

occurred during the study period. The action we have to undertake is to detect trends in NDVI 

and compare them with trends in climate factors. The only condition which is to fulfil by the 

areas to be examined is a presence of statistically significant relationship between inter-annual 

dynamic of NDVI and a corresponding climate factor. The methodology of analysis and the 

decision framework as well as a technique for analysis of areas without any trends in NDVI 

has been described in Chapter 4.  

This chapter examines trends in vegetation cover over 1982-2003 and their 

explanation by the trends in climate factors. Areas with NDVI trends explained by trends in 

precipitation and temperature were determined and measured. Areas with insignificant NDVI 

trends which seamed to be stable during the study period but in fact undergone improvement 

or degradation of vegetation cover were also identified. The identification of these areas was 

based on analysis of changes in response of vegetation cover to climate factors. Increasing 

response is associated with improving vegetation cover. In opposition to that, decreasing 

response considered to indicate degradation of vegetation cover. The results were validated on 

test sites using field survey records and analysis of Landsat imagery.    

 
 

10.1. Trends in spatially averaged NDVI 

10.1.1. Trends in growing season NDVI 
 

The spatially averaged time-series of growing season NDVI exhibited a statistically 

significant upward trend with an increase of 6.46 % for all vegetated pixels over the period 

1982-2003 (Table 10.1). The determination coefficient of the trend is high enough, R² = 0.19. 

The growing season NDVIs also exhibited significant upward trends for each land-cover type 

with an exception of semi-desert. For semi-desert, the trend was found to be insignificant 

even though it had shown an increase magnitude of 5.05 %. The magnitude of NDVI trend 

varied by land-cover type, the highest total increase with a value of 6.92 % was observed in 

steppe grassland. For short grassland and desert shrubland, the total increase of NDVI during 

22 years was 6.12 % and 5.53 %, correspondingly. The determination coefficient of the trend 

lines, R², ranged from 0.14 to 0.26. 
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10.1.2. Trends in seasonal NDVI 
 

The spatially averaged time-series of seasonal NDVIs showed significant upward 

trends in spring for all land-cover types and in summer for short grassland and steppe 

grassland. The total increase averaged for all vegetated pixels was 8.10 % for spring, and only 

3.16 % for summer, with R² = 0.47 and 0.18, respectively. The magnitude of the spring trend 

varied by vegetation type, with the highest values of 13.78 % and 10.91 % registered in 

steppe and short grassland. These two vegetation types also showed the greatest R² of all 

trends. 

There were no significant trends in summer NDVI for desert and semi-desert 

vegetation types.  Summer NDVI of steppe grassland increased to 6.88 % during 1982-2003. 

The increase in summer NDVI for short grassland was lower, 4.54 %, but also statistically 

significant. On the whole, summer NDVI showed only weak ascend over the period of 1982-

2003. For the entire area, the increase was 3.16 %. Autumn NDVI did not exhibited any 

significant trends in seasonal or growing season NDVI during 1982-2003.   

The results of trends in seasonal NDVI suggested that the trends in vegetation activity 

for each vegetation type and the entire area are primary attributed to spring rather than the 

whole growing season. In cases of steppe and short grassland, summer also plays a role but 

less important than spring. This is consistent with results from previous studies undertaken in 

similar latitudes at global and regional scales. The reason for the higher change rates of 

grassland vegetation activity in spring corresponds to general upward trends in winter and 

spring temperatures (Kuwabata et al., 2001; Tucker et al., 2001; Xiao & Moody, 2004). This 

increase in winter and spring temperatures enables an earlier start of greening phase and a 

more rapid climb of NDVI values in spring.  

 
Table 10.1. Trends of spatially averaged time-series of growing season, spring, summer and autumn 
NDVI over 1982-2003 

 
Growing 

season NDVI 
Spring NDVI Summer 

NDVI 
Vegetation type 

Change, 
% 

R² Change, 
% 

R² Change, 
% 

R² 

Desert 5.53 0.26 3.95 0.17 Insignificant  
Semi-desert Insignificant  4.02 0.13 Insignificant  
Short grassland 6.12 0.14 10.91 0.52 4.54 0.13 
Steppe grassland 6.92 0.19 13.78 0.64 6.88 0.27 
       
Area average 6.46 0.19 8.10 0.47 3.16 0.18 
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10.2. Spatial patterns of NDVI trends 
 

Since spatial averaging hides the geographical variability of NDVI, it is to expect that 

the NDVI trends will exhibit some spatial patterns within every land-cover type. These spatial 

patterns may be highlighted by calculation of trends on a pixel-by-pixel basis. We identified 

all vegetated pixels with linear trends in NDVI that were statistically significant. This analysis 

was repeated for each season. It was also to expect that not all pixels should show upward 

trends in NDVI, some pixels may exhibit downward trends. That was supported by the 

statistical analysis.  

Over the entire study region, the results of our calculations show that 28.11 % of all 

vegetated pixels exhibited a significant upward trend for the growing season over the study 

period, and 4.36 % of all pixels exhibited a significant downward trend (Table 10.2 and 10.3). 

Greening patterns are mostly observed in the northern and southern portions of the region 

(Figure 10.1, a). Downward trends in growing season NDVI were mainly concentrated in the 

middle part. The percentage of pixels with upward NDVI trend varied substantially by land-

cover type ranging from 11.85 % to 40.62 %. These extreme values are associated with desert 

shrubland and short grassland, respectively. For steppe grassland, 37.81 % of all pixels 

exhibited positive trend and 19.20 % for semi-desert.  

The percentage of pixels with significant trends also varied from season to season. The 

highest percentage of pixels with an upward trend is observed for spring NDVI, 39.04 %. The 

greening pattern in spring is more immense than in any other season (Figure 10.1, b). 

Especially high percentage showed short grassland and steppe grassland with a value of 

57.31% and 74.65 %, respectively. Pixels with positive trends in spring NDVI are densely 

distributed across the whole study region, except in its middle part. Altogether, 4 % of all 

vegetated pixels had the negative trend in spring NDVI. 

In summer, 20.61 % of all vegetated pixels showed positive trends in NDVI over 

1982-2003. These areas are mainly distributed in the northern part of the study region, and 

sparsely in the southern and middle parts (Figure 10.1, c). The summer season revealed the 

highest percentage of pixels with downward trend, 8.33 % of total pixel amount. These pixels 

occupied large areas in the central and the east-central section. Small areas of negative trends 

are distributed in the north and in the south of the study region. Most parts of them are located 

in desert and semi-desert zones. These vegetation types exhibited high percentage of pixels 

with a downward trends in summer NDVI, 10.01 % and 9.81 %, respectively. The pixels with 

downward trend in summer NDVI may represent severe degraded areas which are associated 

with a vegetation cover decreasing over the period 1982-2003. 
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In autumn, positive NDVI trends were observed only for a little part of the total pixel 

number, 2.93 %. Relatively high percentage of pixels with increasing autumn NDVI was 

observed in steppe grassland, 6.55 %. For other land-cover types, the percentage of pixels 

with a positive trend is very low. NDVI increasing trends were mostly found in the southern 

stripe of the region, and only densely in the north (data not shown). There were not any 

significant downward trends in autumn NDVI.  

 
Table 10.2. Number of pixels with significant upward trends in growing season, spring, summer, and 
autumn NDVI for individual vegetation types and for the area average. 

 
Growing 

season NDVI 
Spring 
NDVI 

Summer 
NDVI 

Autumn 
NDVI 

Vegetation type Total 
pixels 

Pixels % Pixels % Pixels % Pixels % 
Desert 3967 470 11.85 1036 26.12 195 4.92 43 1.08
Semi-desert 9458 1816 19.20 1266 13.39 558 5.90 162 1.71
Short grassland 9101 3697 40.62 5216 57.31 3043 33.44 324 3.56
Steppe grassland 3586 1356 37.81 2677 74.65 1585 44.20 235 6.55
          
Area average 26112 7339 28.11 10195 39.04 5381 20.61 764 2.93

 
 
Table 10.3. Number of pixels with significant downward trends in growing season, spring, and 
summer NDVI for individual vegetation types and for the area average. 

 
Growing 

season NDVI 
Spring NDVI Summer 

NDVI 
Vegetation type Total 

pixels 
Pixels % Pixels % Pixels % 

Desert 3967 190 4.79 294 7.41 397 10.01 
Semi-desert 9458 445 3.65 670 7.08 928 9.81 
Short grassland 9101 284 3.12 76 0.84 621 6.82 
Steppe grassland 3586 220 3.35 2 0.06 230 6.41 
        
Area average 26112 1139 4.36 1042 3.99 2176 8.33 
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(a)  (b)  (c)  
 
Figure 10.1. Areas of statistically significant linear trends of NDVI in the study region from 1982 to 
2003. Areas with upward trends are coloured green. Red indicates areas with downward trends: (a) 
Growing season, (b) spring, (c) summer. 

 
 

10.3. Effects of precipitation and temperature on NDVI trends 

10.3.1. Effects of climate on changes in spatially averaged NDVI 
 

Inter-annual relationships between spatially averaged NDVI and climate parameters 

have been described in sections 7.2.1 and 7.2.2. At this place, we give only a brief 

concretisation concerning the significant trends. All analysed correlations at the scale of 

individual vegetation types exhibited a positive value which means a general improvement of 

vegetation cover in the study region driven by the climate change. This agree with the results 

of section 5.3.2 which has investigated trends in precipitation and temperature. Even though 

the most trends in climatic factors were relatively weak and statistically insignificant, their 

direction corresponds to trends in NDVI and they may be considered to be the major driving 

force in the long-time change in vegetation cover. The correlation analysis between inter-

annual NDVI and the corresponding precipitation and temperature data brought evidences for 

this appraisal.  

Taking into account that not all vegetation types exhibited significant trends in NDVI, 

the results clearly indicate strong explanation of significant vegetation changes by climate 

effect at the scale of spatially averaged data. Both precipitation and temperature are 

considered to be driving forces for trends in NDVI of individual vegetation types but the 

response of vegetation cover to temperature was stronger than that to temperature. For the 

study area average, the correlation coefficient between spring NDVI-temperature amounted to 

0.84, whereas between growing season NDVI-precipitation r = 0.65. There were significant 

correlations also between trends in summer NDVI and summer precipitation for the entire 
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area and for two vegetation types, short grassland and steppe, with value of correlation 

coefficient 0.58, 0.56 and 0.68, respectively.  

 

10.3.2. Spatial patterns in climate effects on NDVI trends  
 

The correlation analysis was repeated for every pixel with significant trends in NDVI 

over the study period. Then, the percentage of pixels with significant trend that can be 

attributed to the climatic explanatory factors, precipitation and temperature was measured 

within every vegetation type. The results clearly indicate that not all trends in growing season 

or seasonal NDVI can be associated with trends in climatic factors.  

Generally, trends in NDVI are significantly correlated with trends in climate 

parameters. Over the entire region, about 48 % of the vegetated pixels with significant upward 

trends in growing season NDVI exhibited positive correlations with growing season 

precipitation (Table 10.4). These pixels are mainly distributed in the northernmost portion of 

the region (Figure 10.2, a). The percentage of those pixels with upward growing season NDVI 

trends which may be attributed to the inter-annual change in precipitation was 60.91 %. More 

than a half of the downward trends remained explained by rainfall.  

The observed trends in summer NDVI depended stronger on trends of the precipitation 

amount. Taken together, 58.17 % of all pixels with a significant trends in summer NDVI 

demonstrated positive correlation with summer precipitation. These pixels are mainly 

distributed over a swath of land from north-west to south including small areas in the middle 

part of the study region (Figure 10.2, b). Compared with growing season rainfall, summer 

rainfall plays major role in explaining the greening pattern through 1985-2003. On the 

contrary, for the pixels with significant downward trends, summer rainfall makes a smaller 

contribution to decrease of NDVI than growing season rainfall does. It contributed to 39 % of 

all decreasing NDVIs.  

For all vegetated pixels with a significant upward trend in NDVI, 78.14 % exhibited 

positive NDVI-temperature correlations for the spring season. These pixels are distributed 

throughout the study region but most of them occupy the northernmost and southern portion 

(Figure 10.2, c). Over the entire study area, 1042 pixels exhibited significant downward 

trends in spring NDVI. About 90 % of these pixels demonstrated correlation with spring 

temperature. These pixels are only situated in the surroundings of the meteorological station 

Aktogay where a decrease of spring temperature was observed (see section 5.3.2).  
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Taking into account the relatively low percentage of upward pixels correlating with 

precipitation, 47.88 % and 58.17 % for growing season and summer, respectively, the 

growing season trend in NDVI in the study region may be entirely attributed to other factors 

such as the increase in spring temperature or anthropogenic impact. A general decrease of 

human influence in the study region may be a driving force for rehabilitation of ecosystems 

and, correspondingly, for the observed upward trends in NDVI. The negative trends 

demonstrated relatively good explanation by precipitation of growing season and low by that 

of summer, with pixel percentage of 60.91 % and 38.97 %, respectively. That is because of 

the mostly anthropogenic origin of these vegetation decreases. Most of the areas of negative 

trends in growing season and summer NDVI are located closely to settlements where after the 

year 1991 they were intensively used for pasture or crop production and show at Landsat 

images clear sings of overgrazing or soil degradation.  

 
 
Table 10.4. Total number of pixels with significant upward or downward trend and number of pixels 
which trends are explained by climate change for growing season, spring and summer.  

 
Growing season NDVI Spring NDVI Summer NDVI NDVI 

trends Pixels explained by 
precipitation 

% Pixels explained by
temperature

% Pixels explained by 
precipitation 

% 

Upward 7339 3514 47.87 10195 7165 78.14 5972 3474 58.18
Downward 939 572 60.91 1042 937 89.96 3507 1367 38.95
 
 
 

(a) (b) (c)  
 
Figure 10.2. Distribution of trends in NDVI that are driven by trends in climate parameters. Coloured 
areas represent those pixels with both statistically significant (p < 0.05) trends in NDVI and 
statistically significant (p < 0.05) correlation between NDVI and precipitation or temperature. Green 
areas indicate upward trends and red areas indicate downward trends. (a) Growing season, (b) spring, 
(c) summer. 
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10.4. Vegetation changes which are not explained by climate 

10.4.1. Spatial patterns in NDVI trends not explained by rainfall and temperature 
 

The results of the preceding section showed that there are large areas for which 

significant increases in NDVI were not explained by temperature or, particularly, 

precipitation. For example, the upward trends in growing season NDVI were explained only 

to about 48 % by precipitation, the upward trends in summer NDVI to 58 %. The explanation 

degree of downward trends was higher for the growing season NDVI and lower for the 

summer NDVI. Undoubtedly, the unexplained trends were driven by other forces which are 

not associated with climate change in the study region.  

Spatial patterns of the unexplained trends are presented in Figure 10.3. These 

geographical areas that exhibit both strong trends in NDVI and insignificant correlation with 

precipitation or temperature required closer examination. Four test sites which showed 

negative trends both in growing season and summer NDVI were selected for a closer analysis 

and examination of possible causes of their vegetation change which follow in the next 

section. 

 

(a) (b) (c)  

 

Figure 10.3. Distribution of trends in NDVI which are not explained by climate factors. Coloured 
areas represent those pixels with statistically significant (p < 0.05) trends in NDVI and insignificant 
correlation between NDVI and climatic parameters. Green areas indicate upward trends and red areas 
indicate downward trends. (a) Growing season, (b) spring, (c) summer. Panel (a) also displays location 
of the four test sites. 

 

10.4.2. Verification of results and explanation of trends induced by non-climatic 
factors  
 

The most efforts for finding explanations for non-climatic NDVI trends were focused 

on sites with significant negative trends. Essentially, four characteristic explanations of these 
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trends which are not coupled on climatic factors could be found. A number of test sites were 

examined and four sites were selected for discussion and presentation of these explanations. A 

description of the sites shown in Figure 10.3 (a), including general results for each site will be 

given below: 

 

1. The first site reveals wide areas of degraded soil due to long-time use for crop 

production. The ground surface of this site is characterized by a high reflectance in the visible 

bands of Landsat TM and Landsat ETM (Figure 10.4). A field survey in 2004 brought 

evidences for process of land degradation there. Analysis of a Landsat MSS image from 1975 

proved a great expansion of the area used for crop production between 1975 and 1992. The 

constitutional change in 1991 did not shown any influence on the land use there, the crop 

fields remained in extensive use. The process of soil degradation which has begun in the time 

between 1975 and 1992 continued currently. This process combined with decreasing 

vegetation cover resulted in negative trends in NDVI over the period 1982-2003.     

 

 

Figure 10.4. Landsat TM image of the first test site. Time of acquisition is July, 1992. RGB = Band 
4,1,2. 

 
 

2. The second test site is located in the mid part of the study region in an area with a 

well developed drainage network and reveals clear signs of soil degradation due to water 

erosion. A comparison of Landsat MSS and Landsat TM images confirmed a great increase of 

degraded areas between the years of image acquisitions. This area was used as pasture since 

about 1950; therefore, one may assume livestock concentration as a cause for degradation of 

vegetation cover and soil erosion. But most of the degradation is associated with the area 

around a settlement in the south-eastern part of the Landsat image (Figure 10.5). Probably, the 

degradation degree around the settlement increased after the constitutional change, because of 

abolishment of the pasture system which had functioned during the Soviet Era. Since 1991, 
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the shepherds do not undertake long outstrips with their herds and let the livestock graze the 

territory close to settlements. This leads to rapid exhaustion of pastures and starts on process 

of degradation.   

 
 
Figure 10.5. Test site 2 on the Landsat TM image. RGB = Band 4,1,2. 

 
 

3. Generally, the trends associated with the introduction or abandonment of agriculture 

are much larger and clearer than those associated with degradation of rangeland or cropland 

(Evans & Geerken, 2004). Test site 3 support this assumption. Using multi-temporal Landsat 

data, abandonment of fields can easy be monitored from the pattern of field structures and 

their disappearance. Figure 10.6 displays three Landsat images of this site. Crop fields are 

clearly to be seen on the first two images. There are undoubted sings of expansion of existing 

crop fields and establishment of new cultivated areas between 1975 and 1992. In the image 

from 2001 sings of cultivation disappeared entirely at many places and smoothed at all others. 

This site was checked out in 2005. Several abandoned crop plots were observed in the field. 

An interview with local authorities revealed a gradual abandonment of these fields since 

1994-1995. Accordingly to Evans & Geerken (2004), former cultivated areas typically display 

exceptionally low NDVI values in the years following their abandonment. Destruction of seed 

banks and the uprooting of the natural shrub and grass cover through ploughing cause a 

negative NDVI trend.  
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(a) (b) (c)  

Figure 10.6. Test site 3. (a) Landsat MSS image from 1975, RGB = Band 4,1,2. (b) Landsat TM image 
from 1992, RGB = Band 4,7,2. (c) Landsat ETM+ image from 2001, RGB = Band 4,7,2. The 
corresponding NDVI series are displayed in Figure 10.7.  

 
 

 
 
Figure 10.7. Time-series of growing season NDVI during 1982-2003 averaged over the third test site.  

 

We can look at NDVI time-profile of this site, in order to understand changes 

occurring with the vegetation cover (Figure 10.7). During the years 1982-1993, NDVI of site 

3 showed values above 0.30, even though exhibited high inter-annual variability. There was a 

weak increase in NDVI over this period. The NDVI abruptly dropped after 1993 and was 

decreasing during the next 6 years. Then, in 2002 there was a high jump of NDVI values 

followed by a drop in 2003. By analysis of Landsat images coupled with ground site 

observation and interview with local authorities, the history of vegetation cover could be 

restored and the negative trends in NDVI could be explained. The site had been extensively 

used for wheat-grass production throughout 1982-1993. During this time, significant 

extensions of crop fields were made at the expense of the surrounding areas. There were no 

sings of land degradation or desertification on the Landsat MSS and TM images. The wheat 

yield had strongly correlated with annual precipitation amount. This can be assumed from 

comparison of the NDVI profile in Figure 10.7 with precipitation data. The dry years 1985, 

1991, 1995 are associated with low values of NDVI. In 1994, the abandonment of the fields 
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went on. But not all fields were abandoned simultaneously. Some fields were ploughed and 

sowed until 2001. This abandonment progressed from year to year; it means that more and 

more fields grew fallow land. In 2002, the greatest part of the fellow land was ploughed and 

sowed again. A strong enhance of NDVI is associated with this year.  

For this site, the analysis results revealed a general decrease in vegetation activity by 

giving up the cultivated land. This is not in agreement with the results from Chapter 8 which 

postulated an increase in vegetation response to precipitation in an abandoned cultivated area, 

but agrees with the results reported by Evans & Geerken (2004) for Jordanian dryland. There 

is a large distinction between the plot reported in Chapter 8 and this test site. The first was 

degraded because of agricultural use and the second was not. This distinction may be a reason 

of different behaviour of vegetation cover after land use change. After the abandonment, the 

vegetation cover of the degraded plot was rapidly conquered by hardly grass and shrub 

species with domination of Artemisia and Agropyron, because of a general bad adaptation of 

cultural plants to the conditions of degraded land. The invader species can develop a higher 

over-ground biomass under the same conditions. Due to that, we observed increasing response 

of vegetation to precipitation. On the contrary, abandonment of the non-degraded cultural 

land manifested itself in low NDVI values as it was explained above.  

 

(a) (b)  

Figure 10.8. (a) Landsat TM image of test site 4. (b) Landsat ETM+ image. RGB = Band 4,7,2. 

 
 

4. This site reveals areas of sparse vegetated surface on a foothill in the southern part 

of the study region. These almost bare surfaces occupy most part of the alluvial fan of a small 

river streaming from the north-east to the south-west. Figure 10.8 displays satellite images of 

this site from 1992 and 2001. The area is characterized by very high reflection in visual bands 

of Landsat satellite. On the Figure 10.8, the sparse vegetated areas display very high 

brightness values.  

Depositions on the alluvial fan are steadily renewed and this prevents development of 

a dense vegetation cover. The density of the vegetation cover depends on the amount of 
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alluvial material which is transported by the river into the fan. The larger this amount is the 

scarcer is the vegetation cover. The amount of alluvial material depends on runoff of the river. 

One can propose that the runoff slightly increased during the period 1982-2003 because of a 

positive trend in precipitation amount in the study region (see Chapter 5). This means an 

increase of material transport. This resulted in a decrease of vegetation cover in the alluvial 

fan area.  

In the case of test site 4, we notice with an indirect effect of climate on vegetation 

cover. The precipitation increased at another place far from this site but the effect of its 

increase has been yielded here. The place of the precipitation increase is teleconnected with 

the site 4 through the river system.  

 

10.5. Human-induced change in vegetation cover in areas without significant 
NDVI trends 

10.5.1. General approach 
 

In areas where there were no statistically significant trends in NDVI over the study 

period, the changes in vegetation cover were determined with the approach described in 

section 4.6.3. This approach based on removing of the climatic signal from the NDVI time 

series and estimating changes in the remained noise. The remained noise is considered to 

present anthropogenic impact on the long-time NDVI trends.  

The quintessence of this approach considers a change in response of vegetation cover 

to climatic factors by change in degree of anthropogenic impact. This phenomenon has been 

investigated in section 8.3.2 where the long-time trends in NDVI-precipitation relationship 

and their linkages to land use/land cover were examined. Strong associations between the 

correlation coefficient and the human impact on the vegetation cover were found.  

An investigation of the long-time response of vegetation to climatic factors can help to 

detect pixels undergoing change in vegetation cover. This investigation was made through 

observation of the deviations from the regression between NDVI and one or two climatic 

factors calculated for every years from the study period. The regression line was understood 

as the climatic signal. Deviations of the observed NDVI values from the values of NDVI 

predicted by the regression was understood as indicators of the vegetation response to climate. 

Thus, positive any deviation indicates better response while any negative deviation indicates 

worse response. If there is a trend in the deviations over the time, then a change in the 
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response of vegetation to the given climatic factor is present. This means that a change in 

vegetation cover caused by anthropogenic influence is evident.  

An examples for one linear regression between NDVI and precipitation is shown in 

Figure 10.9, with the linear regression describing the expected  for any particular 

rainfall amount. Figure 10.9 (a) shows a strong relationship between NDVI and precipitation, 

above 61 % of all variations in NDVI are explained by precipitation. But the observed NDVI 

values show distinct deviations from the linear regression, suggesting that at times they 

respond better or worse to the precipitated rainfall amounts. After arranging the residuals in 

their temporal order (Figure 10.9, b) there is a clear negative trend indicating an increasingly 

worse response of NDVI to rainfall. If this trend is statistically significant, it would indicate 

an area experiencing human-induced degradation.  

predNDVI

 

(a) (b)  

Figure 10.9. Linear regression between growing season precipitation and NDVI (a), and the temporal 
trend of associated residuals (b). 

 

 

10.5.2. Implementation of the suitable regression models for identification of the 
climatic signal 
 

Chapter 6-9 demonstrated a distinct relationship between NDVI and the climatic 

parameters at all possible temporal and spatial scales. This relationship was modelled using 

spatial and temporal models. The spatial modelling was carried out at all scales from the 

regional to the local using different techniques, the ordinary least squares regression and the  

geographically weighted regression. The results of these chapters exhibited that the inter-

annual climatic signal in the NDVI time series is strong and statistically significant for 

defined combinations of NDVI and climate data.  

Different regression models were tested for discrimination between human- and 

climate-induced changes in vegetation cover in the areas where no significant trends in NDVI 
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were found. The results of these regression models were compared and evaluated in order to 

find the most suitable for this task. The criteria for model evaluation were the following:  

o Goodness-of-fit statistic expressed in the correlation coefficient, r, or 

determination coefficient, R², 

o The accuracy of the prediction expressed in standard error of estimation, SE, 

o Spatial distribution of the model residuals. The measure for 

patterns/randomness of this distribution was the Moran’s I autocorrelation.  

  

Further, the tested models will be presented and briefly discussed.   

 

 

(a) Spatial models based on the global ordinary least squares (OLS) regression 
 

The results of calculations for every year from 1985-2001 are shown in Table 10.5. 

The correlations coefficients vary from year to year, but the general nature of the relationships 

appeared relatively stable. A multiple regression equation for each year was calculated to joint 

the explanatory variables for estimation of NDVI distribution throughout the study region. 

The mean coefficient of multiple correlation is 83.0=R . The contribution of rainfall to the 

multiple correlation coefficient ( 43.0. =cabr ) is less than that of temperature ( ). 

The presence of multicollinearity produced serious problems for statistical analysis and 

prediction based on regression models. It results in extremely unstable regression parameters 

and makes the prediction very uncertain. Because the stepwise selection is not applicable to 

the model with multicollinearity, the ridge standardized regression procedure was used to 

eliminate multicollinearity and select useful predictors from the full model.  

51.0. −=bacr

Ridge standardized regression estimators were obtained by introducing a non-negative 

constant into the least square normal equation (Hoerl & Kennard, 1970). This makes the 

predictors nearly orthogonal and the coefficients less variable. At the end effect, this 

eliminates multicollinearity. 
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Table 10.5. Simple, partial and multiple correlation coefficients between NDVI and explanatory variables for period 1985-2001. 

 
Year  

abr * 
 

acr  
 

bcr  
 

adr  
 

cabr .  
 

bacr .  
 

dabr .  
 

dacr .  
 

abcR  
 

abdR  
  

acdR  
Multiple regression  
equation** 

1985 0.76          -0.82 -0.79 0.53 0.41 -0.41 0.35 -0.11 0.81 0.77 0.79 NDVI=0.00125*P-0.0283*T+0.31
1986 0.81          -0.79 -0.69 0.60 0.54 -0.59 0.41 -0.15 0.87 0.83 0.79 NDVI=0.00164*P-0.0301*T+0.43
1987 0.76          -0.83 -0.84 0.51 0.48 -0.25 0.43 -0.29 0.82 0.77 0.81 NDVI=0.00101*P-0.0302*T+0.40
1988 0.65          -0.81 -0.57 0.58 0.54 -0.42 0.45 -0.08 0.77 0.74 0.71 NDVI=0.00102*P-0.0353*T+0.44
1989 0.81          -0.85 -0.79 0.55 0.41 -0.49 0.48 -0.19 0.85 0.82 0.79 NDVI=0.0011*P-0.0249*T+0.441
1990 0.84            0.82 -0.9 0.53 0.18 -0.45 0.43 -0.23 0.84 0.82 0.80 NDVI=0.00127*P-0.0368*T+0.45
1991 0.75         -0.81 -0.82 0.48 0.25 -0.41 0.27 -0.2 0.76 0.75 0.71 NDVI=0.00114*P-0.0257*T+0.40
1992 0.71          -0.83 -0.86 0.47 0.33 -0.23 0.37 -0.16 0.74 0.71 0.74 NDVI=0.0010*P-0.0187*T+0.261
1993 0.7          -0.82 -0.75 0.62 0.56 -0.26 0.4 -0.15 0.81 0.77 0.79 NDVI=0.0011*P-0.0184*T+0.285
1994 0.67          -0.80 -0.72 0.55 0.52 -0.28 0.38 -0.15 0.77 0.72 0.75 NDVI=0.0012*P-0.027*T+0.364
1995 0.72           -0.76 -0.7 0.38 0.39 -0.45 0.42 -0.17 0.77 0.72 0.74 NDVI=0.0016*P-0.0295*T+0.378
1996 0.83           -0.80 -0.7 0.48 0.42 -0.64 0.49 -0.1 0.86 0.83 0.81 NDVI=0.0009*P-0.0354*T+0.51
1997 0.67          -0.84 -0.71 0.29 0.18 -0.34 0.31 -0.13 0.68 0.57 0.52 NDVI=0.001*P-0.0253*T+0.36
1998 0.78          -0.77 -0.64 0.52 0.54 -0.58 0.63 -0.16 0.85 0.82 0.76 NDVI=0.0014*P-0.0349*T+0.45
1999 0.67          -0.82 -0.74 0.5 0.51 -0.25 0.28 -0.16 0.76 0.68 0.72 NDVI=0.001*P-0.0351*T+0.53
2000 0.91          -0.84 -0.61 0.48 0.62 -0.86 0.82 -0.14 0.94 0.93 0.81 NDVI=0.0011*P-0.0358*T+0.5
2001 0.83           -0.77 -0.7 0.46 0.42 -0.64 0.49 -0.1 0.86 0.83 0.81 NDVI=0.00114*P-0.031*T+0.43
Mean 0.80          -0.82 -0.81 0.51 0.43 -0.51 0.45 -0.11 0.83 0.78 0.76 NDVI=0.00125*P-0.0282*T+0.31
 
Comments: 
 * r is the simple or the partial correlation coefficient, R is multiple correlation coefficient, the small letters a, b, c represent NDVI, rainfall, 
temperature and altitude; the point between two letters in partial coefficients signs that the variable standing after the point is excepted,  
** in the equations of multiple regression letters P and T represent total precipitation and mean air temperature of growing season (April-October).
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 (b) Spatial models based on the geographically weighted regression (GWR) 
 

The superiority of the GWR over the conventional spatial regression model is proved 

and discussed in Chapter 9. The advantage of the GWR is its local approach to analysing 

relationship between spatial variables. This enables to use the non-stationarity in the 

relationship for better prediction. The results of the GWR from the 1-km data modelling 

showed a large improvement of the model accuracy in comparison to the OLS modelling. 

This improvement was expressed in a significant decrease of the SE and elimination of the 

patterns in the regression residuals.  

 

 (a) (b)  

(c) (d)  

Figure 10.10. Parameters of the GWR between NDVI and precipitation related to year 1988. (a) shows 
the slope, (b) the intercept, (c) the determination coefficient, R², and (d) the spatial distribution of the 
residuals of the regression. 

The GWR models were also computed using the 8-km data for every year from the 

study period. An example of the GWR parameters is presented in Figure 10.10. Note the 

values of the goodness-of-fit statistic shown in Figure 10.10 (c). In comparison to the results 

of the OLS model (Table 10.5), the values of the R² obtained for the GWR are significantly 

larger. The using standard error of estimation, SE, as a guide to accuracy of the prediction 

also revealed advantage of the GWR. For the OLS modelling SE averaged throughout the 18-

year period showed a value of 0.018, while for the GWR only 0.008.  
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 (c) Temporal models   
 

The inter-annual and inter-seasonal relationship between time series of NDVI and the 

corresponding time series of the climatic parameters was not as strong as the spatial 

relationship (compare Chapter 7 and 8). At the per-pixel scale, the results of modelling 

indicate that not all pixels exhibit significant relationship between NDVI and the climatic 

factors. Figure 10.11 displays the results of the temporal regression model between growing 

season NDVI and growing season precipitation on concurrent basis. About 42 % of all pixels 

demonstrated significant correlation coefficient with growing season rainfall, the percentage 

of pixels with significant correlation between summer NDVI and summer precipitation is else 

less, only 15 % (Section 7.2.3, Table 7.2). The percentage of pixels with significant 

correlation was higher for the relationship between spring NDVI and spring temperature, 75 

% of all vegetated pixels. The most areas of desert and a large part of semi-desert showed no 

significant correlation with any of the climatic predictors. This means that the use of temporal 

models with only one explanatory variable for identification of the climatic signal is 

problematic.  

 
 
Figure 10.11. Results of the temporal regression between growing season NDVI and precipitation for 
the period 1985-2003. The images show the spatial variation in (a) the intercept, (b) the slope 
parameter, and (c) the local estimate of the coefficient of determination (R²). 

 

Figure 10.12. Goodness-of-fit statistic, R², for the multiple regression incorporating NDVI and the 
both climatic parameters, precipitation and temperature. 
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The deficiencies of the temporal model could be diminished or fully overcome 

through a combination of the both climatic parameters in a multiple regression equations. 

Application of the multiple temporal regression increased the prediction power of the model 

and significantly enlarged the areas with significant relationship. After applying the multiple 

model, about 92 % of all vegetated pixels showed values of the R² above 0.30 (Figure 10.12). 

 

10.5.3. Modelling the climatic signal in the inter-annual NDVI time series 
 

In the preceding section, three model types were described regarding their suitability 

for identification of the climatic signal in the inter-annual NDVI time series. In spite of 

differences in the goodness-of-fit statistic and prediction accuracy between the models, all 

models were found to be suitable for fulfilling this task. Using these regression models, 

predicted NDVI values were computed for every pixel and every year. To give an example, 

Figure 10.13 shows maps of the for every year from 1985-2000 computed by the 

multiple temporal regression model. Similar maps were obtained after application of the 

spatial OLS model and the GWR model. The represent the regression line, e. g. the 

climatic signal for every defined year. The real values of NDVI can deviate more or less from 

this regression line. The magnitude of this deviation observed in each defined year depends on 

the response of the vegetation cover to the climatic predictors. The differences in spatial 

patterns of observed and predicted NDVI values are expressed in residuals images. The 

residuals images were obtained for every model and for every year.  

predNDVI

predNDVI

 

Figure 10.13. Maps of growing season NDVI predicted by the temporal multiple regression modelling. 
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As it was shown in section 9.2.4, spatial distribution of the model residuals contains 

information about the accuracy of the model prediction. If the residuals exhibit any clear 

spatial patterns, then the accuracy of the model is low and the standard error is 

underestimated. The best model should show a random distribution of the residuals over the 

space. The Moran’s I has been commonly used as a guide to estimation of the residuals 

autocorrelation. Section 9.2.4 also demonstrated that the calibration of the local model based 

on the GWR approach disaggregates spatial patterns in the model residuals and reduces the 

spatial autocorrelation of the residuals.  

In order to select the most appropriated model for detection of the climatic signal, the 

maps of the residuals from the three model types were examined for spatial autocorrelation. 

The temporal regression model represents a kind of a local regression model too. This model 

is fitted at each pixel individually. Theoretically, the temporal model should exhibit a near 

random distribution of the residuals. Figure 10.14 displays autocorrelograms of the residuals 

from the three models related to 1985. As expected, the error terms are most strongly 

autocorrelated for the global OLS model. The OLS model residuals had significant spatial 

autocorrelation up to over 25 pixels. In comparison, for the GWR model residuals, distance 

lag of significant positive spatial autocorrelation was found to be 10 pixels. Similar results are 

shown by the multiple temporal regression model. It suggests that the calibration of local 

model reduces the problem of spatially autocorrelated error terms. Both the GWR and the 

multiple temporal model demonstrate the good ability to deal with spatial non-stationary 

problems. If only the global OLS model fitted at the regional scale represents the relationship 

between NDVI and climatic factors relatively good, but the use of it is undesirable in the case 

of modelling the inter-annual climatic signal at the local scale.  

 

 

Figure 10.14. Spatial autocorrelograms for residuals from the spatial OLS model, the multiple 
temporal model and the GWR model. Distance lag is measured in pixel. 
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10.5.4. Identification of areas experiencing human-induced vegetation change 
 

In this study, the GWR was used for modelling the climatic signal in the inter-annual 

time series of NDVI.  The residuals from the annual GWR models represents the remained 

anthropogenic noise in the NDVI time series after removing the climatic signal. In order to 

detect areas experiencing human-induced change in vegetation cover, the time-trend of the 

residuals was computed for every pixel. Figure 10.15 shows where statistically significant 

trends in regression residuals are taking place. The residuals with positive trend are widely 

distributed in the northern part of the study region within areas of steppe grassland. There are 

only three small spots with negative trend in residuals. The most residual trends are observed 

in areas without any significant trend in NDVI over the study period. This may have two 

explanations:  

 

o these areas experienced improvement of vegetation cover in spite of absence of 

any significant NDVI trends, 

o these areas exhibited no trends in vegetation cover in spite of decreasing 

precipitation amount over the study period. Hypothetically, this case would 

also indicate an improvement of vegetation cover (see Section 4.6.3 and Figure 

4.3).   

 

The both explanations consider human impact on the vegetation cover as the reason 

for improvement of vegetation which can not be driven by the climate.  

 

(a) (b)  

Figure 10.15. (a) Significant trend in residuals from the GWR model 1985-2003. Green indicates areas 
with upward trends, red indicates areas with downward trends. (b) Intersect of the (a) with the trends 
in growing season NDVI. The map displays areas with both significant trend in GWR residuals and 
significant trends in growing season NDVI over 1982-2003. 
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But many pixels with trend in residuals are located within the sectors which exhibit 

trends in growing season and spring NDVI (Figure 10.15, b). These pixels represent areas 

where magnitudes of trends in NDVI and precipitation show high discrepancy. This case is 

described in Section 4.6.3. The magnitude of the NDVI increase is much higher than that of 

the precipitation increase. This case may indicate an improvement of vegetation cover due to 

a rapid reduce of the human impact. It is known that such a reduce of the anthropogenic 

influence was taking place in the study region after the constitutional change in 1991 (see 

Section 2.5 and 2.6). This supported the hypothesis about an anthropogenic reason for the 

trend in regression residuals derived from the GWR modelling.  
 

(a) (b)  

  

Figure 10.16. Comparison of two subsets from Landsat TM (RGB = Band 4,1,2) and Landsat ETM+ 
(RGB = Band 4,1,2) showing the expansion of wheat cultivation into the steppe grassland between 
years (a) 1992 and (b) 2001. Clear signs of land degradation are to see in image (b). 

 
A few number of places has not experienced any reduce of the anthropogenic 

influence during the last decade of 20th century. On the contrary, the expansion of cultivated 

field was observed for some sites during this time. One of such sites is shown in Figure 10.16. 

This site represents the northernmost spot with downward trend in regression residuals shown 

in Figure 10.15 (a). Expansion of agriculture and followed land degradation is responsible for 

negative trend in regression residuals.  

 

10.6. Discussion and conclusion 
 

Sections 10.2 and 10.3 investigated trends in vegetation activity over the period of 

1982-2003. The results of these investigations are in agreement with other published reports 

on trends in vegetation activity over the last two decades undertaken at the global and regional 
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scales (Muneni et al, 1997; Tucker et al, 2001; Zhou et al, 2001; McCloy et al, 2005). The 

results indicate a 6.46 % increase in growing season NDVI in the study region between 1982 

and 2003. The magnitude of the greening trend in the study region is consistent with trends 

reported for the northern high latitudes in Eurasia and North America by Tucker et al. (2001) 

and by Zhou et al. (2001), as well as for China by Xiao & Moody (2004).  

About 28 % of all vegetated pixels exhibited statistically significant positive trends in 

growing season NDVI. Areas with negative trends in growing season NDVI were also 

calculated and measured. The percentage of these areas is 4.36 %. The percentage of area 

with trends in growing season NDVI varied significantly according to land-cover type. It is 

particularly high for short grassland and steppe grassland. Above 48 % of all pixels with the 

positive trend in growing season NDVI exhibited strong correlation with precipitation. The 

analysis of the relationship between NDVI and climatic factors for the pixels with negative 

trends showed higher determination of that by precipitation, more than 60 % of all pixels with 

downward trend exhibited significant correlation with precipitation.  

All vegetation types demonstrated significant upward trends in spring NDVI between 

1982 and 2003. The general magnitude of this trend was higher than that for the growing 

season or for summer. The significant upward trend in spring NDVI occurred in 39 % of the 

total vegetated area but the percentage varied by land-cover type. The highest percentages 

were observed in short grassland and steppe with values of 57 % and 74 %, respectively. For 

78 % of this area, positive trends were correlated with spring temperatures. The results from 

spring support the suggestion about a high increase in early-season vegetation activity and its 

strong prediction by temperature established in the recent literature (Tucker et al, 2001; Zhou 

et al, 2001; Xiao & Moody, 2004).   

 Totalled over the entire area, about 20 % of all vegetated pixels experienced 

significant upward trend in summer NDVI whereas 8 % of all pixels exhibited downward 

trend. Most of the areas with these trends were explained by climate change, over 58 % of 

pixels with positive trend demonstrated strong correlation with precipitation. The negative 

trends in summer NDVI were explained in 38 % of all cases.  

There were large areas for which increases or decreases in vegetation activity could 

not be explained by climatic factors, especially concerning trends in growing season and 

summer NDVI. It is clear that spring NDVI is the main contributor to the general greening 

trend in the study region and the driving factor for this trend is the spring temperature. But the 

other large contributor to the growing season trends, summer NDVI, does not seem to be 

clearly explained by climate. Particularly, this concerns the negative trends in summer NDVI. 
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Most areas with these unexplained trends are located in semi-desert and steppe zone of the 

study region. It may be suggested that the trends in NDVI in these land-cover types were 

mainly driven by land use change between 1982 and 2003. After the collapse of the socialistic 

economical system in 1991, numerous crop fields were abandoned, the number of cattle and 

sheep declined by about 60%. The rapid diminishing of human impact made possible an 

improving of vegetation cover throughout the pasture and crop lands possible lead to the 

massive increase in NDVI.  

In section 10.4, the technique allowing the monitoring trends in vegetation cover 

triggered by human-impact was presented and discussed. This technique used the calculations 

of trends from the preceding sections. Trends which demonstrated no correlation with climatic 

factors were considered to present non-climatic (human-induced) change in vegetation cover. 

The areas of these trends were measured and mapped. Areas with degrading trends were 

checked carefully to prove their anthropogenic cause. Four defined areas where change in 

vegetation cover has been verified by independent methods (Landsat image interpretation, 

ground site observation) were presented and described. For three of these test sites, human 

impact was proved to be a driving force for change in vegetation cover during the study 

period. As shown, negative trends can be linked to degrading or abandoned cultivated land as 

well as to soil erosion due to overgrazing around settlements. For the fourth site, an indirect 

climate influence was revealed. The climate change affected the vegetation cover of the fourth 

site through teleconnection with the alluvial fan of a river system. In three of four cases, the 

verification of the results proved the hypotheses about human impact as the driving force for 

change in vegetation activity.   

Section 10.5 illustrated the application of the GWR technique to assessment of human-

induced changes in vegetation cover in the areas: 1. where trends in NDVI were insignificant 

or default, 2. where trends in NDVI and the climatic parameter showed a high discrepancy in 

magnitude. This technique based on modelling the climate signal in the inter-annual NDVI 

time series. Three different models between NDVI and climatic factors were compared and 

evaluated concerning the identification of the climatic signal. It is proved that the local 

calibration removes much of the problems of spatially autocorrelated error terms and 

significantly improves the prediction accuracy. These results agree with the results reported 

by Wang et al. (2005) and Fotheringham et al. (2002). After the modelling, the climate signal 

was removed from the NDVI time series. The remained noise in the inter-annual NDVI time 

series considered to represent human signal. This signal increasing throughout the study 

period may indicate degrading vegetation cover. On the contrary, a decreasing human signal 
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believed to indicate improving vegetation cover. The resulting maps coupled with high-

resolution Landsat imagery and field-level knowledge of the region provided a good 

framework for scrupulous analysis of causes of the vegetation change at the local scale. These 

local analyses supported the postulation about anthropogenic source of the vegetation change.  

The system of discrimination between climate- and human-induced changes in vegetation 

cover developed in this study improves significantly the models described by Evans & 

Geerken (2004) and Li et al. (2004).  
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Chapter 11 
 

11. Summary 
 

The present work is the first study on the dynamics of drylands in Kazakhstan which 

investigated the problem from different views and combined analyses at multiple time- and 

spatial scales. The study examined and modelled inter-relationship between vegetation cover 

and climate in the region of Northern Balkhash in the Middle Kazakhstan using the 

Normalized Difference Vegetation Index (NDVI) obtained from Advanced Very High 

Resolution Radiometer (AVHRR) as the proxy for vegetation activity and the climate records 

obtained from 9 weather stations. The entire spectrum of this inter-relationship, - spatial and 

temporal, at regional, sub-regional and local scale, inter-annual and within the growing 

season, - has been analysed, described and discussed. A monitoring system was developed 

and applied for the discrimination between driving forces of changes in vegetation cover. In 

this system, the noise in inter-annual time series of NDVI remained after removing the 

climatic signal was understood as anthropogenic signal in long-time change in vegetation 

cover.  

The study illustrated that satellite based vegetation reflectance data can serve as a 

good proxy for studying variability of dryland ecosystems. The use of this dataset enabled the 

extraction of temporal signals of ecosystem variations and the mapping of their spatial 

patterns. The NDVI data revealed substantial sensitivity to the climatic signal both in time and 

space and allowed the investigation of the influence of climate and human activity on the 

ecosystem.  

The study showed high temporal variability of the vegetation cover and the climatic 

parameters in the desert, semi-desert and steppe zones. The magnitude of the changeability 

increases in order from North to South when moving from steppe to semi-desert and to desert. 

The study found a strong determination of the vegetation dynamics by the climatic factors 

precipitation and temperature, both at inter-annual time-scale and within the growing season. 

Inter-annual dynamics of the vegetation cover proved to be coupled more on variability in the 

total precipitation. Within the growing season, in comparison to precipitation, the correlation 

between NDVI and temperature was higher for all vegetation types. The influence of 

temperature on the vegetation growth was huge during the early and late growing season, 

while during the mid of growing season, temperature showed no correlation with NDVI. In 

grasslands, precipitation influences strongly the plant growth during the period spring-
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summer, while in shrublands, the constantly strong influence of precipitation is only during 

the spring months.  

The study demonstrated the presence of non-stationarity in the relationship between 

NDVI and the climate. The strength of the relationship varied among vegetation types and 

geographical location. The response of the vegetation cover to precipitation and temperature 

increases when moving from desert to semi-desert and to steppe grassland. In the same 

direction the reaction time and the duration of the climate effect to the vegetation cover 

increases. Time lags associated with NDVI’s response to precipitation also increase in order 

from desert, to semi-desert and to steppe. Taking into account the non-stationarity, enhanced 

model of relationship between NDVI and precipitation was established and used for 

identification of the climatic signal in the inter-annual change in vegetation cover. 

The results exhibit significant changes in vegetation cover over the period 1982-2003 

in large areas throughout the study region. Particularly high magnitudes of changes are 

associated with spring NDVI values. The climate is an important driving force for long-time 

trends in vegetation cover in all vegetation types. The research established spring temperature 

to be the major explanatory factor for upward trends in spring NDVI throughout the last two 

decades, while the trends in growing season NDVI were mostly explained by the human 

impact and changes in precipitation amount. According to the research results, about 35 % of 

all growing season trends in NDVI are explained by climate and about 43 % by human 

impact. The rest remains unexplained.  

The maps of climate- and human-induced changes coupled with high resolution 

Landsat imagery and field knowledge of the region provided a good framework for analysis 

of the changes and the understanding their causes at the local scale. This analysis revealed the 

role of land use change in trends of vegetation cover. The cause of the significant land use 

change is considered to be the constitutional change in 1991 when the Republic of 

Kazakhstan became independent. The economical crisis that followed the independence 

reduced significantly the human impact in the most areas of the study region. This led to a 

rapid rehabilitation of the vegetation cover and upward trends in NDVI. Human-induced 

downward trends in NDVI are associated with areas of degraded lands which are used for 

crop cultivation or grazing.      

The study results improve the understanding of the nature and mechanisms of the 

ecosystem dynamics in the inner Eurasia and provide the basis for predicting changes in 

productivity that accompany changes in climate and human activity.  

  158
 



 12. References 
 

Anyamba A., Tucker C. J. & Eastman J. R. 2001. NDVI anomaly patterns over Africa during the 

1997/98 ENSO warm event. Int. J. Remote Sensing, 22: 1847-1859.   

Babaev A. G. & Kharin N. G.. 1999. The Monitoring and Forecast of Desertification Processes. In: 

Desert Problems and Desertification in Central Asia. Edited by A. G. Babaev. Springer-

Verlag, Berlin: 59-76. 

Binns T. 1990. Is Desertification a Muth? Geography, 75: 106-113. 

Brunsdon, C. F., Fotheringham, A. S. & Charlton, M. E. 1996. Geographically weighted regression: a 

method for exploring spatial non-stationarity. Geographical Analysis, 28: 281-298.  

Brunsdon, C., McClatchey, J. & Unwin, D. J. 2001. Spatial variations in the average rainfall-altitude 

relationship in Great Britain: An approach using geographically weighted regression. Int.  

Journal of Climatology, 21: 455-466.  

Budde, M. E., Tappan, G., Rowland, J. Lewis, J. & Tieszen, L. L. 2004. Assessing land cover 

performance in Senegal, West Africa using 1-km integrated NDVI and local variance analysis. 

J. of Arid Environments, 59: 481-498. 

Chen Z. M., Babiker I. S., Chen Z. X., Komaki K., Mohamed M. A. A. & Kato K. 2004. Estimation of 

Interannual Variation in Productivity of Global Vegetation Using NDVI Data. Int. J. Remote 

Sensing, 25: 3139-3159. 

Clifford, P., Richardson, S. & Hemon, D. 1989. Assessing the significance of the correlation between 

two spatial processes. Biometrics, 45: 123-134.  

Darkoh, M. B. K. 1998. The nature, causes and consequences of desertification in the drylands of 

Africa. Land Degrad. Develop., 9: 1-20. 

DeBeurs K. M. & J. Henebry. 2004. Land Surface Phenology, Climatic Variations, and Institutional 

Change: Analysing Agricultural Land Cover Change in Kazakhstan. Remote Sens. 

Environment, 89: 497-509. 

Evans J. & R. Geerken. 2005. Discrimination Between Climate and Humane-Induced Dryland 

Degradation. J. of Arid Environments, 57: 535-554. 

Foody G. M. 2003. Geographical weighting as a further refinement to regression modelling: an 

example focused on the NDVI-rainfall relationship. Remote Sens. Environment, 88: 283-293. 

Foody, G. M. 2005. Spatial nonstationary and scale-dependancy in the relationship between species 

richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol. 

Biogeogr., 13: 315-320. 

Fotheringham, A. S., Brunsdon, C. & Charlton, M. 2002. Geographically weighted regression: the 

analysis of spatially varying relationships. Chichester, Willey.  

Fotheringham, A. S., Charlton, M. E. & Brundson, C. 1996. The geography of parameter space: and 

investigation into spatial non-stationarity. International Journal of GIS, 10: 605-627. 

  159
 



Gisladottir, G. & Stocking, M. 2005. Land degradation control and its global environmental benefits. 

Land Degrad. Develop., 16: 99-112. 

Gomez-Hernandez, J., Cassiraga, E., Guardiola-Albert, C. & Alvarez R. J. 2001. Incorporating 

information from a digital elevation model for improving the areal estimation of rainfall. In: 

GeoENV III: Geostatistics for Environmental Applications. Edited by P. Monestiez, D. Allard 

& R. Froidevaux. Dordrecht, Kluwer Academic: 67-78.  

Griffith, D. A. 2003. Spatial autocorrelation and Spatial Filtering. Berlin, Springer-Verlag.  

Gurgel, H. C. & Ferreira, N. J. 2003. Annual and inter-annual variability of NDVI in Brazil and its 

connection with climate. Int. J. Remote Sensing, 24: 3595-3609. 

Gutman G., Csiszar I. & Romanov P. 2000. Using NOAA/AVHRR products to monitor El Nino 

impacts: focus on Indonesia in 1997-98. Bulletin of the American Meteorological Society, 81: 

1188-1205. 

Hellden, U. 1991. Desertification – Time for An Assessment? Ambio, Vol.20, N.8: 372-383. 

Herrman, S. M. & Huttchinson, C. F. 2005. The changing content of the desertification debate. J. of 

Arid Environments, 63: 538-555.  

Hevesi, J. A., Istok, J. D. & Flint, A. L. 1992a. Precipitation estimation in mountainous terrain using 

multivariative geostatistics. Part I: structural analysis. J. of Applied Meteorology, 31: 661-676.  

Holben, B. N. 1986. Characteristics of maximum-value composite images from temporal AVHRR 

data. Int. J. Remote Sensing, 7:1417-1434. 

Illius, A. W. & Conor, T. G. 1999. On the relevance of non-equilibrium concepts to arid and semi-arid 

grazing systems. Ecological Applications, 9: 798-813.  

IPCC, 2001. Third assessment report of the Intergovernmental Panel on Climate Change. Cambrige: 

Cambrige University Press.  

Ji, L. & A. J. Peters. 2004. A Spatial Regression Procedure for Evaluating the Relationship between 

AVHRR-NDVI and Climate in the Nothern Great Plains. Int. J. Remote Sensing, 25: 297-311. 

Justice, C. O., Townshend ,J. R. G., Holben, B. N., Tucker, C.J.,1985. Analysis of the phenology of 

global vegetation using meteorological satellite data. Int. J. of Remote Sensing, 6: 1271–1318. 

Kharin, N. 2002. Vegetation degradation in Central Asia under the impact of human activities. 

Dordrecht, Kluwer Academic Publishers. 

Kogan, F. N. 1997. Global drought watch from space. Bulletin of the American Meteorological 

Society, 78: 621-636. 

Kowabata A., Ichi K. & Yamaguchi Y. 2001. Global Monitoring of Inter-annual Changes in 

Vegetation Activities Using NDVI and its Relationship to Temperature and Precipitation. Int. 

J. Remote Sensing, 22: 1377-1382. 

Lambin E. F. & D. Ehrlich. 1996. The Surface Temperature-Vegetation Index Space for Land Cover 

and Land-Cover Change Analysis. Int. J. Remote Sensing, 17: 465-487. 

  160
 



Li, B., Tao, S. & Dawson, R. W. 2002. Relation between AVHRR NDVI and ecoclimatic parameters 

in China. Int. J. Remote Sensing, 23: 989-999. 

Li, J., Lewis, J., Rowland, J., Tappan, G., Tieszen, L. 2004. Evaluation of land performance in Senegal 

using multi-temporal NDVI and rainfall series. J. of Arid Environments, 59: 463-480. 

Lloyd, C. D. 2002. Increasing accuracy of prediction of monthly precipitation in Great Britain using 

kriging with an external drift. In: Uncertainty in remote sensing and GIS. Edited by G. M. 

Foody & P. M. Atkinson. Chichester, John Willey & Sons Ltd: 243-269.  

Los S. O. 1993. Calibration Adjustment of the NOAA AVHRR Normalized Difference Vegetational 

Index Without Resource to Component Channel 1 and 2 Data. Int. J. Remote Sensing, 14: 

1907-1917. 

Lubimtseva, E., Cole, R. Adams, J. M. & Kapustin, G. 2005. Impacts of climate and land-cover 

changes in arid lands of Central Asia. J. of Arid Environments, 62: 285-308.  

Mainguet, M. & Da Silva, G. G. 1998. Desertification and drylands development:what can be done? 

Land Degrad. Develop., 9: 375-382.  

Mainguet, M. 1999. Aridity: drought and human development. Berlin, Springer-Verlag.  

McCloy K. R., Los S., Lucht W. & Hojsgaard S. 2005. A comparative analysis of three long-term 

datasets derived from AVHRR satellite data. EARSeL eProceedings, 4: 52-70.  

McMillen, D. P. 1996. One hundred fifty years of land values in Chicago: a non-parametric approach. 

J. of Urban Economics, 40: 100-124.  

Murray, M. R. & Baker, D. E. 1991. MWINDOW: an interactive FORTRAN-77 program for 

calculating moving-window statistics. Computers & Geoscience, 17: 423-430.  

Myneni R. B., Keeling C. D., Tucker C. J., Asrar G. & Nemani R. R. 1997. increased plant growth in 

the northern high latitudes from 1981 to 1991. Nature, 386: 698-702. 

Myneni R. B., Tucker C. J., Asrar G. & Keeling C. D. 1998. Inter-annual variations in satellite-sensed 

vegetation index data from 1981 to 1991. J. of Geophysical Research, 103: 6145-6160. 

Nelzin, N. P., Kostianoy, A. G. & Li, B. L. 2005. Inter-annual variability and interaction of remote-

sensed vegetation index and atmospheric precipitation in the Aral Sea region. J. of Arid 

Environments, 62: 677-700.   

Nicholson, S. E. & Farrar, T. J. 1994. The influence of soil type on the relationships between NDVI, 

rainfall and soil moisture in Semiarid Botswana. I. NDVI response to rainfall. Remote Sens. of 

Environment, 50: 107-120. 

Nicholson, S. E. & Farrar, T. J. 1994. The influence of soil type on the relationships between NDVI, 

rainfall and soil moisture in Semiarid Botswana. Remote Sens. of Environment, 50: 107-120. 

Olsson, L., Eklundh, L. & Ardo, J. 2006. A recent greening of the Sahel – trends, patterns and 

potential causes. J. of Arid Environment, 63: 556-566.  

  161
 



Paez, A., Uchida, T. & Miyanmoto, K. 2002a. A general framework for estimation and inference of 

geographically weighted regression models: 1. Local-specific kernel bandwidths and a test for 

local heterogeneity. Environment and Planning A, 34: 733-754.  

Paez, A., Uchida, T. & Miyanmoto, K. 2002b. A general framework for estimation and inference of 

geographically weighted regression models: 2. Spatial association and model specification 

tests. Environment and Planning A, 34: 883-904.  

Pavlov, A. D. 2000. Space-varying regression coefficients: a semi-parametric approach applied to real 

estate markets. Real Estate Economics, 28: 249-283.  

Potter C. S. & Broocks V. 1998. Global analysis of empirical relations between annual climate and 

seasonality of NDVI. Int. J. Remote Sensing, 19: 2921-2948. 

Potter, C. S. & Brooks, V. 1998. Global analysis of empirical relations between annual climate change 

and seasonality of NDVI. Int. J. Remote Sensing, 19: 2921-2948.  

Reed, B. C., Brown, J. F., Vanderzee, D., Loveland, T. R., Merchant, J. W., Ohlen, D. 1994. 

Measuring phonological variability from satellite imagery. J. of Vegetation Science, 5: 703 – 

714.  

Richard Y. & Poccard I. 1998. A statistical study of NDVI sensitivity to seasonal and inter-annual 

rainfall variations in southern Africa. Int. J. Remote Sensing, 19: 2907-2920. 

Robinson, S., Milner-Gulland, E. L. & Alimaev, I. 2002. Rangeland degradation in Kazakhstan during 

the Soviet-era: re-examining the evidence. J. of Arid Environments, 53: 419-439. 

Schultz P. A. & Halpert M. S. 1995. Global analysis of the relationships among a vegetation index, 

precipitation and land surface temperature. Int. J. Remote Sensing, 16: 2755-2776. 

Shepherd, N. & Caughley, G. 1987. Options for management of Kangaroos. In: Kangaroos: their 

ecology and management in the sheep rangelands of Australia: 188-219. Edited by Caughley, 

G., Shepherd, N. & Short, J. Cambrige: Cambrige University Press. 

Sillivan S. & Rode, R. 2002. On non-equilibrium in arid and semi-arid grazing systems. J. of 

Biogeography, 29: 1595-1618. 

Song X., Saito G., Kodama M. & H. Sawada. 2004. Early Detection System of Drought in East Asia 

Using NDVI from NOAA/AVHRR Data. Int. J. Remote Sensing, 25: 3105-3111. 

Song, X., Saito, G., Kodama, M. & Sawada, H. 2004. Early detection system of drought in East Asia 

using NDVI from NOAA/AVHRR data. Int. J. Remote Sensing, 20: 3105-3111. 

Steven, M. D., Malthus, T. J., Baret, F., Xu, H. & Chopping, M. J. 2003. Intercalibration of vegetation 

indices from different sensor systems. Remote Sens. of Environment, 88: 412-422.  

Symeonakis E. & Drake N. 2004. Monitoring Desertification and Land Degradation Over Sub-

Saharan Africa. Int. J. Remote Sensing, 25: 573-592. 

Tadesse, T., Brown, J. F. & Hayes, M. J. 2005. A new approach for predicting drought-related 

vegetation stress: integrating satellite, climate, and biophysical data over the U.S. central 

plains. ISPRS Journal for Photogrammetry & Remote Sensing, 59: 244- 253. 

  162
 



Tateishi, R. & Ebata, M. 2004. Analisis of phonological change patterns using 1982-2000 Advanced 

Very High Resolution Radiometer (AVHRR) data. Int. J. Remote Sensing, 25: 2287-2300. 

Thomas D. S. G. 1997. Science and the Desertification Debate. J. of Arid Environments, 37: 599-608. 

Tiefelsdorf, M. 2000. Modelling spatial processes: the identification and analysis of spatial 

relationships in regression residuals by means of Moran’s I. Berlin, Springer-Verlag.  

Tucker C. J. & Nicholson S. E. 1999. Variations in the size of the Sahara Desert from 1980-1997. 

Ambio, 28: 587-591.  

Tucker C. J. & P. J. Sellers. 1986. Satellite remote sensing of primary vegetation. Int. J. Remote 

Sensing, 7: 1395-1416. 

Tucker C. J. & P. J. Sellers. 1986. Satellite remote sensing of primary vegetation. Int. J. Remote 

Sensing, 7: 1395-1416. 

Tucker C. J., Slayback D. A., Pinzon J. E., Los S. O., Muneni R. B. & Tailor M. G. 2001. Higher 

Nothern Latitude Normalized Difference Vegetation Index and Growing Season Trends from 

1982 to 1999. Int. J. Biometeorol., 45: 184-190. 

Tucker C. J., Slayback D. A., Pinzon J. E., Los S. O., Muneni R. B. & Taylor M. G. 2001. Higher 

northern latitude Normalized Difference Vegettion Index and growing season trends from 

1982 to 1999. Int. J. Biometeorol., 45: 184-190. 

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., Vermote, E. F. 

& El Saleous, N. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS 

and SPOT vegetation NDVI data. Int. J. Remote Sensing, 26: 4485-4498.  

Tucker, C. J., Vanpra, C. L., Sharman, M. J.,Van Ittersum, G. 1985. Satellite remote sensing of total 

herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sensing of 

Environment, 17: 233–249. 

UNEP Geo Data Portal. http://geodata.grid.unep.ch/  

Verdin, J., Funk, C., Klaver, R. & Robert, D. 1999. Exploring the correlation between Southern Africa 

NDVI and Pacific sea surface temperatures: results for the 1998 maize growing season. Int. J. 

Remote Sensing, 20: 2117-2124.  

Veron, S. R., Paruelo, J. M. & Oesterheld, M. 2006. Assessing desertification. J. of Arid 

Environments, 66: 751-763.  

Vetter, S. 2005. Rangelands at equilibrium and non-equilibrium: recent developments in the debate. J. 

of Arid Environments, 62: 321-341.  

Wackernagel, H. 1998. Multivariative Geostatistics. Berlin, Sprinter-Verlag.  

Wang J., Rich P. M. & Price K. P. 2003. Temporal responses of NDVI to precipitation and 

temperature in the central Great Plains, USA. Int. J. of Remote Sensing, 24: 2345-2364. 

Wang, J., Price, K. P. & P. M. Rich. 2001. Spatial patterns of NDVI in response to precipitation and 

temperature in the central Great Plains. Int. J. Remote Sensing, 22: 3827-3844.  

  163
 

http://geodata.grid.unep.ch/


Wang, Q., Ni, J. & J. Tenhunen. 2005. Application of a geographically weighted regression analysis to 

estimate net primary production of Chinese forest ecosystem. Global Ecol. Biogeogr., 14: 379-

393.  

Weiss J. L., Gutzler, D. S., Coonrod, J. E. A., C. N. Dahm. 2004. Long-Term Monitoring With NDVI 

in a Diverse Semi-Arid Setting Central New Mexico, USA. J. of Arid Environment, 58: 248-

274. 

Weiss, E., Marsch, S. E. & Pfirman, E. S. 2001. Application of NOAA-AVHRR NDVI time-series 

data to assess changes in Saudi-Arabia’s rangelands. Int. J. Remote Sensing, 22: 1005-1027. 

Wessels K. J., Prince S. D., Frost P. E. & d. van Zyl. 2004. Assessing the Efects of Human-Induced 

Land Degradation in the former Homeland of Nothern South Africa with a 1 km AVHRR 

NDVI Time-Series. Remote Sens. Environments, 91: 47-67. 

Xiao J. & Moody A. 2004. Trends in vegetation activity and their climatic correlates: chin 1982 to 

1998. Int. J. Remote Sensing, 20: 5669-5689. 

Yang, L., Wylie, B., Tieszen, L. L., Reed, B. C., 1998. An analysis of relationships among climate 

forcing and time-integrated NDVI of grasslands over the U.S. Northern and Central Great 

Plains. Remote Sensing of the Environment, 65: 25–37. 

Young S. S. & Harris R. 2005. Changing patterns of global-scale vegetation photosynthesis, 1982-

1999. Int. J. Remote Sensing, 26: 4537-4563.  

Zhou L., Tucker C. J., Kaufmann R., Slayback D., Shabanov N. & Myneni R. B. 2001. Variations in 

northern vegetation activity inferred from satellite data of vegetation index during 1981 to 

1999. J. of Geophysical Research, 106: 20069-20083. 

 

  164
 


	REMOTE SENSING BASED STUDY ON VEGETATION
	DYNAMICS IN DRYLANDS OF KAZAKHSTAN
	Introduction
	Problem description
	Objectives and aims of the study

	1. Theoretical background to dry ecosystems
	1.1. Dynamics of dry ecosystems: ephemeral versus permanent 
	1.1.1. Brief characterization of ecosystems in dry regions
	1.1.2. Dynamics of ecosystems in drylands

	1.2. Remote sensing based investigations of vegetation chang

	2. Study area
	2.1. Geographical location and mean characteristics
	2.2. Climate conditions
	2.3. Soils
	2.4. Vegetation
	2.5. Land use
	2.6. Change in land use practices
	2.7. Problem of land degradation in Central Asia

	3. Data used in the study and their preprocessing
	3.1. Climate data and their preparation
	3.1.1. Climate records
	3.1.2. Preparation of gridded climate maps

	3.2. Satellite data
	3.2.1. Data of coarse spatial resolution
	3.2.2. Data of fine spatial resolution

	3.3. Digital terrain model
	3.4. Maps
	3.5. Agrarian and population statistics
	3.6. Field data

	4. Methodology of data analysis
	4.1. Analysis of vegetation distribution, variability and ch
	4.1.1. Simple methods of descriptive statistic
	4.1.2. Calculation of time-trends

	4.2. Methods of geostatistical analysis
	4.2.1. Autocorrelation
	4.2.2. Spatial autocorrelation
	4.2.3. Kriging with an external drift

	4.3. Analysis of the relationship between vegetation change 
	4.3.1. Correlation coefficient
	4.3.2. Multiple correlation coefficient
	4.3.3. Partial correlation coefficient

	4.4. Modelling relationship between vegetation patterns and 
	4.4.1. Simple linear regression model
	4.4.2. Multiple linear regression model
	4.4.3. Problem of non-stationarity by analysing spatial rela
	4.4.4. Moving window regression
	4.4.5. Geographically weighted regression

	4.5. Assessment of modelling accuracy
	4.5.1. Root Mean Square Error (RMSE)
	4.5.2. Standard error
	4.5.3. Spatial autocorrelation for accuracy assessment

	4.6. Evaluation of land cover change and its driving forces
	4.6.1. Background for discrimination between climate-induced
	4.6.2. Identification of climate and anthropogenic signals i
	4.6.3. Analysis of regression residuals for identification o


	5. Analysis of climatic conditions
	5.1. Network of climate stations in the study region
	5.2. Modelling spatial patterns in climate parameters
	5.3. Statistical analysis of climate data.
	5.3.1. The inter-annual variability of precipitation and tem
	5.3.2. Trends in climatic parameters

	5.4. Discussion and conclusion

	6. Within-season dynamics of vegetation activity and their r
	6.1. Spatial distribution of Normalized Difference Vegetatio
	6.2. Average characteristics of NDVI
	6.3. Temporal behaviour of climatic factors and vegetation w
	6.4. Within-season relationship between NDVI and precipitati
	6.4.1.  Stratification of NDVI-precipitation relationship by
	6.4.2. Stratification of NDVI-precipitation relationship by 

	6.5. Within-season relationship between NDVI and temperature
	6.6. Spatial patterns in NDVI-climate relationship
	6.7. Inter-annual variations in within-season NDVI-climate r
	6.8. Discussion and conclusion

	7. Inter-annual change in vegetation activity and its relati
	7.1. Patterns in monthly time-series 1982-2001
	7.2. Inter-annual relationship between NDVI and climatic par
	7.2.1. Analysis of spatially averaged NDVI versus precipitat
	7.2.2. Relationship between spatially averaged NDVI and temp
	7.2.3. Spatial patterns in inter-annual NDVI-climate relatio

	7.3. Quantifying temporal variability in vegetation conditio
	7.3.1. Standard deviation of NDVI
	7.3.2. Variance of NDVI values over the study period
	7.3.3. Dependence of  on the relief

	7.4. Discussion and conclusion

	8. Spatial response of vegetation cover to climatic factors
	8.1. Growing season relationship between NDVI and precipitat
	8.1.1. NDVI-rainfall correlation coefficients
	8.1.2. NDVI-rainfall relationships by vegetation type
	8.1.3. Influence of growing season rainfall on NDVI-rainfall
	8.1.4. Spatial patterns in NDVI anomalies and their relation

	8.2. Within-season relations between NDVI and rainfall
	8.2.1. Spatial patterns in intra-annual dynamic of NDVI and 
	8.2.2. Within-season NDVI-rainfall correlation coefficients
	8.2.3. Influence of vegetation type on within-season relatio
	8.2.4. Influence of precipitation amount on NDVI-rainfall re

	8.3. Growing season relationship between temperature and NDV
	8.3.1. NDVI-temperature correlation coefficients
	8.3.2. NDVI-temperature correlation coefficients by vegetati
	8.3.3. Influence of annual rainfall on NDVI-temperature corr

	8.4. Within-season relationship between NDVI and temperature
	8.4.1. General patterns in the NDVI-temperature correlation
	8.4.2. Influence of cover types on within-season relationshi

	8.5 Discussion and conclusion

	9. Application of the geographically weighted regression to 
	9.1. Problem of non-stationarity in modelling spatial relati
	9.2. Reducing uncertainty in modelling NDVI-precipitation re
	9.2.1. Global OLS regression model and its deficiencies
	9.2.2. Stratification of NDVI-precipitation relationship by 
	9.2.3. Local variability in relationship between vegetation 
	9.2.4. Analysis of regression residuals

	9.3. Analysis of temporal variations in NDVI-precipitation r
	9.3.1. Variations in the relationship strength
	9.3.2. Trends in NDVI-rainfall relationship and their linkag

	9.4. Discussion and conclusion

	10. Detection of climate-induced and human-induced vegetatio
	10.1. Trends in spatially averaged NDVI
	10.1.1. Trends in growing season NDVI
	10.1.2. Trends in seasonal NDVI

	10.2. Spatial patterns of NDVI trends
	10.3. Effects of precipitation and temperature on NDVI trend
	10.3.1. Effects of climate on changes in spatially averaged 
	10.3.2. Spatial patterns in climate effects on NDVI trends

	10.4. Vegetation changes which are not explained by climate
	10.4.1. Spatial patterns in NDVI trends not explained by rai
	10.4.2. Verification of results and explanation of trends in

	10.5. Human-induced change in vegetation cover in areas with
	10.5.1. General approach
	10.5.2. Implementation of the suitable regression models for
	10.5.3. Modelling the climatic signal in the inter-annual ND
	10.5.4. Identification of areas experiencing human-induced v

	10.6. Discussion and conclusion

	11. Summary
	12. References



