Aus der Abteilung Klinische Neurobiologie (Prof. Dr. rer. nat. E. Fuchs) des Deutschen Primatenzentrums in Göttingen

Reelin-immunreaktive Zellen im prälimbischen Kortex männlicher Ratten: Einfluss von Stress

> INAUGURAL – DISSERTATION zur Erlangung des Doktorgrades der Medizinischen Fakultät der Georg-August-Universität zu Göttingen

> > vorgelegt von

Andreas Michael Koldehoff

aus

Minden

Göttingen 2011

Dekan:	Prof. Dr. med. C. Frömmel
I. Berichterstatterin:	Prof. Dr. rer. nat. Flügge
II. Berichterstatter/in:	Prof. Dr. med. Staiger
III.Berichterstatter/in:	Prof. Dr. med. Oppermann
Tag der mündlichen Prüfung:	27. 03. 2012

Meinen Eltern

Inhaltsverzeichnis

Inhaltsverzeichnis	4
Abkürzungsverzeichnis	6
1. Einleitung	8
1.1 Reelin	8
1.1.1 Vorkommen und Geschichte der Entdeckung	8
1.1.2 Rolle von Reelin in der Hirnentwicklung	
1.1.3 Reelin und die Evolution des Kortex	
1.1.4 Wirkung von Reelin auf das Aktin-Zytoskelett	
1.1.5 Mögliche Rollen Reelins im adulten Hirn	
1.1.6 Mit Reelin assoziierte Krankheiten	
1.2 Psychosozialer Stress	
1.2.1 Allgemein	
1.2.2 Die Anwendung von Tiermodellen	21
1.2.3 Psychosozialer Stress im Tiermodell	21
1.2.4 Physiologische Auswirkungen von psychosozialem Stres	s22
1.3 Maternale Immunsystemaktivierung durch Poly I:C	27
1.3.1 Behandlung mit Poly I:C und juveniler Stress	
1.4. Der Präfrontale Kortex (PFC)	
1.4.1 Die Anatomie des präfrontalen Kortex	
1.4.2 Die Anatomie des medialen präfrontalen Kortex (mPFC)	der Ratte31
1.4.3. Die Funktion des mPFC bei der Stressantwort	
1.4.4. Die Auswirkungen von Stress auf den mPFC	
1.4.5 Die Lateralisierung des PFC und ihre Bedeutung für die	Stressantwort
1.4.6 Die Fokussierung auf Schicht I des prälimbischen Kortex	(PLC)
2. Zielsetzung der Arbeit	
3. Material und Methoden	
3.1 Material	
3.1.1 Tiere	
3.1.2 Antikörper	
3.2 Methoden	46

	3.2.1 Das Social-Defeat-Experiment	46
	3.2.2 Das Poly-I:C-Experiment	47
	3.2.3 Perfusion	49
	3.2.4 Präparation des Rattenhirns	50
	3.2.5 Einlagerung und Schneiden des Rattenhirns	50
	3.2.6 Immunhistochemie	51
	3.2.7 Stereologische Analyse	57
	3.2.8 Statistische Analyse	59
4.	Ergebnisse	60
	4.1. Dichte Reelin-positiver Zellen im PLC nach psychosozialem Stress	61
•	4.2 Dichte Reelin-positiver Zellen im PLC nach pränataler Behandlung mit Poly I: nach Stress im juvenilen Stadium	:C bzw. 63
	4.3 Dichte Reelin-positiver Zellen im PLC von jungen Wistar- Ratten	65
	4.4 Fluoreszenz – Doppelmarkierungen	66
5.	Diskussion	70
	5.1 Die Wirkung von psychosozialem Stress auf die Dichte Reelin-immunreaktiver Z	ellen in
	Schicht 1 des PLC von männlichen Wistar-Ratten	71
	5.2 Die Wirkung von pränataler Immunsystemaktivierung und juvenilem Stress	78
	5.3 Die Rattenstamm-unabhängige asymmetrische Verteilung Reelin-positiver Ze Schicht I des prälimbischen Kortex männlicher Ratten	ellen in 80
	5.4 Die Ergebnisse der Fluoreszenz-Doppelmarkierungen	83
	5.5 Diskussion der angewendeten Methoden	85
6.	Zusammenfassung	87
7.	Literaturverzeichnis	88
8.	Anhang und Protokolle	100
	8.1 Protokolle für immunhistochemische Methoden	100
	8.2 Chemikalien	112
	8.3 Geräte und Verbrauchsmaterialien	113
	8.4 Puffer und Lösungen	114
9.	Primärdaten	117
10). Danksagungen	131
11	. Lebenslauf	132

Abkürzungsverzeichnis

5-HT	5-Hydroxytryptamin
АСТН	Adrenocorticotrope hormon, Adrenokortikotropes Hormon
ACx	Anterior cingulate cortex, Anteriorer zingulärer Kortex
AK	Antikörper
ANOVA	Analysis of variance
ApoER	Apolipoprotein E Rezeptor
ABC	Avidin-Biotin-Complex, Avidin-Biotin-Komplex
BDNF	Brain-derived neurotrophic factor
BST	Bettkern der Stria terminalis
CDC	Cell division cycle
CRH	Corticotropin-releasing hormone
DAB	3,3'- Diaminobenzidin
Dab1	Disabled 1
fMRT	Funktionelle Magnetresonanztomographie
GABA	<i>Gamma-aminobutyric acid,</i> γ -Aminobuttersäure
GAD67	Glutamic acid decarboxylase 67, Glutamat-Decarboxylase 67
GFAP	Glial fibrillary acidic protein, Saures Gliafaserprotein
GNAQ	Guanine nucleotide binding protein
IFN	Interferon
IL	Interleukin
ILC	Infralimbic cortex, Infralimbischer Kortex
kDa	Kilodalton
LDL	Low-density lipoprotein
LTP	Long-term potentiation, Langzeitpotenzierung
mRNA	Messenger ribonucleic acid
mPFC	Medial prefrontal cortex, medialer präfrontaler Kortex
MZ	Marginale Zone
NaCl	Natriumchlorid-Lösung
NG	Neuron glia
NMDA	N-Methyl-D-Aspartat
PBS	Phosphate buffered saline, Phosphatpuffer

PFA	Paraformaldehyd
PFC	Prefrontal cortex, Präfrontaler Kortex
PLC	Prelimbic cortex, Prälimbischer Kortex
Poly I:C	Polyinosinic polycytidylic acid
PVN	Nucleus paraventricularis
SVZ	Subventrikuläre Zone
TNF	Tumornekrosefaktor
VLDLR	Very-low-densitiy lipoprotein receptor

1. Einleitung

1.1 Reelin

1.1.1 Vorkommen und Geschichte der Entdeckung

Reelin ist ein in die extrazelluläre Matrix sezerniertes Glykoprotein. Im zentralen Nervensystem wird es von Cajal-Retzius-Zellen (Meyer G et al. 1999) (Abb.1), GABAergen Interneuronen, glutamatergen cerebellären Neuronen (Pesold et al. 1998), Calbindin- und Calretinin-positiven Neuronen (Alcántara et al. 1998, Pesold et al. 1999), Oligodendrozyten (Siebert und Osterhout 2011) sowie von retinalen Ganglienzellen (Pulido et al. 2007) und einigen wenigen Neuronen in der weißen Substanz (Suarez-Sola et al. 2009) produziert und freigegeben. Auch außerhalb des zentralen Nervensystems findet die Synthese von Reelin statt. Die Expression und Sezernierung dieses Glykoproteins lassen sich in Zellen des Hypophysenvorderlappens (Pars intermedia), in Sternzellen der Leber, in chromaffinen Zellen der Nebenniere (Smalheiser et al. 2000), in Lymphgefäßen (Samama und Boehm 2005) und in Odontoblasten (Buchaille et al. 2000) nachweisen.

Retzius, 1893

Abb. 1

Erste Beschreibungen der wegen ihrer oft horizontalen Ausrichtung morphologisch auffälligen Neurone in Schicht I des Neokortex im prä- und postnatalen Stadium ausgewählter Wirbeltiere (Mensch, Hase) durch S.F. Ramon y Cajal und Gustav Retzius. Diese heute verallgemeinernd als Cajal-Retzius-Zellen bezeichneten Neurone sind die prominentesten Reelin produzierenden Neurone. Ihre Zahl ist während der Hirnentwicklung besonders hoch. Aus Meyer G et al. 1999, S.766, mit freundlicher Genehmigung des Verlages.

Einleitung

Die chromosomale Lokalisierung des Reelin-kodierenden Gens RELN (D'Arcangelo et al. 1995) und der Fortschritt in der molekularen Forschung förderten weitere Entdeckungen in Zusammenhang mit diesem Glykoprotein. Das RELN-Gen befindet sich auf dem Chromosom 7 (Lokus 7q22) und ist insgesamt 450 kbp lang. 65 Exons kodieren das aus 3461 Aminosäuren bestehende Glykoprotein mit der relativen Molekülmasse von 450kDa (Royaux et al. 1997), wobei eines dieser Exons dem alternativen Spleißvorgang unterliegt (Miller CA und Sweatt 2007). Drei Bereiche können innerhalb des Proteins unterschieden werden: Ein N-terminaler Bereich, ein zentraler Bereich mit acht sich wiederholenden Aminosäuresequenzen ("reelin repeats") und eine basische C-terminale Region (Nakano et al. 2007, Nogi et al. 2006).

Schema des Reelin-Proteins

Abb. 2

Schematische Darstellung der Proteinstruktur von Reelin. Grün umrandet: N- bzw. C-terminale Regionen. Blau umrandet: Zentraler Bereich. Reelin besteht aus 3461 Aminosäuren und ist ca. 450 kDa schwer. Ein Reelin Repeat besteht aus zwei Untereinheiten (A und B) und einer dazwischen liegenden Aminosäuresequenz, die dem *epidermal growth factor* ähnelt. Insgesamt 8 dieser Repeats finden sich im ungeschnittenen Reelin. 2 Repeats bilden die kleinste rezeptorbindende Untereinheit. Das Glykoprotein wird nach der Sezernierung von einer Metalloprotease der Extrazellulärmatrix an zwei Stellen (orangefarbene Dreiecke) geschnitten, sodass ein zentrales und zwei N- bzw. C-terminale Fragmente entstehen. Verändert nach Nogi et al. 2006, S.3680. Verschiedene Studien legen nahe, dass Reelin von den genannten Zellen auf dem konstitutiven Sekretionsweg sezerniert wird. Dies bedeutet den Transport des im endoplasmatischen Retikulum hergestellten Proteins zum Golgi-Apparat, die dortige Modifikation und die anschließende Speicherung in Golgi-Vesikeln, die kontinuierlich mit der Zellmembran verschmelzen und somit eine stetige, von äußeren Signalen unabhängige Reelinsekretion bewirken. Ein Ansprechen der Reelinsekretion auf hormonelle Stimuli oder auf Veränderungen des Membranpotentials wurde bisher folglich nicht festgestellt (Lacor et al. 2000). Das in die extrazelluläre Matrix sezernierte Glykoprotein wird *in vivo* von Metalloproteinasen gespalten. Diese Spaltung erfolgt an zwei Stellen, in etwa zwischen den Domänen 2 /3 und 6/7, sodass in der extrazellulären Matrix mehrere Fragmente des sezernierten Peptids entstehen (Abb.2 und Abb.3) (Lambert du Rouvroit et al. 1999). Widersprüchliche Ergebnisse gibt es bezüglich der Frage, ob Reelin oder eines seiner Fragmente nach Ausschüttung eine Serin-Protease-Aktivität besitzt (Kohno und Hattori 2010, Quattrocchi et al. 2002).

Abb. 3

Schematische Darstellung des Sekretionsweges von Reelin. 1. Transkription des RELN-Gens im Nukleus, 2. Translation der Reelin mRNA im rauen endoplasmatischen Retikulums (rER), 3. Verpackung des Reelin-Proteins in Vesikeln und Transport zum Golgi-Apparat, 4. Modifizierung von Reelin im Golgi-Apparat und abermalige Verpackung in Vesikeln, 5. Kontinuierliche Sekretion von Reelin in die Extrazellulärmatrix, 6. Prozessierung von Reelin durch Metalloproteasen. Verändert nach Löffler et al. 2007, S. 192.

Einleitung

Der Name Reelin (to reel: taumeln, schwanken) ist abgeleitet von einem Mäusestamm, den Douglas Scott Falconer 1951 durch gezielte Züchtung generierte und den er mit dem Namen *reeler* bedachte (Falconer 1951). Diese *reeler*-Mäuse zeichnen sich durch ihr taumelndes Gangbild aus; sie schwanken selbst im Stehen und fallen regelmäßig auf die Seite. Etwa 25 Jahre nach ihrer ersten Beschreibung wurden histologische Untersuchungen an den Gehirnen der *reeler*-Mäuse durchgeführt, die charakteristische Auffälligkeiten feststellten. Es zeigte sich, dass die Zellschichtung im Kortex der Tiere verändert war. Vereinfacht gesagt zeigte die Färbung der Nervenfasern und Zellkörper eine inverse Zellschichtung des Kortex bei den Reeler-Mutanten im Vergleich zu Wildtyp-Mäusen (Abb. 4) (Caviness 1976).

Abb. 4

Unterschiedliche Kortexschichtung von Wildtyp-Maus und der Reeler-Maus. I,II,III,IV,V,VI: Kortikale Schichten I-VI. W: Weiße Substanz. Die Bezeichnung der Schichten bei Reeler-Mäusen wurde anhand der Zellmorphologie getroffen: pm: polymorphe Schicht, pc: Pyramidenzellschicht, gc: granuläre Zellschicht. Schwarze Linien: Zellfasern/Zellfortsätze. Eine strikte Zellschichtung wie im Wildtyp findet sich in der Reeler-Maus nicht. Zellen mit ausgeprägten Verbindungen in die weiße Substanz finden sich bei der Reeler-Mutante nicht in der tiefsten Kortexschicht, sondern sind sehr oberflächlich gelegen. Fasern, die im Wildtyp von Schicht VI nach Schicht IV verlaufen, ziehen in der Reeler-Mutante von der oberflächlichen polymorphen Schicht zur granulären Zellschicht. All diese Beobachtungen lassen das vereinfachte Urteil einer inversen Zellschichtung bei der Reeler-Mutante im Vergleich zum Wildtyp zu. Verändert nach Caviness 1976, S. 436.

Einleitung

Diese Entdeckung förderte das Interesse an den *reeler*-Mutanten, das zwei Jahrzehnte später zu Untersuchungen der Funktion und Wirkungsweise von Reelin auf molekularer Ebene führte. Es zeigte sich, dass zwei Rezeptoren für Reelin existieren, die beide aus der Familie der LDL-Rezeptoren stammen: der Apolipoprotein-E-Rezeptor 2 (ApoER2) und der *very-low-densitiy lipoprotein receptor* (VLDLR) (Trommsdorff et al. 1998, Trommsdorff et al. 1999). Beide Rezeptoren sind sowohl in Neuronen als auch in Gliazellen lokalisiert (Hartfuss et al. 2003). Nach Bindung von Reelin an einen der beiden Rezeptoren kann auf zytosolischer Seite das Adaptorprotein Disabled-1 (Dab1) an die intrazelluläre Domäne des Rezeptors binden. Es wird anschließend von Src (Howell et al. 1997) und Fyn (Arnaud et al. 2003) phosphoryliert, womit der weitere Prozess des Reelinsignalweges geebnet wird. Das Ausschalten der Gene für ApoER2, VLDLR und Dab1 (*"Knockout*-Mäuse") bei gleichzeitig intaktem RELN-Gen hatte bei den untersuchten Mäusen jeweils einen *reeler*-ähnlichen Phänotyp in der Zellschichtung des Kortex zur Folge (Sheldon et al. 1997, Trommsdorf et al. 1999).

1.1.2 Rolle von Reelin in der Hirnentwicklung

Da die Ursache für die veränderte Hirnschichtung der *reeler*-Mäuse in der vorgeburtlichen Entwicklungsphase liegen muss, wurde Reelin zunächst von mehreren Gruppen auf seine regulative Funktion in der pränatalen Hirnentwicklung, speziell auf seine Wirkung auf die neokortikale Zellschichtung hin untersucht.

Ein einheitliches Prinzip der Kortikogenese von Säugetieren ist, dass ältere Neurone die tieferen Schichten des Neokortex bilden und die jüngeren Neurone sich an diesen vorbei bewegen müssen, um sich dann in der nächst höheren Schicht festzusetzen. Die oberste und zellarme kortikale Schicht im sich entwickelnden Gehirn wird marginale Zone (MZ) genannt. In dieser MZ ist die Reelinkonzentration hoch, da sich hier Zellen befinden, die Reelin sezernieren (Drakew et al. 1998). Die meisten dieser Reelin produzierenden Zellen werden unter dem Begriff "Cajal-Retzius-Zelle" zusammengefasst, auch wenn dieser Begriff seinem Ursprung nach eine Reihe morphologisch differenter Zellen umfasst, die sich in Lokalisation, Funktion und Zeitpunkt ihres Auftretens unterscheiden (Meyer G et al. 1999). In der frühen Kortikogenese, wenn die Entfernung zwischen ventrikulärer Zone und marginaler Zone noch mit dem "leading process" des neuentstandenen Neurons überbrückt werden kann, migrieren die in der tiefer liegenden ventrikulären Zone neu gebildeten Neurone mittels somatischer Translokation zu ihrem Bestimmungsort. Dem leading process dient das von den Cajal-Retzius-Zellen sezernierte Reelin als Attraktionssignal, nach dem sich letztlich das ganze Neuron bei seiner Migration ausrichtet. In der späten Kortikogenese, wenn der Abstand zwischen ventrikulärer und marginaler Zone durch die vorangegangene Zellschichtung vergrößert wurde, migrieren die jungen Neurone entlang radial ausgerichteter Gliafasern, die ihnen als Leitstruktur dienen (Frotscher 2010, Nadarajah und Parnavelas 2002). Das Reelin der marginalen Zone wirkt hierbei auch auf die Gliafasern als Attraktionsignal und determiniert dadurch deren radiale Ausrichtung. Durch diese beiden Wirkungen auf Neuronen- und Gliazellfortsätze bestimmt Reelin direkt die Migrationsrichtung der aus der ventrikulären Zone kommenden neugebildeten Neurone, sowohl in der frühen als auch in der späten Kortikogenese (Abb.5). Der Prozessierung von Reelin durch Metalloproteasen, die essentiell für die pränatalen Funktionen von Reelin ist, wird die Funktion zugeschrieben, durch die verschieden großen und damit unterschiedlich diffundierenden Fragmente den Aufbau eines anziehenden Gradienten zu bewirken (Jossin et al. 2007).

Schließlich dient das von den Caja-Retzius-Zellen sezernierte Reelin in der späten Kortikogenese den an Gliafasern entlang migrierenden Neuronen als Ablösesignal und damit als Signal des Migrationsstops (Dulabon et al. 2000, Zhao und Frotscher 2010). Dem VLDL-Rezeptor wird hierbei die Funktion zugeschrieben, das Stop-Signal für die migrierenden Zellen zu übermitteln (Hack et al. 2007).

Zusammenfassend wirkt Reelin pränatal direkt auf die Zellfortsätze von Neuronen und Gliazellen und bestimmt dadurch die Migrationsrichtung und den Migrationsstop der neugebildeten Neurone während der Kortikogenese. Das Fehlen dieser Funktionen bestimmt den neuroanatomischen Phänotyp der Reeler-Mutanten, wo Gliafasern nicht radial verlaufen und Neurone "zu weit" wandern.

Abb.5

Unterschiedliche Migrationsformen neugebildeter Neurone. Linker Abschnitt: In der frühen kortikalen Entwicklung befindet sich die Reelin-reiche marginale Zone (MZ) mit den Reelin-produzierenden Cajal-Retzius-Zellen (CR) nahe dem Ort der Neurogenese, der subventrikulären Zone (SVZ). Der "leading process" der Neurone richtet sich nach dem Ort erhöhter Reelinkonzentration aus (Pfeil) und dient dem Neuron (N) als Orientierung für seine Migration, die aufgrund der kurzen Strecke mittels somatischer Translokation erfolgt. Rechter Abschnitt: In der späten kortikalen Entwicklung dienen Fortsätze von Gliazellen (G) den Neuronen als Leitstruktur für ihre Migration. Diese Gliazellfortsätze richten sich ebenfalls in Richtung erhöhter Reelinkonzentration aus (Pfeil). Eigene Abbildung, abgeleitet aus den Ausführungen von Frotscher 2010.

1.1.3 Reelin und die Evolution des Kortex

Die oben beschriebene Art der kortikalen Schichtung stellt eine Eigenart des Säugetierhirns dar. Im phylogenetisch älteren Reptilienkortex bilden die ältesten Zellen nicht wie beim Säugetier die tiefste, sondern die oberste Kortexschicht (Berry und Rogers 1965, Cooper 2008). Aufgrund dessen wird Reelin eine wichtige Rolle in der evolutionären Entwicklung des Kortex zugesprochen. Man fand, dass, je komplexer der Aufbau des Kortex gestaltet ist, desto höher die gefundene Reelinexpression ist, die beim Menschen ihren Höhepunkt findet (Bar et al. 2000, Molnar et al. 2006).

1.1.4 Wirkung von Reelin auf das Aktin-Zytoskelett

Aufgrund der oben beschriebenen Wirkung von Reelin auf Zellfortsätze lag es nahe anzunehmen, dass Reelin Einfluss auf das Aktin-Zytoskelett der Zellen nimmt, um auf die Ausrichtung der Fortsätze und insgesamt auf die Migration der Neurone einwirken zu können. Man fand, dass Reelin über die Initiierung einer Signalkaskade zu einer Phosphorylierung des Enzyms Cofilin führt und dadurch eine Stabilisierung des Aktin-Zytoskeletts bewirkt (Chai et al. 2009). In dieser Kaskade (Abb. 6) bindet Reelin an die Rezeptoren ApoER2 und VLDLR und bewirkt dadurch die Phosphorylierung des intrazellulär gelegenen second messenger-Proteins Dab1. Dies bewirkt die Aktivierung der Phosphoinositol-3-Kinase (Bock et al. 2003), welche wiederum die LIM-Kinase aktiviert, die letztlich für die Phosphorylierung von Cofilin verantwortlich ist (Arber et al. 1998). Dieses ist für die Depolymerisierung der Minusenden von Aktinfilamenten verantwortlich und stellt u.a. bei Migrationsprozessen die monomeren Bausteine (G-Aktin) für die Plusenden sich neu bildender Aktinfilamente bereit (Löffler et al. 2007). Im phosphorylierten Zustand ist Cofilin inaktiv und kann an den Minusenden der Filamente dieses F-Aktin nicht mehr depolymerisieren, was letztendlich zu einer Stabilisierung Aktin-Zytoskeletts (Bamburg des gesamten führt 1999). Übereinstimmend hiermit war der P-Cofilin-Spiegel in den untersuchten Reeler-Mutanten und ApoER2/VLDLR-Knockout-Mäusen signifikant erniedrigt, bei Wildtyp-Mäusen zeigten immunhistochemische Färbungen dagegen eine besonders hohe P-Cofilin-Konzentration in den *leading processes* nahe oder in der MZ (Frotscher 2010). Die Rolle Reelins als Stabilisator des Zytoskeletts der Neurone wurde auch durch den Befund unterstützt, dass sich der Reelin-Signalweg mit dem Notch-1-Signalweg kreuzt, der ebenfalls der Stabilisierung des Aktin-Zytoskeletts dient. Über den Notch-1aktivierten Komplex von C1kb und NICD wird eine Reihe von Genen aktiviert, die zur Beendigung des Wachstums von Zellfortsätzen und zur Stabilisierung des Zytoskelettes beitragen. Das Reelin-aktivierte Dab1 soll hier unterstützend den Abbau von NICD verhindern (Hashimoto-Torii et al. 2008).

Abb. 5

Schematische Darstellung der Signalkaskade und der Wirkung von Reelin auf das Aktin-Zytoskelett eines Zellfortsatzes. Reelin bindet an den ApoER2- und VLDL – Rezeptor und bewirkt dadurch die Aktivierung des Dab1-Proteins. Dieses aktiviert daraufhin die PI3-Kinase und diese die LIM-Kinase. Die aktivierte LIM-Kinase phosphoryliert das Enzym Cofilin, welches dadurch inaktiv wird. P-Cofilin kann F-Aktin nicht mehr depolymerisieren, was schließlich die Stabilisierung des Aktin-Zytoskeletts (grüne Linien) bewirkt. Verändert nach Frotscher 2010, S. 409.

Reelin hat durch seine Einwirkung auf Cofilin zusätzlich multiple Auswirkungen auf die Genexpression der betroffenen Zelle. Das inaktivierte Cofilin hat eine erhöhte Konzentration monomeren **F-Aktins** zur Folge, ein Signal für was den Transkriptionsfaktor MRTF (myocardial related transcription factor) darstellt, in den Nukleus zu wandern und zusammen mit dem Transkriptionsfaktor SRF mehrere Zielgene zu induzieren (Beck und Köll 2010). Somit ist das Reelinsignal auch in der Wirkung auf das Aktin-Zytoskelett nicht eindimensional zu betrachten.

1.1.5 Mögliche Rollen Reelins im adulten Hirn

Der Befund, dass auch im adulten Säugetiergehirn zahlreiche Reelin-positive Zellen zu finden sind (Abb. 7), hat den Fokus der Diskussion über die Wirkung und Funktion von Reelin neben der pränatalen auch auf die postnatale Rolle des Glykoproteins gelenkt. Die im vorherigen Kapitel genannten Wirkungen von Reelin auf das Aktin-Zytoskelett wurden auch an adulten Tieren nachgewiesen (Frotscher 2010). Beispielsweise ist Reelin im olfaktorischen Bulbus auch postnatal ein Ablösesignal für die dort stets neugebildeten, migrierenden Neurone (Hack et al. 2002). Im adulten Gyrus dentatus wirkt Reelin indirekt auf die Anordnung und Ausrichtung neugebildeter Zellen aus der subgranulären Zone, indem es die Ausrichtung der Gliafasern, an denen entlang die Zellen aus der subgranulären Zone in die granuläre Zone wandern, maßgeblich mitbestimmt (Frotscher et al. 2003). Somit finden sich im adulten Gehirn in den Regionen, in denen Zellwanderung entlang von Gliafasern stattfindet, gänzlich vergleichbare Wirkungsweisen von Reelin wie vor der Geburt. Weiter zeigten ApoER2sowie VLDLR-Knockout-Mäuse im Vergleich zum Wildtyp Unterschiede in der Langzeit-Potenzierung (LTP) an Synapsen, woraus geschlossen wurde, dass Reelin im adulten Hirn auch eine Bedeutung für die Plastizität von Synapsen hat (Weeber et al. 2002). Eine Stärkung der Langzeit-Potenzierung durch Reelin findet dann statt, wenn der ApoER2 eine von Exon 19 kodierte intrazelluläre Dömane besitzt. Dieses Exon unterliegt dem alternativen Spleißvorgang. Bei Mäusen korreliert eine erhöhte Produktion Exon 19 beinhaltender mRNA mit vermehrter stimulierender Aktivität (Beffert et al. 2005). Exon 19 kodiert die Bindestelle für bestimmte Adaptorproteine, die zusätzlich an Untereinheiten des für die LTP wichtigen NMDA-Rezeptors binden. Die Anforderung,

Informationen speichern zu müssen, erhöhte bei diesen Tieren die Reelinexpression im Hippocampus (D'Arcangelo 2005).

Zusammengefasst erscheinen drei Funktionen von Reelin im adulten Gehirn gesichert. Als erstes wirkt Reelin in den Regionen, in denen Neurogenese stattfindet, wie in der pränatalen Phase auf Gliafasern als Orientierungs- und Attraktionssignal, damit diese den migrierenden Neuronen als Leitstruktur dienen können. Als zweites wirkt Reelin als Stabilisator des Aktin-Zytoskeletts. Und schließlich wirkt Reelin als Induktor der LTP im Hippocampus.

Abb. 6

Aufnahme aus dem Neokortex einer adulten Ratte mit dem konfokalen Mikroskop. Viele stark gefärbte und damit Reelin-positive Zellen (grün) sind auch im Gehirn adulter Säugetiere zu finden. Ihre Funktion hier ist weitgehend unbekannt. Gesichert scheint die Förderung der Stabilisierung des Aktin-Zytoskeletts, der Induktion der LTP sowie regional die Rolle als Attraktions- und Ablösesignal für migrierende Neurone. I,II,III: kortikale Schichten I-III. Die Länge des weißen Balkens entspricht 100 µm.

1.1.6 Mit Reelin assoziierte Krankheiten

Veränderte Reelinspiegel werden beim Menschen mit einer Reihe von Krankheiten assoziiert. So ist eine Mutation im RELN-Gen ursächlich für das Norman-Roberts autosomal-rezessiv vererbten Lissencephalie mit cerebellärer Syndrom, einer Hypoplasie. Diese Krankheit ist charakterisiert durch Hypotonie, Ataxie und tiefgreifende mentale Retardierung. Es wird eine chromosomale Translokation am Chromosom 7 vermutet (Hong et al. 2000, Zaki et al. 2007). 45 bis 73% aller Patienten mit Temporallappenepilepsie weisen im Hippocampus eine charakteristisch erhöhte Verstreuung der Körnerzellen auf (granule cell dispersion, GCD), die direkt mit verminderter Expression von Reelin einhergeht. Ein fehlendes Ablösesignal durch Reelin für migrierende Neurone aus der subgranulären Schicht wird als Ursache für die Ektopie der Körnerzellen angenommen. Exogen zugeführtes Reelin konnte bei Kainatinduzierter Epilepsie in Mäusen die GCD verhindern (Haas et al. 2002, Kobow et al. 2009, Müller et al. 2009). Das Glykoprotein wird von mehreren Forschergruppen mit psychischen Krankheiten wie Depression und Schizophrenie in Zusammenhang gebracht (Fatemi 2011, Kuang et al. 2011). Bei schizophrenen Patienten wurde eine verminderte Reelin- und Reelin-mRNA-Expression nachgewiesen. Anhand von post-mortem-Studien konnte dies an Schnitten des Hippocampus, des Cerebellums, der Basalganglien, des Kortex sowie im Blut gezeigt werden. Zusätzlich dazu ist der Chromosomlokus des RELN-Gens (7q22) mit Schizophrenie assoziiert (Fatemi et al. 2005b, Guidotti et al. 2000, Impagnatiello et al. 1998, Veldic et al. 2004). Zusätzlich weisen Patienten, die am Morbus Alzheimer leiden, eine verminderte Reelinexpression und ein veränderte Reelinglykolysierung auf (Baloyannis 2005, Baloyannis et al. 2007, Botella-Lopez et al. 2006).

Im Rahmen der Einführung in das Thema wurden hier nun einige allgemeine Informationen über das Glykoprotein Reelin, seine nachgewiesene pränatale und postnatale Wirkung im Gehirn sowie einige mit ihm assoziierte psychische Krankheiten nach heutigem Wissen dargestellt. Während die pränatale Rolle von Reelin schon recht gut verstanden ist, scheint über den Bereich des postnatalen Einflusses von Reelin auf das adulte Gehirn und die Psyche noch viel Forschung nötig zu sein, um das Wissen über Funktion und Wirkung zu festigen. Das Phänomen Stress wurde in Verbindung mit Reelin bisher kaum beleuchtet. Die vorliegende Arbeit möchte diesen Zusammenhang näher betrachten.

1.2 Psychosozialer Stress

1.2.1 Allgemein

Die biologische Stressforschung untersucht die Folgen von "psychischem Stress", der durch die spezifische zentralnervöse Interpretation einer Lebenssituation entsteht. Gegenstand der biologischen Stressforschung sind sowohl physiologische Reaktionen als auch zentralnervöse Vorgänge, die durch psychischen Stress ausgelöst werden, nicht jedoch Prozesse, die durch physische Belastungen verursacht werden.

Die Anfänge der Stressforschung haben sich auf die Gebiete der Psychologie, der Inneren Medizin und der Verhaltensforschung konzentriert. So definierte der Mediziner Hans Selve in den 30er Jahren Stress als eine unspezifische Reaktion des Körpers auf mentale oder physische Belastungen (Stressoren) von außen, die das physiologische Gleichgewicht stört (Selye 1946). Die Forschungen ergaben, dass unter anderem der Verlust einer nahestehenden Person, finanzielle Schwierigkeiten oder Ärger am Arbeitsplatz für den Menschen eine psychische Belastung darstellen, die sich unmittelbar auf seine Physiologie auswirkt und eine Vielzahl von Symptomen hervorrufen kann, wie Schlaf- und Essstörungen, psychomotorische Auffälligkeiten des Verhaltens, eine chronisch erhöhte Glukokortikoidausschüttung, Störungen des Fortpflanzungs- und Immunsystems, eine gestörte Herzschlagfrequenz sowie eine erhöhte Anfälligkeit für Krankheiten wie zum Beispiel Depressionen, Schlaganfall und Herzinfarkt (Dubrovsky 1993, Holsboer et al. 1992, Miller TW 1988, Paykel 1978, Sachar et al. 1973, Stuller et al. 2011). Großes Interesse besteht heute an der Neurobiologie von Stress und seiner Verarbeitung durch das Gehirn, weil Stress, wenn er chronisch ist, u.a Depressionen bzw. einer Burn-Out-Symptomatik führen kann. Da zu die Untersuchungsmöglichkeiten beim Menschen ethisch und praktisch begrenzt sind, greift man auf Tiermodelle zurück, um stressinduzierte Veränderungen im Gehirn bis auf die molekulare Ebene hin verfolgen zu können.

1.2.2 Die Anwendung von Tiermodellen

Die Selye'sche Stressdefinition ist weit gefasst und die Beobachtung sehr verschiedener physiologischer und psychischer Auswirkungen unterschiedlicher Stressarten macht es auch für die neurobiologische Stressforschung nötig, eine Reihe von Tiermodellen zu entwickeln, die sich in Art, Dauer und Intensität des Stresses unterscheiden (Fuchs und Flügge 2006, Koolhaas et al. 1997).

Beispielsweise hat die chronische Applikation bestimmter Stressarten im Tiermodell Formen depressiven Verhaltens zur Folge (Willner 1995). Diese Erkenntnis ist Grund dafür, dass die Anwendung von chronischem Stress heutzutage die tierexperimentelle Basis der Depressionsforschung ist. Generell kann man nicht davon ausgehen, dass in diesen Tiermodellen allen der beim Menschen relevanten Aspekte von Stress oder Depression entsprochen wird. Dennoch belegt die nachgewiesene Besserung der Stressund Depressionssymptome bei den Tieren durch die Anwendung von Antidepressiva die enge Verwandtschaft zwischen den Stressreaktionen im Tiermodell und denen beim Menschen (Fuchs et al. 1996).

1.2.3 Psychosozialer Stress im Tiermodell

Psychosozialer Stress ist besonders geeignet, Depressions- bzw. Stresssymptome in Tiermodellen hervorzurufen, die denen des Menschen ähneln (Rygula et al. 2005). In heute gängigen Paradigmen zur Anwendung von sozialem Stress bei Nagetieren wird das Revier- und Konkurrenzverhalten dieser Tiere dazu benutzt, um bei ihnen Stress- bzw. Depressionssymptome hervorzurufen. Experimentelles Ziel bei diesen Tiermodellen ist es, zwischen zwei Männchen eine Dominanz-Subordinanz-Beziehung herzustellen. Hierbei wird ein Männchen in den Käfig eines anderen Männchens gesetzt, was zu einem sofortigen Kampf bis zum Sieg eines der beiden führt (Meerlo et al. 1999, Sgoifo et al. 1999). Das unterlegene Männchen wird fortan täglich einem überlegenen Männchen für einige Zeit ausgesetzt, für die meiste Zeit jedoch nur so, dass kein physischer Kontakt zwischen den beiden hergestellt werden kann. Dennoch bedeutet der Anblick und das sensorische Gewahrwerden des überlegenen Männchens einen starken psychosozialen Stress für den Unterlegenen, was an seinem Gewichtsverlust und anderen Parametern objektiv festgestellt werden kann (Fuchs und Flügge 2002). Danach hat psychosozialer Stress bedeutende Auswirkungen auf das Herz-Kreislauf-System, die Aktivität, das Essverhalten, die Glukokortikoidausschüttung der Tiere, bis hin zum Auftreten depressiver Verhaltensmuster, die sehr ähnlich denen des Menschen sind (Bjorkqvist 2001, Sgoifo et al. 1999). Somit hat psychosozialer Stress bedeutende Auswirkungen auf die Physiologie, die nun näher und mit Fokus auf die Neurobiologie besprochen werden sollen.

<u>1.2.4 Physiologische Auswirkungen von psychosozialem Stress</u>

1.2.4.1 Die Hypothalamus-Hypophyse-Nebennieren-Achse (HPA-Achse)

Wie auch andere psychische Belastungen bedeutet psychosozialer Stress einen Stimulus für die Aktivierung der Hypothalamus-Hypophysen-Nebennieren-Achse (HPA-Achse) (Herman et al. 2003, Mason 1968), einem hormonellen Regelkreis, der im Gehirn seinen Ausgang nimmt und den Körper über die Ausschüttung von Kortikosteroiden physiologisch auf eine *fight or flight*-Situation ausrichtet.

Bei der viele unterschiedliche Hirnregionen einbeziehenden, nicht kognitiven Bewertung sensorischer Informationen als "potentiell gefährlich" reagiert u.a. die Amygdala über die Aktivierung exzitatorischer Efferenzen zum Hypothalamus. Hier werden Neurone des Bettkerns der Stria terminalis (BST) erregt. Als Folge dessen werden parvozelluläre, neurosekretorische Neurone des Nucleus paraventricularis (PVN) dazu stimuliert, vermehrt das corticotropin releasing hormone (CRH) in das hypophysäre Pfortadersystem zu sezernieren. Diesen Schritt kann man als Beginn der physiologischen Stressreaktion des Körpers bezeichnen. Über das hypophysäre Pfortadersystem gelangt das CRH zum Hypophysenvorderlappen, wo dieses als Signalmolekül für die basophilen, kortikotropen Zellen dient, die hierauf die Freisetzung des adrenokortikotropen Hormons (ACTH) deutlich erhöhen. Dieses gelangt nun über den Blutkreislauf in die Nebennierenrinde, wo es die Zellen der Zona fasciculata zur Produktion von Kortikosteroiden, beim Menschen hauptsächlich Cortisol, anhält. Über einen negativen Rückkopplungsmechanismus wird die CRH- und ACTH-Produktion von den ausgeschütteten Kortikosteroiden wieder gehemmt. Hierbei spielen GABAerge Neurone der Stria terminalis, der präoptischen Region und des Hypothalamus eine Rolle, die direkt den neurosekretorischen Neuronen des Nucleus paraventricularis ein inhibitorisches Signal geben können (Herman et al. 2004, Pruessner et al. 2010).

Diese GABAergen Neurone werden von höheren Zentren aktiviert, unter anderem vom präfrontalen Kortex und dem Hippocampus (Reul et al. 2000).

Abb. 10

Schematische Darstellung der physiologischen Stressantwort in einer Hemisphäre eines Rattengehirns. 1. Stress (Blitz) bewirkt die Aktivierung des Bettkerns der Stria Terminalis (BST), der exzitatorisch (roter Pfeil) den Nucleus paraventricularis (PVN) im Hypothalamus erregt (+). 2. Der PVN produziert hierauf vermehrt das Corticotropin-Releasing-Hormon (CRH), das aus den Axonterminalien der CRH-Neurone im Hypophysenvorderlappen (HVL) ausgeschüttet wird. 3. Der HVL sezerniert nun vermehrt das adrenokortikotrope Hormon (ACTH), welches über den systemischen Kreislauf zur Nebenniere (NN) gelangt. 4. Hier werden nun vermehrt Kortikosteroide (CS) produziert, die eine Vielzahl von stressspezifischen Reaktionen des Körpers mediieren.

Abb. 11

Die erhöhte Kortikosteroidproduktion in der Nebenniere bewirkt das vermehrte Anfluten dieser lipophilen Hormone in das Gehirn der Ratte. Im Rahmen einer Feedback-Hemmung (blaue Pfeile) bewirken sie 5.a im Nucleus paraventricularis (PVN) eine verminderte *corticotropin-releasing-hormon* (CRH)-Ausschüttung und 5.b in der Hypophyse eine verminderte Freisetzung von adrenokortikotropem Hormon (ACTH). Ebenso wirken höhere Zentren hemmend auf die Produktion von CRH und ACTH: 5.c Der prälimbische Kortex (PLC) und 5.d der Hippocampus erregen (rote Pfeile) Teile des Bettkerns der Stria terminalis(BST), der GABAerge, d.h. hemmende Efferenzen zum PVN projiziert. Hieraus resultiert ebenfalls eine verminderte CRH-Ausschüttung und konsekutiv eine verminderte ACTH-Sekretion aus dem Hypophysenvorderlappen (HVL), was zusammengenommen letztlich 6. zur Senkung und Normalisierung des Kortikosteroidspiegels im Blut führt.

Wie oben schon erwähnt, ist dieser Regelkreis in chronisch gestressten Tieren und beim Menschen hyperaktiv, sodass eine unzureichende Rückkopplung einen erhöhten basalen Kortikosteroidspiegel bedingt (De Kloet und Reul 1987). Die lipophilen Glukokortikoide passieren leicht die Blut-Hirn-Schranke und wirken hier direkt auf die Expression einer ganzen Reihe von Genen und bewirken auf diese Weise viele Veränderungen auf neuronaler Ebene als Reaktion auf den Stress.

Abb. 12

Chronischer Stress (dunkelroter Pfeil) bewirkt das Versagen der direkten Feedbackmechanismen (blau gestrichelt) sowie der regulatorischen Wirkung der übergeordneten Zentren PLC und Hc (gestrichelte rote Pfeile). Als Folge dessen bleibt der CRH- und ACTH-Spiegel unter chronischem Stress erhöht und die Corticosteroidproduktion in der Nebenniere (NN) anhaltend aktiviert.

1.2.4.2 Veränderungen der Neurotransmitterhaushalte

Neben diesem neuroendokrinologischen Regelkreis bewirkt chronischer psychosozialer Stress bei Menschen und Tieren auch Maladaptionen in anderen Systemen von Gehirn und Körper (Anisman und Zacharko 1992, McEwen 2004). So lassen sich tiefgreifende Veränderungen in Neurotransmittersystemen finden, die teilweise direkt mit der Aktivität der HPA-Achse in Verbindung stehen (Flügge 2000). An prominenter Stelle stehen hier Störungen der Monoaminhaushalte. Nach einer gemeinhin akzeptierten Hypothese findet sich nach längerfristiger Applizierung von Stress eine verminderte Produktion der Monoamine Serotonin, Noradrenalin und Dopamin als Folge seiner chronischen Einwirkung. Diese Hypothese betrachtet man heute als wichtigen Aspekt in der Entstehung von Depressionen (Nutt 2008) und gibt Anlass für die Entwicklung antidepressiv wirksamer Medikamente, die auf eine Rebalancierung dieser Neurotransmitterhaushalte abzielen.

1.2.4.3 Morphologische Veränderungen von Neuronen und Gliazellen

Mehrere Studien haben gezeigt, dass chronischer psychosozialer Stress neben diesen neurochemischen Veränderungen auch morphologische Veränderungen der Neurone und Gliazellen hervorrufen kann (Manji und Duman 2001). Sowohl *post-mortem*-Studien am Menschen, in denen man eine verringerte Dichte von Gliazellen fand (Rajkowska 2000), als auch Untersuchungen an chronisch psychosozial gestressten Tieren, bei denen im Hippocampus erhöhte Plastizität, Volumenverlust und Veränderungen in der glialen Zytoarchitektur festgestellt werden, wiesen den Einfluss dieser Stressart auf die Struktur und Morphologie von Neuronen und Gliazellen nach (Czeh et al. 2006, Fuchs et al. 2004, Magarinos et al. 1996).

1.2.4.4 Reelin und Stress

Die oben beschriebenen Ergebnisse zeigen, dass das Gehirn auf chemischer und morphologischer Ebene auf chronischen, psychosozialen Stress reagiert. Alle Komponenten auf molekularer Ebene, die diese Veränderungen bewirken, sind noch nicht bekannt. Die morphologisch sichtbaren Veränderungen in Struktur und Dichte der Neurone und Gliazellen müssen über Signalkaskaden vermittelt werden, die letztlich einen Einfluss auf das Zytoskelett der Zelle haben, damit der sichtbare Strukturwandel stattfinden kann. Der Zusammenhang zwischen dem die Zellmorphologie verändernden Einfluss von Stress und dem Glykoprotein Reelin, welches direkt auf das Aktin-Zytoskelett von Neuronen und Gliazellen einwirkt, wurde bislang nur wenig untersucht. Post-mortem-Studien zeigten eine verminderte Reelinexpression in Teilen des Hippocampus bei depressiven Patienten (Fatemi et al. 2000, Knable et al. 2004). Eine andere Gruppe fand eine erhöhte Reelinexpression im Hippocampus männlicher Ratten, die dem sogenannten early life stress, der wiederholten oder dauerhaften Trennung von der Mutter, ausgesetzt waren. Ebenso erhöhten chronische intravenöse Injektionen von Kortikosteroiden die Expression von Reelin (Gross et al. 2010). Eine andere Gruppe fand das genaue Gegenteil, eine verminderte Anzahl Reelin-positiver Neurone nach chronischer Kortikosteroidinjektion (Lussier et al. 2009). Die derzeitige Studienlage zeigt nicht klar, wie Reelinsystem auf bestimmte Formen von Stress anspricht. Die Frage, ob chronischer psychosozialer Stress einen Einfluss auf das Reelinsystem in einem bestimmten Teil des Gehirns der Ratte hat, soll ein Thema dieser Arbeit sein.

1.3 Maternale Immunsystemaktivierung durch Poly I:C

Es wird angenommen, dass Krankheiten und physiologische Störungen bei Schwangeren einen negativen Einfluss auf die normale Entwicklung und Physiologie der Nachkommen haben. Träfe dies auch für die normale Hirnentwicklung zu, könnten dauerhafte Konsequenzen für die Nachkommen die Folge sein. So könnte eine physiologische Störung der Schwangeren das Neugeborene für psychische Krankheiten wie Schizophrenie, Autismus und affektive Störungen prädisponieren. Es gibt zunehmend Hinweise darauf, dass die maternale Immunsystemaktivierung einen Faktor darstellt, der die normale Hirnentwicklung beeinträchtigen kann (Fatemi et al. 2002, Meyer U et al. 2006a). Untersuchungen am Menschen zeigen, dass eine respiratorische Infektion der Mutter während der Schwangerschaft das Risiko für die Nachkommen signifikant erhöht, an Schizophrenie zu erkranken. Ebenso sind erhöhte Influenza-Antikörper oder erhöhte Titer von Interleukin-8 mit einem erhöhten Schizophrenierisiko für die Nachkommen verbunden (Brown AS 2006). Im Tiermodell fand man bei Mäusen, dass eine intranasale Gabe von Influenzaviren an die Mutter am Gestationstag 9.5 bei den Nachkommen Verhaltensabnormalitäten hervorrief, die den Symptomen von Schizophrenie und Autismus ähnelten und mit der Gabe von Neuroleptika abgemildert werden konnten (Fatemi et al. 2005a). Histopathologische Untersuchungen an den Gehirnen der Tiere zeigten starke Ähnlichkeiten zu den Befunden, die an schizophrenen Patienten erhoben wurden (Shi et al. 2003). Solche Veränderung bei den Nachkommen konnten ebenso durch die Injektion des Immunstimulans Poly I:C hervorgerufen werden, weswegen dieses die bevorzugte Methode zur Infektion von schwangeren Ratten darstellt. Bei Poly I:C handelt es sich um synthetisch hergestellte, doppelsträngige RNA aus Inosin-Cytidin-Basenpaaren, deren Vorkommen im Blut dem angeborenen Immunsystem eine virale Infektion vortäuscht (Fortier et al. 2004). Der auf Zellen der angeborenen Immunabwehr befindliche Toll-like-Rezeptor 3 kann die doppelsträngige RNA erkennen und löst in der Folge über mehrere Signalkaskaden eine erhöhte Produktion von pro-inflammatorischen Zytokinen wie Interleukin (IL)-1β, IL-6, Tumornekrosefaktor (TNF)- α und den Typ I Interferonen IFN- α und IFN- β aus (Abb. 8) (Alexopoulou et al. 2001, Meyer U et al. 2005). Bei Mäusen und Ratten wurden nach maternaler Poly-I:C-Behandlung in histologischen Untersuchungen bei den Nachkommen Veränderungen festgestellt (Ellman et al. 2010, Ozawa et al. 2006), die teilweise morphologisch und strukturell denen von Schizophrenie-Patienten glichen (Meyer U und Feldon 2011, Zuckerman et al. 2003). Unter anderem wurde eine verminderte Dichte Reelin-positiver Neurone im präfrontalen Kortex und eine verminderte Zahl Reelin-positiver Neurone im Hippocampus der untersuchten Mäuse gefunden, was in Verbindung gebracht wurde mit dem verminderten Reelinspiegel der Gehirne schizophrener Patienten, der als Charakteristikum in *post-mortem*-Studien gefunden wurde (Fatemi et al. 2000, Meyer U et al. 2008). Diese interessanten Befunde, müssen jedoch noch validiert werden. Die Frage, ob die Aktivierung des maternalen Immunsystems während der Schwangerschaft einen Einfluss auf das Reelinsystem im präfrontalen Kortex der Nachkommen hat, soll auch Gegenstand der vorliegenden Arbeit sein.

Abb. 7

Schematische Darstellung der maternalen Immunsystemaktivierung mit Poly I:C. Poly I:C wird von Toll-like-Receptor 3 (TlR3) auf B-Lymphozyten (B), natürlichen Killerzellen (NK) und T-Lymphozyten (T) erkannt und stimuliert dadurch die Produktion von Zytokinen (Interferon-alpha, IFN- α , orangefarbene Dreiecke; Interferon-beta, IFN- β , rosa Quadrate; Interleukine, IL, violette Kreuze). Diese können die Plazentaschranke passieren und in den Blutkreislauf des Fetus gelangen, wo sie nach Erreichen des Gehirns Störungen in der Hirnentwicklung hervorrufen könnten. Eigene Zeichnung, modifiziert nach Yee et al. 2011 b.

1.3.1 Behandlung mit Poly I:C und juveniler Stress

Entsprechend der Double-hit-Hypothese (Bayer et al. 1999) wird angenommen, dass Tiere, die zusätzlich zur Poly-I:C-Behandlung ihrer Mütter in jungem Alter einem weiteren Stressor ausgesetzt sind, besonders prädisponiert sind für psychische Erkrankungen Erwachsenenalter beispielsweise Schizophrenie. im wie Epidemiologische Studien beim Menschen legen diesen Zusammenhang nahe (Torrey et al. 1997), woraufhin Tiermodelle entwickelt wurden, um diese Hypothese näher zu untersuchen (Patterson 2009). In der vorliegenden Arbeit wurden auch Ratten untersucht, die pränatal der maternalen Immunaktivierung (first hit) und postnatal juvenilem Stress (second hit) ausgesetzt waren (Abb. 9). Die Applikation von juvenilem Stress umfasste dabei die Anwendung folgender Maßnahmen: Forciertes Schwimmen, Ausharren auf einer erhöhten Plattform und Immobilisationsstress (Yee et al. 2011 b).

Zur Bestätigung der Hypothese und zur Untersuchung des Wirkungsgrades der prä- und postnatalen Stimuli wurden von Yee et al. (2011 b) eine Reihe von Tests durchgeführt, wie z.B. den *Prepulse Inhibition Test* (PPI).

Die Aufgabe dieser Arbeit war, bei Tieren aus dem Experiment von Yee et al. (2011 b) mögliche Veränderungen der Zahl Reelin-positiver Neurone in einem Teil des präfrontalen Kortex (prälimbischer Kortex) der untersuchten Ratten zu erfassen. Veränderungen der Zahl dieser Zellen wurden schon von anderen Gruppen in den Zusammenhang mit psychiatrischen Krankheiten wie z.B. Schizophrenie gebracht (Fatemi et al. 2000, Meyer U et al. 2006b).

Abb. 9

Theorie der *Double-Hit*-Hypothese. Eine pränatale Immunsystemaktivierung der Mutter (*first hit*) und zusätzlich eine postnatale Anwendung von juvenilem Stress (*second hit*) könnte für die Entstehung von psychischen Krankheiten prädisponieren.

1.4. Der Präfrontale Kortex (PFC)

1.4.1 Die Anatomie des präfrontalen Kortex

Mit bloßem Auge ist es schwer, am Großhirn des Menschen Regionen abzugrenzen. Die charakteristischen Sulci und Gyri bieten zwar grobe Anhaltspunkte zur Orientierung, reichen jedoch für eine Unterteilung bei weitem nicht aus und werden der komplexen Struktur des Großhirns nicht gerecht. Eine erste feinere Abgrenzung von Regionen des Großhirns entwickelte der deutsche Neuroanatom Korbinian Brodmann (1909). Mit Hilfe der Nissl-Färbung erkannte er Unterschiede in der Zytoarchitektonik und in der Organisation der Schichten der Großhirnrinde (Neokortex) und teilte diese in 43 Areale (Brodmann 1909, Zilles und Amunts 2010). Diese und weitergehende ein neuroanatomische Forschung ließen die erste Beschreibung des präfrontalen Kortex (engl. prefrontal cortex, PFC) nach histologischen und zytoarchitektonischen Kriterien zu. Zum PFC werden auf diese Weise alle Bereiche des Frontallappens gezählt, die die innere Körnerschicht (Schicht 4) besitzen und rostral des agranulären prämotorischen Kortex liegen (Zilles et al. 1987). Zusätzliche Kriterien für die Bestimmung des Areals des präfrontalen Kortex sind heute die reziproke Konnektivität mit dem mediodorsalen Nukleus des Thalamus, eine dopaminerge Innervation sowie die offensichtliche Schlüsselrolle in der Koordination von Verhalten, welche das Arbeitsgedächtnis, das Wiederaufrufen von Informationen aus dem Langzeit- und Kurzzeitgedächtnis sowie das Ausblenden unwichtiger oder unangemessener Signale beinhaltet (Damasio 2000, Ramos und Arnsten 2007). Der Mensch weist beim Vergleich mit anderen Säugetieren das mit Abstand größte relative Volumen dieser Region auf. So nimmt man an, dass diese Region die neuronale Entsprechung für spezifisch menschliche Merkmale ist und damit höherer kognitiver Funktionen wie dem Ich-Bewusstsein und dem rationalen Denken dient. Die vergleichende Untersuchung der Afferenzen und Efferenzen sowie der Vergleich einiger Funktionen des menschlichen PFC mit denen anderer Arten lassen eine Reihe von Gemeinsamkeiten erkennen. Bei entsprechender Zytoarchitektonik und analogen Projektionen sind Steuerung der Verhaltensflexibilität und der Einfluss auf soziale Fertigkeiten und Emotionsverarbeitung die Kriterien, nach denen diese Hirnregion eines Tieres als äquivalent zum menschlichen PFC betrachtet werden kann. So hat auch die Ratte eine Hirnregion, die diese Kriterien erfüllt und somit "präfrontaler Kortex der Ratte" genannt wird (Uylings et al. 2003).

1.4.2 Die Anatomie des medialen präfrontalen Kortex (mPFC) der

<u>Ratte</u>

Der PFC der Ratte wird in einen lateralen, ventralen und medialen Bereich gegliedert (Fuster 1997). Zusätzlich werden in diesen Unterregionen Teilbereiche unterschieden.

Abb. 10

So besteht der laterale präfrontale Kortex aus dem dorsalen und ventralen agranulären insulären Kortex (AID, AIV) und der ventrale Bereich aus dem ventralen, ventrolateralen und lateralen orbitalen Kortex (VO, VLO, LO). Der mediale präfrontale Kortex (mPFC), auf den in der vorliegenden Arbeit ein besonderes Augenmerk gelegt wird, ist in den anterioren zingulären Kortex (ACx), den prälimbischen Kortex (PLC) und den infralimbischen Kortex (ILC) unterteilt (Abb. 10). Diese unterscheiden sich in Funktion, Zytoarchitektonik und (sub-)kortikalen Konnektivitäten mit anderen Hirnregionen (Bacon et al. 1996, Gabbott et al. 2005, Vertes 2004).

Der ACx stellt den dorsalen Teil des mPFC dar. Er ist mit dem supplementären und prämotorischen Kortex verbunden und spielt bei der Ablaufplanung und Speicherung von motorischen Verhaltensantworten eine Rolle. Der PLC und der ILC werden

Frontalschnitt durch den präfrontalen Kortex der Ratte. Acx: Anteriorer cingulärer Kortex, PLC: Prälimbischer Kortex, IL: Infralimbischer Kortex, AID,AIV: Ventraler/dorsaler agranulärer insulärer Kortex, LO, VO: lateraler/ ventraler orbitaler Kortex. Aus Paxinos und Watson 2007.

zusammen dem ventralen Anteil des mPFC zugerechnet. Der infralimbische Kortex sendet Efferenzen zu autonomen und viszeromotorischen Regionen aus. Seine experimentelle Stimulation hat ein Ansteigen der Respiration, ein Verhalten der gastrointestinalen Motilität sowie eine Erhöhung des Herzschlags und des Blutdrucks zur Folge (Neafsey et al. 1986, Terreberry und Neafsey 1987). Der prälimbische Kortex hingegen projiziert zu limbischen Arealen des Gehirns und spielt eine wichtige Rolle bei kognitiven Prozessen, besonders bei solchen, die das temporäre Arbeitsgedächtnis erfordern (Dalley et al. 2004).

Der mPFC befindet sich demnach aufgrund seiner Konnektivitäten an einer strategisch wichtigen Position. Er erhält Afferenzen aus limbischen Arealen wie der Amygdala und dem Hippocampus und projiziert Efferenzen zu einer Vielzahl von Regionen, zum Beispiel dem Hypothalamus und dem Hirnstamm, womit er unter anderem als eine Schnittstelle zwischen kognitiven und autonomen Regionen angesehen werden kann. Dies deutet darauf hin, dass der mPFC bei der Regulation und Steuerung von Emotionen und dabei auch bei der Verarbeitung von Stress eine wichtige Rolle spielt.

<u>1.4.3. Die Funktion des mPFC bei der Stressantwort</u>

Der mPFC ist wie der gesamte PFC reich an Glukokortikoidrezeptoren, die während der normalen Stressreaktion aktiviert werden (Diorio et al. 1993, Figueiredo et al. 2003). Die direkte Einwirkung des mPFC auf die physiologisch am besten untersuchte Stressantwort des Körpers, die Aktivierung der HPA-Achse, war ersichtlich, als bei Ratten die unspezifische, elektrische Stimulation des mPFC eine Veränderung des Corticosteronspiegels zur Folge hatte (Feldman und Conforti 1985). Es wurde deutlich, dass der ventromediale und der dorsomediale Bereich des mPFC gegensätzliche Funktionen in der Regulierung der HPA-Achse einnehmen (Radley et al. 2006). Experimentelle Studien konnten zeigen, dass Läsionen des ACx und des PLC in einer Erhöhung und Läsionen des ILC in einer Erniedrigung des Glukokortikoidspiegels bei Ratten resultierten (Sullivan und Gratton 1999). Es wird heute angenommen, dass der ILC zu Beginn einer Stressantwort von der Amygdala stimuliert wird und dieser den Bettkern der Stria terminalis (BST) aktiviert, welcher exzitatorische Signale an den CRH produzierenden PVN aussendet, wodurch die HPA-Achse aktiviert wird (Jalabert et al. 2009). Dem dorsomedialen mPFC, besonders dem prälimbischen Kortex (PLC), wird die

Einleitung

Aufgabe zugesprochen, nämlich als Teil entgegengesetzte der negativen Feedbackhemmung die Hormonsekretion wieder herunterzuregulieren. Glukokortikoide aktivieren Neurone des PLC, welche exzitatorische Signale an den fusiformen und dorsolateralen Bereich des BST senden. Die hier erregten Neurone senden GABAvermittelte inhibitorische Signale an den PVN, was die CRH Produktion senkt und dadurch die Glukokortikoidausschüttung in den Nebennierenrinden drosselt (Abb.11) (Radley et al. 2009). Diese gegensätzlichen Funktionen von dorsalem und ventralem mPFC bei der Regulierung der neuroendokrinen Stressantwort finden ihre Entsprechung auch in anatomisch ersichtlichen Unterschieden in Bezug auf die Verschaltung mit anderen Hirnregionen (Heidbreder und Groenewegen 2003).

Abb. 11

Schematische Darstellung der Wirkung des prälimbischen Kortex auf die hormonelle Stressantwort. Der prälimbische Kortex (PL) sendet exzitatorische (glutamaterge, Glu) Signale an den dorsomedialen und fusiformen Teil des Bettkerns der Stria terminalis (BST fu/dm), welche darauf hin inhibitorische Efferenzen zum Nucleus paraventricularis (PVH) aktiviert. Hierdurch wird die Produktion von *Corticotropin-Releasing-Hormon* (CRF) gedrosselt, was die hypophysäre ACTH-Produktion ebenfalls senkt und somit zu einer verminderten Kortikosteroid-Synthese führt. Aus Radley et al. 2009, S. 7338, mit freundlicher Genehmigung des Verlages.

Neben den Effekten auf Teile des Hypothalamus beeinflusst der mPFC ebenso andere Hirnregionen in direkter Weise, die bei der Stressantwort eine Rolle spielen, wie den Nucleus accumbens oder den dorsalen Raphekern (Amat et al. 2005, Pascucci et al. 2007). Ebenso hat der mPFC Einfluss auf das vegetative Nervensystem: In tierexperimentellen Läsionsstudien zeigten die Tiere unterschiedliche Verhaltensweisen, abhängig von der läsionierten Region. So zeigten Läsionen des ILC verminderte Angstreaktion und parasympathische Aktivierung, die des PLC und ACx dagegen ein vermehrt ängstliches Verhalten und eine erhöhte Aktivität des Sympathikus (Frysztak und Neafsey 1994, Morgan und LeDoux 1995). Beim Menschen konnten ähnliche Wirkungen des mPFC auf die Stressverarbeitung anhand von Untersuchungen an Schlaganfallpatienten mit beidseitigen Läsionen des mPFC gezeigt werden. Diese Patienten reagierten anders auf Stress als Gesunde, die keinen Schlaganfall erlitten hatten. Sie entwickelten kaum autonome, physiologische Antworten auf emotionale Stimuli und zeigten große emotionale und soziale Behinderungen, Defizite in Entscheidungsfähigkeit und Risikobewertung (Damasio 2000).

1.4.4. Die Auswirkungen von Stress auf den mPFC

Die Arbeiten der neurobiologischen Stress- und Depressionsforschung zeigen nicht nur die Einflüsse des mPFC auf die Stressverarbeitung, sondern beleuchten umgekehrt auch die Wirkungen von Stress auf den mPFC. Eine Reihe von Untersuchungen konnten zeigen, dass Stress den medialen präfrontalen Kortex auf zellulärer Ebene stark verändern kann. Sowohl bei Neuronen als auch bei Gliazellen sind klar erkennbare stressinduzierte Veränderungen ihrer Morphologie erkennbar. Zum Beispiel weisen bestimmte Neurone im Hippocampus von Tieren, die chronischem Stress ausgesetzt waren, stark verkürzte Dendritenbäume auf (Cook und Wellman 2004, Watanabe et al. 1992). Dieses Retraktionsphänomen zeigte sich im mPFC, in Neuronen der Amygdala sowie im Hippocampus, die alle, wie oben dargestellt, eine wichtige Rolle bei der Regulation der Stressantwort spielen (Cerqueira et al. 2007). Weiter fand man einen deutlichen Volumenverlust der betroffenen Regionen nach chronischem Stress, sodass chronische Stresseinwirkungen letztendlich auch auf makroskopischer Ebene erkennbar sind (Herman et al. 2003). Dieses Phänomen kann auf der oben genannten Verkleinerung der Dendritenbäume beruhen. Bei Gliazellen wirkte sich chronischer

Einleitung

Stress zu einer vermehrten Inhibierung der Gliogenese aus, was auch zu dem stressinduziertem Volumenverlust beitragen mag (Banasr et al. 2007, Czeh et al. 2007). Die Ursachen für diese klar sichtbaren, stressinduzierten morphologischen Veränderungen sind noch unklar. Mögliche Erklärungen liefern Befunde von Gruppen, deren Ergebnisse veränderte Monoaminrezeptorendichte (Flügge et al. 1997), eine verminderte Produktion des Neurotrophins BDNF (Bland et al. 2005) oder die reduzierte Expression neurotropher Proteine (M6a, CDC-like-kinase 1, GNAQ) zeigen konnten (Alfonso et al. 2004).

Der mPFC scheint besonders sensibel auf diese Art äußerer Einflüsse zu reagieren, da er diese morphologischen Veränderungen auch schon nach der Applikation von mildem Stress zeigt (Brown SM et al. 2005). Hierbei scheint es angebracht, die Untereinheiten des mPFC getrennt voneinander zu betrachten, da sie voneinander sehr verschiedene stressinduzierte morphologische Änderungen zeigen (Perez-Cruz et al. 2009). Der Zusammenhang zwischen diesen stressinduzierten Reaktionen des mPFC und den dort vorhandenen Reelin sezernierenden Neuronen ist bislang noch nicht erforscht. Die vorliegende Arbeit befasst sich mit Auswirkungen von psychosozialem Stress auf das Reelinsystem in einem Teil des medialen präfrontalen Kortex.

<u>1.4.5 Die Lateralisierung des PFC und ihre Bedeutung für die</u> Stressantwort

Beim Menschen ist gut dokumentiert, dass die für bestimmte emotionale Verarbeitungsprozesse verantwortlichen Hirnregionen des präfrontalen Kortex lateralisiert vorliegen, d.h., dass die verantwortlichen Neuronenzentren nur auf einer Seite vorzufinden sind (Davidson 1992). Seit langem wird zum Beispiel sehr vereinfacht angenommen, dass die linke Hemisphäre des Frontallappens die für sprachliche, motorische und rationale Handlungen und Prozesse verantwortlichen Hirnregionen beherbergt und dass die in der rechten Hemisphäre vorzufindenen Neuronengruppen für emotionale und affektive Modulationsprozesse und Verhaltensweisen zuständig sind (Denenberg 1983, Uylings et al. 2006). Auch wenn diese Annahme die tatsächlichen Gegebenheiten stark vereinfachen, zeigen fMRT Studien beispielhaft eine erhöhte Aktivität der linken Hemisphäre, wenn die Testpersonen rationale Entscheidungen

Einleitung

trafen, wohingegen affektiv getroffene Entscheidungen mit einer erhöhten Aktivität in der rechten Hemisphäre einhergehen (Goel et al. 2007). Immer mehr Beweise deuten darauf hin, dass diese funktionale Asymmetrie auch im medialen präfrontalen Kortex bei der Regulation der Stressantwort vorherrscht; hierbei scheint die rechte Hemisphäre eine dominante Rolle zu spielen (Carlson et al. 1991, 1993, Sullivan und Gratton 2002). Generell wird dem rechten mPFC die Integration der emotionalen und physiologischen Stressantwort nach Langzeitstress zugeschrieben, wohingegen der linke mPFC mehr in der Verarbeitung von akutem Stress involviert sein soll (Hu 2010). Tiermodelle konnten einen Zusammenhang zwischen der Aktivierung des rechten PFC und einer erhöhten Stressantwort darstellen. Zum Beispiel resultierte unkontrollierbarer Stress bei Ratten in einem erhöhten Dopaminumsatz im rechten PFC (Abb. 12).

Abb. 12

Schematische Darstellung der dopaminergen Innervation (rote Pfeile, Strukturformel) des prälimbischen Kortex (rPLC bzw. IPLC) aus dem ventralen Tegmentum (rVT bzw. IVT). Links: Unter physiologischen Bedingungen ist der Dopaminumsatz auf beiden Seiten gleich stark ausgeprägt. Rechts: Unter der Einwirkung von verschiedenen Stressarten (Blitz) ist der Dopaminumsatz im rechten prälimbischen Kortex im Vergleich zum linken gesteigert (dicker Pfeil).

Weiter hatte die Läsion des rechten ILC anxiolytische Wirkungen und senkte die Inzidenz von Magengeschwüren, hervorgerufen durch Immobilisationsstress in einer kalten Umgebung (Carlson et al. 1991, Sullivan 2004). Interessanterweise wirkte sich die Läsion des rechten mPFC in gleicher Weise auf die Stressantwort von Tieren aus wie eine beidseitige Läsion des mPFC, was auf die genannte dominante Rolle der rechten Hemisphäre bei der Stressverarbeitung hinweist. Unterstützend hierzu zeigten Schlaganfallpatienten mit einem Ausfall im linken präfrontalen Kortex eine auffällig hohe Inzidenz von Depressionen und Panikattacken, wohingegen Ischämien im rechten Frontallappen vermehrt emotionale Indifferenz hervorrufen (Robinson et al. 1984).
Einleitung

Darüber hinaus ist der rechte PFC dominant in der Kontrolle der sympathischen Komponenten, die auf das Herzkreislaufsystem wirken (Yoon et al. 1997) und weiter ist vermehrte Aktivität des rechten PFC assoziiert mit hohen Plasma-Cortisolspiegeln und angsterfülltem, defensivem Verhalten (Kalin et al. 1998). Bemerkenswerterweise ist der Volumenverlust, induziert durch experimentelle orale Gabe von Glukokortikoiden, im linken mPFC weitaus größer als im rechten, was darauf hinweist, dass der linke mPFC weniger stabil auf die Einwirkung von Glukokortikoiden reagiert. Ebenso wird auf der linken Seite die Gliogenese am stärksten durch Stress inhibiert (Cerqueira et al. 2005, Czeh et al. 2005). Viele dieser Änderungen auf zellulärer Ebene scheinen jedoch temporär zu sein, da sie nach einer Zeit der Erholung spontan remittieren können (Radley et al. 2005). Bei der Untersuchung des präfrontalen Kortex scheint es aufgrund all dieser Hinweise geboten, die Hemisphären getrennt zu betrachten.

Zusammenfassend ist festzustellen, dass dem mPFC bei der Verarbeitung und Reaktion auf Stress eine äußerst wichtige Rolle zukommt. Er befindet sich aufgrund seiner Konnektivitäten in einer strategisch bedeutenden Position und wirkt prominent auf die Stressantwort des Körpers. Dabei reagiert der mPFC aber auch äußerst sensibel auf Stress, was auf makroskopischer, mikroskopischer und molekularer Ebene sichtbar wird. Ebenso zeigt die Stressverarbeitung im mPFC eine starke Lateralisation. Wie auch andere auf Emotionen basierende Prozesse und Verhaltensweisen ist die Stressreaktion vornehmlich mit der Aktivität des rechten mPFC verbunden, besonders nach Einwirkung von chronischem Stress. Viele unterstützende Studien zeigen, dass es bei der Untersuchung des mPFC auf zellulärer Ebene angebracht ist, Stressreaktionen hemisphärenspezifisch zu betrachten, was auch in der vorliegenden Arbeit getan wird.

37

<u>1.4.6 Die Fokussierung auf Schicht I des prälimbischen Kortex</u> (PLC)

Die Unterregionen des mPFC wirken bei der Modulierung der Stressantwort auf ganz unterschiedliche, teilweise sogar gegensätzliche Art und Weise. Dies macht bei der Untersuchung des mPFC die Fokussierung auf eine bestimmte Untereinheit erforderlich. In dieser Arbeit werden Veränderungen im Reelinsystem des prälimbischen Kortex nach der Anwendung von psychosozialem Stress untersucht. Dieser ist aufgrund seiner Projektionen zu limbischen Arealen besonders bei emotionalen und psychischen Prozessen involviert, zusätzlich nimmt er bei der Regulierung der neuroendokrinen Stressantwort als Förderer der negativen Feedback-Hemmung eine wichtige Rolle ein. Da die Anwendung von sozialem Stress sowie mögliche, durch Poly-I:C-Behandlung auftretende, schizophrenieartige Verhaltensweisen eine starke psychische Komponente aufweisen, d.h., mit Beteiligung limbischer Areale sowie neuroendokriner Faktoren zustande kommen, erscheint die Fokussierung auf den prälimbischen Kortex für diese Untersuchungen sinnvoll.

Weiter untersucht die vorliegende Arbeit die Dichte Reelin-positiver Zellen in einem Teil des PLC. Betrachtet man den gesamten PLC durch ein Lichtmikroskop, so findet sich hier eine ungleichmäßige Verteilung der Reelin-positiven Zellen. Zur Gewinnung möglichst objektiver, valider Ergebnisse ist daher die Fokussierung auf ein klar definiertes Areal erforderlich. Aus diesem Grund beschränkt sich diese Arbeit auf die Quantifizierung der Reelin-immunoreaktiven Zellen in Schicht I (engl.: layer 1) des prälimbischen Kortex. Diese Beschränkung auf Schicht 1 des prälimbischen Kortex ist für die Gewinnung valider Ergebnisse aus folgenden Gründen erforderlich:

- a) Schicht 1 des mPFC ist lichtmikroskopisch nach der DAB-Färbung Reelinpositiver Strukturen (+Gegenfärbung) klar abgrenzbar.
- b) Die Reelin-positiven Strukturen in Schicht 1 des mPFC sind stark gefärbt und heben sich deutlich vom Hintergrund ab. In tieferen Schichten sind sie schwach gefärbt, wobei sich die Intensitäten der schwachen Färbung stark abstufen. Daher ist es kaum möglich zu entscheiden, welche Zelle in diesen kortikalen Schichten Reelin-positiv und welche Reelin-negativ sind.

c) In Schicht 1 des mPFC gibt es fast keine Überlappungen von Zellen und nur wenige schwach gefärbte Zellen im Hintergrund. In tieferen Schichten dagegen überlagern sich eine Vielzahl schwach gefärbter Zellen, was eine sichere Zählung unmöglich macht.

Eine Zählung aller Reelin-positiven Zellen im mPFC wäre aus den genannten Gründen technisch (Abgrenzung, Erkennung, Überlagerung) und zeitlich nicht durchführbar gewesen. Ein Herausgreifen eines anderen Teilareals des mPFC erschien nicht sinnvoll, da kein anderes Areal dieser Hirnregion so klar abgrenzbar ist und so deutliche, unverwechselbare Zellfärbungen zeigt wie Schicht I des mPFC.

Zudem haben sich andere Forschergruppen bei ihren histologischen Untersuchungen zu Reelin-positiven Strukturen ebenfalls auf Schicht 1 eines Kortexareals beschränkt, sehr wahrscheinlich wegen ähnlicher Betrachtungen der Sachlage (Abraham et al. 2005, Cassidy et al. 2010, Eastwood und Harrison 2003, Ruzicka et al. 2007).

In Schicht I des PLC laufen Assoziationsfasern aus vielen kortikalen Arealen zusammen. Ein so komplexes Phänomen wie die Stressreaktion benötigt das Zusammenspiel vieler kortikaler und subkortikaler Zentren. Dasselbe gilt für jede Art von psychischer Krankheit, z. B. durch maternale Immunsystemaktivierung hervorgerufen, an deren Entstehung Veränderungen in mehreren Hirnregionen vorliegen müssen. Die Wirkung von psychosozialem Stress oder die mögliche Beeinflussung der Hirnentwicklung durch die Poly-I:C-Behandlung könnte sich auch in einer veränderten Struktur der Assoziationsfaserschicht äußern. Die Gewährleistung des Strukturerhalts in der Assoziationsfaserschicht für etablierte Verbindungen zwischen unterschiedlichen Hirnregionen mag bedeutend für die normale Funktion des Gehirns sein. Möglicherweise leistet hier das Glykoprotein Reelin mit seinem Einfluss auf das Aktin-Zytoskelett einen entscheidenden Beitrag. Aufgrund all dieser Betrachtungen konzentriert sich die vorliegende Arbeit auf die Quantifizierung Reelin-immunreaktiver Zellen in Schicht I des prälimbischen Kortex männlicher Ratten.

39

2. Zielsetzung der Arbeit

1) Erstes Ziel der vorliegenden Arbeit war festzustellen, ob Stress einen Einfluss auf die Zahl Reelin-exprimierender Zellen im prälimbischen Kortex der Ratte hat.

Chronischer, psychosozialer Stress ruft eine Reihe von morphologischen Veränderungen in Neuronen hervor, wie zum Beispiel die Retraktion der Dendritenbäume von bestimmten Neuronen. Diese morphologischen Veränderungen sind vermutlich mit Aufund Abbauprozessen des Zytoskeletts verbunden. Reelin ist ein Glykoprotein der Extrazellulärmatrix, das einen stabilisierenden Einfluss auf das Aktin-Zytoskelett von Neuronen und Gliazellen hat. Ein möglicher Zusammenhang zwischen dem die Zellmorphologie verändernden Einfluss von Stress und dem das Aktin-Zytoskelett stabilisierenden Glykoprotein Reelin soll Gegenstand der Untersuchungen dieser Arbeit sein. Folglich wurden die Dichten Reelin-immunreaktiver Neurone in Schicht I des prälimbischen Kortex von adulten, männlichen Wistar-Ratten bestimmt, die chronischem psychosozialen Stress ausgesetzt waren und mit denen von Kontrolltieren verglichen.

2) Zweites Ziel der vorliegenden Arbeit war es festzustellen, ob die pränatale Aktivierung des maternalen Immunsystems durch Poly I:C einen Einfluss auf die Zahl Reelin-exprimierender Zellen im prälimbischen Kortex der männlichen Nachkommen hat.

Der prälimbische Kortex unterhält eine Vielzahl von Projektionen von und zu limbischen Arealen, womit ihm eine wichtige Rolle für die Verarbeitung kognitiver und emotionaler Prozesse zukommt. Eine möglicherweise durch die Poly-I:C-Behandlung hervorgerufene Störung der Hirnentwicklung der Ratten mag sich auf zellulärer Ebene auch im prälimbischen Kortex manifestieren. Entsprechend der Hypothese, dass die maternale Immunsystemaktivierung psychische Störungen bei den Nachkommen begünstigt, könnten sich in Regionen wie dem prälimbischen Kortex, die stark in kognitive und emotionale Prozesse involviert sind, auch auf zellulärer Ebene Veränderungen nach der Poly-I:C-Behandlung zeigen. Die Betrachtung der Assoziationsfaserschicht dieser Region ist deshalb interessant, weil hier die Informationen aus ganz unterschiedlichen Hirnregionen zusammenlaufen und verrechnet werden. Die Gewährleistung des Strukturerhalts für diese etablierten "Datenstraßen", die unterschiedliche Hirnregionen miteinander verbinden, ist äußerst wichtig für das normale Funktionieren des Gehirns. Psychische Störungen können Ausdruck von Veränderungen in dieser Assoziationsfaserschicht sein. Möglicherweise leistet hier das Glykoprotein Reelin mit seinem stabilisierenden Einfluss auf das Aktin-Zytoskelett und seinen Funktionen während der Entwicklung der Schichten des Neokortex einen entscheidenden Beitrag. Daher wurde in der vorliegenden Arbeit die Zahl der Reelin-exprimierenden Zellen in Schicht I des prälimbischen Kortex von Sprague-Dawley-Ratten analysiert, deren Mütter während der Gravidität (Gestationstag 15) das Immunstimulanz Poly I:C erhalten hatten.

Das unter 2) genannte Experiment bestand aus mehreren Gruppen von Tieren, wovon eine, zusätzlich zu der pränatalen Behandlung mit Poly I:C, in der juvenilen Phase Stress ausgesetzt wurde. In diesen Tieren und in den jeweiligen Kontrolltieren wurde ebenfalls die Zahl der Reelin-positiven Zellen in Schicht I des prälimbischen Kortex quantifiziert.

3) Reelin ist ein Glykoprotein der Extrazellulärmatrix, dessen Funktion im adulten Hirn noch wenig verstanden ist. Laut Literatur wird Reelin im adulten Hirn unter anderem von GABAergen Interneuronen , Calbindin-positiven Neuronen und Oligodendrozyten exprimiert (Pesold et al. 1998, Alcántara et al. 1998, Siebert und Osterhout 2011). Dies sollte in der vorliegenden Arbeit anhand von Fluoreszens-Doppelmarkierungen überprüft werden.

Zum Erreichen der genannten Ziele wurden folgende Experimente durchgeführt:

a) Überprüfung, ob psychosozialer Stress einen Effekt auf die Dichte von Reelinimmunreaktiven Zellen in Schicht I des prälimbischen Kortex von Wistar-Ratten im Vergleich zu Kontrolltieren hat.

b) Überprüfung, ob eine Behandlung der Mutter mit dem Immunstimulans Poly I:C einen Effekt auf die Dichte von Reelin-immunreaktiven Zellen in Schicht I des prälimbischen Kortex von Sprague-Dawley-Ratten hat. Außerdem wurde überprüft, ob eine Stressexposition in der juvenilen Phase die Zahl der Reelin-immunreaktiven Zellen verändert. Desweiteren wurden die Folgen der Kombination der beiden Behandlungen, pränatale Poly I:C–Behandlung und juveniler Stress, anhand der Zahl der Reelin-Zellen überprüft.

41

c) Analyse der Dichte von Reelin-immunreaktiven Zellen in Schicht I der rechten und der linken Hemisphäre des prälimbischen Kortex von juvenilen Wistar-Ratten, die keiner Behandlung ausgesetzt waren, um Rattenstamm-spezifische Phänomene in den Daten aus 2) auszuschließen.

d) Analyse der Kolokalisationen von Reelin mit Glutamat-Decarboxylase 67, Calbindin, dem sauren Gliafaserprotein GFAP und dem NG2-Proteoglykan.

3. Material und Methoden

3.1 Material

3.1.1 Tiere

Für die Untersuchungen eines möglichen Effektes von psychosozialem Stress auf die Zahl immunreaktiver Zellen in der Assoziationsfaserschicht des prälimbischen Kortex wurden insgesamt 9 adulte männliche Wistar-Ratten dem *social defeat paradigm* unterzogen, 9 Tiere dienten als Kontrolle. Bei Lieferung betrug das Alter der Ratten 50 Tage, ihr Gewicht lag bei ca. 250g. Die tierexperimentellen Arbeiten wurden hierbei von Carolina Araya Callis durchgeführt.

Für die Untersuchung eines möglichen Effektes einer maternalen Poly-I:C-Behandlung auf das prälimbische Reelinsystem in Schicht I des medialen präfrontalen Kortex der Nachkommen wurden insgesamt 40 männliche Sprague-Dawley-Ratten verwendet (Alter der Tiere bei der Ankunft war 21 Tage; alle Ratten von Harlan-Winkelmann, Borchen, Deutschland bzw. die Poly I:C behandelten Tiere von Harlan Laboratories, Horst, Niederlande). Die tierexperimentellen Arbeiten wurden hierbei von Nicole Yee durchgeführt.

Die Ratten wurden nach ihrer Ankunft für 7 Tage an die neue Umgebung gewöhnt (Habituierung). Die Beleuchtung der Haltungsräume folgte einem inversen Tag-Nacht Rhythmus, mit dem Beginn der Hellphase um 18.00 Uhr und dem der Dunkelphase um 6.00 Uhr. Die Umgebungstemperatur betrug 22 ±2° C bei einer Luftfeuchtigkeit von 55±10%. Für die Zeit der Eingewöhnung wurden die Ratten in Standardkäfigen in Gruppen von 2x3 und 1x4 Tieren gehalten, in denen sie *ad libitum* Zugang zu Wasser und Futter der Fa. Ssniff Spezialdiäten (Soest, Deutschland) hatten.

Die tierexperimentellen Arbeiten wurden entsprechend dem Deutschen Tierschutzgesetz in der Fassung der Bekanntmachung vom 18. Mai 2006 (BGBl. I S. 1206, 1313)durchgeführt, das zuletzt durch Artikel 20 des Gesetzes vom 9. Dezember 2010 (BGBl. I S. 1934) geändert worden ist. Allen Tierexperimente waren vom Niedersächsischen Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES) genehmigt worden.

43

3.1.2 Antikörper

Die Reelin-exprimierenden Zellen wurden immunzytochemisch nachgewiesen (Noll und Schaub-Kuhnen 2000). Dazu wurden folgende Antikörper verwendet.

Primärer AK	Verdünnung	Sekundärer AK	Verdünnung	Detektionssystem	Verdünnung
Mouse mAb					
to Reelin		Biotinylierter			
[G10]		Goat-Anti-		Avidin-Biotin-	1.200
(Ascites)	1.1000	Mouse-IgG,	1:400	Komplex (Vektor	
Abcam,	1.1000	Biozol, Echingen,		Laboratories,	1.200
Cambridge		D; Kat.Nr.:BA-		Burlingame, USA)	
ab18570		9200			
lot: 950649					

Für Immunfluoreszenz – Doppelmarkierungen verwendete Antikörper:

1. Prim. AK	Verd.	1. Sek. AK	Verd.	2. Prim. AK	Verd.	2. Sek. AK	Verd.
Mouse mAb to Reelin [G10] (Ascites) Abcam, Cambridge ab18570 lot: 950649	1:1000	Alexa 488 donkey anti- mouse IgG green Invitrogen, Oregon Lot: 55980A	1:700	Anti-GAD1 goat polyclonal, Biozol, Echingen, D Lot: 23888	1:200	Alexa 594 donkey anti-goat IgG red Invitrogen, Oregon Lot: A11058	1:700

1. Prim. AK	Verd.	1. Sek. AK	Verd.	2. Prim. AK	Verd.	2. Sek. AK	Verd.
Mouse mAb to Reelin [G10] (Ascites) Abcam, Cambridge ab18570 lot: 950649	1:1000	Alexa 594 donkey anti- mouse IgG red Invitrogen, Oregon Lot: A21203	1:700	Anti- Calbindin rabbit polyclonal Chemicon, Temecula, Lot: 0601021027	1:500	Alexa 488 donkey anti-rabbit green Invitrogen, Oregon, Lot: 737675	1:700

1. Prim. AK	Verd.	1. Sek. AK	Verd.	2. Prim. AK	Verd.	2. Sek. AK	Verd.
Mouse mAb to Reelin [G10] (Ascites) Abcam, Cambridge ab18570 lot: 950649	1:1000	Alexa 594 donkey anti- mouse IgG red Invitrogen, Oregon Lot: A21203	1:700	Anti-GFAP rabbit polyclonal Synaptic Systems Lot: 173002	1:700	Alexa 488 donkey anti-rabbit green Invitrogen, Oregon, Lot: 737675	1:700

Die fluoreszierenden Antikörper wurden in 10μ l Aliquots bei -20°C, die restlichen Antikörper in 50 μ l Aliquots bei -80°C gelagert. Letztere waren im Verhältnis 1:2 mit Glycerol verdünnt.

Der Avidin-Biotin-Komplex wurde bei 4°C aufbewahrt.

3.2 Methoden

3.2.1 Das Social-Defeat-Experiment

3.2.1.1 Protokoll der Anwendung von psychosozialem Stress

Insgesamt 9 adulte männliche Wistar-Ratten (Alter ab 50 Tage, D50+) kamen mit einem Gewicht von 250g in Göttingen an und wurden für 7 Tage in Einzelkäfigen an ihre neue Umgebung gewöhnt. Anschließend wurden sie für 28 Tage täglich sozialem Stress ausgesetzt, entsprechend einem Protokoll, das auch in anderen sozialen Stressstudien der Abteilung Klinische Neurobiologie im Deutschen Primatenzentrum verwendet wurde (Czeh et al. 2007, Rygula et al. 2005).

Hiernach wurden die Ratten täglich in den Heimatkäfig einer anderen adulten männlichen Ratte gesetzt, die in der vorangegangenen Woche auf das Kämpfen und Verteidigen ihres Käfigs trainiert worden war und deren Weibchen kurz vorher entfernt wurde. Diese Konfrontation resultiert in einer sofortigen physischen Auseinandersetzung mit der anschließenden Herstellung einer Dominanz-Subdominanz Beziehung zwischen den beiden Männchen, wobei die in den Käfig gesetzte Ratte in der Mehrzahl der Fälle den untergeordneten Part einnimmt. Nach der Konsolidierung dieser Beziehung (nach ca. 5 Minuten) wird das subordinate Tier in einen kleineren Käfig (25 × 15 × 15 cm) gesetzt und für eine Stunde in dem Käfig des dominanten Männchens belassen. Hierdurch wird weiterer physischer Kontakt verhindert, jedoch bleibt die Ratte dem dominanten Männchen olfaktorisch, auditorisch und visuell ausgesetzt. Diese Situation stellt einen starken psychosozialen Stressfaktor für die subdominanten Tiere dar. Anschließend wurden die unterlegenen Tiere zurück in ihre Einzelkäfige gebracht. Um interindividuelle Unterschiede in Art des Kampfverhaltens der dominanten Männchen auszugleichen, wurden die subordinaten Ratten jeden Tag mit einem anderen dominanten Männchen konfrontiert. Dieses Protokoll wurde über 28 Tage täglich zwischen 9:00- 10:00 Uhr durchgeführt (Abb. 13). Alle Tiere wurden täglich gewogen, auch die 9 Kontrolltiere, die dabei durch das Anfassen für ein paar Minuten an die Berührung durch den Menschen gewöhnt wurden (Handling).

Ankunft ,	7 Tage	28 Tage	Perfusion
Stressgruppe	Habituierung	Stress]
Kontrollgruppe	Habituierung	Kein Stress, <i>handling</i>]

Abb. 13

Verlauf des *Social-Defeat*-Experiments. Nach Ankunft in Göttingen wurden die Wistar-Ratten 7 Tage an ihre neue Umgebung gewöhnt. Darauf wurde eine Gruppe für 28 Tage dem *social defeat paradigm* ausgesetzt, die andere erfuhr tägliches *handling*. 35 Tage nach Ankunft wurden alle Ratten perfundiert.

3.2.2 Das Poly-I:C-Experiment

3.2.2.1 Protokoll der Poly-I:C-Behandlung

Die Behandlung trächtiger Ratten mit PolyI:C wurde von Harlan Laboratories (Horst, Niederlande) und ist von Yee et al. (2011 b) ausführlich beschrieben worden; daher wird der Versuchsablauf hier nur kurz skizziert.

In einem Alter von etwa 3 Monaten wurden männliche und weibliche Sprague-Dawley-Ratten gepaart, wobei der erste Tag nach der Kopulation als erster Schwangerschaftstag (Gestationstag, GD 1) gewertet wurde. Am 15. Gestationstag wurden die schwangeren Ratten mit Isofluran betäubt, um ihnen während der Betäubung eine einzelne Dosis (4.0mg/kg) des Immunstimulans Poly I:C (Sigma) zu verabreichen. Diese Dosis wurde mit Bezug auf vorangegangene Studien so gewählt (Wolff und Bilkey 2008, Zuckerman et al. 2003). Kontrolltieren wurde ein entsprechendes Volumen 0,9%iger Kochsalzlösung verabreicht. Die männlichen Nachkommen wurden zusammen mit der Mutter im Alter von 21 Tagen nach Göttingen geschickt.

3.2.2.2 Protokoll der Anwendung von juvenilem Stress

Die Experimente, in denen juvenile Ratten verschiedenen Stressoren ausgesetzt wurden, sind von Yee et al. (2011 a) durchgeführt und ausführlich beschrieben worden; daher wird der Versuchsablauf hier nur kurz skizziert (Abb. 14). Im Alter von 27-29 Tagen wurden insgesamt 20 Ratten nach einem Protokoll von Richter-Levin und Mitarbeitern Stress ausgesetzt (Ilin und Richter-Levin 2009).

Dabei wurden die Tiere an drei aufeinanderfolgenden Tagen verschiedenen Stressoren ausgesetzt. An Tag 1 (D27) wurden die Ratten einzeln für jeweils 10 Minuten in einen runden, tiefen Wassertank (Temperatur 22±2°C) überführt, in dem sie für diese Zeit schwimmen mussten. An Tag 2 (D28) wurden sie für 3x 30 Minuten auf eine flache Platte gesetzt (12x12 cm), die als freie Fläche auf einer Stange 70 cm über dem Boden angebracht war. Drei Anwendungen dieses Stressors wurden von einer Erholungsphase von 60 Minuten unterbrochen. An Tag 3 (D29) wurden die Ratten für 2 Stunden in belüftete Polypropylen-Röhren gesetzt, deren Innenraum so klein war, dass die Ratten für diese Zeit immobilisiert waren. Jeder dieser Stressoren wurde bei Rotlicht, also in der Aktivitätsphase der Tiere, zwischen 8:00 Uhr und 14:00 Uhr in einem separaten Raum angewandt. Nach Beendigung jeder der einzelnen Anwendungen wurden die Tiere in ihre Heimatkäfige zurückgebracht.

Ablauf des Experiments mit juvenilem Stress, durchgeführt von Yee und Kollegen Die maternale Immunsystemaktivierung erfolgte am Gestationstag (GD) 15. Nach Ankunft der Sprague-Dawley-Ratten und der 7 Tage währenden Habituierung wurde ein Teil der Ratten ab dem 27. Lebenstag (D 27) für drei Tage dem Protokoll für juvenilen Stress unterworfen. Die Perfusion erfolgte in der frühen adulten Phase (nach Yee et al. 2011 b).

3.2.2.3 Übersicht über das Experiment mit Poly I:C und juvenilem Stress

Letztlich umfasste das Experiment von Yee et al. (2011 b) 4 Gruppen:

1. Ratten, die pränatal der maternalen Poly-I:C-Behandlung und postnatal juvenilem Stress ausgesetzt waren

2. Ratten, die pränatal der maternalen Poly-I:C-Behandlung, aber keinem juvenilem Stress ausgesetzt waren

3. Ratten, die keiner pränatalen maternalen Poly-I:C-Behandlung, aber postnatal juvenilem Stress ausgesetzt waren

4. Ratten, die weder der pränatalen maternalen Poly-I:C-Behandlung noch dem juvenilen Stress ausgesetzt waren.

In der vorliegenden Arbeit wurden aus den oben aufgeführten Gruppen je 6 Ratten hinsichtlich ihrer Dichte an Reelin-positiven Zellen in Schicht I des prälimbischen Kortex untersucht.

3.2.3 Perfusion

Den Ratten wurde nach Beendigung der Experimente zunächst eine Überdosis (ca. 0,7ml) des Narkosemittels Göttinger Mischung II (GMII; 50mg/ml Ketamin, 10mg/ml Xylazin und 0,1mg/ml Atropin) intramuskulär in den Oberschenkel injiziert. Nach Einsetzen der Wirkung der Narkose wurde die Schmerzreaktion mittels Pinzettendrucks auf die Zehenzwischenhäute getestet. War diese negativ, wurden die Ratten auf den Rücken gelegt und durch Klebestreifen an Armen und Beinen auf dem Operationstisch befestigt. Mit einem Schnitt der Operationsschere wurde die Brusthaut aufgeschnitten. Von kaudal nach kranial wurde nun der Thorax durch einen medioclaviculären und zwei transversale Schnitte eröffnet; Entlastungsschnitte ließen schließlich das Aufklappen der Thoraxwand und damit einen guten Blick auf den Brustsitus zu. Das noch schlagende Herz wurde mit der linken Hand per Pinzette fixiert, die rechte Hand eröffnete mit der Operationsschere zuerst den linken Ventrikel und anschließend das rechte Herzohr. Eine Kanüle mit fließendem 0,9%igem NaCl wurde durch die eröffnete Ventrikelwand geschoben und weiter in ventrokranialer Richtung bis in den Aortenbogen hinein. Diese Kanüle wurde mittels einer Klammer am Myokard fixiert. Mit einer weiteren Klammer wurde die Aorta descendens abgeklemmt. Hiernach konnte das NaCl aus der Kanüle nur noch in die ersten Abgänge des Aortenbogens fließen, unter anderem in die den Kopf und das Gehirn versorgenden Carotiden. Der Abfluss erfolgte physiologisch durch die Jugularisvenen in den rechten Herzvorhof und hier dann über das eröffnete Herzohr nach außen. Diese NaCl-Spülung erfolgte über 2 Minuten. Anschließend wurde zur Fixierung des Gewebes über 8 Minuten gepuffertes 4%iges Paraformaldehyd (PFA) in das Gefäßsystem des Rattenkopfes geleitet. Die Perfusion wurde mit dem Abtrennen des Kopfes vom Rumpf abgeschlossen. Dieser wurde über Nacht in einem mit 4% PFA gefüllten Greiner-Gefäß lichtgeschützt bei 4°C gelagert.

3.2.4 Präparation des Rattenhirns

Ein Tag nach der Perfusion wurde das Gehirn aus dem Schädel herauspräpariert. Mit Hilfe einer Einmalkanüle wurde nach der Entnahme des Gehirns die linke Hemisphäre durch einen seitlichen, sagittalen Stich an der Oberfläche markiert, was für die spätere Identifizierung der Hemisphärenhälfte und die Auswertung einen essentiellen Schritt darstellte. Das Gehirn wurde mit einer Rasierklinge in Höhe des Chiasma opticum durch einen Frontalschnitt zerteilt, und beide Hälften wurden über Nacht bei 4°C in eine 30%ige Saccharose-Lösung (in 1x PBS) gelegt. Der Zucker verhinderte bei der späteren Lagerung der Hirne bei -80° Celsius die Bildung von Wasserkristallen (Kryoprotektion) und damit eine Schädigung des Gewebes, die sich durch die Bildung von Gefrierartefakten auf die Auswertung der Hirnschnitte negativ ausgewirkt hätte.

3.2.5 Einlagerung und Schneiden des Rattenhirns

Die Hirnhälften wurden schließlich auf kleine Plättchen mit dem Einbettmedium Tissue Tek® gebracht und auf Trockeneis gelegt. Die so eingefrorenen Hirnhälften wurden dann in kleine Plastiktüten verpackt und zur Aufbewahrung bei -80° Celsius gelagert. Vor dem Schneiden des PFC wurde das Vorderhirn wieder in Tissue Tek® eingelegt und über Trockeneis auf einem Metallhalter für das nachfolgende Schneiden im Kryostaten aufgeblockt. Für die Untersuchungen wurden Hirnschnitte mit einer Dicke von 40µm angefertigt. Hierbei war die Einhaltung der Arbeitstemperatur von -23°C wichtig, um einerseits gleichmäßige Schnitte gleicher anatomischer Schnittebenen zu erhalten und um andererseits ein Aufrollen der Schnitte wegen zu hoher oder zu niedriger Temperatur zu verhindern. Jeder Schnitt wurde mittels einer Pinzette von der Messerklinge in eine Multiwell-Schale mit 1,5ml 0.1M PBS überführt.

3.2.6 Immunhistochemie

3.2.6.1 DAB-Färbung

3.2.6.1.1 Theorie der immunhistochemischen Markierung von Reelin-positiven Strukturen

Um Reelin und Reelin produzierende Neurone für das menschliche Auge unter dem Lichtmikroskop erkennbar zu machen, muss das Glykoprotein spezifisch detektiert und sichtbar gemacht werden. Dies erfolgt vereinfacht gesagt in drei Schritten. Zunächst wird ein primärer Antikörper auf die Hirnschnitte gegeben, der spezifisch an Reelin bindet. Im zweiten Schritt wird ein Antikörper auf die Hirnschnitte gegeben, der spezifisch den Fc-Teil des Reelin-Antikörpers erkennt und bindet. Somit liegt nun ein Reelin-Glykoprotein vor, an das ein primärer Antikörper gebunden ist, und an diesen wiederum ist ein für den primären Antikörper spezifischer sekundärer Antikörper gebunden. Dieser sekundäre Antikörper nun ist in seinem Fc-Teil so beschaffen, dass er im dritten Schritt mit einem Detektionssystem reagieren kann, was letztendlich eine Farbreaktion hervorruft und damit das Glykoprotein Reelin für unser Auge indirekt sichtbar macht.

3.2.6.1.2 Der Avidin-Biotin-Komplex als Detektionssystem

Für die Untersuchungen dieser Arbeit wurde als Detektionssystem der Avidin-Biotin-Komplex (ABC) verwendet. Das Glykoprotein Avidin besitzt mehrere Bindungsstellen für Biotin. Es ist Bestandteil des Hühnereiweißes, wird allerdings zur Vermeidung unspezifischer Reaktionen gentechnisch aus dem Bakterium Streptomyces avidinii gewonnen (Noll und Schaub-Kuhnen 2000). Biotin ist ein wasserlösliches Vitamin (Vitamin H), welches man biotechnologisch gut an den Fc-Teil eines sekundären Antikörpers binden kann, wobei dann ein "biotinylierter" sekundärer Antikörper entsteht. Der Avidin-Biotin-Komplex besteht aus dem gentechnisch hergestellten Avidin, dem Vitamin Biotin und einem daran gebundenes Enzym, die Meerrettichperoxidase (HRP). Dieses Enzym oxidiert das Subtrat Peroxidase 3,3'- Diaminobenzidin (DAB) in Gegenwart von Wasserstoffperoxid als Katalysator zu einem braun-schwarzen Präzipitat, das lichtmikroskopisch auf den immunreaktiven Zellstrukturen erkennbar ist. Nimmt man all diese Informationen zusammen, findet die Sichtbarmachung von Reelin auf folgendem Wege statt: Der aus der Maus gewonnene monoklonale Antikörper G-10 Anti-Reelin bindet an das in den Hirnschnitten befindliche Reelin. Der biotinylierte Antikörper *Goat-Anti-Mouse-IgG* aus der Ziege bindet spezifisch an Immunglobuline (Ig) aus der Maus – und damit an den G-10 Anti-Reelin Antikörper. Der hinzu gegebene Avidin-Biotin-Komplex bindet mit einer freien Bindungsstelle an das Biotin am Fc-Teil des sekundären Antikörpers. Die anderen Bindungsstellen des Avidins sind mit biotinylierter Meerettichperoxidase gekoppelt. Gibt man nun zu diesem Komplex aus Reelin, primärem, sekundärem Antikörper und ABC-Komplex das 3,3'- Diaminobenzidin (DAB) und den Katalysator Wasserstoffperoxid, so wird der gesamte Komplex als braun-schwarzes Präzipitat unter dem Lichtmikroskop erkennbar (Abb. 15). Fehlt Reelin in den untersuchten Schnitten, findet folglich auch keine solche Komplexbildung statt, da die Schnitte nach jedem Schritt von überzähligen Antikörpern frei gewaschen werden. Somit findet mit Hilfe des ABC-Detekionssystems eine spezifische Färbung Reelin-positiver Strukturen statt, was ihre genauere Untersuchung und Quantifizierung möglich macht.

Immunzytochemischer Nachweis von Reelin im Gewebeschnitt mit Hilfe von Meerrettichperoxidase (M) und Di-Aminobenzidin (DAB) als Substrat. Linke Seite: 1. Ein spezifischer (primärer) Antikörper bindet an Reelin, 2. ein sekundärer, für den Reelin-Antikörper spezifischer, biotinylierter (B) Antikörper bindet an dessen Fc-Teil, 3. das Avidin (A) in dem ABC (Avidin-Biotin-Komplex) bindet an das Biotin des sekundären Antikörpers. Die Meerrettichperoxidase (M) ist über Biotin (B) an den Komplex gebunden. 4. Die Hinzugabe von DAB und H₂O₂ bewirkt die Oxidierung von DAB und damit ein lichtmikroskopisch sichtbares Farbpräzipitat (rechte Seite, braun).

3.2.6.1.3 Arbeitsablauf der DAB-Färbung zum Nachweis von Reelin-positiven Strukturen

Von jeder Ratte wurden 5-12 40 μ m dicke Kryo-Schnitte unterschiedlicher Schnittebenen untersucht (7 Entfernungen vom Bregma: +4,68mm, B +4,20mm, B + 3,72mm, B + 3,24mm, B + 3,00mm, B + 2,76mm, B+ 2,52mm nach Paxinos und Watson 2007).

Die immunhistochemische Behandlung der Hirnschnitte der Experimentaltiere erfolgte in Multiwell-Zellkulturschalen (24-well plates), wobei die Schnitte jedes Tieres in einem Loch behandelt wurden. Zunächst wurden sie einem 3x 10minütigen Waschvorgang in 0,1M PBS unterzogen, für den Fall, dass Natriumazid zur Konservierung und Vermeidung von Pilzbefall hinzugegeben worden war. Dieses wurde hierdurch herausgewaschen. Anschließend wurden die Hirnschnitte in eine 1%ige H₂O₂- Lösung gebracht, was die Inaktivierung endogener Peroxidasen zum Ziel hatte. Endogene Peroxidasen sind in der Lage, 3,3'- Diaminobenzidin (DAB) in gleicher Weise zu oxidieren, wie die Meerrettich-Peroxidase des ABC-Komplexes. Hieraus würde derselbe Farbumschlag resultieren, was letztlich eine unspezifische Färbung des Hirnschnittes zur Folge hätte. Gefärbte Strukturen wären damit nicht zwingend Reelin-positiv. Daher ist die Vorbehandlung der Schnitte mit H₂O₂ notwendig. Diesen Vorgang bezeichnet man auch als Inaktivierung, weil das H2O2 von den endogenen Peroxidasen verarbeitet wird, bis deren Aktivität erloschen ist. Nach einem 3x 10minütigen Waschvorgang in 0,1M PBS folgte das Blockieren der Schnitte, sie wurden in 3%igen Ziegenserum (normal goat serum, NGS) mit 0.3% igen TritonX in 0.1M PBS überführt. Triton X ist ein Detergens, das die lipidreichen Zellmembranen anlöst und den Antikörpern einen leichteren Durchtritt in die Zelle ermöglicht, um an darin befindliche Strukturen zu binden. Da Reelin im endoplasmatischen Retikulum akkumuliert, ist dieses Durchtreten der Antikörper notwendig, um eine Reelin-positive Zelle immunhistochemisch zu markieren. Das normal goat serum hat für die spezifische Bindung des primären und des sekundären Antikörpers Bedeutung. Immunglobuline, die sich in diesem Ziegenserum befinden, können unspezifische Bindungsstellen in dem Gewebe blockieren, sodass der primäre Antikörper, der ja durch das Detektionssystem sichtbar wird, an den unspezifischen Stellen nicht mehr binden kann. Nach dem einstündigen Block der Hirnschnitte wurde der monoklonale Reelin-Antikörper G-10 aus der Maus hinzugegeben. Er wurde in einer Verdünnung von 1:1000 in 0,3% TritonX und 1%NGS in 0,1M PBS appliziert und über Nacht bei 4°C mit den Hirnschnitten inkubiert. Tags darauf wurden die Schnitte 3x 10 Minuten in 0,1M PBS gewaschen und danach mit dem sekundären Antikörper inkubiert. Der sekundäre Antikörper ist biotinyliert, stammt aus der Ziege und ist gegen Immunglobuline der Maus gerichtet (*biotinylated goat anti mouse antibody*). Er wurde in einer Verdünnung von 1:400 in einem Puffer mit 0,3% TritonX und 1%NGS in 0,1M PBS für eine Stunde mit den Hirnschnitten zur Bindung an den Reelin-Antikörper inkubiert. Nach dem anschließenden 3x 10minütigen Waschgang wurde der Avidin-Biotin-Komplex (ABC) hinzugegeben. Dieser wurde zur besseren Komplexbildung eine halbe Stunde vor der Gabe angesetzt und war in oben genanntem Puffer (0,3% TritonX und 1%NGS in 0,1M PBS) 1:200 verdünnt. Nach der einstündigen Inkubation wurden die Schnitte wiederum 3x 10 Minuten in 0,1M PBS gewaschen. Nun wurde das Chromogen DAB und der Katalysator H₂O₂ hinzugegeben, was die sichtbare Braunfärbung der Schnitte durch die Aktivität der Meerrettichperoxidase im Avidin-Biotin-Komplex zur Folge hatte. Nach einem abschließenden Waschvorgang wurden die Schnitte aus einer 45°C warmen, 0,1% Gelatinelösung auf Objektträger gezogen und über Nacht getrocknet. Schließlich wurden sie mit Eukitt eingedeckt.

3.2.6.2 NISSL-Färbung

Einige der DAB-gefärbten Schnitte wurden anschließend mit dem Nissl-Farbstoff Kresylviolett gefärbt, um eine genauere Lokalisation der Assoziationsfaserschicht zu ermöglichen. Die Gegenfärbung der braunen Reelin-positiven Strukturen erfolgte in einer Kresylviolett-Lösung. Zunächst wurden die auf den Objektträgern befindlichen Hirnschnitte für je 1 Minute in einer absteigenden Alkoholreihe (100-50%) behandelt. Nach kurzem Eintauchen in Aqua bidest. wurden die Schnitte für ca. 5 Minuten in der 0,2% Kresylviolett-Acetat Lösung gefärbt. Anschließend wurden die Schnitte in Aqua bidest. und dann für je 1 Minute in die aufsteigende Alkoholreihe gebracht. Danach wurden sie dreimal für eine Minute in Xylol gehalten, um sie zu dehydrieren und für das darauffolgende Eindecken mit Eukitt vorzubereiten.

3.2.6.3 Immunfluoreszenz – Doppelmarkierungen

3.2.6.3.1 Theorie der Doppelmarkierung mit Fluoreszenzfarbstoffen

Neurone und Gliazellen können untereinander anhand ihrer Proteinexpression voneinander unterschieden werden. Dies erlaubt es, Reelin-positive Zellen in Subpopulationen einzuteilen, je nachdem, welche Proteine neben Reelin noch in der Zelle exprimiert werden. Das Ziel der Immunfluoreszenz-Doppelmarkierung ist es, diese Kolokalisationen mehrerer Proteine in einer Zelle nachzuweisen.

Hierbei werden vier Antikörper verwendet. Zwei von ihnen werden hier als primäre Antikörper bezeichnet und binden spezifisch an die Proteine, deren Kolokalisation man untersuchen möchte, z. B. ein Anti-Reelin- und ein Anti-Calbindin-Antikörper. Als sekundäre Antikörper werden Immunglobuline eingesetzt, an die ein Fluorophor gekoppelt ist. Beispielsweise fluoresziert einer der sekundären Antikörper grün und bindet spezifisch an den Anti-Reelin-Antikörper, der andere fluoresziert rot und bindet an den Anti-Calbindin-Antikörper. Bei jeder Doppelmarkierung werden Antikörper aus 3 verschiedenen Tieren verwendet. Die primären Antikörper stammen beispielsweise aus der Maus und der Ziege, die sekundären aus dem Esel (donkey-anti-mouse, donkey-antigoat). Zur Vermeidung unspezifischer Bindungen der sekundären Antikörper würde in diesem Fall dann Eselserum verwendet werden. Blickt man mit einem konfokalen Mikroskop auf eine Stelle, in der die beiden untersuchten Proteine kolokalisiert sind und damit die beiden Antikörper nahe beieinander liegen, so überlagert sich die Fluoreszenz der beiden fluoreszierenden Antikörper und das digitalisierte Bild erscheint in der Pseudofarbendarstellung nicht rot oder grün, sondern gelb. Die Gelbfärbung einer Zelle verrät somit auf immunhistochemischem Wege die Kolokalisation zweier Proteine (Abb. 16).

Abb. 16

Theorie der Immunfluoreszenz – Doppelmarkierung. Linke Seite: 1. Spezifische, primäre Antikörper für Reelin und das kolokalisierte Protein (Protein X) binden an ihre Antigene., 2. Sekundäre, grün bzw. rot fluoreszierende Antikörper binden spezifisch an die Fc-Teile der primären Antikörper. Rechte Seite: Bei ausreichender Nähe der beiden untersuchten Proteine (Reelin, Protein X) überlagern sich grüne und rote Fluoreszenz der sekundären Antikörper und erscheinen dem Betrachter im konfokalen Mikroskop daher gelb.

<u>3.2.6.3.2 Arbeitsablauf der Doppelmarkierungen und Antikörperauswahl in</u> <u>dieser Arbeit</u>

Es wurde untersucht, ob Reelin mit den Proteinen Calbindin, Glutamatdecarboxylase 67 (GAD 67), saures Gliafaserprotein (*glial fibric acid protein*, GFAP) bzw. NG2 kolokalisiert. Somit sind dies die 5 Primärantikörper für die vorgenommenen drei Untersuchungen. Es wurden pro Untersuchung 4 Hirnschnitte unterschiedlicher Schnittebene aus dem PFC männlicher Sprague-Dawley-Ratten verwendet, die keinerlei Behandlung erfahren hatten, d.h. Kontrolltiere waren. Zur Bestimmung der unspezifischen Bindung wurden pro Untersuchung zusätzlich 3 Kontrollschnitte benötigt. Der erste Kontrollschnitt wurde nur mit dem ersten Primärantikörper, der zweite nur mit dem zweiten Primärantikörper inkubiert. Zu dem dritten Kontrollschnitt wurde kein Primärantikörper hinzugegeben. Alle Kontrollschnitte wurden mit den beiden fluoreszierenden Antikörpern inkubiert. Bei fehlender unspezifischer Bindung erhielt man so zwei Kontrollschnitte, die nur bei einer Wellenlänge fluoreszierten und einen

Kontrollschnitt, der keine Immunfluoreszenz zeigte. Alle Schnitte wurden zunächst 3x10 Minuten in 0,1M PBS gewaschen. Die Vorbehandlung zur Unterdrückung der unspezifischen Bindung erfolgte dann für eine Stunde in einer Lösung von 3% Pferdeserum (normal horse serum, NHS) in 0,3% Triton X in 0,1M PBS. Der G-10 Anti-Reelin Antikörper wurde nun über Nacht bei einer Verdünnung von 1:1000 in einer Lösung von 1%NHS, 0,3% Triton X in 0,1M PBS mit den Hirnschnitten bei 4°C inkubiert. Tags darauf erfolgte nach einem 3x10minütigen Waschvorgang die Hinzugabe des sekundären, gegen Immunglobuline der Maus gerichteten Antikörpers (Alexa 488 donkey anti mouse green bzw. Alexa 594 donkey anti mouse red). Dieser wurde stets bei einer Verdünnung von 1:700 in einer Lösung von 1% NHS, 0,3% Triton X in 0,1M PBS mit allen Hirnschnitten für 2 Stunden bei Raumtemperatur inkubiert. Anschließend erfolgte nach einem weiteren Waschgang die Gabe des zweiten primären Antikörpers bei jeweils spezifischer Verdünnung (1: 200 für Anti-GAD 1; 1:500 für Anti-Calbindin; 1:700 für Anti-GFAP, 1:500 für NG2). In der üblichen Lösung von 1% NHS, 0,3% Triton X in 0,1M PBS wurde er über Nacht bei 4°C mit den Hirnschnitten inkubiert. Am anderen Morgen wurden die Schnitte wieder 3x 10 Minuten in 0,1M PBS gewaschen und danach mit dem zweiten sekundären Antikörper (Alexa 488 donkey anti rabbit green bzw. Alexa 594 *donkey anti rabbit red*), jeweils bei einer Verdünnung von 1:700 in einer Lösung von 1% NHS, 0,3% Triton X in 0,1M PBS für 2 Stunden bei Raumtemperatur zugeführt.

Nach einem abschließenden Waschschritt in 0,1M PBS wurden die Hirnschnitte in 22°C Aqua bidest. auf Objektträger aufgezogen, mit Aqua Polymount eingedeckt und mit Nagellack luftdicht verschlossen.

3.2.7 Stereologische Analyse

Die Quantifizierung der Reelin-positiven Zellen in Schicht I des prälimbischen Kortex erfolgte mithilfe des Photomikroskop III RS (Zeiss) und der Computersoftware NeuroLucida (Microbrightfield Inc., Williston, USA, Version 7). Zunächst wurden die 5 – 12 Schnitte auf ihre Schnittebene hin bestimmt (Entfernung vom Bregma +4,68 mm, B +4,20 mm, B + 3,72 mm, B + 3,24 mm, B + 3,00 mm, B + 2,76 mm oder B+ 2,52 mm (nach Paxinos und Watson 2007)). Anhand eines Atlasses des Gehirns der Ratte (Paxinos und Watson 2007) wurde nun bei einer Vergrößerung von 2,5 das Areal herausgesucht, das der prälimbische Kortex in der jeweiligen Schnittebene einnimmt (Abb. 17).

Nun wurde bei gleicher Vergrößerung mithilfe des Neurolucida-Programms Schicht I des prälimbischen Kortex digital umfahren. Das Programm lieferte sofort die Größe der Fläche in μ m². Anschließend wurde bei einer 16fachen Vergrößerung das markierte Gebiet vom Computer gesteuert, mäandernd durchfahren und jede Reelin-positive Zelle, die klar durch ihre starke Braunfärbung zu erkennen war, manuell markiert. Die Anzahl der Reelin-positiven Zellen dividiert durch die markierte Fläche ergab die Dichte der Reelinzellen (Zellzahl pro μ m²). Pro Schnitt wurden zwei Zählungen durchgeführt, eine in der linken und eine in der rechten Hemisphäre.

Abb. 17

Bild aus dem Atlas des Rattenhirns (Paxinos und Watson 2007), welches eine der 7 neuroanatomischen Ebenen der verwendeten Hirnschnitte darstellt. Der prälimbische Kortex ist gelb gefärbt. Es wurden Schnitte der Ebenen Bregma +4.86 mm, +4.20 mm, +3.72 mm, +3.24 mm, +3.00 mm, +2.76 mm, +2.52 mm untersucht. Alle untersuchten Hirnschnitte wurden auf ihre Schnittebene hin überprüft, anschließend wurde die Ausdehnung des prälimbischen Kortex nach den Angaben des Rattenatlasses bestimmt und markiert.

3.2.8 Statistische Analyse

Die statistische Analyse der gewonnenen Daten wurde mithilfe des Programms GraphPad 4 (Instat Software, San Diego, USA) vorgenommen.

Die Mittelwerte der Dichten der Reelin-positiven Strukturen für jedes Tier und jede Hemisphäre wurden durch das Microsoft Excel 2007 Programm ermittelt. Eingefügt in GraphPad Prism 4 wurde für die Ermittlung eines Links-Rechts-Unterschiedes der gepaarte t-Test angewendet. Für die Untersuchung von links-rechts Unterschieden verschiedener Behandlungsgruppen wurde der zweiseitige ANOVA-Test durchgeführt. Das Signifikanzniveau p wurde bei beiden Tests auf α = 0,05 festgelegt.

4. Ergebnisse

Durch die immunhistochemische Markierung von Reelin-positiven Zellen sowie durch die Kresylviolett-Färbung der Hirnschnitte wurden alle für die Untersuchung relevanten Strukturen lichtmikroskopisch deutlich erkennbar.

Abb. 18

Darstellung des untersuchten Areals des präfrontalen Kortex. Die immunzytochemisch gefärbten Reelinzellen erscheinen braun (Gegenfärbung mit Kresylviolett). Weiß umrandet sind der prälimbische Kortex (PLC) und die in dieser Arbeit untersuchte Schicht I (I) desselben. Letztere ist auch bei kleinerer Vergrößerung gut durch ihre Zellarmut von tiefer liegenden Schichten zu unterscheiden (Schnittebene Bregma+3,72 mm nach Paxinos und Watson 2007). Die Länge des Messbalkens entspricht 1mm.

Abb. 19

Schicht I (I) des prälimbischen Kortex eines mit Kresylviolett gegengefärbten und eines nicht gegengefärbten Hirnschnittes bei 10facher Vergrößerung. Diese Schicht grenzt sich klar von der nächstliegenden Schicht ab. Reelin-positive Zellen sind braun gefärbt. Die Länge des Messbalkens entspricht 600µm.

4.1. Dichte Reelin-positiver Zellen im PLC nach psychosozialem Stress

Reelin-immunreaktive Zellen wurden in Schicht I des PLC männlicher Ratten quantifiziert. Bei der Quantifizierung der Reelin-immunreaktiven Zellen wurden pro Tier 5-12 Schnitte der fraglichen Region analysiert und aus den gewonnenen Daten die Mittelwerte pro Tier gebildet. Diese Originaldaten sind im Anhang ("Primärdaten"; S. 111-128) aufgelistet. Die Wistar-Ratten der Kontrollgruppe zeigten im gepaarten t-Test in der linken Hemisphäre eine signifikant höhere Dichte an Reelin-immunreaktiven Zellen im Vergleich zur gleichen Region in der rechten Hemisphäre (p= <0.0045). Die Tiere hingegen, die chronischem psychosozialem Stress ausgesetzt worden waren, zeigten im gepaarten t-Test eine signifikant höhere Dichte dieser Zellen in der rechten Hemisphäre im Vergleich zur linken (p= <0.0001, Abb.20). Bei den Kontrolltieren betrug der Unterschied zwischen linker und rechter Hemisphäre linksgewichtet 6.87%, bei den Tieren, die psychosozialen Stress erfahren hatten, betrug er rechtsgewichtet 12,82%. Eine zweiseitige Varianzanalyse (ANOVA) ermittelte einen signifikanten Effekt des Faktors Behandlung (psychosozialer Stress) ($F_{1,32}$ =5,858; p=0,024) sowie eine Interaktion der Faktoren Stress und Hemisphäre (F_{1.32}=6,214; p=0,018). Der anschließende Bonferroni-Test zeigte einen signifikanten Unterschied zwischen der rechten Hemisphäre von Stress- und Kontrolltieren (p<0.01). Da keine dreidimensionale stereologische Auswertung vorgenommen wurde, entsprechen die Werte nicht der Gesamtzahl der Reelinzellen in Schicht I des PLC. Die statistischen Analysen zeigten aber, dass die Ergebnisse der jeweiligen Stichproben mit einer Irrtumswahrscheinlichkeit von nur 5% (p<0,05) verlässlich waren. Hieraus wird ersichtlich, dass sich die Zahl der Reelin-immunreaktiven Zellen in Schicht I des PLC zwischen den beiden Hemisphären unterscheidet und dass chronischer psychosozialer Stress eine Inversion des linksrechts Unterschiedes hervorruft.

Abb. 20

Dichte der Reelin-immunreaktiven Zellen in Schicht I des linken (L) bzw. rechten (R) PLC von insgesamt 9 psychosozial gestressten, männlichen Ratten (Stress) im Vergleich zur Kontrollgruppe (Kontrolle, ebenfalls 9 Tiere, n=18). Statistisch signifikante Unterschiede wurden anhand von gepaarten t-Tests ermittelt, **, p= 0.0045; ***, p <0.0001. Eine zweiseitige Varianzanalyse (ANOVA) ermittelte einen signifikanten Effekt des Faktors Behandlung (psychosozialer Stress) (F1,32=5,858; p=0,024) sowie eine Interaktion der Faktoren Stress und Hemisphäre (F1,32=6,214; p=0,018). Der anschließende Bonferroni-Test zeigte einen signifikanten Unterschied zwischen der rechten Hemisphäre von Stress- und Kontrolltieren (p<0.01). Der Unterschied zwischen linker und rechter Hemisphäre betrug bei den Kontrolltieren 6.87%, mit höheren Zelldichten in der linken Hemisphäre. Bei den Tieren, die psychosozialen Stress erfahren hatten, betrug der Unterschied 12,82%, mit höheren Zelldichten in der rechten Hemisphäre.

4.2 Dichte Reelin-positiver Zellen im PLC nach pränataler Behandlung mit Poly I:C bzw. nach Stress im juvenilen Stadium

Die stereologische Analyse ergab, dass ein links-rechts Unterschied in der Dichte Reelinpositiver Zellen in Schicht I des prälimbischen Kortex der untersuchten Sprague-Dawley-Ratten vorliegt (Abb. 21). Dieser wurde durch keine der durchgeführten Behandlungen, sei es die maternale Immunsystemaktivierung durch Poly I:C, durch juvenilen Stress oder die Kombination beider Behandlungen signifikant verändert. Die zweiseitige Varianzanalyse (ANOVA) ergab, dass keine dieser Behandlungen einen signifikanten Effekt auf die Dichte Reelin-positiver Neurone in Schicht I des prälimbischen Kortex der Ratten hatte, jedoch deutete sie darauf hin, dass die hemisphärische Verteilung einen signifikanten Faktor darstellt (p=0.0318, F= 4.950). In der linken Hemisphäre war die Dichte Reelin-positiver Neurone im Mittel stets höher als in der rechten Hemisphäre. In zwei Gruppen des Experimentes ist dieser links-rechts Unterschied nach der Anwendung des gepaarten t-Tests signifikant, nämlich in der Gruppe "Poly I:C + juveniler Stress" (p=0.0045) und in der Gruppe "Saline + juveniler Stress" (p=0.0349). Die anderen beiden Gruppen zeigen jedoch dieselbe Tendenz.

Dichte der Reelin-immunreaktiven Zellen in Schicht I des linken (L) bzw. rechten (R) PLC der vier Behandlungsgruppen (je 6 Tiere, n=24). Die zweiseitige Varianzanalyse (ANOVA) zeigte einen signifikanten Einfluss der Hemisphäre als Ursache für die Varianz, ($F_{1,40}$ = 4.950; p=0.0318). Gepaarte t-Tests zeigten signifikante Unterschiede zwischen den Dichten der Reelinzellen in den linken und rechten Hemisphären der Gruppen Poly I:C + juveniler Stress (**, p=0.0045) bzw. Saline + juveniler Stress (p= 0.0349).

Betrachtete man die Mittelwerte aller untersuchten Tiere des Experimentes von Yee et al., zeigte sich ein signifikanter Unterschied in der Dichte Reelin-positiver Neurone zwischen der linken und rechten Hemisphäre dieser Ratten (p=0.0002, Abb. 22). In der linken Hemsiphäre war die Dichte Reelin-immunoreaktiver Zellen in Schicht I des prälimbischen Kortex stets höher als in der rechten Hemisphäre.

Dichte der Reelin-immunreaktiven Zellen in Schicht I des prälimbischen Kortex aller 24 Sprague-Dawley-Ratten (7 Wochen alt), die im Rahmen des Experimentes von Yee et al. (2011 b) untersucht wurden. Im gepaarten t-Test ergibt sich ein signifikanter Unterschied zwischen linker und rechter Hemisphäre (n=24, p= 0,0002).

4.3 Dichte Reelin-positiver Zellen im PLC von jungen Wistar-Ratten

Dieser Untersuchung ging der Befund des Links-Rechts-Unterschiedes in der Dichte Reelin-positiver Neurone in Schicht I des prälimbischen Kortex der Sprague-Dawley-Ratten voraus. Um herauszufinden, ob es sich hierbei um ein Rattenstamm-spezifisches Phänomen handelte, das spezifisch bei Sprague-Dawley-Ratten zu beobachten ist, wurden 6 junge, männliche Wistar-Ratten derselben Untersuchung unterzogen. Auch bei diesen Wistar-Ratten war nach Anwendung eines gepaarten t-Tests ein signifikanter Links-Rechts-Unterschied vorhanden (p=0.0001 Abb. 23).

Dichte Reelin-immunreaktiver Zellen in Schicht I des linken bzw. rechten PLC männlicher Wistar-Ratten (250g, ca. 8-9 Wochen alt). Der gepaarte t-Test ergab einen signifikanten Unterschied zwischen linker und rechter Hemisphäre (n= 6, p= 0.0001).

4.4 Fluoreszenz – Doppelmarkierungen

Kolokalisation von Reelin und GAD 67

Um zu überprüfen, ob die Reelin-immunreaktiven Zellen im PLC den inihibitorischen Neurotransmitter GABA synthetisieren können, wurden Doppelmarkierungsexperimente mit einem Antikörper gegen GAD67 durchgeführt. Reelin und GAD 67 waren in den Untersuchungen dieser Arbeit deutlich kolokalisiert (Abb. 24). Mehr als die Hälfte der Reelin-positiven Neurone in Schicht I zeigten eine Kolokalisation mit dem für GABAerge Neurone spezifischem Enzym GAD 67, woraus zu schließen ist, dass Reelin vorwiegend in GABAergen Neuronen exprimiert wird.

Abb.24

Immunfluoreszenzmarkierung von Reelin (grün) und GAD 67 (rot) im prälimbischen Kortex der Ratte. I, II, III: kortikale Schichten I-III. Die Länge des Balkens (weiß) entspricht 100 μm.

Doppelmarkierung von Reelin und Calbindin

Das Calcium-bindende Protein Calbindin wird in einer Subpopulation von GABAergen Neuronen exprimiert. In den vorliegenden Untersuchungen konnte Calbindin nur in wenigen Reelin-immunreaktiven Zellen im PLC nachgewiesen werden (Abb. 25). In Schicht I fanden sich keine, in tieferen Schichten des prälimbischen Kortex nur sehr schwach angedeutete Kolokalisationen der beiden Proteine.

Immunfluoreszenzmarkierung von Reelin (rot) und Calbindin (grün). I, II, III: kortikale Schichten I-III. Die Länge des Balkens (weiß) entspricht 100 µm.

Doppelmarkierung von Reelin und GFAP

Um zu überprüfen, ob Reelin in Astrozyten exprimiert wird, wurden Doppelmarkierungsexperimente mit einem Antikörper gegen das saure Gliafaserprotein (glial fibrillary acidic protein, GFAP) durchgeführt. Im PFC fanden sich keinerlei Kolokalisationen von Reelin mit GFAP, weder in Schicht I noch in tieferen Regionen des mPFC (Abb. 26). Die beiden Proteine werden offensichtlich in verschiedenen Zellen exprimiert.

Immunfluoreszenzmarkierung von Reelin (rot) und GFAP (grün). I, II kortikale Schichten I und II. Die Länge des Balkens entspricht 100 µm.

Doppelmarkierung von Reelin und NG2

Das Transmembran-Protein NG2 (ein Proteoglycan) wird in verschiedenen Zellen exprimiert, die Vorstufen von Gliazellen repräsentieren (Nishiyama 2001). Um zu überprüfen, ob Reelin in solchen Glia-Vorstufen exprimiert ist, wurde ein Doppelmarkierungsexperiment mit einem Antikörper gegen NG2 durchgeführt. Die beiden Proteine wurden vereinzelt sehr nahe beieinander gefunden, sodass sie bei schwacher Vergrößerung kolokalisiert erschienen (Abb. 27). Bei näherer Betrachtung fanden sich jedoch keine intrazellulären Kolokalisationen dieser beiden Proteine; stattdessen scheinen die Fortsätze von NG2-Zellen die Somata der Reelinzellen zu umschließen.

Abb. 27 Immunfluoreszenzmarkierung von Reelin (rot) und NG2 (grün). Die Länge des Balkens entspricht 50 μm.

5. Diskussion

Obwohl das Glykoprotein Reelin Gegenstand intensiver Forschung ist, sind die genauen Effekte und Wirkungen von Reelin im adulten Säugetiergehirn nicht bekannt. Die Interpretation der in dieser Arbeit gewonnenen Ergebnisse muss sich daher an dem aktuellen Wissensstand über Reelin orientieren, mögliche Effekte Reelins können nur vor dem Hintergrund aktueller Forschungsergebnisse diskutiert werden:

Wie schon in der Einleitung beschrieben und durch neuere Publikationen unterstützt, wird zunächst von mehreren Forschergruppen ein Zusammenhang zwischen Änderungen der Reelin-Level im Gehirn und psychiatrischen Krankheiten wie Depression und Schizophrenie postuliert (Fatemi 2011, Kuang et al. 2011).

Weiter beobachten auch neueste Untersuchungen der Reelin-Forschung das Glykoprotein als einen, wie in der Einleitung ausgeführt, Förderer der LTP und der synaptischen Plastizität, dessen Supplementation die Dichte dendritischer Spines erhöht und im Tierversuch einen positiven Effekt auf kognitive Fähigkeiten zeigt (Rogers et al. 2011). Ebenso wurde beobachtet und bestätigt, dass Reelin auch im adulten Rattenhirn die Migration von Progenitorzellen steuert (Courtés et al. 2011)

Auf diesem aktuellen Forschungsstand über die Funktionen Reelins fußt die Diskussion der in dieser Arbeit gewonnenen Ergebnisse.

5.1 Die Wirkung von psychosozialem Stress auf die Dichte Reelin-immunreaktiver Zellen in Schicht 1 des PLC von männlichen Wistar-Ratten

Die Untersuchungen an männlichen Wistar- Ratten, die chronischem psychosozialen Stress ausgesetzt waren, ergaben, dass nach der Anwendung des *social defeat paradigm* über 28 Tage in der rechten Hemisphäre eine höhere Dichte Reelin-positiver Zellen in Schicht I des prälimbischen Kortex vorzufinden ist als in der linken Hemisphäre. Somit zeigt sich bei diesen Ratten eine inverse Verteilung der Reelin-positiven Zellen nach psychosozialem Stress im Vergleich zur Gruppe der unbehandelten Tiere, die eine erhöhte Dichte Reelin-positiver Zellen in der linken aufweist. Vergleicht man die Stressgruppe mit der Kontrollgruppe, zeigt sich, dass dieses Ergebnis nicht darauf beruht, dass die Zellzahl und Dichte in der linken Hemisphäre abnimmt, sondern darauf, dass bei den gestressten Tieren die Dichte in der rechten Hemisphäre zunimmt. Im Vergleich zu den Kontrolltieren finden sich bei männlichen Wistar-Ratten folglich nach der Anwendung von chronischem psychosozialen Stress mehr Reelin-positive Zellen in Schicht 1 des prälimbischen Kortex der rechten Hemisphäre. Die Dichte dieser Zellen in der linken Hemisphäre ändert sich nach der Anwendung des *social defeat paradigm* im Vergleich zur Kontrollgruppe nicht.

Zwei Fragen sollen nach diesem Ergebnis nun diskutiert werden:

a. Woher stammen die Zellen, die sich im rechten prälimbischen Kortex nach der Einwirkung von Stress zeigen?

b. Welche Funktion haben diese Zellen im Hinblick auf ihre mit Stress in Beziehung stehende Wirkung?

Zu a.: Die Möglichkeit der stressinduzierten Aktivierung des RELN-Gens:

1. Glukokortikoide

Für die Beantwortung der ersten Frage ergibt sich aus molekulargenetischen Erwägungen die Hypothese, dass für das oben beschriebene Phänomen eine Aktivierung des RELN-Gens in schon in dieser Region befindlichen Zellen die Ursache sein könnte. Somit wären Zellen aus der Schicht I des prälimbischen Kortex, die vorher Reelin-negativ gewesen sind, durch die Einwirkung von psychosozialem Stress Reelin-positiv geworden, und zwar durch die stressinduzierte Expression des RELN-Gens. Als Signalmolekül zur Vermittlung dieses verantwortliches Prozesses kommen selbstverständlich eine Vielzahl von Verbindungen oder deren Kombination in Frage. Es mag naheliegen, dem Stresshormon Cortisol und seinem in Ratten und Mäusen nachweisbaren Analogon Corticosteron eine Rolle in diesem Prozess zu unterstellen. Die Lipophilie dieses Hormons, das Vorhandensein intrazellulären von Glukokortikoidrezeptoren und ihre Eigenschaft, nach Bindung des Hormons die Translokation in den Zellkern zu vollziehen und die Expression einer Vielzahl von Genen zu beeinflussen, sind Anhaltspunkte dafür, dass Glukokortikosteroide auch das RELN-Gen der Zellen des vorliegenden Falles beeinflusst haben. Somit hätte die stressinduzierte, chronisch erhöhte Konzentration an Kortikosteroiden bei den Ratten die Aktivierung des RELN-Gens in der rechten Hemisphäre, genauer in den Zellen der Schicht I des prälimbischen Kortex, zur Folge. Es tut sich allerdings die schwer zu beantwortende Frage nach dem Mechanismus auf, der dieses Phänomen nur auf der rechten Seite erscheinen lässt, denn die Glukokortikoide sind innerhalb des zirkulierenden Blutes annähernd gleich verteilt, ihre Konzentration ist somit vom Blutfluss abhängig. Es gibt jedoch keine Hinweise darauf, dass der Blutfluss in der rechten Hemisphäre des PFC der Ratte stressinduziert ein höherer wäre als in der linken. Daher wäre bei Glukokortikoid-induzierter RELN-Gen-Aktivierung eine vermehrte Dichte Reelin-positiver Strukturen auch in der linken Hemisphäre zu erwarten gewesen, was die Ergebnisse jedoch nicht zeigen. Bleibt man bei dem Gedanken einer hormonellen Ursache, könnten die vorliegenden Ergebnisse auch erklärt werden, wenn die Glukokortikoidrezeptoren von den Zellen der linken und rechten Hemisphäre in ungleicher Menge exprimiert werden würden. Somit wäre bei seitengleichem Blutfluss die Signalstärke des Stresshormons auf der rechten Seite höher

72
als auf der linken, da die Zellen der rechten Hemisphäre von vornherein eine bessere Ausstattung an Glukokortikoidrezeptoren besäßen als die Zellen der linken Hemsiphäre. solche hemisphärischen Unterschiede in der Verteilung Jedoch sind der Glukokortikoidrezeptoren bisher in keiner Studie beschrieben worden. Ebenso muss man gegen dieses Argument einwenden, dass bei einem solchen Stand der Dinge die rechte Hemisphäre sich viel deutlicher in ihrer Genexpression von der linken Hemisphäre unterscheiden müsste, da die Glukokortikoide eine große Anzahl von Genen beeinflussen. Dies wird ebenfalls nicht durch Studien gestützt. Eine mögliche Alternative zu dieser Überlegung wäre allerdings, dass die Glukokortikoidrezeptoren stressinduziert durch ein noch unbekanntes Signal auf der rechten Seite vermehrt exprimiert würden, dies aber nicht auf der linken Seite geschieht. Dies würde den vorliegenden Befund erklären und könnte gleichzeitig Ursache anderer Phänomene sein, die eine Rechtsgewichtung nach Stress zeigen. Die Annahme der Verantwortlichkeit von Glukokortikoiden an der durch Stress verursachten erhöhten Zahl Reelin-positiver Neurone kann jedoch, wenn überhaupt, nicht als allgemeine, gesicherte Wirkungskaskade angesehen werden, da die Studienlage, die sich hierzu auch auf eine andere Hirnregion beschränkt, recht widersprüchlich ist. Eine Studie am Hippocampus von Mäusen fand das genaue Gegenteil zu oben formulierter Hypothese, nämlich eine verminderte Zahl Reelin-positiver Neurone nach chronischer Glukokortikoidinjektion (Lussier et al. 2009). Eine andere Gruppe wiederum unterstützt durch ihre Untersuchungen die Hypothese der Corticosteron-mediierten Hochregulierung der Reelinexpression im Hippocampus von Mäusen nach Anwendung derselben Methode (Gross et al. 2010). Wegen der unterschiedlichen Spezies und Stress-Paradigmen sowie den unterschiedlichen untersuchten Hirnregionen liefern die in der Literatur vorhandenen Daten keine schlüssigen Argumente für die Interpretation der Ergebnisse der vorliegenden Arbeit. Man könnte jedoch spekulieren, dass die gegensätzlichen Ergebnisse auf die Nichtbeachtung der jeweiligen untersuchten Hemisphäre zurückzuführen sind, da es nicht auszuschließen ist, dass, wie in dieser Arbeit gefunden, auch im Hippocampus von Mäusen ein rechts-links Unterschied in der Dichte Reelinpositiver Zellen vorherrscht, der nicht berücksichtigt wurde.

2. Neurotransmittersysteme

Verlässt man die Idee der Rolle von Glukokortikoiden für die Aktivierung des RELN-Gens, lassen sich auch andere Signalsysteme finden, die potentiell die Möglichkeit einer Einwirkung auf das untersuchte Reelinsystem besitzen, wie zum Beispiel Neurotransmittersysteme.

Der präfrontale Kortex zeichnet sich durch eine prominente dopaminerge Innervation aus. Dopamin wird als biogenes Amin zu den Catecholaminen gezählt. Seine Wirkungen an den Rezeptoren D1-D5 beinhalten De- bzw. Hyperpolarisation von Neuronen sowie eine Aktivierung der Phospholipase-C-Signalkaskade. Studien zeigen, dass das dopaminerge System auf Stress in lateralisierter Art und Weise reagiert und zwar so, dass seine Aktivität in der rechten Hemisphäre, unter Einbeziehung der präfrontalen Areale, nach chronischem Stress eine höhere ist als in der linken Hemisphäre (Sullivan und Gratton 1999, Thiel und Schwarting 2001). Diese stressinduzierte, nach rechts lateralisierte Aktivität des dopaminergen Systems könnte Ursache für die Genaktivierung innerhalb der Zellen der rechten Assoziationsfaserschicht und somit das Signal für die erhöhte Reelinproduktion bzw. die erhöhte Zahl Reelin-immunreaktiver Zellen auf dieser Seite des PLC der gestressten Tiere sein. Das gleiche Phänomen der stressinduzierten Lateralisation nach rechts zeigt das serotoninerge System (Carlson et al. 1993, Neddens et al. 2001, van Kampen et al. 1999), das auch im präfrontalen Kortex prominent vertreten ist und aufgrund der Existenz einer Vielzahl von 5-HT Rezeptoren eine ganze Reihe von Wirkungen auf Zellen haben kann. Unter anderem könnten rechtsgewichtete Serotoninsignale nach Stress zur Aktivierung des RELN-Gens führen und somit den Befund der erhöhten Zahl Reelin-positiver Neurone in der rechten Assoziationsfaserschicht nach Stress verursacht haben. Experimentelle Ergebnisse, die diese Annahme belegen, liegen jedoch bisher nicht vor.

3. Sonstige

Eine weitere Möglichkeit für die Erklärung des rechtsgewichteten Asymmetrie in der Dichte Reelin-positiver Zellen wäre die Überlegung, dass das Signal zur Genaktivierung von einer bestimmten Subpopulation von Neuronen oder Gliazellen vermittelt wird. Wie oben schon angesprochen, ist es aufgrund anderer Studien (Czeh et al. 2005) legitim zu vermuten, dass bestimmte Subpopulationen von Neuronen im präfrontalen Kortex nicht hemisphärisch gleichverteilt vorliegen, sondern dass sie in einer Hemisphäre dominieren. Dies könnte auch für die Zellen der Fall sein, die den Zellen in Schicht I des prälimbischen Kortex das Signal zur Genaktivierung und vermehrten Expression von Reelin geben. Wären diese Zellen prominent in der rechten Hemisphäre des Gehirns vertreten, könnte deren stressinduziertes Signal zur Genaktivierung ebenfalls rechts stärker ausfallen als links, woraus schließlich ein Ergebnis wie in dieser Arbeit vorgefunden resultieren würde. Allerdings wäre hiermit die gleichbleibende Dichte Reelin-positiver Zellen im linken prälimbischen Kortex nach Stress nicht erklärt, da diese signalvermittelnden Zellen zwar rechtsdominant, jedoch nicht ausschließlich rechts verteilt sein können. Somit würde man eine Genaktivierung und damit eine – wenn auch leichtere - Erhöhung der Zelldichte auch in der linken Hemisphäre erwarten können, was die vorliegenden Ergebnisse nicht zeigen. Wie schon bei der Diskussion der möglichen Rolle der Kortikosteroide ist aber auch hier nicht auszuschließen, dass die Expression der Rezeptorproteine für das von diesen Zellen vermittelte Signal eine stressinduzierte Rechtsdominanz aufweist, was letztendlich wieder in einer Signalverstärkung auf der rechten Seite resultierte.

Zu 1: Die Möglichkeit von Migrations- und Neurogeneseprozessen

Wenn das vermehrte Auftreten von Reelin-positiven Zellen in Schicht I des prälimbischen Kortex nicht auf eine Genaktivierung zurückzuführen ist, blieben noch zwei Alternativen zur Erklärung dieses Phänomens übrig. Einerseits könnten schon vorhandene, Reelin-immunoreaktive Zellen aus tieferen Schichten oder benachbarten Regionen in diese Schicht eingewandert sein, womit ein Migrationsprozess von bestimmten Zelltypen ursächlich für das vorliegende Ergebnis wäre. Andererseits könnten neugebildete, Reelin-positive Zellen in dieses Gebiet einwandern, womit ein Neubildungs- und Migrationsprozess vonstatten gegangen sein müsste. Für beide Überlegungen gibt es keine Hinweise aus anderen Studien. Sowohl die Zellmigration als auch die Neubildung von Neuronen sind im präfrontalen Kortex nicht beschrieben. Dass Reelin-positive Oligodendrozyten aus der Population der NG2-positiven Zellen hier eine Rolle spielen, die der Neubildung und Migration unterliegen, konnte durch die Immunfluoreszenz-Doppelmarkierung nicht bestätigt werden. Somit scheinen beide Überlegungen nicht sehr überzeugend zur Erklärung des vorliegenden Befundes. Zusammenfassend ist die wahrscheinlichste Erklärung für den vorliegenden Befund eine stressinduzierte Aktivierung des Reelin codierenden Gens RELN in Zellen der rechten Assoziationsfaserschicht, die auch vorher schon dort lokalisiert waren. Die Mediatoren dieser Aktivierung bleiben im Dunkeln, als mögliche Modulatoren dieses Prozesses sind jedoch neuroendokrine (Corticosteron) und neurochemische Systeme (Dopamin, Serotonin) in Betracht zu ziehen, insbesondere letztere, da diese in der rechten Hemisphäre nach Stress ebenfalls eine erhöhte Aktivität zeigen.

Zu 2.: Mögliche Funktionen von Reelin im Hinblick auf Stress

Die zweite Frage, die der vorliegende Befund aufwirft und nun diskutiert werden soll, ist die nach der Funktion vermehrter Reelinexpression in Schicht I des rechten prälimbischen Kortex. Da über die Funktion von Reelin im adulten Hirn sehr wenig bekannt ist, kann die Erörterung leider nur spekulativ erfolgen.

Zumindest ist es bekannt, dass Reelin einen stabilisierenden Einfluss auf das Aktin-Zytoskelett von Zellen ausübt (Frotscher 2010). Zusätzlich ist bekannt, dass die Einwirkung von chronischem Stress mit einer erhöhten Aktivität der rechten Hemisphäre des präfrontalen Kortex einhergeht (Uylings et al. 2006). Ebenso zeigten eine Reihe von Studien einen Volumenverlust des linken, präfrontalen Kortex nach der Einwirkung von Stress, der möglicherweise durch die ebenfalls bewiesene Retraktion der Dendritenbäume von Nervenzellen bedingt ist (Cook und Wellman 2004, Perez-Cruz et al. 2007). Außerdem wurde Reelin durch einige Studienergebnisse als Induktor von Langzeitpotentierung betrachtet (Beffert et al. 2005).

Nun kann man mehrere Funktionen der neu hinzugekommenen Reelin-positiven Zellen der rechten Hemisphäre hypothetisch diskutieren.

Es gibt Befunde dafür, dass sich das Volumen des präfrontalen Kortex unter Stress ändert, möglicherweise auch durch die Retraktion von Dendritenbäumen. Die Zunahme der Reelin-positiven Zellen und damit der Reelinsekretion in der rechten Hemisphäre könnte diesem Phänomen durch die Stabilisierung des Aktin-Zytoskeletts von Neuronen und Gliazellen und deren Fortsätze entgegenwirken. Für die in dieser Arbeit untersuchte faserreiche Schicht I des prälimbischen Kortex könnte das stabilisierende Signal für die Zellfortsätze unter dem Einfluss von chronischem Stress eminent wichtig für den Fortbestand der dort lokalisierten Verbindungen sein. Somit würden die zusätzlichen Reelin-positiven Zellen in der rechten Hemisphäre einen Kompensationsmechnismus für den ansonsten durch chronischen Stress verursachten Volumenverlust durch Dendritenretraktion darstellen. Zusätzlich könnte die durch Reelin gewährleistete Stabilität des Aktin-Zytoskeletts der Zellen die erhöhte Aktivität der rechten Hemisphäre durch die Einwirkung von chronischem Stress erst möglich machen, sodass die hinzugewonnene Strukturstabilität essentiell für die vermehrten, stressrelevanten Verarbeitungsprozesse der rechten Hemisphäre wäre.

Reelin-positive Zellen könnten durch Induktion der Langzeitpotentierung (LTP) an Synapsen einen Gewinn an Plastizität für synaptische Verbindungen bedeuten. Da die rechte Hemisphäre bei der Verarbeitung von chronischem Stress eine besondere Aktivität aufweist, sind hier plastische Veränderungen einerseits sowie der Fortbestand wichtiger Erregungskreise andererseis in besonderem Maße erforderlich. Die Erhöhung der Reelinsekretion durch die Aktivierung des RELN-Gens in bestimmten Zellen und die damit vermehrt stattfindende LTP könnte dieser Erfordernis Rechnung tragen. Da die Assoziationsfaserschicht einen Ort extrem vieler Synapsen darstellt, mag eine vermehrte Reelinsekretion hier unter Stress nötig sein; die Lateralisierung dieses Phänomens wäre dadurch jedoch nicht erklärt. Möglicherweise ist diese Erfordernis nach vermehrter LTP auch nur auf den in dieser Arbeit untersuchten rechten, prälimbischen Kortex beschränkt, da dieser aufgrund seiner reziproken Projektionen mit dem limbischen System und der damit einhergehenden Aufgabe der emotionalen und psychischen Verarbeitung des chronischen Stress' diese Reelin-induzierte-LTP in besonderem Maße erfordert.

Da die Funktionen von Reelin im adulten Hirn noch nicht vollständig erforscht sind, können weitere Erklärungsversuche nur spekulativ sein. Unabhängig von der genauen Funktionsweise der stressinduziert vermehrt vorkommenden Reelin-positiven Zellen im rechten prälimbischen Kortex bleibt der phänomenologische Befund offensichtilich. Es sind jedoch weitergehende Forschungen nötig, um dieses Phänomen erklären und verstehen zu können.

77

5.2 Die Wirkung von pränataler Immunsystemaktivierung und juvenilem Stress

Die Untersuchungen der Dichte Reelin-positiver Zellen in Schicht I des prälimbischen Kortex männlicher Sprague-Dawley-Ratten aus dem Experiment von Yee et al. (2011 b) ergab, dass sowohl die maternale Immunsystemstimulation als auch der juvenile Stress sowie die Kombination von beiden keinen signifikanten Effekt auf die Dichte der Reelinproduzierenden Neurone in Schicht I des prälimbischen Kortex der Ratten hatten. Somit zeigten die verschiedenen Gruppen keine Dichteunterschiede in der Assoziationsfaserschicht, die auf die angewendeten Behandlungen zurückzuführen wären. Im Gegensatz zu einer anderen Gruppe, die in männlichen Mäusen eine verminderte Dichte an Reelin-positiven Zellen im präfrontalen Kortex nach maternaler Immunstimulation durch Poly I:C fand (Meyer U et al. 2006a), kann die vorliegende Arbeit diesen Effekt nicht für das Reelinsystem in Schicht I des prälimbischen Kortex, auch nicht für die Betrachtung nur einer Hemisphäre, bestätigen. Im Gegensatz zu der genannten Arbeit wurde in der vorliegenden Arbeit ausschließlich die kortikale Schicht I untersucht, d. h. die Ergebnisse von Meyer U et al. (2006a) sind nicht direkt mit denen der vorliegenden Arbeit vergleichbar. Der Befund dieser Arbeit beschränkt sich auf die Assoziationsfaserschicht des prälimbischen Kortex. Veränderungen in anderen Bereichen des präfrontalen Kortex oder gar in gänzlich anderen Hirnregionen, die auf der maternalen Poly-I:C-Behandlung oder auf den Effekten juvenilen Stress' beruhen, sind damit nicht ausgeschlossen. Ebenso ist die Betrachtung unterschiedlicher Spezies (Maus/ Ratte) ein Faktor, der die sich nicht deckenden Ergebnisse erklären kann.

Auch die Stressexposition juveniler Ratten zeigte in der Untersuchung keinen signifikanten Effekt auf die Dichte Reelin-positiver Zellen. Juveniler Stress mag somit keinen Einfluss auf Reelin-positive Neurone haben. Im Gegensatz zu psychosozialem Stress stellt juveniler Stress möglicherweise eine eher schwache Stressart dar, die keinen Effekt auf Reelin exprimierende Zellen hat. Es ist allerdings nicht überraschend, dass die unterschiedlichen Stressarten bzw. die verschiedenen zeitlichen Abläufe zu unterschiedlichen Ergebnissen führen. So fanden z. B. Yee et al., dass die in der Adoleszenz belasteten adulten Stadium Tiere im neben bestimmten Verhaltensänderungen eine Hypothermie entwickelten, wohingegen männliche Ratten, die im adulten Stadium gestresst wurden, eine Hyperthermie entwickelten (Yee et al. 2011a, Kohlhause et al. 2011). Somit scheinen physiologische und verhaltensbiologische

Unterschiede zwischen den Stressarten in ihrer Wirkung nicht verwunderlich zu sein (Yee et al. 2011 a). Es ist zusätzlich denkbar, dass der Effekt von juvenilem Stress auf Reelin-immunreaktive Zellen im prälimbischen Kortex reversibel ist und dass aufgrund der langen Zeitdauer zwischen der Stresseinwirkung und der Perfusion (über 40 Tage) der Effekt von juvenilem Stress nicht mehr sichtbar ist und die stressexponierte Gruppe sich von der Kontrollgruppe kaum mehr unterscheidet. Im Gegensatz zu juvenilem Stress stellt der psychosoziale Stress für die Tiere einen nachgewiesenermaßen starken Stressor dar (Koolhaas et al. 2011); zudem lagen bei dem *Social-Defeat*-Experiment nur etwa 24 Stunden zwischen letzter Stressexposition und der Perfusion, was einen völlig anderen Versuchsaufbau bedeutet, als in dem *Poly-IC*-Experiment angewendet. Diese wichtigen Unterschiede beim Alter der Tiere, bei der angewendeten Stressart und dem zwischen letzter Stresseinwirkung und der Perfusion mögen Ursache für die unterschiedlichen Ergebnisse der Experimente im Hinblick auf den Einfluss von Stress auf die Dichte Reelin-positiver Zellen im prälimbischen Kortex männlicher Ratten sein.

5.3 Die Rattenstamm-unabhängige asymmetrische Verteilung Reelin-positiver Zellen in Schicht I des prälimbischen Kortex männlicher Ratten

Ein neuer Befund dieser Arbeit ist die unterschiedliche Verteilung Reelin-positiver Zellen in Schicht I des prälimbischen Kortex von Ratten, unabhängig vom Herkunftsstamm. Die Untersuchungen dieser Region an 24 Sprague-Dawley- und 15 Wistar-Ratten (inklusive den Kontrolltieren des *Social-Defeat*-Experimentes) ergab, dass die linke prälimbische Assoziationsfaserschicht der nicht gestressten Tiere stets eine höhere Dichte Reelin-positiver Zellen aufwies als ihr rechter Gegenpart.

Dieser Befund soll nun diskutiert werden. Einerseits ist bekannt, dass im präfrontalen Kortex viele Funktionen wie Sprache, emotionale Verarbeitung oder analytische Planung lateralisiert vorliegen (Davidson 1992). Dies benötigt eine strukturelle Entsprechung und der vorliegende Befund könnte eine solche darstellen. Zusätzlich fand eine andere Arbeit dieser Abteilung, die sich auf Parvalbumin expressierende Zellen konzentrierte, ebenfalls eine hemisphärisch unterschiedliche Verteilung dieser Zellpopulation (Czeh et al. 2008), sodass die Tatsache der unterschiedlichen links-rechts Verteilung bestimmter Zellen nicht das Novum dieser Arbeit darstellt. Andererseits ist es bemerkenswert, dass ein Glykoprotein, das unter anderem für die Stabilität des Aktin-Zytoskeletts von Neuronen und Gliazellen zuständig ist, in der linken Hemisphärenhälfte des medialen präfrontalen Kortex in größeren Mengen produziert wird als in der rechten. Es wirft die Frage auf, warum offensichtlich in der linken Hemisphäre ein erhöhter Bedarf an Aktin-Zytoskelettstabilität vorherrscht als auf der rechten Seite. Einen Hinweis zur Beantwortung dieser Frage könnte der Befund liefern, dass im linken präfrontalen Kortex die Neubildung von Gliazellen in einem höheren Maße stattfindet als im rechten (Czeh et al. 2008). Für die neugebildeten Gliazellen könnte Reelin – analog zu seiner Funktion in der Hirnentwicklung - zunächst ein Attraktionssignal und schließlich ein Stoppsignal für die auswachsenden Zellfortsätze darstellen. Diese Kopplung des vermehrten Reelinvorkommens mit vermehrter Proliferation und Wachstum von Gliazellen in der linken Hemisphäre erscheint schlüssig und steht auf der Basis von Untersuchungen, die die Wirkung von Reelin auf Gliazellfortsätze im adulten Rattenhirn zeigen konnten, in denen sich diese genau nach der Reelinkonzentration ausgerichtet hatten (Frotscher et al. 2003). So liegt auch hier die Vermutung nahe, dass die erhöhte

Reelinexpression und die erhöhte Gliogenese im linken präfrontalen Kortex in unmittelbarem Zusammenhang stehen und Reelin damit auf die Fortsätze der neu gebildeten Gliazellen orientierend und schließlich stabilisierend wirkt. Die Reelin produzierenden Zellen in der Assoziationsfaserschicht wären damit für die Ausrichtung und Stabilisierung der Gliazellfortsätze in eben dieser verantwortlich. Eine erhöhte Gliogenese brächte folglich eine erhöhte Anzahl neuer Gliafortsätze mit sich, die vermehrt auch in die Schicht I des prälimbischen Kortex angezogen und verankert werden müssten, was hier eine erhöhte Reelinproduktion notwendig machen würde und schließlich in einer erhöhten Dichte Reelin-positiver Zellen in diesem Areal seine strukturelle Entsprechung fände. Diese Hypothese müsste jedoch erst experimentell bestätigt werden. Reelin-Knockout-Ratten müssten im präfrontalen Kortex auf die Orientierung der Gliazellfortsätze hin untersucht werden, ebenso könnten auf einfachere Art Zellkulturversuche mit neugebildeten Gliazellen und "Reelinstripes" die Beziehung zwischen dem Glykoprotein und diesen Zellen beleuchten. Zudem müssten ReelinmRNA-Messungen die vorliegenden Ergebnisse quantitativ unterstützen. Eine erhöhte Reelin-exprimierender Zellen höhere Dichte muss nicht zwingend eine Gesamtproduktion dieses Glykoproteins in dem untersuchten Hirnareal bedeuten, da die Reelin-positiven Zellen mehr oder weniger Reelin exprimieren können und dies mit den verwendeten Methoden nicht bestimmt werden kann. Es wurde gezeigt, dass die Neuronenpopulation der Parvalbumin-positiven Zellen in der linken Hemisphäre in höherer Dichte vorkommen als in der rechten Hemisphäre (Czeh et al. 2005). Möglicherweise trifft eine solche hemisphärenspezifische Verteilung auch auf andere Neuronenpopulationen zu. Eine Erklärungsmöglichkeit des Befunds der linkshemisphärischen Dominanz von Reelin-positiven Zellen in Kontrolltieren könnte sein, dass Reelin nur für bestimmte Neuronenpopulationen ein Signalmolekül darstellt; besonders für solche, deren Vorkommen in der linken Hemisphäre häufiger ist als in der rechten. Würde Reelin beispielsweise für Parvalbumin-positive Neurone ein wichtiges Signalmolekül darstellen, wäre aufgrund der linksgewichteten Verteilung der Parvalbuminzellen im PFC ebenso eine linksgewichtete Verteilung von Reelin produzierenden Zellen erforderlich. Allerdings gibt es bisher keine weitergehenden Studien darüber, ob und welche Subpopulationen von Zellen lateralisiert vorliegen und welcher Art die Zellen sind, für die das sezernierte Reelin ein bedeutendes Signal darstellt.

81

Letztlich ist der Betrachter bei dem vorliegenden Befund auf größeres Wissen über das Glykoprotein Reelin und seine Funktionen im adulten Hirn angewiesen, um ihn erklären zu können. Es bleibt die phänomenologische Beschreibung dieses Resultats, das mit zunehmendem Verständnis der Wirkungsweise von Reelin in Zukunft erklärt werden kann.

5.4 Die Ergebnisse der Fluoreszenz-Doppelmarkierungen

Die Immunfluoreszenz – Doppelmarkierungen zeigten, dass Reelin in mehr als der Hälfte der Zellen mit GAD 67 kolokalisiert. Dies bestätigt die derzeitige Literatur, in der Autoren einen großen Teil der Reelin-positiven Zellen im adulten Säugetiergehirn als GABAerge Interneurone bezeichnen (Pesold et al. 1998).

Die nicht vorhandene Kolokalisation von GFAP mit Reelin erklärt sich aus der Tatsache, dass Reelin ein sekretiertes Glykoprotein der Extrazellulärmatrix ist, das zwar an bestimmte Apolipoproteinrezeptoren von Neuronen und Gliazellen bindet, aber nicht in die Fortsätze des Zellen eindringt. Das saure Gliafaserprotein ist ein Strukturprotein der Intermediärfilamente von Gliazellen, vor allem in Astrozyten. Eine Kolokalisation hätte sich gezeigt, wenn diese Astrozyten Reelin produzierten und es über ihre Fortsätze weiter transportieren würden. Beides ist nach den durchgeführten und untersuchten Doppelmarkierungen nicht der Fall. Dieser Befund stimmt mit der Vorstellung überein, dass Reelin-exprimierende Zellen Neurone sind.

In der vorliegenden Arbeit wurden nur in wenigen Zellen Kolokalisationen von Reelin und Calbindin beobachtet. Untersuchungen einer anderen Gruppe zeigten einen weit höheren Prozentsatz an Kolokalisationen der beiden Proteine im präfrontalen Kortex der Maus (Alcántara et al. 1998) möglicherweise gibt es hier einen speziesbedingten Unterschied zwischen Ratte und Maus. Weiter fand eine andere Gruppe im parietalen präfrontalen Kortex der Ratte nur sehr wenig Kolokalisation von Reelin und Calbindin (Pesold et al. 1998). Die vorliegende Arbeit zeigt somit, dass auch im medialen präfrontalen Kortex der Ratte die Zahl der Reelin-positiven Neurone, die Calbindin koexpressieren, äußerst niedrig ist. Eine Bestimmung, ob die kolokalisierenden Neurone inhibitorisch oder exhibitorisch sind, wurde in der vorliegenden Arbeit nicht durchgeführt. Die Arbeiten von Alcántara et al. (1998) und Pesold et al. (1999) legen allerdings nahe, dass es sich in der Mehrzahl der Fälle um GABAerge Neurone handelt, die sowohl Reelin als auch Calbindin exprimieren. Die Möglichkeit, dass Reelin und Calbindin zwar von der gleichen Zelle produziert werden, ihre Kolokalisation aber aufgrund des Aufenthaltes in unterschiedlichen Zellkompartimenten nicht ersichtlich ist, ist in Betracht zu ziehen, jedoch müssten sich die Wege der beiden Proteine doch am Ort ihrer Herstellung, am endoplasmatischen Retikulum, kreuzen, was wiederum zu ausreichender Nähe für eine sichtbare Kolokalisation im Zytoplasma führte. In Übereinstimmung mit obigen Ergebnissen wurde in der vorliegenden Arbeit die geringe und schwach sichtbare Kolokalisation von Reelin und Calbindin in der Fluoreszenzdoppelmarkierung bestätigt.

Die Proteine NG2 und Reelin erschienen in den vorliegenden Untersuchungen vereinzelt in unmittelbarer Nähe zu liegen. NG2-positive Zellen bilden eine Subpopulation von Gliazellen, die gemeinhin als Oligodendrozyten-Progenitorzellen (OPZ) bezeichnet werden und aus denen die große Mehrheit - wenn nicht alle - Oligodendrozyten des Gehirns entstehen. Ihre interessantesten Eigenschaften sind eine annähernd gleichmäßige Verteilung im Gehirn, eine komplexe, sternförmige Morphologie, eine große räumliche Nähe zu Neuronen, die Fähigkeit, sich im adulten Hirn neu zu bilden, und schließlich die besondere Eigenschaft, Synapsen mit Neuronen zu bilden (Mangin und Gallo 2011). Die Untersuchungen einer anderen Gruppe haben ergeben, dass Oligodendrozyten und Oligodendrozyten-Progenitorzellen Reelin exprimieren und sezernieren (Siebert und Osterhout 2011). Die vorliegende Arbeit konnte dies über eine Immunfluoreszenz-Doppelmarkierung nicht bestätigen. Es zeigte sich eher, dass die beiden Proteine zwar nicht von derselben Zelle exprimiert werden, dass sich jedoch NG2-positive Zellen in enger räumlicher Nähe zu Reelin-positiven Zellen befinden und die Fortsätze der NG2-positiven Zellen die Reelin-positiven Neurone umgreifen. Es besteht die Möglichkeit, dass auch zwischen diesen beiden Zellpopulationen Synapsenbildung stattfindet (Fröhlich et al. 2011). Die Funktion von Neuron-Gliazell-Synapsen ist jedoch weiterhin unklar, weswegen dieser Diskussionspunkt hier nicht weiter ausgeführt wird. Aufgrund der Proliferation von NG2-positiven Zellen ist es jedoch legitim zu diskutieren, ob Reelin auf diese neugebildeten Progenitorzellen einen Einfluss haben könnte. Die Ausrichtung der auswachsenden Fortsätze dieser Zellen könnte durch Reelin beeinflusst und ihr Aktin-Zytoskelett gefestigt werden. Analog zu den pränatalen Verhältnissen könnte Reelin auch in diesen ausdifferenzierten Zellen ein wichtiger Faktor für die Zytoarchitektur sein.

5.5 Diskussion der angewendeten Methoden

In den immunzytochemischen Experimenten wurden primäre Antikörper verwendet, deren Spezifität für das jeweilige Antigen bereits in früheren Publikationen beschrieben wurde (Haas et al. 2002, Lussier et al. 2009). Mögliche unspezifische Bindungen der Antikörper wurden durch Negativ-Kontrollen ausgeschlossen.

Die Dichtemessungen der Reelin-positiven Zellen im prälimbischen Kortex waren durch die klare Definition der zu untersuchenden Region und der äußerst schwachen Hintergrundfärbungen in ihrer Methodik verständlich festgelegt. Es ist bei der in dieser Arbeit angewendeten immunhistochemischen Methode zu bedenken, dass das Detektionssystem eine Variable darstellt, deren Konstanz nicht bewiesen werden kann (Benes et al. 1998). Möglicherweise beeinflussen bestimmte Faktoren oder Veränderungen das in der vorliegenden Arbeit verwendete Detektionssystem und damit die Markierung von Reelin-positiven Strukturen. Es ist nicht auszuschließen, dass solche bisher unbekannten Faktoren oder Veränderungen lateralisiert auftreten und somit das Ergebnis dieser Arbeit maßgeblich mitbestimmt haben. Für die Überprüfung dieser Vermutung müsste ein Vergleich immunhistochemischer Detektionssysteme für Reelinpositive Strukturen angefertigt werden, unter Verwendung unterschiedlicher Antikörper, Enzyme und Substrate. Dies konnte in der vorliegenden Arbeit nicht geleistet werden, sodass der vorliegende Befund unter dem Vorbehalt möglicher unbekannter Effekte auf das Detektionssystem diskutiert werden muss. Ebenso besitzt das in dieser Arbeit verwendete Detektionssystem wenig Aussagekraft darüber, wieviel Reelin quantitativ von Reelin-positiven Neuronen gebildet wurde. Das Farbpräzipitat ist deutlich erkennbar und zeigt sichtbar an, dass Reelin in dieser Zelle exprimiert wurde. Es sagt jedoch kaum etwas über die genaue Menge des gebildeten Reelins aus, die möglicherweise innerhalb der einzelnen Versuchsgruppen und als Wirkung der durchgeführten Experimente variierte. Veränderungen der Reelinexpression durch die Behandlungen auf quantitativer Ebene wurden in dieser Arbeit folglich nicht untersucht. Die festgestellten Dichteänderungen von Reelin-immunreaktiven Zellen müssen daher nicht zwingend eine veränderte Reelinexpression in dem untersuchten Gebiet bedeuten, da diese Veränderungen möglicherweise durch die anderen Reelin-positiven Neurone durch angepasste Expression ausgeglichen werden könnten. Zur Klärung dieser Frage müsste die Expression von Reelin-mRNA bestimmt werden, die eine weitaus genauere Angabe über die Reelin-Produktion machen könnte.

Da mikroskopisch keine klare Trennlinie zwischen dem prälimbischen Kortex und ACx bzw. ILC ersichtlich ist, wurde ein Atlas des Rattenhirns zur Bestimmung des zu untersuchenden Areals verwendet. Bei der Übersetzung der Information des Atlasses hin zum Hirnschnitt unter dem Mikroskop mag es zu Abweichungen gekommen sein. Ebenso waren die verwendeten Schnitte nicht immer deckungsgleich mit den Schnittebenen des Hirnatlasses, nach dessen Angaben die Eingrenzung des zu untersuchenden Areals erfolgte. Hinzu kommt, dass das verwendete Mikroskop einen leichten Übersetzungsfehler zwischen 2,5-facher und 16-facher Vergrößerung aufweist, sodass nach der Eingrenzung des Areals (bei 2,5 x Vergrößerung) vor der Zellzählung (bei 16 x Vergrößerung) eine leichte Nachjustierung des markierten Bereichs zum Hirnschnitt erfolgen musste. Schließlich lagen einige der gezählten Zellen auf der Umrandungslinie des markierten Areals, sodass mit der erforderlichen Neujustierung hier eine Fehlerquelle zu vermuten ist.

6. Zusammenfassung

Reelin ist ein Glykoprotein der Extrazellulärmatrix, dessen Produktion und Sezernierung im adulten prälimbischen Kortex männlicher Ratten von GAD67-positiven und wenigen Calbinin-positiven Neuronen erfolgt. Bei männlichen Sprague-Dawley- und Wistar-Ratten ist unter Kontrollbedingungen die Dichte Reelin-immunoreaktiver Zellen in Schicht I des prälimbischen Kortex in der linken Hemisphäre höher als in der rechten. Diese Lateralisierung wird durch juvenilen Stress, durch pränatale maternale Immunsystemaktivierung sowie durch die Kombination beider Behandlungen nicht verändert. Eine mögliche Funktion dieser asymmetrischen Verteilung der Reelinzellen mag in der Stabilisierung der Fortsätze von sich differenzierenden Gliazellen liegen, deren Neubildungsrate auf der linken Seite höher ist als auf der rechten; dies war in früheren Arbeiten bereits gezeigt worden.

Nach chronischem psychosozialen Stress zeigen männliche Wistar-Ratten eine inverse Verteilung der Reelin-immunoreaktiven Zellen im Vergleich zu den Kontrolltieren. Während die Dichte dieser Zellen in der linken Assoziationsfaserschicht des prälimbischen Kortex nach dem Stress gleich bleibt, erhöht sie sich in demselben Areal auf der rechten Seite. Ursache und Funktion dieses Rechts-Links-Unterschieds sind unklar. Als mögliche Ursache kommt die Lateralisierung des dopaminergen bzw. des serotoninergen Systems nach Stress in Betracht sowie unter der Annahme weiterer auch der Einfluss Glukokortikoiden. Die Hypothesen von Funktion der hinzugekommenen Reelin-immunreaktiven Zellen mag in der Stabilisierung und damit der Funktionserhaltung der in der rechten Assoziationsfaserschicht des prälimbischen befindlichen Zellen oder erforderlichen Kortex in der Induktion von Langzeitpotenzierung liegen.

Die asymmetrische Verteilung der Reelin-positiven Zellen in der Assoziationsfaserschicht des prälimbischen Kortex sowohl unter Kontrollbedingungen (linksgewichtet) als auch nach chronischem psychosozialen Stress (rechtsgewichtet) stellt den neuen Befund der vorliegenden Arbeit dar. Zukünftige Untersuchungen könnten die Ursachen und die Funktionen der beschriebenen Lateralisierung klären.

87

7. Literaturverzeichnis

- Abraham H, Toth Z, Bari F, Domoki F, Seress L (2005): Novel calretinin and reelin expressing neuronal population includes cajal-retzius-type cells in the neocortex of adult pigs. *Neuroscience* <u>136</u> (1): 217-230.
- Alcántara S, Ruiz M, D'Arcangelo G, Ezan F, De Lecea L, Curran T, Sotelo C, Soriano E (1998): Regional and cellular patterns of reelin mrna expression in the forebrain of the developing and adult mouse. *J Neurosci* <u>18</u> (19): 7779-7799.
- Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001): Recognition of double-stranded rna and activation of nf-kappab by toll-like receptor 3. *Nature* <u>413</u> (6857): 732-738.
- Alfonso J, Pollevick GD, Van Der Hart MG, Flügge G, Fuchs E, Frasch AC (2004): Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. *Eur J Neurosci* <u>19</u> (3): 659-666.
- Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005): Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. *Nat Neurosci* <u>8</u> (3): 365-371.
- Anisman H, Zacharko RM (1992): Depression as a consequence of inadequate neurochemical adaptation in response to stressors. *Br J Psychiatry Suppl* (15): 36-43.
- Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998): Regulation of actin dynamics through phosphorylation of cofilin by lim-kinase. *Nature* <u>393</u> (6687): 805-809.
- Arnaud L, Ballif BA, Förster E, Cooper JA (2003): Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. *Curr Biol* <u>13(</u>1): 9-17.
- Bacon SJ, Headlam AJ, Gabbott PL, Smith AD (1996): Amygdala input to medial prefrontal cortex (mpfc) in the rat: A light and electron microscope study. *Brain Res* <u>720</u> (1-2): 211-219.
- Baloyannis SJ (2005): Morphological and morphometric alterations of cajal-retzius cells in early cases of alzheimer's disease: A golgi and electron microscope study. *Int J Neurosci* <u>115</u> (7): 965-980.
- Baloyannis SJ, Costa V, Mauroudis I, Psaroulis D, Manolides SL, Manolides LS (2007):
 Dendritic and spinal pathology in the acoustic cortex in alzheimer's disease:
 Morphological and morphometric estimation by golgi technique and electron
 microscopy. Acta Otolaryngol <u>127</u> (4): 351-354.
- Bamburg JR: Proteins of the adf/cofilin family (1999): Essential regulators of actin dynamics. *Annu Rev Cell Dev Biol* <u>15</u> 185-230.
- Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS (2007): Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. *Biol Psychiatry* <u>62</u> (5): 496-504.
- Bar I, Lambert De Rouvroit C, Goffinet AM (2000): The evolution of cortical development. An hypothesis based on the role of the reelin signaling pathway. *Trends Neurosci* <u>23</u> (12): 633-638.
- Bayer TA, Falkai P, Maier W (1999): Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the "Two hit hypothesis". *J Psychiatr Res* <u>33</u> (6): 543-548.

Literaturverzeichnis

- Beck, Köll (2010): Zytoskelett und Nukleus: Die Rolle von Aktin als Modulator der neuronalen Genexpression. *Neuroforum* <u>Februar 2010</u> 4-9.
- Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer Re, Herz J (2005): Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor apoer2. *Neuron* <u>47</u> (4): 567-579.
- Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998): A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. *Biol Psychiatry* <u>44</u> (2): 88-97.
- Berry M, Rogers AW (1965): The migration of neuroblasts in the developing cerebral cortex. *J Anat* <u>99</u> (Pt 4): 691-709.
- Bjorkqvist K (2001): Social defeat as a stressor in humans. *Physiol Behav* <u>73</u> (3): 435-442.
- Bland ST, Schmid MJ, Der-Avakian A, Watkins LR, Spencer RL, Maier SF (2005): Expression of c-fos and bdnf mrna in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. *Brain Res* <u>1051</u> (1-2): 90-99.
- Bock HH, Jossin Y, Liu P, Forster E, May P, Goffinet AM, Herz J (2003):
 Phosphatidylinositol 3-kinase interacts with the adaptor protein dab1 in
 response to reelin signaling and is required for normal cortical lamination. *J Biol Chem* <u>278</u> (40): 38772-38779.
- Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA, Blesa R, Soriano E, Saez-Valero J (2006): Reelin expression and glycosylation patterns are altered in Alzheimer's disease. *Proc Natl Acad Sci U S A* <u>103</u> (14): 5573-5578.
- Brodmann K: Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig 1909.
- Brown AS (2006): Prenatal infection as a risk factor for schizophrenia. *Schizophr Bull* <u>32</u> (2): 200-202.
- Brown SM, Henning S, Wellman CL (2005): Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. *Cereb Cortex* <u>15</u> (11): 1714-1722.
- Buchaille R, Couble ML, Magloire H, Bleicher F (2000): A substractive pcr-based cdna library from human odontoblast cells: Identification of novel genes expressed in tooth forming cells. *Matrix Biol* <u>19</u> (5): 421-430.
- Carlson JN, Fitzgerald LW, Keller RW, JR., Glick SD (1991): Side and region dependent changes in dopamine activation with various durations of restraint stress. *Brain Res* <u>550</u> (2): 313-318.
- Carlson JN, Fitzgerald LW, Keller RW, Jr., Glick SD (1993): Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat. *Brain Res* <u>630</u> (1-2): 178-187.
- Cassidy AW, Mulvany SK, Pangalos MN, Murphy KJ, Regan CM (2010): Developmental emergence of reelin deficits in the prefrontal cortex of wistar rats reared in social isolation. *Neuroscience* <u>166</u> (2): 377-385.
- Caviness VS, Jr. (1976): Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse. *J Comp Neurol* <u>170</u> (4): 435-447.
- Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida Of, Auer DP, Sousa N (2005): Corticosteroid status influences the volume of the rat cingulate cortex a magnetic resonance imaging study. *J Psychiatr Res* <u>39</u> (5): 451-460.
- Cerqueira JJ, Taipa R, Uylings HB, Almeida OF, Sousa N (2007): Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. *Cereb Cortex* <u>17</u> (9): 1998-2006.

- Chai X, Forster E, Zhao S, Bock HH, Frotscher M (2009): Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. *J Neurosci* <u>29</u> (1): 288-299.
- Cook SC, Wellman CL (2004): Chronic stress alters dendritic morphology in rat medial prefrontal cortex. *J Neurobiol* <u>60</u> (2): 236-248.
- Cooper JA (2008): A mechanism for inside-out lamination in the neocortex. *Trends Neurosci* <u>31</u> (3): 113-119.
- Courtès S, Vernerey J, Pujadas L, Magalon K, Cremer H, Soriano E, Durbec P, Cayre M (2011): Reelin controls progenitor cell migration in the healthy and pathological adult mouse brain. *PLoS One* <u>6</u>(5): e20430.
- Czeh B, Simon M, Van Der Hart MG, Schmelting B, Hesselink MB, Fuchs E (2005): Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: Prevention by treatment with a substance p receptor (nk1) antagonist. *Neuropsychopharmacology* <u>30</u> (1): 67-79.
- Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006): Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. *Neuropsychopharmacology* <u>31</u> (8): 1616-1626.
- Czeh B, Muller-Keuker JI, Rygula R, Abumaria N, Hiemke C, Domenici E, Fuchs E (2007): Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: Hemispheric asymmetry and reversal by fluoxetine treatment. *Neuropsychopharmacology* <u>32</u> (7): 1490-1503.
- Dalley JW, Cardinal RN, Robbins TW (2004): Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. *Neurosci Biobehav Rev* <u>28</u> (7): 771-784.
- Damasio AR (2000): Eighth c.U. Ariëns Kappers Lecture. The fabric of the mind: A neurobiological perspective. *Prog Brain Res* <u>126</u> 457-467.
- D'Arcangelo G (2005): Apoer2: A reelin receptor to remember. *Neuron* <u>47</u> (4): 471-473.
- D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995): A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. *Nature* <u>374</u> (6524): 719-723.
- Davidson RJ (1992): Anterior cerebral asymmetry and the nature of emotion. *Brain Cogn* <u>20</u> (1): 125-151.
- De Kloet ER, Reul JM (1987): Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. *Psychoneuroendocrinology* <u>12</u> (2): 83-105.
- Denenberg VH (1983): Lateralization of function in rats. Am J Physiol 245 (4): R505-509.
- Diorio D, Viau V, Meaney MJ (1993): The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. *J Neurosci* <u>13</u> (9): 3839-3847.
- Drakew A, Frotscher M, Deller T, Ogawa M, Heimrich B (1998): Developmental distribution of a reeler gene-related antigen in the rat hippocampal formation visualized by cr-50 immunocytochemistry. *Neuroscience* <u>82</u> (4): 1079-1086.
- Dubrovsky B (1993): Effects of adrenal cortex hormones on limbic structures: Some experimental and clinical correlations related to depression. *J Psychiatry Neurosci* <u>18</u> (1): 4-16.
- Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, Mcgrath B, Walsh CA, Kreidberg JA, Anton ES (2000): Reelin binds alpha3beta1 integrin and inhibits neuronal migration. *Neuron* <u>27</u> (1): 33-44.

- Eastwood SL, Harrison PJ (2003): Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: Towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. *Mol Psychiatr* <u>8</u> (9): 769, 821-731.
- Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, Tsai WY, Schaefer CA, Brown AS (2010): Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. *Schizophr Res* <u>121</u> (1-3): 46-54.
- Falconer D (1951): Two new mutants, "Trembler" And "Reeler", with neurological actions in the house mouse (mus musculus l.). *J Genetics* <u>50</u> (2): 192-205.
- Fatemi SH, Earle JA, Mcmenomy T (2000): Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. *Mol Psychiatry* <u>5</u> (6): 654-663, 571.
- Fatemi SH, Earle J, Kanodia R, Kist D, Emamian ES, Patterson PH, Shi L, Sidwell R (2002): Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia. *Cell Mol Neurobiol* <u>22</u> (1): 25-33.
- Fatemi SH, Pearce DA, Brooks AI, Sidwell RW (2005a): Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: A potential animal model for schizophrenia and autism. *Synapse* <u>57</u> (2): 91-99.
- Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005b): Gabaergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kda and reelin proteins in cerebellum. *Schizophr Res* <u>72</u> (2-3): 109-122.
- Fatemi SH (2011): Reelin, a marker of stress resilience in depression and psychosis. *Neuropsychopharmacology* <u>36(</u>12): 2371-2372.
- Feldman S, Conforti N (1985): Modifications of adrenocortical responses following frontal cortex simulation in rats with hypothalamic deafferentations and medial forebrain bundle lesions. *Neuroscience* <u>15</u> (4): 1045-1047.
- Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP (2003): Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. *Endocrinology* <u>144</u> (12): 5249-5258.
- Flügge G (2000): Regulation of monoamine receptors in the brain: Dynamic changes during stress. *Int Rev Cytol* <u>195</u> 145-213.
- Flügge G, Ahrens O, Fuchs E (1997): Monoamine receptors in the prefrontal cortex of tupaia belangeri during chronic psychosocial stress. *Cell Tissue Res* <u>288</u> (1): 1-10.
- Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN (2004): The viral mimic, polyinosinic:Polycytidylic acid, induces fever in rats via an interleukin-1dependent mechanism. Am J Physiol Regul Integr Comp Physiol <u>287</u> (4): R759-766.
- Fröhlich N, Nagy B, Hovhannisyan A, Kukley M (2011): Fate of neuron-glia synapses during proliferation and differentiation of ng2 cells. *J Anat* <u>16</u> (10): 3534-3540.
- Frotscher M (2010): Role for reelin in stabilizing cortical architecture. *Trends Neurosci* <u>33</u> (9): 407-414.
- Frotscher M, Haas CA, Forster E (2003): Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. *Cereb Cortex* <u>13</u> (6): 634-640.
- Frysztak RJ, Neafsey EJ (1994): The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat. *Brain Res* <u>643</u> (1-2): 181-193.

- Fuchs E, Flügge G (2002): Social stress in tree shrews: Effects on physiology, brain function, and behavior of subordinate individuals. *Pharmacol Biochem Behav* <u>73</u> (1): 247-258.
- Fuchs E, Flügge G (2006): Experimental animal models for the simulation of depression and anxiety. *Dialogues Clin Neurosci* <u>8</u> (3): 323-333.
- Fuchs E, Kramer M, Hermes B, Netter P, Hiemke C (1996): Psychosocial stress in tree shrews: Clomipramine counteracts behavioral and endocrine changes. *Pharmacol Biochem Behav* <u>54</u> (1): 219-228.
- Fuchs E, Czeh B, Kole MH, Michaelis T, Lucassen PJ (2004): Alterations of neuroplasticity in depression: The hippocampus and beyond. *Eur Neuropsychopharmacology* <u>14</u> <u>Suppl 5</u> S. 481-490.
- Fuster M: The prefrontal cortex: Anatomy, physiologiy an neuropsychology of the frontal lobe Raven Press; New York 1997.
- Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005): Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. *J Comp Neurol* <u>492</u> (2): 145-177.
- Goel V, Tierney M, Sheesley L, Bartolo A, Vartanian O, Grafman J (2007): Hemispheric specialization in human prefrontal cortex for resolving certain and uncertain inferences. *Cereb Cortex* <u>17</u> (10): 2245-2250.
- Gross CM, Flubacher A, Tinnes S, Heyer A, Scheller M, Herpfer I, Berger M, Frotscher M, Lieb K, Haas CA (2010): Early life stress stimulates hippocampal reelin gene expression in a sex-specific manner: Evidence for corticosterone-mediated action. *Hippocampus (im Druck)* Onlineveröffentlichung bei Epub am 6. Dez. 2010: DOI: 10.1002/hipo.20907
- Guidotti A, Auta J, Davis Jm, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000): Decrease in reelin and glutamic acid decarboxylase67 (gad67) expression in schizophrenia and bipolar disorder: A postmortem brain study. *Arch Gen Psychiatry* <u>57</u> (11): 1061-1069.
- Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002): Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. *J Neurosci* <u>22</u> (14): 5797-5802.
- Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002): Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. *Nat Neurosci* <u>5</u> (10): 939-945.
- Hack I, Hellwig S, Junghans D, Brunne B, Bock HH, Zhao S, Frotscher M (2007): Divergent roles of apoer2 and vldlr in the migration of cortical neurons. *Development* <u>134</u> (21): 3883-3891.
- Hartfuss E, Förster E, Bock HH, Hack MA, Leprince P, Luque JM, Herz J, Frotscher M, Götz M (2003): Reelin signaling directly affects radial glia morphology and biochemical maturation. *Development* <u>130</u> (19): 4597-4609.
- Hashimoto-Torii K, Torii M, Sarkisian MR, Bartley CM, Shen J, Radtke F, Gridley T, Sestan N, Rakic P (2008): Interaction between reelin and notch signaling regulates neuronal migration in the cerebral cortex. *Neuron* <u>60</u> (2): 273-284.
- Heidbreder CA, Groenewegen HJ (2003): The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. *Neurosci Biobehav Rev* <u>27</u> (6): 555-579.
- Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Östrander MM, Choi DC, Cullinan WE (2003): Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. *Front Neuroendocrinol* <u>24</u> (3): 151-180.

- Herman JP, Mueller NK, Figueiredo H (2004): Role of gaba and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci <u>1018</u> 35-45.
- Herz J, Beffert U: Apolipoprotein e receptors (2000): Linking brain development and alzheimer's disease. *Nat Rev Neurosci* <u>1</u> (1): 51-58.
- Holsboer F, Spengler D, Heuser I (1992): The role of corticotropin-releasing hormone in the pathogenesis of cushing's disease, anorexia nervosa, alcoholism, affective disorders and dementia. *Prog Brain Res* <u>93</u> 385-417.
- Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000): Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human reln mutations. *Nat Genet* <u>26</u> (1): 93-96.
- Howell BW, Gertler FB, Cooper JA (1997): Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. *EMBO J* <u>16</u> (1): 121-132.
- Hu W. Effects of stress on the gabaergic system in the hippocampal formation and medial prefrontal cortex of adult male rat. PhD Thesis: Deutsches Primatenzentrum Klinische Neurobiologie, Georg-August-Universität Göttingen; 2010.
- Ilin Y, Richter-Levin G (2009): Enriched environment experience overcomes learning deficits and depressive-like behavior induced by juvenile stress. *PLoS One* <u>4</u>(1): e4329.
- Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998): A decrease of reelin expression as a putative vulnerability factor in schizophrenia. *Proc Natl Acad Sci U S A* <u>95</u> (26): 15718-15723.
- Jalabert M, Aston-Jones G, Herzog E, Manzoni O, Georges F (2009): Role of the bed nucleus of the stria terminalis in the control of ventral tegmental area dopamine neurons. *Prog Neuropsychopharmacology Biol Psychiatry* <u>33</u> (8): 1336-1346.
- Jossin Y, Gui L, Goffinet AM (2007): Processing of reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons. *J Neurosci* <u>27</u> (16): 4243-4252.
- Kalin NH, Larson C, Shelton Se, Davidson RJ (1998): Asymmetric frontal brain activity, Kortisol, and behavior associated with fearful temperament in rhesus monkeys. *Behav Neurosci* <u>112</u> (2): 286-292.
- Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF (2004): Molecular abnormalities of the hippocampus in severe psychiatric illness: Postmortem findings from the stanley neuropathology consortium. *Mol Psychiatry* <u>9</u> (6): 609-620, 544.
- Kobow K, Jeske I, Hildebrandt M, Hauke J, Hahnen E, Buslei R, Buchfelder M, Weigel D, Stefan H, Kasper B, Pauli E, Blumcke I (2009): Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. *J Neuropathol Exp Neurol* <u>68</u> (4): 356-364.
- Kohlhause S, Hoffmann K, Schlumbohm C, Fuchs E, Flügge G. (2011): Nocturnal hyperthermia induced by social stress in male tree shrews: relation to low testosterone and effects of age. *Physiol Behav* <u>104</u> (5): 786-795
- Kohno T, Hattori M (2010): Re-evaluation of protease activity of reelin. *Biol Pharm Bull* <u>33</u> (6): 1047-1049.
- Koolhaas JM, Bartolomucci A, Buwalda B, De Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, Van Dijk G, Wohr M, Fuchs E (2011): Stress revisited: A critical evaluation of the stress concept. *Neurosci Biobehav Rev* <u>35</u> (5): 1291-1301.

- Koolhaas JM, Meerlo P, De Boer SF, Strubbe JH, Bohus B (1997): The temporal dynamics of the stress response. *Neurosci Biobehav Rev* <u>21</u> (6): 775-782.
- Kuang WJ, Sun RF, Zhu YS, Li SB (2011): A new single-nucleotide mutation (rs362719) of the reelin (RELN) gene associated with schizophrenia in female Chinese Han. *Genet Mol Res* <u>10</u>(3): 1650-1658.
- Lacor PN, Grayson DR, Auta J, Sugaya I, Costa E, Guidotti A (2000): Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. *Proc Natl Acad Sci U S A* <u>97</u> (7): 3556-3561.
- Lambert Du Rouvroit C, De Bergeyck V, Cortvrindt C, Bar I, Eeckhout Y, Goffinet AM (1999): Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase. *Exp Neurol* <u>156</u> (1): 214–217.
- Löffler G, Petrides P, Heinrich P: Biochemie und Pathobiochemie, 8. Auflage, Springer Medizin Verlag; Heidelberg 2007
- Lussier AL, Caruncho HJ, Kalynchuk LE (2009): Repeated exposure to corticosterone, but not restraint, decreases the number of reelin-positive cells in the adult rat hippocampus. *Neurosci Lett* <u>460</u> (2): 170-174.
- Magarinos AM, Mcewen BS, Flügge G, Fuchs E (1996): Chronic psychosocial stress causes apical dendritic atrophy of hippocampal ca3 pyramidal neurons in subordinate tree shrews. *J Neurosci* <u>16</u> (10): 3534-3540.
- Mangin JM, Gallo V (2011): The curious case of NG2 cells: transient trend or game changer? *ASN Neuro* <u>3</u> (1): 37-49.
- Manji HK, Duman RS (2001): Impairments of neuroplasticity and cellular resilience in severe mood disorders: Implications for the development of novel therapeutics. *Psychopharmacol Bull* <u>35</u> (2): 5-49.
- Mason JW (1968): A review of psychoendocrine research on the sympathetic-adrenal medullary system. *Psychosom Med* <u>30</u> (5): Suppl:631-653.
- McEwen BS (2004): Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. *Ann N Y Acad Sci* <u>1032</u> 1-7.
- Meerlo P, Sgoifo A, De Boer SF, Koolhaas JM (1999): Long-lasting consequences of a social conflict in rats: Behavior during the interaction predicts subsequent changes in daily rhythms of heart rate, temperature, and activity. *Behav Neurosci* <u>113</u> (6): 1283-1290.
- Meyer G, Goffinet AM, Fairen A (1999): What is a cajal-retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. *Cereb Cortex* <u>9</u> (8): 765-775.
- Meyer U, Feldon J (2011): To poly(i:C) or not to poly(i:C): Advancing preclinical schizophrenia research through the use of prenatal immune activation models. *Neuropharmacology* <u>63</u> (2): 209-213.
- Meyer U, Feldon J, Schedlowski M, Yee BK (2005): Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. *Neurosci Biobehav Rev* <u>29</u> (6): 913-947.
- Meyer U, Feldon J, Schedlowski M, Yee BK (2006a): Immunological stress at the maternal-foetal interface: A link between neurodevelopment and adult psychopathology. *Brain Behav Immun* <u>20</u> (4): 378-388.
- Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006b): The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. *J Neurosci* <u>26</u> (18): 4752-4762.

- Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2008): Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. *Brain Behav Immun* <u>22</u> (4): 469-486.
- Miller CA, Sweatt JD (2007): Covalent modification of DNA regulates memory formation. *Neuron* <u>53</u> (6): 857-869.
- Miller TW (1988): Advances in understanding the impact of stressful life events on health. *Hosp Community Psychiatry* <u>39</u> (6): 615-622.
- Molnar Z, Metin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006): Comparative aspects of cerebral cortical development. *Eur J Neurosci* <u>23</u> (4): 921-934.
- Morgan MA, Ledoux JE (1995): Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. *Behav Neurosci* <u>109</u> (4): 681-688.
- Müller MC, Osswald M, Tinnes S, Haussler U, Jacobi A, Forster E, Frotscher M, Haas CA (2009): Exogenous reelin prevents granule cell dispersion in experimental epilepsy. *Exp Neurol* <u>216</u> (2): 390-397.
- Nadarajah B, Parnavelas JG (2002): Modes of neuronal migration in the developing cerebral cortex. *Nat Rev Neurosci* <u>3</u> (6): 423-432.
- Nakano Y, Kohno T, Hibi T, Kohno S, Baba A, Mikoshiba K, Nakajima K, Hattori M (2007): The extremely conserved c-terminal region of reelin is not necessary for secretion but is required for efficient activation of downstream signaling. *J Biol Chem* <u>282</u> (28): 20544-20552.
- Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM Quirk G, Sievert CF, Terreberry RR (1986): The organization of the rat motor cortex: A microstimulation mapping study. *Brain Res* <u>396</u> (1): 77-96.
- Neddens J, Brandenburg K, Teuchert-Noodt G, Dawirs RR (2001): Differential environment alters ontogeny of dopamine innervation of the orbital prefrontal cortex in gerbils. *J Neurosci Res* <u>63</u> (2): 209-213.
- Nishiyama A: Ng2 cells in the brain (2001): A novel glial cell population. *Hum Cell* <u>14</u> (1): 77-82.
- Nogi T, Yasui N, Hattori M, Iwasaki K, Takagi J (2006): Structure of a signaling-competent reelin fragment revealed by x-ray crystallography and electron tomography. *EMBO J* <u>25</u> (15): 3675-3683.
- Noll S, Schaub-Kuhnen S, Praxis der Immunhistochemie. Urban & Fischer, München 2000
- Nutt DJ (2008): Relationship of neurotransmitters to the symptoms of major depressive disorder. *J Clin Psychiatry* <u>69 Suppl E1</u>: 4-7.
- Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006): Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: A neurodevelopmental animal model of schizophrenia. *Biol Psychiatry* <u>59</u> (6): 546-554.
- Pascucci T, Ventura R, Latagliata EC, Cabib S, Puglisi-Allegra S (2007): The medial prefrontal cortex determines the accumbens dopamine response to stress through the opposing influences of norepinephrine and dopamine. *Cereb Cortex* <u>17</u> (12): 2796-2804.
- Patterson PH (2009): Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. *Behav Brain Res* <u>204</u> (2): 313-321.
- Paxinos G, Watson C: The rat brain in stereotaxic coordinates, 6. Auflage, Academic Press Amsterdam 2007.
- Paykel ES (1978): Contribution of life events to causation of psychiatric illness. *Psychol Med* <u>8</u> (2): 245-253.

- Perez-Cruz C, Muller-Keuker JI, Heilbronner U, Fuchs E, Flügge G (2007): Morphology of pyramidal neurons in the rat prefrontal cortex: Lateralized dendritic remodeling by chronic stress. *Neural Plast* <u>2007</u> 462-476.
- Perez-Cruz C, Simon M, Czeh B, Flügge G, Fuchs E (2009): Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: Activity- and stress-induced changes. *Eur J Neurosci* <u>29</u> (4): 738-747.
- Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998): Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. *Proc Natl Acad Sci U S A* <u>95</u> (6): 3221-3226.
- Pesold C, Liu WS, Guidotti A, Costa E, Caruncho HJ (1999): Cortical bitufted, horizontal, and martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. *Proc Natl Acad Sci U S A* <u>96</u> (6): 3217-3222.
- Pruessner JC, Dedovic K, Pruessner M, Lord C, Buss C, Collins L, Dagher A, Lupien SJ (2010): Stress regulation in the central nervous system: Evidence from structural and functional neuroimaging studies in human populations - 2008 curt richter award winner. *Psychoneuroendocrinology* <u>35</u> (1): 179-191.
- Pulido JS, Sugaya I, Comstock J, Sugaya K (2007): Reelin expression is upregulated following ocular tissue injury. *Graefes Arch Clin Exp Ophthalmol* <u>245</u> (6): 889-893.
- Quattrocchi CC, Wannenes F, Persico AM, Ciafre SA, D'Arcangelo G, Farace MG, Keller F (2002): Reelin is a serine protease of the extracellular matrix. *J Biol Chem* <u>277</u> (1): 303-309.
- Radley JJ, Rocher AB, Janssen WG, Hof PR, Mcewen BS, Morrison JH (2005): Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. *Exp Neurol* <u>196</u> (1): 199-203.
- Radley JJ, Arias CM, Sawchenko PE (2006): Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. *J Neurosci* <u>26</u> (50): 12967-12976.
- Radley JJ, Gosselink KL, Sawchenko PE (2009): A discrete gabaergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci <u>29</u> (22): 7330-7340.
- Rajkowska G (2000): Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. *Biol Psychiatry* <u>48</u> (8): 766-777.
- Ramos BP, Arnsten AF (2007): Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. *Pharmacol Ther* <u>113</u> (3): 523-536.
- Reul JM, Bilang-Bleuel A, Droste S, Linthorst AC, Holsboer F, Gesing A (2000): New mode of hypothalamic-pituitary-adrenocortical axis regulation: Significance for stress-related disorders. *Z Rheumatol* <u>59 Suppl 2</u> II/22-25.
- Robinson RG, Kubos KL, Starr LB, Rao K, Price TR (1984): Mood disorders in stroke patients. Importance of location of lesion. *Brain* <u>107 (Pt 1)</u> 81-93.
- Rogers JT, Rusiana I, Trotter J, Zhao L, Donaldson E, Pak DT, Babus LW, Peters M, Banko JL, Chavis P, Rebeck GW, Hoe HS, Weeber EJ (2011): Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine densitiy. *Learn Mem* <u>18</u>(9): 558-564.
- Royaux I, Lambert De Rouvroit C, D'Arcangelo G, Demirov D, Goffinet AM (1997): Genomic organization of the mouse reelin gene. *Genomics* <u>46</u> (2): 240-250.

- Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A (2007): Selective epigenetic alteration of layer i gabaergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. *Mol Psychiatry* <u>12</u> (4): 385-397.
- Rygula R, Abumaria N, Flügge G, Fuchs E, Ruther E, Havemann-Reinecke U (2005): Anhedonia and motivational deficits in rats: Impact of chronic social stress. *Behav Brain Res* <u>162</u> (1): 127-134.
- Sachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukushima DK, Gallagher TF (1973): Disrupted 24-hour patterns of Kortisol secretion in psychotic depression. *Arch Gen Psychiatry* <u>28</u> (1): 19-24.
- Samama B, Boehm N (2005): Reelin immunoreactivity in lymphatics and liver during development and adult life. *Anat Rec A Discov Mol Cell Evol Biol* <u>285</u> (1): 595-599.
- Selye H (1946): The general adaptation syndrome and the diseases of adaptation. *J Allergy* <u>17</u> (6): 231-358.
- Seripa D, Matera MG, Franceschi M, Daniele A, Bizzarro A, Rinaldi M, Panza F, Fazio VM, Gravina C, D'onofrio G, Solfrizzi V, Masullo C, Pilotto A (2008): The reln locus in alzheimer's disease. *J Alzheimers Dis* <u>14</u> (3): 335-344.
- Sgoifo A, Koolhaas J, De Boer S, Musso E, Stilli D, Buwalda B, Meerlo P (1999): Social stress, autonomic neural activation, and cardiac activity in rats. *Neurosci Biobehav Rev* 23 (7): 915-923.
- Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997): Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. *Nature* <u>389</u> (6652): 730-3.
- Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003): Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. *J Neurosci* <u>23</u> (1): 297-302.
- Siebert JR, Osterhout DJ (2011): Oligodendroglial cells express and secrete reelin. *Anat Rec (Hoboken)* 294 (5): 759-763.
- Smalheiser NR, Costa E, Guidotti A, Impagnatiello F, Auta J, Lacor P, Kriho V, Pappas GD (2000): Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. *Proc Natl Acad Sci U S A* <u>97</u> (3): 1281-1286.
- Stuller KA, Jarrett B, Devries AC (2011): Stress and social isolation increase vulnerability to stroke. *Exp Neurol*
- Suarez-Sola ML, Gonzalez-Delgado FJ, Pueyo-Morlans M, Medina-Bolivar OC, Hernandez-Acosta NC, Gonzalez-Gomez M, Meyer G (2009): Neurons in the white matter of the adult human neocortex. *Front Neuroanat* <u>3</u>7.
- Sullivan RM (2004): Hemispheric asymmetry in stress processing in rat prefrontal cortex and the role of mesocortical dopamine. *Stress* <u>7</u>(2): 131-143.
- Sullivan RM, Gratton A (1999): Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. *J Neurosci* <u>19</u> (7): 2834-2840.
- Sullivan RM, Gratton A (2002): Prefrontal cortical regulation of hypothalamic-pituitaryadrenal function in the rat and implications for psychopathology: Side matters. *Psychoneuroendocrinology* <u>27</u> (1-2): 99-114.
- Terreberry RR, Neafsey EJ (1987): The rat medial frontal cortex projects directly to autonomic regions of the brainstem. *Brain Res Bull* <u>19</u> (6): 639-649.

- Thiel CM, Schwarting RK (2001): Dopaminergic lateralisation in the forebrain: Relations to behavioural asymmetries and anxiety in male wistar rats. *Neuropsychobiology* <u>43</u> (3): 192-199.
- Torrey EF, Miller J, Rawlings R, Yolken Rh (1997): Seasonality of births in schizophrenia and bipolar disorder: A review of the literature. *Schizophr Res* <u>28</u> (1): 1-38.
- Trommsdorff M, Borg JP, Margolis B, Herz J (1998): Interaction of cytosolic adaptor proteins with neuronal apolipoprotein e receptors and the amyloid precursor protein. *J Biol Chem* <u>273</u> (50): 33556-33560.
- Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999): Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the vldl receptor and apoe receptor 2. *Cell* <u>97</u> (6): 689-701.
- Uylings HB, Groenewegen HJ, Kolb B (2003): Do rats have a prefrontal cortex? *Behav Brain Res*; <u>146</u> (1-2): 3-17.
- Uylings HB, Jacobsen AM, Zilles K, Amunts K (2006): Left-right asymmetry in volume and number of neurons in adult broca's area. *Cortex* <u>42</u> (4): 652-658.
- Van Kampen M., Morsink M., Hiemke C., Fuchs, E. (1999): The involvement of the serotoninergic system in improving the depressive like symptoms in psychosocially stressed tree shrews. *Soc Neurosci Abstracts* <u>25</u> (Part II): 2133.
- Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, Guidotti A, Costa E (2004): DNA-methyltransferase 1 mrna is selectively overexpressed in telencephalic gabaergic interneurons of schizophrenia brains. *Proc Natl Acad Sci U S A* <u>101</u> (1): 348-353.
- Vertes RP (2004): Differential projections of the infralimbic and prelimbic cortex in the rat. *Synapse* <u>51</u> (1): 32-58.
- Watanabe Y, Gould E, Mcewen BS (1992): Stress induces atrophy of apical dendrites of hippocampal ca3 pyramidal neurons. *Brain Res* <u>588</u> (2): 341-345.
- Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002): Reelin and apoe receptors cooperate to enhance hippocampal synaptic plasticity and learning. *J Biol Chem* <u>277</u> (42): 39944-39952.
- Willner P: Animal models of depression (1995): Validity and applications. *Adv Biochem Psychopharmacol* <u>49</u> 19-41.
- Wolff AR, Bilkey DK (2008): Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring. *Behav Brain Res* <u>190</u> (1): 156-159.
- Yee N, Plassmann K, Fuchs E (2011a): Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats. *Physiol Behav*, Apr 30. [Epub ahead of print].
- Yee N, Ribic A, Coenen De Roo C, Fuchs E (2011 b): Differential effects of maternal immune activation an juvenile stress on anxiety-like behavior an physiology in adult rats: No evidence for the "Double hit hypothesis". *Behav Brain Res,* accepted
- Yoon BW, Morillo CA, Cechetto DF, Hachinski V (1997): Cerebral hemispheric lateralization in cardiac autonomic control. *Arch Neurol* <u>54</u> (6): 741-744.
- Zaki M, Shehab M, El-Aleem AA, Abdel-Salam G, Koeller HB, Ilkin Y, Ross ME, Dobyns WB, Gleeson JG (2007): Identification of a novel recessive reln mutation using a homozygous balanced reciprocal translocation. *Am J Med Genet A* <u>143A</u> (9): 939-944
- Zhao S, Frotscher M (2010): Go or stop? Divergent roles of reelin in radial neuronal migration. *Neuroscientist* <u>16</u> (4): 421-434.
- Zilles K, Amunts K (2010): Centenary of brodmann's map--conception and fate. *Nat Rev Neurosci* <u>11</u> (2): 139-145.

- Zilles K, Leonhardt H., Tillmann B., Töndury G.: Anatomie des Menschen. Georg Thieme Verlag, Stuttgart 1987
- Zuckerman L, Rehavi M, Nachman R, Weiner I (2003): Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: A novel neurodevelopmental model of schizophrenia. *Neuropsychopharmacology* <u>28</u> (10): 1778-1789.

8. Anhang und Protokolle

8.1 Protokolle für immunhistochemische Methoden

<u>Nissl – Färbung</u>

Krysylviolett färbt Zellkerne lila-blau und ist für die Gegenfärbung von Hirnschnitten gut geeignet.

Vorbereitung:

10g Krysylviolett in 1000ml bidest lösen

250ml einer 100% Ethanollösung ansetzen

Filtrieren

Gegenfärbung: 1. Schnitte in Behälter unterschiedlich hoher Ethanolkonz. legen

- 1 Minute in 100% Ethanol
- 1 Minute in 90% Ethanol
- 1 Minute in 80% Ethanol
- 1 Minute in 70% Ethanol
- 1 Minute in 50% Ethanol
- 2. Schnitte für 1 Minute in Aqua bidest spülen
- 3. Schnitte für 5 Minuten in Krysylviolett geben
- 4. Schnitte kurz in Aqua bidest spülen
- 5. Schnitte in Behälter unterschiedlich hoher Ethanolkonz. legen
- 1 Minute in 50% Ethanol
- 1 Minute in 70% Ethanol
- 1 Minute in 80% Ethanol
- 1 Minute in 90% Ethanol
- 1 Minute in 100% Ethanol

6. Eindecken der Schnitte mit Eukitt

Antikörperinkubationen

Protokoll der Inkubation mit dem G-10 Anti-Reelin-Antikörper

Vorgang	Dauer	Temperatur
Waschen in 0,1M PBS	3x 10 Minuten	RT
Legen in 30% H ₂ O ₂ -Lösung	30 Minuten	RT
Blocken	60 Minuten	RT
Inkubieren mit G-10	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit biot. sek. AK	60 Minuten	RT
Waschen in 0,1M PBS	3x 10 Minuten	RT
Legen in ABC-Lösung	60 Minuten	RT
Waschen in 0,1M PBS	3x 10 Minuten	RT
Färben mit DAB	2 Minuten	RT
Waschen in 0,1M PBS	3x 10 Minuten	RT
Aufziehen in 0,1% Gelatine		
Eindecken mit Eukitt		

Ansätze für die Inkubation mit G-10 Anti-Reelin

<u>30% H₂O₂ Lösung 5ml</u>

4835	μl	0,1M PBS

165 μl 30% H₂O₂

<u>Block 5ml</u>

4700	μl	0,1M PBS
150	μl	NGS
150	μl	10% Triton X

Anhang und Protokolle

Primärer Antikörper G-10 Anti-Reelin 1:1000 2ml

1916	μl	0,1M PBS
60	μl	10% Triton X
20	μl	NGS
4	μl	G-10 Anti-Reelin 1:2 verdünnt

Sekundärer Antikörper biotinyliert goat-anti-mouse 1:400 2ml

1915	μl	0,1M PBS
60	μl	10% Triton X
20	μl	NGS
5	μl	Biotinylated goat-anti-mouse Antibody

Avidin-Biotin-Komplex 1:200 2ml

1915	μl	0,1M PBS
60	μl	10% Triton X
20	μl	NGS
10	μl	Avidin-Lösung
10	μl	Biotin-Enzym-Lösung

DAB-Färbung 2ml

2000 µl	0,1M PBS
2 Tropfen	DAB
2 Tropfen	H_2O_2

Protokolle der Immunfluoreszenz-Doppelmarkierungen

Name	Herkunft	gerichtet gegen	Hersteller
G – 10 Anti-Reelin	Maus	Reelin	Abcam, Cambridge
Anti-GAD 1	Ziege	GAD 67	Biozol, Echingen
Anti-Calhindin	Kaninchen	Calbindin	Chemicon,
	Kummenen		Temecula
Anti-GFAP	Kaninchen	GFAP	Synaptic Systems,
	Kamilenen	GITTI	Göttingen
Anti-NG2	Hase	NG2	Invitrogen, Oregon
Alexa 488 green	Esel	Maus	Invitrogen, Oregon
Alexa 594 red	Esel	Maus	Invitrogen, Oregon
Alexa 594 red	Esel	Ziege	Invitrogen, Oregon
Alexa 488 green	Esel	Kaninchen	Invitrogen, Oregon

Als Antikörper wurden für die Immunfluoreszenz-Doppelmarkierungen verwendet:

Protokoll der Reelin- und Calbindin-Doppelmarkierung

Vorgang	Dauer	Temperatur
Waschen in 0,1M PBS	3x 10 Minuten	RT
Blocken	60 Minuten	RT
Inkubieren mit G-10	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 594	120 Minuten	RT
donkey-anti-mouse red		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Anti-Calbindin	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 488	120 Minuten	RT
donkey-anti-rabbit green		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Aufziehen in Aqua bidest.		
Eindecken mit Aqua Polymount		
Abdichten mit Nagellack		

Ansätze der Reelin- und Calbindin-Doppelmarkierung

- 1880 μl 0,1M PBS
- 60 µl NHS
- 60 μl 10% Triton X

1. Primärer Antikörper G-10 Anti-Reelin 1:1000 1ml

958	μl	0,1M PBS
-----	----	----------

- $30 \hspace{0.1in} \mu l \hspace{0.1in} 10\% \hspace{0.1in} Triton \hspace{0.1in} X$
- 10 µl NHS
- $2 \qquad \mu l \qquad G-10 \ Anti-Reelin \ 1:2 \ vorverd \ddot{u}nnt$

Anhang und Protokolle

Negativ-Kontrolle 1und 3 1ml

960	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS

1. Sekundärer Antikörper Alexa 594 donkey-anti-mouse red 1:700, 2ml

1914	μl	0,1M PBS
------	----	----------

- 60 μl 10% Triton X
- 20 µl NHS
- 6 μl Alexa 594 donkey-anti-mouse red1:2 vorverdünnt

2. Primärer Antikörper Rabbit Anti-Calbindin 1:500, 1ml

- 956 μl 0,1M PBS
- $30 \mu l 10\%$ Triton X
- $10 \mu l$ NHS
- 4 μl Anti-Calbindin 1:2 vorverdünnt

Negativ-Kontrolle 2 und 3, 1ml

960	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS

2. Sekundärer Antikörper Alexa 488 donkey-anti-rabbit green 1:700, 2ml

- 1914 μl 0,1M PBS
- $60 \hspace{0.1in} \mu l \hspace{0.1in} 10\% \hspace{0.1in} Triton \hspace{0.1in} X$
- $20 \mu l$ NHS
- 6 μl Alexa 488 donkey-anti-mouse green 1:2 vorverdünnt

Protokoll der Reelin- und GAD 67-Doppelmarkierung

Vorgang	Dauer	Temperatur
Waschen in 0,1M PBS	3x 10 Minuten	RT
Blocken	60 Minuten	RT
Inkubieren mit G-10	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 488	120 Minuten	RT
donkey-anti-mouse green		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Anti-GAD 1	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 594	120 Minuten	RT
donkey-anti-goat red		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Aufziehen in Aqua bidest.		
Eindecken mit Aqua Polymount		
Abdichten mit Nagellack		

Ansätze der Reelin- und GAD 67-Doppelmarkierung

<u>Block</u>

1880	μl	0,1M PBS
		-, -

- 60 μl NHS
- 60 μl 10% Triton X

1. Primärer Antikörper G-10 Anti-Reelin 1:1000 1ml

958	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS
2	μl	G-10 Anti-Reelin 1:2 vorverdünnt

Anhang und Protokolle

Negativ-Kontrolle 1und 3 1ml

960	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS

1. Sekundärer Antikörper Alexa 594 donkey-anti-mouse (red) 1:700, 2ml

1914	ul	0.1M PBS
T / T I	μι	0,111100

- 60 μl 10% Triton X
- 20 µl NHS
- 6 μl Alexa 594 donkey-anti-mouse red1:2 vorverdünnt

2. Primärer Antikörper Goat Anti-GAD 67 1:200, 1ml

- 955 μl 0,1M PBS
- $30 \mu l 10\%$ Triton X
- $10 \mu l$ NHS
- 5 μl Anti-GAD 67 1:2 vorverdünnt

Negativ-Kontrolle 2 und 3, 1ml

960	μl	0,1M PBS
30	μl	10% Triton X

10 μl NHS

2. Sekundärer Antikörper Alexa 488 donkey-anti-goat (red) 1:700, 2ml

- 1912 μl 0,1M PBS
- $60 \hspace{0.1in} \mu l \hspace{0.1in} 10\% \hspace{0.1in} Triton \hspace{0.1in} X$
- $20 \mu l$ NHS
- 8 μl Alexa 488 donkey-anti-goat red 1:2 vorverdünnt

Protokoll der Reelin- und GFAP-Doppelmarkierung

Vorgang	Dauer	Temperatur
Waschen in 0,1M PBS	3x 10 Minuten	RT
Blocken	60 Minuten	RT
Inkubieren mit G-10	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 594	120 Minuten	RT
donkey-anti-mouse red		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Anti-GAD 1	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 488	120 Minuten	RT
donkey-anti-rabbit green		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Aufziehen in Aqua bidest.		
Eindecken mit Aqua Polymount		
Abdichten mit Nagellack		

Ansätze der Reelin- und GFAP-Doppelmarkierung

1880	μl	0,1M PBS
	-	

- $60 \mu l$ NHS
- $60 \hspace{0.1in} \mu l \hspace{0.1in} 10\% \hspace{0.1in} Triton \hspace{0.1in} X$

1. Primärer Antikörper G-10 Anti-Reelin 1:1000 1ml

958	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS
2	μl	G-10 Anti-Reelin 1:2 vorverdünnt
Negativ-Kontrolle 1und 3 1ml

960	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS

1. Sekundärer Antikörper Alexa 594 donkey-anti-mouse (red) 1:700, 2ml

1914	шÌ	0.1M PBS
1)17	μι	0,111103

- 60 μl 10% Triton X
- $20 \mu l$ NHS
- 6 μl Alexa 594 donkey-anti-mouse red1:2 vorverdünnt

2. Primärer Antikörper Rabbit Anti-GFAP 1:700, 1ml

- 957,2 μl 0,1M PBS
- $30 \mu l 10\%$ Triton X
- $10 \mu l$ NHS
- 2,8 µl Anti-GFAP 1:2 vorverdünnt

Negativ-Kontrolle 2 und 3, 1ml

960	μl	0,1M PBS

- 30 μl 10% Triton X
- 10 µl NHS

2. Sekundärer Antikörper Alexa 488 donkey-anti-rabbit (green) 1:700, 2ml

- 1914 μl 0,1M PBS
- $60 \hspace{0.1in} \mu l \hspace{0.1in} 10\% \hspace{0.1in} Triton \hspace{0.1in} X$
- $20 \mu l$ NHS
- 6 μl Alexa 488 donkey-anti-mouse green 1:2 vorverdünnt

Protokoll der Reelin- und NG2-Doppelmarkierung

Vorgang	Dauer	Temperatur
Waschen in 0,1M PBS	3x 10 Minuten	RT
Blocken	60 Minuten	RT
Inkubieren mit G-10	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 594	120 Minuten	RT
donkey-anti-mouse red		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Anti-NG2	ca. 24 Stunden	4° C
Waschen in 0,1M PBS	3x 10 Minuten	RT
Inkubieren mit Alexa 488	120 Minuten	RT
donkey-anti-rabbit green		
Waschen in 0,1M PBS	3x 10 Minuten	RT
Aufziehen in Aqua bidest.		
Eindecken mit Aqua Polymount		
Abdichten mit Nagellack		

Ansätze der Reelin- und NG2-Doppelmarkierung

<u>Block</u>

1880	μl	0,1M PBS
		-, -

- $60 \mu l$ NHS
- 60 μl 10% Triton X

1. Primärer Antikörper G-10 Anti-Reelin 1:1000 1ml

958	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS
2	μl	G-10 Anti-Reelin 1:2 vorverdünnt

Negativ-Kontrolle 1und 3 1ml

960	μl	0,1M PBS
30	μl	10% Triton X
10	μl	NHS

1. Sekundärer Antikörper Alexa 594 donkey-anti-mouse (red) 1:700, 2ml

1914	шÌ	0.1M PBS
1)17	μι	0,111103

- 60 μl 10% Triton X
- 20 µl NHS
- 6 μl Alexa 594 donkey-anti-mouse red1:2 vorverdünnt

2. Primärer Antikörper Rabbit Anti-NG2 1:700, 1ml

- 957,2 μl 0,1M PBS
- $30 \mu l 10\%$ Triton X
- $10 \ \mu l$ NHS
- 2,8 µl Anti-NG2 1:2 vorverdünnt

Negativ-Kontrolle 2 und 3, 1ml

960	μl	0,1M PBS
30	μl	10% Triton X

10 µl NHS

2. Sekundärer Antikörper Alexa 488 donkey-anti-rabbit (green) 1:700, 2ml

- 1914 μl 0,1M PBS
- $60 \hspace{0.1in} \mu l \hspace{0.1in} 10\% \hspace{0.1in} Triton \hspace{0.1in} X$
- $20 \mu l$ NHS
- 6 μl Alexa 488 donkey-anti-mouse green 1:2 vorverdünnt

8.2 Chemikalien

Name	Unternehmen	<u>Herkunftsort</u>
ABC-Elite Kit Vectastian, PK-6100	Vector Laboratories	Burlingame, USA
Aqua bidest, arium 611 VF	Sartorius	Göttingen, D
Aqua Polymount	Polyscience	Varrington, GB
Diaminobenzidin (DAB)	Vector Laboratories	Burlingame, USA
Dinatriumhydrogenphosphat	Merck	Darmstadt, D
(Na2HPO4).		
Eukitt	Kindler	Freiburg, D
Ethanol	Chemie Vertrieb	Hannover, D
Gelatine	Sigma- Aldrich	Deisenhofen, D
Glycerol	Sigma- Aldrich	Deisenhofen, D
Kaliumchlorid	Merck	Darmstadt, D
Kaliumdihydrogenphosphat (KH2PO4)	Merck	Darmstadt, D
Methylgrün	Merck	Darmstadt, D
Natriumchlorid (NaCl)	Merck	Darmstadt, D
Natriumdihydrogenphosphat	Merck	Darmstadt, D
(NaH2PO4)		
Natriumhydroxid (NaOH)	Merck	Darmstadt, D
Natriumazid (NaN3)	Merck	Darmstadt, D
NGS (Normal-goat-serum)	Vector Laboratories	Burlingame, USA
NHS (normal-horse-serum)	Vector Laboratories	Burlingame, USA
Paraformaldehyd	Merck	Darmstadt, D
Rinderserumalbumin-FraktionV (BSA)	Sigma-Aldrich	Deisenhofen, D
Saccharose	Riedel de Haen	Seelze, D
Thimerosal	Sigma-Aldrich	Deisenhofen, D
Tissue Tek®	Sakura Finetek	Heppenheim, D
Triton-X-100	Sigma-Aldrich	Deisenhofen, D
Tris(hydroxymethyl)aminomethan	J.T. Baker	Griesheim, D
Wasserstoffperoxid (H2O2)	Sigma- Aldrich	Deisenhofen, D
Xylol	Carl Roth	Karlsruhe, D

8.3 Geräte und Verbrauchsmaterialien

Name	Firma	<u>Herkunftsort</u>
CCD- Kamera, 300E-RCX	DAGE-MIT	Michigan City,USA
Deckgläschen	Menzel-Gläser	Braunschweig, D
Einmalkanüle	Terumo Neolus	Eschborn, D
Farbkamera, HV-C20A	Hitachi	Tokyo, Japan
Faltenfilter	Macherey- Nagel	Düren, D
Glasgefäße	Carl- Roth	Karlsruhe, D
GraphPad	InStat Software	San Diego, USA
Kryostat, CM3050	Leica	Bensheim, D
Laborwaage	Sartorius	Göttingen, D
Northern Light Prec. Ill. B95	Imaging Research Inc.	St. Cathrines, Canada
Lichtmikroskop, Axioscop	Zeiss	Oberkochen, D
Magnetrührer, MR3001K	Heidolph	Schwabach, D
MCID Basic, Version 7.0	Imaging Research Inc.	St. Cathrines, Canada
Micro- Nikkor Objektiv	Nikon	Tokyo, Japan
Microtubes	Sarstedt AG	Nümbrecht, D
Multipette plus	Eppendorf Research	Hamburg, D
Multiwell- Platten	Costar	New York, USA
Neurolucida	Microbrightfield Inc.	Williston, USA
Objektträger	Marienfeld Glassware	Lauda-Königshofen, D
Parafilm	Pechiney Plastic Pac.	Chicago, USA
Perfusionsbesteck	HEBU medical	Tuttlingen, D
pH-Meter, Seven Easy	Mettler Toledo	Giessen, D
Photomikroskop, III RS	Zeiss	Oberkochen, D
Pipetten	Eppendorf Research	Hamburg, D
Pipettenspitzen	Eppendorf Research	Hamburg, D
Plastikeinmalspritze	Henke-Sass-Wolf GmbH	Tuttlingen, D
Präparationsbesteck	Aesculap	Tuttlingen, D
Schüttler, Titramax 1000	Heidolph	Schwabach, D
Trockeneis	Air Liquide	Krefeld, D
Wärmeschrank, T6060	Heraeus Instruments	Hanau, D

8.4 Puffer und Lösungen

Für die Zubereitung der Puffer und Lösungen wurde vollständig entsalztes und gereinigtes Wasser ("doppelt destilliert"; Aqua bidest.) aus einer Filteranlage verwendet (Arium 611 VFF, Sartorius, Göttingen).

BSA- Puffer: TBS- Puffer (pH 7.2) 99 ml BSA-Fraktion V 0.1 g Thimerosal- Stammlösung (100mM) 1 ml

0.1%ige Gelatinelösung:

Gelatine 0.20 g Aqua bidest. ad. 200ml

0,2% Kresylviolett-Acetat Lösung:

100%ige Ethanol-Lösung 500 ml Methylgrün 1 g Eisessig 9,6 ml Aqua bidest. ad 1000ml

Natriumphosphatpuffer: Lösung A (0.2M):

NaH₂ PO₄ 27.6 g Aqua bidest. ad 1000ml

Natriumphosphatpuffer: Lösung B (0.2M):

Na2HPO4 71.65 g Aqua bidest. ad 100ml

4%iges Paraformaldehyd (PFA), pH 7.2:

H2O erhitzt (70°C) 450 ml Paraformaldehyd 40 g 1 Plättchen NaOH 500ml 0.2M Natriumphosphatpuffer: Lösung A 95 ml, Lösung B 405 ml pH 7.2 Aqua bidest. ad 1000ml

Stammlösung PBS ("phosphate buffered saline"), 10x, pH 7.2:

KCl 2 g KH₂PO₄ 2 g NaCl 80 g Na₂HPO₄x 12H₂0 15.4 g Aqua bidest. ad 1000ml

Gebrauchslösung 1x PBS:

Stammlösung des PBS 100 ml Aqua bidest. ad 1000ml

30%ige Saccharose- Lösung:

Saccharose 60 g Natriumphosphatpuffer: Lösung A 19 ml Natriumphosphatpuffer: Lösung B 81 ml Aqua bidest. ad 200ml

TBS- Puffer(pH 7.2):

NaCl 8.5 g H2O bidest. 900 ml Tris- HCl- Stammlösung 20 ml pH 7.2 Aqua bidest. ad 1000ml

Thimerosal- Stammlösung- Puffer (100mM):

Thimerosal 4 g, Aqua bidest. ad 100ml Diese Stammlösung wird 1:100 verdünnt und zur Antikörper-Lösung hinzugegeben.

Tris- HCl- Stammlösung (1M), pH 7,2

Tris(hydroxymethyl)aminomethan 121.14 g Aqua bidest. ad 950ml, pH mit HCl einstellen, Volumen auf 11 auffüllen

9. Primärdaten

9.1 Social-Defeat-Experiment 2010 und 2011

<u>2010:</u>

<u>R12 Stress</u>	Linke Hemisphäre			Rechte Hemisphäre			
<u>Ebene</u>	<u>Fläche</u>	<u>Reelin-</u>	<u>Dichte</u>	<u>Fläche</u>	<u>Reelin-</u>	<u>Dichte</u>	
	<u>(µm²)</u>	<u>Zellen</u>	<u>(Zellen/µm²</u>	<u>(µm²)</u>	<u>Zellen</u>	<u>(Zellen/µm²</u>	
			<u>*10⁵)</u>			<u>*10⁵)</u>	
4,20mm	202893	21	10,3503	189793	26	13,6991	
3,72mm	457100	71	15,5327	458970	65	14,1621	
3,24mm	442247	52	11,1046	468274	71	15,1621	
2,76mm	310405	50	16,108	307308	51	16,5957	
2,52mm	241158	28	11,6106	268283	53	19,7553	
4,68mm	133278	23	17,2572	136391	24	17,5965	
3,00mm	613249	74	12,0669	589104	86	14,5984	
3,24mm	441442	56	12,6857	442565	82	18,5284	
3,24mm	525174	64	12,1864	508242	90	17,7081	
2,76mm	638841	84	13,1488	680295	83	12,2006	
Mittelwert			13,205			16,001	
<u>R13 Stress</u>							
4.68mm	178510	22	12.3242	197161	25	12.68	
4.68mm	224516	22	9.79886	241460	39	16.1517	
3,72mm	416619	59	14,1616	463967	72	15,5183	
3,24mm	417945	54	12,9204	417023	56	13,4285	
3,24mm	410268	56	13,6496	410243	72	17,5506	
2,52mm	357362	59	16,5099	343748	68	19,7819	
4,20mm	303677	22	7,24454	265817	29	10,9098	
3,72mm	420949	43	10,215	442442	57	12,883	
2,76mm	550657	77	13,9833	563492	91	16,1493	
3,24mm	480696	79	16,4345	469156	73	15,5599	
Mittelwert			12,724			15,061	
<u>R14 Stress</u>							
3,72mm	502221	94	18,7169	440579	76	17,25	
3,24mm	484734	65	13,4094	505371	84	16,6215	
3,00mm	558179	61	10,9284	511055	74	14,4799	
3,00mm	511055	75	14,6755	525019	79	15,0471	
2,76mm	606862	97	15,9839	620413	104	16,763	
4,68mm	256759	28	10,9052	243305	27	11,0972	
4,68mm	182511	20	10,9582	160494	21	13,0846	
4,20mm	371897	40	10,7557	370411	47	12,6886	
3,72mm	482750	57	11,8074	492585	71	14,4138	
3,72mm	486554	64	13,1537	474542	62	13,0652	
Mittelwert			13,129			14,451	

<u>R15 Stress</u>

3,24mm	341063	40	11,728	360621	51	14,1423
2,76mm	270077	36	13,3295	307744	32	10,3983
2,52mm	243552	36	14,7812	239814	48	20,0155
2,52mm	285201	46	16,129	291066	49	16,8347
3,00mm	453676	50	11,0211	488139	71	14,545
3,72mm	400162	68	16,9931	393001	74	18,8295
3,24mm	394724	46	11,6537	382222	62	16,2209
3,00mm	466212	70	15,0146	490084	78	15,9156
2,76mm	553386	68	12,288	553006	92	16,6363
Mittelwert			13,66			15,949
R27 Kontro	olle					
4,20mm	151833	20	13,1724	147147	14	9,5143
3,24mm	464415	55	11,8429	453870	56	12,3383
2,76mm	330240	50	15,1405	347185	49	14,1135
2,76mm	427005	57	13,3488	450351	59	13,1009
2,52mm	265269	35	13,1942	271823	35	12,876
3,24mm	339175	43	12,6778	358299	46	12,8384
3,00mm	336032	54	16,0699	360566	56	15,5311
2,76mm	428510	59	13,7686	421819	57	13,5129
3,72mm	340548	36	10,5712	350463	39	11,1281
3,72mm	305766	34	11,1196	339360	37	10,9029
3,72mm	310434	35	11,2745	316977	29	9,14893
3,00mm	441407	58	13,1398	455897	59	12,9415
2,52mm	419573	48	11,4402	450940	51	11,3097
Mittelwert			12,828			12,251
R28 Kontro	olle					
4,68mm	255841	28	10,9443	244192	27	11,0569
3,24mm	374917	41	10,9358	365783	41	11,2088
3,00mm	399193	58	14,5293	402419	60	14,9098
3,00mm	438668	65	14,8176	432492	63	14,5667
2,76mm	400108	50	12,4966	404098	54	13,3631
4,68mm	245345	29	11,8201	234132	25	10,6777
4,20mm	419999	41	9,76193	422371	46	10,8909
3,24mm	424458	40	9,42378	442366	43	9,72046
3,72mm	418722	38	9,07523	429943	42	9,76874
2,76mm	339693	47	13,836	318664	35	10,9834
Mittelwert			11,764			11,715

<u>R29 Kontrolle</u>

4,20mm	327109	41	12,534	324977	46	14,1548
3,24mm	424889	57	13,4153	429873	45	10,4682
2,76mm	443381	56	12,6302	461510	55	11,9174
2,52mm	289756	40	13,8047	349694	45	12,8684
2,52mm	306858	47	15,3165	326630	44	13,4709
4,68mm	297897	47	15,7773	310687	45	14,484
4,20mm	323157	38	11,759	330994	41	12,3869
3,72mm	479719	60	12,5073	469568	48	10,2222
3,72mm	455578	70	15,3651	458762	63	13,7326
3,24mm	369708	59	15,9585	364582	55	15,0858
Mittelwert			13,907			12,879
R30 Kontr	<u>olle</u>					
3,72mm	346236	38	10,9752	348836	49	14,0467
3,24mm	419834	51	12,1477	448642	49	10,9218
3,00mm	362704	60	16,5424	390796	52	13,3062
2,76mm	489723	77	15,7232	482477	75	15,5448
2,76mm	466633	77	16,5012	482171	64	13,2733
3,00mm	371569	74	19,9155	405526	63	15,5354
3,72mm	329936	34	9,75845	348416	38	10,9065
3,24mm	447089	60	13,4201	465220	60	12,8971
3,24mm	431725	56	12,9712	406650	51	12,5415
3,72mm	446743	56	12,5352	460660	66	14,3273
4,20mm	268216	34	12,6764	286662	33	11,5118
Mittelwert			13,924			13,165

<u>2011:</u>

R12 Stress	<u>s</u> Lin	Linke Hemisphäre			Rechte Hemisphäre			
<u>Ebene</u>	<u>Fläche</u>	<u>Reelin-</u>	<u>Dichte</u>	<u>Fläche</u>	<u>Reelin-</u>	<u>Dichte</u>		
	<u>(µm²)</u>	<u>Zellen</u>	<u>(Zellen/µm²</u>	<u>(µm²)</u>	<u>Zellen</u>	<u>(Zellen/µm²</u>		
			<u>*10⁵)</u>			<u>*10⁵)</u>		
			·					
4,68mm	128969	17	13,1815	134518	19	14,1245		
3,72mm	366483	56	15,2804	400025	68	16,9989		
3,24mm	356444	47	13,1858	369381	47	12,724		
3,24mm	451363	79	17,5025	462072	83	17,9626		
3,00mm	435717	78	17,9015	442215	90	20,3521		
3,00mm	536503	95	17,7073	457507	80	17,4861		
Mittelwert			15,793			16,608		

<u>R 16 Stress</u>

4,20mm	326760	42	12,8535	325848	48	14,7308
3,72mm	353970	59	16,6681	369505	59	15,9673
3,24mm	347241	45	12,9593	362797	52	14,3331
3,72mm	352132	53	15,0512	382021	75	19,6324
3,24mm	531519	80	15,0512	490337	83	16,9271
3,00mm	451741	85	18,8161	451314	77	17,0613
Mittelwert			15,233			16,442
<u>R18 Stress</u>						
3,72mm	360769	42	11,6418	374605	63	16,8177
3,24mm	391254	62	15,8465	339247	53	15,6228
3,24mm	324854	45	13,8524	297102	49	16,4927
3,00mm	543727	74	13,6098	527070	92	17,455
3,00mm	503303	89	17,6832	524685	105	20,012
3,00mm	446338	84	18,8198	478096	102	21,3346
2,76mm	544433	80	14,6942	594920	93	15,6324
Mittelwert			15,164			17,624
<u>R23 Stress</u>						
4.68mm	259809	31	11.9318	252657	40	15.8317
4,68mm	293804	40	13,6145	334111	53	15,863
4,20mm	346252	39	11,2635	315963	42	13,2927
4,20mm	348932	42	12,0367	311489	37	11,8784
3,72mm	371787	56	15,0624	370197	66	17,8283
3,24mm	488956	79	16,1569	412010	66	16,019
3,24mm	382447	66	17,2573	350190	71	20,2747
3,00mm	380866	79	20,7422	384872	78	20,2665
2,52mm	327268	52	15,8891	314419	68	21,6272
Mittelwert			14,884			16,987
<u>R25 Stress</u>						
4,68mm	376696	73	19,379	342666	72	21,0117
4,20mm	375349	60	15,9851	425208	73	17,1681
3,72mm	322205	47	14,587	347565	54	15,5367
3,72mm	369539	62	16,7777	334977	56	16,7176
3,24mm	412350	85	20,6136	418658	95	22,6916
3,24mm	412401	86	20,8535	416816	98	23,5116
3,00mm	403521	81	20,0733	394480	87	22,0544
3,00mm	457775	91	19,8788	494010	96	19,4328
2,76mm	448416	69	15,3875	466213	81	17,374
2,52mm	401675	69	17,1781	391884	84	21,4349
Mittelwert			18,071			19,693

<u>R42 Kontrolle</u>

1.68mm	212087	26	12 2016	213280	31	14 5340
4,0011111 4,68mm	195248	20	15 3651	203847	27	13 2452
3 72mm	343081	30 45	13,3031	203047	4.9	13,2452
3,7211111 2.72mm	22122E	40	11 7745	200190	49 22	10,6724
3,7211111 4.20mm	207076	39 22	11,7743	206262	33	10,0734
4,2011111 2.24mm	421010	32 90	10,7427	300303 4E12E2	41	15,3020
3,2411111 2,00mm	421012	00 69	10,9030	401002	74	10,3932
3,0011111	304730	00	10,0429	5/245/	30	15,5725
3,0011111	483373	79	10,3435	467021	74	15,8451
3,00mm	438669	12	16,4133	451074	64	14,1884
Mitterwert			14,041			14,094
R43 Kontro	olle					
4,68mm	393068	61	15,5189	384980	47	12,2084
4,20mm	517878	80	15,4477	479186	56	11,6865
3,72mm	349867	61	17,4352	345142	47	13,6176
3,72mm	310045	40	12,9014	324324	52	16,0333
3,24mm	501129	81	16,1635	453471	57	12,5697
3,24mm	407137	70	17,1932	432316	75	17,3484
3,00mm	347163	67	19,2993	399772	61	15,2587
2,52mm	429679	78	18,1531	376068	66	17,55
Mittelwert			16,514			14,534
<u>R44 Kontro</u>	olle					
4,20mm	270756	52	19,2055	208620	25	11,9835
3,72mm	275121	41	14,9025	277278	39	14,0653
3,72mm	317289	60	18,9102	331890	55	16,5718
3,72mm	284791	46	16,1522	263065	40	15,2054
3,24mm	391131	72	18,4082	406658	63	15,4921
3,24mm	389327	55	14,1269	404794	69	17,0457
3,00mm	347562	66	18,9894	383994	77	20,0524
Mittelwert			17,242			15,774
<u>R46 Kontro</u>	olle					
4,68mm	269852	43	15,9347	240482	34	14,1383
4,68mm	291800	44	15,0788	263204	37	14,0575
4,20mm	355363	62	17,4469	310862	43	13,8325
3,72mm	381198	47	12,3296	341111	46	13,4853
3,24mm	360654	46	12,7546	374983	48	12,8006
3,24mm	331114	47	14,1945	376548	55	14,6064
3,00mm	314948	70	22,2259	359980	67	18,6121
3,00mm	446743	89	19,922	403420	75	18,591
Mittelwert			16,236			15,015

<u>R49 Kontrolle</u>

3,24mm	484045	89	18,3867	464433	73	15,7181
3,24mm	480852	81	16,8451	474405	68	14,3337
2,52mm	474918	80	16,845	468330	84	17,9361
4,68mm	216247	36	16,6476	189033	29	15,3412
4,68mm	270912	43	15,8723	275742	46	16,6823
4,20mm	368547	48	13,0241	419228	47	11,2111
4,20mm	354075	45	12,7092	317772	44	13,8464
3,72mm	536247	77	14,3591	531875	63	11,8449
Mittelwert			15,586			14,614

9.2 Tiere aus dem Poly-I:C-Experiment

<u>R1 Poly I:</u>	<u>C+ Juv Stress</u>	uv Stress Linke Hemisphäre		I	Rechte Hemisphäre		
<u>Ebene</u>	<u>Fläche</u>	<u>Reelin-</u>	<u>Dichte</u>	<u>Fläche</u>	<u>Reelin-</u>	<u>Dichte</u>	
	<u>(µm²)</u>	<u>Zellen</u>	(Zellen/µm ²	<u>(μm²)</u>	<u>Zellen</u>	<u>(Zellen/µm²</u>	
			<u>*10⁵)</u>			<u>*10⁵)</u>	
4,68mm	262376	34	12,9585	245382	36	14,671	
4,20mm	309380	50	16,1614	352255	60	17,0331	
3,72mm	458586	57	12,4295	496083	67	13,5058	
3,00mm	380826	74	19,4314	451582	72	15,9439	
2,52mm	327427	55	16,7976	373704	65	17,3934	
4,20mm	217538	32	14,7101	236106	25	10,5885	
3,72mm	466833	62	13,281	416129	53	12,7364	
3,72mm	472307	44	9,31597	485836	47	9,67405	
3,24mm	383194	70	18,2675	454007	69	15,198	
3,24mm	393553	62	15,7539	436614	75	17,1776	
3,00mm	392532	54	13,7568	400772	65	16,2187	
Mittelwert			14,806			14,558	
<u>R2 Poly I:(</u>	<u>C+ Juv Stress</u>						
4,20mm	320870	53	16,5176	355080	60	16,8976	
4,20mm	332744	50	15,0266	323767	63	19,4584	
3,72mm	287297	58	20,1882	304011	55	18,0915	
3,24mm	375531	66	17,5751	388536	65	16,7295	
3,00mm	418795	70	16,7146	527819	87	16,4829	
4,20mm	338846	43	12,6901	370056	56	15,1328	
3,72mm	305122	40	13,1095	277639	44	15,8479	
3,24mm	406753	56	13,7676	385779	48	12,4424	
3,00mm	504733	72	14,265	506066	67	13,2394	
2,52mm	440098	75	17,0417	474475	78	16,4392	
Mittelwert			15,69			16,076	

<u>R3 Poly I:C+ Juv Stress</u>

3,24mm	514303	69	13,4162	551641	84	15,2273
3,00mm	493121	91	18,4539	516569	81	15,6804
3,24mm	450592	73	16,2009	496388	77	15,5121
3,72mm	390443	57	14,5988	392316	68	17,333
3,72mm	480710	68	14,1457	485326	87	17,9261
3,00mm	479586	76	15,847	421401	69	16,374
4,68mm	292690	43	14,6913	350571	49	13,9772
4,20mm	297693	49	16,4599	410099	55	13,4114
4,20mm	272254	33	12,121	444093	57	12,8351
3,72mm	429499	54	12,5728	455487	64	14,0509
3,24mm	460030	65	14,1295	583434	71	12,1693
Mittelwert			14,785			14,954

<u>R4 Poly I:C+ Juv Stress</u>

4,20mm	244770	35	14,2991	313886	43	13,6992
4,20mm	246051	39	15,8504	301949	39	12,9161
4,68mm	232861	25	10,736	364472	51	13,9928
3,72mm	424442	66	15,5498	393225	58	14,7498
3,24mm	413424	60	14,5129	478431	70	14,6312
3,24mm	509772	81	15,8895	399652	68	17,0148
3,00mm	452023	96	21,2379	509699	87	17,0689
3,00mm	534909	104	19,4426	469846	89	18,9424
2,52mm	632816	92	14,5382	585467	90	15,3723
Mittelwert			15,784			15,376

<u>R6 Poly I:C+ Juv Stress</u>

2 72mm	217002	17	117011	261001	12	11 00/0
5,7211111	517902	47	14,7044	501004	45	11,0049
3,24mm	452108	66	14,5983	523200	63	12,0413
3,72mm	390302	66	16,91	397678	66	16,5963
3,00mm	472447	73	15,4515	516694	77	14,9024
3,00mm	441985	64	14,4801	526861	92	17,4619
4,20mm	432550	62	14,3336	390232	57	14,6067
4,20mm	272811	39	14,2956	288305	56	19,4239
4,20mm	315066	52	16,5045	316264	36	11,3829
4,20mm	367458	57	15,512	348129	40	11,49
4,20mm	274687	45	16,3823	310728	33	10,6202
Mittelwert			15,325			14,041
R8 Poly I.C	+ Inv Stroce					
<u>1010191.0</u>	<u>- juv 511055</u>					
4,68mm	206835	33	15,9547	341413	41	12,0089
3,72mm	565611	66	11,6688	524738	63	12,006
3,00mm	608055	96	15,788	590612	67	11,3442
2,52mm	491429	79	16,0756	462681	61	13,184
2,52mm	504099	64	12,6959	435404	63	14,4693
Mittelwert			14,437			12,602

R11 Saline+ Juv Stress

4,68mm	298654	37	12,3889	254251	42	16,5191
4,68mm	279315	62	22,1972	268968	46	17,1024
4,20mm	270675	45	16,6251	269608	37	13,7236
3,72mm	390385	68	17,4187	410796	54	13,1452
3,72mm	365126	60	16,4327	380619	61	16,0265
3,72mm	322811	76	23,5432	396500	60	15,1324
2,52mm	367340	68	18,5115	406891	58	14,2544
2.52mm	401293	80	19,9356	426733	77	18.0441
Mittelwert	1012/0		18,382	120700		15,493
R12 Saline	+ Iuv Stress					
	<u>jui ou coo</u>					
4,68mm	343788	44	12,7986	388745	48	12,3474
4,68mm	219845	29	13,1911	210566	30	14,2473
3,00mm	494073	83	16,7991	538378	95	17,6456
3,24mm	464504	72	15,5004	436504	77	17,6402
3,24mm	507224	85	16,7579	577162	90	15,5935
2,52mm	422273	51	12,0775	464566	76	16,3594
Mittelwert			14,521			15,639
P12Salina	Luy Stroce					
<u>K155allile</u>	<u>- juv 30 635</u>					
4,68mm	185770	34	18,3022	209070	29	13,871
4,68mm	175455	30	17,0984	235309	36	15,299
3,24mm	301616	44	14,5881	345719	57	16,4874
3,72mm	327603	58	17,7044	357551	69	19,2979
4,20mm	268120	48	17,9024	314874	46	14,609
3,24mm	306475	41	13,3779	287796	45	15,6361
3,72mm	384185	48	12,494	398821	61	15,2951
3,00mm	362204	51	14,0805	452365	71	15,6953
2.52mm	297378	44	14.796	286045	48	16,7806
4.20mm	207507	41	19.7584	219210	37	16.8788
Mittelwert	_0,00,		16,01			15,985
P15 Salina	+ Juw Strocs					
<u>KIS Saime</u>	<u>- Juv 5tress</u>					
4,68mm	258380	34	13,1589	259533	26	10,018
4,20mm	404731	51	12,601	381381	35	9,17717
3,72mm	439845	57	12,9591	496939	62	12,4764
3,24mm	486757	58	11,9156	637384	63	9,88415
3,24mm	465704	60	12,8837	578580	75	12,9628
3,0mm	438459	63	14,3685	524466	65	12,3936
3,72mm	363749	45	12,3712	407013	44	10,8105
3,24mm	443084	59	13,3158	471049	51	10,8269
3.72mm	383396	43	11.2156	424224	57	13.4363
3.00mm	474440	73	15.3866	452910	55	12,1437
2.52mm	499947	62	12,4013	512540	81	15.8036
Mittelwert		.	12.962	012010	U1	11.812
			,-04			

R16 Saline+ Juv Stress

3,24mm	717340	134	18,6801	808857	114	14,094
3,24mm	651650	135	20,7166	621244	104	16,7406
2,52mm	588359	111	18,866	556683	101	18,1432
4,68mm	478095	107	22,3805	490649	92	18,7507
4,20mm	408921	62	15,1619	314662	60	19,0681
3,00mm	216958	58	26,7333	213799	33	15,4351
3,00mm	337084	80	23,733	325116	82	25,2218
2,52mm	381217	83	21,7724	420490	90	21,4036
Mittelwert			21,005			18,607
R17 Saline+	<u>+ Juv Stress</u>					
4,68mm	157435	26	16,5148	155891	20	12,8295
4,68mm	182300	34	18,6506	189138	34	17,9763
4,20mm	235139	42	17,8618	245665	42	17,0965
4,20mm	195899	40	20,4187	225295	34	15,0913
4,20mm	182034	36	19,7765	202296	37	18,29
3,72mm	376131	71	18,8764	452938	59	13,0261
3,24mm	388606	85	21,8731	418847	67	15,9963
3,00mm	385639	71	18,411	437314	76	17,3788
3,00mm	497907	90	18,0757	494452	93	18,8087
2,52mm	394414	74	18,762	389739	64	16,4212
2,52mm	379240	80	21,0948	439063	69	15,7153
Mittelwert			19,12			16,239
<u>R29 Poly I:0</u>	<u>C Kontrolle</u>					
4,20mm	363017	61	16,8036	414396	61	14,7202
4.20mm	257492	42	16.3112	282587	42	14.8627
4,20mm	267335	47	17,5809	294989	48	16,2718
4,20mm	223620	35	15,6516	337611	53	15,6985
3,72mm	376901	64	16,9806	352005	52	14,7725
3,24mm	324981	41	12,6161	363715	51	14,022
3,24mm	309963	50	16,131	349872	54	15,4342
3,00mm	298767	44	14,7272	410403	63	15,3508
3,00mm	347473	59	16,9797	411092	65	15,8115
2,52mm	285772	37	12,9474	397552	50	12,577
2,52mm	396057	63	15,9068	421677	53	12,5689
Mittelwert			15,694			14,735
R30 Poly I:(C Kontrolle					
4,68mm	308724	49	15,8718	342749	46	13,4209
4,68mm	219982	39	17,7287	210919	26	12,327
3,72mm	358572	53	14,7809	379779	71	18,6951
3,00mm	329313	68	20,649	340585	67	19,672
3,72mm	398468	59	14,8067	404015	70	17,3261
3,72mm	375780	60	15,9668	395861	58	14,6516
4,20mm	273257	63	23,0552	360858	53	14,6872
2,52mm	359752	64	17,79	36/071	68	18,525
3,00mm	445652	85	19,0732	414062	80	19,3208
Mittelwert			17,747			16,514

R31 Poly I:C Kontrolle

3,72mm	366352	58	15,8318	358954	48	13,3722
3,24mm	441873	65	14,7101	492811	84	17,0451
4,20mm	314796	43	13,6596	371027	63	16,9799
3,24mm	409480	55	13,4317	402872	60	14,8931
3,00mm	474057	80	16,8756	502437	73	14,5292
3,24mm	447169	46	10,2869	505467	59	11,6724
2,52mm	369480	46	12,4499	420163	64	15,2322
2,76mm	379736	62	16,3271	426257	51	11,9646
Mittelwert			14,197			14,461
<u>R35 Poly I:(</u>	<u>C Kontrolle</u>					
4,20mm	310510	42	13,5261	317188	36	11,3497
3,72mm	252561	39	15,4418	377685	55	14,5624
3,00mm	443336	66	14,8871	452847	60	13,2495
3,00mm	420336	70	16,6533	496789	63	12,6814
3,00mm	520694	79	15,1721	609695	71	11,6452
2,52mm	497074	90	18,106	516095	101	19,57
3,00mm	441768	55	12,45	499921	74	14,8023
3,00mm	483117	78	16,1452	590204	72	12,1992
2,52mm	423077	93	21,9818	548383	74	13,4942
3,24mm	383888	80	20,8394	423994	76	17,9248
Mittelwert			16,52			14,148
<u>R36 Poly I:(</u>	<u>C Kontrolle</u>					
4,20mm	205942	38	18,4518	248583	36	14,4821
3,00mm	570186	77	13,5044	622891	64	10,2747
3,00mm	411055	75	18,2457	493598	64	12,966
2,52mm	346123	54	15,6014	358912	50	13,931
2,52mm	413214	71	17,1824	425342	69	16,2222
3,72mm	332759	54	16,228	369577	57	15,423
3,72mm	496290	74	14,9106	557101	70	12,565
3,24mm	619276	68	10,9806	622573	56	8,99493
2,72mm	444717	77	17,3144	455388	61	13,3952
2,52mm	441634	58	13,133	536425	64	11,9308
Mittelwert			15,555			13,019
<u>R37 Poly I:(</u>	<u>C Kontrolle</u>					
4,68mm	326841	55	16,8278	325231	48	14,7587
4,20mm	378956	66	17,4163	380909	55	14,4391
3,72mm	343554	73	21,2485	327080	50	15,2868
3,24mm	377510	75	19,867	351680	49	13,9331
3,00mm	419054	84	20,0451	391146	74	18,9188
3,24mm	390220	76	19,4762	412957	55	13,3186
3,00mm	460568	108	23,4493	464189	93	20,0349
2,52mm	309891	65	20,9751	332617	53	15,9342
2,52mm	320250	58	18,1109	336575	50	14,8555
2,52mm	333498	63	18,8907	341887	56	16,3797
Mittelwert			19,631			15,786

R41 Saline Kontrolle

4,68mm	192203	28	14,5679	218254	30	13,7455
4,20mm	297986	52	17,4505	406375	72	17,7176
3,24mm	474466	64	13,4888	515729	72	13,9608
3,00mm	710168	111	15,6301	747187	102	13,6512
2,52mm	624539	88	14,0904	590926	87	14,7227
4,20mm	397681	57	14,3331	429352	60	13,9745
4,20mm	479307	73	15,2303	469880	63	13,4077
3,24mm	462285	84	18,1706	490737	80	16,302
3,00mm	599808	83	13,8378	549795	80	14,5509
2,76mm	592001	99	16,7229	572203	95	16,6025
2,52mm	474539	94	19,8087	512610	80	15,6064
Mittelwert			15,757			14,931
R42 Saline	Kontrolle					
2 72mm	202910	27	12 5028	222271	20	12 5016
3,7211111 2 72mm	262422	45	12,3920	222371	20	12,3910
3,7211111 2.24mm	362433	43	12,4101	2/001/	62	12,2023
3,2411111 2 24mm	20/116	03	17,0104	271010	40	17,3427
3,2411111 2 24mm	464226	40 75	16 15 21	271910	40 55	14,7107
2,2411111 2,00mm	404550	73	10,1321	502170	55 70	13,1039
2,0011111 2,24mm	490903	70	13,4017	377042	66	13,0703
3,2411111 2.76mm	522121	75	14,3043	444341	00	14,0000
2,7611111	20/920	95	10,1570	525001	03	13,7030
2,76IIIII 2,00mm	029899	94	14,923	02/20/ E12022	91	14,5009
3,0011111 2,00mm	401044	90	20,347	512955	09	13,452
Mittelwert	370333	04	14,5744 15,479	303034	04	14,3921 14,434
RA3 Salina	Kontrolle					
<u>N45 Same</u>	Kontrone					
3,24mm	353870	53	14,9773	364072	56	15,3816
3,00mm	438568	67	15,277	417746	60	14,3628
3,00mm	500380	77	15,3883	545690	81	14,8436
3,24mm	436319	58	13,293	434860	58	13,3376
2,52mm	405072	66	16,2934	445498	73	16,3862
3,24mm	441512	45	10,1922	452762	50	11,0433
4,20mm	276173	34	12,3111	255924	32	12,5037
3,24mm	326975	40	12,2334	294924	35	11,8675
3,24mm	444059	64	14,4125	387956	52	13,4036
Mittelwert			13,82			13,681
<u>R44 Saline</u>	Kontrolle					
4 6 9 mm	224020	27	16 4560	201014	11	14 50
4,0011111	22403U	۵/ 20	10,4309	201014	41 11	14,59 12 7125
4,20111111 4,20mm	333U43 222447	37 40	10,9040	3400/0 251162	44 55	15,/125
4,2011111 2.72mm	332447	47	14,/392	331103	22	13,6622
3,/∠mm 2,72	322866	4Z	13,0085	332072	43	12,9256
3,/2mm 2,24	429557	56	13,0367	4041/1	/0	14,4577
3,24mm	401003	/4	15,359	201070	85 50	15,3461
3,00mm 2,52	343386	54	15,/257	3010/U	59	16,3132
2,52mm	408542	58	14,1968	413131	59	14,2124
milleiwert			14,188			14,652

R49 Saline Kontrolle

3,00mm	388308	62	15,9667	435576	73	16,7594
4,20mm	270183	42	15,545	282564	43	15,2178
4,68mm	255296	48	18,8017	301623	53	17,5716
2,52mm	342470	58	16,9358	438365	69	15,7403
3,72mm	334977	56	16,7176	365792	55	15,0359
3,72mm	411587	50	12,1481	391081	49	12,5294
3,00mm	502733	86	17,1065	593026	104	17,5372
3,24mm	488891	58	11,8636	536977	73	13,5946
Mittelwert			15,636			15,498
DEO Colino	Vontrollo					
<u>K50 Saime</u>	Kontrone					
3,72mm	298526	63	21,1037	305617	58	18,978
3,24mm	396498	80	20,1766	407246	73	17,9253
3,24mm	334215	67	20,047	362960	74	20,3879
3,00mm	376292	71	18,8683	401050	67	16,7061
2,52mm	315517	56	17,7486	338070	63	18,6352
Mittelwert			19,589			18,527

9.3 Zusätzliche Kontrollratten

<u>R1W</u>	Linke Hemisphäre			Rechte	lemisphäre		
<u>Ebene</u>	<u>Fläche</u>	Reelin-	<u>Dichte</u>	<u>Fläche</u>	<u>Reelin-</u>	<u>Dichte</u>	
	<u>(μm²)</u>	<u>Zellen</u>	<u>(Zellen/µm²</u>	<u>(µm²)</u>	<u>Zellen</u>	<u>(Zellen/µm²</u>	
			<u>*10⁵)</u>			<u>*10⁵)</u>	
3,72mm	332419	48	14,4396	343729	39	11,3461	
4,68mm	208855	44	21,0672	212043	35	16,5061	
3,24mm	395064	40	10,1249	413856	44	10,6317	
3,24mm	440856	51	11,5684	423896	54	12,739	
3,00mm	528609	92	17,4042	526004	76	14,4486	
3,00mm	490605	88	17,937	489309	75	15,3277	
3,24mm	341385	41	12,0099	308108	31	10,0614	
3,00mm	439440	55	12,5159	454665	66	14,5162	
3,00mm	465684	79	16,9643	445901	68	15,25	
2,76mm	380499	80	21,025	396475	66	16,6467	
Mittelwert			15,506			13,747	

<u>R2W</u>						
4,20mm	457803	65	14,1982	456643	60	13,1394
3,72mm	448686	49	10,9208	459895	49	10,6546
3,72mm	431069	63	14,6148	439253	53	12,0659
3,24mm	446080	70	15,6923	469573	61	12,9905
3,24mm	388696	69	17,7517	393290	65	16,5272
3,24mm	440238	74	16,8091	462130	60	12,9834
3,00mm	532217	93	17,4741	560284	86	15,3494
2,52mm	533703	88	16,4886	531843	93	17,4864
2,52mm	500064	99	19,7975	561751	83	14,7752
Mittelwert			15,972			13,997
<u>R3W</u>						
4,68mm	302041	43	14,2365	287730	31	10,774
4,68mm	283404	50	17,6427	293895	44	14,9713
4,20mm	404559	94	23,2352	425216	80	18,814
4,20mm	413721	78	18,8533	377541	60	15,8923
3,72mm	376062	74	19,6776	354531	63	17,77
2,52mm	315543	68	21,5502	325401	67	20,59
2,52mm	419250	105	25,0447	401737	88	21,9049
3,00mm	392586	88	22,4155	330846	58	17,5308
3,00mm	363072	77	21,2079	379146	75	19,7813
Mittelwert			20,429			17,559
<u>R4W</u>						
4,68mm	190162	26	13,6726	188639	19	10,0721
3,72mm	427359	69	16,1457	407212	47	11,5419
3,24mm	446075	79	17,71	461725	74	16,0269
3,24mm	491908	82	16,6698	492160	69	14,0198
3,24mm	460707	84	18,2328	484625	74	15,2695
3,00mm	375631	68	18,1029	384028	77	20,0506
3,00mm	467189	105	22,4748	485847	82	16,8777
2,52mm	306016	62	20,2604	371751	71	19,0988
2,52mm	332758	79	23,741	311647	74	23,7448
Mittelwert			18,557			16,3
<u>R5W</u>						
4,68mm	277587	40	14,4099	300709	35	11,6392
4,68mm	294477	30	10,1876	319284	42	13,1544
3,72mm	317952	60	18,8708	380336	52	13,6721
3,72mm	298599	61	20,4287	330848	63	19,042
3,72mm	358739	57	15,889	439299	79	17,9832
3,24mm	304008	57	18,7495	355961	61	17,1367
3,00mm	399987	96	24,0008	395822	70	17,6847
3,00mm	376255	74	19,6675	386468	75	19,4065
3,24mm	380008	88	23,1574	381037	83	21,7827
Mittelwert			18,373			16,833

<u>R6W</u>

4,20mm	324409	61	18,8034	320415	42	13,108
3,72mm	411486	80	19,4417	401250	60	14,9533
4,20mm	369569	41	11,094	390787	59	15,0977
3,24mm	355069	74	20,841	401014	80	19,9494
3,24mm	333265	45	13,5028	346389	55	15,8781
3,24mm	436061	70	16,0528	391321	49	12,5217
2,52mm	399330	80	20,0336	416420	64	15,3691
2,52mm	373410	79	21,1564	358462	60	16,7382
Mittelwert			17,616			15,452

10. Danksagungen

An erster Stelle danke ich meiner Doktormutter, Prof. Dr. rer. nat. Gabriele Flügge, die meine Idee der Verbindung von Reelin und Stress wohlwollend unterstützt hat, mir während der experimentellen Tätigkeit im Primatenzentrum täglich mit gutem Rat und praktischer Unterstützung beiseite stand und die ebenso den Prozess des Schreibens dieser Arbeit mit vielen Anregungen und Hinweisen eng begleitet hat. Mit all dem war sie mir eine große Hilfe und eine wunderbare Betreuung.

Weiter danke ich Herrn Prof. Dr. rer. nat. Eberhard Fuchs für die Bereitschaft, mir die Möglichkeit des experimentellen Arbeitens in seiner Abteilung einzuräumen, für die stets vorhandene Gesprächsbereitschaft, für nützliche Tipps in Praxis und Theorie sowie für die gelungenen Exkursionen mit der gesamten Abteilung.

Die experimentellen Arbeiten im Labor hätte ich ohne die Hilfe von Simone Luers und Simone Barsky kaum erledigen können. Ich danke beiden sehr für ihre Arbeit und für ihre sympatische Art, die mir die Laborarbeit zu einer sehr angenehmen Zeit haben werden lassen.

Für die Durchführung der Tierexperimente danke ich Carolina Araya Callis, Nicole Yee und Cornelia Heckmann. Den beiden Erstgenannten danke ich für das Einverständnis dazu, mir Hirnschnitte ihrer Tiere zur Verfügung zu stellen und ich danke allen drei für die generell sehr herzliche Art mir gegenüber.

Ebenso möchte ich Dr. med. vet. Kerstin Plassmann für die Weitergabe ihrer Word-Kenntnisse danken, die mir dadurch einige Probleme hat lösen können.

Dr. rer. nat. Enrique Garea-Rodriguez möchte ich für aufmunternde Worte, die stetige Hilfe im Büro und für die neuentstande Freundschaft danken.

Der gesamten Abteilung der Klinischen Neurobiologie des Primatenzentrums danke ich für die angenehme Arbeitsatmosphäre, für jegliche Unterstützung und für die schöne Zeit, die ich dort für ein Semester verbringen durfte.

11. Lebenslauf

Ich, Andreas Michael Koldehoff, wurde am 26.09.1986 in Minden/Westfalen als drittes Kind des Ehepaares Doris und Michael Koldehoff geboren. Ich besuchte in der Grundschulzeit die Domschule Minden und ging anschließend auf das Herder-Gymnasium Minden. Hier absolvierte ich 2006 das Abitur. Von 2006 bis 2007 leistete ich den Zivildienst am Klinikum Minden ab. Im Wintersemester 2007/2008 begann ich das Studium der Humanmedizin an der Albert-Ludwigs-Universität in Freiburg. Seit 2008 bin ich Stipendiat des Cusanuswerks. Im Sommersemester 2009 legte ich das erste ärztliche Staatexamen ab. Anschließend wechselte ich an die Georg-August-Universität Göttingen, an der ich bis dato studiere.