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Abstract: Exploiting the Spatial Information in High Resolution Satellite Data and Utilising 
Multi-Source Data for Tropical Mountain Forest and Land Cover Mapping 

The heterogeneous, fragmented land cover pattern of the upper catchment area of the Río Yaque del 
Norte, in the Cordillera Central of the Dominican Republic, is typical for many tropical mountain 
areas. Parts of the catchment area have been colonised in the course of the 20th century, in spite of 
their marginality for agricultural land use purposes. At the same time, there are still several types of 
primary mountain forests remaining in this mountain range, among them fragmented cloud forest 
areas with threatened endemic species. Deforestation and unsustainable land use methods on the 
steep slopes of the study area have led to erosion and land degradation. There are efforts to foster 
more sustainable land use practices, to reforest some areas and to protect the threatened ecosystems. 
Detailed spatial land cover information would be important for improving the basis of the necessary 
land management decisions.  

The study area is challenging for forest and land cover mapping. The usefulness of medium 
resolution (e.g. Landsat) satellite data for mapping its vegetation types is limited, because the small-
scale mix of land cover types leads to a large proportion of mixed pixels in such data. The 
introduction of a new generation of commercial high spatial resolution satellites like IKONOS has 
led to new possibilities for more detailed classifications of special interest areas, but the high 
resolution data also pose new challenges for automated land cover mapping. Single pixels in these 
data fail to integrate the elements of the target classes (e.g. forest types) and the increased amount 
of spatial information contained in the data cannot be fully extracted by using the per-pixel 
multispectral classification approaches which are common for medium resolution satellite data. To 
make use of the high resolution spatial information contained in the IKONOS panchromatic channel 
in automated classifications, customised texture parameters were created and used as additional 
channels in the classification. At the same time, several methods for the spatial integration of the 
multispectral data were tested and compared, in order to make the spectral signals of the image 
primitives more representative of the target classes. Both the spatial integration of the multispectral 
data (especially low pass filtering) and the introduction of texture parameters led to significantly 
increased classification accuracies. The integration of multi-source data as input for the classifiers 
(combining additional Landsat multispectral channels or DEM-derived topographic models with the 
IKONOS data sets) did not lead to significantly improved results, compared to the results which 
were achieved with IKONOS data alone. However, the elevation data did show some potential to 
increase the separability of some classes. They could probably have been more useful if a higher 
resolution DEM had been available. The Maximum-Likelihood-Classifier produced better results 
than the tested non-parametric classifiers. With the optimised methods, a detailed land cover 
classification (13 classes, six of which represented forest types) was possible using information 
derived from the IKONOS data. There were some inherently problematic classes like open pine 
forest and agroforestry, but for most forest classes, good classification accuracies could be 
achieved, particularly for the ecologically important cloud forest class.  
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1 Introduction 

Tropical ecosystems are changing rapidly as a result of human activity. Land cover changes in the 
tropics include deforestation and landscape fragmentation, often in connection with the colonisation 
of marginal areas. Achard et al. (2002) state that between 1990 and 1997, 5.8 ± 1.4 million ha of 
humid tropical forest were lost per year and 2.3 ± 0.7 million ha were visibly degraded. The world-
wide loss and degradation of tropical forests has far-ranging ecological and climatic consequences. 
Tropical mountain forests in particular play a central role in many aspects of sustainable 
development. They can be linked with soil conservation and the prevention of land degradation, 
water supply and climate change, biodiversity, and tourism development, apart from providing 
timber and other forest products (Price & Butt 2000). 

The Caribbean islands are a region where the population density is much higher than in many 
continental tropical countries and the proportion of forests which have survived on these islands is 
accordingly low (Lugo 1995). The Dominican Republic has seen the destruction of most of its 
forests in the course of the 20th century, but due to its mountainous relief and historically relatively 
low population density, some considerable parts of its rich and varied natural vegetation are still 
remaining – in contrast to its disastrously degraded neighbouring country Haiti. 

The problems of deforestation, especially in the mountain areas, are recognized in the Dominican 
Republic and there are efforts to protect selected areas of natural forests and to reforest mountain 
areas which are degraded or in danger of further degradation. However, as in many developing 
countries, there is a lack of information on forest resources. More information would be needed for 
forest management planning and for monitoring the sustainable development of forests in 
agreement with Agenda 21 of the Rio Earth Summit 1992 (Lund 1996). According to Saket (2002), 
most developing countries were unable to provide detailed information to the Global Forest 
Resources Assessment 2000 (FRA 2000), and only 10 % could provide information on changes in 
area. None of the countries in Latin America and the Caribbean reported information based on 
country-wide field sampling, but most could provide area estimates based on remote sensing. The 
"Inventario de Cobertura Forestal” (inventory of forest coverage) published by the Dominican 
ministry of the environment in 2001 (SEMARENA 2001a) is based mostly on the classification of 
several Landsat scenes from the 1990s. 

Remote sensing is a necessary data source for mapping, spatial analysis and geo-referenced 
information (Kleinn 2002). Even if remote sensing technologies cannot provide the same 
information that would be the result of a complete forest inventory based on extensive field 
sampling as conducted in many developed countries, they can provide information about some core 
attributes like forest area and area by forest type, among other things. Only remote sensing can 
provide full-cover, spatially explicit information on the location of forest types, changes of forest 
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cover and forest fragmentation. The resulting land cover maps can serve as one basis for forest 
management and protection. They could also help to choose an optimized sample, reducing the 
necessary intensity of field sampling if further forest inventory efforts were to follow. Land cover 
maps are also needed as an input for the analysis and modelling of interrelationships of landscape 
processes. 

Classifications based on Landsat or similar medium-resolution satellite data can give a first 
overview over the spatial distribution of the major vegetation units, but they are often inadequate 
when dealing with the heterogeneous land cover patterns that are characteristic for many tropical 
mountain areas due to topographic, climatic, geologic and edaphic variations and land use patterns 
including subsistence agriculture and shifting cultivation. 

The recent introduction of commercially available high spatial resolution satellite imagery has 
brought about new possibilities and new challenges for the field of satellite remote sensing of the 
environment. Before the launch of IKONOS-2 in 1999 imagery of a comparable spatial resolution 
was only available from airborne sensors. Changing the spatial resolution of the measurement 
changes the information content and statistical properties of image data (Marceau et al. 1994a), and 
digital image analysis methods used with medium resolution satellite images are not always 
applicable. Increasing the spatial resolution of an image reduces the integrating effect of larger 
pixels and thus the homogeneity within land cover classes. High (and very high) spatial resolution 
imagery such as aerial photographs is traditionally interpreted by manually delineating vegetation 
boundaries (Coulter et al. 2000). In these cases, the human interpreter does not only use the 
information of grey levels or colours, but also attributes like texture, patterns, location, form, and 
size. Correspondingly, automated digital analysis of high spatial resolution images should include 
methods which use not only the per-pixel spectral information but also the spatial information 
present in these images. 

One way to utilise the spatial information from high resolution imagery is to extract texture 
parameters which can then be included in the classification process. Texture in digital image 
analysis is the variability or the spatial relationship of grey levels in a pixel neighbourhood or 
window. Image texture parameters can be derived from a variety of first- and second-order 
statistics. Texture is related to the size and distribution of objects in the scene and to the spatial 
resolution of the imagery. In high resolution cases, where the pixels are smaller than the size of the 
objects in the image (which is the case for IKONOS images of forest), texture information can be 
expected to be especially valuable for class discrimination. 

The spatial resolution of high resolution imagery may be too high for optimal per-pixel 
classification results of heterogeneous land cover classes like forest, because the different elements 
of a class (e.g. illuminated crowns, shaded crown parts and understorey vegetation) are not 
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integrated in the single pixels. It may thus be necessary to perform some kind of spatial integration 
before classification, e.g. by reducing the spatial resolution of the imagery or using a low pass filter. 
Another way to incorporate the spatial context is image segmentation, followed by object oriented 
image analysis. Image segmentation divides an image into separated, spatially continuous regions 
which are homogeneous with respect to some characteristic or characteristics. The resulting image 
objects are more meaningful than single pixels and allow for object-oriented or per-parcel image 
classification. 

Given the influence of elevation and other terrain variables on vegetation, valuable ancillary 
information for forest classifications in mountainous areas can be derived from digital elevation 
models (DEM). Appropriate data integration methods are needed to be able to use multi-source data 
(satellite and DEM-derived), data of different spatial resolutions, as well as spectral and textural 
data in the classification process. The established maximum likelihood classification method has 
some limitations as to the types of data it is appropriate for and it is not adapted for using data of 
different scales. Therefore, other (non-parametric) classification methods or ways to incorporate 
ancillary data in pre- or post-classification processes have to be considered. 

Geographical entities such as forests are not only scale-dependent in their definition, but they are 
also inherently fuzzy, with indeterminate boundaries (Cheng 2002). Detailed classifications of 
natural and semi-natural vegetation in particular entail fuzziness in the class definitions and the 
spatial delineation of class areas. In addition, the occurrence of mixed pixels on class borders can 
never be completely avoided even in high resolution imagery. Therefore, the concept of fuzziness is 
important when addressing the unavoidable uncertainties in class definition, classification and the 
resulting maps. 

1.1 Aims and Objectives 

This study aims at finding, testing and comparing methods for forest and land cover mapping in 
tropical mountainous terrain using automated classifications of recent optical satellite data, 
comparing the usefulness of medium and high resolution satellite data and combining multi-source 
data in order to improve classification results. 

The main objectives are 

- to produce a regional land cover base map using Landsat ETM+ data; 

- to evaluate high resolution satellite data (IKONOS) for mountain forest and land cover 
mapping; 

- to test the usefulness of spatial information (texture) for improving the discrimination of forest 
and other land cover classes; 
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- to test the usefulness of different kinds of spatial integration of high resolution data, including 
segmentation; 

- to produce an integrated data set as a basis for an optimised classification; 

- to test and compare suitable classification methods; 

- to generate optimised land cover maps of the study area, discriminating forest formations and 
other physiognomic vegetation units. 

1.2 Central Hypothesis 

Digital image classification of high spatial resolution satellite data can contribute to improved 
results in (localised) tropical mountain forest mapping compared to medium resolution satellite 
data. The successful use of high resolution data for automated land cover classifications requires 
that the spatial characteristics of these data are taken into consideration and that the spatial 
information contained in the high resolution data is extracted and used in the classification process 
as well as the spectral information. 

1.3 Outline 

In the following chapters, I will present the theoretical framework of this study and then describe 
the land cover (especially the forests) and the land use in the study area, including the physical and 
historical basis for the current situation. The next chapter describes the data that were available to 
me for this study. The first methodological chapters describe the field work and the pre-processing 
methods used. Chapter 7 explores the possibilities and limitations of a land cover classification 
without high resolution data. After that, the methods used to extract additional information from 
high-resolution data are described and, subsequently, the results of the analysed issues (questions of 
spatial resolution and spatial integration, use of texture, multi-source data integration, classification 
methods, assessment of results) are described and discussed. The tenth chapter presents the 
conclusions of this study. It is followed by a summary in German. 
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2 Methodical Background  

2.1 Use of Remote Sensing in Forest Mapping  

In many countries outside the tropics, remote sensing is an established tool used in forest mapping 
and, in combination with ground sampling, in forest inventory (Tomppo 1996, Sutter 1990, 
Magnussen 1997, Tickle et al. 1998) as well as in forest damage surveys (Thomas 1990). Most of 
these practical applications involve the use of high spatial resolution remote sensing data, and aerial 
photographs are still the most common data source used, even though digital air-borne data have 
gained in importance in recent years (Kayitakire et al. 2002). The analysis of these high resolution 
images is dominated by manual, non-automated methods (Magnussen 1997, Biggs 1996, Sutter 
1990), although this is time-consuming and can lead to inconsistent results (Green 2000). The 
automatic analysis of aerial imagery is mostly still in the experimental rather than the operational 
stage (Pouliot et al. 2002, Kadmon & Harari-Kremer 1999, Atzberger & Schlerf 2002). 

Until 1999, only airborne sensors and cameras provided high resolution data for forestry 
applications, while multispectral high resolution satellite data with a repetitive coverage were not 
commercially available. Since then, a number of high resolution satellites have been put into orbit. 
Satellites like IKONOS-2 and QuickBird represent a new generation of remote sensing satellites, 
delivering multispectral imagery with spatial resolutions of 4 m and less. The advent of high 
resolution satellite data since 1999 provides new incentives to develop automated analysis methods 
for digital high resolution remote sensing data. Automated methods for forest classification and the 
mapping of biophysical stand parameters with digital airborne data have been tested for example in 
North America (Quackenbush et al. 2000, St-Onge & Cavayas 1995, Franklin et al. 2001a, 
Cosmopoulos & King 2004, Leckie et al. 2003, Kellndorfer et al. 2003) and Europe (Baulies & 
Pons 1995). IKONOS high resolution satellite data were used by Goetz et al. (2003) to map tree 
cover and by Hirata et al. (2002) and Franklin et al. (2001b) to test techniques for the extraction of 
information about coniferous forest stands. 

Medium resolution satellite data like Landsat are used in some large area forest inventories for 
example in Finland (Tomppo 1996), but are not deemed to be suitable information sources for 
practical forest management purposes by Holmgren & Thuresson (1998) and Pitt et al. (1997). 
Remote sensing cannot deliver information about all the variables which field sampling produces 
for a forest inventory, but on the other hand, field sampling cannot produce geo-referenced 
information with complete coverage for a whole region. Spatially explicit information about the 
area and distribution of forest and land cover types can only be gained with the help of remotely 
sensed data (Kleinn 2002). Consequently, Landsat TM (Thematic Mapper) and similar optical 
satellite data are much used in regional forest type and land cover mapping (e.g. Franklin 1992, 
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Koch et al. 2002). There are also efforts to estimate parameters like forest age and crown closure 
from Landsat TM data (Jakubauskas & Price 2000, Franklin et al. 2003, Xu et al. 2003). There are 
many more studies using satellite data for forest mapping, but an exhaustive review of the use of 
medium to low resolution optical data (e.g. Latifovic et al. 2004) and synthetic aperture radar 
(SAR) data (e.g. Dobson et al. 1996, Kellndorfer et al. 1998) for regional to global forest and land 
cover mapping would go beyond the scope of this overview. 

Besides high spatial resolution satellite data, other new data sources for detailed forest information 
are airborne lidar (light detection and ranging), which can be used to provide measurements of the 
vertical canopy structure (Means et al. 2000, Hudak et al. 2002, Dubaya & Drake 2000), and 
airborne and satellite hyperspectral data (Ustin & Trabucco 2000, Martin et al. 1998). Specialized 
techniques like these, aiming to provide detailed information for forest managers, are usually 
developed in non-tropical countries like Canada and Finland, but the aims and conditions of boreal 
and temperate forest mapping and management are in many respects quite different from the 
situation in the tropics.  

Remote sensing of tropical forests 

In many tropical developing countries, there is a lack of even very basic forest information which 
would be needed for effective forest protection and management. For the Global Forest Resources 
Assessment 2000 (FAO 2001), none of the Latin American and Caribbean countries could provide 
forest information based on country-wide field sampling, while about half of these countries had 
mapped their forest resources using aerial photographs or satellite imagery, providing area estimates 
for more or less detailed or broad forest types (Saket 2002). Terrestrial surveys of tropical forests 
are usually difficult and expensive due to poor accessibility and the heterogeneous forest structure 
(Köhl 1996). 

Many tropical forest studies using remote sensing are focused on deforestation. Tropical 
deforestation is typically studied over large areas using medium and low resolution satellite data, 
most commonly of the Landsat sensors MSS, TM and ETM+ (Skole & Tucker 1993, Sanchez-
Azofeifa et al. 2002, Ichii et al. 2003). Deforestation studies are usually multitemporal studies 
where for a single date, often just the classes ‘forest’ and ‘non-forest’ are separated (Millington et 
al. 2003, Peralta & Mather 2000, Alves et al. 1999). Wang et al. (2003) refine these simple 
forest/non-forest classifications by trying to estimate the forest canopy cover fraction within 
Landsat pixels, Herrera et al. (2004) differentiate between forest, non-forest and trees outside forest, 
and Asner et al. (2003) differentiate between several land cover types in deforested areas, but they 
all treat the remaining forest as a single class. This is the case in many deforestation and tropical 
land cover classification studies, despite the large variety of tropical forest types. 



 2 Methodical Background  

7 

Several authors have classified different successional stages of tropical forest regeneration 
(Thenkabail et al. 2004a, Kimes et al. 1999, Foody et al. 1996). Efforts to differentiate between 
different mature forest types are rare in comparison to forest/non-forest classifications. Tuomisto et 
al. (1994) and Paradella et al. (1994) used mainly visual interpretation of Landsat images to 
distinguish several tropical vegetation types. The statistical spectral separability of ecological forest 
types was studied by Singh (1987) using Landsat MSS data and by Hill & Foody (1994) and Foody 
& Hill (1996) using Landsat TM data. They came to the conclusion that between three and four 
groups of forest types were spectrally separable based on these multispectral data, but not all land 
cover classes which were identified in the field could be separated. Hill (1999) managed to classify 
six Amazonian forest types using segmented Landsat data. Riaza et al. (1998), García & Alvarez 
(1994) and Behera et al. (2001) also classified several tropical forest types on three different 
continents using medium resolution multispectral satellite data. Country-wide forest type and land 
cover mappings were conducted for Puerto Rico by Helmer et al. (2002) and for the Dominican 
Republic by Tolentino & Peña (1998) using Landsat TM and ancillary data, and for Mexico by Mas 
et al. (2002) using visual interpretations of Landsat ETM+ data. Low spatial resolution data 
(AVHRR) are used by Ferreira & Huete (2004) to monitor woodland, shrubland and grassland 
vegetation types in the Brazilian Cerrado. 

Medium and low resolution optical satellite data are also used in the estimation of tropical forest 
biophysical characteristics like leaf area index (LAI) or biomass (Foody et al. 2003, Kalácska et al. 
2004, Thenkabail et al. 2004a, Atkinson et al. 2000). Another application for these data is the 
mapping of burned areas resulting from tropical forest fires (Stibig et al. 2001, Fuller & Fulk 2001). 

Newly available hyperspectral satellite data have not yet been used much in tropical forest 
applications (Thenkabail et al. 2004a), while there are a few examples for the application of the new 
high spatial resolution satellite data. IKONOS data have been used for the validation of products 
derived from lower resolution data (Wang et al. 2003, Morisette et al. 2003). They have also been 
tested for forest land use and land cover classifications as well as for the estimation of forest 
biomass and the detection of selective logging (Clark et al. 2004, Thenkabail et al. 2004a, Hurtt et 
al. 2003). High resolution remote sensing data is also needed to resolve the narrow mangrove 
fringes along tropical coastlines. Wang et al. (2004b) compare IKONOS and Quickbird images for 
mangrove mapping and achieve slightly better classification results with the IKONOS data. Davis 
& Jensen (1998) study the correlation between mangrove biophysical variables and airborne high 
resolution data. There are also examples of traditional aerial photograph interpretation for the 
mapping of tropical forests (e.g. Hudson 1991). 

SAR data is often seen as a solution to the problem of frequent cloud cover in tropical areas which 
renders much of the optical satellite data unusable. However, the information about moisture and 
vegetation structure that is contained in radar data (Dobson et al. 1995) is not necessarily suitable 
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for the separation of ecological forest types. Costa (2004) and Simard et al. (2000), using JERS-1 
and Radarsat data, were successful mainly in separating different types of floodplain forest and 
aquatic vegetation in tropical river basins but did not map more than a single dense upland forest 
class. In addition, the classification of Simard et al. (2000) worked well only in the low topography 
region, while the terrain induced geometric and radiometric distortions in the radar data hampered 
the classification in a more mountainous area. 

One of the challenges of tropical forest and land cover mapping is the discrimination of agroforestry 
(Hurtt et al. 2003). Agroforestry (main land use agriculture) is usually not included in the definition 
of forest (e.g. FAO 2001), but can look very similar from a remote sensing view point, with a more 
or less dense tree canopy and sometimes crops in the form of shrubs (e.g. coffee) below. Helmer et 
al. (2000) could not separate coffee cultivation from moist forest in Puerto Rico using Landsat TM 
data and ended up with a mixed class. Langford & Bell (1997) also find that their ‘coffee’ and 
‘woodland’ classes are often confused. Hill (1999) managed to separate six different tropical forest 
types in segmented Landsat TM data but could not separate agricultural land containing trees from 
other open-canopied forest classes. 

When forest is mapped it needs to be defined first. For the FAO’s global forest resources 
assessment (FRA 2000), forest is defined as “lands of more than 0.5 hectares, with trees able to 
reach a minimum height of 5 meters maturity in situ and with a canopy cover of more than 10 
percent, which are not primarily under agricultural or urban land use” while other wooded land 
includes land with 5 to 10 percent tree crown cover or shrub or bush cover of more than 10 percent 
(FAO 2001). The International Classification of Ecological Communities (ICEC), which is used by 
Areces-Mallea et al. (1999) as a standardized classification system for all Caribbean islands, 
differentiates between ‘closed tree canopy’ with 60 to 100 percent crown cover and ‘open tree 
canopy’ with 25 to 60 percent crown cover, while areas with under 25 percent tree cover and 
dominated by shrubs (over 25 percent cover) are classified as shrubland. This study will use the 
ICEC as guideline for the definition of closed forest, open forest (called ‘woodland’ in the ICEC) 
and shrubland.  

Open forests and other low density woodland account for an important part of tropical forest 
resources (Matthews & Granger 2002). If a forest stand has an open canopy, a significant 
proportion of the variance in Landsat spectral data can result from variations in the background 
(undergrowth, soil, shadows), and the proportion of shadow viewed by the sensor is in turn 
influenced by slope and aspect (Gemmell 1995, 1999). This weakens the statistical connection 
between forest properties and the remotely sensed signal and makes it more difficult to monitor 
open forests by remote sensing techniques than closed forest. Consequently, the accuracy of 
estimates of open forest and woodland areas is poor (FAO 2001, Matthews & Grainger 2002). Trees 
outside forest, including trees growing on land with a tree cover below 25 percent, trees on 
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agricultural land and trees growing along roads and rivers, also fulfill many ecological and 
economic functions (Herrera et al. 2004, FAO 2001). Nevertheless, there is very little information 
on these trees available in developing countries (Saket 2002). Helmer et al. (2002) noted that grass-
dominated lands with up to 25 percent tree cover are spectrally very similar to grassland without 
trees in Landsat data. Higher resolution data could make it possible to gain more reliable 
information on trees outside forest with remote sensing means (Herrera et al. 2004). 

Most of the available literature on monitoring neotropical forests is about the relatively 
homogeneous Amazon basin (e.g. Palubinskas et al. 1995, Foody et al. 1996). Central America, 
especially the Caribbean islands, has a much more heterogeneous landscape (Castro et al. 2003) 
with a very varied mosaic of different primary and secondary forest types. The complexity of 
tropical mountainous landscapes with small scale agriculture and agroforestry and fragmented areas 
of natural and semi-natural vegetation can be expected to lead to relatively low classification 
accuracies when using medium resolution satellite data like Landsat TM (Langford & Bell 1997). 

On the whole, Landsat TM and ETM+ are the sensors most commonly used in tropical forest 
applications and remain the standard to which other optical satellite data are usually compared. In 
contrast, high spatial resolution satellite data has as yet rarely been used for tropical forest mapping.  

2.2 The Role of Spatial Resolution in Satellite Remote Sensing, with Particular Regard to 
Forest Mapping 

A remotely sensed image is an abstraction of the real world (scene) and the objects which constitute 
the scene (Ferro & Warner 2002). The relationship between the scene and the image is substantially 
controlled by the scale of capture, which (in the case of non-photographic imaging systems) is 
determined by the sensor’s spatial resolution, approximated by its instantaneous field of view 
(IFOV). The IFOV represents the limit of spatial detail that can be recorded by the sensor. A pixel 
(picture element) is the square display unit in the remotely sensed digital image to which the 
sensor’s measurement is assigned (Atkinson & Aplin 2004). It cannot carry distinct information 
about ground areas smaller than the IFOV and it covers the approximate area of an IFOV in most 
remote sensing products (Zhang 2003). Effectively, remote sensing can be regarded as a case of 
spatial sampling with complete cover and a regular sampling grid, used to obtain measurements of 
the geographical entities making up the scene (Marceau et al. 1994a, Hay et al. 2003). Remotely 
sensed images of a particular satellite sensor have a fixed nominal spatial resolution; in other words, 
the grid spacing is fixed according to the sensor’s properties. Spatial resolution can be defined in 
different ways. It refers to the smallest resolvable object (or separation between two objects) in an 
image, and is thus primarily determined by the distance between pixels in a digital image (Atkinson 
& Aplin 2004). In the following text pixel size will be treated as equivalent to spatial resolution. 
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Depending on the field of application and the time of writing (state of technology), definitions of 
‘high resolution’ satellite data vary greatly. For current land cover mapping applications, satellite 
remote sensing data can be classified into low resolution (with a spatial resolution of hundreds of 
metres to kilometres, for example NOAA AVHRR, MODIS), medium resolution (tens of metres, 
for example Landsat TM, Landsat ETM+, Spot HRV XS), and high resolution (1 to 10 m, for 
example IKONOS), with the term ‘very high resolution’ being reserved for imagery with a spatial 
resolution finer than 1 m. These definitions will be used in this study.  

The information content of an image changes with its spatial resolution (Treitz & Howarth 2000a, 
Woodcock & Strahler 1987, Marceau et al. 1994a, Treitz 2001, Millington et al. 2003). Every kind 
of remote sensing acts as a “spatial frequency filter” (Hay et al. 1996: 109), influencing the level 
and type of information about the scene which can be retrieved from the image (Sampson et al. 
2001). On the one hand, patterns with a higher frequency than the spatial resolution are filtered out. 
On the other hand, patterns with a lower frequency than the spatial extent of the whole image are 
also filtered out. Every given spatial resolution corresponds to a level of spatial aggregation of the 
smaller elements within the sample units (pixels) (Marceau et al. 1994a). 

Every natural scene contains objects at several levels in what can be described as a hierarchy of 
scales (Ferro & Warner 2002, Hay et al. 2003). Looking closely at a forested environment, we see 
leaves and branches, at the next higher level, there are whole trees, shrubs etc., at the next level 
forest stands, and so on. A forest stand is defined here as a contiguous area or forest that is 
homogeneous with regard to some of its characteristics (e.g. ecosystem type, density, age/maturity) 
and can be distinguished from neighbouring forest stands which differ in these characteristics. In a 
classification, the objects at one level are the target classes (e.g. forest stands of certain types), and 
the objects at the next finer level (trees etc.) are the base elements of these classes. Different classes 
can share common elements. A pine tree for example can be part of a pine forest, but also of a 
mixed forest or it might, as a tree in a garden or park, be part of an urban class. It is usually a 
combination of elements and their relative frequency that characterises a particular class. 

The kinds of targets which can be classified depend on the spatial resolution of the image. 
According to Puech (1994), each target at a given level has a threshold of homogeneity and a 
threshold of heterogeneity, with regard to the spatial resolution. At a fine resolution, the elements of 
the target are resolved separately, so that the target is textured. When the resolution becomes 
gradually coarser, there comes a point when several elements are aggregated in a single pixel. When 
the resolution is so coarse that each pixel contains about the same representative mix of base 
elements, the threshold of homogeneity is reached, i.e. the target object becomes homogeneous in 
the image. But when the resolution gets even coarser, the pixels eventually become so large that 
they contain several targets (mixed pixels). Puech (1994) calls the resolution at which the targets 
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become indistinguishable because of mixed pixels the “threshold of heterogeneity”. (This equals the 
threshold of homogeneity for targets at the superior level.) 

Pixels of low resolution images integrate the spectral response of several objects in the scene. In 
high resolution images, by contrast, the information of one pixel is related not to the character of an 
object (target land cover class) as a whole, but to components of it (Ehlers et al. 2003). The critical 
thresholds of resolution depend on the target classes. In a forest type classification, a high resolution 
image of a forest stand, e.g. an IKONOS image with 4 m resolution, can be a mix of pixels 
representing illuminated crown parts, shaded crown parts, illuminated background (understorey 
and/or soil), and shaded background. The resolution here is finer than the threshold of homogeneity 
and the pixels are not large enough to integrate all the components of the considered land cover 
class. By contrast, if the target class is an agricultural field or a young forest plantation, the 4 m 
IKONOS pixels might already be large enough to integrate the constituent elements of these classes 
(whole small plants and their background). The spatial resolution of Landsat data (30 m) is coarse 
enough to integrate the elements of most land cover classes including forest (if the forest structure 
is not very heterogeneous) on the one hand. On the other hand, for small target objects in a 
fragmented, heterogeneous landscape, it might in many cases already be beyond the threshold of 
heterogeneity, and thus cause a considerable percentage of mixed pixels.  

To emphasize that the properties of an image do not only depend on the absolute spatial resolution 
but on the relation between the spatial resolution and the size of the objects in the scene, Strahler et 
al. (1986) differentiate between “H-resolution” cases where the pixels are smaller than the objects 
(Pixel size/Object size < 1) and “L-resolution” cases where the pixels are larger than the objects 
(Pixel size/Object size > 1). This definition has been taken up for example by Hay et al. (2003). 

The effect of differing spatial resolutions on image statistical properties can be tested by gradually 
degrading the spatial resolution of high resolution images (upscaling). This can be done using block 
averaging, i.e. calculating the average of pixel values within a square window and assigning the 
result to the window which becomes the new coarser resolution pixel. Block averaging is a simple 
method to approximate the spectral response at different spatial resolutions (Hay et al. 1997), 
although it does not account for nonlinear relationships between finer and coarser resolutions and is 
an exact approximation of an image at a coarser resolution only if the pixel values have a normal 
distribution (Wang et al. 2004a). 

Several studies have calculated and compared the statistics of images of the same scene at several 
spatial resolutions (Chen et al. 2004, Woodcock & Strahler 1987, Marceau et al. 1994a, Cushnie 
1987). The overall conclusion is that, while the mean is relatively stable over different resolutions, 
measures of variability are very resolution dependent. Chen et al. (2004) find that the standard 
deviation and also the spatial autocorrelation decrease when the spatial resolution of an image of an 
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urban environment is gradually reduced from 4 m to 24 m. The internal variability within the image 
of a residential area decreases with reduced spatial resolution (Cushnie 1987). Bruniquel-Pinel & 
Gastellu-Etchegorry (1998) find that reducing the resolution of simulated forest imagery from 0.5 m 
to 3 m through block averaging decreases image variance. Treitz (2001) and Song & Woodcock 
(2002) also observe lower variance of forest reflectance with coarser spatial resolution data.  

Contrary to global variance (calculated on the whole image), local variance (calculated using only 
neighbouring pixels for example in 3×3 pixel windows) does not always monotonically increase 
with higher spatial resolution. The local variance of simulated forest images is higher for 1 and 4 m 
resolution data than for 15 m resolution data (Song & Woodcock 2002). For young forest stands it 
is also higher in 1 m than in 4 m resolution data, but for mature forest stands with larger crowns and 
fewer trees the 4 m resolution data has a higher local variance than the 1 m data. This can be 
explained by the fact that in a mature forest, neighbouring 1 m pixels tend to fall within one tree 
crown. In other words, in very high resolution imagery, most pixel values will be highly correlated 
with their neighbour’s, keeping local variance low. When the resolution gets coarser, the probability 
of neighbouring pixels covering different objects or class elements (e.g. one pixel representing an 
illuminated tree crown, its neighbours shadow and undergrowth) rises and so does the local 
variance. When the pixels become large enough to integrate the different elements in the image, the 
local variance decreases again (Woodcock & Strahler 1987). 

Spectral per-pixel classifiers work under the implicit assumption that the pixels to be classified are 
large enough for a spatial integration of the elements comprising the classes (Woodcock & Strahler 
1987). These traditional automated image analysis techniques developed for lower resolution 
satellite data may not be appropriate for high resolution imagery (Quackenbush 2000). The 
statistical class separability with traditional classifiers is reduced for high spatial resolution data 
because of increased within-class spectral variability (Marceau et al. 1990, Arai 1992). Schlerf et al. 
(2003) achieved better forest classification results with 30 m resolution data than with 5 m 
resolution data, concluding that the high small-scale spectral variability in the 5 m data was 
responsible for misclassifications. It has to be taken into account though that Schlerf et al. (2003) 
used only central areas of forest stands for their accuracy assessment, excluding the areas close to 
class boundaries which are most likely to profit from a higher resolution because of a reduction of 
the proportion of mixed pixels (see also chapter 2.8: Strategies for Accuracy Assessment). On the 
whole, many studies come to the conclusion that a higher spatial resolution does not necessarily 
lead to higher per-pixel classification accuracies (Cushnie 1987). Although the information content 
is inherently higher in high resolution data (Hay et al. 1997), the additional information only acts as 
noise in such a spectral classification (Markham & Townshend 1981).  

Some authors have used low pass filtering as a method to reduce unwanted within-class variability 
(Arai 1992, Hill 1999, Amarsaikhan & Douglas 2004). Another possibility is image segmentation 
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(see chapter 2.3) followed by per-object instead of per-pixel classification. A third possibility is a 
reduction of the spatial resolution through regular pixel aggregation, for example in the form of 
block averaging. These methods are going to be tested and compared in this study for the case of 
forest and land cover classification with IKONOS data. 

Optimal spatial resolution problem 

When the image resolution gets coarser (or the image is smoothed with a low pass filter) the 
benefits of integrating the elements of the target class and making the class more homogeneous are 
counteracted by smoothing over class boundaries, leading to an increased percentage of mixed 
boundary pixels (Cao & Lam 1997, Markham & Townshend 1981). With this trade-off in mind, a 
number of studies have attempted to find an optimal spatial resolution that “minimizes within-class 
variability, but maximizes between-class discrimination” (Treitz & Howarth 2000b: 315) for a 
given set of land cover classes and for a given landscape structure. 

To identify and map a particular object (informational class), the pixels need to be smaller than the 
object but larger than its constituent elements (objects at the next finest level in the hierarchy of 
scales) (Ferro & Warner 2002, Curran 1988). Several methods have been developed to determine 
the spatial resolution at which the class elements (objects at the finer level) are optimally integrated: 
the average local variance method and the semivariogram.  

 

Figure 1: Variogram (from Treitz & Howarth 2000a, fig. 1). 

The semivariogram (or variogram for short) is the key tool in geostatistics, which is the theory of 
regionalized variables. The variogram measures the spatial dependency of neighbouring 
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observations. Semivariance is half the average variance between pairs of pixels with a certain 
spatial separation along a transect. The variogram plots semivariance against spatial separation 
(Curran 1988). For small distances of separation (lags), semivariance tends to be low and rises as 
the lag gets larger. The maximum level of semivariance is called the sill and represents the amount 
of variation in the whole transect. The lag at which a semivariance maximum is reached is called 
the range. It represents the limit to spatial dependence; at larger separations the observations (pixel 
values) are statistically independent of each other (Treitz & Howarth 2000a, Atkinson & Aplin 
2004). Pixels larger than the range of the variogram (measured at a higher resolution) are expected 
to average the within-class spectral variability and thus to be suitable representatives of that class 
for a classification (Curran 1988). 

Treitz & Howarth (2000a) derived variograms for a number of boreal forest ecosystem classes from 
airborne high resolution data. They found that the optimal spatial resolution for forest ecosystem 
classification varies between about 3 m and 7 m depending on wavelength and forest class. Treitz 
(2001), studying the same boreal forest classes and using airborne data of two different spatial 
resolutions, found that the mean variogram range increases with stand complexity and with the 
spatial resolution of the collected data. The range is also higher for NIR (near infrared) than for 
visible reflectance data, which Treitz (2001) attributes to multiple scattering of NIR energy, leading 
to a stronger interaction with understorey components. Overall, the mean ranges for broadleaved 
and mixed forests are between around 5-6 m (for visible data collected with a spatial resolution of 
0.73 m × 5.36 m) and 12-14 m (for NIR data collected with a spatial resolution of 1.39 m × 5.36 m). 
For pure spruce stands, equivalent mean ranges are between 2-5 m and 8-11 m, showing that the 
influence of spatial resolution and wavelength of the data is larger than that of the forest type. To 
avoid the question of wavelength, Sampson et al. (2001) based their mean range estimates on the 
first principal component of a multispectral image. The estimated mean ranges for a mature 
broadleaved forest varied between 6 m and 9 m depending on the spatial resolution of the imagery 
used. 

Overall, the range of the variogram really is not a very hard indicator for the optimal spatial 
resolution. There are some difficulties involved in fitting a continuous curve to an experimental 
variogram, and resulting range estimates may differ depending on the modelling process (Hese 
2001). Besides, a variogram is dependent on the direction of the transect and on the waveband 
(Curran 1988) and it changes with the resolution of the image from which it is calulated (Treitz 
2001). 

The average local variance (ALV) method was introduced by Woodcock and Strahler (1987). It 
involves the calculation of the ‘local variance’ which is defined as the standard deviation of the nine 
values in a 3×3 pixel window. The ‘average local variance’ of an image is the mean of all local 
variance values, computed in a moving window over the whole image. The image is then gradually 
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degraded to coarser spatial resolution using block averaging. The average local variance is 
calculated for every resolution, and a graph of ALV as a function of spatial resolution is plotted. A 
peak in this graph is reached when the size of the resolution cells approaches the size of the scene 
objects or the distance between elements on a uniform background (Bøcher et al. 2003), while a 
minimum in the graph suggests that the threshold of homogeneity (in the terminology of Puech 
1994) is reached. 

Several authors have used variations of this method to determine an optimum spatial resolution for 
classifications, calculating the ALV not for the whole image but for the areas of separate forest 
classes, thus identifying class-specific optimum resolutions. Holopainen & Wang (1998) 
determined the optimum spatial resolution degrading aerial photographs of a forested area by 
averaging pixels in windows of growing sizes. Optimum resolution was defined as the window size 
resulting in minimum intraclass standard deviation. For images with an original resolution of 2.82 
m, optimum resolution varied between 8.5 and 36.7 m depending on forest stand classes and 
spectral bands (red, green, or blue). Marceau et al (1994b) used the same criterion of minimum 
intraclass variance, plotting the class-specific ALV against resolutions between 0.5 and 29.5 m. 
They arrived at optimal spatial resolution values for forest classes between 2.5 m and 21.5 m, 
depending on the forest classes, especially the forest structure (finer for dense homogeneous stands, 
coarser for less dense or mixed stands). 

It has been established that the “optimal spatial resolution” differs from class to class and also 
depends on the waveband. With the methods described above, it is difficult to determine a single 
appropriate spatial resolution for general region of interest containing several land cover types 
(Atkinson & Aplin 2004). However, if the aim is the classification of an image, it is not practical to 
use a separate optimal resolution for each class, because this would require complete prior 
knowledge about the location of the classes. 

Another empirical method to determine an optimal spatial resolution for a classification is to 
measure classification accuracies or class separabilities for images at different spatial resolutions. 
Treitz & Howarth (2000b) thus found that, for a visible to near infrared dataset, 6 m was the 
optimal resolution to discriminate boreal forest ecosystem classes (compared to 4, 5 and 7 m 
resolution). 

Not only the internal characteristics of the land cover classes but also their spatial arrangement in 
the landscape (the landscape structure) influence the spatial resolution which will lead to the 
optimal classification results. Smith et al. (2002) study the influence of land cover heterogeneity 
and patch size on classification accuracy and come to the conclusion that increased land cover 
heterogeneity and smaller patch sizes lead to lower accuracies. More fragmented landscapes require 
finer spatial resolution data to achieve optimized classification accuracies (Chen et al. 2004). 
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Medium resolution data like Landsat has limitations in heterogeneous landscapes. The percentage 
of mixed pixels carrying spectral information of more than one informational class can become 
unacceptably high, like in a Finnish forest management example described by Pekkarinen (2002), 
where a typical forest stand has a size of 1.5 ha, so that 30 m resolution satellite data consists 
mostly of mixed pixels. The lack of sensitivity of medium resolution (Landsat ETM+) data to 
selective logging in tropical forest areas is pointed out by Asner et al. (2002) and Read (2003). 
Higher resolution data are needed in order to be able to achieve greater classification accuracies 
when mapping small targets, for example marine environments (Mumby & Edwards 2002) or single 
forest stands (Kayitakire 2002). It can be hypothesized that in the heterogeneous and fragmented 
tropical mountain landscape of the study area, the classification possibilities with Landsat data will 
also be limited and classification results should benefit from the use of higher resolution data. This 
will be investigated in chapters 7, 8 and 9. 

Another aspect of high resolution imagery (compared to medium resolution) is the hugely increased 
amount of data involved, requiring increased amounts of storage space, calculating capacity and 
calculating times. This makes it necessary to use efficient analysis techniques and it can, together 
with the current costs of high resolution satellite imagery, limit the area which can be covered and 
analysed with this data (Read 2003). This means that high resolution data can only be used for key 
study sites or sample locations within large study areas (Hurtt et al. 2003). 

High spatial resolution satellite data available today also have the limitation that (due to the trade-
off between spatial and spectral resolution) the spectral resolution of these data is restricted to no 
more than four multispectral broadband channels and they do not provide channels in the mid and 
thermal infrared region of the electromagnetic spectrum. This is a disadvantage for the spectral 
discrimination of vegetation classes (Mumby & Edwards 2002, Thenkabail et al. 2004b, Goetz et al. 
2003). It should be possible, however, to compensate for these spectral deficiencies of the high 
spatial resolution data (compared to medium or low spatial resolution data with more spectral 
channels) by incorporating the increased amount of spatial information contained in these data in 
the classification process. 

2.3 Texture and its Role in Land Cover and Forest Classification 

Texture is a key element for visual image interpretation, used for example in manual vegetation 
mapping from aerial photographs. Humans have the innate ability to recognize textural differences 
in images, being able to identify areas in the image as smooth or rough, coarse or fine. Texture 
provides structural information to the interpreter. The transfer of this information source into the 
domain of digital image processing has proven rather difficult, so that in most cases only tone, i.e. 
the spectral information in a set of image bands, has been used in digital satellite image 
classification. 
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Texture in an image is a function of the spatial arrangement of tones or grey levels within an image 
band, i.e. grey level differences or contrast, the size of the area where change occurs and the degree 
of directionality or regularity (Hall-Beyer 2002). The latter characteristic is also known as ‘pattern’ 
and not included in the narrower definition of texture in visual image interpretation (Campbell 
1996), but both elements are usually incorporated in the term texture in digital image processing. 

For texture to become useful in image classification, the objects to be classified have to be larger 
than the size of the pixels (Woodcock & Ryherd 1989), so that each object contains enough pixels 
to make an analysis of their spatial arrangement feasible. Thus, spatial information in addition to 
spectral information becomes increasingly useful when the spatial resolution of the imagery is 
increased (Chen et al. 2004). According to Curran (1988), the range of the variogram, while 
indicating the minimum pixel size for per-pixel spectral classifications, marks the upper limit of the 
pixel size if the pixels are to be used to derive a measure of class texture. In order to fully exploit 
high resolution satellite data like IKONOS, texture information should be incorporated in the image 
analysis (Dikshit & Roy 1996, Kayitakire et al. 2002) so that the internal spectral variability of the 
classes is used as a source of information and not discarded as noise.  

Several methods have been developed to quantify image texture. They can be assigned to two broad 
categories: statistical and structural approaches (Haralick 1979, He & Wang 1990). Statistical 
approaches aim to characterize the stochastic properties of the spatial distribution and relationships 
of grey-levels in an image. Statistical texture measures can be classified as first order, second order 
and higher order textures. First order texture measurements are calculated directly from the original 
digital numbers (DNs) of an image, usually under a moving window. Second order texture 
measures are based on the relationship between groups of two pixels. Third and higher order texture 
measures, involving groups of three or more pixels, are also possible. They are, however, connected 
to an increase in computation time (Anys & He 1995) and interpretation difficulties, so that they are 
usually not implemented in the context of the classification of remotely sensed images. 

Structural approaches regard texture as a repetitive pattern of primitives which can be more 
complex than grey levels of single pixels. Fourier spectrum analysis is one of the methods used to 
determine the placement rule responsible for the pattern of primitives. The texture of remotely 
sensed images, however, is stochastic in nature, with a considerable spatial variation of primitives, 
hampering the determination of a placement rule (Pizzolato et al. 2003, Hay & Niemann 1994). As 
a consequence, structural approaches are rarely used in remote sensing.  

GLCM texture 

A frequently used statistical method for second order texture extraction is based on the Grey-Level 
Co-Occurrence Matrix (GLCM). The GLCM is a matrix of the relative frequencies P(i,j) with 
which two neighbouring pixels with a defined spatial relationship and with the combination of grey 
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levels i and j, occur in an image window, or more specifically in an image window centred on the 
pixel for which the texture is calculated (figure 2). Grey-tone co-occurrence statistics were first 
used for texture discrimination by Julesz (1962). Haralick et al. (1973) proposed 14 different texture 
measures which can be extracted from the GLCM. Apart from the specific GLCM texture measure, 
there are several other control variables for this kind of texture analysis: the input channel, the 
window size, the number of grey levels to which the input data is scaled down for GLCM 
calculations and the spatial relationship of the neighbouring pixels (offset distance and direction). 
This leads to a very large number of possible GLCM texture features which can be calculated from 
one image. 

 

Figure 2: A 5×5 image window and the corresponding Grey-Level Co-Occurrence Matrix (spatial relationship in this 
case: neighbour pixel is defined as the one directly to the right of the reference pixel). Read: grey level 2 occurs next to 
grey level 2 one time; grey level 3 occurs next to grey level 2 no time; … 

A number of recent Canadian studies have found that the inclusion of GLCM texture features 
improved forest classifications when using high resolution airborne data (Franklin et al. 2000, 
2001a, Treitz & Howarth 2000b) and IKONOS panchromatic data (Franklin et al. 2001b). GLCM 
texture features derived from IKONOS and higher resolution airborne data, together with spectral 
data, have also been used to determine forest parameters like leaf area index (Colombo et al. 2003), 
defoliation severity (Moskal & Franklin 2004) and a forest structure index which included canopy 
closure, leaf area index and the density of blown down trees and dead stems (Cosmopoulos & King 
2004). Franklin et al. (2003) use GLCM texture measures derived from medium resolution data 
(Landsat TM) to discriminate between conifer height, age and crown closure classes in a relatively 
homogeneous boreal forest, while Kimes et al. (1999) use secondary forest SPOT HRV and GLCM 
texture to map secondary forest age in Amazonia. 

In the field of more general land use and land cover classifications, GLCM texture has been 
successfully used in combination with spectral data by Narasimha Rao (2002), using IRS-1D 
panchromatic data (6 m spatial resolution), Kiema (2002), using SPOT panchromatic data, and 
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Franklin & Peddle (1990), Gong et al. (1992) and Marceau et al. (1990), using SPOT HRV data. 
Presutti et al. (2000, quoted in Presutti et al. 2001) found that the inclusion of texture in a land 
cover classification with RADARSAT and Landsat TM data improved the classification accuracy 
for forest classes by 25 % and somewhat less for urban and agricultural classes. Fransson et al. 
(1999), however, did not find an improvement in the identification of clear cut areas when including 
SAR data derived GLCM texture features. 

First-order texture measures 

Statistical texture measures calculated from the original pixel values (first-order texture measures) 
include local variance. Here, the variance (or sometimes the standard deviation) of the grey levels 
in an image window is calculated and assigned to the central pixel of the window, which then 
continues to move over the whole image. 

Local variance in high resolution (IKONOS) imagery, calculated in filter windows of varying sizes, 
has helped to improve classifications of mangroves (Wang et al. 2004c) and marine habitats 
(Mumby & Edwards 2002). Ferro & Warner (2002) achieved a slight improvement in land cover 
classification accuracies when including variance calculated on high resolution airborne imagery. 
Coops & Culvenor (2000) relate variance to the spatial pattern of trees modelled in simulated high 
resolution imagery and Zhang (2001) uses variance for the detection of urban tree covered areas in 
very high resolution airborne data. 

The usefulness of local variance decreases when the spatial resolution gets coarser. In the study of 
Chen et al. (2004), the inclusion of variance improved the classification accuracy for an urban area 
for imagery of 4, 8 and 12 m spatial resolution, but not significantly if the resolution was 16 m or 
more. Local variance derived from IKONOS data improves the classification accuracy of marine 
environments, but is not useful when derived from Landsat data (Mumby & Edwards 2002). Asner 
et al. (2003) find local variance to be valuable for the delineation of cleared lands from forest with 
Landsat TM data, while more detailed structural differences within the forest (logging damage) 
could not be resolved with Landsat ETM+ spectral and textural data, because the spatial resolution 
was insufficient (Asner et al. 2002). 

For land cover classification purposes, local variance has the disadvantage that it also works as an 
edge detector with high values near the edges of objects so that the differences of texture within 
different class areas can be outweighed by the effect of the between-class texture (Woodcock & 
Ryherd 1989).  

Other statistical measures which can be calculated in a moving window include the first order 
measures mean, skewness, kurtosis, minimum and maximum. Debeir et al. (2002) used these first 
order statistics and auto-correlation measurements to incorporate textural information in Landsat 
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TM land cover classification. This improved classification results significantly, but it also 
introduced artefacts leading to misclassifications around the edges of homogeneous spectral zones.  

Variograms 

Another second order statistical method is to use coefficients of the variogram (e.g. range and sill) 
as texture parameters. Variogram derived parameters like range and sill estimates have been linked 
to forest biophysical parameters and stand structure (Colombo et al. 2003, Bruniquel-Pinel & 
Gastellu-Etchegorry 1998, St-Onge & Cavayas 1997, Hese 2001). Song & Woodcock (2002) 
studied the relationship between forest age (tree size), spatial resolution and the variogram. Tree 
size and density affect the range of the variogram (the distance between two pixels at which the 
observations become independent). St-Onge & Cavayas (1997) regard the variogram range as a 
good indicator of texture coarseness. Calculating the experimental variogram in a moving window 
and adjusting a theoretical model variogram to these calculations to derive texture measures for 
each pixel is computationally expensive, however. In many cases, variogram texture measures are 
only calculated for some transects in the land cover classes of interest and not directly integrated in 
image classifications (e.g. Sampson et al. 2001). This approach will also be followed in this study. 

Other texture concepts  

A method belonging to the structural approach of texture extraction is presented by Hay & Niemann 
(1994) and Hay et al. (1996) for the analysis of high resolution forest imagery. They use object-
oriented image primitives for the discrimination of forest stands of different height, crown diameter 
and density, with promising results for the classification of these structural parameters in relatively 
homogeneous forest stands. Other texture measures which have been studied in relation to forest 
and land cover classification but are not widely used are based on Fourier analysis (Riou & Seyler 
1997), Gabor filtering (Pizzato Angelo & Haertel 2003), wavelet transforms (Myint 2001, Simard et 
al. 2000) and a Markov random field model (Palubinskas et al. 1995). 

Comparison of different texture features 

Carr & Miranda (1998) compare the co-occurrence matrix to a method based on the variogram for 
texture classification and conclude that, while for microwave images the variogram method results 
in improved accuracy, for optical images both textural classifiers yield similar accuracies. Lloyd et 
al. (2004), however, find statistics derived from the variogram more helpful for the classification of 
an agricultural area than GLCM texture. Franklin et al. (2001b) find GLCM homogeneity more 
useful for distinguishing between Douglas-fir forest age classes than the first-order texture measure 
variance. Gong et al. (2002) achieve better results with the GLCM angular second moment feature 
than with first order standard deviation, but they achieve the best results with a combination of 
both. Coburn & Roberts (2004) compare local variance and GLCM texture for coniferous forest 
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classification and while both improve classification results compared to spectral data alone, local 
variance leads to slightly better overall results. Wulder et al. (1998) find that regarding the 
prediction of the leaf area index, first-order texture measures work best for homogeneous stands, 
while second-order and semivariance-based texture measures are better for heterogeneous forest 
stands.  

On the whole, the texture in high resolution images is strongly correlated with forest structure, 
while texture derived from medium resolution imagery is less useful for forest classification (St-
Onge & Cavayas 1995). For the classification of relatively heterogeneous natural and semi-natural 
forest areas using high resolution optical imagery, as it is intended in this study, the use of GLCM 
texture features or a combination of GLCM and first order local variance appears to be a promising 
approach.  

Problem of optimal window size 

Most types of image texture, including GLCM texture measures and local variance, are produced by 
performing calculations on the DNs (digital numbers) of the pixels in a window centred on the pixel 
which receives the resulting texture value. In these calculations, the size of the window can be a 
more important factor than the choice of statistics used as texture measures (Marceau et al. 1990). 

For stable texture measures which are representative of the land cover classes in the image, window 
sizes must not be too small (Franklin et al. 2001b), but large window sizes lead to increasing edge 
effects (Ferro & Warner 2002). Franklin et al. (2001b) calculate variance and GLCM homogeneity 
from an IKONOS panchromatic image (1 m resolution) using three different window sizes (5×5, 
15×15 and 25×25). The separability of forest age classes increased with window size and was 
highest when the 25×25 pixel window was used, but the test pixels for this study were all located 
near the stand centres so that edge effects could not occur. 

Ferro & Warner (2002) agree that large window sizes are needed to produce stable texture 
measures. But when they used the local variance, calculated on 1 m resolution imagery with 
different variance filter window sizes, they included areas near the edges in the evaluation of the 
results. Variance in combination with spectral information improves class separability away from 
class edges, but for pixels near class edges, when the filter window covers more than one class, 
between-class variance is measured instead of within-class variance, leading to a decrease in class 
separability for these areas. As the windows get larger, the proportion of pixels being assigned 
between-class texture values rises (figure 3). This proportion is of course also dependant on the size 
of the contiguous class areas. In landscapes with small class areas, edge effects may lead to a 
decrease in the overall classification accuracy when texture is included.  
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Woodcock & Ryherd (1989) tried to reduce edge effects by using small 3×3 ‘adaptive windows’ to 
calculate variance. These windows were not necessarily centred on the pixel receiving the texture 
value but chosen from all 9 windows including the pixel using the criterion of least variance. The 
resulting texture images were not really satisfactory though because of their blocky appearance, 
although the edge detection effects of local variance where somewhat reduced (Ryherd & 
Woodcock 1996, Ferro & Warner 2002). 

 

Figure 3: Proportion of within-class texture pixels to total pixels. From: Ferro & Warner (2002). 

Chen et al. (2004) use local variance calculated with different window sizes on images with 
different spatial resolutions for the classification of an urban environment. They find that small 
window sizes are good for homogeneous classes, while heterogeneous classes need larger texture 
windows. Larger windows (measured in pixels) are needed for finer resolution images. The best 
overall results in this case are achieved with 5×5 windows when using 4 m resolution data and 3×3 
widows for 8 m resolution data. When deriving texture from medium resolution satellite data, 
window sizes usually have to be small because most land cover classes do not have large enough 
contiguous areas to allow for the use of windows covering many pixels. Arai (1992), using Landsat 
data, takes only window sizes between 2×2 and 4×4 into consideration for the improvement of class 
separability with first order texture. 

Larger windows than that are recommended as a basis for the calculation of second order texture 
features (PCI Geomatics 2003). Marceau et al. (1990) test seven window sizes between 5×5 and 
49×49 for the calculation of GLCM texture measures from SPOT XS data (20 m resolution). They 
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find that window sizes of 17×17 and 25×25 lead to the best classification results for most land cover 
classes in their Canadian study site. Wulder et al. (1998) use the variogram range as an indication 
for the best window size for the calculation of first- and second-order texture measures which are 
then used as a surrogate for forest structure in leaf area index estimations. Based on 1 m resolution 
airborne data, the variogram ranges suggest window sizes between 7×7 and 11×11. Coburn & 
Roberts (2004) compare and combine window sizes between 5×5 and 15×15 for the texture aided 
classification of coniferous forest stands in a 4 m resolution image. They achieve the best overall 
results when texture measures calculated from different window sizes are combined, capturing the 
different scales of information in the image. 

Most examples for the use of texture in forest classification which can be found in the literature 
regard the classification of temperate and boreal forests or simulated forest images. Studies in the 
tropics, like those of Asner et al. (2003) and Kimes et al. (1999), who use texture derived from 
medium resolution satellite data for land cover classifications in Amazonia, or that of Wang et al. 
(2004b), who use IKONOS texture data for mangrove classification, are rare exceptions. This study 
will use texture derived from high resolution satellite data in the classification of a heterogeneous, 
partly forested tropical mountain landscape. 

2.4 Image Segmentation  

Image segmentation aims at dividing an image into a number of spatially continuous, non-
overlapping regions which are homogeneous with respect to some characteristic or characteristics 
(Pal & Pal 1993). Image segmentation followed by per-segment (per-object) classification instead 
of per-pixel classification is one way to reduce within-class variability and noise in the 
classification of textured high resolution imagery. Using the statistics of segments (groups of 
pixels) instead of single pixels can increase class separabilities and classification accuracy (Lobo 
1997). In contrast to block averaging, the aggregated groups of pixels which are the result of 
segmentation processes are intended to be meaningful image units, representing image objects or 
parts of objects (‘object primitives’). This allows the use of object oriented image processing 
methods, analysing image units which carry more semantic information than single pixels. This 
method also avoids the reduction of the spatial resolution entailed by block averaging and makes 
use of the spatial information which is present in the image. 

Sometimes the borders between objects are known beforehand, for example in the form of vector 
data depicting the boundaries of agricultural fields or forest stands in a GIS database, making it 
possible to use per-field classification techniques on that basis (Aplin et al. 1999, Kayitakire et al. 
2002). As long as such vector data is not available, image segmentation is the prerequisite for object 
oriented image processing. 
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Image segmentation techniques have long been applied in the field of computer vision and pattern 
recognition, as segmentation is the foundation of low level vision. Haralick & Shapiro (1985) and 
Pal & Pal (1993) present reviews of segmentation methods. However, not all of the methods which 
are developed for the segmentation of e.g. grey tone images or images used in the field of medicine 
are also suitable for segmenting multi-spectral satellite images of forested areas.  

In order to group contiguous pixels in a meaningful way, some kind of homogeneity criterion has to 
be found which links these pixels, while excluding pixels from neighbouring regions representing 
different objects of interest. For the purpose of forest type classification, objects of interest are 
regions of a common forest type covering all the elements of this forest type, so the desired 
segments may be quite heterogeneous with respect to the spectral properties of the included pixels 
(Pekkarinen 2002). This makes it more difficult to join pixels to meaningful units and to find the 
borders between different vegetation types. 

The techniques which are used to segment remotely sensed images can be grouped into pixel-, 
edge- and region-based methods and their combinations. 

Pixel-based segmentation methods start by grouping the pixels using thresholding or clustering in 
the feature space (see also chapter 2.6). This can be regarded as unsupervised classification rather 
than segmentation, because spatially unconnected areas can end up belonging to the same cluster. 
Segments are then defined as connected components of the same cluster (Haralick & Shapiro 1985). 
Such methods, based on the image histogram or multiple-band feature space are not suitable for the 
segmentation of noisy or textured images (Pal & Pal 1993). 

Edge-based segmentation methods employ edge detection algorithms to find the edges of the 
different regions of an image. Edge operators such as the Sobel filter are used to enhance edges 
(points of abrupt changes in grey values). Thresholding is employed to determine the edge pixels in 
the enhanced image and finally, these edge pixels are linked to contours. If these contours surround 
a region, a segment is created, but there is the problem that there are often gaps in the edges so that 
the segmentation cannot be completed with this method alone (Pekkarinen 2002, Haralick & 
Shapiro 1985). 

The majority of authors who seek to segment remotely sensed images use region-based methods. 
These methods involve region growing, region merging, region splitting or combinations thereof. 
Pure region splitting, where the image is split into successively smaller segments (e.g. by 
quartering) as long as the resulting segments are not homogeneous enough, are usually not used in 
practice because of the squarish, artificial looking results (Haralick & Shapiro 1985). Region 
growing involves the identification of starting points (seed pixels) from which regions are grown in 
an agglomerative manner by joining similar neighbouring pixels to them. In the case of centroid 
linkage region growing, each time a new pixel joins a region, the average value of the growing 
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region is updated. If pixels are rejected because they are not similar enough, they form starting 
points for new regions. St-Onge & Cavayas (1997) use this method for the segmentation of 
simulated and real high resolution forest images, based on the similarity of a multidimensional 
value composed of three texture parameters. They come to the conclusion that precise segmentation 
is easier for closed than for open forest stands. Hill (1999) uses a combination of edge detection and 
region growing to segment separate bands of a Landsat TM image with the aim of reducing the 
spectral overlap between tropical forest types. 

Region merging consists of merging adjacent regions if they conform to a homogeneity criterion. 
Several techniques involving region merging have been developed to deal with textured data. Lobo 
(1997) starts by repeatedly running an edge preserving smoothing algorithm over the first principal 
component of his multispectral image, creating small homogeneous regions. Then he employs an 
iterative region merging technique to merge adjacent regions if they are the most similar neighbours 
to each other (local mutual best fitting criterion) and if their distance in the multispectral space does 
not exceed a user-defined threshold. Pekkarinen (2002) suggests a two-phase approach for the 
segmentation of a high resolution image of a forested landscape. The method consists of a low-level 
segmentation on a per-pixel basis (clustering and labelling connected components) and a second 
step using a region merging technique. However, using the derived segments did not significantly 
improve the results of his tree volume estimations. Fransson et al. (1999) perform a segmentation 
on a SPOT optical satellite image and transfer the resulting segment boundaries to noisy SAR data 
in order to be able to extract per-segment information from both optical and radar data. Beaulieu 
(2004) describes the development of a region merging technique for SAR data with speckle noise 
which includes a shape criterion favouring merges which produce compact segments. 

A similar shape criterion is also part of heterogeneity criterion used to decide which regions to 
merge in the segmentation technique which is embedded in the ‘eCognition’ software. This 
segmentation technique starts with single pixels as the basic regions or image object primitives, and 
merges neighbouring object primitives in subsequent steps. In order to let regions grow 
simultaneously in the whole image and to end up with comparable image object primitives of 
similar sizes, subsequent merges are placed as far as possible from each other in the image, and 
each region is treated once per cycle, looking for the pair with the ‘local mutual best fitting’ in the 
vicinity of each object. Two adjacent regions are thus merged if they fulfil the local mutual best 
fitting condition and if their degree of fitting (defined as the change in heterogeneity caused by the 
proposed merge, weighted by the region size) does not exceed a user defined threshold. The user 
can set a so called ‘scale parameter’ which defines the threshold and thus influences the size of the 
resulting image object primitives. It is also possible to construct a hierarchical network of image 
objects or object primitives at different scales, from the pixel level to large objects (multiresolution 
segmentation). The degree of fitting, which is calculated for every possible merge, is a combination 
of the influence this merge would have on the heterogeneity in the feature space (‘spectral 



 2 Methodical Background  

26 

heterogeneity’) and a criterion describing the change in spatial compactness (‘shape heterogeneity’). 
The heterogeneity values are weighted by the size of the objects, so that smaller regions are 
favoured for merges. The heterogeneity in feature space is calculated, for a user-defined number of 
image channels or layers of the source data, as the sum of the standard deviations of the values in 
each channel, weighted by the channel weights (Baatz & Schäpe 2000, Baatz et al. 2002). 

In recent years, this segmentation technique offered by the eCognition software has been tested in a 
number of studies (e.g. Tufte 2003, Mitri & Gitas 2004). Due to its ability to produce meaningful-
looking segments even in textured high resolution data, the software was used for the segmentation 
of IKONOS data by Giada et al. (2003) to gain information about tents in a refugee camp, by 
Meinel et al. (2001) for an urban land use classification, by Hay et al. (2003) to extract image-
objects from an IKONOS sub-image of a landscape with a mix of forestry and agriculture and by 
Wang et al. (2004c) for mangrove mapping. Other forest applications are described by Herrera et al. 
(2004), who segment scanned aerial photographs with 3 m spatial resolution, and by de Kok et al. 
(2000). Koch et al. (2002, 2003) use eCognition for a segmentation based forest classification using 
a combination of Landsat ETM+ and IRS pan (5.6 m resolution). They conclude that this is a 
suitable method for the classification of forest types but that some information is lost due to the 
generalisation entailed by the treatment of larger objects as a whole. Wang et al. (2004c) also point 
out that, while segmentation and object-based processing reduce within-class variabilities and 
increase the spectral separability of the classes, there is the risk of incorporating pixels from 
different classes into one object primitive, resulting in misclassifications. This ‘mixed object’ effect 
could not be avoided in their attempts to separate different mangrove types. 

Possible per-segment (object-oriented) classification methods are discussed in chapter 2.6. 

2.5 Multi-Source Data Integration and GIS in Vegetation Mapping 

Advances in space and computer technology during the last decades and the increased availability 
of digital geographic information about the Earth’s surface entail that in more and more cases, 
digital land cover classification is based not just on multispectral data from one sensor, but on data 
sets including data from different sources. The integration of complementary data in order to 
enhance the information which is extracted from a data set can involve different combinations of 
data and different integration methods. Possible data combinations include the integration of 
different kinds of remote sensing data (multispectral, panchromatic, textural), from one or multiple 
sensors, or the integration of remote sensing data with ancillary geographical data like digital 
elevation model (DEM) data with the help of GIS (geographical information system) techniques.  

Most authors integrate multispectral and textural data at the pixel level by including the texture 
features as additional channels in the data set (e.g. Treitz & Howarth 2000b). Various methods are 
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used for the integration of multi-sensor remotely sensed data. They can be fused at the pixel level 
(e.g. sharpening a multispectral image with a higher resolution panchromatic image), at the feature 
or object level (e.g. after segmentation) and at the decision level (after first classifying them 
separately) (Pohl & van Genderen 1998). Especially the data integration at the pixel level requires 
that the data are precisely co-registered to each other. Scarth et al. (2001) use local variance derived 
from high resolution video data to optimise a geometric-optical model applied to Landsat TM data 
for the estimation of forest structure parameters. Kiema (2002) combines SPOT panchromatic, 
SPOT-derived texture data and multispectral Landsat TM data by simply adding channels, having 
resampled the Landsat data to 10 m pixel size. Amarsaikhan & Douglas (2004) integrate SPOT XS 
multispectral optical and SAR data creating new, fused image channels through band ratioing, 
intensity-hue-saturation transformation, among other techniques. For the integration of remotely 
sensed data, pixel-based methods like the additional channel concept and the channel fusion for 
enhancing the resolution of a multispectral image are most common. 

Apart from the integration of remotely sensed data and data layers that are directly derived from 
them (e.g. texture parameters or vegetation indices) there are also other sources of geographic 
information which can be included in the classification process in the form of ancillary data. 
Ancillary data can be defined as non-remotely-sensed data, collected independently and used to 
assist in the analysis or classification of remotely sensed data (Campbell 1996). They may consist 
of digital elevation data or digitised soil and geological maps, among others. Not all types of 
ancillary data that may be available for an area are compatible with the remotely sensed data. The 
additional information should only be used if it is significant for the distribution of the classes 
which are to be mapped. It must be possible to integrate all the data in a GIS setting, so the ancillary 
data must be in digital form and in the same reference system, as well as accurately registered to the 
other data layers. They should also be compatible with respect to scale (level of detail). Some 
ancillary data derived from thematic maps contain discrete classes, contrary to the continuous 
nature of the remotely sensed data. In addition, the map derived information may not be metric 
(quantitative) at all but nominal / qualitative (e.g. soil types). These differences in data types limit 
the methodical possibilities of data integration.  

Topographic (DEM derived) data have been used to improve vegetation mapping efforts based on 
satellite imagery from the early times of satellite remote sensing (e.g. Strahler et al. 1978). The 
topographic variables elevation, slope and aspect can be seen as surrogates for climatic data such as 
temperature and moisture conditions (Woodcock et al. 2002). The natural vegetation of an area is 
directly influenced by the local moisture regime, temperature regime, nutrient availability and solar 
radiation. These environmental gradients are in turn determined by climate, topography and geology 
(Franklin 1995). While climatic variables are most important for determining the vegetation 
patterns of large areas, at landscape scales, the topography modifies the macroclimatic variables. 
The elevation has an effect on temperature and precipitation and can thus correspond to a vertical 
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zonation of vegetation. Aspect and slope determine the local insolation regime and slope is also 
related to hydrology and thus soil moisture. Other topographic variables which can be derived from 
DEMs and which are related to vegetation patterns include the slope curvature and the specific 
catchment area (Florinsky 1998, Franklin 1995). It is possible to model the potential vegetation 
using topographic variables (Felicísimo et al. 2002) and / or other ancillary data, and then to use 
remotely sensed data only to differentiate between natural vegetation (e.g. forest) on the one hand 
and disturbed areas or land use types on the other hand. For the purpose of improved vegetation 
mapping however, it is only practical to use such GIS methods for stratifying the study area into 
areas of potential vegetation if sufficiently accurate and detailed maps of the controlling 
environmental variables (or their surrogates) are available or if these variables are easier to map 
than the vegetation itself (Franklin 1995). Modelling vegetation distributions with GIS also requires 
extensive knowledge about the relationships between the known environmental variables and the 
local vegetation types. 

There are three stages at which ancillary environmental data can be incorporated with the satellite 
imagery for vegetation classification (Hutchinson 1982): 

- before classification for a stratification of the study area;  
- during classification (inclusion as additional variables in a classification or for modifying 

prior probabilities in a maximum likelihood classification);  
- after classification for post-classification sorting. 

Stratification divides the study area into smaller areas or strata. Its first aim is to reduce the number 
of potential classes in any sub-area, making it possible to assign different classes to spectrally 
similar units depending on which stratum they belong to. The second aim is to reduce the variation 
within strata, considering that the spectral characteristics of one informational class tend to vary 
over distance, for example because of varying atmospheric conditions or different substrate 
(Hutchinson 1982). This is a deterministic approach requiring the creation of strata masks using the 
ancillary data (Florinsky 1998). The approach is most promising for large study areas. Helmer et al. 
(2002) stratified the area of Costa Rica into 10 sub-areas based on geoclimatic and geologic maps, 
before mapping vegetation formations using Landsat TM data. This approach helped in the 
mapping of forest formations, but the abrupt boundaries between strata also resulted in some 
misclassifications where the real transition between vegetation formations was more gradual and 
patchy than predicted by the strata boundaries. Stratification has to be conducted with care, because 
incorrect stratification criteria will prevent correct classification later on. The separate classification 
of the strata requires an adequate number of training samples for every class in every sub-area. 
Inconsistent training sets for classes in neighbouring strata may result in class boundary offsets in 
the final merged map (Hutchinson 1982). 
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When including ancillary data in the classification itself, the most straightforward approach is to use 
the ancillary data as additional variables in a multivariate classification. The new data are simply 
combined with the remotely sensed data as additional channels. This technique has been called the 
‘logical channel’ or ‘stacked vector’ approach (e.g. Benediktsson et al. 1990). Dymond & Johnson 
(2002) use this probabilistic approach for the combination of modelled biophysical data and 
Landsat TM spectral data, to improve the classification of Canadian mountain forest. Treitz & 
Howarth (2000b) use terrain variables successfully as additional channels in a linear discriminant 
analysis. In contrast, Arora & Mathur (2001) find that the inclusion of slope and aspect as 
additional channels in a maximum likelihood classification (MLC) did not improve the average 
accuracy in their land cover classification. The additional channel method can introduce new 
problems in the classification (Florinsky 1998), because of different data types and the difficulty of 
obtaining sufficient samples to represent the range of all variables for each class. There is the 
danger that the classification accuracy is decreased for land cover classes which are independent of 
the additional variables used. These classes may thus need to be treated separately during the 
classification (Strahler et al. 1978). Another way to include ancillary information during the 
classification is to modify the prior probabilities in a maximum likelihood classification depending 
on the ancillary data (Strahler 1980), but this approach has not been widely adopted. Liu et al. 
(2002b) integrate satellite and ancillary data by assigning conditional probabilities to all data layers 
in a rule-based expert system classifier using Bayesian probability reasoning.  

Both the stacked-vector approach and the prior probabilities method require very intensive 
sampling to adequately characterise the relationship between the classes and both the spectral and 
the ancillary data (Hutchinson 1982). Sampling costs can be the limiting factor in studies of tropical 
mountain forests with difficult access, which may rule out the use of these methods in some cases. 

An alternative to these probabilistic approaches are ‘artificial neural network’ (machine learning) 
approaches (see chapter 2.6). Using ancillary data as additional input for neural network 
classifications has the advantage that these systems are non-parametric so that input data can be of 
any type (Florinsky 1998). This can be a more suitable method for the inclusion of terrain 
parameters in a classification than the stacked vector approach in MLC (Arora & Mathur 2001), at 
least if the appropriate neural network models are used and if the training samples are representative 
(Benediktsson et al. 1990).  

After classification, ancillary variables can be used to divide a spectral class into different 
informational classes according to e.g. elevation or slope (Hutchinson 1982). The sorting technique 
is derived from GIS overlay analysis. Post-classification sorting, like stratification, is a 
deterministic approach and requires an understanding of the relationship between the classes of 
interest and the ancillary data for the formulation of sorting rules. The method can be used to 
resolve confusion between spectral classes using elevation data (Liu et al. 2002a, Colby & Keating 
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1998), other topographic variables (Vogelmann et al. 1998, Hutchinson 1982) or other GIS layers 
providing information about soil types, the location of water bodies, or other features (Sader et al. 
1995). Post-classification sorting is a simple, inexpensive way to make use of ancillary data and 
expert knowledge. It has the additional advantage that, being applied after the classification, it can 
be confined to deal with ‘problem classes’ only, and errors made in the construction of sorting rules 
can be easily undone.  

Some authors integrate ancillary data at several stages: Ma et al. (2001) use topographic data both 
as additional channels during the classification and for post-classification sorting. Ehlers et al. 
(2003) use a digital surface model for a stratification of their image, as part of a stacked vector 
during classification and also during post-processing. 

2.6 Classification Issues 

The partitioning of local observations into classes is a prerequisite for the creation of land cover 
maps. Digital image classification is the process of allocating image primitives (pixels or groups of 
pixels) to classes, usually according to their values in several spectral bands (Campbell 1996). 
Additional (non-spectral) data layers or contextual information can also be used in the classification 
process. Unsupervised classification methods are used to identify natural homogeneous groups 
(clusters) within the data. Only afterwards are informational labels assigned to the resulting groups 
or clusters. These methods have the disadvantage that the interpreter cannot influence the identity 
and extent of the resulting categories, which may then not correspond to the informational classes 
of interest. Supervised classification, by contrast, makes use of ground knowledge introduced 
through training areas (samples of known class identity) and extends it to the entire image with 
statistical methods (Lobo 1997). Each image primitive is characterised by n observations (the 
values in n data channels). The training samples are vectors in an n-dimensional space (the feature 
space). A supervised classifier uses the distribution of the training samples for each class to 
estimate density functions in the feature space and to divide the space into class regions (Fukunaga 
1990). 

A basic step in supervised image classification and mapping is the design of a realistic classification 
scheme, i.e. the definition of discrete informational land cover units which are separable with the 
available data (Cingolani et al. 2004). Informational classes determined by the interpreter or 
required by the prospective map user may not correspond to consistent classes in the data. It may be 
necessary to subdivide an informational class into several subclasses if it belongs to separate 
clusters in feature space or to merge several informational classes if they are not separable with the 
data used. 
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Feature selection and class separability 

A second basic step in image classification and mapping is the selection of an appropriate feature 
combination from the available data set (which may consist of spectral bands, textural features and 
other data layers) to be used for the separation of the classes. This step is not always necessary if 
only a small number of channels is available for classification. But having integrated a number of 
spectral bands and texture features, and perhaps also ancillary data like topographical variables as 
additional channels, the resulting vector can be too large for the classification algorithm to deal 
with. The data stack may also contain redundant or unhelpful data layers, making the classification 
unnecessarily slow. A reduced number of data layers may still contain sufficient information for the 
classification. Discarding some of the channels can even lead to improved classification results if 
the classifier used is impaired by high dimensionality data (see discussion of the maximum 
likelihood classification below) or by the statistical properties of some of the data layers (Peddle 
1993) or if the discarded data do not contain information helpful for the separation of the classes. 

A simple method to reduce the number of channels before classification is to look at the correlation 
between pairs of data layers and, in the case of high correlation coefficients, to discard channels 
which are regarded as redundant. Liu et al. (2002b) use this method to select data layers with small 
correlation coefficients out of a number of spectral and topographical features. Especially the large 
number of texture features which can be generated from the spectral data (see chapter 2.3) require 
the choice of a subset of features. One way to approach this task is correlation analysis. Gong et al. 
(1992), having generated ten GLCM texture features with partially very high correlation 
coefficients, choose three relatively little correlated ones for later combination with other features 
and classification. Correlation analysis is also employed by Narasimha Rao et al. (2002) as a first 
step during the selection of texture features. 

To simply find a set of channels which are not closely related to each other is not always a 
sufficient criterion for feature selection. If it is the objective to find an optimal subset of m out of n 
features (channels) for the discrimination of a given set of classes, one needs to apply feature 
selection methods based on separability measures, e.g. class divergence. The task is to determine 
the set of m channels which maximises the divergence between the classes for this reduced number 
of channels. The pairwise class divergence is a measure of statistical separation between two classes 
as characterised by the means and covariance matrices of the class training samples (Hill & Foody 
1994). The class divergence can be calculated relatively easily for Gaussian distributions 
(Landgrebe 2003). With increasing statistical separability between two classes, the divergence 
increases without bound. Classification accuracy, by contrast, cannot exceed 100 %. The 
transformed divergence was developed as a divergence measure which also reaches an asymptote 
(Singh 1987). It is based on a transformation of the divergence (using the exponent) and limits the 
transformed divergence to a range of 0 to 2 with larger increments for differences between small 
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divergence values. A divergence measure for not only two classes but all the pairs of classes can be 
calculated using averaging methods. Average interclass divergence is simply the average of the 
divergence for each pair of classes. This leads to a dominance of class pairs with very high 
divergence in the average value. Using the average transformed divergence instead reduces the 
dominance of class pairs with the highest divergence and helps to select the features which are best 
at differentiating even between relatively similar classes. 

Dikshit & Roy (1996) use the average transformed divergence as a measure of the relative 
capability of feature sets with and without textural data for the discrimination of class pairs. Chen et 
al. (2004) use transformed divergence for the selection of texture features. Singh (1987) and Hill & 
Foody (1994) use matrices of pairwise transformed divergence to study the separability of tropical 
forest classes with the help of Landsat data. 

Several authors have noted that there is no close correspondence between the average transformed 
divergence for a feature set and the accuracy achieved when they classified their image using this 
feature set (Chen et al. 2004, Gong et al. 1992). One of the reasons for that is the fact that 
separability measures are usually calculated from the training samples only. Therefore they cannot 
be expected to predict the exact classification accuracy for the whole image, if the training samples 
are not exactly representative of the whole image including areas of potential edge effects. Also, 
there is generally no one-to-one relationship between separability measures and classification 
accuracy. Instead, in the best case, a given value of a separability measure can determine a certain 
range of possible classification accuracies for the samples under examination (Landgrebe 2003). 
Separability indices are thus no linear predictors of classification results, but they do give an 
indication for the potential of a certain set of data layers to discriminate between the classes as 
represented by their class signatures. 

Another criterion for class separability is the Bhattacharyya distance. Like the divergence and 
transformed divergence, the Bhattacharyya distance in its common form is calculated from the class 
means and covariance matrices assuming normal distributions (Verbeke et al. 2004). It is possible 
to derive error bounds (upper and lower bounds on the probability of correct classification) for the 
Bhattacharyya distance and the related Jeffries-Matusita distance measure (Landgrebe 2003, 
Fukunaga 1990). The Bhattacharyya distance is recommended by Landgrebe (2003) as having a 
close relationship with the probability of correct classification. Wang et al. (2004c) use the 
Bhattacharyya distance to compare the class separability at the pixel level with the separability at 
the object level after segmentation with different scale parameters (using the mean spectral values 
of the resulting object in the separability calculation).  

Comparing several separability measures, Gong et al. (1992) found that Jeffries-Matusita and 
average transformed divergence performed similarly in the feature selection; and Treitz and 
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Howarth (2000b) found that in their case study, the Jeffries-Matusita distance and transformed 
divergence were better indicators for classification success than Bhattacharyya distance and simple 
divergence. 

Benediktsson et al. (1990) do not apply the above mentioned separability measures for a case of 
multisource data classification including topographic data, because the estimation of separability 
with a Gaussian assumption requires the computation of covariance matrices, and the fact that class-
specific topographic data sometimes have very little variation can prevent the computation of a 
covariance matrix. It is difficult to compute separability measures without the Gaussian assumption.  

Maximum likelihood classification 

Maximum likelihood classification (MLC) is the most widespread supervised classification 
technique in remote sensing. It has been widely used for the digital classification of satellite 
imagery since the 1970s (Strahler 1980). The term ‘maximum likelihood classifier’ is used here in 
the sense of the quadratic (Gaussian) classifier only. This is a statistical classifier which calculates 
the probability that an observation (pixel vector) belongs to a certain class according to a 
multivariate normal (Gaussian) density function. This involves a calculation of the distance between 
the observation and the mean vector of the class in feature space, corrected for the covariance of the 
class (modified Mahalanobis distance) (Liu et al. 2002b, Strahler 1980). The training samples are 
used to estimate the mean vector and covariance matrix for each class. The probability functions are 
calculated for all classes and the pixel is assigned to the class for which it has the maximum 
likelihood of membership. The class space in feature space can be limited by a so called ‘Gaussian 
threshold’, which is the radius (in standard deviation units) of a hyperellipsoid around the mean of 
the class in feature space (PCI 2001). In this case, observations which do not lie within the 
hyperellipsoid of any class are assigned to a ‘null class’.  

MLC assumes that the training data statistics are Gaussian in nature. If it is true that the class 
probability density functions are Gaussian, MLC is the optimal classifier which minimises the 
overall probability of error (Liu et al. 2002b). But experience shows that the maximum likelihood 
classifier is rather robust (Gong et al. 1992). It can tolerate moderate violations of its underlying 
assumptions and still yield classification results which may be superior to those of classifiers which 
do not employ the Gaussian model. Benediktsson et al. (1990) found that even for data which were 
not all normally distributed, the MLC yielded a better classification result than a minimum 
Euclidian distance classifier. 

For a statistical classifier using the multivariate Gaussian model, the computing cost grows as the 
square of the number of features (channels used) (Benediktsson et al. 1990). The required number 
of training samples to estimate the class statistics for a Gaussian (quadratic) classifier is also related 
to the square of the number of features (Fukunaga 1990). This gives rise to the ‘Hughes effect’: For 
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a finite number of training samples, the classification accuracy rises at first with the number of 
features (or measurement complexity), but then it reaches a maximum and starts to decrease when 
more features are added. While the class separability is always higher for higher dimensionality 
data (more measurements), the accuracy of the statistics estimation with a given number of training 
samples decreases when the dimensionality becomes too high, and at some point this leads to a 
lower classification accuracy in spite of better theoretical class separability (Landgrebe 2003). 

Hay et al. (1996) used a maximum of seven channels for the MLC because they feared a reduction 
of classification accuracy for higher dimension data sets. Peddle (1993) found that MCL was not a 
good classification technique for multi-source data sets (consisting of spectral, textural and DEM 
extracted data). The accuracies of classifications including the texture and / or the DEM derived 
data were lower than of those involving only the three spectral channels, except for the case when 
only the elevation was added as a fourth channel. The usability of MLC is limited for data sets with 
many channels, with data which are not normally distributed or with multi-source data with 
differing scales of measurement (Arora & Mathur 2001, Peddle 1993). 

The high spatial resolution satellite data which are available today tend to exhibit increased within-
class variability compared to the medium resolution satellite data which are traditionally classified 
with MLC. This means that the volume of feature space occupied by each class is expanded, leading 
to increased possibilities of class overlap in feature space. (Qiu & Jensen 2004). Statistical 
approaches which work satisfactorily for relatively low spatial resolution imagery with a limited 
number of channels may not be suitable for the high resolution and / or high dimensionality data 
sets which are increasingly used in digital land cover classifications. Moreover, ancillary data 
included in a classification are in most cases unlikely to conform to the assumptions of MLC. 

Alternative (non-parametric) classification methods 

Non-parametric classifiers are distribution-free, i.e. they do not make any assumptions about the 
mathematical form of the density functions (Fukunaga 1990). 

The k-nearest-neighbour classifier (k-NN) is a simple and robust non-parametric classification 
method (Debeir et al. 2002). It works by extending a local region around the vector of an 
unclassified image primitive until its kth nearest neighbour among the training sample vectors is 
found (according to the Euclidian distance in feature space). The class labels of these k nearest 
neighbours are determined and the unclassified vector is assigned to the majority class of its k 
nearest neighbours (Landgrebe 2003). The k-NN classifier is suitable for high dimensionality data. 
However, the number of samples which are needed becomes very large for a large number of 
channels. Fukunaga (1990) shows that for normal distributions and k=5, 150 samples are needed for 
8 channels, but for 16 channels the number of samples needed is already 34,000. Larger values of k 
are recommended for data with high variance (PCI 2001). Debeir et al. (2002) use a 5-NN classifier 
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for the classification of a large data set containing spectral, textural and ancillary data. Tuominen & 
Pekkarinen (2005) use a k-NN classifier with k=5 for the classification of a large data set derived 
from orthophotos (three spectral channels, channel ratios, texture features), aiming for an estimation 
of forest attributes. They find that for a combination of more than 10 features, the accuracy is not 
significantly increased any more. Collins et al. (2004) successfully classify a stacked vector data set 
consisting of Landsat multispectral channels, topographic data (elevation, slope and aspect) and 
modelled environmental gradients using a k-NN classifier, also with k=5. 

Another non-parametric classifier is the Artificial Neural Networks (ANN) classifier. Artificial 
neural networks are computational systems which imitate biological systems of information 
processing (artificial intelligence). They have been increasingly employed in remote sensing 
research since the 1990s (Franklin 1995, Sugumaran 2001). Neural networks are networks of 
interconnected artificial neurons (processing elements, also called nodes). The nodes are organised 
in layers (one input layer, usually one or several hidden layers, one output layer). Each node in one 
layer is connected to the nodes in the adjoining layers. The nodes in the input layer receive data 
from outside the network (e.g. one input node receiving the information from one remote sensing 
data channel) and pass on an output to the nodes in the next layer. The nodes in the other layers 
receive inputs from the nodes in the preceding layer and produce one output which they pass on. 
The output is produced by adding the weighted input from the nodes in the preceding layer and 
putting the sum through an activation function. In many cases, this is the sigmoid function, which 
reaches one when the input sum goes to infinity and zero when the input sum goes to minus infinity. 
The output of the nodes in the output layer indicates the classification result (Paola & Schowengerdt 
1995, PCI 2001).  

All the connections between the nodes carry weights which are set to random values before the 
network is trained. Training consists of finding the appropriate weights through an adaptive training 
procedure so that the output error is minimised. There are several learning algorithms for neural 
networks. In remote sensing and image classification, the most widely used learning algorithm is a 
supervised algorithm called back-propagation (Arora & Mathur 2001), employing the ‘generalised 
delta rule’. During the first phase of training a back-propagation network, the training sample 
vectors (with known classes / target outputs) are used as input for the network and propagated 
forward to compute the output values for each output node. The error between the actual and 
desired output is calculated. (In the case where each output node represents one class, the desired 
output is a high value, e.g. 0.9, for the node of the correct class, and a low value, e.g. 0.1, for the 
other nodes.) The second training phase is a backward pass from the output nodes through the 
network, during which the weights are changed according to the learning rate and the error signal 
passed backwards to each node (Benediktsson et al. 1990). This process (entering the training data, 
calculating the output error, adjusting the weights of the connections) is repeated many times 
(Foody 2004) until some condition is fulfilled, preferably until the network has stabilised so that the 
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error and the weight changes per cycle have become very small (iterative training). Once the 
network is trained, i.e. appropriate weights are found and fixed, all pixel vectors are fed into the 
network and classified. 

ANN classification has the advantage that it makes no assumptions about the data set, so that 
different kinds of data can be used as input. Typically, all input channels are scaled to a common 
range (usually values between 0 and 1 like the node output values) before training and 
classification. Benediktsson et al. (1990) conclude that neural networks need to be trained with 
carefully selected representative samples. But according to Paola & Schowengerdt (1995) and Qiu 
& Jensen (2004), ANN classifiers are robust to noise in the training data and able to generalise. 

It is often seen as a disadvantage of neural networks that they operate as a ‘black box’ (Franklin 
1995, Qiu & Jensen 2004) without the capability to explain the relationship between input and 
output. Due to their heuristic nature and the element of random variations in the results (because the 
weights of the connections are randomised before training), performance prediction and the analysis 
of results are difficult. Another disadvantage is that iterative training requires much more 
computation than parametric discriminant functions (Landgrebe 2003, Paola & Schowengerdt 
1995). Once the network is trained, however, the classification process as such is fast (Pal & Pal 
1993). 

Kimes et al. (1999) successfully employed neural networks to differentiate between primary and 
secondary tropical forest and less successfully for mapping secondary forest age using SPOT HRV 
spectral and textural data. Linderman et al. (2004) use ANN to map understorey bamboo from 
Landsat data. Comparing ANN and MLC, Paola & Schowengerdt (1995) found that maps produced 
from Landsat TM data were similar for both methods, but ANN was better at classifying mixed 
pixels and for one image produced a higher overall accuracy. Sugumaran (2001), classifying 
tropical forest and plantation types using IRS-LISS-III channels 1-3 (23.5 m resolution), achieved 
somewhat better results with ANN than MLC. Arora & Mathur (2001) find ANN superior for the 
multi-source classification of five broad land cover classes in a Himalayan region (using medium 
resolution spectral data and slope and aspect maps). Liu et al. (2002b) also achieve better results 
with ANN than with MLC for a land cover classification with medium resolution multispectral and 
ancillary GIS data layers. Most studies find ANN classifications result in higher accuracy than 
MLC, but that it takes a long time to train the neural networks (Sunar Erbek et al. 2004). 

To my knowledge, neural networks have not yet been used for tropical forest classification with 
high spatial resolution satellite data, but it does seem to be a promising approach especially for data 
sets which combine satellite and ancillary data. 
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Classification of segmented images (object-based classification) 

In a segmented image (see chapter 2.4), each segment (image object primitive) is characterised by 
an integrated measurement vector, consisting, in the most basic case, of the mean values (in n 
spectral channels) of the pixels forming the segment. Using the mean spectral values of the image 
object primitives increases the signal-to-noise ratio (Baatz et al. 2002) and reduces the spectral 
overlap between classes, especially in the case of high resolution data. It is possible to use image 
segmentation without per-object classification. Image segmentation and the calculation of per-
segment mean values can be simply used as a means of reducing the within-class variability while 
still subsequently using pixel-based training and classification methods, e.g. MLC (Hill 1999). 

In most cases, however, it is advantageous to classify a segmented image using image object 
primitives as the basic processing units (object-based classification). One of the advantages is that 
object-based image processing is compatible with vector-based GIS. In principle, image object 
primitives with their measurement vectors can be classified with the same methods as single pixels. 
The main difference is that there are fewer units to be classified if not every single pixel needs to be 
handled, which helps to increase the classification speed. On the other hand, the possible number of 
training samples is also reduced if objects instead of pixels are used as training samples. This can 
mean that it is not possible to find enough training fields to produce a good estimate of the class 
covariance matrices, especially for land cover classes which cover only a small percentage of a 
study are (Lobo 1997). This can preclude the successful application of statistical classifiers like 
MLC.  

In order to avoid the calculation of covariance matrices, non-parametric classification methods are 
often used in object-oriented image processing. Ma et al. (2001) use a nearest neighbour algorithm 
to assign classes to regions. The software eCognition also supports nearest neighbour classification 
for the classification of image object primitives in a multidimensional feature space. Here, each 
object is assigned to the class of its nearest neighbour (closest sample object) in feature space. This 
technique works with a small number of samples as long as the number of features used is also 
small (Baatz et al. 2002). De Kok et al. (2000) use eCognition for an object-oriented forest 
classification. Object-oriented image processing makes it possible to use features beyond the layer 
values as such, like object shape or the relationship to other objects or within-object texture (i.e. 
texture features which do not depend on a fixed window size). The hierarchical network of image 
objects of different scales, which can be constructed after multiresolution segmentation with 
eCognition, can be used to classify objects at one level based on the classification of their sub-
objects or super-objects (Mitri & Gitas 2004). 
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‘Soft’ or fuzzy classification versus ‘hard’ classification 

Conventional ‘hard’ supervised classification techniques assume that the classes are exhaustively 
defined and mutually exclusive (Foody 2004), so that each pixel belongs to one and only one of the 
pre-defined training classes. However, in the reality of land cover classification, and in particular in 
the classification of natural vegetation with remote sensing, there are several sources of uncertainty 
(ambiguity and boundary vagueness).  

Firstly, there are ambiguities on the ground. Natural vegetation often does not occur in discrete 
spatial and thematic units. Instead, it may vary continuously according to environmental gradients, 
leading to gradual transitions between the defined classes (vegetation types) with broad areas of 
high ambiguity in the transition zones. Another source of uncertainty is the fragmentation of land 
cover types or environmental heterogeneity, i.e. the inclusion of small areas of one land cover type 
in another type (Brown 1998). Even where there is a discrete boundary between vegetation types, 
due to abrupt spatial changes in environmental factors or due to the disturbance or land use history, 
individual interpreters might still draw the boundary lines slightly differently (depending on the 
level of generalisation, among other things). In addition, there are temporal continua, e.g. a 
secondary succession starting with a mainly herbaceous land cover, which develops first into a 
shrub-dominated land cover, then into a secondary forest and finally a mature forest (Brondizio et 
al. 1996). This entails that there are stages in the succession when the land cover is in a transitional 
stage between the defined land cover types of a classification scheme. Different classes may contain 
common elements (two forest types could for example share a tree species or the same kind of 
understorey vegetation). If such similar classes occur adjacent to each other, the boundary between 
them will be more vague than for classes with larger differences in their definitions. Numerical 
thresholds in the definition of land cover classes (like percent crown cover, or trees being defined as 
woody plants greater than 5 m in height) are idealisations of the natural world (Baatz et al. 2002). If 
we define open forest as forest with a crown cover below 60 % and then encounter a forest area 
with around 60 % crown cover, it will be impossible to determine a definite boundary line between 
open and closed forest which all interpreters would exactly agree on. 

Secondly, there are inherent uncertainties in the remotely sensed data which impede a direct, 
unambiguous link between the data and the type of the land cover. The same land cover type can be 
connected to different observations in different images (or even in different parts of the same 
image) depending on factors like illumination (sun-sensor-target geometry), season or weather. The 
sensor measurements have a limited radiometric, spectral and spatial resolution. The limited spatial 
resolution leads to the possibility of class mixtures within one pixel. Limits in the spatial, spectral 
and radiometric resolution (signal to noise ratio) of the sensor, together with spectral similarities 
between different land cover types, can cause it to be impossible to differentiate some land cover 
types with the measurements provided by the sensor (Baatz et al. 2002). 
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Due to all these factors, it is often not possible to assign every image primitive to exactly one 
correct class, even if the data processing methods, the training data and the classifier used are all 
optimal. Moreover, sometimes it would indeed be more appropriate to assign an image primitive 
partially to several classes, for example if it is a mixed pixel, or if the land cover (represented by the 
measurement) is in a transitional zone or a transitional stage between the pre-defined classes. 

In the object-oriented (GIS) context, two types of uncertainty are distinguished: attribute ambiguity 
(uncertainty about the thematic class to which objects or image primitives belong) and spatial 
vagueness, i.e. uncertainty about the location of object boundaries (Cheng et al. 2001). In a raster-
based classification, both types are closely interlinked (Zhang & Stuart 2001). Attribute ambiguity –
as far as it is due to the similarity of adjacent land cover types, gradual transitions between land 
cover types or uncertainty in labelling mixed pixels at class borders – leads to uncertainty about the 
location of boundaries between classes. Ambiguity tends to decrease with distance from boundaries 
(Brown 1998). 

Soft classifiers, in contrast to hard (or ‘crisp’) classifiers, are not limited to labelling one class as 
true and all others as false. Fuzzy classification, based on fuzzy set theory (originally introduced in 
1965 by Zadeh, cited in Cheng 2002 and Ricotta 2004), takes uncertainty into account by permitting 
partial membership to a class (set). Every image primitive is assigned a membership value in the 
range of 0 and 1 to every class, with 0 denoting no membership and 1 denoting certain membership. 
These values denote possibilities, not probabilities, so the values for all classes of one location need 
not sum to 1. Another approach to handle uncertainty is rough classification, where image 
primitives can be assigned three possible values for each class: not a member, maybe a member or 
certainly a member (Ahlqvist et al. 2000). Both approaches allow for overlaps between classes, i.e. 
image primitives belonging to more than one class simultaneously. 

The eCognition software produces a fuzzy output with its object-oriented classification. If the 
nearest neighbour classification is used, values in the range of 0 to 1 are assigned to every image 
object for every class, according to the distance in feature space to the nearest sample objects of 
each class. It is also possible to use fuzzy conditions for class membership (fuzzy logic) in 
eCognition (Baatz et al. 2002). Soft classifications can also be produced by ‘softening’ the output of 
‘hard’ classifiers (Woodcock & Gopal 2000). In MLC, instead of only assigning a pixel to the class 
of maximum likelihood in a binary decision, the next most likely classes (and possibly their 
probability functions) can also be retained in additional output channels, or the a posteriori class 
probability can be calculated and used as a measure of the relative strength of class membership 
(Paola & Schowengerdt 1995, Palubinskas et al. 1995, Ricotta 2004). In ANN classifications, the 
output values (between 0 and 1) of all output nodes (representing the classes) can also be used to 
produce a fuzzy classification output (Paola & Schowengerdt 1995). 
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Nevertheless, for the production of a vegetation map, it is usually seen as a practical necessity to 
classify the vegetation into a number of discrete vegetation types and to depict the class areas on the 
map with discrete boundaries. (Although there are some cartographic approaches like ‘epsilon 
bands’ where uncertain boundaries or transition zones are represented by more or less broad 
boundary lines or other symbols.) Even the results of soft classifiers are usually ‘defuzzified’ to 
produce standard land cover maps showing just the most likely class for every point (instead of a 
separate map sheet for every class, showing its probability or membership distribution over the 
whole area). The primary map output for display will usually be such a ‘hard’ classification, but 
geographical information systems could store fuzzy information as additional attribute information.  

2.7 Considerations for the Assessment of Classification Accuracy 

Thematic maps resulting from the classification of remotely sensed data should be accompanied by 
information about their accuracy, so that the user can estimate their reliability and applicability for 
the purpose at hand. Quantitative accuracy measures are also necessary to compare the relative 
accuracies resulting from different data processing methods. 

Classification accuracy is assessed by measuring the agreement between the classified image and 
reference data which is assumed to be correct (Campbell 1996). Site specific reference data (‘truth’) 
may consist of another map, if there is already a high accuracy map with a compatible classification 
of the area, but usually the reference data consist of a number of sample points (or areas). The class 
of these testing points is identified on the ground, or through manual interpretation of high or very 
high resolution remotely sensed data. Neither method guaranties that the reference data are 100 % 
correct – even if the classes of the sample points are determined in the field, there may still be errors 
due to a time lag between the field work and the acquisition of the classified image, or due to a lack 
of positional accuracy. This means that the reference data usually represents only a ‘relative truth’ 
and errors in the reference data, or in the registration between reference and classified image, will 
negatively influence the accuracy values which are calculated for satellite data classifications 
(Langford & Bell 1997).  

The degree of agreement between a classified image and reference data can be measured using 
several methods. In remote sensing studies, the classification accuracy is usually determined using 
measures based on an error matrix (also called confusion matrix or contingency table). For n 
classes, this is an n × n array where the rows represent the classified data while the columns 
represent the reference data, or vice versa. A number of techniques can be used to derive statistical 
measures of accuracy from the error matrix. The most simple of these accuracy measures is the 
overall classification accuracy (percentage correct), which is computed by dividing the sum of the 
elements in the main diagonal of the matrix (representing the number of samples with complete 
agreement) by the total number of samples (Congalton 1991). Accuracies for individual classes can 
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also be computed from the error matrix. For each class, two accuracy values (producer’s accuracy 
and user’s accuracy) have to be distinguished. The producer’s accuracy indicates the percentage of 
reference points of a certain class which have been assigned to the same class in the classified 
image. In other words, it measures the errors of omission. The user’s accuracy indicates the 
percentage of pixels assigned to a certain class in the classification which agree with the reference 
data. This is equivalent to errors of commission. 

The overall accuracy value (as described above) contains a proportion that is attributable to chance 
agreement between the two data sets. Cohen (1960) developed the Kappa coefficient as a measure 
of agreement which is adjusted for chance agreement. The expected chance agreement is calculated 
by adding the products of the row and column totals for each cell of the main diagonal of the error 
matrix, thus indirectly incorporating off-diagonal elements in the calculation (Congalton 1991). The 
Kappa index of agreement (KIA) is not as widespread as the overall accuracy (percentage correct) 
as a measure of classification accuracy in remote sensing studies, but it is also used by many 
authors (e.g. Dikshit & Roy 1996, Cingolani et al. 2004). Næsset (1996) describes the use of a 
weighted Kappa coefficient to evaluate the classification accuracy if all errors are not equally 
serious, i.e. if there are informational classes which are more closely related to each other than 
others. 

The measured accuracy of a classification depends on many factors besides the classification 
method. As a classification becomes more detailed (containing more informational classes which 
are defined more precisely), the potential information content of the resulting map increases, but at 
the same time the opportunity for classification errors also increases (Campbell 1996). It is usually 
possible to increase the overall classification accuracy by decreasing the detail or precision of the 
classification, e.g. by mapping just one general forest class instead of differentiating between 
several forest types (Laba et al. 2002). However, this may result in highly accurate maps which do 
not provide the information necessary for a certain purpose (e.g. monitoring the distribution of a 
specific ecosystem type like cloud forest). 

Mixed pixels and other edge effects can be a major source of classification errors, especially in a 
heterogeneous landscape. Many authors exclude areas near class boundaries from the accuracy 
assessment, with the argument that errors in these areas could be due to misregistration between the 
classified image and reference data. Some select testing pixels only in areas that clearly belong to 
the typical ‘core’ of classes, avoiding mixed pixels in border areas or areas of transition between 
defined classes (Hill 1999, Schlerf et al. 2003, Langford & Bell 1997). In some cases (where there 
are no independent testing points because of economic or temporal constraints) the same pixels that 
were already used to train the classifier are used for testing the accuracy (Strahler 1980). Such 
samples are obviously biased. All of these tactics lead to exaggerated accuracy values which do not 
represent the real classification accuracy for the whole image. 



 2 Methodical Background  

42 

Both the sample size (number of samples) and the sampling method have to be considered for the 
creation of an appropriate testing set. The sample size determines the confidence intervals of the 
accuracy estimates (Brogaard & Ólafsdóttir 1997, Næsset 1996). If confident estimates of the 
classification accuracies for individual classes are required, the sample size needs to be larger than 
for an equally confident estimate of the overall accuracy. Larger samples than for a simple 
calculation of the overall accuracy are also needed in order to adequately represent the confusion 
between all pairs of classes in the error matrix (Congalton 1991). The sample size is restricted by 
the expense of determining the truth values for a large number of testing points (Congalton 1991, 
Langford & Bell 1997). 

Sampling should be random in order to meet the statistical requirements of the Kappa analysis, 
among other statistical techniques that are based on the error matrix (Congalton 1991). However, 
pure random sampling may mean that classes of small extent fail to be represented in the sample, so 
stratified random sampling is frequently used in order to ensure that samples from all classes are 
included in the accuracy assessment (e.g. Helmer et al. 2002, Qiu & Jensen 2004). Stratified 
random sampling is also recommended by Congalton (1991). The prerequisite for a stratification of 
the sample is an existing map depicting the distribution of the class areas, so this is usually done 
after classification. Random sampling may lead to problems if the resulting samples are located in 
inaccessible areas where the true class cannot be determined. Because of this, some authors use 
cluster sampling, involving the selection of samples in previously known areas. Sampling of this 
type also helps to reduce the field access cost per sample. However, this will lead to a biased testing 
sample and an overestimation of the classification accuracy (Arora & Mathur 2001). Cluster 
sampling, and also systematic sampling, can produce spatially autocorrelated data. These sampling 
methods do not ensure that every individual in the population has an equal chance of being included 
in the sample, thus violating the requirements for inferential statistics (Næsset 1996, Brogaard & 
Ólafsdóttir 1997, Arora & Mathur 2001).  

Even if the same testing sample is used, the measured accuracy still depends on whether the 
interpreters assigning the ‘truth’ values to the sampling locations do this independently (blindly) or 
whether they know the classification result to be assessed and can be influenced by it, giving the 
benefit of the doubt in ambiguous cases. The latter method can lead to a strong increase in the 
overall accuracy value (Langford & Bell 1997). 

A per-pixel accuracy assessment with an error matrix is also possible for object-based classification 
results, and is used by some authors (e.g. Wang et al. 2004c). However, this way a single large 
misclassified object can have a disproportionate impact on the overall accuracy (de Kok et al. 
2000). This is why in some cases reference objects are used instead of reference pixels, but this may 
again lead to the problem that not enough samples can be found (Lobo 1997). Per-segment accuracy 
assessment also does not address the question whether object borders match class borders – an 



 2 Methodical Background  

43 

object primitive covering two land cover classes could be assigned to the majority class in both 
classification and reference, so no error for the misclassified part of the segment would be noted. 
There is not yet any generally accepted standard for automatic accuracy assessment of object-
oriented classifications, and the accuracy is sometimes evaluated only visually (de Kok et al. 2000). 
The accuracy assessment of object-based classifications in the eCognition environment can be 
conducted on a pixel basis or on a segment basis (Baatz et al. 2002). 

The accuracy assessment methods discussed above, which are based on the error matrix, assume a 
hard classification with mutually exclusive classes, where every classification decision is either 
completely correct or completely incorrect. As discussed at the end of chapter 2.6, this rigorous 
definition of accuracy is often not appropriate when land cover (natural vegetation) types are 
classified with remotely sensed data. Several approaches have been suggested to ‘soften’ accuracy 
assessments. When interpretations of aerial photographs are used to produce the reference data for a 
Landsat-based classification, some authors take account of the mixed pixel effect, and of 
uncertainties in locating each Landsat pixel on the aerial photographs, by recording several classes 
to be counted as ‘correct’ for each testing sample (Strahler 1980, Helmer et al. 2002). Gopal & 
Woodcock (1994, quoted in Woodcock & Gopal 2000) published a fuzzy accuracy assessment 
method for a hard classification with fuzzy ground truth. They use five linguistic grades to 
gradually differentiate between ‘absolutely right’ and ‘absolutely wrong’. So for one testing point, 
the ground truth could for example pronounce one class ‘absolutely right’, and several other classes 
‘reasonable or acceptable’. This makes it possible to generate a number of accuracy measures 
beyond the ‘hard’ accuracy. For instance, in addition to the proportion of ‘best choice’ assignments, 
the proportion of at least ‘acceptable’ class assignments (the sum of ‘absolutely right’, ‘good’ and 
‘reasonable or acceptable’ answers) can be calculated (Woodcock & Gopal 2000). This technique 
was adopted by Laba et al. (2002) and Ma et al. (2001). Ricotta (2004) proposes a method to 
evaluate the accuracy of fuzzy maps, where a fuzzy classification output is compared to the true 
fuzzy land cover. The weighted Kappa described by Næsset (1996) is also a way to ‘soften’ the 
accuracy assessment by taking account of the fact that not every classification error is equally 
serious. 

On the whole, there are many variations in the methods which are used to measure classification 
accuracy. Some methods are more rigid, while others can lead to an overestimation of accuracy. So 
even if widely used accuracy measures, like overall accuracy or Kappa, are reported, they are not 
directly comparable without information about how they were derived. 
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3 Forest Resources and Land Cover in the Dominican Republic, with Special Regard to the 
Upper Catchment Area of the Río Yaque del Norte 

3.1 The Environment 

The Dominican Republic is a Caribbean country located between 17°30' N and 20° N, and 72° W 
and 68°20' W, sharing the island of Hispaniola with the Republic of Haiti. Hispaniola, one of the 
Greater Antilles, covers an area of 77480 km², the eastern two thirds of which – 49730 km² – 
belong to the Dominican Republic (figure 4). 

 
Figure 4: The Dominican Republic. Source: OAS (1984), modified. 

The study area “Upper Catchment Area of the Río Yaque del Norte” (UCRYN) is located in the 
central Dominican Republic at 18°55' to 19°18' N and 70°30' to 70°58' W. The UCRYN covers 
approximately 785 km² upstream of the reservoir “Embalse Tavera“ in the north-eastern Cordillera 
Central and belongs to the province of La Vega. The most detailed studies were done in a core test 
area of 20 km² located on the eastern border of the UCRYN, covering part of the Scientific Reserve 
Ebano Verde and the Río Jimenoa valley to its west (figure 5). 
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Figure 5: The study area “Upper Catchment Area of the Río Yaque del Norte” (UCRYN). Source: Mapa Geológico de 
la República Dominicana; Mapa de Localización de Muestras Paleontologicas 1:500,000, BGR 1991, modified. 

3.1.1 Geology and Relief  

Relief 

There are four major mountain ranges in the Dominican Republic which run west-northwest to east-
southeast and parallel to each other. From north to south these are the Cordillera Septentrional, the 
Cordillera Central, the Sierra de Neiba and the Sierra de Bahoruco. They are separated by basins, 
the Cibao Valley, the San Juan Valley, and the Enriquillo Basin. The less mountainous eastern part 
of the country consists of the Eastern Plains (Llanura Costera) and the Cordillera Oriental, a minor 
mountain range, to their north (figure 4).  
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The Cordillera Central is the highest of the Dominican Republic's mountain ranges. Its highest 
peak, the Pico Duarte (3175 m a.s.l.), is at the same time the highest mountain of the Caribbean. 
The Sierra de Bahoruco and the Sierra de Neiba, with the sub-sea-level depression of the Enriquillo 
Basin between them, both reach elevations of over 2000 m, while the Cordillera Septentrional has 
just one peak above 1000 m. 

The upper catchment area of the Río Yaque del Norte has elevations between 320 m (Tavera 
reservoir) and 3038 m (Loma La Rucilla). The area is characterized by large and small valleys with 
steep slopes. Slopes of more than 40 % make up the majority of the UCRYN. The only extended 
area with low gradients is the valley around Jarabacoa. 

The mountainous nature of the Dominican Republic and the whole island of Hispaniola is due to its 
position at a plate boundary zone and the resulting tectonic activities. 

Geologic and tectonic development 

Hispaniola is situated in the northern Caribbean plate boundary zone where the Caribbean plate 
meets the North America plate (Erikson et al. 1998). Since Jurassic time, convergent and 
transcurrent tectonics in this zone have led to the development of the Greater Antilles islands 
(Lewis & Draper 1990). 

The core of the island of Hispaniola consists of Early Cretaceous to Eocene island arc terranes 
formed at a convergent plate boundary. During these times, phases of subduction and the associated 
island-arc plutonism, volcanism, and metamorphism (mainly in a submarine environment) alter-
nated with phases of uplift, deformation and erosion (Mann et al. 1991a). The resulting meta-
morphic rocks can be found today in central and northern Hispaniola. In addition, there are several 
terranes of volcanic, volcaniclastic and associated sedimentary rocks of mainly Upper Cretaceous to 
Eocene age, and a fragment of a back-arc basin with marine sandstone, siltstone and limestone. 
Intrusive rocks were emplaced mainly in Central Hispaniola during episodes of magmatism until 
the Early Eocene (Kesler et al. 1991). To the south of the island, an oceanic plateau grew during 
Late Cretaceous time, with basalts, pelagic limestone and chert. Paleocene to early Miocene 
subsidence was accompanied by continued deep-sea carbonate sedimentation in this area (Lewis & 
Draper 1990). 

In the Eocene, the island arc collided with the southern edge of the North America plate (Bahama 
carbonate platform), leading to uplift of the submerged arc and putting an end to island-arc 
volcanism and plutonism. The relative movement of the plates in the boundary region changed from 
convergent to mainly east-west strike-slip faulting, with the Caribbean plate moving east relative to 
the North America plate. In northern Hispaniola, Oligocene sedimentary basins developed within a 
strike-slip fault system at the edges of today's Cibao valley, resulting in the Tavera belt in the 



 3 The Forest Resources and Land Cover in the Study Area  

47 

northern foothills of the Cordillera Central and the El Mamey Belt of the Cordillera Septentrional 
(Dolan et al. 1991). 

The oblique collision of the southern oceanic plateau with island-arc Hispaniola during Miocene 
time resulted in the suturing of the involved terranes and initiated the Miocene to recent 
transpressional phase of Hispaniola's tectonic history (Mann et al. 1991a). Uplift and erosion 
occured across Hispaniola. The southern oceanic plateau terrane was folded and emerged in the 
form of the southern limestone mountain ranges (Sierra de Bahoruco in the Dominican Republic).  
Under the conditions of oblique convergence in the northern Caribbean plate boundary zone, many 
terrane boundaries were reactivated as oblique-slip faults. Today's fault-bounded west-northwest 
striking mountain ranges with interjacent basins were formed. Three deep sedimentary basins 
developed and were filled with neogene clastic sediments: the Cibao, the San Juan-Azua, and the 
Enriquillo-Cul-de-Sac Basin. Left-lateral strike-slip faults, in accordance with the relative plate 
motion, bound the northern edge of the Cibao basin and transect the Enriquillo-Cul-de-Sac basin, 
while the margins of the San Juan and Enriquillo basins are bounded by thrust and reverse faults 
due to transpression (Mann et al. 1991b).  

Earthquakes occurring in the Dominican Republic make it clear that the region is still tectonically 
active (Cross 1992), and rapid uplift and erosion of the mountain ranges in central and western 
Hispaniola are continuing (Mann et al. 1991b).  

Regional geology of the upper catchment area of the Río Yaque del Norte 

The UCRYN is situated in the north-eastern Cordillera Central, which is dominated by Cretaceous 
volcanic rocks with upper Cretaceous to Eocene granitoid intrusions (figure 6). To the south of the 
Guacara fault, the El Rio batholith has intruded into volcanic and volcaniclastic rocks of the Tireo 
formation. This large intrusion consists of unfoliated tonalite, a silicic coarse-grained intrusive rock 
(Kesler et al. 1991). The rocks of the Tireo Group which surround the batholith are of upper 
Cretaceous age. They comprise mainly vitric tuffs with intercalated sediments (mudstones, 
limestones), besides basaltic flows (for instance around the Pico Duarte) and more acidic rocks like 
quartz keratophyres (Lewis et al. 1991). 

To the north of the Guacara fault, the Duarte Complex forms an extensive metamorphic belt, which 
is intruded by several tonalite plutons (Draper & Lewis 1991). In addition, there are smaller areas of 
hornblendite and diorite intrusive rocks. The Duarte Complex, which is probably of lower 
Cretaceous age, comprises greenschist, weakly metamorphosed subgreenschist and amphibolite 
metamorphic facies. Mafic metabasalts of the Duarte Complex dominate the area along the Río 
Yaque del Norte to the north of Jarabacoa, with some subgreenschist facies rocks further north. 
Amphibolites are developed in the proximity of the plutons. Only small parts of the UCRYN are 
taken up by the serpentinized peridotite which forms a belt at the north-eastern border of the Duarte 
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Complex. These rocks are very conspicuous for example in Landsat images, especially in the main 
part of the belt just outside the study area, because their ultramafic nature results in infertile soils 
and a different vegetation (pine forest) compared to the surrounding areas. 

The northern boundary of the Duarte Complex is formed by the Hispaniola Fault Zone. This broad 
fault zone contains, in the area of the Tavera reservoir, Oligocene sedimentary rocks of the Tavera 
belt, namely conglomerate, mudstone, sandstone, and limestone (Dolan et al 1991).  

Quarternary fluvial deposits cover the valley floors, especially where the valleys widen around 
Jarabacoa and in the area of Manabao. 

 
Figure 6: Geological map of the study area. D: Duarte Complex, T: Tireo Group, to: tonalites, um: ultramafic, pi: 
hornblendite, ar: sandstone, conglomerate et al. of Tavera belt, q'f: alluvium. Source: Mapa Geológico de la República 
Dominicana 1:250,000, BGR 1991, modified. 
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3.1.2 Climate 

The climate of the Dominican Republic is defined by the country’s location in the trade wind zone 
of the outer tropics. The island of Hispaniola is surrounded by warm seas with surface water 
temperatures around 27°C. Warm ocean surface currents – the Caribbean Current to the south of the 
island and the Antilles Current to the north, coming from the ESE as extensions of the North 
Equatorial and South Equatorial Currents – pass the island's shores (Tomczak & Godfrey 2003). Air 
temperatures are tropical and generally exhibit a low temporal variability. Seasonal differences (less 
than 5°C between warmer summer months and cooler winter months) are smaller than daily 
fluctuations, which amount to 8°C on average. The mean annual temperature is 25°C in the 
lowlands and as high as 28°C in the Enriquillo basin. Lowland temperatures usually don't fall below 
10°C. Temperature gradients in the mountains are relatively high, especially in the mid-elevations 
of the north slopes, where increasing cloudiness with elevation contributes to very high temperature 
gradients. Schubert & Medina (1982) calculated an average temperature gradient for the Cordillera 
Central of 0.7°C per 100 m. Temperatures below freezing occur above 2100 m elevation in the 
Cordillera Central and near the crest of the Sierra de Bahoruco and also in some valleys below 
2100 m where cold air pools (Orvis et al. 1997, SEA/DVS 1994). Increased solar irradiation and 
larger daily temperature amplitudes characterise the climate of the highest mountain areas of the 
UCRYN. The temperature range from the lowlands to the highest mountains is equivalent to tierra 
caliente, tierra templada and tierra fria in the South and Central American nomenclature. 

Typically for the tropics, rainfall is the most highly variable climate element, both temporally and 
spatially. There are large regional differences in rainfall, with a general gradient from a humid 
northeast to a drier southwest. North-easterly trade winds, which take up moisture over the Atlantic 
Ocean, bring about rainfall especially on the windward slopes and sides of the mountain ranges, 
while lesser amounts of rainfall occur on the leeward slopes (Gray 1993). The northeast trades come 
from a north-north-easterly to easterly sector. The mountain ranges of the Dominican Republic run 
almost perpendicular to this prevailing direction of circulation, amplifying the precipitation gradient 
in Hispaniola from the wet northeast to the dry southwest. Especially the Cordillera Central, which 
rises above the trade wind layer with its highest ridges, produces a strong rain-shadow effect 
(Weischet 1996). In addition to orographic uplift, mesoscale disturbances linked to convergence 
zones of tropical waves (‘easterly waves’) are another important mechanism causing rainfall (Gray 
1993). 

Although there is a lack of climatic measurements in the mountains of Hispaniola, it is understood 
that precipitation, like elsewhere in the tropics, increases with elevation up to an altitude of 
maximum precipitation. This zone of maximum precipitation is probably to be found between 1000 
and 1500 m a.s.l. and is situated below the altitude of maximum cloud formation (Lauer et al. 
2003). The trade wind inversion base has a height of around 2150 m over Hispaniola (Schubert et 
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al. 1995). Above the trade wind inversion, rainfall amounts can be expected to be lower because of 
persistent descending dry air at this altitude. 

Over the year, precipitation is bimodal in most areas. The main dry season lasts from December to 
March and is caused by the strong influence of the subtropical high in this season. Trade winds are 
stable. Descending air in the Caribbean troposphere (subsidence), and decreased water moisture 
uptake in the atmosphere with accordingly low amounts of transported water vapour (Weischet 
1996) result in reduced amounts of rainfall during this time. There are local differences, however, 
caused by local convergence and orographic uplift. The dry winter season cannot be observed along 
the northern coast of the Dominican Republic. 

The summer precipitation is generally higher than the winter precipitation because of weaker 
atmospheric stability (weak or absent trade wind inversion) and more precipitation through 
convection. Disturbances, such as easterly waves, are also more frequent in the summer season. An 
early precipitation maximum is reached in May in most parts of the Dominican Republic (Weischet 
1996). 

A secondary dry season, the so called veranillo, occurs during the following summer months. The 
tropical upper tropospheric trough moves from the Caribbean to the Gulf of Mexico during this 
time, reducing the cyclonic rainfall in the Dominican Republic. 

The second summer precipitation maximum in August-October coincides with the hurricane season, 
further increasing the rainfall averages for these months. Hurricanes are tropical cyclones with a 
wind force of 12 Beaufort, corresponding to a peak wind velocity of at least 35 m/sec. Tropical 
cyclones with peak wind velocities between 18 and 34 m/sec are referred to as tropical storms 
(Weischet 1996). Both bring large amounts of rainfall to the affected regions. For the development 
of a tropical cyclone, the surface of the sea has to have a temperature of over 26°C, and a 
disturbance has to occur at least 4° away from the equator. Hurricanes can occur in the Caribbean 
between June and November, and they are most frequent in the Dominican Republic between early 
August and mid-October (Horst 1992). Since 1871, 36 hurricanes have struck the Dominican 
Republic, on average once every 3.6 years. With wind speeds of 120 to over 200 km/h and 
extremely heavy rainfall, hurricanes are a natural hazard with serious effects on vegetation, soils, 
animals, humans and the economy (Walker et al. 1991). The last hurricane which passed directly 
over the Dominican Republic was Hurricane George, in September 1998. It caused extensive 
damage in the UCRYN, including a large number of landslides. In September 2004, Hurricane 
Jeanne approached Hispaniola from the east, but was reduced to tropical storm strength when 
passing over the northern Dominican Republic. 
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Climate of the upper catchment area of the Río Yaque del Norte 

In the study area (UCRYN) with its exposure towards the north-east, the trade winds have a strong 
influence on the precipitation regime. The northern part of the UCRYN is the least humid. Tavera, 
at 300 m a.s.l. and at the northern border of the study area, has a mean annual precipitation (1968-
1988) of 1234 mm and a mean temperature of 24.5°C (Vicioso 2002, INDRHI data). This low lying 
area is affected by the rain shadow of the Cordillera Septentrional. 

Jarabacoa, at 500 m a.s.l., has a mean annual temperature of 22.1°C and a mean annual precipitation 
of 1537 mm (Vicioso 2002). Average monthly conditions are humid throughout the year. January, 
February and March are relatively dry. May is the month with maximum average precipitation, 
while June and July have the lowest precipitation with just over 80 mm per month. A second 
precipitation maximum is reached in November (figure 7). 

Jarabacoa (500 m), 1968-88
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Fig. 7: Climate chart for Jarabacoa. Source: Vicioso 2002, quoting data of the INDHRI (National Institute for Water 
Resources). 

The mountains to the west and to the south of Jarabacoa are certain to have higher precipitation, at 
least as far as they are exposed toward the east and northeast, but there is a lack of climatic data for 
the mountain areas. 

The eastern border area of the UCRYN (Loma La Sal, Loma La Golondrina, Casabito) is a 
mountain ridge reaching elevations of 1300 to 1565 m. It is exposed to the easterly and north-
easterly winds and thus very humid and often cloudy. In the cloud zone, which starts at elevations 
between 800 and 900 m at this north-eastern edge of the Cordillera Central and reaches the local 
summits, annual precipitation can exceed 3000 mm. Cloud stripping (the direct canopy interception 
of cloud water) contributes more than rainfall to that sum (Kappas 1999). The eastern edge is the 
most humid area of the Cordillera Central, because the trade winds reach this area directly from the 
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Atlantic Ocean without having passed over any other major mountains. The town of Bonao at an 
elevation of 180 m at the eastern foot of the Cordillera already has an annual precipitation of 
2230 mm. At about 1400 m a.s.l. on the Loma Casabito, the mean annual precipitation of the years 
1995-1999 was 3853 mm; the mean temperature here is 16.3°C (Mejía et al. 2000). The high 
precipitation quickly decreases at the western (leeward) side of these easternmost summits. El Río 
at 1100 m a.s.l. in the valley of the Río Jimenoa for example has an annual precipitation of only 
1318 mm (acqweather.com). 

In the western UCRYN the precipitation at the same elevations is somewhat lower compared to the 
Loma La Golondrina area, and the lower limit of the cloud zone is higher. The cloud zone is 
characterised by reduced diurnal variations of temperature and humidity. The western study area 
also includes areas above the cloud zone, where increased solar irradiation leads to large differences 
between day and night temperatures and thus very different climatic conditions. 

Throughout the study area, climatic variations can be large even across small distances, depending 
on elevation, exposition and inclination of the slopes, as well as rain shadow effects. The local 
climate is also influenced by the vegetation (Kappas 1999).  

3.1.3 Hydrology 

Most of the major river systems of the Dominican Republic have their headwaters in the Cordillera 
Central: those of the Río Yaque del Norte, the Río Yaque del Sur, the Río Yuna, and the Río Nizao. 
The Haitian Artibonite river system also has some tributaries here. The Eastern Plain and Coastal 
Atlantic Plain (including the northern slopes of the Cordillera Septentrional) contain several rivers 
flowing into the sea. The small and mostly seasonal rivers of the northern Sierra de Bahoruco and 
the southern Sierra de Neiba flow into the Lago Enriquillo basin, which has no drainage. The small 
rivers of the rest of the Sierra de Bahoruco flow into the Caribbean. 

The Río Yaque del Norte is the major river of the Dominican Republic, both in terms of its 
catchment area and of its importance as a water source (Vicioso 2002). It originates in the area of 
the Loma La Rucilla at elevations of almost 3000 m a.s.l. Its headwaters flow east towards the 
valley of Jarabacoa, where the Río Yaque del Norte is met by its tributary, the Río Jimenoa, coming 
from the south. The river then flows north down into the Cibao Valley. At 300 m a.s.l. it is dammed 
by the Presa de Tavera, built in 1973. In the Cibao Valley, the Río Yaque del Norte flows west-
northwest, draining the western half of this valley and, through its tributaries, the northern slopes of 
the Cordillera Central and the southern slopes of the Cordillera Septentrional. It meets the Atlantic 
Ocean after 253 km in the bay of Monte Cristi. 
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The mountain rivers of the Dominican Republic are characterised by a seasonal discharge following 
the seasonality of precipitation and periodic high-magnitude floods at times of tropical storms and 
hurricanes (Ahmad et al. 1993). The Río Yaque del Norte at Pinar Quemado (to the west of 
Jarabacoa) has a maximum mean monthly discharge (1956-2001) of 14.6 m³/sec in May and a 
minimum mean monthly discharge of 7.1 m³/sec in February. The discharge of the Río Jimenoa, 
measured at Hato Viejo close to the confluence with the Río Yaque del Norte (1956-1995), is less 
variable with its minimum monthly mean in July of 5.6 m³/sec only a third below the May monthly 
mean of 8.5 m³/sec (Vicioso 2002). 

3.1.4 Morphology 

The typical Dominican montane landscape at elevations below 2000 m a.s.l. shares its major 
morphological characteristics with that of other islands of the Greater Antilles (Ahmad et al. 1993). 
It is defined by narrow valleys and steep slopes, from where rainstorm-related mass-movements 
(even on undisturbed forested slopes) periodically supply large amounts of sediment to the rivers. 
Landslides and the resulting denudation, especially of the midslopes, are part of a geomorphic 
system controlled by neotectonics (transpression, uplift, steep faults) and periodic high-magnitude 
rainfall and floods. The sediment supplied to the rivers has a wide textural range including a 
significant coarse fraction. Boulders accumulate in the rivers and are moved only during floods with 
very high velocities. The stream network is often structure-guided: part of the valley of the Río 
Yaque del Norte (upstream of Jarabacoa), for example, coincides with the Guacara-Bonao fault 
zone. The channels have steep side slopes as well as high stream gradients in the long profile with 
local waterfalls and rapids. In some flatter sections of the streams, for example in the La Ciénaga – 
Manabao section of the Río Yaque del Norte, the valley bottom is an accumulative surface (GWB / 
GFA-Agrar 1998). 

In the highlands of the Cordillera Central, above 2000 m, the valleys are less steeply incised (Orvis 
et al. 1997). Schubert & Medina (1982) interpreted some geomorphic features (such as cirques and 
bog-filled depressions) in the highest parts of the Cordillera Central as glacial relicts and postulated 
the existence of a glacial snowline at elevations as low as 2200-2300 m. Orvis et al. (1997) also 
found indications of cryogenic processes, such as block fields and deposits of unsorted mixtures of 
clasts near the high central ridge of the Cordillera. The authors conclude that they were formed 
under climatic regimes quite different from today's, although the mixed deposits could also be 
hurricane- or earthquake-induced debris flows instead of morainic till.  
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3.1.5 Soils 

Many different soil types occur in the Dominican Republic depending on relief, bedrock, and 
climatic conditions. The main soil units which can be found according to the FAO-Unesco Soil 
Map of the World (1975) are described below using the nomenclature of the FAO-Unesco 
classification (1988/1990). 

In areas of siliceous rocks (such as siliceous tuffs and quartz diorites), lithic Dystric Cambisols and 
Lithic Leptosols can be found. Dystric Nitisols have developed on basic intrusive rocks and tuffs. 
These soils are generally deep soils but prone to erosion so that lithic phases also occur. Lithic 
Eutric and Chromic Cambisols as well as Rendzic and Lithic Leptosols can be found in areas of 
calcareous sediments and limestones. Lithic Calcic Cambisols occur in the arid and semi-arid areas. 
Acrisols are developed in humid areas on rocks high in quartz. Ferralsols derived from 
serpentinized ultrabasic rocks are infertile soils occurring in limited areas. 

The soils of the UCRYN have not been mapped in detail (GWB / GFA-Agrar 1998). As can be 
inferred from the geology, they are mostly Dystric and Eutric Cambisols and Dystric Nitisols. The 
soils are moderately deep in areas of moderate relief and shallower in the mountains. The most 
productive soils can be found on the fluvial terraces of the valley of Jarabacoa (GWB / GFA-Agrar 
1998). 

3.1.6 Natural Vegetation 

Owing to the island's varied relief, climatic and edaphic conditions, the flora of Hispaniola is one of 
the most diverse of the Caribbean islands (surpassed only by Cuba's). There are an estimated 5000 
species of vascular plants (flowering plants and conifers) to be found in Hispaniola. About a third of 
these are endemic to this island. There are also numerous ferns, mosses and other plants, many of 
which have not been inventoried yet (Zanoni 1989). The flora is mostly neotropical, but there are 
also some holarctic species of North American origin. 

Myers et al. (2000) identified the Caribbean islands as one of the world's leading biodiversity 
hotspots with a very high number of endemics (2.3 % of the world's vascular plant species grow 
only here) in spite of retaining only 11.3 % of its primary vegetation. 

In the Dominican Republic, the floristically most diverse regions with the highest number of 
endemics are located in the mountains (May 2001). This is because of the varied terrain and 
microhabitats and the generally higher rainfall in the mountains. Besides, very little is left of the 
original vegetation in the lowlands (Zanoni 1989).  
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The natural vegetation of the Dominican Republic consists almost entirely of forests, with the 
exception of coastal and aquatic vegetation types, small areas of natural grassland (sabanas) and, in 
the most arid parts of the country, dry woodland and thorn thickets (Hager & Zanoni 1993). 

Table 1: Comparison of three classifications of forest and woodland types of the Dominican Republic (mostly formation 
level, sometimes groups or alliances). 

Vegetation units in the inventory 
of Tolentino & Peña (1998) 

Formations according to the 
ICEC (Areces-Mallea et al. 

1999) 

Natural vegetation types as 
classified by Hager & Zanoni 

(1993) 

Bosque Conífera Denso (Dense 
Coniferous Forest) 

Montane Pine Forest;             
Mixed Pine-Broadleaved Forest 

Pinares de la zona alta de la 
Cordillera Central;              
Pinares de elevación intermedia 

Bosque Conífera Abierto (Open 
Coniferous Forest)                     
(40-60 % crown cover) 

Pine Woodland                          
(25-60 % crown cover) 

Pinares de la zona alta de la 
Cordillera Central;              
Pinares de elevación intermedia 

Bosque Latifoliado Nublado 
(Broadleaved Cloud Forest) 

Cloud Forest;                      
Montane Rain Forest (in part) 

Bosques Latifoliados Nublados 

Bosque Latifoliado Húmedo 
(Humid Broadleaved Forest) 

Submontane Rain Forest; Lowland 
and Submontane Seasonal 
Evergreen Forest 

Bosques Ombrofilos (including 
Bosques latifoliados siempre verde 
de lluias estacionales) 

Included in Humid Broadl. For. / 
not mapped for reasons of scale 

Riparian Forest Bosques Ribereños 

Bosque Latifoliado Semihúmedo 
(Semi-Humid Broadleaved Forest) 

Lowland Semi-Deciduous Forest Bosques Semideciduos (Bosques 
de la Llanura Costera & B. de 
Swietenia-Coccoloba) 

Bosque Seco (Dry forest) Lowland or Submontane Drought-
Deciduous Forest  

Bosque Seco (natural) 

Bosque Humedales Salobres 
Permanentemente/Temporalmente 
Inundados (Permanently/ 
Temporally Flooded Halophytic 
Wetland Forest) 

Mangrove Manglares 

Bosque Humedales de Agua Dulce 
(Freshwater Wetland Forest) 

Seasonally Flooded/Saturated 
Semi-Deciduous Forest  

Bosque Ribereño de Pterocarpus 
officinalis 

Matorral Latifoliado (Broadleaved 
Shrubland) 

Several formations of evergreen 
woodland and shrubland 

Not included in natural vegetation 
classes 

Matorral Seco (Dry Shrubland) Lowland or submontane broad-
leaved drought-deciduous 
woodland; Cactus woodland 

Bosque seco perturbado; Bosque 
seco con abundancia de 
Cactaceae 

 
Ciferri (1936) wrote an early comprehensive geobotanical description of the country's vegetation 
types. In the following decades, the life zone system of Holdridge was used several times to classify 
the vegetation types of Hispaniola (Holdridge et al. 1971, map of Tasaico 1967 referred to in Hager 
& Zanoni 1993). However, this is a system of potential vegetation based solely on climatic factors, 
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and it cannot always do justice to the diverse vegetation of this island, which is also influenced by 
other factors like relief and soil (Hager & Zanoni 1993). 

The first synopsis of the natural vegetation of the entire country after 1967 was devised by Hager & 
Zanoni (1993). In their classification, they group the Dominican Republic’s natural vegetation into 
six major units, based on vegetation structure and composition: halophytic vegetation, dry forests, 
semi-deciduous forests, broadleaved evergreen forests, pine forests, and aquatic and wetland 
vegetation. Each unit contains several types of vegetation, mostly forest types. Harcourt & 
Ottenwalder (1996) used Hager and Zanoni’s forest description in their chapter on Hispaniola in the 
“Conservation Atlas of Tropical Forests”. May (1997), in his description of the mountain forests of 
the Dominican Republic, also uses some of their observations. 

Tolentino & Peña (1998) classified the Dominican Republic’s present vegetation and land use for 
an inventory using Landsat data, applying a slightly different classification scheme. This scheme 
was also adopted in the Dominican Republic's ‘Inventory of Forest Cover’ published by 
SEMARENA (2001a). 

Areces-Mallea et al. (1999) used the International Classification of Ecological Communities (ICEC) 
as a standardized classification system for all Caribbean islands. The ICEC is based on the 
UNESCO system which uses physiognomic characteristics (vegetation structure) to classify 
vegetation worldwide at the formations level. The ICEC also adds finer levels of classification 
(alliances and associations) incorporating floristic characteristics.  

Table 1 compares the major recent classification systems for the forest and woodland types of the 
Dominican Republic. 

The major types of natural and semi-natural forest vegetation of the Dominican Republic are 
described below, with emphasis on the mountain forests occurring in the study area. 

Pine forests (plates 1-4) 

Dense and open montane and submontane pine forests can be found in the Cordillera Central, the 
Sierra de Bahoruco (Chardón 1941) and the Sierra de Neiba (Darrow & Zanoni 1991). In the 
Cordillera Central, natural pine forests cover the highest areas (above 2200 m up to the summit of 
the Pico Duarte) to the exclusion of all other forest types, but they can also be found below 2000 m, 
especially in leeward positions, growing on dry slopes and on infertile, shallow soils (May 1997). 
Pinus occidentalis Sw., the only native pine of Hispaniola, is ecologically very diverse. It grows on 
soils developed on limestone as well as on acid bedrock, and under very diverse climatic regimes 
with annual rainfall over 2300 mm and as low as 800 mm (Darrow & Zanoni 1991). It is the only 
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Hispaniolan tree growing above 2200 m, where night time temperatures can fall below 0 °C, but it 
can also be found at elevations as low as 400 m (Hager & Zanoni 1993). 

Pinus occidentalis is very dominant in most pine forests, it is usually even the only tree species 
present. The understorey of the pine forests is dominated by shrubs and ferns in the more humid 
locations, while at drier or more exposed locations, the ground is covered by grasses like Danthonia 
domingensis and other herbaceous plants (Areces-Mallea et al. 1999). At altitudes above the zone of 
maximum precipitation, where rainfall is relatively low but mist or clouds contribute additional 
moisture (around 1600-1800 m), the pines are often draped with Tillandsia usneoides (‘Spanish 
moss’) and lichens (Usnea spp.) (Darrow & Zanoni 1991). By contrast, pine forests in the highest 
elevations and in dry locations are often rather open with a substantial ground cover of grasses. 

Fire is an important element in the ecology of pine forests of the Dominican Republic and has 
played a role since pre-human times (Horn et al. 2000). The fire frequency has increased with the 
human influence. Mature trees of the species Pinus occidentalis are able to survive forest fires, so 
that repeated fires promote the development of open pine forests even in mid and low altitudes of 
the Cordillera Central. The fern Pteridium aquilinum (bracken) spreads in the early post fire 
succession stage (May 2000), and it often forms the main component of the herbaceous cover in 
areas of semi-natural open pine forests in these lower areas. Pine forests with broadleaved under-
growth and mixed pine and broadleaved forests can be found in humid locations below 2000 m. A 
lack of natural regeneration of pines indicates that at least some of these forests represent a 
successional stage. They occupy sites where the natural broadleaved forest was disturbed for 
example through fire or grazing, allowing pines to colonise the disturbed areas as a pioneer species 
(May 1997, Hager & Zanoni 1993). 

Broadleaved cloud forest (plates 5-8) 

Cloud forests are montane forests which can occur within a very wide range of rainfall regimes 
(500-10,000 mm/year). There is a gradual transition of montane rain forest into cloud forest in 
many places, which makes it difficult to clearly define tropical mountain cloud forest (TMCF). 
During the Puerto Rico Tropical Cloud Forest Symposium held in 1993, the following working 
definition was developed: “The tropical montane cloud forest is composed of forest ecosystems of 
distinctive floristic and structural form. It typically occurs as a relatively narrow altitudinal zone 
where the atmospheric environment is characterized by persistent, frequent or seasonal cloud cover 
at the vegetation level. Enveloping clouds influence the atmospheric interaction through reduced 
solar radiation and vapour deficit, canopy wetting, and general suppression of evapotranspiration. 
The net precipitation (throughfall) in such forests is significantly enhanced (beyond rainfall 
contribution) through direct canopy interception of cloud water (horizontal precipitation or cloud 
stripping) and low water use by the vegetation. In comparison with lower altitude tropical moist 
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forest, the stand characteristics generally include reduced tree stature and increased stem density. 
Canopy trees usually exhibit gnarled trunks and branches; dense, compact crowns; and small, thick, 
and hard (sclerophyll) leaves. TMCF is also characterized by having a high proportion of biomass 
as epiphytes ...” (Hamilton et al. 1995:3). Cloud forests are naturally fragmented with a small extent 
on any particular mountain site; at the same time, these are areas of very high endemism. They 
belong to the world's most threatened ecosystems, as farming and cattle raising advances into these 
zones in many places, and warming in the course of climate change could lead to shifts of the cloud 
zone, with a consequent drying-out of the cloud forest (Bubb et al. 2002, Aldrich 2000). In the 
Dominican Republic, remaining areas of cloud forest can be found in the Cordillera Central as well 
as in the Sierra de Bahoruco and Sierra de Neiba.  

Several types of cloud forest can be differentiated in the Dominican Republic. Dwarf or elfin cloud 
forest, with small tress of 5 to 7 m in height and a layer of mosses, is known from just one site in 
the western Cordillera Central (Loma Nalga de Maco). There, it grows on the mountain top above 
1900 m under conditions of high winds and persistent cloud cover (Hager & Zanoni 1993). 

Another type, the Didymopanax tremulus - Podocarpus aristulatus cloud forest, can be found at 
elevations between 1600 and 2200 m with frequent cloud cover in the Cordillera Central, Sierra de 
Bahoruco and Sierra de Neiba. The dominant emergent tree species, which reach heights of 15 m to 
20 m and do not form a closed canopy, are Didymopanax tremulus, Podocarpus aristulatus and 
Ocotea wrightii. The second tree layer, forming a closed canopy 8 to 13 m high, contains the tree 
species Weinmannia pinnata and Brunellia comocladifolia. Tree ferns are also characteristic, as are 
epiphytes. Mature cloud forests on the summits of the Sierra de Neiba and above 1800 m in the 
Cordillera Central are taller and denser, and Podocarpus aristulatus is more dominant here (Areces-
Mallea et al. 1999, Hager & Zanoni 1993).  

The Magnolia (Spanish: Ebano) type of cloud forest is characterised by trees of the species 
Magnolia pallescens in the Cordillera Central and Magnolia harmorii in the Sierra de Bahoruco. It 
grows in the eastern Cordillera Central at elevations between 1100 and 2100 m and in the eastern 
Sierra de Bahoruco at elevations between 950 and 1500 m, often on mountain tops and ridges 
exposed to the wind. The crown cover is irregular, with single trees more than 15 m high, and a 
second tree layer at 10 to 12 m. Epiphytes are abundant. While Magnolia spp. is the characteristic 
tree for this forest type, Didymopanax tremulus is also a dominant species among the tall trees. 
Prestoea montana (also known as Prestoea acuminata) is frequent in the second tree layer in some 
areas. The herbaceous layer is mainly comprised of ferns, and there are also tree ferns, shrubs, 
lianas and many epiphytes (Hager & Zanoni 1993). In the Valle Nuevo area of the south-eastern 
Cordillera Central at elevations between 1700 and 2100 m, Tabebuia vinosa is a dominant tree of 
the second layer, and Prestoea montana is usually absent. Areces-Mallea et al. (1999) list only this 
latter association as Magnolia pallescens cloud forest, while they classify the other Magnolia 
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pallescens and Magnolia harmorii forest alliances as montane rain forest. May (1997), Hager & 
Zanoni (1993) and Tolentino & Peña (1998), however, address them all as cloud forest. Some 
authors subdivide the Magnolia pallescens cloud forest of the eastern Cordillera Central into firstly 
Didymopanax tremulus cloud forest, where tall trees of this species dominate the appearance of the 
forest and Magnolia pallescens is the main associated tree, and secondly Magnolia pallescens cloud 
forest growing on steep slopes exposed to the wind, where Magnolia pallescens is dominant and 
Didymopanax tremulus is just one of several associated trees (Mejía et al. 2000). 

In the Didymopanax tremulus - Magnolia pallescens cloud forest of the eastern test area (Scientific 
Reserve Ebano Verde), the upper canopy is dominated by Didymopanax tremulus. Associated tree 
species on the mountain ridges (which reach elevations of up to 1565 m) are Clusia clusioides, 
Magnolia pallescens and Haenianthus salicifolius var. ovatus, among others. In a part of the forest 
which has survived intact below 1200 m, the trees are taller and Cyrilla racemiflora emerges above 
the canopy, reaching about 30 m in height (García et al. 1994).  

As already noted by Ciferri (1936), disturbed sites in the humid mountain forest (mainly in the 
cloud forest zone) are often occupied by a dense cover of ferns of the Gleicheniaceae family 
(García et al. 1994, May 2000). The native species Dicranopteris pectinata and, to a lesser degree, 
Gleichenia bifida form stable communities called 'calimetales' (plate 9), inhibiting the regrowth of 
woody species (Slocum et al. 2000). These calimetales naturally occupy clearings, caused e.g. by 
hurricanes, and the cloud forest recovers only slowly in such areas. The first pioneer tree species to 
invade disturbed areas above 900 m is often Brunellia comocladifolia (García et al. 1994). 

Prestoea montana palm forest (plate 10) 

Classified as another type of cloud forest by Hager & Zanoni (1993) and as a montane rain forest 
alliance by Areces-Mallea et al. (1999), the Prestoea montana forest has a very distinct canopy 
dominated by palm trees. The palm Prestoea montana is called manacla in Spanish, and the forest 
type dominated by this species is called Manaclar. It is an edaphic vegetation type, occurring on 
wet (frequently saturated) and stony soils, mostly on steep northern slopes and in mountain valleys, 
under similar climatic conditions as the cloud forest (García et al. 1994), in the altitudinal zone 
between 800 and 1500 m (May 1997). This palm forest is rich in ferns, including tree ferns 
(Cyathea spp.) (Harcourt & Ottenwalder 1996). There is sometimes a gradual transition between 
montane broadleaved riparian forest containing Prestoea montana as a subdominant species (plate 
10) and palm tree dominated forest in some parts of the Cordillera Central. But Manaclares occur 
not only as riparian forests but also in patches removed from the streams. There is also a gradual 
transition between cloud forest and palm forest which can be observed in the Scientific Reserve 
Ebano Verde, consisting of a mixture of the dominant trees Didymopanax tremulus and Prestoea 
montana (Gracía et al. 1994). 
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Humid evergreen broadleaved forest (plates 12-13) 

Humid evergreen broadleaved forests can be found in all mountain ranges of the Dominican 
Republic at elevations of up to 1500 m (in some cases 1800 m), and in some parts of the lowlands 
(Tolentino & Peña 1998). They can be subdivided into the seasonal forests, where some leaves are 
lost during relatively dry seasons, and the rain forests growing in humid climates without water 
shortages at any time. The annual precipitation is around 2000 mm.  

Little is left of the lowland humid forests of the Dominican Republic. Some remnants can be found 
in the limestone valleys of Los Haitises in the north-eastern part of the country (Oxandra laurifolia 
- Tetragrastis balsamifera forest alliance according to Areces-Mallea et al. 1999).  

Another rain forest alliance, the Mora abottii forest, is distributed in areas of very high precipitation 
(around 2400 mm/a) on the north-eastern side of the Cordillera Septentrional and in the eastern 
Cordillera Central at elevations between 150 and 800 m (below the cloud zone). This evergreen 
forest is 25 m tall, with emergent trees reaching 35 m. Mora abottii is usually the prevalent species; 
co-dominant tree species are Cyrilla racemiflora and Ocotea leucoxylon. Some areas are also 
dominated by Sloanea berteriana (Hager & Zanoni 1993, Areces-Mallea et al. 1999, May 1997). 

Remains of the submontane humid evergreen broadleaved forests of the Sloanea berteriana – 
Ormosia krugii alliance occur in the Cordillera Oriental and Cordillera Central (Areces-Mallea et al. 
1999, Hager & Zanoni 1993). These up to 25 m tall forests have two canopy layers and seem to 
have been widespread in these mountains in the past. 

In the western Cordillera Central, where the winter months are relatively dry, the otherwise humid 
broadleaved forest at elevations between 650 and 1500 m is dominated by the drought-deciduous 
Sloanea ilicifolia, which can become up to 40 m tall (Hager & Zanoni 1993, May 1997). At higher, 
more humid locations, Sloanea becomes less dominant, and species like Brunellia comocladifolia 
and Didymopanax tremulus are to be found. 

Broadleaved riparian forest (plates 11, 14-16) 

The species composition of a riparian forest, growing by the sides of a stream, differs from that of 
the surrounding forest. This is due to the high ground water level and humid soil, different 
microclimatic conditions with higher air moisture, and disturbances e.g. through floods. The 
riparian forests of the Dominican Republic can be classified into four types: two types growing 
along rivers in humid lowland areas, one along permanent rivers in arid areas and one occurring in 
the mountains (Schubert 1993, Hager & Zanoni 1993).  

The submontane to montane riparian forests of the Cordillera Central grow at elevations between 
600 and 1600 m. They form narrow bands (of often less than 10 m width) on both sides of the 
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streams and rivers. The broadleaved riparian forest can grade into the surrounding broadleaved 
forest. Where it borders on pine forests, the transition is usually more abrupt. The trees of the 
riparian forests of the Cordillera Central reach 15 to 20 m of height. The typical species of this 
forest type are broadleaved, with large leaves. Ferns (including tree ferns), mosses and epiphytes 
are abundant due to the elevated humidity (Hager & Zanoni 1993). These forests are generally 
species-rich, with many different kinds of trees and shrubs and without a single dominant species. 
Trees frequently to be found in the riparian forests of the UCRYN are for example Ocotea sp., 
Prestoea montana and Turpinia occidentalis (Slocum et al. 2000, Garía et al. 1994).  

Today, riparian forests are often the only forest remains in agriculturally used areas (plates 15, 16). 
Forming narrow forest corridors bordered by pastures and fields, they contain a reduced number of 
primary species and some secondary species (Kalácska et al. 2004).  

Broadleaved semi-deciduous forest (plate 17) 

There is a transition between humid evergreen broadleaved forest and dry forest, with a gradual 
increase of deciduous species which loose theirs leaves during the dry seasons. The semi-deciduous 
forests (called mesophytic forests by Ciferri 1936) grow in areas below 900 m a.s.l. with distinct 
dry seasons and an annual precipitation between 1000 and 1800 mm (Hager & Zanoni 1993, 
Tolentino & Peña 1998). They have a diverse floristic composition including species from both the 
dry and the humid evergreen broadleaved forests. Degraded semi-deciduous forests, or secondary 
forests growing on land originally occupied by semi-deciduous forests, are floristically less diverse 
and contain a larger proportion of deciduous and thorn-bearing plants (Roth 1999). They are usually 
dominated by the same few species of woody legumes as degraded dry forests (see below). 

Semi-deciduous forest is the natural vegetation of the Llanura Costera in the Eastern Dominican 
Republic, where some remnants of it are left along the coast. The forest at the base of the 
Cordilleras, especially in rain shadow areas around the Sierra de Neiba, but also in some places at 
the northern and southern side of the Cordillera Central, used to be a semi-deciduous Swietenia-
Coccoloba forest. This was characterized by the frequent occurrence of Swietenia mahagoni and 
Coccoloba diversifolia, together with some species of the adjoining dry forest like Phyllostylon 
rhamnoindes and Bursera simaruba (Ciferri 1936, Hager & Zanoni 1993). 

This is probably the natural vegetation of some parts of the northern UCRYN, but there is no 
undisturbed Swietenia-Coccoloba forest left in the northern foothills of the Cordillera Central (May 
1997). Ciferri (1936) mapped pine forests as the vegetation of most of the northern UCRYN, but he 
still found some semi-deciduous forest in the area surrounding today’s Tavera Reservoir, at 
elevations of around 450 m.  
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Dry forest 

Dry forests are the natural vegetation of the lowlands of the south-western Dominican Republic and 
of the north-western Cibao Valley, where the dry seasons are long and pronounced and the annual 
precipitation is below 1000 mm. There are several types of dry forest in the Dominican Republic. In 
most places, the trees do not grow taller than 14 m, some of them are deciduous, and the 
understorey is poorly developed. In the driest locations, on sandy and rocky ground, the dry forest is 
reduced to a thorn woodland with an open canopy of small trees and a large portion of cacti 
(Cactaceae) (Hager & Zanoni 1993). Dry forests constitute a large part of the forests of the tropics 
and subtropics (Murphy et al. 1995), but most of them are heavily disturbed. This is also the case in 
the Dominican Republic (Erhart 1995), where the forests are used for pasture and fuel extraction 
resulting in dry degraded or secondary forests and dry shrubland (matorral seco) marked by the 
frequent occurrence of Prosopis juliflora and/or Acacia macracantha. Dry forest does not occur in 
the UCRYN. 

Mangroves and wetland forest 

There are four native halophytic mangrove species. These trees grow in permanently and temporally 
flooded areas along the coast, in zones which are not too exposed to the waves, for example in the 
Bahía de Samaná. The temporally flooded Conocarpus erectus mangrove type also grows in the 
salty lagoons of the Enriquillo basin. The Pterocarpus officinalis wetland forest can be found in the 
freshwater areas of some river estuaries (Hager & Zanoni 1993). 

3.2 Human Influence on Forest and Land Cover in the Dominican Republic 

The Caribbean islands have been populated for about 7000 years (Lundberg 1997). The earliest 
settlers in Hispaniola were hunters, fishers and gatherers with little impact on the natural vegetation. 
Since those times, the human impact has increased progessively. 

When Columbus first reached Hispaniola in 1492, the population of this island consisted of an 
estimated 300,000 to 500,000 people (Cassá 1984 quoted in Bolay 1997) who lived of agriculture, 
fishery and hunting. 

In 2001, the Dominican Republic had a population of 8.507 million, or 176 per square kilometer 
(Statistisches Bundesamt 2002), with an annual population growth rate of 1.9 %. 60 % of the 
population are classified as urban (Harcourt & Ottenwalder 1996), while 33 % of the working 
population are occupied in the agricultural sector (Statistisches Bundesamt 1996). According to a 
1993 census, the upper catchment area of the Río Yaque del Norte had a rural population of 33.750 
persons in 7.080 households (GWB/GFA-Agrar 1998). Additionally, the town of Jarabacoa in the 
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UCRYN has approximately 40.000 inhabitants. Today's Dominican Republic is a densely populated 
developing country with an accordingly high pressure on its natural resources. 

3.2.1 History of Deforestation and Forest Degradation 

Before European settlement most of the primary forest of Hispaniola was untouched, although 
agriculture had been practised on this island since about 250 AD. In the three centuries preceding 
the Spanish arrival, the Taino (Island Arawak) occupied most of Hispaniola. They lived in 
agricultural villages, cultivating manioc (Manihot esculenta) and other plants. Their conuco 
(shifting cultivation) agriculture created pockets of cultivated land and secondary vegetation which 
were surrounded by forest (Watts 1987). 

After the arrival of the Spanish, the number of natives on Hispaniola diminished quickly, mainly 
due to forced labour and diseases. After only 50 years, they were practically extinguished. With 
them ended their traditional, ecologically well adapted land use practices. Much of the former 
conuco land was abandoned and given over to secondary vegetation as the number of people 
working in agriculture diminished. The Taino did not have any herbivore domestic animals except 
guinea-pigs, but the Spanish settlers introduced cattle, pigs, horses, sheep and goat, most of which 
were left to run wild on the island and of which especially the pigs and cattle quickly multiplied in 
the absence of predators. Being the first large, hoofed herbivores on Hispaniola, they had some 
impact on the natural vegetation and helped spread pioneer vegetation (herbs and grasses). 
Localized soil loss and gullying (arroyo landforms in the mountains) occurred due to animal 
trampling. 

In the early 16th century, cane plantations were established in southern Hispaniola. The labour was 
supplied by slaves who were brought in from Africa. The colonists and African slaves also 
continued to grow manioc, which had been the most important plant in the Taino conuco system, 
and they introduced vegetables and other food crops from Europe and Africa (Watts 1987). As the 
Spanish interest in Hispaniola decreased during the 16th century and Santo Domingo ceased to be 
the central city of Spanish America, the population and sugar production in this colony were also 
reduced. With few Spanish settlers remaining on the island, cattle hides became the most important 
export product of Hispaniola until 1665. Semi-wild cattle were hunted in the wooded lowlands. The 
mountains continued to be uninhabited (Blume 1968).  

Ciferri (1936:261) reports that, when he was visiting the country, cattle and wild pigs were still 
being hunted in the forests of the Dominican Republic. The hunters used to burn the undergrowth of 
the forest, leaving the pine forest able to recover but often completely destroying the neighbouring 
broadleaved forest, so that the fraction of pine forest outside its core area in the high mountains was 
increased. 
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Starting in 1665, the French began to encourage agricultural settlers to move to western Hispaniola, 
which they regarded as extremely fertile, and to develop estates in this region. With the treaty of 
Rijswijk in 1697, western Hispaniola, now called St Domingue, became an acknowledged French 
colony based on an intensive plantation economy. In St Domingue most lowland forests had been 
cleared for sugar estates and other agriculture by 1791. Even in Spanish Santo Domingo (today's 
Dominican Republic) the forest cover was somewhat reduced during the 18th century, when lowland 
areas (rain forest and seasonal forest) were cleared for sugar cane production. However, due to the 
restricted economic development (small population, shortage of labour) in this Spanish colony, 
much of its lowland forest cover was still retained (Watts 1987:435). Despite some population 
growth during the 18th century, only about 110,000 whites and 15,000 slaves lived in Spanish Santo 
Domingo in 1789, and small-scale agriculture was more prevalent than large sugar estates. 

The situation on Hispaniola was changed when slave uprisings in St Domingue started in 1791, 
leading ultimately to the independence of Haiti in 1804. Slavery was abolished and most of the 
plantation owners had to leave Haiti. Sugar estates were abandoned, leading to severe soil loss on 
the unattended slopes. Spanish Santo Domingo was occupied several times between 1795 and 1844, 
when the independence of the Dominican Republic was declared and the last slaves were freed even 
here. The end of slavery in Hispaniola in the 19th century lead to an increase in small farmers 
(peasants), joining the numbers of escaped slaves who had lived in the mountains of Hispaniola for 
generations. The peasants cultivated the remoter parts of the land, which were not yet occupied by 
plantations, using slash and burn methods (still called conuco). The number of smaller grazing 
animals (mainly goats) also increased in the course of this development.  

During the time of the French and Haitian occupation of Spanish Santo Domingo, in the first half of 
the 19th century, the exploitation of the forests for valuable woods to be exported got under way. 
The most sought-after tree was Caoba (Swietenia mahagoni Jacq.), a native tree of the broadleaved 
semi-deciduous forest. The logging of Caoba and other exotic woods continued during the first 
decades of the Dominican independence. Because of the low population density in the Dominican 
Republic, only some of the logged areas, e.g. in the central Cibao valley, were subsequently 
cultivated, while most became degraded or secondary forest (Moya Pons 1994). 

In spite of political disturbances, the population of the Dominican Republic grew rapidly from 
200,000 in 1850 to 700,000 in 1900. During the 20th century, the massive population growth 
continued. In 1960, there were already three million Dominicans, 5.6 million in 1981, and 7.6 
million in 1993 (UNO estimate). The urban population (especially in Santo Domingo) grew even 
faster than the rural population. Many Dominicans emigrated to the U.S.A., but at the same time 
there was (illegal) immigration from Haitians in search of work. 
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In the 1880s and 1890s, cane production in the Dominican Republic was extended again (with 
major plantations along the southern coast, and some smaller properties). At the same time, the 
forests of the eastern plains were much reduced, because of the increased demand for firewood to 
feed the recently introduced steam engines which were used in sugar production. Large cacao and 
coffee estates were established in the Vega Real (Valle de Cibao) during the 1890s. In the 20th 
century, sugar production was increased even further and the overall area under cultivation was 
greatly expanded (Watts 1987). This meant that most remaining forests were removed in the 
lowlands, and the mountain forest cover was also reduced. Soil erosion on hill-sides became more 
of a problem. 

According to Durland (1922), Hispaniola still had a forest cover of at least 75 % in the early 20th 
century, although Erickson (1940) considers this number to be exaggerated, especially with regard 
to the slash and burn agriculture that was already ongoing in the mountains.  

When Ciferri (1936) conducted his geobotanical studies in the Dominican Republic, he also found 
that most of its area was still covered by natural and semi-natural vegetation. However, most of the 
Cibao valley and the Llanura Costera and some other coastal plains were under cultivation, so that 
there were only small remains of semi-deciduous and lowland rain forest. The mountains were still 
largely forested, with the exception of some isolated cultivated valleys, for example the areas 
around Jarabacoa and Constanza in the Cordillera Central. 

With the lowland broadleaved forests already very much reduced, the mountain pine forests were 
now increasingly exploited. The dictator Trujillo, who ruled the Dominican Republic between 1930 
and 1961, recognized the economic value of the country's large pine forests and used them as a 
source of capital without bothering to replant the cleared areas. Starting in the late 1930s, an 
increasing number of sawmills and an improving road network accelerated the deforestation 
(Dotzauer 1993). Scarff (1940) gives a figure of 60 % for forested land, while he notes that some 
valuable tree species were already being close to being exhausted and that the pine forest in the 
accessible parts of the Cordillera Central was being exploited, cut and burnt at a rate which reduced 
the forest cover very quickly. In the UCRYN, deforestation took place especially in the areas 
around Jarabacao and El Río. When the forest was cleared in an area, the former sawmill workers 
became landless farmers. They were employed by the cattle-breeding landowners to clear the land 
again more thoroughly, and in return they were allowed to grow beans or potatoes on it for the first 
two or three years. After that, the soil fertility was reduced and the land was turned into pasture 
(Moya Pons 1994). By 1960 the forest cover had shrunk to about 30 % (Martínez 1990 quoted in 
May 1997). Pine production peaked in 1964, when 92,000 m³ of timber were harvested (Russo 1987 
quoted in Dotzauer 1993). After 1967, when the closure of all sawmills was ordered, slash and burn 
agriculture became the main cause of further deforestation in the mountains. Demographic pressure, 
together with limited employment and low incomes in rural areas of the Dominican Republic, 
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contributed to an increasing number of landless farmers, who invaded the remaining forest areas in 
the mountains in order to produce subsistence crops. The productivity of the marginal mountainous 
land which is still available is very low. The productivity also decreases quickly when the land is 
used agriculturally, resulting in the clearing of still more forest to create new plots to shift to, short 
fallow periods, and finally erosion and possibly permanent land degradation (Dotzauer 1993). Fires 
are also used to reduce the forest cover of the mountains and turn forest land into pasture. 

There is a small class of land owners with large estates, mostly used through extensive farming. 
Furthermore, large parts of agriculturally usable land are state-owned. By contrast, the majority of 
small land users lack land titles, especially in mountain regions like the UCRYN. This situation 
discourages long-term investments in more sustainable kinds of land use, and also tends to make it 
impossible for farmers to finance such measures (GWB/GFA-Agrar 1998). 

During the 1990s, the rate of deforestation seems to have been reduced because of the remoteness 
of much of the remaining forest, the protected state of large parts of the remaining forest, the 
widespread substitution of charcoal and firewood by liquefied petroleum gas and the out-migration 
from rural areas (SEMARENA 2002). Today extensive animal husbandry is the dominant land use 
in mountainous areas, while slash and burn agriculture is practised only by the poorest and most 
marginalised parts of the rural population (SEMARENA 2002). Still, the population pressure 
remains high, and deforestation and degradation are still happening as a result (Sambrook et al. 
1999). By contrast, some areas formerly under agricultural use have been left unmanaged because 
they have become unprofitable or because they are located in protected areas, giving rise to the 
development of matorral (shrubland) and secondary forests, so that it is not clear whether there has 
been a net gain or loss in forest area since the late 1980s. 

Only about a quarter of the Dominican Republic is currently forested (the most recent forest cover 
estimates range from 10 % to 29 %, see chapter 3.3) and undisturbed primary forest makes up just a 
fraction of these areas. According to Schubert (1993), almost 90 % of the natural forests have been 
lost due to human activities. The largest contiguous areas of natural forest ecosystems remaining in 
the Dominican Republic today are located in the Cordillera Central and in the Sierra de Bahoruco. 
Outside these core areas, the remaining forest is mostly very fragmented and/or degraded (see the 
vegetation map of Tolentino & Peña 1998). 

The ecological conditions in the Dominican Republic are still favourable compared to those in 
seriously degraded Haiti, where just about 3 % of the land are still covered by forests (FAO 2001).  
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3.2.2 Consequences of Deforestation 

Tropical deforestation is a leading cause of worldwide loss of biodiversity (Sanchez-Azofeifa et al. 
2002). This holds true especially for the diverse mountainous regions of the Dominican Republic, 
which constitute a biodiversity hotspot with many endemic species (Myers et al. 2000, May 2001). 
Only a small percentage of the Dominican Republic’s humid evergreen broadleaved forests and 
cloud forests remains intact today. Apart from threatening plant biodiversity, deforestation also 
results in a loss of habitat for birds and other native animals. Several species of native mammals, 
birds and reptiles have become extinct in the Dominican Republic during the course of the 20th 
century; other native and endemic species of plants and animals are endangered (SEMARENA 
2002, Schubert 1993). Not only the total loss of forested areas, but also the fragmentation of 
remaining areas of mature forest poses a threat to biodiversity. As the contiguous area of a 
particular habitat becomes smaller, it becomes increasingly vulnerable to disturbances including 
extreme climatic events or climatic change. 

It is, however, not only the biological riches which are under threat, but also the long-term 
livelihoods of the Dominican population, which are based on the natural resources of this country. 
The degradation of the forest resources affects other natural resources like soils and water, with 
consequences not only for the population of the areas where the deforestation is taking place, but 
also for those living downstream, in the lowlands. Water from the mountain regions is needed in the 
lowlands as drinking water, for irrigation, for industrial use and for the generation of electricity. 

Steep slopes and/or shallow soils limit the long-term land use potential of more than half of the area 
of the Dominican Republic. Such areas should ideally be covered by protection forest and managed 
forests (May 1997). The “Departamento de Inventario de los Recursos Naturales” recommends that 
60 % of the UCRYN should be forested, 31 % should be used for agroforestry and silvopastoral 
systems and only 9 % for other agriculture. In reality, more than 60 % of the area is used 
agriculturally (GWB/GFA-Agrar 1998). Deforestation and maladjusted forms of land use on slopes 
lead to erosion and loss of soil fertility, and thus to decreasing productivity and general land 
degradation (Kappas & Schöggl 2005). The economic effects of land degradation as a result of 
unsustainable forms of land use are especially tangible in mountainous areas. The agricultural use 
(even as pasture) of many areas is no longer profitable. Besides, the Dominican Republic needs to 
import wood products for about US$ 200 million every year (FAOSTAT data, 2004). These could 
be produced within the country if areas more suited for forest use than for agricultural use were 
reforested and used for commercial forestry. 

Undisturbed tropical mountain forest systems, with their water retention, can work as buffers in 
times of intensive rainfall and reduce the runoff compared to agriculturally used areas (Kleinhans 
2003). Disturbed areas, including those of degraded forest and secondary vegetation, are more 
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vulnerable to landslides than areas of undisturbed vegetation (Erler 2004). Increased rates of erosion 
and the more frequent occurrence of mass-movements mean increased amounts of soil ending up in 
the watercourses, leading to siltation, eutrophication and sedimentation. The latter is a problem 
especially for the reservoirs. The Presa de Tavera (plate 18) at the northern end of the UCRYN, 
built in 1973, is important for the water supply and irrigation in the Cibao valley, the generation of 
hydroelectric power, and flood control. By 1993, 36 million m³ of sediments had been accumulated 
in the reservoir, reducing its storing capacity by 21 %. This corresponds to an average of 23 m³ of 
solid material per hectare of the catchment area which was transported from the UCRYN into the 
reservoir per year during the first 20 years of its existence. The rate of sedimentation has increased 
over the years; during the first five years (1973-1978) it was only 13 m³/(ha·a) (GWB/GFA-Agrar 
1998). The sedimentation leads to a large increase in maintenance costs for the dam, so that the 
operator (Corporación Dominicana de Electricidad) would be ready to provide funds for measures 
which are shown to reduce the soil erosion in the catchment area (Heindrichs 2004). 

Discharge rates, especially peak discharge rates, are also affected by deforestation. The gauging 
station in Manabao measured a mean monthly maximum flow rate of 8.78 m³/s during the period of 
1964-1978 compared to 16.69 m³/s during the period of 1980-1997. This increase is ascribed to the 
deforestation and erosion in the area of La Ciénaga and other areas upstream of Manabao during 
those decades, leading to accelerated discharge. In gauging stations further downstream no such 
increase was observed, though (Vicioso 2002). Accelerated discharge at times of heavy rainfall 
leads to an increased risk of inundations downstream. Inundations are a regular problem for 
example in the Cibao Valley (Consorcio Ingeniería CAURA - ESRI - DESAGRO 2002). 

The presence or absence of mountain forests is also a factor for the local climate. The plants of the 
cloud forest are not only on the receiving end of the humidity of the mist which envelopes them, but 
also generate part of that humidity themselves. When the forest is removed, the frequency of fog 
and the humidity of the soil decrease (Kappas 1999). On a larger scale, the tropical forests, through 
their part in carbon sequestration, also influence the global climate. 

The balancing and attenuating effects of forests on hydrological and climatic conditions are a 
stabilising factor for the whole ecosystem, protecting the natural resources of the mountains. 

Tourism is another economic area where intact natural forests can be an asset, increasing the 
attractiveness of the Dominican Republic as a travel destination for ecologically minded tourists, 
and increasing the attractiveness of the interior mountain regions for domestic and foreign tourists 
alike. 
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3.2.3 Forest Laws and Forest Policy 

A number of laws, decrees and regulations concerning the protection of the Dominican Republic's 
biological resources have been issued since the early years of the country's independence. A decree 
issued in 1884 banned clearing the forest near river beds and springs and demanded that every farm 
should keep 5 % of its area under forest cover (Dotzauer 1993). The law “concerning the 
conservation of forests and waters” from 1934 also banned the deforestation of river banks, edges of 
gullies and springs, among other things (Scarff 1940). The effects of these rules can still be 
observed in agricultural landscape in the Dominican Republic, where indeed the riparian forest 
alongside river banks and arroyos is left standing in many instances. In general, however, the 
protective laws of this time were seldom enforced, both due to a lack of trained foresters and to a 
lack of political will. In the 1930s and 1940s, under the dictator Trujillo, the emphasis was placed 
on the revenue that could be gained for the government from exploiting the country's forest 
resources. In contrast to the forest protection laws, the law about the tax on sawed wood from 1937, 
for example, was enforced quite rigidly (Scarff 1940). 

Beginning in the 1950s, a number of national parks were established to protect some selected areas 
of natural forests (see chapter 3.2.5 below). The laws and decrees concerning the biological 
resources which were issued in the second half of the 20th century were mostly of a prohibitive 
nature. The most radical measure was introduced under president Balaguer in 1967 when, in the 
face of the alarming rate of deforestation which had been reached in the 1960s, all sawmills were 
closed and all tree harvesting was prohibited (Dotzauer 1993). However, this law did not address 
the causes of deforestation and, indeed, made it very undesirable to have forest on one's land as 
forested areas didn't have any economic value. Thus the legal situation did not encourage 
afforestation and entailed illegal actions to further reduce the country's forest cover. During the 
presidency of Balaguer (1966-1978 and 1986-1996), the emphasis of environmental policy was on 
the protection of natural areas, often by force, without making allowance for the interests of the 
local population (Ulbert 1999). The rural population regarded the forestry administation and the 
forest as such as enemies of the farmer, because if on fallow-land the woody vegetation reached 
heights above 1-2 m, the farmer lost the right to use this land. Consequently, the emergence of 
secondary forests was prevented through fires and grazing, and existing forests were also burnt and 
destroyed (plate 19). In the 1990s the forestry office in Jarabacoa estimated that 1 % of the forest in 
its area was burnt each year (GWB/GFA-Agrar 1998). At the same time, Balaguer’s government 
created new institutions in the environmental sector, resulting in more than 12 public institutions, 
with overlapping responsibilities, which were involved in the management and conservation of 
natural resources (Schubert 1993). Responsibility for the country's forests was shared by the 
national forest authority FORESTA, the technical forest commission CONATEF, several 
departments of the ministry of agriculture, and the national park authority (DNP) (Ulbert 1999). 
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The lack of coordination between these institutions prevented the development of a coherent 
forestry policy. 

A national campaign for reforestation was launched in 1983, and a 1985 law established incentives 
for forestry investment (Rodríguez 2004), but landowners were still uncertain whether it would be 
possible to harvest planted trees. In the late 1990s, forest management was increasingly encouraged 
(Peter 2003), and the forest law 118-99 explicitly allowed forest cutting in 1999.  

However, when the government of president Hipólito Mejía (Partido Revolucionario Dominicano) 
came to power in 2000, this permission was temporarily revoked. Older laws regarding the 
environment were superseded by the new 'General Law of the Environment and Natural Resources' 
(Law 64-00) from August 2000. Law 64-00 provides a legal framework for the whole field of 
environmental policy. Among other things, the law stipulates that the forest has to be managed and 
used sustainably, it forbids the destruction of primary forests but allows the use of forest 
plantations, provided that a national forest inventory is conducted separating native and artificial 
forests and forests in protected areas, forests with the purpose of protection and forests with the 
purpose of production. The law also creates the Ministry for Environment (SEMARENA). All 
institutions responsible for aspects regarding the country's natural resources are now subordinate to 
this new ministry (República Dominicana 2000). In 2001, the new Ministry for Environment 
published the required 'Inventario Forestal' (see chapter 3.3), and issued forestry regulations 
(Reglamento Forestal, SEMARENA 2001e) and technical standards (SEMARENA 2001c, 2001d, 
2001e) supplementing law 64-00 with more detailed regulations regarding the management of 
forests and determining the conditions under which commercial forestry is allowed. Forests around 
springs and along rivers and streams continue to be protected, and forests on steep slopes (> 60 %) 
are also classified as protection forests with management restrictions. 

Public statements of the government are very much in favour of encouraging reforestation and 
forest management. A national program for reforestation and a national program for land use 
change (from extensive pasture to forestry) are presented on the web site of the ministry for 
environment (http://www.ceiba.gov.do/2004/index_esp.html). Under the current conditions 
however, it is too costly for many smaller farmers to obtain the official permission for commercial 
use of their forests. They would need a management plan elaborated by a forestry professional, then 
wait for up to 6 months for approval of the plan and submit to control by government officials. Not 
being able to afford this, many smallholders continue to illegally transform their forests into 
agriculture. Besides, government forest policy is regarded as unstable, so many landowners harvest 
what they can today without being willing to make any long-term investments. There is only a small 
group of forest owners who have both the interest and the possibility to manage their forest on a 
sustainable basis and to develop a private forestry sector (Peter 2003). 
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Leonel Fernández of the Partido de la Liberación Dominicana, who had already been president from 
1996 to 2000, won a majority in the county's presidential elections on 16 May 2004 and has 
replaced president Hipólito Mejía on 16 August of the same year. It remains to be seen what this 
will mean for the country's forest policy and to what extent the policies can be implemented during 
the currently critical economic situation of the country. 

3.2.4 Reforestation Efforts and Commercial Forestry 

Some public reforestation projects got under way in 1973. Among them were plantations in the area 
of Manabao and the Loma la Sal in the UCRYN (Rodríguez 2004). According to the archives of the 
‘Certificates of Plantations with the Right to Felling’ (which were introduced in 1988), 360 km² of 
forest plantations for production, both private and public, had been registered in the Dominican 
Republic by 2001. In addition, 123 km² of forest had been planted for the protection of steep slopes 
and riparian zones (SEMARENA 2001a). Together, this corresponds to less than 1 % of the 
Dominican Republic's land area. Armenteros Ruis (1989) called for the reforestation of 
approximately 3500 km² of protective forests in the vital watersheds of the country; only a small 
proportion of this has been realised. Despite attempts during the last decades to create incentives for 
forestry investment, no significant private forestry sector has emerged and commercial forest 
plantations are still very rare in the Dominican Republic as a whole. 

However, plantations of pine trees (usually Pinus caribaea) are relatively widespread in the 
UCRYN and adjacent mountain areas (plates 20 & 21). Plantations of native pines (Pinus 
occidentalis) are rare because this is not an established species in commercial forestry (Darrow & 
Zanoni 1991). In the UCRYN, young pines planted recently can be found as well as pine 
plantations from the 1970s and 1980s. There are also plantations of broadleaved trees, consisting 
mostly of fast-growing species like Acacia mangium (plate 22). In the eastern test area, an effort 
was made between 1972 and 1975 to reforest the deforested and degraded (only sparsely wooded) 
slopes below the areas of remaining cloud forest with Pinus caribaea, Pinus taeda and also Pinus 
occidentalis. Not all of these plantations were looked after in the following years. This resulted in 
some dense pine forests and some areas of closed and open forests where the pine trees are mixed 
with broadleaved pioneer species like Brunellia comocladifolia and in some places with 
regenerating cloud forest.  

In addition to plantations, SEMARENA (2001a) classified 44.5 % of the country’s forests 
(5521 km²) as potential productive natural forests which can now be utilised according to the 
forestry regulations for sustainable forest managment (SEMARENA 2001b). By December 2002, 
167 management plans had been approved, legalising the utilization of 295 km² of natural forest, 
and 24,336 m³ of timber (Pinus occidentalis) had been extracted (Rodríguez 2004). 
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3.2.5 National Parks and Protected Areas 

There have been efforts to protect the mountain forests of the Dominican Republic since the 1920s. 
The catchment area of the upper course of the Río Yaque del Norte was declared a protected area in 
1928. The first national park was established in the Cordillera Central in 1956, but the legislation 
determining the aims and functions of national parks followed only in 1974, when the National Park 
Administration (DNP) was established. Since 1956 over 30 protected areas (national parks, 
scientific reserves, natural monuments) have been set up in the Dominican Republic; seven national 
parks and ten scientific reserves of these had been placed in areas of remaining mountain forests by 
1997 (Schubert 1993, May 1997). The largest protected areas are the national parks. These are areas 
where the exploitation of natural resources or large-scale modifications of the ecosystem are 
prohibited but recreational and scientific activities are allowed. The scientific reserves of the 
Dominican Republic have the legal status of strict nature reserves where human access is more 
restricted with the exceptions of scientific investigations, environmental monitoring and education 
(SEMARENA web page URL: http://www.ceiba.gov.do/2004/areas_naturales/esp/areas_proteccion 
/areas_prot_esp.html). According to SEMARENA (2002), 4770 km² of forest are located in 
protected areas, including 65 % of the remaining cloud forest and 58 % of the coniferous forest, 
30 % of the humid broadleaved forest and 19 % of the dry forest. All types of natural forests are 
now represented in protected areas in accordance with the aim to conserve the country’s 
biodiversity. However, the delimitation of protected areas is often based on incomplete or deficient 
biological and cartographic information, so that some small and well preserved mountain forests are 
still not protected while some protected areas include secondary forests and agriculturally used 
areas and settlements, giving rise to conflicts with the local population (May 1997). Buffer zones 
have only been added to a minority of the protected areas and often violations of the prohibitions of 
utilisation cannot be stopped. In July 2004, a controversial law for protected areas was introduced. 
It somewhat reduced the total area under protection and modified the categories of protected areas, 
allowing more economical activities like mining and the building of tourism infrastructure. This law 
was heavily criticised by the new minister of environment, Max Puig, for being “deficient and 
contradictory” and inapplicable, because it prohibits access to areas containing settlements while 
leaving important sensitive areas without protection. Puig announced that his ministry was 
preparing a new law for protected areas (Listín Diario 12.2.05). 

The national parks (NP) and scientific reserves in the region of the UCRYN are described in more 
detail below. 

NP Armando Bermúdez and NP José del Carmen Ramírez, established in 1956 and 1958 
respectively, are the oldest national parks of the Dominican Republic. Together, these two adjoining 
national parks cover 1504 km² on the northern and southern side of the central Cordillera Central 
including the highest peaks of the country and the headwaters of the Río Yaque del Norte and the 
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Río Yaque del Sur (Schubert 1993). The parks protect large areas of humid mountain forest (mainly 
pine forest, but also cloud forest, humid evergreen broadleaved forest, riparian forest and patches of 
palm forest) in the Cordillera Central. However, there is no buffer zone established around these 
parks, and the current boundary of the NP José del Carmen Ramírez is ill defined. There are 
encroachments of coffee plantations and slash-and-burn agriculture, and illegal logging has denuded 
part of the parks (Bolay 1997). Forest fires, both natural and man-made, are a regular occurrence in 
the pine forests of this area. In March 2005, the drought, probably in combination slash and burn 
practices, led to a large number of forest fires in the Cordillera Central, also affecting the NP 
Armando Bermúdez, and burning a larger area of forests in the Dominican Republic than at any 
time since the fire season of 1997 (Listín Diario 19.03., 20.03., 22.03, 24.03. & 30.03.2005). The 
eastern NP Armando Bermúdez is part of the upper catchment area of the Río Yaque del Norte.  

The Scientific Reserve Ebano Verde is located in the eastern UCRYN and extends into the 
adjacent catchment area of the Río Camú. It was established in 1989 with the primary aim of 
protecting the threatened endemic tree Magnolia pallescens (Spanish: ébano verde) in its cloud 
forest habitat. The reserve is managed by the foundation PROGRESSIO (Fundación para el 
Mejoramiento Humano), based on a treaty with the Dirección Nationál de Parques (DNP), which is 
a singular form of management in the Dominican Republic (Bolay 1997). The reserve is small 
(originally 23 km², today 29 km²) but relatively well protected, although large parts of it were 
deforested or degraded in the past when, among other things, the valuable timber of Magnolia 
pallescens was extracted from the cloud forest. The area around the reserve is assigned as a buffer 
zone. Elevations range form 800 to 1565 m a.s.l. 686 species of vascular plants have been recorded 
in this reserve, 158 of which are endemic to Hispaniola. There are 89 different tree species. Most of 
the reserve is covered by Didymopanax tremulus - Magnolia pallescens cloud forest. This cloud 
forest grades into Prestoea montana palm forest in some wet valleys in the eastern part of the 
reserve. Broadleaved riparian forest grows along most of the streams outside the palm forest area. 
Previously deforested areas mainly in the western and south-western reserve have been reforested 
with Pinus occidentalis, Pinus caribaea and Pinus taeda since 1972, resulting in some dense pine 
plantations in addition to a small area of natural pine forest on a dry slope in the westernmost 
reserve. Most pine plantations, having been left untended after the sowing, have been invaded by 
broadleaved species. A secondary forest has developed in these areas where Brunellia 
comocladifolia (sangre de gallo) and other broadleaved pioneer species are mixed with some 
remaining pine trees and the development is toward the regeneration of a cloud forest or, below the 
cloud zone, a humid evergreen broadleaved forest. Areas where the tree layer has been disturbed 
either by man or by hurricanes are covered by fern (calimetales) (García et al. 1994). 

The NP Valle Nuevo is located in the south-eastern Cordillera Central to the south and to the east 
of the valley of Constanza. Its northernmost part extends into the southernmost UCRYN. The NP 
was established as a scientific reserve in 1983 and used to cover 409 km² (Schubert 1993) but has 
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been enlarged to 910 km². Valle Nuevo contains both natural and historic sights, but due to easy 
access into the park, not all of them are intact. The centre of the park is a plateau at 2200 m 
elevation. The park’s vegetation consists mostly of pine forest and cloud forest.  

Las Neblinas is a new reserve established in 1996. It covers 36 km² in the eastern Cordillera 
Central, bordering on the UCRYN and extending the area of protected cloud forest of the Scientific 
Reserve Ebano Verde towards the south-east (SEMARENA web page URL: http://www.ceiba. 
gov.do/2004/areas_naturales/esp/areas_proteccion/areas_prot_esp.html).  

3.2.6 Environmental Projects  

National and international non-governmental organisations (NGOs) have implemented several land 
management projects in the Dominican Republic, sometimes in co-operation with the Dominican 
government (e.g. Plan Sierra in the northern Cordillera Central). Some of these projects focus on 
the UCRYN or parts of it. 

PROCARYN 

The “Project for the management and conservation of the upper catchment area of the Río Yaque 
del Norte” (PROCARYN) became operational in 2001 after some preliminary studies and 
preparations done since 1998 (GWB / GFA-Agrar 1998, Vicioso 2002). It is a project of 
cooperation between the Dominican ministry of the environment (Secretaría de Estado de Medio 
Ambiente y Recursos Naturales – SEMARENA) and German development agencies (GTZ, KfW, 
DED).  

The project area of 840 km² includes the upper catchment area of the Río Yaque del Norte together 
with a small area to its northwest down to the Río Guanajuma. Its aim is to achieve forest and soil 
protection through incentives for farmers to manage their land more sustainably. The project has an 
agroforestry-agriculture component and a forestry component. The latter supports smallholder 
farmers with reforestation and sustainable management of forests on their lands, including co-
financing, help with the bureaucratic requirements and technical support. Farmers are also educated 
and involved in the decision-making process to motivate them to participate, as forest protection, 
reforestation and soil protection measures can be counterproductive in the long run if they do not 
contribute to the livelihoods of the rural population (Peter 2004, Heindrichs 2004). 

PROCARYN was a factor in choosing the UCRYN as study area for this work. The project 
provided important infrastructure during fieldwork, shared data and was interested in the resulting 
land cover maps; it received the earlier results of this work for use in the project’s land cover and 
land use monitoring. The PROCARYN project completed its first phase in 2004 and is currently not 
active, although it was originally planned for five years (GWB/GFA-Agrar 1998).  
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PROGRESSIO 

PROGRESSIO (Fundación para el Mejoramiento Humano / Foundation for Human Improvement) 
is a Dominican environmental NGO established in 1983. It is a member of the World Conservation 
Union (IUCN). PROGRESSIO’s primary concerns are the conservation of biodiversity and 
sustainable development for the benefit of the quality of life of the human population. Its main 
project is the management and development of the Scientific Reserve Ebano Verde. It is also active 
in supporting the sustainable development in the buffer zone around the reserve. In other areas of 
the Dominican Republic, PROGRESSIO is involved in the introduction of new crops for agriculture 
and agroforestry and in environmental education (URL: http://www.cad.org.do/progressio.html).  

3.2.7 Agricultural Land Use in the Study Area (Plates 23-31) 

While only about a third of the UCRYN is still covered by forests within and outside of protected 
areas, most of the catchment area is used agriculturally. Agriculture is the main economic activity in 
the rural zones of the UCRYN. Most people cultivate their own land or leased fields or work for 
other farmers (GWB/GFA-Agrar 1998). 

Extensive livestock farming for the production of milk and meat is the dominant form of land use in 
the mountainous areas of the Dominican Republic. The number of cattle in the country has 
increased by 41 % between 1979 and 1998 (SEMARENA 2002). About a quarter of the UCRYN, 
mostly the land of medium and large land owners, is used as pasture. This type of land use is 
especially dominant in the relatively dry northern part of the catchment area, on the hill slopes 
between Jarabacoa and the Tavera reservoir. There is some intensive grassland in the vicinity of 
settlements, but most of the grassland of the study area is used as extensive pasture. The herbaceous 
layer of these areas is mostly composed of grasses like the introduced Melinis minutiflora, but ferns 
like Pteridium aquilinum (bracken) are also present in many places and can become dominant. On 
steep slopes, grazing animals cause the development of tracks parallel to the contour lines 
(“Viehgangeln”). In overgrazed and dry areas, the vegetation cover can be incomplete so that at the 
end of the dry season, large areas of bare soil are exposed to the first strong rainfall (GWB/GFA-
Agrar 1998). The pasture-land often contains dispersed trees or groups of trees which can be either 
relicts of a former forest or pioneer trees and shrubs (May & Peguero 2000). Older remnant trees 
are mostly pine trees, but broadleaved trees and palm trees, the latter mostly in the lower areas of 
the UCRYN, can also be found on pasture-land.  

The most wide-spread crop of those which are grown in the UCRYN is coffee (Coffea spp.). Coffee 
is grown in large and small plantations, partly with shadow trees, at elevations up to about 1500 m. 
In some coffee plantations pesticides are used to kill herbs resulting in an incomplete overall 
vegetation cover, especially where the coffee plants are still small. Beans (Phaseolus vulgaris; 
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Spanish: habichuelas) are the second most wide-spread crop. Traditional bean cultivation on slopes 
can lead to large rates of erosion as long as appropriate soil conservation practises are not applied 
(GWB/GFA-Agrar 1998, Kappas & Schöggl 2005). In the area of Paso Bajito (eastern test area), 
deforested steep slopes are used for the widespread cultivation of beans without soil conservation 
practices. This subsistence agriculture has increased in the area since the 1980s when this area was 
mostly used only as pasture (Vicioso 2002). Other crops traditionally grown in the UCRYN include 
maize, manioc, tobacco and sweet potato/yam (Ipomoea batatas).  

More recently the cultivation of cabbage and other vegetables and of flowers has spread in some 
parts of the UCRYN (GWB/GFA-Agrar 1998). Some of these are grown in greenhouses. Especially 
conspicuous is the spread of chayote cultivation on plains and moderate slopes, with a centre in the 
area upstream of Manabao (La Ciénaga). Chayote (Sechium edule; Spanish: tayota) is a vegetable 
from the family of Cucurbitaceae, which grows on a perennial vine and needs the construction of a 
framework on which it forms a dense cover of leafs. Chayote fields are often irrigated. During the 
last decade, they have replaced many former coffee plantations in the UCRYN (Vicioso 2002, 
GWB/GFA-Agrar 1998). The establishment of chayote fields is also connected to deforestation 
because of the wooden stakes needed for the framework. 

3.2.8 Agroforestry (Plates 32-34) 

Agroforestry can be defined as the incorporation of trees in agricultural systems. This is a type of 
land use that can contribute to sustainable mountain development (Atta-Krah & Tang Ya 2000). 
Potential benefits include the preservation of soil fertility and reduction of soil erosion, water 
conservation and a higher biodiversity and ecosystem connectivity compared to tree-less agriculture 
(Beer et al. 2003). The trees used in agroforestry are often legumes, which contribute to soil fertility 
replentishment through nitrogen fixing. Agroforestry systems provide additional products and 
services to the farmer and to the wider environment, but they are often labour intensive, so that they 
may not be the most profitable option for the individual farmer. 

Common traditional agroforestry systems in the Dominican Republic include firstly coffee (Coffea 
spp.) under shade trees (typically Inga vera or Cordia alliodora) and banana plants (Musa spp.), 
secondly cocoa (Thobrama cacao) under shade trees, citrics and banana plants and thirdly 
silvopastoral systems (Hernández 1995). 

In the UCRYN, agroforestry typically consists of medium-sized to large coffee plantations (mostly 
Coffea arabica) with shade trees on the one hand and, on the other hand, agroforestry on small plots 
in the form of mixed homegardens where bananas, coffee and other crops are grown on a 
subsistence basis. 
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Although most agroforestry systems of the UCRYN include coffee, there is a large variety of 
species and species mixtures which can be part of these systems. Inga vera Willd. (Spanish: guaba, 
locally known as guama) is a legume used frequently as a shade tree in this area, which also 
provides wood (mainly for fuel) and nectar for bees. Mixtures of different broadleaved trees which 
sometimes seem to be the remnants of the original forest can also be found in the tree layer, as well 
as palm trees, which are used both as shade and fruit trees. There are also plantations of coffee 
under pine trees in the study area. 

Due to the prohibition to cut trees that was in place between 1967 and the late 1990s, some coffee 
plantations with shade trees became unproductive through lack of light. Especially smaller 
plantations sometimes ended up with a complete crown cover of Inga vera or other shade trees. 

Investments in the creation and maintenance of traditional coffee and cacao agroforestry plantations 
in the Dominican Republic have declined in recent years because of adverse conditions on the 
world market (SEMARENA 2002). Low coffee prices since 1997 have resulted in unprofitable 
plantations which are sometimes left unused, sometimes also cleared for use as pasture or to 
cultivate other crops (Vicioso 2002). In spite of this, some new coffee plantations with a low 
density of shade trees have been established in the hills to the south of the Río Yaque del Norte (to 
the south-west of Jarabacoa), replacing formerly forested areas. 

Apart from the agroforestry systems with coffee, silvopastoral systems are also common in the 
UCRYN, where many pasture areas include single trees, groups of trees and transitions from 
pasture to open forest. The trees in those pasture areas are mostly pine trees, which, unlike the trees 
in silvopastoral systems in the dry forest areas of the Dominican Republic (Erhart 1995), do not 
provide fodder for livestock. 

3.2.9 Degraded and Secondary (Semi-Natural) Vegetation in the Study Area 

While grazing and fires have degraded areas of natural vegetation, there area also substantial areas 
which were formerly used agriculturally and have been left fallow or unmanaged for several years. 
These are areas formerly used for migratory agriculture, which was most intensive in the UCRYN 
in the 1980s (Vicioso 2002), areas where land degeneration has made pasture use unprofitable and 
areas of abandoned agroforestry plantations. Unmanaged regeneration has lead to the development 
of areas of matorral (shrubland) and secondary forest (plates 37-41).  

Matorral areas, covered with shrubs, ferns and grasses, have developed for example on abandoned 
pasture-land and agricultural fields, often on steep slopes. The matorral vegetation may be a 
successional stage on the way to a secondary forest, or it may be the case that the woody vegetation 
does not reach the stage of a forest because the site is too degraded and/or the vegetation continues 
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to be disturbed by grazing or occasional fires. The herbaceous layer of matorral areas is often fern 
dominated, and woody species like Myrsine coriacea, Baccharis myrsinites or Piper aduncum form 
an open or closed layer of shrubs (May & Peguero 2000, May 1994). Dispersed trees can also be 
found in some of these areas. In the eastern test area, in the buffer zone of the scientific reserve, 
many slopes are covered by this kind of vegetation.  

The humid secondary forests which develop through natural regeneration in the study area are quite 
diverse, depending on their age, the kind and duration of former land use and environmental factors. 
Generally, secondary forests contain an increased amount of pioneer species and if they remain 
undisturbed, the succession leads back to the climax vegetation of the respective environment. The 
secondary forest in the eastern test area has already been mentioned in chapter 3.2.5. May (1994) 
studied an area of secondary forest in the eastern test area at 1250 m a.s.l. 12 years after the conucos 
of this area had been abandoned in 1980-1981. By this time, a secondary forest had developed with 
16 woody species (shrubs and trees) in the 170 m² botanical study area. Most frequent among the 
plants which had already reached tree height (> 5 m) were Brunellia comocladifolia, Myrsine 
coriacea, Turpina occidentalis and Ocotea leucoxylon. The herbaceous layer was dominated by the 
grass Homolepis glutinosa, with ferns also present. Among the young regeneration in the 
understorey, pioneer species like Brunellia and Turpina were absent while species typical for a 
mature cloud forest like Prestoea montana and Podocarpus aristulatus were present, indicating that 
a succession towards a more mature forest was under way. 

On the Mogote Mountain in the south-central UCRYN, former coffee plantations at about 1000 m 
a.s.l. have developed into broadleaved secondary forests with a dominance of Inga vera in the tree 
canopy. In other places, an open canopy of Pinus occidentalis dominates the secondary vegetation. 
Further tree species abundant in the secondary forest of the mid-elevations of the Mogote are 
Cupania americana and Alchornea latifolia, among others. Lianas like Mikania venosa are also 
abundant, especially in places where Hurrican George felled many trees. In areas of open secondary 
forest on the Mogote, the herbaceous layer is dominated by the grass Melinis minutiflora (May & 
Peguero 2000). 

In the UCRYN there are many places with degraded remnants of the lower montane pine forest 
which covered much of the area in the early 20th century. These open pine forests, where ferns or 
grasses dominate the herbaceous layer, are sometimes used as pasture areas. In the southern 
UCRYN there are large areas of open pine forests with low crown cover resulting in a spectral 
signature in the satellite images which is defined mainly by the fern (bracken) of the herbaceous 
layer (plate 35). 
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3.3 Information for Forest and Land Use Management in the Dominican Republic 

3.3.1 Forest Mapping and Inventories since 1950 

In the past decades, expert estimates, interpretation of aerial photographs and classification of 
medium resolution satellite data have been used to gain information about the forests of the 
Dominican Republic. The earliest attempts to use remote sensing for investigating the country’s 
vegetation occurred in the 1950s. A set of 1:60,000 black-and-white aerial photographs taken in 
1958-1959 were used in the 1960s by the Organization of American States (OEA) for an evaluation 
of the natural resources of the Dominican Republic. Black-and-white aerial photographs at the scale 
of 1:20,000, taken between 1966 and 1968 during an aerial survey conducted by the OEA, were 
used for a 1973 FAO inventory of natural resources (Tolentino & Peña 1998). In the late 1970s, 
satellite images were used for the first time in the Dominican Republic for a land cover / land use 
classification through visual interpretation of Landsat MSS imagery conducted by CRIES and 
USAID. The CRIES study defined forests as areas with at least 70 % tree crown cover, thus 
excluding, among other things, most of the pine forests of Dominican Republic and classifying only 
14 % of the country as forested (CRIES 1980 quoted in Russell & Fournier 1992). 1:40,000 black-
and-white aerial photographs of the whole country were taken in 1983-1984 and used for the 
preparation of a land use map by DIRENA, the Department for the Inventory of Natural Resources 
of the Ministry of Agriculture (Tolentino & Peña 1998). This was the last nation-wide inventory to 
date which was based on high-resolution remote sensing data, and DIRENA concluded from the 
photographs that in 1983/1984, 28.8 % of the country was covered by forests (6.1 % pine forest, 
6 % broadleaved forest and 16.7 % dry forest) (Consorcio Ingeniería CAURA - ESRI - DESAGRO 
2002).  

No country-wide aerial survey was conducted in the 1990s, so that for this decade, information 
about the national land cover can only be based on expert estimates and one Landsat TM 
classification. The results are not very conclusive. The forest cover estimates for the Dominican 
Republic for the 1990s range from 10 % to 29 %. Bolay (1997:336) thinks it is less than 11 %, May 
(1997) estimates the forest cover at 10-15 %, and the Statistisches Bundesamt (1996) gives the 
figure as 12.5 %. SEMARENA (2002) gives the forest cover at the beginning of the 1990s as 14 %. 
In contrast, Ulbert (1999) quotes the Informe National of the Dominican Government (1991) which 
states a forest cover of 29 1 % (mostly dry forest) and Tolentino & Peña (1998) state a forest cover 
of 27.5 % based on the classification of Landsat TM images from the years 1988-1996, which is 
also the result accepted by SEMARENA (2001a) in its national forest inventory and the source of 
the statistics of FRA 2000 (FAO 2001 / FAO 31.12.2000). The numbers for forest cover quoted 
above show a considerable variation in forest cover estimates for the 1990s. This disparity is partly 
due to inconsistent or loose forest definitions (e.g. what degree of crown cover constitutes a forest 
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and where to draw the line between shrubland and forest) but it is also due to different error sources 
depending on how the numbers were derived. Without either a recent forest inventory involving 
country-wide field sampling or country-wide up-to-date detailed mapping based on high resolution 
remotely sensed data it is hard to say which numbers are the most accurate ones. In general, if the 
Landsat classification is supposed to give a fairly correct overview over the distribution of the main 
land cover types, it seems that the experts overestimated the amount of deforestation which 
happened since the mid-1980s, or some did not include the dry forest in their forest definition. A 
similar situation of incompatible forest cover assessments, carried out by different organizations 
with different objectives, class definitions, information sources and methods, resulting in an 
overestimation of deforestation for the 1990s, is reported for Jamaica by Evelyn & Camirand 
(2003).  

There have also been forest mapping efforts which covered only parts of the Dominican Republic. 
Russell & Fournier (1992) studied the land cover changes in the western half of the Dominican 
Republic on the basis of Landsat images of the years 1972/1973, 1979 and 1985/1986, using 
consistent methods. They found that the area of coniferous and broadleaved forests (without dry 
forests) decreased from 28 % to 19 % of their study area from the early 1970s to the mid-1980s. 
Hudson (1991) interpreted aerial photographs of montane forests in the Sierra de Bahoruco. 
Another example of local forest and land cover mapping in the Dominican Republic is the study of 
Laba et al. (1997) who used Landsat TM data to classify the land cover, including the mangroves, 
of the lower Yuna River watershed. 

The country-wide forest and land cover information which is currently most widely used is the 
Landsat-based one (Tolentino & Peña 1998). In 1993, the Department for the Inventory of Natural 
Resources (DIRENA) started the project 'inventory and evaluation of the natural resources of the 
Dominican Republic'. Its aim was to collect up-to-date information about the country's vegetation 
with the help of remote sensing and to create a basis of georeferenced data for management 
planning. The methods that were used and the results of the vegetation mapping are described by 
Tolentino & Peña (1998). The classification was mainly based on digital Landsat data of the years 
1988, 1992 and 1996 covering the whole country. The satellite data were classified using a 
supervised classification based on about 250 field sampling plots and complemented by a visual 
interpretation of the Landsat data as well as information derived from the 1983-1984 aerial 
photographs. The resulting land use and land cover map at the scale of 1:500,000 shows a forest 
cover of 27.5 % (6.3 % coniferous forest, 13.1 % broadleaved forest, 7.6 % dry forest and 0.5 % 
wetland forest). Additionally, 14.1 % of the country is covered by shrubland (matorrales), 
according to these results. Tolentino & Peña (1998) do not report that any accuracy assessment was 
conducted for this Landsat-based vegetation map.  
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The 'Inventario Forestal' published by the Dominican Ministry of Environment (SEMARENA 
2001a) uses the results of this study and further subdivides the mapped forest into forest within 
protected areas (36.7 %) and outside of protected areas (63.3 %). The latter is further subdivided 
into production forest (67 %) and protection forest (33 %). (Protection forests are forests outside of 
protected areas but with management restrictions; this includes riparian forests, forests on steep 
slopes, cloud forests and wetland forests.) The ‘Inventario Forestal’ also quantifies the total timber 
volume of the national forests using estimated average volumes (m³/ha) for dense coniferous, open 
coniferous, broadleaved and dry forests and plantations. SEMARENA (2001a) announced a plan to 
update the Landsat-based map using more recent Landsat data and aerial photographs of a new 
aerial survey which started in 2001. This survey is conducted by the National Institute for Water 
Resources (INDRHI), producing 1:20.000 colour photographs. It had covered 95 % of the country 
by August 2003 (with exceptions mostly in mountain areas with frequent cloud cover), but the 
photographs were not yet completely pre-processed nor available (http://www.indrhi.gov.do/). The 
Ministry of Environment announced in July 2004 on its website (http://www.ceiba.gov.do/ 
2004/noticias/esp/jul-04/0727_esp.html) that an update of the map of Tolentino & Peña (1998) had 
been done using Landsat data of the years 1996 and 2003, with the result that the forested areas had 
increased to 32.9 % of the country. 

3.3.2 Information Needs 

As in many tropical developing countries, there is a lack of high quality forest and land cover 
information in the Dominican Republic. Reliable and regularly updated information about the 
extent and location of land cover types and their changes over time would be an important basis for 
the development of policies and measures leading to reasonable and increasingly sustainable forest 
and land use management practices. Vegetation maps or ‘inventories’ based principally on the 
classification of medium resolution satellite data are not sufficiently detailed to be used as a basis 
for forest management plans. In the field of commercial forestry, the administration could also use 
regularly updated high resolution maps to supplement their knowledge (in the spatial domain) about 
whether the measures to encourage afforestation are effective, and to control whether the 
establishment of plantations and the management of natural forests are conducted according to the 
propositions. 

SEMARENA (2002:35) bemoans the lack of information, order and continuity in the study and 
monitoring of the state of the environment and the natural resources. This makes it difficult to put 
into action the principle of the polluters’ financial responsibility for contamination established in 
the law 64-00. Proposed payment schemes for environmental services in watersheds (Heindrichs 
2004) need regularly updated information about the natural resources in order to become 
operational. 
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The insufficient quality of the available biological and cartographic information (May 1997) still 
entails ill defined or arbitrary borders of protected areas. As a basis for improving the legislation 
and management regarding protected areas, high-quality spatial information is needed in order to 
answer for example the following questions: 

• Which areas are covered by which type of primary forests?  

• Do the primary forests change over time regarding their area or their qualities?  

• Which forest types are threatened / in need of additional protection?  

• Are there non-natural types of land cover included within the current boundaries of 
protected areas? Where? What types of land cover or land use? 

• Are the protective measures effective or are there unwanted land cover changes in protected 
areas? 

The development of largely automated processing methods for high resolution remotely sensed data 
is required in order to make the repeated production of up-to-date high quality forest and land cover 
maps feasible for tropical mountain regions. One of the aims of this study is to contribute to the 
knowledge about the utility of several methods to derive the required information from high 
resolution satellite data. 
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4 Data and Tools 

Two kinds of satellite data (medium resolution Landsat and high resolution IKONOS) were used in 
this study. Additionally, a Digital Elevation Model (DEM), aerial photographs and topographic as 
well as thematic maps were available as sources of spatial information. 

4.1 Satellite data 

4.1.1 Landsat-7 ETM+ 

Landsat-7 is the most recent in the series of Landsat satellites, which have been used to acquire 
medium resolution imagery of the Earth since 1972 (USGS 01.03.2005). Landsat-7, carrying the 
Enhanced Thematic Mapper Plus (ETM+) instrument, was launched in April 1999. Four years later, 
on 31 May 2003, the scan line corrector failed, introducing data gaps in the ETM+ images and thus 
reducing the coverage of full quality Landsat ETM+ data. 

The satellite has a sun-synchronous orbit with a 98-degree inclination and an altitude of 705 km. It 
has a swath width of 185 km and a repeat coverage interval of 16 days. The ETM+ is the latest 
version of the Thematic Mapper (TM) instrument carried by Landsat-4 and -5. The ETM+ 
instrument records essentially the same spectral bands as its predecessor, but it has an additional 
panchromatic band with 15 m ground resolution and a better ground resolution in band 6 (thermal 
infra-red) (table 2).  

Table 2: ETM+ characteristics. 

Band Number Spectral Range (µm) Ground Resolution (m) 

1 0.45 to 0.515 30 

2 0.525 to 0.605 30 

3 0.63 to 0.69 30 

4 0.75 to 0.90 30 

5 1.55 to 1.75 30 

6 10.4 to 12.5 60 

7 2.09 to 2.35 30 

Pan (8) 0.52 to 0.90 15 
 

The Landsat-7 ETM+ scene used here has the path/row numbers 08/47 and covers the central and 
western Dominican Republic. It was acquired on 15 September 2000 at 14:59 GMT (Greenwich 
mean time). The illumination is characterized by a sun azimuth angle of 120° and a sun elevation 



 4 Data and Tools  

84 

angle of 60.5°, and the image was processed to Level 0R (see metadata in appendix 3). The Level 
0R Landsat product is reformatted raw data delivered with a radiometric resolution of 8 bit. Values 
are Digital Numbers (DN). The scene is very clear over the study area with no visible atmospheric 
effects except for a few small clouds (see figure 8). 

 
Figure 8: Landsat-7 ETM+ image subset of the upper catchment area of the Río Yaque del Norte, RGB 583. 

4.1.2 IKONOS 

The IKONOS-2 satellite was launched in September 1999 and has been delivering commercial data 
since early 2000. IKONOS is the first of a new generation of high spatial resolution satellites which 
by now also include QuickBird-2, OrbView-3 and Eros A1. The IKONOS sensor uses a large 
telescope and pushbroom detector technology to simultaneously record four channels of 
multispectral data at 4 metre resolution and one panchromatic channel with 1 metre resolution 
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(nominal resolutions at < 26° off nadir). The spectral range of the multispectral channels is almost 
identical to that of the first four Landsat channels (see table 3). The IKONOS satellite is in a sun-
synchronous orbit with a 14 days repeat cycle but is has a 1 to 3 day revisit time due to its pointing 
capability of 30° in any direction (Van der Meer et al. 2002). Further orbital information is listed in 
table 4. IKONOS data is collected as 11 bits per pixel (2048 grey tones). 

Table 3: IKONOS-2 instrument characteristics. 

Band Number Spectral Range (µm) Ground Resolution (m) 

1 0.45 to 0.52 4 

2 0.52 to 0.60 4 

3 0.63 to 0.69 4 

4 0.76 to 0.90 4 

Pan 0.45 to 0.90 1 
 

Table 4: IKONOS-2 orbital information (Dial et al. 2003). 

Altitude 681 kilometers 

Inclination 98.1 degrees 

Orbit time 98 minutes 

Orbit type sun-synchronous 

Descending nodal crossing time ~10:30 a.m. local solar time 

Nominal swath width  13 km at nadir 

Revisit frequency 
3 days at 1 meter resolution (60° collection elevation / 26° off nadir) 
These values are for targets at 40 degrees latitude. The revisit times will be 
less frequent for latitudes closer to the equator. 

Viewing angle Agile spacecraft - in-track and cross-track pointing 

 

IKONOS is thus the first satellite delivering commercially available high resolution multispectral 
data with global coverage and constant acquisition parameters (apart from the variable viewing 
geometry). This makes it possible for the user to acquire near photographic quality satellite imagery 
of anywhere in the world (except for polar regions). 

IKONOS data are marketed by Space Imaging. The data are collected on request only and can be 
ordered as a new collection (scheduling and tasking of the satellite), or from Space Imaging’s 
imagery archive if data of that location has already been collected. The pricing varies considerably 
depending on the area of interest (km²) and its location, the product (processing level) and the type 
of licence, among other factors. In Europe, the non-orthorectified ‘Geo product’ including all five 
bands cost 27.50 US $ per km² for a new collection and 21 US $ per km² for archived data in 2004. 
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The prices are higher for orthorectified products, stereo pairs and in case of ‘priority tasking’ (fixed 
acquisition time frame). The imagery which is delivered can contain up to 20 % cloud cover. 

The IKONOS data which were available for this study belong to the ‘Geo product’ category. Image 
distortions which are due to the collection geometry are removed in this product, and the imagery is 
resampled to a uniform pixel spacing and a specified map projection. There is no correction of 
terrain effects, though (Space Imaging 2004). 

12 IKONOS images of diverse quality (in terms of haziness and geometric distortions) cover the 
UCRYN. They are partly cloudy, so that they contain information about somewhat less than 100 % 
of the surface of the catchment area. They were acquired between September 2000 and June 2002. 
Two of these images, which are of relatively high quality, were used for further processing (beyond 
visual enhancements). Their acquisition parameters are presented in table 5 (see also appendix 4). 

Table 5: Acquisition parameters of IKONOS images used in this study. 

 

Both images have relatively high sun elevations (68° and 75°), leading to only slight topographic 
illumination effects. The eastern image (figures 9 and 10) also has a high collection elevation (81°), 
while the Manabao image has a collection elevation of only 67°, leading to stronger geometric 
distortions through terrain displacement. 
 

 Eastern image (the eastern test 
area is a subset of this image) 

Western image (Manabao).  
 

Acquisition date/time 19 April 2001 15:19 GMT  22 May 2002 15:37 GMT  

Sun angle azimuth 109.9° According to metadata file 81.6°, but 
looking at time of acquisition, sun angle 
elevation and shadows in the image, this 
must be an error; the real value is ~120°. 

Sun angle elevation 68.3° 75.1° 

Nominal collection azimuth 220.2° 322.0° 

Nominal collection elevation 81.3° 66.9° 

Acquired nominal GSD (ground 
sample distance) cross scan 

0.83 m 0.91 m 

Acquired nominal GSD (ground 
sample distance) along scan 

0.83 m 0.93 m 
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Figure 9: IKONOS multispectral sub-image of the eastern test area (red dotted line: western border of the Scientific 
Reserve Ebano Verde), RGB 321. 

   

Figure 10: IKONOS multispectral data, 4 m resolution, RGB 432 (left) and panchromatic data, 1m resolution (right). 

4.2 Aerial photographs 

Black-and-white vertical aerial photographs from April 1966 (scale 1:20,000) and March 1984 
(1:40,000) for use as reference were available for the south-eastern part of the study area (the area 
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between the valley of the Río Jimenoa and the eastern declivity of the Cordillera Central, including 
the Scientific Reserve Ebano Verde).  

In the course of my fieldwork, an aerial survey was conducted over the UCRYN on 23 March 2003, 
taking 300 oblique aerial photographs out of the windows of a Cessna 172 airplane using handheld 
cameras (a Nikon Coolpix 995 digital camera, a Canon G series digital camera and a Canon F1 
analogue camera with slide film). The flight passed over the UCRYN from east to west, circling 
over the Río Jimenoa/La Sal/Ebano Verde area, over the Arroyo Grande valley south of Manabao 
and around La Ciénaga and finally passing the Pico del Yaque at the western edge of the catchment 
area, before leaving the UCRYN in a north-easterly direction. 

4.3 Digital Elevation Model 

A 50 m resolution digital elevation model (DEM) in raster format was available, providing 
information about the approximate elevation of every point of the study area. The DEM is based on 
contour lines digitised from 1:50,000 topographic maps in conjunction with the DIRENA project 
'Inventory and Evaluation of the Natural Resources of the Dominican Republic'. Only the 100 m 
interval contour lines were digitised in the mountainous areas, so that the elevation values in the 
50 m grid are a product of interpolation with large featureless triangles in areas of low relief like the 
valley of Jarabacoa. The actual resolution of this DEM is lower than 50 m. There are also artefacts 
which have probably been introduced through errors during the digitisation. Li (1994:2) found that 
“the accuracy of DTMs derived from (photogrammetrically measured) contour data, in terms of 
RMSE (root mean square error) or σ (standard deviation), is about 1/3 to 1/5 of the contour interval, 
depending on the characteristics of the terrain topography.” For the terrain data at hand, this would 
correspond to an RMSE between 33 m and 50 m.  

4.4 Maps  

Topographic maps of the scale 1:50,000 covering the whole UCRYN were used in this study. These 
maps were originally compiled in the 1960s and most of the map sheets have been updated by the 
Instituto Cartográphico Militar (ICM) with the help of the 1984 aerial photographs. A 1:250,000 
geological map of the Dominican Republic and two land cover and vegetation maps of the 
Scientific Reserve Ebano Verde (Progressio 1995, García et al. 1994: fig. 5) were also available. 

4.5 Tools  

The PCI Geomatica software (versions 8 to 9.1.4) was used for the vast majority of image 
processing and classification in this study. If not specified otherwise, the applications of this 
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software were used for the data processing described in the following chapters. PCI Geomatica’s 
GIS-functionality was also utilised for some tasks. The software used for image segmentation and 
object-oriented classification was eCognition 3.0. ArcInfo/ArcView was used for the handling and 
transfer (importing/exporting) of some of the data in vector format.  

Excursus: Software Problems (‘Bugs’) Encountered during Image Processing 

Corruption of bitmaps (masks) in PCI Geomatica 

The software (Focus Version 8) used to add areas along the right edge of the image to bitmaps 
(without user input). This led to some considerable extra work, repairing the affected bitmaps and 
checking whether such masks (without me noticing the change in time) had been used to define 
training samples, thus possibly influencing class signatures and classification results. 

Corruption of PCI Geomatica files of the western test area 

Project files of the western test area (which is four times as large as the eastern test area) were 
corrupted after they had been orthorectified and texture channels had been calculated and added. 
This happened in the form of a sudden misalignment between data layers. The necessary data 
restoration delayed the data processing for the western test area. In the end, the testing of 
classification methods was limited to the eastern test area because of time constraints. 
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5 Field Work  

In 2002 and 2003, two field work campaigns were conducted in the study area. I spent my time in 
the Dominican Republic (20 February to 27 March 2002 and 4 March to 6 April 2003) mainly in 
the UCRYN (based in Jarabacoa), apart from a round trip through the country accompanying a 
geographical field course during the first two weeks and two short geobotanical field trips in the 
Sierra de Baoruco. The time in the UCRYN was used to establish contacts with people working in 
the area, to collect ground data and other locally available information, and to gain firsthand 
experience of the physiogeographical nature of the Cordillera Central and the conditions under 
which its rural population lives and farms. The main purpose of the field work was the collection of 
spatially determined land cover information. These field data were acquired primarily as a basis for 
the establishment of training areas for the intended supervised image classifications and secondarily 
to enable a subsequent verification of results. 

In 2002, 49 field plots, including all the desired classes for the Landsat classification (chapter 7.1), 
were established. This was done with the help of two geography students from the University of 
Göttingen and two students of the Instituto Superior de Agricultura (ISA) in Santiago who were 
interns at PROCARYN. The field plots were required to be located in an area of at least 1 ha of the 
class under consideration to make sure that at least a couple of pure Landsat pixels representing the 
particular class could be identified. The position of the plot was described and recorded using a 
handheld GPS (Global Positioning System). Each plot was assigned to a class and the dominant 
species of trees, shrubs and herbs (or a more general description where the exact species could not 
be determined) were recorded together with the estimated tree crown cover, overall vegetation 
cover and, in mountainous terrain, slope and aspect. Distinctive features of the plots, like 
observations of soil characteristics or evident land use or additional information about the land use 
history, were also noted down and photographs of the plots were taken with a digital camera. As 
one and a half years had passed since the acquisition of the Landsat imagery in September 2000, 
local farmers were asked for information about land use changes during the last years in some cases 
where it was possible that such changes had happened. There was for example a hillside covered by 
fern and small bushes which we were told had been an unprofitable coffee plantation in 2000 and 
which still looked like the neighbouring coffee plantations with low vegetation cover in the Landsat 
image. In other cases, there were young pine plantations which had not yet been there in 2000, or 
recently established chayote fields.  

In addition to these standardised field plots for the Landsat classification, several hundred land 
cover observations were recorded in 2002 and 2003 with different levels of detail. For these 
potential training and testing areas, at least the position and the vegetation type (land cover class) 
are known, partly with additional information including distinctive species, estimated crown cover 
and tree height or age. The land cover was documented with ground photographs (see examples in 
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appendix 1) and the location was measured with the GPS and/or marked directly onto the paper 
copies of the IKONOS images carried in the field. These observations, recorded mainly as a basis 
for a more detailed image analysis involving the IKONOS imagery, include a larger number of 
different forest types, and the minimum area of 1 ha does not apply here, so that for example narrow 
riparian forests, small agroforestry plots or small groups of pine trees are also recorded.  

The field plots were distributed over the whole UCRYN study area, as far as the access and the time 
frame permitted, i.e. mainly in the vicinity of roads and of tracks that were negotiable with all-
terrain vehicles. For field work further away from the roads, access on foot was gained during 
several hikes in the Scientific Reserve Ebano Verde and its surroundings and in the mountains of 
the westernmost UCRYN. In order to gain a third perspective of the study area, intermediary 
between the satellite imagery and the view from the ground, and also to have a look at some more 
remote areas with difficult access, a flight in a Cessna 172 was conducted over the study area in 
March 2003. Oblique aerial photographs were taken from the low flying aircraft (chapter 4.2). 
These aerial photographs also served to document the land cover situation in the UCRYN in 2003 
and to identify some cases of short-term land cover change in comparison to the IKONOS images, 
most of which were acquired in 2001 and 2002. 

The area of the Scientific Reserve Ebano Verde and its western surroundings in the south-eastern 
UCRYN is a main focus of this study with a high data density including good quality IKONOS data 
and black-and-white aerial photography. Accordingly, the field work was also concentrated here 
resulting in a high density of training areas. This eastern test area is about two thirds forested. 
Another focus area with a high overall density of field plots and observations is the region of 
Manabao in the western UCRYN. 

In addition to establishing training areas, ground control points identifiable in the IKONOS images, 
like road junctions, footpaths, corners of buildings or individual trees, were measured on the ground 
with a GPS in order to improve the possibility to geometrically correct the imagery of the special 
interest areas. Measurements were taken with a handheld GPS (Garmin GPS 12) and averaged over 
a period of time before saving them, aiming at accuracies of ±8 m or better depending on the 
reception (terrain and vegetation dependent visibility of satellites). 

Apart from the field work as such, the stays in the Dominican Republic were used to get into 
contact with local scientists like Ramón Elias Castillo of the PROGRESSIO foundation, who 
accompanied me into the Scientific Reserve Ebano Verde, botanist Dr. Thomas May, who is a 
resident of Jarabacoa, and staff members and freelance technical advisers of the PROCARYN 
project. Information in the form of maps and literature about the study area was collected in 
Jarabacoa and Santo Domingo, through visits at the Botanical Garden of Santo Domingo, the 
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Geographical Institute of the Universidad Autónoma de Santo Domingo, the Instituto Cartográfico 
Militar (Military Geographic Institute) and the Head Office of National Parks in Santo Domingo.  

 
Figure 11: Field work. Above: Entrance to the core area of the ‘Reserva Scientífica Ebano Verde’, eastern test area. 
Below left: Crossing the Río Yaque del Norte on the way into the westernmost UCRYN. Below right: On foot in the 
‘Reserva Scientífica Ebano Verde’, measuring the location of a calimetal area in the eastern test area. 
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6 Data Pre-Processing 

6.1 Landsat ETM+ Pre-Processing 

The Landsat multispectral and panchromatic images were imported into PCI file format and a 
preliminary subset of the whole UCRYN and its neighbourhood was prepared.  

Channel 6 (thermal infrared) and the panchromatic channel of the Landsat-7 Level 0 R data 
contained cyclical striping effects caused by uneven detector signal response in the ETM+ detector 
array. These channels were destriped using a histogram modification. This involves setting a cycle 
according to the number of detectors, calculating a histogram each for all the lines sensed by the 
same detector and then matching the ‘cycle’ number of histograms. No further radiometric 
distortions were visible in the data and no further radiometric correction was conducted.  

In order to be able to combine all Landsat channels in one file with a common spatial resolution and 
to enable a more accurate geometric correction, channels 1 to 7 were resampled to half the pixel 
size so that all channels had the same spatial resolution as the panchromatic channel. This was done 
using nearest-neighbour resampling so that the digital numbers of the pixels were not changed. All 
channels were then transferred to a single file with the panchromatic channel as channel number 8.  

The scan-misalignment (figure 12) in the raw data was corrected using a procedure written for 
PCI’s EASI software (see appendix 3), which shifts the image every 32 lines to compensate for the 
offset. 

 

Figure 12: Scan-misalignment in the Landsat-7 ETM+ Level 0R data (left) and the area after correction (right) 
(RGB=583). 

The 8-channel Landsat ETM+ subset was then georeferenced to the UTM projection using 37 
ground control points (GCPs) derived from the 1:50,000 topographical maps. A second-order 
polynomial transformation was used for the geometric correction. The image was resampled to 15 
m resolution using the nearest neighbour method. The root mean square error (RMSE) achieved 
was 1.8 in the x-direction and 1.2 in the y-direction, referring to 15-m-pixels. This corresponds to 
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sub-pixel accuracy (0.9 and 0.6) with respect to the original multispectral Landsat pixels. 
Topographic effects on the image geometry were relatively small because of the near-nadir viewing 
angle of Landsat, and were not corrected for beyond the correction through the second-order 
polynomial transformation. After the geometric correction, the final rectangular subset of the study 
area (UCRYN) was cut out. 

The ETM+ image used appears very clear on the whole, without any conspicuous unevenness of 
atmospheric contamination across the scene (apart from the small clouds). No atmospheric 
correction was conducted. To accurately convert the sensor measurements to surface reflectance 
using radiative transfer codes would require accurate knowledge about the state of the atmosphere 
at the time of image acquisition, which is not available in this case. That said, for the spectral bands 
of the Landsat ETM+ sensor (and also of the IKONOS sensor), the main atmospheric effect is 
scattering. This effect is additive to the detected signal and could be corrected by subtracting a 
band-specific constant from all pixel values in the image. But such a linear transformation does not 
change the relationship between the classes in the feature space (does not change the variance-
covariance matrix for the classes) and thus has no influence on the result of a maximum likelihood 
classification (Song et al. 2001). A correction of topographic illumination effects was not conducted 
either, as these effects were not very strong in the image because of the high sun elevation angle at 
the time of the image acquisition. Besides, for an image of this heterogeneous landscape, 
topographic normalisation would have been complicated by the fact that topographic effects differ 
between land cover types with different canopy structures (Allen 2000). The low quality and 
resolution of the available DEM would also have decreased the effectiveness of a topographic 
normalisation attempt.  

6.2 IKONOS Pre-Processing 

The twelve IKONOS images covering the study area were imported into the PCI Geomatica 
environment. The multispectral and panchromatic images were visually examined. For some areas 
of special interest, panchromatic and multispectral channels were fused using the IHS (intensity, 
hue, saturation) transformation in order to produce colour images at 1 m resolution. This pan-
sharpening had the purpose to enhance the possibilities of visual interpretation for training areas 
and accuracy assessment and to help to recognise the position in the real world (in the field) on the 
images. 

Paper prints of images at reduced and full resolution were produced and used during the field work 
(chapter 5.2). The IKONOS images of the whole UCRYN were also used as reference for the 
Landsat classification and accuracy assessment. 
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For reasons of time and disk space, the IKONOS data were not further processed for the whole 
catchment area. Only subsets of two of the twelve images were used to test high resolution image 
processing methods. These two test areas were selected because they were of special ecological and 
economical interest. The subsets of one image of the eastern and one of the western UCRYN show 
a large variety of forest types, including plantations, natural and semi-natural forests, and other land 
cover types of the UCRYN. The IKONOS data covering these areas were of good quality (low 
cloud cover and atmospheric contamination), and the information density through field work and 
ancillary data was particularly high for these areas, especially for the eastern test area, which was 
used as the main IKONOS test area. This area includes the land cover types of the Scientific 
Reserve Ebano Verde and its buffer zone, from the agriculturally used slopes on both sides of the 
Río Jimenoa in the west to the centre of the reserve with the cloud forest of the ‘Loma La Sal’ and 
‘Loma La Golondrina’ in the east of this test area. The western test area is located to the west of the 
town of Manabao and includes areas of coffee and pine plantations and the natural forest at the 
edges of the Armando Bermúdez National Park. 

No radiometric distortions or striping were noticeable in the images. No atmospheric correction was 
conducted for the reasons mentioned in chapter 6.1 (a possible atmospheric correction would not 
change the relationship between the classes in the feature space). The high sun elevation angles 
(68.3° in the eastern image and 75.1° in the western image) lead to relatively consistent illumination 
conditions in the images so that, also in view of the fact that the resolution of the available DEM 
was very much coarser than that of the IKONOS images, no topographic normalisation was 
attempted. 

The IKONOS data were converted from 11 bit to 8 bit radiometric resolution. The distribution of 
the grey levels in the visible multispectral IKONOS bands (bands one to three) did not make use of 
the 11 bit radiometric resolution. Excluding extreme values that belonged only to cloud areas, the 
data spanned only between 250 and 500 grey levels, i.e. about 8 to 9 bit. The range of values in the 
NIR and panchromatic bands was somewhat larger, with up to about 1000 grey levels representing 
the objects of interest (again excluding clouds). All bands were scaled down to 8 bit before further 
processing in order to make the data more manageable and reduce processing times. In the case of 
the eastern test area, automatic normalised quantisation was used to reduce the radiometric 
resolution to 8 bit. This algorithm maps the median value of the input image to the middle of the 
output range and renders the central portion of the data range with little distortion while gradually 
compressing the high and low portions of the input range (PCI 2001).  

Geometric correction of IKONOS data 

The IKONOS images, being ‘Geo products’, were already resampled to the UTM projection. They 
do, however, contain some residual positional errors and they are not corrected for terrain effects. 
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Geometric errors of some tens of metres could still be found even in those images acquired with 
relatively high collection angles (low off nadir angles), rising to hundreds of metres in images with 
less favourable collection parameters. This requires additional geometric corrections, especially if 
the data are intended to be combined with other georeferenced data. 

The eastern IKONOS image has a high nominal collection angle of 81.3°, resulting in only 
moderate relief displacement (15 m per 100 m elevation, corresponding to 10 m to the west and 12 
m to the south at the nominal collection azimuth of 220.2°). In view of the fact that no high quality 
DEM was available, this image was not orthocorrected (Toutin 2004) but geometrically corrected 
using a polynomial transformation. To do this, both the panchromatic and the multispectral image 
were subset to an area of high ground truth density (eastern test area). 26 ground control points 
were identified on the panchromatic image using reference points measured with the GPS in the 
field as well as points identified on the topographic map. Choosing a first order polynomial 
transformation resulted in an RMSE of 6.73 m in the x-direction and 9.21 m in the y-direction. 
Since the RMSE was not reduced by applying higher order models, the registration was performed 
using a first order polynomial transformation and the nearest neighbour resampling technique. The 
GCPs were saved and the same set of GCPs was used to geometrically correct the multispectral 
image using the same parameters. In order to be able to integrate Landsat and IKONOS data, a 
Landsat subset of this area was tied down to the corrected panchromatic IKONOS image. 73 GCPs 
were identified both in the 15 m resolution panchromatic Landsat channel and in the IKONOS 
image, achieving RMS errors of 0.30 (4.5 m) in the x-direction and 0.32 (4.8 m) in the y-direction 
using a fourth order polynomial transformation. All three images were then trimmed to a common 
rectangular area, which will be referred to as ‘eastern test area’ in the following. 

Most of the other IKONOS images of the UCRYN have lower nominal collection angles than this 
eastern image. The western IKONOS image (Manabao) for example has a nominal collection angle 
of 66.9°, resulting in a relief displacement of 43 m per 100 m elevation difference (corresponding to 
26 m displacement to the west and 34 m to the north at a collection azimuth of 332°). This made the 
use of orthocorrection necessary if an acceptable geometric accuracy was to be achieved in this high 
relief area. A test was conducted to orthorectify this image with the available DEM.  

Orthocorrection was performed on a subset of the western IKONOS image using the Rational 
Functions Model (PCI Geomatics 2001). This model uses ratios of two polynomial functions 
respectively to compute image row and column. The model was computed from 25 GCPs identified 
on the pan-sharpened 1 m resolution image (figure 13). The DEM used was a DEM with 10 m grid 
spacing which had been generated from the 50 m resolution DEM using the kriging method for the 
interpolation (PCI 2001). The number of coefficients used in the fitted polynomial was 4. This 
resulted in an overall RMS error of 19.86 m (13.41 m in the x-direction and 14.65 m in the y-
direction). This is accurate to within one Landsat ETM pixel, but not close to sub-pixel-accuracy 



 6 Data Pre-Processing  

97 

regarding the IKONOS data. However, sub-pixel accuracy is not a realistic objective for IKONOS 
data even in flat terrain (Toutin & Cheng 2001) and even when using high quality DEMs (Davis & 
Wang 2003). In high-resolution imagery like this, GCPs cannot always be placed on the image with 
sub-pixel accuracy. The limited accuracy of the GPS which measured GCP locations in the field 
and of the 1:50000 topographic map used as a basis for part of the GCP coordinates contribute to 
errors, and the DEM used introduces additional error. Considering the limitations of the underlying 
data, the above mentioned accuracy seems reasonable and is certainly much better than the accuracy 
of the non-orthocorrected Geo product. 

 

Figure 13: Distribution of GCPs in the western sub-image during orthocorrection (OrthoEngine environment). 

6.3 Digital Elevation Model 

The DEM was imported into the PCI Geomatica file format, resulting in a 16 bit data channel with 
50 m spatial resolution and digital numbers corresponding to the elevation in metres. As the DEM 
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had been derived from digitised contours of the same topographical maps which were used as 
reference for the geometric correction of the satellite images, its UTM coordinates were already 
correct. The DEM was subset to an area corresponding to the rectangular Landsat subset of the 
UCRYN. The elevation values were checked for overall agreement with the topographical maps. 
Some obvious artefacts in the area of Jarabacoa (where the valley was rendered as a convex form) 
were manually corrected. 

Kriging is a useful interpolation method when the surface is not adequately sampled (Robinson 
1994). It was used for the generation of a DEM with 10 m grid spacing needed for orthorectification 
of the western image (chapter 6.2). A DEM with 8 m grid spacing for processing together with the 
IKONOS data of the eastern test area was also generated through kriging. 

When gridded DEMs are created from contours without identification of drainage lines and ridge 
lines, flat areas along curved contours can be created by triangulation or during interpolation 
(Robinson 1994). There is evidence of this effect in the histogram of the DEM used here for the 
area of the UCRYN which shows sharp peaks at the digitised contour values, especially at 300, 500, 
600 and 800 m. This effect is going to introduce errors in slope and aspect calculations, but there is 
no evidence of it in the more mountainous areas above 800 m, including the eastern test area, 
because of the reduced horizontal distance between the 100 m contour lines. 

In the future, the SRTM 90-m DEM of the world might be a better quality alternative for correcting 
medium resolution satellite data, but its resolution is not sufficient to combine it with IKONOS 
data. High resolution DEMs for high quality IKONOS corrections would have to be derived from 
optical high resolution stereo data (e.g. IKONOS stereo product), but that would make them rather 
expensive. (The IKONOS Stereo product is 4 to 5 times as expensive as the Geo product.) 
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7 Landsat ETM+ Classification 

The Landsat ETM+ data were used to create a base-map of the whole study area (UCRYN). The 
aim was to explore the possibilities and limitations of a standard (maximum likelihood) Landsat 
classification in this kind of landscape, in order to have a basis to which to compare the results 
achieved with higher resolution data and more extended methods. The results were also passed on 
as a base-map of land cover and land use in the year 2000 to the people working for improved land 
use management in the study area (PROCARYN project). 

7.1 Initial Scheme of Informational Classes  

Chapter 3 describes the many different natural, semi-natural and anthropogenic land cover types of 
the UCRYN. It is not to be expected, however, that for example all the different natural forest types 
(formations) and their secondary and degraded variations can be extracted as spectrally distinct 
classes from Landsat data. Furthermore, the sampling density over the whole UCRYN was not 
sufficient to have separate training areas for all the smaller land cover classes like specific crops. 
The informational classes that members of the PROCARYN project expressed their interest in were 
broadleaved forest, closed coniferous forest, open coniferous forest, young coniferous plantations, 
mixed (broadleaved and coniferous) forest, matorral (shrubland), agroforestry (coffee with shade 
trees), coffee without shade, other cultivated land, grassland (pasture), and areas of bare soil. This 
list was used as the basis for the Landsat classification. Additional informational classes (land cover 
types not included in the PROCARYN list but obviously present in the image) were ‘water’ and 
‘built-up areas’. 

7.2 Classification of Landsat 7 ETM+ data 

The Landsat ETM+ data of the UCRYN were explored using unsupervised classifications (K-means 
clustering) and test runs of supervised maximum likelihood classifications with different groups of 
training samples to arrive at an improved set of spectral classes to be used in the final classification. 

Training areas for the land cover classes described above were created based on the field plots 
established in 2002. Additional information about field plots for the classes ‘young coniferous 
plantations’, ‘matorral’ and ‘coffee without shade’ was provided by PROCARYN because there 
had been a lack of training areas for these classes. The positions of the field plots were located in 
the Landsat image and, avoiding border pixels (possible mixed pixels), the pixels in the centre of 
each field plot were used as training pixels. In order not to neglect the montane areas of the forest 
classes, training areas based on observations and GPS-measurements during a hike in the national 
park ‘Armando Bermúdez’ in the western UCRYN were also used. Training areas for the classes 
‘water’ and ‘built-up areas’ were established without the help of field plots in image areas 
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obviously belonging to these classes (broad river sections, Tavera reservoir, urban area of 
Jarabacoa).  

The resulting training samples for all classes were checked for normal distribution of their digital 
numbers in the Landsat multispectral bands. Where the training samples differed strongly from 
normal distributions (e.g. bimodal distributions), the samples were split into two more 
homogeneous spectral classes if the sample had a sufficient size to allow this. Based on these 
training samples, class signatures were generated using Landsat ETM+ bands 1-5 and 7, i.e. all 
multispectral bands except the thermal infrared (figure 14). 

 

Figure 14: Spectral class signatures (channel means) from Landsat data.  

After having tested different combinations of class signatures, changing the number of spectral 
classes where it was necessary, the Landsat data were finally classified into 19 spectral-
informational classes (including clouds). This was done using the maximum likelihood 
classification method without a null class.  

7.3 Post-Classification Processing 

Cloud areas were masked after the classification, excluding them from further processing and 
accuracy assessment. Spectrally split classes belonging to the same informational class were 
recombined. 

The classified image was then post-processed with the help of the DEM. The 50 m resolution DEM 
was transferred to the Landsat file as an additional channel using nearest neighbour resampling. 
Pixels with an elevation of more than 1600 m which had been classified as agroforestry (coffee with 
shade trees) were allocated to the class ‘broadleaved forest’. Pixels classified as ‘coffee without 
shade’ were allocated to the class ‘open coniferous forest’ if their elevation was higher than 1700 m 
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(table 6). This was based on the knowledge that coffee plantations above 1500 m are rare in the 
study area, and plantations close to the upper cultivation limit usually do not include shade trees. 

Table 6: Decision rules applied during post-classification sorting. 

MLC result (class) Decision rule Final class 

Agroforestry  If elevation is > 1600 m………. 
otherwise……………………… 

Broadleaved forest               
Agroforestry 

Coffee without shade If elevation is > 1700 m………..    
otherwise………………………. 

Open coniferous forest           
Coffee without shade 

 
Finally, the classified image was mode filtered using a 3 by 3 filter window, eliminating single 
pixels, the classification of which was not in agreement with that of their spatial neighbours. 

7.4 Accuracy Assessment 

512 points were distributed over the classified study area using stratified random sampling so that 
sampling points were distributed over all classes and the whole classified area. For 304 of these 
points, the land cover class could be identified, mostly with the help of pan-sharpened IKONOS 
images, recorded ground observations and aerial photographs. In some cases, the DEM was also 
used, e.g. to judge the probability of a coffee plantation occurring at a particular site, as opposed to 
brushland (matorral), which may look similar in high resolution remotely sensed imagery. An 
accuracy assessment was conducted for these 304 reference points, producing a confusion matrix 
and calculating the overall accuracy and producer’s and user’s accuracies for the individual classes 
(table 8). The overall accuracy was also calculated for a coarser classification level with just five 
classes (table 9), for which the classes were aggregated after the classification. 

7.5 Results and Discussion 

In the course of the classification test runs, it turned out that the original classification scheme had 
to be modified. There were some land cover types (fern and burnt areas) which had not been 
defined beforehand but turned out to be spectrally distinct and were added to the informational 
classes. By contrast, the informational class ‘young coniferous plantations’ was not at all spectrally 
separable in the Landsat image on the basis of the available training data, so the class had to be 
dropped. Mixed forests with a high percentage of broadleaved species were not spectrally separable 
from other broadleaved forest, so only the mixed coniferous forest in the mountain areas (pine 
forest with less than 50 % of broadleaved trees) was retained as a separate class. Some of the 
informational classes were spectrally heterogeneous and were split for the purpose of classification. 
The mountainous coniferous forests (both dense and open) had a spectral signature which was 
distinct from that of the coniferous forests of the lower elevations and had to be classified 
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separately. The informational class ‘other cultivated land’ was split into two spectral classes, the 
one including fields with a very dense green vegetation cover (training areas were chayote fields) 
and the other including fields with a larger proportion of visible soil (fields of beans and other 
crops). The informational class ‘coffee without shadow’ was similarly split into dense plantations 
on the one hand and plantations with visible bare soil between the rows on the other hand. These 
classes were recombined for the final map and for the accuracy assessment. The final classes are 
specified in table 7. 

Table 7: Land cover classes in the UCRYN Landsat classification. 

Class name Definition 

Dense coniferous forest 
(PFd) Pine forest with over 60 % crown cover 

Open coniferous forest (PFo) Pine forest with 25-60 % crown cover, herbaceous layer usually consisting 
of grasses and/or ferns  

Broadleaved forest (BF) Forest with a majority of broadleaved tree species, may contain pine trees 

Mixed coniferous forest 
(MF) Mixed coniferous-broadleaved forest with a majority of pine trees 

Burnt areas (brn) Areas of recent forest fires or other burning (spectral signature controlled by 
ash, charcoal and reduced vegetation in the months following a fire) 

Matorral (Mat) Areas with over 25 % shrub cover, besides ferns and grasses 

Fern (Cal) Areas dominated by the fern Dicranopteris pectinata, sometimes with a 
proportion of other fern species 

Agroforestry (AF) Coffee and other crops with shade trees 

Coffee without shade (Cof) Coffee plantations without shade trees, or with single trees amounting to 
less than 25 % crown cover 

Grassland (GL) 
Herbaceous vegetation cover, mostly grasses, combined coverage of shrubs 
and trees below 30 %, used mostly for low-intensity pasture, partly intensive 
pasture/managed grassland 

Other crops (Cr) Cultivated agricultural areas (except coffee) without shade trees 

Bare ground (BG) No or very sparse vegetation cover  

Built-up areas (bu) Urban areas and smaller settlements where most of the ground is covered by 
buildings and paved streets 

Water (W) Rivers and lakes 

No information Land cover not classifiable because of clouds in the image 
 
These classes could be separated sufficiently well to create a land cover map which provides 
information about the overall spatial distribution of the main land cover classes of the UCRYN 
(plate 43). However, the overall classification accuracy as calculated from the confusion matrix 
(table 8) is only 40 %, and the estimated Kappa coefficient is 0.343, representing poor agreement. 
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Table 8: Confusion matrix for the Landsat classification. For class abbreviations see table 7. RD: Reference Data, CD: 
Classified Data, UA: User’s Accuracy, PA: Producer’s Accuracy, OA: Overall Accuracy. 

     RD 
CD 

PFd PFo BF MF brn Mat Cal AF Cof GL Cr BG bu W Sum UA 
(%)

PFd 14 4 11 2      1    1 33 42.4

PFo 6 3 3   8 2   1    1 24 12.5

BF 2  13 10  2 1 1      2 31 41.9

MF 5  4 2    1       12 16.7

brn 1 12   6          19 31.6

Mat  2 2   8  1 1 1     15 53.3

Cal  1 1   3 7     1   13 53.8

AF 1 1 18   1  3       24 12.5

Cof  1 3  1 4   0    1  10 0.0 

GL  5 5   3 1   23 2 1   40 57.5

Cr 1 1 9   3  2  4 10  2  32 31.3

BG   1   1   1 2 4 4 4 1 18 22.2

bu           1 1 11  13 84.6

W            2 1 17 20 85.0

Sum 30 30 70 14 7 33 11 8 2 32 17 9 19 22 304  

PA 
(%) 46.7 10.0 18.6 14.3 85.7 24.2 63.6 37.5 0.0 71.9 58.8 44.4 57.9 77.3  OA: 

39.8 

The classes with the best class-specific user’s and producer’s accuracies were ‘grassland’, ‘water’ 
and ‘built up area’. The forest classes had low class-specific accuracies. The most accurately 
classified forest class was ‘dense pine forest’ with a producer’s accuracy of 47 % and a user’s 
accuracy of 42 %. ‘Broadleaved forest’ was often misclassified as ‘agroforestry’ and also as ‘dense 
pine forest’. Many errors can be attributed to mixed pixel effects and some class signature 
similarities (figure 12). Using only Landsat multispectral data and post-classification sorting with 
elevation information, it was not possible to distinguish coffee without shade from matorral, 
agroforestry from broadleaved forest and open coniferous forest from matorral with any 
confidence. In some cases, part of the error might also originate from the reference data, which is 
based mostly on the visual interpretation of high resolution remotely sensed data where it can also 
be difficult to see the difference between agroforestry and broadleaved forest or between coffee 
without shade and matorral. An additional potential error source is the fact that the ground data and 
high resolution data used as source for the reference data set were, apart from three of the IKONOS 
images, not acquired simultaneously with the Landsat data but with a time lag of up to two and a 
half years. Some types of misclassification can be partly attributed to gradual transitions (spatial 
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and temporal) between classes. Examples are the classification of ‘open pine forest’ as ‘burnt area’, 
of ‘matorral’ as ‘open pine forest’ or of ‘mixed coniferous forest’ as ‘broadleaved forest’. These 
would not all be counted as completely wrong in a fuzzy classification or fuzzy accuracy 
assessment. 

An inherent classification problem is the fact that there is no one-to-one relationship between 
informational classes and spectral classes. On the one hand, there is quite a large spectral variation 
within large classes like broadleaved forest: the spectral signature of broadleaved cloud forest is 
quite different from other types of broadleaved forest (montane/submontane rain forest and riparian 
forest) and more similar to pine forest. On the other hand, for example the classes ‘broadleaved 
forest’ and ‘agroforestry’ are spectrally very similar with a large overlap in feature space, but from 
a land management standpoint it would be very desirable to have separate information about these 
two classes with their different types of land use. The class ‘broadleaved forest’ could not be 
partitioned into a number of more spectrally homogeneous different broadleaved forest types 
because the Landsat training data was not sufficiently comprehensive to split it into training areas 
which would have included samples adequately representing each of the spectral-informational 
broadleaved forest types of the UCRYN. 

Table 9: Reduction of classification detail through class aggregation. 

14 class scheme 5 class (land use) scheme 

Dense coniferous forest (PFd) 

Open coniferous forest (PFo) 

Broadleaved forest (BF) 

Mixed coniferous forest (MF) 

Burnt areas (brn) 

Forest (including burnt areas, which are mostly burnt 
forest, but not agroforestry) 

Matorral (Mat) 

Fern (Cal) 
Shrub and herb dominated semi-natural vegetation 

Agroforestry (AF) 

Coffee without shade (Cof) 

Grassland (GL) 

Other crops (Cr) 

Agricultural land use  

Bare ground (BG) 

Built up areas (bu) 
Land with no or sparse vegetation 

Water (W) Water 
 
The large diversity of forest formations and other types of land cover in the heterogeneous, 
mountainous study area is not conductive to high classification accuracies when using medium 
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resolution remotely sensed data. The overall accuracy of 40 % achieved here is similar to the results 
of Langford & Bell (1997) who mapped the land cover of a similarly heterogeneous tropical hillside 
(10 classes) with Landsat TM data. Reducing the detail (precision) of the map by aggregating the 14 
classes into five groups after classification (table 9) leads to the more acceptable overall accuracy 
value of 61 %, but there are still many problems of confusion between classes which could not be 
joined in one meaningful informational class. 

According to this Landsat ETM+ classification, the total forest cover of the study area was 48 % in 
the year 2000. This is significantly more than the estimate of 33 % given in the GWB/GFA-Agrar 
(1998) study. Also, the confusion matrix for the aggregated classes indicates that the total forest 
area in my map was somewhat underestimated rather than overestimated. (According to the 
reference sample, 65 % of the ‘true’ forest was classified as forest, while 82 % of the forest in the 
map really is forest.) 36 % of the forest in the classification consists of open pine forest. The 
gradual transitions between open pine forest and some non-forest-classes and the fact that forest 
definitions may differ with respect to the lower crown cover threshold may, together with temporal 
change and misclassifications or -estimations, explain some of the above mentioned discrepancy. 

The results point out the limitations of standard classifications of Landsat data for land cover 
classifications in landscapes of the type found in the UCRYN. There is certainly room for 
improvement regarding the accuracy and the precision of the classification with the help of higher 
resolution data and more advanced data processing methods, especially if looking at limited areas 
(e.g. special interest subsets of the catchment area). 
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8 Methods for an Optimised Information Extraction from IKONOS Data for Forest and 
Land Cover Mapping 

A sub-area of the UCRYN was used to intensively test and compare a number of image processing 
and classification methods involving the high resolution IKONOS data (see flowchart figure 15). 
These operations were limited to a smaller test area in order to reduce calculation costs and to 
concentrate on an area of high data and ground truth density. This main test area is the eastern test 
area depicted in figure 9. 

 
Figure 15: Sequence of processing operations for the classification of data sets involving IKONOS data. 

8.1 Classification Scheme for the Eastern Test Area  

There is a large diversity of land cover classes even in the 18.4 km² of the eastern test area, 
including natural and semi-natural vegetation in the Scientific Reserve Ebano Verde (chapter 3.2.5) 
and semi-natural vegetation and agriculturally used areas in the buffer zone. The natural and semi-
natural vegetation patterns, being the result of natural environmental gradients combined with the 
influence of past and present disturbances (e.g. human land use, animal grazing, fires and hurricane 
damage), are rather complex and heterogeneous. Nevertheless, a number of discrete informational 
land cover units can be defined for the eastern test area (table 10). Most of the classes used in the 
Landsat classification of the whole UCRYN can be found here, with the exception of built-up areas, 
coffee without shade, burnt forest and mixed coniferous forest (there is some mixed forest among 
the secondary forest in the eastern test area, but it has a majority of broadleaved trees).  
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Table 10: Land cover classes in the eastern test area. 

Class Description 

Dense pine forest 
(PFd) 

Pine dominated (often pure pine) forest with over 60 % crown cover (these are mostly 
plantations in the eastern test area) (plate 21) 

Open pine forest 
(PFo) 

Pines with 25-60 % crown cover, herbaceous layer usually consisting of ferns and/or 
grasses (this includes groups of remnant mature pine trees in agriculturally used areas) 

Cloud forest (CF) Montane broadleaved cloud forest of the Didymopanax-Magnolia type, partly 
disturbed by past logging activities (plate 5) 

Dense secondary 
forest (SFd) 

Natural regeneration of a broadleaved forest, pioneer broadleaved species sometimes 
mixed with pine trees, over 60 % crown cover (plate 38) 

Open secondary 
forest (SFo) 

Natural regeneration of broadleaved forest, pioneer broadleaved species sometimes 
mixed with pine trees, 25-60 % crown cover, undergrowth usually fern dominated 
(plate 39) 

Palm dominated 
forest (PmF) Edaphic forest type dominated by the palm tree Prestoea Montana  

Broadleaved 
riparian forest 
(BRF) 

Evergreen broadleaved riparian forest (plates 11, 16) (some small remains of non-
riparian humid broadleaved forest are also assigned to this class)  

Matorral (Mat) Areas with over 25 % shrub cover, besides ferns and grasses (plate 41), tree crown 
cover below 25 % (in most cases no trees at all) 

Calimetal (Cal) Areas dominated by the fern Dicranopteris pectinata, sometimes with a proportion of 
other fern species, with no or very few emerging shrubs and trees (plate 9) 

Agroforestry (AF) Crops (mostly coffee and bananas) with shade trees (plate 33) 

Grassland (GL) 
Herbaceous vegetation cover, mostly grasses, also ferns (but not dominated by 
Dicranopteris pectinata), combined coverage of shrubs and trees below 25 %, mostly 
used for low-intensity pasture in the buffer zone of the reserve (plate 23) 

Crops (Cr) Cultivated agricultural areas, mostly beans, no shade trees 

Bare ground (BG) No or very sparse vegetation cover (roads, landslide scars, river bars, agricultural areas 
with seasonal lack of vegetation cover) 

Water (W) Open water (river) 
 

The classification scheme used for the classification of the eastern test area is more detailed than the 
Landsat classification scheme with regard to the forest classes. Broadleaved forest is not treated as a 
single class but split into a number of forest formations. These are cloud forest, dense and open 
secondary forest, broadleaved riparian forest and palm forest. (The latter is not classified as a 
separate formation by most authors, but has a spectrally and structurally distinct upper layer 
resulting in a distinct appearance in the high resolution imagery.) Mapping a larger number of forest 
classes should result in additional information about the spatial distribution of ecologically 
important forest types in the Scientific Reserve Ebano Verde and its buffer zone. The differentiation 
is also methodically useful because, as has been seen in the case of the Landsat classification, there 
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is a very large spectral variation within the broadleaved forest classes of the study area and 
particularly also of the eastern test area – the spectral signature of cloud forest, for example, is more 
similar to that of pine forest than to that of other kinds of broadleaved forest. Also, to make an 
attempt to discern the agroforestry class, which is spectrally very similar to broadleaved forest, a 
partition of the broadleaved forest class into spectrally more homogeneous classes is going to be 
necessary.  

The classification scheme for the natural and semi-natural vegetation is compatible as far as 
possible with the existing classifications of the regional vegetation described in table 1 and chapter 
3.1.6. The ICEC’s ‘pine woodland’ is called ‘open pine forest’ here but has the same definition (25-
60 % crown cover), while it differs somewhat from the definition of open coniferous forest (40-
60 % crown cover) given by Tolentino & Peña (1998). The cloud forest type of the Reserva 
Scientífica Ebano Verde is addressed as a type of montane rain forest (alliance: Magnolia 
pallescens montane rain forest, association: Magnolia pallescens - Didymopanax tremulus - 
Prestoea montana forest) by Areces-Mallea et al. (1999), but is included in the cloud forest 
definitions of Tolentino & Peña (1998) and Hager & Zanoni (1993) and will also be addressed as 
‘cloud forest’ in this classification. A minimum area criterion for the definition of forest cannot be 
applied during the classification process itself, so even small groups of trees can be classified as 
‘forest’. This leaves the option to label small ‘forest’ class areas as ‘trees outside forest’ in a post-
classification step based on GIS functionality, if the class area is below a certain threshold and 
separated from other forest areas. 

8.2 Spatial Exploration of IKONOS Data Using Variograms 

To explore the spatial variations of the land cover classes, particularly of the forest classes, as they 
are captured in the high resolution imagery, experimental variograms were derived from the linearly 
scaled 8 bit IKONOS panchromatic data. Subsets of 100 × 100 pixels (figure 16) each showing one 
type of land cover (cloud forest, dense pine forest, open secondary forest, broadleaved riparian 
forest and grassland) were sampled using 100 pixels long transects in two directions. The DNs 
(Digital Numbers) of these transects were exported into a spreadsheet program (Excel), where they 
were used to calculate the average semivariance values.  

 
Figure 16: 1 m resolution panchromatic image subsets used for the calculation of experimental semivariograms (from 
left to right: cloud forest, dense pine forest, open secondary forest, broadleaved riparian forest, grassland). 
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For lags between 1 and 20 pixels (=m) within these transects, the average semivariance was 
calculated as 

( ) ( ) ( ) ( )[ ]
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where h is the lag (distance in pixels, which in this case equals distance in metres) over which the 
semivariance γ is measured, N(h) is the number of pairs of observations separated by the lag h, and 
z(xi) is the value (DN) of the pixel with the position xi. The mean of nine experimental variograms 
for each direction (N-S, being approximately perpendicular to the sun azimuth and E-W, being 
approximately parallel to the illumination) was calculated and plotted, together with a variogram for 
a single central transect in each direction (figure 17). 

 
Figure 17: 100×100 pixels subset of a cloud forest area in the panchromatic IKONOS image with nine vertical and nine 
horizontal transects. 

8.3 Extraction of Texture Parameters from High Resolution Data 

8.3.1 GLCM texture 

Considering the fact that GLCM texture calculations need large window sizes to produce stable 
texture measures (Franklin 2001b), while still endeavouring to avoid the calculation of between-
class texture for large proportions of the pixels (Ferro & Warner 2002), GLCM texture was 
calculated making use of the highest resolution IKONOS imagery available – the panchromatic 
channel with 1 m spatial resolution. GLCM texture features were calculated from the symmetric 
normalised co-occurrence matrix using the PCI Geomatica ‘TEX’ module. The input data were 
scaled down to 32 levels (5 bit) for the GLCM texture calculation. The window sizes used were 
9×9, 15×15, and 25×25 pixels, the inter-pixel sampling distance (δ) was 1 and the four main 
orientations were averaged (direction invariant spatial relationship). 

After first calculating texture measures for all three window sizes, the texture images resulting from 
the different window sizes were compared visually. The images calculated using 9×9 and 25×25 
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window sizes were discarded as containing less class-specific information than those calculated 
using the 15×15 window size. The individual forest classes appeared very inhomogeneous in the 
texture images resulting from the use of the 9×9 filter windows, while the texture images calculated 
using the 25×25 filter windows appeared rather blurred. Only the 15×15 window size was finally 
used for all the GLCM texture calculations. This should result in texture measures which are 
representative of their respective land cover classes (see also variogram results in chapter 9.1) while 
avoiding unnecessarily strong edge effects. 

The following GLCM texture features were generated: 
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where N is the number of grey levels after rescaling (equivalent to the columns or rows in the co-
occurrence matrix) and P(i,j) is the probability of co-occurrence of the grey levels i and j (the 
normalised value in the cell i,j of the co-occurrence matrix) 
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Standard Deviation 
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and Correlation 
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Apart from these eight GLCM features, two texture features were calculated using Grey-Level-Co-
occurrence Vectors (GLDV). The GLDV counts the occurrence of absolute grey level differences of 
reference and neighbour pixel, thus containing the sum of the diagonals of the GLCM. GLDV ASM 
and GLDV ENT were calculated, but were found to be highly correlated with GLCM ASM and 
GLCM ENT (with correlation coefficients of 0.97 between GLCM ASM and GLDV ASM and of 
0.96 between GLCM ENT and GLDV ENT for the eastern test area). The GLDV features were thus 
not considered to contain significant amounts of additional information and not used any further. 

The resulting 32 bit texture images were scaled to 8 bit with a linear function, except for the ASM 
image which was rescaled with a square root function because the original distribution of its values 
was considerably skewed. Figure 18 shows a colour composite of three GLCM texture features. 

8.3.2 Local Variance  

Subsequently, local variance was calculated as a first order texture measure for comparison and 
possible combination with the GLCM second order texture measures. An EASI script (appendix 3) 
was written for the calculation of the local variance image layers in PCI Geomatica making use of 
the EASI image modelling function. Equation (11) was applied in 9 × 9 and 15 × 15 filter windows 
over the panchromatic image channel.  
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where xi are the single DNs in the filter window, µ is their mean, and N is the number of pixels in 
the window. 

The resulting 32 bit variance images were scaled to 8 bit with a linear function. 
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Figure 18: Texture colour composite (RGB: GLCM Contrast, GLCM Mean, GLCM Standard Deviation).  

8.4 Spatial Integration of IKONOS Data 

The 4 m resolution (16 m²) IKONOS pixels are often not large enough to integrate all the different 
components of a forest class, resulting in high within-class spectral variability. Three separate 
methods are tested to create image primitives which are more representative of their whole class, 
and to reduce the within-class variability of the data.  

8.4.1 Spatial Aggregation in Square Windows 

The first method to aggregate groups of pixels is non-overlapping averaging in square windows 
(block averaging): The image is divided into non-overlapping square windows of 2 by 2, 3 by 3 and 
4 by 4 pixels forming the new image primitives. The mean of the DNs (Digital Numbers) of the 
pixels within each window is calculated and assigned to this primitive, which is subsequently 
treated as a coarser resolution pixel (using the PCI Geomatica IIIAVG algorithm). This leads to 
upscaled versions of the multispectral image with 8 m, 12 m and 16 m spatial resolution (figure 19). 
This corresponds to pixel (image primitive) areas of 64 m², 144 m² and 256 m² respectively. Hay et 
al. (1997) showed that this is a simple method for approximating the spectral response of a coarser 
resolution image, although the aggregated data is not exactly equivalent to data acquired at a coarser 
resolution, because the square window averaging does not take into account the effects of the 
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modulation transfer function (MTF) of the sensor and the atmospheric effects, both of which cause 
an inclusion of some information from neighbouring surfaces. 

 
Figure 19: A detail of the 4 m resolution multispectral IKONOS image (RGB 432, above) and the same area after 
averaging in square windows to 8 m resolution (centre) and 12 m resolution (below). 

8.4.2 Low Pass Filtering 

Low pass filtering is used to reduce the within-class variability while keeping the spatial resolution 
at 4 m. An average (mean) filter is employed to smooth the four multispectral IKONOS image 
channels using 3 × 3 and 5 × 5 filter windows (figure 20). By calculating the mean value for areas 
of 12 × 12 m or 20 × 20 m and assigning it to the central 4 × 4 m pixel, this pixel now carries 
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information about that whole area. This was only done for the multispectral channels and not for the 
texture channels because the latter, having been calculated in 15 × 15 m windows, do already 
contain information about the surrounding pixels. Alternatively, median filtering of the four 
multispectral channels in windows of 3 × 3 and 5 × 5 is performed to smooth the image while 
preserving the edges. 

 
Figure 20: The IKONOS sub-image after low pass filtering (3x3 average filter). 

8.4.3 Image Segmentation 

Another method for pixel aggregation is image segmentation. This method takes into account the 
similarity between the pixels that are grouped together and aims at producing meaningful image 
object primitives which can represent image objects or parts of image objects. The software 
eCognition was used for the image segmentation, with its region merging technique based on local 
spectral homogeneity and a shape criterion favouring compact forms (Baatz et al. 2002, see also 
chapter 2.3). 

The four multispectral IKONOS channels (4 m resolution) were used as input for the segmentation, 
and in some variations also the GLCM entropy texture parameter calculated from the panchromatic 
band and resampled to 4 m resolution.  

User defined parameters like input channels, weights and the scale parameter were adapted through 
interactive experiments until the resulting segmentations were satisfactory according to a visual 
inspection. The aim was to arrive at segmentations with homogeneous object primitives, i.e. without 
‘mixed objects’ incorporating areas belonging to different classes (undersegmentation). At the same 
time the object primitives should be large and compact enough to integrate the elements of any one 
forest class, avoiding oversegmentation in the sense of the creation of object primitives which 
contain only a subset of class elements, for example only pixels representing the shaded parts of 
tree crowns. 



 8 Methods for an Optimised Information Extraction from IKONOS Data for Land Cover Mapping  

115 

Both spectral heterogeneity (hspec) and shape heterogeneity (hshape) were used to define the degree of 
fitting f (overall heterogeneity criterion) for a proposed merge between two object primitives. 

( ) shapespec hwhwf ⋅−+⋅= 1    (11) 

The weight w for hspec (‘color criterion’) was finally set to 0.75, leaving a weight of 0.25 for the 
shape criterion. (Increasing the weight for the spectral heterogeneity criterion resulted in smaller 
segments on average.) 

The shape criterion hshape is a combination of ‘smoothness’ hsmooth and ‘compactness’ hcmpct in the 
form 

( ) cmpctsmoothsmoothsmoothshape hwhwh ⋅−+⋅= 1  .  (12) 

The smoothness value is calculated as  
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where n is the size of the object primitives OP1 and OP2 and the proposed Merge of the two, l is 
the length of the object perimeter and b the perimeter of the bounding box (drawn around the object 
parallel to the raster). The weight for smoothness wsmooth within the shape criterion was set to 0.9, 
leaving a weight of 0.1 for the compactness value which is calculated as 
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The heterogeneity in the feature space hspec is calculated as the sum of the standard deviations σ of 
the DNs in the channels used as input for the classification: 
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The weights for the channels wc were set to 0.5 for the blue channel, 1 for the green, red and GLCM 
entropy channels and 1.5 for the NIR channel. 

Different scale parameters were set to influence the threshold of the degree of fitting f requested for 
a merge, resulting in different sizes of the image object primitives (figure 21, table 11). A multi-
resolution segmentation was conducted producing four segmentation levels using the scale 
parameters 12, 16, 20 and 30. 
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Table 11: Scale parameters and sizes of resulting image object primitives in the segmentation of the eastern test area. 

Area of the resulting image object primitives  
Scale parameter 

Average area Minimum area Maximum area 

12 (level 1) 833 m² 16 m² 7 980 m² 

16 (level 2) 1 478 m² 32 m² 9 810 m² 

20 (level 3) 2 635 m² 80 m² 31 500 m² 

30 (level 4) 6 171 m² 160 m² 35 800 m² 
 

 
Figure 21: Multiresolution image segmentation with scale parameter 16 (above) and 20 (below). 

After the segmentation, eCognition’s vectorisation functionality was used to produce polygons 
representing the shapes of the object primitives. The object primitives were used for classification 
within the eCognition environment and additionally, the objects including their shapes and their 
mean values in four multispectral and three textural channels were exported as .shp files and used to 
create raster layers within the PCI Geomatica environment, where the pixel values were averaged 
for the object primitives created in eCognition. 
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8.5 Data Integration 

8.5.1 IKONOS Spectral-Textural Data Integration 

The channels containing the texture features generated at 1 m spatial resolution from the panchro-
matic channel were integrated with the multispectral channels by reducing the spatial resolution of 
the texture channels to the resolutions of the files containing the multispectral data (4 m, 8 m, 12 m 
and 16 m) and adding them as additional channels. The texture channels were resampled to the 
resolution of the multispectral data using nearest neighbour resampling, or block averaging for 
addition to the low pass filtered multispectral data. Figure 22 shows a spectral-textural colour 
composite at 4 m resolution. In the case of the segmented images, the texture channels had been 
integrated with the multispectral channels at 4 m resolution before segmentation and afterwards the 
within-segment mean values were calculated for multispectral and texture channels alike.  

 
Figure 22: Spectral-textural colour composite (RGB: NIR, red, GLCM Contrast) at 4 m resolution. 

8.5.2 Multi-Source Data Integration 

To test whether the integration of available multi-source data could improve the mapping beyond 
the possibilities of the IKONOS data alone, IKONOS data and IKONOS derived data channels 
were integrated with Landsat ETM+ data on the one hand and DEM-derived data on the other hand. 
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Landsat ETM+ and IKONOS 

There is a time lag of seven months between the acquisition dates of the Landsat and the IKONOS 
data of the eastern test area (see chapter 4). To make the two data sets more compatible, those areas 
which were affected by clouds and cloud shadow in the IKONOS image, and an area which had 
been burned between the acquisition dates, were manually masked out (DNs set to zero) and thus 
excluded from the classification runs for both data sets.  

The multispectral channels 5 to 7 of the co-registered Landsat data subset of the eastern test area 
were used as additional spectral channels with the IKONOS multispectral channels 1 to 4. The two 
types of multispectral data were integrated at 8 m spatial resolution (block averaged IKONOS data 
and cubic convolution resampled Landsat data). The objective was to test whether the integration of 
additional spectral information could be useful for the land cover classification in spite of the lower 
resolution of the Landsat data.  

As a second example of data integration, the texture channels derived from the IKONOS 
panchromatic data were added to the co-registered Landsat data file at 15 m spatial resolution (in 
effect combining texture information calculated in 15 m x 15 m windows with multispectral pixels 
covering the same area). The objective was to test whether Landsat multispectral information can be 
enhanced by texture information derived from higher resolution data but resampled to medium 
resolution. 

Ancillary data and IKONOS 

The amount of ancillary information available about environmental factors which could influence 
the spatial distribution of the vegetation types of the study area is limited. The soils of the study 
area have not been mapped with any detail. The geology, mapped at a scale of 1:250.000 (figure 6), 
could explain some of the vegetation distribution in the UCRYN as a whole, but for the eastern test 
area, the available map differentiates only between the tonalite of the El Rio batholith underlying 
most of the area and the broad class of volcanic and volcaniclastic rocks of the Tireo formation in 
the north-eastern corner of the test area. The density of climatic measurements is very low in the 
Cordillera Central and does not suffice for the creation of GIS-layers of climatic variables like 
temperature and precipitation through interpolation of the known point values. Feiden (2004) 
regionalised the annual precipitation of the Dominican Republic making use of the fact that 
topographical parameters, among them the exposure to the prevalent wind direction, play a large 
roll for the spatial distribution of the annual precipitation. Using regression functions, she assigned 
an annual precipitation value to every raster point of a DEM with 400 m grid spacing. However, in 
areas of low data densities, like the higher mountains, the resulting values can only be interpreted as 
relative approximations. The complexity of the precipitation processes e.g. in the cloud forest zone 
cannot be reliably mapped through regionalisation of the existing measurements of annual 
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precipitation sums (Feiden 2004). On the whole, the ancillary information available is not sufficient 
to allow the modelling of directly influencing factors like nutrient availability or moisture regime at 
a scale appropriate for the use with high resolution satellite data.  

There is, however, the DEM, and the models of terrain variables which can be derived from it, with 
their potential (indirect) influence on the land cover, and particularly on the vegetation. 
Topographic variables like elevation, slope and aspect can be presumed to influence, among other 
things, the local moisture regime and temperature regime and thus the vegetation.  

The DEM with 8 m grid spacing, generated from the 50 m DEM through kriging (chapter 6.3), was 
used to provide elevation data. The slope, calculated from this DEM, was used as the second 
topographic channel. To calculate the local slope, the four immediate neighbours of each pixel are 
used to calculate two vectors (in x-direction and y-direction) across the central pixel employing the 
horizontal distances and elevation differences of the left and right neighbour pixels on the one hand 
and the top and bottom neighbour pixel on the other hand. These two vectors form a plane the 
normal vector of which can be calculated as the cross product of the two original vectors. The 
normal vector is then used to calculate the slope of the plane, which is assigned to the central pixel 
as the slope value (in degrees between 0 and 90) (PCI 2001).  

A third basic topographic parameter is the aspect (orientation of the slope). Directional aspect 
values in degrees (e.g. clockwise from north) have the disadvantage for classification that some 
directions can end up with very different values even if the orientation in reality is very similar (2° 
is much closer to 358° than to 30°, for example). This circularity makes it impossible to perform 
conventional statistical classification in a meaningful way on such aspect data, so that they are not 
suitable as input for a statistical classifier. A non-circular measure which contains aspect 
information is the ‘angle of incidence’. The incidence angle of solar radiation can be computed as a 
function of aspect and slope and of the solar azimuth and elevation angles. Instead of calculating the 
incidence angle for radiation from a light source, an azimuth of 60° and an elevation of 20° were 
chosen to give a rough approximation of the exposure to the east-northeasterly winds which bring 
most of the moisture into the study area. The resulting image has high values at slopes exposed to 
the east and north and very low values (0° in some areas) at leeward slopes. Aspect was thus 
substituted by an ‘angle of incidence’ as a non-circular measure containing information about the 
(windward and leeward) orientation of slopes (‘incidence60’).  

These three topographic channels with 8 m grid spacing (figure 23) were added as additional chan-
nels to the 8 m resolution IKONOS data. The 16 bit elevation channel was linearly scaled down to 8 
bit before being used as input for classification. The elevation data with 8 m grid spacing was also 
resampled to 4 m pixel size using cubic convolution to integrate it with the 4 m resolution IKONOS 
data. 
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Figure 23: Elevation (above), slope (left) and ‘incidence60’(right) images generated from the DEM. 

The ancillary data was thus incorporated as additional channels to be used during the classifications 
instead of using it for a stratification of the study area before the classification. A stratification of 
the eastern test area was not done because this test area is already quite small. Its vegetation patterns 
are determined not only by environmental gradients, which could be partly substituted by the DEM-
derived data, but also by the disturbance history and current human land use. To define abrupt 
DEM-based boundaries, excluding some of the land cover classes from sub-areas of the eastern test 
area, would be inappropriate, given the inaccuracy of the DEM data and the lack of information 
about definite environmental boundaries for most of the classes in the test area. (For the use of 
ancillary data in post-classification sorting see chapter 8.9.) 
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8.6 Creation of Training Areas and Calculation of Class Statistics 

Training areas were created for the 14 land cover classes listed in table 10. Training samples were 
selected manually for each class, based mostly on the ground data gained through field work and 
aided by the aerial photographs, the panchromatic IKONOS image and maps. The training samples 
form contiguous groups (block sampling), but for every class, between six and 23 spatially separate 
training areas were created (figure 24). The aim was to create representative training samples for 
each class, avoiding mixed pixels but containing examples of the whole spectrum of class-subtypes 
in the test area (e.g. for the class ‘dense pine forest’, training samples were placed in areas of 
mature pine forest as well as pine plantations from the 1970s). Although random training samples 
are theoretically preferable for the creation of representative class statistics, it is usually not possible 
in practice to assemble a sufficient number of field work dependent training samples without the 
use of block sampling (Debeir et al. 2002). The training areas were saved as masks (bitmaps) and 
transferred to all image files of the eastern test area so that the same training areas could be used for 
the creation of class signatures from all data sets, including the co-registered Landsat data. This 
entails that the number of training pixels becomes smaller for the data sets with reduced spatial 
resolution. The number of training samples per class for the case of 4 and 8 m resolution pixels is 
listed in table 12.  

Table 12: Training pixels per class at 4 m resolution. 

 

Class Number of training samples 
at 4 m resolution 

Number of training samples 
at 8 m resolution 

Dense pine forest (PFd) 2760 702 

Open pine forest (PFo) 1660 415 

Cloud forest (CF) 4048 1012 

Dense secondary forest (SFd) 2658 669 

Open secondary forest (SFo) 2868 717 

Palm dominated forest (PmF) 1762 446 

Broadleaved riparian forest (BRF) 3702 921 

Matorral (Mat) 3092 777 

Calimetal (Cal) 1508 379 

Agroforestry (AF) 1324 332 

Grassland (GL) 2892 723 

Crops (Cr) 2120 533 

Bare ground (BG) 616 154 

Water (W) 1444 360 
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The training samples for all classes were checked for normal distribution in the spectral and textural 
channels and the channels containing DEM-derived data. For this purpose, histograms of the DNs 
under the training area mask were created for each channel. The histograms were visually evaluated 
to see whether they were unimodal and approximately symmetric and bell-shaped and the central 
tendencies (mean, median and mode) were compared. The same training samples were used for all 
classifications and all data sets, except for the classifications in eCognition which required object 
primitives as training samples. For the statistical classifications (MLC), class signatures (containing 
among other things the mean vector for n selected channels and the n·n class covariance matrix) are 
computed from the training pixels. It is recommended for reasons of statistical confidence that for n 
channels to be used in the classification, training sites should be at least 5·(n·n+n) pixels (samples) 
large (PCI 2001). This corresponds to 100 pixels for four input channels and 280 pixels for seven 
input channels. The recommended value for seven channels is reached for all classes at 4 m 
resolution and for all classes except ‘bare ground’ at 8 m resolution. For four channels, the 
recommended value is reached for most classes even at 16 m resolution.  

 
Figure 24: The training areas in the eastern test area. For the colour scheme see legend plate 44, appendix 2. 

8.7 Feature Selection and Signature Separability 

Quadratic classifiers like the MLC have limitations in handling data sets of high dimensionality (see 
chapter 2.6). The data set now available for the eastern test area comprises four IKONOS multi-
spectral channels and ten texture features, with the possible inclusion of Landsat multispectral 
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channels and ancillary topographic data channels. This necessitates the selection of a channel subset 
before using them as input in a classification. 

8.7.1 Reduction of Texture Channels after Correlation Analysis 

A correlation analysis was conducted as a first step to reduce the large number of generated texture 
features (before adding the remaining channels to the multispectral channels). The correlation 
coefficients between the ten texture images were calculated for the eastern test area (table 13). Out 
of groups of highly correlated texture channels (with absolute values of correlation coefficients 
larger than 0.85 for the eastern test area), in each case the one which appeared visually most 
meaningful for forest discrimination was selected while the others were discarded, resulting in five 
(out of ten) retained texture channels. These were GLCM Entropy, Standard Deviation, Contrast, 
Mean, and Correlation. The maximum correlation coefficient between these remaining texture 
channels is 0.82. 

Variance, when calculated in the same 15 m × 15 m size windows as the GLCM texture features 
(VAR 15), is highly correlated (r = 0.96) with GLCM standard deviation. The 9 × 9 window local 
variance (VAR 9) is also quite strongly correlated with both the GLCM standard deviation and the 
local variance calculated in the 15 × 15 window. 

Table 13: Correlation coefficients for texture channels (scaled to 8 bit), eastern test area. 

 ASM ENT HOM CONT DISS SD MEAN CORR VAR 9 VAR 15

ASM 1          

ENT -0.96 1         

HOM 0.93 -0.96 1        

CONT -0.66 0.79 -0.80 1       

DISS -0.81 0.91 -0.93 0.96 1      

SD -0.71 0.83 -0.72 0.82 0.81 1     

MEAN 0.45 -0.43 0.42 -0.20 -0.31 -0.27 1    

CORR -0.18 0.23 0.01 0.02 0.00 0.52 -0.10 1   

VAR 9 -0.50 0.63 -0.53 0.73 0.68 0.87 -0.17 0.44 1  

VAR 15 -0.52 0.67 -0.53 0.74 0.68 0.96 -0.17 0.56 0.89 1 
 

The channels of the first three multispectral IKONOS bands (visible) are also highly correlated to 
each other (with r ≥ 0.95). But as there are only four multispectral IKONOS bands, they were, at 
least initially, all retained for the combination with the texture channels. Their correlation was only 
taken into account as a basis for channel reduction when the multispectral data were combined with 
texture as well as ancillary topographic data channels. 
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8.7.2 Feature Selection  

These five texture channels combined with the four IKONOS multispectral channels were still more 
than the assumed optimum number of channels for a maximum likelihood classification (Peddle 
1993, Hay et al. 1996). To select the best reduced channel combination for discriminating between 
different forest types and adjacent land cover types, class signatures were calculated based on 
training sites for all the forest classes, matorral, calimetal and grassland. 

The seven optimal channels out of the four multispectral and five texture channels were selected 
using the criterion of maximised average transformed divergence between these class signatures. 
The same criterion was used to select the best combination of seven channels from the combination 
of the eight Landsat channels and five texture channels, and to select the best seven out of eight 
Landsat channels. 

The divergence (Gaussian form) between the classes i and j, D(i,j) is calculated from the class 
sample means and covariance matrices: 

( ) ( ) [ ] ( ) [ ]ITraceMMMMjiD ijjijiji
T

ji ⋅−Σ⋅Σ+Σ⋅Σ+−⋅Σ+Σ⋅−= −−−− 2)()(
2
1)()(

2
1, 1111      (16) 

where 
Mi = sample mean vector of class i, this vector has n elements, where n is the number of channels in 
the current set 
Σi = covariance matrix for class i, which has n by n elements 
( )T = transpose of matrix 
( )-1 = inverse of matrix 
Trace[ ] = trace of matrix (sum of diagonal elements) 
I = identity matrix 

The transformed divergence between the classes i and j, TD(i,j), is calcualted as: 

TD(i,j) = ( )( )[ ]8/,exp12 jiD−−⋅  (17) 

This restricts the transformed divergence to values between 0 and 2. 

Finally, the average transformed divergence (TDV) for all the NCLASS·(NCLASS-1) class pairs is 
calculated as: 

TDV = ( ) ∑⋅−⋅
),(

1
1 jiTD
NCLASSNCLASS

 (18) 

where ∑ is the sum over all values of i and j, i < j. 
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The PCI ‘CHNSEL’ algorithm was used to find the best subset of seven out of nine (or more) 
channels using the criterion of maximised average transformed divergence. A branch and bound 
algorithm (optimisation over subproblems) is employed to perform this optimisation task (PCI 
Geomatics 2003). 

For data sets including topographic data, separability measures were not employed in the overall 
channel selection because the terrain data cannot be assumed to have a Gaussian distribution for the 
classes under examination (Benediktsson et al. 1990). In this case, the non-topographic channels as 
selected before were combined with one or several topographic channels, and their contribution was 
evaluated through the results of test classifications. 

8.7.3 Signature Separability  

Signature separability matrices with the pairwise Bhattacharyya distance as the separability measure 
were calculated in order to evaluate to what extent the 14 classes of the original classification 
scheme are separable with the help of the IKONOS data and to assess the contribution of the texture 
features to the separability of the classes. Using the class signatures of the 14 classes, generated 
from the four multispectral IKONOS channels at 8 m resolution, the signature separability between 
all pairs of classes was calculated employing the PCI ‘SIGSEP’ algorithm. This was compared to 
the separability of the class signatures generated from the four multispectral channels and the three 
texture channels GLCM entropy, GLCM standard deviation and GLCM contrast, which had been 
selected as the optimal seven channel combination of IKONOS data. 

The Bhattacharyya distance between two classes (class i and class j) is calculated from class means 
and class covariance matrices using equation 20: 

BD(i,j) = ( )( )[ ]jia ,exp12 −−⋅    (19) 

where 
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where 
Mi = mean vector of class i, where the vector has n elements (n is the number of channels used) 
Σi = covariance matrix for class i, which has n by n elements 

iΣ = determinant of the covariance matrix for class i 

( )T = transpose of matrix 
[ ]-1 = inverse of matrix 

(PCI Geomatics 2003). 
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The resulting signature separability matrices were examined and compared. For informational 
classes which still had very poor separability even after the inclusion of the texture features, the 
merging or discarding of classes was considered. The signatures of the class pair with the minimum 
separability value (dense and open secondary forest) were merged. Most of the later classifications 
were conducted with secondary forest as one class, resulting in a total of 13 instead of 14 classes. 

8.8 Classifications of the Eastern Test Area 

The calculation of texture features, the implementation of several types of spatial integration of the 
multispectral data and, in some cases, the additional integration of Landsat data or terrain variables 
allowed the creation of a large number of different data sets. These data sets (characterised by 
different channel combinations and/or different types and degrees of spatial integration) were 
classified to create a basis for the comparison of their respective factual usefulness for the creation 
of forest and land cover maps of the test area. Table 14 provides a list of the classified datasets and 
the classification methods applied to them. 

Table 14: Classifications conducted for the eastern test area. 

Data set 

No. Channel combination Spatial resolution / integration 

Classification 
techniques 

No. of 
classes 

1 IKONOS ms channels 1-4 4 m  MLC  13, 14 

2 IKONOS ms channels 1-4 8 m (block averaged) MLC  13, 14 

3 IKONOS ms channels 1-4 12 m (block averaged) MLC  13, 14 

4 IKONOS ms channels 1-4 16 m (block averaged) MLC  14 

5 IKONOS ms channels 1-4 4 m, 3×3 mean low pass filtered MLC  13, 14 

6 IKONOS ms channels 1-4 4 m, 5×5 mean low pass filtered MLC  13, 14 

7 IKONOS ms channels 1-4 4 m, 7×7 mean low pass filtered MLC  14 

8 IKONOS ms channels 1-4 4 m, 3×3 median low pass filtered MLC  14 

9 IKONOS ms channels 1-4 Segmentation with scale parameter 12 StNN 14 

10 IKONOS ms channels 1-4 Segmentation with scale parameter 16 StNN 13, 14 

11 IKONOS ms channels 1-4 Segmentation with scale parameter 20 StNN, MLC 13, 14 

12 IKONOS ms channels 1-4 Segmentation with scale parameter 30 StNN 14 

13 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT 4 m  MLC  13, 14 

14 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT 8 m (block averaged) MLC, k-NN, 

ANN 13, 14 
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Table 14: Classifications conducted for the eastern test area (continued). 

Data set 

No. Channel combination Spatial resolution / integration 

Classification 
techniques 

No. of 
classes 

15 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT 12 m (block averaged) MLC  13 

16 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT 16 m (block averaged) MLC 13 

17 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT 

4 m, ms channels 3×3 median low pass 
filtered  MLC 13 

18 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT 

4 m, ms channels 3×3 mean low pass 
filtered  MLC  13, 14 

19 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT 

4 m, ms channels 5×5 mean low pass 
filtered  MLC  13 

20 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT Segmentation with scale parameter 16 StNN, MLC 13 

21 IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT Segmentation with scale parameter 20 StNN, MLC  13 

22 GLCM ENT, SD, CONT, MEAN, 
CORR 8 m MLC  13, 14 

23 Landsat ETM+ channels 1-5, 7, 
8 

15 m (Landsat channels 1-5 & 7 
resampled from 30 m) MLC 13, 14 

24 IKONOS ms channels 1-4, 
Landsat ms channels 5 & 7 

8 m (block averaged for IKONOS, 
resampled for Landsat) MLC 13 

25 IKONOS ms channels 1-4, 
Landsat ms channels 5-7 

8 m (block averaged IKONOS data, 
resampled Landsat data) MLC 13 

26 Landsat ETM+ channels 2, 4, 6, 
7, GLCM ENT, SD, CONT 

15 m (Landsat channels 1-5 & 7 
resampled from 30 m) MLC 13, 14 

27 IKONOS ms channels 1-4, 
elevation, slope and incidence60 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

MLC, k-NN, 
ANN 13 

28 
IKONOS ms channels 1,2,4, 
GLCM texture ENT, SD, CONT, 
elevation 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

MLC 13 

29 
IKONOS ms channels 1,2,4, 
GLCM texture ENT, SD, CONT, 
slope 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

MLC 13 

30 
IKONOS ms channels 1,2,4, 
GLCM texture ENT, SD, CONT, 
incidence60 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

MLC 13 
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Table 14: Classifications conducted for the eastern test area (continued). 

Data set 

No. Channel combination Spatial resolution / integration 

Classification 
techniques 

No. of 
classes 

31 
IKONOS ms channels 1,2,4, 
GLCM texture ENT, SD, CONT, 
elevation 

4 m (elevation data interpolated to 8 m 
through kriging and resampled to 4 m) MLC 13 

32 
IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT, 
elevation 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

k-NN, ANN  13 

33 
IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT, 
slope 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

k-NN, ANN  13 

34 
IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT, 
incidence60 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

k-NN, ANN  13 

35 
IKONOS ms channels 1-4, 
GLCM ENT, SD, CONT, 
elevation, slope, incidence60 

8 m (IKONOS ms data block averaged, 
elevation data interpolated through 
kriging) 

k-NN, ANN 13 

 

The Maximum Likelihood Classification technique was used for the classification of most of the 
datasets. The DNs in the training areas were normally distributed in the multispectral bands and 
GLCM texture channels for most of the classes (table 15). There are only some exceptions, mainly 
for land cover types which occupy only small proportions of the study area, like water and bare 
ground. Consequently, MLC could be expected to be the optimal classifier for the data sets 
containing multispectral and textural data. Besides MLC, object-oriented nearest neighbour 
methods were used for the classification of the segmented data. Those data sets which include 
DEM-derived data channels (and for comparison also some data sets without ancillary data) were 
classified with non-parametric classification methods in addition to MLC, because of the mix of 
different types of data in these data sets and the lack of normal distribution in some of the terrain 
data. 
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Table 15: Normal distribution of channel DNs in the class training areas. V: normally distributed, o: moderate 
deviation from normal distribution (e.g. histogram somewhat skewed but unimodal, or similar central tendencies but not 
bell-shaped),  –: strong deviation from normal distribution. (Estimated using the histograms of the 4 m resolution data 
for the multi-spectral and texture channels, and the histograms of the 8 m resolution DEM derived data, which is based 
on the 8 m DEM generated through kriging.) 

 

8.8.1 Maximum Likelihood Classification 

The training areas described in chapter 8.6 were used to calculate class signatures from the data sets 
listed in table 14. This provides the variables necessary for a maximum likelihood classification. 
The MLC algorithm provided by PCI (2001) was used to conduct these classifications (equation 
21). This algorithm calculates a discriminant function Gi(X) (as an expression of the relative 
likelihood that the pixel or observation X belongs to class i) for each class. Gi(X) is based on the log 
of the multivariate Gaussian probability density function P(X|i), modified by a term accounting for 
the prior probability of the class. 
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Dense pine forest 
(PFd) V V V V V V V o V V 

Open pine forest 
(PFo) V V V V V V V – o – 

Cloud forest (CF) V V V V V V V o V o 

Dense secondary 
forest (SFd) V V V V V V V o o – 

Open secondary 
forest (SFo) V V V V V V V V V o 

Palm dominated 
forest (PmF) V V V o V V V o V V 

Broadl. riparian 
forest (BRF) V V V V V V V o V o 

Matorral (Mat) V V V V o o o – V o 

Calimetal (Cal) V o V o V V V o V o 

Agroforestry (AF) V V V V V V V o V o 

Grassland (GL) V V V V V V V o V – 

Crops (Cr) V V V – o V V – – o 

Bare ground (BG) o o o V o o – – o o 

Water (W) V V V – o o o V V V 
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where 
P(X|i) = the probability that the observation X will occur, given that it belongs to class i (under the 
 Gaussian assumption) 
n = number of channels used in the classification 
X = n-dimensional measurement vector 
Mi = n-dimensional mean vector of class i 
Σi = covariance matrix for class i, which has n by n elements 
( )T = transpose of matrix 
[ ]-1 = inverse of matrix 

iΣ = determinant of the covariance matrix for class i 

Pi = a priori probability for class i 
The a priori probability is calculated from the class-specific bias Bi (which is chosen by the user) as 
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1
 is the sum of biases for all m classes used in the classification. 

Mi, Σi and |Σi| are estimated from the training sample of class i which is used to calculate the class 
signature. Together, they define the position, shape and orientation of the class’ hyperellipsoid in 
feature space. The class bias Bi, as determined by the user, is also stored in the class signature 
segment. 

For each pixel X, Gi(X) is calculated for all classes, and the pixel is assigned to the class for which 
the value of Gi (likelihood of membership) is highest. No threshold was specified for class 
membership and no null class created, so all pixels without exception were assigned to the most 
probable class according to equation 21. In one case, two additional output channels were generated 
receiving the classes for which the Gi value was second and third highest. 

Preliminary classifications of several data sets, with a uniform class bias for all classes, showed that 
the classes ‘water’, ‘crops’, ‘agroforestry’ and ‘bare ground’, which in reality cover only small pro-
portions of the test area, were substantially overrepresented in the resulting maps. Consequently, the 
class bias was progressively reduced to 0.1 for these classes, while it was left at its default value of 
1 for the other classes. The MLC algorithm uses the bias values to calculate the a priori probability 
Pi for each class (PCI 2001). This weighs the other classes in favour of the classes with reduced 
prior probabilities in the classification. If all other factors are equal, the Gi value is reduced by 1 for 
the classes with the bias 0.1 compared to the classes with a bias of 1. 
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The a posteriori probability for the most likely class (the class to which a pixel measurement was 
assigned) was also calculated for some classifications. In one case, a posteriori probabilities were 
calculated for the three most likely classes. The a posteriori probability P(i|X) is the probability of 
class i, given the measurement vector X. It is calculated from the a priori probability Pi and the 
probability density function P(X|i), using Bayes’ theorem. 

( ) ( )
( )XP

PiXP
XiP i=   (21) 

where P(X) is the ‘mixture density function’ for all m classes: ( ) ( ) i

m

i
PiXPXP ∑

=

=
1

. 

The a posteriori probability denotes the relative probability of a class assignment on the assumption 
that the pixel area does belong to one of the training classes. If these probabilities were calculated 
for all classes, they would sum to 1 (Paola & Schowengerdt 1995, PCI 2001). 

8.8.2 K-Nearest-Neighbours Classification 

The seven channel spectral-textural data set at 8 m resolution (data set 14) and several data sets 
including DEM-derived data channels were classified using the k-nearest neighbour classifier. The 
same samples which were used to calculate the class signatures for MLC were also used as samples 
for the k-NN classification. The PCI Geomatics ‘KNN’ algorithm reduces the number of samples 
per class to 200 by default (PCI 2001), but better results were achieved with larger numbers of 
samples, so the value for the maximum number of samples per class was increased to 1400. Thus all 
the training samples at 8 m resolution (table 12) were used in the calculations. The number of 
nearest neighbours (k) was chosen to be 8. This relatively large k-value – compared to the number 5 
used by many authors, e.g. Collins et al. (2004) and Debeir et al. (2002) – was chosen because of 
the high resolution (high within-class variance) of the data and because of the large number of 
samples (see also Fukunaga 1990:276).  

The k-NN algorithm used here calculates the Euclidian distance in feature space between the 
measurement vector X and each training sample vector. It finds the 8 nearest training samples in 
feature space, determines the majority class among them and assigns X to that class. This is 
repeated for all unclassified pixels (measurement vectors). 

8.8.3 Artificial Neural Network Classification 

The PCI Geomatica neural network programs ‘NNCREAT’, ‘NNTRAIN’ and ‘NNCLASS’ (PCI 
2001) were used to create and train neural networks and to conduct neural network classifications of 
several data sets for the eastern test area. As neural network classifiers do not have the same 
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limitations with regard to the number of channels as MLC, data sets with up to ten channels 
(consisting of multispectral, textural and DEM-derived data channels) were classified with this 
method. See chapter 2.6 for background information about artificial neural networks and their 
training. In this case, a neural network was created which had an input layer with one node for each 
input channel (between 7 and 10), one hidden layer with 13 nodes and an output layer with 13 
nodes (one for each class).  

The created back-propagation neural network uses the ‘generalised delta rule’ during the learning 
phase. The network was trained using the same class training samples which were also used in 
MLC and k-NN. The learning rate was set to 0.1 and the momentum rate to 0.9. The training cycle 
(adjustment of weights after forward and backward propagation of values through the network) was 
repeated for a maximum of 1000 iterations or until the maximum normalised total error was less 
than 0.01 or the maximum individual error was less than 0.001. The latter two cases did not actually 
occur, so that the training was always conducted for 1000 iterations. (The individual error is the 
sum of errors in the output values for one sample, meaning the difference between target value and 
output value of each output node. The normalised total error is calculated as half the sum of the 
squares of the individual errors, divided by the number of samples.) The error plot was then looked 
at to see whether the value for the normalised total error had stabilised before the 1000th iteration. 
This was the case for all classifications conducted here, even if the total error was still between 0.45 
and 0.52. In a second step, the learning and momentum rates were lowered to 0.04 and 0.1 
respectively, for a slower, more stable training with smaller step increments for a fine-tuning of the 
network weights (PCI 2001). 1000 further iterations were conducted with these parameters, 
resulting in final maximum total errors between 0.42 and 0.49. 

8.8.4 Object-Oriented Nearest-Neighbour Classification of Segmented Data 

A ‘standard nearest neighbour classification’ (StNN) was used to assign the image object primitives 
of the segmented images to the sampled classes within the eCognition environment. (The term 
‘standard nearest neighbour’ means that the same set of features is used for all classes in the 
calculations of the distance to the nearest neighbours.) For this object-oriented nearest neighbour 
classification, sample objects are required instead of sample pixels. The segments which were used 
as sample objects for the classification were chosen to match the training areas in the per-pixel 
training sample as closely as possible. The eCognition nearest neighbour algorithm computes the 
distance d in feature space between an image object and a sample object as the Euclidian distance 
standardised by the standard deviation of all feature values: 
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where  
d = distance between sample object s and image object o 

s
fv  = feature value of sample object s for feature f 
o
fv  = feature value of image object o for feature f 

fσ  = standard deviation of the feature values for feature f 

For each image object, a fuzzy class membership value in the range of 0 to 1 is calculated for every 
class. This is done by finding the image object’s closest sample object of each class in feature space 
and calculating an exponential membership function z(d) based on the distance d.  

2

)( dkedz ⋅−=     (23) 

where k was defined as ( )5ln=k . 

The image object is then assigned to the class for which it has the highest degree of membership 
(Baatz et al. 2002). The membership values for the agroforestry class were multiplied by 0.96 
before the class assignment to reduce the assignments to this class. This fulfils the same purpose as 
the reduction of the class bias in the maximum likelihood classification. 

The eCognition software offers many possibilities to fine-tune a classification using the intrinsic 
features of the image object primitives, like layer values, texture and object shapes, and additional 
class-specific conditions, including relationships to other objects. However, it would have been very 
time-consuming to test the many options, using iterative loops of classifications at different 
hierarchical levels etc. So, keeping in mind that the classification of the segmented data should be 
comparable to the classifications of the data sets created with other types of spatial integration, only 
one-step (data-driven) classifications were conducted in eCognition, using only the same features 
(channel values) which were also used in the classifications of the other data sets. 

8.9 Post-Classification Processing 

The classification results (except for those of the segmented data) were mode filtered with filter 
sizes of 3 × 3, 5 × 5 and 7 × 7. The mode filter computes the mode, i.e. the value that occurs most 
frequently in the filter kernel and assigns it to the central pixel. Isolated pixel values are thus 
replaced by whatever value constitutes the majority in their neighbourhood. This reduces the noise 
in a classification and could be regarded as a kind of post-classification spatial integration.  

As an alternative to the post-classification processing with a mode filter, a sieve filter (removing 
class polygons containing less than a specified number of pixels by merging them with their largest 
neighbour) was also employed in some cases. Sieve filtering did, however, not lead to the same 
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amount of accuracy improvement as mode filtering, so that it was abandoned in favour of the easy 
and straightforward mode filtering. 

A post-classification sorting with the help of the DEM data, like for the Landsat classification of the 
whole UCRYN (chapter 7.3), was also taken into consideration. There is, however, only a relatively 
small range of elevations in the eastern test area (800 m to 1565 m), offering fewer possibilities to 
define decision rules involving absolute thresholds.  

8.10 Accuracy Assessment 

The classification results were displayed in the form of thematic maps and visually evaluated and 
compared to each other and to the ground knowledge. A sample-based accuracy assessment based 
on error matrices was conducted to calculate quantitative accuracy measures. 

900 points were distributed over the classified eastern test area using stratified random sampling. 
The stratification made sure that the “number of samples chosen randomly from each class are 
proportional to the percentage of the image occupied by each class” (PCI Geomatics 2003). (The 
stratification was based partly on the 14-class MLC result of data set 14 and partly on the MLC 
result of data set 26, see table 14.) This was done after the classification and also after the last field 
work campaign, so that the determination of the land cover classes had to rely on the previously 
collected data. Not all the sample sites had been visited on the ground. (And some parts of the 
eastern test area, particularly in the Scientific Reserve Ebano Verde, were not accessible on the 
ground anyway.) 

The land cover classes of 583 of these 900 sample points could be determined using a combination 
of the knowledge and data collected on the ground during field work (e.g. annotations on the paper 
copies of the IKONOS image, ground photographs and notes relating to GPS waypoints) and visual 
interpretation of the IKONOS image itself (using several channel combinations, including pan-
sharpened, for the display) and of the oblique and the historical aerial photographs. In some cases, 
the DEM, the Progressio (1995) land use map and a vegetation map of the Scientific Reserve Ebano 
Verde (García et al. 1994: fig. 5) also helped to determine the true land cover class. Not all of the 
sample sites had been visited during field work, but in many cases the land cover class could still be 
identified using the other available data. If a class could be clearly identified in the IKONOS image 
itself, this had the advantage that there could not be any geometric registration error or temporal 
difference between reference data and classified data. The historical aerial photographs helped to 
differentiate between mature cloud forest (forest in all the images) and secondary forest (treeless 
areas in 1966). The 1984 aerial photographs, showing the young pine plantations of that time, 
helped to distinguish pine plantations from other kinds of forest. The reference class was assigned if 
a majority land cover type could be identified in the 4 m × 4 m as well as the 8 m × 8 m area which 
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the sample point referred to. However, for a third of the points, the land cover class could not be 
determined with confidence, so they were dropped from the sample. This affected mostly sample 
points in areas without ground truth where the manual interpretation of the remote sensing data did 
not deliver unambiguous results. By contrast, sample points in transitional land cover areas or 
stages, e.g. between grassland and matorral or between matorral and secondary forest, were not 
dropped, but a decision was made to assign one of the classes to them. In all cases, the reference 
class was assigned blindly, i.e. without knowing the result of any of the classifications for the point 
in question. 

The reference data were originally produced for the 14 class classification scheme. Both open and 
closed secondary forest reference points were later allocated to the merged class of secondary forest 
to test the accuracy of the 13 class classifications. 

 
Figure 25: The reference points used for the accuracy assessment in the eastern test area. 

The resulting 583 reference points were distributed over all classes and over the whole classified 
area (figure 25), including points close to class boundaries. For some kinds of spatially integrated 
data, up to six of the reference points ended up in non-classified areas and were then not used in the 
accuracy calculations. The testing data are independent of the training data. Using this set of 
reference points, accuracy assessments were conducted for all classifications of the eastern test area, 
comparing the reference classes and the classes predicted by the classifier (and possibly modified 
during post-classification processing). The results of the comparisons were reported in the form of 
error matrices. 
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The overall classification accuracy (percentage correct) was calculated for all classifications, as 
well as the class-specific user’s and producer’s accuracies. To make the class-specific accuracies 
comparable to each other without having to differentiate between user’s and producer’s accuracies, 
these two values were multiplied for each class. The 95 % confidence interval was calculated for 
the overall classification accuracy and the per-class user’s and producer’s accuracies as a function 
of the number of samples and the proportion of correctly classified samples.  

Additionally, the Kappa index of agreement (Cohen 1960) was calculated as the actually observed 
agreement Acorrect adjusted by the expected chance agreement Achance. 

KIA = 
Chance

ChanceCorrect

A
AA

−
−

1
  (24) 

where ACorrect is the overall accuracy, i.e. the sum of observations xii in row i and column i (in the 
agreement diagonal) of an error matrix for r classes divided by the total number of observations N: 
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and AChance is determined by multiplying the marginal totals of row i (xi+) and of column i (x+i) and 
dividing the sum of the resulting chance values in the agreement diagonal by N²: 
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To test the amount of error introduced by mixed pixels and by edge effects in the texture data, all 
reference points closer than 12 m to a land cover boundary (as interpreted in the pan-sharpened 
IKONOS image) were deleted from the test sample, reducing it to 333 points. This should eliminate 
those testing pixels for which the texture values calculated in a 15 m × 15 m window are likely to 
be influenced by between-class texture. Accuracy assessments for the spectral-textural classifi-
cations at 4, 8, 12 and 16 m resolution were conducted with this set of reference points and the 
overall accuracies were compared to those produced with the complete set of 583 points. 

The reference sample for the accuracy assessment of one classification was ‘fuzzified’ by 
reassessing the misclassified pixels according to the linguistic scale of Woodcock & Gopal (2000). 
For each reference point in the subset, all classes were assigned discrete levels of class membership 
between 1 and 5, according to the following description: 

“(5) Absolutely right: No doubt about the match. Perfect. 
 (4) Good answer: Would be happy to find this answer given on the map. 
 (3) Reasonable or acceptable answer: Maybe no the best possible answer but it is acceptable; this 
 answer does not pose a problem to the user if it is seen on the map. 
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 (2) Understandable but wrong [...] 
 (1) Absolutely wrong” (Woodcock & Gopal 2000:156). 

Classes with scores of at least 3 (at least acceptable answers) were then counted as ‘right’ for the 
reference point. This made it possible to calculate a fuzzy overall accuracy, i.e. the percentage of 
pixels for which the classified value matches at least one reference class with a score between 3 and 
5. 

Finally, some classes were aggregated in the error matrix to calculate the overall accuracy for less 
detailed classifications. 
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9 Results and Discussion of Processing Methods and Classifications Involving IKONOS 
Data 

9.1 Interpretation of Experimental Variograms 

The experimental variograms calculated for the transects as described in chapter 8.2 are shown in 
figures 26 and 27. The resulting variograms and derived parameters have to be interpreted cau-
tiously, keeping in mind that the results depend on the chosen transects and on the resolution (1 m) 
and waveband (450-900 nm) of the sampled imagery (see chapter 2.2). The experimental 
variograms for the selected single transects are typically periodic in the case of the forest areas. This 
reflects the alternation of illuminated crown parts and shaded crowns and background. The single 
experimental variograms of the riparian forest area are not as clearly periodic as those of the other 
forest types, probably because of the dense cover of large and smaller crowns which creates a less 
repetitive pattern than the pine plantation for example. In the case of grassland, the single horizontal 
transect produces an aspatial experimental variogram, indicating that the theoretic range for this 
vegetation type is smaller than the 1 m support of the image (Curran 1988). Most of the mean 
experimental variograms approach the classic form of variograms (figure 1). Some degree of 
periodicity is preserved in part of the mean forest variograms, but it has to be kept in mind that they 
are only averages of nine variograms representing parallel transects in the same sample area. 

Semivariance values calculated from the scaled panchromatic data are not meaningful as absolute 
values but only in relation to the other semivariance values calculated from the same image. Among 
the mean experimental variograms of the sampled land cover classes, the one of the open secondary 
forest has the highest sill (maximum level of semivariance), followed by broadleaved riparian 
forest. The sills of mean variograms of cloud forest and dense pine forest are similar to each other, 
while the grassland sill is the lowest by far, with only about 10 % of the maximum semivariance 
compared to open secondary forest. This reflects the relative homogeneity of the grassland area 
compared to the forest areas, and particularly to the very heterogeneous area of open secondary 
forest, which includes a large number of spectrally different elements (broadleaved trees, pine trees, 
shade, shrubs, patches of Dicranopteris pectinata and other undergrowth).  
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Figure 26: Experimental variograms of forest transects, from 1 m resolution panchromatic (450-900 nm) data. 
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Figure 27: Experimental variograms of grassland transects, from 1 m resolution panchromatic (450-900 nm) data. 

The ranges (lags where the semivariance reaches a maximum) of the mean experimental variograms 
vary between just 4 m for the mean horizontal variogram of the cloud forest to 14 m for the mean 
vertical variogram for the broadleaved riparian forest. The range of 6 m for the dense pine forest 
area approximately corresponds to the average distance between trees in this plantation. The 
average range for all sampled forest areas is 8 m. These values give an indication how far the spatial 
dependency between 1 m resolution panchromatic pixel values extends. The range values found 
here correspond roughly to the mean ranges which Treitz (2001) and Sampson et al. (2001) found 
for forest stands in Canada. Grassland has a mean range of 7 m, probably reflecting the varying 
terrain illumination and the distribution of some shrubs in the sample area. 

The mean range of the experimental variogram is regarded as indicative of the optimal spatial 
resolution for a per-pixel classification, as it provides a measure of the size of the elements in the 
sampled image area (Treitz & Howarth 2000a). Pixels should be larger than the range in order to 
average the within-class spectral variability and be representative of their class (Curran 1988). 
According to the range values derived from the panchromatic data, the resolution for a classification 
of the eastern test area should be coarser than 8 m in order to fulfil this condition for most of the 
land cover classes in the area. On the whole, the mean experimental variogram ranges indicate that 
some kind of spatial integration of the pixel values should be useful for a land cover classification 
with the IKONOS multispectral data.  

By contrast, pixels smaller than the range carry information about within-class variations, so for 
calculations of within-class texture the pixels must be smaller than the range of the variogram 
(Curran 1988). In the case of the forest classes tested here, this means that texture could be 
calculated both from the 1 m resolution panchromatic and the 4 m resolution multispectral 
IKONOS pixels. The windows used for the texture calculation, on the other hand, should again 
cover areas larger than the range (in both directions) in order to produce texture measures which are 
representative of the land cover classes. 
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9.2 Results of Spatial Integration 

9.2.1 Effects of Spatial Integration on Within-Class Variability 

The standard deviation of the digital numbers within the training samples for the individual land 
cover classes (the standard deviation of the class signature) was used as an indicator of within-class 
spectral variability. 

The assumption that spatial aggregation in square windows (block averaging) and low pass filtering 
will reduce the within-class spectral variability can be confirmed. The classes with the highest 
initial standard deviations (open secondary forest, open pine forest, broadleaved riparian forest and 
dense secondary forest) also have the steepest decline of standard deviation when the data are 
spatially integrated. Generally, the spectral variability for the vegetation classes is larger in channel 
4 (NIR) than in the first three channels. Low pass (mean) filtering consistently reduces the within-
class variability in all multispectral channels. The strongest reduction in within-class variability can 
be seen between no filter and the 3×3 mean filter (figure 28). When the filter size is increased from 
3×3 to 5×5 and from 5×5 to 7×7, the variability continues to decrease, but not as steeply.  

The reduction of the spatial resolution to 8, 12 and 16 m reduces the within-class spatial variability 
in a way similar to low pass filtering. However, the decrease is not as consistent as with low pass 
filtering. For example, the standard deviation of the visible channels in the matorral areas increases 
when the resolution is changed from 12 to 16 m, as does the standard deviation in the NIR channel 
in the crops areas. In the non-forest classes, calculating the mean of several 4 m resolution pixels is 
not necessarily tantamount to the integration of several class elements. As a consequence, the 
connection between spatial resolution (aggregation level) and standard deviation is not as strong as 
for the forest classes. In the case of broadleaved riparian forest, the fact that the standard deviation 
of the visible channels fails to decrease between 12 and 16 m is probably due to the fact that some 
of the 16 m pixels cover not only the riparian forest but in part already areas beyond the narrow 
band of this forest. The deviations in the case of the calimetal could be due to the fact that this class 
only occurs in small patches (of pure calimetal). The training areas are accordingly small and the 
fact that the training masks at different resolutions can not always fit exactly onto each other (e.g. a 
16 m × 16 m training area at 8 or 16 m resolution has to be rendered as a 12 m × 12 m or 12 m × 
24 m training area at 12 m resolution) has more of an effect on the training area statistics than for 
the other classes which have larger training areas on average. 

The mean values of the training samples are not much affected by either block averaging or mean 
filtering. 
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Figure 28a: Within-class standard deviation at different spatial resolutions after block averaging and at 4 m resolution 
after mean filtering. 
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Figure 28b: Within-class standard deviation at different spatial resolutions after block averaging and at 4 m resolution 
after mean filtering. 
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9.2.2 Effects of Spatial Integration on Classification Accuracy 

In the following, the effects of several spatial integration techniques on the classification accuracy 
are compared for 14-class maximum likelihood classifications. The overall agreement between 
classified data and the reference sample is just 40.5 % when the four multispectral IKONOS 
channels are used as input for the classification without any kind of spatial integration. The 
resulting map is very noisy (figure 29), manifesting the need for some kind of spatial integration. 

 
Figure 29: Classification of the 4 m multispectral data without any spatial integration. For the legend see plate 44, 
appendix 2. 

Spatial aggregation in square windows (block averaging) and post-classification mode filtering 

When the spatial resolution of the four multispectral IKONOS channels is reduced from 4 m to 8 m, 
12 m and 16 m through block averaging, the classification accuracy is enhanced compared to the 
results for the 4 m resolution image (table 16). However, the accuracy values for the unfiltered 
classification results of the block averaged images do not differ significantly at the 95 % confidence 
interval, which is around ± 4.1 % for the overall accuracy values in tables 16 and 17. 

When the results are mode filtered, classification accuracies are significantly increased. The effects 
of mode filtering exceed the effects of block averaging. 5×5 or 7×7 pixels are indicated as the 
optimal sizes for post classification mode filters. Even when the resolution is already reduced to 16 
m, mode filtering still enhances classification accuracies significantly. The single highest overall 
accuracy value of 58.2 % is achieved when using the 8 m resolution data in combination with 5×5 
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post-classification mode filtering, but the accuracies achieved with a 7×7 mode filter or 4 m 
resolution data and the same mode filters are very similar (no significant differences). 

Table 16: IKONOS ms channels 1-4, eastern test area, 14 class classification, overall accuracy [%], (overall Kappa 
index of agreement in brackets). 

Post-classification mode filter  

Resolution No filter 3×3 5×5 7×7 

 4 m  40.5 (0.342) 50.4 (0.447) 56.3 (0.512) 56.9 (0.520) 

 8 m  44.1 (0.379) 54.9 (0.495) 58.2 (0.531) 57.0 (0.516) 

12 m 45.7 (0.397) 52.8 (0.471) 54.3 (0.488) 53.5 (0.479) 

16 m 44.9 (0.386) 50.3 (0.442) 53.5 (0.478) 53.6 (0.479) 

 

When the initial spatial resolution is already lowered to 8 m or less, 7×7 mode filtering suppresses a 
lot of spatial detail, producing maps which are not visually appealing. So even if the overall 
accuracy calculated from the reference sample is still high after 7×7 mode filtering the classification 
results of the block averaged data sets, the mode filter size in this case should be restricted to 3×3 or 
5×5, which is enough to eliminate small misclassified areas. 7×7 mode filtering should only be 
applied to 4 m resolution data. 

Although many of the single accuracy values in table 14 do not differ significantly from their 
neighbouring values (at the 95 % confidence level), the diagram in figure 27 points out the 
consistency in the accuracy values resulting from block averaging and mode filtering. There is a 
clear low point where the data are not spatially integrated at all and a clear peak at or close to 8 m 
resolution and a mode filter size between 5×5 and 7×7 (see also figure 31).  

Optimal spatial resolution 

The classification results show that, for the per-pixel multispectral classification of forest in this 
type of heterogeneous environment, the spatial resolution of 4 m is unnecessarily high. Assuming 
that no other kind of data integration takes place, the optimal resolution would be at least between 
8 m and 12 m. This would be the spatial resolution to look for in data acquired for such a per-pixel 
multispectral classification. However, when one is already working with 4 m resolution data like 
IKONOS, one could argue that, as the classification accuracy using 8 m pixels is not significantly 
higher than for the 4 m pixels (especially if the results are mode filtered), the effort of pixel 
aggregation is not worthwhile and the original 4 m pixel size might be used as well, as long as the 
reduction of the file size through the reduction of the spatial resolution is not a desired effect.  
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As it was already indicated by the variograms and by the different rates of reduction of within-class 
variability with decreasing spatial resolution, the individual classes have different spatial 
characteristics, so that there are different ‘optimal resolutions’ for different classes. Figure 30 shows 
the products of class-specific user’s and producer’s accuracies for selected individual classes after 
classification and 5×5 mode filtering at different spatial resolutions. Among the examples, the class 
‘dense pine forest’ seems to profit most from block averaging up to 16 m pixels, while 4 m seems to 
be the optimal resolution for matorral and broadleaved riparian forest. These class-specific 
accuracy values have to be interpreted with restraint, because the number of testing samples per 
class is only between 28 and 105 for these classes, leading to large and often overlapping 
confidence intervals. Even if different class-specific optimal resolutions were to be clearly 
established, it would not be practicable to conduct classifications with a separate resolution for each 
class, especially as the individual class areas are not known beforehand. For a general forest and 
land cover classification, a compromise spatial resolution has to be found, resulting in the best 
overall classification accuracy as described above. 
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Figure 30: Product of user’s accuracy (UA) and producer’s accuracy (PA) for selected classes for IKONOS 4 channel 
14 class classification (5×5 mode filtered).  

Low pass filtering and post-classification mode filtering 

Mean filtering enhances the classification results significantly and also significantly more than 
block averaging, where the best result without additional mode filtering was 45.8 % overall 
accuracy for 8 m resolution, compared to 57.3 % for the 5×5 mean filter (table 15). Post-classi-
fication mode filtering leads to additional significant accuracy improvements in combination with 
the 3×3 mean filter. When the results of mean and median filtering are compared, the median 
filtered images look better (less blurred), but the classification results are not as good. The overall 
accuracy is 45.8 % for the 3×3 median filter and 52.7 % after additional 3×3 post-classification 
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mode filtering, compared to values of 51.6 % and 56.6 % when a mean filter is used. Accordingly, 
only the mean filtered channels were used as a basis for further classifications. 

Table 17: Overall accuracies [%] for 14 class classifications of low pass filtered Ikonos ms channels 1-4, eastern test 
area (Kappa index of agreement in brackets). 

Post-classification mode filter  
Pre-classification 
mean filter No filter 3 × 3 5 × 5 7 × 7 

No filter (4 m orig.) 40.5 (0.342) 50.4 (0.447) 56.3 (0.512) 56.9 (0.520) 

3 × 3  51.6 (0.461) 56.6 (0.515) 59.0 (0.542) 61.1 (0.563) 

5 × 5 57.3 (0.523) 57.8 (0.529) 59.0 (0.542) 59.2 (0.544) 

7 × 7 55.7 (0.507) 57.1 (0.522) 56.4 (0.514) 56.1 (0.511) 
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Figure 31: Diagrams of overall accuracies for 4 channel multispectral classification (14 classes) with different spatial 
resolutions, pre-classification mean filters and post-classification mode filters used. 

The 7×7 mean filter integrates the spectral response of an area of 28 m × 28 m, about the size of a 
Landsat multispectral pixel, creating an increased number of pixels with ‘mixed class signatures’. 
This leads to locally low classification accuracies, especially along class borders, and the erroneous 
appearance of ‘intermediate classes’ in these areas (e.g. ‘matorral’ erroneously appearing in the 
map between riparian forest and pasture, or areas along the border between pine forest and riparian 
forest being classified as dense secondary forest). This effect is also visible, but less pronounced, in 
the classification of the 5×5 mean filtered image. Although the 7×7 mean filtering also leads to 
improved overall accuracies compared to the unfiltered image, there is an unnecessary amount of 
blurring and loss of information through averaging associated with this filter size. In contrast, 
particularly the 3×3 mean filtering in conjunction with post-classification mode filtering is a very 
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effective method to increase classification accuracies through the spatial integration of high 
resolution data. The maximum overall accuracy for 14 classes achieved with this method and the 
four multispectral IKONOS channels is 61.1 % (table 17, figure 31). 

Segmentation 

The results of the nearest neighbour classification of the segmented images are listed in table 18 for 
four different scale parameters. The classified segmented images were not mode filtered, because 
there are no isolated pixel values in an object-based classification. Segmentation followed by an 
object-based nearest neighbour classification does not lead to significantly higher overall accuracy 
values than simple block averaging without mode filter followed by MLC. This is probably due to 
the inferiority of the nearest neighbour classification technique.  

The lower classification accuracy for the level 4 segmentation (scale parameter 30) indicates that 
too many of the large object primitives from this segmentation cover several target classes (mixed 
objects / undersegmentation). By contrast, the use of the scale parameter 12 results in an overseg-
mented image with small homogeneous object primitives which do not integrate the elements of the 
heterogeneous forest classes. This is confirmed by the fact that after the classification of the level 1 
(scale parameter 12) object primitives, the classification accuracy does increase when the result is 
mode filtered after all, indicating that the original spatial integration was not sufficient. Scale 
parameters 16 and 20 seem to be most appropriate for the creation of image object primitives for 
object-based classifications or simply for the production of meaningful boundaries within which the 
data can be spatially integrated (averaged). 

Table 18: Overall accuracies [%] for four segmentation levels achieved with object-based nearest neighbour 
classifications, and in one case MLC. 

Hierarchical segmentation level OA for Object-based StNN  Per-pixel MLC 

1 (scale parameter 12) 45.8  

2 (scale parameter 16) 45.4  

3 (scale parameter 20) 46.8  54.4  

4 (scale parameter 30) 42.5  

 

The object primitives resulting from the level 3 segmentation (scale parameter 20) were exported 
into the PCI Geomatica environment with their mean values. This resulted in a 4 m resolution 
multispectral data set where the pixels belonging to one object primitive had identical values. In 
spite of the reduced number of training pixels with different values and the connected problems for 
the estimation of class statistics for a parametric classifier, class signatures were calculated from 
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this data (based on the training areas also used for the other per-pixel classifications), and a per-
pixel maximum likelihood classification was conducted. The result was a map where every pixel of 
the same image object primitive had to be assigned to the same class. The overall classification 
accuracy of this map was 54.4 %, which is significantly higher than for the object-based nearest 
neighbour classification. This overall accuracy is also significantly higher than the accuracies 
achieved with block averaging without mode filtering, but not higher than the accuracies achieved 
with mean filtering or block averaging in combination with mode filtering. 

Recapitulating, when using only the four multispectral IKONOS channels in the classification of 
the eastern test area, the best results were achieved with a combination of 3×3 low pass (mean) 
filtering of the multispectral channels before classification and a 7×7 post-classification mode 
filtering. The classification accuracy achieved with this method was 61.1 % for 14 classes (64.2 % 
for 13 classes, figure 32). The reduction of the spatial resolution through block averaging to 8 m (or 
even up to 12 or 16 m) leads to increased classification accuracies, but filtering operations were 
more successful in significantly increasing classification accuracies. Segmentation (figure 33) does 
not seem to be a competitive method for spatial integration in this context. An attempt could be 
made to improve the results of the object-based classification by fine-tuning the object-based 
classification algorithm, but this would need a lot of additional effort. 

Trying to differentiate between 14 classes using just the four IKONOS multispectral channels does 
not result in very high accuracy values in any case, but spatial integration methods do lead to 
significantly increased overall accuracies compared to the initial value of 40.5 % for the case 
without spatial integration. 

Obviously, there can also be too much spatial integration (e.g. a combination of 7×7 mean filtering 
and 7×7 post-classification mode filtering), leading to mixed pixel effects and a loss of spatial 
detail. The loss of spatial detail through mode filtering becomes apparent upon a visual inspection 
of the classification results (maps) before is leads to reduced accuracy measures as calculated from 
the reference points. 

9.3 Effects of Integrating Texture Features 

Through the GLCM texture calculations based on the 1 m panchromatic IKONOS image, some of 
the spatial information contained in the channel with the highest available resolution was integrated 
with the 4 m resolution multispectral IKONOS data sets, with the and 8 m and 12 m block averaged 
data sets and with the 15 m resolution Landsat data. 
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Figure 32: Classification of the 3×3 mean filtered multispectral data set, results are 7×7 mode filtered. For the legend 
see plate 44, appendix 2. 

 
Figure 33: Maximum likelihood classification of segmented multispectral data (scale parameter 20). For the legend see 
plate 44, appendix 2. 
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9.3.1 Class Separability with and without Texture Channels 

Signature separability according to the Bhattacharyya distance (BD) as calculated from equation 20 
can take values between 0 and 2, with 0 representing no separability and 2 representing perfect 
separability. As indications for class separability, BD values below 1 are regarded as representing 
very poor separability, values between 1 and 1.5 represent poor separability, values between 1.5 and 
1.9 moderate separability and values over 1.9 good separability. 

The different class signature separabilites between all pairs of classes, based on the multispectral 
data with and without the inclusion of three texture channels, are described and discussed in the 
following with the 8 m resolution data sets as an example.  

As can be seen in table 19, class separabilities according to the Bhattacharyya distance between the 
class signatures generated from the four multispectral channels at 8 m resolution were very poor in 
many cases. Only 26 of 91 class pairs are well separable (BD above 1.9) and 11 had BD values 
below 1 (very poor separability). Most of the separability values between the forest classes were 
below 1.5 (poor separability). With separability values below 0.5, the separation of open pine forest 
and matorral, of dense and open secondary forest, and of broadleaved riparian forest and 
agroforestry appears especially unpromising. This corresponds to the overall accuracy values below 
60 % as presented in chapter 9.2.2 (44.1 % for the unfiltered 8 m data).  

The inclusion of three GLCM texture channels in the generation of the class signatures increases all 
the separability values by an average of 0.2 and reduces the number of class pairs with 
Bhattacharyya distances below 1 (very poor separability) from 11 to 3 (table 20). There are no more 
values below 0.5. The largest increases in signature separability are registered for the class pairs 
matorral and open pine forest, grassland and open pine forest, as well as grassland and matorral. 
This demonstrates how spectrally similar classes (e.g. open pine forest where the spectral signature 
is dominated by the undergrowth and thus very similar to that of matorral or grassland) can become 
much better separable when texture parameters are included. Among the forest types, the texture 
parameters particularly increased the separability between dense pine forest and dense as well as 
open secondary forest, between broadleaved riparian and palm forest, between dense pine and 
broadleaved riparian forest and between dense and open pine forest.  

The BD values between forest types are now mostly above 1.5, and they are all above 1 except for 
two cases: dense and open secondary forest, and broadleaved riparian and dense secondary forest. 
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Table 19: Signature separability (Bhattacharyya distance), using the four IKONOS multispectral bands at 8 m 
resolution. CF: cloud forest, PFd: dense pine forest, PFo: open pine forest, SFd: dense secondary forest, SFo: open 
secondary forest, PmF: palm dominated forest, BRF: broadleaved riparian forest, AF: agroforestry, Mat: matorral, Cal: 
calimetal, GL: grassland, Cr: Crops, BG: bare ground. Very poor separabilities are indicated in italics. 

 CF PFd PFo SFd SFo PmF BRF AF Mat Cal GL Cr BG 

PFd 1.441             

PFo 1.745 1.193            

SFd 1.400 0.594 1.115           

SFo 1.410 1.027 1.397 0.493          

PmF 1.602 1.907 1.913 1.494 1.638         

BRF 1.426 1.219 1.331 0.569 1.163 1.001        

AF 1.535 1.491 0.985 0.880 1.417 1.270 0.462       

Mat 1.610 1.333 0.494 0.962 1.162 1.812 1.377 1.033      

Cal 1.887 1.894 1.778 1.502 0.884 1.798 1.721 1.757 1.601     

GL 1.943 1.839 0.866 1.602 1.619 1.955 1.750 1.511 0.604 1.732    

Cr 1.998 1.993 1.422 1.962 1.974 1.993 1.882 1.574 1.529 1.980 1.012   

BG 1.996 1.997 1.810 1.992 1.996 1.998 1.994 1.956 1.885 1.998 1.572 1.619  

W 1.998 1.986 1.777 1.981 1.991 1.998 1.973 1.914 1.882 1.997 1.823 1.810 1.506 

 

Table 20: Signature separability (Bhattacharyya distance), using the four IKONOS multispectral bands at 8 m resolution 
and GLCM standard deviation, contrast and entropy. Very poor separabilities are indicated in italics, Bhattacharrya 
distances increased by more than 0.4 compared to the distances without texture features are printed bold. 

 CF PFd PFo SFd SFo PmF BRF AF Mat Cal GL Cr BG 

PFd 1.488             

PFo 1.856 1.561            

SFd 1.632 1.227 1.451           

SFo 1.706 1.593 1.521 0.640          

PmF 1.920 1.986 1.976 1.721 1.808         

BRF 1.677 1.607 1.581 0.805 1.327 1.473        

AF 1.728 1.696 1.340 1.099 1.522 1.693 0.710       

Mat 1.818 1.708 1.365 1.409 1.624 1.935 1.611 1.329      

Cal 1.950 1.953 1.829 1.761 1.427 1.952 1.849 1.842 1.785     

GL 1.987 1.951 1.723 1.962 1.972 1.999 1.943 1.878 1.276 1.901    

Cr 2.000 2.000 1.953 2.000 2.000 2.000 1.998 1.988 1.882 1.996 1.322   

BG 1.999 1.999 1.899 1.997 1.998 2.000 1.997 1.975 1.951 1.999 1.822 1.894  

W 2.000 1.998 1.894 1.996 1.998 1.998 1.990 1.969 1.973 1.999 1.972 1.986 1.817 
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The class signatures of open and dense secondary forest, which represent closely related 
informational classes and which exhibit the lowest separability (0.64) of all class pairs in the 
spectral-textural separability matrix, were merged. The separability matrix for the revised 
classification scheme of 13 classes is shown in table 21. 

Agroforestry and broadleaved riparian forest still have very poor separability, too, but to merge 
them would result in a mixed informational class. The separability between broadleaved riparian 
and secondary forest is also critical, but it was decided not to merge these signatures in order not to 
prematurely preclude the precision of the classification. There is still the option to merge these 
classes after classification – if the primary aim is to improve the overall accuracy (reliability) of the 
map. The signature separability of 65 of the 78 class pairs in the 13 class classification scheme is 
moderate or good (above 1.5). Among the forest classes, the forest types that are most separable 
from the other types are palm dominated forest and cloud forest. The only class with a BD below 
1.5 to palm dominated forest is broadleaved riparian forest and the only class with a BD below 1.5 
to cloud forest is dense pine forest. 

Table 21: Signature separability (Bhattacharyya distance), using the four IKONOS multispectral bands at 8 m resolution 
and GLCM standard deviation, contrast and entropy for 13 classes (after merging the class signatures of Sfo and SFd). 
Very poor separabilities are indicated in italics. 

 CF PFd PFo SF PmF BRF AF Mat Cal GL Cr BG 

PFd 1.488            

PFo 1.856 1.561           

SF 1.660 1.403 1.433          

PmF 1.920 1.986 1.976 1.753         

BRF 1.677 1.607 1.581 0.996 1.473        

AF 1.728 1.696 1.340 1.233 1.693 0.710       

Mat 1.818 1.708 1.365 1.457 1.935 1.611 1.329      

Cal 1.950 1.953 1.829 1.542 1.952 1.849 1.842 1.785     

GL 1.987 1.951 1.723 1.959 1.999 1.943 1.878 1.276 1.901    

Cr 2.000 2.000 1.953 1.999 2.000 1.998 1.988 1.882 1.996 1.322   

BG 1.999 1.999 1.899 1.997 2.000 1.997 1.975 1.951 1.999 1.822 1.894  

W 2.000 1.998 1.894 1.996 1.998 1.990 1.969 1.973 1.999 1.972 1.986 1.817 

 

The increased signature separabilities after the inclusion of texture indicate that texture features can 
be expected to help improve classification results. However, it has to be kept in mind that the 
signature separabilites are only calculated for the training samples, which represent typical areas of 
their respective classes and mostly not areas close to class boundaries in the image. Additional edge 
effects introduced through the texture features which were calculated in 15 m × 15 m windows will 
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thus not affect the signature separability but might adversely affect the overall classification 
accuracy. 

9.3.2 Classification Accuracy with Spectral and Textural Features 

Classification with texture features only 

Using the five GLCM texture features Entropy, Standard Deviation, Contrast, Mean and 
Correlation as the only input channels for a maximum likelihood classification at 8 m spatial 
resolution resulted in classification accuracies between 35 % without mode filtering and 43 % with 
5×5 or 7×7 mode filtering. The texture classification fails to separate cloud forest from dense pine 
forest, assigning pixels of both classes to the dense pine forest class (figure 34). It also fails to 
identify broadleaved riparian forest, which is classified as either palm dominated or secondary 
forest. Agroforestry does not appear in the map either. Shade dominated pixels in the forest areas 
are classified as water. By contrast, the classification accuracies for grassland and open pine forest 
are good, as is the producer’s accuracy for dense pine forest. 

 
Figure 34: Classification based on texture data only (data set 22), results are 3×3 mode filtered. For the legend see plate 
44, appendix 2. 

There is obviously some information lacking in the texture data (which is all derived from the 
IKONOS panchromatic channel), preventing the identification of all 13 land cover classes. Better 
results can be achieved using only the multispectral IKONOS data. However, both data sets have 
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their strengths and weaknesses; many classes are better identified with the multispectral data, but 
for some other classes, the texture data provides important discriminant information.  

Comparison of classification results achieved with the spectral and the spectral-textural data sets 

In the following, the classification results are compared for two feature combinations: the first 
consists of the four multispectral IKONOS channels, the second is a combination of the same four 
spectral channels plus the three GLCM texture features Entropy, Standard Deviation and Contrast. 
This spectral-textural feature combination is the optimal seven channel subset of the four 
multispectral and five texture channels according to the average transformed divergence (see 
chapter 8.7). Both feature combinations exist with several versions of spatial integration of the 
multispectral data (see table 14 and chapters 8.4 and 9.2). All data sets (including the segmented 
data) were classified using MLC.  

Table 22 shows the classification accuracies (overall accuracy and Kappa) for the case without any 
post-classification processing (mode filtering). The addition of three texture channels to the 
different spatially integrated data sets and to the unchanged 4 m data set leads to improved 
classification accuracies in all cases. The largest improvement can be seen for the unchanged 4 m 
multispectral data set. The addition of texture features which were calculated in 15 m × 15 m 
windows contributes some spatial information from the neighbourhood of the 4 m by 4 m pixels to 
this data set. The margin of improvement becomes smaller when the texture channels are added to 
the spatially integrated data. The overall accuracy for the 5×5 mean filtered data, which is already 
62.8 % without texture data, is increased by only 2.2 % through the inclusion of texture channels, 
which is not a significant margin at the 95 % confidence level. But the overall accuracy achieved 
with the combination of mean filtered multispectral data with texture channels is significantly 
higher than the OA achieved when texture is combined with the unchanged 4 m multispectral data. 
Comparing the classification results for the spectral-textural data sets without post-classification 
processing, the best results are achieved with the 5×5 mean filtered data set (OA = 65 %), followed 
by the 3×3 mean filtered data and the segmented data (scale parameter 16 or 20). 

Table 22: Comparison of overall accuracy [%] and Kappa index of agreement (in brackets) for the IKONOS 
multispectral data with and without the inclusion of texture features in the classification (13 classes). 

 Pre-Classification Spatial Integration of Multispectral Data 

Feature Combination 4 m 
unchanged 

8 m block 
averaged 

12 m 
block 

averaged 

3×3 mean 
filtered 

5×5 mean 
filtered 

Segm. 
scale p. 16 

Segm. 
scale p. 20

IKONOS ms 
channels 1-4 

41.0 
(0.342) 

45.6 
(0.387) 

48.0 
(0.410) 

55.6 
(0.496) 

62.8 
(0.574) 

54.7 
(0.487) 

56.6 
(0.509) 

IKONOS ms ch. 1-4, 
GLCM texture ENT, 
SD, CONT 

52.3 
(0.456) 

53.7 
(0.471) 

52.6 
(0.449) 

61.2 
(0.555) 

65.0 
(0.598) 

59.3 
(0.533) 

58.7 
(0.526) 
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This advantage of the data sets with pre-classification spatial integration is cancelled if the 
classification results are additionally mode filtered (table 23). (The segmented data sets could not be 
included in this comparison because it does not make sense to apply per-pixel mode filtering to per-
segment classification results.) Post-classification mode filtering improves the results for all 
spectral-textural data sets, but does so least for the data sets with most pre-classification spatial 
integration. The results for the 4 m spectral-textural data set with unchanged multispectral channels 
are improved most. After 5×5 or 7×7 mode filtering, none of the results of the spatially integrated 
spectral-textural data sets are significantly better than the results of the 4 m spectral-textural data set 
with unchanged multispectral channels. The textural channels contribute spatial information about 
an area larger than the pixels to all data sets, as the texture was calculated in 15 m × 15 m windows. 
For the unchanged 4 m multispectral data, the integration of the texture channels in the data set, in 
combination with post-classification mode filtering, provides a certain degree of spatial integration. 
This makes this data set competitive with the data sets including multispectral data with pre-
classification spatial integration. Figure 35 shows the 7×7 mode filtered classification result for the 
spectral-textural data set 18, for which an overall accuracy of 70.4 % was estimated. 

 
Figure 35: Classification of the spectral-textural data set 18 (3x3 mean filtered multispectral data and three texture 
channels), results are 7×7 mode filtered. For the legend see plate 44, appendix 2. 

The accuracies after 5×5 mode filtering of the classification results are not significantly lower than 
after 7×7 mode filtering (table 23). If one is aiming to maintain a high degree of spatial detail in the 
map, the smaller (5×5) mode filter should be used rather than the 7×7 mode filter, especially in the 
case of block averaged data with pixel sizes of 8 m × 8 m or larger.  
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Table 23: Comparison of overall accuracy [%] and Kappa index of agreement (in brackets) for the IKONOS 
multispectral data with and without the inclusion of texture features in the classification and with post-classification 
mode-filtering (13 classes). 

  Pre-classification Spatial Integration of Multispectral Data 

Channel 
Combination 

Post-class. 
mode filter 

4 m 
unchanged 

8 m block 
averaged 

12 m block 
averaged 

3×3 mean 
filtered 

5×5 mean 
filtered 

5×5 55.6 (0.502) 61.7 (0.561) 58.6 (0.527) 63.1 (0.579) 64.2 (0.589) IKONOS ms 
channels 1-4 7×7 56.1 (0.510) 61.0 (0.554) 58.5 (0.524) 64.2 (0.590) 64.0 (0.588) 

5×5 67.8 (0.628) 66.0 (0.607) 64.0 (0.582) 69.3 (0.646) 67.9 (0.631) IKONOS ms ch. 1-
4, GLCM texture 
ENT, SD, CONT 7×7 70.0 (0.653) 67.4 (0.622) 65.3 (0.597) 70.4 (0.659) 68.3 (0.634) 

 
The maximum overall classification accuracy which was achieved with the segmented data, using 
the spectral-textural feature combination and MLC, was 59.3 %. This accuracy is significantly 
exceeded by the classification accuracies achieved with the spectral-textural data sets with different 
types of spatial integration, including mode filtering (tables 20 and 21) (see also Gleitsmann & 
Kappas 2005). Because of this, segmentation was not further pursued as a method for the spatial 
integration of the high resolution multispectral data, although it might be possible to achieve better 
results with segmented data if the object-oriented classification method could be improved (see 
chapter 8.8.4).  

Class-specific results 

Figure 36 gives an overview over class-specific classification accuracies for spectral and spectral-
textural data sets. Only classes with at least 20 reference points per class were included in this 
presentation. Among them, only the classes secondary forest, broadleaved riparian forest, cloud 
forest, matorral and grassland have more than the 50 samples per class recommended by Congalton 
(1991) for class-specific interpretations of the error matrix. So the class-specific results described 
here can only give indications of general trends in the results, and small differences between 
accuracy measures should not be over-interpreted.  

In the case of the forest classes, the classification accuracy is always higher for the data sets with 
texture than for the purely multispectral data sets. The increase in accuracy through texture is most 
pronounced for the classes palm forest and secondary forest and (although on a lower overall level) 
open pine forest. Among the non-forest classes, matorral profits most from the inclusion of texture. 
Calimetal is the only class in figure 36 for which the accuracy is consistently lower with texture 
than without. 
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Figure 36: Class-specific accuracy measure (product of user’s accuracy and producer’s accuracy) for three spatial 
resolution/integration cases (A: 4 m without spatial integration, B: 8 m block averaged and post-classification 5×5 mode 
filtered, C. 4 m 3×3 mean filtered and post-classification 5×5 mode filtered) with and without the inclusion of texture 
features in the classification.  

These class specific results concur with what could be expected after a visual analysis of the 
imagery. The inclusion of texture features in the classification improves the accuracy for classes 
which are similar to others in colour (spectral signature) while differing in their textural 
characteristics. An example is the palm dominated forest, where the mean digital numbers in the 
four multispectral bands are similar to those of broadleaved riparian forest, but which has a different 
canopy structure, dominated by just one tree species with small, finely structured crowns, while the 
canopy of the broadleaved riparian consists of crowns of variable sizes and tree species. This is 
visible at the resolution of the panchromatic IKONOS image. Matorral and open pine forest are 
other obvious examples where the increased class separability through texture features was already 
predicted by the Bhattacharyya distance (chapter 9.2.1). The class calimetal, by contrast, has a very 
distinct colour (spectral signature). This makes it spectrally clearly distinguishable from other land 
cover types except for (open) secondary forest and matorral. These two classes can contain a 
proportion of the fern Dicranopteris pectinata, with the possibility of gradual transitions to pure 
calimetal areas. In this case, apparently the inclusion of texture features does not help to reduce the 
ambiguity or boundary vagueness either.  

The class-specific accuracy for cloud forest is not increased much through the inclusion of texture 
features, but it is increased a lot through spatial integration (figure 34). Cloud forest has the highest 
class-specific accuracy values among all the forest classes, especially when spatially integrated data 
sets are used. 
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Resumé of chapters 9.2 and 9.3 – results of including spatial information in the classification 
through texture channels and spatial integration of high resolution data 

On the whole, it can be said that a pure conventional per-pixel classification of the 4 m 
multispectral IKONOS data is not a suitable approach for forest type and land cover mapping with 
this kind of high resolution data. The tested approaches for the integration of spatial information – 
through different kinds of spatial integration of the multispectral data, through the inclusion of 
texture channels in the classification or through the spatial integration of the classification results 
(mode filtering) – all lead to significantly improved classification results. The best results were 
achieved when several methods for the inclusion of spatial information were combined – e.g. a 
classification including texture data followed by mode filtering of the results. This leads to overall 
accuracies of around 70 % (Kappa ~0.653) when mapping 13 land cover classes in the 
heterogeneous and mostly forested eastern test area. Overall accuracies of over 65 % were only 
achieved for mode-filtered classification results of data sets containing texture data. 

9.4 Combining Landsat ETM+ and IKONOS Data  

Having explored the possibilities to extract information from IKONOS data alone, additional 
available data sets were integrated with the IKONOS data to test whether these data can contribute 
any additional useful information for mapping the land cover categories of interest. 

Landsat ETM+ data has a lower spatial resolution but a higher spectral resolution than IKONOS 
data. While the first four Landsat multispectral channels have almost exactly the same spectral 
range as the four IKONOS multispectral channels in the visible and near infrared part of the 
electromagnetic spectrum, Landsat data contains three further multispectral channels. These contain 
information about the spectral response of objects in the mid infrared (channels 5 and 7) and 
thermal infrared (channel 6) and thus provide additional features for the discrimination of land 
cover classes which are lacking in the high resolution satellite data (Goetz et al. 2003). In the 
following, multispectral Landsat data is combined with high resolution IKONOS data. 

Landsat data alone for comparison 

The Landsat classification discussed here is not a subset of the map for the whole UCRYN but a 
classification conducted only for the eastern test area using the same 13 classes and the same 
training areas which were also used with the IKONOS data.  

The seven channel classification (using Landsat multispectral channels 1-6 and the panchromatic 
channel, all resampled to 15 m resolution) resulted in an overall accuracy of 37.6 %, which could be 
increased to 46 % through 5×5 mode filtering. The Landsat classification accuracy is similar to the 
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accuracy achieved only with the multispectral IKONOS data without texture or spatial integration 
(41 %). The latter can, however, be increased to 56 % through mode filtering, which is significantly 
more than the accuracy achieved for the mode-filtered Landsat classification. The classification 
accuracy for the Landsat data is constricted by the low spatial resolution of these data, (which is 
originally only 30 m for most of the Landsat channels) in combination with the high spatial 
heterogeneity of the study area. Most core class areas are rendered correctly (figure 37) but the 
overall classification accuracy is still below 50 %. By contrast, the spatial resolution of the 
IKONOS multispectral data is certainly sufficient or even unnecessarily high (see chapter 9.2), but 
the class separability with these data may suffer from a lack of spectral resolution. 

 

Figure 37: Landsat ETM+ classification of the eastern test area, 3×3 mode filtered. For the legend see plate 44, 
appendix 2. 

IKONOS and Landsat multispectral channel combination 

In order to add spectral information from beyond the near infrared to the IKONOS data, two or 
three Landsat multispectral channels (without or with the thermal infrared) were added to the 
multispectral data at 8 m resolution. The resulting accuracy measures in table 24 show that there is 
no significant difference between the classification accuracies achieved with the four IKONOS 
multispectral channels only and with the 6 or 7 combined multispectral channels. The advantage of 
the additional spectral information is probably cancelled by the low spatial resolution of the 
additional Landsat channels, introducing more mixed pixel effects in the classification. 
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Table 24: Classification accuracy (13 classes) for multispectral data sets at 8 m resolution consisting of IKONOS data 
or IKONOS data combined with Landsat data. 

Post-classification mode filter  

Data Set No filter 3×3 5×5 7×7 

IKONOS ms channels 1-4 45.6 
(0.387) 

55.9 
(0.499) 

61.7 
(0.561) 

61.0 
(0.554) 

IKONOS ms channels 1-4, 
Landsat ms channels 5 & 7 

46.5 
(0.395) 

54.9 
(0.488) 

59.5 
(0.537) 

59.8 
(0.540) 

IKONOS ms channels 1-4, 
Landsat ms channels 5-7 

45.8 
(0.385) 

55.0 
(0.486) 

58.2 
(0.522) 

58.9 
(0.529) 

 

Combining Landsat multispectral data and IKONOS texture data 

The Landsat channels 2, 4, 6 and 7 and the IKONOS-derived GLCM texture features Entropy, 
Standard Deviation and Contrast were combined for a classification. This is the optimal seven 
channel combination out of all Landsat bands and five texture features according to the average 
transformed divergence. The overall classification accuracy for this data set was 41 % when the 
results were not mode filtered. The maximum classification accuracy achieved with mode filtering 
was 56 % (5×5 mode filter). These are significantly higher values than those achieved with Landsat 
data alone, but they do not come close to the overall accuracies of around 70 % achieved with the 
combination of IKONOS spectral and textural data (see also Brötje 2003). 

On the whole, Landsat data do not seem to provide useful additional information for the 
combination with IKONOS data for a detailed classification of the test area. The advantage of their 
higher spectral resolution is outweighed by the disadvantage of their lower spatial resolution, which 
is insufficient for a detailed classification of the eastern test area. 

9.5 Use of Non-Parametric Classification Methods and Integration of Ancillary Data 

The IKONOS data used for the combination with ancillary (DEM-derived) data and for the 
comparison of MLC and non-parametric classification methods were the 8 m resolution data (block-
averaged multispectral data set 2 and spectral-textural data set 14). 

9.5.1 Using Non-Parametric Classifiers to Classify Spectral-Textural Data Sets 

The maximum likelihood classification method is based on the assumption of normal distribution of 
the class data. As could be seen in table 15, this assumption is valid for the multispectral and 
textural channels in most of the cases, so MLC should be a good classifier for multispectral or 
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spectral-textural classifications of the eastern test area and was exclusively used for most of these 
classifications. Only the spectral-textural data set 14 was also classified using the non-parametric 
classifiers k-NN and ANN to verify whether MLC really is the superior classifier for such data sets. 
The results of the k-NN and ANN classifications of data set 14 are also intended as a basis of 
comparison for the cases where these non-parametric classifiers are used to classify data sets 
including DEM-derived data. 

For the classification of data set 14, MLC does result in higher overall accuracies than the non-
parametric ANN and k-NN classifications (table 25), but the overall accuracies of the mode-filtered 
k-NN and ANN results are only insignificantly lower than that of the MLC result at the 95 % 
confidence interval. With its easy implementation, the k-NN classifier (using the parameters 
described in chapter 8.8.2) could be regarded as a viable alternative to MLC. 

The comparison shows that of the three tested classifiers, none is more suitable than MLC for the 
classification of a data set consisting of multispectral and texture channels. 

Table 25: Overall accuracy [%] and Kappa index of agreement (in brackets) for classifications of data set 14 with 
different classifiers (13 classes). 

 MLC k-NN ANN 

Unfiltered result 53.7 (0.471) 48.9 (0.411) 49.2 (0.428) 

Result 3 x 3 mode filtered 63.0 (0.572) 60.4 (0.542) 59.3 (0.539) 

Result 5 x 5 mode filtered 66.0 (0.607) 65.8 (0.602) 63.7 (0.588) 

 

9.5.2 Integration of Ancillary (DEM-Derived) Data as Additional Channels in MLC 

In spite of the fact that of the topographic variables, only the slope data show a normal distribution 
for most of the classes (table 15), some data sets containing DEM-derived data were classified 
using MLC. This serves as a basis for comparison with the non-parametric classifiers. Elevation, 
slope and incidence from 60° azimuth and 20° elevation (‘incidence60’) had been integrated as 
additional channels with the 8 m resolution spectral and texture data. The three DEM-derived data 
channels were combined with the four multispectral channels for a spectral-topographic data set. 
This improved the classification result compared to the data set consisting only of multispectral 
data, but after mode filtering, the overall accuracies were not significantly different from each other 
with or without the DEM-derived data (table 24). The main positive effect of the addition of three 
topographic channels to the multispectral data is that the unfiltered classification result is less 
‘noisy’ than that of the classification based only on the multispectral channels (figure 38). However, 
this effect is also achieved by post-classification mode filtering.  
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When the classification is based on the data set including the three DEM-derived data channels (and 
no texture channels), areas along the western margin of the cloud forest are misclassified as open 
pine forest (figure 38). These areas are in reality mostly dense pine plantations with some cloud 
forest regeneration. The misclassification can be explained by the fact that dense pine forest is a 
relatively homogeneous class, and has an accordingly narrow probability density function Gi (as 
calculated for MLC, see chapter 8.8.1). This means that there is only a small part of the feature 
space in which the probability of membership to the dense pine forest class is high. Open pine 
forest, on the other hand, is a high variance class in the multispectral as well as in the DEM-derived 
data channels. This means that it has a very wide probability density function with a lower peak. In 
other words, there are large parts of the feature space for which the calculation of the probability of 
membership to this class results in moderate values. In the misclassified area, the probability 
density function calculated from the dense pine forest training sample is unrealistically low because 
the training sample is not fully representative of all topographic positions of the dense pine forest 
(the training areas are located mostly in areas of lower elevations). In these marginal areas of dense 
pine forest, its probability density function is then no longer higher than that of the open pine forest 
(figure 39). In the absence of other classes for which the probability density function is high in this 
part of the feature space, the pixels are thus assigned to the pine forest class. 

 
Figure 38: MLC result for the spectral-topographic data set 27, 8 m resolution, no mode filter. For the legend see plate 
44, appendix 2. 
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Figure 39: Sketch of probability density functions of two classes, shown for a one-dimensional feature space. 

The maximum likelihood classification of the seven channel spectral-topographic data set resulted 
in lower overall accuracies than that of the seven channel spectral-textural data set. The difference 
increased with post-classification mode filtering, and the overall accuracy of data set 14 after 5×5 
mode filtering is significantly higher than that of data set 27 after the same post-processing (table 
26). 

Table 26: Results of maximum likelihood classifications for 8 m resolution data sets with different combinations of 
spectral, textural and topographic channels. 

Post-classification mode filter  
Data Set No filter 3×3 5×5 

No. 2 (IKONOS ms channels 1-4) 45.6 (0.387) 55.9 (0.499) 61.7 (0.561) 

No. 27 (IKONOS ms channels 1-4, DEM-
based elevation, slope and incidence60) 51.5 (0.447) 57.1 (0.507) 58.4 (0.522) 

No. 14 (IKONOS ms channels 1-4, GLCM 
texture ENT, SD, CONT) 53.7 (0.471) 63.0 (0.572) 66.0 (0.607) 

No. 28 (IKONOS ms channels 1,2,4, GLCM 
texture ENT, SD, CONT, elevation) 55.6 (0.492) 64.8 (0.594) 67.2 (0.622) 

No. 29 (IKONOS ms channels 1,2,4, GLCM 
texture ENT, SD, CONT, slope) 51.8 (0.448) 59.0 (0.528) 61.0 (0.550) 

No. 30 (IKONOS ms channels 1,2,4, GLCM 
texture ENT, SD, CONT, incidence60) 54.2 (0.474) 62.3 (0.564) 65.2 (0.597) 

 

Spectral, textural and DEM-derived data were also combined in stacked vectors as input for MLC. 
In order to keep the number of input channels at seven for the maximum likelihood classification, 
the multispectral channel 3 (which is highly correlated with channels 1 and 2) was left out of the 
data set and replaced by one of the DEM-derived data channels (table 24). 
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The inclusion of elevation in the maximum likelihood classification improved the overall accuracy 
somewhat (though not significantly at the 95 % confidence interval) compared to the spectral-
textural data set 14. It leads to a more homogeneous classification of the classes which occur only 
in the higher areas (cloud forest and palm dominated forest) but also produces some unwanted 
results, like the misclassification of some of the broadleaved riparian forest at high elevations as 
palm dominated forest. 

The overall accuracy for the data set containing ‘incidence60’ is very similar to that of the spectral-
textural data set. The inclusion of the ‘incidence60’ parameter has the main effect that the 
broadleaved riparian forest on leeward slopes is less likely to be misclassified as palm dominated 
forest, leading to an improved user’s accuracy for palm dominated forest. The incidence is only a 
very rough approximation of exposure to the east-north-easterly winds, however, and does not take 
account of rain shadow effects. Consequently, some small areas of broadleaved forest on slopes 
facing east, but situated in the rain shadow of the main mountain range (Loma La Sal / Loma La 
Golondrina), are misclassified as palm dominated forest.  

In spite of the fact that the slope angles were normally distributed for a larger number of classes 
than the two other topographic variables (table 15), the inclusion of slope in the classification fails 
to improve the MLC results. The fact that the slope values are rather inaccurate, because of the low 
resolution of the DEM on which their calculation was based, is at least partly responsible for these 
poor results. It could also be that slope is not a very relevant factor for the distribution of most of 
the land cover classes in the study area. 

Elevation was the only DEM-derived data channel which improved the classification results 
consistently (although not significantly) for unfiltered and mode-filtered results, compared to the 
classification of the spectral-textural data set 14. It is also the most reliable of the three topographic 
data channels. Spot-checks of the elevation values of the 8 m kriged DEM showed that they differed 
less than ±25 m from values derived directly from the 1:50000 topographic maps. In relation to the 
765 m of elevation difference within the eastern test area, this does provide an acceptable ‘signal to 
noise ratio’. In other words, there is real information about the approximate elevation of a pixel 
which will differ for different altitudinal zones in the image. But of course this interpolated DEM is 
a lot smoother than the real relief. Additionally, ridge lines and drainage lines are often misplaced 
by some tens of metres because of the low resolution of the input data. This can be expected to 
introduce significant errors into the slope and aspect or incidence models which are derived from 
such a DEM, so that it is questionable whether these derived topographic channels contain much 
useful information.  

As the elevation channel did seem to contain some information which could be utilised by a 
maximum likelihood classifier, it was also resampled to 4 m resolution and used to replace the 
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multispectral channel 3 in data set 18 (3×3 mean filtered multispectral channels and three texture 
channels). This is the spectral-textural data set the maximum likelihood classification of which had 
resulted in the highest overall accuracy so far (70.4 % after 7×7 mode filtering). The classification 
of the data set including the elevation data was assessed to be 64.0 % correct without post-
classification processing and 71.9 % correct after 7×7 mode filtering. This is a slight improvement, 
but it is again not significant at the 95 % confidence level. 

9.5.3 Non-Parametric Classification of Data Sets Including DEM-Derived Data 

In contrast to MLC, the non-parametric k-NN and ANN classifiers should not be adversely affected 
by the lack of normal distribution in some of the DEM-derived data channels. When the 8 m 
spectral-topographic data set is classified with non-parametric classifiers, however, the results are 
not more accurate than those achieved with MLC (table 27). With all three classifiers, the resulting 
accuracies for the spectral-topographic seven channel combination are either similar to the 
accuracies achieved with the spectral-textural seven channel combination, or lower (compare table 
25). For some of the mode-filtered results, the overall accuracies are significantly lower at the 95 % 
confidence level. In other words, for the classification of the eastern test area, the spectral-textural 
channel combination is a better classification input than the spectral-topographic channel 
combination even when using non-parametric classifiers. 

Table 27: Overall accuracy [%] and Kappa index of agreement (in brackets) for classifications of data set 27 (Ikonos ms 
channels 1-4, DEM-based elevation, slope and incidence60, at 8 m resolution) with different classifiers (13 classes). 

 MLC k-NN ANN 

Unfiltered result 51.5 (0.447) 51.3 (0.442) 50.8 (0.443) 

Result 3 × 3 mode filtered 57.1 (0.507) 53.3 (0.464) 53.0 (0.467) 

Result 5 × 5 mode filtered 58.4 (0.522) 56.4 (0.499) 54.0 (0.476) 

 

In all cases of spectral-topographic classification, and especially in the ANN classification, artefacts 
in the resulting maps point out that the influence of the topographic variables was too strong and/or 
the training samples were not fully representative of the ranges of elevations, slopes and incidence 
angles of the respective classes. This resulted in the creation of phenomena like an ‘agroforestry 
altitudinal belt’ in the ANN result, where areas of broadleaved riparian forest and even of grassland 
were misclassified as agroforestry because the pixel elevations (and in part also slope and incidence 
angles) matched those of the agroforestry training samples. In the ANN as well as in the k-NN 
classifications, broadleaved riparian forest at high elevations was classified as palm dominated 
forest. The positive effect that the cloud forest in the high mountains is classified more 
homogeneously is offset by the introduction of a false lower boundary of occurrence which leads to 
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cloud forest in the north-eastern corner of the image being misclassified as secondary forest. Again 
this is due to a lack of training samples representing the lower areas of cloud forest. This highlights 
the difficulty of ensuring that the training data of all classes are really representative of the full 
ranges of all channel values, even of ancillary data channels which are included in a classification. 

k-NN and ANN classifications were also conducted with more than seven channels. In these 
classifications, DEM-derived data channels were used in addition to the four multispectral and three 
textural channels. The resulting data sets had up to ten channels.  

Table 28: Overall accuracy [%] and Kappa index of agreement (in brackets) for non-parametric classifications of 
spectral-textural-topographic data sets. 

  Post-classification mode filter 

Data Set Classifier No filter 3x3 5x5 

k-NN 48.9 (0.411) 60.4 (0.542) 65.8 (0.602) No. 14 (IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT) 

ANN 49.2 (0.428) 59.3 (0.539) 63.7 (0.588) 

k-NN 53.7 (0.468) 61.9 (0.560) 62.7 (0.569) No. 32 (IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT, 
elevation) ANN 50.4 (0.439) 53.0 (0.466) 56.4 (0.505) 

k-NN 50.3 (0.426) 61.1 (0.547) 65.1 (0.593) No. 33 (IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT, slope) ANN 49.9 (0.432) 58.1 (0.523) 63.4 (0.581) 

k-NN 49.1 (0.414) 60.4 (0.540) 63.9 (0.580) No. 34 (IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT, 
incidence60) ANN 48.7 (0.421) 57.1 (0.515) 61.7 (0.564) 

k-NN 54.9 (0.480) 60.5 (0.544) 62.1 (0.561) No. 35 (IKONOS ms channels 1-4, 
GLCM texture ENT, SD, CONT, 
elevation, slope, incidence60) ANN 49.7 (0.429) 54.7 (0.483) 58.0 (0.519) 

 

Table 28 shows that in most cases, the two non-parametric classifiers perform similarly with regard 
to the overall accuracy. For data sets including DEM-derived data, the overall accuracies resulting 
from ANN tend to be slightly lower than those resulting from k-NN. When data sets containing an 
elevation channel were classified, the disadvantage of ANN compared to k-NN was most 
pronounced. In ANN classifications, the elevation always became too dominant, producing 
altitudinal belts of classes in the map to an extent which does not exist in reality (figure 40).  

On the whole, it can be said that the inclusion of the available ancillary data in the classification and 
the use of non-parametric classifiers did not manage to improve the classification results for the 
eastern test area significantly beyond what had already been achieved with MLC and IKONOS-
derived data (using a combination of multispectral and textural data and spatial integration). No 
classification of the 8 m resolution data sets containing DEM-derived data achieved an overall 



    9 Results and Discussion of Processing Methods and Classifications Involving IKONOS Data  

168 

accuracy above 55.6 % without post-classification mode filtering. With 5×5 mode filtering, the best 
result was 67.2 % accuracy. These best results were achieved with MLC for data set 28, which 
contains elevation data, in spite of the fact that the elevation data is not normally distributed for 
most training classes. This demonstrates the robustness of MLC towards moderate violations of its 
underlying assumptions. The best results achieved with non-parametric classifiers were 
insignificantly lower at 54.9 % without post-classification filtering (k-NN classification of 10 
channel data set 35) and 65.1 % for 5×5 mode filtered results (k-NN classification of data set 33, 
including slope data). 

 
Figure 40: ANN classification result of data set 32 (IKONOS ms channels 1-4, GLCM Texture ENT, SD, CONT, 
elevation), demonstrating how this classifier confines classes like pine forest, palm dominated forest, cloud forest, 
secondary forest and agroforestry to certain ranges of elevations which they then dominate to an unrealistic extent. For 
the legend see plate 44, appendix 2. 

The lack of significant improvements of classification results when DEM-derived data are used as 
additional input channels is partly due to the low resolution of the available DEM, leading to 
inaccuracies in the DEM-derived data channels. If a better DEM were available, it might still be 
worth experimenting with the inclusion of more DEM-derived variables in the classifications. 
Successful inclusion of DEM-derived data would also require that the training samples are carefully 
chosen with regard to the ancillary data channels from the outset. To make sure that the training 
samples are representative not only of the spectral and textural characteristics of the classes, but 
also of their elevations and other topographic characteristics, would require the establishment of a 
larger number of separate training areas for each class. 
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9.5.4 Use of DEM-Derived Data in Post-Classification Sorting 

Post-classification processing with elevation was not successful in this test area either, because the 
land cover classes did not follow a clear vertical zonation in this area, which was also quite small 
and had a maximum elevation difference of only 765 m. The altitudinal zonation of vegetation is 
not the dominant factor determining the land cover pattern here. There are land cover classes which 
do have upper or lower limits of occurrence in the eastern test area, like cloud forest. However, 
these classes were hardly ever misclassified in a way which made these classes appear in the map in 
areas outside of their elevation range in the better classifications. This means that post-classification 
sorting with elevation data could not be effective in significantly improving classification results. 
The use of digital elevation data for post-classification sorting could make sense for larger areas, 
though. 

A slope threshold could theoretically be used to correct the areas of bare ground misclassified as 
water. However, the resolution of the available DEM is not high enough to produce low slope 
values for all areas which were correctly classified as water. 

Resumé of chapters 9.2 to 9.5 – use of IKONOS, Landsat and DEM-derived data for classifications 
of the eastern test area 

Using information extracted only from IKONOS multispectral and panchromatic data for maximum 
likelihood classifications of 13 land cover classes led to classification accuracies of up to 65 % 
without post-classification processing, and up to 70 % for mode-filtered results. This is significantly 
more than could be achieved with Landsat data. Multi-source data integration and the use of non-
parametric classifiers did not lead to any significantly improved classification results. In fact, they 
led to lower overall accuracies in most cases. 

9.6 Discussion of the Classification Results and Accuracy Assessment Methods 

9.6.1 Validity of the Calculated Accuracy Measures 

Stratified random sampling was used to create an unbiased sample for accuracy assessment. 
However, a third of the initial sample points had to be dropped from the sample because their true 
land cover class was not ascertainable. This has probably led to a slightly biased testing sample with 
an under-representation of ambiguous land cover types in remote (unvisited) areas. Accordingly, a 
slight over-estimation of classification accuracy compared to a complete random sample can be 
expected. On the other hand, the sampling and assessment method was rigid in that it did not from 
the outset exclude ambiguous or transitional areas or areas close to land cover class borders. Also, 
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the accuracy measures reported so far in this chapter are the result of ‘hard’ accuracy assessments, 
with only one of the land cover classes being assigned as ‘true’ for each of the reference points. It 
can be argued that it would be justified to allow more than one class to count as correct in 
transitional and mixed areas, so that the hard accuracy measures used so far may actually lead to an 
under-estimation of accuracy. 

Rarely are two accuracy assessments by different authors conducted with exactly the same methods 
and the same rigidity (see chapter 2.7). However, the method used here was explained in detail so 
that it should be reproducible. In any case, as the same testing set was used to assess the accuracy of 
all the classifications of the eastern test area, the resulting accuracy values are at the very least 
comparable among each other. 

The sample size of 583 is large enough to produce overall accuracy estimates with 95 % confidence 
intervals of approximately ± 4 %. This means that the differences between many of the reported 
classification results can be rated as significant. The confidence intervals for the individual class 
accuracies are much larger, however, so these values give only vague indications about the relative 
accuracies and have to be interpreted with restraint. 

9.6.2 Success and Limitations in Mapping Detailed Forest and Land Cover Classes with 
IKONOS Data, Considering Land Cover Fuzziness 

In the following, I am going to take a closer look at the results of the maximum likelihood 
classification of data set 18 (consisting of four 3×3 mean filtered multispectral channels and three 
GLCM texture channels). This data set belongs to the group of data sets with which the best 
classification results were achieved. The single highest overall accuracy estimate for classifications 
based exclusively on IKONOS data was calculated for a 7×7 mode filtered MLC result based on 
this data set (OA: 70.4 %, KIA: 0.659). Table 29 contains the confusion matrix for these 7×7 mode 
filtered results. Figure 35 shows the corresponding map. 

The forest classes, except for open pine forest, all have user’s as well as producer’s accuracies 
between 65.6 % and 85.7 % (as estimated with the reference sample). Cloud forest was the most 
accurately classified land cover class of all, which is encouraging because of the importance of 
cloud forest as the protected ecosystem in the Scientific Reserve Ebano Verde. Using the product of 
user’s and producer’s accuracy as the basis for comparison, grassland and matorral are the non-
forest classes with the highest class-specific accuracies. This is in spite of the fact that they are often 
confused with each other (which is understandable because of the many areas of fern-rich ‘rough 
grassland’ in transition to matorral in the buffer zone of the reserve). Agroforestry and broadleaved 
riparian forest are another class pair which is often confused. This could already be expected 
because of the low separability of these two classes. 
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Table 29: Confusion matrix for the IKONOS classification, MLC of data set 18, 7×7 mode filtered, 13 classes. For class 
abbreviations see table 10. RD: Reference Data, CD: Classified Data, UA: User’s Accuracy, PA: Producer’s Accuracy, 
OA: Overall Accuracy. 

     RD 
CD 

PFd PFo CF SF PmF BRF Mat Cal AF GL Cr BG W Sum UA 
(%) 

PFd 21  5 6          32 65.6

PFo 2 12 1   5 3 1 1  4   30 40.0

CF 1  78 14 3 2  1      99 78.8

SF 2 3 4 93  11 4 9    1  127 73.2

PmF   1  16 5        22 72.7

BRF 2  2 4 1 71 2 1 7 1    91 78.0

Mat  4  1  5 51 2 2 13    78 65.4

Cal    4   2 11      17 64.7

AF      4 2  6   1  13 46.2

GL  2    1 6 1  35    45 77.8

Cr      1    5 10   16 62.5

BG          1 1 2  4 50.0

W            4 4 8 50.0

Sum 28 21 91 123 20 105 70 26 16 55 15 8 4 582  

PA 
(%) 75.0 57.1 85.7 75.6 80.0 67.6 72.9 42.3 37.5 63.6 66.7 25.0 100  OA: 

70.4 
 

The classes with the lowest class-specific accuracies are bare ground, agroforestry, open pine forest 
and calimetal. These are all minor classes with regard to the total area which they cover in the 
eastern test area and with regard to the contiguous areas which are occupied by these land cover 
types. (There are also only few reference samples per class for these classes leading to low 
confidence in the class-specific accuracy values.) The bare ground occurs along narrow roads and in 
small patches of landslide scars and single bare fields. Calimetal occurs in patches many of which 
are smaller than 0.1 ha. Agroforestry is conducted on a small scale in the eastern test area, often in 
the form of house gardens or very small plantations. Open pine forest usually consists of relatively 
small groups or stands of pine trees surrounded mostly by non-forested areas. These small 
contiguous class areas entail a large proportion of border pixels, leading to an increased likelihood 
of misclassifications. In the case of agroforestry, there is the additional problem that the class is 
spectrally very similar to the broadleaved riparian forest class. Both have an upper canopy cover of 
broadleaved trees with similar spectral characteristics (partly even the same species). The inclusion 
of texture in the classification has increased the class separability somewhat, probably because 
agroforestry tends to have a canopy cover which is not as closed as that of broadleaved riparian 
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forest. However, the classification accuracy remains low for agroforestry, due to confusions with 
broadleaved riparian forest and also with matorral. 

In spite of its similarity to agroforestry and in spite of its occurrence in often narrow bands along 
the streams, broadleaved riparian forest belongs to the classes with the highest class-specific 
accuracies. Most misclassifications as agroforestry could be prevented by reducing the a priori 
probability for the agroforestry class. And the spatial resolution of the IKONOS data is high enough 
to produce good classifications of this class in spite of its linear occurrence – in contrast to the 
Landsat classification of the eastern test area, where broadleaved riparian forest was often confused 
with matorral, cloud forest and secondary forest, among others. 

Although it is not apparent in the confusion matrix in table 27, too many areas in the western half of 
the image tend to be classified as open pine forest, especially when data sets containing texture 
channels are classified. This is also the case for the classification of data set 18. The areas which are 
given as open pine forest in the map are usually related to pines, but they do not all conform to the 
definition given in table 10 (pines with 25-60 % crown cover). Instead, they also represent areas of 
pine woodland or pines in the agricultural landscape with less than 25 % crown cover, including 
single pine trees and small groups of pines outside forest with their surrounding pixels. 

Many of these ‘problem classes’ can also be expected to play a role in detailed high resolution 
classifications of other sub-areas of the UCRYN, although the composition of land cover classes 
varies somewhat across the catchment area. In the western UCRYN (Manabao area) for example, 
there are many pine plantations of different ages, large areas of pine forests with different degrees 
of crown cover and some transitions to matorral, and coffee plantations with gradual transitions to 
agroforestry (sporadic open coverage of shade trees). This constellation can be expected to lead to 
challenges in a detailed land cover classification, including difficulties to differentiate between open 
and closed pine forest, between matorral and coffee, or between coffee without shade trees and 
agroforestry. 

Class transitions and ambiguity 

The classes in the classification scheme for the eastern test area are defined in a way that should 
theoretically make them mutually exclusive, provided that there is perfect knowledge about the 
percentage canopy cover of the species or life forms in a specified area (table 10).  

In reality, however, the land cover classes do not necessarily have crisp boundaries, and there are 
many image primitive areas for which the land cover type is ambiguous. Besides mixed pixels 
occurring along class area boundaries (which is possible for most class pairs), gradual spatial and 
temporal transitions can occur between many of the defined classes, as well as cases of small-scale 
land cover heterogeneity. These phenomena result in pixels (image primitives) for which a definite 
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assignment to one of the classes is not possible. This ambiguity can be caused by a mixture of land 
cover types within the area of the classified image primitive, by a border between land cover types 
running through the pixel area or by a transitional land cover type in the pixel area which is 
approximately half-way between the defined classes. Types of transition and other causes of 
ambiguity between the land cover classes of the eastern test area are shown in the diagram in figure 
41. Examples of borderline cases are for example areas covered by grasses and ferns with 
approximately 25 % shrubs (halfway between the defined classes grassland and matorral) or a 
riparian forest where about half of the trees are Prestoea Montana (halfway between broadleaved 
riparian forest and palm dominated forest). These ambiguities entail boundary uncertainties.  

 
Figure 41: Diagram of causes of ambiguities between class pairs (beyond mixed boundary pixels) in the eastern test 
area. 

One example of a class pair with high boundary uncertainty is open pine forest and grassland. 
Where is the correct boundary between open pine forest and grassland when a group of pine trees, 
with an average crown cover of ca. 40 % and a grassy herbaceous layer, is surrounded by 
grassland? In figure 42, both classifications could be called justified for many of the pixels. Some 
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of these ambiguous pixels are marked with an x. Some pixels which should be classified as open 
pine forest, but for which a classification as grassland or dense pine forest would be understandable 
in a per-pixel classification of 4 m resolution pixels, are marked with plus signs (+). Classification 
of these pixels as grassland or dense pine forest would not be optimal, but would still transport 
some information about the real land cover of that area. Such classifications would certainly be less 
incorrect than a classification as cloud forest or water, for example. The dashed squares mark two 
15 m × 15 m areas which are used for the calculation of the texture parameters assigned to the 
central pixels. The central pixels would probably be classified as grassland in a per-pixel 
multispectral classification without spatial integration. The texture values, however, would indicate 
that these are not homogeneous grassland areas. Consequently, in a classification including texture, 
even the right central pixel (•) might be classified as open pine forest. 

 
Figure 42: Schematic representation of pines (omitting shadows) on a grass background with a 4 m raster, illustrating 
the boundary uncertainty between grassland and the open pine forest class. 

Similar points could be made for the cases of (open) secondary forest or disturbed cloud forest with 
a fern (Dicranopteris pectinata) undergrowth, bordering on pure calimetal areas (plate 7) – or for 
open pine or secondary forest with a shrub layer bordering on matorral areas. 

Another factor which limits the preciseness of the class definitions is the fact that there can be no 
explicit uniform minimum mapping units in the classifications. The minimum mapping units in the 
classifications themselves depend on the image primitives used (between 16 m² for single 
multispectral pixels and 256 m² for the 16 m resolution data sets). Post-classification mode filtering 
leaves hardly any single pixels of one class. A minimum mapping area, depending on the desired 
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scale of the output map, could be standardised after a classification by sieve filtering the 
classification result, eliminating image value polygons containing less than a specified number of 
pixels. But during the classification itself (without post-processing), the minimum mapping unit is 
equivalent to the size of the image primitives which are classified, so that e.g. a 16 m² pixel can end 
up being assigned to a forest class even if it represents the only tree in the neighbourhood. 

Off-diagonal entries in the confusion matrix need not all be errors of the same severity but may be 
the unavoidable outcome of ambiguities (‘fuzziness’) in the land cover, leading to pixels being 
assigned to different classes in two independent classifications. As usual, the reference sample has 
to be regarded as another classification, which should be on the whole more accurate than the 
automated classification of a satellite image but which can also contain errors and uncertainties. The 
reference data cannot be assumed to represent the absolute truth. To come close to that, it would 
have been necessary to visit each reference point at the time of the image acquisition, to classify the 
main species and to measure the canopy cover of all relevant species and live forms. Instead, what I 
have available as ‘ground truth’ for the reference data is based mostly on the visual interpretation of 
high resolution satellite data and ground and aerial photographs in connection with field data 
acquired one and two years after the image acquisition – and not every reference point could be 
visited on the ground. 

Considering the many unavoidable cases of uncertainty (given the characteristics of the land cover 
patterns in the study area, the classification scheme, and the available data), the overall agreement 
between a ‘hard’ classification result and a ‘hard’ reference data set cannot be expected come close 
to 100 % even with optimal processing and classification methods. 

9.6.3 A Posteriori Probabilities and the Spatial Distribution of Errors 

The maximum likelihood classification of data set 18 was ‘softened’ by outputting not only the 
most likely class but also the second and third most likely class and the a posteriori probabilities for 
these three classes in six channels. The a posteriori probabilitiy for the most likely class (PP1, 
figure 43) has a mean value of 0.77. It is above 0.5 for 86.3 % of the classified pixels, above 0.66 
for 68.6 % of the pixels and above 0.9 for 37.2 % of the pixels. The largest contiguous areas with a 
posteriori probabilities of at least 0.98 are the cores of the cloud forest area.  

Figure 44 shows a map where the land cover class is only specified if the a posteriori class 
probability is above 0.66, while areas where the a posteriori probability is lower are left white. As 
can be seen, low a posteriori probabilities occur mostly along class borders (mixed pixel 
phenomenon) or in highly diverse areas or areas of transition between chosen information classes 
(for example in the area of transition between pine plantations and mixed secondary forest; or in the 
transitional zone between palm forest and cloud forest).  
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Figure 43: A posteriori probabilities for the class assigned in a maximum likelihood classification of data set 18. Red: 
0.00-0.50, orange: 0.51-0.66, yellow: 0.67-0.80, light green: 0.81-0.90, bluish green: 0.91-0.97, blue: 0.98-1.00. 

 
Figure 44: Unfiltered MLC result of data set 18 with classes depicted only if PP1 > 0.66, and white areas where PP1 is 
lower. For the legend see plate 44, appendix 2. 
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The mean a posteriori probability for the second most likely class (PP2) is 0.15. When the a 
posteriori probabilities of the two most likely classes are summed up, the resulting values are larger 
than 0.90 in 70 % of the cases. The mean a posteriori probability for the third most likely class 
(PP3) is only 0.04. This indicates that, from the standpoint of a posteriori probabilities, there are 
usually no more than two classes for which assignments would be probable to a substantial degree.  

As the a posteriori probability is not directly proportional to the Gaussian density function (see 
chapter 8.8.1), there are a few cases (3 % of the pixels) where the PP2 is higher than PP1, so that 
the class to which a pixel was assigned by MLC does not in all cases have the highest a posteriori 
probability. The difference between the a posteriori probabilities of the two most likely classes 
could be used as another indicator of classification certainty. In a digital classification output (e.g. 
in a GIS), areas where ‘PP1 minus PP2’ is below a specified value could be annotated with a 
warning, offering information about the second most likely class (according to MLC) as an 
alternative class assignment. 

9.6.4 Elimination of Reference Points Close to Land Cover Class Boundaries from the 
Accuracy Assessment 

When only testing points located more than 12 m from a land cover class boundary are retained 
while the others are eliminated from the accuracy assessment, only 57 % of the original reference 
points (333 of 583) are left. The fact that almost half of the 583 reference points are located within 
12 m buffers around the land cover class boundaries is an indicator of the high land cover diversity 
and heterogeneity of the landscape of the study area. Eliminating testing points close to boundaries 
leads to markedly higher overall accuracies for all data sets (table 30). The smallest improvement 
was 5.5 % for data set 1 (the 4 m resolution multispectral data without any form of spatial 
integration). For spatially integrated data sets and data sets including texture channels (the values of 
which are based on 15 m × 15 m areas), the improvements were bigger. In most cases of spatially 
integrated data sets, the difference to the overall accuracy values estimated with the full set of 
reference points was above 8 %. The overall accuracies estimated with the reduced set of reference 
points reached values of up to 79.6 % (MLC of data set 13, 7×7 mode filtered). The overall 
accuracy estimated for the 5×5 mode filtered MLC result of data set 18 was 79.0 %. 

The fact that a disproportionate part of the errors occurs close to class boundaries demonstrates the 
detrimental effect of mixed pixels and other edge effects (particularly between-class texture) on 
classification accuracies. The results also indicate that such edge effects are relatively minor in the 
multispectral 4 m resolution data without spatial integration, while spatial integration and the 
inclusion of texture data augment the proportion of errors caused by edge effects. However, the 
benefits of the inclusion of spatial information outweigh the disadvantage of increased edge effects 
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considerably. So it is in spite of increased edge effects that significantly better results could be 
observed for classification results after the inclusion of spatial information (chapters 9.2 and 9.3). 

Table 30: Improvement (in %) of the overall accuracy values when using the testing sample without points close to 
boundaries, compared to the values achieved with the complete testing sample. 

 Data Set 

Post-
classification 
mode filter 

1 (Ikonos ms 
channels 1-4,         

4 m) 

13 (Ikonos ms 
channels 1-4, GLCM 

ENT, SD, CONT,     
4 m) 

18 (Ikonos ms 
channels 1-4, GLCM 

ENT, SD, CONT, 
3×3 mean) 

15 (Ikonos ms 
channels 1-4, GLCM 

ENT, SD, CONT,    
12 m) 

No filter 5.5 8.4 7.3 8.5 

3×3 6.1 8.0 9.3 9.4 

5×5 7.8 9.6 9.7 9.7 

 

9.6.5 Fuzzy Accuracy Assessment 

For the data set 18 MLC result, the fuzzy overall classification accuracy (‘right’ value according to 
Woodcock & Gopal 2000) was estimated for the unfiltered and the 7×7 mode filtered classification 
result. The linguistic ratings – what constitutes a ‘good answer’ and what is a ‘reasonable or 
acceptable answer’ – are of course rather subjective, but so is the assignment of a ‘best’ class as 
reference class for the ‘hard’ reference sample in some cases (see chapter 9.6.2).  

So instead of determining one ‘best’ class to every reference point, the fuzzy accuracy assessment 
makes it possible to count several classes as acceptable, e.g. both grassland and matorral in the 
rough grassland areas where small shrubs are starting to appear among the ferns and grasses, or 
both secondary forest and calimetal, if the testing point is located near the border of a calimetal 
patch within a secondary forest area. The fuzzy accuracy (‘right’ value) was estimated to be 76 % 
for the unfiltered classification result (compared to 61.2 % as estimated with the hard accuracy 
assessment) and 85 % for the 7×7 mode filtered result (compared to 70.4 % as estimated with the 
hard accuracy assessment). So in the best IKONOS-based map, about 85 % of the class assignments 
are at least acceptable (carrying useful information about the real land cover in the pixel area and its 
immediate neighbourhood). 

9.6.6 Class Aggregation 

The confusion matrix used for the conventional accuracy assessment of the best IKONOS 
classification (table 27) was used as a basis for class aggregation (reducing the classification detail 
by aggregating similar informational classes). The overall two class forest - non-forest classification 
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accuracy is 89.0 % if agroforestry is not counted as a forest class. If agroforestry is counted as a 
forest class, it is 91.4 %. Aggregating the classes to four broad classes results in an overall 
classification accuracy of 83.7 %. The pixels can be assigned to six broad classes with an overall 
accuracy of 78.7 % (table 31). 

Table 31: Class aggregation and corresponding overall accuracies, based on the 7x7 mode filtered MLC result for data 
set 18. 

 13 class scheme,     
OA=70.4 % 

 6 class scheme, 
OA=78.7 % 

 4 class scheme, 
OA=83.7 % 

 2 class scheme, 
OA=89.0 % 

Dense Pine forest 

Open Pine forest 
Coniferous forest 

Cloud forest 

Secondary forest 

Palm dominated forest 

Broadleaved riparian forest 

Broadleaved (<50% 
coniferous) and palm 

forest 

Forest Forest 

Matorral 

Calimetal 

Shrub and herb 
dominated semi-natural 

vegetation 

Shrub and herb 
dominated semi-natural 

vegetation 

Agroforestry 

Grassland 

Crops 

Agricultural land use Agricultural land use 

Bare ground Bare ground 

Water Water 
No vegetation 

Non-Forest 
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10 Conclusions and Perspectives 

The aim of this study was to find optimised methods for the automated digital classification of 
satellite images – including high resolution satellite data – of heterogeneous tropical mountain areas 
and to produce forest and land cover maps of areas for which there was a lack of detailed spatial 
land cover information. 

Landsat ETM+ and IKONOS-2 data were used as examples of conventional medium resolution 
satellite data on the one hand and of data of the new generation of high spatial resolution satellites 
on the other hand. A Landsat ETM+ classification was conducted for the mountainous upper 
catchment area of the Río Yaque del Norte (785 km²) in the Cordillera Central of the Dominican 
Republic. IKONOS data were analysed and processed for smaller subsets of this region. 

Most of the analyses regarding the processing of high resolution IKONOS data were conducted for 
one test area only, using a subset of one IKONOS image. The eastern test area was chosen as an 
example of a heterogeneous tropical mountain area, containing protected forest areas as well as 
semi-natural vegetation and small-scale farming. A one-to-one transfer of the data processing 
results to other IKONOS images of other areas will not be feasible, because of the varying 
(geometric) aquisition paramters of IKONOS data, among other things. On the other hand, the data 
of the eastern test area were analysed in great detail. The qualified results and conclusions drawn 
from the analysis of this image area contribute to the body of experience which exists about the use 
of high resolution satellite data for tropical forest and land cover mapping, and which is up to now 
quite limited.  

The results of the Landsat and IKONOS classifications which were carried out indicate that, for 
mapping the heterogeneous land cover of tropical mountain areas, the use of high spatial resolution 
data does indeed lead to higher accuracies, compared to a conventional classification of medium 
resolution data (as stated in the central hypothesis). It can also be confirmed that the spatial 
characteristics of high resolution data have to be taken into account in order to make good use of 
such data.  

For the eastern test area, a conventional per-pixel classification of the four multispectral IKONOS 
channels did not lead to a significantly higher overall accuracy than the classification of seven 
Landsat channels. As a source of multispectral data for land cover and particularly forest 
classifications, the spatial resolution of IKONOS data is unnecessarily high, so that some kind of 
spatial integration (decreasing the resolution, low pass filtering or image segmentation) is needed in 
order to achieve optimal classification results. Similar accuracy improvements can also be achieved 
when mode filtering is used as a technique for post-classification spatial integration.  
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The higher resolution information, particularly of the panchromatic channel, should also be 
exploited and can be used through the derivation of texture parameters. GLCM texture features, 
calculated from the panchromatic channel in 15 m × 15 m windows, proved to be a useful addition 
to the limited number of multispectral IKONOS channels, increasing class separabilities and 
classification accuracies. The inclusion of texture data increased the classification accuracies for all 
forest classes and was especially useful for the discrimination of palm dominated forest, secondary 
forest and open pine forest. Among the non-forest classes, matorral benefits a lot from the inclusion 
of texture, with better separabilites between open forest and its ‘background class’ matorral on the 
one hand and between matorral and the more ‘smooth’ grassland on the other hand. 

The best IKONOS based classification results were achieved when the integration of textural 
features and multispectral channels to spectral-textural data sets was combined with spatial 
integration methods, e.g. 3×3 or 5×5 mean filtering of the multispectral channels and post-
classification mode filtering. Similar results (overall accuracy around 70 %) were also achieved 
without pre-classification spatial integration of the 4 m multispectral data, when information about 
larger areas was only introduced through the texture data (calculated in 15 m × 15 m windows) and 
post-classification mode filtering. The best classification results before post-processing (mode 
filtering) were achieved with the combination of mean filtered multispectral data and three texture 
features. Classifications of the segmented data (with object-oriented standard nearest neighbour 
classification in eCognition and MLC as tested classification methods) were less successful with 
overall accuracies not exceeding 60 %. 

A basic factor limiting the accuracy of automated classifications of high resolution remotely sensed 
data is the trade-off between using either high resolution data with few mixed pixels, but with pixels 
which are often not representative of their classes, or data incorporating spatial information, where 
the pixels are more representative of their classes but edge effects play a larger role. The eastern test 
area and most of the UCRYN are areas of high land cover heterogeneity and fragmentation, which 
is typical for partly farmed tropical mountain areas. This entails that the threshold of homogeneity 
and the threshold of heterogeneity (in the terminology of Puech 1994) for detailed target land cover 
classes are quite close to one another. In other words, when the pixels become large enough (or 
there is enough spatial integration in another form) to aggregate the class elements in a 
representative pixel, many of the pixels are already so large (or contain so much information from 
neighbouring areas) that they represent several target land cover classes. In areas where the land 
cover classes exhibit a high within-class heterogeneity (e.g. open forest classes consisting of many 
different elements) while at the same time the contiguous areas of the individual classes are very 
small, the thresholds of homogeneity and of heterogeneity of the target classes can become very 
close to each other. This may entail that information about the separate target classes in such areas 
cannot be extracted from the data in an automated per-pixel classification.  
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When using medium resolution (Landsat ETM+) satellite data to classify the eastern test area, the 
threshold of heterogeneity is already reached for parts of some of the target classes (e.g. narrow 
riparian forest, the smaller patches of calimetal and matorral), meaning they are integrated with 
their neighbouring classes in the spectral response, and the percentage of mixed pixels is very high. 
The 4 m resolution of the IKONOS data, on the other hand, is below the threshold of homogeneity 
for many target classes, meaning that the elements of many of the target classes are still resolved 
separately. Spatial integration of this high resolution data leads to better classification results until 
the amount of mixed pixels and the detrimental edge effects become so large that they cannot be 
compensated by improvements through spatial integration any longer. 

When Landsat and IKONOS data were integrated, the classification results were degraded 
compared to optimised classifications of IKONOS data alone. Even though a higher spectral 
resolution is provided with the Landsat data, their spatial resolution is too low to effectively 
improve the class separabilities in the heterogeneous test area compared to IKONOS data alone. 

The fundamental trade-off between trying to reduce edge effects or trying to reduce the within-class 
variability in the choice of a spatial resolution (degree of spatial integration) does not seem to be 
avoidable in automated per-pixel classifications. It becomes more relevant with increasing land 
cover heterogeneity and increasing within-class heterogeneity. While for the purpose of detailed 
classifications of areas of high land cover heterogeneity, high resolution data are clearly preferable 
to medium resolution data, processing them in a way that uses their advantages but cancels their 
disadvantages does pose some challenges. The methods of spatial integration and use of texture 
tested in this study go some way in that direction, but some problems of misclassifications, caused 
among other things by edge effects in the texture data, remain. With this in mind, a more thorough 
look at image segmentation of high resolution data and especially at optimising the classification 
methods for segmented data might still be worthwhile.  

The low resolution of the available DEM (50 m grid spacing) limited its usefulness in connection 
with the high resolution IKONOS data. The DEM was useful for a post-classification sorting of the 
Landsat classification of the whole UCRYN, but the integration of DEM-derived topographic 
variables in the IKONOS classifications of the eastern test area did not manage to enhance the 
classification results significantly. 

The high resolution data sets were classified better (or at least equally well) with the maximum 
likelihood classification method than with the tested non-parametric classification techniques (k-
nearest neighbour classification, artificial neural network classification and object-oriented nearest 
neighbour classification). The MLC method, which is well proven for the classification of medium 
resolution multispectral data, was shown to be suitable for the classification of the spectral-textural 
IKONOS data sets, which were mostly Gaussian and exhibited only moderate violations of the 
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Gaussian assumption for a minority of the classes and channels. It would have to be replaced or 
complemented by other classification methods only if more non-Gaussian ancillary data were used 
as variables during the classification. 

An overall classification accuracy of around 70 % was the maximum that could be achieved for a 
‘hard’ classification of the Ebano Verde test area with its 13 classes, no matter how much 
information was extracted or added. Edge effects (mixed pixels) boosted by a high landscape 
heterogeneity, the many occurrences of gradual transitions between the defined classes and the 
(usual) lack of ‘absolutely true’ reference data limit the agreement which can be achieved between 
the automated classification of high resolution satellite data and the reference data (which 
represents essentially an independent classification). A consideration of the land cover as fuzzy 
helps to differentiate between serious errors and less serious disagreements between the map and 
the reference data. ‘Softening’ the output of a maximum likelihood classification yields 
complimentary information about the spatial distribution of the map reliability and about possible 
alternative class assignments. 

In spite of the above mentioned uncertainties, IKONOS data offer good possibilities to differen-
tiate a number of land cover classes in the heterogeneous study area. Cloud forest, which is a 
particularly important forest type from a biodiversity and conservation standpoint, could be 
differentiated reliably from other forest types with the IKONOS data. It was sometimes confused 
with secondary forest, which represents a successional stage on the way towards cloud forest. Apart 
from that, the only significant number of confusions occurred with dense pine forest, with which 
cloud forest shares a more similar spectral signature (with relatively low reflection in the NIR) than 
with other broadleaved forest classes. Satisfactory classification accuracies could also be achieved 
for the other forest classes except open pine forest. The classification of agroforestry remains 
challenging even with high resolution and textural data. 

For the small test area, IKONOS was clearly a better data source for a detailed classification than 
Landsat. Having said that, the choice of data is of course also a question of the desired scale of the 
map output, the size of the area to be classified and of the costs. IKONOS has a swath width of just 
11 km and single IKONOS images cover accordingly much smaller areas than e.g. Landsat images. 
This and their high resolution make it more difficult to map larger regions.  

For an extension of the areas mapped with IKONOS so far in this study, the next step would be to 
transfer the methods which were successful in the eastern test area (mean filtering of multispectral 
channels, inclusion of texture channels, mode filtering) to other areas of interest within the 
UCRYN, e.g. to the western area around Manabao. To classify the complete UCRYN with high 
resolution data and the appropriate methods would be very expensive and time-consuming. It would 
involve the pre-processing of about 12 separate IKONOS images (maybe more because of the cloud 
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cover in many images), most of which come with different acquisition geometry, different 
acquisition dates and varying atmospheric effects. A high resolution DEM would be needed to 
geometrically correct the images with lower collection angles and strong topographic effects. Even 
after thorough pre-processing, the images would probably still have to be classified separately 
because their different acquisition dates would not allow the use of training data derived from one 
image to represent the same class in an image acquired in a different season. This would require the 
collection of a sufficiently large amount of field data in every IKONOS-image-area of the 
catchment.  

Classifying medium resolution data like Landsat may be the best solution for the production of a 
coarse base map, providing an overview of the spatial distribution of a limited number of broad land 
cover or land use classes for a larger region like a catchment area. However, the accuracy and / or 
detail of maps based on 30 m resolution satellite data can always be expected to be rather limited in 
heterogeneous tropical mountain areas. High resolution satellite data would be a suitable source of 
more detailed spatial information about smaller areas of special ecological or economical interest 
(e.g. protected areas). 

The methods of high resolution data processing which were shown to be successful in this study 
could be implemented for example to monitor protected areas, or to gain information about the area 
and extent of threatened ecosystems in order to be able to make informed decisions about the 
boundaries for protected areas. The methods presented here do not produce information which 
could replace a detailed forest inventory as a basis for specific economic forest management 
decisions. It can be said, however, that maps produced for areas of interest with these methods, 
using high resolution satellite data, would certainly be more detailed and accurate than the land 
cover information which has been available for most parts of the Dominican Republic until now. 
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11 Zusammenfassung 

Die vorliegende Arbeit beschäftigt sich mit Methoden zur automatisierten Kartierung von tro-
pischen Bergwäldern und anderen Landoberflächen unter Ausnutzung der räumlichen Information 
in Satellitendaten hoher räumlicher Auflösung. Die mit hochauflösenden Satellitendaten (IKONOS) 
erzielten Ergebnisse werden dabei mit den Möglichkeiten und Grenzen einer konventionellen 
Landsat-Klassifizierung verglichen. Die verschiedenen Satellitendaten und weitere zur Verfügung 
stehende Geodaten werden teilweise integriert verarbeitet. 

Tropische Bergwälder spielen eine wichtige Rolle für die nachhaltige Entwicklung tropischer 
Ökosysteme. Ihre Zerstörung oder Erhaltung bzw. Regenerierung und Aufforstung hat Auswir-
kungen auf den Bodenschutz, die Landschaftsdegradierung, die Wasserversorgung, das Klima und 
die Biodiversität. Außerdem sind sie eine Quelle von Holz und anderen Produkten des Waldes 
(Price & Butt 2000). Die Karibischen Inseln sind ein ‘Hotspot’ der Biodiversität mit vielen 
endemischen Pflanzenarten. Obwohl nur in 11 % dieses Gebietes noch die Primärvegetation 
erhalten ist, kommen 2,3 % der Gefäßpflanzenarten der Welt nur hier vor (Myers et al. 2000). Dabei 
sind die Gebirge mit ihren vielfältigen klimatischen und edaphischen Bedingungen (und einer im 
Vergleich zum Tiefland in der Regel eher erhaltenen natürlichen Vegetation) besonders artenreich 
und auch besonders reich an endemischen Arten. 

Die Zentralkordillere (Cordillera Central) der Dominikanischen Republik ist ein randtropisches 
Gebirge, das Höhen bis zu 3175 m erreicht. Hier sind noch einige großflächige Waldgebiete erhal-
ten. Dies ist eine ökologisch relativ günstige Situation im Vergleich zu vielen anderen karibischen 
Inselstaaten (z.B. dem fast völlig entwaldeten und stark degradierten angrenzenden Haiti). Das 
obere Einzugsgebiet des Río Yaque del Norte liegt in der nordöstlichen Cordillera Central (18°55' 
bis 19°18' N und 70°30' bis 70°58' W) in Meereshöhen zwischen 320 m und 3038 m und nimmt 
eine Fläche von ca. 785 km² ein (siehe figure 5). Das Gebiet ist gebirgig und weist überwiegend 
Hangneigungen über 40 % auf.  

Die natürliche Vegetation dieses Gebietes besteht fast ausschließlich aus Wäldern. In Höhen über 
2200 m herrschen natürliche Kiefernwälder vor, die von Pinus occidentalis dominiert werden. 
Reine Kiefernwälder kommen auch auf tiefer gelegenen Mangelstandorten vor. Außerdem fördern 
Waldbrände die Verbreitung der Kiefern in niedrigeren Lagen, wo sie teilweise in Form von 
Mischwäldern mit Laubgehölzen vorkommen. In Höhen zwischen 1100 und 2200 m liegen natür-
liche Verbreitungsgebiete von Nebelwäldern, von denen im Untersuchungsgebiet noch einige Reste 
vorhanden sind. Nebelwälder zeichnen sich dadurch aus, dass der Nebeleintrag hier einen 
wesentlichen Anteil an der Wasserversorgung hat. Entsprechend ändern sich die lokalen klima-
tischen und hydrologischen Verhältnisse, sobald die natürliche Vegetation fehlt. In Nebelwäldern 
findet man in der Regel viele Epiphyten und eine hohe Zahl endemischer Arten. Sie gehören zu den 



 11 Zusammenfassung  

186 

weltweit am stärksten bedrohten Ökosystemen. Am Ostrand der Cordillera Central kommt der 
Magnolia-Nebelwaldtyp (Hager & Zanoni 1993) vor. Nach Störungen (natürlicherweise z.B. 
Hurricanschäden) entstehen in diesen Bereichen oft Flächen mit dichtem Farnbewuchs, wo 
hauptsächlich die Art Dicranopteris pectinata die Vegetation dominiert und die Regeneration von 
anderen Pflanzen behindert. Diese Flächen werden lokal calimetales genannt. Ein Palmenwald, der 
von Prestoea montana dominiert wird, wächst als edaphischer Vegetationstyp hauptsächlich auf 
nassen und skelettreichen Böden unter ähnlichen klimatischen Bedingungen wie die Nebelwälder. 

Humide immergrüne Laubwälder wachsen bei Jahresniederschlägen um 2000 mm in Höhen bis zu 
1500 m, manchmal auch bis zu 1800 m. Mit abnehmenden Niederschlägen (in niedrigeren Lagen) 
geht dieser immergrüne Waldtyp in einen teilweise laubabwerfenden Wald über, von dem aber 
heute kaum noch Reste erhalten sind. Laubtragende immergrüne Uferwälder, die in oft sehr 
schmalen Streifen entlang der Flüsse und Bäche des Untersuchungsgebiets vorkommen, sind heute 
meist die einzigen Waldreste innerhalb landwirtschaftlich genutzter Gebiete. Sie kommen aber auch 
innerhalb von Laub- und Kiefernwaldgebieten vor und zeichnen sich in ihrem natürlichen Zustand 
durch eine große Artenvielfalt aus. 

Das obere Einzugsgebiet des Río Yaque del Norte war bis zum 19. Jahrhundert weitgehend 
unbesiedelt. Im frühen 20. Jahrhundert wurde nur im breiten Tal um Jarabacoa bereits Landwirt-
schaft betrieben. Seit den 1930er Jahren, als die Tieflandbereiche schon weitgehend entwaldet 
waren, wurden die Kiefernwälder in den leichter zugänglichen Gebieten der Cordillera Central dann 
verstärkt abgeholzt und das Holz in Sägemühlen verarbeitet. Das Land wurde langfristig in der 
Regel in Weideland umgewandelt, wobei in den ersten Jahren nach der Abholzung Ackerbau 
betrieben wurde. Heute ist nur noch etwa ein Drittel des oberen Einzugsgebiets des Río Yaque del 
Norte bewaldet, während der Rest hauptsächlich als extensives Weideland für Rinder genutzt wird. 
Außerdem wird in Lagen bis 1500 m Höhe Kaffee angebaut, teilweise mit Schattenbäumen. Die 
sonstige Landwirtschaft ist überwiegend kleinbäuerlich. Dabei werden (oft auf sehr steilen Hängen) 
Bohnen und anderes Gemüse sowie Mais und Tabak angebaut. Lokal existieren auch kleinbäuer-
liche Agroforst-Systeme. 

Die Reduktion der Primärvegetation und die Fragmentierung der verbliebenen Waldgebiete redu-
zieren die Lebensräume der einheimischen Tier- und Pflanzenarten und machen die Ökosysteme 
anfälliger für Störungen. Die Reduktion der Waldflächen beeinflusst auch die lokalen klimatischen 
und hydrologischen Verhältnisse. Der Río Yaque del Norte ist die bedeutendste Wasserquelle der 
Dominikanischen Republik (Vicioso 2002) und wird seit 1973 am unteren Ende des oberen 
Einzugsgebietes aufgestaut, um Strom zu erzeugen und die Wasserversorgung des unterhalb liegen-
den Cibao-Tals (mit der Großstadt Santiago und verbreiteter Bewässerungsland-wirtschaft) zu regu-
lieren. Die Entwaldung der steilen Hänge des oberen Einzugsgebietes hat zu einer verstärkten 
Erosionsrate und einer größeren Häufigkeit von Erdrutschen bei Starkregen-ereignissen geführt. 
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Dies wiederum führt zu einer starken Sedimentation in den Gewässern und hohen Kosten für die 
Instandhaltung des Stausees, dessen Kapazität durch die Sedimentation bereits signifikant reduziert 
wurde. Außerdem kommt es zu einer Degradierung der landwirtschaftlich unangepasst genutzten 
Flächen, wobei einige Gebiete bereits so stark degradiert sind, dass noch nicht einmal mehr eine 
Nutzung als extensives Weideland wirtschaftlich ist (SEMARENA 2002).  

Die Dominikanische Regierung hat in der zweiten Hälfte des 20. Jahrhunderts versucht, die 
Entwaldung des Landes durch gesetzliche Maßnahmen aufzuhalten. 1967 wurde ein Gesetz erlas-
sen, das die Sägemühlen schloss und jegliche Holzernte verbot. Das führte allerding auch dazu, dass 
Landbesitzer und -nutzer Bäumen gegenüber feindlich eingestellt waren, weil sie sie nicht nutzen 
durften, und eine Waldregeneration auf ihrem Land in der Regel aktiv verhinderten. Seit den 1980er 
Jahren wird versucht, Aufforstungen zu fördern, aber es bestehen immer noch bürokratische Hürden 
für die private Forstwirtschaft. Im oberen Einzugsgebiet des Río Yaque del Norte wurden staat-
licherseits seit den 1970er Jahren einige Flächen mit Kiefern (hauptsächlich Pinus caribaea) aufge-
forstet. Es gibt auch einige jüngere und z.T. private Aufforstungsflächen. Das dominikanisch-
deutsche Enwicklungshilfe-Projekt PROCARYN (GTZ, KfW, DED) war zwischen 2001 und 2004 
im oberen Einzugsgebiet aktiv darum bemüht, die nachhaltige Landnutzung und den Bodenschutz 
zu fördern, und hat dabei besonders kleinere Landbesitzer bei Aufforstungsprojekten und der 
Erstellung von Plänen für die Waldnutzung unterstützt. 

Das westliche Ende des oberen Einzugsgebiets des Río Yaque del Norte gehört zum Nationalpark 
Armando Bermúdez. Das 29 km² große Reservat Ebano Verde (Reserva Científica Ebano Verde) 
liegt am Ostrand der Cordillera Central, an der östlichen Wasserscheide des Yaque del Norte-Ein-
zugsgebiets. Es wurde 1989 eingerichtet, um zusammen mit dem dortigen Nebelwald (Didymo-
panax tremulus-Magnolia pallescens-Nebelwald-Gesellschaft) die bedrohte endemische Baumart 
Magnolia pallescens zu schützen. Außerhalb des Primärwald-Restes sind in den 1970er Jahren 
einige Flächen mit Kiefern aufgeforstet worden. Auf ehemals landwirtschaftlich genutzten Flächen 
und durch natürliche Verjüngung in nicht gepflegten Kiefernplantagen ist inzwischen in Teilen des 
Reservats ein vorwiegend laubtragender Sekundärwald (Sukzessionsstadium) entstanden. Außer-
dem kommen im Reservat Uferwälder und Palmenwald vor. 

Wie in vielen tropischen Entwicklungsländern herrscht auch in der Dominikanischen Republik ein 
Mangel an zuverlässigen Daten über die vorhandenen Waldresourcen, sowohl für die Forstwirt-
schaft also auch für Naturschutzzwecke. May (1997) beklagt die ungenügende Qualität der biolo-
gischen und kartographischen Informationen, die oft zu einer recht willkürlichen Abgrenzung von 
Schutzgebieten führt. Gerade auch bessere räumliche Informationen (z.B. in Form von Vegetations-
karten) wären von großem Nutzen für Fragestellungen des Schutzes der Biodiversität sowie für die 
Entwicklung von Strategien für eine möglichst nachhaltige Land- und Waldnutzung. Fernerkun-
dung ist eine unersetzliche Quelle für flächendeckende räumliche Informationen. Dabei wurden 
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automatisierte Klassifizierungen von Satellitendaten für die Gewinnung von aktuellen Landbe-
deckungsinformationen bisher hauptsächlich für relativ großflächige und kleinmaßstäbliche 
Kartierungen angewendet.  

IKONOS-2 gehört zu einer neuen Generation kommerzieller räumlich hochauflösender Satelliten. 
Er wurde als erster dieser Satelliten 1999 in seine Umlaufbahn gebracht und liefert seit dem Jahr 
2000 panchromatische Bilddaten mit 1 m Auflösung und vier multispektrale Kanäle mit 4 m Auf-
lösung. Landsat ETM+, auch im Umlauf seit 1999, führt die Tradition der Landsat-Serie fort, die 
seit 1972 Satellitendaten mittlerer räumlicher Auflösung liefert.  

Die Methoden zur automatisierten Klassifizierung von Satellitendaten, die sich seit den 1970er 
Jahren etabliert haben, wurden hauptsächlich für Daten mittlerer Auflösung entwickelt. Bei der 
pixelweisen Klassifizierung von Multispektraldaten kann man bei Landsat-Daten (30 m Auflösung) 
davon ausgehen, dass die Elemente der meisten Zielklassen (etwa Baumkronen und Unterwuchs mit 
Licht- und Schattenbereichen eines zu klassifizierenden Waldtyps) in dem pro Pixel gemessenen 
spektralen Signal weitgehend integriert sind. Das erhöht die Homogenität innerhalb der Klassen, 
wodurch ihre Trennbarkeit verbessert wird. Andererseits entstehen in den Grenzbereichen zwischen 
verschiedenen Klassenarealen Mischpixel, was zu Fehlklassifizierungen führen kann. In heteroge-
nen, stark fragmentierten Landschaften, wie man sie typischerweise in kleinbäuerlich genutzten tro-
pischen Gebirgen findet, ist der Anteil der Mischpixel so hoch, dass die Möglichkeiten zu einer 
detaillierten Klassifizierung sehr beschränkt sind bzw. die Klassifizierungsgenauigkeit sehr gering 
wird. 

Für das obere Einzugsgebiet des Río Yaque del Norte wurde eine ‘klassische’ Maximum-Likeli-
hood-Klassifizierung durchgeführt, bei der die multispektrale Information von sechs Spektral-
kanälen genutzt wurde, um jedes Pixel einer von 14 Landbedeckungsklassen (davon vier Wald-
klassen und eine Agroforst-Klasse) zuzuordnen. Das Maximum-Likelihood-Verfahren ist eine 
überwachte Klassifizierung. Die dafür verwendeten Trainingsgebiete beruhten auf vor Ort aufge-
nommenen Geländedaten (‘ground truth’). Das Klassifizierungsergebnis wurde durch eine 3×3 
Modalfilterung und die Reklassifizierung einiger Pixel mit Hilfe der Höheninformation aus einem 
digitalen Geländemodell nachbearbeitet. Dies führte zwar zu einer Karte, in der die Hauptver-
breitungsgebiete der Landbedeckungstypen weitgehend richtig wiedergegeben werden (plate 43), 
aber die Klassifizierungsgenauigkeit, die mit Hilfe eines Referenzdatensatzes aus 304 Punkten 
abgeschätzt wurde, lag nur bei 40 %. Nach Aggregierung der Landbedeckungsklassen in fünf 
Gruppen (davon nur eine allgemeine Waldklasse) lag die Genauigkeit bei 61 %.  

Für genauere und detailliertere Klassifizierungen ist also die Verwendung anderer Daten und/oder 
anderer Methoden notwendig. Hierzu wurden die Nutzungsmöglichkeiten von IKONOS-Daten für 
Teile des Einzugsgebietes analysiert. Das Haupttestgebiet für die Verarbeitung der hochauflösenden 
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Satellitendaten umfasst das zentrale und westliche Reservat Ebano Verde und das Río Jimenoa-Tal 
in der westliche Pufferzone des Reservats (figure 9). Es ist ein Beispiel für eine heterogene, klein-
räumig strukturierte tropische Berglandschaft mit natürlichen Waldflächen, Aufforstungsbereichen, 
verbuschten Flächen (Matorral) und kleinbäuerlicher Landwirtschaft. 

Die hohe räumliche Auflösung der IKONOS-Daten führt zu einem geringeren Anteil an 
Mischpixeln. Andererseits führt sie auch zu einer mangelnden Integrierung der konstituierenden 
Elemente vieler Zielklassen. Dadurch entsteht eine hohe Variabilität der Spektralwerte innerhalb 
der Klassen. Dies ist ein Nachteil für die automatisierte pixelweise Klassifizierung, da sich die 
Klassenbereiche im Merkmalsraum dadurch stärker überschneiden. Für Transekte durch einige 
Klassenausschnitte in den panchromatischen Daten wurden experimentelle Variogramme erstellt, 
um Informationen über die räumliche Beziehung zwischen den Grauwerten zu gewinnen. Für die 
Waldklassen wurde die maximale Semivarianz bei einer Entfernung (lag) von durchschnittlich 8 m 
(4 bis 14 m) erreicht. Mindestens so grob sollte also die räumliche Auflösung sein, damit die Pixel-
werte repräsentativ für ihre Klassen werden. 

Eine pixelweise Maximum-Likelihood-Klassifizierung der vier IKONOS-Multispektralkanäle (4 m 
Auflösung) für das östliche Testgebiet mit 13 Klassen (Nebelwald, Sekundärwald, offener und 
geschlossener Kiefernwald, Uferwald, Palmenwald, Agroforst, Matorral, Calimetal, Grasland, 
Ackerfrüchte, bloßer Boden/Gestein, Wasser) resultierte in einer anhand einer Referenz-Stichprobe 
geschätzten Klassifizierungsgenauigkeit von nur 41 %. Dieses ohne eine räumliche Integrierung der 
Multispektraldaten erzielte Ergebnis ist nicht signifikant besser als das einer Landsat-
Klassifizierung für das gleiche Gebiet. 

Um die Spektralwerte der Pixel repräsentativer für die Klassen, denen sie angehören, zu machen, 
wurden drei Methoden zur räumlichen Integrierung der Multispektraldaten getestet: 

• Reduktion der räumlichen Auflösung auf 8, 12 und 16 m durch Mittelwertbildung in 
Gruppen von 2 × 2, 3 × 3 und 4 × 4 Pixeln (Block-Aggregierung); 

• Bildung gleitender Mittelwerte durch Tiefpassfilterung (3×3, 5×5 und 7×7 Mittelwert-filter); 
• Bildsegmentierung (Gruppierung zusammenhängender Pixel nach Einheitlichkeitskriterien) 

und Mittelwertbildung innerhalb der generierten Bildsegmente. 

Die so bearbeiteten Multispektraldaten wurden dann als Eingangskanäle für Klassifizierungen 
benutzt. Die Klassifizierungsergebnisse (außer denen der segmentweisen Klassifizierungen) wurden 
anschließend zusätzlich modalgefiltert. Das heißt, dass die in einer Pixelnachbarschaft (3×3, 5×5 
und 7×7 Pixel große Filtermatrizen) am häufigsten vorkommende Klasse dem zentralen Pixel als 
Ergebnisklasse zugewiesen wurde. Dadurch kommt es zu einer weiteren räumlichen Integrierung 
der pixelweisen Information. 
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Diese räumliche Integrierung führte zu einer Verringerung der spektralen Variabilität innerhalb der 
Klassen. Alle getesteten Arten der räumlichen Integration führten auch zu erhöhten Klassifizie-
rungsgenauigkeiten. Am erfolgreichsten war die 3×3 Tiefpassfilterung in Kombination mit einer 
7×7 Modalfilterung der Klassifizierungsergebnisse. Dies führte zu einer Gesamtgenauigkeit von 
64 % für die Klassifizierung der vier IKONOS-Multispektralkanäle mit 13 Klassen. 

Die räumliche Integrierung verringert aber natürlich die detaillierte räumliche Information, die dank 
der hohen räumlichen Auflösung in IKONOS-Daten enthalten ist. Diese Information sollte jedoch 
auch in einer automatisierten Klassifizierung nicht ungenutzt bleiben. Wenn die Auflösung der 
Fernerkundungsdaten so hoch ist, dass die Elemente der Zielklassen nicht in einzelnen Pixeln 
integriert werden (während gleichzeitig die zu klassifizierenden Objekte wesentlich größer sind als 
die Pixel), bedeutet das auch, dass sich innerhalb der Zielkassen im Bild Texturen (strukturelle 
Eigenschaften der Oberflächen) erkennen lassen. Bei der visuellen Interpretation hochauflösender 
Fernerkundungsdaten (z.B. Luftbildinterpretation) spielt neben der spektralen Information (Grau- 
und Farbtöne) auch die Textur der Flächen eine wichtige Rolle, d.h. Eigenschaften wie Kontrast, 
Grobkörnigkeit und Rauhigkeit oder Homogenität.  

Um die Textur in einer automatisierten Klassifizierung digitaler Bilddaten zu nutzen, müssen 
Textur-Parameter anhand der Grauwerte im Bild errechnet werden. Dies geschieht in der ferner-
kundlichen Bildverarbeitung in der Regel über die Berechnung von statistischen Werten, die etwas 
über die räumliche Grauwertverteilung und die Beziehungen zwischen Grauwerten in quadratischen 
Pixelnachbarschaften aussagen. Der innerhalb einer Nachbarschaft (in einer Filtermatrix) errechnete 
Wert wird dann jeweils dem zentralen Pixel zugewiesen. Die GLCM (Grey-Level Co-Occurrence 
Matrix) Textur-Parameter sind statistische Texturmaße zweiter Ordnung. Sie basieren auf einer 
Matrix, die die relative Häufigkeit von Grauwertkombinationen für benachbarte Pixel wiedergibt 
(Haralick, Shanmugam & Dinstein 1973). Auf der Basis des panchromatischen IKONOS-Kanals 
wurden (mit einer Filtergröße von 15×15 Pixeln) acht GLCM-Texturparameter errechnet. Außer-
dem wurde die ‘lokale Varianz’ als statistisches Texturmaß erster Ordnung errechnet, indem die 
Varianz innerhalb von 9×9 und 15×15 Pixel großen Filter-Matritzen errechnet wurde. Die resultie-
renden zehn Texturbilder mit 1 m Auflösung wurden einer Korrelationsanalyse unterzogen und auf 
fünf relativ gering korrelierende Textur-Bildkanäle reduziert. Die räumliche Auflösung dieser 
Texturdaten wurde durch Resampling an die der Multispektraldaten angeglichen und die Daten in 
gemeinsamen Dateien integriert. 

Die Anzahl der Eingangskanäle für die Maximum-Likelihood-Klassifizierung wurde auf sieben 
begrenzt. Anhand einer Maximierung der durchschnittlichen ‚Transformed Divergence’ zwischen 
Klassenpaaren wurde eine Kombination von sieben der neun Bildkanäle (vier spektrale und fünf 
Texturkanäle) ausgewählt. Die resultierenden Datensätze bestanden aus vier Multispektralkanälen 



 11 Zusammenfassung  

191 

unterschiedlicher räumlicher Integrierung und drei GLCM-Texturkanälen (GLCM Entropie, GLCM 
Standard-abweichung und GLCM Kontrast). 

Die Trennbarkeit der Klassen mit Hilfe der integrierten Datensätze wurde mit der Trennbarkeit 
ohne Textur (nur über die Multispektralkanäle) verglichen. Als Maß für die Trennbarkeit von 
Klassenpaaren wurde die ‚Bhattacharyya-Distanz’ errechnet. Die Trennbarkeit erhöhte sich durch 
die Einbeziehung der Texturkanäle für alle Klassenpaare. Besonders stark erhöhte sich die 
Bhattacharyya-Distanz zwischen offenem Kiefernwald und Grasland bzw. Matorral (da die 
krautige oder Strauchvegetation, die den Unterwuchs zwischen den Kiefern bildet, das rein 
spektrale Signal bei offenem Kiefernwald oft dominiert), zwischen Matorral und weiteren 
Waldklassen sowie zwischen Palmenwald und laubtragendem Uferwald (aufgrund der 
unterschiedlichen Struktur der Kronendächer) (tables 19 und 20). Die Klassifizierungsgenauigkeit 
erhöhte sich erwartungsgemäß ebenfalls durch Einbeziehung der Texturkanäle in die 
Klassifizierungen. Palmenwald, Sekundärwald und Matorral gehören zu den Klassen, deren 
Klassifizierungsgenauigkeit davon am meisten profitierte. 

Das beste Klassifizierungsergebnis, das für 13 Klassen nur unter Verwendung von IKONOS-Daten 
und aus ihnen abgeleiteten Informationen für das Testgebiet erzielt wurde, stimmte zu 70,4 % mit 
den Referenzdaten überein. Es war das Ergebnis einer Maximum-Likelihood-Klassifizierung eines 
Datensatzes aus vier 3×3 mittelwertgefilterten Multispektralkanälen und drei GLCM-Textur-
kanälen mit 4 m Auflösung, mit anschließender 7×7 Modalfilterung. Aber auch die Klassifizierung 
des Datensatzes aus Texturdaten und nicht räumlich integrierten Multispektraldaten führte bei 
anschließender 7×7 Modalfilterung zu einer Klassifizierungsgenauigkeit von 70 %. Hier wurde die 
nötige räumliche Integrierung der hochaufgelösten Daten offensichtlich durch die Texturparameter 
(errechnet in 15 m × 15 m großen Filtermatritzen) und die Modalfilterung erreicht. 

Wegen der geringen spektralen Auflösung der IKONOS-Daten, die keine spektrale Information von 
jenseits des nahen Infrarots beinhalten, wurden die IKONOS-Daten mit zusätzlichen Landsat-
Multispektralkanälen integriert. Außerdem wurde die räumliche Information aus den IKONOS-
Daten (in Form der Texturkanäle) mit den Landsat-Daten kombiniert. Mit diesen beiden integrierten 
Datensätzen konnten aber die Ergebnisse, die nur mit den IKONOS-Daten erzielt worden waren, 
nicht übertroffen werden. Die Klassifizierungsgenauigkeiten für Datensätze, die Landsat-Multi-
spektraldaten beinhalteten, lagen immer unter 60 %. Die geringere räumliche Auflösung der 
Landsat-Daten führte im räumlich sehr heterogenen Testgebiet zu einem großen Anteil von 
Mischpixeln und begrenzte so, trotz der besseren spektralen Auflösung, die 
Klassifizierungsgenauigkeit.  

An zusätzlichen Geodaten stand ein digitales Geländemodell (DGM) mit einer Rasterweite von 
50 m zur Verfügung. Durch Kriging wurde ein Höhenmodell mit 8 m Rasterweite erstellt. Drei 
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daraus abgeleitete topographische Modelle wurden als zusätzliche Bildkanäle mit den IKONOS-
Daten bei 8 m räumlicher Auflösung integriert. Die Verwendung dieser Modelle als zusätzliche 
Variablen in den Klassifizierungen führte aber nicht zu einer signifikanten Verbesserung der 
Klassifizierungsgenauigkeiten, was unter anderem mit der mangelnden Genauigkeit des 
verfügbaren DGMs zu begründen ist. Im relativ kleinen Testgebiet konnten die ungenauen Höhen- 
und Hangneigungsdaten auch nicht sinnvoll für eine Nachbearbeitung der Klassifizierungs-
ergebnisse eingesetzt werden (im Gegensatz zum Einsatz des Höhenmodells für die 
Nachbearbeitung der Landsat-Klassifizierung für das gesamte obere Einzugsgebiet). 

Das Maximum-Likelihood-Verfahren ist die optimale überwachte Klassifizierungsmethode unter 
der Voraussetzung, dass die zu klassifizierenden Daten für die definierten Klassen normalverteilt 
sind. Dies traf bei den meisten Klassen im Testgebiet sowohl für die Multispektraldaten als auch für 
die Texturdaten zu, für die topographischen Modelle (abgesehen von der Hangneigung) allerdings 
nicht. Deshalb wurden neben dem Maximum-Likelihood-Verfahren auch nicht-parametrische 
Klassifizierungsmethoden (die nicht auf Annahmen über die Verteilung der Daten basieren) 
angewendet, um die kombinierten Datensätze zu klassifizieren. Es konnten aber weder mit einem k-
Nearest-Neighbour-Verfahren noch mit ‚künstlichen Neuronalen Netzen’ bessere Ergebnisse erzielt 
werden als mit dem Maximum-Likelihood-Verfahren. 

Insgesamt war für eine detaillierte Klassifizierung des Testgebiets eine Klassifizierungsgenauigkeit 
(im Sinne einer Übereinstimmung mit den Klassen, die 583 Referenzpunkten zugewiesen worden 
waren) von wesentlich über 70 % nicht zu erreichen. Bei der Bewertung dieser ‘harten’ Genauigkeit 
muss beachtet werden, dass der Referenzdatensatz eine Stichprobe von Punkten darstellt, die über 
das gesamte Gebiet verteilt wurden, ohne Grenzbereiche zwischen Klassenarealen auszuschließen. 
Den Testpunkten wurden Referenzklassen zugewiesen, die bei einem Teil der Punkte durch die 
Feldarbeit im dortigen Gelände bekannt waren und die ansonsten hauptsächlich über die visuelle 
Interpretation von Luftbildern und von den IKONOS-Bildern selbst bestimmt wurden. Die Refe-
renzdaten stellen also eine unabhängige Klassifizierung dar, die auch nicht hundertprozentig 
fehlerfrei sein kann. Dies ist bei Genauigkeitsanalysen generell zu beachten. Dazu kommen im 
Testgebiet viele graduelle Klassenübergänge und kleinräumige Vermischungen oder Einschlüsse 
(figure 41), die dazu führen, dass es (nicht nur entlang linearer Grenzen) Gebiete gibt, die nicht 
eindeutig zu einer bestimmten Klasse gehören, bzw. deren Zuordnung zu mehreren Vegetations-
typen ‘nicht ganz falsch’ wäre. Diese Unschärfe (fuzziness) in den Vegetationsklassen lässt sich 
durch eine unscharfe (fuzzy) Genauigkeitsanalyse berücksichtigen (Woodcock & Gopal 2000). Dies 
wurde anhand einer Klassifizierung getestet, mit dem Ergebnis, dass 85 % der Klassenzuweisungen 
‘absolut richtig’, ‘gut’ oder zumindest ‘akzeptabel’ waren. Das ‘harte’ Ergebnis einer Maximum-
Likelihood-Klassifizierung lässt sich auch ‚aufweichen’, indem z.B. die A-Posteriori-Wahrschein-
lichkeit für die zugewiesenen Klassen berechnet wird. So lassen sich weitere Informationen und 
Interpretationshilfen (über eine ‚harte’ thematischen Karte hinaus) gewinnen. 
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Es konnte gezeigt werden, dass Klassifizierungsfehler und -unsicherheiten überproportional in 
Bereichen in der Nähe von Grenzen zwischen Landbedeckungsklassen auftreten. Die Grenzeffekte 
spielen eine größere Rolle bei Datensätzen mit stärkerer räumlicher Integrierung (mehr Mischpixel) 
und mit Texturmerkmalen (da die 15 m × 15 m große Filtermatrix mehrere Klassenareale 
einschließen kann, so dass z.T. nicht die Textur innerhalb einer Klasse, sondern die zwischen 
mehreren Klassen berechnet wird). Die Verstärkung der Grenzeffekte durch räumliche Integrierung 
und Einbeziehung von Texturdaten setzt den positiven Effekten dieser Methoden Grenzen. 

Gute Ergebnisse wurden bei der Kartierung des Nebelwaldes erzielt, und auch die meisten anderen 
Waldtypen ließen sich mit relativ hohen Genauigkeiten klassifizieren. Eine Ausnahme bildet der 
‘offene Kiefernwald’. Diese Klasse tritt im östlichen Testgebiet hauptsächlich in Form von lockeren 
Kieferngruppen auf, die schwer genau von ihrer Umgebung (die ihrem Unterwuchs entspricht, z.B. 
Gräser und Farne) abzugrenzen sind. Problematisch ist auch die Trennbarkeit von Agroforst und 
Wald, obwohl die Einbeziehung von Textur die Trennbarkeit (ebenso wie beim offenen Kiefern-
wald) verbessern konnte. 

Insgesamt konnte mit Hilfe der hochauflösenden IKONOS-Daten, sofern bei ihrer Verarbeitung ihre 
räumlichen Eigenschaften berücksichtigt und genutzt wurden, eine wesentlich genauere und 
detailliertere Kartierung der Wald- und sonstigen Landbedeckungsklassen erreicht werden als mit 
den Landsat-Daten. Allerdings sind diese für das Testgebiet analysierten Methoden nicht ohne 
weiteres auf wesentlich größere Regionen übertragbar. Eine detaillierte Klassifizierung des gesam-
ten oberen Einzugsgebietes des Río Yaque del Norte mit IKONOS-Daten würde u.a. eine 
aufwändige Vorverarbeitung von mindestens zwölf IKONOS-Bildern und auch die Existenz einer 
großen Menge an Geländedaten aus dem gesamten Einzugsbereich voraussetzen. Für regionale 
Kartierungen können also Satellitendaten mittlerer Auflösung weiterhin die einzige praktikable 
Datenquelle sein, auch wenn damit in heterogenen tropischen Gebirgsbereichen nur relativ grobe 
und ungenaue Karten erstellt werden können. Hochauflösende Satellitendaten bieten sich in erster 
Linie für die Kartierung kleinerer Gebiete an, in denen ein spezielles Interesse an detaillierten 
Landbedeckungsinformationen besteht, z.B. zur Kartierung und Überwachung bedrohter bzw. 
geschützter Vegetationstypen. 
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Plates – Land Cover Types of the Study Area 

 

 

 

 
Plate 1: Natural open pine forest at 2700 m elevation in 
the Cordillera Central, 28 February 2002. 

 

 

 

Plate 3: Remainder of native Pinus occidentalis in an 
agricultural area at 900 m a.s.l. (eastern test area), 
March 2002. 

 

Plate 2: Natural pine forest at 2300 m elevation, with 
fire scars on the right side, 28 February 2002. 

 

Plate 4: Mixed pine and humid broadleaved forest at 
900 m elevation, above the Río Jimenoa, 27 March 
2003. 
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Plate 5: Didymopanax tremulus - Magnolia pallescens cloud forest, Reserva Científica Ebano Verde, 1400-1500 m 
a.s.l., 10 March 2003. 

 

Plate 6: Cloud forest, Reserva Científica Ebano Verde, 
1400 m a.s.l., 19 March 2002. 

 

Plate 7: Cloud forest with Dicranopteris pectinata 
ground cover, Reserva Científica Ebano Verde, 
approximately 1300 m a.s.l., 19 March 2002. 
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Plate 8: Magnolia pallescens (Ebano verde), Reserva Científica Ebano Verde, 10 March 2003. 

 

Plate 9: Calimetal (Dicranopteris pectinata), Reserva Científica Ebano Verde, 1150 m a.s.l., 10 March 2003. 
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Plate 10: Aerial view of palm dominated forest (light green areas are fern / calimetal, large crowns are broadleaved and 
pine trees), 23 March 2003. 

 

Plate 11: Broadleaved riparian forest with Prestoea montana as a subdominant species, eastern test area, Scientific 
Reserve Ebano Verde, 10 March 2003.  
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Plate 12: Humid evergreen broadleaved forest (Salto de 
Jimenoa, 650 m a.s.l.), March 2003. 

 

 

Plate 13: Humid evergreen broadleaved forest in the 
National Park Armando Bermúdez, 1200 m a.s.l., 2 
March 2002. (Presence of bamboo indicates secondary 
forest/past disturbances at least along the path.) 

 

 

Plate 14: Riparian forest in forest surroundings, 
Scientific Reserve Ebano Verde, 1200 m a.s.l., 
19 March 2002. 

 

 

 

Plate 15: Riparian forest bordered by pasture area, 1100 m 
a.s.l., March 2003. 
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Plate 16: Aerial view of broadleaved riparian forest in 
between grassland (pasture) areas just outside of the 
Scientific Reserve Ebano Verde, eastern test area, 23 
March 2003. 

 

Plate 17: Degraded remains of broadleaved semi-
deciduous forest in the area of the Tavera reservoir, 
March 2003. 

 

 

Plate 18: Aerial view of the Presa de Tavera, 23 March 2003. 
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Plate 19: A slope with young pine trees after a 
probably deliberate fire, western UCRYN, March 
2003. 

 

 

Plate 20: Young pine plantation with older pine stands 
in the background, western UCRYN, 1000 m a.s.l., 
March 2003. 

 

Plate 21: Pinus caribaea plantation, Scientific Reserve Ebano Verde, eastern test area, March 2003. 

 

Plate 22: Acacia mangium plantation, southern UCRYN, March 2003. 
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Plate 23: Grassland, eastern test area, March 2003.  
 

Plate 24: Grassland (pasture) with trees in the northern 
UCRYN, March 2003. 

 

 

Plate 25: Intensive agriculture including Chayote fields 
in the alluvial plain of La Ciénaga, March 2003. 

 

Plate 26: Chayote field, western UCRYN, 22 March 
2002. 

 

 

 

Plate 27: Bean field, March 2002.   

Plate 28: Bean fields, March 2003. 
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Plate 30: Coffee without shade, low ground coverage, 
western UCRYN, 1300 m a.s.l., March 2002  

 

Plate 31: Coffee with high ground coverage and some 
trees, western UCRYN, 1300 m a.s.l., March 2002. 

 

 

 

Plate 32: Agroforestry: medium-sized coffee plantation 
with Inga vera and banana plants, southern UCRYN, 
March 2002. 

 

Plate. 33: Small area of mixed agroforestry, eastern test 
area, March 2003. 

 

Plate 34: Agroforestry: coffee under pine trees, 31 
March 2003. 
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Plate 35: Two views of open (degraded) lower montane pine forest, with bracken dominating the herbaceous layer, 
southern UCRYN, between 1200 and 1300 m a.s.l., March 2002. 

 

Plate 36: Eastern test area (buffer zone of Reserva Cientifica Ebano Verde), around 900 m a.s.l. Land cover mix of 
crops and grassland, matorral, broadleaved riparian forest along the river, pines in the form of small closed stands, 
single pines and groups of pines / open pine forest with a transition to grassland, some landslide scars, March 2003 
(photo looking south-westward and down to the Río Jimenoa). 
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Plate 37: Secondary forest, Scientific Reserve Ebano 
Verde (agricultural use before 1989, photographed 19 
March 2002). 

 

Plate 38: Secondary forest with pines. Eastern test area, 
March 2003. 

 

Plate 39: Secondary forest in the Scientific Reserve Ebano Verde, eastern test area, March 2003. 
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Plate 40: Hurricane damaged pine plantation, regeneration mostly broadleaved. Eastern test area, 1200 m a.s.l., March 
2003. 

 

Plate 41: Matorral. Eastern test area, March 2003. 

 

Plate 42: Transition from rough grassland to matorral. Eastern test area, March 2003. 
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Appendix 2 

Plates – Land Cover Maps and Legends 

 

Plate 43: Landsat ETM+ classification of the upper catchment area of the Río Yaque del Norte. 
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Legend 

 

 

Dense pine forest (PFd) 

Open pine forest (PFo) 

Cloud forest (CF) 

Secondary forest (SF) 

Palm dominated forest (PmF) 

Broadleaved riparian forest (BRF) 

Matorral (Mat) 

Calimetal (Cal) 

Agroforestry (AF) 

Grassland (GL) 

Crops without trees (Cr) 

Bare Ground (BG) 

Water (W) 

No information 

 
Plate 44: Legend for classifications of the eastern test area. 
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Appendix 3 

Metadata and Scripts 

Metadata of the Landsat-7 scene used 
 
  GROUP = METADATA_SCENE_02 

    GROUP = WRS_SCENE_02 
      WRS_SCENE_NO = 2 
      FULL_OR_PARTIAL_SCENE = "F" 
      BROWSE_FILE_NAME = "L72EDC140026001020.R02" 
      WRS_PATH = 008 
      WRS_ROW = 047 
      SCENE_CENTER_SCAN_NO = 237 
      SCENE_CENTER_SCAN_TIME = 2000-259T14:59:20.6004739Z  
      SCENE_CENTER_LAT =   18.7880 
      SCENE_CENTER_LON =  -71.3301 
      HORIZONTAL_DISPLAY_SHIFT = -119 
      SCENE_UL_CORNER_LAT =   19.7284 
      SCENE_UL_CORNER_LON =  -72.0424 
      SCENE_UR_CORNER_LAT =   19.4693 
      SCENE_UR_CORNER_LON =  -70.2465 
      SCENE_LL_CORNER_LAT =   18.0936 
      SCENE_LL_CORNER_LON =  -72.4071 
      SCENE_LR_CORNER_LAT =   17.8369 
      SCENE_LR_CORNER_LON =  -70.6283 
      SUN_AZIMUTH_ANGLE =  119.9528961 
      SUN_ELEVATION_ANGLE =   60.5478325 
      SCENE_CCA = 1 
      UL_QUAD_CCA = 1 
      UR_QUAD_CCA = 0 
      LL_QUAD_CCA = 3 
      LR_QUAD_CCA = 1 
      ACCA_ALGORITHM_ID_VER = "ACCA_21JUN00_LSO31.ALG" 
       
      BAND6_SL_GAIN_CHANGE = 0 
      FULL_APERTURE_CAL_FLAG = "N" 
      DAY_NIGHT_FLAG = "D" 
    END_GROUP = WRS_SCENE_02 
 
    GROUP = ETM_QA_02 
      SCENE_QUALITY = 99 
      CADUS_VCDUS_RECEIVED = 243013 
      FLY_WHEEL_CADUS = 0 
      CADUS_SYNC_ERR = 0 
      CADUS_MISSING = 0 
      RS_ERR_VCDUS = 0 
      BCH_CORRECTED_VCDUS = 0 
      BCH_UNCORRECTED_VCDUS = 0 
      BCH_CORRECTED_BITS = 0 
      BIT_ERROR_RATE = 0 
      ETM_TIMECODE_ERRORS = 0 
      ENTIRELY_FILLED_SCANS = 0 
      PARTIALLY_FILLED_SCANS = 0 
    END_GROUP = ETM_QA_02 
 
    GROUP = PCD_QA_02 
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      PCD_WORDS_RECEIVED = 114688 
      PCD_BYTE_VOTING_ERR = 0 
      TOTAL_PCD_MINOR_FRAMES = 896 
      PCD_MINOR_FRAME_ERR = 0 
      FILLED_PCD_MINOR_FRAMES = 0 
      FILLED_PCD_MAJOR_FRAMES = 0 
    END_GROUP = PCD_QA_02 
 
    GROUP = PROCESSED_PCD_QA_02 
      TOTAL_ATTITUDE_POINTS = 7 
      REJECTED_ATTITUDE_POINTS = 0 
      MISSING_ATTITUDE_POINTS = 0 
      TOTAL_EPHEMERIS_POINTS = 7 
      REJECTED_EPHEMERIS_POINTS = 0 
      MISSING_EPHEMERIS_POINTS = 0 
    END_GROUP = PROCESSED_PCD_QA_02 
 
  END_GROUP = METADATA_SCENE_02 
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Ikonos Metadata 
 
Eastern image (Ebano Verde) 
 
Product Order Metadata 
… 
Processing Level: Standard Geometrically Corrected 
Image Type: PAN/MSI 
Interpolator Method: Bicubic 
Multispectral Algorithm: None 
Stereo: Mono 
Mosaic: No 
Map Projection: Universal Transverse Mercator 
   UTM Specific Parameters 
      Hemisphere: N 
      Zone Number: 19 
Datum: WGS84 
Product Order Pixel Size: 1.00 meters 
Product Order Map Units:  meters 
MTFC Applied: Yes 
DRA Applied: No 
Media: CD 
File Format: GeoTIFF 
   TIFF Tiled: No 
   Bits per Pixel per Band: 11 bits per pixel 
Multispectral Files: Separate Files 
Special Instructions: NA 
============================================================== 
 
Source Image Metadata 
 
Number of Source Images: 1 
Source Image ID: 2001041615193490000011622370 
Product Image ID: 000 
Sensor: IKONOS-2 
Acquired Nominal GSD 
   Cross Scan: 0.83 meters 
   Along Scan: 0.83 meters 
Scan Direction: 0 degrees 
Nominal Collection Azimuth: 220.2470 degrees 
Nominal Collection Elevation: 81.33666 degrees 
Sun Angle Azimuth: 109.8652 degrees 
Sun Angle Elevation: 68.33561 degrees 
Acquisition Date/Time: 2001-04-16 15:19 
============================================================== 
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Product Component Metadata 
 
Number of Components: 1 
Tile ID: 0000000 
Product Image ID: 000 
Tile File Name: po_75581_pan_0000000.tif po_75581_red_0000000.tif po_75581_grn_0000000.tif 
po_75581_blu_0000000.tif po_75581_nir_0000000.tif  
Tile Geographic Corner Coordinates 
   Number of Coordinates: 4 
   Coordinate: 1 
      Latitude: 19.08007470 degrees 
      Longitude: -70.60417356 degrees 
   Coordinate: 2 
      Latitude: 19.08086933 degrees 
      Longitude: -70.51012032 degrees 
   Coordinate: 3 
      Latitude: 18.95650021 degrees 
      Longitude: -70.50899736 degrees 
   Coordinate: 4 
      Latitude: 18.95571115 degrees 
      Longitude: -70.60298072 degrees 
Tile Map Coordinates (in Map Units) 
   UL Map X (Easting): 331224.38 meters 
   UL Map Y (Northing): 2110460.06 meters 
Pixel Size X: 1.00 meters 
Pixel Size Y: 1.00 meters 
Product Order Map Units:  meters 
Columns: 9899 pixels 
Rows: 13767 pixels 

 
Western image (Manabao) 
 
Product Order Metadata 
… 
Processing Level: Standard Geometrically Corrected 
Image Type: PAN/MSI 
Interpolation Method: Cubic Convolution 
Multispectral Algorithm: None 
Stereo: Mono 
Mosaic: No 
Map Projection: Universal Transverse Mercator 
   UTM Specific Parameters 
      Hemisphere: N 
      Zone Number: 19 
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Datum: WGS84 
Product Order Pixel Size: 1.00 meters 
Product Order Map Units:  meters 
MTFC Applied: Yes 
DRA Applied: No 
Media: CD 
File Format: GeoTIFF 
   TIFF Tiled: No 
   Bits per Pixel per Band: 11 bits per pixel 
Multispectral Files: Separate Files 
============================================================== 
 
Source Image Metadata 
 
Source Image ID: 2002052215372320000011617649 
Product Image ID: 002 
Sensor: IKONOS-2 
Acquired Nominal GSD 
   Cross Scan: 0.91 meters 
   Along Scan: 0.93 meters 
Scan Azimuth: 0.00 degrees 
Scan Direction: Forward 
Panchromatic TDI Mode: 13 
Nominal Collection Azimuth: 322.0301 degrees 
Nominal Collection Elevation: 66.89434 degrees 
Sun Angle Azimuth: 81.5937 degrees 
Sun Angle Elevation: 75.11806 degrees 
Acquisition Date/Time: 2002-05-22 15:37 GMT 
============================================================== 
 
Product Component Metadata 
 
Component ID: 0020000 
Product Image ID: 002 
Component File Name: po_92198_pan_0020000.tif po_92198_red_0020000.tif po_92198_grn_0020000.tif 
po_92198_blu_0020000.tif po_92198_nir_0020000.tif  
Component Geographic Corner Coordinates 
   Number of Coordinates: 4 
   Coordinate: 1 
      Latitude: 19.15357304 degrees 
      Longitude: -70.88673515 degrees 
   Coordinate: 2 
      Latitude: 19.15477904 degrees 
      Longitude: -70.76542113 degrees 
   Coordinate: 3 
      Latitude: 19.06459993 degrees 
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      Longitude: -70.76446413 degrees 
   Coordinate: 4 
      Latitude: 19.06340003 degrees 
      Longitude: -70.88571247 degrees 
Component Map Coordinates (in Map Units) 
   UL Map X (Easting): 301575.88 meters 
   UL Map Y (Northing): 2118892.30 meters 
Pixel Size X: 1.00 meters 
Pixel Size Y: 1.00 meters 
Product Order Map Units:  meters 
Columns: 12764 pixels 
Rows: 9984 pixels 
-------------------------------------------------------------- 
Component ID: 0020001 
Product Image ID: 002 
Component File Name: po_92198_pan_0020001.tif po_92198_red_0020001.tif po_92198_grn_0020001.tif 
po_92198_blu_0020001.tif po_92198_nir_0020001.tif  
Component Geographic Corner Coordinates 
   Number of Coordinates: 4 
   Coordinate: 1 
      Latitude: 19.06338050 degrees 
      Longitude: -70.88673833 degrees 
   Coordinate: 2 
      Latitude: 19.06457853 degrees 
      Longitude: -70.76575608 degrees 
   Coordinate: 3 
      Latitude: 18.97414561 degrees 
      Longitude: -70.76480109 degrees 
   Coordinate: 4 
      Latitude: 18.97295369 degrees 
      Longitude: -70.88571800 degrees 
Component Map Coordinates (in Map Units) 
   UL Map X (Easting): 301467.88 meters 
   UL Map Y (Northing): 2108908.30 meters 
Pixel Size X: 1.00 meters 
Pixel Size Y: 1.00 meters 
Product Order Map Units:  meters 
Columns: 12736 pixels 
Rows: 10012 pixels 
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Sripts 
 
! Korrektur des Linienversatzes bei Landsat7-L0R-Daten inkl. Pan 
 
local i 
 
fili="e:\abroetj\DomRep\Landsat7\L7CAY.pix 
filo="e:\abroetj\DomRep\Landsat7\L7CAYv.pix 
dbic=1, 2, 3, 4, 5, 6, 7, 8 
dboc=1, 2, 3, 4, 5, 6, 7, 8 
 
for i=0 to 125 
 
DBIW=0,i*32,2550,32 
DBOW=250-(2*i),i*32,2550,32 
 
r iii 
 
endfor 
 
 
 
 
 
 
! Calculation of local variance in a moving window 
! First, a channel containing the mean is calculated, then the variance itself 
local integer i, j 
%10 = 0 
for i = -7 to 7  
for j = -7 to 7  
%10 = %10 + (%1[@x+i,@y+j])/225 
endfor 
endfor 
%11 = 0 
for i = -7 to 7  
for j = -7 to 7  
%11 = %11 + ((%1[@x+i,@y+j]-%10)^2)/225  
endfor 
endfor 
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