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1 Introductus

in which we learn about the biological basics of chemical signalling cascades and
in which we stretch that chemical signalling cascades have to be understood as
spatially resolved stochastic processes.

1.1 Chemical signalling . . . . . . . . . . . . . . . . . . . . 5
1.2 A short history of Monte Carlo Methods in chemical

signalling . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Overview and objective of this work . . . . . . . . . . . 11

1.1 Chemical signalling

A prerequisite for cells to live together in a coordinate manner within a single organism
is their ability to communicate with one another [Alberts et al., 1994]. Often, cell-cell
communication is achieved with the help of specific extracellular molecules which are
synthesised and released by signalling cells. If these substances bind to complemen-
tary receptors within their target cells, they are capable of activating so-called signalling
cascades. The term signalling cascade, as well as the synonymously used term signal
transduction pathway, refers to the intracellular biochemical reactions by which a target
cell is capable of responding to external stimuli. Ultimately such a response leads to a
change in cellular behaviour which may manifest itself in an altered metabolism, prolif-
eration, or differentiation. Overall, the fact that cellular events are precisely regulated
by chemical signal transduction cascades is quite remarkable because signalling cascades
are inherently noisy. In general, this sort of noise arises because the local concentrations
of the key molecular species involved in a chemical reaction cascade are often very low.
In the literature this sort of noise is often referred to as intrinsic noise. However, apart
from this intrinsic noise cells also have to cope with extrinsic noise as they normally live
in a noisy environment.

Although some exceptions such as the steroid hormone signalling pathway exist, chem-
ical signalling cascades are normally activated by receptor proteins within the plasma
membrane of the cell. These receptors act as signal transducers converting the extracel-
lular into an intracellular signal. Basically this transduction step is achieved by means of
a conformational change within the receptor which is caused by the binding of a ligand.
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Overall three main classes of signal transduction within cell surface receptors are known to
exist. The simplest class comprises receptors linked to ion channels, which open or close
their pore upon stimulation. G-Protein coupled receptors, which make up the second
class, release their intracellular G-Protein upon a conformational change. This protein
can subsequently interact with other intracellular proteins resulting for instance in the
amplification of the incoming signal by the production of so-called second messengers.
Finally, enzyme linked receptors either exhibit an intrinsic enzyme activity or alterna-
tively are associated with an enzyme. Most commonly these enzymes are kinases that
phosphorylate their target molecules if the receptor is in its active state. Generally pro-
tein phosphorylation and its counterpart protein dephosphorylation which is mediated by
so-called phosphatase molecules, play a prominent role in chemical signalling. Through
cycles of phosphorylation and dephosphorylation reactions a signal can be propagated
from the cell surface to the nucleus. This is often the destination of a signal transduction
pathway, because a sustained change in cellular behaviour can be achieved by a change
in gene expression.

Although the interactions within signalling cascades are highly specific, chemical sig-
nalling can not be regarded as a linear chain of reactions, where one reaction is simply
executed after another until a response is finally triggered. Instead, incoming informa-
tion is processed and analysed with respect to the internal state of the cell. Overall a
signal transduction pathway is therefore better understood as a small part of a much
larger signalling network. Furthermore when studying signalling networks, it has become
apparent within the past few years that spatial and temporal dynamics play a crucial
role in specifying the behavioural response to an external signal [Kholodenko, 2006]. For
instance, for the mitogen activated protein kinase (MAPK) cascade it is known that the
same repertoire of signalling molecules can give rise to different behaviours. If this signal
transduction pathway is transiently stimulated by the epidermal growth factor (EGF),
this results in cell proliferation, whereas cell differentiation will be caused by a sustained
stimulation of nerve growth factor (NGF) [Murphy et al., 2002].

Investigating how the processing of chemical information is brought about within bio-
logical cells is the cornerstone of the emerging field of systems biology [Kirschner, 2005].
With the advance of new experimental techniques such as sequencing, microarray analysis,
mass spectrometry, and a wide range of optical methods which allow for the observation
of signalling cascades in action, recent years have witnessed a tremendous increase in
quantitative data about biological systems. Today, entire genomes have been sequenced,
protein structures have been analysed, and metabolic pathways have been characterised.
When it comes to chemical signalling, entire wiring diagrams can be drawn showing which
constituents of a cascade interact with one another. However, the sheer presence of an
overwhelming amount of data does not necessarily imply that we also have a deeper
understanding of the processes within a cell. After all, the aim is to understand how
different molecular constituents interact in space and time within a dynamic environment
in order to reliably regulate the cell’s behaviour. This task clearly calls for mathemat-
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ical modelling. Overall, we require that every mathematical model has to account for
the noise that is omnipresent in biological systems. Moreover, signalling cascades have
to be spatially resolved. Both aspects are obviously neglected when treating chemical
signalling as simple deterministic wiring diagrams. However, these requirements make
an analytical mathematical treatment of chemical signalling almost impossible. In fact,
analytically tractable mathematical models have mostly been proposed and used for the
analysis of prototypical motifs found within signalling networks. Common examples in-
clude the study of protein phosphorylation cycles and the role played by positive and
negative feedback [Tyson et al., 2003]. As opposed to that, the mathematical analysis
of real world signal transduction pathways, which one for instance encounters when in-
vestigating which disfunctioning of a signalling cascade leads to cancer, is analytically
infeasible. Instead, numerical tools have been developed. Today, computer simulations
have established themselves as valuable tools for pursuing the aim of understanding the
intracellular signalling machinery.

Overall, a multitude of different computational approaches are available when it comes
to simulating the temporal dynamics of chemical signalling. The most common approach
is based on numerically integrating the differential equations describing the change of
the involved molecular concentrations with respect to time. When pursing this approach,
one implicitly assumes that molecular concentrations are continuous functions of time.
However, this is only valid in the limit of having large numbers of molecules. Its appli-
cation is bound to fail when dealing with many in vivo processes, for which the total
number of molecules of a certain species can become very small within particular spatial
regions. If this is the case, stochastic effects have to be taken into account [Rao et al.,
2002]. A prominent example is given by the modelling of signalling cascades responsible
for the regulation of synaptic efficiency within the dendritic spine. Here the underlying
reaction volume is so small that the key regulator proteins will only be present in a few
copy numbers. In such a case reactants have to be accounted for by discrete numbers
of particles. On this level of description chemical reactions are no longer deterministic
in nature but occur stochastically so that their time of occurrence as well as their exact
order can no longer be predicted [Bhalla, 2004]. Another example in which stochastic-
ity severely affects the overall behaviour of a biological system is genetic transcription
and the subsequent translation of mRNA into protein. Thattai and van Oudenaarden
[2001] developed a simple analytic model which showed that the production of proteins
in eukaryotic cells has to occur in random bursts. In a subsequent experimental study,
they could further shown that the number of proteins produced in each burst as well as
the time in between bursts is highly variable and that the exact statistics depend on the
involved reaction rates as predicted by their theory [Ozbudak et al., 2002]. Hence, protein
concentrations exhibit a great deal of variability such that a population of isogenetic cells
can display phenotypic variations [Elowitz et al., 2002]. Clearly such a behaviour can not
be explained with a deterministic approach in which the proteins are synthesised with
constant given rates.
Furthermore, when modelling chemical signalling, it is also important to spatially resolve
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the medium in which the chemical reactions take place. Even prokaryotes, which are nor-
mally modelled as simple homogeneous reaction volumes, are spatially organised [Moraru
and Loew, 2005]. For instance, the receptors mediating the chemotactic response in E.
coli are organised into clusters which ultimately increases the reliability of the response
[Sourjik, 2004]. That prokaryotic cells are highly spatially organised is immediately obvious
as they contain different compartments which define regions of specialised functionality.
Furthermore prokaryotic cells are also spatially organised on the subcompartment scale.
Recent years have for example witnessed an increased interests in concentration gradi-
ents of molecules involved in chemical signalling [Kholodenko, 2006]. In the context of
prokaryotic chemotaxis such gradients are extremely important. It has been shown that
the movement of a cell depends on the uneven distribution of some key molecules along
the plasma membrane, which is established by the so-called gradient sensing signalling
cascade. This reaction diffusion network senses and amplifies an external gradient field
and thereby provides the information into which direction the cell has to move [Jane-
topoulos et al., 2004].
Overall, complex in vivo reaction systems show non-trivial spatial reaction patterns that
need to be accounted for in the modelling process. It is therefore highly advisable to use
a stochastic simulation method which correctly accounts for the underlying geometry of
the reaction medium. In the next section we will therefore briefly resketch the history
which lead to the most common stochastic approaches that exist today for simulating
cellular regulatory pathways in a stochastic manner.

1.2 A short history of Monte Carlo Methods in
chemical signalling

Stochastic computational methods are generally referred to as Monte Carlo techniques as
they utilise (pseudo) random numbers. The first such method was the Metropolis algo-
rithm which was invented for calculating the free energy of a system of atoms [Metropolis
et al., 1953]. As opposed to such a static Monte Carlo simulation method used for the
calculation of state variables, the stochastic techniques used when simulating biological
reaction systems belong to the overall class of kinetic or dynamic Monte Carlo algorithms
[Fichthorn and Weinberg, 1991]. These algorithms are used for simulating the temporal
evolution of Markov processes of which the dynamics are known to obey given transition
rates. Therefore, these computer methods are applicable to all sorts of different physical
problems ranging from spin glasses to polymer dynamics. Due to this almost the same
algorithms have been reinvented a couple of times within different areas of application.

When modelling chemical signalling in a stochastic way, a mesoscopic level of descrip-
tion is often useful and appropriate. Reactants are individually accounted for in the sense
that the state of a system is completely determined by counting how many particles
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belong to a particular chemical species. The distribution of particles of the different
chemical species is changed by chemical reactions, which randomly occur with a given
probability. The first two algorithms for simulating such mesoscopic chemical reaction
systems were proposed by D. Gillespie in 1976 and are termed the Direct Method and
the First Reaction Method [Gillespie, 1976]. These algorithms are capable of simulat-
ing chemical reaction systems in which the molecules are homogeneously distributed in
space. However, the real breakthrough and application of these algorithm to the field
of chemical signalling did not come until the late 1990s, when it was shown that the
outcome of signal transduction pathways depends in a nontrivial way on the underlying
level of noise within a cell. Consequently questions were asked addressing for instance
the problem of how cells can reliably respond to external stimuli, if the underlying sig-
nal transduction machinery is subject to noise. Clearly, computational studies became a
means for answering these questions and first examples employing the Gillepie algorithm
include for instance [Arkin et al., 1998], in which it was shown how cellular decisions are
influenced by a stochastic environment.
However, with the application of the Gillespie algorithm to real world problems, two lim-
itations became immediately obvious. First of all, the original algorithms proposed by
Gillespie are computationally inefficient as they directly scale with the number of chemical
reactions being simulated. This limitation is intensified by the general problem arising
within stochastic simulations that the more particles there are within the medium, the
more often a reaction channel fires within a certain time interval. This behaviour arises
because the reaction rates increase with the number of particles in the system. The
second problem of the algorithm lies in its non-consideration of space. This has to be
regarded as a major drawback, since for most chemical signalling cascades the shape
and size of the underlying reaction volume are of great importance. In fact neglecting
space may lead to the violation of the underlying assumption that molecules are in spatial
equilibrium.
For the first problem better algorithms such as the Next Reaction Method were proposed.
With this algorithm a great gain in computational efficacy could be obtained by using
more sophisticated data structures [Gibson and Bruck, 2000]. In most scenarios, this
algorithm proved to be a lot faster than the original two algorithms proposed by Gillespie.
Another attempt to increase computational efficacy was suggested by Gillespie in 2001,
when he proposed the so-called Tau-Leap method [Gillespie, 2001]. Instead of just pick-
ing a single reaction and updating the reaction rates after each step, this method works
by determining how often a reaction will fire within a given time interval. In order for the
algorithm to produce meaningful results, the length of the time interval has to be chosen
in such a way that the change in the underlying rates is small compared to some given
error. Hence the increase in speed within this method comes with a loss in accuracy.
For the latter problem of representing space within stochastic simulations of chemical
reaction systems, different solution strategies have been proposed [Lemerle et al., 2005].
One such strategy abandons the mesoscopic simulation approach all together. Instead,
a more detailed description of the underlying system is employed by representing each
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chemical reactant individually meaning that it now has a specific position within the re-
action medium associated to it. Spatial dynamics are then accounted for in that particles
perform random walks. If two particles encounter each other, a chemical reaction may
occur with a certain probability. Within the literature this approach is known as the
Brownian dynamics approach. For the first time it has been employed within the MCell
environment, which was developed for the modelling of cellular signalling at the synapse
[Stiles and Bartol, 2001]. Although MCell could in principle be used for simulating intra-
cellular chemical dynamics, the emphasis clearly lies on extracellular dynamics; i.e. it has
mainly been used to model diffusion of ligand molecules within the synaptic cleft as well
as for the subsequent interaction of these molecules with ion-channels and transporter
molecules at the postsynaptic side. Compared to MCell, Smoldyn is a Brownian dynam-
ics simulator which was developed for the modelling of intracellular chemical signalling
[Andrews and Bray, 2004]. It has been successfully applied to the modelling of signalling
cascades within bacterial chemotaxis [Lipkow et al., 2005].
However, space can also be easily incorporated within the Gillepie algorithm. For this
task the overall reaction volume has to be divided into a set of subvolumes. This has to
be done in such a way that the size of the subvolumes is sufficiently small so that the
particles will always be uniformly distributed within the boundaries of each subvolume. In
case that this so-called well stirred criterion holds true, the Gillepie algorithm can again be
used for the simulation of chemical reactions within the subvolumes. In addition one has
to account for the diffusive movement of the particles by incorporating jump processes
which exchange particles between adjacent subvolumes. So far this approach, which is
also referred to as voxelisation in the literature, has been utilised by different groups.
[Stundzia and Lumsden, 1996] used a straightforward implementation of the Gillespie
algorithm to model the propagation of a calcium wave within a cell. In contrast to that,
[Elf and Ehrenberg, 2004] based their algorithm for the modelling of bistable chemical
systems on the Next Reaction method.

Another stochastic approach for simulating chemical signalling which for the sake of
completeness should be mentioned here is the Stochsim algorithm developed by Morton-
Firth in 1998 [Morton-Firth and Bray, 1998]. Like the Gillespie algorithm it is capable
of modelling chemical signalling in spatially equilibrated systems. However, the way by
which this is achieved is somewhat different from the Gillepie method. Within Stochsim
molecules are represented as individual data objects and the algorithm works by testing
in each time step whether a chemical reaction can occur between a randomly chosen pair
of particles. This somewhat different approach comes with the advantage that multi-
state molecules can be easily represented within Stochsim. However, the fixed time step
of the method has to be viewed as a disadvantage, since the algorithm’s accuracy and
efficacy heavily depend on the choice of the time step. Nevertheless the algorithm was
successfully applied to elucidate certain problems within bacterial chemotaxis.

Today several simulation environments exist that allow for the deterministic and stochas-
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tic modelling of chemical signalling. Often these programs are downloadable from the
world wide web. For a recent review on non stochastic simulation environments one should
consult [Alves et al., 2006]. To mention but a few of the stochastic environments currently
available, the Brownian dynamics simulators Smoldyn (http://www.pdn.cam.ac.uk/groups/comp-
cell/Smoldyn.html) [Andrews and Bray, 2004] and MCell (http://www.mcell.cnl.salk.edu)
[Stiles and Bartol, 2001] should be mentioned as well as MesoRD (http://mesord.sourceforge.net/)
[Hattne et al., 2005], and the SmartCell program package (http://smartcell.embl.de) [An-
der et al., 2004] as two examples for mesoscopic stochastic simulation environments.

1.3 Overview and objective of this work

Chemical signalling cascades have to be regarded as spatially resolved stochastic pro-
cesses. Hence they function differently than deterministicly working control circuits.
However, this is the picture that is generally suggested by depicting chemical signalling
cascades as simple wiring diagrams showing which molecular species interact with one
another. Overall, the main goal of this thesis is therefore to develop and apply stochastic
spatial methods which allow for a more realistic modelling of chemical signal transduction
cascades.

Chapter 2 comprises the fundamentals of modelling reaction diffusion systems in a
mesoscopic stochastic fashion. In particular, we will show how a reaction diffusion system
can be modelled by a Markovian process which is completely characterised by the so-called
reaction diffusion master equation. Furthermore we will present an operator description
of this equation. This part of the thesis is based on the works of Cardy and Täuber [1998]
who employed field theoretic and renormalisation methods in order to fully describing the
effects of noise in simple reaction diffusion systems. We extend their method such that
it is possible to describe arbitrary reaction networks and account for diffusion in arbitrary
geometries at the same time. Furthermore we show that this formulation allows for a
systematic small noise expansion and provides an easy approach for quantifying the effects
induced by external noise. Note, that this approach is quite different than a standard
Langevin approach which simply adds a noise term to the deterministic rate equation.
Finally, we will end that chapter by presenting three different Monte Carlo algorithms
which generate trajectories according to the chemical reaction diffusion master equation.
Chapter 3 compares the computational efficacy of these three Monte Carlo algorithms.
For the comparison we introduce two simple test scenarios, which differ in the extent
with which the reactivities vary within the reaction medium. A detailed analysis of the
algorithms will explain the difference in the algorithms’ performances. Furthermore the
analysis leads to an improved version of the logarithmic classes algorithm.
In the fourth chapter we will then investigate whether chemical wave fronts provide a
reliable mechanism for propagating a signal over long distances. As a model system we will
turn to the EGF receptor system, in which travelling fronts propagate a phosphorylation
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signal across the entire membrane. In particular, we will analytically compare a two
dimensional with a three dimensional model. Furthermore we will numerically investigate
which effects arise if one accounts for the noise. In this part, we will see that chemical
noise can lead to the spontaneous phosphorylation of all the receptors. Finally, we will
investigate how spatial noise caused by molecular crowding affects the overall properties
of a chemical wave front.
Finally, in Chapter 5 we introduce two new methods with which one can represent the
geometry of a reaction medium in a more realistic fashion than it is currently possible in
stochastic simulation environments. These two methods are the Transformed Grid Monte
Carlo method and the Finite Volume Monte Carlo method. To demonstrate the feasibility
of our approach we derive a minimal model of the gradient sensing reaction network in
Dictyostelium discoideum and show that the outcome of this signalling cascade depends
on the underlying geometry.



2 Main Theme: Stochastic methods in
signalling

in which the underlying equation, the reaction diffusion master equation is pre-
sented and in which we show how it is employed for simulating chemical signal
transduction. Furthermore we will introduce an operator description which is
used to demonstrate that noise may lead to counter-intuitive effects which are
not foreseen by a deterministic description.

2.1 Introducing the Chemical Master Equation . . . . . . . 13
2.2 Operator Descriptions of the Chemical Master Equa-

tion: Single Compartment . . . . . . . . . . . . . . . . 17
2.2.1 Functional Integral Representation . . . . . . . . . . . 21
2.2.2 Rate equations and noise induced effects . . . . . . . . 23
2.2.3 Noise induced effects . . . . . . . . . . . . . . . . . . 25

2.3 Spatially Inhomogeneous Reaction Systems . . . . . . . 28
2.4 Monte Carlo Algorithms . . . . . . . . . . . . . . . . . . 31

2.4.1 Direct Method . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Next Subvolume Method . . . . . . . . . . . . . . . . 34
2.4.3 Logarithmic Classes Method . . . . . . . . . . . . . . . 36

2.1 Introducing the Chemical Master Equation

When thinking about chemical signalling in physical terms the picture that immediately
comes to mind is that of a reaction diffusion system. For our underlying model of chemi-
cal signalling we therefore assume that we have a set of molecules immersed in a solvent
which can react with one another. Each particle has its own position and momentum
and both solvents and reactants are governed by Newton’s laws of motion. In the case
of two particles colliding with one another they either perform an elastic collision or they
undergo a chemical reaction. However, since the number of reactant molecules is greatly
outnumbered by solvent molecules, collisions among solvents and reactants occur much
more frequently than collisions among reactants. Hence, when simulating chemical sig-
nalling on this level of detail, one would most certainly account only implicitly for the
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solvent molecules in that they cause the reactants to perform a random walk which is
correctly described by Brownian motion [Grabert, 1982]. This reasoning leads directly
to the Brownian Dynamics approach which was already briefly described in section 1.2.
However since the simulation of complex reaction systems according to this method is
computationally very expensive as it scales with the number of particles in the system,
we will now and for the rest of this thesis turn to a mesoscopic level of description.

If the underlying volume of a chemical reaction system is chosen sufficiently small,
so that diffusion is fast enough to abolish spatial inhomogeneities inside the volume
between successive reactions, the system is said to be well stirred. From a modelling
perspective this means that diffusion does not have to be accounted for. In such a
scenario one can describe the state of a biochemical system within the reaction volume
Ω by a vector n = (n1, . . . , nM)T , where ni denotes the number of particles of species
Ai, i ∈ 1, . . . ,M . The system’s state is updated whenever a chemical reaction Rα

(α ∈ 1, . . . , R) occurs. Each occurrence of reaction Rα changes the state from n to
n + ∆α. The ∆α are the stoichiometric coefficients and for later convenience we split
the ∆α = ∆+

α − ∆−
α , where the index ± refers to an increase (+) or decrease (-) of

particle numbers. Hence, the indices refer to the products and educts of a chemical
reaction, such that the ∆−

α are determined from the stoichiometric coefficients on the
left hand side of a reaction and ∆+

α from the right hand side. Apart from its stoichiometry
a reaction Rα is further characterised by its propensity function λα(n, t). This function
is defined in such a way that λα(n, t) dt gives the probability (to first order in dt) that
reaction α occurs within the infinitesimal time interval [t, t+dt]. The probability of more
than one reaction occurring in dt is negligible as it is proportional to dt2. Furthermore,
in the absence of time dependent external fields, λα(n, t) does not explicitly depend on
time. A simple argument to fix the propensities on particle numbers makes use of the
kinetic collision theory of reactions. For instance, for the reaction A + B → C the
propensity function is given by

λ(nA, nB) = k nA nB, (2.1)

whereas the propensity function for the reaction A + A → B is given by

λ(na) = k na (na − 1). (2.2)

In the two equations above k denotes the second order mesoscopic rate constant of the
respective reaction and na and nb account for the number of particles of the molecular
species A and B. Overall the probability for the occurrence of a reaction is proportional
to the number of distinct reactant pairs that can participate in a reaction. Note that
the mesoscopic rate constant k has units of (time)−1. Since second order macroscopic
rate constants have the dimension (moles/litre)−1 (time)−1, the relation between the two
constants is given by

kmacroscopic ∼ kmesoscopic × A× Ω× C, (2.3)



2.1. INTRODUCING THE CHEMICAL MASTER EQUATION 15

where A is Avogadro’s number, Ω denotes the volume of the reaction medium, and C is a
dimensionless constant. For the case that the reaction involves reactants of two different
chemical species C = 1, whereas C = 1/2, if the reaction involves two molecules of the
same type.
Starting from kinetic theory, Gillespie [1977] showed that the dynamics of a chemical
reaction system are described by a continuous time Markov process with the transition
rates given by the propensities. Thus, the probability of P (n, t) to find the system in
state n at time t obeys the chemical master equation.

dP (n)

dt
=

R∑
α=1

[ λα(n−∆a) P (n−∆a)− λα(n) P (n) ]. (2.4)

The master equation may be understood as a balance equation for the probability of find-
ing the system in some state n. The first term of the right hand side of equation (2.4)
describes the gain in probability for systems to be in state n due to chemical reactions
leading from other states n−∆a into it. Accordingly the second term accounts for the
loss in probability.

The chemical master equation contains a complete description of the stochastic re-
action dynamics, including chemical noise which is due to the inherent stochasticity of
single molecular reaction events. The discreteness of particle numbers is an essential
ingredient of this type of noise. The strength of chemical noise can be quantitatively
estimated in simple cases. As an example, consider the reaction scheme

k+ : ∅ → A

k− : A → ∅.

The chemical Master equation corresponding to this reaction scheme is given by

dP (N, t)

dt
= J(N − 1 → N)− J(N → N + 1)

= k+P (N − 1, t) + k− (N + 1) P (N + 1, t) − (k+ + k−N) P (N, t).
(2.5)

where N denotes the number of A molecules and

J(N − 1 → N) = k+ P (N − 1)− k−N P (N)

J(N → N + 1) = k+ P (N)− k− (N + 1) P (N + 1)

are the net probability currents from N − 1 to N and from N to N + 1, respectively.
To study the chemical noise in this simple case let us solve the Master equation under
stationary conditions, i.e. for dP/dt = 0. As no particles emerge from zero particle
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number or get lost at infinite particle number J(N → N + 1) = J = 0 for all N =
0, 1, 2, . . . under stationary conditions. Thus

k+ Pstat(N − 1)− k−N Pstat(N) = J = 0

or, equivalently

Pstat(N) =
k+

Nk−
Pstat(N − 1).

Iterating this equation we get

Pstat(N) =
1

N !

(
k+

k−

)N

Pstat(0)

and from the normalisation of probability
∑

N Pstat(N) = 1 we get Pstat(0) = exp(−k+/k−).
Thus, the particle numbers are distributed according to a Poisson law under stationary
conditions. This implies

〈N〉stat =
k+

k−

σ2
N = 〈(N − 〈N〉)2〉stat =

k+

k−

If we follow several trajectories Nα(t), α = 1, . . . ,M all starting from identical initial
conditions, we get a typical spread in particle numbers around the expected mean value
N̄ = k+/k− due to chemical noise, which can be characterised by√

σ2
N/〈N〉 = 1/

√
〈N〉.

For N̄ = 5, 10, 20, 50, 200 the corresponding typical spreads are 44.7%, 31.6%, 22.4%,
14.1% and 7.1%, respectively. Note, however, that the typical spread may not be the most
conclusive measure of noise strength for the purposes of chemical signalling. Alternatively,
consider the probability to get no particle at all (and therefore no further signalling!),
P (N = 0) = exp(−N̄). For N̄ = 5 this takes on the value exp(−5) = 0.0067, so we
have a ≈ 0.7% chance to get no particle at all if we expect 5 particles to be present on
average. For N̄ = 3, 2, 1 this probability rises to 5%, 13.5%, 36.8%, respectively. The
triggering of many signal cascades depends on very low particle numbers, especially in
the upstream regions of the cascade and in such cases, chemical noise can cause large
fluctuations in the ultimate output controlled by the signalling cascade.
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2.2 Operator Descriptions of the Chemical Master
Equation: Single Compartment

Let us now consider a general biochemical reaction system in a single well-stirred com-
partment with a dynamics described by the chemical master equation

dP (n)

dt
=

R∑
α=1

[ λα(n−∆a) P (n−∆a)− λα(n) P (n) ].

The rhs of the equation may be considered as the action of a linear operator on a discrete
state space vector with components P (n). Note that operators corresponding to chemical
Master equations are composed from a few elementary operations:
a) the multiplication with n′i s or rather functions of the ni (the propensities)
b) shifts in particle numbers n → n + ∆α.
If we want to exploit this point of view it is very convenient to introduce notations
adapted to linear spaces.1 Therefore let us introduce a Dirac-style bra-ket notation, so
that (abstract) state vectors are denoted by |P 〉 and linear forms on the state space
by 〈φ|. In particular 〈n|P 〉 = P (n) are the components of |P 〉 with respect to a base
consisting of states, which represent non-fluctuating particle numbers. The corresponding
state vectors |n〉 form a base of mutually orthogonal vectors in the state space. We will
make repeated use of the corresponding completeness relation

∑
n |n〉〈n| = 1. The

basic operations a) and b) can be represented by operators

n̂i|n1, · · · , ni, · · ·nM〉 = ni|n1, · · · , ni, · · ·nM〉

and
T̂ (∆)|n〉 = |n + ∆〉

and the Master equation may now be written in an abstract operator notation

∂t|P 〉 = −Ĥ|P 〉 =
R∑

α=1

[T̂ (∆α)− 1]λα(n̂)|P 〉

Note that 〈n|T (∆α)|P 〉 = 〈n−∆α|P 〉 as long as all ni −∆α,i stay positive.
Further notice, that the shift operators may be written as products of elementary shift

operators, which just change the particle numbers of a single species by ±1:

T̂+
i |n1, · · · , ni, · · ·nM〉 = |n1, · · · , ni + 1, · · ·nM〉

T̂−i |n1, · · · , ni, · · ·nM〉 = |n1, · · · , ni − 1, · · ·nM〉 for n > 0.

1The description presented here is a variant of the description put forward by [Doi, 1976] and
[Peliti, 1984]. See [Cardy and Täuber, 1998] for a comprehensive review.
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so that T̂ (∆+ −∆−) =
∏

i(T̂
+
i )∆+

i (T̂−i )∆−i .

To make further progress let us consider the generating function

G(ϕ, t) :=
∑

n

(∏
i

ϕni
i

)
P (n, t).

It can be used to obtain the expectation values of observables like moments 〈nk
i 〉 =∑

n nk
i P (n, t) and correlation functions 〈nk

i n
l
j · · · 〉 by differential operations at ϕ = 1

as follows,

〈nk
i n

l
j · · · 〉 =

(
ϕi

∂

∂ϕi

)k (
ϕj

∂

∂ϕj

)l

· · ·G(ϕ, t)|ϕ=1.

Note that repeated differentiation at ϕ = 1 generates

〈ni(ni − 1)(ni − 2) · · · (ni − k)〉 =

(
∂

∂ϕi

)k

G(ϕ, t)|ϕ=1.

Probabilities P (n, t) can also be directly obtained from G(ϕ, t) by differentiations with
respect to the ϕi’s at ϕ = 0:

P (n, t) =
1

n1!n2! · · ·nM !

∂n1

∂ϕn1
1

· · · ∂nM

∂ϕnM
M

G(ϕ, t)|ϕ=0

Note that the conservation of probability implies that

G(ϕ = 1, t) = 1

In the abstract bra-ket notation, the generating function corresponds to

G(ϕ, t) = 〈ϕ|P 〉

where the state |ϕ〉 has components

〈n|ϕ〉 =
∏

i

ϕni
i .

To set up the evolution equation

∂t〈ϕ|P 〉 = −〈ϕ|Ĥ|P 〉,

consider the following matrix elements of elementary shift operators T̂±i

〈ϕ|T̂+
i |P 〉 = ϕi〈ϕ|P 〉

〈ϕ|T̂−i n̂i|P 〉 =
∂

∂ϕi

〈ϕ|P 〉
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whereas

〈ϕ|n̂i|P 〉 = ϕi
∂

∂ϕi

〈ϕ|P 〉

These relations are easily obtained by inserting the completeness relation
∑

n |n〉〈n| = 1.

Note that it is T̂−i n̂i that corresponds to a simple partial derivative. Thus it requires a bit
of disentangling (or operator ordering) to get the evolution equation of the characteristic
function as a partial differential equation, because the Master equation is naturally rep-
resented in terms of shift and particle number operators. Luckily, the problem is simple
in the most important special case. Note that

(T̂−i n̂i)
k| · · ·ni · · · 〉 = ni(ni − 1)(ni − 2) · · · (ni − k + 1)| · · ·ni − k · · · 〉

Thus, if a reaction Rα involves destruction of k particles of species i and if the propensity
has the form λα(n) = ni(ni − 1)(ni − 2) · · · (ni − k + 1)λ̃α(n) (as it should on the
basis of kinetic collision theory of reactions), then the corresponding part of the Master
equation Hamiltonian is given by

[(T̂−i )k − 1]λα(n̂) =
[
1− (T̂+

i )k
]
(T̂−i n̂i)

kλ̃α(n̂)

which leads to a term

[1− ϕk
i ]

(
∂

∂ϕi

)k

λ̃α(ϕ∂ϕ)G(ϕ)

in the evolution equation of G. Here ϕ∂ϕ is short hand notation for the set of all ϕi∂ϕi
.

Restricting our considerations to this most important case, the Hamiltonian Ĥ takes
on the form:

Ĥ = −
R∑

α=1

[∏
i

(T̂+
i )∆+

α.i

∏
j

(T̂−j )∆−α,j − 1

][∏
k

nk(nk − 1) · · · (nk −∆+
α,k)

]
λ̃α(n)

which may be rewritten into the form

Ĥ = −
R∑

α=1

[∏
i

(T̂+
i )∆+

α.i −
∏

j

(T̂+
j )∆−α,j

][∏
k

(T̂−k n̂k)
∆−α,k

]
λ̃α(n)

From this form we may read off the evolution equation for G = 〈ϕ|P 〉:

∂tG(ϕ) =
R∑

α=1

[∏
i

(ϕi)
∆+

α.i −
∏

i

(ϕi)
∆−α.i

][∏
j

(∂ϕj
)∆−α.j

]
λ̃α(ϕ∂ϕ)G(ϕ)

and the corresponding Hamiltonian in ϕ-representation H(ϕ, ∂ϕ). The conservation of

probability (stated as ∂t〈ϕ = 1|P 〉 = −〈ϕ = 1|Ĥ|P 〉 = 0 requires that every admissible
Hamiltonian has to vanish if we set all the ϕi = 1

H(ϕ = 1, ∂ϕ) = 0.

Let us set up a few examples, which may serve as templates to construct the Hamil-
tonian for complex situations:
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Monomolecular decay

k− : A → ∅

Ĥ=̂− k−(1− ϕA)∂ϕA

Spontaneous creation

k+ : ∅ → A

Ĥ=̂− k+(ϕA − 1)

Spontaneous creation of pairs

k+ : ∅ → A + A

Ĥ=̂− k+(ϕ2
A − 1)

Dimer decay

k− : A + A → ∅

Ĥ=̂− k−(1− ϕ2
A)∂2

ϕA

Bimolecular decay

k− : A + B → ∅

Ĥ=̂− k−(1− ϕAϕB)∂ϕA
∂ϕB

Monomolecular reaction

k : A → B

Ĥ = =̂− k(ϕB − ϕA)∂ϕA

Bimolecular reaction

k : A + B → C

Ĥ=̂− k(ϕC − ϕAϕB)∂ϕA∂ϕB

Finally, as an example of a reaction system, we consider a standard enzymatic reaction.
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Enzymatic reaction scheme

k+ : A + E → AE

k− : AE → A + E

kp : AE → E + P

The first reaction corresponds to

Ĥ1 = −k+(ϕAE − ϕAϕE)∂ϕA
∂ϕE

The second reaction implies the decay of AE together with the creation of A and E:

Ĥ2 = −k−(ϕAϕE − ϕAE)∂ϕAE

and the third reaction couples the vanishing of AE to the creation of E and P

Ĥ3 = −kp(ϕP ϕE − ϕAE)∂ϕAE

The complete Hamiltonian is the sum of the three parts Ĥ = Ĥ1 + Ĥ2 + Ĥ3.

2.2.1 Functional Integral Representation

In this section we want to replace the operator description by an equivalent representation
of G(φ, t) in terms of multiple, in fact infinitely many, integrals. This representation is a
very convenient starting point for systematic approximations in a large variety of systems
[Kleinert, 1993]. To free our notation from unnecessary complications we first consider
a single species. The general case will be achieved by obvious addition of indices in the
end result. We want to find a representation of

G(ϕ, t) = 〈ϕ|e−Ĥt|P0〉 (2.6)

where |P0〉 is the initial probability state vector. For definiteness, we will choose either
fixed particle numbers, i.e. |P0〉 = |n0〉 or a Poisson distribution P0(n) = 〈n|P0〉 =
exp(−n̄)n̄n/n!. Note that the corresponding generating function is given by G0(ϕ) =
exp(−n̄)

∑∞
n=0(ϕn̄)n/n! = exp[n̄(ϕ− 1)]. 2

Let us introduce operators ϕ̂ and η̂ = −i∂/∂ϕ. 3 The additional imaginary unit in
the definition of η̂ will make intermediary steps more comprehensive. Later on, it is
possible to return to a definition without the factor of i. We will make extensive use of
completeness relations corresponding to the eigenstates of ϕ̂ and η̂. Eigenstates of ϕ̂ are

2For those acquainted with quantum mechanics it may be helpful to consider the evolution equation
for G(ϕ) as a Schrödinger equation in imaginary time and take over the well-known procedure
to construct Feynman’s path integral representation of quantum mechanics.

3In quantum mechanics they would correspond to the position and momentum operator, respec-
tively.
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defined by ϕ̂|ϕ〉 = ϕ|ϕ〉, where ϕ can be any real number. They obey the orthogonality
and normalisation relations

〈ϕ1|ϕ2〉 = δ(ϕ1 − ϕ2)

The |ϕ〉 form a complete set of base vectors, the corresponding completeness relation in
Dirac-style bra-ket notation takes on the form

1 =

∫
|ϕ〉dϕ〈ϕ|

It is easy to see now that the η̂ eigenstates |η〉 correspond to plane waves in |ϕ〉-
representation 4.

〈ϕ|η〉 =
1√
2π

eiϕη (2.7)

The |η〉 also form a complete, orthonormal set and the corresponding completeness rela-
tion is

1 =

∫
|η〉dη〈η| (2.8)

Before we start let us point out that the construction it will require the operator Ĥ to
be ordered in such a way that all ϕ̂ are found left from all η̂ operators5. So, should Ĥ
not be given in this form, it first has to be reordered.

We start by writing the time evolution operator in Eq. (2.6) as a“time-sliced product”

= 〈ϕ|
N∏

k=0

e−Ĥδt|G0〉

with a small time step δt = t/(N +1). Let us now repeatedly introduce the completeness
relation Eq.(2.7) in between the factors of the time sliced product

=

∫ ( N∏
k=0

dϕk

)
〈ϕ|ϕN〉〈ϕN |e−Ĥδt|ϕN−1〉〈ϕN−1| · · · 〈ϕ1|e−Ĥδt|ϕ0〉〈ϕ0|P0〉

As all ϕ̂-operators are left from η̂- operators we have

〈ϕk|e−H(ϕ̂,η̂)δt = 〈ϕk|e−H(ϕk,η̂)δt + O(δt2)

To get rid of the η̂ operators, we again insert completeness relations this time corre-
sponding to the |η〉 basis so that

〈ϕk|e−H(ϕk,η)δtηk−1〉 = 〈ϕk|ηk−1〉e−H(ϕk,ηk−1)δt

4At this point we need the factor of i in the definition of η. A definition without this imaginary
factor would lead to so called coherent states as eigenstates. A derivation of the functional
integral representation can also be given (see e.g. [Popov, 1981]) using these states, but it
requires somewhat more insight into quantum mechanics

5Other operator ordering schemes are also possible (and lead to equivalent results), but the Hamil-
tonian always has to follow a definite operator ordering scheme
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Thus we get a product of factors of the form

〈ϕ|ηN〉〈ηN |ϕN〉〈ϕN |e−δtĤ |ηN−1〉 · · · 〈η1|ϕ1〉〈ϕ1|e−δtĤ |η0〉〈η0|ϕ0〉

Apart from the ends, the repeated motif of this product is

〈ηk|ϕk〉〈ϕk|e−δtĤ |ηk−1〉 =
1

2π
e−iϕk(ηk−ηk−1)e−δtH(ϕk,ηk−1)

Collecting all the factors we get an approximate representation of G in terms of multiple
integrals, which will become exact in the limit of infinitesimal time step, i.e. N →∞

G(ϕ, t) = lim
N→∞

∫ N∏
k=0

dϕkdηk

2π
exp(−S) G0(ϕ0) (2.9)

with

S =
N∑

k=1

iϕk(ηk − ηk−1) + H(ϕk, ηk−1)δt + iη0ϕ0 − iηMϕ− n̄(ϕ0 − 1) (2.10)

for a Poissonian initial state. Finally we may change back to the operator ∂ϕ of our
stochastic problem by putting η → −iη 6. In the continuum limit, the stochastic action
S may then be written in the form:

S =

∫ tf

0

dt[ϕ(t) ˙η(t) + H(ϕ, η)] + ϕ(0)(η(0)− n̄)− η(tf )ϕ (2.11)

Note that we may also write the action in the equivalent form

S =

∫ tf

0

dt[−η(t) ˙ϕ(t) + H(ϕ, η)] + η(tf )(ϕ(tf )− ϕ)− ϕ(0)n̄ (2.12)

which corresponds to a partial integration of the first term of the action.
As promised, the generalisation to more species is straightforward:

S =

∫ tf

0

dt[ϕ(t) · η̇ + H(ϕ, η) + ϕ(0) · (η(0)− n̄)− η(tf ) ·ϕ (2.13)

2.2.2 Rate equations and noise induced effects

A first important application of the functional integral representation is the precise defini-
tion of rate equations emerging from a stochastic formulation and a systematic small noise

6The convergence of the functional integral has to be assured by proper rotations in the complex
planes of ϕk and ηk variables anyhow.
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expansion. If fluctuations become small (compared to the typical values of S), the func-
tional integral is dominated by contributions near the saddle point trajectory (ϕc(t), ηc(t))
of S. The saddle point approximation of the functional integral is well-studied and cor-
responds to the semiclassical approximation in quantum mechanics. The equations of
motion determining the saddle point trajectories are obtained from δS/δϕi(t)|c = 0 and
δS/δη(t)|c = 0:

ϕ̇c,i =
∂H

∂ηc,i

η̇c,i = − ∂H

∂ϕc,i

(2.14)

These equations have to be supplemented by boundary conditions (see equation (2.12)
and equation (2.13))

ηc,i(0) = n̄i

ϕc,i(tf ) = ϕi,

where ϕi are the variables of the generating function G(ϕ, tf ), which we want to calculate.
Note that the system of equations of motion may be considered as a system of Hamilton

equations of a classical mechanical system with a Hamiltonian H. Below we will make
use of this analogy, identifying coordinates with ϕc,i and momenta with −ηc,i. Note
furthermore, that the quantity E = H(ϕc(t), ηc(t) (“energy” in classical mechanics) is a
constant of motion.

Given Sc = S[ϕc, ηc], the saddle point approximation implies that

G(ϕ, t) ≈ C exp[−Sc(ϕ)].

7 Thus the average particle numbers are approximated by

〈ni〉 = ϕi
∂G(ϕ, t)

∂ϕi

∣∣∣∣
ϕ=1

≈ − ϕi
∂Sc(ϕ)

∂ϕi

∣∣∣∣
ϕ=1

= ηc,i.

The latter equality holds because it is a well-known result of classical mechanics that on
the classical trajectory the derivative of the classical action with respect to coordinates
(ϕi) gives the momenta (−ηi) (see textbooks on classical mechanics, for example [Landau
and Lifschitz, 1997]). Given this relation, we want to find a closed equation of motion
for 〈ni〉c = ηc,i from equation (2.14). Note that due to the structure of the Hamiltonian,
in particular of the terms [ϕ∆+

k − ϕ∆−
i ]η∆−

i , the derivative ∂H/∂ηi will always vanish at
ϕi = 1. Thus there is always a classical solution

ϕc(t) = 1 tor all 0 ≤ t ≤ tf

7The constant C = exp(−S(1)) has to guarantee the conservation of probability.
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and the remaining equation

η̇i = − ∂H

∂ϕi

∣∣∣∣
ϕ=1

is the rate equation, emerging from the stochastic description in the limit of small noise.
An important thing to note here is that the rate equation is determined by the Hamil-

tonian in its normally ordered form. In these cases, the Hamiltonian has to be reordered,
before the rate equations can be read off and this may lead to surprising, counterintuitive
additional terms.

2.2.3 Noise induced effects

Signals, which are detected by receptors of the biological cell always carry a certain
amount of (extrinsic) noise. A signal may consist of chemical as well as physical stimuli
(like light, heat, or electro-chemical signals further downstream the signalling cascade),
which influence the propensities of reactions in the signalling cascade. Here, we want to
demonstrate, that the functional integral description of chemical reactions is very useful in
detecting noise induced effects, which sometimes appear to be counter-intuitive, because
they improve the cellular response instead of blurring or disrupting it. Such noise-induced
effects are well-known in systems described by Langevin and Fokker-Planck equations
(see for instance [Garcia-Ojalvo et al., 1992] or [Santos and Sancho, 1999]) 8, but are
only rarely studied in the context of more complicated chemical reactions. To be specific,
let us consider the following simple reaction system

k1 : A → 2A

k2 : A + A → ∅

k3 : A → ∅

The Hamiltonian of this system is given by

H0 = −k1(ϕ
2 − ϕ)η − k2(1− ϕ2)η − k3(1− ϕ)η (2.15)

and the rate equation is

η̇ = − ∂H

∂ϕ

∣∣∣∣
ϕ=1

= (−k3 + k1)η − 2k2η
2 (2.16)

The stationary states of this equation are given by

η1 = 0

8In a biological context the constructive nature of noise is best known from the study of stochastic
resonance, which accounts for the phenomenon that correctly tuned fluctuations lead to the
enhancement of an external signal [Gammaitoni et al., 1998].



26 CHAPTER 2. MAIN THEME: STOCHASTIC METHODS IN SIGNALLING

and

η2 =
k1 − k3

k2

for k1 > k3

The latter state may considered as the active response of the system to signals. Every
one of the three propensities could in principle be modified by some signal, depending
on the receptor mechanism. Let us first consider the case, where k3 = k + ξ(t) and
ξ(t) is Gaussian noise with a very short correlation time τξ as a typical simple model of
environmental noise 9. In the limit τξ → 0 we get the idealised model of Gaussian white
noise, completely characterised by the average

< ξ(t)ξ(t′) >ξ= C0δ(t− t′) (2.17)

Averages of observables over internal and external noise may be obtained from the
averaged generating function < G(ϕ) >ξ. Let us therefore consider the ξ-average within
the functional integral representation. There is a subtle point here, which becomes more
obvious when considering the averaging of the time sliced product. In our case it takes
on the form

N∏
k=1

exp[−Ĥ0δt−∆wk(1− ϕ̂)η̂]

with

∆wk =

∫ tk

tk−1

ξ(t) dt

Ĥ0 denotes the noise free part of the Hamiltonian. The ∆wk are independently distributed
Gaussian stochastic variables with zero average < ∆wk >= 0 and variance

< (∆wk)
2 >ξ= C0δt, (2.18)

in accordance with Eq.(2.17), so that each factor of the time sliced product can be
averaged separately. After inserting the completeness relations, we evaluate the factors

< 〈ϕk| exp[−Ĥ0δt−∆wk(1− ϕ̂)η̂]|ηk−1〉 >ξ (2.19)

by expanding the exponential neglecting terms of O(δt2). Note, however, that this
expansion now requires to keep terms of O(∆w2

k), which after averaging become terms
of O(δt). Thus we get

exp[−Ĥ0δt+∆wk(1−ϕ̂)η̂] = −
[
1 + Ĥ0δt−

C0

2
(1− ϕ̂)η̂(1− ϕ̂)η̂δt

]
+O(δt2) (2.20)

The result of the averaging may be considered as an addition to the Hamiltonian Ĥ0.
Note, however, that the additional term is not ordered in such a way that all the ϕ̂

9Note that an increase in signal corresponds to a decrease in the degradation rate k3.
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operators are on the left to all the η̂ operators. Thus we have to reorder this term before
we can actually evaluate the expression Eq.(2.19). The correctly ordered Hamiltonian
looks as follows:

Ĥ = Ĥ0 +
C0

2
(1− ϕ̂)η̂ − C0

2
(1− ϕ̂)2η̂2.

The second term on the r.h.s. of this equation corresponds to a renormalisation (shift) of
the net rate of A-production and it will show up in the rate equation by the replacement

(−k3 + k1) →
(
−k3 + k1 +

C0

2

)
.

The 3rd term on the r.h.s. will not show up in the rate equation and may be considered
as a modification of the internal chemical noise. It is somewhat counter-intuitive that
the effect of the noise is to enhance the signal (i.e. lead to a decrease of the degradation
rate).

Such noise induced effects have been widely studied using Langevin equations. When
using this formalism, it is well-known that the renormalisation of rates appears and leads
to qualitative changes in the system dynamics for spatially extended systems. 10 Exam-
ples include noise-induced phase transitions, noise-induced front propagation and noise
induced generation of patterns. A survey of such phenomena is given in [Sancho and
Garcia-Ojalvo, 2000].

The added value of the present approach is not only that it makes it easy to transcribe
many of the results obtained for Langevin equations to chemical reaction-diffusion systems
described by Master equations. It also gives direct and easy access to noise induced
renormalisation due to more complex couplings between the signal and the receptor. The
general recipe to establish additional terms due to noisy external signals should be clear
by now. If we can split the Hamiltonian into a noise-free part and a coupling of extrinsic
(Gaussian white) noise to the system as follows

Ĥ = Ĥ0 + ξ(t)Ĥ1,

and then repeat the above steps we end up with a Hamiltonian

H̃ = Ĥ0 −
C0

2
Ĥ2

1 = Ĥ0 + ∆Ĥnoise

after averaging over ξ. Finally we have to reorder Ĥ2
1 appropriately, bringing all η oper-

ators to the right.
Let us illustrate the procedure for the other two propensities of our reaction system.

If external noise couples to the autocatalytic reaction k1 → k1 + ξ(t) we get

∆Ĥnoise = −C0

2
ϕ̂(ϕ̂− 1)η̂ϕ̂(ϕ̂− 1)η̂,

10For single compartment systems, the presence of noise prevents an actual phase transition and
the modified noise counteracts the renormalisation effect for long times.
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which after reordering takes on the form

∆Ĥnoise = −C0

2
[ϕ̂(ϕ̂− 1)(2ϕ̂− 1)η̂ + ϕ̂2(1− ϕ̂)2η̂2]

Replacing the operators by numbers and differentiating with respect to ϕ at ϕ = 1 we
get the additional terms in the rate equation. Here

∆η̇|noise =
C0

2
η,

i.e. the same renormalisation as induced by k3 noise. (Note, however, that the addi-
tionally induced terms look completely different in these two cases, indicating a different
renormalisation of intrinsic noise)

Finally, if the extrinsic noise couples by k2 → k2 + ξ(t) we have

∆Ĥnoise = −C0

2
(1− ϕ̂2)η̂(1− ϕ̂2)η̂.

Reordering this term we get

∆Ĥnoise = −C0

2
[(1− ϕ̂2)2η̂4 − 4(1− ϕ̂2)ϕ̂η̂3 − 2(1− ϕ̂2)η̂2]

and this leads to

∆η̇|noise =
C0

2
[8η3 + 4η2].

Note that these terms change the global dynamical behaviour of the system qualitatively.
The η3-term leads to an inevitable instability and a run-away behaviour, whereas the η2

term shifts the binary decay towards global instability. Thus the system is structurally
unstable against noise in the binary decay term. This is also a somewhat surprising result,
which shows that certain receptor mechanisms require further elements of the biochemical
network to stabilise it against extrinsic noise.

2.3 Spatially Inhomogeneous Reaction Systems

The above derivation of the chemical master equation heavily relies on the assumption
that the propensity functions only depend on the current state of the system. In par-
ticular this means that the spatial distribution of molecules within the reaction medium
equilibrates on a much faster timescale than the timescale on which chemical reactions
occur. However, since the stirring of the medium depends on the diffusive transport
of the particles, this condition is not necessarily met when studying chemical signalling.
For cytosolic proteins the diffusion coefficients typically lie in a range between 10 and
50 µm2 s−1 . Since the average distance covered by diffusion is proportional to the square
root of time. i.e.

〈L2〉 ∝ Dt, (2.21)
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it takes a protein approximately 2 to 10s to cover a distance of 10 µm, which is a realis-
tic length scale for eukaryotic cells. Hence, a simulation method, which totally neglects
space would only be justified, if the time in between any two reaction would be on the
same order of time. Clearly this is not the case for biological system in which typical rate
constants vary in a range from 0.1 to 100 s−1.
That the cellular environment does not constitute a homogeneous reaction medium be-
comes even more obvious, if one also bears in mind, that diffusion is highly restricted in
biological cells due to molecular crowding and constraints imposed by geometry [Elowitz
et al., 1999]. It is therefore obvious that the underlying geometry needs to be accounted
for when modelling chemical signalling. Within the mesoscopic approach presented here
this is accomplished by subdividing the overall reaction volume Ω into N non-overlapping,
coupled, well-stirred reaction volumes Ω(rk) k = 1, . . . , N . The subvolumes are labelled
by a representative point rk from their interior. In particular we assume for the time being
that the virtual subvolumes are cubic in shape and that they are all of the same size.
This restriction will be abandoned in Chapter 5, when we will cover the spatial modelling
of chemical signalling cascades in greater detail. In order for our approach to produce
physically meaningful results, it is now essential that the molecules are homogeneously
distributed in each subvolume. Above, we have argued that this is the case if the typical
time for a particle to cross a subvolume by three-dimensional diffusion is much smaller
than the time in between two successive reactions. For cubic subvolumes of volume Ω(rk)
and side length Ω(rk)

1/3 we therefore have to require that

Ω(rk)
2/3/D � λ−1.

Let us now extend the above formalism to this new situation, where we have a collection
of well-stirred reaction subvolumes Ω(rk), k = 1, 2, · · · , which make up the total reaction
volume Ω. The state space of the system is spanned by the ket vectors

|n(r1), n(r2), · · · 〉.

Chemical reactions are considered as strictly local within each subvolume, i.e. the
Master equation would take on the form

∂t|P 〉 = −Ĥreact|P 〉 = −
∑

k

Ĥreact
k |P 〉

(where Ĥreact
k acts only on particle numbers in subvolume k) were it not for the thermal

motion of molecules, which leads to incoming and outgoing particles in each subvolume
via its boundaries. In the mesoscopic description we model this motion as a random
hopping between adjacent subvolumes. The hopping probabilities have to be determined
from the requirement that the molecular motion on scales large compared to subvolume
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sizes has to be diffusive. As noted above, we will in this chapter only consider the simple
situation of cubic subvolumes of equal size, which fill up the reaction volume (a cube)
with a regular cubic lattice. The representative points rk are placed at the centre of
the cubic subvolumes so that the rk make up a simple cubic point lattice with lattice
sites at a(m1e1 +m2e2 +m3e3) with integer number m1, m2, m3. The hopping process
may be described by a collection of first order chemical reactions.There is one reaction
for every nearest neighbour to a lattice site. The neighbours of site rk are located at
rk + aeµ, µ = 1, 2 · · · , 6, where the eµ correspond to ±e1,±e2,±e3. The reactions
Ri,k,µ are characterised by

wi,k,µ : Ai(rk) → Ai(rk + eµ)

with propensities wi,k,µ = Ki,k,µni(rk) which reflect the first order kinetics resulting from
the independent molecular motions of individual molecules. The Hamiltonian correspond-
ing to these monomolecular reactions takes on the form

Ĥhop = −
M∑
i=1

∑
k

6∑
µ=1

Ki,k,µ[ϕ̂i(rk + eµ)− ϕ̂i(rk)]η̂i(rk) (2.22)

or equivalently

Ĥhop = −
M∑
i=1

∑
k

6∑
µ=1

Ki,k,µ[η̂i(rk + eµ)− η̂i(rk)]ϕ̂i(rk)

For long wavelength fluctuations in a homogeneous medium (for which Ki,k,µ = Ki) we
may pass to a (formal) continuum limit by the replacements
1.) from sum over rk to integral

∑
rk
→ a3

∫
d3r

2.) from particle numbers to densities ηi(rk) → a3η(r)
3.) ϕ(rk) → ϕ(r).
The sum over lattice directions is a discretized version of the Laplace operator on the
cubic lattice and we replace

1

a2

∑
µ

[η̂i(rk + eµ)− η̂i(rk)] → ∆η̂(r) + O(a2)

The reaction part of the Hamiltonian becomes an integral of a Hamiltonian density ĥreact,
so that the continuum limit of Ĥ takes on the form

Ĥ = −
M∑
i=1

Ki

a2

∫
d3 rϕ(r)∇2η(r) +

∫
d3r ĥreact(ϕ(r), η(r))

To ensure diffusive motion on the long length-scales we identify

Ki

a2
→ Di Diffusion constant of species i
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in the continuum limit. The semiclassical evolution equations corresponding to this
Hamiltonian takes on the form of a general system of reaction diffusion equations

∂tηi(r, t) = Di∇2ηi(r, t)− ∂hreact

∂ϕi(r, t)

∣∣∣∣
ϕ=1

2.4 Monte Carlo Algorithms

In the following we will present three different algorithms for generating trajectories of
stochastic processes whose dynamics are described by a master equation. In the present
case the underlying master equation will of course be the reaction diffusion master equa-
tion from above. The algorithms to be presented are called the Direct Method (DM),
the Next Subvolume Method (NSM), and the Logarithmic Classes Method (LCM). With
the help of an ensemble of trajectories one is able to estimate the statistics of the ob-
servables. In the ideal case of the model capturing the essence of the underlying system,
the generated trajectories correspond to observations that could in principle be made in
real biological experiments.

All algorithms which we will use for simulating chemical signalling work by first deter-
mining the time at which the next event occurs. Subsequently they decide what kind of
an event this will be, i.e. it is decided whether a reaction occurs or whether a particle is
moved from one subvolume to another. The algorithms therefore belong to the general
class of variable time step methods. Determining the time at which the next event will
happen can be easily done because the times in between successive events are exponen-
tially distributed. To see this, let us first consider the general case of a Markov process in
which the probability of observing a transition from one state to another within the time
interval dτ is given by the probability r dτ . Consequently the probability for observing a
state change exactly after n + 1 time steps of length dτ is given by

p = (1− r dτ)n r dτ. (2.23)

If we now set τ = (n + 1) dτ and take the limit dτ → 0, while leaving τ fixed, it
immediately follows that n →∞. This however means that the probability of a transition
exactly after a time interval of length τ is given by

p(τ) dτ = r exp{−r τ} dτ. (2.24)

Hence, if we want to calculate the residence time of a system to be in some state, we
need to draw an exponentially distributed random number with parameter r. In the
present case of modelling reaction diffusion systems, the parameter r will either refer to
the reactivity of a subvolume γk, defined by the sum over all diffusion and reaction rates,
i.e.

γk =
M∑
i=1

6∑
µ=1

wi,k,µ +
∑

α

λk
α, (2.25)
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or r will refer to the overall reactivity of the system Γ, which in return is given by the
sum over all the subvolumes’ reactivities, i.e.

Γ =
∑

k

γk. (2.26)

Notice, that the average waiting times in between two events in a subvolume k or in the
entire system are given by the inverse of γk and Γ respectively. This is simply due to the
fact that the first moment of an exponential distribution with parameter r is given by
1/r.

2.4.1 Direct Method

The Direct Method (DM) was originally proposed by D. Gillespie in 1976 for the simula-
tion of well stirred, single compartment chemical reaction systems [Gillespie, 1976]. It can
however easily be extended to systems with several well stirred subvolumes. As already
indicated above the DM consists of the repetition of two steps. First it calculates how
long the system will stay in the current state before a new state is selected in the second
step. For calculating the time at which the next event will take place, it draws a random
number τ from an exponential distribution with the global weight Γ as a parameter. Sub-
sequently it sets the system time t to t = t + τ . In the second step the algorithms then
chooses the subvolume in which the event takes place. In particular the algorithm has to
choose a subvolume i such that the probability of selecting that subvolume is given by the
ratio of its weight to the overall reactivity of the system. This task can easily be accom-
plished with the linear selection scheme. The general idea behind this method is given in
Figure 2.1, in which the reactivities of each subvolume are visualised as subintervals on a
line, which has a total length equal to the total reactivity Γ. In a implementation of the

0 Γ

Γr

. . .                     γ                     γ                   γ                      . . .
k−1                          k                         k+1

Figure 2.1: Selecting a subvolume with a probability proportional to is contribution to
the overall weight is accomplished by multiplying the overall reactivity Γ with a uniformly
distributed random number r. Obviously the probability that the point r Γ lies in the
boundaries of intervals γk is given by γk/Γ.

linear selection method one begins with multiplying the overall reactivity of the system Γ
with a random number r which is uniformly drawn from the unit interval. This product is
assigned to some variable s = Γ r. Subsequently the reactivities of the subvolumes γk are
subtracted one after another from s until its value drops below 0 for the first time. The
subvolume k for which this is the case marks the reaction cell in which the next event will
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take place. From the graphical representation of the linear selection method displayed in
Figure 2.1 it should also be clear that one can subtract the reactivities of the subvolumes
in any order from s because r is a uniformly distributed random number. Choosing an
event from that subvolume has again to be done in such a way that the probability of
choosing a particular event is given by its contribution to the overall reactivity of the sub-
volume. Hence, the linear selection scheme is employed anew. Again, this involves the
drawing of a uniformly distributed random number r2 from the interval [0, 1], which this
time has to be multiplied with the weight of the chosen subvolume γk, such that one has
w = r2 γk. The individual propensities of the potential reaction and diffusion events are
then subtracted until w drops below 0. The event j for which this is the case marks the
chosen event. After executing it, the weights of the affected subvolumes are updated, i.e.
one has to recalculate the reactivity of one subvolume if a reaction event occurred and
two reactivities have to be recalculated in case that a diffusion event occurred. Finally
after having updated the global weight as well, the overall procedure is repeated until
the stopping criteria is met. A recipe of the algorithm is given in the box on the next page.
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Recipe Direct Method

1. Initialisation: Calculate propensities of all reaction and diffusion events and
calculate the weights of all subvolumes. Calculate global weight Γ.

2. Determine τ according to an exponential distribution with parameter Γ and
set global time t to t = t + τ .

3. Choose the subvolume in which the next event will take place with the help of
a linear selection method:

– Draw a normalised uniformly distributed random number r and set X =
r ∗ Γ and set k = −1.

– while (X>0)

∗ k = k + 1

∗ X = X − γk

4. Choose which event will take place within subvolume i with the help of a linear
selection method:

– Draw a normalised uniformly distributed random number r2 and set Y =
r2 ∗ γk and set j = −1.

– while (Y>0)

∗ j = j + 1

∗ Y = Y −xj (with xj denoting either the propensity of a diffusion or
of a reaction event)

5. Execute event j and update affected weights; repeat from 2 if stopping criteria
are not met.

2.4.2 Next Subvolume Method

The Next Subvolume Method (NSM) was developed by J. Elf and M. Ehrenberg in 2004
[Elf and Ehrenberg, 2004]. It uses a slightly different approach than the DM, resembling
that of the First Reaction Method (FRM), which was also proposed by D. Gillespie in
1976 for the simulation of well stirred reaction systems [Gillespie, 1976]. This latter
algorithm was formerly considered as being less efficient than the DM and was therefore
never really used. Instead of using the global reactivity for calculating the next event
time as in the Direct Method, the FRM generates putative next event times for each
possible reaction. Subsequently it chooses the reaction channel for which the next event
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time is minimal. The NSM is similar to the FRM in that it also calculates putative next
event times. However, it does this for every subvolume and not for every event. For each
subvolume k the putative next event time tk is given by tk = t+τ with t being the global
time of the system. τ is a random number drawn from an exponential distribution with
the subvolume’s reactivity γk as parameter, i.e. pk(τ) = γk exp(−γkτ). After having
all the putative event times at hand, the problem consists of finding the subvolume for
which the next event time is minimal. In order to efficiently select this subvolume, the
NSM administers the event times of all the subvolumes in a binary heap, which is a data
structure commonly used to store items in a prescribed order. In particular a binary heap
is a binary tree with an additional constraint imposed on the way in which the values
are stored in the data structure. This is known as the heap condition. In the present
case this condition consists of the requirement that the values stored within the children
of a node i are always larger than the value stored in the node itself. That way the
subvolume in which the next event will take place is easily identified as it is always stored
in the root of the heap. An example of a binary heap as it is used in this algorithm is
given in Figure 2.2, in which one assumes that the reaction medium is made up of four
subvolumes a, b, c, and d in which the next events occur at times 1.3, 1.7, 0.2, and
1.1. The idea of using a binary heap in kinetic Monte Carlo simulations is not at all new.

0.2

c

1.3

a

1.1

d

1.7

b

Figure 2.2: An example of a binary heap as it is used in our simulation environment.
Note that a node consists of two parts. Apart from the event time it also stores an
identifier referring to the subvolume for which it stores this value.

In the context of simulating chemical signalling it has first been employed in the Next
Reaction Method, which was developed by Gibson and Bruck in 2000 for the simulation
of single compartment systems. After having accessed the subvolume, whose next event
time is stored in the root of the heap, the algorithm first sets the global time to t = tk.
Then the algorithm needs to decide which event will occur in the selected subvolume.
Again this has to be done in such a way that the probability of selecting an event is
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equal to the event’s contribution to the overall weight of the subvolume. Consequently,
this task is accomplished by employing the linear selection method. Hence, this part of
the algorithm is similar to the fourth step in the Direct Method. Subsequently after the
execution of an event at most two putative event times have to be updated; one if the
event was a reaction and two in the case that a diffusion event occurred. Furthermore,
before the algorithm is repeated, one has to update the heap at most at two distinct
nodes, for which standard algorithms exist [Sedgwick and Van Wyk, 2002]. A detailed
outline of the algorithm is again given as a recipe and can be found below.

Recipe Next Subvolume Method

1. Initialisation: Calculate propensities of all reaction and diffusion events and
calculate weights of all subvolumes.

2. Calculate the first event time for each subvolume by drawing a random number
according to an exponential distribution with parameter γk. Store subvolumes
in such a way in a binary heap so that the ancestors of an arbitrary node always
have a later event time than their predecessor. This way the subvolume for
which the next event occurs first is stored within the top node.

3. Subvolume k stored within the top element of the heap marks the subvolume
in which the next event occurs. Set global time t to t = τk.

4. Determine next event within subvolume k according to a linear selection
method described within the Direct Method.

5. Determine new next event times for the affected subvolumes. If necessary
update ordering of the nodes within the heap so that all ancestors have again
a later event times than their predecessors.

6. Repeat from 3 if stopping criteria are not met.

2.4.3 Logarithmic Classes Method

An approach almost forgotten today is the algorithm first proposed by [Fricke and Wendt,
1995] and which has been described by Schnakenberg in 1995 [Schnakenberg, 1995]. In
the following we will refer to this algorithm as the Logarithmic Classes Method (LCM).
At the bottom of this algorithm is the insight that the linear selection scheme used in
the Direct Method has to sum on average over N/2 reactivities in order to select the
subvolume in which the next event will occur. In order to avoid this computational
bottleneck, the LCM is based on the idea of using some sort of presorting when selecting
a subvolume. This is achieved by binning the subvolumes according to their reactivities
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Figure 2.3: Left part: A set of points (xi, yi) evenly fills the area underneath some
function f(x), if the xi are random numbers distributed according to f(x) and if the yi

are generated in such a way that they are evenly distributed in the interval [0, f(xi)].
Right part: Visualisation of the von Neumann method: x1 is accepted as a realisation
of a random number generated according to f(x) because y1 < f(x1). x2 is rejected
because y2 > f(x2).

into logarithmic classes. In particular, a subvolume k belongs to the logarithmic class Cy,
if the following relation for its reactivity γk holds true:

2y ≤ γk < 2y+1. (2.27)

Hence, Cy defines a set of subvolumes in which the reactivities differ at most by a factor
of 2. Moreover the algorithm keeps track of the overall reactivity of a logarithmic class
Γy =

∑
k∈Cy

γk as well as of the system’s total reactivity Γ =
∑

Cy
Γy. The last quantity

is again used for calculating the time at which the next event occurs. This is done as
described under the second point in the recipe of the Direct Method. Choosing the sub-
volume is now split into two steps. First a logarithmic class has to be selected before one
actually selects the subvolume in which the next event will occur. The first step is ac-
complished by using a linear selection procedure such that a logarithmic class y is chosen
according to its contribution to the overall reactivity Γy/Γ. Subsequently a subvolume
k has to be drawn out of the obtained logarithmic class according to its contribution
to the logarithmic class’s overall reactivity (γk/Γy). For this task the algorithm employs
the von Neumann rejection method. This method dates back to 1947 and allows for the
generation of random numbers distributed according to any given probability density. It is
based on the observation that if we are given a large set of random numbers A which are
generated according to the probability density p(x), then the area underneath p(x) will
be evenly filled with points (x, y), if we draw for every realisation x ∈ A a second random
number y = p(x) r with r being a uniformly distributed random number between 0 and
1. We have visualised this finding in the left part of Figure 2.3. Hence, if we are given
some function f(x) defined on the interval [a, b] for which an upper bound M is known
to exists, we can generate random numbers according to this function in the following
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way: First a random number r1 is generated, which is uniformly distributed in the interval
[a, b]. However, this random number will only be accepted as a correct random number,
if the relation r2 ≤ f(r1) holds true for a second random number uniformly drawn from
the interval [0, M ]. Otherwise, r1 is rejected and the procedure has to be repeated. We
have visualised this algorithm in the right part of Figure 2.3, in which x1 is a random
number that can be accepted, whereas x2 has to be rejected. Applying the von Neumann
algorithm to the present context of selecting a subvolume from a logarithmic class, this
implies that one first randomly chooses a subvolume k from the selected logarithmic class
with probability 1/ny (ny denoting the total number of subvolumes within logarithmic
class y). Subsequently one compares the subvolume’s reactivity with the product of a
second uniformly distributed random number r2 and the upper bound of the subvolumes’
reactivities. According to the definition of a logarithmic class, this last quantity is given
by 2y+1. Hence, if r2 2y+1 ≤ γk an event is linearly selected and executed in subvolume
k. Otherwise the entire method has to be repeated. After executing the event and up-
dating the weights, the algorithm has to check, whether the affected subvolume(s) still
belong to the correct logarithmic class(es). If necessary, the updated subvolumes have
to be reassigned to different logarithmic classes, before the algorithm can be repeated.
As for the previous two algorithms this method can be found in the form of a recipe below.

Recipe Logarithmic Classes Method

1. Initialisation: Calculate propensities of all reaction and diffusion events and
calculate weights of all subvolumes. Calculate global weight and set up loga-
rithmic classes table.

2. Determine τ and set global time t to t = t + τ

3. Select a logarithmic class l according to a linear selection scheme.

4. Select a subvolume from the logarithmic class l with the help of a von Neumann
rejection method:

– Select randomly a subvolume k from the logarithmic class l.

– Draw a normalised uniformly distributed random number r. If r 2l+1 ≤ γk,
subvolume k is selected. Else repeat from step 4.

5. Select an event to be executed within subvolume k by a linear selection method.

6. Update affected subvolumes and weights. Repeat from 2 if stopping criteria is
not met.



3 Variation 1: Comparing the efficiency
of the different approaches

in which we compare the computational efficiency of the three algorithms pre-
sented in the previous chapter. The Logarithmic Classes Method turns out to
be the most efficient method for simulating chemical signalling cascades. We
conclude this chapter by presenting an optimisation of this algorithm.
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3.1 Introduction

In the last chapter we have presented three algorithms with the help of which one is
capable of simulating chemical signalling in a spatially resolved manner. That these
algorithms are not equally well suited for this task will become evident in this chapter, in
which we will compare the computational efficiency of the different methods. Nowadays,
apart from detailed experimental input, computational efficiency has turned out to be
the most important bottleneck for stochastic simulations of reaction diffusion systems in
the field of systems biology [Lok, 2004].

For comparing the computational efficiency of the three algorithms, two different sce-
narios were used. In the first scenario the event probabilities are roughly homogeneously
distributed across the reaction medium whereas the second scenario displays great in-
homogeneities in the spatial distribution of the weights of the reactioncells. Thereby
we cover the two extremes which can be encountered when dealing with spatially re-
solved chemical signalling systems. All three algorithms were implemented in the C++
programming language and compiled using the GNU C compiler assembly version 4.0.1
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with optimisation flag -O2. Simulations were subsequently performed on an IBM T30
notebook with a 2.3 MHz Intel Pentium III Mobile CPU with 768 MB of RAM.

Before we start, notice that the reaction diffusion systems which we used for comparing
the algorithms are all fairly simple. This is due to the fact that we want to compare the
algorithms’ performance on choosing the subvolume in which the next event will take
place, because this is the most time consuming step in all the three stochastic methods.
An increase in system size will foremost lead to an increase in the computing time used for
selecting a subvolume. To ensure that only the selection of the subvolume is compared,
all three methods use the same algorithm for choosing a diffusion or reaction event. As
can be seen in chapter 2, a linear selection scheme was always used for this task. Using a
more sophisticated method for selecting an event would therefore not change the results
of this comparison but only increase the overall efficiency of all the three algorithms used
for this study.

3.2 Comparison

3.2.1 Autocatalytic waves

As a first test suite the spreading of an autocatalytic wave on a two dimensional grid
is considered. This reaction diffusion system involves two chemical species denoted as
active (A) and inactive (I) which have the same diffusion coefficients DA = DI = 20 (in
dimensionless units). The number of molecules is changed by either one of the following
two reactions

A + I
k→ A + A

A + I
r→ I + I, (3.1)

for which the reaction rates are equal to k = 0.02 and r = 0.01 (again in dimensionless
units). A rectangular grid with corners (0,0), (0,Ly), (Lx,0), and (Lx, Ly) in a rectangular
(x,y) coordinate system is used as a reaction volume. The system sizes are varied from
32 × 16 to 2048 × 1024 gridcells. In the beginning all subvolumes attached to the left
boundary extending in the y-direction from (0,0) to (0,Ly) only contain A molecules and
no I molecules. In the rest of the grid the opposite holds true. There the density of I
molecules is set to 1 whereas the density of A molecules is equal to 0. Having prepared
the system in this way, a travelling wave carried by A particles will evolve propagating
with constant velocity into the positive x direction. Visualising this system after a certain
amount of time, gives rise to a snapshot as shown in left part of Figure 3.2. In that figure
we use grey scales to code for the concentration of active molecules. Those parts of the
medium which contain a high concentration of active molecules are dark whereas the
absence of active molecules is indicated in white.

In Figure 3.1 the time needed to perform 105 Monte Carlo steps is plotted as a function
of system size. The red curve stands for the time needed by the LCM and the blue curve
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Figure 3.1: Time needed by the Next Subvolume and Logarithmic Classes Method
to perform 100,000 Monte Carlo steps when simulating the reaction system stated in
equation 3.1. The time is measured as a function of the number of reaction cells within
the mesh

shows the performance of the NSM. The results are normalised such that unity is equal
to the time needed by the Next Subvolume Method to perform 105 Monte Carlo steps
on the smallest grid. Note that we have not included the computing time needed by
the Direct Method in Figure 3.1 because it drastically increases with increasing system
sizes. For the smallest systems of a size of 32×16 reaction cells the Direct Method takes
the same amount of computing time. However, for a system composed of 512 × 256
reaction cells it already takes more than 100 times as long as the other two methods!
Comparing the efficiency of the Logarithmic Classes Method and the Next Subvolume
Method reveals that the former always needs less computing time. For small system sizes
(less then 4096 reaction cells) the difference between the two methods is only marginal.
Starting with system sizes around 213 subvolumes the Next Subvolume method becomes
more and more inefficient. Finally, for the largest simulated system consisting of 221

reaction cells, this method is more than two and a half times slower than the simulation
using the Logarithmic Classes Method. Interestingly, in contrast to the Next Subvolume
Method the computing time needed by the Logarithmic classes Method stays almost
constant. Overall the computing time of this method only increases by roughly 40 %
when increasing the system from 29 to 221 subvolumes. As opposed to that the Next
Subvolume Method consumes 250% more computing time when comparing the largest
with the smallest system.

3.2.2 Localised spots

Whereas the reactivities did not differ strongly across the medium in the previous example
we will now consider a reaction diffusion system exhibiting large inhomogeneities. For
this purpose we use the reaction diffusion system which was presented in [Bettelheim and
Lehmann, 1999] and [Shnerb et al., 2003]. In this system particles of molecular species
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Figure 3.2: Snapshots of the two systems used for comparing the efficiency of the
different algorithms. White regions indicate the absence of active molecules whereas an
increasing darkness codes for an increasing presence of these molecules. The left plot
visualises a catalytic wave travelling from the left to the right and the right part shows
the pattern arising in the localised spots reaction diffusion system.

A depend upon particles of species F for reproduction. In particular the system is made
up of the following two reactions:

A + F
k→ A + A + F

A
r→ ∅. (3.2)

The reaction and diffusion rates were chosen according to [Shnerb et al., 2003] who used
the dimensionless values k = 13 and r = 8 for the reaction rates and DA = 10 and
DF = 0.2 for the diffusion rates. With only a few F particles being randomly distributed
across the medium, this system gives rise to islands with high numbers of A molecules
surrounded by a desert in which there are virtually no molecules. Of course, islands can
only evolve around F molecules as they catalyse the reproduction of A. As in the previous
case, the system was simulated on two dimensional grids of varying sizes ranging from
32 × 16 to 2048 × 1024 reaction cells. A snapshot of how the system looks like, when
the performance is measured can be seen in the right part of Figure 3.2. Again a grey
scale scheme is used for depicting the concentration of A molecules. Regions with a high
A concentration are dark whereas regions containing no A molecules are light. Obviously
there are only a few spots in the reaction system, at which the concentration of the active
molecules is high. It is at these places where most of the reaction and diffusion events
will take place.
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Figure 3.3: Time needed by the Next Subvolume and Logarithmic Classes Method
to perform 100,000 Monte Carlo steps when simulating the reaction system stated in
equation 3.2. The time is measured as a function of the number of reaction cells within
the mesh.

The normalised results are displayed in Figure 3.3. Again unity refers to the time needed
by the Next Subvolume method to perform 105 MC steps on the smallest grid and the
blue curve stands for the NSM whereas the red curve accounts for the LCM. Notice that
the time needed by the Direct Method for large systems is again beyond all evil so that we
again only compare the Next Subvolume Method with the Logarithmic Classes Method.
The results of this comparison for this system are somewhat different from the previous
case. For small systems having less than 256 × 128 reaction cells the Next Subvolume
Method is in fact faster than the Logarithmic Classes Method. For larger systems the
latter method becomes again more efficient. However, the discrepancy between the two
methods is not as strong as in the previous case. For the largest system simulated here
the Logarithmic Classes Method is only twice as fast as the Next Subvolume Method.
Furthermore, one can again observe that the logarithmic classes method does not depend
as strongly as the Next Subvolume Method on the number of subvolumes in the system.

3.3 Discussion

3.3.1 Analysis of the different Monte Carlo methods

When comparing the different Monte Carlo methods for simulating reaction diffusion
systems, we have seen that one should not use a naive adaptation of Gillespie’s Direct
Method to reaction diffusion systems. It is always a lot less efficient than the other two
algorithms. Notice, that also the improved version of the Direct Method proposed by Cao
et al. [2004] will not be applicable for simulating spatially extended signalling systems.
This optimised version of the Direct Method was proposed for simulating spatially homo-
geneous reaction systems. It increases the efficiency of Gillespie’s original algorithm by
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storing the reaction propensities in an ordered fashion such that the largest propensities
are always subtracted first from the global weight. That way the chance of deciding in
the first steps which event will take place, is greatly increased. This method may work
fine when one has to maintain a limited number of reaction propensities in the correct
order. However, maintaining the subvolumes ordered according to their reactivity is a
computationally demanding task because this number easily becomes larger than 105

when simulating signalling cascades in a realistic setting.
Overall, when simulating chemical signalling by an exact stochastic method, the Next
Subvolume Method or even better the Logarithmic Classes Method should be preferred.
The comparison of these two methods in the previous section revealed that the latter
method is always more efficient than the former, when large reaction systems are simu-
lated.

Overall the observed behaviour can easily be understood, if one analyses to which
complexity classes the different algorithms belong. The Direct Method is most time
consuming because in each propagation step it has to subtract on average n/2 terms (n
being the number of reaction cells within the system) from the global reactivity in order to
determine in which subvolume the next event will take place. Hence, the Direct Method
belongs to the complexity class O(n). As compared to this, it takes the Next Subvolume
Method only O(log2 n) steps to update the binary heap in the worst case scenario. This
is simply due to the fact that the binary heap used for storing the reactivities of the
subvolumes contains log2 n layers. Hence, in the case that the reaction time in the
subvolume referred to by the top node of the heap is changed after an event in such a
way that it needs to be propagated down to the lowest layer of the heap, the algorithms
will perform log2 n comparisons. It seems as if this algorithm approaches this behaviour
for large systems as a straight line can be fitted to the data (see Figure 3.1). Finally, the
performance of the Logarithmic Classes Method depends on the linear selection scheme
used for choosing a logarithmic class as well as on the rejection level of the von Neumann
algorithm. In the two systems presented above there were never more than twelve different
logarithmic classes. Since the reactivities within the classes by definition never differ by
more than a factor of two, both steps are highly efficient. Overall, the complexity of the
LCM is given by O(L)+O(r(L)), where L denotes the number of logarithmic classes and
r(L) accounts for the number of rejections within each von Neumann step. Unlike the
other two methods this algorithm therefore does not depend directly on the number of
subvolumes within the system, which makes it superior to its competitors. To summarise
these results we restate the complexity classes of the three different algorithms in Table
3.1.

In the introduction to this chapter we have already pointed out that the efficiency
of the stochastic algorithms used for simulating chemical signalling mainly depends on
the number of subvolumes included in the system. As opposed to that the number
of chemical species and reactions is of minor importance. To elaborate on this point,
consider for instance the recent work by [Fange and Elf, 2006] in which a chemical
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Algorithm Complexity Class

Direct Method O (n)
Next Subvolume Method O (log n)
Logarithmic Classes Method O (L) + O (r(L))

Table 3.1: Complexity classes of the different algorithms. Whereas the first two method
scale with the number of gridcells n the complexity class of the Logarithmic Classes
Method is proportional to the number of logarithmic classes L and to the number of
rejections occurring within the von Neumann algorithm r(L).

signalling cascade (the Min system) in a bacterial cell (Escherichia coli) was simulated.
In this study the reaction medium consisted of more than 10.000 subvolumes. This was
orders of magnitude higher than the number of the reaction and diffusion events that
could occur within the system, which was only on the order of 10. Hence, choosing the
subvolume and not the reaction or diffusion event clearly is the time consuming step. To
strengthen our argumentation even further, we have also compared the efficiency of the
algorithm when simulating a reaction diffusion system with a larger number of chemical
species and reactions. For this we used the PTS reaction system, which we will present
in some detail in chapter 5. When simulating this system one has to choose from twenty
eight different reaction and diffusion events. As expected, this increase in the number of
reaction and diffusion events did not alter our overall result as the Logarithmic Classes
Method still outperformed the Next Subvolume Method.

3.3.2 Improved version of the Logarithmic Classes Method

The analysis and comparison of the algorithms in the previous sections has revealed that
the Logarithmic Classes Method is superior to the other two Monte Carlo methods. How-
ever, implementing and using the Logarithmic Classes Method as it was described in the
second chapter is not optimal as it is possible to increase the efficiency of this algorithm
even further. Most importantly, the LCM can be optimised by adopting the idea of [Cao
et al., 2004]: Since the number of the logarithmic classes is generally low, we can order
them according to their reactivities. If one now subtracts the largest reactivities first, one
increases the likelihood of choosing the correct logarithmic class in one of the first steps.
Clearly, this is an improvement over the naive linear selection method used so far, in
which the reactivities are subtracted by always starting with the lowest logarithmic class.
However, when using the proposed improvement, one needs to keep track of whether
the order of the logarithmic classes is still correct or not. This is easily accomplished by
either sorting the logarithmic classes on-line or by calling the quick sort algorithm after
the system has been propagated a certain number of times.
Moreover, one could increase the efficiency of all algorithms, if a more sophisticated
mechanism for the selection of a reaction or diffusion event was used, once a subvolume
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has been picked. Furthermore, the use of Hash tables for the calculation of the reaction
and diffusion weights would also speed up the performance of all the three algorithms.
Finally it should also be noted that an increase in performance can be accomplished
by employing a different kind of random number generator. So far, we have generated
random numbers with the help of the ran2 method from the Numerical Recipes [Press
et al., 2002]. This is a linear congruential method which is known to provide uncorrelated
random numbers. As opposed to this method a linear shift register random number gen-
erator is a lot more efficient. However, this method introduces long range correlations
among the random numbers which can corrupt the results of Monte Carlo simulations
under certain circumstances [Ferrenberg et al., 1992]. Although it is therefore generally
advised against the use of this random number generator, we could not observe any dif-
ference when employing it instead of the linear congruential method. When accounting
for these changes the improved version of this algorithm takes on the form as depicted
in the recipe box below.



3.3. DISCUSSION 47

Recipe Improved Logarithmic Classes Method

1. Initialisation: Calculate propensities of all reaction and diffusion events and
calculate weights of all subvolumes. Calculate global weight and set up loga-
rithmic classes table. Sort logarithmic classes according to their weights, such
that the class with the highest reactivity stays in the first position and the class
with the lowest reactivity is in the back.

2. Determine τ and set global time t to t = t + τ .

3. Select a logarithmic class l.

– Draw a normalised uniformly distributed random number r and set X = r
and set i = −1

– while (x>0)

∗ Set i = i + 1

∗ X = X − Λi

∗ If i > 0 and Λi > Λi−1 then exchange the two classes

4. Select a subvolume form the chosen logarithmic class Λi with the help of the
von Neumann rejection method:

– Select randomly a subvolume j from the chosen logarithmic class Λi

– Draw a normalised uniformly distributed random number r2. If r2 2l+1 ≤
Λi, subvolume j is selected. Else repeat from step 4.

5. Select an event to be executed within subvolume j and execute it.

6. Update affected subvolumes and weights. Repeat from 2. until the stopping
criteria is met.
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4 Variation 2: Monte Carlo Simulation
of lateral signal propagation

in which we investigate whether chemical wave fronts provide a reliable mecha-
nism for long range chemical signalling. Starting with two analytical models for
the spreading of phophorylation in the EGF receptor system, we investigate how
this bistable system is influenced by intrinsic and spatial noise. Noise leads to
long-tailed distributions which may cause the spontaneous switching between
the steady states. Moreover we will calibrate the spatial noise caused by molec-
ular crowding with experimental data. Finally we show that a chemical wave
always propagates with constant velocity through an inhomogeneous medium.
However, at the same time its interface disperses which limits the long range
signalling capabilities of this mechanism.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Lateral signal propagation . . . . . . . . . . . . . . . . . 51
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4.4 Molecular crowding . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Lateral signal propagation in the presence of molecular

crowding . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Chemical wave fronts in an inhomogeneous medium . . 71

4.1 Introduction

After having presented, compared and extended Monte Carlo algorithms for the simulation
of reaction diffusion systems we will now turn to modelling chemical signal transduction
cascades. Of course we will employ the previously presented Monte Carlo methods in the
course of this chapter, in which we deal with the propagation of chemical information over
long distances. Overall, the spatial transport of information within chemical signalling
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cascades is poorly understood in physical terms. In some cases reactant molecules of a
chemical signalling pathway could be fluorescently marked and it could be shown that
they perform simple diffusional motion [Schwille et al., 1999]. At the same time it is how-
ever obvious that diffusion can not be the only mechanism for transporting information
over intracellular length scales ranging from 1 µm to 1 m. The transport times would
become prohibitively long for distances beyond a few µm since the distance s covered
by a diffusion process scales with the square root of time, i.e. s '

√
Dt. In biological

environments the diffusion coefficient D typically takes on values of the order of µm2 s−1.
A typical protein has a diffusion coefficient of 10 to 50 µm2 s−1. Hence it can cross an
eukaryotic cell with a diameter of 10 µm in 2 to 10 s, but it already needs between 200
and 1000 s to cover a cell with a diameter of 100 µm.
The best studied way for effectively transporting a signal over long distances is the ac-
tive transport mechanism. This way of transporting a signal works by first packing the
relevant signalling molecules into vesicles which are subsequently transported by motor-
proteins along the microtubules of the cell’s cytoskeleton [Alberts et al., 1994]. However,
in the last years evidence has been gathered in the field of survival signalling in neuronal
cultures that active transport can not be the sole mechanism responsible for long range
chemical signalling. In particular in the cell bodies of neurons, it has been observed that
the phosphorylation levels of the nerve growth factor receptors TrkA are elevated just
one minute after the application of the receptor’s ligand to the nerve terminal, which
can lie several millimetres away from the soma [Macinnis and Campenot, 2002]. Since
this elevation occurs much faster than one would expect, if the signal was propagated
by an active transport mechanism, it has been hypothesised that chemical waves might
be responsible for the transport [Ginty and Segal, 2002]. Overall, chemical waves have
been observed in various different context before and examples from cell biology include
the development of Zebrafish eggs [Lee et al., 1999] or the aggregation of Dictyostelium
amoebae [Levine et al., 1996]. Furthermore, within the context of survival signalling there
exists at least one well studied example of signal propagation by chemical wave fronts, i.e.
the lateral spreading of epidermal growth factor (EGF) receptor phosphorylation levels
on the plasma membrane [Verveer et al., 2000].

In this chapter we will deal with the lateral spreading of EGF receptor phosphorylation
as a model system for long range signal propagation by chemical wave fronts. Apart
from providing a prototypical system for long range chemical signalling, the EGF receptor
system is also interesting because it plays an important role in development. Moreover its
dysfunction can be the cause of cancer [Wiley et al., 2003]. This finding has made the EGF
receptor system a target for drugs that were developed for treating this disease. Overall
this chapter is organised as follows: First we will review the experimental findings along
with a kinetic model which was proposed for explaining the observations. Subsequently we
will extend this model by incorporating space. In particular we will focus on the differences
arising due to a two or three dimensional representation of space. Furthermore we will
also discuss how noise and molecular crowding affects the system under investigation.
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Figure 4.1: Cartoon representation of the EGF receptor system. The upper row shows
two EGF receptor forming a dimer, which leads to the phosphorylation of one of the recep-
tors. Subsequently this receptor is dephosphorylated by an active phosphatase molecule.
The lower row depicts the scenario in which the phosphorylated receptor activates the
NADPH oxidase, which leads to the production of hydrogen peroxidase molecules. These
particles are able to deactivate the phosphatase molecules so that the receptor remains
phosphorylated. In the plot the blue circles account for the ligand and dephosphorylated
receptor have a straight intracellular side whereas phosphorylated receptors are bend. Ac-
tive phosphatase molecules are green, where the deactivated phosphatases are coloured
in red. The NADH oxidase is given by the brown shape whereas the hydrogen peroxidase
molecules have the form of the yellow circles.

4.2 Lateral signal propagation

4.2.1 Experimental finding

The existence of ligand independent waves of EGF receptor activation was first discov-
ered by [Verveer et al., 2000]. A very brief introduction to the experimental imaging
techniques used in this study is given in the box at the end of this section. The authors
of that paper locally activated a special kind of EGF receptors, namely the ErbB1 recep-
tor, by applying EGF which was covalently attached to beads of approximately 0.8 µm in
diameter. Since the receptors were fused to the green fluorescent protein GFP, they were
able to observe receptor phosphorylation by fluorescence energy transfer (FRET). FRET
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occurred between the labelled receptors and an antibody against phosphotyrosine, which
was labelled with a cyan dye (CY1). The FRET induced fluorescence lifetime decrease
was observed using fluorescence lifetime imaging (FLIM) and a special analysis of FLIM
data allowed for quantitative, spatially resolved mappings of phosphorylated receptors.
The observed wave front emanated into all directions from the point of application of the
EGF beads and about one minute after local stimulation the entire plasma membrane
of the cell contained activated that is phosphorylated receptors. From microscopy, they
assured that the beads could be considered as immobile. Hence the author concluded
that there must be a potent mechanism by which global phosphorylation of EGF re-
ceptors can be achieved. Two years later, the finding of ligand independent waves was
independently confirmed in a study by [Sawano et al., 2002]. Furthermore Sawano and
coworkers showed that the onset of a wave crucially depends on the number of EGF
receptors embedded within the plasma membrane. Clearly, a model for the spreading of
activation across the plasma membrane would have to account for such a kind of thresh-
old behaviour. Moreover, from a physiological perspective such a threshold behaviour
is very plausible. Especially during development the cell needs to be able to distinguish
between the random activation of a single receptor and the real signal caused by the
presence of EGF in the extracellular medium.

In 2003, Reynolds and coworkers conducted a set of experiments which lead to the
proposal of a minimal reaction network capable of explaining the lateral spreading of re-
ceptor phosphorylation within the EGF receptor system [Reynolds et al., 2003]. We tried
to visualise their findings in the cartoon model given in Figure 4.1. The starting point of
their model is the finding that EGF receptors are capable of transiently forming dimers.
When dimerised, the receptors can transphosphorylate each other on tyrosine residues in
the intracellular part of the receptor. Upon the binding of EGF this process is facilitated
such that the autophosphorylation reaction proceeds with a much higher rate. Overall,
the authors therefore showed that EGF receptors are able to activate each other with
the help of an autocatalytic reaction. Furthermore, the authors could show that phos-
phorylated EGF receptors are capable of inhibiting protein tyrosine phosphatase (PTP)
molecules. In the resting condition, in which no EGF signal is present, these molecules are
responsible for keeping the concentration of active EGF receptors at a low value (depicted
in the upper part of Figure 4.1). The inhibition exerted by EGF receptors upon PTP is
most likely accomplished through hydrogen peroxidase. These fast diffusing molecules
are rapidly produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
which in return is activated after the stimulation and phosphorylation of EGF receptors.
This part of the signalling cascade is shown in the lower part of Figure 4.1. According
to this picture, a strong stimulation of the EGF receptors leads to a sufficient elevation
of hydrogen peroxidase so that PTP is no longer capable of dephosphorylating the ac-
tive EGF receptors. Hence, EGF activation is coupled with the inhibition of PTP, which
ultimately leads to an even stronger phosphorylation of EGF receptors on the plasma
membrane. Overall, this positive feedback loop can therefore lead to the propagation of
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receptor phosphorylation across the plasma membrane.

Experimental Techniques: FRET and FLIM

Fluorescence resonance energy transfer (FRET) can be observed between two
fluorescent dyes. The general principle of FRET is depicted in the plot below.
Suppose that we are given two dyes, the green fluorescent protein GFP and the
cyan fluorescent protein CFP. If GFP is selectively excited by a laser, a transfer of
energy from the GFP to the CFP molecule can occur. Consequently, CFP can emit
a photon although it has not been excited by a laser. Since the efficiency of FRET
is strongly dependant on the distance between the two molecules, in fact the FRET
efficiency decreases as the sixth power of the distance between the two molecules,
it is a widely used tool in biochemistry for the detection of conformational changes
and protein protein interactions.

FRET
GFP                                    CFP

FLIM stands for fluorescence lifetime imaging and is a technique with which one can
produce images in which each pixel codes for the rate with which the fluorescence
at that point decays with respect to time. Since fluorescence lifetimes of both the
acceptor and donor are changed when FRET occurs, FLIM allows for a spatially
resolved mapping of where in the sample FRET occurs.

4.2.2 Current Model

As a starting point for our investigation of lateral signal propagation in the EGF receptor
system we consider the model proposed by [Reynolds et al., 2003], which is depicted in
the block diagram in Figure 4.2. This model only accounts for the two key molecules,
i.e. it accounts for the receptor tyrosine kinase and for the protein tyrosine phosphatase
but neglects the NADPH and the hydrogen peroxidase molecules. The receptors exists
in either the native (RTK) or the phosphorylated (RTKp) state and the phosphatase



54 CHAPTER 4. VARIATION 2: MONTE CARLO SIMULATION OF LATERAL SIGNAL PROPAGATION

PTPa                   PTPi
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RTK                   RTKp
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 γ                          β

α.1                α.2

Figure 4.2: Model proposed by [Reynolds et al., 2003] for lateral signal propagation

molecules are either active (PTPa) or inactive (PTPi). Notice, that the model does
not differentiate between monomeric receptors and dimers and that it also does not
include receptor phosphatase complexes. In their active state, phosphatase molecules
are capable of dephosphorylating phosphorylated EGF receptors with rate k2γ. RTKp
molecules in return deactivate active phosphatases with rate k3β. Furthermore inactive
phosphatase molecules are reactivated with rate k4, while the phosphorylation of the
receptors either occurs with rate k1α1 or k1α2. When introducing the variables n and c
for the concentrations of RTKp molecules and PTPa molecules as well as n0 and c0 for
the total concentration of the respective molecules, Figure 4.2 gives rise to the following
two differential equations describing the dynamics of the system:

∂t n = (n0 − n) (k1α1 (n0 − n) + k1α2 n)− k2γ nc (4.1)

∂t c = k4 (c0 − c)− k3 β nc. (4.2)

After rescaling these two equations with the help of the following substitutions

u = n/n0, v = c/c0, τ = n0k1α1t,

P
K

= k2γc0
n0k1α1

, R = k4, I = k3βn0,

we arrive at the two equations:

∂τ u = (1− u) [(1− u) +
α2

α1

u]− P

K
uv (4.3)

∂τ v =
R

K
(1− v)− I

K
uv. (4.4)

Let us first assume that the dynamics of the phosphatase molecules relax much faster
than the dynamics of the kinase molecules. Hence we set the left hand side of equation
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Figure 4.3: A phase plot showing u′ as a function of u clearly reveals the bistable character
of the EGF receptor system.

4.4 to zero, solve for v, and insert the solution v = 1/(1+(I/R)u) into the first equation.
Note, that our assumption does not necessarily hold true, but since we are only interested
in the qualitative behaviour of the system, this can safely be done. Thus we arrive at

∂τu = (1− u) [(1− u) +
α2

α1

u]− P

K
u

1

1 + I
R

u
. (4.5)

Examining the phase plot of this equation with parameters α2/α1 = 10, I/R = 100, and
P/K = 250 reveals that the system behaves bistable, i.e. there are two stable steady
states in which the system normally resides. These two fixpoints are denoted as the
uninduced and the persistently active state. In the uninduced state virtually no receptors
are phosphorylated whereas a majority of receptors is phosphorylated in the persistently
active state. Both states are separated by an unstable fixpoint such that there exists a
threshold value in the concentration of phosphorylated EGF receptors which needs to be
surpassed in order to switch from the uninduced to the persistently active state. When
evaluating equation 4.5 numerically with different sets of parameters, one notices that
the exact position of the threshold depends on several parameters. Decreasing the ratio
of phosphatase to kinase activity (P/K) while leaving the other parameters constant
will for example decrease the value of the unstable fixpoint so that switching from the
uninduced to the persistently active state is facilitated. In contrast to that a decrease
in the ratio of phosphatase inactivation to phosphatase reactivation (I/R) will raise the
value for the threshold. In their paper Reynolds et al. [2003] could support these model
predictions with the help of experiments. Furthermore they could also explain the finding
of [Sawano et al., 2002] that the number of expressed EGF receptors crucially effects
whether a wave is induced or not.



56 CHAPTER 4. VARIATION 2: MONTE CARLO SIMULATION OF LATERAL SIGNAL PROPAGATION

4.3 Extending the current model

Although the model of [Reynolds et al., 2003] correctly captures the threshold behaviour
of the EGF receptor system, it comes with the drawback that it totally neglects space and
diffusion of the involved molecules. We will therefore begin by extending the model and
remove the assumption of a well stirred medium. Since the protein tyrosine phosphatase
responsible for dephosphorylating the EGF receptors has not yet been identified in this
system, we will consider two different scenarios. In the first scenario both the receptors as
well as the phosphatases will be localised in the plasma membrane of the cell. The second
case will be different in that the PTP will reside within the cytosol, where it is reactivated
once it has been deactivated by the receptor tryrosine kinase at the plasma membrane.
Note, that both scenarios are equally plausible from a physiological perspective [Östman
and Böhmer, 2001].
In the following, we will first use an analytical calculation to investigate how this dif-
ference in localisation affects the steady states of the system. Subsequently we will use
a computational approach to study this system in greater detail. In the last section of
this chapter we will further use the computational approach in order to examine how
molecular crowding is going to affect the overall behaviour of the system.

4.3.1 Mathematical modelling

We begin our mathematical analysis for the case in which both EGF receptors and phos-
phatase molecules are located on the plasma membrane. In the steady state, both chemi-
cal species are homogeneously distributed. In principle this corresponds to the well stirred
approach used in the original model. Consequently the steady state concentrations can
easily be obtained by setting ∂τ u and ∂τ v in equations (4.3) and (4.4) to zero. Obviously
the EGF receptor’s steady state concentration u∗ is given by the solution of the equation:

(1− u∗)[(1− u∗) +
α2

α1

u∗]− P

K
u∗v∗ = 0. (4.6)

Solving the second equation gives rise to the phosphatase’s steady state concentration
v∗. It is given by the expression

v∗ =
1

1 + I
R
u∗

. (4.7)

If we insert this expression for the steady state concentration of the system’s phosphatase
molecules into equation (4.6), this gives rise to the cubic equation

u3
(
1− α2

α1

) I

R
+ u2

(
1 +

α2

α1

( I

R
− 1
)
− 2

I

R

)
+ u

(α2

α1

+
I

R
− P

K
− 2
)

+ 1 = 0,

(4.8)

in which we have omitted the asterisks for notational convenience. In order for the system
to be in the bistable regime, this last equation needs to have three real distinct roots.
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This is the case if the discriminant of the polynome is smaller than zero. Hence, for the
system’s parameters we have to require that they fulfil the condition(
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< 0 (4.9)

With the help of this equation, one can now easily calculate in which range the third
parameter has to lie in order for the system to be bistable, if the other two parameters
are given. For instance, if we choose α2/α1 = 10 and I/R = 100, it immediately follows
numerically that P/K has to lie approximately within the range between 164 and 284.

In the following we will now investigate how the steady state concentrations of the two
molecular species are changed if the phosphatase is no longer localised in the membrane
but in cytosol of the cell instead. When being in the bulk the deactivation of phosphatase
molecules is only possible at the membrane, into which the receptor tyrosine kinases are
embedded. As opposed to that the reactivation of the phosphatase can occur anywhere
within the cytosol. The starting point of our analysis is therefore given by the three
partial differential equations describing the dynamics of the active receptors and the
active phosphatases:

∂t n−DR∇2 n = (n0 − n)[k1α1(n0 − n) + k2α2n]− k2γnc (4.10)

∂t c−DP ∇2 c = k4 (c0 − c) (in the cytosol)

∂t c−DP ∇2 c = −k3βnc (at the membrane) (4.11)

When analysing these equations, we use a three dimensional Cartesian geometry with
coordinate axes x, y, and z. In particular we choose the coordinate system in such a way
that the membrane is situated in the xy-plane at z = 0. Before we continue, we again
first rescale the system. For this the same substitutions as given in the previous section
are used along with the two replacements Du = DR

k1α1n0
and Dv = DP

k1α1n0
. Consequently,

we arrive at the two dimensionless equations

∂τ u−Du∇2u = (1− u)[(1− u) +
α2

α1

u]− P

K
uv (4.12)

∂τ v −Dv∇2v =
R

K
(1− v)− δ(z)

I

K
uv. (4.13)

Note that we have cast the dynamics of the phosphatase molecules in equation 4.13 into
a single equation using a delta function. Further notice that diffusion of the phosphatase
molecules takes place in the three dimensional space whereas diffusion of the receptors
is confined to the membrane. Since it is required for the homogeneous steady state that
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both molecular species are homogeneously distributed (the receptors in the membrane and
the phosphatases in the cytosol), the complexity of our problem is reduced. The diffusion
term in equation 4.12 can be neglected so that the steady state concentration of the EGF
receptors is as in the previous case given by the solution of equation 4.6. However, if one
wants to solve this equation, one has to pay attention that v∗ now stands for the steady
state concentration of the phosphatase molecules at position z = 0. For calculating
this value we begin by setting ∂τv = 0 in equation 4.13. Thus we obtain an ordinary
differential equation with which we are able to calculate the steady state concentration
of the phosphatase molecules as a function of z. For solving this differential equation,
we have to specify two boundary conditions. For the first boundary condition, it is
reasonable to assume that the number of inactivated phosphatase molecules vanishes as
the distance to the membrane becomes increasingly large because phosphatase molecules
can only be deactivated at the membrane and are reactivated in the cytosol. Consequently
one should encounter only active phosphatase molecules, if one is infinitely far away from
the membrane. Hence the first boundary condition is given by

lim
z→∞

v(z) = 1. (4.14)

The second boundary condition is obtained by noting that the membrane is a sink for the
active phosphatase molecules. In the steady state, the diffusive flux of active phosphatase
molecules into the membrane must be equal to their rate of inactivation. This follows
immediately from mass conservation. We therefore have our second boundary conditions,
which reads

Dv ∂zv
∗(z = 0) = − I

K
u∗v∗. (4.15)

Hence, for calculating the active protein phosphatase’s steady state concentration profile
v∗(z), we have to solve the equation

−Dv
∂2v∗

∂z2
=

R

K
(1− v∗) (4.16)

subject to the two boundary conditions given by equations 4.14 and 4.15. This can be
done in a straightforward manner, if one uses the coordinate transformation y = v∗ − 1.
After carrying out the calculations, one arrives at the solution

v∗(z) = 1− I√
K R Dv

u∗v∗0 exp {−
√

R

KDv

z}. (4.17)

When setting z to zero, one obtains the steady state phosphatase concentration v∗0 at
the membrane, which is given by

v∗0 =
1

1 + I√
KRDv

u∗
. (4.18)
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If we now compare the two steady state concentrations of the phosphatase molecules
at the plasma membrane (equation 4.7 and 4.18), one notices that this value depends
in both equations on the ratio of the rate of phosphatase inactivation (I) to the rate of
phosphatase reactivation. When the phosphatase is localised in the plasma membrane,
the reactivation rate is given by R2D = R = k4 because it only depends on the chemical
reaction PTPi → PTPa. In the case that the phosphatase is distributed throughout the
cytosol, the reactivation of phosphatase molecules close to the membrane also depends on
the diffusive exchange of inactive molecules with active molecules from the bulk. Hence, in
the three dimensional system the reactivation rate is given by R3D =

√
KRDv =

√
DP k4.

Consequently R2D and R3D are related as R2D/R3D =
√

k4/DP .

To start the discussion of our model we notice that the main consequence of localising
the phosphatase molecules in the cytosol lies in the fact that the homogeneous steady
states of the phosphorylated receptor molecules now depend on the flux of the phos-
phatase molecules. In particular this implies that the receptor molecule dynamics are
a function of the difference between the concentration of active phosphatase molecules
at the membrane and in the inside of the cell. However, since this difference obviously
depends on the total phosphatase concentration c0, this provides a starting point for
experimentalists to test whether the phosphatase molecules regulating the EGF receptors
are embedded in the membrane or reside in the cytosol of the cell. Namely by reducing
the concentration of phosphatase molecules in the cytosol, they should be able to change
the behaviour of a cell. If our model is correct, it should be possible to push a cell
from the bistable regime into the persistently active state when selectively blocking the
phosphatase molecules in the inside of the cell.
To complete this first discussion of our model we investigate whether the system exhibits
bistability when choosing physiologically plausible parameters. From a mathematical per-
spective the only difference between the original and our model is given by the rate
according to which the phosphatase molecules are reactivated. Hence, we can mostly
use the same parameters as [Reynolds et al., 2003]. Therefore we choose α2/α1 = 10
for the activation rates of the receptors and we set the ratio of maximal phosphatase to
maximal kinase activity to P/K = 250. The main task now consists of checking whether
we can find physiologically plausible parameters, so that the quotient of maximal phos-
phatase inhibition and the rate of phosphatase reactivation I/R3D = k3βn0/

√
k4Dp will

be equal to 100. This is the value which was used in [Reynolds et al., 2003]. When
selecting the rates, one has to further pay attention that the concentration of active
phosphatase molecules in the cytosol reverts on plausible length scale to its resting value
c0. According to equation 4.17, the gradients will be steep for the case that k4/Dp > 1.
Consequently we choose k3βn0 = 200µm sec−1, k4 = 4 s−1 and Dp = 1 µm2 s−1, such
that we have I/R3D = 100. As seen before the system will be in the bistable regime with
this set of parameters. Note that the chosen values for Dp and k4 are in accordance with
typical values for the diffusion coefficient of cytosolic proteins and the first order rate
constants accounting for phosphorylation and dephosphorylation reactions. The former
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Figure 4.4: Gradients of the active phosphatase concentration in the uninduced and
persistently active state when choosing the system’s parameters as described in the main
text.

normally takes on values between 1 and 50 µm2 s−1, whereas typical values for the latter
range from 0.1 to 100 s−1 [Kholodenko et al., 2000]. Moreover, with these parameters
the fraction of phosphorylated EGF receptors in the membrane will be equal to approxi-
mately 0.007 and 0.632 in the uninduced and the persistently active state, whereas the
fraction of active phosphatase molecules at the membrane will be equal to approximately
0.588 and 0.0156. As can be seen in Figure 4.4, with this choice of the parameters, it
takes around 2 µm to reactivate all phosphatase molecules. This is a plausible value,
if one assumes that a typical eukaryotic cell is spherical and has a diameter of 10 µm.
Overall we therefore conclude that our model is capable of reproducing bistability for a
physiologically realistic set of parameters.

4.3.2 Computational Modelling

Up to now, we have analytically calculated the homogeneous steady states of the EGF
receptor system for the two different scenarios in which the phosphatase molecules are
either embedded in the plasma membrane or situated in the cytosol of the cell. In this sec-
tion we will now analyse the role of noise in both the two- as well as the three-dimensional
system. For this task we will employ the Monte Carlo methods which we presented in
the previous chapters. Furthermore we will show in the course of this section that EGF
receptor phosphorylation is also in the three dimensional system spread by a propagating
wave front.

When simulating the two dimensional system, in which both the EGF receptors as
well as the phosphatase molecules are embedded in the membrane, we use an area of
4 × 4 µm2 as a reaction medium, which we discretise into 4096 reaction cells. When
simulating the three dimensional EGF receptor system, we use a cubical reaction medium
with a sidelength of 4 µm. One side of the cube is identified as the membrane in which
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Figure 4.5: Left: Three dimensional system. Right: Two dimensional system. Depending
on the initial condition the fraction of phosphorylated EGF receptors settles in both system
to the two different homogeneous steady states. The scale for the red trajectory is given
on the left y-axis whereas the scale for the blue trajectories is given on the right y-axis.
The solid black lines is the deterministic solution obtained by numerically integrating the
chemical rate equations.

the receptor molecules reside. To reduce the number of possible diffusion events which
increases the overall computational efficiency, the reaction medium is discretised in such
a way that the volumes of the gridcells vary. In particular the gridcells close the mem-
brane have small volumes. The size of the subvolumes subsequently increases the further
distant they are situated from the membrane. A detailed description of how the diffusion
rates are calculated on such a grid is given in the fifth chapter. Special attention needs
to be drawn to the units of the involved chemical concentrations and the rate constants.
As the receptors are situated in the membrane, the concentrations of RTK and RTKp
are given in units of µM µm, whereas the concentrations of PTPa and PTPi are given in
units of µM because they live in the cytosol. Since the employed Monte Carlo approach
only uses three dimensional voxels, we have to convert the surface concentrations of the
two isoforms of the receptor tyrosine kinase into volume concentrations. This is easily
accomplished by multiplying the surface concentrations with the surface to volume ratio.
As the rate constants for the reactions among receptor molecules are given in units of
µM−1 µm−1 s−1, they need to be converted into µM−1 s−1, which is achieved by dividing
these rates with the surface to volume ratio.

In the first simulation we want to investigate whether the two systems still exhibit two
distinct homogeneous steady states when stochasticity is accounted for. According to the
mathematical analysis the system is bistable, if the reaction rates are chosen in such a way
that they give rise to the following dimensionless parameters: α2/α1 = 10, P/K = 250,
and I/R = 100. The left plot in Figure 4.5 shows the results of the stochastic simulation
in the three dimensional system, whereas the trajectories of the stochastic simulation of
the two dimensional system are given in the right plot. In both plots we have also included
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the deterministic trajectories, which are obtained by numerically integrating the chemical
rate equations. When analysing Figure 4.5 one basically sees two things. First and most
importantly both system are bistable. Depending on the initial condition, the system
settles to either one of the two different steady states. When starting the simulation with
all receptor molecules being phosphorylated and all phosphatase molecules being deacti-
vated, the system reaches the persistently active state (red trajectories). As opposed to
that the system will stay in the uninduced state, if one starts the simulation in a state in
which all phosphatase molecules are active and all receptors are in the unphosphorylated
state (blue trajectories). Furthermore, we also see that the trajectories of the two dimen-
sional system are well approximated by the deterministic results, which is not the case
for the three dimensional system although the same dimensionless parameters were used.
That the trajectories of the two dimensional stochastic system are well approximated by
the solutions of the chemical rate equations is not surprising as the particle numbers in
this simulation are very high. In particular we used values of 1 µM µm and 10 µM µm for
the total concentrations of receptor and phosphatase molecules so that 9600 receptors
and 96000 phosphatase molecules are embedded in the model membrane. Furthermore
the two dimensional system is spatially homogeneous and both molecular species have
the same diffusion coefficients. Taken together, these are all major requirements that
need to be fulfilled in order for the chemical rate equation to yield a good approximation
to the real system. In the three dimensional system these requirements are not met,
i.e. the system is spatially inhomogeneous and the particle concentrations are low. For
the phosphatase concentration we chose a value of 10 µM which means that we have
384000 molecules in the reaction medium. Furthermore the concentration of phosphatase
molecules exhibits large spatial fluctuations, which becomes obvious when looking at the
results depicted in Figure 4.6. In this plot, we have visualised the gradients in the active
phosphatase concentration in the z-direction. The upper and lower trajectories account
for the standard deviation in the active phosphatase concentration in each layer parallel to
the membrane. Obviously, the particles are inhomogeneously distributed. Consequently
in addition to the particle flux in z-direction, fluxes within each layer build up. Both fluxes
are not accounted for in a chemical rate equation description and they also do not exist
in the two dimensional system. Hence, the large differences between the two simulation
results arise. To validate our argumentation, we ran two additional simulations. In the
first simulation we increased the concentration of phosphatase molecules in the three
dimensional simulation by a factor of ten while leaving the relation among the dimen-
sionless parameters unchanged. The resulting trajectories are better approximated by the
chemical rate equations as the relative particle fluctuations are not as pronounced as in
the original simulation. That horizontal fluctuations substantially influence the results
of a stochastic simulation was shown in the second simulation. Here, we changed the
two dimensional system in such a way that the diffusion coefficients of the two chemi-
cal species now differed by a factor of 50. The resulting trajectories no longer overlap
with the deterministic results but were shifted towards the three dimensional simulation
results.
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Figure 4.6: Left: Gradient of the active phosphatase concentration in z-direction when
the system is in the uninduced state. The points account for the mean concentration in
a layer parallel to the membrane. The solid black line depicts the theoretical gradient as
given by equation (4.17) when using the measured membrane concentration of the active
receptor molecules as an input. The two red lines stand for the upper and lower end of
the standard deviation around the measured PTPa concentration. Right: Distribution of
EGFa/EGFtot around the steady state value when the system is in the uninduced state.
The steady state value of the distribution is indicated by the asterisk. The scale of the
y-axis is chosen in such a way that the area underneath the histogram is equal to one.
Further note that the distribution is slightly skewed to the right.

So far we have seen that the two and the three dimensional system are both bistable
in the presence of noise. Apart from that, we have also seen that fluxes arise in the
three dimensional system because spatial fluctuations are generally large. Moreover these
fluxes cause the three dimensional system to assume different values for the steady state
concentration of the phosphorylated EGF receptors than the two dimensional system.
However, it is possible to choose the parameters of the two dimensional system in such
a way that the same steady state values are reached as in the three dimensional system.
When doing so, we find that the distributions of the values around the steady states
are also identical; i.e. both distributions have the same width and both distributions are
slightly skewed. An example of such a distribution of the EGFp/EGFtot values around
the uninduced state is given in the right plot of Figure 4.6. Interestingly the distributions
are skewed to the right in the uninduced state and in the persistently active case they are
skewed to the left. Overall this implies that fluctuations preferably occur in the direction
of the switch, which causes spontaneous transitions from one state to the other, if these
fluctuations are strong enough. In the following we will deal with this phenomenon in
greater detail.
We start our discussion by showing a series of snapshots in Figure 4.7 in which the
amount of phosphorylated EGF receptors in the membrane is visualised. In this plot we
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Figure 4.7: Temporal sequence of a patch of membrane showing the spontaneous switch-
ing from the uninduced state to the persistently active state. A grey scale coding scheme
is used. Dark colours indicate a high proportion of phosphorylated receptors whereas
white areas account for the absence of phosphorylated receptors.

have used a grey scale scheme to code for the number of these molecules. Dark levels
indicate a high content of phosphorylated receptors whereas light values account for the
absence of these particles. The first snapshot shows a local elevation in the number of
phosphorylated receptors in the upper left corner of the reaction medium. Subsequently
this perturbation builds up and phosphorylation is spread by a chemical wave which prop-
agates through the medium until the entire membrane is in the persistently active state.
It is well understood that the probability for the occurrence of a spontaneous switching

event depends on the height and width of the barrier separating the uninduced from the
persistently active state as well as on the level of noise in the system. In the following
we therefore want to quantify the level of noise in the system and set it in relation to the
probability with which a spontaneous switching event occurs. For this task we first have
to find a method according to which we can define the level of noise in the system. One
possibility is to proceed as follows: First we measures the standard deviation with which
the concentration of the phosphorylated EGF receptors fluctuates around the uninduced
steady state value. Subsequently we rate this value by dividing it by the concentration of
phosphorylated EGF receptors that has to be added to the system in order to switch from
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Figure 4.8: Plot visualising how many trajectories switch from the uninduced to the
persistently active state as a function of the noise η within the system.

the uninduced to the persistently active state. For the deterministic system this concen-
tration difference between the switch value and the uninduced steady state can easily be
obtained as it is simply given by difference between the respective roots of equation (4.9).
However, when using a stochastic approach we have seen that the deterministic descrip-
tion shows large deviations from the real value, which makes a calculation of this value
on the basis of the chemical rate equations infeasible. Consequently we use a numerical
approach. We simply start the simulation with different concentrations of phosphorylated
EGF receptors embedded in the membrane and observe whether the system settles to the
uninduced or to the persistently active state. When doing so we reliably find the threshold
concentration needed for calculating the noise in the system. To summarise, the noise
level η is therefore defined as η =

√
σ/(uswitch − uuninduced), with sigma accounting

for the variance and uswitch and uuninduced for the concentration of phosphorylated EGF
receptors at the switching threshold and in the uninduced steady state. Next we have
to calculate how likely it is to observe a stochastic switching event in a certain period
of time. This is simply done by simulating for each noise level η an ensemble of twenty
trajectories. Subsequently we count how often a switching event occured within a time
period of T = 15 τ . When analysing the results displayed in Figure 4.8, we find that
spontaneous stochastic switching events already occur when the fluctuations of the signal
are by a factor ten smaller than the difference that needs to be overcome. This is quite
remarkable because it further underlines that the distributions around the steady state
are not Gaussian. Instead the distribution of the fluctuations around the steady state
has a long tail, which causes the spontaneous switching. Furthermore we observe that
a spontaneous switching transition already occurs in more than 50% of the cases, if the
noise level η = 0.15 and once the system has exceeded a noise level of 0.25, virtually
all trajectories switch from the uninduced to the persistently active state. Moreover, we
observe this behaviour for a parameter range according to which the system should still
be bistable, if one only accounted for the mean field deterministic behaviour.
Overall our results clearly demonstrate that the microscopic processes involved in this
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chemical signalling cascade are of a non-Gaussian nature. This leads to distributions of
the phosphorylated EGF receptors around their steady state values that are not simply
described by their mean and their standard deviation. Instead theses distributions are
skewed and have a long tail, which leads to the spontaneous switching behaviour. Ulti-
mately, our results therefore imply that noise in chemical signal transduction cascades can
lead to phenotypic variations in a population of identical cells. With the noise having the
characteristics as described above, one would observe a bimodal distribution of the cells
in a population grown under identical conditions and one portion of the population would
be in the persistently active state whereas the other part would be in the uninduced state.

We will end this section on the computational modelling of the EGF receptor sys-
tem by reproducing in the three dimensional system the experimental results reported in
[Verveer et al., 2000]. On the one hand we want to show that a localised perturbation
can push the system into the persistently active state. As in the case of spontaneous
stochastic switching, the lateral spreading of receptor phosphorylation is mediated by
a chemical wave front. More importantly though, our main concern lies on showing
that our three dimensional stochastic model is capable of reproducing the experimental
findings when using realistic assumptions for the involved parameters. In particular we
chose the following parameters for the reaction rates: α2/α1 = 10, P/K = 25, and
I/R3D = 110. Furthermore, we chose k4 = 4 s−1 and DPTP = 1µm2 s−1 to obtain
sharp gradients in the cytosolic phosphatase concentration. As the diffusive movement
of the receptor molecules in the plasma membrane is a lot slower than the movement
of the phosphatase molecules in the cytosol, we set DEGF = 0.1 µm2 s−1. Notice that
all parameters lie within physiologically realistic bounds. With this set of parameters the
system will settle to the uninduced state if we start the simulation with an initial condition
in which a concentration of 10 µM of active phosphatase molecules is homogeneously
distributed in the cytosol and 1 µM µm of unphosphorylated EGF receptors are embed-
ded in the plasma membrane. In the experiments, the uninduced state was perturbed by
permanently exposing the receptors in well defined membrane patches to their endoge-
nous ligand. Technically this was accomplished by exposing the cell to beads to which
epidermal growth factor molecules were covalently linked. The diameter of these beads
was equal to 0.8 µm. Control experiments revealed that the EGF receptors are tightly
bound to the beads. Furthermore, it has been argued that the presentation of a ligand
on a solid substrate blocks endocytosis which leads to a local increase in the receptor
density [Sawano et al., 2002]. In order to model the application of EGF linked to beads,
we therefore locally introduced a fifth chemical species, which behaves like a persistently
phosphorylated receptor; i.e. molecules of this species phosphorylate other EGF receptors
and deactivates phosphatase molecules with the same rates as the native phosphorylated
EGF receptor. Overall, we introduced a concentration of 10 µM µm of this new species
to a square region in the middle of the reaction medium which had a size of 0.88 µm2.
Snapshots showing the degree of phosphorylation in the membrane at different times are
obtained by averaging over an ensemble of ten simulations. The results are displayed in
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Figure 4.9: Snapshots showing the propagation of receptor phosphorylation when av-
eraged over an ensemble of 25 runs. The pictures show a membrane patch of size
4 × 4 µm2 at times t = 2 s (upper left), t = 6 s (upper right), t = 10 s (lower left), and
t = 14 s (lower right) after stimulation. A colour coding scheme is used for depicting the
amount of phosphorylated receptors within the membrane, i.e. blue regions indicate the
absence of phosphorylated receptors whereas the colors from green to red account for an
increasing presence of these molecules in the respective part of the membrane.
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Figure 4.9 in which we use a colour scheme to code for the number of phosphorylated
receptors in the membrane. Blue accounts for the absence of phosphorylated receptors
whereas green, yellow and red indicate an increasing concentration of these molecules in
the respective part of the membrane. Obviously phosphorylation is spread by a propagat-
ing pulse, which proves our overall claim that the three dimensional model is very well
capable of capturing the experimental findings.

4.4 Molecular crowding

Up to now we have implicitly assumed that signalling occurs in a homogeneous medium,
in which the molecules could freely diffuse to any place within the volume. However, this
assumption is certainly not true when dealing with biological systems, which exhibit a
high content of macromolecules. For this reason biological reaction media such as the
cytosol or the cell membrane are said to be ”crowded”. This means that a significant
fraction of the total volume is occupied by molecules and macromolecular assemblies
other than the chemical species under investigation [Ellis, 2001]. Overall this has a va-
riety of different effects on the chemistry which occurs inside of cells. First of all the
medium is obstructed by the high macromolecular content so that diffusion is restricted.
Consequently, diffusion is anomalous over short distances meaning that the mean space
displacement of a Brownian walker 〈r2〉 scales to time with a power smaller than one
[Saxton, 1994]. A similar effect can also be observed in the reaction kinetics which be-
come fractal. This means that the order of a reaction is no longer given by an integer
value but by a rational number instead [Kopelman, 1988]. Overall we therefore expect
that the dynamics of biochemical reaction networks in real cellular environments differ
substantially from dynamics of the same signalling cascades studied in an idealised test
tube world.

In the following we will therefore investigate how an inhomogeneous medium affects
long range signal propagation. When doing so, we will first focus on the example of
the EGF receptor system before we turn to the more general question of how the prop-
agation of a chemical wave front in a stochastic reaction diffusion system is affected by
inhomogeneities in the reaction medium.

4.4.1 Lateral signal propagation in the presence of molecular
crowding

A common approach for modelling chemical signalling networks in inhomogeneous media
is by obstructing the reaction medium with rigid blocks [Lipkow et al., 2005]. However,
when doing so, it is by no means obvious how large these obstacles have to be and
in which abundance they occur in the reaction medium. In what follows, we therefore
first calibrate our model with the help of the work reported in [Tischer, 2005] before we
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actually turn to modelling the signalling cascade responsible for the spreading of EGF
receptor phosphorylation.

In [Tischer, 2005] the author developed a technique called Thermal Noise Imaging
Microscopy (TNIM), which allows for the study of nanoscale diffusion of a particle in a
heterogeneous medium. This is accomplished by combining an optical trap with a stan-
dard light microscope such that the diffusive motion of a nanoparticle can be monitored
while it is confined to a small subvolume. Obviously the trajectory of the diffusing par-
ticle also encodes information about the size and shape of the inhomogeneities in the
vicinity of that particle. In the latter part of his thesis, the author used TNIM to study
the diffusive motion of EGF receptors tagged with GFP in realistic biological membranes.
First of all he could show that the diffusive motion of these molecules is indeed restricted.
Moreover, he found that the width of typical obstacles lies in a range between 50 nm
and more than 100 nm. Finally he could also measure the nanoscale diffusion coefficient
of the EGF receptors which has a value Dnano = 2.8 µm2s−1. Notice, that this value is
in good agreement with typical values reported for the diffusion coefficients of proteins
embedded in homogeneous membranes. However, when measuring the macroscopic dif-
fusion coefficient of a receptor molecule embedded in the plasma membrane of a cell
by Fluorescent Recovery After Photobleaching (FRAP), one normally obtains values that
are 10 to 100 times lower, i.e. DFRAP = 0.015 − 0.2 µm2 s−1. This implies that if we
measure the mean square displacement 〈r2〉 of a particle diffusing with a diffusion coef-
ficient Dnano on an inhomogeneous membrane with a size equivalent to the size which
is typically bleached in a FRAP experiment, then we should get the same dependence
between 〈r2〉 and t as if the particle diffused in a homogeneous medium with a diffusion
coefficient of DFRAP .

With the above argumentation we now have a method at hand with which we can
determine the density of obstacles in the membrane. According to our reasoning the
physiological correct obstacle density is the one for which the average mean square dis-
placement is 10 to 100 times slower than the average mean square displacement measured
on a homogeneous grid. Consequently we simulate the random walk of a Brownian par-
ticle on a grid of the size of 4 µm× 4 µm in which a varying proportion of the gridcells is
occluded by obstacles. The obstacles are randomly distributed and each obstacle exactly
covers one subvolume. Since the edge length of a gridcell is equal to 62.5 nm, the size of
the obstacles used in our approach is in accordance with the values reported in [Tischer,
2005]. The results for three different obstacle densities are displayed in the left plot of Fig-
ure 4.10, in which we have depicted the mean square displacement of a Brownian walker
diffusing on grids with obstacle densities 0.0, 0.2, and 0.4. The diffusion coefficient was
set to 2 µm2 s−1. The average mean square displacement measured on the homogeneous
grid roughly corresponds to the theoretical prediction 〈r2〉 = 4 D t. As opposed to that
the trajectories obtained for obstacle densities 0.2 and 0.4 show a pronounced derivation
from this behaviour. In fact we see that diffusion has become anomalous, i.e. we can
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Figure 4.10: Left: Diffusion in the presence of obstacles. Right: Simulation results
showing that the behaviour of the system can be changed by molecular crowding. The
system resides in the uninduced state if the medium is homogeneous (blue curve). As
opposed to that, it is driven into the persistently active state when obstructing 40 % of
the medium by obstacles

no longer fit a straight line to the data. Obviously, this shows that the average mean
square displacement scales to time with a power other than one. One way to describe this
would be by introducing length-scale dependent anomalous diffusion coefficients [Saxton,
1994]. More importantly we also see that the Brownian walker, which diffuses on a grid
containing 40 % of obstacles is more than ten times slower when covering an average
mean square distance of 1 µm2, which is a typical value for the size of the area bleached
in a FRAP experiment. Moreover, it seems as if it is not possible to lower the mean
square displacement by a factor of 100. However, so far all obstacles were chosen to be
of the same size and they were distributed isotropically. Both assumption do not apply
for real systems. In an additional simulation we therefore introduced correlations among
the obstacles and varied their sizes. The results clearly show that one can decrease the
average mean square displacement in this case even further. Nevertheless, we conclude
that covering 40 % of the gridcells with obstacles is a good start for modelling a biomem-
brane with inhomogeneities.

After having seen that a value of 0.4 is a physiologically realistic estimation for the
obstacle density in the membrane, we will now use this value for simulating both the two
as well as the three dimensional EGF receptor system in the presence of obstacles. We
use the same dimensionless parameters and the same values for the total receptor and
phosphatase concentrations as before. Namely we set α2/α1 = 10, I/R = 100, and
P/K = 250. In particular we are interested in whether the two systems are still bistable
in the presence of inhomogeneities. When simulating the two dimensional system with
inhomogeneities nothing much changes. The system is still bistable and it either settles
to the uninduced or to the persistently active state. However, the mean values which we
obtain for the fraction of EGFp/EGFtot in the uninduced and in the persistently active
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state differ from the values obtained on a homogeneous medium. In particular the value
for the uninduced state is larger than the value obtained on a homogeneous membrane,
whereas the persistently active state takes on a lower value. Consequently we expect that
the system with obstacles will already show spontaneous stochastic switching between
the states for parameters where the homogeneous system would still be perfectly bistable.
For the three-dimensional system, the effects of the obstacles on the behaviour of the
signalling cascade are more dramatic. Here the simulation reveals that bistability can be
lost. This is visualised in the right part of Figure 4.10, in which we have depicted the re-
sult of the three dimensional simulation. When simulating the system in an homogeneous
medium starting with only having active phosphatases and unphosphorylated receptors,
the system stays in the uninduced state (blue trajectory). As opposed to that, the system
always settles to the persistently active state no matter with which initial condition we
start, if we occlude the reaction medium (red trajectories). This behaviour is however well
understandable, if we remind ourselves that the rate R3D for reactivating the phosphatases
is proportional to their diffusion coefficient; i.e. we had R3D =

√
K R Dv =

√
Dp, k4.

Moreover we have just seen that diffusion slows down if the reaction medium contains
obstacles. Consequently, R3D is decreased. In physical terms, this simply means that the
exchange of inactive phosphatase molecules at the membrane with inactive phosphatase
molecules from the bulk is hampered by obstacles such that the system is driven into the
persistently active state. Furthermore, the correctness of our argumentation can be seen
when simulating the system with a higher diffusion coefficient which makes up for the
hampering of the obstacles. In this case bistability is recovered.

4.4.2 Chemical wave fronts in an inhomogeneous medium

After having analysed the steady state behaviour of the EGF receptor system in an inho-
mogeneous medium we will now turn to the more general question of whether chemical
wave fronts provide a reliable means for propagating a signal over long distances if the
reaction medium is occluded by obstacles. In particular, we investigate whether a front
remains stable and continues to propagate with velocities allowing for long-range sig-
nalling. However, in order to reduce the complexity of the problem we will change the
reaction system under investigation. Instead of simulating the EGF receptor system, we
will turn to a prototypical system capable of exhibiting propagating fronts. In particular,
we will continue our analysis by simulating a simple autocatalytic reaction system with
only one chemical species A and the reversible reaction

A
k


r

A + A. (4.19)

With uA = nA/Ω accounting for the concentration of the molecular species A in the
reaction volume Ω, the above reaction scheme gives rise to the following reaction diffusion
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equation:
∂t u = D4u + k u− r u2. (4.20)

This equation possesses two steady states ūu = 0 and ūs = k/r with the former being
the unstable and the latter being the stable steady state. Hence, we arrive at the rescaled
equation

∂t u = 4u + u (1− u), (4.21)

when introducing the substitutions u∗ = u/ūs, t∗ = k t, x∗ = x (k/D)1/2 and omitting
the asterisks for notational convenience. This equation, which is generally referred to
as the Fisher equation, has been extensively studied [Murray, 1993]. In one spatial
dimension, equation (4.21) gives rise to a number of front solutions u(x − vt) with the
velocity v satisfying the condition v ≥ vmin = 2

√
k D.

In the following we will now use our Monte Carlo simulation environment in order to
investigate whether the above system admits for stable wave fronts in a two dimensional
inhomogeneous medium. For modelling inhomogeneities we use the same approach as
described above, i.e. we introduce rigid obstacles which cover exactly one reaction cell.
The fraction of grid cells covered by obstacles is chosen out of a range from 0 to 0.4. If
the density of covered grid cells is increased even further, the proportion of free grid cells
drops below the percolation threshold. Hence, a system spanning cluster of free cells does
no longer exist in an infinite system so that the fronts get stuck in the simulated finite
system. At time t = 0 the particle density is set to the stable steady state value in all
nonblocked gridcells attached to the left boundary of our rectangular reaction medium.
Such an initial condition leads to an interface line

xI(y) = max
x
{u(x, y) > 0.5} (4.22)

separating the regions of high and low particle concentration. This line moves into the
positive x direction. One can easily extract the sigmoidally shaped profile by projecting
the particle density onto the x axis. For monitoring the displacement of the propagating
wave, we define the mean interface position as

α =
l

L

∑
y

xI(y), (4.23)

with L being the length of the grid in y direction and l accounting for the length of a
subvolume. Furthermore we define the roughness of the interface as the deviation of the
interface from its mean position α, i.e.

42 =
l

L

∑
y

(xI(y)− α)2. (4.24)
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Figure 4.11: Left: Mean position of the interface as a function of time. The different
colours account for the different obstacle densities: red corresponds to 0, blue to 0.12,
green to 0.24, and black to 0.36. Right: Normalised velocity as a function of the obstacle
density.

First we analyse how the propagation of the mean interface position is affected by
inhomogeneities. As can be seen in Figure 4.11, in which we have depicted the mean
interface position as a function of time, the average wave front always propagates with
a constant velocity through the reaction medium, no matter by how many obstacles the
medium is occluded. Unlike simple diffusion the scaling behaviour of the displacement
of the propagating front is not changed by an inhomogeneous medium. However, the
velocity with which the front propagates through the reaction medium clearly decreases
when including obstacles. This can be seen in right part of Figure 4.11 in which the
average velocity normalised to the homogeneous velocity is shown as a function of the
obstacle density. For low obstacle densities we first see a linear decrease in the veloc-
ity. As we approach the percolation threshold, the velocity becomes increasingly slower,
since macroscopic obstacle cluster begin to appear in the medium. So far, we have only
analysed the ensemble average. However, when taking a look at individual trajectories
one observes a somewhat different behaviour (Figure 4.12). Especially at high obstacle
densities one finds, that the motion of the waves is composed of rapid jumps alternating
with periods during which the interface advances very slowly. This behaviour is an effect
of the underlying obstacle distribution. In particular an interface slows down, whenever it
has to surmount a macroscopic obstacle cluster. Consequently we observe an unsteady
propagation of the mean position of the interface.
Next we will investigate how the roughness of the interface is changed, if the reaction
medium contains inhomogeneities. This part of the study is motivated by the work of
[Riordan et al., 1995], who showed that the interface of a chemical wave front broadens
during its propagation, if one accounts for the noise in the underlying system. However,
the simulations in that study were performed on a homogeneous medium. Hence, we
now want to examine how the finding of [Riordan et al., 1995] has to be altered when
accounting for obstacles in the reaction medium. Overall, our simulations give rise to the



74 CHAPTER 4. VARIATION 2: MONTE CARLO SIMULATION OF LATERAL SIGNAL PROPAGATION

t
α

( 
 )

time

 0

 20

 40

 60

 80

 100

 120

 140

 50  100  150  200  250 0

ro
ug

hn
es

s

time

 10

 100

 100
 1

Figure 4.12: Left: Three sample trajectories of the mean interface position as a function
of time obtained when simulating the system with a value of 0.4 for the obstacle density.
Right: Average roughness as a function of time. The trajectories correspond to obstacle
densities 0.0, 0.24, 0.36, and 0.4 (from bottom to top).

results depicted in the right part of Figure 4.12. In this figure, we have used a double
logarithmic scale to plot the roughness of the front as a function of time. The trajectories
were obtained by simulating the system on a homogeneous grid and on grids with obstacle
densities 0.24, 0.36, and 0.4 (from bottom to top). When analysing the results one finds
that the roughness of the wave front is not affected when only a few obstacles occlude
the reaction medium. In fact the trajectory obtained on a grid with an obstacle density
of 0.24 almost perfectly matches with the result obtaine from a homogeneous medium.
If we now increase the obstacle density further, the interface becomes rougher (obstacle
density 0.36). Finally if the obstacle density gets close to the percolation threshold, we
observe that the interface grows a lot faster than on a homogeneous medium. In [Riordan
et al., 1995] the authors report that the roughness of a front on a homogeneous medium
scales asymptotically in time with an exponent equal to 0.272. Although we have not
reached the asymptotic regime we find a similar scaling exponent (0.265). Interestingly,
if we fit power laws to the results obtained for obstacle densities 0.24, 0.36 and 0.4, we
obtain values of 0.263, 0.18 and 0.736 respectively. Overall these results imply that we
have to distinguish between three different obstacle regimes when analysing the rough-
ness of the front. If there are no or relatively few obstacles embedded in the reaction
medium, the interface disperses as shown by [Riordan et al., 1995]. For high obstacles
densities close to the percolation threshold the interface quickly disintegrates because
macroscopic clusters appear in the reaction medium. However, for intermediate obstacle
densities it seems as if inhomogeneities cause a focusing of the interface as it does not
disperse as quickly as on a homogeneous medium. However, we have to point out that
one has to be very careful when interpreting these results because the values were not
obtained in the asymptotic regime. Obviously, the correspondence of the value obtained
on a homogeneous grid with the asymptotic value does not imply that all the other scal-
ing exponents also correspond to the real (i.e. asymptotic) values. One would have to
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run longer simulations in order to obtain reliable results. Furthermore, from a biological
perspective the asymptotic behaviour will be of minor importance, because biological
systems simply do not live long enough to ever reach the asymptotic regime.
So far the obstacles were always distributed isotropically meaning that each obstacle
covered exactly one subvolume. In the final set of simulations, we change this and in-
vestigate how linear obstacles influence the front’s speed and roughness. Within all the
simulation a fixed proportion of 32% of the reaction cells were covered by obstacles.
However, a single obstacle now covered up to four grid cells and all obstacles were ori-
ented either horizontally or vertically, i.e. either in the direction of front propagation or
perpendicular to it. Our simulation results showed that vertically oriented obstacles slow
the propagation down whereas the horizontally distributed obstacles speed up propaga-
tion as compared to the isotropic case. At the same time the roughness of the front is
reduced for vertically distributed and increased for horizontally distributed obstacles. A
hand-waving explanation of this behaviour may easily be given. With increasing obstacles
sizes the number of obstacles heads or tails pointing in the direction of the motion of
the wave front decreased, if the obstacles are oriented horizontally. Thus there will be
less effective obstacles hampering the front’s motion. At the same time the roughness
of the front increases because balancing the front becomes increasingly different. For
vertically oriented obstacles the opposite argumentation applies. Balancing the front is
facilitated because the motion in direction of the propagation is hampered. Overall, these
last results therefore show that it is not only the density of the obstacles which matters
but that also their size, shape, and orientation are of great significance.

When setting our results in relation to the initial question of whether chemical wave
fronts provide a reliable mechanism for long range chemical signalling, the answer is
ambiguous. On the one hand we have seen that the chemical wave front propagates
with constant velocity for all admissible obstacle values. Viewed from this perspective,
chemical wave fronts therefore seem to provide a suitable mechanism for long range
chemical signalling. Eventually a signal will always arrive at the destination. However,
we have also seen that the roughness of the interface increases as the wave propagates
through the medium. In particular the interface disperses even in a homogeneous medium
and in a medium containing obstacles the dispersion of the interface becomes even larger.
Taken together with the finding of the previous subsection that realistic values for the
obstacle density lie close to the percolation threshold, it becomes questionable whether
chemical wave fronts provide a reliable mechanism for propagating a signal over long
distances because the arrival time of the signal at a specific point on the membrane can
not be predicted any more.
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5 Variation 3: Representing space
revisited

in which we present the Transformed Grid Monte Carlo and the Finite Volume
Monte Carlo method with which one can represent the geometry of a reaction
medium in a more realistic way than with the approach presented in the second
chapter. In the latter part of this chapter we use the Transformed Grid Monte
Carlo approach for simulating a minimal model of the gradient sensing signalling
cascade in Dictyostelium discoideum. Our model adapts perfectly to uniform
stimuli and functions as a switch if the system is exposed to linear gradients.
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5.1 Aim and Background

In the second chapter we have set up a stochastic theory of spatially inhomogeneous reac-
tion systems using a simple type of well-stirred subvolumes, i.e. small cubes, which form
a regular cubic lattice. However, it is obvious that real geometries in which chemical
signalling takes place are not adequately described by cubes. Hence, if one neverthe-
less approximates real geometries by a set of cubes, one either obtains a crude spatial
representation or an inefficient simulation if the size of the cubes is chosen too small.
Furthermore, one wants to have a simulation environment in which the size of the grid-
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Figure 5.1: Left: General idea of the TGMC method; a cubic lattice is mapped onto
polar coordinates. Right: General idea of the FVMC method; the reaction medium is
simplicial cells.

cells can be varied. That way one can choose a fine spatial discretisation for those parts
of the reaction medium in which the probability of the occurrence of reactions is high.
As opposed to that one would choose a crude spatial representation if this probability is
low. In fact we have employed this strategy in the fourth chapter for the simulation of
the three dimensional EGF receptor system.

In the following, we will therefore generalise our Monte Carlo method to coupled
subvolumes of more general geometrical shapes and will take care of a discretisation,
which conforms as well as possible to the physical boundaries of the system. We will put
forward two strategies, which correspond to two standard approaches of grid generation in
numerical problems and computer geometry (see for instance [Knabner and Angermann,
2000] and [Hoschek and Lasser, 1992]). The first strategy, which is visualised in the
left part of Figure 5.1 transforms a regular lattice grid such that the system boundary
becomes a coordinate surface (or line) in the transformed coordinates. This approach
is called grid transformation. The second approach divides the system’s interior into
simplicial cells such that boundary points correspond to corners of these simplices. The
idea of this approach is visualised in the right part of Figure 5.1. Simplicial discretisations
are common in finite element and finite volume methods used for the numerical solution
of (deterministic) partial differential equations. In combination with our Monte Carlo
method we will call the resulting algorithms Transformed Grid Monte Carlo (TGMC)
and Finite Volume Monte Carlo (FVMC), respectively.

We adopt the notation introduced in the second chapter and divide the system volume
Ω into well-stirred subvolumes Ωk, which are represented by a conveniently chosen point
rk of its interior. In the present section, however, the volumes |Ωk| and geometrical
shapes may vary from subvolume to subvolume. Our task is to construct a hopping
Hamiltonian

Ĥhop = −
M∑
i=1

∑
k

N(k)∑
µ=1

Ki,k,a[η̂i(rk + ba(rk))− η̂i(rk)]ϕ̂i(rk) (5.1)

which corresponds to diffusive motion on length-scales, which are large compared to
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the subvolume sizes. Equ. (5.1) generalises equ. (2.22). Notice, that the number of
neighbours N(k) may be different for different subvolumes and may include more than
just nearest neighbours. Finally the vectors ba(rk), which connect rk with a neighbour
may also depend upon k. The strategy to construct the hopping rates Ki,k,a will be the
same as in section 2.3 in that we compare the discretized version of

∫
d3rϕ∇2η with the

hopping Hamiltonian equation(5.1).

5.2 Transformed Grid Monte Carlo

We begin by fixing our notation. Let ei, i = 1, 2, 3 be a Cartesian vector basis in the
three dimensional physical space. Vectors in this space are denoted by

r = xiei

Here and in the following, we make use of Einstein’s summation convention, meaning
that a summation over each index is applied, if it appears both raised and lowered in
an expression. A point in space can be characterised by the three components xi and
the coordinate lines Li = {r(xi)| xk = const for k 6= i} are straight and mutually
orthogonal. The grid lines, which we use for calculational purposes will now be chosen as
coordinate lines of a new curvilinear non-orthogonal coordinate system, which in general
will be non-orthogonal. This coordinate system is parametrised by coordinates ξµ, µ =
1, 2, 3 and grid lines correspond to Lµ = {r(ξµ)| ξν = const for ν 6= qµ}. In particular,
we require that the system boundary corresponds to a coordinate surface, i.e. ∂Ω =
{r(ξ1, ξ2, ξ3)|ξ3 = const}. Furthermore, it should be noted here, that we always assume
the mapping to be sufficiently smooth (at least two times continuously differentiable).
On the other hand, our method will not require the map to be given in analytical form,
so that grids emerging from experimentally determined boundaries may be used. All
necessary operations will ultimately be performed numerically.
Nevertheless, important simple cases are instructive and therefore we will first give explicit
formulae for cylindrical and for spherical coordinate systems before we embark to the
general case of a curvilinear non-orthogonal coordinate system. For these two simple
cases, we will give explicit expressions for the map. Furthermore, we will show that the
simple examples can be combined such that one obtains more complex shapes suitable
for simulating chemical signalling.

5.2.1 Cylindrical coordinates

In cylindrical coordinates the ξµ correspond to r, φ and z and

x1 = r cos φ

x2 = r sin φ
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x3 = z

We start from a grid in (r, φ, z)-space with grid points rk, φl, zm (k, l, m integer) and
grid spacings dr, dφ, dz. The Laplace operator, which has to be discretized, takes on
the form

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2

φ + ∂2
z = ∆r + ∆φ + ∆z.

A finite difference discretisation on the r, φ, z grid with lattice is readily obtained up to
second order accuracy. ∆r may be written in the form

∆rη|k,l,m =
1

dr2

[(
1 +

dr

2rk

)
(ηk+1 − ηk) +

(
1− dr

2rk

)
(ηk−1 − ηk)

]
+ O(dr2)

with ηk stands for η(rk, φl, zm) so that ηk±1 = η(rk±∆r, φl, zm). Comparing this expres-
sion with equation.(5.1), we can simply read off the hopping rates between neighbouring
subvolumes in radial direction.

Ki,k→k±dr =
Di

dr2

(
1± dr

2rk

)
The other rates are calculated analogously such that one obtains the rates summarised
in Table 5.1, which is given below.

Direction Hopping rate

rk → rk ± dr Di (1± dr/2rk) /dr2

φl → φl ± dφ Di/(dφ2r2
k)

zm → zm ± dz Di/dz2

Table 5.1: Hopping rates that have to be employed when simulating diffusion in cylin-
drical coordinates.

5.2.2 Spherical coordinates

In spherical coordinates the ξµ correspond to the coordinates r, θ, φ and

x1 = r sin θ cos φ

x2 = r sin θ sin φ

x3 = r cos θ.
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We start from a grid in (r, θ, φ)-space with grid points rk, θl, φm (k, l, m integer) and
grid spacings dr, dθ, dφ. The Laplace operator ∆ = ∆r + ∆θ + ∆φ takes on the form

∆rη =
1

r2
∂2

rη +
2

r
∂rη

∆θ =
1

r2
∂2

θη +
cot θ

r2
∂θη

∆φ =
1

r2 sin2 θ
∂2

φη

and the discretisations look as follows:

∆rη|k,l,m =
1

dr2

[(
1 +

dr

rk

)
(ηk+1 − ηk) +

(
1− dr

rk

)
(ηk−1 − ηk)

]
+ O(dr2)

∆θη|k,l,m =
1

r2
kdθ2

[(
1 +

dθ cot θl

2r2
k

)
(ηl+1 − ηl) +

(
1− dθ cot θl

2r2
k

)
(ηl−1 − ηl)

]
∆φη|k,l,m =

1

dφ2 sin2 θl

[ηm+1 − ηm + ηm−1 − ηm].

Again by comparison with equation (5.1) one obtains the hopping rates which are listed
in the table below.

Direction Hopping rate

rk → rk ± dr Di (1± dr/rk) /dr2

θl → θl ± dφ Di (1± dθ cot θl/2r
2
k) /r2

kdθ2

phim → phim ± dφ Di/dφ2 sin2 θl

Table 5.2: Hopping rates that have to be employed when simulating diffusion in spherical
coordinates.

5.2.3 Combing different geometries for the modelling of realistic
biological structures

With the technique presented in the previous section we are now able to correctly model
diffusion on meshes which are set on either Cartesian, cylindrical, or spherical coordinates.
However, in order to use our approach for the simulation of chemical signalling in complex
geometries, we have to combine different geometries. In the following, we will briefly show
how this can be accomplished. In particular, we will present two simple examples in which
set up more complex geometries. Namely we will construct a rod like bacterial cell and
a dendrite with spines attached to it.
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Figure 5.2: Left: Microscopic picture of a single E coli cell which is loaded with a
fluorescent dye. Right: Idealised geometry used for modelling single cell organisms

Bacterial cell

As a first example, we will construct a reaction medium that allows for the simulation
of chemical signalling cascades in single bacterial cell such as Escherichia coli. Although
bacterial cells only have a volume of approximately 1 µm3, space nevertheless needs to
be accounted for when modelling signalling cascades in these organisms. This is quite
obvious if one for instance considers the Min proteins in E coli, which oscillate in order
to find the middle of the cell for cell division [Fange and Elf, 2006]. But also other
signalling cascades such as the cascades regulating bacterial chemotaxis depend on the
shape and structure of the reaction medium [Lipkow et al., 2005]. Consequently a realistic
representation of space for the modelling of chemical signalling cascades in bacterial cells
is therefore highly desirable.

When taking a look at microscopic picture of E coli, such as the one on the left hand
side of Figure 5.2, one immediately notices that the shape of a bacterial cell is well
represented by a cigar or a rod. Hence, we can easily model such a shape by simply
attaching two half spheres to a cylinder with radius r. Consequently we arrive at a
reaction medium equal to the one visualised on the right hand side of Figure 5.2. The
computational grid we obtain is similar to the one used by [Blom and Peletier, 2002].
However, unlike the grid presented there, we do not assume that the reaction medium is
symmetric to the r-axis. Hence with our discretisation we are also able to account for
variations of the molecules in the φ-direction. A visualisation of the grid is given in Figure
5.3, in which the left part shows a view that is obtained when cutting the bacterium in a
sagital manner and in which the right part shows a section through the transverse plane
of the bacterium. In particular the cylinder and the two half spheres are discretized in
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such a way, that each cylindrical grid cell at the interface between the cap and the main
body of the cell neighbours only with one spherical grid cell. The hopping rates between
the two grids are determined by the continuity of the particle currents (see part on Finite
Volume Monte Carlo Method).
For testing whether diffusion is correctly modelled in our reaction medium, a Brownian

Figure 5.3: Computational grids used when modelling a single bacterial cell. The left
part shows the longitudinal cut and the right part the cross section.

walker was allowed to freely diffused in the cell. As the quotient of the accumulated time
which the particle spend in each gridcell ti and the total simulation time T was equal
to the quotient of the gridcell volume ωi and the total volume Ω, i.e. ti/T = ωi/Ω,
we conclude that our reaction medium is well suited for modelling chemical signalling in
bacterial cells.

Dendrite

After having presented a way for computationally representing the shape of single cell
organisms such as Escherichia coli, we will now turn to our second example. Namely
we will set up a reaction medium with which we can simulate chemical signalling in a
dendrite that has spines attached to it. A possible application for our reaction medium
is for instance the question of whether spines can really be regarded as isolated chemical
reaction chambers or whether chemical crosstalk can occur among neighbouring spines
[Ajay and Bhalla, 2006].

In the left part of Figure 5.4 we see a picture of a neuron with its dendritic tree. In
the bottom part we further see a magnification of a piece of dendrite. As can be seen
there, a dendrite is formed by two structures; namely by the parental dendrite and by
the small protrusions, which are called spines. A spine is therefore nothing but a small
membranous extrusions. Generally one further subdivides the spine into two parts. The
first part is the bulbous head, which connects the dendrite with the axon of a presynaptic
cell. The head also houses the signal transduction machinery of the postsynaptic side.
The second part of the spine is the so-called spine neck which simply connects the main
dendrite with the head.
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Figure 5.4: Left part: Two pictures showing a neuron and a magnified view of a piece
of dendrite. Right part: A computational representation of a piece of dendrite to which
spines are attached.

Generally spines come in a variety of different shapes and sizes. Basically one distin-
guishes between three types: thin spines, mushroom spines, and stubby spines. In a first
approximation, it is however reasonable to model both the main dendrite as well as the
head and neck of the different spine types by cylinders of different sizes. The main den-
drite normally has a diameter of 3− 4 µm. Compared to this the spine necks are minute
as they only have a diameter of 0.1 − 0.2 µm. Typical diameters for the spine head lie
around 1 µm and the overall height of a spine is approximately equal to 2 µm. Overall, if
one models a dendrite as laid out above, one obtains a reaction medium as the one visu-
alised in the right part of Figure 5.4. The discretisation of this shape is straightforward as
it only contains cylinders. The only potential problem arises at the junction between the
main dendrite because one would have to account for the curvature of the main dendrite
in an exact representation. However, since the difference in diameter between the spine
neck and the main dendrite are so large, the spine neck effectively sits on a flat surface.
Hence the interface area between these two structures is simply given by the footprint
of the spine neck and the calculation of the distance between the bordering cells at the
junction is also straightforward.
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5.2.4 General case

Let us now turn to the general case. As the ξµ coordinate system will in general be
curvilinear and non-orthogonal, we have to distinguish between co- ans contravariant
vectors. For convenience we first recall some standard notions of differential geometry,
which will be needed for our purposes.

A local covariant vector base (3-bein) bµ is spanned by the tangent vectors at the
coordinate lines, i.e.

bµ =
∂r(ξµ)

∂ξµ
= ∂µr

The components of the base vectors with respect to the Cartesian base are given by

bi
µ = ∂µx

i,

which are just the components of the Jacobian matrix of the grid transformation. The
(covariant) metric tensor defined by

gµν = bµ · bν =
3∑

i=1

bi
µb

i
ν

contains the information on how to compute lengths and angles from the components
of vectors in the local bµ system, because for two vectors p = pµbµ and q = qµbµ the
scalar product is given by

p · q = pµqνbµ · bν = pµqνgµν .

An associated contravariant vector base bµ is constructed from

bµ · bν = δµν .

The corresponding contravariant metric tensor gµν is just the matrix inverse of gµν . Every
vector p in the vector space spanned by the tangent vectors at the ξ coordinate lines can
be represented either by contravariant or by covariant components

p = pµbµ = pµgµνb
ν = pνb

ν

For curvilinear coordinate systems the 3-bein changes in space. If we move from r to
r+dr, the base vectors change from b(r)µ to b(r+dr)µ = b(r)µ +dbµ. Let us express
the infinitesimal changes

dbµ = (∂νbµ)dξν

with respect to the 3-bein at r. For this purpose one introduces the Christoffel symbols,
which are defined by the relation

∂νbµ =
∂2r

∂ξµ∂ξν
=: Γλ

νµbλ, (5.2)
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so that dbµ = Γλ
νµdξνbλ. The Christoffel symbols can be explicitly expressed via deriva-

tives of the metric tensor (see any standard textbook on differential geometry, for example
[Struik, 1988]). For numerical calculations, we will directly apply Equation(5.2) to cal-
culate the Γλ

νµ.
The Christoffel symbols will naturally appear in derivatives of vector fields v(r) = vµbµ

(assuming, that the vector field is described by its contravariant components), because
changes due to infinitesimal displacements r → r + dr are not only due to changes in
the vectors components but also due to the changing 3-bein:

dv(r) = v(r + dr)− v(r) = [(∂νv
µ) + Γµ

νλv
λ]dξνbµ.

The expressions in square brackets form the components of a second rank tensor, called
the covariant derivative

Dνv
µ := ∂νv

µ + Γµ
νλv

λ

Let us add two remarks:
(i) We can repeat the above steps assuming that the vector field is described by its
covariant components, i.e. v = vµ

µ. The result is

Dνvµ := ∂νv
µ − Γλ

νµvλ.

(ii) The concept can easily be generalised to higher rank tensor fields. For example, for
a 2nd rank tensor field described by contravariant components T µν one finds

DµT
νλ = (∂µT

νλ + Γν
µρT

ρλ + Γλ
µρT

νρ)

In particular one may check the important Ricci’s Lemma, which states that the covariant
derivative of the metric tensor vanishes identically, Dµg

νλ = 0.
Now we can formulate derivatives of scalar and vector fields in general curvilinear

coordinate systems. The change of a scalar field f due to infinitesimal displacements
defines the gradient operation of vector analysis:

df(r) = (gradf) · dr = (gradµf) · dξµ,

i.e. gradµf
=∂µf . The gradient may as well be considered as the covariant derivative

of a scalar field. The divergence is a linear differential operation on vector fields, which
maps the vector field onto a scalar field. As we have seen above, differentiation maps
vector fields onto second order tensor fields, from which a scalar can only be obtained by
contraction. Thus the divergence operator must take on the form

div v = Dµv
µ

The Laplace operator is the divergence of a gradient field, i.e. ∆f = div(gradf) =
Dµ(gµν∂νf) = gµνDµ∂νf , where we have made use of Ricci’s Lemma in the last step.
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Consequently, the Laplacian will take on the following form in arbitrary (smooth) curvi-
linear coordinates:

∆f(r) = div(gradf) = gµν(∂µ∂ν − Γλ
µν∂λ) (5.3)

Now let us set up an algorithm to compute a discretized version of ∆ up to second order
accuracy and determine the corresponding hopping rates. For the differential operators
applied to η, this is completely standard:

∂µη =
1

2∆µ
(η(ξµ + ∆µ)− η(ξµ −∆µ)) + O[(∆µ)2]

∂µ∂νη =
1

4∆µ∆ν
[η(ξµ + ∆µ, ξν + ∆ν) + η(ξµ −∆µ, ξν −∆ν) +

−η(ξµ + ∆µ, ξν −∆ν)− η(ξµ −∆µ, ξν + ∆ν)].

Note that this form implies that hoppings to next nearest neighbours have to be included.
What remains to be done is the numerical computation of the metric tensor and the
Christoffel symbols. To compute gµν start from

bi
µ = ∂µx

i =
1

2∆µ
(xi(ξµ + ∆µ)− xi(ξµ −∆µ)) + · · ·

and use

gµν =
3∑

i=1

bi
µb

i
ν

The contravariant metric tensor has to be evaluated from

gµλgλν = δµ
ν .

To compute the Christoffel symbols start from Equation (5.2), which relates the Γλ
µν

to second order derivatives
ci
µν := ∂µνx

i,

which can be used in its discretized form. From Equation(5.2) we get by multiplying with
bκ

3∑
i=1

ci
µνb

i
κ = Γλ

µν

3∑
i=1

bi
λb

i
κ = gκλΓ

λ
µν =: Γκµν

The quantities Γκµν are also called Christoffel symbols of the 2nd kind. Note that they
are easily calculated numerically from the coefficients bi

µ and ci
µν . To obtain the Γκ

µν we
have to multiply with the contravariant metric tensor

Γλ
µν = gλκΓκµν
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This completes the necessary algorithmic steps to assemble the Laplacian in arbitrary
curvilinear coordinates, which we summarise in the recipe given on the next page.
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Recipe for calculating hopping rates of TGMC

1. Set up the system of grid points r(ξ) with ξ = k∆ξ1e1 + l∆ξ2e2 + m∆ξ3e3

Components will be denoted by

xi(k, l, m)

2. Compute the Cartesian components of covariant base vectors

bi
µ(k, l, m) = ∂µx

i(k, l, m)

by finite differencing to 2nd order accuracy (central differences)

3. Compute the covariant metric tensor at every grid point

gµν(k, l, m) =
∑

i

bi
µ(k, l, m)bi

ν(k, l, m)

4. Compute the contravariant metric tensor gµν(k, l, m) by matrix inversion at
every grid point

gµλ(k, l, m)gλν(k, l, m) = δν
µ

5. Compute the components ci
µν(k, l, m) := ∂2

1x
i(k, l, m) by finite differencing

to 2nd 0rder accuracy. Then compute the γλ at every grid point

γλ(k, l, m) = gµν(k, l, m)gλκ(k, l, m)
3∑

i=1

ci
µν(k, l, m)bi

κ(k, l, m)

6. Now set up the hopping rates according to the table given below.

Direction a Hopping rate

±∆ξµeµ
gµµ(ξ)
(∆ξµ)2

(
1∓ γµ(ξ)∆ξµ

2

)
±∆ξµeµ ±∆ξνeν

gµν(ξ)
4∆ξµ∆ξν

±∆ξµeµ ∓∆ξνeν
gµν(ξ+a)
4∆ξµ∆ξν

Hopping rates for the general curvilinear case, when moving from r(ξ) to
r(ξ + a).
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5.3 Finite Volume Monte Carlo

Finite volume methods are commonly used in numerical algorithms, which solve partial
differential equations. They are particularly useful for equations of the form L̂(f) = g,
where the differential operator L̂ is the divergence of something

L̂(f) = div · Q̂(f)

The general idea is to discretise the system volume Ω into cells (called control volumes
in this context) Ωk with piecewise planar boundaries, such that two cells share a complete
planar piece of surface or a complete common edge or a single vertex (or nothing at all).
Then one uses Gauss’s integral theorem on every control volume∫

Ωk

div · Q̂(f) =

∫
∂Ωk

νk · Q̂(f).

(νk denotes the surface normal on ∂Ωk). As the boundary ∂Ωk is composed of plane
surfaces Pk,a, a = 1 · · ·n(k), the surface integral may be written as a sum

n(k)∑
a=1

na ·
∫

Pk,a

Q̂(f)

with a constant normal vector for every plane surface part. The original equation thus
becomes a system

n(k)∑
a=1

na ·
∫

Pk,a

Q̂(f) =

∫
Ωk

g

and the integrals appearing in this system are approximated by numerical quadratures.
If we represent every cell by a point rk of its interior and look for numerical solutions
f(rk), the finite volume methods are called cell centred 1 Note that this discretisation
strategy implies that boundaries ∂Ω, which do not consist of planar pieces can only be
treated approximately. A boundary conform finite volume discretisation requires that
the boundary is approximated by a mesh of planar surface parts, which correspond to
planar surface parts of subvolumes.

In the following we will derive the hopping rates corresponding to finite volume dicreti-
sations using simplices (i.e. tetrahedra in 3 dimensions and triangles in 2 dimensions)
as subvolumes 2. These shapes of the control volumes have important practical and
conceptual advantages. To construct a tetrahedralisation we may start from an arbitrary
set of points xm (including boundary points on ∂Ω) which shall become the vertices of

1In so called cell vertex methods, the unknown variables are put on the edges (vertices) of the
control volumes.

2Such discretisations are also called tetrahedralisations of a volume in 3d and triangulations of a
surface in 2d
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the subvolume simplices. First, we set up auxiliary cells (which will not become the sub-
volumes) by the so called Voronoi-Dirichlet construction: A Voronoi cell ωm contains all
points, which are closer to xm than to any other point of the prescribed set. Every ωm is
a convex set (if its boundary is included) with piecewise planar boundaries. The vertices
rk of these cells are called Voronoi points and they will become the representative points
of the subvolume tetrahedra, which we are now going to construct. If several ωm have
a common Voronoi point on their boundaries, this point must have the same distance
to all the corresponding xm by construction, i.e. all these xm have to fall on a sphere
around the Voronoi point. For generic positions, only 4 points can fall on a common
sphere. Exceptional cases (degenerate Voronoi points) with more than four xm falling
on a common sphere need not be considered here. They are easily removed by moving
one of the xm slightly. Thus cells, which are represented by Voronoi points rk and have
the xm as vertices naturally become tetrahedra, which possess the so called Delaunay
property: no xm lies inside the circumsphere of each tetrahedron.

If all Voronoi points are regular, the emerging structure of Delaunay tetahedra is sim-
plicial complex (i.e. consists of tetrahedra, sharing one or zero common surface triangles,
a common single edge, a common single point or nothing), which constitutes a tetrahe-
dralisation of Ω 3, called Delaunay tetrahedralisation. It is the geometrical dual of the
Voronoi tessellation: to every Voronoi cell there corresponds a Delaunay vertex, to every
Voronoi edge there corresponds a Delaunay triangular surface part and to every Voronoi
planar surface part there corresponds a Delaunay edge. Such tetrahedralisations have
many interesting and very convenient properties. Efficient algorithms exist to construct
such tetrahedral meshes, even if we require them to be boundary conform [Si, 2006].
Let us therefore start from a given, boundary conform (also called constrained Delaunay
tetrahedralisation of Ω with tetrahedra ωk and dual Voronoi points rk, which we choose
as the points representing the subvolume of a Delaunay tetrahedron.

Following our general strategy we compare the discretized version of the continuum
limit of the hopping Hamiltonian on the simplicial complex of Delaunay tretahedra with
its original form such that we can simply read off the hopping rates. Let us consider
a single tetrahedron (number m) together with its nearest neighbours n = 1 · · ·N(m).
The hopping from m → n corresponds to a Hamiltonian

Ĥm→n = −
N(m)∑

n

K(m → n)(ϕn − ϕm)ηm (5.4)

and the corresponding subvolume integral is given by

−D

∫
Ωm

d3rη(r)∇2ϕ(r)

3Strictly speaking it is a tetrahedralisation of the convex hull of Ω, but is easy to remove faces in
a postprocessing step to conform with a non-convex boundary.
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Here we employ the finite volume discretisation described above

−D
ηm

|Ωm|

N(m)∑
n

νmn ·
∫

∂Ωmn

∇ϕ (5.5)

where ∂Ωmn denotes the triangle shared by tetahedra n and m and νmn are the corre-
sponding normal unit vectors pointing outwards of tetrahedron m. We approximate the
directional derivatives by finite differences using data at the representative points

νnm ·∇ϕ =
ϕn − ϕm

lnm

+ · · · (5.6)

where lmn is the length of the link between rm and rn. Inserting equation (5.6) into
equation (5.5) and compare with equation(5.4) we can read off the hopping rate to
neighbouring tetrahedra:

K(m → n) = D
|∂Ωmn|
|Ωm|lmn

(5.7)

where |∂Ωmn| is the area of the triangle ∂Ωmn and |Ωm| is the volume of tetrahedron
m. Thus the hopping rates are very easily constructed from the metric properties of the
mesh, which can be determined by standard algorithms.

In many problems, the boundary of Ω is given as the only geometric information. Then
a typical application of the FVMC consists of the following steps:

1. Determine a triangulation of the boundary surface

2. Determine a Delaunay tetrahedralisation which is boundary conform

3. Compute the metric property properties of this tetrahedralisation and set up the
hopping rates according to equation ((5.7))

For steps 1 and 2 we use the freely distributed TetGen and Qhull packages (see [Si, 2006]
and [Barber et al., 1996] respectively). Furthermore we would like to remark that it is
also possible to first apply a finite volume discretisation method to a simple cubic lattice.
In this case the procedure is equivalent to a second order finite difference method. Thus,
it is possible to combine finite volume with transformed grid methods. In fact, it is easily
shown that the expressions for the hopping rate (5.7) after transforming to cylindrical
and spherical coordinates gives the same rates as listed in the tables in section 5.2.1 and
5.2.2. Following this strategy, we may also apply different transformations to different
parts of the cubic lattice and always keep consistent hopping rates across the boundaries
of this region.
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5.4 Eukaryotic Chemotaxis

In the final section of this chapter, we now apply the new simulation method to show
that the behaviour and outcome of signalling cascades depends on the underlying geom-
etry of the reaction medium. To demonstrate this we will model the early steps in the
chemotactic response of a single eukaryotic cell.

Chemotaxis refers to the directed movement of single cells towards a chemo-attractant
or away from a chemo-repellent. It occurs both in prokaryotic as well as eukaryotic cells
and it is an essential part in many biological processes. Morphogenesis and the guidance
of immune cells to the site of infection are only two prominent examples, which depend
on chemotaxis. For studying eukaryotic chemotaxis, the social amoebae Dictyostelium
discoideum exposed to gradients of cyclic adenosine 3’,5’-monophosphate (cAMP) has
become the model system. Normally, Dictyostelium cells grow as single amoebae but
when challenged with adverse environmental conditions, individual cells aggregate and
form multicellular structures containing up to one million cells. In order to aggregate, the
cells release cAMP to the environment and subsequently move towards that direction in
which the cAMP concentration is high.

The chemotactic response in eukaryotic cells is generally subdivided into three phases
[Devreotes and Janetopoulos, 2003]. In the first step which lasts around half a minute
the cell senses the extracellular stimulus field. This step is known as gradient sensing.
Polarisation constitutes the second step. During this stage the cell assumes a shape in
which an axis with a well defined front and back is established. This step involves the
recruitment of a multitude of different proteins to the plasma membrane and it takes
place within 10 to 60 seconds after the application of the stimulus. During the last step
the cell remodels its cytoskeleton which causes its movement.

5.4.1 Gradient Sensing

The ability of Dictyostelium cells to determine the direction of the concentration gra-
dient is based on comparing the difference in receptor occupancy between the front and
the back of the cell. The gradient sensing mechanism is very sensitive to extracellular
cAMP concentration differences, i.e. it has been reported that Dictyostelium is capable
of responding to a 2% difference in active receptors between the front and the back of
the cell, when a total of only 400 receptors are bound to cAMP [Mato et al., 1975].
The most prominent feature of the gradient sensing signalling cascade is that it leads
to the the rapid accumulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) at the
leading edge of the plasma membrane, i.e. at that part of the membrane which is exposed
to the highest cAMP concentration. The accumulation of PIP3 to the front has been
shown by monitoring the fluorescent signal emitted from GFP-tagged pleckstrin-homology
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Figure 5.5: Left: General ratio of a local excitation global inhibition model as proposed
by Levchenko and Iglesias [2002]. Right: The abstract model proposed by Levine et al.
[2006].

(PH) domain containing proteins which bind to PIP3. PIP3 itself is under the control
of the kinase PI3K and the phosphatase PTEN. PI3K produces PIP3 by phosphorylat-
ing PIP2. As opposed to that PTEN has the antagonistic effect as it dephosphorylates
PIP3 back to PIP2. Furthermore, it has been observed that PI3K localises to the front
and PTEN localises to the back, if a cell is exposed to a gradient. However, in mutant
studies in which the cells lack proper PI3K molecules, the direction sensing network is
not impaired. Instead, only the speed of the movement is reduced [Postma et al., 2004].
Consequently, the PI3K/PTEN system can not be the primary and sole mechanism by
which gradient information is processed. Instead, it has been proposed that small G pro-
teins act as the initial activators for gradient sensing [Chung et al., 2001]. Overall, since
the survival of Dictyostelium crucially depends on its chemotactic behaviour, it seems
highly unlikely that the chemotactic response is mediated by a single molecule or a linear
signalling network. Consequently the biochemical data will remain contradictory unless
it is integrated in a larger picture.

Several models have been proposed so far for explaining gradient sensing [Devreotes
and Janetopoulos, 2003]. Among these models are the so-called first hit inhibition and
the intermediate depletion model. The first hit inhibition model is based on the idea of
exploiting temporal differences in the arrival of the stimulus at the front and back of the
cell when a gradient is applied. In particular this model assumes that inhibitory molecules
are produced at the front and then rapidly diffuse to the back of the cell where they cause
an inhibitory response. As opposed to that the intermediate depletion model assumes
that a highly cooperative binding of some signalling molecules to some macromolecule
at the front limits their availability at the back. Although both models seem reasonably
plausible, they did not withstand experimental tests. The first hit inhibition model is for
instance incapable of accounting for gradient reversal. Once a gradient has been estab-
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lished, it can not easily be reversed when the signal is changed. The inhibitory depletion
model can not correctly account for the fact that a cell is responsive for a wide range of
background stimulus concentrations.
Currently, the most promising approaches for modelling gradient sensing are based on
the so-called local excitation global inhibition mechanism, because these models are ca-
pable of reproducing most of the experimental findings. According to this idea, activated
receptors produce both an excitatory as well as an inhibitory signal. The gradient is
then established because the activation signal only acts locally whereas the inhibitory
signal is globally integrated. Consequently, excitation exceeds inhibition at the front of
the cell whereas the opposite holds true for the back. Overall, this kind of model was
first proposed by Levchenko and Iglesias [2002] and was subsequently extended in Ma
et al. [2004]; but also the recently proposed model of Levine et al. [2006] belongs to
this class. To compare both models, we have schematically visualised them in Figure
5.5. Obviously the model proposed by Levchenko and Iglesias [2002] tries to explain the
uneven distribution of PIP molecules whereas the model of Levine et al. [2006] is more
abstract as it does not explicitly link the involved constituents to real molecules. The
chemical species in this model are simply denoted as S, A, and B and account for a
signal, an activator, and an inhibitor respectively. In general, an abstract model has the
advantage that it does not have to postulate the existence of additional chemical species
that have not been characterised in experiments. Moreover, in the model proposed by
Levine et al. [2006] the inhibitor directly acts upon the activator and both molecules
are annihilated when they react. As opposed to that, in the models of Levchenko and
Iglesias [2002] and Ma et al. [2004] the activator (PI3K) and the inhibitor (PTEN) act
on a third molecular species, which can either be in the active state (PIP3) or in the
inactive state (PIP2). However, the two models are nevertheless based on the same idea
that the excitation signal acts locally whereas the inhibitory signal is integrated over the
entire cell. In particular this is accomplished by attaching the activator to the membrane
whereas the inhibitor can freely diffuse in the cytosol.

In the next section we will based on the model of [Levine et al., 2006] devise a minimal
abstract model of gradient sensing. However, before we do so, we would like to stretch
that our model has to be understood as a conceptual model and that the chemical species
which we use should not be confused with real chemical species such as PTEN or PI3K.

5.4.2 Computational Modelling of Gradient Sensing

As a start we reexamine the model proposed by [Levine et al., 2006] in somewhat greater
detail. As the authors of that model offer an interpretation, which links the inhibitor and
activator molecules to the different subunits of a G Protein, they distinguish between
the inhibitor in the cytosol and the inhibitor bound to the membrane. However, the
same behaviour of the model can be obtained when combining both species such that
I = B +BM . Consequently one arrives at the model depicted in the schematic represen-
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Figure 5.6: Schematic representation of the minimal model according to [Levine et al.,
2006] (left) and our own model.

tation on the left of Figure 5.6. Since we require that annihilation reactions occur in this
simplified model as often as in the original description, we have to reduce the value of the
rate constant a because the number of inhibitor molecules in the membrane is generally
lower than the number of inhibitor molecules in the cytosol. The same argumentation
holds true for the rate with which the inhibitor spontaneously decays. Hence we have
to require that γ < r. However, a very small value for the spontaneous decay rate
implies that the inhibitor concentration is spatially homogeneous for all admissible cell
sizes because the average life time of an inhibitor molecule defined as τ = γ−1 becomes
larger than the time it takes the molecule to cross the cell by diffusion. Moreover, the
assumption made in the original model, that the inhibitor does not decay spontaneously,
if it is localised in the cytosol seems very implausible from a physiological perspective.
Apart from that, the response in the activator concentration in the simplified model as
well as in the original model does not exhibit perfect adaptation. This can be seen, if one
translates the schematic representation in Figure 5.6 into two chemical rate equations
and subsequently solves for the homogeneous steady state concentration of the activator,
one finds that this concentration depends on the signal concentration S.

In the following we will now change the simplified model of Levine et al. [2006], such
that we obtain the model which is schematically displayed in the right part of Figure
5.6. In particular, we remove the spontaneous decay of the activator molecules in the
membrane. The inhibitor molecules in the membrane still decay with rate γ. Up to now
the signal produced both the activator and the inhibitor with equal rates. This will no
longer be the case. Instead A is produced with rate k1 and I with rate k2. Finally, as in
the model proposed by [Levine et al., 2006], A and I are both annihilated in the reaction
A + I → ∅. Overall the reaction scheme gives rise to the two chemical rate equations

∂t A = k1 S− a A I (5.8)
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and
∂t I = k2 S− γ I− a A I. (5.9)

When analysing the homogeneous steady state, we find that the activator concentration
is given by

A =
k1 γ

a (k2 − k1)
. (5.10)

Hence A is independent of S such that our mechanism exhibits perfect adaptation as
claimed above. Moreover we also see that we have to require that k2 > k1 in order
to get meaningful results. Otherwise, in the limit of k2 → k1, one would approach a
value of infinity for the steady state concentration of A. In fact, the difference between
A and I would grow with the rate γ I, if both growth rates were identical. Overall, our
approach of choosing different values for the rates with which the activator and the in-
hibitor molecules are produced is a pronounced difference to the original model proposed
by [Levine et al., 2006]. In this model the rates had to be identical because the activator
and inhibitor molecules were identified with the different subunits of a G-Protein. As
opposed to that we do not offer such a specific physiological interpretation. Our model
only claims that the pathway, which leads to the production of the inhibitor proceeds
slightly faster speed the pathway leading to activation. Overall this is not an implausible
assumption and has also been made by [Ma et al., 2004].

We start our computational analysis of the new model by first demonstrating that
the system adapts perfectly, if it is exposed to a uniform stimulus. To show this, we
distribute forty-five active receptors per µm2 on the plasma membrane of a cylindrical
cell with a radius of 3.33 µm and a height of 10 µm. After 60 seconds the stimulus
is tripled. For simulating this system the remaining parameters are chosen as follows:
k1 = 10 s−1, k2 = 10.05 s−1, a = 10 No.−1 µm−3 s−1, γ = 0.2 s−1, DI = 10 µm2 s−1,
and DA = 0.1 µm2 s−1. The results displayed in Figure 5.7 are obtained by averaging
over twenty five trajectories and show the total number of activator molecules in the cell.
At the beginning the system responds with a transient sharp peak because the cell initially
contains neither activator nor inhibitor molecules. As the stimulus is tripled, the system
again reacts with a transient peak in the activator concentration. However, the steady
state value which the activator concentration assumes is identical with the concentration
value after the first peak. Hence the steady state value for the activator concentration is
independent of the applied signal and the system clearly exhibits perfect adaptivity.
Next we investigate, how the system responds, if it is exposed to a linear signal gradient.

For this purpose we simulate the reaction system in a cylindrical cell with a height of
5 µm and a diameter of 6.66 µm. The signal gradient starts with a density of 36.25 active
receptors per µm2 at the left boundary of the cell and subsequently rises to a value of
53.75 active receptors per µm2 at the right boundary. The remaining parameters, i.e.
the reaction and diffusion rates are chosen in the same way as above. For displaying the
results we project the activator concentration onto the longitudinal axis of the cylinder
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Figure 5.7: Left: The average activity is shown as a function of time. The system
perfectly adapts when the stimulus is doubled at time t = 60. Right: The main plot
shows the normalised activator density along the cell in response to an signal gradient.
The inset compares the response when using different rates for the annihilation reaction.

and divide by the average activator density. When averaging over an ensemble of two
hundred profiles, we obtain the profile depicted in the main part of the right plot of Figure
5.7. Clearly the activator is distributed unevenly across the cell membrane. On the first
2.5 µm the activator density stays almost constant. It then increases and exhibits a peak
at the right boundary where the concentration of the signal is highest. Moreover we find
that the build-up in the activator concentration becomes stronger the closer we get to
the right boundary of the cell. Overall, the linear signal gradient is clearly mapped onto a
nonlinear activator gradient in the cell membrane. Furthermore, we find that the strength
of the peak at the right boundary depends on the rate of the annihilation reaction. When
changing the reaction rate a from 10 No.−1 µm−2 s−1 to 100 No.−1µm−2 s−1, we see
an even larger increase of the activator concentration at the right end of the cell. This
is visualised in the inset of the right part of Figure 5.7, in which the blue trajectory
corresponds to the simulation results which are obtained with the high annihilation rate.
In this case we clearly see that the activator exhibits a switching behaviour because it is
predominantly locate in the right cap of the cell. However, by increasing the annihilation
rate we also decrease the overall activator concentration such that fluctuations become
large. In fact, on the level of a single profile it is almost impossible to observe the same
behaviour as obtained by analysing the ensemble average. Overall this observation is in
contrast to the finding of [Samadani et al., 2006], who showed that the distribution of
the PIP3 concentration along the cell membrane is highly reproducible when performing
several experiments in one and the same cell. Consequently the overall reaction network
must contain a mechanism upstream of the initial gradient sensing mechanism, which
effectively reduces the intrinsic noise. Finally, note that we have used very steep signal
gradients. However, if we apply a much shallower signal gradient to the cell and average
over an ensemble of two hundred simulations, we again find the same behaviour as above,
i.e. the activator concentration shows a sharp increase at the leading edge of the cell.
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Figure 5.8: Effect of the underlying geometry on the gradient response. The left part
shows the change of the normalised activator profile and the right part visualises how the
inhibitor concentration changes.

In the following we will now analyse how the response of the system is altered, if we
change the underlying reaction volume. In particular we will change the height of the
cylindrical cell from 5 to 10 and 20 µm while leaving the signal gradient unchanged. All
three cells are exposed to the same gradient and since they all have the same centre of
mass, the signal concentration in the middle of each cell will be identical. For analysing
the results we again project the activator concentration onto the z-axis of the cylinder and
divide by the average activator concentration. The ensemble averages of these profiles
are shown in the left part of Figure 5.8. Obviously the distribution of the activator
molecules is affected by the underlying geometry of the reaction medium. In particular
we observe a transition from a profile with a sharp peak at the leading edge to a profile
with a sigmoidal shape. Overall this change in the profile of the activator concentration
goes along with a change in the distribution of the inhibitor molecules. This is visualised
in the right part of Figure 5.8 in which the average profiles of the normalised inhibitor
concentration are shown. Obviously the inhibitor concentration is constant in the small
cell. As we increase the cell length this changes and ultimately we see a large difference in
the inhibitor concentration between the left and the right boundary. Hence, in the large
cell, the inhibitor concentration is no longer globally integrated. Instead, each point along
the membrane only sees the inhibitor signal from its local neighbourhood. This behaviour
emerges, if the size of the reaction medium exceeds the dispersion length of the inhibitor
molecules. The dispersion length l states how far a molecule diffuses before it decays,
i.e. l =

√
D γ−1. In the above system the dispersion length is approximately equal to

7 µm. Thus, it is no longer possible to abolish spatial inhomogeneities in the inhibitor
concentration in the two larger cells by simple diffusion. Hence, the information about
the strength of the signal at the leading edge can not be conveyed to the other end of
the cell. Consequently, in the large cells the local excitation global inhibition mechanism
breaks down such that we no longer observe the switch like behaviour in the activator
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concentration, which was observable in small cells.

5.5 Discussion

In this chapter we gave a detailed outline on how diffusion is modelled in a mesoscopic
stochastic simulation environment. We have seen that the hopping rates for the Monte
Carlo simulations are constructed in such way that diffusive motion is recovered on length-
scales that are large compared to the size of the subvolumes. In particular the exact
expression for the hopping rates were obtained by comparing the discretized Laplacian
with the hopping Hamiltonian. For representing the geometry of a reaction medium,
we presented two different strategies inspired by the deterministic numerical treatment
of partial differential equations. With the Transformed Grid Monte Carlo method one
is capable of exactly mapping the boundary of the reaction medium on to a computa-
tional representation. As opposed to that the Finite Volume Monte Carlo method only
approximates the boundary of a reaction medium as it fills the reaction medium with
tetrahedra. However, the great advantage of the FVMC over the TGMC method is its
greater flexibility. The underlying grid can easily be adapted and changed according to
the state of the underlying reaction medium. In particular, we propose that the FVMC
could be designed in such a way that the size of the gridcells follows the distribution of
the reactivities meaning that a fine grid is automatically generated in those parts of the
reaction medium at which the particle density and therefore the likelihood for the occur-
rence of reactions is high. For this purpose one can make use of already existing software
and methods as the treatment of adaptive meshes is a common task in the deterministic
numerical treatment of partial differential equations.

In the second part of this chapter we then applied our stochastic methods to simulate
the chemical signalling cascade responsible for directional sensing in eukaryotic chemo-
taxis. In particular we have proposed a minimal reaction network for the gradient sensing
network, which consist just of three chemical species. We showed that our model adapts
perfectly to uniform stimuli. Moreover the system exhibits switching behaviour as the
concentration of activator molecules is predominately increased at the leading edge, if
the cell was exposed to a gradient stimulus. However, if the size of the reaction medium
becomes larger than the dispersion length of the inhibitor molecules, the local excitation
global inhibition mechanism breaks down, since the inhibitory signal can no longer be
integrated over the entire cell. Note, that it should be possible to validate our predictions
about the local excitation global inhibition model in experiments. For this one would
have to deform the Dictyostelium cells mechanically, such that they become very large
in a certain direction. The signal gradient can easily be control when using microfluidic
devices.
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in which we simply come to an end.
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6.1 Conclusion

Information processing in chemical signalling cascades is very complex as it involves the
interplay of a multitude of different chemical species and reactions. Hence, modelling
means that one has to focus on what one believes that is important and that one has to
disregard the (unimportant) rest. Ultimately one wants to obtain a simplified description
which captures the relevant aspects and clarifies how the system works. In particular,
one wants to identify the critical features that explain the observed behaviour of a sys-
tem. Furthermore, one wants to make predictions about the behaviour of the system by
drawing simple logical conclusions. Overall these predictions should be such that they
guide future experiments.

In order to model chemical signalling as outlined above, one needs to have the right
tools at hand. Hence an integral part of this thesis focused on the development of such
methods. In particular, we have argued throughout this thesis that one has to account
for two features when dealing with chemical signalling cascades: On the one hand, it is
important to correctly describe the noise that is inherently present in biological reaction
systems and on the other one has to account for the geometry in which chemical sig-
nalling takes place.
In order to analytically quantify noise in chemical reaction networks we have introduced
an operator description of the chemical master equation, which allows for the systematic
description of all effects caused by noise in chemical reaction systems. Furthermore we
have demonstrated the power of this approach by showing that noise may lead to the
enhancement of a signal. When incorporating space into the modelling process, an ana-
lytical treatment becomes almost infeasible. Consequently one has to turn to stochastic
computational methods. In this thesis we have therefore designed a new framework which
allows for the stochastic simulation of reaction diffusion system in realistic geometries.
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For this purpose we have adopted two commonly used techniques for the integration of
partial differential equations. Namely, we have designed the Transformed Grid Monte
Carlo and the Finite Volume Monte Carlo method.
The TGMC technique was subsequently used for simulating a minimal model of the
gradient sensing network in Dictyostelium discoideum. In particular our model showed
perfect adaptation and mapped an external linear signal gradient onto an intracellular
distribution of activator molecules, which showed a clear peak at the leading edge. Fur-
thermore, we discussed the effects of changing the underlying geometry. In particular we
have seen that the overall local excitation global inhibition mechanism requires that the
reaction medium is smaller or of the same size as the dispersion length of the inhibitor
molecules.
Furthermore, we have applied a stochastic simulation approach to study the effects of
noise on the propagation of a signal by chemical wave fronts. In particular we have dis-
tinguished between intrinsic and spatial noise. We have seen that intrinsic noise in the
bistable EGF receptor system leads to long tails in the underlying protein distributions.
Consequently the system might spontaneously switch from one state to the other. Clearly,
this behaviour can not be described by a purely deterministic reaction diffusion approach.
Spatial noise is generally caused by molecular crowding. We have shown that our strat-
egy of modelling this sort of noise by static obstacles is well in accordance with recent
experimental work. Moreover, we have shown that a prototypical chemical wave front
always propagates with constant velocity through an inhomogeneous medium. However,
we also showed that the interface disperses, which ultimately limits the capabilities of
this mechanism to propagate a signal over long distances.

6.2 Outlook

The work described in this thesis can be extended in multiple directions. In the near
future we will apply the analytic methods presented in the second chapter to a variety of
different motifs commonly encountered in chemical reaction networks. Overall we plan
to construct a catalogue in which we list the effects that might arise due to noise in such
building blocks of larger reaction networks.
Furthermore, it is planned to continue the work on the chemotactic response in Dic-
tyostelium. Especially the formation of pseudopods provides an interesting and chal-
lenging problem. It has been suggested that the formation of these structures is linked
to localised spots of signalling activity on the membrane [Postma et al., 2003]. With
the help of the existing simulation routines one could analyse how the size, shape, and
stability of these spots is affected by the underlying geometry. Furthermore it is planned
to extend the Finite Volume Monte Carlo Method in such a way that it can account for
a change in the underlying reaction medium during the simulation. That way one would
be able to model the growth of pseudopods.
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