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Chapter 1

Introduction

A central topic in statistics is regression analysis. It deals with estimation of the impact
of some independent quantity X on a dependent quantity Y . For example, it may be of
interest to examine the dependence of the air temperature on the date at several locations,
the dependence of plant growth on the amount of fertilizer used or the dependence of the
size of infants on their age.

These examples show that in general it does not make sense to assume an exact depen-
dency of the quantities of interest. Clearly, infants of the same age can differ in size. Hence,
one tries to estimate the mean of the variable of interest Y given X. The deviation of the
observations from this mean is modeled by an error term ε. The general approach is to
assume that the mean of the variable of interest depends on X through some function f .
The corresponding model can be written as

Y = f(X) + ε ,

where the error term ε is assumed to have mean zero.
When trying to fit a function f to some given data points (X1, Y1), . . . , (Xn, Yn), one

usually chooses f from a special function class. Examples are the class of all linear func-
tions, the class of spline functions, or the class of functions with bounded second derivative.
Many commonly used function classes consist of continuous functions. However, one fre-
quently faces situations where the most striking features of the regression function are
sharp transitions or structural changes. A location where such a break or jump occurs is
called a change-point.

There are several applications for which it is interesting to estimate the location of such
a change-point. This problem occurs in dose finding studies, where there may be some
minimal amount to be taken before any effect occurs. Another example is provided by
quality control. If a change of quality in some continuous production process is suspected,
it is important to find out whether and when the quality started to deteriorate. A further
example comes from geology. If there is a significant change in measurements of core
samples obtained from different geological sites, the geologist may want to know where
this change took place. (For example to determine the size of some deposit of a natural
resource like oil or gold.) In general the analysis of change-points has two main aspects. The
first is to decide whether a change has occurred. The second is estimation of the location,
the magnitude of change and the number of change-points.
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In regression analysis, a jump of a one-dimensional function f can be estimated at a
rate of n−1, if n is the number of observations and the regression function f is Lipschitz
continuous elsewhere (cf. Korostelëv, 1987). The n−1 rate is optimal in a minimax sense.
Roughly speaking, this means that there exists no estimator which uniformly, in the func-
tion class of interest, converges at a faster rate (a more rigid definition can be found in
Section 4.2).

The distribution of the estimate of the jump location depends on the estimator used.
If f is piecewise constant with one jump, Hinkley (1970) showed that after multiplication
with n the least squares estimate of the jump location converges to the minimum of a
certain two-sided asymmetric random walk. This was generalized by Yao and Au (1989)
to the case where f is piecewise constant with finitely many jumps. In this thesis we focus
on function spaces of this type. Figure 1.1 shows an example of noisy observations of a
piecewise constant function.
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Figure 1.1.: Noisy observations of a step function. The blue dots represent the observations
and the black line the step function f .

Indeed, there is a number of examples, for which it is reasonable to use a step function
to model the observations in a regression setting. An example concerning the segmentation
of gene data is given by Braun et al. (2000). Fredkin and Rice (1992) use step functions to
model the neuronal flow in calcium channels (these are ion-pores in the plasma membrane
of electrically excitable cells). Christensen and Rudemo (1996) use this model for disease
incidence data. Noisy observations of blocked data also occur in mass-spectroscopy. Typi-
cally the location of the jumps, their height and, in certain cases, the number of jumps are
unknown.

Let us now turn to a different aspect of regression analysis. There are several settings,
where one does not observe the function of interest directly but only a blurred or diffused
version of it. To reconstruct the original function, one generally assumes that the way the
function is blurred is known. This is the case if the data collection mechanism is known
to transform the signal in a certain way. For example, if the observation of an image is
taken through a lens with known curvature or if a sensor does not collect the information
at a certain point, but only some weighted mean of the neighborhood of this point. The
function of interest then can be reconstructed by inverting the transformation mechanism.
However, in many situations small changes in the observations can cause major changes in
the reconstruction of the original function. This can lead to instabilities if noise is present.
Consequently, it may be much harder to reconstruct the original function than the blurred
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one. In this case the corresponding problem is called ill-posed. In the presence of random
noise, one generally speaks of a statistical inverse problem. In regression analysis the model
is written as

Y = Kf(X) + ε .

Here the error term ε is assumed to have mean zero and K is some known operator.
A standard example of a statistical inverse problem is estimation of the derivative of a
regression function. The rate of convergence of estimating f in an inverse problem is in
general slower than in the direct problem. Moreover, this rate usually depends on the
eigenvalues in the spectral decomposition of the operator, determining the ill-posedness of
the problem (cf. Fan, 1991; Abramovich and Silverman, 1998; Hall et al., 2003).

The topic of this thesis is the reconstruction of step functions from noisy blurred obser-
vations (see Figure 1.2). Special attention is given to the reconstruction of the jumps of the
step function. The investigation of the jumps (or change-points) focuses on estimation of
the location of the jumps. It turns out that the estimation problem is harder in the inverse
setting than in the direct problem. This can be stated in the following way. Suppose K is
some integral operator with bounded integral kernel K, i.e.

Kf(x) =
∫
K(x, y)f(y)dy .

Then the estimate of the jump location converges at a rate of n−1/2 to the true location,
compared to a rate of n−1 in the direct problem. Surprisingly, the rate does not depend
on the ill-posedness of the problem. Furthermore, this rate is minimax.
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Figure 1.2.: Noisy observations of a blurred step function. The blue dots represent the
observations and the black line the blurred function. The red line shows the
original step function f , which is to be estimated.

Now we discuss the results in more detail. For estimation we use the least squares es-
timator if the number of jumps is known. If this number is unknown, we use a penalized
version of this estimator with penalty term proportional to the number of jumps of the
reconstruction. If K is an integral operator with a bounded integral kernel, we show n−1/2

consistency of the estimates of the jump locations. Furthermore, we derive asymptotic
normality of the parameter estimates, given that the number of jumps is known and the
distribution of the error has a finite second moment. This can be done under rather gen-
eral assumptions on the design, which cover both the random and the fixed design. The
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asymptotic result can be used to derive confidence sets for the jump locations and heights.
A confidence set covers the true function with a given probability of, say, 1− α, provided
the number of jumps has been correctly specified. Figure 1.3 shows an example of such a
confidence sets for a step function with one jump.

Figure 1.3.: Confidence band for a step function with one jump. The black line represents
the true function and the thick red line the estimate. The blue ellipses show the
confidence sets for the jump location and the first and second level of the step
function, respectively. The thin red lines show the resulting confidence band
for the step function. A description of the construction of these confidence sets
can be found in Chapter 6.

If the number of jumps is unknown, we show that – under the additional assumption of
subgaussian tails of the error distribution – the number of jumps can be asymptotically
estimated correctly with probability one.

We find that the n−1/2 rate does not depend on the spectral information of the operator.
This may be surprising at a first glance because one might suspect that the degree of ill-
posedness determines the rate convergence, as it does for piecewise smooth functions (see
Goldenshluger et al., 2006). The reason for this is that the space of step functions allows
for a finite-dimensional parameterization.

We give general conditions for integral kernels, which are sufficient to deduce the n−1/2

rate. These conditions covers supersmooth functions such as the Gauss-kernel, polynomial
kernels K(x, y) = (x−y)p 1[0,∞)(x−y) with p = 0, 1, . . . and convolution kernels K(x, y) =
Φ(x − y) with Φ some continuous symmetric function, which has a Fourier transform
satisfying |Φ̂(x)| ≥ c(1 + |x|)n for some n ∈ N and c > 0.

A comparison of the n−1/2 rate to the n−1 rate of the direct case clearly shows that the
direct and indirect problem are substantially different. Also, the asymptotic distribution
differs fundamentally from the direct case. In the inverse setting, the estimates are normal
and not distributed according to a minimum of some two sided random walk. It is par-
ticularly interesting that the parameter estimates are in general no longer asymptotically
independent.

Furthermore, we show that faster rates can be obtained if the assumption of the kernel’s
boundedness is dropped. If K is an integral operator with an Abel-type integral kernel
K(x, y) = (x − y)−α 1(0,∞)(x − y), 0 < α < 1, we prove that a jump location can be
estimated at a rate of min(n−1/2, n−1/(3−2α)) and that this rate is optimal in a minimax
sense. Thus it becomes apparent that a more spiky kernel improves the rate because it
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allows for better localization of the jump.
We close the description of the results by some technical remarks and an outline of the

main proof.

1. Assume the number of jumps is known. An entropy argument yields consistency of
the least squares estimator in this setting. It is possible to represent the estimator as
the minimizer of a stochastic process, which allows for a local stochastic expansion.
This can be used to derive asymptotic normality.

2. Introduce a penalty for the number of jumps. An imitation of techniques from em-
pirical process theory shows that for a suitable choice of the smoothing parameter
the case of an unknown number of jumps can asymptotically be reduced to the case
where this number is known.

Difficulties arise in Step 1 because some terms of the stochastic process are not differ-
entiable. Step 2 is rather technical. We cannot apply standard techniques from empirical
process theory because the used penalty is not a pseudo-norm on the space of step func-
tions.

Aside from the proof of the main result, we use techniques from approximation theory
to verify the assumptions on the operator for several different kinds of integral kernels.
Some theory of reproducing kernel Hilbert spaces, positive definite functions and extended
sign regular functions is used to achieve this.

Next, we compare our results to the existing literature. The problem of change-point
estimation in inverse problems was first studied by Neumann (1997). He investigated the
estimation of a change-point in a density deconvolution model. Here one tries to estimate
the density of a random variable X which cannot be observed directly, but only X + ξ,
where ξ is an error term with known density fξ. In deconvolution problems the qual-
ity of the reconstruction generally depends on the tails of the Fourier transform of fξ.
Neumann (1997) treated the case that the density of X is bounded, has one jump at τ
and is Lipschitz continuous elsewhere. He showed that τ can be estimated at a rate of
min(n−1/(2β+1), n−1/(β+3/2)), provided the tails of the Fourier transform f̂ξ(x) decrease at
a rate of |x|−β . Moreover, he proved that these rates are optimal in a minimax sense. This
result was extended by Goldenshluger et al. (2006) (in a white noise model) to classes
of functions f which can be written as a sum of a step function and a function with
smooth m-th derivative. They showed that in this case the minimax rates are of order
min(n−1/(2β+1), n−(m+1)/(2β+2m+1)). We remark that the setting used in this thesis can be
seen as limit case of the model given by Goldenshluger et al. (2006) for m→∞.

A classical model which fits into our framework was given by Quandt (1958). He intro-
duced a linear regression model which obeys two separate regimes and where the point at
which the switch from one regime to the other occurs is not known. This model is also
called two-phase regression and inference in this setting was studied by Quandt (1960),
Sprent (1961), Hinkley (1969) and more recently by Yakir et al. (1999) and Koul et al.
(2003), among others. In two-phase regression the objective function f is assumed to be
piecewise linear with two different slopes. There exist two different versions of two-phase
regression, that differ in whether or not f is allowed to have a jump at the point where the



10 1. Introduction

slope changes. If f is assumed to be continuous, two-phase regression can be modeled by an
inverse regression model with a polynomial kernel with p = 0, i.e. K(x, y) = 1[0,∞)(x− y).
In this setting the n−1/2 rate and the asymptotic distribution were derived by Hinkley
(1969) and – for more general segmented regression models – by Feder (1975b).

We generalize the known results on the estimation of the intersection in two phase
regression to the case where the objective function is piecewise polynomial of order p +
1, with p continuous derivatives and a (p + 1)-th derivative, which is a step function.
The somewhat surprising result is that the rate of estimating the intersection does not
depend on p, whereas in general nonparametric regression settings, the convergence rates
for estimating a jump in the p-th derivative become slower as p grows (cf. Raimondo,
1998).

This thesis is organized as follows: We start by introducing the model and some nota-
tion in Chapter 2. Then, in Chapter 3, we present the known results for the direct case
to permit comparison with our results. We indicate some of the differences to the inverse
problem and give the proofs of some nonstandard results. Chapter 4 introduces the model
assumptions and presents the asymptotic normality of the parameter estimates, the results
on the penalized least squares estimator for an unknown number of jump locations and
a lower bound for estimating the jump locations. Afterwards, Chapter 5 verifies the as-
sumptions on the operator for several well known classes of integral kernels. In Chapter 6,
we evaluate the speed of convergence and quality of the approximation by the asymp-
totic distribution for two examples of integral kernels. In addition, we describe a method
to construct confidence bands for f and Kf . Chapter 7 contains the proof of the main
result and Chapter 8 provides some auxiliary results, particularly on Abel-type kernels.
Finally, in Chapter 9 shortcomings, feasibility and possible extensions of the given results
are discussed. The appendix summarizes results from empirical process theory, the theory
of minimax estimation and approximation theory, which are used in the proofs.
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Chapter 2

The inverse regression model

In the following we introduce the general model applicable in the direct and indirect case.
More specific assumptions will be made in Chapter 3 for the direct case and in Chapter 4,
Section 4.1 for the indirect case, which is the main topic of this thesis.

We assume that we are in a regression model where the objective function f is a step
function with finitely many jumps, i.e. we can write f as

f(x) =
k+1∑
i=1

bi1[τi−1,τi)(x) , (2.1)

with −∞ ≤ τlow = τ0 ≤ 0 < τ1 < . . . < τk < 1 ≤ τk+1 = τup ≤ ∞ and τlow, τup

known. Note that instead of choosing a right-continuous function f , we could also use a
left-continuous function. However, it is common to use a right-continuous function.

Assume that we cannot observe the function directly, but only the image Kf sampled
at points x1, . . . , xn contained in some compact interval I ⊂ R plus some additional noise
ε1, . . . , εn, where K is a known operator. Without loss of generality we set I = [0, 1]. Given
some observations Y , we write our model as

Y =
(
(Kf)

(
xi

)
+ εi

)n

i=1
. (2.2)

In the following (2.2) will be called inverse regression model. To be precise, we should use
xi,n and εi,n instead of xi and εi, as both the design points and the errors are in fact given
by triangular arrays. However, for ease of notation, we will suppress the dependency on
n throughout this thesis and write ε1, . . . , εn and x1, . . . , xn instead of ε1,n, . . . , εn,n and
x1,n, . . . , xn,n.

Note that the choice of the lower and the upper bound τlow and τup depends on what
we wish to model. Typically we will have τlow ∈ {−∞, 0} and τup ∈ {1,∞} depending on
the operator K. Here the values 0, 1 are the bounds of the interval I, which contains the
design points x1, . . . , xn. To model convolution with some probability density function, set
τlow = −∞ and τup = ∞. Otherwise f is zero outside of [τlow, τup], which leads to the image
Kf being drawn towards zero at the boundaries of the observed interval (see Figure 2.1).

Moreover, if we want to model piecewise linear functions, Kf is the convolution of f
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with 1[0,∞). This gives

K 1[τlow,τ1)(x) =
∫ τ1

τlow

1[0,∞)(x− y)dy =


x− τlow τlow < x < τ1 ,

τ1 − τlow τ1 > x ,

0 otherwise .

Clearly, we have to take τlow > −∞ for this to make sense.

(τlow, τup) = (−∞,∞) (τlow, τup) = (0, 1)

f(x)

0 1

0
1

0 1

0
1

(Kf)(x)

0 1

0
1

0 1

0
1

Figure 2.1.: Impact of the location of the boundary points. The first row displays the
signal f and the second row the convolution of f with the Laplace kernel.

2.1. Notation

A list of symbols is given on page 103. This section introduces the main notation used in
this thesis.

Spaces of step functions

Define

Γk(τlow, τup) := {(γ0, γ1, . . . , γk+1) : τlow = γ0 ≤ 0 < γ1 < . . . < γk < 1 ≤ γk+1 = τup}

as the set of possible jumps of our function f , and denote the corresponding function space
by

Tk(τlow, τup) :=
{ k+1∑

i=1

bi1[τi−1,τi)(x) : τ ∈ Γk(τlow, τup) , bi ∈ R
}
.

Write T∞(τlow, τup) :=
⋃∞

k=1 Tk(τlow, τup) for the set of all step functions on [τlow, τup] and

Tk,R(τlow, τup) = {g ∈ Tk(τlow, τup) : ‖g‖∞ < R}
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as well as

T∞,R(τlow, τup) :=
∞⋃

k=1

Tk,R(τlow, τup)

for the corresponding spaces of uniformly bounded functions.

Empirical and L2 norms

As usual, ‖ · ‖2 will denote the L2(R) norm, 〈·, ·〉2 the corresponding inner product and
‖ · ‖∞ the supremum norm. Additionally define the empirical norm ‖ · ‖n and the empirical
inner product 〈·, ·〉n by

‖f‖2
n :=

1
n

n∑
i=1

f(xi)2 as well as 〈f, g〉n :=
1
n

n∑
i=1

f(xi)g(xi)

where x1, . . . , xn are the design points and

‖y‖2
n :=

1
n

n∑
i=1

y2
i as well as 〈y, z〉n :=

1
n

n∑
i=1

yizi

for y, z ∈ Rn.

Sets of jumps and Hausdorff distance

We will also need some notions concerning the jumps of functions and sets of piecewise
constant functions.

Definition 2.1. Write g(t+) := limx↘t g(x) for the right limit of g in t and g(t−) :=
limx↗t g(x) for the corresponding left limit. For some function g : R → R define the set of
jump points of g as

J (g) := {t ∈ [0, 1] : g(t−) 6= g(t+)}. (2.3)

Finally, write
h(g) := min{|g(t+)− g(t−)| : t ∈ J (g)}

for the minimal jump height of g.

Furthermore, introduce the following notation for the distances of real sets.

Definition 2.2. Define the distance of some point a ∈ R to the set B ⊂ R as

d(a,B) = inf
b∈B

|a− b|

and, slightly abusing notation, the Hausdorff distance of two sets A,B as

d(A,B) = max{sup
a∈A

d(a,B) , sup
b∈B

d(b, A)} .
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Convergence in probability and distribution

For a sequence of random vectors Xn ∈ Rd, some constant c ∈ Rd, random vectors X ∈ Rd

and a distribution function F on Rd, write

Xn
p−→ c and Xn

p−→ X ,

if Xn converges in probability to c and X, respectively. Moreover, if X has a distribution
function given by F , write

Xn
L−→ F ,

if Xn converges in distribution to X. We use the stochastic order notation and write
Xn = OP (an) if

lim
C→∞

lim sup
n→∞

P (|Xn| > Can) = 0 .

Similarly write Xn = oP (an) if
a−1

n |Xn|
p−→ 0.

Measures and Kullback-Leibler distance

For two measures P and Q, write P � Q if P is absolutely continuous with respect to Q.
Moreover define the Kullback-Leibler distance of P and Q as

dK(P,Q) =


∫

log
(dP
dQ

)
dP P � Q ,

∞ otherwise .

Here log means the natural logarithm.

Notation for empirical processes

Given a measure Q, a set of Q-measurable functions G and a real number δ > 0, define the
δ-covering number N(δ,G, Q) as the smallest value of N for which there exist functions
g1, . . . , gN such that for every g ∈ G there is a j ∈ 1, . . . N with∫

(g − gj)2dQ ≤ δ .

Moreover, define the δ-entropy H of G as

H(δ,G, Q) = logN(δ,G, Q) .

If Q is the Lebesgue measure we will write H(δ,G) and N(δ,G) instead of H(δ,G, Q) and
N(δ,G, Q). Given design points x1, . . . , xn ∈ R, the empirical measure will be denoted by
Qn = n−1

∑n
i=1 δxi . Note that ‖ · ‖n is the norm corresponding to the space L2(R, Qn).

Finally, define the entropy integral

J(δ,G, Q) := max
(
δ ,

∫ δ

0
H1/2(u,G, Q)du

)
.
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Additional notation

For a, b ∈ R ∪ {−∞,∞}, denote by a ∨ b = max(a, b) and a ∧ b = min(a, b). Define

I(a, b) = [a ∧ b, a ∨ b]

as the interval with endpoints a and b. If (cond) is a boolean expression set 1(cond) to one
if (cond) is true and to zero if (cond) is false. For any real valued function f we will write
f(x)+ = f(x)1(f(x)>0) for the positive part of f and supp(f) = {x : f(x) 6= 0} for the
support of f . For any real number a ∈ R set bac := max{z ∈ Z : z ≤ a} as the largest
integer smaller than or equal to a and dae := min{z ∈ Z : z ≥ a} as the smallest integer
larger than or equal to a. Finally, for any vector β denote by βt the transpose of β.
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Chapter 3

Rates and asymptotic distribution for the direct problem

If K is the identity, the rates and the asymptotic distribution of the jump estimates differ
fundamentally from the case where Kf =

∫
K(x, y)f(y)dy for some bounded integral kernel

K(x, y). This chapter gives the classical results for K = I. The estimation of the jump of
a step function has been first studied by Hinkley (1970) for the case k = 1. Yao (1988)
and Yao and Au (1989) define a penalized estimate for a step function with an unknown
number of jumps. Their estimate asymptotically finds the right number of jumps with
probability one, given some known upper bound for this number. They derive the rates
and asymptotic distribution of the parameter estimates. Their results have been generalized
to over-dispersion models by Braun et al. (2000).

The model was extended by Boysen et al. (2005), who derive the same rate without the
constraint of a known upper bound for the number of jumps. Further they give consistency
and rates of convergence in Skorokhod topology and in the case where the true regression
is not a step function. As it turns out their estimate is adaptive and nearly attains optimal
rates of convergence if the objective function is in C1 or less smooth.

Model and estimator

Throughout this section we will assume that the observations Y are given by equation
(2.2), where the operator K is the identity and f is a step function with k jumps between
zero and one. This means that f is given by equation (2.1) with bi 6= bi+1 for i = 1, . . . , k.
For simplicity assume that the design points are fixed and equidistant with xi = (i− 1)/n.
In addition, assume that the εi are independent identically distributed with mean zero and
E(ε61) <∞. Moreover, set τlow = 0 and τup = 1, since the values of f outside this interval
do not play a role.

A characteristic of the least squares estimator to be defined later in the direct case is
that the residual sum of squares does not change if an estimated jump location is varied
in-between the design points next to it. (This is in general not true for the indirect case.)
Since we work with right-continuous functions, we define the estimated jump location to
be the next largest design point.

Define

Γk,n := {τ ∈ Γk(0, 1) : nτi ∈ N for i = 1, . . . , k} ,
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where Γk(a, b) is defined in Section 2.1. For τ̃ ∈ Γk,n set

bj(τ̃) =
1

nτ̃j − nτ̃j−1

nτ̃j−1∑
i=nτ̃j−1

Yi and fτ̃ (x) =
k+1∑
j=1

bj(τ̃)1[nτ̃j−1,nτ̃j)(x) .

Then the estimator of Yao and Au (1989) is given by

f̂Yao = argmin
fτ̃ : τ̃∈Γk,n ; k≤Ku

log
(
‖Y − fτ̃‖2

n

)
+ ρn#J (fτ̃ ) , (3.1)

where ρn is some smoothing parameter. Note that at most Ku jumps are allowed. The
functional in (3.1) is motivated by the Schwarz model selection criterion (cf. Yao, 1988).
By definition of the estimator it is clear that the upper bound for the number of jumps is
needed. If g with #J (g) = n would be allowed in minimization of the right hand side of
equation (3.1), the minimizer would always interpolate the data and the log term would be
−∞. Thus, the choice of Ku is important. Simulations show, that a choice of

√
n/2 works

reasonably well in most cases.
An estimator which overcomes the obstacle of choosing an upper bound for the number of

jumps is introduced by Boysen et al. (2005) as minimizer of the so called Potts functional.
The estimate is given by

f̂Potts = argmin
fτ̃ : τ̃∈Γk,n

‖Y − fτ̃‖2
n + λn#J (fτ̃ ) , (3.2)

where again λn is some smoothing parameter. The estimators f̂Yao and f̂Potts coincide if
#J (f̂Yao) = #J (f̂Potts). The name Potts functional refers to a model which is well-known
in statistical mechanics and was introduced by Potts (1952) as a generalization of the Ising
model from Ising (1925) for a binary spin system to more than two states. The original
model is a Gibbs field with energy equal to the above penalty.

Note that both estimators defined above exist but are not necessarily unique. However
there can only be finitely many solutions of (3.1) and (3.2) (see Kempe, 2004). If multiple
minimizers exist, define the estimate as an arbitrary member in the set of minimizers.

If f̂Yao has jumps in i/n and j/n for 0 ≤ i < j < n and no jump in (i/n, j/n), then
f̂Yao|[i/n,j/n) is constant and equal to the mean mi,j = (j − i)−1

∑j
r=i+1 Yr. The mi,j

and the corresponding empirical losses n−1
∑j

r=i+1(Yr −mi,j)2 can be calculated in time
O(n2) for all i < j. Winkler and Liebscher (2002) give an algorithm to use these values
to compute the minimizer f̂Potts (and thus f̂Yao) in O(n2) time for any given k such that
#J (f̂Potts) = k. As k takes only n+ 1 possible different values the estimates for all values
of k can be calculated in O(n3) steps. Winkler and Liebscher (2002) additionally show that
these estimates can be used to determine a partition 0 = γn+1 < γn < . . . < γ1 < γ0 = ∞
such that for λn ∈ (γk+1, γk) the corresponding estimate f̂Potts satisfies #J (f̂Potts) = k.
(For λn = γk the estimate is not unique.) A similar result can be shown for the estimate
f̂Yao. Thus both estimators can be calculated in time O(n3) for all possible λn.

Rates and asymptotic distribution

The following theorem gives the convergence rates for the estimates of the jump locations
in Hausdorff distance and for the function estimate in L2 norm.



21

Theorem 3.1. Suppose that Yi = f((i− 1)/n) + εi, f ∈ TKu(0, 1) and that ε1, . . . , εn are
i.i.d. with mean zero and E(ε61) <∞. Then

(i) If ρn → 0 and ρnn
1/3 →∞ then P (#J (f̂Yao) = #J (f)) → 1 as n→∞,

(ii) if λn → 0 and λnn
1/3 →∞ then P (#J (f̂Potts) = #J (f)) → 1 as n→∞,

(iii) ‖f̂Yao − f‖L2 = OP (n−1/2) ,

(iv) d(J (f̂Yao),J (f)) = OP (1/n).

Note that P (#J (f̂Yao) = #J (f)) → 1 and P (#J (f̂Potts) = #J (f)) → 1 means that
the estimates defined by (3.1) and (3.2) asymptotically coincide with probability one.
Consequently, (iii) and (iv) also hold if f̂Yao is replaced by f̂Potts.

The fact that discontinuities can be estimated at a rate of OP (n−1) is well known and
has been shown in various settings for the regression function f (cf. Korostelëv, 1987, for
f in a Lipschitz class). A good overview on change points estimation is given by Carlstein
and Müller (1994).

The proof of Theorem 3.1 is rather technical and the same rates of convergence can
be observed in more general settings, therefore we omit most of the proof and refer the
interested reader to the corresponding papers. However, Boysen et al. (2005) show part (ii)
only under a subgaussian assumption on ε1, . . . , εn, thus we give the proof of this part in
the following.

Proof of Theorem 3.1, (ii). For any γ ∈ Γk,n define the vector ε|γ by its entries

(ε|γ)i =
1

nγj − nγj−1

nγj∑
r=nγj−1+1

εr ,

where j is chosen such that (i− 1)/n ∈ [γj−1, γj).
By definition of f̂Potts we have that

‖f̂Potts − Y ‖2
n + λn#J (f̂Potts) ≤ ‖f − Y ‖2

n + λn#J (f) ,

which implies

‖f̂Potts − f‖2
n + λn(#J (f̂Potts)−#J (f)) ≤ 2〈f̂Potts − f, ε〉n . (3.3)

Now assume that γ ∈ Γs,n such that (γ1, . . . , γs) are the ordered jumps of f̂Potts − f .
Note that s ≤ #J (f̂Potts) + #J (f). Since f̂Potts − f is constant on [γi−1, γi) we have

〈f̂Potts − f, ε〉n = 〈f̂Potts − f, ε|γ〉n .

Moreover,

〈f̂Potts − f, ε|γ〉n ≤ ‖f̂Potts − f‖n‖ε|γ‖n ≤
1
8
‖f̂Potts − f‖2

n + 2‖ε|γ‖2
n .



22 3. Asymptotics for the direct problem

With the help of (3.3), we obtain

λn(#J (f̂Potts)−#J (f)) ≤ −3
4
‖f̂Potts − f‖2

n + 4‖ε|γ‖2
n ≤ 4‖ε|γ‖2

n

and
3
4
‖f̂Potts − f‖2

n ≤ 2‖ε|γ‖2
n + λn(#J (f)−#J (f̂Potts)) . (3.4)

If E(ε61) <∞, Lemma 1 of Yao and Au (1989) gives that

max
0≤i<j≤n

1
j − i

( j∑
r=i+1

εr

)2
= OP (n2/3) ,

which implies

‖ε|γ‖2
n ≤ n−1

(
#J (f̂Potts) + #J (f)

)
max

0≤i<j≤n

1
j − i

( j∑
r=i+1

εr

)2

= OP (n−1/3)(#J (f̂Potts) + #J (f)) . (3.5)

We arrive at

λn(#J (f̂Potts)−#J (f))/(#J (f̂Potts) + #J (f)) ≤ OP (n−1/3) ,

which gives (#J (f̂Potts)−#J (f)) = op(1) by λnn
1/3 →∞.

This gives P(#J (f̂Potts) ≤ #J (f)) → 1. Equation (3.5) then yields ‖ε|γ‖2
n = OP (n−1/3)

and by (3.4) we obtain ‖f̂Potts−f‖2
n = oP (1). As as step function cannot be consistently es-

timated by a sequence of step functions with fewer jumps this implies that P(#J (f̂Potts) ≥
#J (f)) → 1. This proves the claim.

The next theorem gives the asymptotic distribution of the jump estimates, as derived
in Yao and Au (1989). Since the result is nonstandard, the proof is given for convenience
of the reader.

Theorem 3.2. Suppose the assumptions of Theorem 3.1 are met and τ̂ is the estimator of
the jump points of f as given by (3.1). Moreover, suppose the number of jumps is correctly
estimated as k. The estimates nτ̂1, . . . , nτ̂k are asymptotically independent as n→∞. For
each j = 1, . . . , k the difference nτ̂j − dnτje converges in distribution to Lj, the location of
the minimum of the random walk {. . . , Z(j)

−1 , Z
(j)
0 , Z

(j)
1 , . . .}, where Z(j)

0 = 0 and

Z(j)
r =


(bj+1 − bj)

∑r
i=1

(
2U (j)

i + (bj+1 − bj)
)

r = 1, 2, . . . ,

(bj − bj+1)
∑0

i=r+1

(
2U (j)

i + (bj − bj+1)
)

r = −1,−2, . . . ,

and the U (j)
i are i.i.d. according to the same distribution as ε1 for all j = 1, . . . , k.
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Proof. Note that Z(j)
r = r(bj−bj+1)2 +OP (

√
r). This means the random walk converges to

infinity for |r| → ∞. Consequently, |Lj | = OP (1). Theorem 3.1 gives |nτ̂j−dnτje| = OP (1).
Thus for each ε > 0 we can find an Mε ∈ N such that P(|Lj | ≤ Mε) > 1 − ε as well as
P(|nτ̂j − dnτje|) > 1 − ε for all j = 1, . . . , k. Hence it is enough to show convergence in
distribution of the estimates

τ̂M = argmin
(nτ̃)∈Nk:‖nτ̃−nτ‖∞<M

‖Y − fτ̃‖n (3.6)

to the location of the minima of the random walks {Z(j)
−M , . . . , Z

(j)
M } for all fixed M ∈ N.

Now, suppose nτ̃j ∈ N and |nτ̃j − dnτje| ≤M for all j = 1, . . . , k. Observe that

sup
τ̃ :‖τ̃−τ‖∞≤M

max
j=1,...,k+1

|bj − bj(τ̃)| = OP (n−1/2) ,

and for b(τ) := b(dnτe/n) that

sup
τ̃ :‖τ̃−τ‖∞≤M

max
j=1,...,k+1

|bj(τ)− bj(τ̃)| = OP (n−1) .

Denote by
Ij =

[
(dnτj−1e ∨ nτ̃j−1), (dnτje ∧ nτ̃j)

)
for j = 1, . . . , k + 1 the intervals with ‖(f − f(τ̃))|Ij‖∞ = OP (n−1/2) and by

Mj =
[
(dnτje ∧ nτ̃j), (dnτje ∨ nτ̃j)

)
for j = 1, . . . , k the intervals with ‖(f − f(τ̃))|Mj‖∞ = |bj+1 − bj | + OP (n−1/2). Set
Mk+1 = ∅. Note that #{i : i ∈Mj} = O(1) for j = 1, . . . , k + 1. Consequently,

‖Y − f(τ̃)‖2
n =

1
n

k+1∑
j=1

( ∑
i∈Ij

(bj + εi − bj(τ̃))2 +
∑

i∈Mj

(bj+1 + εi − bj(τ̃))21(τ̃j≥τj) +

∑
i∈Mj

(bj + εi − bj+1(τ̃))21(τ̃j<τj)

)

= OP (n−3/2) +
1
n

k+1∑
j=1

( ∑
i∈Ij

(
(bj − bj(τ̃))2 + 2εi(bj − bj(τ̃))

)
+

‖ε‖2
n +

∑
i∈Mj

(
(bj+1 − bj)2 + 2(bj+1 − bj)εi

)
1(τ̃j≥τj) +

∑
i∈Mj

(
(bj+1 − bj)2 + 2(bj − bj+1)εi

)
1(τ̃j<τj)

)
,

uniformly in {τ̃ : ‖τ̃ − τ‖∞ ≤M}. The term ‖ε‖2
n does not play a role when the expression

above is minimized. The minimizer of the last two terms converges to the desired limit
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distribution. Moreover,

1
n

∑
i∈Ij

(
(bj − bj(τ̃))2 + 2εi(bj − bj(τ̃))2

)
= OP (n−3/2) +

1
n

∑
i∈Ij

(
(bj − bj(τ))2 + εi(bj − bj(τ))

)
+

(bj(τ)− bj(τ̃))
n

( ∑
i∈Ij

εi

)
= OP (n−3/2) +

1
n

∑
i∈Ij

(
(bj − bj(τ))2 + εi(bj − bj(τ))

)
,

uniformly in {τ̃ : ‖τ̃−τ‖∞ ≤M}. Since these terms do not play a role for the minimization
of ‖Y − f(τ̃)‖2

n in τ̃ , this proves the claim.

For the next theorem assume that the estimator f̂Yao has the form

f̂Yao(x) =
k+1∑
i=1

b̂i1[τ̂i−1,τ̂i)(x) .

The asymptotic distribution of the level estimates b̂i is normal, and the estimates are
asymptotically independent.

Theorem 3.3. Suppose the assumptions of Theorem 3.2 are met and that both the true
and the estimated number of jump locations are equal to k. For n → ∞ the normalized
estimates

√
n(bj − b̂j) are asymptotically independent for j = 1, . . . , k + 1 and normally

distributed with means 0 and variances σ2/(τj− τj−1), where σ2 <∞ is the variance of ε1.
In addition, nτ̂j − ndτje, (j = 1, . . . , k),

√
n(bj − b̂j), (j = 1, . . . , k + 1) are asymptotically

independent.

Proof. By ‖τ̂ − τ‖∞ = OP (n−1) we have

b̂j =
nτ̂j∑

i=nτ̂j−1

Yi =
bnτjc∑

i=dnτj−1e

Yi +OP (n−1).

An application of the central limit theorem directly gives the claimed limit distribution for√
n(bj − b̂j).
To show the asymptotic independence, set for M ∈ N

b̂j,M =
bnτjc−M−1∑

i=dnτj−1e+M+1

Yi.

By the same arguments as above b̂j,M = b̂j +OP (n−1) and thus
√
n(b̂j − bj) =

√
n(b̂j,M −

bj) + OP (n−1/2). For τ̂M defined by (3.6) we clearly have that nτ̂M is independent of√
n(b̂j,M − bj) for all j = 1, . . . , k+1. Thus it is asymptotically independent of

√
n(b̂j − bj)

for all j = 1, . . . , k + 1. Note that for all ε > 0 there exists some Mε ∈ N such that
P (τ̂M = τ̂) > 1− ε. The claim follows by taking ε→ 0.



Chapter 4

Rates and asymptotic distribution for the inverse regression
model

This chapter introduces and shortly discusses the model assumptions for the model (2.2).
We define the least squares estimator and present the main result of this thesis. As the
assumption on the operator is rather unusual, we try to give an interpretation in Section 4.3.

4.1. Model assumptions

Assumptions on the error

We will assume that the error has second moments and is independent identically dis-
tributed with mean zero.

Assumption A. The array (ε1, . . . , εn) consists of independent identically distributed ran-
dom variables with mean zero for every n. Additionally assume

E(ε21) = σ2 <∞ .

If the number of jumps of the objective function is unknown, we will additionally need
that the error satisfies the following subgaussian condition.

(A1) There exists some α > 0 such that E(exp(ε21/α)) <∞.

Assumptions on the operator

We consider linear integral operators K of the type (Kf)(x) =
∫
K(x, y)f(y)dy.

To estimate f from observations of Kf , it is necessary to assume that the operator K is
one-to-one as a mapping from the space of step functions Tk(τlow, τup) to L2([0, 1]). This
means for every function f with f(x) =

∑k+1
i=1 bi1[τi−1,τi)(x), we have to assume that the

relation

0 =
∥∥(Kf)(·)

∥∥
L2([0,1])

=
∥∥∥ k+1∑

i=1

bi(K 1[τi−1,τi))(·)
∥∥∥

L2([0,1])

implies f ≡ 0 and hence bi = 0 for all i = 1, . . . , k + 1. Consequently, this is equivalent to
assuming that the functions

(K 1[τ0,τ1))(·), (K 1[τ1,τ2))(·), . . . , (K 1[τk,τk+1))(·)
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are linearly independent as functions in L2([0, 1]) for every choice of (τ0, . . . , τk+1) ∈
Γk(τlow, τup).

Define

∆K(x, a, b) :=


∫ b

a
K(x, y)dy b 6= a ,

K(x, a) b = a .

(4.1)

Instead of assuming independence of the functions K1[τi,τi+1)(·), we will assume indepen-
dence of the functions ∆k(·, τi, τi+1), which is slightly stronger. The reason for this is
discussed in detail in section 4.3.

Assumption B. The operator K is given by Kf(x) =
∫ τup

τlow
K(x, y)f(y)dy, there exists

some CK > 0 such that
∫ τup

τlow
|K(x, y)|dy ≤ CK for all x and

sup
x∈[0,1] , y∈(τlow,τup)

|K(x, y)| <∞ .

In addition the integral kernel K(x, y) satisfies one of the following assumptions:

(B1) K : [0, 1]× [τlow, τup] → R is continuous.

(B2) K(x, y) = Φ(x− y) and Φ is piecewise continuous with finitely many jumps.

Additionally the functions

∆K(x, τ0, τ1) , ∆K(x, τ1, τ2) , . . . , ∆K(x, τk, τk+1)

are linearly independent for every choice of k ∈ N and

τlow = τ0 ≤ 0 < τ1 ≤ τ2 ≤ . . . ≤ τk < 1 ≤ τk+1 = τup ,

where only two subsequent τi are allowed to be equal. Here ∆K is defined by (4.1).

In chapter 5 we list several classes of kernels K(x, y) satisfying Assumptions B. One
special case is K(x, y) = Φ(x−y) for some continuous symmetric Φ, with Fourier transform
satisfying |Φ̂(x)| ≥ c(1+ |x|)−n for some n ∈ N and c > 0. Other examples are convolution
with a Gauss kernel and K(x, y) = 1(−∞,x)(y), which leads to a linear regression model
with different slopes (also called multi-phase linear regression).

Assumptions on the design points

Empirical process theory allows us to make inference in the empirical norm only. However,
this is restricted to ‖Kf − Kf̂n‖n. Once we wish to draw a conclusion on f − f̂n in any
norm, we need some regularity assumption on the design points.

Assumption C. There exists a function h : [0, 1] → [cl, cu] with 0 < cl < cu < ∞ and∫ 1
0 h(x)dx = 1, such that

i

n
=

∫ x(i)

0
h(x)dx+ δi
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for all i = 1, . . . , n, with
max

i=1,...,n
|δi| = OP (n−1/2) .

Moreover, the design points x1, . . . , xn are independent of the error terms ε1, . . . , εn. Here
x(i) denotes the i-th order statistic of x1, . . . , xn.

If the design points x1, . . . , xn are nonrandom, the OP (n−1/2) term above is to be un-
derstood as O(n−1/2). Note that the above assumption covers random designs as well as
fixed designs generated by a regular density in the sense of Sacks and Ylvisaker (1970).

Lemma 4.1. Assume x1, . . . , xn are independent, identically distributed observations with
probability density h. If ∞ > cu ≥ h(x) ≥ cl > 0 for all x ∈ [0, 1] and supp(h) = [0, 1] then
x1, . . . , xn satisfy Assumption C.

Proof. Set H(x) =
∫ x
0 h(x)dx, where h is given by Assumption C, and

Hn(x) = n−1
n∑

i=1

1[x(i),∞)(x) .

By the classical Dvoretzky-Kiefer-Wolfowitz theorem (cf. Massart, 1990) we have

P(sup
x∈R

|H(x)−Hn(x)| > t) ≤ 2 exp(−2nt2) .

Since Hn(x(i)) = i/n it follows that maxi=1,...,n P(|H(x(i)) − i/n| > t) ≤ 2 exp(−2nt2),
which implies maxi=1,...,n |H(x(i))− i/n| = OP (n−1/2).

Munk (2002) assumes that

max
i=2,...,n

∣∣∣ ∫ x(i)

x(i−1)

h(x)dx− 1
n

∣∣∣ = O(n−(1+γ)) ,

where h is assumed to be Hölder-continuous of order γ > 0. For γ ≥ 1/2 and h bounded
from below and above, this implies Assumption C. However, this does not allow for the
random design case.

Dümbgen and Johns (2004) use an assumption on the design points, which implies that
the number of design points contained in a sequence of intervals of length an is of order
nan provided an ≥ cn−1+ε for some ε > 0 and c > 0. In comparison Assumption C is less
restrictive in the sense that a similar statement holds only for ε > 1/2.

Lemma 4.2. If the design points x1, . . . , xn satisfy Assumption C, then for any two se-
quences (an)n∈N, (bn)n∈N with 0 ≤ an < bn ≤ 1 we have

n−1
(
#{i : xi ∈ [an, bn]}

)
= OP (|bn − an|+ n−1/2).

Moreover, if (bn − an) > cn−1/2+ε for some ε > 0, c > 0 and all n, then

#{i : xi ∈ [an, bn]}
n(bn − an)

≥ c1 + oP (1) ,

for some c1 > 0.
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Proof. Set H(x) =
∫ x
0 h(x)dx, where h is given by Assumption C. Note that H is strictly

monotone and the inverse H−1 is well defined on [0, 1].
By Assumption C we have H−1(i/n − δi) = x(i) with maxi=1,...,n | δi| = OP (n−1/2).

Therefore

#{i : an ≤ xi ≤ bn} = #{i : an ≤ x(i) ≤ bn}
= #{i : an ≤ H−1(i/n− δi) ≤ bn}
= #{i : H(an) + δi ≤ i/n ≤ H(bn) + δi}
≤ #{i : H(an)− max

i=1,...,n
|δi| ≤ i/n ≤ H(bn) + max

i=1,...,n
| δi|}

= n
(
H(bn)−H(an) +OP (n−1/2)

)
= n

(
O(bn − an) +OP (n−1/2)

)
,

which proves the first claim. Similarly

#{i : an ≤ xi ≤ bn} ≥ n
(
H(bn)−H(an)− 2 max

i=1,...,n
|δi|

)
≥ n(cl(bn − an)− 2 max

i=1,...,n
|δi|) ,

where cl is the lower bound of the design density given by Assumption C.
For bn − an > cn−1/2+ε we get

n−1(bn − an)−1 max
i=1,...,n

|δi| ≤ cn−1/2−ε max
i=1,...,n

|δi| = oP (1) .

This proves the second claim.

4.2. Estimate and asymptotic results

Estimate

Define the restricted least squares estimate f̂n as approximate minimizer of the empirical
L2 distance to the data in the space of step functions bounded in supremum norm by
R and restricted to functions with at most k jumps. More precisely assume that f̂n ∈
Tk,R(τlow, τup) and

‖Kf̂n − Y ‖n ≤ min
g∈Tk,R(τlow,τup)

‖Kg − Y ‖2
n + o(n−1) . (4.2)

The minimizer of the functional on the right hand side always exists (compare Corol-
lary 7.7). It does not need to be unique. Note that we use an approximate minimizer, since
for some operators K it may not be possible to find an explicit form of the minimizer. In
this case it is necessary to use a numeric optimization algorithm to compute the minimizer.
The restriction to functions with ‖f‖∞ < R is a technical assumption, which requires that
some upper bound of the supremum norm of the objective function is known beforehand.

In the following we will assume that f̂n has the form

f̂n(x) =
k+1∑
i=1

b̂i1[τ̂i−1,τ̂i)(x) , (4.3)
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i.e. the vectors b̂ = (b̂1, . . . , b̂k+1)t and τ̂ = (τ̂0, . . . , τ̂k+1)t are the approximate (in the
sense of (4.2)) least squares estimates of the true parameter vectors b and τ given by
equation (2.1).

If the number of jumps is unknown, a different estimate is needed. In this case, assume
that the penalized least squares estimate f̂λn satisfies f̂λn ∈ T∞,R(τlow, τup) and

‖Kf̂λn − Y ‖n + λn #J (f) ≤ min
g∈T∞,R(τlow,τup)

‖Kg − Y ‖2
n + λn #J (f) + o(n−1) , (4.4)

where λn is some smoothing parameter. Again, it is not assumed that the minimum is
attained, but only that the functional above can be minimized up to some term of order
o(n−1).

Asymptotic results

Now we give the main results of this thesis, namely the asymptotic normality of the pa-
rameter estimates, given that the number of jumps is known, and the fact that the number
of jumps can be correctly estimated with probability one.

To state this result, first define

ν(x) =



∆K(x, τ0, τ1)
(b1 − b2)∆K(x, τ1, τ1)

∆K(x, τ1, τ2)
...

(bk − bk+1)∆K(x, τk, τk)
∆K(x, τk, τk+1))


, (4.5)

and the (2k + 1)× (2k + 1) matrix V by its entries

(V )ij =
∫ 1

0
(ν(x)ν(x)t)ij h(x)dx . (4.6)

Here h is the design density given by Assumption C. The parameter estimates are asymp-
totically normally distributed, with covariance matrix σ2V −1.

Theorem 4.3. Suppose the Assumptions A, B and C are met. Let f , f̂n and V be given
by (2.1), (4.3) and (4.6), respectively. Set θ = (b1, τ1, b2, τ2, . . . , bk, τk, bk+1) as the pa-
rameter vector of f , and θ̂n as the corresponding vector of estimates given by f̂n. Given
model (2.2) the following holds true:

(i) V is positive definite.

(ii)
√
n(θ − θ̂n) L−→ N(0, σ2V −1).

(iii) d(J (f),J (f̂n)) = OP (n−1/2).

(iv) ‖(Kf −Kf̂n)|[0,1]‖2 = OP (n−1/2).

(v) ‖(f − f̂n)|[0,1]‖2 = OP (n−1/4).
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(vi) Suppose in addition to Assumption A, the condition (A1) is satisfied, i.e. the error
is subgaussian. Let λn → 0 and λnn

1/(1+ε) →∞ for some ε > 0 as n→∞, then

lim
n→∞

P
(
#J (f̂λn) = #J (f)

)
= 1 .

The proof is given in several steps in Chapter 7.

To assess this result, let us introduce the notion of minimax rates. For any n ∈ N assume
that {Pθ,n, θ ∈ Θ} is a family of probability measures on the measurable spaces (Ωn,Bn)
associated with the observations. Moreover, assume d defines some distance on Θ. We say
that a sequence of estimators θ̂n attains the minimax rate for the class Θ and the distance
d if there exists a sequence (an)n∈N and some c > 0 with

lim
C→∞

lim
n→∞

sup
θ∈Θ

Pθ,n(d(θ̂n, θ) > Can) = 0

and
lim

n→∞
inf
θ̃n

sup
θ∈Θ

Pθ,n(d(θ̃n, θ) > can) > 0 .

Then, an is called minimax rate.
This allows us to make the following observation.

Theorem 4.4. Suppose the assumptions of Theorem 4.3 are met. If ε1, . . . , εn are indepen-
dent identically distributed normal random variables with zero mean and positive variance,
the rates given by Theorem 4.3 are minimax (in the space Tk,R(τlow, τup)).

The proof is given in Section 7.5.

4.3. An interpretation of the assumption on the operator

The condition of the linear independence of the functions

∆K(x, τ0, τ1) , ∆K(x, τ1, τ2) , . . . , ∆K(x, τk, τk+1)

in Assumption B might seem a bit unusual at first. The aim of this section is to give a
better understanding of this assumption.

Interpretation via the asymptotic variance

In view of the asymptotic distribution of the estimates in Theorem 4.3, it can be shown,
that the assumption of linear independence in B is necessary for the asymptotic covariance
matrix to be invertible.

Suppose that the assumption of linear independence in L2([0, 1]) does not hold and that
bi+1 6= bi for all i = 1, . . . , k (i.e. that f has k jumps). In this case for ν(x) given by (4.5)
there exist β ∈ R2k+1 with β 6= 0 such that∫ 1

0
(βtν(x))2dx = 0 ,
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which implies

0 =
∫ 1

0
(βtν(x))2h(x)dx =

∫ 1

0
βt(ν(x)ν(x)t)βh(x)dx = βtV β .

This means V does not have full rank and V is not invertible.

Interpretation via rates and approximation theory

There is another interpretation for the condition of linear independence inspired by approx-
imation theory. Classical estimation theory provides rates of convergence for the estimate
Kf̂n. The question is, how to obtain the rate of convergence of ‖f̂n − f‖2 from the rate of
‖Kf−Kf̂n‖2. To answer this, we first have a closer look at the function f̂n−f . Assume f is
given by (2.1) and f̂n by (4.3). Moreover, assume that τi−1 < τ̂i < τi+1 for all i = 1, . . . , k.
In this case, Kf −Kf̂ can be written as

(Kf −Kf̂)(x) =
k+1∑
i=1

(bi − b̂i)
∫ τi∧τ̂i

τi−1∨τ̂i−1

K(x, y)dy +
k∑

i=1

ci

∫ τi∨τ̂i

τi∧τ̂i

K(x, y)dy ,

where ci = bi − b̂i+1 for τi > τ̂i and ci = bi+1 − b̂i for τi ≤ τ̂i. Define Gi(x, τ, τ̂) :=∫ τi∧τ̂i

τi−1∨τ̂i−1
K(x, y)dy, i = 1, . . . , k + 1 and Hi(x, τ, τ̂) :=

∫ τi∨τ̂i

τi∧τ̂i
K(x, y)dy, i = 1, . . . , k. Fix j

and assume b̂j 6= bj . We obtain

‖Kf −Kf̂‖2
2

= (bj − b̂j)2
∥∥Gj(x, τ, τ̂) +

k+1∑
i=1,i6=j

bi − b̂i

bj − b̂j
Gi(x, τ, τ̂) +

k∑
i=1

ci

bj − b̂j
Hi(x, τ, τ̂)

∥∥2

2
.

This means, if we were able to prove

inf
τ̃ ,α,β

∥∥Gj(x, τ, τ̃) +
k+1∑

i=1,i6=j

αiGi(x, τ, τ̃) +
k∑

i=1

βiHi(x, τ, τ̃)
∥∥2

2
≥ C > 0 ,

we could conclude
(b̂j − bj)2 = O(‖Kf −Kf̂‖2

2) .

As argued in Section 4.1, the assumption that K is injective on the space Tk(τlow, τup)
implies that for any given τ̃ with mini=1,...,k |τi − τ̃i| > 0, the functions Gi(x, τ, τ̃) and
Hi(x, τ, τ̃) are linearly independent. This means for any given τ̃

inf
α,β

∥∥Gj(x, τ, τ̃) +
k+1∑

i=1,i6=j

αiGi(x, τ, τ̃) +
k∑

i=1

βiHi(x, τ, τ̃)
∥∥2

2
≥ Cτ̃ > 0 .

Hence, it would be sufficient to show that the infimum is attained. In terms of approxi-
mation theory, this means we have to show that the set{

g : g(x) =
k+1∑

i=1,i6=j

αiGi(x, τ, τ̂) +
k∑

i=1

βiHi(x, τ, τ̂) , ‖τ − τ̂‖∞ < ε , αi, βi ∈ R ∀i
}

(4.7)
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is an existence set.
A similar problem arises in the theory of approximation by exponential sums (see for

example Braess, 1986, Chapter VI). From this theory it is known that sets of this type are
not existence sets. The problem is the following. Assume τ̂i < τi. Choosing βi = (τi− τ̂i)−1

we get that

lim
τ̂i→τi

(τi − τ̂i)−1

∫ τi

τ̂i

K(x, y)dy = K(x, τi) .

This means K(x, τi) can be arbitrarily well approximated, but is not in the span of our
function system. The solution is to change the basis of the function system in (4.7) and to
use H̃i(x, τ, τ̂) = (τi−τ̂i)−1∆K(x, τi, τ̂i), instead ofHi(x, τ, τ̂). In this context Assumption B
assures that the functions H̃1, . . . , H̃k, G1, . . . , Gk+1 are linearly independent. Under this
assumption it is possible to show that, if we replace Hi by H̃i in (4.7), the corresponding
set is an existence set. Then we can deduce (bi− b̂i)2 ≤ C‖Kf−Kf̂n‖2

2. A similar argument
gives (τi − τ̂i)2 ≤ C‖Kf −Kf̂n‖2

2.



Chapter 5

Classes of integral kernels with the desired properties

This chapter presents sufficient conditions for the operator K to satisfy Assumption B.
The focus is on the case where the integral kernel K(x, y) is of convolution type K(x, y) =
Φ(x− y).

5.1. Positive definite kernels

In the following, assume that the operator K is of the form Kf =
∫

Φ(x−y)f(y)dy for some
symmetric positive definite function Φ. Functions of this type are also called radial basis
functions and have been thoroughly investigated in approximation theory. Most results
used in the following originate from this area. An introduction is the recent book by
Wendland (2005).

In order to verify Assumption B, we have to show that the functions

∆K(x, τ0, τ1) , ∆K(x, τ1, τ2) , . . . , ∆K(x, τk, τk+1)

are linearly independent for every k ∈ N and every choice of τ0 < τ1 ≤ τ2 < . . . ≤ τk < τk+1,
where only two subsequent τi are allowed to be equal.

To this end, we will define the native Hilbert space NΦ of a positive definite function
Φ and show that the elements of its dual space δx(f) = f(x) and ρx,y(f) =

∫ y
x f(t)dt are

linearly independent, if Φ has certain properties. Then we will deduce that the functions
∆K(·, τ0, τ1), . . . ,∆K(x, τk, τk+1) are linearly independent.

We start by giving the required conditions on Φ.

Assumption D. Φ ∈ C(R) ∩ L1(R) is a symmetric real-valued function with Φ̂(x) ≥ 0.
Moreover, there exists n0 ∈ N and C > 0 such that

C(1 + |x|n0)−1 ≤ |Φ̂(x)| for all x ∈ R . (5.1)

Here Φ̂(x) =
∫

exp(itx)Φ(t)dt denotes the Fourier transform of Φ. The requirement (5.1)
basically means that Φ has finite smoothness or, in other words, has at most n0 derivatives.
The assumptions Φ̂(x) ≥ 0 and (5.1) imply that Φ̂ is strictly positive. This means that Φ
is positive definite. (For a definition and characterization of real-valued positive definite
functions, compare Appendix B.1.)
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For Ω ⊂ R let NΦ(Ω) denote the unique Hilbert space (H, 〈·, ·〉H) of functions f : Ω → R
satisfying f(x) = 〈f,Φ(x−·)〉H. NΦ(Ω) is called native space for Φ and given by the closure
of the span of the function set {Φ(x − ·) : x ∈ Ω} under the inner product induced by
〈Φ(x − ·),Φ(y − ·)〉 = Φ(x − y). A short introduction to native spaces along with some
basic results of the theory can be found in Appendix B.2.

Denote by

S(R) =
{
f ∈ C∞(R,C) : lim

|x|→∞
|xnf (m)(x)| = 0 for all n,m = 0, 1, 2, . . .

}
the Schwartz space, where C∞(R,C) is the set of smooth functions from R to C. The first
result is, that the native space NΦ(Ω) contains all Schwartz functions which are compactly
supported in Ω.

Lemma 5.1. Assume Ω ⊂ R and Φ satisfies Assumption D. Then all real Schwartz func-
tions with support contained in Ω are elements of the native space NΦ(Ω), this means
that {

f ∈ S(R) : supp(f) ⊂ Ω
}
⊂ NΦ(Ω) .

Proof. We first proof the claim for Ω = R. Assume f ∈ S(R). Since Fourier transformation
is a bijection from S(R) to S(R) (cf. Werner, 2000, Theorem V.2.8), f̂ and f̂ 2 are also
Schwartz functions. Hence for any n0 ∈ N, we can find a constant c1 > 0 such that |f̂(x)|2 ≤
c1(1+|x|n0+2)−1. By (5.1) there exist c2 > 0 and n0 ∈ N such that (Φ̂(x))−1 ≤ c2(1+|x|n0).
We arrive at ∫

R

|f̂(x)|2

Φ̂(x)
dx ≤ c1c2

∫
R

1 + |x|n0

1 + |x|n0+2
dx <∞ .

By Theorem B.7 the function f is in NΦ(R) if and only if
∫

R |f̂(x)|2/Φ̂(x)dx < ∞. This
proves the claim for Ω = R.

Now assume Ω ⊂ R is arbitrary and f ∈ S(R) with supp f ⊂ Ω. We have shown
f ∈ NΦ(R). By Theorem B.8 for Ω ⊂ R, f ∈ NΦ(R) implies f |Ω ∈ NΦ(Ω). This proves the
claim.

Note that Lemma 5.1 implies that for any interval (a, b) ⊂ Ω there exists some test
function ψ ∈ NΦ(Ω) satisfying supp(ψ) = [a, b]. One example is

ψ(x) =


0 x ≤ a ,

exp((x− a)−1 + (b− x)−1) a < x < b ,

0 x ≥ b .

This observation can be used to show that point evaluation and integral mean are linearly
independent as elements of the dual space of NΦ(Ω).

Definition 5.2. For γ ∈ R and γ1, γ2 ∈ R ∪ {−∞,∞} with γ1 ≤ γ2 define the point
evaluation functional δγ : NΦ(Ω) → R by

δγ(f) := f(γ)
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and the functional ργ1,γ2 : NΦ(Ω) → R by

ργ1,γ2(f) :=


∫ γ2

γ1

f(x)dx γ1 6= γ2 ,

δγ1(f) γ1 = γ2 .

Lemma 5.3. Suppose Φ satisfies Assumption D. Assume τ0 < . . . < τk+1, γ1 < . . . < γr

and there exist an ε > 0 such that (τ1− ε, τk + ε) ⊂ Ω as well as (γ1− ε, γr + ε) ⊂ Ω. Then
the functionals ρτ0,τ1 , ρτ1,τ2 , . . . , ρτk,τk+1

, δγ1 , . . . , δγr are linearly independent as elements of
the dual space NΦ(Ω)′.

Proof. Assume
k+1∑
i=1

αiρτi−1,τi(f) +
r∑

j=1

βjδγj (f) = 0

for all f ∈ NΦ(Ω). For each i = 1, . . . , k + 1 we can find an interval Ji ⊂ [τi−1, τi] ∩ Ω
such that Ji ∩ γj = ∅ for all j = 1, . . . , r. By Lemma 5.1 we can find a test function
fi ∈ NΦ(Ω) with supp(fi) ⊂ Ji and

∫
R fi(x)dx = 1 for all i = 1, . . . , k + 1. We then have

that ρτl−1,τl
(fi) = 1i=l and δγj (fi) = 0 for all i = 1, . . . , k + 1 and j = 1, . . . , r. This leads

to

0 =
k+1∑
l=1

αlρτl−1,τl
(fi) +

r∑
j=1

βjδγj (fi) = αi

for all i = 1, . . . , k+1. Similarly we can find test functions fj ∈ NΦ(Ω) with δγj (fi) = 1i=j

and deduce that βj = 0 for all j = 1, . . . , r. This proves the claim.

Finally, we can prove that Assumption D implies Assumption B.

Theorem 5.4. Assume Φ satisfies Assumption D and K(x, y) = Φ(x − y). Then the
functions

∆K(x, τ0, τ1) , ∆K(x, τ1, τ2) , . . . , ∆K(x, τk, τk+1)

are linearly independent as functions in L2([0, 1]) for every k ∈ N and every choice of

−∞ ≤ τ0 ≤ 0 < τ1 ≤ τ2 < . . . ≤ τk < 1 ≤ τk+1 ≤ ∞ ,

where only two subsequent τi are allowed to be equal.

Proof. Assume ∥∥∥ k+1∑
i=1

αi∆K(·, τi−1, τi)
∥∥∥

L2([0,1])
= 0 . (5.2)

By continuity of Φ, the function ∆K(·, τi−1, τi) and hence
∑k+1

i=1 αi∆K(·, τi−1, τi) is contin-
uous. Consequently, (5.2) implies

0 =
k+1∑
i=1

αi∆K(x, τi−1, τi) ,
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for all x ∈ [0, 1]. By definition of ∆K (see (4.1))

0 =
k+1∑
i=1

αi∆K(x, τi−1, τi) =
k+1∑
i=1

αiρτi−1,τi

(
Φ(x− ·)

)
,

for all x ∈ [0, 1]. Set Ω = [0, 1]. By Theorem B.6 the native space NΦ(Ω) is the closure of
the span of the set of functions {Φ(x− ·) : x ∈ Ω}. It follows that

0 =
k+1∑
i=1

αiρτi−1,τi(f)

for all f ∈ NΦ(Ω). By Lemma 5.3 we know that ρτ0,τ1 , . . . , ρτk,τk+1
are linearly independent

as elements of the dual space NΦ(Ω)′. Consequently, αi = 0 for all i = 1, . . . , k + 1, which
proves the claim.

The following corollary summarizes the results of this section.

Corollary 5.5. Suppose Φ ∈ L1(R) is symmetric, continuous and is of finite smoothness
in the sense of (5.1). If Φ̂ is strictly positive, the integral kernel K(x, y) = Φ(x−y) satisfies
Assumption B.

Examples of functions Φ, which satisfy these conditions, are

- the Laplace kernel ΦL(x) = exp(−|x|)/2 with Φ̂L(t) = (1 + t2)−1,

- the kernel Φ(x) = exp(−|x|) cos(x) with Φ̂(t) = (4 + 2t2)(4 + t4)−1,

p-fold convolutions ΦL ∗ . . . ∗ ΦL of the Laplace kernel such as

- the kernel Φ(x) = exp(−|x|)(|x|+ 1)/4 with Φ̂(t) = (1 + t2)−2,

- the kernel Φ(x) = exp(−|x|)(x2 + 3|x|+ 3)/16 with Φ̂(t) = (1 + t2)−3,

- the kernel Φ(x) = exp(−|x|)(|x|3 + 6x2 + 15|x|+ 15)/96 with Φ̂(t) = (1 + t2)−4,

kernels of the type (1− |x|)p
+ for p = 2, 3, . . . such as

- the kernel Φ(x) = 3/2(1− |x|)2+ with Φ̂(x) =

{
6(x− sin(x))/x3 x 6= 0 ,
1 x = 0 ,

- the kernel Φ(x) = 2(1− |x|)3+ with Φ̂(x) =

{
12(x2 + 2 cos(x)− 2)/x4 x 6= 0 ,
1 x = 0 ,

- the kernel Φ(x) =
(
(p+ 1)/2

)
(1− |x|)p

+ for p = 2, 3, . . . with

Φ̂(x) =
(p+ 1)!
xp+1

∞∑
k=p+1

(−1)k−(p+1)x2k−(p+1)

k!
,
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to mention a few.
Given any two kernels Φ1, Φ2 which satisfy the assumptions of Corollary 5.5, one can

construct a new kernel by Φ = Φ1 ∗ Φ2. Using Φ̂(x) = Φ̂1(x)Φ̂2(x) it is easy to check that
this new kernel has the required properties. Another method of constructing new kernels
is given by

Φ(x) = (1− λ)Φ0(x) + λ/2
(
Φ0(x− µ) + Φ0(x+ µ)

)
,

where µ ∈ R, −∞ < λ < 1/2 and Φ0 is any of the kernels having the required properties.
By

Φ̂(x) = (1− λ(1− cos(µx)))Φ̂0(x) ,

it follows that |Φ̂(x)| ≥ min(1, (1− 2λ))|Φ̂0(x)|, which proves the lower bound (5.1) for Φ.
As the example exp(−|x|) cos(x) shows, positive definite functions are not necessarily

positive. Note that, if Φ satisfies the conditions of Corollary 5.5, then this is also true for
Φh(x) := h−1Φ(h−1x), since Φ̂h(x) = Φ̂(hx). Figure 5.1 shows some of the kernels given
above and how the corresponding operator acts on step functions.

Φ(x) = e−|x|/2 Φ(x) = e−|x|(|x|+ 1)/4 Φ(x) = e−|x| cos(x)

Φh

−0.1 0.1

0
10

−0.1 0.1

0
10

−0.1 0.1

0
10

Φh ∗ f

0 1

0
1

0 1

0
1

0 1

0
1

Figure 5.1.: Different kernels Φ and the image Φh ∗ f for f = 1[0.2,0.8). The black line in
the lower images shows the original function f and the red line Φh ∗ f . Here
Φh(x) = h−1Φ(h−1x) and h is chosen in such a way, that the values of Φh of
the different kernels coincide at zero.

5.2. Extended sign regular kernels

The previous section established Assumption B for certain functions of finite smoothness.
One aim of this section is to give an example of a supersmooth function, namely the Gauss
kernel, which satisfies Assumption B.

To this end, we need a stronger concept than positive definiteness.

Definition 5.6. For Φ ∈ Ck−1(R), t1, . . . , tk ∈ R and j = 1, . . . , k define

Φj,t1,...,tk(x) =
{

Φ(x− tj) : tj−1 < tj
Φ(r)(x− tj) : tj−r−1 < tj−r = . . . = tj ,
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where t0 is set to −∞. Moreover, define

Φ∗
(
s1, . . . , sk

t1, . . . , tk

)
= det

(
Φj,t1,...,tk(si)

)k

i,j=1
.

The function Φ will be called extended sign regular of order k (ESRk) on R, provided that
for each r = 1, . . . , k there exists εr ∈ {−1, 1} such that

εrΦ∗
(
s1, . . . , sr

t1, . . . , tr

)
> 0 ,

for all choices of s1 < s2 < . . . < sr and t1 ≤ t2 ≤ . . . ≤ tr with si, ti ∈ R.

As already indicated, one example for an extended sign regular function is the Gauss
kernel.

Lemma 5.7. The Gauss kernel Φ(x) = (2π)−1/2 exp(−x2/2) is extended sign regular of
all orders on R.

Proof. See Karlin and Studden (1966), Section 3, Example 5.

As shown below, extended sign regularity is sufficient for some function Φ to satisfy
Assumption B.

Theorem 5.8. Assume that Φ is extended sign regular of order k + 2 on R, with 0 <∫
Φ(x)dx <∞. Then the functions

∆K(x, τ0, τ1) , ∆K(x, τ1, τ2) , . . . , ∆K(x, τk, τk+1)

are linearly independent as functions in L2([0, 1]) for every choice of

−∞ ≤ τ0 ≤ 0 < τ1 ≤ τ2 < . . . ≤ τk < 1 ≤ τk+1 ≤ ∞ ,

where only two subsequent τi are allowed to be equal.

Proof. It is equivalent to show that for any set I0 = {0, . . . , k′} and I1 ⊂ I0\{0, k′} satisfy-
ing #(I0) + #(I1) = k + 1, and any choice of 0 < τ1 < . . . < τk′ < 1 (where τk′+1 := τk+1)
the functions {

∆K(x, τi, τi+1) : i ∈ I0
}
∪

{
∆K(x, τj , τj) : j ∈ I1

}
are linearly independent in L2([0, 1]). Assume∥∥∥ ∑

i∈I0

αi∆K(·, τi, τi+1) +
∑
j∈I1

βj∆K(·, τj , τj)
∥∥∥

L2([0,1])
= 0 .
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Denote by Φ0(x) =
∫ x
−∞Φ(y)dy the primitive of Φ. Since the functions ∆K(·, τi, τi+1) and

∆K(·, τi, τi) are continuous we have for all x ∈ [0, 1] that

0 =
∑
i∈I0

αi∆K(x, τi, τi+1) +
∑
j∈I1

βj∆K(x, τj , τj)

=
∑
i∈I0

αi

(
Φ0(x− τi)− Φ0(x− τi+1)

)
+

∑
j∈I1

βjΦ(x− τj)

= α0Φ0(x− τ0) +
k′∑

i=1

(αi − αi−1)Φ0(x− τi)− αk′Φ0(x− τk′+1) +∑
j∈I1

βjΦ(x− τj) .

Consequently, this must also be true for the derivative, and the equation still holds if we
replace Φ0 by Φ and Φ by Φ′. Since the equality simultaneously holds for all x ∈ [0, 1],
it holds for a choice of k + 2 distinct points x0, . . . , xk+1 ∈ [0, 1]. By the extended sign
regularity of Φ we know that the vectors Φ(x0 − τi)

...
Φ(xk+1 − τi)


i=0,...,k′+1

and

 Φ′(x0 − τj)
...

Φ′(xk+1 − τj)


j∈I1

are linearly independent for −∞ < τ0 ≤ 0 and 1 ≤ τr+1 < ∞. Hence, we immediately
get that βj = 0 for all j ∈ I1. Moreover, α0 = αk′+1 = 0 and (αi−1 − αi) = 0 for all
i = 1, . . . , k′. This leads to αi = 0 for all i ∈ I0.

Now assume τ0 = −∞ and τk+1 = ∞. We then have

0 = α0

∫
Φ(x)dx+

k′∑
i=1

(αi − αi−1)Φ0(x− τi) +
∑
j∈I1

βjΦ(x− τj) .

By the same arguments as above we get βj = 0 for all j ∈ I1 and (αi−1 − αi) = 0 for all
i = 1, . . . , k′. Since

∫
Φ(x)dx > 0, it follows α0 = 0 and consequently αi = 0 for all i ∈ I0.

If either τ0 or τr+1 is infinite and the other one finite, a similar argument applies.

Remark. It would be sufficient to use a slightly weaker notion instead of extended sign
regularity. In the proof we only require that

Φ∗
(
s1, . . . , sr

t1, . . . , tr

)
differs from zero for choices of s1 < s2 < . . . < sr and t1 ≤ t2 ≤ . . . ≤ tr, where at most
two subsequent ti are allowed to be equal.

Remark. Karlin (1968) shows that for K(x, y) = Φ(x − y), the fact that Φ is is strictly
sign regular of order r + 1 already implies that Φ is extended sign regular of order r (cf.
Karlin, 1968, Corollary 5.2, page 66). The definition for strictly sign regular kernels differs
from Definition 5.6 in that t1 < t2 < . . . < tr instead of t1 ≤ t2 ≤ . . . ≤ tr is required
(consequently it is weaker).

Further examples for strictly sign regular kernels can be found in Karlin (1968).
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The following corollary gives the main result of this section.

Corollary 5.9. The integral Kernel K(x, y) = (2π)−1/2 exp(−(x − y)2/2) satisfies As-
sumption B.

5.3. Polynomial kernels

Until now, all investigated integral kernels were symmetric and continuous. In this section,
we will examine a different class, namely kernels of the type K(x, y) = Φ(x− y), where Φ
has the special form

Φ(x) = (p+ 1)xp
+ , (5.3)

with p ∈ {0, 1, 2, . . .}. For positive p this is to be understood as (x+)p. Note that in the
case p = 0 this leads to piecewise linear regression with unknown break points, also called
multi-phase regression. For p ≥ 1 the function Kf is piecewise polynomial of order p+ 1,
p -times continuously differentiable and has a (p+1)-th derivative, which is a step function.
The image can be viewed as (p + 1) − th order spline without multiple knots. Figure 5.2
shows the kernel for p = 1, 2, 3 and how the corresponding operator act on a certain step
function.

Φ(x) = 1(x≥0) Φ(x) = 2x+ Φ(x) = 3x2
+

Φ

−1/2 0 1/2

0
1

−1/2 0 1/2

0
1

−1/2 0 1/2

0
1

f

0 1

−
2

0
2

0 1

−
2

0
2

0 1

−
2

0
2

Φ ∗ f

0 1

0
1/

2

0 1

0
1/

2

0 1

0
1/

2

Figure 5.2.: Different kernels Φ of polynomial type and the image Φ∗f for the step function
f(x) = 2(1[0.3,0.5)(x)− 1[0.3,0.7)(x)).

The following theorem shows that integral operators of this type satisfy Assumption B.
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Theorem 5.10. Assume Kf =
∫ 1
0 Φ(x − y)f(y)dy and Φ is of type (5.3) with p ∈

{0, 1, 2, . . .}. Then the functions

∆K(x, τ0, τ1) , ∆K(x, τ1, τ2) , . . . , ∆K(x, τk, τk+1)

are linearly independent as functions in L2([0, 1]) for every choice of k ∈ N and

τ0 = 0 < τ1 ≤ τ2 ≤ . . . ≤ τk < 1 = τk+1 ,

where only two subsequent τi are allowed to be equal.

Proof. Assume ∥∥∥ k+1∑
i=1

αi∆K(·, τi−1, τi)
∥∥∥

L2([0,1])
= 0 .

We will prove by induction that αi = 0 for all i = 1, . . . , k + 1. Compute that

(K 1[a,b))(x) = (p+ 1)
∫ b

a
(x− y)p

+dy = (p+ 1)
∫ x−a

x−b
yp
+dy

= (x− a)p+1
+ − (x− b)p+1

+ .

This gives
k+1∑
i=1

αi∆K(x, τi−1, τi)
∣∣∣
[0,τ1]

= α1(x− 0)p+1 ,

and hence α1 = 0.
Now assume αj = 0 for all j < i. For τi−1 = τi, we have that τi+1 > τi and

k+1∑
i=1

αi∆K(x, τi−1, τi)
∣∣∣
[τi−1,τi+1]

= αi(x− τi)p + αi+1(x− τi)p+1 .

As polynomials with different degrees are linearly independent (cf. Achieser, 1992) this
gives that αi+1 = 0 and αi = 0. For τi−1 < τi, observe that

k+1∑
i=1

αi∆K(·, τi−1, τi)
∣∣∣
[τi−1,τi]

= αi(x− τi)p ,

which directly gives αi = 0.
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Chapter 6

Asymptotic and finite sample distribution for two examples

In this chapter we evaluate the speed of convergence and quality of the approximation
by the asymptotic law given in Theorem 4.3 for two different kernels, namely the Laplace
kernel (cf. Section 5.1) and the polynomial kernel, which defines the multi-phase regression
model (cf. Section 5.3). Moreover, the empirical coverage probability of confidence bands
for the estimate of the jump location is assessed. To construct confidence bands, it is
necessary to estimate the variance of the parameter estimates. To this end we give an
explicit expression of the asymptotic variance in these two examples. In contrast to the
direct case, the estimates are not asymptotically independent.

In Section 6.2 we consider the case where K is the convolution with a Laplace kernel
with bandwidth h. At the end of the section we investigate the dependence of the variance
of the jump estimate on the bandwidth.

Note that, unlike in other chapters, many calculations in this chapter are shortened or
even omitted. The reason for this is, that these calculations are mostly basic calculus, not
very instructive and would cover several pages, when carried out in detail.

6.1. Multi-phase regression

In this section we consider the case K(x, y) = 1[0,∞)(x − y) – the so called multi-phase
regression. For simplicity, we treat an equidistant design density h(x) = 1[0,1](x) only.

In a multi-phase regression model it is custom to define an additional intercept b0 such
that

Y = Kf + ε+ b0 . (6.1)

For many operators K the additional intercept leads to identifiability problems, however.
If

K 1[τlow,τup)|[0,1] ≡ 1 ,

then for all x ∈ [0, 1]

k+1∑
i=1

bi K1[τi−1,τi)(x) + b0 =
k+1∑
i=1

(bi + b0) K 1[τi−1,τi)(x) .

An example for this is the case where K is the convolution with a symmetric probability
density function (and τlow = −∞, τup = ∞). In that setting b0 is not identifiable. For this
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reason it was not included in the model (2.2). Note that K 1[τlow,τup)|[0,1] 6≡ 1 is sufficient
for b0 to be identifiable. This can be easily verified for the case of multi-phase regression.

It is straightforward to expand Theorem 4.3 to the case where the additional parameter
b0 has to be estimated.

Theorem 6.1. Suppose the Assumptions A and C are met, Kf = Φ ∗ f with Φ = xp
+ for

p = 0, 1, 2, . . . and the observations Y are given by (6.1) with f ∈ Tk,R(0, 1), #J (f) = k
and

f(x) =
k+1∑
i=1

bi1[τi−1,τi)(x) .

Suppose that f̂n, b̂0 satisfy

‖Kf̂n + b̂0 − Y ‖n ≤ min
g∈Tk,R(0,1),b∈R

‖Kg + b− Y ‖2
n + o(n−1) . (6.2)

Let ν0(x) = 1, νj(x) be defined by (4.5), and the (2k + 2) × (2k + 2) matrix V be defined
by its entries (4.6) for i, j = 0, . . . , 2k + 2. Set θ = (b0, b1, τ1, b2, τ2, . . . , bk, τk, bk+1) as the
parameter vector given by f and b0, and θ̂n as the corresponding vector of estimates given
by f̂n and b̂0. Then

√
n(θ − θ̂n) L−→ N(0, σ2V −1) .

The proof follows the same lines as the proof of Theorem 4.3. An outline is given in
Section 7.3.1.

An explicit formula for the covariance matrix

To give an explicit formula for the covariance matrix V −1 in Theorem 6.1, the matrix V
has to be computed.

Lemma 6.2. Assume that the design density h given by Assumption C satisfies h(x) =
1[0,1](x). Set hi = bi+1 − bi for the jump heights and i = 1, . . . , k. If V is the matrix given
by Theorem 6.1 for the case Kf = Φ ∗ f with Φ(x) = 1[0,∞)(x), then the entries of V are
given by

V0,0 = 1 ,
V0,2j = −hj(1− τj) 1 ≤ j ≤ k ,
V0,2j−1 = 1

2(τj − τj−1)2 + (1− τj)(τj − τj−1) 1 ≤ j ≤ 2k + 1 ,
V2i−1,2j−1 = (τi − τi−1)

(
1
2(τj − τj−1)2 + (1− τj)(τj − τj−1)

)
1 ≤ i < j ≤ k ,

V2i−1,2j−1 = V2j−1,2i−1 1 ≤ j < i ≤ k ,

V2i−1,2i−1 =
(

1
3(τi − τi−1)3 + (1− τi)(τi − τi−1)2

)
1 ≤ i ≤ k + 1 ,

V2i,2j = hihj(1−max(τi, τj)) 1 ≤ i, j ≤ k ,

V2i,2j−1 = hi

(
1
2(τj − τj−1)2 + (1− τj)(τj − τj−1)

)
1 ≤ i < j ≤ k +1,

V2i,2j−1 = hj(1− τj)(τi − τi−1) . 1 ≤ j ≤ i ≤ k .
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Proof. We have to compute ∫ 1

0
νi(x)νj(x)dx

for i, j = 0, . . . , 2k + 1.
First compute Kg for some indicator function g. For τi−1 < τi

∆K(x, τi−1, τi) = K 1[τj−1,τj)(x) = (x− τj−1)+ − (x− τj)+
= (x− τj−1)1[τj−1,τj)(x) + (τj − τj−1)1[τj ,∞)(x) .

For j ≤ i we get

h−1
i

∫ 1

0
ν2i(x)ν2j−1(x)dx =

∫ 1

0

(
K(x, τi) K 1[τj−1,τj)(x)

)
dx

=
∫ 1

τi

(τj − τj−1)dx = (1− τi)(τj − τj−1) .

Now assume 1 ≤ i < j ≤ k. Then

(hi)−1

∫ 1

0
ν2i(x)ν2j−1(x)dx =

∫ 1

0

(
K(x, τi) K 1[τj−1,τj)(x)

)
dx

=
∫ τj

τj−1

(x− τj−1)dx+
∫ 1

τj

(τj − τj−1)dx

=
1
2
(τj − τj−1)2 + (1− τj)(τj − τj−1) .

Compute

(hihj)−1

∫ 1

0
ν2j(x)ν2i(x)dx =

∫ 1

0
K(x, τi)K(x, τj)dx = 1−max(τi, τj) ,

and for 1 ≤ i ≤ j − 1 ≤ k∫ 1

0
ν2i−1(x)ν2j−1(x)dx =

∫ 1

0

(
K1[τi−1,τi)(x) K 1[τj−1,τj)(x)

)
dx

= (τi − τi−1)
( ∫ τj

τj−1

(x− τj−1)dx+
∫ 1

τj

(τj − τj−1)dx
)

= (τi − τi−1)
(1

2
(τj − τj−1)2 + (1− τj)(τj − τj−1)

)
.

Moreover, for 1 ≤ i ≤ k + 1∫ 1

0
ν2i(x)2dx =

∫ 1

0

(
K1[τi−1,τi)(x)

)2
dx

=
∫ τi

τi−1

(x− τi−1)2dx+
∫ 1

τi

(τi − τi−1)2dx

=
1
3
(τi − τi−1)3 + (1− τi)(τi − τi−1)2 .

The calculations for
∫ 1
0 ν0(x)νi(x)dx and i = 0, . . . , 2k + 1 are straightforward and thus

omitted.
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The variance of (b̂0, b̂1, τ̂1, b̂2, τ̂2, . . . , τ̂k, b̂k+1)t is given by the inverse of V times σ2. By
basic calculations it can be checked that the covariance matrix has entries defined by

Cov(τ̂i, τ̂j) =


σ2 4(τi+1−τi−1)

(bi+1−bi)2(τi−τi−1)(τi+1−τi)
j = i ,

σ2 2
(bi+1−bi)(bi+2−bi+1)(τi+1−τi)

j = i+ 1 ,

0 otherwise

and

Cov(τ̂i, b̂j) =


σ2 6

(bi+1−bi)(τj+1−τj)2
j ∈ {i, i+ 1} ,

σ2 −2
(b2−b1)τ1

j = 0, i = 1 ,

0 otherwise

as well as

Cov(b̂i, b̂j) =


σ2 4

τ1
i = j = 0 ,

σ2 12
(τi−τi−1)3

i = j > 0 ,

σ2 −6
τ2
1

i = 0 , j = 1 ,

0 otherwise .

This means that in this special case, the estimates of the heights b̂i depend only on the
neighboring jump estimates, and the estimates of the jump points τ̂i depend only on the
neighboring height estimates bi−1, bi and the neighboring jump estimates τ̂i−1, τ̂i+1. Note
that the variance matrix is not symmetric with respect to b̂0. The estimated intercept
depends only on b̂1 and τ̂1 but not on b̂k+1 and τ̂k. This is due to the fact that we defined
the kernel by K(x, y) = 1[0,∞)(x − y). If we had chosen K(x, y) = 1(−∞,0](x − y) instead
the dependence would be different.

Application of the above results to the case k = 1 leads to

σ−2 Var



b̂0

b̂1

τ̂1

b̂2


=



4
τ1

−6
τ2
1

2
(b1−b2)τ1

0

−6
τ2
1

12
τ3
1

−6
(b1−b2)τ2

1
0

2
(b1−b2)τ1

−6
(b1−b2)τ2

1

4
(b1−b2)2(1−τ1)τ1

−6
(b1−b2)(1−τ1)2

0 0 −6
(b1−b2)(1−τ1)2

12
(1−τ1)3

 . (6.3)

For k = 2 and h1 := (b2 − b1), h2 := (b3 − b2) the covariance matrix has the following form

σ−2 Var((b̂0, b̂1, τ̂1, b̂2, τ̂2, b̂3)t) =

4
τ1

−6
τ2
1

−2
h1τ1

0 0 0

−6
τ2
1

12
τ3
1

6
h1τ2

1
0 0 0

−2
h1τ1

6
h1τ2

1

4τ2
h2
1(τ2−τ1)τ1

6
h1(τ2−τ1)2

2
h1h2(τ2−τ1) 0

0 0 6
h1(τ2−τ1)2

12
(τ2−τ1)3

6
h2(τ2−τ1)2

0

0 0 2
h1h2(τ2−τ1)

6
h2(τ2−τ1)2

4(1−τ1)
h2
2(τ2−τ1)(1−τ2)

6
h2(1−τ2)2

0 0 0 0 6
h2(1−τ2)2

12
(1−τ2)3


.
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Some simulations

In order to evaluate the speed of convergence and quality of the approximation by the
asymptotic law given in Theorem 6.1, we perform a small simulation study.

Test Bed 6.3. Assume the observations Y are generated by

Yi = K(−3 · 1[0,0.5) + 3 · 1[0.5,1))(i/n) + 0.5 εi , i = 1, . . . , n ,

where Kf(x) =
∫

1[0,∞)(x− y)f(y)dy and εi ∼ N(0, 1) for i = 1, . . . , n.

In this setting 105 simulation runs are performed. For each simulation run the least
squares estimates (b̂0, b̂1, τ̂ , b̂2) are computed. Moreover, an estimate σ̂2 of σ2 is computed
by the mean of the squared residuals of the fitted model. By Theorem 6.1 and Equa-
tion (6.3) it holds

√
n(τ̂ − τ) n→∞−→ N

(
0,

4σ2

(b1 − b2)2(1− τ)τ

)
.

As all estimates are consistent by Slutzky’s theorem the asymptotic variance can be esti-
mated by

4(σ̂)2

(b̂1 − b̂2)2(1− τ̂)τ̂

without changing the limit law. This can be used to compute confidence intervals for τ̂ .
Figure 6.1 shows the empirical and the asymptotic distribution of τ̂ for different sample

sizes n. In the case n = 100 it is noticeable that the empirical distribution function is not
smooth. This is due to the fact that the derivative of integral kernel is discontinuous at
zero. As a consequence the speed of convergence of the asymptotic approximation is rather
slow. For n = 100 the approximation is not very good, for n = 1000 it is quite reasonable
and for n = 10000 the fit seems almost perfect.

The fact that the asymptotic law gives a poor approximation for small sample sizes was
already noted by Hinkley (1969), who derived a finite sample size approximation for the
case k = 1.

The quality of approximation by the asymptotic law is reflected in the empirical coverage
of the confidence bands for τ̂ as displayed in Figure 6.2. For n = 100 the confidence bands
are very anti-conservative. As n grows, the empirical coverage approaches the nominal
coverage, and for n = 1000 the confidence bands are only slightly anti-conservative. For
n = 10000 the nominal coverage is nearly obtained.

Finally, Figure 6.3 and 6.4 each show two exemplary simulated data sets for n = 100
and n = 1000, respectively. Note that Theorem 6.1 implies that for θ̂ = (b̂0, b̂1, τ̂ , b̂2)t and
θ the corresponding vector of parameters of f , we have that the quadratic form

σ−2(θ̂ − θ)tV (θ̂ − θ)

is distributed according to a χ2-distribution with four degrees of freedom. This still holds
true if σ−2 and V are replaced by consistent estimates σ̂2 and V̂ , respectively. Hence, we
obtain a (1− α)-confidence ellipsoid for θ in R4 by

(σ̂)−2(θ̂ − θ)t(V̂ )(θ̂ − θ) ≤ χ2
4(1− α) , (6.4)
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n = 102 n = 103 n = 104

0.42 0.50 0.58

0
1

0.48 0.50 0.52
0

1
0.492 0.500 0.508

0
1

Figure 6.1.: Asymptotic and finite sample size distribution of the jump location in two-
phase regression for different sample sizes n. 105 simulation runs with data
generated according to Test Bed 6.3 were performed. The finite sample size
distribution is given by the red line and the asymptotic distribution by the
black line.

where σ̂2 is the estimate given above, χ2
4(1 − α) denotes the (1 − α)-quantile of the χ2-

distribution with four degrees of freedom and V̂ is obtained by inserting the least squares
estimate θ̂ in the entries of V as given by Lemma 6.2. By projection of this confidence el-
lipsoid to the two dimensional subspaces containing (τ, b1) and (τ, b2) a uniform confidence
band for the function f can be computed. Given τ the maxima and minima of b1 and b2
must be computed under the constraints imposed by (6.4). The corresponding confidence
ellipses are shown in the lower rows of Figure 6.3 and 6.4.

The confidence set for θ clearly induces a confidence set for Kf . However, the boundary
of the confidence ellipsoid for θ does not necessarily map to the boundary of the confidence
band for Kf . For each x the maximum and minimum of

b0 + b1 K1[0,τ)(x) + b2 K1[τ,1)(x)

has to be computed under the constraints imposed by (6.4). As the analytics are quite
messy, this was done numerically. The results are given by the dashed lines in the first
rows of Figure 6.3 and 6.4. Note that if the true parameter θ is not contained in the
respective confidence band, this does not imply that Kf is not contained in the respective
confidence band. This is shown in the right column of Figure 6.3.

6.2. Convolution with Laplace

In this section we consider the quality of the normal approximation in Theorem 4.3. Let
K be convolution with the Laplace kernel ΦL,h(x) = 1/(2h) exp(−|x|/h) and f be a step
function with one jump. We first give an explicit formula for the matrix V defined by
Theorem 4.3. For simplicity, we consider only the uniform design case.
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n = 102 n = 103 n = 104
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Figure 6.2.: Empirical coverage probability for different sample sizes n of confidence bands
for the estimated jump location in two-phase regression (red lines). 105 sim-
ulation runs with data generated according to Test Bed 6.3 were performed.
The x-axis shows the nominal and the y-axis the empirical coverage.

Lemma 6.4. Assume that the design density h given by Assumption C satisfies h(x) =
1[0,1](x). If V is the matrix given by Theorem 4.3 for the case where Kf = ΦL,h ∗ f and
k = 1, then the entries of the symmetric matrix V are given by

V1,1 = h
(
e
−τ
h − 1

8
(
e
−2(1−τ)

h + e
−2τ

h
)
− 3

4

)
+ τ ,

V1,2 =
(b1 − b2)

8

(
e
−2τ

h − e
−2(1−τ)

h + 4
(
1− e

−τ
h

))
,

V1,3 =
h

8

(
6 + e

−2τ
h + e

−2(1−τ)
h − 4

(
e
−τ
h + e

−(1−τ)
h

))
,

V2,2 =
(b1 − b2)2

8h

(
2− e

−2τ
h − e

−2(1−τ)
h

)
V2,3 =

(b1 − b2)
8

(
e
−2(1−τ)

h − e
−2τ

h + 4
(
1− e

−(1−τ)
h

))
V3,3 = h

(
e
−(1−τ)

h − 1
8
(
e
−2(1−τ)

h + e
−2τ

h
)
− 3

4

)
+ (1− τ) .

Proof. For a < b compute that

∆K(x, a, b)

=
1
2

∫ (y−a)/h

(y−b)/h
e−|x|dx =

1
2

(
(e(y−a)/h − e(y−b)/h)1(−∞,a](y) +

(2− e−(y−a)/h − e(y−b)/h)1(a,b)(y) + l(e(b−y)/h − e(a−y)/h)1[τi,∞)(y)
)
.

This leads to

V1,1 =
∫ 1

0
ν2
1(x)dx =

∫ 1

0
∆K(x,−∞, τ)2dx
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Figure 6.3.: Simulated data examples and confidence bands for the two phase regression
with n = 100 observations (Test Bed 6.3). The first row displays the obser-
vations and the reconstruction in the image space, and the second row shows
the estimate for the signal f . The black line represents the true function and
the thick red line the estimate. The thin red lines show the confidence bands
for the function and the blue dots the observations. The blue ellipses in the
second row show the confidence sets for (τ, b1) and (τ, b2), respectively.

=
1
4

∫ τ

0
(2− e−(τ−x)/h)2dx+

1
4

∫ 1

τ
e−2(x−τ)/hdx

=
∫ τ

0

(
1− e−(τ−x)/h +

1
4
e−2(τ−x)/h

)
dx+

h(1− e−2(1−τ)/h)
8

= h
(
e
−τ
h − 1

8
(
e
−2(1−τ)

h + e
−2τ

h
)
− 3

4

)
+ τ .

Also,

V2,2 =
∫ 1

0
ΦL,h(x− τ)2dx

=
1

4h2

∫ τ

0
exp(2(x− τ)/h)dx+

1
4h2

∫ 1

τ
exp(−2(x− τ)/h)dx
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Figure 6.4.: Simulated data examples and confidence bands for two phase regression with
n = 1000 observations (Test Bed 6.3). See description of Figure 6.3, page 50.

=
1
8h

(
1− exp(−2τ/h)

)
+

1
8h

(
1− exp(−2(1− τ)/h)

)
The calculations for the other entries of V are similar and likewise straightforward. There-
fore they are omitted.

Now turn to the inverse of V . We have

det(V ) = V1,1V2,2V3,3 + 2V1,2V1,3V2,3 − V 2
2,3V1,1 − V 2

1,3V2,2 − V 2
1,2V3,3 .

Furthermore, V −1 is given by

1
det(V )

 −V2,3
2 + V2,2 V3,3 V1,3 V2,3 − V1,2 V3,3 −V1,3 V2,2 + V1,2 V2,3

V1,3 V2,3 − V1,2 V3,3 −V1,3
2 + V1,1 V3,3 V1,2 V1,3 − V1,1 V2,3

−V1,3 V2,2 + V1,2 V2,3 V1,2 V1,3 − V1,1 V2,3 −V1,2
2 + V1,1 V2,2

 , (6.5)

where the Vi,j are given by Lemma 6.4.
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Some simulations

As in Section 6.1, we again perform a small simulation study to evaluate the speed of
convergence and quality of the approximation by the asymptotic law given in Theorem 4.3.

Test Bed 6.5. Assume the observations Y are generated by

Yi = K(−3 · 1[0,0.5) + 3 · 1[0.5,1))(i/n) + σ2 εi , i = 1, . . . , n ,

where Kf = ΦL,h ∗ f and εi ∼ N(0, 1) for i = 1, . . . , n.

In this setting 105 simulation runs are performed. The empirical and asymptotic distri-
bution of τ̂ for different sample sizes n is shown in Figure 6.5.

n = 20 n = 50 n = 100

0.2 0.5 0.8

0
1

0.3 0.5 0.7

0
1

0.4 0.5 0.6

0
1

Figure 6.5.: Asymptotic and finite sample size distribution of the estimate of the jump
location for Test Bed 6.5 with σ = 0.2 and h = 1 for different sample sizes
n and 105 simulations. The finite sample size distribution is given by the red
line and the asymptotic distribution by the black line.

The approximation by the asymptotic law already is reasonable for a small sample size of
n = 20. For n = 100 the fit is almost perfect. When compared to the results of Section 6.1
the quality of approximation is much better, which is due to fact that the integral kernel
ΦL,h(x− y) is continuous.

As in Section 6.1, the asymptotic coverage of the confidence band for τ̂ is computed. To
this end we have to estimate the variance of τ̂ . This is again done by replacing (b1, τ, b2)
in (6.5) with their respective least squares estimates. This gives an estimate V̂ −1 of V −1.
An estimate of Var(τ̂) is then given by σ̂2(V̂ −1)2,2, where σ̂2 is the mean of the squared
residuals of the fitted model.

Figure 6.6 shows that for n = 20 the confidence bands for τ̂ are slightly conservative if
the nominal coverage is larger than 0.8. For n = 50 and n = 100 the empirical and the
nominal coverage probabilities nearly coincide. Consequently, this procedure gives useful
results even if the number of observations is small.
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n = 20 n = 50 n = 100
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Figure 6.6.: Empirical coverage probability of confidence bands for the estimated jump
location for Test Bed 6.5 with σ = 0.2 and h = 1 for different sample sizes n
and 105 simulations (red lines). The x-axis shows the nominal and the y-axis
the empirical coverage probability.

Estimation of the jump location for large and small bandwidths h

The result |τ̂−τ | = OP (n−1/2) does not reflect the fact that the variance of τ̂ depends on the
ill-posedness of the problem. One possibility of measuring the difficulty of reconstructing
the jump location τ is an analysis of the variance for small and large bandwidths h. If
h is very small, the convolution operator is close to the identity and one would suspect
the variance of τ̂ to be small. On the other hand, if h is very large, the step function is
heavily blurred and the estimation of τ is more difficult. Note that, we do not analyze the
simultaneous limit of h→ 0 (or h→∞) and n→∞, but only the limit of the asymptotic
variance.
First, consider the case where the bandwidth is small. Observe that

V1,1 = τ − (3/4)h+O(h2) ,
V1,2 = (b1 − b2)/2 +O(h) ,
V1,3 = (3/4)h+O(h2) ,
hV2,2 = (b1 − b2)2/4 +O(h) ,
V2,3 = (b1 − b2)/2 +O(h) ,
V3,3 = (1− τ)− (3/4)h+O(h2) ,

as h→ 0. This gives that

h det(V ) =
1
4
(b1 − b2)2(1− τ)τ +O(h) ,

and – after some basic calculations – we arrive at

V −1 =

 τ−1 0 0
0 0 0
0 0 (1− τ)−1

 +O(h) as h→ 0 .
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This means that for small h the variance of τ̂ is negligible when compared to the variances
of b̂1 and b̂2. A comparison with the results of Chapter 3 yields, that the limit of V −1 for
h→ 0 corresponds to the variance in the direct case.

n = 20 n = 50 n = 100
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Figure 6.7.: Simulated data examples and confidence bands for Test Bed 6.5 with band-
width h = 0.1 and σ = 1. See description of Figure 6.3, page 50.

Now consider the case where the bandwidth is large. Extensive calculations give for
h→∞ that

det(V ) =
h−6

144
(b1 − b2)2(1− τ)3τ3 + o(h−6) ,

as well as

det(V )V −1 =
3(1+3 τ)

τ3 h−4 + o(h−4) −3(1+2τ)
b(1−τ)τ3 h

−3 + o(h−3) 9
(1−τ)τ h

−4 + o(h−4)

−3(1+2τ)
b(1−τ)τ3 h

−3 + o(h−3) 3
b2(1−τ)3τ3h

−2 + o(h−2) −3(3−2τ)
b(1−τ)3τ

h−3 + o(h−3)

9
(1−τ)τ h

−4 + o(h−4) −3(3−2τ)
b(1−τ)3τ

h−3 + o(h−3) 3(4−3τ)
(1−τ)3

h−4 + o(h−4)

 ,

where b := (b1 − b2). Consequently, the entries of V −1 behave like h2 h3 h2

h3 h4 h3

h2 h3 h2

 as h→∞ .
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This means that for large h the variance of τ̂ dominates the variances of b̂1 and b̂2.
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Figure 6.8.: Simulated data examples and confidence bands for Test Bed 6.5 with band-
width h = 1 and σ = 0.2. See description of Figure 6.3, page 50.

This is also reflected in Figure 6.7 and Figure 6.8, displaying simulated data examples
from Test Bed 6.5 for h = 0.1 and h = 1, respectively. A comparison of the two figures
yields that the variance of τ̂ is much larger for h = 1 (when compared to the variances of b̂1
and b̂2) than for h = 0.1. This is shown by the fact that the confidence ellipses in the lower
row of Figure 6.8 spread more in direction of the x-axis (which corresponds to τ̂) than
in direction of the y-axis (which corresponds to b̂1 and b̂2). In comparison the confidence
ellipses in Figure 6.7 extend more in direction of the y-axis than in direction of the x-axis.

The computation of the confidence bands for Figure 6.7 and Figure 6.8 is similar to the
case of two-phase regression as described in Section 6.1. The only difference is that the
corresponding quadratic form asymptotically has a χ2-distribution with three degrees of
freedom (compared to four) as we do not have to estimate an additional intercept.



56 6. Asymptotic and finite sample distribution for two examples



Chapter 7

Proof of main result

This chapter provides the proofs of Theorem 4.3 and Theorem 4.4. The proof of Theo-
rem 4.3 is divided into four parts. After introducing some technical tools in Section 7.1,
we start by giving the consistency for the restricted estimate in Section 7.2. This is used in
Section 7.3 to show the asymptotic normality of the parameter estimates. In Section 7.4,
it is shown that (given some conditions on the smoothing parameter λn) the restricted
estimate f̂n and the penalized estimate f̂λn asymptotically coincide with probability one.
Finally, Section 7.5 gives the proof of Theorem 4.4.

To be more precise, the main steps of the proof can be summarized as follows:

1. Compute the L2-entropy of the space Tk,R(a, b) for −∞ < a < b <∞.

2. Use that ‖Kf‖n can be bounded by the L2([a, b]) norm of Kf for suitable chosen
−∞ < a < b < ∞ to give an upper bound for the empirical entropy of the space
{Kf : f ∈ Tk,R(τlow, τup)}.

3. Use the entropy bound and the fact that K−1 is continuous on the set of functions
{Kf : f ∈ Tk,R(τlow, τup)} to derive consistency of Kf̂n and f̂n.

4. Give a local stochastic expansion of the minimized process and use this to derive
asymptotic normality.

5. Derive an exponential inequality for

sup
g∈T∞,R

|〈Kg, ε〉|n
η(‖Kg‖n , #J (g) + 1)

,

where η(x, y) = xy(1 + log(y/x)). Use this exponential inequality to show that the
penalized least squares estimate asymptotically coincides with the restricted least
squares estimate.

6. Compute the Kullback-Leibler distance of the joint distributions of the observations
for two different jump locations and normal error. Use this to derive a lower bound
for estimating the jump location.

In Step 4 technical difficulties arise, because the corresponding functions are not differen-
tiable if the integral kernel of the operator K is not continuous. Step 5 is rather technical,
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too. The reason for this is that we cannot apply standard techniques from empirical process
theory because the used penalty is not a pseudo-norm on the space T∞,R(τlow, τup).

7.1. Technical tools

This section contains technical results necessary for the proofs to come. Various properties
of the spaces of step function are given.

Properties of the operator K restricted to the space of step functions

In order to gain some insight into the model, it is useful to have a closer look at the
implications of Assumption B for the mapping f 7→ Kf restricted to the space of step
functions. The following lemma collects some properties of this mapping.

Lemma 7.1. Given Assumption B the following holds true.

(i) If τlow < 0 and τup > 1, for all ε > 0 with 0 < ε < max(|τlow|, |τup − 1|) there exists
a constant 0 < C0 <∞ such that for all f ∈ T∞(τlow, τup)

‖Kf‖2
n ≤ C0‖f |[−ε,1+ε]‖2

2 .

Moreover, for all f ∈ T∞(0, 1) there exists a constant C0 such that

‖Kf‖2
n ≤ C0‖f |[0,1]‖2

2 .

(ii) K : Tk(τlow, τup) → L2([0, 1]) is one-to-one.

(iii) For all ε > 0 with 0 < ε < max(|τlow|, |τup − 1|), the map

K : ( Tk(τlow, τup), ‖ · |[−ε,1+ε]‖2 ) → L2([0, 1])

is continuous. Moreover, the map K : ( Tk(0, 1), ‖·|[0,1]‖2 ) → L2([0, 1]) is continuous.

(iv) The function (Kf) is Lipschitz continuous on [0, 1] for all f ∈ T∞(τlow, τup).

Proof. By Assumption B we have that supx,y K(x, y) = C <∞. This implies that

1
n

n∑
i=1

(Kf)2(xi) =
1
n

n∑
i=1

( ∫
K(xi, y)f(y)dy

)2
≤

∫
f(y)2

1
n

n∑
i=1

K(xi, y)2dy

≤ C2

∫ 1

0
f(y)2dy +

∫
[τlow,0]∪[1,τup]

f(y)2
1
n

n∑
i=1

K(xi, y)2dy ,

for f ∈ T∞(τlow, τup) For τlow = 0 and τup = 1 the second term equals zero, thus this
proves the second part of (i). If τlow < 0 and τup > 1, note that f is constant on [τlow, 0)
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and [1, τup). For CK = supx∈[0,1]

∫ τup

τlow
|K(x, y)|dy, this gives

1
n

n∑
i=1

(Kf)2(xi) ≤ C2

∫ 1

0
f(y)2dy + C2

K(f |[τlow,0))
2 + C2

K(f |[1,τup))
2

= C2

∫ 1

0
f(y)2dy +

C2
K

ε

( ∫ 0

−ε
f(y)2dy +

∫ 1+ε

1
f(y)2dy

)
≤ C0

∫ 1+ε

−ε
f(y)2dy ,

for some C0 depending on K and ε only. This proves (i).

Similarly we can show ‖Kf‖2 ≤ C‖f |[−ε,1+ε]‖2 for f ∈ Tk(τlow, τup) with τlow < 0 and
τup > 1, and ‖Kf‖2 ≤ C‖f |[0,1]‖2 for f ∈ Tk(0, 1) which gives continuity and hence (iii).
As argued in section 4.1, (ii) follows from the independency of ∆K(·, τi, τi+1).

To prove (iv), note that if K is of type (B2) we have

|(K1[a,b))(x)− (K1[a,b))(x+ δ)| =
∣∣∣ ∫ x−a

x−b
Φ(y)dy −

∫ x+δ−a

x+δ−b
Φ(y)dy

∣∣∣
≤ 2|δ|‖Φ|[−τup,1−τlow]‖∞ ,

for x ∈ [0, 1], x + δ ∈ [0, 1] and a, b ∈ [τlow, τup]. For f ∈ T∞(τlow, τup) with #J (g) = k,
this gives

|(Kf)(x)− (Kf)(x+ δ)| ≤ 2|δ|k‖f‖∞‖Φ|[τlow−1,τup]‖∞ .

This proves Lipschitz continuity of Kf on [0, 1]. If K is of type (B1) this is clear by
continuity of K(x, y).

Note that the reason, why we look at the interval [−ε, 1+ε] instead of [0, 1] at (i) and (iii),
is that the object Tk,R(τlow, τup) is not a linear space. In particular, there is no equivalence of
norms and although ‖Kf‖2 ≤ C2

K‖f |[0,1]‖∞, there is no C such that ‖Kf‖2 ≤ C‖f |[0,1]‖2.
For Tk(−∞,∞) this can be seen by setting fε(x) = 1(−∞,ε)(x). Clearly,

lim
ε→0

‖fε|[0,1]‖2 = 0 and lim
ε→0

‖Kf‖2 =
∫ 1

0
(
∫ 0

−∞
K(x, y)dy)2dx ,

which is in general greater than zero.

Implications of the design assumption

As mentioned before, inference on f− f̂n needs an assumption on the design points. This is
necessary, because we need results on the convergence of Kf −Kf̂n in the L2-norm instead
of the empirical norm to infer on the preimage. The following lemma provides a link of
these two norms for design points satisfying Assumption C.
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Lemma 7.2. Suppose Assumption C is satisfied. If f is piecewise Lipschitz continuous on
[0, 1], i.e. there exist a partition I1, . . . , Ik, k < ∞, with

⋃k
i=1 Ik = 1 and Ij ∩ Ir = ∅ for

j 6= r such that f |Ij is Lipschitz for all j = 1, . . . , k, we have that∫ 1

0
f(x)h(x)dx =

1
n

n∑
i=1

f(xi) +OP (n−1/2) .

Proof. Set H(x) =
∫ x
0 h(x)dx, where h is as in Assumption C. Note that H is strictly

monotone and the inverse H−1 is well defined on [0, 1]. For 0 ≤ a ≤ b ≤ 1 we have that

b− a = H(H−1(b))−H(H−1(a)) =
∫ H−1(b)

H−1(a)
h(x)dx ≥ cl(H−1(b)−H−1(a)) .

Hence H−1 is Lipschitz and so is (f ◦H−1)|H−1(Ij) for all j = 1, . . . , k. By Assumption C
we have H−1(i/n− δi) = x(i) with νn := maxi=1,...,n |δi| = OP (n−1/2). Assume

H−1
([ i− 1

n
,
i

n

])
⊂ Ij and H−1

(
I(i/n , i/n− δi)

)
⊂ Ir (7.1)

for some j, r ∈ {1, . . . , k}. Here I(i/n , i/n− δi) is the interval spanned by i/n, i/n− δi as
defined in Section 2.1. Consequently,

n

∫ i/n

(i−1)/n
f(H−1(x))dx

= f(x(i)) + n

∫ i/n

(i−1)/n
f(H−1(x))− f(H−1(i/n))dx

+n
∫ i/n

(i−1)/n
f(H−1(i/n))− f(H−1(i/n− δi))dx

= f(x(i)) +O(n−1) +O(νn)

holds by Lipschitz continuity of f◦H−1 on [(i−1)/n, i/n] and I(i/n , i/n−δi). For general
i, we get

n

∫ i/n

(i−1)/n
f(H−1(x))dx = f(x(i)) + n

∫ i/n

(i−1)/n
f(H−1(x))− f(H−1(i/n+ δi))dx

≥ f(x(i))− 2‖f |[0,1]‖∞ .

Since f is piecewise Lipschitz continuous, f is bounded in supremum norm on [0, 1]. Denote
the points of discontinuity of f by J (f) = {ϑ1, . . . , ϑk}. The number of i, which does not
satisfy (7.1) is bounded from above by

k + #{i : ϑj ∈ H−1([i/n− νn, i/n+ νn]) for some j = 1, . . . , k}
= k + #{i : H−1(i/n− νn) ≤ ϑj ≤ H−1(i/n+ νn) for some j = 1, . . . , k}
= k + #{i : H(ϑj)− νn ≤ i/n ≤ H(ϑj) + νn for some j = 1, . . . , k}
= k +O(nνn) .
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By application of the transformation formula and k, ‖f |[0,1]‖∞ <∞ we get

1
n

n∑
i=1

f(xi) =
∫ 1

0
f(H−1(x))dx+O(n−1) +O((k + nνn)n−1‖f |[0,1]‖∞) +O(νn)

=
∫ 1

0
f(x)h(x)dx+O(n−1) +OP (n−1/2) ,

which proves the claim.

The facts that h is bounded from below and that Kf is Lipschitz on [0, 1] (compare
Lemma 7.1, (iv)), together with Lemma 7.2 directly yield the following corollary.

Corollary 7.3. Suppose that the Assumptions B and C are met. If f ∈ T∞(τlow, τup), then

‖(Kf)|[0,1]‖2
2 = O(‖Kf‖2

n) + oP (1) .

Entropy results

In order to apply the uniform deviation inequalities from empirical process theory, it is
necessary to calculate the entropy of the space of interest (compare Appendix A.1 for the
uniform deviation inequalities and Section 2.1 for notation concerning entropy numbers
and empirical processes). As shown below the entropy H(δ,G) of the space G = Tk,R(a, b)
is polynomial in log(δ−1). This is typical for small parametric classes. In nonparametric
settings the entropy is usually polynomial in δ−1 (cf. Devroye and Lugosi, 2001, Chapter
7).

Note that the relevant quantity is the entropy of the space G = {Kf : f ∈ Tk,R(τlow, τup)}
rather than the entropy of Tk,R(a, b). Since the assumptions on K are rather general, it is
convenient to first calculate the entropy of Tk,R(a, b) and then use Lemma 7.1 to infer on
the space G.

Lemma 7.4. For −∞ < a < b <∞ there exists a constant C > 0 independent of δ,k and
n, such that

H(δ, Tk,R(a, b)) ≤ C(k + 1)
(
1 + log

(R(k + 1)
δ

))
.

Proof. Define the sets

∆K(δ) =
{
−R+mc2δ : m = 0, . . . , d2R(c2δ)−1e

}
and

Γ(δ) =
{
a+mc1δ

2 : m = 1, . . . , b(b− a)(c1δ2)−1c
}
,

where c1, c2 will be defined later. Define the function class H(δ) as

H(δ) =
{
g : g(x) =

k+1∑
i=1

bi1[γi−1,γi)(x) : bi ∈ ∆K(δ), i = 1, . . . , k + 1,

γ0 = a, γk+1 = b, γi ∈ Γ(δ), γi < γi+1, i = 1, . . . , k
}
.
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Now for g0 ∈ Tk,R(a, b) we can choose g ∈ H(δ) such that d(J (g),J (g0)) ≤ c1δ
2/2, and

that for any x ∈ [a, b] with d(x,J (g)) > c1δ
2/2 we have (g0(x)− g(x))2 ≤ c22δ

2/4. Since g0
has k jumps between a and b we get

‖g0 − g‖2
2 ≤ (b− a)c22

δ2

4
+ k(2R)2c1

δ2

2
.

Choosing c1 = (4kR2)−1 and c2 = (b − a)−1/2 gives ‖g0 − g‖2 ≤ δ. Hence H(δ) is an
δ-covering of Tk,R(a, b). Since

#H(δ) =
⌈

2R
√
b− a

δ

⌉k+1⌈(b− a)4kR2

δ2

⌉k

= O

((R(k + 1)
δ

)3k+1
)

the claim is proved.

Lemma 7.4 directly gives that Tk,R(a, b) is totally bounded for −∞ < a < b < ∞, i.e.
for each ε > 0 there exists a finite subset {g1, . . . , gn} ⊂ Tk,R(a, b) such that Tk,R(a, b) ⊂⋃n

i=1{f : ‖gi− f‖ < ε}. Note that Tk,R(a, b) also contains functions with less than k jumps
and is hence closed. Consequently, it is compact.

Corollary 7.5. The space (Tk,R(a, b), ‖ · ‖2) is compact for all a, b satisfying −∞ < a <
b <∞.

As previously announced, we will now use the assumptions on the operator K or, to
be more precise, Lemma 7.1, to deduce bounds on the entropy of the space {Kg : g ∈
Tk,R(τlow, τup)}.

Corollary 7.6. Assume K satisfies Assumption B. For

Gk,R(K) = {Kg : g ∈ Tk,R(τlow, τup)}

there exists a constant C2 independent of n,k and R such that

H(δ,Gk,R(K), Qn) ≤ C2(k + 1)
(
1 + log

(R(k + 1)
δ

))
.

Proof. By Lemma 7.1, (i) there exist −∞ < a < b <∞ and 0 < C0 <∞ such that

‖Kf −Kg‖n ≤ C0‖(f − g)|[a,b]‖2

for f, g ∈ Tk(τlow, τup). Assume H(δ) is a δ-covering of Tk,R(a, b) for every δ > 0. Then
H(δ/C0) is a δ-covering of GK(R). Consequently, the claim follows from Lemma 7.4.

Again, this implies that the space Gk,R(K) = {Kg : g ∈ Tk,R(τlow, τup)} equipped with the
empirical norm ‖·‖n is totally bounded. By definition Tk,R(τlow, τup) contains step functions
with k and less jumps. Clearly, a sequence of step functions gn with #J (gn) ≤ k for all
n cannot converge to a limit g with #J (g) > k. Consequently, {Kg : g ∈ Tk,R(τlow, τup)}
is closed and hence compact. This means that the functional ‖ · −Y ‖n has at least one
minimizer in this space.

Corollary 7.7. The functional ‖·−Y ‖n has at least one minimizer in the space Gk,R(K) =
{Kg : g ∈ Tk,R(τlow, τup)} .
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7.2. Consistency

In this section we will prove consistency of f̂n in L2 norm and consistency of the set of
jump estimates J (f̂n) in the Hausdorff metric.

To deduce consistency of the jump estimates from the L2 consistency of the function
estimator, a result on the dependency of d(J (f),J (g)) on the L2 distance of f and g is
needed. This is given by the following lemma.

Lemma 7.8. Assume f, g ∈ T∞(τlow, τup). Then

d(J (f),J (g)) ≤ ‖(f − g)|[0,1]‖2
2

4
h(f)2

.

Proof. Remember that h(f) denotes the minimal jump height of f . Let τ ∈ J (f) and
γ ∈ J (g), such that |τ − γ| = d(J (f),J (g)). Then

‖(f − g)|[0,1]‖2
2 ≥ (τ − γ)

(h(f)
2

)2
,

which proves the assertion.

In order to show consistency of f̂n, we start by giving the consistency of Kf̂n. To this
end, we use the entropy result of Corollary 7.6 and the inequality given by Lemma A.3.

Lemma 7.9. Suppose the Assumptions A and B are met. Then

‖Kf −Kf̂n‖n = oP (1) . (7.2)

If additionally Assumption C is met, we have

‖(Kf −Kf̂n)|[0,1]‖2 = oP (1) . (7.3)

Proof. By (4.2)
‖Kf̂n − Y ‖2

n ≤ ‖Kf − Y ‖2
n + o(n−1).

Note that f − f̂n ∈ T2k,2R(τlow, τup). Use Y = Kf + ε to obtain

‖Kf̂n −Kf‖n ≤ 2〈K(f̂n − f), εn〉n + o(n−1)
≤ 2 sup

g∈G2k,2R(K)

∣∣〈g, εn〉n∣∣ + o(n−1) ,

where Gk,R(K) = {Kg : g ∈ Tk,R(τlow, τup)}. By Corollary 7.6

n−1H(δ,G2k,2R(K), Qn) → 0 for all δ > 0 .

Hence we can apply Lemma A.3, which gives supg∈G2k,2R(K) |〈g, εn〉n| = oP (1).

This proves (7.2) and application of Corollary 7.3 yields (7.3).
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The L2 consistency of Kf̂n and the compactness of the spaces of step functions (see
Corollary 7.5) allows us to deduce L2 consistency of f̂n on each bounded interval I contained
in [τlow, τup]. For simplicity we give the result only for I = [0, 1].

Lemma 7.10. Suppose the Assumptions A, B and C are met. Then

‖(f − f̂n)|[0,1]‖2 = oP (1) . (7.4)

Proof. Note that K is a linear operator, f − f̂ ∈ T2k,2R(τlow, τup) and that

{f |[−ε,1+ε] : f ∈ T2k,2R(τlow, τup)} = T2k,2R(−ε, 1 + ε) ,

for any ε ≥ 0. By Corollary 7.5 the space (T2k,2R(−ε, 1+ε), ‖·‖2) is compact. Lemma 7.1, (ii)
and (iii) yield that there exists an ε ≥ 0 such that the map

K : ( T2k,2R(−ε, 1 + ε), ‖ · ‖2 ) → L2([0, 1])

is continuous and one-to-one.
The inverse of a continuous injective mapping f restricted to the image f(Ω) is continu-

ous if Ω is compact (see e.g. Hohage, 2002, Theorem 2.5). This gives continuity of K−1 on
f(Ω) = {Kf : f ∈ T2k,2R(−ε, 1+ ε)}. Hence, for all f ∈ T2k,2R(−ε, 1+ ε), ‖Kf‖L2([0,1]) → 0
implies ‖f‖L2([−ε,1+ε]) = ‖K−1 Kf‖L2([−ε,1+ε]) → 0. We arrive at

‖(f − f̂)|[0,1]‖2 ≤ ‖(f − f̂)|[−ε,1+ε]‖2 → 0

for ‖(Kf −Kf̂)|[0,1]‖2 → 0. Lemma 7.10 gives ‖(Kf −Kf̂)|[0,1]‖2 = oP (1). This proves the
claim.

This allows us to infer the consistency of the parameter estimates.

Corollary 7.11. Suppose the prerequisites of Lemma 7.10 are met. In this case

d(J (f),J (f̂n)) = oP (1) ,

as well as #J (f) = #J (f̂n). Moreover, if f is given by (2.1) and f̂n by (4.3), we have for
the estimates b̂i of the levels bi that

max
i=1,...,k+1

|b̂i − bi| = op(1) .

Proof. By Lemma 7.8,

d(J (f),J (f̂n)) = O(‖(f − f̂n)|[0,1]‖2
2) .

Hence, Lemma 7.10 implies consistency of the jump estimates J (f̂n). This, together with
‖(f − f̂n)|[0,1]‖2 = oP (1), directly gives consistency of the parameter estimates b̂i.
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7.3. Asymptotic normality

A general theorem

To show asymptotic normality for M-Estimators, it is common to assume existence of the
derivative of the function which is minimized. However, in the case where the integral
kernel is allowed to have discontinuities, a less restrictive result is needed.

As discussed in Chapter 5.3 of van der Vaart (1998) it is sufficient to assume existence
of a second order Taylor-type expansion. Following this idea, the next theorem gives the
asymptotic normality of the minimizer of a process Zn(θ), provided it allows for a certain
expansion. It is similar to Theorem 5.23 of van der Vaart (1998), but also covers the case
of non i.i.d. random variables, which is required for the fixed design.

Theorem 7.12. Assume Θ ⊂ Rd is open and θ0 ∈ Θ. Let (Zn(θ))θ∈Θ be a stochastic
process. Assume there exists a sequence of random variables (Wn)n∈N ⊂ Rd and a positive
definite matrix V ∈ Rd×d such that

Zn(θ0 + ∆) = Zn(θ0)− 2n−1/2W t
n∆ + ∆tV∆ +Rn(∆) (7.5)

with
sup
‖∆‖≤δ

Rn(∆)
‖∆‖2 + n−1

p−→ 0 as n→∞ , δ → 0 , (7.6)

as well as
Wn

L−→ N(0,Γ) .

If θ̂n is a consistent estimator of θ0 and θ̂n is an approximate minimizer of Zn, i.e.

‖θ̂n − θ0‖ = oP (1) and Zn(θ̂n) ≤ inf
θ∈Θ

(Zn(θ)) + oP (n−1) ,

then √
n(θ̂n − θ0) = V −1Wn + oP (1) .

Proof. First, we show the
√
n consistency of θ̂n. Set ∆n = (θ̂n− θ0). Since θ̂n is an approx-

imate minimizer of Zn,

Zn(θ0) + oP (n−1) ≥ Zn(θ̂n) = Zn(θ0 + (θ̂n − θ0))
= Zn(θ0)− 2n−1/2W t

n∆n + ∆t
nV∆n +Rn(∆n) .

Denote by λV the smallest eigenvalue of V . The expansion above implies

oP (n−1) ≥ −‖∆n‖√
n

2W t
n∆n

‖∆n‖
+ λV ‖∆n‖2 +Rn(∆n) .

Observe that the asymptotic normality of Wn implies ‖∆n‖−1W t
n∆n = OP (1). Now divide

by ‖∆n‖2 + n−1 and use condition (7.6) and the consistency of θ̂n. This gives

oP

(
(n‖∆n‖2 + 1)−1

)
≥ OP (1)√

n‖∆n‖+ (
√
n‖∆n‖)−1

+
λV

1 + (
√
n‖∆n‖)−2

+ oP (1) .
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Now assume
√
n‖∆n‖

p−→∞. This leads to

oP (1) ≥ oP (1) + λV ,

which is a contradiction since λV > 0. This shows
√
n‖∆n‖ = OP (1) .

Now we derive the convergence of
√
n∆n to V −1Wn. Observe that V −1Wn = OP (1).

By (7.6)

nRn(n−1/2V −1Wn) = oP (1) as well as nRn(∆n) = oP (1) .

Together with (7.5) and the minimizing property of θ̂n this leads to

oP (1)
≥ n

(
Zn(θ0 + ∆n)− Zn(θ0 + n−1/2V −1Wn)

)
= 2(V −1Wn −

√
n∆n)tWn + (

√
n∆n)tV (

√
n∆n)− (V −1Wn)tV (V −1Wn) + oP (1)

= −2(
√
n∆n)tV (V −1Wn) + (

√
n∆n)tV (

√
n∆n) + (V −1Wn)tV (V −1Wn) + oP (1)

= (
√
n∆n − V −1Wn)tV (

√
n∆n − V −1Wn) + oP (1) .

Since V is positive definite, it follows that

‖
√
n∆n − V −1Wn‖2 = oP (1) ,

which proves the claim.

A second order expansion for the minimized process

To derive an expansion of type (7.5) for the problem in (4.2), let us first introduce some
notation. For b, b̃ ∈ Rk+1 and τ, τ̃ ∈ Γk(τlow, τup) set

g(x, b, τ) =
k+1∑
j=1

bj K1[τj−1,τj)(x) .

and

Zn(b̃, τ̃) =
1
n

n∑
i=1

(
g(xi, b, τ) + εi − g(xi, b̃, τ̃)

)2
. (7.7)

Assume that f and the estimate f̂n as defined by (4.2) are given by

f(x) =
k+1∑
i=1

bi K1[τi−1,τi)(x) and f̂n(x) =
k+1∑
i=1

b̂i K1[τ̂i−1,τ̂i)(x) ,

respectively. By definition of Zn(b̃, τ̃) it is clear that

Zn(b̂, τ̂) = min
(b̃,τ̃)∈[−R,R]k+1×Γk(τlow,τup)

Zn(b̃, τ̃) + o(n−1) . (7.8)

To obtain an expansion for Zn(b̃, τ̃), first examine the difference g(x, b, τ)− g(x, b̃, τ̃).
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Lemma 7.13. Suppose Assumption B is satisfied and ν(x) is given by (4.5), i.e.

νj(x) =

{
K1[τ(j+1)/2−1,τ(j+1)/2)(x) j odd ,

(bj − bj+1)K(x, τj/2) j even .

Define ∆ by

∆ =
(
b̃1 − b1, τ̃1 − τ1, b̃2 − b2, τ̃2 − τ2, . . . , τ̃k − τk, b̃k+1 − bk+1

)t
. (7.9)

If K is of type (B1) then

k+1∑
j=1

bj K1[τj−1,τj ](x)− b̃j K1[τ̃j−1,τ̃j ](x) = −
2k+1∑
r=1

∆rνr(x) +O(‖∆‖2) ,

and if K is of type (B2), i.e. Kf = Φ ∗ f , then

k+1∑
j=1

bj K1[τj−1,τj ](x)− b̃j K1[τ̃j−1,τ̃j ](x)

= −
2k+1∑
r=1

∆rνr(x) +O(‖∆‖2) +
k∑

i=1

O(‖τ − τ̃‖)1I(x−τi,x−τ̃i)∩J (Φ)6=∅ .

Note that I(x− τi, x− τ̃i) ∩ J (Φ) 6= ∅ means that Φ has a discontinuity in the interval
with endpoints x− τi and x− τ̃i.

Proof of Lemma 7.13. We prove only the more difficult case (B2). By assumption Kf =
Φ ∗ f with #J (Φ) <∞ and ‖Φ‖∞ <∞.

First assume that τ̃j ≥ τj and Φ is continuous on [x−τ̃j , x−τj ], i.e. J (Φ)∩[x−τ̃j , x−τj ] =
∅. Then for all y ∈ [x− τ̃j , x− τj ] we have Φ(x− y)−Φ(x− τj) = O(|y− τj |). This leads to

K1[τj−1,τj)(x)−K1[τj−1,τ̃j)(x) = −
∫ τ̃j

τj

Φ(x− y)dy

= (τj − τ̃j)Φ(x− τj)−
∫ τ̃j

τj

Φ(x− y)− Φ(x− τj)dy

= (τj − τ̃j)Φ(x− τj)−O(1)
∫ τ̃j

τj

|y − τj |dy

= (τj − τ̃j)Φ(x− τj) +O((τj − τ̃j)2) .

If Φ has a discontinuity in [x− τ̃j , x− τj ], then

K1[τj−1,τj)(x)−K1[τj−1,τ̃j)(x) = (τj − τ̃j)Φ(x− τj) +
∫ τ̃j

τj

O(‖Φ‖∞)dy

= (τj − τ̃j)Φ(x− τj) +O(|τj − τ̃j |) .
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The same holds for τ̃j < τj . Note that 1I(x−τj ,x−τ̃j)∩J (Φ)6=∅ is one if and only if Φ has a
discontinuity in [x− τ̃j , x− τj ]. Consequently,

K 1[τj−1,τj)(x)−K1[τj−1,τ̃j)(x) = (τj − τ̃j)Φ(x− τj) +O((τj − τ̃j)2) +
O(|τj − τ̃j |)1I(x−τj ,x−τ̃j)∩J (Φ)6=∅ .

Similarly,

K 1[τj−1,τj)(x)−K1[τ̃j−1,τj)(x) = (τ̃j−1 − τj−1)Φ(x− τj−1) +O((τj−1 − τ̃j−1)2) +
O(|τj−1 − τ̃j−1|)1I(x−τj−1,x−τ̃j−1)∩J (Φ)6=∅ .

Remember τ0 = τ̃0 and τk+1 = τ̃k+1, combine the preceding results and use the notation
Φ(x− a) = K(x, a) to obtain

k+1∑
j=1

(
bj K1[τj−1,τj ](x)− b̃j K1[τ̃j−1,τ̃j ](x)

)

=
k+1∑
j=1

(
(bj − b̃j) K 1[τj−1,τj ](x) + b̃j

(
K1[τj−1,τj ](x)−K1[τ̃j−1,τ̃j ](x)

))

=
k+1∑
j=1

(
(bj − b̃j) K 1[τj−1,τj ](x) + b̃j

(
K1[τj−1,τj ](x)−K1[τj−1,τ̃j ](x)

)
+

b̃j
(
K1[τj−1,τ̃j ](x)−K1[τ̃j−1,τ̃j ](x)

))
=

k+1∑
j=1

(
(bj − b̃j) K 1[τj−1,τj ](x) + b̃j(τj − τ̃j)K(x, τj) +O((τj − τ̃j)2) +

O(|τj − τ̃j |)1I(x−τj ,x−τ̃j)∩J (Φ)6=∅ + b̃j(τ̃j−1 − τj−1)K(x, τj−1) +

O((τj−1 − τ̃j−1)2) +O(|τj−1 − τ̃j−1|)1I(x−τj−1,x−τ̃j−1)∩J (Φ)6=∅

)
.

By b̃j(τj − τ̃j) = bj(τj − τ̃j) +O(‖b− b̃‖ ‖τ − τ̃‖), this gives

k+1∑
j=1

(
bj K1[τj−1,τj ](x)− b̃j K1[τ̃j−1,τ̃j ](x)

)

=
k+1∑
j=1

(bj − b̃j) K 1[τj−1,τj ](x) +
k∑

j=1

(bj − bj+1)(τj − τ̃j)K(x, τj) +O(‖τ − τ̃‖2) +

O(‖b− b̃‖ ‖τ − τ̃‖) +
k∑

j=1

O(‖τ − τ̃‖)1I(x−τi,x−τ̃i)∩J (Φ)6=∅ .

Since O(‖b − b̃‖ ‖τ − τ̃‖) = O(‖∆‖2) as well as O(‖τ − τ̃‖) = O(‖∆‖), this proves the
claim.
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Lemma 7.14. Suppose the Assumptions A, B and C are met. Then the process Zn(b̃, τ̃)
allows an expansion of type (7.5), namely

Zn(b̃, τ̃) = Zn(b, τ) + 2n−1/2W t
n∆ + ∆tV∆ +Rn(∆) ,

where Rn satisfies condition (7.6), ∆ is given by (7.9) and V is the positive definite (2k+
1)× (2k + 1) matrix defined by (4.6), i.e.

Vij =
∫ 1

0
νi(x)νj(x)h(x)dx ,

with ν(x) defined by (4.5). Moreover

Wn
L−→ N(0,E(ε21)V ) .

Proof. We prove only the more difficult case (B2). By Lemma 7.13,

g(x, b, τ)− g(x, b̃, τ̃) = −
2k+1∑
j=1

∆jνj(x) +O(‖∆‖2) +
k∑

i=1

O(‖∆‖)1I(x−τi,x−τ̃i)∩J (Φ)6=∅ .

Expand (7.7) to obtain

Zn(b̃, τ̃) =

2
n

n∑
i=1

εi

(
g(xi, b, τ)− g(xi, b̃, τ̃)

)
+

1
n

n∑
i=1

(
g(xi, b, τ)− g(xi, b̃, τ̃)

)2
+ ‖ε‖n . (7.10)

Note that the last term equals Zn(b, τ). We will first estimate the second term of (7.10).
Denote the points of discontinuity of Φ by J (Φ) = {ϑ1, . . . , ϑ#J (Φ)} with ϑ1 < ϑ2 < . . . <
ϑ#J (Φ). This means

I(x− τi, x− τ̃i) ∩ J (Φ) 6= ∅ ⇔ ∃s : x ∈ I(ϑs − τi, ϑs − τ̃i) .

By Lemma 4.2,

#{i : xi ∈ I(ϑs − τj , ϑs − τ̃j)} = OP (n|τj − τ̃j |+ n1/2) .

This gives

1
n

n∑
i=1

k∑
j=1

#J (Φ)∑
s=1

1I(ϑs−τj ,ϑs−τ̃j)(xi) =
#J (Φ)
n

k∑
j=1

OP (n|τj − τ̃j |+ n1/2)

= OP (‖∆‖+ n−1/2) .

Note that the functions νj(x) are piecewise Lipschitz continuous by Assumption (B2) and
part (iv) of Lemma 7.1. With the help of Lemma 7.2 this gives

1
n

n∑
i=1

νj(xi)νr(xj) =
∫ 1

0
νj(x)νr(x)h(x)dx+ oP (1) .
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Combine the results above to obtain

1
n

n∑
i=1

(g(xi, b, τ)− g(xi, b̃, τ̃))2

=
n∑

i=1

n−1
( 2k+1∑

j=1

∆jνj(xi) +O(‖∆‖2) +O(‖∆‖)
k∑

j=1

#J (Φ)∑
s=1

1I(ϑs−τj ,ϑs−τ̃j)(xi)
)2

=
n∑

i=1

n−1
( 2k+1∑

j=1

∆jνj(xi) +

O(‖∆‖2)
)2

+
O(‖∆‖2)

n

n∑
i=1

k∑
j=1

#J (Φ)∑
s=1

1I(ϑs−τj ,ϑs−τ̃j)(xi)

=
2k+1∑
r,j=1

∆j∆r

( ∫ 1

0
νj(x)νr(x)h(x)dx+ oP (1)

)
+OP (‖∆‖3 + ‖∆‖2n−1/2)

= ∆tV∆ +OP (‖∆‖3) + oP (‖∆‖2) ,

where V is given by (4.6). The remainder terms clearly satisfy condition (7.6).

Next, examine the first term of (7.10). Define Wn by

Wn =

 n−1/2
∑n

i=1 εiν1(xi)
...

n−1/2
∑n

i=1 εiν2k+1(xi)

 ,

to derive

1
n

n∑
i=1

εi(g(xi, b, τ)− g(xi, b̃, τ̃))

=
−1√
n

n∑
i=1

εi√
n

( 2k+1∑
j=1

∆jνj(xi) +O(‖∆‖2) +O(‖∆‖)
k∑

j=1

#J (Φ)∑
s=1

1I(ϑs−τj ,ϑs−τ̃j)(xi)
)

= −n−1/2∆tWn +O(‖∆‖2)
1
n

n∑
i=1

εi +
O(‖∆‖)

n

n∑
i=1

k∑
j=1

#J (Φ)∑
s=1

εi1I(ϑs−τj ,ϑs−τ̃j)(xi) .

The second term is clearly oP (‖∆‖2). Obtaining an upper bound for the third term is more
involved.

Suppose ϑs − τj < ϑs − τ̃j . Set

il(s, j) = min{i : x(i) ≥ θs − τj} and iu(s, j) = max{i : x(i) < θs − τ̃j} .

Consequently, ∣∣∣ n∑
i=1

εi1I(ϑs−τj ,ϑs−τ̃j)(xi)
∣∣∣ =

∣∣∣ iu(s,j)∑
i=il(s,j)

εi

∣∣∣ .
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By the law of the iterated logarithm for ε1, ε2, . . . i.i.d. with E(ε1) = 0 and E(ε21) <∞ we
have

lim
kn→∞

max
j∈{1,...,kn}

(E(ε21)kn log log kn)−1/2
∣∣∣ j∑

i=1

εi

∣∣∣ = 1

almost surely. This implies for δn = iu(s, j)− il(s, j) that

max
j=1,...,δn

∣∣∣ iu(s,j)∑
i=il(s,j)

εi

∣∣∣ = OP ((δn log log δn)1/2) .

By Lemma 4.2,

δn = #{i : ϑs − τj ≤ x(i) < ϑs − τ̃j} = OP (n|τj − τ̃j |+ n1/2) = OP (n‖∆‖+ n1/2) .

Consequently,

n∑
i=1

∣∣∣εi1I(ϑs−τj ,ϑs−τ̃j)(xi)
∣∣∣ = OP

( √
(n‖∆‖+ n1/2) log log(n‖∆‖+ n1/2)

)
.

The same can be shown for ϑj − τj ≥ ϑj − τ̃j . Since J (Φ) is a finite set and k < ∞, it
follows that

O(‖∆‖)
n

n∑
i=1

k∑
j=1

#J (Φ)∑
s=1

εi1I(ϑs−τj ,ϑs−τ̃j)(xi) =

O(n−1‖∆‖)OP

( √
(n‖∆‖+ n1/2) log log(n‖∆‖+ n1/2)

)
. (7.11)

To verify condition (7.6) for this term, note that for ‖∆‖ < n−1/2,

(7.11) = OP

(
n−5/4

√
log log(n1/2)

)
= oP (n−1) ,

and for ‖∆‖ ≥ n−1/2,

(7.11) = OP

(
‖∆‖3/2n−1/2

√
log log(n)

)
= OP

(
‖∆‖2n−1/4

√
log log(n)

)
= oP (‖∆‖2) .

This gives

1
n

n∑
i=1

εi(g(xi, b, τ)− g(xi, b̃, τ̃)) = −n−1/2∆tWn + oP (‖∆‖2) + oP (n−1) .

Next, take a closer look at Wn. For any a ∈ R2k+1,

atWn =
n∑

i=1

εi

(
n−1/2

2k+1∑
j=1

ajνj(xi)
)
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and

n∑
i=1

(
n−1/2

2k+1∑
j=1

ajνj(xi)
)2

=
2k+1∑
r,j=1

ajar

( 1
n

n∑
i=1

νj(xi)νr(xi)
)

=
2k+1∑
r,j=1

ajar

∫
νj(x)νr(x)h(x)dx+ oP (1) .

By the central limit theorem and the Cramer-Wold device,

Wn
L−→ N(0, σ2V ) ,

where σ2 = E(ε21) and V is given by (4.6).

It remains to show that V is positive definite. For any β ∈ R2k+1 calculate that

βtV β =
2k+1∑
i,j=1

βiβj

∫
νi(x)νj(x)h(x)dx =

∫ ( 2k+1∑
i,j=1

βiβjνi(x)νj(x)
)
h(x)dx

=
∫ ( 2k+1∑

i=1

βiνi(x)
)2
h(x)dx ≥ cl

∫ 1

0

( 2k+1∑
i=1

βiνi(x)
)2
dx .

Where cl is the lower bound of the design density, given by Assumption C. Observe that

ν1(x)
ν2(x)
ν3(x)
ν4(x)

...
ν2k(x)
ν2k+1(x)


=



∆K(x, τ0, τ1)
(b1 − b2)∆K(x, τ1, τ1)

∆K(x, τ1, τ2)
(b2 − b3)∆K(x, τ2, τ2)

...
(bk − bk+1)∆K(x, τk, τk)

∆K(x, τk, τk+1)


,

where bi − bi+1 6= 0 for all i = 1, . . . , k. Hence, by Assumption B, these functions are
linearly independent as functions in L2([0, 1]). Consequently, for β 6= 0 we have that∫ 1

0

( 2k+1∑
i=1

βiνi(x)
)2
dx > 0

and thus βtV β > 0.

Asymptotic normality of the estimates

Finally, we are prepared to show the asymptotic normality of the parameter estimates.

Corollary 7.15. Suppose the Assumptions A, B and C are met. Let f , f̂n and V be
given by (2.1), (4.3) and (4.6), respectively. Set θ = (b1, τ1, b2, τ2, . . . , bk, τk, bk+1) as the
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parameter vector given by f , and θ̂n as the corresponding vector of estimates given by f̂n.
Then √

n(θ − θ̂n) L−→ N(0, σ2V −1) ,

where σ2 = E(ε1) and V is given by (4.6).

Proof. Corollary 7.11 implies ‖θ − θ̂n‖ = oP (1). By the relation (7.8) and Lemma 7.14
the assumptions of Theorem 7.12 are satisfied. The assertion follows by application of this
theorem.

The result on the asymptotic distribution can be used to derive L2 rates for Kf̂n and f̂n.

Corollary 7.16. Suppose the assumptions of Corollary 7.15 are met. Then

‖(Kf −Kf̂n)|[0,1]‖2 = OP (n−1/2)

and
‖(f − f̂n)|[0,1]‖2 = OP (n−1/4).

Proof. By Assumption B the integral kernel of the operator K is bounded in supremum
norm. Hence ∫ 1

0
|K1[a,b)|dx =

∫ 1

0

∣∣∣ ∫ b

a
K(x, y)dy

∣∣∣dx = O(|b− a|) .

Compute for τi < τ̂i and τi−1 < τ̂i−1 that∫ 1

0

∣∣∣bi K1[τi−1,τi)(x)− b̂i K1[τ̂i−1,τ̂i)(x)
∣∣∣dx

≤ |bi − b̂i|
∫ 1

0
|K1[τi−1,τi)(x)|dx+ |bi|

∫ 1

0
|K1[τi−1,τ̂i−1)(x)|dx+

|b̂i|
∫ 1

0
|K1[τi,τ̂i)(x)|dx

= O(|bi − b̂i|) +O(|τi−1 − τ̂i−1|) +O(|τi − τ̂i|) = OP (n−1/2) .

Similar calculations yield the same result if τ̂i ≤ τi or τ̂i−1 ≤ τi−1 and∥∥bi K1[τi−1,τi)(x)− b̂i K1[τ̂i−1,τ̂i)(x)
∥∥2

L2([0,1])
= OP (n−1).

This gives

‖Kf −Kf̂n‖2
L2([0,1]) =

∫ 1

0

( k+1∑
i=1

bi K1[τi−1,τi))(x)− b̂i K1[τ̂i−1,τ̂i))(x)
)2
dx

= OP (n−1) .

To show the second assertion, note that

‖f − f̂n‖2
2 =

k+1∑
i=1

(bi − b̂i)2
(
(τi ∧ τ̂i)− (τi−1 ∨ τ̂i−1)

)
+

k∑
i=1

(
1τi≥τ̂i

(bi − b̂i+1)2 + 1τi<τ̂i
(bi+1 − b̂i)2

)∣∣τi − τ̂i
∣∣

= OP (n−1)OP (1) +OP (1)OP (n−1/2) = OP (n−1/2) .
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This proves the claim.

7.3.1. Multi-phase regression with an unknown intercept

The proof of the asymptotic normality in Corollary 7.15 can be easily extended to the
setting of Theorem 6.1. As most of the arguments are the same, we only give an outline of
the proof.

The first step is to show consistency of the estimates f̂n, b̂0 as given by (6.2). By Theo-
rem 5.10 the kernel xp

+ satisfies Assumption B with τlow = 0 and τup = 1. Consequently,
we can apply Lemma 7.1 to obtain

max
g∈Tk,R(0,1)

‖Kg‖2
n ≤ C0R

2

and
‖Y ‖2

n ≤ 3b20 + 3‖Kf‖2
n + 3‖ε‖2

n ≤ 3b20 + 3C0R
2 + 3‖ε‖2

n .

As ‖ε‖2
n → σ2 almost surely, we have

max
g∈Tk,R(0,1)

‖Kg − Y ‖2
n ≤ 3b20 + 4C0R

2 + 4σ2 =: CU

almost surely. This means that

‖Kf̂n + b̂0 − Y ‖n ≤ min
g∈Tk,R(0,1),b∈R

‖Kg + b− Y ‖2
n + o(n−1)

implies that

‖Kf̂n + b̂0 − Y ‖n ≤ min
g∈Tk,R(0,1),b∈[−CU ,CU ]

≤ ‖Kg + b− Y ‖2
n + o(n−1)

holds almost surely. Thus, we can restrict our analysis to the space of functions

Gk,R,CU
(K) := {Kg + b : g ∈ Tk,R(0, 1), b ∈ [−CU , CU ]} .

Note that the δ-entropy of the Gk,R,CU
(K) is bounded from above by the δ/2-entropy of

{Kg : g ∈ Tk,R(0, 1)} times log(4Cu/δ). Consequently, consistency of f̂n, b̂0 can be shown
in the same manner as in Section 7.2.

Now we derive the asymptotic normality of the estimates. Set(
∆0,∆1, . . . ,∆2k+1

)
=

(
b̃0 − b0, b̃1 − b1, τ̃1 − τ1, b̃2 − b2, τ̃2 − τ2, . . . , τ̃k − τk, b̃k+1 − bk+1

)
.

By b̃0 − b0 = ∆0, Lemma 7.13 directly gives

b0 − b̃0 +
k+1∑
j=1

(bj K1[τj−1,τj ](x)− b̃j K1[τ̃j−1,τ̃j ](x)

= −
2k+1∑
r=0

∆rνr(x) +O(‖∆‖2) +
k∑

i=1

O(‖τ − τ̃‖)1I(x−τi,x−τ̃i)∩J (Φ)6=∅ .
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for ν0(x) = 1. Thus we can derive a local asymptotic expansion in the same manner as in
Lemma 7.14. It remains to show that the matrix V is positive definite, where V is defined
by its entries (4.6) for i, j = 0, . . . , 2k+2 with νj(x) defined by (4.5) for j = 1, . . . , 2k+1 and
ν0(x) = 1. To do so, we show that the functions ν0, ν1, . . . , ν2k+1 are linearly independent
in L2([0, 1]). This can be done by the same arguments as in Theorem 5.10. Assume

∥∥∥ 2k+1∑
i=0

αiνi(·)
∥∥∥

L2([0,1])
= 0 .

Clearly, ( 2k+1∑
i=0

αiνi(x)
)∣∣∣

[0,τ1)
= α0 + α1x ,

which directly implies α0 = 0 and α1 = 0. By the same arguments as in the proof of
Theorem 5.10 it can be shown that αi = 0 for i = 2, . . . , 2k+ 1. Then the same arguments
as in Lemma 7.14 can be used to derive the positive definiteness of V . Theorem 6.1 then
follows by the same arguments as in Corollary 7.15.

7.4. Estimator for an unknown number of jumps

In this section we analyze the case where the number of jumps is unknown. We will show
that for large n it is possible to estimate the number of jumps correctly with probability
one.

In order to reconstruct the number of jumps correctly, it is helpful to use a penalty
function which is strictly monotone in the number of jumps. Any penalty term, which
depends on the number of jumps only, is not a pseudo-norm on T∞,R(τlow, τup), since
#J (λf) = #J (f) for λ 6= 0. Hence, the standard results from empirical process theory
do not apply. However, it is possible to use similar techniques in the proofs.

Recall the penalized least squares estimate as defined in (4.4). We have

‖Kf̂λn − Y ‖2
n + λn(#J (f̂λn) + 1) = min

g∈T∞,R(τlow,τup)
‖Kg− Y ‖2

n + λn(#J (g) + 1) + o(n−1) ,

where λn is some smoothing parameter. For ease of notation define

J#(f) := #J (f) + 1 .

The fact that f̂λn (approximately) minimizes the penalized L2 functional, implies that
for f ∈ T∞,R(τlow, τup) and Yi = Kf(xi) + εi , i = 1, . . . , n, we get that

‖Kf̂λn − Y ‖2
n + λnJ#(f̂λn) ≤ ‖Kf − Y ‖2

n + λnJ#(f) + o(n−1) .

This gives

‖Kf̂λn −Kf‖2
n + 2〈Kf̂λn −Kf,−ε〉n + ‖ε‖n + λnJ#(f̂λn) ≤ ‖ε‖n + λnJ#(f) + o(n−1) ,
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which yields the basic inequality

‖Kf̂λn −Kf‖2
n + λnJ#(f̂λn) ≤ 2〈Kf̂λn −Kf, ε〉n + λnJ#(f) + o(n−1) . (7.12)

This means, a bound for the term |〈Kf̂λn − Kf, ε〉n|, would allow immediate conclusions
on ‖Kf̂λn − Kf‖2

n as well as λnJ#(f̂λn). A bound of this type can be obtained from the
following exponential inequality.

Lemma 7.17. Suppose Assumptions A and B are met and the error additionally satis-
fies (A1).

There exist constants c1, c2 > 0, such that for all t ≥ c1n
−1/2 we have

P
(

sup
f∈T∞,R(τlow,τup)

|〈ε,Kf〉n|
‖Kf‖nJ

1/2
# (f)

(
1 + log(J#(f)/‖Kf‖n)+

) ≥ t
)
≤ c2 exp

(
− nt2

c22

)
.

Proof. Set Gk,R(K) = {Kg : g ∈ Tk,R(τlow, τup)}. By Corollary 7.6 there exists a constant
C > 0 independent of u,k,R and n such that

H
(
u,Gk−1,R(K), Qn

)
≤ Ck

(
1 + log

(Rk
u

))
.

Compute∫ δ

0
H1/2

(
u,Gk−1,R(K), Qn

)
du ≤

√
C
√
k

∫ δ

0

√
log

(exp(1)Rk
u

)
du

= eRk
√
C
√
k

∫ δ
eRk

0

√
− log(u)du

≤ eRk
√
C
√
k

∫ δ
eRk

0
(− log(u))du

= eRk
√
C
√
k
( δ

eRk

(
1− log

( δ

eRk

)))
= δ

√
C
√
k(2 + log(R) + log(kδ−1))

≤ C1δ
√
k
(
1 + log

(k
δ
∨ 1

))
= C1δ

√
k
(
1 + log

(k
δ

)
+

)
,

where C1 is some finite constant independent of k and δ. By Theorem A.2 there exists
some constant C2 depending on the subgaussian error condition (A1) only, such that

√
nρ ≥ C2

( ∫ δ

0
H1/2

(
u,Gk−1,R(K), Qn

)
du ∨ δ

)
implies

P
(

sup
g∈Gk−1,R(K),‖g‖n<δ

|〈g, ε〉n| ≥ ρ
)
≤ C2 exp

(
− nρ2

C2
2δ

2

)
.

Consequently, for all t ≥ C2C1n
−1/2 we have that

P
(

sup
g∈Gk−1,R(K),‖g‖n<δ

|〈g, ε〉n| ≥ tδ
√
k
(
1 + log

(k
δ

)
+

))
≤ C2 exp

(
−
nt2k

(
1 + log

(
k
δ

)
+

)2

C2
2

)
.
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We arrive at

P
(

sup
g∈Gk−1,R(K)

|〈ε, g〉n|
‖g‖n

√
k
(
1 + log(k/‖g‖n)+

) ≥ t
)

≤
∞∑

s=1

P
(

sup
g∈Gk−1,R(K),‖g‖n≤2−s+1R

|〈ε, g〉n| ≥ t(2−sR)
√
k
(
1 +

(
log(k2s/R)

)
+

))
≤

∞∑
s=1

C2 exp
(−t2nk(1 + (log(k/R) + s log(2))+)

C2
2

)
≤

∞∑
s=1

C2 exp
(−t2n(1 + (s log(2)− log(R))+)

C2
2

)
.

Splitting this sum at s = d(1 + log(R))/ log(2)e gives

P
(

sup
g∈Gk−1,R(K)

|〈ε, g〉n|
‖g‖n

√
k
(
1 + log(k/‖g‖n)+

) ≥ t
)

≤ C2

⌈1 + log(R)
log(2)

⌉
exp

(−t2n
C2

2

)
+

∞∑
s=dlog(e1R)/ log(2)e

C2 exp
(−t2nC3(1 + s log(2))

C2
2

)

≤ C5 exp
(−t2n
C2

2

)
+

∞∑
s=1

C2 exp
(−t2nC4(1 + s)

C2
2

)
≤ C5 exp

(−t2n
C2

2

)
+ exp

(−t2nC4

C2
2

) ∫ ∞

s=0
C2 exp

(−t2nC4s

C2
2

)
≤ C5 exp

(−t2n
C2

2

)
+

C3
2

C4t2n
exp

(−t2nC4

C2
2

)
≤ C6 exp

(
− t2n

C2
4

)
.

Here C3, C4, C5, C6 are constants depending on C1, C2 and R only. The last inequality
holds by t2n ≥ C2

1C
2
2 .

Since the constant C6 does not depend on k, the exponential inequality also holds if we
additionally take the supremum over all k. This proves the claim.

The above lemma yields upper bounds for the rate of |〈Kf, ε〉n|, which are stated in the
subsequent corollary.

Corollary 7.18. Suppose the prerequisites of Lemma 7.17 are met. Then

sup
f∈T∞,R(τlow,τup)

|〈Kf, ε〉n| = ‖Kf‖n

√
J#(f)

(
1 + log(J#(f)/‖Kf‖n)+

)
OP (n−1/2) .

Moreover, for each ε > 0 we have

sup
f∈T∞,R(τlow,τup)

|〈Kf, ε〉n| = ‖Kf‖1−ε
n (J#(f))(1+2ε)/2 OP (n−1/2) .

Proof. The first equation follows directly from Lemma 7.17. To show the second equation,
observe that J#(f) ≥ 1 and that

√
x(1+log(x)) ≤ cx1/2+ε for x ≥ 1, ε > 0 and c ≥ (ε−1∨1)

Moreover, if c is large enough and x ≥ 0 then x(1 + log(x−1)) ≤ cx1−ε. Combine these
observations to derive the second equation from the first.
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Now we are in the position to prove the main theorem of this section, namely that the
probability that the penalized estimator f̂λn correctly estimates the number of jumps tends
to one if n tends to infinity (given a proper choice of the penalty term).

Theorem 7.19. Suppose Assumptions A, B and C met and the error additionally satis-
fies (A1). If f ∈ T∞,R(τlow, τup), f̂λn is given by (4.4) and there exists an ε > 0 such that

λn
n→∞−→ 0 as well as λnn

1/(1+ε) n→∞−→ ∞ , (7.13)

then
lim

n→∞
P

(
#J (f̂λn) = #J (f)

)
= 1 .

Proof. Application of Corollary 7.18 to (7.12) gives

‖Kf̂λn −Kf‖2
n ≤

‖Kf̂λn −Kf‖1−ε
n J#(f̂λn − f)1/2+εOP (n−1/2) + λn(J#(f)− J#(f̂λn)) + o(n−1) , (7.14)

where ε is given by (7.13).
First, assume J#(f̂λn) ≤ J#(f). Then J#(f̂λn − f) is bounded. Then (7.14) implies that

either

‖Kf̂λn −Kf‖2
n = O(λn) + o(n−1) or ‖Kf̂λn −Kf‖1+ε

n = Op(n−1/2) .

Thus, ‖Kf̂λn −Kf‖n = oP (1). By Corollary 7.3, this implies ‖(Kf̂λn −Kf)|[0,1]‖2 = oP (1).
With the help of Lemma 7.8, it follows d(J (f̂λn),J (f)) = oP (1), which in turn implies
J#(f̂λn) ≥ J#(f) eventually.

Now assume J#(f̂λn) ≥ J#(f). Then (7.14) yields

‖Kf̂λn −Kf‖2
n ≤ ‖Kf̂λn −Kf‖1−ε

n J#(f̂λn − f)1/2+εOP (n−1/2) + o(n−1) .

Assume nk is a subsequence such that ‖Kf̂λnk
− Kf‖1−ε

nk
≥ cn

−1/2
k for some c > 0.

Dividing the last equation by ‖Kf̂λnk
−Kf‖1−ε

nk
gives

‖Kf̂λnk
−Kf‖1+ε

nk
≤ J#(f̂λnk

− f)1/2+εOP (n−1/2
k ) + o(n−1/2

k )

= J#(f̂λnk
− f)1/2+εOP (n−1/2

k ) .

This yields

‖Kf̂λnk
−Kf‖1−ε

nk
≤ J#(f̂λnk

− f)(1+ε−2ε2)/(2+2ε)OP (n−(1−ε)/(2+2ε)
k ) .

Moreover, by (7.14)

λnk
(J#(f̂λnk

)− J#(f)) ≤ OP (n−1/2
k )‖Kf̂λnk

−Kf‖1−ε
nk

J#(f̂λnk
− f)1/2+ε + o(n−1

k ) .

Combine the last two equations to obtain

λnk
(J#(f̂λnk

)− J#(f)) ≤ OP (n−1/(1+ε)
k )J#(f̂λnk

− f)(1+ε−ε2)/(1+ε) . (7.15)
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Now assume nk is a subsequence such that ‖Kf̂λnk
− Kf‖1−ε

nk
< cn

−1/2
k for some c > 0.

Application of Corollary 7.18 to (7.12) and the observation that J#(g) ≥ 1 for all g gives

λnk
(J#(f̂λnk

)− J#(f)) ≤ OP (n−1/2
k )‖Kf̂λnk

−Kf‖1−ε
nk

J#(f̂λnk
− f)1/2+ε + o(n−1

k )

≤ OP (n−1
k )J#(f̂λnk

− f)1/2+ε

≤ OP (n−1/(1+ε)
k )J#(f̂λnk

− f)(1+ε−ε2)/(1+ε) .

As each sequence can be decomposed into a subsequence containing only elements smaller
than cn−1/2 and a subsequence containing only elements greater or equal to cn−1/2 for
some c > 0, we have shown that J#(f̂λn) ≥ J#(f) implies (7.15).

Now we show that J#(f̂λnk
)−J#(f) → 0 in probability. To this end, assume there exists

some subsequence nk such that

J#(f̂λnk
)− J#(f) ≥ c > 0 . (7.16)

This implies J#(f) ≤ J#(f)c−1(J#(f̂λnk
)− J#(f)) and

J#(f̂λnk
− f) ≤ 2J#(f̂λnk

)

= 2(J#(f̂λnk
)− J#(f)) + 2J#(f)

≤ (2 + 2J#(f)c−1)(J#(f̂λnk
)− J#(f))

= O(1)(J#(f̂λnk
)− J#(f)) .

Hence
J#(f̂λnk

− f)(1+ε−ε2)/(1+ε) = O(1)
(
J#(f̂λnk

)− J#(f)
)(1+ε−ε2)/(1+ε)

.

Together with (7.15), the assumption λnk
n

1/(1+ε)
k →∞ and (7.16), this gives

0 < cε
2/(1+ε) ≤

(
J#(f̂λnk

)− J#(f)
)ε2/(1+ε) = OP (λ−1

nk
n
−1/(1+ε)
k ) = oP (1) ,

which is a contradiction and implies J#(f̂n) − J#(f) → 0 in probability. Since J#(f) and
J#(f̂n) are integers, this yields

P
(
J#(f̂n) = J#(f)

)
→ 1 ,

for n→∞. This proves the claim.

7.5. A lower bound for estimating the jump locations

In this section we show that the obtained rate d(J (f̂n),J (f)) = OP (n−1/2) is optimal in
a minimax sense. To do so, we construct functions f0, f1,n, f2,n with

d(J (f0),J (fi,n)) = cn−1/2
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for i = 1, 2 and some c > 0 to be chosen later. Given the observations

Yi = g(xi) + εi i = 1, . . . , n

for g ∈ {Kf0,Kf1,n,Kf2,n} and ε1, . . . , εn independent and identically distributed accord-
ing to N(0, σ2) with σ2 > 0, we show that for any estimator, the probability to choose the
true function is strictly smaller than one. Obviously it is sufficient to consider the case of
a single jump with a fixed jump height.

Lemma 7.20. Suppose Assumption B is met, x1, . . . , xn ∈ [0, 1] are arbitrary fixed de-
sign points. Moreover, assume that ε1, . . . , εn are independent and identically distributed
according to N(0, σ2) with σ2 > 0. Set gτ = K1[τ,∞) for τ ∈ (τlow, τup). Given observations

Yi = gτ (xi) + εi i = 1, . . . , n

denote the corresponding probability measure by Pτ . There exists some c, c1 > 0 such that

inf
τ̂

sup
τ∈(τlow,τup)

Pτ (|τ − τ̂ | ≥ cn−1/2) ≥ c1 > 0 .

Proof. We wish to apply Theorem A.4.
Recall that for product measures P = ⊗n

i=1Pi and Q = ⊗n
i=1Qi we have

dK(P,Q) =
n∑

i=1

dK(Pi, Qi) .

Note that Yi ∼ N(gτ (xi), σ2) and denote the corresponding measures with P i
τ . By inde-

pendency of the εi the joint measure Pτ of Y1, . . . , Yn is given by Pτ = ⊗n
i=1P

i
τ . Application

of Lemma A.5 (which gives the Kullback-Leibler distance for normal measures) yields

dK(P i
τ1 , P

i
τ2) = (2σ2)−1(gτ1(xi)− gτ2(xi))2

and

dK(Pτ1 , Pτ2) = (2σ2)−1
n∑

i=1

(gτ1(xi)− gτ2(xi))2 .

Note that by Assumption B the integral kernel K(x, y) is bounded in supremum norm. Set

K∞ = sup
x∈[0,1] , y∈(τlow,τup)

|K(x, y)| ,

and calculate

(gτ1(xi)− gτ2(xi))2 =
( ∫ max(τ1,τ2)

min(τ1,τ2)
K(xi, y)dy

)2
≤ (τ1 − τ2)2K2

∞ .

Consequently,
dK(Pτ1 , Pτ2) ≤ (2σ2)−1n(τ1 − τ2)2K2

∞ .
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Now choose some 0 < α < 1/10, set c = (2ασ2/K2
∞)1/2 and choose

τ0 ∈ (τlow + cn−1/2, τup − cn−1/2) .

Set
τ1 = τ0 + cn−1/2 and τ2 = τ0 − cn−1/2 .

This gives
1
2

2∑
j=1

dK(Pτj , Pτ0) ≤ (4σ2)−1n
2∑

j=1

(τ0 − τj)2K2
∞ = α .

Consequently, the assumptions of Theorem A.4 are satisfied for s = c/2n−1/2 and d(τ, τ ′) =
|τ − τ ′|. Application of this theorem gives

inf
τ̂

sup
τ∈(τlow,τup)

Pτ (|τ − τ̂ | ≥ 2−1cn−1/2) ≥
√

2
1 +

√
2

(
1− 2α− 2

√
α

log 2

)
> 0 .

This proves the claim.

Note that in the proof we used the absolute integrability and the boundedness in supre-
mum norm of the integral kernel K(x, y) only.

Proof of Theorem 4.4. Lemma 7.20 directly implies that the jump estimator attains the
minimax rate. By Lemma 7.8 the L2-norm of f̂n − f is bounded from below by

C d(J (f̂n),J (f))1/2

for some C > 0. Consequently, f cannot be estimated at a faster rate than n−1/4.
If f is a step function with known jump locations and unknown level heights bi, the in-

verse regression model (2.2) reduces to a standard linear regression model. It is well known
that in this setting the levels bi cannot be estimated at a rate faster than OP (n−1/2).
Consequently, this also holds for the case of unknown jump locations. This proves Theo-
rem 4.4.
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Chapter 8

Extensions

This chapter contains some auxiliary results. Section 8.1 gives an exponential inequality
in empirical norm of the image space under weaker assumptions on the operator than
Assumption B, but the strong subgaussian assumption on the error. Afterwards, in Sec-
tion 8.2 we discuss one case, when the operator K is not bounded and may be arbitrary
close to the identity. In this case faster rates than n−1/2 are obtained.

8.1. An exponential inequality in the image space

In Section 7.2 we used the relation

‖Kf‖2
n ≤ C0‖f |[−ε,1+ε]‖2

2 for some C0, ε > 0 and all f ∈ Tk(τlow, τup) ,

to prove consistency of the estimator. Being a bit more general, we will assume in the
following that

‖Kf‖n ≤ C0‖f |[−ε,1+ε]‖c
2 for some C0, c > 0, ε ≥ 0 and all f ∈ Tk(τlow, τup) . (8.1)

Note that the constants may depend on k. Taking this as a starting point, it is possible to
prove an exponential inequality for Kf̂n in empirical norm, which might be interesting on
its own. This is the case, if one is interested in weakening either the design assumption or
the assumption on the operator. The inequality will also be required in Section 8.2.

In Section 7.2 the entropy of the space of step functions was only used to show consistency
of the estimate Kf̂n. If we are interested in the rate of convergence of this estimator, the
entropy of the whole space is of minor importance. Once we have established consistency,
it is sufficient to study the entropy of δ-balls around the objective function. The entropy
of such balls is also called local entropy.

Lemma 8.1. For f ∈ Tk(a, b) with #J (f) = k, −∞ < a < b <∞ and

Gf (δ) = {g ∈ Tk(a, b) : ‖g − f‖2 ≤ δ} ,

there exist constants C, δ0 > 0 independent of δ and n, such that for δ < δ0

H(u,Gf (δ)) ≤ C(1 + log(δ)− log(u)) .
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First let us introduce some notation for the proof. For g ∈ T∞(a, b) with #J (g) = r
define τ0(g) := a , τr+1(g) := b and τi(g) as the i-th jump of g for i = 1, . . . , r. Note that
g|[τi−1(g),τi(g)) is constant for all i = 1, . . . , r + 1. Moreover, define

mJ(g) = min
i=1,...,r+1

|τi−1(g)− τi(g)| , (8.2)

as the minimal distance of two jump locations of g.

Proof. Fix g0 ∈ Gf (δ). Lemma 7.8 implies that

h(f)2 d(J (g0),J (f)) ≤ 4‖(f − g0)|[a,b)‖2
2 ≤ 4δ2 ,

where h(f) denotes the minimal jump height of f . Choose δ0 = 4−1h(f)
√

mJ(f). Then we
have for δ ≤ δ0 that

d(J (g0),J (f)) ≤ mJ(f)
4

.

Consequently, #J (g0) = #J (f) and

µ
(
[τi−1(f), τi(f)) ∩ [τi−1(g0), τi(g0))

)
≥ mJ(f)

2
∀ i = 1, . . . , k + 1 ,

where µ denotes the Lebesgue-measure. This implies

mJ(f)
2

max
i=1,...,k+1

(
f |[τi−1(f),τi(f)) − g0|[τi−1(g0),τi(g0))

)2
≤ ‖f − g0‖2

2 ≤ δ2 . (8.3)

Consequently,

h(g0) ≤ h(f) + max
i=1,...,k+1

∣∣∣f |[τi−1(f),τi(f)) − g0|[τi−1(g0),τi(g0))

∣∣∣
≤ h(f) +

δ0
√

2√
mJ(f)

= h(f) +
h(f)

√
2

4
≤ 2h(f) .

For i ∈ {1, . . . , k} define the set

Γi(u, f) :=
{
τi(f) +

u2m

c1
: m = −

⌈ 4δ2c1
u2h(f)2

⌉
,−

⌈ 4δ2c1
u2h(f)2

⌉
+ 1, . . . ,

⌈ 4δ2c1
u2h(f)2

⌉}
and for i ∈ {1, . . . , k + 1} the set

∆i(u, f) =
{

f |[τi−1(f),τi(f)) +
um

c2
:

m = −
⌈ δc2

√
2

u
√

mJ(f)

⌉
,−

⌈ δc2
√

2
u
√

mJ(f)

⌉
+ 1, . . . ,

⌈ δc2
√

2
u
√

mJ(f)

⌉ }
.

Now define the function class Hf (u) by

Hf (u) =
{

bi1[γi−1,γi)(x) : bi ∈ ∆i(u, f), i = 1, . . . , k + 1,
γ0 = a, γk+1 = b, γi ∈ Γi(u, f), i = 1, . . . , k

}
.
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For g0 ∈ Gf (δ) with δ < δ0 equation (8.3) implies that

g0|[τi−1(g0),τi(g0)) ∈
[
min{x : x ∈ ∆i(u, f)},max{x : x ∈ ∆i(u, f)}

]
holds for all i = 1, . . . , k + 1. This gives

min
bi∈∆i(u,f)

∣∣bi − g0|[τi−1(g0),τi(g0))

∣∣ ≤ u

c2
.

Consequently, we can choose g ∈ H(u) with d(J (g),J (g0)) ≤ u2/(2c1) and

max
i=1,...,k+1

∣∣(g − g0)|[τi−1(g),τi(g))∩[τi−1(g0),τi(g0))

∣∣ ≤ u

c2
.

Moreover, we have

max
i=1,...,k+1

∣∣g0|[τi(g0),τi+1(g0)) − g|[τi(g),τi+1(g))

∣∣ ≤ h(g0) +
u

c2
≤ 2h(f) +

u

c2
.

Since g0 has k jumps between a and b we arrive at

‖g0 − g‖2
2 ≤ (b− a)

u2

4c22
+ k

(
h(f) +

u

c2

)2 u2

2c1
.

Consequently, we can choose constants c1 and c2 depending on k, f and b − a only, such
that ‖g0 − gn‖2 ≤ u. Hence H(u) is an u-covering of Gf (δ). Since

#H(u) ≤
(
2
⌈ 4δ2c1
u2h(f)2

⌉
+ 1

)k+1(
2
⌈ 2δc2
u
√

mJ(f)

⌉
+ 1

)k
= O

(( δ
u

)3k+1
)

the claim is proved.

Similarly to Corollary 7.6, this result can be used to bound the entropy of the space of
interest.

Corollary 8.2. Assume K satisfies (8.1). For

Gk(K, δ) := {Kg : g ∈ Tk(τlow, τup) and ‖Kf −Kg‖n ≤ δ}

there exist constants 0 < C1, δ0 <∞ independent of δ and n, such that for all δ < δ0

H(u,Gn,K(δ), Qn) ≤ C1(1 + log(δ)− log(u)) .

Proof. By (8.1) there exists a finite ε ≥ 0, a finite c > 0 and a finite C0 > 0 such that

‖Kf −Kg‖n ≤ C0‖(f − g)|[−ε,1+ε]‖c
2

for f, g ∈ Tk(τlow, τup). Assume H(u) is a u-covering of {g ∈ Tk(−ε, 1 + ε) : ‖g − f‖2 ≤ δ}
for every u > 0. Then H(u1/c/C0) is a u-covering of Gn,K(δ). This means the claim follows
directly from Lemma 8.1.
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Now we use this bound on the local entropy and Theorem A.1 to prove an exponential
inequality for ‖Kf −Kf̂n‖n.

Theorem 8.3. Suppose the Assumption A is met and the error satisfies (A1). Moreover,
suppose the operator K satisfies (8.1). If Y is given by (2.2), f ∈ Tk(τlow, τup) and f̂n is
defined by

f̂n = argmin
g∈Tk(τlow,τup)

‖Kg − Y ‖n ,

there exist c, c0 > 0 such that for δ ≥ c0n
−1/2 we have

P(‖Kf −Kf̂n‖n ≥ δ) ≤ c exp(−nδ2c−2) .

Proof. By Corollary 8.2 we have for u < δ1 < δ0 that

H(u,Gn(δ1), Qn) ≤ C(1 + log(δ1)− log(u))

for some 0 < C <∞. Compute

J(δ1,Gn(δ1), Qn) =
∫ δ1

0
H1/2(u,Gn(δ1), Qn)du

≤ Cδ1

∫ 1

0

√
log(u−1 exp(1))du =: δ1c1 .

Choosing Ψ(δ) = c1δ, there exists some c0 > 0, such that δn = c0n
−1/2 satisfies δn < δ0 as

well as condition (A.1). The claim follows directly by application of Theorem A.1.

8.2. Faster rates: Abel-type kernels

The intention of this section is to examine, what happens “between” the case where K is
the identity and the case where K is an integral operator with bounded integral kernel. We
focus on giving an idea which rates of convergence can be obtained, and do not strive to
derive the results in the most general setting. We will use a simplified model and analyze
a special integral kernel, namely an Abel-type kernel (cf. Hall et al., 2003). For 0 < α < 1
define Kα f as convolution of f with Φα(x) = (1− α)x−α

+ , i.e.

(Kα f)(x) = (1− α)
∫ x

−∞
(x− y)−αf(y)dy .

The choice of α is restricted to (0, 1) since this assures that Φα is integrable on bounded
intervals, which in turn assures that f ∈ L1(R) implies Kα f ∈ L1(R). Note that Φα is
square integrable on bounded intervals if and only if α < 1/2.

Throughout this section assume that

Yi = Kα fτ (xi) + εi i = 1, . . . , n (8.4)

for xi = i/n , i = 1, . . . , n, ε1, . . . , εn independent identically distributed according to
N(0, 1) and f(x) = 1[τ,1)(x) with τ ∈ (0, 1) unknown. This simple model is well suited
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to give an impression what happens in the case of an unbounded kernel, but keeps the
notation as simple as possible. An estimator for τ is given by

τ̂ = argmin
γ∈(0,1)

‖Y −Kα 1[γ,1)‖2
n . (8.5)

Accordingly, denote fτ̂ = 1[τ̂ ,1).

Technical tools

We start by calculating an explicit expression and an upper bound for (Kα 1[a,b))(x) .

Lemma 8.4. If a < b, then

(Kα 1[a,b))(x) = (x− a)1−α1[a,b)(x) +
(
(x− a)1−α − (x− b)1−α

)
1[b,∞)(x) ,

and

(Kα 1[a,b))(x) ≤ (b− a)1−α1[a,b+(b−a))(x) + (1− α)(b− a)(x− b)−α1[2b−a,∞)(x) .

Proof. To prove the first claim, calculate

(Kα 1[a,b))(x) = (1− α)
∫ b

a
(x− y)−α1[0,∞)(x− y)dx

= (1− α)
∫ x−a

x−b
(y)−α1[0,∞)(y)dx

= (x− a)1−α1[a,b)(x) +
(
(x− a)1−α − (x− b)1−α

)
1[b,∞)(x)

To prove the second claim, first assume x ∈ [a, b). Note that (Kα 1[a,b))(x) is increasing
on this interval. Therefore,

(Kα 1[a,b))(x) = (x− a)1−α ≤ (b− a)1−α .

The same inequality holds for x ∈ [b, b+ (b− a)), since (Kα 1[a,b))(x) is decreasing on this
interval.

Now assume x ≥ b + (b − a). By Taylor’s formula for 0 < α < 1 and a < b there exists
some ξ ∈ (x− b, x− a) such that

(x− a)1−α = (x− b)1−α + (1− α)(b− a)(x− b)−α + (b− a)2(−α)(1− α)ξ−1−α .

Since the last term is smaller than zero

(x− a)1−α − (x− b)1−α ≤ (1− α)(b− a)(x− b)−α .

This gives

K 1[a,b)(x) ≤

{
(b− a)1−α x ∈ [a, b+ (b− a)) ,
(1− α)(b− a)(x− b)−α x ≥ 2b− a ,

which proves the second claim.
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The first step on the way to obtain the rate of the least squares estimator of τ is to give
a rate for Kα fτ̂ . To this end, we use the results of Section 8.1. The corresponding theorem
requires that the empirical norm of Kf is bounded by the L2 norm of f .

Lemma 8.5. Suppose xi = i/n for i = 1, . . . , n, 0 ≤ a ≤ b ≤ 1. For every 0 < α < 1 there
exists Cα > 0 such that

‖Kα 1[a,b)‖2
n =

1
n

n∑
i=1

(Kα 1[a,b)(xi))2 ≤ Cα(b− a)(3−2α)∧2 .

Proof. Apply Lemma 8.4 to obtain

‖K1[a,b)‖2
n

≤ 1
n

n∑
i=1

(
(b− a)2−2α1[a,2b−a)(xi) + (1− α)2(b− a)2(xi − b)−2α1[2b−a,∞)(xi)

)
≤ n+ 2

n
2(b− a)(b− a)2−2α +

(1− α)2(b− a)2

n

∑
i:n(2b−a)+1≤i≤n

( i
n
− b

)−2α
.

Compute that

∑
i:n(2b−a)+1≤i≤n

n−1(i/n− b)−2α ≤
∑

i:n(2b−a)≤i+1≤n

∫ i/n

(i−1)/n
(x− b)−2αdx

≤
∫ 1

(2b−a)
(x− b)−2αdx ,

where the first inequality holds since (x− b)−2α is decreasing on [2b− a, 1]. This gives

‖K1[a,b)‖2
n ≤ 6(b− a)3−2α + (1− α)2(b− a)2

∫ 1

(2b−a)
(x− b)−2αdx .

For α 6= 1/2 we have∫ 1

(2b−a)
(x− b)−2αdx = (1− 2α)((1− b)1−2α− (b− a)1−2α)

≤

{
(1− 2α)(1− b)1−2α α < 1/2,
(2α− 1)(b− a)1−2α α > 1/2.

By (b− a) < 1 we get (b− a)3−2α ≤ (b− a)2 for α < 1/2. Thus, there exists Cα > 0 such
that for 0 < α < 1/2,

‖K1[a,b)‖2
n ≤ 6(b− a)2 + (1− α)2(1− 2α)(1− b)1−2α(b− a)2 ≤ Cα(b− a)2 .

Similarly there exists Cα > 0 such that for 1/2 < α < 1,

‖K1[a,b)‖2
n ≤ 6(b− a)3−2α + (1− α)2(2α− 1)(1− b)1−2α(b− a)2 ≤ Cα(b− a)3−2α .
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For α = 1/2 and 0 ≤ x ≤ 1 note that

(x− a)1/2 − (x− b)1/2 =
(
(x− a)1/4 − (x− b)1/4

)(
(x− a)1/4 + (x− b)1/4

)
≤ 2

(
(x− a)1/4 − (x− b)1/4

)
.

By Lemma 8.4 this is smaller or equal to 3/2(b − a)(x − b)−1/4 for 2b − a ≤ x ≤ 1.
Consequently,

‖K1/2 1[a,b)‖2
n ≤

1
n

n∑
i=1

(
(b− a)1[a,2b−a)(xi) +

9
4
(b− a)2(xi − b)−1/21[2b−a,1](xi)

)
.

By the same arguments as for α = 1/4, there exists some C1/2 such that the above expres-
sion is smaller or equal to C1/2(b− a)2. This proves the claim.

If we want to infer the rate of τ̂ from the rate of Kfτ̂ , we need a lower bound in addition
to the upper bound of Lemma 8.5.

Lemma 8.6. For any 0 < α < 1 there exists some cα > 0 such that for 0 ≤ a ≤ b ≤ 1 we
have

‖Kα 1[a,b)‖2
n ≥ cα(b− a)(3−2α)∧2 +O(n−1) .

Proof. First assume α ≥ 1/2. Compute

‖Kα 1[a,b)‖2
n ≥

∑
i:a+1/n≤i/n≤b

n−1(i/n− a)2−2α

≥
∑

i:a+1/n≤i/n≤b

∫ i/n

(i−1)/n
(x− a)2−2αdx

=
∫ b

a
(x− a)2−2αdx−

∫ dnae/n

a
(x− a)2−2αdx−

∫ b

bnbc/n
(x− a)2−2αdx

= (3− 2α)−1(b− a)3−2α +O(n−1) ,

where the second inequality holds since (x−a)2−2α is increasing. A similar argument gives
for 0 < α < 1/2 that

‖Kα 1[a,b)‖2
n ≥

∫ 1

b
((x− a)1−α − (x− b)1−α)2dx+O(n−1) .

By Taylor’s formula there exists some ξ ∈ (x− b, x− a) such that

(x− b)1−α = (x− a)1−α + (a− b)(1− α)(x− a)−α + (−α)(1− α)ξ−1−α .

Since the last term is smaller than zero we get

(b− a)(1− α)(x− a)−α ≤ (x− a)1−α − (x− b)1−α .

This gives∫ 1

b
((x− a)1−α − (x− b)1−α)2dx ≥ (b− a)2(1− α)2

∫ 1

b
(x− b)−αdx

= (b− a)2(1− α)(1− b)1−α ,

which proves the claim.
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Consistency and minimax rates

As mentioned before, Lemma 8.5 can be used to derive rates for the least squares estimate
of Kα fτ .

Lemma 8.7. Given the model defined at the beginning of Section 8.2, we have

‖Kα f −Kα fτ̂‖n = OP (n−1/2) .

Proof. Lemma 8.1 gives the local entropy of Tk(0, 1). As we do not allow for general jump
heights, the relevant space is the subspace of Tk(0, 1) that contains only functions f with
f(x) ∈ {−1, 0, 1} for all x ∈ [0, 1]. The entropy of this subspace is clearly smaller than the
entropy of the whole space.

Suppose f is in this subspace, and is given by f(x) =
∑k+1

j=1 bj1[τj−1,τj)(x) with bj ∈
{−1, 0, 1}. Lemma 8.5 and τj − τj−1 < 1 for j = 1, . . . , k + 1 imply

‖Kf‖2
n ≤

k+1∑
j=1

(k + 1)b2j‖K1[τj−τj−1)‖2
n

≤ (k + 1)
k+1∑
j=1

b2j (τj − τj−1)(3−2α)∧2

≤ (k + 1)
k+1∑
j=1

b2j (τj − τj−1) = (k + 1)‖f |[0,1]‖2 .

Thus by the same arguments as in Section 8.1 the exponential inequality of Theorem 8.3
holds for ‖Kα f −Kα fτ̂‖n. This implies the claimed stochastic OP (n−1/2) rate.

Usage of Lemma 8.6 directly gives that |τ̂ − τ | = OP (n−1/(2∧(3−2α))). Similar arguments
as in Section 7.5 show that this rate is optimal in a minimax sense.

Lemma 8.8. Suppose 0 < α < 1. Given observations

Yi = Kα 1[τ,1)(xi) + εi i = 1, . . . , n

for xi = i/n , i = 1, . . . , n, ε1, . . . , εn independent identically distributed according to
N(0, 1), denote the corresponding probability measure by Pτ .

There exists some c > 0 such that

inf
τ̂

sup
τ∈(0,1)

Pτ (|τ − τ̂ | ≥ cn−1/(2∧(3−2α))) > 0 .

Proof. The proof is very similar to the proof of Lemma 7.20. Set gτi = Kα 1[τi,1) for i = 1, 2.
By Lemma 8.5, ∑

i=1

(gτ1(xi)− gτ2(xi))2 ≤ nCα(τ1 − τ2)(3−2α)∧2 .

This gives
dK(Pτ1 , Pτ2) ≤ (2σ2)−1nCα(τ1 − τ2)(3−2α)∧2 .

The rest of the proof is done exactly the same way as the proof of Lemma 7.20.
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The results of this section are summarized in the following theorem.

Theorem 8.9. Suppose Y is given by (8.4) and the assumptions of Lemma 8.8 on the
design points and the error are satisfied. Then for

τ̂ = argmin
γ∈(0,1)

‖Y −Kα 1[γ,1)‖2
n

we have that
|τ̂ − τ | = OP (n−1/(2∧(3−2α))) ,

and this rate is minimax.

Note that the “elbow” in the rates of convergence occurs at α = 1/2, and that the n−1/2

rate holds for the case where Φα is square integrable on bounded intervals.
Neumann (1997) and Goldenshluger et al. (2006) also observe an elbow in the rate of

convergence of recovering a change point in an inverse problem. To compare their results
to the rate given by Theorem 8.9, we first calculate the Fourier transform of Φα.

Denote by Γ(a) =
∫∞
0 xa−1 exp(−x)dx the Γ-function. For 0 < α < 1 one can show∫ ∞

0
sin(x)x−αdx = cos(απ/2)

∫ ∞

0
x−α exp(−x)dx = cos(απ/2)Γ(1− α)

and ∫ ∞

0
cos(x)x−αdx = sin(απ/2)

∫ ∞

0
x−α exp(−x)dx = sin(απ/2)Γ(1− α) .

Basic calculations yield

Φ̂α(x) = |x|−1+αΓ(1− α)
(
sin(απ/2) + i sign(x) cos(απ/2)

)
.

Consequently, ∣∣∣Φ̂α(x)
∣∣∣ = |x|−1+αΓ(1− α) .

Goldenshluger et al. (2006) assume that the regression function is given by Φ ∗ f where f
is a sum of a step function and a function with bounded m-th derivative, and the Fourier
transform of Φ satisfies

C1|1 + x|−β ≥ |Φ̂(x)| ≥ C2|1 + x|−β (8.6)

for some 0 < C2 < C1 ≤ ∞. In this setting they show (in a white noise model) that the
minimax rate for estimating the jumps of f is

n−1/(2β+1) : β < 1/2 ,
n−(m+1)/(2β+2m+1) : β ≥ 1/2 .

Neumann (1997) obtains a similar result in a deconvolution setting for m = 1.

Though |Φ̂α(x)| is not bounded for x → 0 and thus formally does not satisfy con-
dition (8.6), the behavior for |x| → ∞ corresponds to β = 1 − α in this condition. A
comparison of the rates gives that the rates of Neumann (1997) and Goldenshluger et al.
(2006) coincide with the rates of Theorem 8.9 for β ≤ 1/2 and α ≥ 1/2, respectively.
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Some simulated data

Estimation in a setting with an Abel-type kernel is a good example, that the additional
information that f is a step function significantly improves the reconstruction of f . For
illustrational purposes, consider the following simulated data example.

Test Bed 8.10. Assume the observations Y are generated by

Yi = Kα(1[0,0.3) + 2 · 1[0.3,1))(i/n) + 0.5 εi , i = 1, . . . , n ,

where n = 200, α = 0.6 and εi ∼ N(0, 1) for i = 1, . . . , n.

The generated data is displayed in Figure 8.1.
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Figure 8.1.: Observations according to the Test Bed 8.10.

There are several ways to reconstruct the signal f from the observations. The approach,
which is perhaps most natural from a statisticians point of view, is to compute an esti-
mate for Kf and then invert this estimate. Mathematical properties of this approach were
examined by Bissantz et al. (2004). In the following we use Tikhonov regularization with a
small regularization parameter to compute the estimates for f . For regularization methods
in inverse problems compare Engl et al. (1996).

A first glance at the observations in Figure 8.1 reveals that the data look quite linear.
Thus it might be tempting to fit a linear regression to the data and then estimate f by
applying the inverse of K to this regression estimate. As Figure 8.2 shows, the corresponding
estimate is quite far from the true signal f .

As the assumption of a linear regression model is rather restrictive, a more realistic
approach is to use a local linear regression estimate. This, however, includes a choice of
bandwidth. For practical purposes, it is helpful to use several bandwidths and then to
visually examine the corresponding estimates, to identify different features of the data (cf.
Chaudhuri and Marron, 2000). This is done in Figure 8.3 for three different bandwidths.
Visual inspection of the estimates of the signal f might lead to the guess that the true
signal has a jump, but it is rather unclear, whether one or more discontinuities are present.

Note that given the information that the true function is a step function, it is possible to
fit a step function to the estimate of f given by first using a local polynomial fit and than
applying the (regularized) inverse of K. The corresponding estimates are represented by
the dashed line in Figure 8.3. It can be seen that this procedure leads to rather reasonable
estimates of f .
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Figure 8.2.: Linear regression estimate of Kf and the corresponding estimate for f . The red
line shows the estimate and the black line the signal. The blue dots represent
the observations.

Figure 8.4 shows the least squares estimate Kf̂ of Kf , where f̂ is restricted to T1(0, 1).
The estimate is close to what one would suspect, when examining Figure 8.3.

The main message of this small study is that in inverse problems additional information,
such as knowledge that the signal is a step function, can be used to construct significantly
improved estimates of the signal. This is of course also true for direct problems, but as the
pictures above show, the error for reconstructing Kf without prior knowledge is small, when
compared to the error for reconstructing f without prior knowledge. Here, the method of
reconstructing the signal is of minor importance, if the given prior information is used in
a clever way.
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Figure 8.3.: Local linear regression estimator of Kf with different bandwidths (first row)
and the corresponding estimates for f (second row). The red line shows the
estimate, and the black line the signal. The blue dots represent the observa-
tions. The blue line (lower row) is the least squares fit of a step function to
the estimate.
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Figure 8.4.: Least squares of Kf for f ∈ T1(0, 1) and the corresponding estimate for f .
The red line shows the estimate and the black line the signal. The blue dots
represent the observations.



Chapter 9

Discussion

Computational Feasibility

Unlike the direct setting, the inverse regression model does not allow for a division of
the problem into smaller independent subproblems. This makes finding a solution f ∈
Tk(τlow, τup) of the minimization problem

‖Kf − Y ‖n −→ min!

difficult. For any given vector τ ∈ Γk(τlow, τup) of jump points, the corresponding model
reduces to the simple linear regression model

‖
k+1∑
i=1

bi K1[τi−1,τi)(·)− Y ‖n −→ min! .

The solutions b1, . . . , bk+1 of this minimization problem can be efficiently calculated using
standard software. Hence, the corresponding loss can be seen as function of τ which can
be numerically minimized. If the number of jump points is small (say no larger than four
or five) this is computationally feasible, but the computation time grows exponentially in
the number of jump locations. This means our estimate is not very useful if step functions
with a large number of jumps shall be reconstructed. In this case, it would be better to fit
some nonparametric regression estimate to the data, use some regularized inversion method
to calculate an initial estimate of f and then fit a step function to this initial estimate
(compare end of Section 8.2). However, it is much more involved to derive an asymptotic
distribution of the resulting estimates of the jump locations.

Unknown k: Choice of the smoothing parameter

Theorem 4.3 assures that if the smoothing parameter λn of the penalized least squares
estimate tends to zero slower than n−(1+ε) for some ε > 0 the number of jump locations is
asymptotically correctly estimated with probability one. However, the practical use of this
statement is rather limited. For finite sample sizes, the statistician is still confronted with
the delicate task of choosing λn. In the setting of this thesis, this is equivalent to choosing
the number of jumps of the reconstruction f .
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There is a huge amount of literature on the topic of model and parameter selection. It
is beyond the scope of this thesis to examine, which methods work best in this particular
setting.

However, analysis of any model selection procedure is limited by the computational
feasibility of the underlying models. As argued before, this limits the analysis to models
with very few jump locations. Nonetheless it can be interesting to construct procedures
to test a model with one or two jumps against against a model without jumps. In the
multi-phase regression setting this was done by Quandt (1960), Feder (1975a) and, more
recently, by Horváth (1995) and Hušková (2000).

A closely related question is how the restricted least squares estimate behaves if the true
function has less jumps than specified. As the entropy of the corresponding space is small,
one can assume that the estimate Kf̂n converges to the best approximating function of
Kf , which is of course Kf itself. By the same arguments used in the proof of Lemma 7.10,
this implies consistency of f̂n. However, a construction of confidence intervals in this case
may lead to completely wrong conclusions.

Closure of the spaces of step function

This thesis does not examine the case where the model is misspecified, i.e. the true function
f is not a step function. If this is the case, the number of jumps of the penalized least
squares estimate f̂λn converges to ∞ for n → ∞. For the direct problem, the properties
of f̂λn were examined by Boysen et al. (2005). It turns out, that the estimate achieves the
optimal rates, if the true function f is of bounded total variation. Thus, it is natural to
assume that this also holds for more general operators K. However, it is known that in the
general inverse regression model this rate of convergence depends on the ill-posedness of
the problem. Consequently, different methods of analysis would be necessary to derive rates
of convergence. Moreover, as argued before, the computation time of the estimator grows
exponentially in the number of jumps. Therefore such an estimate would be of theoretical
interest only.

If one is interested in reconstructing the function f in an inverse regression model by a
step function, it is probably more reasonable to use a three step procedure as described at
the end of the discussion of the computational feasibility.

Singular integral kernels

Section 8.2 provides an example of an integral kernel which is not bounded. However, only
the special case of an Abel-type kernel and one jump is discussed. It would be interesting
to expand these results, and give convergence rates for a more general class of unbounded
kernels.

Moreover, it is quite unclear, what the asymptotic distribution of the jump estimates
is in such a setting. An indication is given by the results of Müller (1992), who derived a
normal distribution and faster rates than n−1/2 for a kernel based estimate of a jump in
the p-th derivative of the regression function.



Appendix A

Tools from mathematical statistics

A.1. Empirical process theory

In this section we introduce some uniform deviation inequalities from empirical process
theory. There is a large amount of literature on inequalities of this type. Good references
are Pollard (1984), van der Vaart and Wellner (1996), van der Vaart (1998), van de Geer
(2000) and Devroye and Lugosi (2001) to mention just a few.

The results cited below, are taken from van de Geer (2000). The error condition used in
that book is that there exist 0 < C0, σ0 <∞ such that

lim
n→∞

max
i=1...n

C2
0 E(exp(ε2i /C

2
0 )) ≤ σ2

0 .

This is obviously weaker than Assumption A with errors satisfying (A1).

The first theorem gives an exponential inequality for the least squares estimate depending
on the local entropy of some function space G.

Theorem A.1. Suppose Assumption A is met, the error satisfies (A1) and ĝn is given by

ĝn := argmin
g∈G

‖g0 + ε− g‖n .

For
Gn(δ) := {g ∈ G : ‖g − g0‖n ≤ δ}

take Ψ(δ) ≥ J(δ,Gn(δ), Qn) in such a way that Ψ(δ)/δ2 is a nonincreasing function of δ.
Then for a constant c depending only on Assumption (A1) and for

√
nδ2n ≥ cΨ(δn) (A.1)

we have for all δ ≥ δn

P(‖ĝn − g0‖n ≥ δ) ≤ c exp(−nδ2c−2) .

Proof. See Theorem 9.1, p. 151 in van de Geer (2000).

The next theorem gives a uniform deviation inequality depending on the entropy of the
function space.
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Theorem A.2. Suppose Assumption A is met and the error satisfies (A1). Moreover,
assume supg∈G ‖g‖n ≤ R. There exists a constant C depending only on Assumption (A1),
such that for all δ > 0 satisfying

√
nδ ≥ C

( ∫ R

0
H1/2(u,G, Qn)du ∨R

)
(A.2)

we have that

P
(

sup
g∈G

∣∣∣ 1
n

n∑
i=1

εn,ig(xi)
∣∣∣ ≥ δ

)
≤ C exp

(
− nδ2

C2R2

)
. (A.3)

Proof. See Lemma 3.2, page 29 in van de Geer (2000).

The last result gives stochastic convergence to zero of supg∈Gn(R) |〈ε, g〉n| under quite
general conditions on the entropy of Gn(R).

Lemma A.3. Assume ε1, . . . , εn are i.i.d. with mean zero and E(ε21) = σ2 < ∞. Set
Gn(R) = {g ∈ G : ‖g‖n ≤ R} and suppose that

1
n
H(δ,Gn(R), Qn) → 0 for all δ > 0, R > 0.

Then

sup
g∈Gn(R)

∣∣〈ε, g〉n∣∣ = sup
g∈Gn(R)

∣∣ 1
n

n∑
i=1

εig(xi)
∣∣ = oP (1)

for every R > 0.

Proof. This follows directly from the proof of Theorem 4.8, page 56 in van de Geer (2000).

A.2. Minimax estimation

In this section we introduce some tools from Tsybakov (2004) useful to obtain lower bounds
for estimation.

Assume θ ∈ Θ is some parameter, {Pθ, θ ∈ Θ} is some parametric family of probability
measures and we are given observations distributed according Pθ. The following theorem
gives a lower bound on the probability to identify θ = θ0 given θ ∈ {θ0, θ1, . . . , θM} in
dependence of the Kullback-Leibler distance dK(Pθ0 , Pθj

) for j = 1, . . . ,M .

Theorem A.4. Suppose M ≥ 2 and that Θ contains elements θ0, θ1, . . . , θM with

d(θj , θk) ≥ 2s > 0, ∀ 0 ≤ j < k ≤M ,

Pθj
� Pθ0 for all j = 1, . . . ,M and

1
M

M∑
j=1

dK(Pθj
, Pθ0) ≤ α logM ,
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with 0 < α < 1/10. Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α− 2

√
α

logM

)
> 0 .

Proof. See Theorem 2.5, page 85 in Tsybakov (2004). Note that, Tsybakov gives 0 < α <
1/8, which is to be a typo, since 1 − 2α − 2

√
α/ logM < 0 for α = 1/8, M = 2 if the

natural logarithm is used.

Application of Theorem A.4 requires the knowledge of the Kullback-Leibler distance of
two measures. The following lemma provides this distance for two normal measures with
the same variance. Though this result is standard, it is given for the sake of completeness.

Lemma A.5. Assume P and Q are measures belonging to normal distributions with vari-
ances σ2 and means µ1 and µ2. Then

dK(P,Q) = (2σ2)−1(µ1 − µ2)2 .

Proof. Denote by ϕµ,σ2 the density of a normal distribution with mean µ and variance σ2.
Compute

dK(P,Q) =
∫
ϕµ1,σ2(x)(log(ϕµ1,σ2(x))− log(ϕµ2,σ2(x)))dx

= (2σ2)−1

∫
ϕµ1,σ2(x)(−(x− µ1)2 + (x− µ2)2)dx

= (2σ2)−1

∫
ϕµ1,σ2(x)(2x(µ1 − µ2) + µ2

2 − µ2
1)dx

= (2σ2)−1(µ1 − µ2)2 .

This proves the claim.
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Appendix B

Tools from approximation theory

B.1. Positive definite functions

In the literature the definition below is mostly given for complex-valued functions. If we
consider real-valued functions only, we have to restrict the definition to symmetric functions
to be consistent with the usual notion.

Definition B.1. A symmetric, continuous function Φ : Rd → R is called positive definite
if for all n ∈ N, all sets of pairwise distinct points X = x1, . . . , xn ⊂ Rd and all α ∈ Rn\{0}
we have

n∑
i=1

n∑
k=1

αiαkΦ(xi − xk) > 0 . (B.1)

If in (B.1) “≥” holds instead of “>”, the corresponding function is called positive semi-
definite.

Some elementary properties of positive semi-definite functions are Φ(0) ≥ 0 and

|Φ(x)| ≤ Φ(0) for all x ∈ Rd .

Positive semi-definite functions can be characterized in terms of Fourier transforms. The
most well-known result in this direction is probably Bochner’s theorem, which states that
positive semi-definite functions are those functions, which are Fourier transform of finite
nonnegative Borel measures.

The following theorem gives an easily verifiable condition for positive definite functions.

Theorem B.2. Suppose that Φ ∈ L1(Rd) is continuous. Then Φ is positive definite if and
only if Φ is bounded and its Fourier transform is nonnegative and nonvanishing.

Proof. See Theorem 6.11 in Wendland (2005).

One example for a class of positive definite function are the truncated power functions.

Theorem B.3. The function (1− |x|)n
+ is positive definite on Rd for n ≥ bd/2c+ 1.

Proof. See Theorem 6.20 in Wendland (2005).
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B.2. Native spaces and reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces are well known and have been thoroughly studied in
numerical analysis. A classical reference is Meschkowski (1962). Results on the properties
of the reproducing kernel Hilbert space given the reproducing kernel, can be found in
Madych and Nelson (1988, 1990) as well as in the overview articles Schaback (1999, 2000) .
Another good reference is the recent book of Wendland (2005).

This section gives the main notions and some useful results. We start with the definition
of a reproducing kernel.

Definition B.4. Let H be a real Hilbert space of functions f : Ω → R. A function Φ :
Ω× Ω → R is called a reproducing kernel for H if

Φ(y, ·) ∈ H for all y ∈ Ω

and
f(y) = 〈f,Φ(y, ·)〉H for all f ∈ H and all y ∈ Ω .

Closely linked to the notion of a reproducing kernel is that of a native space.

Definition B.5. If a symmetric positive definite function Φ : Ω×Ω → R is the reproducing
kernel of a real Hilbert space H of real functions on Ω then H is called the native space for
Φ.

Existence and uniqueness of the native space given some positive definite function Φ is
given by the following theorem.

Theorem B.6. Any positive definite function Φ on some domain Ω has a unique native
space NΦ(Ω). It is the closure of the space

FΦ(Ω) :=
{ M∑

i=1

λiΦ(xi, ·) : λi ∈ R, xi ∈ Ω, M ∈ N
}
,

under the inner product

〈 M∑
i=1

λiΦ(xi, ·)
M ′∑
j=1

µjΦ(yj , ·)
〉

Φ
=

M∑
i=1

M ′∑
j=1

λiµjΦ(xi, yj) .

The elements of NΦ(Ω) can be interpreted as functions via

f(x) =
〈
f,Φ(x, ·)

〉
Φ
.

Proof. See Schaback (1999), Theorem 8.

As in Theorem B.6, for any given positive definite function Φ we will denote the corre-
sponding native space by NΦ(Ω).

The next theorem gives a characterization of the native space in the case Ω = Rd by
Fourier transforms. It shows that the native space consists of smooth functions.
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Theorem B.7. Suppose Φ ∈ C(Rd) ∩ L1(Rd) is a real-valued positive definite function.
Define

G :=
{
f ∈ C(Rd) ∩ L2(Rd) : f̂

/√
Φ̂ ∈ L2(Rd)

}
and equip this space with the bilinear form

〈f, g〉G := (2π)−d/2

∫
Rd

f̂(x)ĝ(x)

Φ̂(x)
dx .

Then G is a real Hilbert space with inner product 〈·, ·〉G and reproducing kernel Φ, where Φ
is interpreted as kernel via Φ(x, y) = Φ(x − y). Hence G is the native space of the kernel
Φ on Rd, i.e. NΦ(Rd) = G.

Proof. See Theorem 10.12 in Wendland (2005).

The next results gives the dependency of NΦ(Ω) on Ω.

Theorem B.8. Assume that Ω ⊂ Rd and f ∈ NΦ(Rd). Then the restriction g := f |Ω is
contained in NΦ(Ω) and

〈g, g〉NΦ(Ω) ≤ 〈f, f〉NΦ(Rd) .

Proof. See Theorem 10.47 in Wendland (2005).
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List of symbols

L−→ Convergence in distribution, page 16
p−→ Convergence in probability, page 16
‖ · ‖n Empirical L2 norm, page 15
〈·, ·〉n Empirical scalar product, page 15
dae Integer larger than or equal to a, page 17
bac Integer smaller than or equal to a, page 17
dK(P,Q) Kullback-Leibler distance of P and Q, page 16
P � Q P is absolutely continuous with respect to Q, page 16
Φ̂ Fourier transform of Φ, page 33
1(cond) Indicator for some boolean expression (cond), page 17
a ∨ b max(a, b), page 17
a ∧ b min(a, b), page 17
βt Transpose of β, page 17
d(A,B) Hausdorff distance of A,B, page 15
∆K(x, a, b) Modified version of K 1[a,b)(x), page 26

f̂λn Penalized least squares estimate, page 29
f̂n Restricted least squares estimate, page 28
f (m) m-th derivative of f , page 34
f(x)+ Positive part of f , page 17
Γk(τlow, τup) Set of ordered points ⊂ [τlow, τup]k+2, page 14
H(δ,G) Entropy for Lebesgue measure, page 16
H(δ,G, Q) Entropy for measure Q, page 16
h(g) Minimal jump height of g, page 15
I(a, b) Interval [a ∧ b, a ∨ b], page 17
J (g) Set of jumps of g, page 15
J(δ,G, Q) Entropy integral, page 16
K Operator, page 26
K Integral kernel, page 26
mJ(g) Minimal distance of two jumps of g, page 84
N(δ,G) Covering number for Lebesgue measure, page 16
N(δ,G, Q) Covering number, page 16
NΦ(Ω) Native space, page 102



106 List of Symbols

OP (an) Stochastic order symbol, page 16
oP (an) Stochastic order symbol, page 16
Qn Empirical measure, page 16
S(R) Schwartz space, page 34
supp(f) Support of f , page 17
T∞(τlow, τup) Set of step functions on [τlow, τup], page 14
T∞,R(τlow, τup) Set of bounded step functions on [τlow, τup], page 14
Tk(τlow, τup) Set of step functions with k jumps on [τlow, τup], page 14
Tk,R(τlow, τup) Set of bounded step functions with k jumps on [τlow, τup], page 14



Bibliography

Abramovich, F. and Silverman, B. W. (1998). Wavelet decomposition approaches to
statistical inverse problems. Biometrika 85 115–129.

Achieser, N. I. (1992). Theory of approximation. Dover Publications Inc., New York.
Translated from the Russian and with a preface by Charles J. Hyman, Reprint of the
1956 English translation.

Bissantz, N., Hohage, T. and Munk, A. (2004). Consistency and rates of convergence
of nonlinear Tikhonov regularization with random noise. Inverse Problems 20 1773–
1789.

Boysen, L., Kempe, A., Liebscher, V., Munk, A. and Wittich, O. (2005). Consis-
tencies and rates of convergence of jump-penalized least squares estimators. Preprint.

Braess, D. (1986). Nonlinear approximation theory, vol. 7 of Springer Series in Compu-
tational Mathematics. Springer-Verlag, Berlin.

Braun, J. V., Braun, R. K. and Müller, H.-G. (2000). Multiple changepoint fitting
via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87
301–314.

Carlstein, E. and Müller, H.-G. (eds.) (1994). Change-point problems. Institute
of Mathematical Statistics Lecture Notes—Monograph Series, 23, Institute of Mathe-
matical Statistics, Hayward, CA. Papers from the AMS-IMS-SIAM Summer Research
Conference held at Mt. Holyoke College, South Hadley, MA, July 11–16, 1992.

Chaudhuri, P. and Marron, J. S. (2000). Scale space view of curve estimation. Ann.
Statist. 28 408–428.

Christensen, J. and Rudemo, M. (1996). Multiple change-point analysis of disease
incidence rates. Prev. Vet. Med. 54–76.

Devroye, L. and Lugosi, G. (2001). Combinatorial methods in density estimation.
Springer Series in Statistics, Springer-Verlag, New York.
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