
Generalized Seiberg–Witten equations
and hyperKähler geometry

Dissertation
zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten
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Abstract

In this thesis we study a certain generalization of the gauge–theoretical
Seiberg–Witten equations over a source 4–manifold X. The generalization
involves a hyperKähler manifold M with certain symmetries and a nonlinear
Dirac operator D acting on equivariant maps u (called spinors) with values
in M .

We prove a classification theorem for such hyperKähler manifolds and
propose a new method for their construction. This allows us to obtain new
examples of hyperKähler and closely related to them quaternionic Kähler
manifolds. Our construction is quite explicit and, in some cases, this allows
to obtain not only existence results but also hyper– and quaternionic–Kähler
structures themselves.

We also prove that harmonic spinors, i.e. solutions of the equation D u =
0, are closely related to solutions of the so–called Cauchy–Riemann–Fueter
equation. We then prove that solutions of the Cauchy–Riemann–Fueter equa-
tion, which are believed to be a ”right” analogue of holomorphic maps in
quaternionic context, are exactly those maps, whose differential has no tri-
holomorphic component. Hence we introduce the term ”aholomorphic” for
such maps. It is also shown that harmonic spinors can be regarded as twisted
version (in an appropriate sense) of aholomorphic maps.

The last part of the thesis is devoted to the generalized Seiberg–Witten
equations over Kähler surfaces. In this case we prove that the space of solu-
tions has a holomorphic description (in the usual complex sense). Further, if
X is a product of two holomorphic curves we show (modulo adiabatic limit
conjecture) that there exists a relation between holomorphic curves (in the
sense of Gromov theory), the symplectic vortex equations [18] and the gen-
eralized Seiberg–Witten equations.
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Chapter 1

Introduction

1.1 Problem’s origin and survey of literature

1.1.1 Classification problem in dimension 4 and Sei-
berg–Witten equations

The problem of classification of smooth manifolds has long been studied.
Since Poincaré’s time we know that any compact orientable 2–manifold looks
like a connected sum of a number of tori (or a sphere):

Figure 1.1: Two dimensional manifolds: connected sum of 3 tori.

Since classification of groups, which can occur as the fundamental group of
a manifoldM with dimM ≥ 4, is algorithmically impossible, the classification
problem in dimension 4 and greater is algorithmically unsolvable. However,
one can try to classify simply connected manifolds instead.

The classification of compact simply connected smooth manifolds in di-
mension 5 and greater is now also known, however the problem in physically
most interesting cases of dimensions 3 and 4 still remains unsolved. First
Freedman [27] answered the question when two given 4–manifolds are home-
omorphic. Unlike in dimension 2, 4–manifolds can be homeomorphic but not
diffeomorphic! It was Donaldson [21] who made the first breakthrough in
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smooth topology in dimension 4 in 1980s. Roughly speaking the idea was
the following: if two given homeomorphic 4–manifolds have different spaces
of solutions to some differential equationa, then they can not be diffeomor-
phic. The equation that Donaldson made use of was the celebrated Anti–
Self–Duality (ASD for short) equation

F+
a = 0, (1.1)

where a is a connection on a chosen principal SU(2) bundle and F+
a denotes

the self–dual part of the curvature Fa. Equation (1.1) has long been known in
mathematical physics as Yang–Mills equation. Studying the ASD–equation,
Donaldson was able to prove for example the following theorems:

Theorem A. There exist compact topological 4–manifolds, which admit no
smooth structure.

Theorem B. There exist compact smooth 4–manifolds, which are homeo-
morphic but not diffeomorphic.

The nonlinearity of the ASD equation presented serious difficulties and a
lot of new techniques had to be developed for its analysis.

Ten years later Seiberg and Witten [62] proposed a system of equations
(since then it carries their name) which is now the main tool in 4–manifolds
studies (see section 1.3.2 for definition). The roots of the system lie in the
depth of the still rather mysterious notion of S–duality in N = 2 supersym-
metric Yang–Mills theory [62, 63].

Nonlinearity of the Seiberg–Witten equations is much milder than the
nonlinearity of (1.1). Besides, the gauge group is abelian in Seiberg–Witten
theory in contrast to Donaldson theory and therefore the analysis involved
was also easier. But the main surprise was that a lot of results obtained via
Donaldson theory were much more easily reproved in the realm of Seiberg–
Witten theory.

The most direct application of the Seiberg–Witten invariantb was found
by Fintushel and Stern [26]. They constructed an infinite family of mani-
folds homeomorphic but not diffeomorphic to a K3 surface. Their idea was
to perform a surgery along a knot (or link) embedded into a 4–manifold. If
we start with a K3 surface, then the resulting manifold can still be home-
omorphic to the original surface. However, the Seiberg–Witten invariant of
a resulting manifold is described by the Alexander polynomial of the knot

ait seems inevitable at present that one has to consider nonlinear equations to capture
properties of smooth structure.

bcertain number derived from the space of solutions to the Seiberg–Witten equations;
see definitions 1.1.5 and 1.1.6.

5



and is different from the Seiberg-Witten invariant of the original K3 surface.
Consequently, the original manifold and the one obtained after surgery can
not be diffeomorphic.

Shortly after the Seiberg–Witten equations were discovered, other applica-
tions were also found. For example, it is interesting to ask whether a smooth
manifold admits a metric of positive scalar curvature. It was known, that
there are topological obstructions for the existence of a metric with positive
scalar curvature: for example, among surfaces only spheres admit such metric.
As Witten already remarked, a smooth 4–manifold with positive scalar curva-
ture must have vanishing Seiberg–Witten invariant. Consequently, there is an
obstruction to the existence of a metric with positive scalar curvature, which
depends on a smooth structure, not just the topological type of a manifold.

Other links with Riemannian geometry have been found by LeBrun [49].
He showed that any Einstein 4–manifold X with non–trivial Seiberg–Witten
invariant satisfies the following inequality: χ(X)−3σ(X) ≥ 0, where χ(X) is
the Euler characteristic and σ(X) is the signature of X. This is a restriction
on the existence of an Einstein metric.

It was shown by Witten that a connected sum of two 4–manifolds, which
both satisfy b+2 > 1, has vanishing Seiberg–Witten invariant [72]. Conse-
quently, a 4–manifold with non–trivial Seiberg–Witten invariant is smoothly
indecomposable. On the other hand, Taubes showed [68] that a symplectic
4–manifold with b+2 > 1 has non–vanishing Seiberg–Witten invariant. Thus,
symplectic manifolds with b+2 > 1 are indecomposable.

A powerful tool in symplectic geometry is the Gromov invariant [53]. It is
based on counting pseudo–holomorphic curves representing a given homology
class. Taubes [67] showed that the Seiberg–Witten and Gromov invariants
coincide for compact symplectic manifolds with b+2 > 1. Another relation be-
tween solutions of Seiberg–Witten equations and pseudo–holomorphic curves
can be found in [17].

1.1.2 Basics of the Seiberg–Witten theory

In this section we briefly review the basics of the Seiberg–Witten theory. All
statements and constructions are well–known and documented and therefore
we will omit proofs and provide only references. For precise definitions and
more explanations see section 1.3. A systematic exposition can be found, for
example, in [54, 55, 56, 52].

LetX be a smooth closed orientable 4–manifold with a Riemannian metric
gX. Choose a Spinc(4)–structure with a determinant line bundle L and let a
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be a connection on L. Consequently we get a Dirac operator

Da : Γ(W+) −→ Γ(W−),

where W± are spinor bundles. Let Φ(u) denote a self–dual 2–form (see (1.7))
associated to a spinor u ∈ Γ(W+). The following nonlinear first order partial
differential equations for a pair (a, u){

Da u = 0,

F+
a + Φ(u) = 0,

(1.2)

are called Seiberg–Witten equations .

Theorem 1.1.1. [55] The system (1.2) is elliptic (and hence Fredholm).

A gauge group G = Map(X,S1) acts on solutions (see (1.9)) and we get
the associated moduli space (1.10) MSW . In general, there is no reason to
hope that the moduli space will be nonsingular. However one can achieve
smoothness by suitable perturbations.

There are two common ways of perturbations: either one uses parame-
ters that are naturally incorporated into the problem (such as a Riemannian
metric in case of the ASD–equation or an almost complex structure in case
of the symplectic vortex equation) or perturbs the equations themselves. In
the Seiberg–Witten case the latter approach works.

Theorem 1.1.2. [55] Assume b+2 (X) > 1. Then, for a generic self–dual 2–
form η, the moduli space Mη

SW corresponding to the following perturbation of
the Seiberg–Witten equations{

Da u = 0,

F+
a + Φ(u) = η,

(1.3)

is a nonsingular smooth oriented c manifold of dimension

d =
1

4

(
c1(L)2 − 2χ(X)− 3σ(X)

)
,

where χ(X) and σ(X) denote the Euler characteristic and the signature of X
correspondingly.

crequires certain choices; see [55] for details.
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An important property of the Dirac operator is the Weitzenböck formula
(see for example [48, 55, 52]), which relates the square of the Dirac operator
with the Laplacian of ∇â and components of the curvature â, where â is
a connection on spinor bundles determined by a and the Levi–Civita one.
In particular, it enables us to obtain a priori bounds for solutions of the
Seiberg–Witten equations. In turn, such a priori estimates imply the following
compactness result.

Theorem 1.1.3. [55] The Seiberg–Witten moduli space Mη
SW is compact.

The compactness property is probably the most important feature of the
Seiberg–Witten moduli space. It is the main advantage over other similar
theories.

Another important consequence of the Weitzenböck formula is that the
Seiberg–Witten equations admit variational formulation.

Proposition 1.1.4. [52] Solutions (a, u) of (1.2) are absolute minima of the
following functional

S(a, u) =

∫
X

(
|∇âu|2 + |F+

a |2 +
s

4
|u| 2 +

1

8
|u| 4

)
d volX,

where s is a scalar curvature of X.

Definition 1.1.5 (Seiberg–Witten invariant: simple case). Pick a
Spinc(4) structure PSpinc and suppose that dimMη

SW = 0. It follows from
Theorem 1.1.3 that Mη

SW is a finite collection of points and we define a
Seiberg–Witten invariant to be

SW (PSpinc) =
∑

p∈Mη
SW

εp ,

where εp = ±1 according to the orientation at the point p.

It is a little bit more difficult to define Seiberg–Witten invariant in the
general case. First pick a base point x0 ∈ X and consider a subgroup

G0 = {g ∈ G
∣∣ g(x0) = 1} ⊂ G.

Then the space of solutions to (1.3) modulo G0 is an S1 principal bundle over
Mη

SW . Let L →Mη
SW be the associated line bundle.

Definition 1.1.6 (Seiberg–Witten invariant: general case). Let d =
dimMη

SW . A Seiberg–Witten invariant is the following number

SW (PSpinc) =

∫
Mη

SW

c1(L)d/2, d ≥ 0, d is even

and SW (PSpinc) = 0 otherwise.
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Denote by S(X) the set of isomorphism classes of Spinc(4) structures
on X.

Theorem 1.1.7. [55] The function

SW : S(X) −→ Z

is well–defined. It is zero on all but finitely many elements of S(X).

In the remaining part of this section we briefly consider the Seiberg–
Witten equations in the case when the source manifold X is Kähler. Let KX

be the canonical line bundle. Pick a Spinc(4) structure and let K−1
X ⊗ L2

0

be its determinant line bundle. Then W+ ∼= Λ0(X;L0) ⊕ Λ0,2(X;L0) and
hence a spinor u can be written as a pair u = (α, β) with α ∈ Ω0(X;L0) and
β ∈ Ω0,2(X;L0).

Theorem 1.1.8. [55] Assume that X is Kähler and let (a, u) be a solution
to the Seiberg–Witten equations (1.2). Then the following holds

• connection a defines a holomorphic structure on the determinant line
bundle, i.e. (Fa)

0,2 = 0;

• ᾱβ = 0;

• α is a holomorphic section of L0 with respect to the holomorphic struc-
ture induced by a and β̄ is a holomorphic section of KX ⊗ L−1

0 .

It is sometimes possible to say more about solutions to the Seiberg–Witten
equations on Kähler surfaces as well as about the invariant.

Proposition 1.1.9. [55] Let X be a Kähler surface.

• If degKX < 0, then the only solutions to Seiberg–Witten equation are
reducible.

• Suppose degKX > 0. Then SW (PK−1
X

) = 1, where PK−1
X

denotes a

Spinc(4) structure, whose determinant line bundle is K−1
X .

Finally we would like to note that it is possible to compute the Seiberg–
Witten invariant for minimal algebraic surfaces of general type, which hap-
pens to be non–trivial. Similar results for symplectic manifolds were obtained
by Taubes [66, 67, 68].
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1.1.3 Generalized Seiberg–Witten theory

In the recent paper [59] V. Pidstrigach proposed a certain generalization of
the Seiberg–Witten equations (1.2). The basic idea was to replace the spinor
vector bundle by a certain fibre bundle with a nonlinear fibre. More pre-
cisely, a fibre of the spinor bundle W+ can be identified with the simplest
hyperKähler manifold H ∼= C2; then one replaces H with an arbitrary hy-
perKähler manifold M with certain symmetries. It is then possible to define
a Dirac operator, which acts on sections of the ”nonlinear spinor bundle”.
Such generalizations of the Dirac operator were already known to physicists
[3, 6]. This idea was also described in [69] for 3–dimensional manifolds.

Further, given a spinor u, i.e. a section of nonlinear spinor bundle, it is
possible to construct a self–dual 2–form Φ(u) with the help of a hyperKähler
momentum map. Hence, the generalization of the Seiberg–Witten equations
can be written in the same form as (1.2).

It was shown in [59] that a variant of the Weitzenböck formula also holds
for the above mentioned generalized Dirac operator. This is used to show
that the moduli space associated to the generalized Seiberg–Witten equa-
tions is compact for the abelian gauge group provided the fibre M admits a
hyperKähler potential, i.e. a single function, which is a Kähler potential for
all complex structures simultaneously.

1.1.4 HyperKähler and quaternionic Kähler geometries

The previous section motivates our interest in hyperKähler manifolds and
closely related to them quaternionic Kähler ones. Their study is very inter-
esting on its own and there are several reasons for that. As it was shown by
Berger [8] there are very few groups, which can occur as a holonomy group
of a simply connected nonsymmetric locally irreducible Riemannian mani-
fold. In particular, Berger’s list contains Sp(n) and Sp(n)Sp(1): the first is
a holonomy group of a hyperKähler manifold while the second of a quater-
nionic Kähler one. It means that hyper– and quaternionic–Kähler manifolds
are examples of basic Riemannian geometries. One can describe hyperKähler
manifolds in other words as follows.

Definition 1.1.10. A Riemannian manifold (M, g) is hyperKähler if it ad-
mits three covariantly constant complex structures Ir, r = 1, 2, 3 with quater-
nionic relations

I1I2 = −I2I1 = I3, I2
r = −id,

compatible with Riemannian structure: g(Ir·, Ir·) = g(·, ·).
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Hitchin [38] proved in 1987 extremely useful criteria of integrability of
complex structures: Ir are covariantly constant iff 2–forms ωr(·, ·) = g(·, Ir·)
are symplectic (i.e. closed). ometimes it is convenient to consider all three
symplectic forms together as one Im H–valued 2-form:

ω = ω1i+ ω2j + ω3k.

In contrast to hyperKähler manifolds, a quaternionic Kähler manifold N
admits complex structures (and correspondingly 2–forms ωr) only locally.
Nevertheless the 4–form Ω = w1∧ω1 +w2∧ω2 +w3∧ω3, called a fundamental
4–form, exists globally and determines the quaternionic Kähler structure. In
this case the integrability means that the fundamental 4–form is covariantly
constant and this is equivalent to dΩ = 0 provided dimN ≥ 12. In dimension
4 quaternionic Kähler by definition means Einstein and self–dual.

Another source of interest to hyper– and quaternionic–Kähler manifolds is
physics. It is well known [61] that both classes of manifolds are automatically
Einstein and therefore they are of particular interest to physicists. On the
other hand, such manifolds naturally appear in the supersymmetric σ–model
[2, 3, 6].

One of the major problems of quaternionic Riemannian geometry is to
construct examples of hyper– and quaternionic–Kähler manifolds. It is a
sharp contrast to complex geometry, where there are no problems to construct
Kähler manifolds.

The first nontrivial example of a hyperKähler metric was one constructed
by Eguchi and Hanson [23] on T ∗CP1, which was lately generalised by Calabi
[13] to all T ∗CPn. In dimension four Gibbons and Hawking [34] described all
hyperKähler manifolds with S1–symmetry (multiinstanton metrics in physical
terminology; see example 2.2.4 for details).

The basic examples of compact hyperKähler manifolds are flat torii and
K3 surfaces. These are in fact the only compact hyperKähler 4–manifolds.
The existence of a hyperKähler metric on a K3 surface follows from the Yau’s
proof of the Calabi conjecture [74, 75]. For a more explicit construction, see
[50].

Another useful source of hyperKähler manifolds is (finite– and infinite–
dimensional) hyperKähler reduction [36]: if a group G acts isometrically and
triholomorphically on a hyperKähler manifold M with momentum map µ :
M −→ g∗ ⊗ Im H and a ∈ z ⊗ Im H is a regular value of µ, then µ−1(a)/G
inherits hyperKähler structure.

One of the most important features about hyperKähler structures is that
many natural spaces occurring in gauge theory possess such structure. The
key point is that very often such spaces can be viewed as infinite–dimensional
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hyperKähler reductions. Among examples are self–dual instantons over R4

[51] or more generally over a 4–dimensional hyperKähler manifold [41, 47] and
closely related spaces: monopoles [19, 5, 39, 9], solutions to the self–duality
equations over a Riemann surface [38] and Nahm moduli spaces [19, 45].
Coadjoint orbits of complex semisimple Lie groups [46, 44] form a particularly
interesting class of hyperKähler manifolds. In fact, the hyperKähler structure
on coadjoint orbits is obtained representing them as suitable Nahm moduli
spaces.

Concerning quaternionic Kähler manifolds, their geometry strongly de-
pends on the sign of the scalar curvature s, which is automatically constant.
In particular, if s = 0 the manifold is locally hyperKähler and therefore there
is a strong tendency to include s 6= 0 in the definition of quaternionic Kähler
manifolds. We are mainly interested in positive quaternionic Kähler manifolds
and consider very briefly some of their properties below.

We would like to point out that quaternionic Kähler manifold N is not
Kähler unless s = 0. Moreover, a positive quaternionic Kähler manifold does
not even admit a compatible almost complex structure [1].

On the other hand, the quaternionic structure of N can always be un-
twisted by passing to the total space of a suitable fibre bundle. In particular,
Swann shows [65] that for a quaternionic Kähler manifold N with positive
scalar curvature there exists a hyperKähler manifold U(N), which admits a
hyperKähler potential (a single function which is a Kähler potential for all
complex structures simultaneously). On the other hand, to any hyperKähler
manifold with hyperKähler potential one can associate a positive quaternionic
Kähler one. Note that the existence of a hyperKähler potential was required
to get a compactness property of the moduli space associated to the general-
ized Seiberg–Witten equations (see section 1.1.3).

All positive symmetric quaternionic Kähler manifolds were classified in
[73] and they are called ”Wolf spaces”. They are the only known examples
of complete positive quaternionic Kähler manifolds. For example, in dimen-
sion 4 there are only two such manifolds: HP1 ∼= S4 and CP2. However, it
is no longer true if one considers orbifolds instead of manifolds: correspon-
dent examples were constructed by Galicki and Lawson [32] with the help of
quaternionic Kähler reduction method developed in the same paper.

It is completely clear that neither this section nor Section 1.1.1 provide
complete overview of the corresponding subjects and it was definitely not the
author’s aim. My best hope was to indicate some important recent develop-
ments in the corresponding areas related to the research of this thesis.
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1.2 Overview of the thesis

The central aim of my research presented in this thesis was the study of
the generalized Seiberg–Witten equations (see section 1.1.3). The problem
involves certain objects, although defined earlier but studied from a different
perspective, such as nonlinear Dirac operator or hyperKähler manifolds with
prescribed symmetries. To get a better insight into the main problem we
study in the first two chapters their properties alone. The last chapter is
devoted to the generalized Seiberg–Witten equations.

HyperKähler geometry. As we have already remarked the moduli
space of the generalized Seiberg–Witten equations is compact provided the
target hyperKähler manifold M admits a hyperKähler potential. In order to
formulate the equations it is necessary that M also admits a triholomorphic
action of a Lie group G (see [59] for details). In this thesis only the sim-
plest case G = S1 will be considered. Natural questions arise: how many
such manifolds do we know? what are their properties? These questions are
addressed in Chapter 2.

A partial answer to the above questions is contained in Swann’s paper [65].
Namely, Swann shows that to each hyperKähler manifold with a hyperKähler
potential and G–symmetry corresponds a quaternionic Kähler manifold with
positive scalar curvature also carrying a G–symmetry and vice versa. The
problem is that we know only a few examples of quaternionic Kähler manifolds
with positive scalar curvature.

In Chapter 2 we obtain a classification of all hyperKähler manifolds M
with a hyperKähler potential and additional triholomorphic and isometric
action of S1. It turns out, that such manifolds can be reconstructed by their
hyperKähler reductions M̃ with respect to a nonzero value of momentum
map. The main result of the chapter is Theorem 2.1.3, which describes how
to construct M as well as its hyperKähler structure by a given M̃ . This
construction can be viewed as an inverse one to the hyperKähler reduction.
Moreover, the hyperKähler structure of M is described quite explicitly which
allows to obtain not only existence results, but metric and symplectic forms
themselves. Dividing such manifolds by H∗ as described in [65] we obtain
quaternionic Kähler manifolds with S1–symmetry (Theorem 2.1.8). In this
way we get new examples of hyper– and quaternionic– Kähler manifolds (see
Section 2.3). We prove for example that the total spaces of OP1(m),m ≥ 1
admit an Einstein and self–dual metric with positive scalar curvature. On
the other hand we obtain interesting relations between known manifolds. For
example, it turns out that Gibbons–Hawking spaces are closely related to
nilpotent orbits (see example 2.2.4).
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Chapter 2 is self–contained and can be regarded as a contribution to the
hyper– and quaternionic–Kähler geometry.

Nonlinear Dirac operator. In Chapter 3 we study properties of the
generalized Dirac operator acting on sections of a certain fibre bundle, where
fibre is a hyperKähler manifold with certain symmetries. We show that the
Dirac operator D can be regarded as an analogue of ∂–operator in complex
geometry. Similarly, harmonic spinors, i.e. solutions of the equation D u = 0,
can be regarded as an analogue of (anti)holomorphic sections in complex
context.

Consider for simplicity a case when the source 4–dimensional manifold X
is itself hyperKähler with complex structures (J1, J2, J3), while (I1, I2, I3) de-
note the complex structures of M . Then harmonic spinors can be viewed
as maps u : X → M satisfying the quaternionic analogue (3.15) of the
Cauchy–Riemann equation. We show in Proposition 3.3.10 that maps sat-
isfying (3.15), i.e. which are believed to be a ”right” analogue of holomorphic
maps in quaternionic context, are exactly those, whose differential has no
triholomorphic component (meaning ”commuting with all 3 complex struc-
tures”). Hence we propose the term ”aholomorphic” for such maps. We also
extend the notion of aholomorphicity into quaternionic Kähler context via
the Swann construction [65].

Generalized Seiberg–Witten equations over Kähler surfaces. In
the last chapter we study the generalized Seiberg–Witten equations over
Kähler surfaces as the title suggests. In particular we prove an analogue
of Theorem 1.1.8 and consider connections of the generalized Seiberg–Witten
equations over Kähler surfaces with other different gauge theories studied in
[40, 18, 58]. We consider THC–system defined in [40] (see also (4.8)) over the
product of Riemann surfaces as a prototype of generalized Seiberg–Witten
equations. We show (modulo adiabatic limit conjecture) in Theorem 4.5.6
that in the limit as a metric over one of the curves becomes very large so-
lutions of the THC–system become holomorphic curves in the moduli space
of the symplectic vortex equations [18] over the other curve. Then we show
(also modulo adiabatic limit conjecture) that analogous result holds for the
generalized Seiberg–Witten equations (see theorem 4.6.3).

The main results of the thesis were presented on the Research seminars of
Prof.V.Pidstrygach, Göttingen 2002–2005; Summer School Algebraic Groups,
Göttingen June–July, 2005; Symposium Geometry, Conformal Field Theory
and String Theory, Durham, United Kingdom, July 2005; Seminar Gauge
theory and Topology of the Sonderforschungsbereich 701, Bielefeld, Octo-
ber 2005.
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1.3 Addendum: conventions

Quaternions and related groups. By H we denote the 4–dimensional
R–algebra of quaternions with the basis (1, i, j, k) such that

i2 = j2 = k2 = −1, ij = −ji = k.

It follows that any quaternion can be written as h = h0 +h1i+h2j+h3k with
real numbers hl. Sometimes it is convenient to decompose H = C⊕ j C ∼= C2

and we write h = a+jb, where a, b ∈ C, a = h0+h1i, b = h2−h3i. Certainly,
one may also decompose H = C ⊕ Cj, however the previous decomposition
better suits our further conventions. The function ‖ · ‖ : H → R+,

‖h‖2 =
4∑
l=0

h2
l = | a| 2 + | b| 2

turns H into the normed space. Further, by the real part of h we mean h0 ∈ R
and by its imaginary part the quaternion h1i + h2j + h3k. Consequently we
have one more decomposition H = R ⊕ Im H, which defines a quaternionic
conjugation (or, simply conjugation): h̄ = Reh− Imh.

By H∗ we will denote the group of invertible quaternions. A quaternionic
unitary group Sp(1) is defined as the subgroup of H∗ consisting of quaternions
of unitary length:

Sp(1) = {q ∈ H : |q| = 1}.

Observe that the group Sp(1) is isomorphic to SU(2). Indeed, recall that
H ∼= C2. Then the isomorphism is given via the map q 7→ Aq : H → H,
Aqh = qh.

Further, the group Spin(4) is a product of two copies of Sp(1):

Spin(4) = Sp+(1)× Sp−(1),

where we use subscripts ”± ” to distinguish between different copies. Notice
that Spin(4) is a double cover of SO(4) and the isomorphism Spin(4)/± 1 ∼=
SO(4) is given by

(q+, q−) 7→ Bq+,q− : H → H, Bq+,q−h = q−hq̄+

and we also take the obvious identification H ∼= R4 into account.
Finally, we define

Spinc(4) = Spin(4)×{±1} S
1 =

{
[q+, q−, λ] : q± ∈ Sp±(1), λ ∈ S1

}
.
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Notice that Spinc(4)/S1 ∼= SO(4). Hence, the representation of Spinc(4),
which induces a standard representation of SO(4) is given by

[q+, q−, λ] 7→ Bc
[q+,q−,λ] : H → H, Bc

[q+,q−,λ] h = q−hq̄+. (1.4)

Spinor Representations. By W we mean the standard SU(2)– repre-
sentation on C2 or equivalently Sp(1)–representation on H by multiplication
on the left. Further W± denote Spinc(4)–representations on H given by

([q+, q−, λ], h) 7→ q±hλ (1.5)

and R4 denotes representation of the same group on the same space given by
([q+, q−, λ], h) 7→ q−hq̄+.

A Clifford multiplication is a homomorphism of Spinc(4) representations

R4 ⊗W+ −→ W− (1.6)

defined by the formula
h1 ⊗ h2 7→ h1h2.

1.3.1 Dirac operator

Let X4 be a closed oriented Riemannian manifold and Pso be its principal
SO(4) bundle of orthonormal oriented frames. A Spinc(4) principal bundle
PSpinc is called a lifting of Pso if PSpinc/S1 ∼= Pso, where S1 ⊂ Spinc(4) is a
standard embedding.

Proposition 1.3.1. [55] For any oriented 4–manifold X the principal SO(4)
bundle Pso of orthonormal oriented frames can be lifted to Spinc(4) structure
PSpinc.

Now pick any Spinc(4) principal bundle PSpinc as in the above proposition.
If we define the ”determinant representation” L of Spinc(4) to be

ρdet :
(
[q+, q−, λ], z

)
7→ λ2 z, z ∈ C

then we get a corresponding Hermitian line bundled L = PSpinc×Spinc(4), ρdet
C

called the determinant line bundle. If H2(X,Z) has no torsion, then the
lifting PSpinc is uniquely determined by the Chern class of the determinant
line bundle c1(L) ∈ H2(X,Z).

dwe follow the standard convention to denote representations and corresponding bundles
by the same letters.
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The representations (1.5) give rise to the corresponding vector bundles
W±. It follows from (1.6) that we have a homomorphism of vector bundles
TX ⊗W+ → W−. The Riemannian metric of X provides an isomorphism
TX ∼= T ∗X and therefore we have a map

Cl : T ∗X ⊗W+ −→ W−

also called a Clifford multiplication.
Further, a choice of connection a on Pdet = PSpinc/Spin(4) together with

the Levi–Civita connection on Pso determines a connection â on PSpinc . The
connection a can be equivalently viewed as a Hermitian connection on the
determinant line bundle L. Thus we have a covariant derivative

∇â : Γ(W+) −→ Γ(W−).

Definition 1.3.2 (Dirac operator). The first order differential operator
given by the sequence

Da : Γ(W+)
∇â

−−→ Γ(T ∗X)⊗ Γ(W+)
Cl−−→ Γ(W−)

is called the Dirac operator .

1.3.2 Seiberg–Witten equations

Let R3
+ denote the standard representation of SO+(3). If we identify R3 with

Im H, then the induced representation of Spinc(4) in quaternionic notations
can be written as ([q+, q−, λ], h) 7→ q+hq̄+, h ∈ Im H. Consider the following
nonlinear equivariant map

Φ : W+ −→ R3
+ Φ(h) = hih̄.

It follows that we obtain the corresponding nonlinear map from the positive
spinor bundle into the bundle of self–dual 2–forms on X:

Φ : W+ −→ Ω2
+(X). (1.7)

Definition 1.3.3 (Seiberg–Witten equations). The system of partial dif-
ferential equations {

Da u = 0,

F+
a + Φ(u) = 0,

(1.8)

where unknowns are a connection a and spinor u is called the Seiberg–Witten
equations .
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1.3.3 Seiberg–Witten moduli space

Let A(Pdet) denote the space of connections on the principal bundle Pdet. A
gauge group G = Map(X,S1) of smooth maps from X into S1 acts on pairs
(a, u) ∈ A(Pdet)× Γ(W+):

g · (a, u) = (a− 2g−1dg, gu), g ∈ G. (1.9)

The above defined action of the gauge group induces action on the space
of solutions to the Seiberg–Witten equations [55]. It is clear that the action is
free provided u 6≡ 0. By a suitable perturbation of equations one can achieve
[55] that (a, 0) is not a solution of the Seiberg–Witten equations if b+2 > 1.

Definition 1.3.4. The quotient space

MSW =
{
(a, u) ∈ A(Pdet)× Γ(W+)

∣∣ (a, u) solves (1.8)
}/
G (1.10)

is called a (Seiberg–Witten) moduli space.
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Chapter 2

HyperKähler manifolds with
hyperKähler potential and
triholomorphic S1–action

In order to define a nonlinear generalization of the Dirac operator (see Sec-
tion 3.2), the target hyperKähler manifold (M, g, I1, I2, I3) must admit certain
symmetries. The most important ingredient is a so–called permuting action
of Sp(1) (or SO(3)).

Definition 2.0.5. An isometric action of the group Sp(1) is called permuting
if the following holds

Lζω = [ζ, ω] ⇐⇒ (Lq)
∗ ω = qωq̄, q ∈ Sp(1), (2.1)

where ζ ∈ Im H ∼= sp(1) and ω = ω1i + ω2j + ω3k is the quaternion–valued
2–form with ωl(·, ·) = g(·, Il·).

We will also say, that Sp(1) with the above property permutes complex
structures of M .

Swann [65] shows that permuting action of Sp(1) can be extended to
homothetic action of the whole H∗ = R∗

+ × Sp(1) if the vector field IYI is
independent of a complex structure I, where YI is a Killing vector field of
S1 ⊂ Sp(1) which preserves I. In particular

I1Y1 = I2Y2 = I3Y3 = −Y0, (2.2)

where we put Yr = YIr for short and a vector field Y0 generates homothetic
action of R∗

+ ⊂ H∗ : (Lr)
∗g = r2g. We will also call such H∗–action permut-

ing . Under these circumstances N = M/H∗ has positive scalar curvature and
carries a quaternionic Kähler structure.
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On the other hand, for any quaternionic Kähler manifold N with positive
scalar curvature Swann constructs a hyperKähler manifold U(N) which enjoys
permuting action of H∗. Such manifolds are also distinguished by the property
of carrying a hyperKähler potential , i.e. function ρ : M −→ R which is Kähler
potential for each complex structure simultaneously.

It was shown in [59] that the Seiberg–Witten moduli space associated to
the generalized Seiberg–Witten equations is compact provided M admits a
permuting H∗ action or, equivalently, a hyperKähler potential.

In this section we study hyperKähler manifolds M with hyperKähler po-
tential and triholomorphic action of S1. The triholomorphic action of S1 is
necessary for the definition of the Seiberg–Witten equations. First we show
how to reconstruct the manifold M by its hyperKähler reduction M̃ with re-
spect to a nonzero value of momentum map. This is done in Theorem 2.1.3,
which simultaneously provides a classification of hyperKähler manifolds with
hyperKähler potential and triholomorphic action of S1. Then we describe cor-
respondent quaternionic Kähler manifolds (see Theorem 2.1.8). In Section 2.3
we describe new examples of hyper– and quaternionic–Kahler manifolds mak-
ing use of a certain freedom in choice of parameters of the construction. We
prove for example that the total spaces of OP1(m),m ≥ 1 admit an Ein-
stein and self–dual metric with positive scalar curvature. The last section is
devoted to Kähler structure on quaternionic Kähler manifolds with positive
scalar curvature naturally invoked by the action of S1. Theorem 2.4.1 was
known earlier from twistor theory, however our proof is new. We not only
prove the existence of Kähler structure, but also compute it explicitly.

2.1 S1–Symmetry

Let M be a hyperKähler manifold with H∗–action permuting complex struc-
tures. Suppose also that M admits a hyperKähler action of S1 (which we
prefer to denote S1

0 in order to distinguish this group from another one,
which will appear later and is also isomorphic to S1 ) with momentum map
µ : M −→ Im H,

dµ = −ıK0ω,

where K0 is a Killing vector field of S1
0 . We assume also that these two actions

commute. It follows that

µ ◦ Lx = xµx̄, x ∈ H∗. (2.3)

Now fix an imaginary quaternion, say i, and consider corresponding level
set P = µ−1(i). Since xm = Lxm ∈ µ−1(xix̄) and H∗ acts transitively on

20



Im H \ {0} the map

f : H∗ × P −→M \ µ−1(0), (x,m) 7→ xm, (2.4)

is surjective. Notice that
M0 = M \ µ−1(0)

is open and everywhere dense submanifold of M .
However the map f is not injective. Indeed µ−1(i) = P inherits action

of Stabi = S1 ⊂ H∗ (to which we now give a label S1
r ) and it follows that

points (x,m) and (xz, z̄m), z ∈ S1
r are mapped into the same point xm in

M0. Thus the manifold M0 can be described as H∗ ×S1
r
P. Now the challenge

is to express the hyperKähler structure of M0 in terms of its ”components”
H∗ and P .

While the first ”component” H∗ is quite easy the second one needs to be
understood more deeply for the future purposes.

2.1.1 Induced structure on P

First observe that M̃ := P/S1
0 is just a hyperKähler reduction of M and

therefore is itself a hyperKähler manifold. Here we assume that i is a regular
value of the momentum map. Thus P can be thought of as S1

0–principal
bundle over M̃ . Moreover it comes equipped with a connectiona, namely

ξ(·) = vg(K0, ·) ∈ Ω1(P ),

where v−1 = g(K0, K0), v : M̃ −→ R>0. Notice that the induced metric g̃ on
M̃ , the connection ξ and the function v together determine the metric on P
since T. P ∼= RK0 ⊕ T. M̃ :

gP = g̃ + v−1ξ2. (2.5)

The connection ξ defines a horizontal lift û ∈ TP of a tangent vector u ∈ TM̃ .
As we have already remarked P inherits the action of S1

r , which descends
to M̃ . The latter action has a nice property (inherited from M) of fixing
complex structure I1 and rotating the plane spanned by I2 and I3. Denote
by Kr a Killing vector field of S1

r–action on M̃ and by w the squared norm
of Kr:

w : M̃ → R>0, w = ‖Kr‖2.

Below we will also use a quaternion–valued 1–form η generated by Kr:

η = ıKr g̃ + ıKr ω̃ ∈ Ω1(M̃ ; H). (2.6)

aNotice that we identify the Lie algebra of S1 with R, not with iR.
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Further, recall that Y1 is the Killing vector field of the S1
r–action on P .

Then Y1 and Kr are related as follows. First observe that T.M = T. P ⊕
RI1K0 ⊕ RI2K0 ⊕ RI3K0 and one also has

T. P = Kerµ∗, µ∗I1K0 = v−1i, µ∗I2K0 = v−1j and µ∗I3K0 = v−1k.

Now taking x = exp(it) in formula (2.3) and differentiating with respect to t
one obtains that the formula Y1 = K̂r +aK0 holds on P . The same argument
gives that µ∗Y0 = 2i or in other words Y0 = Ŷ ′ + bK0 + 2vI1K0. It follows
from the equation I1Y0 = Y1 that Y ′ = −I1Kr, b = 0, a = −2v. Summing
up we obtain

Y0 = −I1K̂r − 2vI1K0, Y1 = K̂r + 2vK0,

Y2 = I3K̂r + 2vI3K0, Y3 = −I2K̂r − 2vI2K0.
(2.7)

Remark 2.1.1. Since actions of S1
0 and S1

r ⊂ H∗ commute, it follows that
the connection ξ enjoys additional property of being S1

r invariant. On in-
finitesimal level this means that 0 = LY1ξ = ıY1dξ + dıY1ξ = ıKrFξ + 2dv,
where Fξ ∈ Ω1(M̃) denotes the curvature form of ξ. Thus, invariance of ξ
with respect to action of S1

r on P is equivalent to

ıKrFξ + 2dv = 0. (2.8)

Note also that the function v is S1
r–invariant by the same reason.

2.1.2 Metric

Since M is a Riemannian manifold the map f , defined by (2.4), induces
a metric f ∗g on H∗ × P . Notice that since f is not injective, this metric
degenerates on tangent vectors to fibres. Our next aim is to calculate f ∗g
explicitly in terms of tensors on H∗ and M̃ as well as the connection ξ and
function v.

Let (x,m) ∈ H∗ × P and (h1, v1), (h2, v2) ∈ TxH∗ × TmP . Put also
α = x−1h1, β = x−1h2 ∈ T1H∗ and denote by Yα and Yβ the Killing vector
fields of H∗–action at the point m corresponding to the Lie algebra elements
α and β. Obviously (Y1,Yi,Yj,Yk) = (Y0, Y1, Y2, Y3). Further, one has

f ∗g
(
(h1, v1), (h2, v2)

)
= g
(
(Lx)∗(Yα + v1), (Lx)∗(Yβ + v2)

)
=

= |x| 2g
(
Yα + v1, Yβ + v2

)
.

Thus we see that essentially the following three terms have to be computed:
g(Yα,Yβ), g(Yα, v) and g(v1, v2).
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The first term. Since relation (2.2) holds, we get

g(Yα,Yβ) = g

(
3∑
r=0

αrYr ,

3∑
r=0

βrYr

)
= g(Y0, Y0)Re

(
αβ̄
)
.

Recall that w denotes the squared norm of Kr and therefore it follows from
(2.7) that g(Y0, Y0) = w + 4v2v−1 = 4v + w. So finally we have

g(Yα,Yβ) = (4v + w)Re
(
αβ̄
)
.

The second term. First decompose v into horizontal and vertical parts:
v = v̂′ + ξ(v)K0. Taking into account formulae (2.7) again, one obtains

g(Yβ, v) = g(Yβ, v
′) + 2β1ξ(v) =

= g̃(−β0I1Kr + β1Kr + β2I3Kr − β3I2Kr, v
′) + 2β1ξ(v) =

= β0ω̃1(Kr, v
′) + β1g̃(Kr, v

′)− β2ω̃3(Kr, v
′) + β3ω̃2(Kr, v

′) + 2β1ξ(v).

Slightly abusing notations, we also use the letter η for the pull–back of the
form (2.6) to P . Then the above formula can be written in a more compact
form:

g((Rm)∗β, v) = −Re
(
2βiξ(v) + βiη(v)

)
.

The third term. This has been already computed and is given by (2.5).

Remark 2.1.2. Below we follow conventions of [35]. In particular, if ζ1 and
ζ2 are (quaternion–valued) 1–forms, then

(ζ1 � ζ2)(v1, v2) = ζ1(v1)ζ2(v2) + ζ1(v2)ζ2(v1),

(ζ1 ∧ ζ2)(v1, v2) = ζ1(v1)ζ2(v2)− ζ1(v2)ζ2(v1).

Now, recalling that α and β contain shift by x−1 = x̄/|x| 2 we obtain a
final form of the metric:

f ∗g = (4v + w)Re dx⊗ dx̄− Re (x̄dxi� (2ξ + η)) + |x| 2
(
g̃ + v−1ξ2

)
. (2.9)

2.1.3 Symplectic forms

In this section we will describe symplectic forms in the similar manner as we
did with the metric above.

The pull-back of ω can be written as

f ∗ω((h1, v1), (h2, v2)) = ω((Lx)∗(Yα + v1), (Lx)∗(Yβ + v2)) =

= xω(Yα + v1,Yβ + v2)x̄,
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where α and β are the same as in Section 2.1.2. Therefore we have to compute
three terms analogous to those, which appear in the metric computation.

The first term. The computation is similar to the one above:

ω(Yα,Yβ) =

= ig(α0Y0 + α1Y1 + α2Y2 + α3Y3, β0Y1 − β1Y0 + β2Y3 − β3Y2)+

+ jg(α0Y0 + α1Y1 + α2Y2 + α3Y3, β0Y2 − β1Y3 − β2Y0 + β3Y1)+

+ kg(α0Y0 + α1Y1 + α2Y2 + α3Y3, β0Y3 + β1Y2 − β2Y1 − β3Y0) =

= g(Y0, Y0) ( i(−α0β1 + α1β0 − α2β3 + α3β2)+

+ j(−α0β2 + α2β0 + α1β3 − α3β1) + k(−α0β3 + α3β0 − α1β2 + α2β1)) =

= (4v + w)Im
(
αβ̄
)
.

The second term. Decomposing v into horizontal v̂′ and vertical ξ(v)K0

parts one obtains:

ω(Yα, v) = i(−2α0ξ(v) + ω1((Rm)∗ α, v̂
′))+

+ j(−2α3ξ(v) + ω2((Rm)∗ α, v̂
′)) + k(−2α2ξ(v) + ω3((Rm)∗ α, v̂

′)) =

= i(−2α0ξ(v)− α0g̃(Kr, v
′) + α1ω̃1(Kr, v

′)− α2ω̃2(Kr, v
′)− α3ω̃3(Kr, v

′))+

+ j(−2α3ξ(v) + α0ω̃3(Kr, v
′) + α1ω̃2(Kr, v

′) + α2ω̃1(Kr, v
′)− α3g̃(Kr, v

′))+

+ k(−2α2ξ(v)− α0ω̃2(Kr, v
′) + α1ω̃3(Kr, v

′) + α2g̃(Kr, v
′) + α3ω̃1(Kr, v

′)) =

= −2Im (αi)ξ(v)− Im (αiη(v)).

The third term. It is easy to see that

ω(v1, v2) = ω(v′1, v
′
2) = ω̃(v1, v2),

where the pull–back is also implied.

Thus, recalling that α = x−1h1 = |x|−2x̄h1, the Im H–valued form ϕ = f ∗ω
can be written as

ϕ =
4v + w

2
dx ∧ dx̄+ xω̃x̄− 2Im (dxix̄) ∧ ξ − Im (dxi ∧ ηx̄). (2.10)

2.1.4 Inverse Construction

Now we can look on the above considerations in reverse order in the following
sense. Suppose M̃ is a hyperKähler manifold with metric g̃ and hyperKähler
structure ω̃. Further, a group S1

r acts on M̃ preserving complex structure
I1 and rotating I2 and I3 in the sense (Lz)

∗ω̃ = zω̃z̄, z ∈ S1
r . Pick an S1

0–
principal bundle P with a connection ξ and extend the action of S1

r to P such
that it commutes with S1

0 (at least locally such extension always exists).
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Consider further a manifold M0 = H∗ ×S1
r
P . We would like to define a

metric g and hyperKähler structure ω on M0 such that their pull–backs to
H∗×P are given by formulae (2.9) and (2.10) respectively. The first thing to
show is that these expressions define invariant and basic tensors on H∗ × P .
One can easily check that both tensors are invariant provided ξ is S1

r–invariant
(see also remark 2.1.5). Let χ be a Killing vector field of the S1

r–action on
H∗ × P . It follows that χ = K∗ − Y1, where K∗ is a Killing vector field of
the S1

r–action on H∗ by right multiplication, i.e. dx(K∗) = xi. Then the
equalities ıχg = 0, ıχϕ = 0 can be checked directly. For example, the last
one follows from the following computation:

(ıχϕ)(α, v) =
1

2
(4v + w)

(
xiᾱ− αxi

)
− xω̃(Kr, v)x̄−

− 2Im (xiix̄ξ(v) + αix̄ 2v)− Im (xiiη(v)x̄+ αiη(Kr)x̄) =

= (4v + w)Im (xiᾱ)− xω̃(Kr, v)x̄− 2 · 0−
− 4vIm (xiᾱ) + xω̃(Kr, v)x̄− wIm xiᾱ =

= 0.

The next question is wether the 2–form ω ∈ Ω2(M0; Im H) is closed. As
we have seen, the pull–back ϕ of ω to H∗ × P is basic and therefore this
is equivalent to ϕ being closed. Now dϕ is a quaternion–valued 3–form on
H∗×P and by the Künneth formula Ω3(H∗×P ; Im H) ∼=

⊕3
l=0 Ωl(H∗; Im H)⊗

Ω3−l(P ; Im H). Thus dϕ decomposes in 4 components: dϕ =
∑3

l=0(dϕ)(l, 3−l),
(dϕ)(l, 3−l) ∈ Ωl(H∗; Im H) ⊗ Ω3−l(P ; Im H). It is easy to see that (dϕ)(0, 3)

and (dϕ)(3, 0) vanish identically and it remains to compute the remaining two
components of dϕ.

It follows directly from the expression for ϕ that

(dϕ)(1, 2) = dx ∧ ω̃x̄+ xω̃ ∧ dx̄+ 2Im (dxix̄) ∧ Fξ + Im (dxi ∧ dηx̄) =

= Im (dx ∧ (2ω̃ + 2iFξ + idη)x̄)

and this vanishes iff
−2iω̃ + 2Fξ + dη = 0.

By the Cartan formula [i, ω̃] = LKr ω̃ = d(ıKr ω̃). But then the above
equation can be rewritten as 2Fξ = −d(ıKr g̃)−d(ıKr ω̃)+2iω̃ = −d(ıKr g̃)−2ω̃1.
Thus the vanishing of (dϕ)(1, 2) is equivalent to

Fξ = −1

2
d(ıKr g̃)− ω̃1. (2.11)
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For the other nontrivial component of dϕ one obtains

(dϕ)(2, 1) =
1

2
(4dv + dw) ∧ dx ∧ dx̄+ 2Im (dxi ∧ dx̄) ∧ ξ − Im (dxi ∧ η ∧ dx̄) =

=
1

2
Im (dx ∧ (−(4dv + dw)− 4iξ − 2iη) ∧ dx̄).

Suppose θ is a quaternion–valued 1–form on M̃ and consider the equation
Im (dx ∧ θ ∧ dx̄) = 0 on H∗×M̃ , which turns out to be equivalent to Re θ = 0.
Indeed, dx∧θ∧dx̄ = −(Re θ)∧dx∧dx̄+dx∧Im θ∧dx̄ and the last summand
is real–valued: dx ∧ Im θ ∧ dx̄ = (−1) dx ∧ Im θ ∧ dx̄ = dx ∧ Im θ ∧ dx̄.

Therefore (dϕ)(2, 1) vanishes iff

4dv + dw = 2ıKr ω̃1. (2.12)

Thus, the 2–form ϕ descends to a closed form on M0 = H∗ ×S1
r
P if and

only if the three equations are satisfied : (2.8), (2.11) and (2.12). But the last
equation follows from the first two. Indeed, since S1

r acts isometrically we have
0 = LKr(ıKr g̃) = ıKr d(ıKr g̃) + d(ıKr ıKr g̃) which means ıKr d(ıKr g̃) = −dw.
Now taking the operator ıKr of both sides of equation (2.11) and using (2.8)
we obtain equation (2.12).

It was first remarked in [36] that a hyperKähler manifold with an S1–
action which preserves one complex structure and permutes the other two
has a Kähler potential. Since our conventions slightly differ we reproduce
this simple computation.

Let ρ̃ : M̃ −→ R be a momentum map of S1
r , i.e. a solution of the equation

dρ̃ = −ıKr ω̃1.

On the one hand we have d(I∗2dρ̃) = d i
(
∂2 − ∂̄2

)
ρ̃ = −2i∂2∂̄2ρ̃. But on

the other hand I∗2 ıKr ω̃1 = ıKr ω̃3 and therefore −d(I∗2dρ̃) = d(I∗2 ıKr ω̃1) =
d(ıKr ω̃3) = LKr ω̃3 = 2ω̃2. Putting this together we obtain that ρ̃ satisfies

i∂2∂̄2ρ̃ = ω̃2

or, in other words, ρ̃ is a Kähler potential for ω̃2. It is clear that ρ̃ is also
a Kähler potential for ω̃3 since these forms are not distinguished by the S1

r–
action. However ρ̃ needs not to be a Kähler potential for ω̃1.

Now if we remark that I∗1dρ̃ = ıKr g̃ and consequently

−2i∂1∂̄1ρ̃ = d(ıKr g̃),

then equation (2.11) can be written in a particularly nice form: Fξ = i∂1∂̄1ρ̃−
ω̃1, i.e. the function ρ̃ is a hyperKähler potential iff Fξ = 0.
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Now we can find the function v (up to a constant) from equation (2.12)
(or, equivalently, from (2.8)):

v = −w + 2ρ̃

4
. (2.13)

Therefore the following theorem is essentially proven.

Theorem 2.1.3. Let a group S1
r act isometrically on a hyperKähler manifold

M̃ such that (Lz)
∗ω̃ = zω̃z̄. Further, let P −→ M̃ be an S1

0–principal bundle
with a connection ξ ∈ Ω1(P ). Suppose also, that the function v defined by
formula (2.13) is everywhere positive, where w denotes squared norm of the
Killing vector field Kr of S1

r , while ρ̃ is its momentum map. Extend the action
of S1

r to P such that it commutes with the action of S1
0 . Then (2.9) and (2.10)

define a hyperKähler structure on M0 = H(M̃) = H∗ ×S1
r
P if and only if

Fξ = i ∂1∂̄1ρ̃− ω̃1 . (2.14)

Furthermore the left action of H∗ induces a transitive action on the 2–
sphere of complex structures and therefore H(M̃) has a hyperKähler potential

ρ = −4v + w

2
|x| 2. (2.15)

Finally, for any hyperKähler manifold M with permuting action of H∗

and triholomorphic one of S1, the open everywhere dense submanifold M0 =
M \ µ−1(0) can be obtained as H(M̃), where M̃ is as above.

Proof. It remains to show that the symmetric tensor given by formula (2.9)
provides a non–negative bilinear form at any point of the tangent space to
H∗ × P as well as to prove formula (2.15) for the hyperKähler potential.

First we have a decomposition T (H∗ × P ) = TH ⊕ TP = TH ⊕ RK0 ⊕
π∗TM̃ . Further decompose TM̃ as span (Kr, I1Kr, I2Kr, I3Kr)⊕E, where E
denotes the orthogonal complement. Thus we have

T (H∗ × P ) = TH⊕ RK0 ⊕ π∗span(Kr, I1Kr, I2Kr, I3Kr)⊕ π∗E,

and we can write a tangent vector as w = w∗ + aK0 + βKr + v, where a is a
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real number and β is a quaternionb. If dx(w∗) = α ∈ H, then

g(w,w) = (4v + w)|α| 2 + |x| 2
(
| β| 2 + ‖v‖2 +

a2

v

)
− 2Re (x̄αi(2a+ wβ)) =

= 4v|α| 2 − 4aRe (x̄αi) + |x| 2v−1a2 +

+ w
(
|α| 2 − 2Re (x̄αiβ) + | βx| 2

)
+ |x| 2‖v‖2 =

=

∣∣∣∣2√vαi− ax√
v

∣∣∣∣2 + w
∣∣αi− βx̄

∣∣2 + |x| 2‖v‖2 ≥ 0.

Further, it was shown in [11] that if a hyperKähler manifold M admits
a permuting H∗–action, then the squared norm of any Killing vector field
generating this action is a hyperKähler potential (up to a constant −2c). Now
the permuting action of H∗ on H(M̃) is induced by the left multiplication on
the first component of H∗ × P . In particular, the Killing vector field of R∗ ⊂
H∗ is the vector field w∗ s.t. dx(w∗) = x. Its squared norm (multiplied by
−1/2) with respect to metric (2.9) is exactly the right–hand side of (2.15).

Remark 2.1.4. It is easy to see that the hyperKähler reduction of H(M̃)
by S1

0 is M̃ (certainly not a surprise in view of Section 2.1.1). Thus the
construction H(·) may be regarded as a kind of ”hyperKähler induction”, i.e.
an inverse construction to the hyperKähler reduction.

Remark 2.1.5. The equation (2.14) determines the bundle P : its Chern
class is − 1

2π
[ ω̃1] ∈ H2(M̃ ; Z) and the integrality of 1

2π
[ ω̃1] is the only ob-

struction for the existence of solutions to (2.14). Furthermore, any solution
ξ is automatically S1

r–invariant and the Killing vector field Y1 of S1
r–action

on P satisfies Y1 = K̂r + 2vK0. Indeed, as we have seen the right hand side
of equation (2.14) may be written in the form −1

2
d(ıKr g̃) − ω̃1 and this im-

mediately implies S1
r–invariancy of ξ. Further, we may decompose Y1 on the

horizontal and vertical parts: Y1 = K̂r+aK0. Then by Remark 2.1.1 we have
ıKrFξ + da = 0. On the other hand equation (2.14) implies ıKrFξ = −2dv
and the statement follows.

It is worth pointing out that equality a = 2v holds only up to a constant.
This phenomenon will be discussed in details in Section 2.3 below. At this
point we will ignore this subtlety implying that a constant is chosen properly,
i.e. such that equation Y1 = K̂r + 2vK0 holds.

bAny tangent space of a hyperKähler manifold carries an action of H. In particular if
β = β0 + β1i + β2j + β3k ∈ H, we write βKr instead of β0Kr +

∑3
l=1 βlIlKr for the sake

of brevity.
cthe minus sign appears because of different sign convention in the definition of hy-

perKähler potential.
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Remark 2.1.6 (Complex structures). We would like to indicate how one
can describe complex structures ofH(M̃). It is convenient for a while to index
complex structures of a hyperKähler manifold by imaginary quaternions q of
unit length. Let Iq be one of the complex structures of M and (h, v) ∈
TH∗ × TP . Consider the equation

f∗(h1, v1) = Iqf∗(h, v), (2.16)

where the map f is as defined in (2.4). Its solution (h1, v1) = Jq(h, v) is de-
fined only up to the Killing vector field χ; although the operator Jq is not de-
fined on T (H∗×P ), it is well–defined on the factorspace T (H∗×P )/span (χ).
Since we are free to add any vector of span (χ) to both (h, v) and (h1, v1) it
can be assumed that ξ(v) = 0 = ξ(v1). Under these conventions equation
(2.16) has a unique solution Jq(h, v) = (qh, Ix−1qx v).

Remark 2.1.7. Suppose that the S1
r–action is induced by a permuting H∗–

action (and standard inclusion S1
r ⊂ H∗), or equivalently, the momentum

map of the S1
r–action is not only Kähler potential but also hyperKähler [65].

It follows from equation (2.14) that the bundle P is flat and we can take it to
be trivial so that topologically H(M̃) = H∗ × M̃ . Moreover, it follows from
the proof of the theorem that v is constant so that we may put v = 1. This
determines a metric and symplectic forms.

Further, it turns out that in this case H(M̃) is isometric to H∗ × M̃
with its product metric. Indeed, direct computation shows that the map
H(M̃) −→ H∗ × M̃, (x,m) 7→ (x, xm) is an isometry.

2.1.5 Quaternionic Flip

In the previous section for any hyperKähler manifold M̃ with a certain S1–
symmetry we have constructed another hyperKähler manifold M0 = H(M̃)
with hyperKähler potential. Then Swann’s results [65] imply that the ma-
nifold N0 = M0/H∗ = P/S1

r is quaternionic Kähler. In this section we will
describe its quaternionic Kähler structure.

First notice that in order to obtain quaternionic Kähler structure on N0

we have to consider a riemannian version of the quotient M0/H∗, that is to
pick a level set of a hyperKähler potential and divide it by the group Sp(1);
in this case we may view complex structures of N0 as induced by those of M0

on span (Y0, Y1, Y2, Y3)
⊥ ⊂ TM0.

Let us again return to the viewpoint of Section 2.1.1, i.e. P = µ−1(i) ⊂M
and let λ = (4v + w)−1/2. Since the restriction of the hyperKähler potential
ρ to P equals −(4v + w)/2, a map

l : p 7→ λ(p) · p = Lλ(p) p, p ∈ P, (2.17)
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is a diffeomorphism between P and Q = ρ−1(−1/2)∩µ−1
c (0)∩{µ1 > 0}, where

µc = µ2 + iµ3. Thus our next aim is to compute the tensors g(pr◦ l∗ · , pr◦ l∗ ·)
and ω(pr◦l∗ · , pr◦l∗ ·), where pr means a projection onto span (Y0, Y1, Y2, Y3)

⊥.
First we may decompose a vector u ∈ TpP ⊂ TpM as u′ +

∑3
l=0 alYl. The

coefficients al can be found from the following relations:

a0g(Y0, Y0) = g(u, Y0) = g(u,−I1K̂r − 2vI1K0) = ω̃1(Kr, u),

a1g(Y1, Y1) = g(u, Y1) = g(u, K̂r + 2vK0) = 2ξ(u) + g̃(Kr, u),

a2g(Y2, Y2) = g(u, Y2) = g(u, I3K̂r + 2vI3K0) = −ω̃3(Kr, u),

a3g(Y3, Y3) = g(u, Y3) = g(u,−I2K̂r − 2vI2K0) = ω̃2(Kr, u).

The expressions for al become more compact in quaternionic notations. In-
deed, if we put a = a0 + a1i+ a2j + a3k ∈ H and recall the definition (2.6) of
1–form η, then

a =
1

4v + w

(
2ξ(u) + η̄(u)

)
i.

Since l∗ =
(
Lλ(p)

)
∗+dλ Y0(l(p)), we have pr l∗v =

(
Lλ(p)

)
∗v
′ and therefore

g(pr l∗u , pr l∗v) = g
((
Lλ(p)

)
∗u
′ ,
(
Lλ(p)

)
∗v
′) =

= λ2g(u′ , v′) =

= λ2g(u− aY0, v − bY0) =

= λ2
(
g(u, v)− g(aY0, v)− g(u, bY0) + g(aY0, bY0)

)
,

where we also put v = v′ + bY0. Now it is easy to compute every single
summand in the last expression. Indeed, the first summand is given by for-
mula (2.5). Taking into account decompositions (2.7) one obtains g(aY0, v) =
−Re (ai(2ξ + η)(v)) = (4v + w)−1Re ((2ξ + η̄)(u)(2ξ + η)(v)). Since vec-
tors Yl are pairwise orthogonal we get: g(aY0, bY0) = (4v + w)Re

(
ab̄
)

=
(4v + w)−1Re ((2ξ + η̄)(u)(2ξ + η)(v)). Finally, gathering all terms together
one has after a simplification:

gN =
1

4v + w

(
g̃ +

1

v
ξ2 − 1

2(4v + w)
(2ξ + η̄)� (2ξ + η)

)
.

It is convenient to introduce a 1–form

ψ =
1

g(Y1, Y1)
g(Y1, ·) =

1

4v + w
(2ξ + ıKr g̃), (2.18)

which is a connection on the principal fibre bundle P −→ N0 (assuming
that S1

r acts freely on P ), i.e. it is S1
r–invariant and ψ(Y1) = 1. Then the
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expression for the metric takes the following form:

gN =
1

4v + w

(
g̃ +

1

v
ξ2 − 1

2
ψ2

)
− 1

2(4v + w)2

3∑
l=1

(ıKr ω̃l)
2. (2.19)

The arguments similar to those at the beginning of Section 2.1.4 show
that formula (2.19) defines a metric on N0.

The fundamental 4–form Ω can be obtained in the similar manner. Indeed,

χ(u, v) = ω(pr l∗u, pr l∗v) = λ2ω(u− aY0, v − bY0) =

= λ2(ω(u, v)− ω(aY0, v)− ω(u, bY0) + ω(aY0, bY0)).

Arguing similarly as we did when computing the metric, we obtain finally

χ =
1

4v + w
ω̃ − 1

2(4v + w)2
(2ξ + η̄) ∧ (2ξ + η).

Componentwise spelling of this formula is

χ1 =
1

4v + w
(ω̃1 − ψ ∧ ıKr ω̃1) +

1

(4v + w)2
ıKr ω̃2 ∧ ıKr ω̃3,

χ2 =
1

4v + w
(ω̃2 − ψ ∧ ıKr ω̃2)−

1

(4v + w)2
ıKr ω̃1 ∧ ıKr ω̃3,

χ3 =
1

4v + w
(ω̃3 − ψ ∧ ıKr ω̃3) +

1

(4v + w)2
ıKr ω̃1 ∧ ıKr ω̃2.

(2.20)

With respect to the action of S1
r on P all three forms χl ∈ Ω2(P ) are basic,

however only χ1 is invariant:

LY1χ1 =
1

(4v + w)2
(−2ıKr ω̃3 ∧ ıKr ω̃3 + ıKr ω̃2 ∧ 2ıKr ω̃2) = 0,

LY1χ2 =
1

4v + w
(−2ω̃3 + ψ ∧ 2ıKr ω̃3) +

1

(4v + w)2
ıKr ω̃1 ∧ 2ıKr ω̃2 = −2χ3,

LY1χ3 =
1

4v + w
(2ω̃2 − ψ ∧ 2ıKr ω̃2)−

1

(4v + w)2
ıKr ω̃1 ∧ 2ıKr ω̃3 = 2χ2,

It follows that a 4–form

Ω = χ1 ∧ χ1 + χ2 ∧ χ2 + χ3 ∧ χ3 (2.21)

is basic and invariant and therefore descends to N0. Integrability of such
defined quaternionic Kähler structure follows from integrability of the hy-
perKähler structure on M0 = H(M̃) = U(N0) [65].

Theorem 2.1.8. Let the assumptions of Theorem2.1.3 be satisfied. Then
N0 = Q(M̃) = P/S1

r is a quaternionic Kähler manifold with respect to the
metric (2.19) and the fundamental 4–form (2.21), where χl and ψ are defined
by (2.20) and (2.18) respectively. Moreover Q(M̃) admits a quaternionic
Kähler action of S1 and its Swann bundle U(N0) is H(M̃).
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2.2 Examples

Example 2.2.1 (T ∗CPn with the Calabi metric). The hyperKähler quo-
tient of Hn+1 by S1 acting by multiplication on the left with respect to non–
zero value of momentum map is topologically T ∗CPn. Hitchin [37] shows,
that the metric coincides with the one defined by Calabi [13]. Therefore
H(T ∗CPn) = Hn+1 with its flat metric and Q(T ∗CPn) = HPn (in both cases
with zero level set of corresponding momentum map being removed).

Example 2.2.2 (Flat manifold, adjoint action). Let us take a copy of
quaternions Hy as a manifold M̃ with the following action of S1

r : (z, y) 7→ zyz̄
(one can also regard H as T ∗C with fibrewise action of S1

r ; see also remark
2.2.3). In this case 1/4(w+2ρ̃) = 1/2(y2

2 +y2
3), where y = y0 +y1i+y2j+y3k.

Adding 1/2 we may write function v in the form

v =
1

2
(1− y2

2 − y2
3)

and it is positive on R2
y0 y1

×D2
y2 y3

, where D2 ⊂ R2 is an open disc of radius 1.
The principal bundle P is trivial and therefore Q(R2 × D2) = R2 × D2 with
the following metric:

gN =
1

2(1 + d)

(
1− d

1 + d
Re dy ⊗ dȳ +

4d

1− d 2
(y0dy1 + y3dy2)

2−

− 1

1 + d
(y0dy1 + y3dy2)� (y2dy3 − y3dy2)

)
,

where d = y2
2 + y2

3. Therefore the above metric is Einstein and self–dual.
However it is incomplete.

Similarly, one can compute the metric and symplectic forms on H(R2 ×
D2) = H∗ × R2 ×D2 but the metric is also incomplete.

Remark 2.2.3. The above manifolds are examples of a large class of hy-
perKähler manifolds admitting S1

r–action. Namely Kaledin [43] and indepen-
dently Feix [24] proved the existence of a hyperKähler metric on a (neighbor-
hood of the zero section of) cotangent bundle T ∗M to a real–analytic Kähler
manifold M. The above examples show that the function v can be both pos-
itive everywhere and only on a proper open subset of T ∗M; also H(T ∗M)
can be both complete and incomplete.

Example 2.2.4 (Gibbons–Hawking Spaces). As we have already men-
tioned in the introduction, all hyperKähler 4–manifolds with S1–symmetry
were described by Gibbons and Hawking [34] and their construction is as
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follows. If Z4 is hyperKähler and admits S1–symmetry with a Killing vector
field K0, then its hyperKähler momentum map µ = µ1i + µ2j + µ3k repre-
sents Z as a fibration over R3 with generic fibre S1, so that, excluding critical
points of the momentum map, one can write the metric as

gGH = ν
(
dx2

1 + dx2
2 + dx2

3

)
+ ν−1ξ2, xl = µl, l = 1, 2, 3, (2.22)

where ν : R3 −→ R>0, ν
−1 = ‖K0‖2, and ξ is a connection form. It is then

an easy exercise to write down 2–forms which are closed provided

Fξ = − ∗ dν. (2.23)

It follows form the Bianchi identity that ν is harmonic. We would like to
point out that Z4 is determined by the function ν (harmonic and positive)
since the connection ξ can be found from equation (2.23). The Gibbons–
Hawking–Ansatz is a choice of a particular function ν :

ν(x) =
n∑
i=1

1

|x− yi|
, yi ∈ R3.

In general the above 4–manifold does not admit an S1
r–action. However

when all the poles yi of the function ν lie on one line (say x1–axis), then
such an action does exist; its projection to R3 ∼= Im H is then (z, x) 7→
zxz̄, x ∈ Im H. A direct (and tedious) computation shows that the function
v (see (2.13) ) is everywhere positive and therefore the construction H(Z) (see
Theorem 2.1.3) is defined on the whole Gibbons–Hawking space Z. However
we will construct it in a different way.

Let a torus Tn = S1
z1
× · · · × S1

zn
act on a flat hyperKähler manifold Hn+1

by

(z1, . . . , zn, y1, . . . , yn+1) 7→ (y1z1z̄2 · · · z̄n, y2z1z2, . . . , ynz1zn, yn+1z1).

Consider a hyperKähler reduction Zn, i.e. the space of solutions to

y1iȳ1 + y2iȳ2 + y3iȳ3 · · ·+ yniȳn + yn+1iȳn+1 = c1i,
−y1iȳ1 + y2iȳ2 = c2i,
−y1iȳ1 + y3iȳ3 = c3i,

· · · · · · · · ·
−y1iȳ1 + yniȳn = cni,

(2.24)

modulo Tn, where cl ∈ R. It is an example of a 4–dimensional toric hy-
perKähler manifold [10]. The following action of S1

(w, y1, . . . , yn+1) 7→ (y1, . . . , yn, yn+1w) (2.25)
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descends to a hyperKähler one on Zn. It follows that Zn is a Gibbons–
Hawking space. In order to identify it we have to compute the function ν (see
(2.22)). The Killing vector field of the action (2.25) is K0 = (0, . . . , 0, yn+1i)
and ν−1 is a squared norm of K0 with respect to the metric of hyperKähler
reduction, i.e. squared norm of the projection of K0 to V ⊥, where V is
spanned by the Killing vector fields of Tn : V = span (K1, . . . , Kn) and

K1 =( y1i, y2i, y3i, . . . , yni, yn+1i),

K2 =(−y1i, y2i, 0, . . . , 0, 0),

K3 =(−y1i, 0, y3i, . . . , 0, 0),

· · · · · · · · ·
Kn =(−y1i, 0, 0, . . . , yni, 0).

If we write the projection ofK0 on V as u1K1+· · ·+unKn, then the coefficients
u1, . . . , un are found from the system

∑n
s=1〈Kl, Ks〉us = 〈Kl, K0〉, l = 1, n.

Denote as = | ys| 2 for a while; then the above mentioned system has the
following form

n∑
s=0

as u1 + (a2 − a1)u2 + (a3 − a1)u3 + · · ·+ (an − a1)un = an+1,

(a2 − a1)u1 + (a2 + a1)u2 + a1u3 + · · ·+ a1un = 0,

(a3 − a1)u1 + a1u2 + (a3 + a1)u3 + · · ·+ a1un = 0,

· · · · · · · · · · · · · · · · · ·
(an − a1)u1 + a1u2 + a1u3 + · · ·+ (a1 + an)un = 0.

(2.26)

A direct computation shows that

u1 = an+1

n∑
i=1

a1 . . . âi . . . an/∆,

us = an+1

(
(n+ 1)a1 . . . âs . . . an −

n∑
i=1

a1 . . . âi . . . an

)
/∆, s = 2, n

is a solution of system (2.26), where ∆ = n2a1 · · · an+
∑
a1 . . . âi . . . an+1 and

âi means that this factor is omitted in the corresponding monomial.
Further,

ν−1 = ‖prV ⊥K0‖ 2 = ‖K0‖ 2 −
∥∥∑

s

usKs

∥∥ 2
= an+1 −

∑
l, s

〈Kl, Ks〉ulus

Now multiply the l’s equation of system (2.26) by ul and sum up. Recall
also that the coefficients of system (2.26) are exactly 〈Kl, Ks〉 and therefore
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ν−1 = an+1 − an+1u1. After a simple transformation one obtains

ν =
1

an+1

+
1

n2

n∑
s=1

1

as
=

1

| yn+1| 2
+

1

n2

n∑
s=1

1

| ys| 2
.

Now we have to express ν as a function of x = yn+1iȳn+1 ∈ Im H ∼= R3 since
yn+1iȳn+1 is the momentum map of action (2.25).

First, one has | yn+1| 2 = |x| for free. Then it is easy to find each term
yliȳl from the system (2.24). Indeed, subtracting from the first equation the
sum of the rest, one gets ny1iȳ1 = −x+ (c1 − c2 − · · · − cn)i; now one easily
has nyliȳl = −x+ dli, dl = c1 + (n− 1)cl−

∑
s 6=l,s≥2 cs. Remark that one can

choose constants cl such that all dl’s are different. Thus | yl| 2 = |x− dli| and
therefore we have

ν =
1

|x|
+

1

n

n∑
l=1

1

|x− dli|
. (2.27)

Proposition 2.2.5. The Gibbons–Hawking space Zn corresponding to the
function ν with n+1 poles (2.27) is a hyperKähler reduction of the flat space
Hn+1 by a torus Tn. Similarly, the manifold H(Zn) is a hyperKähler reduction
of Hn+1 by Tn−1, i.e. both are toric hyperKähler manifolds.

Remark 2.2.6. The fact, that Gibbons–Hawking spaces can be obtained as
hyperKähler reductions of a flat space by a torus has long been known in
physical literature: see [31] and references therein.

Proof. It remains to prove that H(Zn) is a toric hyperKähler manifold. First
observe that Z1 is a hyperKähler reduction of H2 by a circle and therefore is
homothetic to T ∗CP1 with Calabi metric when c1 6= 0 (see (2.24)) or H with
its flat metric when c1 = 0. In both cases H(Z1) = H2.

If n = 2 we may choose constants (c1, c2) to be (0, 1). It is well known (see
[65], for example) that the hyperKähler reduction H3///S1

z1
with respect to

the zero value of the momentum map is a nilpotent orbit O; consequently O
has a hyperKähler potential. Further the space Z2 is a hyperKähler reduction
O///S1

z2
but now with respect to the i’s level set of the momentum map. In

other words, H(Z2) = O.
In general we may assume that c1 = 0, cn = 1 and the other c’s are integers.

Then we may change the action of the torus Tn such that the hyperKähler
reduction is still diffeomorphic to Zn but the level of momentum map becomes
(0, . . . , 0, i). For the sake of simplicity we put n = 3. Indeed, then the system
(2.24) is equivalent to

y1iȳ1 + y2iȳ2 + y3iȳ3 + y4iȳ4 = 0,
(c2 − 1)y1iȳ1 + y2iȳ2 − c2y3iȳ3 = 0,
−y1iȳ1 + y3iȳ3 = i,
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and the left–hand sides of the above equations are momentum maps of the
following T3

w = S1
w1
× S1

w2
× S1

w3
–action:

(y1, y2, y3, y4) 7→ (y1w1w
c2−1
2 w̄3, y2w1w2, y3w1w̄

c2
2 w3, y4w1).

Moreover, there is a bijection T3
w → T3, z1 = w1, z2 = w2, z3 = w3w̄

c1
1

which respects the corresponding actions. It follows that Z3 is a hyperKähler
reduction of H4 by T3

w, which we can regard as being performed in two steps:
first hyperKähler reduction Ẑ3 of H4 by S1

w1
×S1

w2
with respect to the zero level

of momentum map and then reduction of Ẑ3 by S1
w3

with respect to i’s level of

momentum map. Thus Ẑ3 has a hyperKähler potential and H(Z3) = Ẑ3.

2.3 Indeterminacy of function v: further ex-

amples

As we have seen in Section 2.1.4 the function v is defined by formula (2.13)
only up to a constant and this has strong consequences as we will see below.
Recall that the action of S1

r should be lifted from M̃ to P such that its Killing
vector field Y1 equals to K̂r + 2vK0 (see (2.7)). This implies that we are free
to take ṽ = v + m/2 instead of v, where m is an integer whenever v + m/2
remains everywhere positive. However in this case one needs to modify the
lifting of the S1

r–action to P to get that the Killing vector field is given by
K̂r + 2ṽK0. Therefore we get that the manifolds H∗ ×S1

r
P and P/S1

r again
carry hyperKähler and quaternionic Kähler structures correspondingly, where
the modified action of S1

r is implied. It turns out that a modification of the
S1
r–action can change the topology of the H and Q constructions.

Consider Example 2.2.1 again. Let us first take n = 1 for the sake of sim-
plicity. Then P = µ−1(i) = {(y1, y2) ∈ H | y1iȳ1 + y2iȳ2 = i} and the actions
of S1

0 and S1
r are given by right– and left– multiplications correspondingly.

Since T ∗CP1 is obtained as a hyperKähler quotient of H2 by S1
0 it follows that

the function v is positive (explicitely, v−1 = | y1| 2 + | y2| 2). Therefore we may
consider ṽ = v + 1/2 and the modified action of S1

r takes a form

z · (z1, z2, w1, w2) = (z2z1, z
2z2, w1, w2), (2.28)

where yl = zl +wlj, l = 1, 2. Now as a consequence of the above observation
we obtain the following statement.

Proposition 2.3.1. The total space of TCP1(−1) = O(1) carries a quater-
nionic Kähler structure.

36



Proof. First observe that (H2 \ 0)/S1
r
∼= CP1

[z1:z2] × R>0 × C2
w1 w2

, where the
projection onto R>0 is given by the function (z1, z2, w1, w2) 7→ | z1| 2 + | z2| 2
and the action (2.28) is implied. The equation µ = i, defining P ⊂ H2 \ 0,
can be rewritten as | z1| 2 + | z2| 2 = 1 + |w1| 2 + |w2| 2, z1w1 + z2w2 = 0. It
follows that P/S1

r
∼= {([z1 : z2], w1, w2) ∈ CP1 × C2 | z1w1 + z2w2 = 0}. Now

the statement follows from the Euler exact sequence: 0 → O(−1) → C2 →
TCP1(−1) → 0.

The next natural task is to identify the Swann bundle of O(1). But first
we would like to prove an auxiliary lemma.

Lemma 2.3.2. Let P → X be an S1–principal bundle and L → X be the
corresponding line bundle. Consider the following action of S1 on P × C :
z · (p, w) = (pzr, zsw), where r and s are integers and r is positive. Then

(P × C)/S1 ∼= L−s.

Proof. Let Qr, s denote the space P ×C with the action of S1 as in the state-
ment of the lemma. Then we have an equivariant map Qr, s → Qr, rs, (p, w) 7→
(p, ws). Clearly it is surjective; although it is not injective, it descends to a bi-
jective map of quotients Qr, s/S

1 → Qr, rs/S
1. But the last quotient is exactly

L−s.

Proposition 2.3.3. The total space of 2O(1)⊕O(−1) carries a hyperKähler
structure and is a Swann bundle of O(1).

Proof. First, consider H∗ with quaternionic variable x as C2 \0 with variables
w3 and w4 : x = w3 + w4j. Similarly to the proof of Proposition 2.3.1,
first consider a bigger space (H∗ × H2)/S1

r . Now the action has the form
z · (z1, z2, w1, w2, w3, w4) = (z2z1, z

2z2, w1, w2, z̄w3, zw4). Further, since the
Hopf fibration is the principal bundle of O(−1) and using Lemma 2.3.2 we
get

(H∗ ×H2)/S1
r
∼= O(1)⊕O(−1)⊕ C2

w1 w2
× R>0,

where the projection to R>0 is again given by the function | z1| 2 + | z2| 2.
The condition (z1, z2, w1, w2) ∈ P extracts O(1) out of C2 × R>0 in the

same way as in the proof of Proposition 2.3.1.

The above analysis applies without changes for higher dimensions and the
following proposition holds.

Proposition 2.3.4. The total space of TCPn(−1) carries a quaternionic
Kähler structure and U(TCPn(−1)) = O(1)⊕O(−1)⊕ TCPn(−1).
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Finally, consider a general situation ṽ = v + m/2. In this case P =
{(y1, . . . , yn+1) | y1iȳ1 + · · · + yn+1iȳn+1 = i} and the modified action of S1

r

becomes:

z · (z1, . . . , zn+1, w1, . . . ,wn+1) =

= (z1+mz1, . . . , z
1+mzn+1, z

1−mw1, . . . , z
1−mwn+1).

Theorem 2.3.5. Let Qn
m and Hn

m denote the total spaces of TCPn(m−2),
m ≥ 1 and O(1) ⊕ O(−1) ⊕ TCPn(m − 2) correspondingly. Then Qn

m is a
quaternionic Kähler manifold, Hn

m is a hyperKähler one and U(Qn
m) = Hn

m.
In particular, Q1

m = OP1(m), m ≥ 1 are quaternionic Kähler manifolds, i.e.
Einstein and self–dual.

2.4 Kähler structure on N0

In contrast to a hyperKähler manifold, almost complex structures of a quater-
nionic Kähler manifold N are defined only locally, i.e. we have a distinguished
rank 3 subbbundle I ⊂ End(TN) called a structure bundle, which locally ad-
mits a basis consisting of three almost complex structures with quaternionic
relations. Since the metric induces an isomorphism TN ∼= T ∗N , one gets an
embedding of I in Λ2T ∗N . Locally this is given by passing from an almost
complex structure I to the associated 2–form ωI(·, ·) = g(·, I·). We will not
distinguish between I and its image in Λ2T ∗N . An analogue of a momentum
map can be defined in the quaternionic Kähler context, but now it will be a
section of a structure bundle (see [31] for details).

Theorem 2.4.1. Let N be a quaternionic Kähler manifold of positive scalar
curvature. Suppose also that N admits a quaternionic Kähler action of S1

with momentum section µN ∈ Γ(I). Then N0 = N \ {µN = 0} is a Kähler
manifold.

Proof. Let M be the Swann bundle of N . Then M admits a hyperKähler
action of S1 [65]. Let µ = µ1i+µcj : M → Im H be its momentum map. Since
the function µc : M → C is I1–holomorphic, the submanifold Mc = {m ∈
M : µc(m) = 0} has an induced Kähler structure. Further, M+

c = {m ∈Mc :
µ1(m) > 0} is an open submanifold of Mc. The group S1

r preserves I1 and one
may consider the Kähler reduction of M+

c with respect to a non–zero value
of the momentum map : M+

c //S
1
r
∼= M+

c /C∗
r. It remains to observe that

M+
c = µ−1(i)× R>0 = P × R>0 and therefore M+

c /C∗
r
∼= P/S1

r
∼= N0.

When a quaternionic Kähler manifold N admits an action of S1, one can
normalize the momentum section µN ∈ Γ(I) and consider it as an almost
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complex structure Î over N0. It turns out that Î is integrable and it is easy
to see from the proof that it coincides with the complex structure implied by
Theorem 2.4.1 (our proof of the above theorem itself represents an alternative
proof of the integrability of Î in case when N has positive scalar curvature).
In this form Theorem 2.4.1 was known earlier [7, 60]. Although the complex
structure Î is a section of the structure bundle I, the Kähler metric of N0

must not coincide with the quaternionic Kähler one as we will see in the
sequel. Note also that I does not admit a section which defines an integrable
complex structure on the whole manifold N (see [1] for extensive discussion
of this phenomenon). Taking this into account, one may consider N0 as
”the largest” open submanifold of N where it is still possible to choose an
integrable complex structure.

Our next aim is to express the Kähler structure of N0 similarly to the
quaternionic Kähler one (see section 2.1.5).

Recall that N0
∼= P/S1

r = M+
c /C∗

r. In order to get a metric and Kähler
form on N0 we have to express N0 as a Kähler reduction, i.e. we have to
fix a level set of momentum map and divide it by S1

r ⊂ C∗
r. In our case

the momentum map of the S1
r–action is nothing else but the hyperKähler

potential ρ (restricted to M+
c ). Recall also that we have an isomorphism

(2.17) between P and Q = ρ−1(−1/2) ∩ M+
c . Further, one has T.Mc =

span (I2K0, I3K0)
⊥ ⊂ T.M and T. ρ

−1(−1/2) = span (Y0)
⊥. It follows that

T.Q = span (I2K0, I3K0, Y0)
⊥ because Y0 is perpendicular to both I2K0 and

I3K0 (see (2.7)). In particular Y1 ∈ TQ; this also follows from the fact that
S1
r preserves Q. Further, the Kähler reduction procedure implies that T.N0

is identified with span (Y1)
⊥ ⊂ T.Q and the Kähler form and metric are

obtained as a restriction of the corresponding tensors to span (Y1)
⊥. Remark

that the quaternionic Kähler metric was obtained as the one induced on a
different subbundle, namely on span (Y1, Y2, Y3)

⊥ ⊂ TQ.
Let u ∈ TpP . Then we may decompose u = u′ + ψ(u)Y1, where u′ is

orthogonal to Y1. Now denote by Π an orthogonal projector on span (Y1)
⊥ in

TQ. Then for the Kähler metric ĝN we have:

ĝN (u, v) = g
(
Π l∗u,Π l∗v

)
=

= g
((
Lλ(p)

)
∗u
′ + dλ(u)Y0(λ(p)p),

(
Lλ(p)

)
∗v
′ + dλ(v)Y0(λ(p)p)

)
=

= λ2g
(
u− ψ(u)Y1 + dλ(u)Y0 , v − ψ(v)Y1 + dλ(v)Y0

)
=

= λ2
(
g(u, v)− ψ(u)g(Y1, v)− ψ(v)g(Y1, u) + dλ(u)g(Y0, v)dλ(v)g(Y0, u)

)
.

As we already know g(u, v) =
(
g̃+v−1ξ2

)
(u, v). By the definition of ψ one has

g(Y1, v) = (4v+w)ψ(v). Further, g(Y0, v) = g
(
−I1Kr−2vI1K0, v̂+ξ(v)K0

)
=
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ıKr ω̃1(v). Therefore we obtain ĝN = λ2
(
g̃+v−1ξ2− (4v+w)ψ2 +dλ� ıKr ω̃1

)
.

Since dλ = (4v + w)−3/2ıKr ω̃1 we may finally write

ĝN =
1

4v + w
g̃ +

1

v(4v + w)
ξ2 − ψ2 +

1

(4v + w)5/2
(ıKr ω̃1)

2.

The Kähler form ω̂N may be obtained in a similar manner. Indeed,

ω̂N(u, v) = ω1(Π l∗u,Π l∗v) =

= ω1

((
Lλ(p)

)
∗u
′ + dλ(u)Y0

(
l(p)
)
,
(
Lλ(p)

)
∗v
′ + dλ(v)Y0

(
l(p)
))

=

= ω1

((
Lλ(p)

)
∗u
′,
(
Lλ(p)

)
∗v
′) =

= λ2ω1

(
u− ψ(u)Y1, v − ψ(v)Y1

)
.

Since ω1(u, v) = ω̃1(u, v) and ω1(Y1, u) = g(K̂r + 2vK0, I1û + ξ(u)I1K0) =
ıKr ω̃1(u), we obtain the Kähler form as

ω̂N =
1

4v + w

(
ω̃1 − ψ ∧ ıKr ω̃1

)
.

Remark 2.4.2. As we have already remarked, we may regard the form ψ as a
connection on the S1

r–principal bundle P → N0. Lets compute its curvature.
We have

Fψ = − 1

(4v + w)2
(4dv + dw) ∧ (2ξ + ıKr g̃) +

1

4v + w
(2dξ + d ıKr g̃ ).

It follows from equations (2.11) and (2.12) that

Fψ = − 2

4v + w

(
ıKr ω̃1 ∧ ψ + ω̃1

)
= −2ω̂N

This observation provides an ”internal” interpretation of the Kähler form
ω̂N in the following sense. Let N be a quaternionic Kähler manifold with
positive scalar curvature and F → N be the principal SO(3) bundle associ-
ated to the structure bundle I. Observe that F is equipped with the natural
connection induced by the Levi–Civita one. Suppose also that N admits a
quaternionic Kähler action of the circle and denote by µN its momentum sec-
tion. As it was explained above one can think about µN on N0 = N \{µN = 0}
as a section of F (restricted to N0). This means that we get S1–subbundle Q
of F . The curvature of the induced connection ψ is a −1/2–multiple of the
Kähler form ω̂N .
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Chapter 3

Nonlinear Dirac operator and
harmonic spinors

This chapter is devoted to a nonlinear generalization of the celebrated Dirac
operator. In the preparatory Section 3.1 we discuss some representations of
Spinc(4). The results of Section 3.1 will be used in the sequel. In Section 3.2
we define a nonlinear generalization of the Dirac operator following [59] and
study its properties. The nonlinear Dirac operator D acts on sections u of
a certain fibre bundle, where a fibre is a hyperKähler manifold M admitting
Sp(1) permuting and S1 triholomorphic actions. When the Dirac operator is
applied to a section u one obtains a section of some vector bundle and therefore
harmonic spinors are well–defined. We show that harmonic spinors are anal-
ogous to antiholomorphic sections of complex geometry (see Lemma 3.2.15
and its corollary). These results are of fundamental importance and will be
used below as well as in Chapter 4.

In Section 3.3 we study properties of solutions to the Cauchy–Riemann–
Fueter equation (3.11), which is a quaternionic analogue of the Cauchy–
Riemann equation in the complex geometry, and their relation to harmonic
spinors. In particular, we prove that solutions to the Cauchy–Riemann–
Fueter equation are exactly those maps whose differential has vanishing tri-
holomorphic component (Proposition 3.3.10). These results are extended for
maps between quaternionic Kähler manifolds and more generally for sections
of vector bundles with quaternionic structures.

In the last section we study the case when the action of Sp(1) can be
extended to the permuting action of H∗. Combining our previous results
with Swann’s construction we get relations between earlier studied objects
(harmonic spinors, aholomorphic maps and sections). These objects were
defined earlier by different authors (and under a variety of names), however
the properties and relations between them are new.
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3.1 Spinor representations

Recall that by W we denote the standard SU(2)–representation on C2 or
equivalently the Sp(1)–representation on H by multiplication on the left. Fur-
ther, W± denote Spinc(4)–representations on H given by ([q+, q−, λ], h) 7→
q±hλ and R4 denotes the representation of the same group on the same space
given by ([q+, q−, λ], h) 7→ q−hq̄+.

Any quaternionic module V can be considered as a real vector space
equipped with three complex structures (I1, I2, I3) with quaternionic rela-
tions. Consequently, any such vector space can be regarded as being equipped
with a standard representation of Sp(1), namely q = q0 + q1i + q2j + q3k ≡
q0Id + q1I1 + q2I2 + q3I3.

Proposition 3.1.1. Let V be a quaternionic module and denote by VI1 the
same vector space but considered as a complex vector space with respect to the
complex structure I1. Under the isomorphism

VC = C⊗ V ∼= H⊗C VI1 , z ⊗ v 7→ z ⊗ v − jz ⊗ I2v

the natural action of Sp(1) becomes multiplication on the left:

z ⊗ q · v 7→ qz ⊗ v − qjz ⊗ I2v,

i.e. we have the isomorphism of representations VC ∼= W ⊗C VI1.

Remark 3.1.2. The complex tensor product in the statement above is de-
fined via the relation hi⊗Cv = h⊗CI1v.

Proof. It is sufficient to check the statement for q = i, j, k. Indeed, one has

z ⊗ I1v 7→ z ⊗ I1v − jz ⊗ I2I1v = iz ⊗ v + jzi⊗ I2v = i (z ⊗ v − jz ⊗ I2v) ;

z ⊗ I2v 7→ z ⊗ I2v − jz ⊗ I2I2v = z ⊗ I2v + jz ⊗ v = j (z ⊗ v − jz ⊗ I2v) ;

z ⊗ I3v 7→ z ⊗ I1I2v − jz ⊗ I1v = iz ⊗ I2v − jzi⊗ v = k (z ⊗ v − jz ⊗ I2v) .

Corollary 3.1.3. Suppose we are given a representation of the group
Sp(1) ×{±1} S

1 ∼= U(2) on a quaternionic module V such that the action
of Sp(1) ⊂ Sp(1) ×{±1} S

1 is standard and the action of the subgroup S1 is
quaternionic. Further, assume that the representation of Spinc(4) on V is
induced via the homomorphism

Spinc(4) −→ Spinc(4)/Sp−(1) ∼= U+(2). (3.1)

Then the isomorphism VC ∼= H ⊗C V induces an isomorphism of representa-
tions

VC ∼= W+ ⊗C V
′,

where V ′ is a representation of S1 on V .
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Clifford multiplication First recall (see (1.4)) that one can consider
the standard representation R4 of SO(4) as being induced by Spinc(4). Then
under the hypotheses of Corollary 3.1.3 we can define the following homo-
morphism of representations

R4 ⊗ VC ∼= R4 ⊗W+ ⊗ V ′ −→ W− ⊗ V ′ (3.2)

given by the formula:

x⊗ (z ⊗ v) 7→ xz ⊗ v − xjz ⊗ I2v. (3.3)

Observe also that homomorphism (3.2) induces a homomorphism between
the real parts of the corresponding representations:

R4 ⊗ V =
[
R4 ⊗ VC

]
r
−→

[
W− ⊗ V ′]

r
(3.4)

Remark that if V = W+ homomorphism (3.4) is the well–known Clifford
multiplication:

R4 ⊗W+ −→ W−.

Therefore we will also call homomorphism (3.4) a Clifford multiplication.
Slightly abusing notations, we will refer to its complexification (3.2) also as
Clifford multiplication if it will be clear from the context which homomor-
phism is implied.

3.2 The Nonlinear Dirac operator

Pick a Spinc(4)–structure PSpinc
π−−→ X over a four–dimensional oriented Rie-

mannian manifold (X, gX). Fix also a hyperKähler manifoldM4(n+1) equipped
with an action of the group U(2) ∼= Sp(1)×±1S

1 with the following properties:
the action of Sp(1) is permuting while the action of S1 is hyperKähler.

Remark 3.2.1. There is a certain freedom in choice of complex structures
on a hyperKähler manifold. Indeed, the space of triples of complex structures
compatible with the preferred one is naturally isomorphic to SO(3). However
the requirement that the action of Sp(1) is permuting eliminates this freedom.
From now on (I1, I2, I3) denotes the complex structures of M such that the
action of Sp(1) is permuting with respect to this triple.

The homomorphism (3.1) defines an action of Spinc(4) on M . Denote by
KM
ξ its Killing vector field corresponding to a Lie algebra element ξ ∈ spinc(4).

Further, define M to be a fibre bundle over X with fibre M :

M = PSpinc ×Spinc(4) M.
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We consider equivariant maps u : PSpinc →M as an analogue of spinors; one
can also think about u as a section of M → X. The space of all equivariant
maps will be denoted by MapSpin

c(4)(PSpinc ,M).
Next, pick a connection a on a principal S1–bundle Pdet = PSpinc/Spin(4),

which is called a determinant bundle. Together with the Levi–Civita connec-
tion it equips PSpinc with a connection â.

Covariant derivative. To any spinor u one can associate an equivariant
map âu : TPSpinc → TM : if v ∈ TpPSpinc then â(v) ∈ spinc(4) and we can
put âu(v) = KM

â(v)(u(p)) ∈ Tu(p)M . A covariant derivative of the spinor u is
then defined by

∇au = u∗ + âu ∈ MapSpin
c(4)(TPSpinc , TM).

It is easy to see that the above expression vanishes on the vertical vectors
and this means that the covariant derivative can be regarded as an operator

∇a : Γ(M) → Γ
(
T ∗X ⊗ π!(u

∗TM)
)
,

where π!(u
∗TM) → X denotes the factor of u∗TM → PSpinc by the group

action.

Remark 3.2.2. Strictly speaking, the operator ∇a is not well–defined, since
its image depends on the element of the domain. However one can define ∇a

as a section of a certain vector bundle as follows. Consider an evaluation map
ev : MapSpin

c(4)(PSpinc ,M) × PSpinc → M, (u, p) 7→ u(p). Then one gets the
following diagram

ev∗TM −−−→ TMy y
MapSpin

c(4)(PSpinc ,M)× PSpinc
ev−−−→ M.

Dividing the first column by the group action one gets a vector bundle E over
an the infinite dimentional space MapSpin

c(4)(PSpinc ,M)×X; the restriction of
E to {u}×X coincides with π!(u

∗TM). Then ∇a is well–defined as a section
of E → MapSpin

c(4)(PSpinc ,M)×X.
In order to keep the exposition clear, we will not keep to the above for-

malism of vector bundles over infinite–dimensional spaces.

Dirac operator. Now by the definition of a hyperKähler manifold the
tangent bundle TM carries a natural structure of a quaternionic module.
Moreover the requirement that the action of Sp(1) is permuting implies that
the induced action is the standard one. It follows from Proposition 3.1.1 that

TCM ∼= H⊗ E ′,
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where E ′ coincides with TM as a vector bundle but the action of Sp+(1) ⊂
Spinc(4) is trivial; on the contrary the action of U+(2) on the first factor is
standard. Therefore

π!(u
∗TCM) ∼= W+ ⊗ E,

where E = π!(u
∗E ′) and by W+ we denoted the positive spinor bundle over

X corresponding to the representation denoted by the same letter. It follows
from (3.4) that we have a map

Cl : T ∗X ⊗ π!(u
∗TM) −→ [W− ⊗ E]r.

With this understood, following [59] we give the following definition.

Definition 3.2.3. The first order differential operator given by the sequence

Da : Γ(M)
∇a

−→ Γ
(
T ∗X ⊗ π!(u

∗TM)
) Cl−−→ Γ

(
[W− ⊗ E]r

)
(3.5)

is called a (generalized) Dirac operator .

Remark 3.2.4. When M is a flat hyperKähler manifold H we recover the
usual (linear) Dirac operator Da : Γ(W+) → Γ(W−).

Remark 3.2.5. One can define rigorously the generalized Dirac operator as a
section of a vector bundle over an infinite–dimensional space in the same vane
as we defined the covariant derivative in Remark 3.2.2. Indeed, it remains to
note that the target of the Dirac operator [W− ⊗E]r is a vector bundle over
MapSpin

c(4)(PSpinc ,M)×X.

Remark 3.2.6. The Dirac operator (3.5) is a nonlinear Fredholm map [59].

Remark 3.2.7. When the source manifold carries a Spin(4) structure one
may define a Dirac operator with coefficients in M by the above described
scheme (see also Example 3.2.8). In that case M is required to carry a per-
muting action of Sp(1), however a triholomorphic one of S1 is not necessary
for the definition and the resulting Dirac operator is determined by the Levi–
Civita connection.

Example 3.2.8 (SO–Dirac operator). Below we consider the Dirac oper-
ator in case when the target manifold M admits a permuting SO(3) action.
For the sake of simplicity we take the most basic example H∗/± 1.

Conventions. Take W0 = H∗/ ± 1 as a hyperKähler manifold M. It is
convenient in this example to take the hyperKähler structure on W0 induced
by the left quaternionic structure on H. Then a permuting action of SO(3) ∼=
Sp(1)/± 1 is given by

([q], [m]) 7→ [qm] (3.6)
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Further,

TW0 = (H∗ ×H)/± 1 =
{
[m,h] = [−m,−h]

∣∣ m ∈ H∗, h ∈ H
}

and the induced action on TW0 is the following

([q], [m,h]) 7→ [qm, qh]. (3.7)

Consider the group SO(4) ∼= Sp+(1) · Sp−(1) = (Sp+(1)× Sp−(1))/ ± 1
(see Section 1.3). Consequently we have a homomorphism

SO(4) → Sp+(1)/± 1 ∼= SO+(3)

and it defines an action of SO(4) on W0, which in turn induces an action of
SO(4) on TW0.

Remark 3.2.9. We have also another action of the group SO(4) on TW0,
namely

([q+, q−], [m,h]) 7→ [q+m, q−h]. (3.8)

Note, that this action is not induced from the one on W0.

Clifford multiplication. Let X4 be an oriented Riemannian manifold
and πso : Pso → X be its principal SO(4) bundle of orthonormal oriented
frames. Consider an equivariant map ψ : Pso −→ W+

0 or equivalently a
section of a fibre bundle W+

0 = Pso×SO(4)W
+
0 , where the sign ”+” is used to

keep in mind that the action of SO(4) is induced by SO+(3).

Remark 3.2.10. If the source manifold X is Spin, thenW+
0 =

(
W+\0

)
/±1.

Notice that even if X is not Spin, the bundle W+
0 does exist.

Now consider an equivariant vector bundle ψ∗TW+
0 −→ Pso which gives

rise to E+ = πso!
(
ψ∗TW+

0

)
. Recall that there exists another action (3.8) of

SO(4) on TW0, which we now prefer to denote by TW−
0 . Consequently, there

exists a vector bundle E− = πso!
(
ψ∗TW−

0

)
.

One can think about E+ as a vector bundle of classes [p, ξ], where p ∈
Pso, ξ ∈ Tψ(p)W0 such that [p, ξ] ≡ [pg, g−1ξ], g ∈ SO(4), i.e.[

p, [ψ(p), h]
]
≡
[
pg, [q̄+ψ(p) , q̄+h]

]
, g = [q+, q−].

Similarly, E− is a vector bundle of classes
[
p, [ψ(p), h]

]
such that

[p, [ψ(p), h]] ≡ [pg, [q̄+ψ(p), q̄−h]] , g = [q+, q−].

Consider also TX ∼= T ∗X in the same manner:

[p, v] ≡ [pg, q̄−vq+] , g = [q+, q−], v ∈ H.
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Then we can define a variant of the Clifford multiplication Cl : T ∗X ⊗
E+ −→ E− by the formula

[p, v]⊗
[
p, [ψ(p), h]

]
7→
[
p, [ψ(p), vh]

]
. (3.9)

Indeed, take g ∈ SO(4), g = [q+, q−]. Then the following computation

[pg, q̄−vq+]⊗
[
pg, [q̄+ψ(p), q̄+h]

]
7→
[
pg, [q̄+ψ(p), q̄−vh]

]
=
[
p, [ψ(p), vh]

]
shows that the Clifford multiplication (3.9) is well–defined.

Dirac Operator. After the Clifford multiplication is defined, we can also
construct a Dirac operator. Indeed, consider the space of SO(4)–equivariant
maps MapSO(4)

(
Pso,W

+
0

)
or, equivalently, the space of sections of the associ-

ated bundle W+
0 = Pso ×SO(4) W

+
0 .

Now the bundle Pso is equipped with the Levi–Civita connection ∇LC.
Hence the following sequence defines a Dirac operator:

D : Γ
(
W+

0

) ∇LC

−−−−→ Γ(T ∗X ⊗ E+)
Cl−−→ Γ(E−). (3.10)

Remark 3.2.11. We can also consider the operator (3.10) as a particular case
of the Definition 3.2.3. Indeed, this corresponds to the manifold M = H∗/± 1
and the trivial action of S1. The above calculations show that it is independent
of the other choices and in particular it is canonically defined by the SO(4)–
structure of X.

Remark 3.2.12. Consider a local chart U of X and pick a trivialization
of Pso over U. In this trivialization an equivariant map ψ can be written as
ψU : U −→ H. Then

DψU =
∂ψU

∂x0

+ i
∂ψU

∂x1

+ j
∂ψU

∂x2

+ k
∂ψU

∂x3

+ (0–order terms).

Remark 3.2.13 (Twisted SO–Dirac operator). Again assume that the
target hyperKähler manifold admits a permuting SO(3)–action. Pick a prin-
cipal G–bundle πG : PG → X over the source manifold X with a connection
a and put P = Pso × PG

π−→ X. Note that the bundle P is equipped with the
connection determined by the Levi–Civita connection and a. Assume further
that the action of G is triholomorphic and that it commutes with the SO(3)–
action. As in Example 3.2.8 we take M∗ = H∗/ ± 1 as the target manifold
(we reserve the symbol W0 for the SO(3)–action (3.6) ). Finally, denote by
EG the bundle TM∗ with the induced action of G.

It is easy to see that the scheme of Example 3.2.8 also applies in this case.
Equivalently, one may complexify the tangent bundle of M∗ and apply the
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scheme of Definition 3.2.3 since π!(u
∗TCM

∗) ∼= W+
0 ⊗ πG

!

(
u∗EG

)
. In any case

we get a Dirac operator twisted by πG
! (u∗EG):

Da : Γ(M) → Γ
(
E− ⊗ πG

! (u∗EG)
)
.

Definition 3.2.14. A spinor u ∈ Γ(M) such that Dau = 0 is called harmonic.

Lemma 3.2.15. Pick p ∈ PSpinc , π(p) = x. Since there exists a pro-
jection PSpinc → Pso, one gets a basis (v0, v1, v2, v3) of TxX. Further, let

u ∈ MapSpin
c(4)(PSpinc ,M) and put wi = u∗(ṽi) ∈ Tu(p)M, where ṽi ∈ TpPSpinc

denotes a horizontal lift of vi with respect to the connection â. Then the har-
monicity of the spinor u at the point x is equivalent to the following equation:

w0 + I1w1 + I2w2 + I3w3 = 0. (3.11)

Proof. The complexification of the Clifford multiplication T ∗X⊗π!(u
∗TM) →

[W− ⊗ E]r can be described by the following sequence

T.X ⊗ T.M −→ T.X ⊗ (C⊗ T.M) −→ T.X ⊗W+ ⊗ E −→ W− ⊗ E.

The basis (v0, v1, v2, v3) provides an isomorphism TxX ∼= H. Then the maps
in the sequence above are given explicitly (see (3.3) ) by

v ⊗ w 7→ v ⊗ (1⊗ w) 7→ v ⊗ (1⊗ w − j ⊗ I2w) 7→ v · 1⊗ w − v · j ⊗ I2w.

According to the definition of the Dirac operator, take v = 1, w = w0; v =
i, w = w1; · · · and then sum up the result:

(1⊗ w0 − j ⊗ I2w0) + (i⊗ w1 − k ⊗ I2w1)+

+(j ⊗ w2 + 1⊗ I2w2) + (k ⊗ w3 + i⊗ I2w3) = 0,

After a simplification one obtains

1⊗ (w0 + I1w1 + I2w2 + I3w3) + j ⊗ (−I2w0 + I3w1 + w2 − I1w3) = 0.

But this is equivalent to equation (3.11).

Denote by V the vertical subbundle of TPSpinc , i.e. V consists of tangent
vectors to fibers of PSpinc → X. The connection â provides a decomposition
TPSpinc = V ⊕ H, where H is defined as the kernel of â and is called the
horizontal subbundle. Since H ∼= π∗TX we get a distinguished quaternionic
structure (J1, J2, J3) on H. Indeed, observe that we have a natural projection
PSpinc → PSpinc/U−(2) = PΛ2

+
, where the SO(3)–principal bundle PΛ2

+
is
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the principal bundle of Λ2
+T

∗X. With the help of metric on X, one can
naturally identify the fibre of PΛ2

+
at each point x ∈ X with the set of triples

(J1, J2, J3), Jl ∈ End(TxX) such that J1J2 = J3 = −J2J1 and each Jl is
an orthogonal operator preserving the orientation of TxX. Although the
operators Jl are not necessarily globally defined, the projection map PSpinc →
PΛ2

+
gives rise to a global quaternionic structure on H.

One can also describe the quaternionic structure (J1, J2, J3) as follows. Let
p ∈ PSpinc and (ṽ0, ṽ1, ṽ2, ṽ3) be as in Lemma 3.2.15. Then the quternionic
structure is defined by the requirement ṽl = −Jlṽ0, l = 1, 2, 3.

Corollary 3.2.16. A map u ∈ MapSpin
c(4)(PSpinc ,M) is a harmonic spinor

if and only if it satisfies the following equationa

u∗ − I1u∗J1 − I2u∗J2 − I3u∗J3 = 0 on H.

Proof. For any v ∈ TX one can choose p ∈ PSpinc such that the basis
(v0, v1, v2, v3) defined by p satisfies v0 = v. According to the definition of
(J1, J2, J3) one has ṽl = −Jlṽ0 = −Jlṽ, l = 1, 2, 3. Now it follows from
Lemma 3.2.15 that

u∗ṽ − I1u∗J1ṽ − I2u∗J2ṽ − I3u∗J3ṽ = 0.

It remains to note that the above equation is valid for any v ∈ TX.

The above corollary reveals a deep analogy between the Dirac operator
and the ∂–operator of complex geometry. Let us first recall the definition of
the ∂–operator.

Definition 3.2.17. Let (Y, IY ) and (Z, IZ) be complex manifolds. Assume
that a Lie group G acts holomorphically on Z and pick a G–principal bundle
πG : PG → Y with a connection A. Then the ∂A–operator is given by the
following sequence

∂A : Γ(PG ×G Z)
∇−−→ Ω1(Y )⊗ Γ

(
πG

! (u∗TZ)
)
→ Ω1,0(Y )⊗ Γ

(
πG

! (u∗TZ)
)
,

where the last arrow is induced by the projection Ω1(Y ) → Ω1,0(Y ).

We will suppress the dependence of ∂A–operator on A in notations, if the
connection will be clear from the context.

Further, we also have a splitting of the tangent bundle of PG on vertical
and horizontal parts: TPG = V ⊕H. It is well–known (see for example [40]
for the case of ∂̄–operator) that ∂u = 0 is equivalent to

u∗ − IZu∗IY = 0 on H.

We will further develop the analogy between Dirac and ∂ operators below.

anotice that (I1, I2, I3) is the distinguished triple on M ; see Remark 3.2.1 for details
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Remark 3.2.18. Under assumptions of Definition 3.2.17 the operator ∂̄A is
defined by the sequence

∂̄A : Γ(PG ×G Z)
∇−−→ Ω1(Y )⊗ Γ

(
πG

! (u∗TZ)
)
→ Ω0,1(Y )⊗ Γ

(
πG

! (u∗TZ)
)
.

As we have already mentioned above, the condition ∂̄Au = 0 is equivalent to
IZu∗ = u∗IY on H.

Convention 3.2.19. We say, that u ∈ MapG(PG, Z) is an equivariant holo-
morphic map with respect to the connection A, if it defines a holomorphic
section of the associated bundle PG ×G Z, i.e. if ∂̄Au = 0. Notice, that the
source of an equivariant holomorphic map must not be a complex manifold.

3.3 Aholomorphic maps

Assume for a while that the source manifold X is hyperKähler, that is it ad-
mits three global complex structures (J1, J2, J3). In particular the principal
bundle of Λ2

+X, is trivial (as well as the connection). Suppose M admits a
permuting SO(3)–action. Since SO−(3) acts trivially on M , we can identify
spinors with the usual maps u : X → M . We then obtain from Corol-
lary 3.2.16 that u is harmonic iff

u∗ − I1u∗J1 − I2u∗J2 − I3u∗J3 = 0.

The maps satisfying the above equation are of particular importance in quater-
nionic geometry and we will study their properties below.

3.3.1 Linear algebra: aquaternionic operators

Let (U, J1, J2, J3) and (V, I1, I2, I3) be quaternionic modules. Define an oper-
ator C : HomR(U, V ) −→ HomR(U, V ) by the formula:

C : A 7→ I1AJ1 + I2AJ2 + I3AJ3. (3.12)

Proposition 3.3.1. The operator C has the following properties

(i) C2 = 3− 2C;

(ii) the spectrum consists of 1 and −3;

(iii) the space HomR(U, V ) decomposes as a direct sum of eigenspaces of the
operator C:

HomR(U, V ) = B+ ⊕B−, (3.13)

where B+ corresponds to eigenvalue +1 and B− to −3.
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Proof. The following computation

C2(A) = I1(I1AJ1 + I2AJ2 + I3AJ3)J1+

+ I2(I1AJ1 + I2AJ2 + I3AJ3)J2+

+ I3(I1AJ1 + I2AJ2 + I3AJ3)J3 =

= 3A− C(A)

shows that the property (i) holds. The other two properties are direct con-
sequences of the first one.

In the sequel we will use the following notations:

B0 = {A ∈ HomR (U, V )| A ◦ Jl = Il ◦ A, l = 1, 2, 3} = HomH (U, V );

Br = {A ∈ HomR (U, V )| A ◦ Jr = Ir ◦ A, A ◦ Jl = −Il ◦ A, l 6= r } ,

where r runs through 1, 2, 3.

Remark 3.3.2. There is no nontrivial operator which anticommutes with all
complex structures. Indeed, if A would be such operator, then one would have
C(A) = 3A, but 3 is not an eigenvalue of C. The same argument shows that
there is no nontrivial operator, which commutes with two complex structures
and anticommutes with the third one.

Proposition 3.3.3. The following properties hold:

(i) the linear spaces Br are isomorphic: B0
∼= B1

∼= B2
∼= B3;

(ii) one has a decomposition

HomR (U, V ) = B0 ⊕B1 ⊕B2 ⊕B3. (3.14)

Proof. Observe that for example an isomorphism between B0 and B1 can be
obtained as multiplication by I1 on the left. This proves (i).

Further, for any operator A ∈ HomR (U, V ) we have a decomposition
A = A0 + A1 + A2 + A3 with

A0 =
1

4

(
A− C(A)

)
,

A1 =
1

4

(
A− I1AJ1 + I2AJ2 + I3AJ3

)
,

A2 =
1

4

(
A+ I1AJ1 − I2AJ2 + I3AJ3

)
,

A3 =
1

4

(
A+ I1AJ1 + I2AJ2 − I3AJ3

)
,

and each component lies in the corresponding subspace. Thus (ii) is also
proven.

51



Corollary 3.3.4. The decompositions (3.13) and (3.14) are related as fol-
lows:

B− = B0 = HomH (U, V ), dimB− = 4mn;

B+ = B1 ⊕B2 ⊕B3, dimB+ = 12mn,

where we assume dimR U = 4m; dimR V = 4n.

Proof. It easily follows from the definition of subspaces Br that C(A) = −3A
for any A ∈ B0 and C(A) = A for any A ∈ Br, r = 1, 2, 3.

Definition 3.3.5. We say that an operator A ∈ HomR (U, V ) is aquater-
nionic, if C(A) = A, where C is given by (3.12).

Proposition 3.3.6. An operator A ∈ HomR (U, V ) is aquaternionic if and
only if its quaternionic linear component vanishes.

Proof. Any operator A ∈ HomR (U, V ) can be decomposed as A = A+ + A−
due to (3.13). It follows from Corollary 3.3.4 that the equation C(A) = A is
equivalent to A− = 0 or in other words that the quternionic linear component
of A vanishes.

We suggest the term aquaternionic for operators A satisfying C(A) =
A since it reflects the property that A has a vanishing quaternionic linear
component.

Remark 3.3.7. If both spaces U and V carry an Euclidean scalar product
then so does HomR (U, V ) ∼= U∗ ⊗ V . If the quaternionic structures are con-
sistent with the Euclidean ones, i.e. if the complex structures are orthogonal
operators, then decomposition (3.13) is in fact orthogonal. Therefore

C(A) = A ⇐⇒ A ∈
(
HomH (U, V )

)⊥
.

The space of linear homomorphisms as Sp(1)–representation.

Again, let (U, J1, J2, J3) and (V, I1, I2, I3) be quaternionic modules. As we
have already remarked U and V carry the standard representation of Sp(1),
which will be denoted by the same letters. If we want to consider those
spaces as trivial Sp(1)–representations, we use Ũ and Ṽ . Further, W ≡ W1

denotes the standard Sp(1)–representation by left multiplication on the space
of quaternions H; then all other irreducible representations of Sp(1) are just
symmetric powers of the standard representation [12]: Wn = SnW . By R3 we
denote the standard representation of SO(3) or the induced representation of
its double cover Sp(1).
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Proposition 3.3.8. We have an isomorhism of Sp(1)–representations

HomR (U, V ) ∼= R3⊗RHomH
(
Ũ , Ṽ

)
⊕HomH

(
Ũ , Ṽ

)
.

Moreover,

B+ = R3 ⊗HomH
(
Ũ , Ṽ

)
, B− = HomH

(
Ũ , Ṽ

)
.

Proof. First observe that

HomR (U, V )C
∼= (U∗⊗RV )C

∼= UC⊗CVC.

Further, it follows from Proposition 3.1.1 that

UC⊗CVC ∼= W⊗CŨ⊗CW⊗CṼ ∼= W⊗CW⊗C
(
Ũ⊗CṼ

)
.

But according to the Clebsch–Gordon formula [12] we have W⊗CW ∼= W2⊕C
and therefore

HomR (U, V )C
∼=
(
W2 ⊕ C

)
⊗CHomC

(
Ũ⊗CṼ

)
,

where HomC
(
Ũ⊗CṼ

)
denotes the space of operators A such that AJ1 = I1A.

Since the real part of HomC
(
Ũ⊗CṼ

)
is the set of fixed points of the operator

A 7→ −I2AJ2, i.e HomH
(
Ũ⊗CṼ

)
, we get

HomR (U, V ) ∼=
(
[W2]r ⊕ R

)
⊗R

[
HomC

(
Ũ⊗CṼ

)]
r

∼=
∼= [W2]r⊗RHomH

(
Ũ , Ṽ

)
⊕HomH

(
Ũ , Ṽ

)
.

Now it only remains to note that [W2]r ∼= R3.

3.3.2 Aholomorphic maps between hyperKähler mani-
folds

Let (X, J1, J2, J3) and (M, I1, I2, I3) be two hyperKähler manifolds (in this
section one may work equally well with hypercomplex manifolds, but we will
remain in the Riemannian category) and let u : X → M be a smooth map.
Then its differential u∗ is a linear map between the two quaternionic modules
TX and TM .

Definition 3.3.9 (Aholomorphic map). A map u : X → M is said to be
aholomorphic if its differential is aquaternionic, i.e if

C(u∗) = I1u∗J1 + I2u∗J2 + I3u∗J3 = u∗. (3.15)
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Proposition 3.3.10. A map u is aholomorphic if and only if the triholomor-
phic (i.e. quaternionic linear) component of its differential u∗ vanishes.

Proof. This is a consequence of the corresponding statement for linear oper-
ators (see Proposition 3.3.6).

Aholomorphic maps were already studied, however under a variety of dif-
ferent names. They naturally arise in the supersymmetric gauged σ–model
and appeared in physical literature [2, 25] for the first time as ”triholomorphic
maps” (warning: we reserve the term ”triholomorphic” for quaternionic linear
maps) or ”hyperinstantons”. Such maps were studied also from a mathemat-
ical viewpoint by Chen [15], Chen and Li [16] (”quaternionic maps”), Wang
[71] (”triholomorphic maps”). Joyce [42] (”q–holomorphic functions”) con-
sidered the case of a flat target manifold H. Equation (3.15) was known long
ago and was introduced in 1934 by Fueter [28](”regular functions”) for the
simplest case of maps u : H → H in his attempts to construct a quaternionic
analogue of the theory of complex holomorphic maps. The equation (3.15) is
often called the Cauchy–Riemann–Fueter equation. An extensive exposition
of the theory can be found in [64].

In the author’s opinion the proposed term aholomorphic map better re-
flects the properties of maps satisfying equation (3.15), namely the fact that
the differential of solutions to (3.15) has a vanishing triholomorphic compo-
nent.

Observe that the aholomorphicity condition (3.15) is elliptic only in case
when a source manifold X is four–dimensional.

In the new terminology we have the following proposition.

Proposition 3.3.11. Assume that X4 is hyperKähler. Then a spinor u :
X →M is harmonic if and only if it is aholomorphic.

3.3.3 Aholomorphic sections

Definition 3.3.12. Let E −→ X be a vector bundle. A rank 3 subbundle
I ⊂ End(E) is said to be a quaternionic structure, if it has local bases
(I1, I2, I3) such that I2

l = −Id; I1I2 = −I2I1 = I3.

Note that the quaternionic structure I considered as a vector bundle has
a natural euclidean metric and orientation.

Now suppose that E1 and E2 are vector bundles with quaternionic struc-
tures I1 and I2. Futhermore, suppose that I1 and I2 are isomorphic (as
oriented euclidean vector bundles) and fix an isomorphism F between them.

54



The isomorphism F defines an operator C = CF ∈ Γ(End
(
Hom(E1, E2))

)
in a natural way. Indeed, pick a local basis (I1, I2, I3) of I1 and denote by
(J1, J2, J3) its image under F. Then

C = J1 · I1 + J2 · I2 + J3 · I3

and it does not depend on the choice of a local basis.

Definition 3.3.13. A section A ∈ Γ(Hom(E1, E2)) is said to be aquater-
nionic with respect to the isomorphism F, if CF(A) = A.

Definition 3.3.14. Let f be a map between two quaternionic Kähler mani-
foldsN1 andN2. Assume that f ∗I2 is isomorphic to I1 and fix an isomorphism
F : I1 −→ f ∗I2. We say that the map f is aholomorphic with respect to F if
df ∈ Γ(T ∗N1 ⊗ f ∗TN2) is aquaternionic.

Observe that a map f between two hyperKähler manifolds is aholomorhic
in the sense of Definition 3.3.9 if it is aholomorhic with respect to the identity
isomorphism.

Aholomorphic maps between quaternionic Kähler manifolds were studied
mainly in the realm of topological σ–model [33, 2] although under different
names.

Pick a G–principal bundle πG : PG → X with a connection a ∈ Ω1(PG; g).
Let N be an (almost) quaternionic Kähler manifold with a quaternionic
Kähler action of G. Consider an equivariant map ϕ ∈ MapG(PG, N) or equi-
valently a corresponding section ϕ ∈ Γ(N ), where N = PG ×G N . Observe,
that

∇aϕ ∈ Γ
(
T ∗X ⊗ πG

! (ϕ∗TN)
) ∼= Γ

(
Hom(TX, πG

! (ϕ∗TN))
)

and both vector bundles TX and πG
! (φ∗TN) have quaternionic Kähler struc-

tures. Indeed, since the action of G is quaternionic Kähler, the latter bundle
has the induced quaternionic structure from TN . But the tangent bundle
of any oriented Riemannian 4–dimensional manifold automatically carries an
almost quaternionic structure. In fact there are two such non–isomorphic
structures: one can be identified with Λ2

+X and the other with Λ2
−X. We

prefer Λ2
+X since it better fits our conventions.

Now assume that Λ2
+X and πG

! (ϕ∗I) are isomorphic and fix an isomor-

phism F : Λ2
+X

∼−→ πG
! (ϕ∗I), where I is the structure bundle of N .

Definition 3.3.15. We say that a section ϕ ∈ Γ(N ) is aholomorphic with
respect to the pair (a,F), if its covariant derivative ∇aϕ is an aquaternionic
section of Hom(TX, πG

! (ϕ∗TN)).
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Remark 3.3.16. Locally the notion of aholomorphicity can be expressed as
follows. Pick an orthonormal oriented local basis v = (v0, v1, v2, v3) of TX
and consider ϕ as an equivariant map. Further, v determines a local basis of
Λ2

+TX. The isomorphism F in turn determines a local basis (I1, I2, I3) of the
pull–back of I. Then ϕ is aholomorphic iff

ϕ∗ṽ0 + I1ϕ∗ṽ1 + I2ϕ∗ṽ2 + I3ϕ∗ṽ3 = 0,

where ṽl denotes the horizontal lift of vl with respect to the connection a.

3.4 Harmonic spinors and aholomorphic sec-

tions

In this section we assume that the source manifold X is spinor. This is not
essential, however the exposition is clearer.

Denote by PSpin the Spin(4)–structure of X, P+ = PSpin/Sp−(1) is then
an Sp+(1)–structure. Since the subgroup Sp−(1) acts trivially on M we may
assume that spinors u are elements of MapSp+(1)(P+,M). Suppose also that
the permuting action of Sp(1) on M can be extended to the permuting action
of H∗. Then N = M/H∗ is a quaternionic Kähler manifold and we have a
natural projection κ : M → N .

As it was already pointed out in Chapter 2 the manifold M can be recov-
ered by N . More precisely, denote by F −→ N an SO(3)–principal bundle
of local almost complex structures on N . Take W0 as in Example 3.2.8 and
consider a fibre bundle F×SO(3)W0 where the action is given via quaternionic
multiplication (by quaternionic conjugate) on the right. It turns out that the
total space of this bundle is the original manifold M (see [65] for details).
Moreover, the permuting action of Sp(1) now can be described as a fiberwise
multiplication on the left.

Remark 3.4.1. There is an inclusion F ↪→ M. Indeed, from the standard
inclusion S3 ↪→ H one obtaines SO(3) ↪→ W0 and therefore

F ∼= F ×SO(3) SO(3) ↪→ F ×SO(3) W0 = M.

Note also that this inclusion can be written explicitly as f 7→ [f, 1] so that
f · q 7→ [f · q, 1] = q̄[f, 1]. This implies in particular that an invariant map
P+ −→ F becomes equivariant if we consider it as a map P+ −→ M . Vice
versa, if one takes the composition of an equivariant map with a projection
M −→M/R∗ ∼= F then it becomes invariant.
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Let u ∈ MapSp+(1)(P+,M) be a spinor. Then we have the following com-
mutative diagram

P+
u−−−→ My yκ

X
ϕ−−−→ N

where ϕ is the projection of u. It means that one can consider a spinor
u as a pair (ϕ, ψ) with an equivariant map ψ : P+ −→ ϕ∗M . It follows
from the previous remark that the map ψ gives an invariant isomorphism of
principal bundles Ψ : PΛ2

+
−→ F , where PΛ2

+
is the principal bundle of Λ2

+X

or equivalently P+/{±1}.
We can describe ψ equivalently as follows. First, consider the SO+(3) ×

SO(3)–principle bundle PΛ2
+
× ϕ∗F over X. Let W̃+

0 denote the manifold

H∗/± 1 together with the following action of SO(3)× SO(3):(
([q1], [q2]), [h]

)
7→ [q1hq̄2].

Then we obtain a fibre bundle W̃+
0 =

(
PΛ2

+
×ϕ∗F

)
×SO+(3)×SO(3) W̃

+
0 over X.

One easily sees from the construction that W̃+
0 =

(
PΛ2

+
×SO+(3) ϕ

∗M
)
. Thus

ψ is a section of W̃+
0 .

Theorem 3.4.2. Under the above conventions, harmonic spinors u are in
bijective correspondence with pairs (ϕ, ψ) such that ϕ is an aholomorphic
map with respect to Ψ and ψ is a harmonic spinor with respect to to the
Dirac operator with coefficients (as described in remark 3.2.13 b).

Proof. If the action of Sp(1) on M extends to the action of H∗, then [65] the
vertical bundle VM of κ : M → N is span R(Y0, I1Y0, I2Y0, I3Y0) = span H(Y0),
where the vector field Y0 is a Killing vector field of R∗ ⊂ H∗. In particular,
VM is invariant with respect to complex structures of M . Define a horizontal
distribution HM as an orthogonal complement to the vertical subbundle:

HM = V⊥M ⊂ TM.

Since complex structures of M are orthogonal operators, they also preserve
the horizontal distribution HM .

Now take vl’s and wl’s as in Lemma 3.2.15 so that equation (3.11) holds.
Further, decompose wl = u∗vl into horizontal and vertical components: wl =

bin this case G = SO(3), PG = ϕ∗F equipped with the pull–back of the natural con-
nection of F
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wh
l + wv

l . Then equation (3.11) splits:

wh
0 + I1w

h
1 + I2w

h
2 + I3w

h
3 = 0, (3.16)

wv
0 + I1w

v
1 + I2w

v
2 + I3w

v
3 = 0. (3.17)

But equation (3.16) is equivalent to the aholomorphicity of ϕ with respect
to Ψ. On the other hand, equation (3.17) is equivalent to the requirement
that the spinor ψ ∈ Γ

(
W̃+

0

)
is harmonic with respect to the twisted SO–Dirac

operator.

Remark 3.4.3. In general, ϕ and ψ can not be defined separately, since
aholomorphicity implies the knowledge of ψ, and ψ itself implies ϕ by its
very definition. However, when N is itself a hyperKähler manifold, then M is
the trivial bundle: M = N ×H∗. In this case ϕ and ψ become independent.
One easily sees that ψ ∈ Γ(W+) is just the usual (linear) spinor.
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Chapter 4

Generalized Seiberg–Witten
Equations over Kähler Surfaces
and Holomorphic Curves

In this chapter a generalization of the Seiberg–Witten equations based on the
nonlinear Dirac operator is studied. The definition appeared in [59] (see also
[69]). Suppose that the source 4–manifold X is Kähler; then we show in The-
orem 4.2.3 that solutions to the generalized Seiberg–Witten equations have
a holomorphic description similarly to the classical case (see Theorem 1.1.8).
This theorem also allows us to obtain connection between the Seiberg–Witten
theory and other gauge theories [40, 58, 18], which appeared in a slightly dif-
ferent context, mainly in symplectic topology. In Section 4.5 we study the
THC–system defined in [40] over the product of two holomorphic curves. Al-
though interesting on its own, this section mainly serves for us as a prototype
of the Seiberg–Witten equations over the product of two holomorphic curves,
which is the subject of Section 4.6. We show (modulo the adiabatic limit
conjecture), that there is a relation between the THC–system, holomorphic
curves as in the Gromov theory and symplectic vortex equations [18]. Anal-
ogous results are obtained for the generalized Seiberg–Witten equations in
Theorem 4.6.3.

The connection between holomorphic curves and classical Seiberg–Witten
equations was studied in [17]. Such connection was discovered for the first
time by Taubes [68], however his approach is different.
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4.1 Generalized Seiberg–Witten equations

Let PSpinc → X be a Spinc(4) principal bundle with connection â deter-
mined by a connection a on the determinant bundle Pdet = PSpinc/Spin(4)
and the Levi–Civita one on Pso. We also fix a hyperKähler manifold M
with the action of U(2) as described in Section 3.2. Recall, that maps
u ∈ MapSpin

c(4)(PSpinc ,M) ∼= MapU+(2)(P+,M) play a role of spinors, where
P+ = PSpinc/Sp−(1).

The triholomorphic action of the center of U(2) gives rise to a momentum
map

µ : M −→ R3 ∼= Im H.
The requirement that the action of Sp(1) is permuting gives that the target R3

of the momentum map is in fact the standard representation of Sp(1)/± 1 ∼=
SO(3). Hence the composition of a spinor u ∈ MapSpin

c(4)(PSpinc ,M) with
the momentum map µ is an equivariant map

µ ◦ u : PSpinc −→ R3
+,

where as before we use the subscript + to keep in mind that the action is
induced by the SO+(3). It follows that any spinor u generates a self–dual
2–form Φ(u).

Definition 4.1.1. The first order differential equations{
Da u = 0,

F+
a + Φ(u) = 0.

(4.1)

for a spinor u ∈ MapSpin
c(4)(PSpinc ,M) and a connection a ∈ A(Pdet) are

called (generalized) Seiberg–Witten equations.

Remark 4.1.2. The above definition was given by Pidstrygach [59]. The
analogous setting for 3–manifolds was described by Taubes [69].

4.2 Generalized Seiberg–Witten Equations

over Kähler Surfaces

In this section we will consider the generalized Seieberg–Witten equations
in assumption that the source manifold X4 carries a Kähler structure. In
this case the principal SO(3) bundle PΛ2

+
reduces to an S1 principal bundle

(we prefer to denote this group by S1
r ) so that we have the reduction of

P+ = PU(2)+ to the H = (S1
r × S1

0)/± 1 ∼= T2 principal bundle Pred.
We start with the following auxiliary lemma.
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Lemma 4.2.1. Let G′ be a Lie subgroup of a Lie group G and P ′ be a principal
G′–bundle over X. Define a principal G–bundle PG as P ′ ×G’ G. Assume
also that the group G acts on a manifold M . Then one has a canonical
isomorphism

MapG(PG ,M) ∼= MapG
′
(P ′,M).

Proof. Pick an equivariant map u : P ′ → M . Then the map ũ : [p, g] 7→
g−1u(p) belongs to MapG(PG ,M). On the other hand the map p 7→ [p,1]
provides an embedding of P ′ into PG and therefore we have an inclusion
MapG(PG ,M) ⊂ MapG

′
(P ′,M).

Corollary 4.2.2. If X is a Kähler surface, then

MapU(2)(P+,M) ∼= MapH(Pred,M).

Proof. The statement follows from the previous lemma, since we have an
embedding H ↪→ (Sp(1)× S1

0)/± 1 ∼= U(2).

Theorem 4.2.3. Suppose the source 4–manifold X is a Kähler surface. Then
a pair (a, u) ∈ A(Pdet) ×MapH(Pred,M) is a solution of the Seiberg–Witten
equations if and only if the following holds:

1. a is a holomorphic structure, i.e. (Fa)
(0,2) = 0,

2. µc ◦ u ≡ 0, µc = µ2 + µ3i : M → C,

3. F+
a + (µ1 ◦ u)ωX = 0,

4. u : Pred → M is a holomorphic equivariant map a with respect to the
connection â, where the complex structure on M is given by −I1 and â
is generated by a and the Levi–Civita connection.

Proof. Obviously, any solution of the Seiberg–Witten equations is an absolute
minimum of the functional

S(a, u) =
1

2
‖F+

a + Φ(u)‖2 + ‖Da u‖2.

Using the Weitzenböck formula, one can rewrite the functional S as fol-
lows [59]:

S(a, u) =
1

2
‖F+

a ‖2 +
1

2
‖Φ(u)‖2 + ‖∇âu‖2 +

∫
X

ρ(u)
s

4
d volX ,

asee Convention 3.2.19
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where ρ : M → R is the hyperKähler potential and s is the scalar curvature
of X.

Now fix zr ∈ S1
r ⊂ H∗ and consider u′ = zr · u = Lzru, Lzr : M → M .

Since S(a, u′) = S(a, u) it follows that (a, u′) is a solution of the Seiberg–
Witten equations too.

On the other hand, solutions to the Seiberg–Witten equations are also
minima of the functional

S1(a, u) = ‖F+
a + Φ(u)‖2 + ‖Da u‖2.

Applying the Weitzenböck formula again, one gets

S1(a, u) = 〈F+
a ,Φ(u)〉+ ‖F+

a ‖2 + ‖Φ(u)‖2 + ‖∇âu‖2 +

∫
X

ρ(u)
s

4
d volX .

Since the source manifold X is Kähler we have [20] the decomposition

Ω2
+(X) ∼= Ω2, 0(X)⊕ Ω0(X)ωX ⊕ Ω0, 2(X), (4.2)

and therefore we may write F+
a = (F+

a )
1,1

+ F, where the last summand

belongs to Ω2,0 ⊕ Ω0,2. Similarly, we may decompose Φ(u) =
(
Φ(u)

)1,1
+

Φc(u) = (µ1 ◦ u)ωX + Φc(u), where Φc(u) is the Ω2,0 ⊕ Ω0,2 component of
Φ(u). Observe that the 2–form Φc(u) is real and can be identified with the
equivariant map µc ◦ u. Then

S1(a, u) = µ1 ◦ u 〈
(
F+
a

)1,1
, ωX〉+ 〈F,Φc(u)〉+

+ ‖F+
a ‖2 + ‖Φ(u)‖2 + ‖∇âu‖2 +

∫
X

ρ(u)
s

4
d volX .

Now all the summands on the right–hand side of the above formula remain
invariant if we replace u by u′ with the only exception: the term 〈F,Φc(u)〉 is
multiplied by z2

r . It follows, that the term must vanish. Since F+
a = −Φ(u),

we get F = −Φc(u) and consequently F = 0, Φc(u) = 0. Thus, for any
solution of the Seiberg–Witten equations statements 1– 3 of the theorem hold.

Observe that on the other hand, the second equation of (4.1) follows from

the statements 1– 3. Indeed, since a is a unitary connection, F
(0, 2)
a = 0 implies

[20] F
(2, 0)
a = 0. It remains to recall the decomposition (4.2).

The complex structure of X (or, equivalently, the Kähler form) provides a
reduction of P+ to Pred. It means that we have a natural embedding Pred ⊂ P+

such that the horizontal subbundle of TPred coincides with the pull–back of
the horizontal subbundle of TP+. We do not distinguish between these two
horizontal subbundles in notations.
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Let u be as in the statement of the theorem. According to Corollary 4.2.2
we have a natural isomorphism MapH(Pred,M) ∼= MapU(2)(P+,M). Denote
by ũ the image of u in MapU(2)(P+,M). By Corollary 3.2.16, the spinor ũ
satisfies ũ∗ − I1ũ∗J1 − I2ũ∗J2 − I3ũ∗J3 = 0 on H → P+. It follows from the
above observation that it is equivalent to u∗ − I1u∗J1 − I2u∗J2 − I3u∗J3 = 0
on H → Pred. Since the reduction of P+ to Pred is provided by the complex
structure of X, we may assume that J1 is its pull–back to H.

Pick an arbitrary vector v ∈ T.X and denote w1 = u∗v̂ − I1u∗J1v̂, w2 =
u∗J2v̂, w3 = u∗J3v̂. Then

w1 − I2w2 − I3w3 = 0. (4.3)

Since the action of S1
r rotates I2 and I3, one has

LzrI2Lz̄r = αI2 − βI3,

LzrI3Lz̄r = βI2 + αI3,

where z2
r = α+ βi. Then applying Lzr to equation (4.3) one has:

Lzrw1 − (αI2 − βI3)Lzrw2 − (βI2 + αI3)Lzrw3 = 0.

On the other hand the harmonicity of u′ implies

Lzrw1 − I2Lzrw2 − I3Lzrw3 = 0.

Subtracting the above two equations one obtains that the equality

(αI2 − βI3)Lzrw2 + (βI2 + αI3)Lzrw3 = I2Lzrw2 + I3Lzrw3 (4.4)

holds for all α, β such that α2 + β2 = 1.
Now put α = 0, β = 1. Then equation (4.4) gives I3Lzr(w2 − w3) =

I2Lzr(w2−w3) which in turn implies w2 = w3 = w. Thus we can rewrite equa-
tion (4.4) as ((α+ β)I2 + (α− β)I3)Lzrw = (I2 + I3)Lzrw and this clearly
implies w = 0. Since v was arbitrary we see that u satisfies

u∗ − I1u∗J1 = 0, (4.5)

i.e. u is an equivariant holomorphic map if one considers M as a complex
manifold with the complex structure −I1.

On the other hand, if u is a holomorphic equivariant map, i.e. if (4.5)
holds, then one gets I2u∗J2 + I3u∗J3 = 0. It follows that u also satisfies
u∗ − I1u∗J1 − I2u∗J2 − I3u∗J3 = 0, i.e. u is a harmonic spinor.
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Remark 4.2.4. As we have already remarked, under the assumption that
the source manifold X is Kähler, the group U(2)+ reduces to H = (S1

r ×
S1

0)/±1. Consequently, it is possible to define Seiberg–Witten type equations
on 4–dimensional Kähler manifolds when the target hyperKähler manifold M
instead of H∗ (or Sp(1)) permuting action admits only an action of H, where
the component S1

0 acts triholomorphically and S1
r fixes I1 while rotating I2

and I3. Such definition belongs to V. Pidstrygach and equations of such type
were first considered in R. Waldmüller diploma thesis [70]. Although our
proof of the first three statements uses the fact that M admits a permuting
H∗ action, however they still remain true. The proof of the forth one is also
valid when M admits only an S1

r–action.

It is straightforward to check that the map µc : M → C, µc = µ2 + µ3i is
I1–holomorphic and therefore

Mc = {m ∈M | µc(m) = 0} (4.6)

is an I1–complex submanifold (assuming that it is submanifold) of (M, I1).
Consequently, (Mc,−I1) is also a complex submanifold of (M,−I1). More-
over, both S1

r and S1
0 act holomorphically on Mc.

With this in mind, Theorem 4.2.3 may be interpreted in the following
way. Recall that we have an H–principal bundle Pred over a Kähler surface
X with two projections: Pred → Pred/S

1
r = Pdet and Pred → Pred/S

1
0 = Pr,

where Pr is a principal bundle of the anticanonical line bundle of X. A
choice of connection a on Pdet uniquely defines a connection â on Pred by
the requirement that the connection on Pr is induced by the Levi–Civita
connection. Next, we may regard nonlinear spinors u as equivariant maps
Pred → Mc. Now the first statement of the theorem says that â equips Pred
with a holomorphic structure; then the fourth one says that u is a holomorphic
equivariant map, i.e. ∂̄âu = 0.

Further, denote by Λ : Ωp+1, q+1(X) → Ωp, q(X) the adjoint operator of
L : Ωp, q(X) → Ωp+1, q+1(X), α 7→ α ∧ ωX. It follows from the decomposition

(4.2) that ΛF+
a = ΛFa. Now since a is a U(1) connection with F

(0,2)
a = 0

we have also F
(2,0)
a = 0. Therefore, for a unitary connection a such that

F
(0,2)
a = 0 we may equivalently rewrite the equation F+

a + (µ1 ◦ u)ωX = 0 as
ΛFa + µ1 ◦ u = 0. Summing up we get the following corollary.

Corollary 4.2.5. Let X be a Kähler surface. Then there is a one–to–one
correspondence between solutions of the Seiberg–Witten equations (4.1) and
the following system {

∂̄ â u = 0,

ΛFa + µ1 ◦ u = 0,
(4.7)
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where u ∈ MapH(Pred,Mc) with Mc given by (4.6), a is a connection on Pdet
such that F

(0,2)
a = 0 and â is generated by a and the Levi–Civita connection.

We would like to stress that the operator ∂̄â is determined by both the
Levi–Civita connection and the connection a.

4.3 Twisted holomorphic curves and solutions

to Seiberg–Witten equations

Below we would like to describe a system of equations introduced by Cieliebak,
Gaio and Salamon in [18] for Riemannian surfaces and independently by
Mundet i Riera in [40] for arbitrary Kähler manifolds. To define the above
mentioned equations we need two Kähler manifolds, which will play a different
role: a source manifold K and target one F . Pick an S1–principal bundle P0

over the source K with a holomorphic structure a meaning a connection with
vanishing (0, 2)–part of the curvature. Suppose also that the target F admits
an S1–symmetry with momentum map µF : F → R. Consider the system of
PDE for the pair (a,Φ) : {

∂̄aΦ = 0,

ΛFa + µF ◦ Φ = 0.
(4.8)

We will refer to equations (4.8) as a THC–systemb for brevity. Note that the
system (4.8) is called symplectic vortex equations in [18] and we will reserve
that name for the case when the source manifold is a Riemann surface, as it
is in [18].

We will also consider moduli spaces associated to the THC–system. To
introduce them remark that the gauge group G = Map(X,S1) acts on the
space of solutions to (4.8). Denote F = P0 ×S1 F and set

MTHC = {(a,Φ) ∈ Ah(P0)× Γ(F)
∣∣ (a,Φ) is a solution of (4.8), [Φ] = c}/G,

where Ah(P0) denote the space of holomorphic structures on a principle bun-
dle P0 and c is an equivariant homotopy class of maps. The space defined
above depends on the choice of a principal bundle P0, a fiber F and a ho-
motopy class c, i.e. MTHC = MTHC(P0, F, c). However, we will write simply
MTHC for the sake of brevity if it does not make a confusion.

In general the space MTHC will have singularities. However, there are two
common approaches to remain in the smooth category. One may consider

babbreviation of twisted holomorphic curve
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perturbed equations and prove that for a generic choice of perturbations the
moduli space will be smooth (see [40] for details) or consider only irreducible
solutions, i.e. those pairs whose stabilizer is trivial. In the latter case we
denote the moduli space by M∗

THC.

Remark 4.3.1. In order to guarantee that the moduli space MTHC is a man-
ifold one has to pass from spaces of smooth sections to appropriate Sobolev
completions (see [40] for details). It follows from the ellipticity of the system
in question that it not essential what particular Sobolev completion is chosen.
Since this technique is well–known and documented we will not mention that
an appropriate Sobolev completion has to be chosen but rather describe our
results and constructions in terms of smooth data.

Although systems (4.7) and (4.8) look very similar there is a significant
difference: while the map u is defined on the H = (S1 × S1)/ ± 1 principal
bundle Pred and the operator ∂̄â makes use of the Levi–Civita connection, the
domain of Φ is only an S1–principal bundle and the operator ∂̄a requires just
a choice of connection on P0. However it seems natural to expect that these
two systems are closely related and we will work out details in the sequel.

Remark 4.3.2 (Seiberg–Witten equations on Kähler manifolds with
trivial canonical bundle). Probably the easiest way to see a direct connec-
tion between systems (4.7) and (4.8) is the following. Assume for a moment
that the canonical bundle of the source Kähler surface X is trivial as well as
that its connection, induced by the Levi–Civita connection, is also trivial. For
example, X can be a K3 surface or flat torus T4. Under such circumstances,
the bundle (Pred, â) further reduces to (Pdet, a) so that equations (4.7) reduce
to the THC–system with K = X, P0 = Pdet, Φ = u.

Another connection between systems (4.7) and (4.8) is based on the fol-
lowing observation. Let Zc be the Kähler reduction of Mc (see (4.6)) with
respect to S1

r : Zc = Mc//S
1
r = Mc/C∗

r. It is known [11] that if a hyperKähler
manifold M admits a permuting H∗–action and C∗

r ⊂ H∗ is a standard embed-
ding, then Z(N) = M/C∗

r is a twistor space of quaternionic Kähler manifold
N = M/H∗. The map µc satisfies µc(z ·m) = z2µc(m) and therefore does not
descend to Z(N). However it gives rise to a section µ′c of a line bundle L2,
where L → Z(N) is defined as L = (M ×C)/Cr with respect to the following
action of C∗

r : z · (m,w) = (zm, zw). It follows that the zero–locus of µ′c is
well defined and it is easy to see that it coincides with Zc ⊂ Z(N).

Let Φ be the projection of u onto Zc. It follows that Φ ∈ MapS
1
0 (Pdet, Zc)

and one can think about Φ as a section of the ”determinant bundle” Zc =
Pdet×S1

0
Zc. Observe that Theorem 4.2.3 implies that the connection a induces
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a holomorphic structure on Zc so it makes sense to talk about holomorphic
sections of Zc. Further, one may consider Mc as the total space of a Hermitian
line bundle L → Zc so that the map u decomposes as a pair (Φ, s), where

s ∈ Γ(K−1
X ⊗ πdet! (Φ∗L)).

The manifold Zc inherits a Kähler structure from Mc. Then the holomor-
phic action of S1

0 gives rise to a moment map τ : Zc → R. It is easy to see
that µ1 ◦ u = | s| 2 τ ◦ Φ. Further, the holomorphicity of u implies that both
Φ and s are holomorphic and the second equation of (4.7) takes the form

ΛFa + | s|2 τ ◦ Φ = 0.

It may happen that for some choice of an equivariant homotopy class c of
maps Φ the bundle K−1

X ⊗ πdet! (Φ∗L) becomes trivial. It follows that in this
case s is necessarily a constant so that the pair (a,Φ) is a solution of (4.8)
for a source manifold X, P0 = Pdet and F = Zc.

4.4 Seiberg–Witten equations as THC–

system with additional twisting

Since the celebrated papers of Gromov lots of efforts were made to study the
space of holomorphic maps from an almost complex manifold (mainly Rie-
mann surface) into another one (most often symplectic). Good understanding
of such spaces provides a lot of information about the chosen manifolds.

A natural question arises: what can be taken as a ”twisted version” of
holomorphic curves? There seem to be two natural approaches. The first is to
fix an S1–principal bundle P0 (we consider here only the case of S1–symmetry,
although for the definition one may equally well take an arbitrary compact
Lie group) and also fix a connection with vanishing (0,2)–component of the
curvature. Then, by the analogy with holomorphic curves, one can study the
space of equivariant holomorphic mapsc into a target manifold F , which must
admit a holomorphic S1–action, i.e. the space of solutions to

∂̄u = 0, u ∈ MapS
1

(P0, F ).

The other approach is to consider equations where the unknowns are both
the connection and the holomorphic map, for example THC–system (4.8).

With this understood we may combine both approaches in the following
sense. Pick two S1–principal bundles P0 and P1 over a source Kähler manifold

csee Convention 3.2.19 and the preceding discussion
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X and fix a connection with vanishing (0, 2)–part of the curvature on one of
them, say P1. Put P = P0 × P1. Now a target manifold F must admit
T 2 = S1 × S1–symmetry and let µF denote momentum map of the first
component of T 2. Then we may consider the following problem{

∂̄ â u = 0, u ∈ MapT2

(P, F ),

ΛFa + µF ◦ u = 0,
(4.9)

where a is a connection on P0, which (together with the fixed connection
on P1) equips P with a holomorphic structure â. Equations of such form
(for general compact Lie groups) were introduced by Okonek and Telemann
[58], where they are called vortex type equations. Thus we see that Seiberg–
Witten equations on Kähler surfaces reduce to vortex type equation for P0 =
Pdet, P1 = Pr. Although in general one is free to choose any bundle P1 as well
as any ”parameter” connection on P1, however the setting of Seiberg–Witten
theory prescribes that choice: P1 has to be principal bundle of anticanonical
line bundle and connection has to be induced by the Levi–Civita one.

4.5 THC equations over products of holomor-

phic curves

In this section we will consider the THC equations (4.8) in the case when
the source manifold X is a product of two holomorphic curves: X = Σ × S.
The author was inspired by ideas of Cieliebak, Gaio, Mundet i Riera and
Salamon [17], where the classical Seiberg–Witten equations are considered.

Although the approach described below is interesting on its own, we
mainly regard the THC–system as a prototype of the Seiberg–Witten equa-
tions (4.7) over Kähler surfaces. Since the exposition slightly simplifies for
the THC–system, we start with the latter. However, before we start the
discussion of properties of the system (4.8) we would like to make a few
observations.

Gauge group. Let Y be a connected manifold. Consider a group GY =
Map(Y, S1). For any g ∈ GY we have an induced homomorphism g∗ : π1(Y ) →
π1(S

1) ∼= Z, which descends to π1(Y )/[π1(Y ), π1(Y )] ∼= H1(Y ; Z) → Z. In
other words, g∗ gives rise to an element of H1(Y ; Z), i.e. we have a homomor-
phism GY → H1(Y ; Z). The above homomorphism parameterizes connected
components of GY , i.e. GY = G0

Y × H1(Y ; Z), where G0
Y denotes the iden-

tity component. The equivalent definition of the subgroup G0
Y is as follows:

G0
Y consists of those elements g, whose associated group–homomorphisms
g∗ : π1(Y ) → π1(S

1) are trivial.
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Pick a point y ∈ Y and denote G0
Y, y = {g ∈ G0

Y | g(y) = 1}. It follows from
the above observation that any g ∈ G0

Y, y has a unique lift ξ to the universal
cover R of the circle such that ξ(y) = 0. Since the space R is contractible,
G0
Y, y has the same property. We have G0

Y = G0
Y, y × S1 and therefore

GY = G0
Y, y × S1 ×H1(Y ; Z).

If the Riemannian metric is fixed on Y , then one can identify the group
G0
Y, y with

G̃Y = {g ∈ G0
Y | g = eiξ,

∫
Y

ξ d volY = 0}.

In particular, G̃Y is also contractible and we have a similar decomposition

GY = G̃Y × S1 ×H1(Y ; Z). (4.10)

Symplectic vortex equations and their modification. Let P0 → Σ
be a principal S1–bundle. Consider symplectic vortex equations over Σ:{

∂̄bΨ = 0,

∗ΣFb + µF ◦Ψ = 0,
(4.11)

where b is a connection on P0 and Ψ : P0 → F is an S1–equivariant map.
Denote by M0

SV the moduli space corresponding to the problem (4.11), i.e.

M0
SV = {(b,Ψ) ∈ A(P0)×MapS

1

(P0, F ) | (b,Ψ) solves (4.11)}/G0
Σ.

Remark 4.5.1. Usually one defines the moduli space as the space of solutions
modulo the whole gauge group (in our case GΣ). However it is more convenient
for us to divide only by the identity component G0

Σ of the gauge group; the
superscript ”0” is used to keep in mind that we have chosen the subgroup G0

Σ

rather then the whole group. Notice also that the group GΣ/G0
Σ acts on M0

SV

and its factor is MSV .

Remark 4.5.2. It is well–known (see [18] for example) that the space M0
SV

can be obtained as an (infinite–dimensional) Kähler reduction provided the
target manifold F is not only symplectic, but also Kähler, and, consequently,
M0

SV is also a Kähler manifold.
Indeed, first observe that the space A(P0) carries a natural infinite–dimen-

sional Kähler structure. This easily follows from the fact that the tangent
space to A(P0) at any point may be identified with Ω1(Σ) and we may define
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a complex structure by the Hodge star operator ∗Σ : Ω1(Σ) → Ω1(Σ). Under
the above conventions the symplectic form is

ωA(P )(ϕ1, ϕ2) =

∫
Σ

ϕ1 ∧ ϕ2, ϕ1, ϕ2 ∈ Ω1(Σ). (4.12)

On the other hand, we have the following general phenomenon: the space
of sections Γ(PG×GZ) ∼= MapG(PG, F ) has a natural complex structure, where
π : PG → X is a G–principal bundle and F is a complex manifold, provided
G acts holomorphically on F . Indeed, fix a map Ψ. Then the tangent space
to MapG(PG, F ) at the point Ψ is the complex vector space Γ(π!(Ψ

∗TF )).
Further, when F is Kähler, then Γ(π!(Φ

∗TF )) inherits the L2–scalar product,
provided G also acts isometrically. Hence, in this case MapG(PG, F ) is also
endowed with the Kähler structure.

Thus the space MapS
1

(P0, F ) carries a natural Kähler structure and there-

fore so does A(P0) × MapS
1

(P0, F ). Now the space of solutions to the first
equation of (4.11) defines a complex submanifold Z = {∂̄bΨ = 0} ⊂ A(P0)×
MapS

1

(P0, F ), which is invariant under the GΣ–action. Further, it is easy

to check that the momentum map m : A(P0) × MapS
1

(P0, F ) → Lie(GΣ) ∼=
Map(Σ,R) of the gauge group GΣ is given by the right–hand side of the second
equation of (4.11). Therefore, the Kähler reduction of Z coincides with the
moduli space MSV .

Below we will also use another modification of the moduli space, namely a
Kähler reduction of Z ⊂ A(P0)×MapS

1

(P0, F ) with respect to the subgroup
G̃Σ ⊂ G0

Σ. In this case, the momentum map µ̃ is given by

µ̃(b,Ψ) = ∗ΣFb + µF ◦Ψ− 1

Vol(Σ)

∫
Σ

µF ◦Ψ d volΣ (4.13)

and the role of equations (4.11) now plays the following system{
∂̄bΨ = 0,

∗ΣFb + µF ◦Ψ− 1
Vol(Σ)

∫
Σ
µF ◦Ψ d volΣ = d

Vol(Σ)
+ τ,

(4.14)

where d = degP0 and τ ∈ R is a parameter. Therefore we defined

M̃SV = {(b,Ψ) ∈ A(P0)×MapS
1

(P0, F ) | (b,Ψ) solves (4.14)}/G̃Σ.

Observe that the group G0
Σ/G̃Σ

∼= S1 acts on M̃SV and the corresponding sym-
plectic reduction is M0

SV . In the context of Donalson’s theory the analogue
of M̃SV is known as the moduli space of framed instantons [20].

dwe suppress the dependence of M̃SV on τ in notations
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Let PΣ and PS be S1–principal bundles over Σ and S correspondingly.
Denote by LΣ and LS the corresponding complex line bundles. Recall that
X is a product of Σ and S considered with its product metric and complex
structure. Thus we have two natural projections: πΣ : X → Σ and πS : X →
S. Denote Ldet = π∗ΣLΣ ⊗ π∗SLS and let Pdet be its principal bundle. One can
also describe the principal bundle Pdet directly as follows

Pdet =
(
π∗ΣPΣ × π∗SPS

)
/S1, (4.15)

where the action of S1 is given by (z, pΣ, pS) 7→ (pΣz, pSz̄).
Pick reference connections b0 and c0 on PΣ and PS correspondingly. They

define a connection a0 on Pdet. Then, for an arbitrary connection a on Pdet,
we have a− a0 = α ∈ Ω1(Σ× S). Since

Ω1(Σ× S) ∼= Ω1(Σ)⊗ Ω0(S)⊕ Ω0(Σ)⊗ Ω1(S), (4.16)

we can decompose α into two components: α = β + γ. Further, denote
b = b0 + β and c = c0 + γ. One can think about b as a family of connections
on PΣ parameterized by the curve S; symmetrically, c can be thought of as
a family of connections on PS parameterized by the curve Σ. We say that b
and c are components of the connection a.

The curvature Fa of the connection a can be written as Fa0 + dXα ∈
Ω2(Σ × S). Further, dXα = dΣβ + dΣγ + dSβ + dSγ. The Künneth formula
provides a decomposition of Ω2(X) similar to (4.16), namely

Ω2(Σ× S) ∼= Ω2(Σ)⊗ Ω0(S) ⊕ Ω1(Σ)⊗ Ω1(S) ⊕ Ω0(Σ)⊗ Ω2(S). (4.17)

Therefore (dXα)(2, 0) = dΣβ, (dXα)(1, 1) = dΣγ + dSβ and (dXα)(0, 2) = dSc.
Since Fa0 = Fb0 + Fc0 , we obtain (Fa)(2, 0) = Fb, (Fa)(0, 2) = Fc .

Observe that Λ (Fa)(1, 1) = 0. Indeed this follows from the decomposition
(4.17) and the fact that

ωX = ωΣ + ωS

belongs to Ω2(Σ)⊗ Ω0(S) ⊕ Ω0(Σ)⊗ Ω2(S). Moreover, it follows that

ΛFa = ∗Σ Fb + ∗S Fc. (4.18)

Let s + it : U → C be a local coordinate on U ⊂ S and assume that a
trivialization of PS over U is chosen. Then the connection c can be written
as a local 1–form c1ds+ c2dt.

Remark also that any connection over a holomorphic curve defines a holo-
morphic structure since the (0, 2) part (relative to the Hodge decomposition)
of the curvature automatically vanishes. However this is no longer the case
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when the base manifold X is a Kähler surface, but it is well known (see [29]
for example) that the Hodge (0,2) part of Fa vanishes if and only if

∂sb− dΣc1 + ∗Σ (∂tb− dΣc2) = 0, (4.19)

where ∂s and ∂t denote partial derivatives with respect to variables s and t
respectively.

It follows from (4.15) that we have a natural isomorphism

MapS
1

(Pdet, F ) ∼= MapT2

(π∗ΣPΣ × π∗SPS, F ),

where the torus T2 acts on F via the homomorphism T2 → S1, (z1, z2) 7→
z1z2. Further,

MapT2

(π∗ΣPΣ × π∗SPS, F ) ∼= MapS
1

(PS,MapS
1

(PΣ, F )).

Indeed, if Φ ∈ MapT2

(π∗ΣPΣ × π∗SPS, F ) then the above isomorphism is the
following map

Φ 7→
(
p 7→ Φp = Φ|PΣ×{p}

)
, p ∈ PS .

One can regard Φp as a family of equivariant maps PΣ → F parameterized
by PS.

Summing up we get

MapS
1

(Pdet, F ) ∼= MapS
1

(PS,MapS
1

(PΣ, F )).

Next, recall that the operator ∂̄a is defined by the following sequence

Γ(Pdet ×S1 F )
∇a

−→ Ω1(X)⊗ Γ(πdet

! (Φ∗TF )) → Ω0,1(X)⊗ Γ(πdet

! (Φ∗TF )).

Now it follows from (4.16) that we have a decomposition Ω0,1(X) = Ω0,1(Σ)⊕
Ω0,1(S). But this implies that both maps Φp (for a fixed p ∈ PS) and p 7→
Φp are holomorphic in the following sense. The map Φp ∈ MapS

1

(PΣ, F )
is a holomorphic section of the corresponding bundle with respect to the
connection b (for a fixed p ∈ PS) while the map PS → MapS

1

(PΣ, F ), p 7→ Φp

is holomorphic with respect to the holomorphic structure on MapS
1

(P0, F )
described in Remark 4.5.2 and the connection c on PS. More precisely, the
following equations are satisfied

∂̄bΦp = 0,

∂sΦ + c1K(Φ) + IF

(
∂tΦ + c2K(Φ)

)
= 0,

where K(f) denotes the Killing vector field of the S1–action on F at the
point f.
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Proposition 4.5.3. Let s + it be a local coordinate on S. The pair (a,Φ) ∈
A(Pdet) × Γ(F) is a solution of the THC–system (4.8) with (Fa)

0,2 = 0 over
X = Σ× S if and only if the following system holds

∂̄bΦ = 0,

∂sΦ + c1K(Φ) + IF

(
∂tΦ + c2K(Φ)

)
= 0,

∂sb− dΣc1 + ∗Σ (∂tb− dΣc2) = 0,

∗ΣFb + ∗SFc + µF ◦ Φ = 0,

(4.20)

where b and c are components of a (see discussion after (4.16)) and c1ds+c2dt
is a local representation of the connection c.

We would like to stress that the system (4.20) was obtained under the
assumption that the metric on Σ × S is the product metric: gX = gΣ ⊕ gS.
However one may equally well work with different metrics, for example

gεX = gΣ ⊕ ε−1gS, (4.21)

where ε ∈ (0, 1] is a parameter. We also assume that the complex structure
is IΣ⊕ IS and consequently the symplectic form is given by ωεX = ωΣ⊕ ε−1ωS.
Then

Λε Fa = ∗Σ Fb + ε ∗S Fc

and therefore the system analogous to (4.20) for the metric (4.21) takes the
following form 

∂̄bΦ = 0,

∂sΦ + c1K(Φ) + IF

(
∂tΦ + c2K(Φ)

)
= 0,

∂sb− dΣc1 + ∗Σ (∂tb− dΣc2) = 0,

∗ΣFb + ε ∗S Fc + µF ◦ Φ = 0.

(4.22)

Hypothesis 4.5.4 (”Adiabatic limit conjecture”). There is a one–to–
one correspondence between solutions of the system (4.20) and solutions of
the following equations

∂̄bΦ = 0,

∂sΦ + c1K(Φ) + IF

(
∂tΦ + c2K(Φ)

)
= 0,

∂sb− dΣc1 + ∗Σ (∂tb− dΣc2) = 0,

∗ΣFb + µF ◦ Φ = 0.

(4.23)
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Remark 4.5.5. The system (4.20) is obtained from (4.22) for ε = 1; on
the other hand, one obtains (4.23) by formally setting ε = 0. The above
hypothesis then asserts that the ”limiting problem” (4.23) is equivalent to
the perturbed one (4.22).

The idea of adiabatic limit first appeared in Atiyah’s work [4]. Its mod-
ification, which is very similar to the one stated above, was carried out by
Dostoglou and Salamon in [22] and led to a connection between self–dual
instantons and pseudo–holomorphic curves. Further developments and mo-
difications of the adiabatic limit technique may be found in [17, 30, 14, 57].

Let us return for a while to the symplectic vortex equations (4.11). As
we have already remarked, one can obtain M0

SV as a symplectic reduction of
M̃SV with respect to the action of S1 ∼= G0

Σ/G̃Σ. In this case the momentum
map is

ν([a,Ψ]) =
1

Vol(Σ)

∫
Σ

µF ◦Ψ dvolΣ. (4.24)

We assume that τ is chosen such that the action of S1 on

PSV = ν−1

(
− d

Vol(Σ)
− τ

)
is free so that PSV → M0

SV is an S1–principal bundle. Moreover, it comes
equipped with a connection. Indeed, since the moduli space M̃SV is a Kähler
reduction, it inherits in particular an S1–invariant metric. Then one obtains
the horizontal distribution on PSV ⊂ M̃SV as the orthogonal complement to
the distribution of Killing vector fields (for more details see Section 2.1.1).

Theorem 4.5.6. Let X be a product of two holomorphic curves Σ × S and
Pdet → X be given by (4.15). Suppose that Hypothesis 4.5.4 holds. Then there
is one–to–one correspondence between holomorphic curves f : S →M0

SV such
that f ∗PSV

∼= PS and the moduli space

M0
THC = {(a,Φ) ∈ Ah(P0)× Γ(F)

∣∣ (a,Φ) is a solution of (4.8) }/G0
X ,

corresponding to the THC–system (4.8) over Σ× S.

The proof of the above theorem uses two lemmas, which we will prove
first.

Let PG → S be a G–principal bundle over an (almost) Kähler manifold
S (not necessarily a holomorphic curve) with a connection A. Let G act on
(almost) Kähler manifold Z preserving its Kähler structure. Assume also
that an action of another Lie group G̃ on Z is Hamiltonian, preserves Kähler
structure of Z and commutes with the action of G. Let µ̃ : Z → g̃ be its
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momentum map. Suppose a G–equivariant map ψ : PG → Z satisfies µ̃ ◦ψ =
τ̃ , where τ̃ is central in g̃. Then we have the induced G–equivariant map
ϕ : PG → M̃, where M̃ denotes the Kähler reduction of Z : M̃ = µ̃−1(τ̃)/G̃.
We assume that M̃ is a manifold (and in particular a Hausdorff space).

Lemma 4.5.7. Assume that G̃ act freely (or that each point has a finite
stabilizer) on µ̃−1(τ̃). The G–equivariant map ϕ is holomorphic with respect
to the connection A if and only if there exists γ ∈ Ω1(S) ⊗ g̃ such that the
following equation (

ψ∗ − K̃γ(ψ)
)
IS = IZ

(
ψ∗ − K̃γ(ψ)

)
(4.25)

holds on the horizontal distribution H over PG, where K̃ξ denotes the Killing
vector field of the G̃–action corresponding to ξ ∈ g̃.

Proof. Pick a point p ∈ PG and denote q = ϕ(p) ∈ µ̃−1(τ̃) ⊂ Z. Then we
have a decomposition

TqZ = H̃q ⊕ K̃q ⊕ IZK̃q,

where K̃ denotes the distribution spanned by Killing vector fields of the G̃–
action and H̃q is defined as the orthogonal complement to K̃q ⊕ IZK̃q. It
follows in particular that IZ preserves Hq. Observe also that

Tq µ̃
−1(τ̃) = Hq ⊕Kq. (4.26)

According to the symplectic reduction construction one can identify H̃q with
T[q]M̃.

Since ψ satisfies the relation µ̃◦ψ = τ̃ , the differential ψ∗ has components
only in H̃q ⊕ K̃q. Notice that the projection of ψ∗ to H̃ can be identified
with ϕ∗. Given a horizontal vector v ∈ TpPG there exists a unique element
γ(v) ∈ g̃ such that ϕ∗v = ψ∗v − K̃γ(v)(q). Therefore, the G–equivariant map
ϕ is holomorphic with respect to the connection A iff(

ψ∗(ISv)− K̃γ(ISv)

(
ψ(p)

))
= IZ

(
ψ∗(v)− K̃γ(v)

(
ψ(p)

))
.

Now it follows from the G–equivariancy of ψ that (Rg)
∗γ = γ, where Rg :

PS → PS, p 7→ pg. But this means that the 1–form γ descends to S.

Remark 4.5.8. If S is a holomorphic curve, one can write locally ψ =
ψ(s, t), A = A1(s, t)ds + A2(s, t)dt, γ = γ1(s, t)ds + γ2(s, t)dt for a local
coordinate s + it (we also imply that a local trivialization of PG is chosen).
Then the equation (4.25) can be rewritten in the following form(

∂sψ −KA1 − K̃γ1(ψ)
)

+ IZ

(
∂tψ −KA2 − K̃γ2(ψ)

)
= 0.
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Now assume that the action of a compact Lie group G on M̃ is Hamil-
tonian and denote by ν : M̃ → g its momentum map. Suppose also that G
acts freely on ν−1(τ), where τ is a central element in g. Denote by M the
Kähler reduction of M̃ : M = M̃//G = ν−1(τ)/G. Then QG = ν−1(τ) →M
is a G–principal bundle and it carries the induced connection B as we have
already remarked above for the bundle PSV . Further, suppose that an equiv-
ariant map ϕ : PG → M̃ satisfies ν ◦ ϕ = τ . Finally, let f : S →M denote
the induced map. Obviously, ϕ is an isomorphism between PG and f ∗QG.

Lemma 4.5.9. If ϕ is a holomorphic equivariant mape with respect to the
connection A, then

• the projection f : S →M is holomorphic;

• the connection A is the pull–back of B.

Proof. Pick a point p ∈ PG and denote q = ϕ(p) ∈ QG ⊂ M̃. Let K denote
the distribution of Killing vector fields over M̃. Similarly as in the proof of
the above lemma we have a decomposition

TqM̃ = Hq ⊕Kq ⊕ IM̃Kq,

whereHq is the orthogonal complement toKq⊕IM̃Kq. In particular subbundle
H is IM̃–invariant. We have also

TqQG = Hq ⊕Kq. (4.27)

One can identify Hq with T[q]M.
Let H be the horizontal distribution over PG corresponding to the connec-

tion A. Since H is isomorphic to the pull–back of TS, the pull–back of the
complex structure IS of S endows H with the structure of a complex vector
bundle. We do not distinguish between IS and its pull–back in notation.

Now pick a vector v ∈ Hp and denote w = ϕ∗v ∈ TqQG. Let wh + wv be
a decomposition of w according to (4.27). Since ϕ is holomorphic, we have
ϕ∗ISv = IZϕ∗v = IZwh+IZwv ∈ Hq⊕IZKq. On the other hand, the condition
ν ◦ ϕ = τ implies ϕ∗ISv ∈ TqQG = Hq ⊕ Kq. It follows that IZwv = 0, i.e.
wv = 0. Therefore ϕ∗ maps horizontal vectors in horizontal ones and this
implies that A is the pull–back of B. It remains to note that one can identify
f∗ with the projection of ϕ∗

∣∣
H to H. Thus the first statement of the lemma

also follows.

esee Convention 3.2.19
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Remark 4.5.10. It is easy to see, that the inverse statement of the above
lemma also holds. Here by the inverse statement we mean the following.
Assume that the map f : S →M is holomorphic. Then we get a tautological
equivariant map ϕ : f ∗QG → QG, which represents a holomorphic section
with respect to the connection f ∗B.

Proof of the Theorem 4.5.6. Let f : S → M0
SV be a holomorphic curve

such that f ∗PSV ∼= PS. Denote by c0 the connection on PS induced from PSV
and let c01ds+ c02dt be its local representation (with respect to a chosen local
trivialization). Then the tautological map ϕ : f ∗PSV → PSV ↪→ M̃SV is a
holomorphic equivariant mapf with respect to the connection c0.

One can consider the space of solutions SSV to the symplectic vortex
equations (4.14) as a G̃Σ–principal bundle over M̃SV . Since the gauge group
G̃Σ is contractible, the bundle SSV is trivial, i.e. we have a continuous section
σ : M̃SV → SSV . Since any continuous section can be approximated by a
smooth one, we can assume that σ is smooth. It follows that one can further
lift ϕ to a smooth map ψ : PS → SSV , ψ(p) =

(
Ψ(p), b(p)

)
, p ∈ PS. Observe

that any two such liftings differ by a gauge transformations.
Applying Lemma 4.5.7 for Z = {(b,Ψ) | ∂̄bΨ = 0}, G̃ = G̃Σ, G = S1, τ̃ =

−d/Vol(Σ)− τ we obtain that there exists c̃ ∈ Ω1(S)⊗ Lie(G̃Σ) such that

∂sΨ + (c01 + c̃1)K(Ψ) + IF

(
∂tΨ + (c02 + c̃2)K(Ψ)

)
= 0,

∂sb− (dΣc
0
1 + dΣc̃1) + ∗Σ

(
∂tb− (dΣc

0
2 + dΣc̃2)

)
= 0,

(4.28)

where c̃1ds + c̃2dt is a local representation of c̃. One can interpret c̃i as
functions U × Σ → R such that∫

Σ

c̃i dvolΣ = 0 for any s+ it ∈ U.

Let us denote ci = c0i + c̃i. Then c1ds+ c2dt ∈ Ω0(Σ)⊗Ω1(S) is a local repre-
sentation of a family of connections on PS. In these notations, the equations
(4.28) have the following form

∂sΨ + c1K(Ψ) + IF

(
∂tΨ + c2K(Ψ)

)
= 0,

∂sb− dΣc1 + ∗Σ

(
∂tb− dΣc2

)
= 0.

(4.29)

By the construction of ϕ we have ν ◦ ϕ = d/Vol(Σ) + τ , where the map ν is
given by (4.24). Similarly, ψ = (b,Ψ) satisfy µ̃ ◦ ψ = −d/Vol(Σ) − τ with µ̃

fsee Convention 3.2.19
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defined by (4.13). Thus we get

∂̄bΨ = 0,

∗Σ Fb + µF ◦Ψ− 1

Vol(Σ)

∫
Σ

µF ◦Ψ d volΣ =
d

Vol(Σ)
+ τ,

1

Vol(Σ)

∫
Σ

µF ◦Ψ d volΣ = − d

Vol(Σ)
− τ,

(4.30)

where the first equation just means, that the target of ψ is Z = {∂̄bΨ = 0}.
The space of square–integrable functions L2(Σ) can be decomposed into

two subspaces: L2(Σ) = R⊕ L̃2(Σ), where the first subspace is generated by
the constant function of integral 1 and the other one consists of all functions
of zero mean value. Obviously, a function vanishes if and only if both its
components vanish. Applying this trick to the function ∗ΣFb + µF ◦Ψ we get
that the system (4.30) is equivalent to the symplectic vortex equations:

∂̄bΨ = 0,

∗Σ Fb + µF ◦Ψ = 0.
(4.31)

It remains to notice that (4.29) and (4.31) constitute the system (4.23).

Now let us show that a solution of (4.23) defines a holomorphic curve
S →M0

SV . First, we can decompose functions ci : U × Σ → R, ci = c̃i + c0i ,
where

c0i =
1

Vol(Σ)

∫
Σ

ci dvolΣ, c̃i = ci −
1

Vol(Σ)

∫
Σ

ci dvolΣ.

Observe that c0i : U → R, c̃i : U × Σ → R and
∫

Σ
c̃i dvolΣ = 0. The

1–form c01ds + c02dt is a local representation of a connection c0 on PS while
c̃1ds+ c̃2dt is a local representation of a section c̃ ∈ Ω1(S)⊗Lie(G̃Σ). It follows
that ψ(s, t) =

(
Φ(s, t), b(s, t)

)
represents a map ψ : PS → SSV in the local

coordinate s+ it such that equations (4.28) hold. The other two equations of
the system (4.23) can be rewritten in the form (4.30). By Lemma 4.5.7 this
implies that we have the induced S1–equivariant map ϕ : PS → M̃SV that
is holomorphic with respect to the connection c0. Moreover, ϕ also satisfies
ν ◦ ϕ = −d/VolΣ − τ . Now Lemma 4.5.9 implies that the induced map
f : S →M0

SV is holomorphic and c0 is the pull–back of connection on PSV . It
is clear that gauge–equivalent solutions of (4.23) define the same holomorphic
curve S →M0

SV .
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4.6 Seiberg–Witten equations over product of

holomorphic curves

In this section we will consider Seiberg–Witten equations (4.7) in the case
when the source manifold X is a product of two holomorphic curves: X =
Σ × S. Observe that Pred is a double cover of Pr × Pdet; if we assume that
[−1, 1] = [1,−1] ∈ H acts trivially on Mc, then

MapH(Pred,Mc) ∼= MapT2

(Pr × Pdet,Mc).

Let Pdet be given by (4.15) as before. Recall that a connection a can be
decomposed into the components b and c (see the discussion after (4.16)) and
one has ΛFa = ∗Σ Fb + ∗S Fc for the product metric on X = Σ× S.

From now on assume that (a, u) is a solution of the Seiberg–Witten equa-
tions (4.7) and in particular (Fa)

(0,2) = 0. Recall that vanishing of the Hodge
(0,2)–part of the curvature is equivalent to the equation (4.19). In other
words (

dSb− dΣc
)
IS = ∗Σ

(
dSb− dΣc

)
.

Next, the tangent space of the source manifold X decomposes as TS⊕TΣ
and therefore Λ2TX ∼= TS⊗TΣ. It follows that Pr is the principal S1–bundle
of TS ⊗ TΣ. Denote by PTS and PTΣ principal S1–bundles of TS and TΣ
correspondingly. Then Pr = (PTS×PTΣ)/S1, where S1 acts by multiplication
by z on one factor and by z̄ on the other one. Similarly as in the previous
section

MapS
1
r×S1

0 (Pr × Pdet,Mc) ∼= MapT4

(PTS × PTΣ × PS × PΣ,Mc),

where T4 acts on Mc via the homomorphism T4 → S1
r × S1

0 , (z1, z2, z3, z4) 7→
(z1z2, z3z4) and pull–backs are suppressed in notations.Further, we have a
natural isomorphism

MapT4

(PTS × PTΣ × PS × PΣ,Mc) ∼= MapT2
(
PTS × PS,MapT2(

PTΣ × PΣ,Mc

))
.

Indeed, if u ∈ MapT4

(PTS×PTΣ×PS×PΣ,Mc) then the above isomorphism
is the following map

u 7→
(
p 7→ up = u|{p}×PTΣ×PΣ

)
, p ∈ PTS × PS.

Now since we have a decomposition Ω0,1(X) = Ω0,1(Σ)⊕Ω0,1(S), it follows

that both maps up and p 7→ up are holomorphic: the map up ∈ MapT2

(PTΣ ×
PΣ,Mc) is considered as a holomorphic section of the corresponding bundle

79



with respect to the connection b̂ generated by the connection b on PΣ and
the Levi–Civita one on PTΣ and the map p 7→ up as a holomorphic map with
respect to the connection ĉ determined by the Levi–Civita connection of PTS

and c. It means that the following system is satisfied:

∂̄ b̂up = 0,

∂̄ ĉ u = 0.

Proposition 4.6.1. Suppose (a, u) ∈ A(Pdet) × MapT2

(Pr × Pdet,Mc) is a
solution of the generalized Seiberg–Witten equations over X = Σ× S with its
product metric. Then

∂̄ b̂ u = 0,

∂̄ ĉ u = 0,(
dSb− dΣc

)
IS − ∗Σ

(
dSb− dΣc

)
= 0,

∗ΣFb + ∗SFc + µ1 ◦ u = 0.

(4.32)

Similarly as in the previous section one may consider metric (4.21) on X.
In this case one obtains the following system

∂̄ b̂ u = 0,

∂̄ ĉ u = 0,(
dSb− dΣc

)
IS − ∗Σ

(
dSb− dΣc

)
= 0,

∗ΣFb + ε ∗S Fc + µ1 ◦ u = 0.

(4.33)

Hypothesis 4.6.2 (”Adiabatic limit conjecture”). There is a one–to–
one correspondence between solutions of the Seiberg–Witten equations (4.32)
and solutions of the following system

∂̄ b̂ u = 0,

∂̄ ĉ u = 0,(
dSb− dΣc

)
IS − ∗Σ

(
dSb− dΣc

)
= 0,

∗ΣFb + µ1 ◦ u = 0.

(4.34)

Further, consider the equations{
∂̄ b̂ Ψ = 0,

∗ΣFb + µ1 ◦Ψ = 0.
(4.35)

for a pair (b,Ψ) ∈ A(PΣ)×MapT2

(PTΣ×PΣ). These are the vortex type equa-
tions over the Riemann surface Σ as described in Section 4.4. Remark that
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the ”additional twisting” in our case is the one determined by the principal
bundle of TΣ with its Levi–Civita connection. Let M0

TSV denote the moduli
space of (4.35), i.e. the space of solutions modulo G0

Σ.
One defines a principal S1–bundle PTSV →M0

TSV similarly to PSV of the
previuos section. Namely, one considers first the following equations{

∂̄ b̂ u = 0,

∗ΣFb + µ1 ◦Ψ− d
Vol(Σ)

∫
Σ
µ1 ◦Ψ dvolΣ = d

Vol(Σ)
+ τ,

where τ ∈ R is a parameter. Denote by M̃TSV the space of solutions modulo
G̃Σ. The group G0

Σ/G̃Σ
∼= S1 acts on M̃TSV with the momentum map µ̃,

namely

µ̃
(
[b,Ψ]

)
=

1

Vol(Σ)

∫
Σ

µ1 ◦Ψ dvolΣ.

Therefore, we can define

PTSV = µ̃−1

(
− d

Vol(Σ)
− τ

)
.

The proof of the following theorem is analogous to the proof of Theo-
rem 4.5.6 and uses Hypothesis 4.6.2.

Theorem 4.6.3. Let X be a product of two holomorphic curves Σ × S and
Pdet → X be given by (4.15). Suppose that Hypothesis 4.6.2 holds. Then
there is one–to–one correspondence between equivariant holomorphicg maps
f : PTS →M0

TSV such that f ∗PTSV
∼= PS and the moduli space

M0
SW = {(a, u) ∈ Ah(Pdet)×MapH(Pred,Mc)

∣∣ (a, u) solves (4.7) }/G0
X ,

corresponding to the Seiberg–Witten system (4.7) over Σ× S.

gwith respect to the Levi–Civita connection on PTS.
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[2] Damiano Anselmi and Pietro Fré. Topological σ-models in four dimen-
sions and triholomorphic maps. Nuclear Phys. B, 416(1):255–300, 1994.
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