Generalized Seiberg—Witten equations
and hyperKahler geometry

Dissertation
zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultaten
der Georg-August-Universitiat zu Gottingen

vorgelegt von
Andriy Haydys
aus

Lviv, Ukraine

Gottingen 2006



D7
Referent: Prof. Dr. Victor Pidstrygach
Korreferent: Prof. Dr. Thomas Schick

Tag der miindlichen Priifung: 09.02.2006



Abstract

In this thesis we study a certain generalization of the gauge—theoretical
Seiberg-Witten equations over a source 4-manifold X. The generalization
involves a hyperKéahler manifold M with certain symmetries and a nonlinear
Dirac operator D acting on equivariant maps u (called spinors) with values
in M.

We prove a classification theorem for such hyperKéhler manifolds and
propose a new method for their construction. This allows us to obtain new
examples of hyperKahler and closely related to them quaternionic Kahler
manifolds. Our construction is quite explicit and, in some cases, this allows
to obtain not only existence results but also hyper— and quaternionic-Kahler
structures themselves.

We also prove that harmonic spinors, i.e. solutions of the equation D u =
0, are closely related to solutions of the so—called Cauchy-Riemann—Fueter
equation. We then prove that solutions of the Cauchy—Riemann—Fueter equa-
tion, which are believed to be a "right” analogue of holomorphic maps in
quaternionic context, are exactly those maps, whose differential has no tri-
holomorphic component. Hence we introduce the term ”aholomorphic” for
such maps. It is also shown that harmonic spinors can be regarded as twisted
version (in an appropriate sense) of aholomorphic maps.

The last part of the thesis is devoted to the generalized Seiberg—Witten
equations over Kéahler surfaces. In this case we prove that the space of solu-
tions has a holomorphic description (in the usual complex sense). Further, if
X is a product of two holomorphic curves we show (modulo adiabatic limit
conjecture) that there exists a relation between holomorphic curves (in the
sense of Gromov theory), the symplectic vortex equations [18] and the gen-
eralized Seiberg—Witten equations.
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Chapter 1

Introduction

1.1 Problem’s origin and survey of literature

1.1.1 Classification problem in dimension 4 and Sei-
berg—Witten equations

The problem of classification of smooth manifolds has long been studied.
Since Poincaré’s time we know that any compact orientable 2-manifold looks
like a connected sum of a number of tori (or a sphere):

Figure 1.1: Two dimensional manifolds: connected sum of 3 tori.

Since classification of groups, which can occur as the fundamental group of
a manifold M with dim M > 4, is algorithmically impossible, the classification
problem in dimension 4 and greater is algorithmically unsolvable. However,
one can try to classify simply connected manifolds instead.

The classification of compact simply connected smooth manifolds in di-
mension 5 and greater is now also known, however the problem in physically
most interesting cases of dimensions 3 and 4 still remains unsolved. First
Freedman [27] answered the question when two given 4—manifolds are home-
omorphic. Unlike in dimension 2, 4-manifolds can be homeomorphic but not
diffeomorphic! 1t was Donaldson [21] who made the first breakthrough in
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smooth topology in dimension 4 in 1980s. Roughly speaking the idea was
the following: if two given homeomorphic 4—manifolds have different spaces
of solutions to some differential equationf] then they can not be diffeomor-
phic. The equation that Donaldson made use of was the celebrated Anti—
Self-Duality (ASD for short) equation

Ff =0, (1.1)

where a is a connection on a chosen principal SU(2) bundle and F;" denotes
the self-dual part of the curvature F,. Equation has long been known in
mathematical physics as Yang—Mills equation. Studying the ASD-equation,
Donaldson was able to prove for example the following theorems:

Theorem A. There exist compact topological 4—manifolds, which admit no
smooth structure.

Theorem B. There exist compact smooth 4—manifolds, which are homeo-
morphic but not diffeomorphic.

The nonlinearity of the ASD equation presented serious difficulties and a
lot of new techniques had to be developed for its analysis.

Ten years later Seiberg and Witten [62] proposed a system of equations
(since then it carries their name) which is now the main tool in 4-manifolds
studies (see section for definition). The roots of the system lie in the
depth of the still rather mysterious notion of S—duality in N = 2 supersym-
metric Yang-Mills theory [62, [63].

Nonlinearity of the Seiberg-Witten equations is much milder than the
nonlinearity of . Besides, the gauge group is abelian in Seiberg—Witten
theory in contrast to Donaldson theory and therefore the analysis involved
was also easier. But the main surprise was that a lot of results obtained via
Donaldson theory were much more easily reproved in the realm of Seiberg—
Witten theory.

The most direct application of the Seiberg-Witten invariantﬁ was found
by Fintushel and Stern [26]. They constructed an infinite family of mani-
folds homeomorphic but not diffeomorphic to a K3 surface. Their idea was
to perform a surgery along a knot (or link) embedded into a 4-—manifold. If
we start with a K3 surface, then the resulting manifold can still be home-
omorphic to the original surface. However, the Seiberg-Witten invariant of
a resulting manifold is described by the Alexander polynomial of the knot

2it seems inevitable at present that one has to consider nonlinear equations to capture
properties of smooth structure.
Pcertain number derived from the space of solutions to the Seiberg-Witten equations;

see definitions and



and is different from the Seiberg-Witten invariant of the original K3 surface.
Consequently, the original manifold and the one obtained after surgery can
not be diffeomorphic.

Shortly after the Seiberg—Witten equations were discovered, other applica-
tions were also found. For example, it is interesting to ask whether a smooth
manifold admits a metric of positive scalar curvature. It was known, that
there are topological obstructions for the existence of a metric with positive
scalar curvature: for example, among surfaces only spheres admit such metric.
As Witten already remarked, a smooth 4-manifold with positive scalar curva-
ture must have vanishing Seiberg—Witten invariant. Consequently, there is an
obstruction to the existence of a metric with positive scalar curvature, which
depends on a smooth structure, not just the topological type of a manifold.

Other links with Riemannian geometry have been found by LeBrun [49].
He showed that any Einstein 4-manifold X with non-trivial Seiberg-Witten
invariant satisfies the following inequality: x(X)—30(X) > 0, where x(X) is
the Euler characteristic and o(X) is the signature of X. This is a restriction
on the existence of an Einstein metric.

It was shown by Witten that a connected sum of two 4-manifolds, which
both satisfy b5 > 1, has vanishing Seiberg-Witten invariant [72]. Conse-
quently, a 4-manifold with non—trivial Seiberg—Witten invariant is smoothly
indecomposable. On the other hand, Taubes showed [68] that a symplectic
4-manifold with b > 1 has non—vanishing Seiberg-Witten invariant. Thus,
symplectic manifolds with 3 > 1 are indecomposable.

A powerful tool in symplectic geometry is the Gromov invariant [53]. It is
based on counting pseudo—holomorphic curves representing a given homology
class. Taubes [67] showed that the Seiberg-Witten and Gromov invariants
coincide for compact symplectic manifolds with b5 > 1. Another relation be-
tween solutions of Seiberg—Witten equations and pseudo—holomorphic curves
can be found in [17].

1.1.2 Basics of the Seiberg—Witten theory

In this section we briefly review the basics of the Seiberg—Witten theory. All
statements and constructions are well-known and documented and therefore
we will omit proofs and provide only references. For precise definitions and
more explanations see section [I.3] A systematic exposition can be found, for
example, in [54 55, 56] 52].

Let X be a smooth closed orientable 4-manifold with a Riemannian metric
gx. Choose a Spin®(4)-structure with a determinant line bundle L and let a



be a connection on L. Consequently we get a Dirac operator
D,:T(WH) — T(W),

where W* are spinor bundles. Let ®(u) denote a self-dual 2-form (see (1.7))
associated to a spinor u € I'(W). The following nonlinear first order partial
differential equations for a pair (a,u)

D =
att =0, (1.2)
Fl 4+ ®(u) =0,

are called Seiberg—Witten equations.
Theorem 1.1.1. [55] The system is elliptic (and hence Fredholm).

A gauge group G = Map(X, S') acts on solutions (see (L.9)) and we get
the associated moduli space M. In general, there is no reason to
hope that the moduli space will be nonsingular. However one can achieve
smoothness by suitable perturbations.

There are two common ways of perturbations: either one uses parame-
ters that are naturally incorporated into the problem (such as a Riemannian
metric in case of the ASD—equation or an almost complex structure in case
of the symplectic vortex equation) or perturbs the equations themselves. In
the Seiberg—Witten case the latter approach works.

Theorem 1.1.2. [55] Assume by (X) > 1. Then, for a generic self-dual 2
form n, the moduli space My, corresponding to the following perturbation of
the Seiberg—Witten equations

D oy —
at =0, (1.3)
FF 4+ ®(u) =1,

is a nonsingular smooth orientedf] manifold of dimension

d= (01(L)2 —2x(X) — 3‘7(X))>

| =

where x(X) and o(X) denote the Euler characteristic and the signature of X
correspondingly.

requires certain choices; see [55] for details.



An important property of the Dirac operator is the Weitzenbock formula
(see for example [48] [55] 52]), which relates the square of the Dirac operator
with the Laplacian of V% and components of the curvature a, where a is
a connection on spinor bundles determined by a and the Levi-Civita one.
In particular, it enables us to obtain a priori bounds for solutions of the
Seiberg—Witten equations. In turn, such a priori estimates imply the following
compactness result.

Theorem 1.1.3. [55] The Seiberg—Witten moduli space My, is compact.

The compactness property is probably the most important feature of the
Seiberg-Witten moduli space. It is the main advantage over other similar
theories.

Another important consequence of the Weitzenbock formula is that the
Seiberg—Witten equations admit variational formulation.

Proposition 1.1.4. [52] Solutions (a,u) of are absolute minima of the
following functional

" 1
S(a,u) = / (9%l + F 2 + 2 ul? + <] ul ) dvoly,
X

where s is a scalar curvature of X.

Definition 1.1.5 (Seiberg—Witten invariant: simple case). Pick a
Spin©(4) structure Pgp,e and suppose that dim M$, = 0. It follows from
Theorem that MY, is a finite collection of points and we define a

Seiberg-Witten invariant to be
SW(PSpinC) - Z €p
pEMiy,
where €, = £1 according to the orientation at the point p.

It is a little bit more difficult to define Seiberg-Witten invariant in the
general case. First pick a base point o € X and consider a subgroup

QOZ{gGQ‘g(xo)zl}Cg.

Then the space of solutions to (1.3 modulo Gy is an S! principal bundle over
M. Let £ — M, be the associated line bundle.

Definition 1.1.6 (Seiberg—Witten invariant: general case). Let d =
dim M. A Seiberg-Witten invariant is the following number

SW (Pspine) = / (L)%, d>0, dis even

n
My

and SW (Pspine) = 0 otherwise.



Denote by S(X) the set of isomorphism classes of Spin®(4) structures
on X.

Theorem 1.1.7. [55] The function
SW:8(X) —Z
is well-defined. It is zero on all but finitely many elements of S(X).

In the remaining part of this section we briefly consider the Seiberg—
Witten equations in the case when the source manifold X is Kahler. Let Kx
be the canonical line bundle. Pick a Spin®(4) structure and let Ky' ® L2
be its determinant line bundle. Then W1 = A%(X; Ly) & A%*(X; Ly) and
hence a spinor u can be written as a pair v = (o, 8) with a € Q°(X; Ly) and

B € QO(X; Ly).

Theorem 1.1.8. [55] Assume that X is Kdahler and let (a,u) be a solution
to the Seiberg—Witten equations . Then the following holds

e connection a defines a holomorphic structure on the determinant line
bundle, i.e. (F,)** = 0;

.« af=0;

e « is a holomorphic section of Lo with respect to the holomorphic struc-
ture induced by a and (3 is a holomorphic section of Kx ® Ly*.

It is sometimes possible to say more about solutions to the Seiberg—Witten
equations on Kahler surfaces as well as about the invariant.

Proposition 1.1.9. [55] Let X be a Kdihler surface.

o [f deg Kx < 0, then the only solutions to Seiberg—Wilten equation are
reducible.
o Suppose deg Kx > 0. Then SW(PK;) = 1, where PK; denotes a
Spin®(4) structure, whose determinant line bundle is Ky
Finally we would like to note that it is possible to compute the Seiberg—
Witten invariant for minimal algebraic surfaces of general type, which hap-

pens to be non—trivial. Similar results for symplectic manifolds were obtained
by Taubes [66], 67, 68].



1.1.3 Generalized Seiberg—Witten theory

In the recent paper [59] V.Pidstrigach proposed a certain generalization of
the Seiberg-Witten equations (1.2). The basic idea was to replace the spinor
vector bundle by a certain fibre bundle with a nonlinear fibre. More pre-
cisely, a fibre of the spinor bundle W™ can be identified with the simplest
hyperKéhler manifold H =2 C?; then one replaces H with an arbitrary hy-
perKahler manifold M with certain symmetries. It is then possible to define
a Dirac operator, which acts on sections of the "nonlinear spinor bundle”.
Such generalizations of the Dirac operator were already known to physicists
[3, 6]. This idea was also described in [69] for 3—dimensional manifolds.

Further, given a spinor u, i.e. a section of nonlinear spinor bundle, it is
possible to construct a self-dual 2—form ®(u) with the help of a hyperKé&hler
momentum map. Hence, the generalization of the Seiberg-Witten equations
can be written in the same form as ([.2).

It was shown in [59] that a variant of the Weitzenbéck formula also holds
for the above mentioned generalized Dirac operator. This is used to show
that the moduli space associated to the generalized Seiberg-Witten equa-
tions is compact for the abelian gauge group provided the fibre M admits a
hyperKéhler potential, i.e. a single function, which is a Kahler potential for
all complex structures simultaneously.

1.1.4 HyperKahler and quaternionic Kahler geometries

The previous section motivates our interest in hyperKahler manifolds and
closely related to them quaternionic Kahler ones. Their study is very inter-
esting on its own and there are several reasons for that. As it was shown by
Berger [§] there are very few groups, which can occur as a holonomy group
of a simply connected nonsymmetric locally irreducible Riemannian mani-
fold. In particular, Berger’s list contains Sp(n) and Sp(n)Sp(1): the first is
a holonomy group of a hyperKahler manifold while the second of a quater-
nionic Kahler one. It means that hyper— and quaternionic-Kéhler manifolds
are examples of basic Riemannian geometries. One can describe hyperKahler
manifolds in other words as follows.

Definition 1.1.10. A Riemannian manifold (M, g) is hyperKéhler if it ad-
mits three covariantly constant complex structures I,., r = 1,2, 3 with quater-
nionic relations

LI, =L = I, I? = —id,

compatible with Riemannian structure: g(I,-, I,-) = g(-,-).
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Hitchin [38] proved in 1987 extremely useful criteria of integrability of
complex structures: I, are covariantly constant iff 2—forms w,(+,-) = g(-, I,+)
are symplectic (i.e. closed). ometimes it is convenient to consider all three
symplectic forms together as one Im H-valued 2-form:

w = w1t + wy) + wsk.

In contrast to hyperKéhler manifolds, a quaternionic Kahler manifold N
admits complex structures (and correspondingly 2—forms w,) only locally.
Nevertheless the 4—form Q = wy Aw; +ws Aws + w3 Aws, called a fundamental
4—form, exists globally and determines the quaternionic Kahler structure. In
this case the integrability means that the fundamental 4—form is covariantly
constant and this is equivalent to d€2 = 0 provided dim N > 12. In dimension
4 quaternionic Kahler by definition means Einstein and self-dual.

Another source of interest to hyper— and quaternionic—-Kéhler manifolds is
physics. It is well known [61] that both classes of manifolds are automatically
Einstein and therefore they are of particular interest to physicists. On the
other hand, such manifolds naturally appear in the supersymmetric c—model
[2, 13, [6].

One of the major problems of quaternionic Riemannian geometry is to
construct examples of hyper— and quaternionic-Kéhler manifolds. It is a
sharp contrast to complex geometry, where there are no problems to construct
Kéahler manifolds.

The first nontrivial example of a hyperKahler metric was one constructed
by Eguchi and Hanson [23] on T*CP"', which was lately generalised by Calabi
[13] to all T*CP". In dimension four Gibbons and Hawking [34] described all
hyperKihler manifolds with S'-symmetry (multiinstanton metrics in physical
terminology; see example for details).

The basic examples of compact hyperKahler manifolds are flat torii and
K3 surfaces. These are in fact the only compact hyperKahler 4-manifolds.
The existence of a hyperKahler metric on a K3 surface follows from the Yau'’s
proof of the Calabi conjecture [74] [75]. For a more explicit construction, see
[50].

Another useful source of hyperKahler manifolds is (finite— and infinite—
dimensional) hyperKdhler reduction [36]: if a group G acts isometrically and
triholomorphically on a hyperKahler manifold M with momentum map  :
M — g*®ImH and a € 3 ® ImH is a regular value of p, then u='(a)/G
inherits hyperKahler structure.

One of the most important features about hyperKahler structures is that
many natural spaces occurring in gauge theory possess such structure. The
key point is that very often such spaces can be viewed as infinite-dimensional

11



hyperKahler reductions. Among examples are self-dual instantons over R*
[51] or more generally over a 4-dimensional hyperKéhler manifold [41, 47] and
closely related spaces: monopoles [19, [5 39, 9], solutions to the self-duality
equations over a Riemann surface [3§ and Nahm moduli spaces [19] [45].
Coadjoint orbits of complex semisimple Lie groups [46, 44] form a particularly
interesting class of hyperKéahler manifolds. In fact, the hyperKahler structure
on coadjoint orbits is obtained representing them as suitable Nahm moduli
spaces.

Concerning quaternionic Kahler manifolds, their geometry strongly de-
pends on the sign of the scalar curvature s, which is automatically constant.
In particular, if s = 0 the manifold is locally hyperKéahler and therefore there
is a strong tendency to include s # 0 in the definition of quaternionic Kahler
manifolds. We are mainly interested in positive quaternionic Kahler manifolds
and consider very briefly some of their properties below.

We would like to point out that quaternionic Kahler manifold N is not
Kahler unless s = 0. Moreover, a positive quaternionic Kahler manifold does
not even admit a compatible almost complex structure [1].

On the other hand, the quaternionic structure of N can always be un-
twisted by passing to the total space of a suitable fibre bundle. In particular,
Swann shows [65] that for a quaternionic Kéhler manifold N with positive
scalar curvature there exists a hyperKéhler manifold #(N), which admits a
hyperKahler potential (a single function which is a Ké&hler potential for all
complex structures simultaneously). On the other hand, to any hyperKé&hler
manifold with hyperKahler potential one can associate a positive quaternionic
Kahler one. Note that the existence of a hyperKéhler potential was required
to get a compactness property of the moduli space associated to the general-
ized Seiberg-Witten equations (see section [1.1.3)).

All positive symmetric quaternionic Kahler manifolds were classified in
[73] and they are called ”Wolf spaces”. They are the only known examples
of complete positive quaternionic Kahler manifolds. For example, in dimen-
sion 4 there are only two such manifolds: HP' = S* and CP?. However, it
is no longer true if one considers orbifolds instead of manifolds: correspon-
dent examples were constructed by Galicki and Lawson [32] with the help of
quaternionic Kahler reduction method developed in the same paper.

It is completely clear that neither this section nor Section[I.1.1] provide
complete overview of the corresponding subjects and it was definitely not the
author’s aim. My best hope was to indicate some important recent develop-
ments in the corresponding areas related to the research of this thesis.
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1.2 Overview of the thesis

The central aim of my research presented in this thesis was the study of
the generalized Seiberg-Witten equations (see section . The problem
involves certain objects, although defined earlier but studied from a different
perspective, such as nonlinear Dirac operator or hyperKéhler manifolds with
prescribed symmetries. To get a better insight into the main problem we
study in the first two chapters their properties alone. The last chapter is
devoted to the generalized Seiberg—Witten equations.

HyperKahler geometry. As we have already remarked the moduli
space of the generalized Seiberg—Witten equations is compact provided the
target hyperKéhler manifold M admits a hyperKahler potential. In order to
formulate the equations it is necessary that M also admits a triholomorphic
action of a Lie group G (see [09] for details). In this thesis only the sim-
plest case G = S! will be considered. Natural questions arise: how many
such manifolds do we know? what are their properties? These questions are
addressed in Chapter [2]

A partial answer to the above questions is contained in Swann’s paper [65].
Namely, Swann shows that to each hyperKahler manifold with a hyperKahler
potential and G—symmetry corresponds a quaternionic Kahler manifold with
positive scalar curvature also carrying a G-symmetry and vice versa. The
problem is that we know only a few examples of quaternionic Kahler manifolds
with positive scalar curvature.

In Chapter [2| we obtain a classification of all hyperKahler manifolds M
with a hyperKahler potential and additional triholomorphic and isometric
action of S'. It turns out, that such manifolds can be reconstructed by their
hyperKéhler reductions M with respect to a nonzero value of momentum
map. The main result of the chapter is Theorem [2.1.3] which describes how
to construct M as well as its hyperKéhler structure by a given M. This
construction can be viewed as an inverse one to the hyperKéhler reduction.
Moreover, the hyperKahler structure of M is described quite explicitly which
allows to obtain not only existence results, but metric and symplectic forms
themselves. Dividing such manifolds by H* as described in [65] we obtain
quaternionic Kahler manifolds with S'-symmetry (Theorem . In this
way we get new examples of hyper— and quaternionic— Ké&hler manifolds (see
Section . We prove for example that the total spaces of Opi(m), m > 1
admit an Einstein and self-dual metric with positive scalar curvature. On
the other hand we obtain interesting relations between known manifolds. For
example, it turns out that Gibbons—Hawking spaces are closely related to

nilpotent orbits (see example [2.2.4]).
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Chapter [2] is self-contained and can be regarded as a contribution to the
hyper— and quaternionic—Kahler geometry.

Nonlinear Dirac operator. In Chapter [3] we study properties of the
generalized Dirac operator acting on sections of a certain fibre bundle, where
fibre is a hyperKahler manifold with certain symmetries. We show that the
Dirac operator D can be regarded as an analogue of 0—operator in complex
geometry. Similarly, harmonic spinors, i.e. solutions of the equation Du = 0,
can be regarded as an analogue of (anti)holomorphic sections in complex
context.

Consider for simplicity a case when the source 4-dimensional manifold X
is itself hyperKahler with complex structures (Jy, Jo, J3), while (11, I5, I3) de-
note the complex structures of M. Then harmonic spinors can be viewed
as maps u : X — M satisfying the quaternionic analogue of the
Cauchy—Riemann equation. We show in Proposition that maps sat-
isfying , i.e. which are believed to be a "right” analogue of holomorphic
maps in quaternionic context, are exactly those, whose differential has no
triholomorphic component (meaning ”commuting with all 3 complex struc-
tures”). Hence we propose the term “aholomorphic” for such maps. We also
extend the notion of aholomorphicity into quaternionic Kahler context via
the Swann construction [65].

Generalized Seiberg—Witten equations over Kéahler surfaces. In
the last chapter we study the generalized Seiberg—Witten equations over
Kéhler surfaces as the title suggests. In particular we prove an analogue
of Theorem [L.1.8 and consider connections of the generalized Seiberg—Witten
equations over Kahler surfaces with other different gauge theories studied in
[40, 18], 58]. We consider THC-system defined in [40] (see also (4.8))) over the
product of Riemann surfaces as a prototype of generalized Seiberg—Witten
equations. We show (modulo adiabatic limit conjecture) in Theorem [4.5.6]
that in the limit as a metric over one of the curves becomes very large so-
lutions of the THC—system become holomorphic curves in the moduli space
of the symplectic vortex equations [I8] over the other curve. Then we show
(also modulo adiabatic limit conjecture) that analogous result holds for the
generalized Seiberg-Witten equations (see theorem .

The main results of the thesis were presented on the Research seminars of
Prof. V. Pidstrygach, Gottingen 2002-2005; Summer School Algebraic Groups,
Gottingen June—July, 2005; Symposium Geometry, Conformal Field Theory
and String Theory, Durham, United Kingdom, July 2005; Seminar Gauge
theory and Topology of the Sonderforschungsbereich 701, Bielefeld, Octo-
ber 2005.
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1.3 Addendum: conventions

Quaternions and related groups. By H we denote the 4-dimensional
R-algebra of quaternions with the basis (1,4, j, k) such that

It follows that any quaternion can be written as h = hg+ h1i+ hoj + hzk with
real numbers h;. Sometimes it is convenient to decompose H = C ¢ j C = C?
and we write h = a+jb, where a,b € C, a = hg+h1i, b = hy —hgi. Certainly,
one may also decompose H = C & Cj, however the previous decomposition
better suits our further conventions. The function || - || : H — Ry,

4
1Rl* =) hi=1lal® +|b]?
=0

turns H into the normed space. Further, by the real part of h we mean hy € R
and by its imaginary part the quaternion hyi + hyj + hsk. Consequently we
have one more decomposition H = R & Im H, which defines a quaternionic
conjugation (or, simply conjugation): h = Reh — Im h.

By H* we will denote the group of invertible quaternions. A quaternionic
unitary group Sp(1) is defined as the subgroup of H* consisting of quaternions
of unitary length:

Sp(1) = {g € H: || =1}

Observe that the group Sp(1) is isomorphic to SU(2). Indeed, recall that
H = C?. Then the isomorphism is given via the map ¢ — A, : H — H,
Agh = qh.

Further, the group Spin(4) is a product of two copies of Sp(1):

Spin(4) = Sp+(1) x Sp_(1),

where we use subscripts 7 +7 to distinguish between different copies. Notice
that Spin(4) is a double cover of SO(4) and the isomorphism Spin(4)/+1 =
SO(4) is given by

(q4,q9-) = By g :H—H, By , h=q hq

q+,9—

and we also take the obvious identification H = R* into account.
Finally, we define

Spin‘(4) = Spin(4) x (113 S = {[g+,9-, A : q= € Sp+(1),A € S'}.
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Notice that Spin©(4)/S' = SO(4). Hence, the representation of Spin©(4),
which induces a standard representation of SO(4) is given by

[Q—H q-, )‘] = B[cq+,q_,)\] ‘H— H7 By, h = Q—th—i-‘ (14)

[q+7q—’>‘}

Spinor Representations. By W we mean the standard SU(2)— repre-
sentation on C? or equivalently Sp(1)-representation on H by multiplication
on the left. Further W denote Spin¢(4)-representations on H given by

([q+5q-, Al, h) = qehA (1.5)

and R* denotes representation of the same group on the same space given by

([q+7 q—, )\]7 h) — qth+.
A Clifford multiplication is a homomorphism of Spin®(4) representations

R{'@WT — W™ (1.6)

defined by the formula
hi & ho v+ hihs.

1.3.1 Dirac operator

Let X* be a closed oriented Riemannian manifold and P,, be its principal
SO(4) bundle of orthonormal oriented frames. A Spin®(4) principal bundle
Pspine 1s called a lifting of Py, if Pspine /ST = Py,, where ST C Spin‘(4) is a
standard embedding.

Proposition 1.3.1. [55] For any oriented 4—manifold X the principal SO(4)
bundle Py, of orthonormal oriented frames can be lifted to Spin®(4) structure
PSpinC'

Now pick any Spin‘(4) principal bundle Pgy;,c as in the above proposition.
If we define the ”determinant representation” L of Spin®(4) to be

Pdet - ([Q+7Q—7)\]az) = )‘2 2y ze€C

then we get a corresponding Hermitian line bundleﬂ L = Pspine X spine(4), pge; C
called the determinant line bundle. If H*(X,Z) has no torsion, then the
lifting Pgpine is uniquely determined by the Chern class of the determinant
line bundle ¢, (L) € H*(X,Z).

dwe follow the standard convention to denote representations and corresponding bundles
by the same letters.
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The representations give rise to the corresponding vector bundles
W=, It follows from that we have a homomorphism of vector bundles
TX @ W+ — W~. The Riemannian metric of X provides an isomorphism
TX = T*X and therefore we have a map

Cl:T"X W' — W~

also called a Clifford multiplication.

Further, a choice of connection a on Py = Pspine/Spin(4) together with
the Levi-Civita connection on Py, determines a connection @ on Pgy,c. The
connection a can be equivalently viewed as a Hermitian connection on the
determinant line bundle L. Thus we have a covariant derivative

Vi T(WH) — T(W).

Definition 1.3.2 (Dirac operator). The first order differential operator
given by the sequence

D, : (W) 5 D1 X) o T(W+) <5 (W)

is called the Dirac operator.

1.3.2 Seiberg—Witten equations

Let R? denote the standard representation of SO, (3). If we identify R* with
Im H, then the induced representation of Spin(4) in quaternionic notations
can be written as ([qy,q_, A], h) — gy hgy, h € Im H. Consider the following
nonlinear equivariant map

o: Wt —RS  ®(h) = hih.

It follows that we obtain the corresponding nonlinear map from the positive
spinor bundle into the bundle of self-dual 2—forms on X:

oWt — Q2 (X). (1.7)
Definition 1.3.3 (Seiberg—Witten equations). The system of partial dif-
ferential equations
Da = 07
" (1.8)
Ff +®(u) =0,

where unknowns are a connection a and spinor u is called the Seiberg—Witten
equations.
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1.3.3 Seiberg—Witten moduli space

Let A(Py;) denote the space of connections on the principal bundle Py.;. A
gauge group G = Map(X, S!) of smooth maps from X into S! acts on pairs
(a,u) € A(Pyer) x T(WT):

g-(a,u) =(a—2¢""'dg,gu), g€Gg. (1.9)

The above defined action of the gauge group induces action on the space
of solutions to the Seiberg—Witten equations [55]. It is clear that the action is
free provided u # 0. By a suitable perturbation of equations one can achieve
[55] that (a,0) is not a solution of the Seiberg—Witten equations if by > 1.

Definition 1.3.4. The quotient space

My = {(a,u) € A(Pyer) x (W) | (a,u) solves (L)} /G (1.10)

is called a (Seiberg—Witten) moduli space.
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Chapter 2

HyperKahler manifolds with
hyperKahler potential and
triholomorphic Sl-action

In order to define a nonlinear generalization of the Dirac operator (see Sec-
tion[3.2), the target hyperKahler manifold (M, g, I1, I5, I3) must admit certain
symmetries. The most important ingredient is a so—called permuting action

of Sp(1) (or SO(3)).

Definition 2.0.5. An isometric action of the group Sp(1) is called permuting
if the following holds

Liw=[(w] = (L) w=qwq  q€Spl), (2.1)

where ( € ImH = sp(1) and w = wyi + wyj + wsk is the quaternion—valued
2—form with wy(-,-) = g(-, I;").

We will also say, that Sp(1) with the above property permutes complex
structures of M.

Swann [65] shows that permuting action of Sp(1) can be extended to
homothetic action of the whole H* = R* x Sp(1) if the vector field IY; is
independent of a complex structure I, where Y; is a Killing vector field of
St c Sp(1) which preserves I. In particular

LY, = LY, = Yy = -Y;, (2.2)

where we put Y, = Y, for short and a vector field Y, generates homothetic
action of R% C H*: (L,)"g = r?g. We will also call such H*-action permut-
ing. Under these circumstances N = M /H* has positive scalar curvature and
carries a quaternionic Kahler structure.

19



On the other hand, for any quaternionic Kahler manifold N with positive
scalar curvature Swann constructs a hyperKéhler manifold /(N') which enjoys
permuting action of H*. Such manifolds are also distinguished by the property
of carrying a hyperKahler potential, i.e. function p : M — R which is Kahler
potential for each complex structure simultaneously.

It was shown in [59] that the Seiberg-Witten moduli space associated to
the generalized Seiberg—Witten equations is compact provided M admits a
permuting H* action or, equivalently, a hyperKahler potential.

In this section we study hyperKahler manifolds M with hyperKéhler po-
tential and triholomorphic action of S'. The triholomorphic action of S is
necessary for the definition of the Seiberg-Witten equations. First we show
how to reconstruct the manifold M by its hyperKahler reduction M with re-
spect to a nonzero value of momentum map. This is done in Theorem [2.1.3]
which simultaneously provides a classification of hyperKahler manifolds with
hyperKihler potential and triholomorphic action of S*. Then we describe cor-
respondent quaternionic Kéhler manifolds (see Theorem[2.1.8). In Section [2.3]
we describe new examples of hyper— and quaternionic—-Kahler manifolds mak-
ing use of a certain freedom in choice of parameters of the construction. We
prove for example that the total spaces of Opi(m),m > 1 admit an Ein-
stein and self-dual metric with positive scalar curvature. The last section is
devoted to Kéhler structure on quaternionic Kéhler manifolds with positive
scalar curvature naturally invoked by the action of S*. Theorem was
known earlier from twistor theory, however our proof is new. We not only
prove the existence of Kahler structure, but also compute it explicitly.

2.1 S'-Symmetry

Let M be a hyperKahler manifold with H*—action permuting complex struc-
tures. Suppose also that M admits a hyperKahler action of S' (which we
prefer to denote S} in order to distinguish this group from another one,
which will appear later and is also isomorphic to S' ) with momentum map
w: M — ImH,

dp = —lK W,

where K is a Killing vector field of Sj. We assume also that these two actions
commute. It follows that

pwolL, =zpz, xeH" (2.3)

Now fix an imaginary quaternion, say ¢, and consider corresponding level
set P = pu~'(i). Since am = L,m € p~'(xiT) and H* acts transitively on

20



ImH \ {0} the map
fH*xP— M\ p'0), (x,m)— xm, (2.4)

is surjective. Notice that
Moy =M\ p=(0)

is open and everywhere dense submanifold of M.

However the map f is not injective. Indeed p~'(i) = P inherits action
of Stab; = S' C H* (to which we now give a label S} ) and it follows that
points (x,m) and (zz,zm), z € S! are mapped into the same point xm in
Mjy. Thus the manifold Mj can be described as H* x g1 P. Now the challenge
is to express the hyperKahler structure of My in terms of its ”components”
H* and P.

While the first ”component” H* is quite easy the second one needs to be
understood more deeply for the future purposes.

2.1.1 Induced structure on P

First observe that M := P/S} is just a hyperKéhler reduction of M and
therefore is itself a hyperKéahler manifold. Here we assume that i is a regular
value of the momentum map. Thus P can be thought of as S}-principal
bundle over M. Moreover it comes equipped with a connection®, namely

§(-) = vg(Ko, ) € Q(P),

where vl = g(Ky, Ky), v : M — R.,. Notice that the induced metric § on
M, the connection ¢ and the function v together determine the metric on P
since T’ PERKy®T M

g = g =+ U71£2- (2'5)

The connection ¢ defines a horizontal lift i € TP of a tangent vector u € T'M.
As we have already remarked P inherits the action of S!, which descends
to M. The latter action has a nice property (inherited from M) of fixing
complex structure [; and rotating the plane spanned by I; and I3. Denote
by K, a Killing vector field of S!-action on M and by w the squared norm
of K,:
wi i — R, w= K.

Below we will also use a quaternion—valued 1-form 7 generated by K,

n=1x.§ +1x,@ € QY (M; H). (2.6)

aNotice that we identify the Lie algebra of S! with R, not with iR.
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Further, recall that Y; is the Killing vector field of the S!'-action on P.
Then Y; and K, are related as follows. First observe that T M =T P &
R Ky ® RI; Ky d RIz Ky and one also has

T P=Kerp,, pl1Ky= v_lz’, welo Ko = v_lj and p 3Ky = vk

Now taking = = exp(it) in formula and differentiating with respect to t
one obtains that the formula Y; = Kr +aKy holds on P. The same argument
gives that u,Yy = 2¢ or in other words Yy = V' + bKy + 2011 Ky. It follows
from the equation 1Yy = Y; that Y/ = -1 K,, b =0, a = —2v. Summing
up we obtain

~

Yo =LK, - 2L Ky, Yy =K, + 2K, 27
Ys = LK, + 203Ky, Ys=—LK, —20LK,. '

Remark 2.1.1. Since actions of S§ and S} C H* commute, it follows that
the connection ¢ enjoys additional property of being S! invariant. On in-
finitesimal level this means that 0 = Ly,§ = 1,d§ + diyy,§ = 1k, Fe + 2dv,

where Fy € Q'(M) denotes the curvature form of £. Thus, invariance of £
with respect to action of S! on P is equivalent to

ZKTFg + 2dv = 0. (28)

Note also that the function v is S!-invariant by the same reason.

2.1.2 Metric

Since M is a Riemannian manifold the map f, defined by , induces
a metric f*g on H* x P. Notice that since f is not injective, this metric
degenerates on tangent vectors to fibres. Our next aim is to calculate f*g
explicitly in terms of tensors on H* and M as well as the connection ¢ and
function v.

Let (x,m) € H* x P and (hy,vy), (he,ve) € T,H* x T,,P. Put also
a =x"'hy, 3 = 27 hy € TYH* and denote by Y, and Yg the Killing vector
fields of H*—action at the point m corresponding to the Lie algebra elements
a and 3. Obviously (Y1,Y:,Y;,Ye) = (Yo, Y1, Y5, Y;). Further, one has

Frg((h1,v1), (ha,va)) = g((La),(Ya +v1), (La),(Ys 4 v2)) =
= | x| 2g(Ya + vy, Y+ Vg).

Thus we see that essentially the following three terms have to be computed:
g(YavYﬂ>v g(Yom V) and g(vl, V2)'
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The first term. Since relation (2.2)) holds, we get

3

9(Ya,Yg) =g (Z Y, > @K«) = g(Yo, Yo)Re (af3).

r=0

Recall that w denotes the squared norm of K, and therefore it follows from
(2.7) that g(Yy, Yy) = w + 4v*v~! = 4v + w. So finally we have

9(Ya,Y3) = (4v + w)Re (af).

The second term. First decompose v into horizontal and vertical parts:
v =¥+ &(v)Ky. Taking into account formulae (2.7)) again, one obtains

9(Y5,v) = g(Yp, V') +26:£(v) =
= §(=Boh Ky + b1 K, + BoIs K, — B3, K, V') +26:1£(v) =
= fowr (K, V') + B19( K, V') — Bo@s (K, V') + Bsin (K, V') + 26:1€(V).
Slightly abusing notations, we also use the letter n for the pull-back of the

form (2.6) to P. Then the above formula can be written in a more compact
form:

9((Rm),03,v) = —Re (28i(v) + Bin(v)).
The third term. This has been already computed and is given by (2.5)).

Remark 2.1.2. Below we follow conventions of [35]. In particular, if ¢; and
(> are (quaternion—valued) 1-forms, then

(G © G2)(v1,v2) = Gi(v1)Ca(v2) + Ci(v2)Ca(vr),
(G A G)(vr,v2) = G(v1)Ce(v2) — Ci(v2)Ca(vr).

1

Now, recalling that o and 3 contain shift by 7! = z/| x|? we obtain a

final form of the metric:

ffg=(4v 4+ w)Re dx @ dx — Re (zdzi ® (2§ + 1)) + ].r|2(§ + v_lé‘z). (2.9)

2.1.3 Symplectic forms

In this section we will describe symplectic forms in the similar manner as we
did with the metric above.
The pull-back of w can be written as

frw((hi,v1), (he,v2)) = w((Ls), (Yo + V1), (La) (Yp + v2)) =
=2w(Yq + 1, Y + va)Z,
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where o and (3 are the same as in Section [2.1.2] Therefore we have to compute
three terms analogous to those, which appear in the metric computation.
The first term. The computation is similar to the one above:

W(Ya, Yg) =
= ig(aoYo + a1Y1 + Yo + asYs, BY1 — B1Yo + F2Ys — B3Ya)+
+7g9(a0Yp + a1 Y1 + aYs + asYs, ByYe — B1Ys — By + B3Y1)+
+ kg(aoYo + Y1 + oYy + asYs, GoYs + 1Y — (oY1 — (B3Yp) =
= g(Y0, Y0) (i(—aofr + a1y — afBs + a3fB2)+
+ J(—aof + aaf + a1 B3 — azf) + k(—aofs + asfo — a1 e + azh)) =
= (4v + w)Im (o).

The second term. Decomposing v into horizontal ¥" and vertical £(v) Ky
parts one obtains:

wW(Ya, V) = i(—2008(v) + wi((Rp), @, V') +

+ (2038 (v) + wa(Bm), o, V') + k(=208 (v) + w3((Rm), . V) =

= (=200 (v) — oG}, V') + a1 (K, V') — oo (K, V') — iy (K, V') +
+ 7(=2a38(v) + apws(K,, V') + a1@o (K, V') + o (K, V') — asg(K,, v'))+
+ k(—2028(v) — o (K, V') + aqws (K, V') 4+ aog (K, V') + ason (K, V') =
= —2Im (i)&(v) — Im (in(v)).

The third term. It is easy to see that
w(vy, va) = w(vi,vy) = &(vy, va),

where the pull-back is also implied.

1

Thus, recalling that « = x7'hy = |z|~2Zhy, the Im H-valued form ¢ = f*w

can be written as

_4v+w

@ dx A dz + z0x — 2Im (dziz) A § — Im (dxi A nZ). (2.10)

2.1.4 Inverse Construction

Now we can look on the above considerations in reverse order in the following
sense. Suppose M is a hyperKahler manifold with metric g and hyperKahler
structure @. Further, a group S! acts on M preserving complex structure
I and rotating I and I3 in the sense (L,)"®w = 20z, 2z € S}. Pick an Sj—
principal bundle P with a connection ¢ and extend the action of S! to P such
that it commutes with S} (at least locally such extension always exists).
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Consider further a manifold My, = H* xg P. We would like to define a
metric g and hyperKahler structure w on Mj, such that their pull-backs to
H* x P are given by formulae and respectively. The first thing to
show is that these expressions define invariant and basic tensors on H* x P.
One can easily check that both tensors are invariant provided ¢ is S!~invariant
(see also remark [2.1.5). Let x be a Killing vector field of the S'-action on
H* x P. It follows that y = K* — Y], where K* is a Killing vector field of
the S!-action on H* by right multiplication, i.e. dz(K*) = zi. Then the
equalities ¢,g = 0, 2,0 = 0 can be checked directly. For example, the last
one follows from the following computation:

(2,0)(ax, V) :%(41) + w) (zia — axt) — 3@ (K,, v)T—

—2Im (ziiz€(v) + iz 2v) — Im (ziin(v)T + cin(K,)T) =
= (4v + w)Im (zia) — 20(K,,v)Z — 2 - 0—
— 4ulm (zia) + zw0(K,,v)T — wim xia =

=0.

The next question is wether the 2—form w € Q2?(My; ImH) is closed. As
we have seen, the pull-back ¢ of w to H* x P is basic and therefore this
is equivalent to ¢ being closed. Now dy is a quaternion—valued 3—form on
H* x P and by the Kiinneth formula Q3(H* x P; Tm H) = @7, Q'(H*; Im H) @
O3~!(P;ImH). Thus dyp decomposes in 4 components: dp = > 1 (dp)1.3-1),
(dp)g - € QH*ImH) ® Q¥ {(P;ImH). It is easy to see that (dy) 3
and (dy)(s,0) vanish identically and it remains to compute the remaining two
components of dy.

It follows directly from the expression for ¢ that

(dp)a,2) = dv ANOT + 20 A dZ + 2Im (dziz) A Fe + Im (dzi A dnz) =
= Im (dz A (20 + 2iF¢ + idn)T)
and this vanishes iff
—2i + 2F + dn = 0.

By the Cartan formula [i,0] = Lk,& = d(1x,&). But then the above
equation can be rewritten as 2F; = —d(1x, §) —d(1x,@)+2i0 = —d(1k,§)—20;.
Thus the vanishing of (dy)n, ) is equivalent to

1 -~
Fg = —5 d(zKTg) — W1. (211)
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For the other nontrivial component of dy one obtains

1
(dp)2,1) = 5(4de + dw) A dx A dz + 2Im (dzi A dz) AN — Tm (dxi An A dx)

1
= §Im (dx A (—(4dv + dw) — 4i€ — 2in) A dT).

Suppose 6 is a quaternion—valued 1-form on M and consider the equation
Im (dz A 0 A dz) = 0 on H*x M, which turns out to be equivalent to Re = 0.
Indeed, dz AOAdZ = —(Re 0) ANdz ANdz+dx ANIm 6 AdZ and the last summand
is real-valued: dz ATm @ Adz = (—=1)dx ATm0 A dx = dx ATm 6 A dz.

Therefore (dyp)(s,1) vanishes iff

4dv + dw = i, w1 (2.12)

Thus, the 2-form ¢ descends to a closed form on My = H* x g P if and
only if the three equations are satisfied : , and . But the last
equation follows from the first two. Indeed, since S} acts isometrically we have
0 =Lk (1k,9) = 1k, d(tk,.g) + d(ik,1k,g) which means 15, d(1g,§) = —dw.
Now taking the operator 15, of both sides of equation and using
we obtain equation ([2.12]).

It was first remarked in [36] that a hyperKéahler manifold with an S-
action which preserves one complex structure and permutes the other two
has a Kdhler potential. Since our conventions slightly differ we reproduce
this simple computation.

Let 5 : M — R be a momentum map of St i.e. asolution of the equation

d[) = _ZK,.(DI-

On the one hand we have d([5dp) = dz’(82 — 52),6 = —2i0,0,p. But on

the other hand Ijix,&1 = 1x,w3 and therefore —d(I5dp) = d([5ix,01) =

d(1x,@3) = Lk, 03 = 2w9. Putting this together we obtain that p satisfies
i0200p = W

or, in other words, p is a Kdahler potential for w,. It is clear that p is also
a Kéhler potential for ws since these forms are not distinguished by the S'—
action. However p needs not to be a Kahler potential for @;.

Now if we remark that I7dp = 1x,.g and consequently

—2i0,01p = d(1x,7),

then equation ([2.11)) can be written in a particularly nice form: F, = 10101 p—
Wy, i.e. the function p is a hyperKahler potential iff F, = 0.
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Now we can find the function v (up to a constant) from equation (2.12)
(or, equivalently, from (2.8))):
w+ 2p

V= (2.13)

Therefore the following theorem is essentially proven.

Theorem 2.1.3. Let a group S} act isometrically on a hyperKdihler manifold
M such that (L,)*® = 2&%. Further, let P — M be an S}-principal bundle
with a connection & € QY (P). Suppose also, that the function v defined by
formula 1s everywhere positive, where w denotes squared norm of the
Killing vector field K, of S}, while p is its momentum map. Extend the action
of S} to P such that it commutes with the action of Si. Then and
define a hyperKdhler structure on My = H(M) = H"* xg1 P if and only if

Fe=i0,01p— & . (2.14)

Furthermore the left action of H* induces a transitive action on the 2-

sphere of complex structures and therefore H(M) has a hyperKdhler potential

4
v;—w|$|2'

p=— (2.15)
Finally, for any hyperKdahler manifold M with permuting action of H*

and triholomorphic one of S*, the open everywhere dense submanifold Mo =
M\ = 1(0) can be obtained as H(M), where M is as above.

Proof. Tt remains to show that the symmetric tensor given by formula ([2.9))
provides a non—negative bilinear form at any point of the tangent space to
H* x P as well as to prove formula for the hyperKahler potential.

First we have a decomposition T(H* x P) = TH& TP = TH & RK, &
7*T M. Further decompose TM as span (K., hK,, LK, I3K,)® E, where £
denotes the orthogonal complement. Thus we have

TH* x P) =TH® RK, ® n*span(K,, 1 K,, LK,, 3K,)® 1"E,

and we can write a tangent vector as w = w* + aKy + K, + v, where a is a
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real number and 3 is a quaternion]’] If dz(w*) = o € H, then

2
gtow,w) = (a0-+ w)l ol + [af? (517 + VI + %) = 2Re (zai(2a-+ w5) =

= 40| a|* — 4aRe (i) + | 2| *v ' a® +

+ w(| a\Q — 2Re (zaif3) + |ﬁx|2) + |:1:\2||V||2 =

2
ax
— ’2\/504@‘ -7 +wlai — Bz + | 2|2|v]?* > 0.
Further, it was shown in [I1] that if a hyperKadhler manifold M admits
a permuting H*—action, then the squared norm of any Killing vector field
generating this action is a hyperKéahler potential (up to a constant —. Now
the permuting action of H* on H (M) is induced by the left multiplication on
the first component of H* x P. In particular, the Killing vector field of R* C

H* is the vector field w* s.t. dz(w*) = x. Its squared norm (multiplied by
—1/2) with respect to metric (2.9) is exactly the right—hand side of (2.15)). [

Remark 2.1.4. It is easy to see that the hyperKihler reduction of H (M)
by S§ is M (certainly not a surprise in view of Section . Thus the
construction H(-) may be regarded as a kind of ”hyperKéhler induction”, i.e.
an inverse construction to the hyperKahler reduction.

Remark 2.1.5. The equation determines the bundle P: its Chern
class is —5-[w1] € H?(M;7Z) and the integrality of o=[@1] is the only ob-
struction for the existence of solutions to (2.14)). Furthermore, any solution
¢ is automatically Sl-invariant and the Killing vector field Y; of Sl-action
on P satisfies Y| = Kr + 2vKj. Indeed, as we have seen the right hand side
of equation (2.14]) may be written in the form —%d(zKrg) — @ and this im-
mediately implies S!-invariancy of £. Further, we may decompose Y; on the
horizontal and vertical parts: Y; = f(',, +aKy. Then by Remark we have
1k, Fe +da = 0. On the other hand equation implies 15, Fr = —2dv
and the statement follows.

It is worth pointing out that equality a = 2v holds only up to a constant.
This phenomenon will be discussed in details in Section below. At this
point we will ignore this subtlety implying that a constant is chosen properly,
i.e. such that equation Y; = [A(r + 2vK, holds.

bAny tangent space of a hyperKihler manifold carries an action of H. In particular if
B =Bo+ Pri+ Paj + sk € H, we write BK,. instead of BoK, + 327, B[, for the sake
of brevity.

“the minus sign appears because of different sign convention in the definition of hy-
perKahler potential.
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Remark 2.1.6 (Complex structures). We would like to indicate how one
can describe complex structures of H(M). It is convenient for a while to index
complex structures of a hyperKahler manifold by imaginary quaternions ¢ of
unit length. Let I, be one of the complex structures of M and (h,v) €
TH* x TP. Consider the equation

f*(hl,Vl) = qu*(h,V), (216)

where the map f is as defined in (2.4). Its solution (h1,v1) = Jy(h,v) is de-
fined only up to the Killing vector field x; although the operator J, is not de-
fined on T'(H* x P), it is well-defined on the factorspace T'(H* x P)/span ().
Since we are free to add any vector of span (x) to both (h,v) and (hy,vy) it
can be assumed that £(v) = 0 = £(vy). Under these conventions equation

(2.16)) has a unique solution J,(h,v) = (qh, L,-14, V).

Remark 2.1.7. Suppose that the S!-action is induced by a permuting H*-
action (and standard inclusion S! C H*), or equivalently, the momentum
map of the S!—action is not only Kéahler potential but also hyperKahler [65].
It follows from equation that the bundle P is flat and we can take it to
be trivial so that topologically H(M ) = H* x M. Moreover, it follows from
the proof of the theorem that v is constant so that we may put v = 1. This
determines a metric and symplectic forms.

Further, it turns out that in this case H (M) is isometric to H* x M
with its product metric. Indeed, direct computation shows that the map
H(M) — H* x M, (x,m) — (x,zm) is an isometry.

2.1.5 Quaternionic Flip

In the previous section for any hyperKihler manifold M with a certain S'-
symmetry we have constructed another hyperKahler manifold M, = H(M )
with hyperKéhler potential. Then Swann’s results [65] imply that the ma-
nifold Ny = My/H* = P/S} is quaternionic Kahler. In this section we will
describe its quaternionic Kahler structure.

First notice that in order to obtain quaternionic Kahler structure on N
we have to consider a riemannian version of the quotient My/H*, that is to
pick a level set of a hyperKéhler potential and divide it by the group Sp(1);
in this case we may view complex structures of Ny as induced by those of M,
on span (Yy, V1, Y3, Ya): € TM,.

Let us again return to the viewpoint of Section2.1.1} i.e. P = p~1(i) c M
and let A = (4v + w)~ /2. Since the restriction of the hyperKihler potential
p to P equals —(4v + w)/2, a map

l:p—Xp)-p=Lyxpp, pEP (2.17)
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is a diffeomorphism between P and Q = p~'(—1/2)Nu  (0)N{u; > 0}, where
fe = pro+ips. Thus our next aim is to compute the tensors g(prol, -, prol, -)
and w(prol, -, prol, -), where pr means a projection onto span (Yp, Y1, Ys, Y3)*.

First we may decompose a vector u € T,P C T,M as u’ + Z?:o a;Y;. The
coefficients a; can be found from the following relations:

A

aog (Yo, Yo) = 9(u, ¥o) = g(u, =L K, — 2011 Ky) = 01 (K, 1),
a19(Y1,Y1) = g(0, Y1) = g(u, K, + 20K,) = 2¢(u) + §(K,,v),
a29(Y2,Y3) = g(u, Ya) = g(u, LK, + 20Ky) = —03(K,, u),
a39(Ys, Ys) = g(u, V) = g(u, LK, — 20, K¢) = &3( K, u)

The expressions for a; become more compact in quaternionic notations. In-
deed, if we put a = ag + a7 + asj + agk € H and recall the definition ({2.6]) of

1-form 7, then
1
= 2 n .
¢ 4v + w( §u) + n(u))z

Since I, = (Lag)), +dAYo(I(p)), we have prl,v = (L), v and therefore

g(pr L, priv) = g((Law), ', (Lag),v) =
= Ng(u',v) =
= Ag(u—aYp, v —bYy) =
= N (g(u,v) = g(aYp, v) — g(u,bYp) + g(aYp, bY0)),

where we also put v = v/ + bYy. Now it is easy to compute every single
summand in the last expression. Indeed, the first summand is given by for-
mula ([2.5). Taking into account decompositions one obtains g(aYp, v) =
—Re (ai(2 +n)(v)) = (4v + w)~'Re ((2€ +7)(W)(2€ +7)(v)). Since vec-
tors Y, are pairwise orthogonal we get: g(aYp,bYy) = (4v + w)Re (ab) =
(4v +w) " Re ((2£ + 7)(0) (26 + n)(v)). Finally, gathering all terms together
one has after a simplification:

1 1 1
Ix :m(ng;ﬁz—m(%Jrﬁ)@(Zerﬁ))-

It is convenient to introduce a 1-form

1 1

— (W1, =
! =

Y= (2§ +1x,9), (2.18)

which is a connection on the principal fibre bundle P — N, (assuming
that S! acts freely on P), i.e. it is S!~invariant and (Y;) = 1. Then the
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expression for the metric takes the following form:

3
1o/ 1, 1, 1 o

_ Ly ) e — o . 2.19
N T wtw (g * 2)5 2¢ ) 2(4v + w)? = (e, 1) (2.19)

The arguments similar to those at the beginning of Section show
that formula (2.19) defines a metric on Nj.

The fundamental 4—form €2 can be obtained in the similar manner. Indeed,

x(u,v) = w(pr Lo, pri.v) = NXw(u — aYy, v — bYy) =
= )‘Q(W(ua V) - (“J(a}/(b V) - w(u, b%) + W((IYE), bYO))

Arguing similarly as we did when computing the metric, we obtain finally

1 ~ —
T wtwe 2(4v+w)2(2€+n) A (28 + ).

Componentwise spelling of this formula is

X

1
= o1 — P N, g, W N UK, &
X1 4v—|—w(w1 Y Ak, @1) + (4v+w)gl&w2 LK, W3,
1
= 09 — P N, W) — 51K, W1 N\ 1k, & :
X2 4v 4+ w (wg ¥ ZKTC@) (41) + w)QZKTWI s, (2 20)
: (@03 — ¢ Ak, ws) + 1 o1 N IE, &
= W3 — 1K, W K, W1 A 1K, Wa.
X3 do + w3 K,W3 (40 + w)? K,W1 N\ 1, Wo

With respect to the action of S} on P all three forms y; € Q?(P) are basic,
however only x; is invariant:

1
£Y1X1 = <4U—|——w)2(_22KTJ)3 AN ZKTUNJ:J, + ZKT(.DQ AN QZKTCDQ) = 0,
1

L = — 2 A 205 & -_— 01 N\ 205 W09 = —2

viXe = g w< w3 + Y A 21, @3) + o+ w>2ZKrw1 U, W2 X3,
1

L = 209 — W N\ 205 (9) — ——————1p (01 N\ 205003 = 2

YiXs = w( W2 — P A 2ug,W2) (o + w)ﬂmwl 1K, W3 = 2X2,
It follows that a 4-form

Q=x1AX1+X2A X2+ X3A X3 (2.21)

is basic and invariant and therefore descends to Ny. Integrability of such
defined quaternionic Kéhler structure follows from integrability of the hy-
perKéhler structure on My = H(M) = U(Ny) [65].

Theorem 2.1.8. Let the assumptions of Theorem[2.1.5 be satisfied. Then
Ny = Q(M) = P/S! is a quaternionic Kdihler manifold with respect to the
metric (2.19) and the fundamental 4—form , where x; and ¢ are defined
by 42.2{]) and (2.18) respectively. Moreover Q(M) admits a quaternionic
Kihler action of S' and its Swann bundle U(Ny) is H(M). O
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2.2 Examples

Example 2.2.1 (T*CP" with the Calabi metric). The hyperKéahler quo-
tient of H"*! by S! acting by multiplication on the left with respect to non—
zero value of momentum map is topologically T*CP". Hitchin [37] shows,
that the metric coincides with the one defined by Calabi [I3]. Therefore
H(T*CP") = H"*! with its flat metric and Q(T*CP") = HP" (in both cases
with zero level set of corresponding momentum map being removed).

Example 2.2.2 (Flat manifold, adjoint action). Let us take a copy of
quaternions Hl, as a manifold M with the following action of Sl (z,y) — 2yz
(one can also regard H as T*C with fibrewise action of S}; see also remark
2.2.3). In this case 1/4(w+2p) = 1/2(y32 +y3), where y = yo+y1i + Y27 + ysk.
Adding 1/2 we may write function v in the form

1
v=§(1—y§—y§)

and it is positive on R? < DZ . where D> C R* is an open disc of radius 1.
The principal bundle P is trivial and therefore Q(R? x D?) = R? x D? with

the following metric:

1 1—d B Ad ,
T (1+dRedy®dy+1_—dg(yody1+y3dy2) -

- m(yodyl + y3dy2) © (yadys — ysdyQ)) :

where d = y3 + y2. Therefore the above metric is Einstein and self-dual.
However it is incomplete.

Similarly, one can compute the metric and symplectic forms on H(R? x
D?) = H* x R? x D? but the metric is also incomplete.

Remark 2.2.3. The above manifolds are examples of a large class of hy-
perKédhler manifolds admitting S}!-action. Namely Kaledin [43] and indepen-
dently Feix [24] proved the existence of a hyperKéhler metric on a (neighbor-
hood of the zero section of) cotangent bundle 7% M to a real-analytic Kéahler
manifold M. The above examples show that the function v can be both pos-
itive everywhere and only on a proper open subset of T*M; also H(T*M)
can be both complete and incomplete.

Example 2.2.4 (Gibbons—Hawking Spaces). As we have already men-
tioned in the introduction, all hyperKahler 4-manifolds with S'-symmetry
were described by Gibbons and Hawking [34] and their construction is as
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follows. If Z* is hyperKéhler and admits S'-symmetry with a Killing vector
field Ky, then its hyperKéahler momentum map p = p1i + pej + psk repre-
sents Z as a fibration over R? with generic fibre S!, so that, excluding critical
points of the momentum map, one can write the metric as

Jon =V (dxf + dwi + d:tg) + 712, x =, 1=1,2,3, (2.22)

where v : R? — R.g, v~! = ||K|?, and £ is a connection form. It is then
an easy exercise to write down 2—forms which are closed provided

Fe = —dv. (2.23)

It follows form the Bianchi identity that v is harmonic. We would like to
point out that Z* is determined by the function v (harmonic and positive)
since the connection £ can be found from equation . The Gibbons-
Hawking—Ansatz is a choice of a particular function v :

—~ 1
V(I):Zm, yZ€R3
i=1 !

In general the above 4-manifold does not admit an S}—action. However
when all the poles y; of the function v lie on one line (say x;—axis), then
such an action does exist; its projection to R?* = ImH is then (z,z) —
zxz, x € ImH. A direct (and tedious) computation shows that the function
v (see ) is everywhere positive and therefore the construction H(Z) (see
Theorem is defined on the whole Gibbons-Hawking space Z. However
we will construct it in a different way.

Let a torus T" = S x --- x S! act on a flat hyperKéhler manifold H"*!
by

(21, e oy Zns Yty - oy Y1) — (Y12122 2o, Y22122, « + s YnZ1 20, Ynt121)-
Consider a hyperKéhler reduction Z,, i.e. the space of solutions to

Y111 + Y212 + Y3iY3 -+ Yniln + Yne1llns1 = Cit,

—Y11Y1 + Y21Y> = o,
—Y1il1 + Y313 = s, (2.24)
_yligl + ynlgn = Cni7

modulo T", where ¢; € R. It is an example of a 4-dimensional toric hy-
perKdhler manifold [10]. The following action of S*

(wvyla"'ayn—f—l) = (yla"'aynayn-‘rlw) (225)
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descends to a hyperKahler one on Z,. It follows that Z, is a Gibbons—
Hawking space. In order to identify it we have to compute the function v (see
(2.22)). The Killing vector field of the action (2.25)) is Ky = (0, ...,0,yn+11)
and v~! is a squared norm of K, with respect to the metric of hyperKdihler
reduction, i.e. squared norm of the projection of K, to V*, where V is
spanned by the Killing vector fields of T" : V = span (K3, ..., K,) and

Kl :( y1i7 ygi, y3i7 <o 7yni7 yn+1i>7

K2 :(_ylia y2i7 07 sy Oa 0)7
K3 :(_yliu 07 y3i7 ) 07 0)7
Kn :(_ylia 07 Oa sy ynza 0)

If we write the projection of Kgon V' as ui K1+ - -+u, K, then the coefficients
Ui, ..., u, are found from the system > " (K, Ks)us = (K, Ko), | = 1,n.
Denote a;, = |y,|? for a while; then the above mentioned system has the
following form

Zas uy + (a2 — ay)us + (ag — ar)uz + - - + (ap — a1)Up = Apy1,

s=0
(ag — ar)us + (az + ar)uz + ayug + -+ aru, =0, (2.26)
(a3 — ay)uy + ajus + (ag + a)uz + -+ - + au, =0,
(an — ar)uy + a1z + ajus + - - -+ (a1 + ay)u, = 0.

A direct computation shows that

n

Uy = Ap+1 E al...di...an/A,

i=1

us:an+1<(n+1)a1...ds...an—Zal...&i...an)/A, s=2.n
i=1

is a solution of system (12.26)), where A = n?ay---a,+> ai...a;...a,41 and
a; means that this factor is omitted in the corresponding monomial.
Further,

v = ”perKOHZ = HK0H2 - ||ZUSKS||2 = Ont1 — Z<K17K3>Ulus

l,s

Now multiply the [’s equation of system (2.26) by u; and sum up. Recall
also that the coefficients of system ([2.26]) are exactly (K, K;) and therefore
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vl = ap41 — anpiuy. After a simple transformation one obtains

n

1 1

1
- 5
Any1 n? 5 s | Yn+1 | 2 n2 ’ y8| 2

V=

Now we have to express v as a function of x = y,, 119,41 € ImH = R? since
Yn+1tYna1 1S the momentum map of action ([2.25)).

First, one has |y,.1]? = | z| for free. Then it is easy to find each term
Y1y, from the system . Indeed, subtracting from the first equation the
sum of the rest, one gets ny,iy; = —x + (¢c; — ¢ca — -+ — ¢,,)i; now one easily
has nyjiy; = —x+dji, dy =c1+ (n—1)¢ — ZS#SZQ cs. Remark that one can
choose constants ¢; such that all d;’s are different. Thus |y, 2
therefore we have

= |z — dyi| and

m Z . dﬂ’ (2.27)

Proposition 2.2.5. The szbonsfHawkmg space Z, corresponding to the
function v with n+1 poles 1s a hyperKdhler reduction of the flat space
H"! by a torus T". Szmzlarly, the manifold H(Z,) is a hyperKdhler reduction
of H™* ! by T, i.e. both are toric hyperKdihler manifolds.

Remark 2.2.6. The fact, that Gibbons-Hawking spaces can be obtained as
hyperKahler reductions of a flat space by a torus has long been known in
physical literature: see [31] and references therein.

Proof. It remains to prove that H(Z,) is a toric hyperKahler manifold. First
observe that Z; is a hyperKahler reduction of H? by a circle and therefore is
homothetic to 7*CP' with Calabi metric when ¢; # 0 (see ) or H with
its flat metric when ¢; = 0. In both cases H(Z;) = H2.

If n = 2 we may choose constants (c1, ¢2) to be (0,1). It is well known (see
[65], for example) that the hyperKéhler reduction H?®///S! with respect to
the zero value of the momentum map is a nilpotent orbit O; consequently O
has a hyperKéahler potential. Further the space Z5 is a hyperKahler reduction
0O///5%, but now with respect to the i’s level set of the momentum map. In
other words, H(Z2) = O.

In general we may assume that ¢c; = 0, ¢, = 1 and the other ¢’s are integers.
Then we may change the action of the torus T™ such that the hyperKahler
reduction is still diffeomorphic to Z,, but the level of momentum map becomes
(0,...,0,7). For the sake of simplicity we put n = 3. Indeed, then the system
(2.24)) is equivalent to

Y191 + Y2ty + Y3iys + yaiyy = 0,
(2 — 1)y1it1 + Yoia — C2y3iYs
—Y1111 + y31y3 = 1,

|
SO
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and the left-hand sides of the above equations are momentum maps of the
following T3 = S x S, x S} —action:

co—1 — —C
(yl,yg,yg,y4) = (y1w1w22 W3, YoWiWa, Y3WiWy Ws, ?/471)1)‘

Moreover, there is a bijection T2 — T3, 2z, = wy, 20 = wy, 23 = W3W;"
which respects the corresponding actions. It follows that Z3 is a hyperKahler
reduction of H* by T2 | which we can regard as being performed in two steps:
first hyperKéhler reduction Zs of H* by SL xS._with respect to the zero level
of momentum map and then reduction of Z3 by S}US with respect to ¢’s level of

momentum map. Thus 75 has a hyperKé&hler potential and H(Z3) = Zy. O

2.3 Indeterminacy of function v: further ex-
amples

As we have seen in Section the function v is defined by formula
only up to a constant and this has strong consequences as we will see below.
Recall that the action of S! should be lifted from M to P such that its Killing
vector field Y; equals to K, + 20K, (see (2.7)). This implies that we are free
to take © = v + m/2 instead of v, where m is an integer whenever v + m/2
remains everywhere positive. However in this case one needs to modify the
lifting of the S!-action to P to get that the Killing vector field is given by
K, + 20K,. Therefore we get that the manifolds H* x s1 P and P/S} again
carry hyperKahler and quaternionic Kéahler structures correspondingly, where
the modified action of S} is implied. It turns out that a modification of the
Sl-action can change the topology of the H and Q constructions.

Consider Example 2.2.1| again. Let us first take n = 1 for the sake of sim-
plicity. Then P = (i) = {(y1,92) € H | y1i91 + y2iy> = i} and the actions
of S} and S! are given by right— and left— multiplications correspondingly.
Since T*CP"' is obtained as a hyperKihler quotient of H? by S5 it follows that
the function v is positive (explicitely, v = |y1|? + | 42| ?). Therefore we may
consider ¥ = v + 1/2 and the modified action of S} takes a form

2 (21, 20, w1, we) = (%21, 2229, w1, W), (2.28)

where y; = z+w;j, | = 1,2. Now as a consequence of the above observation
we obtain the following statement.

Proposition 2.3.1. The total space of TCP'(—1) = O(1) carries a quater-
nionic Kahler structure.
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Proof. First observe that (H?\ 0)/S} = CPL,,..,, X Ryo x C2,,, where the
projection onto R+ is given by the function (21, 2o, wy, wy) — |21|% + | 22| ?
and the action is implied. The equation y = 7, defining P C H?\ 0,
can be rewritten as | 212 4 | 22|? = 1 4 |w1|? + |wa|?, 21wy + 20we = 0. Tt
follows that P/S! 2= {([2; : 2o, w1, ws) € CP' x C2? | 2jw; + 20wy = 0}. Now
the statement follows from the Euler exact sequence: 0 — O(—1) — C? —
TCP'(—1) — 0. O

The next natural task is to identify the Swann bundle of O(1). But first
we would like to prove an auxiliary lemma.

Lemma 2.3.2. Let P — X be an S'-principal bundle and L — X be the
corresponding line bundle. Consider the following action of S* on P x C :
z - (p,w) = (pz", z°w), where r and s are integers and r is positive. Then

(P xC)/S" = L.

Proof. Let Q,, s denote the space P x C with the action of S* as in the state-
ment of the lemma. Then we have an equivariant map Q, s — Q. s, (p,w) —
(p, w®). Clearly it is surjective; although it is not injective, it descends to a bi-
jective map of quotients Q,. s/S* — Q,.,s/S*. But the last quotient is exactly
L—s. m

Proposition 2.3.3. The total space of 20(1) ® O(—1) carries a hyperKdhler
structure and is a Swann bundle of O(1).

Proof. First, consider H* with quaternionic variable x as C*\ 0 with variables
ws and wy @ x = ws + wyj. Similarly to the proof of Proposition
first consider a bigger space (H* x H?)/S!. Now the action has the form
2+ (21, 29, w1, Wo, w3, wy) = (2221, 2229, w1, W, Zws, zwy). Further, since the
Hopf fibration is the principal bundle of O(—1) and using Lemma we
get

(H* x H?)/S} =2 O(1) @ O(—-1) @ C2

w1 w2 X R>O’

where the projection to Ry is again given by the function | 2|2 + | 2| 2.
The condition (zy, 29, wy,ws) € P extracts O(1) out of C* x R.g in the
same way as in the proof of Proposition [2.3.1] n

The above analysis applies without changes for higher dimensions and the
following proposition holds.

Proposition 2.3.4. The total space of TCP"(—1) carries a quaternionic
Kihler structure and U(TCP"(—1)) = O(1) & O(—1) & TCP"(-1). O
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Finally, consider a general situation © = v + m/2. In this case P =
{(y1, -y Yns1) | 1901 + -+ + Yns1i¥nr1 = i} and the modified action of S}
becomes:

z - (217 ceey RAn41, W1y .. 7wn+1) =
_(Z1+m21 1+ m 1
= -

o2, 2w L 2 T ).
Theorem 2.3.5. Let QF and H denote the total spaces of TCP"(m —2),
m > 1 and O(1) & O(—1) & TCP"(m — 2) correspondingly. Then QF, is a
quaternionic Kdhler manifold, H is a hyperKdhler one and U(Q") = H.
In particular, QL = Opi(m), m > 1 are quaternionic Kdihler manifolds, i.e.
Einstein and self-dual. [

2.4 Kahler structure on N

In contrast to a hyperKéahler manifold, almost complex structures of a quater-
nionic Kahler manifold N are defined only locally, i.e. we have a distinguished
rank 3 subbbundle Z C End(T'N) called a structure bundle, which locally ad-
mits a basis consisting of three almost complex structures with quaternionic
relations. Since the metric induces an isomorphism T'N = T*N, one gets an
embedding of 7 in A2T*N. Locally this is given by passing from an almost
complex structure I to the associated 2—form w;(-,-) = g(+,I-). We will not
distinguish between Z and its image in A2T*N. An analogue of a momentum
map can be defined in the quaternionic Kahler context, but now it will be a
section of a structure bundle (see [31] for details).

Theorem 2.4.1. Let N be a quaternionic Kdhler manifold of positive scalar
curvature. Suppose also that N admits a quaternionic Kdhler action of S*
with momentum section py € I'(Z). Then Ng = N \ {ux = 0} is a Kdhler
manifold.

Proof. Let M be the Swann bundle of N. Then M admits a hyperKahler
action of S [65]. Let p = pyi+pej : M — Im H be its momentum map. Since
the function p. : M — C is I;-holomorphic, the submanifold M, = {m €
M : pe(m) = 0} has an induced Kéahler structure. Further, M} = {m € M. :
p1(m) > 0} is an open submanifold of M... The group S} preserves I; and one
may consider the Kéhler reduction of M with respect to a non—zero value
of the momentum map : M} //S} = MF/C;. It remains to observe that
M} = (i) X Rug = P x Ry and therefore M /C: = P/S! = Nj,. O

When a quaternionic Kahler manifold N admits an action of S!, one can
normalize the momentum section uy € I'(Z) and consider it as an almost
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complex structure I over Ny. It turns out that [ is integrable and it is easy
to see from the proof that it coincides with the complex structure implied by
Theorem m (our proof of the above theorem itself represents an alternative
proof of the integrability of  in case when N has positive scalar curvature).
In this form Theorem was known earlier [7, [60]. Although the complex
structure I is a section of the structure bundle Z , the Kdhler metric of Ny
must not coincide with the quaternionic Kahler one as we will see in the
sequel. Note also that Z does not admit a section which defines an integrable
complex structure on the whole manifold N (see [I] for extensive discussion
of this phenomenon). Taking this into account, one may consider Ny as
"the largest” open submanifold of N where it is still possible to choose an
integrable complex structure.

Our next aim is to express the Kéhler structure of Ny similarly to the
quaternionic Kéhler one (see section [2.1.5]).

Recall that Ny & P/S! = M} /C*. In order to get a metric and Kahler
form on Ny we have to express Ny as a Kéhler reduction, i.e. we have to
fix a level set of momentum map and divide it by S} C C?. In our case
the momentum map of the S!'-action is nothing else but the hyperKahler
potential p (restricted to MJ). Recall also that we have an isomorphism
between P and Q = p~'(—1/2) N M. Further, one has T. M, =
span (I, Ky, I3Ky)* € T.M and T p~1(—1/2) = span(Yy)+. It follows that
T Q = span (I1Ky, 3K, Yy)*+ because Y is perpendicular to both I, K, and
LKy (see (2.7)). In particular Y; € T'Q; this also follows from the fact that
S! preserves Q. Further, the Kahler reduction procedure implies that 7. N
is identified with span(Y;)* C T Q and the Kéhler form and metric are
obtained as a restriction of the corresponding tensors to span (¥;)*. Remark
that the quaternionic Kahler metric was obtained as the one induced on a
different subbundle, namely on span (Y7, Y5, Y3)* C TQ.

Let u € T,P. Then we may decompose u = u’' + 9(u)Y;, where u’ is
orthogonal to Y;. Now denote by II an orthogonal projector on span (Y;)* in
TQ. Then for the Kéhler metric gy we have:

gx (0, v) = g(H l*u,Hl*v) =
= 9((Lag) W + dAW)Yo(AP)p), (Law)), V'+dk( )Yo(A(p)p)) =
= Ng(u—¢ )Y +dA\(n)Yy, v—(v)Y; +dA(v)Yy)

= X(g(u,v) = w()g(¥1,v) = $(¥)g(¥V1, 1) + dA()g (Yo, VAW g(¥o,w).

As we already know g(u, v) = (§+v~"¢%)(u,v). By the definition of ¢ one has
g(Y1,v) = (4v+w)(v). Further, g(Yo,v) = g(— L K,—2v[1 Ko, V+£(v)Ko) =
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i, @1(v). Therefore we obtain gy = A?(g+v7'¢? — (v +w)p? + dA O 1x, @1 ).
Since d\ = (4v + w) %%, @, we may finally write
1 1

A ~ 2 2
gN_4v+wg+v(4v+w)£ v

~ \2
(4v+w)5/2 (ZKrwl) .

The Kahler form wy may be obtained in a similar manner. Indeed,
wy(u,v) =w (I, I v) =
w1 ((Ea) 1+ Yo (1)), (Lagn) Y+ dA@Ys (U(p) ) =
Mw

=w1((Law). W (D), V) =
1( Y(u)Yr, V—w(V)Yl)-

Since wi(u,v) = @1(u,v) and wy(Yy,u) = g(K, + 20K, [t 4+ £(0) [, K) =
1, @1(1), we obtain the Kéhler form as

. 1 - -
Wy = T (wl—w/\zKruq).

Remark 2.4.2. As we have already remarked, we may regard the form v as a
connection on the S!'-principal bundle P — Nj. Lets compute its curvature.
We have

Fy,=— (4dv + dw) A (26 + 1, G) +

(4v 4+ w)? dv 4w

It follows from equations (2.11)) and ( - ) that

F¢ = _4U T w (ZKT(DI A ¢ +(I)1) == —2&)1\7

This observation provides an ”internal” interpretation of the Kahler form
wy in the following sense. Let N be a quaternionic Kéahler manifold with
positive scalar curvature and F' — N be the principal SO(3) bundle associ-
ated to the structure bundle Z. Observe that F' is equipped with the natural
connection induced by the Levi-Civita one. Suppose also that N admits a
quaternionic Kahler action of the circle and denote by iy its momentum sec-
tion. As it was explained above one can think about 1y on Ny = N\{uy = 0}
as a section of F' (restricted to Np). This means that we get S'-subbundle Q
of F'. The curvature of the induced connection ¢ is a —1/2-multiple of the
Kahler form @y.
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Chapter 3

Nonlinear Dirac operator and
harmonic spinors

This chapter is devoted to a nonlinear generalization of the celebrated Dirac
operator. In the preparatory Section we discuss some representations of
Spin©(4). The results of Section [3.1 will be used in the sequel. In Section
we define a nonlinear generalization of the Dirac operator following [59] and
study its properties. The nonlinear Dirac operator D acts on sections u of
a certain fibre bundle, where a fibre is a hyperKahler manifold M admitting
Sp(1) permuting and S* triholomorphic actions. When the Dirac operator is
applied to a section u one obtains a section of some vector bundle and therefore
harmonic spinors are well-defined. We show that harmonic spinors are anal-
ogous to antiholomorphic sections of complex geometry (see Lemma
and its corollary). These results are of fundamental importance and will be
used below as well as in Chapter [4

In Section we study properties of solutions to the Cauchy—Riemann—
Fueter equation (3.11)), which is a quaternionic analogue of the Cauchy—
Riemann equation in the complex geometry, and their relation to harmonic
spinors. In particular, we prove that solutions to the Cauchy—Riemann—
Fueter equation are exactly those maps whose differential has vanishing tri-
holomorphic component (Proposition . These results are extended for
maps between quaternionic Kéhler manifolds and more generally for sections
of vector bundles with quaternionic structures.

In the last section we study the case when the action of Sp(1) can be
extended to the permuting action of H*. Combining our previous results
with Swann’s construction we get relations between earlier studied objects
(harmonic spinors, aholomorphic maps and sections). These objects were
defined earlier by different authors (and under a variety of names), however
the properties and relations between them are new.

41



3.1 Spinor representations

Recall that by W we denote the standard SU(2)-representation on C? or
equivalently the Sp(1)-representation on H by multiplication on the left. Fur-
ther, W* denote Spin¢(4)-representations on H given by ([qy,q_,\],h)
q+h) and R* denotes the representation of the same group on the same space
given by ([q1,q-, A, h) — q_hq.

Any quaternionic module V' can be considered as a real vector space
equipped with three complex structures (Iy, I, I3) with quaternionic rela-
tions. Consequently, any such vector space can be regarded as being equipped
with a standard representation of Sp(1), namely ¢ = qo + q17 + ¢2j + g3k =
qold + g111 + g2 12 + g313.

Proposition 3.1.1. Let V be a quaternionic module and denote by Vi, the
same vector space but considered as a complex vector space with respect to the
complex structure I,. Under the isomorphism

Ve=CV=2HcV,, 20v—2Q0uv—72Q v
the natural action of Sp(1) becomes multiplication on the left:
2Qq-v—qz®v—qjz® b,
i.e. we have the isomorphism of representations Ve = W ®¢ V7,.

Remark 3.1.2. The complex tensor product in the statement above is de-
fined via the relation hiQcv = hQcliv.

Proof. 1t is sufficient to check the statement for ¢ = i, j, k. Indeed, one has

z2@Nv— z@hw—jzLhv=izQu+jzi Lhv=i(zQ@v—jz® lh);
2@ v 2@ Lv—jz@Lhv=20Lv+jzQuv= j(zQv—jz® Lv);
2@ 2@ 1w —jz0[v=izQ lLhv—j2ziQu=Fk(zQv—jz® lL).

]

Corollary 3.1.3. Suppose we are given a representation of the group
Sp(1) xgp1y ST = U(2) on a quaternionic module V' such that the action
of Sp(1) C Sp(1) x i1y St is standard and the action of the subgroup S* is
quaternionic. Further, assume that the representation of Spin®(4) on V is
induced via the homomorphism

Spin®(4) — Spin®(4)/Sp—(1) = U, (2). (3.1)

Then the isomorphism Ve = H ®c V' induces an isomorphism of representa-
tions
Ve 2 W @cV/,

where V' is a representation of S* on V. O
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Clifford multiplication First recall (see (1.4])) that one can consider
the standard representation R* of SO(4) as being induced by Spin(4). Then

under the hypotheses of Corollary we can define the following homo-
morphism of representations

REQVe 2R W@V — W™ @V’ (3.2)
given by the formula:
TR (z2QV)— 2200 —1jz® L. (3.3)

Observe also that homomorphism ([3.2]) induces a homomorphism between
the real parts of the corresponding representations:

R'@V=[R'eV] — [W V] (3.4)

Remark that if V' = W™ homomorphism is the well-known Clifford
multiplication:
R*@ W — W™,
Therefore we will also call homomorphism a Clifford multiplication.
Slightly abusing notations, we will refer to its complexification (3.2]) also as
Clifford multiplication if it will be clear from the context which homomor-
phism is implied.

3.2 The Nonlinear Dirac operator

Pick a Spin®(4)-structure Pgpye — X over a four-dimensional oriented Rie-
mannian manifold (X, gx). Fix also a hyperKihler manifold M*™+1) equipped
with an action of the group U(2) = Sp(1) x4, S with the following properties:
the action of Sp(1) is permuting while the action of S! is hyperKahler.

Remark 3.2.1. There is a certain freedom in choice of complex structures
on a hyperKéahler manifold. Indeed, the space of triples of complex structures
compatible with the preferred one is naturally isomorphic to SO(3). However
the requirement that the action of Sp(1) is permuting eliminates this freedom.
From now on (1, I, I3) denotes the complex structures of M such that the
action of Sp(1) is permuting with respect to this triple.

The homomorphism ([3.1)) defines an action of Spin®(4) on M. Denote by
K¢ its Killing vector field corresponding to a Lie algebra element £ € spin‘(4).
Further, define M to be a fibre bundle over X with fibre M:

M= ]DSpinc X Spine(4) M.
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We consider equivariant maps u : Pgpi,e — M as an analogue of spinors; one
can also think about u as a section of M — X. The space of all equivariant
maps will be denoted by l\/lapSpmc(‘l)(Pspmc7 M).

Next, pick a connection a on a principal S'-bundle P, = Pspine /Spin(4),
which is called a determinant bundle. Together with the Levi-Civita connec-
tion it equips Pgpine With a connection a.

Covariant derivative. To any spinor u one can associate an equivariant
map au : T Pspine — TM: if v € T,Pgpine then a(v) € spin®(4) and we can
put au(v) = K3, (u(p)) € Tup M. A covariant derivative of the spinor u is
then defined by

VU = u, + au € Map”"™ W (T Pg;.c., TM).

It is easy to see that the above expression vanishes on the vertical vectors
and this means that the covariant derivative can be regarded as an operator

Ve:T(M) - I(T*X @ m(u*TM)),

where m(u*T'M) — X denotes the factor of w*T'M — Psyipue by the group
action.

Remark 3.2.2. Strictly speaking, the operator V¢ is not well-defined, since
its image depends on the element of the domain. However one can define V*
as a section of a certain vector bundle as follows. Consider an evaluation map
ev : Map "™ ™ (Pg e M) X Popine — M, (u,p) — u(p). Then one gets the
following diagram

ev T’ M — TM

l l

MapSpinC(4) (PSpinca M) X PSpinC L) M.

Dividing the first column by the group action one gets a vector bundle £ over
an the infinite dimentional space MapSmeM) (Pspine, M) x X; the restriction of
€ to {u} x X coincides with m(u*T'M). Then V* is well-defined as a section
of & — Map™?™* W (Pg e, M) x X.

In order to keep the exposition clear, we will not keep to the above for-
malism of vector bundles over infinite—dimensional spaces.

Dirac operator. Now by the definition of a hyperKahler manifold the
tangent bundle T'M carries a natural structure of a quaternionic module.
Moreover the requirement that the action of Sp(1) is permuting implies that
the induced action is the standard one. It follows from Proposition that

TeM ~H® E,
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where E’ coincides with T'M as a vector bundle but the action of Sp, (1) C
Spin©(4) is trivial; on the contrary the action of U, (2) on the first factor is
standard. Therefore

W[(U*T(cM) = W+ & E’7

where £ = m(u*E’) and by W we denoted the positive spinor bundle over
X corresponding to the representation denoted by the same letter. It follows
from (3.4) that we have a map

Cl:T"X @muTM) — [W~ ® E],.
With this understood, following [59] we give the following definition.

Definition 3.2.3. The first order differential operator given by the sequence
D, :T(M) 5 T (T°X @ m(w'TM)) <5 T((W- @ El,) (3.5)
is called a (generalized) Dirac operator.

Remark 3.2.4. When M is a flat hyperKahler manifold H we recover the
usual (linear) Dirac operator D, : T'(WT) — T'(W™).

Remark 3.2.5. One can define rigorously the generalized Dirac operator as a
section of a vector bundle over an infinite-dimensional space in the same vane
as we defined the covariant derivative in Remark Indeed, it remains to
note that the target of the Dirac operator [W~ ® EJ, is a vector bundle over
Map P (Pg .o, M) x X.

Remark 3.2.6. The Dirac operator (3.5)) is a nonlinear Fredholm map [59).

Remark 3.2.7. When the source manifold carries a Spin(4) structure one
may define a Dirac operator with coefficients in M by the above described
scheme (see also Example . In that case M is required to carry a per-
muting action of Sp(1), however a triholomorphic one of S! is not necessary
for the definition and the resulting Dirac operator is determined by the Levi—
Civita connection.

Example 3.2.8 (SO—Dirac operator). Below we consider the Dirac oper-
ator in case when the target manifold M admits a permuting SO(3) action.
For the sake of simplicity we take the most basic example H*/ + 1.
Conventions. Take Wy = H*/ + 1 as a hyperKé&hler manifold M. It is
convenient in this example to take the hyperKahler structure on W, induced
by the left quaternionic structure on H. Then a permuting action of SO(3) =
Sp(1)/ £1 is given by
(lq), [m]) — lqm] (3.6)
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Further,
TWy = (H* x H)/ £ 1 = {[m,h] = [-m,—h] | m € H*, h € H}
and the induced action on T'Wj is the following

([a], [m, hl) = lam, gh]. (3.7)
Consider the group SO(4) = Sp;(1) - Sp_(1) = (Sp(1) x Sp_(1))/ £ 1
(see Section . Consequently we have a homomorphism
SO(4) = Sp.(1)/ £1 2 S0, (3)
and it defines an action of SO(4) on Wy, which in turn induces an action of
SO<4) on TW()

Remark 3.2.9. We have also another action of the group SO(4) on TW,
namely

(lg+,q-1,[m, h]) = [gym, q_h]. (3.8)

Note, that this action is not induced from the one on Wj.

Clifford multiplication. Let X* be an oriented Riemannian manifold
and 7° : Py, — X be its principal SO(4) bundle of orthonormal oriented
frames. Consider an equivariant map v : P,, — W, or equivalently a
section of a fibre bundle Wy = P, x SO(4) W,", where the sign "+ is used to
keep in mind that the action of SO(4) is induced by SO, (3).

Remark 3.2.10. If the source manifold X is Spin, then W = (W*\O)/j: 1.
Notice that even if X is not Spin, the bundle Wy does exist.

Now consider an equivariant vector bundle ¢*T'W," — P,, which gives
rise to BT = 7 (*TW;"). Recall that there exists another action of
SO(4) on TW,, which we now prefer to denote by TW . Consequently, there
exists a vector bundle £~ = 7y° (w*TWg )

One can think about ET as a vector bundle of classes [p,&], where p €
Pso, & € TypyWo such that [p,&] = [pg,97'¢], g € SO(4), ie.

[p, [W(p),h]] = [pg, @), @h]], 9= la+.q-].
Similarly, £~ is a vector bundle of classes [ ,[¥(p), h]} such that

lp, [W(p), h]] = [pg, G+ (p), a-R)], 9= la+,q-].

Consider also TX = T*X in the same manner:
[p7 V] = [pgvg—vq-‘r] ’ g = [q+,q—}, v € H.
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Then we can define a variant of the Clifford multiplication C1 : T* X ®
E* — E~ by the formula

p.v] @ [p, [ (p), h]} = [p. [¥(p), vH]]. (3.9)

Indeed, take g € SO(4), g = ¢+, q-]. Then the following computation

[p9,G-va:] @ [pg, [@+v(p). @rh]] — [pg, (@0 (p), G-vh]] = [p, [ (p), vh]]

shows that the Clifford multiplication is well-defined.

Dirac Operator. After the Clifford multiplication is defined, we can also
construct a Dirac operator. Indeed, consider the space of SO(4)-equivariant
maps Map® oM (Pso, Wyt ) or, equivalently, the space of sections of the associ-
ated bundle ng = Py X50(4) I/VOJr .

Now the bundle P,, is equipped with the Levi-Civita connection V*°.
Hence the following sequence defines a Dirac operator:

vLC

D:T(W}) Y~ T(T"X ® E¥) <L T(E7). (3.10)

Remark 3.2.11. We can also consider the operator as a particular case
of the Definition[3.2.3] Indeed, this corresponds to the manifold M = H*/ + 1
and the trivial action of S*. The above calculations show that it is independent
of the other choices and in particular it is canonically defined by the SO(4)-
structure of X.

Remark 3.2.12. Consider a local chart U of X and pick a trivialization
of P,, over U. In this trivialization an equivariant map 1 can be written as
Yy : U — H. Then

g, = N B
1

Oy, Oy
al’o ox + g

8x2 8x3

+ (0—order terms).

Remark 3.2.13 (Twisted SO-Dirac operator). Again assume that the
target hyperKéhler manifold admits a permuting SO(3)—action. Pick a prin-
cipal G-bundle 7¢ : P, — X over the source manifold X with a connection
a and put P = P,, x P, — X. Note that the bundle P is equipped with the
connection determined by the Levi—Civita connection and a. Assume further
that the action of G is triholomorphic and that it commutes with the SO(3)-
action. As in Example we take M* = H*/ £+ 1 as the target manifold
(we reserve the symbol Wy for the SO(3)-action ). Finally, denote by
E€ the bundle TM* with the induced action of G.

It is easy to see that the scheme of Example also applies in this case.
Equivalently, one may complexify the tangent bundle of M* and apply the
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scheme of Definition since m(uw*TeM*) =2 Wi @ 7f (u*E°). In any case
we get a Dirac operator twisted by 7 (u*E€):

D, :T(M) = I'(E~ @ n{(u*E)).

Definition 3.2.14. A spinor v € I'(M) such that D,u = 0 is called harmonic.

Lemma 3.2.15. Pick p € Pspine, w(p) = x. Since there ezists a pro-
jection Pspine — Py, one gets a basis (vo,v1,Va,vs) of T,X. Further, let
u € Mapspmc(‘l)(PSpmc, M) and put w; = u,(¥;) € Ty M, where ¥; € T, Pspine
denotes a horizontal lift of v; with respect to the connection a. Then the har-
monzicity of the spinor u at the point x is equivalent to the following equation:

wo + Iiwy + Iaowy + Iswg = 0. (3.11)

Proof. The complexification of the Clifford multiplication T* X @m(u*T M) —
[W~ ® E]J, can be described by the following sequence

TXRTM —TXQRCRTM)—TXIW@E—W QEF.

The basis (vg, v1, Ve, v3) provides an isomorphism 7, X = H. Then the maps
in the sequence above are given explicitly (see (3.3])) by

VIWH VR (1w)—»vR(1ew—7Lw)—v-1Qw—v-j® lhw.

According to the definition of the Dirac operator, take v =1, w = wy; v =
7, w = wy; --- and then sum up the result:

(1®@wy—j® Lwy) + (1 ®@wy — k& [owy)+
+(J@wy+1® lewsy) + (k@ w3 + 1 ® Iows) =0,

After a simplification one obtains
1 ® (W() + Ilwl + IQWQ =+ [3W3> +j ® (—[QWO + [3W1 + Wo — [1W3> = O
But this is equivalent to equation (3.11]). O

Denote by V the vertical subbundle of T'Pgy;pc, i.e. 'V consists of tangent
vectors to fibers of Pgpie — X. The connection a provides a decomposition
T Pspine = V @ H, where H is defined as the kernel of a and is called the
horizontal subbundle. Since H = 71*T'X we get a distinguished quaternionic
structure (Jy, J2, J3) on H. Indeed, observe that we have a natural projection

Pspine — Pspine/U_(2) = PAz+ , where the SO(3)-principal bundle PA2+ is
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the principal bundle of A27*X. With the help of metric on X, one can
naturally identify the fibre of PAz+ at each point x € X with the set of triples
(J1,J2,J3), i € End(T,X) such that JiJy = J3 = —JoJ; and each J; is
an orthogonal operator preserving the orientation of 7,X. Although the
operators J; are not necessarily globally defined, the projection map Pspine —
PAz+ gives rise to a global quaternionic structure on .

One can also describe the quaternionic structure (Jy, Jp, J3) as follows. Let
P € Pspine and (Vo, V1, V2, V3) be as in Lemma . Then the quternionic
structure is defined by the requirement v; = —J;vq, [ = 1,2, 3.

Corollary 3.2.16. A map u € MapSpi”C(4)(P5pinc7M) is a harmonic spinor
if and only if it satisfies the following equatiorf]

Uy — LHuJ1 — IueJos — I3u J3 =0 on H.

Proof. For any v.€ TX one can choose p € Pgypne such that the basis
(vo, V1, V2, v3) defined by p satisfies v = v. According to the definition of
(J1,J2,J3) one has v; = —J;vg = —J;v, | = 1,2,3. Now it follows from
Lemma [3.2.T5] that

u*{f — [1U*J1{7 — IQU*JQ\N/' — ]3'LL*<]3\~7 =0.
It remains to note that the above equation is valid for any v € T'X. O
The above corollary reveals a deep analogy between the Dirac operator

and the d—operator of complex geometry. Let us first recall the definition of
the O—operator.

Definition 3.2.17. Let (Y, I,) and (Z,1,) be complex manifolds. Assume
that a Lie group G acts holomorphically on Z and pick a G—principal bundle
¢ . P, — Y with a connection A. Then the 0 —operator is given by the
following sequence

94 :T(Ps xg Z) ~— Q' (V) @ T (2f (w'TZ)) — QY) @ T (nf (u*TZ)),
where the last arrow is induced by the projection Q'(Y) — Q0(Y).

We will suppress the dependence of d4—operator on A in notations, if the
connection will be clear from the context.

Further, we also have a splitting of the tangent bundle of P, on vertical
and horizontal parts: TP; =V @ H. It is well-known (see for example [40]
for the case of 0-operator) that Ou = 0 is equivalent to

Uy — Lyuly =0 on H.

We will further develop the analogy between Dirac and 0 operators below.

anotice that (Iy, Iz, I3) is the distinguished triple on M; see Remark for details
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Remark 3.2.18. Under assumptions of Definition [3.2.17| the operator 9, is
defined by the sequence

Oa:T(Ps xg Z) — QYY) @ T (7f (u*TZ)) — Q1Y) @ T (xf (u*TZ)).

As we have already mentioned above, the condition d u = 0 is equivalent to
I,u, = u,ly on H.

Convention 3.2.19. We say, that v € Map®(P,, Z) is an equivariant holo-
morphic map with respect to the connection A, if it defines a holomorphic
section of the associated bundle P, x¢ Z, i.e. if dq4u = 0. Notice, that the
source of an equivariant holomorphic map must not be a complex manifold.

3.3 Aholomorphic maps

Assume for a while that the source manifold X is hyperKéhler, that is it ad-
mits three global complex structures (Jy, Ja, J3). In particular the principal
bundle of A2 X, is trivial (as well as the connection). Suppose M admits a
permuting SO(3)—action. Since SO_(3) acts trivially on M, we can identify
spinors with the usual maps v : X — M. We then obtain from Corol-

lary [3.2.16| that u is harmonic iff
Uy — Ilu*Jl — IQU*JQ — [3U*J3 = 0.

The maps satisfying the above equation are of particular importance in quater-
nionic geometry and we will study their properties below.

3.3.1 Linear algebra: aquaternionic operators

Let (U, Jy, Jo, J3) and (V, I, I5, I3) be quaternionic modules. Define an oper-
ator C': Homg(U,V) — Homg(U, V) by the formula:

C:A— LAL+ LA, + [3AJ;. (3.12)
Proposition 3.3.1. The operator C' has the following properties
(i) C* =3 —2C;
(1) the spectrum consists of 1 and —3;

(i1i) the space Homg (U, V') decomposes as a direct sum of eigenspaces of the

operator C':
Homg(U,V)= B, & B_, (3.13)

where B, corresponds to eigenvalue +1 and B_ to —3.
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Proof. The following computation
C*(A) = LI(ILAJ, + LA, + [3AT3)J1+
+ L(LHAJ, + LAy + I3AT3) Jo+
+ I3(1LH AT + LA, + I3ATs) J3 =
=3A-C(A4)

shows that the property (i) holds. The other two properties are direct con-
sequences of the first one. n

In the sequel we will use the following notations:

By={A€ Homg (U V)| Ao Jy=10A, 1 =1,2,3} = Homy (U, V);

B, ={A€ Homg (U,V)| Ao J., =1,0A, AoJy=—I0A l#r},
where r runs through 1, 2, 3.

Remark 3.3.2. There is no nontrivial operator which anticommutes with all
complex structures. Indeed, if A would be such operator, then one would have
C(A) = 3A, but 3 is not an eigenvalue of C. The same argument shows that
there is no nontrivial operator, which commutes with two complex structures
and anticommutes with the third one.

Proposition 3.3.3. The following properties hold:
(i) the linear spaces B, are isomorphic: By = By = By = By;
(i1) one has a decomposition
Homg (U, V) = By ® By & By ® Bs. (3.14)
Proof. Observe that for example an isomorphism between By and B; can be
obtained as multiplication by /; on the left. This proves (7).

Further, for any operator A € Homg (U,V) we have a decomposition
A:A0+A1+A2+A3 Wlth

Ay = 1(A- (),
A= E(A — AL + L AT, + I3AJTs),
Ay = i(A + L AT, — L, AT, + I3ATs),
Ay = E(A + LAJ + LA, — AT,

and each component lies in the corresponding subspace. Thus (i) is also
proven. 0
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Corollary 3.3.4. The decompositions and are related as fol-

lows:

B_ = By = Homyg (U,V), dim B_ = 4mn;
B+ = B1 @ B2 @ Bg, dzm B+ = ]_an,

where we assume dimg U = 4m; dimg V = 4n.

Proof. 1t easily follows from the definition of subspaces B, that C(A) = —3A
for any A € By and C(A) = A forany A€ B,, r=1,2,3. O

Definition 3.3.5. We say that an operator A € Homg (U,V) is aquater-
nionic, if C(A) = A, where C' is given by (3.12)).

Proposition 3.3.6. An operator A € Homg (U,V) is aquaternionic if and
only if its quaternionic linear component vanishes.

Proof. Any operator A € Homg (U, V) can be decomposed as A = A, + A_
due to (3.13)). It follows from Corollary that the equation C'(A) = A is
equivalent to A_ = 0 or in other words that the quternionic linear component
of A vanishes. 0

We suggest the term aquaternionic for operators A satisfying C'(A) =
A since it reflects the property that A has a vanishing quaternionic linear
component.

Remark 3.3.7. If both spaces U and V' carry an Euclidean scalar product
then so does Homg (U, V) = U* ® V. If the quaternionic structures are con-
sistent with the Euclidean ones, i.e. if the complex structures are orthogonal
operators, then decomposition is in fact orthogonal. Therefore

C(A)=A < Ac (Homy (U,V))".

The space of linear homomorphisms as Sp(1)-representation.

Again, let (U, Jy, Ja, J3) and (V, I3, I5, I3) be quaternionic modules. As we
have already remarked U and V' carry the standard representation of Sp(1),
which will be denoted by the same letters. If we want to consider those
spaces as trivial Sp(1)-representations, we use U and V. Further, W = W,
denotes the standard Sp(1)-representation by left multiplication on the space
of quaternions H; then all other irreducible representations of Sp(1) are just
symmetric powers of the standard representation [12]: W,, = S"W. By R? we
denote the standard representation of SO(3) or the induced representation of
its double cover Sp(1).
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Proposition 3.3.8. We have an isomorhism of Sp(1)-representations
Homg (U, V) 2 R*@g Homy (U, ‘N/) ® Homy (U, ‘7)
Moreover,
B, =R*®@ Homy (U,V),  B_= Homy (U,V).
Proof. First observe that
Homp (U, V)¢ = (U'QrV )¢ = Uc®cVe.
Further, it follows from Proposition that
Uc®cVe 2 WecUecWecl = W®CW®C((~]®C‘~/).

But according to the Clebsch—Gordon formula [12] we have W@cW = W& C
and therefore

Homg (U, V). = (W @ C)®c Home (URcV),

where Homc (U ®(c1~/) denotes the space of operators A such that AJ; = I A.
Since the real part of Hom¢ (U ®c‘~/) is the set of fixed points of the operator
A —1,AJy, i.e Homy (U@CWN/), we get
Homg (U,V) 2 (W3], ® R)@g | Home (T@cV)| =
= (W], @rHompy (U, ‘7) ® Homgy (U, ‘7)

Now it only remains to note that [I¥5], = R3. O

3.3.2 Aholomorphic maps between hyperKahler mani-
folds

Let (X, Ji, Jo, J3) and (M, I3, I5, I3) be two hyperKéhler manifolds (in this
section one may work equally well with hypercomplex manifolds, but we will
remain in the Riemannian category) and let v : X — M be a smooth map.
Then its differential u, is a linear map between the two quaternionic modules
TX and TM.

Definition 3.3.9 (Aholomorphic map). A map u: X — M is said to be
aholomorphic if its differential is aquaternionic, i.e if

O(U*) = Ilu*Jl + ]QU*JQ + [3U*J3 = Ux. (315)
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Proposition 3.3.10. A map u is aholomorphic if and only if the triholomor-
phic (i.e. quaternionic linear) component of its differential u, vanishes.

Proof. This is a consequence of the corresponding statement for linear oper-
ators (see Proposition [3.3.6)). O

Aholomorphic maps were already studied, however under a variety of dif-
ferent names. They naturally arise in the supersymmetric gauged o—model
and appeared in physical literature [2, 25] for the first time as ”triholomorphic
maps” (warning: we reserve the term ”triholomorphic” for quaternionic linear
maps) or “hyperinstantons”. Such maps were studied also from a mathemat-
ical viewpoint by Chen [15], Chen and Li [16] (”quaternionic maps”), Wang
[71] (”triholomorphic maps™). Joyce [42] (”q-holomorphic functions”) con-
sidered the case of a flat target manifold H. Equation was known long
ago and was introduced in 1934 by Fueter [28](”regular functions”) for the
simplest case of maps u : H — H in his attempts to construct a quaternionic
analogue of the theory of complex holomorphic maps. The equation is
often called the Cauchy—Riemann—Fueter equation. An extensive exposition
of the theory can be found in [64].

In the author’s opinion the proposed term aholomorphic map better re-
flects the properties of maps satisfying equation (3.15)), namely the fact that
the differential of solutions to has a vanishing triholomorphic compo-
nent.

Observe that the aholomorphicity condition (3.15]) is elliptic only in case
when a source manifold X is four—dimensional.
In the new terminology we have the following proposition.

Proposition 3.3.11. Assume that X* is hyperKdhler. Then a spinor u :
X — M is harmonic if and only if it is aholomorphic. ]

3.3.3 Aholomorphic sections

Definition 3.3.12. Let £ — X be a vector bundle. A rank 3 subbundle
Z C End(E) is said to be a quaternionic structure, if it has local bases
(11,12,[3) such that ]lZ = —]d, ]1]2 = —]211 = ]3.

Note that the quaternionic structure Z considered as a vector bundle has
a natural euclidean metric and orientation.

Now suppose that E; and E5 are vector bundles with quaternionic struc-
tures Z; and Z,. Futhermore, suppose that Z; and Z, are isomorphic (as
oriented euclidean vector bundles) and fix an isomorphism F between them.
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The isomorphism F defines an operator C' = C¢ € I'(End(Hom(E;, E»)))
in a natural way. Indeed, pick a local basis (I3, I3, I3) of Z; and denote by
(J1, J2, J3) its image under F. Then

C=h-L+Jy- I+ J;5- I3

and it does not depend on the choice of a local basis.

Definition 3.3.13. A section A € I'(Hom(E, Es)) is said to be aquater-
nionic with respect to the isomorphism F, if Cg(A) = A.

Definition 3.3.14. Let f be a map between two quaternionic Kahler mani-
folds Ny and Nsy. Assume that f*Z, is isomorphic to Z; and fix an isomorphism
F:Z, — f*Z,. We say that the map f is aholomorphic with respect to F if
df € T'(T*Ny ® f*T'Ns) is aquaternionic.

Observe that a map f between two hyperKahler manifolds is aholomorhic
in the sense of Definition if it is aholomorhic with respect to the identity
isomorphism.

Aholomorphic maps between quaternionic Kahler manifolds were studied
mainly in the realm of topological o—model [33] 2] although under different
names.

Pick a G—principal bundle 7¢ : P, — X with a connection a € Q'(Pg; g).
Let N be an (almost) quaternionic Ké&hler manifold with a quaternionic
Kéhler action of G. Consider an equivariant map ¢ € MapG(PG, N) or equi-
valently a corresponding section ¢ € T'(N), where N' = P; xg N. Observe,
that

Vi e N(T*X @ nf (¢*TN)) 2 T (Hom(T X, 7 (¢*TN)))

and both vector bundles T'X and 7{*(¢*T'N) have quaternionic Kéhler struc-
tures. Indeed, since the action of GG is quaternionic Kéhler, the latter bundle
has the induced quaternionic structure from 7T'N. But the tangent bundle
of any oriented Riemannian 4-dimensional manifold automatically carries an
almost quaternionic structure. In fact there are two such non—isomorphic
structures: one can be identified with A2 X and the other with A2X. We
prefer A2 X since it better fits our conventions.

Now assume that A3 X and 7{(¢*Z) are isomorphic and fix an isomor-
phism F : A2X = 7¢(¢*Z), where 7 is the structure bundle of N.

Definition 3.3.15. We say that a section ¢ € I'(N) is aholomorphic with
respect to the pair (a, F), if its covariant derivative V%p is an aquaternionic
section of Hom(T X, w7 (¢*T'N)).

95



Remark 3.3.16. Locally the notion of aholomorphicity can be expressed as
follows. Pick an orthonormal oriented local basis v = (vg, vy, Ve, vs) of TX
and consider ¢ as an equivariant map. Further, v determines a local basis of
A2TX. The isomorphism F in turn determines a local basis (I3, I, I3) of the
pull-back of Z. Then ¢ is aholomorphic iff

90*{70 + 1190*\71 + IQQD*{’Q + [3(10*{/3 = 07

where v; denotes the horizontal lift of v; with respect to the connection a.

3.4 Harmonic spinors and aholomorphic sec-
tions

In this section we assume that the source manifold X is spinor. This is not
essential, however the exposition is clearer.

Denote by Psyi, the Spin(4)-structure of X, Py = Psy;,/Sp_(1) is then
an Sp, (1)-structure. Since the subgroup Sp_(1) acts trivially on M we may
assume that spinors u are elements of Map5p+(1)(P+, M). Suppose also that
the permuting action of Sp(1) on M can be extended to the permuting action
of H*. Then N = M/H* is a quaternionic K&hler manifold and we have a
natural projection xk : M — N.

As it was already pointed out in Chapter [2] the manifold M can be recov-
ered by N. More precisely, denote by F — N an SO(3)-principal bundle
of local almost complex structures on N. Take W, as in Example [3.2.8 and
consider a fibre bundle F X go(3) Wy where the action is given via quaternionic
multiplication (by quaternionic conjugate) on the right. It turns out that the
total space of this bundle is the original manifold M (see [65] for details).
Moreover, the permuting action of Sp(1) now can be described as a fiberwise
multiplication on the left.

Remark 3.4.1. There is an inclusion F <— M. Indeed, from the standard
inclusion S® < H one obtaines SO(3) < W, and therefore

F=F X50(3) 50(3) — F X50(3) W(] =M.

Note also that this inclusion can be written explicitly as f — [f, 1] so that
f-qw—[f-q1] = q[f,1]. This implies in particular that an invariant map
P, — F becomes equivariant if we consider it as a map P, — M. Vice
versa, if one takes the composition of an equivariant map with a projection
M — M/R* = F then it becomes invariant.
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Let u € MapSp+(1)(P+, M) be a spinor. Then we have the following com-
mutative diagram
P, Y M

X - N

where ¢ is the projection of u. It means that one can consider a spinor
u as a pair (p,%) with an equivariant map ¢ : Py — ¢*M. It follows
from the previous remark that the map ¢ gives an invariant isomorphism of
principal bundles W : PAz+ — F, where PAz+ is the principal bundle of A2+X
or equivalently P, /{£1}.

We can describe ¢ equivalently as follows. First, consider the SO, (3) x
SO(3)-principle bundle Py: x ¢*F over X. Let WOJF denote the manifold
H*/ + 1 together with the following action of SO(3) x SO(3):

(1], lga]), [1]) = larhae].

Then we obtain a fibre bundle )/NVS’ = (PAz+ X ©*F) X 504 (3)xS0(3) /V[v/(;r over X.
One easily sees from the construction that WJ = (PAgr Xs0,3) ¢ M ) Thus

1 is a section of W, .

Theorem 3.4.2. Under the above conventions, harmonic spinors u are in
bijective correspondence with pairs (p,v) such that ¢ is an aholomorphic

map with respect to V and 1 is a harmonic spinor with respect to to the
Dirac operator with coefficients (as described in remark E[)

Proof. If the action of Sp(1) on M extends to the action of H*, then [65] the
vertical bundle V,, of K : M — N is spang(Yp, [1 Yo, [0, I3Yy) = spany(Yo),
where the vector field Y} is a Killing vector field of R* C H*. In particular,
V. is invariant with respect to complex structures of M. Define a horizontal
distribution J,, as an orthogonal complement to the vertical subbundle:

Hy =V C TM.

Since complex structures of M are orthogonal operators, they also preserve
the horizontal distribution JH,,.
Now take v;’s and w;’s as in Lemma (3.2.15[so that equation (3.11]) holds.

Further, decompose w; = u,v; into horizontal and vertical components: w; =

Pin this case G = SO(3), P, = ¢*F equipped with the pull-back of the natural con-
nection of F
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wit + w?. Then equation (3.11)) splits:

wi + Lw! + Lywh + Iswh = 0, (3.16)

wo + Liw] + Lws + Isws = 0. (3.17)

But equation is equivalent to the aholomorphicity of ¢ with respect
to W. On the other hand, equation is equivalent to the requirement
that the spinor ¢ € F(VVJ ) is harmonic with respect to the twisted SO-Dirac
operator. ]

Remark 3.4.3. In general, ¢ and ¢ can not be defined separately, since
aholomorphicity implies the knowledge of ¢, and ¢ itself implies ¢ by its
very definition. However, when N is itself a hyperKéahler manifold, then M is
the trivial bundle: M = N x H*. In this case ¢ and ¢ become independent.
One easily sees that 1) € T'(W™) is just the usual (linear) spinor.
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Chapter 4

Generalized Seiberg—Witten
Equations over Kahler Surfaces
and Holomorphic Curves

In this chapter a generalization of the Seiberg—Witten equations based on the
nonlinear Dirac operator is studied. The definition appeared in [59] (see also
[69]). Suppose that the source 4—manifold X is Kéhler; then we show in The-
orem that solutions to the generalized Seiberg-Witten equations have
a holomorphic description similarly to the classical case (see Theorem .
This theorem also allows us to obtain connection between the Seiberg—Witten
theory and other gauge theories [40, 58, (18], which appeared in a slightly dif-
ferent context, mainly in symplectic topology. In Section we study the
THC-system defined in [40] over the product of two holomorphic curves. Al-
though interesting on its own, this section mainly serves for us as a prototype
of the Seiberg—Witten equations over the product of two holomorphic curves,
which is the subject of Section [£.6l We show (modulo the adiabatic limit
conjecture), that there is a relation between the THC-system, holomorphic
curves as in the Gromov theory and symplectic vortex equations [I8]. Anal-
ogous results are obtained for the generalized Seiberg—Witten equations in
Theorem [4.6.3

The connection between holomorphic curves and classical Seiberg—Witten
equations was studied in [I7]. Such connection was discovered for the first
time by Taubes [68], however his approach is different.
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4.1 (Generalized Seiberg—Witten equations

Let Pspine — X be a Spin®(4) principal bundle with connection a deter-
mined by a connection a on the determinant bundle Py = Pgpine/Spin(4)
and the Levi-Civita one on P,,. We also fix a hyperKahler manifold M
with the action of U(2) as described in Section Recall, that maps
u € I\/IapSpi"C(‘l)(PSpmc, M) = MapU+(2)(P+, M) play a role of spinors, where
Py = PSpinc/Sp—(l)'

The triholomorphic action of the center of U(2) gives rise to a momentum
map

p: M — R* = ImH.

The requirement that the action of Sp(1) is permuting gives that the target R?
of the momentum map is in fact the standard representation of Sp(1)/+1 =
SO(3). Hence the composition of a spinor u € Map®”" ) (Pg,;,., M) with
the momentum map p is an equivariant map

. 3
pou: Pope — RS,

where as before we use the subscript + to keep in mind that the action is
induced by the SO, (3). It follows that any spinor u generates a self-dual
2-form ®(u).

Definition 4.1.1. The first order differential equations

{D”“ =9 (4.1)
Ff 4+ ®(u) =0.

for a spinor u € MapSpi"C(4)(P5pinc,M ) and a connection a € A(Py) are
called (generalized) Seiberg—Witten equations.

Remark 4.1.2. The above definition was given by Pidstrygach [59]. The
analogous setting for 3—manifolds was described by Taubes [69).

4.2 (eneralized Seiberg—Witten Equations
over Kahler Surfaces

In this section we will consider the generalized Seieberg—Witten equations
in assumption that the source manifold X* carries a Kéihler structure. In
this case the principal SO(3) bundle PAz+ reduces to an S! principal bundle
(we prefer to denote this group by S}) so that we have the reduction of
Py = Py, to the H = (S} x S})/ 4 1= T? principal bundle P,q4.

We start with the following auxiliary lemma.
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Lemma 4.2.1. Let G’ be a Lie subgroup of a Lie group G and P’ be a principal
G'-bundle over X. Define a principal G-bundle P, as P' X, G. Assume
also that the group G acts on a manifold M. Then one has a canonical
isomorphism

Map® (P, M) = Map® (P', M).

Proof. Pick an equivariant map uw : P* — M. Then the map @ : [p,g] —
g 'u(p) belongs to Map®(Ps, M). On the other hand the map p — [p, 1]
provides an embedding of P’ into P; and therefore we have an inclusion
Map® (P, M) c Map® (P', M). O

Corollary 4.2.2. If X is a Kahler surface, then
Map”® (P, M) 2 Map™ (P, cq, M).

Proof. The statement follows from the previous lemma, since we have an
embedding H < (Sp(1) x S§)/ +1 = U(2). O

Theorem 4.2.3. Suppose the source 4—manifold X is a Kahler surface. Then
a pair (a,u) € A(Pyet) x Map™ (Preq, M) is a solution of the Seiberg-Witten
equations if and only if the following holds:

1. a is a holomorphic structure, i.e. (F,)®? =0,
2. preou=0, fpre=ps+psi: M —C,
3. Ff 4+ (uou)wy =0,

4. u: Preg — M is a holomorphic equivariant mapf] with respect to the
connection a, where the complex structure on M s given by —I, and a
1s generated by a and the Levi—Chivita connection.

Proof. Obviously, any solution of the Seiberg-Witten equations is an absolute
minimum of the functional

1
S(a,u) = SIIFS + ()l* + [ Daul”

Using the Weitzenbock formula, one can rewrite the functional S as fol-
lows [59]:

1 1 a 5
S(a.u) = SIFE + 5190 + VP + [ pla] dvoly.

agee Convention
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where p : M — R is the hyperKéhler potential and s is the scalar curvature
of X.

Now fix 2, € S} € H* and consider v/ = 2, -u = L, u, L, : M — M.
Since S(a,u') = S(a,u) it follows that (a,u’) is a solution of the Seiberg—
Witten equations too.

On the other hand, solutions to the Seiberg—Witten equations are also
minima of the functional

Si(a,u) = [|F + @(u)||* + | D ull*.

Applying the Weitzenbock formula again, one gets

Si(a,uw) = (FF, @) + [F* + |0(uw)]|* + [ V*ul* + /

p(u)f dvoly.
¥ 4

Since the source manifold X is Kéhler we have [20] the decomposition
QLX) = 0*(X) ® Q°(X) wx ® Q"2(X), (4.2)

and therefore we may write F;© = (F)"' + F, where the last summand
belongs to Q20 @ Q%2 Similarly, we may decompose ®(u) = (<I>(u))1’1 +
D.(u) = (1 ou)wy + P.(u), where ®.(u) is the Q0 & Q%% component of
®(u). Observe that the 2—form ®.(u) is real and can be identified with the
equivariant map p. o u. Then

1

Si(a,u) = ou ((FF)" wx) + (F, @o(u))+

IEIP + 120 + 9%l + [ pw)] dvols.
X
Now all the summands on the right-hand side of the above formula remain
invariant if we replace u by ' with the only exception: the term (&, ®.(u)) is
multiplied by 22. Tt follows, that the term must vanish. Since F,” = —®(u),
we get F = —®.(u) and consequently F = 0, ®.(u) = 0. Thus, for any
solution of the Seiberg—Witten equations statements 1-3 of the theorem hold.
Observe that on the other hand, the second equation of follows from

the statements 1- 3. Indeed, since a is a unitary connection £ =0 implies
[20] F29 = 0. It remains to recall the decomposition (4.2).

The complex structure of X (or, equivalently, the Kéhler form) provides a
reduction of P, to P,.q. It means that we have a natural embedding P,.; C Py
such that the horizontal subbundle of T'P,.; coincides with the pull-back of
the horizontal subbundle of T'P,. We do not distinguish between these two
horizontal subbundles in notations.
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Let u be as in the statement of the theorem. According to Corollary

we have a natural isomorphism Map® (P,.q, M) = Map’® (P ,M). Denote
by @ the image of u in MapU(Q)(PJF,M). By Corollary the spinor @
satisfies u, — Iyu,Jy — Iyt Jo — Izt Js = 0 on H — P,. It follows from the
above observation that it is equivalent to u, — Liu,J; — IousJo — I3u,J3 = 0
on H — P,.4. Since the reduction of P, to P4 is provided by the complex
structure of X, we may assume that J; is its pull-back to J.

Pick an arbitrary vector v € T. X and denote w; = u,v — Lyu,J1V, wy =
Uy JoV, W3 = u,J3v. Then

W1 — IQWQ - ]3W3 =0. (43)
Since the action of S} rotates I, and I3, one has

LszLzT = aly, — (13,
L. I3L; = B+ als,

where 22 = a + (i. Then applying L., to equation one has:
L, wy — (aly — BI3) L., we — (BIy + al3) L, w3 = 0.
On the other hand the harmonicity of «’ implies
L, wy— 1L, wo — I3, w3 = 0.
Subtracting the above two equations one obtains that the equality
(aly — BI3) L, wo + (BIy + al3) L, w3 = Iy L, wo + I3L, ws (4.4)

holds for all a, 3 such that o + 32 = 1.

Now put @ = 0,8 = 1. Then equation gives I3L, (wy — w3) =
I, L, (wy—ws3) which in turn implies wy = w3 = w. Thus we can rewrite equa-
tion as ((ao+ f) s+ (o — B)I3) L., w = (Is+ I3)L, w and this clearly
implies w = 0. Since v was arbitrary we see that u satisfies

Uy — Ilu*Jl = O, (45)

i.e. w is an equivariant holomorphic map if one considers M as a complex
manifold with the complex structure —1I;.

On the other hand, if w is a holomorphic equivariant map, i.e. if (4.5)
holds, then one gets lLu,Jo + Isu,J3 = 0. It follows that u also satisfies
uy — LyuyeJ1 — IouyJy — I3uy,J3 = 0, i.e. u is a harmonic spinor. O
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Remark 4.2.4. As we have already remarked, under the assumption that
the source manifold X is Kéhler, the group U(2), reduces to H = (S} x
S§)/+1. Consequently, it is possible to define Seiberg-Witten type equations
on 4-dimensional Kdhler manifolds when the target hyperKéahler manifold M
instead of H* (or Sp(1)) permuting action admits only an action of H, where
the component S} acts triholomorphically and S! fixes I; while rotating I,
and I3. Such definition belongs to V. Pidstrygach and equations of such type
were first considered in R. Waldmiiller diploma thesis [70]. Although our
proof of the first three statements uses the fact that M admits a permuting
H* action, however they still remain true. The proof of the forth one is also
valid when M admits only an S!-action.

It is straightforward to check that the map u.: M — C, p. = ps + psi is
I;-holomorphic and therefore

M, = {m € M| po(m) = 0} (4.6)

is an [;—complex submanifold (assuming that it is submanifold) of (M, I;).
Consequently, (M., —1I;) is also a complex submanifold of (M, —1;). More-
over, both S} and S} act holomorphically on M...

With this in mind, Theorem may be interpreted in the following
way. Recall that we have an H—principal bundle P,.; over a Kéahler surface
X with two projections: Prey — Preq/S! = Paey and Preg — Prea/S§ = P,
where P, is a principal bundle of the anticanonical line bundle of X. A
choice of connection a on Pjy; uniquely defines a connection a on P,.q by
the requirement that the connection on P, is induced by the Levi-Civita
connection. Next, we may regard nonlinear spinors u as equivariant maps
P..qg — M.. Now the first statement of the theorem says that a equips P,eq
with a holomorphic structure; then the fourth one says that u is a holomorphic
equivariant map, i.e. O;u = 0.

Further, denote by A : QPFLITH(X) — OP9(X) the adjoint operator of
L:OP9X) — QPFLatl (X)) a— a Awy. Tt follows from the decomposition
that AF,” = AF,. Now since a is a U(1) connection with F% =0

we have also F\*? = 0. Therefore, for a unitary connection a such that
Fa(o,z) = 0 we may equivalently rewrite the equation F;" + (u1 o u)wy = 0 as
AF, + py ou = 0. Summing up we get the following corollary.

Corollary 4.2.5. Let X be a Kahler surface. Then there is a one—to—one
correspondence between solutions of the Seiberg—Witten equations and

the following system

Dau =0,

X (4.7)
AFa +pHi1ou = 0,

64



where u € MapH(Pred, M.) with M, given by (@, a 18 a connection on Py
such that F\" =0 and & is generated by a and the Levi—Clivita connection.

We would like to stress that the operator 0, is determined by both the
Levi—Civita connection and the connection a.

4.3 Twisted holomorphic curves and solutions
to Seiberg—Witten equations

Below we would like to describe a system of equations introduced by Cieliebak,
Gaio and Salamon in [I8] for Riemannian surfaces and independently by
Mundet i Riera in [40] for arbitrary Kéahler manifolds. To define the above
mentioned equations we need two Kéahler manifolds, which will play a different
role: a source manifold K and target one F. Pick an S'-principal bundle P,
over the source K with a holomorphic structure a meaning a connection with
vanishing (0, 2)—part of the curvature. Suppose also that the target F' admits
an S'-symmetry with momentum map p, : F' — R. Consider the system of

PDE for the pair (a, ®) :
5.0 —
{‘9 0, (4.8)

AF, + pipo® =0.

We will refer to equations as a THCfsystemE] for brevity. Note that the
system (4.8)) is called symplectic vortex equations in [18] and we will reserve
that name for the case when the source manifold is a Riemann surface, as it
is in [18].

We will also consider moduli spaces associated to the THC-system. To
introduce them remark that the gauge group G = Map(X,S!) acts on the
space of solutions to . Denote F = Py xq1 F and set

Mue = {(a,®) € Ay(Py) x T(F) | (a,®) is a solution of (L), [®] = c}/G,

where Ay, (Fy) denote the space of holomorphic structures on a principle bun-
dle Py and c is an equivariant homotopy class of maps. The space defined
above depends on the choice of a principal bundle Py, a fiber F' and a ho-
motopy class ¢, i.e. Myye = Mpyc(Py, F,c). However, we will write simply
M ;e for the sake of brevity if it does not make a confusion.

In general the space M, will have singularities. However, there are two
common approaches to remain in the smooth category. One may consider

babbreviation of twisted holomorphic curve
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perturbed equations and prove that for a generic choice of perturbations the
moduli space will be smooth (see [40] for details) or consider only irreducible
solutions, i.e. those pairs whose stabilizer is trivial. In the latter case we
denote the moduli space by M, ..

Remark 4.3.1. In order to guarantee that the moduli space M, is a man-
ifold one has to pass from spaces of smooth sections to appropriate Sobolev
completions (see [40] for details). It follows from the ellipticity of the system
in question that it not essential what particular Sobolev completion is chosen.
Since this technique is well-known and documented we will not mention that
an appropriate Sobolev completion has to be chosen but rather describe our
results and constructions in terms of smooth data.

Although systems and look very similar there is a significant
difference: while the map u is defined on the H = (S' x S')/ £ 1 principal
bundle P,.; and the operator d; makes use of the Levi-Civita connection, the
domain of ® is only an S*principal bundle and the operator d, requires just
a choice of connection on F. However it seems natural to expect that these
two systems are closely related and we will work out details in the sequel.

Remark 4.3.2 (Seiberg—Witten equations on Kihler manifolds with
trivial canonical bundle). Probably the easiest way to see a direct connec-
tion between systems (4.7) and is the following. Assume for a moment
that the canonical bundle of the source Kéahler surface X is trivial as well as
that its connection, induced by the Levi—-Civita connection, is also trivial. For
example, X can be a K3 surface or flat torus T*. Under such circumstances,
the bundle (P,eq, @) further reduces to (Pge, a) so that equations reduce
to the THC—system with K = X, Py = Py, ® = u.

Another connection between systems and is based on the fol-
lowing observation. Let Z. be the Kéahler reduction of M, (see (4.6)) with
respect to S}: Z, = M,//S} = M,/C:. Tt is known [11] that if a hyperKéhler
manifold M admits a permuting H*-action and C: C H* is a standard embed-
ding, then Z(N) = M/C? is a twistor space of quaternionic Kahler manifold
N = M/H*. The map p, satisfies p.(z-m) = z%u.(m) and therefore does not
descend to Z(N). However it gives rise to a section y, of a line bundle £
where £ — Z(N) is defined as £ = (M x C)/C, with respect to the following
action of Cf : z - (m,w) = (zm, zw). It follows that the zero—locus of y/ is
well defined and it is easy to see that it coincides with Z. C Z (V).

Let ® be the projection of u onto Z.. It follows that ® € Mapsé(Pdet, Z.)
and one can think about ® as a section of the ”determinant bundle” Z,. =
Pier X g1 Ze. Observe that Theorem implies that the connection a induces
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a holomorphic structure on Z. so it makes sense to talk about holomorphic
sections of Z.. Further, one may consider M, as the total space of a Hermitian
line bundle £ — Z,. so that the map u decomposes as a pair (®, s), where

s € T(K ' @ nf(d*L)).

The manifold Z, inherits a K&ahler structure from M,. Then the holomor-
phic action of S} gives rise to a moment map 7 : Z, — R. It is easy to see
that u; ou = | 5|27 o ®. Further, the holomorphicity of u implies that both
® and s are holomorphic and the second equation of takes the form

AF, +|s*T0o®=0.

It may happen that for some choice of an equivariant homotopy class ¢ of
maps ® the bundle K! ® 7 (®*L) becomes trivial. It follows that in this
case s is necessarily a constant so that the pair (a,®) is a solution of
for a source manifold X, Fy = Py and F = Z,.

4.4 Seiberg—Witten equations as THC—
system with additional twisting

Since the celebrated papers of Gromov lots of efforts were made to study the
space of holomorphic maps from an almost complex manifold (mainly Rie-
mann surface) into another one (most often symplectic). Good understanding
of such spaces provides a lot of information about the chosen manifolds.

A natural question arises: what can be taken as a ”twisted version” of
holomorphic curves? There seem to be two natural approaches. The first is to
fix an S'-principal bundle P, (we consider here only the case of S'-symmetry,
although for the definition one may equally well take an arbitrary compact
Lie group) and also fix a connection with vanishing (0,2)—component of the
curvature. Then, by the analogy with holomorphic curves, one can study the
space of equivariant holomorphic mapdinto a target manifold F', which must
admit a holomorphic S'-action, i.e. the space of solutions to

ou=0, wuée Mapsl(Po,F).

The other approach is to consider equations where the unknowns are both
the connection and the holomorphic map, for example THC-system (4.8)).

With this understood we may combine both approaches in the following
sense. Pick two S'-principal bundles Py and P, over a source Kihler manifold

“see Convention [3.2.19| and the preceding discussion
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X and fix a connection with vanishing (0, 2)-part of the curvature on one of
them, say P;. Put P = Py, x P;. Now a target manifold F' must admit
T? = S! x S'-symmetry and let u, denote momentum map of the first
component of T2. Then we may consider the following problem

{(‘%u:(), u € MapTQ(P,F), (4.9)

AFa+ﬂFou:07

where a is a connection on Py, which (together with the fixed connection
on P;) equips P with a holomorphic structure a. Equations of such form
(for general compact Lie groups) were introduced by Okonek and Telemann
[58], where they are called vortez type equations. Thus we see that Seiberg—
Witten equations on Kéhler surfaces reduce to vortex type equation for Py =
Pyei, P = P.. Although in general one is free to choose any bundle P; as well
as any " parameter” connection on P;, however the setting of Seiberg—Witten
theory prescribes that choice: P; has to be principal bundle of anticanonical
line bundle and connection has to be induced by the Levi-Civita one.

4.5 THC equations over products of holomor-
phic curves

In this section we will consider the THC equations in the case when
the source manifold X is a product of two holomorphic curves: X =¥ x S.
The author was inspired by ideas of Cieliebak, Gaio, Mundet i Riera and
Salamon [I7], where the classical Seiberg-Witten equations are considered.

Although the approach described below is interesting on its own, we
mainly regard the THC-system as a prototype of the Seiberg-Witten equa-
tions over Kahler surfaces. Since the exposition slightly simplifies for
the THC-system, we start with the latter. However, before we start the
discussion of properties of the system (4.8) we would like to make a few
observations.

Gauge group. Let Y be a connected manifold. Consider a group Gy =
Map(Y, S'). For any g € Gy we have an induced homomorphism g, : m(Y) —
m1(S') = Z, which descends to m(Y)/[m(Y),m(Y)] & H(Y;Z) — Z. In
other words, g, gives rise to an element of H'(Y';Z), i.e. we have a homomor-
phism Gy — H'(Y;Z). The above homomorphism parameterizes connected
components of Gy, i.e. Gy = G% x HY(Y;Z), where G denotes the iden-
tity component. The equivalent definition of the subgroup GY is as follows:
Gy consists of those elements g, whose associated group-homomorphisms
G« : m(Y) — m(St) are trivial.
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Pick a point y € Y and denote Gy, = {g € Gy. | g(y) = 1}. It follows from
the above observation that any g € Q?,’y has a unique lift ¢ to the universal
cover R of the circle such that £(y) = 0. Since the space R is contractible,
Gy, has the same property. We have Gy, = Gy, x S' and therefore

Gy =Gy, x S' x H'(Y;Z).

If the Riemannian metric is fixed on Y, then one can identify the group
Gy., with

QY:{QE Gy | g = e, /ﬁdvoly:O}.
Y
In particular, Gy is also contractible and we have a similar decomposition
Gy = Gy x S' x H'\(Y;Z). (4.10)

Symplectic vortex equations and their modification. Let Py — X
be a principal S*-bundle. Consider symplectic vortex equations over X:

¥ =0
’ ’ (4.11)
*ZFb+MFoq]:Oa

where b is a connection on Py and ¥ : Py — F is an S'-equivariant map.
Denote by MY, the moduli space corresponding to the problem (4.11)), i.e.

MO, = {(b,¥) € A(Py) x Map® (Py, F) | (b, ) solves (4.11)}/GY.

Remark 4.5.1. Usually one defines the moduli space as the space of solutions
modulo the whole gauge group (in our case Gy;). However it is more convenient
for us to divide only by the identity component G of the gauge group; the
superscript ”0” is used to keep in mind that we have chosen the subgroup G2
rather then the whole group. Notice also that the group Gs/G% acts on MY,
and its factor is Mgy.

Remark 4.5.2. Tt is well-known (see [I§] for example) that the space MY,
can be obtained as an (infinite-dimensional) Kéhler reduction provided the
target manifold F' is not only symplectic, but also Kéhler, and, consequently,
MY, is also a Kahler manifold.

Indeed, first observe that the space A(Fp) carries a natural infinite-dimen-
sional Kahler structure. This easily follows from the fact that the tangent
space to A(P,) at any point may be identified with Q'(X) and we may define
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a complex structure by the Hodge star operator *5 : Q'(2) — Q!(3). Under
the above conventions the symplectic form is

Wacr) (1, P2) = / 1N\ P2, 01,2 € U (D). (4.12)
s

On the other hand, we have the following general phenomenon: the space
of sections I['(P; x ¢ Z) = Map®(P,, F) has a natural complex structure, where
m: P, — X is a G—principal bundle and F' is a complex manifold, provided
G acts holomorphically on F'. Indeed, fix a map W. Then the tangent space
to Map“(P,, F) at the point ¥ is the complex vector space T'(m(U*TF)).
Further, when F' is Kéhler, then I'(m(®*TF)) inherits the L?-scalar product,
provided G also acts isometrically. Hence, in this case MapG(PG, F) is also
endowed with the Kahler structure.

Thus the space Map® ' (Py, F') carries a natural Kéhler structure and there-
fore so does A(Py) % Mapsl(Po, F). Now the space of solutions to the first
equation of defines a complex submanifold Z = {9,¥ = 0} C A(P,) x
Map® 1(PO,F ), which is invariant under the Gy—action. Further, it is easy
to check that the momentum map m : A(P,) x Map® (Py, F) — Lie(Gy) =
Map(X, R) of the gauge group Gy, is given by the right—hand side of the second
equation of . Therefore, the Kéahler reduction of Z coincides with the
moduli space Mg, .

Below we will also use another modi{ication of the moduli space, namely a
Kéhler reduction of Z C A(F) x Map® (P, F) with respect to the subgroup
Gs, C G2. In this case, the momentum map /i is given by

- 1
A(b, V) = sy Fy + pip o ¥ — Vol(D) /ZMF o U dvols, (4.13)

and the role of equations (4.11)) now plays the following system

o =0,
’ ) . (4.14)
*EFb—i_,uFoqj_W(E)fE,uFo\deUOZE = W(E)"‘T,

where d = deg Py and 7 € R is a parameter. Therefore we deﬁneﬁ

Msy = {(b, V) € A(Py) x Map® (Py, F) | (b, ) solves (4.14)}/Gs.

Observe that the group G%/Gs; = S acts on M, and the corresponding sym-
plectic reduction is MY,. In the context of Donalson’s theory the analogue
of Mgy is known as the moduli space of framed instantons [20].

dwe suppress the dependence of Mgy on 7 in notations
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Let Py and Ps be S'-principal bundles over ¥ and S correspondingly.
Denote by Ly, and Lg the corresponding complex line bundles. Recall that
X is a product of ¥ and S considered with its product metric and complex
structure. Thus we have two natural projections: 7y, : X — ¥ and g : X —
S. Denote Ly = 75 Ly @ m5Lg and let Py, be its principal bundle. One can
also describe the principal bundle Py, directly as follows

Py = (75 Ps x w3 Ps) /S, (4.15)

where the action of S1 is given by (z, ps, ps) — (P2, psZ).

Pick reference connections by and ¢y on Ps; and Ps correspondingly. They
define a connection ag on Py. Then, for an arbitrary connection a on Py,
we have a — ag = a € Q}(X x S). Since

QAT x8) 2 ON(D)®02S) @ Q%) ® QY(S), (4.16)

we can decompose « into two components: « = (3 + . Further, denote
b=by+ [ and ¢ = ¢y + . One can think about b as a family of connections
on Py, parameterized by the curve S; symmetrically, ¢ can be thought of as
a family of connections on Ps parameterized by the curve . We say that b
and ¢ are components of the connection a.

The curvature F, of the connection a can be written as F,, + dxa €
0?(X x S). Further, dya = dy3 + dsy + dsf3 + dsy. The Kiinneth formula
provides a decomposition of Q%(X) similar to (4.16), namely

P(Ux9) 2 P(E)Q(S) @ &) 2YS) @ Q') ®Q*S).  (4.17)

Since Fy, = Fy, + F,, we obtain (Fy) o o) = Fo, (Fa)g ) = Fe-
Observe that A (F,)(; 1) = 0. Indeed this follows from the decomposition

(4.17) and the fact that

Wx = Wx + Wg

belongs to Q%(X) ® Q(S) & Q°%(X) ® Q*(S). Moreover, it follows that
AF, = %y Fy+ %5 F. (4.18)

Let s + it : U — C be a local coordinate on U C S and assume that a
trivialization of Pg over U is chosen. Then the connection ¢ can be written
as a local 1-form c¢yds + cdt.

Remark also that any connection over a holomorphic curve defines a holo-
morphic structure since the (0, 2) part (relative to the Hodge decomposition)
of the curvature automatically vanishes. However this is no longer the case
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when the base manifold X is a Kéhler surface, but it is well known (see [29]
for example) that the Hodge (0,2) part of F, vanishes if and only if

0sb — dscy + *5 (0)b — dgco) = 0, (4.19)

where 0, and 0, denote partial derivatives with respect to variables s and ¢
respectively.

It follows from (4.15) that we have a natural isomorphism
Map®' (Pyer, F) 2 Map™ (7 Py x w2 Py, F),

where the torus T? acts on F via the homomorphism T? — S (zy,29)
z129. Further,

MapTQ(W;PZ x i Ps, F) = Mapsl(PS, Mapsl(Pg,F)).

Indeed, if ® € Map™ (i Ps; x Py, F) then the above isomorphism is the
following map

o (qu>p:<1>|PEX{p}), pePbs.

One can regard ®, as a family of equivariant maps Py, — F' parameterized
by I S.
Summing up we get

Mapsl(Pdet, F) = MapSI(Ps, MapSI(Pg, F)).
Next, recall that the operator 0, is defined by the following sequence
T(Per xg1 F) ~ Q4(X) @ D(x{(®*TF)) — Q*(X) @ D(x{(S*TF)).

Now it follows from (4.16]) that we have a decomposition Q%(X) = Q%(X)®
Q%1(S). But this implies that both maps ®, (for a fixed p € Ps) and p —

®, are holomorphic in the following sense. The map @, € Mapsl(PZ,F )
is a holomorphic section of the corresponding bundle wi};h respect to the
connection b (for a fixed p € Pg) while the map Ps — Map® (P, F), p— D,

is holomorphic with respect to the holomorphic structure on MapSI(PO, F)
described in Remark and the connection ¢ on Ps. More precisely, the
following equations are satisfied

0®, = 0,

0s® + 1 K(®) + I, (0,® + 2 K(®)) =0,

where K (f) denotes the Killing vector field of the S'-action on F at the
point f.
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Proposition 4.5.3. Let s+ it be a local coordinate on S. The pair (a, ®) €
A(Pyer) x T(F) is a solution of the THC-system (4.8) with (F,)** =0 over
X =% xS if and only if the following system holds

0p® =0,

Os® + 1 K(®) + I (0P + oK (P)) =0,
Osb — dscy + 5 (010 — dgco) = 0,

s by + % F. 4+ pip o @ =0,

(4.20)

where b and ¢ are components of a (see discussion after (4.16])) and c1ds+codt
1s a local representation of the connection c. O

We would like to stress that the system (4.20) was obtained under the
assumption that the metric on X x S is the product metric: gy = gs @ gs.
However one may equally well work with different metrics, for example

g; =0s D 5_1957 (421)

where € € (0,1] is a parameter. We also assume that the complex structure
is I, ® I5 and consequently the symplectic form is given by wé = wy @ e 1wg.
Then

N F, =% Fy +exg I,

and therefore the system analogous to (4.20)) for the metric (4.21]) takes the

following form

0p® = 0,

Os® + 1 K (®) + I, (0P + 2 K(®)) =0,
0sb — dsc1 + x5 (O1b — dsco) = 0,

)p by +exg Fo+ pup o ® =0.

(4.22)

Hypothesis 4.5.4 (” Adiabatic limit conjecture”). There is a one—to—
one correspondence between solutions of the system and solutions of
the following equations

0,® = 0,

0s® + 1 K(®) + I, (0P + o K (D)) =0,
Osb — dgcq + x5 (Opb — dgeo) = 0,

x5 Fy + pip 0o @ = 0.

(4.23)
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Remark 4.5.5. The system (4.20)) is obtained from for e = 1; on
the other hand, one obtains by formally setting ¢ = 0. The above
hypothesis then asserts that the ”limiting problem” is equivalent to
the perturbed one .

The idea of adiabatic limit first appeared in Atiyah’s work [4]. Its mod-
ification, which is very similar to the one stated above, was carried out by
Dostoglou and Salamon in [22] and led to a connection between self-dual
instantons and pseudo—holomorphic curves. Further developments and mo-
difications of the adiabatic limit technique may be found in [17] 30, 14}, 57].

Let us return for a while to the symplectic vortex equations (4.11). As
we have already remarked, one can obtain Mgv as a symplectic reduction of
M, with respect to the action of S* = G2 /Gs. In this case the momentum

map is
1
U] = r o U dvols. 4.24
V([aa ]) VOI(Z)/EM o V0 ( )

We assume that 7 is chosen such that the action of S* on

P = (55 7)

is free so that Ps, — MY, is an S'-principal bundle. Moreover, it comes
equipped with a connection. Indeed, since the moduli space M, is a Kéhler
reduction, it inherits in particular an S'-invariant metric. Then one obtains
the horizontal distribution on Ps, C M sv as the orthogonal complement to
the distribution of Killing vector fields (for more details see Section [2.1.1]).

Theorem 4.5.6. Let X be a product of two holomorphic curves ¥ x S and
Py — X be given by . Suppose that Hypothesis holds. Then there
is one—to—one correspondence between holomorphic curves f : S — MY, such
that f*Psy = Ps and the moduli space

MY ={(a,®) € Ay(Py) x T'(F) | (a, ®) is a solution of @}/g&,
corresponding to the THC-system (@ over 3 X S.

The proof of the above theorem uses two lemmas, which we will prove
first.

Let P; — S be a G-principal bundle over an (almost) Kahler manifold
S (not necessarily a holomorphic curve) with a connection A. Let G act on
(almost) Kéhler manifold Z preserving its Kéhler structure. Assume also
that an action of another Lie group G on Z is Hamiltonian, preserves Kahler
structure of Z and commutes with the action of G. Let i : Z — g be its
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momentum map. Suppose a G—equivariant map ) : P; — Z satisfies fioy) =
7, where 7 is central in g. Then we have the induced G—equivariant map
¢ : P; — M, where M denotes the Kéhler reduction of Z : M = i~'(7)/G.
We assume that M is a manifold (and in particular a Hausdorff space).

Lemma 4.5.7. Assume that G act freely (or that each point has a finite
stabilizer) on = 1(7). The G-equivariant map ¢ is holomorphic with respect
to the connection A if and only if there exists v € Q'(S) ® g such that the
following equation

(s = K, () Is = I, (1. — K, (¥)) (4.25)

holds on the horizontal distribution H over Pg, where f(g denotes the Killing
vector field of the G—action corresponding to £ € g.

Proof. Pick a point p € Pg and denote ¢ = ¢(p) € i~ (7) C Z. Then we
have a decomposition 3 . .

T2 =H, &K, ® I1,Kq,
where K denotes the distribution spanned by Killing vector fields of the G—

action and H is defined as the orthogonal complement to IC b1, IC It
follows in partlcular that I, preserves H,. Observe also that

T, i () = Hy o K, (4.26)

According to the symplectic reduction construction one can identify lffq with
TigM.

Since 1 satisfies the relation 1oy = 7, the differential 1. has components
only in H &) IC Notice that the projection of 1, to H can be identified
with .. leen a horizontal vector v € T, P there exists a unique element
v(v) € g such that p,v = ,v — f(v(v)(q). Therefore, the G-equivariant map
 is holomorphic with respect to the connection A iff

(w*(lsv) — K (15 (w(p))) =1, (%(V) — Ky (w(p)))-

Now it follows from the G-equivariancy of ¢ that (R,)*y = v, where R,
Ps — Ps, p+ pg. But this means that the 1-form ~+ descends to S. m

Remark 4.5.8. If S is a holomorphic curve, one can write locally ¢ =
(s, t), A = Ai(s,t)ds + Ax(s,t)dt, v = yi(s,t)ds + 7a(s,t)dt for a local
coordinate s + it (we also imply that a local trivialization of P, is chosen).
Then the equation can be rewritten in the following form

(0t — Ka, — Koy (V) + L (800 — Ka, — Koy (1)) = 0.
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Now assume that the action of a compact Lie group G on M is Hamil-
tonian and denote by v : M — g its momentum map. Suppose also that G
acts freely on v~1(7), where 7 is a central element in g. Denote by M the
Kihler reduction of M : M = M//G = v~1(7)/G. Then Qg = v~} (1) = M
is a G—principal bundle and it carries the induced connection B as we have
already remarked above for the bundle Ps,,. Further, suppose that an equiv-
ariant map ¢ : P, — M satisfies v o ¢ = 7. Finally, let f : S — M denote
the induced map. Obviously, ¢ is an isomorphism between P, and f*Q).

Lemma 4.5.9. If ¢ is a holomorphic equivariant mapf] with respect to the
connection A, then

e the projection f : S — M is holomorphic;
e the connection A is the pull-back of B.

Proof. Pick a point p € P, and denote ¢ = <p~(p) € Qs C M. Let K denote
the distribution of Killing vector fields over M. Similarly as in the proof of
the above lemma we have a decomposition

TM=H, &K, ® Lok,

where H, is the orthogonal complement to K,®1K,. In particular subbundle
H is I —invariant. We have also

T,Qc = H, & K,. (4.27)

One can identify H, with TjgM.

Let H be the horizontal distribution over P, corresponding to the connec-
tion A. Since H is isomorphic to the pull-back of TS, the pull-back of the
complex structure Iy of S endows H with the structure of a complex vector
bundle. We do not distinguish between I and its pull-back in notation.

Now pick a vector v € H, and denote w = p,v € T,Qs. Let w" + w? be
a decomposition of w according to . Since ¢ is holomorphic, we have
o Isv = I, v =I,wh+I,w’¢ H,®1,K,. On the other hand, the condition
voy = 7 implies p.Isv € T,Qs = Hy @ K, It follows that I,w’ = 0, i.e.
w" = 0. Therefore p, maps horizontal vectors in horizontal ones and this
implies that A is the pull-back of B. It remains to note that one can identify
[« with the projection of ¢.|, to H. Thus the first statement of the lemma
also follows. O

¢see Convention |3.2.19
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Remark 4.5.10. It is easy to see, that the inverse statement of the above
lemma also holds. Here by the inverse statement we mean the following.
Assume that the map f : S — M is holomorphic. Then we get a tautological
equivariant map ¢ : f*Q; — @, which represents a holomorphic section
with respect to the connection f*B.

Proof of the Theorem [}.5.6 Let f: S — MY, be a holomorphic curve
such that f*Pgy = Ps. Denote by ° the connectlon on Py induced from Pgy
and let c{ds + cJdt be its local representation (with respect to a chosen local
tr1v1ahzat10n) Then the tautological map ¢ : f*Psy — Pgy — M gy IS a
holomorphic equivariant mapﬂ with respect to the connection °.

One can con81der the space of solutions Ss, to the symplectic vortex
equations (4 as a Gy principal bundle over Mgy Since the gauge group
Gy is contractlble, the bundle S is trivial, i.e. we have a continuous section
o: M sy — Ssy. Since any continuous section can be approximated by a
smooth one, we can assume that ¢ is smooth. It follows that one can further
lift ¢ to a smooth map ¢ : Ps — Sev, ¥(p) = (¥(p),b(p)), p € Ps. Observe
that any two such liftings differ by a gauge transformations.

Applying Lemmafor Z={bV)| 0,9 =0}, G=G,, G=5", 7=
—d/Vol(X) — 7 we obtain that there exists ¢ € Q'(S) ® Lie(Gs) such that

OsU + (¢ + &) K (V) + I (9,V + (3 + &) K (V) = 0,

4.28
Osb — (dyc] + dsCy) + #5 (9pb — (dscd + dsén)) =0, (4.28)

where ¢1ds + ¢odt is a local representation of ¢. One can interpret ¢; as
functions U x ¥ — R such that

/@dvolZ =0 for any s+t € U.
)

Let us denote ¢; = ¢ 4 ¢;. Then ¢1ds + codt € Q°(X) @ Q1(S) is a local repre-
sentation of a family of connections on Ps. In these notations, the equations
(4.28) have the following form

OV + 1 K (V) + I (00 + o K (V) =0,

(4.29)
0.b — dscq + *5 (@b — dzcg) =0.

By the construction of ¢ we have v o ¢ = d/Vol(X) + 7, where the map v is
given by (4.24)). Similarly, ¢ = (b, V) satisfy jio = —d/Vol(¥) — 7 with

fsee Convention [3.2.19
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defined by (4.13). Thus we get

oV = 0,
x5 Fy + \\J —1 / W dwvol —d +
ol — o =
= Vol(x) Jo o P T ey T (4.30)
1 d
- U dvoly, = — -
wmx)ly“o R VTS R

where the first equation just means, that the target of 1 is Z = {9,¥ = 0}.

The space of square—integrable functions Ls(X) can be decomposed into
two subspaces: Ly(X) = R @ Ly(X), where the first subspace is generated by
the constant function of integral 1 and the other one consists of all functions
of zero mean value. Obviously, a function vanishes if and only if both its
components vanish. Applying this trick to the function *gFj + puz o W we get
that the system is equivalent to the symplectic vortex equations:

U =0,

(4.31)
*g Fyy + pup o W = 0.

It remains to notice that (4.29) and (4.31)) constitute the system (4.23)).

Now let us show that a solution of (4.23)) defines a holomorphic curve
S — MY, First, we can decompose functions ¢; : U x ¥ — R, ¢; = ¢; + 2,
where

1 1
o_ - . dvol G = i__/ s dvols..
c; oIl )/Ec voly, ¢ =c o) Ec voly,

Observe that ¢ : U — R, ¢ : U x ¥ — R and [;¢&dvoly, = 0. The
1-form Jds + 3dt is a local representation of a connection ¢ on Ps while
&1ds—+Gdt is a local representation of a section & € Q'(S)® Lie(Gs). It follows
that 1(s,t) = (®(s,t),b(s,t)) represents a map ¢ : Ps — Sy in the local
coordinate s+ 14t such that equations hold. The other two equations of
the system can be rewritten in the form (4.30). By Lemma this
implies that we have the induced S'-equivariant map ¢ : Py — My, that
is holomorphic with respect to the connection . Moreover, ¢ also satisfies
vogp = —d/Vol¥ — 7. Now Lemma implies that the induced map
f:S— MY, is holomorphic and ¢° is the pull-back of connection on Pgy-. It
is clear that gauge—equivalent solutions of define the same holomorphic
curve S — MY, . O
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4.6 Seiberg—Witten equations over product of
holomorphic curves

In this section we will consider Seiberg-Witten equations in the case
when the source manifold X is a product of two holomorphic curves: X =
> X S. Observe that P,.4 is a double cover of P, x P,; if we assume that
[—1,1] =[1,—1] € H acts trivially on M., then

MapH(Pred7 Mc) = MaPTQ (Pr X pdet7 Mc)

Let Py be given by as before. Recall that a connection a can be
decomposed into the components b and ¢ (see the discussion after ) and
one has A F,, = %5 F, + x4 F,. for the product metric on X = X x S.

From now on assume that (a,u) is a solution of the Seiberg—Witten equa-
tions and in particular (F,)(®? = 0. Recall that vanishing of the Hodge
(0,2)—part of the curvature is equivalent to the equation (4.19). In other
words

(dsb — dzc) Iy = x4 (dsb — dzc).

Next, the tangent space of the source manifold X decomposes as T'S® TS
and therefore A’°TX = TS®TY. It follows that P, is the principal S'-bundle
of TS ® TY. Denote by Prs and Py, principal S'-bundles of T'S and T2
correspondingly. Then P, = (Ppg X P;y)/St, where S! acts by multiplication
by z on one factor and by Z on the other one. Similarly as in the previous
section

|\/|~’:1PST1XSé (P X Pyey, M) = MapT4(PTS X Prs X Ps x Py, M),

where T* acts on M, via the homomorphism T* — S x S} (21, 29, 23, 24)
(2129, 2324) and pull-backs are suppressed in notations.Further, we have a
natural isomorphism

Map™ (Prs X Ppy x Ps x Py, M,) = Map™ <PTS x Py, Map™ (Prs, PE,MC)>.

Indeed, if u € MapTLL(PTS X Py, X Py x Py, M.) then the above isomorphism
is the following map

u - (pHup:uhp}Xpszpz), p € Prg X Py.

Now since we have a decomposition Q%! (X) = Q*H(X)eQ%1(S), it follows
that both maps u, and p — u, are holomorphic: the map u, € MapTQ(PT2 X
Py, M.) is considered as a holomorphic section of the corresponding bundle

79



with respect to the connection b generated by the connection b on P and
the Levi-Civita one on Pry and the map p — u, as a holomorphic map with
respect to the connection ¢ determined by the Levi-Civita connection of Py
and c. It means that the following system is satisfied:

55% = 0,

Qi

Proposition 4.6.1. Suppose (a,u) € A(Pge) X MapTQ(P,, X Py, M.) is a
solution of the generalized Seiberg—Witten equations over X = ¥ x S with its
product metric. Then

5,;u 0,

Dou =0,

(dsb — dzc)ls — ki (dsb — dzc) =0,
ko Fy + %5 Fo + iy ou = 0.

(4.32)

Similarly as in the previous section one may consider metric (4.21) on X.
In this case one obtains the following system

85u = 0,
5511, = 0,
(dsb — dzc) Iy — %y (dsb — dzc) =0,

s)n by +exg Fo 4+ ppou=0.

(4.33)

Hypothesis 4.6.2 (” Adiabatic limit conjecture”). There is a one—to—
one correspondence between solutions of the Seiberg—Witten equations
and solutions of the following system

(%u: 0,

Jeu =0,

(dsb — dsc) Is — #5 (dsb — dsc) = 0,
ks By + p1p ou = 0.

(4.34)

Further, consider the equations

0; U =0
b ’ (4.35)
ke Fp + pp oW = 0.

for a pair (b, ¥) € A(Py) x Map™ (Prs X Ps). These are the vortex type equa-
tions over the Riemann surface ¥ as described in Section 4.4l Remark that
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the ”additional twisting” in our case is the one determined by the principal
bundle of T'Y with its Levi-Civita connection. Let MY denote the moduli

TSV
space of (4.35)), i.e. the space of solutions modulo G2.

One defines a principal S'-bundle P;g, — MY, similarly to Ps, of the

previuos section. Namely, one considers first the following equations

53U=0,
*EFb+ulo\IJ—#(E)fE,ulo\Ifdvolg:VOIL(Z)—FT,

where 7 € R is a parameter. Denote by /\EITSV the space of solutions modulo
Gs.. The group G2/Gs, = S! acts on Mg, with the momentum map fi,

namely
. 1
([b, ¥]) = Vol(D) /E,ul o W dvoly.

Therefore, we can define

d
Prsy = i | — —7).
TSV N’ ( vol(z) T)
The proof of the following theorem is analogous to the proof of Theo-
rem and uses Hypothesis [4.6.2]

Theorem 4.6.3. Let X be a product of two holomorphic curves ¥ x S and

Pyt — X be given by . Suppose that Hypothesis holds. Then
there is one—to—one correspondence between equivariant holomorphid® maps

f i Prsg— Mgsv such that f*Prgy = Ps and the moduli space

MY = {(a,u) € Ap(Paer) ¥ MapH(PTed,Mc) | (a,u) solves }/g‘;(,

corresponding to the Seiberg—Witten system over X X S. [

Ewith respect to the Levi-Civita connection on Pr.
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