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Abstract

We are interested in solving the time-harmonic inverse acoustic scattering problem. In
this work, we present the state of the art of a new iterative method to numerically solve
this problem. This iterative method is based on the idea of analytic continuation of the
total field. The method can be applied to recover the position and shape of sound-soft or
sound-hard obstacles and can be extended to the reconstruction of the position, the shape
and the boundary impedance of the unknown obstacle from the knowledge of the scat-
tered field at large distances (far-field pattern) for one single incident wave. The method
under consideration combines ideas of both decomposition and iterative Newton methods
and therefore is called a hybrid method. It does not need a forward solver and obtains
good reconstructions from the far-field data for one single incident wave, achieving a
good compromise between numerical accuracy, computational costs and required data.
However, a good initial guess is needed to obtain numerical convergence. Moreover,
within this thesis we discuss the convergence of the method by presenting two different
theoretical approaches. The feasibility of the method and its robust behaviour for noisy
data is exhibited by numerical examples.





Zusammenfassung

Wir sind an der Lösung des inversen Streuproblems für zeitharmonische akustische Wellen
interessiert. In dieser Arbeit präsentieren wir den aktuellen Forschungsstand zu einem
neuen iterativen Verfahren zur numerischen Lösung dieser Aufgabe, welches durch an-
alytische Fortsetzung des Gesamtfelds begründet ist. Diese Methode kann die Position
und Gestalt eines unbekannten Gebiets bei bekannter Randbedingung, sowie die Position,
die Gestalt und die unbekannte Impedanzfunktion eines unbekannten Gebiets rekonstru-
ieren. Als Daten benutzen wir dabei das Fernfeld einer einzigen einfallenden ebenen
Welle. Dieses Verfahren kombiniert Ideen von Dekompositionsmethoden und von New-
toniterationen und wird daher als ein hybrides Verfahren bezeichnet. Es benötigt keinen
direkten Löser und erzielt gute Rekonstruktionsergebnisse mit den Fernfelddaten für eine
einzige einfallende Welle. Auf diesem Grund stellt dieses Verfahren einen guten Kom-
promiss dar zwischen numerischer Genauigkeit, Rechenkosten und Datenanforderung.
Allerdings wird eine gute Ausgangsnäherung benötigt, um numerische Konvergenz zu
sichern. Ferner untersuchen wir die Konvergenz des Verfahrens durch die Präsentation
zweier verschiedener theoretischer Ansätze. Die Durchführbarkeit des Verfahrens mit
exakten und fehlerbehafteten Daten wird durch numerische Beispiele belegt.
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Chapter 1

Introduction

The aim of this work is to present a hybrid method to numerically solve the inverse ob-
stacle scattering problem. In this introductory chapter we will say some general words
on inverse and scattering problems, as well as on methods to solve the particular inverse
scattering problem under consideration. We will focus on the developments and state of
the art of the hybrid method and briefly give an overview of the contents of the forthcom-
ing chapters.

Two problems are called inverse to each other if the solution to the first is required
to formulate the second and vice-versa. There are several simple examples of inverse
problems, such as addition and subtraction or differentiation and integration. Usually
one of them has been studied for a longer time and is therefore better understood than
the other. In this way this problem has become easier to solve and is therefore called the
direct problem. The inverse problem is then the remaining problem of the pair. Solving
the inverse problem usually requires harder or even new techniques. In most cases the
inverse problem is also ill-posed in the sense of Hadamard [17]. This means it fails
to be uniquely solvable or that the solution does not depend continuously on the data.
The failure of the latter property is a matter of major importance concerning developing
numerical methods to solve the problem, since they have to somehow stabilize the ill-
posedness of the problem. It is not seldom that mathematical problems arising from
applications are ill-posed and therefore this is an area of great interest for several areas
of science today.

The inverse problem that we consider in this paper - namely the inverse scattering
problem - is in fact ill-posed. Scattering theory has been studied over the last century
(see [2, 8, 9, 45]). In a general framework, Lax and Philips [45] described scattering
theory as the comparison between the asymptotic behaviour of an evolving system as the
time t tends to −∞ with its asymptotic behaviour as t tends to +∞. In particular, they
were interested in considering systems constructed from a simple background system by
the imposition of a perturbation (also called scatterer), provided that the influence of the
perturbation would be negligible for large |t|.
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The numerical method we are going to present is to be applied to a subclass of
these inverse problems. We are interested in considering obstacle scattering problems.
Roughly speaking, the main concern of this problem is to study the effect that an obstacle
(the scatterer) has on some incident wave. Moreover, one wants to study how this effect
is influenced by the properties of the obstacle, namely its shape, location and physical
constitution. We consider an obstacle D (the scatterer) embedded in some known homo-
geneous background. Knowing the physical properties of the background medium and

the obstacle, the direct problem is to determine the scattered wave us given an incident
wave ui. The inverse problem we are interested in is to recover some physical properties
of the obstacle D, such as its shape, location or physical constitution, given the mea-
sured scattered field at large distances. This inverse problem has been studied closely
over the past 25 years (e.g. [8, 9, 24, 28, 58]). The mathematical model for this inverse
problem is motivated from several areas of physics and engineering and is mainly related
to non-destructive testing. Among the many applications we mention radar, sonar, mine
detection or medical imaging.

We will shortly introduce the mathematical foundations of these problems (for details
see chapter 2 and the references therein). We are interested in the special case of time-
harmonic acoustic scattering as motivated in section 2.1, that is, we are interested only
in the space dependence us of the scattered wave. From now on we consider D ⊂ Rm,
for m = 2, 3, to be an open bounded obstacle with a C2-smooth boundary and an un-
bounded and connected complement. Then, given an incident field ui, the direct scat-
tering problem consists of finding the total field u = ui + us as the sum of the known
incident field ui and the scattered field us such that both the Helmholtz equation

∆u+ k2u = 0 in Rm\D (1.1)

with wave number k > 0 and the boundary condition

Bu = 0 on Γ := ∂D (1.2)
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are satisfied. The operator B defines the boundary condition that is to be satisfied and is
related with the physical properties of the obstacle D. For Bu = u we have a Dirichlet
boundary condition while for Bu = ∂u/∂ν we have a Neumann boundary condition,
where ν stands for the exterior normal vector to Γ. These two boundary conditions model
the case of sound-soft and sound-hard obstacles, respectively. Usually obstacles are not
perfectly sound-soft nor perfectly sound-hard, so it makes sense to impose an impedance
or Robin boundary condition corresponding toBu = ∂u/∂ν+iλu with some impedance
function λ > 0.

Since this is an exterior problem, to ensure uniqueness of the solution (and therefore
well-posedness in the sense of Hadamard) a condition at infinity needs to be imposed.
Sommerfeld [63] suggested the radiation condition

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0, r = |x| (1.3)

with the limit satisfied uniformly in all directions. The physical meaning of this condi-
tion is that there are no energy sources at infinity. With this radiation condition the direct
problem is well-posed (e.g [9]), since it is uniquely solvable and the scattered wave de-
pends continuously on the incident field. It can also be shown that the solution us to the
direct problem can be represented by Green’s representation formula

us(x) =

∫
Γ

(
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)

)
ds(y), x ∈ Rm\D.

under some assumptions (see thm.2.3), where Φ stands for the fundamental solution to
the Helmholtz equation. Moreover, one can show (see thm. 2.4) that the solution us has
an asymptotic behaviour of the form

us(x) =
eik|x|

|x|m−1
2

(
u∞

(
x

|x|

)
+O

(
1

|x|

))
, |x| → ∞,

where the function u∞ defined on the unit sphere Ω is called the far-field pattern and
uniquely determines the scattered field us.

The inverse problem we are interested in is to reconstruct some properties of the ob-
stacle from the knowledge of the scattered field at large distances generated by a known
incident field. In this sense we will assume the far-field pattern as the given data. With
the a priori knowledge that the obstacle is sound-soft or that it is sound-hard, the inverse
problem can then be formulated as follows: Given an incident field ui and the correspond-
ing far-field pattern u∞, determine the position and shape of the obstacle D. Without this
a priori information on the boundary condition, the problem can be formulated with an
impedance boundary condition where the impedance λ is unknown. Note that the Neu-
mann boundary condition is a special case of the impedance condition for λ = 0, as well
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as the Dirichlet boundary condition can be seen as the limit of an impedance condition
as λ→∞. Therefore, in this case where the boundary condition is unknown, the inverse
problem is formulated in the following way: Given an incident field ui and the corre-
sponding far-field pattern u∞, determine the position and shape of the obstacle D and the
impedance function λ over its boundary. Uniqueness results for this inverse problem are
still open in a general setting considering data for one single incident wave. However,
some results can be obtained for sound-soft obstacles with size constraints (see thm.2.18)
or special shapes (see [1, 6]). Moreover, this inverse problem is non-linear in the sense
that the scattered field depends non-linearly on the obstacle and it is also ill-posed in the
sense that the determination of D does not depend continuously on the far-field pattern.
In this way, each numerical method considered to solve the inverse problem must take
these two difficulties into account.

As already mentioned, there are several different applications for this kind of prob-
lems and therefore several methods were suggested to deal with the specific properties of
each problem. For instance, for mine detection one can only measure the scattered wave
on one side of the obstacle and usually has no a priori information on where the obstacle
lies. On the contrary, if one wants to test whether some object is broken inside, one can
usually measure the data all around the obstacle, and one also has an idea of how the
obstacle should look to start iterating from it.

In the literature, one usually classifies the methods for inverse scattering within three
classes: iterative methods, decomposition methods and sampling or probe methods. In
this introductory chapter we will only say some words on the first two classes and we
refer to section 3.1 and the references therein for more details.

Iterative methods usually work on a Newton method’s idea, in the sense that from an
ill-posed operator equation equivalent to the inverse problem they arrive at a linearized
and still ill-posed equation which is solved using some regularization scheme. With u∞
the measured far-field pattern generated by the incident field ui, this can be done consid-
ering the equation

F (Γ)− u∞ = 0

where the operator F maps the boundary Γ of some obstacle D to the far-field pattern
corresponding to scattering by D with the same fixed incident field ui. Then, due to
the Fréchet differentiability of F , the above equation is solved by regularized Newton
iterations. In case of convergence, it is clear that this method will only converge to a local
minimum, so it is crucial to have a good initial guess. Moreover, as the Fréchet derivative
of F is characterized in terms of the solution to a forward problem, this method requires
some extra computational effort due to the required forward solver. The characterization
of F ′ depends also on the boundary condition, so the a priori knowledge of the boundary
condition is required. Nonetheless in [40] this method was generalized for the case of
an unknown impedance λ. The strong point about this method is that the reconstructions
obtained are usually very good. As for convergence results, though some work has been
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done in that direction [20, 21, 22], it is still considered to be an open problem in the sense
that some of the assumptions on the operators are not yet proven for the case of inverse
scattering.

As for decomposition methods, they split the ill-posedness and non-linearity of the
problem in two steps. In an ill-posed first step the scattered field is reconstructed from the
measured far-field data. In the Kirsch and Kress decomposition method [30, 31, 32] this
is done by representing the scattered field us as an appropriate layer potential over some
appropriate a priori chosen surface γ. The density for the layer potential is such that the
far-field pattern of the layer representation fits the given measured far-field pattern. Then,
in a non-linear second step, the position and shape of the scatterer is found by the location
of the zero level set of the boundary condition. This is done by linearizing the L2-norm
of the boundary condition and finding a surface as a minimal solution to this linearized
equation in a least squares sense. It is then clear that this method can only be applied
in the case where the boundary condition is known a priori. The main advantage of this
method is that no forward solver is needed. However, the numerical reconstructions are
not as good as for iterative methods. Moreover, there is also a gap between numerical
implementation and theoretical background. One can prove convergence for a related
minimization problem, which is given in terms of a functional that is the sum of the
minimization of the first and second step of the method. In this way, it is not clear
that the minimum obtained by minimizing the first and second step independently or by
simultaneous minimization is the same.

In the meantime two methods appeared that combine ideas of both these classes. On
the one hand, although they are of iterative nature, they do not need a forward solver.
On the other hand, they can compete with Newton’s iterative methods concerning the
numerical reconstructions obtained. The first method was suggested by Kress in [38]. As
being the descendent of two different classes of methods, this method was called hybrid
and will be the main topic of this thesis. The hybrid method is closer to a decomposition
method and can be seen as an iterative and more competitive version of the Kirsch and
Kress method [30, 31, 32]. The second method was suggested by Kress and Rundell [41]
and developed for inverse scattering problems by Ivanyshyn and Kress [25]. This method
is closer to an iterative Newton method, with the linearization made on the layer potential
over the boundary instead of in the far-field operator F . In this way a forward solver is
no longer needed, since no characterization of F ′ is now required.

The Hybrid Method

The main topic of this thesis is the development of the hybrid method in recent years,
both from a theoretical and a numerical point of view.

The basic ideas of the method are the following (for details see section 3.2). Being γn

the current approximation to the boundary Γ, in a first step one starts by approximating
the scattered field as a layer potential over γn, as in the Kirsch and Kress method men-
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tioned previously. The density of the layer representation is chosen so that the far-field
pattern of the layer representation fits the given measured far-field pattern. In this way,
the density is given as a solution to an ill-posed integral equation. In a second step, hav-
ing in mind the fact that the boundary condition is to be satisfied over Γ, one defines the
operator

G : γ 7→ Bu|γ

that maps a curve γ onto the trace of the given boundary condition over γ. Note that
the correct boundary Γ is the solution to G(Γ) = 0. In this way, making use of the
Fréchet differentiability of G, one linearizes the previous equation around the current
approximation γn. One now solves the linearized equation in a least squares sense in
order to obtain a new approximation γn+1, using as approximation to the total field the
layer representation obtained in the first step. One can now iterate both steps until some
stopping criterion is achieved.

It is clear that this method combines ideas of both iterative and decomposition meth-
ods. On the one hand, it splits the ill-posedness from the non-linearity of the problem.
On the other hand, it makes use of the Fréchet differentiability of the operator G in or-
der to linearize a non-linear equation and allow an iterative procedure, in the spirit of an
iterative Newton method. Moreover, it gains advantages from both of them. No forward
solver is needed and the quality of the reconstructions is quite good. Unfortunately, some
disadvantages are also inherited in the hybrid method. A good initial guess is needed and,
at first sight, it seems that the boundary condition must be also known a priori. However,
this last disadvantage can be mended as we will mention in a few lines (and later on in
detail in section 3.5).

To implement this new approach, the characterization of the Fréchet derivative of G
had to be given. Moreover, this characterization depends on the boundary condition. The
proofs for its characterization are very simple for the Dirichlet case (see thm. 3.6) but
become rather technical and involved for the Neumann case (see thm. 3.11 and cor. 3.12
for R2 and thm. 3.13 for R3). For the Robin boundary condition one just needs to combine
both previous characterizations. However, the main tool used is Taylor’s expansion, since
one assumes the total field u, as a solution to the Helmholtz equation, to be analytic in a
neighbourhood of γn.

The hybrid method can also be seen as an iterative version of the Kirsch and Kress
decomposition method [30, 31, 32]. In some sense, the hybrid method is an attempt to
revive the Kirsch and Kress decomposition method in a more competitive version. In fact,
while in the latter the surface γ has the role of an auxiliary surface used only to reconstruct
the total field, in the hybrid method we get iteratively a sequence of surfaces γn that are
the current approximations to the correct boundary Γ. The hybrid method is therefore
more effective, as shown in the numerical examples in section 5. Moreover, this change
allows new features to the method. While in the Kirsch and Kress method the auxiliary
surface γ was required to be inside the scatterer D in order to have an approximation to



1. Introduction 9

the total field valid in a neighbourhood of the correct boundary Γ, in the hybrid method
the initial guess is allowed to be inside, outside or even intersecting the boundary Γ,
since at each step the field u, along with its derivatives, is only evaluated on the current
approximation γn. In addition, this change also allows the method to be applied to the
case of a Robin boundary condition with unknown boundary impedance. This is done by
considering the operator

G : (γ, ζ) 7→
(
∂u

∂ν
+ iζu

) ∣∣∣
γ

that maps a curve γ and an impedance function ζ to the corresponding impedance bound-
ary condition. Again we want to find a pair (Γ, λ) such that G(Γ, λ) = 0. In this way,
with (γn, ζn) being our current approximation, we linearize the previous equation both
in the boundary and impedance variables around (γn, ζn), and using an approximation to
the total field obtained in a first step (just as in the a priori known boundary condition
case), we obtain a new approximation (γn+1, ζn+1) to the correct pair (Γ, λ). In this way
the hybrid method also represents a valid alternative to the Newton iterative method [40]
as another iterative method that recovers both the boundary Γ and the impedance λ si-
multaneously.

The appearance and development of a new method must also include some theoretical
background, namely in what concerns its convergence. However, as in general for numer-
ical methods applied to the inverse obstacle scattering problem, the convergence results
for the hybrid method are not completely satisfying. We consider and present in chapter 4
two main approaches. The first one is relating the hybrid method to a minimization prob-
lem (see section 4.1), as considered by Kirsch and Kress for their decomposition method.
The advances made in the theory with this approach included generalizing the results
obtained by Kirsch and Kress (see [9, sec.5.4]) for a combined layer representation and
for the cases of the Neumann and Robin boundary condition. As a result, one can prove
that the minimization problem has a unique solution for every given data and that if the
given data is exact then the solution to the minimization problem satisfies the boundary
condition in the sense that, given a sequence of regularization parameters decreasing to
zero, there exists a subsequence of the corresponding solutions to the minimization prob-
lem that converges to a limit where the boundary condition is satisfied. However, as for
the Kirsch and Kress method, there is a gap between this minimization problem and the
numerical implementation of the hybrid method. In fact, as already referred, it is not
clear that the minimization in two steps of the hybrid method (first on the density of the
layer potential and secondly on the surface γ and possibly on the impedance ζ if one
considers the Robin boundary condition) is equivalent to a minimization in one single
step (both on the density of the layer potential and the surface γ and possibly also on the
impedance ζ) considered in the related minimization problem. Moreover, the minimiza-
tion problem does not take into account the iterative procedure of repeating the two steps
nor the linearization in the second step. In this way a new approach was needed. There-
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fore, in a second approach presented in section 4.2 the hybrid method is interpreted as a
Newton method. The idea of proof is based on [55], but the operators appearing are quite
different. This approach takes into account the linearization in the second step, as well as
the iterative procedure, being a quite fair representation of the numerical implementation
of the hybrid method. Under some assumptions, one can prove convergence for exact
data as well as convergence to the correct solution with noisy data as the noise level goes
to zero. However, this result can only be applied in some cases, since the assumptions
include higher smoothness of Γ and that the radial derivative of the total field u does
not have zeros on Γ. One can show numerically that this last assumption holds for do-
mains close to circles (see remark 4.9). Moreover, this approach can only be applied to
sound-soft obstacles, with no obvious possibility of extension to the Neumann and Robin
boundary conditions.

The results on the hybrid method have also been published in journals while they
were being achieved. As already mentioned, the basic idea of the hybrid method was
suggested in [38], as a combination of ideas of both iterative and decomposition methods
in order to create an iterative method using as background idea analytic continuation of
the total field. The same idea was applied to an inverse boundary value problem in poten-
tial theory [5]. In [42] the hybrid method was generalized to the case of inverse scattering
for sound-soft cracks. An important aspect about the latter paper is that it eliminated a
gap in the traditional Kirsch and Kress method concerning crack reconstruction, since
in the second step of the method the approximation surface could degenerate to a point,
minimizing in this degenerated way the L2-norm of the total field over the approximation
surface. The hybrid method was then generalized for sound-hard obstacles [43], with the
Fréchet derivative of G being then characterized for the Neumann boundary condition.
Later this method was also extended to scattering for shape and impedance [59], recov-
ering both the obstacle and the unknown impedance on its boundary. All the previously
mentioned papers concerning the hybrid method presented numerical results in R2. The
numerical implementation in R3 for the Dirichlet case will appear shortly [60].

Organization of the Thesis

This thesis is organized in six chapters. In the second chapter the basic results of acoustic
scattering theory are presented. We start by motivating the Helmholtz equation in sec-
tion 2.1. We then proceed by presenting the direct acoustic scattering problem, recalling
some fundamental results including Green’s representation formula, layer potentials and
their properties and uniqueness and existence results for the direct problem. In section 2.3
the inverse obstacle scattering problem is formulated and the state of the art concerning
uniqueness results is presented.

Chapter 3 is dedicated to the ideas of the hybrid method. After section 3.1, where
previous numerical methods for the inverse scattering problem are discussed, we present
in section 3.2 the basic ideas of the hybrid method. We stress assumption 3.2 of the ana-
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lytic continuation principle and the advantages and disadvantages of this new method in
comparison with previous methods. In the following sections 3.3–3.5 a detailed charac-
terization of the hybrid method is given for the Dirichlet, Neumann and Robin boundary
conditions, respectively. This includes the characterization for each considered boundary
condition of the Fréchet derivative of the operator G mentioned previously, these being
the fundamental results for the numerical implementation of the hybrid method. Note
also that at the end of section 3.5, after the characterization of G′ has been established,
the characterization of G′ is compared with the characterization of the Fréchet deriva-
tive of the boundary-to-far-field operator F . Resemblances between F ′ and G′ are found
when evaluating G′ over the correct boundary Γ (and impedance λ) and are justified in
that section.

Convergence results for the hybrid method are the topic of chapter 4. In section 4.1,
the hybrid method is related with a minimization problem, for which convergence is
shown. In the following section, namely section 4.2, the hybrid method is interpreted as a
Newton method and convergence is proven under some assumptions. This latter approach
is a better representation of the numerical implementation of the hybrid method, but it
only works for sound-soft obstacles.

The feasibility of the method is then shown is chapter 5 through numerical examples.
We divide the approach for R2 and R3, presenting in both cases how the synthetic far-
field data was generated by solving the direct problem. This will also serve as the basis
for the numerical quadrature rules used to implement the hybrid method. The numerical
implementation of the hybrid method is then presented in R2 for each of the considered
boundary conditions in sections 5.1.2–5.1.4. The numerical results with exact and noisy
data are presented at the end of each section. The hybrid method for sound-soft obstacles
in R3 is treated in section 5.2.2.

In the final chapter we make some considerations and final conclusions on the hybrid
method and present some future perspectives.





Chapter 2

Acoustic Scattering Theory

Scattering theory has been a matter of interest for scientists over the last century. There
is a broad band of applications, such as radar and sonar or medical imaging. Roughly
speaking, scattering theory studies the effect that an obstacle or some inhomogeneity has
on an incident wave or particle. Considering the total field u to be the sum of the incident
field ui and the scattered field us, then the direct problem consists of determining us from
the knowledge of the medium and the propagation of the field, or stated in mathemati-
cal terms from the knowledge of the obstacle or inhomogeneity, including the boundary
condition satisfied at the boundary of the obstacle, and the differential equation that rules
the propagation of the field. The inverse problem is however a much more challenging
and interesting problem: Given information on the scattered field us one wants to find
some unknown properties of the obstacle, such as its location and shape, the boundary
condition or some refractive index, for instance. We refer to the monographs Lax and
Philips [45] and Colton and Kress [8, 9] for further reading on the basic theory of some
of these problems.

In this work we do not intend to cover all these problems but to confine ourselves
to the acoustic time-harmonic obstacle scattering problem within an homogeneous back-
ground. In order to do so we will motivate the Helmholtz equation as the model to this
problem in the next section. Then in the following sections we will present classical
theoretical results for the direct and inverse scattering problems, including representa-
tion formulas and asymptotic behaviours for the scattered field us and uniqueness and
existence results for the referred problems.

2.1 The Helmholtz Equation

We start by giving a motivation to the Helmholtz equation

∆u+ k2u = 0
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for k > 0 as being a model to the space dependence of the limit state of a time harmonic
acoustic wave with a point source excitement. We refer to [16] or the classical work of
Lax and Philips [45] for details.

Consider the wave equation with a point source at y. This means that the system
is at rest and at t = 0 the harmonic excitement is started at the point y in free space.
In mathematical terms this can be formulated in terms of an acoustic wave U i(x, t; y),
depending on the space variable x ∈ R3 and the time variable t ≥ 0, satisfying the
equation

1

c2
∂2U(x, t)

∂t2
−∆xU(x, t) = e−iωtδ(x− y), x ∈ R3, t ≥ 0 (2.1)

with initial conditions

U(x, 0) =
∂U(x, 0)

∂t
= 0,

where c is the speed of sound and ω is the frequency. We are interested in studying the
behaviour of the solution as t→∞. Then one can show the asymptotic behaviour

U i(x, t) ≈ e−iωtΦ(x− y), t→∞

where Φ is the fundamental solution to the Helmholtz equation in R3 given by

Φ(x) =
eik|x|

4π|x|
, x 6= 0 (2.2)

and where |.| denotes the usual Euclidean norm and k = ω/c is the wave number.
Let us now consider a bounded and connected obstacle D ⊂ R3 and U i (the solution

in free space) the incident wave. We then have an extra condition to be satisfied at the
interface between the obstacle and the exterior medium. Therefore we will consider
either a Dirichlet, Neumann or Robin boundary condition at the boundary Γ := ∂D.
In any case, if D has no energy traps we expect the obstacle to give rise to a scattered
wave U s and therefore the asymptotic behaviour of the solution is given by

U(x, t) := U i(x, t) + U s(x, t) ≈ e−iωt (Φ(x− y) + us(x)) , t→∞, (2.3)

and the scattered field us behaves as an outgoing spherical wave, that is, it satisfies the
Sommerfeld radiation condition (see [45])

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0.

The physical meaning of this condition is that there are no energy sources at infinity (see
the classical work of Sommerfeld [63]). As the solution U satisfies the wave equa-
tion (2.1) in Rm\D we get that

∆us + k2us = 0, x ∈ Rm\D,
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that is, the solution to the Helmholtz equation can be interpreted as the spatial dependence
of a time harmonic acoustic wave as t→∞. Mathematically, the radiation condition will
ensure uniqueness of solution to the Helmholtz equation.

We also note that if the point source y goes to infinity in the direction −d, then from
the asymptotic behaviour of the fundamental solutions we get

lim
r→∞

(
4πre−ikrΦ(x+ rd)

)
= eikx.d (2.4)

so in this case it makes sense to approximate the point source by an incident plane
field ui(x) = eikx.d up to some multiplicative constant depending on the distance r be-
tween the evaluation point x to the source point y. We also note that defining the total
field u = ui + us as the sum of the incident and scattered fields, the boundary conditions
on Γ carry over from the total wave U to the total field u. This means that if for instance
we consider a sound-soft obstacle D, that is, the pressure of the total wave vanishes at
the boundary Γ of D, then the boundary condition imposed is

U(x, t) = 0, x ∈ Γ, t ≥ 0,

which implies the Dirichlet boundary condition for u given by

u(x) = 0, x ∈ Γ

since from (2.3)
U(x, t) ≈ u(x)e−iωt, t→∞

where again u = ui + us. In the same way, for sound-hard obstacles, the normal velocity
vanishes on the boundary Γ and so we get the Neumann boundary condition for u

∂u(x)

∂ν
= 0, x ∈ Γ

where ν is the exterior unit normal to D. Since there are no perfect sound-soft or sound-
hard obstacles in reality, a more realistic situation is the one where the pressure and
the normal velocity are proportional at the boundary, that is, an impedance boundary
condition

∂u(x)

∂ν
+ iλ(x)u(x) = 0, x ∈ Γ,

with λ ≥ 0. All these three cases will be addressed during this work.

2.2 The Direct Acoustic Scattering Problem
The main topic of this work is a method to numerically solve the inverse acoustic scat-
tering problem. Therefore, a solid knowledge on the direct problem is needed. In this
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section we present the basic results on the solutions to the Helmholtz equation and to
the direct problem, that will be of crucial importance later on when studying the inverse
problem.

We are interested in time harmonic acoustic obstacle scattering. Therefore, as moti-
vated in the previous section, we want to find a solution to the following problem:

Direct Problem 2.1. Given an open obstacle D of class C2 with connected boundary Γ
and an incident field ui we want to find the scattered field us ∈ C2(Rm\D)∩C(Rm\D),
for m = 2, 3 that satisfies

∆us + k2us = 0, x ∈ Rm\D, (2.5)
Bu = 0, x ∈ Γ := ∂D, (2.6)

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0, (2.7)

where the total field u is given by the sum of the incident field ui and the scattered field us,
that is, u = ui + us.

A solution satisfying the Sommerfeld radiation condition (2.7) is called a radiating
solution. Again we stress the notation Γ for the boundary of D, that will be carried out
throughout this work. The differential operator B represents one of the already referred
boundary conditions, that is,

Bu = u |Γ (Dirichlet); (2.8)

Bu =
(

∂u
∂ν

)
|Γ (Neumann); (2.9)

Bu =
(

∂u
∂ν

+ iλu
)
|Γ (Robin) (2.10)

where λ ≥ 0 is a continuous function defined on Γ and ν is the exterior unit normal to D.
All these boundary conditions are to be satisfied in the sense of uniform convergence
on Γ. We note that the Neumann case is a particular case of the Robin case for λ = 0 and
that the Dirichlet case can be seen as the limit of the Robin case as λ→∞.

Most results presented in this section on the properties of the solutions to the direct
problem have as primary tools the following first and second Green’s theorems.

Theorem 2.2 (Green’s Theorem). Let D be a domain of class C1. Then for u ∈ C1(D)
and v ∈ C2(D) we have the first Green’s theorem∫

D

(u∆v + gradu · grad v) dx =

∫
∂D

u
∂v

∂ν
ds.

Moreover if u, v ∈ C2(D) we have the second Green’s theorem∫
D

(u∆v − v∆u) dx =

∫
∂D

(
u
∂v

∂ν
− v

∂u

∂ν

)
ds.
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Proof. The first theorem is proved by applying the divergence theorem to the vector
field (u grad v) ∈ C1(D). The second is obtained by interchanging the roles of u and v
in the first and subtracting both equations.

Based on these theorems, a classical result for representing the solution can be achie-
ved. For its formulation we will need the fundamental solution to the Helmholtz equation
in Rm given by

Φ(x) =


i
4
H

(1)
0 (k|x|), m = 2

eik|x|

4π|x| , m = 3

where H(1)
0 is the Hankel function of first kind and order zero given by

H
(1)
0 (t) = J0(t) + iY0(t), t ∈ R,

where the Bessel function of order zero J0 is analytic for all t ∈ R and the Neumann
function of order zero has a logarithmic singularity at t = 0 (e.g [9, Chap. 3.4.] for
details). Therefore both the fundamental solutions have singularities at zero, that will
need to be taken care of for numerical purposes. We will define

Φ(x, y) := Φ(|x− y|)

to simplify the notation.
We are now in position to present the classical Green’s representation formula for

exterior radiating solutions to the Helmholtz equation.

Theorem 2.3 (Green’s Representation Formula). Assume the bounded set D ⊂ Rm to be
the open complement of an unbounded domain of class C2.

Let us ∈ C2(Rm\D) ∩ C(Rm\D) be a radiating solution to the Helmholtz equa-
tion (2.5) which possesses a normal derivative on the boundary in the sense that the
limit

∂us

∂ν
(x) = lim

h→0+
ν(x) · gradus(x+ hν(x)), x ∈ Γ,

exists uniformly on Γ. Then we have Green’s representation formula

us(x) =

∫
Γ

(
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)

)
ds(y), x ∈ Rm\D. (2.11)

Proof. We will just state a sketch of the proof and refer for details to [9, Sec. 3.4.] for the
two-dimensional case m = 2 and [9, Thm. 2.4.] for the three-dimensional case m = 3.

Denoting by B(x, r) the ball with center in x and radius r, let us then define the
set G∗ = B(0, R)\(D ∪B(x, r)) with x ∈ Rm\D and with R sufficiently large and r
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sufficiently small such that D ⊂ B(0, R), B(x, r) ⊂ B(0, R) and B(x, r) ∩ D = ∅.
As us and Φ satisfy the Helmholtz equation in G∗ we have that∫

G∗
(us(y)∆yΦ(x, y)− Φ(x, y)∆us(y)) dy = 0.

By the definition of the fundamental solution, we have

lim
r→0

∫
∂B(x,r)

(
us(y)

∂Φ(x, y)

∂ν(y)
− Φ(x, y)

∂us

∂ν(y)
(y)

)
ds(y) = us(x),

where ν is the exterior unit normal toG∗ and therefore the interior unit normal toB(x, r).
By the radiation condition one can also prove that

lim
R→∞

∫
∂B(0,R)

(
us(y)

∂Φ(x, y)

∂ν(y)
− Φ(x, y)

∂us

∂ν(y)
(y)

)
ds(y) = 0.

The proof is now complete by applying Green’s theorem to u = us and v = Φ(x, .) onG∗

and let r → 0 and R→∞.

From the previous representation one can conclude that if u is a C2–solution to the
Helmholtz equation in Rm\D then u is analytic in Rm\D (see [9, thm.2.2]).

We now introduce the notation Ωm for the unit spherical surface in Rm, that is,

Ωm = {x ∈ Rm : |x| = 1}

where as before |.| denotes the usual Euclidean norm.
From the previous theorem one can conclude the following asymptotic behaviour of

the solution.

Theorem 2.4 (Far-field pattern). Every radiating solution us to the Helmholtz equation
in Rm\D has an asymptotic behaviour of an outgoing spherical wave

us(x) =
eik|x|

|x|m−1
2

(
u∞(x̂) +O

(
1

|x|

))
, |x| → ∞ (2.12)

uniformly in all directions x̂ = x/|x| ∈ Ωm where the function u∞ is called the far-field
pattern of u. Under the assumptions of theorem 2.3 we have

u∞(x̂) = %m

∫
Γ

(
us(y)

∂e−ikx̂·y

∂ν(y)
− ∂us

∂ν
(y)e−ikx̂·y

)
ds(y) (2.13)

where

%m =

{
eiπ/4
√

8πk
, m = 2

1
4π
, m = 3.

(2.14)
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Proof. Using the Taylor expansion of the square root function around 1, we get that

|x− y| =
√
|x|2 − 2x · y + |y|2

= |x|

√
1− 2

x̂ · y
|x|

+
|y|2
|x|2

= |x| − x̂ · y +O

(
1

|x|

)
as |x| → ∞ uniformly for y ∈ Γ. Therefore we derive

eik|x−y|

|x− y|
=

eik|x|

|x|

(
e−ikx̂·y +O

(
1

|x|

))
∂

∂ν(y)

eik|x−y|

|x− y|
=

eik|x|

|x|

(
∂e−ikx̂·y

∂ν(y)
+O

(
1

|x|

))
as |x| → ∞ uniformly for y ∈ Γ. Replacing this in (2.11) we have the result for m = 3.
For m = 2, the procedure is similar (see [9, Sec. 3.4.]), using the asymptotics of the
Hankel function.

Remark 2.5. We have seen in Section 2.1 that if the source point y is very far in the
direction −d from the obstacle, then the point source incident field can be approxi-
mated (up to a multiplicative constant depending on the distance |x − y|) by a plane
wave ui(x) = eikx·d, with d ∈ Ωm. In other words, the asymptotic behaviour (2.4) means
that the far-field of a point source is a plane wave, that is,

Φ∞(x; y) = ρm e
ikx·d.

In the same way, by theorem 2.4 if one measures the scattered wave very far from the
obstacle, one can assume that the measured data is the far-field pattern (up to the same
multiplicative constant). Both this assumptions will be taken later on for the inverse
problem, where we will consider an incident plane wave and the far-field pattern as data.

In this way we will present a few more properties of the far-field pattern, since it will
be important in the forthcoming chapters. From the representation (2.13) we see that
the far-field pattern u∞ is analytic on Ωm. The following result shows us that having an
incident field in the direction d and measuring the far-field pattern in the direction x̂ is the
same as having an incident field in the direction−x̂ and measuring the far-field pattern in
the direction −d, that is, at large distances from it, the obstacle as mirroring properties.

Theorem 2.6 (Reciprocity relation). For any of the boundary conditions previously men-
tioned (2.8)–(2.10), we have that the far-field pattern satisfies

u∞(x̂; d) = u∞(−d;−x̂), x̂, d ∈ Ωm (2.15)
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where u∞(.; d) denotes the far-field pattern obtained by scattering of a plane wave with
incident direction d ∈ Ωm.

Proof. Making use of the fact that the incident plane field ui(x; d) = eikx·d satisfies
the Helmholtz equation inside the obstacle D, by the second Green’s theorem applied
to u = ui(.; d) and v = ui(.;−x̂) we get∫

Γ

(
ui(.; d)

∂ui(.;−x̂)
∂ν

− ui(.;−x̂)∂u
i(.; d)

∂ν

)
ds = 0.

Applying the same tools and procedure for the scattered wave in the exterior domain,
making use of the radiation condition we get∫

Γ

(
us(.; d)

∂us(.;−x̂)
∂ν

− us(.;−x̂)∂u
s(.; d)

∂ν

)
ds = 0.

From (2.13) we get

1

%m

u∞(x̂; d) =

∫
Γ

(
us(.; d)

∂ui(.;−x̂)
∂ν

− ui(.;−x̂)∂u
s(.; d)

∂ν

)
ds

and interchanging the roles of d and x̂

1

%m

u∞(−d;−x̂) =

∫
Γ

(
us(.;−x̂)∂u

i(.; d)

∂ν
− ui(.; d)

∂us(.;−x̂)
∂ν

)
ds.

Subtracting the last equation from the sum of the previous three, one gets

1

%m

(u∞(x̂; d)− u∞(−d;−x̂)) =

∫
Γ

(
u(.; d)

∂u(.;−x̂)
∂ν

− u(.;−x̂)∂u(.; d)
∂ν

)
ds.

Making use of the boundary condition Bu(.; d) = Bu(.;−x̂) = 0, for any B defined
in (2.8)–(2.10), the left hand side of the previous equation vanishes and we get the result.

The question whether the far-field pattern u∞ uniquely determines the scattered field us

is affirmatively answered by Rellich’s Lemma. We refer to [9, thm.2.11] for the proof.

Lemma 2.7 (Rellich). Let D be as in theorem 2.3 and u ∈ C2(Rm\D) be a solution to
the Helmholtz equation satisfying

lim
r→∞

∫
{|x|=r}

|u|2ds = 0.

Then u = 0 in Rm\D.
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We formulate now the result that establishes the promised unique relation between
the far-field pattern and the scattered field as a corollary of the previous result and the
asymptotic behaviour (2.12) of the scattered field (e.g. [9, thm. 2.13]).

Corollary 2.8. LetD be as in theorem 2.3 and u ∈ C2(Rm\D), m = 2, 3, be a radiating
solution to the Helmholtz equation for which the far-field pattern u∞ vanishes on Ωm.
Then u = 0 in Rm\D.

2.2.1 Layer Potentials
In this section we will present the layer potentials and basic results on their properties.
The layer potentials will be of crucial importance to represent the solution to the direct
problem and later on for the first step of the hybrid method to numerically solve the
inverse problem.

Given an integrable function ϕ, the single-layer potential is defined by

w(x) =

∫
Γ

Φ(x, y)ϕ(y)ds(y), x ∈ Rm\D, (2.16)

while the double-layer potential is defined by

v(x) =

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Rm\D. (2.17)

Explicit computations show that both are solutions to the Helmholtz equation in D and
in Rm\D and that they satisfy the Sommerfeld radiation condition. Green’s representa-
tion theorem 2.3 tells us that any solution to the Helmholtz equation can be represented
as a combination of single-and double-layer potentials. We will now state the classical
result on the jump relations of these potentials, but similar results can also be shown for
densities ϕ living in Sobolev spaces (see [27]).

Theorem 2.9. Let Γ be of class C2 and let ϕ be continuous. Then the single-layer
potential w with density ϕ is continuous throughout Rm and satisfies the estimate in
the usual maximum norm

||w||∞,Rm ≤ C||ϕ||∞,Γ

for some constant C depending on Γ. On the boundary we have the representations

w(x) =

∫
Γ

Φ(x, y)ϕ(y)ds(y), x ∈ Γ,

∂w±
∂ν

(x) = ∓ϕ(x)

2
+

∫
Γ

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ Γ,
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where
∂w±
∂ν

(x) := lim
h→0+

ν(x) · gradw(x± hν(x)), x ∈ Γ,

is to be understood in the sense of uniform convergence on Γ and where the integrals
exist as improper integrals.

The double-layer potential v with density ϕ can be continuosly extended from D to D
and from Rm\D to Rm\D with limiting values

v±(x) = ±ϕ(x)

2
+

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Γ,

where
v±(x) := lim

h→0+
v(x± hν(x)), x ∈ Γ

and the integral exists as an improper integral. We also have the estimate

||v||∞,D ≤ C||ϕ||∞,Γ, ||v||∞,Rm\D ≤ C||ϕ||∞,Γ,

for some constant C depending on Γ. The normal derivative has no jump in the sense
that

lim
h→0+

(
∂v

∂ν
(x+ hν(x))− ∂v

∂ν
(x− hν(x))

)
= 0, x ∈ Γ,

uniformly in Γ.

Proof. We refer to theorems 2.12, 2.16, 2.17, and 2.23 in ([8]).

Let us now introduce the single-layer operator S given by

(
Sϕ
)
(x) :=

∫
Γ

Φ(x, y)ϕ(y)ds(y), x ∈ Γ (2.18)

and the double-layer operator K given by

(
Kϕ
)
(x) :=

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Γ. (2.19)

as well as the normal derivative operators

(
K∗ϕ

)
(x) :=

∫
Γ

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ Γ (2.20)

(
Tϕ
)
(x) :=

∂

∂ν(x)

∫
Γ

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ Γ. (2.21)
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The previous jump relations can be given in terms of these operators, namely through

w(x) = (Sϕ)(y),
∂w±
∂ν

(x) = ∓ϕ(x)

2
+ (K∗ϕ)(x),

v±(x) = ±ϕ(x)

2
+Kϕ(x),

∂v

∂ν
(x) = (Tϕ)(x)

for x ∈ Γ. We will now state some results on the mapping properties of these four
operators. For proofs we refer to [8, thm. 2.31].

Theorem 2.10. Let Γ be of class C2. Then

(a) the operators S,K and K∗ are bounded from C(Γ) into C0,α(Γ),

(b) the operators S and K are also bounded from C0,α(Γ) into C1,α(Γ),

(c) the operator T is bounded from C1,α(Γ) into C0,α(Γ).

We also state the following theorem for weak solutions and refer to [27] for the proof.

Theorem 2.11. Let p ∈ N ∩ {0} and α ∈ (0, 1).

(a) Let Γ be of class Cp+2,α. Then S and K are bounded from Hp(Γ) into Hp+1(Γ)
and T is bounded from Hp+1(Γ) into Hp(Γ).

(b) Let Γ be of class Cp+3,α. Then K∗ is bounded from Hp(Γ) into Hp+1(Γ).

Similar results can also be obtained in the case that Γ is not C2–smooth (see [51]).
We also introduce the far-field operators

(S∞ϕ)(x̂) := %m

∫
Γ

e−ikx̂·yϕ(y)ds(y), x̂ ∈ Ω (2.22)

(K∞ϕ)(x̂) := %m

∫
Γ

∂e−ikx̂·y

∂ν(y)
ϕ(y)ds(y), x̂ ∈ Ω. (2.23)

with %m given as in (2.14). Since their integral kernels are continuous, the previous
operators are compact from the space of continuously k-differentiable functions Ck(γ)
intoCk(Ωm) and from the space of Hölder continuously k-differentiable functionsCk,α(γ)
for α > 0 into Ck,α(Ωm). By the asymptotics of the layer potentials, one can also
prove (see [9]) that the far-field pattern of the single layer potential (2.16) is given by

w∞(x̂) = (S∞ϕ)(x̂), x̂ ∈ Ω,

and the far-field of the double-layer potential (2.17) is given by

v∞(x̂) = (K∞ϕ)(x̂), x̂ ∈ Ω.
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For a combined single-and double-layer potential

u(x) =

∫
Γ

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(y)ds(y), x ∈ Rm\Γ

we would obviously get the far-field given by

u∞(x̂) =
(
(K∞ − iηS∞)ϕ

)
(x), x̂ ∈ Ω. (2.24)

2.2.2 Uniqueness and Existence theorems
We recall that the solution us must satisfy

∆us + k2us = 0, x ∈ Rm\D,
Bus = f, x ∈ Γ := ∂D,

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0.

We consider f := −Bui, where the incident field ui is considered to be analytic up to the
boundary of D.

We will state the uniqueness and existence results concerning the three boundary
conditions (2.8)–(2.10) but the proofs will only given for some of the cases. We refer
to [8, 9] for the remaining ones.

Theorem 2.12 (Uniqueness). The exterior Dirichlet, Neumann or Robin problems have
at most one solution.

Proof. We will just give a sketch of the proof for the Dirichlet and Neumann case. For
details see [9, Thm.3.7.]. For the Robin case we refer to [8, Thm.3.37.].

One has to show that solutions to the homogeneous boundary value problemBus = 0
vanish on the domain of definition. From the radiation condition and applying Green’s
theorem one concludes that

lim
r→∞

∫
Ωr

(∣∣∣∣∂us

∂ν

∣∣∣∣2 + k2|u|2
)
ds = −2 k Im

∫
Γ

us∂u
s

∂ν
ds

where Ωr = {x : |x| = r}. As us is just assumed to be continuous up to the boundary, for
the Dirichlet case the existence of the integral on the right-hand side must be assured. We
overcome the problem by considering Γ of class C2 and ui to be at least C1,α (see [47]).
By the boundary conditions us = 0 or ∂us/∂ν = 0 on Γ we get that

lim
r→∞

∫
Ωr

|u|2ds = 0

and by Rellich’s lemma 2.7 one gets the result.
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Theorem 2.13 (Existence). There exists a unique solution to the exterior Dirichlet, Neu-
mann or Robin problem.

Proof. We first consider the Dirichlet boundary condition. We start by writing a candi-
date for the solution as a combined single-and double-layer potential representation, that
is, let

v(x) :=
(
(K − iηS)ϕ

)
(x), x ∈ Rm\D. (2.25)

with some coupling parameter η > 0. By the properties of the layer potentials, we con-
clude that v satisfies the Helmholtz equation and the radiation condition. By the jump
relations, in order to fulfil the boundary equation, we get that

ϕ

2
+ (K − iηS)ϕ = f

must be satisfied over Γ. The fact that S and K are compact operators from C(Γ) into
itself (thm. 2.10 combined with the compact embedding of C0,α(Γ) in C(Γ)) and the
Fredholm-Riesz theory for equations of the second kind with a compact operator show
that the equation has a solution if the operator I + 2(K − iηS) is injective. Let us then
assume that ϕ is a solution to the homogeneous equation

ϕ+ 2(K − iηS)ϕ = 0.

Then the potential v given by (2.25) satisfies the exterior homogeneous boundary con-
dition and by uniqueness of this problem we conclude that v = 0 on Rm\D. The jump
relations from thm. 2.9 yield

v− = −ϕ, ∂v−
∂ν

= −iηϕ on Γ

and from the first Green’s theorem applied to v− and v− in D we get

iη

∫
Γ

|ϕ|2ds =

∫
Γ

v−
∂v−
∂ν

ds =

∫
D

(
| grad v|2 − k2|v|2

)
.

Taking the imaginary part of the previous equation we get ϕ = 0 and the existence proof
is finished.

For the Neumann and Robin cases the proofs go in a similar way, choosing appro-
priate combinations of layer potentials. We refer to [9, thm.3.10] and [8, thm.3.38],
respectively, for details.

Remark 2.14. The estimates of theorem 2.9, along with the continuous dependence of the
density ϕ on the boundary data f contained in the previous proof as a consequence of the
Fredholm-Riesz theory, show continuous dependence of the solution us on the boundary
data f .
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2.3 The Inverse Acoustic Scattering Problem
The inverse problem is a much harder and more exciting problem to solve. It has been
studied for the last decades but there are still many rather fundamental open problems,
namely uniqueness proofs for a finite number of incident waves. In this section we will
give an overview of the results for the time-harmonic acoustic obstacle scattering problem
under consideration.

The formulation of the inverse problem we want to solve is the following:

Inverse Problem 2.15. Let ui be an incident field, usually considered to be a plane
wave ui(x) = eikx·d, with incident direction d such that |d| = 1.

Given a far-field pattern u∞ corresponding to a scattered field us satisfying

∆us + k2us = 0, x ∈ Rm\D, (2.26)
B(ui + us) = 0, x ∈ Γ := ∂D, (2.27)

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0, (2.28)

where B is known and is one of the operators (2.8)–(2.10) corresponding to a Dirichlet,
Neumann or Robin boundary condition, find the position and shape of the obstacle D of
class C2. In the case of the impedance boundary condition (2.10) we also want to find
the unknown impedance λ.

Remark 2.16. The latter case is equivalent to recovering the obstacle and the boundary
condition, since we recover also the unknown impedance λ. As referred before, both the
Dirichlet and Neumann are particular cases of the Robin one. If λ is close to zero we
recover the information that the obstacle is sound-hard and if λ is large that it is sound-
soft. A coated-obstacle can also be reconstructed though we assume λ to be a continuous
function.

The problem 2.15 is ill-posed in the sense of Hadamard [17] and is also non-linear.
The ill-posedness comes from the fact that the determination of D does not depend con-
tinuously on the far-field pattern u∞. In the procedure of the hybrid method (as explained
later on in section 3.2), this is illustrated in the reconstruction of us from the knowledge
of u∞, since it can be seen as the inversion of the integral operator (2.24) which is a
compact operator due to its continuous kernel. The non-linearity comes from the fact
that the scattered wave does not depend linearly on the obstacle. This can be illustrated
as finding the position of the obstacle as the location of the zero level set of Bu not being
a linear problem. Moreover, scattering by two different obstacles is different from the
sum of scattering by each one of them separately.

The first and only issue that needs to be addressed is uniqueness. Note that existence
is a wrong issue to study since we assume that the given far-field u∞ corresponds to
scattering by the unknown obstacle D. In this sense, existence is settled. In fact, if the
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far-field data contains noise then existence is not a matter to ask for, since the problem
is severely ill-posed and a solution to the noisy data could be very far from the true
solution. Moreover, if one actually wanted to proof existence of a solution for a general
given far-field pattern u∞, it would imply that one would be able to characterize whether
the zero level set of the scattered field corresponding to the given far-field u∞ is a close
curve, which is now-a-days way beyond the capabilities of the available theory. Therefore
we will proceed by presenting some classical results on the uniqueness of this inverse
problem and sketch the proofs. We start by the classical result presented in [45] based on
the ideas of Schiffer.

Theorem 2.17. Assume that D1 and D2 are two sound-soft scatterers such that the far-
field patterns coincide for an infinite number of incident plane waves with distinct direc-
tions and one fixed wave number. Then D1 = D2.

Proof. Let us
j(., d), j = 1, 2, be the scattered field corresponding to scattering by the

obstacle Dj with incident direction d and let uj(., d), j = 1, 2, be the corresponding
total field. By thm. 2.8 we know that the far-field pattern uniquely determines the scat-
tered wave and so we have that us

1(x, d) = us
2(x, d) for x ∈ G where G is the un-

bounded component of Rm\(D1 ∪ D2). Consequently, we get that u1(x, d) = u2(x, d)
for x ∈ G and by the boundary condition and continuity of the total fields we get
that u1(x, d) = u2(x, d) = 0 for x ∈ ∂G. We now assume that D1 6= D2 in order to
obtain a contradiction. Without loss of generality we can assume that D∗ = (Rm\G)\D2

is non-empty. Then us
2(., d) is defined in D∗ since it is describes scattering by D2. There-

fore u2(., d) satisfies the Helmholtz equation in D∗ as well as the homogeneous Dirichlet
boundary condition on ∂D∗. Therefore u2(., d) is a Dirichlet eigenfunction of the neg-
ative Laplacian in D∗ with eigenvalue k2. In this way, considering an infinite number
of incident directions {dn}, n ∈ N, we have an infinite number of Dirichlet eigenfunc-
tions u2(., dn) in D∗ for the same eigenvalue k2. The proof is now finished by showing
that the u2(., dn) ∈ H1

0 (D∗) (e.g. [9, Lem.3.8]) are linearly independent and that for a
fixed eigenvalue there exists only finitely many linearly independent Dirichlet eigenval-
ues in H1

0 (D∗) (e.g. [9, proof of thm.5.1]). In this way we get the desired contradiction
and the proof is finished.

In this work we are interested in a method to solve the inverse obstacle scattering
problem considering as data the far-field pattern for just one incident field. In this way,
we will proceed by presenting uniqueness results considering just a finite number of
incident directions, namely using some a priori bound on the size of the obstacle. The
bound on the size of the obstacle was initially proposed by Colton and Sleeman [11] and
recently improved by Gintides [14].
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Theorem 2.18. Let D1, D2 ∈ R3 be two scatterers which are contained in a ball of
radius R, let

N :=
∑

tnl<kR

(2n+ 1)

where tnl, l ∈ N are the positive zeros of the spherical Bessel function jn, n ∈ N and let

M :=

{
N/2 + 1, N is even
(N + 1)/2, N is odd.

Assume also that the far-field patterns for both obstacles coincide for one fixed wave
number k and for M different incident directions dn, n = 1, . . . ,M , such that dn 6= ±dn′

for n 6= n′. Then D1 = D2.

Proof. We use the same definition of D∗ as used in the previous proof. The Courant
maximum-minimum principle for compact symmetric operators implies that the negative
Laplacian Dirichlet eigenvalues have the following property (see [46, thm.4.7]): The n–th
eigenvalue λn ordered by magnitude taking into account its multiplicity for a ball B con-
taining the domainsD1 andD2 is always smaller than the n–th eigenvalue µn for the sub-
domain D∗ ⊂ B. In particular, for λn = k2, the multiplicity of λn must be less than or
equal to the sum of multiplicities of the eigenvalues of the ballB that are smaller than k2.
It is known that the eigenvalues of the ball B are given by µnl = t2nl/R

2 (e.g. [9, pp.57])
and each has multiplicity 2n + 1 (e.g. [9, thm.2.6]). Therefore the multiplicity of λn

must be smaller or equal to N , by definition of N . Assuming D∗ is non-empty, that
is, that D1 6= D2, in the same way as in the previous proof we will be led to a contra-
dition. We have that M incident directions {dn}, n = 1, . . . ,M, would lead to M lin-
early independent eigenfunctions u2(., dn), n = 1, . . . ,M with the same eigenvalue k2.
Moreover, under the assumptions on the incident directions, the conjugate complex total
fields ū2(., dn), n = 1, . . . ,M would be also linearly independent from the previous and
would also satisfy the Laplace equation in D∗ and the homogeneous Dirichlet boundary
condition on ∂D∗ (see[14]). Therefore we would have 2M linearly independent eigen-
functions related with the eigenvalue λn and so the multiplicity of λn is greater or equal
to 2M , which leads to a contradiction because 2M > N . Therefore D1 = D2.

Corollary 2.19. Let D1, D2 ∈ R3 be two scatterers which are contained in a ball of
radius R such that kR < t10 ≈ 4.4939. Assume also that the far-field patterns coincide
for one incident direction. Then D1 = D2.

Proof. From kR < t10 and the fact that t00 is the only positive zero tnl of a Bessel
spherical function jn satisfying tnl < t10, we conclude that N ≤ 1 and so by the previous
theorem one incident direction is enough to uniquely determine the obstacle.

Remark 2.20. A similar result can be obtained in R2 with the restriction kR < z10,
where znl are the positive zeros of the Bessel functions Jn. The proof is identical and
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relies on the fact that Jn(kr)e±ikφ is an entire solution to the Helmholtz equation in R2

and therefore µnl = z2
nl/R

2 are Dirichlet eigenvalues on a circle of radius R. Everything
then follows in a similar way.

Note that for the previous uniqueness results no regularity assumption was made on
the domains.

For the Neumann and Robin boundary conditions, the same procedure of proof can
not be carried out. This is due to the fact that the domain D∗ defined as in the previ-
ous proofs might have corners or even cusps and the finiteness of the dimensions of the
eigenspaces of the Laplace operator with boundary conditions requires the boundary to
be sufficiently smooth. This cannot be overcome with requiring more regularity or even
analyticity on D1 and D2 since this does not prevent D∗ to have corners or cusps. A new
idea of proof that could be applicable to these two boundary conditions was suggested by
Isakov (e.g. [24]), who obtained a contradiction on the value of an integral over some ap-
propriate contour when its length went to zero. A much simpler approach was presented
by Kirsch and Kress [33], where this contradiction was achieved in a pointwise sense.
Moreover, this procedure of proof can be carried out for any of the referred boundary
conditions, as mentioned in remark 2.22. It is the following result.

Theorem 2.21. Assume that D1 and D2 are two sound-hard scatterers such that the far-
field patterns coincide for all incident plane waves with incident directions within an
open non-empty subset of Ωm and one fixed wave number. Then D1 = D2.

Proof. By reciprocity (2.15) and analyticity of the far-field pattern, we first conclude that
the far-field patterns must coincide for all incident directions. Then, as in thm 2.17 we
conclude that u1(., d) = u2(., d) on the unbounded component G of Rm\(D1 ∪ D2).
Let x0 ∈ G be fixed and consider the two Neumann problems

∆ws
j + k2ws

j = 0 in Rm\Dj, (2.29)
∂ws

j

∂ν
= −∂Φ( . , x0)

∂ν
on ∂Dj (2.30)

for j = 1, 2. Our first goal is to prove that ws
1 = ws

2 in G.
To this end, we choose a bounded C2–domain B such that Rm\B is connected,

the set (D1 ∪ D2) ⊂ B, x0 /∈ B and k2 is not an interior Dirichlet eigenvalue for B,
which is possible to achieve with a proper choice of B due to the strong monotonicity
properties of the eigenvalues. Then, from the completeness of {ui(.; d) |∂B : d ∈ Ωm}
in L2(∂B) (e.g. [9, thm.5.5]), there exists a sequence {vn} in span{ui(.; d) : d ∈ Ωm}
such that

||vn − Φ( . , x0)||L2(∂B) → 0, n→∞.

Then as each vn is a solution to the Helmholtz equation and by the assumption that k2 is
not an eigenvalue for B, we can conclude (e.g. [9, thm.5.4]) that

grad vn → grad Φ( . , x0), n→∞ (2.31)
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uniformly on compact sets of B, in particular, in D1 ∪ D2. Since the vn are combina-
tions of plane waves, from the first paragraph of this proof, the corresponding scattered
fields vs

n,j for the obstacles Dj, j = 1, 2 must coincide in G. This implies also that

∂vs
n,j

∂ν
= −∂vn

∂ν
on ∂Dj, j = 1, 2

so the convergence (2.31) along with the uniqueness and well-posedness of the solution
to the exterior Neumann problem show us that

vs
n,j → ws

j , n→∞

uniformly in compact sets of Rm\Dj, j = 1, 2. Therefore ws
1 = ws

2 in G, since as already
mentioned the fields vs

n,j, j = 1, 2 coincide in G.
We now assume that D1 6= D2 in order to get a contradiction. Without loss of gen-

erality, there exists x∗ ∈ ∂D1\D2. We choose h > 0 sufficiently small such that the
sequence

xn := x∗ +
h

n
ν(x∗), n ∈ N,

is contained in G. We now consider ws
n,j as the solutions to the exterior Neumann prob-

lems (2.29)–(2.30) with x0 replaced by xn. We recall that ws
n,1 = ws

n,2 = ws
n in G. On

the one hand we have that the Neumann boundary data over ∂D2 is uniformly bounded
with respect to the maximum norm and along with the well-posedness of the exterior
Neumann problem we have that ∣∣∣∣∂ws

n

∂ν
(x∗)

∣∣∣∣ ≤ C

for some positive constant C and all n ∈ N. On the other hand, the scattered field corre-
sponding to D1 must satisfy the boundary condition and so∣∣∣∣∂ws

j

∂ν
(x∗)

∣∣∣∣ =

∣∣∣∣∂Φ(x∗, xn)

∂ν

∣∣∣∣→∞, n→∞

This contradiction shows that D1 = D2

Remark 2.22. Note that with proper changes in (2.30) and in the following boundary con-
ditions, this proof works for all boundary conditions (2.8)–(2.10). The only requirement
is that

|BΦ(x∗, xn)| → ∞, n→∞

in order to get the contradiction at the end. In particular, it is not needed that the boundary
condition imposed is the same for both obstacles D1 and D2.
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A similar result can also be proved for the Robin or impedance boundary condition,
where the uniqueness is guaranteed not only for the obstacle, but also for the impedance
function λ.

Theorem 2.23. Assume that D1 and D2 are two scatterers with impedances λ1 and λ2

such that the far-field patterns coincide for all incident plane waves with incident direc-
tions within an open non-empty subset of Ωm and one fixed wave number. Then D1 = D2

and λ1 = λ2.

Proof. As referred in remark 2.22, with a similar proof to the one of thm 2.21 one shows
that D1 = D2. Let us assume that λ1 6= λ2. By Rellich’s lemma we have that the total
fields u1 and u2, corresponding to scattering by D = D1 = D2 with impedances λ1

and λ2, respectively, coincide outside D and therefore by continuity, one finds that
∂u

∂ν
+ iλ1u =

∂u

∂ν
+ iλ2u = 0, on ∂D

where u = u1 = u2. Hence (λ1−λ2)u = 0. If the total field would vanish on an open set
of ∂D, then by the boundary condition the Cauchy data of u would vanish on the same
set of ∂D and by Holmgren’s theorem and analyticity of the solution u, the total field u
would vanish in Rm\D. Therefore, this cannot happen and λ1 = λ2 in a L2-sense. By
the continuity of λ1 and λ2 we have the result.

The previous result can also be extended to the case of a point source incident field
instead of plane incidence (e.g. [40]).

A uniqueness result for both sound-hard or impedance obstacle considering just a
finite number of incident directions is still open, even with a priori knowledge on the
size of the obstacle D (analogous to thm. 2.18 for the sound-soft case). Uniqueness
results for a finite number of incident directions with no a priori knowledge on the size
of the obstacle for the Dirichlet case are also an open problem. However, some work
as also been developed in this direction with geometrical restrictions such as the case of
balls [48] and, more recently, polygonal obstacles [1, 6].

In chapter 5 we will be interested in recovering star-shaped obstacles, that is, with
boundary of the form

Γ = {r(x̂) x̂ : x̂ ∈ Ωm}
with r ∈ C2(Ωm). In this way, by a formal argument, given a complex valued func-
tion u∞ on Ωm it makes sense to try to reconstruct one real function r over Ωm, get-
ting a formally overdetermined problem. In the same way, for a star-shaped domain the
impedance λ defined on the boundary can be seen as λ = λ(x̂), x̂ ∈ Ωm. Therefore,
even for the impedance case it would make sense to try to reconstruct both real func-
tions r and λ from the knowledge of one complex valued function u∞ over Ω. Having
this formal argument in mind, we will proceed in the next chapter by suggesting a method
to numerically solve the inverse scattering problem 2.15 having as data the far-field pat-
tern u∞ corresponding to one single incident field.





Chapter 3

The Hybrid Method

In this chapter, the hybrid method will be suggested as an efficient method to numerically
solve the inverse problem 2.15. The denomination hybrid comes from the fact that this
method can be seen as a hybrid between iterative and decomposition methods, combin-
ing ideas and gaining advantages of both of them. In the next section we will give a
short introduction to these two classes of methods that have been broadly used to numer-
ically solve the inverse obstacle scattering problem. In the following section 3.2 we will
then present the general ideas of the hybrid method. A comparison between the hybrid
method and its ”parent” methods is presented at the end of this section. In the following
sections 3.3–3.5, we will separate the presentation of the method according to each of
the boundary conditions (2.8)–(2.10), since the numerical treatment must be different for
each case.

3.1 Previous Methods

In order to present the hybrid method we will give a brief overview on methods that
have previously been used to numerically solve the inverse problem under consideration,
namely dividing them into three classes: iterative methods, decomposition methods and
sampling methods. We will focus on regularized iterative methods and decomposition
methods, since as already referred they are the ”parents” of the hybrid method and so
some knowledge on them is important for a better understanding of this new method. We
will assume at first that the boundary condition is explicitly known a priori but we will
also discuss the case of a Robin boundary condition with unknown impedance, which is
equivalent to solving the problem without knowing the properties of the scatterer.

Newton’s iterative methods appeared in the beginning of the 80’s. These methods
pose the inverse problem as an ill-posed operator equation and then solve it by regularized
Newton’s iterations. For instance, for a single fixed incident field ui, the solution to the
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direct scattering problem defines the operator

F : γ 7→ u∞ (3.1)

that maps the boundary γ of some obstacle onto the far-field corresponding to scattering
by that obstacle. In this sense, given the far-field pattern u∞, the inverse problem is
equivalent to finding the solution to the nonlinear and ill-posed operator equation

F (Γ) = u∞ (3.2)

for the unknown boundary Γ. For sound-soft or sound-hard obstacles, regularized New-
ton’s iterations applied to (3.2) have been studied and used for over two decades (see [21,
55, 58]). Their idea is to linearize (3.2), based on the Fréchet differentiability of the
operator F (see [18, 19, 53]) and iterate this procedure. More recently Kress and Run-
del [40] generalized this Newton method for recovering both the unknown obstacle and
the unknown impedance. Due to the ill-posedness of F ′, regularization is required in
each iteration step. As the Fréchet derivative F ′ is characterized in terms of the solution
to a direct problem, the main drawback of this method is that it requires a forward solver
to be used at each iteration step, which is costly in terms of computations. A reasonable
initial guess is also needed to start the iterations. As for the theoretical background, the
convergence proofs for these methods are not yet completely satisfactory, though there
has been some progress in that matter (see [20, 21, 22, 55]).

As an alternative approach appearing on the second half of the 80’s, decomposition
methods take care of the ill-posedness and the nonlinearity of the inverse scattering prob-
lem separately. Their idea is the following: In a first step the total field u is reconstructed
from the given far-field pattern u∞, which is an ill-posed problem. For example, this can
be done based on an analytic continuation principle (to which we will refer later on in
assumption 3.2), by representing the scattered field us as a layer potential over an approx-
imate boundary γ, usually considered to be inside D (see Kirsch and Kress [30, 31, 32])
or by approximating the fundamental solution by an Herglotz wave and insert the approx-
imation in a single layer potential to represent the solution (see Potthast’s point source
method [52]). Note that in the Kirsch and Kress decomposition method, the requirement
that the far-field of the potential coincides with the given far-field u∞ leads to an ill-posed
linear integral equation that can be approximately solved via Tikhonov regularization. In
the point source method an ill-posed integral equation needing regularization also arises.
Then, in a second step, one tries to find the boundary Γ as the location where the bound-
ary condition (2.6) is satisfied in a least squares sense (or in the Dirichlet case just by
plotting |u|). This second step is clearly non-linear. More recently, the point source
method was adapted in [57] to reconstruct the obstacle without knowing its boundary
condition. Though these methods do not need the solution to the forward problem, the
reconstructions obtained are not as accurate as those obtained by Newton’s iterations. As
for the theoretical background, these methods are usually compared with a minimization



3. The Hybrid Method 35

problem (see[9, sec.5.4]) as we will illustrate in section 4.1, but there is a gap between
the theory and the implementation of the methods.

When both these classes of methods first appeared, they required the a priori knowl-
edge of some physical properties of the obstacle, namely the boundary condition imposed
at its boundary. Therefore these methods were initially designed for sound-soft or sound-
hard scatterers. An alternative method for recovering scatterers with unknown boundary
conditions was needed. In the second half of the 90’s, a new family of methods arose -
the sampling or probe methods - that could deal with this problem (e.g. the linear sam-
pling method [7], the factorization method [29], the probe algorithm [23] and the singular
source method [54]). Their idea is to establish a criterion to distinguish whether a point
is inside or outside D based on the range of some appropriate operator, and then apply
it to a grid of sampling points. Though these methods do not need a priori knowledge
on the boundary condition, they usually just reconstruct the obstacle and not the bound-
ary condition. Recently in [3], after reconstructing the obstacle by the linear sampling
method, a procedure was suggested to reconstruct also the unknown impedance λ on the
boundary of this reconstructed obstacle. However a big drawback arises for this class of
methods: they require a huge amount of data, namely the far-field data for many incident
directions, in order to get meaningful reconstructions.

Since then several other methods were suggested to solve the inverse scattering prob-
lem (see [4, 9, 10, 39, 56] for details on the state of the art), always trying to get good
reconstructions with small computational cost and needing only few input data. In the
next sections, the hybrid method will be suggested as a good compromise between these
three aspects.

3.2 The Hybrid Method’s Basic Ideas

The hybrid method consists of two steps in the same spirit as a decomposition method,
that are iterated until some stopping criterion is achieved as in an iterative method. We
will now give a general overview over the method and then particularise and give a more
detailed analysis for each of the considered boundary conditions.

We will denote by γn the current approximation to Γ at the n-iteration given by the
method. In the first step, the scattered field us is reconstructed as a layer potential over the
closed C2–contour γn just as in the first step of the Kirsch and Kress method [32]. In this
way, let Lγn : C(γγn) → L2(Rm\γn) be an appropriate layer potential over γn, that is,
the operator Lγn maps ϕ living on γn to the corresponding single-, double-or combined
single-and double-layer potential. Let Lγn,∞ be the corresponding far-field operator, in
accordance with (2.22)–(2.24). Then, the first step consists of solving

Lγn,∞ϕ = u∞ (3.3)
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with respect to ϕ and approximate the total field by

u(x) ≈ ui(x) + (Lγnϕ)(x), x ∈ Rm\γn.

Note that (3.3) is ill-posed, since Lγn,∞ is a compact operator in any of the cases con-
sidered. Therefore regularization is needed. The fact that this operator is injective and
has dense range is of crucial importance to assure that regularization can be used. More-
over, we also need to make use of an analytic continuation principle for u, since if γn is
laying inside the obstacle D, the equation has a solution if and only if the total field u
can be analytically extended up to γn. We will address this matter in assumption 3.2. In
addition, if the right-hand side is perturbed with noise then in general it will lay outside
the range of the operator Lγn∞. Therefore, for the numerical and applicational purpose
of the method, it only makes sense to search for a regularized solution. Using Tikhonov
regularization, we replace (3.3) by(

αnI + L∗γn,∞Lγn,∞
)
ϕ(n) = L∗γn,∞u∞ (3.4)

with some regularization parameter αn > 0 and approximate the total field u by

un(x) = ui(x) + (Lγnϕ
(n))(x), x ∈ Rm\γn. (3.5)

In the second step we consider the operator G that for a fixed given field u maps a
closed C2–contour γ onto the trace of boundary condition of u on γ, that is,

G : γ 7→ Bγu (3.6)

where Bγ is one of the boundary condition operators (2.8)–(2.10) with Γ replaced by γ.
Now, if the considered fixed field u is the total field corresponding to scattering by the
obstacle D, the solution Γ to the inverse problem satisfies G(Γ) = 0. Therefore, in the
same spirit as a Newton method we linearize the previous equation based on the Fréchet
differentiation of G and solve

G(γn) +G′(γn)h = 0 (3.7)

in order to get a new approximation to the boundary contour given by γn+1 = γn + h,
with some abuse of notation. We look for the shift h in some appropriate smooth finite
dimensional space, to insure that γn+1 remains at least C2-smooth. In practise in (3.6)
we replace u by the approximation (3.5). The characterization of G′ depends on the
boundary condition imposed. For any of the boundary conditions considered it depends
on the values of u and its normal derivative on γ, so in order to compute them one uses
the jump relation in thm. 2.9. Now, in the spirit of a iterative method we repeat both steps
until some stopping criteria is achieved.
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Remark 3.1. In the initial Kirsch and Kress method [32], no iteration on the curve γ was
made, since it was not seen as an approximation to Γ. In fact, the curve γ had a role of an
auxiliary curve to recover the total field u. Then one would obtain a linearized equation
similar to (3.7) that was solved iteratively using always the fixed field obtained in the first
step. In this way it was of crucial importance that the approximation (3.5) was defined
over Γ and so one needed the assumption that γ is inside D. The way the hybrid method
was constructed eliminates this need, since both u and its derivatives are evaluated at
each step only over the current approximation γn.

The hybrid method is closer to a decomposition method than to a Newton method. It
does not need a forward solver and also separates the ill-posedness from the non-linearity
of the problem into two steps in each iteration. The previous remark clarifies the changes
made to a particular decomposition method - the Kirsch and Kress method [32] - in or-
der to allow it to be iterated, reviving it with a more competitive version. Moreover, the
hybrid method is more effective than the Kirsch and Kress method in the sense that it
gets better reconstructions (as we will see in section 5), being able to compete with ap-
proximations obtained by the usual regularized Newton method. In this way, this method
provides a good compromise between required data, computational costs and numerical
accuracy.

In the next three sections we will proceed by characterizing G′ for each of the con-
sidered boundary conditions. At the end of section 3.5 we will compare the obtained
characterization of G′ with the Fréchet derivative of the far-field operator F in (3.1) that
gives rise to an iterative Newton method as mentioned previously, relating in this way the
hybrid method to this other iterative method.

3.3 The Hybrid Method for the Dirichlet Case

In this section we will consider the hybrid method for the numerical solution to the in-
verse obstacle scattering problem 2.15 with Dirichlet boundary condition. This means
the solution us to the direct problem satisfies

∆us + k2us = 0, x ∈ Rm\D,

u = 0, x ∈ Γ,

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0,

where again the total field u is the sum of the given incident field ui and the scattered
field us. The goal is to recover the domain D from the knowledge of the far-field pat-
tern u∞ for one incident plane wave ui(x) = eikx·d, |d| = 1.



38 3.3. The Hybrid Method for the Dirichlet Case

We will consider that the solution to the inverse problem can be parameterized, that
is,

Γ = {z∗(t) : t ∈ X}

where the parameterization z∗ ∈ C2(X) is such that Γ is C2–smooth (in R2 we will
assume that z∗ ∈ C2([0, 2π]) is 2π–periodic and is counter-clockwise oriented) and has
the following mapping properties{

z : X → R2, X := [0, 2π], m = 2,

z : X → R3, X := [0, π]× [0, 2π], m = 3.

At the n–iteration of the hybrid method we will consider that the current approxima-
tion γn to the correct boundary Γ is given by

γn = {zn(t) : t ∈ X}.

Later on we will assume that zn ∈ U , where U is a finite dimensional subspace of the
previous parameterization space, that is

U ⊂ {z : z ∈ C2(X), z is X–periodic}.

Following the comments on the solvability of (3.3), we will now state an assumption
that will be of crucial importance throughout this work.

Assumption 3.2 (Analytic Continuation Principle). The solution us to the direct problem
of scattering by D can be analytically extended as a solution to the Helmholtz equation
in a neighbourhood of the boundary Γ of D.

Remark 3.3. If the boundary Γ is analytic, then assumption 3.2 holds (see [13]).

Assuming that γn is sufficiently close to Γ in a way that the solution us to the direct
problem of scattering by D can be analytically extended up to γn and assuming that k2

is not an interior Dirichlet eigenvalue of the negative Laplacian for the interior of γn, we
can represent the scattered field us as a single layer potential over γn (see [8, thm. 3.30]),
that is

us(x) =

∫
γn

Φ(x, y)ϕ(y)ds(y), x ∈ Rm\γn

with density ϕ ∈ C(γn).

Remark 3.4. We choose a single-layer representation because it leads to less complexity
later on in the implementation. However, the condition on the wave number k is needed
and can not be guaranteed a priori for the successive approximations γn. We also note
that for the Neumann and Robin cases we will use a combined single-and double-layer
potential in order to illustrate the differences in the implementation.
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Due to analyticity of the single layer potential in Rm\γn, it is clear that if the analytic
continuation principle 3.2 does not hold, then the previous representation would not make
sense for the cases where γn ∩D 6= ∅. One knows that the exterior trace to the boundary
of the previous potential is given by

us(x) =
(
Sγnϕ

)
(x), x ∈ γn

where Sγn : C(γn) → C(γn) is the single-layer operator (2.18). By the asymptotics of
the single layer potential the far-field must satisfy the equation

Sγn,∞ ϕ = u∞ in Ωm (3.8)

with the far-field operator Sγ,∞ : C(γ) → C(Ωm) given by

Sγ,∞ ϕ = %m

∫
γ

e−ikx̂·y ϕ(y)ds(y), x̂ ∈ Ωm,

with %m given as in (2.14). As referred in the previous section, the previous operator
is compact (since it has a continuous kernel) so (3.8) must be replaced by a regularized
equation. In order to show that a regularization scheme is applicable one needs to show
that the operator Sγn,∞ is injective.

Theorem 3.5. Assume that k2 is not an interior Dirichlet eigenvalue of the negative
Laplacian with respect to the open bounded domain Dγ with boundary γ. Then the
operator Sγ,∞ : L2(γ) → L2(Ωm) is injective and has dense range.

Proof. Assume that ψ ∈ L2(γ) satisfies Sγ,∞ψ = 0. Then the single-layer potential

v(x) =

∫
γ

Φ(x, y)ψ(y)ds(y), x ∈ Rm\γ

has a vanishing far-field. By Rellich’s lemma and analyticity we conclude that v vanishes
in Rm\Dγ . By continuity up to the boundary we conclude that Sγψ = 0 over γ. As k2

is not an interior Dirichlet eigenvalue with respect to the open bounded domain Dγ we
know that Sγ is injective (see [8, thm.3.30]) and so we conclude that ψ = 0, proving
injectivity of Sγ .

To prove denseness one shows by a similar argument that the adjoint operator S∗γ is
injective and concludes that Sγ is therefore dense, since for a linear bounded operator A
the closure of the range of A is the orthogonal complement of the nullspace of A∗ (for
details see [9, thm.5.17]).

Using Tikhonov regularization, as referred in the previous section, we need to re-
place (3.8) by (

αnI + S∗γn,∞Sγn,∞
)
ϕ(n) = S∗γn,∞u∞ (3.9)
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solving it with respect to ϕ(n) for some regularization parameter αn > 0 decreasing
with n. The scattered field us can now be approximated by

us
n(x) =

∫
γn

Φ(x, y)ϕ(n)ds(y), x ∈ Rm\γn. (3.10)

and using the jump relations we also get the approximations to us and its exterior normal
derivative ∂us/∂ν on γn given by

us
n(x) = (Sγnϕ

(n))(x), x ∈ γn, (3.11)

∂us
n

∂ν
(x) = −1

2
ϕ(n) + (K∗

γn
ϕ(n))(x), x ∈ γn, (3.12)

respectively.
For a fixed analytic field u, we now define the operator GD that maps the parameter-

ization z of the contour γ to the exterior trace of the Dirichlet boundary condition of that
field u over γ, that is,

GD : z 7→ u ◦ z.
If the field u is the total field, then in order to find the position of the boundary of the
obstacle D as the location where the boundary condition is satisfied, we want to find the
solution to

GD(z) = 0.

In the spirit of a Newton method we now linearize the previous equation around zn and
solve the linearized equation

GD(zn) +G′
D(zn)h = 0 in X (3.13)

with respect to the shift h. In the next theorem we characterize the Fréchet derivative
of GD.

Theorem 3.6. The operator GD : C2(X) → C(X) is Fréchet differentiable and the
Fréchet derivative is given by

G′
D(z)h = (gradu ◦ z) · h.

Proof. By the Taylor formula, the Fréchet differentiability of GD is a direct consequence
of the analyticity of u and the C2–smoothness of z. Moreover, from the Taylor formula
for u one gets for each t ∈ X that

u
(
z(t) + h(t)

)
= u

(
z(t)

)
+ gradu

(
z(t)

)
· h(t) +O

(
|h(t)|2

)
,

as ||h||∞ → 0. Therefore by definition of GD we have

||GD(z + h)−GD(z)− (gradu ◦ z) · h||∞ = O(||h||2∞)

as ||h||∞ → 0 and by definition of the Fréchet derivative one has the result.
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With this characterization, equation (3.13) can be rewritten in the following way

(grad u ◦ zn) · h = −u ◦ zn in X. (3.14)

In this way, at each iteration n we approximate us by us
n obtained in the first step of the

iteration and solve(
(grad us

n + grad ui) ◦ zn

)
· h = −

(
us

n + ui
)
◦ zn in X

with respect to h in a least squares sense, obtaining the new approximation γn+1 param-
eterized by zn+1 = zn + h. Note that we use the jump relations (3.11) and (3.12) to
compute the terms involved, through the decomposition

gradu|γn = ν
∂u

∂ν

∣∣∣∣
γn

+∇t u, (3.15)

where ∇tu represents the surface gradient of u, which in R2 reduces itself to the tangen-
tial derivative times the tangential unit vector. We now repeat the two steps until some
stopping criteria is fulfilled. The details on the numerical implementation will be given
in sections 5.1.2 and 5.2.2 for R2 and R3, respectively.

Remark 3.7. This method can also be extended to recover sound-soft cracks. The main
difference is that one needs to choose the right or left hand side normal derivative in (3.15)
in an appropriate way. A further penalty term on the length of the crack is also needed to
prevent it from degenerating to a point. For details we refer to [42].

Remark 3.8. Note that to show solvability of (3.13) we would need to show that G′
D(zn)

is injective. However this can only be done if we are over the correct boundary Γ, if u is
considered to be the exact total field and if there exists an open set of Γ where h · ν 6= 0.
In this case, by the boundary condition we have that if

0 = G′
D(z∗)h = h · gradu ◦ z∗ = h · ν ∂u

∂ν

then h = 0 everywhere. By contradiction, assume than this is not the case. Then, as there
exists an open subset of Γ where h · ν 6= 0, the normal derivative of u would need to
vanish on that open subset of Γ. By the boundary condition and Holmgren’s theorem we
conclude that the total field u = 0 in Rm\D, which can not happen since the scattered
field goes to zero at infinity and the incident field does not. A similar result can be shown
for the Neumann and Robin boundary condition (see [59, thm.5]).
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3.4 The Hybrid Method for the Neumann Case
We will now adapt the previous approach to solve the inverse problem 2.15 with Neu-
mann boundary condition. In this way, the solution us to the direct problem satisfies

∆us + k2us = 0, x ∈ Rm\D,

∂u

∂ν
= 0, x ∈ Γ,

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0,

where again the total field u is the sum of the given incident field ui and the scattered
field us. Again, the goal is to recover the domain D from the knowledge of the far-field
pattern u∞ for one incident plane wave ui(x) = eikx·d, |d| = 1.

As already mentioned, the analytic continuation principle is of major importance for
reconstructing the total field using the Kirsch and Kress idea. Again we assume that the
solution us to the direct scattering problem forD can be analytically extended up to γn. In
order to loose the assumption on k2 not being an interior eigenvalue, we will now repre-
sent the scattered field us as a combined single-and double-layer potential over γn (see [8,
thm.3.34]). However, this combined layer representation is of course harder to implement
numerically. In this way we have

us(x) =

∫
γn

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(y)ds(y), x ∈ Rm\γn

for some coupling term η > 0 and density ϕ ∈ C1,α(γn). For the combined layer ap-
proach we need more regularity assumptions on the density ϕ since later on we will need
to use the mapping properties of the operator T defined in (2.21) to have, in particu-
lar, that (Tϕ) ∈ C(γn). This will then ensure that the normal trace of us is continuous
over γn.
Remark 3.9. As in [9], such a strong regularity assumption on ϕ is not needed if we
use the smoothing operator S0 in our ansatz for us, where S0 is the single-layer operator
with kernel Φ being the fundamental solution to the Laplace equation. Then we could
represent us as

us(x) =

∫
γn

∂Φ(x, y)

∂ν(y)

(
S2

0ϕ
)
(y)− iηΦ(x, y)ϕ(y)ds(y), x ∈ Rm\γn

with ϕ ∈ C(γn), since S2
0 : C(γn) → C1,α(γn) and therefore (TS2

0ϕ) ∈ C(γ). Though
this ansatz solves the problem theoretically, we do not take it for our analysis because
for a computational purpose this operator is much more complicated and its numerical
treatment is more costly.
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By the jump relations one gets that the exterior trace of us over γn is given by

us =
ϕ

2
+ (Kγn − iηSγn)ϕ on γn, (3.16)

where Sγn : C1,α(γn) → C(γn) is the single-layer operator previously defined in (2.18)
and Kγn : C1,α(γn) → C(γn) is the double-layer operator (2.19). The normal trace of us

has also a jump and is given by

∂us

∂ν
= iη

ϕ

2
+ (Tγn − iηK∗

γn
)ϕ on γn (3.17)

where K∗
γn

: C1,α(γn) → C(γn) is the normal derivative of the single-layer as defined
in (2.20) and Tγn : C1,α(γn) → C(γn) is the normal derivative of the double-layer as
defined in (2.21). Note that by the compact imbedding of C0,α(γ) in C(γ) and by the
mapping properties of S,K,K∗ and T given in thm. 2.10 all these four operators are
compact.

By the asymptotics of the single-and double-layer potential the far-field must satisfy
the equation

Fγn,∞ ϕ = u∞ on Ωm

with Fγ,∞ := (Kγ,∞ − iηSγ,∞), where the operators Sγ,∞, Kγ,∞ : C1,α(γn) → C(γn)
are defined in (2.22) and (2.23). Again the operator Fγ,∞ is compact so a regularized
solution must be searched. As one needs an Hilbert space setting, we will consider the
operator Fγ,∞ : Hm(γ) → L2(γ), since by the Sobolev imbedding theorems one has
that Hm(γ) ⊂ C1,α(γ) for γ a closed hyper-surface in Rm.

Theorem 3.10. The operator Fγ,∞ : Hm(γ) → L2(Ωm) is injective and has dense range.

Proof. The proof goes in a similar way as the proof of theorem 3.5. For details, we refer
to [9] for the injectivity proof and to [26] for the denseness result.

Let us suppose that Fγ,∞ψ = 0. Then, by definition of Fγ,∞, the far-field of

v =

∫
γ

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ψ(y)ds(y), x ∈ Rm\γ

vanishes. Therefore by Rellich’s lemma, v = 0 in Rm\Dγ, where Dγ is the bounded do-
main with boundary γ. As v is a solution to the direct scattering problem it is continuous
up to the boundary and therefore one gets

(I/2 +Kγ − iηSγ)ψ = 0,

and by injectivity of this operator that ψ = 0.As for the denseness result, we have that the
boundary data to far-field operator G := Fγ,∞L

−1
γ : Hm(γ) → L2(Ωm) has dense range

(see cor.3.2 in [26]) and so Fγ,∞ must have dense range.
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Using Tikhonov regularization we then solve(
αnI + F ∗

γn,∞Fγn,∞
)
ϕ(n) = F ∗

γn,∞u∞ (3.18)

with respect to ϕ(n) for some regularization parameter αn > 0 decreasing with the itera-
tion n. In a similar way as for the Dirichlet case we find an approximation

us
n(x) =

∫
γn

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(n)(y)ds(y), x ∈ Rm\γn (3.19)

to the scattered field us. In the same way, by the jump relations we have approximations
to the exterior trace and to the normal trace of u given by

us
n =

ϕ(n)

2
+ (Kγn − iηSγn)ϕ(n) on γn,

∂us
n

∂ν
= iη

ϕ(n)

2
+ (Tγn − iηK∗

γn
)ϕ(n) on γn.

Following the same procedure as for the Dirichlet case, we now define the opera-
tor GN that maps the parameterization z of the contour γ to the exterior trace of the
Neumann boundary condition of some fixed analytic field u over γ, that is,

GN : z 7→ (ν · gradu) ◦ z.

Again if u is the total field, we want to find the solution to

GN(z) = 0,

in order to find the position of the boundary of the obstacle D as the location where the
boundary condition is satisfied. In the same way, based on the Fréchet differentiability
of GN , we linearize the previous equation around zn and solve the linearized equation

GN(zn) +G′
N(zn)h = 0 in X (3.20)

with respect to the shift h, using un as approximation to the total field u. A characteri-
zation for the Fréchet derivative of GN is now needed. We will split the analysis for the
two-dimensional (m = 2) and three-dimensional (m = 3) case.

Two-dimensional Case

For simplicity we start by stating this characterization for m = 2, that is, in R2. We note
that in this case z : [0, 2π] → R2 is oriented in the counter-clockwise direction and that
in an equivalent way we can write

GN : z 7→ z′⊥

|z′|
· gradu ◦ z.
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where z⊥ = (z2,−z1). Note that GN really maps the parameterization z to the Neumann
boundary condition, since for a counter-clockwise parameterization z the exterior normal
vector is given by

ν ◦ z =
z′⊥

|z′|
.

We prepare the theorem for this characterization by introducing the notation τ for the
unit tangential vector to the boundary in the counter-clockwise direction.

Theorem 3.11. The operator GN : C2[0, 2π] → C[0, 2π] is Fréchet differentiable and
its derivative is given by

G′
N(z)h = −(h′ · ν)

|z′|
∂u

∂τ
◦ z + (h · τ)

[
∂2u

∂τ∂ν
◦ z −H

∂u

∂τ
◦ z
]

+ (h · ν) ∂
2u

∂ν2
◦ z (3.21)

in [0, 2π], where H stands for the curvature.

Proof. Again, the Fréchet differentiability of GN is a consequence of the analyticity of u
and the C2–smoothness of z.

Let h be sufficiently small to ensure that

γz+h = {z(s) + h(s) : s ∈ [0, 2π]}

describes a closed curve.
We decompose

GN(z + h)−GN(z) =

(
z′⊥ + h′⊥

|z′ + h′|
− z′⊥

|z′|

)
·
(

gradu ◦ (z + h)
)

+

+
z′⊥

|z′|
·
(

gradu ◦ (z + h)− gradu ◦ z
)

(3.22)

and treat both terms on the right hand side separately. Using Taylor’s formula, we begin
by noting that

z′⊥ + h′⊥

|z′ + h′|
− z′⊥

|z′|
=

h′⊥

|z′|
− z′⊥(z′ · h′)

|z′|3
+O(|h′|2)

=
1

|z′|
(
h′⊥ − (h′ · τ)ν

)
+O(|h′|2)

since τ = z′/|z′|. Using

gradu ◦ (z + h)− gradu ◦ z = O(|h|)
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consequently we have(z′⊥ + h′⊥

|z′ + h′|
− z′⊥

|z′|

)
·
(

gradu ◦ (z + h)
)

=

=
1

|z′|
(
h′⊥ − (h′ · τ)ν

)
· gradu ◦ z +O(|h′|2) +O(|h′||h|). (3.23)

We now perform a change of variables in a neighbourhood of γ by

x(s, ε) = z(s) + εν(s), s ∈ [0, 2π], ε ∈ (−ε0, ε0) (3.24)

and set
v(s, ε) = u(z(s) + εν(s)).

In the new coordinate system we have that (e.g [62])

grad v(s, ε) =
1

|z′(s) + εν ′(s)|2
∂v

∂s
(s, ε) [z′(s) + εν ′(s)] +

∂v

∂ε
(s, ε)ν(s).

Therefore we can rewrite (3.23) as(z′⊥ + h′⊥

|z′ + h′|
− z′⊥

|z′|

)
·
(

gradu◦ (z+h)
)

= −(h′ · ν)
|z′|2

∂v

∂s
+O(|h′|2)+O(|h′||h|) (3.25)

using the equalities

h′⊥ · τ = −h′ · ν and h′⊥ · ν = h′ · τ.

We now consider the second term on the right hand side of (3.22). Taylor’s formula
and the relations ν · z′ = 0 and ν ′ · ν = 0 imply that

ν(s) · [grad v(s+ σ, ε)− grad v(s, 0)] =

=

[
∂2v

∂s∂ε
(s, 0)−H(s)

∂v

∂s
(s, 0)

]
σ +

∂2v

∂ε2
(s, 0) ε+O

(
σ2 + ε2

)
where the curvature H in two dimensions is given by

H =
z′1z

′′
2 − z′2z

′′
1

|z′|3
= −z

′′ · ν
|z′|2

. (3.26)

In view of the second term on the right hand side of (3.22) we want to choose the
pair (σ, ε) such that

z(s) + h(s) = z(s+ σ) + εν(s+ σ).
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By Taylor’s formula, we note that

h(s)− εν(s) +O(σε) = z(s+ σ)− z(s) = z′(s)σ +O(σ2)

and therefore
h(s) = z′(s)σ + ε ν(s) +O(σε) +O(σ2).

Comparing the previous expression with the decomposition

h(s) =

(
h(s) · τ(s)

)
|z′(s)|

z′(s) +
(
h(s) · ν(s)

)
ν(s),

we have
σ =

h · τ
|z′|

and ε = h · ν.

Therefore, we can write the second term on the right hand side of (3.22) as

ν(s) ·
(

gradu
(
z(s) + h(s)

)
− gradu

(
z(s)

))
=

=

[
∂2v

∂s∂ε
(s, 0)−H(s)

∂v

∂s
(s, 0)

] (
h(s) · τ(s)

)
|z′(s)|

(3.27)

+
∂2v

∂ε2
(s, 0)

(
h(s) · ν(s)

)
+O

(
|h|2
)
.

Inserting (3.25) and (3.27) into (3.22) and by definition of the Fréchet derivative

|GN(z + h)−GN(z)−G′
N(z)h| = O(||h||2C2), ||h||C2 → 0,

one gets

G′
N(z(s))h(s) = −(h′(s) · ν(s))

|z′|2
∂v

∂s
(s, 0) +

∂2v

∂ε2
(s, 0)

(
h(s) · ν(s)

)
(3.28)

+

[
∂2v

∂s∂ε
(s, 0)−H(s)

∂v

∂s
(s, 0)

]
(h(s) · τ(s))
|z′(s)|

and by the relations
∂v

∂ε
(s, 0) =

∂u

∂ν

(
z(s)

)
(3.29)

and
1

|z′(s)|
∂v

∂s
(s, 0) =

∂u

∂τ

(
z(s)

)
(3.30)

the result follows.
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In practice one wants to avoid computing the term ∂2u/∂2ν appearing in (3.21).
Therefore, in the following corollary this term is eliminated by using the fact that u
satisfies the Helmholtz equation.

Corollary 3.12. Provided that the field u satisfies the Helmholtz equation, the Fréchet
derivative of GN : C2[0, 2π] → C[0, 2π] is given by

G′
N(z)h = −k2(h · ν)u ◦ z − ∂

∂τ

(
h · ν

(
∂u

∂τ
◦ z
))

(3.31)

+H(h · ν)∂u
∂ν

◦ z + (h · τ) ∂2u

∂τ∂ν
◦ z

in [0, 2π], where again H holds for the curvature.

Proof. Using the same change of variables (3.24) as in the previous proof, for the Laplace
operator we have that

∆v(s, ε) =
1

|z′(s) + εν ′(s)|

{
∂

∂s

(
1

|z′(s) + εν ′(s)|
∂v

∂s
(s, ε)

)
+

∂

∂ε

(
|z′(s) + εν ′(s)| ∂v

∂ε
(s, ε)

)}
.

Therefore we can write

∂2v

∂ε2
(s, 0) = −k2 v(s, 0) +

z′(s).z′′(s)

|z′(s)|4
∂v

∂s
(s, 0)

(3.32)

− 1

|z′(s)|2
∂2v

∂s2
(s, 0) +H(s)

∂v

∂ε
(s, 0)

since u satisfies the Helmholtz equation. This comes from the fact that in the new coor-
dinate system (e.g. [62])

∆v(s, ε) → −z
′(s).z′′(s)

|z′(s)|4
∂v

∂s
(s, 0) +

1

|z′(s)|2
∂2v

∂s2
(s, 0)

+
z′(s).ν ′(s)

|z′(s)|2
∂v

∂ε
(s, 0) +

∂2v

∂ε2
(s, 0),

as ε→ 0 and from the identity

ν ′ · z′ = z′′ · ν = −|z′|2H.
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Substituting (3.32) in (3.28) one gets the characterization

G′
N(z)h = −(h′ · ν)

|z′|2
∂v

∂s
+

[
∂2v

∂s∂ε
−H

∂v

∂s

]
(h · τ)
|z′|

+

[
−k2v +

z′.z′′

|z′|4
∂v

∂s
− 1

|z′|2
∂2v

∂s2
+H

∂v

∂ε

]
(h · ν)

or rearranging the terms

G′
N(z) = −k2(h · ν) v +H(h · ν) ∂v

∂ε
+

(h · τ)
|z′|

∂2v

∂s∂ε

(3.33)

− 1

|z′|2

[
h′ · ν − (h · ν) z

′.z′′

|z′|2
+ (h · τ)H |z′|

]
∂v

∂s
− h · ν
|z′|2

∂2v

∂s2

where for simplicity v holds for v(s, 0).
Considering (3.30) one gets

∂

∂τ

(
h · ν

(
∂u

∂τ
◦ z
))

=
1

|z′|2

[
h′ · ν + h · ν ′ − (h · ν) z

′ · z′′

|z′|2

]
∂v

∂s

(3.34)

+
(h · ν)
|z′|2

∂2v

∂s2

and if one has the identity

h · ν ′ = −(h · τ)
|z′|

(ν · z′′) = (h · τ)H|z′|, (3.35)

one can substitute (3.35) in (3.34) and the latter in (3.33), obtaining the result by (3.29)
and (3.30).

To prove (3.35) one starts by noting that

h · ν ′ = h ·
(
z′′⊥

|z′|
− z′′ · z′

|z′|2
ν

)
= −h

⊥ · z′′

|z′|
− (h · ν) z

′′ · τ
|z′|

. (3.36)

Now one only needs to decompose h in its tangential and normal component in order to
get

h⊥ = (h · τ) ν − (h · ν) τ

and apply it in (3.36).
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With this characterization, the linearized equation (3.20) can be rewritten in the fol-
lowing way(

(h · ν)
(
H
∂un

∂ν
− k2un

)
− ∂

∂τ

(
h · ν

(
∂un

∂τ

))
+ (h · τ) ∂

2un

∂τ∂ν

)
◦ zn = −∂un

∂ν
◦ zn

(3.37)
in [0, 2π]. In this way, at each iteration n we solve the previous equation with respect
to h in a least squares sense, using the approximated scattered field us

n as obtained
in the first step of the method to approximate the total field in the previous equation
by un = ui + us

n. We then update the approximation for the domain, getting γn+1 param-
eterized by zn+1 = zn + h. Note that again we use the jump relations (3.16) and (3.17)
and the relation (3.30) to compute the terms involved. The details on the numerical im-
plementation are presented in section 5.1.3.

Three-dimensional Case

Though we did not implement the hybrid method for the Neumann boundary condition
in R3, we will now study the characterization of G′

N for the three-dimensional case.
The procedure is similar to the two-dimensional case, with the difference that now the
tangential space has dimension two.

We recall that we consider a parameterization z : [0, π] × [0, 2π] → R3. Therefore
the corresponding surface γ is given by

γz = {z(θ, φ) : (θ, φ) ∈ [0, π]× [0, 2π]}.

On γ we define two orthogonal unit tangential vector fields τ1 and τ2. As a parameter-
ized characterization of G′

N is of use for the numerical implementation later on, we will
consider

τ1 =
zθ

|zθ|
, τ2 =

zφ − (zφ · zθ)zθ

|zφ − (zφ · zθ)zθ|
(3.38)

where zθ = ∂z/∂θ and zφ = ∂z/∂φ, but the following analysis holds for any other two
orthonormal tangential vector fields τ1 and τ2. We will also introduce as notation for the
non-normalized tangential vectors

τ̃1 = zθ, τ̃2 = zφ − (zφ · zθ)zθ. (3.39)

We can now write the operator GN as

GN : z 7→
(
τ1 × τ2
|τ1 × τ2|

)
· gradu ◦ z.

where × is the usual cross product. We will assume without loss of generality that

ν =
τ1 × τ2
|τ1 × τ2|
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is the exterior normal to γz (otherwise we would just need to change the rolls of τ1 and τ2),
where for simplicity we denote ν = ν ◦ z and τi = τi ◦ z for i = 1, 2.

The analog of corollary 3.12 in three dimensions is the following theorem.

Theorem 3.13. The operator GN : C2([0, π]× [0, 2π]) → C([0, π]× [0, 2π]) is Fréchet
differentiable and provided that u satisfies the Helmholtz equation its Fréchet derivative
is given by

G′
N(z)h =

[
−k2(h · ν)u−Div

(
(h · ν)∇τu

)
+ h ·

(
∇τ

∂u

∂ν

)
(3.40)

+2H(h · ν)∂u
∂ν

]
◦ z

in [0, π] × [0, 2π], where H stands for the mean curvature and Div is the tangential
divergence.

Proof. The Fréchet differentiability ofGN is again a direct consequence of the analyticity
of u and the C2–smoothness of z. Let h be sufficiently small to ensure that

γz+h = {z(θ, φ) + h(θ, φ) : (θ, φ) ∈ [0, π]× [0, 2π]}

describes a closed surface. Again we will do a pointwise analysis to characterize the
Fréchet derivative G′

N . In this way, we use the characterization for the exterior normal
given by

ν =
zθ × zφ

|zθ × zφ|
.

As in the two-dimensional case, one uses the decomposition

GN(z + h)−GN(z) =

=

(
(z + h)θ × (z + h)φ

|(z + h)θ × (z + h)φ|
− zθ × zφ

|zθ × zφ|

)
·
(

gradu ◦ (z + h)
)

(3.41)

+

(
zθ × zφ

|zθ × zφ|

)
·
(

gradu ◦ (z + h)− gradu ◦ z
)

and treat both terms on the right hand side separately. Using Taylor’s formula, we begin
by noting that(

(z + h)θ × (z + h)φ

|(z + h)θ × (z + h)φ|
− zθ × zφ

|zθ × zφ|

)
=

=
1

|zθ × zφ|

[
hθ × zφ + zθ × hφ − ν

(
(zφ × ν) · hθ + (ν × zθ) · hφ

)]
+O(||h||2C2)
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Using
gradu ◦ (z + h)− gradu ◦ z = O(|h|)

we consequently have(
(z + h)θ × (z + h)φ

|(z + h)θ × (z + h)φ|
− zθ × zφ

|zθ × zφ|

)
·
(

gradu ◦ (z + h)
)

=

=
1

|zθ × zφ|

[
hθ × zφ + zθ × hφ − ν

(
(zφ × ν) · hθ + (ν × zθ) · hφ

)]
· gradu ◦ z

+O(||h||2C2). (3.42)

In order to perform a change of variables we need an orthogonal coordinate system
at each point of the surface γ. Since the analysis is done pointwise, we consider a
fixed but arbitrary point x0 = z(θ0, φ0) ∈ γ. Without loss of generality, we will assume
that zθ ⊥ zφ at (θ0, φ0), that is, that zθ · zφ = 0. Note that if this is not the case one
can locally choose a parameterization z̃(θ, φ) of γ in a neighbourhood of x0 such that on
has x0 = z̃(θ0, φ0) and the variable θ corresponds to the direction τ̃1 and φ to the direc-
tion τ̃2, for τ̃1 and τ̃2 given by (3.39). In other words, we would pick a parameterization z̃
such that z̃θ = τ̃1 and z̃φ = τ̃2. Note that as the analysis is pointwise this would not
influence the final result since z̃(θ0, φ0) = x0 = z(θ0, φ0) and the point x0 was fixed but
arbitrary.

We are now in a position to perform a change of variables in a neighbourhood of x0 ∈ γ
by

x(θ, φ, ε) = z(θ, φ) + εν(θ, φ), (3.43)

and set
v(θ, φ, ε) = u(z(θ, φ) + εν(θ, φ))

in order to get in the new coordinate system (e.g [62])

grad v(θ, φ, ε) =
1

|zθ(θ, φ) + ενθ(θ, φ)|2
∂v

∂θ
(θ, φ, ε) [zθ(θ, φ) + ενθ(θ, φ)]

+
1

|zφ(θ, φ) + ενφ(θ, φ)|2
∂v

∂φ
(θ, φ, ε) [zφ(θ, φ) + ενφ(θ, φ)]

+
∂v

∂ε
(θ, φ, ε)ν(s).

Therefore, using the relations ν · zθ = ν · zφ = 0 and some properties of the cross product
such as (a× b) · a = 0 for all a, b ∈ R3 and a · (b× c) = (a× b) · c for all a, b, c ∈ R3 to
conclude that

(hθ × zφ) · ν = hθ · (zφ × ν), (hφ × zθ) · ν = hφ · (zθ × ν),
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we can rewrite (3.42) as(
(z + h)θ × (z + h)φ

|(z + h)θ × (z + h)φ|
− zθ × zφ

|zθ × zφ|

)
·
(

gradu ◦ (z + h)
)

=

(3.44)

= −(hθ · ν)
|zθ|2

∂v

∂θ
− (hφ · ν)

|zφ|2
∂v

∂φ
+O(||h||2C2)

where the evaluation point x0 = z(θ0, φ0) is omitted in the previous and following equa-
tions to ease the notation.

We now consider the second term on the right hand side of (3.41). Taylor’s formula
and the relations ν · zθ = ν · zφ = 0 and ν · νθ = ν · νφ = 0 imply that

ν(θ, φ) · [grad v(θ + σ, φ+ ξ, ε)− grad v(θ, φ, 0)]

=

[
zθθ · ν
|zθ|2

∂v

∂θ
(θ, φ, 0) +

zφθ · ν
|zφ|2

∂v

∂φ
(θ, φ, 0) +

∂2v

∂θ∂ε
(θ, φ, 0)

]
σ

+

[
zφφ · ν
|zφ|2

∂v

∂φ
(θ, φ, 0) +

zθφ · ν
|zθ|2

∂v

∂θ
(θ, φ, 0) +

∂2v

∂φ∂ε
(θ, φ, 0)

]
ξ

+
∂2v

∂ε2
(θ, φ, 0) ε.

In view of the second term on the right hand side of (3.41) we again want to choose the
triplet (σ, xi, ε) such that

z(θ0, φ0) + h(θ0, φ0) = z(θ0 + σ, φ0 + ξ) + εν(θ0 + σ, φ0 + ξ)

and (similarly to the two-dimensional case) by Taylor’s formula we get

σ =
h · zθ

|zθ|2
, ξ =

h · zφ

|zφ|2
, and ε = h · ν.

In this way, we get

GN(z + h)−GN(z) = −(hθ · ν)
|zθ|2

∂v

∂θ
− (hφ · ν)

|zφ|2
∂v

∂φ

+

[
zθθ · ν
|zθ|2

∂v

∂θ
+
zφθ · ν
|zφ|2

∂v

∂φ
+

∂2v

∂θ∂ε

]
h · zθ

|zθ|2

+

[
zφφ · ν
|zφ|2

∂v

∂φ
+
zθφ · ν
|zθ|2

∂v

∂θ
+

∂2v

∂φ∂ε

]
h · zφ

|zφ|2

+
∂2v

∂ε2
h · ν +O(||h||2C2).
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For numerical purposes we want to get rid of the term ∂2v/∂ε2. Therefore one uses the
fact that the Laplacian is given in the new coordinate system (e.g [62]) by

∆v(., ε) =
1

|zθ(.) + ενθ(.)||zθ(.) + ενφ(.)|

[
∂

∂θ

(
|zθ(.) + ενφ(.)|
|zθ(.) + ενθ(.)|

∂v

∂θ
(., ε)

)

+
∂

∂φ

(
|zθ(.) + ενθ(.)|
|zθ(.) + ενφ(.)|

∂v

∂φ
(., ε)

)

+
∂

∂ε

(
|zθ(.) + ενφ(.)||zθ(.) + ενθ(.)|

∂v

∂ε
(., ε)

)]
and therefore taking the limit as ε→ 0 we get

∆v →
(
zφθ · zφ

|zθ|2|zφ|2
− zθθ · zθ

|zθ|4

)
∂v

∂θ
+

(
zθφ · zθ

|zθ|2|zφ|2
− zφφ · zφ

|zφ|4

)
∂v

∂φ

+
1

|zθ|2
∂2v

∂θ2
+

1

|zφ|2
∂2v

∂φ2
+

(
zθ · νθ

|zθ|2
+
zφ · νφ

|zφ|2

)
∂v

∂ε
+
∂2v

∂ε2
.

As u satisfies the Helmholtz equation one gets

GN(z + h)−GN(z) = −(hθ · ν)
|zθ|2

∂v

∂θ
− (hφ · ν)

|zφ|2
∂v

∂φ

+

[
zθθ · ν
|zθ|2

∂v

∂θ
+
zφθ · ν
|zφ|2

∂v

∂φ
+

∂2v

∂θ∂ε

]
h · zθ

|zθ|2

+

[
zφφ · ν
|zφ|2

∂v

∂φ
+
zθφ · ν
|zθ|2

∂v

∂θ
+

∂2v

∂φ∂ε

]
h · zφ

|zφ|2

−
[
k2v +

(
zφθ · zφ

|zθ|2|zφ|2
− zθθ · zθ

|zθ|4

)
∂v

∂θ

+

(
zθφ · zθ

|zθ|2|zφ|2
− zφφ · zφ

|zφ|4

)
∂v

∂φ
+

1

|zθ|2
∂2v

∂θ2
+

1

|zφ|2
∂2v

∂φ2

+

(
zθ · νθ

|zθ|2
+
zφ · νφ

|zφ|2

)
∂v

∂ε

]
h · ν +O(||h||2C2). (3.45)

By straight forward computations, using the fact that

νθ =
1

|zθ × zφ|

(
(zθθ × zφ) + (zθ × zφθ) + ν

(
(ν × zφ) · zθθ + (zθ × ν) · zφθ

))



3. The Hybrid Method 55

one concludes that

h · νθ = −
(

(h · zθ)

|zθ|2
(ν · zθθ) +

(h · zφ)

|zφ|2
(ν · zφθ)

)
.

In this way, collecting all the terms in ∂v/∂θ from (3.45) we get that(
−(hθ · ν)

|zθ|2
+

(zθθ · ν)(h · zθ)

|zθ|4
+

(zθφ · ν)(h · zφ)

|zθ|2|zφ|2
− zφθ · zφ

|zθ|2|zφ|2
+
zθθ · zθ

|zθ|4

)
∂v

∂θ
=

=
1

|zθ||zφ|

(
−|zφ|
|zθ|

(
(hθ · ν) + (h · νθ)

)
− zφθ · zφ

|zφ||zθ|
+

(zθθ · zθ)|zφ|
|zθ|3

)
∂v

∂θ

= − 1

|zθ||zφ|
∂

∂θ

(
(h · ν) |zφ|

|zθ|

)
∂v

∂θ
.

Now summing the term in ∂2v/∂θ2 from (3.45) we get

− 1

|zθ||zφ|
∂

∂θ

(
(h · ν) |zφ|

|zθ|

)
∂v

∂θ
− h · ν
|zθ|2

∂2v

∂θ2
= − 1

|zθ||zφ|
∂

∂θ

(
(h · ν) |zφ|

|zθ|
∂v

∂θ

)
.

Interchanging the roles of θ and φ we can write all the terms in the first or second order
derivative of v in θ and φ from (3.45) in the simplified form

− 1

|zθ||zφ|

[
∂

∂θ

(
(h · ν) |zφ|

|zθ|
∂v

∂θ

)
+

∂

∂φ

(
(h · ν) |zθ|

|zφ|
∂v

∂φ

)]
= −Div

(
(h · ν)∇τu

)
where ∇τ denotes the tangential gradient of u. The previous equality comes from the
fact that in the new coordinate system the tangential divergence over the surface γ of a
tangential field A is given by (e.g. [62])

DivA = 1
|zθ||zφ|

[
∂

∂θ

(
|zφ|
|zθ|

(A · zθ)

)
+

∂

∂φ

(
|zθ|
|zφ|

(A · zφ)

)]
and from the equalities

∂v

∂ε
(θ, φ, 0) =

∂u

∂ν

(
z(θ, φ)

)
(3.46)

and

1

|zθ(θ, φ)|
∂v

∂θ
(θ, φ, 0) =

∂u

∂τ1

(
z(θ, φ)

)
, (3.47)

1

|zφ(θ, φ)|
∂v

∂φ
(θ, φ, 0) =

∂u

∂τ2

(
z(θ, φ)

)
. (3.48)
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Finally, applying (3.46), (3.47) and (3.48) to the remaining terms of (3.45) one gets the
result from the definition of Fréchet derivative and from the definition of mean curva-
ture H of a surface in R3 as

H = −
ν̃.
(
(ν̃θ × zφ) + (zθ × ν̃φ)

)
2|ν̃|3

= −1

2

(
τ1 ·

∂ν

∂τ1
+ τ2 ·

∂ν

∂τ2

)
with ν̃ = zθ × zφ.

Again we would use the characterization (3.40) for G′
N in (3.20) and solve this equa-

tion (using un as approximation to the total field) with respect to h in a least squares
sense, in order to obtain the new approximation γn+1 parameterized by zn+1 = zn + h.
To compute the terms involved, we use the jump relations (3.16) and (3.17), along with
the relations

∂u

∂τ1
◦ z =

1

|zθ|
∂v

∂θ

and

∂u

∂τ2
◦ z =

1

zφ · τ2

(
∂v

∂φ
− zφ · τ1

|zθ|
∂v

∂θ

)
=

1

|zφ|2 − (zφ · zθ)2

(
∂v

∂φ
− (zφ · zθ)

|zθ|2
∂v

∂θ

)
in order to compute the tangential gradient given by

∇τu =
∂u

∂τ1
τ1 +

∂u

∂τ2
τ2.

3.5 The Hybrid Method for the Robin Case
We will now combine both previous approaches for the Dirichlet and Neumann cases in
order to solve the inverse problem 2.15 with Robin boundary condition. The solution us

to the direct problem must satisfy

∆us + k2us = 0, x ∈ Rm\D,

∂u

∂ν
+ iλu = 0, x ∈ Γ,

lim
r→∞

r
m−1

2

(
∂us

∂r
− ikus

)
= 0,

where again the total field u is the sum of the given incident field ui and the scat-
tered field us. Now the goal is not only to recover the domain D but also the unknown
impedance λ, from the knowledge of the far-field pattern u∞ for one incident plane
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wave ui(x) = eikx·d, |d| = 1. In this way, at each iteration we consider to have both
an approximation γn (parameterized by zn) to the correct boundary Γ, as well as an ap-
proximation ζn to the correct impedance λ.

In the first step of the iteration, that is, to reconstruct the total field u, the procedure
will be exactly the same as for the Neumann case. Having in mind assumption 3.2,
in order to get a meaningful representation of the scattered field us as a layer potential
over γn, we need to assume that the solution us to the direct problem of scattering by D
with impedance λ can be analytically extended until γn. Analogously to remark 3.3, for
the Robin case one has to require that both the boundary Γ and the impedance λ are
analytic in order to guarantee that the analytic continuation principle 3.2 holds.

Therefore we represent the scattered field us as a combined single-and double-layer
potential over γn (see [8, thm.3.38]), that is,

us(x) =

∫
γn

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(y)ds(y), x ∈ Rm\γn

for some coupling parameter η > 0 and with density ϕ ∈ C1,α(γn).All the remarks made
on this representation in the previous section concerning the Neumann problem remain
true. For instance we have that the exterior trace of us over γ is given by (3.16) and the
normal trace of us is given by (3.17). In this way the impedance trace of us over γ with
impedance ζ is given by

∂us

∂ν
+ i ζus = Bγ,ζ ϕ on γ (3.49)

where
Bγ,ζ = i (η + ζ)

I

2
+ Tγ + i

(
ζKγ − ηK∗

γ

)
+ ζ η Sγ (3.50)

is the exterior impedance trace operator Bγ,ζ : C1,α(γ) → C(γ) of the combined single-
and double-layer potential.

Again, by the asymptotics of the potentials, the equation

Fγ,∞ ϕ = u∞ on Ωm

must be satisfied with Fγ,∞ := (Kγ,∞ − iηSγ,∞), where the far-field single-and double-
layer operators Sγ,∞, Kγ,∞ : C1,α(γn) → C(γn) are defined in (2.22) and (2.23). As the
operator Fγ,∞ is compact, we use Tikhonov regularization to get the regularized equation(

αnI + F ∗
γ,∞Fγ,∞

)
ϕ(n) = F ∗

γ,∞u∞, (3.51)

and solve it with respect to ϕ(n) for some regularization parameter αn > 0 decreasing
with the iteration n. In this way we construct an approximation to the scattered field
given by

us
n(x) =

∫
γn

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(n)(y)ds(y), x ∈ Rm\γn (3.52)
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and by the jump relations we have approximations to the exterior trace and normal trace
of u given by

us
n =

ϕ(n)

2
+ (Kγn − iηSγn)ϕ(n) on γn,

∂us
n

∂ν
= iη

ϕ(n)

2
+ (Tγn − iηK∗

γn
)ϕ(n) on γn.

As for the second step, we start by defining the operator GR that maps the pair (z, ζ)
where z is the parameterization of the contour γ to the exterior trace of the Robin bound-
ary condition with impedance ζ of some fixed field u over γ, that is,

GR : (z, ζ) 7→ (ν · gradu+ i ζu) ◦ z. (3.53)

Remark 3.14. Note that the function ζ is only defined in the boundary γ, from its defini-
tion as an impedance function. However, ζ must be defined in all Rm so that the previous
operator is defined for all parameterizations z. Since we are just interested in a local
characterization around zn, we will need to extend ζn in a proper way around γn. We will
address this extension later at the beginning of section 5.1.4 and for the time being we
will just assume that this can be done.

One also has that GR can be given in terms of GD and GN by

GR(z, ζ) = GN(z) + i ζGD(z). (3.54)

If the fixed field u would be the exact total field, having in view the boundary condition,
we would like to look for a solution to

GR(z, ζ) = 0

and again based on the Fréchet differentiability ofGR, we linearize the previous equation
around zn and ζn and solve the linearized equation

GR(zn, ζn) +
∂

∂z
GR(zn, ζn)h+

∂

∂ζ
GR(zn, ζn)µ = 0 in X (3.55)

in terms of the shifts h and µ. A characterization for the Fréchet derivative of GN is now
needed and can be easily obtained using the characterizations of G′

D and G′
N given in the

two previous sections.

Theorem 3.15. The operator GR : C2(X)× C1(Rm) → C(X) is Fréchet differentiable
and its derivative with respect to the parameterization z is given by

∂

∂z
GR(z, ζ)h =

[
G′

R(z)h+ i
(
ζ G′

D(z)h+ (h · grad ζ)u
)]
◦ z (3.56)

and the derivative with respect to the impedance ζ is given by

∂

∂ζ
GR(z, ζ)µ = i(µu) ◦ z (3.57)
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Proof. The Fréchet differentiability of GR is again a consequence of the analyticity of u,
the C1–smoothness of ζ and the C2–smoothness of z. To characterize the derivative with
respect to the parameterization z we proceed as in the proofs of the Theorems 3.6, 3.11
or 3.13. Using the decomposition (3.54) we get

GR(z + h, ζ)−GR(z, ζ) = GN(z + h)−GN(z) +

+i
(
ζ ◦ (z + h)

(
GD(z + h)−GD(z)

)
+GD(z)

(
ζ ◦ (z + h)− ζ ◦ (z)

))
and using Taylor’s formula to get

ζ((z + h)(x)) = ζ(z(x)) + grad ζ(z(x)) · h(x) +O(||h||2C2), x ∈ X

and that

GN(z + h)−GN(z) = G′
N(z) +O(||h||2C2), x ∈ X

GD(z + h)−GD(z) = G′
D(z) +O(||h||2C2), x ∈ X

the result for the Fréchet derivative of GR with respect to the parameterization fol-
lows. As the operator GR is linear in ζ , the Fréchet derivative of GR with respect to
the impedance is clearly given by (3.57).

Remark 3.16. To prove the previous result we needed to assume that ζ is C1, while we
only have continuity assumptions for the impedance λ. However we will see later in the
beginning of section 5.1.4 that for star-shaped domains the method can be applied in
practise to a just continuous impedance, using some proper extension of the function ζn
from γn to a neighbourhood of it.

With this characterization we solve (3.55) for both h and µ in a least squares sense
and get the new approximations to the boundary Γ given by γn+1, with parameterization
given by zn+1 = zn + h, and to the impedance λ given by ζn+1 = ζn + µ. Details for the
numerical implementation in R2 are given in section 5.1.4.

Comparison between the Hybrid Method and a Newton Method

Now that we have characterized the Fréchet derivative of G, we would like to say some
words on the comparison between the hybrid method and the usual Newton method ap-
plied to the boundary-to-far-field operator F defined in (3.1). Namely, we will compare
the characterization of the Fréchet derivative of G to the boundary condition of the for-
ward problem that characterizes the Fréchet derivative of F .
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Let again Γ (parameterized by z∗) be the solution to the inverse problem. Let Dh be
a smooth domain with boundary Γh, where Γh is a smooth perturbation of Γ given by

Γh = {zh(t) := z∗(t) + h(t) : t ∈ X}.

We will consider for simplicity that D ⊂ Dh. We start by noting that the total field uh,
corresponding to scattering by an obstacle Dh, satisfies the corresponding boundary
condition BΓh

uh = 0 over Γh, where BΓh
is one of the boundary condition opera-

tors (2.8)–(2.10) with Γ replaced by Γh. The field uh defines the operator F , since F (Γh)
is the far-field of the scattered field us

h. The characterization of the Fréchet derivative
of F is given in terms of a forward problem (see[18, 19, 53]). The procedure of proof to
obtain this characterization goes as follows: One wants to characterize a solution v to the
Helmholtz equation such that the sum us

h − us − v goes to zero superlinearly as h → 0.
In this way one would have in particular that

(us
h − us − v)|γh

= o(||h||) (3.58)

as h → 0. Then, from the far-field pattern representation (2.13) over Γh one concludes
that F ′(γ)h = v∞, where v∞ is the far-field pattern of v, missing just a characterization
of v to complete the proof. The characterization of v is given through the solution to a
forward problem with an appropriate boundary condition (see[18, 19, 53]). As we will
see in the following lines, this boundary condition is strongly related with the Fréchet
derivative of G.

We recall the definition of G as the operator that maps a parameterization z to the
exterior trace of the boundary condition of a field u over γ parameterized by z. Con-
sidering u to be the exact total field, we define G : z 7→ Bu ◦ z, where B is again one
of the boundary condition operators (2.8)–(2.10). In the same way we define a similar
operator H : z 7→ Bv ◦ z, where v plays the role of u. Then formally we obtain

B(us
h − us − v) ◦ zh = B(−u− v) ◦ zh

= −
(
G(zh) +H(zh)

)
= −

(
G(z∗) +G′(z∗)h+H(z∗) +H ′(z∗)h

)
+O(|h|2)

= −
(
G′(z∗)h+H(z∗) +H ′(z∗)h

)
+O(||h||2).

Since v → 0 along with its derivatives as h → 0, by the characterization of H ′ we have
that H ′(z)h = o(||h||). From (3.58) and taking the first order terms in h in the previous
equation and by the definition of H we conclude that

(Bv) ◦ z∗ = H(z∗) = −G′(z∗)h,

that is, the boundary condition that v has to satisfy over Γ is equal to −G′(z∗)h.
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In this way we will characterize the derivative of GR over the correct boundary Γ and
impedance λ. The Dirichlet and Neumann cases are particular cases of this procedure.
In R2, one can also rewrite (3.56) in the following form

∂

∂z
GR(z, ζ)h =

[
−k2(h · ν)u− ∂

∂τ

(
(h · ν)

(
∂u

∂τ

))
+ (iζ +H)(h · ν)∂u

∂ν

+(h · τ)
(
∂

∂τ

(
∂u

∂ν
+ iζu

))
+ i (h · ν)

(
∂ζ

∂ν
u

)]
◦ z

since we have the decomposition in the normal and tangential direction

h · (gradζ ◦ z) = (h · τ)∂ζ
∂τ

◦ z + (h · ν)∂ζ
∂ν

◦ z.

In R3, the characterization (3.56) would take the form

∂

∂z
GR(z, ζ)h =

[
−k2(h · ν)u−Div

(
(h · ν)∇τu

)
+ (iζ + 2H)(h · ν)∂u

∂ν

+h ·
(
∇τ

(
∂u

∂ν
+ iζu

))
+ i (h · ν)

(
∂ζ

∂ν
u

)]
◦ z

since we have the decomposition in the normal and tangential components

h · (gradζ ◦ z) = (h · ∇τζ) ◦ z + (h · ν)∂ζ
∂ν

◦ z.

Note that if we consider u to be the true total field and if we evaluate the previous Fréchet
derivatives on the parameterization z∗ to the true boundary solution Γ and on the true
impedance λ, then the boundary condition is satisfied, that is,(

∂u

∂ν
+ iλu

)
◦ z∗ = 0

and consequently the tangential component of the gradient of the boundary condition
would also vanish. Therefore, in R2 the derivative is given by

∂

∂z
GR(z∗, λ)h =

[
−k2(h · ν)u− ∂

∂τ

(
(h · ν)

(
∂u

∂τ

))
+ (iλ+H)(h · ν)∂u

∂ν

+i (h · ν)
(
∂λ

∂ν
u

)]
◦ z∗
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while in R3 it is given by

∂

∂z
GR(z∗, λ)h =

[
−k2(h · ν)u−Div

(
(h · ν)∇τu

)
+ (iλ+ 2H)(h · ν)∂u

∂ν

+i (h · ν)
(
∂λ

∂ν
u

)]
◦ z∗

According to [19], where the work in [18] is extended to a non-constant impedance, this
is up to a factor−1 the impedance boundary condition to the boundary value problem that
characterizes the Fréchet derivative of the operator F defined in (3.1). In other words and
as expected, this is up to a factor −1 the boundary values of the extra forward problem
that needs to be solved at each step of the Newton’s method applied to the operator
defined in (3.1). Heuristically one could say that the factor −1 comes from the fact
that G and F depend on γ in a symmetric way. While for G the field u is built in a way
to satisfy the far-field equation but not the boundary condition on γ, for F the field uh is
constructed in order to satisfy the boundary condition over Γh but not to have the given
far-field pattern u∞. In this way we exposed the connections between these methods.



Chapter 4

Convergence Results

In this chapter, we will present some theoretical results on the convergence of the hybrid
method. We will study two different approaches to prove convergence for two closely
related methods, each one with some drawbacks and gaps when compared to the actual
implementation of the hybrid method itself. First, in section 4.1, we start by relating
the hybrid method with a minimization problem in a decomposition method spirit. We
will follow the ideas of [9, sec. 5.4] and extend it to the impedance case. Afterwards,
in section 4.2, we will compare the hybrid method to a related iterative Newton method
and prove convergence for it, using some ideas of [55]. Both these approaches present
still open problems when compared to the practical application of the hybrid method. A
reference to these open problems is made at the end of each section.

4.1 A Related Minimization Problem
Along the lines of [9, sec. 5.4], we will now introduce a minimization problem as theo-
retical background for the hybrid method. We will establish existence and convergence
results for this minimization problem, which is related with the hybrid method as ex-
plained later on in this section. In [9] the analysis is done for the Dirichlet case with
a single layer representation of the solution, covering the Dirichlet case as presented in
section 3.3.

Remark 4.1. For the approach for a sound-soft crack as referred to in remark 3.7 we refer
again to [42].

Following the lines of [59], in this section we will apply similar ideas to get conver-
gence of the minimization problem to the Robin case as presented in section 3.5. This
can be easily adapted to the particular case of impedance λ = 0, that is, the Neumann
case as presented in section 3.4. There are two main differences between what is done
in this section and the result in [9, sec. 5.4]. The first is that more regularity is assumed
on the density ϕ due to the combined single-and double-layer approach in order to use
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compactness results. The second difference is that here we are concerned with recovering
not just the shape of the scatterer as in [9] but also the impedance.

As in chapter 5 we will be only interested in reconstructing star-shaped domains, we
will stick to that restriction, that is,

γr = {z(t) = r(x̂(t)) x̂(t) | r : Ωm → Rm, t ∈ X}. (4.1)

where x̂(t) is defined in Rm by

x̂(t) =

{
(cos t, sin t), t ∈ X = [0, 2π],m = 2,

(sin t1 cos t2, sin t1 sin t2, cos t1), t ∈ X = [0, π]× [0, 2π],m = 3.
(4.2)

We consider only radial parameterizations r ∈ U , where

U = {r ∈ H l(Ωm) | 0 < ri ≤ ||r||Hl(Ωm) ≤ re}

for some fixed ri, re ∈ R+. As Ωm has dimension (m − 1) and we want C2 domains
in Rm, in view of the Sobolev imbedding we will assume later on that l > (m + 3)/2.
We will also consider impedances ζ ∈ V where

V = {ζ : γ → R | ζ ∈ Hp(γ), 0 ≤ ζ(x) ≤ ζe, x ∈ γ}

for some fixed ζe ∈ R+ and again in order to have continuous impedances ζ on γr, we
will assume that p > (m− 1)/2. For the density, we will consider ϕ ∈ Hq(γ).

Assuming q > (m + 1)/2 + α, for some fixed α > 0, we can restrict the opera-
tors Fγ,∞ andBγ,ζ introduced in section 3.5 as operators mapping fromHq(γ) to L2(Ωm)
and L2(γ), respectively, since by the Sobolev’s imbedding theorems Hq(γ) ⊂ C1,α(γ).

We define the cost function Λ(r, ζ, ϕ; .) : U × V ×Hq(γ) → R+
0 given by

Λ(r, ζ, ϕ; β) = β||ϕ||2Hq(γr) + Λ1(r, ζ, ϕ) + Λ2(r, ζ, ϕ)

for β > 0, where
Λ1(r, ζ, ϕ) = ||Fγr,∞ϕ− f ||2L2(Ω)

for some f ∈ L2(Ω) and

Λ2(r, ζ, ϕ) = ||Bγr,ζϕ+ g||2L2(γr)

for some g ∈ L2(R2), where γr is the contour corresponding to r.
On the one hand, if f = u∞ and if r and ζ are fixed, the minimization of

β||ϕ||2Hq(γr) + Λ1(r, ζ, ϕ)

with respect to ϕ is equivalent to finding a regularized solution to the Tikhonov equa-
tion (3.51) with regularization parameter β, or in other words, to solve the first step of
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each iteration of the hybrid method. On the other hand, if g is the impedance boundary
data and ϕ is kept fixed, minimizing Λ2(r, ζ, ϕ) in terms of r and ζ can be seen as finding
a solution to (3.7), or in other words, to solve the second step of each iteration of the hy-
brid method. In this way this nonlinear optimization problem is related with the hybrid
method, joining the two steps in one single cost function. Therefore we will proceed with
convergence results for this method as the parameter β → 0.

The first issue is however to guarantee an existence of a solution for every given
parameter β. Given f and g, we define the pair (r0, ζ0) ∈ U ×V as being optimal if there
exists ϕ0 ∈ Hq(γ0) such that

Λ(r0, ζ0, ϕ0; β) = M(β)

where
M(β) := inf

r∈U,ζ∈V,ϕ∈Hq(γ)
Λ(r, ζ, ϕ; β).

We can show the following existence theorem.

Theorem 4.2. Assume in addition to q > (m + 1)/2 + α that also l > (m + 3)/2
and p > (m− 1)/2. Then for each β > 0, f ∈ L2(Ω) and g ∈ L2(Rm) there exists an
optimal pair (r, ζ) ∈ U × V .

Proof. Assume the triple (rn, ζn, ϕn) to be a minimizing sequence, that is,

lim
n→∞

Λ(rn, ζn, ϕn; β) = M(β).

As U is bounded in H l(Ωm), by the Sobolev compact embedding theorems one has
that H l(Ωm) ⊂ C2(Ωm) and so U is compact in C2(Ωm). Therefore, without loss of
generality, we can assume C2–convergence rn → r as n → ∞. As U is closed, r ∈ U .
In a similar way one can assume C–convergence of ζn → ζ ∈ V .

One also has that

β||ϕn||2Hq(γr) ≤ Λ(rn, ζn, ϕn; β) →M(β)

as n → ∞. So ϕn is bounded and by a similar argument using the compact embed-
ding H l(X) ⊂ C1,α(X) one can assume that ϕn → ϕ. By continuity of the functional Λ
in all its variables, one has the result, since

Λ(r, ζ, ϕ; β) = lim
n→∞

Λ(rn, ζn, ϕn; β) = M(β).

�

We are interested in the behaviour of a solution to the minimization problem as the
regularization parameter β goes to zero. One can state the following convergence re-
sult. Note that, unfortunately, it does not imply convergence to a solution to the inverse
scattering problem, since there is no general result to prove uniqueness for the inverse
problem with one incident wave.



66 4.1. A Related Minimization Problem

Theorem 4.3. Assume q > (m+ 1)/2 + α, l > (m+ 3)/2 and p > (m− 1)/2. Assume
also that f is the exact far-field pattern u∞, that g is the exact boundary data given
by g = ∂ui/∂ν + iλui, that the solution Γ can be parameterized by some r∗ ∈ U and
that the exact impedance λ ∈ V . Let (βn) be a null sequence and let (rn, ζn) be a
sequence of corresponding optimal pairs. Then there exists a convergent subsequence
of (rn, ζn) and every limit point (r†, ζ†) represents a curve γ† and impedance ζ† such that

∂us

∂ν
+ iζ†us = −g on γ†.

Proof. From section 3.5, one knows that the solution to the direct problem can be
represented by a combined single and double layer potential via the solution ϕ to the
equation BΓ,λϕ = g. Therefore with the assumptions on f and g

Λ1(r∗, λ, ϕ) = Λ2(r∗, λ, ϕ) = 0.

Then, by the assumptions that r∗ ∈ U and that λ ∈ V one has that

lim
β→0

M(β) = 0. (4.3)

since
M(β) ≤ Λ(r∗, λ, ϕ; β) = β||ϕ||2Hq(γr).

The existence of a convergent subsequence (rk(n), ζk(n))n∈N comes from the proof of
theorem 4.2. For simplicity we will denote k = k(n). Let (r†, ζ†) be the limit point of
that convergent subsequence and let u† be the solution to the direct scattering problem
with boundary condition

∂u†

∂ν
+ iζ†u† = −g on γ†.

Since (rk, ζk) is optimal there exists (ϕk)k∈N such that

Λ(rk, ζk, ϕk, βk) = M(βk).

Let now uk be the combined single and double layer potential over γk (with radial pa-
rameterization rk) with density ϕk. The potential uk can be interpreted as the solution to
the exterior scattering problem with boundary γk and impedance ζk.

From (4.3), we observe that∣∣∣∣∣∣∣∣∂uk

∂ν
+ iζkuk + g

∣∣∣∣∣∣∣∣2
L2(γk)

≤M(βk) → 0 (4.4)

and
||Fγk,∞ϕk − f ||2L2(Ω) ≤M(βk) → 0 (4.5)
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both as k →∞.
By (4.4) one concludes that uk and all its derivatives converge to u† on compact sets

of the exterior domain (e.g. thm. 5.16 in [9]) and so the far-field patterns of uk also
converge to the far-field pattern u†∞ of u†. By (4.5) we conclude that u†∞ = f = u∞ and
so us = u† follows. This concludes the proof. �

This approach can be carried out for all the boundary conditions, but has some draw-
backs when compared with the actual implementation of the hybrid method. As al-
ready referred, this approach joins both steps of a decomposition method in one min-
imization problem. In this way there is a gap between the theoretical argument and
the practical application of the hybrid method, since in practise one first minimizes the
sum β||ϕ||2Hq(γr) + Λ1(r, ζ, ϕ) with respect to ϕ and then minimizes Λ2(r, ζ, ϕ) with re-
spect to r. It is not clear whether this minimization in two steps used in the hybrid method
leads to the same result as the minimization of Λ(r, ζ, ϕ) simultaneously in r, ζ and ϕ
that was treated theoretically in this section. Moreover, this approach does not take into
account the linearization in the second step of the hybrid method, which does not exactly
correspond to minimizing the cost functional Λ2. The iterative procedure of the hybrid
method is also not taken into account, nor is any noise level that might be added in the
given far-field.

In the next section we will present a different approach that deals with these draw-
backs. However, it can only be applied to the Dirichlet case. As in this approach, it
has also the drawback that the penalty term for Tikhonov regularization is in a Sobolev
norm (Hq–norm), while in practice a L2-norm penalty term is used and leads to success-
ful reconstructions. This is confirmed by [34] where significant influence of the norm
on the penalty term was not found in the behaviour of the solution using the Kirsch and
Kress method.

4.2 A Related Newton’s Method
In this section we will establish a local convergence result for the hybrid method. We
will follow the same procedure for a convergence proof as in [55], with differences in the
considered operators. In [55] the convergence analysis is done for the boundary-to-far-
field pattern operator (3.1), or in other words, for the usual Newton method applied to
the operator that maps the boundary to the far-field pattern of the corresponding scattered
wave. In this work we are interested in a different operator that is related to the hybrid
method. We will define the hybrid method as a pointwise iterative scheme and derive
its convergence under some assumptions. The analysis will be performed just for the
Dirichlet case. The extension to the Neumann and Robin cases does not seem to be
possible in a general sense, as addressed at the end of this section. Again we assume the
domain to be star-shaped, that is, the boundary is of the form (4.1), but a proof can be
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carried out for a general-shaped and sufficiently smooth domain.

Noise free data

For a first analysis, we assume that the given far-field data u∞ is noise free.
Considering star-shaped domains as in (4.1), let rn be the radial parameterization for

the current approximation γn and let r∗ be the radial parameterization for the solution Γ
to the inverse problem. The first step of the hybrid method consists of reconstructing
the scattered field. To do so, we assume that the solution u∗ to the forward problem can
be analytically extended (possibly through the interior of D) up to γn, as referred in the
analytic continuation principle 3.2. Then it is possible to represent us as a combined
layer potential over γn

us(x) =

∫
γn

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(n)
∗ (y)ds(y), x ∈ Rm\γn

with density ϕ(n)
∗ being the unique solution to the far-field equation

Fγn,∞ϕ
(n)
∗ = u∞ (4.6)

where again Fγ,∞ = (Kγ,∞ − iηSγ,∞).

Remark 4.4. We just used a combined single-and double-layer representation to get rid of
the assumption that k2 is not an interior eigenvalue of the successive approximations γn.
With this last assumption, a single-layer representation could be carried out in exactly
the same way.

Therefore, at each step n the reconstructed total field represented as a combined layer
potential over γn coincides with the true solution u∗ to the forward problem, as well as
its trace and normal trace on the boundary, respectively, given by

u∗ = ui + Lγnϕ
(n)
∗ on γn (4.7)

and
∂u∗
∂ν

=
∂ui

∂ν
+Nγnϕ

(n)
∗ on γn, (4.8)

where the operators involved are defined as

Lγ = (I/2 +Kγ − iηSγ),

Nγ = (iηI/2 + Tγ − iηK∗
γ).

Using the hybrid method for the Dirichlet case, we end up at each step with the
linearized equation

(u∗ + gradu∗ · h)|γn = 0,
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that for star-shaped domains with some abuse of notation h(x̂) = h x̂ reduces to(
u∗ +

∂u∗
∂x̂

h

) ∣∣∣
γn

= 0.

We now assume that the radial derivatives do not vanish in a small closed neighbour-
hood U of Γ, that is, ∣∣∣∣∂u∗∂x̂

∣∣∣
γ

∣∣∣∣ > 0 (4.9)

for γ ∈ U . For continuous radial derivatives the condition (4.9) implies there exists
an ε > 0 such that ∣∣∣∣∂u∗∂x̂

∣∣∣
γ

∣∣∣∣ ≥ 4ε (4.10)

for γ ∈ U .

Remark 4.5. One needs to justify that the previous assumption is not artificial and makes
sense in practise. In [2, pp.360], it is shown that for scattering by a sound-soft sphere
of radius a in R3 with plane wave incidence with direction d = (0, 0,−1), the normal
derivative of the corresponding total field u measured over the same sphere is given ex-
plicitly by

1

k

∂u

∂x̂
(a x̂(θ, φ)) =

1

k

∂u

∂ν
(a x̂(θ, φ)) = − i

(ka)2

∞∑
n=0

(−i)n(2n+ 1)
Pn(cos θ)

h
(1)
n (ka)

for x̂(θ, φ) given as in (4.2) and where h(1)
n holds for a spherical Bessel function of the first

kind and order n (e.g. [9, sec.2.4]). Plots of |1/k ∂u/∂x̂| (see [2, fig.10.2] or figure 4.1)
for several values of ka show numerically that the radial derivative on the surface does
not vanish. Therefore, by continuous dependence of the total field u on the scatterer, we
conclude that for domains close to a sphere it makes sense to make the assumption (4.9).
However, the value of |1/k ∂u/∂x̂| gets smaller in the shadow region as ka increases, so
assumption (4.10) might not hold for large obstacles or high frequency.

Then, the linearized equation can be written pointwise as

h = −
(
u∗

/∂u∗
∂x̂

) ∣∣∣
γn

. (4.11)

Note that the quantity on the left-hand side of the previous equation is real-valued, while
the quantity on the right-hand side might be complex-value. Therefore, the shift might
be computed for numerical purposes by

h = −Re

(
u∗

/∂u∗
∂x̂

) ∣∣∣
γn

(4.12)
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Figure 4.1: Plot of |1/k ∂u/∂x̂| in terms of θ.

In this case we have that (4.10) must be replaced by∣∣∣∣Re

(
∂u∗
∂x̂

∣∣∣
γ

)∣∣∣∣ > 4ε, (4.13)

which is still covered by a similar argument as in remark 4.5 for low frequency.
Remark 4.6. Another possibility is to consider

h = −1

2

(
Re

(
u∗

/∂u∗
∂x̂

)
+ Im

(
u∗

/∂u∗
∂x̂

)) ∣∣∣
γn

. (4.14)

This is a more natural way since one fits both the real and imaginary parts when trying to
find the zeros. In this case we would have that (4.10) must be replaced by∣∣∣∣Re

(
∂u∗
∂x̂

∣∣∣
γ

)∣∣∣∣ > 4ε,

∣∣∣∣Im(∂u∗∂x̂

∣∣∣
γ

)∣∣∣∣ > 4ε. (4.15)

In order to keep the notation shorter we will continue the analysis for (4.12). One should
have in mind that all the estimates obtained also hold for this last case (4.14) just by
using the property that the C–norm of a complex function is greater than or equal to
the C–norm of its real or imaginary part.

Therefore the update is obtained by the iterative scheme

rn+1 = rn − Re

(
u∗

/∂u∗
∂x̂

) ∣∣∣
γn

, (4.16)
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where we recall that u∗ is the true solution to the forward problem with scatterer D. Note
that given an analytic initial guess r0, at each step the updated approximation rn+1 is still
analytic, due to the analyticity of u∗.

By Taylor’s Formula∣∣∣∣u∗(rn(x̂)x̂)− u∗(r∗(x̂)x̂)−
∂u∗(rn(x̂)x̂)

∂x̂
(rn(x̂)− r∗(x̂))

∣∣∣∣ = O(|rn(x̂)− r∗(x̂)|2)

and by the boundary condition, as u∗|Γ = 0, we get∣∣∣∣∣∣∣∣u∗|γn −
∂u∗
∂x̂

|γn(rn − r∗)

∣∣∣∣∣∣∣∣
∞

= O(||rn − r∗||2).

In this way we obtain

rn+1 − r∗ = rn − Re

(
u∗

/∂u∗
∂x̂

) ∣∣∣
γn

− r∗

= Re

[(
(rn − r∗)

∂u∗
∂x̂

∣∣∣
γn

− u∗|γn

)/ (∂u∗
∂x̂

∣∣∣
γn

)]
.

which implies that

||rn+1 − r∗|| ≤
C

4ε
||rn − r∗||2

showing that (4.16) converges (superlinearly) to the solution in a small neighbourhood U
of Γ.

Noisy data

If the far-field data uδ
∞ ∈ L2(Ωm) has noise with magnitude δ, that is,

||uδ
∞ − u∞||L2(Ωm) < δ (4.17)

then (4.6) in general has no solution. Therefore we look for a regularized solution to (4.6),
that is,

ϕ(n)
α := Rn,αu

δ
∞ (4.18)

where Rn,α is a regularization scheme for F−1
γn,∞. As before we apply Tikhonov regular-

ization, that is,
Rn,α =

(
αI + F ∗

γn,∞Fγn,∞
)−1

F ∗
γn,∞. (4.19)

Therefore the iterative scheme (4.16) must be replaced by

rn+1 = rn − Re

(
un,α

/∂un,α

∂x̂

) ∣∣∣
γn

(4.20)
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where

un,α|γn = ui|γn + LγnRn,αu
δ
∞, (4.21)

∂un,α

∂x̂

∣∣∣
γn

=
∂ui

∂x̂

∣∣∣
γn

+DγnRn,αu
δ
∞. (4.22)

and
Dγ : ϕ 7→ x̂ · (ν Nγϕ+∇τLγϕ)

∣∣∣
γ

maps ϕ(n)
α into

(
∂us

n,α

∂x̂

) ∣∣∣
γn

. In Rm, we consider the operators

Fγ,∞ : Hm(γ) → L2(Ωm), (4.23)
Lγ : Hm(γ) → Hm(γ), (4.24)

Nγ : Hm(γ) → Hm−1(γ), (4.25)
Dγ : Hm(γ) → Hm−1(γ), (4.26)

that by Sobolev’s imbedding theorems and theorem 2.11 are bounded for a C4,α–smooth
surface γ and in particular for analytic boundaries.

By theorem 3.10, in Rm it makes sense to consider the regularization operator

Rn,α : L2(γ) → Hm(γ)

as defined in (4.19). In this way, it is clear that the exterior trace un,α|γn ∈ Hm(γn) and
also that the exterior normal trace (∂un,α/∂x̂) |γn ∈ Hm−1(γn). Therefore we can con-
sider (4.27) in a pointwise sense, since for a contour γ ∈ Rm by the Sobolev imbedding
theorems the Hm−1(γ)–norm over γ is stronger than the C(γ)–norm. However, unlike in
the no noise case, by (4.20) even if rn is analytic the update rn+1 is just in Hm−1(Ωm).
In this way, one needs extra regularization so that the operators (4.23)– (4.26) remain
bounded in the considered spaces for the next Newton step. Having this in mind, we
redefine the iterative method as

r̃n+1 = rn − Re

(
un,α

/∂un,α

∂x̂

) ∣∣∣
γn

(4.27)

and rn+1 = Q(r̃n+1), where Q : C(Ωm) → C4,α(Ωm) maps r̃n+1 to a quasi-solution rn+1

with constraint C0, that is,

||r̃n+1 − rn+1||C(Ωm) ≤ ||r̃n+1 − r||C(Ωm)

for all r ∈ C4,α(Ωm) with ||r||C4,α(Ωm) ≤ C0. We will assume as a priori knowledge
that ||r∗||C(Ωm) ≤ C0.
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Remark 4.7. In practise, one does not follow the procedure of finding a quasi-solution at
each step. Instead, one finds the best approximation to r̃n+1 in some sufficiently smooth
finite dimensional approximation space.

We are now in a position to head for the convergence result. We start by establishing
the estimates

||un,α − u∗||C(γn) = ||Lγnϕ
(n)
α − Lγnϕ

(n)
∗ ||C(γn)

≤ ||Lγn|| ||ϕ(n)
α − ϕ(n)

∗ ||C(γn)

≤ ||Lγn|| ||Rn,α(uδ
∞ − u∞) +Rn,αL

∞
γn
ϕ(n)
∗ − ϕ(n)

∗ ||C(γn)

≤ C
(
||Rn,α||δ + ||Rn,αL

∞
γn
ϕ(n)
∗ − ϕ(n)

∗ ||C(γn)

)
.

For Tikhonov regularization, picking α(δ) → 0 such that

δ2

α(δ)
→ 0, for δ → 0

we have that (see Thm.4.13 in [9])

||un,α − u∗||C(γn) ≤ ξ1(δ) (4.28)

where ξ1(δ) is monotonously decreasing and ξ1(δ) → 0 as δ → 0. By a similar argument
we can conclude that∣∣∣∣∣∣∣∣∂un,α

∂x̂
− ∂u∗

∂x̂

∣∣∣∣∣∣∣∣
C(γn)

≤ ||Dγnϕ
(n)
α −Dγnϕ

(n)
∗ ||C(γn)

≤ C̃
(
||Rn,α||δ + ||Rn,αL

∞
γn
ϕ(n)
∗ − ϕ(n)

∗ ||C(γn)

)
and again similarly we conclude that∣∣∣∣∣∣∣∣∂un,α

∂x̂
− ∂u∗

∂x̂

∣∣∣∣∣∣∣∣
C(γn)

≤ ξ2(δ) (4.29)

such that ξ2(δ) is monotonously decreasing and ξ2(δ) → 0 as δ → 0. Note that if (4.10)
holds, then for a sufficiently small closed neighbourhood U of Γ and a sufficiently small δ
we have ∣∣∣∣∂un,α

∂x̂

∣∣∣
γ

∣∣∣∣ ≥ 2ε (4.30)

for γ ∈ U.
As the method involves regularization, a stopping rule is of major importance to es-

tablish convergence of the method.
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Definition 4.8 (Stopping Rule). Given noisy data uδ
∞ fulfilling (4.17) we stop the iterative

scheme (4.27) if two successive approximations satisfy

||rn+1 − rn||C(Ωm) ≤ C1(δ) (4.31)

where C1(δ) = 4ξ1(δ)
ε−2ξ2(δ)

.

Note that the stopping rule gets more strict as δ decreases, since C1(δ) → 0 as δ → 0.
When the stopping criteria is fulfilled, we establish by definition rδ := rn+1.

Theorem 4.9 (Convergence). Let Γ be analytic and assume that (4.30) holds. Then the
iterative scheme (4.27) with a regularization scheme satisfying (4.28) and (4.29) with a
stopping rule (4.31) is locally convergent, in the sense that

||rδ − r∗||C(Ωm) → 0, δ → 0.

Proof. As compared to the noise free data, the proof must be changed in the following
way. We start by noting that by definition of a quasi-solution, since the solution r∗ is
assumed to be analytic (and therefore r∗ ∈ C4,α(Ω)) we have

||rn+1 − r∗||C(Ωm) ≤ ||rn+1 − r̃n+1||C(Ωm) + ||r̃n+1 − r∗||C(Ωm)

≤ 2 ||r̃n+1 − r∗||C(Ωm).

We also have that

r̃n+1 − r∗ = rn − Re

(
un,α

/∂un,α

∂x̂

) ∣∣∣
γn

− r∗

= Re

[(
−un,α|γn + (rn − r∗)

∂un,α

∂x̂

∣∣∣
γn

)/ (∂un,α

∂x̂

∣∣∣
γn

)]

= Re

[{
−u∗|γn − (r∗ − rn)

∂u∗
∂x̂

∣∣∣
γn

+ (u∗ − un,α)|γn

+(rn − r∗)

(
∂un,α

∂x̂
− ∂u∗

∂x̂

) ∣∣∣
γn

}/ (∂un,α

∂x̂

∣∣∣
γn

)]
and therefore by Taylor’s formula and by (4.28) and (4.29) we get

||rn+1 − r∗||C(Ωm) ≤ 2 ||r̃n+1 − r∗||C(Ωm)

≤ 1

ε

(
C||rn − r∗||2C(Ωm) + ξ2(δ)||rn − r∗||C(Ωm) + ξ1(δ)

)

where C is a constant depending on the solution u∗.
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In order to estimate the error on the (n + 1)–approximation in terms of the error on
the n–approximation, we want to explore under which conditions we have

1

ε

(
C||rn − r∗||2C(Ωm) + ξ2(δ)||rn − r∗||C(Ωm) + ξ1(δ)

)
<
||rn − r∗||C(Ωm)

2
.

Defining β := ε/2 − ξ2(δ), that is positive for a sufficiently small δ, by the solution
formula for quadratic equations we have

β −
√
β2 − 4Cξ1(δ)

2C
< ||rn − r∗||C(Ωm) <

β +
√
β2 − 4Cξ1(δ)

2C
.

Therefore, by Taylor’s expansion of the square root function around β, for a sufficiently
small fixed δ one concludes that if

C1(δ) =
4ξ1(δ)

ε− 2ξ2(δ)
< ||rn − r∗||C(Ωm) <

ε− 2ξ2(δ)

4C
(4.32)

we get

||rn+1 − r∗||C(Ωm) ≤
||rn − r∗||C(Ωm)

2
. (4.33)

This shows that for a sufficiently small δ, we have that (4.33) holds for a starting value in
some neighbourhood of Γ, as long as rn satisfies (4.32). In order to justify the choice for
the stopping criteria, we note that under (4.32) we have that

||rn+1 − rn||C(Ωm) = ||rn+1 − r∗ − (rn − r∗)||C(Ωm)

≥ ||rn − r∗||C(Ωm) − ||rn+1 − r∗||C(Ωm)

≥ 1

2
||rn − r∗||C(Ωm)

and therefore if the stopping criteria (4.31) is satisfied then rn would be the last iteration
to satisfy (4.32) since

||rn+1 − r∗||C(Ωm) ≤
||rn − r∗||C(Ωm)

2
≤ ||rn+1 − rn||C(Ωm) ≤ C1(δ)

and further convergence could not be guaranteed. Therefore, by definition of rδ one gets

||rδ − r∗||C(Ωm) ≤ C1(δ) → 0

as δ → 0 and the proof is finished.

This result proves convergence of the hybrid method for the Dirichlet case under
certain assumptions, taking into account the iterative procedure and the linearization of
the second step, unlike the minimization problem approach in section 4.1. However,
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some of the assumptions need further work. Assumption (4.9) still requires a rigorous
theoretical proof and its validity can be only supported in some cases, as for domains
close to spheres in the low frequency case (see remark 4.5). This approach also requires
more smoothness on the boundary, requiring analyticity (or at least C4,α-smooth, which
is a very artificial space). Another drawback of this approach is that its extension to the
Neumann (and consequently to the Robin) case is not trivial, since the characterization
of G′

N depends on h and its tangential derivatives. Therefore we are not able to write the
shift h explicitly (as in (4.11) for the Dirichlet case) for a general h and therefore we do
not get an iterative method of the form (4.16) equivalent to the hybrid method.



Chapter 5

Numerical Results

In this chapter we present the numerical procedure to implement the hybrid method as
well as the numerical results obtained. The main difficulty lies in the numerical eval-
uation of the integral operators involved, namely the layer potentials, so we based our
approach on previous work on quadrature rules to deal with their singularities. In this
way we split our presentation in the two-and three-dimensional cases, since the approach
is different for each case. For the two-dimensional case there exist exponentially conver-
gent quadrature rules obtained by explicitly integrating the singularities involved based
on trigonometric interpolation (see [9, sec. 3.5.] and [36]). These quadrature rules lead
to numerically solving the integral equations by the Nyström method. For the three-
dimensional case, such a procedure is not convenient. We will base ourselves in [12, 15],
where a Galerkin method is presented to solve the direct problem dealing with the pre-
viously mentioned singularities of the fundamental solution. Convergence rates where
proven for this Galerkin method (see [12]), namely super-algebraic convergence for an-
alytic right-hand sides. Then we will use some of its ideas to establish quadrature rules
to numerically integrate the integral operators appearing in the inverse problem. These
quadrature rules end up to be the same as introduced by Wienert [65], that are also pre-
sented in an english version in [9, sec.3.6]. In R2 we also split the treatment for each
considered boundary condition (2.8)–(2.10), with special attention to the Robin case,
where both the scatterer D and the impedance λ are reconstructed. In R3 we just present
the numerical implementation of the method and the corresponding reconstructions for
the Dirichlet case due to simplicity, though an extension to other boundary conditions
is possible with similar changes as in the two-dimensional problem. Numerical results
show the feasibility of the method, being its robustness also displayed in reconstructions
from noisy data.
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5.1 Two-dimensional case
In this section we will present the numerical procedure to solve the inverse problem 2.15
by the hybrid method in R2. For simplicity, in this section we will denote the unit sphere
by Ω := Ω2. We will briefly present the direct problem in order to introduce the quadra-
ture rule to deal with the logarithmic singularities of the fundamental solution. In this
way we present how the direct problem was solved in order to generate the synthetic
far-field data for the inverse problem. Then, in the following three sections 5.1.2-5.1.4
we will present the numerical procedure to solve the inverse problem for the Dirichlet,
Neumann and Robin boundary condition, respectively.

5.1.1 Direct problem
We will start by briefly explaining how we obtained the synthetical data, solving the direct
problem. The goal is to compute the far-field pattern u∞ corresponding to scattering by
a given obstacle D with boundary Γ with a given incident field ui. We represented the
scattered field as a combined single-and double-layer potential over Γ

us(x) =

∫
Γ

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(y)ds(y), x ∈ Rm\Γ

with η > 0, which is possible to do requiring enough regularity on Γ and on the incident
field ui over the boundary (see [8]). For each of the boundary conditions (2.8)–(2.10),
the scattered field us must satisfy

Bus = −Bui on Γ.

Considering the layer operators given in section 2.2.1, one is lead to the following integral
equation for the Dirichlet boundary condition (2.8)

ϕ

2
+ (K − iηS)ϕ = −ui on Γ, (5.1)

making use of the jump relations. For the Neumann boundary condition (2.9) we get

iη
ϕ

2
+ (T − iηK∗)ϕ = −∂u

i

∂ν
on Γ. (5.2)

As already referred in (3.49), for the Robin boundary condition (2.10) we get

BΓ,λ ϕ = −
(
∂ui

∂ν
+ i λui

)
on Γ (5.3)

where the boundary operator is given by

Bγ,ζ = i (η + ζ)
I

2
+ Tγ + i

(
ζKγ − ηK∗

γ

)
+ ζ η Sγ.
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Considering ϕ in the appropriate smooth space, all the previous equations are integral
equations of the second kind (e.g. [9]). Assuming to have the boundary Γ in a parametric
form, that is,

Γ = {z(t) : t ∈ [0, 2π]}
where z is a C2-smooth 2π−periodic and counter-clockwise oriented parameterization,
the next step is to parameterize the previous integral equations. Then, by the Nyström
method, one just needs to straightforwardly approximate the integrals by appropriate
quadrature rules, and collocate the equation in the quadrature points in order to obtain a
linear system.

For the operators S, K and K∗ we simply use the quadrature rules in [9, sec. 3.5.],
which are exponentially convergent for analytic boundaries Γ.

First we consider the Dirichlet case, that is, we write (5.1) in the parametric form

ψ(s) + 2

∫ 2π

0

M(s, t)ψ(t)dt = 2g(s), s ∈ [0, 2π], (5.4)

where ψ(s) = ϕ(z(s)) and g(s) = −ui(z(s)) and

M(s, t) = MK(s, t)− iηMS(s, t), s, t ∈ [0, 2π], (5.5)

whereMS andMK are respectively the parametric kernels of the single-and double-layer
operators that will be defined in a few lines. The goal is to decompose the parameterized
kernel M in the form

M(s, t) = M1(s, t) ln

(
4 sin2 s− t

2

)
+M2(s, t), s 6= t (5.6)

for s, t ∈ [0, 2π], where M1 and M2 are analytic. This can be done by expanding the
fundamental solution H(1)

0 = J0 + iN0 in its power series (e.g. [9]). The idea is to apply
this decomposition to the parametric kernel MS of the single layer operator S and to
the parametric kernel MK of the double layer operator K and then make use of (5.5) to
obtain the decomposition (5.6).

Therefore, following the ideas of [44, 49] described in [9, sec.3.5], we have that the
parametric kernel MS of the single layer operator S, such that

(Sϕ)(z(s)) =

∫ 2π

0

MS(s, t)ψ(t)dt, s ∈ [0, 2π]

can be decomposed as

MS(s, t) :=
i

4
H

(1)
0 (k|z(s)− z(t)|)|z′(t)|

= MS
1 (s, t) ln

(
4 sin2 s− t

2

)
+MS

2 (s, t)
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where

MS
1 (s, t) := − 1

4π
J0(k|z(s)− z(t)|)|z′(t)|, (5.7)

MS
2 (s, t) := MS(s, t)−MS

1 (s, t) ln

(
4 sin2 s− t

2

)
(5.8)

are analytic and MS
2 has a diagonal term given by

MS
2 (t, t) =

(
i

4
− C

2π
− 1

4π
ln

(
k2

4
|z′(t)|2

))
|z′(t)|

where C = 0.5772156649 . . . is Euler’s constant.
In a similar way the parametric kernel MK of the double-layer operator K can be

decomposed as

MK(s, t) :=
ik

4

[(z(s)− z(t)) · ν(z(t))]
|z(s)− z(t)|

H
(1)
1 (k|z(s)− z(t)|)|z′(t)|

= MK
1 (s, t) ln

(
4 sin2 s− t

2

)
+MK

2 (s, t)

where

MK
1 (s, t) := − k

4π

[(z(s)− z(t)) · ν(z(t))]
|z(s)− z(t)|

J1(k|z(s)− z(t)|)|z′(t)| (5.9)

MK
2 (s, t) := MK(s, t)−MK

1 (s, t) ln

(
4 sin2 s− t

2

)
(5.10)

are also analytic with diagonal term

MK
2 (t, t) =

1

4π

z′′(t) · ν(z(t))
|z′(t)|

.

Note that though MK is continuous, this decomposition brings advantages since its
derivatives are not continuous at s = t. We also note that H(1)

1 = −H(1)′

0 denotes the
Hankel function of first kind and order one and J1 = −J ′0 denotes the Bessel function of
order one. For K∗ everything follows in a very similar way (see [36]), getting

MK∗
(s, t) := −ik

4

[(z(s)− z(t)) · ν(z(s))]
|z(s)− z(t)|

H
(1)
1 (k|z(s)− z(t)|)|z′(t)|

= MK∗

1 (s, t) ln

(
4 sin2 s− t

2

)
+MK∗

2 (s, t)
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where

MK∗

1 (s, t) :=
k

4π

[(z(s)− z(t)) · ν(z(s))]
|z(s)− z(t)|

J1(k|z(s)− z(t)|)|z′(t)| (5.11)

MK∗

2 (s, t) := MK(s, t)−MK∗

1 (s, t) ln

(
4 sin2 s− t

2

)
(5.12)

are also analytic with diagonal term

MK∗

2 (t, t) =
1

4π

z′′(t) · ν(z(t))
|z′(t)|

.

In this way the logarithmic singularity of these kernels is exposed explicitly.
Having equation (5.4) in mind, one can proceed using the quadrature rule for the

equidistant points tj := πj/N, j = 0, . . . , 2N − 1 given by∫ 2π

0

ln

(
4 sin2 s− t

2

)
f(t)dt ≈

2N−1∑
j=0

R
(N)
j (s)f(tj) (5.13)

with weights

R
(N)
j (s) := −2π

N

N−1∑
l=1

1

l
cos l(s− tj)−

π

N2
cosN(s− tj)

and the trapezoidal rule ∫ 2π

0

f(t)dt ≈ π

N

2N−1∑
j=0

f(tj), (5.14)

both obtained by replacing the integrand f by its trigonometric interpolation polynomial
and then integrating exactly. We end up with an approximated equation of the form

ψ(s) + 2
2N−1∑
j=0

(
R

(N)
j (s)M1(s, tj) +

π

N
M2(s, tj)

)
ψ(tj) = 2g(s), s ∈ [0, 2π].

In particular, by the Nyström method, for ψi = ψ(ti), i = 0, . . . , 2N−1 we get the linear
system

ψi +2
2N−1∑
j=0

(
R

(N)
|i−j|M1(ti, tj) +

π

N
M2(ti, tj)

)
ψj = 2g(ti), i = 0, . . . , 2N − 1 (5.15)

where the quadrature weights can be simplified to the form

R
(N)
j = −2π

N

N−1∑
l=1

1

l
cos

l j π

N
− (−1)Nπ

N2
. (5.16)
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In this way one obtains a reconstruction of the density ψ that can be used to obtain the
far-field u∞ from the integral far-field representation of the combined single-and double-
layer potential. We will refer to that at the end of this section, after showing how to
reconstruct the density for the Neumann and Robin cases.

As for equations (5.2) and (5.3), corresponding to the Neumann and Robin cases re-
spectively, one still needs to introduce a parameterized version of the integral operator T .
However, as we will see in a few lines, a parametric integral equation of the form (5.4)
will not be achieved. Using the identity (see [50])

Tϕ =
d

dτ
S
dϕ

dτ
+ k2ν · S(ν ϕ).

and following [36] one can show that(
d

dτ
S
dϕ

dτ

)
(z(s)) =

1

|z′(s)|

∫ 2π

0

(
1

4π
cot

t− s

2

dϕ(z′(t))

dτ
−N(s, t)ϕ(z(t))

)
dt

where

N(s, t) :=
i

4
Ñ(s, t)

[
k2H

(1)
0 (k|z(s)− z(t)|)− 2kH

(1)
1 (k|z(s)− z(t)|)
|z(s)− z(t)|

]

+
ikz′(s) · z′(t)
4|z(s)− z(t)|

H
(1)
1 (k|z(s)− z(t)|) +

1

8π

1

sin2 s−t
2

with

Ñ(s, t) :=
z′(s) · (z(s)− z(t)) z′(t) · (z(s)− z(t))

|z(s)− z(t)|2
.

Moreover, we have the decomposition

N(s, t) = N1(s, t) ln

(
4 sin2 s− t

2

)
+N2(s, t)

where

N1(s, t) := − 1

4π
Ñ(s, t)

[
k2J0(k|z(s)− z(t)|)− 2kH

(1)
1 (k|z(s)− z(t)|)
|z(s)− z(t)|

]

− kz′(s) · z′(t)
4π|z(s)− z(t)|

J1(k|z(s)− z(t)|)

N2(s, t) := N(s, t)−N1(s, t) ln

(
4 sin2 s− t

2

)
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are analytic with diagonal terms

N1(t, t) = −k
2|z′(t)|2

8π
,

N2(t, t) =

(
πi− 1− 2C − 2 ln

k|z′(t)|
2

)
k2|z′(t)|

8π

+
1

24π
+

[z′(t) · z′′(t)]2

4π|z′(t)|4
− |z′′(t)|2

8π|z′(t)|2
− z′(t) · z′′′(t)

12π|z′(t)|2
.

Using the identity

ν(z(s)) · ν(z(t)) =
z′(s) · z′(t)
|z′(s)||z′(t)|

,

we also get

(
k2ν · S(ν ϕ)

)
(z(s)) =

k2

|z′(s)|

∫ 2π

0

(
z′(s) · z′(t)

)MS(s, t)

|z′(t)|
ψ(t)dt

Therefore, one can write T in the parametric form

(Tϕ)(z(s)) =
1

|z′(s)|

(
1

4π

∫ 2π

0

cot
t− s

2
ψ′(t) dt+

∫ 2π

0

MT (s, t)ψ(t)dt

)
(5.17)

where

MT (s, t) := k2
(
z′(s) · z′(t)

)MS(s, t)

|z′(t)|
−N(s, t).

In this way, the integral equations (5.2) and (5.3) can be written in the parametric form as

ψ(s) +
1

ξ

(
1

|z′(s)|
1

4π

∫ 2π

0

cot
t− s

2
ψ′(t) dt+

∫ 2π

0

M(s, t)ψ(t)dt

)
=

1

ξ
g(s), (5.18)

for s ∈ [0, 2π], where again ψ(s) = ϕ(z(s)) and both the constant ξ > 0 and the
function g depend on which of the boundary conditions one considers and are given by{

ξ = iη/2, g(s) = −∂u
∂ν

(z(s)), for Neumann,

ξ = i(η + λ)/2, g(s) = −∂u
∂ν

(z(s))− iλ(z(s))u(z(s)), for Robin.

For the Neumann case (5.2) the kernel M appearing in (5.18) is given by

M(s, t) =
1

|z′(s)|
MT (s, t)− iηMK∗
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while for the Robin case (5.3) the kernel M is given by

M(s, t) =
1

|z′(s)|
MT (s, t) + i

(
λMK − ηMK∗)

+ ληMS.

Replacing the integrand by its trigonometric interpolation polynomial and integrating
exactly one gets the quadrature rule given by

1

4π

∫ 2π

0

cot
t− s

2
f ′(t)dt ≈

2N−1∑
j=0

T
(N)
j (s)f(tj)

with weights

T
(N)
j (s) = − 1

2N

N−1∑
l=1

l cos l(s− tj)−
1

2
cosN(s− tj).

Therefore, treating the second integral on the left-hand side of (5.18) as in the Dirichlet
case with the quadrature scheme (5.13) and the trapezoidal rule (5.14), as a consequence
of applying the Nyström method to solve (5.18), one ends up with a linear system of the
form

ψi +
1

ξ

2N−1∑
j=0

(
1

|z′(ti)|
T

(N)
|i−j| +R

(N)
|i−j|M1(ti, tj) +

π

N
M2(ti, tj)

)
ψj =

1

ξ
g(ti), (5.19)

for i = 0, . . . , 2N − 1, where the quadrature weights can be simplified to the form

T
(N)
j =


−N

4
, j = 0

1
4N sin(tj/2)

, j odd

0, j even

Solving the linear system (5.15) or (5.19) according to the boundary condition, we
will get the ψi, i = 0, . . . , 2N − 1 corresponding to ψ evaluated at ti. As the far-field
pattern of a combined single-and double-layer potential is given by

u∞(x̂) =
(
(K∞ − iηS∞)ϕ

)
(x), x̂ ∈ Ω

and both S∞ and K∞ given by (2.22) and (2.23), respectively, have a continuous kernel,
we simply use the trapezoidal rule (5.14) to compute the far-field pattern by

u∞(x̂) ≈ π

N

2N−1∑
j=0

M∞(x̂, tj)ψj, x̂ ∈ Ω
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where M∞(x̂, t) is the parametric kernel of the combined single-and double-layer far-
field operator given by

M∞(x̂, t) =
e−iπ/4

√
8πk

(k x̂ · ν(z(t)) + η) e−ikx̂·z(t)|z′(t)|.

Using N = 100, we computed the far-field pattern for one incident direction at 100
equidistant points on the unit circle Ω and considered it as the given data for the inverse
scattering problem. As suggested in [35] we choose η = k.

5.1.2 Inverse Problem for the Dirichlet Case
We are now in a position to present the numerical method for the inverse problem, since
all the quadrature rules and its ideas have been already mentioned in the previous para-
graphs concerning the direct problem. For the inverse problem that we will now discuss,
we consider star-shaped obstacles, that is, the boundary of the obstacle is given by

γr = {z(t) = r(x̂(t)) x̂(t) | r : Ω → R2, t ∈ [0, 2π]} (5.20)

where x̂(t) is defined in R2 by

x̂(t) = (cos t, sin t), t ∈ X = [0, 2π].

As for parameterization space we choose trigonometric polynomials, since they are dense
in L2[0, 2π] (see [37]). In this way, we consider radial functions r that are linear combi-
nations of trigonometric polynomials of order less than or equal to Nz, that is,

r(t) = a0 +
Nz∑
j=1

aj cos jt+
Nz∑
j=1

bj sin jt (5.21)

with aj, bj ∈ R, j = 1, . . . , Nz. This assumption will be carried out not only for Dirichlet
but also for both the Neumann and Robin cases.

In this section we will present the numerical implementation of the hybrid method for
the Dirichlet boundary condition presented in section 3.3. Consider γn, parameterized
by zn, to be the current approximation to the solution Γ of the inverse problem.

In a first step, the total-field u is reconstructed from the given far-field data u∞, by
representing the scattered field us by a single-layer potential over γn, that is,

us(x) =

∫
γn

Φ(x, y)ϕ(y)dy.

This representation leads to less complexity in the implementation than a combined
single-and double-layer potential and can be taken under the assumptions discussed in
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section 3.3. In this way, as referred in section 3.3, we have to solve the regularized
far-field equation (

αnI + S∗γn,∞Sγn,∞
)
ϕ(n) = S∗γn,∞u∞ (5.22)

where

(Sγ,∞ ϕ)(x̂) =
eiπ/4

√
8πk

∫
γ

e−ikx̂·y ϕ(y)ds(y), x̂ ∈ Ω.

By the relation (e.g. [64, Ch.53])

πJ0(|y|) =

∫ π

0

cos(|y| cos t)dt =
1

2

∫
Ω

eix̂·ydx̂, y ∈ R2

one can write (5.22) in the parameterized form

αnψ
(n)(s) +

1

4k

∫ 2π

0

J0(k|zn(s)− zn(t)|)|z′n(t)|ψ(n)(t)dt =

=
e−iπ/4

√
8πk

∫ 2π

0

eikx̂(t)·zn(s)u∞(x̂(t))dt

where ψ(n)(t) = ϕ(n)(zn(t)). Since all the integral kernels involved in the previous equa-
tion are continuous, by the Nyström method associated with the trapezoidal rule (5.14)
one gets the linear system

αnψ
(n)
i +

π

4kN

2N−1∑
j=0

J0(k|zn(ti)− zn(tj)|)|z′n(tj)|ψ(n)
j =

=
e−iπ/4

√
8Nk

2N−1∑
j=0

eikx̂(tj)·zn(ti)u∞(x̂(tj))

for i = 0, . . . , 2N − 1, which is solved in order to obtain the ψ(n)
i = ψ(n)(ti).

By the jump relations for the single layer operator (see thm. 2.9)

us(x) = Sγnϕ,

∂us

∂ν
(x) = −ϕ

2
+K∗

γn
ϕ,

following the same procedure mentioned in the forward problem (that is, the quadra-
ture rule (5.13) to deal with the logarithmic singularity of the kernels involved and the
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trapezoidal rule (5.14) to deal with the smooth part), one gets the approximations

us(zn(ti)) ≈ us
n(zn(ti)) :=

2N−1∑
j=0

(
R

(N)
|i−j|M

S
1 (ti, tj) +

π

N
MS

2 (ti, tj)
)
ψ

(n)
j ,

∂us

∂ν
(zn(ti)) ≈ ∂us

n

∂ν
(zn(ti))

:= −ψ
(n)
i

2
+

2N−1∑
j=0

(
R

(N)
|i−j|M

K∗

1 (ti, tj) +
π

N
MK∗

2 (ti, tj)
)
ψ

(n)
j ,

for i = 0, . . . , 2N −1, where the kernels MS
1 ,M

S
2 and MK∗

1 ,MK∗
2 are given respectively

by (5.7)–(5.8) and (5.11)–(5.12) and the quadrature weights are given by (5.16). One
now computes the tangential derivative of the total field u over γn by trigonometric in-
terpolation, that is, one takes the tangential derivative of the trigonometric interpolation
polynomial of un as an approximation to the tangential derivative of the total field u.
In this way, one can find an approximation to the gradient of the total field using the
decomposition

gradu|γn ≈ ν
∂un

∂ν

∣∣∣
γn

+ τ
∂un

∂τ

∣∣∣
γn

where un = ui + us
n and the last term on the right hand side is, as already referred,

computed by trigonometric differentiation.
From the linearized equation (3.14) and the approximation space for the approxima-

tion given by (5.20) and (5.21) one gets(
a

(h)
0 +

Nz∑
j=1

a
(h)
j cos jti +

Nz∑
j=1

b
(h)
j sin jti

)
gradun(zn(ti)) · (cos ti, sin ti)=−un

(
zn(ti)

)
for i = 0, . . . , 2N − 1 and so one now fits the coefficients a(h)

j , b
(h)
j , j = 0, . . . , Nz by

a Levenberg-Marquardt step (note that one must have Nz < N ) in order to establish the
shift

h(t) =

(
a

(h)
0 +

Nz∑
j=1

a
(h)
j cos jt+

Nz∑
j=1

b
(h)
j sin jt

)
(cos t, sin t), t ∈ [0, 2π]

and get a new approximation γn+1 parameterized by zn+1 = zn + h. We then repeat the
process while ||un||L2(γn) is decreasing.

For the numerical examples in this section we considered the wave number k = 1
and an incident plane field ui(x) = eikx·d, d ∈ Ω. The incident direction d is represented
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in the figures by a grey arrow. We considered as approximation space for the radial
parameterization trigonometric polynomials of order less than or equal to Nz = 20 and
as regularization parameter αn = 10−8×0.5n for Tikhonov regularization at the first step
of each iteration n of the method. We also note that the stopping criteria was achieved
between 5 and 10 iterations for the presented examples.

We first considered an obstacle with parameterization given by

z(t) = (2 + 0.3 cos 3t)(cos t, sin t), t ∈ [2, π] (5.23)

that lies inside the approximation space.

Figure 5.1: Reconstruction (in blue) of a sound-soft obstacle in the approximation space
(in red) with exact data (left) and 5% noise (right). The dashed line is the initial guess.

As one can see in figure 5.1 the reconstruction is perfect considering data without
noise. With noisy data the reconstruction deteriorates mostly in the shadow region, as
usual for methods using data from just one incident plane wave.

As a second example we considered a peanut shaped obstacle parameterized by

z(t) =
√

cos2 t+ 0.25 sin2 t(cos t, sin t), t ∈ [2, π]. (5.24)

As shown in figure 5.2, again the reconstructions are quite good. It is clear that the
approximation becomes worst in the non-convex region of the peanut, since this part is
not illuminated by the considered incident direction. With noisy data the reconstruction
deteriorates in the shadow region as in the previous example.

As a third and last example for sound-soft obstacles, we considered a kite-shaped
obstacle parameterized by

z(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), t ∈ [2, π]. (5.25)
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Figure 5.2: Reconstruction (in blue) of a peanut shaped sound-soft obstacle (in red) with
exact data (left) and 5% noise (right). The dashed line is the initial guess.

Figure 5.3: Reconstruction (in blue) of a kite shaped sound-soft obstacle (in red) with
exact data (left) and 5% noise (right). The dashed line is the initial guess.

As shown in figure 5.3, even for the kite shaped obstacle the performance is good.
Both for noisy and non-noisy data, the reconstruction is worst in the convex part, that
coincides with the shadow region.

Note that as mentioned in remark 3.1, the initial guess might be inside or outside the
obstacle leading in both cases to successful reconstructions. However, as in general for a
iterative method, convergence is only guaranteed for an initial guess sufficiently close to
the obstacle. The numerical examples show the feasibility of the hybrid method as well
as its robust behaviour with noisy data.
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5.1.3 Inverse Problem for the Neumann Case

For the Neumann case all the procedures follow in a very similar way. We again con-
sider γn to be the current approximation to the boundary and that the approximation is
star-shaped and given by (5.20) and (5.21). We note that unlike the Dirichlet case and
according to the analysis made in section 3.4, we represent the total field as a combined
single-and double-layer potential

us(x) =

∫
γn

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
ϕ(y)ds(y), x ∈ R2\γn

for some coupling term η > 0 and density ϕ ∈ C1,α(γn). Though this representation is
more complex to implement, one does not need any assumption on the wave number k.
Having in mind the first step of the method, in order to reconstruct the total field u one
considers the Tikhonov regularized far-field equation given by

αnϕ
(n) + F ∗

γ,∞Fγ,∞ϕ
(n) = F ∗

γ,∞u∞ on Ω (5.26)

with (
Fγ,∞ϕ

)
(x̂) :=

(
(Kγ,∞ − iηSγ,∞)ϕ

)
(x̂)

=
e−iπ/4

√
8πk

∫
γ

(kx̂ · ν(y) + η)e−ikx̂·ydy.

In the parameterized form, one gets,

αnψ
(n)(s) +

1

8πk

∫ 2π

0

Θ(t, s)eikx̂(t)·zn(s)

(∫ 2π

0

Θ(t, t̃)e−ikx̂(t)·zn(t̃)ψ(n)(t̃)|z′n(t̃)|dt̃
)
dt =

=
eiπ/4

√
8πk

∫ 2π

0

Θ(t, s)eikx̂(t)·zn(s)u∞(x̂(t))dt, s ∈ [0, 2π]

where ψ(n)(t) = ϕ(n)(zn(t)) for t ∈ [0, 2π] and

Θ(t, s) := (kx̂(t) · ν(s) + η), t, s[0, 2π].

Remark 5.1. Note that for the Neumann case one cannot get rid of the double integral aris-
ing, since there is no equivalent Bessel function integral representation as in the Dirichlet
case. However, one can avoid this computationally more costly problem by discretizing
the operator Fγ,∞ into a matrix making use of the trapezoidal quadrature rule and then
consider equation (5.26) in a matrix form.
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Using the trapezoidal rule (5.14) to approximate the integrals involved, again one
ends up with a linear system

αnψ
(n)
i +

π

8kN2

2N−1∑
j=0

Θ(tj, ti)e
ikx̂(tj)·zn(ti)

(
2N−1∑
l=0

Θ(tj, tl)e
−ikx̂(tj)·zn(tl)ψ

(n)
l |z′n(tl)|

)
=

=
eiπ/4

√
8kN

2N−1∑
j=0

Θ(tj, ti)e
ikx̂(tj)·zn(ti)u∞(x̂(tj)), (5.27)

for i = 0, . . . , 2N−1, which is solved in order to obtain the ψ(n)
i = ψ(n)(zn(ti)).Making

use of the quadrature rules mentioned to solve the direct problem, we then have the
approximations to the scattered field us and its normal derivative over γn given by

us
n

(
zn(ti)

)
:=
ψ

(n)
i

2
+

2N−1∑
j=0

(
R

(N)
|i−j|M1(ti, tj) +

π

N
M2(ti, tj)

)
ψ

(n)
j , (5.28)

∂us
n

∂ν

(
zn(ti)

))
:= iη

ψ
(n)
i

2
+

2N−1∑
j=0

(
1

|z′(ti)|
T

(N)
|i−j| +R

(N)
|i−j|M̃1(ti, tj) +

π

N
M̃2(ti, tj)

)
ψ

(n)
j .

(5.29)

respectively, where the kernels are given by

M1(s, t) = MK
1 (s, t)− iηMS

1 (s, t), M2(s, t) = MK
2 (s, t)− iηMS

2 (s, t),

M̃1(s, t) = MT
1 (s, t)− iηMK∗

1 (s, t), M̃2(s, t) = MT
2 (s, t)− iηMK∗

2 (s, t).

This concludes the first step of the n-iteration of the hybrid method. For the second step
one needs to solve the linearized equation (3.37). In this way one has(
h(ti) · ν(ti)

)(
H(ti)

∂un

∂ν

(
zn(ti)

)
− k2un

(
zn(ti)

))
− ∂

∂τ

(
h·ν
(
∂un

∂τ

)
◦ zn

)
(ti)+

+
(
h(ti) · τ(ti)

) ∂2un

∂τ∂ν

(
zn(ti)

)
= −∂un

∂ν

(
zn(ti)

)
for i = 0, . . . , 2N − 1. One uses the parametric representations of the normal and tan-
gential vectors given by ν(s) = z′⊥(s)/|z′(s)| and ν(s) = z′(s)/|z′(s)|, respectively,
and trigonometric differentiation on un to compute the terms ∂un/∂τ and ∂2un/∂τ

2 and
on ∂un/∂ν to compute the term ∂2un/∂τ∂ν. Like the Dirichlet case, one fits the coeffi-
cients a(h)

j , b
(h)
j , j = 0, . . . , Nz of the shift

h(t) =

(
a

(h)
0 +

Nz∑
j=1

a
(h)
j cos jt+

Nz∑
j=1

b
(h)
j sin jt

)
(cos t, sin t), t ∈ [0, 2π]
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by a Levenberg-Marquardt step and gets a new approximation γn+1 with parameterization
given by zn+1 = zn +h. We then repeat the process while ||∂un/∂ν||L2(γn) is decreasing.

For the numerical examples we considered wave number k = 3 and again an incident
plane field ui(x) = eikx·d, d ∈ Ω. The increase of the wave number from k = 1 to k = 3
gives more accuracy in the reconstructions, especially for the peanut shaped obstacle,
where the size of the obstacle is comparable to the wave length.

Again, the considered incident direction d is represented in the figures by a grey ar-
row. We considered an approximation space for the radial parameterization defined by
trigonometric polynomials of order less or equal to 10 and used the regularization param-
eter αn = 10−8 × 0.5n for Tikhonov regularization at the first step of each iteration n
of the method. The stopping criteria was achieved between 10 and 15 iterations for ex-
amples presented in this section. In this way, the sound-hard case seems to require more
iterations than the sound-soft one.

We first considered the same obstacle with parameterization (5.23) that lies inside the
approximation space. As one can see in figure 5.4 the reconstruction for the sound-hard
case becomes slightly worst in the shadow region.

Figure 5.4: Reconstruction (in blue) of a sound-hard peanut shaped obstacle in the ap-
proximation space (in red) with exact data (left) and 5% noise (right). The dashed line is
the initial guess.

For the peanut shaped obstacle parameterized by (5.24) it is clear that even with exact
data, the shadow region is not well reconstructed. Hence, the direction of the incident
field becomes more important to get good reconstruction in the Neumann case. Moreover,
the initial guess is also more important than in the Dirichlet case, since for the Neumann
case there seems to be more local minimums to which the method might converge.

On figure 5.6 we present the reconstructions obtained for the kite-shaped obstacle.
It is clear that the method does not work so well in this case, tending to a parallel sur-
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Figure 5.5: Reconstruction (in blue) of a sound-hard obstacle in the approximation space
(in red) with exact data (left) and 5% noise (right). The dashed line is the initial guess.

Figure 5.6: Reconstruction (in blue) of a sound-hard kite shaped obstacle in the approx-
imation space (in red) with exact data (left) and 5% noise (right). The dashed line is the
initial guess.

face. We also note that for this last example the regularization parameter was increased
to αn = 10−4 × 0.5n in order to get convergence. This might also explain the worst
results, since the method becomes less accurate. Also due to this increasement, the dif-
ferences between the exact and noisy case can hardly be seen.
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5.1.4 Inverse Problem for the Robin Case
In the Robin case one wants to recover not only the shape of the obstacle Γ but also the
impedance function λ. Therefore we consider that on the n-iteration we have a current
approximation γn, parameterized by zn, to the boundary Γ and a current approximation ζn
to the impedance λ.As we also use a combined single-and double-layer potential, the first
step is exactly the same as the first step presented for the Neumann case, boiling down to
solving (5.27) in order to obtain ψ(n)

i = ϕ(n)(zn(ti)) for i = 0, . . . , 2N − 1. In the same
way we have the approximations (5.28) and (5.29) respectively for the total field u and
its normal derivative over γn.

Before studying the second step, one issue still needs some discussion. Namely we
need to discuss how to extend the impedance to a neighbourhood of γn, so that the op-
erator GR defined in (3.53) and its Fréchet derivatives characterized in theorem 3.15 are
well defined for all parameterizations z in this neighbourhood. On the one hand, one
way to do it would be to extend its values along the normal direction to γn, which is pos-
sible in a neighbourhood of the contour since the contour is assumed to be C2–smooth
(actually, by the approximation space defined by (5.20) and (5.21) it is even analytic).
Though this idea does not impose any restrictions on the domain, as the characteriza-
tion (3.56) of the Fréchet derivative of GR with respect to the parameterization depends
on the gradient of ζn, we would only be able to apply the method to continuously dif-
ferentiable impedances, which is assuming more than we usually have in practice. On
the other hand, assuming that the boundary of the domain is star-shaped, that is, it is
parameterized by

z(t) = {r(t)(cos t, sin t) : t ∈ [0, 2π]} (5.30)

with some 2π-periodic positive C2–function r, one could easily extend the impedance as
a direction dependent function, that is, ζ = ζ(x̂). In this way, the perturbations h to the
initial parameterization z will also be star-shaped in the form of

h(t) = {q(t)(cos t, sin t) : t ∈ [0, 2π]} (5.31)

with some 2π-periodic C2–function q and therefore the term depending on h · grad ζ
appearing on the characterization (3.56) of the Fréchet derivative of GR with respect to
the parameterization z will vanish since we have

gradζ · h =
∂ζ

∂θ
θ · h = 0,

where θ = x̂⊥. Therefore we get

∂

∂z
G(z, ζ)h = −k2(h · ν)u ◦ z − ∂

∂τ

(
h · ν

(
∂u

∂τ
◦ z
))

+ (iζ +H)(h · ν)∂u
∂ν

◦ z

+(h · τ)
[(

∂2u

∂τ∂ν
+ iζ

∂u

∂τ

)
◦ z
]
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which can be applied requiring the solution λ just to be continuous, since there is no
dependence on derivatives of ζ . Note that this choice of extension of the impedance is
also in accordance with the formal argument on ”uniqueness” at the end of section 2.3.
Therefore we will consider this last choice.

For star-shaped domains, from the linearized equation (3.55) we end up with the
following 2N equations

−k2h(ti) · ν(ti)un

(
zn(ti)

)
− ∂

∂τ

(
h(ti) · ν(ti)

(
∂un

∂τ

(
zn(ti)

)))

+(iζn(ti) +H(ti))h(ti) · ν(ti)
∂un

∂ν

(
zn(ti)

)
+h(ti) · τ(ti)

[(
∂2un

∂τ∂ν

(
zn(ti)

)
+ iζn(ti)

∂un

∂τ

(
zn(ti)

))]

+iµ(ti)un

(
zn(ti)

)
= −∂un

∂ν

(
zn(ti)

)
+ iζn(ti)un

(
zn(ti)

)
,

for i = 0, . . . , 2N − 1, where we use the jump relations and trigonometric differentiation
to compute the terms involved. We now fit the coefficients a(h)

j , b
(h)
j , j = 0, . . . , Nz

and a(µ)
j , b

(µ)
j , j = 0, . . . , Nµ of the shifts

h(t) =

(
a

(h)
0 +

Nz∑
j=1

a
(h)
j cos jt+

Nz∑
j=1

b
(h)
j sin jt

)
(cos t, sin t), t ∈ [0, 2π]

µ(t) =

(
a

(µ)
0 +

Nµ∑
j=1

a
(µ)
j cos jt+

Nµ∑
j=1

b
(h)
j sin jt

)
, t ∈ [0, 2π]

to the previous linear system by a Levenberg-Marquardt step and get an updated approx-
imation γn+1 parameterized by zn+1 = zn + h to the boundary Γ and an updated approx-
imation ζn+1 = ζn +µ to the impedance λ. Note that now we need Nz +Nµ < N so that
the system is overdetermined. We then repeat the process while ||∂un/∂ν+ iζnun||L2(γn)

is decreasing.

For the numerical examples we considered the wave number k = 1 and again an in-
cident plane field with incident direction d represented in the figures by a grey arrow. We
considered an approximation space for the radial parameterization defined by trigono-
metric polynomials of order less than or equal to Nz = 6 and for impedance defined
by trigonometric polynomials of order less than or equal to Np = 5. We used the reg-
ularization parameter αn = 10−8 × 0.5n for Tikhonov regularization at the first step of
each iteration n of the method. The stopping criteria was achieved between 10 and 15
iterations for the examples presented, as for the Neumann case.
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We first considered an obstacle with parameterization (5.23) and an impedance func-
tion

λ(t) = 1− cos t+ 0.5 sin 2t, t ∈ [0, 2π],

both lying inside the respective approximation space. As one can see in figure 5.7, the
reconstruction is no longer perfect even for exact data. However, this is drawback better
noticed in the impedance function than in the obstacle, getting even clearer with noisy
data. Moreover, the approximation around the maximums of the impedance is in general
worst than around the minimums, since the behaviour for high impedance is similar to
the Dirichlet case, being the method not able to recover the exact value around that area.
This behaviour will also be shown in the following two examples. We also note that the
initial guess represents a crucial choice for the Robin case, since the impedance allows
even more flexibility to create local minimums in the problem than in the previous ones
where the boundary condition was fixed.

Figure 5.7: Reconstruction (in blue) of an obstacle (left in red) and the impedance func-
tion (right in red) with exact data (above) and 5% noise (below). The dashed line is the
initial guess.

For a second example we considered a peanut shaped obstacle parameterized by

z(t) = 3
√

cos2 t+ 0.25 sin2 t(cos t, sin t), t ∈ [2, π]. (5.32)

that is three times larger than the peanut shaped obstacle in the previous two sections.
As mentioned in the previous section, better results are obtained when the size of the
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obstacle is larger than the wave number. We consider as impedance the function

λ(t) = 1 + sin3 t, t ∈ [0, 2π],

that lies outside the approximation space. The numerical reconstructions are presented
in figure 5.8. Again the reconstructions of the impedance and obstacle are worst in the
shadow region.

Figure 5.8: Reconstruction (in blue) of an obstacle (left in red) and the impedance func-
tion (right in red) with exact data (above) and 5% noise (below). The dashed line is the
initial guess.

As a last example in this section we present the reconstruction for the same peanut-
shaped obstacle parameterized by (5.32) and an impedance given by

λ(t) =

{
0.6, t ∈ [0, π],

0.6− 0.6(t− π)(t− 2π), t ∈ (π, 2π],

with discontinuous derivative at t = π. To better reconstruct this impedance, since we
are using a smooth approximation space we needed to increase the order of the approx-
imation space for the impedance. In this way we consider as approximation space for
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the impedance the trigonometric polynomials of order less than or equal to Nl = 25.
The reconstruction is very good, presenting just some artifacts on the shadow region and
around the maximums of the impedance that are amplified with noisy data.

Figure 5.9: Reconstruction (in blue) of an peanut shaped obstacle (left in red) and an
impedance C0–function (right in red) with exact data (above) and 5% noise (below). The
dashed line is the initial guess.

5.2 Three-dimensional case

Due to simplicity, in three-dimensions we will only present reconstructions for the Di-
richlet boundary condition though to our opinion this method can be extended both to
the Neumann and Robin boundary conditions following a similar procedure with proper
changes. For the three-dimensional case the approach must be different since there
is no straightforward simple quadrature rule available (similar to (5.13) for the two-
dimensional case) that deals with the singularity of the fundamental solution in R3. In this
sense, the Nyström method loses some of its charm. A global approximation analogous
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to the trigonometric polynomials for the two dimensional case is also needed. Spherical
harmonics are a proper choice for domains that can be mapped onto a sphere, since linear
combinations of these functions defined over the unit sphere are dense in L2(Ω) (e.g. [9]).
For simplicity, in this section we denote the unit sphere by Ω := Ω3. Spherical harmonics
are given by

Y j
l (x̂(θ, φ)) = (−1)(j+|j|)/2

√
2j + 1

4π

(l − |j|)!
(l + |j|)!

P
|j|
l (cos θ) eijφ,

for l = 1, 2, . . . and j ≤ |l|, where P |j|
l are the associated Legendre polynomials and

for x̂ ∈ Ω we consider the parametric form

x̂(θ, φ) = {sin θ cosφ, sin θ sinφ, cos θ}, (θ, ψ) ∈ [0, π]× [0, 2π]. (5.33)

To generate the far-field pattern synthetic data, we will follow [15], where a fully
discrete spectral method for the direct scattering problem is presented for smooth do-
mains homeomorphic to a sphere. This method has superalgebraic convergence for an-
alytic surfaces and right-hand sides. Its numerical implementation is presented in detail
in [12]. Then we will use the quadrature rules arising from this method to numerically
approximate the integral operators appearing while solving the inverse problem. Again
we restrict our analysis to star-shaped domains of the form

γ = {z(x̂) := r(x̂)x̂ : x̂ ∈ Ω}

for a radial function r at least C2-smooth over the unit sphere Ω.

5.2.1 Direct Problem

We will now spend some lines on the basic ideas of the Galerkin method suggested in [15]
to solve the direct problem. Representing the solution as a combined single-and double-
layer potential, due to the jump relations we arrive at the equation on the boundary

ϕ+Mϕ = f on Γ (5.34)

with f = −2ui andM = 2(K − iηS). As in R2, the first goal is to split the singular part
of the kernel M from the analytic one. Having this in mind we decompose M as

Mϕ(x) =
1

2π

∫
Γ

(
1

|x− y|
M1(x, y) +M2(x, y)

)
ϕ(y)ds(y)
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where the kernels M1 and M2 are smooth and, for the case of the combined single-and
double-layer potential, are given by

M1(x, y) =

(
(x− y) · ν(y)
|x− y|2

− iη

)
cos(k|x− y|) + k

(
(x− y) · ν(y)

)
Ss(x, y)

(5.35)

M2(x, y) = i
(x− y) · ν(y)
|x− y|2

(
Ss(x, y)− k cos(k|x− y|)

)
+ ηSs(x, y)

where

Ss(x, y) =

{
sin(k|x−y|)

|x−y| , x 6= y

k, x = y.

For Γ homeomorphic to the unit sphere Ω, we can transform (5.34) in a equation over the
unit sphere

ψ +Hψ = g on Ω (5.36)

where ψ(x̂) = ϕ(z(x̂)) and g(x̂) = f(z(x̂)). Note that we are in this case since we
assume that Γ is star-shaped, that is,

Γ = {z(x̂) := r(x̂)x̂ : x̂ ∈ Ω}

with some r ∈ C2(Ω). The parametric integral operator H can be decomposed as

Hψ(ŷ) =
1

2π

∫
Ω

(
1

|x̂− ŷ|
H1(x̂, ŷ) +H2(x̂, ŷ)

)
ψ(ŷ)ds(ŷ)

(5.37)

=
1

2π
(H1ψ(ŷ) +H2ψ(ŷ)) ,

where we define the integral operatorH1 with singular kernel and the integral operatorH2

with smooth kernel as

H1ψ(ŷ) =

∫
Ω

1

|x̂− ŷ|
H1(x̂, ŷ)ψ(ŷ) ds(ŷ)

H2ψ(ŷ) =

∫
Ω

H2(x̂, ŷ)ψ(ŷ) ds(ŷ)

where the parameterized kernels are given by

H1(x̂, ŷ) = M1

(
z(x̂), z(ŷ)

)
R(x̂, ŷ) Jz(ŷ)

(5.38)
H2(x̂, ŷ) = M2

(
z(x̂), z(ŷ)

)
Jz(ŷ)
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for

R(x̂, ŷ) =
|x̂− ŷ|

|z(x̂)− z(ŷ)|
and where the Jacobian of the transformation is be given by

Jz = r
√
r2 + |∇r|2

with the gradient ∇r of r over the unit sphere Ω. The basic idea of [15] is to solve (5.36)
by a Galerkin method seeking a solution ψN to

(ψN ,Ψ) + (HψN ,Ψ) = (g,Ψ) for all Ψ ∈ PN−1 (5.39)

where PN−1 is the space of linear combinations of spherical harmonics of order less
than N . One now constructs a discrete version of the scalar product over Ω

(Ψ1,Ψ2)m := Qm(Ψ1Ψ2) ≈
∫

Ω

Ψ1(x̂)Ψ2(x̂) ds(x̂) = (Ψ1,Ψ2)

where Qm is a quadrature rule over the unit sphere Ω. We consider the m := 2N2-point
Gauss-trapezoidal rule (e.g. [9, 12]) given by

Qm(Ψ) =
π

N

N∑
j=1

2N−1∑
k=0

αjΨ(x̂jk) (5.40)

for x̂jk = x̂(θj, φk). In the direction φ one uses the trapezoidal rule for periodic functions
with equidistant points φk = kπ/N, k = 0, . . . , 2N − 1. For direction θ one chooses the
Gauss rule with integration points θj = arccos tj, j = 1, . . . , N and weights

αj =
2(1− t2j)

[NPN−1(tj)]2
, j = 1, . . . , N

where−1 < t1 < t2 < · · · < tN < 1 denote the N zeros of the Legendre polynomial PN

of order N in the interval (−1, 1). The quadrature rule Qm is exact for spherical poly-
nomials of degree 2(N − 1). In accordance with the discrete scalar product, we can also
define the corresponding discrete orthogonal projection operator PN : C(Ω) → PN−1

given by

PNΨ =
N−1∑
l=0

l∑
n=−l

(Ψ, Y n
l )mY

n
l

(5.41)

=
π

N

N∑
j=0

2N−1∑
k=0

αjΨ(x̂jk)
N−1∑
l=0

l∑
n=−l

Y −n
l (x̂jk)Y

n
l
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which satisfies PNΨN−1 = ΨN−1 for every ΨN−1 ∈ PN−1 (for details see [61]), where
again PN holds for the spherical polynomials of order less than or equal to N and is
generated by the spherical harmonics of the same order.

As the integral kernel H has a singular part H1 and a smooth part H2 we treat each
of them in a separate way.

For the singular part we introduce a change of coordinate system in Ω, in order to
take the singularity to the north pole. In this way we consider the orthogonal continuous
transformation Tx̂ that maps x̂ to the north pole n̂ := (0, 0, 1) given by

Tx̂ = P (φ)Q(−θ)P (−φ)

for x̂ given by (5.33), where the 3×3 matrices P (ψ) andQ(ψ), that correspond to positive
rotations by ψ around the z-axis and y-axis, respectively, are given by

P (ψ) :=

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , Q(ψ) :=

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 .
We also define the transformation Tx̂ such that

Tx̂Ψ(ŷ) = Ψ(T−1
x̂ ŷ), Ψ ∈ C(Ω), ŷ ∈ Ω

and its bivariate analog

Tx̂Ψ(ŷ1, ŷ2) = Ψ(T−1
x̂ ŷ1, T

−1
x̂ ŷ2), Ψ ∈ C(Ω× Ω), ŷ1, ŷ2 ∈ Ω.

From the orthogonality of Tx̂ we have that

H1ψ(x̂) =

∫
Ω

1

|n̂− ŷ|
Tx̂H1(n̂, ŷ)Tx̂ψ(ŷ)ds(ŷ). (5.42)

With the transformation Tx̂ and using polar coordinates for computingH1, the singularity
of the denominator quantity |n̂ − ŷ| = 2 sin(θ/2) is cancelled out by the surface ele-
ment ds(ŷ) = sin θdθdφ, that corresponds to the polar coordinate transformation. More-
over, it turns out that the mapping (θ, φ) 7→ Tx̂H1(n̂, ŷ) is smooth (e.g. [15, lem. 4.6]).
These two aspects indicate the crucial importance of the use of the rotated coordinate
system in (5.42).

As this latter mapping (θ, φ) 7→ Tx̂H1(n̂, ŷ) is continuous it makes sense to inter-
polate the integrand term Tx̂H1(n̂, ŷ)Tx̂ψ(ŷ) using the interpolation operator PN ′ defined
in (5.41), for someN ′ ∈ N. Accordingly, using them′ = 2N ′2-point quadrature ruleQm′

defined in (5.40) with N replaced by N ′, which is exact for spherical polynomials of de-
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gree 2(N ′ − 1), we get an approximation H1,N ′ to H1 given by

H1(x̂) ≈ H1,N ′(x̂) :=

∫
Ω

1

|n̂− ŷ|
PN ′

(
Tx̂H1(n̂, .)Tx̂ψ(.)

)
(ŷ)ds(ŷ)

=
N ′−1∑
l=0

l∑
j=−l

(Tx̂H1(n̂, .)Tx̂ψ(.), Y j
l (.))m′

∫
Ω

Y j
l (ŷ)

|n̂− ŷ|
ds(ŷ)

=
N ′−1∑
l=0

l∑
j=−l

4π

2l + 1
(Tx̂H1(n̂, .)Tx̂ψ(.), Y j

l (.))m′Y j
l (n̂),

where we made use of the property (e.g. [9, pp.80])∫
Ω

Ψn(ŷ)

|x̂− ŷ|
ds(ŷ) =

4π

2n+ 1
Ψn(x̂), Ψn ∈ Pn, x̂ ∈ Ω.

From the definition of Qm′ and the addition theorem for spherical harmonics of or-
der l (e.g. [9, thm.2.8])

l∑
j=−l

Y j
l (x̂)Y j

l (ŷ) =
2l + 1

4π
Pn(x̂ · ŷ)

we can finally write our approximation H1,N ′ to H1 as

H1,N ′(x̂) =
N ′∑

j′=0

2N ′−1∑
k′=0

βj′Tx̂H1(n̂, x̂
′
j′k′)Tx̂ψ(x̂′j′k′) (5.43)

where

βj′ =
πα′j′

N ′

N ′−1∑
n=0

Pn(t′j′)

and the quadrature points x̂′j′k′ and the weights α′j′ correspond to the quadrature ruleQm′ ,
that is, the same procedure as for (5.40) with N replaced by N ′. In other words (5.43)
represents a quadrature rule to approximate the singular part of (5.37), which will also be
important later for the inverse problem.

As for the smooth part H2 of (5.37), again we get an approximation by interpolating
the integrand

H2(x̂) ≈ H2,N ′(x̂) :=

∫
Ω

PN ′

(
Tx̂H2(n̂, .)Tx̂ψ(.)

)
(ŷ)ds(ŷ) (5.44)
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and as Qm′ is exact for spherical polynomials of order less than or equal to 2(N ′−1) one
gets

H2,N ′(x̂) = Qm′(Tx̂H2(n̂, .)Tx̂ψ(.))

=
π

N ′

N∑
j′=1

2N−1∑
k′=0

α′j′Tx̂H2(n̂, x̂
′
j′k′)Tx̂ψ(x̂′j′k′).

One can now define an approximation to H in (5.36) as

H ≈ HN ′ :=
1

2π
(H1,N ′ +H2,N ′) .

Now the Galerkin method (5.39) can be reformulated as finding ψN ∈ PN−1 such that

(ψN , Y
j
l )m + (HN ′ψN , Y

j
l )m = (g, Y j

l )m for l = 0, 1, . . . , N − 1, |j| ≤ l. (5.45)

Defining

ψN(x̂) =
N−1∑
l=0

l∑
j=−l

aj
lY

j
l (x̂), (5.46)

from (5.45) one obtains a well posed N2 ×N2 linear system on the coefficients aj
l again

for l = 0, 1, . . . , N − 1, |j| ≤ l, which is solved to obtain the density ψN (see [12]). In
order to obtain the far-field synthetic data one applies again a Gauss-trapezoidal quadradra-
ture rule to approximate the integral corresponding to the far-field of a combined single-
and double-layer potential given by

u∞(x̂) =
(
(K∞ − iηS∞)ϕ

)
(x̂)

≈ Qm

(
− i

4π

(
k
(
x̂ · ν(z(.))

)
+ η
)
e−ikx̂·z(.)ψN(.)Jz(.)

)
.

This method is super-algebraic convergent for analytic boundaries and right-hand
sides f (see [15]), for

(1 + a)N < n′ < bN

for some constants a, b real and positive. These computations were made consider-
ing N = 20 and N ′ = 24, generating the far-field pattern at 800 points over the unit
sphere Ω.

5.2.2 Inverse Problem for the Dirichlet Case
Let us consider that γn is our current approximation to the correct boundary Γ. We start
by considering a single-layer representation for the scattered field us

us(x) =

∫
γn

Φ(x, y)ϕ(y)ds(y)
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which can be done under certain assumptions as already mentioned in section 3.3.
For the inverse problem one needs to collect some of the information used for the

direct problem, namely the use of the quadrature rules. From the representation of the
scattered field one arrives at a first kind far-field integral equation given by

Sγn,∞ϕ = u∞ on Ω,

where the single layer far-field operator

(Sγ,∞ ϕ)(x̂) =
1

4π

∫
γ

e−ikx̂·y ϕ(y)ds(y), x̂ ∈ Ω,

with some abuse of notation can also be given by

(Sγ,∞ ψ)(x̂) =
1

4π

∫
Ω

e−ikx̂·z(x̂) ψ(ŷ)Jz(ŷ)ds(y), x̂ ∈ Ω,

for ψ(ŷ) = ϕ(z(ŷ)). As the operator Sγn,∞ is compact and the right-hand side u∞ might
be noisy, just as in the two-dimensional case one uses Tikhonov regularization to solve
the previous equation. In this way we solve(

αnI + S∗γn,∞ Sγn,∞

)
ϕ(n) = S∗γn,∞u∞ on Ω

that reduces itself to

αnψ
(n)(x̂) +

1

16π2

∫
Ω

(∫
Ω

eikξ̂·(z(x̂)−z(ŷ))ds(ξ̂)

)
ψ(n)(ŷ) Jz(ŷ)ds(ŷ) =

=
1

4π

∫
Ω

eikξ̂·z(x̂)u∞(ξ̂)ds(ξ̂) (5.47)

where again ψ(n)(ŷ) = ϕ(n)(z(ŷ)), since the adjoint operator S∗γn,∞ is given by

(S∗γ,∞ ϕ)(y) =
1

4π

∫
Ω

eikx̂·y ϕ(x̂)ds(x̂), y ∈ γ.

Making use of the Funk-Hecke formula (see [9, p. 32]) for spherical harmonics of order
zero we get ∫

Ω

eikξ̂·(z(x̂)−z(ŷ))ds(ξ̂) = 4π
sin(k|z(x̂)− z(ŷ)|)
k|z(x̂)− z(ŷ)|

and therefore (5.47) simplifies to

αnψ
(n)(x̂) +

1

4πk

∫
Ω

(
sin(k|z(x̂)− z(ŷ)|)
|z(x̂)− z(ŷ)|

)
ψ(n)(ŷ) Jz(ŷ)ds(ŷ) =

=
1

4π

∫
Ω

eikξ̂·z(x̂)u∞(ξ̂)ds(ξ̂). (5.48)
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Again looking for an approximation ψ(n)
N ∈ PN−1 as in (5.46) to the density ψ(n) and

as the integral kernels involved in (5.48) are continuous, one uses the Gauss-trapezoidal
quadrature rule (5.40) with m = 800 (in order to use the given data set) to arrive at a
linear system on the coefficients aj

l of ψ(n)
N . Solving this linear system, one can now

obtain explicitly

ψ
(n)
N =

N−1∑
l=0

l∑
j=−l

aj
lY

j
l (x̂), x̂ ∈ Ω.

Numerically this was done considering N = 8.
Preparing the second step, by the jump relations one obtains approximations for the

total field u over the contour γn given by

un(x) = ui(x) +

∫
Ω

Φ(x, z(ŷ))ψ
(n)
N (ŷ)Jz(ŷ)ds(y), x ∈ γn

and for its normal derivative over the contour γn given by

∂un

∂ν
(z(x̂)) =

∂ui

∂ν
(z(x̂))− ψ

(n)
N (x̂)

2

+

∫
Ω

∂Φ(z(x̂), z(ŷ))

∂ν(z(x̂))
ψ

(n)
N (ŷ)Jz(ŷ)ds(y), x̂ ∈ Ω.

To numerically compute the integrals one again decomposes the integral kernels involved
in a singular and smooth part, in a way similar to (5.35). For instance, for the single layer
operator

Sϕ(x) =

∫
γ

Φ(x, y)ϕ(y)ds(y)

=
1

4π

∫
γ

(
1

|x− y|
MS

1 (x, y) +MS
2 (x, y)

)
ϕ(y)ds(y)

we would have

MS
1 (x, y) = cos(k|x− y|)

MS
2 (x, y) = iSs(x, y)

while for

K∗ϕ(x) =

∫
γ

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y)

=
1

4π

∫
γ

(
1

|x− y|
MK∗

1 (x, y) +MK∗

2 (x, y)

)
ϕ(y)ds(y)
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we would have

MK∗

1 (x, y) =
(y − x) · ν(x)
|x− y|2

cos(k|x− y|) + k
(
(y − x) · ν(x)

)
Ss(x, y)

MK∗

2 (x, y) = i
(y − x) · ν(x)
|x− y|2

(
Ss(x, y)− k cos(k|x− y|)

)
.

Considering the parameterized kernels as in (5.38) with M replaced by MS and MK∗

respectively, with a similar procedure one arrives at approximations to both singular and
analytic parts given by (5.43) and (5.44), respectively. This yields approximations to the
total field u and its normal derivative over γn.

To compute the tangential component of the gradient over γn one uses the analog to
trigonometric differentiation in R2, that is, one interpolates u(z(.)) defined in the unit
sphere by spherical harmonics and uses the tangential gradient of the interpolation as
approximation to ∇τu. In this way, using the decomposition

gradu|γn = ν
∂u

∂ν

∣∣∣∣
γn

+∇τu,

accordingly to (3.14), one solves

gradun

(
z(x̂)

)
·
(
h(x̂) x̂

)
= −un

(
z(x̂)

)
, x̂ ∈ Ω

in a least squares sense, in order to find a shift h ∈ VM where VM is the space of linear
combinations of real parts of spherical harmonics with order less than or equal to M
given by

VM =

{
h ∈ PM : h(x̂) =

M∑
l=0

l∑
j=0

aj
l Re

(
Y j

l (x̂)
)
, aj

l ∈ R

}
,

which is an approximation space of dimension (M+1)×(M+2)/2. We used 128 points
over Ω for the least squares minimization and considered M = 8.

The two steps are then iterated while ||un||L2(γn) is decreasing.

We have applied the method to several examples and the numerical reconstructions
were quite satisfying. We considered the wave number k = 1 and a plane incident
wave with direction d = (0, 1, 0). The incident direction is indicated by an arrow in the
pictures for the reconstructions. All the reconstructions were made with 2% noise in the
maximum norm on the far-field data and using as initial guess a circle of radius 4Y 0

0 . As
regularization parameter for Tikhonov regularization we used αn = 0.5n × 10−8.

As a first example, in figures 5.10 and 5.11 we present the reconstructions with exact
and noisy data, respectively, for an acorn shaped obstacle with parameterization

r(θ, φ) = 0.6 +
√

4.25 + 2 cos 3θ,
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for θ ∈ [0, π], φ ∈ [0, 2π].

The reconstruction is very good, even with noisy data.

Solution Approximation Error

Figure 5.10: From left to right we present the acorn shaped obstacle, the reconstruction
with exact data and the error in the parameterization space.

Solution Approximation (2% noise) Error

Figure 5.11: From left to right we present the acorn shaped obstacle, the reconstruction
with 2% noise and the error in the parameterization space.

In figures 5.12 and 5.13 we present a pinched ball obstacle parameterized by

r(θ, φ) =
√

1.44 + .5 cos 2φ(cos 2θ − 1)

for θ ∈ [0, π], φ ∈ [0, 2π]. The reconstruction is almost perfect, as is the two-dimensional
case. Again we note that it is worst in the non-convex part of the obstacle as usually oc-
curs for numerical methods.



5. Numerical Results 109

Solution Approximation Error

Figure 5.12: From left to right we present the pinched-ball shaped obstacle, the recon-
struction with exact data and the error in the parameterization space.

Solution Approximation (2% noise) Error

Figure 5.13: From left to right we present the pinched-ball shaped obstacle, the recon-
struction with 2% noise and the error in the parameterization space.

To better illustrate this handicap, we present in figure 5.14 and 5.15 the reconstruc-
tions with exact and noisy data, respectively, for a pinched-acorn obstacle with parame-
terization

r(θ, φ) = 0.6
√

(1.44 + 0.5(cos 2θ − 1)(cos 4φ)) (4.25 + 2 cos 3φ),

for θ ∈ [0, π], φ ∈ [0, 2π]. Again the non-convex part is not well-recovered, but it is clear
that the method works quite fine even with an obstacle with high curvature as this one.

As a last example for the three-dimensional case, in figures 5.16 and 5.17 we present
a cushion shaped obstacle parameterized by

r(θ, φ) =
√

0.8 + 0.5 (cos 2φ− 1)(cos 4θ − 1)

for θ ∈ [0, π], φ ∈ [0, 2π]. Not that as in the two-dimensional case for the Dirichlet
boundary condition, the reconstruction is the shadow region is still very good.
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Solution Approximation Error

Figure 5.14: From left to right we present the pinched acorn shaped obstacle, the recon-
struction with exact data and the error in the parameterization space.

Solution Approximation (2% noise) Error

Figure 5.15: From left to right we present the pinched acorn shaped obstacle, the recon-
struction with 2% noise and the error in the parameterization space.

The numerical reconstructions show the feasibility of the method and its robust be-
haviour with noisy data.
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Solution Approximation Error

Figure 5.16: From left to right we present the cushion shaped obstacle, the reconstruction
with exact data and the error in the parameterization space.

Solution Approximation (2% noise) Error

Figure 5.17: From left to right we present the cushion shaped obstacle, the reconstruction
with 2% noise and the error in the parameterization space.





Chapter 6

Conclusions and Outlook

In this last chapter we will present some conclusions on the work done and some per-
spectives for future work on the hybrid method.

The hybrid method proved itself to achieve good numerical reconstructions requir-
ing only the far-field data for one single incident wave. The combination of ideas from
decomposition and iterative methods generated a method with good numerical accuracy
though requiring no forward solver. The hybrid method is closer to a decomposition
method, since it takes care of the ill-posedness and non-linearity of the inverse problem
in two different steps. In fact, the hybrid method presents some close connections to the
Kirsch and Kress decomposition method [30, 31, 32], with the main difference in the
role played by the surface γ, as referred to in remark 3.1. This way, the hybrid method
is an iterative method that uses the idea of analytic continuation of the total field. This
procedure does not need a forward solver in each iteration step, which reduces the com-
putational costs. We also stress that the changes made on the Kirsch and Kress method
to create the hybrid method allow an iterative procedure that gives more flexibility to the
method. Namely, one no longer needs the initial guess to lie inside the obstacle, which
implies less a priori knowledge. Moreover, the method can be used for the case of an un-
known impedance. In this way it can be seen as an alternative to the iterative method [40],
since it also reconstructs both the obstacle and the impedance simultaneously. Thus, the
hybrid method achieved the goal of a good compromise between data required, compu-
tational costs and numerical accuracy. However, it also carries some disadvantages, such
as needing a good initial guess to start the iterations from.

The characterization of the method was presented both from a theoretical and nu-
merical point of view. As for the theoretical background, the application of the method
was compared with two other problems - a related minimization problem and a related
Newton method - for which convergence was proven. We achieved to prove convergence
for the minimization problem for all considered boundary conditions, though there is a
gap between theory and the implementation of the method. This approach also did not
consider the linearization on the second step of the method nor the iterative procedure.
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In order to overcome this, we introduced a new approach to prove convergence, namely
through a related Newton method. Though the latter approach faithfully represents the
numerical implementation of the hybrid method, convergence results could only be ob-
tained for sound-soft obstacles and assuming that the radial derivative of the total field
does not have zeros over the boundary of the obstacle.

In what concerns numerical applications, we stress the importance of the characteri-
zation of the Fréchet derivative of the operator G defined in (3.6). This characterization
was given for the Dirichlet, Neumann and Robin boundary condition both in R2 and R3,
using as primary tool the Taylor formula. Therefore the method can be implemented
numerically in all these cases. These characterizations depend on the total field u and
its normal and tangential derivatives of, at most, second order over the considered con-
tour. Hence, the numerical implementation needs to consider numerical procedures to
compute these terms. Since the total field is represented as a layer potential, through the
jump relations one gets explicit formulas to compute both the total field and its normal
derivative over the contour. For smooth surfaces, the integrals are computed using ex-
ponential convergent quadrature rules both in R2 and R3. The tangential derivatives are
then computed using trigonometric differentiation.

In R2 we first considered sound-soft and sound-hard obstacle numerical reconstruc-
tions. The numerical results were very good in both cases, though slightly better in the
first case than in the second. Moreover, we also applied the method to inverse scattering
for shape and impedance in R2. Concerning the obstacle reconstruction, the approxima-
tions were on the same level of accuracy as for the Neumann case. For the impedance
the reconstructions were also good, though more sensitive to noisy data. In all cases the
approximation in the shadow region was worse than in the illuminated area, especially
for noisy data. In R3 we presented reconstructions for sound-soft obstacles. The recon-
structions were again very good, which shows the feasibility of the method both in the
two-and three-dimensional case. The robust behaviour of the method to noisy data is also
exposed.

The idea of combining ideas from decomposition and iterative methods in order to
create the hybrid method under consideration was suggested in [38]. In this work we
presented its development through the past years and its current state of the art. The
hybrid method was considered for potential theory [5] and inverse acoustic scattering
as shown in the work at hand. It seems reasonable that this method can be extended
and applied for other types of scattering, namely elastic or electromagnetic scattering.
The ideas follow straightforwardly, though proper changes are required to obtain the new
characterizations for the Fréchet derivative of the corresponding operator G. Moreover,
these problems would impose more complexity in the numerical implementation, since
one would have vector fields instead of scalar fields as in the acoustic case.

Also in a theoretical level some developments might still be done. Concerning the
related minimization problem, it might be interesting to use or develop a theory for min-
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imization in two steps as a more realistic theoretical representation of the method. This
would also imply a completely satisfying convergence proof for the Kirsch and Kress de-
composition method. In this way we would have a closer representation to the numerical
implementation of the method, as happens with the related Newton method. However, in
the latter case, it would also be nice to have a criterion to know whether the radial deriva-
tive of the total field vanishes somewhere over the boundary. Note that this condition is
important for the presented proof, though it is not clear under which conditions this can be
assumed. We presented some quite restrictive condition in remark 4.9. Moreover, a sim-
ilar convergence proof for the Neumann and Robin boundary conditions is still missing,
since the given proof only works for the sound-soft case. This is due to the fact that we
only have an explicit representation for the shift h in this last case, since for the Neumann
and Robin boundary condition the characterization of the Fréchet derivative of the oper-
ator G depends on the derivatives of h. One way to try to overcome this problem would
be to try to represent h as a linear combination, say of trigonometric polynomials in R2.
Although one might get a Newton iterative scheme on the coefficients of the numerical
representation by this procedure, this implies to study the solution as the dimension of the
trigonometric approximation space goes to infinity. However, one could start by using a
finite dimensional space and assume that the solution is within the approximation space.

As shown in the previous lines, the hybrid method is still a challenging problem, both
from a theoretical and from a numerical point of view.
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einer Anwendung für torursartige Berandungen. Acta Math., 109:75–135, 1963.
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