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Abstract

A generalization of Marshall-Olkin(1967) bivariate exponential model is proposed and

the existence, uniqueness and asymptotic distributional properties of the maximum like-

lihood estimators are studied. The classical Marshall-Olkin model is a mixture of an

absolutely continuous and a singular component, that concentrates its mass on the line

x = y. In this paper, I generalize Marshall-Olkin’s results considering a distribution with

concentrate positive mass on the line x = µy. Some simulation results to compare the two

models are presented.

I also derive an extension of Marshall-Olkin (1967) model for any function which

is continuous and twice continuously differentiable in some open dense domain. This

extension gives class of models some of it have exponential marginals. We derive its

asymptotic normalities.

I model the first mixed moments of bivariate exponential models whose marginals are

also exponential using the method of generalized linear models.
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Chapter 1

Introduction and Motivation

The idea behind maximum likelihood estimation (MLE) is to determine the parameters

that maximize the probability (likelihood) of the sample data. From a statistical point

of view, the method of maximum likelihood is considered to be more robust (with some

exceptions) and yields estimators with good statistical properties. In other words, MLE

methods are versatile and apply to most models and to different types of data. In addition,

they provide efficient methods for quantifying uncertainty through confidence bounds.

As a general method of estimation it was first introduced by Fisher (1912) in a short

paper and he made further developments in a series of papers. MLE has many optimal

properties in estimation: sufficiency (complete information about the parameter of interest

contained in its MLE estimator); consistency(true parameter value that generated the data

recovered asymptotically, i.e. for data of sufficiently large samples); efficiency(lowest-

possible variance of parameter estimates achieved asymptotically); and parametrization

invariance(same MLE solution obtained independent of the parametrization used).

The consistency of a maximum likelihood estimator has been established under very

general conditions by Wald (1949) and Wolfowitz (1949). Conditions needed for it to be

asymptotically efficient, that is , consistent and asymptotically normal with variance equal

to the Cramer-Rao lower bound has been treated by several authors. Typical conditions are

given by Cramer (1946), Dugue (1937), Gurland (1954), Kulldorf (1957). Chanda (1954)

generalizes a result by Cramer (1946) and proves, under some regularity conditions stated

in Chanda (1954), that there exists a unique solution of the likelihood equations which is

consistent and asymptotically normally distributed. Using the same conditions Peters and

Walker (1978) show that there is a unique strongly consistent solution of the likelihood

equations, which locally maximizes the log-likelihood functions. Consistency problems

have been studied in many particular cases: see Jewell (1982), Hathaway (1985), Pfanzagl

(1988), Leroux (1992) , Van De Geer (2003) and Atienza et al. (2007). Authors such as,

7



8 CHAPTER 1. INTRODUCTION AND MOTIVATION

for example Le Cam (1955) and Bahadur (1960) discussed large sample estimation in a

more general context. Daniel (1961) developed an argument showing that it is possible

to deduce asymptotic efficiency from a much weaker set of assumptions concerning the

behaviour of the density function.

Generalized linear models(GLMs) were introduced by Nelder and Wedderburn(1972),

as a means of unifying a number of classical statistical models such as normal-theory

linear models and analysis of variance, logistic regression, Poisson regression and log linear

models for contingency tables. The unification extends to the method of inference, known

as analysis of deviance, which generalizes the analysis of variance for normal models.

GLMs have unified regression methodology for a wide variety of discrete, continuous, and

censored responses that can be assumed to be independent.

A main feature of GLMs is the presence of a linear predictor, which is built from

explanatory variables. This linear predictor is linked to the mean response by a so called

link function, which may take various forms. Many ideas of linear regression carry over

to this wider class of models. An important extension of GLMs is the incorporation

of nonparametric parts in the predictor. The parametric model assumes that variables

enter the model in the form of a linear predictor in non- and semiparametric regression

techniques, however, this assumption is weakened when the covariates are allowed to have

unspecified functional form.

An important consideration is that (generalized)linear models are easily understood

and can be summarized and communicated to others in a straightforward manner. In

addition, parameter estimates from these models can be used to predict or classify new

cases simply and readily.

GLMs as described for example by Nelder and Wedderburn (1972) and McCullagh and

Nelder (1989) are regression models to analyze continuous or discrete response variables.

The association between the response variable and the covariables is given by the so-called

link function. GLM assume that the observations are independent and do not consider

any correlation between the outcome of the n observations. Marginal models, conditional

models and random effects models are extensions of the GLM for correlated data.

There are many publications on these models, like, Gibbons and Hedeker (1997), Hea-

gerty (1999), Heagerty and Zeger (1996), Hedeker and Gibbons (1994), Zeger and Karim

(1991), Molenberghs and Lesaffre (1994), Lipsitz and Ibrahim (1996), Daniels and Zhao

(2003), Zeger and Qaqish (1988), Zeger, Diggle and Yasui(1990), Zeger(1988) and others.

In the marginal model, the primary interest of the analysis is to model the marginal expec-

tation of the response variable given the covariables. Here, the correlation-or more general

the association-between the outcome variables is modeled separately and is regarded as
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nuisance parameter. The major goal is to investigate the effect of the covariables in the

population on the response variable. Including the correlation structure in estimating the

effects mainly yields different variance estimation. Marginal models have been introduced

first by Zeger, Liang and Self(1985), Liang and Zeger(1986).

Exponential distributions have been introduced in a rich literature as a simple model

for statistical analysis of lifetimes. There is an extensive literature on the construction of

bivariate models, for example, Gumbel (1960), Freund (1961), Block and Basu (1974) and

so on. Marshall-Olkin (1967) proposed a multivariate extension of exponential distribu-

tions which is much of interest in both theoretical developments and applications.

The physical motivation for the bivariate exponential distribution due to Marshall-

Olkin (1967) is common in engineering applications. This model has received the most

attention in describing the statistical dependence of components in a 2-component system

and in developing statistical inference procedures. Statistical inferences for scale param-

eters have been considered by many authors. For example, Arnold (1968) and Bemis,

Bain and Higgins (1972) derived estimators for the scale parameters. Bhattacharyya and

Johnson (1971) and Proschan and Sullo (1976) studied the existence, uniqueness and

asymptotic distributional properties of the maximum likelihood estimators.

Objectives of Research: The objectives of this thesis are to

1. generalized Marshall-Olkin (1967) bivariate exponential model and derive its asymp-

totic normalities. The classical Marshall-Olkin model is a mixture of an absolutely

continuous and a singular component, that concentrates its mass on the line x = y.

In this paper, we generalize Marshall-Olkin’s results considering a distribution with

concentrate positive mass on the line x = µy.

2. derive an extension of Marshall-Olkin model for any function which is continuous

and twice continuously differentiable in some open dense domain. This extension

gives class of models some of it have exponential marginals.

3. model the first mixed moments of bivariate exponential models whose marginals are

also exponential using the method of generalized linear models.

As already stated in the objectives, we propose a BVE distribution which is a general-

ization of Marshall-Olkin model with concentrate positive mass on the line x = µy and

derive its asymptotic normalities. One important characteristic of this model is that, there

is a late failure of one component when a ”big shock” strikes both components simulta-

neously as against the case of Marshall-Olkin’s model where both components failures

simultaneously when they are strike by the ”big shock”.
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In Marshall-Olkin (1967), the authors derived a multivariate exponential distribution from

the points of view designed to indicate the applicability of the distribution. Two of these

derivations are based on ”shock models” and one is based on the requirement that residual

life is independent of Age. In their paper Marshall-Olkin (1967b), the distribution of joint

waiting times in a bivariate Poisson process was investigated. They gave several ways of

definitions to ”joint waiting time”. Some of these lead to the Marshall-Olkin BVE model

with a joint survival function given as:

F (x, y) = exp{−λ1x− λ2y − λ3 max(x, y)} ; x, y ≥ 0 ; λ1 > 0 , λ2 > 0 , λ3 ≥ 0

but others lead to a joint survival function given as:

F (x, y; ϑ) = exp{−λ1x− λ2y − λ3 max[x, y + min(x, ϑ)]} ; ϑ ≥ 0 ; x, y ≥ 0

= exp{−λ1x− λ2y − λ3 max[x, y + min(x,−ϑ)]} ; ϑ < 0 ; x, y ≥ 0

which is the generalization of it. The parameter ϑ is called a ”shift” parameter, though

it is not simply a location parameter. The course when ϑ = 0 the above equation reduces

to Marshall-Olkin BVE model.

Hyakutake (1990) proposed a bivariate distribution having location parameters which is

also a generalization of Marshall-Olkin BVE model. The joint survival function is

F (x, y) = exp{−λ1(x− π1)− λ2(y − π2)− λ3 max[(x− π1, y − π2)]};
x > π1 , y > π2 , λ1 > 0, λ2 > 0, λ3 ≥ 0

π1 and π2 are location parameters. The case where π1 = π2 = 0 we have Marshall-Olkin

BVE model. He then derived a two-stage procedure of constructing a fixed-size confidence

region for the location parameters and the procedure was applied to the ranking and

selected problems. The author proposed two-step procedures of testing a hypothesis on

a structure of location parameters. None of these two authors examined the asymptotic

distributional properties of the maximum likelihood estimators.

The uniqueness and asymptotic properties of the maximum likelihood estimators of Marshall-

Olkin BVE model were studied by Bhattacharyya and Johnson (1971) and Proschan and

Sullo (1976). Bhattacharyya and Johnson (1971) and Proschan and Sullo (1976) proved

the uniqueness of properties of MLE by splitting the negative of the matrix of the sec-

ond partial derivatives of log likelihood (Hessian matrix) into positive definite matrix and

positive semi-definite. They then concluded that the Hessian matrix is negative definite

and thus, the log likelihood is strictly concave. In this dissertation, similar method will be
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used to prove for the uniqueness but we will also show that, the Hessian matrix is negative

definite for any vector. Bhattacharyya and Johnson (1971) used the strong consistency

property of MLE (c.f. Rao 1965, page 300) to deduce that for large sample, the maximum

likelihood estimator is the unique root of the likelihood equation and that the maximum

likelihood estimator converges to the true parameter with probability 1. Proschan and

Sullo (1976) proved consistency and asymptotic normality by showing that the informa-

tion matrix of the sample is positive definite and so Cramer-Rao regularity conditions

are satisfied. We will prove consistency by considering the behavior of the log likelihood

taking at all points on the surface on the sphere with center at a certain true point and

with some radius. We will show that for any sufficiently small radius the probability tends

to 1 that log likelihood at all points on the surface is less than that at the true point.

This will mean that the log likelihood has a local maximum in the interior of the sphere.

This will then follow that for any radius, with probability tending to 1 for large sample

size, the likelihood equation have a solution within the sphere. Bhattacharyya and John-

son (1971) stated that since the likelihood function satisfies Cramer conditions (c.f. Rao

1965, page 299) asymptotic normality follows. In proving asymptotic normality, we will

use results from the prove of consistency that the expectation of the first derivative of the

likelihood function is zero so that we can then claim that 1√
n
l′ is asymptotically normal

with expectation 0 and covariance matrix Π, from this the results follow.

Marshall-Olkin (1967) characterize a bivariate distribution, assuming that it has ex-

ponential marginals and the following functional equation holds: F (s1 + t, s2 + t) =

F (s1, s2)F (t, t) which represents a particular type of lack of memory property. This

distribution is a mixture of an absolutely continuous and a singular component, that

concentrates its mass on the line x = y. Muliere and Scarsini (1987) generalize this results

by considering a lack-of-memory-property functional equation which involves operations

different than the addition: F (s1 ∗ t, s2 ∗ t) = F (s1, s2)F (t, t) and analogous equations

for the marginals. The authors considered an associative, binary operation ∗. They ob-

tained a class of bivariate distributions whose marginals are not necessarily exponential;

their form depends on the associative operation. These distributions concentrate positive

mass on the line x = y like Marshall-Olkin’s one. They also examined some properties of

these distributions. In this dissertation, we give the prove of some of the properties. As

another form of model extension, we a bivariate exponential function which depends on

some function ϕ(x, y), where this function ϕ(x, y) is continuous and twice continuously

differentiable in some open dense domain G = Gφ ⊂ R2. We obtain a class of bivariate

distributions each of whose marginals depends on the structure of ϕ(x, y). With the as-

sumption that φ′′ vanishes to make the equation easy to solve, we derive the MLE and
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examine the asymptotic normalities.



Chapter 2

Bivariate Exponential

Distributions

In this chapter we will take a look at the derivation of Marshall-Olkin bivariate exponential

model and some examples of bivariate exponential distributions.

Definition 2.0.1 A bivariate exponential model (BVE) is defined as a two-dimensional

distribution function with exponentially distributed one-dimensional marginals.

If F is a bivariate distribution function, let

F (x, y) = 1 + F (x, y)− F (x,∞)− F (∞, y) (x, y) ∈ R2,

where F (x,∞) = limy→∞ F (x, y) and similarly for F (∞, y), We begin noticing the well

known characterization of a bivariate distribution function.

Lemma 2.0.1 Let F1 and F2 be one-dimensional distribution functions. Then a function

F : R2 → [0, 1] is a distribution function with these marginal distributions if and only if

the following conditions hold:

F (x,−∞) = 1− F1(x) =: F1(x) ; F (−∞, y) = 1− F2(y) =: F2(y) x, y ∈ R
F (x,∞) = F (∞, y) = F (∞,∞) = 0 x, y ∈ R
F (−∞,−∞) = 1

F (x2, y2)− F (x2, y1)− F (x1, y2) + F (x1, y1) ≥ 0 x1 ≤ x2; y1 ≤ y2

Lemma 2.0.2 If a bivariate distribution function F has mixed partial derivatives in a

domain G ⊂ R2, then its probability P is absolutely continuous on G with respect to the

Lebesgue measure on G and PG = P (· ∩G) has density

fG(x, y) =
∂2F

∂x∂y
(x, y) (x, y) ∈ G.

13
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Corollary 2.0.1 If L ⊂ R2 is a line and if F has mixed partial derivatives in G = R2 \L,

then the probability P associated to F has a decomposition P = Pλ2 + PL, where Pλ2 is

a measure on G with density fG with respect to the two-dimensional Lebesgue measure λ2

and where PL is a measure on L.

Definition 2.0.2 A bivariate random variable (X, Y ) is said to have the loss of memory

property (LMP) iff

F (x1 + y, x2 + y) = F (x1, x2)F (y, y) ; x1, x2, y ≥ 0 (2.1)

where F (x, y) = P (X > x, Y > y).

2.1 Derivation of Marshall-Olkin BVE Model

Fatal Shock Model: Marshall and Olkin’s (1967) ”fatal shock” model assumes that

the components of a two-component system die after receiving a shock which is always

fatal. Independent Poisson processes S1(t; λ1), S2(t;λ2), S3(t;λ3) govern the occurrence

of shocks. Events in the process S1(t; λ1) are shocks to component 1, events in the process

S2(t; λ2) are shocks to component 2, and events in the process S3(t; λ3) are shocks to both

components. The joint survival distribution (X,Y ) of the components 1 and 2 is

F (x, y) = P (X > x , Y > y)

= P{S1(x; λ1) = 0 , S2(y; λ2) = 0 , S3(max(x, y) ; λ3 = 0)}
= exp[−λ1x− λ2y − λ3 max(x, y)] ; x ≥ 0, y ≥ 0 (2.2)

Nonfatal Shock Model: Let assume that the shocks from the three sources are not

necessarily fatal. Instead a shock from source 1 causes the failure of component 1 with

probability q1, a shock from source 2 causes the failure of component 2 with probability

q2. Also, a shock from source 3 causes the failure

1. of both components, with probability q11

2. of component 1 only, with probability q10

3. of component 2 only, with probability q01

4. of neither component, with probability q00

where q11 + q10 + q01 + q00 = 1. We assume that each shock represents an independent

opportunity for failure.
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Then the joint survival probability for X, the life length of component 1, and for Y , the

life length of component 2, may be written according to Barlow and Proschan (1975) as

P [X > x, Y > y] =
{ ∞∑

k=0

e−λ1x (λ1x)k

k!
(1− q1)k

}

×
{ ∞∑

l=0

e−λ2y (λ2y)l

l!
(1− q2)l

}

×
{ ∞∑

n=0

∞∑

m=0

[
e−λ3x (λ3x)m

m!
qm
00

]

×
[
e−λ3(y−x) (λ3(y − x))n

n!
(q00 + q10)n

]}

when 0 ≤ x ≤ y. Summing series and simplifying, using the fact that

∞∑

k=0

e−λ1x (λ1x)k

k!
(1− q1)k = e−λ1xeλ1x(1−q)

we obtain

P [X > x, Y > y] = exp{−x[λ1q1 + λ3q10]− y[λ2q2 + λ3(1− q00 − q10)]}.

For 0 ≤ y ≤ x, by symmetry,

P [X > x, Y > y] = exp{−x[λ1q1 + λ3(1− q00 − q10)]− y[λ2q2 + λ3q01)]}

combining the two survival probabilities, we have the BVE

P [X > x, Y > y] = exp{−λ∗1x− λ∗2y − λ∗3 max(x, y)}

where λ∗1 = λ1q1 + λ3q10, λ∗2 = λ2q2 + λ3q01, λ∗3 = λ3q11.

2.2 Some Examples of Bivariate Exponential Distributions

2.2.1 Gumbel’s BVE

Gumbel (1960) studied the bivariate exponential distribution, given by the joint distribu-

tion

F (x, y) = 1− exp{−x} − exp{−y}+ exp{−x− y − δxy} ; x, y > 0, 0 ≤ δ ≤ 1. (2.3)

The marginal probabilities are exponential.
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2.2.2 Moran’s BVE

Moran (1967), considered a class of distributions with positive correlation ω, and marginal

distributions of gamma type whose index parameter is any positive integral multiple of

1/2. He considered the case where the marginal distributions are negative exponentials.

Let

X = U2
1 + U2

2 Y = U2
3 + U2

4

where U1, U3 are jointly distributed normally with zero means, variances 1/2 and correla-

tion ω (0 ≤ ω ≤ 1). Here U2, and U4 are independent of (U1, U3) but have the same joint

distribution. The joint probability distribution is of the form

F (x, y) =
∞∑

n=0

ω2nCn(x, y)

where Cn has a Fourier transform

Cn(x, y) =
n∑

j=0

n!/(r! (n− r)!)(−1)j/j!xje−x
n∑

k=0

n!/(k! (n− k)!)(−1)k/k! yke−y.

2.2.3 Freund’s Model

Freund(1961) suggested a bivariate distribution based on a model where two components

share a common load. Suppose that X and Y are random variables representing the life-

times of two components 1 and 2. The respective density functions(when both components

are in operation) are

f1(x) = λ1 exp{−λ1} ; x > 0

f2(y) = λ2 exp{−λ2} ; y > 0

for λ1, λ2 > 0, then component 1 and component 2 are dependent in that a failure of either

component changes the parameter of the life distribution of the other component. Thus

when component 1 fails, the parameter of component 2 becomes λ′2, when component 2

fails, the parameter for component 1 becomes λ′1. There is no other dependence. The

joint survival distribution for the two components is given as:

F (x, y) =
λ1

λ̆− λ′2
[exp(−λ′2y − (λ̆− λ′2)x)] +

λ2 − λ′2
λ̆− λ′2

exp(−λ̆y) ; x < y

=
λ2

λ̆− λ′1
[exp(−λ′1x− (λ̆− λ′1)y)] +

λ1 − λ′1
λ̆− λ′1

exp(−λ̆x) ; y < x (2.4)

where λ̆ = λ1 + λ2. The marginal distributions are in general not exponential.
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2.2.4 Block-Basu’s ACBVE Model

Block and Basu(1974) proposed absolutely continuous bivariate exponential ACBVE which

is absolutely continuous part of Marshall-Olkin (1967) also a proper sub-family of Fre-

und(1961) with joint distribution given by

F (x, y) =
λ

(λ1 + λ2)
exp[−λ1x− λ2y − λ3 max(x, y)]

− λ3

(λ1 + λ2)
exp[−λmax(x, y)] ; x, y > 0. (2.5)

The marginal distributions are given as:

F 1(x) =
λ

λ1 + λ2
exp[−(λ1 + λ3)x]

− λ3

λ1 + λ2
exp(−λx) ; x > 0

F 2(y) =
λ

λ1 + λ2
exp[−(λ2 + λ3)y]

− λ3

λ1 + λ2
exp(−λy) ; y > 0

where λ = λ1 + λ2 + λ3. The above marginals are not exponential. Thus ACBVE model

is not a special case of the BVE since the BVE must have exponential marginals and

ACBVE does not.

2.3 Marshall-Olkin model revisited

In this section, we will introduce a different model of the Marshall-Olkin (1967) bivariate

exponential distribution (BVE).

Let (X,Y ) be bivariate random variable. We propose a BVE for (X, Y ) to be of the form

F
M
λ (x, y) = P (X > x, Y > y)

= exp{−λ1x− λ2y − λ3 min(x, y)} ; x, y > 0, λ ∈ Λ+ (2.6)

where

λ = (λ1, λ2, λ3)

and the parameter space is

Λ+ = {λ : 0 ≤ λi < ∞, i = 1, 2, λ3 < 0;λ3 + λj > 0, j = 1, 2}. (2.7)

Lemma 2.3.1 1. Λ+ is convex
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2. For every λ ∈ Λ+ ;

FM
λ (x, y) = F

M
λ (x, y) + FM

1 (x) + FM
2 (y)− 1

is a bivariate distribution function on R2.

Proof: The proof of (1) is obvious from the definition of convexity. For the proof of (2),

we show that F
M
λ (x, y) defines a distribution function if the conditions of Lemma 2.0.1

are satisfied. Clearly, by definition,

lim
x→∞F

M
λ (x, y) = lim

y→∞F
M
λ (x, y) = 0

We have

F
M
λ (x,−∞) = F

M
λ (x, 0) = exp[−λ1x]

and

F
M
λ (−∞, y) = F

M
λ (0, y) = exp[−λ2y].

Finally, let x1 ≤ x2 ≤ y1 ≤ y2. Then

F (x2, y2)− F (x2, y1)− F (x1, y2) + F (x1, y1)

= (exp[−(λ1 + λ3)x2]− exp[−(λ1 + λ3)x1]) (exp[−λ2y2]− exp[−λ2y1]) ≥ 0.

The following results can easily be checked

1. F
M
λ (x, 0) = 0 when x →∞

2. F
M
λ (0, y) = 0 when y →∞

3. F
M
λ (0, 0) = 1

4. F
M
λ (∞,∞) = 0

So, from above, we have

FM
λ (0, 0) = 1 + F

M
λ (0, 0)− F

M
λ (0, 0)− F

M
λ (0, 0)

= 1 + 1− 1− 1

= 0

also,

FM
λ (∞,∞) = 1 + F

M
λ (∞,∞)− F

M
λ (∞, 0)− F

M
λ (0,∞)

= 1 + 0− 0− 0

= 1. ¤
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The minimum of X and Y given as

P (min(X,Y ) > x) = P (X > x, Y > x)

= exp{(−λ1 − λ2 − λ3)x} ; x > 0

that is the minimum of X and Y is exponential with parameter (λ1 + λ2 + λ3). Let the

partial derivative ∂2F (x,y)
∂x∂y exist almost everywhere, then the joint density f(x, y) ≥ 0 as

Lemma 2.0.2, is defined as

f(x, y) =
∂2F (x, y)

∂x∂y
; x , y > 0

so the joint density for eqn. 2.6 is given as

f(x, y) =





λ2(λ1 + λ3) F
M
λ (x, y) ; x < y ; x , y > 0

λ1(λ2 + λ3) F
M
λ (x, y) ; y < x ; x , y > 0

−λ3 F
M
λ (x, x) ; x = y > 0

(2.8)

Because P (X = Y ) is not equal to zero, the function f(x, y) may be considered to be a

density for the minimum model, if it is understood that the first two terms are densities

with respect to two-dimensional Lebesque measure and the third is a density with respect

to one-dimensional Lebesque measure. The conditional probability distribution P (X >

x | Y = y) is derived (cf.Barlow and Proschan, 1975, page 132) by differentiating F (x, y)

w.r.t. y (evaluated at value y) and divided it by the pdf of Y . Thus

P (X > x | Y = y) =

{
λ−1

2 (λ2 + λ3) exp{−λ1x− λ3y} ; y < x ; x , y > 0

exp{−(λ1 + λ3)x} ; y > x ; x , y > 0
(2.9)

Lemma 2.3.2 The family of distributions given by F
M
λ : λ ∈ Λ+ is exactly the family of

distributions given by the Marshall-Olkin model.

Proof Using the identity

x + y = max(x, y) + min(x, y)

we can rewrite F
M
λ (λ ∈ Λ+) as

F
M
λ (x, y) = exp[−(λ1 + λ3)x− (λ2 + λ3)y + λ3 max(x, y)].

Reparametrising ηi = λi + λ3 (i = 1, 2) and η3 = −λ3 shows the claim. ¤
We consider a model similar to eqn. 2.6 which was proposed by Marshall and Olkin in

1967. Let Fmo(x, y) denote Marshall-Olkin’s model.

Fmo(x, y) = exp{−λ1x− λ2y − λ3 max(x, y)} ; x, y > 0 (2.10)
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Theorem 2.3.1 If Fmo(x, y) is BVE(λ1, λ2, λ3) and λ = λ1 + λ2 + λ3, then

Fmo(x, y) =
λ1 + λ2

λ
F a(x, y) +

λ3

λ1 + λ2
F s(x, y)

where

F s(x, y) = exp[−λmax(x, y)]

is a singular distribution, and

F a(x, y) =
λ

λ1 + λ2
exp[−λ1x− λ2y − λ3 max(x, y)]− λ3

λ1 + λ2
exp[−λmax(x, y)]

is absolutely continuous.

Proof of Theorem 2.3.1 The proof can be found in Marshall-Olkin (1967, page 34 and

35). ¤
A singular distribution is of the fact that its mixed second partial derivative is zero where

x 6= y, and the absolutely continuous is from the fact that its mixed second partial deriva-

tive is a density. In the case of the BVE, the presence of a singular part is a reflection of

the fact that if X and Y are BVE, then X = Y with positive probability, whereas the line

x = y has two-dimensional Lebesgue measure zero.

The marginal distributions for X and Y are given by

Fmo1(x) = exp{−(λ1 + λ3)x} ;x > 0

and the corresponding pdf is

fmo1(x) = (λ1 + λ3) exp{−(λ1 + λ3)x} ; x > 0

similarly, the marginal distribution of Y is

Fmo2(y) = exp{−(λ2 + λ3)y} ; y > 0

and the pdf is

fmo2(y) = (λy + λ3) exp{−(λy + λ3)y} ; y > 0

The minimum of X and Y for Marshall-Olkin is again exponential with parameter λ (cf.

Marshall-Olkin, 1967, page 37). The conditional probability distribution P (X > x | Y =

y) for Marshall-Olkin’s model is

P (X > x | Y = y) =

{
λ2(λ2 + λ3)−1 exp{−(λ1 + λ3)x + λ3y} ; y < x ; x , y > 0

exp{−λ1x} ; y > x ; x , y > 0
(2.11)
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2.4 Copula

The copula concept is used frequently in survival analysis and actuarial sciences.

Definition 2.4.1 A 2-dimensional copula C is the joint distribution function

C : [0 , 1]2 → [0 , 1]

of a vector (U,V) of a uniform (0,1) random variables, that is

C(u, v) = P (U ≤ u , V ≤ v), u, v ∈ [0, 1].

The following theorem, which was first proved by Sklar in 1959, states that for any joint

distribution function H there exists a copula C that ”couples” H to its marginal distribu-

tion functions G1 and G2. Before we can state the result, we first recall that a distribution

function G is non-decreasing with limx→−∞G(x) = 0 and limx→∞G(x) = 1. As a dis-

tribution function G does not need to be strictly increasing, we define its quasi-inverse

as

G(−1)(t) = inf{x : G(x) > t}.

If G is strictly increasing then the quasi-inverse is just the ordinary inverse.

Theorem 2.4.1 {Sklar 1996} Let H be a joint distribution function with marginals

G1, G2. Then there exists a copula C such that

H(x, y) = C(G1(x), G2(y)).

Let H̄ = {(G1(x), G2(y)) : x, y ∈ R}, then for any (u, v) ∈ H̄, C is given by

C(u, v) = H(G(−1)
1 (u), G(−1)

2 (v))

In particular, if G1, G2 are continuous then C is unique; otherwise C is uniquely deter-

mined on RanG1×RanG2, where RanG denotes range of G. Conversely, if C is a copula

and G1, G2 are distribution functions then the function H defined above is a joint distri-

bution function with marginals G1, G2

2.4.1 Bivariate Marshall-Olkin Copulas

In the Marshall-Olkin model, the times till the event occurs which kills component 1 only,

2 only or both the components is modeled by independent exponential random variables

T1, T2 and T3 with parameters λ1, λ2 and λ3 respectively. Then X = min{T1, T3} and
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Y = min{T2, T3} and the probability that component 1 survives beyond time x and

component 2 beyond y is given by

P (X > x, Y > y) = exp{−λ1x− λ2y − λ3 max(x, y)} ; x , y > 0

using the fact that x + y −min{x, y} we learn that

P (X > x, Y > y) = exp{−λ1x− λ2y − λ3 max(x, y)} ; x, y > 0

= exp
{
−(λ1 + λ3)x− (λ2 + λ3)y + λ3 min{x, y}

}

= P (X > x)P (Y > y)min{exp(λ3x), exp(λ3y)}

let α1 = λ3/(λ1 + λ3) and α2 = λ3/(λ2 + λ3), then

exp(λ3 x) = Fmo1(x)−α1 , exp(λ3 y) = Fmo2(y)−α2

and hence the the survival copula of (X, Y ) is given by

Ĉ(u, v) = u, v min(u−α1 , v−α2) = min(u1−α1v , uv1−α2).

This construction leads to a copula family given by

Cα1,α2(u, v) = min(u1−α1v , uv1−α2)

= u1−α1v , uα1 ≥ vα2

= uv1−α2 , uα1 ≤ vα2 .

This family is known as the Marshall-Olkin family.

2.4.2 Comparison of the bivariate exponential with the case of indepen-

dence

It is common practice in reliability theory to assume the components of a system have

independent life lengths. It is of interest to see the effect of this assumption when in fact

the lives have a BVE distribution.

Let us suppose the marginal distributions are known to be given by

F 1(x) = exp{−λ1x} , F 2(y) = exp{−λ2y}

suppose that we operate under the assumption that the joint distribution F (x, y) is

F1(x)F2(y), when in fact, F (x, y) is given by eqn. 2.6. Clearly, the difference

F (x, y)− F 1(x)F 2(y) = exp{−λ1x− λ2y}(exp{−λ3 min(x, y)} − 1)

is negative for larger values of x and y, so the probability that both items survive is lesser.
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On the other hand, using Fmo(x, y) in eqn. 2.10, the difference

Fmo(x, y)−Fmo1(x)Fmo2(y) = exp{−λ1x−λ2y−λ3 max(x, y)}(1− exp{−λ3 min(x, y)})

is positive for all x and y, so the probability that both items survive is actually greater

than the assumption of independence would lead us to believe.

Lemma 2.4.1 If (X,Y ) is distributed as the minimum model of eqn. 2.6, then

1. P (Y < X) = (λ2 + λ3) / (λ1 + λ2 + λ3)

2. P (X < Y ) = (λ1 + λ3) / (λ1 + λ2 + λ3)

3. P (X = Y ) = −λ3 / (λ1 + λ2 + λ3)

Proof The proof of point (1) is as follows:

P (Y < X) =
∫ ∞

0

∫ x

0
λ1(λ2 + λ3) exp{−λ1x− (λ2 + λ3)y}dx dy

=
∫ ∞

0
λ1(λ2 + λ3) exp{−λ1x}

[∫ x

0
exp{−(λ2 + λ3)y} dy

]
dx

= λ1

[∫ ∞

0
exp{−λ1x dx} −

∫ ∞

0
exp{−(λ1 + λ2 + λ3)x dx }

]

= (λ2 + λ3) / (λ1 + λ2 + λ3).

The proof of point (2) follows from the symmetric property of the distribution.

We proof point(3) as follows:

P (X = Y ) = −λ3

∫ ∞

0
exp{−(λ1 + λ2 + λ3) x}dx

= −λ3/(λ1 + λ2 + λ3)
[
exp{−(λ1 + λ2 + λ3)x}

]0

∞
= −λ3/(λ1 + λ2 + λ3). ¤

Lemma 2.4.2 If (X,Y ) is distributed as the Marshall-Olkin model of eqn. 2.10, then

1. P (Y < X) = λ2 / (λ1 + λ2 + λ3)

2. P (X < Y ) = λ1 / (λ1 + λ2 + λ3)

3. P (X = Y ) = λ3 / (λ1 + λ2 + λ3)

Proof The proof of point (1) is as follows:

P (X < Y ) =
∫ ∞

0

∫ y

0
λ1(λ2 + λ3) exp{−λ1x− (λ2 + λ3)y}dx dy

= λ1(λ2 + λ3)
[∫ ∞

0
exp{−(λ2 + λ3)y} dy

] ∫ y

0
exp{−(λ1)x dx}

= (λ2 + λ3)
[∫ ∞

0
exp{(−λ2 + λ3)y dy} −

∫ ∞

0
exp{−(λ1 + λ2 + λ3)y dy }

]

= λ1 / (λ1 + λ2 + λ3)
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The proof of point (2) follows from the symmetric property of the distribution.

We proof point(3) as follows:

P (X = Y ) = 1 − P (X < Y ) − P (X > Y )

= 1 − λ1 / (λ1 + λ2 + λ3) − λ2 / (λ1 + λ2 + λ3)

= λ3/(λ1 + λ2 + λ3). ¤



Chapter 3

Generalized Marshall-Olkin model

3.1 The generalized Marshall-Olkin model

There is an extensive literature on the generalization of Marshall-Olkin bivariate exponen-

tial model, for example, Marshall-Olkin(1967b) proposed that there are several ways to

define ” joint waiting time”. Some of these lead to the bivariate exponential distribution

previously obtained by the authors, but other lead to a generalization of it. Hyakutake

(1990) proposed a Marshall-Olkin BVE distribution having location parameters. Ryu

(1993) extended Marshall-Olkin’s BVE such that it is absolutely continuous and need not

be memoryless.

Lemma 3.1.1 For λi ≥ 0, i = 1, 2, 3, and µ ≥ 0 the function

F λ(x, y) = 1R2
+
(x, y) exp[−λ1x− λ2y − λ3 max(x, µy)]

defines a bivariate exponential model where the marginals have parameters λ1 + λ3 and

λ2 + µλ3.

Proof: The function F λ(x, y) defines bivariate exponential model if both marginal distri-

butions are exponential, cf. Johnson and Kotz (1972, page 260). Let F 1(x) = F (x, 0) and

F 2(y) = F (0, y) denotes the marginal distributions of X and Y respectively. Then

F 1(x) = exp{−λ1x− λ2(0)− λ3 max(x, µ(0))} ; x > 0

= exp{−(λ1 + λ3)x} ; x > 0

which is exponential with parameter (λ1 + λ3). Also,

F 2(y) = exp{−λ1(0)− λ2y − λ3 max((0), µy)} ; y > 0

= exp{−(λ2 + µλ3)y} ; y > 0

25
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which is exponential with parameter (λ2 + µλ3). Hence the function F λ(x, y) defines

bivariate exponential model. ¤

Corollary 3.1.1 Let λ = (λ1, λ2, λ3, µ). Then Fλ restricted to the domain G = R2
+ \

{(x, y) : x = µy} has a density with respect to dxdy given by

fG(x, y) = λ1(λ2 + µλ3)F λ(x, y)1{x<µy} + λ2(λ1 + λ3)F λ(x, y)1{x>µy}

and the measure on the line L = {(x, y) : x = µy} is given by the density

fL(x, y) =
λ3√

1 + µ2
exp−(λ1 + λ2/µ + λ3)x

with respect to the measure
√

1 + µ2dx on L.

Proof:

F (u, v) = FG + FL.

Now,
∫

u

∫

v
fG(x, y)dxdy =

∫

u

∫

v
λ1(λ2 + µλ3)F λ(x, y)1{x<µy}

+ λ2(λ1 + λ3)F λ(x, y)1{x>µy}dxdy.

When x < µy, we have

B(u, v) = λ1(λ2 + µλ3)
∫ ∞

v

∫ µv

u
e−λ1x−(λ2+µλ3)y dxdy

= λ1(λ2 + µλ3)
∫ ∞

v
e−(λ2+µλ3)ydy

∫ µv

u
e−λ1x dx

= exp{−λ1u− λ2v − λ3µv} − exp{−λ1µv − λ2v − λ3µv}.

When x > µy, we have

C(u, v) = λ2(λ1 + λ3)
∫ ∞

u

∫ u
µ

v
e−(λ1+λ3)x−λ2y dxdy

= λ2(λ1 + λ3)
∫ ∞

u
e−(λ1+λ3)xdx

∫ u
µ

v
e−λ2y dy

= exp{−λ1u− λ2v − λ3u} − exp{−λ1u− λ2uµ−1 − λ3u}.

If x < µy,

FG(u, v) = B(u, v) + C(µv, v)

= e−λ1µ−λ2v−λ3µv − e−λ1µv−λ2v−λ3µv.
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If x > µy,

FG(u, v) = B(u,
u

µ
) + C(u, v)

= e−λ1u−λ2v−λ3u − e
−λ1u−λ2

u
µ
−λ3u

.

since,

FL(u, v) = exp{−(λ1 +
λ2

µ
+ λ3)u} ; u = µv

so we have that

F (u, v) = FG + FL. ¤

Definition 3.1.1 A bivariate random vector (X,Y ) satisfies the generalized Marshall-

Olkin model if its distribution function is given by some

Fλ(x, y) = 1R2
+
(x, y) exp[−λ1x− λ2y − λ3 max(x, µy)] (3.1)

where λ = (λ1, λ2, λ3, µ) ∈ Λ = R4
+.

The joint density function for eqn. 3.1 is

f(x, y) =





λ1(λ2 + µλ3)F λ(x, y) ; x < µy ; x , y > 0

λ2(λ1 + λ3)F λ(x, y) ; x > µy ; x , y > 0
λ3√
1+µ2

exp{−(λ1 + λ2/µ + λ3)x} ; x = µy ; x , y > 0
(3.2)

Remark 3.1.1 There is a simple interpretation of this model: Looking at implants, once

the side represented by Y survives the other side, the survival time has a different rate

only at some later time (if µ < 1).

Lemma 3.1.2 If (X,Y ) is distributed as the generalized Marshall-Olkin model of eqn. 3.1

then

1. P (X < µY ) = µλ1

(µλ1+λ2+µλ3)

2. P (µY < X) = λ2
(µλ1+λ2+µλ3)

3. P (X = µY ) = µλ3

(µλ1+λ2+µλ3)

4. P (min(X, µY ) ≥ t) = exp{−(λ1 + λ2/µ + λ3)t}
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Proof. The proof of point No.1 is as follows:

P (X < µY ) = λ1(λ2 + µλ3)
∫ ∞

y=0

∫ µy

x=0
exp{−λ1x} exp{−(λ2 + µλ3)y} dx dy

= λ1(λ2 + µλ3)
∫ ∞

y=0
exp{−(λ2 + µλ3)y} dy

∫ µy

x=0
exp{−λ1x}dx

= (λ2 + µλ3)
∫ ∞

y=0
exp{−(λ2 + µλ3)y} [1 − exp(−λ1µy)] dy

= (λ2 + µλ3)
[∫ ∞

y=0
exp{−(λ2 + µλ3)y} dy −

∫ ∞

y=0
exp{−(µλ1 + λ2 + µλ3)y} dy

]

=
µλ1

(µλ1 + λ2 + µλ3)
.

The proof of point No.2 is as follows:

P (µY < X) = P (Y < µ−1 X)

= λ2(λ1 + λ3)
∫ ∞

x=0

∫ x/µ

y=0
exp{−λ2y} exp{−(λ1 + λ3)x} dy dx

= λ2(λ1 + λ3)
∫ ∞

x=0
exp{−(λ1 + λ3)x} dx

∫ x/µ

y=0
exp{−λ2y}dy

= (λ1 + λ3)
∫ ∞

x=0
exp{−(λ1 + λ3)x} [1 − exp(−λ2 x/µ)] dx

= (λ1 + λ3)
[∫ ∞

y=0
exp{−(λ1 + λ3)x} dx −

∫ ∞

x=0
exp{−(λ1 + λ2 x/µ + λ3)x} dx

]

=
λ2

(µλ1 + λ2 + µλ3)
.

The proof of point No.3 is as follows:

P (X = µY ) = 1 − P (µY < X) − P (X < µY )

=
µλ3

(µλ1 + λ2 + µλ3)
.

To proof point No.4 we have that

P (min(X, µY ) ≥ t) = P (X ≥ t , Y ≥ t

µ
) = F (t,

t

µ
)

= exp{−(λ1 + λ2/µ + λ3)t} ¤

This implies that min(X, µY ) is distributed according to the exponential distribution with

parameter {λ1 + λ2/µ + λ3}. Then

E(min(X,µY )) =
µ

(λ1µ + λ2 + λ3µ)
. ¤
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3.2 Maximum Likelihood Estimation

This section is devoted to the derivation of the maximum likelihood estimation for the

parameters of the generalized Marshall-Olkin model.

To begin with notice the following fact. If a sequence (X1, Y1), ..., (Xn, Yn) of independent

identically distributed random vectors from the distribution Fλ is observed, then

n3 = ]{1 ≤ i ≤ n : Xi = µYi} ≥ 2

holds for at most one parameter µ, and as n →∞,

P (n3 ≥ 2) → 1.

This suggests the estimator for µ:

µ̂ =
Xi

2Yi
+

Xj

2Yj
,

where i and j are chosen to satisfy
∣∣∣∣
Xi

Yi
− Xj

Yj

∣∣∣∣ = min
{∣∣∣∣

Xl

Yl
− Xk

Yk

∣∣∣∣ : 1 ≤ l < k ≤ n

}
.

Note that µ̂ = µ for large n almost surely.

We let n1 = ]{i : Xi < µYi} , n2 = ]{i : µYi < Xi} and n3 = ]{i : Xi = µYi}, whence

n1 + n2 + n3 = n. Also, let Z = (X,Y ). The conditional likelihood function for the

generalized Marshall-Olkin model for a random sample of size n of pairs zi = (xi, yi) for

1 ≤ i ≤ n, conditioned that µ is fixed and λ = (λ1, λ2, λ3), is given by

l(λ) =
n∏

i=1

f(xi, yi)

= exp{−λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

max(xi, µyi)}

[λ2(λ1 + λ3)]n2 [λ1(λ2 + µλ3)]n1

(
λ3√

1 + µ2

)n3

(3.3)

the log likelihood is

l(λ) = log l(λ)

= −λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

max(xi, µyi) + n2 log[λ2(λ1 + λ3)]

+ n1 log[λ1(λ2 + µλ3)] + n3 log
λ3√

1 + µ2
. (3.4)
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For brevity’s sake we write l for l(λ). The partial derivative of l with respect to λ1 is given

by

∂l/∂λ1 = n1/λ1 + n2/(λ1 + λ3)−
n∑

i=1

xi

setting ∂l/∂λ1 = 0 gives the following likelihood equation

n1/λ1 + n2/(λ1 + λ3) =
n∑

i=1

xi

The partial derivative of l with respect to λ2 is given as

∂l/∂λ2 = n2/λ2 + n1/(λ2 + µλ3)−
n∑

i=1

yi

setting ∂l/∂λ2 = 0 gives the following likelihood equation

n2/λ2 + n1/(λ2 + µλ3) =
n∑

i=1

yi

The partial derivative of l with respect to λ3 is given as

∂l/∂λ3 = n3/λ3 + n2/(λ1 + λ3) + µn1/(λ2 + µλ3)−
n∑

i=1

max(xi, µyi)

setting ∂l/∂λ3 = 0 gives the following likelihood equation

n3/λ3 + n2/(λ1 + λ3) + µn1/(λ2 + µλ3) =
n∑

i=1

max(xi, µyi)

Definition 3.2.1 Given µ, any value λ̂(z) that maximizes the likelihood function

l(z | λ̂(z)) = sup
λ∈Λ+

l(z | λ)

is called a maximum likelihood estimate (m.l.e) of λ.

Hence, the likelihood equations are




n1/λ1 + n2/(λ1 + λ3) =
∑n

i=1 xi

n2/λ2 + n1/(λ2 + µλ3) =
∑n

i=1 yi

n3/λ3 + n2/(λ1 + λ3) + µn1/(λ2 + µλ3) =
∑n

i=1 max(xi, µyi)





(3.5)

The second partial derivatives of the log likelihood (Hessian matrix) on Λ is given by

Q = ∇2l(λ) = (∂2l/∂λi∂λj)i,j=1,2,3 (3.6)

= −




n2
(λ1+λ3)2

+ n1

λ2
1

0 n2
(λ1+λ3)2

0 n1
(λ2+µλ3)2

+ n2

λ2
2

µn1

(λ2+µλ3)2

n2
(λ1+λ3)2

µn1

(λ2+µλ3)2
n3

λ2
3

+ n2
(λ1+λ3)2

+ µ2n1

(λ2+µλ3)2
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Letting

C =




n1/λ2
1 0 0

0 n2/λ2
2 0

0 0 n3/λ2
3


 (3.7)

and

D[a, b] =




a 0 a

0 b µb

a µb a + µ2b




= D[ n2/(λ1 + λ3)2 , n1/(λ2 + µλ3)2] (3.8)

then

Q = −{C + D[n2/(λ1 + λ3)2 , n1/(λ2 + µλ3)2]}.
The existence and uniqueness properties of MLE are given in the following theorem.

Theorem 3.2.1 Let (Xi, Yi); i = 1, . . . , n, n ∈ N be independent identically distributed

(i.i.d.) sequence with cumulative distribution function (c.d.f) Fλ given by eqn. 3.1, the

generalized Marshall-Olkin model, conditioned on µ with parameters λ = (λ1, λ2, λ3) ∈ Λ

cf. eqn. 3.1. Let R = {(xi, yi) . . . , (xn, yn) : ∃i : xi < yi,∃j : yj < xi,∃k : yk = xi} ⊂
R2n. Then for all (xi, yi); i = 1, . . . , n; n ∈ R. The MLE λ̂ for λ exists and is uniquely

determined by eqn. 3.5.

Proof of Thm. 3.2.1 Let l(λ) denote the likelihood function of the generalized Marshall-

Olkin model as derived in eqn. 3.3. The Hessian Q of the likelihood is given as eqn. 3.6

where n1, n2 and n3 denotes ]{i : Xi < µYi} , ]{i : µYi < Xi} and ]{i : Xi = µYi}
respectively. The likelihood function l(λ) is twice differentiable. The negative Hessian

(−Q) can be written as C + D where C and D are defined in eqn. 3.7 and eqn. 3.8. resp.

The matrix C is positive definite because:

1. The first entry n1/λ2
1 > 0.

2. The determinant of the matrix
(

n1/λ2
1 0

0 n2/λ2
2

)
> 0.

3. The determinant of the whole matrix



n1/λ2
1 0 0

0 n2/λ2
2 0

0 0 n3/λ2
3


 > 0
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The matrix D is positive semi-definite because:

1. The first entry n2/(λ1 + λ3)2 > 0

2. The determinant of the matrix
(

n2/(λ1 + λ3)2 0

0 n1/(λ2 + µλ3)2

)
> 0

and

3. The determinant of the whole matrix

=




n2/(λ1 + λ3)2 0 n2/(λ1 + λ3)2

0 n1/(λ2 + µλ3)2 µn1/(λ2 + µλ3)2

n2/(λ1 + λ3)2 µn1/(λ2 + µλ3)2 n2/(λ1 + λ3)2 + µ2n1/(λ2 + µλ3)2


 = 0

and for any vector θ, we have

θT (−Q)θ = θT C θ + θT D θ

= > 0+ ≥ 0

In order to show that this inequality is strict, for any θ 6= 0 write

θT (−Q)θ = θT C θ + θT D θ.

If θ = (θ1, θ2, θ3)T with θ1 or θ2 6= 0 then strict positivity from

θT C θ =
n1

λ2
1

θ2
1 +

n2

λ2
2

θ2
2 > 0

and positive semi-definiteness of D. If θ = (θ1, θ2, θ3)T and θ1 = θ2 = 0 and θ3 6= 0, then

θT C θ =
n3

λ2
3

θ2
3 > 0

and

θT D θ =
( n2

(λ1 + λ3)2
+

µ2n1

(λ2 + µλ3)2
)

θ2
3 > 0. ¤

So −Q is positive definite, hence Q is negative definite. By Thms. 3.2 and 4.2 of Mangarsin

(1969, pages 89 and 91 ) the likelihood function l(λ) is strictly concave on Λ. Hence l(λ)

must have a unique maximum on Λ given by the roots of the ∇l(λ) = 0.

Definition 3.2.2 A statistic = = =(Z1, Z2, . . . , Zn) is said to be sufficient for a parameter

λ ∈ Λ if conditional probability function

P{Z1 = z1, Z2 = z2, . . . , Zn = zn | =(Z1, Z2, . . . , Zn) = v}

does not depend on λ.
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To find the sufficient statistic for the exponential distribution given by eqn.3.1, we use the

general factorization theorem for sufficiency.

Theorem 3.2.2 {The General Factorization Theorem for Sufficiency} Let Pλ be

a family of probability measures and let Pλ admit a probability density pλ = dPλ/dψ with

respect to a σ- finite measure ψ. Then = is sufficient for Pλ (or simply), if and only if

there exist non-negative measurable functions gλ[=(Z1, Z2, . . . , Zn)] and h(Z1, Z2, . . . , Zn)

such that

Pλ(Z1, Z2, . . . , Zn) = gλ[=(Z1, Z2, . . . , Zn)]h(Z1, Z2, . . . , Zn)

Using the above theorem, we write likelihood function in the form

fλ(xi, yi) = h(X,Y )gλ(=(X, Y ))

= [λ2(λ1 + λ3)]n2 [λ1(λ2 + µλ3)]n1

(
λ3√

1 + µ2

)n3

exp{−λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

max(xi, µyi)}

where

h(X, Y ) = [λ2(λ1 + λ3)]n2 [λ1(λ2 + µλ3)]n1

(
λ3√

1 + µ2

)n3

and

gλ(=(X,Y )) = exp{−λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

max(xi, µyi)}

Hence,

{n1 , n2 ,
n∑

i=1

xi ,
n∑

i=1

yi ,
n∑

i=1

max(xi, µyi)}

or equivalently,

{n1 , n2 ,

n∑

i=1

max(xi, µyi) ,

n∑

i=1

min(xi, µyi) ,

n∑

i=1

max(xi, µyi) −
n∑

i=1

min(xi, µyi)}

are jointly sufficient statistics. Bemis et. al.(1972)and Bhattacharyya and Johnson (1971)

obtained the similar results for Marshall-Olkin BVE using factorization criterion but not

for the case of µ.

3.3 Asymptotic Properties

This section is devoted to the study of the asymptotic properties of the MLE for the

parameters of the generalized Marshall-Olkin model given µ.
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3.3.1 Consistency

Theorem 3.3.1 For every n ∈ N, let Zn
i = (Xn

i , Y n
i ); i = 1, . . . , n be i.i.d sequence with

c.d.f. Fλ given by eqn. 3.1, the generalized Marshall-Olkin model , with parameters λ =

(λ1, λ2, λ3) ∈ Λ cf. eqn. 3.1. Let λ̂n denote the MLE for λn based on Zn
1 , . . . , Zn

n ; n ∈ N.

Then for each λ ∈ Λ and for a fixed µ, λ̂n converges stochastically to λ under the law Fλ.

The consequence the MLE is consistent. For n → ∞

λ̂n
p→ λ

that is

lim
n→∞Pλ

(
|λ̂n − λ| ≤ ε

)
= 1

Proof Let l(λ) denote the likelihood function of the generalized Marshall-Olkin model as

derived in eqn. 3.1. We are considering a set

Cδ = {λ ∈ Λ : ‖λ− λ̃‖ ≤ δ}.

where δ > 0 and λ̃ = λ in Thm. 3.3.1 is fixed. Let the notation ℘Cδ denotes the boundary

of Cδ. We want to show that ∀ δ > 0

lim
n→∞Pλ̃

(
ln(λ) < ln(λ̃);∀λ ∈ ℘Cδ

)
= 1 ⇒ lim

n→∞Pλ̃

(
|λ̂n − λ̃| ≤ δ

)
= 1

Let

An = {ω ∈ Ω : ln(λ, z(ω)) < ln(λ̃) : ∀λ ∈ ℘Cδ}
Bn = {|λ̂n − λ̃| ≤ δ}

Known

lim
n→∞Pλ̃(An) = 1 , claim lim

n→∞Pλ̃(Bn) = 1

if we would know that An ⊂ Bn then

Pλ̃(An) ≤ Pλ̃(Bn)

so

1 ≥ lim
n→∞Pλ̃(Bn) ≥ lim

n→∞Pλ̃(An) = 1

To show that An ⊂ Bn, let ω ∈ An, this implies

ln(λ; z1(ω), . . . , zn(ω)) < ln(λ̃|z1(ω), . . . , zn(ω)) : ∀λ ∈ ℘Cδ)

this implies, the maximum of ln(λ; z(ω)), is attained in the interior of Cδ ⇒ ln(.; z(ω))

has a zero for l ′ in Cδ. l ′ has only one zero implies MLE lies in Cδ implies λ̂ ∈ Cδ, implies

|λ̂n − λ̃| ≤ δ ⇒ ω ∈ Bn
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The next point is to proof that limn→∞ Pλ̃

(
ln(λ) < ln(λ̃);∀λ ∈ ℘Cδ

)
= 1 we proof this

by first showing that

lim
n→∞

1
n

(λ− λ̃)T l̇(λ)λ=λ̃ = Eλ̃[l̇]λ=λ̃ = 0

where l̇ = ∂ log f
∂λ and that

lim
n→∞

1
n

(λ− λ̃)T l̈(λ)(λ− λ̃)λ=λ̃ = Eλ̃ [̈l]λ=λ̃ < 0

The partial derivative of l with respect to λ1 is given as

∂l/∂λ1 = n1/λ1 + n2/(λ1 + λ3)−
n∑

i=1

xi

dividing both sides by n, we obtain

1
n

∂l
∂λ1

=
1
n

(n1/λ1 + n2/(λ1 + λ3)−
n∑

i=1

xi)

=
n1

nλ1
+

n2

n(λ1 + λ3)
−

∑n
i=1 xi

n

lim
n→∞

1
n

∂l
∂λ1

=
1
λ1

P (µY > X ) +
1

(λ1 + λ3)
P ( X > µY ) − E(X)

=
1
λ1

µλ1

(µλ1 + λ2 + µλ3)
+

1
(λ1 + λ3)

λ2

(µλ1 + λ2 + µλ3)
− 1

(λ1 + λ3)
= 0

The partial derivative of l with respect to λ2 is given as

∂l/∂λ2 = n2/λ2 + n1/(λ2 + µλ3)−
n∑

i=1

yi

dividing both sides by n, we obtain

1
n

∂l
∂λ2

=
1
n

(n2/λ2 + n1/(λ2 + µλ3)−
n∑

i=1

yi)

=
n2

nλ2
+

n1

n(λ2 + µλ3)
−

∑n
i=1 yi

n

lim
n→∞

1
n

∂l
∂λ2

=
1
λ2

P (µY < X ) +
1

(λ2 + µλ3)
P (X < µY ) − E(Y )

=
1
λ2

λ2

(µλ1 + λ2 + µλ3)
+

1
(λ2 + µλ3)

µλ1

(µλ1 + λ2 + µλ3)
− 1

(λ2 + µλ3)
= 0

The partial derivative of l with respect to λ3 is given as

∂l/∂λ3 = n3/λ3 + n2/(λ1 + λ3) + µn1/(λ2 + µλ3)−
n∑

i=1

max(xi, µyi)
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dividing both sides by n, we obtain

1
n

∂l
∂λ3

=
1
λ3

(
n3

n
) +

1
(λ1 + λ3)

(
n2

n
) +

µ

(λ2 + µλ3)
(
n1

n
)− (

∑n
i=1 max(xi, µyi)

n
)

lim
n→∞

1
n

∂l
∂λ3

=
1
λ3

P ( X = µY ) +
1

(λ1 + λ3)
P ( X > µY ) +

µ

(λ2 + µλ3)
P ( X < µY )

− E(X) − E( µY ) − E(min(X, µY ))

= (
µ

(µλ1 + λ2 + µλ3)
) +

1
(λ1 + λ3)

(
λ2

(µλ1 + λ2 + µλ3)
) + (

µ

(λ2 + µλ3)
)

× µλ1

(µλ1 + λ2 + µλ3)
− (

1
(λ1 + λ3)

)− (
µ

(λ2 + µλ3)
)− µ

(λ1µ + λ2 + λ3µ)
= 0

this shows that Eλ̃[l̇]λ=λ̃ = 0.

Now, by taking a third order Taylor expansion around λ̃, we have

1
n

(l(λ)− l(λ̃)) =
1
n

(λ− λ̃)T l̇(λ̃)

+
1
2
(λ− λ̃)T

( 1
n
l̈(λ̃)

)
(λ− λ̃)

+
1
6

1
n

k∑

r=1

k∑

s=1

k∑

t=1

(λr − λ̃r)(λs − λ̃s)(λt − λ̃t)
{

γrst(Zi)Hrst(Zi)
}

= S1 + S2 + S3

where

S1 =
1
n

(λ− λ̃)T l̇(λ̃)

S2 =
1
2
(λ− λ̃)T

( 1
n
l̈(λ̃)

)
(λ− λ̃)

S3 =
1
6

1
n

k∑

r=1

k∑

s=1

k∑

t=1

(λr − λ̃r)(λs − λ̃s)(λt − λ̃t)
{

γrst(Zi)Hrst(Zi)
}

we make assumptions that 0 ≤ |γrst(z)| < 1 and | ∂3 log f
∂λr∂λs∂λt

| < Hrst(Zi). We have seen

that

S1
p→ 0

The Hessian Q is negative definite so the second term S2 is negative with probability

tending to 1. S1 and S3 are small compared to S2 so the

sup
λ∈Cδ

(S1 + S2 + S3) < 0

Thus, for n large enough,

1
n

(l(λ)− l(λ̃)) < 0 ¤

this completes the proof.
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3.3.2 Asymptotic Normality

Theorem 3.3.2 Let Zn = (Xn, Yn); (n ≥ 1) be independent identically distributed (i.i.d.)

random variables with cumulative distribution function (c.d.f) Fλ given by eqn. 3.1, the

generalized Marshall-Olkin model , with parameters λ = (λ1, λ2, λ3) ∈ Λ. Then for a fixed

µ, the MLE λ̂ for λ is asymptotically normal

N ( λ , Σ(λ)−1 )

where

Σ(λ) = ΠΣ−1
0 .

Proof Let δ > 0 and set

Gn = {(z1, . . . , zn) ∈ R2n : |λ − λ̂(z1, . . . , zn) | < δ

If δ is small enough, then for (z1, . . . , zn) ∈ Gn, λ̂ is unique. Then , by consistency,

Pλ( Gn ) → 1 as n → ∞

hence for ε > 0 there is n0 ∈ N such that

Pλ( Gc
n ) < ε ∀n ≥ n0

It follows that for n ≥ n0

|Pλ({ω : λ̂(z1(ω), . . . , zn(ω)) ≤ t} ∩ {z1, . . . , zn ∈ Gn})
− Pλ({ω : λ̂(z1(ω), . . . , zn(ω)) ≤ t}) | ≤ Pλ( Gc

n ) < ε

Note that t ∈ R3 and s ≤ t means si ≤ ti (i = 1, 2, 3). The likelihood function l can be

expressed as a Taylor series by

l ′(λ) = l ′(λ) + (λ − λ)T l ′′(λ∗)

for some value of λ∗ ∈ B(λ, δ), the δ-ball around λ. So if z1, . . . , zn ∈ Gn, n ≥ n0

l ′(λ̂(z1, . . . , zn )) = 0

and

l ′(z1, . . . , zn , λ) = − (λ̂(z1, . . . , zn )− λ)l ′′(z1, . . . , zn , λ∗)

by eqn. (3.4)

l (z1, . . . , zn , λ) = log l (z1, . . . , zn , λ)

= −λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

max(xi, µyi) + n2 log[λ2(λ1 + λ3)]

+ n1 log[λ1(λ2 + µλ3)] + n3 log
λ3√

1 + µ2
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so

l ′(z1, . . . , zn , λ) =




∂l/∂λ1

∂l/∂λ2

∂l/∂λ3




=





n1/λ1 + n2/(λ1 + λ3)−
∑n

i=1 xi

n2/λ2 + n1/(λ2 + µλ3)−
∑n

i=1 yi

n3/λ3 + n2/(λ1 + λ3) + µn1/(λ2 + µλ3)−
∑n

i=1 max(xi, µyi)





where E l ′ = 0 as calculated in the proof of theorem 3.3.1 (consistency). It follows that
1√
n
l ′(z1, . . . , zn , λ) is asymptotically normal with expectation 0 and covariance matrix

Π = (πij)1≤i,j≤ 3 . We calculate this matrix as follows:

var(X) = 1/(λ1 + λ3)2

var(Y ) = 1/(λ2 + µλ3)2

var(min(X, µY )) = µ2/(λ1µ + λ2 + λ3µ)2

var(max(X, µY )) = var(X + µY −min(X,µY ))

= var(X) + µ2var(Y ) + var(min(X, µY ))− 2cov(X, µY )

− 2cov(X, min(X, µY ))− 2cov(Y,min(X, µY )).

Now,

cov(X,µY ) = µE(XY )− µE(X)E(Y ) = 0

cov(X, min(X,µY )) =
∫ ∫

xmin(x, µy)dFdxdy − E(X)E(min(X,µY ))

∫ ∫
xmin(x, µy)dFdxdy = λ1(λ2 + µy)

∫ ∞

y=0

∫ µy

x=0
x2e−λ1xe−(λ2+µλ3)ydxdy

+ λ2(λ1 + λ3)µ
∫ ∞

x=0

∫ x/µ

y=0
xye−(λ1+λ3)xe−λ2ydxdy

+ λ3

∫ ∞

x=0
x2e−(λ1+λ2/µ+λ3)xdx

=
2
λ2

1

− 2µ2(λ2 + µλ3)
(λ1µ + λ2 + µλ3)3

− 2µ(λ2 + µλ3)
λ1(λ1µ + λ2 + µλ3)2

− 2(λ2 + µλ3)
λ2

1(λ1µ + λ2 + µλ3)
+

µλ2(λ1 + λ3)
λ2

2(λ1 + λ3)2
− 2µ3(λ1 + λ3)

(λ1µ + λ2 + µλ3)3

− µ2(λ1 + λ3)
λ2(λ1µ + λ2 + µλ3)2

+
2λ3µ

3

(λ1µ + λ2 + µλ3)3
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hence,

cov(X, min(X, µY )) =
2
λ2

1

− 2µ2(λ2 + µλ3)
(λ1µ + λ2 + µλ3)3

− 2µ(λ2 + µλ3)
λ1(λ1µ + λ2 + µλ3)2

− 2(λ2 + µλ3)
λ2

1(λ1µ + λ2 + µλ3)
+

µλ2(λ1 + λ3)
λ2

2(λ1 + λ3)2
− 2µ3(λ1 + λ3)

(λ1µ + λ2 + µλ3)3

− µ2(λ1 + λ3)
λ2(λ1µ + λ2 + µλ3)2

+
2λ3µ

3

(λ1µ + λ2 + µλ3)3
− 1

(λ1 + λ3)
µ

(λ1µ + λ2 + µλ3)

cov(Y,min(X,µY )) =
∫ ∫

y min(x, µy)dFdxdy − E(Y )E(min(X,µY ))

∫ ∫
y min(x, µy)dFdxdy = λ1(λ2 + µλ)

∫ ∞

y=0

∫ µy

x=0
xye−λ1xe−(λ2+µλ3)ydxdy

+ µλ2(λ1 + λ3)
∫ ∞

x=0

∫ x/µ

y=0
y2e−λ2ye−(λ1+λ3)xdxdy

+ µλ3

∫ ∞

y=0
y2e−(λ1+λ2/µ+λ3)ydy

=
1

λ1(λ2 + µλ3)
− (λ2 + µλ3)

λ1(λ1µ + λ2 + µλ3)2
− 2µ(λ2 + µλ3)

(λ1µ + λ2 + µλ3)3

− 2µ2(λ1 + λ3)
(λ1µ + λ2 + µλ3)3

− 2µ2(λ1 + λ3)
λ2(λ1µ + λ2 + µλ3)2

+
2µ

λ2
2

− 2µ2(λ1 + λ3)
λ2

2(λ1µ + λ2 + µλ3)
+

2λ3µ
4

(λ1µ + λ2 + µλ3)3

hence,

cov(Y,min(X, µY )) =
1

λ1(λ2 + µλ3)
− (λ2 + µλ3)

λ1(λ1µ + λ2 + µλ3)2
− 2µ(λ2 + µλ3)

(λ1µ + λ2 + µλ3)3

− 2µ2(λ1 + λ3)
(λ1µ + λ2 + µλ3)3

− 2µ2(λ1 + λ3)
λ2(λ1µ + λ2 + µλ3)2

+
2µ

λ2
2

− 2µ2(λ1 + λ3)
λ2

2(λ1µ + λ2 + µλ3)
+

2λ3µ
4

(λ1µ + λ2 + µλ3)3
− 1

(λ2 + µλ3)
µ

(λ1µ + λ2 + µλ3)

hence the var(max(X, µY )) is calculated from the above results. The next is

cov(X, max(X, µY )) =
∫ ∫

xmax(x, µy)dFdxdy − E(X)E(max(X,µY ))
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∫ ∫
xmax(x, µy)dFdxdy = λ2(λ1 + λ3)

∫ ∞

x=0

∫ x/µ

y=0
x2e−(λ1+λ3)xe−λ2ydydx

+ µλ1(λ2 + µλ3)
∫ ∞

y=0

∫ µy

x=0
xye−λ1x.e−(λ2+µλ3)ydxdy

+ λ3

∫ ∞

0
x2e−(λ1+λ2/µ+λ3)xdx

=
2

(λ1 + λ3)2
− 2µ3(λ1 + λ3)

(λ1µ + λ2 + µλ3)
− µ(λ2 + µλ3)

λ1(λ1µ + λ2 + µλ3)2

− 2µ2(λ2 + µλ3)
(λ1µ + λ2 + µλ3)3

+
µ

λ1(λ2 + µλ3)
+

2λ3µ
3

(λ1µ + λ2 + µλ3)3

hence the cov(X, max(X, µY )) is

cov(X, max(X, µY )) =
2

(λ1 + λ3)2
− 2µ3(λ1 + λ3)

(λ1µ + λ2 + µλ3)
− µ(λ2 + µλ3)

λ1(λ1µ + λ2 + µλ3)2

− 2µ2(λ2 + µλ3)
(λ1µ + λ2 + µλ3)3

+
µ

λ1(λ2 + µλ3)
+

2λ3µ
3

(λ1µ + λ2 + µλ3)3

− 1
(λ1 + λ3)

{( 1
(λ1 + λ3)

) + (
µ

(λ2 + µλ3)
)− µ

(λ1µ + λ2 + λ3µ)
}

similarly,

cov(Y,max(X, µY )) =
1

λ2(λ1 + λ3)
− 2µ2(λ1 + λ3)

(λ1µ + λ2 + λ3µ)2
+

2µ

(λ2 + µλ3)2

− 2µ(λ2 + µλ3)
(λ1µ + λ2 + λ3µ)3

+
2λ3µ

4

(λ1µ + λ2 + λ3µ)3

− µ

(λ2 + µλ3)
{( 1

(λ1 + λ3)
) + (

µ

(λ2 + µλ3)
)− µ

(λ1µ + λ2 + λ3µ)
}.

If we denote the covariance matrix by Π = (πij)1≤i,j≤ 3 then

π11 = var(X) , π12 = π21 = 0 , π33 = var(max(X, µY ))

π22 = var(Y ) , π13 = cov(X, max(X, µY )) , π23 = cov(Y, max(X,µY ))

since

P ( (Z1 . . . Zn ) ∈ Gn ) → 1 as n →∞
1√
n
l ′(Z1, . . . , Zn , λ) and − 1√

n
(λ̂− λ)T l ′′(λ∗) are equivalent. Now,

1
n
l ′′(Z1, . . . , Zn , λ∗) =

1
n

U(Z1, . . . , Zn)
p→ Σ0
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using Q from eqn. 3.6 with λi = λ∗i we work Σ0 as follows:

τ11 = E(− ∂2l
∂λ∗12

) = lim
n→∞

1
n

∂2l
∂λ∗12

=
1

(λ∗1 + λ∗3)2
n2

n
+

1
λ∗12

n1

n

=
1

(λ∗1 + λ∗3)2
P (µY < X) +

1
λ∗12

P (X < µY )

=
λ∗2

(λ∗1 + λ∗3)2Φ
+

µ

λ∗1Φ

where Φ = (λ∗1µ + λ∗2 + λ∗3µ)

τ22 = E(− ∂2l
∂λ∗22

) = lim
n→∞

1
n

∂2l
∂λ∗22

=
1

(λ∗2 + µλ∗3)2
n1

n
+

1
λ∗22

n2

n

=
1

(λ∗2 + µλ∗3)2
P (X < µY ) +

1
λ∗22

P (µY < X)

=
µλ∗1

(λ∗2 + µλ∗3)2Φ
+

1
λ∗2Φ

τ33 = E(− ∂2l
∂λ∗32

) = lim
n→∞

1
n

∂2l
∂λ∗32

=
1

(λ∗1 + λ∗3)2
n2

n
+

µ2

(λ∗2 + µλ∗3)2
n1

n
+

1
λ∗32

n3

n

=
1

(λ∗1 + λ∗3)2
P (µY < X) +

µ2

(λ∗2 + µλ∗3)2
P (X < µY ) +

1
λ∗32

P (µY = X)

=
λ∗2

(λ∗1 + λ∗3)2Φ
+

µ3λ∗1
(λ∗2 + µλ∗3)2Φ

+
µ

λ∗3Φ

τ12 = τ21 = E(− ∂2l
∂λ∗1∂λ∗2

) = 0

τ13 = E(− ∂2l
∂λ∗1∂λ∗3

) = lim
n→∞

1
n

∂2l
∂λ∗1∂λ∗3

=
1

(λ∗1 + λ∗3)2
n2

n

=
1

(λ∗1 + λ∗3)2
P (µY < X)

=
λ∗2

(λ∗1 + λ∗3)2Φ
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τ23 = E(− ∂2l
∂λ∗2∂λ∗3

) = lim
n→∞

1
n

∂2l
∂λ∗2∂λ∗3

=
µ

(λ∗2 + µλ∗3)2
n1

n

=
µ

(λ∗2 + µλ∗3)2
P (X < µY )

=
µλ∗1

(λ∗2 + µλ∗3)2Φ

consequently the information matrix has the form

Σ0 =




τ11 0 τ13

0 τ22 τ23

τ31 τ32 τ33




it follows that

− 1√
n
l ′(Z1, . . . , Zn , λ)Σ−1

0

is equivalent to
√

n(λ̂− λ) hence the claim with

Σ(λ) = ΠΣ−1
0 . ¤

3.3.3 Asymptotic Efficiency

The efficiency of a method is measured in terms of the ratio of the Cramer-Rao lower

bounds of the individual estimates to the sum of the mean squared errors (MSE) of the

individual estimates. That is, Eff. = tr(I−1
n )/

∑
MSE(λ̂i). Also the asymptotic relative

efficiencies are based on the ratio of the traces of the appropriate asymptotic covariance

matrices. We define trace of asymptotic relative efficiency as

tr. ARE = tr(I−1
n )/tr

∑
MSE(λ̂i) (3.9)

and

Generalized ARE = |(I−1
n )|/|

∑
MSE(λ̂i)| (3.10)

Arnold (1968) and Bemis et. al. (1972) have used the criteria eqn. 3.9 while Bhattacharyya

and Johnson (1971) used eqn. 3.10 to study the asymptotic efficiencies of BVE estimators

relative to the MLE, eqn. 3.9 comparing asymptotic average variances and eqn. 3.10

asymptotic generalized variance. From Arnold(1968, page 850), the information matrix

for Marshall-Olkin model is given as
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In = n
λ




a + c 0 a

0 b + d b

a b a + b + e




where λ = λ1 + λ2 + λ3 , a = λ2(λ1 + λ3)−2, b = λ1(λ2 + λ3)−2, c = λ−1
1 , d = λ−1

2

and e = λ−1
3 . Let Σmo denote the dispersion matrix of the limiting normal distribution

of Marshall-Olkin BVE estimator, λ̂
mo

n , and Σmo = (In)−1. Let Σg denote the asymptotic

dispersion matrix of λ̂n, the MLE of the generalized Marshall-Olkin model, and Σg =

(Σ0)−1. We define the trace of asymptotic relative efficiency tr. ARE of Σmo relative to

Σg as

tr. ARE =
trace (Σg)
trace (Σmo)

Using the simulated results, the following values were obtained for tr. ARE:

In the case of 500 simulations with µ = 1.33,

tr. ARE =
trace (Σg)

trace (Σmo)
=

0.16671
0.28902

= 0.57681

In the case of 1000 simulations with µ = 0.067,

tr. ARE =
trace (Σg)

trace (Σmo)
=

1.04712
0.96362

= 1.08665

The results show that as the sample size increases and with a decrease in µ, the information

matrices of both models are approximately the same and the efficiency of the MLE’S is

almost 1.

3.3.4 Simulation results

The S − Plusr(2001) programming language was used to conduct the statistical sim-

ulations. The aim was to compare the estimates of Marshall-Olkin’s model with that

of the generalised Marshall-Olkin model. The data were simulated using the marginal

distributions of the respective models. Sample sizes of 500 and 1000 were simulated.

From the table 3.1, it can be deduced that the estimates for Marshall-Olkin’s model seems

better than that of the Generalized Marshall-Olkin model in both simulations. Generalized

Marshall-Olkin model shows some good results as the sample size increases but with a

decrease in µ. When the sample is small then we have n3 = ]{i : Xi = µYi} to be less in

that of Generalized Marshall-Olkin model than of classical Marshall-Olkin model. This

can explain the discrepancy in the results.
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Initial value Marshall-Olkin Gen. Marshall-Olkin

500 1000 500(µ = 1.33) 1000(µ = 0.067)

λ1 = 0.100 0.0667 - 0.1178 -

λ2 = 0.200 0.1675 - 0.1611 -

λ3 = 0.300 0.3627 - 0.1699 -

λ1 = 0.250 - 0.185 - 0.213

λ2 = 0.360 - 0.318 - 0.290

λ3 = 0.420 - 0.521 - 0.166

Table 3.1: Comparison of Marshall-Olkin ML estimates with Gen. Marshall-Olkin ML

estimates



Chapter 4

Model Extension

We generalize the BVE’s to any given function. Muliere and Scarsini (1987) characterized

a class of bivariate Marshall-Olkin type distribution that generalize the Marshall-Olkin

exponential distribution through functional equation involving binary associative opera-

tions. These classes of bivariate distributions and their marginal distributions and their

form depends on the associative operation. They concentrate mass on the line x = y

as in the case of bivariate exponential distribution introduced by Marshall-Olkin(1967).

It also should be noted that Marshall and Olkin treated the case of the binary relation

x ∗ y = x+ y in 1967. That is they considered a lack-of-memory -property-type functional

equation which involves addition:

F (x1 ∗ y1, x2 ∗ y2) = F (x1 + y1, x2 + y2) = F (x1, x2)F (y1, y2)

A binary operation ∗ over real numbers is said to be associative if (x ∗ y) ∗ h = x ∗ (y ∗ h).

The operation ∗ is said to have an identity element e if x ∗ e = x. Let ∗ be a binary

associative operation with an identity element e ∈ R. It is known (see Aczél 1966) that

there is a strictly monotonically increasing continuous function g : R+ → R+ satisfying

x ∗ y = g−1(g(x) + g(y)).

Assuming there is an identity e for the relation, and the relation is associative and re-

ducible, then any continuous solution of the equation

H(s ∗ t) = H(s)H(t)

is of the form

H(s) = exp(−λg(s)).

45
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Here we extend this concept by fixing some µ > 0. The case µ = 1 will lead to the results

of Muliere and Scarsini. If µ 6= 1 assume in addition that

s ∗ t

µ
=

s

µ
∗ t

µ
.

Suppose that the survival function S(x, y) satisfies the functional equations

S(x ∗ t, y ∗ t/µ) = S(x, y)S(t, t/µ) (4.1)

S1(x ∗ t) = S1(x)S1(t) , S1(x) = S(x, e) (4.2)

and

S2(y ∗ t) = S2(y)S2(t) , S2(y) = S(e, y) (4.3)

for all x, y, t ≥ e. Example 1: If x ∗ y = x + y, then g(x) = x and

S(x, y) = exp{−λ1x− λ2y − λ3 max(x, y)} ; x, y > 0.

This is the Marshall-Olkin distribution.

Example 2: If x ∗ y = xy, then g(x) = log x and

S(x, y) = x−λ1y−λ2(max(x, y))−λ3 .

This is the bivariate Pareto distribution over the set (1,∞)× (1,∞).

Example 3: If x ∗ y = (xα + yα)1/ς , then g(x) = xα and

S(x, y) = exp{−λ1x
α − λ2y

α − λ3 max(xα, yα)} ; x, y > 0

This is the bivariate Weibull distribution (cf. Marshall and Olkin(1967)); Moeschberger

(1974). We extend the result in the following theorem.

Theorem 4.0.3 The only continuous solutions of the equations (4.1)–(4.3) are of the

form

F (u, v) = exp[−λ1g(u)− λ2g(µv)− λ3g(max(u, µv))], (4.4)

where λi > 0.
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Proof: We first note from eqn. 4.3 that F1(x) = F (x, e) satisfies F 1(x∗y) = F 1(x)F 1(y),

whence has the form

F 1(x) = exp[−θ1g(x)].

Likewise, the function F 0(x) = F (e, x/µ) satisfies

F 0(x ∗ y) = F (e,
x ∗ y

µ
) = F (e,

x

µ
∗ y

µ
) = F 0(x)F 0(y),

hence

F 1(x) = F 0(µx) = exp[−θ2g(µx)].

According to our assumptions,

F (x ∗ t,
x ∗ t

µ
) = F (x, x)F (t, t/µ).

Defining H(s) = F (s, s/µ), we find H(s ∗ t) = H(s)H(t) and so

H(x) = exp[−λg(x)].

It follows that

F (s ∗ t, e ∗ t

µ
) = F (x, e)F (t, t/µ) = exp[−λg(t)− θ1g(s)].

Putting u = s ∗ t and t = µv we arrive at

F (u, v) = exp[−λg(µv)− θ1[g(u)− g(µv)]],

where we used the fact that g(u) = g(s) + g(µv). On the other hand

F (e ∗ u, s ∗ u

µ
) = F (e, s)F (u, u/µ) = exp[−λg(u)− θ2g(µs)].

Putting µv = µs ∗ u and using g(µv) = g(µs) + g(u) we obtain

F (u, v) = exp[−λg(u)− θ2[g(µv)− g(u)]].

Setting λ1 = λ− θ2, λ2 = λ− θ1 and λ3 = θ1 + θ2 − λ it follows that

F (u, v) = exp[−λ1g(u)− λ2g(µv)− λ3g(max(u, µv))]. ¤

4.1 Another extension of Marshall-Olkin model

Let ϕ(x, y) be function which is continuous and twice continuously differentiable in some

open dense domain G = Gφ ⊂ R2. F is a two-dimensional distribution function so the
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mixed partial derivative gives a density. We generalize our joint distribution by changing

the notation from F (., .) to Fϕ(., .). The resulting bivariate distribution is given by:

Fϕ(x, y) = P (X > x, Y > y)

= exp{−λ1x− λ2y − λ3ϕ(x, y)} ; x, y > 0, λ ∈ Λ̄ (4.5)

We call eqn. (4.5) the ϕ model. We always assume that this defines a bivariate distribution

function. Note that the marginals need not to be exponential. In case where ϕ(x, y) =

max(x, y) we get the Marshall-Olkin’s models with exponential marginals. See below. The

parameter space is obtained by taken a negative partial derivative with respect to x and

y:

−∂Fϕ(x, y)/∂x = −
[
−λ1 − λ3∂ϕ(x, y)/∂x

]
Fϕ(x, y) ≥ 0

so λ1 + λ3∂ϕ(x, y)/∂x ≥ 0, ∀x, y

−∂Fϕ(x, y)/∂y = −
[
−λ2 − λ3∂ϕ(x, y)/∂y

]
Fϕ(x, y) ≥ 0

so λ2 + λ3∂ϕ(x, y)/∂y ≥ 0, ∀x, y.

It follows that the density is

∂2Fφ

∂x∂y
(u, v) =

(
λ3φ

′′(u, v) + (λ1 + λ3φx(u, v))(λ2 + λ3φy(u, v))
)
F φ(u, v) ;

thus,

Λ̄ =
{

(λ1, λ2, λ3) : λ3φ
′′(x, y) + (λ1 + λ3φx(x, y))(λ2 + λ3φy(x, y)) ≥ 0 ; x, y > 0

}
(4.6)

when ϕ(x, y) = min(x, y), we have

∂ϕ(x, y)/∂y =

{
0 ; if x < y;

1 ; if x > y ;

In that case ϕ′y = 1, we define the joint density function in this case as gϕ(x, y) ≥ 0 as:

gϕ(x, y) =

{
λ2(λ1 + λ3)Fϕ ; x < y ; x, y > 0,

λ1(λ2 + λ3)Fϕ ; y < x ; x, y > 0,
(4.7)

where ϕ′x and ϕ′y denotes ∂ϕ(x, y)/∂x and ∂ϕ(x, y)/∂y respectively. The case where

Fϕ(x, y) = exp{−λ1x− λ2y − λ3xy} ; x, y > 0
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this is recognizable as Gumbel’s type 1 bivariate exponential distribution (cf. Gumbel,

1960) but in this case, λ1, λ2 > 0 and 0 < λ3 ≤ 1.

We define the joint density function on Gφ for the general case as

fϕ(x, y) =
(
λ3φ

′′(x, y) + (λ1 + λ3ϕx(x, y))(λ2 + λ3ϕy(x, y))
)
Fϕ(x, y). (4.8)

Let Fϕ(1) and Fϕ(2) denotes the marginal distributions of X and Y respectively.

Fϕ(1)(x) = Fϕ(x, 0)

= exp{−λ1x− λ3ϕ(x, 0)}

the density for X is given as

fϕ(1)(x) = (λ1 + λ3ϕx) exp{−λ1x− λ3ϕ(x, 0)}

and

E(X) = (λ1 + λ3ϕx)−1

likewise, the marginal of Y is

Fϕ(2)(y) = exp{−λ2y − λ3ϕ(0, y)}

the corresponding density is

fϕ(2)(y) = (λ2 + λ3ϕy) exp{−λ2y − λ3ϕ(0, y)}

and

E(Y ) = (λ2 + λ3ϕy)−1.

4.2 Maximum Likelihood Estimation

In this section we will derive the MLE for eqn. 4.8. when assuming that φ′′ vanishes. The

likelihood function of a sample of size n of pairs zi = (xi, yi) for 1 ≤ i ≤ n individuals is

Lϕ(λ) =
n∏

i=1

fϕ(xi, yi)

= exp{−λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

ϕ(xi, yi)}
n∏

i=1

[λ3φ
′′(xi, yi) + (λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))]. (4.9)
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The log likelihood function is

log Lϕ(λ) = lϕ

= −λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

ϕ(xi, yi)

+
n∑

i=1

log
[
λ3φ

′′(xi, yi) + (λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi)).
]

(4.10)

The likelihood equations obtained by taken partial derivatives of lϕ with respect to λ′is

and setting to zero are given as:

n∑

i=1

{
(λ2 + λ3ϕy(xi, yi))/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))

}
=

n∑

i=1

xi

n∑

i=1

{
(λ1 + λ3ϕx(xi, yi))/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))

}
=

n∑

i=1

yi

n∑

i=1

{
[ϕx(xi, yi)(λ2 + λ3ϕy(xi, yi)) + ϕy(xi, yi)(λ1 + λ3ϕx(xi, yi))]

/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
}

=
n∑

i=1

ϕ(xi, yi)

from the assumption of φ′′. Hence, the likelihood equations are




∑n
i=1

{
(λ2 + λ3ϕy(xi, yi))/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))

}
=

∑n
i=1 xi

∑n
i=1

{
(λ1 + λ3ϕx(xi, yi))/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))

}
=

∑n
i=1 yi

∑n
i=1

{
[ϕx(xi, yi)(λ2 + λ3ϕy(xi, yi)) + ϕy(xi, yi)(λ1 + λ3ϕx(xi, yi))]

/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
}

=
∑n

i=1 ϕ(xi, yi)

(4.11)

For brevity we omit
∑n

i=1 and write ϕx = ϕx(xi, yi) and ϕy = ϕy(xi, yi). The Hessian

matrix on Λ̄ is given by

Qϕ = ∇2lϕ = (∂2lϕ/∂λi∂λj)i,j=1,2,3 (4.12)

= −




1/(λ1 + λ3ϕx)2 0 ϕx/(λ1 + λ3ϕx)2

0 1/(λ2 + λ3ϕy)2 ϕy/(λ2 + λ3ϕy)2

ϕx/(λ1 + λ3ϕx)2 ϕy/(λ2 + λ3ϕy)2 ϕ2
x/(λ1 + λ3ϕx)2 + ϕ2

y/(λ2 + λ3ϕy)2




The existence and uniqueness properties of MLE are given in the following theorem.
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Theorem 4.2.1 Let (Xi, Yi); i = 1, . . . , n, n ∈ N be independent identically distributed

(i.i.d.) sequence with cumulative distribution function (c.d.f) Fϕ given by eqn. 4.5, with

parameters λ = (λ1, λ2, λ3) ∈ Λ̄ cf. eqn. 4.6. Let R = {(xi, yi) . . . , (xn, yn) : ∃i : xi <

yi, ∃j : yj < xi, ∃k : yk = xi} ⊂ R2n. Then for all (xi, yi); i = 1, . . . , n; n ∈ R. The MLE

λ̂ for λ exists and is uniquely determined by eqn. 4.11.

Proof of Thm. 4.2.1 Let lϕ(λ) denote the likelihood function of the model as derived in

eqn. 4.10. The Hessian Qϕ of the likelihood is given as eqn. 4.12. The likelihood function

lϕ(λ) is twice differentiable. We want to show that the negative Hessian (−Qϕ) is positive

definite :

1. The first entry 1/(λ1 + λ3ϕx)2 > 0.

2. The determinant of the matrix
(

1/(λ1 + λ3ϕx)2 0

0 1/(λ2 + λ3ϕy)2

)
> 0

and

3. The determinant of the whole matrix




1/(λ1 + λ3ϕx)2 0 ϕx/(λ1 + λ3ϕx)2

0 1/(λ2 + λ3ϕy)2 ϕy/(λ2 + λ3ϕy)2

ϕx/(λ1 + λ3ϕx)2 ϕy/(λ2 + λ3ϕy)2 ϕ2
x/(λ1 + λ3ϕx)2 + ϕ2

y/(λ2 + λ3ϕy)2




=
1

(λ1 + λ3ϕx)2
{ 1

(λ2 + λ3ϕy)2

(
ϕ2

x

(λ1 + λ3ϕx)2
+

ϕ2
y

(λ2 + λ3ϕy)2

)
− ϕ2

y

(λ2 + λ3ϕy)4
}

− 1
(λ2 + λ3ϕy)2

ϕ2
x

(λ1 + λ3ϕx)4
.

In order to show that −Qϕ is positive definite, for any θ 6= 0 write If θ =

(θ1, θ2, θ3)T with θ1 or θ2 6= 0 then strict positivity from

θT (−Qϕ) θ =
1

(λ1 + λ3ϕx)2
θ2
1 +

1
(λ2 + λ3ϕy)2

θ2
2 > 0.

If θ = (θ1, θ2, θ3)T and θ1 = θ2 = 0 and θ3 6= 0, then

θT (−Qϕ) θ =
[
ϕ2

x/(λ1 + λ3ϕx)2 + ϕ2
y/(λ2 + λ3ϕy)2

]
θ2
3 > 0.

So −Qϕ is positive definite, hence Qϕ is negative definite. By Thms. 3.2 and 4.2

of Mangarsin (1969, pages 89 and 91 ) the likelihood function lϕ(λ) is strictly
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concave on Λ̄. Hence lϕ(λ) must have a unique maximum on Λ̄ given by the

roots of the ∇lϕ(λ) = 0. ¤
Using theorem 3.2.2, the joint sufficient statistic for eqn. 4.5. is

{n1 , n2 ,
n∑

i=1

xi ,
n∑

i=1

yi ,
n∑

i=1

ϕ(xi, yi)}

4.3 Asymptotic Properties

In this section we shall deal with the asymptotic properties of the MLE for the

parameters of eqn. 4.5.

4.3.1 Consistency

Theorem 4.3.1 For every n ∈ N, let Zn
i = (Xn

i , Y n
i ); i = 1, . . . , n be i.i.d

sequence with c.d.f. Fϕ given by , eqn. 4.5, with parameters λ = (λ1, λ2, λ3) ∈ Λ̄

cf. eqn. 4.6. Let λ̂n

ϕ
denote the MLE for λ based on Zn

1 , . . . , Zn
n ; n ∈ N.

Then for each λ ∈ Λ̄, λ̂ϕ
n converges stochastically to λ under the law Fϕ. The

consequence the MLE is consistent. For n → ∞

λ̂ϕ
n

p→ λ

that is

lim
n→∞Pλ

(
|λ̂n

ϕ − λ| ≤ ε
)

= 1

Proof Let lϕ(λ) denote the likelihood function of the model as derived in eqn.

4.11. We are considering a set

Cϕ
δ = {λ ∈ Λ̄ : ‖λ− λ̃

ϕ‖ ≤ δ}.

where δ > 0 and λ̃
ϕ

is fixed. Let the notation ℘Cϕ
δ denotes the boundary of

Cϕ
δ . We want to show that ∀ δ > 0

lim
n→∞Pϕ

λ̃

(
ln(λ)ϕ < ln(λ̃

ϕ
);∀λ ∈ ℘Cϕ

δ

)
= 1 ⇒ lim

n→∞Pϕ

λ̃

(
|λ̂ϕ

n − λ̃
ϕ| ≤ δ

)
= 1

Let

Aϕ
n = {κ ∈ Ω : lϕn(λ, z(κ)) < lϕn(λ̃ϕ) : ∀λ ∈ ℘Cϕ

δ }
Bϕ

n = {|λ̂ϕ

n − λ̃
ϕ| ≤ δ}

Known

lim
n→∞Pϕ

λ̃
(Aϕ

n) = 1 , claim lim
n→∞Pϕ

λ̃
(Bϕ

n ) = 1

if we would know that Aϕ
n ⊂ Bϕ

n then

Pϕ

λ̃
(Aϕ

n) ≤ Pϕ

λ̃
(Bϕ

n )
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so

1 ≥ lim
n→∞Pϕ

λ̃
(Bϕ

n ) ≥ lim
n→∞Pλ̃ϕ(Aϕ

n) = 1

To show that Aϕ
n ⊂ Bϕ

n , let κ ∈ Aϕ
n, this implies

lϕn(λ; z1(κ), . . . , zn(κ)) < lϕn(λ̃|z1(κ), . . . , zn(κ)) : ∀λ ∈ ℘Cϕ
δ )

this implies, the maximum of lϕn(λ; z(κ)), is attained in the interior of Cϕ
δ ⇒

lϕn(.; z(κ)) has a zero for lϕ ′ in Cϕ
δ . lϕ ′ has only one zero implies MLE lies in

Cϕ
δ implies λ̂ϕ ∈ Cϕ

δ , implies

|λ̂ϕ
n − λ̃ϕ| ≤ δ ⇒ κ ∈ Bϕ

n

The next point is to proof that

lim
n→∞Pϕ

λ̃

(
lϕn(λ) < lϕn(λ̃);∀λ ∈ ℘Cϕ

δ

)
= 1

we proof this by first showing that

lim
n→∞

1
n

(λ− λ̃
ϕ
)T l̇ϕ(λ)λ=λ̃ϕ = Eϕ

λ̃
[l̇ϕ]λ=λ̃ϕ = 0

where l̇ϕ = ∂ log f
∂λ and that

lim
n→∞

1
n

(λ− λ̃)T l̈ϕ(λ)(λ− λ̃)λ=λ̃ = Eλ̃[l̈ϕ]λ=λ̃ < 0

The partial derivative of lϕ with respect to λ1 is given as

∂lϕ/∂λ1 = n/(λ1 + λ3ϕx)−
n∑

i=1

xi

dividing both sides by n, we obtain

1
n

∂lϕ

∂λ1
=

1
n

(1/(λ1 + λ3ϕx)−
n∑

i=1

xi)

=
1

(λ1 + λ3ϕx)
−

∑n
i=1 xi

n

lim
n→∞

1
n

∂lϕ

∂λ1
=

1
(λ1 + λ3ϕx)

− E(X)

=
1

(λ1 + λ3ϕx)
− 1

(λ1 + λ3ϕx)
= 0

It can same way be shown that

lim
n→∞

1
n

∂lϕ

∂λ2
= 0
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The partial derivative of lϕ with respect to λ3 is given as

∂lϕ/∂λ3 =
[
ϕx(λ2+λ3ϕy)+ϕy(λ1 + λ3ϕx)

]
/(λ1 + λ3ϕx)(λ2 + λ3ϕy)−

n∑

i=1

ϕ(xi, yi)

dividing both sides by n, we obtain

1
n

∂lϕ

∂λ3
=

1
n

([
ϕx(λ2 + λ3ϕy) + ϕy(λ1 + λ3ϕx)

]
/(λ1 + λ3ϕx)(λ2 + λ3ϕy)

−
n∑

i=1

ϕ(xi, yi)

)

lim
n→∞

1
n

∂lϕ

∂λ3
= lim

n→∞
1
n

([
ϕx(λ2 + λ3ϕy) + ϕy(λ1 + λ3ϕx)

]
/(λ1 + λ3ϕx)(λ2 + λ3ϕy)

)

−E( ϕ(X,Y )) = 0

where we have assumed the weak law of large numbers.

Now, by taking a third order Taylor expansion around λ̃, we have

1
n

(lϕ(λ)− lϕ(λ̃)) =
1
n

(λ− λ̃)T ˙lϕ(λ̃)

+
1
2
(λ− λ̃)T

( 1
n
l̈ϕ(λ̃)

)
(λ− λ̃)

+
1
6

1
n

k∑

r=1

k∑

s=1

k∑

t=1

(λr − λ̃r)(λs − λ̃s)(λt − λ̃t)
{

γrst(Zi)Hrst(Zi)ϕ
}

= Sϕ
1 + Sϕ

2 + Sϕ
3

where

Sϕ
1 =

1
n

(λ− λ̃)T ˙lϕ(λ̃)

Sϕ
2 =

1
2
(λ− λ̃)T

( 1
n
l̈ϕ(λ̃)

)
(λ− λ̃)

Sϕ
3 =

1
6

1
n

k∑

r=1

k∑

s=1

k∑

t=1

(λr − λ̃r)(λs − λ̃s)(λt − λ̃t)
{

γrst(Zi)Hrst(Zi)ϕ
}

we make some assumptions that 0 ≤ |γrst(z)| < 1 and | ∂3 log fϕ

∂λr∂λs∂λt
| < Hrst(Zi)ϕ.

We have seen that

Sϕ
1

p →0

The Hessian Q is negative definite from Thm. 4.2.1, so the second term Sϕ
2 is

negative with probability tending to 1. Sϕ
1 and Sϕ

3 are small compared to Sϕ
2
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so the

sup
λ∈Cϕ

δ

(Sϕ
1 + Sϕ

2 + Sϕ
3 ) < 0.

Thus, for n large enough,

1
n

(lϕ(λ)− lϕ(λ̃)) < 0 ¤

this completes the proof.

4.3.2 Asymptotic Normality

Theorem 4.3.2 Let Zn = (Xn, Yn); (n ≥ 1) be independent identically dis-

tributed (i.i.d.) random variables with cumulative distribution function (c.d.f)

Fϕ given by , eqn. 4.5, with parameters λ = (λ1, λ2, λ3) ∈ Λ̄. Then the MLE λ̂

for λ is asymptotically normal

N ( λ , Σϕ(λ)−1 )

where

Σϕ(λ) = ΠϕΣϕ
0
−1.

Proof Let δ > 0 and set

Gϕ
n = {(z1, . . . , zn) ∈ R2n : |λ − λ̂(z1, . . . , zn) | < δ

If δ is small enough, then for (z1, . . . , zn) ∈ Gϕ
n, λ̂ is unique. Then , by consis-

tency,

Pλ( Gϕ
n ) → 1 as n → ∞

hence for ε > 0 there is n0 ∈ N such that

Pλ( Gϕ
n

c ) < ε ∀n ≥ n0

It follows that for n ≥ n0

|Pλ({ω′ : λ̂(z1(ω′), . . . , zn(ω′)) ≤ t′} ∩ {z1, . . . , zn ∈ Gϕ
n})

− Pλ({ω′ : λ̂(z1(ω′), . . . , zn(ω′)) ≤ t′}) | ≤ Pλ( Gϕ
n

c ) < ε

Note that t′ ∈ R3 and s′ ≤ t′ means s′i ≤ t′i (i = 1, 2, 3). The likelihood

function lϕ can be expressed as a Taylor series by

lϕ ′(λ) = lϕ ′(λ) + (λ − λ)T lϕ ′′(λ∗)
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for some value of λ∗ ∈ B(λ, δ), the δ-ball around λ. So if z1, . . . , zn ∈ Gϕ
n, n ≥ n0

lϕ ′(λ̂(z1, . . . , zn )) = 0

and

lϕ ′(z1, . . . , zn , λ) = − (λ̂(z1, . . . , zn )− λ)lϕ ′′(z1, . . . , zn , λ∗)

by eqn. (4.10)

log Lϕ(λ) = lϕ

= −λ1

n∑

i=1

xi − λ2

n∑

i=1

yi − λ3

n∑

i=1

ϕ(xi, yi)

+
n∑

i=1

log
[
λ3φ

′′(xi, yi) + (λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
]

so

lϕ ′(z1, . . . , zn , λ) =




∂lϕ/∂λ1

∂lϕ/∂λ2

∂lϕ/∂λ3




n∑

i=1

{
(λ2 + λ3ϕy(xi, yi))/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))

}
=

n∑

i=1

xi

n∑

i=1

{
(λ1 + λ3ϕx(xi, yi))/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))

}
=

n∑

i=1

yi

n∑

i=1

{
[ϕx(xi, yi)(λ2 + λ3ϕy(xi, yi)) + ϕy(xi, yi)(λ1 + λ3ϕx(xi, yi))]

/ (λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
}

=
n∑

i=1

ϕ(xi, yi)

where E lϕ ′ = 0 from theorem 4.3.1 (consistency). It follows that 1√
n
lϕ ′(z1, . . . , zn , λ)

is asymptotically normal with expectation 0 and covariance matrix Πϕ =

(πij)
ϕ
1≤i,j≤ 3 . We calculate this matrix as follows:

var(X) = 1/(λ1 + λ3ϕx)2
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var(Y ) = 1/(λ2 + λ3ϕy)2

∂lϕ/∂λ3 =
n∑

i=1

{
[ϕx(xi, yi)(λ2 + λ3ϕy(xi, yi)) + ϕy(xi, yi)(λ1 + λ3ϕx(xi, yi))]

/ (λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
}

=
n∑

i=1

ϕ(xi, yi)

var((ϕ(X, Y )) = E((ϕ(X, Y ))2 − E2((ϕ(X, Y ))

but

E((ϕ(X, Y )) = E(∂lϕ/∂λ3) = 0

from the proof of consistency

− 1√
n

∂lϕ

∂λ3
= − 1

n

{
[ϕx(xi, yi)(λ2 + λ3ϕy(xi, yi)) + ϕy(xi, yi)(λ1 + λ3ϕx(xi, yi))]

/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
}

now

E((ϕ(X, Y ))2 = E(∂lϕ/∂λ3)2

therefore
(
− 1√

n

∂lϕ

∂λ3)

)2
=

1
n

{
[ϕx(xi, yi)(λ2 + λ3ϕy(xi, yi)) + ϕy(xi, yi)(λ1 + λ3ϕx(xi, yi))]

/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
}2

now,

n∑

i=1

var((ϕ(X, Y )) =
n∑

i=1

E
(
− 1√

n

∂lϕ

∂λ3)

)2
= nE

(
− 1√

n

∂lϕ

∂λ3)

)2

therefore

var((ϕ(X, Y )) =
{

[ϕx(xi, yi)(λ2 + λ3ϕy(xi, yi)) + ϕy(xi, yi)(λ1 + λ3ϕx(xi, yi))]

/(λ1 + λ3ϕx(xi, yi))(λ2 + λ3ϕy(xi, yi))
}2

Now,

cov(X, ϕ(X, Y )) = E(Xϕ(X, Y ))− E(X)E(ϕ(X, Y ))

= E(Xϕ(X,Y )) − {1/(λ1 + λ3ϕx)}{ lim
n→∞

1
n

([
ϕx(λ2 + λ3ϕy)

+ ϕy(λ1 + λ3ϕx)
]
/(λ1 + λ3ϕx)(λ2 + λ3ϕy)

)
}

= E(Xϕ(X,Y ))
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also,

cov(Y, ϕ(X, Y )) = E(Y ϕ(X,Y ))−E(Y )E(ϕ(X, Y ))

= E(Y ϕ(X, Y )) − {1/(λ2 + λ3ϕy)}{ lim
n→∞

1
n

([
ϕx(λ2 + λ3ϕy)

+ ϕy(λ1 + λ3ϕx)
]
/(λ1 + λ3ϕx)(λ2 + λ3ϕy)

)
}

= E(Y ϕ(X, Y ))

If we denote the covariance matrix by Πϕ = (πij)
ϕ
1≤i,j≤ 3 then

πϕ
11 = var(X) , πϕ

12 = πϕ
21 = 0 , πϕ

33 = var(ϕ)

πϕ
22 = var(Y ) , πϕ

13 = cov(X,ϕ) , πϕ
23 = cov(Y, ϕ)

since

P ( (Z1 . . . Zn ) ∈ Gϕ
n ) → 1 as n →∞

1√
n
lϕ ′(Z1, . . . , Zn , λ) and − 1√

n
(λ̂− λ)T lϕ ′′(λ∗) are equivalent. Now,

1
n
lϕ ′′(Z1, . . . , Zn , λ∗) =

1
n

Uϕ(Z1, . . . , Zn)
p→ Σϕ

0

using Qϕ from eqn. 4.12 with λi = λ∗i we work Σϕ
0 as follows:

τ11 = E(− ∂2lϕ

∂λ∗12
) = 1/(λ1 + λ3ϕx)2

τ22 = E(− ∂2lϕ

∂λ∗22
) = 1/(λ2 + λ3ϕy)2

τ33 = E(− ∂2lϕ

∂λ∗32
) = ϕ2

x/(λ1 + λ3ϕx)2 + ϕ2
y/(λ2 + λ3ϕy)2

τ12 = τ21 = E(− ∂2lϕ

∂λ∗1∂λ∗2
) = 0

τ13 = E(− ∂2lϕ

∂λ∗1∂λ∗3
) = ϕx/(λ1 + λ3ϕx)2

τ23 = E(− ∂2lϕ

∂λ∗2∂λ∗3
) = ϕy/(λ2 + λ3ϕy)2



4.3. ASYMPTOTIC PROPERTIES 59

consequently the information matrix has the form

Σϕ
0 =




τ11 0 τ13

0 τ22 τ23

τ31 τ32 τ33




it follows that

− 1√
n
lϕ ′(Z1, . . . , Zn , λ)Σϕ

0
−1

is equivalent to
√

n(λ̂− λ) hence the claim with

Σϕ(λ) = ΠϕΣϕ
0
−1

. ¤

We define the trace of asymptotic relative efficiency tr. A.R.E. of Σmo relative

to Σϕ as

tr.A.R.E. =
trace Σϕ

trace Σmo

where Σϕ = Σϕ
0
−1.
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Chapter 5

Multivariate Generalized

Linear Models

The generalized linear model (GLM) introduced by Nelder and Wedderburn(1972)

and (McCullagh and Nelder 1989) neatly synthesizes many of the most statisti-

cal techniques for the analysis of both continuous and discrete data in a unified

conceptual and methodological framework. It permits the adaptation of proce-

dures for model building and model checking, originally developed for normal

theory of linear regression, for use in a much wider setting.

Definition 5.0.1 A family of distributions Pθ of a q- dimensional random vari-

able Y , θ ∈ Θ ⊂ Rq, which have densities

f(y|θ, ν) = exp{[yθ′ − b(θ)]/ν + c(y, ν)]} (5.1)

(c(.) ≥ 0 measurable,) with respect to a σ-finite measure is called a natural

exponential family with natural parameter θ. ν > 0 is a nuisance or dispersion

parameter.

The GLM specification according to Fahrmeir and Kaufmann (1985) has the

following three components:

i. The random component specifies the probability distribution of the re-

sponse variables. Specifically, it states that the components of Y have

(probability mass function)pmf or pdf from an exponential family of distri-

butions. We let l(θ, ν; y) denotes the logarithm of the likelihood function.

Since

E(∂ l/∂ θ ) = 0

61
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E(∂2 l/∂ θ 2) + E(∂ l/∂ θ )2 = 0

and

∂ l/∂ θ = {y − b′(θ)}/ν

∂2 l/∂ θ 2 = −b′′(θ)/ν

it follows that E(Y ) = µ = b′′(θ), and var(Y ) = b′′(θ)ν. The function

b′′(θ) depends on the canonical parameter, and hence on µ, and is called

the variance function, denoted by V (µ).

ii. The systematic component specifies a linear predictor η = Xβ =
∑p

i=1 xiβi,

as a function of explanatory variables X1, . . . , Xk and unknown parameters.

iii. The link function g(.) provides a functional relationship between the sys-

tematic component and the expectation of the response in the random

component, η = g(µ).

If g(µi) = µi, i.e., ηi = µi, i = 1, . . . , n, we call g(.) the identity link function.

5.1 GLM for Minimum model

We apply the method of GLM to the Marshall-Olkin model with parameters of

the minimum model. We start by evaluate the EXY for the joint distribution

X,Y . To enable us determine what happens at the other halves of the plane,

we exclude the case where X = Y . We are considering positive random vari-

ables, hence the Laplace transform (moment generating function) exists. This

transform is given by

ψ(s, t) =
∫ ∞

0

∫ ∞

0
exp{−sx− ty}dFλ(x, y) (5.2)

Fϕ(x, y) = exp{−λ1x− λ2y − λ3ϕ(x, y)}; x, y > 0

The corresponding joint density is given as

f(x, y) =

{
λ2(λ1 + λ3)Fϕ; x < y

λ1(λ2 + λ3)Fϕ; y < x
(5.3)

using eqn. 5.3 in eqn. 5.2, we have

ψ(s, t) =
∫ ∫

x>y
exp{−sx− ty}λ1(λ2 + λ3)Fϕdxdy

+
∫ ∫

x<y
exp{−sx− ty}λ2(λ1 + λ3)Fϕdxdy

= I + II (5.4)
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Now considering
∫ ∫

x>y
exp{−sx− ty}λ1(λ2 + λ3)Fϕdxdy

For

I = λ1(λ2 + λ3)
∫ ∞

x=0

∫ x

y=0
e−(λ1+s)x

{
e−(λ2+λ3+t)y

}
dydx

= λ1(λ2 + λ3)
∫ ∞

x=0
e−(λ1+s)x

{∫ x

y=0
e−(λ2+λ3+t)ydy

}
dx

= λ1(λ2 + λ3)
∫ ∞

x=0
e−(λ1+s)x

(
− e−(λ2+λ3+t)y

(λ2 + λ3 + t)

)x

0
dx

=
λ1(λ2 + λ3)
(λ2 + λ3 + t)

∫ ∞

x=0
e−(λ1+s)x

(
1− e−(λ2+λ3+t)x

)
dx

=
λ1(λ2 + λ3)
(λ2 + λ3 + t)

∫ ∞

x=0

(
e−(λ1+s)x − e−(λ+s+t)x

)
dx ; λ = λ1 + λ2 + λ3

=
λ1(λ2 + λ3)
(λ2 + λ3 + t)

(
−e−(λ1+s)x

(λ1 + s)
+

e−(λ+s+t)x

(λ + s + t)

)∞
0

=
λ1(λ2 + λ3)
(λ2 + λ3 + t)

( 1
(λ1 + s)

− 1
(λ + s + t)

)

=
λ1(λ2 + λ3)

(λ1 + s)(λ + s + t)

By symmetry,

II =
λ2(λ1 + λ3)

(λ2 + t)(λ + s + t)

Hence, the moment generating function

ψ(s, t) =
λ1(λ2 + λ3)

(λ1 + s)(λ + s + t)
+

λ2(λ1 + λ3)
(λ2 + t)(λ + s + t)

(5.5)

differentiating eqn. 5.5 with respect to s and t and setting s = t = 0, we have

E(XY ) =
(2λ1 + 2λ3)

λ3
+

(λ1 + λ3)
λ2λ2

+
(2λ2 + 2λ3)

λ3
+

(λ2 + λ3)
λ2λ1

which upon simplification yields;

E(XY ) =
λ2(λ1 + λ2) + 2λ1λ2λ3

λ1λ2λ3
(5.6)

Let ρ be the correlation between X and Y , then we can say that

EXY = ρ
1
λ1

1
λ2

Let ρ be the correlation between X and Y , then we can say that

EXY = ρ
1
λ1

1
λ2
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E(X2) =
∫ ∞

0
x2f1(x)dx

=
∫ ∞

0
x2λ1 exp(−λ1 x) dx

= 2/λ2
1 (5.7)

similarly,

E(Y 2) = 2/λ2
2

By Cauchy-Schwarz inequality

0 ≤ EXY ≤
√

EX2EY 2 = 2/(λ1λ2)

thus the correlation EXY is in the range [0, 2/(λ1λ2)].

We consider the model (Xij , Yij) for 1 ≤ i ≤ n and 1 ≤ j ≤ ni where the

random vectors denote the lifetimes of j − th pair organs under the i − th

experimental condition. The joint survival distribution of the (Xij , Yij) for

fixed i is denoted by F λ(i) with parameters λ1(i), λ2(i) and λ3(i). We will

denote its corresponding joint density function by fλ(i)(xi, yi). We will assume

for simplicity that only λ3(i) depends on i. Thus,

F λ(i)(xi, yi) = exp{−λ1xi − λ2yi − λ3(i)ϕi(xi, yi)}

and we consider the model (omitting the index j for simplicity)

EXiYi = C(λ1, λ2, λ3(i))
∫ ∫

xiyi exp{−λ1xi − λ2yi − λ3(i)ϕi(xi, yi)}dxdy

= ρi
1

λ1λ2

=
1− e−α−β ti

1 + e−α−β ti

2
λ1λ2

; β > 0 (5.8)

where 1−e−α−β ti

1+e−α−β ti
is a link function with predictor α + βti, α and β unknown

parameters, ti models the i − th experimental condition. We have assumed

that the model is non-linear in its parameters. When ϕi(xi, yi) = min(xi, yi),

we have from eqn. 5.6 that

E(XiYi) =
λ(i)2(λ1 + λ2) + 2λ1λ2λ(i)− 2λ1λ2(λ1 + λ2)

λ1λ2λ(i)3

so

1− e−α−β ti

1 + e−α−β ti
=

λ(i)2(λ1 + λ2) + 2λ1λ2λ(i)− 2λ1λ2(λ1 + λ2)
2λ(i)3
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Multiplying this equation by λ(i)3 and differentiating both side in β yields

dλ(i)
dβ

(
2λ(i)(λ1 + λ2) + λ1λ2

)
= 6λ(i)2

1− e−α−βti

1 + e−α−βti

dλ(i)
dβ

+ 2λ(i)3
2tie

−α−βti

(1 + e−α−βti)2
.

We want to determine the maximum likelihood estimator for β. Note that the

model is given by

l(x, y) = log l(x, y) =
n∑

i=1

ni∑

j=1

fλ(i)(xij , yij)

hence differentiating with respect to β and using eqn. 3.5, for the case µ = 1,

yields

dl(x, y)
dβ

=
n∑

i=1


 n2(i)

λ1 + λ3(i)
+

n1(i)
λ2 + λ3(i)

+
n3(i)
λ3(i)

−
ni∑

j=1

max{xij , yij}

 dλ3(i)

dβ
,

where nk(i) denote the numbers nk for the i − th sample. Using λ(i) = λ1 +

λ2 + λ3(i) we can rewrite this expression as

dl(x, y)
dβ

=
n∑

i=1


 n2(i)

λ(i)− λ2
+

n1(i)
λ(i)− λ1

+
n3(i)

λ(i)− λ1 − λ2
−

ni∑

j=1

max{xij , yij}

 dλ(i)

dβ
.

This is the maximum likelihood equation to determine the maximum likelihood

estimator β̂ for the parameter β. In order to show that this is a.s. well defined

we calculate the second derivative:

d2l(x, y)
dβ2

= −
n∑

i=1

(
n2(i)

(λ(i)− λ2)2
+

n1(i)
(λ(i)− λ1)2

+
n3(i)

(λ(i)− λ1 − λ2)2

)(
dλ(i)
dβ

)2

+
n∑

i=1


 n2(i)

λ(i)− λ2
+

n1(i)
λ(i)− λ1

+
n3(i)

λ(i)− λ1 − λ2
−

ni∑

j=1

max{xij , yij}



× d2λ(i)
dβ2

.

It has been shown in the proof of Theorem 3.3.1 that

E


 n2(i)

λ(i)− λ2
+

n1(i)
λ(i)− λ1

+
n3(i)

λ(i)− λ1 − λ2
−

ni∑

j=1

max{xij , yij}

 = 0

hence (assuming that all nk(i)/n stay bounded as n →∞)

lim
n→∞

1
n


 n2(i)

λ(i)− λ2
+

n1(i)
λ(i)− λ1

+
n3(i)

λ(i)− λ1 − λ2
−

ni∑

j=1

max{xij , yij}

 = 0 a.s.

Therefore the second derivative is a.s. negative and the maximum likelihood

estimator β̂ is well defined.
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Theorem 5.1.1 The MLE , β̂, of β is consistent and asymptotically normal.

Proof: We first show that the classical Cramer-Rao cf. Cramer (1946, pages

500 and 501) conditions are satisfied. For each recall that we consider only the

case when β is unknown, all other parameters are known. It can be shown in

a similar way as above that dk log fλ(i)(x,y)

dβk exists for k = 1, 2, 3 and dfλ(i)(x,y)

dβ

bounded by integrable function. Since

d2fλ(i)

dβ2
=

d2fλ(i)

dλ(i)2

(
dλ(i)
dβ

)2

+
dfλ(i)

dλ(i)
d2λ(i)
d2β

(5.9)

it follows that it is bounded by integrable function for all β. There is a function

H satisfying
∣∣∣∣∣
d3 log fλ(i)(x, y)

dβ3

∣∣∣∣∣ < H(x, y) (5.10)

with
∫

H(x, y)fλ(i)(x, y)dxdy < ∞ independent of λ(i) (5.11)

Expand the function d log fλ(i)(x,y)

dβ in a Taylor’s series around the point β = β0,

where β0 denotes the unknown true value of the parameter.

(
d log fλ

dβ
)β = (

d log fλ

dβ
)β0 + (β − β0)(

d

dβ
(
d log fλ

dβ
))β0

+
1
2
(β − β0)2(

d2

dβ2
(
d log fλ

dβ
))[γ(β−β0)+β0]

where |γ(x, y, β, β0)| < 1 . Summation of this relation over the n observations

and division by n the likelihood equation may be written as

1
n

d log lλ(x, y)
dβ

= B0 + (β − β0)B1 +
1
2
(β − β0)2B2 (5.12)

B0 =
1
n

n∑

i=1

ni∑

j=1

(
d log fλ(xij , yij)

dβ
)β0

B1 =
1
n

n∑

i=1

ni∑

j=1

(
d

dβ
[
d log fλ(xij , yij)

dβ
])β0

B2 =
1
n

n∑

i=1

ni∑

j=1

(
d2

dβ2
(
d log fλ(xij , yij)

dβ
))[γ(β−β0)+β0]

now, since E
d log fλ(i)(xij ,yij)

dβ = 0 we obtain
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σ2 = −E((
d

dβ
[
d log fλ(i)(xij , yij)

dβ
])β0) =

∫ ∞

−∞

(d2f

dβ2
− (

1
f

(
d f

dβ
)2)

)
β0

dxdy < ∞

By use of strong law of large numbers, we find that B0 converges to zero a.s, B1

to σ2, while B2 converges in probability to the non-negative value EH(x, y) <

M , where M depends on β0 and 0 < M < ∞. Given two positive quantities,

δ and ε, it is then possible to find a number n1 = n1(δ, ε, β0) such that for any

n > n1

P1 = P (|B0| ≥ δ2) <
1
3
ε

P2 = P (B1 ≥ −1
2
σ2) <

1
3
ε

P3 = P (|B2| ≥ 2M) <
1
3
ε

Let Υ denote the set of all points for which the inequalities

|B0| < δ2 , B1 < −1
2
σ2 , |B2| < 2M

are simultaneously satisfied. Let Υ∗ denotes that complementary set of Υ, we

have

P (Υ∗) ≤ P1 + P2 + P3 < ε

and hence

P (Υ) > 1− ε

if n > n1. Let δ be sufficiently small so that the parameter values β = β0 ± δ.

We then have

1
n

(
d log lλ(xij , yij)

dβ
)β=β0±δ = B0 ±B1δ +

1
2
δ2B2.

For every point in Υ

|B0 +
1
2
δ2B2| < δ2(1 + M)

and , if δ < 1
2σ2/(1 + M),

| ± δB1| >
1
2
σ2δ > δ2(1 + M)

which shows that the sign of the expression B0 ± B1δ + 1
2δ2B2 is determined

by the sign of its second term. So that we have (d log lλ(xij ,yij)
dβ ) > 0 for β =

β0 − δ, and (d log lλ(xij ,yij)
dβ ) < 0 for β = β0 + δ, further by eqn. 5.9 the function

(d log lλ(xij ,yij)
dβ ) is bounded by integrable function for all β. We can therefore

conclude that, when δ is sufficiently small, the root β̂n of the likelihood equation
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exists and lies between β0 − δ and β0 + δ for every point in Υ. For all n > n1

we have

P (|β̂n − β0| < δ) ≥ P (Υ) > 1− ε

which completes the proof of consistency. Insertion of β̂n in eqn. 5.12, the

likelihood equation for β gives

B0 + (β̂n − β0)B1 +
1
2
(β̂n − β0)2(B2)β=bβn

= 0 (5.13)

from which we obtain

√
n(β̂n − β0) =

[ 1
σ2
√

n

n∑

i=1

(
d log fλ(i)(xij , yij)

dβ
)β=β0

]

/
[−B1

σ2
−

(β̂n − β0)(B2)β=bβn

2σ2

]
(5.14)

In eqn. 5.14, the denominator of the fraction on the right-hand side converges in

probability to unity, while the numerator is asymptotically normal with mean

zero and variance 1
σ2 . It then follows from convergence theorem by (Cramer,

page 254) that
√

n(β̂n−β0) is asymptotically normal with mean zero and vari-

ance 1
σ2 . ¤
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List of Notations
X Random variable

Y Random variable

F (x, y) Bivariate distribution function of continuous random variables X and Y

F (x, y) Joint survival distribution function for X and Y

F 1(x) Marginal distribution function of X

F 2(y) Marginal distribution function of Y

F1(x) One-dimensional distribution function of X

F2(y) One-dimensional distribution function of Y

Fmo(x, y) Joint survival distribution function of Marshall-Olkin’s BVE

Fmo1(x) Marginal distribution function of X in the Marshall-Olkin’s BVE

Fmo2(y) Marginal distribution function of Y in the Marshall-Olkin’s BVE

F
M
λ (x, y) Joint survival distribution function of the minimum model

F
M
λ (x) Marginal distribution of X in the minimum model

F
M
λ (y) Marginal distribution of Y in the minimum model

f(x, y) Joint density function for X and Y

fmo1(x) Probability density function of X in the Marshall-Olkin’s BVE

fmo2(y) Probability density function of X in the Marshall-Olkin’s BVE

F λ(x, y) Joint survival distribution function of the Generalized Marshall-Olkin model

fG(x, y) Joint density function of the Generalized Marshall-Olkin model on the domain G

fL(x, y) Joint density function of the Generalized Marshall-Olkin model on the line L

Fϕ(x, y) Joint survival distribution function of the ϕ model

Λ+ Parameter space for the minimum model

Λ Parameter space for the Generalized Marshall-Olkin model

Λ̄ Parameter space for the ϕ model
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