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Chapter 1

Introduction

In many practical applications it is necessary to approximate or reconstruct a function as

a formula from given strong or weak scattered data. Important examples are domain mo-

deling, surface reconstruction, kernel-based learning or the numerical solution of partial

differential equations (for a detailed overview see the recent review [49] and the references

therein). There are mainly two ways in which the reconstruction can be done, namely inter-

polation and approximation. An interpolation process tries to match the given data exactly,

which makes sense only if the data is not disturbed by any error. Interpolation processes

often have numerical disadvantages because they are usually expensive, in storage and com-

putationally. Therefore, one often asks for a reconstruction that reproduces the given data

not exactly, but only approximately. Sometimes it is even useful to allow the accuracy to

be a free parameter. One possibility to deal with this kind of reconstruction is provided by

sampling inequalities.

Sampling inequalities give a precise formulation of the observation that a differentiable

function cannot attain large values anywhere if its derivatives are bounded, and if it pro-

duces small data on a sufficiently dense discrete set. Inequalities of this kind can be used to

derive a priori error estimates for various regularized approximation problems [49] as they

occur for instance in many machine learning algorithms [51] or PDE solvers [46].

In the univariate setting such inequalities are quite easy to obtain [44]. We assume a

sufficiently smooth function f on an interval [a, b] and a discrete ordered set of centers

X = {x1, . . . , xN} ⊂ [a, b] with a = x1 < x2 < · · · < xN−1 < xN = b. In this easy

univariate setting we define the fill distance

h := hX,[a,b] :=
1

2
max

2≤j≤N
|xj − xj−1|

to be the largest possible distance any point x ∈ [a, b] has from the setX . With this notation

we can easily compute for any point x ∈ [a, b] and the closest point xj ∈ X

f (x) = f (xj) +

∫ x

xj

f ′ (t) dt , i.e.,

|f (x)| ≤ |f (xj)| +
√
|x− xj |

√∫ x

xj

|f ′ (t)|2 dt ,

1
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which yields a typical sampling inequality

‖f‖L∞([a,b]) ≤
√
h|f |W 1

2 [a,b] + ‖f |X‖ℓ∞(X) .

This easy example already reveals the basic phenomenon, i.e., it bounds a weak continuous

norm in terms of a strong continuous norm weighted by the fill distance, and some discrete

values sampled on the finite set X .

Recently several such sampling inequalities for very general functions u ∈ W k
p (Ω) from

certain Sobolev spaces W k
p (Ω) with 1 < p < ∞ and k > d/p, or with p = 1 and k ≥ d

on a domain Ω ⊂ Rd were obtained. As a first step in this direction, Narcowich, Ward

and Wendland considered the case of functions with scattered zeros [38]. They found the

inequality

|u|W m
q

≤ Ch
k−m−d

“

1
p
− 1

q

”

+ |u|W k
p

for functions u ∈ W k
p with k − m > d/p and u (X) = 0, where the discrete set X has

sufficiently small fill distance

h := hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2 . (1.0.1)

The fill distance may be interpreted geometrically as the radius of the largest ball that is

completely contained in Ω, and that does not contain any of the points from the discrete set

X . It is a useful quantity for the deterministic error analysis in an isotropic setting. The

case h = 0 implies that X is dense in Ω, and therefore convergence is studied for the limit

h→ 0, which means that the domain Ω is nearly uniformly filled with points fromX . Here

and throughout the thesis, we denote by C a generic positive constant.

In the author’s Diploma thesis [41] this result was generalized to functions with arbitrary

values on scattered locations. A typical sampling inequality then takes the form [67]

‖Dαu‖Lq(Ω) ≤ C

(
h

k−|α|−d
“

1
p
− 1

q

”

+ |u|W k
p (Ω) + h−|α| ‖u|X‖ℓ∞(X)

)
,

where q ∈ [1,∞], and h denotes the fill distance of the discrete setX in Ω. A similar result

was established by Madych [31], namely

‖u‖Lp(Ω) ≤ C
(
hk|u|W k

p (Ω) + hd/p ‖u|X‖ℓp(X)

)
,

for all u ∈ W k
p (Ω). These bounds were for instance used [67] to derive optimal algebraic

convergence orders for kernel based smoothed interpolation methods.

In this thesis we shall generalize these results in various ways. On the one hand we will

derive several new sampling inequalities, e.g., for functions with special smoothness prop-

erties, or for more general discrete data. On the other hand we illustrate various applications

of sampling inequalities, in particular in the error analysis of manifold reconstruction pro-

cesses.
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1.1 Overview

Background and Notation

In Chapter 2 we provide the general context of sampling inequalities and explain the under-

lying background. For that, we define more precisely the notion of sampling inequalities

and explain their relations to various kinds of reconstruction processes.

Afterwards, in Chapter 3 we set the notation and recall some basic facts, which we need

throughout the thesis. For convenience, we frequently use the recent monograph [65] as a

reference although most of the cited results have been published earlier, partly by different

authors. We mainly stick to the standard notations as used in [65].

Strong Sampling Inequalities and Applications

In Chapters 4 and 5, we address recovery from strong discrete data. The content of these

chapters is partly based on joint work with Barbara Zwicknagl, see [42, 43].

We first derive sampling inequalities for infinitely smooth functions where the convergence

orders turn out to vary exponentially with the fill distance h. We are handling infinitely

smooth functions by normed linear function spacesH (Ω) on a domain Ω ⊂ Rd that can for

a fixed 1 ≤ p <∞ be uniformly continuously embedded into every classical Sobolev space

W k
p (Ω). The embedding constants are allowed to depend on the smoothness k. Details can

be found in equation (2.1.6). There are various examples of spaces with this property, e.g.,

Sobolev spaces of infinite order as they occur for instance in the study of partial differen-

tial equations of infinite orders [1], or reproducing kernel Hilbert spaces of Gaussians and

inverse multiquadrics.

As a typical result we obtain inequalities of the form

‖Dαu‖Lq(Ω) ≤ eC log(Ch)/
√

h ‖u‖H(Ω) + Ch−|α| ‖u|X‖ℓ∞(X) .

As a corollary we obtain that the technique presented here reproduces the well-known error

estimates for the standard interpolation problem in the native Hilbert space of the inverse

multiquadric and Gaussian kernels.

In Chapter 5 we provide a theoretical framework to derive deterministic error bounds for

some popular support vector machines. Support vector (SV) machines and related kernel-

based algorithms are modern learning systems motivated by results of statistical learning

theory [57]. The concept of SV machines is to provide a prediction function that is accurate

on the given training data, and that is sparse in the sense that it can be written in terms

of a typically small subset [50] of all examples, called the support vectors. Therefore, SV

regression and classification algorithms are closely related to regularized problems from

classical approximation theory [23], and techniques from functional analysis were applied

to derive probabilistic error bounds for SV regression [17].

We show exemplarily how sampling inequalities can be used to bound the worst-case gene-

ralization error for the ν- and the ǫ-regression, as introduced by Schölkopf, Williamson and

Bartlett [52], for exact as well as for inexact given training-data. Here we do not make any

statistical assumptions on the inaccuracy of the training data. In contrast to the literature,

our error bounds explicitly depend on the pointwise noise in the data. Thus they can be
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used for any subsequent probabilistic analysis modelling certain assumptions on the noise

distribution.

In Section 6 we prove Bernstein inequalities. For that we consider for appropriate radial

basis functions Φ the linear spaces VΦ,X := {Φ(· − xj) : xj ∈ X}. Since VΦ,X is finite

dimensional, all norms on it are equivalent. The Bernstein inequalities quantify the equi-

valence constants between theW τ
2 - and the L2-norm in terms of the geometry of X . They

take the form
∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ Cq−τ
X

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω)

,

where

qX :=
1

2
min

xi,xj∈X
xi 6=xj

‖xi − xj‖2

denotes the separation distance of the discrete set X . Therefore, our results generalize

estimates from [39] to bounded domains Ω. These technical estimates are very useful to

prove stability estimates for unsymmetric methods, as presented in the subsequent chapters.

Weak Sampling Inequalities and Applications

To work towards an analysis of meshless local Petrov-Galerkin (MLPG) methods [4, 5, 6]

we shall treat in Chapter 7 sampling inequalities for weak data in the sense of [47]. The

main drawback of the sampling inequalities considered so far is that one assumes functions

that allow continuous point evaluations. Especially for many practical applications in the

field of partial differential equations (PDE’s) this assumption is too restrictive. Following

[47] we shall use convolution-type data of the form

λj (u) =

∫

Ω
K (x− xj)u (x) dx , (1.1.1)

where X = {x1, . . . , xN} ⊂ Ω is a discrete set of points and K : Rd → R is called

test kernel. In contrast to [47] we shall use stationary data, i.e., the support of the test

kernel shall be scaled with the fill distance or mesh-norm of X in Ω as defined in equation

(1.0.1). The term stationary is a usual notation in the kernel based meshless literature. This

approach generalizes in a way the finite volume method from [64]. Our main result is a

sampling inequality involving weak convolution-type data. We shall fit our work in the

general framework of recent research as can, e.g., be found in [47, 45, 46].

In the last part we shall analyze another kind of weak data, which arises naturally from the

numerical study of partial differential equations. We start with a partial differential equation

in its weak formulation

find u ∈W : a (u, v) = F (v) for all v ∈W , (1.1.2)

whereW = Wm
2 (Ω) is typically a Sobolev space, a(·, ·) is a bilinear form and F is a linear

form. We discretize the problem in a Petrov-Galerkin style [11] and consider the finite
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dimensional problem

find u ∈ VΦ,X : a (u, v) = F (v) for all v ∈ VΦ,X ,

where again for a kernel Φ we use the notation

VΦ,X := span {Φ(· − xj) : xj ∈ X}

with an orthonormal basis {φj}j=1,...,N . Under weak assumptions on the bilinear form

a(·, ·) we derive a sampling inequality of the form

‖u‖L2(Ω) ≤ Chm ‖u‖W m
2 (Ω) + CX

N∑

j=1

a(u, φj)
2

for all u ∈ Wm
2 (Ω) and a specific m > 0. This bound is used to get an error estimate

for the best approximation sf ∈ VΦ,X to a function f ∈ W 1
2 (Ω). Unfortunately this best

approximation is numerically unavailable. Therefore we present an approximation strategy

by testing for which we prove a convergence rate. For the finite dimensional approximation

we use two approaches, kernel-based and polynomial spaces.

Finally we give a short discussion and outlook.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Sampling Inequalities

In this chapter we shall explain some general features of sampling inequalities and give an

overview of some applications. To avoid technical details, we always assume Ω ⊂ Rd to

be a nicely bounded domain. By X we mean a discrete set X = {x1, . . . , xN} ⊂ Ω. The

more precise technical details are given in the following chapters.

2.1 Basic Properties

Sampling inequalities were developed to quantify the following observation:

If a sufficiently smooth function is small on scattered points, and if its derivatives are

bounded, it must be small in the whole domain.

As a first step in this direction, Narcowich, Ward and Wendland considered the case of

functions with scattered zeros [38]. In the author’s Diploma thesis [41] this result was ge-

neralized to functions with arbitrary values on scattered locations. A similar result has been

found by Madych [31]. Another recent extension of these results and their applications in

spline smoothing can be found in [2]. In this section this concept is described in a gen-

eralized form, its connections to other techniques are explained, and various applications

are presented. We start from a rather abstract viewpoint and show the connections between

sampling inequalities and certain other techniques. Then we look at special classes of sam-

pling inequalities, and finally we give a general overview of how sampling inequalities can

be applied. Our special results on sampling inequalities and applications start from Chapter

4 on.

2.1.1 General Framework

We assume a normed linear function space F with norms ‖·‖
S
and ‖·‖W , where ‖·‖

S
is

stronger than ‖·‖W , i.e.,

‖f‖W ≤ C ‖f‖
S

for all f ∈ F . (2.1.1)

Here and in the following, C denotes a generic positive constant. Furthermore, we consider

a set of N linear independent functionals Λ = {λ1, . . . , λN} from the dual space F∗ with

7
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respect to ‖·‖
S
. These functionals are used to sample a function from F via the continuous

and linear sampling operator

SΛ : F → R
N ,

f 7→ (λ1 (f) , . . . , λN (f))T .

Then a rather general form of a sampling inequality is

‖f‖W ≤ C (hσ
Λ ‖f‖

S
+ C (hΛ) ‖SΛ (f)‖

RN ) for all f ∈ F . (2.1.2)

Or, in case that ‖·‖
S
is only a semi-norm, which is denoted by | · |S , we get the analogue

result

‖f‖W ≤ C (hσ
Λ |f |

S
+ C (hΛ) ‖SΛ (f)‖

RN ) for all f ∈ F . (2.1.3)

The term hΛ denotes some discretization parameter which should be small, i.e., hΛ
N→∞−→ 0.

The exponent σ > 0 will be called sampling order. This means that there is a small factor

in front of the term with the strong continuous norm and a possibly large term in front of the

term with the discrete norm. If the sampling operator contains only point evaluations, i.e.,

evaluations of f and its derivatives on certain finite point sets, we speak of strong sampling

inequalities. If some other functionals are involved, which may be well defined even if

point evaluation is not continuous, we speak of weak sampling inequalities.

2.1.2 Connection to Markov-Bernstein Inequalities

By PS ⊂ F , we will denote the kernel of the semi-norm | · |S . If we insert an element

p ∈ PS from this kernel into the sampling inequality, we obtain

‖p‖W ≤ C (hσ
Λ|p|S + C (hΛ) ‖SΛ (p)‖

RN ) = C (hΛ) ‖SΛ (p)‖
RN .

This means that we can bound a continuous norm by a discrete norm on the data. In-

equalities of this kind will be called stability bounds. Such bounds can hold only if PS is

finite-dimensional, but this is just a necessary condition. If PS is a space of polynomials,

these estimates imply Markov-Bernstein inequalities [9]. Let us explain this in some more

detail. Let us assume for instance that the sampling operator consists only of Lagrange data.

Furthermore, we assume that ‖·‖W = | · |W 1∞(Ω), and that ‖·‖
S

= | · |W k∞(Ω) are classical

Sobolev-seminorms. This yields for all 1 ≤ ℓ ≤ d

‖∂ℓp‖L∞(Ω) ≤ C (hΛ) max
xj∈X

|p (xj)|

≤ C (hΛ) ‖p‖L∞(Ω) , for all p ∈ πk−1 (Ω) , (2.1.4)

where ∂ℓ denotes the partial derivative in direction of the ℓ-th coordinate. This is a special

case of classical Markov-Bernstein-inequalities [9], and we see that the proofs for sampling

inequalities should contain those classical estimates.
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2.1.3 Connection to General Stability Estimates

In general, stability estimates do not scale with the discretization parameter hΛ, but with

an other discretization parameter qΛ ≤ hΛ. In the meshless literature qX expresses how

irregularly distributed the data is. Roughly speaking, qΛ measures the shortest distance

between two data points. In the finite element literature, it is the radius of the largest ball

inside an element. It is intuitively clear that both quantities are responsible for stability. For

reasons that will be apparent later we will introduce two different sets of functionals Λ and

Λ̃. We assume that R ⊂ F is a finite dimensional trial space with an inverse inequality of

the form

|r|S ≤ Cq−τ
Λ̃

‖r‖W for all r ∈ R . (2.1.5)

Inequalities of this kind will be called inverse inequalities since they bound a stronger norm

by a weaker one. In many cases, we are able to couple these discretization parameters via

Chσ
Λq

−τ
Λ̃

≤ 1

2
.

In the special case σ = τ this coupling allows for an interpretation in the language of finite

elements. In this case the coupling just means that one considers isotropic elements. In the

meshless context, there are two possibilities to achieve such a coupling, either by coupling

σ and τ , or by coupling Λ and Λ̃. We may combine the estimates (2.1.3) and (2.1.5) to get

a stability estimate of the form

‖r‖W ≤ 2C
(
hΛ, qΛ̃

)
‖SΛ (r)‖

RN for all r ∈ R .

In this general form, stability estimates are crucial for all discretization processes defined

via trial spaces R and a sampling operator SΛ. They imply invertibility of the sampling

operator on R and guarantee that small errors in the sampled data imply small deviations

in the norm on the trial space. The upshot of the above argument is that stability bounds

follow from a sampling inequality and an inverse inequality.

Guideline: Sampling inequalities and inverse inequalities imply stability bounds.

2.1.4 Connection to Lebesgue Constants

Furthermore, sampling inequalities are closely related to Lebesgue constants. See [15] for

more details in the setting of radial basis functions. Nevertheless, we shall briefly point

out how Lebesgue constants are related to the notion of stability. Let us assume some

interpolation space R, i.e., a space which allows unique interpolation, which we call trial

space for reasons that become apparent later. Since R is an interpolation space, we can

build the generalized cardinal interpolants uλi from R, which fulfill λj (uλi) = δi,j , where
δi,j denotes the Kronecker symbol. Now we can directly form an interpolant to a function

f , namely IΛ (f) (·) =
∑N

j=1 λj(f)uλj (·). Then we can derive a stability estimate of the
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form

‖IΛ (f)‖W =

∥∥∥∥∥∥

N∑

j=1

λj(f)uλj

∥∥∥∥∥∥
W

≤
N∑

j=1

|λj(f)|
∥∥uλj

∥∥
W

≤ max
1≤j≤N

|λj(f)|
N∑

j=1

∥∥uλj

∥∥
W

= ‖λ (f)‖ℓ∞(X) LR,Λ ,

where LR,Λ is called Lebesgue constant. Evaluation stability is another concept of stability

that is closely related to Lebesgue constants. Suppose the data SΛ(f) is corrupted by some

relative errors E = (ǫ1, . . . , ǫN )T with max1≤j≤N |ǫj | = ǫ. Then,
∥∥∥∥∥∥

N∑

j=1

λj(f)uλj −
N∑

j=1

λj(f)(1 + ǫj)uλj

∥∥∥∥∥∥
L∞(Ω)

=

∥∥∥∥∥∥

N∑

j=1

ǫjλj(f)uλj

∥∥∥∥∥∥
L∞(Ω)

≤ ǫ · max
1≤j≤N

|λj(f)| sup
x∈Ω

N∑

j=1

∣∣uλj (x)
∣∣ ≤ ǫ · max

1≤j≤N
|λj(f)|

N∑

j=1

∥∥uλj (x)
∥∥

L∞(Ω)
.

This shows that the evaluation of the interpolation process is very stable in the basis of

generalized cardinal functions. In addition, this short detour indicates that many concepts

of univariate polynomial interpolation can be carried over to kernel based methods [35].

Now we explain how sampling inequalities lead to bounds on the Lebesgue constants. If

we measure the discrete term in the ℓ∞
(
RN
)
norm, i.e.,

‖SΛ (u)‖
RN = max

1≤i≤N
|λi (u) | ,

we immediately get ‖SΛ (uλi)‖RN = 1 for all 1 ≤ i ≤ N . Applying the sampling inequa-

lity (2.1.3) hence yields

‖uλi‖W ≤ C
(
hσ

Λ|uλi |S + C (hΛ) ‖SΛ (uλi)‖RN

)
≤ C (hσ

Λ|uλi |S + C (hΛ)) .

If we now assume also a stability inequality of the form |uλi |S ≤ ‖fi‖S
for all fi ∈ S

fulfilling the interpolation condition λj (fi) = δi,j as well, we get

‖uλi‖W ≤ Chσ
Λ ‖fi‖S

+ C (hΛ) .

This is well known in the kernel based interpolation case, see an example below. If we now

assume that there is an fi fulfilling the interpolation condition and satisfying the estimate

‖fi‖S
≤ C̃ (hΛ), we can deduce ‖uλi‖W ≤ C̃ (hΛ)C (hΛ). Thus, the Lebesgue constant

is bounded by

N∑

i=1

‖uλi‖W ≤ NC̃ (hΛ)C (hΛ) .

We spell out all these constants in the special situation of [15]: The authors consider as

trial space R = span {Φ(· − xj) : xj ∈ X ⊂ Ω} the translates of a single radial basis

function with Fourier transform Φ̂(ω) ≈ (1 + ‖ω‖2
2)

−τ . The functionals λj = δxj are

simply point evaluations at X , where X is a grid with N points. In this special case, they

obtain: C̃ (hΛ) = N
τ
d and C (hΛ) = N− τ

d . This, together with the Cauchy-Schwarz

inequality, finally yields
∑N

i=1 ‖uλi‖W ≤ C
√
N .
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2.1.5 Connection to Norming Sets

As these examples indicate, that sampling inequalities imply that the data SΛ (p) contains
already enough information about p ∈ PS . This leads to the general concept of norming

sets [26]. We shall briefly explain this concept, but we will be more precise in Chapter 3. Λ
is called a norming set for PS if the sampling operator

SΛ|PS
: PS → SΛ|PS

(PS ) ⊂ R
N

v 7→ SΛ|PS
(v) = (λ (v))λ∈Λ

is injective. Then it is well-known (see Chapter 3) that we can introduce another norm on

PS by ‖SΛ|PS
(·)‖

RN . Furthermore, by application of Theorem 3.4.2, we get a reproduction

formula on PS of the form

Ψ(p) =
N∑

j=1

aj(Ψ)λj(p) for all p ∈ PS and all Ψ ∈ P∗
S ,

where we can bound the term

N∑

j=1

|aj(λ)| ≤ C ,

i.e., an inequality of the form (2.1.4). This explains the terminology norming set. This

detour indicates that norming sets are crucial in the proofs of sampling inequalities.

2.1.6 Strong Sampling Inequalities

If we now set ‖·‖
S

= ‖·‖W k
p (Ω) and ‖·‖W = ‖·‖W m

q (Ω), the condition (2.1.1) simply be-

comes

W k
q (Ω) →֒Wm

p (Ω) i.e., k ≥ m .

If the functions are regular enough to allow for point evaluation, i.e., k > d/p, or k ≥ d for
d = 1, we can state a basic form of a sampling inequality, which can be found already in

[67]. To do so, we define a sampling operator

SX : W k
p (Ω) → R

N

u 7→ (u (x1) , . . . , u (xN ))T

for some points X = {x1, . . . , xN} ⊂ Ω, i.e., λi = δxi . The discretization will be mea-

sured in terms of the fill distance as given in equation (1.0.1). Because of the geometric

interpretation we are interested in the limit hX,Ω → 0. We get the bound

‖u‖L2(Ω) ≤ Chτ
X,Ω ‖u‖W τ

2 (Ω) + C ‖SX‖ℓ∞(X) ,

for all u ∈W k
p (Ω). We already see that the sampling rate depends only on the “smoothness

difference“ of the two continuous norms involved.
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Univariate Sampling Inequalities

As an easy example we consider the univariate case [44]. We assume a sufficiently smooth

function f on an interval [a, b] and a discrete ordered set X = {x1, . . . , xN} ⊂ [a, b]. We

can easily compute for any point x ∈ [a, b] and the closest point xj ∈ X

f (x) = f (xj) +

∫ x

xj

f ′ (t) dt

⇒ |f (x)| ≤ |f (xj)| +
√
|x− xj |

√∫ x

xj

|f ′ (t)|2 dt ,

which yields a typical form of a sampling inequality,

‖f‖L∞[a,b] ≤
√
h|f |W 1

2 [a,b] + ‖f |X‖ℓ∞(X) .

If f is the error-function of some discretized numerical process, we can conclude that the

L∞-error is small, provided that the discrete errors are small, and that the |·|W 1
2
-seminorm

of the error is bounded independent of the discretization. Now we will turn to the multi-

variate case.

Multivariate Sampling Inequalities

Recently several sampling inequalities for general functions u ∈ W k
p (Ω) from certain

Sobolev spaces with 1 < p < ∞ and k > d/p, or p = 1 and k ≥ d on a domain Ω ⊂ Rd

were obtained. They usually take the following form [67].

Theorem 2.1.1 Let k be a positive real number and α ∈ Nd
0 a multi-index with ⌊k−|α|⌋ >

d
2 . Then there exists a positive constant C > 0 such that for all discrete sets X ⊂ Ω with

sufficiently small fill distance h := hX,Ω ≤ CΩ⌊k − 1⌋−2 the inequality

‖Dαu‖Lq(Ω) ≤ C

(
h

k−|α|−max
n

d
“

1
2
− 1

q

”

,0
o

|u|W k
2 (Ω) + h−|α| ‖u|X‖ℓ∞(X)

)
,

holds for all u ∈ W k
2 (Ω), with 1 ≤ q ≤ ∞, where the explicit expression for CΩ can be

found in equation (5.3.1).

In [31] there is an analogous result. In this case the estimate takes the form

‖u‖Lp(Ω) ≤ C
(
hk|u|W k

p (Ω) + hd/p ‖u|X‖ℓp(X)

)

for all u ∈ W k
p (Ω). Other extensions both concerning the range of the smoothness param-

eter and unbounded domains are done in [2, 3]. Here, the fill distance h and the smooth-

ness k have to be coupled appropriately. As we saw above, these kinds of inequalities are

closely related to Markov-Bernstein inequalities [9]. If we for instance insert a polynomial

p ∈ πk−1 (Ω) in the first inequality with α = 0, we directly see

‖p‖L∞(Ω) ≤ C ‖p|X‖ℓ∞(X) .
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In this case the inherent coupling of h and k implies that πk−1 (Ω) is a Haar space over X .

Hence sampling inequalities in Sobolev spaces always imply stable polynomial reproduc-

tions.

In this thesis (Chapter 4) we shall derive sampling inequalities with exponential sampling

order. These inequalities take for instance the form

‖Dαu‖Lq(Ω) ≤ eC log(Ch)/
√

h ‖u‖H(Ω) + Ch−|α| ‖u|X‖ℓ∞(X) ,

where the space H (Ω) consists of infinitely smooth functions. This means that for a fixed

p ∈ [1,∞) and all k ∈ N we assume that there are embedding operators I
(p)
k and constants

E (k) such that

I
(p)
k : H (Ω) →W k

p (Ω) with
∥∥∥I(p)

k

∥∥∥{H(Ω)→W k
p (Ω)} ≤ E (k) for all k ∈ N0 . (2.1.6)

The native Hilbert spaces of Gaussian kernels are important examples of such spaces.

2.1.7 Weak Sampling Inequalities

Now we will focus on weak sampling operators. We consider a set of functionals

ΛS = {λ1, . . . , λNs} ⊂ (W τ
2 (Ω))∗ .

These functionals define a weak sampling operator

SΛ :=




λ1
...

λNS


 .

We deal with the natural question whether a sampling inequality of the form

‖u‖L2(Ω) ≤ Chτ
X,Ω |u|W τ

2 (Ω) + C ‖SΛu‖ℓ∞(RN )

holds. This can be true only if the functionals λj contain enough information on the function

u. To be precise we can again insert a polynomial of degree less than τ to derive

‖p‖L2(Ω) ≤ C ‖SΛp‖ℓ∞(RN ) .

This shows that the functionals Λ have to form a norming set (for a definition, see Section

3.4) for the polynomials of degree less than τ . We will present two examples of such

functionals, which are of current research interest.

Weak Convolution-Type Data

Following [47] we consider weak convolution-type data of the form

λj (u) =

∫

Ω
K (x− xj)u (x) dx , (2.1.7)
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where X = {x1, . . . , xn} ⊂ Ω is a discrete set of points, and K : Rd → R is a test kernel.

Schaback investigates in [47] the case of non-stationary data, i.e., a fixed test kernel. In

contrast, we shall use stationary data, i.e., the support of the test kernel shall be scaled with

the fill distance h of X in Ω. This generalizes the recovery of functions under construction

of local volume integrals, as needed in finite volume methods, introduced by Sonar (partly

jointly with Iske) in a series of papers [25, 53, 54, 55], where the analytical background

was provided by Wendland [64]. They consider the case where the kernelK is replaced by

a characteristic function.

Our main result is a sampling inequality for the described convolution-type sampling. This

is a crucial ingredient for the analysis of the unsymmetric meshless local Petrov-Galerkin

schemes (MLPG) by Atluri and Zhu [6, 7, 4, 5], and it fits into the general framework of

recent research on the theoretical background of these methods, as can be found in [47, 45,

46].

Galerkin Methods

In Chapter 8 we shall analyze another kind of weak data, which arises naturally in the study

of partial differential equations. Namely, we consider a partial differential equation in its

weak formulation

find u ∈W : a (u, v) = F (v) for all v ∈ X , (2.1.8)

where W = Wm
2 (Ω) is typically a Sobolev space, a : W ×W → R is a bilinear form,

and F ∈ W ∗ is a linear functional. To solve the problem (2.1.8) approximately we use a

Ritz-Galerkin approach [11, (2.5.7)] and consider the finite dimensional problem

find u ∈ VΦ,X : a (u, v) = F (v) for all v ∈ VΦ,X ,

where

VΦ,X := span {Φ(· − xj) : xj ∈ X}

with an orthonormal basis {φj}j=1,...,N . Under weak assumptions on the bilinear form

a(·, ·), which are standard in the theory of finite element methods [11], we derive a sampling

inequality of the form

‖u‖L2(Ω) ≤ Chm ‖u‖W m
2 (Ω) + CX

N∑

j=1

a(u, φj)
2

for all u ∈Wm
2 (Ω) and a specificm > 0.

2.2 Reconstruction Problems

In this section we turn our attention to very general reconstruction problems, which provide

one of the most important applications of sampling inequalities. We explain how sampling
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inequalities can be used to measure the quality of almost every numerical recovery process

where we try to recover an unknown function f ∈ F from its given data. Let

ΛS = {λ1, . . . , λNS
} ⊂ F∗ ,

be a set of functionals, which will be used for testing. These functionals define a sampling

operator via

SΛS
:=




λ1
...

λNS


 ,

which we need to define sampling inequalities. We consider data given by the sampling

operator, namely SΛS
(f).

Now we have to choose a finite dimensional space R, from which we would like to pick a

reconstruction. This space is called trial space. It is at the moment completely independent

of the given data. We shall therefore carefully distinguish between the test and the trial

side. The test side consists of the given functionals ΛS . The trial side consists of a finite

dimensional trial space R, which is used to generate an approximate solution to the fitting

problem. The approximation properties of the reconstruction process depend only on the

trial side. In this thesis, we will mainly restrict ourselves to kernel-based methods. This

means that the trial functions are generated by a single kernelK (·, ·), i.e.,

R := span {K (xj , ·) : xj ∈ XR} ,

where the set XR := {x1, . . . , xNR
} ⊂ Ω is called the set of trial points. Sampling in-

equalities can be used to quantify the approximation quality of R. Note that we use R for

the tRial side and S for the theSt side.

The main application of the sampling inequalities are, however, on the test side. Sam-

pling inequalities are used in this framework to show to what extent small discrete residuals

‖SΛS
(RRf − f)‖ℓp(X), where RRf ∈ R is a reconstruction of f , imply global small er-

rors. This leads to conditions on the quantity of given data.

Up to now we have treated test and trial side completely independent of each other. To

prove convergence results for recovery methods, both sides have to be coupled. However,

there is some general guideline for error estimates, which we explain in the next sections.

2.2.1 Error Estimates for Reconstruction Problems

Sampling inequalities can be applied in various ways. We turn our main attention on deter-

ministic a priori error bounds for numerical processes I. Suppose we want to reconstruct an
unknown function f ∈ F from its data SΛ (f). Then we need to find a function IΛ (f) ∈ R
(called an approximant to f ) from a large trial space R ⊂ F , which fulfills the following

two properties

‖IΛ (f)‖
S

≤ C ‖f‖
S

‖SΛ (IΛ (f) − f)‖
RN ≤ g (f,N)

N→∞−→ 0 . (2.2.1)
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These conditions are fulfilled in many kernel based methods as will be seen later. They

can be seen as stability and consistency properties which are the main ingredient of nearly

any convergence proof in numerical analysis. If we have a sampling inequality of the form

(2.1.2), and if the assumptions (2.2.1) are satisfied, we get an error estimate of the form

‖f − IΛ (f)‖W ≤ Chσ
Λ ‖f‖

S
+ C (hΛ) g (f,N) .

This means that the error is controlled easily, and convergence orders are obtained. Espe-

cially important is the situation, where the residual C (hΛ) g (f,N) is bounded by

C (hΛ) g (f,N) ≤ hσ̃
Λ ‖f‖

S
. This yields

‖f − IΛ (f)‖W ≤ C
(
hσ

Λ + hσ̃
Λ

)
‖f‖

S
.

2.3 Types of Reconstruction Methods

There are two major approaches to numerical reconstruction processes, namely symmetric

and unsymmetric methods, which will be treated separately in the following. The main

focus will be on the coupling of trial and test side which is the key difference between both

methods. From a certain viewpoint one can say that the unsymmetric methods generalize

the symmetric methods.

We point out how sampling inequalities can be used in the analysis of both methods. For the

sake of simplicity we will consider from now on sampling inequalities in Sobolev spaces

on a bounded domain Ω ⊂ Rd instead of sampling inequalities on general normed spaces.

For more details on Sobolev spaces we refer to Chapter 3.

2.3.1 Unsymmetric Methods

Suppose we try to recover an unknown function f ∈W τ
2 (Ω) from its given data

SΛS
(f) :=




λ1 (f)
...

λNS
(f)


 .

The reconstruction is taken from the finite dimensional trial space

R := span {K (xj , ·) : xj ∈ XR} .

There is a good but numerically unavailable candidate ΠR (f), namely the best approxima-

tion from R to f ∈ W τ
2 (Ω) (see [13] for details). Suppose we measure the reconstruction

error in the L2 (Ω)-norm. Then we assume an approximation property of the form

‖g − ΠR (g)‖L2(Ω) ≤ ǫ (hR) ‖g‖W τ
2 (Ω) for any g ∈W τ

2 (Ω) ,

where hR := hXR,Ω denotes the fill distance or mesh norm of the set of nodes XR associ-

ated to the trial spaceR in the domain Ω. The approximation rate ǫ (hR) may be estimated

by means of appropriate sampling inequalities. Provided that all assumptions are satisfied,

we may apply a sampling inequality to the above situation and get

‖g − ΠR (g)‖L2(Ω) ≤ Chτ
R ‖g‖W τ

2 (Ω) + C ‖g − ΠR (g)‖ℓp(XR) .
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If ΠR is for instance an interpolation operator, we immediately get ǫ (hR) = Chτ
R.

Unfortunately, the function ΠR (f) is numerically unavailable because its computation

might use infinitely many data. We therefore have to construct a reasonable approxima-

tion from the trial space using the given data. We shall employ the technique of residual

minimization. This means that we try to solve the system

SΛS
(ur) = SΛS

(f) (2.3.1)

for some ur ∈ R to some accuracy. Let us first spell out the last equation,

SΛS
(ur)=




λx
1K (x, x1) . . . λx

1K (x, xNR
)

...
...

...

λx
NS
K (x, x1) . . . λx

NS
K (x, xNR

)







α1
...

αNR


 =: AΛS ,Rα .

This is an unsymmetric system, and it is not clear whether it is solvable at all. If it was

solvable, there would be a good approximate solution because of

‖SΛS
(f − ΠR(f))‖ ≤ ‖SΛS

‖ · ‖f − ΠR(f)‖ ≤ ǫ (hR) ‖SΛS
‖ · ‖f‖ .

To show full rank of AΛS ,R, we need to couple the trial and the test discretization. To be

precise, we have to assume an inverse estimate of the form

‖ur‖W τ
2 (Ω) ≤ γ (hR) ‖ur‖L2(Ω) for all ur ∈ R . (2.3.2)

In Chapter 6 we shall derive estimates of this kind under certain technical assumptions.

Now we may apply a sampling inequality based on the functionals λi with sampling order

σ > 0 and define β(s) := hσ
s and a factor β̃(s) in front of the discrete term to the functions

ur ∈ R. This yields an estimate of the form

‖ur‖L2(Ω) ≤ Cβ (s) ‖ur‖W τ
2 (Ω) + Cβ̃ (s) ‖SΛs (ur)‖ℓp(RNs ) . (2.3.3)

Combining the inequalities (2.3.2) and (2.3.3) yields

‖ur‖L2(Ω) ≤ C1β (s) γ (hR) ‖u‖L2(Ω) + C2β̃ (s) ‖SΛs (ur)‖ℓp(RNs ) .

Now we have to couple the discretizations in test and trial side via the additional condition

C1β (s) γ (hR) ≤ 1

2
. (2.3.4)

This is always possible by making the test discretization S fine enough, i.e., Ns large

enough. For practical applications we therefore need an explicit lower bound for Ns. Nev-

ertheless, we end up with

‖ur‖L2(Ω) ≤ 2C2β̃ (s) ‖SΛs (ur)‖ℓp(RNs ) .

This inequality bounds a continuous norm via a discrete norm under the condition (2.3.4).

This assures the full rank of the system (2.3.1). This procedure indicates that sampling

inequalities can be used to detect parameter choices, which guarantee good generalization

properties of recovery processes.
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2.3.2 Symmetric Methods

In symmetric methods the test and trial side are essentially the same up to the Riesz isomor-

phism between a linear space and its dual. In this case we also have R = S, since they are

finite dimensional spaces and dual to each other, so we may as well skip these parameters

here. If we start with a set of N test functionals λ1, . . . , λN , the trial space is constructed

as

R := span
{
λx

jK (x, ·) : 1 ≤ j ≤ N
}
,

where the notation λx
jK (x, ·) indicates that the functional λj acts on K (x, ·) with respect

to the variable x. For the special case of point evaluation functionals

λj = δxj with xj ∈ X = {x1, . . . , xN}

this yields again the trial space

R := span {K (xj , ·) : xj ∈ X} .

In the case that trial and test side discretization are equal, the error analysis is much simpler

since the system (2.3.1) takes the form

SΛS
(ur) =

(
λx

i λ
y
jK(x, y)

)
=: AΛ,Rα , (2.3.5)

where the matrix AΛ,R is symmetric and positive definite if the functionals are linear inde-

pendent and if the kernelK is positive definite. Therefore we can skip the stability analysis.

Hence we can choose the operator ΠR as a possibly approximate (generalized) interpola-

tion operator, i.e., λi(g) ≈ λi (ΠR(g)). The error analysis is then provided by a sampling

inequality of the form

‖g − ΠR (g)‖L2(Ω) ≤ Chτ
r ‖g‖W τ

2 (Ω) + C ‖g − ΠR (g)‖ℓp(XR) .

Although this approach is obviously less flexible than the unsymmetric case, it is never-

theless quite popular in the context of generalized interpolation [36, 69], and it has been

used successfully in various applications, in particular for elliptic partial differential equa-

tions (see, e.g., [18, 19, 20, 21, 66, 27, 28]). One advantage of these meshless collocation

methods is for instance, that they provide more flexibility for adaptive methods, because no

re-meshing is needed. In most applications, there is a boundary value problem of the form

Lu = f in Ω

Bu = g on ∂Ω . (2.3.6)

Here L is a linear partial differential operator of ordermwith possibly variable coefficients,

i.e.,

Lu (x) =
∑

|α|≤m

cα (x)Dαu (x) ,

and B is a typical boundary operator, e.g., B = Id in the case of Dirichlet boundary condi-

tions. For the sake of simplicity we restrict ourselves here to the case of strong collocation.
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Hence the system of equations (2.3.6) is discretized by point evaluations in certain colloca-

tion nodes.

In our example we could choose two sets of points XΩ := {x1, . . . , xN1 : xj ∈ Ω} and

X∂Ω := {xN1+1, . . . , xN : xj ∈ ∂Ω} and build up a set of N test functionals

Λ := {λ1, . . . , λN} , where

λj = δxj ◦ L for 1 ≤ j ≤ N1 and

λj = δxj ◦B for N1 + 1 ≤ j ≤ N .

As introduced above, the set Xs := {x1, . . . , xN} is called the set of test points. This test

part is the same for both, the symmetric and the unsymmetric methods. From this point

on, we may continue as in the previous sections with symmetric or unsymmetric methods.

An example of how sampling inequalities can be used in the analysis of these methods can

be found in [66]. We shall not repeat all arguments, but simply refer to the literature for

details.

2.4 Regularization

General recovery processes can be split up in two categories, namely interpolation and ap-

proximation. Interpolation intrinsically means that the error function f − Rf between the

function f to be recovered and its approximation Rf vanishes at the given data, whereas

an approximation process may produce small errors at the given data. While in some ap-

plications interpolation is required, others, in particular those involving errors or noise in

the given data, prefer approximation methods. Sometimes it is even useful to allow the

accuracy to be a free parameter.

An important example of non-interpolatory recovery processes are regularized or appro-

ximate interpolation processes [67]. In this section we briefly outline how sampling in-

equalities can be used to derive worst-case convergence rates for regularized reconstruction

processes. We shall concentrate on regularization methods that avoid exact solving of the

system (2.3.5). For the sake of simplicity we shall consider only the symmetric case. This

is not a big restriction, since we are mostly interested in the approximation quality of the

trial space. This concerns unsymmetric recovery methods in the same way.

Besides improving condition numbers, most regularization methods have several advan-

tages, as will be pointed out in detail in Chapter 5, e.g., regularization is closely related to

sparse approximation [23]. The crucial point for all regularized reconstruction processes

Πν , where ν is a regularization parameter, is to show the following two properties.

‖Πν (f)‖W τ
2 (Ω) ≤ ‖f‖W τ

2 (Ω) and

max
1≤j≤N

|λj (f − Πνf)| ≤ g (ν, f) ‖f‖W τ
2 (Ω) .

The function g (ν, f) determines the approximation quality of Πν . These properties can

again be seen as stability and consistency properties.
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Spline Smoothing

For the sake of simplicity we shall in the following concentrate on the simple case that is

known as spline smoothing or ℓ2-spline-regression. A more detailed overview can be found

in [58] and [65].

For a given f ∈W τ
2 (Ω) and the functionals λj from the previous sections we can formulate

the smoothed optimal recovery problem

min
s∈W τ

2 (Ω)

N∑

j=1

|λj (s− f)|2 + ν ‖s‖2
W τ

2 (Ω) , (2.4.1)

where ν ≥ 0 is called the smoothing parameter. For a more detailed discussion of the

smoothing parameter see [58]. We simply note that the special case ν = 0 corresponds to

finding a generalized interpolant, i.e., a function sf ∈W τ
2 (Ω) that satisfies the generalized

interpolation conditions

λj (f) = λj (sf ) for all j = 1, . . . , N .

It is well known [65] that there always exists a solution to this relaxed interpolation problem

(2.4.1) in the linear space s
(ν)
f ∈ span

{
λx

jK (·, x) | 1 ≤ j ≤ N
}
. The coefficients a ∈ RN

with respect to the basis {λx
jK(·, x)} can be found by solving the linear system

(AΛ,K + νId) a = fΛ ,

where

AΛ,K := (λjλkK (·, ·))j,k=1,...N , and fΛ = (λ1 (f) , . . . , λN (f))T .

As elaborated in [67], we have the following two inequalities,

∥∥∥s(ν)
f

∥∥∥
W τ

2 (Ω)
≤ ‖f‖W τ

2 (Ω) ,

max
1≤j≤N

∣∣∣λj

(
f − s

(ν)
f

)∣∣∣ ≤ √
ν ‖f‖W τ

2 (Ω) .

Applying a sampling inequality yields the bound

∥∥∥f − s
(ν)
f

∥∥∥
L2(Ω)

≤ C
(
hτ +

√
ν
)
‖f‖W τ

2 (Ω) .

This inequality suggests an a priori choice of the smoothing parameter as ν ≤ h2τ , which

leads to the optimal approximation order [48].

Kernel-Based Learning

There is a close link between the theory of kernel-based approximation and machine lear-

ning. Although there is a broad collection of literature on this topic (to name just two: [49]

and [51]), we shall briefly introduce the different viewpoint of learning theory and some of

the notation. From now on, we deal only with strong recovery or approximation problems.
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In approximation theory one typically wants to recover an unknown continuous function

f ∈ H from scattered function values F = (f (x1) , . . . , f (xN ))T
, where f is evaluated

at certain evaluation points X := {x1, . . . , xN} ⊂ Ω. The aim of approximation theory

is to develop effective reconstruction methods and to derive error bounds for them. They

are usually given in terms of the fill distance, as defined in (1.0.1). The error is normally

measured in some continuous norm, for instance

‖f − sf‖L2(Ω) ≤ Chτ
X,Ω ‖f‖W τ

2 (Ω) ,

provided that H ⊂ W τ
2 (Ω), and sf denotes the reconstruction. The most common choice

for sf in approximation theory is an interpolant, i.e., sf (xi) = f (xi) for 1 ≤ i ≤ N . This

method obviously makes the best use of the data F . But there are also some drawbacks of

classical interpolation, as will be indicated in the beginning of Section 5.1. On the one hand,

the reconstruction is very unstable if we consider F to be spoiled by noise. On the other

hand, there are also numerical disadvantages, namely the computation of the interpolant

may be ill-conditioned. Furthermore, if sf =
∑N

j=1 αjK (·, xj) denotes the interpolant,

there will be many non-zero coefficients, i.e., this method is non-sparse.

One way out of these problems is provided by learning theory. In learning theory, one

would call the reconstruction problem an example of supervised regression, because the

real values F are generated by an unknown, but fixed function f . We shall consider instead

of F a vector of possibly disturbed values y = (y1, . . . , yN )T with yi ≈ f(xi). One

typically relaxes the interpolation condition by using a more general similarity measure,

e.g., by using a loss function. A loss function c : Ω × R × R → R is a function of the form

c (x, f (x) , y) satisfying

c (x, f (x) , y) = 0 for f (x) = y ,

c (x, f (x) , y) ≥ 0 otherwise.

A typical example is Vapnik’s ǫ-intensive loss function [57]

|f (x) − y|ǫ =

{
0 if |f (x) − y| ≤ ǫ

|f (x) − y| − ǫ if |f (x) − y| > ǫ
,

which allows deviations up to a positive parameter ǫ > 0. A reconstruction is then for

instance obtained as solution to the optimization problem [52]

min
f∈H

1

N

N∑

j=1

|f (xj) − yj |ǫ + λ ‖f‖2
H (2.4.2)

with ǫ and λ being fixed problem parameters. Under certain assumptions, this problem

possesses a solution w =
∑N

j=1wjK(·, xj), which can be computed by the following finite

dimensional problem (see the representer theorem)

min
w∈R

N

ξ∗,ξ∈R
N

1

2
wTKw + C ·



 1

N

N∑

j=1

(
ξj + ξ∗j

)




subject to (Kw)j − yj ≤ ǫ+ ξj ,

(−Kw)j + yj ≤ ǫ+ ξ∗j ,

ξ∗j , ξj ≥ 0 , ǫ ≥ 0 , (2.4.3)
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where K denotes the Gram matrix of the kernel K. The solution to this problem is known

to be more sparse than the solution to the interpolation problem. Sampling inequalities can

now be used to provide a worst-case error analysis for those problems, even in the case of

noisy data. Such bounds require no knowledge about the statistical noise model. We refer

to Chapter 5 for more details.



Chapter 3

Notation and Basic Facts

In this chapter we collect some basic facts, which we need throughout the whole thesis.

We will not give any proofs, but refer to the literature instead. Especially important is the

recent monograph [65], which contains most of the facts collected here and gives also some

broader background. We point out that most of the results have been published earlier by

various authors. We mainly stick to the notations from [65].

3.1 Notation

We frequently use the multi-index notation α := (α1, . . . , αd)
T ∈ Nd

0, in particular for

monomials x 7→ xα = xα1
1 · · · · · xαd

d for x ∈ Rd and α ∈ Nd
0. The degree is then

given by |α| := |α|d :=
∑d

j=1 |αj |. Similarly we define derivatives with a multi-index by

Dαu (x) = ∂α1
x1
. . . ∂αd

xd
u (x) for sufficiently smooth functions u.

The space πk

(
Rd
)
denotes the set of all d-variate polynomials with degree at most k, i.e.,

πk

(
Rd
)

:= span {xα : |α| ≤ k} = span
{
xα1

1 · · ·xαd
d :

∑d
j=1 |αj | ≤ k

}
. The dimen-

sion of πk

(
Rd
)
is given by dim πk

(
Rd
)

=

(
k + d

d

)
(see [65]). For Ω ⊂ Rd we denote

the restriction of πk

(
Rd
)
to Ω by πd

k (Ω) or by πk (Ω).
We also use the notation (t)+ := max {0, t}.
The Gamma function is defined by

Γ (z) := lim
n→∞

n!nz

z (z + 1) . . . (z + n)
for z ∈ C .

There is an important bound on the factorials, namely Stirling’s formula.

√
2πn

(n
e

)n
≤ Γ(n+ 1) = n! ≤

√
2πn

(n
e

)n
· e 1

12n ,

which can be found in many textbooks, e.g., in [22].

We further use two important Bessel functions.

Definition 3.1.1 The Bessel function of the first kind of order ν ∈ C is defined by

Jν (z) :=
∞∑

m=0

(−1)m (z/2)2m+ν

m!Γ (ν +m+ 1)
for z ∈ C \ {0} ,

23
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and the Bessel function of the third kind of order ν ∈ C is

Kν (z) :=

∫ ∞

0
e− cosh(z) cosh (νz) dt

for all z ∈ C with |arg (z)| ≤ π/2.

Now we briefly introduce the Fourier transform.

Definition 3.1.2 For f ∈ L1

(
Rd
)
we define its Fourier transform and its inverse Fourier

transform by

f̂ (ω) := (2π)−
d
2

∫

Rd

f (x) e−ixT ωdx , ω ∈ R
d

f̆ (x) := (2π)−
d
2

∫

Rd

f (ω) eix
T ωdω , x ∈ R

d .

Function values may be recovered from the Fourier transform:

Lemma 3.1.3 If f ∈ L1

(
Rd
)
is continuous and has a Fourier transform f̂ ∈ L1

(
Rd
)
,

then f can be recovered by its Fourier transform via

f (x) = (2π)−
d
2

∫

Rd

f̂ (ω) eix
T ωdω , x ∈ R

d .

We define Schwartz space, on which the Fourier transform is an automorphism.

Definition 3.1.4 The Schwartz space S consists of all functions γ ∈ C∞ (Rd
)
that satisfy

∣∣∣xαDβγ (x)
∣∣∣ ≤ C (α, β, γ) for all x ∈ R

d

for all multi-indices α, β ∈ Nd
0 with a constant C (α, β, γ) independent of x ∈ Rd.

Now we can formulate the main theorem on the Fourier transform on L2.

Theorem 3.1.5 The Fourier transform defines an automorphism on S. The inverse map-

ping is given by the inverse Fourier transform. Furthermore the mapping is an isometry

with respect to the L2-norm, i.e., ‖f‖L2(Rd) =
∥∥∥f̂
∥∥∥

L2(Rd)
.

Proof: See [65, Theorem 5.23]. 2

Since the Schwartz space is dense in L2

(
Rd
)
(see [65, Corollary 5.24]) we can define the

Fourier transform on L2

(
Rd
)
as the unique continuous extension of the Fourier transform

on S.
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3.2 Kernels and Native Spaces

In this section we shall give a short introduction to the theory of positive (semi-) definite

kernels. For the treatment of conditionally positive (semi-) definite kernels we refer to the

book [65].

At the beginning, we need some basic definitions. We shall deal only with real-valued

kernels K, i.e., K : Ω × Ω → R for Ω ⊂ Rd. The first notion we need is that of positive

semi-definiteness.

Definition 3.2.1 A continuous kernel K : Ω × Ω → R is called positive semi-definite on

Ω ⊂ Rd if for all N ∈ N, all sets of pairwise distinct points X = {x1, . . . , xN} ⊂ Ω and

all α ∈ Rd we have

N∑

j=1

N∑

k=1

αjαkK (xj , xk) ≥ 0 .

It is called positive definite if equality holds only for α = 0.
If Ω is a finite set, i.e., Ω consists of only Nmax distinct points, the inequality is required

only for N ≤ Nmax.

The notion of a kernel is a rather general concept. In the later applications we shall mostly

consider kernels with some additional structure.

Definition 3.2.2 A kernel is called

• translation-invariant if it depends only on the difference of the two arguments, i.e., if

there is a function K̃ : Rd → R such that

K (x, y) = K̃ (x− y) for all x, y ∈ Ω .

• radial if it depends only on the Euclidian norm of the difference of the two arguments,

i.e., if there is a function K̃ : [0,∞) → R such that

K (x, y) = K̃ (‖x− y‖2) for all x, y ∈ Ω .

• zonal if it depends only on the inner of product of the two arguments, i.e., if there is a

function K̃ : R → R such that

K (x, y) = K̃ (< x, y >) for all x, y ∈ Ω .

The concept of radial kernels can be easily carried over to functions.

Definition 3.2.3 A function F : Rd → R is called radial if it depends only on the norm of

the argument, i.e., if there is a function f : [0,∞) → R such that F (x) = f (‖x‖2) for all
x ∈ Ω.

The Fourier transform of a radial function is given by the following lemma.
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Lemma 3.2.4 Suppose that F ∈ L1

(
Rd
)
∩ C

(
Rd
)
is radial, i.e., F (x) = f (‖x‖2), then

the Fourier transform F̂ is also radial, and

F̂ (ω) = ‖ω‖−(d−2)/2
2

∫ ∞

0
f (t)J(d−2)/2 (‖ω‖2 t) dt ,

where J(d−2)/2 is a Bessel function of the first kind.

There is a close relation between positive definite kernels and reproducing kernel Hilbert

spaces. Let us explain the concept of a reproducing kernel.

Definition 3.2.5 Let H (Ω) be a (pre-) Hilbert space of real-valued functions f : Ω → R.

A functionK : Ω × Ω → R is called reproducing kernel of H if

• K (·, y) ∈ H (Ω) for all y ∈ Ω

• f (y) = (f,K (·, y))H(Ω) for all f ∈ H (Ω) and all y ∈ Ω.

The following theorem shows that reproducing kernel Hilbert spaces are very natural.

Theorem 3.2.6 Suppose that H (Ω) is a Hilbert space of functions f : Ω → R.

The following statements are equivalent:

• The point evaluation functionals are continuous, i.e., δx ∈ H (Ω)∗ for all x ∈ Ω.

• H (Ω) has a reproducing kernel.

Proof: See [65, Theorem 10.2] 2

It is possible to show that there is a one-to-one correspondence between reproducing kernel

Hilbert spaces and positive semi-definite kernels. We shall explain this connection in more

detail because it is of great importance for all applications.

Theorem 3.2.7 Suppose H (Ω) is a reproducing kernel Hilbert space with kernel K (·, ·).
ThenK is positive semi-definite. FurthermoreK is positive definite if and only if the point

evaluation functionals are linearly independent over H (Ω).

Proof: See [65, Theorem 10.4]. 2

To show the other direction we directly construct a reproducing kernel Hilbert space that

belongs to the positive semi-definite kernelK. We start with defining

FK (Ω) := span {K (·, y) : y ∈ Ω} ,

equipped with the bilinear form




N∑

j=1

αjK (·, xj) ,
M∑

k=1

βkK (·, yk)





K

:=
N∑

j=1

M∑

k=1

αjβkK (xj , yk) .

By this construction (FK (Ω) , (·, ·)K) forms a pre-Hilbert space with reproducing kernel

K (·, ·). We shall denote the Hilbert space completion of (FK (Ω) , (·, ·)K) by FK (Ω). In
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the positive definite case it is clear that the completion consists of functions, i.e., that the

point evaluation functionals are continuous. To be precise, it can be shown [65, Lemma

10.8] that the map

R : FK (Ω) → C (Ω) , R (f) (x) := (f,K (· − x))K

is well defined and injective. This allows us finally to define the native space ofK.

Definition 3.2.8 The native space NK (Ω) ofK is given by

NK (Ω) = R (FK (Ω))

equipped with the inner product

(f, g)NK(Ω) :=
(
R−1f,R−1g

)
K
.

It is well known [65, Theorem 10.12] that
(
NΦ (Ω) , (·, ·)NΦ(Ω)

)
is a reproducing kernel

Hilbert space with reproducing kernelK. Let us summarize these results in a theorem.

Theorem 3.2.9 Suppose thatK : Ω×Ω → R is a symmetric positive definite kernel. Then

its associated native space is a Hilbert space of functions f : Ω → R with reproducing

kernelK.

The remaining question is whether this space is unique. This question is answered affirma-

tively by the following theorem.

Theorem 3.2.10 We have the two results:

• The reproducing kernel in a reproducing kernel Hilbert space is uniquely defined.

• Suppose that K is a symmetric positive definite kernel. Suppose further that G is a

reproducing kernel Hilbert space of functions on Ω with reproducing kernelK. Then

G is the native space NK (Ω) forK, and the inner products are the same.

Proof:

• This is a direct consequence of the reproduction property. Assume there are two

reproducing kernelsK1,K2. The reproducing property yields

(f,K1 (·, y) −K2 (·, y))NK(Ω) = 0

for all f ∈ H (Ω) and all y ∈ Ω. Inserting f = K1 (·, y) −K2 (·, y) shows the first
claim.

• See [65, Theorem 10.11].

2

This finishes our short detour through the abstract theory of reproducing kernels.
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3.2.1 Properties of the Native Space

Here we collect some general features of native spaces.

Theorem 3.2.11 Suppose we are given data pairs {(x1, y1) , . . . , (xN , yN )} ⊂ Ω × R.

Then there is a function sX,y,K ∈ FK (X) that fulfills the interpolation condition
sX,y,K (xi) = yi for all 1 ≤ i ≤ N .

Proof: If we spell out the interpolation condition for a specific interpolant sX,y,K (x) =∑N
j=1 αjK (·, xj), we find

AX,Kα :=




K (x1, x1) · · · K (x1, xN )
...

. . .
...

K (xN , x1) · · · K (xN , xN )







α1
...

αN


 =




y1
...

yN


 .

SinceK is positive definite this system is uniquely solvable. 2

If we fix now the set X = {x1, . . . , xN} ⊂ Ω and assume that the Lagrange data y =
(y1, . . . , yN )T

are generated by a function f ∈ NK (Ω), we can characterize the interpolant
by variational principles. First of all we know that sX,f(X),K is the best approximation from

FK (Ω) to f , i.e., we have

Theorem 3.2.12 With the notation from above we get

(
f − sX,f(X),K , s

)
NK(Ω)

= 0 for all s ∈ NK (Ω) .

Proof: See [65, Lemma 10.24]. 2

This yields as an important corollary a Pythagoras-law in the native space.

Corollary 3.2.13 Under the assumption from above we get

∥∥f − sX,f(X),K

∥∥2

NK(Ω)
+
∥∥sX,f(X),K

∥∥2

NK(Ω)
= ‖f‖2

NK(Ω)

for all f ∈ NK . This yields immediately

∥∥f − sX,f(X),K

∥∥
NK(Ω)

≤ ‖f‖NK(Ω) , and
∥∥sX,f(X),K

∥∥
NK(Ω)

≤ ‖f‖NK(Ω) .

Proof: See [65, Corollary 10.25] . 2

There are two more minimality properties of the interpolant.

Theorem 3.2.14 With the notations from above we get:

• sX,f(X),K =
∑N

j=1 αjK (·, xj) is the solution to the finite-dimensional optimization

problem

min
s∈FK(Ω)

‖f − s‖NK(Ω) = min
α∈RN

∥∥∥∥∥∥
f −

N∑

j=1

αjK (·, xj)

∥∥∥∥∥∥
NK(Ω)

.
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• Further, sX,f(X),K is given by the solution to the infinite-dimensional variational

problem ∥∥sX,f(X),K

∥∥
NK(Ω)

= min
s∈NK(Ω)
s|X=f |X

‖s‖NK(Ω) .

Proof: See [44, Theorem 3.1 & Theorem 3.3]. 2

Now we shall give some examples of native spaces. It is remarkable that all the theory from

above holds true in these special function spaces such as Sobolev spaces.

3.2.2 Native Spaces on Rd

At the beginning of this section we briefly explain why radial kernels arise naturally in the

context of native spaces on the whole Rd.

Definition 3.2.15 Let T be a group of transformations T ∋ T : Ω → Ω. We say that a

Hilbert space F of functions Ω → R is invariant under the group T if

• f ◦ T ∈ F for all T ∈ T and all f ∈ F , and

• (f ◦ T, g ◦ T )F = (f, g)F for all T ∈ T and all f, g ∈ F .

Now it can be shown that the kernel inherits the invariance of its reproducing kernel Hilbert

space.

Theorem 3.2.16 Suppose that the reproducing kernel Hilbert spaceH (Ω) is invariant un-
der T . Then the reproducing kernelK satisfies

K (T (x) , T (y)) = K (x, y)

for all x, y ∈ Ω and all T ∈ T .

Proof: See [65, Theorem 10.16] 2

Let us now suppose Ω = Rd, and let T be group of all translations and orthogonal trans-

formations on Rd. Translations can be parametrized by τx : Rd → Rd, x ∈ Rd, such that

τx (y) = x − y, rotations are transformations ρx : Rd → Rd, x ∈ Rd with ρx (y) = Axy
for Ax ∈ SO

(
Rd
)
, such that Ax (x) = ‖x‖ e1. Then we get for arbitrary x, y ∈ Rd

K (x, y) = K (τx (x) , τx (y)) = K (0, x− y) = K (ρx−y (0) , ρx−y (x− y))

= K (0, ‖x− y‖ e1) =: K̃ (‖x− y‖) .

Hence, radial kernels are quite natural on Rd. In this situation we shall frequently denote

the kernel by Φ instead of K and call it a function. In the case Ω = Rd we can further

characterize the native space in terms of Fourier transforms. A more detailed elaboration

can be found in [65, Theorem 10.12].
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Proposition 3.2.17 Let Φ ∈ C
(
Rd
)
∩ L1

(
Rd
)
be a real-valued positive definite function.

Then the native space has a representation

NΦ

(
R

d
)

:=
{
f ∈ L2

(
R

d
)
∩ C

(
R

d
)

: f̂/
√

Φ̂ ∈ L2

(
R

d
)}

equipped with the inner product

(f, g)NΦ(Rd) := (2π)−
d
2

(
f̂/
√

Φ̂, ĝ/
√

Φ̂
)

L2(Rd)
= (2π)−

d
2

∫

Rd

f̂ (ω) ĝ (ω)

Φ̂ (ω)
dω .

The inner product is equivalent to the native space inner product.

A direct consequence of this result is that there is a close relation between native spaces and

Sobolev spaces. If we assume a radial basis function Φ ∈ L1

(
Rd
)
satisfying

c1

(
1 + ‖ω‖2

2

)−τ
≤ Φ̂ (ω) ≤ c2

(
1 + ‖ω‖2

2

)−τ
, ω ∈ R

d (3.2.1)

for some c1, c2 > 0 and τ > d/2, then we have NΦ

(
Rd
)

= W τ
2

(
Rd
)
. This connection

holds true also on subsets Ω ⊂ Rd. To see this we first have to specify Sobolev spaces on

bounded domains.

3.2.3 Sobolev Spaces on Bounded Domains

We recall that a function f : U ⊂ Rd → R is called uniformly Lipschitz if there is a constant

L > 0 such that |f (x) − f (y)| ≤ L |x− y| holds for all x, y ∈ U .

Definition 3.2.18 Let Ω ⊂ Rd be bounded. Then Ω is said to be of class Ck for k ∈ N if

and only if for every point x0 ∈ ∂Ω there is a linear orthogonal coordinate-tansformation

y = Ax, an r > 0 and a k-times differentiable function γ such that

B (x0, r) ∩ Ω =
{
x = A−1y ∈ B (x0, r) : yd > γ (y1, . . . , yd−1)

}

B (x0, r) \ Ω =
{
x = A−1y ∈ B (x0, r) : yd < γ (y1, . . . , yd−1)

}

B (x0, r) ∩ ∂Ω =
{
x = A−1y ∈ B (x0, r) : yd = γ (y1, . . . , yd−1)

}
.

If the function γ is uniformly Lipschitz, we call the domain a Lipschitz domain.

From now on we shall always assume that Ω is at least a Lipschitz domain, unless we

explicitly say something else. We shall establish our error estimates using a variety of

Sobolev spaces, which we want to introduce now.

Definition 3.2.19 Let Ω ⊆ Rd be a domain. For k ∈ N0 and 1 ≤ p < ∞ we define the

Sobolev space W k
p (Ω) to consist of all functions u with distributional derivatives Dαu ∈

Lp (Ω), |α| ≤ k. Associated with these spaces are the (semi-) norms

|u|W k
p (Ω) =




∑

|α|=k

‖Dαu‖p
Lp(Ω)




1/p

and ‖u‖W k
p (Ω) =




∑

|α|≤k

‖Dαu‖p
Lp(Ω)




1/p

.
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The case p = ∞ is defined in the standard way:

|u|W k∞(Ω) = ess sup
|α|=k

‖Dαu‖L∞(Ω) and ‖u‖W k∞(Ω) = ess sup
|α|≤k

‖Dαu‖L∞(Ω) .

We will also be dealing with Sobolev spaces of fractional order. Let 1 ≤ p < ∞, k ∈ N0

and 0 < s < 1. We define the fractional order Sobolev spaces W k+s
p (Ω) to consist of all

u, for which the following (semi-)norms are finite:

|u|W k+s
p (Ω) :=




∑

|α|=k

∫

Ω

∫

Ω

|Dαu (x) −Dαu (y)|p

‖x− y‖d+ps
2

dxdy




1/p

,

‖u‖W k+s
p (Ω) :=

(
‖u‖p

W k
p (Ω)

+ |u|p
W k+s

p (Ω)

)1/p
.

3.3 Extension Maps

We recall two essential definitions from [56].

Definition 3.3.1 Let φ : Rd−1 → R be a function that satisfies the Lipschitz condition

|φ (x) − φ (y)| ≤M |x− y| , ∀x, y ∈ R
d−1 .

The smallest constant, for which the Lipschitz condition is true, is denoted by Cφ. In terms

of this function the special Lipschitz domain is the set of point lying above the hypersurface

y = φ (x) in Rd, i.e.,

Ω =
{
x ∈ R

d : xd > φ (x1, x2, . . . , xd−1)
}
.

The Lipschitz constant of Ω is defined by CΩ := Cφ.

Definition 3.3.2 Let Ω be a domain in Rd. The boundary ∂Ω is calledminimally smooth if

there are constants δ > 0, N ∈ N andM > 0, and a sequence {Ui}i∈N
of open sets, such

that

1. No point of Rd is contained in more than N of the Ui’s.

2. If x ∈ ∂Ω, then B (x, δ) ⊂ Ui for some i.

3. For each i there exists a special Lipschitz domain Di whose Lipschitz constant does

not exceedM such that

Ui ∩ Ω = Ui ∩Di .

With these notions we cite the following theorem.

Theorem 3.3.3 [56] Let Ω ⊂ Rd be a domain with minimally smooth boundary. There is

a bounded linear extension operator E such that for any k ∈ N and 1 ≤ p ≤ ∞

E : W k
p (Ω) →W k

p

(
R

d
)

with a norm ‖E‖ which is bounded by a constant, depending on k, p, d and the constants of
Definition 3.3.2.
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Such extension theorems allow us to show that native spaces on bounded domains Ω ⊂ Rd

are Sobolev spaces.

Proposition 3.3.4 Suppose that Φ satisfies (3.2.1), and that Ω ⊂ Rd has a Lipschitz bound-

ary. Then NΦ (Ω) = W τ
2 (Ω), and the norms are equivalent.

Proof: See [65, Corollary 10.48]. 2

To continue we need some geometrical notations.

3.3.1 Some Geometrical Terms

We shall review some technical notions concerning the geometry of Ω.

Definition 3.3.5 A set Ω ⊂ Rd is said to satisfy an interior cone condition if there exists an

angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω a unit vector ξ (x) exists
such that the cone C := C (x, ξ (x) , θ, r)

C :=
{
x+ λy : y ∈ R

d, ‖y‖2 = 1, yT ξ (x) ≥ cos (θ) , λ ∈ [0, r]
}

(3.3.1)

is contained in Ω.

In particular, a domain satisfying an interior cone condition cannot have any outward

pointing cusps. The notion of an interior cone condition generalizes the notion of convexity

in the following sense.

Lemma 3.3.6 Suppose that the cone C (x, ξ (x) , θ, r) is a cone defined as in Definition

3.3.5. Then for every h < r/ (1 + sin (θ)) the closed ball
B = B (x+ hξ (x) , h sin (θ)) is contained inC (x, ξ (x) , θ, r). In particular, if z is a point
from this ball then the whole line segment x+ t (z − x) / ‖z − x‖2, t ∈ [0, r] is contained
in the cone.

Proof: See [65, Lemma 3.7]. 2

We further make use of the fact that a ball and a cone itself obey an interior cone condition.

Lemma 3.3.7 Every ball with radius δ > 0 satisfies an interior cone condition with radius

δ and angle θ = π/3.
Let C (x0, ξ, θ, r) be a cone with angle θ ∈ 0, π/5] and radius r > 0. Then C (x0, ξ, θ, r)
satisfies an interior cone condition with angle θ̃ = θ and radius

r̃ =
3 sin (θ)

4 (1 + sin (θ))
r .

Proof: See [65, Lemma 3.10 & 3.12]. 2

Furthermore, we need a generalization of star-shaped domains.
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Definition 3.3.8 A domain Ω ⊂ Rd is said to be star-shaped with respect to a ball

B (xc, ρ) :=
{
x ∈ Rd : ‖x− xc‖2 ≤ ρ

}
if for every x ∈ Ω the closed convex hull of

{x} ∪ B (xc, ρ) is contained in Ω. If Ω is bounded, i.e., Ω ⊂ B (xc, R) for some R > 0,
then the chunkiness parameter γ is defined to be the ratio of the diameter diamΩ to the

radius ρmax of the largest ball relative to which Ω is star-shaped, i.e., γ = diamΩ
ρmax

.

From now on we shall assume ρmax

2 ≤ ρ ≤ ρmax. Then the chunkiness parameter is

bounded (see [38]) by

1

2
≤ diamΩ

2ρ
≤ γ =

diamΩ

ρmax
≤ 2R

ρ
.

Furthermore, such domains obey an interior cone condition.

Proposition 3.3.9 If Ω ⊂ B (xc, R) is star-shaped with respect to B (xx, ρ), then Ω satis-

fies an interior cone condition with radius r = ρ and angle
θ = 2 arcsin (ρ/ (2R)).

Proof: See [65, Proposition 11.16]. 2

We shall make use of the following covering property, which was established in [38].

Theorem 3.3.10 [38] Suppose Ω ⊂ Rd is bounded, has a Lipschitz boundary and satisfies

an interior cone condition with maximum radius R and angle φ ∈ (0, π/2). Then there is a

constant Qθ,R such that for h ≤ Qθ,R

k2 there is a covering Ω =
⋃

t∈Th
Dt with the following

properties.

1. Each set Dt is star-shaped with respect to a ball Bt ⊂ BR (t) ∩ Ω.

2. Each set Dt satisfies an interior cone condition with radius r and angle θ, where r
and θ can be expressed explicitly by R and φ.

3. There are constants Dφ, D̃φ such that D̃φ · hk2 ≤ δDt ≤ Dφ · hk2.

4. There is a constantM1 = M1 (θ, d) > 0 such that
∑

t∈Tr
χDt ≤M1.

5. There is a constantM2 (θ, d) > 0 such that #Th < M2

(
hk2
)−d

.

In the following we state some results from polynomial approximation theory.

3.3.2 Polynomial Approximation in Sobolev Spaces

Several proofs of error estimates in radial basis function approximation theory are based on

good polynomial approximations. For our purposes, the most important polynomials are

the so called averaged Taylor polynomials. They are defined by

Qku (x) :=
∑

|α|<k

1

α!

∫

B
Dαu (y) (x− y)α φ (y) dy, (3.3.2)
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where B is a ball with radius ≥ 1/2ρmax relative to which D is star-shaped, and

φ ∈ C∞ is a bump function supported on B̄ satisfying both
∫
B φ (y) dy = 1 and maxφ ≤

Cd diam (B)−d
.

Qku (x) is indeed a polynomial of degree k [11]. In the following we shall denote the

diameter of B by ρ := diam (B). For the remainder

Rk := u−Qku

there is the following bound from [11], while the explicit constants can be found in [38].

The Bramble-Hilbert Lemma [11, Lemma 4.3.8] is crucial for the following computations,

so we state it here with constants, where we made the dependence on the domain explicit.

Lemma 3.3.11 For u ∈W k
p (D) and p ≥ 1 we have

∣∣∣Rku
∣∣∣
W j

p (D)
=
∣∣∣u−Qku

∣∣∣
W j

p (D)
≤ Cγ,k,dδ

k−j
D |u|W k

p (D) j = 0, 1, . . . , k, (3.3.3)

where Cγ,k,d = Ck,d (1 + 2γ)d
. Here, γ denotes again the chunkiness parameter from

Definition 3.3.8.

3.4 Norming Sets and Polynomial Reproduction

This section deals with general Banach spaces. In the following let V be a finite dimensional

linear space endowed with the norm ‖·‖V . We denote by V ∗ the dual space of V , i.e., the

space of all bounded linear functionals on V , and by Z ⊂ V ∗ a finite subset of V ∗ with

|Z| = N .

Definition 3.4.1 Z is called a norming set for V if the map

T : V → T (V ) ⊂ R
N

v 7→ T (v) = (z (v))z∈Z

is injective. T will be called the sampling operator.

To explain why Z is called a norming set we have to make a detour. First we have to

introduce a norm ‖·‖
RN on the RN and a corresponding dual norm ‖·‖(RN )∗ on

(
RN
)∗ ∼=

RN . Note that Z being a norming set means that T is injective, which implies that T is

invertible on this image, i.e., there is an inverse map T−1 : T (V ) → V . The quantity

∥∥T−1
∥∥ := sup

x∈T (V )
x 6=0

∥∥T−1x
∥∥

V

‖x‖
RN

= sup
v∈V
v 6=0

‖v‖V

‖Tv‖
RN

(3.4.1)

is called norming constant. Now we can explain the name norming set, which is due to the

fact that Z allows us to introduce an equivalent norm on V by ‖T (·)‖
RN . The equivalence

constants are given by

1

‖T‖ ‖Tv‖
RN ≤ ‖v‖V ≤

∥∥T−1
∥∥ ‖Tv‖

RN for all v ∈ V .

The norming constant plays an essential rôle as can be seen in the next theorem.
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Theorem 3.4.2 Suppose V is a finite dimensional normed linear space, and the set of func-

tionals Z = {z1, . . . , zN} is a norming set for V with sampling operator T . Then there is

for every ψ ∈ V ∗ a vector u = u (ψ) ∈ RN , such that

ψ (v) =
N∑

j=1

ujzj (v) , and

‖u‖(RN )∗ ≤ ‖ψ‖V ∗
∥∥T−1

∥∥

for every v ∈ V .

Proof: [65, Theorem 3.4]. 2

Now we introduce the central idea of norming sets, namely that we can control the norms

of T and its inverse by enlarging the size of Z. This will be called oversampling. We shall

exemplify this idea in a special case, see [63]. Let V be the restriction of πm

(
Rd
)
to Ω

where πm

(
Rd
)
again denotes the space of all algebraic polynomials on Rd with degree at

mostm, i.e., V = πm (Ω). Let Z = {δx1 , . . . , δxN} consist of point evaluation functionals.
Then we have the following result, where we choose the ‖·‖ℓ∞-norm on the RN with dual

norm ‖·‖ℓ1
. In the following we shall denote by α ∈ Nd

0 a multi-index.

Theorem 3.4.3 Suppose Ω is compact and satisfies an interior cone condition with radius

r > 0 and angle θ ∈ (0, π/2). Let m ∈ N be fixed, and suppose h > 0. If X =
{x1, . . . , xN} ⊂ Ω satisfies

1. h ≤ r sin θ
4(1+sin θ)m2

2. for every B (x, h) ⊂ Ω there is a center xj ∈ X ∩B (x, h),

then Z = {Dα ◦ δx1 , . . . , D
α ◦ δxN} is for every multi-index |α| ≤ m a norming set for

V = πm (Ω). The norming constant is bounded by 2
(

2m2

r sin θ

)|α|
.

Proof: See [65, Proposition 11.7]. 2

If we in particular choose ψ = Dα ◦ δx for some x ∈ Ω, this implies that for every

p ∈ πm (Ω) and any |α| ≤ m there are real numbers a
(α)
j (x) such that

Dαp (x) =
N∑

j=1

a
(α)
j (x) p (xj) ,

where

N∑

j=1

∣∣∣a(α)
j (x)

∣∣∣ ≤ 2

(
2m2

r sin θ

)|α|
.

We point out that the constant arises from a Bernstein inequality for multivariate polyno-

mials. Furthermore, all of this implies that recovery of functions by polynomials from
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function values at scattered locations can be made with bounded Lebesgue constants if

moderate oversampling is allowed. Therefore, the functions a
(α)
j (·) are called a polynomial

reproduction formula of degreem. Finally this yields a finite version of a Markov-Bernstein

inequality.

Theorem 3.4.4 Suppose that the domain Ω ⊂ Rd is compact and satisfies an interior cone

condition with radius r > 0 and angle θ. If p ∈ πm (Ω) and α ∈ Nd
0 with |α| ≤ m, we have

‖Dαp‖L∞(Ω) ≤
(

2m2

r sin θ

)|α|
‖p‖L∞(Ω) .

Proof: See [65, Proposition 11.6]. 2

This is only a brief detour through the theoretical basics we need throughout the thesis. For

more details we refer to the literature.



Chapter 4

Infinitely Smooth Functions

We derive in this chapter sampling inequalities for infinitely smooth functions where the

sampling orders turn out to depend exponentially on the fill distance h.
We are handling infinitely smooth functions by normed linear function spaces H (Ω) on a

domain Ω ⊂ Rd that can for a fixed 1 ≤ p < ∞ be continuously embedded into every

classical Sobolev spaceW k
p (Ω). More precisely, for a fixed p ∈ [1,∞) and all k ∈ N we

assume that there are embedding operators I
(p)
k and constants E (k) such that

I
(p)
k : H (Ω) →W k

p (Ω) with
∥∥∥I(p)

k

∥∥∥{H(Ω)→W k
p (Ω)} ≤ E (k) for all k ∈ N0 . (4.0.1)

There are various examples of spaces with this property, e.g., Sobolev spaces of infinite

order as they occur for instance in the study of partial differential equations of infinite

order [1], or reproducing kernel Hilbert spaces of Gaussians and inverse multiquadrics (see

Section 4.4).

In the case of infinitely smooth functions, the shape of the domain Ω crucially influences

our sampling inequalities. For general Lipschitz domains Ω, which satisfy interior cone

conditions, we use a polynomial reproduction [65], which accepts slight oversampling to

bound the Lebesgue-constants. This results in a good behavior of the term with the discrete

norm. A typical result in this case is that for sufficiently small fill distance h there are

generic constants c > 0 such that with q̃ ∈ {q,∞} the inequality

‖Dαu‖Lq(Ω) ≤ cec log(ch)/
√

h ‖u‖H(Ω) + ch−|α| ‖u|X‖ℓq̃(X)

holds for all u ∈ H (Ω). The best approximation orders for the first term can be obtained

on compact cubes because we then may use a polynomial reproduction from [32]. Un-

fortunately this approach is limited to cubes and cannot cope with derivatives on the left

hand-side of our sampling inequalities. Nevertheless we obtain as a typical result, which

applies for instance to the functions from the native space of Gaussian kernels, that there

are generic constants c > 0, such that the inequality

‖u‖Lq(Ω) ≤ ec log(ch)/h ‖u‖H(Ω) + c1/h ‖u|X‖ℓq̃(X)

37
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holds for all u ∈ H (Ω) with q̃ ∈ {q,∞} if the fill distance h is sufficiently small.

It is an open research problem to improve the polynomial reconstruction results in [26] and

[65]. There is some further discussion on this point in the outlook (see Chapter 9). Our main

examples deal with reconstruction problems in Hilbert spaces. Therefore, in the second part

we will focus on the native Hilbert spaces of Gaussian and inverse multiquadric kernels. In

this case, we suppose u to be an error function u = f − Rf , where f denotes the function

we would like to reconstruct, and Rf is the reconstruction. To obtain optimal order error

bounds one needs again stability and consistency of the reconstruction, namely

‖Rf‖H ≤ C ‖f‖H , and ‖ (Rf − f) |X‖ℓp(X) ≤ g (f, h) ,

where g determines the expected approximation order. This can be used to show that the the-

ory presented here reproduces the well-known exponential error estimates for the standard

interpolation problem in the native Hilbert space of the inverse multiquadrics and Gaussian

kernels.

4.1 Estimates on General Lipschitz Domains

Following [38], we first obtain estimates on local domains D ⊂ Rd and use a covering

argument to get global results. We assume a domain D that is is star-shaped with respect

to a ball Br (xc), and that is contained in a ball BR (xc). In this case we know from [38]

that D satisfies an interior cone condition as well. We denote the associated chunkiness

parameter with

γ =
δD
ρmax

,

where ρmax = sup {ρ : D is star-shaped with respect to a ball of radius ρ}, and δD denotes

the diameter of D.

Let
{
a

(α)
j : j = 1, . . . , N

}
be a polynomial reproduction of degree k with respect to a

discrete set X = {x1, . . . , xN} ⊂ D, i.e.,

Dαq (x) =
N∑

j=1

a
(α)
j (x) q (xj)

holds for every α ∈ Nd
0 with |α| ≤ k, all x ∈ D and all q ∈ πd

k (D) where πd
k denotes the

space of all d-variate polynomials of degree not exceeding k. Then we have

|Dαu (x)| ≤ |Dαu (x) −Dαp (x)| + |Dαp (x)|

≤ ‖Dαu−Dαp‖L∞(D) +
N∑

j=1

∣∣∣a(α)
j (x)

∣∣∣ |p (xj)|

≤ ‖Dαu−Dαp‖L∞(D) +
N∑

j=1

∣∣∣a(α)
j (x)

∣∣∣ ‖p|X‖ℓ∞(X)

≤ ‖Dαu−Dαp‖L∞(D)

+
N∑

j=1

∣∣∣a(α)
j (x)

∣∣∣
(
‖u− p‖L∞(D) + ‖u|X‖ℓ∞(X)

)
(4.1.1)
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for arbitrary u ∈W k
p (D) and any polynomial p ∈ πd

k (D). As a polynomial approximation

we use again averaged Taylor polynomials. We recall the definition (3.3.2)

Qku (x) :=
∑

|α|<k

1

α!

∫

B
Dαu (y) (x− y)α φ (y) dy,

where B is a ball with radius ≥ 1/2ρmax, relative to which D is star-shaped, and φ ∈
C∞ is a bump function supported on B̄ satisfying both

∫
B φ (y) dy = 1 and maxφ ≤

Cd diam (B)−d
. For the remainder Rk := u − Qku there is the following bound from

[11], where the explicit constants can be found in [38]. This bound differs slightly from

the bound in Lemma 3.3.11. We state it here, because we need to calculate the explicit

dependence of the constants on k.

Lemma 4.1.1 For u ∈ W k
p (D) with 1 < p < ∞ and k > |α| + d/p or in the case p = 1

and k ≥ |α| + d we get

∥∥∥Dαu−DαQku
∥∥∥

L∞(D)
≤ Cd,θ

dk−|α|

(k − |α|)!δ
k−|α|−d/p
D |u|W k

p (D) ,

where the constant Cd,θ depends only on the space dimension d and the angle θ.

Proof: We use the identity [11] DβQku = Qk−|β|Dβu, for all |β| ≤ k. This leads to

∥∥∥Dαu−DαQku
∥∥∥

L∞(D)
=

∥∥∥Dαu−Qk−|α|Dαu
∥∥∥

L∞(D)

≤ Cd (1 + γ)d dk−|α|

(k − |α|)!δ
k−|α|−d/p
D |Dαu|

W
k−|α|
p (D)

≤ Cd,θ
dk−|α|

(k − |α|)!δ
k−|α|−d/p
D |u|W k

p (D) .

Here we used the fact [38] that the chunkiness parameter γ can be bounded by 1 ≤ γ ≤
csc
(

θ
2

)
. 2

We shall use the following local polynomial reproduction from [65], which we introduced

in the remarks below Theorem 3.4.3.

Theorem 4.1.2 Let Ω ⊂ Rd satisfy an interior cone condition with angle θ ∈ (0, π/2) and

radius r, ℓ ∈ N0 and α ∈ Nd
0 with |α| ≤ ℓ. Then there are constants c0, c

(α)
1 , c2 > 0, such

that for all X = {x1, . . . , xN} ⊂ Ω with hX,Ω ≤ h0 := c0/ℓ
2 and all x ∈ Ω there exist

numbers ã
(α)
1 (x) , . . . , ã

(α)
N (x) with

1.
∑N

j=1 p (xj) ã
(α)
j (x) = D(α)p (x) for x ∈ Ω and p ∈ πd

ℓ (Ω)

2.
∑N

j=1

∣∣∣ã(α)
j (x)

∣∣∣ ≤ c
(α)
1 h

−|α|
X,Ω for all x ∈ Ω,

3. ã
(α)
j (x) = 0 if ‖x− xj‖2 > c

(α)
2 hX,Ω and x ∈ Ω.
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The condition θ ∈ (0, π/2) implies sin θ ∈ (0, 1), i.e.,
(

1
2(1+sin θ)

)|α|
≤ 1

2(1+sin θ) for

all α ∈ Nd
0. Therefore, we can choose all the constants independent of α, i.e., there exist

constants cθ depending only on θ such that [65]

c
(α)
1 ≤ cθ2

−|α| ≤ cθ, c2 := cθℓ
2 . (4.1.2)

Inserting the bounds of Lemma 4.1.1 and Theorem 4.1.2 into (4.1.1) leads to the following

local estimate.

Theorem 4.1.3 Suppose D satisfies an interior cone condition with angle θ and radius r,
let α ∈ Nd

0 such that k > |α| + d/p for 1 < p <∞, or k ≥ d if p = 1. Then

‖Dαu‖L∞(D) ≤ Cd,θd
k

(k − |α|)!δ
k−d/p
D

(
δ
−|α|
D + h−|α|

)
|u|W k

p (D)

+Cd,θh
−|α| ‖u|X‖ℓ∞(X)

holds for all u ∈W k
p (D).

Corollary 4.1.4 Under the assumptions from Theorem 4.1.3, we get for 1 ≤ q ≤ ∞

‖Dαu‖Lq(D) ≤ vol (D)1/q ‖Dαu‖L∞(D) ≤ δ
d/q
D ‖Dαu‖L∞(D)

≤cd,θ
dk

(k − |α|)!δ
k−d

“

1
p
− 1

q

”

D

(
δ
−|α|
D + h−|α|

)
|u|W k

p (D) +

+ Cd,θδ
d/q
D h−|α| ‖u|X‖ℓ∞(X) .

Now we consider a ‘global‘ domain Ω ⊂ Rd that is bounded, has a Lipschitz boundary

and satisfies an interior cone condition with maximum radius R and angle φ ∈ (0, π/2).
To cover Ω with smaller star-shaped domains {Dt} we use the construction described in

Theorem 3.3.10.

Theorem 4.1.5 Let α ∈ Nd
0 and k ∈ N be fixed with |α| < k, k > d/p for 1 < p < ∞ or

k ≥ d for p = 1 and set Cmin := min
{

c0
2 , Qθ,R

}
with the constant c0 from Theorem 4.1.2.

Suppose a discrete set X ⊂ Ω with fill distance h ≤ Cmin/k
2. Then for all u ∈ W k

p (Ω)
the inequality

‖Dαu‖Lq(Ω) ≤ ckh−|α|

(k − |α|)!
(
hk2
)k−d

“

1
p
− 1

q

”

+ |u|W k
p (Ω)

+ch−|α| (hk2
)d/q ‖u|X‖ℓq(X) (4.1.3)

holds for 1 ≤ q ≤ ∞ with generic positive constants c, which may depend only on

d,R, φ, p, q and α.
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Proof: For u ∈ W k
p (Ω) we may use the decomposition from Theorem 3.3.10, Corollary

4.1.4 and the estimate δ
−|α|
D ≤ Cφ,αh

−|α|, which gives

‖Dαu‖Lq(Ω)=

(∫

Ω
|Dαu (x)|q dx

)1/q

≤
(
∑

Dt

‖Dαu‖q
Lq(Dt)

)1/q

≤ Cd,θd
k

(k − |α|)!
(
DΦhk

2
)k−d

“

1
p
− 1

q

”

Cφ,αh
−|α|

(
∑

Dt

|u|q
W k

p (Dt)

)1/q

+

+
(
DΦhk

2
)d/q

h−|α|
(
∑

Dt

‖u|X∩Dt‖q
ℓ∞(X∩Dt)

)1/q

≤
Ck

d,θ,α,p,q

(k − |α|)!h
−|α| (hk2

)k−d
“

1
p
− 1

q

”

−d
“

1
q
− 1

p

”

+

(
∑

Dt

|u|p
W k

p (Dt)

)1/p

+

+ Ch−|α| (hk2
)d/q

(
∑

Dt

‖u|X∩Dt‖q
ℓ∞(X∩Dt)

)1/q

≤ Ck

(k − |α|)!h
−|α| (hk2

)k−d
“

1
p
− 1

q

”

+ |u|W k
p (Ω) +

+ Ch−|α| (hk2
)d/q ‖u|X‖ℓq(X) .

2

We can restate this Theorem measuring the discrete term in the ℓ∞-norm.

Corollary 4.1.6 Under the assumptions from Theorem 4.1.5 we get with an analogous cal-

culation

‖Dαu‖Lq(Ω) ≤ ck

(k − |α|)!h
−|α| (hk2

)k−d
“

1
p
− 1

q

”

+ |u|W k
p (Ω) (4.1.4)

+ch−|α| |u|X‖ℓ∞(X) .

We shall now relate h and k to derive main result of this section, i.e., exponential estimates.

The actual orders depend on the asymptotic behavior of the constant E (k) from (4.0.1) for

k → ∞.

Theorem 4.1.7 If there are constants ǫ, CE > 0 such that E (k) ≤ Ck
Ek

(1−ǫ)k for all

k ∈ N, then there are constants c, h0 > 0 depending on d, p, q, R, φ, α, ǫ, CE such that for

all data sets X ⊂ Ω with fill distance h ≤ h0, the inequality

‖Dαu‖Lq(Ω) ≤ ec log(ch)/
√

h ‖u‖H(Ω) + ch−|α| ‖u|X‖ℓq(X)

holds for all u ∈ H (Ω) and all 1 ≤ q ≤ ∞.

If there are constants CE ≥ 0 and s ≥ 1 such that E (k) ≤ Ck
Ek

sk for all k ∈ N, then there
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are constants c, h0 > 0 depending on d, p, q, R, φ, α, CE such that for all data setsX ⊂ Ω
with fill distance h ≤ h0, the inequality

‖Dαu‖Lq(Ω) ≤ e
− c

h1/(s+1) ‖u‖H(Ω) + ch−|α| ‖u|X‖ℓq(X)

holds for all u ∈ H (Ω) and all 1 ≤ q ≤ ∞.

Proof: We use Stirling’s formula to estimate

1

(k − |α|)! ≤
k|α|

k!
≤ k|α|ek

kk
.

If ‖u‖W k
p (Ω) ≤ Ck

Ek
(1−ǫ)k ‖u‖H(Ω) holds for all k ∈ N, we can bound the first term of

(4.1.3) for arbitrary k ∈ N by

(
c̃hk2−ǫ

)k (
h−1k

)|α| (
hk2
)−d

“

1
p
− 1

q

”

+ ‖u‖H(Ω) .

We set B = min {cmin, 1/c̃} and choose k ∈ N such that B
2k2 ≤ h ≤ B

k2 holds. Then the

first term can be bounded by

ck−ǫkh−3|α|/2 ‖u‖H(Ω) ≤ ec log(ch)/
√

h ‖u‖H(Ω) ,

where the constants c > 0 may depend on d, p, q, R, φ, α, CE and ǫ.
With this choice of k the second term of (4.1.3) can be bounded by

ch−|α| (hk2
)d/q ‖u|X‖ℓ∞(X) ≤ ch−|α| ‖u|X‖ℓ∞(X) .

If E (k) ≤ Ck
Ek

sk, we can bound the first term of (4.1.3) for arbitrary k ∈ N by

(
c̃hk1+s

)k (
h−1k

)|α| (
hk2
)−d

“

1
p
− 1

q

”

+ ‖u‖H(Ω) .

We set B = min
{
cmin,

1
ec̃

}
and choose k ∈ N such that B

2k1+s ≤ h ≤ B
k1+s holds. We

point out that the condition h ≤ cmin
k2 is satisfied since s ≥ 1. Then hk2 ≤ B, and therefore

the first term can be bounded by

ce−kh−3|α|/2 ‖u‖H(Ω) ≤ e
− c

h1/(s+1) ‖u‖H(Ω) ,

where the constant c > 0 may depend on d, p, q, R, φ, α, CE . The second term is again

bounded by

ch−|α| (hk2
)d/q ‖u|X‖ℓ∞(X) ≤ ch−|α| ‖u|X‖ℓ∞(X) .

2

Again we get the following result for the ℓ∞-norm.

Corollary 4.1.8 If we use Corollary 4.1.6 instead of Theorem 4.1.5, we get in the case

E (k) ≤ Ck
Ek

(1−ǫ)k for all k ∈ N with constants ǫ, c > 0, that for all u ∈ H (Ω)

‖Dαu‖Lq(Ω) ≤ ec log(ch)/
√

h ‖u‖H(Ω) + ch−|α| ‖u|X‖ℓ∞(X) .

If E (k) ≤ Ck
Ek

sk for all k ∈ N with a constant s ≥ 1, we find for all u ∈ H (Ω)

‖Dαu‖Lq(Ω) ≤ e
− 1

h1/(1+s) ‖u‖H(Ω) + ch−|α| ‖u|X‖ℓ∞(X) .
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4.2 Estimates on Compact Cubes

To derive estimates for function values on a compact cube we may use the following local

polynomial reproduction from [32]. From now on we shall always assume the cubes to be

compact.

Theorem 4.2.1 Let Ω be a compact cube in Rd. There exist constants c0, c2 > 0 depending

only on Ω such that for every ℓ ∈ N and every X = {x1, . . . , xN} ⊂ Ω with hX,Ω ≤ c0/ℓ
we can find functions aj : Ω → R satisfying

• ∑N
j=1 aj (x) p (xj) = p (x) for all x ∈ Ω and all p ∈ πℓ

(
Rd
)
,

• ∑N
j=1 |aj (x)| ≤ e2dγd(ℓ+1) for all x ∈ Ω,

• aj (x) = 0 if ‖x− xj‖2 > c2ℓhX,Ω .

The numbers γd are defined recursively by γ1 = 2 and γd = 2d (1 + γd−1).

Lemma 4.1.1 gives in the special case α = 0 the bound

∥∥∥u−Qku
∥∥∥

L∞(D)
≤ Cdd

k

k!
δ
k−d/p
D |u|W k

p (D) ,

where C now depends only on d, since cubes satisfy cone conditions with a fixed angle. If

we insert this estimate and the bound from Theorem 4.2.1 into (4.1.1), we find

‖u‖L∞(D) ≤
ckδ

k−d/p
D
k!

|u|W k
p (D) + ck ‖u|X‖ℓ∞(X) ,

and

‖u‖Lq(D) ≤
ckδ

k−d
“

1
p
− 1

q

”

D
k!

|u|W k
p (D) + ckδ

d/q
D ‖u|X‖ℓ∞(X) .

The constant c ≤ Cde
4dγd depends now only on d. To derive global estimates we use the

obvious covering of the big cube Ω with axially parallel small cubes Dt with the following

properties.

• There are constants D, D̃ > 0 such that D̃hk ≤ δDt ≤ Dhk.

• There is a constantM1 = M1 (θ, d) > 0 such that
∑

t∈Tr
χDt ≤M1.

• There is a constantM2 (θ, d) > 0 such that #Th < M2 (hk)−d
.

As in the previous section, we find the following global estimate.

Theorem 4.2.2 Under the assumptions from above, there exists a positive constant c, which
depends only on p, q, the side length R of the cube Ω and the space dimension d, such that

‖u‖Lq(Ω) ≤
ck

k!
(hk)

k−d
“

1
p
− 1

q

”

+ |u|W k
p (Ω) + ck (hk)d/q ‖u|X‖ℓq(X)

holds for all data sets X ⊂ Ω and for all u ∈ W k
p (Ω) with k > d/p for 1 < p <∞ or for

k ≥ d for p = 1 and all 1 ≤ q ≤ ∞.
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As in the case of domains obeying a cone condition we get the following corollary.

Corollary 4.2.3 Under the assumptions from Theorem 4.2.2 we obtain

‖u‖Lq(Ω) ≤
ck

k!
(hk)

k−d
“

1
p
− 1

q

”

+ |u|W k
p (Ω) + ck ‖u|X‖ℓ∞(X) .

Now we can derive exponential approximation orders. Again, the actual orders depend on

the asymptotic behavior of the constant E (k) from (4.0.1) for k → ∞.

Theorem 4.2.4 If there are constants CE , ǫ > 0 such that E (k) ≤ Ck
Ek

(1−ǫ)k for all

k ∈ N, then there exist constants c, h0 > 0 such that for all data sets X with fill distance

h ≤ h0 the estimate

‖u‖Lq(Ω) ≤ ec log(ch)/h ‖u‖H(Ω) + c1/h ‖u|X‖ℓq(X) (4.2.1)

holds for all u ∈ H and all 1 ≤ q ≤ ∞.

If there are constants CE > 0 and s ≥ 1 such that E (k) ≤ Ck
Ek

sk for all k ∈ N, then there

exist constants c, h0 > 0 such that for all data sets X with fill distance h ≤ h0

‖u‖Lq(Ω) ≤ ec/
s√

h ‖u‖H(Ω) + c1/
s√

h ‖u|X‖ℓq(X) (4.2.2)

holds for all u ∈ H and all 1 ≤ q ≤ ∞.

Remark 4.2.5 The first remark is that the condition h < h0 ensures ch < 1 which implies

convergence.

The sampling order is in these cases improved in comparison to Theorem 4.1.7. The price is

a remarkably worse Lebesgue constant. The Lebesgue constant grows even exponentially.

This requires much more higher orders of consistency, i.e. a much smaller discrete residual

of the reconstruction.

Proof: If ‖u‖W k
p (Ω) ≤ Ck

Ek
(1−ǫ)k ‖u‖H(Ω) for all u ∈ H (Ω), Theorem 4.2.2 gives

‖u‖Lq(Ω) ≤
Ck

k!
(hk)

k−d
“

1
p
− 1

q

”

+ k(1−ǫ)k ‖u‖H(Ω) + Ck (hk)d/q ‖u|X‖ℓq(X)

with generic positive constants C. Using Stirling’s formula we can bound the first term by

Ck

k!
(hk)

k−d
“

1
q
− 1

p

”

+ k(1−ǫ)k ‖u‖H(Ω) ≤
(
c̃hk(1−ǫ)

)k
(hk)

−d
“

1
q
− 1

p

”

+ ‖u‖H(Ω) .

If we set B := min
{

c0
2 ,

1
c̃

}
with the constant c0 from the local polynomial reproduction

4.2.1 and choose k ∈ N such that B
2k ≤ h ≤ B

k , we can further estimate

(
c̃hk(1−ǫ)

)k
(hk)

−d
“

1
q
− 1

p

”

+ ‖u‖H(Ω) ≤ k−ǫkh
−d

“

1
p
− 1

q

”

+ ‖u‖H(Ω)

≤ ec log(ch)/h ‖u‖H(Ω) . (4.2.3)

By the choice of k there exists a constant c such that the second term is bounded by

Ck
d,R (hk)d/q ‖u|X‖ℓq(X) ≤ c1/h ‖u|X‖ℓq(X) . (4.2.4)
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Adding (4.2.3) and (4.2.4) establishes estimate (4.2.1).

If E (k) ≤ Ck
Ek

sk for all k with a constant s ≥ 1, we find for the first term from Theorem

4.2.2

Ck

k!
(hk)

k−d
“

1
q
− 1

p

”

+ ksk ‖u‖H(Ω) ≤ (c̃hks)k (hk)
−d

“

1
q
− 1

p

”

+ ‖u‖H(Ω) .

We set B := min
{

c0
2 ,

1
ec̃

}
with the constant c0 from the local polynomial reproduction

4.2.1 and choose k ∈ N such that B
2ks ≤ h ≤ B

ks . Note that the condition h ≤ c0
2k is

satisfied. We can further estimate

(c̃hks)k (hk)
−d

“

1
q
− 1

p

”

+ ‖u‖H(Ω) ≤ Ce−k ‖u‖H(Ω) ≤ ec/
s√

h ‖u‖H(Ω) . (4.2.5)

By the choice of k there exists a constant c such that the second term is bounded by

Ck
d,R (hk)d/q ‖u|X‖ℓq(X) ≤ c1/

s√
h ‖u|X‖ℓq(X) . (4.2.6)

Adding (4.2.5) and (4.2.6) establishes the second inequality (4.2.2). 2

We can reformulate this Theorem using the ℓ∞-norm.

Corollary 4.2.6 Under the assumptions from Theorem 4.2.4 with E (k) ≤ Ck
Ek

(1−ǫ)k we

obtain for all u ∈ H (Ω)

‖u‖Lq(Ω) ≤ ec log(ch)/h ‖u‖H(Ω) + c1/h ‖u|X‖ℓ∞(X) .

If E (k) ≤ Ck
Ek

sk, we find for all u ∈ H (Ω)

‖u‖Lq(Ω) ≤ ec/
s√

h ‖u‖H(Ω) + c1/
s√

h ‖u|X‖ℓq(X) .

4.3 Oversampling Near the Boundary

In this section, we aim at proving better sampling rates if we have some oversampling

near the boundary of an arbitrary domain. We first prove a polynomial reproduction for

this situation and derive a new sampling inequality afterwards. For that, we need a gen-

eralized notation of interior points of a set, which we call the ǫ-interior. Ideally we have

diam (Ω) ≫ ǫ.

Definition 4.3.1 For any set Ω ⊂ Rd and any ǫ > 0 we define the ǫ-interior of Ω to be

Ω−ǫ :=
{
x ∈ Ω : B (x, ǫ) ⊂ Ω

}
,

where B (x, ǫ) denotes the closed ball with center x and radius ǫ.



46 CHAPTER 4. INFINITELY SMOOTH FUNCTIONS

4.3.1 Polynomial Reproduction

In the spirit of [65, Theorem 3.8], we derive a polynomial reproduction formula on any well

covered domain Ω ⊂ Rd.

Theorem 4.3.2 Suppose, Ω ⊂ Rd is bounded and satisfies an interior cone condition with
parameters (r, θ). Letm ∈ N, ǫ > r be fixed such that diam (Ω) ≫ ǫ. Set

C0 :=min

(

r sin θ

4 (1 + sin θ)
,

„

1 +
1

sin θ

«

p

ǫ(r + ǫ),
r

r

2
`

1 + 1
sin θ

´ ,
ǫ

1 + 1
sin θ

,

p

ǫ(r + ǫ) sin θ

2(sin θ + 1)
, 1

)

.

Suppose h > 0 and X = {x1, . . . , xN} ⊂ Ω satisfy

1. h ≤ C0
m ,

2. For every B(x, h) ⊂ Ω there is a center xj ∈ X ∩B(x, h) ,

3. For every B(x, h2) ∩
{
Ω \ Ω−2ǫ

}
6= ∅ there is a center xj ∈ X ∩B(x, h2).

Then Z = {δx : x ∈ X} is a norming set for πm (Ω), and the norm of the inverse of the

associated sampling operator is bounded by 2.

Remark 4.3.3 The assumptions of Theorem 4.3.2 are satisfied if the data set X has fill

distance h in Ω and fill distance h2 close to the boundary, i.e., in Ω \ Ω−3ǫ.

Proof: Markov’s inequality for univariate polynomials p ∈ πm(R) on the compact interval

[−1, 1] is given by [9, Theorem 5.1.8]

∣∣p′(t)
∣∣ ≤ m2 ‖p‖L∞[−1,1] , t ∈ [−1, 1] . (4.3.1)

A simple scaling argument shows that for any r > 0

∣∣p′(t)
∣∣ ≤ 2

r
m2 ‖p‖L∞[0,r] , t ∈ [0, r] . (4.3.2)

In the open interval we have the bound [9, Theorem 5.1.7]

∣∣p′(t)
∣∣ ≤ m√

1 − t2
‖p‖L∞[−1,1] , t ∈ (−1, 1) ,

which can for any r > 0 and ǫ > 0 again be rewritten as

∣∣p′(t)
∣∣ ≤ m√

(t+ ǫ)(r + ǫ− t)
‖p‖L∞(−ǫ,r+ǫ) , t ∈ (−ǫ, r + ǫ) . (4.3.3)

Suppose p ∈ πm(Rd) with ‖p‖L∞(Ω) = 1. Since Ω̄ is compact, there exists an x ∈ Ω̄ with

|p(x)| = 1. Now we discern good and evil.

1.) Assume x ∈ Ω−ǫ.

SinceΩ satisfies an interior cone condition we can find a coneCh(x) := C (x, ξ, θ, r)
which is completely contained in Ω. Since by assumption, h

sin θ ≤ r
1+sin θ we can use

[65, Lemma 3.7], to find a ball B(y(h), h) ⊂ C(x) with y(h) = x+ h
sinθξ. Again by
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assumption we find a data point x
(h)
j ∈ X ∩B(y, h), i.e.,

∥∥∥y(h) − x
(h)
j

∥∥∥
2
≤ h which

implies by the triangle inequality

∥∥∥x− x
(h)
j

∥∥∥
2
≤
(
1 + 1

sin θ

)
h.

By [65, Lemma 3.7] and by construction the whole line segment

x+ t
x

(h)
j − x

∥∥∥x(h)
j − x

∥∥∥
2

, t ∈ [−ǫ, r]

lies in Ω. There are two possibilities left.

– If the whole line segment

x+ t
x

(h)
j − x

∥∥∥x(h)
j − x

∥∥∥
2

, t ∈ [−ǫ, r + ǫ]

lies in Ω, we may employ the bound (4.3.3) to the polynomial

p̃(t) = p



x+ t
x

(h)
j − x

∥∥∥x(h)
j − x

∥∥∥
2





which gives

∣∣∣p(x) − p(x
(h)
j )
∣∣∣ ≤

∫ ‖x−x
(h)
j ‖2

0

∣∣p̃′(t)
∣∣ dt

≤
∥∥∥x− x

(h)
j

∥∥∥
2
· max

t∈
h

0,
‚

‚

‚
x−x

(h)
j

‚

‚

‚

2

i

∣∣p̃′(t)
∣∣

≤
∥∥∥x− x

(h)
j

∥∥∥
2
· max

t∈[0,r]

∣∣p̃′(t)
∣∣

≤
(

1 +
1

sin θ

)
h · m√

ǫ (r + ǫ)
‖p‖L∞(Ω)

≤ 1

2
.

– If the elongated line segment

x+ t
x

(h)
j − x

∥∥∥x(h)
j − x

∥∥∥
2

, t ∈ [−ǫ, r + ǫ]

is not completely contained in Ω, the point x
(h)
j and x must lie in

Ω\Ω−(ǫ+r) ⊂ Ω\Ω−2ǫ. As h ≤ 1 we find in the cone C(x, r, θ, ξ) ⊂ Ch(x) ⊂
Ω an associated smaller ballB

(
y(h2), h2

)
⊂ Ch2(x), where y(h2) := x+ h2

sin θξ.

Since ∥∥∥y(h2) − x
(h)
j

∥∥∥
2

≤
∥∥∥y(h2) − y(h)

∥∥∥
2
+
∥∥∥y(h) − x

(h)
j

∥∥∥
2

≤ h

(
1 +

1

sin θ

)
≤ ǫ ,
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we have in particular B
(
y(h2), h2

)
∩
(
Ω \ Ω−2ǫ

)
6= ∅. By assumption, we find

a point x
(h2)
j ∈ X ∩B

(
y(h2), h2

)
, i.e.,

∥∥∥x− x
(h2)
j

∥∥∥
2
≤
(

1 +
1

sin θ

)
h2 .

In this case we apply Markov’s inequality (4.3.2) to the polynomial

p̃(t) = p



x+ t
x

(h2)
j − x

∥∥∥x(h2)
j − x

∥∥∥
2



 ,

which gives

∣∣∣p(x) − p(x
(h2)
j )

∣∣∣ ≤
∫ ‖x−x

(h2)
j ‖2

0

∣∣p̃′(t)
∣∣ dt

≤
∥∥∥x− x

(h2)
j

∥∥∥
2

2

r
m2 ‖p̃‖L∞[0,r]

≤
(

1 +
1

sin θ

)
h2 2

r
m2

≤ 1

2
.

2.) Assume x ∈ Ω \ Ω−ǫ.

Again, we find a cone C(x) := C (x, ξ, θ, r) which contains the ball B
(
y(h2), h2

)

with y(h2) := x+ h2

sin θξ. Since

∥∥∥x− y(h2)
∥∥∥

2
=

h2

sin θ
≤ h

sin θ
≤ ǫ

sin θ + 1
≤ ǫ

we have y(h2) ∈ Ω \ Ω−2ǫ and can proceed as in the second case of 1.).

2

Note that in this case we do not easily get a local polynomial reproduction, but Theorem

3.4.2 can be applied to get the following global version. If the assumptions of Theorem 4.3.2

are satisfied, for all x ∈ Ω there exist numbers a1(x), . . . , aN (x), which do not depend on

X,h orm, such that

• ∑N
j=1 p (xj) aj (x) = p (x) for all x ∈ Ω and p ∈ πd

m (Ω),

• ∑N
j=1 |aj (x)| ≤ 2.

Remark 4.3.4 Theorem 4.3.2 also holds true even if the domain Ω is unbounded.

Proof: For any polynomial p with ‖p‖L∞(Ω) = 1 we find a point x ∈ Ω such that 0.99 <
p(x0) ≤ 1. Then we can proceed with this point x as in the proof of Theorem 4.3.2. 2

Now we can proceed as normal to derive a sampling inequality.
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4.3.2 Sampling Inequality

We again use the polynomial approximation by generalized Taylor polynomials. For the

remainder Rk := u−Qku there is the following explicit bound, see Lemma 4.1.1.

Lemma 4.3.5 For u ∈ W k
p (Ω) with 1 < p < ∞ and k > d

p + 1 or with p = 1 and k ≥ d
we get

∥∥∥u−Qku
∥∥∥

L∞(Ω)
≤
(
Cd,p,Ω

k

)k

|u|W k
p (Ω) ,

where the constant Cd,p,Ω depends only on d, p and Ω, but not on k.

Proof: Following Lemma 4.1.1, we denote with δΩ the diameter of Ω. Then we have with

Stirling’s formula

∥∥∥u−Qku
∥∥∥

L∞(Ω)
≤ Cd,p,θ

ekdk

k!
δ
k−d/p
Ω |u|W k

p (Ω) ≤
(
Cd,p,Ω

k

)k

|u|W k
p (Ω) .

2

Using again the estimate (4.1.1) for the special case α = 0 we immediately find the follow-

ing theorem.

Theorem 4.3.6 Suppose that the discrete set X = {x1, . . . , xN} ⊂ Ω, and the number

h := hX,Ω ≤ c0
k for some k ∈ N satisfy the assumptions of Theorem 4.3.2. Then there is a

constant C > 0 which depends only on d, p and Ω, but not on k, such that

‖f‖L∞(Ω) ≤
(
C

k

)k

|f |W k
p (Ω) + 2 ‖f |X‖ℓ∞(X)

holds for all f ∈W k
p (Ω).

We now again consider special spacesH(Ω) of smooth functions Ω → R.

Theorem 4.3.7 Suppose that the discrete set X = {x1, . . . , xN} ⊂ Ω and the number

h := hX,Ω ≤ c0
k for some k ∈ N satisfy the assumptions of Theorem 4.3.2. Suppose further,

that there are constants C, ǫ > 0, which do not depend on k or h, such that

|f |W k
p (Ω) ≤ Ckk(1−ǫ)k ‖f‖H(Ω)

holds for all k ∈ N. Then there are constants c1, c2 > 0 which depend on d, p,Ω and ǫ, but
not on h such that

‖f‖L∞(Ω) ≤ ec1 log(c2h)/h ‖f‖H(Ω) + 2 ‖f |X‖ℓ∞(X)

holds for all f ∈ H(Ω).
If there are constants C, s > 0, which do not depend on k or h, such that

|f |W k
p (Ω) ≤ Ckksk ‖f‖H(Ω)

holds for all k ∈ N, then there is a constant c > 0 which depends on d, p,Ω and s, but not
on h such that

‖f‖L∞(Ω) ≤ ec/h ‖f‖H(Ω) + 2 ‖f |X‖ℓ∞(X)

holds for all f ∈ H(Ω).
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Proof: We choose k such that co
2k ≤ h ≤ c0

k . Then we may apply Theorem 4.3.6, which

states for |f |W k
p (Ω) ≤ Ckk(1−ǫ)k ‖f‖H(Ω) that

‖f‖L∞(Ω) ≤
(
C

kǫ

)k

‖f‖H(Ω) + 2 ‖f |X‖ℓ∞(X) .

Now we can bound the first term using

(
Ck−ǫ

)k ≤
(

2c

c0
h

)ǫk

≤
(

2c

c0
h

)c0ǫ/(2h)

≤ ec1 log(c2h)/h

with c1 := c0ǫ/2 and c2 := 2c/c0.
The second part can be proven similarly. 2

In our applications we restrict ourselves to the sampling inequalities from Theorems 4.1.7

and 4.2.4, but the results can be easily carried over to the situation with oversampling near

the boundary.

4.4 Kernels and Native Spaces

In this section, we will provide two famous examples of Hilbert spaces of infinitely smooth

functions. In the case of a positive definite radial basis function K that possesses a Fourier

transform K̂, the native Hilbert space is defined as in Proposition 3.2.17, i.e.,

NK

(
R

d
)

=





f ∈ C

(
R

d
)
∩ L2

(
R

d
)

: ‖f‖2
NK

:=

∫

Rd

∣∣∣f̂ (ω)
∣∣∣
2

∣∣∣K̂ (ω)
∣∣∣
dω <∞





.

In general, the native Hilbert space NK (Ω) on a bounded domain Ω is defined as

NK (Ω) :=
{
f ∈ NK

(
R

d
)

: f |Ω = 0
}⊥NK

:=
{
f |Ω : f ∈ NK

(
R

d
)
, (f, g)NK(Rd) = 0 for all g ∈ NK

(
R

d
)

s.t. g|Ω = 0
}
.

The Sobolev spaces on Rd are defined via

W k
2

(
R

d
)

:=

{
f ∈ L2

(
R

d
)

: f̂ (·)
(
1 + ‖·‖2

2

)k/2
∈ L2

(
R

d
)}

.

This definition is equivalent to the one given in Proposition 3.3.4. Furthermore we know

from [68]

1

22k

∥∥∥∥f̂ (·)
(
1 + ‖·‖2

2

)k/2
∥∥∥∥

L2(Rd)
≤ ‖u‖W K

2 (Rd) ≤
∥∥∥∥f̂ (·)

(
1 + ‖·‖2

2

)k/2
∥∥∥∥

L2(Rd)
.

We now show that the native spaces of Gaussian kernels consist of infinitely smooth func-

tions in the sense of (4.0.1).
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Theorem 4.4.1 For the GaussianK (x) = e−c2‖x‖2
2 we get for all k ∈ N

‖f‖W k
2 (Rd) ≤

(
8c2

e
+ 2

) k
2

k
k
2 ‖f‖NG(Rd) .

Proof: By the definition of the spaces in Section 4.4 it suffices to check for this choice for

E (k) whether the inequality

(1 + r)k ≤ E (k)2 e
r

4c2

holds for all r > 0. Here we substituted r = ‖x‖2
2. We split our analysis into two parts. For

r ≤ 1 we see that (1 + r)k ≤ 2k and e
r

4c2 > 1, hence E (k)2 = 2k will work in this case.

For r > 1 things are more complicated. First we make the observation (1 + r)k ≤ 2krk. If

we change variables via r 7→ 4c2r, it remains to check

2k
(
4c2r

)k
=
(
8c2
)k

(r)k ≤ E (k)2 er ⇔ ln
((

8c2
)k)

+ k ln r ≤ r + lnE (k)2 .

We shall look at the function

f : (1,∞) → R+, r 7→ r + lnE (k)2 − ln
((

8c2
)k)− k ln r ,

and compute a minimum of this function. Easy calculation yields

f
′
(r) = 1 − k

r
, and f

′′
(r) = +

k

r2
≥ 0 .

Since f
′
(r) = 0 implies r = k we see that the global minimum is attained for rmin = k,

with f (rmin) = f (k) = k + lnE (k)2 − k
(
ln
((

8c2
))

+ ln k
)
. This shows that E (k)2 =(

8c2

e

)k
kk will be sufficient.

Hence taking the maximum E (k)2 = max

{
2k,
(

8c2

e

)k
kk

}
≤
(

8c2

e + 2
)k
kk will ensure

f ≥ 0 ⇔
(
8c2
)k
rk ≤ E (k)2 er. 2

Similar considerations apply to the native spaces of inverse multiquadrics.

Theorem 4.4.2 For the inverse multiquadricsK (x) =
(
c2 + ‖x‖2

2

)−β
with β > d

2 ,

‖f‖W k
2 (Rd) ≤ max

{
2k

C1
, ck1k

2k

}1/2

‖f‖NM(Rd) for all k ∈ N ,

where the constants C1, c1 > 0 are defined in the proof.

Proof: The Fourier transform of the inverse multiquadrics is given by [65, Theorem 6.1]

K̂ (ω) =
21−β

Γ (β)

(‖ω‖2

c

)β−d/2

Kd/2−β (c ‖ω‖2) ,
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where Kσ denotes the modified Bessel function of third kind. As in the case of Gaussians,

it suffices to check for this choice for E (k) whether the inequality

(
1 + r22

)k ≤ E (k)2 c (β)
(r
c

)β−d/2
Kd/2−β (cr)

holds for all r ≥ 0. Again we split our analysis into two parts r ∈ [0, 1], and r > 1. In the

case r ∈ [0, 1] we use that

g : R → R , r 7→
(r
c

)β−d/2
Kd/2−β (cr)

is a continuous mapping since the singularity of the Bessel function at 0 is of order β − d
2 .

Further, the function g is nonincreasing for r > 0 [65], so the minimum is reached for

r1min = 1. This minimum is given by

C1 := 21−βΓ (β)cd/2−β min

{
Kd/2−β (c) ,

Γ (β − d/2)

2
2β−d/2

}
.

Since
(
1 + r2

)k ≤ 2k for r ∈ [0, 1] we conclude that E (k)2 = 2k

C1
is sufficient in the first

case.
For r > 1 we use the inequality

E (k)2 c (β)
“

r

c

”β−d/2

Kd/2−β (cr) ≤ E (k)2 c (β)

„

‖ω‖2

c

«β−d/2+1/2

e
‖ω‖2

c
− c(d/2−β)2

2‖ω‖2 .

Since r > 1 and β > d
2 , we can bound the factors by

e−
(d/2−β)2

2r ≥ e−
(d/2−β)2

2 , and
(r
c

)β−d/2
> cd/2−β .

If we use again
(
1 + r2

)k ≤ 2kr2k, we have to determine E (k) such that for all r > 1

f (r) := lnC + lnE (k)2 + r − 2k (ln (2) /2 + ln r) ≥ 0 .

Easy calculation yields f
′
(r) = −2k

r + 1, and f
′′
(r) = 2k

r2 . This gives rmin = 2k, and

f (rmin) = lnC + lnE (k)2 + k (2 − 3 ln (2)) − 2k ln (k) .

Hence, for lnE (k)2 = c1k + 2k ln k we can show that f is positive. This yields that a

constant E (k)2 = max
{

2k

C1
, ck1k

2k
}
will ensure the claim. 2

The constant 22k is absorbed into the Ck
E term of E (k) in Theorems 4.1.7 and 4.2.4.

For the special case of the Gaussian kernel G (x) = e−c2‖x‖2
2 this yields

NG

(
R

d
)

=

{
f ∈ C

(
R

d
)
∩ L2

(
R

d
)

:

∫

Rd

∣∣∣f̂ (ω)
∣∣∣
2
e

‖x‖22
4c2 dω <∞

}
.

Theorem 4.4.1 shows, that for all k ≥ 0

NG

(
R

d
)
⊂W k

2

(
R

d
)

with ‖f‖W k
2 (Rd) ≤ Ck

Ek
k/2 ‖f‖NG(Rd) .
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Using [65, Theorem 10.46], every f ∈ NG (Ω) has an extension Ef ∈ NG

(
Rd
)
with

‖Ef‖NG(Rd) ≤ ‖f‖NG(Ω). Thus we have for f = Ef |Ω ∈ NG (Ω) ⊂ W k
2 (Ω) for all

non-negative k

‖f‖W k
2 (Ω) ≤ ‖Ef‖W k

2 (Rd) ≤ Ck
Ek

k/2 ‖Ef‖NG(Rd) ≤ Ck
Ek

k/2 ‖f‖NG(Ω) . (4.4.1)

Similar considerations apply to the inverse multiquadrics

KM (x) =
(
c2 + ‖x‖2

2

)−β
, for β > d/2 .

The essentially same argument as above (see Theorem 4.4.2) leads to

NM

(
R

d
)
⊂W τ

2

(
R

d
)
, and ‖f‖W τ

2 (Ω) ≤ Ck
Ek

k ‖f‖NM (Ω) . (4.4.2)

Applying Corollary 4.2.6 immediately yields

Corollary 4.4.3 Under the assumptions from Theorem 4.2.4 and with the constant for the

Gaussian E(G) (k) = Ck
Ek

k/2 (see Theorem 4.4.1), we obtain for all u ∈ NG (Ω)

‖u‖Lq(Ω) ≤ ec log(ch)/h ‖u‖NG(Ω) + c1/h ‖u|X‖ℓ∞(X) .

Analogously with E(M) (k) ≤ Ck
Ek

k and s = 1 (see Appendix, Theorem 4.4.2) we find for

all u ∈ NM (Ω)

‖u‖Lq(Ω) ≤ ec/h ‖u‖NM (Ω) + c1/h ‖u|X‖ℓq(X) .

4.5 Applications to Smoothed Interpolation

We shall apply our general results in the case of -possibly regularized- kernel based in-

terpolation, as introduced in Section 2.4. To start with, we briefly recall the situation

of symmetric reconstruction methods, as outlined in Section 2.3.2. One is given centers

X = {x1, . . . xN} ⊂ Rd and data (f1, . . . fN )T ∈ RN generated by an unknown function

u ∈ NK (Ω). One has to solve the system

(K + λId) b = f |X , (4.5.1)

with K = (K (xi − xj))i,j=1...N to build an approximant

sλ,X,K (f) (·) :=
∑

xj∈X

bjK (·, xj) .

We point out that the classical interpolant is a special case, namely for choosing λ = 0. It
is known [67] that

‖sλ,X,K (f)‖NK(Ω) ≤ 2 ‖f‖NK(Ω)

‖sλ,X,K (f) |X − f |X‖ℓ∞(X) ≤
√
λ ‖f‖NK(Ω)

holds.



54 CHAPTER 4. INFINITELY SMOOTH FUNCTIONS

Theorem 4.5.1 If Ω is a compact cube, then there exists a constant h0 > 0 and constants

c, c̃, c̄ > 0 such that for all data sets X ⊂ Ω with fill distance h ≤ h0 we get for Gaussian

kernels

‖f − sλ,X,K (f)‖Lq(Ω) ≤ 3
(
ec log(c̃h)/h +

√
λc̄1/h

)
‖f‖NG(Ω)

for all f ∈ NG (Ω) and 1 ≤ q ≤ ∞.

For the inverse multiquadrics we find

‖f − sλ,X,K (f)‖Lq(Ω) ≤ 3
(
ec/h +

√
λc1/h

)
‖f‖NM (Ω)

for all f ∈ NM (Ω) and 1 ≤ q ≤ ∞.

Remark 4.5.2 In the case λ = 0, i.e., the standard interpolation we obtain the well known
orders for interpolation with Gaussian and inverse multiquadric kernels, respectively [65].

Proof: Proof of Theorem 4.5.1: For the Gaussian kernel we have

‖f − sλ,X,K (f)‖Lq(Ω) ≤ ec log(c̃h)/h ‖f − sλ,X,K (f)‖NG(Ω)

+ c̄1/h ‖sλ,X,K (f) |X − f |X‖L∞(X)

≤ 3
(
ec log(c̃h)/h +

√
λc̄1/h

)
‖f‖NG(Ω) ,

and analogous considerations apply to the inverse multiquadrics. 2

From here on we restrict ourselves to the case of Gaussian kernels since all results can be

carried over to inverse multiquadrics easily. We write abbreviately NK := NG.

Corollary 4.5.3 For the choice λ ≤ e
2(c log(c̃h)−log(c̄))

h we get

‖f − sλ,X,K (f)‖Lq(Ω) ≤ 3ec log(c̃h)/h ‖f‖NK(Ω) .

Theorem 4.5.4 If the domain Ω satisfies an interior cone condition, there exist constants

A,B,C, cθ, h0 such that for all data sets X ⊂ Ω with fill distance h ≤ h0 and 1 ≤ q ≤ ∞

‖Dα (f − sλ,X,K (f))‖Lq(Ω) ≤
(
AeB log(Ch)/

√
h +

√
λcθh

−|α|
)
‖f‖NK(Ω) .

Here the constants A,B,C, cθ depend only on θ, α, d, q.

Corollary 4.5.5 For the choice λ ≤ Ae−2B log(Ch)/
√

hh2|α| we get

‖f − sλ,X,K (f)‖Lq(Ω) ≤ 3AeB log(Ch)/
√

h ‖f‖NK(Ω) .

This shows that we can improve the condition number of the system (4.5.1) at least to the

value of λ = Ae−2B log(Ch)/
√

hh2|α| instead of e−1/q2
for the Gaussian kernel and still

get good approximation orders. We point out that we get rid of the separation distance

q := qX := 1
2 min1≤i<j≤N ‖xj − xi‖2, which can spoil the condition number in case of

badly distributed points.

In the next section we present a more general application of sampling inequalities in the

deterministic error analysis of kernel based machine learning algorithms.



Chapter 5

Kernel Based Learning

Support Vector (SV) machines and related kernel-based algorithms are modern learning

systems motivated by results of statistical learning theory [57]. The concept of SV ma-

chines is to provide a prediction function that is accurate on the given training data, and that

is sparse in the sense that it can be written in terms of a typically small subset of all sam-

ples, called the support vectors [50]. Therefore, SV regression and classification algorithms

are closely related to regularized problems from classical approximation theory [23], and

techniques from functional analysis were applied to derive probabilistic error bounds for

SV regression [17].

This chapter provides a theoretical framework to derive deterministic error bounds for some

popular SV machines. We show how a sampling inequality from [67] can be used to bound

the worst-case generalization error for the ν- and the ǫ-regression without making any sta-

tistical assumptions on the inaccuracy of the training data. In contrast to the literature, our

error bounds explicitly depend on the pointwise noise in the data. Thus they can be used

for any subsequent probabilistic analysis modelling certain assumptions on the noise distri-

bution.

This chapter is organized as follows. Section 5.1 deals with regularized approximation

problems in Hilbert spaces with reproducing kernels and outlines the connection to clas-

sical SV regression (SVR) algorithms. We provide a deterministic error analysis for the

ν- and the ǫ-SVR for both exact and inexact training data. Our analytical results showing

optimal convergence orders in Sobolev spaces are confirmed by numerical experiments.

5.1 Regularized Problems in Native Hilbert Spaces

In native Hilbert spaces for kernels we consider the following learning or recovery problem.

We assume that we are given (possibly only approximate) function values y1, . . . , yN ∈ R

of an unknown function f ∈ NK on some scattered points X :=
{
x(1), . . . ,x(N)

}
⊂ Ω,

i.e., f
(
x(j)

)
≈ yj for j = 1, . . . , N . We point out that we shall use a slightly different

notation in this section, which comes from the machine learning literature. In particular,

bold letters denote vectors, i.e., v = (v1, . . . , vd)
T ∈ Rd. The character C does not denote

a generic constant but a fixed parameter of the optimization problems. Generic constants

are denoted by C̃ or different letters.

55
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To control accuracy and complexity of the reconstruction simultaneously, we use the opti-

mization problem

min
s∈NK(Ω)

ǫ∈R
+

1

N

N∑

j=1

Vǫ

(∣∣∣s
(
x(j)

)
− yj

∣∣∣
)

+
1

2C
‖s‖2

NK
, (5.1.1)

where C > 0 is a positive parameter, and Vǫ denotes a positive function, which may be

parametrized by a positive real number ǫ. In this section C always denotes a positive pa-

rameter rather than a constant. We point out that Vǫ need not be a classical loss function.

Therefore we shall give some proofs of results that are well known in the case of Vǫ being

a loss function [51] .

Theorem 5.1.1 (Representer theorem) If (sX,y, ǫ
∗) is a solution of the optimization prob-

lem (5.1.1), then there exists a vector w ∈ RN such that

sX,y (·) =
N∑

j=1

wjK
(
x(j), ·

)
,

that is sX,y ∈ span
{
K
(
x(1), ·

)
, . . . ,K

(
x(N), ·

)}
.

Proof: Every s ∈ NK (Ω) can be decomposed into two parts

s = s|| + s⊥ ,

where s|| is contained in the linear span of
{
K
(
x(1), ·

)
, . . . ,K

(
x(N), ·

)}
, and s⊥ is con-

tained in the orthogonal complement, i.e.,
〈
s||, s⊥

〉
NK

= 0. By the reproducing property

of the kernelK in the native space we have

s
(
x(j)

)
=
〈
s|| + s⊥,K

(
x(j), ·

)〉

NK

=
〈
s||,K

(
x(j), ·

)〉

NK

.

Using this identity the problem (5.1.1) can be rewritten as

min
s=s||+s⊥

ǫ∈R
+

1

N

N∑

j=1

Vǫ

(∣∣∣
〈
s||,K

(
x(j), ·

)〉
− yj

∣∣∣
)

+
1

2C

∥∥s||
∥∥2

NK
+

1

2C
‖s⊥‖2

NK
.

Therefore a solution (sX,y, ǫ
∗) of the optimization problem (5.1.1) satisfies (sX,y)⊥ = 0,

which implies sX,y ∈ span
{
K
(
x(1), ·

)
, . . . ,K

(
x(N), ·

)}
. 2

Since the proof of Theorem 5.1.1 does not depend on the minimality with respect to ǫ this
result holds also true if ǫ is a fixed parameter instead of a primal variable. To be precise we

state this result as a corollary.

Corollary 5.1.2 If sX,y is a solution of the optimization problem

min
s∈NK(Ω)

1

N

N∑

j=1

Vǫ

(∣∣∣s
(
x(j)

)
− yj

∣∣∣
)

+
1

2C
‖s‖2

NK
, (5.1.2)
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with ǫ ∈ R+ being a fixed parameter, then there exists a vector w ∈ RN such that

sX,y (·) =
N∑

j=1

wjK
(
x(j), ·

)
,

i.e., sX,y ∈ span
{
K
(
x(1), ·

)
, . . . ,K

(
x(N), ·

)}
.

We shall use the representer theorem to reformulate infinite-dimensional optimization prob-

lems of the forms (5.1.1) or (5.1.2) in a finite-dimensional setting.

5.2 Support Vector Regression

As a first optimization problem of the form (5.1.1) we consider the ν-SVR introduced in

[52]. The function

Vǫ (x) = |x|ǫ + ǫν

is related to Vapnik’s ǫ-intensive loss function [57]

|x|ǫ =

{
0 if |x| ≤ ǫ

|x| − ǫ if |x| > ǫ
,

but has an additional term with a positive parameter ν. The associated optimization problem

takes the form

min
s∈NK(Ω)

ǫ∈R
+

1

N

N∑

j=1

∣∣∣s
(
x(j)

)
− yj

∣∣∣
ǫ
+ ǫν +

1

2C
‖s‖2

NK
. (5.2.1)

Theorem 5.2.1 The optimization problem (5.2.1) possesses a solution
(
s
(ν)
X,y, ǫ

∗
)
.

Proof: The problem (5.2.1) is equivalent to the optimization problem

min
s∈NK(Ω)

δ∈R

1

N

N∑

j=1

∣∣∣s
(
x(j)

)
− yj

∣∣∣
δ2

+ δ2ν +
1

2C
‖s‖2

NK
. (5.2.2)

If we setH := NK × R, we can define an inner product onH by

〈h1, h2〉H := 〈f1, f2〉NK
+ 2Cν 〈r1, r2〉R

for hj = (fj , rj), j = 1, 2. To make H a space of functions we use the canonical identifi-

cation of R with the space of all constant functions R → R. The Hilbert space H then has

the reproducing kernel K̃ :=
(
K, 1

2Cν 1
)
where 1 denotes the constant function that maps

everything to 1, that is K̃ ((x, r) , (y, s)) = K (x,y)+1/ (2Cν) for all r, s ∈ R. With this

notation the problem (5.2.2) can be rewritten as

min
(s,δ)∈H

Qy (IX (s, δ)) +
1

2C
‖(s, δ)‖2

H , (5.2.3)
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where

IX (s, δ) :=
(
s
(
x(1)

)
, . . . , s

(
x(N)

)
, δ
)T

∈ R
N+1 ,

and

Qy : R
N+1 → R, Qy (p, δ) =

1

N

N∑

j=1

|pj − yj |δ2 .

Since Qy is continuous on RN+1 for all y ∈ RN , the problem (5.2.3) possesses a solution

[34]. 2

If we introduce the slack variables ξ, ξ∗ ∈ RN , the representer theorem gives us an equiva-

lent finite-dimensional problem considered in [52].

min
w∈R

N

ξ∗,ξ∈R
N

ǫ∈R
+

1

2
wTKw + C ·



νǫ+
1

N

N∑

j=1

(
ξj + ξ∗j

)




subject to (Kw)j − yj ≤ ǫ+ ξj ,

(−Kw)j + yj ≤ ǫ+ ξ∗j ,

ξ∗j , ξj ≥ 0 , ǫ ≥ 0 for 1 ≤ j ≤ N , (5.2.4)

where

K =
(
K
(
x(i),x(j)

))

i,j=1...N

denotes the Gram matrix of the kernel K. We will use this equivalent problem for imple-

mentation and our numerical tests.

A particularly interesting problem arises if we skip the parameter ν, and let ǫ be fixed. Then
the optimization problem (5.2.4) takes the form

min
w∈R

N

ξ∗,ξ∈R
N

1

2
wTKw +C · 1

N

N∑

j=1

(
ξj + ξ∗j

)

subject to (Kw)j − yj ≤ ǫ+ ξj ,

(−Kw)j + yj ≤ ǫ+ ξ∗j ,

ξ∗j , ξj ≥ 0 for 1 ≤ j ≤ N . (5.2.5)

This problem is called ǫ-SVR [52]. Similarly to the ν-SVR, the problem (5.2.5) can be

formulated as a regularized minimization problem in a Hilbert space [17], namely

min
s∈NK(Ω)

1

N

N∑

j=1

∣∣∣s
(
x(j)

)
− yj

∣∣∣
ǫ
+

1

2C
‖s‖2

NK(Ω) . (5.2.6)

Like the ν-SVR, this optimization problem possesses a solution [34, Lemma 1].
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5.3 A Sampling Inequality

We shall employ a special case of a sampling inequality introduced in [67]. It requires the

following assumptions, which we need from now on. Let Ω ⊂ Rd be a bounded domain

with Lipschitz boundary that satisfies an interior cone condition. We recall the Definition

3.3.5. A domain Ω is said to satisfy an interior cone condition with radius r and angle θ if
for every x ∈ Ω there is a unit vector ξ (x) such that the cone

C (x, ξ (x) , θ, r):=
{
x + λy : y ∈ R

d, ‖y‖2 = 1,yT ξ (x) ≥ cos (θ) , λ ∈ [0, r]
}

is contained in Ω. In particular, a domain that satisfies an interior cone condition cannot

have any outward pointing cusps. We shall assume for the rest of this chapter thatΩ satisfies

an interior cone condition with radius Rmax and angle θ. We will need a slightly unhandy

constant, which depends only on the geometry of Ω, namely

CΩ :=
sin
(
2 arcsin

(
sin θ

4(1+sin θ)

))
sin θ

8
(
1 + sin

(
2 arcsin

(
sin θ

4(1+sin θ)

)))
(1 + sin θ)

Rmax . (5.3.1)

Suppose that K is a radial kernel function such that the native Hilbert space of K is

a Sobolev space, i.e., NK = W τ
2 (Ω). Here we assume that ⌊τ − 1⌋ > d/2, where

we use the notation ⌊t⌋ := max {n ∈ N0 : n ≤ t} for t ≥ 0. Furthermore, let X ={
x(1), . . . ,x(N)

}
⊂ Ω be a discrete set with sufficiently small fill distance. Let us ex-

plain the relation to the usual error bounds in terms of the number of points N . In the case

of regularly distributed points we have [65] that h = N− 1
d . Therefore the limit h → 0 is

equivalent to the limit N → ∞, which is the more intuitive meaning of asymptotic con-

vergence. However, there is a drawback, since the error bounds in terms of N depend on

the space dimension d, while error bounds in terms of the fill distance h depend only on

the smoothness of the function to be learned. We will comment on this again later for the

special error bounds we consider here. We shall use the following result from [67].

Theorem 5.3.1 Suppose Ω ⊂ Rd is a bounded domain with Lipschitz boundary that sat-

isfies an interior cone condition. Let τ be a positive real number with ⌊τ − 1⌋ > d
2 and

1 ≤ q ≤ ∞. Then there exists a positive constant C > 0 such that for all discrete sets

X ⊂ Ω with sufficiently small fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2 the inequality

‖u‖Lq(Ω) ≤ C ·
(
hτ−d(1/2−1/q)+ ‖u‖W τ

2 (Ω) + ‖u|X‖ℓ∞(X)

)

holds for all u ∈W τ
2 (Ω), where we use the notation (t)+ := max {0, t}.

We shall apply this theorem to the residual function f−sX,y of the function f ∈W τ
2 (Ω) to

be recovered and a solution sX,y ∈ W τ
2 (Ω) of the regression problem. In our applications

we shall focus on the two main cases q = ∞ and q = 2. Other cases can be treated

analogously. It will turn out that we get optimal convergence rates in the noiseless case. In

presence of noise, the resulting error will explicitly be bounded in terms of the noise in the

data.
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5.4 ν-SVR with Exact Data

To derive error bounds for the ν-SVR optimization problem (5.2.1) we shall apply Theorem

5.3.1 to the residual f − s
(ν)
X,y, where

(
s
(ν)
X,y, ǫ

∗
)
denotes a solution to the problem (5.2.1)

for X :=
{
x(1), . . . ,x(N)

}
⊂ Ω and y ∈ RN . In this section we consider exact data, i.e.,

f
(
x(j)

)
= yj for j = 1, . . . , N (5.4.1)

for a function f ∈ W τ
2 (Ω) ∼= NK . As pointed out by [67] we first need two stability

estimates for the solution s
(ν)
X,y.

Lemma 5.4.1 Under the assumption (5.4.1) on the data, we find that for everyX a solution(
s
(ν)
X,y, ǫ

∗
)
to problem (5.2.1) satisfies

∥∥∥s(ν)
X,y

∥∥∥
NK(Ω)

≤ ‖f‖NK
, and

∥∥∥s(ν)
X,y|X − y

∥∥∥
ℓ∞(X)

≤ N

2C
‖f‖2

NK
+ ǫ∗ · (1 −Nν) .

Proof: We denote the objective function of the optimization problem (5.2.1) by

Hy

C,ν (s, ǫ) :=
1

N

N∑

j=1

∣∣∣s
(
x(j)

)
− yj

∣∣∣
ǫ
+ νǫ+

1

2C
‖s‖2

NK
, (5.4.2)

and the interpolant to f with respect toX andK with If , i.e., If |X = y. With this notation
we have

1

2C

‚

‚

‚s
(ν)
X,y

‚

‚

‚

2

NK

≤ H
y

C,ν

“

s
(ν)
X,y, ǫ

∗
”

≤ H
y

C,ν (If , 0) ≤
1

2C
‖If‖

2
NK

≤
1

2C
‖f‖2

NK

since ‖If‖NK
≤ ‖f‖NK

[65], which implies the first claim. Furthermore we have for

i = 1, . . . , N

˛

˛

˛s
(ν)
X,y

“

x
(i)

”

− yi

˛

˛

˛ ≤
N

X

j=1

˛

˛

˛s
(ν)
X,y

“

x
(j)

”

− yj

˛

˛

˛

ǫ∗
+ ǫ

∗ ≤ NH
y

C,ν

“

s
(ν)
X,y, ǫ

∗
”

+ ǫ
∗ (1 − Nν)

≤ NH
y

C,ν (If , 0) + ǫ
∗ (1 − Nν) ≤

N

2C
‖If‖

2
NK

+ ǫ
∗ (1 − Nν)

≤
N

2C
‖f‖2

NK
+ ǫ

∗ (1 − Nν) ,

which finishes the proof. 2

With Theorem 5.3.1 we find immediately the following result.

Theorem 5.4.2 Suppose Ω ⊂ Rd is a bounded domain with Lipschitz boundary that sat-

isfies an interior cone condition. Let τ be a positive real number with ⌊τ − 1⌋ > d
2 and

1 ≤ q ≤ ∞. We suppose f ∈ W τ
2 (Ω) with f

(
x(i)
)

= yi. Let
(
s
(ν)
X,y, ǫ

∗
)
be a solution of
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the ν-SVR. Then there is a constant C̃ > 0, which depends on τ , d and Ω, but not on f or
X , such that the approximation error can be bounded by

‚

‚

‚f − s
(ν)
X,y

‚

‚

‚

Lq(Ω)
≤ C̃

„

2h
τ−d(1/2−1/q)+ ‖f‖W τ

2 (Ω) +
N

2C
‖f‖2

W τ
2 (Ω) + (1 − Nν) · ǫ∗

«

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2

Proof: Combining Lemma 5.4.1 and Theorem 5.3.1 leads to

‚

‚

‚f − s
(ν)
X,y

‚

‚

‚

Lq(Ω)
≤ C̃

„

h
τ−d(1/2−1/q)+

‚

‚

‚f − s
(ν)
X,y

‚

‚

‚

W τ
2 (Ω)

+
‚

‚

‚y − s
(ν)
X,y|X

‚

‚

‚

ℓ∞(X)

«

≤ C̃

„

h
τ−(d/2−d/q)+

„

‖f‖W τ
2 (Ω)+

‚

‚

‚s
(ν)
X,y

‚

‚

‚

W τ
2 (Ω)

«

+
‚

‚

‚y − s
(ν)
X,y|X

‚

‚

‚

ℓ∞(X)

«

≤ C̃

„

2h
τ−(d/2−d/q)+ ‖f‖W τ

2 (Ω) +
N

2C
‖f‖2

W τ
2 (Ω) + (1 − Nν) ǫ

∗
«

.

2

At first glance the term containing ǫ∗ seems to be odd because it could be uncontrollable.

But according to [12] we can at least assume ǫ∗ to be bounded by

ǫ∗ ≤ 1

2

(
max

1≤i≤N
yi − min

1≤i≤N
yi

)
.

If this inequality is not satisfied, the problem (5.2.4) possesses only the trivial solution s ≡
0, which is not interesting. Furthermore, we see the ǫ∗-term occurs with a factor (1 −Nν),
which can be used to control this term. If we choose ν ≥ 1

N , the term (1 −Nν) ǫ∗ vanishes
or is even negative. The parameter ν is a lower bound on the fraction of support vectors

[51], and hence ν = 1/N means to get at least one support vector, that is a non-trivial

solution. Since we are not interested in the case of trivial solutions, the condition ν ≥ 1/N
is a reasonable assumption. We can use the results from Lemma 5.4.1 to derive a more

explicit upper bound on ǫ∗ = ǫ∗ (C, ν, f) by

0 ≤
∥∥∥s(ν)

X,y|X − y

∥∥∥
ℓ∞(X)

≤ N

2C
‖f‖2

NK
+ ǫ∗ (1 −Nν) .

If we assume ν > 1/N , this leads to

ǫ∗ = ǫ∗ (C, ν, f) ≤ N

2C (Nν − 1)
‖f‖2

NK
.

Note that these bounds cannot be used for a better parameter choice, since we would need

to rearrange this inequality and solve for C or ν. This would be possible only if there were

lower bounds on ǫ∗ as well. Moreover, the parameter C appears in our error bound as a

factor N
2C , which implies that we expect convergence only in the case C → ∞. In this case

ǫ∗ will be small, as can be deduced from problem (5.2.4).

We shall make these bounds more explicit for the case of quasi-uniformly distributed points.

In this case the number of points N and the fill distance h are related to each other by

c1N
−1/d ≤ h ≤ c2N

−1/d , (5.4.3)

where c1 and c2 denote positive constants [65, Proposition 14.1].
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Corollary 5.4.3 In case of quasi-uniform exact data we may choose the problem parame-

ters as

C =
N ‖f‖W τ

2 (Ω)

2hτ
≈ h−(τ+d) ‖f‖W τ

2 (Ω) , and ν ≥ 1

N

to get ∥∥∥f − s
(ν)
X,y

∥∥∥
L2(Ω)

≤ C̃hτ ‖f‖W τ
2 (Ω) ≤ C̃N− τ

d ‖f‖W τ
2 (Ω) ;

or as

C =
N ‖f‖W τ

2 (Ω)

2hτ−d/2
≈ h−(τ+d/2) ‖f‖W τ

2 (Ω) , and ν ≥ 1

N

to get ∥∥∥f − s
(ν)
X,y

∥∥∥
L∞(Ω)

≤ C̃hτ−d/2 ‖f‖W τ
2 (Ω) ≤ C̃N− τ

d
− 1

2 ‖f‖W τ
2 (Ω)

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2, with a generic

positive constant C̃, which depends on τ , d, Ω, but not on f or X .

Note that these bounds yield arbitrarily high sampling orders, provided that the functions

are smooth enough, i.e., τ is large enough. Therefore they are in this setting better than the

usual minimax rateN− 2τ
2τ+d [40]. In the following we shall give our error estimates only in

terms of the fill distance h rather than in terms of the number of points N . This is due to

the fact that the approximation rate in h is independent of the space dimension d. However,
it should be clear how the approximation rates translate into error estimates in terms of N
in the case of quasi-uniform data due to the inequality (5.4.3).

Corollary 5.4.3 shows, that the solution of the ν-SVR leads to optimal sampling orders

in the Sobolev space [48] with respect to the fill distance h. These optimal rates are also

attained by classical interpolation in the native Hilbert space [65]. The ν-SVR, however,
allows for much more flexibility and less complicated solutions. Our numerical results will

confirm these convergence rates.

5.5 ν-SVR with Inexact Data

In this section we denote again by
(
s
(ν)
X,y, ǫ

∗
)
the solution to the problem (5.2.1) for a set

of points X :=
{
x(1), . . . ,x(N)

}
⊂ Ω and y ∈ RN , but we allow the given data to be

corrupted by some additive error r = (r1, . . . , rN ), that means

f
(
x(j)

)
= yj + rj for j = 1, . . . , N, (5.5.1)

where is f ∈ W τ
2 (Ω) ∼= NK . Note that there are no assumptions concerning the error

distribution. As in the previous section we have to show a stability estimate of the following

form.

Lemma 5.5.1 Under the assumption (5.5.1) on the data y, we find that for every X a
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solution
(
s
(ν)
X,y, ǫ

∗
)
to the optimization problem (5.2.1) satisfies for all ǫ ≥ 0

∥∥∥s(ν)
X,y

∥∥∥
NK(Ω)

≤

√√√√2C

N

N∑

j=1

|rj |ǫ + 2Cνǫ+ ‖f‖2
NK

, and

∥∥∥s(ν)
X,y − y

∥∥∥
ℓ∞(X)

≤
N∑

j=1

|rj |ǫ + νNǫ+ (1 −Nν) ǫ∗ +
N

2C
‖f‖2

NK
.

Proof: Again, we denote the interpolant to f with respect toX andK by If , and useH
y

C,ν

as defined in equation (5.4.2). Then we have

1

2C

∥∥∥s(ν)
X,y

∥∥∥
2

NK

≤Hy

C,ν

(
s
(ν)
X,y, ǫ

∗
)
≤ Hy

C,ν (If , ǫ) ≤
1

N

N∑

j=1

|rj |ǫ + νǫ+
1

2C
‖f‖2

NK
,

which implies

∥∥∥s(ν)
X,y

∥∥∥
NK

≤

√√√√2C

N

N∑

j=1

|rj |ǫ + 2Cνǫ+ ‖f‖2
NK

.

Moreover we have for all i = 1, . . . , N

∣∣∣s(ν)
X,y

(
x(i)
)
− yi

∣∣∣ ≤
N∑

j=1

∣∣∣s(ν)
X,y

(
x(j)

)
− yj

∣∣∣
ǫ∗

+ ǫ∗

≤ NHy

C,ν

(
s
(ν)
X,y, ǫ

∗
)

+ (1 −Nν) ǫ∗

≤
N∑

j=1

|rj |ǫ + νNǫ+ (1 −Nν) ǫ∗ +
N

2C
‖f‖2

NK
.

2

Again we can use the results from Lemma 5.5.1 to derive a more explicit upper bound on

ǫ∗ = ǫ∗ (C, ν, f, ǫ). Note that ǫ∗ depends now also on the free parameter ǫ.

0 ≤
∥∥∥s(ν)

X,y|X − y

∥∥∥
ℓ∞(X)

≤ N

2C
‖f‖2

NK
+ ǫ∗ (1 −Nν) +

N∑

j=1

|rj |ǫ + νNǫ .

If we assume ν > 1/N , this leads to

ǫ∗ (C, ν, f, ǫ) ≤ 1

Nν − 1



 N

2C
‖f‖2

NK
+

N∑

j=1

|rj |ǫ + νNǫ



 .

Using the sampling inequality as in the case of exact data leads to the following result on

Lq-norms.
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Theorem 5.5.2 We suppose f ∈ W τ
2 (Ω) with f

(
x(i)
)

= yi + ri. Let
(
s
(ν)
X,y, ǫ

∗
)
be

a solution of the ν-SVR, i.e., the optimization problem (5.2.1). Then there is a constant

C̃ > 0, which depends on τ , d and Ω, but not on f or X , such that for all ǫ > 0 the
approximation error can be bounded by

‚

‚

‚f − s
(ν)
X,y

‚

‚

‚

Lq(Ω)
≤ C̃

0

@h
τ−(d/2−d/q)+

0

@‖f‖W τ
2 (Ω)+

v

u

u

t

2C

N

N
X

j=1

|rj |ǫ+2Cνǫ+‖f‖2
W τ

2 (Ω)

1

A

+

N
X

j=1

|rj |ǫ + νNǫ + ǫ
∗ (1 − Nν) +

N

2C
‖f‖2

W τ
2 (Ω)

!

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2.

We now want to assume that the data errors do not exceed the data itself. For this we

suppose

‖r‖ℓ∞(X) ≤ δ ≤ ‖f‖W τ
2 (Ω) (5.5.2)

for a parameter δ > 0.

Corollary 5.5.3 If we choose

C =
N ‖f‖2

W τ
2 (Ω)

2δ
≈ h−d

δ
‖f‖2

W τ
2 (Ω) ,

ǫ = δ, , and ν =
1

N
we get ∥∥∥f − s

(ν)
X,y

∥∥∥
L2(Ω)

≤ C̃
(
hτ ‖f‖W τ

2 (Ω) + δ
)
,

and ∥∥∥f − s
(ν)
X,y

∥∥∥
L∞(Ω)

≤ C̃
(
hτ−d/2 ‖f‖W τ

2 (Ω) + δ
)
.

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2, with a generic

positive constant C̃, which depends on τ , d and Ω, but not on f or X .

5.6 ǫ-SVR with Exact Data

Since our arguments for the ν-SVR apply similarly to the ǫ-SVR, we skip over details

and just state the results. Note that in this case, the non-negative parameter ǫ is fixed

in contrast to the free variable in the ν-SVR. Analogously to the notation introduced in

the previous sections, we denote by s
(ǫ)
X,y the solution to the problem (5.2.6) for X :={

x(1), . . . ,x(N)
}
⊂ Ω and y ∈ RN . The stability estimate takes the following form.

Lemma 5.6.1 Under the assumption (5.4.1) concerning the data, we find that for every X

and every fixed ǫ ∈ R+ a solution s
(ǫ)
X,y to problem (5.2.6) satisfies

∥∥∥s(ǫ)X,y

∥∥∥
NK(Ω)

≤ ‖f‖NK
, and

∥∥∥s(ǫ)X,y|X − y

∥∥∥
ℓ∞(X)

≤ N

2C
‖f‖2

NK
+ ǫ .
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Again this leads to the following result on continuous Lq-norms.

Theorem 5.6.2 We suppose f ∈ W τ
2 (Ω) with f

(
x(i)
)

= yi. Let s
(ǫ)
X,y be a solution of

the ǫ-SVR, i.e., the optimization problem (5.2.6). Then there is a constant C̃ > 0, which
depends on τ , d and Ω, but not on ǫ, f or X , such that the approximation error can be
bounded by

‚

‚

‚f − s
(ǫ)
X,y

‚

‚

‚

Lq(Ω)
≤ C̃

„

2h
τ−(1/2−1/q)+ ‖f‖W τ

2 (Ω) +
N

2C
‖f‖2

W τ
2 (Ω) + ǫ

«

(5.6.1)

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2.

Applying the same arguments as in the ν-SVR case we obtain the following corollary.

Corollary 5.6.3 If we choose

C =
N ‖f‖W τ

2 (Ω)

2hτ
, respectively C =

N ‖f‖W τ
2 (Ω)

2hτ−d/2
,

the inequality (5.6.1) turns into

∥∥∥f − s
(ǫ)
X,y

∥∥∥
L2(Ω)

≤ C̃
(
3hτ ‖f‖W τ

2 (Ω) + ǫ
)
,

respectively ∥∥∥f − s
(ǫ)
X,y

∥∥∥
L∞(Ω)

≤ C̃
(
3hτ−d/2 ‖f‖W τ

2 (Ω) + ǫ
)

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2, with a generic

positive constant C̃, which depends on τ , d, Ω and ǫ, but not on f or X .

The rôle of the parameter C is similar to the one in case of the ν-SVR. Unlike in the case

of the ν-SVR we are free to choose the parameter ǫ. We see that exact data implies that we

should choose ǫ ≈ 0. The case C → ∞ and ǫ → 0 leads to exact interpolation, and the

well known error bounds [65] are attained.

5.7 ǫ-SVR with Inexact Data

In this section we denote again by s
(ǫ)
X,y the solution to the problem (5.2.6) for a set of points

X :=
{
x(1), . . . , x(N)

}
⊂ Ω and y ∈ RN , but we allow the given data to be corrupted by

some additive error according to assumption (5.5.1).

Lemma 5.7.1 Under the assumption (5.5.1) concerning the data, for every X and every

fixed ǫ ∈ R+ a solution s
(ǫ)
X,y to problem (5.2.6) satisfies

∥∥∥s(ǫ)X,y

∥∥∥
NK(Ω)

≤

√√√√‖f‖2
NK

+
2C

N

N∑

i=1

|ri|ǫ , and

∥∥∥s(ǫ)X,y|X − y

∥∥∥
ℓ∞(X)

≤ N

2C
‖f‖2

NK
+

N∑

i=1

|ri|ǫ + ǫ .
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These bounds shall now be plugged into the sampling inequality.

Theorem 5.7.2 We suppose f ∈ W τ
2 (Ω) with f

(
x(i)
)

= yi. Let s
(ǫ)
X,y be a solution of

the ǫ-SVR, i.e., the optimization problem (5.2.6). Then there is a constant C̃ > 0, which
depends on τ , d and Ω, but not on ǫ, f or X , such that the approximation error can be
bounded by

‚

‚

‚f − s
(ǫ)
X,y

‚

‚

‚

Lq(Ω)
≤ C̃

0

@2h
τ−d(1/2−1/q)+

0

@‖f‖W τ
2 (Ω) +

v

u

u

t‖f‖2
W τ

2 (Ω) +
2C

N

N
X

i=1

|ri|ǫ

1

A

+
N

2C
‖f‖2

W τ
2 (Ω) +

N
X

i=1

|ri|ǫ + ǫ

!

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2.

If we again assume that the error level δ does not overrule the native space norm of the

generating function, i.e.,

‖r‖ℓ∞(X) ≤ δ ≤ ‖f‖W τ
2 (Ω) ,

we get these convergence orders, for our specific choices of the parameters.

Corollary 5.7.3 Again we assume that the error satisfies (5.5.1). If we choose ǫ = δ and
C = h−τ−d/2 then we find for quasi-uniform data

∥∥∥f − s
(ǫ)
X,y

∥∥∥
L2(Ω)

≤ C̃
(
hτ ‖f‖W τ

2 (Ω) + δ
)

, and (5.7.1)

∥∥∥f − s
(ǫ)
X,y

∥∥∥
L∞(Ω)

≤ C̃
(
hτ−d/2 ‖f‖W τ

2 (Ω) + δ
)

(5.7.2)

for all discrete sets X ⊂ Ω with fill distance h := hX,Ω ≤ CΩ⌊τ − 1⌋−2, with a generic

positive constant C̃, which depends on τ , d, Ω and ǫ, but not on f or X .

5.8 Spectral Convergence Orders for Support Vector Machines

So far, we have considered SV machines with kernels of finite smoothness, which have

many practical advantages (see Section 5.9). However, there are also some infinitely smooth

kernels that are popular in specific applications. The most important examples beside the

Gaussian kernels are infinite polynomial kernels [29], or more general, power series kernels

[70]. If we employ the sampling inequalities derived in Chapter 4, we similarly find an

error analysis for SV machines with smooth kernels. We restrict ourselves to the case

of Gaussians since all results can be carried over to other kernels easily. We write again

abbreviately NK := NG. To derive error bounds for the ν-SVR optimization problem

(5.2.1) we shall apply Theorem 4.2.2 to the residual f − s
(ν)
X,y, where

(
s
(ν)
X,y, ǫ

∗
)
denotes

the solution to the problem (5.2.1) for a X :=
{
x(1), . . . ,x(N)

}
⊂ Ω and y ∈ RN . First,

we consider exact data satisfying assumptions (5.4.1).

Theorem 5.8.1 Let Ω be a cube, and let
(
s
(ν)
X,y, ǫ

∗
)
be a solution of the optimization prob-

lem (5.2.1). Then the generalization error can be bounded by

∥∥∥f − s
(ν)
X,y

∥∥∥
Lq(Ω)

≤ C̃

(
ec log(c̃h)/h ‖f‖NK(Ω) +

N

2C
‖f‖2

NK(Ω) + (1 −Nν)+ ǫ
∗
)
.
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Corollary 5.8.2 In case of quasi-uniform exact data we may choose the problem parame-

ters as

C =
N ‖f‖NK(Ω)

ec log(c̃h)/h
, and ν =

1

N
,

to get ∥∥∥f − s
(ν)
X,y

∥∥∥
Lq(Ω)

≤ Cec log(c̃h)/h ‖f‖NK(Ω) . (5.8.1)

Now we shall consider general domains satisfying an interior cone condition. Similarly to

the case above we get with Theorem 4.1.7

Theorem 5.8.3 Let
(
s
(ν)
X,y, ǫ

∗
)
be a solution of (5.2.1) . Then the approximation error can

be bounded by

∥∥∥f − s
(ν)
X,y

∥∥∥
Lq(Ω)

≤ E

(
AeB log(Dh)/

√
h ‖f‖NK(Ω) +

N

2C
‖f‖2

NK(Ω) − (Nν − 1) ǫ∗
)
.

Here the constants A,B,D,E depend on θ, α, d and q. In case of quasi-uniform data we

may choose the parameters as

C =
N ‖f‖NK(Ω)

AeB log(Ch)/
√

h
, and ν ≥ 1

N
,

to get the estimate

∥∥∥f − s
(ν)
X,y

∥∥∥
Lq(Ω)

≤ CAeB log(Ch)/
√

h ‖f‖NK(Ω) . (5.8.2)

We now shall consider the case of inexact given data as described in assumption (5.5.1).

Again we have to bound both the native space norm and the discrete norm. Following

Lemma 5.5.1 we have

∥∥∥s(ν)
X,y

∥∥∥
NK(Ω)

≤

√√√√2C

N

N∑

j=1

|rj |ǫ + 2Cνǫ+ ‖f‖2
NK(Ω)

∥∥∥s(ν)
X,y − y

∥∥∥
ℓ∞(X)

≤
N∑

j=1

|rj |ǫ + νNǫ− ǫ∗ · (Nν − 1) +
N

2C
‖f‖2

NK(Ω) .

Theorem 5.8.4 Under the assumptions (5.5.1) and Ω ⊂ Rd being a compact cube we have
for all ǫ > 0

‚

‚

‚f − s
(ν)
X,y

‚

‚

‚

Lq(Ω)
≤ C̃

0

@e
c log(c̃h)/h

0

@‖f‖NK(Ω)+

v

u

u

t

2C

N

N
X

j=1

|rj |ǫ+2Cνǫ+‖f‖2
NK(Ω)

1

A

+

N
X

j=1

|rj |ǫ + νNǫ − ǫ
∗ (Nν − 1) +

N

2C
‖f‖2

NK(Ω)

!

.
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Corollary 5.8.5 Suppose assumption (5.5.2) holds. If we choose

C =
N ‖f‖2

NK(Ω)

2δec log(c̃h)/h
, ǫ = δ and ν =

1

N

we get in case of quasi-uniform data for any non-trivial solution

∥∥∥f − s
(ν)
X,y

∥∥∥
L2(Ω)

≤ C
(
ec log(c̃h)/h ‖f‖NK(Ω) + δ

)
. (5.8.3)

Note that bounds like (5.8.3) allow excellent bounds on the number of training samples

required in the worst possible case to get required prediction quality.

Now we shall also here consider a general Lipschitz domain Ω. Analogously to the case

above we get

Theorem 5.8.6 Under the assumption (5.5.1) we have for all ǫ > 0

‚

‚

‚f − s
(ν)
X,y

‚

‚

‚

Lq(Ω)
≤ C̃

0

@Ae
B log(Ch)/

√
h

0

@‖f‖NK(Ω)+

v

u

u

t

2C

N

N
X

j=1

|rj |ǫ+2Cνǫ+‖f‖2
NK(Ω)

1

A

+

N
X

j=1

|rj |ǫ + νNǫ − ǫ
∗ (Nν − 1) +

N

2C
‖f‖2

NK(Ω)

!

.

Here the constants A,B,C depend on θ, α, d, q. Again we get for the choice

C =
N ‖f‖2

NK(Ω)

2δAeB log(Ch)/
√

h
, ǫ = δ , ν =

1

N

in case of quasi-uniform data for any non-trivial solution (f∗, ǫ∗)
∥∥∥f − s

(ν)
X,y

∥∥∥
L2(Ω)

≤ C
(
AeB log(Ch)/

√
h ‖f‖NK(Ω) + δ

)
. (5.8.4)

We shall now confirm our analytical results by numerical experiments. For that we restrict

ourselves to the case of finite smoothness, i.e., algebraic sampling orders.

5.9 Numerical Results

In this section we present some numerical examples to support our analytical results, in

particular the rates of convergence in case of exact training data, and the detection of the

error levels in case of noisy data.

5.9.1 Exact Training Data

Figure 5.1 illustrates the approximation orders in case of exact given data as considered in

Sections 5.4 and 5.6. For that, we used regular datasets generated by the respective func-

tions to be reconstructed and employed the ǫ- and the ν-SVR with the parameter choices

provided in Corollaries 5.6.3 and 5.4.3. We implemented the finite dimensional formula-

tions of the associated optimization problems as described in equations (5.2.4) and (2.4.3).

As kernel functions we used Wendland’s functions (see e.g. [59, 60, 61]) for two reasons:
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On the one hand they yield sparse kernel matrices K due to their compact support, on the

other hand they are easy to implement since they are piecewise polynomials. Furthermore

Wendland’s functions may be scaled to improve their numerical behavior. An unscaled

function K has support supp(K) ⊂ B (0, 1) ⊂ Rd. The scaling is done in such a way, that

the decay of the Fourier transform is preserved, i.e.,

K(c) (x) = c−dK
(x

c

)
, x ∈ R

d . (5.9.1)

By construction we have supp
(
K(c)

)
⊂ B (0, c), such that small choices of the scaling

parameter c imply sparse kernel matrices

K(c) =
(
K(c)

(∥∥∥x(i) − x(j)
∥∥∥

2

))

i,j=1...N
.

On the other hand-side it is known that the constant factors in our error estimates increase

with decreasing c. This is a typical trade-off situation between good approximation proper-

ties and good condition numbers of the kernel matrices K(c) [65].

The double logarithmic plots in subfigure 5.1(a) visualize the convergence orders in terms

of the fill distance h. For that, the L∞-approximation error ‖f − sX,y‖L∞
is plotted versus

the fill distance h. The convergence rates are given by the slopes of the lines.
In Subfigure 5.1(a) the data was generated by

f (x) = (x − 0.5)2.5+eps
+ ∈W 3

2 ([0, 1]) ,

where eps denotes the relative machine precision in the sense of MATLAB. We use the

notation (t)+ := max {0, t} for all t ∈ R. This function f is sampled on a regular grid in

the unit interval I := [0, 1] with 20 to 100 points. Note that in this case the fill distance is

given by h = 1/N . We use two different kernel functions, namely

• K1 (x) = (1 − ‖x‖)3+ (3 ‖x‖ + 1) with native spaceW 2
2 ([0, 1]), and

• K2 (x) = (1 − ‖x‖)5+
(
8 ‖x‖2 + 5 ‖x‖ + 1

)
with native spaceW 3

2 ([0, 1]) .

The scaling parameter according to equation (5.9.1) was chosen as c = 0.3. We employed

the ǫ- and the ν- SVR with the parameter choices provided in Corollaries 5.6.3 and 5.4.3.

The respective corollaries predicted convergence rates of 1.5 for K1, and 2.5 for K2. In

Subfigure 5.1(a) the plots for the ǫ- and ν-SVR both show orders 1.9 forK1 and 2.7 forK2.

Subfigure 5.1(b) shows a 2-dimensional example. The data was generated by the smooth

function

f (x) = sin (x1 + x2) .

This function f is sampled on a regular grid in the unit interval I := [0, 1]2 with 16 to 144
points. Note that in this case the fill distance is given by h = 1√

N
. We used three different

kernel functions, namely

• K3 (x) = (1 − ‖x‖)4+ (4 ‖x‖ + 1) with native spaceW 2
2

(
[0, 1]2

)
,

• K4 (x) = (1 − ‖x‖)6+
(
35 ‖x‖2 + 18 ‖x‖ + 3

)
with native spaceW 3

2

(
[0, 1]2

)
, and
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• K5 (x) = (1 − ‖x‖)8+
(
32 ‖x‖3 + 25 ‖x‖2 + 8 ‖x‖ + 1

)
with native space

W 5
2

(
[0, 1]2

)
.

The kernel functions were scaled by c = 1 according to equation (5.9.1). For the sake of

simplicity we employed only the ν-SVR with the parameter choices provided in Corollary

5.4.3. The predicted convergence rates in the fill distance h are 1.5 for K3, 2.5 for K4 and

3 for K5. The numerical experiments show orders 1.8 for K3, 2.4 for K4 and 2.9 for K5.

Thus, the numerical examples verify our analytical results.
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(a) Data generated by f ∈ W 3
2 (I) on reg-

ular grids in I . ν- and ǫ-SVR yield orders

1.9 for K1 c = 0.3, and 2.7 for K2. Scaling

parameter c = 0.3.
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(b) Data generated by smooth function on

regular grids in I2. ν-SVR yields orders 1.8
for K3, 2.4 for K4, and 2.9 for K5. Scaling

parameter c = 1

Figure 5.1: Double logarithmic plots of the L∞-approximation error versus the fill distance

h for exact training data.

5.9.2 Inexact Data

Figure 5.2 shows examples for the case of noisy data. The plots show the

L∞-approximation error ‖f − sX,y‖L∞
versus the fill distance h. For simplicity we con-

centrated on the case of the ν-SVR in the one dimensional setting. We used the noise model

from Section 5.5.1, that is y = f + r. In Subfigure 5.2(a) the function

f (x) = (x − 0.5)2.5+eps
+ + sin (5x) ∈W 3

2 ([0, 1])

is sampled on regular grids of 5 to 30 points in [0, 1]. The data is disturbed by an error r
that is normally distributed with mean zero and variance 0.01. As kernel function we use

K1, and the parameters of the ν-SVR are chosen according to Corollary 5.5.3. As predicted

in Corollary 5.5.3 the plot shows that the error reaches the variance and keeps bounded for

h→ 0.
In Subfigure 5.2(b) the function

f (x) = (x − 0.5)2.5+eps
+ + sin (5x) ∈W 3

2 ([0, 1])

is sampled on regular grids of 5 to 80 points in the unit interval I = [0, 1]. Here, the data is
corrupted by an error of ±0.01, where the sign of the error is chosen randomly with equal
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likelihood for plus and minus. As kernel function we use K1, and the parameters of the

ν-SVR are chosen as in Corollary 5.5.3. The plot shows that the L∞-approximation error

converges towards the error level 0.01 for h→ 0.
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(a) Data disturbed by random error with

mean zero and variance 0.01. Approxima-

tion error reaches the variance and keeps

bounded for h → 0.
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(b) Data disturbed by random sign determin-

istic error ±0.01. Approximation error con-

verges towards the error level for h → 0.

Figure 5.2: L∞-approximation error versus fill distance in case of inexact data.
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Chapter 6

Bernstein Inequality

In this chapter we shall prove Bernstein inequalities for certain radial basis functions. This

technical result will be applied in the next chapters in the context of weak recovery. To be

precise, we consider radial basis functions Φ : Rd → R that satisfy for constants c1 (Φ) and
c2 (Φ)

c1 (Φ)
(
1 + ‖ω‖2

2

)−τ
≤ Φ̂ (ω) ≤ c2 (Φ)

(
1 + ‖ω‖2

2

)−τ
, τ > d/2 ,

for all ω ∈ Rd. We shall consider a bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω.

Furthermore we assume Ω to be a star-shaped domain, i.e., there is a point x0 ∈ Ω such

that for all x ∈ Ω the line segment xx0 ⊂ Ω between x0 and x is completely contained in

Ω. Without loss of generality we may assume x0 = 0. We shall use the following notation

Ωγ := (1 + γ) · Ω :=
{

(1 + γ)x : x ∈ Ω
}
, and

Ω−γ := (1 − γ) · Ω :=
{

(1 − γ)x : x ∈ Ω
}
,

for 0 ≤ γ < 1. Note that by construction Ω0 = Ω. We point out that this definition

differs from the definition of the ǫ-interior in Section 4.3. For “nice“ domains, Ωγ is just a

“scaled“ copy of Ω. We shall make use of these “scaled“ domains just for technical reasons,

see Remark 6.5.4. As usual, we consider discrete sets X = {x1, . . . , xN} ⊂ Ω of pairwise

distinct points. The distribution of the points of X in Ω is mainly described by the fill

distance or mesh norm hX,Ω and the separation distance qX , which are defined by

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2 , and

qX :=
1

2
min

xi,xj∈X
xi 6=xj

‖xi − xj‖2 .

So far, Bernstein inequalities have been known only on the whole Rd [39]. They take the

following form.

73
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Theorem 6.0.1 [39] Under the assumptions above, there is a constant C > 0 such that for

all a1, . . . , aN ∈ R,

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ Cq−τ
X

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Rd)

.

This bounds a strong continuous norm on a finite dimensional trial space by a large factor

depending on the separation distance and a weaker continuous norm. Such inequalities must

hold true, since all norms on finite dimensional spaces are equivalent. We simply bound the

equivalence constants in terms of the geometry of X . In this chapter, the main result is a

Bernstein inequality for domains.

Theorem 6.0.2 If the discrete set X lies in Ω−2qX there is a constant C > 0 such that the

Bernstein inequality

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ Cq−τ
X

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω)

holds for arbitrary a1, . . . , aN ∈ R.

These kinds of inequalities have various applications. We shall mainly use them to quantify

the amount of oversampling in unsymmetric recovery processes (see Chapter 7). They are

also a main step towards the application of meshless methods in the setting of generalized

finite elements. In this context Bernstein inequalities are called inverse assumptions [8, 33].

6.1 Stationary Weak Data

To prove Bernstein inequalities, we shall apply a norming set argument to convolution-type

stationary weak data, which we shall analyze in more detail in Chapter 7. We consider

functionals λz ∈ (L2)
∗
of the form

λz (f) :=

∫

Rd

Ψ (z − x) f (x) dx , z ∈ R
d , f ∈ L2,

where Ψ : Rd → R is a radial kernel, whose Fourier-transform decays like

c1 (Ψ)
(
1 + ‖ω‖2

2

)−ρ
≤ Ψ̂ (ω) ≤ c2 (Ψ)

(
1 + ‖ω‖2

2

)−ρ
.

We will always assume ρ > d/4 to ensure that Ψ ∈ L2

(
Rd
)
. Further, we restrict ourselves

to radial kernels with compact support. As described in detail in Section 5.9, such kernels

exist under weak conditions on ρ and the space dimension d [65, Theorem 10.35]. We

explained that we can scale a kernel Ψ with compact support in B (0, 1) ⊂ Rd by a positive

number q via

Ψq (·) := q−dΨ

( ·
q

)
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to get a function supported in B (0, q) ⊂ Rd, with Fourier transform

Ψ̂q (ω) = (2π)d/2 Ψ̂ (qω) .

We shall scale the kernel function Ψ with the separation distance. Therefore, we speak of

stationary data. From now on we always consider the associated scaled functionals, i.e.,

λq
z (f) :=

∫

Rd

Ψq (z − x) f (x) dx , z ∈ R
d , (6.1.1)

which yields the Fourier-transform

λ̂q
z (f) (ω) = (2π)d/2 Ψ̂ (qω) f̂ (ω) .

6.2 Norming Set Argument

In the following we need some technical tools, which we collect at the beginning. To start

with, we need an estimate of the following form.

Lemma 6.2.1 For all x ≥ B, all β > 0 and all c ∈ R we have

1

(1 + c2x2)β
≤
(

1
B2 + 1

c2

)β
1

(1 + x2)β
.

Proof: We have the following chain of equivalences:

1

(1 + c2x2)β
≤

(
1

B2 + 1

c2

)β
1

(1 + x2)β

⇔
(
1 + c2x2

)
≥

(
c2

1
B2 + 1

)
(
1 + x2

)

⇔
(
1 + c2x2

)

c2 (1 + x2)
≥ 1

1
B2 + 1

⇔
1
x2 + 1
1

c2x2 + 1
≤ 1

B2
+ 1 ,

and the last inequality is true for x ≥ B. 2

We shall also need the notion of a bandlimited function. We say that a function is bandli-

mited with bandwidth σ if f̂ has compact support in B (0, σ). The space of all bandlimited

functions

Bσ :=

{
f ∈ L2

(
R

d
)

: supp
(
f̂
)
⊂ B (0, σ)

}
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is often called Paley-Wiener space.

The scaled functionals from (6.1.1) allow us to define a Sampling Operator by

Λq
X : L2

(
R

d
)
→ R

N ,

Λq
X (f) :=

(
λq

x1
(f) , . . . , λq

xN
(f)
)T

.

The main result of this section states that for every f ∈ L2

(
Rd
)
for any σ large enough,

there is a function fσ ∈ Bσ that interpolates in the sense of generalized interpolation with

respect to the functionals λq
xj , and that is nearly the best-approximation with respect to

the L2

(
Rd
)
-norm. For that we follow the paths of [39, Chapter 3] and use the following

theorem from [36].

Theorem 6.2.2 Let Y be a (possibly complex) Banach space, V a subspace of Y , and Z∗

a finite dimensional subspace of Y ∗, the dual of Y . If for every z∗ ∈ Z∗ and some β > 1,
β independent of z∗,

‖z∗‖Y ∗ ≤ β ‖z∗|V ‖V ∗ ,

then for any y ∈ Y there exists v ∈ V such that v interpolates y on Z∗; that is, z∗ (y) =
z∗ (v) for all z∗ ∈ Z∗. In addition, v approximates y in the sense that

‖y − v‖Y ≤ (1 + 2β) distY (y, V ) .

To apply Theorem 6.2.2 to our setting we take Y = L2

(
Rd
)
, V = Bσ and Z∗ =

span
{
λq

xj : 1 ≤ j ≤ N
}
.

Theorem 6.2.3 For f ∈ L2

(
Rd
)
there exists a bandlimited function fσ ∈ Bσ with

ΛX (f) = ΛX (fσ) , and ‖f − fσ‖L2(Rd) ≤ 5 · distL2 (f,Bσ) ,

for σ = κ
qX

, where the constant κ ≥ 1 depends only on Ψ, ρ and d, but not on X .

Proof: We adapt ideas from [39]. From the definition of the functionals λq
xj ,

λq
xj

(f) =

∫

Rd

Ψq (xj − x) f (x) dx = 〈Ψq (xj − ·) , f〉L2(Rd) ,

we see that the Riesz-representer of λq
xj is given by Ψq (xj − ·). We shall use the abbrevia-

tory notations z∗ =
∑N

j=1 ajλ
q
xj and z =

∑N
j=1 ajΨq (xj − ·). Then Riesz’ theorem states

that

∥∥∥∥∥∥

N∑

j=1

ajλ
q
xj

∥∥∥∥∥∥
Y ∗

= ‖z∗‖Y ∗ = ‖z‖Y =

∥∥∥∥∥∥

N∑

j=1

ajΨq (xj − x)

∥∥∥∥∥∥
Y

.
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By the definition of the separation distance q := qX we see that

‖z‖2
L2(Rd) =

N∑

j,k=1

ajak

∫

Rd

Ψq (x− xj)Ψq (x− xk) dx

=
N∑

j=1

a2
j

∫

Rd

(Ψq (x− xj))
2 dx = ‖a‖2

2

∫

Rd

(Ψq (x))2 dx

= ‖a‖2
2

∫

Rd

q−2d

(
Ψ

(
x

q

))2

dx = ‖a‖2
2 q

−d

∫

Rd

(Ψ (x))2 dx .

We denote by zσ the function given by ẑσ = ẑχB(0,σ), where χB(0,σ) is the characteristic

function of the ball B (0, σ). Then it is easy to see that we have

‖z∗|V ‖Y ∗ = ‖zσ‖Y .

Plancherel’s theorem allows us to compute with κ := qσ, where we use Lemma 6.2.1 in the

last line

‖z − zσ‖2
L2(Rd) = C

∫

‖ω‖2≥σ

∣∣∣∣∣∣

N∑

j=1

aje
−ixT

j ω

∣∣∣∣∣∣

2 (
Ψ̂q (ω)

)2
dω

≤ C

∫

‖ω‖2≥σ

∣∣∣∣∣∣

N∑

j=1

aje
−ixT

j ω

∣∣∣∣∣∣

2 (
1 + ‖qω‖2

2

)−2ρ
dω

= Cσd

∫

‖ξ‖2≥1

∣∣∣∣∣∣

N∑

j=1

aje
−i(σxj)

T ξ

∣∣∣∣∣∣

2 (
1 + ‖qσξ‖2

2

)−2ρ
dξ

= Cσd

∫

‖ξ‖2≥1

∣∣∣∣∣∣

N∑

j=1

aje
−i(σxj)

T ξ

∣∣∣∣∣∣

2 (
1 + ‖κξ‖2

2

)−2ρ
dξ

≤ Cσd

(
2

κ2

)2ρ ∫

‖ξ‖2≥1

∣∣∣∣∣∣

N∑

j=1

aje
−i(σxj)

T ξ

∣∣∣∣∣∣

2 (
1 + ‖ξ‖2

2

)−2ρ
dξ ,

where C > 0 always denotes a generic constant, which may depend on Ψ and d, but not on
q, σ or κ. Now we have to bound the integral. We note that

∫

Rd

∣∣∣∣∣∣

N∑

j=1

aje
−i(σxT

j )ξ

∣∣∣∣∣∣

2 (
1 + ‖ξ‖2

2

)−2ρ
dξ = C

N∑

j,k=1

ajakK2ρ (σ (xj − xk))

≤ Cλmax

(
AσX,K2ρ

)
‖a‖2

2 .

Here we denote by λmax (A) the largest eigenvalue of a matrix A, and use the notations

Kβ := Cβ ‖x‖
−β+ d

2
2 K d

2
−β (x) , and AσX,K2ρ := (K2ρ (σ (xj − xk)))i,j=1,...,N ,
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where Kβ denotes a modified Bessel function of the third kind. A result from [39] yields

λmax

(
AσX,K2ρ

)
≤ K2ρ (0) +

∞∑

k=1

3d (k + 2)d−1
K2ρ (κk)

≤ K2ρ (0) +
∞∑

k=1

3d (k + 2)d−1
K2ρ (k) =: C (ρ, d)

since κ ≥ 1 and K2ρ (·) is exponentially decreasing towards infinity. By the assumption

ρ > d/4 we can further estimate

‖z − zσ‖2
L2(Rd) ≤ C

(
2

κ2

)2ρ(κ
q

)d

‖a‖2
2

≤ Cκd−4ρ ‖z‖2
L2(Rd) ≤ 1

4
‖z‖2

L2(Rd) ,

with a generic constant C > 0, which may depend on Ψ and d, but not on q, σ or κ. The

last inequality holds for κ large enough, i.e., κ > (4C)
1

4ρ−d . Finally we can apply Theorem

6.2.2 with Y = L2

(
Rd
)
, V = Bσ and Z∗ = span

{
λq

xj : 1 ≤ j ≤ N
}
. 2

6.3 Extension Operator and Native Space

We shall need a result that relates the native space norms on different domains. Recall that

without loss of generality we assume 0 ∈ Ω. First, we consider a special extension map for

scaled domains cΩ := {cx : x ∈ Ω} with a scaling parameter c > 0. We shall prove this

in a slightly more general context. For that, we proceed along the lines of [3, Section 5],

but we mainly consider the special case of full norms. We stick to the notation of [3], and

repeat their results for the simpler case ignoring Pk.

Definition 6.3.1 We call two subsets Ω and Ω̂ affine-equivalent, if there is an affine map

F : Rd → Rd such that Ω = F
(
Ω̂
)
. F has a representation as F : x 7→ L(x) + c, where

L ∈ L
(
Rd,Rd

)
is an invertible bounded linear operator and c ∈ Rd is a constant.

Remark 6.3.2 There is a bijection between the functions defined on Ω and Ω̂. We denote

corresponding functions by v : Ω → R and v̂ : Ω̂ → R, that is, v = v̂ ◦F−1 and v̂ = v ◦F .

We shall pay special attention to the relation between the (semi-)norms of corresponding

functions on Ω and Ω̂.

Theorem 6.3.3 Let Ω and Ω̂ be two affine-equivalent open subsets of Rd with Lipschitz

boundaries. Let p ∈ [1,∞] and τ ∈ N0. For any function v belonging to W τ
p (Ω), the

function v̂ = v ◦ F belongs to W τ
p

(
Ω̂
)
and vice versa. Moreover, there is a constant

C = C (d, τ, p) > 0 such that

• |v̂|W τ
p (Ω̂) = |v ◦ F |W τ

p (Ω̂) ≤ C ‖L‖τ |detL|−
1
p |v|W τ

p (Ω) ,
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• |v|W τ
p (Ω) =

∣∣v̂ ◦ F−1
∣∣
W τ

p (Ω)
≤ C

∥∥L−1
∥∥τ |detL|

1
p |v̂|W τ

p (Ω̂).

Proof: See [14], or [30, page 101] for the special case p = 2. 2

Proceeding as in [3], we can also extend the results for semi-norms to full Sobolev norms.

Corollary 6.3.4 Under the assumptions from Theorem 6.3.3, we get

‖v ◦ F‖W τ
p (Ω̂) ≤ C̃ (d, τ, p) |detL|−

1
p max

0≤k≤τ
‖L‖k ‖v‖W τ

p (Ω) , and

∥∥v̂ ◦ F−1
∥∥

W τ
p (Ω)

≤ C̃ (d, τ, p) |detL|
1
p max

0≤k≤τ

∥∥L−1
∥∥k ‖v̂‖W τ

p (Ω̂) .

Proof: We use Theorem 6.3.3 to estimate

‖v̂‖p

W τ
p (Ω̂)

=
∑

|α|≤τ

∫

Ω̂
(Dαv̂(x))p dx =

∑

k≤τ

|v̂|p
W k

p (Ω̂)

≤
∑

k≤τ

(
C(d, k, p)|detL|−

1
p ‖L‖k|v|W k

p (Ω)

)p

≤ |detL|−1
∑

k≤τ

C(d, k, p)p‖L‖pk|v|p
W k

p (Ω)

≤ |detL|−1 max
0≤k≤τ

C(d, k, p)p max
0≤k≤τ

‖L‖pk‖v‖p
W τ

p (Ω) .

Taking the p-th root yields

‖v‖W τ
p (Ω̂) ≤ |detL|−

1
p max

0≤k≤τ
C (d, k, p) max

0≤k≤τ
‖L‖k ‖v‖W τ

p (Ω) .

The second inequality follows analogously. 2

Following [3], we can extend these results to the whole Euclidean space.

Corollary 6.3.5 Under the assumptions from Theorem 6.3.3, we have

∣∣v̂ ◦ F−1
∣∣
W τ

p (Rd) ≤ C
∥∥L−1

∥∥τ |detL|
1
p |v̂|W τ

p (Rd)

∥∥v̂ ◦ F−1
∥∥

W τ
p (Rd) ≤ C̃(d, τ) |detL|

1
p max

0≤k≤τ

∥∥L−1
∥∥k ‖v̂‖W τ

p (Rd) ,

where we can also take F instead of F−1 if we replace v̂ by v.

Proof: The proof is analogous to [3, Proof of Proposition 5.2]. For ν ∈ N we apply

Theorem 6.3.3 to the pair of affine-equivalent sets B(0, ν) and F−1 (B (0, ν)). This yields

∣∣v̂ ◦ F−1
∣∣
W τ

p (B(0,ν))
≤ C (d, τ, p)

∥∥L−1
∥∥τ |detL|

1
p |v|W τ

p (F−1(B(0,ν)) ,

where C(d, τ, p) does not depend on ν ∈ N. Now we use the fact that both,

⋃

ν∈N

B(0, ν) = R
d and

⋃

ν∈N

F−1(B(0, ν)) = R
d .
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Hence we can pass to the limit ν → ∞ and get with the Theorem of Monotone Convergence

in the case p <∞ (one could also use direct calculations),

∣∣v̂ ◦ F−1
∣∣
W τ

p (Rd) ≤ C (d, τ, p)
∥∥L−1

∥∥τ |detL|
1
p |v̂|W τ

p (Rd) .

The second claim follows by a summation argument as in the proof of Corollary 6.3.4. 2

Now we can state the main extension result, which is essentially a reformulation of [3,

Proposition 5.2] for our specific situation.

Theorem 6.3.6 Let Ω̂ ⊂ Rd be a bounded domain with Lipschitz boundary. Let p ∈ [1,∞],

let τ ∈ N be such that τ >
(

d
p − d

2

)

+
. Then for any bounded domain Ω ⊂ Rd with

Lipschitz boundary and affine equivalent to Ω̂, there exists a linear extension operator

EΩ : W τ
p (Ω) →W τ

p

(
R

d
)

such that

• EΩv|Ω = v for all v ∈W τ
p (Ω)

• ‖EΩv‖W τ
p (Rd) ≤ C

(
Ω̂, d, τ, p

)
max0≤k≤τ ‖L‖k max0≤k≤τ

∥∥L−1
∥∥k ‖v‖W τ

p (Ω) .

Proof: The proof is analogous to the second half of [3, Proof of Proposition 5.2]. We use

the notation for F and L from above, and assume Ω = F (Ω̂).
We define two operators

P1 : W τ
p (Ω) →W τ

p

(
Ω̂
)
, v 7→ v ◦ F ,

P2 : W τ
p

(
R

d
)
→W τ

p

(
R

d
)
, w 7→ w ◦ F−1 .

Furthermore, we use the extension operator due to Stein [56] on the reference domain Ω̂,

EΩ̂ : W τ
p (Ω̂) →W τ

p (Rd) ,

that satisfies

• EΩ̂v̂|Ω̂ = v̂ for all v̂ ∈W τ
p

(
Ω̂
)
, and

•
∥∥EΩ̂v̂

∥∥
W τ

p (Rd) ≤ C
(
Ω̂, d, τ, p

)
‖v̂‖W τ

p (Ω̂) for all v̂ ∈W τ
p

(
Ω̂
)
.

Now we define the operator

P := P2 ◦ EΩ̂ ◦ P1 : W τ
p (Ω) →W τ

p (Rd) .

The operator P fulfills an extension property since

Pv (x) =
(
P2 ◦ EΩ̂ ◦ P1

)
v (x) =

(
EΩ̂P1v

) (
F−1 (x)

)

= (P1v)
(
F−1 (x)

)
= (v ◦ F )

(
F−1 (x)

)
= v(x)
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for almost all x ∈ Ω and all v ∈ W τ
p (Ω). The last line follows directly from the facts that

F−1(x) ∈ Ω̂ and that EΩ̂P1v = P1v almost everywhere in Ω̂.

Now we can calculate with the shortened notation u = EΩ̂P1v, applying Corollary 6.3.4

and Theorem 6.3.3,

‖Pv‖W τ
p (Rd) =

∥∥u ◦ F−1
∥∥

W τ
p (Rd)

≤ C̃ (d, τ, p) |detL|
1
p max

0≤k≤τ

∥∥L−1
∥∥k ‖u‖W τ

p (Rd)

= C̃ (d, τ, p) |detL|
1
p max

0≤k≤τ

∥∥L−1
∥∥k ∥∥(EΩ̂ ◦ P1)v

∥∥
W τ

p (Rd)

≤ C̃ (d, τ, p)
∥∥EΩ̂

∥∥ |detL|
1
p max

0≤k≤τ

∥∥L−1
∥∥k ‖P1v‖W τ

p (Ω̂)

= C̃ (d, τ, p)
∥∥EΩ̂

∥∥ |detL|
1
p max

0≤k≤τ

∥∥L−1
∥∥k ‖v ◦ F‖W τ

p (Ω̂)

≤ C (d, τ, p)
∥∥EΩ̂

∥∥ |detL|
1
p ·

· max
0≤k≤τ

∥∥L−1
∥∥k |detL|−

1
p max

0≤k≤τ
‖L‖k ‖v‖W τ

p (Ω)

= C
∥∥EΩ̂

∥∥ max
0≤k≤τ

‖L‖k max
0≤k≤τ

∥∥L−1
∥∥k ‖v‖W τ

p (Ω) .

2

We can extend this result to the case of fractional order spaces.

Corollary 6.3.7 Theorem 6.3.6 remains true for real τ > 0.

Proof: This follows directly by an operator interpolation argument. 2

We consider a reference domain Ω in Rd that is star-shaped with respect to 0 ∈ Ω and that

has a Lipschitz boundary, and as an affine map we choose F : Rd → Rd, x 7→ (1 − q)x
for a 0 < q < 1/2. This yields a simple scaling of the domain Ω to the domain F (Ω) =
(1 − q) Ω. The linear map is of the form F = L = (1 − q) Id, and since q < 1/2 it is also

invertible. We can easily compute

max
0≤k≤τ

‖L‖k = max
0≤k≤τ

(1 − q)k = 1

max
0≤k≤τ

∥∥L−1
∥∥k

= max
0≤k≤τ

(1 − q)−k =
1

(1 − q)τ
≤ 2τ .

If we now apply Theorem 6.3.6 to the sets Ω and (1 − q)Ω we get the following result.

Corollary 6.3.8 LetΩ be a star-shaped domain inRd with Lipschitz boundary, furthermore

τ > 0 and p ∈ [1,∞]. Then, for 0 < q < 1/2 there is an extension operator

E(1−q)Ω : W τ
p ((1 − q) Ω) →W τ

p

(
R

d
)

which satisfies with a constant C (Ω, d, τ, p) independent of q

• E(1−q)Ωv|(1−q)Ω = v for all v ∈W τ
p ((1 − q) Ω) , and
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•
∥∥E(1−q)Ωv

∥∥
W τ

p (Rd) ≤ C (Ω, d, τ, p) 2τ ‖v‖W τ
p ((1−q)Ω) .

For technical reasons, we shall impose another assumption on the domain Ω. This is done

only to simplify notation, see Remark 6.5.4. From now on, we restrict ourselves to domains

Ω that are star-shaped with respect to 0 ∈ Ω and that satisfy the following condition. For

all 0 ≤ q ≤ q0 we have the inclusion

(1 − 2q) Ω = Ω−2q ⊂
{
x ∈ Ω : B(x, 2q) ⊂ Ω

}
. (6.3.1)

Remark 6.3.9 The assumption (6.3.1) is satisfied for most of the standard domains, such

as balls or parallelepipeds.

Like in [65, Corollary 10.48] we can derive the following Corollary.

Corollary 6.3.10 Suppose that Φ ∈ L1

(
Rd
)
has a Fourier transform that decays alge-

braically, i.e., as
(
1 + ‖ω‖2

2

)−τ
with τ > d/2. Then NΦ

(
Ω−2qX

) ∼= W τ
2

(
Ω−2qX

)
with

equivalent norms, where the equivalence constants do not depend on 0 < qX < 1/4.

Proof: The proof is analogue to [65, Corollary 10.48]. We apply the extension operator

from Corollary 6.3.8 to the domain Ω−2qX to deduce that the extension constants are inde-

pendent of 0 < qX < 1/4. 2

We can use this Corollary 6.3.10 to prove the following Lemma. To simplify the notation,

we write abbreviately λj for λ
q
j and the like.

Lemma 6.3.11 If X ⊂ Ω−2q ⊂ Ω, we get

∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ C

∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥
W τ

2 (Ω−q)

,

where C may depend on d,Ω, τ , but not on q.

Proof: We see

λx
jλ

y
kΦ(x− y) =

∫

Rd

Ψq (x− xj)

∫

Rd

Ψq (y − xk)Φ (x− y) dydx

=

∫

Rd

∫

Rd

Ψq (x− xj) Ψq (y − xk)Φ (x− y) dydx

=

∫

Ω−q

∫

Ω−q

Ψq (x− xj)Ψq (y − xk) Φ (x− y) dydx .

We can now calculate

∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥

2

NΦ(Rd)

= cTAc ,
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and
∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥

2

NΦ(Ω−q)

= cT Ãc .

Since the entries of

Ai,j =

∫

Rd

Ψq (x− xj)

∫

Rd

Ψq (y − xk) Φ (x− y) dydx

and

(AΛ)i,j =

∫

Ω−q

Ψq (x− xj)

∫

Ω−q

Ψq (y − xk) Φ (x− y) dydx

coincide, we get with Corollary 6.3.10, which yields that NΦ (Ω−q) ∼= W τ
2 (Ω−q),

∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥

2

W τ
2 (Rd)

∼

∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥

2

NΦ(Rd)

=

∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥

2

NΦ(Ω−q)

∼

∥∥∥∥∥∥

N∑

j=1

cjλ
x
j Φ(· − x)

∥∥∥∥∥∥

2

W τ
2 (Ω−q)

.

Hence we get the claim where C is given by the extension operator norms. 2

In this proof we explicitly used the fact that the points are separated from the boundary.

6.4 Bernstein Inequality

Now we are ready to state the final result of this section, namely a Bernstein inequality. We

shall always denote by q := qX the separation distance of X .

Theorem 6.4.1 Suppose Ω ⊂ Rd is star-shaped and bounded with Lipschitz boundary, and

X ⊂ Ω−2q ⊂ Ω. Then there is a constant C > 0 such that the Bernstein inequality
∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ Cq−τ

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω)

holds for all a1, . . . , aN ∈ R.

Proof: We define the abbreviations

s (·) :=
N∑

j=1

ajΦ(· − xj) ,

ŝσ =
(
ŝχB(0,σ)

)
, and

sΛ (x) :=
N∑

j=1

ajλ
q
xj

Φ(· − x) .
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As a first step we use the result from [39, Lemma 3.3], i.e.,

‖s‖2
W τ

2 (Rd) ≤ C ‖sσ‖2
W τ

2 (Rd) ,

for σ = κ
q and a constant C independent of q. Using this, we can estimate

‖s‖2
W τ

2 (Rd) ≤ C ‖sσ‖2
W τ

2 (Rd)

≤ C

∫

‖ω‖2≤σ

∣∣∣∣∣∣

N∑

j=1

aje
−ixT

j ω

∣∣∣∣∣∣

2

Φ̂2 (ω)
(
1 + ‖ω‖2

2

)τ
dω

= C

∫

‖ω‖2≤σ

∣∣∣∣∣∣

N∑

j=1

aje
−ixT

j ω

∣∣∣∣∣∣

2

Φ̂2 (ω)

(
1 + ‖qω‖2

2

)2ρ

(
1 + ‖qω‖2

2

)2ρ

(
1 + ‖ω‖2

2

)τ
dω

≤ C

∫

‖ω‖2≤σ

∣∣∣∣∣∣

N∑

j=1

aje
−ixT

j ω

∣∣∣∣∣∣

2

Φ̂2 (ω)
(
1 + ‖qω‖2

2

)−2ρ (
1 + ‖ω‖2

2

)τ
dω

≤ C ‖(sΛ)σ‖2
W τ

2 (Rd) ≤ C ‖sΛ‖2
W τ

2 (Rd)

≤ C ‖sΛ‖2
W τ

2 (Ω−q) ,

where we used ‖ω‖2 ≤ σ = κ
qX

and Lemma 6.3.11 in the last step. Now we choose an

fσ ∈ Bσ according to Theorem 6.2.3 such that

λj (fσ) = λj (χΩ−qsΛ) = λj (sΛ) . (6.4.1)

This functionfσ has another important property.

‖fσ‖L2(Rd) ≤ ‖fσ − χΩ−qsΛ‖L2(Rd) + ‖χΩ−qsΛ‖L2(Rd)

≤ 5 distL2 (χΩ−qsΛ, Bσ) + ‖χΩ−qsΛ‖L2(Rd)

≤ 6 ‖χΩ−qsΛ‖L2(Rd) ≤ 6 ‖sΛ‖L2(Ω−q) . (6.4.2)

The stability property in the native space gives the estimate

‖sΛ‖2
W τ

2 (Ω−q) ≤ ‖f‖2
W τ

2 (Ω−q)

for any f ∈W τ
2 (Ω−q) satisfying the generalized interpolation condition

λj (f) = λj (sΛ) , 1 ≤ j ≤ N .

As a final ingredient we use a Bernstein inequality for bandlimited functions on the whole

Rd [37],

‖fσ‖W τ
2 (Rd) ≤ στ ‖fσ‖L2(Rd) for all fσ ∈ Bσ .
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Putting these things together yields with equation (6.4.2) the estimate

‖s‖2
W τ

2 (Rd) ≤ C ‖sΛ‖2
W τ

2 (Ω−q) ≤ C ‖fσ‖2
W τ

2 (Ω−q)

≤ C ‖fσ‖2
W τ

2 (Rd) ≤ Cσ2τ ‖fσ‖2
L2(Rd)

≤ Cσ2τ ‖sΛ‖2
L2(Ω−q) .

Direct evaluation of the ‖·‖L2
-norm yields

‖sΛ‖2
L2(Ω−q) =

∫

Ω−q




N∑

j=1

ajλ
x
j Φ(y − x)




2

dy

=

∫

Ω−q




N∑

j=1

aj

∫

Rd

Ψq (x− xj) Φ (y − x) dx




2

dy

=

∫

Ω−q




N∑

j=1

aj

∫

Rd

Ψq (x− y) Φ (x− xj) dx




2

dy , x 7→ y − x+ xj

=

∫

Ω−q




∫

Rd

Ψq (x− y)

N∑

j=1

ajΦ(x− xj) dx




2

dy .

Nowwe can use Cauchy-Schwarz’ inequality to manipulate the last expression, which gives

∫

Ω−q

(∫

Rd

Ψq (x− y) s (x) dx

)2

dy =

∫

Ω−q

(∫

B(y,q)
Ψq (x− y) s (x) dx

)2

dy

≤ ‖Ψq‖2
L∞(Rd)

∫

Ω−q

(∫

B(y,q)
s (x) dx

)2

dy

≤ ‖Ψq‖2
L∞(Rd)

∫

Ω−q

(∫

B(y,q)
|s (x)| · 1dx

)2

dy

≤ ‖Ψq‖2
L∞(Rd)

∫

Ω−q

(√∫

B(y,q)
|s (x)|2 dx

√∫

B(y,q)
1dx̃

)2

dy

= ‖Ψq‖2
L∞(Rd)

∫

Ω−q

(∫

B(y,q)
|s (x)|2 dx

∫

B(y,q)
1dx̃

)
dy

≤ C ‖Ψq‖2
L∞(Rd) q

d

∫

Ω−q

∫

B(y,q)
|s (x)|2 dxdy

≤ C ‖Ψq‖L∞(Rd) q
d

∫

Ω−q

∫

Ω
χB(0,q) (x− y) |s (x)|2 dxdy

≤ C ‖Ψq‖2
L∞(Rd) q

d

∫

Ω

∫

Ω−q

χB(0,q) (x− y) |s (x)|2 dydx .
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Putting all the things together we get with Fubini’s Theorem and the substitution x−y 7→ z
in the third line:

‖s‖2
W τ

2 (Rd) = Cσ2τ ‖Ψq‖2
L∞(Rd) q

d

∫

Ω
|s (x)|2

(∫

Ω−q

χB(0,q) (x− y) dy

)
dx

≤ Cσ2τ ‖Ψq‖2
L∞(Rd) q

d

∫

Ω
|s (x)|2

(∫

Rd

χB(0,q) (x− y) dy

)
dx

= Cσ2τ ‖Ψq‖2
L∞(Rd) q

d

∫

Ω
|s (x)|2

(∫

Rd

χB(0,q) (z) dz

)
dx

= Cσ2τ ‖Ψq‖2
L∞(Rd) q

d

∫

Ω
|s (x)|2

(∫

Rd

χB(0,q) (z) dz

)

︸ ︷︷ ︸
qd

dx

≤ Cσ2τ ‖Ψq‖2
L∞(Rd) q

2d

∫

Ω
|s (x)|2 dx .

Finally we can use the fact that ‖Ψq‖L∞(Rd) ≈ q−d to get the desired result

‖s‖2
W τ

2 (Rd) ≤ Cσ2τ ‖s‖2
L2(Ω)

≤ Cq−2τ ‖s‖2
L2(Ω) .

2

We can easily derive the following corollary.

Corollary 6.4.2 Suppose Ω ⊂ Rd is star-shaped and X ⊂ Ω, then we have for all

a1, . . . , aN ∈ R the estimate
∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ Cq−τ

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω2q)

.

6.5 Interpolation

If sf,X :=
∑N

j=1 ajΦ(· − xj) is the interpolant with respect to the points from X to a

function f ∈ W τ
2 (Ω), we can show that the norms ‖sf,X‖L2(Ω2q) and ‖sf,X‖L2(Ω) are

equivalent if the fill distance of X in Ω is sufficiently small.

Theorem 6.5.1 Under the assumptions from above there is an h0 (f) such that for all sX,f

associated to sets X with fill distance hX,Ω ≤ h0 (f) the inequalities

‖sf,X‖L2(Ω) ≤ ‖sf,X‖L2(Ω2q) ≤ C ‖sf,X‖L2(Ω)

hold.

Remark 6.5.2 Please note that h0 (f) depends on f and is therefore not known a pri-

ori. However this estimate indicates that for all “sufficiently dense” sets X the norms

‖sf,X‖L2(Ω) and ‖sf,X‖L2(Ω2q) are comparable.



6.5. INTERPOLATION 87

Proof: The first inequality is trivial. For the second one, we apply the normal sampling

inequalities to derive

‖EΩsf,X − EΩf‖L2(Ω2q) ≤ c1h
τ
X,Ω2q ‖EΩsf,X − EΩf‖W τ

2 (Ω2q)

≤ c1h
τ
X,Ω2q ‖EΩ (sf,X − f)‖W τ

2 (Ω2q)

≤ c1 ‖EΩ‖hτ
X,Ω2q ‖sf,X − f‖W τ

2 (Ω)

≤ C1 (Ω)hτ
X,Ω2q ‖f‖W τ

2 (Ω) .

Analogously we have

‖sf,X − EΩf‖L2(Ω2q) ≤ C2 (Ω)hτ
X,Ω2q ‖f‖W τ

2 (Ω) .

The triangle inequality now yields

‖sf,X − EΩsf,X‖L2(Ω2q) ≤ ‖sf,X − EΩf‖L2(Ω2q) + ‖EΩsf,X − EΩf‖L2(Ω2q)

≤ (C1 (Ω) + C2 (Ω))hτ
X,Ω2q ‖f‖W τ

2 (Ω) .

First we point out that

hX,Ω2q ≤ 4hX,Ω .

Since ‖f − s‖L2(Ω) ≤ chτ
X,Ω ‖f‖W τ

2 (Ω) → 0 for hX,Ω → 0 we find a h0 (f,Ω) such that

∣∣∣‖f‖L2(Ω) − ‖sf,X‖L2(Ω)

∣∣∣ ≤ 1

2
‖f‖L2(Ω) for all X with hX,Ω ≤ h0 (f,Ω) .

This implies ‖f‖L2(Ω) ≤ 2‖sf,X‖L2(Ω). We therefore conclude that

‖sf,X‖L2(Ω) > 0 if f 6= 0 .

This allows us to find an h1 (f,Ω) such that

(C1 (Ω) + C2 (Ω))hτ
X,Ω2q ‖f‖W τ

2 (Ω) ≤
1

2
‖sf,X‖L2(Ω) ,

for all sets X with hX,Ω ≤ h1 (f,Ω). Combining these two inequalities yields

‖sf,X − EΩsf,X‖L2(Ω2q) ≤ ‖sf,X‖L2(Ω)

for all sets X with hX,Ω ≤ max {h0 (f,Ω) , h1 (f,Ω)}. In the end we get

‖sf,X‖L2(Ω2q) ≤ ‖sf,X − EΩsf,X‖L2(Ω2q) + ‖EΩsf,X‖L2(Ω2q)

≤ (1 + ‖EΩ‖) ‖sf,X‖L2(Ω)

for all point sets X with hX,Ω ≤ max {h0 (f,Ω) , h1 (f,Ω)}. 2

Theorem 6.5.1 indicates that the assumptions in Theorem 6.4.1 are not sharp. If we combine

Corollary 6.4.2 and Theorem 6.5.1, we immediately get
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Corollary 6.5.3 Let the fill distance of X ⊂ Ω be sufficiently small and define

sf,X(·) =
∑N

j=1 ajΦ(· − xj), where AΦ,Xa = f and f ∈ W τ
2 (Ω). Then there is a

constant h0 (f) > 0 such that for hX,Ω ≤ h0 (f) we get

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ Cq−τ

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω)

.

Proof: Corollary 6.4.2 yields

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
W τ

2 (Rd)

≤ Cq−τ

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω2q)

.

Using Theorem 6.5.1 we get

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω2q)

≤ C

∥∥∥∥∥∥

N∑

j=1

ajΦ(· − xj)

∥∥∥∥∥∥
L2(Ω)

.

Combining these results yields the claim. 2

Unfortunately, we can not give a precise condition on the fill distance to ensure the last

result.

Remark 6.5.4 Careful inspection of the proofs shows that the assumption (6.3.1) can be

replaced by the less restrictive condition

X ⊂
{
x ∈ Ω : B (x, 2q) ⊂ Ω

}
,

which does not assume any scaling property of Ω (see Definition 4.3.1). This shows that we

can allow more general domains Ω.



Chapter 7

Stationary Weak Data

In the spirit of [47] this chapter deals with weak recovery of functions from weak function

spaces. The main difficulty is that we cannot use point values as data for the reconstruction,

since they might not be well defined in weak spaces. Like in [47], we shall use convolution-

type data of the form

λj (u) =

∫

Ω
K (x− xj)u (x) dx (7.0.1)

to build a sampling operator for weak data. Here X = {x1, . . . , xN} ⊂ Ω is a discrete set

of points, and K : Rd → R is called a test kernel. Unlike in [47] we shall use stationary

data, i.e., the support of the test kernel K(·, ·) shall be scaled with the mesh-norm of X in

Ω. This implies that λj(f) is some weighted local mean of f . This is a connection to Finite
Volume Methods. In the usual Finite Volume Method, one simply chooses K(·, xj) ≡ 1
on suppK(·, xj). The analysis of this special case has been done in [64], and we shall

generalize results from [64] in this chapter.

The main improvement compared to [47] is, that the local data of the form (7.0.1) allows us

to use only those functionals that are supported in Ω. In [47] one has to use blurred domains

Ω̃ instead of Ω.

We shall treat both recovery methods, the symmetric and the unsymmetric method. In [47]

the later method is called unsymmetric local Petrov Galerkin Method because it is a major

step toward the analysis of kernel based meshless methods for solving partial differential

equations. We shall present error bounds and convergence rates for both, the symmetric

and the unsymmetric method. The convergence proof of the unsymmetric methods uses the

results from Chapter 6 to get appropriate stability estimates. The first step, however, is to

derive sampling inequalities for the local data (7.0.1). To assure that the sampling operator

SΛ = (λ1, . . . , λN )T
contains enough information we have to make certain assumptions on

the kernelK. To be precise we shall impose the following conditions onK.

1.
∫
ΩK (x− xj) dx = 1 for all xj ∈ X ,

2. supp(K (· − xj)) =: Vj ⊂ Ω ,

3. c1hX,Ω ≤ diam (Vj) =: kj ≤ c2hX,Ω, and

89
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4. ‖K (· − xj)‖Lp(Ω) ≤ Ck
−d/q
j ≤ Ch

−d/q
X,Ω , 1

p + 1
q = 1 .

Roughly speaking,K (· − xj) should be a good approximation to the delta distribution δxj .

We point out that especially the second assumption is different from the situation in [47],

since we shall deal with stationary testing. This means that the support of our test kernel

is scaled with the mesh-norm hX,Ω. The first step now is to show that kernels with these

properties exist. We shall show that all appropriately scaled mollifiers, see [65] for instance

for a definition, satisfy the conditions.

Lemma 7.0.5 Assume Ψ : Rd → R satisfies

1. supp (Ψ) = B (0, 1) ,

2. supx∈B(0,1) Ψ(x) = C , and

3.
∫
B(0,1) Ψ (x) dx = 1 .

Now we scale Ψ by a parameter δ > 0 via

Ψδ (·) = δ−dΨ
( ·
δ

)
.

Then, by definition Ψ = Ψ1. Under these conditions, for
1
p + 1

q = 1 we have

ω (d)−1/p δ−d/q ≤ ‖Ψδ (·)‖Lp(B(0,δ)) ≤ Cω (d)1/p δ−d/q ,

where ω (d) denotes the volume of the unit ball in Rd, and the constant C comes from

Condition 2.

Proof:

∫

Rd

|Ψδ (x)|p dx = δ−dp

∫

Rd

∣∣∣Ψ
(x
δ

) ∣∣∣
p
dx

= δ−dp

∫

B(0,δ)

∣∣∣Ψ1

(x
δ

) ∣∣∣
p

︸ ︷︷ ︸
≤Cp

dx

≤ δ−dpCp

∫

B(0,δ)
1dx = Cpω (d) δ−dp+d = Cpω (d) δd(1−p) .

Here, the constant C is defined as in Assumption 2 of Lemma 7.0.5 by

C := sup
x∈B(0,δ)

∣∣∣Ψ1

(x
δ

)∣∣∣ .

Now, since 1
q + 1

p = 1 implies 1 − p = −p/q, we have the bound

‖Ψδ (·)‖p
Lp(B(0,δ)) ≤ Cpω (d) δ−dp/q.
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Extracting the p-th root yields the second inequality.
The first one follows directly from Hölder’s inequality since

1 =

∫

B(0,δ)
Ψδ (x) dx ≤

∫

B(0,δ)
|Ψδ (x)| dx ≤

∫

B(0,δ)
|Ψδ (x)| · 1dx

≤ δd/qω (d)
1
p ‖Ψδ (x)‖Lp(B(0,δ)) .

Multiplying by δ−d/qω (d)−1/p
gives the first inequality. 2

If we now consider the case that Vj is contained in some ball B with radius δ = chX,Ω,

without loss of generality B = B (0, δ), this lemma shows that any mollifier scaled by a

multiple of hX,Ω satisfies our assumptions on the kernel.

7.1 Local Estimates

As in Chapter 4, we first obtain estimates on local domains D ⊂ Ω and use a covering

argument to get global results. We assume a domain D that is star-shaped with respect

to a ball Br (xc), and that is contained in a ball BR (xc). In this case we know [38] that

D satisfies an interior cone condition as well. We again denote the associated chunkiness

parameter with

γ =
δD
ρmax

,

where ρmax = sup {ρ : D is star-shaped with respect to a ball of radius ρ}, and δD denotes

the diameter of D.

7.1.1 Norming Set Argument

Essentially following [64], we need a polynomial reproduction of degree k with respect to

a discrete set X = {x1, . . . , xN} ⊂ D, i.e., a family of functions
{
a

(α)
j : j = 1, . . . , N

}

satisfying

Dαq (x) =

N∑

j=1

a
(α)
j (x) q (xj)

for every α ∈ Nd
0 with |α| ≤ k, all x ∈ D and all q ∈ πk (D). To bound the norm of the

reproduction coefficients
{
a

(α)
j : j = 1, . . . , N

}
, we can apply the rather general norming

set approach [26] explained in Section 3.4. To do so, one has to show bounded invertibility

for the actual sampling operator. This operator is defined by

T : πk

(
R

d
)
→ R

N with T (p) = (λ1 (p) , . . . , λN (p))T ,

where the functionals λj are defined by (7.0.1).
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Lemma 7.1.1 Let D ⊂ Rd be a compact domain that satisfies an interior cone condition

with angle θ and radius r > 0. Suppose D is covered by subregions Vj , i.e., D ⊂ ∪N
j=1Vj .

Suppose that every ball B (x0, h) ⊂ D contains at least one Vj . Then, provided that

h ≤ 1

C
· r sin θ

4k2 (1 + sin θ)
, (7.1.1)

where the constant C = C (K) > 0 depends only on the kernelK, the mapping

T : πk

(
Rd
)
→ RN is injective. The operator norm is bounded from below by

‖T (p)‖∞ = max
1≤j≤N

|λj (p)| ≥ 1

2
‖p‖L∞(D)

, p ∈ πk

(
R

d
)
.

Proof: Suppose p ∈ πk (D) with ‖p‖∞ = 1 is given. Then there exists a point x0 ∈ D with

|p (x0)| = 1. For this point we can choose a cone C (x0) with angle θ and radius r > 0 that

is completely contained in D. By the essentially same argument as in [64, Lemma 4.8] we

find a volume Vj , such that

Vj ⊆ B (y, h) ⊆ C (x0) ⊆ D ,

with y = x0 + h
sin θξ, and h ≤ r sin θ

1+sin θ . Moreover, using Markov’s inequality [64, Lemma

4.8], we have the bound

|p (x0) − p (x)| ≤ h · 2k2 (1 + sin θ)

r sin θ
, x ∈ Vj .

Now we can estimate as follows

|p (x0) − λj (p)| =
∣∣∣
∫

Ω
K (x, xj) p (x0) dx−

∫

Ω
K (x, xj) p (x) dx

∣∣∣

≤
∫

Ω
|K (x, xj)| · |p (x0) − p (x)| dx

≤
∫

Ω
|K (x, xj)| dx · ‖p (x0) − p‖L∞(Vj)

≤ C · h2k2 (1 + sin θ)

r sin θ

≤ 1

2
,

where the constant C comes from the condition ‖K (x, xj)‖L1(Ω) ≤ C. This implies

λj (p) ≥ 1
2 ‖p‖L∞(D) for this particular j. 2

An important observation is that one has used only those functionals whose associated ker-

nels have support inD ⊂ Ω. Hence, we are in an analogous situation to [64]. This is a huge

advantage of these stationary methods in contrast to the situation in [47].

Remark 7.1.2 Only those Vj’s with Vj ⊂ D are used to derive Lemma 7.1.1.



7.1. LOCAL ESTIMATES 93

As stated in the following lemma from [64], we get a stable polynomial reproduction.

Lemma 7.1.3 SupposeD is compact and satisfies a cone condition with angle θ and radius

r > 0. Then, for every |α| ≤ k and every x ∈ D there exist numbers a
(α)
1 (x) , . . . , a

(α)
N (x)

such that for every p ∈ πk

(
Rd
)

• ‖Dαp‖L∞(D) ≤
(

2k2

r sin θ

)|α|
‖p‖L∞(D) ,

• Dαp (x) =
∑N

j=1 λj (p) a
(α)
j (x),

• ∑N
j=1

∣∣∣a(α)
j (x)

∣∣∣ ≤ 2
(

2k2

r sin θ

)|α|
,

holds.

7.1.2 Local Polynomial Approximation

In this section we essentially repeat the arguments from [38], but extend them in the way that

we deal with error representation for approximation by averaged Taylor polynomials [11]

not in the L∞-norm, but in a more general Lp-norm. The Taylor polynomials are defined

in Section 3.3.2. To deal with fractional Sobolev spaces, we need a version of the Bramble-

Hilbert Lemma (see Lemma 3.3.11) that applies to u ∈W k+s
p (D) with 0 < s ≤ 1. To start

with, we have the following estimate, which is the Lp-analogon to [38, Lemma 2.6].

Lemma 7.1.4 Suppose p ≥ 1 and k ≥ 1. For all u ∈ W k
p (D) and P ∈ πk

(
Rd
)
, the

residual of the averaged Taylor-approximation is bounded by
∥∥∥Rk+1u

∥∥∥
Lp(D)

≤ Ck,d,p,γδ
k
D |u− P |W k

p (D) . (7.1.2)

Proof: We follow [38, Proof of Lemma 2.6]. We use a decomposition of the form

Rk+1u = Rk+1 (u− P ) = Rk (u− P ) +
(
Qk −Qk+1

)
(u− P ) ,

where P ∈ πk

(
Rd
)
denotes an arbitrary polynomial. By the triangle inequality and the

Bramble-Hilbert Lemma 3.3.11, we obtain∥∥∥Rk+1u
∥∥∥

Lp(D)
≤ Ck,d,p,γδ

k
D |u− P |W k

p (D) +
∥∥∥
(
Qk −Qk+1

)
(u− P )

∥∥∥
Lp(D)

. (7.1.3)

The second term can be bounded as follows. By the definition of Qk, using the fact that

maxφ ≤ Cdiam (B)−d =: Cρ−d and the identity
∑

|α|d=k
1
α! = dk

k! we get
∥∥∥
(
Qk −Qk+1

)
(u− P )

∥∥∥
p

Lp(D)
≤

≤
∫

D




∑

|α|=k

∫

Bρ

φ (y) ‖x− y‖k
2 |Dα (u− P ) (y) |
α!

dy




p

dx

≤ Cvol (D) δkp
D ρ

−dpd
kp

k!p

(
max
|α|=k

∫

Bρ

|Dα (u− P ) (y)| dy
)p

≤ Cδd
Dδ

kp
D ρ

−dpd
kp

k!p

(
max
|α|=k

∫

Bρ

|Dα (u− P ) (y)| dy
)p

. (7.1.4)



94 CHAPTER 7. STATIONARY WEAK DATA

From [38, Proof of Lemma 2.6] we see that for any α ∈ Nd
0 with |α| = k

∫

Bρ

|Dα (u− P ) (y)| dy ≤ ω (d)1−1/p ρd−d/p |u− P |W k
p (D) .

Inserting this into the estimate (7.1.4) and using δD/ρ ≤ 2γ, we arrive at the estimate

∥∥∥
(
Qk −Qk+1

)
(u− P )

∥∥∥
Lp(D)

≤ Cω (d)1−1/p 2d/pdk

k!
γd/pδk

D |u− P |W k
p (D) .

Consequently, combining the inequality above with (7.1.3) yields (7.1.2). 2

Now we can treat the fractional case as in [38, Prop. 2.7].

Proposition 7.1.5 Let 0 < s ≤ 1. If u ∈W k+s
p (D), then

∥∥∥Rk+1u
∥∥∥

Lp(D)
≤ Ck,d,p,γδ

k+s
D |u|W k+s

p (D) . (7.1.5)

Proof: We follow [38, Proof of Proposition 2.7]. The case s = 1 is a consequence of

Lemma 3.3.11, so we may assume that s < 1. Let P = Qk+1u ∈ πk

(
Rd
)
. As in [39,

equation (7)] we have for all α ∈ Nd
0 with |α| = k

DαQk+1u (x) = Q1Dαu (x) =

∫

Bρ

φ (y)Dαu (y) dy ∈ R .

Since
∫
Bρ
φ (y) dy = 1, we note that

∫

D

∣∣∣Dαu (x) −DαQk+1u (x)
∣∣∣
p
dx =

∫

D

∣∣∣∣∣

∫

Bρ

φ (y) (Dαu (x) −Dαu (y)) dy

∣∣∣∣∣

p

dx.

Now we can compute as follows,

∫

D

(∫

Bρ

|φ (y)| · |x− y|s+d/p |Dαu (x) −Dαu (y)|
|x− y|s+d/p

dy

)p

dx

≤ Cρ−dpδsp+d
D

∫

D

(∫

Bρ

|Dαu (x) −Dαu (y)|
|x− y|s+d/p

dy

)p

dx .

We may use Hölder’s inequality, which yields

∫

D

(∫

Bρ

1 · |D
αu (x) −Dαu (y)|
|x− y|s+d/p

dy

)p

dx

≤ C

∫

D



ρd/q

(∫

Bρ

|Dαu (x) −Dαu (y)|
|x− y|sp+d

p

dy

)1/p



p

dx

≤ Cρdp/q

∫

D

∫

D

( |Dαu (x) −Dαu (y)|
|x− y|s+d/p

)p

dydx .
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This implies
∫

D

∣∣∣Dαu (x) −DαQk+1u (x)
∣∣∣
p

≤ Cρ−dp+dp/qδsp+d
D

∫

D

∫

D

(
|Dαu (x) −Dαu (y)|

|x− y|s+d/p

)p

dydx.

Now we can use δD = 2γρ to derive ρ−dp+dp/qδd
D = (2γ)d ρ

dp
“

−1+ 1
p
+ 1

q

”

= (2γ)d
, which

gives
∫

D

∣∣∣Dαu (x) −DαQk+1u (x)
∣∣∣
p
dx

≤ C (2γ)d δsp
D

∫

D

∫

D

(
|Dαu (x) −Dαu (y)|

|x− y|s+d/p

)p

dydx .

If we sum over all α ∈ Nd
0 with |α| = k, we find with P = Qk+1u

|u− P |p
W k

p (D)
≤ Cp

d,p,γδ
sp
D
∑

|α|=k

∫

D

∫

D

|Dαu (x) −Dαu (y)|p

|x− y|d+sp
dydx.

The summed double integral on the right hand is just |u|p
W k+s

p (D)
. Taking the pth root of

both sides, we obtain

|u− P |W k
p (D) ≤ Cd,p,γδ

s
D |u|W k+s

p (D) .

Lemma 7.1.4 yields the result. 2

Having the applications in mind, we also need a generalization of Proposition 7.1.5 to

derivatives. Following [38, Cor. 2.8], such estimates can be easily obtained using the

identity

DαQk+1 = Qk−|α|Dα

from [11].

Corollary 7.1.6 Let 0 < s ≤ 1. For u ∈W k+s
p (D) we have

∥∥∥Dαu−DαQk+1u
∥∥∥

Lp(D)
≤ Ck,n,p,γδ

k+s−|α|
D |u|W k+s

p (D) ,

provided that |α| < k and p > 1.

Proof: Using the identity DαQk+1 = Qk−|α|Dα this result follows directly from Proposi-

tion 7.1.5 and the obvious bound

|Dαu|
W

k+s−|α|
p (D)

≤ |u|W k+s
p (D) .

2

Now we have the main ingredients to show a local sampling inequality. We point out that,

having the applications to recovery fromweak data in mind, we assumed only low regularity

of the function u. Hence, we may handle convolution-type data of functions in the sense of

(7.0.1), even if point-evaluations are not well-defined, that is, the functions to be recovered

are not continuous.
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7.1.3 Local Sampling Inequality

Following [38, 67, 64], we can combine the local polynomial reproduction with the approx-

imation error estimates for polynomials to get the following result.

Theorem 7.1.7 Let k be a positive integer, 1 ≤ p < ∞, 0 < s ≤ 1, and let α be a multi-

index satisfying k > |α|.
Suppose D ⊆ B (xc, R) is star-shaped with respect to B (xc, r) and covered with volumes

Vj such that for every x0 ∈ D the ball B (x0, h) ⊂ D with radius h contains at least one of

these volumes Vj . Let δD denote the diameter of D. If h satisfies condition (7.1.1), then we

have the bound

‖Dαu‖Lp(D) ≤ C (1 + δD/h)
d/p δ

k+s−|α|
D |u|W k+s

p (D)

+ Cδ
−|α|+d/p
D max

1≤j≤N
|λj (u)|

for every u ∈W k+s
p (D) with a constant C = C (|α| , k, d, p, θ).

Proof: Corollary 7.1.6 yields
∥∥∥Dαu−DαQk+1u

∥∥∥
Lp(D)

≤ Cδ
k+s−|α|
D |u|W k+s

p (D) .

We have for every P ∈ πk

(
Rd
)
and all x ∈ D

|DαP (x)| =
∣∣∣

N∑

j=1

λj (P ) a
(α)
j (x)

∣∣∣

=
∣∣∣

N∑

j=1

[λj (P ) − λj (u) + λj (u)] a
(α)
j (x)

∣∣∣

≤
N∑

j=1

∣∣∣a(α)
j (x)

∣∣∣
∫

Vj

|K (y, xj)| · |P (x) − u (x)| dy

+
N∑

j=1

∣∣∣a(α)
j (x)

∣∣∣ · |λj (u)|

≤ C

(
2k2

r sin θ

)|α|
max

1≤j≤N
‖K (·, xj)‖Lq(Vj)

· ‖u− P‖Lp(D)

+ C

(
2k2

r sin θ

)|α|
max

1≤j≤N
|λj (u)|

≤ C

(
2k2

r sin θ

)|α|(
h−d/p ‖u− P‖Lp(D) + max

1≤j≤N
|λj (u)|

)

with 1
p + 1

q = 1. Specifying P = Qk+1u yields

|DαP (x)| ≤ C

(
2k2

r sin θ

)|α|(
Ch−d/pδk+s

D |u|W k+s
p (D) + max

1≤j≤N
|λj (u)|

)
.
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From this we get
∥∥∥DαQk+1u

∥∥∥
Lp(D)

≤

≤ Cvol (D)
1
p

(
2k2

r sin θ

)|α|(
Ch−d/pδk+s

D |u|W k+s
p (D) + max

1≤j≤N
|λj (u)|

)

≤ C

(
2k2

r sin θ

)|α|
δ
d/p
D

(
h−d/pδk+s

D |u|W k+s
p (D) + max

1≤j≤N
|λj (u)|

)

≤ C

(
2k2

r sin θ

)|α|(
(δD/h)

d/p δk+s
D |u|W k+s

p (D) + δ
d/p
D max

1≤j≤N
|λj (u)|

)

≤ C

(
2k2δD
r sin θ

)|α|
(δD/h)

d/p δ
k+s−|α|
D |u|W k+s

p (D) +

+ C

(
2k2δD
r sin θ

)|α|
δ
d/p−|α|
D max

1≤j≤N
|λj (u)| .

At this point we use the following chain of inequalities

1 ≤ γ ≤ δD
r

≤ 2
R

r
=

1

sin (θ/2)

from [64] to see that

(
2k2δD
r sin θ

)|α|
≤ C (θ, α, k, d) ≤ C .

Using the triangle inequality we finally obtain

‖Dαu‖Lp(D) ≤
∥∥∥Dαu−DαQk+1u

∥∥∥
Lp(D)

+
∥∥∥DαQk+1u

∥∥∥
Lp(D)

≤ Cδ
k+s−|α|
D |u|W k+s

p (D) + 2C (δD/h)
d/p δ

k+s−|α|
D |u|W k+s

p (D)

+ 2Cδ
−|α|+d/p
D max

1≤j≤N
|λj (u)|

≤ C
(
1 + (δD/h)

d/p
)
δ
k+s−|α|
D |u|W k+s

p (D)

+ Cδ
−|α|+d/p
D max

1≤j≤N
|λj (u)| .

2

The previous result is also true for Sobolev semi-norms.

Corollary 7.1.8 Under the assumptions of Theorem 7.1.7 we find

|u|
W

|α|
p (D)

≤ Ck,d,p,|α|
(
1 + (δD/h)

d/p
)
δ
k+s−|α|
D |u|W k+s

p (D)

+ Cδ
−|α|+d/p
D max

1≤j≤N
|λj (u)|

for all u ∈W k
p (Ω).
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Proof: Since #
{
β ∈ Nd

0 : |β| = |α|
}

=

(|α| + d− 1

d− 1

)
= O

(
|α|d−1

)
we find that

|u|
W

|α|
p (D)

≤
(|α| + d− 1

d− 1

)
max
|β|=|α|

∥∥∥Dβu
∥∥∥

Lp(D)

≤ Cd,q,|α| max
|β|=|α|

∥∥∥Dβu
∥∥∥

Lp(D)

≤ Ck,d,p,q,|α|
(
1 + (δD/h)

d/p
)
δ
k+s−|α|
D |u|W k+s

p (D)

+ Cδ
−|α|+d/p
D max

1≤j≤N
|λj (u)| .

2

Now we may use a covering argument to derive global estimates.

7.2 Global Estimates

Let us suppose our global region Ω is bounded and satisfies an interior cone condition with

radius Rmax and angle θ. Let h = hX,Ω be the fill distance of the discrete set X ⊆ Ω.

Essentially following [67, 38], we shall again use the covering Ω =
⋃

t∈Th
Dt described

in Theorem 3.3.10. Please note that this construction allows us to cancel the term δD/h,
which appeared in the local estimates. After these preparatory steps, we are in the position

to state and prove the main result of this section.

Theorem 7.2.1 Suppose Ω is bounded and satisfies an interior cone condition with radius

r and angle θ. Let k be a positive integer, 0 < s ≤ 1, 1 ≤ p <∞, and let α be a multi-index

satisfying k > |α|. Suppose that every ball B (x0, h) ⊂ Ω of radius h ≤ Q (k, θ)Rmax

contains at least one volume Vj . Then for u ∈W k+s
p (Ω),

|u|
W

|α|
p (Ω)

≤ Chk+s−|α| |u|W k+s
p (Ω) + C̃h−|α| max

1≤j≤N
|λj (u)| . (7.2.1)

Proof: We find

|u|
W

|α|
p (Ω)

=




∑

|β|=|α|

∫

Ω

∣∣∣Dβu (x)
∣∣∣
p
dx




1/p

≤




∑

t∈Th

∑

|β|=|α|

∫

Dt

∣∣∣Dβu (x)
∣∣∣
p
dx




1/p

=




∑

t∈Th

|u|p
W

|α|
p (Dt)




1/p

≤




∑

t∈Th

(
Chk+s−|α| |u|W k+s

p (Dt)
+ C̃h

d
p
−|α|

max
1≤j≤N

|λj (u)|
)p




1
p

≤




∑

t∈Th

(
Chk+s−|α| |u|W k+s

p (Dt)

)p





1
p

+ (#Th)
1
p C̃h

d
p
−|α|

max
1≤j≤N

|λj (u)| ,
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where #Th denotes the number of elements in Th. As in [38] using again Theorem 3.3.10

we get

∑

t∈Th

|u|p
W k+s

p (Dt)
≤M1 |u|p

W k+s
p (Ω)

.

Combining the results yields

|u|
W

|α|
p (Ω)

≤ CM
1/p
1 hk+s−|α| |u|W k+s

p (Ω)

+C̃ (#Th)
1
p h

−|α|+ d
p max

1≤j≤N
|λj (u)| .

According to Theorem 3.3.10 with R = Q (k, θ)h one finds #Th < Ch−d, and therefore

|u|
W

|α|
p (Ω)

≤ Chk+s−|α| |u|W k+s
p (Ω) + C̃h−|α| max

1≤j≤N
|λj (u)| .

2

We can apply these results in the framework of optimal recovery.

7.3 Error Estimates for Optimal Recovery

In this section we shall show briefly how our results can be used to derive error estimates

in the framework of generalized optimal recovery. A more detailed overview can be found

in [58] and [65]. We start with a short introduction to kernel-based optimal recovery. From

now on, we assume that Ω ⊂ Rd is bounded by a Lipschitz boundary and satisfies an

interior cone condition with radius r and angle θ. Here, Φ : Rd → R is a positive definite

translation invariant kernel. We assume that the kernel Φ satisfies

Φ̂ (ω) ∼
(
1 + ‖ω‖2

2

)−τ
.

This means thatΦ is the reproducing kernel of the Sobolev spaceW τ
2 (Ω)with an equivalent

norm. For general functionals from the dual space we can derive an easy representation

using the reproducing property of the kernel. If λ ∈ (W τ
2 (Ω))∗, its Riesz-representer Rλ

takes the form Rλ (x) = λΦ(· − x). This can be seen by

Rλ (x) = (Rλ,Φ(· − x))W τ
2 (Ω) = λΦ(· − x) .

For a given f ∈W τ
2 (Ω) and the functionals λj from the previous section we can formulate

the smoothed optimal recovery problem

min
s∈W τ

2 (Ω)

N∑

j=1

|λj (s− f)|2 + ν ‖s‖2
W τ

2 (Ω) , (7.3.1)

where ν ≥ 0 is called the smoothing parameter. We note that again the special case ν = 0
corresponds to finding a generalized interpolant, i.e., a function sf ∈ W τ

2 (Ω) that satisfies
the generalized interpolation conditions

λj (f) = λj (sf ) for all j = 1, . . . , N .
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It is well known [65] that there always exists a solution s
(ν)
f ∈ span

{
λx

j Φ(· − x)
}
to the

optimization problem (7.3.1). The coefficients a ∈ RN can be found by solving the linear

system

(AΦ,Λ + νId) a = fΛ ,

where

AΦ,Λ := (λjλkΦ(· − ·))j,k=1,...,N , fΛ = (λ1 (f) , . . . , λN (f))T .

Furthermore, it is known [65] that sf := s
(0)
f is a best approximation, which implies

‖sf‖W τ
2 (Ω) ≤ ‖f‖W τ

2 (Ω) .

Now we are prepared to formulate our error estimate for the smoothed optimal recovery

problem (7.3.1).

Theorem 7.3.1 Under the conditions from above we find a positive constant C = C (Ω) >
0 such that for all f ∈ W τ

2 (Ω), all ν ≥ 0 and all discrete sets X = {x1, . . . , xN} ⊂ Ω
with sufficiently small fill distance h,

∥∥∥f − s
(ν)
f

∥∥∥
L2(Ω)

≤ C
(
hτ +

√
ν
)
‖f‖W τ

2 (Ω) ,

where s
(ν)
f denotes the solution to (7.3.1).

Proof: As in [67] we derive the following two inequalities

∥∥∥s(ν)
f

∥∥∥
W τ

2 (Ω)
≤ ‖f‖W τ

2 (Ω) ,

max
1≤j≤N

∣∣∣λj

(
f − s

(ν)
f

)∣∣∣ ≤ √
ν ‖f‖W τ

2 (Ω) .

Now we can apply our sampling inequality (7.2.1) to obtain

∥∥∥f − s
(ν)
f

∥∥∥
L2(Ω)

≤ Chτ
∥∥∥f − s

(ν)
f

∥∥∥
W τ

2 (Ω)
+ C̃ max

1≤j≤N

∣∣∣λj

(
f − s

(ν)
f

)∣∣∣

≤ Chτ

(
‖f‖W τ

2 (Ω) +
∥∥∥s(ν)

f

∥∥∥
W τ

2 (Ω)

)
+ C̃ max

1≤j≤N

∣∣∣λj

(
f − s

(ν)
f

)∣∣∣

≤ C
(
hτ +

√
ν
)
‖f‖W τ

2 (Ω) .

2

Of course we can also couple ν and τ to derive a sampling order.

Corollary 7.3.2 For the special choice ν = h2τ we even find optimal order, i.e.,

∥∥∥∥f − s
(h2τ)
f

∥∥∥∥
L2(Ω)

≤ Chτ ‖f‖W τ
2 (Ω) .

Now we can apply this result in the framework of unsymmetric weak recovery.
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7.4 Unsymmetric Weak Recovery

In this section we show how suitable sampling inequalities can be used to derive upper

bounds for a weak unsymmetric recovery process from [47]. We briefly recall this process.

Since we are going to apply a non-symmetric method, we have to distinguish carefully

between the tRial and the teSt side. As outlined in Section 2.3.1 we shall denote the test

kernel with S : Rd × Rd → R and the discretization byXs = {x1, . . . , xNs} ⊂ Ω with the

associated fill distance hs . On the tRial side we denote the kernel with R : Rd × Rd → R

and the discretization with Yr = {y1, . . . , yNr} ⊂ Ω with fill distance hr. According to

[45, Chapters 3.4 and 3.5] we use weak data of the form given in (2.1.7), where we replace

K by S, namely

λj (u) =

∫

Ω
S (x, xj)u (x) dx , for xj ∈ Xs , (7.4.1)

where the kernel S : Rd × Rd → R needs to fulfill the following properties,

1.
∫
Ω S (x, xj) dx = 1 for all xj ∈ Xs,

2. supp(S (·, xj)) = Vj , diam (Vj) = δVj ≈ hs,

3. ‖S (·, xj)‖Lp(Ω) ≤ Cδ
−d/q
Vj

≈ h
−d/q
s , 1

p + 1
q = 1 .

Under these conditions we may apply Theorem 7.2.1, i.e., there is a sampling inequality of

the form

|u|
W

|α|
p (Ω)

≤ Chτ+d/p−|α|
s |u|W k+s

p (Ω) + C̃h−|α|
s max

1≤j≤N
|λj (u)|

for all u ∈ W τ
2 (Ω) and all discrete test sets Xs. Now we consider the following prob-

lem. An unknown function f ∈ W 1
2 (Ω) has to be recovered approximately from its

data (λ1 (f) , . . . , λN (f))T
. From the previous chapters we know that there is a good

but unknown approximation. It is given by the best approximation from the trial space

sf ∈ VR,Yr = span {R (· − yj) |yj ∈ Yr} to the function f ∈ W 1
2 (Ω). In Chapter 8 we

obtain under certain conditions an error estimate of the form

‖f − sf‖L2(Ω) ≤ hr ‖f‖W 1
2 (Ω) , (7.4.2)

showing linear approximation order, which is optimal [48]. Unfortunately, this best appro-

ximation is in general numerically unavailable. The idea from [47] is to solve the system

find sr ∈ VR,Yr : λj (f − sr) = 0 for all 1 ≤ j ≤ Ns

to produce an approximation. Since this, however, is an unsymmetric kernel method, we

first have to prove that this system is solvable. To do so, we proceed along the lines of [47],

which we briefly outlined in Section 2.3.1. We assume an inverse inequality of the form

‖s‖W 1
2 (Ω) ≤ Cγ (Yr) ‖s‖L2(Ω) for all s ∈ VR,Yr .

Unfortunately, the value of γ (Yr) is in general not known. There is a result in this direction
in Chapter 6, namely if R is a radial basis function with algebraic smoothness τ > d/2 and
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if Yr is separated from the boundary then γ (Yr) ≈ q−τ
r . However, we can always make

sure that the test-meshnorm is small enough to stabilize the reconstruction, i.e., we shall

assume

hsγ (Yr) ≤
1

2C
,C > 1 . (7.4.3)

Now we can prove the full-rank of the unsymmetric reconstruction of a function f ∈
W 1

2 (Ω) by an approximation sr ∈ VR,Yr .

Lemma 7.4.1 Under the condition (7.4.3) the system

λj (f − sr) = 0 , for all 1 ≤ j ≤ Ns . (7.4.4)

is of full rank.

Proof: We have for sr =
∑Nr

ℓ=1 aℓΦ(· − yℓ) the equivalence

λj (f − sr) = 0 for all 1 ≤ j ≤ Ns ⇔

λj (f) =

Nr∑

ℓ=1

aℓλj (Φ (· − yℓ)) for all 1 ≤ j ≤ Ns . (7.4.5)

If we introduce the notation

A := (Aℓ,j) 1≤ℓ≤Nr
1≤j≤Ns

:=

(∫

Ω
R (x− yℓ)S (x− xj) dx

)

1≤ℓ≤Nr
1≤j≤Ns

∈ R
Nr×Ns ,

F :=




λ1 (f)
...

λNs (f)


 ∈ R

Ns ,

equation (7.4.5) leads to the unsymmetric linear system

Aa = F . (7.4.6)

Now we can compute

‖ur‖L2(Ω) ≤ C

(
hs ‖ur‖W 1

2 (Ω) + max
1≤j≤Ns

|λj (ur)|
)

≤ C

(
hsγ (Xr) ‖ur‖L2(Ω) + max

1≤j≤Ns

|λj (ur)|
)

≤ 1

2
‖ur‖L2(Ω) + C max

1≤j≤Ns

|λj (ur)| .

This yields

‖ur‖L2(Ω) ≤ 2C max
1≤j≤Ns

|λj (ur)| .
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Therefore, max1≤j≤Ns |λj (ur)| = 0 implies ‖ur‖L2(Ω) = 0. Since ur ∈ VR,Yr we have

ur ≡ 0. Thus rank of A = #Yr ≤ #Xs, which means that the system is of full rank. 2

Equation (7.4.2) implies that we can theoretically solve the system (7.4.4) to some pre-

scribed accuracy δ(r, s). This is due to the fact sf is a good candidate for a solution, and

by choosing hs small enough we can achieve every prescribed value δ(r, s). Practically we
can apply some residual minimization techniques to find an approximate solution, such that

the residual is smaller than δ(r, s). We denote this approximate solution by ur,s ∈ VR,Xr ,

i.e., we have

|λj (f − ur,s)| ≤ δ(r, s) for all 1 ≤ j ≤ Ns .

The exact error bound is given in the following theorem.

Theorem 7.4.2 We denote by ur,s ∈ VR,Yr the approximate solution of the system (7.4.4)

to the accuracy δ(r, s). Then we have an error bound of the form

‖f − ur,s‖L2(Ω) ≤ C

(
2hs +

1

C1
hr

)
‖f‖W 1

2 (Ω) + δ(r, s) .

If we choose δ(r, s) =
(
2hs + 1

C1
hr

)
‖f‖W 1

2 (Ω), we get a final bound of the form

‖f − ur,s‖L2(Ω) ≤ C

(
2hs +

1

C1
hr

)
‖f‖W 1

2 (Ω) .

Proof: Let us denote by ur the unknown best trial approximation. Then we can compute

1

C
‖f − ur,s‖L2(Ω) ≤ hs ‖f − ur,s‖W 1

2 (Ω) + max
1≤j≤Ns

|λj (f − ur,s)|

≤ hs ‖f‖W 1
2 (Ω) + hs ‖ur,s‖W 1

2 (Ω) + max
1≤j≤Ns

|λj (f − ur,s)|

≤ hs ‖f‖W 1
2 (Ω) + hs ‖ur‖W 1

2 (Ω) +

+hs ‖ur,s − ur‖W 1
2 (Ω) + max

1≤j≤Ns

|λj (f − ur,s)|

≤ 2hs ‖f‖W 1
2 (Ω) + hsγ (Xr) ‖ur,s − ur‖L2(Ω) + max

1≤j≤Ns

|λj (f − ur,s)|

≤ 2hs ‖f‖W 1
2 (Ω) +

1

2C1
‖ur,s − ur‖L2(Ω) + max

1≤j≤Ns

|λj (f − ur,s)|

≤ 2hs ‖f‖W 1
2 (Ω) +

1

2C1

(
‖ur,s − f‖L2(Ω) + ‖ur − f‖L2(Ω)

)
+

+ max
1≤j≤Ns

|λj (f − ur,s)|

≤ 2hs ‖f‖W 1
2 (Ω) +

1

2C1
‖ur,s − f‖L2(Ω) +

1

2C
hr ‖f‖W 1

2 (Ω)

+ max
1≤j≤Ns

|λj (f − ur,s)| .

This shows

‖f − ur,s‖L2(Ω) ≤ C

(
2hs +

1

2C1
hr

)
‖f‖W 1

2 (Ω) + max
1≤j≤Ns

|λj (f − ur,s)| ,
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giving the expected error bound

‖f − ur,s‖L2(Ω) ≤ C

(
2hs +

1

2C1
hr

)
‖f‖W 1

2 (Ω) + δ(r, s) .

The second inequality follows from the special choice for δ(r, s). 2

This generalizes the results of [47] in two ways. Our error analysis does not assume f to be

known on a slightly larger domain Ω̃. Furthermore, we obtain results for the L2-norm, not

for negative order Sobolev norms.



Chapter 8

Galerkin Methods

In this chapter we shall combine the well-known theory of variational problems with the

idea of sampling inequalities. Galerkin methods are a powerful tool for solving elliptic

partial differential equations. We shall extend the theory given in [62] and show a new

application in the theory of weak recovery [47]. Unfortunately, the error estimates in [62]

are given in the W 1
2 (Ω)-norm, and they require the solution u to be in a native space of a

radial basis function, which automatically forces u to be continuous. In contrast, we shall

give error estimates in the L2-norm, hence we do not assume u to be continuous.

8.1 Model Problem: Elliptic Partial Differential Equations

We shall concentrate on problems of the following form. Let Ω be a bounded domain with

boundary ∂Ω ∈ C1. We shall consider partial differential equations of the form

−
d∑

i,j=1

∂

∂xi

(
ai,j (x)

∂u

∂xj (x)

)
+ c (x)u (x) = f (x) , x ∈ Ω

d∑

i,j=1

ai,j |∂Ω (x)
∂u (x)

∂xj
νi (x) + h (x)u (x) = g (x) , x ∈ ∂Ω , (8.1.1)

where we assume ai,j , c ∈ L∞ (Ω), f ∈ L2 (Ω), ai,j |∂Ω, h ∈ L∞ (∂Ω) and g ∈ L2 (∂Ω)
for i, j = 1, . . . , d. Further, we denote by ν the outward pointing unit normal vector to the

boundary ∂Ω.

The weak formulation of (8.1.1) is given in terms of the bilinear form

apde (u, v) :=

∫

Ω




d∑

i,j=1

ai,j
∂u (x)

∂xj

∂v (x)

∂xi
+ cuv



 dx+

∫

∂Ω
huvdS (8.1.2)

and the linear form

Fpde (v) :=

∫

Ω
fvdx+

∫

∂Ω
gvdS (8.1.3)
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for a function v ∈ W 1
2 (Ω). The matrix Apde (x) := (ai,j (x)) is assumed to be uniformly

elliptic on Ω, i.e., there is a constant γpde such that

γpde ‖α‖2
2 ≤ αTA (x)α

for all α ∈ Rd and all x ∈ Ω. This gives rise to the variational problem

find u ∈W 1
2 (Ω) : apde (u, v) = Fpde (v) for all v ∈W 1

2 (Ω) . (8.1.4)

If further c, h ≥ 0, and if at least one of them is uniformly bounded from zero on a subset

of nonzero measure of Ω or ∂Ω, we know that apde (·, ·) : W 1
2 (Ω) × W 1

2 (Ω) → R is

strictly coercive, and that F : W 1
2 (Ω) → R is continuous. We point out that the boundary

conditions are part of the weak formulation. This unfortunately excludes Dirichlet boundary

conditions at the moment.

8.2 A Norming Set Approach for Variational Problems

Since our analysis does not depend on the specific form of the variational problem in Section

8.1.1, we can concentrate on the essential features of (8.1.4). We consider the problem

find u ∈W τ
2 (Ω) : a (u, v) = f (v) for all v ∈W τ

2 (Ω) , (8.2.1)

for a : W τ
2 (Ω) ×W τ

2 (Ω) → R being continuous, i.e., there is a constantKa > 0, s.t.

|a (u, v)| ≤ Ka ‖u‖W τ
2 (Ω) ‖v‖W τ

2 (Ω) for all u, v ∈W τ
2 (Ω) , (8.2.2)

and strictly coercive, i.e., there is a constant γ > 0, s.t.

a (v, v) ≥ γ ‖v‖2
W τ

2 (Ω) for all v ∈W τ
2 (Ω) , (8.2.3)

and f being a continuous linear form f : W τ
2 (Ω) → R. In our applications, we shall

concentrate on the cases τ = 1 or τ > d/2. This models exactly the situation of [62]. The

Lax-Milgram theorem [16] yields that (8.2.1) has a unique solution ua,f ∈ W τ
2 (Ω). Since

we shall use techniques from the finite-element literature (see for instance [10]) we have

to make some common assumptions. These are satisfied in the model-problem (8.1.1), but

have to be stated for the general setting. We assume that the adjoined problem

find wg ∈W τ
2 (Ω) : a∗ (wg, ψ) := a (ψ,wg)

= (g, ψ)L2(Ω) (8.2.4)

has a unique solution for all ψ ∈ W τ
2 (Ω) and g ∈ L2 (Ω) . Since we want to get some

convergence orders we have to impose that the solutionwg ∈W σ
2 (Ω) lies in a continuously

embedded subspaceW σ
2 (Ω) ⊂W τ

2 (Ω), i.e., σ > τ and satisfies the regularity assumption

‖wg‖W σ
2 (Ω) ≤ C ‖g‖W τ

2 (Ω) . (8.2.5)

Now we can apply a standard duality argument [10] to derive the estimate

‖u− un‖L2(Ω) ≤ Ka ‖u− un‖W τ
2 (Ω) sup

g∈L2(Ω)

infφ∈V ‖wg − φ‖W τ
2 (Ω)

‖g‖L2(Ω)

,
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where un is the solution to the finite dimensional problem (8.2.6) given below. This tech-

nique using the adjoined problem is known as Aubin-Nitsche approach.

As a discretization we have to choose a sequence of n-dimensional subspaces Vn ⊂W τ
2 (Ω)

with bases
{
φ

(n)
j

}

j=1,...,n
. The space Vn can be the space VΦ,X for instance. Under the

assumptions (8.2.2) and (8.2.3) the finite dimensional variational problem

find un ∈ V s.t. a (un, vn) = f (vn) for all vn ∈ Vn (8.2.6)

is uniquely solvable for all f ∈ (W τ
2 (Ω))∗. The Cea Lemma says that the solution of

(8.2.6) is nearly optimal.

Lemma 8.2.1 Let un be a solution to (8.2.6) and u a solution to (8.2.1), then we have

‖u− un‖W τ
2 (Ω) ≤ C inf

vn∈Vn

‖u− vn‖W τ
2 (Ω) .

Proof: See [30, Lemma 1.26]. 2

Since we shall use weak data of the form a
(
·, φ(n)

j

)
we have to ensure that this data contains

enough information. We shall even show that this data induces a norm on Vn. First we

define a projection map by

P : Rn → Vn

u = (u1, . . . , un)T 7→ un :=
n∑

j=1

ujφ
(n)
j . (8.2.7)

This is obviously an isomorphism between Rn and V . We have to assume from now on that

the norm of its inverse is bounded, i.e.,
∥∥P−1

∥∥ =: ΓVn,φ < ∞. The constant ΓVn,φ is in

some important cases explicitly known. We consider two equivalent norms on Vn, namely

the usual ‖ · ‖W τ
2
-norm and the norm ‖ · ‖a :=

√
a(·, ·) induced by the bilinear form a(·, ·).

The equivalence constants are given by

γ‖u‖2
W τ

2 (Ω) ≤ ‖u‖2
a := a(u, u) ≤ K‖u‖2

W τ
2 (Ω) for all u ∈ Vn , (8.2.8)

whereK and γ are given in equations (8.2.2) and (8.2.3).

Lemma 8.2.2 Let
{
φ

(n),1
j

}

j=1,...,n
be an orthonormal base of Vn with respect to the a(·, ·)

inner product, and let
{
φ

(n),2
j

}

j=1,...,n
be an orthonormal base of Vn with respect to the

usual (·, ·)W τ
2 (Ω) inner product. We define

Pi : (Rn, ‖ · ‖2) →
(
Vn, ‖ · ‖W τ

2 (Ω)

)

u = (u1, . . . , un)T 7→ u(n) :=
n∑

j=1

ujφ
(n),i
j ff̈or i = 1, 2 . (8.2.9)

Then
√
γ ≤ ‖P−1

1 ‖ ≤
√
K and ‖P−1

2 ‖ = 1.
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Proof: We can calculate as follows. Let u
(n)
i :=

∑n
j=1 ujφ

(n),i
j .

‖P−1
2 ‖ := sup

un
2∈Vn\{0}

‖P−1
2 (un

2 )‖2

‖un
2‖W τ

2 (Ω)
=

‖u‖2

‖un
2‖W τ

2 (Ω)

Since the φ’s are orthonormal we can conclude

‖un
2‖2

W τ
2 (Ω) =




n∑

j=1

ujφ
(n),2
j ,

n∑

j=1

ujφ
(n),2
j





W τ
2 (Ω)

=
n∑

j,k=1

ujuk

(
φ

(n),2
j , φ

(n),2
j

)

W τ
2 (Ω)

= ‖u‖2
2 .

Hence ‖P−1
2 ‖ = 1. In the first case we can analogously derive

‖P−1
1 ‖ := sup

u
(n)
1 ∈Vn\{0}

‖P−1
1 (u

(n)
2 )‖2

‖u(n)
2 ‖W τ

2 (Ω)

=
‖u‖2

‖un
1‖W τ

2 (Ω)
.

Now we use the equivalence (8.2.8) to deduce

γ‖u‖2
2 = γ‖u(n)

1 ‖2
a ≤ ‖u(n)

1 ‖2
W τ

2 (Ω) ≤ K‖u(n)
1 ‖2

a = K‖u‖2
2 .

Hence
√
γ ≤ ‖P−1

1 ‖ ≤
√
K. 2

We denote the dual space of Vn by V ∗
n . The basis

{
φ

(n)
j

}

j=1,...,n
of Vn defines via the

Riesz-map a finite subset of V ∗
n ,

Z := {a (·, φ1) , . . . , a (·, φn)} ⊂ V ∗ .

This set Z gives rise to a sampling operator

T : Vn → T (Vn) ⊂ R
n

u(n) 7→
(
z
(
u(n)

))

z∈Z

taking the form

T
(
u(n)

)
=




a
(
u(n), φ1

)

...

a
(
u(n), φn

)


 := f ∈ R

n . (8.2.10)

We collect some important properties of the operator T .

Lemma 8.2.3 T is injective and the norm of its inverse on the range of T is bounded by

ΓV,φ/γ, where ΓV,φ is a constant depending both, on the space V and on the arbitrary basis

{φ} of V .
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Proof: T is injective by the Lax-Milgram lemma, since we know that (8.2.6) is uniquely

solvable. Therefore T : Vn → T (Vn) is bijective, and we can compute
∥∥T−1

∥∥. To do so,

we define u := P−1un and find

γ ‖u‖2 ·
∥∥∥u(n)

∥∥∥
W τ

2 (Ω)
= γ ·

∥∥∥P−1u(n)
∥∥∥

2
·
∥∥∥u(n)

∥∥∥
W τ

2 (Ω)
≤ γ

∥∥P−1
∥∥ ·
∥∥∥u(n)

∥∥∥
2

W τ
2 (Ω)

≤ γ · ΓV,φ ·
∥∥∥u(n)

∥∥∥
2

W τ
2 (Ω)

≤ ΓV,φ · a
(
u(n), u(n)

)

= ΓV,φ ·
n∑

i=1

uia
(
u(n), φi

)
= ΓV,φ ·

n∑

i=1

uifi

≤ ΓV,φ · ‖u‖2 · ‖f‖2 .

This implies

∥∥T−1
∥∥ := sup

R∋f 6=0

∥∥T−1f
∥∥

W τ
2 (Ω)

‖f‖
Rn

=
‖un‖W τ

2 (Ω)

‖f‖
Rn

≤ ΓV,φ

γ
.

Please note that we have chosen the ‖·‖2-norm as the norm on Rn. 2

The constant ΓV,φ is known in the two cases of Lemma 8.2.2.

Remark 8.2.4 We get
√
γ ≤ ΓV,φ1 = ‖P−1

1 ‖ ≤
√
K and ΓV,φ2 = 1.

Now we can invoke the usual general result from the norming set theory (see Theorem

3.4.2) to get the following result.

Theorem 8.2.5 For every Ψ ∈ V ∗ there exists a vector b = b (Ψ) ∈ Rn depending only on

Ψ, such that for every v ∈ V

Ψ (v) =
n∑

j=1

bj (Ψ) zj =
n∑

j=1

bj (Ψ) a(v, φj) with

‖b (Ψ)‖(Rn)∗ ≤ ΓV,φ

γ
‖Ψ‖V ∗ .

In the following sections we shall always assume that V can be continuously embedded

into the space of continuous functions, V ⊂ C (Ω). Therefore point evaluations are well

defined on V , and we may consider Ψ = δy ∈ V ∗ for any y ∈ Ω.

8.3 Sampling Inequality for Galerkin Data

From now on we need some technical assumptions. We shall assume a radial basis function

Φ that is regular enough to satisfy

Φ̂ (ω) ∼
(
1 + ‖ω‖2

2

)−ξ
for a ξ > d/2 ,
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i.e., Φ is the reproducing kernel in a Hilbert space that is norm-equivalent to the classical

Sobolev spaceW ξ
2 (Ω). As usual, the approximation quality of the space

VΦ,X := span {Φ(· − xj) : xj ∈ X}

depends on the choice of the discrete set X . It is well-known [65] that the error estimates

will depend on the fill distance

hX,Ω := h := sup
x∈Ω

min
xj∈X

‖x− xj‖2 .

However, we shall as well need a stability assumption of the form

‖s‖
W ξ

2 (Ω)
≤ C (VΦ,X , ξ) ‖s‖L2(Ω) for all s ∈ VΦ,X . (8.3.1)

The constant C (VΦ,X , ξ) exists because of the norm-equivalence on finite dimensional

spaces. As shown in Chapter 6, there is strong evidence that the equivalence constant will

depend mainly on the separation distance

qX = min
xi,xj∈X
xi 6=xj

1

2
‖xi − xj‖2 .

Theorem 8.2.5 indicates that we have to bound the norm of the point evaluation functional.

This is done by Sobolev’s inequality [16]

|δx (s)| = |s (x)| ≤ ‖s‖
W β

2 (Ω)

for some β > d/2. Now we can use an inverse estimate to establish

‖s‖
W β

2 (Ω)
≤ C (VΦ,X , β, ξ) ‖s‖W ξ

2 (Ω)
,

where C (VΦ,X , β, ξ) might be obtained from C (VΦ,X , 0, ξ) by an operator-interpolation

argument (see, e.g., [11]). These two inequalities give

|δx (s)| ≤ C (VΦ,X , β, ξ) ‖s‖W ξ
2 (Ω)

. (8.3.2)

As we already mentioned, C (VΦ,X , β, ξ) depends mainly on the separation distance q :=
qX , so we shall simply refer to it as C (q). We point out that this finally yields a bound of

the form

v (x) =
n∑

j=1

bj (x) zj with (8.3.3)

‖b (v)‖(Rn)∗ ≤ ΓV,φ

γ
C (q) . (8.3.4)

In the following we use the notation

‖a (u, φ)‖ℓ2(n) :=




n∑

j=1

a (u, φj)
2




1/2

for an arbitrary vector φ = (φ1, . . . , φn)T
.
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Theorem 8.3.1 Assume that the solution wg of the adjoined problem (8.2.4) fulfills wg ∈
W σ

2 (Ω), where we have to impose σ = ξ. Let {φj}j=1,...,n be a basis of VΦ,X . Then there

exists a constant C > 0 with the following property. There is a constant ho > 0 such that

for all sets X ⊂ Ω with fill distance h ≤ h0 and all functions u ∈W τ
2 (Ω) the inequality

‖u‖L2(Ω) ≤ C
(
hσ−τ ‖u‖W τ

2 (Ω) + C (q) ΓV,φγ−1 ‖a (u, φ)‖ℓ2(n)

)

holds.

Proof: We find for an arbitrary p ∈ VΦ,X and any u ∈W τ
2 (Ω)

‖u‖L2(Ω) ≤ ‖u− p‖L2(D) + ‖p‖L2(Ω)

≤ ‖u− p‖L2(Ω) + vol (Ω)1/2 |δx̃p| ,

where x̃ ∈ Ω is the extremum of p, i.e., |p(x̃)| = maxx∈Ω |p(x)|. This point exists, since Ω
is compact. Now we can use the reproduction formula from Theorem 8.2.5 to get

‖u‖L2(Ω) ≤ ‖u− p‖L2(Ω) + C

∣∣∣∣∣∣

n∑

j=1

bj (x̃) a (p, φj)

∣∣∣∣∣∣

≤ ‖u− p‖L2(Ω) + C

∣∣∣∣∣∣

n∑

j=1

bj (x̃) (a (u− p, φj) + a (u, φj))

∣∣∣∣∣∣
≤ ‖u− p‖L2(Ω) + C ‖b (x̃)‖2 ‖a (u− p, φ)‖ℓ2(n)

+ C ‖b (x̃)‖2 · ‖a (u, φ)‖ℓ2(n) .

Since a (·, ·) is coercive we can choose p̃ ∈ VΦ,X , such that

a (u, φj) = a (p̃, φj) for all 1 ≤ j ≤ n .

Since the φj’s form a basis for VΦ,X , the estimate reduces to

‖u‖L2(Ω) ≤ ‖u− p̃‖L2(Ω) + ΓV,φγ−1C (q) ‖a (u, φ)‖ℓ2(n) ,

where we used the bound for the point-evaluation functional from (8.3.2). We can use the

Aubin-Nitsche approach to get

‖u− p̃‖L2(Ω) ≤ Ka ‖u− p̃‖W τ
2 (Ω) sup

g∈L2(Ω)

infφ∈VΦ,X
‖wg − φ‖W τ

2 (Ω)

‖g‖L2(Ω)

.

Since our stability assumption yields wg ∈W σ
2 (Ω) ⊂ C (Ω) we can apply the well-known

estimates for interpolation in the native space [65] to get

inf
φ∈VΦ,X

‖wg − φ‖W τ
2 (Ω) ≤ Chσ−τ ‖wg‖W σ

2 (Ω) ≤ Chσ−τ ‖g‖L2(Ω) .

The Cea Lemma 8.2.1 yields again

‖u− p∗‖W τ
2 (Ω) ≤ C ‖u‖W τ

2 (Ω) .
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Putting things together we find the claim. 2

We can use Remark 8.2.4 to present an explicit bound on the constant in front of the discrete

term.

Corollary 8.3.2 Under the conditions from Theorem 8.3.1 and the additional requirement

that
{
φ

(n),1
j

}n

j=1
is an orthonormal base of VΦ,X with respect to the a(·, ·) inner product,

we get

‖u‖L2(Ω) ≤ C
(
hσ−τ ‖u‖W τ

2 (Ω) + C (q)
√
Kγ−1 ‖a (u, φ)‖ℓ2(n)

)
. (8.3.5)

If we additionally require that
{
φ

(n),2
j

}n

j=1
is an orthonormal base of Vn with respect to

the (·, ·)W τ
2 (Ω) inner product, then we get

‖u‖L2(Ω) ≤ C
(
hσ−τ ‖u‖W τ

2 (Ω) + C (q) γ−1 ‖a (u, φ)‖ℓ2(n)

)
. (8.3.6)

The discrete term seems to be rather unintuitive. But it has an interpretation for orthonormal

bases.

Remark 8.3.3 We assume ξ > max τ, d/2. If
{
φ

(n),1
j

}n

j=1
is an orthonormal base of VΦ,X

with respect to the a(·, ·) inner product, we get that
‖a (u, φ)‖ℓ2(n) −→ ‖u‖a for hX,Ω → 0 ,

where ‖ · ‖a is equivalent to the energy norm.

Proof: Since Φ is the reproducing kernel of the Sobolev spaceW ξ
2 (Ω) with ξ > τ we get

by appropriate sampling inequalities that VΦ,X becomes dense inW τ
2 (Ω) for hX,Ω → 0.

Since the
{
φ

(n),1
j

}n

j=1
are orthonormal, the claim follows by the Parseval equation. 2

Let us clarify the main result of Theorem 8.3.1 a bit further. We consider again the weak

formulation of a Laplace equation with Neumann boundary conditions, i.e.,

a (u, v) =

∫

Ω
∇u (x) ∇v (x) dx for u, v ∈W 1

2 (Ω) .

Then the sampling operator consists of smoothed derivative data

λj (f) =

∫

Ω
∇f (x) ∇φj (x) dx .

Another approach is to apply the sampling inequality directly to the partial differential equa-

tion (8.1.1). If Ω ⊂ R3 satisfies the conditions from above, and if f satisfies the regularity

assumptions, we know that the solution u ∈ W 2
2 (Ω) satisfies the regularity assumption

with σ = ξ = 2 > 3/2. We construct an approximate solution uX ∈ VΦ,X by solving

a (u, φj) = a (uX , φj) for all 1 ≤ j ≤ n .

Now we can apply our result to u− uX ∈W 2
2 (Ω). This yields

‖u− uX‖L2(Ω) ≤ Ch1 ‖u‖W 1
2 (Ω) .

To get error estimates in higher norms we use results from [62].
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8.4 Error Estimates for Best Approximation

From now on we shall assume that Ω ⊂ Rd with d ≤ 3 is bounded with a Lipschitz

boundary and satisfies an interior cone condition with radius r and angle θ. We shall give an

application of the sampling inequality derived in the previous section. We shall consider the

problem to find the best approximation sf ∈ VΦ,X = span {Φ(· − xj) |xj ∈ X} to a given
function f ∈W 1

2 (Ω). We restrict ourselves to the case ξ = 2. The best approximation in a

Hilbert space is characterized by the orthogonality equations

〈f − sf , s〉W 1
2 (Ω) = 0 for all s ∈ VΦ,X .

To apply the results from the previous section we define the bilinear form

a : W 1
2 (Ω) ×W 1

2 (Ω) → R

a (u, v) := 〈u, v〉W 1
2 (Ω) .

Obviously, a(·, ·) is symmetric, continuous andW 1
2 (Ω)-coercive. Further, the orthogonali-

ty equation can be interpreted as a variational problem,

find sf s.t. a (sf , s) = a (f, s) =: f (s) for all s ∈ VΦ,X .

Now we are able to apply the results from the previous section to this special bilinear form.

Proposition 8.4.1 Let Ω ⊂ Rd with d ≤ 3 be a bounded domain satisfying an interior cone

condition. Under the conditions from Theorem 8.3.1 we find for the best approximation sf

from VΦ,Ω,X to a function f ∈W 1
2 (Ω) the following error estimate

‖f − sf‖L2(Ω) ≤ hX,Ω ‖f‖W 1
2 (Ω) .

Proof: To do our error analysis we have to check whether the problem

find wg s.t. a∗ (wg,Ψ) = a (wg,Ψ) = 〈wg,Ψ〉W 1
2 (Ω)

= 〈g,Ψ〉L2(Ω) for all Ψ ∈W 1
2 (Ω)

possesses a solution wg ∈W 1
2 (Ω) for all g ∈ L2 (Ω). The existence of a solution is a direct

consequence of the Lax-Milgram theorem [10], since we deal with a symmetric coercive

bilinear form. Now we have to check the higher regularity, which we need for our estimates.

To see this, we compute, provided u, v are smooth enough, as follows.

〈u, v〉W 1
2 (Ω) = 〈u, v〉L2(Ω) + 〈∇u,∇v〉L2(Ω)

= 〈u, v〉L2(Ω) − 〈u,∆v〉L2(Ω) +

∫

∂Ω
∇vuνdS ,

where ν denotes the outward pointing normal vector. This calculation shows that wg would

solve the Helmholtz equation. We are free to choose a boundary condition. In this case the

natural boundary conditions [24]

−∆wg + wg = g in Ω

∇wgν = 0 on ∂Ω



114 CHAPTER 8. GALERKIN METHODS

are useful. Standard regularity estimates for elliptic partial differential equations [24] say

that a solution wg to the variational problem lies in W 2
2 (Ω), and that it depends continu-

ously on the data, i.e., ‖wg‖W 2
2 (Ω) ≤ C ‖g‖L2(Ω). Now we can apply the results from the

previous section to get the estimate

‖u‖L2(Ω) ≤ hX,Ω ‖u‖W 1
2 (Ω) + C (Ψ)

C (Ω)

γ
‖a (u, φ)‖2(Ω) .

If we insert the residual u = f − sf , we find

‖f − sf‖L2(Ω) ≤ hX,Ω ‖f‖W 1
2 (Ω) .

2

This shows that one can use the techniques from the finite element literature also in the

context of meshless kernel methods. Furthermore, the sampling inequality provides also

error bounds, even if we do not solve the linear system with the stiffness matrix exactly.

8.5 Sampling Inequality with Polynomials and Galerkin Data

This section is completely independent from the previous ones. In this section, we shall

choose V to be a polynomial space, to be more precise, V = πk (Ω) for some k ∈ N. This

means that we do a kind of generalized finite element theory with πk (Ω). To derive an

upper bound for ‖δy‖V ∗ we first have to work locally on nice “small “ domains. The first

step in deriving upper bounds is to consider only local regions D that are star-shaped with

respect to a ball. A bounded domain Ω bounded region that is star-shaped with respect to a

ball satisfies a uniform interior cone condition.

In the case that V consists of polynomials, a bound on ‖δy‖ can be found in [64]. If

V = πk

(
Rd
)
is the space of all algebraic polynomials of degree not exceeding k, we know

[38]

‖Dαp‖L∞(D) ≤
(

2k2

r sin (θ)

)|α|
‖p‖L∞(D) ,

for arbitrary p ∈ V . Unfortunately, this estimate does not use the W τ
2 -norm. Therefore

we have to modify this result. To do so, we use a result from [11, Lemma 4.5.3], i.e., for

1 ≤ p, q ≤ ∞ and 0 ≤ m ≤ ℓ we have

‖v‖W ℓ
p(D) ≤ Cρ

m−ℓ+d/p−d/q
D ‖v‖W m

q (D) for all v ∈ πk

(
R

d
)
,

where ρD = diam (D) < 1 denotes the diameter of the domain D.

Lemma 8.5.1 If D is star-shaped with respect to a ball with radius r, for every α ∈ Nd
0

and every real number β > d/2 and τ ≤ β,

|δyDαp| ≤ C

(
2k2

r sin (θ)

)|α|
ρτ−β
D ‖p‖W τ

2 (D) ,

for all p ∈ V = πk (D).
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Proof: Putting the inequalities together, yields for β > d/2 and any y ∈ D

|δyDαp| ≤ ‖Dαp‖L∞(D) ≤
(

2k2

r sin (θ)

)|α|
‖p‖L∞(D)

≤
(

2k2

r sin (θ)

)|α|
‖p‖

W β
2 (D)

≤ C

(
2k2

r sin (θ)

)|α|
ρτ−β
D ‖p‖W τ

2 (D) ,

where we used Sobolev’s inequality in the fourth step. 2

Since we are going to do an L2-theory, we shall assume α = 0.
We assume that the domain D is compact, i.e., bounded and closed, so that for any polyno-

mial p ∈ πk

(
Rd
)
there is a point x̃ ∈ D such that

max
x∈D

|p (x)| = |p (x̃)| = |δx̃p| .

Proposition 8.5.2 Assume that the solutionwg of the adjoined problem (8.2.4) fulfillswg ∈
W σ

2 (Ω), where we have to impose σ = ξ. Let
{
φDj
}

j=1,...,n
be an orthonormal basis of

πτ (D) with respect to theW τ
2 -inner product. Then there is a constant C > 0 such that for

all u ∈W τ
2 (D) we have

‖u‖L2(D) ≤ C
(
ρσ−τ
D ‖u‖W τ

2 (D) + γ−1ρ
τ−β+d/2
D ‖a (u, φ)‖ℓ2(n)

)
,

with σ > τ .

Proof: We find for an arbitrary polynomial p and any u ∈W τ
2 (D)

‖u‖L2(D) ≤ ‖u− p‖L2(D) + ‖p‖L2(D)

≤ ‖u− p‖L2(D) + vol (D)1/2 |δx̃p|

≤ ‖u− p‖L2(D) + ρ
d/2
D

∣∣∣∣∣∣

n∑

j=1

bj (x̃) a (p, φj)

∣∣∣∣∣∣

≤ ‖u− p‖L2(D) + ρ
d/2
D

∣∣∣∣∣∣

n∑

j=1

bj (x̃) (a (u− p, φj) + a (u, φj))

∣∣∣∣∣∣

≤ ‖u− p‖L2(D) + ρ
d/2
D ‖b (x̃)‖2 ‖a (u− p, φ)‖ℓ2(n)

+ ρ
d/2
D ‖b (x̃)‖2 ‖a (u, φ)‖ℓ2(n) . (8.5.1)

Since a (·, ·) is coercive we can choose a polynomial p̃D ∈ V = πτ (D) such that

a (u, φj) = a (p̃D, φj) for all 1 ≤ j ≤ n .
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We point out that the polynomial p̃D depends on the domain D. Furthermore, we can use

Theorem 8.2.5 and Lemma 8.5.1 with |α| = 0 to note that

‖b (x̃)‖2 ≤ γ−1 ‖δx̃‖V ∗ ≤ Cγ−1ρτ−β
D .

If the φj’s form an orthonormal basis for πτ (D), the estimate (8.5.1) reduces to

‖u‖L2(D) ≤ ‖u− pD‖L2(D) + Cγ−1ρ
τ−β+d/2
D ‖a (u, φ)‖ℓ2(n) .

To bound the term ‖u− p̃D‖L2(D) we will use the Aubin-Nitsche construction from the

introduction, i.e.,

‖u− p̃D‖L2(D) ≤ Ka ‖u− p̃D‖W τ
2 (Ω) sup

g∈L2(D)

infφ∈πτ (D) ‖wg − φ‖W τ
2 (Ω)

‖g‖L2(D)

.

For the next step we assume a regularity assumption in the sense of(8.2.5). Then we can

bound the second factor by the Bramble-Hilbert lemma, which gives

inf
φ∈πτ (D)

‖wg − φ‖W τ
2 (Ω) ≤ ρσ−τ

D |wg|W σ
2 (D) ≤ Cρσ−τ

D ‖g‖L2(D) .

For the first part we use the Cea Lemma [10] to get

‖u− pD‖W τ
2 (D) ≤ C ‖u‖W τ

2 (D) .

Putting things together yields the claimed estimate. 2

This is a local sampling inequality. We shall now apply a covering argument to extend

this result to the global domain. To derive a global sampling inequality we again cover the

global domain Ω by nice small domains Dt as described in Theorem 3.3.10. From now on

we assume h ≤ Q (k, θ)R0, so that the construction is applicable. Then we can prove a

global version of our sampling inequality.

Theorem 8.5.3 Under the assumption from Proposition 8.5.2 and Theorem 3.3.10 there

exists a constant h0 > 0 with the following property. There is a constant C > 0 such that

for all functions u ∈W τ
2 (Ω) and all h ≤ h0 the sampling inequality

‖u‖L2(Ω) ≤ C
(
hσ−τ ‖u‖W τ

2 (Ω) + hτ−β+d/2γ−1 ‖a (u, φ)‖ℓ2(n#Tr)

)

holds, where {φj}j=zℓ+1,...,(z+1)ℓ is an orthonormal system in πτ (Dz+1)
for all z = 0, . . . ,#Tr − 1.

Proof: The decomposition of Ω together with Proposition 8.5.2 and

sin θ

2 (1 + sin θ)Q (k, θ)
h = 2r ≤ ρDt ≤ 2R =

2

Q (k, θ)
h
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shows that we have

‖u‖2
L2(Ω) =

∫

Ω
|u (x)|2 dx

≤
∑

t∈Tr

∫

Dt

|u (x)|2 dx =
∑

t∈Tr

‖u‖2
L2(Dt)

≤ C
∑

t∈Tr

(
hσ−τ ‖u‖W τ

2 (Dt)
+ hτ−β+d/2γ−1 ‖a (u, φ)‖ℓ2(n)

)2
,

where we have used the fact that we may choose the same constant C > 0 for all regions

Dt. Further calculation yields

‖u‖2
L2(Ω) ≤ C

∑

t∈Tr

(
hσ−τ ‖u‖W τ

2 (Dt)
+ hτ−β+d/2γ−1 ‖a (u, φ)‖ℓ2(n)

)2

≤ C

(
h2(σ−τ)

∑

t∈Tr

‖u‖2
W τ

2 (Dt)
+ h2(τ−β+d/2)γ−2

∑

t∈Tr

‖a (u, φ)‖2
ℓ2(n)

)

≤ CM1

(
h2(σ−τ) ‖u‖2

W τ
2 (Ω) + h2(τ−β+d/2)γ−2 ‖a (u, φ)‖2

ℓ2(n#Tr)

)
,

where the last estimate follows from Theorem 3.3.10, since

∑

t∈Tr

‖u‖p

W k+s
p (Dt)

≤M1 ‖u‖p

W k+s
p (Ω)

.

This finishes the proof. 2

Please note the special meaning of the parameter h. It is not the usual fill distance of a

discrete setX ⊂ Ω. It rather mimics the meaning of h in the finite element literature as the

size of the local patches.

The error analysis of this section relies on good polynomial projections. This indicates

some possible generalization in the context of generalized finite elements.
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Chapter 9

Discussion and Outlook

In this thesis we have systematically generalized the concept of sampling inequalities to

various situations, and we have illustrated applications. The first main part considered

strong sampling inequalities. We derived sampling inequalities for infinitely smooth func-

tions where the sampling order turned out to vary exponentially in the fill distance. As a

special case our technique reproduces the well known error estimates for classical interpo-

lation in the native spaces of Gaussian and inverse Multiquadric kernels. However, even in

the special case of interpolation the optimal convergence rates are not known. Further re-

search should address better sampling orders by avoiding the boundary effect. Although we

did not pay much attention on this detail, a main drawback of the estimates lies in the con-

stants involved, which depend exponentially on the space dimension. To avoid this spectral

growth one should consider sparse grids.

We further presented a deterministic error analysis for support vector regression algorithms.

We restricted ourselves to the ǫ- and the ν-SVR, but the described procedure can be easily

generalized to all learning algorithms with penalty terms induced by kernels whose native

spaces are Sobolev spaces. The sampling orders we found are optimal and were confirmed

numerically. The error analysis does not depend on any assumptions on the inaccuracy of

the given data, so one should combine them with stochastical models on the noise to im-

prove parameter choices.

As an auxiliary result we proved a Bernstein inequality, which provides equivalence con-

stants between the Sobolev- and the L2-norm on a finite dimensional space of translates of

an RBF. For that, we need a technical condition on the distribution of centers, which seems

to be artificial. Further research should overcome this.

The second main part addressed weak sampling inequalities. We considered stationary

convolution-type data, which generalizes the usual finite volume methods. We derived a

sampling inequality for this situation, which forms an important step towards an a priori

error analysis of MLPG methods. Finally we derived a deterministic error analysis for the

solution of regularized variational problems, which arise naturally as Ritz-Galerkin approx-

imations of pde’s in weak formulations. We presented sampling inequalities for both kernel

based and polynomial ansatz spaces. For the analysis of MLPG methods it would be useful

to prove sampling inequalities for other kinds of weak data that, e.g., covers derivatives.

119
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