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Abstract

In this work, we mainly deal with capacitated delay management that is an important
task during the daily operations of a public transportation company. Unlike uncapaci-
tated delay management studied in most publications, it takes into account the limited
capacity of the track system in a railway setting and security distances between two
trains using the same infrastructure. We introduce a graph-theoretical model for this
problem and derive a linear integer program, based on the graph-theoretical model. We
prove some important properties of the model which allow us to extend results from the
uncapacitated delay management problem to the capacitated case. Furthermore, we use
these properties to develop reduction techniques which can significantly reduce the size
of an input instance. To be able to solve large-scale real-world instances, we suggest
heuristic solution procedures, prove worst-case error bounds, and numerically evaluate
all solution approaches within a case study based on real-world data. We show how
rolling stock circulations can be integrated in the delay management problem, extend
results from capacitated delay management to this integrated problem, prove that it is
NP-hard even in very special cases, identify a polynomially solvable case, and suggest a
generic solution framework. Apart from delay management, we also consider robustness
aspects. We report results from a case study on delay resistant timetabling, resume the
concept of recoverable robustness, extend it to multi-stage recoverable robustness, and
show how both concepts can be applied to special timetabling problems to compute
recoverable-robust timetables. In the end, we present a programming framework for
analyzing the impact of different planning stages in public transportation on subsequent
planning stages and on the operational phase, for example for analyzing the robustness
of a line plan or a timetable in case of delays.
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Chapter 1
Introduction

1.1 Overview

Many optimization problems arising from real-world applications consist of two parts:
During the strategic planning phase, the main goal is a good utilization of available
resources, while during the operational phase, a good reaction to unforeseen disturbances
is required when the system is up and running. The strategic planning phase usually
begins long before the system starts to operate, while in the operational phase, a fast
(or even real-time) response to unexpected disturbances is required.

In this work, we deal with an example of such a pair of optimization problems:
timetabling and delay management in public transportation. The process of com-
puting a timetable is part of the strategic planning phase. In most publications, the
objective during this stage is to minimize the average travel time of passengers as
the travel time is a crucial factor in the travelers’ choice of mode of transport. Delay
management, by contrast, is part of the operational phase: Once the timetable is
operated, it is crucial to deal with unforeseen disturbances. As delays significantly
reduce the attractiveness of public transportation, the objective of delay management
is to minimize the inconvenience of the passengers. In this work, we mainly focus on
delay management, i.e. on how to react in case of delays (however, in Chapter 6, we
also consider robustness aspects that are important during the timetabling phase).

A delay occurring in the operational phase might have different effects. On the one
hand, passengers reaching their final destination with a delayed train end their journey
with this delay (if the train is the one they originally planned to take). As long as
the delay is not too large, for most passengers, this is no big deal. On the other hand,
a delay might also cause some passengers to miss a connection – even if the delay is
fairly small (if, for example, time for changing is calculated tightly). In addition, a
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1 Introduction

single delayed vehicle might affect several other vehicles, for example due to the limited
capacity of the track system in a railway setting.

In case of delays, there are different decisions to make:

• If a connection is affected by a delay, i.e. if a feeder train is late, then for each
connecting train, one has to decide if the connecting train should wait for the
delayed train or if it better departs on time. We call this type of decisions
wait/depart decisions. In the first case, passengers in the delayed feeder train
will catch their connection – however, passengers in the waiting train might get
an additional delay (as well as passengers waiting at a subsequent station), and
the waiting train might get in conflict with another train using the same piece of
track. In the second case, the effects on the rest of the network are more limited;
however, passengers missing a connection might suffer a pretty large delay. In
practice, wait/depart decisions are often made by applying fixed waiting time
rules (for example “a local train always waits for a high-speed long-distance train,
but at most for ten minutes”) as it is done by Deutsche Bahn AG (see [Jac03]) or
by pursuing a fixed policy (e.g. a no-wait policy or an all-wait policy). However,
fixed policies neither take into account the current situation (for example the
number of passengers in a train or the importance of a connection which depends
on the number of passengers who actually want to transfer), nor do they consider
the impact of the wait/depart decisions on other trains. Thus, incorporating the
wait/depart decisions in an optimization scheme can reduce the inconvenience of
the passengers.

• In a railway setting, the capacity of the tracks is limited, and trains driving on
the same track into the same direction or trains driving into opposite direction on
a single track have to respect special security distances. In the original timetable,
all those restrictions are taken into account – however, if a train is late, it might
get in conflict with another train using the same infrastructure. In this case,
one has to decide which train should drive first. This type of decisions is called
priority decisions. They are necessary to comply with safety regulations and
to take into account the limited capacity of the track system. In practice, it is
common usage to apply fixed rules for making the priority decisions, for example
to prioritize punctual trains as it is done in Sweden (see [Tör08]) or to use fixed
priorities for certain types of trains and to prioritize fast trains over slow ones
as it is done in Germany (see [Jac08]). Obviously, more sophisticated schemes
which take into account the current situation and the effects on other trains are
possible and can reduce the inconvenience of the passengers.

The problem of making all wait/depart decisions and all priority decisions and updating
the planned timetable to a new disposition timetable in such a way that the inconvenience
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of the passengers is minimized is called delay management problem. As a measure
for the inconvenience of the passengers, we use the sum of all delays of all passengers
at their final destinations; it can be approximated by a combination of the (properly
weighted) number of missed connections and the (properly weighted) sum of all delays
of all trains.

Before presenting a model for the delay management problem in Chapter 2, we give an
overview of related work.

1.2 Related Work

It is, of course, desirable to reduce the risk of unforeseen disturbances instead of
only reacting to delays. To this end, several authors investigate the reasons for
primary delays [Zas00, NO00, NH04], the relationship between delays and infrastructure
maintenance [Nys05, Nys08], and the frequency distribution of delays and the interaction
between different delays [Mat05, Yua06, Güt06, Con08, FGGN09]. However, in practice,
it is utterly impossible to totally prevent any primary delay from affecting other vehicles
or even to prevent that primary delays occur. Hence, in this work, we focus on how to
deal with delays as good as possible during the operational phase and also analyze how
to compute the timetable in such a way that it can absorb a given amount of delay, i.e.
a timetable that is robust against certain delays.

We start with an overview of different approaches on computing robust timetables.

Robustness Aspects

In [EK04], not only the scheduled waiting time of all passengers, but also their average
actual waiting time under random delays is taken into account during the computation of
the timetable. As this leads to a cost function that cannot be calculated analytically (but
only simulated), the authors use genetic algorithms for solving the resulting optimization
problem. In [KDV07], [KMH+08], [KHM08], and [LS09], the authors present stochastic
optimization models to investigate how to distribute a limited amount of slack time in
a smart way. Different methods for improving the robustness of a given nonperiodic
timetable are suggested and compared in [FSZ09]. A local search optimization scheme
for improving a train’s route within a station to make it more robust against delays is
suggested in [CBH05]. In [SK09], robust timetabling is treated as a bicriteria approach.
[Her06] analyzes the stability of timetables and the effect of uncertainty on train routing
within stations. [CFB+09] deals with how to choose speed profiles of trains in order to
optimize the buffer times. Most other models presented in the literature are evaluation
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models, i.e. the timetable is modified, the model is applied to evaluate the modification,
and the result is used to again modify the timetable. See [KDV07] for an overview of
such approaches.

More general robustness concepts that are not limited to applications arising in pub-
lic transportation are stochastic programming (see [BL97, KW94, RS03]) which al-
lows to model optimization problems involving uncertainty and robust optimization
(see [BS07, BEN06, BS04, FM06]) which aims to find a solution that keeps feasibility
when disturbances occur. The concept of light robustness that has been introduced
in [FM09] adds slacks to the constraints and aims to find a solution that satisfies these
relaxed constraints (as robust optimization often leads to solutions that are too conser-
vative and hence too expensive). A first approach to unify the notions of robustness and
recoverability into a new integrated notion of recoverable robustness has been suggested
in [LLMS09]. In [CDD+07], algorithmic aspects of recoverable robustness have been
highlighted by giving the definition of robust algorithm and of the corresponding price of
robustness which is an extension of the price of robustness of a recoverable-robust opti-
mization problem as defined in [LLMS09]. In [CDSS08], recoverable robustness has been
extended to multi-stage recoverable robustness to take into account several disturbances,
occurring one after another. Both concepts have been applied to the timetabling problem
in various publications, see [CDSS08, CDD+08, DDNP09, CDD+09a] for the single-
stage case, [CDSS08] for multi-stage recoverable-robust timetabling, and [CDD+09b]
for an overview containing both models.

All these approaches aim to make the timetable robust against delays. A rather different
approach is to focus on how to react in case of delays instead of seeking for a robust
timetable. In the remainder of this overview, we focus on this aspect.

Delay Management and Re-Scheduling

If all connections and the order of all trains is fixed, i.e. if there are no wait/depart
decisions and no priority decisions to make and the only task is to update the timetable
to take into account the delays, the problem reduces to a nonperiodic timetabling
problem. This problem is easy to solve (see [Roc84] where the corresponding problem is
called Feasible Differential Problem), for example by shortest path techniques or linear
programming. However, periodic timetabling, i.e. the task to compute a timetable
where operations repeat in regular intervals (usually each hour or each two hours), is
an NP-hard problem, even if the task is only to compute a feasible and not an optimal
timetable (see [SU89]). As we do not cover periodic timetabling in this work, we refer
to [Lie06] for an overview of different models and solution procedures.

If the order of trains is fixed (or if capacity constraints are neglected), i.e. if no priority
decisions have to be made and the remaining task is to make wait/depart decisions and
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to update the timetable to a disposition timetable, the problem reduces to the uncapac-
itated delay management problem. Different non-linear mixed-integer programming
(MIP) formulations, approximating the effect of delays on the customers, have been
suggested in [Sch01b] and [Kli00]. A first linear integer programming (IP) formulation
has been presented in [Sch01a] and has been further developed in [Sch07] and [DHL08],
see also [Sch06] for an overview of various models. The complexity of the uncapacitated
delay management problem has been investigated in [GGJ+04] and [GJPS05], while the
online version of the problem has been studied in [GJPW07], [Gat07], and [BHLS08].
Other publications deal with the application of max-plus algebra for analyzing the prop-
agation of delays and timetable stability, see for example [DDD98], [Gov98], [HdV01],
[Gov05], [HOW06] and references therein. In [GS07], delay management is treated as
a bicriteria problem; in [HdV01], a bicriteria approach is analyzed by the means of
max-plus algebra. Knowledge-based expert systems simulating the effects of wait/depart
decisions are treated in [SM97, SM99, SMBG01, SBK01]. A branch and bound approach
and kernel-based learning algorithms for solving the uncapacitated delay management
problem have been suggested in [Job08]. In [KS09], the efficiency of different dispatching
strategies for online delay management has been studied.

If the wait/depart decisions are neglected, the task is to make the priority decisions
and to update the timetable to a disposition timetable. In the literature, this problem
is called railway re-scheduling problem, train dispatching problem, or real-time conflict
resolution problem. It has been studied extensively in the past – however, in many
cases, only simple network structures like a single line are considered, and only few
publications take into account the passengers’ point of view (many publications focus
on feasibility or on minimizing delays on a per-train basis only). In [Szp73], one of
the earliest publications, the limited capacity of the tracks is taken into account by
adding disjunctive ordering constraints to a mathematical program, modeling a train
scheduling problem on a long single track line. In [DPP07], the limited capacity of the
tracks is modeled by using the alternative graph formulation for job-shop scheduling
problems with no-wait and no-store constraints presented in [MP02], based on the
concept of disjunctive graphs from [RS64]. In this approach, disjunctive constraints
are modeled by a set of alternative arcs. The implementation of a real-time traffic
management system using a branch and bound algorithm for computing a good train
sequence and local search techniques to improve the solution by re-routing some
trains is presented in [DCPP08]. Some approaches do not explicitly take care of track
capacities within the model, but enumerate all feasible meeting points of two trains and
compare the corresponding solutions to find a good one (see for example [SW83]) or
detect and resolve overtaking conflicts by applying fixed rules (as suggested in [CG94]).
Other approaches focus on simplified network structures, see for example [HKF96] and
[CGM98]. In [BHK02], a rescheduling problem where one track of a double-track line is
closed due to construction work is analyzed. A microscopic representation of a railway
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network in a station area with multiple conflicting routes and high service frequencies
is treated in [CGD09].
The extensive variety of recent solution approaches for the railway re-scheduling prob-
lem covers A* search to find a solution that minimizes the weighted delay in all
stations [Koc00], genetic algorithms minimizing the total delay [PALF01] or the annoy-
ance for the customers [SW04], greedy approaches minimizing the maximum secondary
delay [DP04, MPP04], branch and bound algorithms [DLZL06], heuristics to identify the
key modifications needed to minimize the effect of a disturbance [Tör07], and approaches
to compute near-optimal solutions by adding additional constraints to an integer pro-
gramming formulation of the problem [TP07]. In [NYN+05], simulated annealing and
program evaluation and review techniques are used to solve a train rescheduling prob-
lem, minimizing the dissatisfaction of the customers. For older overviews of different
approaches on re-scheduling problems, see [Ass80] and [CTV98], more recent ones are
given in [Tör06], [Jac08], and [Lus08].

However, all these studies either focus on pure delay management or on the rescheduling
part. Combining both aspects, the problem becomes significantly harder to solve.
Some first ideas on how to model the limited capacity of the track system in a railway
setting in the context of delay management have been presented in [Sch09b]. Capacity
constraints were also taken into account in a real-world application studied within the
project DisKon supported by Deutsche Bahn (see [BGJ+05]). Here, the following
setting to apply delay management in practice is suggested: In a first step, a macroscopic
approach deals with the wait-depart decisions, while a second step ensures feasibility
within a microscopic model. However, this approach may yield rather bad solutions.
In [SS08], some first ideas for solution procedures have been suggested and further
refined in [Sch09a, SS10].

1.3 Outline

The remainder of this work is structured as follows: In Chapter 2, we summarize basic
notations and definitions from graph theory which we need later on. Furthermore,
we introduce the concept of event-activity networks which is the basic concept for
our model. Then we present a linear integer programming formulation of the delay
management problem and point out some direct consequences.

After introducing the problem, we analyze the resulting IP formulation in Chapter 3.
We derive upper bounds on the “big M ” constant which we use to model disjunctive
constraints, investigate the headway constraints which make the problem hard to
solve, and derive different reduction techniques for reducing the size of an instance of
the problem. We extend some results from uncapacitated delay management to the
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capacitated case and conclude with numerical results, demonstrating the effectiveness
of the suggested reduction techniques.

Although we are able to significantly reduce the input size by the reduction techniques
suggested in Chapter 3, it still takes too much time to solve large-scale real-world
instances to optimality. Hence, in Chapter 4, we suggest various heuristic solution
approaches, prove worst-case error bounds, and present numerical results from a case
study, based on real-world data.

Chapter 5 deals with the integration of rolling stock circulations in our model. First,
we show how rolling stock circulations can be integrated in the event-activity network
and the IP formulation. Then we extend some results from Chapter 3 to the integrated
model and prove its hardness even for very special cases. We identify a polynomially
solvable case and suggest a generic scheme for solving arbitrary instances.

After focussing on delay management, we deal with robustness aspects in Chapter 6. We
summarize some results from a case study on robust timetabling and resume the concept
of recoverable robustness. Then we extend this concept to multi-stage recoverable
robustness and apply both concepts to a simplified timetabling problem to analyze
recoverable-robust timetabling.

We conclude this work with a summary and an outlook to further work and possible
extensions in Chapter 7. There, we also present a programming framework which allows
to analyze the interaction of different planning stages in public transportation; it is a
helpful tool for further research on robust planning.

7
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Chapter 2
The Model

In this chapter, we introduce the model which we use for solving the delay management
problem. We start with some basic notations and definitions from graph theory in
Section 2.1 and introduce the concept of event-activity networks, the central foundation
of our model, in Section 2.2. Finally, in Section 2.3, we describe our model, derive a
linear integer programming formulation for it, summarize different relaxations of the IP
formulation, and present some theoretical results.

2.1 Basics from Graph Theory

For modeling both the delay management problem and timetabling problems, we use
some concepts from graph theory. Throughout this work, we only consider directed
graphs or digraphs G = (V,E) without self-loops, i.e. for each edge (u, v) ∈ E, we
require u 6= v. In the following, we shortly introduce the most important terms and
notations.

Let G = (V,E) be a directed graph. A directed path of length k from some vertex u to
another vertex v in G is a sequence p = (u = v1, v2, . . . , vk, vk+1 = v) of vertices with
(vi, vi+1) ∈ E, i = 1, . . . , k. Sometimes, we write p ⊆ G to emphasize that p is a path
in G. A path is called a directed cycle if v1 = vk+1. If G does not contain any directed
cycle, we call G acyclic or cycle-free. A directed graph that is acyclic is called a DAG
(directed acyclic graph). By pre(v), we denote the set of all predecessors of v in G, i.e.
the set of all vertices u ∈ V for which there exists a directed path of length at least 1
from u to v in G. Formally,

pre(v) := {u ∈ V \ {v}: ∃ v2, . . . , vk ∈ V : (u, v2), (v2, v3), . . . , (vk, v) ∈ E} .

9



2 The Model

Analogously, suc(v) refers to the set of all successors of v in G, i.e. the set of all vertices
w ∈ V for which a directed path from v to w in G exists, including v itself. Formally,

suc(v) := {w ∈ V : ∃ v2, . . . , vk ∈ V : (v, v2), (v2, v3), . . . , (vk, w) ∈ E} ∪ {v}.

Note that in the definitions above, v is not included in the set pre(v) of its predecessors,
while it is included in the set suc(v) of its successors – this is for technical reasons only
to simplify some proofs later on.

Sometimes, we do not want to consider the predecessors or the successors of a node v
in the graph G, but in a subgraph G′ = (V,E′) with E′ ⊂ E (this will get clearer for
example in the definition of Emark in Section 3.3). In this case, we define the predecessors
and the successors of v ∈ V in G′ as

pre(v,E′) :=
{
u ∈ V \ {v}: ∃ v2, . . . , vk ∈ V : (u, v2), (v2, v3), . . . , (vk, v) ∈ E′

}
suc(v,E′) :=

{
w ∈ V : ∃ v2, . . . , vk ∈ V : (v, v2), (v2, v3), . . . , (vk, w) ∈ E′

}
∪ {v}.

We say a DAG is a tree if it is an out-tree to some source node r ∈ V (the root), i.e. if
there exists a unique path from r to any other node v ∈ V . If V = {v1, v2, . . . , vn} and
E = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}, then we call G a linear graph.

A topological ordering or topological sort of a directed graph G = (V,E) is an ordering
of its nodes V = (v1, v2, . . . , vn) such that

i < j ⇒ there exists no directed path from vj to vi in G

holds for all vertices vi, vj ∈ V . Figuratively speaking, if a path from vi to vj exists,
then in a topological ordering of G, vi “appears before” vj . If a directed graph contains
at least one directed circle, then no topological sort of G exists. In contrast, each DAG
has at least one topological sort (but it does not have to be unique). For more details,
we refer to [CLRS01].

2.2 Event-Activity Networks

To model the delay management problem and to derive solution procedures, we use
the concept of event-activity networks as suggested in [SU89] (see also [Nac98] for the
application of event-activity networks in periodic timetabling and [Sch07] for their
application in delay management). An event-activity network N = (E ,A) is a directed
graph whose nodes are called events and whose directed edges are called activities. Event-
activity networks are a widely used mathematical model for periodic or nonperiodic

10
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scheduling of events with time constraints. In the nonperiodic case which we consider
here, an activity which connects two events models a precedence constraint between
those events: the start event of the activity has to take place first. Each activity has
assigned a lower bound on its duration, so the scheduled time of the end event of an
activity has to be larger than or equal to the scheduled time of the start event plus the
lower bound. In contrast to the nonperiodic case, in periodic event-activity networks
(used for example for periodic timetabling), each activity has assigned a lower and an
upper bound, modeling time window constraints.

In a railway setting (which is the main focus of our applications), the set E of events
consists of arrival events Earr, i.e. the arrivals of trains at stations, and departure events
Edep, i.e. the departures of trains from stations. The set A of activities consists of four
different types of activities:

• Driving activities Adrive ⊂ Edep × Earr model the driving of a train between two
consecutive stations, so a driving activity connects a departure event of a train
with its next arrival event at the subsequent station. The lower bound La > 0 of
a driving activity a ∈ Adrive represents the minimal driving time between both
stations.

• Waiting activities Await ⊂ Earr × Edep represent the waiting of a train within a
station, for example for the boarding and deboarding of passengers or for crew
change. A waiting activity connects the arrival of a train at a station with its
departure from the same station. The lower bound La > 0 of a waiting activity
a ∈ Await describes the minimal time which is needed to let passengers get on or
off and also takes into account the time for crew change or other actions.

Each activity in Adrive and Await corresponds to an action of one train; since they are
all treated in the same way (e.g. the lower bound La of each such activity a always has
to be respected), we summarize them in the set

Atrain := Adrive ∪ Await.

• Changing activities Achange ⊂ Earr × Edep allow passengers to transfer from one
train to another one within the same station, so a changing activity connects an
arrival event of some train at some station with a departure event of another
train at the same station. The lower bound La > 0 refers to the minimum time
the passengers need when they transfer between both trains. It is one of the tasks
of delay management to decide for each changing activity if the corresponding
connection should be maintained or not. If a connection is maintained, the lower
bound La of the corresponding changing activity a has to be respected, otherwise
it can be ignored.

11
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• Headway activities Ahead ⊂ Edep × Edep model the limited capacity of the track
system. They always appear in pairs: if (i, j) ∈ Ahead, then (j, i) ∈ Ahead, too.
In contrast to the other types of activities, a single headway activity does not
model a single constraint, but together with its corresponding counterpart, they
model a pair of disjunctive constraints. As an arc in the event-activity network
models a precedence constraint, it is not possible to satisfy both constraints
resulting from a pair of headway activities at the same time. On the contrary,
exactly one headway activity from each pair has to be respected. The goal of
delay management hence is to choose exactly one activity of each such pair and
to respect the resulting constraint, fixing the order of the two events i and j. If
(i, j) is chosen, then event i takes place before event j and the lower bound Lij of
activity (i, j) has to be respected. If, however, (j, i) is chosen, then event j takes
place first and the lower bound Lji of activity (j, i) has to be respected. The
lower bound Lij > 0 of a headway activity (i, j) ∈ Ahead represents a security
distance: For the two departure events i and j, it represents the minimal headway
between the departures of the corresponding trains, i.e. the minimum time for
which the train belonging to event j has to wait after the departure of the train
belonging to event i to ensure safe operations. Note that those headway times
need not to be symmetric; in general, Lij 6= Lji (a slow train probably will block
a specific piece of track longer than a fast train). Our model covers two types of
limitation: two trains driving on the same track into the same direction and two
trains driving into opposite direction on a single-way track.

Summing up, we have
E = Earr ∪ Edep

and
A = Adrive ∪ Await ∪ Achange ∪ Ahead.

To illustrate an event-activity network, we use the following example (which is depicted
in Figure 2.1): Assume that we have five stations A, B, C, D, and E. One train drives
from station A to station C and further on to station D, while a second train drives
from station B to station E via station C. Within station C, passengers might transfer
between both trains, and on their way to station C, both trains share a common piece
of track.

In the corresponding event-activity network (see Figure 2.2 for an illustration), the
arrival of the first train at station C and the departure of the second train from station C
are connected by a changing activity; the same holds for the arrival of the second train
and the departure of the first train. To model the limited capacity of the tracks, the
departure of the first train from station A and the departure of the second train from
station B are connected by a pair of disjunctive headway activities.
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A

B

C

D

E

Figure 2.1: An example of five stations A, B, C, D, and E where trains driving between
A and C and between B and C share a common piece of track (the solid
lines between stations represent tracks).
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station E

station C
departure

departure

departure

departure

arrival

arrival

arrival

arrival

waiting

waiting

headway
disjunctive

activities

driving

drivingdriving

driving

changing

changing

Figure 2.2: The corresponding event-activity network if we assume that one train
serves the directed line A-C-D while another one serves B-C-E. Solid arrows
are activities from Atrain, dashed arrows represent changing activities,
dotted arrows represent headway activities.

An equivalent model for headway activities is to connect the arrival event of one train
with the departure event of the second train and vice versa, meaning that the second
train’s departure is not allowed to take place before the first train’s arrival. Since in
this case, four events instead of two are involved in each pair of headway activities, we
do not use this model.
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2.3 Model and Integer Programming Formulation

In the following, we use the concept of event-activity networks to give a mathematical
formulation of the delay management problem. To this end, we assume that the event-
activity network N = (E ,A) and lower bounds L : A → N are given. A timetable is
a node potential π : E → N. It is called feasible if it respects the lower bounds of all
driving, waiting, and changing activities as well as the lower bound of exactly one
headway activity from each pair of disjunctive headway activities, i.e. if π satisfies

πj − πi ≥ La ∀a = (i, j) ∈ Atrain ∪ Achange ∪ Ã

where Ã ⊂ Ahead contains exactly one headway activity from each pair of disjunctive
headway activities. Note that the graph (E ,Atrain ∪ Achange ∪ Ã) has to be cycle-free;
otherwise, no feasible timetable exists since activities model precedence constraints.
Given a feasible timetable π, we call those headway activities that are respected by π,
i.e. the headways in Ã, forward headways and those headway activities that are not
respected by π backward headways. Formally,

Aforw
head := {(i, j) ∈ Ahead : πi < πj}
Aback

head := {(i, j) ∈ Ahead : πi > πj} .

The slack time sa of an activity a ∈ Atrain ∪ Achange ∪ Aforw
head is the time that can be

saved if a is performed as fast as possible, i.e.

sa := πj − πi − La ≥ 0 ∀a = (i, j) ∈ Atrain ∪ Achange ∪ Aforw
head.

As in related literature, we distinguish two classes of delays. Source delays or primary
delays are delays caused by external effects like bad weather conditions, technical
problems, construction work, staff coming too late to their duty, etc. As they are caused
by external effects, we cannot control those delays but have to consider them as a part
of the input of our optimization strategy. In contrast, delays that are caused by other
trains (for example due to waiting for a delayed feeder train or due to conflicts between
a delayed train and another train using the same track) or that are caused by a former
delay are called secondary delays, follow-up delays, or forced delays. They can (to a
limited extend) be influenced by wait/depart decision and priority decisions and are
not part of the input.

Within this work, we consider two types of source delays: source delays on events and
source delays on activities. A source delay di of an event i ∈ E might be caused for
example by staff coming too late to their duty. In this case, event i cannot take place
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at the scheduled time, but later than scheduled. Mathematically, xi ≥ πi + di has to be
fulfilled (where xi denotes the time of event i ∈ E in the disposition timetable). On
the contrary, a source delay da of an activity a = (i, j) ∈ Atrain refers to an activity
taking longer than scheduled in the original timetable, caused for example by increased
driving time due to bad weather conditions or construction work. A source delay of an
activity has to be added to the minimal duration of the activity, i.e. xj − xi ≥ La + da
has to be satisfied. To simplify the notation, if an event i ∈ E has no source delay, we
set di = 0. The same holds for source delays on activities. Given the event-activity
network N = (E ,A), lower bounds L ∈ N|A|, a timetable π ∈ N|E|, and source delays
d ∈ N|E|+|Atrain|, we are looking for a disposition timetable x that at least satisfies

xi ≥ πi + di ∀ i ∈ E
xj − xi ≥ La + da ∀ a = (i, j) ∈ Atrain.

In practice, more constraints have to be fulfilled – we present an integer programming
formulation which also considers changing and headway activities later on in this
chapter.

In the following example, we show the difference between both types of source delays.
To this end, consider a single train that departs from a station A, arrives at and departs
from a subsequent station B, and finally arrives at a third station C. The corresponding
event-activity network is depicted in Figure 2.3.

1 2 3 4

station A station B station C

Figure 2.3: The event-activity network for demonstrating the difference between source
delays on events and source delays on activities.

We assume minimal driving times L(1,2) = L(3,4) = 10, a minimal waiting time of
L(2,3) = 2 at station B, and a tight schedule with no slack times, given by π1 = 0,
π2 = 10, π3 = 12, and π4 = 22.

To illustrate the first type of delays, let events 1 and 3 have a source delay of 5 and 3,
caused for example by two different drivers who come too late to their duties. When
departing from station A, the train has a delay of 5, caused by the delay of the first
driver. When arriving at station B, it still has the same delay. Now, the second driver is
late, too – however, as the train already has a delay of 5, no additional delay is caused
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(as long as the driver’s delay is at most 5) and the train departs from station B and
arrives at station C with a delay of 5.

To illustrate the second type of delays, assume that not events 1 and 3, but activities
(1,2) and (3,4) have a source delay of 5 and 3, caused for example by bad weather
conditions. As before, the train arrives with a delay of 5 at station B, and it also leaves
station B with a delay of 5. However, while driving from station B to station C, it
gets an additional delay of 3, so it arrives with a total delay of 8 at station C. Both
scenarios are compared in Table 2.4.

event 1 2 3 4

scheduled time π 0 10 12 22

disposition time if events are source-delayed 5 15 17 27

disposition time if activities are source-delayed 5 15 17 30

Table 2.4: Source delays on events lead to other delays than source delays on activities.

As can be seen in the example, delays on activities are additive while delays on events
are not. In Lemma 2.4, we prove that source delays on events can be replaced by source
delays on activities – at the cost of getting a larger event-activity network.

To compute a “good” or an optimal solution of the delay management problem, we assign
weights wi ∈ R≥0 to all events i ∈ E and weights wa ∈ R>0 to all changing activities
a ∈ Achange. Throughout this work, we assume that wi is the number of passengers who
end their journey with event i (consequently, wi = 0 for all departure events i ∈ Edep)
and that wa is the number of passengers who want to use changing activity a ∈ Achange.
In the following, we assume wa > 0 for all activities a ∈ Achange (otherwise, nobody
would use changing activity a and it therefore could be deleted). However, those weights
also could be used to prioritize certain trains (for example high-speed trains) or certain
connections (if for example a connection from a long-distance train to a local train is
more important than the other way round). Finally, we assume that T is the common
period length of all lines (after presenting the model, we discuss why the assumption of
a common period of all lines is no severe restriction).

Using those parameters, we can formulate the delay management problem as a linear
integer program. To this end, we introduce the following variables to model the
disposition timetable and the wait/depart decisions as well as the priority decisions:
x ∈ N|E| is the disposition timetable with

xi : time of event i ∈ E in the disposition timetable.
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To model the wait-depart decisions, we use binary variables

za =

{
0 if changing activity a is maintained
1 otherwise

for all changing activities a ∈ Achange. For the priority decisions, we introduce binary
variables

gij =

{
0 if event i takes place before event j
1 otherwise

for all headway activities (i, j) ∈ Ahead. Then, we can model the delay management
problem by the following linear integer program:

(DM) min f(x, z, g) =
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT (2.1)

such that

xi ≥ πi + di ∀ i ∈ E (2.2)
xj − xi ≥ La + da ∀ a = (i, j) ∈ Atrain (2.3)

Mza + xj − xi ≥ La ∀ a = (i, j) ∈ Achange (2.4)
Mgij + xj − xi ≥ Lij ∀ (i, j) ∈ Ahead (2.5)

gij + gji = 1 ∀ (i, j) ∈ Ahead (2.6)
xi ∈ N ∀ i ∈ E (2.7)
za ∈ {0, 1} ∀ a ∈ Achange (2.8)
gij ∈ {0, 1} ∀ (i, j) ∈ Ahead. (2.9)

Here, we assume that M is some constant that is “large enough”. In Theorem 3.1
and Corollary 3.2, we show that M indeed can be chosen finitely beforehand. Before
analyzing this IP, we shortly explain its meaning:

• The objective (2.1) consists of two parts: the first one is the weighted sum of
all delays of all events. As we have chosen the weights wi to be the number of
passengers who end their journey with event i ∈ E , this is the sum of all delays of
those passengers who reach their final destinations with the trains they originally
planned to use, without missing a connection. The second part of the objective
is the weighted number of missed connections. As we have chosen wa to be the
number of passengers who want to use changing activity a ∈ Achange, this part is
the sum of all passengers who miss a connection, multiplied with the common
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period T of all lines. Hence, this term is the additional waiting time for the
passengers, caused by missed connections. In general, the objective is an upper
bound on the sum of all delays of all passengers at their final destinations; in
some cases (if no passenger misses a connection or if the so-called never-meet
property is fulfilled – see Definition 3.12 and Theorem 3.15), the objective even
coincides with that sum. Note that any solution that minimizes (2.1) is a Pareto
solution with respect to the two objective functions minimize the weighted delay
over all vehicles and minimize the weighted number of missed connections (the
proof is easy: if one could further decrease one term of the objective (2.1) without
increasing the other term at the same time, the original solution would not be
optimal).

• Constraints (2.2) ensure that no event takes place earlier than scheduled in the
original timetable and that source delays on events are respected.

• (2.3): These constraints make sure that the lower bounds of all activities a ∈ Atrain

are respected (as those activities always are fixed) and that source delays on
activities are taken into account.

• (2.4): If a connection a ∈ Achange is maintained, then za = 0 and the corresponding
constraint ensures that the lower bound on the duration of this activity is respected.
However, if a connection is dropped, then za = 1 and (due to M being “large
enough”), (2.4) imposes no additional constraint on the disposition timetable x.

• Constraints (2.5) are similar to constraints (2.4), but for headway activities: If
event i should take place before event j, then gij = 0, hence constraints (2.5)
impose a constraint on the minimal headway between both events. However, if
event j should take place before event i, then gij = 1, and due to M being “large
enough”, this is no additional constraint on the disposition timetable x.

• (2.6): As headway constraints are disjunctive constraints (either event i has
to take place before event j or event j has to take place before event i), these
constraints make sure that exactly one headway activity of each pair is selected
while the other one is ignored. Note that constraints (2.5) and (2.6) together
model the constraints

either xj − xi ≥ Lij or xi − xj ≥ Lji

(where “or” is an exclusive or). An equivalent formulation is∣∣∣∣xj − xi +
Lji − Lij

2

∣∣∣∣ ≥ Lji − Lij
2

,

see [Sch09b].
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• Constraints (2.7) in fact are no additional constraints on an optimal solution if
we assume all times πi in the original timetable and all lower bounds La to be
integral.

Note that in our model, we make the following assumptions:

• We assume T to be the common period of all lines. This assumption is widespread
in the literature. If different lines have different period lengths, this assumption
can be relaxed by introducing individual period lengths Ta for all a ∈ Achange.
If, however, we define T as the maximal period length over all lines, then the
objective (2.1) overestimates the sum of all delays of all passengers, so by solving
(DM) with T “too large”, we at least derive an upper bound on the sum of all
delays of all passengers in an optimal solution.

• Furthermore, we assume that the routes of the passengers are fixed, i.e. even in
the case of delays, a passenger does not use another train than originally planned
(except for the case of a missed connection where we assume a passenger to take
the same line in the next period). This is discussed in Section 7.4.1 in more detail.

If Achange = ∅, the remaining problem is a re-scheduling problem with capacity con-
straints:

(Re-Sched) min f(x, g) =
∑
i∈Earr

wi(xi − πi)

such that (2.2), (2.3), (2.5)-(2.7), and (2.9) are satisfied.

If we relax all constraints modeling the limited capacity of the tracks (i.e. constraints
(2.5), (2.6), and (2.9)), we have the uncapacitated delay management problem:

(UDM) min f(x, z) =
∑
i∈Earr

wi(xi − πi) +
∑

a∈Achange

zawaT

such that (2.2)-(2.4), (2.7), and (2.8) are satisfied.

This integer programming formulation of the uncapacitated delay management problem
first has been introduced in [Sch01a]. For an in-depth analysis of this model and
its relation to other integer programming formulations of the uncapacitated delay
management problem, we refer to [Sch06] (we also give a short overview in the end of
this chapter). The following relationship between (DM) and (UDM) holds:
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Lemma 2.1. (UDM) is a relaxation of (DM).

Proof. Each feasible solution of (DM) is feasible for (UDM), and both formulations
share the same objective.

The following lemma is a direct consequence of Lemma 2.1:

Lemma 2.2. Let FDM and FUDM denote the objective value of the optimal solution of
(DM) and the objective value of the optimal solution of the corresponding instance of
(UDM), respectively. Then

FUDM ≤ FDM.

When introducing heuristic solution approaches for solving the capacitated delay
management problem in Chapter 4, we fix the priority decisions heuristically and treat
the corresponding fixed headway activities like the fixed activities in Atrain. For some
set Afix ⊂ Ahead, we hence define

(UDM(Afix)) min f(x, z) =
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT

such that
xj − xi ≥ La ∀a = (i, j) ∈ Afix (2.10)

and such that (2.2)-(2.4), (2.7), and (2.8) are satisfied.

Note that UDM(Afix) is only feasible if the corresponding event-activity network does
not contain any directed cycle, i.e. if fixing the priority decisions is done in a reasonable
way. In this case, we obtain an upper bound on the optimal solution of the capacitated
delay management problem:

Lemma 2.3. Let Afix = {(i, j) ∈ Ahead : gij = 0} for some g ∈ {0, 1}|Ahead| which
satisfies (2.6) and assume that UDM(Afix) is feasible. Then,

FDM ≤ FUDM(Afix).

Some of the solution approaches which we suggest in Chapter 4 do not only fix the
priority decisions, but also the wait/depart decisions heuristically. In this case, we
obtain a set Afix := {a ∈ Achange : za = 0 } ∪ {(i, j) ∈ Ahead : gij = 0}. Determining
the remaining variables xi in (DM) then reduces to a simple project planning problem:

(PP(Afix)) min f(x) =
∑
i∈E

wi(xi − πi)

such that (2.2), (2.3), (2.7), and (2.10) are satisfied.
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Again (PP(Afix)) is only feasible if the corresponding event-activity network does not
contain any directed cycle. (PP(Afix)) can be solved in polynomial time, for example by
applying the forward phase of the Critical Path Method (Cpm) from project planning
(see [LTW63, Elm77]) as follows:

Algorithm 2.1: Critical Path Method (Cpm)

Input: An event-activity network N = {E ,A} with lower bounds L ∈ N|A|,
a set Afix ⊂ A, a timetable π ∈ N|E|, and source delays d ∈ N|E|+|Atrain|.

Step 1: Sort (E ,Atrain ∪ Afix) topologically and obtain E =
{
i1, . . . , i|E|

}
.

Step 2: Set xi1 := πi1 + di1 .

Step 3: Iteratively, set xk := max

{
πk + dk, max

a=(i,k)∈Atrain∪Afix

xi + La + da

}
for all k ∈ {i2, . . . , i|E|}.

Output: A disposition timetable x ∈ N|E|.

Usually, Afix ⊂ Achange∪Ahead. However, for delay management with integrated rolling
stock circulations (see Chapter 5), Afix ⊂ Achange ∪ Ahead ∪ Acirc.

The first step of Cpm can be done in time Θ(|E|+ |A|) by applying a depth-first search
which also detects whether the graph is acyclic or not (i.e. whether (PP(Afix)) is
feasible), see [CLRS01]. Step 2 and 3 together have a runtime of Θ(|E|+ |Atrain ∪Afix|)
(as each event is considered once and each activity enters exactly one event). Hence,
Cpm has linear worst-case runtime of O(|E|+ |A|).

Note that Cpm also can be used to compute an initial (nonperiodic) timetable: Set
πi = di = 0 for all events i ∈ E and da = 0 for all activities a ∈ A, then apply Cpm.
By doing so, we can use Cpm for example to compute robust timetables in the context
of recoverable robustness, see Chapter 6.

In the following, we call a disposition timetable x time-minimal if for all disposition
timetables x′ that are feasible for fixed z ∈ {0, 1}|Achange| and g ∈ {0, 1}|Ahead|, xi ≤ x′i for
all i ∈ E . This extends the definition of time-minimal given in [Sch06]. By construction,
Cpm always computes a time-minimal solution.

As already mentioned, the objective (2.1) in general only is an upper bound on the sum
of all delays of all passengers at their final destinations and coincides with this sum only
in some special cases. To minimize the actual delays in all cases, in [Sch06], different
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integer programming formulations for solving the uncapacitated delay management
problem are suggested. The starting point is a path-oriented model where the path
each passenger uses in the event-activity network is taken into account. While in (DM),
we consider wait/depart decisions based on connections (one decision variable za for
each connection a), in the first approach suggested in [Sch06], wait/depart decisions are
made on the basis of the passengers’ paths (one decision variable zp for each path p).
Then, the objective of the corresponding IP formulation is

min
∑
p∈P

wp
[
(xi(p) − πi(p))(1− zp) + Tzp

]
(2.11)

where P denotes the set of all passenger paths, wp is the number of passengers using
path p, i(p) denotes the last event on path p, and the binary decision variable zp is 0 if
and only if all connections on path p are maintained. From the point of view of a human
dispatcher, the activity-oriented approach is much more natural since a dispatcher has
to decide whether a connection should be maintained, not whether a passenger’s path
should be maintained. The resulting integer program (TDM-A) has the advantage of
minimizing the exact sum of all delays of all passengers at their final destinations in
all cases. However, it has the drawback of having a quadratic objective function. A
linearization of (TDM-A) is possible and yields an integer programming formulation
which is called (TDM-B). However, (TDM-B) is a significantly weaker formulation
than (TDM-A). Furthermore, both models do not allow to drop the assumption of a
common period of all lines. To circumvent these disadvantages, a third model (which
focuses on the activities, not on the passenger paths) is suggested. The resulting integer
programming formulation (TDM-C) is cubic and contains much more variables and
constraints – however, it allows to drop the assumption of a common period T and is a
stronger formulation than the others. Furthermore, it can be linearized, yielding an
integer program that minimizes the sum of all delays of all passengers at their final
destinations whenever the never-meet property is fulfilled. This linear formulation
(TDM-const) is equivalent to (UDM).

As already mentioned before, it is possible to transform a problem with source-delayed
events into a problem with only source-delayed activities by introducing a virtual
event e0 and virtual activities ai := (e0, i) with dai := di for each source delayed event i
(for a demonstration, see Figure 2.5 and Figure 2.6).

To prove this claim, we need the following notation: An instance i of problem (DM) is
given by a tuple i = (N , L, w, π, d) where N = (E ,A) is the event-activity network of
the instance, L ∈ N|A| are the lower bounds of all activities, w ∈ R|E|+|Achange| are the
passenger weights on events and changing activities, π ∈ N|E| is a feasible timetable,
and d ∈ N|E|+|Atrain| are the source delays.
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d1 = δ1

1 2

3 4

d3 = δ2

Figure 2.5: An event-activity network with source delays on events.

1

d(e0,1) = δ1

e0

2

43
d(e0,3) = δ2

Figure 2.6: The corresponding event-activity network where source delays on events
have been replaced by source delays on (“virtual”) activities.

By iteratively applying the following construction, we can transfer each instance with
source-delayed events to an instance with source delays only on activities:

Lemma 2.4. Given an instance i = (N , L, w, π, d) of (DM) with dk > 0 for some k ∈ E,
we define the instance ĩ = (Ñ , L̃, w̃, π̃, d̃) by adding an event e0 with w̃e0 := 1, π̃e0 := πk,
d̃e0 := 0 and an activity (e0, k) with L̃(e0,k) := 0 and d̃(e0,k) := dk. Furthermore, we
change dk to d̃k := 0. Then, each optimal solution for the instance (Ñ , L̃, w̃, π̃, d̃) also
is an optimal solution for the initial instance (N , L, w, π, d) and vice versa.

Proof. In each optimal solution for the modified instance, event e0 takes place as early
as possible since its weight is strictly positive. As it has no incoming activities and
no source delay, xe0 = πe0 = πk in each optimal solution. In the IP corresponding to
the modified instance, the constraint xk ≥ πk + dk from the IP corresponding to the
original instance is changed to xk ≥ πk + d̃k = πk, and we have the additional constraint
xk−xe0 ≥ L̃(e0,k) + d̃(e0,k) which is equivalent to xk ≥ xe0 +L̃(e0,k) + d̃(e0,k) = πk+0+dk.
Both constraints together are equivalent to the constraint xk ≥ πk + dk from the IP
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corresponding to the original instance, and as all other constraints are the same for
both instances, this finishes the proof.

Since replacing source delays on events by source delays on activities enlarges the
event-activity network and makes it harder to prove tight bounds on the constant M
(see Chapter 3), we do not follow this approach here but treat both types of delays
throughout this work.
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Chapter 3
Analyzing the Model

In this chapter, we further investigate the integer programming formulation (DM)
presented in Chapter 2 and analyze the headway constraints. In Section 3.1, we
show that the constant M can be chosen finitely beforehand. We then modify the
IP formulation in Section 3.2 to better take into account practical needs from real-
world applications. This modification allows us to tighten the bound on M derived in
Section 3.1 and yields an approach for reducing the number of headway constraints
significantly. In Section 3.3, we show that – in an optimal solution – backward headways
never carry over a delay to a non-delayed event and use this knowledge to suggest
another preprocessing step for reducing the input size of the instance of (DM). We
also use this result to extend some properties of the uncapacitated delay management
problem that have been proven in [Sch06] to the capacitated case in Section 3.4. Finally,
in Section 3.5, we present some numerical results from a case study based on real-
world data, demonstrating the effectiveness of our reduction techniques. Parts of
Sections 3.1, 3.3, and 3.4 are results from a joint research published in [SS08], see
also [SS10].

3.1 Analyzing the IP

In this section, we prove that the constant M in the IP formulation (2.1)-(2.9) indeed
can be chosen finitely beforehand, depending on the input instance. This is not only
important as it proves that the IP formulation is well-defined; it is also important for
one other reason: if M is chosen too small, then feasible or even optimal solutions
are cut off. However, if M is rather large, then due to the fact that commercial IP
solvers solve the problem numerically instead of exactly, an infeasible solution might
be accepted as feasible. Hence, it is desirable to prove a tight bound on M to choose
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3 Analyzing the Model

M as large as necessary, but as small as possible. Thus, in Section 3.2, we suggest a
modification of the IP formulation (DM) which allows to dramatically decrease the
value of M . Before proving a first bound, we demonstrate both effects by a small
example with three stations A, B, and C.

First, we show the effect of choosing M too small. Assume that one train is driving
from station A to station B while another train is driving from station B to station C.
Within station B, passengers might transfer from the first train to the second one. See
Figure 3.1 for an illustration of the corresponding event-activity network.

2

3 4
driving

changing

station B station C

station A

driving
1

Figure 3.1: Example for showing that choosingM too small cuts off optimal solutions.

Assume that all activities have a lower bound of 1, i.e. L(1,2) = L(2,3) = L(3,4) = 1.
Furthermore, assume weights w1 = w3 = 0, w2 = 1, w4 = 3, and w(2,3) = 1, a common
period T = 10, and a source delay d1 = 5 of the first event.

Depending on whether we decide to maintain or not to maintain the connection, we
obtain the following time-minimal disposition timetables:

event i 1 2 3 4

πi 0 1 2 3

xno−wait
i 5 6 2 3

xwait
i 5 6 7 8

The corresponding objective values of both solutions are Fwait = 5w2 + 5w4 = 20 and
F no−wait = 5w2 + Tw(2,3) = 15. Hence (xno−wait, z(2,3) = 1) is the optimal solution. If
we use M = 5, then this optimal solution of the delay management problem is feasible
for the IP formulation (DM), i.e. M is large enough – this is proven in Corollary 3.2
and can also be verified quickly by checking constraint (2.5).
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3.1 Analyzing the IP

If, however, we use M = 4, then (xno−wait, z(2,3) = 1) no longer is feasible for (DM) as

Mz(2,3) + x3 − x2 = 4 + 2− 6 = 0 < 1 = L(2,3),

hence constraint (2.5) is violated. To “repair” the solution, for fixed z(2,3) = 1, x3 and
x4 have to be increased by k ≥ 1 as

Mz(2,3) + (x3 + k)− x2 ≥ 4 + 3− 6 = 1 = L(2,3),

leading to an increase of the objective value of k ·w4. For k = 1, the solution is optimal
with objective value 18 as it is time-minimal. Switching to z(2,3) = 0 is valid only for
k ≥ 5, leading to an objective value of 5w2 +k ·w4 = 5 + 3k ≥ 20 > 18. Hence z(2,3) = 1
still is the optimal wait/depart decision, but the disposition times of events 3 and 4
have to be increased by 1, compared to the optimal solution where M is large enough.

If we reduceM even further, i.e. M = 3, then also the solution forM = 4 is not feasible
anymore for (DM). In this case, the optimal solution is to further increase x3 and x4

by 4, compared to the previous solution for M = 4, and to maintain the connection, i.e.
to set z(2,3) = 0.

Summing up, we have the following optimal solutions for the IP, depending on M :

x1 x2 x3 x4 z(2,3) f(x, z)

M = 5 5 6 2 3 1 15

M = 4 5 6 3 4 1 18

M = 3 5 6 7 8 0 20

So in conclusion, it is important not to choose M too small – otherwise, optimal
solutions might be cut off.

However, a large value ofM might result in a wrong objective value or even an infeasible
solution that is accepted as feasible by the IP solver. To demonstrate the first effect,
we use the same example as above. We assume that the numerical tolerance how much
an integer variable is allowed to differ from the nearest integer value is 5 · 10−6 (which
is the default value of the control parameter MIPTOL in FICO Xpress 7) and that
M = 106. Then the optimal solution of the resulting IP for the example introduced
above that is computed by the solver is z(2,3) = 5 · 10−6 (which is recognized as the
integer value 0 by the solver, due to the numerical tolerance – hence, for the solver,
constraint (2.8) is fulfilled) and x1 = 5, x2 = 6, x3 = 2, x4 = 3 (which is feasible as
Mz(2,3) + x3 − x2 = 106 · 5 · 10−6 + 2− 6 = 1 = L(2,3), i.e. constraint (2.4) is satisfied)
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3 Analyzing the Model

with objective value 5w2 +Tzaw(2,3) = 5+5·10−5. In this case, the disposition timetable
x is feasible for (DM) only if z(2,3) = 1 (which yields an objective value of 15). Hence
in this example, the value of z(2,3) in the solution is wrong, but at least all operational
constraints are satisfied.

If headways are involved, a large value of M can even lead to an infeasible disposition
timetable that violates operational constraints like minimum security distances modeled
by headway activities. To demonstrate this, we again assume that the tolerance how
much an integer variable is allowed to differ from the nearest integer value is 5 ·10−6 and
assume M = 2 · 107 (note that for the data of our case study in Section 3.5, depending
on the observation period and the actual source delays, the bound for M resulting
from Theorem 3.1 ranges from about 1.5 · 106 to about 2.5 · 108, i.e. the assumption
M = 2 · 107 is not unrealistic). Then the constraint Mgij + xj − xi ≥ Lij is satisfied for
all xj ≥ xi + (Lij − 100) if gij = 5 · 10−6 (which, due to the tolerance, is accepted as
zero by the solver), i.e. the lower bound of the headway activity (i, j) might be violated
by up to 100.

In conclusion, choosing a too small value for M can “cut off” optimal solutions, leading
to a degradation of the objective value, or even make the problem infeasible (if headway
constraints are affected). On the other hand, a large value of M might yield infeasible
solutions that are accepted as feasible by the solver, due to rounding errors and due to
the limited numerical accuracy.

As a consequence, we need a tight bound on M . To this end, in Theorem 3.1, we give
an upper bound on the delay of a single event in an optimal solution and use this
knowledge to prove an upper bound on the constant M in Corollary 3.2. In Section 3.2,
we then modify the problem (DM) to tighten the bound on M .

Theorem 3.1. Let an instance of (DM) be given and let

D := max
i∈E

di +
∑

a∈Atrain

da +
∑

(i,j)∈Aback
head

πi − πj + Lij . (3.1)

Then there exists an optimal solution (x, z, g) of (DM) such that xk ≤ πk +D for all
events k ∈ E.

Proof. We show the following stronger statement: For any feasible solution (x̄, z, g)
of (DM), there exists a feasible solution (x̃, z, g) with x̃k ≤ x̄k for all events k ∈ E
(hence f(x̃, z, g) ≤ f(x̄, z, g)) that satisfies x̃k ≤ πk +D for all k ∈ E . The claim of the
theorem then is a direct consequence of this stronger statement.
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3.1 Analyzing the IP

Given a solution (x̄, z, g) of (DM), we define

Afix
change := {a ∈ Achange : za = 0} ,
Afix

head := {(i, j) ∈ Ahead : gij = 0} ,
Afix-bw

head := Afix
head ∩ Aback

head,

Afix-fw
head := Afix

head ∩ Aforw
head,

Afix := Afix
change ∪ Afix

head.

As (x̄, z, g) is a feasible solution, N ′ := (E ,Atrain ∪ Afix) is acyclic, so we can use
algorithm Cpm with Afix as defined above to compute a disposition timetable x̃. By ≺,
we denote the order on the set E = {i1, . . . , i|E|} of events that is gained by sorting the
graph topologically. As Cpm computes a time-minimal solution, x̃ satisfies x̃k ≤ x̄k.
Then, we can inductively prove the following bound on the delay of an event k ∈ E in
the disposition timetable x̃ that only depends on k’s predecessors:

Claim: For each k ∈ E , we have x̃k ≤ πk + Uk with

Uk = max
i∈E:
i�k

di +
∑

a=(i,j)∈Atrain:
j�k

da +
∑

(i,j)∈Afix-bw
head :

j�k

πi − πj + Lij .

We prove the claim by induction.

Basis: For the first event i1, according to the definition of algorithm Cpm, we have
x̃i1 = πi1 + di1 ≤ πi1 + Ui1 , so the claim is true for i1.

Inductive step: Let k ∈ {i2, . . . , i|E|} and assume that the claim already has been
proven for all events i ≺ k. We distinguish the two following cases, depending on which
term in Step 3 of algorithm Cpm is maximal when computing x̃k:

1. x̃k = πk + dk. Since dk ≤ Uk, the claim is true.

2. x̃k = x̃i + La + da for some a = (i, k) ∈ Atrain ∪ Afix. Depending on the type of
activity a, we distinguish the following two cases:

a) If a = (i, k) ∈ Atrain ∪ Afix
change ∪ Afix-fw

head , then

x̃k = x̃i + La + da

≤ πi + Ui + La + da

= πi + La + max
i′∈E:
i′�i

di′ + da +
∑

a′=(i′,j)∈Atrain:
j�i

da′ +
∑

(i′,j)∈Afix-bw
head

j�i

πi′ − πj + Li′j

≤ πk + max
i′∈E:
i′�i

di′ + da +
∑

a′=(i′,j)∈Atrain:
j�i

da′ +
∑

(i′,j)∈Afix-bw
head

j�i

πi′ − πj + Li′j
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3 Analyzing the Model

where the second line is a direct consequence of the induction hypothesis
for event i ≺ k. The last inequality holds as π is a feasible timetable that
satisfies πk ≥ πi +La for all a = (i, k) ∈ Atrain ∪Achange ∪Aforw

head. The claim
then follows by moving da (which is equal to 0 for a ∈ Afix-fw

head ) to the first
sum and using the transitivity of the order ≺.

b) If a = (i, k) ∈ Afix-bw
head , we obtain

x̃k = x̃i + Lik

≤ πi + Ui + Lik

= πk + πi − πk + Lik

+ max
i′∈E:
i′�i

di′ +
∑

a′=(i′,j)∈Atrain:
j≺i

da′ +
∑

(i′,j)∈Afix-bw
head

j≺i

πi′ − πj + Li′j ,

and the claim follows by moving πi − πk + Lik to the second sum and again
using the transitivity of the order ≺.

As Uk ≤ D for all k ∈ E , the theorem holds.

Using this result, we can give an upper bound on the minimal size needed for M in the
IP formulation (DM):

Corollary 3.2. M ≥ D is “large enough”.

Proof. Let M ≥ D and let (x, z, g) be an optimal solution of the delay management
problem that satisfies constraints (2.2), (2.3), and (2.6)-(2.9) of the IP formulation
(DM) as well as (2.4) for all a ∈ Achange with za = 0 and (2.5) for all (i, j) ∈ Ahead

with gij = 0. We have to show that x then also satisfies (2.4) for all a ∈ Achange with
za = 1 and (2.5) for all (i, j) ∈ Ahead with gij = 1 (i.e. that, due to the size of M , these
constraints are fulfilled “automatically” for all dropped connections and for all dropped
headways).

First, let a = (i, j) ∈ Achange with za = 1. We have to show that constraint (2.4) is
satisfied, i.e. thatM+xj−xi ≥ La holds. From Theorem 3.1, we know that xi ≤ πi+D.
As π is a feasible timetable, πj − πi ≥ La, and as x satisfies constraints (2.2), we have
xj ≥ πj + dj ≥ πj . Hence,

M ≥ D
≥ xi − πi
≥ xi − πj + La

≥ xi − xj + La,
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3.1 Analyzing the IP

thus M + xj − xi ≥ La, so (2.4) indeed is satisfied for all a ∈ Achange, including all
dropped connections.

Now, let a = (i, j) ∈ Ahead with gij = 0. We have to show that the corresponding
(dropped) headway a−1 = (j, i) satisfies constraint (2.5), i.e. M + xi − xj ≥ Lji. We
distinguish two cases, depending on whether a is a forward headway or a backward
headway.

1. Let a ∈ Aforw
head. First, from the proof of Theorem 3.1, we know xj ≤ πj + Uj .

Secondly, according to the definition of Uj and D, each term added to Uj also is
added to D, but not the other way round: As a = (i, j) ∈ Aforw

head, for a
−1 = (j, i),

we have a−1 ∈ Aback
head, but a

−1 6∈ Afix-bw
head (as already a is fixed). Hence the term

πj − πi +Lji is included in D, but not in Uj . Thus, D−Uj ≥ πj − πi +Lji. Last,
as x satisfies (2.2), xi ≥ πi + di ≥ πi. Putting all together yields

xj ≤ πj + Uj

≤ πj +D − (πj − πi + Lji)

= D + πi − Lji
≤ D + xi − Lji.

As M ≥ D, this yields M + xi − xj ≥ Lji.

2. Let a ∈ Aback
head. From Theorem 3.1, we know that xj ≤ πj +D. As π is a feasible

timetable, πi > πj implies πi − πj ≥ Lji. As x satisfies constraints (2.2), we have
xi ≥ πi + di ≥ πi. Putting all together,

M ≥ D
≥ xj − πj
≥ xj − πi + Lji

≥ xj − xi + Lji,

hence again we have M + xi − xj ≥ Lji.

Both cases show that (2.5) indeed is satisfied for all (i, j) ∈ Ahead, including the dropped
headways.

Compared to (UDM) where

M = max
i∈E

di +
∑

a∈Atrain

da

is large enough, the constant needed for (DM) is rather large, yielding a weak linear
programming relaxation of the integer program.
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In Section 3.3, we further investigate the backward headways and show how the integer
programming formulation can be improved. One result shows that the bound on M
can be tightened – but first we analyze a slight modification of (DM) that nevertheless
provides a significant reduction of the bound onM (at the cost of introducing additional
restrictions on the disposition timetable).

3.2 Bounding the Maximal Delay

In practice, a reasonable constraint on a disposition timetable is that the delay of each
event does not get “too large”. By imposing such a constraint, we might loose some
optimal solutions of (DM) where a single train with low passenger weights has a very
large delay, and if we set the bound on the maximal delay too low, we might even
end up with an infeasible problem. However, if we restrict the maximum delay in a
reasonable way, we can significantly reduce the number of headway constraints which
we have to consider, and we can drastically reduce the size of the constant M in the
IP, compared to the quite large value shown to be “large enough” in Theorem 3.1 and
Corollary 3.2.

To this end, let Y ∈ N be the maximal delay which we want to allow for a single event.
Then, for each event, we add one constraint to the IP formulation (2.1)-(2.9) of (DM)
to bound the maximal delay and obtain the subproblem which we call bounded delay
management problem (BDM):

(BDM) min f(x, z, g) =
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT

such that
xi ≤ πi + Y ∀i ∈ E (3.2)

and such that (2.2)-(2.9) are satisfied.

The following relationship between (DM) and (BDM) holds:

Lemma 3.3. (DM) is a relaxation of (BDM).

Proof. Each feasible solution of (BDM) is also a feasible solution of (DM), and the
objective functions of both problems are identically.

The following Lemma is a consequence of Lemma 3.3:
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Lemma 3.4. Let FBDM and FDM denote the objective value of the optimal solution of
(BDM) and the objective value of the optimal solution of the corresponding instance of
(DM), respectively. Then

FDM ≤ FBDM.

For problem (BDM), we can tighten the bound on M from Corollary 3.2 significantly:

Theorem 3.5. Given an instance of (BDM),

M := Y + max
(i,j)∈Ahead

(πj − πi + Lji) (3.3)

is “large enough”.

Proof. Let M be defined as in (3.3). The proof is similar to the proof of Corollary 3.2:
Let (x, z, g) be a solution of the delay management problem with bounded delay that
satisfies constraints (2.2), (3.2), (2.3), and (2.6)-(2.9) as well as (2.4) for all a ∈ Achange

with za = 0 and (2.5) for all (i, j) ∈ Ahead with gij = 0. We have to show that x then
also satisfies (2.4) for all a ∈ Achange with za = 1 and (2.5) for all (i, j) ∈ Ahead with
gij = 1 (i.e. that, due to the size of M , these constraints are fulfilled “automatically”
for all dropped connections and for all dropped headways).

First, let a = (i, j) ∈ Achange with za = 1. Then, using xj ≥ πj and xi ≤ πi + Y (as x
satisfies (2.2) and (3.2)) as well as πj − πi ≥ La (as π is a feasible timetable and hence
satisfies (2.4)), we have

Mza + xj − xi = M + xj − xi
= Y + max

(i,j)∈Ahead

(πj − πi + Lji) + xj − xi

≥ Y + xj − xi
≥ Y + πj − (πi + Y )

= πj − πi
≥ La.

Now, let (i, j) ∈ Ahead with gij = 1. Then,

Mgij + xj − xi = M + xj − xi
= Y + max

(i,j)∈Ahead

(πj − πi + Lji) + xj − xi

≥ Y + (πi − πj + Lij) + xj − xi
= Y + (πi − xi) + (xj − πj) + Lij

≥ Y + (πi − (πi + Y )) + 0 + Lij

= Lij .

Hence the claim is true.
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Note that for large instances with many headway activities and for a “reasonable” Y ,

Y + max
(i,j)∈Ahead

(πj − πi + Lji) � max
i∈E

di +
∑

a∈Atrain

da +
∑

(i,j)∈Aback
head

πi − πj + Lij ,

so (BDM) might have a much stronger linear programming relaxation than (DM),
depending on the input instance and the choice of Y . In addition, a significantly smaller
value for M reduces those rounding errors and numerical instabilities that we described
in Section 3.1. In our numerical experiments (see Section 3.5), M as defined in (3.3)
was between 800 and 15 000 times smaller than M as defined in (3.1).

Apart from Theorem 3.5, bounding the maximal delay has another advantage – it can
be used to fix some priority decisions before solving the problem:

Theorem 3.6. Given an instance of (BDM) with Y ∈ N, assume that πj − πi > Y for
some (i, j) ∈ Ahead. Then, in each feasible solution of (BDM), gij = 0, i.e. event i is
scheduled first.

Proof. By contradiction. For a given instance of (BDM), let (x, z, g) be a feasible
solution with gij = 1 and πj − πi > Y for some (i, j) ∈ Ahead. As gij = 1 and (x, z, g)
is a feasible solution satisfying (2.5), we have xi − xj ≥ Lji. Hence

xi ≥ xj + Lji

≥ πj + Lji

> πi + Y + Lji,

thus constraint (3.2) is violated and (x, z, g) is not feasible.

The statement of Theorem 3.6 can be used to significantly reduce the number of priority
decisions:

• For each (i, j) ∈ Ahead with πj − πi > Y , we can fix gij = 0 and gji = 1, i.e. we
can delete the backward headway (j, i) and treat the forward headway (i, j) like
the fixed activities in Atrain.

• For each (i, j) ∈ Ahead with πj − πi ≥ Y + Lij , we can even completely delete
both headways (i, j) and (j, i).

The latter is a consequence of

xj ≥ πj ≥ πi + Y + Lij ≥ xi + Lij ,

i.e. due to the fact that we have bounded xi by πi + Y , all headway activities (i, j)
where πj − πi is large enough are respected “automatically”.

34



3.2 Bounding the Maximal Delay

We formalize this result in the following algorithm Fix-Headways:

Algorithm 3.1: Fix-Headways

Input: An event-activity network N and Y ∈ N.

Step 1: Set Afix
head := {(i, j) ∈ Ahead : Y + Lij > πj − πi > Y }.

Step 2: Set Ãhead := {(i, j) ∈ Ahead : |πj − πi| ≤ Y }.

Step 3: Define the network N ′ by
E ′ := E

A′train := Atrain ∪ Afix
head

A′change := Achange

A′head := Ãhead.

Output: The reduced event-activity network N ′.

It is important to notice that bounding the maximal delay of each event by Y as
suggested in this section cuts off all solutions of (DM) where at least one event i ∈ E
satisfies xi > πi + Y ; this might even lead to an infeasible problem. So when solving
(DM) on the reduced network N ′ provided by algorithm Fix-Headways, we might
yield a solution that is not optimal for (DM), or we might not even get a solution at all.
However, if we already start with an instance of (BDM) instead of (DM), then solving
it on the reduced network N ′ is exactly the same as solving it on the original network
N as we do not cut off any feasible solution of (BDM).

In Section 3.5, we show how much the reduced size affects the computation times in
practice and how much the objective value differs from the optimal solution if we do
not take into account all feasible solutions of (DM), but only those where the delay
of each event is bounded (i.e. if we solve (DM) on the reduced event-activity network
provided by algorithm Fix-Headways).

In the next section, we further analyze the headway constraints. Our analysis yields
a result that allows us to reduce the size of the event-activity network; the resulting
reduction technique can be combined with algorithm Fix-Headways to further reduce
the size of the input instance.
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3.3 Analyzing the Headway Constraints

Headway constraints increase the difficulty of the delay management problem as they
can carry over a delay from a subsequent train even to a train which has been scheduled
earlier. At a first glance, it seems that all of the headway activities can carry over a
delay to a previous train. However, we prove that in an optimal solution, backward
headways can never delay punctual events. This is precised next.

Definition 3.7. Given the original timetable π, let Aπ denote the set of all activities
that are respected by π, i.e.

Aπ := Atrain ∪ Achange ∪ Aforw
head. (3.4)

Using the definition of suc(·, ·) from Section 2.1, we define the set of all successors of
delays in the event-activity network (E ,Aπ) as

Emark := Emark(Aπ) :=

 ⋃
j∈E:
dj>0

suc(j,Aπ)

 ∪
 ⋃
a=(i,j)∈Atrain:

da>0

suc(j,Aπ)

 . (3.5)

Note that source delayed events and endpoints of source delayed activities, as well as
all of their successors in the event-activity network (E ,Aπ), are included in this set.
Emark can be calculated in time O(|A|).

In the following we show that Emark contains all events to which (in an optimal solution)
a delay can spread out in the worst case – although we do not consider backward
headways in the set Aπ:

Theorem 3.8. Let wi > 0 ∀i ∈ E and let (x, z, g) be an optimal solution of (DM).
Then, xi = πi for all i 6∈ Emark.

Proof. By contradiction. Let i 6∈ Emark but xi > πi where we assume that xi is minimal
among all such events. Since i 6∈ Emark, due to the definition of Emark, di = 0, and from
the minimality of xi, we conclude xk = πk for all direct predecessors k with (k, i) ∈ Aπ.
We show that reducing xi to x̃i := πi < xi yields a feasible solution of (DM) with strictly
better objective value. To this end, we show that x̃ fulfills constraints (2.2)-(2.5).

1. As di = 0, x̃i = πi satisfies (2.2).

2. To show (2.3)-(2.5), we distinguish three types of activities: all outgoing activi-
ties, incoming activities except for backward headways, and incoming backward
headways.
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3.3 Analyzing the Headway Constraints

a) For all outgoing activities a = (i, k) ∈ A, we obtain

xk − x̃i > xk − xi ≥ La + da

where the last inequality holds since x is a feasible timetable. Consequently
(2.3)-(2.5) hold for all outgoing activities a = (i, k) ∈ A.

b) For all incoming activities a = (k, i) ∈ Aπ, we use xk = πk and da = 0 to
derive

x̃i − xk = πi − πk ≥ La = La + da,

hence (2.3)-(2.5) hold for each incoming activity a = (k, i) ∈ Aπ.

c) As the last step, we have to check incoming backward headways, so let
(k, i) ∈ Ahead \ Aπ = Aback

head. If gki = 1, then – according to part 2a of
this proof – the corresponding outgoing headway a−1 = (i, k) with gik = 0
satisfies (2.5), so as a consequence of Corollary 3.2, a also satisfies (2.5).

Hence, assume gki = 0. We now show that changing the order of events k
and i back to the order which they had in the original timetable π leads to
a feasible timetable, enabling us to set x̃i = πi without changing the time of
event k. As (k, i) /∈ Aπ, we have πk > πi, and as π is a feasible timetable,
this implies πk − πi ≥ Lik. We define g̃ki := 1 and g̃ik := 0; then

xk − x̃i = xk − πi ≥ πk − πi ≥ Lik,

so (2.5) still holds for (i, k) if we swap the order of both events. Then, by
the same argument as before, due to Corollary 3.2, (2.5) also holds for (k, i).

All in all, (x̃, z, g̃) is a feasible solution with strictly better objective value than (x, z, g)
(as wi > 0), a contradiction to the optimality of (x, z, g).

If the weight of an event represents its importance, then the requirement wi > 0 ∀i ∈ E in
Theorem 3.8 is no severe restriction. If, however, the weight wi of event i represents the
number of passengers who end their journey with event i, then – as already mentioned
in Section 2.3 – we need to set wi = 0 for all departure events i ∈ Edep. In this case,
delaying an event with weight 0 does not increase the objective value as long as it does
not influence any event or connection with positive weight, so there might exist an
optimal solution with xi > πi for some event i 6∈ Emark. However, using the proof of
Theorem 3.8, we can transform such a solution into a solution (x̃, z, g̃) with the same
or even better objective value, but with xi = πi for all i 6∈ Emark:

Theorem 3.9. Let wi ≥ 0 ∀i ∈ E, and let (DM) be feasible. Then there exists an
optimal solution (x, z, g) of (DM) with xi = πi for all i 6∈ Emark.
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Proof. Let (x, z, g) be an optimal solution of (DM) with xi > πi for some events
i ∈ Emark. By Eviolated ⊂ Emark, we denote all such events. Then, by the construction
shown in the proof of Theorem 3.8, we can set x̃i := πi for all i ∈ Eviolated and obtain a
feasible solution (x̃, z, g̃) of (DM). The objective value of this solution is not worse than
the objective value of the initial optimal solution (x, z, g) since the set of maintained
connections is the same as before (as we assumed wa > 0 ∀a ∈ Achange in our model) and
since no event takes place later than scheduled in the initial disposition timetable x.

Theorem 3.8 implies that all events k with xk > πk in an optimal solution are included
in Emark. We can strengthen this result as follows:

Theorem 3.10. Let wi > 0 ∀ i ∈ E and let (x, z, g) be an optimal solution of (DM).
Let xk > πk for some k ∈ E. Then there exists a directed path p from some event i ∈ E
to event k with either di > 0 or da > 0 for some a = (j, i) ∈ Atrain such that

p ⊆ (E ,A′) with A′ := Aπ \ {a ∈ Achange : za = 1}.

Proof. Let (x, z, g) be optimal for (DM) in the network (E ,A). Consider the network
N ′ = (E ,A′) in which the changing activities that have not been maintained in the
optimal solution are deleted. The solution (x, z′, g) (where z′ is the restriction of z on
{0, 1}|A′|) is still optimal for the delay management problem in N ′. Since xk > πk,
Theorem 3.8 yields that k ∈ Emark(A′), i.e. the required path in N ′ exists according to
the definition of Emark.

Again, if wi ≥ 0 instead of wi > 0, then (as shown in Theorem 3.9), for each optimal
solution, there exists a corresponding solution with the same objective value and the
property claimed in Theorem 3.10.

The results from Theorem 3.8 and Theorem 3.9 can be used to reduce the size of the
IP formulation (DM). Formally, this is done by the following algorithm:

Algorithm 3.2: Reduce

Input: The event-activity network N = (E ,A), a timetable π, and source delays
d ∈ N|E|+|Atrain|.

Step 1: Calculate Emark according to (3.5), using the definition of Aπ from (3.4).

Step 2: Compute Ereduced := Emark ∪ {i ∈ E : ∃a = (i, j) ∈ Atrain with da > 0}.

Step 3: Compute Areduced := {(i, j) ∈ A : i, j ∈ Ereduced}.

Output: The reduced event-activity network Nreduced = (Ereduced,Areduced).
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Nreduced might be significantly smaller thanN , hence solving (DM) on the reduced event-
activity network might be significantly faster than solving it on the original one. To
obtain a solution for all events and activities after solving (DM) on the reduced network,
we have to set xi = πi for all events i ∈ E \ Ereduced, za = 0 for all changing activities
a ∈ Achange \ Areduced, gij = 0 for all forward headways a = (i, j) ∈ Aforw

head \ Areduced

and gji = 1 for the corresponding backward headways.

Note that for calculating the constant M from Corollary 3.2, it is also sufficient to
use the reduced network from above. This might lead to a much smaller value of M ,
yielding a better linear programming relaxation of the integer program and reducing
rounding errors if the IP is solved by a commercial solver. We can also combine the
results from Theorem 3.5, Theorem 3.6, and Theorem 3.8 (i.e. combine algorithms
Fix-Headways and Reduce) to further reduce the size of the input instance. This is
formalized in the following algorithm Fix-And-Reduce:

Algorithm 3.3: Fix-And-Reduce

Input: An instance of (DM) and Y ∈ N.

Step 1: Run algorithm Fix-Headways and obtain N ′.

Step 2: Run algorithm Reduce on N ′ and obtain Nreduced.

Step 3: Define N ′′ by
E ′′ := Ereduced ⊆ E ′

A′′train := A′train ∩ Areduced

A′′change := A′change ∩ Areduced

A′′head := A′head ∩ Areduced.

Output: The reduced event-activity network N ′′.

Note that algorithm Fix-And-Reduce (like algorithms Fix-Headways and Reduce)
requires only linear runtime of O(|A|+ |E|).

In general, algorithm Fix-Headways (Step 1 of algorithm Fix-And-Reduce) should be
applied before algorithm Reduce (Step 2 of algorithm Fix-And-Reduce): Algorithm
Fix-Headways might delete some headways that otherwise would increase the set
Emark; by deleting them, algorithm Reduce gets more effective. If, by contrast, Reduce
is invoked before algorithm Fix-Headways, this has no effect on the effectiveness of
Fix-Headways.

The reduced event-activity network N ′′ computed by algorithm Fix-And-Reduce can
be used to solve problem (BDM): First, set M as defined in (3.5) where it is sufficient
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to use the reduced set A′′head instead of Ahead and solve the corresponding instance
of (BDM) on the reduced event-activity network N ′′. If the problem is feasible, an
optimal solution is also a feasible solution for problem (DM). In Section 3.5.4, we
show that for a reasonable choice of Y , in our case study, the optimal solution of
(BDM) is even optimal for (DM). To extend the solution (x, z, g) corresponding to the
reduced event-activity network N ′′ to a solution corresponding to the original event-
activity network N , we have to set xi = πi ∀i ∈ E \ E ′′, za = 0 ∀a ∈ Achange \ A′′change,
gij = 0 ∀(i, j) ∈ Aforw

head \ A′′head, and gij = 1 ∀(i, j) ∈ Aback
head \ A′′head.

3.4 Never-Meet Property for Capacitated Delay
Management

Using the results from Section 3.3, we can extend the never-meet property of uncapaci-
tated delay management to the capacitated case. For results concerning the never-meet
property of uncapacitated delay management, we refer to [Sch06].

Definition 3.11 ([Sch06]). An instance of (UDM) has the never-meet property if

• for each source delay dj > 0 with j ∈ E (or da > 0 with a = (i, j) ∈ Atrain),
suc(j,A) is an out-tree, and if

• for each pair of different source delays dj > 0 (or da > 0, a = (i, j)) and dj̃ > 0

(or dã > 0, ã = (̃i, j̃)), we have suc(j,A) ∩ suc(j̃,A) = ∅.

If the never meet-property is satisfied, (UDM) can be solved in time O(|A|) by dynamic
programming, see [Sch06]. Moreover, the approximate objective function (2.1) is in this
case the exact sum of all delays of all passengers when arriving at their final destinations
(as long as the weights wi and wa are properly chosen as we already mentioned in
Chapter 2). The reason for both results is that once a changing activity a = (i, j) is not
maintained, all its successors in suc(i,A) are punctual and all its successive changing
activities are maintained. For details and a study about the number of conflicts with
the never-meet property for real-word instances, we refer to [Sch07].

If the never-meet property is not fulfilled, then we might over-estimate the sum of all
delays in the objective of (UDM). To demonstrate this, consider the small event-activity
network which we already have used in Section 3.3, see Figure 3.1 on page 26. Again we
assume lower bounds L(1,2) = L(2,3) = L(3,4) = 1, weights w1 = w3 = 0, w2 = w(2,3) = 1,
and w4 = 3 and a period length of T = 10. If both events 1 and 3 have a source delay,
then suc(1,A) ∩ suc(3,A) = {3, 4} 6= ∅, i.e. the never-meet property is not fulfilled.
Hence, we assume source delays d1 = 5 and d3 = 1. In the optimal solution, z(2,3) = 1,
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3.4 Never-Meet Property for Capacitated Delay Management

i.e. the connection is not maintained. A passenger traveling from station A to station C
hence misses the connection, leading to a penalty of the period length T added to the
objective. However, the weight w4, representing the number of passengers ending their
trip with event 4, also includes this passenger (as we assumed all weights to be fixed;
they are not updated dynamically), so when adding w4(x4 − π4) to the objective, this
passenger is counted a second time.

Directly transferring Definition 3.11 to the delay management problem (DM) with
headway constraints makes no sense: Due to the directed circles induced by the headway
constraints, it will never be satisfied if a source delay can spread out to some headway
activity (and hence also to its reverse). However, we can use the results from Theorem 3.8
and Theorem 3.10 and only use Aπ (instead of A) to obtain a reasonable definition of
the never-meet property.

Definition 3.12. An instance of (DM) has the never-meet property if

• for each source delay dj > 0 with j ∈ E (or da > 0 with a = (i, j) ∈ Atrain),
suc(j,Aπ) is an out-tree, and if

• for each pair of different source delays dj > 0 (da > 0, a = (i, j)) and dj̃ > 0

(dã > 0, ã = (̃i, j̃)), we have suc(j,Aπ) ∩ suc(j̃,Aπ) = ∅.
Here, Aπ is as defined in (3.4).

The crucial property is that in an optimal solution, all events following a connection
that has not been maintained are on time. This is shown next.

Lemma 3.13. Given an instance of (DM) with wi > 0 ∀i ∈ E that satisfies the
never-meet property and an optimal solution (x, z, g), assume that za = 1 for some
a = (i, j) ∈ Achange. Then, xk = πk for all subsequent events k ∈ suc(j,Aπ).

Proof. By contradiction. Let (x, z, g) be an optimal solution with za = 1 for some
a = (i, j) ∈ Achange and assume that there exists some event k ∈ suc(j,Aπ) with
xk > πk.

• On the one hand, according to Theorem 3.10, there exists a directed path p1

from some event j̃1 to k in (E ,Aπ \ {a}) with either dj̃1 > 0 or dã1 > 0 for some
ã1 = (̃i1, j̃1) ∈ Atrain that causes the delay of k.

• On the other hand, from za = 1, we conclude that i is delayed (otherwise it
would have been better to maintain a as we assumed all weights wa to be strictly
positive). Hence, according to Theorem 3.8, i ∈ Emark, so there exists a directed
path p2 from some event j̃2 to i in (E ,Aπ \ {a}) with either dj̃2 > 0 or dã2 > 0

for some ã2 = (̃i2, j̃2) ∈ Atrain that causes the delay of i. As k ∈ suc(j,Aπ), p2

can be extended to a path p3 from j̃2 to k in (E ,Aπ) that contains a.
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Together, we obtain a contradiction to the never-meet property: either j̃1 = j̃2, then
suc(j̃1,Aπ) is not an out-tree as we have two different paths p1 (not containing a) and p3

(containing a) from j̃1 to k, or j̃1 6= j̃2, then suc(j̃1,Aπ) ∩ suc(j̃2,Aπ) ⊇ {k} 6= ∅.

Note that due to Theorem 3.9, in the case that wi = 0 is allowed, for each optimal
solution (x, z, g) that does not fulfill Lemma 3.13 due to some event i 6∈ Emark with
wi = 0 and xi > πi, we can construct a corresponding solution (x̃, z, g̃) that does fulfill
Lemma 3.13.

Another important result is that if the never-meet property holds, then in each optimal
solution, all subsequent connections following a dropped one are maintained:

Corollary 3.14. Given an instance of (DM) that satisfies the never-meet property
and an optimal solution (x, z, g), assume that za = 1 for some changing activity
a = (i, j) ∈ Achange. Then, for each subsequent changing activity a = (k, l) ∈ Achange

with k ∈ suc(j,Aπ), za = 0 holds.

Proof. We distinguish two cases, depending on whether a weight of 0 is allowed for
events or not.

1. If wi > 0 ∀i ∈ E , Lemma 3.13 yields that xk = πk. Hence it is feasible to set
za = 0, and as we assumed that wa > 0 for all a ∈ Achange, it is strictly better
than za = 1. Thus, in an optimal solution, za = 0.

2. If wi = 0 is allowed, then (as a consequence of Theorem 3.9) there exists a
corresponding solution (x̃, z, g̃) whose objective value it as least as good as the
objective value of (x, z, g) and for which Lemma 3.13 holds. Hence, by the same
argument as in the first part of this proof, the claim of Corollary 3.14 is true for
(x̃, z, g̃). As the values of the binary variables z are the same in both solutions
(x, z, g) and (x̃, z, g̃), Corollary 3.14 also holds for the initial solution (x, z, g).

Lemma 3.13 and Corollary 3.14 provide the basic ingredients for most of the results
based on the never-meet property. We mention the most important consequence here:

Theorem 3.15. If the never-meet property holds, (DM) is equivalent to minimizing
the sum of all delays of all passengers at their final destinations.

Proof. The idea of the proof is similar to the proof for the uncapacitated case given
in [Sch06]. If all connections on a passenger’s path are maintained, this passenger
arrives at his or her final destination with exactly the train he or she planned to use.
As we add the delay of the corresponding arrival event, weighted with the number of
passengers who end their journey with that event, to the objective (2.1), all passengers
who do not miss a connection are counted correctly. It remains to show that a passenger

42



3.5 Numerical Results

who misses a connection is not counted twice, i.e. that for such a passenger, a delay of
exactly T is added to the objective (to model the fact that this passenger has to wait
for a train of the same line in the next period as we prohibit re-routing of passengers).

To this end, assume that connection a = (i, j) ∈ Achange is not maintained, i.e. za = 1.
Then Twa is added to the objective (2.1). Due to Lemma 3.13, xk = πk for all
subsequent events k ∈ suc(j,Aπ), hence for all passengers who miss a, the delays of
the trains they planned to use to reach their final destinations are xk − πk = 0 at all
subsequent events k ∈ suc(j,Aπ), thus no additional delay is added for these passengers
at their final destinations. Due to Corollary 3.14, all subsequent connections of a missed
one are maintained, so for no passenger (even if he or she planned to transfer several
times), we add T more than once to the second part of the objective (2.1).

The never-meet property for uncapacitated delay management is almost satisfied in
many practical scenarios (for a study on how many conflicts with the never-meet
property occur in a real-world railway setting, we refer to [Sch07]). However, in the
capacitated case, conflicts with the never-meet property are more likely to appear as
the event-activity network with headway activities is much more dense than without
headways. Hence, in many cases, the objective (2.1) is only an upper bound on the
sum of all delays of all passengers at their final destinations.

3.5 Numerical Results

In this section, we present numerical results from a case study with a real-world data
set, based on a part of the German railway network, to show the effectiveness of the
reduction techniques suggested in this chapter.

3.5.1 Setting

We start with a description of the setting of our numerical tests. The part of the
German railway network which we consider in our case study is a part of the network
of Deutsche Bahn AG in the southern part of Lower Saxony, namely the Harz region.
It is depicted in Figure 3.2.

For the case study, we consider 30 pairs of directed passenger railway lines operated
within the region as well as 9 pairs of long-distance lines crossing the region. The
data set contains all 598 stations along these lines. In total, 92 trains are serving the
lines, and for all tracks, including more than 30 single track segments, we take into
account the headway constraints to ensure safe operations. The weights of the changing
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Figure 3.2: The part of the German railway network which we consider in our case
study. The figure is taken from [LSS+10].

activities have been estimated by Deutsche Bahn AG using their traffic assignment
model. We assume all lines to be operated with a common period of T = 120 minutes.
In reality, there are only few lines which are operated hourly (which, for our case
study, are split into two lines with a period of 120 minutes, operating alternately at
one-hour intervals). The timetable of the long-distance lines crossing the region was
fixed according to a timetable provided by Deutsche Bahn AG, while the timetable of
the local trains has been computed for a joint research on delay resistant timetabling,
minimizing the passengers’ travel times (see [LSS+10]).

To evaluate the reduction techniques presented in this chapter, we take into account
different observation periods, considering all events taking place in a fixed time interval
of 2, 4, 6, 8, 10, or 12 hours and all activities connecting those events. There are
two reasons for taking into account several different observation periods: First, a
larger observation period results in a larger event-activity network which allows us
to numerically evaluate the runtime of different solution procedures, depending on
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the input size. Secondly, by allowing source delays to occur only during the first two
hours of each observation period, we can analyze the relative error of different solution
procedures on short-term, medium-term, and long-term disposition. The sizes of the
corresponding event-activity networks are summarized in Table 3.3.

hours |E| |Atrain| |Achange| |Ahead|

2 5 320 5 219 151 1 204
4 10 637 10 529 380 4 804
6 15 953 15 843 609 10 800
8 21 269 21 157 838 19 192

10 26 004 25 890 1 036 28 612
12 28 336 28 220 1 142 33 466

Table 3.3: Size of the event-activity network, depending on the observation period.

For each of the observation periods, we generated 300 different delay scenarios; in
each of them, ten randomly chosen driving activities within the first two hours of
the observation period have been assigned a randomly chosen source delay between 3
and 15 minutes. For each delay scenario, we then used several different approaches to
compute a solution of the corresponding instance of the delay management problem:
namely solving the IP formulation based on the original event-activity network as well
as solving the IP formulation based on each of the three different reduced event-activity
networks obtained by applying Fix-Headways, Reduce, and Fix-And-Reduce. In
the following, we compare the time needed for solving the IP based on the unreduced
event-activity network with the time needed for solving the IP based on one of the
reduced event-activity networks. The ratio of both times is a measure for the efficiency
of the reduction techniques (note that we only take into account the time needed by
the solver to solve the IP to optimality, not the time needed for setting up the IP or
for applying one of the reduction techniques). The computations have been performed
on five machines, each equipped with two dual core AMD Opteron 275 CPUs with
2.2 GHz and 12 GB RAM, using FICO Xpress 7.0 (using the default settings for the
optimizer). In the following, we present the results.

3.5.2 Sizes of the Reduced Event-Activity Networks

First, we compare how much algorithms Fix-Headways, Reduce, and Fix-And-
Reduce (which in fact combines Fix-Headways and Reduce) reduce the size of the
input instance of (DM).
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In Table 3.6 on page 48, we show how good the reduction results are for algorithm
Fix-Headways (where we have chosen Y = T ). Note that Fix-Headways only
reduces the number of headway activities but does neither delete events nor driving,
waiting, or changing activities. Furthermore, the reduction does not depend on the
actual delay scenario, but only on the event-activity network and the upper bound
Y on the maximal delay of an event – hence, for all delay scenarios belonging to a
fixed observation period, the reduced event-activity network after running algorithm
Fix-Headways is the same. As expected, the larger the observation period gets, the
more headway activities are either fixed or even completely removed. As the period
length T is equal to 120 minutes, for an observation period of two hours, no reduction
is possible.

In Table 3.4, we show how much algorithm Reduce can reduce the size of the event-
activity network. In contrast to algorithm Fix-Headways, it does not only reduce
the number of headways, but also deletes some events and some driving, waiting,
and changing activities and depends on the source delays. Reduce yields good
reduction results especially for short observation periods, while the effectiveness of
Fix-Headways (see Table 3.6) grows with the observation period. Combining both
algorithms to algorithm Fix-And-Reduce yields a reduction technique that performs
well for small and for large observation periods. This can bee seen in Table 3.5 where
we summarize the reduction results for algorithm Fix-And-Reduce.

Depending on the network structure, choosing a smaller Y can increase the efficiency
of algorithm Fix-Headways and algorithm Fix-And-Reduce. In this case, Fix-
Headways can delete more headways, and the tighter upper bound on each xi variable
reduces the search space. Since in algorithm Fix-And-Reduce, Fix-Headways is
run before Reduce, it also removes some headways that otherwise would increase the
set Emark – by deleting them, algorithm Reduce gets more effective. Note that this
does not hold if Y ≥ T ; we explain this for the case of two trains using the same track
into the same direction. A headway (i, j) can be deleted only if πj − πi ≥ Y + Lij . If
this is the case, then (due to the periodicity) there exist other events i1, . . . , ik with
πi1 = πi + T , . . . , πik = πik−1

+ T ≤ πj − T which are connected by headway activities
(i, i1), . . . , (ik−1, ik), (ik, j). As Y ≥ T , those headway activities are not deleted by
algorithm Fix-Headways. Hence when Reduce is running, due to those headways, if
i ∈ Emark, j gets marked, too, as j ∈ suc(i,Aπ).

As with a smaller value of Y , the problem got infeasible in few cases, we only present
results for Y = T .

46



3.5 Numerical Results

re
du

ce
d
si
ze

of
E

re
du

ce
d
si
ze

of
A

ch
a
n
g
e

re
du

ce
d
si
ze

of
A

h
e
a
d

ho
ur
s

m
ax

av
g

m
in

m
ax

av
g

m
in

m
ax

av
g

m
in

2
29
.1

0%
13
.9

4%
4.

0
8%

2
9.

8
0
%

9.
0
6
%

0.
0
0
%

3
9.

7
0
%

1
3.

3
2
%

0.
0
0
%

4
53
.1

8%
34
.0

8%
17
.0

1
%

6
8.

9
5
%

3
6.

3
2
%

5.
5
3
%

6
5.

9
0
%

3
4.

7
0
%

5.
3
8
%

6
62
.7

3%
49
.4

3%
34
.4

2
%

7
4.

5
5
%

5
5.

4
6
%

2
7.

7
5
%

7
7.

3
3
%

4
9.

3
2
%

1
7.

1
5
%

8
71
.8

4%
60
.7

6%
44
.3

1
%

8
1.

0
3
%

6
7.

3
2
%

4
9.

8
8
%

7
9.

7
7
%

6
0.

1
9
%

3
1.

1
1
%

10
77
.5

8%
67
.3

3%
55
.6

7%
8
6.

2
9
%

7
3.

5
9
%

6
0.

2
3
%

8
5.

5
8
%

6
6.

7
7
%

4
2.

6
0
%

12
78
.4

8%
70
.3

4%
59
.8

4%
8
5.

6
4
%

7
6.

2
5
%

6
3.

3
1
%

8
3.

8
8
%

6
9.

2
8
%

4
9.

8
5
%

T
ab

le
3.
4:

R
el
at
iv
e
si
ze

of
th
e
ev
en
t-
ac
ti
vi
ty

ne
tw

or
k
(c
om

pa
re
d
to

th
e
un

re
du

ce
d
ev
en
t-
ac
ti
vi
ty

ne
tw

or
k)

af
te
r

ru
nn

in
g
al
go

ri
th
m

R
ed

u
c
e.

re
du

ce
d
si
ze

of
E

re
du

ce
d
si
ze

of
A

ch
a
n
g
e

re
du

ce
d
si
ze

of
A

h
e
a
d

ho
ur
s

m
ax

av
g

m
in

m
ax

av
g

m
in

m
ax

av
g

m
in

2
29
.1

0%
13
.9

4%
4.

0
8%

2
9.

8
0
%

9.
0
6
%

0.
0
0
%

3
9.

7
0
%

1
3.

3
2
%

0.
0
0
%

4
53
.1

8%
34
.0

8%
17
.0

1
%

6
8.

9
5
%

3
6.

3
2
%

5.
5
3
%

5
4.

3
3
%

3
1.

4
9
%

5.
7
9
%

6
62
.7

3%
49
.4

3%
34
.4

2
%

7
4.

5
5
%

5
5.

4
6
%

2
7.

7
5
%

4
6.

5
0
%

3
4.

1
3
%

1
4.

6
5
%

8
71
.8

4%
60
.7

6%
44
.3

1
%

8
1.

0
3
%

6
7.

3
2
%

4
9.

8
8
%

3
7.

9
1
%

3
1.

8
6
%

2
0.

3
8
%

10
77
.5

8%
67
.3

3%
55
.6

7%
8
6.

2
9
%

7
3.

5
9
%

6
0.

2
3
%

3
3.

2
9
%

2
8.

7
8
%

2
2.

0
7
%

12
78
.4

8%
70
.3

4%
59
.8

4%
8
5.

6
4
%

7
6.

2
5
%

6
3.

3
1
%

2
9.

9
5
%

2
6.

7
6
%

2
1.

9
1
%

T
ab

le
3.
5:

R
el
at
iv
e
si
ze

of
th
e
ev
en
t-
ac
ti
vi
ty

ne
tw

or
k
(c
om

pa
re
d
to

th
e
un

re
du

ce
d
ev
en
t-
ac
ti
vi
ty

ne
tw

or
k)

af
te
r

ru
nn

in
g
al
go

ri
th
m

F
ix

-A
n
d
-R

ed
u
c
e.

47



3 Analyzing the Model

hours reduced size of Ahead deleted headways

2 100.00% 0
4 74.94% 1 204
6 55.52% 4 804
8 43.73% 10 800

10 36.64% 18 128
12 33.43% 22 278

Table 3.6: Relative size of Ahead (compared to the unreduced event-activity network)
and number of deleted headways after running algorithm Fix-Headways.

3.5.3 Computation Times on Reduced Event-Activity Networks

Now we show how much the three different reduction techniques suggested in this
chapter influence the computation time for solving the delay management problem. The
results are given in Table 3.7 where we summarize the maximal, average, and minimal
computation times for solving the IP on the reduced event-activity network, compared to
the computation time needed for solving the IP on the unreduced event-activity network.
In Figure 3.8 and Figure 3.9, we also depict the average computation times. The results
are consistent with the results on how much the reduction techniques reduce the size of
the event-activity network (see Table 3.6, Table 3.4, and Table 3.5): algorithm Reduce
works good for short observation periods, while algorithm Fix-Headways performs
better than Reduce only for large observation periods. Combining both methods in
algorithm Fix-And-Reduce yields a significant reduction of the computation time for
all observation periods.

Note that for an observation period of 2 hours, algorithm Fix-Headways does not
reduce the size of the event-activity network as we have shown in Table 3.6, while it does
reduce the computation time to about one third in average, see Table 3.7 and Figure 3.9.
This is due to the fact that we explicitly add an upper bound on the x variables in
problem (BDM) (which cuts off some feasible solutions and reduces the search space
for the solver) and due to the fact that we can use a significantly smaller value for M
in (BDM) than in (DM), yielding a stronger linear programming relaxation.

Despite of the fact that all three algorithms yield a decreased average computation
time, especially for larger observation periods, in very few cases, the computation time
even grows after applying a reduction technique. We suppose this is caused by the
fact that the solver does not work exactly, but numerically within a given accuracy:
Applying a reduction technique cuts off solutions that are feasible (but, in general, not
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3.5 Numerical Results

optimal, except for some cases where Fix-Headways and Fix-And-Reduce cut off
optimal solutions with a too large delay of some single event). If the objective value
of such a feasible, non-optimal solution is close to the objective value of an optimal
one (i.e. “optimal” within the numerical accuracy of the solver), then – depending on
the branching strategy in the branch and bound process – it might happen that the
optimizer finds this solution rather quickly when solving the initial unreduced problem.
However, as this solution is not feasible for the reduced problem, the optimizer has
to put more effort in finding an optimal solution for the reduced problem, yielding
an increased computation time. A similar effect can be caused by rounding errors as
already demonstrated in the beginning of Section 3.1: for a large value of M (as in
problem (DM)), an infeasible solution might be accepted as feasible by the optimizer,
due to rounding errors and due to the limited numerical accuracy. For a smaller value
of M (after applying the reduction technique), this solution might not be accepted
as feasible by the solver – hence, again the solver has to put more effort in finding a
different solution.

Fix-Headways Reduce

hours max avg min max avg min

2 103.23% 37.30% 8.55% 58.18% 6.81% 0.01%
4 83.36% 24.32% 3.88% 85.74% 16.16% 0.62%
6 124.00% 25.88% 2.23% 107.41% 15.10% 2.01%
8 186.01% 33.52% 0.93% 192.42% 46.18% 2.70%

10 398.79% 37.42% 1.64% 603.65% 66.00% 4.63%
12 378.14% 34.14% 0.76% 778.54% 71.61% 9.53%

Fix-And-Reduce

hours max avg min

2 34.71% 4.62% 0.01%
4 45.22% 8.49% 0.37%
6 40.94% 3.93% 0.87%
8 86.01% 14.80% 0.56%

10 187.07% 20.39% 1.07%
12 158.98% 20.02% 0.62%

Table 3.7: Computation time for solving the IP on the reduced event-activity network
gained by applying different reduction techniques (in % of the time needed
for solving the IP on the unreduced event-activity network).
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3 Analyzing the Model

Figure 3.8: Average computation times for solving the IP on the unreduced network
and on the reduced network gained by one of the reduction techniques,
depending on the size of the observation period.

Figure 3.9: Average relative computation times for solving the IP after applying one of
the reduction techniques (in % of the computation time on the unreduced
network), depending on the size of the observation period.
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3.5.4 Relative Error of Algorithm Fix-And-Reduce

Finally, we present numerical results for the relative error of the approach of solving the
corresponding instance of (BDM) instead of solving the original instance of (DM). As
mentioned in Section 3.2, by bounding the maximal delay of each event, we might cut off
optimal solutions, so applying algorithm Fix-Headways might lead to a degradation
of the objective value. However, during our case study (where we have chosen Y = T ),
it turned out that not only in all tested scenarios, the corresponding instance of (BDM)
has been feasible, but also that within the numerical accuracy of the solver, the objective
value did not get worse. The results are summarized in Table 3.10 where we present
the maximal relative error over all scenarios, depending on the observation period.

hours maximal relative error

2 0.00000
4 0.00000
6 0.00000
8 0.00000

10 0.00000
12 0.00001

Table 3.10: Maximal relative error of algorithm Fix-And-Reduce.

3.6 Summary

In Section 3.1, we proved that the constant M in the IP formulation (DM) indeed
can be chosen finitely beforehand. In Section 3.2, we introduced a modification of
problem (DM) for which we were able to proof a significantly smaller upper bound on
this constant. Our analysis of the headway constraints in Section 3.3 shows that in
an optimal solution, backward headways never carry over a delay to a punctual event
(although they might cause additional delays on events that already are delayed). This
result allowed us to extend the never-meet property and some of its consequences from
uncapacitated delay management to the capacitated case in Section 3.4. However, in
contrast to uncapacitated delay management, the never-meet property is only satisfied
in few cases (compared to uncapacitated delay management, the event-activity network
with headway activities is much more dense, hence a delay might spread out to a larger
part of the event-activity network).
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Based on the theoretical results from Sections 3.1-3.3, we suggested three different
reduction techniques to reduce the size of an input instance of (DM):

• Algorithm Reduce is based on the results from Section 3.3; it reduces the event-
activity network by deleting all events (and all corresponding activities) to which
no source delay can spread out in an optimal solution. If the weights of all events
are strictly positive, it does not cut off any optimal solution. If some weights
are zero and if the optimal solution is not unique, it might cut off some optimal
solutions, but at least one optimal solution keeps feasible.

• Algorithm Fix-Headways is based on the results from Section 3.2. By adding
an upper bound on the delay of each single event to the integer program, many
headway constraints are fulfilled “automatically” in each feasible solution and
hence can be deleted. Deleting them does not cut off any feasible solution of
problem (BDM). Algorithm Fix-Headways can also be used to solve problem
(DM) since according to Lemma 3.3, (DM) is a relaxation of (BDM) and a feasible
solution of (BDM) hence is also feasible for (DM). However, in this case, Fix-
Headways cuts of feasible solutions of (DM) and might even yield an infeasible
problem (if for example di > Y for some event i ∈ E). Hence, the parameter Y
has to be chosen carefully. Furthermore, an optimal solution of (BDM) does not
have to be optimal for the relaxed problem (DM). However, for the data set of
our case study and for Y = T , all optimal solutions of (BDM) turned out to be
optimal for (DM), too.

• Algorithm Fix-And-Reduce is a combination of the other approaches: First, the
maximal delay of each single event is bounded and algorithm Fix-Headways is
applied to delete the headway activities that are respected “automatically”, then
algorithm Reduce is applied to the resulting event-activity network to delete
all events (and all corresponding activities) to which no delay can spread out
in an optimal solution. Depending on the size of Y and the structure of the
event-activity network, running algorithm Fix-Headways might delete some
headways that otherwise would increase the set Emark calculated by algorithm
Reduce; this might improve the efficiency of algorithm Reduce as more events
might be deleted.

Apart from the reduction of the size of an input instance, there is another reason
for applying one of the reduction techniques before solving the IP: it is sufficient to
compute the constant M for problem (DM) as defined in Theorem 3.1 and Corollary 3.2
and the constant M for problem (BDM) as defined in Theorem 3.5 for the reduced
event-activity networks provided by algorithms Fix-Headways, Reduce, or Fix-
And-Reduce instead of the original event-activity network – this might lead to a
significantly smaller value of M and hence to a better linear programming relaxation.
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3.6 Summary

In addition, this might reduce the impact of rounding errors occurring when solving
the IP formulation with a commercial solver as explained in Section 3.1.

After analyzing the model and the integer programming formulation, we numerically
evaluated the reduction techniques suggested in this chapter. The results of our case
study show that algorithm Reduce yields good reduction results (concerning both
the size of the input instance and the computation time) for small observation periods
while algorithm Fix-Headways is superior for large observation periods. However,
due to rounding errors and the limited numerical accuracy of the solver, especially for
larger observation periods, there are few instances on which those reduction techniques
increase the computation time significantly (while in average, both algorithms still
reduce the computation time noticeably).

Combining both algorithms in algorithm Fix-And-Reduce yields a reduction technique
that is well suited for small as well as for long observation periods. Furthermore, the
number of cases in which its computation time is larger than the computation time on
the unreduced event-activity network is significantly smaller than for Fix-Headways
and Reduce; the same holds for the maximal increase of the computation time.

Finally, within the numerical accuracy of the solver, the objective value did not get
worse, hence Y = T is a reasonable choice for the scenarios in our case study.
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Chapter 4
Solution Approaches

In this chapter, we suggest different solution procedures for solving the delay man-
agement problem. One possibility of course is to solve the integer programming
formulation (2.1)-(2.9) (either directly or after reducing the size of the input instance
by one of the preprocessing procedures suggested in Chapter 3) by invoking a solver
like CPLEX, FICO Xpress, or GLPK. However, it might take a very long time to do so
on large-scale real-world instances as the problem turns out to be quite hard to solve,
even if either Ahead = ∅ or Achange = ∅:

Theorem 4.1 ([GJPS05]). The uncapacitated delay management problem with the
path-based objective (2.11) is NP-hard, even for very special input instances.

Theorem 4.2 ([BHLS08]). The online version of the uncapacitated delay management
problem with a path-based objective (where delays occur one after another and are not
known in advance) is PSPACE-hard.

Theorem 4.3 ([CS07]). Problem (Re-Sched) is NP-hard.

Corollary 4.4. Problem (DM) is NP-hard.

Theorem 4.1 can be shown by reducing the Maximum Independent Set problem to a very
simple uncapacitated delay management problem. By the reduction of the Quantified
Boolean Formula problem to a simplified online version of the uncapacitated delay
management problem, the PSPACE-hardness claimed in Theorem 4.2 can be proven.
Finally, the proof of Theorem 4.3 works by reducing the Job Shop Scheduling problem
to a special case of the capacitated delay management problem. Corollary 4.4 is a direct
consequence of Theorem 4.3.

These results give rise to the assumption that no efficient algorithm for solving the delay
management problem to optimality exists, provided that P 6= NP holds. Although it
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is possible to solve smaller instances to optimality in a reasonable amount of time, fast
solution procedures for large-scale real-world instances are needed, especially as delay
management is a problem that in practice has to be solved in realtime. To this end, we
present two classes of heuristic solution approaches.

In Section 4.1, we introduce priority-based heuristics which heuristically fix the priority
decisions and solve the remaining problem with fixed headway activities afterwards.
Parts of that section are based on the results of a joint work and have been published
in [SS08], see also [SS10].

In Section 4.2, we present the class of relax & repair heuristics. They are characterized by
first relaxing the priority decisions, then solving the remaining problem and applying a
repair strategy afterwards. That section is based on our presentation of those algorithms
in [Sch09a].

Finally, in Section 4.3, we evaluate both classes of heuristics numerically, based on the
same data set as in Section 3.5. We compare the runtime and the relative error of
the heuristics and suggest a combination of different heuristics which combines their
advantages and performs quite well in our case study.

4.1 Priority-Based Heuristics

The idea of priority-based heuristics is to fix the order of trains heuristically and to solve
the remaining uncapacitated delay management problem afterwards. This approach
is due to the observation that priority decisions make the problem “harder” to solve
than wait/depart decisions as the number of priority decisions might be much larger
than the number of wait/depart decisions (see Table 3.3 on page 45). In the following,
we present four different heuristics from this class and a theoretical worst-case error
analysis of these heuristics.

The first approach is to fix the gij variables according to the original timetable π, i.e.
to keep the order of trains fixed, compared to the original timetable. Mathematically,
gij = 0 if πi < πj and gij = 1 if πi > πj . Then, an optimal solution of the remaining
uncapacitated delay management problem is computed. Formally:

Algorithm 4.1: First scheduled, first served (Fsfs)

Step 1: Set Afix := Aforw
head.

Step 2: Compute an optimal solution of (UDM(Afix)).
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The next heuristic pursues a different strategy for fixing the priority decisions: First, all
capacity constraints are neglected and the resulting uncapacitated delay management
problem is solved to optimality. In the second step, the resulting disposition timetable x
is used to fix the order of trains. Mathematically, gij = 0 if xi < xj and gij = 1
if xi > xj . Then, again an optimal solution of the remaining uncapacitated delay
management problem (with fixed headways) is computed. Formally:

Algorithm 4.2: First rescheduled, first served (Frfs)

Step 1: Solve the corresponding problem (UDM) and obtain a solution (x, z).

Step 2: Set Afix := {(i, j) ∈ Ahead : xi < xj}.

Step 3: Compute an optimal solution of (UDM(Afix)).

The running time of both heuristics further can be reduced by not only fixing the
priority decisions heuristically, but also the wait/depart decisions. Modifying Frfs
in this way yields the following solution approach for the delay management problem
where (UDM) only has to be solved once, not twice as in Frfs:

Algorithm 4.3: Frfs with early connection fixing (Frfs-Fix)

Step 1: Solve the corresponding problem (UDM) and obtain a solution (x, z).

Step 2: Set Afix := {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : xi < xj}.

Step 3: Compute the solution of (PP(Afix)).

Also Fsfs can be modified to fix the wait/depart decisions heuristically, yielding a
polynomial-time algorithm. The idea is to maintain the “most important” connections
and do not care about the less important ones.

Algorithm 4.4: Fsfs with weight-based connection fixing (Fsfs-Fix)

Step 1: Maintain the “most important” connections:

a) Sort Achange in descending order according to the weights wa.

b) Set za = 0 for the first k% of the connections.

Step 2: Set Afix := {a ∈ Achange : za = 0} ∪ Aforw
head.

Step 3: Compute the solution of (PP(Afix)).
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Since the first step in both Frfs and Frfs-Fix is to solve (UDM), we obtain from
these heuristics not only an approximation of the optimal solution, but also a lower
bound on its objective value, hence their maximal absolute errors can be bounded a
posteriori:

Lemma 4.5. Denote by FFRFS and FFRFS-FIX the objective values of Frfs and Frfs-
Fix and by FDM the objective value of the optimal solution. Then:

FFRFS − FDM ≤ FFRFS − FUDM,

FFRFS-FIX − FDM ≤ FFRFS-FIX − FUDM.

Proof. As (UDM) is a relaxation of (DM) (see Lemma 2.1), we have FUDM ≤ FDM.

Similar error bounds of course also hold for Fsfs and Fsfs-Fix. However, as solving
the corresponding instance of (UDM) is not part of both heuristics, computing these
error bounds requires additional computations while Frfs and Frfs-Fix provide them
“for free”.

Comparing Frfs-Fix with Frfs as well as Fsfs-Fix with Fsfs yields the following
results:

Lemma 4.6. Denote by FFRFS and FFRFS-FIX the objective values of Frfs and Frfs-
Fix and by FDM the objective value of the optimal solution. Then

FDM ≤ FFRFS ≤ FFRFS-FIX.

Proof. As Frfs always yields a feasible solution of (DM), the first inequality holds. As
Frfs and Frfs-Fix fix the priority decisions in the same way, but Frfs-Fix uses a
fixed rule for fixing the wait/depart decisions (which is only one of the options that
Frfs has when computing optimal wait/depart decisions), the second inequality also
holds.

Lemma 4.7. Denote by FFSFS and FFSFS-FIX the objective values of the heuristics
Fsfs and Fsfs-Fix and by FDM the objective value of the optimal solution. Then

FDM ≤ FFSFS ≤ FFSFS-FIX.

Proof. Similar to the proof of Lemma 4.6.

All those bounds of course are a posteriori bounds. We now present some a priori
bounds for the heuristics suggested so far. First, we show that fixing the priority
decisions according to the original timetable or according to an optimal solution of the
corresponding instance of the uncapacitated delay management problem might lead
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to an arbitrarily large relative error. Hence, the absolute and relative errors of the
heuristics which we have presented cannot be bounded in general. However, we are
able to bound the relative error of Frfs-Fix and Frfs, using the input data of the
special instance (see Theorem 4.11 and Corollary 4.12).

Theorem 4.8. Let Heu be a heuristic that solves (DM), fixing thethe order of trains
as it is in the original timetable, and let FHEU be its objective value. Then for each
k ∈ N, there exists an instance of (DM) with relative error

FHEU − FDM

FDM
> k.

Proof. Let k ∈ N. Assume that we have two stations A and B and k + 2 trains
h0, h1, . . . , hk+1. All trains drive from station A to station B. By (ht, A,dep) and
(ht, B, arr), we denote the departure of train ht ∈ {h0, . . . , hk+1} from station A and its
arrival at station B, respectively. π(ht, A,dep) and π(ht, B, arr) denote the originally
scheduled times of those events. In the original timetable, the trains in our instance
leave station A in the order h0, h1, . . . , hk+1 at the times π(hi, A,dep) = i and arrive at
station B at the times π(hi, B, arr) = i+ 1, i ∈ {0, . . . , k + 1}. For each i ∈ {0, . . . , k},
the departure of train hi and the departure of train hi+1 are connected by a pair of
headway activities (to keep it simple, we neglect headways between trains hi and hi+2,
hi+3, etc.). The weights of all departure events (ht, A,dep) are set to 0, the weights of
all arrival events (hi, B, arr) are set to 1. The lower bounds of all activities are set to 1.
The resulting event-activity network is shown in Figure 4.1.

Now, assume that (h0, A,dep) is delayed by d ≥ k + 2. One feasible solution is that
trains h1, . . . , hk+1 leave and arrive on time while train h0 has a delay of d, so for

...

...

(h0, A, dep) (h1, A, dep) (h2, A, dep)

Lji = 1
(hk+1, A, dep)

Lji = 1

Lij = 1 Lij = 1

π = k + 1π = 2π = 1π = 0

delay d

La = 1 La = 1 La = 1 La = 1

(h0, B, arr)

π = 1
(h1, B, arr)

π = 2
(h2, B, arr)

π = 3
(hk+1, B, arr)

π = k + 2

Figure 4.1: Worst-case example for Theorem 4.8. Solid arrows represent driving activities,
dotted arrows represent headway activities.
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the optimal solution, FDM ≤ d. If we solve the problem by a heuristic that fixes the
order of trains as it is in the original timetable, all trains get a delay of at least d, so
FHEU ≥ (k + 2) · d, hence

FHEU − FDM

FDM
≥ (k + 2) · d− d

d
= k + 1 > k.

Similarly, one can show the following result concerning Fsfs and Fsfs-Fix:

Theorem 4.9. Let Heu be a heuristic that solves (DM), fixing the headway activities
according to the optimal solution of the corresponding problem (UDM). Then for each
k ∈ N, there exists an instance of (DM) with relative error

FHEU − FDM

FDM
> k.

Proof. Let k ∈ N. Assume that we have two stations A and B and two trains g and h.
Both trains drive from station A to station B. In the original timetable, the trains leave
station A in the order g, h at the times π(g,A,dep) = 0 and π(h,A,dep) = 1 and arrive
at station B at the times π(g,B, arr) = 1 and π(h,B, arr) = 2. The departures of both
trains are connected by a pair of disjunctive headway activities with lower bounds 1
(headway activity from (g,A, dep) to (h,A,dep)) and 4 · (k + 1), respectively. All other
lower bounds are set to 1. The weights of all departure events are set to 0, the weights
of all arrival events to 1. The resulting event-activity network is shown in Figure 4.2.

Now, assume that (g,A, dep) is delayed by 2. In the optimal solution, both trains get
a delay of 2, so FDM = 4. In the optimal solution of the relaxation without capacity
constraints, train h departs and arrives on time and train g has a delay of 2. If the
heuristic fixes the headway activities in this way, it has to respect the headway activity

delay d = 2 (g, A, dep)
π = 0

La = 1

(g,B, arr)
π = 1

π = 1
(h,A, dep)

La = 1

(h,B, arr)
π = 2

Lij = 1

Lji = 4(k + 1)

Figure 4.2: Event-activity network for the proof of Theorem 4.9. Solid arrows represent
driving activities, dotted arrows represent headway activities.
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with Lij = 4 · (k + 1) in the next step, so train h is on time while train g has a delay of
at least 1 + 4 · (k + 1), hence

FHEU − FDM

FDM
≥ 1 + 4 · (k + 1)− 4

4
=

1 + 4k

4
> k.

However – as we show in the numerical results at the end of this section – the heuristics
do not behave as bad as one might think regarding these results. Moreover, using the
input data of the actual instance, we are able to derive an upper bound on the relative
errors of Frfs-Fix and Frfs. To this end, we need the following lemma:

Lemma 4.10. Assume that for an instance of (DM), all wait/depart decisions and all
priority decisions are already made, and let Afix

change ⊆ Achange and Afix
head ⊂ Ahead be

the sets reflecting those decisions. Furthermore, let Afix := Afix
change ∪ Afix

head, and let

• xcap be an optimal solution of the “capacitated” problem (PP(Atrain ∪ Afix)) and

• xrelax be an optimal solution of the “relaxed” problem (PP(Atrain∪Afix
change)) where

Afix
head is neglected.

Furthermore, denote by

Afix-fw
head := Afix

head ∩ Aforw
head

Afix-bw
head := Afix

head ∩ Aback
head

the fixed forward headways and the fixed backward headways. Then, for each event i ∈ E,

xcap
i ≤ xrelax

i +
∑

k∈pre(i):

∃(k,l)∈Afix-fw
head

(xrelax
k − πk) +

∑
k∈pre(i):

∃(k,l)∈Afix-bw
head

(xrelax
k + max

(k,l)∈Afix-bw
head

Lkl) (4.1)

where pre(i) = pre(i,Atrain∪Afix) denotes the predecessors of event i in the event-activity
network (E ,Atrain ∪ Afix) as defined in Section 2.1.

Proof. Given the sets Afix
change and Afix

head, we can compute the solutions xcap and xrelax

of problems (PP(Atrain ∪ Afix)) and (PP(Atrain ∪ Afix
change)) by applying the Critical

Path Method, see Algorithm 2.1 on page 21. Cpm also computes a topological sorting
of the event-activity network which we denote by ≺ and which we use to prove the
claim by induction.

Basis: For the first event i1, x
cap
i1

= πi1 + di1 = xrelax
i1

, so (4.1) holds.

Inductive step: Now, assume k ∈ {i2, . . . , i|E|} and that (4.1) already has been proven
for all preceding events j ≺ k. We distinguish two cases, depending on which term in
Step 3 of algorithm Cpm gets maximal when computing xcap

k .
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1. If the first term gets maximal, we have xcap
k = πk + dk ≤ xrelax

k , hence (4.1) holds.

2. If the second term gets maximal, let ã denote the activity that in the end causes
the delay of event k and let j denote its starting event, i.e.

ã = (j, k) := argmax
a=(i,k)∈(Atrain∪Afix∪Afix

head)

xcap
i + La + da.

We distinguish three cases, depending on along what type of activity the delay is
passed on to event k.

Case 1: If ã ∈ Atrain∪Afix
change, then x

cap
k = xcap

j +Lã+dã. Using (4.1) to estimate
xcap
j and using xrelax

k −xrelax
j ≥ Lã+dã (as xrelax is a feasible timetable, it respects

constraints (2.3) for all a ∈ Atrain and constraints (2.4) for all a ∈ Achange), we
get

xcap
k = Lã + dã + xcap

j

≤ Lã + dã + xrelax
j +

∑
l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl)

+
∑

l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm)

≤ xrelax
k − xrelax

j + xrelax
j +

∑
l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl)

+
∑

l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm)

= xrelax
k +

∑
l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl) +

∑
l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm).

Using pre(j) ⊂ pre(k) and the fact that each summand of both of the sums is
nonnegative, we see that (4.1) is satisfied.

Case 2: If ã ∈ Afix-fw
head , then dã = 0 and xcap

k = xcap
j +Ljk. Using (4.1) to estimate

xcap
j , πk − πj ≥ Ljk (which holds as π is a feasible timetable and ã is a forward

headway) and xrelax
k ≥ πk (which is satisfied due to the fact that xrelax is a feasible

timetable and hence satisfies (2.2)), we get
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xcap
k = Ljk + xcap

j

≤ Ljk + xrelax
j +

∑
l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl)

+
∑

l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm)

≤ πk − πj + xrelax
j +

∑
l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl)

+
∑

l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm)

≤ xrelax
k − πj + xrelax

j +
∑

l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl)

+
∑

l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm).

Again using pre(j) ⊂ pre(k) and the fact that each summand of both of the sums
is nonnegative and moving xrelax

j − πj to the first sum proves that (4.1) holds in
this case.

Case 3: If ã ∈ Afix-bw
head , then dã = 0 and xcap

k = xcap
j + Ljk. Using (4.1) to

estimate xcap
j and adding xrelax

k ≥ 0 to the right-hand side, we get

xcap
k = Ljk + xcap

j

≤ Ljk + xrelax
j +

∑
l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl)

+
∑

l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm)

≤ xrelax
k + Ljk + xrelax

j +
∑

l∈pre(j):

∃(l,m)∈Afix-fw
head

(xrelax
l − πl)

+
∑

l∈pre(j):

∃(l,m)∈Afix-bw
head

(xrelax
l + max

(l,m)∈Afix-bw
head

Llm).
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As before, using pre(j) ⊂ pre(k) and the fact that each summand of both of the
sums is nonnegative and moving xrelax

j + Ljk to the second sum proves the claim
for the third case.

By using Lemma 4.10, we can prove an upper bound on the relative error of Frfs-Fix
if wi ≥ 1 for all events i ∈ E :

Theorem 4.11. Consider an instance of (DM) with passenger weights wi ≥ 1 for all
events i ∈ E. Let (xFRFS-FIX, zFRFS-FIX, gFRFS-FIX) be the solution with objective value
FFRFS-FIX computed by heuristic Frfs-Fix, and let (xUDM, zUDM) be the optimal solu-
tion of the corresponding instance of (UDM) with objective value FUDM. Furthermore,
define

Afix
head :=

{
(i, j) ∈ Ahead : gFRFS-FIX

ij = 0
}

Afix-fw
head := Afix

head ∩ Aforw
head

Afix-bw
head := Afix

head ∩ Aback
head.

Then, the following holds:

a) If FUDM ≥ 1, we have

FFRFS-FIX − FUDM

FUDM
≤

2 +
∑
k∈E:

∃(k,l)∈Afix-bw
head

(πk + max
(k,l)∈Afix-bw

head

Lkl)

∑
i∈E

wi.

b) If xUDM satisfies πi ≤ πj ⇒ xUDM
i ≤ xUDM

j ∀ (i, j) ∈ Ahead, then

FFRFS-FIX − FUDM

FUDM
≤
∑
i∈E

wi.

Proof. By construction of the heuristic Frfs-Fix, we have zFRFS-FIX = zUDM, so we
can use the results from Lemma 4.10 with xcap := xFRFS-FIX and xrelax := xUDM. Thus,
for each event i ∈ E ,
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xFRFS-FIX
i − xUDM

i ≤
∑

k∈pre(i):

∃(k,l)∈Afix-fw
head

(xUDM
k − πk) +

∑
k∈pre(i)

∃(k,l)∈Afix-bw
head

(xUDM
k + max

(k,l)∈Afix-bw
head

Lkl)

=
∑

k∈pre(i):

∃(k,l)∈Afix-fw
head

(xUDM
k − πk) +

∑
k∈pre(i):

∃(k,l)∈Afix-bw
head

(xUDM
k − πk)

+
∑

k∈pre(i):

∃(k,l)∈Afix-bw
head

(πk + max
(k,l)∈Afix-bw

head

Lkl)

≤ 2FUDM +
∑
k∈E:

∃(k,l)∈Afix-bw
head

(πk + max
(k,l)∈Afix-bw

head

Lkl)

where the last inequality holds if wi ≥ 1 ∀i ∈ E . As zFRFS-FIX = zUDM, the second
term in the objective of Frfs-Fix and (UDM) is the same, hence

FFRFS-FIX − FUDM =
∑
i∈E

wi(x
FRFS-FIX
i − πi)−

∑
i∈E

wi(x
UDM
i − πi)

=
∑
i∈E

wi(x
FRFS-FIX
i − xUDM

i )

≤

(∑
i∈E

wi

)2FUDM +
∑
k∈E:

∃(k,l)∈Afix-bw
head

(πk + max
(k,l)∈Afix-bw

head

Lkl)

 .

For FUDM ≥ 1, claim a) follows directly.

If xUDM satisfies πi ≤ πj ⇒ xUDM
i ≤ xUDM

j ∀ (i, j) ∈ Ahead, then Afix-bw
head = ∅, so

the second sum in (4.1) vanishes, i.e.

xcap
i ≤ xrelax

i +
∑

k∈pre(i):

∃(k,l)∈Afix-fw
head

(xrelax
k − πk)

for all i ∈ E . Analogously to the proof of claim a), for each event i ∈ E ,

xFRFS-FIX
i − xUDM

i ≤
∑

k∈pre(i):

∃(k,l)∈Afix-fw
head

(xUDM
k − πk)

≤ FUDM
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where the last inequality holds if wi ≥ 1 ∀i ∈ E . Thus,

FFRFS-FIX − FUDM =
∑
i∈E

wi(x
FRFS-FIX
i − πi)−

∑
i∈E

wi(x
UDM
i − πi)

=
∑
i∈E

wi(x
FRFS-FIX
i − xUDM

i )

≤

(∑
i∈E

wi

)
FUDM.

Then, claim b) is a direct consequence.

The following corollary directly follows from Lemma 4.6:

Corollary 4.12. The results from Theorem 4.11 also hold for Frfs.

4.2 Relax & Repair Heuristics

In this section, we suggest different relax & repair heuristics. The advantage of the
heuristics which we present is that they can be carried out by hand (at least for
small-size instances), without having to solve an NP-hard optimization problem. They
all follow a simple concept: First, relax the capacity constraints and apply a given
strategy to decide which connections should be maintained, then compute a disposition
timetable (for example by applying algorithm Cpm). Afterwards, “repair” the solution
to get a feasible solution of the capacitated delay management problem (i.e. a solution
that respects all capacity constraints). The repair is done as follows: fix all connections
and all priority decisions according to the solution of the relaxed problem, i.e. set

Afix := {a = (i, j) ∈ Achange : xj − xi ≥ La} ∪ {(i, j) ∈ Ahead : xi < xj} ,

then solve the corresponding project planning problem (PP(Afix)) to shift the end
events of violated headways (and all their successors) into the future.

We suggest three heuristics from this class which apply different strategies when deciding
which connections should be maintained and which connections might be dropped and
present a worst-case error analysis.

The idea of the first heuristic, No-Wait-Repair, is to relax the capacity constraints
and to apply a no-wait policy, i.e. we do not enforce to maintain any connection. Then
we solve the resulting project planning problem (without connections and without
headways), yielding a disposition timetable, and fix the wait/depart decisions and the
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4.2 Relax & Repair Heuristics

priority decisions according to this disposition timetable. In the last step, we solve
the resulting project planning problem again (this time with fixed connections and
fixed headways) to “repair” the initial solution and to get a disposition timetable that
satisfies the fixed headway constraints. Mathematically:

Algorithm 4.5: No-Wait-Repair

Step 1: Set Afix := ∅.

Step 2: Solve (PP(Afix)) and obtain a disposition timetable x.

Step 3: Set Afix := {a = (i, j) ∈ Achange : xj − xi ≥ La}
∪ {(i, j) ∈ Ahead : xi < xj}.

Step 4: Compute the solution of (PP(Afix)).

Note that No-Wait-Repair does not implement a strict no-wait policy, but a non-strict
one: If the lower bound of a changing activity is respected in the disposition timetable of
the relaxed problem, the corresponding changing activity is fixed during the repair phase,
hence the connection in fact is maintained. However, we do not enforce maintaining
any connection, but drop all connections that are not maintained “accidentally”. In
practice, non-strict no-wait policies are used by some public transportation companies.

The strategy for making wait/depart decisions in the next heuristic, All-Wait-Repair,
somehow is the opposite of the strategy in No-Wait-Repair: We again relax the
capacity constraints, but apply an all-wait policy, i.e. we enforce to maintain all con-
nections. Then, we solve the resulting project planning problem (with fixed connections
and without headways) to get a disposition timetable. In the last step, we use this
solution to fix the headway activities according to the disposition timetable and solve
the resulting project planning problem again (this time with fixed connections and fixed
headways) to “repair” the initial solution. Mathematically:

Algorithm 4.6: All-Wait-Repair

Step 1: Set Afix := Achange.

Step 2: Solve (PP(Afix)) and obtain a disposition timetable x.

Step 3: Set Afix := Achange ∪ {(i, j) ∈ Ahead : xi < xj}.

Step 4: Compute the solution of (PP(Afix)).
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The strategy for deciding which connections should be maintained and which connections
might be dropped that the third heuristic, Priority-Repair, uses is somewhere in
between No-Wait-Repair and All-Wait-Repair: Again, we relax the capacity
constraints; but now we maintain only the “most important” connections (similar
to Fsfs-Fix). Then we solve the resulting project planning problem (with fixed
connections and without headways) to get a disposition timetable which is used to fix
the headway activities. In the last step, we again solve the resulting project planning
problem (this time with fixed connections and fixed headways) to “repair” violated
headway constraints. Mathematically:

Algorithm 4.7: Priority-Repair

Step 1: Maintain the “most important” connections:

a) Sort Achange in descending order according to the weights wa.

b) Set za = 0 for the first k% of the connections.

Step 2: Set Afix := {a ∈ Achange : za = 0}.

Step 3: Solve (PP(Afix)) and obtain a disposition timetable x.

Step 4: Set Afix := {a = (i, j) ∈ Achange : xj − xi ≥ La}
∪ {(i, j) ∈ Ahead : xi < xj}.

Step 5: Compute the solution of (PP(Afix)).

Note that the first step is the same as in Fsfs-Fix, i.e. both heuristics fix the
connections in the same way. However, they differ in how they treat the priority
decisions: Fsfs-Fix always fixes the order of two trains as it is in the original timetable,
while Priority-Repair fixes the order of two trains like Frfs.

In fact, No-Wait-Repair and All-Wait-Repair are special cases of Priority-
Repair (if we set the percentage of “important” connections to either k = 0 or k = 100);
however, as they have practical relevance, we consider them as independent solution
approaches.

Note that Frfs-Fix also can be seen as a relax & repair heuristic: In the first step, it
also relaxes the headway constraints, but instead of heuristically fixing the wait/depart
decisions and solving (PP(Afix)), it directly solves (UDM) to get a solution of the
relaxed problem. The last step then is the same as for Priority-Repair: wait/depart
decisions and priority decisions are fixed according to the solution of the relaxed
problem, then the violated headway constraints are “repaired” by solving (PP(Afix)).
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4.2 Relax & Repair Heuristics

At a first glance, one might think that the solutions computed by Frfs-Fix always
are at least as good as the solutions computed by the Priority-Repair heuristic (the
wait/depart decisions made by Priority-Repair always follow a simple rule of thumb;
the resulting decisions are only one possible solution that Frfs-Fix takes into account
when computing optimal wait/depart decisions for the relaxed problem). However,
the solution computed by Frfs-Fix is only at least as good as the one computed
by Priority-Repair before the repair starts; during the recovery, this might switch
completely since it might turn out that taking into account the headway constraints, it
is better not to maintain a connection that would be maintained in an optimal solution
of the uncapacitated problem. We demonstrate this by an example:

Assume a public transportation network with three stations A, B and C. Stations B
and C are connected by a single-way track. One train serves line A-B, another train
serves line B-C, and a third train serves line C-B. See Figure 4.3 for the corresponding
event-activity network.

disjunctive
headway

constraints

3 4

56

station C

21 driving

station A

changing

station B

driving

driving

Figure 4.3: In some cases, Priority-Repair might yield better solutions than Frfs-
Fix.

We assume the lower bounds of all activities to be equal to 2 (i.e. L(1,2) = L(2,3) =
L(3,4) = L(5,6) = 2), all headways to be equal to 3 (L(3,5) = L(5,3) = 3), and all slack
times to be equal to 0. Furthermore, we assume that one passenger travels from
station A to station C while T > 1 passengers travel from station C to station B
(w4 = w(2,3) = 1, w6 = T , w1 = w2 = w3 = w5 = 0). Now, let the first train serving
the line A-B have a delay of 1 and let π3 = π2 + 2, π5 = π3 + 3.

In the optimal solution of the uncapacitated problem, the train serving line B-C would
wait for the delayed train while the train serving line C-B would be on time, leading
to an objective value of 1 – which without doubt is better than the objective value of
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T that would be achieved by a no-wait policy. However, if a recovery strategy that
does not change the order of trains is applied, the formerly optimal solution gets rather
bad: due to the headway, the train serving line C-B also gets a delay of 1, yielding an
objective value of T +1. Applying the same repair strategy to the solution gained from a
no-wait policy does not change anything, so the objective value T of No-Wait-Repair
is better than the objective value T + 1 of Frfs-Fix.

In the following, we show that – similar to the priority-based heuristics presented in
Section 4.1 – the relative error of No-Wait-Repair and All-Wait-Repair might get
arbitrarily large, depending on the actual input. A result similar to Theorem 4.13 and
Theorem 4.14 can be proven for Priority-Repair and for any fixed k ∈ ]0, 100[.

The first result deals with all heuristics that solve (DM) or (UDM) by applying a
no-wait policy and is not limited to relax & repair heuristics:

Theorem 4.13. Let Heu be a solution approach that solves the delay management
problem by applying a no-wait policy. Then, for each k ∈ N, there exists an instance of
(DM) with relative error

FHEU − FDM

FDM
> k.

Proof. Let k ∈ N. We show that – even without capacity constraints – the solution
computed by a no-wait policy might get arbitrarily bad, only due to “bad” wait/depart
decisions. To this end, we use the following example with three stations A, B and C: One
train is driving from station A to station B, while another train is driving from station B
to station C. Within station B, passengers might transfer from the first train to the
second one. All activities have a lower bound of 1 and a slack time of 0. Mathematically,
L(1,2) = L(2,3) = L(3,4) = 1 and s(1,2) = s(2,3) = s(3,4) = 0. Furthermore, let T = k + 2
be the common period of all lines. See Figure 4.4 for an illustration.

Now, assume that only one single passenger is traveling in this example, namely from
station A to station C, and that the first train has a delay of 1. Furthermore, as we
assume slack times of 0, the second train departs one minute after the first train’s arrival.
Mathematically, w1 = w2 = w3 = 0, w4 = 1, w(2,3) = 1, d(1,2) = 1, and π3 = π2 + 1.
In an optimal solution, the second train would wait for the delayed train, resulting in
a delay of 1 of the passenger at the final station C, yielding FDM = 1. However, if a
no-wait policy is applied, the single passenger misses the connection and has to wait
for the next train in the next period, yielding FHEU = T and hence

FHEU − FDM

FDM
=
T − 1

1
= T − 1 = k + 1 > k.
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2

3 4
driving

changing

station B station C

station A

driving
1

Figure 4.4: Event-activity network for the proof of Theorems 4.13 and 4.14.

The next result deals with all solution approaches that apply an all-wait policy; it is
again not limited to relax & repair heuristics, and it again also holds for (UDM):

Theorem 4.14. Let Heu be a solution approach that solves the delay management
problem by applying an all-wait policy. Then, for each k ∈ N, there exists an instance
of (DM) with relative error

FHEU − FDM

FDM
> k.

Proof. Let k ∈ N. We show that – even without capacity constraints – the solution
computed by an all-wait policy might get arbitrarily bad, only due to “bad” wait/depart
decisions. We use the same example as in the proof of Theorem 4.13, see Figure 4.4
for an illustration. However, we assume different passenger weights: Assume that
again one passenger is traveling from station A to station C, but in addition, (k + 1)T
passengers are traveling from station B to station C. Mathematically, w1 = w2 = w3 = 0,
w4 = 1 + (k + 1)T , w(2,3) = 1. In an optimal solution, the second train does not wait
for the delayed train, so the passenger traveling from station A to station C misses
the connection while all other passengers are on time, yielding an objective value of
FDM = T . However, if an all-wait strategy is applied, all passengers have a delay of 1
when arriving at station C, yielding FHEU = 1 + (k + 1)T , hence

FHEU − FDM

FDM
=

1 + (k + 1)T − T
T

=
1 + kT

T
> k.

In the proofs of Theorem 4.13 and Theorem 4.14, the arbitrarily high relative error has
been caused only by “bad” wait/depart decisions. However, ignoring headway constraints,
solving the relaxed (uncapacitated) problem and applying a repair strategy afterwards
also might lead to an arbitrarily high relative error, independently of wait/depart
decisions:
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Theorem 4.15. Let Heu be a solution approach that solves the capacitated delay
management problem by relaxing the capacity constraints, solving the relaxed problem,
and applying a repair strategy. Then, for each k ∈ N, there exists an instance of (DM)
with relative error

FHEU − FDM

FDM
> k.

Proof. Let k ∈ N. We consider the simple case of two stations A and B, connected by
a single-way track. See Figure 4.5 for an illustration of the corresponding event-activity
network.

driving

driving

disjunctive
headway

constraints

1 2

34

station A station B

Figure 4.5: Event-activity network for the proof of Theorem 4.15.

Now, assume that the train driving from station A to station B is a very fast train with
a driving time of 1 (hence the corresponding headway L(1,3) = 2 is very small), while
the train driving from station B to station A is a very slow train with a driving time of
6k + 9 (hence the corresponding headway L(3,1) = 6k + 10 is very large). Assume that
in the original timetable, the fast train drives first, e.g., π3 = π1 + 2. Both trains carry
one passenger (w2 = w4 = 1). Furthermore, assume that the departure of the fast train
is delayed by d1 = 3.

In an optimal solution, the fast train drives first, despite of its delay. The slow train
has to wait for the fast train, so both trains arrive with a delay of 3 at their final
destination, yielding an objective value of FDM = 6.

However, if capacity constraints are neglected, the slow, punctual train drives first and
arrives at station A on time. The fast train has to wait while the track is blocked by
the slow train – during the recovery phase, the departure of the fast train therefore is
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re-scheduled in such a way that it finally has a delay of 6k + 10 + 2. This leads to an
objective value of FHEU = 6k + 12, hence

FHEU − FDM

FDM
=

6k + 12− 6

6
= k + 1 > k.

To prove that the relative error might get arbitrarily large, we constructed artificial
examples with arbitrarily large period lengths, passenger weights, or headway times.
Other possible approaches for proving Theorems 4.8, 4.9, 4.13, 4.14, and 4.15 are based
on making the network larger such that delays propagate through the whole network and
affect more and more events. However, all these approaches lead to artificial problem
instances that are not very likely to appear in practice – but they show that general
worst-case error bounds for the heuristics presented in this paper either have to depend
on the actual input instance (at least on the period length, passenger weights, headway
times, network size, etc.), or only can be proven for a limited set of input instances.

Despite of the worst-case results, the solution approaches which we have suggested in
Sections 4.1 and 4.2 behave quite well in average as we show in the next section.

4.3 Numerical Results

To confirm the effectiveness of the different solution approaches suggested in this chapter
and to show that the results on the relative error are only worst-case results, we again
present results from our case study based on real-world data. The underlying data set
is the same as described in Section 3.5.

4.3.1 Influence of the Percentage of Fixed Connections on the
Relative Error of Fsfs-Fix and Priority-Repair

First, we analyze the influence of the parameter k (i.e. the percentage of fixed “important”
connections). To this end, we compare the relative error of different variants of Fsfs-
Fix and Priority-Repair, varying only in the parameter k. For our analysis, we use
five different values k ∈ {0, 25, 50, 75, 100} where k = 0 represents a no-wait policy and
k = 100 an all-wait policy.

As it turned out during the case study, values of k which yield good results for small
source delays lead to large relative errors for large source delays and vice versa. Hence
we combine different variants of Fsfs-Fix in an approach called Best-Fsfs-Fix: For
each input instance, run Fsfs-Fix with different values for k and for each single scenario,
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take the best solution. Analogously, Best-Repair denotes a similar approach based
on Priority-Repair. Formally:

Algorithm 4.8: Best-Fsfs-Fix

Input: An instance i of (DM).

Step 1: Solve i by running Fsfs-Fix with k ∈ {0, 25, 50, 75, 100} and
obtain solutions (xk, zk, g) with objective values F k.

Step 2: Let k∗ = argmin
k∈{0,25,50,75,100}

F k.

Output: A solution (xk
∗
, zk

∗
, g) for i with objective value F k∗ .

Algorithm 4.9: Best-Repair

Input: An instance i of (DM).

Step 1: Solve i by running Priority-Repair with k ∈ {0, 25, 50, 75, 100}
and obtain solutions (xk, zk, gk) with objective values F k.

Step 2: Let k∗ = argmin
k∈{0,25,50,75,100}

F k.

Output: A solution (xk
∗
, zk

∗
, gk

∗
) for i with objective value F k∗ .

We analyze three classes of delay scenarios: For the class “small source delays”, in each
scenario, we randomly generated ten source delays between 60 and 180 seconds. The
class “large source delays” contains scenarios in which we generated ten source delays
between 1 500 and 1 800 seconds. All scenarios in the class “mixed source delays” feature
ten randomly generated source delays between 180 and 900 seconds (as in Section 3.5).

For each class of delay scenarios and for each observation period, we generated about
400 different delay scenarios and solved each resulting instance of the delay management
problem both exactly and by invoking each of the heuristics presented in this chapter.

We start with analyzing Fsfs-Fix and Priority-Repair on the class of small source
delays. The relative errors for different variants of Fsfs-Fix are summarized in Table 4.6,
the average relative error is depicted in Figure 4.7. For all observation periods, both
the maximal and the average relative error decrease when k grows. For Priority-
Repair, the relative errors are given in Table 4.8 while the average relative error also
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is illustrated in Figure 4.9. For all observation periods, the average relative error of
Priority-Repair decreases with growing k, too, and apart from some exceptions, the
same is true for its maximal relative error. Hence, for the data set of our case study,
the best fixed rule when small source delays occur is an all-wait policy.

If we consider large source delays, the situation changes radically. For this case, the
relative errors of Fsfs-Fix and Priority-Repair are summarized in Tables 4.10
and 4.12, while the average relative errors are depicted in Figures 4.11 and 4.13. For
both heuristics and for each observation period, the average relative errors grow with k,
and with only two exceptions, the same holds for the maximal relative errors. Hence,
for the data set of our case study, the best fixed rule when large source delays occur is
a no-wait policy.

Finally, we compare different variants of Fsfs-Fix and Priority-Repair on the third
class of delay scenarios. We present an overview of the relative errors in Table 4.14 and
Table 4.16 and depict the average relative errors in Figure 4.15 and Figure 4.17. As in
the case of large source delays, both the average and the maximal relative errors increase
when k grows. Hence, again a no-wait strategy yields the lowest average relative error
and minimizes the maximal relative error, too.

Due to the fact that the parameter k has such a large effect on the relative error
(and since this effect in the case of small source delays is in diametrical opposition
to the effect in the case of large source delays), it is reasonable not to use one fixed
variant of Fsfs-Fix or Priority-Repair, but to use the Best-Fsfs-Fix or Best-
Repair approach. Hence, when comparing Fsfs-Fix and Priority-Repair with
other heuristics in Section 4.3.2 and in Section 4.3.3, we always use Best-Fsfs-Fix
and Best-Repair instead of Fsfs-Fix and Priority-Repair.
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k = 0 k = 25 k = 50

hours max avg max avg max avg

2 3.7100 0.2169 0.4337 0.0319 0.4151 0.0204
4 2.1139 0.1870 0.5945 0.0301 0.3085 0.0170
6 1.8266 0.1964 0.6300 0.0415 0.3791 0.0255
8 2.8212 0.1731 0.4453 0.0321 0.3340 0.0185

10 1.6615 0.1953 0.6218 0.0459 0.3257 0.0193
12 2.0049 0.1854 0.7937 0.0341 0.7937 0.0220

k = 75 k = 100 Best-Fsfs-Fix

hours max avg max avg max avg

2 0.4151 0.0103 0.4151 0.0046 0.4151 0.0042
4 0.2293 0.0050 0.2293 0.0040 0.2293 0.0035
6 0.3791 0.0098 0.3791 0.0079 0.3791 0.0077
8 0.2597 0.0075 0.2060 0.0042 0.2060 0.0039

10 0.3257 0.0087 0.3257 0.0063 0.3257 0.0053
12 0.5814 0.0118 0.5814 0.0094 0.5814 0.0083

Table 4.6: Average and maximal relative error of Fsfs-Fix for small source delays.

Figure 4.7: Average relative error of Fsfs-Fix, depending on the size of the observation
period, for small source delays.
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k = 0 k = 25 k = 50

hours max avg max avg max avg

2 4.7921 0.3357 4.7921 0.1309 2.8715 0.0830
4 6.1489 0.3829 6.1383 0.2055 6.1383 0.1794
6 6.6541 0.3679 6.0740 0.2020 6.0740 0.1822
8 9.0051 0.5140 8.7283 0.3533 6.5679 0.1841

10 12.9513 0.3043 12.9513 0.1485 12.9513 0.1211
12 8.8329 0.3238 7.3069 0.1562 7.3069 0.1360

k = 75 k = 100 Best-Repair

hours max avg max avg max avg

2 2.8715 0.0729 2.8715 0.0672 2.8715 0.0663
4 6.1383 0.1674 6.1383 0.1663 6.1383 0.1655
6 8.5783 0.1731 8.9225 0.1721 6.0740 0.1637
8 6.5679 0.1731 6.5679 0.1698 6.5679 0.1695

10 12.9513 0.1106 12.9513 0.1082 12.9513 0.1058
12 10.3362 0.1324 10.7562 0.1314 7.3069 0.1223

Table 4.8: Average and maximal relative error of Priority-Repair for small source
delays.

Figure 4.9: Average relative error of Priority-Repair, depending on the size of the
observation period, for small source delays.
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k = 0 k = 25 k = 50

hours max avg max avg max avg

2 2.5852 0.3921 2.5688 0.4270 4.2746 0.4748
4 4.8944 0.9151 5.2519 1.0235 5.7679 1.1799
6 6.6746 1.2786 7.1859 1.4408 8.3953 1.7256
8 8.9313 1.4631 9.7857 1.7034 10.2950 2.0201

10 12.9596 1.4490 13.3854 1.6730 14.4160 2.0317
12 11.2851 1.4867 11.9408 1.7509 14.5262 2.0686

k = 75 k = 100 Best-Fsfs-Fix

hours max avg max avg max avg

2 4.2746 0.4996 4.5889 0.5272 2.5677 0.3843
4 5.9564 1.2830 6.0409 1.3292 4.8944 0.9104
6 8.6063 1.9001 8.7733 1.9886 6.6746 1.2728
8 13.5434 2.2881 14.0488 2.3845 8.9313 1.4579

10 16.5247 2.3475 17.4129 2.4824 12.9596 1.4444
12 20.2093 2.4272 20.3932 2.5746 11.2851 1.4812

Table 4.10: Average and maximal relative error of Fsfs-Fix for large source delays.

Figure 4.11: Average relative error of Fsfs-Fix, depending on the size of the observa-
tion period, for large source delays.
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k = 0 k = 25 k = 50

hours max avg max avg max avg

2 1.2704 0.0675 1.2704 0.1095 1.8971 0.1654
4 6.9360 0.2546 7.6836 0.3988 8.6981 0.5761
6 13.3661 0.8108 14.4953 1.0696 22.4031 1.4974
8 30.0758 1.5590 33.6386 1.9273 39.2582 2.6344

10 40.8221 1.9558 42.3855 2.3405 45.6342 3.1980
12 36.0509 2.0466 39.1093 2.4290 42.9223 3.3764

k = 75 k = 100 Best-Repair

hours max avg max avg max avg

2 2.3358 0.2300 2.7501 0.2718 1.2499 0.0638
4 10.0314 0.7724 10.0764 0.8908 6.9360 0.2518
6 24.9630 1.8892 26.6913 2.1468 13.3661 0.8106
8 39.5246 3.2449 40.5419 3.6115 30.0758 1.5327

10 42.2398 4.0302 46.5789 4.4183 33.6390 1.8997
12 88.5609 4.5261 89.7079 5.0700 36.0509 1.9356

Table 4.12: Average and maximal relative error of Priority-Repair for large source
delays.

Figure 4.13: Average relative error of Priority-Repair, depending on the size of
the observation period, for large source delays.
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k = 0 k = 25 k = 50

hours max avg max avg max avg

2 1.6042 0.1758 1.6336 0.1494 1.8881 0.1680
4 1.8154 0.2265 1.7595 0.2282 1.7510 0.2500
6 1.9983 0.2391 1.9786 0.2518 2.3513 0.2864
8 2.2311 0.2369 2.6057 0.2411 2.6869 0.2838

10 1.3684 0.2542 1.6049 0.2676 1.8055 0.2929
12 4.0549 0.2584 4.7230 0.2771 5.1889 0.2960

k = 75 k = 100 Best-Fsfs-Fix

hours max avg max avg max avg

2 1.8881 0.1807 1.9070 0.1840 1.6042 0.1410
4 1.9851 0.2684 1.9851 0.2738 1.7510 0.2050
6 2.3513 0.3146 2.3513 0.3169 1.9786 0.2184
8 2.7407 0.3058 2.7642 0.3099 2.2311 0.2131

10 2.2144 0.3199 2.2314 0.3238 1.2877 0.2298
12 5.2352 0.3219 5.2352 0.3254 4.0549 0.2373

Table 4.14: Average and maximal relative error of Fsfs-Fix for mixed source delays.

Figure 4.15: Average relative error of Fsfs-Fix, depending on the size of the observa-
tion period, for mixed source delays.
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k = 0 k = 25 k = 50

hours max avg max avg max avg

2 1.0800 0.1237 1.0187 0.0987 1.5671 0.0913
4 7.7600 0.3161 7.7646 0.3297 7.7622 0.3429
6 47.7743 0.8774 49.4055 0.9417 52.8792 1.0278
8 150.5909 2.0991 155.7212 2.2107 168.3575 2.3881

10 113.1986 1.0459 116.7790 1.1275 125.8791 1.2727
12 271.3629 1.3865 280.3381 1.4734 299.4943 1.5723

k = 75 k = 100 Best-Repair

hours max avg max avg max avg

2 1.7714 0.1180 1.7714 0.1324 0.7567 0.0548
4 7.7622 0.4198 7.8109 0.4350 7.7600 0.2418
6 53.8926 1.2053 54.0041 1.2221 47.7743 0.7844
8 173.1206 2.6307 174.1113 2.6767 150.5909 2.0010

10 131.4135 1.5572 131.9608 1.5972 113.1986 0.9568
12 315.5096 1.9773 316.6856 2.0038 271.3629 1.2905

Table 4.16: Average and maximal relative error of Priority-Repair for mixed source
delays.

Figure 4.17: Average relative error of Priority-Repair, depending on the size of
the observation period, for mixed source delays.
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4.3.2 Computation Times

Now we compare the computation times of different solution approaches. As repre-
sentatives for Fsfs-Fix and Priority-Repair, we consider the Best-Fsfs-Fix and
Best-Repair approaches introduced in Section 4.3.1. Similar to those approaches,
Best-Poly denotes the approach of running Best-Fsfs-Fix and Best-Repair and
taking the best solution for each instance, while for Best-All, we run all solution
procedures suggested in this chapter (except for Frfs-Fix and Fsfs-Fix which are,
according to Lemma 4.6 and Lemma 4.7, never better than Frfs and Fsfs) and take
the best solution. Formally:

Algorithm 4.10: Best-Poly

Input: An instance i of (DM).

Step 1: Solve i by running Best-Fsfs-Fix and obtain a solution (x1, z1, g1)
with objective value F 1.

Step 2: Solve i by running Best-Repair and obtain a solution (x2, z2, g2)
with objective value F 2.

Step 3: Let k∗ = argmin
k∈{1,2}

F k.

Output: A solution (xk
∗
, zk

∗
, gk

∗
) for i with objective value F k∗ .

Algorithm 4.11: Best-All

Input: An instance i of (DM).

Step 1: Solve i by running Fsfs and obtain a solution (x1, z1, g1)
with objective value F 1.

Step 2: Solve i by running Frfs and obtain a solution (x2, z2, g2)
with objective value F 2.

Step 3: Solve i by running Best-Repair and obtain a solution (x3, z3, g3)
with objective value F 3.

Step 4: Let k∗ = argmin
k∈{1,2,3}

F k.

Output: A solution (xk
∗
, zk

∗
, gk

∗
) for i with objective value F k∗ .
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As it turned out that the computation times show a similar behavior for each of the
three classes of delay scenarios, in this section, we focus on the class of mixed source
delays. The computation times for all heuristics, compared to the time needed for
computing an optimal solution, are given in Table 4.18. As can be seen there, even in
the worst case, the computation time of Fsfs, Frfs, and Frfs-Fix never exceeds 30%
of the computation time needed for solving the initial problem to optimality, and for
larger observation periods (when computing an optimal solution takes rather long and
heuristic solution approaches get more important), the relative computation time is
even reduced to about 0.3%-0.5% (which means a speed-up of factor 200-300). The
results for Best-Fsfs-Fix and Best-Repair are similar, and even Best-All and
Best-Poly (for which we have to solve each instance 7 and 10 times, each time using
a different algorithm) reduce the computation time for larger observation periods to an
average of 1-2%. As Best-All has to solve several hard problems, while Best-Poly
only makes use of heuristics with guaranteed polynomial runtime, for larger observation
periods, Best-Poly is faster than Best-All.

Fsfs Frfs Frfs-Fix

hours max avg max avg max avg

2 0.1667 0.0386 0.2955 0.0731 0.2955 0.0685
4 0.0461 0.0123 0.0850 0.0222 0.0752 0.0187
6 0.1189 0.0043 0.1962 0.0072 0.1227 0.0053
8 0.1785 0.0031 0.2550 0.0051 0.1445 0.0034

10 0.1099 0.0030 0.2064 0.0047 0.1132 0.0031
12 0.0780 0.0031 0.1310 0.0048 0.1004 0.0029

Best-Fsfs-Fix Best-Repair Best-Poly Best-All

hours max avg max avg max avg max avg

2 0.7045 0.1668 0.6818 0.1512 1.3864 0.3180 1.1364 0.2630
4 0.1917 0.0455 0.1578 0.0391 0.3495 0.0846 0.2888 0.0736
6 0.2801 0.0130 0.2338 0.0100 0.5139 0.0230 0.3483 0.0145
8 0.3088 0.0082 0.2351 0.0064 0.5439 0.0147 0.6686 0.0147

10 0.2948 0.0075 0.1993 0.0053 0.4941 0.0128 0.4976 0.0131
12 0.2446 0.0068 0.1846 0.0048 0.4292 0.0116 0.3770 0.0128

Table 4.18: Average and maximal relative computation time of different heuristic
solution approaches.
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4.3.3 Relative Errors

We conclude the presentation of the results of the case study by comparing the relative
errors of all solution approaches suggested in this chapter. To this end, we again
consider the three different classes of delay scenarios from Section 4.3.1. In Table 4.19,
we show the relative errors of all heuristics for the case of small source delays; the
average relative errors are depicted in Figure 4.20. Obviously, if only small source delays
occur, all heuristics which fix the order of trains according to the original timetable
(Fsfs, Best-Fsfs-Fix) or which make use of such a heuristic (Best-Poly, Best-All)
have quite small average relative errors; in addition, their maximal relative errors are
rather small, too. By contrast, all heuristics which might change the order of trains
(Frfs, Frfs-Fix, Best-Repair) have significantly larger average relative errors for all
observation periods, and their maximal relative errors get quite large. It is remarkable
that the average relative errors of Fsfs, Best-Fsfs-Fix, Best-Poly, and Best-All
are very close together for all observation periods as can be seen in Figure 4.20. The
same holds for Frfs, Frfs-Fix, Best-Repair. Probably priority decisions have a
much greater influence on the relative error than wait/depart decisions have as long as
only small source delays are considered.

For the case of large source delays, the relative errors are shown in Table 4.21, while the
average relative errors are also presented in Figure 4.22. For short observation periods
(up to six hours), in contrast to the case of small source delays, all heuristics which
change the order of trains (Frfs, Frfs-Fix, Best-Repair) or which make use of such
a heuristic (Best-Poly, Best-All) have smaller relative errors than the heuristics
which fix the order of trains according to the original timetable (Fsfs, Best-Fsfs-Fix).
However, taking into account long-term effects (i.e. larger observation periods), Fsfs
and Best-Fsfs-Fix again have smaller average and maximal relative errors than Frfs,
Frfs-Fix, and Best-Repair. Note that there is a large gap between the relative error
of Frfs and Frfs-Fix (both for the average and for the maximal relative error), while
Frfs and Best-Repair are close together (again concerning both, the maximal and
the average relative error). Thus, if the order of trains is swapped, wait/depart decisions
have a significant influence on the relative error. The average relative errors of Fsfs
and Best-Fsfs-Fix as well as the maximal relative errors of both approaches are again
close together; hence in the scenarios considered here, making optimal wait/depart
decisions does not lead to significantly better results than choosing the best solution
from several solutions which are based on fixing different subsets of all connections.

Finally, in Table 4.23, we summarize the relative errors for the case of mixed delays and
depict the average relative error in Figure 4.24. Note that for all solution approaches
which either fix the order of trains as it is in the original timetable (Fsfs, Best-Fsfs-
Fix) or which make use of these heuristics (Best-Poly, Best-All), the average and
maximal relative errors are rather small. By contrast, all heuristics which fix the order of
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trains according to the solution of the corresponding uncapacitated delay management
problem (Frfs, Frfs-Fix) as well as Best-Repair yield very large relative errors and
rather large average relative errors as already shown in Section 4.3.1 (but fortunately
only in few cases). As in the case of large source delays, the maximal and the average
relative errors of Fsfs and Best-Fsfs-Fix are very close to each other. The same
holds for Frfs and Best-Repair, while there is again a large gap between Frfs and
Frfs-Fix.

In practice, it is not only important how large the relative error is in average or in the
worst case, but also how often a solution procedure yields a solution that is “close enough”
to the optimal one. Thus we show how often the objective value of each heuristic is
“close” to the optimal solution in Tables 4.25-4.30. In the case of small source delays,
the number of affected events is rather limited, due to the slack times of the driving
activities, and a “bad” wait/depart decision has only little influence on the objective.
This is also reflected by the results in Table 4.25 and Table 4.26 where we summarize
in how many cases the objective value of a heuristic solution is at most 105% of (or
equal to) the objective value of an optimal solution. In Table 4.19 and Figure 4.20, we
already showed that in the case of small source delays, Fsfs and Best-Fsfs-Fix have
smaller maximal and average relative errors than Frfs, Frfs-Fix, and Best-Repair.
In accordance with this fact, the number of cases in which Fsfs or Best-Fsfs-Fix are
“close” to the optimum is larger than for Frfs, Frfs-Fix, and Best-Repair as can be
seen in Table 4.25 and Table 4.26. Hence, in the case of small source delays, in most
cases the best strategy is not to change the order of trains.

In the case of large source delays, things totally change. In Table 4.27 and Table 4.28, we
summarize in how many cases the objective value of the different heuristic approaches is
at most 120% (105%) of the objective value of an optimal solution. The number of cases
in which Frfs, Frfs-Fix, or Best-Repair are “close” to the optimum is larger than
for Fsfs or Best-Fsfs-Fix. This is consistent with the results presented in Table 4.21
and Figure 4.22 where it turned out that for large source delays, the maximal and
average relative errors of Frfs, Frfs-Fix, and Best-Repair are lower than those of
Fsfs and Best-Fsfs-Fix. These results suggest that in the case of large source delays,
changing the order of trains is a good strategy in many cases – however, in some cases,
this strategy leads to very large relative errors as can be seen in Table 4.21.

In Table 4.29 and Table 4.30, we summarize in how many cases the objective value of
the different heuristic approaches is at most 105% (101%) of the objective value of an
optimal solution if we consider mixed delay scenarios. As for large source delays, the
number of cases in which Frfs, Frfs-Fix, or Best-Repair are “close” to the optimum
is larger than for Fsfs or Best-Fsfs-Fix, although their maximal and average relative
errors are significantly higher especially for larger observation periods, see Table 4.23.
However, the difference is not as large as in the case of large source delays.
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Fsfs Frfs Frfs-Fix

hours max avg max avg max avg

2 0.4151 0.0031 2.8715 0.0669 2.8715 0.0680
4 0.2293 0.0035 6.1531 0.1711 6.1531 0.1711
6 0.3791 0.0066 6.0740 0.1691 8.9225 0.1784
8 0.2060 0.0031 6.5679 0.1741 6.5679 0.1750

10 0.3257 0.0052 12.9513 0.1076 12.9513 0.1091
12 0.5814 0.0075 7.3069 0.1232 10.7562 0.1322

Best-Fsfs-Fix Best-Repair Best-Poly Best-All

hours max avg max avg max avg max avg

2 0.4151 0.0042 2.8715 0.0663 0.4151 0.0029 0.4151 0.0023
4 0.2293 0.0035 6.1383 0.1655 0.2293 0.0026 0.2293 0.0026
6 0.3791 0.0077 6.0740 0.1637 0.3791 0.0066 0.3791 0.0055
8 0.2060 0.0039 6.5679 0.1695 0.2060 0.0038 0.2060 0.0030

10 0.3257 0.0053 12.9513 0.1058 0.3257 0.0039 0.3257 0.0038
12 0.5814 0.0083 7.3069 0.1223 0.3437 0.0060 0.3437 0.0053

Table 4.19: Average and maximal relative error of different heuristic solution ap-
proaches for small source delays.

Figure 4.20: Average relative error of different heuristic solution approaches, depending
on the size of the observation period, for small source delays.
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Fsfs Frfs Frfs-Fix

hours max avg max avg max avg

2 2.5677 0.3776 1.2659 0.0628 1.3363 0.0672
4 4.8346 0.8946 6.9360 0.2611 9.4894 0.3796
6 6.6261 1.2497 13.2704 0.8152 22.8606 1.2672
8 8.8660 1.4322 30.0354 1.5537 75.7176 2.5260

10 12.8747 1.4191 40.6974 1.9599 46.9756 2.9999
12 11.2213 1.4561 35.9256 2.0455 89.3005 3.3618

Best-Fsfs-Fix Best-Repair Best-Poly Best-All

hours max avg max avg max avg max avg

2 2.5677 0.3843 1.2499 0.0638 1.0704 0.0566 1.0704 0.0543
4 4.8944 0.9104 6.9360 0.2518 2.5720 0.1916 2.5720 0.1861
6 6.6746 1.2728 13.3661 0.8106 4.0459 0.3521 4.0119 0.3426
8 8.9313 1.4579 30.0758 1.5327 5.5770 0.4263 5.5017 0.4170

10 12.9596 1.4444 33.6390 1.8997 7.8935 0.4376 7.8068 0.4263
12 11.2851 1.4812 36.0509 1.9356 8.7683 0.3920 8.6541 0.3817

Table 4.21: Average and maximal relative error of different heuristic solution ap-
proaches for large source delays.

Figure 4.22: Average relative error of different heuristic solution approaches, depending
on the size of the observation period, for large source delays.
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Fsfs Frfs Frfs-Fix

hours max avg max avg max avg

2 1.6029 0.1379 0.7638 0.0743 0.7638 0.0760
4 1.7039 0.1976 8.3164 0.2558 8.5055 0.3099
6 1.9680 0.2092 47.7114 0.7983 54.0041 0.9871
8 2.1844 0.2037 150.0306 2.0189 174.0071 2.4342

10 1.2727 0.2208 112.8261 0.9775 131.8755 1.2637
12 3.9937 0.2273 270.5514 1.3131 316.5384 1.6090

Best-Fsfs-Fix Best-Repair Best-Poly Best-All

hours max avg max avg max avg max avg

2 1.6042 0.1410 0.7567 0.0548 0.3984 0.0350 0.3984 0.0317
4 1.7510 0.2050 7.7600 0.2418 0.8798 0.0931 0.8795 0.0844
6 1.9786 0.2184 47.7743 0.7844 1.6711 0.1068 1.6515 0.0978
8 2.2311 0.2131 150.5909 2.0010 0.8815 0.1057 0.8736 0.0966

10 1.2877 0.2298 113.1986 0.9568 0.8043 0.1057 0.7822 0.0964
12 4.0549 0.2373 271.3629 1.2905 1.8617 0.1094 1.8551 0.0999

Table 4.23: Average and maximal relative error of different heuristic solution ap-
proaches for mixed source delays.

Figure 4.24: Average relative error of different heuristic solution approaches, depending
on the size of the observation period, for mixed source delays.
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hours Fsfs Frfs Frfs-Fix

2 99.05% 93.81% 92.86%
4 98.10% 90.71% 90.71%
6 97.14% 90.00% 89.52%
8 97.62% 89.76% 89.52%

10 96.67% 91.67% 91.67%
12 96.43% 90.95% 90.24%

hours Best-Fsfs-Fix Best-Repair Best-Poly Best-All

2 98.10% 93.57% 98.57% 99.05%
4 98.10% 90.71% 98.33% 98.33%
6 96.43% 89.76% 96.90% 97.62%
8 97.38% 89.76% 97.38% 97.62%

10 96.67% 91.67% 96.90% 96.90%
12 95.95% 90.71% 96.43% 96.90%

Table 4.25: In the case of small source delays, how often is the objective value of
a heuristic not larger than 105% of the objective value of an optimal
solution?

hours Fsfs Frfs Frfs-Fix

2 98.33% 93.10% 92.14%
4 97.86% 90.48% 90.48%
6 94.76% 88.81% 88.33%
8 96.67% 88.81% 87.38%

10 95.48% 90.95% 90.24%
12 94.76% 89.52% 88.81%

hours Best-Fsfs-Fix Best-Repair Best-Poly Best-All

2 97.38% 92.38% 97.62% 98.33%
4 97.86% 90.48% 98.10% 98.10%
6 93.81% 88.10% 94.05% 95.00%
8 95.71% 88.10% 95.71% 96.67%

10 95.24% 90.95% 95.71% 95.95%
12 94.29% 89.29% 94.76% 95.24%

Table 4.26: In the case of small source delays, how often is the objective value of a
heuristic equal to the objective value of an optimal solution?
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hours Fsfs Frfs Frfs-Fix

2 38.71% 94.62% 94.62%
4 2.69% 70.70% 64.78%
6 1.35% 55.14% 48.92%
8 0.27% 56.56% 51.37%

10 1.10% 53.97% 46.85%
12 0.82% 57.81% 50.41%

hours Best-Fsfs-Fix Best-Repair Best-Poly Best-All

2 38.71% 94.62% 94.89% 94.89%
4 2.69% 70.70% 71.77% 72.58%
6 1.35% 54.59% 54.59% 55.41%
8 0.27% 56.83% 57.10% 57.65%

10 0.82% 53.42% 53.70% 55.89%
12 0.82% 57.53% 58.08% 59.18%

Table 4.27: In the case of large source delays, how often is the objective value of
a heuristic not larger than 120% of the objective value of an optimal
solution?

hours Fsfs Frfs Frfs-Fix

2 13.17% 73.39% 73.12%
4 0.27% 34.95% 34.14%
6 0.00% 27.84% 27.03%
8 0.00% 27.87% 26.78%

10 0.00% 26.30% 24.38%
12 0.00% 27.40% 24.93%

hours Best-Fsfs-Fix Best-Repair Best-Poly Best-All

2 13.17% 72.85% 74.19% 74.73%
4 0.27% 36.02% 36.29% 37.90%
6 0.00% 28.65% 28.65% 30.00%
8 0.00% 27.60% 27.60% 28.96%

10 0.00% 24.93% 24.93% 27.12%
12 0.00% 27.40% 27.40% 28.22%

Table 4.28: In the case of large source delays, how often is the objective value of
a heuristic not larger than 105% of the objective value of an optimal
solution?
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hours Fsfs Frfs Frfs-Fix

2 47.54% 65.90% 64.26%
4 30.07% 37.58% 36.27%
6 30.17% 31.53% 29.49%
8 30.39% 30.74% 30.04%

10 28.04% 34.46% 32.09%
12 25.00% 34.93% 32.53%

hours Best-Fsfs-Fix Best-Repair Best-Poly Best-All

2 46.89% 67.87% 77.05% 79.34%
4 28.10% 39.22% 50.65% 54.58%
6 26.44% 33.56% 46.44% 52.20%
8 27.21% 32.86% 44.88% 48.76%

10 25.34% 34.80% 44.93% 50.00%
12 21.58% 33.56% 42.12% 47.95%

Table 4.29: In the case of mixed source delays, how often is the objective value of
a heuristic not larger than 105% of the objective value of an optimal
solution?

hours Fsfs Frfs Frfs-Fix

2 36.39% 45.90% 45.25%
4 14.05% 23.53% 21.24%
6 16.27% 17.63% 15.93%
8 13.78% 16.61% 15.19%

10 12.84% 20.61% 18.24%
12 12.33% 20.89% 19.52%

hours Best-Fsfs-Fix Best-Repair Best-Poly Best-All

2 35.41% 44.26% 55.41% 60.66%
4 10.78% 20.26% 24.51% 32.03%
6 12.54% 15.93% 22.71% 30.51%
8 12.37% 18.37% 26.15% 28.98%

10 11.15% 18.92% 25.34% 31.08%
12 9.59% 17.81% 22.26% 28.77%

Table 4.30: In the case of mixed source delays, how often is the objective value of
a heuristic not larger than 101% of the objective value of an optimal
solution?
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4.4 Summary

In Section 4.1 and Section 4.2, we have shown that the relative error of each solution
approach

• that fixes the order of trains as it is in the original timetable (see Theorem 4.8),

• that fixes the order of trains according to the optimal solution of the corresponding
instance of the uncapacitated delay management problem (see Theorem 4.9),

• that applies a no-wait policy (see Theorem 4.13),

• that applies an all-wait policy (see Theorem 4.14), or

• that relaxes the capacity constraints, computes a solution of the relaxed problem,
and “repairs” that solution afterwards (see Theorem 4.15)

might get arbitrarily large. Hence the worst-case analysis in this chapter does not only
hold for the heuristics presented so far, but for whole classes of heuristics.

As we have shown in Section 4.3, for the real-world data set on which our case study is
based, the average relative error of the solution procedures suggested in this chapter
is rather small, compared to the worst-case error bounds proven in Section 4.1 and
Section 4.2. Nevertheless, on few instances, we indeed have really high relative errors
of Frfs, Frfs-Fix, and Priority-Repair which is reflected by high maximal relative
errors especially in Tables 4.10, 4.12, 4.16, 4.21, and 4.23.

Another important result is that the relative errors of the heuristics suggested in
Section 4.1 and Section 4.2 as well as which heuristic is the best one highly depends on
the distribution of the source delays:

If only small source delays occur, solution approaches which do not change the order of
trains lead to significantly better results than solution approaches which might change
the order of trains, and an all-wait strategy yields better solutions than a no-wait
strategy. Hence, in the case of small source delays, Fsfs and Best-Fsfs-Fix are a
better choice than Frfs, Frfs-Fix, and Best-Repair. As the relative errors of Fsfs
and Best-Fsfs-Fix are close together in this case, Best-Fsfs-Fix probably is the
best choice as it has guaranteed polynomial runtime – this is important for large-scale
real-world instances.

If only large source delays occur, things totally change; in this case, the maximal and
average relative errors of heuristics which might change the order of trains are smaller
than those of heuristics which fix the order of trains according to the original timetable
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(as long as long-term effects are not taken into account). In addition, the number of
scenarios in which they are “close” to the optimum is by several orders of magnitude
larger. In contrast to the case of small source delays, a no-wait strategy leads to better
results than an all-wait strategy if the source delays are rather large. Hence, in the
case of large source delays, Frfs, Frfs-Fix, and Best-Repair are superior to Fsfs
and Best-Fsfs-Fix if mostly short-term effects (up to six hours) are considered. In
our case study, Best-Repair is the best choice for large source delays (if the focus
lies on short-term effects): it has a rather small average relative error and guaranteed
polynomial runtime.

As a consequence of this irregular behavior and due to the observation that in many
scenarios in which one heuristics has a rather large relative error, there are other
heuristics which have a significantly smaller relative error, it is preferable to use an
approach like Best-Poly or Best-All that combines different heuristics, some which
are good for small source delays, some which are good for large source delays. In
conclusion, Best-Poly is a heuristic which is a good trade-off between runtime and
accuracy:

• Best-Poly yields a small average relative error, and even the maximal relative
error is rather limited. Its average and maximal relative error is not significantly
higher than the relative error of the Best-All heuristic.

• In many cases, the solution computed by Best-Poly is close to the optimum as
we have shown in Tables 4.25-4.30. The number of cases in which the solution
of Best-Poly is close to the optimal solution is almost as large as it is for the
Best-All heuristic.

• The runtime of Best-Poly is linear in the size of the event-activity network, while
for Best-All, several NP-hard problems have to be solved. For the instances
of our case study, there is no significant difference between the runtimes of both
heuristics (for short observation periods, Best-All is even faster than Best-
Poly, while for larger observation periods, Best-Poly is faster than Best-All,
see Table 4.18). For very large instances, due to its guaranteed linear runtime,
Best-Poly is preferable to Best-All.

93



94



Chapter 5
Integration with Rolling Stock
Circulations

In this chapter, we show how rolling stock circulations can be integrated into delay
management. In Section 5.1, we show how this can be modeled in the event-activity
network and which changes to the integer programming formulation are necessary.
We transfer some results from Chapter 3 to the extended problem in Section 5.2. In
Section 5.3, we prove that the extended problem is NP-hard, even in very special cases
and even if wait/depart decisions and priority decisions are neglected. In Section 5.4,
we present a special case where the problem can be solved in polynomial time, and we
suggest a generic solution framework for solving it in other cases in Section 5.5. Some
parts of Section 5.1, Section 5.3, and Section 5.4 have been reported in [FNSS07].

5.1 Model

The starting point for integrating rolling stock circulations and delay management is
the event-activity network. To model changes of the rolling stock circulations within
the delay management stage, we need to specify the set T of all trips where each trip is
given as a path in the network Ntrain = (E ,Atrain) and represents a train operating a
line from its start station to its end station. Each trip τ ∈ T is specified by its start
event s(τ) ∈ Estart and its end event e(τ) ∈ Eend with

Estart := {i ∈ Edep : i is the first event of a trip τ ∈ T }
Eend := {i ∈ Earr : i is the last event of a trip τ ∈ T } .

In the vehicle schedule, the trips are combined to rolling stock circulations, i.e. each trip
is assigned to a train which serves this trip. Each circulation c consists of a sequence of
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trips (τc,1, τc,2, . . . , τc,nc) where the first event of the circulation is s(τc,1) and its last
event is e(τc,nc). Note that each driving and each waiting activity belongs to exactly
one trip (and hence to exactly one circulation).

Before explaining the model in more detail, we briefly show why it might make sense
to take into account rolling stock circulations during delay management. To this end,
assume that we have to trains A and B, let T = {τ1, τ2, τ3, τ4}, and assume that trips τ1

and τ4 are served by train A, while trips τ2 and τ3 are served by train B. Furthermore,
assume that trip τ3 follows shortly after trip τ2 while train A has a long waiting time
between its two trips and that train B gets a delay while serving its first trip τ2. See
Figure 5.1 for an illustration.

If the delay of train B is such large that it cannot start trip τ3 on time, then it might
make sense to swap the assignment of trips τ3 and τ4. In this case, train A serves trip τ3

on time, while train B serves trip τ4 on time or with only a small delay. A similar
problem occurs for example during disruption management in an airline setting where
crew swapping is a common reaction to delays, see for example [LJN00] and [SK06].

Now, we explain the model in more detail. We assume that before serving its first
trip, each train waits in some depot, and after serving its last trip, each train drives
back to some depot (we do not make any assumptions on the number and locations of
the depots). To model this, we add an ”initial arrival event” for each train and set its
time in the timetable to the time when the train is ready to leave its depot. Note that
although this event models the departure from the depot, for technical reasons, it is
an arrival event as circulation activities always start with an arrival event. At a first
glance, this might be confusing, so this event can also be interpreted as the arrival of

τ3 τ4

τ2 τdel
2τ1

delay
time

Figure 5.1: An example why changes to the rolling stock circulations during delay
management might make sense. The solid arrows represent trips τ2 and τ3

assigned to train B, while dashed arrows stand for trips τ1 and τ4 served
by train A. The dotted arrow represents the delayed trip τ2.
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the train directly after leaving a maintenance area or a track where it has been parked
before driving to the station where its first trip starts (and this driving then is modeled
by a circulation activity). Similarly, we add a ”terminal departure event” for each train
that models its driving to its depot. The sets of all those events are denoted by

Einit and Eterm.

Based on the definitions above, all potential combinations between two trips can now
be defined and included in the event-activity network. To this end, we introduce a new
type of activity, analogously to the types already defined in Section 2.2:

• Circulation activities Acirc ⊂ (Eend ∪ Einit) × (Estart ∪ Eterm) specify which trips
can be operated consecutively by the same train within the same circulation.
More specific, if τ1 is a trip with end event i and τ2 a trip starting with event j,
then we are allowed to operate trip τ1 and trip τ2 consecutively by the same train
if a = (i, j) ∈ Acirc.

We distinguish two cases, depending on whether a circulation activity connects two
trips or whether it connects a trip to the start depot or to the end depot of a train:

• If the start event i of a circulation activity a = (i, j) is the end event of some trip τ1

and if the end event j is the start event of another trip τ2, i.e. if i ∈ Eend ⊂ Earr

and j ∈ Estart ⊂ Edep, then the lower bound La is set to the waiting time that is
needed within the station belonging to event i to let passengers get off the train,
to allow a crew change etc., plus the time needed to drive to the station/platform
belonging to event j, plus the time needed there for technical reasons and for
letting passengers get on the train. Note that a circulation activity between i
and j is only possible if the types of the two trains required for trips τ1 and τ2

are compatible and if
πj ≥ πi + La. (5.1)

• To model a train leaving its depot for its first trip, we add a circulation activity
from its initial arrival event i ∈ Einit to the first event of each trip that this train
could serve. The lower bound La of the corresponding circulation activity is
set to the time the train needs to drive from its depot to the station where the
trip starts plus some waiting time to let the passengers get on the train. Hence,
all activities starting with some event i ∈ Einit are circulation activities ending
with some event j ∈ Estart. The same holds for Eend and Eterm – those circulation
activities model a train driving to its depot at the end of the day.

In order to obtain feasible circulations, we require that for each event i ∈ Eend ∪ Einit

(j ∈ Estart ∪ Eterm), exactly one circulation activity starting in i (ending in j) has to be
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respected. To model this in the IP formulation (DM), we add a new type of decisions
to the two types we already used so far (wait/depart and priority): To each trip τ ∈ T
with end event e(τ) ∈ Eend ∪ Einit, assign exactly one trip τ ′ ∈ T with start event
s(τ ′) ∈ Estart ∪ Eterm. We call those decisions circulation decisions. To add them to
the IP formulation of the delay management problem, we introduce binary decision
variables

vij :=

{
1 if activity (i, j) ∈ Acirc is chosen
0 otherwise

for all circulation activities (i, j) ∈ Acirc. Then, the integer programming formulation
of the delay management problem with integrated rolling stock circulations looks as
follows:

(DMC) min f(x, z, g) =
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT (5.2)

such that

xi ≥ πi + di ∀ i ∈ E (5.3)
xj − xi ≥ La + da ∀ a = (i, j) ∈ Atrain (5.4)

Mza + xj − xi ≥ La ∀ a = (i, j) ∈ Achange (5.5)
Mgij + xj − xi ≥ Lij ∀ (i, j) ∈ Ahead (5.6)

gij + gji = 1 ∀ (i, j) ∈ Ahead (5.7)
M(1− vij) + xj − xi ≥ La ∀ a = (i, j) ∈ Acirc (5.8)∑

i∈(Eend∪Einit)

vij = 1 ∀ j ∈ Estart (5.9)

∑
i∈Eend

vij = 1 ∀ j ∈ Eterm (5.10)

∑
j∈(Estart∪Eterm)

vij = 1 ∀ i ∈ Eend (5.11)

∑
j∈Estart

vij = 1 ∀ i ∈ Einit (5.12)

xi ∈ N ∀ i ∈ E (5.13)
za ∈ {0, 1} ∀ a ∈ Achange (5.14)
gij ∈ {0, 1} ∀ (i, j) ∈ Ahead (5.15)
vij ∈ {0, 1} ∀(i, j) ∈ Acirc (5.16)
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where again M is a constant which is “large enough” (see Theorem 5.1). Note that
the objective does not change and that constraints (5.3)-(5.7) and (5.13)-(5.15) are
the same as constraints (2.2)-(2.9) in the original IP formulation of (DM) – we have
included them here for the sake of clarity only.

We shortly explain the meaning of the additional constraints:

• Constraints (5.8) ensure that if activity a is chosen, i.e. if vij = 1, then its lower
bound has to be respected. Otherwise, due to M being “large enough”, we do not
further restrict x.

• Each trip needs exactly one predecessor (constraints (5.9)-(5.10)) and exactly one
successor (constraints (5.11)-(5.12)), and no train is allowed to directly drive from
its start depot to its end depot.

If the circulation activities that are used when operating the original timetable π are
all included in Acirc, then (DMC) is feasible; one feasible solution for example can be
computed by fixing wait/depart decisions, priority decisions, and circulation decisions
as they are in the original timetable and solving the resulting instance of (PP(Afix)).

Since (DM) is NP-hard as already mentioned in the beginning of Chapter 4, (DMC) as a
generalization of (DM) is NP-hard, too. Note that the additional constraints (5.9)-(5.12)
and (5.16) form a matching problem. Although “pure” matching problems can be
solved in polynomial time (see for example [BDM09]), we show in Theorem 5.3 and
Theorem 5.4 that even if Achange = Ahead = ∅, the matching problem in the context of
delay management is NP-hard even in very simple special cases. However, we first show
that most of the results from Chapter 3 can be extended to the delay management
problem with integrated rolling stock circulations.

5.2 Analyzing the Model

Due to the fact that we only take into account circulation activities satisfying (5.1),
Theorem 3.1 and Corollary 3.2 still hold for (DMC):

Theorem 5.1. Given an instance of (DMC),

M = max
i∈E

di +
∑

a∈Atrain

da +
∑

(i,j)∈Aback
head

πi − πj + Lij

is “large enough”.
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Proof. The proof of Theorem 3.1 only needs some minor modifications: For a solution
(x, z, g, v) of (DMC), we denote the set of fixed circulation activities in this solution by

Afix
circ := {(i, j) ∈ Acirc : vij = 1}.

To take into account those fixed circulation activities when applying the Critical Path
Method (Algorithm 2.1) for computing the disposition timetable x̃, we define

Afix := Afix
change ∪ Afix

head ∪ Afix
circ.

Parts 1), 2) a), and 2) b) of the proof keep the same, and for the case that in part 2), the
activity a = (i, k) that carries over the delay is a circulation activity, we add part 2) c)
as follows:

c) If a = (i, k) ∈ Afix
circ, then

x̃k = x̃i + La

≤ πi + Ui + La

≤ πk − La + Ui + La

= πk + Ui

≤ πk + Uk

where the second line is a direct consequence of the induction hypothesis for event
i ≺ k and the third line is due to the fact that we only allow circulation activities
satisfying (5.1).

This completes the proof of Theorem 3.1. To extend the proof of Corollary 3.2 to
the delay management problem with integrated rolling stock circulations, it remains
to show that in an optimal solution, for any (i, j) ∈ Acirc with vij = 0, (5.8) is
satisfied “automatically”. From the extension of Theorem 3.1 to delay management with
integrated rolling stock circulations that we just have shown, we know that xi ≤ πi+M ,
and as x satisfies constraints (5.3), we have xj ≥ πj . As we require (5.1) to be satisfied
by each circulation activity, we have πj − πi ≥ La, hence

M(1− vij) + xj − xi = M + xj − xi
≥M + πj − (πi +M)

= πj − πi
≥ La.

If we do not limit the set of possible circulation activities by (5.1), but allow circulation
activities between all trips served by compatible trains, Theorem 5.1 still holds if we
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take into account the additional delay caused by fixing a circulation activity a = (i, j)
with πj < πi + La, i.e. if we choose

M = max
i∈E

di +
∑

a∈Atrain

da +
∑

(i,j)∈Aback
head

(πi − πj + Lij) +
∑

a=(i,j)∈Acirc:
πj<πi+La

(πi − πj + La).

As the proof is rather technical and very similar to the proofs of Theorem 3.1, Corol-
lary 3.2, and Theorem 5.1, we omit it here.

If we bound the delay of each event analogously to problem (BDM) presented in
Section 3.2, we obtain the delay management problem with integrated rolling stock
circulations and bounded delay (BDMC):

(BDMC) min f(x, z, g) =
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT

such that
xi ≤ πi + Y ∀i ∈ E

and such that (5.3)-(5.16) are satisfied.

As in Section 3.2, we can use this restriction to give a tight bound on the constantM and
to yield a reduction approach for reducing the size of the input instance. Theorem 3.5
still holds for (BDMC):

Theorem 5.2. Given an instance of (BDMC),

M = Y + max
(i,j)∈Ahead

(πj − πi + Lji)

is “large enough”.

Proof. The proof is similar to the proof of Theorem 3.5. It remains to show that for
each a = (i, j) ∈ Acirc with vij = 0, constraint (5.8) is fulfilled “automatically” in an
optimal solution:

M(1− vij) + xj − xi = M + xj − xi
= Y + max

(i,j)∈Ahead

(πj − πi + Lji) + xj − xi

≥ Y + xj − xi
≥ Y + πj − (πi + Y )

= πj − πi
≥ La
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where the last inequality is due to the fact that we allow circulation activities only
between two events i and j if (5.1) is satisfied – with this restriction, a circulation
activity can only carry over an existing delay, but not increase it (in a time-minimal
solution, we have xj − πj = xi + La − πj ≤ xi − πi if (5.1) is fulfilled). However, if
we drop assumption (5.1) and allow circulation activities between all trips served by
compatible trains, then Theorem 5.2 still holds if

M = Y + max
(i,j)∈Ahead

(πj − πi + Lji) + max
a=(i,j)∈Acirc

(πi − πj + La).

Analogously to the proof above, in this case we have

M(1− vij) + xj − xi ≥ πj − πi + max
a=(i,j)∈Acirc

(πi − πj + La)

≥ La.

Furthermore, Theorem 3.6 and the consequences which yield algorithm Fix-Headways
still hold, so algorithm Fix-Headways also can be applied to an instance of (BDMC).
In addition, the reduction techniques suggested in Section 3.3 are valid for problem
(DMC), too, if we apply the following two slight modifications to algorithm Reduce
(see page 38).

First, we have to consider the circulation activities in Aπ, i.e. we have to modify (3.4)
in the following way:

Aπ := Atrain ∪ Achange ∪ Aforw
head ∪ Acirc. (5.17)

This reflects the fact that each circulation activity could carry over a delay. The
modified set Aπ has to be used when Emark is computed according to equation (3.5).

Secondly, we have to apply a rather technical change in the definition of Ereduced in
Step 2 of algorithm Reduce which we explain using a small example, see Figure 5.2.

In that example, event 1 is source delayed, hence Emark = {1, 2, 3, 5, 6}. Event 4 is
not contained in Emark, hence it is not contained in Ereduced, so in Step 3 of algorithm
Reduce, the circulation activities (4, 2) and (4, 5) are not contained in Areduced, yielding
an infeasible problem. Thus we have to modify Ereduced in Step 2 of algorithm Reduce
as follows:

Ereduced := Emark ∪ {i ∈ E : ∃a = (i, j) ∈ Atrain with da > 0}
∪ {i ∈ E : ∃(i, j) ∈ Acirc with j ∈ Emark}.

(5.18)

With these modifications, algorithm Reduce looks as follows:
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1 2 3

4 5 6

Figure 5.2: If Ereduced in algorithm Reduce is not adapted, too many activities
are deleted. Solid arrows represent driving activities, dotted arrows are
circulation activities. In grey: events contained in Emark if event 1 is
source delayed.

Algorithm 5.1: Algorithm Reduce for problem (DMC)

Input: The event-activity network N = (E ,A), a timetable π, and source delays
d ∈ N|E|+|Atrain|.

Step 1: Calculate Emark according to (3.5), using the definition of Aπ from (5.17).

Step 2: Compute Ereduced according to (5.18).

Step 3: Compute Areduced := {(i, j) ∈ A : i, j ∈ Ereduced}.

Output: The reduced event-activity network Nreduced = (Ereduced,Areduced).

This modification of algorithm Reduce (and hence also the corresponding modification
of algorithm Fix-And-Reduce) can also be applied to an instance of (BDMC) as
Theorem 3.8, Theorem 3.9, and Theorem 3.10 are still valid as long as (5.1) is satisfied
(as we have shown in the proof of Theorem 5.2, in this case, a circulation activity can
only carry over an existing delay, but not cause an additional delay). For the proof of
Theorem 3.8, the circulation activities can be treated like the other activities in Aπ.

After solving the problem on the reduced network computed by algorithm Reduce, for
all (i, j) ∈ Acirc \ Areduced, we have to set vij = 1 if (i, j) is chosen in the original plan,
0 otherwise.

Finally, as long as (5.1) is satisfied, by defining Aπ as in (5.17), we can also transfer the
results from Section 3.4 to the delay management problem with integrated rolling stock
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circulations, especially the definition of the never-meet property: Definition 3.12 does
not change (except for the fact that the underlying set Aπ has changed), Lemma 3.13
still holds as it depends only on Theorem 3.10 and Theorem 3.8 (which, as already
mentioned above, also are valid for the extended model), Corollary 3.14 is a direct
consequence of Lemma 3.13, and Theorem 3.15 which depends on Lemma 3.13 and
Corollary 3.14 is still valid, too.

5.3 Computational Complexity

Now, we show that even very special cases of (DMC) already are NP-hard. To show
the first of these results, we need the Minimum Satisfiability Problem (MIN k-SAT):

(MIN k-SAT) Given boolean variables X = {x1, . . . , xn}, clauses C = {C1, . . . , Cm}
of the form Ci = li1 ∨ . . . ∨ lij (j ≤ k) where each literal li is either the variable xi
or its negation x̄i, and weights w1, . . . , wm for the clauses, find a truth assignment
X → {true, false}n such that the total weight of the satisfied clauses is minimal.

As was shown in [KKM94], MIN k-SAT is NP-hard for k ≥ 2.

By reducing MIN 3-SAT to an instance of (DMC) where circulation decisions are
possible only in one single station and where Achange = Ahead = ∅, we show that even
this very simple version of (DMC) is NP-hard:

Theorem 5.3. (DMC) is NP-hard even in the special case that only pairwise swapping
of trips is allowed only in one special station and that no wait-depart decision and no
priority decision has to be made.

Proof. Given an instance (X, C) of MIN 3-SAT with uniform weights, we first show how
to construct a corresponding instance of (DMC). For each variable xi ∈ X, we create
four events in the event-activity network: two arrival events arrtrue

i and arrfalse
i and two

departure events xi and x̄i. Then, we connect each of the two arrival events with each
of the two departure events by a circulation activity, hence we add the four circulation
activities (arrtrue

i , xi), (arrtrue
i , x̄i), (arrfalse

i , xi), and (arrfalse
i , x̄i) to the event-activity

network, see Figure 5.3 for an illustration.

Thus, for each variable, there are two possibilities for fixing the corresponding circula-
tions: either fix

Circtrue(i) :=
{

(arrtrue
i , xi), (arrfalse

i , x̄i)
}
,

or fix
Circfalse(i) :=

{
(arrfalse

i , xi), (arrtrue
i , x̄i)

}
.
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xi−1 x̄i−1

arrtrue
i−1 arrfalse

i−1

Figure 5.3: For each variable xi ∈ X, we add two arrival and two departure events,
connected by circulation activities, to the event-activity network. The
dashed arrows are circulation activities.

For each clause Ci ∈ C, we add a station with a single arrival event Ci. For each literal l
that is part of some clause Ci, we add a driving activity connecting the departure event l
(which is either x or x̄) and the arrival event Ci. The lower bounds of all activities are
set to 1 and we assume a tight timetable without slack times. The source delay of all
events arrtrue

i is set to 1. The weights wi of all events are set to 0, only the weights of
the events Ci corresponding to the clauses of MIN 3-SAT are set to 1. See Figure 5.4
for the resulting event-activity network.

Note that the sum of the delays of all events corresponding to a variable xi ∈ X in a
time-minimal solution of (DMC) is always fixed, as well as their contribution to the
objective of (DMC): the arrival event arrtrue

i always has a delay of 1 and the arrival
event arrfalse

i always is on time. Depending on the circulation decisions, either event xi
has a delay of 1 while event x̄i is on time or vice versa. Furthermore, all those events
have a contribution of 0 to the objective, independently of the circulation decisions (as
their weights all are equal to 0). The only effect that different circulation decisions have
on the objective is how many events Ci get a secondary delay and how many of them
are on time: if at least one predecessor of an event Ci has a delay of 1, then Ci also has
a delay of 1, while Ci is on time if all of its predecessors are on time. So minimizing
the sum of all delays is equivalent to minimizing the number of delayed events Ci.

Using this construction, there exists a truth assignment with k satisfied clauses if and
only if there exists a solution of the corresponding instance of (DMC) with objective
value k. The relationship between the variables of MIN 3-SAT and the circulation
decisions in (DMC) is the following:

xi =

{
true if and only if Circtrue(i) is chosen
false if and only if Circfalse(i) is chosen.

(5.19)
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d=1 d=1 d=1

Cj Cj+1

xi−1 x̄i−1 xi x̄i

arrtrue
i−1 arrfalse

i−1 arrtrue
i arrfalse

i arrtrue
i+1

x̄i+1xi+1

arrfalse
i+1

Figure 5.4: The event-activity network constructed from the instance (X, C) of
MIN 3-SAT in the proof of Theorem 5.3; in this example, we have
Cj = xi−1 ∨ xi ∨ xi+1 and Cj+1 = x̄i−1 ∨ x̄i ∨ xi+1. Dotted rectan-
gles represent stations, solid arrows are driving activities, dashed arrows
are circulation activities.

Due to this relationship, the number of satisfied clauses in MIN 3-SAT is the same as
the number of delayed events Ci in (DMC) which coincides with the objective value:

1. Given a solution of MIN 3-SAT, if a clause Ci is satisfied, then there exists at
least one literal lk with lk = true. W.l.o.g., let lk ≡ xk for some xk ∈ X (the
case lk ≡ x̄k works analogously). Then xk = true, hence by the construction
above, the circulation activities in Circtrue(k) are chosen, thus the delay from
event arrtrue

k is carried over to event xk and further to event Ci – hence event Ci is
delayed. If a clause Ci is not fulfilled, then all of its literals are set to false, hence
(by the same arguments as above) we fix the circulation activities in such a way
that no predecessor of event Ci is delayed, so Ci is on time. As a consequence, by
using (5.19), for each truth assignment with k satisfied clauses, we can construct
a solution of (DMC) with objective value k.

2. Now, given an optimal solution of (DMC), if an event Ci is delayed, then this
delay is carried over from at least one event lk. W.l.o.g., assume that this event is
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xk (again the case lk ≡ x̄k works analogously). Hence xk has a delay that – in an
optimal solution – only can be carried over from event arrtrue

k if the circulation
activities in Circtrue(k) are fixed. Thus we set xk = true, hence clause Ci is
fulfilled. Analogously, if an event Ci is on time, all of its predecessors have to
be on time, and by the same arguments as above, the literals in Ci are set in
such a way that clause Ci is not fulfilled. Thus, for each solution of (DMC) with
objective value k, by using (5.19), we can construct a solution of MIN 3-SAT
with k satisfied clauses.

For the next reduction, we use the Set-Partition Problem:

(Set-Partition Problem) Given a set S = {s1, . . . , sk} ⊂ N, decide if S can be
partitioned into two sets S1 and S2 = S \ S1 such that∑

si∈S1

si =
∑
si∈S2

si.

It is well known that the Set-Partition Problem is NP-complete (see [GJ79]).

Now, we can prove the following result:

Theorem 5.4. (DMC) is NP-hard even if no wait-depart decision and no priority
decision has to be made and if we only have two trains which might be (repeatedly)
swapped at several consecutive stations.

Proof. Given the set S, we first show how to construct an instance of (DMC). For each
si ∈ S, we construct a station with two arrival events arrupper

i and arrlower
i and two

departure events depupper
i and deplower

i . The stations are linked by driving activities
(depupper

i , arrupper
i+1 ) and (deplower

i , arrlower
i+1 ) on which we allow no slack time. In each

station, we allow all (four) possible circulation activities and define

Circred(i) :=
{

(arrupper
i ,depupper

i ), (arrlower
i , depupper

i )
}

Circzero(i) :=
{

(arrupper
i ,deplower

i ), (arrlower
i , deplower

i )
}
.

We assign a slack time of si to the activities in Circred(i) and a slack time of zero to
the activities in Circzero(i). Hence, we constructed two trips between station i and
station i+ 1. We assume that we have two trains A and B which have to operate these
trips. If train A operates the “upper” trip between station i and station i + 1, then
train B has to operate the “lower” trip and vice versa. In each station, we can swap
this order.
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Due to our construction, we have exactly two feasible assignments of trains to trips
in each station i, each of them including exactly one circulation activity of Circred(i).
This means that exactly one of the two trains can reduce its delay by si at station i:
Assume that train A arrives with a delay of diA and B arrives with a delay of diB and let
diA, d

i
B ≥ si. Then the two possibilities are:

1. Train A takes a circulation activity from the set Circred(i) and train B one from
the set Circzero(i). At its departure from station i, the delay of train A is reduced
to diA − si, while the delay of train B has not changed.

2. Vice versa, train A does not reduce its delay, but the delay of train B is reduced
to diB − si.

To finish the construction, we add two more stations: a station 0 with two departure
events depupper

0 and deplower
0 which we connect to the rest of the event-activity network

by two driving activities (depupper
0 , arrupper

1 ) and (deplower
0 , arrlower

1 ) with zero slack times,
and a station k + 1 with two arrival events arrupper

k+1 and arrlower
k+1 which we connect to

the rest of the event-activity network by two driving activities (depupper
k , arrupper

k+1 ) and
(deplower

k , arrlower
k+1 ) with slack times of G2 where

G :=
∑
si∈S

si.

The resulting event-activity network is depicted in Figure 5.5.

We now add source delays of G to each of the two first departure events depupper
0 and

deplower
0 , all other source delays are zero. We finally set zero weights for all events,

but the two last arrival events arrupper
k+1 and arrlower

k+1 get a weight of 1. The objective of
the delay management problem hence is to minimize the sum of the delays of the two
events arrupper

k+1 and arrlower
k+1 .

station 1 station 2station 0

0 0 00

0 0 0 0 0 0 0

0 0 0

station k station k + 1

s=−s2 s=−sk

s=−G
2

s=−sks=−s2

s=−G
2

s=−s1

s=−s1arrupper
1 depupper

1 arrupper
2 depupper

2 arrupper
k depupper

k arrupper
k+1

deplower
0 arrlower

1 deplower
1 arrlower

2 deplower
2 arrlower

k deplower
k arrlower

k+1

depupper
0

Figure 5.5: The event-activity network constructed from the set S of the Set-Partition
Problem in the proof of Theorem 5.4. Dotted rectangles represent stations,
solid arrows are driving activities, dashed arrows are circulation activities.
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Claim: The Set-Partition Problem has a solution if and only if the objective of the
delay management problem is 0.

1. Let (S1, S2) be a solution of the Set-Partition Problem. To construct a solution
of (DMC), consider each station i:

• If si ∈ S1, we let train A take a circulation activity from the set Circred(i)
and train B one from the set Circzero(i).

• Otherwise si ∈ S2 and A takes the circulation activity with zero slack while
B takes the circulation activity with slack si.

Hence, at the departure from station k, both trains have a delay of

G−
∑
si∈S1

si = G−
∑
si∈S2

=
G

2

since (S1, S2) is a solution of the Set-Partition Problem. The last driving activity
with slack time G/2 finally reduces the delay of both trains to 0, yielding an
objective value of 0.

2. Assume that both trains arrive with a delay equal to zero at the last station k+ 1.
Then the delays of the departure events depupper

k and deplower
k were smaller than

or equal to G/2. Since the sum of all slacks is G, both trains A and B reduced
their source delays of G by exactly G/2 until their departure at station k. This
means that

S1 := {si : train A uses a circulation activity from Circred(i) in station i}
S2 := {si : train B uses a circulation activity from Circred(i) in station i}

is a solution of the Set-Partition Problem.

5.4 A Polynomially Solvable Case

In the following, we show that a special case of (DMC) can be solved in polynomial
time.

Lemma 5.5. Let Achange = Ahead = ∅ and let the sets of successors of all events in
Estart be pairwise disjoint, i.e.

suc(i) ∩ suc(j) = ∅ ∀i, j ∈ Estart, i 6= j. (5.20)

Then (DMC) is equivalent to the problem of computing a minimum cost perfect matching
(also known as minimum weighted bipartite matching) in a bipartite graph.
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Proof. Given an instance of (DMC) that satisfies the assumptions from Lemma 5.5, we
show how to construct the corresponding matching problem. For each a = (i, j) ∈ Acirc,
we have i ∈ Eend and j ∈ Estart, and since Eend ∩ Estart = ∅ and due to constraint (5.20),
(Eend ∪ Estart,Acirc) is a bipartite graph. We now show how to define the weight
function D for the matching problem:

1. Using algorithm Cpm, we compute xk for all k ∈ Eend.

2. For each a = (i, j) ∈ Acirc:

a) Set x(a)
j := xi + La.

b) Use algorithm Cpm to compute x(a)
k for all k ∈ suc(j).

c) Set D(a) :=
∑

k∈suc(j)wk(x
(a)
k − πk).

As the event-activity network is cycle-free and as no wait/depart decisions and no
priority decisions have to be made, all circulation decisions only affect activities j ∈ Estart

and their subsequent events and no events in Eend due to constraint (5.20). Hence
the first step can be done in time O(|E|). For the second step, we need at most time
O(|Acirc| · |E|), hence D can be computed in time O(|Acirc| · |E|).

Now, let
E1 :=

⋃
k∈Eend

suc(k)

denote the set of all end events of trips and their successors. Then there exists a solution
of the minimum cost perfect matching problem in the bipartite graph (Eend∪Estart,Acirc)
with cost function D with objective value K if and only if there exists a solution of
(DMC) with objective value K +

∑
k∈E1 wk(xk − πk):

Given a perfect matching M ⊆ Acirc with weight K, we define

vij :=

{
1 if (i, j) ∈M
0 otherwise

and compute xk for all k ∈ E by applying algorithm Cpm. As M is a perfect matching,
v as defined above satisfies (5.9)-(5.12) and (5.16), and by construction of D and due
to (5.20), the objective value of (DMC) is

f(x, z, g, v) =
∑
i∈E1

wi(xi − πi) +
∑
i∈E\E1

wi(xi − πi)

=
∑
i∈E1

wi(xi − πi) +
∑

a=(i,j)∈Acirc

vijD(a)

=
∑
i∈E1

wi(xi − πi) +K.
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Similarly, given a solution of (DMC) with objective value K +
∑

k∈E1 wk(xk − πk),
M := {a = (i, j) ∈ Acirc : vij = 1} is a perfect matching with objective value K.

Note that a minimum cost perfect matching can be computed in polynomial time, for
example in time O(n3) where n = |Eend ∪ Estart| by using the Hungarian method (also
known as Kuhn-Munkres algorithm), see [Kuh55] for its original O(n4) formulation
or [BDM09] for an overview of available solution approaches.

5.5 Solution Approaches

As we have shown in Section 5.3, (DMC) in general is NP-hard. One approach to
nevertheless solve the problem, even if (5.20) is not fulfilled, is to solve the problem on
the reduced event-activity network computed by algorithm Fix-And-Reduce; for this
approach, we have shown rather good results (for delay management without rolling
stock circulations) in our case study in Section 3.5. However, even after a reduction
of the input instance, it might still take too long to solve the remaining problem to
optimality. Hence, in this section, we suggest a generic solution framework which in
general does not compute an optimal, but at least a feasible solution.

First, we present the generic framework; the main idea is to solve the delay management
problem with fixed circulation decisions and to look for an improvement of the circulation
decisions alternately. After presenting the generic framework, we discuss different
possible approaches for each step.

Algorithm 5.2: Local-Improvement

Step 1: Fix the circulation activities.

Step 2: Solve the corresponding instance of (DM) with fixed circulation activities.

Step 3: Find a local improvement of the circulation activities (i.e. one that allows
to decrease the disposition time of at least one event i ∈ Estart). If none
found: end.

Step 4: Go to Step 2.

For each of the three first steps of algorithm Local-Improvement, we roughly discuss
some ideas:

In Step 1, an initial assignment for the circulation decisions can for example be given by
fixing them as they are in the original plan or by using the following greedy approach:
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5 Integration with Rolling Stock Circulations

Fix all connections and all headways according to the original timetable, then run
algorithm Cpm. Whenever the actual event i has outgoing circulation activities, fix
that outgoing circulation activity a for which the scheduled time of its end event j
is minimal (or for which xi + La is minimal), provided that j has no fixed incoming
circulation activity yet. Note that depending on the circulation activities, this approach
might not find a feasible solution even if one exists. To demonstrate this, we consider
the event-activity network depicted in Figure 5.6.

1

2

3

4

5

6

Figure 5.6: Depending on the set of available circulation activities, the greedy approach
might not find a feasible assignment of trips to trains, although one exists.
Dotted arrows represent circulation activities.

If the first circulation activity that the greedy approach fixes in this example is circulation
activity (1, 5) and if (2, 6) is the next one, then the trip ending with event 3 and the
trip starting with event 4 cannot be connected to any other trip – although a feasible
solution exists.

Once the circulation decisions are fixed, the solution of the corresponding instance of
(DM) in Step 2 of algorithm Local-Improvement can be computed exactly (either on
the original event-activity network or on the reduced event-activity network computed
by one of the reduction techniques suggested in Chapter 3) or by applying one of the
heuristic solution approaches suggested in Chapter 4.

As we have shown in Section 5.3, computing optimal circulation decisions in general
is NP-hard (as a circulation decision might depend on other wait/depart, priority, or
circulation decisions – if all circulation decisions are independent of other decisions,
fixing the circulation activities reduces to a polynomially solveable matching problem,
see Section 5.4). Hence, in Step 3 of algorithm Local-Improvement, we are not
looking for optimal circulation decisions, but for an improvement of the current situation.
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For finding such an improvement, one could pairwise swap the assignment of two trips,
search for a local optimum in one single station (i.e. exactly solve the matching problem
in that station), or use the approach described in the following lemma:

Lemma 5.6. Let (x, z, g, v) be a feasible solution of (DMC) where x is a time-minimal
timetable, and let ṽ be another feasible assignment of the circulation decisions that
fulfills (5.9)-(5.12) and (5.16). For fixed k ∈ Estart ∪ Eterm, let i(k), ĩ(k) denote those
events for which vi(k)k = ṽĩ(k)k = 1, i.e. the start events of both circulation activities
ending in k that have been fixed by v or by ṽ, respectively. If

xĩ(k) + Lĩ(k)k ≤ xi(k) + Li(k)k ∀ k ∈ Estart ∪ Eterm, (5.21)

then there exists a solution (x̃, z, g, ṽ) of (DMC) with x̃j ≤ xj∀j ∈ E and

f(x̃, z, g, ṽ) ≤ f(x, z, g, v).

Proof. Given a feasible solution (x, z, g, v) of (DMC) and another feasible assignment ṽ
of the circulation decisions, we define

Afix := {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : gij = 0} ∪ {(i, j) ∈ Ahead : ṽij = 0}

and compute a disposition timetable x̃ by applying algorithm Cpm. As Cpm computes
a time-minimal timetable and since (5.21) is satisfied, x̃j ≤ xj for all j ∈ E . Hence,
f(x̃, z, g, ṽ) ≤ f(x, z, g, v).

The statement of this lemma is the following: If we can change the circulation decisions
in such a way that we improve the “right” side of the matching problem, i.e. if we can
reduce the time of some events in Estart without increasing it for others, then this local
change improves the whole solution.

In general, algorithm Local-Improvement does not compute an optimal solution of
(DMC) – however, by fixing the circulation decisions in Step 1 as they are in the original
plan, Local-Improvement never computes a solution that is worse than in the case
of (DM) with fixed circulations where no changes to the rolling stock circulations are
allowed at all (if the same delay management strategy is used), but it might improve
the solution significantly in some cases.

Another approach for solving the problem is to use the known branch and bound
approaches for the delay management problem (see for example [Sch06] and [Job08])
where lower bounds can be derived by solving relaxations of (DMC), while algorithm
Local-Improvement yields upper bounds. Within the branch and bound, we can
additionally use the circulation variables for branching.
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Chapter 6
Robustness Aspects

In the previous chapters, we investigated different strategies for delay management and
focused on the operational phase (when the trains are on the track) and on how to react
when delays occur. However, it makes sense to already take into account delays during
the strategic planning phase to reduce the probability and the propagation of delays.
One possibility is to already take into account robustness when planning the lines. To
make a line plan robust against delays, one approach is to distribute the traffic evenly
across the network, see for example [SS06]. However, research on line planning goes
beyond the scope of this work.

Other approaches consider robustness aspects when computing the timetable and try to
add slack times to the timetable in a “smart” way to make it robust against small delays.
In Section 6.1, we shortly resume results from a joint research project on computing
delay resistant railway timetables; it has been published in [LSS+10]. In Sections 6.2-6.5,
we present the concept of recoverable robustness, its extension to multi-stage recoverable
robustness and the application of both concepts to robust timetabling. We conclude
our investigation of recoverable robustness by summarizing the results in Section 6.6.
Sections 6.2-6.6 are based on a joint research project and partly have been published
in [CDSS08] and [CDD+09b].

6.1 Computing Delay Resistant Railway Timetables

As mentioned in the overview of related work, many different approaches on robust
timetabling exist in the literature. In short, we subsume some results from a joint
research project, a case study on robust timetabling, published in [LSS+10]. There,
the focus is on taking into account delay management already in the objective of the
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timetabling step: Instead of minimizing the weighted sum of the durations of the
activities, we added a second term to the objective to count the expected delay. Of
course the expected delay depends not only on the distribution of the source delays,
but also on the delay management strategy that is applied during the operational
phase. As periodic timetabling and delay management are both already NP-hard, it
is too ambitious to take into account an optimal delay management strategy in the
objective of timetabling. Hence, we assumed a simplified delay management strategy,
namely a strict no-wait policy. Then, for different distributions of the source delays, we
computed robust timetables, according to the modified objective function, evaluated
their robustness under optimal delay management and compared them to an optimal,
non-robust timetable. It turned out that the simplified delay management in the
objective of timetabling is a good estimate of the optimal delay management strategy.
Furthermore, the results imply that we can significantly reduce the passengers’ delays
at a rather small price of robustness, i.e. the increase of nominal travel times is rather
small, compared to the level of robustness which we achieved. For further details on
this approach, we refer to [LSS+10].

We now introduce the concepts of recoverable robustness and multi-stage recoverable
robustness and show how to apply them to the timetabling problem.

6.2 Recoverable Robustness

First, we present the basic concept of recoverable robustness which we use for robust
timetabling and which we extend to the multi-stage case in the next sections.

As already mentioned in the introduction of this work, optimization in public trans-
portation – as well as optimization for many other real-world applications – consists
of two parts: A strategic planning phase which aims for a good utilization of available
resources and an operational phase where a good reaction to unforeseen disturbances
is required once the system is running. The strategic planning phase usually starts
long before the system starts to operate, while in the operational phase, an immediate
response to unexpected events is required.

In the past, many different approaches for robust optimization have been presented.
Most of them are based on stochastic programming or on robust optimization. Stochastic
programming aims for computing solutions that either minimize the expected costs
(multi-stage stochastic programming, recourse models) or satisfy the constraints with a
high probability (chance constrained programming). However, stochastic programming
requires extensive knowledge of the probability distribution of disturbances, and the
resulting stochastic programs might be very hard to solve.
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In contrast to stochastic programming, robust optimization is purely deterministic. In
what we call strict robustness, the solution not only has to be feasible for the original
input instance, but also for each scenario from the (possibly limited) set of allowed
scenarios (modeling the expected disturbances of the original input), and it might not
be changed when the actual scenario gets known. This is a major drawback: As the
initial solution of the optimization problem has to feasible for a large set of possible
modifications of the original input, it might be far too conservative, and it does not
take into account recovery facilities that might be available.

The idea of recoverable robustness now is to explicitly take into account available
recovery facilities. The solution of an optimization problem no longer has to be feasible
for a whole set of admissible disturbances, but we require that it can be recovered to get
a feasible solution. This concept fits very well for public transportation: in practice, the
probability distribution of disturbances is not known, so stochastic programming cannot
be applied. Strict robustness would lead to solutions that are far too conservative and
too expensive (as large slack times would have to be added to almost all activities,
dramatically increasing the passengers’ traveling times). Recoverable robustness however
is some kind of “natural” approach to robust timetables: compute the timetable in such
a way that the effect of delays in the operational phase is limited when applying a given
repair strategy.

The original concept of recoverable robustness has been introduced in [LLMS09] and
further refined in [CDD+07]. In this section, we resume the concept and the basic
notation, based on our presentation in [CDSS08].

In the concept of recoverable robustness, disruptions are modeled as changes in the
input data. For each disruption we consequently obtain a new (disturbed) instance of
the original optimization problem. Without loss of generality, we consider minimization
problems P characterized by the following parameters:

• By I, we denote the set of instances of the optimization problem P .

• F (i) represents the set of all feasible solutions for a given instance i ∈ I.

• Finally, f : S → R>0 is the objective function of the optimization problem P that
has to be minimized; here, the set

S :=
⋃
i∈I

F (i)

is the set of all feasible solutions of P for all potential input instances.
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In recoverable-robust optimization, we do not only want to find a good or even optimal
solution for some given initial instance i ∈ I, but a robust one. Hence, additional
concepts for describing the robustness are needed:

• The function M : I → 2I , a modification function for instances of P , models
disruptions of the current scenario. If i ∈ I is an instance (or scenario) of problem
P , a disruption is a modification of i leading to another instance i′ ∈ I. However,
such a modification i′ is usually not completely different from i. In order to model
this fact, we use the modification function M to define the set M(i) as the set
of all instances which are modifications of the instance i, i.e. M(i) contains all
instances of P that might occur if instance i is disturbed. Figuratively speaking,
it might be much easier to compute robust solutions if M is rather restrictive, i.e.
if only small changes in the input are allowed.

If s ∈ F (i) dennotes the planned solution for the instance i ∈ I and a disturbance
i′ ∈M(i) occurs, then a new solution s′ ∈ F (i′) for P has to be computed.

• Arec is a class of recovery algorithms for P . Each algorithm Arec : S× I → S from
this class works as follows: given a solution s0 ∈ S of P for an instance i0 ∈ I
and a modification i1 ∈ M(i0) of this instance, Arec computes Arec(s

0, i1) = s1

where s1 ∈ F (i1) ⊆ S represents the recovered solution of P . In other words,
given the original solution s0 and a disturbed instance i1, Arec computes a new
solution which is feasible for the disturbed instance.

In general, a class of recovery algorithms Arec is defined in terms of some type of
limitation. In the following we provide three examples for the class Arec.

A0
rec: strict robustness. This class models the case in which no recovery is allowed

or no recovery capabilities are available. Hence, the initial solution has to
be feasible for all admissible disturbances and might not be changed if the
actual instance gets known. Mathematically, each algorithm Arec ∈ A0

rec

fulfills the following constraint:

Arec(s
0, i1) = s0 ∀i0 ∈ I, ∀s0 ∈ S, ∀i1 ∈M(i0). (6.1)

A1
rec: bounded distance from the original solution. The class A1

rec is defined by
imposing a constraint on the solutions provided by the recovery algorithms
in A1

rec. In particular, the recovered solutions computed by these recovery
algorithms must not deviate “too much” from the original solution s, according
to a distance measure d. Formally, given a real number ∆ ∈ R≥0 and a
distance function d : S × S → R≥0, each element Arec in such a class fulfills
the following constraint:

d(s0, Arec(s
0, i1)) ≤ ∆ ∀i0 ∈ I, ∀s0 ∈ S, ∀i1 ∈M(i0). (6.2)
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Note that A0
rec ⊂ A1

rec: If, for any distance function d, ∆ = 0, then con-
straints (6.1) and (6.2) are equivalent.

A2
rec: bounded computational power. The class A2

rec is defined by bounding the
computational power of the recovery algorithms. Formally, given a function
t : I × S × I → N, each element Arec ∈ A2

rec fulfills the following constraint:

∀i0 ∈ I, ∀s0 ∈ S, ∀i1 ∈M(i0),

Arec(s
0, i1) must be computed in time O(t(i0, s0, i1)).

Of course combinations of these classes are also possible.

We first recall the basic definitions for recoverable-robust optimization before we apply
the concept of recoverable robustness to timetabling problems in Section 6.3.

First, we define what we mean by a recoverable robustness problem and by a feasible
solution of such a problem:

Definition 6.1. A recoverable robustness problem is defined by the triple (P,M,Arec).
All the recoverable robustness problems form the class RRP.

Definition 6.2. Let P = (P,M,Arec) ∈ RRP. Given an instance i0 ∈ I of P , an
element s0 ∈ F (i) is a feasible solution for i0 with respect to P if and only if the
following relationship holds:

∃Arec ∈ Arec : ∀i1 ∈M(i0), Arec(s
0, i1) ∈ F (i1).

If s0 is feasible with respect to the recoverable robustness problem P, we call it robust
solution with respect to the original optimization problem P .

In other words, s0 ∈ F (i0) is feasible for i0 with respect to P if, for each possible
disruption i1 ∈M(i0), it can be recovered by applying some (fixed) algorithm Arec ∈ Arec.
We use the notation FP(i0) to denote all feasible solutions for i0 with respect to the
recoverable robustness problem P (i.e. all robust solutions with respect to the original
problem P ). Formally,

FP(i0) := {s0 ∈ F (i0) : s0 is a feasible solution for i0 with respect to P}.

A possible scenario for this situation is depicted in Figure 6.1. As can be seen there, the
set FP(i) can also be considered as the set of those solutions for the instance i that can
be “recovered” if a disturbance occurs. Finding robust solutions is the task of robust
algorithms which we define in the following definition.
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S

F (i)

i

s̄

FP(i)

i′

M(i)

s

I

Arob(i)

F (i′)

s′Arec(s, i′)

Figure 6.1: An example for the single-stage model: I and S are the set of instances
and the set of solutions of P . M(i) is the set of instances obtainable
after a modification of the initial instance i, while F (i) and F (i′) denote
the set of feasible solutions for i and for i′ with respect to P . s̄ ∈ F (i)
is the optimal, but non-robust solution for i with respect to P ; FP(i) is
the set of all feasible solutions for i with respect to P, i.e. the set of all
robust solutions for i with respect to P . s is a robust solution, obtained
by Arob, and s′ is the recovered solution obtained by Arec ∈ Arec after the
disruption i′ ∈M(i).

Definition 6.3. Given a recoverable robustness problem P = (P,M,Arec) ∈ RRP, a
robust algorithm for P is any algorithm Arob : I → S such that, for each i ∈ I, Arob(i)
is robust for i with respect to P .

Note that Arob as in the definition above provides the solution s0 as defined in Defini-
tion 6.2. In the case of strict robustness, a robust algorithm Arob for P must provide
a solution s0 for i0 such that for each possible modification i1 ∈ M(i0), we have
s0 ∈ FP(i1). The meaning is the following: If Arec has no recovery capability, then Arob

has to find solutions that “absorb” any possible disturbance.

For each instance i ∈ I of the initial problem P , the price of robustness of the robust
algorithm Arob is given by the maximum ratio between the cost of the solution provided
by Arob and the cost of an optimal (non-robust) solution.

Definition 6.4. The price of robustness of a robust algorithm Arob for a recoverable
robustness problem P ∈ RRP is given by

Prob(P, Arob) := max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}

}
.
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The price of robustness of a recoverable robustness problem P ∈ RRP is then given by
the minimum price of robustness among all possible robust algorithms for this problem.
Formally:

Definition 6.5. The price of robustness of a recoverable robustness problem P ∈ RRP
is given by

Prob(P) = min{Prob(P, Arob) : Arob is a robust algorithm for P}.

If there are different robust algorithms for a recoverable robustness problem, we want
to identify the “best” one:

Definition 6.6. Let P ∈ RRP and let Arob be a robust algorithm for P. Then,

• Arob is called P-optimal if Prob(P, Arob) = Prob(P);

• Arob is called exact if Prob(P, Arob) = 1.

We call a solution computed by an optimal algorithm P-optimal, while a solution
computed by an exact algorithm is called exact.

Note that each exact algorithm is optimal.

6.3 Recoverable-Robust Timetabling

Having introduced the concept of recoverable robustness, we now apply it to a (simplified
variant) of the timetabling problem to compute robust timetables which can be recovered
if a delay occurs. To this end, we first introduce the specific timetabling problem which
we consider and describe the delay scenarios and the restrictions for the recovery we are
looking at. Afterwards, we provide a general solution approach for computing robust
timetables.

In the following, we focus on directed acyclic graphs instead of event-activity networks
as an event-activity network is a special case of a DAG, while some of the results hold
for the more general structure of a directed acyclic graph. So let G = (V,A) be a DAG
where – referring to the notation from the previous chapters – we call the nodes in
V events and the edges in A activities. We consider a simplified timetabling problem
where we neglect wait/depart decisions and headways. In addition, we consider only
non-periodic timetabling.

The simplified timetabling problem we are interested in is the following: We are looking
for a timetable π : V → R≥0 assigning a point of time to each event u ∈ V , respecting
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the minimal duration of each activity. However, in general we also allow negative
weights w : V → R. The initial timetabling problem TT can be stated as

(TT ) min f(π) =
∑
u∈V

wuπu

such that

πv − πu ≥ L0
a ∀a = (u, v) ∈ A (6.3)

πu ∈ R≥0 ∀u ∈ V. (6.4)

An instance i of TT is specified by i = (G,w,L0). In contrast to periodic timetabling
which is NP-hard, TT can be solved in polynomial time by linear programming. We
consider two special cases of TT , both having the same constraints (6.3) and (6.4), but
differing in the objective functions.

timetabling with arc weights (TT a): Here we consider the objective which is usually
used in timetabling, namely to minimize the weighted sum of the duration of all
activities (or equivalently to minimize the weighted sum of the slack times of all
activities). The objective of this problem is

(TT a) min farcs(π) =
∑

a=(u,v)∈A

wa(πv − πu)

with wa ∈ R≥0 for all a ∈ A. It is a special case of TT , namely if

wu =
∑

a=(v,u)∈A

wa −
∑

a=(u,v)∈A

wa

for each u ∈ V .

timetabling with nonnegative node weights (TT v): Here we consider the problem
TT but require wu ≥ 0 for all u ∈ V as we did in the previous chapters.

To compute an optimal solution of both problems, in most cases, algorithm Cpm can
be used as stated in the following two lemmas:

Lemma 6.7. Given an instance i = (G,w,L0) of TT v, Cpm computes an optimal
solution.
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6.3 Recoverable-Robust Timetabling

Lemma 6.7 is a direct consequence of the definition of algorithm Cpm – by construction,
it schedules each event as early as possible, hence minimizing the weighted times as the
weights wu in problem TT are nonnegative.

Lemma 6.8. Given an instance i = (G,w,L0) of TT a, Cpm computes an optimal
solution if G is a tree.

Note that this does not need to be true if G is not a tree: it often makes sense to
schedule events that do not belong to the critical path (i.e. a path without slack times)
later than necessary to avoid slack on activities with high weights. An example is
depicted in Figure 6.2: In that example, the solution obtained from Cpm is π1 = 0,
π2 = π3 = 1 and π4 = 3 with an objective value of 8. However, in an optimal solution,
π3 = 2 with an objective value of only 7 as the weight of activity (3, 4) is larger than
the weight of activity (1, 3).

1 2

3 4

w(1,2) = 1

w(3,4) = 2

w(1,3) = 1
L(2,4) = 2
w(2,4) = 1

L(1,3) = 1

L(3,4) = 1

L(1,2) = 1

Figure 6.2: A solution for problem TT a, computed by the Critical Path Method,
might not be optimal if the graph is not a tree.

However, if G is a tree, scheduling each event as early as possible also minimizes all
slack times.

In the following, we show how to apply the concept of recoverable robustness to the
timetabling problem TT . To turn the timetabling problem TT into a recoverable
robustness problem, we have to define a modification function M and a class of recovery
algorithm Arec.

• The modification function M for an instance i0 = (G,w,L0) and a constant
α ∈ R>0 is defined as

M(i0) =
{

(G,w,L1) : ∃a ∈ A : L0
a < L1

a ≤ L0
a + α and L1

a = L0
a ∀a 6= a

}
.
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Hence, we represent the delay of an activity a by increasing the initial value L0
a

to some value L1
a > L0

a. The definition ensures that only one single delay on
some activity ā is allowed and bounded by α while the lower bounds of all other
activities are fixed.

• For the set of allowed recovery algorithms Arec, we investigate the following two
limitations:

limited-events (A∆): Here, we assume that there are resources to change the
time of a limited number of events only. In particular, if π is a solution for
TT and x1 is a disposition timetable computed by any recovery algorithm
in Arec, then x1 must satisfy

d(x1, π) :=
∣∣{u ∈ V : x1

u 6= πu}
∣∣ ≤ ∆

for some given ∆ ∈ N. This class of recovery algorithms is denoted by A∆.

limited-delay (Aδ): As second limitation of the recovery algorithms, we again
require that x1 must not deviate “too much” from the initial timetable π,
but this time we consider the sum of all deviations of all events, i.e. x1 must
satisfy

d(x1, π) :=
∥∥x1 − π

∥∥
1
≤ δ

for some given δ ∈ N. This class of recovery algorithms is denoted by Aδ.

Both classes A∆ and Aδ belong to the general class A1
rec. Note that we can restrict

both classes to strict robustness by setting ∆ := 0 and δ := 0.

Using those definitions, the initial problem TT can be turned into a recoverable
robustness problem TT 1 = (TT,M,Arec) ∈ RRP. Special cases of TT 1 can be obtained
by replacing TT with TT a or TT v and choosing a class of recovery algorithms. Among
the four possible combinations, in the remainder of this chapter, we focus on the
following two recoverable robustness problems:

Robust timetabling with nonnegative node weights and limited-events. In the def-
inition of this problem, we use the special timetabling problem TT v with non-
negative node weights and the class A∆ of recovery algorithms. The resulting
recoverable robustness problem hence is

TT v1 := (TT v,M,A∆).
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6.3 Recoverable-Robust Timetabling

Robust timetabling with arc weights and limited-delay. Here, we consider the spe-
cial timetabling problem TT a with objective function farcs together with the class
Aδ of recovery algorithms. The resulting recoverable robustness problem is

TT a1 := (TT a,M,Aδ).

Solving these problems requires to define robust algorithms as stated in Definition 6.3.
For example, if we consider problem TT v1, then we need to construct a robust algorithm
Arob such that, for a given instance i0 = (G,w,L0) of TT v, Arob computes a timetable π
with

πv − πu ≥ L0
a ∀a = (u, v) ∈ A

(this ensures feasibility) and such that for all modifications (G,w,L1) ∈ M(i0) of i0,
there exists a disposition timetable x1 with

x1
v − x1

u ≥ L1
a ∀a = (u, v) ∈ A (6.5)

x1
u ≥ πu ∀u ∈ V (6.6)

d(x1, π) ≤ ∆ (6.7)

(this ensures robustness). Note that if we consider problem TT a1 instead of TT v1,
everything we have to change is constraint (6.7) where we have to replace ∆ by δ.

To compute robust solutions, we use the following general solution approach: first add
an additional slack time sa ≥ 0 to the lower bound L0

a of each activity a ∈ A, then
compute an optimal solution of the resulting instance and take it as a robust solution.
Formally, we obtain an algorithm Alg+

s for each vector s ∈ R|A|:

Algorithm 6.1: Alg+
s

Input: An instance i0 = (G,w,L0) of TT and a vector s with sa ≥ 0 ∀ a ∈ A.

Step 1: Define L̄a := L0
a + sa for all a ∈ A.

Step 2: Solve ī = (G,w, L̄) optimally.

Instead of adding a positive slack time to the lower bounds La, one can also multiply
them with factors ta ≥ 1. This approach is known as proportional buffering (see [LS09])
and leads to the following algorithm Alg∗t which differs from Alg+

s only in Step 1.
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Algorithm 6.2: Alg∗t

Input: An instance i0 = (G,w,L0) of TT and a vector t with ta ≥ 1 ∀ a ∈ A.

Step 1: Define L̄a := ta · L0
a for all a ∈ A.

Step 2: Solve ī = (G,w, L̄) optimally.

According to Lemma 6.7, in the case of TT v, Step 2 of both algorithms can be done in
linear time by the Critical Path Method for an arbitrary DAG. If we consider problem
TT a, according to Lemma 6.8, Step 2 of both algorithms can be done efficiently by the
Critical Path Method when G is a tree. Otherwise, linear programming can be used,
yielding a polynomial runtime.

For the recoverable robustness problems which we consider, algorithms Alg+
s and Alg∗t

are robust if s is large enough. Moreover, the price of robustness increases in s. We
collect some properties of both algorithms in the following lemma.

Lemma 6.9. Consider Alg+
s and Alg∗t as algorithms for solving TT v1. Then, the

following holds:

1. Alg+
s is robust for ∆ = 0 (strict robustness) if and only if sa ≥ α for each a ∈ A.

Alg∗t is robust for ∆ = 0 (strict robustness) if ta ≥ L0
a+α
L0
a

for each a ∈ A.

2. Let Alg+
s be robust. Then Alg+

s′ is robust if s′a ≥ sa for all a ∈ A.

Let Alg∗t be robust. Then Alg∗t′ is robust if t′a ≥ ta for all a ∈ A.

3. The price of robustness of Alg+
s is monotone in s. In particular:

Let Alg+
s1

and Alg+
s2

be robust and let s2
a ≥ s1

a ≥ 0 for all a ∈ A. Then
Prob(TT v1,Alg+

s1
) ≤ Prob(TT v1,Alg+

s2
).

The price of robustness of Alg∗t is monotone in t. In particular:
Let Alg∗t1 and Alg∗t2 be robust and let t2a ≥ t1a ≥ 1 for all a ∈ A. Then
Prob(TT v1,Alg∗t1) ≤ Prob(TT v1,Alg∗t2).

If we replace TT v1 by TT a1 and ∆ by δ, 1-3 still hold.

Proof. For the first statement, note that according to our definition of the modification
functionM , no activity can have a delay greater than α. A slack of sa ≥ α hence reduces
each possible delay completely such that x1 = π is a feasible disposition timetable. The
same holds if ta ≥ L0

a+α
L0
a

since ta · L0
a ≥ L0

a + α for all a ∈ A.
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To show that Alg+
s is strictly robust only if sa ≥ α for each a ∈ A, let us assume that π

is a robust solution computed by Alg+
s with πv − πu − L0

a < α for some a = (u, v) ∈ A.
Now, if a modification i1 ∈M(i0) of i0 satisfies L1

a = L0
a + α, i.e. a delay of α occurs

on a, then x1
v − x1

u = πv − πu < L0
a + α = L1

a. Hence, constraint (6.5) is violated – a
contradiction to the assumption that π is robust.

The second statement is clear as adding additional slack cannot turn a robust solution
into a nonrobust one – it only increases the objective value.

To obtain the monotonicity claimed in the third statement, we have to show that
f(Alg+

s1
(i)) ≤ f(Alg+

s2
(i)) (and f(Alg∗t1(i)) ≤ f(Alg∗t2(i)), respectively) which is true due

to the monotonicity of the tensions of the timetables corresponding to the slack times
sa (or (ta − 1)L0

a).

Although computing a robust solution of the initial problem does not require to explicitly
specify a recovery algorithm, for TT aσ and TT vσ, we can provide such a recovery algorithm
as in the following. Assume that π is a solution computed by any robust algorithm
Arob with respect to the instance i0. Let i1 = (G,w,L1) ∈ M(i0). As π is a robust
solution, we know that a disposition timetable x1 satisfying (6.5)-(6.7) exists. It can
be computed by using the Critical Path Method as recovery algorithm. Cpm computes
that disposition timetable x1 with the minimum value of d(x1, π), i.e. it minimizes∣∣{u ∈ V : x1

u 6= πu}
∣∣ and

∥∥x1 − π
∥∥

1

at the same time. Hence it is able to recover (if a recovery solution exists) or to find
out that such a solution does not exist. Additionally, among all timetables satisfying
constraints (6.5)-(6.7), Cpm provides the disposition timetable with the optimal value
for TT v and, if G is a tree, also for TT a.

Unfortunately, the following complexity results hold:

Theorem 6.10 ([CDSS08, CDD+09b, DDNP09]). The problem of computing Prob(TT v1)
is NP-hard. If the underlying DAG is a tree, the problem remains NP-hard. If ∆ is
fixed and not part of the input, the problem remains NP-hard for any ∆ ≥ 3.

Theorem 6.11 ([CDD+08, CDD+09a]). The problem of computing Prob(TT a1) is NP-
hard. Furthermore, if ∆ is fixed and not part of the input, the problem remains NP-hard
for any ∆ ≥ 3 on an arbitrary DAG and for any ∆ ≥ 5 if the underlying DAG is an
event-activity network.

As a consequence, it is unlikely to find a polynomial-time algorithm for computing an
optimal solution of TT 1:
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Corollary 6.12. Unless P = NP , there exists no polynomial-time algorithm for solving
TT 1, TT v1 or TT a1 to optimality.

Hence, in the following, we focus on general results and compute optimal robust solutions
only for special cases of problems TT v1 and TT a1.

6.3.1 Limited-Events and Timetabling with Node Weights

In this section, we consider the recoverable robustness problem TT v1 = (TT v,M,A∆).
We start with the observation that each timetime is robust if ∆ is “large enough”,
compared to the size of the event-activity network:

Lemma 6.13. If ∆ ≥ |V | − 1, then each feasible timetable is robust.

Hence, in the following, we always assume ∆ ≤ |V | − 2.

First, we derive some results for the case of strict robustness, i.e. for the case ∆ = 0.
Afterwards, we drop this restriction, but assume that the underlying DAG is a linear
graph.

Strict robustness.

For the case of strict robustness, we prove some results on the price of robustness of
special versions of algorithms Alg+

s and Alg∗t (Algorithm 6.1 and Algorithm 6.2 from
Section 6.3) which either assign the same constant amount of slack to each arc or
multiply the lower bound of each arc with the same constant factor. To this end, let
Lmin be the minimum value of function L with respect to all admissible instances of
TT v1. Denoting by α the maximum delay from the modification function M of TT v1
and defining

γ := 1 +
α

Lmin
,

we set

s = (α, α, . . . , α) ∈ R|A|

t = (γ, γ, . . . , γ) ∈ R|A|.

Then, we use algorithms Alg+
s and Alg∗t with s and t as defined above to compute robust

solutions; we denote the resulting algorithms by Alg+
α and Alg∗γ to emphasize that they

assign the same constant amount of slack to each arc or multiply the lower bound of
each arc with the same constant factor, respectively. Then, the following holds:
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Corollary 6.14. Alg+
α and Alg∗γ are robust algorithms for TT v1.

Proof. For Alg+
α , this is a direct consequence of Lemma 6.9. As

γ = 1 +
α

Lmin
≥ 1 +

α

L0
a

=
L0
a + α

L0
a

∀a ∈ A,

due to Lemma 6.9, the claim also holds for Alg∗γ .

The following lemma shows the price of robustness of Alg∗γ .

Lemma 6.15. Let TT v1 be defined with ∆ = 0. Then

Prob(TT v1,Alg∗γ) = 1 +
α

Lmin
.

Proof. Let i = (G,L,w) be an instance of TT v1. Denoting by πγ the solution provided
by Alg∗γ(i) and by π the optimal (non-robust) solution provided by Cpm, we show that
for each v ∈ V , πγv = γπv. By contradiction, assume πγv 6= γπv for some v ∈ V such
that πγv is minimal among all such events. Clearly, v must be different from v1, hence
there exists an activity a = (u, v) ∈ A such that πγv = πγu + γLa. As π

γ
v is minimal and

πγu < πγv , we have πγu = γπu. Thus πγv = γπu + γLa = γπv, a contradiction. Hence
πγv = γπv for each v ∈ V . Then, using the definition of the price of robustness,

Prob(TT v1,Alg∗γ) = max
i∈I

{
f(Alg∗γ(i))

min{f(x) : x ∈ F (i)}

}
= max

i=(G,L,w)∈I

∑
u∈V wuπ

γ
u∑

u∈V wuπu

= max
i=(G,L,w)∈I

∑
u∈V wuγπu∑
u∈V wuπu

= γ

= 1 +
α

Lmin
.

Lemma 6.16. For each instance i ∈ I, f(Alg+
α (i)) ≤ f(Alg∗γ(i)).

Proof. Let i = (G,L,w) ∈ I, and let πγ and πα denote the solutions computed by
Alg∗γ(i) and Alg+

α (i). To prove the statement, it is sufficient to show that

παu ≤ πγu ∀ u ∈ V

as the weights of all nodes are nonnegative. However, this is a direct consequence of

γLa =

(
1 +

α

Lmin

)
La = La + α

La
Lmin

≥ La + a ∀a ∈ A,

i.e. the slack time which algorithm Alg∗γ adds to each activity is always larger than or
equal to the slack time which algorithm Alg+

α adds.
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Lemmas 6.15 and 6.16 imply the following result concerning the price of robustness of
algorithm Alg+

α :

Corollary 6.17. Let TT v1 be defined with ∆ = 0. Then,

Prob(TT v1,Alg+
α ) ≤ 1 +

α

Lmin
.

Linear graphs.

Now, we drop the restriction to strict robustness and allow arbitrary ∆; however, we
now assume that the DAG is a linear graph. This assumptions allows us to present an
optimal algorithm for TT v1. The idea of the algorithm is to add each slack “as late as
possible”. Formally, we apply algorithm Alg+

sα with a vector sα defined by

sαaj :=

{
α if (∆ + 1)|j
0 else

(6.8)

for all arcs aj ∈ A, i.e. we add sαa to L0
a for each a ∈ A and calculate a solution of TT v

by applying Cpm, see Figure 6.3 for an illustration.

add
slack

add add
slack slack

Figure 6.3: Adding additional slack time for the case ∆ = 2.

To show the robustness of Alg+
sα , we observe the following more general lemma, stating

that a timetable π is robust if and only if the slack time of each ∆ + 1 consecutive arcs
is large enough to let vanish the delay.

Lemma 6.18. If ∆ ≤ |V | − 2, a timetable π for a linear graph G is robust if and only
if the slack times satisfy

∆∑
k=0

saj+k ≥ α ∀j = 1, . . . , |A| −∆. (6.9)

Proof. Equation (6.9) ensures that the delay vanishes after at most ∆ events, no
matter where a source delay occurs. On the other hand, if (6.9) does not hold, e.g.∑∆

k=0 saj+k < α for some j ∈ {1, . . . , |A| −∆}, a source delay of α at aj leads to more
than ∆ delayed events and shows that π is not robust.
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In the next theorem we show that Alg+
sα is an optimal robust algorithm, i.e. it leads to

the smallest possible price of robustness for TT v1.

Theorem 6.19. Alg+
sα is an optimal robust algorithm for TT v1. Furthermore, if wu > 0

for all u ∈ V , the optimal robust timetable computed by Alg+
sα is unique.

Proof. The robustness of Alg+
sα follows from Lemma 6.18. It remains to show that it is

optimal. To this end, let π∗ be the output of Alg+
sα with slack sα and π′ another robust

timetable with slack s′ 6= sα. To compare the objective value f(π∗) of π∗ with the
objective value f(π′) of π′, we split the objective f into sums fk over ∆ + 1 consecutive
nodes and show that π∗ is not worse than π′ for each of those sums fk. For each
timetable π, we have

f(π) =
∑
u∈V

wuπu

=

|V |∑
j=1

wvjπvj

= wv1πv1 +

(∆+1)+1∑
j=2

wvjπvj +

2(∆+1)+1∑
j=(∆+1)+2

wvjπvj +

3(∆+1)+1∑
j=2(∆+1)+2

wvjπvj + ...

= wv1πv1 + f0(π) + f1(π) + f2(π) + ...

with

fk(π) :=

(k+1)(∆+1)+1∑
j=k(∆+1)+2

wvjπvj , k = 0, 1, 2, ...

Now let k be fixed. For the sake of simplicity, we set l = l(k) = k(∆ + 1) + 2 to the
lower and u = u(k) = (k + 1)(∆ + 1) + 1 to the upper bound of the summation index j
in fk. To compare fk for different timetables, we use πvj+1 = πvj +Laj + saj iteratively
and write fk as
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fk(π) =
u∑
j=l

wvjπvj

= wvl
[
πvl−1

+ (Lal−1
+ sal−1

)
]

+ wvl+1

[
πvl−1

+ (Lal−1
+ sal−1

) + (Lal + sal)
]

+ wvl+2

[
πvl−1

+ (Lal−1
+ sal−1

) + (Lal + sal) + (Lal+1
+ sal+1

)
]

+ ...

+ wvu
[
πvl−1

+ (Lal−1
+ sal−1

) + (Lal + sal) + ...+ (Lau−1 + sau−1)
]

= πvl−1

u∑
j=l

wvj +

u−1∑
j=l−1

u∑
p=j+1

wvp(Laj + saj )

= πvl−1

u∑
j=l

wvj +
u−2∑
j=l−1

u−1∑
p=j+1

wvpLaj︸ ︷︷ ︸
(a)

+
u−2∑
j=l−1

u−1∑
p=j+1

wvpsaj︸ ︷︷ ︸
(b)

+ wvu

u−1∑
j=l−1

Laj︸ ︷︷ ︸
(c)

+wvu

u−1∑
j=l−1

saj .

Terms (a) and (c) are the same for all timetables on the same graph, so they cancel out
each other if we compute the difference fk(π′)− fk(π∗). As π∗ satisfies (6.8), term (b)
vanishes for π∗ (because sαaj = α for j = l − 2 and for j = u − 1, but sαaj = 0 for all
j = l − 1, . . . , u− 2). Hence

fk(π
′)− fk(π∗) = (π′vl−1

− π∗vl−1
)

u∑
j=l

wvj︸ ︷︷ ︸
≥0†

+
u−2∑
j=l−1

u−1∑
p=j+1

wvps
′
aj︸ ︷︷ ︸

≥0† if s′ 6=sα in fk
=0 else

+ wvu︸︷︷︸
≥0†


u−1∑
j=l−1

s′aj︸ ︷︷ ︸
≥α

−
u−1∑
j=l−1

sαaj︸ ︷︷ ︸
=α


where in all places marked with †, ≥ gets > if we assume wu > 0 for all u ∈ V . It
remains to show π′vl−1

≥ π∗vl−1
. Each timetable π satisfies πvj+1 = πvj + Lvj + saj ,

j = 1, . . . , |V | − 1, and each robust timetable also satisfies (6.9), so we have
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6.3 Recoverable-Robust Timetabling

πvl−1
= πvk(∆+1)+1

= πv1 +

k(∆+1)∑
j=1

(Laj + saj )

= πv1 +

k(∆+1)∑
j=1

Laj +

k(∆+1)∑
j=1

saj

≥ πv1 +

k(∆+1)∑
j=1

Laj + kα

for each robust timetable π. As π∗ satisfies (6.8), it satisfies (6.9) with equality, i.e.

π∗vl−1
= π∗v1

+

k(∆+1)∑
j=1

Laj + kα,

so π′vl−1
≥ π∗vl−1

which yields fk(π′) ≥ fk(π
∗) for each k. Hence, π∗ is optimal. If we

assume wu > 0 for all u ∈ V , then fk(π′) 	 fk(π
∗) for each summand fk for which

s′ 6= sα (at least one), hence f(π′) 	 f(π∗), so π∗ is the unique optimal solution.

Corollary 6.20. If G is a linear graph, there exists a linear time algorithm that
computes optimal solutions for TT v1.

6.3.2 Limited-Delay and Timetabling with Arc Weights

If we consider the recoverable-robust timetabling problem TT a1 = (TT a,M,Aδ), the
following results on algorithm Alg+

s hold:

Lemma 6.21. Let G be a tree and let wa > 0 for at least one a ∈ A. If Alg+
s is robust,

its price of robustness is

Prob(TT a1,Alg+
s ) ≤ 1 +

s

Lmin
.
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6 Robustness Aspects

Proof.

Prob(TT a1,Alg+
s ) = max

i=(G,w,L0)∈I

∑
a=(u,v)∈Awa(L

0
a + s)∑

a=(u,v)∈AwaL
0
a

= 1 + s · max
i=(G,w,L0)∈I

∑
a=(u,v)∈Awa∑

a=(u,v)∈AwaL
0
a

≤ 1 + s · max
i=(G,w,L0)∈I

∑
a=(u,v)∈Awa∑

a=(u,v)∈AwaLmin

≤ 1 +
s

Lmin
.

Note that the generalization of Lemma 6.21 to the multi-stage case also holds, see
Lemma 6.37.

Lemma 6.22. Let δ ≤ α
2 . Then Alg+

α−δ is robust. Furthermore, if G is a tree, its price
of robustness is

Prob(TT a1,Alg+
α−δ) ≤ 1 +

α− δ
Lmin

.

Proof. Let π be a solution computed by Alg+
α−δ and let x be the solution after the

recovery phase. Assume that arc (u, v) ∈ A is delayed by α. Let wj , j = 1, . . . , l, be
the set of nodes directly connected to v by an arc (v, wj) ∈ A, see Figure 6.4.

u v

w1

wl

...

Figure 6.4: Illustration of the proof of Lemma 6.22.

We calculate the delays as

xv − πv = α− (α− δ) = δ

xwj − πwj ≤ [δ − (α− δ)]+ = 0 for all j = 1, . . . , l,
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6.4 Multi-Stage Recoverable Robustness

the latter using δ ≤ α
2 . Hence, ∑

u∈V
(xu − πu) = δ,

i.e. π is robust. The price of robustness follows from Lemma 6.21.

6.4 Multi-Stage Recoverable Robustness

Now we extend the single-stage model in order to deal with a sequence of σ ≥ 1
modifications. The main motivation lies on the observation that in many applications,
one is typically not facing only one disturbing event, but several disturbances i1, i2, . . . , iσ

may occur. This obviously is the case for the operational phase in public transportation
where several different delays might occur one after another. For example, assume that
we expect at most two disturbances i1 and i2. In this case, a robust solution for i1

should be also recoverable against the next disturbance i2. This means that under all
solutions which are robust for i1, we should choose one that is again robust against
the next disturbance i2 (if it exists). This example can be extended to more than two
disturbances, see Figure 6.5 for an example where up to 3 disturbances are allowed.

F (i1) F (i2) F (i3)F (i0)

F(i0, 3)
F(i0, 2)

F(i0, 1)

F(i1, 2)

F(i1, 1)

F(i2, 1)

Figure 6.5: The set of solutions that are recoverable against 1, 2, and 3 disturbances.
F(i, n) denotes the set of feasible solutions for a problem which has
to be solved against n disturbances. Dotted arrows represent recovery
algorithms.

To describe robustness, as for the single-stage case, the following concepts are necessary.

• σ ∈ N denotes the maximum number of expected modifications. In a practical
scenario, several disruptions i1, i2, . . . , iσ may occur. In this case, the task is
to devise recovery algorithms that can recompute the solution for P after each
disruption. The introduction of more than one disturbance extends the concept of
recoverable robustness presented in Section 6.2 where only one single disturbance
is taken into account.
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6 Robustness Aspects

• The modification function M : I → 2I . Note that M might also depend on other
information, e.g. M(ik) may depend on data of instances i0, i1, . . ., ik−1.

• Again, Arec denotes the class of recovery algorithms for P . Note that s0 and i1

define the minimal amount of information necessary to recompute the recovered
solution. However, for specific cases, Arec could require additional information.
In general, when Arec is used in the k-th stage, it could use everything that has
been processed in the previous stages, i.e. i0, ..., ik−1 and s0, ..., sk−1.

The following definitions are extensions of Definition 6.1 and Definition 6.2 to the
multi-stage case:

Definition 6.23. A multi-stage recoverable robustness problem is given by a tuple
(P,M,Arec, σ) where (P,M,Arec) ∈ RRP is a recoverable robustness problem and σ ∈ N.
The class RRP(σ) contains all multi-stage recoverable robustness problems, i.e. all
recoverable robustness problems that have to be solved against σ ≥ 1 possible disruptions.

Definition 6.24. Let σ ∈ N and P = (P,M,Arec, σ) be an element of RRP(σ). Given
an instance i0 ∈ I of P , s0 is a feasible solution for i0 with respect to P if and only if
the following relationship holds:

∃Arec ∈ Arec : s0 ∈ F (i0) (6.10)

sk := Arec(s
k−1, ik) ∈ F (ik) ∀ik ∈M(ik−1), ∀k ∈ {1, . . . , σ}. (6.11)

This definition ensures that for each stage k, for any possible modification ik ∈M(ik−1)
and for any feasible solution sk−1 computed in the previous stage, the output sk of
algorithm Arec is a feasible solution for ik with respect to P . If it is clear to which
problem P , M and Arec we refer to, we also say in short that s0 is feasible for i with
respect to σ recoveries. As in the single-stage case, FP(i) is considered as the set of
robust solutions for i with respect to the original problem P .

Note that RRP(1) = RRP. Hence, each problem in RRP(1) is called a single-stage
recoverable robustness problem and each problem in RRP(σ), σ > 1, is called a multi-
stage recoverable robustness problem.

Using the definition of a feasible solution, the robust algorithm that is used to compute
the initial solution s0 for the initial (undisturbed) instance i0 is defined in the following
definition similar to Definition 6.3 for the single-stage case:

Definition 6.25. Given a multi-stage recoverable robustness problem P ∈ RRP(σ), a
robust algorithm for P is any algorithm Arob : I → S such that for each i ∈ I, Arob(i)
is feasible for i with respect to P, i.e. such that Arob outputs a solution that can be
recovered against σ disturbances.
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6.4 Multi-Stage Recoverable Robustness

Note that Arob as in the definition above provides the solution s0 as defined in Def-
inition 6.24. In the case of strict robustness, a robust algorithm Arob for P must
provide a solution s0 for i0 such that for each possible modification ik ∈M(ik−1), we
have s0 ∈ FP(ik) for all k ∈ {1, . . . , σ}. The meaning is the following: If Arec has no
recovery capability, then Arob has to find solutions that “absorb” any possible sequence
of disturbances.

Analogously to the single-stage case, the price of robustness can also be defined for multi-
stage recovery algorithms. Definitions 6.26-6.28 are generalizations of Definitions 6.4-6.6
to the multi-stage case.

For every instance i ∈ I of the initial problem P , the price of robustness of the robust
algorithm Arob is given by the maximum ratio between the cost of the solution provided
by Arob and the cost of an optimal (non-robust) solution. The following definition
differs from the corresponding definition for the single-stage case only in the problem P
(it now belongs to the larger class RRP(σ) instead of RRP).

Definition 6.26. The price of robustness of a robust algorithm Arob for a recoverable
robustness problem P ∈ RRP(σ) is given by

Prob(P, Arob) := max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}

}
.

The price of robustness of a recoverable robustness problem P ∈ RRP(σ) is then given
by the minimum price of robustness among all possible robust algorithms for this
problem. Formally:

Definition 6.27. The price of robustness of a multi-stage recoverable robustness problem
P ∈ RRP(σ) is given by

Prob(P) = min{Prob(P, Arob) : Arob is a robust algorithm for P}.

If there are different robust algorithms for a recoverable robustness problem, we want
to identify the “best” one:

Definition 6.28. Let P ∈ RRP(σ) and let Arob be a robust algorithm for P. Then,

• Arob is called P-optimal if Prob(P, Arob) = Prob(P);

• Arob is called exact if Prob(P, Arob) = 1.

We call a solution computed by an optimal algorithm P-optimal, while a solution
computed by an exact algorithm is called exact.
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6 Robustness Aspects

Note that each exact algorithm is optimal.

We now state a simple observation concerning the price of robustness.

Lemma 6.29. For fixed P , M , and Arec, consider a family of recoverable robustness
problems Pσ = (P,M,Arec, σ) ∈ RRP(σ) for different values of σ, i.e. these problems
vary in the expected number of recoveries only. For σ1 < σ2, we have

• FPσ2
(i) ⊆ FPσ1

(i) for all instances i ∈ I,

• Prob(Pσ1) ≤ Prob(Pσ2), i.e. the price of robustness grows in the number of expected
recoveries.

Proof. Let Arob be a robust algorithm for Pσ2 . Let i ∈ I and s ∈ FPσ2
(i). By

Definition 6.24, there exists a recovery algorithm Arec ∈ Arec such that (6.11) holds for
all k = 1, . . . , σ2, hence also for all k = 1, . . . , σ1 < σ2. This implies s ∈ FPσ1

(i).

The second statement is a straightforward consequence of the first one.

6.5 Multi-Stage Recoverable-Robust Timetabling

We now apply the concept of multi-stage recoverable robustness to a simple version of
the timetabling problem. In fact, we generalize the recoverable robustness problems
TT 1, TT v1 and TT a1 from Section 6.3 to multiple-stage recoverable robustness problems
TT σ, TT vσ and TT aσ. To this end, we formalize the modifications function M and
the set Arec of recovery algorithms which we need to define a multi-stage recoverable
robustness problem P = (P,M,Arec, σ) ∈ RRP(σ) as follows:

• As in Section 6.3, the modification function for an instance ik−1 = (G,w,Lk−1)
and a constant α ∈ R>0 is

M(ik−1) =
{

(G,w,Lk) : ∃a ∈ A : L0
a ≤ Lka ≤ L0

a + α and Lka = Lk−1
a ∀a 6= a

}
,

i.e. we allow one additional delay (its size bounded by α) in every stage k and, if
the additional delay concerns an already delayed activity, the total delay cannot
exceed the value of α.

• The class Arec of recovery algorithms is based on the same two limitations as in
the single-stage case, namely classes A∆ and Aδ. In particular, we require that
a solution xk computed by a recovery algorithm Arec satisfies d(xk, π) ≤ ∆ (δ)
when Arec ∈ A∆ (Aδ).
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6.5 Multi-Stage Recoverable-Robust Timetabling

As in the single-stage case, using those definitions, we can turn the initial problem TT
into a multi-stage recoverable robustness problem TT σ = (TT,M,Arec, σ) ∈ RRP(σ).
Special cases of TT σ can be obtained by replacing TT with TT a or TT v and choosing
a class of recovery algorithms. Among the four possible combinations of initial opti-
mization problem and class of recovery algorithm, we focus on the same two recoverable
robustness problems as in Section 6.3:

Robust timetabling with nonnegative node weights and limited-events. In the first
recoverable robustness problem, we use the special timetabling problem TT v with
nonnegative node weights and the class A∆ of recovery algorithms. The resulting
recoverable robustness problem is

TT vσ := (TT v,M,A∆, σ).

Robust timetabling with arc weights and limited-delay. In this case, we consider the
special timetabling problem TT a with objective function farcs together with the
class Aδ of recovery algorithms. The corresponding recoverable robustness problem
hence is

TT aσ := (TT a,M,Aδ, σ).

Solving these problems requires to define robust algorithms as stated in Definition 6.25.
For instance, let us assume that we want to solve TT vσ. In this case, we need a robust
algorithm Arob such that, for a given instance i0 = (G,w,L0) of TT v, it computes a
timetable π satisfying

πv − πu ≥ L0
a ∀a = (u, v) ∈ A

(this defines a feasible timetable) and such that for all modifications (G,w,Lk) ∈
M(ik−1) of ik−1, k ∈ {1, . . . , σ}, there exists a disposition timetable xk with

xkv − xku ≥ Lka ∀a = (u, v) ∈ A
xku ≥ πu ∀u ∈ V

d(xk, π) ≤ ∆ (6.12)

(this defines a robust timetable). In case TT aσ is considered instead of TT vσ, the above
constraints are still valid, except for (6.12) where ∆ has to be replaced by δ.

First, we show the connection between recoverable-robust timetabling and multi-stage
recoverable-robust timetabling. From Lemma 6.29, we know FTT v1 (i0) ⊇ FTT vσ(i0). In
general, FTT v1 (i0) * FTT vσ(i0); however, in the case of strict robustness (i.e. ∆ = 0), the
following lemma implies FTT v1 (i0) = FTT vσ(i0).
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6 Robustness Aspects

Lemma 6.30. Let TT v1 and TT vσ defined with ∆ = 0. If Arob is a robust algorithm for
TT v1, then Arob is robust for TT vσ.

Proof. Let Arob be a robust algorithm for TT v1, and let π = Arob(i0). According to
Lemma 6.9, π assigns a slack of at least α to each activity. As in the modification
function M , the maximal delay of each activity is at most α, Arob is also a robust
algorithm for TT vσ.

Corollary 6.31. Lemma 6.30 also holds for TT a1 and TT aσ if δ = 0.

6.5.1 Limited-Events and Timetabling with Node Weights

In this section, we consider the recoverable robustness problem TT vσ = (TT v,M,A∆, σ).
As in the single-stage case, each timetable is robust if ∆ is “large enough”, compared to
the size of the event-activity network, i.e. if ∆ ≥ |V | − 1 (see Lemma 6.13). Hence, in
the following, we always assume ∆ ≤ |V | − 2.

If σ > ∆, a straightforward consequence of the considered modification function M is
that we need strict robustness to get a robust solution:

Lemma 6.32. If σ > ∆, then a timetable is robust if and only if the slack s satisfies
sa ≥ α for each a ∈ A. In this case, we have strict robustness.

In the following, we restrict our analysis to linear graphs.

Linear graphs.

We now suggest a robust algorithm for arbitrary σ for a linear graph. It is based on
algorithm Alg+

s and assigns the same slack

s∗ = min

{
α,

σα

∆ + 1

}
(6.13)

to each arc. In Theorem 6.35, we show that Alg+
s∗ is robust for TT vσ and that it is

optimal compared to all other robust algorithms that add an equal slack s to all arcs.
We need the following two results for the proof:

Lemma 6.33. If sa < α for all arcs a ∈ A, then the number of nodes affected by a
single delay of σα on arc aj = (vj , vj+1) is equal to the number of nodes affected by σ
single delays of α on the σ consecutive arcs aj+k = (vj+k, vj+k+1), k = 0, . . . , σ − 1.
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6.5 Multi-Stage Recoverable-Robust Timetabling

Proof. Let sa < α for all arcs a ∈ A. If, on the one hand, aj is delayed by σα, then
vj+1 has a delay of σα− saj , vj+2 has a delay of σα− saj − saj+1 and so on, and vj+σ
has a delay of σα−

∑σ−1
k=0 saj+k . If, on the other hand, aj , . . . , aj+σ−1 are delayed by α,

then vj+1 has a delay of α− saj , vj+2 has a delay of 2α− saj − saj+1 and so on, and
vj+σ has a delay of σα−

∑σ−1
k=0 saj+k . As sa < α for all arcs a ∈ A, all these delays are

positive. Hence in both cases, the nodes vj+1, . . . , vj+σ are affected, and as the delay of
vj+σ is the same in both cases, the total number of subsequent affected nodes is the
same, too.

Lemma 6.34. If all arcs a ∈ A have the same slack sa = s, then the number of nodes
affected by σ delays of α on σ consecutive arcs is always greater than or equal to the
number of nodes affected by σ delays of α on σ non-consecutive arcs.

Proof. W.l.o.g., we may assume s < α (otherwise no node at all is affected by a delay).
If a delay of α occurs, then we need dαs e arcs with slack s to let the delay vanish. Hence,
a single delay affects dαs e − 1 nodes, and thus, σ delays of α affect at least σ

(
dαs e − 1

)
nodes. If the sets of nodes affected by each delay are disjoint, then each delay exactly
affects dαs e − 1 nodes. It remains to show that the total of affected nodes grows if the
sets of affected nodes of each delay are not disjoint.

Let σ = 2 and assume that the first delay occurs on arc aj = (vj , vj+1) and affects
the k nodes vj+1, vj+2, . . . , vj+k. The last affected node is node vj+k with a delay
of (xj+k − πj+k) ∈ (0, s]. Now, assume that the second delay occurs on some arc
aj′ = (vj′ , vj′+1), j′ ∈ {j+1, . . . , j+k}. As the whole slack of arcs ai, i = j, . . . , j+k−1,
and a part of the slack of arc aj+k is already used to reduce the first delay, the second
delay also affects vj′ , . . . , vj+k that are already affected by the first delay (this does not
change the total number of affected nodes). Starting with arc aj+k, the second delay
can be reduced on each subsequent arc until it vanishes. On arc aj+k, it can be reduced
by the remaining slack (s− (xj+k − πj+k)) ∈ [0, s); on all subsequent arcs, it can be
reduced by the full slack s. If in this example yj+k > s

2 , then one easily sees that in
this case, the second delay needs a total of dαs e+ 1 arcs to vanish instead of dαs e as it is
the case when the sets of affected nodes of each delay are disjoint; thus, both delays
together influence 2

(
dαs e − 1

)
+ 1 nodes.

The idea of the proof for σ = 2 can be extended arbitrary σ.

Now, we can prove that Alg+
s∗ is robust for TT vσ and that it is optimal compared to all

robust algorithms that add an equal slack s to all arcs:

Theorem 6.35. Let G be a linear graph and let s∗ be defined as in (6.13). Assume
that we add the same slack time s to all arcs. Then Alg+

s is a robust algorithm for TT vσ
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if and only if s ≥ s∗. If s > s∗ and |V | > 1, then f(Alg+
s (i)) > f(Alg+

s∗(i)) if wu > 0
for at least one node u ∈ V \ {v1}.

Proof. If σ > ∆, according to Lemma 6.32, sa = α for all a ∈ A is the optimal solution;
in this case, due to (6.13), we have s∗ = α and the theorem holds. So in the following,
let σ ≤ ∆ which implies s∗ < α. At first we show that Alg+

s is a robust algorithm for
TT vσ if s ≥ s∗. We look at the worst case that the first delay of α occurs on arc aj ,
the second delay of α occurs on arc aj+1 and so on; in the proof of Lemma 6.34, we
explained why this is the worst case. For the sake of simplicity, we may assume that
we only have one large delay of σα on arc aj , see Lemma 6.33. Given a slack s,

⌈
σα
s

⌉
arcs are needed to reduce this delay until it vanishes. On the last of these arcs, the
delay is reduced to 0, so the node at the end of this last arc has no delay. Hence, the
number of nodes influenced by the delays is d(x, π) =

⌈
σα
s

⌉
− 1. For s ≥ s∗, by using

(6.13), we have d(x, π) ≤ ∆. If s < s∗, then d(x, π) > ∆. Hence, Alg+
s∗ is robust if and

only if s ≥ s∗.

For the second part, let s > s∗. By π∗ (π), we denote the timetable with slack s∗ (s).
Then, according to the definition of Cpm, πv1 = π∗v1

= 0 and πvj > π∗vj for all nodes
vj ∈ V \ {v1}. This yields f(π) > f(π∗) if |V | > 1.

Theorem 6.36. Let G be a linear graph, and let s∗ be defined as in (6.13). If, for each
(G,w,L0) ∈ I, wa > 0 for at least one a ∈ A, then the following holds:

Prob(TT vσ,Alg+
s∗) ≤ 1 +

s∗

Lmin
.

Proof. Using the definition of Cpm, we have πv1 = 0 and πvj =
∑j−1

k=1(Lak + sak),
j = 2, . . . , n. This yields

Prob

(
Pσ≥1,Alg

+
s∗
)

= max
i=(G,w,L0)∈I

f
(
Alg+

s∗(i)
)

min{f(π) : π ∈ F (i)}

= max
i=(G,w,L0)∈I

∑n
j=2

∑j−1
k=1wvj (Lak + s∗)∑n

j=2

∑j−1
k=1wvjLak

= 1 + s∗ max
i=(G,w,L0)∈I

∑n
j=2

∑j−1
k=1wvj∑n

j=2

∑j−1
k=1wvjLak

≤ 1 +
s∗

Lmin

using La ≥ Lmin for all a ∈ A.
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6.5.2 Limited-Delay and Timetabling with Arc Weights

We complete our analysis of recoverable-robust timetabling with an investigation of the
recoverable robustness problem TT aσ = (TT a,M,Aδ, σ). Again, our strategy to make a
timetable robust against delays is to add a slack time sa to all of the arcs and to apply
algorithm Alg+

s afterwards. In the following we consider algorithm Alg+
s with sa = s

for all a ∈ A, i.e. we add the same amount of slack time to all activities.

We first investigate how much we loose if we use Alg+
s instead of an algorithm that

computes the optimal (but not robust) solution of TT a, i.e. without the additional
slack s. Again, let Lmin be the minimum value assigned by the function L with respect
to all the possible instances of TT aσ.

The following lemma is a generalization of Lemma 6.21 from the single-stage case; the
proof is exactly the same:

Lemma 6.37. Let G be a tree and let wa > 0 for at least one a ∈ A. If Alg+
s is robust,

its price of robustness is

Prob(TT aσ,Alg+
s ) ≤ 1 +

s

Lmin
.

Now we discuss how much slack time s is needed to guarantee robustness of Alg+
s .

Strict robustness.

Our first result deals with strict robustness, i.e. if δ = 0. In this case we have to make
sure that any delay can be compensated by the slack time on the corresponding edge.
Since Lka never differs from L0

a by more than α in any scenario, it suffices to add an
additional slack of α to each L0

a for all a ∈ A. Then the resulting disposition timetable
in each step equals the original timetable π, i.e. a recovery step is in fact not necessary.

Lemma 6.38. The algorithm Alg+
α is strictly robust (i.e. it is robust for the case δ = 0)

for any graph G. Furthermore, if G is a tree, its price of robustness is

Prob(TT aσ,Alg+
α ) ≤ 1 +

α

Lmin
.

Proof. The robustness of Alg+
α is clear. The price of robustness follows from Lemma 6.37.

Next, we turn our attention to the case δ > 0.

143



6 Robustness Aspects

Linear graphs.

Simplifying the network to a linear graph allows us to drop the restrictions on δ from
Lemma 6.38 and thus yields the following result for algorithm Alg+

s :

Theorem 6.39. Let G be a linear graph. Then Alg+
s is robust for TT aσ if and only if

s ≥ s∗ :=
2σα

(⌈
2δ
σα

⌉
+ σ

)
− σα(σ + 1)− 2δ(⌈

2δ
σα

⌉
+ σ

) (⌈
2δ
σα

⌉
+ σ − 1

) .

Proof. If s ≥ α, we have strict robustness and the theorem holds as s∗ ≤ α. So in
the following, we may assume s < α. To prove robustness, we analyze the worst case
scenario. By an argument similar to Lemma 6.34, in the worst case, all delays occur on
consecutive arcs, so w.l.o.g. we assume that we have σ delays of α on the σ consecutive
arcs a1, . . . , aσ. To simplify the subsequent calculations, we instead consider the case
of one large delay of σα on arc a1. To justify this approach, we compare the effects of

(a) one delay of σα on arc a1, and

(b) σ delays of α on the σ consecutive arcs a1, . . . , aσ.

In case (a), v1 has a delay of d(a)
1 = σα − s, v2 has a delay of d(a)

2 = σα − 2s

and so on, and vσ has a delay of d(a)
σ = σα − σs. In case (b), v1 has a delay of

d
(b)
1 = α− s = σα− s− (σ− 1)α, v2 has a delay of d(b)

2 = 2α− 2s = σα− 2s− (σ− 2)α

and so on, and vσ has a delay of d(b)
σ = σα− σs. As s < α, all those delays are positive.

Hence, we have
σ∑
k=1

d
(b)
k =

σ∑
k=1

d
(a)
k −

σ−1∑
k=1

kα,

and starting from node vσ, all subsequent delays are the same. So instead of calculating
the sum of all delays for case (b), we can focus on case (a) and subtract

∑σ−1
k=1 kα

afterwards.

For s = 0, it is clear that we do not have robustness, so we assume s > 0 in the following.
We consider an instance i = (G,w,L0) ∈ I with |V | ≥

⌊
σα
s

⌋
+ 1. Then

∑
u∈V

(xu − πu) =

dσαs e−1∑
k=1

(σα− ks)−
σ−1∑
k=1

kα

=
(⌈σα

s

⌉
− 1
)
σα− s

(⌈
σα
s

⌉
− 1
) ⌈

σα
s

⌉
2

− α(σ − 1)σ

2

=
1

2
s
⌈σα
s

⌉
− 1

2
s
(⌈σα

s

⌉)2
+ σα

⌈σα
s

⌉
− 1

2
σα(σ + 1).

Plugging in the formula for s∗ shows (after some calculations) the result.
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Corollary 6.40. It holds that s∗ ≥ σ2α2

2δ+σ2α
where equality holds if sδ

σα is integer.

Proof. One can compute that s∗ ≥ σ2α2

2δ+σ2α
if and only if⌈

2δ

σα

⌉
σα︸ ︷︷ ︸

:=A

(
4δ + σα− σα

⌈
2δ

σα

⌉)
︸ ︷︷ ︸

:=B

≥ 2δ︸︷︷︸
:=C

(2δ + σα)︸ ︷︷ ︸
:=D

.

For the latter expression note that A,B,C,D ≥ 0 and that A+B = C +D and that
A − B ≤ D − C. Hence AB ≥ CD and the lower bound is established (given two
rectangles with the same perimeter, the one with the smaller difference between width
and length has the larger area). Plugging in s∗ in the case that sδ

σα is integer shows
(after some calculations) that equality holds.

The price of robustness of algorithm Alg+
s∗ can finally be written down.

Corollary 6.41. Let G be a linear graph. Then Prob(TT aσ,Alg+
s∗) = 1 + s∗ where s∗ is

the minimal slack time from Theorem 6.39.

Note that for a concrete scenario a slack smaller than s∗ might also give a robust
timetable. This might happen for example if no two source-delayed arcs follow each
other or if the size of the network is limited such that at least one node u ∈ V with
a delay of (xu − πu) > s∗ has no outgoing arc. However, we are not interested in one
special scenario, but in all possible scenarios from the set of admissible scenarios.

We also remark that this is a discussion about the price of robustness of Alg+
s only.

The question if there exists an approach which does better in the worst case is still
open. But note that it need not be optimal to add the same slack s to all arcs when the
weights wa are different from each other. This can be seen in the following example.

Example 6.42. Consider a linear graph with edges A = {(v1, v2), (v2, v3), (v3, v4)},
weights w = (1, 100, 1) and lower bounds L0 = (1, 1, 1), see Figure 6.6 for an illustration.

v1 v2 v3 v4
La = 1

wa = 1

La = 1

wa = 100

La = 1

wa = 1

Figure 6.6: The DAG for Example 6.42.

Let α = 4, δ = 5 and σ = 1. If we add the same slack to all arcs, we need at least a
slack of 2 to achieve robustness. With s = (2, 2, 2), we have
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6 Robustness Aspects

∑
a=(u,v)∈A

wa(πv − πu) =
∑

a=(u,v)∈A

wa(L
0
a + s) = 306

in a time-minimal timetable. If, by contrast, we allow different slacks on the arcs and
set s = (2, 0, 3), we get a robust timetable with∑

a=(u,v)∈A

wa(πv − πu) = 107.

6.6 Summary

The results from Section 6.2-6.5 show how the algorithmic performances are affected by
the variation on both the recovery capabilities (i.e. the class Arec) and the modification
function M . As theoretically expected, the less restrictive the available recovery
capabilities are, the smaller the price of robustness of an algorithm is. Vice versa, the
larger the set of modification is, the larger the price of robustness of an algorithm is.
Both observations can be seen in Table 6.8 and Table 6.9 where the price of robustness
decreases with ∆ (or δ, depending on the class Arec) and increases with α.

In conclusion, the price of robustness can be exactly calculated in special cases only;
in many cases, an approximation is possible. Approximations are also needed when
computing the optimal robust solution is hard. This situation occurs in some cases, as
reported in Table 6.7.

Depending on the concrete restrictions on the recovery algorithms, the price of robustness
might be very different. In Figure 6.10, we give the price of robustness for a linear graph
if we either restrict the number of nodes being affected by a delay (see Theorem 6.36) or
if we restrict the allowed deviation from the original timetable (see Corollary 6.41). It
becomes clear that the price of robustness does not grow as rapidly as one might have
expected, so further research in this direction seems to be promising also for real-world
problems.

146



6.6 Summary

Graph σ ∆ Complexity Result in

arbitrary 1 ≥ 3 NP-hard [CDSS08]
linear any any linear Corollary 6.20

Table 6.7: Computational complexity of calculating an optimal robust solution of
TT vσ.

Graph σ ∆ Prob Result in

DAG 1 any 1 + α
Lmin

Lemma 6.15

linear 1 any Prob(TT vσ) Theorem 6.19

linear any any 1 + 1
Lmin

min
{
α, σα

∆+1

}
Theorem 6.36

Table 6.8: Upper bounds for Prob(TT vσ) in some cases. The algorithm considered in
Theorem 6.19 is optimal, but its price of robustness has not been computed.

Graph σ δ Prob Result in

tree 1 δ ≤ α
2 1 + α−δ

Lmin
Lemma 6.22

tree any any 1 + α
Lmin

Lemma 6.38

linear any any 1 +
2σα(d 2δ

σαe+σ)−σα(σ+1)−2δ

(d 2δ
σαe+σ)(d 2δ

σαe+σ−1)
Corollary 6.41

Table 6.9: Upper bounds for Prob(TT aσ) in some cases.
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Figure 6.10: The price of robustness of algorithm Alg+
s∗ on a linear graph with α = 20

and ∆ = δ = 1000 as a function of σ with number of events as limitation
(Theorem 6.36) and with sum of delays as limitation (Corollary 6.41).
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Chapter 7
Discussion and Outlook

We conclude this thesis with a summary of the main results, a discussion of open
problems, and an outlook on further research and possible extensions. We start with
the summary in Section 7.1 and discuss open questions in Section 7.2. In Section 7.3,
we present a programming framework that allows to numerically analyze the impact
of different planning stages in public transportation on subsequent stages that is an
important tool for further research; parts of it are based on results presented in this
thesis. In Section 7.4, we conclude with an overview of possible extensions of our model.

7.1 Summary

In this work, we analyzed the delay management problem with capacity constraints.
Based on an analysis of the headway activities where we showed that backward headways
never carry over a delay to a punctual event, we were able to extend some results
from the uncapacitated delay management problem to the capacitated case, especially
concerning the never-meet property and related results. As a consequence, we were
able to identify cases in which the objective of the integer programming formulation
coincides with the exact sum of all delays of all passengers at their final destinations
(while in all other cases, the objective is only an upper bound on this sum). While
the never-meet property for uncapacitated delay management is “almost” satisfied
in many real-world scenarios, the event-activity network with headway activities is
much more dense, causing significantly more violations of the never-meet property.
Based on the analysis of the headway activities and on results concerning the IP, we
suggested different reduction techniques which can significantly reduce the size of an
input instance. The numerical results from our case study, based on real-world data,
show the efficiency of the suggested preprocessing procedures.
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7 Discussion and Outlook

As the problem is NP-hard even in very special cases, applying the suggested reduction
techniques might not be sufficient to be able to solve a large-scale real-world instance
in a reasonable amount of time. Hence we suggested two classes of heuristic solution
approaches and proved worst-case error bounds. As we have shown, the worst-case
relative error of various classes of heuristics is arbitrarily large; the results are not
limited to the actual solution procedures suggested in this thesis. We evaluated our
solution procedures numerically on the same real-world data set that we used for testing
the reduction techniques. It turned out that the theoretical results on the relative
error are only worst-case results and that in average, the relative error of our heuristic
approaches is rather limited. However, the relative error of different heuristics highly
depends on the distribution of the source delays. By combining different heuristics,
we derived a solution approach that is well suited for different distributions of source
delays and that has a significantly lower average relative error than a single heuristic.

We also suggested how to integrate rolling stock circulations and delay management
and analyzed the resulting problem. We extended results from capacitated delay
management to the integrated problem, showed that it is NP-hard even in special cases,
analyzed a polynomially solvable case, and suggested a generic solution framework.

In the last part of this work, we showed how to use the concept of recoverable robustness
for computing delay resistant timetables. The resulting recoverable robustness problems
are NP-hard, so we focused on analyzing special cases.

Yet, there are still open questions and room for further research as we show in the next
section.

7.2 Open Questions and Further Work

In Section 4.1, we provided upper bounds on the relative error of Frfs-Fix and Frfs,
using the input data of the actual instance. So far it is not clear whether similar
bounds can be proven for Fsfs, Fsfs-Fix, and Priority-Repair. As we have shown
in Chapter 4, such bounds definitely have to depend on the structure of the actual
input instance. If a low worst-case relative error is required, the set of admissible input
instances has to be very limited.

In Chapters 3 and 4, we numerically evaluated the reduction techniques and heuristic
solution approaches using a real-world data set. It would be interesting to check whether
the results also hold for different data sets with other network topologies and other
timetables. Unfortunately, we did not have access to other real-world data. Once other
data sets are avaliable, they can be compared easily by using the framework presented
in Section 7.3.
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7.3 Simulation and Numerical Evaluation with LinTim

Throughout our analysis of the delay management problem in Chapters 2-5, we focused
on the model where we assumed all delays to be known. The resulting problem already
is NP-hard, even in very special cases. If, in contrast, delays occur strictly one after
another and we assume that they are not known in advance, but we have to compute
a new disposition timetable (based on the previous one) every time a new delay gets
known, we are facing a classical online problem (see [Gat07] for an analysis of the
online version of the uncapacitated delay management problem). In this case, there
might exist input instances for which it is not the best approach to repeatedly compute
optimal disposition timetables after the occurrence of each single source delay since
other solution procedures might yield a smaller average delay. In [KS09], it is shown
that in the case of uncapacitated delay management, there are some scenarios in which
passenger-oriented heuristic dispatching strategies are superior to the approach of
repeatedly solving the problem to optimality. However, as the limited capacity of the
track system and thus the security distances between two trains and the resulting
optimization potential is neglected, the results cannot be applied to the model treated
in this work. Quite the contrary, our results in Section 4.3 show that the way of making
the priority decisions has a large influence on the relative error and that this influence
highly depends on the distribution of the source delays. It is up to now not clear which
influence the priority decisions have in an online setting.

In Chapter 6, it turned out that computing a recoverable-robust timetable is a hard
problem even if only a simplified nonperiodic timetabling model is considered. Many
approaches on robust timetabling hence focus on special cases, for example on a single
train as in [KDV07] or on heuristic approaches in the case of periodic timetabling
as in [LS09]. Instead of theoretically analyzing robust timetabling, one could also
take the approach to numerically compare the delay resistance of different timetables
under simulated source delays and afterwards use that timetable that behaves best in
average. Hence, in the next section, we present a programming framework that allows
to numerically analyze the impact of different planning stages in public transportation
on subsequent stages and on the operational phase. It is a joint research project that
has been described in [SS09]. Parts of it are based on the results presented in this
thesis.

7.3 Simulation and Numerical Evaluation with LinTim

To numerically analyze for example how delay resistant a timetable is, one could simulate
different source delays and apply an optimal delay management strategy (or use the
dispatching strategy that is intended to be used in practice) in each scenario. By doing
so, the robustness of different timetables for common delay scenarios can be compared.
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This kind of studies can be done quite comfortably using LinTim, a framework for
planning in public transportation. In the following, we give a short overview of LinTim,
especially of the parts which are related to this work. For a more detailled introduction,
we refer to [SS09].

Overview of LinTim

The classical strategic planning steps in public transportation are network design, line
planning, timetabling, vehicle scheduling, and crew scheduling. In the operational
phase, delay management and crew re-scheduling are important tasks. Each of these
planning steps and tasks on its own is well studied. However, the interaction between
them is not understood so far.

Currently, integration of different planning steps in public transportation is an im-
portant issue. Solving integrated problems is certainly harder than solving the single
optimization problems of each planning phase separately. So the question arises if it is
worth to deal with the large effort of integrating the problems or if it is sufficient to
solve the problems separately step by step.

To answer this question theoretically is as hard as solving the integrated problems. It
hence would be nice to be able to evaluate for example timetables not only regarding
the classical cost objective, but also to evaluate the performance of different timetables
when setting the vehicle schedules or with respect to delay management policies in
the operational phase. LinTim is a software library which is capable to perform such
evaluations.

LinTim is on the one hand a collection of different algorithms for single planning steps.
On the other hand, it provides tools that use the output of a preceding planning phase
to create the input of the subsequent planning phase. This allows to evaluate different
combinations of algorithms and to answer questions like

• From which line plans can we generate a good timetable?

• What is the impact of the lines on the vehicle schedules?

• How delay-resistant are different line concepts?

• Which timetables are suitable for generating good vehicle schedules?

• How delay-resistant are different timetables?
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Structure of LinTim

We shortly sketch the workflow of LinTim. The starting point is a public transportation
network (PTN) and information about the costs and the customers’ demand in this
network. This input data is then used by line planning procedures. They output a
line concept, i.e. a set of lines together with their frequencies. Currently, six different
algorithms for line planning are integrated in LinTim. From this output, LinTim
creates the input for the next planning step which is to find a timetable. The input
required for timetabling is the periodic event-activity network with customers’ data on
the activities. With this input, algorithms for timetabling can be run ending up with a
timetable. The timetable allows to test different delay management policies.

In the design of the library, the main goal is that its usage and extension should be as
simple as possible. This includes a modular design in which each planning step can
be done separately and in which new algorithms and even new planning steps can be
integrated easily. Furthermore, there are no regulations on programming languages
since the communication between different steps is done through standardized plain-text
data files. Running different parts of LinTim is controlled by shell scripts and makefiles
or by a graphical user interface (see Figure 7.1).

Figure 7.1: Screenshot of the LinTim GUI.
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Test cases

A data set is given by a PTN consisting of stations and direct connections between
them. For each edge, we also need upper and lower bounds on the traveling time.
Furthermore, we require an origin-destination matrix, reflecting how many passengers
travel between each pair of stations, and passenger weights on the edges (as some line
planning algorithms require an origin-destination matrix, while other line planning
algorithm can only use traffic loads on the edges as input). Finally, each dataset has to
provide maximal and minimal frequencies for each edge where the minimal frequencies
reflect the minimal required number of trains on an edge to serve the customers’ demand,
while the maximal frequencies are needed to model capacity issues.

The test data which is available at the moment is the following:

• a hand-made example including 8 stations, 8 edges, 23 OD-pairs,

• a small real-world example with 250 stations, 326 edges, 31 000 OD-pairs, and

• a medium-size real-world example with 319 stations, 452 edges, 51 000 OD-pairs.

Evaluating a timetable’s robustness with LinTim

Given a (periodic) timetable, evaluating its robustness with LinTim works as follows: As
our delay management model requires an aperiodic event-activity network, the periodic
event-activity network used for timetabling has to be transformed to an aperiodic one
(it has to be “rolled out”). To this end, LinTim allows to define two points in time
that describe the time interval that should be taken into account when rolling-out (for
example all events that take place between 8 a.m. and 3 p.m.). Once these two points
in time are given, rolling-out is straightforward: all (periodic) events and all (periodic)
driving, waiting, and changing activities are duplicated according to their frequency
and the length of the observation period. However, if two periodic events i and j are
connected by a pair of periodic headway activities, then rolling-out is a little bit more
complicated: each “rolled-out” copy of i and each “rolled-out” copy of j have to be
connected by a pair of aperiodic headway activities, resulting in a multiplication of the
number of headway activities, compared to other activities. A similar technique has
been described in [LSS+10].

To evaluate the robustness, a test scenario providing source delays on events and/or
on activities is needed. One possibility is to take real-world source delays if those are
known for the input data of LinTim (for example if a real-world timetable and a set of
delays that occurred during the operation of this timetable are given and the timetable
should be compared with an alternative one, based on the same event-activity network).
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Another possibility is to simulate delays. The current delay generator implemented
in LinTim randomly chooses some events and/or activities and assigns a randomly
chosen delay to them. The number of delays, the minimum and maximum amount of
delay, and the type of delays (only on events, only on activities, or both on events and
activities) can be chosen by the user as well as the period in which delays should occur
(for example it is possible to take into account all events and all activities between 8
a.m. and 3 p.m. when “rolling out” the periodic timetable, but only to allow source
delays to occur between 11 a.m. and 2 p.m.). Due to the modular design, other delay
generators can be easily integrated, for example to simulate construction work in a
station or on a track.

The solution procedures for the delay management problem that already have been
implemented are:

• an exact solution procedure, solving the IP formulation (2.1)-(2.9) directly by
invoking a commercial solver (FICO Xpress),

• the Fsfs, Frfs, Frfs-Fix, and Fsfs-Fix heuristics presented in Chapter 4.

Currently, we are working on integrating the remaining heuristics from Chapter 4 (No-
Wait-Repair, All-Wait-Repair, and Priority-Repair) as well as the reduction
techniques presented in Chapter 3.

For evaluating a timetable under delays, apart from simply giving operating figures
like the objective value of the delay management stage and the number of missed
connections, LinTim has a feature to visualize delays: for each station of the PTN, it
sums up the delays of all events that take place in this station, then it plots the PTN
and colorizes the nodes representing the stations according to the delays. An example
for such a plot is given in Figure 7.2 (for the smallest test-data-set included in LinTim).
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Figure 7.2: Visualizing delays with LinTim: Nodes are stations, the intensity of the
color indicates the sum of all delays of all events within that station.
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7.4 Possible Extensions

We conclude this work with an overview of possible extensions of our model.

7.4.1 Passenger Re-Routing

In our model, we assume that the path of each passenger is fixed, i.e. all passengers
always take the lines they planned to use, even if they miss a connection and have
to wait for the next train of the same line in the next period (this is why we weight
the number of missed connections with a factor of T in the objective (2.1) of (DM)).
However, in practice, a passenger would probably take a different connection or even
change the planned path completely. If this kind of re-routing is taken into account,
the weights of arrival events and changing activities no longer are fixed, but depend on
which path each passenger takes – while the passengers’ decisions depend on the actual
delays and on the wait-depart decisions made by the controller.

In [DHSS09], a first approach for delay management with passenger re-routing is
suggested. To this end, the event-activity network is extended as follows: For each
OD-pair (i.e. for each pair of stations between which at least one passenger wants to
travel at a given time), an origin event and a destination event are added. These events
are connected to the rest of the event-activity network by two new types of activities:
origin arcs and destination arcs.

However, as mentioned earlier, the uncapacitated delay management problem already
is NP-hard. Adding re-routing decisions for the passengers hence further increases the
complexity of delay management. With exactly one OD-pair, the problem can be solved
in polynomial time; however, even the special case of more than one OD-pair where all
passengers have the same origin already is NP-hard.

7.4.2 Routing of Trains in Stations

In our model, we assume that a solution of (DM) yields a feasible disposition timetable.
However, our model cannot take into account all technical restrictions occurring in a
railway setting. One example is the so-called train platforming problem: In practice,
the capacity of stations (i.e. the number of platforms) is limited, and routing trains
through stations and assigning trains to platforms is an independent planning step in
railway optimization that is done right after computing the timetable (for a survey on
the train platforming problem, see [CKM+07] or [Lus08]).
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When delays occur, the original assignment of trains to platforms might not be feasible
any more (for example caused by a delayed train blocking the platform assigned to a
punctual train), or the originally planned routing of trains through a station might
get infeasible (for example due to a delayed train blocking the path of another train).
Hence a disposition timetable does not only have to satisfy constraints (2.2)-(2.9), but
it must permit to update the original assignment of trains to platforms and the original
planned train paths to a feasible solution of the train platforming problem. Routing
trains through stations is rather easy in small stations – however, as the problem
is NP-hard in general (see [KRZ97]), in major stations with complex topologies, it
becomes a challenging problem, and integrating it into the delay management problem
further increases the complexity.

A different approach is to deal with both steps separately as it is done within the
project DisKon (see [BGJ+05]): Here, in the first step, the delay management problem
is solved based on a macroscopic model. Afterwards, the second step ensures feasibility
(including, among many others, the constraints resulting from the train platforming
problem) based on a microscopic model, using an approach similar to the relax & repair
heuristics (i.e. shifting events violating some constraint into the future). However, this
approach may yield rather bad solutions.

7.4.3 Maintenance Planning

In Chapter 5, we integrated rolling stock circulations into the delay management
problem. However, changing the assignment of trips to trains might have an influence
on maintenance planning: the length of the circulation (the sequence of all trips of one
day) of an ICE train of Deutsche Bahn AG is up to 1 500 km, and each 4 000 km (i.e.
each 2-3 days), a maintenance has to be carried out (see [DB06]). Thus one should take
into account the maintenance plan when assigning an additional trip to a train or when
making significant changes to the rolling stock circulations.

To the best of our knowledge, rolling stock circulations and maintenance planning have
not yet been integrated into the delay management problem at the same time (in fact
this is a current research project of a diploma thesis, see [Wol09]). However, there are
some results on integrating rolling stock circulations and maintenance planning during
the strategical planning phase, see [Bet07] and references therein.
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Glossary

Notation Description Page

A activities 10

Achange changing activities 11

Acirc circulation activities 97

Adrive driving activities 11

Ahead headway activities 11

Aback
head backward headways 14

Aforw
head forward headways 14

Aπ activities respected by the timetable π 36, 102

Areduced reduced activity set computed by algorithm Reduce 38, 102

Await waiting activities 11

E events 10

Earr arrival events 11

Edep departure events 11

Eend set of all last events of all trips 95

Einit virtual events modeling a train leaving some depot 97

Emark potentially delayed events 36

Ereduced reduced event set computed by algorithm Reduce 38, 102

Estart set of all first events of all trips 95

Eterm virtual events modeling a train driving back to some
depot

97
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Glossary

Notation Description Page

N event-activity network N = (E ,A) 10

Nreduced reduced event-activity network computed by algo-
rithm Reduce

38, 102

pre(v,E′) predecessors of v in G′ 10

suc(v,E′) successors of v in G′ 10
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Best-Fsfs-Fix priority-based heuristic for solving (DM) 73
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Best-Repair relax & repair heuristic for solving (DM) 74
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Fix-Headways reduction technique “Fix-Headways” 34
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for solving (DM)
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Frfs-Fix priority-based heuristic “Frfs with early connection
fixing” for solving (DM)

57

Fsfs priority-based heuristic “first scheduled, first served”
for solving (DM)

56

Fsfs-Fix priority-based heuristic “Fsfs with weight-based con-
nection fixing” for solving (DM)

57

Local-Improvement heuristic for solving (DMC) 111
No-Wait-Repair relax & repair heuristic for solving (DM) 67
Priority-Repair relax & repair heuristic for solving (DM) 68
Reduce reduction technique “Reduce” 38, 102
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List of Optimization Problems

Problem Description Page

BDM bounded delay management problem 32
BDMC delay management problem with integrated rolling

stock circulations and bounded delay
101

DM capacitated delay management problem 17
DMC delay management problem with integrated rolling

stock circulations
98

PP project planning problem 20
Re-Sched capacitated re-scheduling problem 19
TT timetabling problem 122
TT a timetabling problem with arc weights 122
TT a1 robust timetabling with arc weights and limited-delay 125
TT aσ multi-stage recoverable-robust timetabling with arc

weights and limited-delay
139

TT v timetabling problem with nonnegative node weights 122
TT v1 robust timetabling with nonnegative node weights

and limited-events
124

TT vσ multi-stage recoverable-robust timetabling with non-
negative node weights and limited-events

139

UDM uncapacitated (“pure”) delay management problem 19
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