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der Georg-August-Universität zu Göttingen

vorgelegt von

Hajo Holzmann

aus
Lüneburg

Göttingen 2004



D7
Referent: Prof. Dr. M. Denker
Koreferent: PD Dr. U. Fiebig
Tag der mündlichen Prüfung: 21.4.2004
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Introduction

The asymptotic distribution theory for stationary processes was studied intensively during
the last century, due to its various applications in such fields as probability theory, statistics,
dynamical systems and physics. For independent processes, the theory has been completely
developed and precise results are known, cf. the monograph by Gnedenko & Kolmogorov
[23]. In cases of dependent processes, special classes of dependence structures are often of
particular interest. For example, martingales, which have several properties similar to those
of independent processes, are a frequently used tool in the study of other processes such as
U-statistics or random quadratic forms. Starting with a result of Billingsley [3] and Ibragimov
[33], the limit theory for martingales has been much studied and is by now very well-developed
(cf. Hall & Heyde [28]).
Markov processes are another particularly important class of processes with a simple de-
pendence structure, the process at a particular time depending on the past only through
the last time instance preceding it. Let (Xn)n≥0 be a stationary ergodic Markov chain
with state space (X,B) and stationary initial distribution µ. When studying the asymp-
totic distribution theory of Markov processes, the basic problem consists in finding sufficient
conditions on the chain and on functions f ∈ LR

2 (X,B, µ) such that the additive functional
Sn(f) =

∑n
k=1

(
f(Xk)−

∫
X f dµ

)
satisfies the central limit theorem (CLT)

1√
n
Sn(f) ⇒ N(0, σ2(f)),

and the limit variance is given by

σ2(f) = lim
n→∞

1
n
E

(
Sn(f)

)2
.

The first to tackle this problem was Markov. He obtained sufficient conditions for the
validity of the CLT for chains with three states. Other early references are Doeblin and
Doob [19]. Since then different techniques for proving the CLT have been developed, most
of them requiring additional properties of the chain such as recurrence and mixing. In fact,
for Harris recurrent chains, by using the reconstruction technique the problem may be re-
duced to the case of independent variables. Precise necessary and sufficient conditions for the
validity of the CLT are known (cf. Chen [9] and Meyn & Tweedie [38]), moreover one also has
explicit formulas for the limit variance σ2(f). If the chain satisfies certain mixing conditions,
blocking techniques may be used, and the problem is again reduced to the independent case.
More information on mixing conditions and an overview of relations between mixing, Harris
recurrence and Doeblin’s condition can be found in Bradley ([7], pp. 231-232).
For general chains such reductions to the independent case no longer seem to be possible. The
main method for proving the CLT for additive functionals of general chains is to construct
a martingale approximation. Here the partial sums Sn(f) are decomposed into the sum of a
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martingale and a remainder term. If the remainder term is negligible in an appropriate sense,
the asymptotic normality of Sn(f) may be deduced from a CLT for the martingale. This
approach was introduced by Gordin [24] in the context of general stationary processes. For a
survey of sufficient conditions for the existence of a martingale approximation to an additive
functional of a general Markov chain see Section 3.2.
In this thesis we further investigate certain aspects of the latter approach. We consider both
discrete-time Markov chains and continuous-time Markov processes. Although the asymp-
totic behaviour of certain classes of Markov processes such as interacting particle systems or
diffusion processes has been studied intensively, there seem to be few results for the general
continuous-time case.
If there exists a solution to Poisson’s equation, there is a simple way to construct a martin-
gale approximation, as was first observed by Gordin & Lif̌sic [26]. Kipnis & Varadhan [35]
extended this approach in the context of reversible chains by solving the Poisson equation
approximately via the resolvent, and then getting rid of the error term by passing to a limit.
One major advantage is that this can be applied in both the discrete-time and the continuous-
time situations. We show that this approach is also universal in a certain sense. In fact, we
prove that the convergence of the resolvent approach is a necessary and sufficient condition
for the existence of a martingale approximation.
Using a martingale approximation, general conditions for the validity of the CLT may be
obtained. For most applications, however, further properties of the chain are also required.
The properties we consider are not so much of probabilistic nature, such as mixing and re-
currence, but consist in analytic assumptions on the transition operator or on the generator
respectively. We study in detail normal operators. Here the discrete-time case is already well-
known (see the references in Section 3.2), but our result for the continuous-time case appears
to be new. Notice that in contrast to self-adjoint operators, which correspond to reversible
processes, there seems to be no probabilistic interpretation of general normal operators. We
also consider operators which admit invariant orthogonal splittings of the space of square-
integrable functions. In this situation we get refined conditions for the existence of martingale
approximations, which explicitly take into account the invariant splittings. Normal operators
with a discrete spectrum are an obvious example of this situation, however there are other
interesting examples which make a separate study worthwhile.
Most of our examples are to be found in an algebraic context. As far as we know, the
only example of a normal transition operator, discussed in the literature so far, which is not
necessarily self-adjoint, is a convolution operator of a random walk on a compact Abelian
group. We consider the much more general cases of convolution operators and convolution
semigroups on compact commutative hypergroups, and show that these also give rise to
stationary Markov processes with normal transition operators and normal generators respec-
tively. Certain random walks on compact non-Abelian groups and on compact homogeneous
spaces also turn out to be normal, and we formulate sufficient conditions for the existence
of martingale approximations for these processes. In general, such random walks (i.e. their
associated convolution operators) still possess invariant orthogonal splittings given by the
isotypical components of the left regular representation (and its corresponding subrepresenta-
tion in the case of a compact homogeneous space). Further examples of transition operators
with invariant splittings result from exact endomorphisms of compact Abelian groups and
from compact group extensions. In particular we consider a one-parameter family of trans-
formations of the two-dimensional torus as introduced by Siboni [41], and improve a result
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by Denker & Gordin [12] on the validity of the CLT for such transformations.
This thesis is organised as follows.
In Chapter 1 we recall some basic definitions and facts about discrete-time Markov chains,
continuous-time Markov processes and martingales. This includes the resolvent mapping as-
sociated with a strongly-continuous contraction semigroup (Section 1.2), and the central limit
theorem for stationary, ergodic martingale difference sequences (Section 1.3).
Chapter 2 is devoted to the concept of a martingale approximation to an additive functional
of stationary ergodic Markov chains and processes. The main result in this chapter is a
necessary and sufficient condition for the existence of a martingale approximation in terms
of the convergence of the so-called resolvent representation. This characterisation holds for
Markov chains (Section 2.1) as well as for Markov processes (Section 2.3). The proofs are
similar, but the continuous-time case is more delicate since it involves semigroup theory.
In Chapter 3 we study stationary ergodic Markov processes which have normal generators.
After discussing the relevant spectral theory for normal operators (Section 3.1), we prove a
sufficient condition for a martingale approximation in the discrete-time (Section 3.2) as well
as in the continuous-time situation (Section 3.3). Applications to random walks are discussed
in Sections 3.4 and 3.5.
Chapter 4 deals with stationary ergodic Markov chains with transition operators which admit
orthogonal invariant splittings of the space of square-integrable functions. In Section 4.1 we
present two sufficient conditions for a martingale approximation which are based on such an
additional structure. It is also shown that taking into account the invariant splitting really
brings improvements. Section 4.2 contains a brief discussion of the continuous-time case, and
in Section 4.3 we give examples. Several results in this chapter will be published in [25].
Finally in Chapter 5 we transfer some of our results to general stationary ergodic sequences.



1. Preliminaries on Markov processes and

martingales

In this chapter we collect some basic definitions and facts about Markov chains, continuous-
time Markov processes and martingales. We also state the central limit theorems for martin-
gales which form the basis for our discussion in the next chapters.

1.1 Markov chains

In this section we briefly discuss Markov chains. More information can be found, for example,
in Bauer [1] or in Meyn & Tweedie [38]. Let (X,B) be a measurable space. A mapping
Q : X × B → [0, 1] is called a Markov kernel if

1. x 7→ Q(x,A) is B-measurable for any A ∈ B,

2. A 7→ Q(x,A) is a probability measure for any x ∈ X.

Let Q be a Markov kernel. It also acts on the space B(X) of bounded, measurable functions
by

(Qf)(x) =
∫

X
f(y)Q(x, dy), f ∈ B(X).

Given a Markov kernel Q and a probability ν on X, there is a probability measure Pν on XN0

with finite dimensional distributions specified as follows. For n ≥ 0, Ai ∈ B, i = 0, . . . n,

Pν(A0 × . . .×An ×X × . . .) =
∫

A0

∫
A1

. . .

∫
An

Q(xn−1, dxn) . . . Q(x0, dx1)dν(x0).

A Markov chain (Xn)n≥0 with state space X, initial distribution ν and transition operator Q
is a stochastic process with values in X such that (X0, X1, . . .) ∈ XN0 has distribution Pν .
A stochastic process (Yn)n≥0 with values in X is called stationary if

(Y0, Y1, . . .) ∼ (Y1, Y2, . . .).

Here ∼ means that the random variables are equal in distribution. The left shift on XN0 is
defined by

θ(x0, x1, . . .) = (x1, x2, . . .).

A measurable set A ⊂ XN0 is called shift invariant if θ−1A = A. Let P denote the distribution
of (Yn)n≥0 (on XN0). The process (Yn)n≥0 is called ergodic if for every shift-invariant set A
either P (A) = 0 or P (A) = 1.
A Markov chain (Xn)n≥0 is stationary if and only if the initial distribution µ satisfies

µ(A) =
∫

X
Q(x,A) dµ(x), A ∈ B.
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There are several criteria for the existence of stationary distributions for a specific Q, see i.e.
Meyn & Tweedie [38]. From now on we always suppose that µ is a stationary distribution for
Q. In this case Q also acts on the Hilbert space LC

2 (µ). We denote the norm on LC
2 (µ) by ‖ · ‖

and the scalar product by < ·, · >. The subset of real-valued functions is simply denoted by
L2 ⊂ LC

2 (µ). The operator Q is a contraction on LC
2 (µ), i.e. ‖Qf‖ ≤ ‖f‖, and furthermore

Qf = Qf̄ . Suppose that (Xn)n≥0 is a stationary Markov chain. It is ergodic if and only if
Qf = f, f ∈ LC

2 (µ) only holds if f =const, i.e. Q has 1 as a simple eigenvalue.
Let Fl = σ(X0, . . . , Xl), l ≥ 0, be the σ-algebra generated by X0, . . . , Xl. Then for
0 ≤ k, l ≤ n, we have the Markov property (cf. [1], p. 367)

E
(
f(Xl+k)|Fl

)
= (Qkf)(Xl), f ∈ LC

2 (µ). (1.1)

By stationarity and (1.1) it follows that for any k ≥ 1,

E
((
f(Xk)− (Qf)(Xk−1)

)(
g(Xk)− (Qg)(Xk−1)

))
=< f, g > − < Qf,Qg >, f, g ∈ LC

2 (µ).
(1.2)

In particular,

E
(
f(Xk)−Qf(Xk−1)

)2
= ‖f‖2 − ‖Qf‖2, f ∈ L2. (1.3)

Finally let us recall the resolvent associated with the operator Q. Since Q is a contraction on
LC

2 (µ), for each z ∈ C with <z > 0 the resolvent

Rz =
(
(1 + z)I −Q

)−1 =
∑
n≥0

Qn

(1 + z)n+1

is a bounded linear operator on LC
2 (µ). Let us introduce the notation

Vkf =
k−1∑
n=0

Qnf, k ≥ 1.

Then the resolvent can be written as

Rzf =
∑
k≥1

z

(1 + z)k+1
Vkf, f ∈ LC

2 (µ), <z > 0. (1.4)

1.2 Markov processes

We start this section by recalling some facts from the theory of operator semigroups. Let
H be a complex Hilbert space. A family of continuous linear operators (Tt)t≥0 is called a
contraction semigroup on H if T0 = I, Tt ◦ Ts = Ts+t and ‖Tt‖ ≤ 1. Here I denotes the
identity on H. The semigroup (Tt)t≥0 is called strongly continuous if

lim
t→0

Ttx = x ∀ x ∈ H.

Let (Tt)t≥0 be a strongly continuous contraction semigroup. Its infinitesimal generator L is
defined on

D(L) = {x ∈ H : lim
t→0

Ttx− x

t
exists}



1. Preliminaries on Markov processes and martingales 7

by

Lx = lim
t→0

Ttx− x

t
.

The operator L is closed and densely defined (i.e. D(L) is dense in H). We have Dynkin’s
formula (cf. Werner [43], pp. 337, 338):

Ttx− x =
∫ t

0
Ts(Lx) ds, x ∈ D(L). (1.5)

For any z ∈ C with <z > 0 the resolvent

Rzx =
∫ ∞

0
e−zt Ttx dt

is a bounded linear operator and ‖Rz‖ ≤ 1/|z| (cf. [43], p. 341). Denote

Vtx =
∫ t

0
Tsx ds, x ∈ H.

Then we have the following formula for the resolvent.

Rzx = z

∫ ∞

0
e−ztVtx dt, x ∈ H, <z > 0. (1.6)

Indeed,

z

∫ ∞

0
e−zt

∫ t

0
Tsx ds dt =

∫ ∞

0
Tsx

∫ ∞

s
ze−zt dt ds.

The inner integral on the right-hand side is easily evaluated as e−zs, and (1.6) follows. For
any z ∈ C with <z > 0 we have that Rzx ∈ D(L), x ∈ H and (cf. [43], p. 341)

(zI − L)Rzx = x, x ∈ H, Rz(zI − L)y = y, y ∈ D(L).

Therefore the spectrum σ(L) of the generator is contained in the left half-plane
{z ∈ C : <z ≤ 0}.
Now let us turn to continuous-time Markov processes. Let (X,B) be a measurable space. A
mapping

Q : (0,∞)×X × B → [0, 1]

is called a transition probability function if the following conditions hold.

1. For all (t, x) ∈ (0,∞)×X, Q(t, x, ·) is a probability measure.

2. For all A ∈ B, (t, x) 7→ Q(t, x,A) is measurable on (0,∞)×X.

3. The Chapman Kolmogorov equation holds:

Q(t+ s, x,A) =
∫

X
Q(t, y, B)Q(s, x, dy).
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A transition probability function gives rise to a semigroup acting on the space B(X) of
bounded, measurable functions by

Ttf(x) =
∫

X
f(y)Q(t, x, dy), f ∈ B(X).

In fact, the semigroup property follows immediately from the Chapman Kolmogorov equa-
tion. Evidently, the semigroup also determines the transition probability function. Given
a transition probability function Q and a probability measure ν on X, a probability Pν on
X [0,∞) is given by specifying the finite dimensional distributions

Pν,t1,...,tn(A0 × . . .×An) =
∫

A0

. . .

∫
An

Q(xn−1, tn − tn−1, dxn) . . . Q(x0, t1, dx1)dν(x0),

where 0 < t1 < . . . < tn. A process (Xt)t≥0 on some probability space (Ω, P ) with values in
X is called a Markov process with transition probability function Q and initial distribution ν
if its distribution on X [0,∞) is given by Pν .
Let (Yt)t≥0 be a stochastic process on the probability space (Ω,A, P ) with values in X. For
every A ∈ σ{Yt, t ≥ 0} there is a countable set {t1, t2, . . .} and a measurable set B in the
product space

(
X{t1,t2,...},⊗iB(Xti)

)
such that

A = {ω ∈ Ω : (Xt1(ω), Xt2(ω), . . .) ∈ B
)
.

Given t > 0 let
θ−1
t A = {ω ∈ Ω : (Xt1+t(ω), Xt2+t(ω), . . .) ∈ B

)
.

The set A ∈ σ{Yt, t ≥ 0} is called shift-invariant if for all t > 0, θ−1
t A = A. The process

(Yt)t≥0 is called stationary if P (A) = P (θtA) for all t > 0 and A ∈ σ{Yt, t ≥ 0}, or equivalently
if (Yt)t≥0 and (Yt)t≥t0 have the same distribution for all t0 > 0. It is called ergodic if for any
shift-invariant set either P (A) = 0 or P (A) = 1. Let (Ft)t≥0 be a filtration in Ω with Ft ⊂ A,
t ≥ 0. The process (Yt)t≥0 is called progressively measurable with respect to (Ft) if for each
t ≥ 0 the mapping

Y : [0, t]× Ω → X, (s, ω) 7→ Ys(ω),

is B[0, t]×Ft-measurable.
A Markov process is stationary if and only if the initial distribution µ satisfies

µ(A) =
∫

X
Q(t, x, A)dµ(x) ∀ t > 0,

in this case µ is called a stationary initial distribution. We denote by LC
2 (µ) the Hilbert space

of complex-valued square-integrable functions with scalar product < ·, · > and norm ‖ ·‖, and
by L2 ⊂ LC

2 (µ) the subset of real-valued functions. The operators (Tt)t≥0 extend to LC
2 (µ)

and in fact form a contraction semigroup. Furthermore Ttf = Ttf̄ and TtL2 ⊂ L2. Ergodicity
can also be expressed in terms of the generator L. In fact, the Markov process is ergodic if
and only if 0 is a simple eigenvalue of L (cf. Bhattacharya [2]).
Let (Xt)t≥0 be a stationary Markov process with semigroup (Tt)t≥0 and stationary initial
distribution µ. It satisfies the Markov property with respect to a filtration (Ft) if Xt is
Ft-measurable and

E
(
f(Xt)|Fs

)
= Tt−sf(Xs), 0 ≤ s ≤ t, f ∈ LC

2 (µ). (1.7)
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The Markov property is always satisfied with respect to the canonical filtration
F0

t = σ(Xs; 0 ≤ s ≤ t) (cf. [1], p. 367). From (1.7) it is easily deduced that

E
((
f(Xt)−f(X0)

)(
g(Xt)− g(X0)

))
= 2 < f, g > − < f, Ttg > − < Ttf, g >, f, g ∈ LC

2 (µ).
(1.8)

In particular,
E

(
f(Xt)− f(X0)

)2 = 2 < f − Ttf, f >, f ∈ L2. (1.9)

We will always assume the following

Assumption 1.2.1. The Markov process (Xt)t≥0 has a strongly continuous semigroup (Tt)t≥0

on LC
2 (µ) and is progressively measurable and satisfies the Markov property with respect to

a filtration (Ft)t≥0.

Let (Xt)t≥0 be a Markov process satisfying Assumption 1.2.1. Then the integral

St(f) =
∫ t

0
f(Xs) ds, f ∈ L2,

exists and St(f) is Ft-measurable. Furthermore from the Markov property,

E(St(f)|X0) = Vtf(X0), f ∈ L2.

1.3 Martingales and the CLT

In this section we briefly discuss the central limit theorem for discrete-time and continuous-
time martingales. First let us consider the discrete-time case. Let (Ω,A, P ) be a probability
space and let (Fn)n≥0 be a filtration with Fn ⊂ A. A sequence (Mn)n≥1 of real-valued
integrable random variables is called a martingale (with respect to the filtration (Fn)) if Mn

is Fn-measurable and E(Mn+1|Fn) = Mn, n ≥ 1. The random variables mn = Mn −Mn−1,
n ≥ 2 and m1 = M1 are called the martingale differences. Notice that E(mn+1|Fn) = 0,
n ≥ 1. A martingale (Mn)n≥1 is said to have stationary differences if the sequence (mn)n≥1 is
stationary, and it is called square-integrable if each random variable Mn is square-integrable.
In this case the martingale differences are orthogonal in L2(Ω,A, P ). We have the following
well-known central limit theorem.

Theorem 1.3.1. Let (Mn)n≥1 be a square-integrable martingale with respect to the filtration
(Fn)n≥1. Suppose that

1
n

n∑
k=1

E
(
m2

k|Fk−1

) P→ σ2,

and that
1
n

n∑
k=1

E
(
m2

k 1l{|mk |>ε
√

n}
)
→ 0

for every ε > 0. Then
Mbtnc√

n
⇒ σB(t), n→∞,

where B(t) is the Wiener measure on D[0, 1].
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Here ⇒ denotes weak convergence of probability measures in D[0, 1], and btc denotes the
integer part of a real number t. The following corollary is easily proved using the ergodic
theorem.

Corollary 1.3.2. Let (Mn)n≥1 be a square-integrable martingale with respect to the filtration
(Fn)n≥1 with stationary, ergodic increments. Then

Mbtnc√
n

⇒ σB(t), n→∞,

where σ2 = EM2
1 .

The CLT part of Corollary 1.3.2 was obtained independently by Billingsley [3] and Ibragimov
[33]. Suppose that (Mn,k)n,k≥1 is a family of random variables on (Ω,A, P ) such that for each
k ≥ 1, (Mn,k)n≥1 is a square-integrable martingale with stationary increments with respect
to a filtration Fn. If Mn,k → Mn, k → ∞ in L2(Ω,A, P ) for each n ≥ 1, then the sequence
(Mn)n≥1 is also a square-integrable martingale with stationary increments with respect to
Fn.
Now let us consider the continuous-time case. Let (Ft)t∈R be a filtration with Ft ⊂ A. A
family (Mt)t≥0 of integrable random variables is called a martingale (with respect to the
filtration (Ft)) if each Mt is Ft-measurable and E(Mt|Fs) = Ms a.s. for 0 ≤ s ≤ t. The
martingale is said to have stationary increments if the distribution of Mt+h−Mt only depends
on h and not on t. Although Corollary 1.3.2 is a very well-known result which has been
applied extensively in the study of stationary processes, it is difficult to find an explicit
formulation of a continuous-time analogue in the literature. Suppose that (Mt)t≥0 is a square-
integrable martingale with stationary increments with M0 = 0 such that mn = Mn −Mn−1,
n ≥ 1, form an ergodic sequence. Then Corollary 1.3.2 implies the functional central limit
theorem (FCLT) for 1√

n
Mbtnc. This simple fact is used by Bhattacharya [2] to prove the

FCLT for 1√
n

∫ nt
0 f(Xs) ds, where (Xt) is a stationary ergodic Markov process, under certain

conditions on f . No continuous-time version or regularity conditions of the filtration are
needed in this case. Also note that if tn → ∞ is any sequence, E

(
Mtn −Mbtnc

)2
/
√
btnc =

(tn − btnc)EM2
1 /

√
btnc → 0, therefore the asymptotic normality of 1√

t
Mt as t → ∞ follows

from the asymptotic normality of 1√
n
Mn. However the FCLT for 1√

n
Mtn does not follow so

easily from a discretization.
In this thesis we will concentrate on the CLT, and the above observations are already sufficient
for our purposes. Nevertheless a continuous-time version of Corollary 1.3.2 is of interest
and indeed has already been applied in [35], therefore following Chikin [10] we give a brief
discussion of such a result. Suppose that the probability space (Ω,A, P ) is complete and that
there exists a measure-preserving ergodic flow θ on Ω (i.e. θtθs = θs+t, s, t ∈ R). Furthermore
assume that F0 contains all A-sets of P -measure 0 and that Ft = θ−tF0. Let (Mt)t≥0 be a
martingale with respect to (Ft)t≥0 with M0 = 0 which satisfies

Mt+h −Ms+h = Mt ◦ θh −Ms ◦ θh, s, t, h ≥ 0, (1.10)

thus in particular (Mt)t≥0 has stationary increments. In order that

1√
n
Mtn ⇒ σ2B(t),
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if suffices to show that (cf. Helland [30])

1
n

[
Mn·

]
t

P→ σ2t, t > 0, (1.11)

and that
1
n
E

∑
0<s≤t

(
∆Mns

)21l{∆Mns |>
√

nε} → 0, n →∞, t , ε > 0. (1.12)

Here ∆Mu denotes the jump of (Mt) at time u, and
[
Mn·

]
t
denotes the quadratic variation of

the martingale (Mnt)t≥0 at time t. Chikin ([10], p. 676) deduces (1.11) with the aid of 1.10
from the ergodic theorem, while (1.12) follows from direct arguments involving (1.10).



2. Martingale approximation for Markov chains and

processes

This chapter is devoted to obtaining the CLT for additive functionals of general stationary,
ergodic Markov chains and Markov processes via the method of martingale approximation.
In our terminology, a martingale approximation is a decomposition of the additive functional
into the sum of a martingale with stationary, ergodic increments and a remainder term. In
order to deduce the CLT for the additive functional from its validity for the martingale, the
remainder term has to be negligible in an appropriate sense. We will focus on negligibility
in mean square, however other modes are also reasonable, in particular to obtain stronger
limit theorems such as the functional central limit theorem (FCLT) or the CLT and FCLT
for the chain started at a point. After giving a definition of a martingale approximation and
showing its uniqueness, the main result in Section 2.1 is a necessary and sufficient condition
for its existence in terms of convergence of the resolvent representation, as introduced by
Kipnis & Varadhan [35]. In Section 2.2 we give a survey of sufficient conditions for the
existence of a martingale approximation appearing in the literature. Finally in Section 2.3 we
consider stationary ergodic Markov processes, define martingale approximation in this case
and also obtain the necessary and sufficient condition in terms of the resolvent. This is used
to prove a new sufficient condition for a martingale approximation and hence for the CLT in
the continuous-time case. As an example we consider moving average processes in continuous
time.

2.1 Martingale approximation for stationary Markov chains

We consider a stationary ergodic Markov chain (Xn)n≥0 with state space (X,B), transition
operator Q and stationary initial distribution µ. For a fixed function f ∈ L0

2 let S0 = 0 and

Sn(f) = f(X1) + · · ·+ f(Xn), n ≥ 1.

We want to study the asymptotic behaviour of Sn(f) by martingale approximation, which is
defined as follows.

Definition 2.1.1. We say that there is a martingale approximation to Sn(f) if there exist
two sequences of random variables (Mn)n≥1 and (An)n≥1 such that

1. Sn(f) = Mn +An, n ≥ 1,

2. (Mn)n≥1 is a square-integrable martingale with stationary increments with respect to
Fn = σ(X0, . . . , Xn) and E(M1|X0) = 0,

3. E(An)2/n→ 0, n→∞.
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It follows that (Mn)n≥1 has ergodic increments, and from Corollary 1.3.2 we conclude that

Sn(f)√
n

⇒ N(0, σ2(f)),

where N(0, σ2(f)) denotes the normal law with mean 0 and variance σ2(f), which is given by

σ2(f) = EM2
1 = lim

n→∞
E

(
Sn(f)

)2
/n.

Let us show that a martingale approximation is essentially uniquely determined.

Proposition 2.1.1. If (Mn)n≥1, (An)n≥1 and (M ′
n)n≥1, (A′n)n≥1 are two martingale approx-

imations to Sn(f), then Mn = M ′
n a.s. (and hence An = A′n a.s.) for every n ≥ 1.

Proof. By stationarity and since martingale differences are orthogonal,

E(M1 −M ′
1)

2 =
1
n
E(Mn −M ′

n)2 =
1
n
E(A′n −An)2 → 0, n→∞,

by Condition 3. of Definition 2.1.1. Hence M1 = M ′
1 a.s., and by stationarity it follows that

Mn = M ′
n a.s. for every n ≥ 1.

A first approach towards constructing a martingale approximation for Sn(f) was suggested
by Gordin & Lif̌sic [26]. Suppose that there exists a solution g ∈ L2 to the Poisson equation:

f = g −Qg. (2.1)

Then we can write

Sn(f) =
n∑

k=1

(
g(Xk)−Qg(Xk−1)

)
+ Qg(X0)−Qg(Xn),

hence setting Mn =
∑n

k=1

(
g(Xk) − Qg(Xk−1)

)
and An = Qg(X0) − Qg(Xn) we obtain a

martingale approximation to Sn(f). Conditions 1.- 3. of Definition 2.1.1 are easily checked,
furthermore one has an explicit formula for the variance:

σ2(f) = EM2
1 = ‖g‖2 − ‖Qg‖2. (2.2)

A natural extension of this method was introduced by Kipnis & Varadhan [35] in the context
of reversible chains, we will call it the resolvent approach. The idea is to solve the Poisson
equation (2.1) approximately via the resolvent, i.e. for ε > 0 set gε = Rεf , so that

(1 + ε)gε −Qgε = f.

Then we obtain a decomposition

Sn(f) = Mn,ε + εSn(gε) +An,ε, (2.3)

where

Mn,ε =
n∑

k=1

(
gε(Xk)− (Qgε)(Xk−1)

)
,

An,ε = (Qgε)(X0)− (Qgε)(Xn).

Observe that for each ε > 0 the sequence (Mn,ε)n≥1 is a martingale with stationary increments
with respect to Fn.
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Definition 2.1.2. The representation (2.3) of Sn(f) is called the resolvent representation. It
is said to converge if

1. ε‖gε‖2 →
ε→0

0.

2. There exists a decreasing sequence εn → 0 with εn+1 ≥ c εn for some c > 0 such that
(M1,εn) converges as n→∞ to a limit in L2(Ω,A, P ).

Although this definition appears to be rather technical, its significance becomes clear in the
following theorem.1

Theorem 2.1.2. Let (Xn)n≥0 be a stationary ergodic Markov chain, defined on a probability
space (Ω,A, P ), with state space (X,B), transition operator Q and stationary distribution µ.
Let f ∈ L0

2 and Sn(f) =
∑n

k=1 f(Xk). Then there is a martingale approximation to Sn(f) if
and only if the resolvent representation of Sn(f) converges. In either case the limit variance
is given by

σ2(f) = 2 lim
ε→0

< gε, f > −‖f‖2. (2.4)

For the proof we will need two lemmas.

Lemma 2.1.3. Suppose that ‖Vnf‖ = o(
√
n). Then

√
ε‖gε‖ →

ε→0
0.

Proof. Choose a non-increasing sequence (φn)n≥1 with φn → 0 and ‖Vnf‖/
√
n ≤ φn. Then

it follows from (1.4) that
‖gε‖ ≤

∑
n≥1

ε

(1 + ε)n+1

√
nφn.

Now it is simple to find a bounded continuously-differentiable function ψ ≥ 0 on [0,∞) such
that ψ(x) →

x→∞
0 monotonously and φn ≤ ψ(n). Hence

∑
n≥1

ε

(1 + ε)n+1

√
nφn ≤

∫ ∞

0
ε exp(−t log(1 + ε))

√
t ψ(t) dt <∞

for any ε > 0. Substituting u = t log(1 + ε), we get

√
ε‖gε‖ ≤

∫ ∞

0

(
ε/ log(1 + ε)

)3/2 exp(−u)
√
uψ(u/ log(1 + ε)) du. (2.5)

Since the limit ε/ log(1+ε) as ε→ 0 exists and is 6= ∞ and u/ log(1+ε) →∞ as ε→ 0 for any
u > 0, we can apply the dominated convergence theorem in (2.5) to obtain the conclusion.

The next lemma is proved in Maxwell & Woodroofe [37].

Lemma 2.1.4. With the above notation we have for ε, δ > 0

E
(
M1,ε −M1,δ

)2 ≤ (ε+ δ)(‖gε‖2 + ‖gδ‖2).

1 After the author obtained this theorem (cf. Holzmann [32]), he became aware of a preprint of Woodroofe
and Wu (2003) which deals with martingale approximations by triangular arrays. In their terminology, the
martingale approximations we consider are both stationary and non-triangular. However, Woodroofe and
Wu obtain necessary and sufficient conditions for existence of martingale approximations (Theorem 1) which
are either stationary or non-triangular (see the proof of their Theorem 1). Existence of such a martingale
approximation does not imply the CLT (see however their Theorem 2).
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Proof of Theorem 2.1.2. First assume that there exists a martingale approximation
Sn(f) = Mn +An. In order to show that ‖Vnf‖ = o(

√
n), we compute

1
n
‖QVnf‖2 =

1
n
E

(
E

(
Sn(f)| X0

))2

=
1
n
E

(
E(An| X0)

)2

≤ 1
n
EA2

n → 0, n→∞,

where we used the fact that E(Mn|X0) = 0. Since 0 ≤ ‖Vnf‖−‖QVnf‖ ≤ 2‖f‖, from Lemma
2.1.3 it follows that ε‖gε‖2 → 0, ε → 0. Next we show that M1,ε converges to M1 along the
sequence εn = 1/n. Since

Mn −Mn,ε = An,ε + εSn(gε)−An,

it follows that for every ε > 0,

E(M1 −M1,ε)2 = E(Mn −Mn,ε)2/n ≤ 3EA2
n,ε/n+ 3EA2

n/n+ 3ε2ESn(gε)2/n. (2.6)

Choosing εn = 1/n, (2.6) gives

E(M1 −M1,εn)2 ≤ 3EA2
n,1/n/n+ 3EA2

n/n+ 3ESn(g1/n)2/n3.

We estimate the terms on the right hand side separately. Firstly,

EA2
n,1/n/n ≤ 4‖g1/n‖2/n,

which tends to 0 as n→∞ using Lemma 2.1.3. Similarly, ESn(g1/n)2 ≤ n2‖g1/n‖2, hence the
last term also tends to 0 by Lemma 2.1.3. Finally, EA2

n/n → 0 by assumption. Therefore,
M1,εk

→M1, and the resolvent representation converges.

Conversely, assume that the resolvent representation converges. Since ES2
n,ε ≤ n2‖gε‖2, it

follows that ε2ES2
n,ε → 0, ε → 0, for each fixed n ≥ 1. Let us now show that M1,ε indeed

converges along any sequence δk → 0. To this end, choose and increasing sequence n(k) such
that εn(k)+1 < δk ≤ εn(k). Then δk ≥ cεn(k). From Lemma 2.1.4,

E
(
M1,δk

−M1,εn(k)

)2 ≤
(
δk + εn(k)

)(
‖gδk

‖2 + ‖gεn(k)
‖2

)
(2.7)

≤ 2 εn(k) ‖gεn(k)
‖2 + (1 + 1/c) δk ‖gδk

‖2 → 0, k →∞.

From the resolvent representation it follows that A1,ε also converges to a limit in L2(Ω,A, P ),
and by stationarity, this holds for every n ≥ 1. In summary, we showed that

εSn(gε) → 0, Mn,ε →Mn and An,ε → An, ε→ 0 in L2(Ω,A, P ),

for some sequences (Mn)n≥1 and (An)n≥1. Evidently, (Mn)n≥1 is a martingale with stationary
increments and E(M1|X0) = 0. It remains to show that EA2

n/n → 0. To this end, notice
that

EA2
n ≤ 3EA2

n,ε + 3E(Mn −Mn,ε)2 + 3ε2ESn(gε)2.

Again we choose ε = 1/n. Then

E
(
Mn −Mn,1/n

)2
/n = E

(
M1 −M1,1/n

)2 → 0,
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and the other terms are dealt with as above. Thus we obtain a martingale approximation to
Sn(f). Finally, let us prove the formula for the limit variance. We have

σ2(f) = lim
ε→0

EM2
1,ε = lim

ε→0

(
‖gε‖2 − ‖Qgε‖2

)
.

Substituting Qgε = (1 + ε)gε − f and expanding,

‖gε‖2 − ‖Qgε‖2 = −2ε‖gε‖2 − ε2‖gε‖2 + 2 < gε, f > −‖f‖2 + 2ε < gε, f > .

All terms vanish as ε → 0 except for 2 < gε, f > −‖f‖2, and the formula for σ2(f) follows.
This proves the theorem.

2.2 Some sufficient conditions

In this section we will give a survey of conditions for stationary Markov chains which imply
existence of a martingale approximation. Evidently, if the series

∑
n≥0Q

nf converges, then
the limit defines a solution to the Poisson equation. Maxwell & Woodroofe [37] used the
resolvent approach to show that if f ∈ L0

2 satisfies∑
n≥1

1
n3/2

‖Vn(f)‖ <∞, (2.8)

then there is a martingale approximation to Sn(f). However they did not give an explicit
formula for the limit variance. Obviously (2.8) is fulfilled if there exists a solution to Poisson’s
equation. Gordin & Lif̌sic [27] proved the CLT for Markov chains with normal transition
operator under (3.7). In fact, their discussion contained the following result which we state
and prove for convenience.

Proposition 2.2.1. Suppose that f ∈ L0
2 satisfies

lim
n→∞

sup
m≥0

(∥∥∥ n+m∑
k=n

Qkf
∥∥∥2
−

∥∥∥ n+m+1∑
k=n+1

Qkf
∥∥∥2)

= 0 (2.9)

and ∥∥Vn(f)
∥∥ = o(

√
n). (2.10)

Then there exists a martingale approximation to Sn(f), and the limit variance is given by

σ2(f) = lim
n→∞

(∥∥Vn(f)
∥∥2 −

∥∥QVn(f)
∥∥2

)
, (2.11)

Again it can be shown (see Derriennic & Lin [14]) that (2.9) is satisfied if there is a solution
to Poisson’s equation; for (2.10) this is evident. Furthermore (2.8) implies (2.10), but there
seems to be no direct relation between (2.8) and (2.9).

Proof of Proposition 2.2.1. Using (1.1) we get the decomposition

Sn(f) =
n∑

k=1

(
E

(
Sn(f) |Fk

)
− E

(
Sn(f) |Fk−1

))
+ E

(
Sn(f) |F0

)
=

n∑
k=1

(
Vn−kf(Xk)−QVn−kf(Xk−1)

)
+Q(Vnf)(X0)
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of Sn(f) into a sum of martingale differences and a remainder term. Next we observe that for
each k ≥ 1, the sequence

(
Vnf(Xk)−QVnf(Xk−1)

)
n≥1

converges as n→∞ to a limit mk in
L2(Ω,A, P ). Indeed, this follows directly from (1.3) and (2.9) via the Cauchy criterion. Since
E

(
Vnf(Xk) − QVnf(Xk−1)|Fk−1

)
= 0 for each n ≥ 1, the sequence (mk)k≥1 is a stationary

ergodic martingale difference sequence. To show negligibility of the remainder term, we
compute

1
n
E

(
Sn(f)−

n∑
k=1

mk

)2

≤ 2
n
E

( n∑
k=1

(
Vn−kf(Xk)−QVn−kf(Xk−1)−mk

))2
+

2
n
E

(
Q(Vnf)(X0)

)2

=
2
n

n∑
k=1

E
(
Vn−kf(Xk)−QVn−kf(Xk−1)−mk

)2 +
2
n
‖Q(Vnf)‖2.

Since by construction, E
(
Vnf(Xk)−QVnf(Xk−1)−mk

)2 → 0 as n→∞, so do the arithmetic
means. The second term vanishes asymptotically by (2.10). Finally, the formula for the
variance follows from (1.3) and

σ2(f) = Em2
1 = lim

n→∞
E

(
Vnf(X1)−QVnf(X0)

)2
.

This finishes the proof of the proposition.

We call this method the direct approach. It seems that the result of Gordin & Lif̌sic [27] was at
that time not widely acknowledged, since variants were later rediscovered by Woodroofe [44]
and in the more general context of measure-preserving transformations by Dürr & Goldstein
[22]. In fact, Dürr & Goldstein [22] gave a criterion which implies both (2.9) and (2.10), which
in the context of Markov chains is formulated as follows.

sup
M≥N

sup
n≥N

∣∣∣ M∑
k=N

< Qkf,Qnf >
∣∣∣ = ε(N) → 0, n→ 0. (2.12)

Let us give the simpler proof for Markov chains.

Lemma 2.2.2. If f ∈ L2(µ) satisfies (2.12), then f also satisfies (2.10) and (2.9).

Proof. (2.12) ⇒ (2.9): We compute

∥∥∥ n+m∑
k=n

Qkf
∥∥∥2
−

∥∥∥ n+m+1∑
k=n+1

Qkf
∥∥∥2

=
∥∥∥Qnf

∥∥∥2
+

∥∥∥Qn+m+1f
∥∥∥2

+ 2
n+m∑

k=n+1

< Qnf,Qkf >

−2
n+m∑

k=n+1

< Qn+m+1f,Qkf >

≤ 6 ε(n) → 0.
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(2.12) ⇒ (2.10):

1√
n

∥∥∥ n−1∑
k=0

Qkf
∥∥∥ ≤ 1√

n

(∥∥∥ log(n)∑
k=0

Qkf
∥∥∥ +

∥∥∥ n−1∑
k=log(n)+1

Qkf
∥∥∥)

≤ 1√
n

(
log(n)‖f‖+

√
nε(log(n))

)
→ 0, n→∞.

Gordin & Holzmann [25] consider the following conditions.

∞∑
n=0

(∥∥Qnf
∥∥2 −

∥∥Qn+1f
∥∥2

)1/2
<∞ (2.13)

and
‖Qnf‖ →

n→∞
0. (2.14)

The main interest of (2.13) is that it can be reformulated in a context in which there exist
orthogonal splittings of LC

2 (µ) invariant under the Markov operator (see Chapter 4).

Theorem 2.2.3. If for a function f ∈ L0
2, (2.13) holds, then also (2.9) is satisfied. Further-

more, if (2.14) and (2.13) hold true, then also (2.10) is satisfied.

For the proof we will need two lemmas.

Lemma 2.2.4. For any f ∈ LC
2 (µ), n,m ≥ 0,

∥∥∥ n+m−1∑
k=m

Qkf
∥∥∥2
−

∥∥∥Q n+m−1∑
k=m

Qkf
∥∥∥2
≤

( n+m−1∑
k=m

(∥∥Qkf
∥∥2 −

∥∥Qk+1f
∥∥2

)1/2)2
. (2.15)

Proof. The map (f, g) 7→< f, g > − < Qf,Qg > is a symmetric bilinear form. Since Q is a
contraction, it is non-negative, and hence gives rise to the seminorm

(
‖f‖2−‖Qf‖2

)1/2. Now
(2.15) follows by applying the triangle inequality for this seminorm.

Lemma 2.2.5. Assume that f ∈ LC
2 (µ) satisfies (2.14). Then for every n ≥ 0,

∥∥∥ n−1∑
k=0

Qkf
∥∥∥2

=
∞∑
l=0

(∥∥∥ n−1∑
k=0

Qk+lf
∥∥∥2
−

∥∥∥ n−1∑
k=0

Qk+l+1f
∥∥∥2)

. (2.16)

Proof. For N > 0 we have

∥∥∥ n−1∑
k=0

Qkf
∥∥∥2

=
N−1∑
l=0

(∥∥∥ n−1∑
k=0

Qk+lf
∥∥∥2
−

∥∥∥Q n−1∑
k=0

Qk+lf
∥∥∥2)

+
∥∥∥QN

n−1∑
k=0

Qkf
∥∥∥2
.

The remainder term vanishes as N →∞ due to (2.14).
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Proof of Proposition 2.2.3. From Lemma (2.2.4) it follows directly that (2.13) implies (2.9).
Now suppose that (2.14) and (2.13) hold true. In order to show (2.10), we compute

1
n

∥∥∥ n−1∑
k=0

Qkf
∥∥∥2

=
1
n

∞∑
l=0

(∥∥∥ n−1∑
k=0

Qk+lf
∥∥∥2
−

∥∥∥Q n−1∑
k=

Qk+lf
∥∥∥2)

≤ 1
n

∞∑
l=0

( n−1∑
k=0

(∥∥∥Qk+lf
∥∥∥2
−

∥∥∥Qk+l+1f
∥∥∥2)1/2)2

≤ 1
n

n−1∑
k=0

( ∞∑
l=0

(∥∥Qk+lf
∥∥2 −

∥∥Qk+l+1f
∥∥2)1/2

)2

=
1
n

n−1∑
k=0

( ∞∑
r=k

(∥∥Qrf
∥∥2 −

∥∥Qr+1f
∥∥2)1/2

)2
, (2.17)

Since
( ∑∞

r=k

(∥∥Qrf
∥∥2 −

∥∥Qr+1f
∥∥2)1/2

)2
→ 0, the same holds for the arithmetic means, and

(2.10) follows. This proves the proposition.

2.3 Martingale approximation for stationary Markov
processes

Let (Xt)t≥0 be a stationary ergodic Markov process satisfying Assumption 1.2.1 of Section
1.2. Let (Tt)t≥0 denote the associated semigroup on LC

2 (µ) and let L denote the generator of
(Tt)t≥0 with domain D(L). For f ∈ L0

2 and t ≥ 0 we let

St(f) =
∫ t

0
f(Xs) ds,

and we are interested in the asymptotic behaviour of St(f).

Definition 2.3.1. We say that there is a martingale approximation to St(f) if there exist
two processes (Mt)t≥0 and (At)t≥0 on (Ω,A, P ) such that

1. St(f) = Mt +At for every t ≥ 0,

2. (Mt)t≥0 is a square-integrable martingale with respect to (Ft)t≥0 with stationary incre-
ments and M0 = 0,

3. E(At)2/t→ 0 as t→∞.

As in the discrete-time case, it follows from the existence of a martingale approximation that

St(f)√
t
⇒ N(0, σ2(f)),

see the discussion in Section 1.3. The limit variance is given by

σ2(f) = lim
t→∞

E
(
St(f)

)2
/t.
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General continuous-time Markov processes have been studied less intensively than the discrete-
time case, and there seem to be few general results via martingale approximation. The
uniqueness of Proposition 2.1.1 carries easily over to continuous time. Bhattacharya [2] gave
an analogue to the approach via the Poisson equation: Suppose that there exists a solution
to the equation

f = −Lg, g ∈ D(L). (2.18)

Then we can write

St(f) = g(Xt)− g(X0)−
∫ t

0
Lg(Xs) ds + g(X0)− g(Xt). (2.19)

Using Dynkin’s formula (1.5) it can be shown that Mt = g(Xt)−g(X0)−
∫ t
0 Lg(Xs) ds is mar-

tingale with stationary increments. Furthermore we evidently have E
(
g(X0)−g(Xt)

)2
/t→ 0.

For the asymptotic variance, Bhattacharya [2] gave the formula

σ2(f) = 2 < f, g > where f = −Lg.

As stated by Kipnis & Varadhan [35] in the context of reversible processes, the resolvent
approach can also be applied in the continuous-time case. Indeed, given ε > 0 let gε = Rεf ,
so that

gε ∈ D(L), εgε − Lgε = f. (2.20)

Then we obtain a decomposition

St(f) = Mt,ε + εSt(gε) +At,ε, (2.21)

where

Mt,ε = gε(Xt)− gε(X0)−
∫ t

0
(Lgε)(Xs) ds,

At,ε = gε(X0)− gε(Xt),

and (Mt,ε)t≥0 is a martingale with stationary increments with respect to Ft.

Definition 2.3.2. The decomposition (2.21) of St(f) is called the resolvent representation.
The resolvent representation is said to converge if

1. ε‖gε‖2 → 0, ε→ 0.

2. There exists a decreasing sequence εn → 0 with εn+1 ≥ c εn for some c > 0 such that
for each t ≥ 0, (Mt,εn) converges as n→∞ to a limit in L2(Ω,A, P ).

Theorem 2.3.1. Let (Xt)t≥0 be a stationary ergodic Markov process, defined on a probability
space (Ω,A, P ), with state space (X,B), transition semigroup (Tt)t≥0 and stationary distri-
bution µ, satisfying Assumption 1.2.1. Let f ∈ L0

2 and St(f) =
∫ t
0 f(Xs) ds. Then there

exists a martingale approximation to St(f) if and only if the resolvent representation of St(f)
converges. In either case the limit variance is given by

σ2(f) = lim
n→∞

2n < g1/n − T1/ng1/n, g1/n > . (2.22)
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Although similar to the proof of Theorem 2.3.1, the proof of Theorem 2.1.2 is more involved
since semigroup theory has to be applied.

Lemma 2.3.2. Suppose that ‖Vnf‖ = o(
√
n). Then

√
ε‖gε‖ → 0, ε→ 0.

Proof. Observe that ‖Vtf‖ ≤ ‖Vbtc‖ + ‖f‖, hence there is a non-increasing sequence φn → 0
such that ‖Vtf‖/

√
t ≤ φbtc, t ≥ 1. Then we can find a bounded continuously differentiable

function ψ on [0,∞) such that ψ(t) ≥ φbtc, t ≥ 1, and ψ(t) → 0, t → ∞. Therefore from
(1.6) it follows that

√
ε‖gε‖ ≤

∫ 1

0
ε3/2e−εt‖Vtf‖ dt+

∫ ∞

1
ε3/2e−εt‖Vtf‖ dt

≤ ε3/2‖f‖+
∫ ∞

0
ε3/2e−εt

√
tψ(t) dt.

Substituting u = εt in the second term, we obtain
∫∞
0 e−u√uψ(u/ε) du, which tends to 0 by

dominated convergence.

Lemma 2.3.3. For ε, δ > 0 we have

< gε − gδ − Tt(gε − gδ), gε − gδ > ≤ 2t(ε+ δ) (‖gε‖2 + ‖gδ‖2) (2.23)

Proof. From Dynkin’s formula (1.5),

gε − gδ − Tt(gε − gδ) =
∫ t

0

(
TsL(gδ)− TsL(gε)

)
ds.

Hence

< gε − gδ − Tt(gε − gδ), gε − gδ >=
∫ t

0
< TsL(gδ)− TsL(gε), gε − gδ > ds. (2.24)

Now since δgδ − Lgδ = f ,
TsL(gδ) = δTs(gδ)− Ts(f).

Hence

| < TsL(gδ)− TsL(gε), gε − gδ > | = | < δTs(gδ)− εTs(gε), gε − gδ > |
≤ δ | < Ts(gδ), gδ > |+ ε | < Ts(gε), gε > |
+ δ | < Ts(gδ), gε > |+ ε | < Ts(gε), gδ > |
≤ δ ‖gδ‖2 + ε ‖gε‖2 + (ε+ δ) ‖gε‖ ‖gδ‖
≤ 2(ε+ δ)(‖gε‖2 + ‖gδ‖2).

Applying this inequality in (2.24) yields the result.

Proof of Theorem 2.3.1. First assume that there exists a martingale approximation St(f) =
Mt +At. Since M0 = 0,

1
n
‖Vnf‖2 =

1
n
E

(
E

(
Sn(f)| F0

))2

=
1
n
E

(
E(An| F0)

)2

≤ 1
n
EA2

n → 0, n→∞.
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Thus ‖Vnf‖ = o(
√
n), and Lemma 2.3.2 applies. For any h ∈ L2(µ), from the Schwarz

inequality,

E
( ∫ t

0
h(Xs) ds

)2
≤ E

(
t

∫ t

0
h(Xs)2 ds

)
= t2‖h‖2. (2.25)

From (2.25) and Lemma 2.3.2 it follows that εE(St(gε))2 → 0, ε→ 0. Let us show that Mt,ε

converges along the sequence εn = 1/n to Mt.

E
(
Mt,ε −Mt

)2 = 1/nE
(
Mtn,ε −Mtn

)2

≤ 3/nEA2
tn + 3/nEA2

tn,ε + 3/n ε2E
(
Stn(gε)

)2
.

By assumption, 1/nEA2
tn → 0 as n → ∞. Furthermore, EA2

tn,1/n ≤ 4‖g1/n‖2, thus using

Lemma 2.3.2, 1/nEA2
tn,1/n → 0. Finally from (2.25), E

(
Stn(g1/n)

)2 ≤ t2n2‖g1/n‖2, and
we obtain the conclusion for the last term. This shows that the resolvent representation
converges.
Conversely, assume that the resolvent representation converges. Since E

(
St(gε)2

)
≤ t2‖gε‖2,

εSt(gε) → 0 as ε → 0 in L2(Ω,A, P ). From the resolvent representation (2.21) it follows
that A1,εn also converges in L2(Ω,A, P ). Let us show that in fact At,δk

converges along an
arbitrary sequence δk → 0. Let n(k) be such that εn(k)+1 < δk ≤ εn(k). Then δk ≥ cεn(k).
From Lemma 2.3.3,

E
(
At,δk

−At,εn(k)

)2 = 2 < gδk
− gεn(k)

− Tt(gδk
− gεn(k)

), gδk
− gεn(k)

>

≤ 4t
(
δk + εn(k)

)(
‖gδk

‖2 + ‖gεn(k)
‖2

)
(2.26)

≤ 8t εn(k) ‖gεn(k)
‖2 + 4t (1 + 1/c) δk ‖gδk

‖2 → 0, k →∞.

Again from the resolvent representation it follows that both

Mt,ε →Mt and At,ε → At, ε→ 0 in L2(Ω,A, P ),

where (Mt) is a martingale with stationary increments with respect to (Ft), M0 = 0 and
EM2

t <∞, EA2
t <∞ for every t. Thus it remains to show that EA2

t /t→ 0.

EA2
t ≤ 3EA2

t,ε + 3E
(
Mt,ε −Mt

)2 + 3ε2ESt(gε)2.

Now let ε = 1/t and proceed as in the discrete time situation to obtain the conclusion.
Therefore we have a martingale approximation to St(f).

Finally let us prove the formula for the limit variance. We have that

σ2(f) = EM2
1 = lim

n→∞
EM2

1,1/n.

Since (Mt,1/n)t≥0 is a martingale with stationary increments,

EM2
1,1/n = nEM2

1/n,1/n = nE
(
g1/n(X1/n)− g1/n(X0)−

∫ 1/n

0
(Lg1/n)(Xs) ds

)2
.

For any ε > 0, Lgε = −f + εgε and ε‖gε‖ ≤ ‖f‖, hence

‖Lgε‖ ≤ 2‖f‖.
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Thus

nE
( ∫ 1/n

0
(Lg1/n)(Xs) ds

)2
≤ 1/n ‖Lg1/n‖2 → 0.

Since
nE

(
g1/n(X1/n)− g1/n(X0)

)2
= 2n < g1/n − T1/ng1/n, g1/n >,

the formula for σ2(f) follows. The theorem is proved.

In the following we use Theorem 2.3.1 to prove the existence of a martingale approximation
under a condition similar to (2.8) in the discrete-time case.

Theorem 2.3.4. Let (Xt)t≥0 be a stationary ergodic Markov process with state space (X,B),
transition semigroup (Tt)t>0 and stationary distribution µ, satisfying Assumption 1.2.1. Let
f ∈ L0

2 and St(f) =
∫ t
0 f(Xs) ds. Suppose that f satisfies∫ ∞

1
‖Vt(f)‖ /t3/2 dt <∞. (2.27)

Then St(f)/
√
t is asymptotically normal with variance σ2(f) given in (2.22), and ESt(f)2/t→

σ2(f).

Proof. We show that the resolvent approximation converges. Let εn = 1/2n. The main point
is to show that ∑

n≥1

√
εn sup

εn≤ε<εn−1

||gε|| <∞. (2.28)

From this it follows immediately that ε‖gε‖2 → 0, ε→ 0. Furthermore from (2.26),

E
(
At,εn+1 −At,εn

)2 ≤ 8tεn‖gεn‖2 + 12tεn+1‖gεn+1‖2,

and since
√
a+ b ≤

√
a+

√
b, a, b ≥ 0,

‖At,εn+1 −At,εn‖L2(Ω,A,P ) ≤ C1
√
εn‖gεn‖+ C2

√
εn+1‖gεn+1‖.

Therefore from (2.28),
∑

n≥1 ‖At,εn+1−At,εn‖L2(Ω,A,P ) <∞, and (At,εn) converges in L2(Ω,A, P ),
and thus so does (Mt,εn). It remains to show (2.28). Given ε > 0 choose n such that
εn ≤ ε < εn−1. From (1.6),

||gε|| ≤ ε

∫ 1

0
e−εt||Vt(f)|| dt+ ε

∫ ∞

1
e−εt||Vt(f)|| dt

≤ 2εn ‖f‖ + 2εn
∫ ∞

1
e−εnt||Vt(f)|| dt

Hence ∑
n≥1

√
εn sup

εn≤ε<εn

||gε|| ≤ 2
∑
n≥1

ε3/2
n ‖f‖ + 2

∫ ∞

1
||Vt(f)||

( ∑
n≥1

ε3/2
n e−εnt

)
dt

But
∑

n≥1 ε
3/2
n e−εnt can be seen to be O(t−3/2) (see Maxwell and Woodroofe, [37]), and

condition (2.27) implies (2.28). The theorem follows.
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Corollary 2.3.5. If f ∈ L0
2 satisfies∫ ∞

1

‖Tt(f)‖√
t

dt <∞

then it also fulfills (2.27).

Example 2.3.1 (Moving average processes). We consider the semigroup of translation op-
erators on L2[0,∞) given by

(Ttf)(u) = f(u+ t), f ∈ L2[0,∞),

and denote by L the generator of (Tt)t≥0. Let (ξt)t∈R be a square-integrable, real-valued
process with stationary, independent increments, Eξt = 0 and Edξ2t = dt (cf. [11], p. 111).
Each f ∈ L2[0,∞) gives rise to a stationary, ergodic process (Yt)t∈R, defined by the stochastic
integrals (cf. [11], pp. 114-115)

Yt(f) = Yt =
∫ t

−∞
f(t− s) dξs.

Let Fs = σ(ξu, u ≤ s). We have that

E(Yt|Fu) =
∫ u

−∞
f(t− s) dξs =

∫ u

−∞
Tt−uf(u− s) dξs, t ≥ u,

hence
E

(
E(Yt|F0)2

)
= ‖Ttf‖2 =

∫ ∞

t
f(u)2 du.

Although (Yt) is not constructed from a Markov process in the way discussed above, these
considerations show that our method can still be used with the translation semigroup (Tt) in
place of the semigroup of the Markov process. For example, the martingales (Mt,ε), ε > 0,
now take the form

Mt,ε = Yt(gε)− Y0(gε)−
∫ t

0
Ys(Lgε) ds,

where gε is formed via the semigroup (Tt). Thus Corollary 2.3.5 applies, and we obtain that
if f ∈ L2[0,∞) satisfies ∫ ∞

1

1√
t

( ∫ ∞

t
f(u)2 du

)1/2
dt <∞,

then
1√
t

∫ t

0
Ys ds⇒ N(0, σ2(f)),

where σ2(f) is given by (2.22). Chikin [10] obtained the FCLT if f satisfies∫ ∞

1

( ∫ ∞

t
f(u)2 du

)1/2
dt <∞.

To conclude this chapter let us remark that there seems to be no analogue to the direct
approach in case of continuous-time Markov processes.



3. The CLT for Markov processes with normal

generator

In this chapter we construct martingale approximations to additive functionals of certain
stationary Markov chains and processes with good spectral-theoretic properties. More specif-
ically, we will assume that the transition operators (respectively the generators) are normal
operators acting on LC

2 (µ). For discrete-time Markov chains, this situation has already been
intensively studied (see Gordin & Lif̌sic [27], Kipnis & Varadhan [35] and Derriennic & Lin
[13]). However, in the continuous-time case, Kipnis & Varadhan [35] only state a result for
self-adjoint generator, without providing the proof. Here we will state and prove in detail
the corresponding result for processes with normal generator. In Section 3.1 we recall the
relevant spectral theory for normal (possibly unbounded) operators in Hilbert spaces. In
Sections 3.2 and 3.3, the resolvent approach is used to obtain martingale approximations for
Markov chains with normal transition operator and Markov processes with normal generator
under certain conditions formulated in spectral-theoretic terms. These results are applied in
Sections 3.4 and 3.5 to (discrete and continuous-time) random walks on compact, commuta-
tive hypergroups and to certain random walks on compact (not necessarily Abelian) groups
and on compact homogeneous spaces.

3.1 Spectral theory for normal operators

In this section we briefly summarize the spectral theory of normal (possibly unbounded)
operators, which is applied in Sections 3.2 and 3.3 to prove the CLT for Markov chains with
normal transition operator and for Markov processes with normal generator. For further
information on spectral theory see Birmann & Solomjak [4], Rudin [40] or Werner [43]. Let
H be a complex Hilbert space, and let T : H ⊃ D(T ) → H be a linear mapping. T is densely
defined if D(T ) = H. It is called closed if the following holds: If (xn)n≥1 ⊂ H converges
to some x ∈ H, and if Txn converges to some y ∈ H, then x ∈ D(T ) and Tx = y. In
the following T always denotes a closed and densely defined operator. The adjoint (or dual)
operator T ∗ : D(T ∗) → H is defined on

D(T ∗) = {y ∈ H : x 7→< Tx, y > is continuous on D(T )}

by
< x, T ∗y >=< Tx, y >, x ∈ D(T ), y ∈ D(T ∗),

using denseness of D(T ) and the Riesz representation theorem. T ∗ is also closed and densely
defined (cf. [4], p. 70). T is called self-adjoint if T = T ∗ (in particular D(T ) = D(T ∗)). Given
any operator T the operator T ∗T defined on

D(T ∗T ) = {x ∈ D(T ) : Tx ∈ D(T ∗)}
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is self-adjoint and in particular, closed and densely defined (cf. [4], p. 108). T is called normal
if T ∗T = TT ∗. For normal T ,

D(T ) = D(T ∗), ‖Tx‖ = ‖T ∗x‖, x ∈ D(T ).

The resolvent set of T is defined by

ρ(T ) = {z ∈ C : zI − T : D(T ) → H is bijective and (zI − T )−1 is continuous}.

The complement σ(T ) = C \ ρ(T ) is called the spectrum of T , it is always closed (cf. [4], p.
83).
Let (X,B) be a measurable space. Denote by P(H) the set of orthogonal projections on H.
A mapping E : B → P(H) is called a spectral measure on H if the following two properties
are satisfied.

• Countable Additivity: If (An)n≥1 ⊂ B is a sequence of pairwise disjoint sets, then we
have

E(
⋃
n

An)x =
∑

n

E(An)x, x ∈ H.

• Completeness: E(X) = Id|H .

Given a spectral measure E on H there is a family of finite, positive scalar measures defined
by

ρx(A) =< E(A)x, x >= ‖E(A)x‖2, x ∈ H, A ∈ B. (3.1)

A set A ∈ B is said to have E-measure 0 if E(A) = 0. The notions of E − a.e., support of E
(denoted by supp(E)) and L∞(X,E) are defined as in the scalar case (cf. [4], pp. 123-25).
For a step function φ ∈ L∞(X,E),

φ =
n∑

k=1

ck1Ak
, ck ∈ C, Ak ∈ B pairwise disjoint,

the integral with respect to E is defined by

Jφ =
∫

X
φdE =

n∑
k=1

ckE(Ak). (3.2)

Then the following can be proved (cf. [4], p. 132).

Theorem. There is a unique extension J : φ 7→ Jφ of (3.2) to an isometric algebra-
homomorphism from L∞(X,E) into B(H), the space of bounded linear operators on H. More-
over J preserves the involutions.

Here the involution on L∞(X,E) is given by φ 7→ φ̄, and on B(H) by T 7→ T ∗. This
construction can be extended to unbounded functions. Let S(X,E) be the space of E − a.e.
finite functions on X. Given φ ∈ S(X,E) let

Dφ = {x ∈ H :
∫
|φ|2 dρx <∞}.
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This is a dense subset of H, and one can construct a closed operator denoted by

Jφ =
∫
φdE

with domain Dφ such that

< Jφx, x > =
∫
φdρx, x ∈ Dφ, (3.3)

‖Jφx‖2 =
∫
|φ|2 dρx, x ∈ Dφ,

J∗φ = Jφ̄,

see [4], pp. 135-38. Furthermore any operator Jφ is normal. Now let us state the spectral
theorem for normal operators (cf. [4], p. 156).

Theorem (Spectral Theorem for normal operators). Let T : D(T ) → H be a normal operator.
Then there is a spectral measure ET from C, supported on the spectrum of T , such that

T =
∫

σ(T )
z dE.

Let Q be a measure-preserving Markov operator on LC
2 (µ). Since Q is a contraction, the

spectrum of Q is contained in the closed unit disc D = {z ∈ C : |z| ≤ 1}. If Q is normal, for
ε > 0 the resolvent (as defined in Section 1.1) is given in spectral-theoretic terms by

Rε =
∫

σ(Q)

1
1 + ε− z

dEQ. (3.4)

Now consider a measure-preserving contraction semigroup on LC
2 (µ) with generator L. Any

z ∈ σ(L) satisfies <z ≤ 0. If L is normal, the semigroup is given by

Tt =
∫

σ(L)
ezt dEL, t > 0, (3.5)

and the resolvent by

Rε =
∫

σ(L)

1
ε− z

dEL, ε > 0. (3.6)

3.2 The CLT for stationary Markov chains with normal
transition operator

Let (Xn)n≥0 be a stationary ergodic Markov chain with state space (X,B), transition operator
Q and stationary initial distribution µ. In this section we will consider the case in which Q
is a normal operator in LC

2 (µ). Recall that the chain (Xn)n≥0 is reversible if and only if Q
is self-adjoint. For general normal Q there seems to be no such probabilistic interpretation.
However, there are interesting examples in which Q is normal but not necessarily self-adjoint
(see Sections 3.4 and 3.5), therefore it is worthwhile to study this more general case. Indeed,
Gordin and Lif̌sic [27] proved the existence of a martingale approximation in case f satisfies
(3.7) using the direct approach. However, at that time, their work did not receive much
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attention, and their complete proofs were only published later in [6]. Kipnis & Varadhan [35]
proved the corresponding result for self-adjoint Q using the resolvent approach. Furthermore
Derriennic & Lin [13] gave a proof in the normal case, without the use of the spectral theorem.
Using the method of Kipnis & Varadhan [35], in this section we show that the case of normal
Q can be treated with the resolvent approach, the advantage being that this can be extended
to continuous-time Markov processes.
So assume that Q is a normal operator and let ρf denote the spectral measure of Q with
respect to f ∈ L2 (see (3.1)). Let us consider the condition∫

σ(Q)

1
|1− z|

ρf (dz) <∞. (3.7)

Since for |z| ≤ 1, 1− |z|2 ≤ 2(1− |z|) ≤ 2|1− z|, (3.7) implies that∫
σ(Q)

1− |z|2

|1− z|2
ρf (dz) <∞. (3.8)

Lemma 3.2.1. If Q is normal and f ∈ L2(µ) satisfies (3.7), then we have

lim
ε→0

ε < gε, gε >= 0 (3.9)

and
lim

ε,δ→0
< (I −Q∗Q)(gε − gδ), gε − gδ >= 0. (3.10)

Proof. First we prove (3.9). From (3.3) and (3.4),

ε < gε, gε >=
∫

σ(Q)

ε

|1 + ε− z|2
dρf (z). (3.11)

Since for z ∈ σ(Q), <(1− z) ≥ 0, we have that

|1 + ε− z|2 = |1− z|2 + ε2 + 2ε<(1− z)
≥ |1− z|2 + ε2

≥ 2|1− z|ε. (3.12)

It follows from (3.7) that the integrand in (3.11) is bounded by an integrable function. (3.9)
now follows from an application of the dominated convergence theorem. As for (3.10) we have

< (I −Q∗Q)(gε − gδ), gε − gδ >=< (R∗ε −R∗δ)(I −Q∗Q)(Rε −Rδ)f, f >

=
∫

σ(Q)

[ 1
1 + ε− z̄

− 1
1 + δ − z̄

]
(1− |z|2)

[ 1
1 + ε− z

− 1
1 + δ − z

]
ρf (dz)

=
∫

σ(Q)
(1− |z|2) (ε− δ)2

|1 + ε− z|2|1 + δ − z|2
ρf (dz) (3.13)

We can assume ε ≥ δ. Similarly as in (3.12) we compute that

|1 + ε− z|2|1 + δ − z|2 =
(
|1− z|2 + ε2 + 2ε<(1− z)

)
·

(
|1− z|2 + δ2 + 2δ<(1− z)

)
≥ ε2|1− z|2.

Using (3.8) and the dominated convergence theorem we obtain (3.10).
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Theorem 3.2.2 (Gordin & Lif̌sic 1981). Let (Xn)n≥0 be a stationary ergodic Markov chain
with state space (X,B), transition operator Q and stationary distribution µ. Assume that Q
is a normal operator on LC

2 (µ), and that f ∈ L0
2 satisfies (3.7). Then there is a martingale

approximation to Sn(f), and the limit variance is given by

σ2(f) =
∫

σ(Q)

1− |z|2

|1− z|2
ρf (dz)

Proof. From
E(M1,ε −M1,δ)2 =< (I −Q∗Q)(gε − gδ), gε − gδ >

and Lemma 3.2.1 it follows via the Cauchy criterion that M1,ε converges as ε → 0 and
hence that the resolvent representation converges. An application of Theorem 2.1.2 yields a
martingale approximation to Sn(f). To obtain the formula for the variance, observe that by
(1.2) and normality,

EM2
1,ε =< (I −Q∗Q)gε, gε >=

∫
σ(Q)

1− |z|2

|1 + ε− z|2
dρf (z).

Since for |z| ≤ 1, |1 + ε− z|2 ≥ |1− z|2, it also follows by dominated convergence that

lim
ε→0

EM2
1,ε =

∫
σ(Q)

1− |z|2

|1− z|2
dρf (z),

as desired.

Remark 3.2.1. Kipnis and Varadhan [35] also state the FCLT for a reversible chain under
the spectral assumption (3.7), which in this case simplifies to∫ 1

−1

1
1− t

dρf (t) <∞.

However their proof seems to contain a gap, and the question of the validity of the FCLT for
a chain with normal transition operator under condition (3.7) still remains open.

3.3 The CLT for stationary Markov processes with normal
generator

In this section we prove the CLT for Markov processes with normal generator. For reversible
processes (corresponding to self-adjoint generator), such a result was stated without proof by
Kipnis & Varadhan [35]. Let us stress that the method used by Gordin & Lif̌sic [27] for chains
with normal Q seems not to carry over to continuous time, since it is based on the direct
approach. Therefore it becomes necessary to apply the resolvent approach in the context of
normal operators.
Let (Xt)t≥0 be a stationary ergodic Markov process with associated semigroup (Tt)t≥0, sat-
isfying Assumption 1.2.1. Furthermore let L denote the generator of (Tt)t≥0 and D(L) its
domain of definition on LC

2 (µ). Assume that L is a normal operator and for f ∈ L2 denote
by ρf (dz) the spectral measure of L with respect to f and the spectrum by σ(L). Recall that
we have <(z) ≤ 0 for each z ∈ σ(L). Consider the condition∫

σ(L)

1
|z|
ρf (dz) <∞. (3.14)
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Lemma 3.3.1. Assume that L is normal and that f ∈ L0
2 satisfies (3.14). Then we have that

lim
ε→0

ε < gε, gε >= 0, (3.15)

and that
lim

δ,ε→0
< gε − gδ − Tt(gε − gδ), gε − gδ >= 0 (3.16)

for each t > 0.

Proof. In order to show (3.15), from (3.3) and (3.6) we get that

ε < gε, gε >=
∫

σ(L)

ε

|ε− z|2
ρf (dz).

Since <(z) ≤ 0 for z ∈ D(L) we estimate

|ε− z|2 = ε2 + |z|2 − 2ε · <(z)
≥ ε2 + |z|2 ≥ 2ε|z|.

Equation (3.15) follows from (3.14) and the dominated convergence theorem. As for (3.16),
using (3.5) we compute

< gε − gδ − Tt(gε − gδ), gε − gδ > =
∫

σ(L)
(1− ezt)

[ 1
ε− z

− 1
δ − z

][ 1
ε− z̄

− 1
δ − z̄

]
ρf (dz)

≤
∫

σ(L)
|1− ezt| (ε− δ)2

|ε− z|2 · |δ − z|2
ρf (dz).

We can assume that ε > δ > 0. Now |ε − z|2|δ − z|2 ≥ |z|2ε2. On σ(L) ∩ {|z| ≤ 1} we have
|1− ezt| ≤ |zt|et, and the integrand is dominated by tet/|z|. On σ(L) ∩ {|z| > 1} we have

|1− ezt| ≤ 1 + |ezt| = 1 + e<z t ≤ 2,

and the integrand is dominated by 2/|z|2 ≤ 2/|z|. (3.16) follows from the dominated conver-
gence theorem.

Theorem 3.3.2. Let (Xt)t≥0 be a stationary ergodic Markov process with state space (X,B),
transition semigroup (Tt)t≥0 and stationary distribution µ, satisfying Assumption 1.2.1. As-
sume that the generator L is normal on LC

2 (µ), and that f ∈ L0
2 satisfies (3.14). Then there

is a martingale approximation to St(f). The limit variance is given by

σ2(f) = −2
∫

σ(L)

1
z
ρf (dz). (3.17)

Proof. Since
E(At,ε −At,δ)2 = 2 < gε − gδ − Tt(gε − gδ), gε − gδ >,

the convergence of At,ε follows from (3.16) via the Cauchy criterion, and hence Mt,ε also
converges. Therefore Lemma 3.3.1 and Theorem 2.3.1 imply the existence of a martingale
approximation. Let us prove the formula for σ2(f). From (2.22) it follows that

σ2(f) = lim
n→∞

2n
(
< g1/n, g1/n − T1/ng1/n >

)
= lim

n→∞
2

∫
σ(L)

1− ez̄/n

1/n
1

|1/n− z|2
dρf (z).
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The integrand converges to −1/z, and by an application of the dominated convergence theo-
rem which can be justified as above the fromula for σ2(f) follows. This finishes the proof of
the theorem.

Now let us state a well-known criterion to check whether L is normal.

Lemma 3.3.3. Suppose that (Tt)t≥0 is a strongly continuous contraction semigroup on a
Hilbert space H with generator L. Then (T ∗t )t≥0 (the adjoint operators) also constitute a
strongly continuous contraction semigroup. Furthermore, the generator of (T ∗t )t≥0 is equal to
L∗. Moreover if each Tt is normal, t > 0, then the generator L is normal as well.

Proof. The first part follows from Yosida [45], Theorem 9.13., the second from Rudin [40],
Theorem 13.37. Let us give a simple proof of the latter statement. From [40], Theorem 12.16,
it follows that

TtT
∗
s = T ∗s Tt, t, s ≥ 0. (3.18)

Let us first show that D(L) = D(L∗). Indeed, f ∈ D(L) if and only if

lim
s,t→0

‖(Ttf − f)/t− (Tsf − f)/s‖ = 0

Now ‖(Ttf − f)/t − (Tsf − f)/s‖ = ‖(sTt − tTs − (s − t)I)/st f‖, and because of (3.18),
(sTt − tTs − (s− t)I)/st is a normal operator, hence ‖(sTt − tTs − (s− t)I)/st f‖ = ‖(sT ∗t −
tT ∗s − (s − t)I)/st f‖. Thus the Cauchy criterion is also satisfied for (T ∗t ), and f ∈ D(L∗).
The other direction follows by interchanging the roles of L and L∗. If u ∈ D(L), due to the
continuity of T ∗t and (3.18),

T ∗s Lu = lim
t→0

T ∗s
(
(Ttu− u)/t

)
= lim

t→0

(
(TtT

∗
s u− T ∗s u)/t

)
= LT ∗s u.

Therefore if f ∈ D(L∗L) (in particular f ∈ D(L)), it follows that

L∗Lf = lim
s→0

(T ∗s Lf − Lf)/s = lim
s→0

L
(
T ∗s f − f

)
/s.

Since D(L) = D(L∗), f ∈ D(L∗) and the limit lims→0(T ∗s f − f)/s exists. Therefore, since L
is closed, it follows that

L∗Lf = lim
s→0

L
(
T ∗s f − f

)
/s = L lim

s→0

(
T ∗s f − f

)
/s = LL∗f,

and f ∈ D(LL∗). Finally, reversing the roles of L and L∗, the lemma follows.

Remark 3.3.1. Derriennic and Lin [14] (see also [15], [13] and [16]) prove the FCLT for a
Markov chain with normal transition operator, started at a point, under a spectral assumption
slightly stronger than 3.7. It would be of interest to obtain similar results for (continuous-
time) Markov processes.

3.4 Applications to random walks on compact, commutative
hypergroups

In this section we apply the results of Sections 3.2 and 3.3 to random walks on compact
commutative hypergroups. Roughly speaking, a hypergroup is a Hausdorff space H such
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that the space of regular finite Borel measures Mb(H) can be equipped with a convolution
operation which preserves the probability measures. Axiomatic schemes for this concept were
first introduced by Dunkl [20] and Jewett [34]. Since then hypergroups have been investigated
intensively, due to the rich variety of examples, and a rather general notion of hypergroups
has become standard in the literature. Let H be a locally compact Hausdorff space. We
denote by Mb(H) the space of regular finite Borel measures and by M1(H) the subset of
regular probabilities. Our definition of a hypergroup is taken from Bloom & Heyer [5].

Definition 3.4.1. H is called a hypergroup if the space (Mb(H),+) admits a second binary
operation ∗ such that the following conditions are satisfied.

1. (Mb(H),+, ∗) is an algebra.

2. For any x, y ∈ H, δx ∗ δy ∈ M1(H) and supp(δx ∗ δy) is compact (here δx denotes the
Dirac measure at x ∈ H).

3. The mappings (x, y) 7→ δx ∗ δy and (x, y) 7→ supp(δx ∗ δy) of H ×H are continuous with
respect to the weak topology and the Michael topology, respectively.

4. There exists an involution x 7→ x̄ of H such that δx ∗ δy = δȳ ∗ δx̄ for all x, y ∈ H, where
ν̄ denotes the image of ν ∈Mb(H) under the involution .̄

5. There exists an element e ∈ H such that δe ∗ δx = δx ∗ δe = δx for all x ∈ H, and such
that e ∈supp(δx ∗ δy) if and only if y = x̄, x, y,∈ H.

The convolution ∗ of any two measures ν, µ ∈Mb(H) can be calculated as

ν ∗ µ =
∫

H

∫
H
δx ∗ δy dν(x) dµ(y).

The hypergroup H is called commutative if (Mb(H),+, ∗) is a commutative algebra, equiva-
lently if δx ∗δy = δy ∗δx for all x, y ∈ H. In the following let H be a commutative hypergroup.
The x-translate of a function f ∈ Cc(H) is defined by

τxf(y) = f(x ∗ y) =
∫

H
fd(δx ∗ δy).

A measure ν ∈Mb(H) is called invariant if∫
H
τxf dµ =

∫
H
f dµ, f ∈ Cc(H), x ∈ H.

A compact hypergroup (i.e. H is a compact) always admits a unique invariant measure
µ ∈M1(H) (cf. [5], p. 40), and we have the formula (cf. [5], p. 34)∫

H
f(x ∗ y)g(y)dµ(y) =

∫
H
f(y)g(x̄ ∗ y)dµ(y) ∀ f, g ∈ LC

2 (µ). (3.19)

Furthermore, translation can be extended to the space LC
2 (µ). The convolution of a function

f ∈ LC
2 (µ) and a measure ν ∈Mb(H) is defined by

f ∗ ν(x) =
∫

K
f(x ∗ ȳ) dν(y).
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A non-zero, continuous function χ : H → C is called a character if

χ(x ∗ ȳ) = χ(x)χ(y), x, y ∈ H.

It follows that χ(e) = 1, |χ(x)| ≤ 1 and χ(x̄) = χ(x). The set of characters is denoted
by Ĥ. If H is compact and commutative, Ĥ is discrete (with respect to the topology of
uniform convergence), and forms an orthogonal basis of LC

2 (µ) (cf. [20], p. 340). The Fourier
transform of a function f ∈ LC

2 (µ) is defined by

f̂ : Ĥ → C, f̂(χ) =
∫

H
fχ̄ dµ,

and of a measure ν ∈Mb(H) by

ν̂ : Ĥ → C, ν̂(χ) =
∫

H
χ̄ dν.

The Plancherel measure on Ĥ is given by

π =
∑
χ∈H

c(χ) δχ,

where
c(χ) =

( ∫
H
|χ|2dµ

)−1
,

and we have the Plancherel formula and the inversion formula (cf. [5], pp. 86, 91).
Let Q ∈ M1(H) be a probability measure on H. Then we can define a Markov kernel Q on
LC

2 (µ) by letting Qf(x) = f ∗Q(x). Using the translation invariance of the Haar measure one
shows that this Markov kernel preserves µ. Now we are in the position to state the following
result.

Theorem 3.4.1. Let H be a compact, commutative hypergroup with Haar measure µ. Let
Q ∈M1(H) and let (Xn)n≥0 be a random walk in H with transition operator Q and stationary
distribution µ. Suppose that 1 is a simple eigenvalue of Q and that f ∈ L0

2 satisfies∑
χ∈Ĥ

1
|1− Q̂(χ)|

c(χ)|f̂(χ)|2 <∞.

Then we have a martingale approximation to Sn(f), where the limit variance is given by

σ2(f) =
∑
χ∈Ĥ

1− |Q̂(χ)|2

|1− Q̂(χ)|2
c(χ)|f̂(χ)|2.

Proof. We want to apply Theorem 3.2.2. Firstly let us show that Q is a normal operator. To
this end, using (3.19) the following is easily shown.∫

H
(Qf)(x)g(x)dµ(x) =

∫
H
f(x)

∫
H
g(x ∗ y) dQ(y) dµ(x), f, g ∈ LC

2 (µ).
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Therefore the adjoint operator is given by (Q∗g)(x) =
∫
g(x ∗ y)dQ(y), i.e. by convolution

with respect to the measure Q̄. By commutativity it follows that Q is normal. Furthermore
we have that

χ ∗Q = Q̂(χ)χ, χ ∈ Ĥ. (3.20)

Indeed,

χ ∗Q(x) =
∫

H
χ(x ∗ ȳ) dQ(y) = χ(x)

∫
H
χ(ȳ) dQ(y)

= χ(x)
∫

H
χ(y) dQ(y) = Q̂(χ)χ(x).

Therefore Q has a discrete spectrum and each χ is an eigenvector with eigenvalue Q̂(χ). The
theorem now follows from Theorem 3.2.2.

Remark 3.4.1. From the proof we see that Q is self-adjoint if and only if Q = Q̄.

A convolution semigroup (Qt)t>0 ⊂ M1(H) is a family of probability measures such that
Qt ∗ Qs = Qs+t. It is called e-continuous (or simply continuous) if limt→0Qt = δe in the
topology of weak convergence. For every e-continuous convolution semigroup there exists a
negative definite function ψ ∈ N (s)

B (Ĥ) (see [5], p. 334), called the exponent of the convolution
semigroup, such that Q̂t = exp(−tψ). Given an e-continuous convolution semigroup, we
obtain a contraction semigroup by letting Tt = f ∗ Qt, f ∈ LC

2 (µ) (cf. [5], p. 427). This
semigroup commutes with translations, and gives rise to a stationary Markov process (Xt)t≥0

with stationary distribution µ. We have the following

Theorem 3.4.2. Let H be a compact, commutative hypergroup with Haar measure µ. Let
(Qt)t>0 be an e-continuous convolution semigroup with exponent ψ ∈ N (s)

B (Ĥ) and let (Xt)t≥0

be the corresponding continuous time random walk with semigroup Tt, generator L, and sta-
tionary distribution µ. Suppose that 0 is a simple eigenvalue of L and that f ∈ L0

2 satisfies∑
χ∈Ĥ

1
|ψ(χ)|

c(χ)|f̂(χ)|2 <∞. (3.21)

Then there is a martingale approximation to St(f) with limit variance

σ2(f) = 2
∑
χ∈Ĥ

1
ψ(χ)

c(χ)|f̂(χ)|2.

Proof. First let us show that the semigroup (Tt) is strongly continuous. In fact, the Fourier
transform gives rise to the contraction semigroup on LC

2 (Ĥ, π) given by the multiplication op-
erators MtF = exp(−tψ)F , F ∈ LC

2 (Ĥ, π). Such contraction semigroups are always strongly
continuous (cf. Nagel & Schlotterbeck [39], p. 8), and their generator is the densely-defined
multiplication operator L̂F = −ψF . Thus from the Fourier isometry, it follows that the
generator L of (Tt) is also densely defined with domain

D(L) = {f ∈ LC
2 (H,µ) : ψf̂ ∈ LC

2 (Ĥ, π)},

and
ˆ(Lf) = −ψf̂, f ∈ D(L).
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For f = χ with χ ∈ Ĥ this gives

ˆ(Lχ)(γ) = −ψ(χ)c(χ)−11l{χ}(γ), χ, γ ∈ Ĥ .

From the inversion theorem ([5], pp. 89 - 92) we get that

Lχ = −ψ(χ)χ.

The theorem follows from Theorem 3.3.2.

Remark 3.4.2. Observe that L is self-adjoint if and only if Qt = Q̄t for all t > 0.

3.5 Further examples

In this section we give several examples of how to apply Theorems 3.2.2 and 3.3.2 to random
walks on compact groups and compact homogeneous spaces. Our discussion will also include
two typical hypergroup structures, namely spaces of conjugacy classes and double coset spaces.

Example 3.5.1 (Compact Abelian groups). Let G be a separable compact Abelian group.
Let Γ denote the dual group and let µG be the normalized Haar measure. It is well known
that characters form an orthonormal basis of LC

2 (G). There is a hypergroup structure on G
given by the usual convolution, i.e.

λ(x, y) = δx ∗ δy = δx+y.

Thus Haar measure on the hypergroup is the usual Haar measure on G, and the characters
of the hypergroup are given by the characters of the group. Theorems 3.4.1 and 3.4.2 apply,
and c(χ) = 1 for all χ ∈ Γ. In discrete time, this example was studied by Gordin & Lif̌sic
([6], pp. 171,72). Given an e-continuous convolution semigroup, the generating functional ψ
can be decomposed as follows:

ψ = ψ1 + ψ2 + ψ3,

where ψ1 is a continuous primitive form, ψ2 a continuous square form, and ψ3 is given in terms
of the Lévy function and the Lévy measure (see Heyer [31], pp. 70, 308). Let us consider the
one-dimensional torus T1, where characters are of the form χn(θ) = einθ, θ ∈ [0, 2π). In this
case (cf. Zimple [46], p. 493),

ψ1(χn) = −ian, ψ2(χn) = bn2, a ∈ R, b ≥ 0.

If ψ = ψ1, Xt = eiat is a deterministic motion. As can be expected, (3.21) is satisfied for any
f ∈ L0

2 but σ2(f) = 0. If ψ = ψ2, the Qt are wrapped Gaussian distributions with densities

qt(θ) =
1
2π

∑
n∈Z

e−tn2b cos(nθ).

(3.21) is also satisfied for any f ∈ L0
2, and σ2(f) 6= 0 if f 6= 0 (and b 6= 0). Notice that L is

self-adjoint in this case. If the Lévy measure α is bounded, then

ψ3(χn) =
∫

G\{e}

(
1− χn(θ)

)
dα(θ).

In this case (as well as in the case of general ψ), asymptotic normality depends on the Fourier
expansion of f ∈ L0

2.
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Example 3.5.2 (Compact non-Abelian groups and their conjugacy classes). Let G be a com-
pact, separable group with normalised Haar measure µG. For background on representation
theory see Dunkl & Ramirez [21] or Helgasson [29]. Let Ĝ denote the set of equivalence
classes of irreducible unitary representations of G. If α ∈ Ĝ, we let α also stand for some
representative of this equivalence class, acting on a vector space Vα of finite dimension by nα

(cf. [21], pp. 72-74). The left regular representation on LC
2 (G) = LC

2 (G,µG) is given by(
π(g)

)
f (h) = f(g−1h), g, h ∈ G, f ∈ LC

2 (G).

Let
Hα = {g 7→ tr(α(g)C), g ∈ G, C ∈ End(Vα)},

tr(α(g)C) denoting the trace of the corresponding endomorphism. The spaces Hα are invari-
ant under the left (and also right) regular representation and we have the orthogonal Hilbert
space decomposition (cf. [29], pp. 391-92)

LC
2 (G) = ⊕α∈ĜHα. (3.22)

The orthogonal projection of f ∈ LC
2 (G) to Hα is given by nαfα, where fα = f ∗χα = χα ∗ f ,

and χα is the character of α (see [21], p. 77).
The group G acts on itself by conjugation:

G×G→ G, (x, y) 7→ xyx−1.

The orbit of x ∈ G under this operation is denoted by [x] and H denotes the set of equivalence
classes with the quotient topology. There is a one-to-one correspondence between Mb(H) and
Z(Mb(G)), the center of Mb(G). Here δ[x] corresponds to f 7→

∫
f(txt−1) dµG(t), and the

Haar measure µ on H corresponds to µG ([20], pp. 344-45). Explicitely, we have

δ[x] ∗ δ[y] =
∫

G
δ[t−1xty] dµG(t).

Therefore H can be equipped with a hypergroup structure. It is well known that characters
form an orthonormal basis of the conjugation-invariant functions in LC

2 (G) ([29], p. 534).
Given α ∈ Ĝ we denote by γπ = χπ/nα the normalised character. It satisfies the relation
([29], p. 392)

γα(x)γα(y) =
∫

G
γα(t−1xty) dµG(t),

therefore normalised characters are the characters of H, and c(χα) = n2
α. Thus Theorems

3.4.1 and 3.4.2 apply to H.
Moreover we can also formulate the following result for a random walk on G, which does not
only apply to conjugation-invariant functions.

Theorem 3.5.1. Let G be a compact, separable, non-Abelian group and let Q be a probability
on G. Suppose that Q ∈ Z(Mb(G)) and that Q, as a convolution operator, has 1 as a simple
eigenvalue. Let (Xn)n≥0 be a random walk on G with transition operator Q and stationary
distribution µG. If f ∈ L0

2 satisfies∑
α∈Ĝ

1∣∣1− Q̂(χα)/nα

∣∣ n2
α‖fα‖2 <∞,
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then there is a martingale approximation to Sn(f), where the limit variance is given by

∑
α∈Ĝ

1−
∣∣Q̂(χα)/nα

∣∣2∣∣1− Q̂(χα)/nα

∣∣2 n2
α‖fα‖2 <∞.

Proof. Since Q ∈ Z(Mb(G)), from (3.20) we obtain

Q ∗ γα = Q̂(γα)γα

or
Q ∗ χα = Q̂(χα)/nα χα.

Given any f ∈ LC
2 (G) and α ∈ Ĝ, we have since Q ∈ Z(Mb(G)),

Q ∗ fα = Q ∗ f ∗ χα = f ∗Q ∗ χα = Q̂(χα)/nα f ∗ χα = Q̂(χα)/nα fα.

Therefore, each space Hα is an eigenspace of Q with eigenvalue Q̂(χα)/nα and in particular,
Q is a normal operator. The theorem follows from an application of Theorem 3.2.2.

Notice that Q ∈ Z(Mb(G)) is ergodic on LC
2 (G) if and only if it is ergodic on LC

2 (H,µ), since
0 is either a simple or multiple eigenvalue in both cases. A result similar to Theorem 3.5.1
can be formulated for e-continuous convolution semigroups in Z(Mb(G)).

Example 3.5.3 (Homogeneous spaces and double coset spaces). We will use the same notation
as in the previous example. Let G be a compact, separable group with normalised Haar
measure µG. Let K be a closed subgroup and let µK be normalised Haar measure on K,
which we also interpret as a measure on G with support on K. Let

G/K = {gK, g ∈ G}

be the homogeneous space of left cosets with the quotient topology and let

H = {KgK, g ∈ G}

be the space of double cosets. Denote

LK
2 (G) = {f ∈ LC

2 (G) : f(gk) = f(g) for all k ∈ K},
LKK

2 (G) = {f ∈ LC
2 (G) : f(k′gk) = f(g) for all k, k′ ∈ K},

the subspaces of K right-invariant and bi-invariant functions, respectively. Notice that f ∈
LK

2 (G) (respectively f ∈ LKK
2 (G)) if and only if f ∗ µK = f (respectively µK ∗ f ∗ µK = f).

The spaces MK
b (G) and MKK

b (G) are defined similarly. These correspond to measures on
G/K and on H, respectively. Observe that MKK

b (G) is a subalgebra of Mb(G).

Given α ∈ Ĝ let
V K

α = {v ∈ Vα : α(k)v = v for all k ∈ K}.

Let mα = dimV K
α and let Ĝ0 be the set of α ∈ Ĝ such that mα 6= 0. Furthermore let

HK
α = {g 7→ tr(α(g)C), g ∈ G, C ∈ End(Vα, V

K
α )}.
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Each of the spaces HK
α consists of functions right-invariant under K, and we have the

orthogonal Hilbert space decomposition ([29], p. 533)

LK
2 (G) = ⊕α∈Ĝ0

HK
α . (3.23)

Moreover, each HK
α , α ∈ Ĝ0, is invariant under the left regular representation. Indeed, if

φ ∈ HK
α , then τgφ ∈ Hα, g ∈ G, since HK

α ⊂ Hα and Hα is invariant under the left regular
representation. But τgφ is also easily seen to be right-invariant under K, therefore τgφ ∈ HK

α .
For f ∈ LK

2 (G), fα = f ∗ φα, where φα = µK ∗ χα is the spherical function of α ∈ Ĝ0.

The algebra MKK
b (G) is commutative if and only if mα = 1 for every α ∈ Ĝ0 (cf. [29], p.

534), which we will assume from now on. In this case H inherits a commutative hypergroup
structure. Explicitely, if [g] = KgK denotes the equivalence class of g,

δ[g] ∗ δ[h] =
∫

K
δ[gth] dµK(t), g, h ∈ G.

Since spherical functions satisfy (cf. [29], p. 400)

φ(g)φ(h) =
∫

K
φ(gth) dµK(t),

they are the characters of H. We have c(φα) = n2
α, α ∈ Ĝ0, and Theorems 3.4.1 and 3.4.2

apply to H. In particular, for Q ∈MKK
1 (G), from (3.20) and commutativity

Q ∗ φα = φα ∗Q =
∫

G
φα dQ · φα, α ∈ Ĝ0. (3.24)

We also want to formulate a result for a random walk on the homogeneous space G/K. There
exists a unique normalised measure µ on G/K which is invariant under the natural action
(g, hK) → ghK of G. The spaces LC

2 (G/K,µ) and LK
2 (G) are isometric and will from now on

be identified (cf. [21], 101). Given Q ∈MKK
1 (G), we can define a measure-preserving Markov

operator on LK
2 (G) by Qf = f ∗ Q. Indeed, since f ∗ Q ∗ µK = f ∗ Q, this is well-defined.

Now we can state the following

Theorem 3.5.2. Let G/K be a compact homogeneous space such that mα = 1 for every
α ∈ Ĝ0. Given Q ∈ MKK

b (G) let Q also denote the associated Markov operator as defined
above. Assume 1 is a simple eigenvalue of Q. Let (Xn)n≥0 be a random walk on G/K with
transition operator Q and stationary distribution µ. If f ∈ L0

2 ⊂ LK
2 (G) satisfies∑

α∈Ĝ0

1∣∣1− ∫
G φα dQ

∣∣ n2
α‖fα‖2 <∞,

then there is a martingale approximation to Sn(f), where the limit variance is given by

∑
α∈Ĝ0

1−
∣∣ ∫

G φα dQ
∣∣2∣∣1− ∫

G φα dQ
∣∣2 n2

α‖fα‖2 <∞.
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Proof. From (3.24) it follows that

f ∗Q ∗ φα =
∫

G
φα dQ f ∗ φα.

Therefore each space HK
α , α ∈ Ĝ0, is an eigenspace of Q with eigenvalue

∫
G φα dQ, and in

particular, Q is normal. The theorem again follows from Theorem 3.2.2.

Again we see that Q is ergodic on LK
2 (G) if and only if it is ergodic on LKK

2 (G). A similar
result can be formulated for e-continuous convolution semigroups in MKK

b (G).



4. The CLT under invariant orthogonal splittings

In this chapter we consider stationary, ergodic Markov chains with transition operators which
admit orthogonal invariant splittings of the space LC

2 (µ). Although normal operators are an
obvious example, there are other interesting Markov chains with this property which make a
separate study worthwhile.
In Section 4.1 we modify two sufficient conditions for a martingale approximation taking
into account the invariant splitting. The first (Theorem 4.1.5) is based on (2.13), and the
second (Theorem 4.1.6) on (2.8) as obtained by Maxwell & Woodroofe [37]. We also show
that these modifications indeed bring an improvement. The continuous-time case is briefly
discussed in Section 4.2. Section 4.3 contains examples. We start by revisiting the normal
case. Next we consider exact endomorphisms of compact Abelian groups. Here the orthogonal
splitting is given by the different grand orbits of the characters of the group. We also discuss
compact group extensions. For a specific one-parameter family of transformations of the two-
dimensional torus as introduced by Siboni [41], we use our conditions to improve a result by
Denker & Gordin [12]. We conclude the section by considering random walks on compact
groups, compact homogeneous spaces and compact Riemannian manifolds.
Several of the results in this chapter will be published in [25].

4.1 The CLT for stationary Markov chains under invariant
splittings

Let (Xn)n≥0 be a stationary ergodic Markov chain on (Ω,A, P ) with state space (X,B), tran-
sition operator Q and stationary initial distribution µ. In this section we study the situation
in which there is an orthogonal splitting of the L2-space invariant under the Markov operator.
First let us give a general sufficient condition, adapted to an orthogonal splitting, for conver-
gence of a series in a Hilbert space. Let H be a real or complex Hilbert space with norm ‖ · ‖
and let

H = ⊕i∈IHi

be a splitting into closed, orthogonal subspaces. Here I is a countable index set. For x ∈
H, i ∈ I let xi denote the orthogonal projection of x onto Hi, so that x =

∑
i∈I x

i.

Lemma 4.1.1. If (xn)n≥0 ⊂ H, ∑
i∈I

( ∑
n≥1

‖xi
n‖

)2
<∞, (4.1)

then the series
∑

n≥1 xn converges.
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Proof. Convergence follows from the Cauchy criterion:

‖
M∑

n=N

xn‖2 =
∑
i∈I

‖
M∑

n=N

xi
n‖2

≤
∑
i∈I

( M∑
n=N

‖xi
n‖

)2
→ 0, N,M →∞.

Now let � ·, · � be a hermitian, non-negative form on H with associated seminorm | · |.
Assume that the mapping (x, y) 7→� x, y �, x, y ∈ H, is continuous, and that < x, y >= 0
implies that � x, y �= 0. The next lemma will be used to show that taking into account an
orthogonal splitting really brings an improvement.

Lemma 4.1.2. ∑
i∈I

( ∑
n≥1

|xi
n|

)2
≤

( ∑
n≥1

|xn|
)2
.

Proof. From the assumptions on � ·, · �, it follows that |xn| =
( ∑

i∈I |xi
n|2

)1/2. By expand-
ing both sides in Lemma 4.1.2, we have to show that∑

n1,n2≥0

∑
i∈I

|xi
n1
||xi

n2
|︸ ︷︷ ︸

A

≤
∑

n1,n2≥0

( ∑
i∈I

|xi
n1
|2

)1/2( ∑
i∈I

|xi
n2
|
)1/2

︸ ︷︷ ︸
B

.

This follows since A ≤ B from the Schwarz inequality, applied to | · |.

Corollary 4.1.3. If there are two splittings H = ⊕i∈IHi = ⊕i′∈I′Hi′ such that for each i ∈ I
there is a i′ ∈ I ′ with Hi ⊂ Hi′, then∑

i∈I

( ∑
n≥1

|xi
n|

)2
≤

∑
i′∈I′

( ∑
n≥1

|xi′
n |

)2
. (4.2)

Let us come back to the Markov chain (Xn). Assume that there is a splitting

LC
2 (µ) = ⊕i∈IHi

of LC
2 (µ) into closed orthogonal subspaces Hi that are invariant under Q, i.e. QHi ⊂ Hi. We

denote by Qi the restriction of Q to Hi and by fi the orthogonal projection of f ∈ LC
2 (µ)

onto Hi. An application of Lemma 4.1.1 immediately gives

Proposition 4.1.4. If f ∈ L0
2 satisfies∑

i∈I

( ∑
n≥0

‖Qn
i fi‖

)2
<∞, (4.3)

then the series
∑

n≥0Q
nf converges and consequently, there exists a solution to Poisson’s

equation (2.1).
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Hence there exists a martingale approximation to Sn(f). Condition (4.3) will be generalised
in two directions. Firstly, we modify Proposition 2.2.3 to the context of invariant splittings.

Theorem 4.1.5. Let (Xn)n≥0 be a stationary ergodic Markov chain. Assume that LC
2 (µ) =

⊕i∈IHi is a splitting into orthogonal closed subspaces Hi that are invariant under the transi-
tion operator Q. If f ∈ L0

2, f =
∑

i∈I fi with fi ∈ Hi satisfies (2.14) and

∑
i∈I

( ∞∑
n=0

(∥∥Qn
i fi

∥∥2 −
∥∥Qn+1

i fi

∥∥2
)1/2)2

<∞, (4.4)

then it also satisfies (2.9) and (2.10) and consequently, there exists a martingale approxima-
tion to Sn(f).

Remark 4.1.1. If there exists an invariant splitting, Lemma 4.1.2, applied to the form
(f, g) 7→< f, g > − < Qf,Qg >, means that (4.4) is a weaker condition than (2.13), where
this splitting is not taken into account. Furthermore, by (4.2), the finer the splitting in (4.4),
the weaker the condition. If the splitting is finite (i.e. I is finite), (4.4) and (2.13) are in fact
equivalent. Similar comments apply to (4.6) as compared with (2.8).

Proof. If (4.4) holds, then using Lemma 2.2.4

sup
n≥1

(∥∥∥ n+m−1∑
k=m

Qkf
∥∥∥2
−

∥∥∥Q n+m−1∑
k=m

Qkf
∥∥∥2)

= sup
n≥1

∑
i∈I

(∥∥∥ n+m−1∑
k=m

Qk
i fi

∥∥∥2
−

∥∥∥Qi

n+m−1∑
k=m

Qk
i fi

∥∥∥2)
≤

∑
i∈I

sup
n≥1

(∥∥∥ n+m−1∑
k=m

Qk
i fi

∥∥∥2
−

∥∥∥Qi

n+m−1∑
k=m

Qk
i fi

∥∥∥2)
≤

∑
i∈I

( ∞∑
k=m

(∥∥Qk
i fi

∥∥2 −
∥∥Qk+1

i fi

∥∥2
)1/2)2

,

and this tends to 0 as m→∞. If in addition (2.14) holds, then from (2.17) it follows that

1
n

∥∥∥ n−1∑
k=0

Qkf
∥∥∥2

=
1
n

∑
i∈I

∥∥∥ n−1∑
k=0

Qk
i fi

∥∥∥2

≤ 1
n

∑
i∈I

n−1∑
k=0

( ∞∑
r=k

(∥∥Qr
i fi

∥∥2 −
∥∥Qr+1

i fi

∥∥2)1/2
)2

=
1
n

n−1∑
k=0

∑
i∈I

( ∞∑
r=k

(∥∥Qr
i fi

∥∥2 −
∥∥Qr+1

i fi

∥∥2)1/2
)2
,

which once more tends to 0. This proves the theorem.

Consider the subspaces of LC
2 (Ω,A, P ) defined by

H ′
i =

{
f(X1)−Qf(X0), f ∈ Hi, i ∈ I

}
.
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From

E
((
f(X1)− (Qf)(X0)

)(
g(X1)− (Qg)(X0)

))
=< f, g > − < Qf,Qg >, f, g ∈ LC

2 (µ),

it follows that for different i ∈ I these spaces are orthogonal in LC
2 (Ω,A, P ), and hence so are

their closures.

Remark 4.1.2. In the direct approach, M1 is obtained as the limit in LC
2 (Ω,A, P ) of(

Vnf(X1)−QVnf(X0)
)
n≥1

(see Section 2.2). Now

Vnf(X1)−QVnf(X0) =
∑
i∈I

(
Vnfi(X1)−QVnfi(X0)

)
is an orthogonal decomposition in LC

2 (Ω,A, P ). Condition (2.13) with fi in place of f ensures
the convergence of the component sequence

(
Vnfi(X1) − QVnfi(X0)

)
n≥1

, consequently, the
limit (2.11) (with fi in place of f) exists and we denote it by σ2(fi). It is now easy to deduce
the formula

σ2(f) =
∑
i∈I

σ2(fi), (4.5)

valid under the assumptions of Theorem 4.1.5.

In the proof of the next theorem, we will further exploit the orthogonality of the spaces H ′
i.

Theorem 4.1.6. Let (Xn)n≥0 be a stationary ergodic Markov chain. Assume that LC
2 (µ) =

⊕i∈IHi is a splitting into orthogonal closed subspaces Hi that are invariant under the transi-
tion operator Q. Assume that f ∈ L0

2, f =
∑

i∈I fi with fi ∈ Hi satisfies∑
i∈I

( ∑
n≥1

‖Vn(fi)‖
n3/2

)2
<∞. (4.6)

Then there exists a martingale approximation to Sn(f).

Proof. We show that the resolvent representation converges. Existence of a martingale ap-
proximation then follows from Theorem 2.1.2. For the proof we will rely on several facts from
Maxwell & Woodroofe [37].
Observe that by invariance of the splitting,

gε =
∑
i∈I

gε,i, gε,i = ((1 + ε)I −Q)−1f i ∈ Hi.

In [37] it is shown that with δk = 1/2k,∑
k≥1

√
δk sup

δk≤ε<δk−1

‖gε,i‖ ≤ C
∑
n≥1

‖Vnf
i‖/n3/2, (4.7)

where C > 0 from now on denotes a generic constant, which may change from line to line. In
particular, ε‖gε,i‖2 → 0, ε→ 0 and

√
ε‖gε,i‖ ≤ C

∑
n≥1

‖Vnf
i‖/n3/2 ∀ ε > 0. (4.8)
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Hence from (4.8) and (4.6), for every ε > 0,

ε‖gε‖2 =
∑
i∈I

ε‖gε,i‖2 ≤
∑
i∈I

C2
( ∑

n≥1

‖Vn(f i)‖/n3/2
)2

<∞. (4.9)

Therefore
lim
ε→0

ε‖gε‖2 =
∑
i∈I

lim
ε→0

ε‖gε,i‖2 = 0.

Next we want to show that M1,ε = gε(X1)−Qgε(X0) converges to a limit in L2(Ω,A, P ) along
the sequence δk. To this end notice that

M1,ε =
∑
i∈I

M i
1,ε, M i

1,ε = gε,i(X1)−Qgε,i(X0) ∈ H ′
i,

is an orthogonal decomposition in LC
2 (Ω,A, P ). We have

M1,δn =
n∑

k=1

(M1,δk
−M1,δk−1

) +M1,δ0 . (4.10)

In [37] it is shown that

∞∑
n=0

‖M i
1,δn

−M i
1,δn−1

‖LC
2 (Ω,A,P ) ≤ C

∑
n≥1

‖Vn(f i)‖/n3/2. (4.11)

From (4.11) and (4.6) it follows that∑
i∈I

( ∑
n≥1

‖M i
1,δn

−M i
1,δn−1

‖LC
2 (Ω,A,P )

)2
<∞, (4.12)

and therefore we can apply Lemma 4.1.1 to obtain convergence of the series in (4.10) and
hence ofM1,δn . Therefore the resolvent representation converges, and the proof is finished.

The following corollary is easily deduced.

Corollary 4.1.7. A function f ∈ L0
2 satisfies (4.6) if∑

i∈I

( ∑
n≥0

‖Qn
i fi‖√
n+ 1

)2
<∞. (4.13)

When applying Corollary 4.1.7, the following estimate will be useful.

Lemma 4.1.8. There is a constant C > 0 such that for 0 ≤ t < 1,∣∣∣ 1√
1− t

− 1√
π

∑
n≥0

tn√
n+ 1

∣∣∣ ≤ C. (4.14)
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Proof. From the Binomial series expansion,

(1− t)1/2 = 1−
∑
n≥1

ant
n, |t| < 1, (4.15)

where the coefficients an satisfy (cf. Derriennic and Lin [15], p. 95)

2 (n+ 1) an+1 =
1√

nΓ(1/2)
(
1 +O(1/n)

)
.

Taking the derivative in (4.15) gives

1
2
√

1− t
=

∑
n≥0

(n+ 1)an+1t
n, |t| < 1.

Therefore∣∣∣ 1√
1− t

− 1√
π

∑
n≥0

tn√
n+ 1

∣∣∣ ≤ 1√
π

∑
n≥0

(∣∣ 1√
n
− 1√

n+ 1

∣∣ +O(1/n3/2)
)
tn

≤ C
∑
n≥0

1
n3/2

, 0 ≤ t < 1.

This proves the lemma.

Remark 4.1.3. From (4.11), it follows that M i
1,δn

converges to a limit in LC
2 (Ω,A, P ) as

n → ∞, therefore we can define σ2(f i) = limn→∞E|M i
1,δn

|2 (or alternatively by (2.22)).
Since

E|M i
1,δn

|2 ≤ 2
( ∑

k≥1

‖M i
1,δk

−M i
1,δk−1

‖LC
2 (Ω,A,P )

)2
+ 2E|M i

1,δ0 |
2,

for any n ≥ 1, it follows from (4.12) and dominated convergence that

lim
n→∞

EM2
1,δn

=
∑
i∈I

lim
n→∞

E|M i
1,δn

|2,

therefore (4.5) also holds under the assumptions of Theorem 4.1.6.

4.2 The CLT for stationary Markov processes under
invariant splittings

We will briefly discuss Markov processes with splittings invariant under the semigroup. First
let us consider a more general setup.
Let (Tt)t≥0 be a strongly continuous contraction semigroup on a Hilbert space H. Assume
that there exists an orthogonal splitting

H = ⊕i∈IHi

of H into orthogonal, closed subspaces Hi, such that each Hi is invariant under the semigroup
(Tt)t≥0. We denote the generator of the restriction of Tt to Hi by Li. Then evidently
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Li = L|D(Li). For x ∈ H let xi be the orthogonal projection of x onto Hi. Then it is easy to
see that (Lx)i = Lxi. We equip the space D(L) with the inner product

< x, y >L=< x, y > + < Lx,Ly >;

it is then also a Hilbert space. Furthermore D(L) is the orthogonal span of the subspaces
D(Li) with respect to the inner product <,>L. Finally observe that given ε > 0 the resolvent
Rε maps each D(Li) into Hi.
Now, using the results in Section 2.3, and proceeding as in the proof of Theorem 4.6, the
following can be proved.

Theorem 4.2.1. Let (Xt)t≥0 be a stationary ergodic Markov process with state space (X,B),
transition semigroup (Tt)t>0 and stationary distribution µ, satisfying Assumption 1.2.1. As-
sume that there exists an orthogonal decomposition LC

2 (µ) = ⊕i∈IHi which is invariant under
the semigroup (Tt). If f ∈ L0

2 satisfies∑
i∈I

( ∫ ∞

1

‖Ttfi‖
t3/2

)2
<∞,

then there exists a martingale approximation to St(f).

4.3 Examples

In this section we give several examples in which the Markov operator admits an invariant
splitting. It turns out that in the obvious example of normal Q with discrete spectrum, (4.13)
and (4.4) are much stronger requirements than (3.7). We also study two examples arising from
measure-preserving dynamical systems, namely exact endomorphisms of compact groups and
compact group extensions. Here the transfer operator plays the role of the Markov operator
Q. The dual operator of the transfer operator is simply given by UT f = f ◦T , i.e. an isometry.
Therefore transfer operators are only normal if they are unitary, and otherwise behave quite
differently. Finally we discuss random walks on compact groups, compact homogeneous spaces
and compact Riemannian manifolds. These are compared with the normal examples in Section
3.5.

Example 4.3.1 (Normal operators with discrete spectrum). An obvious example of an in-
variant splitting is the case in which Q is normal with discrete spectrum (see the examples
in Sections 3.4 and 3.5). Let (λi)i∈I denote the collection of distinct eigenvalues with corre-
sponding eigenspaces Ei. Given a function f ∈ L0

2, (3.7) means that∑
i∈I

1
|1− λi|

‖fi‖2 <∞. (4.16)

However, (4.4) requires that ∑
i∈I

1
1− |λi|

‖fi‖2 <∞. (4.17)

Using (4.14), (4.13) can also be seen to be equivalent to (4.17) in the case of normal Q.
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For the next example recall that a measure-preserving transformation T : X → X of a
probability space (X,B, µ) is called exact if the σ-algebra

⋂
n≥0 T

−nB contains only sets of
measure 0 or 1.

Example 4.3.2 (Exact group endomorphisms). The following example was studied by Leonov
[36] using moment-based arguments. Let T : G → G be an endomorphism of a compact
separable Abelian group G. We will use the same notation as in Example 3.5.1. T preserves
the Haar measure µG. Indeed, the functional

f 7→
∫

G
f ◦ T dµG, f ∈ C(G),

is easily seen to be translation invariant and therefore by uniqueness equal to the functional
f 7→

∫
G f dµG. Let T ∗ be the dual homomorphism defined by T ∗χ = χ ◦ T , χ ∈ Γ. We have

the following relations between T and T ∗.

• T surjective ⇔ T ∗ injective.

• T exact ⇔
⋂

n≥1 T
∗n

Γ = {0}.

Indeed, if T is onto, then T ∗ is evidently injective. On the other hand, T is surjective if and
only if

f ◦ T = g ◦ T ⇒ f = g ∀ f, g ∈ LC
2 (G).

Since T ∗ is injective, the equality

f ◦ T =
∑
χ∈Γ

< f, χ > T ∗χ =
∑
χ∈Γ

< g, χ > T ∗χ = g ◦ T

implies < f, χ >=< g, χ > and hence f = g. Furthermore exactness of T is equivalent to

E(f |T−nB) → Ef in LC
2 (G),

where f is considered as a random variable on (G,B, µG) and B denotes the Borel sigma-
algebra of G. But if f =

∑
χ∈Γ < f, χ > χ,

E(f |T−nB) =
∑

χ∈T ∗nΓ

< f, χ > χ,

and the second equivalence follows. The group Γ can be partitioned into grand orbits defined
by

O(χ) = {γ ∈ Γ : ∃ n,m ≥ 0 : T ∗
n
χ = T ∗

m
γ}.

Theorem 4.3.1 (Leonov 1964). Let T : G → G be an exact surjective endomorphism of
a non-finite, compact Abelian group. Then there are infinitely many different grand orbits.
Suppose that f ∈ L0

2 satisfies ∑
O

( ∑
χ∈O

| < f, χ > |
)2

<∞, (4.18)

where the first sum is taken over all grand orbits. Then the sequence n−1/2
∑n−1

k=0 f ◦ Tn is
asymptotically normal with variance∑

O

∣∣∣ ∑
χ∈O

< f, χ >
∣∣∣2. (4.19)
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Proof. We start by characterising the grand orbits and showing that there are infinitely many
of them. In fact, we claim that there exists a countably infinite set Γ̃ such that the different
grand orbits (except for the trivial orbit {1}) are given by

{γ̃, T ∗γ̃, T ∗2 γ̃, . . .}, γ̃ ∈ Γ̃. (4.20)

Set Γ̃ = Γ \ T ∗Γ. Since T ∗Γ is an infinite subgroup 6= Γ, Γ̃ must also be infinite. Since T ∗

is injective, the sets in (4.20) are indeed grand orbits. If χ has no first predecessor, then for
every n ≥ 0 there is a γ ∈ Γ such that T ∗

n
γ = χ, which would imply χ ∈

⋂
n≥0 T

∗n
Γ, a

contradiction to exactness. This proves the first claim. We obtain a splitting

L = ⊕γ̃∈Γ̃L(γ̃), (4.21)

where L(γ̃) denotes the closure of the subspace generated by O(γ̃). Let

UT : LC
2 (G) → LC

2 (G), UT f = f ◦ T.

Evidently, UT preserves the splitting (4.21), and hence the same holds for its dual operator,
the transfer operator which is denoted by VT . On the components of the splitting, VT acts as
left shift. More precisely, if f =

∑
n≥0 < f, T ∗

n
γ̃ > T ∗

n
γ̃ for some γ̃ ∈ Γ̃, then

VT f =
∑
n≥0

< f, T ∗
n+1

γ̃ > T ∗
n
γ̃.

Let (Xn)n≥0 be a Markov chain with stationary distribution µG and transition operator VT .
Now (4.18) is simply condition (4.4) for this Markov chain, and (2.14) is satisfied automat-
ically. Thus Theorem 4.1.5 applies. Moreover, (Un

T f)n≥0 is a time reversal of
(
f(Xn)

)
n≥0

,
i.e. (

f(X0), . . . , f(Xn)
)
∼

(
Un

T f, . . . , f
)

where ∼ means that the random vectors are equal in distribution. Since the distribution of an
additive functional is invariant under a time reversal of the underlying process, asymptotic
normality follows. The formula (4.19) for the variance can be obtained from (2.11) by a
straightforward calculation. This finishes the proof of the theorem.

In fact, Leonov [36] considered general ergodic endomorphisms. It is not difficult to show
that ergodicity of T is equivalent to the absence of finite grand orbits (cf. e.g. Brown [8], pp.
76-77). However, in the ergodic case biinfinite grand orbits, e.g. grand orbits of the form

O(χ) = {T ∗n
χ, n ∈ Z},

may also occur. On such grand orbits, UT and VT act as unitary operators, therefore
‖V n

T f‖ → 0 won’t be satisfied and our above method is not applicable.
As a particular example for Theorem 4.3.1, consider G = T1, the 1-torus, and let Tx = 2x
mod 1. Then the dual group is isomorphic to Z, and grand orbits can be indexed by odd
integers and {−2, 2}.

Example 4.3.3 (Compact group extensions). We use the notation of Example 3.5.2. Let
G be a compact separable group with Haar measure µG and let (X,B, µ) be a probability
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space. Let T : X → X be measure-preserving, and let h : X → G be measurable. The group
extension of T with h is defined by

Th : X ×G→ X ×G, Th(x, g) =
(
Tx, gh(x)

)
,

where X × G is equipped with the product measure µ = µX ⊗ µG. Given a function f ∈
LC

2 (X×G,µ), for µX -a.e. x ∈ X, the function f(x, ·) ∈ LC
2 (G), and therefore can be expanded

into a Fourier series. More specifically, given α ∈ Ĝ let v1, . . . , vnα be an orthonormal basis
of Vα. Set

Fα
i,j(g) =< α(g)vj , vi >, i, j = 1, . . . , nα.

These functions form an orthogonal basis of Hα, and

Fα
i,j(gg

′) =
nα∑
k=1

Fα
i,k(g)F

α
k,j(g

′), g, g′ ∈ G.

For a function f ∈ LC
2 (X ×G,µ) we have the Fourier expansion

f(x, g) =
∑
α∈Ĝ

nα∑
i,j=1

Fα
i,j(g)G

α
i,j(x),

where
Gα

i,j(x) = nα

∫
G
f(x, g)Fα

i,j(g) dµG(g).

Therefore we have the orthogonal decomposition

LC
2 (X ×G,µ) = ⊕α∈ĜH̃α, (4.22)

H̃α = {f ∈ LC
2 (X ×G,µ)| f(x, g) =

nα∑
i,j=1

Fα
i,j(g)Gi,j(x) for some fcts Gi,j ∈ LC

2 (X,µX)}.

Let us show that this splitting is preserved by the operator

UTh
: LC

2 (X ×G,µ) → LC
2 (X ×G,µ), f 7→ f ◦ Th.

Indeed, if f(x, g) =
∑nα

i,j=1 F
α
i,j(g)Gi,j(x), then

f ◦ Th(x, g) =
nα∑

i,j=1

Fα
i,j(gh(x))Gi,j(Tx)

=
nα∑

i,j=1

Gi,j(Tx)
nα∑
k=1

Fα
i,k(g)F

α
k,j

(
h(x)

)
=

nα∑
i,k=1

Fα
i,k(g)

nα∑
j=1

Gi,j(Tx)Fα
k,j

(
h(x)

)
.

It follows that the splitting (4.22) is also preserved under the dual operator, the transfer
operator VTh

. Let (Xn)n≥0 be a Markov chain with transition operator VTh
and stationary

distribution µ. The CLT for the sequence
(
f(Xn)

)
n≥0

can be obtained by estimating

‖V n
Th
f̃α‖, α ∈ Ĝ,
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and applying Theorem 4.1.5 or Theorem 4.1.6. Here f̃α is the projection of f ∈ LC
2 (X×G,µ)

onto H̃α. Arguing via time reversal as in Example 4.3.2 also gives the CLT for the sequence
(f ◦ Tn

h )n≥0.

In the particular case X = G = T1, the one-torus, and

Tx = 2x mod 1, hε(x) = εx+ ω, ε > 0,

this was done by Gordin & Denker [12]. Here (4.22) takes the form

LC
2 (T× T) = ⊕k∈ZH̃k, f̃k(x, y) = fk(x)χk(y), fk ∈ LC

2 (T), x, y ∈ T. (4.23)

Let Tε = Thε and let Bn be the σ-algebra generated by dyadic intervals of degree n ≥ 1.
Gordin & Denker [12] showed that for k 6= 0,

‖V 2n
Tε
f̃k‖ ≤

(
2−(n−2)π|kε|+ | cos(πkε)|n

)
‖fk‖LC

2 (T) + ‖fk − E(fk|Bn)‖LC
2 (T), (4.24)

and for f ∈ L0
2,

‖V n
Tε
f̃0‖ ≤ ‖f0 − E(f0|Bn)‖LC

2 (T). (4.25)

Denote by 〈x〉 the distance of x to the next integer. Using the above estimates and Corollary
4.1.7, Proposition 2.6 in Denker & Gordin [22] can be modified as follows.

Theorem 4.3.2. For irrational ε > 0 let Tε : T2 → T2, Tε(x, y) = (2x mod 1, y + εx). If
f ∈ L0

2(T2), f(x, y) =
∑

k∈Z fk(x)χk(y), x, y ∈ T1, satisfies

1.
∑

k∈Z

( ∑
n≥0

‖fk−E(fk|Bn)‖
LC

2 (T)

(n+1)1/2

)2
<∞,

2.
∑

k∈Z k
2‖fk‖2

LC
2 (T)

<∞,

3.
∑

k∈Z\{0} 〈kε〉
−2 ‖fk‖2

LC
2 (T)

<∞,

then 1√
n

∑n−1
k=0 f ◦ Tε is asymptotically normal with variance

σ2(f) = lim
n→∞

1
n
‖

n−1∑
k=0

f ◦ Tε‖2.

Proof. The proof is similar to that of Proposition 2.6 in Denker & Gordin [22]. Firstly, Tε is
mixing (in particular, ergodic) if and only if ε > 0 is irrational (see Siboni [41]). For k = 0,
using (4.25), ∑

n≥0

‖V n
Tε
f̃0‖√

n+ 1
≤

∑
n≥0

‖f0 − E(f0|Bn)‖LC
2 (T)√

n+ 1
.

Furthermore, from (4.24), for k 6= 0,

∑
n≥0

‖V n
Tε
f̃k‖√

n+ 1
≤ 2

∑
n≥0

‖V 2n
Tε
f̃k‖√

2n+ 1

≤ 2‖fk‖LC
2 (T)

∑
n≥0

2−(n−2)π|kε|+ | cos(πkε)|n√
n+ 1

+ 2
∑
n≥0

‖fk − E(fk|Bn)‖LC
2 (T)√

n+ 1
.
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Moreover, using (4.14),

∑
n≥0

| cos(πkε)|n√
n+ 1

≤
√
π√

1− | cos(πkε)|
+ C ≤

√
2π

| sin(πkε)|
+ C ≤

√
2π

〈kε〉
+ C.

Combining the above estimates with our Assumptions 1. - 3. shows that Corollary 4.1.7
applies.

Remark 4.3.1. Assumptions 2. and 3. apply if the following two assumptions are satisfied.

4. For some δ > 0,
∑

k∈Z k
2+δ ‖fk‖2

LC
2 (T)

<∞.

5. For some γ > 0 and C > 0, |pε− q| > C|q|−(1+γ) for all p, q ∈ Z.

This should be compared to Remark 2.7 in Denker & Gordin [22]. For general compact Lie
group extensions, Dolgopyat ([18], p. 191, and [17], p. 9) gives sufficient conditions for the
CLT based on mixing properties.

Example 4.3.4 (Random walks on compact groups and compact homogeneous spaces). We
will use the notations of Examples 3.5.2 and 3.5.3. Let G be a compact, separable group.
The spaces Hα ⊂ LC

2 (G) are invariant under the left regular representation π. The restriction
πα of π to Hα is called the isotypical component of π of type α. The spaces Hα can be
further decomposed into nα orthogonal subspaces of dimension nα such that the restriction
of π to these subspaces is equivalent to α. Taking into account this finer splitting would
yield even better conditions for the CLT. However, the decomposition of πα into irreducible
representations is not unique and thus the condition would depend on the particular choice
of the splitting. Therefore we restrict ourselves to the isotypical components.
If Q is a regular probability on G, then it induces measure-preserving Markov operators
f 7→ Q ∗ f and f 7→ f ∗Q, f ∈ LC

2 (G). These also preserve the spaces Hα and therefore the
splitting (3.22). Let us formulate a result for the action of Q from the left.

Theorem 4.3.3. Let (Xn)n≥0 be a random walk on G with transition operator f 7→ Q ∗ f
and stationary distribution µG. If Q is ergodic and if f ∈ L0

2 satisfies∑
α∈Ĝ

( ∑
n≥0

nα ‖Qn ∗ f ∗ χα‖√
n+ 1

)2
<∞, (4.26)

then there exists a martingale approximation to Sn(f).

Now let K be a closed subgroup of G and consider the homogeneous spaces G/K. If Q is a
regular probability on G, it acts on LK

2 (G) by f 7→ Q ∗ f or on LC
2 (G/K,µ) by

Qf(gK) =
∫

G
f(h−1gK) dQ(h).

Since the spaces HK
α , α ∈ Ĝ0 are invariant under the left regular representation, they are also

invariant under Q and therefore Q preserves the splitting (3.23).
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Theorem 4.3.4. Let (Xn)n≥0 be a random walk on the homogeneous space G/K with transi-
tion operator Q and stationary distribution µ, as specified above. If Q is ergodic and if f ∈ L0

2

satisfies ∑
α∈Ĝ0

( ∑
n≥0

nα ‖Qn ∗ f ∗ φα‖√
n+ 1

)2
<∞, (4.27)

then there exists a martingale approximation to Sn(f).

Observe that if f ∈ LK
2 (G), (4.26) and (4.27) coincide since f ∗ φα = 0, α ∈ Ĝ \ Ĝ0, and

f ∗ χα = f ∗ φα, α ∈ Ĝ0, in this case (cf. [21], p 103). A CLT for Q having finite support
is provided by Dolgopyat (see [18], p. 193). Finally, if Q is right invariant under K, i.e.
Q ∈ MK

b (G), then it also acts on LK
2 (G) by f 7→ f ∗ Q (see Example 3.5.3). However,

if mα 6= 1 for some α ∈ Ĝ0, or if Q is not biinvariant, this operator won’t be normal.
Nevertheless, since

f ∗Q ∗ φα = f ∗Q ∗ χα = f ∗ χα ∗Q = f ∗ φα ∗Q,

it preserves the spaces HK
α , and we obtain

Theorem 4.3.5. Let Q ∈MK
b (G) be a probability and let (Xn)n≥0 be a random walk on the

homogeneous space G/K with transition operator f 7→ f ∗Q and stationary distribution µ, as
specified above. If Q is ergodic and if f ∈ L0

2 satisfies∑
α∈Ĝ0

( ∑
n≥0

nα ‖f ∗Qn ∗ φα‖√
n+ 1

)2
<∞,

then there exists a martingale approximation to Sn(f).

Again this corresponds to (4.26) in the case of Q acting on the right.

Example 4.3.5 (Random walk on compact Riemannian manifolds). Let X be a compact,
oriented Riemannian manifold and let µ denote the normalised Riemannian volume. Let ∆
be the Laplace-Beltrami operator on X acting on C∞(X). It is symmetric, i.e.∫

X
f(x)∆g(x) dµ(x) =

∫
X

∆f(x)g(x) dµ(x), f, g ∈ C∞(X),

and extends to a self-adjoint operator on LC
2 (µ) (cf. [29], p. 245). Furthermore it has a

discrete, non-negative spectrum, the eigenvalues λi, i ∈ I have no finite accumulation point
and each eigenspace E(λi) is finite-dimensional (cf. Warner [42], pp. 254-256). Thus we have
the orthogonal decomposition

LC
2 (µ) = ⊕i∈IE(λi). (4.28)

Let G be the group of isometries acting on X, i.e. C∞-diffeomorphisms preserving the metric.
For each g ∈ G we define

τgf(x) = f(g−1x), f ∈ C∞(X).

These operators commute with the Laplacian (cf. [29], p. 246), i.e.

τg∆f = ∆τgf. (4.29)
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Furthermore τg extends to a measure-preserving operator on LC
2 (µ), and due to (4.29) it

preserves the splitting (4.28): τgE(λi) = E(λi).
Let Q be a regular probability measure on G. We associate the Markov operator defined by

Qf =
∫

G
τgf dQ, f ∈ LC

2 (µ).

Since each τg preserves integrals, so does Q. Furthermore, since each τg preserves the spaces
E(λi) and since these spaces are closed, it follows that Q also preserves the splitting (4.28).
Therefore we are in the position to apply Theorems 4.1.5 and 4.1.6.



5. Some results for general stationary ergodic

processes

In this chapter we transfer several of our results to general stationary ergodic processes,
restricting ourselves to the direct approach.

5.1 The CLT for general stationary ergodic processes

Let (Xn)n∈Z be a real-valued square-integrable stationary ergodic process on (Ω,A, P ). We
may assume that (Xn)n∈Z is realized as the coordinated process on the coordinate space RZ.
As in Section 1.1, θ denotes the left shift on Ω, i.e. for x = (xn)n∈Z,

(
θ(x)

)
n

= xn+1. For
functions f on Ω we denote θf = f ◦ θ, so that in particular Xn = θnX0, n ∈ Z.
Let (Fn)n∈Z be a filtration with θ−1Fn = Fn+1 such that Xn is Fn-measurable. In this
chapter, ‖·‖ denotes the L2-norm on L2(Ω,A, P ). We denote by En = E(·|Fn) the conditional
expectation operator given Fn. Since θ is measure-preserving, we have that

θk En = En+kθ
k, k, n ∈ Z. (5.1)

Let Sn =
∑n

k=1Xk be the partial sums. A martingale approximation to Sn is defined com-
pletely analogously as in the case of a Markov chain. Using the direct approach, we get the
following generalisation of Proposition 2.2.1.

Theorem 5.1.1. Suppose that∑
n≥1

(
E1Xn − E0Xn

)
converges in L2(Ω,A, P ), (5.2)

and that ∥∥E0Sn

∥∥ = o(
√
n). (5.3)

Then there exists a martingale approximation to Sn, and the limit variance is given by

lim
n→∞

∥∥∥ n∑
k=1

(
E1Xn − E0Xn

)∥∥∥2
. (5.4)

Indeed, from (1.1) and (1.3) it follows that (2.9) (respectively (2.10)) is (5.2) (respectively
(5.3)) in a Markov chain context.

Proof. Again we use a simple decomposition of Sn into a sum of martingale differences and a
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remainder term.

Sn =
n∑

k=1

(
EkSn − Ek−1Sn

)
+ E0Sn

=
n∑

k=1

n∑
l=k

(
Ekθ

lX0 − Ek−1θ
lX0

)
From (5.1) it follows that with m1 =

∑
l≥1

(
E1θ

lX0 − E0θ
lX0

)
, the sequence

θkm1 =
∑

l≥k+1

(
Ek+1θ

lX0 − Ekθ
lX0

)
is a stationary ergodic martingale difference sequence. Since martingale differences are or-
thogonal, we get that

1
n

∥∥Sn −
n−1∑
k=0

θkmk

∥∥2 ≤ 2
n

n∑
k=1

∥∥∥∑
l>n

(
Ekθ

lX0 − Ek−1θ
lX0

)∥∥∥2
+

2
n

∥∥E0Sn

∥∥2
.

The second term tends to 0 by (5.3). As for the first one, since θ is measure preserving, it
follows from (5.1) that for each k,∥∥∥∑

l>n

(
Ekθ

lX0 − Ek−1θ
lX0

)∥∥∥2
=

∥∥∥θ−k+1
∑
l>n

(
Ekθ

lX0 − Ek−1θ
lX0

)∥∥∥2

=
∥∥∥∑

l>n

(
E1θ

l+1−kX0 − E0θ
l+1−kX0

)∥∥∥2
.

Therefore

1
n

n∑
k=1

∥∥∥∑
l>n

(
Ekθ

lX0 − Ek−1θ
lX0

)∥∥∥2
=

1
n

n∑
k=1

∥∥∥∑
l>k

(
E1θ

lX0 − E0θ
lX0

)∥∥∥2 n→∞→ 0.

Next we generalise Theorem 2.2.3 to stationary ergodic sequences. The proof even becomes
more transparent in this general case.

Theorem 5.1.2. Suppose that

∞∑
n=1

∥∥E1Xn − E0Xn

∥∥ <∞, (5.5)

and that
‖E0Xn‖ → 0, n→∞. (5.6)

Then the conditions (5.2) and (5.3) of Theorem 5.1.1 are satisfied, and hence there exists a
martingale approximation to Sn.

Here (5.5) (respectively (5.6)) corresponds to (2.13) (respectively (2.14)).
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Proof. Evidently (5.5) implies (5.2). Now let us show (5.3). For every N,n > 0 we have that

n∑
k=1

E0θ
kX0 =

N−1∑
l=0

( n∑
k=1

(
E−lθ

kX0 − E−l−1θ
kX0

))
+

n∑
k=1

E−Nθ
kX0.

From (5.1) and (5.6) it follows that

∥∥ n∑
k=1

E−Nθ
kX0

∥∥ =
∥∥θN

n∑
k=1

E−Nθ
kX0

∥∥ =
∥∥ n∑

k=1

E0θ
k+NX0

∥∥ → 0, N → 0,

for each fixed n. Therefore
n∑

k=1

E0θ
kX0 =

∞∑
l=0

( n∑
k=1

(
E−lθ

kX0 − E−l−1θ
kX0

))
for each n ≥ 1. Since martingale differences are orthogonal, it follows that

1
n

∥∥∥ n∑
k=1

E0θ
kX0

∥∥∥2
=

1
n

∞∑
l=0

∥∥∥ n∑
k=1

(
E−lθ

kX0 − E−l−1θ
kX0

)∥∥∥2

=
1
n

∞∑
l=0

∥∥∥ n∑
k=1

(
E1θ

k+l+1X0 − E0θ
k+lX0

)∥∥∥2

≤ 1
n

∞∑
l=1

( n∑
k=1

∥∥E1θ
k+lX0 − E0θ

k+l−1X0

∥∥)2
(5.7)

≤ 1
n

n∑
k=1

( ∞∑
l=1

∥∥E1θ
k+lX0 − E0θ

k+l−1X0

∥∥)2

=
1
n

n∑
k=1

( ∞∑
l=k+1

∥∥E1θ
lX0 − E0θ

l−1X0

∥∥)2
,

which evidently tends to 0 by (5.5). This proves the theorem.

5.2 Orthogonal splittings

In this section we briefly discuss the modifications of the above conditions to the case of an
orthogonal splitting. Suppose that there exist orthogonal subspaces (Hi)i∈I in LC

2 (Ω,A, P )
such that for every l ≥ 1, one has an orthogonal decomposition

E1θ
lX0 − E0θ

lX0 =
∑
i∈I

Y i
l , Y i

l ∈ Hi.

The spaces Hi correspond to the spaces H ′
i of Section 4.1. We can state the following theorem.

Theorem 5.2.1. In the above situation suppose that∑
i∈I

( ∑
l≥1

‖Y i
l ‖

)2
, (5.8)

and that (5.6) hold. Then the conditions (5.2) and (5.3) of Theorem 5.1.1 are satisfied, and
hence there exists a martingale approximation to Sn with limiting variance (5.4).
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Proof. From (5.8) and Lemma 4.1.1 it follows that the series (5.2) converges. Moreover, (5.3)
is shown with a computation similar to (5.7).
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