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Chapter 1

Introduction

Twisted K-theory first appeared in the early 1970s in a paper by Donovan
and Karoubi [20] as “K-theory with local coefficients”. As the name suggests,
it is an elaboration of topological K-theory, invented by Atiyah and Hirze-
bruch in [4], that supports a notion of Poinaré duality even in the case of
non K-orientable (i.e. non spin(c)-) manifolds [72]. Like the local coefficients for
ordinary cohomology are described by a class in H1(M,Z/2Z) for a paracom-
pact Hausdorff space M , the extra data needed in case of K-theory is a twist
represented by a certain (torsion) element in H3(M,Z). The latter group can
also be seen to classify isomorphism classes of bundles AK →M with fibers the
compact operators on a separable Hilbert space, which was the starting point
of a paper by Rosenberg [57], who showed that twisted K-theory as defined
in [20] is isomorphic to K∗(C0(M,AK)) – the K-theory of the C∗-algebra of
continuous sections of AK tending to zero at infinity. This description needs
no restriction to torsion elements in H3(M,Z), but in case the twist is of finite
order Bouwknegt, Carey, Mathai, Murray and Stevenson developed a
geometric description of K0(C0(M,AK)) in terms of modules over bundle gerbes
[12, 19], which provide a replacement for vector bundles in the twisted case.

Recently, the rise of string theory gave some fresh impetus to the devel-
opment of twisted K-theory [64, 13, 41, 77]: In string theory, space-time is
modelled in such a way that its classical limit, in which quantum effects are
neglected, is not just a Riemannian manifold M , but also carries the extra data
of a B-field β on M , which supports topologically non-trivial dynamical struc-
tures of the stringy space-time, called D-branes. Now, β coincides with the
data needed to define a twisted K-theory group on M and the elements of this
group can be identified with D-brane charges. Furthermore, there also is a du-
ality principle, called T -duality, relating two different types of string theories,
which amounts on the mathematical side to an interesting involution on twisted
K-theory [18, 15].

Another application of twisted K-theory emanates from the representation
theory of loop groups, in particular from a beautiful theorem proven by Freed,
Hopkins and Teleman [22]: Let G be a simple, simply connected, compact
Lie group and k ∈ Z ' H3(G,Z) be a level. For each such k there is a canonical
central extension Ω̂kG of the loop group ΩG. Let Rk(Ω̂G) be the free abelian
group generated by isomorphism classes of positive energy representations of
Ω̂kG. There is a level preserving product, known as fusion, on Rk(Ω̂G) turning
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it into the Verlinde ring. The theorem says that it is isomorphic to the twisted
equivariant K-theory K

d,[k+h∨]
G (G), where h∨ is the dual Coxeter number,

[k + h∨] ∈ H3(G,Z) represents the twist, d is the dimension of G and G acts
on itself by conjugation. Fusion turns into the Pontrjagin product on the K-
theoretic side. Another reference is [16], where the formulation of this theorem
as a commutative diagram is considered.

As will be seen in the next chapter, twisted K-theory is closely related to
higher algebraic structures, like bundle gerbes [12]. Therefore the development
of the theory for singular spaces described by stacks or orbifolds comes in very
natural. Results in this direction can be found in [1, 73].

Let A be a unital C∗-algebra, M be a compact Hausdorff space, then the conti-
nuous functions with values in A, denoted by C(M,A) ' C(M)⊗A, will again
be a C∗-algebra when equipped with the obvious supremum norm. There is
a geometric description of K0(C(M,A)) as the Grothendieck group of iso-
morphism classes of bundles with fibers finitely generated, projective Hilbert
A-modules [61]. The present work takes this geometric picture as a starting
point and develops a twisted version of it: Let A be a locally trivial bundle of
C∗-algebras with structure group PU(A) = U(A)/U(1) and denote by C(M,A)
the C∗-algebra of continuous sections. Replacing the above Hilbert module bun-
dles by modules over a suitable bundle gerbe and thereby merging the above
picture with the one developed in [12, 19], we arrive at a geometric interpre-
tation of K0(C(M,A)) in terms of twisted Hilbert A-module bundles (see defi-
nition 3.0.13). In particular, we prove a twisted Serre-Swan-theorem (3.2.8)
saying that the category of twisted Hilbert A-module bundles is naturally equiv-
alent to the one of finitely generated, projective C(M,A)-modules. A similar
proposition holds in the case of locally compact spaces M , if some care is taken
about the extendability of A to compactifications.

A twisted Hilbert A-module bundle E lives over an auxiliary principal bundle
P with structure group PU(A). From a geometric point of view, P might
seem to be a somewhat bulky, even though not unmanageable object. Luckily,
in all geometric applications we have in mind, P reduces to a principal Γ-
bundle P , such that Γ is either a compact Lie group or a discrete group. Even
without a reduction, but with restriction to torsion twists, the algebra C(M,A)
is Morita equivalent to C(M,K) ⊗ A for a bundle of matrix algebras K →
M (see theorem 3.4.1). Using the isomorphism induced on K-theory, each
twisted K-cycle may be represented by a twisted Hilbert A-module bundle over
some principal PU(n)-bundle P . We exploit this fact by developing a theory of
connections on modules over certain lifting bundle gerbes that arise from flat
central S1-extensions of Lie groups:

1 −→ S1 −→ Γ̂ −→ Γ −→ 1 .

In this case there is a notion of Chern character in the sense of Chern-Weil-
theory, which takes values in the ordinary (untwisted) cohomology. It extends
like in the setup of Mishchenko-Fomenko-index theory [47] to a Chern char-
acter with values in Heven(M,K0(A)⊗ R).

The usual approach to index theory via pseudodifferential operators does
not transfer directly to the twisted case due to a crucial analytic difficulty:
Symbols, representing K-cycles in the twisted K-group K0

π∗A(T ∗M), just yield
transversally elliptic pseudodifferential operators on the corresponding twisted
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Hilbert A-module bundles (with respect to the covertical subbundle H∗ ⊂ T ∗P ).
Nevertheless, the machinery developed by Atiyah in [7] is extendable to this
case if the algebra in question is supposed to come equipped with a trace. We
follow this idea up to some point, define an analytic index and prove that it
only depends on the K-theory class of the principal symbol.

All analytic obstacles can be circumvented in a nice way for the subclass of
generalized projective Dirac operators. Let D : Γ(S)→ Γ(S) be such an opera-
tor acting on smooth sections of a twisted Hilbert A-module bundle S. D can be
twisted with a bundle gerbe module E in such a way that both – the resulting
bundle S�E and the operator DE : Γ(S�E)→ Γ(S�E) – descend to analogue
structures on the base manifold instead of the auxiliary principal bundle (since
E and S are allowed to live over different bundles, we need to use the exterior
tensor product � here). We extend the index theorem of Mishchenko and
Fomenko and also Kasparov’s KK-theoretical index theorem to the counter-
twisted case (see (4.36), (4.37), (4.43) and theorem 4.5.9). However, there is
no canonical choice for the countertwisting bundle E and we discuss different
possibilities and their index-theoretical consequences. The case when E is flat
is of particular interest, since it perturbs the index of the generalized projective
Dirac operator as little as possible. Therefore we classify flat countertwisting
bundles via their holonomy representations, which now turn out to be projec-
tive representations of the fundamental group for a fixed lifting cocycle instead
of honest ones like in the non-twisted case. We also draw some conclusions
about the relation between the spectrum of possible dimensions of these repre-
sentations in case of the projective Dirac operator and the denominators of the
Â-genus.

In the final part of this work, we apply the index theory of twisted Hilbert A-
module bundles to the problem of index theoretical obstructions against positive
scalar curvature metrics (psc-metrics for short). This subject is based on the pi-
oneering work of Atiyah, Hitchin, Lichnerowicz and Singer [37, 29]. The
argument exploits the Bochner-formula to conclude that if a spin manifold
M allows a metric of positive scalar curvature, then its Â-genus has to vanish.
Rosenberg refined this index to an invariant αr(M) ∈ KOn(C∗r (π1(M))) [56]
by twisting the Dirac operator with the Mishchenko-Fomenko-line bundle
Vr, which is a Hilbert C∗-module bundle associated to the universal cover M̃
with fibers the reduced C∗-algebra of the fundamental group C∗r (π1(M)). This
operator has an index in the K-theory of this algebra. Since Vr is still flat,
the argument of Lichnerowicz remains valid in this case and αr(M) is an
obstruction against psc-metrics. In fact, this invariant is quite strong, which led
to the following conjecture in [58]:

Conjecture 1.0.1. (Gromov-Lawson-Rosenberg conjecture) Let M be a
closed, connected, n-dimensional spin manifold with n ≥ 5, then M admits a
psc-metric if and only if αr(M) ∈ KOn(C∗r (π1(M))) vanishes.

There is a corresponding stable version of this conjecture proposed in [59]:

Conjecture 1.0.2. (stable Gromov-Lawson-Rosenberg conjecture) Let M
be a closed, connected, n-dimensional spin manifold with n ≥ 5. Let J be a
simply connected, spin manifold of dimension 8 with Â(J) = 1. If αr(M) ∈
KOn(C∗r (π1(M))) vanishes, then M stably admits a psc-metric, i.e. M × J ×
· · · × J admits a psc-metrics for sufficiently many factors of J .



10 1. Introduction

The unstable conjecture is supported by the fact, that for a simply connected
manifold, i.e. in the case αr(M) reduces to the Â-genus, there is a positive result
by Stolz [67] (see also the paper by Gromov and Lawson [25]):

Theorem 1.0.3. Let M be a connected, simply connected, closed spin manifold
of dimension ≥ 5. Then M admits a psc-metric if and only if αr(M) = 0 ∈
KOn(pt).

Nevertheless, it was shown by Schick in [60] using minimal hypersurface
techniques of Schoen and Yau [63] that counterexamples exist:

Theorem 1.0.4. There exists a 5-dimensional spin manifold with π1(M) =
Z4 × Z/3Z such that αr(M) = 0, but M does not admit a metric of positive
scalar curvature.

The situation in case of the stable conjecture is quite different. In fact,
Stolz showed in [68] that if the Baum-Connes assembly map is injective for
some fundamental group π, then the conjecture holds for π as well.

Note that all the results require M to be a spin manifold. In particular, this is
necessary for the Rosenberg index αr(M) to make sense. Twisted K-theory
with coefficients in a C∗-algebra provides a way to extend the index obstruc-
tion to the case, where M itself need not be spin, but only its universal cover
is. This is done by replacing the absent Dirac operator on M by the projec-
tive Dirac operator and the Mishchenko-Fomenko-line bundle by a certain
twisted Hilbert A-module bundle, where A can either be the reduced or maxi-
mal twisted group C∗-algebra of the fundamental group centrally extended by
a cocycle cbπ ∈ H2

gr(π1(M), S1) related to the spin structure on the universal
cover: C∗r,max(π1(M), cbπ). This way, we define an invariant

αr,max(M) ∈ K0(C∗r,max(π1(M), cbπ)) ,

which can be understood as the direct replacement of the (complex version of
the) Rosenberg index in case the universal cover is spin. We prove a Lich-
nerowicz type formula for the twisted case that also reveals, where the argu-
ment fails in case the universal cover is not spin (see theorem 4.4.6). This point
of view not only sheds a new light on the obstruction considered by Stolz in
[66], but also allows us to transfer many of the arguments given in the spin case
more or less directly, proving the machinery developed in the prior chapters to
be valuable.

In particular, we extend a result by Hanke and Schick about enlargeable
manifolds [27]. Gromov and Lawson used geometric methods to prove that
these provide examples of manifolds that do not admit a psc-metric [26]. One
of the main results in [27] is, that also the (complex version of the) Rosenberg
index does not vanish in this case and therefore detects enlargeability. In the
spirit of their proof, we construct a flat twisted Hilbert A-module bundle W from
a sequence of almost flat twisted bundle gerbe modules with non-vanishing top
Chern classes. It is a consequence of enlargeability that such gadgets exist.
The projective holonomy representation deduced from this bundle, yields a C∗-
algebra homomorphism

C∗max(π1(M), cbπ) −→ Q ,
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into a C∗-algebra Q in such a way that the induced map on K-theory sends
αmax(M) to the index of the Dirac operator twisted with W . Even though W
is flat, it remembers the Chern classes of its ingredients. The K-theory of Q
is well-understood and ind(DW ) ∈ K0(Q) reflects the indices of the almost flat
ingredients, which were non-vanishing by hypothesis.

We finish this work with some perspectives about the twisted K-theory in
the non-torsion case and possible extensions of the theory to bundles of C∗-
algebras with different structure groups.

The guided tour through this thesis is as follows:

• Section 2 contains the necessary preliminaries about bundle gerbes and
their modules. It explains the notion of stable isomorphism and relates
it to Morita equivalence. Furthermore, the Dixmier-Douady-class is
defined and its properties are summarized. Aside from this, we explain
some aspects of the wide field of higher algebraic structures and higher
gauge theory, which bundle gerbes are a part of.

• Section 3 introduces twisted Hilbert A-module bundles and their mor-
phisms. It defines twisted K-theory with coefficients in A on a compact
space M as the Grothendieck group of such gadgets and we prove a
twisted Serre-Swan-theorem (3.2.8). Exploiting the Banach category
structure of twisted Hilbert A-module bundles, the notion of K-theory
is extended to locally compact spaces. The twist shifting theorem 3.4.1
will not only play a crucial role in the countertwisting techniques of sec-
tion 4, but also relates twisted Hilbert A-module bundles over a principal
PU(A)-bundle to those over PU(n)-bundles. We define the analogue of
the frame bundle in the twisted case, which will be an important ingredient
in the classification of flat bundle gerbe modules, followed by a short note
how bundle gerbe modules can be considered as twisted Hilbert Mn(C)-
bundles. Sections 3 ends with a toolbox explaining the product structure
on twisted K-theory and the Künneth formula.

• Section 4 starts with some basics about flat central S1-extensions of Lie
groups, i.e. short exact sequences 1 → S1 → Γ̂ → Γ → 1 with Γ̂ as-
sociated to the universal cover of Γ. The right notion of connection on
their lifting bundle gerbes is defined, before focussing on modules over
them. The notion of bundle gerbe module connection (bgm-connection
for short) is given in terms of connection forms, horizontal subbundles
and covariant derivatives. A section about trivial bundle gerbes explains
how they are related to untwisted connections on bundles over M and
how this fits into the picture of the spinor module. Parallel transport on
twisted Hilbert A-module bundles is explained in the next section. It is
shown to be equivariant with respect to an action of Γ̂. The notion of
curvature transformation is given and a Chern character is defined via
Chern-Weil-theory in two ways: One using a trace on the algebra if
present, the other using the Künneth formula. This section ends by
proving the additive and multiplicative properties of this character.

• Before digging into index theory, the next part of section 4 continues with
a short digression about Sobolev spaces, especially in the case when the
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auxiliary principal bundle P is non-compact. Symbols are defined in the
next paragraph as sections of the homomorphism bundle hom(π∗E, π∗F )
for π : T ∗M → M and two twisted Hilbert A-module bundles E and F .
It is proven that each symbol σ over T ∗M lifts to a transversally elliptic
one, denoted by σ̂, over T ∗P by multiplication with some regularization
function. Using an intrinsic Fourier transform like in [11], these can be
turned into Γ̂-equivariant transversally elliptic operators. With the help of
parametrices, which are shown to exist, an “analytic” index is constructed
in the case the algebra in play carries a trace. It is proven to yield a map
from the twisted K-group K0

π∗A(T ∗M) into the complex numbers and its
relation with the fractional analytic index of [38] is clarified.

• The most important part of section 4 introduces generalized projective
Dirac operators and relates them to operators on bundles over M in case
the twist is trivial. This is the starting point of the countertwisting tech-
nique alluded to in the introduction. Different ways of countertwisting
are explained with a special emphasis on spinor and flat countertwisting
bundles. The different variations of the Mishchenko-Fomenko-index
theorem can be found in (4.36), (4.37) and (4.43). After introducing the
notion of covering bundle gerbes, we classify flat bundle gerbe modules in
theorem 4.3.14 as those, for which the frame bundle gerbe reduces to a
covering one. This implies that they are completely determined by a pro-
jective (holonomy) representation of the fundamental group associated to
a certain lifting cocycle deduced from the bundle gerbe as amplified in
section 4.3.4. For the projective Dirac operator the dimension spectrum
corresponding to this particular cocycle carries some information about
the denominator of the Â-genus as stated in corollary 4.3.23.

• The last part of section 4 finally introduces our replacement of the Rosen-
berg index and we prove a twisted Bochner formula in theorem 4.4.4.
Besides the definition of the twisted Mishchenko-Fomenko-line bundle
and some remarks about the twisted group C∗-algebras, it also contains
a KK-theoretic viewpoint on countertwisting, which shows that it inter-
acts with the Kasparov product in a very nice way, which enables us on
one hand to easily prove some naturality statement about the projective
Dirac operator and on the other to state the analogue of Kasparov’s
index theorem in the twisted case (see theorem 4.5.9).

• Section 5 finally contains the application of the whole theory to the case of
enlargeable manifolds, which are defined in the beginning. After showing
that – with the stated notion of enlargeability – almost flat twisted bundle
gerbe modules exist, the core of the argument given in [27] is transferred
into our setup in theorem 5.1.1: Here the sequence of almost flat twisted
bundles is assembled into an infinite dimensional bundle as explained in
the introduction. Having accomplished this, it is a rather small step to
arrive at the generalization of the result from [27] in theorem 5.2.5.

• Section 6 contains some concluding remarks and perspectives about pos-
sible further generalizations of the theory of twisted Hilbert A-module
bundles in the index theoretical direction as well as in the direction of
C∗-algebra bundles with more complicated structure group.
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terstützung durch meine Freundin Kirstin Strokorb.

Meiner Familie, die bei allem, was ich bisher mit meinem Leben angestellt
habe, hinter mir stand, gebührt der größte Dank.
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Chapter 2

Preliminaries

2.1 Bundle gerbes and their modules

In this section we will present the basic properties of bundle gerbes, which were
first treated by Murray in [49]. Among the many different motivations for
them, ranging from a generalization of line bundles to bundles of 2-groups, let
us first explore, how they come up in the context of spin structures on non-spin
manifolds. More general, we will start with the example of lifting bundle gerbes,
which play a fundamental role throughout this paper. Let

1 −→ S1 −→ Γ̂ −→ Γ −→ 1

be a central S1-extension of Lie groups (which may be understood in a very
broad context, for example we could think of Banach, or even Fréchet Lie groups
here), such that Γ̂ → Γ is a principal S1-bundle. Take a principal Γ-bundle P
over a paracompact Hausdorff space X. Any vector bundle F → X pulls back
to a Γ-equivariant vector bundle E = π∗F → P . The extra data we have to
remember is the group action of Γ on E. This can be formulated in – at first
sight far too – elaborate terms by saying that E is a module over the pair
groupoid

P [2] P
..................................................... ............

..................................................... ............

where source and target maps are given by the projections πi and P [2] = P ×X
P = {(p1, p2) ∈ P 2 | π(p1) = π(p2)} denotes the fiber product over X. The
module structure of E over P [2] is then expressed as a map

P [2] × π∗2E −→ π∗1E ; (p1, p2, v) 7→ (p1, p2, g12 · v)

with v ∈ Ep2 . The element g12 is uniquely defined by the property that p1 g12 =
p2, i.e. it represents the morphism from p2 to p1, and acts via the isomorphism
Ep2 → Ep1 . Note the ordering convention, which is due to the fact, that we
would like to consider π2 as the source map and π1 as the target.

Now suppose that we have a representation % of Γ̂. Imagine we would like
to have some vector bundle E associated to a lift of P to a principal Γ̂-bundle
with the slight defect that we do not know whether this lift exists or not. In
the case Γ = SO(n), Γ̂ = Spinc this asks for the existence of a complex spinor
bundle and therefore is the complex version of the initial problem described
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above. Even though the lift P̂ may not exist, there still is a central extension
of the pair groupoid, given by:

X

P [2] P

L̂

..................................................... ............

..................................................... ............

..................................................
...
.........
...

..................................................
...
.........
...

where L̂ = κ∗(Γ̂) is the pullback of the principal S1-bundle Γ̂→ Γ via the map
κ : P [2] → Γ with κ(p1, p2) = g12, where g12 is like above. This way, the fiber
L̂(p1,p2) consists of all possible lifts of g12 ∈ Γ to an element ĝ12 ∈ Γ̂. Observe
that we can identify L̂ with a line bundle L→ P [2]. The group multiplication of
Γ̂ is now stretched out diagonally over the pair groupoid and leads to a product
structure over P [3]:

π∗12L⊗ π∗23L −→ π∗13L ; [ ĝ12, λ ]⊗ [ ĝ23, µ ] 7→ [ ĝ12ĝ23, λ µ ] ,

where πij : P [3] → P [2] are the canonical projections and the fiber L(p1,p2) =
L̂(p1,p2)×S1 C is written in the form [ĝ, λ] for ĝ ∈ Γ̂ and λ ∈ C. This action covers
the multiplicative structure on the pair groupoid and the obvious diagrams for
associativity commute. Note that 1 ∈ Γ has the canonical lift 1 ∈ Γ̂, therefore
we will often identify the fiber over the diagonal L(p,p) with the trivial line
bundle. It plays the role of an identity for the product this way.

The above point of view on equivariant vector bundles is still applicable to
this situation. Indeed, we can ask for a vector bundle E → P to carry an action1

of the bundle gerbe L, i.e. a bundle isomorphism:

L⊗ π∗2E −→ π∗1E

together with certain diagrams for associativity. E then becomes an almost
equivariant vector bundle up to the defect described by the central extension of
the pair groupoid P [2].

After this motivation, we can phrase the precise definitions of bundle gerbes
and bundle gerbe modules:

Definition 2.1.1. Let Y → X be a fibration over a paracompact Hausdorff
space X. A line bundle L→ Y [2] will be called a bundle gerbe, if it there exists
a product over Y [3], i.e. an isomorphism of line bundles

µ : π∗12L⊗ π∗23L −→ π∗13L ,

where πij : Y [3] → Y [2] denotes the canonical projection, such that over Y [4]

1This will later be called a twisting.
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the following diagram commutes:

(π∗12L⊗ π∗23L)⊗ π∗34L π∗12L⊗ (π∗23L⊗ π∗34L)

π∗13L⊗ π∗34L π∗12L⊗ π∗24L

π∗14L

.................................................................
...
.........
...
µ⊗ id

.................................................................
...
.........
...
id⊗ µ

..................................................................................................... ..........
..

µ
...................................................................................................

..
............ µ

..............................................................................................................................................

In case Y = P is a principal Γ-bundle and L is the bundle gerbe described
above, it will be called lifting bundle gerbe. Morphisms of bundle gerbes are
maps between line bundles compatible with µ.

Remark Let ∆: Y → Y [2] be the diagonal embedding ∆(y) = (y, y) and
let L → Y [2] be a bundle gerbe as defined above, then ∆∗L is a trivial line
bundle over Y playing the role of the unit for the bundle gerbe multiplication
µ. Therefore we will identify it with the trivial line bundle C → Y using the
following canonical isomorphism:

C −→ (∆∗L)∗ ⊗∆∗L −→ (∆∗L)∗ ⊗∆∗L⊗∆∗L −→ ∆∗L ,

where the second map is induced by the bundle gerbe multiplication, for which
∆∗L is an idempotent.

Likewise we have already met a module over a bundle gerbe above, from which
it is easy to derive the precise definition:

Definition 2.1.2. Let L → Y [2] be a bundle gerbe, and let E → Y be a
finite dimensional vector bundle. E is called a bundle gerbe module if it comes
equipped with a twisting, i.e. a bundle isomorphism

γ : L⊗ π∗2E −→ π∗1E ,

such that over Y [3] the following associativity diagram commutes:

(π∗12L⊗ π∗23L)⊗ π∗3E π∗12L⊗ (π∗23L⊗ π∗3E)

π∗13L⊗ π∗3E π∗12L⊗ π∗2E

π∗1E

.................................................................
...
.........
...
µ⊗ id

.................................................................
...
.........
...
id⊗ γ

........................................................................................................... ..........
..

γ
.........................................................................................................

..
............

γ

..............................................................................................................................................

Remark Here and in everything that follows we will often work with good
covers, i.e. a covering

⋃
i Ui ⊃ X, such that Uij = Ui ∩ Uj and all higher

intersections (Uijk, etc.) are contractible. We will assume that these exist for
all base spaces X or M without mentioning it. Note that every smooth manifold
carries a good cover, as does every simplicial complex.
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2.1.1 The Dixmier-Douady class and stable isomorphism

When viewing bundle gerbes as a generalization of line bundles, it comes as no
surprise that they also carry a product structure. The notion of triviality used
in this context, however, is different from just being trivial as a line bundle over
Y [2]. It is taylored, as we will see below, to be detected by a certain element
in third cohomology, which plays the role of the first Chern class in this theory
and is called the Dixmier-Douady-class.

Definition 2.1.3. Given a line bundle Q→ Y over the total space of a fibration
Y → X, we can always form the bundle gerbe:

L = π∗1Q⊗ π∗2Q∗ −→ Y [2]

with the product induced by the paring Q∗ ⊗ Q → C. This will be called the
trivial bundle gerbe. Likewise, an arbitrary L will be called trivial, if there exists
an isomorphism of bundle gerbes L→ π∗1Q⊗ π∗2Q∗ for some trivialization Q.

Notice that Q itself can be seen as a rank 1-module over L, since L→ π∗1Q⊗
π∗2Q

∗ corresponds to an isomorphism L ⊗ π∗2Q → π∗1Q. In fact, this argument
shows that there is a one-to-one correspondence between trivializations and
rank 1-modules over L.

Definition 2.1.4. Given bundle gerbes L1 → Y1, L2 → Y2 over some common
space X their product is defined to be

L1 � L2 = π∗
Y

[2]
1
L1 ⊗ π∗Y [2]

2
L2 −→ (Y1 ×X Y2)[2] = Y

[2]
1 ×X Y

[2]
2

with the multiplication acting factorwise over (Y1 ×X Y2)[2].

Note that for a bundle gerbe L its dual L∗ is again a bundle gerbe with
the multiplication induced by the inverse of the dual map µ∗. Since we always
assume L to be associated to a principal S1-bundle and therefore being equipped
with a hermitian structure, we can identify L∗ with the conjugate line bundle L.
Besides the notion of isomorphism explained above, there is a more general
notion of equivalence tightly bound to Morita equivalence.

Definition 2.1.5. Two bundle gerbes L1 → Y1, L2 → Y2 over some common
space X will be called stably isomorphic if L∗1 �L2 is trivial in the sense above,
i.e. there exists a line bundle Q→ Y1 ×X Y2 and an isomorphism:

(L∗1 � L2)⊗ π∗2Q −→ π∗1Q

compatible with the multiplicative structure on L∗1 � L2. Q is a stable isomor-
phism between L1 and L2.

Alternatively, we can see Q as an intertwiner between the multiplications
on L1 and L2, since it can be turned into an (associative) isomorphism:

π∗
Y

[2]
2
L2 ⊗ π∗2Q −→ π∗1Q⊗ π∗Y [2]

1
L1 .

This has another interpretation in terms of Morita-equivalence: If we view the
frame bundle L̂i of Li as a central S1-extension of the pair groupoid Yi ×M Yi,
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then the principal S1-bundle Q̂→ Y1 ×M Y2 fits into the diagram

Y1 Y2

L̂1 L̂2

Q̂
........................................................................
...
.........
...

........................................................................
...
.........
...

........................................................................
...
.........
...

........................................................................
...
.........
...

.................................................................................
..
............

................................................................................... ..........
..

........
.................

...................................................................
...
.........
...

........
.................

...................................................................
...
.........
...

(2.1)

where the curved arrows denote the action of Li on Q induced by the isomor-
phism of line bundles. In fact, this turns Q̂ into an L̂1-L̂2-bibundle with free
and proper actions and since Q̂/L̂1 is the space Y2 and vice versa, Q̂ induces a
Morita equivalence of groupoids.

As announced above, there is a characteristic class associated to a bundle
gerbe. It is most easily constructed in Čech cohomology in the following way:
Choose some good cover of X by open sets Ui (where “good” always refers to
the contractibility of non-empty intersections of arbitrary order) and sections
σi : Ui → Y . Over double intersections Uij = Ui ∩ Uj the pairs (σi, σj) : Uij →
Y [2] induce maps that land in the fiber product. Therefore L → Y [2] can be
pulled back to give Lij = (σi, σj)∗L over Uij . Choose sections κij : Uij → Lij ,
such that the image at every point has length 1. Note that the product yields
isomorphisms µijk : Lij ⊗ Ljk → Lik over triple intersections Uijk. Now the
maps µijk ◦ (κij , κjk) and κik differ by a function

ωijk : Uijk −→ S1 ,

which, when running through the details of this construction, can be seen to be
a Čech 2-cocycle with values in S1 that, up to a change by a coboundary, does
not depend on all the choices made during its construction [49].

Definition 2.1.6. The class [ωijk] ∈ Ȟ2(X,S1) will also be denoted by dd(L)
and is called the Dixmier-Douady-class of L.

For reasonably well-behaved spaces, like the smooth, closed manifolds we are
going to work with, Ȟ2(X,S1) is isomorphic to H3(X,Z). We will summarize
the properties of this class in the following theorem, which is proven in any
introductory source about bundle gerbes, see e.g. in [49, 12, 48].

Theorem 2.1.7. Let L,L1, L2 be bundle gerbes over X, then

i) dd(L) = 0 if and only if L is trivial.

ii) dd(L1 � L2) = dd(L1) + dd(L2) and dd(L∗) = −dd(L).

iii) Stable isomorphism classes of bundle gerbes are in 1 : 1-correspondence with
elements in Ȟ2(X,S1).

iv) If L → P [2] is the lifting bundle gerbe of a central S1-extension we have
that dd(L) = 0 if and only if P lifts to a principal Γ̂-bundle. The frame
bundle Q̂ of any trivialization of L provides a lift.

Converse to iv), every lift P̂ of P to a Γ̂-bundle yields a trivialization. Indeed,
the conjugate of the line bundle Q = P̂ ×S1 C over P is a rank 1-module with
twisting:

γ : L⊗ π∗2Q∗ −→ π∗1Q
∗ ; [ ĝ, λ ]⊗ [ p̂, µ ] 7→ [ p̂ ĝ−1, λ µ ] .
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2.1.2 Bundle gerbes in higher gauge theory

This section aims at giving a glimpse into the greater context, in which bundle
gerbes appear by explaining what they look like from a different point of view.
As we have introduced them above, they occur as S1-extensions of the pair
groupoid. To understand their different flavours and generalizations, we first
need some basics about higher algebraic structures.

Definition 2.1.8. A strict 2-group is a small monoidal category such that every
object and every morphism has a strict inverse with respect to the monoidal
structure or – phrased equivalently – a group object in groupoids (or equiv-
alently, which is a funny thing to check: a group object in the category of
categories).

Definition 2.1.9. A crossed module is given by a pair of two groups H,G
together with a homomorphism α : H → G and a right action of G on H denoted
by hg for h ∈ H and g ∈ G, such that: α(hg) = g−1α(h)g and hα(h1)

2 = h−1
1 h2h1.

These two notions are equivalent: Given a strict 2-group G we take G to
be the group of objects obj(G) and set H to be the set of morphisms with
the monoidal identity as source. This is a group with respect to the monoidal
structure, which we will denote by ⊗. The action of G on h is given by hg =
idg−1 ⊗ h ⊗ idg and α(h) = t(h). Starting from a crossed module α : H → G,
we can construct the groupoid G with objects G and arrows G×H with source
s(g, h) = g and target t(g, h) = gα(h). It becomes a group object with the
multiplication (g1, h1) (g2, h2) = (g1g2, h

g2
1 h2).

Given a central S1-extension 1→ S1 → Γ̂→ Γ→ 1, consider the associated
lifting bundle gerbe L→ Γ2 over a point. This turns out to be nothing else, but
the 2-group associated to the homomorphism α : Γ̂→ Γ, where Γ acts on Γ̂ via
conjugation. Indeed, the object space in this case is Γ, the arrows are given by
L with source and target the two projections πi. The monoidal structure uses
the multiplication on L. Therefore we may see a general lifting bundle gerbe as
a (principal) bundle of 2-groups given by the crossed module α : Γ̂→ Γ.

Observe that the trivial homomorphism α : S1 → {1} also gives rise to a 2-
group, which can be understood as the structure group of a general bundle gerbe
L→ Y [2] over Y [2] for some fibration Y → X. [3] takes this as a starting point
to extend the theory to non-abelian bundle gerbes with more general 2-groups
as a fiber.

2.1.3 Twisted K-theory and bundle gerbes

In the same way an orientation on a vector bundle E over a space X induces
a Thom class τ ∈ H∗c (E) and a ring isomorphism H∗c (E) ' H∗(X) via cup
product with τ , the existence of a spinc structure on E, i.e. a lift of the frame
bundle PE to a principal Spinc-bundle will provide similar objects in K-theory.

For ordinary cohomology we can work around the absence of orientability
by changing from constant coefficients to local ones. Looking at this procedure
from a homotopy theoretic point of view, it corresponds to replacing homotopy
classes of maps into the spectrum En = K(Z, n) by homotopy classes of sections
in a bundle of spectra over the space X in question, leading the way into the
world of parametrized homotopy theory as explained in the book by May and
Sigurdsson [40].
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Like twists for ordinary cohomology can be described as Z/2-torsors, that
is homotopy classes of maps X → BZ/2, twists for K-theory are classified by
BU⊗-torsors, i.e. maps X → BBU⊗, where BU⊗ is the classifying space BU of
vector bundles with virtual dimension 0 with H-space structure induced by the
tensor product. BBU⊗ splits on the level of spaces to give:

BBU⊗ = K(Z/2, 1)×K(Z, 3)×BSU⊗ .

The first factor describes orientation twists of much the same flavour as those
for ordinary cohomology, the last one yields the so-called higher twists in K-
theory (see for example Teleman [69]). The second factor has nice geometric
interpretations, which shall be explained on the zeroth part of the spectrum,
i.e. for K0. By the Atiyah-Jänich-theorem, this group can be understood as
homotopy classes of maps:

K0(X) = [X,Fred(H)]

into the Fredholm operators on some separable Hilbert space H. Conjugation
by an element of the unitary group U(H) maps Fred(H) into itself. Given a
principal bundle P with structure group PU(H) = U(H)/U(1), we can associate
Fred(H) to get F = P ×Ad Fred(H) and define

K0
P(X) = [X,F ] = [P,Fred(H)]PU(H)

as the homotopy classes either of sections or of PU(H)-equivariant maps [5, 6].
Indeed, BPU(H) is a K(Z, 3)-space, the isomorphism class of P represents an
element in H3(X,Z) and the above definition yields K-theory twisted with P.
Observe that the K-groups for different bundles representing the same class
[P] ∈ H3(X,Z) are isomorphic, but the isomorphism is non-canonical. There-
fore we will only talk about K-theory twisted with P, not with [P] ∈ H3(X,Z).

A little closer to non-commutative geometry Rosenberg gave a description
of this group in terms of the K-theory of C∗-algebras in [57]. For a principal
PU(H)-bundle P, consider the bundle AK = P ×Ad K with fibers the compact
operators on a separable Hilbert space. The continuous sections C(M,AK) form
a C∗-algebra and we have

Theorem 2.1.10. For the K0-group twisted with P representing the element
[P] ∈ H3(M,Z) over a paracompact Hausdorff space X there is a canonical
isomorphism:

K0
P(X) ' K0(C(X,AK)) .

In case P represents a torsion class, it reduces to a bundle with structure
group PU(n) for some n ∈ N. Therefore AK reduces to a bundle of matrix
algebras K. Associated to PU(n) we have the short exact sequence:

1 −→ S1 −→ U(n) −→ PU(n) −→ 1

and the class represented by [P] coincides with the Dixmier-Douady-class of
the corresponding lifting bundle gerbe. Indeed, as was shown in [12], virtual
modules over this bundle gerbe replace virtual vector bundles in their role as
geometric representation of K-cycles for twisted K-theory. They fit into the
framework in a particularly nice way:
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Theorem 2.1.11. Given a bundle gerbe L → Y [2] with dd(L) torsion, then
the Grothendieck group of bundle gerbe modules over L, denoted by K0

L(X)
depends up to isomorphism only on the stable isomorphism class of L. It is
isomorphic to the twisted K0-group for the twist dd(L).



Chapter 3

Twisted Hilbert A-module
bundles

One of the crucial insights of the last section was a geometric representation of
the twisted K-theory group K0

P(M) with torsion twist in terms of virtual bundle
gerbe modules over some lifting bundle gerbe L, which had its counterpart
in the world of C∗-algebras as the K0-group of sections in a matrix algebra
bundle K. Let A be a unital C∗-algebra and consider continuous A-valued
functions C(M,A) equipped with the supremum norm. In view of the previous
observations we can see the K-group K0(C(M,A)) as the non-twisted version
of some more general setup. Indeed, K0(C(M,A)) can be described by virtual
Hilbert A-module bundles over M with projective fibers. So, there is hope to
find a similar description for the C∗-algebra C(M,A) of sections in some (locally
trivial) bundle with C∗-fibers in terms of twisted bundles, at least in case the
structure group of A is not too wild. This point of view will be developed in
the following chapter, which starts with a definition motivated by the twisted
case with coefficients in C.

Definition 3.0.12. Given a C∗-algebra A we denote by PU(A) the group of
unitary elements in the associated multiplier algebra M(A) modulo the phase
factors U(1) ⊂ U(M(A)). Let M be a compact manifold, then a PU(A)-bundle
A over M is a locally trivial bundle of C∗-algebras with typical fiber A, such
that its associated Aut(A)-bundle restricts to PU(A) (that is, the associated
Čech 1-cocycle Uij −→ Aut(A) factors through PU(A)).

Remark At this point, it might seem unreasonable to consider only the quo-
tient by U(1) instead of Z(A), the center of U(A), which would also be closer
to deserve the name projective unitary group. The reason is more a simplifica-
tion than a restriction. In fact, we would like to deal with line bundle gerbes,
especially when treating trivializations and connections, which are most easily
phrased in terms of tensor products and forms. In case the center of A is a
compactly generated abelian group of Lie type, i.e. if it is isomorphic to

Rn × Zm × (S1)k × F

for some finite group F and k, n,m ∈ N0, the step towards an extension of
the whole theory should be possible with a slightly enhanced version of bundle
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gerbes. This point will also be addressed in the outlook given at the end of this
paper.

Remark Although most of the propositions, in particular lemma 3.2.2 and
theorem 3.2.6, also hold for non-unital C∗-algebras A, we will from now on
assume that A has a unit.

Definition 3.0.13. A twisted Hilbert A-module bundle E associated to a PU(A)-
bundle A is a locally trivial (right) Hilbert A-module bundle over the PU(A)-
principal bundle P of A together with an isometric (left) action of the lifting
bundle gerbe L −→ P [2], i.e.

• a fiberwise A-linear isometric isomorphism

γ : L⊗ π∗2E
'−→ π∗1E ,

which is associative with respect to the bundle gerbe product on L.

Alternatively one could describe γ by isometric isomorphisms that shift the fibers
by g−1 ∈ PU(A), i.e.

γg : Lg ⊗ E −→ E ,

where Lg is the pullback of L via p 7→ (p, pg).
If the typical fiber of E is a projective Hilbert A-module, then E itself will

be called projective.

Example 3.0.14. Let U be a contractible manifold and t ∈ Mn(A) be a pro-
jection in the matrix algebra of a unital C∗-algebra A. Set

F = {(x, g, v) ∈ U × PU(A)×An | ĝ∗tĝ v = v} ,

where ĝ here and in the following denotes a lift of g ∈ PU(A) to U(A). Due
to the conjugation, the fibers are independent of the choice of lift. Now F is a
projective twisted Hilbert A-module bundle over U associated to the PU(A)-
bundle U ×A with γ given by

γ : L⊗ π∗2F −→ π∗1F , [ĝ, λ]⊗ v 7→ λ ĝv .

Since every principal PU(A)-bundle P over U is trivial due to its contractibi-
lity, this is a quite general situation. Indeed, we will see in the following that
every projective twisted Hilbert A-module bundle locally looks like this exam-
ple, which is as less twisted as possible and therefore shall be called the slightly
twisted Hilbert A-module bundle. Let V = t An, then F will also be denoted by
V expressing that the fiber over the identity element is canonically isomorphic
to V .

Example 3.0.15. Let A be a PU(A)-bundle over a closed manifold M and let
P be its associated principal bundle. Consider An := P × An for some n ∈ N
together with γ given by

γ : L⊗ π∗2An −→ π∗1A
n , [ĝ, λ]⊗ v 7→ λ ĝv . (3.1)

This is a projective twisted Hilbert A-module bundle closely connected to the
slightly twisted one, but defined globally. We will call this the trivial twisted
Hilbert A-module bundle.
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3.1 The projective unitary group of a C∗-algebra

Since the world of infinite dimensional topological groups has a landscape full
of craters and volcanoes, it is a rather lucky fact, that the unitary group U(A)
decided to settle down in a quiet and peaceful part of it. When equipped with
the norm topology, it is a real Banach Lie group modelled on the real Banach
space of skew-adjoint operators, which will be denoted by ia, see for example
Corollary 15.22 in [74] for a proof of this fact. As such, it is also a regular
Lie group in the sense of [34], which will help us later, when we need to solve
differential equations on U(A), for example to get parallel transport. Due to
the quotient theorem proven by Glöckner and Neeb in [23], PU(A) turns out
to be a real Banach Lie group as well modelled on the quotient ia/iR1, where
iR1 ⊂ ia is the one-dimensional real subspace spanned by i1 ∈ A.

Theorem 3.1.1. In the short exact sequence

1 −→ S1 −→ U(A)
q−→ PU(A) −→ 1

the group U(A) is a (locally trivial) principal S1-bundle over PU(A).

Proof. Since U(A), PU(A) are Banach Lie groups, their exponential maps are
local diffeomorphisms around 0. To find a splitting for q in some open neighbor-
hood of the identity, it is thus enough to find a linear split for q∗ : ia→ ia/iR1.
Since iR1 ⊂ ia is finite-dimensional and therefore complementable, there is a
direct sum decomposition ia = e⊕ iR together with an isomorphism of Banach
spaces: e ' ia/iR. This yields a continuous linear split

ia/iR −→ ia .
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3.2 Morphisms of twisted Hilbert A-module
bundles

Now consider two twisted Hilbert A-module bundles E and F living over the
same PU(A)-principal bundle P −→ M . Let Hom(E,F ) denote the bundle
with fiber at p ∈ P given by the Hilbert A-module morphisms from Ep to
Fp. There is a left action of PU(A) on this bundle shifting its fibers. It maps
φp ∈ Hom(Ep, Fp) to g · φp ∈ Hom(Epg−1 , Fpg−1) given by:

(g · φp) : Epg−1 Lg ⊗ Ep Lg ⊗ Fp Fpg−1........................................................................... ............
γ−1
E .......................................................................................................................................... ............

id⊗ φp
...................................................................................................................................................... ............

γF (3.2)

Commutativity of the following diagram ensures associativity of this group ac-
tion:

Fp(g1g2)−1

Lg1 ⊗ Lg2 ⊗ Fp

Lg1 ⊗ Lg2 ⊗ Ep

Ep(g1g2)−1

Lg1 g2 ⊗ Fp

Lg1 g2 ⊗ Ep

................................................
..
............

........................................................................ ..........
..

........................................................................................................................................................... ............

.................................................. ..........
..

................................................................................................................................................................ ............

.........................................................................
..
............

..............................................................................................................
...
.........
...

idL ⊗ idL ⊗ φp

..............................................................................................................
...
.........
...

idL ⊗ φp

The horizontal maps correspond to the bundle gerbe product on the second
tensor factor. Since we can identify Le with C, the trivial element of PU(A)
acts trivially.

The projection map Hom(E,F ) −→ P factorizes over the action of PU(A)
to give hom(E,F ) −→ M , which is again a locally trivial bundle. To see this,
choose for an arbitrary point x ∈M a contractible neighborhood U . Since P is
trivial over U , the latter maps into P via the identity section σ : U −→ P|U .
There are two canonical maps

ι1 : hom(E,F )|U −→ σ∗ Hom(E,F )|U , [v] 7→ g · v ,
ι2 : σ∗ Hom(E,F )|U −→ hom(E,F )|U , w 7→ [w]

(with g ∈ PU(A) chosen in such a way that g · v lies above the identity), which
are easily seen to be inverse to each other. But since Hom(E,F ) is locally
trivial and U is contractible, we have established a local isomorphism to the
trivial bundle.

Global sections of the bundle hom(E,F ) correspond to morphisms between
twisted Hilbert A-module bundles, by which we mean a fiberwise A-linear map
φ intertwining the actions of the bundle gerbe, i.e. the following diagram com-
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mutes:
L⊗ π∗2E L⊗ π∗2F

π∗1E π∗1F

............................................................
...
.........
...
γE

............................................................
...
.........
...
γF

.............................................................................................................................................................. ............
idL ⊗ π∗2φ

........................................................................................................................................................................................................... ............
π∗1φ

Note especially that, although the bundle E itself needs the intermediate
space P to be well-defined, its endomorphism bundle end(E) does not, even
better: it is a locally trivial bundle of C∗-algebras over M . Therefore, equipped
with the sup-norm, the sections Γ(end(E)) form a C∗-algebra.

Example 3.2.1. An important example of the above construction is the endo-
morphism bundle of the trivial twisted Hilbert A-module bundle An for some
n ∈ N. Note that right A-linear endomorphisms of An are always maps of the
form φ : v 7→ T v for some A-valued n × n-matrix T ∈ Mn(A) ' A ⊗Mn(C).
Therefore (3.1) turns (3.2) into the conjugation action on T, i.e.

(g · φp)(v) = ĝ T ĝ−1 v .

Thus, taking the quotient yields an identity that lies at the heart of the theory
of twisted Hilbert A-bundles:

end(An) ' P ×Ad Mn(A) ' A⊗Mn(C) .

Especially we regain the PU(A)-bundle A as endomorphism bundle of the trivial
twisted ”line” bundle A.

Lemma 3.2.2. Let E be a twisted Hilbert A-module bundle over M . Every
x ∈M has a contractible neighborhood U ′, such that there exists an isomorphism
Ψ : E|U ′ −→ V of twisted Hilbert A-module bundles to the slightly twisted bundle
over U ′.

Proof. Choose a contractible neighborhood U of x, such that P is trivial over
U and let Ē be the pullback:

U × PU(A) P

Ē E

...................................................................................................................... ............
ϕ

............................................................
...
.........
...

............................................................
...
.........
...

................................................................................................................................................................... ............
ϕ̄

Pulling back the bundle gerbe L to L̄ over U × PU(A)× PU(A) as well, there
is an action:

γ̄ : L̄⊗ π̄∗2Ē −→ π̄∗1E .

Let V := t An ' E(x,1) be an isomorphic image of the fiber E(x,1). Since E is
locally trivial over P, there is a neighborhood U ′×W ⊂ U ×PU(A) containing
(x, 1) and a trivialization ψ : Ē

∣∣
U ′×W −→ U ′ ×W × V . From now on we will

identify Ē with its restriction to U ′×PU(A). Now let V be the slightly twisted
bundle over U ′ associated to t and δ̄ be the corresponding action of L on V .
Let U ′′ = U ′×PU(A)×{1}, then Ē can be identified with π̄∗1Ē

∣∣
U ′′

, likewise V
is a similar subbundle in π̄∗1V . Therefore

Ψ : π̄∗1Ē
∣∣
U ′′

L̄⊗ π̄∗2
(
Ē
∣∣
U ′×{1}

)
L̄⊗ π∗2

(
V |U ′×{1}

)
π∗1V |U ′′....................................................... ............

γ̄−1

............................................................................................................ ............
idL ⊗ ψ

................................................ ............̄
δ
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can be interpreted as an A-linear map between Ē and V . It is also isometric,
since all maps involved preserve the fiberwise scalar product.

What remains to show is that Ψ is a morphism of bundle gerbe modules, i.e.
that the diagram:

L⊗ π∗2V π∗1V

L⊗ π∗2Ē π∗1Ē
.................................................................................................................................. ............

γ̄

............................................................
...
.........
...
idL ⊗ π∗2Ψ

.................................................................................................................................. ............
δ̄

............................................................
...
.........
...
π∗1Ψ

(3.3)

commutes. Let π̃i, π̃ij for i, j ∈ {1, 2, 3} be the canonical projections of U ′ ×
PU(A) × PU(A) ×W to one or a product of two factors. Note that the two
diagrams

π̃∗12L⊗ π̃∗2Ē π̃∗1Ē

L⊗ π∗2Ē π∗1Ē

L⊗ π∗2V π∗1V

π̃∗12L⊗ π̃∗2V π̃∗1V

................................................................................................................. ............
π̃∗12γ̄

.................................................................................................................................. ............
γ̄

............................................................
...
.........
...̃
ι1

............................................................
...
.........
...
ι1

................................................................................................................. ............
π̃∗23δ̄

.................................................................................................................................. ............
δ̄

............................................................
...
.........
...
p̃r

............................................................
...
.........
...
pr

commute, where the maps ι̃1 and ι1 inject the bundles to their pullbacks over
PU(A)×PU(A)×{1}, while p̃r and pr project to their restriction to PU(A)×
PU(A). Furthermore all squares in

π̃∗12L⊗ π̃∗2V π̃∗1V

π̃∗12L⊗ π̃∗23L⊗ π̃∗3V π̃∗13L⊗ π̃∗3V

π̃∗12L⊗ π̃∗23L⊗ π̃∗3Ē π̃∗13L⊗ π̃∗3Ē

π̃∗12L⊗ π̃∗2Ē π̃∗1Ē

..................................................................................................................................................................................................................... ............
π̃∗12δ̄

.................................................................................................................................. ............

.................................................................................................................................. ............

..................................................................................................................................................................................................................... ............
π̃∗12γ̄

............................................................
...
.........
...
idL ⊗ π̃∗23δ̄

............................................................
...
.........
...
π̃∗13δ̄

............................................................
...
.........
...
idL ⊗ idL ⊗ π̃∗3ψ

............................................................
...
.........
...
idL ⊗ π̃∗3ψ

............................................................
...
.........
...
idL ⊗ π̃∗23γ̄

−1

............................................................
...
.........
...
π̃∗13γ̄

−1

commute – the upper and lower one because of associativity of the bundle gerbe
product, the middle one trivially. Sticking the previous diagrams to top and
bottom of this rectangle we read off the commutativity of (3.3).

Definition 3.2.3. The above construction of twisted bundle morphisms turns
the class of twisted Hilbert A-module bundles into a category TwBunA.

Having at hand an endomorphism bundle of C∗-algebras living above the
base manifold instead of the topologically huge space P, enables us to carry
over some well known results from the theory of non-twisted Hilbert A-module
bundles like the following:

Lemma 3.2.4. Given two twisted Hilbert A-module bundles E,F , which are
isomorphic as twisted A-module bundles, i.e. via a twisted bundle map ϕ not
necessarily preserving the scalar product. Then there exists an isomorphism ϕ̄
which respects the inner product as well.
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Proof. Assume that ϕ ∈ C(M, hom(E,F )) is an isomorphism. Since ϕ∗ ϕ ∈
C(M, end(E)) and the latter space is a C∗-algebra, we take the polar decom-
position ϕ = u |ϕ| (with |ϕ| =

√
ϕ∗ ϕ). The element u ∈ C(M, iso(E,F )) is the

isometry we were looking for.

Lemma 3.2.5. (Clutching construction) Given a space M , a PU(A)-bundle
A over M with frame bundle ρ : P → M and an open cover Ui ⊂ M . If Ei
over ρ−1(Ui) are twisted Hilbert A-module bundles together with twisted bundle
isomorphisms ϕij : Ei −→ Ej over Uij = Ui ∩ Uj, which satisfy the cocycle
identity ϕjk ◦ ϕij = ϕik over Uijk, then there exists a twisted Hilbert A-module
bundle E over M and twisted bundle isomorphisms ψi : Ei −→ E|Ui such that
the following diagram commutes:

Ei Ej

E|Uij

................................................................................................................. ............
ϕij

............................................................................... .........
...

ψi
...........................................................................

...
............
ψj

Furthermore, if there exist twisted bundle morphism κi : Ei −→ F into another
twisted bundle F , such that κi = κj◦ϕij, then there is a twisted bundle morphism
κ : E −→ F restricting to κi over Ui.

Proof. The construction can be carried out word by word like in the untwisted
case with

E =
∐
i

Ei/ ∼ with vj ∼ ϕij(vi)

and the obvious embeddings ψi of Ei into E. Local triviality of E over P then
follows from the local triviality of the Ei. The intertwining condition for twisted
bundle morphisms now implies that there is a well-defined twisting

γ : L⊗ π∗2E −→ π∗1E .

Since κ =
∐
i κi factors over the equivalence relation by assumption, this yields

the twisted bundle morphism.

Theorem 3.2.6. Let E be a projective twisted Hilbert A-module bundle, then
there exists n ∈ N such that E is isomorphic (as a twisted Hilbert A-module
bundle) to a direct summand of the trivial twisted Hilbert A-module bundle An.

Proof. Following the trivialization lemma 3.2.2, there exists a finite open cover
Ui, i = 1 . . .m of M , such that each Ui is contractible and E|ρ−1(Ui)

is twistedly
isomorphic to V over Ui, where V is the typical fiber of E. We will assume
Ui to be a good cover, that is all intersections are either empty or contractible.
Embedding V into the globally defined trivial bundle Ak, yields a map

Ψ : E −→ Akm ; v 7→
m∑
i=1

hi(ρ ◦ π(v)) · φi(v) , (3.4)

where (hi)i=1...m is a subordinate partition of unity and φi : Eρ−1(Ui) −→ Ak.
Taking fiberwise orthogonal complements, produces a bundle over P of the form

E⊥ = {(p, v) ∈ P ×Akm | 〈v,Ψ(w)〉 = 0 ∀w ∈ Ep} .
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Let δ be the bundle gerbe action of L on Akm, γ be the action on E, then

〈δ([ĝ, λ]⊗ v),Ψ(w)〉
= 〈δ([ĝ, λ]⊗ v),Ψ(γ([ĝ, µ]⊗ w′))〉
= 〈δ([ĝ, λ]⊗ v), δ([ĝ, µ]⊗Ψ(w′))〉
= λ̄µ 〈v,Ψ(w′)〉 = 0

for all v ∈ E⊥p , w ∈ Epg−1 . Thus, it is possible to restrict δ to E⊥ to get an
action of the bundle gerbe L there as well.

The next step is to show that E⊥ is indeed an orthogonal complement of
E in Akm, which cannot be taken for granted in the case of Hilbert modules.
Since we only need to show this locally, we fix some p ∈ P and consider the
contractible open set Ū =

⋂
p∈ρ−1(Ui)

Ui. Now note that Ψ factors as

Ψ : E|ρ−1(Ū)
Ψ−→ V m̄

∣∣
Ū×PU(A)

−→ Akm̄ ⊕Ak(m−m̄)
∣∣∣
ρ−1(Ū)

,

where Ψ is the same map as in (3.4) with φi replaced by φi : Eρ−1(Ui) −→
V |Ū×PU(A) the index running over all j ∈ {1 . . .m} such that Uj ∩ Ū 6= ∅. In
the second step this is embedded into Akm̄ using the same local trivializations
of P as for the definition of the map to V . This again factors as

V m̄
∣∣
Ū×PU(A)

−→ (V ⊕ V ⊥)m̄
∣∣∣
Ū×PU(A)

−→ Akm̄ ⊕Ak(m−m̄)
∣∣∣
ρ−1(Ū)

.

E⊥
∣∣
ρ−1(Ū)

splits as Ê⊥
∣∣∣
ρ−1(Ū)

⊕ Ak(m−m̄), since the image of Ψ restricted to

ρ−1(Ū) lies in Akm̄. Pulling back Ê⊥ over Ū × PU(A), it splits off (V ⊥)m̄ as a
direct summand, since the image of Ψ lies completely in V m̄. The restriction of
this pullback to the other summand will be denoted E

⊥
.

Therefore proving that E
⊥

is a complement of Ψ(E) in V m̄, finishes the
theorem. But this part is very similar to the non-twisted case. For the sake
of completeness we will repeat the main points here. It suffices to show that
Ψ(Ep)+E

⊥
p = V m̄, since directness of the sum easily follows from the positivity

of the inner product. The definition of Ψ implies

Ψ(Ep) = {(λ1 φ1(w), . . . , λm̄ φm̄(w)) ∈ V m̄ | w ∈ Ep}
= {(v, κ2(v) . . . , κm̄(v)) ∈ V m̄ | v ∈ V }

with λi ∈ R, at least one λj 6= 0. Without loss of generality, we assume that
λ1 6= 0, then κi = λ−1

1 λi φi ◦ φ
−1

1 ∈ End(V ) (φi is an isometry and therefore
adjointable).

Consider now the Hilbert A-module Fp spanned by the set

{(−κ∗j (v), 0, . . . , 0, v, 0, . . . , 0) ∈ V m̄ | v ∈ V, j ∈ {1, . . . m̄}}

with v at the jth position. A short calculation shows Fp = E
⊥
p . Indeed, the
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equality Fp + Ψ(Ep) = V m̄ holds, since the system of equations

v1 − κ∗2(v2)− · · · − κ∗m̄(vm̄) = w1

κ2(v1) + v2 = w2

...
κm̄(v1) + vm̄ = wm̄

or equivalently

v1 + κ∗2(κ2(v2)) + · · ·+ κ∗m̄(κm̄(vm̄)) = w1 + κ∗2(w2) + · · ·+ κ∗m̄(vm̄)
v2 = w2 − κ2(v1)

...
vm̄ = wm̄ − κm̄(vm̄)

has a unique solution for an arbitrary vector (w1, . . . , wm̄) ∈ V m̄, because 1 +
κ∗2 κ2 + · · ·+ κ∗m̄ κm̄ is an invertible element in the C∗-algebra End(V ).

A trivialization of E
⊥

in this description is easily constructed from

α1 : E
⊥
∣∣∣
{λ1 6=0}

−→ V k−1 ; (v1, . . . , vm) 7→ (v2, . . . , vm)

(note that we always assume λ1 6= 0). Using lemma 3.2.4 these maps can be
modified to isometric ones. Since the pullback of E⊥ to Ū×PU(A) is isomorphic
to E

⊥ ⊕ (V ⊥)m̄ ⊕Am−m̄, local triviality holds for E⊥ as well.
The outcome is an embedding of E as a direct summand in E ⊕ E⊥ =

Am.

Definition 3.2.7. A virtual twisted Hilbert A-module bundle is a class of pairs
(E+, E−), denoted E+ −E−, with respect to the following equivalence relation
(E+, E−) ∼ (F+, F−) ⇔ ∃G ∈ TwBunA, such that E+ ⊕ F− ⊕ G ' F+ ⊕
E− ⊕G.

Due to theorem 3.2.6, the equivalence relation stays the same if we replace
the twisted Hilbert A-module bundle G by Am, since we can simply add the
stable inverse G⊥ on both sides. The operation of direct sum turns the virtual
bundles into an abelian group, which will be denoted by K0

A(M).

Theorem 3.2.8. (Twisted Serre-Swan Theorem) Let A be a PU(A)-
bundle, then there is an isomorphism

K0(C(M,A)) ' K0
A(M) .

Indeed, the category of projective twisted Hilbert A-module bundles is naturally
equivalent to the one of finitely generated, projective C(M,A)-modules.

Proof. Let t be a projection in Mn(C(M,A)) ' C(M,Mn(A)) for some n ∈ N.
To get a twisted Hilbert A-module bundle, consider

E = {(p, v) ∈ P ×An | (Mn(p) ◦ t)(ρ(p)) v = v}
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where ρ : P −→ M denotes the bundle projection and p is considered as a
∗-isomorphism p : Aρ(p) −→ A. The twisting γ is given by

γ : L⊗ π∗2(E) −→ π∗1(E) , [λ, ĝ]⊗ v 7→ λĝv .

Due to the calculation

(Mn(pg−1) ◦ t)(ρ(pg−1))λĝv = λĝ(Mn(p) ◦ t)(ρ(p))ĝ−1ĝv

= λĝ(Mn(p) ◦ t)(ρ(p))v = λĝv ,

γ is well-defined and maps Lg ⊗ Ep to Epg−1 . This is an isometry with respect
to the inner product attained by restricting the product on P ×An to E.

To see that E is locally trivial, fix a point p0 and the corresponding projection
t0 = (Mn(p0) ◦ t)(ρ(p0)) ∈ Mn(A). Set tp = (Mn(p) ◦ t)(ρ(p)) ∈ Mn(A).
By continuity of p 7→ tp, there is an open neighborhood P ⊃ U 3 p0 with
‖tp− t0‖ < 1 for all p ∈ U , which implies that tp and t0 are unitarily equivalent.
Let u : U −→ U(Mn(A)) be such that utp = t0u. Then

Φ : E|U −→ U × t0An ; (p, v) 7→ (p, uv)

provides a trivialization of E over U .
Note that for two projections t ∈ C(M,Mm(A)) and s ∈ C(M,Mk(A)) the

block sum t ⊕ s ∈ C(M,Mm+k(A)) yields the direct sum of the corresponding
twisted Hilbert A-module bundles.

Let E be a projective twisted Hilbert A-module bundle over M . By theo-
rem 3.2.6 there exists an embedding E −→ Am for some m ∈ N. The bundle
map

t : Am −→ Am

consisting fiberwise of projections with Ep as their image clearly is a morphism
of bundle gerbe modules and therefore descends to a projection-valued section
in C(M,Mm(A)) = C(M, end(Am)).

Since E is twistedly isomorphic to its image in Am the above operations are
inverse to each other.

3.3 Twisted K-theory of locally compact spaces
and K0

A(X, Y )

Since we are going to deal with symbol classes, which live in the K-theory of
the cotangent bundle, we have to define twisted K-theory with local coefficients
in a unital C∗-algebra A for non-compact spaces as well. According to the
non-twisted case, where we have

K0
A(X)

' kern(K0
A(X+) −→ K0

A(∞))
' kern(K0(C0(X,A)+) −→ Z)
' K0(C0(X)⊗A) ,

K-theory with compact supports should be the right notion. The subtle diffi-
culty in showing that the geometric and the algebraic picture, which we want
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to be K(C0(X,A)), agree, is that the bundle of C∗-algebras A lives over X.
Unlike the non-twisted case there need not be an extension of A to the one-
point-compactification X+ (whereas the trivial bundle can always be extended).
Nevertheless, we start with the most natural definition:

Definition 3.3.1. Let M be a locally compact, Hausdorff space, then the
twisted K-theory K0

A(M) with local coefficients in the unital C∗-algebra A is
given by triples (E+, E−, ϕE), where E+ and E− are twisted Hilbert-A-module
bundles and ϕE ∈ Cb(M,hom(E+, E−)) is a twisted bundle morphism that is
an isomorphism on the complement of a compact subset K ⊂M , subject to the
equivalence relation generated by the following: (E+, E−, ϕE) is equivalent to
(F+, F−, ϕF ) if there exist isomorphisms ψ± ∈ Cb(M, iso(E±, F±)) and a com-
pact subset K̂ such that on the complement of K̂ the morphisms ϕE , ϕF are
isomorphisms and the following diagram commutes:

E+|M\ bK E−|M\ bK

F+|M\ bK F−|M\ bK

................................................................................................................................ ............
ϕE

..................................................................................................................................... ............
ϕF

........................................................................
...
.........
...
ψ+

........................................................................
...
.........
...
ψ−

Furthermore, we demand (E+, E−, ϕE) ∼ (E+⊕G,E−⊕G,ϕE⊕id) for another
twisted Hilbert A-module bundle G. In the compact case the morphism ϕE
becomes obsolete and we retrieve the old definition.

Remark A detailed description of the K-theory for Banach categories, which
can be applied in our case, since Cb(M,hom(E,F )) are Banach spaces, can be
found in the book by Karoubi [32]. Let us briefly describe how inverses are
constructed. We need the following lemma proven in [32]:

Lemma 3.3.2. Let A, A′ be unital Banach algebras and f : A −→ A′ be a
surjective homomorphism. Let GL(A), GL(A′) denote the groups of invertible
elements in A, A′ respectively. Let σ : I −→ GL(A′) be a continuous path such
that σ(0) = f(α) for some α ∈ GL(A). Then there is an element β ∈ GL(A)
such that f(β) = σ(1).

This implies:

Lemma 3.3.3. Let (F, F, ϕF ) be a triple as described above. If the twisted
bundle morphism ϕF ∈ Cb(M, iso(F )) is homotopic to the identity outside a
compact subset, then:

(F, F, ϕF ) ∼ (F, F, idF ) .

Proof. By a partition of unity argument it is easy to see that the restriction map
Cb(M, end(F )) −→ Cb(U, end(F )) for U = M\W and W ⊃ K a precompact,
open neighborhood of the compact set K is a surjective homomorphism of C∗-
algebras. By assumption there is a path h : I −→ Cb(U, iso(F )) with h(0) =
idF |U and h(1) = ϕF |U . By the previous lemma there exists ψ ∈ Cb(M, iso(F ))
such that ψ|U = ϕF |U . Now the lemma follows from the diagram:

F |U F |U

F |U F |U

.................................................................................................................................................................................. ............
ϕF

........................................................................
...
.........
...
ψ

........................................................................
...
.........
...
id

.................................................................................................................................................................................. ............id
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The inverse of a triple (E+, E−, ϕE) is given by (E−, E+,−ϕ−1
E ), where

ϕ−1
E ∈ Cb(M, end(E)) is any section of Cb(M, end(E)) that coincides with the

inverse of ϕE on the complement U of a compact subset, on which the latter is
invertible. To see this, note that there is a homotopy:

h(t) =
(

1 −tϕ−1
E

0 1

)(
1 0
tϕE 1

)(
1 −tϕ−1

E

0 1

)
h(0) =

(
1 0
0 1

)
, h(1) =

(
0 −ϕ−1

E

ϕE 0

)
connecting ϕE ⊕ (−ϕ−1

E ) to the identity in Cb(U, iso(E)).

Lemma 3.3.4. Every class in K0
A(M) is represented by a triple (G,AN , ψ),

where AN denotes the trivial twisted bundle.

Proof. Let (E+, E−, ϕE) be a triple representing an element in K0
A(M). Let

K ⊂ M be a compact set such that ϕE is invertible on M\K. Choose a
precompact open neighborhood W ⊃ K and a twisted Hilbert-A-module bundle
F such that E− ⊕ F |W ' AN

∣∣
W

. Denote the isomorphism by α. This yields:

α ◦ (ϕE ⊕ id) : E+ ⊕ F |W −→ AN
∣∣
W

We now have E+ ⊕ F over W and AN over M\K. The previous map yields
an isomorphism in Cb(W\K,hom(E+⊕F,AN )). By the clutching construction
there exists a twisted Hilbert-A-module bundle G over M and a morphism
ψ ∈ Cb(M, hom(G,AN )) restricting to α ◦ (ϕE ⊕ id) over W . Now consider the
restriction

ψ ⊕ ϕ−1
E

∣∣
W\K : G⊕ E−|W\K −→ AN ⊕ E+

∣∣
W\K ,

which is isomorphic to

ϕE ⊕ id⊕ ϕ−1
E

∣∣
W\K : E+ ⊕ F ⊕ E−|W\K −→ E− ⊕ F ⊕ E+|W\K .

The operator homotopy

h(t) =
(

sin(t) cos(t)ϕE
cos(t)ϕ−1

E − sin(t)

)
: E+ ⊕ E− −→ E+ ⊕ E−

connects

h(0) =
(

0 ϕE
ϕ−1
E 0

)
to h

(π
2

)
=
(

1 0
0 −1

)
.

The last map extends over all of W . By lemma 3.3.2 there is an element ψ̂ ∈
Cb(W, iso(E+⊕F⊕E−)) restricting to ϕE⊕id⊕ϕ−1

E onW\V , whereW ⊃ V ⊃ K
is an open neighborhood of K. This means that we can extend ψ ⊕ ϕ−1

E to a
map ψ̃, which is an isomorphism:

ψ̃ : G⊕ E−
'−→ AN ⊕ E+ .

Thus in K0
A(M):

0 = [G⊕ E−, AN ⊕ E+, ψ̃] = [G,AN , ψ]− [E+, E−, ϕE ] .
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Definition 3.3.5. We call a PU(A)-bundle A over some locally compact space
M extendable if there exists a compactification M c of M together with a PU(A)-
bundle Ac over M c such that Ac|M = A.

Theorem 3.3.6. Let A be an extendable PU(A)-bundle over M , then

K0
A(M) ' K0(C0(M,A)) .

Proof. There is a canonical embedding of C0(M,A)+ into C(M c,Ac) via ex-
tending the sectional part by zero and mapping 1 ∈ C0(M,A)+ to the constant
1-section of Ac (note that all transition functions of Ac are inner). Thus, given
t ∈ Mn(C0(M,A)+), we get a twisted Hilbert A-module bundle Ec over M c

like in theorem 3.2.8. Let s ∈ Mn(C) ⊂ Mn(Ac)x , ∀x ∈ M c be the value t
takes along ∂M c = M c\M and set V = sAn. The bundle V = Pc×V with the
twisting [λ, ĝ]⊗v 7→ λ ĝ v is a twisted Hilbert A-module bundle since s ∈Mn(C)
commutes with every ĝ 1 ∈Mn(A). This also implies that the map

Ψ : Ec −→ V , (q, w) 7→ (q, sw) = (q,Mn(q)(s)w) .

is a twisted bundle morphism Ψ ∈ C(M c,hom(Ec, V )). Reversing the direction
we get:

Φ : V −→ Ec , (p, v) 7→ (p, (Mn(p) ◦ t)(ρ(p))v)

with Φ ∈ C(M c,hom(V ,Ec)). Now for every p ∈ Pc mapping to some w ∈ ∂M c:

Ψ ◦ Φ|p = 1End(V ) and Φ ◦Ψ|p = 1End(Ecw) .

Since C(M c, end(V )) and C(M c, end(Ec)) are C∗-algebras, in which invertibil-
ity is an open condition, there is an open neighborhood U ⊂ M c of ∂M c such
that Φ and Ψ are invertible over ρ−1(U) ⊂ Pc.

An arbitrary element in K0(C0(M,A)) is represented by two projections
t, r ∈ Mn(C0(M,A)+) such that t− r ∈ Mn(C0(M,A)). Using the notation of
the previous construction, this condition translates to st = sr. Therefore we
end up with two twisted Hilbert A-module bundles Ec and F c together with
morphisms ΨE and ΨF mapping them into the same bundle V , both invertible
outside some compact subset K ⊂ M ⊂ M c. Choose a function θ : M c −→ R
which is zero inside of K and 1 outside some larger compact set K̂. Now
[t]− [r] ∈ K0(C0(M,A)) is mapped to [E,F, ρ∗θ · (Ψ−1

F ◦ΨE)] ∈ K0
A(M).

Starting from a triple [E+, E−, ϕE ] ∈ K0
A(M), we can assume w.l.o.g. that it

is of the form [F,AN , ϕF ] by the previous lemma. Therefore there is a compact
set K ⊂ M such that ϕF trivializes F outside K. Choose a precompact open
subset K ⊂ W ⊂ M and an inverse bundle H over W . Adding the trivial
bundle AN , yields the isomorphism F ⊕H ⊕AN

∣∣
W
' Ak ⊕AN

∣∣
W

, whereas
over M\K we have F ⊕Ak

∣∣
M\K ' AN ⊕Ak

∣∣
M\K . To get the isomorphism

H ⊕AN
∣∣
W\K −→ Ak

∣∣
W\K needed to apply the clutching construction just

identify AN with F via ϕ−1
F and apply the trivialization κ of F ⊕ H over W .

Let G be the resulting twisted Hilbert A-module bundle. Note that ϕF ⊕ id⊕
ϕ−1
F ∈ Cb(W\K, iso(F ⊕ H ⊕ AN )) extends to an isomorphism τ over all of

W , since it is operator homotopic to the identity, which clearly extends. Now
the trivialization map F ⊕ G −→ AN ⊕ Ak is given by (κ ⊕ idAN ) ◦ τ over W
and by ϕF ⊕ idAk over the complement of K. By construction the clutching
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map transforms these two into one another over W\K. The projections pF and
pAN in C(M, end(AN ⊕ Ak)) agree outside K. Thus, we map (F,AN , ϕF ) to
[pF ]− [pAN ].

It follows from the standard arguments of non-twisted K-theory that these
two maps are inverse to each other.

Likewise we can treat relative twisted K-theory:

Definition 3.3.7. Let M be compact Hausdorff space, N ⊂ M be a closed
subspace, then the relative twisted K-theory K0

A(M,N) with local coefficients in
the unital C∗-algebra A is given by triples (E+, E−, ϕE), where E+ and E− are
twisted Hilbert-A-module bundles and ϕE ∈ C(M, hom(E+, E−)) is a twisted
bundle morphism that is an isomorphism over N , subject to the equivalence
relation generated by the following: (E+, E−, ϕE) is equivalent to (F+, F−, ϕF )
if there exist isomorphisms ψ± ∈ C(M, iso(E±, F±)) such that the following
diagram commutes:

E+|N E−|N

F+|N F−|N

................................................................................................................................................................... ............
ϕE

................................................................................................................................................................... ............
ϕF

........................................................................
...
.........
...
ψ+

........................................................................
...
.........
...
ψ−

Furthermore, we demand (E+, E−, ϕE) ∼ (E+⊕G,E−⊕G,ϕE⊕id) for another
twisted Hilbert A-module bundle G.
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3.4 Stable isomorphism and Morita equivalence

As was already pointed out in the first chapter, stable isomorphism of bundle
gerbes is tightly connected to Morita equivalence of central S1-extensions of
the pair groupoid, as shown in diagram (2.1). In the first part of this section, we
will exploit this fact a little further to explain, why the twisted K-theory defined
above can be understood as usual twisted K-theory with coefficients in some
C∗-algebra A. In fact, this will lead to the notion of twisted Hilbert A-module
bundle over some principal Γ-bundle P , where Γ in our cases will be either be a
compact Lie group or some discrete group instead of PU(A). These structures
will open the gate to the differential geometry of twisted bundles, which would
be much more complicated, if we had to deal with Banach Lie groups.

In the spirit of this goal, the next theorem shows that the (torsion-)twist
of a PU(A)-bundle can be shifted to a bundle of matrix algebras K without
changing the K-theory involved. Thus K0(C(M,A)) can be understood as a
blend between K-theory with coefficients in A, which would be K0(C(M)⊗A),
and twisted K-theory K0(C(M,K)):

Theorem 3.4.1. Let A be a PU(A)-bundle with dd(A) torsion. Let K be an
PU(n)-bundle with dd(K) = dd(A), then

C(M,K ⊗A) 'Mor C(M,A) .

Proof. Let LA → P [2]
A be the lifting bundle gerbe of A, LMn → P

[2]
Mn

that of K.
Since

dd(π∗Mn
L∗Mn

⊗ π∗ALA) = −dd(LMn
) + dd(LA) = 0

the bundle gerbe π∗Mn
L∗Mn

⊗ π∗ALA → (PMn
×M PA)[2] is trivial (here, πA de-

notes the canonical projection (PMn
×M PA)[2] → P [2]

A and πMn
likewise). The

latter is a lifting bundle gerbe associated to the exact sequence

1 −→ U(1) −→ U(n)⊗̄U(A) −→ PU(n)× PU(A) −→ 1 ,

where U(n)⊗̄U(A) = U(n)×U(1)U(A) is the quotient of the product with respect
to the equivalence relation:

(ĝ1, ĝ2) ' (ĝ1 e
iϕ, eiϕĝ2)

This implies that the PU(n)×PU(A) principal-bundle P := (PMn ×M PA) lifts
to a U(n)⊗̄U(A) principal bundle P̂.

Now consider the action of U(n)⊗̄U(A) on Cn ⊗A given by

τ([U, u])(v ⊗ a) = Uv ⊗ au∗

for U ∈ U(n), u ∈ U(A) and v⊗a ∈ Cn⊗A and the bundle of Hilbert Mn(C)⊗A-
A-bimodules V = P̂ ×τ (Cn ⊗A) (the inner product given fiberwise).

Taking continuous functions yields C(M,V ), which carries a C(M,K ⊗ A)-
C(M,A)-bimodule structure. Note that the actions induced by

(T ⊗ t) · (v ⊗ a) := (Tv)⊗ (ta) , (3.5)
(v ⊗ a) · b := v ⊗ (ab) (3.6)
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are well defined due to the following commutative diagrams

(Mn(C)⊗A)× (Cn ⊗A) Cn ⊗A

(Mn(C)⊗A)× (Cn ⊗A) Cn ⊗A

.................................................. ............

.................................................. ............

............................................................
...
.........
...
τ[U,u]

............................................................
...
.........
...
AdU ⊗ id× τ[U,u]

(Cn ⊗A)×A Cn ⊗A

(Cn ⊗A)×A Cn ⊗A

......................................................................................................... ............

......................................................................................................... ............

............................................................
...
.........
...
τ[U,u]

............................................................
...
.........
...
τ[U,u] ×Adu

The horizontal maps are given by the above actions (3.5) and (3.6) respectively.
V carries two fiberwise scalar products:

〈v ⊗ a,w ⊗ b〉A := 〈v, w〉Cn a
∗b ,

〈v ⊗ a,w ⊗ b〉Mn(A) := vw∗ ab∗

that turn C(M,V ) into a C(M,K ⊗A)-C(M,A)-Hilbert-bimodule. Indeed:

〈Uv ⊗ au∗, Uw ⊗ bu∗〉A = 〈Uv,Uw〉 ua∗bu∗ = u 〈v, w〉 a∗b u∗

〈Uv ⊗ au∗, Uw ⊗ bu∗〉Mn(A) = U(vw∗)U∗ au∗ub∗ = U vw∗ ab∗ U∗ ,

which implies that the two scalar products on C(M,V ) take their values in
C(M,A) and C(M,K ⊗ A). Completeness is easily checked by a simple norm
estimate.

Note that, since Cn⊗A is the bimodule representing the Morita equivalence
of Mn(A) and A, we have:

〈v ⊗ a,w ⊗ b〉Mn(A) x⊗ c = (vw∗ ab∗)(x⊗ c) = (vw∗x⊗ ab∗c)
= v ⊗ a 〈w ⊗ b, x⊗ c〉A ,

which transfers to sections in C(M,V ). Similarly, the fullness-conditions:

span
{
〈C(M,V ), C(M,V )〉C(M,K⊗A)

}
= C(M,K ⊗A)

span
{
〈C(M,V ), C(M,V )〉C(M,A)

}
= C(M,A)

are direct consequences of their local analogues.

Theorem 3.4.2. Let A be a PU(A)-bundle, B be a PU(B)-bundle and denote
by PA, PB the associated principal bundles. If A and B have Morita-equivalent
fibers and the Dixmier-Douady-classes of the lifting bundle gerbes LA → P [2]

A

and LB → P [2]
B agree, then the C∗-algebras C(M,A) and C(M,B) are Morita-

equivalent as well.

Proof. Since C(M,K) is nuclear, we deduce that C(M,K⊗A) ' C(M,K)⊗A.
Therefore

C(M,A) 'Mor C(M,K)⊗A 'Mor C(M,K)⊗B 'Mor C(M,B) .

Since the algebras C(M,K⊗A) and C(M,A) are both unital, the bimodule
C(M,V ) constructed in theorem 3.4.1, which moderates the Morita equiva-
lence between them, has to be finitely generated and projective as a Hilbert
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C(M,A)-module. In fact, unitality implies that the identity on C(M,V ) is a
compact adjointable C(M,A)-linear operator, from which the last statement fol-
lows. Therefore the isomorphism of the corresponding K-theory groups, which
abstractly exists due to the Morita equivalence, takes the following very con-
crete form (see also [21] for far more general results)

K0(C(M,K ⊗A)) ∼−→ K0(C(M,A)) ; [W ] 7→ [W ⊗C(M,K⊗A) C(M,V )] .

The way back from twisted K0-groups into their non-twisted analogues, i.e.
the transfer of twisted Hilbert A-module bundles over P to non-twisted bundles
over M in case the twist is trivial (and a trivialization is chosen), needs the
following lemma describing the descent of equivariant bundles.

Lemma 3.4.3. Let E → P be a continuous Hilbert A-module bundle over some
principal Γ-bundle P for a (Banach) Lie group Γ carrying a continuous left
action of Γ covering the one on P , i.e. fitting into the following diagram:

P P

E E

................................................................................................................. ............
(·g−1)

................................................................................................................. ............
(g·)

.................................................................
...
.........
...
ρ

.................................................................
...
.........
...
ρ

Then E is isomorphic to the pullback of a continuous Hilbert A-module bundle
F → M . In case E and P are smooth bundles and the action on E is smooth,
then F can also be chosen to be a smooth bundle.

Proof. Choose a good open cover Ui of M with P trivial over each Ui and
trivializations ψi : Ui × Γ → P |Ui . Set αi = prΓ ◦ ψ−1

i : P |Ui → Γ and
Wi = π−1(Ui), where π : P →M . Choose a trivialization

φi : E|ψi(Ui×{1}) −→ Ui × V ,

where V is the typical fiber of E, and extend it to all of E|Wi
in the following

way:
E|Wi

−→Wi × V ; w 7→ (p, φi(αi(p) · w))

with w ∈ Ep. The transition functions derived from this are:

βij : Wij −→ End(V ) ; p 7→ φi ◦ (αi(p) · αj(p)−1 · φ−1
j ) .

Since αi(pg) = αi(p)g, the maps βij are invariant under the action of Γ on Wij

and therefore yield transition data on the quotient, which is just Uij . Applying
the clutching construction, yields a bundle F over M together with an isomor-
phism E ' π∗F . If the data we started with was smooth, then βij will be
smooth maps, therefore F will be smooth as well.

The intermediate principal PU(A)-bundle in the construction of twisted bun-
dles is of course quite an obstacle to geometric applications, where often com-
pactness or at least local compactness is needed. Luckily, in many situations
the machinery of stable isomorphism can be used to reduce to twisted Hilbert
A-bundles over a much more tractable principal bundle.

Consider a principal PU(A)-bundle P, a group Γ (which we assume to be
either a Lie group or a finitely generated discrete group – at least in any way
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nicer than PU(A)), a central extension Γ̂ of Γ by S1, such that there is a
morphism of extensions:

1 S1 U(A) PU(A) 1

1 S1 Γ̂ Γ 1

............................................................... ............ ......................................................................... ............ ......................................................................... ............ ............................................................... ............

........

........

........

........

........

........

...

........

........

........

........

........

........

...

........

........

........

........

........

........

...............

............

δ̂
........
........
........
........
........
........
...............
............

δ

............................................................... ............ ................................................................................... ............ ....................................................................................................... ............
q

................................................................................... ............

Assume that P has a reduction to a principal Γ-bundle P , i.e. P = P ×δ
PU(A). Due to the above diagram, P has the same Dixmier-Douady-class as
P. Therefore the corresponding lifting bundle gerbes are stably isomorphic and
the following definition comes up naturally.

Definition 3.4.4. A twisted Hilbert A-module bundle E over the principal Γ-
bundle P is a locally trivial (right) Hilbert A-module bundle over P together
with an isometric (left) action of the lifting bundle gerbe L −→ P [2], i.e.

• a fiberwise A-linear isometric isomorphism

γ : L⊗ π∗2E
'−→ π∗1E ,

which is associative with respect to the bundle gerbe product on L.

Using the same argument as in [12], we deduce

Theorem 3.4.5. The monoid of twisted Hilbert A-module bundles over P with
respect to direct sum is isomorphic to the corresponding monoid over P .

In the case of lifting bundle gerbes there are two canonical maps back and
forth. Let L be the lifting bundle gerbe of P , L be that of P. The tensor
product L∗⊗L is the lifting bundle gerbe corresponding to the group extension

1 −→ S1 −→ Γ̂ ⊗̄U(A) −→ Γ× PU(A) −→ 1 .

where Γ̂ ⊗̄U(A) denotes the product of the two groups modulo the diagonal
S1-action. There is a homomorphism

θ : Γ −→ Γ̂ ⊗̄U(A) , g 7→ ĝ ⊗̄ δ̂(ĝ)

and P ×M P lifts to the S1-principal bundle P ×θ Γ̂ ⊗̄U(A) ' P × U(A) = Q̂

where the action of Γ̂ ⊗̄U(A) on Q̂ is given by(
p, f̂
)
· ĝ ⊗̄ ĥ =

(
pg, δ(ĝ−1) f̂ ĥ

)
.

The associated line bundle Q is a trivialization for the bundle gerbe L∗ ⊗ L.
Given a twisted Hilbert A-module bundle E over P, we can form Q⊗π∗PE . This
descends to a twisted bundle over P by the following map (which is written
down fiberwise to save some notation):

Q(p,q2) ⊗ Eq2 −→ Q(p,q1) ⊗ L(q1,q2) ⊗ Eq2 −→ Q(p,q1) ⊗ Eq1 . (3.7)

Given a twisted Hilbert A-module bundle E over P , we form Q∗⊗π∗PE and get
a descent to P via

Q∗(p2,q) ⊗ Ep2 −→ Q∗(p1,q) ⊗ L(p1,p2) ⊗ Ep2 −→ Q∗(p1,q) ⊗ Ep1 . (3.8)
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In the above situation two other constructions come up very naturally: Given
a twisted Hilbert A-module bundle E over P, we can use the canonical map
P −→ P ×δ PU(A) = P to pull E back to P . We will call this the restriction
to P even though the map may not be injective.

On the other hand we can form E ⊗ U(A)∗ over P × PU(A), since U(A) is
a line bundle over its projectivization. There is an action of Γ̂ on this bundle
covering (p, a) 7→ (pg−1, δ(g) a) given by: v ⊗ â 7→ γ([λ, ĝ] ⊗ v) ⊗ δ̂(ĝ) â. The
quotient is a twisted Hilbert A-module bundle over P that will be called the
extension of E.

Theorem 3.4.6. The result using the descent in (3.7) is isomorphic to the
restriction of E to P , whereas (3.8) yields a twisted bundle isomorphic to the
extension of E to P.

Proof. Let δ be the action of L on E and note that Q is the pullback of L via
P ×M P −→ P [2] ; (p, q) 7→ ([p, 1], q). Therefore δ may be considered as a
map Q(p,q) ⊗Eq −→ E[p,1], which factors over the descent and is the identity on
E[p,1] = Q(p,[p,1]) ⊗ E[p,1]. Thus it yields an isomorphism.

For the other half of the theorem the pullback of Q∗ ⊗ π∗PE to P × PU(A)
via the map P × PU(A) −→ P ×M P ; (p, a) 7→ (p, [p, a]) reveals itself to be
just the first step of the extension. The descent map turns into the group action
described above, so the quotients are isomorphic.

Remark 3.4.7. Generally, a trivialization of a tensor product L1 � L∗2 of two
lifting bundle gerbes can be thought of as a morphism between the corresponding
twists in the sense that we change from twisted bundles over one principal bundle
to twisted bundles over the other. The trivialization intertwines the two twisted
actions. From this point of view the Morita equivalence described in the twist
shifting theorem 3.4.1 identifies the monoid of twisted Hilbert-A-module bundles
over P with its counterpart of twisted Hilbert Mn(C)⊗A-module bundles over
a PU(n)-bundle P̃ with dd(P ) = dd(P̃ ) via a trivialization.

The effect of the equivalence on the level of twisted bundles is therefore just
shifting a twisted Hilbert A-module bundle E over P via the above procedure to
one over P̃ using a trivialization and tensoring the result with the imprimitivity
C-Mn(C)-bimodule C∗ to end up with a twisted Hilbert Mn(C) ⊗ A-module
bundle representing an element in K0

K⊗A(M). To be precise, the lift of P ×M P̃

to a Γ̂⊗̄U(n)-bundle P̂ corresponds to a line bundle Q = P̂ ×S1 C over P ×M P̃ .
Let πP : P ×M P̃ → P be the projection, then E → P is mapped to π∗PE ⊗Q,
which descends to P̃ (see also part ii) of theorem 4.1.31). This descent of E to
P̃ will sometimes be denoted by π!(π∗PE ⊗Q).

3.4.1 The frame bundle gerbe

Let V be a (right) Hilbert A-module and denote by U(V ) the unitary operators
in the C∗-algebra End(V ). For a central S1-extension Γ̂ −→ Γ we can consider
representations ρ : Γ̂ −→ U(V ) that satisfy ρ(eiϕ ĝ) = eiϕ ρ(ĝ). This always
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yields a twisted Hilbert A-module bundle over a principal Γ-bundle P via

E = P × V
γ : L⊗ π∗2E −→ π∗1E

[λ, ĝ]⊗ v 7→ λ ρ(ĝ) v .

For a non-twisted bundle B of Hilbert A-modules with typical fiber W one
could consider the frame bundle PB consisting of all unitary A-linear maps
f : W −→ (PB)b. These form a principal U(W )-bundle and B is associated to
it via the standard action of U(W ) on W .

The corresponding question concerning a twisted Hilbert A-module bundle
E would be: Can we vary L in its stable isomorphism class such that E takes the
form described above for some representation ρ : Γ̂ −→ U(V ). This is indeed
the case!

Lemma 3.4.8. Given a twisted Hilbert A-module bundle E over P , let PE be
its frame bundle. Its projectivization Ĥ = PE/S

1 −→ P descends to a principal
PU(V )-bundle H −→M . The associated lifting bundle gerbe LH has the same
Dixmier-Douady-class as L.

Proof. The action of L on E induces a corresponding map of frame bundles,
which, after quotiening out the S1-action boils down to

γ : π∗2Ĥ = π∗2
(
PE/S

1
)
−→ π∗1

(
PE/S

1
)

= π∗1Ĥ

providing the descent data for Ĥ. Therefore Ĥ can be identified with π∗PH =
H ×M P . Since Ĥ has a lift to a U(V )-bundle PE over P , its lifting bundle
gerbe S −→ Ĥ [2] is trivial, i.e.:

(PE)(q1,p)
⊗ S((q1,p),(q2,p)) ' (PE)(q2,p)

for (qi, p) ∈ H ×M P .

Here and in the next theorem we identify PE with the associated line bundle
over H. The action of L on PE takes the form:

L(p1,p2) ⊗ (PE)(q,p2) ' (PE)(q,p1)

Let Q −→ H [2] be the lifting bundle gerbe of H and consider the product Q∗�
L −→ (H ×M P )[2]. Note that PE , when viewed as a line bundle over H ×M P ,
yields a trivialization of Q∗ � L. Indeed, the pullback of Q to (H ×M P )[2]

coincides with S, therefore

(Q∗ � L)((q1,p1),(q2,p2)) ⊗ (PE)(q2,p2) ' S∗(q1,p1),(q2,p1) ⊗ L(p1,p2) ⊗ (PE)(q2,p2)

' S∗(q1,p1),(q2,p1) ⊗ (PE)(q2,p1)

' (PE)(q1,p1) .

But this implies dd(Q∗) + dd(L) = dd(L)− dd(Q) = 0.

By the lemma above the pushed down projectivized frame bundle of E yields
a PU(V )-bundle that is stably isomorphic to L. An explicit isomorphism is given
by the frame bundle PE of E.
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Theorem 3.4.9. The bijection on twisted Hilbert-A-module bundles induced
by the frame bundle trivialization PE maps E to the twisted Hilbert A-module
bundle

H × V −→ H .

The action of Q is given by the canonical left action of U(V ) on V .

Proof. The descent of (PE)∗ ⊗ π∗PE is given by

(PE)∗(q,p2) ⊗ Ep2 −→ (PE)∗(q,p1) ⊗ L(p1,p2) ⊗ Ep2 −→ (PE)∗(q,p1) ⊗ Ep1 .

But (PE)∗(q,p) ⊗ Ep is canonically isomorphic to V via

(PE)∗(q,p) ⊗ Ep −→ V ; [q̂, λ]⊗ v 7→ λ q̂−1(v) ,

V −→ (PE)∗(q,p) ⊗ Ep ; w 7→ [q̂, 1]⊗ q̂(w) ,

where q̂ is an arbitrarily chosen lift of q. Since the action of L on (PE)∗ as well
as on E are both given by the same map γ, this isomorphism factors over the
descent.

Definition 3.4.10. The bundle gerbe corresponding to the projectivized and
pushed-down frame bundle PE of a twisted Hilbert-A-module bundle E will be
called frame bundle gerbe.

3.4.2 Bundle gerbe modules and
twisted Hilbert Mn(C)-bundles

A PU(n)-bundle P defines a (torsion) twist in H3(M,Z) and we have a matrix
bundle (often called Azumaya bundle) K over M associated to it. Following the
above, we arrive at two descriptions of the group K0

K(M): One by bundle gerbe
modules for the lifting bundle gerbe L → P [2] from [12], the other by twisted
Hilbert Mn(C)-bundles over P . The former description uses vector bundles
over P where in the latter we find bundles of Hilbert Mn(C)-modules. Luckily,
there is a Morita equivalence between C and Mn(C) that allows us to switch
between the two pictures by the following transformations:

K0,bgm
K (M) −→ K0,tw

K (M) ; [E] 7→ [E ⊗C Cn∗]
K0,tw
K (M) −→ K0,bgm

K (M) ; [F ] 7→ [F ⊗Mn(C) Cn] ,

where the twisting in both cases operates only on the first factor (for the sec-
ond map this is well-defined because of Mn(C)-linearity). The right action of
Mn(C) on Cn∗ is via pullback, let fi be the basis dual to the canonical one
(ei), then the scalar product of two base covectors is 〈fi|fj〉 = ei fj ∈ Mn(C).
We can without loss of generality assume that the complex vector bundle E
is equipped with a hermitian metric, such that the first map yields indeed a
twisted Hilbert Mn(C)-bundle. Since Cn∗ ⊗Mn(C) Cn ' C as vector spaces and
Cn ⊗C Cn∗ ' Mn(C) as Hilbert Mn(C)-modules we even get a stronger result:
The categories of twisted Hilbert Mn(C)-bundles and bundle gerbe modules are
naturally equivalent. Most of the time we will think of K0

K(M) as the group of
virtual bundle gerbe modules, even though this forces us to switch the viewpoint
(slightly), when comparing this group with K0

A(M) like in the product below.
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3.4.3 Twisted product

We also have an exterior product on twisted Hilbert A-module bundles, but con-
trary to ordinary K-theory this combines different groups with each other be-
cause the twists that are involved add up during the process. We will formulate
this twisted product just for the case that we need involving a twisted Hilbert
A- and a twisted Hilbert Mn(C)-module bundle. Take a PU(A)-bundle A as-
sociated to a principal Γ-bundle P and a PU(n)-bundle K associated to P̃ .
Then their fiberwise tensor product A⊗K is a bundle of C∗-algebras with fiber
Mn(A) = Mn(C)⊗A associated to P ×M P̃ .

Let E be a twisted Hilbert A-module bundle over P and F be a bundle gerbe
module over P̃ . Their exterior tensor product E � (F ⊗C∗)→ P ×M P̃ defines
a twisted Hilbert A⊗Mn(C)-module bundle over P ×M P̃ simply by tensoring
their twistings γE � (γF ⊗ id). This map extends to formal differences in the
obvious way and therefore yields

K0
A(M)⊗K0

K(M) −→ K0
A⊗K(M)

for a compact manifold M . For non-compact M take two triples [E+, E−, ϕE ]
and [F+, F−, ϕF ] and choose a precompact subset W , such that ϕ−1

E and ϕ−1
F

exist on the complement of W . Choose a continuous function ρ : M → [0, 1]
vanishing on the closure ofW and being 1 on the complement of a larger compact
subset. Then the tensor product [E]� [F ] is defined to be the triple

[(E+ � F+)⊕ (E− � F−), (E− � F+)⊕ (E+ � F−), ϕE⊗F ] ,

where ϕE⊗F is the twisted bundle morphism given by the matrix:

ϕE⊗F =
(
ϕE ⊗ idF+ −idE− ⊗ ϕ̃−1

F

idE+ ⊗ ϕF ϕ̃−1
E ⊗ idF−

)
with ϕ̃−1

E = ρϕ−1
E and similarly for ϕ̃−1

F . As we have seen above, the K-theory
class does not depend on the choice of regularization ρ and therefore yields a
well-defined product.

3.4.4 Künneth theorem

The above decomposition via Morita equivalence C(M,A) 'Mor C(M,K)⊗A
suggests a decomposition on the level of K-theory in the spirit of the Künneth
formula known from ordinary cohomology. This, however, does not hold in
general, but only for tensor products, in which one of the factors belongs to a
nice class of C∗-algebras constructed from certain building blocks and therefore
often called the bootstrap class N .

Definition 3.4.11. N is the smallest class of separable, nuclear C∗-algebras
with the following properties:

(N1) N contains C.

(N2) N is closed under countable inductive limits.

(N3) If 0→ A→ D → B → 0 is an exact sequence and two of the terms are in
N , then so is the third.
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(N4) N is closed under KK-equivalence.

We note that N contains C0(X) for every locally compact space X and also
every matrix algebra Mn(C) [10]. Since it is also closed under tensor products,
this enables us to use the next lemma on K.

Lemma 3.4.12. Let K be a locally trivial bundle of C∗-algebras over a compact
space M such that its fibers K belong to the bootstrap class N , then the C∗-
algebra of sections C(M,K) also belongs to it. For a locally compact, countably
paracompact space M we have C0(M,K) ∈ N .

Proof. We prove this by induction. Choose a good countable trivializing cover
(i.e. the sets are contractible and all their higher intersections are contractible)⋃
i∈I Ui ⊃ M for K. Let J ⊂ I be a finite index subset and let UJ =

⋂
j∈J Uj .

Note that C0(UJ ,K) ' C0(UJ ,K) ' C0(UJ) ⊗ K due to the nuclearity of
K. Therefore C0(UJ ,K) belongs to the bootstrap class which is closed under
tensor products.

Now take an arbitrary family of finite index subsets Jk ⊂ I, k ∈ N. Set Ak =⋃k
i=1 UJi , Bk = UJk+1 and suppose that C0(Ak,K) as well as C0(Ak ∩ Bk,K)

belong to the bootstrap class, which clearly holds for k = 1. Consider the
following exact sequence of C∗-algebras

0 −→ C0(Ak ∩Bk,K) −→ C0(Bk,K) −→ C0(Bk\(Ak ∩Bk),K) −→ 0 ,

in which the first arrow is continuation by 0 and the last arrow is restriction
to the set Bk\(Ak ∩ Bk), which is closed in Bk. Keep in mind that C0 refers
to sections vanishing outside some compact subset, which does not imply that
they also vanish on the boundary of Bk\(Ak ∩Bk). Since the first two algebras
are in the bootstrap category by hypotheses, the last one is as well. Now by the
exact sequence

0 −→ C0(Ak,K) −→ C0(Ak ∪Bk,K) −→ C0((Ak ∪Bk)\Ak,K) −→ 0

C0(Ak+1,K) belongs to the bootstrap category as well, since (Ak ∪ Bk)\Ak =
Bk\(Ak ∩Bk).

To continue we need to show that the algebra over Ak+1 ∩Bk+1 is again in
the bootstrap category. But this holds, since Ak+1∩Bk+1 =

⋃k
i=1 UJi∪Jk+1 and

the union is taken over k sets. For non-compact spaces we get C0(M,K) as the
(countable) inductive limit limk C0(

⋃k
i=1 Ui,K).

The lemma trims the Künneth theorem [10, 62] to fit our purposes:

Theorem 3.4.13. Let A be a C∗-algebra and ΓK = C0(M,K) over M like
above. There is a short exact sequence:

0→ K∗(ΓK)⊗K∗(A)→ K∗(ΓK ⊗A)→ TorZ
1 (K∗(ΓK),K∗(A))→ 0 ,

in which the first map has degree 0 and the second has degree 1. In particular,
there is a rational isomorphism:

Ψ : K0
K(M)⊗K0(A)⊗Q ⊕ K1(ΓK)⊗K1(A)⊗Q −→ K0

A(M)⊗Q . (3.9)
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When we identify K0(ΓK⊗A) = K0
K⊗A(M) with K0

A(M) via Morita equi-
valence to exploit the above sequence, it will be more convenient to think of
K0
K(M) as bundle gerbe modules over the principal Γ-bundle P to which A is

associated instead of modules over the PU(n)-bundle of K. Keeping this in
mind, we get the following explicit description of the above map.

Restricted to the first summand, the isomorphism Ψ is induced by the tensor
product of finitely generated projective modules. An element in K0

K(M) can be
represented by a bundle gerbe module E over P , whereas an element in K0(A)
is represented by a finitely generated projective Hilbert A-module V . Now the
tensor product on the level of algebras coincides with the tensor product E⊗V
over P , with twisting γ⊗ idV on the level of twisted Hilbert A-module bundles,
i.e. Ψ([E, γ]⊗ [V ]) = [E ⊗ V , γ ⊗ idV ].

The K-groups that appear in the second summand can be written as

K1(ΓK) = K0(C0(R)⊗ C(M,K)) = K0(C0(R×M,π∗MK)) ,
K1(A) = K0(C0(R)⊗A) = K0(C0(R, A)) .

The first group describes virtual bundle gerbe modules over π∗MP → R ×M ,
elements of the second are represented by virtual Hilbert A-module bundles
over R. Their exterior tensor product yields an element in

K0(C0(R2×M,π∗MK⊗A)) = K0(C0(R2)⊗C(M,K⊗A)) ' K0(C(M,K⊗A)) ,

where the last isomorphism is induced by Bott periodicity. This is the explicit
description of Ψ restricted to the second summand. Expressed in terms of C∗-
algebra K-theory, the Bott isomorphism is the inverse of the map given by
the tensor product with the class [B] − [pr2] ∈ K0(C0(R)), where pr2 is the
projection of C2 to the second summand and

B : R2 −→M2(C) ; (x, y) 7→ 1
1 + |z|2

(
1 z
z |z|2

)
with z = x+ iy

is the graph projection of the multiplication by z, i.e. b(x, y)w = (x+ iy)w. In
terms of bundles this corresponds to the triple [ C,C, b ]. Thus, the Bott map
takes the form

K0
A(M) −→ K0

A(R2 ×M) ; [E] 7→ [π∗ME, π
∗
ME, b̃] , (3.10)

where b̃ : π∗ME −→ π∗ME is the multiplication by x+ iy for (x, y) ∈ R2.
The Künneth decomposition is a module map with respect to the twisted

product on K0
A(M) in the sense that the following two diagrams commute:

K0
K(M)⊗K0(A)⊗K0

K2
(M) K0

K⊗K2
(M)⊗K0(A)

K0
A(M)⊗K0

K2
(M) K0

A⊗K2
(M)

........................................................................................................................... ............

............................................................................................................................................................................................................................... ............

........................................................................
...
.........
...

........................................................................
...
.........
...

K0
π∗MK

(R×M)⊗K0
A(R)⊗K0

K2
(M) K0

π∗M (K⊗K2)(R×M)⊗K0
A(R)

K0
A(M)⊗K0

K2
(M) K0

A⊗K2
(M)

............................................................................................................ ............

.......................................................................................................................................................................................................................................................................................................... ............

........................................................................
...
.........
...

........................................................................
...
.........
...
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To see this for the latter diagram, note that the Bott map also commutes with
the product. Indeed, it is just a pullback composed with the product by an
element in K0(R2 ×M). After rationalization we therefore get a module iso-
morphism.
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Chapter 4

Twisted K-homology in the
torsion case

4.1 Connections on bundle gerbe modules

4.1.1 Flat extensions of Lie groups

The following section deals with the lifting bundle gerbe of a flat central S1-
extension Γ̂ of a connected Lie group Γ. To understand this notion, consider
the following excerpt of an exact sequence (see e.g. [51]) in group cohomology:

Hom(π1(Γ), S1) −→ H2
gr(Γ, S

1) −→ H2
alg(g, iR) ,

in which the first map assigns to a homomorphism γ : π1(Γ)→ S1 the extension
Γ̃×γ S1 where Γ̃ denotes the universal cover. Such extensions can be described
by cocycles Γ×Γ→ S1, which are continuous in a neighborhood of the identity
(1, 1) ∈ Γ×Γ. There is such a cocycle ξ : Γ×Γ −→ π1(Γ) describing the central
extension Γ̃→ Γ. Thus, the above map can be understood as composition:

Hom(π1(Γ), S1) −→ H2
gr(Γ, S

1) ; ρ 7→ ρ ◦ ξ ,

which is a group homomorphism.
The second arrow maps an extension Γ̂ to the curvature Fν of a canonical

connection νσ on the line bundle associated to Γ̂ → Γ: Indeed, choose a linear
section σ : g→ ĝ, then νσ ∈ Ω1(Γ̂, iR) is given by

νσ = µ̂− σ(q∗µ) ,

where µ̂ and µ denote the Maurer-Cartan-forms on Γ̂, Γ respectively and
q : Γ̂→ Γ is the projection. The Lie algebra cocycle is now given by:

ω(X,Y ) = 2 dνσ(σ(X), σ(Y )) = σ([X,Y ])− [σ(X), σ(Y )] , X, Y ∈ g .

Definition 4.1.1. An extension of the above form shall be called flat if the
associated extension of Lie algebras has a Lie algebra split, or equivalently if
the curvature of the associated connection νσ vanishes for some split σ, or
equivalently if it is associated to the universal cover Γ̃ of Γ.
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Example 4.1.2. Our main example will be of fundamental importance for the
torsion case of twisted K-homology:

1 −→ S1 −→ U(n) −→ PU(n) −→ 1 .

From the short exact sequence:

1 −→ Z/nZ −→ SU(n) −→ PU(n) −→ 1

it follows that π1(PU(n)) = Z/nZ. Embedding Z/nZ into S1 via the exponen-
tial map yields a homomorphism γ : π1(PU(n)) −→ S1 and it is easy to see that
U(n) ' SU(n)×γ S1.

Note that the analogous extension in the infinite-dimensional case, i.e. the
unitary group of a separable Hilbert space:

1 −→ S1 −→ U(H) −→ PU(H) −→ 1 .

can be treated in much the same way as the case above. However, since
π1(PU(H)) is trivial, it is not flat anymore.

Another example sharing properties similar to U(n) → PU(n) is of course
Spinc(n) → SO(n). They both arise from homomorphisms that factor over
some finite cyclic abelian group. We generalize this case in our next example.

Example 4.1.3. Suppose that Γ̂ is a flat central S1-extension of Γ, associated
to a homomorphism

ρ : π1(Γ)
ρ−→ Z/nZ exp−→ S1

Set Γ = Γ̃×ρZ/nZ. This is an n-fold cover of Γ with cyclic deck transformation
group corresponding to the following short exact sequence

0 −→ Z/nZ −→ Γ −→ Γ −→ 1 ,

in which the first map is given by m 7→ [1,m].
Since ρ factors over Z/nZ there is a map

β : Γ̂ −→ S1 ; [g, z] 7→ zn

which induces a short exact sequence of the form

1 −→ Γ −→ Γ̂
β−→ S1 −→ 1 (4.1)

Combining the projection α : Γ̂ −→ Γ with β yields

0 −→ Z/nZ −→ Γ̂
(α,β)−→ Γ× S1 −→ 1

and the last map induces an isomorphism on Lie algebra level identifying ĝ with
g⊕ iR. This is the canonical choice for a splitting that we will use.

This will be called the generalized spinc case. It will become clear later how
ordinary spinc-connections are similar to connections on bundle gerbe modules
associated to generalized spinc lifting bundle gerbes.

Note that one could consider the “generalization” of the above factorization
over Z/nZ to one of the form

ρ : π1(Γ)
ρ−→ A −→ S1
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for some finite abelian group A, i.e. the extension is represented by a torsion
element in Hom(π1(Γ), S1). But since the image is a finite abelian group in S1,
it automatically has to be cyclic and therefore reduces to the case above. To
summarize:

Definition 4.1.4. Let 1 → S1 → Γ̂ → Γ → 1 be a central extension of the
connected Lie group Γ. This will be called a generalized spinc extension if it
is represented by a torsion element ρ ∈ Hom(π1(Γ), S1) or equivalently if the
image of ρ is finite or equivalently if Γ̂ is associated to some finite covering Γ
of Γ.

4.1.2 Connections

In the case of a vector bundle F → M there are many different ways to think
about connections, of which the most popular might be: a covariant derivative
mapping sections Γ(F ) to F -valued 1-forms Γ(T ∗M ⊗ F ), a connection form ω
on the principal bundle PO(n) of frames in F taking values in the Lie algebra o(n)
and a distribution of horizontal subspaces of the tangent bundle TPO(n) (often
we will (mis-)use the term “connection” for all of them). Luckily, the transfer
of these notions to connections on bundle gerbe modules is very natural and
reveals these structures to be “equivariant up to the bundle gerbe”.

Remark From now on we will assume that every principal Γ-bundle P comes
equipped with a smooth structure and that the projection map to the smooth
base manifold M is a surjective submersion, which implies that the fiber prod-
uct P [2] is again a smooth manifold.

Let L be the lifting bundle gerbe associated to a flat extension:

1 −→ S1 −→ Γ̂ −→ Γ −→ 1

and identify the Lie algebra ĝ of Γ̂ with the direct sum g⊕ iR by means of some
chosen Lie algebra split.

Definition 4.1.5. A covariant derivative ∇L on L is called a bundle gerbe
connection if the product

µ : π∗12L⊗ π∗23L −→ π∗13L

pulls it back to the canonical connection on the left hand side, i.e.

µ∗π∗13∇L = π∗12∇L ⊗ 1 + 1⊗ π∗23∇L . (4.2)

Alternatively, one could describe∇L giving the connection form θL ∈ Ω1(L̂, iR),
where L̂ denotes the S1-principal bundle to which L is associated. Aside from
the conditions of equivariance and reproduction of generators of fundamental
vector fields, θL has to satisfy

µ∗π∗13θL = π∗12θL + π∗23θL , (4.3)

which is just the replacement of equation (4.2) (now µ of course denotes the
induced product map on L̂).
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The passage back and forth between the two uses the well-known correspon-
dence between antiequivariant maps L̂→ C and sections of L (see for example
[33]).

Now for L as above there is a canonical connection obtained by pulling back
ν (see last section and note that we can drop the index σ now) via the defining
map κ̂ : L̂ −→ Γ̂. It is a consequence of the calculations in [24] that (4.3) holds,
if one assumes flatness of the extension. Indeed, the horizontal subspaces are of
course just induced by the splitting ĝ = g⊕ iR of Lie algebras:(

T L̂
)

(p1,p2,bg12)
={

(V1, V2, X̂12) ∈ Tp1P ⊕ Tp2P ⊕ Tbg12 Γ̂ | κ∗(V1, V2) = q∗X̂12, π∗V1 = π∗V2

}
(
HbL)(p1,p2,bg12)

=
{

(V1, V2, X̂12) ∈
(
T L̂
)

(p1,p2,bg12)
| µ̂(X̂12) ∈ g

}
,

(
VbL)(p1,p2,bg12)

=
{

(0, 0, X̂12) ∈
(
T L̂
)

(p1,p2,bg12)
| µ̂(X̂12) ∈ iR

}
,

where µ̂ denotes the Maurer-Cartan-form on Γ̂ and q is the projection just
as in the last section.

Regarding connections on modules over bundle gerbes, we take covariant
derivatives as a starting point again. In view of (4.2) the following definition
seems to be sensible:

Definition 4.1.6. Let E be a module over the bundle gerbe L with connection
∇L. A covariant derivative∇E is called bundle gerbe module connection (or bgm-
connection for short) if the bundle gerbe action pulls it back to the canonical
connection on the tensor product, i.e. for γ : L⊗ π∗2E −→ π∗1E:

γ∗π∗1∇E = ∇L ⊗ 1 + 1⊗ π∗2∇E . (4.4)

This can again be described by a connection form ηE ∈ Ω1(PE , u(n)) that has
to satisfy the analogue condition:

γ∗π∗1ηE = θL + π∗2ηE . (4.5)

The embedding of iR indirectly needed for this equation to make sense is just
given by differentiating the canonical map U(1) −→ U(n).

The twisting γ yields an action of Γ̂ on the sections u ∈ C∞(P,E) via
(ĝ ·u)(p) = γ([ĝ, 1]⊗u(pg)). If L is equipped with its canonical flat connection,
then condition (4.4) implies that ∇E acts covariantly with respect to this action,
i.e. for a vector field X on P :

∇X(ĝ · u) = ĝ · ∇Rg∗Xu . (4.6)

Example 4.1.7. Let L be a lifting bundle gerbe of a flat extension Γ̂ → Γ
associated to a principal Γ-bundle P over M and equipped with its canonical
connection ν. Let α : Γ̂ −→ U(n) be a unitary representation of Γ̂, such that

α(eiϕĝ) = eiϕ α(ĝ) , ∀ĝ ∈ Γ̂ and ∀eiϕ ∈ U(1) .
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Analogously to the above mentioned trivial twisted bundle there is a canonical
module over L, defined by

E = P × Cn

γ : L⊗ π∗2E −→ π∗1E

[λ, ĝ]⊗ v 7→ λα(ĝ) v .

Now suppose that η ∈ Ω1(P, g) is a connection on the principal Γ-bundle P .
The form η induces a canonical connection on E via

ηE = Adπ−1
U(n)

α∗ π
∗
P η + π∗U(n)µU(n) , i.e.

ηE(V, X̂) = Ada−1α∗ η(V ) + µU(n)(X̂) ∀V ∈ TpP, X̂ ∈ TaU(n) .

Again µU(n) denotes the Maurer-Cartan-form on the group in question. Let
m : P ×Γ→ P be the right action of Γ, denote the action of U(n) on Cn by m̃,
then the equivariance with respect to the bundle gerbe product (4.5) takes the
following form in this case:

ηE(V, m̃∗(α∗Ŷ , X̂))− ηE(m∗(V, q∗Ŷ ), X̂) = ν(Ŷ ) . (4.7)

An easy calculation reveals indeed that:

ηE(V, m̃∗(α∗Ŷ , X̂))− ηE(m∗(V, q∗Ŷ ), X̂)

= Ada−1 α∗

(
µbΓ(Ŷ )− µΓ(q∗Ŷ )

)
= Ada−1α∗ν(Ŷ ) .

Since α is equivariant with respect to the embedding of U(1) in Γ̂ and U(n), we
can drop the conjugation and α∗ from the last line.

Switching from connection forms to horizontal distributions, equation (4.5)
turns into a corresponding isomorphism condition. Let P be a principal Γ-
bundle, let L→ P [2] be a lifting bundle gerbe of a flat extension Γ̂→ Γ equipped
with its canonical flat connection and denote by E a module over L. Denote
the principal S1-bundle of L by L̂ and the frame bundle of E by PE . Note that
L̂ is diffeomorphic to P × Γ̂ via (p1, p2, ĝ) 7→ (p2, ĝ). Therefore L̂ ×P [2] π∗2PE
coincides with PE × Γ̂. Its tangent bundle is given by

T (L̂×P [2] π∗2PE) ' TPE ⊕ T Γ̂ .

The tensor product on the level of vector bundles yields the following tensor
product of principal bundles:

L̂⊗ π∗2PE = L̂×P [2] π∗2PE / ∼ . (4.8)

Using the identification with PE × Γ̂ the equivalence relation for (r, ĝ) ∈ PE × Γ̂
is given by (r, ĝ eiϕ) ∼ (r eiϕ, ĝ). This is the principal U(n)-frame bundle of
L⊗ π∗2E as the notation suggests.

Let pr be the projection L̂ ×P [2] π∗2PE → L̂ ⊗ π∗2PE . The free group action
by S1 induces a short exact sequence of the tangent bundles

0 −→ iR −→ T (L̂×P [2] π∗2PE) −→ pr∗T (L̂⊗ π∗2PE) −→ 0 .
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Let (r, ĝ) ∈ L̂ ×P [2] π∗2PE , let lbg be the left action of Γ̂ on itself and let
βr : U(n) → PE be defined by βr(a) = r a, then the trivial iR-bundle is a
subbundle of T (L̂ ×P [2] π∗2PE) via (r, ĝ,X0) 7→ (βr∗X0,−lbg∗X0) for X0 ∈ iR.
Thus, pr∗T (L̂⊗π∗2PE) is isomorphic to T (L̂×P [2] π∗2PE) / iR ' (TPE⊕T Γ̂)/iR.
This isomorphism turns the right hand side into an S1-equivariant vector bundle
over L̂×P [2] π∗2PE , such that there is an isomorphism

T[r,bg] (L̂⊗ π∗2PE) =
{

(W,X) ∈ TrPE ⊕ TbgΓ̂} / ∼ (4.9)

with (m∗(W,Xϕ), X) ∼ (W,m∗(Xϕ, X)) for Xϕ ∈ TϕU(1) (here m denotes the
action on PE on the left hand side and – by slight abuse of notation – the group
multiplication on the right hand side). Choose now a horizontal distribution
Hr ⊂ TrPE and define(

HbL ⊕̂ H
)

[r,bg] =
{

[W,X] ∈ T[r,bg] (L̂⊗ π∗2PE) | µ̂(X) ∈ g,W ∈ Hr

}
⊂ T[r,bg] (L̂⊗ π∗2PE) .

In a similar fashion, we can identify π∗1PE with PE × Γ via (r, p2) 7→ (r, g)
where g is such that πPE (r) g = p2. As a consequence T (π∗1PE) is identified
with TPE ⊕ TΓ. Now, γ∗ restricted to the second summand is just the map
[W,X] 7→ q∗X. Keeping this in mind, we have:

Definition 4.1.8. A horizontal distribution Hr ⊂ TrPE is called a bundle gerbe
module connection (or bgm-connection) for the canonical flat connection on L if

γ∗

((
HbL ⊕̂ H

)
(p1,[r,bg])

)
⊂ Hγ(p1,[r,bg]) ⊕ TgΓ ⊂ T (π∗1PE).

(Since γ∗ is an isomorphism and both subspaces have the same dimension we
could replace the first ⊂ by = without changing anything.)

Lemma 4.1.9. Let Hr ⊂ TrPE be a bgm-connection and s : TrPE −→ Hr the
canonical projection with respect to the vertical subspace. Then γ∗ commutes
with s in the following way:

T(p1,[r,bg])
(
L̂⊗ π∗2PE

) ((
HbL ⊕̂ H

)
(p1,[r,bg])

)

Tγ(p1,[r,bg])PE ⊕ TgΓ Hγ(p1,[r,bg]) ⊕ TgΓ

.......................................................................................................................................... ............
[s, q∗]

.........................................................
...
.........
...
γ∗

.........................................................
...
.........
...
γ∗

............................................................................................................................................................................. ............
(s, idTΓ)

Proof. Since by assumption γ∗ maps the horizontal subspaces
(
HbL ⊕̂ H

)
(p1,[r,bg])

and Hγ(p1,[r,bg])⊕TgΓ isomorphically onto each other, we only need to show that
the same holds for the vertical ones, then the lemma follows.

Let βr : U(n) −→ PE be given by a 7→ r a and denote the inclusion t 7→ [t, ĝ]
for t ∈ PE by ιbg. Since γ is equivariant with respect to the U(n)-action on PE ,
the following diagram commutes:

U(n) PE L̂⊗ π∗2PE π∗1PE PE....................................................... ............
βr

.................................................................................................. ............
ιbg

.................................................................... ............
γ

............................................................... ............


.............
..........
........
........
.......
.................
............

βγ(p1,[r,bg])
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with p1 = πPE (r) q(ĝ)−1. By differentiating we deduce γ∗([βr∗(X), 0]) = βer∗(X)
for X ∈ u(n) and r̃ = γ(p1, [r, ĝ]) proving that γ∗ restricts to an isomorphism
on the vertical subspaces as well.

The way back from distributions to connection forms is the usual one (see for
example [33]). Given Hr ⊂ TrPE define η via η(W ) = X, where %(W ) = βr∗(X)
for W ∈ TrPE . Here, % denotes the projection onto the vertical subspace with
respect to the horizontal one.

Theorem 4.1.10. (i) If H is a bgm-connection for the canonical flat connec-
tion on L, then η is a bgm-connection form.

(ii) If η is a bgm-connection form for the canonical flat connection on L, then
Hr = kern(η) is a bgm-connection.

Proof. Let Y1 = η(γ∗([W,X])), Y2 = η(W ), set r̃ = γ(p1, [r, ĝ]) and denote the
projection from TrPE to Hr by s, then

βer∗(Y1) = %(γ∗([W,X])) = γ∗([W,X])− s(γ∗([W,X]))
= γ∗([W,X])− γ∗([s(W ), q∗X]) = γ∗([%(W ), X − q∗(X)])
= γ∗([βr∗(Y2), 0]) + γ∗([0, X − q∗(X)])
= βer∗(Y2) + γ∗([0, Lbg∗ν(X)])

Since Lbg∗ν(X) = Rbg∗ν(X) = m∗(ν(X), 0), the last summand is equal to
γ∗[m∗(0, ν(X)), 0] = γ∗[βr∗(ν(X)), 0] = βer∗(ν(X)). Injectivity of βer∗ now
proves that (4.5) holds and therefore also (i).

For (ii) it suffices to show that η(γ∗([W,X])) = 0 for W ∈ kern(η) and
µ̂(X) ∈ g, but this is a direct consequence of (4.5).

4.1.3 Flat connections on general S1-bundle gerbes

As described in section 2.1 the concept of bundle gerbes is by no means limited
to the case of lifting bundle gerbes. In this section we will consider a smooth
fibration π : Y → M , which is a surjective submersion, and a bundle gerbe
L→ Y [2] like in definition 2.1.1. We will analyze the topological obstructions to
the existence of a flat connection on L. Note that a line bundle ` over M carries
a flat connection if and only if its first Chern class c1(`) ∈ H2(M,Z) is torsion,
i.e. cR

1 (`) ∈ H2(M,R) vanishes. In the case of bundle gerbes, cR
1 (`) should be

replaced by the real Dixmier-Douady-class ddR(L) ∈ H3(M,R). Even though
vanishing of ddR(L) is necessary, it is not sufficient to ensure the existence of a
flat connection as we will see presently.

Connections on bundle gerbes were already studied by Murray in [49],
from which we review the main arguments. At the heart of the analysis lies the
following exact complex of real valued k-forms:

Ωk(M) π∗−→ Ωk(Y ) δ−→ Ωk(Y [2]) δ−→ Ωk(Y [3]) δ−→ · · ·

Denote by πi : Y [p] → Y [p−1] the projection leaving out the ith factor, then the
differentials δ are defined via

δ(ω) =
p∑
i=1

(−1)iπ∗i ω .
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The curvature ΩL of a bundle gerbe connection on L provides a 2-form on Y [2]

and it was proven in [49] (using local trivializations) that δ(ΩL) = 0. Therefore
there is an element f ∈ Ω2(Y ), such that

π∗2f − π∗1f = δ(f) = ΩL .

Definition 4.1.11. A choice of f ∈ Ω2(Y ) with δ(f) = ΩL is called a curving
for the connection on L.

By the Bianchi identity and since d and δ commute, we have δ(df) = 0,
which implies that there is a 3-form ω ∈ Ω3(M), such that

df = π∗ω . (4.10)

Another fundamental theorem proven in [49] is the following.

Theorem 4.1.12. Let L be a bundle gerbe with connection. Let f be a curving
for this connection and let ω ∈ Ω3(M) be a 3-form with df = π∗ω. Then ω is a
closed form representing the Dixmier-Douady-class, i.e.

[ω] = ddR(L) ∈ H3(M,R) .

In particular, this class does not depend on the choice of f .

An immediate corollary of this observation is that the Dixmier-Douady-
form can be seen as the obstruction to the existence of a closed curving.

Corollary 4.1.13. Let L be a bundle gerbe with connection. Then the condition
ddR(L) = 0 is equivalent to the existence of a closed curving f ∈ Ω2(Y ) for the
connection on L.

Proof. If there is a closed curving f , then equation (4.10) and the injectivity of
π∗ on forms imply that ω can be chosen to vanish. Therefore ddR(L) = [ω] = 0.

On the other hand, let f ′ ∈ Ω2(Y ) be a curving for the connection on L
and ω ∈ Ω3(M) be a 3-form satisfying (4.10) and [ω] = ddR(L) = 0. Denote
the curvature of the connection by ΩL. Then ω = dτ for some τ ∈ Ω2(M). Set
f = f ′ − π∗τ . Then

df = df ′ − π∗dτ = π∗ω − π∗ω = 0 ,
δ(f) = δ(f ′)− δ(π∗τ) = ΩL .

Therefore f is a closed curving for the connection.

If the curvature vanishes, f can be chosen to vanish as well, a choice, which
is clearly closed. Therefore ddR(L) = 0 for flat bundle gerbe modules. On the
other hand, non-vanishing curvings provide an obstruction to flat connections.

To avoid working with de Rham cohomology groups of infinite dimensional
spaces, which is nevertheless possible (see e.g. [9]), we now stick to the case
of finite-dimensional smooth fibrations Y . According to [50, Proposition 5.6]
if M and the fibers of Y → M are simply connected a finite-dimensional Y
automatically implies that ddR(L) = 0. Note that f provides a class [f ] ∈
H2(Y,R) in case the curving is closed.
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Lemma 4.1.14. Let L be a bundle gerbe with connection, such that ddR(L) = 0.
Denote by π∗ : H2(M,R) → H2(Y,R) the map induced by the projection on
cohomology. Then a choice of closed curving f ∈ Ω2(Y ) provides a class

fR(L) = [f ] ∈ H2(Y,R)/Im(π∗) ,

which neither depends on the particular choice of curving f nor on the bundle
gerbe connection itself and therefore provides an invariant of the bundle gerbe.

Proof. Two possible choices of curvings fi, i ∈ {1, 2} for the same connection
differ by the pullback of a form ρ ∈ Ω2(M) to Y . If both curvings are closed,
then ρ is closed as well by the injectivity of π∗. Therefore [f1]− [f2] = π∗[ρ].

Denote by L̂ the principal S1-bundle of L and by pr: L̂→ Y [2] the projection.
As proven in [49] two bundle gerbe connections θ1, θ2 ∈ Ω1(L̂, iR) differ by

θ2 − θ1 = i pr∗δ(τ)

for some form τ ∈ Ω1(Y ). Denote by ΩjL for j ∈ {1, 2} the corresponding
curvatures. Let f1 be a closed curving for θ1 and set

f2 = f1 + dτ .

Clearly f2 is closed and δ(f2) = Ω1
L+Ω2

L−Ω1
L = Ω2

L. Thus, f2 is a closed curving
for θ2. But f1 and f2 differ by an exact form. Thus [f1] = [f2] ∈ H2(Y,R).

Theorem 4.1.15. Let L be a bundle gerbe with ddR(L) = 0. L allows a flat
bundle gerbe connection if and only if

fR(L) = 0 ∈ H2(Y,R)/Im(π∗) .

Proof. If there is a connection on L with ΩL = 0, then for any choice of curving
f ∈ Ω2(Y ) we have

δ(f) = ΩL = 0 .

Therefore f = π∗ρ for some ρ ∈ Ω2(M), which implies fR(L) = 0.
Suppose on the other hand that fR(L) = 0 and choose an arbitrary bundle

gerbe connection θ on L with curvature ΩL and curving f . Since by assumption
there is a closed form ρ ∈ Ω2(M) with

[f − π∗ρ] = 0 ∈ H2(Y,R)

there is a closed form η ∈ Ω1(Y ) with f − π∗ρ = dη. Denote by L̂ again the
principal S1-bundle of L and by pr: L̂→ Y [2] the projection. Define θ′ by

θ′ = θ − i pr∗δ(η) ∈ Ω1(L̂, iR) .

This is the connection form of a bundle gerbe connection on L. Its curvature
Ω′L ∈ Ω2(Y [2]) is

Ω′L = ΩL − δ(dη) = ΩL − δ(f) = 0 .

Therefore θ′ provides a flat bundle gerbe connection on L.
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Example 4.1.16. If L is the trivial bundle gerbe, i.e. L = π∗1Q ⊗ π∗2Q∗ for a
line bundle Q → Y , then the tensor product of a connection pulled back from
one on Q is a bundle gerbe connection on L. A possible curving for this choice
is of course the curvature ΩQ ∈ Ω2(Y ) of the connection on Q. Therefore we
have fR(L) = [c1(Q)] ∈ H2(Y,R)/Im(π∗) in this case.

In some cases the invariant fR(L) only depends on the cohomology of the
fiber F → Y →M instead of the total space Y .

Theorem 4.1.17. If F → Y →M is a fibration with M and F path-connected,
H1(F,R) = 0 and π1(M) acting trivially on H2(F,R) and H0(F,R). Then there
is an exact sequence

0→ H2(M,R) π
∗

→ H2(Y,R) i∗→ H2(F,R) τ→ H3(M,R) ,

in which i∗ and π∗ are induced by the inclusion of the fiber and the projection
to the base and τ is the transgression map.

Proof. This follows directly from the Serre spectral sequence.

In cases matching the conditions of theorem 4.1.17 vanishing of fR(L) is
equivalent to i∗(fR(L)) = 0 ∈ H2(F,R).

Example 4.1.18. In the case of lifting bundle gerbes the fibration Y → M is
given by a principal Γ-bundle P → M . Suppose that the fiber Γ is a compact
connected Lie group, then H1(Γ,R) = 0 already implies H2(Γ,R) = 0 (see for
example [14, Corollary 12.9]). This immediately yields

Corollary 4.1.19. If L is a lifting bundle gerbe over a path-connected M for
a central S1-extension

1 −→ S1 −→ Γ̂ −→ Γ −→ 1 ,

where Γ is a compact connected Lie group, such that H1(Γ,R) = 0 (⇔ π1(Γ)
finite) and π1(M) acts trivially on H0(Γ,R). Then there is a flat bundle gerbe
connection on L.

Denote by µ̂ and µ the Maurer-Cartan forms on Γ̂ and Γ respectively and
choose a split σ : g→ ĝ of the corresponding Lie algebras. Let κ : P [2] −→ Γ be
the defining map of the lifting bundle gerbe and denote the projection Γ̂ → Γ
by q. By [24, Lemma 6.4] there is a bundle gerbe connection on the lifting
bundle gerbe L with connection form

ν = κ∗ (µ̂− σ ◦ q∗µ) . (4.11)

Its curvature is given by

ΩL = −1
2
κ∗ωσ(µ(·), µ(·)) .

where ωσ(X,Y ) = [σ(X), σ(Y )]bΓ − σ([X,Y ]Γ) is the Lie algebra cocycle of the
extension. By restricting to local trivializations it is easy to see that in this case
i∗(fR(L)) = [ωσ(µ, µ)] ∈ H2(Γ,R), which corresponds to the curvature ωσ(µ, µ)
of the connection induced by the split on the principal S1-bundle Γ̂→ Γ.
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Remark 4.1.20. Let ∆: P → P [2] be the diagonal embedding p 7→ (p, p). As
we have seen in section 2.1 the line bundle ∆∗L is trivialized via a canonical
isomorphism induced by the bundle gerbe multiplication. Denote the principal
S1-bundle of L by L̂. Using the identification L̂ = P × Γ̂, the bundle homomor-
phism P × S1 → ∆∗L̂ → L̂ corresponds to the map P × S1 → P × Γ̂, which
is just the inclusion on the second factor. This observation shows that ν from
(4.11) pulls back to the canonical flat connection on the trivial bundle. Any
other bundle gerbe connection on L can be obtained as

θ = ν + ipr∗δ(η)

for a form η ∈ Ω1(P ) and since πj ◦ pr ◦∆ coincides with the bundle projection
∆∗L̂ → P for j ∈ {1, 2} we see that the above remark also holds for any other
bundle gerbe connection on L: Any bundle gerbe connection pulls back to a flat
connection over the diagonal.

4.1.4 Trivial bundle gerbes

Since the Dixmier-Douady-class of a lifting bundle gerbe L −→ P [2] coincides
with the obstruction to lifting P to a Γ̂-bundle P̂ , connections on modules over
L should reduce to ordinary connections on the pushed down bundles over M .
This section will reveal that this is indeed the case. It will also clarify some
properties of connections in the generalized spinc-case.

Whenever the lifting bundle gerbe L is trivial, there is a line bundle Q∗ =
P̂ ×S1 C. Its conjugate Q is a bundle gerbe module. To see this, note that on
the level of principal bundles switching to conjugates corresponds to twisting
the S1-action by the inversion (i.e. p̂ · eiϕ = p̂e−iϕ where the dot denotes the
new action). Therefore the module structure on Q is induced by:

γ : L̂⊗ π∗2 P̂ −→ π∗1 P̂ ; [ĝ , p̂ ] 7→ p̂ ĝ−1 .

Lemma 4.1.21. Suppose that P is established with a fixed connection η and L
carries the canonical flat connection. Giving a bundle gerbe module connection
on P̂ is the same as choosing a connection η̂ on P̂ that is compatible with η.

Proof. Let θ ∈ Ω1(P̂ , iR) be a bgm-connection on P̂ and denote the Maurer-
Cartan form on Γ̂ by ν, then equation (4.5) yields

θ(γ∗([W,X])) = θ(W ) + ν(X) for W ∈ TbpP̂ ,X ∈ TbgΓ̂ .

In particular
θ(Rbg∗W ) = θ(W ) , θ(βbp∗X) = −ν(X) (4.12)

with βbp(ĝ) = p̂ ĝ and X ∈ ĝ (note that β multiplies with ĝ, whereas γ uses the
inverse, hence the minus sign in front of ν!). Let π bP : P̂ → P and q : Γ̂→ Γ be
the canonical projections and set η̂ = π∗bP η − θ. Due to (4.12)

η̂(Rbg∗W ) = η(Rq(bg)∗π bP∗W )− θ(Rbg∗W ) = Adq(bg)−1 η(π bP∗W )− θ(W )
= Adbg−1 η̂(W )

η̂(βbp∗X) = η(βπbp(bp)∗q∗X)− θ(βbp∗X) = q∗X + ν(X) = X .

Note that π∗bP η = q∗η̂, hence η̂ is a connection compatible with η.
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A connection η̂ compatible with η on P̂ induces a bgm-connection via θ =
π∗bP η − η̂. Indeed, since q∗η̂ = π∗bP η, θ takes values in iR. Furthermore:

η̂(γ∗([W,X])) = −η̂(βbp∗Rbg−1∗ Lbg−1∗X) + η̂(Rbg−1∗W )
= −Adbg (µ̂(X)) + Adbg η̂(W ) ,

η(π bP∗γ∗([W,X])) = −Adq(bg) (µ(q∗X)) + Adq(bg) η(π bP∗W ) (4.13)

and therefore

θ(γ∗([W,X])) = Adq(bg) (µ̂(X)− µ(q∗X)− η̂(W ) + η(π bP∗W )
)

= ν(X) + θ(W ) .

Invariance under right translation by elements of S1 is evident. Fundamental
vector fields on P̂ with respect to the above action are generated by αbp(eiϕ) =
p̂ e−iϕ = βbp ◦ inv(eiϕ). Thus for Xϕ ∈ iR

θ(αbp∗Xϕ) = −η̂(βbp∗ inv∗Xϕ) = Xϕ .

Theorem 4.1.22. Let P̂ be the bundle gerbe module for the trivial lifting bundle
gerbe L equipped with its canonical flat connection as above, θ a bgm-connection
on P̂ . Let PE be the principal U(n)-bundle associated to a bundle gerbe module
E over L with connection ηE. Denote by P̂ ⊗ PE the tensor product of the
principal bundles as defined in (4.8) and let π!(P̂ ⊗ PE) be the pushed down
U(n)-principal bundle over M . Then ω = π!(ηE − θ) defines a connection on
π!(P̂ ⊗ PE).

Proof. Using equation (4.5) for elements Xϕ ∈ TϕS1, it is easy to check that
ηE − θ is a well defined form in Ω1(P̂ ⊗ PE , u(n)). The same argument can be
used for the action of elements X ∈ TbgΓ̂ to show that ηE−θ can be pushed down
to π!(P̂ ⊗PE). Since ηE is a connection form, ηE − θ inherits this property.

In the generalized spinc case we have the short exact sequence

1 −→ Γ δ−→ Γ̂ −→ S1 −→ 1 .

In this situation the bundle gerbe module P̂ can be pushed down to a line bundle
P̂ /Γ over M . In the case Γ̂ = Spinc this is the line bundle corresponding to
the inverse canonical class of the spinc-structure. Since the choice of splitting
that we made above implies ν(δ∗X) = 0 for all X ∈ TgΓ, θ pushes down as well.
In the other direction the pullback via P̂ −→ P̂ /Γ of a connection form on
the inverse canonical line bundle yields a bgm-connection due to a calculation
similar to (4.13) and the canonical splitting that we chose above.

To summarize: The trivial bundle gerbe with its connection contains every
spinc structure on the manifold. A choice of trivialization of the gerbe to-
gether with a bgm-connection on it fixes both: the structure as well as a spinc-
connection. It is in this way that bundle gerbe modules in the above case are
like generalized spinor bundles without having a spinc-structure!
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4.1.5 Connections on tensor products

Whenever we have two bundle gerbes L1 −→ X
[2]
1 and L2 −→ X

[2]
2 we can form

their external tensor product

L = L1 � L2 := π∗
X

[2]
1
L1 ⊗ π∗X[2]

2
L2 −→ X

[2]
1 ×M X

[2]
2

where the π
X

[2]
i

denote the canonical projections. This is again a bundle gerbe
with dd(L1 � L2) = dd(L1) + dd(L2). If each Li carries a bundle gerbe connec-
tion θi, then

θL = π∗
X

[2]
1
θ1 + π∗

X
[2]
2
θ2 ∈ Ω1(L̂1 � L2, iR)

defines one on the tensor product. Now take two bundle gerbe modules Ei
over Li for i ∈ {1, 2}, both carrying bgm-connection forms, denoted by ηi ∈
Ω1(PEi , u(ni)). The external tensor product

E1 � E2 = π∗X1
E1 ⊗ π∗X2

E2

is a bundle gerbe module for L with respect to the tensor product action

γ = γE1 � γE2 : L⊗ π∗2(E1 � E2) −→ π∗1(E1 � E2) ,

since (L1 � L2) ⊗ π∗k(E1 � E2) = (L1 ⊗ π∗X1,k
E1) � (L2 ⊗ π∗X2,k

E2). Fix a
monomorphism τ : U(n1)⊗U(n2) −→ U(n1n2). The first group is the quotient
of the product by the antidiagonal U(1)-action. Using the same notation PE1�E2

can be written as the U(n1n2)-principal bundle (PE1 ⊗ PE2) ×τ U(n1n2). The
u(n1n2)-valued 1-form

η([[W1,W2] , X]) = Ada−1(τ∗ [η1(W1), η2(W2)]) + µU(n1n2)(X) (4.14)

is well-defined on PE1�E2 and yields a connection. Here we have Wi ∈ TpiEi for
i ∈ {1, 2}, such that [W1,W2] ∈ T[p1,p2](PE1 ⊗ PE2) and X ∈ TaU(n1n2). The
outer brackets denote the quotient by τ∗. Now, τ∗([θ1(Y1), θ2(Y2)]) = θ1(Y1) +
θ2(Y2) for Yi ∈ TxiL̂i. Therefore η is a bgm-connection.

4.1.6 Parallel transport in twisted Hilbert A-module
bundles

Let V be a Hilbert C∗-module over A, then End(V ) turns out to be a C∗-algebra.
It contains the group U(V ) of unitary elements, which becomes a topological
group when equipped with the norm topology. In fact, it is a Banach Lie group
in the sense of [34] modelled on the Lie algebra ia of anti-selfadjoint elements
in End(V ). It therefore is regular in the sense that smooth curves in ia can
be integrated to smooth curves in U(V ) in a smooth way. Surprisingly, the
geometry of principal bundles with regular structure groups can be treated in
much the same way as the finite-dimensional case. In particular, there is a
sensible notion of parallel transport, see [34].

We will apply the above setup to the frame bundle PE of a smooth twisted
Hilbert A-module bundle E over a principal Γ-bundle P to see that parallel
transport acts equivariantly with respect to shifting the starting point by the
action of Γ̂. Definition 4.1.6 extends canonically to our situation:
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Definition 4.1.23. Let E be a twisted Hilbert A-module bundle with respect
to the bundle gerbe (L, θL). A twisted connection on E is a connection form
ηE ∈ Ω1(PE , ia) satisfying the following condition:

γ∗π∗1ηE = θL + π∗2ηE . (4.15)

The embedding of iR implicitly needed for this equation to make sense is just
the differential at 1 of the canonical map U(1) −→ U(V ).

At the heart of the theory of parallel transport lies the following observation:

Lemma 4.1.24. Let E be a twisted Hilbert A-module bundle over P with a
connection η. Let V ∈ TpP and r ∈ PE be a lift of p. There exists a unique
vector W ∈ TrPE such that πPE∗(W ) = V and η(W ) = 0. W is called the
horizontal lift of V .

Proof. This is clear from the fact that η provides a splitting of the short exact
sequence of Banach spaces:

0 −→ ia −→ TrPE −→ TpP −→ 0 .

Theorem 4.1.25. Let E → P be as above. For each smooth curve c : R −→ P
with c(0) = p ∈ P there is a unique smooth mapping

Pc : R× (PE)p −→ PE

with the following properties:

1. Pc(t, r) ∈ (PE)c(t)

2. Pc(0, ·) = id(PE)p

3. η( ddtPc(t, r)) = 0

(i.e. each curve c in P has a lift ĉ(t) = Pc(t, r) to PE such that it starts at r
and the tangent at each point is lifted horizontally).

Proof. see Theorem 6.1 in [34] for the details. In a trivialization ϕi : Ui ×
U(V ) −→ PE the curve takes the form ĉ(t) = (c(t), τ(t)), furthermore for
(V, Y ) ∈ TpUi ⊕ TgU(V ):

η(ϕi∗(V, Y )) = Lg−1∗(Y ) + Adg−1ηi(V ) ,

where ηi is the pullback of η with respect to the canonical section Ui → Ui ×
{1} ϕi→ PE . Existence now follows from the solvability of the differential equation

τ̇ = −Rτ(t)∗(ηi(ċ))

in U(V ) and is therefore reduced to its regularity.

The twisted action γ induces a true left action of Γ̂ on PE via

ĝ · r = γ(pg−1, [r, ĝ]) ,

where (pg−1, [r, ĝ]) ∈ L̂⊗ π∗2PE like in (4.8). It covers the left action of Γ on P
in the sense that πPE (ĝ · r) = pg−1 =: g · p.
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Lemma 4.1.26. Parallel transport is Γ̂-equivariant in the following sense:

Pg·c(t, ĝ · r) = ĝ · Pc(t, r) .

Proof. Set ĉ(t) = Pc(t, r). We have to show that ĝ · ĉ satisfies conditions (1) to
(3) in theorem 4.1.25 with respect to the curve g · c. (1) and (2) follow from the
fact that the action of Γ̂ on PE covers that of Γ on P . For (3) we calculate:

d

dt
(ĝ · ĉ) (t) =

d

dt
(γ(g · c, [ĉ, ĝ])) (t) = γ∗([ ˙̂c(t), 0]) ,

where the dot denotes the derivative by t and we used the notation from
(4.9) for tangent vectors. But since η is a twisted connection form we have
η(γ∗([ ˙̂c(t), 0])) = θL(0) + η(˙̂c) = η(˙̂c) = 0 by hypothesis.

4.1.7 Curvature and Chern character
of twisted Hilbert A-module bundles

We continue unravelling further classical notions of differential geometry by
defining what the curvature of a twisted Hilbert A-module bundle should be.
There is no surprise about the next definition:

Definition 4.1.27. Let E be a twisted Hilbert A-module bundle with connec-
tion form ηE . Then its curvature is defined to be the ia-valued 2-form

ΩE = dηE + [ηE , ηE ] ∈ Ω2(PE , ia) .

Here we have [ηE , ηE ](X,Y ) = [ηE(X), ηE(Y )], where the Lie bracket of ia is
used.

Even the main properties of ΩE hold in the infinite dimensional case as was
proven in [34].

Lemma 4.1.28. If ΩE is the curvature of a twisted connection, then it is hori-
zontal, i.e. it kills vertical vector fields. Furthermore it is U(V )-equivariant in
the following sense: R∗aΩE = Ada−1ΩE for all a ∈ U(V ).

The above lemma allows us to see ΩE as a 2-form over P taking values
in the bundle Ad(PE)↓ = PE ×Ad ia. Since the map induced by the twisting
isomorphism on the bundle PE is equivariant with respect to the action of
U(V ), Ad(PE)↓ transforms equivariantly under the right action of Γ̂ on P . Ada
is trivial for elements a ∈ U(1) ⊂ U(V ), so the latter does not depend on the
choice of lift from Γ to Γ̂. Thus, Ad(PE)↓ descends one step further to form
Ad(PE)⇓ over M .

The definition of the curvature 2-form ΩE together with (4.15) yields

γ∗π∗1ΩE = ΩL + π∗2ΩE , (4.16)

where ΩL denotes the curvature of the bundle gerbe connection on L. But since
we only consider flat extensions of Lie groups, ΩL vanishes, because it is just
the pullback of the curvature form on Γ̂ over Γ. In explicit terms (4.15) looks
like ΩE(γ∗[W,X], γ∗[V, Y ]) = ΩE(W,V ) for W,V ∈ TrPE and X,Y ∈ TaU(V ).
This is just the condition needed to get a 2-form taking values in the bundle
Ad(PE)⇓, i.e. ΩE ∈ Ω2(T ∗M,Ad(PE)⇓). The standard representation of U(V )
on V enables us to see Ad(PE)↓ as a subbundle of End(E), which turns Ad(PE)⇓

into a subbundle of end(E) (for the definition see section 3.2), therefore ΩE ∈
Ω2(T ∗M, end(E)) is a C∗-algebra valued 2-form.
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Remark As we have seen in section 4.1.3 the curvature ΩL of a bundle gerbe
connection on L in general satisfies δ(ΩL) = 0. Therefore there exists a curving
form f ∈ Ω2(P ) such that ΩL = δ(f) = π∗1f − π∗2f . The choice of f is unique
up to 2-forms pulled back from M [49]. If the real Dixmier-Douady-class
ddR(L) = 0 ∈ H3(M,R) then f can be chosen to be a closed form. As follows
from (4.16) with such a choice of curving f we can push down ΩE − f to a
2-form over M taking values in Ω2(T ∗M,Ad(PE)⇓).

In the case of bundle gerbe modules the standard trace on matrix algebras
extends to a pointwise functional tr : C(M, end(E)) −→ C(M,C), which allows
us to apply the machinery of Chern-Weil-theory.

Lemma 4.1.29. Let E be a bundle gerbe module over the principal Γ-bundle
P with connection ηE having curvature ΩE. If T : Mn(C) → C is an invariant
polynomial in the sense of [44], then T (ΩE) is a closed form in Ωeven(M,C),
whose cohomology class does not depend on the choice of connection on E.

Proof. The proof of closedness given in [44] just uses the expression dΩE =
ΩE ∧ ηE − ηE ∧ΩE and properties of the trace and therefore applies to our case
as well. The independence of a connection uses the fact that the space of all
connections is convex together with a homotopy argument. It is also contained
in [44] and applies to the twisted case without any change.

Definition 4.1.30. Let M be a compact manifold and E a bundle gerbe module
over the principal Γ-bundle P → M with a bgm-connection ηE ∈ Ω1(PE , u(n))
and curvature ΩE ∈ Ω2(M, end(E)), then

ch(E) = tr
(

exp
(
iΩE
2π

))
∈ Ωeven(M)

with exp
(
iΩE
2π

)
=
∑∞
n=0

(
i

2π

)n ΩE∧···∧ΩE
n! is closed by the above lemma. Its class

in Heven(M,R) is called the Chern character of E. It only depends on the stable
isomorphism class of E and therefore extends to a homomorphism:

ch: K0
K(M) −→ Heven

dR (M,R) .

In case M is non-compact, let [E+, E−, ϕE ] ∈ K0
K(M) and denote by K a

compact set, such that ϕ−1
E exists on the complement of K. Now, choose a

connection ∇− on E− and ∇̂ on E+, such that it coincides with ϕ−1
E ◦∇− ◦ϕE

outside a compact subset. This can always be constructed from an arbitrary
connection ∇+ on E+ in the following way: Let ρ : M −→ [0, 1] be a smooth,
compactly supported function with ρ|K = 1. Set

∇̂ = ρ∇+ + (1− ρ)ϕ−1
E ◦ ∇− ◦ ϕE .

Denote the curvature of ∇̂ by Ω̂ and define

ch([E+, E−, ϕE ]) = tr

(
exp

(
iΩ̂
2π

))
− tr

(
exp

(
iΩ−
2π

))
,

which is a class in cohomology with compact supports (since ∇̂ coincides with
∇− outside a compact subset) and does not depend on the choice of η̂ under
the above restrictions.
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Theorem 4.1.31. The Chern character has the following properties:

i) It is additive in the sense that for [E1], [E2] ∈ K0
K(M) with the same twisting

we have

ch([E1 ⊕ E2]) = ch([E1]) + ch([E2]) ∈ Heven
c,dR(M,R)

ii) If L1 and L2 are two lifting bundle gerbes with dd(L1) = dd(L2) correspond-
ing to the matrix bundles K1 and K2, then a trivialization F of L2 � L∗1
yields

Heven
c,dR(M,R) Heven

c,dR(M,R)

K0
K1

(M) K0
K2

(M)

....................................................................................................... ............
∪ch(F )

........................................................................
...
.........
...
ch

........................................................................
...
.........
...
ch

.................................................................................................................................................... ............
⊗F

In particular, it coincides with the ordinary Chern character if there exists
a flat trivialization F .

iii) It is multiplicative, i.e. if [E1] ∈ K0
K1

(M) and [E2] ∈ K0
K2

(M), then

ch([E1 � E2]) = ch([E1]) ∪ ch([E2]) ∈ Heven
c,dR(M,R)

for [E1 � E2] ∈ K0
K1⊗K2

.

iv) It commutes with the Bott map, i.e.

Heven
c,dR(M,R) Heven

c,dR(R2 ×M,R)

K0
K(M) K0

π∗MK
(R2 ×M)

......................................................................... ............
×(−e2)

........................................................................
...
.........
...
ch

........................................................................
...
.........
...
ch

................................................................................................................. ............B

where e2 ∈ H2
c (R2) ' Z denotes the generator, i.e. the cohomology class of

a differential form that integrates to 1.

Proof. The first statement is trivial since all constructions involved are well-
behaved with respect to direct sums: For the connection ηE1 ⊕ ηE2 we have
ΩE1⊕E2 = ΩE1 ⊕ ΩE2 . Thus, exp splits into a direct sum of two exponentials,
which is turned into a sum of forms by the trace.

To prove iii) we first see that we can regard end(E1)⊗end(E2) as a subbundle
of end(E1 � E2), since both are associated to PE1 ⊗ PE2 , the latter via an
embedding τ : U(n1)⊗U(n2)→ U(n1n2). Two connections ηEi on Ei induce a
canonical one on the tensor product by (4.14) denoted by ηE1�E2 . From (4.14)
we deduce that ΩE1�E2 = ΩE1⊗idE2 +idE1⊗ΩE2 using the above identification.
Since the summands commute, we have:

exp
(
iΩE1�E2

2π

)
= exp

(
i(ΩE1 ⊗ idE2)

2π

)
∧ exp

(
i(idE1 ⊗ ΩE2)

2π

)
=

[
exp

(
iΩE1

2π

)
⊗ idE2

]
∧
[
idE1 ⊗ exp

(
iΩE2

2π

)]
= exp

(
iΩE1

2π

)
∧ exp

(
iΩE2

2π

)
,
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where in the last expression the wedge product is defined by

(µp ∧ νq)(X1, . . . Xp+q)

=
1
p!q!

∑
σ∈Sp+q

µp(Xσ(1), . . . Xσ(p))⊗ νq(Xσ(p+1), . . . Xσ(p+q)) (4.17)

for the p-, respectively q-degree part of exp
(
iΩEi
2π

)
. Applying the trace on

Mn1(C) ⊗Mn2(C) to the line above turns the tensor product in (4.17) into a
product of traces and thus yields the wedge product of the corresponding forms.

In case M is non-compact, note that [E+, E−, ϕE ] = [F,Cn, α] ∈ K0
K(M)

for a bundle gerbe module F , some n ∈ N and twisted morphism α. Using the
convexity of the space of connections we can find ∇ on F such that it coincides
with the pullback of the flat connection d outside a compact subset. The tensor
product of two classes [Fi,Cni , αi] ∈ K0

K(M) yields

[F1 ⊗ F2 ⊕ Cn1n2 , F1 ⊗ Cn2 ⊕ Cn1 ⊗ F2, α̂]

But now the connection ∇F1⊗F2 ⊕ d agrees with the pullback of ∇F1⊗Cn2 ⊕
∇Cn2⊗F1 via α̂ outside a compact subset. Thus, using them to compute the
Chern character we arrive at:

ch([F1,Cn1 ]⊗ [F2,Cn2 ]) = ch(F1)ch(F2) + n1 n2 − ch(F1)n2 − ch(F2)n1

= (ch(F1)− n1) (ch(F2)− n2)
= ch([F1,Cn1 ]) ∪ ch([F2,Cn2 ]) .

For the proof of ii) remember that F being a trivialization implies that there
is an isomorphism

pr∗2L2 ⊗ pr∗1L
∗
1 ⊗ π∗2F −→ π∗1F , (4.18)

where pri denotes the projection P [2]
1 ×M P

[2]
2 → P

[2]
i and πi the ith projection

onto one of the two factors P1 ×M P2. Let π(1)
k : P [2]

1 ×M P2 → P1 ×M P2 be
the projection to the kth factor and ∆(j) : Pj → P

[2]
j be the diagonal inclusion,

then

πk ◦
(

id
P

[2]
1
×M ∆(2)

)
= π

(1)
k ,

pr1 ◦
(

id
P

[2]
1
×M ∆(2)

)
= π

P
[2]
1
,

pr2 ◦
(

id
P

[2]
1
×M ∆(2)

)
= ∆(2) ◦ πP2 .

Moreover ∆(2)∗L2 can be canonically identified with the trivial line bundle.
Therefore (4.18) turns F into a bundle gerbe module for L̃1 = π∗

P
[2]
1
L∗1 using the

pullback via (id
P

[2]
1
×M ∆(2)). The twisting is given by

γF : L̃∗1 ⊗ π
(1)∗
2 F −→ π∗P2

∆(2)∗L2 ⊗ π∗P [2]
1
L∗1 ⊗ π

(1)∗
2 F −→ π

(1)∗
1 F

and the associativity follows from the fact that the isomorphism (4.18) is an
isomorphism of bundle gerbes when seen as a map pr∗2L2 ⊗ pr∗1L

∗
1 → π∗1F ⊗

⊗π∗2F ∗.
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Let ρi : P1 ×M P2 → Pi be the canonical maps and consider ρ∗1E ⊗ F . This
is a Γ1-equivariant vector bundle over the principal Γ1-bundle P1 ×M P2 → P2

via the isomorphism

δ : π(1)∗
2 (ρ∗1E ⊗ F )→

(
L̃1 ⊗ π(1)∗

2 ρ∗1E
)
⊗
(
L̃∗1 ⊗ π

(1)∗
2 F

)
→ π

(1)∗
1 (ρ∗1E ⊗ F )

where the first map inserts the trivial line bundle L̃1 ⊗ L̃∗1 via the canonical
isomorphism and the second is induced by the twisting of E and the above
argument. The transfer of [E] ∈ K0

K1
(M) to K0

K2
(M) is the descent of the

above vector bundle to P2. Let θj be a bundle gerbe connection on Lj and
let L∗1 be equipped with the connection −θ1. These induce a tensor product
connection on pr∗2L2 ⊗ pr∗1L

∗
1, which is again a bundle gerbe connection. Note

that (4.18) turns F into a bundle gerbe module for this tensor product. Choose
a bundle gerbe module connection ηF on F for pr∗2L2 ⊗ pr∗1L

∗
1. In particular,

it is a bgm-connection for the action γF of L̃1, since the pullback of θ2 with
respect to the trivialization C → ∆(2)∗L2 is the canonical flat connection (see
remark 4.1.20). In the notation introduced in (4.9) condition (4.5) reads

ηF

(
γF∗

[
W, X̂1

])
= ηF (W )− θ1(X̂1)

for W ∈ TrPF and X̂1 ∈ Tbg1 Γ̂1. If ηE is a bundle gerbe module connection on
E for the action of L1, then ρ∗1ηE + ηF satisfies

π
(1)∗
2 (ρ∗1ηE + ηF ) = δ̂∗ ◦ π(1)∗

1 (ρ∗1ηE + ηF ) ◦ δ̂−1∗

since the θ1-terms cancel (here δ̂ denotes the morphism of principal bundles
induced by the vector bundle isomorphism δ). Thus, ρ∗1ηE + ηF descends to a
well-defined connection on the transferred bundle.

Denote by π
(2)
k : P1 ×M P

[2]
2 → P1 ×M P2 the projection to the kth factor

and let L̃2 = π∗
P

[2]
2
L2 be the pullback of L2 to P1 × P [2]

2 . A similar reasoning as

the one given above yields another twisting on F

δF : L̃2 ⊗ π(2)∗
2 F −→ π

(2)∗
1 F

turning it into a bundle gerbe module for L̃2. Since ρ1 ◦ π(2)
1 = ρ1 ◦ π(2)

2 we
have that π(2)∗

1 ρ∗1E is canonically isomorphic to π(2)∗
2 ρ∗1E, therefore ρ∗1E ⊗ F is

a bundle gerbe module for L̃2 via the isomorphism induced by δF

L̃2 ⊗ π(2)∗
2 (ρ∗1E ⊗ F ) −→ π

(2)∗
1 (ρ∗1E ⊗ F ) .

Since ηF was chosen to be a bundle gerbe module connection for the tensor
product pr∗2L2 ⊗ pr∗1L

∗
1 we have:

ηF

(
δF∗

[
W, X̂2

])
= ηF (W ) + θ2(X̂2)

for W ∈ TrPF and X̂2 ∈ Tbg2 Γ̂2. This shows that ρ∗1ηE + ηF is actually a
bgm-connection. Since its curvature is ΩE + ΩF ∈ Ω2(M,Ad(Pρ∗1E⊗F )⇓) ⊂
Ω2(M, end(ρ∗1E⊗F )), the claim follows from the multiplicativity proven in iii).
It is applicable to the non-compact case without any change, since there we
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tensor both bundles in the triple with F , which implies that if ∇E+ agrees
with the pullback of ∇E− outside some compact set, then the same holds for
∇ρ∗1E+⊗F and ∇ρ∗1E−⊗F .

Recall that the Bott map sends [E] to the triple [π∗ME, π
∗
ME, b], i.e. it

pulls E back to a bundle over R2 ×M and multiplies with the Bott element
[C,C, b] ∈ K0(R2×M), where b is the map of fiberwise multiplication by (x+iy)
for (x, y) ∈ R2. Since the Chern character is natural with respect to pullbacks
and due to its multiplicativity, we only need to check that ch([C,C, b]) = −e2 ∈
H2
c (R2 ×M). We evaluate ∇̂ from above for the canonical flat connection d

on C:
∇̂ = d+ (1− ρ)g−1dg ,

where g is the function g(x, y,m) = x + iy =: z. Its curvature is Ωz = d((1 −
ρ)g−1dg), which is a 2-form with vanishing higher powers, therefore

exp
(
iΩz
2π

)
= 1 +

iΩz
2π

Using Stokes’ theorem on circles with growing radius in R2 one can check that[
iΩz
2π

]
= −e2. Thus:

ch([C,C, b]) = (1− e2)− 1 = −e2 .

In a similar fashion we can use Chern-Weil-theory to define the real Chern
classes ck by

det
(

1 +
itΩE
2π

)
=
∑
k

ck(E)tk ∈ Heven
dR (M,R) . (4.19)

As in the untwisted case, the ck are natural characteristic classes.
Using the Künneth theorem we can easily extend the Chern character to a

transformation that takes values in Heven
c (M,K0(A)⊗ R).

Definition 4.1.32. Let A be bundle of C∗-algebras associated to a principal
Γ-bundle P . Let K be a bundle of matrix algebras associated to the principal
PU(n)-bundle P̃ such that dd(A) = dd(K). Let Q be a choice of trivialization
like in theorem 3.4.1 as explained in remark 3.4.7 and consider

chQ : K0
A(M)

⊗Q−→ K0
K(M)⊗K0(A)⊗ R −→ Heven(M,K0(A)⊗ R) ,

where the first map is the projection to the first Künneth summand and the
second is just ch on K0

K(M). This is called the K0(A)-valued Chern character.

Remark 4.1.33. As defined above the K0(A)-valued Chern character depends
on the particular choice of the bundle of matrix algebras K and the trivialization
Q involved. In case dd(A) = 0 at least K can be chosen in a canonical way, i.e.
K = M × C. Note that the following diagram commutes:

K0
A(M)

K0
A(M) K0

A(M) Heven(M,K0(A)⊗ R)

Heven(M,K0(A)⊗ R)

....................................................................................................
...
.........
...

⊗Q

.......................................................................................................................................... ............
⊗Q

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

.........................
............

id

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

.........................
............

id

........................................................................................................................ ............ch

.................................................................................................................................................................................................................................................................................................................................................... ............ch

....................................................................................................
...
.........
...

id
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If we denote the descend of E ⊗ Q by π!, then ch(π!(E ⊗ Q)) = chQ(E). If
A is itself a bundle of matrix algebras with dd(A) = 0, then by part ii) of
theorem 4.1.31 we have chQ(E) = ch(Q) ∪ ch(E) = exp(c1(Q)) ∪ ch(E).

Theorem 4.1.34. The Chern character has the following properties:

i) It is additive.

ii) It is well-behaved with respect to change of twisting in the following sense
(compare with theorem 4.1.31 ii). Let Aj for j ∈ {1, 2} be two C∗-algebra
bundles with typical fiber A. Denote the corresponding lifting bundle gerbes
by Lj. Let K be a bundle of matrix algebras with lifting bundle gerbe L̃,
such that dd(L̃) = dd(L1) = dd(L2). Choose trivializations F of L2 � L∗1
and Q of L̃�L∗1. F and Q induce a trivialization Q�F ∗ of L̃�L∗2. Then
the following diagram commutes:

Heven
c,dR(M,K0(A)⊗ R) Heven

c,dR(M,K0(A)⊗ R)

K0
A1

(M) K0
A2

(M)

.................................................................................................... ............
∪ch(F )

........................................................................
...
.........
...
chQ

........................................................................
...
.........
...
chQ�F∗

..................................................................................................................................................................................................................................................... ............
⊗F

iii) It is multiplicative with respect to the twisted product, i.e. if [E] ∈ K0
A(M)

and [F ] ∈ K0
K(M), then

chQ([E � F ]) = chQ([E]) ∪ ch([F ]) ∈ Heven
c,dR(M,K0(A)⊗ R)

for [E�F ] ∈ K0
A⊗K(M), where Q induces the Morita equivalence between

A and K′ ⊗ A for some bundle of matrix algebras K′ with dd(A) = dd(K′)
and therefore also a Morita equivalence between A⊗K and K′ ⊗A⊗K.

iv) It commutes with the Bott map like in theorem 4.1.31 iv).

Proof. All properties follow directly from theorem 4.1.31, since the Künneth
decomposition commutes with forming twisted products.

If the algebra A is unital and comes equipped with a continuous trace τ ,
then the latter induces a trace on the adjointable endomorphisms End(V ) of a
finitely generated Hilbert A-module V , because we have:

End(V ) = K(V ) = V ⊗A K(V,A) ,

where K denotes the compact adjointable operators and we use the tensor prod-
uct of Hilbert A-modules. The left action of A on K(V,A) maps T to aT . On
elementary tensors we define τV (v⊗T ) = τV (T (v)), which is easily seen to have
the trace property.

Let E be a twisted Hilbert A-module bundle over P . Since end(E) is asso-
ciated to P via the adjoint action of Γ on End(V ), the trace extends to a map
on end(E)-valued forms. By a slight abuse of notation we will also denote this
map by τ . Now the curvature ΩE of a twisted connection ηE on E is a 2-form
taking values in end(E). So, having the trace at hand, there is a more direct
approach to the Chern character.
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First note that a twisted connection ηE on E with covariant derivative∇E in-
duces a connection∇∗ on the bundle Hom(E,A), such that d(ϕ(u)) = (∇∗ϕ)u+
ϕ(∇Eu) for ϕ ∈ C∞(P,Hom(E,A)) and u ∈ C∞(P,E). Furthermore, it induces
a connection ∇ on the bundle end(E) in such a way that if a section of end(E)
is interpreted as one of End(E) over P we have ∇E(ψ(u)) = ∇(ψ)u+ ψ∇E(u)
for ψ ∈ C∞(M, end(E)). The latter can be extended to forms by demanding
the graded Leibniz rule as usual. The isomorphism E⊗A Hom(E,A) ' End(E)
pulls back ∇ to the connection ∇E ⊗ 1 + 1⊗∇∗. This is used in the following
lemma.

Lemma 4.1.35. If τ is the trace extended to end(E)-valued forms over M , then

dτ(ω) = τ(∇ω)

for an arbitrary connection ∇ on end(E) induced by a twisted connection ∇E
on E.

Proof. We can identify Ωk(M, end(E)) with horizontal k-forms Ωkhor(P,End(E))
and restrict to elements ω ∈ Ωkhor(P,End(E)), which are of the form ω = αu⊗ψ
for α ∈ Ωkhor(P ), u ∈ C∞(P,E), ψ ∈ C∞(P,Hom(E,A)) by a partition of unity
argument. Now

∇(ω) = dαu⊗ ψ + (−1)deg(α)α (∇Eu⊗ ψ + u⊗∇∗ψ) .

Taking the trace yields:

τ(∇(ω)) = τ(dαψ(u) + (−1)deg(α)α (ψ(∇Eu) +∇∗ψ(u)))

= τ(dαψ(u) + (−1)deg(α)αd(ψ(u))) = d(τ(αψ(u))) .

As a corollary of the above lemma we immediately get:

Lemma 4.1.36. Let E be a (finitely generated, projective) twisted Hilbert A-
module bundle over the principal Γ-bundle P with connection ηE having curva-
ture ΩE. Let V be the typical fiber of E. If T : End(V ) → C is an invariant
polynomial in the sense that it is the trace of a polynomial in End(V ) and that
T (USU∗) = T (S) for U ∈ U(V ), then T (ΩE) is a closed form in Ωeven(M,C),
whose cohomology class does not depend on the choice of connection on E.

Proof. Because closedness is a local property we can restrict to sections sup-
ported in a region where the bundle is trivializable. But here we can use the flat
connection, together with the last lemma to apply the trick from lemma 4.1.29.
The independence of the chosen connection again follows from convexity of the
space of connections.

Definition 4.1.37. Let M be a compact manifold and E be a twisted Hilbert
A-module bundle over a principal Γ-bundle P → M with a twisted connection
ηE ∈ Ω1(PE , ia) and curvature ΩE ∈ Ω2(M, end(E)), then

chτ (E) = τ

(
exp

(
iΩE
2π

))
∈ Ωeven(M)

is a closed form. Its class in cohomology is called the τ -Chern character of E.
Like in definition 4.1.30 there is also a τ -Chern character on non-compact ma-
nifolds.
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Remember that there are two descriptions of the group K0
K(M), one by

virtual bundle gerbe modules, one by twisted Hilbert Mn(C)-bundles, which
are connected by a Morita-equivalence that maps the endomorphism spaces
EndC(V ) and EndMn(C)(V ⊗ Cn∗) onto each other. The standard, non-nor-
malized trace on EndC(V ) for a vector space V corresponds to the one on
EndMn(C)(W ) for a Hilbert Mn(C)-module W induced by the normalized trace
τ0 on Mn(C). In this way the above construction is consistent with the Chern
character we started with, i.e. ch corresponds to chτ0 .

The trace τ on A extends to a functional K0(A) −→ C generalizing the
dimension function for A = C, therefore:

Definition 4.1.38. The dimension of a finitely generated, projective Hilbert
A-module V is defined to be dimτ (V ) = τV (idV ), where τV is the extension of
the trace on A to End(V ). This map is well-defined on K0(A) and coincides
with (tr⊗ τ)(p) for p ∈Mn(A) = Mn(C)⊗A, where pAn ' V .

Theorem 4.1.39. Let E be a twisted Hilbert A-module bundle. Then both
Chern characters are related by:

dimτ (chQ(E)) = chτ (E) ∪ ch(Q) ∈ Heven(M,R) ,

which also implies that chτ inherits all properties from ch.

Proof. We first need to prove that chτ is multiplicative with respect to the
twisted product K0

A(M)×K0
K(M)→ K0

A⊗K(M). First note that for the tensor
product of a Hilbert A-module V and a Hilbert Mn(C)-module W ⊗Cn∗ where
W ' Cm is a vector space of finite dimension we have

EndA⊗Mn(C)(V ⊗W ⊗ Cn∗) = EndA(V )⊗Mm(C)

with the trace induced by τ ⊗ τ0 being τV ⊗ tr.
Using the same argument given in theorem 4.1.31, we see that for a twisted

Hilbert A-module bundle E and a bundle gerbe module F corresponding to the
twisted Hilbert Mn(C)-bundle F ⊗ Cn∗ we have

chτ⊗τ0(E � (F ⊗ Cn∗)) = chτ (E) ∪ chτ0(F ⊗ Cn∗) = chτ (E) ∪ ch(F ) .

Since the Chern character transforms naturally with respect to pullbacks, this
immediately implies that chτ⊗τ0 is well-behaved with respect to Bott periodicity
in the sense of the diagram in theorem 4.1.31 iii).

Next we consider the case, where A = K ⊗ A for some bundle of matrix
algebras K and the trivialization Q = C is just given by the trivial line bundle.
The trace on K ⊗ A is τ0 ⊗ τ . Let [F ] ∈ K0

K(M) be represented by a bundle
gerbe module F and represent the class [V ] ∈ K0(A) by a finitely generated
projective Hilbert A-module V . We have ch C([F ] ⊗ [V ]) = ch(F ) ⊗ [V ] ∈
Heven(M,K0(A)⊗ R) = Heven(M,R)⊗K0(A)⊗ R, but on the other hand

chτ0⊗τ ((F ⊗ C∗)� V ) = ch(F ) ∪ chτ (V ) ,

where we are exploiting the multiplicativity again. Now V comes equipped with
a canonical flat connection implying chτ (V ) = τ(idV ) = dimτ (V ). To finish this
case we therefore just have to check that chτ vanishes on the image of the second
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Künneth summand K0
K(R×M)⊗K0

A(R) in K0
A(M). So let [F ] ∈ K0

K(R×M),
[W ] ∈ K0

A(R), then

chτ ([F ]⊗ [W ]) ∪ (−e2) = chτ (F ⊗W ) = ch(F ) ∪ chτ (W ) ,

but since chτ (W ) ∈ Heven
c (R) = 0 and the Bott map is an isomorphism, we have

chτ ([F ]⊗ [W ]) = 0.
In case of an arbitrary bundleA, the Chern character is defined using a trans-

fer to K ⊗ A via a trivialization Q, where K has the same Dixmier-Douady-
class as A. The argument that lead to the proof of 4.1.31 ii) also shows that
the following diagram commutes

Heven
dR (M,R) Heven

dR (M,R)

K0
A(M) K0

K⊗A(M)

................................................................................................................................................................... ............
∪ch(Q)

........................................................................
...
.........
...
chτ

........................................................................
...
.........
...
chτ0⊗τ

........................................................................................................................................................................................................... ............
⊗Q

Thus, if we denote the pushdown of E along Q by π!(E ⊗Q)

chτ (E) ∪ ch(Q) = chτ0⊗τ (π!(E ⊗Q))
= dimτ (chC(π!(E ⊗Q))) = dimτ (chQ(E)) .
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4.2 Index theory on twisted Hilbert A-module
bundles

The main disadvantage of twisted Hilbert A-module bundles when focussing on
twisted K-homology is the fact that they don’t possess well-defined sections. Of
course E → P has sections as a bundle over P , but we would like to consider
E as an object above the base manifold M , i.e. sections being equivariant maps
P → E. Since the action is twisted by the bundle gerbe L this makes no
sense. Rather one would like to have a substitute for E living above M , but
still carrying an action of the endomorphism bundle end(E).

To accomplish this, one idea would be just to tensor E with some trivial
twisted Hilbert A-module bundle of opposite twisting and then pushing it down.
As we will see soon the advantage of taking trivial bundles as a countertwisting
is that sections in the resulting bundle over M take a very nice form.

All throughout this section we will assume Γ to be a Lie group admitting a
bi-invariant metric and the Γ-bundle P to be a smooth manifold in the finite-
dimensional sense equipped with a smooth action of Γ. If one demands connec-
tedness of Γ, then the existence of a bi-invariant metric already implies that Γ is
the product of a compact and an abelian group (see [43]). Since the connected
component of the identity always is a normal subgroup in Γ, this restriction
implies that Γ is an extension of the form:

1 −→ Γc × Γa −→ Γ −→ Γd −→ 1

for a discrete group Γd, an abelian Lie group Γa and a compact Lie group Γc.
This includes of course the cases where Γ is itself compact, abelian or discrete.

4.2.1 Sobolev spaces

We follow the lines of Mishchenko and Fomenko [47] in defining Sobolev
spaces for A- and V -valued functions. Before considering the situation on mani-
folds, we will focus on the local case. Therefore let U ⊂ Rn be a bounded open
subset, let P = U ×Γ be the trivial Γ-bundle over U . Let C∞c (U ×Γ, A) be the
algebra of smooth functions with compact support in U × Γ and values in the
C∗-algebra A. Choose an orthonormal basis Xi ∈ Lie(Γ) (the Lie algebra of Γ)
with respect to the invariant metric on Lie(Γ). It acts on C∞c (U × Γ, A) via

(Xi · f)(x, g) =
d

dt

∣∣∣∣
t=0

f(x, g exp tXi)

Now ∆Γ = −
∑
iX

2
i is the (non-negative) Laplace operator (or Casimir ope-

rator) of the group and does not depend on the choice of orthonormal basis.
Combining it with ∆Rn = −

∑
i
∂2

∂x2
i

we set ∆ = ∆Γ + ∆Rn and note that 1 + ∆
is a positive definite operator on C∞c (U,A). Note that in the discrete case we
can simply forget about the Lie algebra and set ∆ = ∆Rn .

Definition 4.2.1. Let s ∈ N and Hs
0(U × Γ, A) be the completion of C∞c (U ×

Γ, A) with respect to the norm

||f ||2s =
∣∣∣∣∣∣∣∣∫

U×Γ

f(x, g)∗ ((1 + ∆)s f(x, g)) dx dg
∣∣∣∣∣∣∣∣
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This will be called the Sobolev s-norm and Hs
0(U ×Γ, A) is a Sobolev space.

We set L2
0(U × Γ, A) = H0

0 (U × Γ, A) for those are the square integrable A-
valued functions with respect to the A-valued scalar product of A considered
as a Hilbert A-module over itself. Replacing f(x, g)∗(1 + ∆)sf(x, g) by the A-
valued scalar product in a Hilbert A-module V , i.e. by 〈f(x, g), (1 + ∆)sf(x, g)〉
we define Hs

0(U × Γ, V ) analogously.

Lemma 4.2.2. If κ : U×Γ −→ U×Γ is a diffeomorphism of the form κ(x, g) =
(h(x), τ(x)·g) for some diffeomorphism h : U −→ U and a smooth map τ : U −→
Γ such that all partial derivatives of h and τ are bounded (in the latter case with
respect to the metric on Lie(Γ)), then

f ∈ Hs(U × Γ, V ) ⇔ f ◦ κ ∈ Hs(U × Γ, V ) .

Proof. The proof is based on the fact that the Sobolev norm is equivalent to
the one defined by

||f ||∂s =
∑

|α|+|β|≤s

∣∣∣∣∣∣∣∣ ∂α∂xα Xβ f

∣∣∣∣∣∣∣∣
L2

.

Derivates with respect to xi produce the vector field

dκ

(
∂

∂xi

)
=
∑
j

(
∂hj

∂xi

∂

∂xj
+ µΓ

(
Rg∗

∂τ

∂xi

))
=
∑
j

(
∂hj

∂xi

∂

∂xj
+ αji (x, g)Xj

)

where αji (x, g) is chosen such that
∑
j α

j
iXj = µΓ

(
Rg∗

∂τ
∂xi

)
. Now note that

∑
j

(αji (x, g))2 =
〈
µΓ

(
Rg∗

∂τ

∂xi

)
, µΓ

(
Rg∗

∂τ

∂xi

)〉
Lie(Γ)

=
〈
∂τ

∂xi
(x),

∂τ

∂xi
(x)
〉

Lie(Γ)

is independent of g due to the bi-invariance and bounded by hypothesis. Thus,
all derivatives of αji =

〈
Xj , µΓ

(
Rg∗

∂τ
∂xi

)〉
Lie(Γ)

with respect to xk are bounded

as well. Furthermore dκ(Xj) = Xj by the left invariance of the vector field
Xj . The determinant that appears when changing the integration variables to
κ(x, g) only depends on derivatives of h, since the Haar measure is invariant.
Since all quantities in sight are bounded and the s-norm of f ◦ κ contains only
derivatives up to order s again, the result follows. The discrete case is even
simpler, since ||f ||∂s =

∑
|α|≤s

∣∣∣∣ ∂α
∂xα f

∣∣∣∣
L2 .

Definition 4.2.3. Let E be a twisted Hilbert-A-module bundle over a principal
Γ-bundle P . Let Vα ⊂ M be a trivializing cover for P such that each Vα is a
coordinate neighborhood with a chart map hα : Uα −→ Vα for some bounded
Uα ⊂ Rn. Denote the trivialization by ϕα and set

κα = ϕα ◦ (hα × id) : Uα × Γ −→ P |Vα .

Choose a subordinate partition of unity ψα for Vα and set ψ̂α = ψα◦hα. For two
smooth sections σ1, σ2 ∈ C∞c (P,E) we define the A-valued Sobolev s-product
and the Sobolev s-norm via

(σ1, σ2)s =
∑
α

∫
Uα×Γ

〈
(1 + ∆α)s ψ̂α(x)(κ∗ασ1)(x, g), ψ̂α(x)(κ∗ασ2)(x, g)

〉
dxdg

||σ||2s = ||(σ, σ)s||
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The completion of C∞c (P,E) with respect to the s-norm will be called the
Sobolev s-space and denoted by Hs

0(P,E).

Since the maps treated by lemma 4.2.2 capture exactly what happens when
changing the trivialization and the coordinates, we see that the equivalence class
of the s-norm does not depend on the choices made to define them. Indeed, they
form a chain of topological C∗-Hilbert A-modules in the sense of [65]. In case
the group Γ is compact this turns out to be a Rellich chain by the usual
argument, but of course we cannot expect this in general. What continues to
hold is the Sobolev embedding theorem.

Lemma 4.2.4. For any integer p > n
2 , where n denotes the dimension of P ,

the space Hk+p
0 (P,E) is continuously included in Ck0 (P,E).

Proof. Choose an open neighborhood W of the identity in Γ, such that

κ : UΓ −→W ; (t1, . . . , tm) 7→ exp(t1X1) · . . . · exp(tmXm)

maps UΓ ⊂ Rm diffeomorphically onto W ⊂ Γ. Note that for y ∈ Rm

dyκ

(
∂

∂xi

)
= Lgy1∗Rg

y
2∗Xi

where gy1 = exp(y1X1) · . . . ·exp(yiXi) and gy2 = exp(yi+1Xi+1) · . . . ·exp(ymXm).
Therefore for f : U × Γ −→ V :

∂

∂xi
(f ◦ (id× κ)) =

(
µΓ

(
Rgy2∗Xi

)
f
)
◦ (id× κ) .

Cover Γ by sets of the form Wi = giW , choose a smooth partition of unity ψi
and let κi = id × (Lgi ◦ κ). By a similar reasoning as in 4.2.2 we see that the
Sobolev s-norm is equivalent to:

||f ||loc
s =

∑
i

∑
|α|+|β|≤s

∣∣∣∣∣∣∣∣ ∂α∂xα ∂β

∂yβ
ψi · (f ◦ κi)

∣∣∣∣∣∣∣∣
L2

Now that we have localized the norm the classical argument for example given
in [55] applies.

Corollary 4.2.5. H∞0 (P,E) =
⋂
kH

k
0 (P,E) = C∞0 (P,E)

The following lemmata show that twisting a twisted Hilbert A-module bun-
dle E with a trivial twisted Hilbert B-module bundle W yields sensible results
from the perspective of Sobolev spaces.

Lemma 4.2.6. Let V be a Hilbert A-module over a C∗-algebra A, then the
inclusion

Hs
0(U × Γ)⊗ V −→ Hs

0(U × Γ, V ) , f ⊗ v 7→ f · v .

(where the tensor product on the left hand side is the exterior product of a
Hilbert C-module and a Hilbert A-module) is a unitary isomorphism of Hilbert
A-modules.
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Proof. The left hand side of the map above is the completion of Hs
0(U×Γ)⊗algV

with respect to the norm induced by the A-valued inner product:〈∑
i

fi ⊗ vi,
∑
j

gj ⊗ wj

〉
=
∑
i,j

〈fi, gj〉Hs0 (U×Γ) ⊗ 〈vi, wj〉V

(since C ⊗alg A ' A, the algebra in play is already complete). This is easily
seen to coincide with the product on the right hand side evaluated on elements
of the form

∑
i fi(x)vi with fi ∈ Hs

0(U × Γ,C), vi ∈ V . Therefore the inclusion
is isometric. It is also A-linear. Thus, it only remains to check surjectivity of
the map, adjointability is then automatic (see [35]).

This will certainly be the case, if we can show that the submodule

C∞c (U × Γ)V = span {f v | f ∈ C∞c (U × Γ), v ∈ V }
is dense in Hs

0(U × Γ, V ) with respect to the s-norm.
Let g ∈ C∞c (U ×Γ, V ) and let K ⊂ U ×Γ be the support of g. Since g(K) is

compact and therefore totally bounded, there exist elements x1, . . . xn ∈ g(K),
such that for ε > 0 the open subsets of K

Uj = {p ∈ K | ||g(p)− xj || < ε}
cover K. By definition of the subspace topology there are open sets Vj ⊂ U ,
s.th. Vj ∩K = Uj . By adding V0 = U\K we get an open cover of U . We choose
a smooth subordinate partition of unity hj for this cover and set x0 = 0. Hence,∣∣∣∣∣∣
∣∣∣∣∣∣g(x)−

n∑
j=1

hj(x)xj

∣∣∣∣∣∣
∣∣∣∣∣∣=
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=0

hj(x) (g(x)− xj)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

n∑
j=0

hj(x) ||(g(x)− xj)|| ≤ε .

But C∞c (U × Γ, V ) is by definition dense in Hs
0(U × Γ, V ), so we are done.

Corollary 4.2.7. Let A, B be C∗-algebras, V be a Hilbert A-module, W likewise
a Hilbert B-module, then

Hs
0(U × Γ, V )⊗W ∼−→ Hs

0(U × Γ, V ⊗W )

is an isomorphism of Hilbert A⊗B-modules.

Proof. In the diagram

Hs
0(U × Γ)⊗ (V ⊗W ) Hs

0(U × Γ, V )⊗W Hs
0(U × Γ, V ⊗W )............................................................................................. ............

ιV ⊗ id
........................................... ............


.............
..........
........
........
.......
.................
............

ιV⊗W

the left and lower Hilbert A-module morphisms are isomorphisms.

Corollary 4.2.8. Let E be a twisted Hilbert A-module bundle, W be a trivial
twisted Hilbert B-module bundle, both over the same principal bundle P . Then

Hs
0(P,E)⊗W −→ Hs

0(P,E ⊗W ) , f ⊗ w 7→ f · w
is a unitary isomorphism of Hilbert A-modules.

Proof. Choose a finite trivializing cover Ui ⊂ M , such that Hs
0(P,E) can be

identified with a closed subspace of
⊕

iH
s
0(Ui × Γ, V ), where V is the typ-

ical fiber of E. Likewise, Hs
0(P,E ⊗ W ) can be embedded isometrically in⊕

iH
s
0(Ui × Γ, V ⊗W ). By the previous corollary

⊕
iH

s
0(Ui × Γ, V ) ⊗W is

unitarily isomorphic to
⊕

iH
s
0(Ui × Γ, V ⊗W ) preserving these subspaces.
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4.2.2 Pseudodifferential operators
on twisted Hilbert A-module bundles

Pseudodifferential operators arose quite naturally from the basic observation
that differential operators correspond to multiplication by polynomials under
Fourier transform: Changing the polynomial expressions to more general func-
tions obeying some growth condition in the Fourier transformed variable leads
to a filtered algebra of operators with nice properties. For details about the clas-
sic theory, the reader should start with the book by Hörmander [31]. As it
turns out, the calculus is rather robust when changing from operators on smooth
functions C∞(M) to those on sections of vector bundles C∞(M, ξ) and finally
those on sections of Hilbert A-module bundles as considered by Mishchenko
and Fomenko in [47]. As will be seen below, the right notion of ellipticity
for pseudodifferential operators on twisted Hilbert A-module bundles leads to
examples of transversally elliptic operators that were studied first by Atiyah in
[7]. Therefore to get a cohomological index formula, one would either have to
study the representation theory of (compact) Lie groups on Hilbert A-modules
or assume that A possesses a trace. For the sake of simplicity we will assume
the latter and restrict ourselves to central extensions of the form

1 −→ Γf −→ Γ̂ −→ Γ −→ 1 , (4.20)

such that Γf is a finite group and Γ is compact. In this case we have all the
results from [47] (including the Rellich theorem) at hand.

Let P be a smooth Γ-bundle over the compact smooth manifold M , let E,F
be twisted Hilbert A-module bundles over P . Denote the projection T ∗M −→
M by π.

Definition 4.2.9. A section σ ∈ C∞(T ∗M, hom(π∗E, π∗F )) is called a symbol
if the estimate ∣∣∣∣∣∣Dα

x D
β
ξ σ(x, ξ)

∣∣∣∣∣∣ ≤ Cα,β (1 + |ξ|)m−|β| (4.21)

holds for all multi-indices α, β and some constants Cα,β > 0. The integer m ∈ Z
is called the order of σ. Note that we can identify σ with a section of the form
C∞(T ∗M ×M P,Hom(π∗E, π∗F )). We denote the space of all symbols of order
m by Sm(E,F ).

A symbol σ ∈ C∞(T ∗M,hom(π∗E, π∗F )) will be called transversally elliptic
if it is invertible outside some neighborhood of the zero section in T ∗M up to
elements in S−1, i.e. there exists τ ∈ S−m(F,E), such that σ◦τ−1 ∈ S−1(F, F )
and τ ◦ σ − 1 ∈ S−1(E,E).

An element σ ∈ Sm(E,F ) is called homogeneous, if σ(x, tξ) = tm σ(x, ξ) for
all ξ ≥ 1

2 . It is called polyhomogeneous if there exists a formal series
∑
k∈Z ak,

with ak a homogeneous symbol in Skhom(E,F ) and ak = 0 for k > m, such that
σ −

∑m
k=m−r ak ∈ Sm−r−1(E,F ) for all r > 0. A sum like

∑
k∈Z ak is called

asymptotically summable and we denote the previous relation by

σ ∼
∑
k∈Z

ak .

Our notation for the subclass of homogeneous symbols of order m will be
Smhom(E,F ) and Smph(E,F ) for polyhomogeneous symbols. For those the limit:

lim
λ→∞

σ(x, λ ξ)
λm

= am(x, ξ) = σp(x, ξ) ∈ Smhom(E,F )
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exists and will be called the principal symbol.

Remark For a homogeneous symbol σ the estimate (4.21) is equivalent to the
condition that σ should be bounded along the unit sphere, since

σ(x, ξ) = |ξ|m σ(x, ξ̂) with ξ̂ =
ξ

|ξ|
,

for |ξ| ≥ 1
2 which implies the symbol estimate. An element σ ∈ Smph(E,F ) is

transversally elliptic if and only if its principal symbol is invertible outside some
neighborhood of the zero section.

The proof of the following classical theorem for the scalar case can be found
in [31, Proposition 18.1.3] and transfers to the C∗-algebra case without any
difficulties. It will become important in the construction of parametrices.

Theorem 4.2.10. Every formal sum
∑
k∈Z ak with ak ∈ Skhom(E,F ) and ak =

0 for k > m is asymptotically summable, i.e. there exists a symbol

σ ∈ Sph(E,F ) ,

such that

σ −
m∑

k=m−r

ak ∈ Sm−r−1(E,F )

for all r > 0.

The transfer to ordinary symbols on the principal bun-

Figure 4.1: Cλ

dle P clearly requires a way to embed the cotangent
bundle T ∗M in T ∗P . Note that the covertical subbun-
dle H∗ = {ξ ∈ T ∗P | ξ(α∗(X)) = 0 ∀X ∈ g}, where
αp∗ : g −→ TpP denotes the linearized action of Γ, can
be identified with π∗T ∗M after choosing a connection ω
on P . This also yields the following isomorphism:

π∗(T ∗M ⊕ g∗) −→ T ∗P ; (p, ξ, η) 7→ ω∗pη + π∗ξ .

Γ acts on the left hand side by g · (p, ξ, η) = (pg−1, ξ,Ad∗g−1η) and on the right
one via the pullback with Rg∗. The above map is equivariant with respect to
these actions. Its inverse yields projections:

πg∗ : T ∗P −→M × g∗ and πPM : T ∗P −→ T ∗M.

Take a homogeneous symbol σ ∈ Smhom(E,F ). Its pullback via πPM not neces-
sarily satisfies (4.21) due to the new directions η ∈ g that appear. Nevertheless,
it is still homogeneous for |ξ| ≥ 1

2 . Therefore we have to control the directions,
in which ξ is small in length, but |η| is large.

To each smooth function λ : M −→ (0, 1) into the open unit interval corre-
sponds an open neighborhood of T ∗M\{0} ⊂ (T ∗M ⊕ g∗)\{(0, 0)} given by:

Cλ =
{

(ξ, η) ∈ T ∗M ⊕ g∗\{(0, 0)} | |ξm|2 > λ(m)2
(
|ξm|2 + |ηm|2

)
∀m ∈M

}
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Note that, if λ1 ≥ λ2, then Cλ1 ⊆ Cλ2 . In this case, Cλ1/R+ is relatively
compact in Cλ2/R+. Since the metric we chose on g is invariant under the
action of Γ via Adg, all Cλ are invariant as well. The grey-colored region in
figure 4.1 gives an impression of what Cλ looks like, when restricted to a point
m ∈M .

Lemma 4.2.11. Let Cλ1 ( Cλ2 be two open neighborhoods like above. There is
a smooth function χ : T ∗M ⊕ g∗ −→ [0, 1] with the following properties:

(i) χ(ζ) = χ
(
ζ
|ζ|

)
for ζ ∈ T ∗M ⊕ g∗, |ζ| ≥ 1. Therefore χ is homogeneous of

degree 0.

(ii) χ(ζ) = 1 if ζ ∈ Cλ1 and |ζ| ≥ 1.

(iii) χ(ζ) = 0 if ζ /∈ Cλ2 .

(iv) χ(ζ) = 0 if |ζ| ≤ 1
2 .

(v) χ is invariant under the action of Γ on T ∗M ⊕ g.

Proof. Choose a trivializing cover Wi ⊂ M of T ∗M and a smooth subordinate
partition of unity ϕi. If there are functions χi : Wi×(Rn⊕g) −→ [0, 1] satisfying
all the properties with respect to the images of Cλ1 and Cλ2 in the trivialization,
then we can patch these together to form χ =

∑
i ϕi χi, which is what we are

looking for.
Choose a smooth function on the unit sphere bundle Wi × Sn+m ⊂ Wi ×

((Rn⊕g)\{(0, 0)}) satisfying conditions (ii) and (iii) on the restricted images of
Cλ1 and Cλ2 in Wi × Sn+m. Since all Cλ and their complements are invariant
under the group action, averaging this function over Γ does not disturb (ii)
and (iii) and ensures (v). By condition (i) we end up with a χ̂i determined for
|ζ| ≥ 1. Extend it homogeneously for 1 ≥ |ζ| ≥ 1

2 and choose another smooth
function ϕi : [0, 1] −→ R+, which is zero on [0, 1

2 ] and 1 on [1,∞). Then set
χi(ζ) = ϕi(|ζ|) χ̂i(ζ).

Definition 4.2.12. Let σ ∈ Smhom(E,F ) be a homogeneous symbol. Choose
neighborhoods Cλ1 ( Cλ2 with λ2 <

1
2 like above and a smooth function χ like

in the previous lemma. Identify T ∗P ' π∗(T ∗M ⊕ g). We call the map:

σ̂(p, ξ, η) = χ(ξ, η)σ(ξ)

the regularized pullback of σ and Cλ1 its regularization domain.

Definition 4.2.13. A section σ̂ ∈ C∞(T ∗P,Hom(π∗E, π∗F )) is called a symbol
on T ∗P if the estimate∣∣∣∣∣∣Dα

p D
β
ζ σ̂(p, ζ)

∣∣∣∣∣∣ ≤ Cα,β (1 + |ζ|)m−|β| (4.22)

holds for all multi-indices α, β and some constants Cα,β > 0. The integer m ∈ Z
is called the order of σ̂. We denote the space of all symbols of order m by
Sm,P (E,F ). A symbol σ̂ ∈ Sm,P (E,F ) will be called transversally elliptic for a
covertical subbundle H∗ ⊂ T ∗P if σ̂ is invertible up to elements in S−1,P (E,F )
when restricted to H∗ without the zero section (see [7]).

The definition of homogeneous and polyhomogeneous symbols can be deduced
directly from definition 4.2.9. The corresponding notations will be Sm,Phom (E,F )
and Sm,Pph (E,F ).
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Lemma 4.2.14. The regularized pullback σ̂ of σ is a symbol on T ∗P , which is
homogeneous outside the unit sphere bundle.

Proof. Let ζ = (ξ, η) ∈ T ∗P be a vector of length 1. In directions with |ξ| > 1
2

we have homogeneity by definition. But in directions ζ with |ξ| < 1
2 the function

χ is zero by our choice of λ2.

Remark 4.2.15. If σ is transversally elliptic in the sense of definition 4.2.9,
then the pullback σ̂ turns out to be transversally elliptic in the sense of definition
4.2.13 with respect to the covertical subbundle H∗ ⊂ T ∗P .

For the definition of pseudodifferential operators, we first restrict to the
(local) case of trivial bundles over open subsets of Rs. The crucial tool will be the
Fourier transform, of which we briefly review the definition: Let f : Rs −→ X
be a Schwartz function taking values in the projective Hilbert A-module X,
then the Fourier transform

Fy 7→ξ(f)(ξ) = f̂(ξ) =
(

1
2π

) s
2
∫

Rs
f(y) e−i〈y,ξ〉dy (4.23)

Fξ 7→y(h)(y) =
(

1
2π

) s
2
∫

Rs
h(ξ) ei〈y,ξ〉dξ (4.24)

yields an automorphism of the Schwartz space S(Rs, X). This automorphism
extends to an isometry of L2(Rs, X) (see [65, theorem 2.1.86, theorem 2.1.87]).
Let Y be another projective Hilbert A-module. The estimate (4.21) is still ap-
plicable to maps of the form σ̄ ∈ C∞(W × Rs,Hom(X,Y )), where Hom(X,Y )
denotes the Banach space of A-linear adjointable operators. Every such σ̄ sat-
isfying (4.21) for some m ∈ Z defines a pseudodifferential operator

σ̄(D) : C∞(W,X)→ C∞(W,Y ) ; u 7→ σ̄(D)u

(σ̄(D)u)(x) =
(

1
2π

) s
2
∫

Rs
σ̄(x, ξ) û(ξ) ei〈x,ξ〉dξ .

Denote by Ψm(W ;X,Y ) the space of all pseudodifferential operators of order m
obtained from symbols of the form above. To extend this definition to pseu-
dodifferential operators acting on sections, two more constructions are needed:
Note that if E → W is a trivializable Hilbert A-module bundle with fiber X,
then a trivialization ψE : E →W ×X induces an isomorphism

ψE∗ : C∞(W,E)→ C∞(W,X) ; u 7→ ψE ◦ u .

Moreover, if P is a manifold, U ⊂ P a coordinate neighborhood with chart map
κ : W → U and E → P a bundle of Hilbert A-modules for some open subset
W ⊂ Rs, then κ induces a pullback

κ∗ : C∞(U, E|U )→ C∞(W, E|U ) ; u 7→ u ◦ κ .

Definition 4.2.16. Let E → P and F → P be Hilbert A-module bundles over
the principal Γ-bundle P with dim(P ) = s. Denote the typical fiber of E and
F by X and Y respectively. A pseudodifferential operator D of order m is an
A-linear map

D : C∞(P,E) −→ C∞(P, F ) ,
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which is continuous with respect to the Fréchet topology on the source and
target space such that for every local coordinate diffeomorphism κ : W → U
for open subsets W ⊂ Rs and U ⊂ P , over which E and F are trivializable,
every trivialization ψE : E|U → W × X and ψF : F |U → W × Y and every
ϕ1, ϕ2 ∈ C∞0 (W ) the map

C∞(W,X) 3 u 7→ ϕ1 · κ∗ψ−1
F∗ D

(
ψE∗κ

−1∗(ϕ2 · u)
)
∈ C∞(W,Y ) (4.25)

is an element in Ψm(W ;X,Y ). The space of all such operators will be denoted
by Ψm(E,F ).

Remark 4.2.17. By the coordinate invariance of Ψm(W ;X,Y ) which is proven
just like in the scalar case of [31, theorem 18.1.17] (see also [65, theorem 2.1.109])
we only need to check (4.25) for one choice of coordinate neighborhoods and
trivializations.

Remark 4.2.18. If D ∈ Ψm(E,F ), it is a consequence of (4.25) that D has a
Schwartz kernel

k ∈ C∞(P × P )′ ⊗C∞(P×P ) C
∞(P × P,Hom(π∗2E, π

∗
1F )) ,

where the dash denotes the dual space equipped with the weak∗ topology,
πi : P × P → P are projections and the projective tensor product is used.
This is the case if D is restricted to C∞0 (U, E|U ) for small enough open sets
U ⊂ P . Let Ui be a cover of P by such sets and choose a partition of unity φi
subordinate to the cover. Then D(u) =

∑
iD(φi u) and each Di = D(φi · ) has

a kernel ki. Therefore k(p1, p2) =
∑
i ki(p1, p2)φi(p2) is the kernel of D.

In the scalar case the Schwartz kernel theorem provides a topological iso-
morphism

C∞(P × P )′ ' L(C∞(P ), C∞(P )′) ,

where L denotes the continuous linear operators equipped with the topology
of bounded convergence. This implies that every continuous linear operator
S : C∞(P ) → C∞(P )′ can be obtained from a distributional kernel [70, theo-
rem 51.6 and corollary thereafter]. Let B be a Banach space having a predual.
Let Xj for j ∈ {1, 2} be open sets in Rnj , then it is proven in [2, theorem 1.8.9]
that

C∞(X1 ×X2)′ ⊗B ' L(C∞(X1), C∞(X2)′ ⊗B) ,

where again the tensor products are completed with respect to the projective
topology. In view of this result it might be expected that a suitable generaliza-
tion of the Schwartz kernel theorem is still valid in the case of Hilbert A-module
bundles (in fact, if we could set B = Hom(X,Y ) for Hilbert modules X and Y ,
this is nearly what we are aiming at), but we won’t pursue this any further at
this point.

In view of remark 4.2.17 the regularized pullback σ̂ defines a pseudodifferen-
tial operator σ̂(D) in the sense of [65, 47] for the Hilbert A-module bundles E
and F over P . Choose a cover Ui of P over which E and T ∗P are trivializable,
chart maps κi : Wi −→ Ui for some open subsets Wi ⊂ Rs, a subordinate parti-
tion of unity φi and functions ψi with ψi|supp(φi)

= 1. Define σ̂i(D) for sections
u ∈ C∞(Ui, E) via

(σ̂i(D)u)(p) = Fξ 7→y(σ̂i · û ◦ κi)(κ−1
i (p)) (4.26)
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with σ̂i(p, ξ) = ψi(p) σ̂(p, ξ). We have dropped the trivializations of E and T ∗P
for the sake of notational clarity. For general u ∈ C∞(P,E) we simply grind
the situation down to the local case using φi and set

(σ̂(D)u)(p) =
∑
i

σ̂i(D)(φi u)(p) .

Following [47] the pseudodifferential operator σ̂(D) : C∞(P,E)→ C∞(P, F )
extends to

σ̂(D) : Hs(P,E) −→ Hs−m(P, F ) .

Like in [47] we summarize the main properties of the operators σ̂(D) that enable
us to use symbol calculus. The proofs are basically the same as in [31]. They
still hold in the C∗-case since they don’t involve any critical operations on the
symbol. In fact, the most elaborate notion needed is that of Taylor expansion,
which still holds for functions with values in a Banach space.

Theorem 4.2.19. (i) When the functions φi and ψi and the local coordinates
are changed in the definition of σ̂(D), the operator is changed by a lower
order summand.

(ii) If h : Ui −→ Ui is a diffeomorphism of the coordinate domain Ui ⊂ P
and Dph : TpUi −→ Th(p)Ui its Jacobian matrix, then the symbol τ of
h∗(σ̂i(D)) defined via (h∗(σ̂i(D))u)(x) = (σ̂i(D)(u ◦ h))(h−1(x)) can be
expressed by a formal sum as follows:

τ(p, ζ) ∼ σ̂(h(p), (Dph)−1∗
ζ) +

∑
2≤|α|

2|β|≤|α|

wαβ(p)Dα
ζ σ̂(h(p), (Dph)−1∗

ζ) ,

(4.27)
where the functions wαβ only depend on h.

(iii) Let σ1 ∈ Smhom(E1, E2) and σ2 ∈ Smhom(E2, E3) be homogeneous symbols,
then the operators (σ̂2 σ̂1)(D) and σ̂2(D) σ̂1(D), where the same regulari-
zation is used for σi, differ by an operator of lower order.

(iv) The full symbol τ of the composition σ̂2(D) σ̂1(D) can be expressed as a
formal sum in the following way:

τ(p, ζ) ∼
∑
α

i−|α|

α!
Dα
ζ σ̂2(p, ζ)Dα

p σ̂1(p, ζ) . (4.28)

Remark 4.2.20. The operators in Ψ∗(E,E) gained by this procedure are ele-
ments of the filtered algebra of Calderon-Zygmund-Seeley-A-operators, also
known as the polyhomogeneous pseudodifferential A-operators. A definition
using jet bundles can be found in [65], where the operators of degree k are
denoted by CZk(E,F ), whereas we will rather stick to the notation Ψk(E,F ).
In each degree there is a principal symbol map σkprin : Ψk(E,F ) −→ Sk,Phom(E,F ),
such that the sequence:

0 −→ Ψk−1(E,F ) −→ Ψk(E,F )
σkprin−→ Sk,Phom(E,F ) −→ 0

is exact and for T ∈ Ψk(E1, E2) and S ∈ Ψs(E2, E3) we have

σk+s
prin(ST ) = σsprin(S)σkprin(T ) .
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Although the symbol σ̂ is equivariant with respect to the group action of
Γ̂, this does not need to be the case for the operators as defined above, since
they depend on the choice of coordinate systems. The main problem lies in
the notion of Fourier transform, which requires the linearization of the space
coordinate p ∈ P and therefore seems to be far away from being equivariant.
Nevertheless, having chosen connections on E and P , which shall be denoted
by η and ω, we are able to define a Γ̂-invariant pseudodifferential operator with
the same principal symbol as σ̂. We will adopt ideas from Bokobza-Haggiag
[11] and Widom [76] to accomplish this.

Like above we identify TP with π∗(TM ⊕ g) via the map (π∗, ω), likewise
for the dual bundle T ∗P and π∗(T ∗M ⊕g∗). Note that, with this identification,
P inherits an invariant Riemannian metric from one chosen on M and our
invariant scalar product on g. Due to the bi-invariance of the latter, the action
of Γ on P is isometric. Therefore the exponential map

expp : TpP −→ P

is equivariant in the sense that exppg(Rg∗X) = expp(X) g for all X ∈ TpP .
Since its differential at p is the identity on TpP , there exists a neighborhood of
0, such that expp is a diffeomorphism.

Definition 4.2.21. Let u ∈ C∞c (P,E) be a smooth section of the Hilbert A-
module bundle E over P . Choose a twisted connection η on E, a real constant
ρ > 0, such that expp embeds the disk of radius ρ smoothly into P for all p ∈ P ,
and a smooth cut-off function ψ : R+ −→ [0, 1], which is 1 near 0 and 0 in a
neighborhood of {t ∈ R+ | t ≥ ρ}. We denote the parallel transport induced by
η from y to x for points inside this disk along the (unique, shortest) geodesic
by Py→x : Ey −→ Ex. For ζ ∈ T ∗pP we set

Fp 7→ζ(u)(ζ) = û(ζ) =
∫
TpP

e−iζ(V ) U(V ) dV ,

where U(V ) = ψ(|V |)Pexpp(V )→pu(expp(V )), and call this the intrinsic Fourier
transform of u.

Lemma 4.2.22. The intrinsic Fourier transform is Γ̂-equivariant in the sense
that Fp 7→ζ(ĝ · u)(ζ) = ĝ û(R∗g−1ζ).

Proof. Lemma 4.1.26 implies that Py→x(ĝ · r) = ĝ · Pyg→xg(r). Thus,

Pexpp(V )→p ĝ u(expp(V )g) = ĝPexpp(V )g→pgu(expp(V )g)

= ĝPexppg(Rg∗V )→pgu(exppg(Rg∗V )) .

Since Γ acts isometrically, this implies (ĝ · U)(V ) = ĝ U(Rg∗V ). Now:

Fp 7→ζ(ĝ · u)(ζ) =
∫
TpP

e−iζ(V ) (ĝ · U)(V ) dV =
∫
TpP

e−iζ(V ) ĝ U(Rg∗V ) dV

= ĝ

∫
Tpg−1P

e
−i(R∗

g−1ζ)(V )
U(V ) dV = ĝ û(R∗g−1ζ) .
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We now define the operator σ̂(∇) by

σ̂(∇)u(p) =
(

1
2π

)s ∫
T∗p P

σ̂(p, ζ) û(ζ) dζ .

Lemma 4.2.23. σ̂(∇) is equivariant with respect to the Γ̂-action on sections
u ∈ C∞(P,E).

Proof.

(2π)s σ̂(∇)(ĝ · u)(p) =
∫
T∗p P

σ̂(p, ζ)Fp 7→ζ(ĝ · u)(ζ) dζ

=
∫
T∗p P

σ̂(p, ζ)ĝ û(R∗g−1ζ) dζ

=
∫
T∗p P

ĝ σ̂(pg,R∗g−1ζ)û(R∗g−1ζ) dζ

=
∫
T∗pgP

ĝ σ̂(pg, ζ)û(ζ) dζ = (2π)s (ĝ · σ̂(∇)(u)) (p)

Lemma 4.2.24. σ̂(∇) is a pseudodifferential operator in the sense of defini-
tion 4.2.16 (i.e. σ̂(∇) is locally of the form (4.26)). If σ ∈ Smhom(E,F ), then
the symbol of σ̂(∇) is an element in Sm,Pph (E,F ) and its principal part coincides
with σ̂.

Proof. We start with an observation that can also be found in [53]. Fix a point
p0 ∈ P , choose a metric on P and an isometric isomorphism ϕ : Rs '−→ Tp0P .
Let

κ : C
ϕ−→ Tp0P

expp0−→ P

be normal coordinates around p0 mapping C ⊂ Rs diffeomorphically onto U ⊂
P , over which the twisted Hilbert A-module bundle E should be trivial. There
is a subset W ⊂ TP , such that (πP , exp) : W −→ P × P is a diffeomorphism.
U × U can be chosen to lie in the range of this map. For p ∈ U set

d(p) = ϕ−1 ◦Dp exp−1
p0 : TpP −→ Tp0P −→ Rs ,

which is clearly invertible. We will also assume that ψ|U = 1 and drop it from
the calculation below. Now for u ∈ C∞0 (U, E|U ):

(2π)s σ̂(∇)u(p) =
∫
T∗p P

σ̂(ζ) û(ζ) dζ

=
∫

Rs∗
σ̂(d(p)∗(w)) |det(d(p))| û(d(p)∗w) dw

=
∫

Rs∗

∫
TpP

σ̂(d(p)∗(w)) |det(d(p))| e−i(d(p)∗w)(V )Ppu(expp(V ))dw dV ,

where we have shortened the notation for parallel transport to Pp. Set σ̃(p, w) =
σ̂(d(p)∗(w)) |det(d(p))|. Let κ̃(p, ·) = exp−1

p ◦κ : C −→ TpP . This maps C
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diffeomorphically onto some subset Up ⊂ TpP . Note that u(expp V ) has support
in Up, which enables us to use the transform V = κ̃(p, v). This yields:∫

Rs∗

∫
Rs
σ̃(p, w) |det(Dκ̃(p, v))|e−i〈d(p)∗w,eκ(p,v)〉Pκ(v)→pu(κ(v))dw dv

Note that κ̃(p, v) = 0 is equivalent to κ(v) = p. We can therefore apply
proposition 2.1.3 in [30], which is also known as the Kuranishi trick, to get
G : U × C −→ GL(s,R) such that

〈d(p)∗w, κ̃(p, v)〉 =
〈
G(p, v)(w), v − κ−1(p)

〉
With τ(p, v, w) = |detG−1(p, v)||det(Dκ̃(p, v))| σ̃(p,G−1(p, v)(w))Pκ(v)→p we
get the expression:∫

Rs∗

∫
Rs
τ(p, v, w) e−i〈w,v−κ

−1(p)〉u(κ(v))dw dv . (4.29)

Since τ differs from σ just by multiplication of smooth functions in v and p,
a linear transformation in w and the parallel transport, the symbol inequality
still holds. It is even homogeneous in w of degree m. We therefore get a symbol
on the product U ×C, i.e. in Sm(U ×C;E,F ), which is just a slightly broader
sense of what we have defined above. Using the common reduction argument,
which can be found for example in the book by Petersen [52], (4.29) can be
rewritten as a pseudodifferential operator in the usual sense in such a way that
the asymptotic expansion of its symbol τ̃ looks like:

τ̃(p, w) ∼
∑
α

i|α|

α!
(Dα

v D
α
w τ)(p, κ−1(p), w) .

Since τ is homogeneous in w, this is indeed polyhomogeneous. As the principal
symbol transforms like a covector, it is independent of the choice of coordinate
system. Thus, to calculate its value at p, we can without loss of generality
assume p = p0 = κ(0). But then d(p)−1 = ϕ = κ̃(p, ·), G(p, ·) = 1Rs and
τ(p, v, w) = τ̃(p, w) = σ̂(p, ϕ−1∗(w)).

Since the pseudodifferential operator σ̂(D) is only transversally elliptic, it is
not possible to construct a parametrix, i.e. an inverse up to smoothing opera-
tors. On the contrary its principal symbol σ : T ∗M −→ hom(E,F ) is invertible
outside the zero section, which allows us to construct the operator σ̂−1(D),
which is an inverse to σ̂(D) on H∗ ⊂ T ∗P up to operators of order −1 on H∗.
As we see, to exploit this partial invertibility, we have to localize the notion of
order, ellipticity and smoothness. At this point, a natural ideal in Ψm(E,F )
comes up, which turns out to be the replacement for smoothing operators in the
transversally elliptic case.

Definition 4.2.25. Let σ̂ be a symbol in Sm,Pph , i.e. a polyhomogeneous symbol
over P . Then we say it is of order k on Cλ ⊂ T ∗P , if the estimate∣∣∣∣∣∣Dα

p D
β
ζ σ̂(p, ζ)

∣∣∣∣∣∣ ≤ Cα,β (1 + |ζ|)k−|β|

holds for all points (p, ζ) ∈ Cλ. If the above equation is valid for all k ∈ Z,
then the symbol will be called transversally smoothing. From equation (4.27)
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we see that, even though the symbol of a pseudodifferential operator does not
transform like a covector under the change of coordinates for T ∗P , the error
terms are all of lower order on Cλ than the untransformed symbol. Therefore
it is sensible to speak about pseudodifferential operators that are of order k
on Cλ. In particular, there is a well defined, i.e. coordinate invariant, notion
of transversally smoothing operators. The composition expansion (4.28) tells us
that these operators even form an ideal in the algebra of all pseudodifferential
operators. Denote by Ψm(Cλ;E,F ) the operators that are transversally of order
m on Cλ.

Lemma 4.2.26. Let P ∈ Ψm(E,F ) be a transversally elliptic pseudodiffer-
ential operator, such that its principal symbol is a regularized pullback of σ ∈
Smhom(E,F ), then there exists a transversally elliptic pseudodifferential operator
Q ∈ Ψ−m(F,E), such that PQ− 1 ∈ Ψ0(F, F ) and QP − 1 ∈ Ψ0(E,E) are both
transversally smoothing.

Proof. By ellipticity σ is invertible with inverse given by a symbol σ−1 ∈
S−mhom(F,E). Let Q0 be a pseudodifferential operator with symbol σ̂−1, where
we use the same regularization as for the principal symbol of P . Denote by Cλ
the common regularization domain of P and Q0, then Q0P is transversally of
negative order over Cλ. Now set

Qk =
k∑
i=0

(1−Q0P )iQ0 =
k∑
i=0

Q0 (1− PQ0)i ,

with Qk ∈ Ψ−m(E,F ) and Qk − Qk−1 = (1 − Q0P )kQ0 ∈ Ψ−m−k(Cλ;E,F ).
By theorem 4.2.10 there exists an operator Q ∈ Ψ−m(E,F ) with Q − Qk ∈
Ψ−m−k(Cλ;E,F ). But then:

PQ− 1 = P (Q−Qk) + (PQk − 1)
= P (Q−Qk)− (1− PQ0)k+1 ∈ Ψ−(k+1)(Cλ;E,F )

for all k ∈ N, i.e. PQ− 1 ∈ Ψ−∞(Cλ;E,F ). Similarly, QP − 1 = (Q−Qk)P −
(1−Q0P )k+1 ∈ Ψ−(k+1)(Cλ;E,F ).

We will now define the best replacement we can get for the analytic index of
the transversally elliptic pseudodifferential operator σ(∇). By the last lemma
there exists a transversally smoothing parametrix. In the spirit of [7] the analytic
index shows up as a distributional character on the group Γ̂. Recall that the
action of Γ̂ on Hs(P,E) is given by:

(ĝ · u)(p) = ĝ (u(pg)) . (4.30)

Since we assume to have a bi-invariant scalar product on Γ, (4.30) is isometric
in each of the Sobolev s-norms. Furthermore, the map

Γ̂ −→ End(Hs(P,E)) ; ĝ 7→ (u 7→ ĝ · u)

is continuous, if End(Hs(P,E)) is equipped with the strong topology. Let χ ∈
C∞(Γ̂) be a smooth function on the group and set

T sχ : Hs(P,E) −→ Hs(P,E) ; u 7→
∫

bΓ χ(ĝ) (ĝ · u) .

In particular, we get Tχ = T−∞χ : C∞(P,E) −→ C∞(P,E).
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Definition 4.2.27. If R : C∞(P,E) −→ C∞(P,E) is an operator with integral
kernel K : P×P −→ End(E) that is continuous along the diagonal P −→ P×P ,
then it will be called trace-class. In this case we define the trace of R to be

Tr(R) =
∫
P

τ(K(p, p)) dp ,

where τ denotes the extension of the trace on A to End(E). Indeed, this satisfies
the trace property, i.e. Tr(RS) = Tr(SR), whenever Tr makes sense.

Lemma 4.2.28. Let r = dim(P ) and R ∈ Ψ−(r+2)(Cλ, E,E) ∩ Ψ0(E,E) be
a pseudodifferential operator, which is transversally of order −(r + 2), let χ ∈
C∞(Γ̂) and Tχ be like above, then TχR is a trace-class operator.

Proof. Fix p ∈ P , choose a trivialization U ′ × Γ −→ P , such that p lies in the
image of U ′×{1} and U ′ is diffeomorphic to some open subset U ⊂ Rn. Choose
some open neighborhood W ′ ⊂ Γ of 1 ∈ Γ, such that W ′ is diffeomorphic to
some open subset W of the Lie algebra g in such a way that 1 is mapped to 0
and E is trivializable over U ′ ×W ′. Note that we assume Γ̂ to be an extension
of Γ by a finite group Γf (see (4.20)). We may assume that the preimage of W ′

in Γ̂ is diffeomorphic to W ′ × Γf . A trivialization of E yields an identification
of C∞0 (U ′ ×W ′, E) with C∞0 (U ×W,X), where X is the typical fiber of E.

Choose some open, but precompact subset V ⊂ W with m(V, V ) ⊂ W and
V −1 = V , where m is the map induced by the group multiplication and V −1

is gained by taking inverses. By linearity of Tχ in χ we may without loss of
generality assume that χ is supported in the image of V × {a} in Γ̂ for some
a ∈ Γf . It suffices to show that the induced operator T̃χR̃ : C∞0 (U ×W,X) →
C∞0 (U ×W,X) has a kernel K(x, v, y, w) that is continuous along the diagonal,
where (x, v), (y, w) ∈ U × V . But the latter is of the form:

K(x, v, x, v) =
∫

Rn

∫
g

∫
V

χ(v′) τ̂(x,m(v, v′), ξ, η)ei〈v−m(v,v′),η〉dv′ dη dξ ,

where τ̂ : U × V ×Rn × g→ End(E) is a smooth map composed of the symbol
of R and the action of ĝ that is part of Tχ. By our choice of V , we can find v−1,
such that m(v,m(v−1, v′′)) = v′′ for all v′′ ∈ V . Now apply the transformation
v′ = m(v−1, v′′). Subsuming the functional determinant and χ into a new
function χ̃ we end up with:

K(x, v, x, v) =
∫

Rn

∫
g

(∫
eV χ̃(v, v′′) τ̂(x, v′′, ξ, η)e−i〈v

′′,η〉dv′′
)
ei〈v,η〉dη dξ .

Let I(x, v, ξ, η) be the integral in brackets. Since R ∈ Ψ0(E,E), its symbol is
bounded in p ∈ P by an upper bound, which is independent of ζ = (ξ, η) (see
(4.22)) thus, τ̂ is in particular bounded in v′′, i.e.

sup
v′′∈eV ‖τ̂(x, v′′, ξ, η)‖ ≤ c1

for a constant c1, which is independent of x, ξ and η. Therefore

sup
η∈g
‖I(x, v, ξ, η)‖ ≤ sup

η∈g

∫
eV ‖χ̃(v, v′′) τ̂(x, v′′, ξ, η)‖dv′′

≤ c1

∫
eV ‖χ̃(v, v′′)‖dv′′ ≤ c2 . (4.31)
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Products of I(x, v, ξ, η) with ηαi turn into derivatives by the corresponding com-
ponents of v′′ due to the factor e−i〈v

′′,η〉, likewise derivatives by the jth η-co-
ordinate turn into multiplications with the jth component of v′′. Since χ̃ is
a Schwartz function in v′′ estimates similar to (4.31) show that I(x, v, ξ, η) is
actually a Schwartz function in η. In particular

‖I(x, v, ξ, η)‖ ≤ cN
(1 + |η|)N

. (4.32)

Now denote by C ⊂ Rn × g ' Rr the region corresponding to Cλ at x, let C̄ be
its complement. C is the region, in which the symbol of R is transversally of
order −(r + 2), thus∫

C

‖I(x, v, ξ, η)‖ dζ ≤
∫
C

c3
(1 + |ζ|)r+2

dζ ≤
∫

Rr

c3
(1 + |ζ|)r+2

dζ <∞ .

2 2
2

21-≤

Figure 4.2: Integration over C̄

For the integration over the complement C̄ let s ∈ R+, let λ be the value of
λ : M → (0, 1) at (x, v) and define Bλ,s by

Bλ,s =
{
ξ ∈ Rn | |ξ| ≤ λ√

1− λ2
s

}
.

As indicated by figure 4.2, C̄ can be parametrized by letting η run over all of g,
while integrating over the balls Bλ,|η|. From equation (4.32) we obtain∫

C̄

‖I(x, v, ξ, η)‖ dζ =
∫

g

∫
Bλ,|η|

‖I(x, v, ξ, η)‖ dξ dη

≤
∫

g

∫
Bλ,|η|

c2n+2

(1 + |η|)2n+2
dξ dη

≤ c̃

(
λ√

1− λ2

)n ∫
g

|η|n

(1 + |η|)2n+2
dη <∞ .

Since we have found an integrable function dominating ‖I(x, v, ξ, η)‖, the defin-
ing integral of K(x, v, x, v) exists and K(x, v, x, v) is continuous at (x, v). The
multiplication with Tχ has smoothed the kernel in the direction of η.
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Definition 4.2.29. Let σ ∈ Smhom(E,F ) be a homogeneous symbol and set
P = σ̂(∇) ∈ Ψm(E,F ) for some regularization, let χ ∈ C∞(Γ̂). We define the
χ-index of σ to be

indχ(σ) = Tr (Tχ(PQ− idF ))− Tr (Tχ(QP − idE)) ∈ C

for some parametrix Q ∈ Ψ−m(F,E).

To see that this is well-defined, we need the following crucial lemma:

Lemma 4.2.30. The χ-index of σ does not depend on the choice of parametrix
and regularization involved. Indeed, if a ∈ Ψm(E,F ) is a Γ̂-invariant operator,
which is transversally of lower order than P , then (P +a) has the same χ-index
as P .

Proof. If Q1, Q2 are parametrices for P , then the curve Qt = tQ1 + (1 − t)Q2

runs through parametrices for P . Besides that, parametrices are unique up to
transversally smoothing operators, since

Q1 −Q2 = Q1 −Q1PQ2 +Q1PQ2 −Q2 = Q1(1− PQ2) + (Q1P − 1)Q2

is transversally smoothing. So:

d

dt
(Tr (Tχ(PQt − idF ))− Tr (Tχ(QtP − idE)))

= Tr (TχP (Q1 −Q2))− Tr (Tχ(Q1 −Q2)P )
= Tr (TχP (Q1 −Q2))− Tr (TχP (Q1 −Q2)) = 0 ,

where we have used that P = σ̂(∇) is Γ̂-invariant and therefore commutes
with Tχ (which is not necessarily the case for Q!).

Let Q be a parametrix for P . When changing P by the lower order sum-
mand a, we can replace Q by Qa, which is defined by the finite sum:

Qa = Q ·
N−1∑
k=0

(−1)k(aQ)k =
N−1∑
k=0

(−1)k(Qa)k ·Q .

Note that aQ ∈ Ψ0(F, F ) andQa ∈ Ψ0(E,E). Both are transversally of negative
order. This implies that Tχ(aQ)N and Tχ(Qa)N are of trace-class if N is chosen
large enough, by lemma 4.2.28. But,

(P+a)Qa−1 = PQ−1−(−1)N (aQ)N , Qa(P+a)−1 = QP−1−(−1)N (Qa)N

so the trace-property and the equivariance of a imply the statement.
Changing the regularization corresponds to a change of P by an operator,

which is equivariant and transversally of lower order, so the invariance follows
directly from the previous calculation.

Denote by D(T ∗M) the disc bundle of the cotangent space, by S(T ∗M)
the corresponding sphere bundle. Let A be a bundle of C∗-algebras over M
like above. Every element [σ] ∈ K0

π∗MA
(D(T ∗M), S(T ∗M)) is given by triple

[π∗ME, π
∗
MF, σ]. σ can be extended to a homogeneous symbol of arbitrary order.

It is easily checked that indχ is additive with respect to direct sums of symbols
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and invariant under the equivalence relations from definition 3.3.7. Further-
more, we have the isomorphism K0

π∗MA
(D(T ∗M), S(T ∗M)) ' K0

π∗MA
(T ∗M). To

summarize we get a homomorphism:

indχ : Kπ∗MA(T ∗M) −→ C

or a distribution valued map:

ind : Kπ∗MA(T ∗M) −→ C∞(Γ̂)′ .

We will close this chapter with some justification, why this quantity deserves
to be called analytic index. For this, we will reduce to the case of bundle gerbe
modules, i.e. when A = Mn(C). Then ind(P ) coincides with the distributional
character

ind(P ) = char(kern(P ))− char(kern(P ∗))

defined in [7]. Let ∆bΓ = 1 −
∑
iX

2
i be the Laplace operator on C∞(P,E)

induced by the action of Γ̂ on sections, then set

kern(P )λ =
{
u ∈ C∞(P,E) | Pu = 0 and ∆bΓ u = λu

}
.

Likewise, denote by C∞(P,E)λ the kernel of ∆bΓ − λ. Atiyah proved that
Pλ = P |C∞(P,E)λ

is a Fredholm operator, therefore char(kern(Pλ)) is a well
defined function on the group. Furthermore,∑

λ

ind(Pλ) =
∑
λ

(char(kern(Pλ))− char(kern(P ∗λ ))) (4.33)

exists in a distributional sense and coincides with ind(P ). Thus, it generalizes
the equivariant index of elliptic pseudodifferential operators, which is defined in
precisely the same way, but yields a function on the group [7].

For the case of bundle gerbe modules, the relation of ind(P ) to the topolog-
ical index has been studied in [39, 38] with the following result:

Theorem 4.2.31. Let P = σ̂(∇) : C∞(P,E) → C∞(P, F ) be a transversally
elliptic pseudodifferential operator of order m with homogeneous principal sym-
bol σ ∈ Smhom(E,F ). If φ ∈ C∞(SU(N)) has support sufficiently close to the
identity and is equal to 1 in a neighborhood of it, then

ind(P )(φ) = (−1)
n(n+1)

2 〈π!ch(σ)Td(M), [M ] 〉 ∈ Q .

In particular, we have for the projective Dirac operator D : Γ(S) → Γ(S)
(see definition 4.3.2):

Corollary 4.2.32. If φ ∈ C∞(SU(N)) has support sufficiently close to the
identity and is equal to 1 in a neighborhood of it, then

ind(D+)(φ) = 〈 Â(M), [M ] 〉 ∈ Q .

We expect similar formulas to hold for twisted Hilbert A-module bundles
over more general C∗-algebras A. The crucial point is to find a replacement
for the decomposition (4.33) in the flavour of Mishchenko-Fomenko-index
theory [47]. Surprisingly, the decomposition of Hs(P,E) into irreducible repre-
sentations of the group, i.e. with respect to the Casimir-operator ∆bΓ is still
possible [46, 71]:
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Theorem 4.2.33. Let V be a countably generated Hilbert A-module with a
strongly continuous, unitary representation of the group Γ̂. Then there is an
equivariant isomorphism of Hilbert A-modules

V '
⊕
π

Hom(Wπ, V )⊗C Wπ ,

where {Wπ} is a complete collection of unitary, complex, finite dimensional rep-
resentations of Γ̂, which are non-isomorphic to each other. In the decomposition
A acts on the first factor, Γ̂ on the second one.

The previous theorem allows us to split Hs(P,E) into sub-Hilbert A-modules
Hs(P,E)λ like above and a similar argument as the one given in [7] shows that
the restrictions Pλ are still elliptic. The equivariant index theory developed by
Troitsky [71] now yields an element ind(Pλ) ∈ KbΓ

0 (A), which the trace on A
sends to the representation ring, where we can form the character. It remains
to show that the sum of these indices still form a distribution on Γ̂. In [7] this
problem is solved using some functional analysis, which we do not directly have
at hand here.

An alternative approach would be to show directly that ind is well-behaved
with respect to Bott periodicity and then apply an argument like in [47] to
deduce a result similar to theorem 4.2.31. It can be outlined as follows: Use the
Künneth theorem 3.4.13 to split the rational K-theory classes in K0

π∗A(T ∗M)⊗
R into a summand represented by a bundle gerbe module tensored with some
fixed Hilbert A-module, for which the analogue of theorem 4.2.31 can easily seen
to be true and another factor, on which the index vanishes. We refrain from
digging into the details here, since the applications, we have in mind, can be
treated in a far more elegant way by countertwisting methods.

4.2.3 Some remarks about the symbol class

Despite the fact that the index of the transversally elliptic operators discussed
above is a fairly complicated object, the K-theoretic symbol class still makes
sense and can be constructed in a very elegant way, based on an idea by Quillen
as we will discuss in this section. Let σ ∈ Smhom(E,F ) be a homogeneous symbol.
As such it yields a twisted bundle morphism:

σ : π∗E −→ π∗F

where π : T ∗M −→ M denotes the projection, i.e. π∗E is a bundle over
π∗P = P ×M T ∗M (not T ∗P !). Transversal ellipticity now implies that it is
invertible away from the zero section. Therefore [π∗E, π∗F, σ] yields a K-cycle
in

K0
π∗A(T ∗M) ' K0

π∗A(D(T ∗M), S(T ∗M)) ' K0(C0(T ∗M,π∗A)) .

The last isomorphism uses the extendability of π∗A to the compactification
that is diffeomorphic to the closed disc bundle D(T ∗M). It sends [π∗E, π∗F, σ]
to a formal difference [pE ] − [pF ] ∈ K0(C0(T ∗M,π∗A)), such that pE − pF ∈
C0(T ∗M,π∗Mn(A)) and the twisted Hilbert A-module bundle generated by pE
via theorem 3.2.8 is isomorphic to π∗E ⊕G and likewise for pF using the same
stabilization G.
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Following [54] we get another nice description of this class. Form the adjoint
σ∗ of σ and consider the self-adjoint endomorphism

σ̃ =
(

0 σ∗

σ 0

)
: π∗E ⊕ π∗F −→ π∗E ⊕ π∗F .

Lemma 4.2.34. If σ̃ is a symbol of positive order, then the resolvents (σ̃± i)−1

vanish at infinity in the operator norm.

Proof. By ellipticity the spectrum of σ̃ is bounded below in absolute value on
the complement of a neighborhood of the zero section. But by homogeneity
we have σ(x, tξ) = tkσ(x, ξ) and therefore for any C > 0 there is a compact
neighborhood ofM ⊂ T ∗M outside which the absolute spectrum of σ̃ is bounded
below by C. Therefore

∣∣∣∣(σ̃(x, ξ)± i)−1
∣∣∣∣ ≤ 1

C for arbitrary C > 0 if ξ is chosen
large enough.

The Cayley transform yields a unitary operator

u = (σ̃ + i)(σ̃ − i)−1 = 1 + 2i(σ̃ − i)−1 .

After embedding E and F in the trivial twisted Hilbert A-module bundle An for
n ∈ N large enough, we can extend u to a bundle morphism π∗An ⊕ π∗An −→
π∗An ⊕ π∗An by setting it to 1 on the complement of π∗(E ⊕ F ). The above
lemma now implies that it extends even further to the disc-bundle compactifi-
cation of T ∗M . Let

ε =
(

1 0
0 −1

)
: π∗An ⊕ π∗An −→ π∗An ⊕ π∗An .

The operators ε and (uε) are self-adjoint involutions. Let p(ε), p(uε) be the
projection to their +1-eigenspaces. Note that p(ε) − p(uε) vanishes at infinity
and thus:

[p(ε)]− [p(uε)] ∈ K(C0(T ∗M,π∗A)) .

A short calculation shows that:

p(uε)(σ̃ + i) =
1
2

(1 + uε)) (σ̃ + i) = (σ̃ + i)
1
2

(1− ε) = (σ̃ + i)
(

0 0
0 1

)
,

which implies that p(uε) restricted to π∗(E ⊕ F ) projects to the subbundle
G ' π∗F in the decomposition π∗(E ⊕ F ) = G⊕G′ with

G = {(σ∗(w), iw) ∈ π∗(E ⊕ F ) | w ∈ π∗F}
G′ = {(iv, σ(v)) ∈ π∗(E ⊕ F ) | v ∈ π∗E} .

Whereas, when restricted to the complement of π∗(E ⊕F ) in π∗(An⊕An), the
element p(uε) projects to the complement π∗E⊥ of π∗E in a single summand
π∗An. Therefore p(ε) is the projection generating the bundle π∗An = π∗E ⊕
π∗E⊥, whereas p(uε) yields π∗F ⊕ π∗E⊥ and we have:

[p(ε)]− [p(uε)] = [pE ]− [pF ] .
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4.3 Generalized projective Dirac operators

When dealing with twisted K-homology, transversally elliptic operators will
occur naturally as we have seen above. In this chapter we will treat a class of
first-order differential operators that allow to circumvent all the difficulties that
arise by non-ellipticity. In particular, they allow the construction of classes in
KK-theory and the usual Mishchenko-Fomenko index theorem is applicable
to them.

But, let us first focus on the replacement for spinor bundles in the non-
spinc-case. Given a compact, closed, orientable Riemannian n-manifold M with
n even, let PSO be its frame bundle. As desribed in [36] there is an injective
group homomorphism

θ : SO(n) −→ PU(N) = Aut(Cl(n)) ,

such that the Clifford-bundle Cl(M) associated to M is Cl(M) = PSO ×θ
Cl(n). This also yields a principal PU(N)-bundle P = PSO ×θ PU(N). The
Dixmier-Douady-class of its lifting bundle gerbe is W3(M) ∈ H3(M,Z) (i.e.
the Bockstein of the second Stiefel-Whitney-class w2(M)) and therefore
2-torsion.

Denote by gM the Riemannian metric on M . We can turn P itself into a
Riemannian manifold: For this purpose denote by ω ∈ Ω1(P, pu(n)) the con-
nection on P induced by the Levi-Civita-connection on M (indeed, we could
have chosen any connection on P ). Since the Lie algebra pu(n) ' su(n) is semi-
simple, its Cartan-Killing-form κ is non-degenerate (and negative-definite),
therefore

g = π∗gM − κ ◦ (ω ⊗ ω) (4.34)

is a Riemannian metric on P invariant under right translation. Note that π∗ :
TP −→ TM restricted to horizontal vector fields is an isometry with respect to
g and gM respectively.

Definition 4.3.1. The lifting bundle gerbe L of P is the frame bundle gerbe
(see section 3.4.1) of the following module

S = P × CN = CN

γ : L⊗ π∗2CN −→ π∗1CN

[λ, ĝ]⊗ v 7→ λ ĝ v ,

which we will call the spinor module.

Since multiplication by tangent vectors yields a bundle embedding TM −→
Cl(M), this map pulls back to give π∗TM −→ P×Cl(n). Since Cl(n) 'MN (C),
CN gives the irreducible representation of the Clifford algebra (note that n is
even).

Definition 4.3.2. Let ∇ be a bgm-connection on S and denote the smooth
sections of S by Γ(S). The differential operator

D : Γ(S) ∇−→ Γ(S ⊗ T ∗P )
g−→ Γ(S ⊗ TP ) π∗−→ Γ(S ⊗ π∗TM) −→ Γ(S) .

will be called the projective Dirac operator (see also [19]).
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Choose a local orthonormal frame êi ∈ Γ(TP ) at p ∈ P , then D can be
expressed at x via:

Dσ =
∑
i

π∗êi · ∇beiσ .
We could as well choose an orthonormal basis ei ∈ Γ(TM) and lift it horizontally
through the connection ω chosen above to get êi ∈ Γ(TP ). Note that the latter
is still orthonormal due to our choice of g on P . Then we have:

Dσ =
∑
i

ei · ∇beiσ .
The symbol of D is

σ̂D : T ∗P
g−→ TP

π∗−→ π∗TM −→ P × Cl(n) = End(S)

ξ 7→ ((π∗g(ξ)) · ) =
∑
i

ξ(êi) (ei · ) .

The observation that D is not elliptic should not be able to cause heart attacks
any more by what we have learned from the earlier chapters. We take a closer
look at the map π∗TM −→ P × Cl(n). Denote by κ the embedding Rn −→
Cl(n). The former map is explicitely given by

cl : π∗TM = P ×M PSO ×ρ Rn −→ P × Cl(n)
(p, [f, v]) 7→ (p, ĝ−1κ(v)ĝ) ,

where p = [f, g] ∈ P = PSO ×θ PU(N) and ĝ is an arbitrary lift of g to U(N).
So for X ∈ TxM and p ∈ P over x ∈ M we have cl(pg,X) = ĝ−1 cl(p,X) ĝ for
all g ∈ PU(N). Thus:

σ̂D(R∗gξ) = cl
(
pg, π∗(g(R∗gξ))

)
= cl (pg, π∗g(ξ)) = ĝ−1 σD(ξ) ĝ ,

which implies that σ̂D restricted to π∗T ∗M ⊂ T ∗P factors to yield a symbol:

σD : T ∗M −→ end(S) = Cl(M) .

This is of course just left Clifford multiplication with gM (ξ) for ξ ∈ T ∗M . So,
the pushed down version of the symbol is invertible away from the zero-section
of T ∗M , which shows that the projective Dirac operator is transversally elliptic.

Extracting the main feature of Clifford multiplication, we arrive at the fol-
lowing class of operators:

Definition 4.3.3. Let E be a Z/2Z-graded twisted Hilbert A-module bundle
over a Γ-principal bundle P . A twisted bundle morphism

c : T ∗M −→ end(E)

will be called a Clifford symbol if it takes values in the anti-self-adjoint (c∗ = −c),
odd part of End(E), it squares to the symbol of the Laplace operator

c(ξ)2 = − ||ξ||2 idE .

and satisfies a product rule with respect to the connection on E:

∇EbX (c(Y )u) = c
(
∇T

∗M
π∗bX Y

)
u+ c(Y )

(
∇EbXu

)
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for X̂ ∈ TpP , Y ∈ T ∗π(p)M , u ∈ Γ(E). A first-order differential operator
D : Γ(E) −→ Γ(E) will be called a generalized projective Dirac operator if its
principal symbol restricted to π∗T ∗M factors over the action of Γ and its push-
downed version is Clifford.

For every Clifford symbol c we can construct a generalized projective Dirac
operator D having c as its principal symbol. To achieve this we choose a twisted
connection on E and a principal connection on P . The latter yields a projection
T ∗P −→ π∗T ∗M . Thus,

D : Γ(E) ∇−→ Γ(E ⊗ T ∗P ) −→ Γ(E ⊗ π∗T ∗M) c−→ Γ(E) .

is the operator we are looking for.
At a point m ∈ M choose a local orthonormal frame ei for TmM and lift

it horizontally to the orthonormal set êi ∈ TpP . D can be written at p in the
following form:

(Du)(p) =

(∑
i

c(e∗i )∇beiu
)

(p) ,

where e∗i denotes the dual basis. From this, equation (4.6) and the fact that
the right action transforms horizontal lifts to horizontal lifts we see that D is
Γ̂-equivariant.

4.3.1 Trivial bundle gerbes and countertwisting

In case the bundle gerbe L is trivial, there exists a principal Γ̂-bundle P̂ and
– associated to it – a line bundle Q∗ = P̂ ×S1 C, such that its dual carries
the structure of a bundle gerbe module over L. The twisted Hilbert A-module
bundle E ⊗Q∗ is then Γ-equivariant with respect to the action:

Ep ⊗Q∗p −→ Epg ⊗ Lg ⊗Q∗p −→ Epg ⊗Q∗pg .

where the first map is the inverse of the twisting and the second is the twisting
of L on Q∗ from the right. We denote its push-down by π!(E ⊗Q∗). Note that
end(E) in this case turns out to be isomorphic to the endomorphism bundle of
π!(E ⊗Q∗). Therefore a Clifford symbol c defines an ordinary Clifford symbol
c⊗ idQ∗ : T ∗M −→ End(π!(E ⊗Q∗)) = end(E).

To get the Dirac operator corresponding to c we have to choose a connec-
tion ω. By lemma 4.1.21 the choice of a bgm-connection θ on Q corresponds
to the choice of a connection ω̂ on P̂ compatible with ω. By theorem 4.1.22 we
also know that ηE − θ induces a covariant derivative on π!(E ⊗Q∗), which we
denote by ∇π!(E⊗Q∗).

The left action of Γ̂ on Q given by the twisting induces a right action of Γ̂
on the sections of Q∗ by setting (τ · ĝ)(p) = τ(pg−1) ◦ (ĝ·) : Qp → Qpg−1 → C.
The actions of Γ̂ on sections of E and Q∗ compose to give an action of Γ on
sections of E ⊗Q∗, which on elementary tensors u⊗ τ looks like

(g · u⊗ τ)(p) = (ĝ · u)(p)⊗ (τ · ĝ−1)(p) . (4.35)
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This is clearly independent of the choice of lift of g. Being a fixpoint with
respect to (4.35) implies:

u(pg)⊗ τ(pg) = γE([ĝ−1, 1]⊗ u(p))⊗ γQ∗(τ(p)⊗ [ĝ, 1])

= idE ⊗ γQ∗
(
γ−1
E,bg(u(p))⊗ τ(p)

)
,

where γQ∗ is the right action of L on Q∗. The last relation is exactly the
identification of the fibers by which we get π!(E⊗Q∗). Thus, fixpoints of (4.35)
correspond to sections of π!(E ⊗Q∗).

Using ω we can as well identify vector fields on M with sections of TP −→ P
that factor over π∗TM , i.e. they fit into the following diagram:

P π∗TM TP

M TM

............................................................................................... ............

.........................................................
...
.........
...

............................................................................................................ ............X

.........................................................
...
.........
...
πTM

............................................................................................... ............h

where h is the horizontal lift. We will denote this vector field by X̂. By the
properties of h, X̂ is invariant under the right action of Γ.

When we apply these identifications to the connection ∇π!(E⊗Q∗) we see that
it corresponds to

∇E⊗Q
∗

= ∇E ⊗ 1 + 1⊗∇Q
∗

on Γ(E ⊗ Q∗) restricted to the fixpoints of (4.35). Here ∇Q∗ denotes the con-
nection belonging to the form −θ dual to the one on Q. Indeed, by equation
(4.6) and the corresponding property for ∇Q∗ we see that it commutes with
the action (4.35) when restricted to vector fields X̂ as described above and its
connection form is ηE − θ.

The Dirac operator on E associated to c can be twisted with the bundle Q∗.
This is defined to be:

D : Γ(E⊗Q∗) ∇
E⊗Q∗

−→ Γ(T ∗P⊗E⊗Q∗)→ Γ(π∗T ∗M⊗E⊗Q∗)
c⊗idQ∗−→ Γ(E⊗Q∗) .

Likewise, we have on the bundle over M :

D : Γ(π!(E ⊗Q∗))
∇π!(E⊗Q

∗)

−→ Γ(T ∗M ⊗ π!(E ⊗Q∗))
c⊗idQ∗−→ Γ(π!(E ⊗Q∗)) .

Summarizing the above, we have proven:

Theorem 4.3.4. Let E be a Z/2Z-graded twisted Hilbert A-module bundle over
a trivial bundle gerbe L and c be a Clifford symbol on E. Choose a trivialization
Q of L and a bgm-connection θ on Q. Then the Dirac operator D associated
to c twisted with the trivializing bundle Q∗ can be identified in a canonical way
with a Dirac operator DQ on the push-down π!(E ⊗ Q∗) with symbol c ⊗ idQ∗
and connection ∇π!(E⊗Q∗).

The problem in defining the analytic index of A-linear operators like DQ

is that its kernel and cokernel, even though they are still modules over the
algebra are rarely projective, because A is just closed with respect to continuous
functional calculus, but not under the measurable one. It therefore contains less
projections than in the case of von Neumann-algebras, in particular χ0(D∗D)
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for the characteristic function χ0 of {0} would not make any sense. Nevertheless
it is still possible to define the notion of a Fredholm operator via invertibility
modulo compacts, i.e. the existence of a parametrix. This was worked out in
[47] by Mishchenko and Fomenko starting with:

Definition 4.3.5. Let A be a C∗-algebra, HA = H ⊗C A the canonical Hilbert
A-module over A, let D : HA → HA be a continuous, A-linear operator. D is
called a Fredholm A-operator if there are two decomposition HA = M1 ⊕ N1

and HA = M2 ⊕ N2, where Ni are finitely generated Hilbert A-modules, such
that the matrix representation of D : M1 ⊕N1 →M2 ⊕N2 looks like

D =
(
D1 0
0 D2

)
and D1 : M1 → M2 is an isomorphism. The element [N1] − [N2] ∈ K0(A) is
called the (analytic) index of D.

See [47] for the proof that the index is independent of the choice of decom-
position. A Fredholm A-operator has a parametrix, given by

Q =
(
D−1

1 0
0 0

)
,

since 1 − DQ = prN2
and 1 − QD = prN1

are finite rank projections. The
converse is also true, i.e. if we can find an operator Q with DQ = 1 + K1 and
QD = 1 +K2 for Ki ∈ K(HA), then D is Fredholm in the sense above.

Mishchenko and Fomenko used this to show that an elliptic pseudodiffer-
ential A-operator D of degree m is in fact a Fredholm A-operator when identified
with its bounded extension D : Hs(X,E) → Hs−m(X,F ). Furthermore, they
proved the following index theorem:

Theorem 4.3.6. Let D be as above. Denote its symbol by σ, the dimension
of X by n, the Todd class by Td(X) and the fundamental class of X by [X].
Moreover denote by π! : H∗c (T ∗X,R)→ H∗−nc (X,R) the Thom isomorphism in
cohomology. Then:

ind(D) = (−1)
n(n+1)

2 〈π!ch(σ)Td(X), [X] 〉 ∈ K0(A)⊗ R .

Let D be a generalized projective Dirac operator over P associated to a
Clifford symbol c : T ∗M → E+ ⊕ E−. Suppose the lifting bundle gerbe of P is
trivial and choose a trivialization Q. Denote by

DQ
+ : Γ(π!(E+ ⊗Q∗)) −→ Γ(π!(E− ⊗Q∗))

one part of the decomposition of the odd operator DQ. Theorem 4.3.6 combined
with remark 4.1.33 about Chern characters yields immediately:

ind(DQ
+) = (−1)

n(n+1)
2 〈π!chQ(c)Td(M), [M ] 〉 ∈ K0(A)⊗ R . (4.36)

In view of part ii) of theorem 4.1.34 flat trivializations are the most preferable
ones, since the Morita equivalences induced by them are not recognized by
the Chern character. The topological obstructions to such flat trivializations
are summarized in the next theorem. The special case of generalized spinc

extensions is again similar to the classical one.
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Theorem 4.3.7. Let 1 → S1 → Γ̂ → Γ → 1 be a flat central extension like
above. Let P be a principal Γ-bundle, dd(P ) ∈ H3(M,Z) its Dixmier-Douady-
class. Suppose dd(P ) = 0, then:

i) The lifting bundle gerbe L corresponding to P possesses a flat trivialization
if and only if there is a lift P̂ such that ch(Q) = 1, where Q∗ = P̂ ×S1 C is
the line bundle associated to P̂ → P .

ii) If the extension is generalized spinc (see section 4.1.1 for the definition and
notation), then P lifts to a Γ-bundle if and only if there is a lift P̂ such
that c1(Q̄) is n-torsion, where Q̄ is the line bundle associated to P̂ /Γ→M
and Γ/(Z/nZ) = Γ.

Let dd(P ) ∈ H2(M,Z/nZ) be the Dixmier-Douady-class of the lifting bundle
gerbe corresponding to 1 → Z/nZ → Γ → Γ → 1, then dd(P ) = β(dd(P )),
where β is the Bockstein homomorphism β : H2(M,Z/nZ)→ H3(M,Z).

Proof. dd(P ) is exactly the obstruction to the existence of a lift P̂ . If the
trivialization is flat, then P̂ → P has a connection with vanishing curvature,
therefore ch(Q) = 1. On the other hand

ch(Q) = exp
(
iΩQ
2π

)
=
∞∑
k=0

(
i

2π

)k Ωk

k!
= 1

implies that all the higher classes in H2k(M,R) for k ≥ 1 vanish, in particular
[ΩQ] = 0 ∈ H2(M,R). Therefore ΩQ = dη for a form η ∈ Ω1(M). If π̂ : P̂ →M
denotes the bundle projection, then the connection form on Q may be changed
by the summand −iπ̂∗η, which yields a flat bundle gerbe connection.

For the second statement consider the exact sequence induced by 1 →
Z/nZ→ Γ̂→ Γ× S1 → 1 in Čech cohomology:

H1(M, Γ̂) −→ H1(M,Γ)⊕H1(M,S1) δ−→ H2(M,Z/nZ)

After identifying H1(M,S1) with H2(M,Z) via the exponential map, a short
calculation shows that the boundary map is actually δ([P ], [L]) = dd(P )−(c1(L)
mod n) for [P ] ∈ H1(M,Γ) and a line bundle L. [P̂ ] is mapped to ([P ], [Q̄])
under the first map, consequently dd(P ) = (c1(Q̄) mod n). For the other
direction we use P̂ = P ×i Γ̂ for i : Γ→ Γ̂, which yields a trivial Q̄.

The last statement follows from the diagram:

H1(M,Γ) H1(M,Γ) H2(M,Z/nZ)

H1(M, Γ̂) H1(M,Γ) H2(M,S1) ' H3(M,Z)

....................................................................................................... ............

........................................................................
...
.........
...

.......................................................................
........
........
........
........
........
........
.......

................................................................................ ............
δ̄

....................................................................................................... ............

........................................................................
...
.........
...

.................................................................................................. ............δ

............................................................................................................ ..........
..

β

where δ([P ]) = dd(P ) and δ̄(P ) = dd(P ).

Definition 4.3.8. Let D : Γ(S)→ Γ(S) be a generalized projective Dirac ope-
rator acting on sections of a twisted Hilbert Mn(C)-bundle S over a principal
PU(n)-bundle P̃ . Let E be a twisted Hilbert A-module bundle over a principal
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Γ̂-bundle P . Set P̄ = P̃ ×M P and denote by S�E the exterior tensor product
of both bundles over P̃ ×M P . The operator

DE : Γ(S � E) ∇
S�E

−→ Γ(T ∗P̄ ⊗ S � E)→ Γ(π∗T ∗M ⊗ E � S) c⊗idE−→ Γ(E � S) .

will be called D twisted by E. Analogously, we can switch the roles of the
algebras A and Mn(C) and twist a generalized projective Dirac operator over a
twisted Hilbert A-module bundle with a bundle gerbe module.

We now turn to the case where the lifting bundle gerbe is non-trivial, i.e.
dd(L) ∈ H3(M,Z) is a non-vanishing (torsion) class. In this setup we can easily
reduce generalized projective Dirac operators to those we have seen in the trivial
case just by twisting them with a bundle gerbe module of opposite dd-class.
However, this, of course, corresponds to a non-canonical choice to make, on
which the index will heavily depend as we will see in the examples. By what
we have learned above about the transversal ellipticity of projective operators,
this is nevertheless the only sensible way to get a K0(A)-valued invariant. We
will call this procedure countertwisting. In the following we will discuss some
choices for countertwisting bundles.

4.3.2 Spinor countertwisting

Every torsion class in H3(M,Z) is the Dixmier-Douady-class of a PU(N)-
bundle K even though the latter is not uniquely defined by dd(P̃ ). So, for
an arbitrary generalized projective Dirac operator D : Γ(E) → Γ(E) over a Γ-
principal bundle P with dd(P ) torsion, there exists a matrix bundle K, such
that dd(P̃ ) = −dd(P ). The latter comes along with a canonical bundle gerbe
module S associated to it like the spinor module in definition 4.3.1:

S = P̃ × CN

γ : L̃⊗ π∗2CN −→ π∗1CN

[λ, â]⊗ v 7→ λ â v ,

for the lifting bundle gerbe L̃ of P̃ . Choosing a trivialization Q of L� L̃, we get
from (4.36):

ind(DS,Q
+ ) = (−1)

n(n+1)
2 〈π!chQ(c)ch(S)Td(M), [M ] 〉 ∈ K0(A)⊗ R . (4.37)

Example 4.3.9. In this example we will examine the real counterpart of the
above method. Let M be a 2n-dimensional manifold. Suppose D is the projec-
tive Dirac operator from definition 4.3.2, where we consider the spinor module
S to live over the frame bundle PSO of TM . We will think of S as a bun-
dle gerbe module over the lifting bundle gerbe Lspin for the Spin(2n)-group, i.e.
S = PSO×(W⊗RC), whereW is the standard representation of Spin(2n) decom-
posing into W± with respect to the complex volume element ωC = ine1 · · · · · en
(see [36, page 34]). Since dd(PSO) = w2(M) ∈ H2(M,Z/2Z) is 2-torsion, we
can take P̃ = PSO and S will be the countertwisting. Note that the bundle
gerbe L� L over P [2] ×M P [2] has a canonical trivialization, which is given by
L itself. Since the bundle gerbe connection on L is flat as a bgm-connection, we
have ch(L) = 1, thus, following remark 4.1.33, chL = ch.
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By the usual splitting argument (see proposition 11.2 in [36]), there is a
smooth proper fibration π : STM = N −→ M such that π∗ : H∗(M) −→
H∗(STM ) is injective and

π∗(TM ⊗ C) ' l1 ⊕ l̄1 ⊕ · · · ⊕ ln ⊕ l̄n

where the li are complex line bundles and l̄i their conjugates. From this we gain
a reduction of π∗PSO to Pl1 ×N · · · ×N Pln , which induces a splitting on the
level of bundle gerbes:

LS
1
�R · · ·�R L

S1
−→ π∗Lspin , (4.38)

where LS
1 −→ P

[2]
li

is the lifting bundle gerbe of S1 −→ S1 ; z 7→ z2. This
decomposition is a result of the following commutative diagram:

SO(2)× · · · × SO(2) SO(2n)

Spin(2)×Z/2Z · · · ×Z/2Z Spin(2) Spin(2n)

................................................................................................................................................. ............κ̄

................................................................................ ............
κ

.................................................................
...
.........
...

.................................................................
...
.........
...

where κ uses S1 → Spin(2n) ; ϕ 7→ cos(ϕ2 ) + e2i−1 e2i sin(ϕ2 ) in each factor
and κ̄ is the inclusion via block matrices. Since both lifting bundle gerbes
have the same dd-class, (4.38) is a stable isomorphism. Restricting π∗S to
Pl1 ×N · · · ×N Pln it factors as

π∗S = (Pl1 ×N · · · ×N Pln)× (C⊕ C)⊗ · · · ⊗ (C⊕ C) = S1 � · · ·� Sn

where Si = Pli × (C ⊕ C) is the spinor module over LS
1

with the canonical
action on the first summand and conjugate action on the second summand.
Choosing a connection η on Pli , we can construct a bgm-connection on Si like
in example 4.1.7. Keeping in mind that the split identifies the Lie algebras
g = iR of Γ = S1 and ĝ = iR of Γ̂ = S1 via the isomorphism X 7→ 1

2X, we
get ΩSi = ( 1

2Ωli)⊕ (− 1
2Ωli), which yields the following relationship between the

Chern characters:

ch(π∗S) =
n∏
i=1

ch(Si) =
n∏
i=1

(e
1
2 c1(li) + e−

1
2 c1(li)) =

n∏
i=1

2 cosh
(
c1(li)

2

)
. (4.39)

If the natural grading via the complex volume element ωC is taken into account
(see [36, page 34]), the spinor module splits into S+ and S− giving rise to a
difference element [S+]− [S−] ∈ K0

K(M). After applying the splitting principle
the grading manifests as S−i = Pli × C and S+

i = Pli × C. Therefore:

ch([π∗S+]−[π∗S−]) =
n∏
i=1

(e−
1
2 c1(li)−e 1

2 c1(li)) =
n∏
i=1

(−2) sinh
(
c1(li)

2

)
. (4.40)

Comparing (4.39) and (4.40) with the definitions for the Â-genus, the Hirze-

bruch-L̂-class and the Euler-class:

Â(M) =
n∏
i=1

c1(li)
2

sinh
(
c1(li)

2

) , L̂(M) =
n∏
i=1

c1(li)
2

tanh
(
c1(li)

2

) , e(M) =
n∏
i=1

c1(li)
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we see

ch(S) = 2nL̂(M)Â(M)−1 , ch([S+]− [S−]) = (−1)ne(M)Â(M)−1 .

Let c be the symbol of the projective Dirac operator D+. The image of ch(c) ∈
H∗c (T ∗M) under the Thom isomorphism π! : H∗c (T ∗M) → H∗−2n(M) can be
calculated from

e(M)π!ch(c) = i∗i!π!ch(c) = i∗ch(c) = ch([S+]− [S−]) = (−1)ne(M)Â(M)−1

where i : M → T ∗M denotes the zero section. Both sides of the equation be-
have naturally with respect to pullbacks, i.e. come from characteristic classes
pulled back from H∗(BU(2n),R) ' R[c1, . . . , c2n]. In this polynomial ring we
can divide by the expression corresponding to e(M) and deduce π!ch(c) =
(−1)nÂ(M)−1. Combining this with Td(M) = Â(M)2 (see [36, Proposition
11.14]) the cohomological index formula (4.37) takes the form

ind(DS,L
+ ) = 〈 2nL̂(M), [M ] 〉 = 〈L(M), [M ] 〉 ∈ Z ,

which is the Hirzebruch signature theorem. Indeed, theorem 4.3.4 identifies
DS,L

+ with

DCl
+ : Cl(M)+ −→ Cl(M)− ; u 7→

∑
i

ei · ∇eiu , (4.41)

where the grading is given by left multiplication with the volume element ωC.
So, DS,L

+ is the signature operator. We could have used the graded tensor
product in the countertwisting above, i.e. DS,gr : S �̂S −→ S �̂S. This changes
the grading in (4.41) to the natural odd/even-grading on Cl(M) turning the
signature operator into the Euler characteristic operator. Evaluating the right-
hand side we have:

ind(DS,L
odd) = 〈 e(M), [M ] 〉 = χ(M) ∈ Z . (4.42)

Example 4.3.10. A special case of spinor countertwisting is possible, if there
exists a finite-dimensional unitary representation α : Γ̂ −→ U(N) like in example
4.1.7. In this case we can take L̃ = L∗ and the bundle gerbe module:

S = P × CN

γ : L∗ ⊗ π∗2S −→ π∗1S

[λ, ĝ]⊗ v 7→ λα(ĝ) v

that uses the conjugate representation. Since L�L∗ has a canonical flat trivia-
lization, we get:

ind(DS,Q
+ ) = (−1)

n(n+1)
2 〈π!ch(c)ch(S)Td(M), [M ] 〉 ∈ K0(A) .

As a consequence of the Peter-Weyl-theorem, α always exists in the case of
compact groups:

Theorem 4.3.11. If Γ̂ is a compact Lie group which is the central S1-extension
of a Lie-group Γ, then there exists n ∈ N and a faithful unitary representation

%̂ : Γ̂ −→ U(n) ,

such that %̂(tg) = t%̂(g) ∀g ∈ Γ̂, t ∈ S1.
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Proof. As a corollary of the Peter-Weyl-theorem there exists a unitary, faith-
ful representation ρ : Γ̂ −→ U(n) for some n ∈ N. We decompose this into
irreducible components ρi : Γ̂ −→ U(ni), such that ρ = ⊕Ni=1 ρi. By Schur’s
lemma, ρi(t) for t ∈ S1 has to act like a multiple of the identity, since the ex-
tension is central, so ρi restricted to S1 is built from a single one-dimensional,
and therefore irreducible, representation of S1, i.e.

ρj(eiϕ) = eimjϕ 1

for some mj ∈ Z.
Now ρ is a faithful representation. Suppose there were an m ∈ Z,m 6= 1

dividing all of the mj , i.e. mlj = mj for lj ∈ Z, then

ρj(ei
2π
m ) = e2πilj = 1 ∀j ∈ {1, . . . N} .

Thus, ei
2π
m would be an element in the kernel of ρ different from the identity,

which is a contradiction. Therefore gcd(m1, . . . ,mN ) = 1. Iterating the Eu-
clidean algorithm, we get integer numbers r1, . . . , rN such that

N∑
i=1

rimi = 1 .

Now set
% = ρ̃1 ⊗ · · · ⊗ ρ̃1︸ ︷︷ ︸

|r1|times

⊗ · · · ⊗ ρ̃N ⊗ · · · ⊗ ρ̃N︸ ︷︷ ︸
|rN |times

,

where ρ̃j is equal to ρj if rj is positive and equal to the conjugate representation
if rj is negative, and note that

%(eiϕ ĝ) = ei
PN
j=1 rjmjϕ%(ĝ) = eiϕ%(ĝ) .

This representation can be turned into a faithful one by applying the follow-
ing trick: By the observation above there is a some tensor power of % (or its
conjugate), denoted by ρ̂j , such that ρ̂j ⊗ ρj preserves S1-factors. Set

%̂ =
N⊕
j=1

ρ̂j ⊗ ρj .

Now %̂(eiϕg) = eiϕ%̂(g) still holds and implies S1 ∩ kern(%̂) = 1. But (ρ̂j ⊗
ρj)(g) = 1 yields g ∈ S1 · kern(ρj) ∀j ∈ {1, . . . , N}. So

kern(%̂) ⊂ S1 ·
N⋂
j=1

kern(ρj) = S1 .

Therefore %̂ is faithful.

This theorem yields a direct proof of a result, which has also been noticed
by Murray in [49]:

Corollary 4.3.12. Every lifting bundle gerbe of an S1-extension of a compact
Lie group has a Dixmier-Douady-class which is torsion.

Proof. By the previous theorem, there is a PU(n)-bundle extending the Γ-
principal bundle P , which has the same Dixmier-Douady-class, therefore the
latter has to be torsion.
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4.3.3 Flat countertwisting

When dealing with countertwisting bundles a question that arises naturally
is, whether there exists a countertwisting disturbing the cohomological side of
equation (4.37) as little as possible. This is definitely the case when the bundle
S is flat, since then the Chern character is just a multiple of the identity in
H0(M). In the classical case flat bundles are characterized by the holonomy
reduction of their frame bundle, which is just a cover of M . In the twisted case
we expect a similar result to hold. With the right notion of what we mean by
discrete holonomy bundle, this is indeed true:

Definition 4.3.13. We will call the lifting bundle gerbe L→ M̄ [2] of a central
S1-extension of a discrete group Γd

1→ S1 → Γ̂d → Γd → 1

with a principal Γd-bundle M̄ a covering bundle gerbe.

Theorem 4.3.14. Let 1 → S1 → Γ̂ → Γ → 1 be a flat central extension with
Γ connected. Let E be a bundle gerbe module over the principal Γ-bundle P .
E carries a flat connection if and only if the frame bundle gerbe reduces to a
covering bundle gerbe and the frame trivialization PE → PE/S

1 is flat.

Proof. First suppose that E possesses a flat connection and denote by ηE the
connection form on the frame bundle PE → P . It is a well-known result of
classical differential geometry that, due to flatness, the holonomy subbundle
P hol
E (r, ηE) = P̄ of PE at any point r ∈ PE has a discrete structure group

[42, 33]. Therefore P̄ → P is a regular covering with normal classifying subgroup
π̄ ⊂ π1(P ) and deck transformations D = π1(P )/π̄.

Γ̂ = Γ̃×ρS1 acts on PE covering the action of Γ on P . This induces an action
of Γ̃ → Γ̂ on PE that transforms P̄ into itself. To see this, we need to check
that s ∈ P hol

E (r, ηE) and ĝs = [g̃, 1] s for g̃ ∈ Γ̃ can be connected by a horizontal
path. But any smooth curve κ(t) ∈ Γ̃ connecting the identity with g̃ gives rise
to ĝ(t) = [κ(t), 1] ∈ Γ̂, i.e. µ̂

(
˙̂g
)
∈ g ⊂ g⊕ iR, which implies ηE( ddt (ĝ(t)s)) = 0.

Restricting the action to π1(Γ) ⊂ Γ̃, yields a homomorphism α : π1(Γ)→ D.
The quotient bundle PE/S

1 is associated to P̄ via τ : D −→ PU(N). Now
Im(α) ⊂ kern(τ), since the image of π1(Γ) ⊂ Γ̃ in Γ̂ lies in S1 ⊂ Γ̂, which acts
by scalars on PE . Therefore τ̄ : D/Im(α) → PU(N) exists (note that Im(α)
is abelian). On P̄ /Im(α) the action reduces to one of Γ = Γ̃/π1(Γ) and turns
P̄ → P into a Γ-equivariant D/Im(α)-principal bundle over P . Denote its push-
down by M̄ and note that M̄ →M is a connected principal bundle with discrete
structure group D/Im(α), in particular a covering. The push-down of PE/S1

is associated to M̄ and the lifting bundle gerbe for PE reduces to a covering
bundle gerbe via the following pullback:

D/Im(α) PU(N)

D̂ U(N)

............................................................ ............τ̄

.................................................................
...
.........
...

.................................................................
...
.........
...

.................................................................................................... ............

Due to the splitting u(N) = su(N)⊕iR, the connection form ηE ∈ Ω1(PE , u(N))
induces a connection on PE → PE/S

1 by projecting it down to iR. The proof
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that this has the right properties is similar to the one in theorem 4.1.31 ii). By
construction its curvature vanishes.

Suppose now that the frame bundle gerbe of E → P reduces to one of the
form L → M̄ [2] for a covering M̄ → M , then E shifted back to M̄ looks like
Ē = M̄ × CN for a representation τ : π̂ → U(N) such that τ(eiϕĝ) = eiϕτ(ĝ).
Now the connection from example 4.1.7 reduces to the pullback of the Maurer-
Cartan form of U(N) to M̄ × U(N) and is therefore flat. Tensoring it with
the (flat) connection on the trivialization yields one on E → P .

Definition 4.3.15. Let D be a generalized projective Dirac operator over P1.
We say that D possesses a flat countertwisting, if there exists a lifting bundle
gerbe L2 → P

[2]
2 with dd(P2) = −dd(P1) and a flat bundle gerbe module E → P2

for L2.

Corollary 4.3.16. Let D be a generalized projective Dirac operator over P for
the flat central S1-extension 1→ S1 → Γ̂→ Γ→ 1 with Γ connected and lifting
bundle gerbe L. D has a flat countertwisting if and only if there exists a normal
subgroup π C π1(M), a central S1-extension

1 −→ S1 −→ π̂ −→ π1(M)/π −→ 1

such that the lifting bundle gerbe L̄→ M̄ [2] (where M̄ is the covering classified by
π) satisfies dd(L̄) = −dd(L) and a representation % : π̂ → U(N) with %(eiϕĝ) =
eiϕ%(ĝ). In this case we have a flat bundle gerbe module E and a trivialization
Q such that

ind(DE,Q
+ ) = N · (−1)

n(n+1)
2 〈π!chQ(c)Td(M), [M ] 〉 ∈ K0(A)⊗ R . (4.43)

For A = K a matrix bundle, we see that the right-hand side has to be an integer.

Proof. Suppose π, π̂ and % are given. Set E = M̄ × CN and turn this into a
bundle gerbe module via the representation %. E is flat by theorem 4.3.14. Since
dd(M̄) = −dd(P ) by hypothesis, a trivialization Q exists. The cohomological
formula (4.43) is now a direct consequence of (4.36). On the other hand, if
E is a flat countertwisting, then its frame bundle gerbe reduces to a covering
M̄ classified by some normal subgroup π C π1(M). Over M̄ it takes the form
Ē = M̄ × CN for some representation % satisfying the conditions above.

Remark Central extensions are classified by second group cohomology. Thus,
π̂ corresponds to some element cbπ ∈ H2

gr(π1(M)/π, S1). Whenever we have a
projective representation %̄ : π1(M)/π → PU(N), its lifting obstruction to be a
linear representation is also contained in this group. The existence of % with
the above property actually is equivalent to having a projective representation,
such that its class coincides with cbπ.

Remark Note that the integrality statement is not trivial, since we know from
our observations about transversal ellipticity and calculations of the Â-genus for
certain manifolds that 〈π!chQ(c)Td(M), [M ] 〉 will in general be rational.

Definition 4.3.17. Let 1 → S1 → Γ̂ → Γ → 1 be a flat central S1-extension
with Γ connected and let P → M be a principal Γ-bundle over M . Let Γ̂ =
Γ̃ ×ρ S1 for ρ : π1(Γ) → S1 and set Γ = Γ̃/kern(ρ). We say that P allows a
Γ-structure on the universal cover M̃ if π∗MP → M̃ lifts to a Γ-bundle.
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Lemma 4.3.18. P allows a Γ-structure on M̃ if and only if kern(α) ⊂ kern(ρ),
where α is the second map in the following excerpt of the exact fibration sequence:

π2(M) −→ π1(Γ) α−→ π1(P ) −→ π1(M) −→ 1 .

Proof. α factors as π1(Γ) eα−→ π1(π∗MP ) −→ π1(P ). Since the second map is a
covering, it is injective on π1, i.e. kern(α) = kern(α̃). kern(α) is the classifying
group of some connected regular cover Γ̇ of Γ. The universal cover P̃ = π̃∗MP

of π∗MP (which coincides with the universal cover of P ) is a principal Γ̇-bundle
over M̃ . To see this, note that it follows from the fibration sequence that P̃
restricts to Γ̇ on each fiber over M̃ . There is a natural action of Γ̃ on P̃ : Let
β : I → P be a path with β(0) = p0 representing a point in P̃ , let γ : I −→ Γ
with γ(0) = 1 represent a point in Γ̃, then we define

(β · γ)(t) = β(t) γ(t) ,

which is easily seen to give a well-defined action on homotopy classes. The
stabilizer of p̃0 ∈ P̃ (represented by the constant path) is given by loops in Γ
that become contractible after embedding them into P by p0 · γ(t), which is
just the explicit description of kern(α). Therefore Γ̃/kern(α) = Γ̇ acts freely
on P̃ . This action is also transitive on the fibers over M̃ . The hypothesis now
implies that the homomorphism Γ̃ −→ Γ̃/kern(ρ) factors over Γ̇ = Γ̃/kern(α),
which means that there exists a Γ-bundle associated to P̃ . On the other hand,
if we have a principal Γ-bundle P over M̃ , then it is covered by P̃ . This map
restricts to a covering Γ̇ → Γ on the fibers, which induces an injective map
kern(α) = π1(Γ̇)→ π1(Γ) = kern(ρ) on π1.

There are two actions of π1(Γ) on P̃ : the one given above using group
multiplication. The other by pre-concatenating a path in P with the loop defined
by p0 γ. By the usual Eckmann-Hilton-type argument these two coincide.
Similarly, we see that π1(Γ) is mapped into the center of π1(P ) in the fibration
sequence. Thus, π1(Γ)/kern(α) can be seen as a central subgroup of π1(P ).
If P allows a Γ-structure on M̃ , then ρ factors over ρ̄ : π1(Γ)/kern(α) → S1.
Therefore we can form

π̂ = π1(P )× S1/(π1(Γ)/kern(α)) . (4.44)

π1(Γ)/kern(α) maps to a central anti-diagonal subgroup in π1(P )×S1 via γ 7→
(γ, ρ̄(γ)−1) (note that ρ̄ is not necessarily injective). π̂ fits into a short exact
sequence:

1 −→ S1 −→ π̂ −→ π1(M) −→ 1 .

Lemma 4.3.19. Suppose P allows a Γ-structure on M̃ , then the lifting bundle
gerbe L̄ → M̃ [2] of the above central extension over the universal cover M̃ sat-
isfies dd(L̄) = −dd(L), where L is the lifting bundle gerbe for P . Furthermore,
there exists a flat trivialization of L̄� L.

Proof. It suffices to show that L̄�L→ (M̃ ×M P )[2] = (π∗MP )[2] has a triviali-
zation, which is the case if the principal π1(M)×Γ-bundle π∗MP →M lifts to a
principal π̂⊗ Γ̂-bundle. The group π̄ = π1(Γ)/kern(α) injects into the center of
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Γ, as well as into that of π1(P ). Taking the quotient by the antidiagonal action
like above, yields the group Γ ×π̄ π1(P ) = (Γ × π1(P ))/π̄. Now the universal
cover P̃ is not only a Γ-bundle over M̃ , but also a Γ ×π̄ π1(P ) over M . The
action of Γ on P̃ is described in the last lemma. π1(P ) acts on P̃ by deck
transformations. If β represents a point in P̃ , γ an element of Γ̃ and δ one in
π1(P ), then (β · γ) ∗ δ (where the star denotes concatenation) is homotopic to
(β ∗ δ) · γ by letting γ rest on 1 for the time the path runs through δ. Thus,
the two actions commute. Similarly, we have for ε representing an element in
π1(Γ)/kern(α) that (β ·ε)∗(p0 ε

−1) (ε−1 denoting the reverse loop) is homotopic
to β. Altogether this yields a well-defined action of Γ×π̄ π1(P ) on P̃ .

To see transitivity on the fibers, take two paths β1, β2 in P and denote the
projection P → M by πP . The condition that the βi represent points in the
same fiber boils down to (πP ◦ β1)(1) = (πP ◦ β2)(1) = m ∈M . Thus, (πP ◦ βi)
represent two points in M̃ lying in the same fiber over M , which implies that
there exists an element a ∈ π1(M) mapping the first to the second by a deck
transformation. Since π1(P ) surjects onto π1(M) there is an element [δ] ∈ π1(P )
mapping to a. But now πP ◦ (β1 ∗ δ) and πP ◦β2 represent the same point in M̃
implying that there is an element [γ] ∈ Γ̃, such that (β1∗δ)·γ is homotopic to β2.
If p0 is the constant path on the basepoint, then the condition that (p0 ∗ δ) · γ
is homotopic to p0 relative endpoints implies that [γ] ∈ π1(Γ)/kern(α) and
[δ] · [γ] = 1 ∈ π1(P ) proving freeness.

Since by our hypothesis and the previous lemma we have kern(α) ⊂ kern(ρ)
the homomorphism Γ̃ → Γ̂ factors over Γ = Γ̃/kern(α). Likewise, we have
π1(P ) → π̂ and putting these morphisms together we get Γ × π1(P ) → Γ̂ ⊗ π̂,
which factors over the antidiagonal embedding of π1(Γ)/kern(α). Thus, we
have a principal Γ̂⊗ π̂-bundle Q associated to P̃ . Since Q as an S1-bundle over
π∗MP = P ×M M̃ reduces to the π1(Γ)/kern(α)-bundle P̃ , it is indeed a flat
trivialization.

Theorem 4.3.20. Suppose P allows a Γ-structure on M̃ and let D be a gen-
eralized projective Dirac operator over P like in corollary 4.3.16. Let π̂ be the
central S1-extension from the last lemma and denote its classifying 2-cocycle by
cbπ ∈ H2

gr(π1(M), S1). Then every representation % : π̂ → U(N) with %(eiϕâ) =
eiϕ%(â), i.e. every projective representation of π1(M) with cocycle cbπ, yields a
flat countertwisting E with flat trivialization Q and in this case

ind(DE,Q
+ ) = N · (−1)

n(n+1)
2 〈π!chQ(c)Td(M), [M ] 〉 ∈ K0(A)⊗ R . (4.45)

For A = K a matrix bundle chQ = ch (see remark 4.1.33) and the right-hand
side has to be an integer.

Proof. By lemma 4.3.19 the trivial group π = {1} C π1(M), the central S1-
extension π̂ and the representation % match the conditions in corollary 4.3.16.

Example 4.3.21. In case D is the projective Dirac operator over the frame
bundle P = PSO, corresponding to the central extension

1 −→ S1 −→ Spinc(n) −→ SO(n) −→ 1
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we have Γ = Spin(n). Therefore the existence of a Γ-structure on M̃ corresponds
to a spin-structure on the universal cover. In this case ρ : π1(SO(n)) = Z/2Z→
S1 is injective, implying that

1 −→ Z/2Z −→ π1(PSO) −→ π1(M) −→ 1

is exact by lemma 4.3.18 and π̂ = (π1(PSO) × S1)/(Z/2Z). Denote by cspin ∈
H2

gr(π1(M), S1) the cocycle classifying this extension. As follows from exam-
ple 4.3.9, the class (−1)n(n+1)/2π!ch(c)Td(M) just yields Â(M) for an even-
dimensional manifold M .

Corollary 4.3.22. If there exists a projective representation % : π1(M) −→
PU(N) of dimension N corresponding to the cocycle cspin ∈ H2

gr(π1(M), S1),
then

N · 〈 Â(M), [M ] 〉 ∈ Z .

Denote by nbπ ∈ N the minimum over the possible dimensions of projective
unitary representations of (π1(M), cbπ) with fixed classifying cocycle cbπ (note
that nbπ can be greater than 1).

Corollary 4.3.23. Let M be a closed manifold with M̃ spin, then nbπ is some
integer multiple of the denominator of Â(M).

Proof. Let Â(M) = r
s . By the previous theorem: nbπ r

s = x ∈ Z. Without loss
of generality we can assume that r and s are coprime, i.e. ∃a, b ∈ Z : ar+bs = 1,
but then:

nbπ ar
s

= nbπ 1− bs
s

= ax ⇔ nbπ = (ax+ nbπb) s .

Conjectures Now let M be an arbitrary even-dimensional manifold. Then
this corollary rises the question, whether some multiple of the Â-genus of M
can be obtained as the index of the projective Dirac operator countertwisted
by some flat bundle. This conjecture is certainly false: For example CP 2 has
Â(CP 2) = − 1

8 , which implies that w2(CP 2) can not be 0. Since π1(CP 2) = 1
every central extension of this group is trivial and we have π̂ = S1 giving
rise to the trivial lifting bundle gerbe L̄ = C→ CP 2 × CP 2. This still satisfies
dd(L̄) = −dd(L) = 0, since CP 2 is spinc. However, there is no flat trivialization,
since this would correspond to a spin-structure. Therefore the above corollary
yields the result

〈 exp(−c1(Q))Â(CP 2), [CP 2] 〉 ∈ Z
for some trivialization Q which is induced by a line bundle F over CP 2, such
that c1(F ) mod 2 = w2(CP 2). Still, the conjecture can be stated for manifolds
allowing a spin structure on the universal cover. In other cases the right con-
jecture would be that there is a class c ∈ H2(M,Z) such that some multiple
of 〈 exp(c)Â(M), [M ] 〉 is represented by a flatly countertwisted projective Dirac
operator.

In view of the above conjectures, we could ask for necessary conditions for
the existence of a flat countertwisting bundle, i.e. a projective representation of
π1(M). Before we present some results in this direction, we analyze the fibration
sequence a little further:
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Lemma 4.3.24. Let Γ̇ be the group from lemma 4.3.18. Then P lifts to a
Γ̇-bundle Ṗ if and only if the short exact sequence:

1 −→ π1(Γ)/kern(α) −→ π1(P ) −→ π1(M) −→ 1

splits. Furthermore, the possible splittings are in 1 : 1-correspondence with the
different Γ̇-lifts of P .

Proof. Let σ : π1(M) −→ π1(P ) be a split, then the cover of P classified by
the subgroup σ(π1(M)) corresponds to a principal Γ̇-bundle Ṗ over M , since
π1(Γ)/kern(α)∩σ(π1(M)) = {1}, which implies that the cover induced on each
fiber is described by the subgroup kern(α) ⊂ π1(Γ). Let Ṗ be a principal Γ̇-
bundle over M , then Ṗ → P is a covering map with deck transformation group
π1(Γ)/kern(α). The exact sequence:

1 −→ π1(Ṗ ) −→ π1(P ) δ−→ π1(Γ)/kern(α) −→ 1

yields a map δ, which is easily seen to split the above sequence. In fact, the
inclusion π1(Ṗ ) −→ π1(P ) has as image the classifying subgroup of the cover,
i.e. it coincides with σ(π1(M)) if a split is given. Thus, both constructions are
inverse to each other.

Ordinary representations of π1(M) are modules over the group algebra in
a natural way. The projective counterpart has the cocycle cbπ built into its
multiplication.

Definition 4.3.25. Let cbπ ∈ H2
gr(π1(M), S1) be a cocycle classifying an exten-

sion of π1(M). We define the twisted group algebra C[π1(M), cbπ] to be the set
of mappings λ : π1(M)→ C with finite support, written as

λ =
∑

a∈π1(M)

λ(a) a =
∑

a∈π1(M)

λa a ,

with multiplication defined by∑
a∈π1(M)

λa a ·
∑

b∈π1(M)

µb b =
∑

a,b∈π1(M)

cbπ(a, b)λaµb ab .

The cocycle condition ensures associativity of this ring. Cohomologous cocycles
give rise to isomorphic rings.

Definition 4.3.26. Let V be a left-module over C[π1(M), cbπ], let R be a sub-
algebra of the latter, let W be a left R-module. We define the restriction
ResR(V ) to be the module V considered as a left R-module and the induction
Ind(W ) = C[π1(M), cbπ]⊗RW as a tensor product over R.

The following is a well-known result lying at the heart of the theory of
modules over rings:

Theorem 4.3.27. Let V and W be as in definition 4.3.26. There is a canonical
isomorphism:

HomR(W,ResR(V )) ' HomC[π1(M),cbπ ](Ind(W ), V ) .
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For every finite cover M over M allowing a Γ̇-structure (and therefore also
a Γ̂-structure) we expect a representation π̂ −→ U(r) like above, where r ∈ N
is the number of leaves of M →M . This should be related to the permutation
group on r elements. In fact, we have

Theorem 4.3.28. Let 1→ S1 → Γ̂→ Γ→ 1 be a generalized spinc-extension,
L→ P [2] be a corresponding lifting bundle gerbe. Each finite covering πM : M →
M with r leaves, such that π∗MP lifts to a principal Γ̇-bundle, yields a represen-
tation π̂ −→ U(r) restricting to the identity on S1.

Proof. Set V = C[π1(M)/π1(M)], i.e. the free vector space generated by the
finite number of cosets coinciding with the number of leaves r. Lemma 4.3.24
provides us with a splitting of the short exact sequence:

1 −→ π1(Γ)/kern(α) −→ π1(π∗MP ) −→ π1(M) −→ 1

and therefore with a homomorphism τ : π1(M) −→ π1(π∗MP ) ⊂ π1(P ) −→ π̂.
This means that the cocycle defining the central extension is homologous to one
that is trivial on π1(M)× π1(M). Choosing such a representative yields an in-
clusion of C[π1(M)] as a subalgebra of C[π1(M), cbπ]. But we can do even better:
Choose representatives a1, . . . ar ∈ π1(M) for the r cosets in π1(M)/π1(M) and
lifts â1, . . . , âr of these elements to π̂. Let x ∈ π1(M), then x = aiy uniquely
for an element y ∈ π1(M). Set x̂ = âiτ(y), which is a lift of x to π̂. Note in
particular that for xaj = aky

′ with y′ ∈ π1(M) we have x̂aj = âkτ(y′) and thus
for xajy = aky

′y:

x̂ajy = âkτ(y′y) = âkτ(y′)τ(y) = x̂ajτ(y) .

Keeping this in mind, we define cbπ via

cbπ(x, ajy) = x̂ âjτ(y) (x̂ajτ(y))−1 = x̂ âj (x̂aj)
−1

for x ∈ π1(M), y ∈ π1(M). The cocycle given above still represents the same
extension, but its value is now independent of the choice of y ∈ π1(M). Thus,
we get a well-defined action of C[π1(M), cbπ] on V induced by:

x [b] = c(x, b)[xb]

for x ∈ π1(M), [b] ∈ π1(M)/π1(M). V can be identified with Cr by our choice of
representatives, i.e. with the basis {[aj ], j = 1, . . . , r} ∈ V . The above represen-
tation consists of r× r-permutation matrices with the 1s replaced by S1-values.
With respect to the standard scalar product on Cr this is unitary.

We have seen that finite covers with Γ̇-structures give rise to projective rep-
resentations. On the other hand, the next theorem shows that the existence of a
finite cover with Γ-structure is a necessary condition to have a flat countertwist-
ing. Apart from that, it provides a somewhat recursive relationship between the
dimension of the representation and the dimension of its intertwiner space with
the permutation representation.

Theorem 4.3.29. Let 1→ S1 → Γ̂→ Γ→ 1 be a generalized spinc-extension,
L → P [2] be a corresponding lifting bundle gerbe. Let %̂ : π̂ → U(N) be a rep-
resentation on the vector space W = CN with closed image. Then there exists
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a finite covering πM : M −→ M , such that π∗MP lifts to a principal Γ-bundle.
Furthermore,

N = dim(HomC[π1(M),cbπ ](C[π1(M)/π1(M)],W )) .

Proof. Let π̃ ⊂ π1(P ) be the kernel of the representation %̃ : π1(P ) −→ π̂
%−→

U(N). Since the extension is generalized spinc, the hypothesis implies that %̃
has closed image. Thus, π1(P )/π̃ being a closed subgroup of a compact one is
finite, i.e. π̃ classifies a finite regular cover of P . Now we have the following
diagram with exact columns:

kern(%) π1(M) PU(N)

π̃ π1(P ) U(N)

kern(ρ) π1(Γ) S1

........................................................................... ............ ......................................................................... ............
%

.................................................................................................... ............ ........................................................................................ ............
%̃

................................................................................ ............ .................................................................................................... ............
ρ

.................................................................
...
.........
...
α

.................................................................
...
.........
...

.................................................................
...
.........
...
α

.................................................................
...
.........
...

.................................................................
...
.........
...

.................................................................
...
.........
...

Since α−1(π̃) = α−1(%̃−1(1)) = (%̃ ◦ α)−1(1) = kern(ρ), the cover P → P
restricts to Γ→ Γ on each fiber. Like in the proof of lemma 4.3.18 we see that
P → P is a principal Γ-bundle, actually P = P̃ /π̃. P̃ −→ M̃ is equivariant with
respect to the right action of π̃ on P̃ and kern(%) on M̃ , therefore the base of the
above bundle is M = M̃/kern(%), which is a finite cover. As the above diagram
shows %|π1(M) : π1(M) → PU(N) is trivial and therefore lifts to an honest
representation of π1(M). Thus, like in the previous lemma, the cocycle cbπ ∈
H2(π1(M), S1) is cohomologous to one that is trivial over C[π1(M)]×C[π1(M)]
ensuring that R = C[π1(M)] embeds into C[π1(M), cbπ]. The restriction of
the C[π1(M), cbπ]-module W to R is CN considered as trivial representation.
Furthermore:

Ind(C) = C[π1(M), cbπ]⊗R C = C[π1(M)/π1(M)] ,

which yields

N = dim(HomR(C,ResR(W ))) = dim(HomC[π1(M),cbπ ](C[π1(M)/π1(M)],W )) .

4.3.4 Covering bundle gerbes and holonomy

Let L → M̄ be a covering bundle gerbe corresponding to an S1-extension of
a discrete group Γd classified by the cocycle cΓ ∈ H2

gr(Γd, S
1). Since L is the

pullback of the trivial line bundle over Γd, it is itself trivial as a line bundle
over M̄ . Still, it need not be trivializable as a bundle gerbe, since the product
is twisted by cΓ, i.e. for L = M̄ ×M M̄ × C:

π∗12L⊗ π∗23L −→ π∗13L

(m1,m2, λ)⊗ (m2,m3, µ) 7→ (m1,m3, cΓ(g12, g23)λµ) .
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where gij ∈ Γd denotes the group element connecting (mi,mj) ∈ M̄ ×M M̄ .
A bundle gerbe module E → M̄ therefore consists of a vector bundle over M̄
together with fiber isomorphisms:

γg : Em̄
∼−→ Em̄g−1

such that γg ◦ γh = cΓ(g, h) γgh, i.e. γg acts like a projective representation of
(Γd, cΓ) on E. Likewise, a bgm-connection corresponds to a γ-invariant form
ηE ∈ Ω1(PE , u(n)).

Now let E → M̃ be a twisted Hilbert A-module bundle over the universal
cover, i.e. it carries an action of the lifting bundle gerbe induced by a central
S1-extension of the fundamental group. Choose a twisted connection ηE on E.
Let τ : S1 →M be a loop in M and denote by τ em the unique lift of τ to a curve
in M̃ starting at m̃ ∈ M̃ . Let

hol(m̃, τ) : Eem −→ Eem[τ ]

be the holonomy along τ em, where [τ ] ∈ π1(M) denotes the homotopy class
of the loop. For flat connections the holonomy along a path in the universal
cover is already fixed by its endpoints. Based on this, we arrive at the following
intertwiner relation:

Lemma 4.3.30. If ηE is a flat connection, then for g = [σ], h = [τ ] ∈ π1(M):

γh ◦ hol(m̃g, τ) ◦ hol(m̃, σ) = hol(m̃, σ) ◦ γh ◦ hol(m̃, τ) .

Proof. The holonomy hol(m̃, σ) is defined via parallel transport along σ em, so by
lemma 4.1.26 the homomorphism γh

−1 ◦ hol(m̃, σ) ◦ γh is the parallel transport
along σ emh where π1(M) acts pointwise via deck transformations. The path
τ em ∗(σ emh) runs from m̃ through τ to m̃h and then through (σ emh) to m̃gh. The
curve σ em∗τ emg also starts at m̃ and ends at m̃gh, therefore simply connectedness
implies that it is homotopic relative endpoints to the former one. Since ηE is
flat the two parallel transports agree, which proves the lemma.

The main application of this small technicality lies in proving that there
is a natural way to get projective holonomy representations from flat twisted
bundles:

Theorem 4.3.31. Let ηE be a flat twisted connection on the twisted Hilbert
A-module bundle E → M̃ corresponding to the cocycle cbπ. Fix m̃ ∈ M̃ . Then:

h : π1(M) −→ End(Eem) ; [τ ] 7→ γ[τ ] ◦ hol(m̃, τ)

yields a projective representation of the fundamental group with respect to the
cocycle cbπ.

Proof. Observe that hol(m̃, τ) only depends on the homotopy type relative end-
points of τ , so h is indeed well-defined. Choose representatives τi, i ∈ {1, 2} for
gi ∈ π1(M). Using the previous lemma, we get:

cbπ(g1, g2)h(g1g2) = (cbπ(g1, g2) γg1g2) ◦ hol(m̃, τ1 ∗ τ2)
= γg1 ◦ γg2 ◦ hol(m̃g1, τ2) ◦ hol(m̃, τ1)
= γg1 ◦ hol(m̃, τ1) ◦ γg2 ◦ hol(m̃, τ2) = h(g1)h(g2) .
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4.4 Obstructions to positive scalar curvature

Let (M, g) be a Riemannian manifold with Levi-Civita-connection ∇. The
Riemannian curvature transformation R is defined to be

R ∈ Ω2(M,End(TM)) , R(U, V )W = ∇U∇VW −∇V∇UW −∇[U,V ]W .

R coincides with the curvature ΩTM ∈ Ω2(M, so(n)) when the latter is viewed
as an endomorphism valued 2-form. It can also be defined by extending the
covariant derivative to k-forms

∇ : Ωk(M,TM) −→ Ωk+1(M,TM)

by ∇(ω ⊗ u) = dω ⊗ u+ (−1)deg(ω)ω ∧ ∇u and setting R = ∇ ◦ ∇. The scalar
curvature κTM is the simplest of all curvature invariants that can be obtained
from R:

κTM = −
n∑

i,j=1

〈R(ei, ej)ei, ej〉 .

In this expression ei is a local orthonormal frame at a point m ∈ M , a choice
on which the value of κTM : M → R does not depend.

We are first going to analyze how κTM is related to the projective Dirac
operator. Therefore let ηS be the bgm-connection on S induced by the Levi-
Civita-connection ηSO on PSO like in example 4.1.7. The canonical Lie algebra
split

spin(n)⊕ iR −→ so(n)

is induced by the Lie algebra isomorphism Ξ0 : spin(n) '−→ so(n), where we
see the left-hand side as a subvector space of Cl(n) and identify the right-
hand side with the skew-symmetric traceless matrices on R. On basis elements
{eiej}i<j ⊂ Cl(n) the Lie algebra homomorphism Ξ0 is given explicitly by [36]:

Ξ0(eiej) = 2ei ∧ ej , Ξ−1
0 (v ∧ w) =

1
4

[v, w] .

The brackets [·, ·] denote the commutator in the algebra Cl(n). Now we choose
a local orthonormal frame ei for TM at the point m ∈ M . The curvature
ΩTM ∈ Ω2(M,Ad(PSO)) of ηSO can be expressed by a matrix Ωij :

ΩTM =
∑
i<j

Ωij ⊗ (ei ∧ ej) .

The Lie algebra homomorphism Ξ−1
0 maps ΩTM to ΩS ∈ Ω2(M, end(S)) =

Ω2(M,Cl(M)), which takes the form:

ΩS = Ξ−1
0 ΩTM =

1
2

∑
i<j

Ωij ⊗ eiej ∈ Ω2(M,Cl(n)) . (4.46)

There is a canonical connection ∇Cl(M) on Cl(M), which coincides with ηSO on
TM ⊂ Cl(M). When the pullback of this bundle is identified with P × Cl(n),
the corresponding pullback connection maps a Cl(n)-valued function f to df +
[Ξ−1

0 ηSO, f ]. Therefore we have for u ∈ Γ(S) and f ∈ Γ(Cl(n)):

∇S(f · u) = ((π∗M∇Cl(M))f) · u+ f · ∇S(u) .
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In particular for f ∈ Γ(π∗MTM) ⊂ Γ(Cl(n)):

∇S(f · u) = ((π∗M∇TM )f) · u+ f · ∇S(u) . (4.47)

Identify TP with π∗TM ⊕ g via ηSO. This bundle carries a metric gP like in
(4.34) and a natural connection, which is induced by the pullback of ηSO to
π∗TM and the canonical flat metric on g. Even though the latter is compatible
with gP , it is not the Levi-Civita-connection on P due to its torsion:

Lemma 4.4.1. Let ∇P be the covariant derivative corresponding to the con-
nection described above, let v, w ∈ Γ(TM) be vector fields on TM and denote
by v̂, ŵ their horizontal lifts with respect to ηSO, then

∇Pbv ŵ −∇Pbw v̂ = [v̂, ŵ] + α∗(ΩTM (v, w)) ,

where α∗ : P × g −→ TP is the map generating the vertical vector fields.

Proof. With respect to the splitting TP ' π∗TM ⊕ g the horizontal lift of a
vector field corresponds to its pullback to π∗TM . Thus,

∇Pbv ŵ −∇Pbw v̂ = [̂v, w] = [v̂, ŵ] + α∗(ΩTM (v, w)) .

In the untwisted case the following operators are of fundamental importance:

Definition 4.4.2. Let v, w be vector fields on M , let E −→ M be a vector
bundle with a connection ∇. We define the invariant second derivative by

∇2
v,w u = ∇v∇wu−∇∇TMv wu ,

where ∇TM denotes the Levi-Civita-connection on M . Since it is torsion-free,
we have ∇2

v,w−∇2
w,v = ΩE(v, w). The connection Laplacian is defined by taking

the trace, i.e.
∇∗∇u = −tr(∇2

·,·u) = −
∑
i

∇2
ei,eiu

for some orthonormal tangent frame field ei of TM .

In the twisted case they show up in the following disguise:

Definition 4.4.3. Let E −→ P be a bundle gerbe module with connection ∇
and denote by ∇P the connection discussed above. Let V,W be vector fields on
P . We define the second derivative by

∇2
V,W u = ∇V∇Wu−∇∇PVWu ,

The reduced connection Laplacian is the operator

∇∗∇red : Γ(E) −→ Γ(E) , ∇∗∇red = −
∑
i

∇2bei,bei ,
where êi denotes the horizontal lift of an orthonormal frame field ei of TM
to TP . It is a differential operator independent of the choice of orthonormal
frame. Its symbol is σ(p, ξ) = ||π∗ξ||2, where π∗ : T ∗P → T ∗M is induced by the
connection. In particular, it is only transversally elliptic, but still non-negative
and formally self-adjoint.
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As predicted by lemma 4.4.1, an additional torsion term will enter the
Bochner-Lichnerowicz-formula for the twisted case. We might call it the
bad operator and denote it by:

T =
1
2

∑
i,j

ei · ej · ∇α∗(ΩTM (ei,ej))

Theorem 4.4.4. Let D : Γ(S) −→ Γ(S) be the projective Dirac operator over
the frame bundle of an even-dimensional manifold M . Then

D2 = ∇∗∇red +
1
4
κTM ◦ πM + T ,

with the projection πM : P → M . Let E be a flat bundle gerbe module with a
flat trivialization Q, then we have:

D2
E,Q = ∇∗∇+

1
4
κTM .

Proof. Fix a point p ∈ P that projects to m ∈M and choose a local orthonormal
frame field ei of TM , such that ∇TMei ej = 0. Observe that with this choice we
also have ∇Pbei êj = 0. The general Bochner identity applied to the twisted case
takes the following form:

D2 =
∑
i,j

ei · ∇bei (ei · ∇bej) =
∑
i,j

ei · ej · ∇bei∇bej =
∑
i,j

ei · ej · ∇2bei,bej
= −

∑
i

∇2bei,bei +
∑
i<j

ei · ej ·
(
∇2bei,bej −∇2bej ,bei

)
= ∇∗∇red + R + T . (4.48)

where R ∈ Γ(M, end(S)) is the curvature term given by

R =
1
2

n∑
j,k=1

ej · ek · ΩS(ej , ek) . (4.49)

Here, ΩS ∈ Ω2(M, end(S)) is the curvature of the connection. The dots denote
clifford multiplication. Compare the proof of (4.48) with the classical case in
[36]. In the first step we use the fact that ∇ acts as a derivative with respect to
the Clifford module structure stated in (4.47). In our case the curvature term
R takes the form

R =
1
4
κTM

as can be seen after plugging (4.46) into (4.49) by exploiting the Bianchi iden-
tities and the symmetries of the curvature tensor, for details see theorem 8.8 in
chapter 2 of [36].

For the second statement observe that T just contains covariant derivatives
in the vertical direction. Let α∗(X) be the fundamental vector field generated
by some X ∈ g. The horizontal lift X̂ with respect to ηS + ηE − θQ is the
fundamental vector field we get by deriving the group action of Γ̂ on PE⊗S⊗Q∗ ,
since this covers the one of Γ on P . But being a fixpoint of (4.35) implies that
the section, when viewed as an equivariant map on PE⊗S⊗Q∗ , is covariantly
constant in the directions given by X̂. Apart from that, due to the flatness of
E, the curvature remains untouched, i.e. ΩS⊗E = ΩS , so R again evaluates
to 1

4κTM .
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Corollary 4.4.5. Let M be an even-dimensional Riemannian manifold with a
metric g, such that κTM is a positive function (g is then called a positive scalar
curvature metric or psc-metric for short). Suppose that the projective Dirac
operator D over S has a flat countertwisting E and a flat trivialization Q, then

〈Â(M), [M ]〉 = 0 ,

i.e. the Â-genus is an obstruction to positive scalar curvature.

Proof. By theorem 4.4.4, the kernel of the positive operator D2
E,Q vanishes, so

does the kernel of DE,Q by formal self-adjointness. Thus, the index of D+
E,Q

vanishes. The latter coincides with N 〈Â(M), [M ]〉 for some N ∈ N.

Remark Note that the existence of a flat countertwisting and a flat triviali-
zation for D are essential. Take again CP 2, which carries a psc-metric, since S5

does in such a way that S1 acts isometrically. But we have Â(CP 2) = − 1
8 .

Remark If there is a way to control the bad operator T in the sense that
either it is non-negative itself or at least ∇∗∇red + T is non-negative, then the
distributional index theorem, in particular corollary 4.2.32, still yields some
conclusions about the existence of psc-metrics.

Theorem 4.4.6. Let M be an even-dimensional manifold admitting a metric of
positive scalar curvature and assume that ∇∗∇red +T is a non-negative operator
in the sense that

〈(∇∗∇red + T)u, u〉L2 ≥ 0 ∀u ∈ Γ(S) ,

then Â(M) = 0.

Proof. We first show that D : Γ(S) → Γ(S) still is a formally self-adjoint ope-
rator. Let p ∈ P be a point over m ∈M and choose a local orthonormal frame
ei of TmM with ∇TMej ei = 0 like in theorem 4.4.4. Then:

〈Du, v〉 =
∑
i

〈ei · ∇beiu, v〉 = −
∑
i

〈∇beiu, ei · v〉
=

∑
i

(−êi 〈u, ei · v〉+ 〈u, ei · ∇beiv〉)
= −

∑
i

(êi 〈u, ei · v〉) + 〈u,Dv〉 .

The first term is the divergence of the vector field X defined by

〈X,W 〉 = −〈u, π∗W · v〉

and therefore vanishes, when integrating over P . Thus, kern(D) = kern(D2),
where kern(D) means the kernel in smooth sections. But the hypothesis implies
that kern(D2) = kern(∇∗∇red + T + 1

4κTM ◦πM ) = {0}. Therefore kern(D+) =
kern(D−) = {0} and in the notation of equation (4.33), ind(D+,λ) = {0} for
all λ. This implies that the distributional index vanishes. Note that it can
be computed without forming a continuation to Sobolev spaces, but just by
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evaluating D on smooth sections, which is a point to worry about, since D
is only transversally elliptic. By corollary 4.2.32 we can choose a function on
Spin(n) with support small enough, which takes the value 1 close to the identity,
such that the index coincides with the Â-genus.

In the case of manifolds that allow a spin-structure on the universal cover, we
have seen that flat countertwistings correspond to projective representations of
the fundamental group with respect to the cocycle cbπ = cspin ∈ H2(π1(M), S1).
The drawback of the above theorem is that the existence of flat countertwistings
implies that M already has a finite cover allowing a spin-structure. We would
rather like to deal with the universal cover itself, but this is of course either
finite or not a compact manifold anymore. Twisted Hilbert A-module bundles
provide a very elegant way not only to provide a new obstruction with values in
K0(A), but also to treat all projective representations of π1(M) at once. This
is encapsulated in the following definition:

Definition 4.4.7. Let G be a discrete group, cG ∈ H2
gr(G,S

1) a 2-cocycle.
Denote by C[G, cG] the twisted group algebra. It becomes a ∗-algebra with the
involution: ∑

g∈G
λgg

∗ =
∑
g∈G

λg−1 cG
(
g, g−1

)−1
g

Let L2(G) be the Hilbert space of elements, such that
∑
g∈G |λg|2 < ∞ with

the obvious scalar product. There is a twisted action of C[G, cG] on L2(G)
induced by h · λgg = cG(h, g)λghg and the above involution coincides with
taking adjoints with respect to the scalar product. The closure of C[G, cG]
with respect to the operator norm on L2(G) is called the reduced twisted group
C∗-algebra C∗r (G, cG).

There is another norm the twisted group algebra can be endowed with,
defined by:

||g|| = sup
%
||%(g)|| ,

where the supremum is taken over all projective non-degenerate ∗-representa-
tions on Hilbert spaces corresponding to the lifting cocycle cG. Since ||%(g)|| is
bounded by the l1-norm, which follows from the triangle inequality, the supre-
mum exists. The closure with respect to this norm is called the universal twisted
group C∗-algebra C∗max(G, cG). By construction it has the universal property,
that any ∗-homomorphism from C[G, cG] to some B(H) for a Hilbert space H
factors through the inclusion C[G, cG]→ C∗max(G, cG).

The group algebras C∗(π1(P )) and C∗(π1(M), cbπ)
Every projective representation of a group yields an honest representation of
some central S1-extension of it. This relationship should reflect in certain pro-
perties of the corresponding group algebras. We will analyze this for the follow-
ing setup: Let

1 −→ S1 −→ Γ̂ −→ Γ −→ 1

be a generalized spinc-extension. For simplicity we will assume that the ho-
morphism ρ : π1(Γ) −→ Z/nZ is an isomorphism, but most of the observations
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also hold in a far more general setting. Let M be a manifold which allows a
Γ-structure on its universal cover M̃ and let P be a principal Γ-bundle over M .
The central S1-extension

1 −→ S1 −→ π̂ −→ π1(M) −→ 1 (4.50)

is defined via π̂ = π1(P )×S1/π1(Γ) and by our hypothesis, π1(Γ) = Z/nZ, this
sequence reduces to the finite abelian central extension:

1 −→ Z/nZ −→ π1(P ) −→ π1(M) −→ 1 (4.51)

(by lemma 4.3.18 kern(α) is trivial). Therefore the commutative group ring
C[Z/nZ] is a central subalgebra of C[π1(P )]. Denote by x ∈ Z/nZ a generator
of the cyclic group. Considered as an operator on C[Z/nZ], it gives rise to n pro-
jections onto the eigenspaces corresponding to the eigenvalues zj = exp

(
2πi j
n

)
for j = 0 . . . n− 1:

pj =
1
n

n−1∑
k=0

(z−1
j x)k .

(with Z/nZ written multiplicatively). Indeed, x pj = zj pj , p2
j = pj and p∗j = pj .

As elements in C[π1(P )] the pj are therefore central projections. Let cπ1(P ) ∈
H2

gr(π1(M),Z/nZ) be the cocycle representing the extension (4.51). We will
identify π1(P ) with π1(M) ×cπ1(P ) Z/nZ, which coincides with the product as
a set, but carries the multiplication (g, a) · (h, b) = (gh, a + b + cπ1(P )(g, h))
twisted by the cocycle. Given cπ1(P ) there is a canonical representative for
cbπ = exp(cπ1(P )) ∈ H2

gr(π1(M), S1). With these identifications we have an
algebra homomorphism:

α : C[π1(P )] −→ C[π1(M), cbπ] ;
∑

(g,a)∈π1(P )

λ(g,a) (g, a) 7→
∑
(g,a)

λ(g,a) exp(a) g

Let p = p1 be the first of the projections above, then α restricted to the image
of p has an inverse β:

β : C[π1(M), cbπ] −→ pC[π1(P )] ;
∑

g∈π1(M)

λg g 7→ p

(∑
g

λg(g, 0)

)
.

That β is multiplicative is easily seen from the following calculation:

cbπ(g, h) p (gh, 0) = exp(cπ1(P )(g, h)) p (gh, 0) = p (1, cπ1(P )(g, h)) (gh, 0)
= p (gh, cπ1(P )(g, h)) ,

where the last equality in the first row uses exp(a) p = p (1, a). Thus, the
twisted group algebra C[π1(M), cbπ] is isomorphic to the corner pC[π1(P )] with
the central projection p. Furthermore α and β induce intertwiners of the left
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regular representations:

pL2(π1(P )) pL2(π1(P ))

L2(π1(M)) L2(π1(M))

L2(π1(P )) L2(π1(P ))

................................................................................................................. ............
p(g, a)

................................................................................................................................ ............
(g, a)

........................................................................................................................... ............
exp(a)g

................................................................................
...
.........
...

α

................................................................................
...
.........
...

α

................................................................................
...
.........
...

β

................................................................................
...
.........
...

β

Therefore L2(π1(M)) can be seen as a subrepresentation of L2(π1(P )), which re-
stricts to the standard left regular representation of C[π1(M), cbπ]. Summarizing
we get an isomorphism of the reduced C∗-algebras:

C∗r (π1(M), cbπ) ' pC∗r (π1(P )) .

Since every projective, non-degenerate ∗-representation % of π1(M) pulls back to
an honest non-degenerate ∗-representation via α, the latter induces a continuous
∗-homomorphism

α : C∗max(π1(P )) −→ C∗max(π1(M), cbπ) .

A similar argument shows, that β extends to

β : C∗max(π1(M), cbπ) −→ pC∗max(π1(P )) .

Altogether we get an isomorphism:

C∗max(π1(M), cbπ) ' pC∗max(π1(P )) .

4.4.1 The twisted Mishchenko-Fomenko line bundle

In this section we introduce the definition of the universal version of a flat
countertwisting. With the setup described in the last section, we have an action
of π̂ = π1(P )×S1/π1(Γ) on the reduced as well as the maximal group C∗-algebra
C∗(π1(M), cbπ) ' pC∗(π1(P )), which is basically just left multiplication:

[g, z]h = z g h for g ∈ π1(P ), z ∈ S1 and h ∈ pC∗(π1(P )) .

Note the well-definedness of the above action:

[g a, exp a−1 z]h = exp a−1 z g a h = exp a−1 z g exp a h = z g h

for a ∈ π1(Γ) = Z/nZ, which is due to the fact that ah = a p h = exp(a)h.

Definition 4.4.8. Let M be a manifold, such that its universal cover M̃ allows
a Γ-structure, then Vr,max = M̃ × C∗r,max(π1(M), cbπ) is a twisted Hilbert A-
module bundle for the lifting bundle gerbe L→ M̃ [2] of the central extension:

1 −→ S1 −→ π̂ −→ π1(M) −→ 1 .

It is called the (reduced/maximal) universal flat countertwisting bundle or in
case we have Γ = SO(n) and Γ = Spin(n) the twisted Mishchenko-Fomenko
line bundle.
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Theorem 4.4.9. Let (M, g) be an even-dimensional Riemannian manifold,
such that its universal cover M̃ carries a spin-structure and g is a positive
scalar curvature metric. Then

ind(DVr,max
+ ) = 〈 chQ(Vr,max)Â(M), [M ] 〉 = 0 ∈ K0(C∗r,max(π1(M), cbπ))⊗ R ,

where we used the flat trivialization Q from lemma 4.3.19. In other words: The
projective Dirac operator twisted with the twisted Mishchenko-Fomenko line
bundle is an obstruction to the existence of psc-metrics.

Proof. The index formula is an application of corollary 4.3.16. Since the Mish-
chenko-Fomenko line bundle is flat, the obstruction property follows from the
Bochner-Lichnerowicz argument given in theorem 4.4.4.

Remark The above obstruction to positive scalar curvature metrics coincides
with the θ-index Stolz used in [66]. The latter is defined using a super-group
γ(E) associated to a vector bundle: It consists of the extension π1(PO/r), where
PO is the (unoriented) frame bundle of E and r ∈ O(n) is the reflection about the
hyperplane perpendicular to e1 = (1, 0, . . . , 0). There is a Z/2Z-grading on the
group induced by the orientation character w1 ∈ H1(M,Z/2Z). In the oriented
case that we treat here, w1 is trivial and PO/r coincides with PSO. In fact, we
have neglected orientation twists living in H1(M,Z/2Z) throughout the theory,
even though it is possible, though tedious to fit them in. The group G(n, γ)
that appears in [66] coincides with Spin(n)⊗̄π1(PSO). The fact that E has a
distinguished γ(E)-structure translates in the language of twisted K-theory to
the existence of a flat trivialization for the lifting bundle gerbe L −→ PSO×M M̃
associated to the short exact sequence:

1 −→ Z/2Z −→ Spin(n)⊗̄π1(PSO) −→ SO(n)× π1(M) −→ 1 .

The new insight gained from the above description of θ(M) is that it splits into
a twisted K-theory class and one in twisted K-homology like in the untwisted
case. As we will see in the next chapter, we can exploit this splitting to transfer
proofs given in the untwisted case to our setting.

4.5 KK-theory and projective Dirac operators

This section will show that the spinor countertwisting of a generalized projective
Dirac operator D : Γ(F ) −→ Γ(F ) yields a sensible K-homology class, i.e. an
element in KK(C(M,K), A), where K is a matrix bundle with dd(K) = dd(A).
The Kasparov intersection product

KK(C, C(M,A))×KK(C(M,K),C) −→ KK(C, A) ' K0(A)
([E], [D]) 7→ [E]⊗C(M,K) [D]

then coincides with the index class [DE,Q
+ ] ∈ K0(A) of D twisted with E.

The trivialization Q is hidden in the choice of Morita equivalence between
C(M,K) ⊗ A and C(M,A) needed to evaluate the product and, as we have
seen, the index class depends on that choice.

The twisted K-theory class of a twisted Hilbert A-module bundle [E] ∈
K0
A(M) translates into a projection valued section t ∈ C(M,Mm(A)) with [t] ∈
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K0(C(M,A)) as was proven in theorem 3.2.8. A minor step further we arrive
at the Fredholm module [tC(M,Am), 0] ∈ KK(C, C(M,A)) ' K0(C(M,A))
representing [E] in KK-theory (we have dropped the canonical unital action
of C). Now choose a matrix bundle K associated to a principal PU(n)-bundle
P̃ with dd(K) = dd(A). As follows from theorem 3.4.1, a trivialization Q of
the tensor product L̃∗ � L −→ (P̃ ×M P )[2] corresponds to an imprimitivity
bimodule C(M,V ), where V = P̂ ×τ (Cn ⊗ A), on which C(M,K ⊗ A) acts
on the left and C(M,A) acts on the right. Apart from this we will need the
conjugate bimodule C(M,V ) of C(M,V ), where V = P̂ ×τ̄ (Cn∗ ⊗A) with

τ̄([U, ĝ])(ξ ⊗ a) = (ξ ◦ U∗ ⊗ ĝa)

for [U, ĝ] ∈ U(n)⊗̄ Γ̂. The latter is a C(M,A)–C(M,K ⊗ A)-bimodule repre-
senting the inverse Morita equivalence. To summarize: Our choice of counter-
twisting and trivialization induces a map

KK(C, C(M,A)) ∼−→ KK(C, C(M,K ⊗A))
[tC(M,Am), 0] 7→ [tC(M,V

m
), 0] .

There is another way to describe this class: Note that S∗ = P̃ ×Cn∗ is a bundle
gerbe module over L̃∗, so S∗ � E can be pushed down to a Hilbert A-module
bundle over M , denoted by π!(S∗ �E). The sections C(M,π!(S∗ �E)) form a
Hilbert C(M,K⊗A)-module: The action of C(M,K) is induced by the following
commutative diagram:

L̃∗ ⊗ π∗2(S∗ ⊗Mn(C)) π∗1(S∗ ⊗Mn(C))

L̃∗ ⊗ π∗2S∗ π∗1S
∗

.......................................................................................... ............
κ

.......................................................................................................................................................................................................................... ............

................................................................................
...
.........
...

id⊗ π∗2m
................................................................................
...
.........
...

π∗1m

where κ([U, λ]⊗ξ⊗T ) = λ ξ◦U∗⊗UTU∗ for [U, λ] ∈ L̃∗, ξ ∈ S∗, T ∈Mn(C) and
m(ξ⊗T ) = ξ ◦T is just right multiplication. The Mn(C)-valued scalar product
is 〈ξ, η〉MnC = vξ η, where vξ is the unique vector such that 〈vξ, ·〉C = ξ(·).
Combined with the A-valued scalar product on E, this is easily seen to descend
to a Hilbert C(M,K ⊗ A)-module structure. So, we are just a short step away
from proving:

Theorem 4.5.1. Let E be a twisted Hilbert A-module bundle and S∗ a spinor
countertwisting like above with trivialization inducing the bundle V −→ M .
Let t ∈ C(M,Mm(A)) be a projection representing [E] ∈ K0(C(M,A)). Then
tC(M,V

m
) is isomorphic to C(M,π!(S∗�E)) as a right Hilbert C(M,K⊗A)-

module.

Proof. This is certainly true, if E is the trivial twisted Hilbert A-module bun-
dle, since for E = Am the push-down π!(S∗ � E) along the fixed trivialization
coincides with V

m
. For the general case we have E ' tAm, where t is considered

as a twisted bundle morphism. Thus,

C(M,π!(S∗�E)) ' C(M,π!(S∗�tAm)) = C(M, t π!(S∗�Am)) = C(M, t V
m

) .
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We have the following identification of twisted K-theory with coefficients in
the bundle A with the group KK(C, C(M,K⊗A)) depending on the choice of
countertwisting and trivialization:

K0
A(M) ∼−→ KK(C, C(M,K ⊗A)) (4.52)

[E] 7→ [C(M,π!(S∗ � E)), 0] =: [ES,Q] .

Let us now turn to a similar description of the K-homology class in question.
Let D : Γ(F ) −→ Γ(F ) be a generalized projective Dirac operator with Clifford
symbol cF : T ∗M −→ end(F ) over the twisted Hilbert A-module bundle F . Let
E be a countertwisting and Q be a trivialization, then DE,Q : Γ(π!(F �E)) −→
Γ(π!(F �E)) is an elliptic first-order A-linear pseudodifferential operator acting
on the Hilbert A-module bundle π!(F�E) with symbol cF⊗idE⊗idQ : T ∗M −→
End(π!(F �E)). Before we can summarize the analytic properties of DE,Q, we
need the following notion:

Definition 4.5.2. A densely defined operator T : V −→ V ′ on a Hilbert A-
module with densely defined adjoint is called regular if 1 + T ∗T is surjective or
equivalently if its graph G(T ) is orthocomplemented.

The next theorem forms the bridge toKK-theory, which only treats bounded
operators. It is proven for example in proposition 21 in [75].

Theorem 4.5.3. Let D, E, Q be as above, then DE,Q extends to an unbounded,
self-adjoint, regular operator on the Hilbert A-module L2(π!(F � E)) of square
integrable sections:

DE,Q : L2(π!(F � E)) −→ L2(π!(F � E)) .

Remark Formal self-adjointness of DE,Q is a direct consequence of the pro-
perties of the Clifford symbol. Regularity then follows from ellipticity, since a
parametrix allows the construction of a bounded operator having the graph of
DE,Q as its closed image, which implies that the latter is orthocomplemented.

The fact making regular operators on Hilbert A-modules invaluable for KK-
theory is that they can be turned into bounded ones using the Woronowicz-
(or bounded-) transform [35]:

T 7→ T (1 + T ∗T )−
1
2

We now focus on a spinor countertwisting S for D. By the same argument
as for K-theory, we can equip L2(π!(F � S)) with a left action of C(M,K), i.e.
a homomorphism:

ϕK : C(M,K) −→ End(L2(π!(F � S))) .

which is induced by the canonical left action of Mn(C) on S. Since we assume
S to be graded trivially, ϕK maps into the even part of the endomorphisms. So
far, we have set up the scene for the following theorem:

Theorem 4.5.4. Let D be a generalized projective Dirac operator, S be a spinor
countertwisting, K = end(S) its twisted endomorphism bundle and Q a triviali-
zation. There is a Fredholm module representing DS,Q in KK-theory defined
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by:[
DS,Q

]
=
[
L2(π!(F � S)), ϕK, DS,Q

(
1 +

(
DS,Q

)2)− 1
2
]
∈ KK(C(M,K), A) .

Proof. A Fredholm module [H,ϕ, T ] ∈ KK(B,A) has to satisfy [T, ϕ(b)] ∈
K(H), (T 2− 1)ϕ(b) ∈ K(H) and (T −T ∗)ϕ(b) ∈ K(H) for all b ∈ b. In our case

T = DS,Q
(

1 +
(
DS,Q

)2)− 1
2
.

Since T is self-adjoint and 1 − T 2 is the extension of
(

1 +
(
DS,Q

)2)−1

, which
is compact, the latter two conditions hold. Next, note that for f ∈ C∞(M,K):[

DS,Q, ϕK(f)
]

= −
∑
i

cF (e∗i )� ϕK
(
∇Keif

)
,

i.e. the commutator is a bounded operator on L2(π!(F � S)). Now we apply
a technique used in the classical case in [8] and explained in detail for the C∗-
algebra case in [17] (see also [61, 10]). We can express T by the integral:

T =
2
π

∫ ∞
0

DS,Q
((
DS,Q

)2
+ 1 + λ2

)−1

dλ ,

where Tu converges in norm if u ∈ H1(π!(F �S)) – the first Sobolev space of
sections. Apply [T, S−1] = −S−1[T, S]S−1 to get:

[T, ϕK(f)] =
2
π

∫ ∞
0

K
(
(1 + λ2)[DS,Q, ϕK(f)]−DS,Q[DS,Q, ϕK(f)]DS,Q

)
Kdλ

K =
((
DS,Q

)2
+ 1 + λ2

)−1

.

The bounds ‖DS,QK‖ ≤ C(d + λ2)−
1
2 and ‖K‖ ≤ (d + λ2)−1 (see [17]) for

positive constants C and d show that the commutator integral actually converges
in norm. Since DS,QK is compact and [DS,Q, ϕK(f)] is bounded, the term under
the integral sign is compact, therefore the commutator [T, ϕK(f)] is as well.

Let Ei → Pi be twisted Hilbert Ai-module bundles over principal Γi-bundle
Pi for i ∈ {1, 2}. Suppose dd(P1) = −dd(P2). Let S → P̃ be a spinor coun-
tertwisting for E2 over a principal PU(n)-bundle P̃ . Then S∗ is a spinor coun-
tertwisting for E1. Choose trivializations Qi for E1 � S∗ and S � E2 respec-
tively. They correspond to a principal Γ̂1 ⊗ U(n)∗-bundle P̂1 and a principal
U(n)⊗ Γ̂2-bundle P̂2 and induce a trivialization Q12 of E1�E2 in the following
way: Consider the pullback diagram

P̂3 P̂1 � P̂2

P1 ×M P̃ ×M P2 P1 ×M P̃ ×M P̃ ×M P2
..................................................................................... ............∆

.............................................................................................................................................................................................................................................. ............

................................................................................
...
.........
...

................................................................................
...
.........
...

defining P̂3 via ∆(p1, p̃, p2) = (p1, p̃, p̃, p2). Note that P̂3 is a principal (Γ̂1⊗Γ̂2)×
PU(n)-bundle over M , since the line bundle U(n)∗ � U(n)→ PU(n)× PU(n)



4.5. KK-theory and projective Dirac operators 123

is trivial over the diagonal. P̂3 = P̂3/PU(n) therefore defines a Γ̂1 ⊗ Γ̂2-bundle
over M and yields a trivialization Q12. Likewise, given bgm-connections on
both of the Qi’s they induce one on Q12 = ∆∗(Q1 �Q2)/PU(n).

Q12 is natural with respect to imprimitivity bimodules in the following sense:
Let V1 = π!(A1 � S∗). Then C(M,V1) is a C(M,A1)–C(M,A1 ⊗ K) bimo-
dule. Similarly V2 = π!(S�A2) induces the C(M,K⊗A2)–C(M,A2) bimodule
C(M,V2). Both of them are incarnations of Morita equivalences. Likewise we
set V12 = π!(A1 �A2), which is a C(M,A1 ⊗A2)–C(M,A1 ⊗A2) bimodule.

Lemma 4.5.5. With Vi and V12 as above there is a Hilbert bimodule isomor-
phism:

C(M,V1)⊗C(M,K)⊗A1 C(M,V2)⊗A1
∼−→ C(M,V12)

where the tensor product is the inner one taken over the inclusion C(M,K) ⊗
A1 → C(M,K ⊗A2)⊗A1.

Proof. A continuous section u1 of V1 can be identified with an equivariant map
f1 : P̂1 −→ A1 ⊗Cn∗. Likewise, there exists f2 : P̂2 −→ Cn ⊗A2 corresponding
to u2 ∈ C(M,V2). The canonical A1 ⊗A2–A1 ⊗A2 bimodule isomorpism

Ψ : (A1 ⊗ Cn∗)⊗Mn(C)⊗A1 (Cn ⊗A1 ⊗A2) −→ A1 ⊗A2

(a1 ⊗ ξ)⊗Mn(C)⊗A1 (v ⊗ a′1 ⊗ a2) 7→ ξ(v) a1a
′
1 ⊗ a2

satisfies Ψ((ĝ1a1 ⊗ ξ ◦ T̂ ∗) ⊗ (T̂ v ⊗ a′1 ⊗ ĝ2a2)) = ξ(v) ĝ1a1a
′
1 ⊗ ĝ2a2 for ĝi ∈

Γ̂i, T̂ ∈ U(n). Therefore the induced map

f3 : P̂3 −→ A1 ⊗A2 ; [p̂1, p̂2] 7→ Ψ(f1(p̂1)⊗ f2(p̂2))

is Γ̂1 ⊗ Γ̂2-equivariant and PU(n)-invariant, thus corresponds to a section u3 ∈
C(M,V12). Using a common trivializing cover Ui for the bundles Vi and V12,
the bimodule homomorphism

C(M,V1)⊗C(M,K)⊗A1 C(M,V2)⊗A1 −→ C(M,V12)
u1 ⊗ u2 7→ u3

restricts to

C0(Ui, A1 ⊗ Cn∗)⊗C(Ui,Mn(C))⊗A1 C0(Ui,Cn ⊗A2)⊗A1 −→ C0(Ui, A1 ⊗A2) ,

which means that a partition of unity argument basically reduces it to an ap-
plication of Ψ. This proves that it is an isomorphism.

Corollary 4.5.6. Let Ei → Pi be twisted Hilbert Ai-module bundles and S be
a countertwisting for E2 like above. Then there is an isomorphism θ of right
Hilbert A1 ⊗A2-modules:

C(M,π!(E1�S
∗))⊗C(M,K)⊗A1L

2(M,π!(S�E2))⊗A1
∼−→ L2(M,π!(E1�E2)) ,

where the push-down on the left hand side is with respect to Qi and on the right
hand side is given by Q12.
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Proof. In case Ei = Ai the statement is a direct consequence of the previous
lemma and the observation that

C(M,V2)⊗A1 ⊗C(M)⊗A2⊗A1 L
2(M,A2 ⊗A1) = L2(M,V2)⊗A1

C(M,V12)⊗C(M)⊗A2⊗A1 L
2(M,A2 ⊗A1) = L2(M,V12) .

as C(M,A1 ⊗A2)–A1 ⊗A2 bimodules. In the general case we have projections
ti ∈ C(M,Mm(Ai)) such that

C(M,π!(E1 � S
∗))⊗C(M,K)⊗A1 L

2(M,π!(S � E2))⊗A1

' C(M, t1V
m
1 )⊗C(M,K)⊗A1 L

2(M, t2V
m
2 )⊗A1

' (t1 ⊗ t2)C(M,V m1 )⊗C(M,K)⊗A1 L
2(M,V m2 )⊗A1

' (t1 ⊗ t2)L2(M,V m12 ) ' L2(M,π!(E1 � E2)) .

This is the first brick on the road to the following theorem announced at the
beginning of this section:

Theorem 4.5.7. Let D be a generalized projective Dirac operator acting on a
bundle gerbe module E2 → P2. Let S be a spinor countertwisting and Q2 be a
trivialization of S �E2. If E1 → P1 is a twisted Hilbert A1-module bundle such
that dd(P1) = −dd(P2) with countertwisting S∗ and trivialization Q1, then:

[ES,Q1
1 ]⊗C(M,K) [DS,Q2 ] ∈ KK(C, A1)

is the class representing the Mishchenko-Fomenko-index of DE1,Q12 , where
Q12 is the trivialization induced by Q1 and Q2. In particular, the intersection
product depends only on the choices of trivializations involved and not directly
on the countertwisting.

Proof. It suffices to show that the intersection product coincides with the Fred-
holm module:[

L2(π!(E1 � E2)), DE1,Q12

(
1 +

(
DE1,Q12

)2)− 1
2
]
. (4.53)

The isomorphism KK(C, A1) ∼−→ K0(A1) is defined by taking the Mishchen-
ko-Fomenko-index of the odd part of the operator involved, but since the latter
is not changed under composition with invertible bounded operators, the index
of DE1,Q12

+ : Hs(M,π!(E1�E
+
2 ))→ Hs−1(M,π!(E1�E

−
2 )) coincides with that

deduced from (4.53). Set

F = DE1,Q12

(
1 +

(
DE1,Q12

)2)− 1
2

, F2 = DS,Q2

(
1 +

(
DS,Q2

)2)− 1
2
.

We prove that F is an F2-connection from which the above assertion will fol-
low, since our representative of [ES,Q1

1 ] contains the zero operator. Using the
isomorphism θ from corollary 4.5.6, we form an operator

Tu1 : L2(M,π!(S � E2))⊗A1 −→ L2(M,π!(E1 � E2)) ; u2 7→ θ(u1 ⊗ u2)
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for every u1 ∈ C(M,π!(E1 � S∗)). By definition F is an F2-connection if

Tu1 ◦ F2 − F ◦ Tu1 ∈ Hom(L2(M,π!(S � E2))⊗A1, L
2(M,π!(E1 � E2)))

is a compact A1-linear operator. The crucial observation in proving this is that
for u1 ∈ C∞(M,π!(E1�S∗)) we have the following commutator identity, which
holds (at least) on C∞(M,π!(S � E2)⊗A1)

Tu1 ◦DS,Q2 −DE1,Q12 ◦ Tu1 = −
∑
i

Tfic(e
∗
i ) =: −S (4.54)

with fi = ∇π!(E1�S∗)
ei u1, where c denotes the symbol of D. The right hand side

of (4.54) is a bounded operator. Now the proof runs along the same lines as the
one given in theorem 6.22 in [61]. Set

K1(λ) =
((
DE1,Q12

)2
+ 1 + λ2

)−1

, K2(λ) =
((
DS,Q2

)2
+ 1 + λ2

)−1

.

Replacing F and F2 by their integral representation introduced in theorem 4.5.4,
we have that up to compact operators:

Tu1 ◦ F2 − F ◦ Tu1

≡
∫ ∞

0

(Tu1K2(λ)DS,Q2 −K1(λ)Tu1D
S,Q2)dλ

=
∫ ∞

0

K1(λ)
((
DE1,Q12

)2
Tu1 − Tu1

(
DS,Q2

)2)
K2(λ)DS,Q2dλ

=
∫ ∞

0

K1(λ)
(
DE1,Q12S + SDS,Q2

)
K2(λ)DS,Q2dλ

Since K1(λ), K1(λ)DE1,Q12 and K2(λ)DS,Q2 are compact operators, the inte-
grand is as well. The estimates

‖K1(λ)‖ ≤ (d1 + λ2)−1 , ‖K1(λ)DE1,Q12‖ ≤ C1(d1 + λ2)−
1
2

‖K2(λ)DS,Q2‖ ≤ C2(d2 + λ2)−
1
2 , ‖K2(λ)

(
DS,Q2

)2‖ ≤ C2

proven in [17] yield the convergence of the integral in norm, finally showing that
the commutator is a compact operator.

Remark Given D, E1 and some trivialization Q12 of E1�E2, there are always
two line bundles Qi, such that Q12 is induced by them. To see this, choose
arbitrary trivializations Q̃1 of E1�S∗ and Q2 of S�E2. The difference between
∆∗(Q̃1 �Q2)/PU(n) and Q12 can be expressed by a line bundle L12 →M , i.e.

ρ∗12L12 ⊗∆∗(Q̃1 �Q2)/PU(n) = Q12 for ρ12 : P1 ×M P2 →M .

Now change Q̃1 to Q1 = ρ∗L12⊗ Q̃1, where ρ : P1×M P̃ →M is the projection.
Q1 will do the job.

Furthermore, we could phrase a similar theorem for D acting on a twisted
Hilbert A2-module bundle and some bundle gerbe module E1 or even for two
twisted Hilbert Ai-module bundles, the index taking values in K0(A1⊗A2), but
we won’t need this here.
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The decomposition of the index in twisted K-theory directly yields a nice proof
of the following naturality result, which will play an important role in the appli-
cation presented in the next chapter (compare with the untwisted case presented
in lemma 3.1 in [27]).

Corollary 4.5.8. Let D be a generalized projective Dirac operator acting on
a bundle gerbe module E2 and let E1 be a twisted Hilbert A1-module bundle.
Given a C∗-algebra homomorphism ϕ : A1 −→ B1 define the twisted Hilbert
B1-module bundle F1 via

F1 = E1 ⊗ϕ B1 .

Then: ϕ∗
([
DE1,Q12

])
=
[
DF1,Q12

]
, where ϕ∗ : K0(A1) −→ K0(B1) denotes the

induced map on K-theory and Q12 is a trivialization.

Proof. Choose a countertwisting bundle S and trivializations Qi, such that Q12

is the induced by them (see previous remark). Applying ϕ∗ to [ES,Q1
1 ] yields

(idC(M,K) ⊗ ϕ∗)[ES,Q1
1 ] = [C(M,π!(S∗ � E1))⊗id⊗ϕ∗ B1, 0]

= [C(M,π!(S∗ � (E1 ⊗ϕ∗ B1))), 0] = [FS,Q1
1 ] .

Therefore, by naturality of the Kasparov product, we get

ϕ∗
([
DE1,Q12

])
= ϕ∗

(
[ES,Q1

1 ]⊗C(M,K) [DS,Q2 ]
)

=
(

(idC(M,K) ⊗ ϕ∗)[ES,Q1
1 ]

)
⊗C(M,K) [DS,Q2 ]

= [FS,Q1
1 ]⊗C(M,K) [DS,Q2 ] =

[
DF1,Q12

]
.

We conclude this chapter with the formulation of Kasparov’s index theorem
in the case of Dirac operators. Let σ : Γ(F ) = Γ(F+) ⊕ Γ(F−) → Γ(F ) be
a Clifford symbol. Since it is odd, it decomposes into σ±. In section 4.2.3
the symbol class [σ] ∈ K0

ρ∗A(T ∗M) was introduced, which is represented by
the tripel [ρ∗F+, ρ

∗F−, σ+]. We changed the notation of the projection to ρ :
T ∗M −→ M to avoid confusion with π : P −→ M . Let S be a countertwisting
for F . Since σ+ is a morphism of twisted bundles, σ+ ⊗ idS descends to a
homomorphism

π!(σ+ ⊗ idS) : ρ∗π!(F+ � S) −→ ρ∗π!(F− � S) .

By polar decomposition, i σ+ can be deformed in its K-theory class to i σ̃+,
such that the latter is unitary outside a neighborhood of the zero section. This
induces a KK-cycle of the form:

[σS,Q] = [C(T ∗M,ρ∗π!(F � S)), i σ̃] ∈ KK(C(M,K), C0(T ∗M)⊗A) .

The action of C(M,K) on C(T ∗M,ρ∗π!(F � S)) is given by pullback to T ∗M
followed by a multiplication like above. Note that skew-adjointness and the
above deformation ensure that σ2− 1 and σ− σ∗ are compact operators, which
in this case means they vanish, when ζ is send to infinity. Like in corollary 4.5.6
we deduce from lemma 4.5.5 that[

ES,Q1
]
⊗C(M,K) [σS,Q2 ] = [σE,Q12 ] ∈ KK(C, C0(T ∗M)⊗A)
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is a KK-class representing the symbol of DE,Q12 . T ∗M is equipped with a
canonical almost complex structure. Let ∂ be the Dolbeault operator asso-
ciated to it and denote by [∂] ∈ KK(C0(T ∗M),C) the element it represents
in K-homology. Then Kasparov’s index theorem follows directly from the
classical one and takes the form:

Theorem 4.5.9. Let σ : ρ∗F → ρ∗F be a Clifford symbol, S a countertwisting
for F and E a twisted Hilbert A-module bundle. Choose trivializations Q1 for
E � S∗ and Q2 for F � S, then[

ES,Q1
]
⊗C(M,K) [σS,Q2 ]⊗C0(T∗M) [∂] = ind(DE,Q12) ∈ KK(C, A) ,

where the right hand side represents the Mishchenko-Fomenko-index in KK-
theory.
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Chapter 5

An application:
enlargeability and positive
scalar curvature

As we have seen in chapter 4.4, projective Dirac operators countertwisted with
flat bundle gerbe modules yield obstructions against the existence of positive
scalar curvature metrics. The index ind(DV+) ∈ K0(C∗(π1(M), cbπ)) defined in
section 4.4.1 can be seen as a universal version of these obstructions. We will
denote this invariant, in analogy with the nomenclature introduced by Rosen-
berg [56] for the untwisted case, by α(M) (i.e. αr(M) and αmax(M) for the
reduced, respectively maximal C∗-algebra). Based on geometric observations
Gromov and Lawson proved that a certain type of manifold – the so-called
enlargeable ones (see the definition below) – do not allow a metric of positive
scalar curvature [26]. But until the work of Schick and Hanke [27] it remained
an open question, whether α(M) vanishes in case of enlargeability or not. Using
a sequence of vector bundles with curvature vanishing in the limit, called almost
flat bundles, they proved that in case M is an enlargeable spin manifold indeed
α(M) 6= 0. We take their results as a starting point not only to extend it to
enlargeable non-spin manifolds allowing a spin structure on the universal cover,
but also to show the way, how arguments – worked out for vector bundles – can
often be transferred to the framework developed above.

Definition 5.0.10. Let M be a closed oriented manifold. Fix some Riemannian
metric g on M . If for all ε > 0 there is a finite, connected cover M → M ,
by a spin manifold M and an ε-contracting map (M, g) → (Sn, gSn) of non-
zero degree, then M is called enlargeable. Here, g is induced by g and gSn is
the standard metric on the sphere. If there exist ε-area contracting maps (i.e.
‖Λ2Dxf‖ ≤ ε for all x ∈M), then M is called area-enlargeable.

All throughout this section M will be a closed oriented n-manifold with
fixed Riemannian metric g that allows a spin structure on its universal cover M̃ .
P = PSO will denote the frame bundle, L the lifting bundle gerbe corresponding
to 1 → S1 → Spinc(n) → SO(n) → 1 and D the projective Dirac operator
defined in 4.3.2. Recall that flat countertwistings in this case are induced by
projective representations of (π1(M), cbπ), where cbπ ∈ H2

gr(π1(M), S1) denotes
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the cocycle classifying the extension

1 −→ S1 −→ π̂ −→ π1(M) −→ 1 (5.1)

with π̂ defined in (4.44). As mentioned above, we need a weaker form of flatness:

Definition 5.0.11. Let L̃→ M̃ [2] be the lifting bundle gerbe corresponding to
(5.1). A sequence Ei → M̃ , i ∈ N of smooth bundle gerbe modules for L̃ with
bgm-connections ∇Ei will be called a sequence of almost flat twisted bundles, if

lim
i→∞
‖ΩEi‖ = 0 ,

where the norm on Ω2(M, end(Ei)) is induced by the natural pointwise norm
on end(Ei)→M and the maximum norm on the unit sphere bundle in Λ2(M).
Furthermore, we demand the twistings γgi : Ei → Ei considered as sections
C(M̃,Hom(Ei, g∗Ei)) to be locally Lipschitz continuous maps for a global Lip-
schitz constant C independent of i, i.e. each point m̃1 ∈ M̃ has a neighborhood
U ⊂ M̃ , such that for all m̃2 ∈ U :

‖γgi (m̃1)− γgi (m̃2)‖ ≤ C d(m̃1, m̃2) ,

where the metric on the right hand side is induced by the Riemannian structure
pulled back from M and the norm is the operator norm on Hom(Ei, g∗Ei).

Remark Note that any sequence Ei → Pi of bundle gerbe modules for lifting
bundle gerbes Li with bgm-connections ∇Ei , bounded twistings and asympto-
tically vanishing curvature in the above sense can be turned into a sequence of
almost flat twisted bundles as long as dd(Li) = dd(L̃) and L∗i � L̃ has a flat
trivialization for every i ∈ N. These are the conditions to shift all of the Ei to
twisted bundles over M̃ without changing the curvature ΩEi .

The bridge between sequences of almost flat twisted bundles and enlargeability
is built in the following fundamental theorem. The analogoue version for the
untwisted case can be found in the midst of the proof of theorem 4.2 in [27].

Theorem 5.0.12. Let M be an area-enlargeable manifold. There exists a se-
quence of almost flat twisted bundles Ei → M̃ of rank di, such that

ck(Ei) = 0 if 0 < k < n

〈ck(Ei), [M ]〉 6= 0 if k = n

together with a sequence of flat bundle gerbe modules Fi of corresponding rank,
i.e. dim(Fi) = di. (For the definition of Chern classes, see (4.19).)

Proof. Since the Chern character ch : K0(S2n) ⊗ Q → Heven(S2n,Q) is ratio-
nally an isomorphism, there is a vector bundle E → S2n with non-vanishing top
Chern class cn(E) 6= 0. Choose a connection ηE on E and fix i ∈ N. Since M is
enlargeable, there exists a finite, spin covering space M → M with deck trans-
formation group G, such that there is a 1

i -area contracting map ϕ : M → S2n.
By passing to a finite cover if necessary, we can without loss of generality assume
that M is regular. Note that this does not disturb the fact that it is spin, by na-
turality of the second Stiefel-Whitney-class. Therefore G = π1(M)/π1(M).
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As was shown in theorem 4.3.28, C[G] yields a projective representation of
(π1(M), cbπ) (in our case Γ̇ = Γ = Spin(n)). Using the canonical map M̃ →M ,
we form

Ei = M̃ ×M

⊕
g∈G

g∗ϕ∗E

 ,

which is a bundle gerbe module with respect to L̃ by means of the projective
action of π1(M) on G. Indeed, thinking of π̂ = π1(M) ×cbπ S1 as cartesian
product with multiplication altered by the cocycle, the twisting γi of Ei is
defined via

γ
eh
i (vg) = cbπ(h̃, g̃) vg ,

where vg ∈ Eϕ(mg) on the left is mapped via the identity to Eϕ(mh−1hg) on the
right and h ∈ G denotes the image of h̃ (see section 4.3.4 for the notation used
for the twisting). Likewise,

Fi = M̃ ×
(
C[G]⊗ Cd

)
is a flat bundle gerbe module with dim(Fi) = di = dim(Ei). The connection
ηEi induced by ηE on Ei turns out to be a bgm-connection such that

‖ΩEi‖ = ‖ϕ∗ΩE‖ ≤
1
i
‖ΩE‖ ,

proving that the Ei actually form a sequence of asymptotically flat twisted
bundles. Since π∗ : Hk(M,Z) → Hk(M,Z) is injective, it suffices to prove
π∗(ck(Ei)) = ck(π∗Ei) = 0 for 0 < k < n and 〈π∗(cn(Ei)), [M ]〉 6= 0. Since
M admits a spin structure, there exists a splitting π1(M) → π̂, that defines
a trivialization of L̃ → M̃ ×M M̃ . Pushing down π∗Ei along this to a vector
bundle over M , yields

Ēi =

⊕
g∈G

g∗ϕ∗E

 .

But Ēi clearly matches our assumptions about the Chern classes, so Ei does as
well. The Lipschitz continuity of the twisting γeh

i is obvious, since it is actually
constant considered as a section of Hom(Ei, h̃∗Ei).

5.1 Assembling almost flat twisted bundles

The crucial property about almost flat twisted bundles is that they can be
stacked up to form a twisted Hilbert Q-module bundle (for a C∗-algebra Q still
to define). The latter will be flat, but still carries all the information about the
non-vanishing Chern classes of its ingredients. Let Ei → M̃ be a sequence of
almost flat twisted bundles. Since the dimensions vary throughout the Ei’s, we
first stabilize for convenience to get fibers that are projective Hilbert K-modules,
where K denotes the compact operators on some separable Hilbert space H. Let
di be the rank of Ei, choose an embedding κi : Mdi(C)→ K and set ti = κi(1).
From the frame bundle PEi we construct

EK
i = PEi ×κi K ,
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which is a twisted Hilbert K-module bundle with fibers isomorphic to tiK. The
twisting γi : L̃ ⊗ π∗2Ei → π∗1Ei induces a map on principal bundles. Since EK

i

is associated to PEi as well and κi identifies EndK(tiK) with Mdi(C) preserving
scalars, γi induces a twisting γK

i on EK
i . Define

A =
∞∏
i=0

K

to be the C∗-algebra of norm-bounded sequences with values in K. Let Ai be
the ith factor in A and set t = (ti)i∈N ∈ A. Observe that H = L2(π1(M)) is a
projective representation of (π1(M), cbπ) with respect to the multiplication:

h ·
∑

g∈π1(M)

λgg =
∑

g∈π1(M)

λg cbπ(h, g)hg .

It corresponds to a unitary representation π̂ → U(H) that restricts to the iden-
tity on S1 ⊂ U(H) or equivalently to a projective representation π1(M) →
PU(H) with lifting cocycle cbπ. Applying it componentwise, induces a homo-
morphism

π1(M) −→ PU(M(A))

into the multiplier algebra M(A) of A together with the C∗-algebra bundle

A = M̃ ×Ad A .

Since M̃ is a smooth manifold, A is a smooth fiber bundle. The technical part
now consists of the following theorem, which is a twisted analogue of theorem 2.1
in [27].

Theorem 5.1.1. There is a smooth twisted Hilbert A-module bundle V → M̃
together with a twisted connection

∇V : Γ(V )→ Γ(T ∗M̃ ⊗ V )

such that the following holds:

• Vi = V ·Ai is isomorphic to EK
i as a twisted Hilbert K-module bundle.

• The connection preserves the subbundles Vi.

• Let ΩVi be the curvature of the connection induced on Vi by ∇V , then

lim
i→∞
‖ΩVi‖ = 0 .

Proof. We will first construct a bundle VL of Hilbert A-modules over M̃ from the
sequence EK

i in such a way that its transition functions are Lipschitz continuous.
The bound that we demand on the twistings γgi will ensure that they can be
assembled to form a continuous twisting γg on VL. We can then approximate
VL by a smooth bundle V .

Let In = {(x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1} ⊂ Rn be the n-dimensional cube.
Cover M by a finite family of open sets Wj , such that each of them is diffeo-
morphic to In and M̃ →M is trivial over Wj via

φj : Wj × π1(M) ∼−→ M̃
∣∣∣
Wj

.
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By induction we can now construct a trivialization of φ∗jE
K
i over Wj × {1}:

ψ1
i,j : φ∗jE

K
i

∣∣
Wj×{1}

∼−→ In × tiK

such that the constant sections of φ∗jE
K
i over Ik × {0} are parallel with respect

to ∇∂l for 1 ≤ l ≤ k, which means that for v ∈ tiK we have

τk,v : In −→ φ∗jE
K
i ; τk,v(x1, . . . , xn) =

(
ψ1
i,j

)−1
(x1, . . . , xk, 0, . . . , 0, v) ,

∇∂lτk,v = 0 , (5.2)

where ∇ now is the connection on φ∗jE
K
i pulled back via the diffeomorphism

In −→ Wj . We can extend ψ1
i,j to a trivialization of φ∗jE

K
i

∣∣
Wj×π1(M)

by first
shifting back using γg, i.e. we get ψi,j composed of

ψgi,j : φ∗jE
K
i

∣∣
Wj×{g}

∼−→ In × tiK ; ψgi,j = ψ1
i,j ◦ γg .

Forming the constant sections for these trivializations like above, yields:

τgk,v(x1, . . . , xn) =
(
ψgi,j

)−1 (x1, . . . , xk, 0, . . . , 0, v)

= cbπ(g−1, g)−1γg
−1
◦ τk,v(x1, . . . , xn) .

Since ∇ is a twisted connection on φ∗jE
K
i , which implies (see section 4.3.4)

invariance with respect to γg, the bundle isomorphisms ψgi,j still satisfy the
analogue of (5.2). The maps ψgi,j induce sections of the frame bundle PEK

i

pulled back to In. Let

ηEK
i
∈ Ω1(PEK

i
,EndK(tiK))

be the connection 1-form associated to ∇EK
i taking values in the skew-adjoint

operators in tiKti = EndK(tiK). Set

ηgi,j =
(
ψgi,j

)−1∗
ηEK

i
∈ Ω1(In, tiKti)

and observe that, since γg acts isometrically, the norm ‖ηgi,j‖, which is induced
by the Euclidean metric on In and the operator norm on tiKti does not depend
on g ∈ π1(M). Denote by Ωgi,j ∈ Ω2(In, tiKti) the curvature of ηgi,j , which
coincides with the pullback of ΩEK

i
via ψgi,j . Due to our choice of trivializations,

we have (
ηgi,j
)

(x1,...,xk,0,...,0)
(∂l) = 0

for 1 ≤ l ≤ k by (5.2). This implies the following estimate on the norms of ηgi,j ,
which is proven in [27]:

Lemma 5.1.2. For each i and j, we have ‖ηgi,j‖ ≤ n · ‖Ω
g
i,j‖.

This means, that our control of the curvature ΩEK
i

directly carries over to a
bound on the local connection 1-forms ηgi,j , which is independent of g ∈ π1(M).
This crucial estimate will enable us to control the transition functions as well
as can be seen in the next lemma also proven in [27].
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Lemma 5.1.3. Let l ≥ 0. There is a constant C(l) (independent of i, j and g)
such that if φ : [0, 1] → In × tiK is a parallel vector field (with respect to the
connection ωgi,j) along a piecewise smooth path γ : [0, 1]→ In of length l(γ) ≤ l,
then

‖φ(1)− φ(0)‖ ≤ C(l) · ‖ηgi,j‖ · l(γ) · ‖φ(0)‖

for all i, j.

The next theorem will show that the transition functions of the bundles
EK
i → M̃ are Lipschitz continuous with a (global) Lipschitz constant not de-

pending on the particular index i of the bundle. We will therefore consider the
trivialization of EK

i over the sets Uα = φα(Wα × π1(M)) ⊂ M̃ defined by:

Ψα,i : Uα × tiK −→Wα × π1(M)× tiK −→ φ∗αE
K
i −→ EK

i

∣∣
Uα

Ψα,i = Φα ◦ (ψi,α)−1 ◦ (φ−1
α × idtiK)

Ψα,β,i = Ψ−1
β,i ◦Ψα,i : (Uα ∩ Uβ)× tiK −→ (Uα ∩ Uβ)× tiK ,

where Φα denotes the canonical map from the pullback. Observe that, due to
equivariance of φα and our choice of trivialization over the compact sets Wα,
the norm of dφα is bounded. Since M is compact, there even exists a bound
that is independent of α. Therefore we will drop this part of the trivialization
and think of the transition functions Ψα,β,i as maps:

ψα,β,i : (Wα ∩Wβ)× π1(M) −→ tiKti .

Theorem 5.1.4. There is a constant C ∈ R, independent of i, α and β such
that with ψα,β,i like above:

‖Dxψα,β,i‖ ≤ C

for all (x, g) ∈ (Wα ∩Wβ)× π1(M).

Proof. Denote by ϕα : Wα → In the diffeomorphism used in the beginning and
by ϕα,β = ϕβ ◦ ϕ−1

α the chart changing map in M . Choose a point

y ∈ ϕα(Wα ∩Wβ) ∩
◦
In and g ∈ π1(M) .

Like in [27] we define

fν : (−ε, ε) −→ tiKti ; f(t) = ψα,β,i(ϕ−1
α (y + teν), g) .

Note that it only takes values in the unitary group of the algebra tiKti, in
particular f(0) is an isometry. Let X = dϕ−1

α (eν), then

D(ϕ−1
α (y),g)ψα,β,i(X) =

df

dt

∣∣∣∣
t=0

.

Let v ∈ tiK. f(t)v can be described by two successive parallel transports along
the curve τ : [0, t] → In ; ξ 7→ y + ξeν : First transport v along τ−1 using
the connection ηgi,α to get a vector w ∈ tiK. Then transport f(0)w along the
curve ϕα,β ◦ τ using the connection ηgα,βgi,β where gα,β is the group element that
appears when changing from Wα× π1(M) to Wβ × π1(M). Observe that in EK

i

this operation corresponds to shifting a vector back and forth along τ , which
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we just expressed in local coordinates on two differrent charts. The right hand
side of

‖f(t)v − f(0)v‖ ≤ ‖f(t)v − f(0)w‖+ ‖f(0)w − f(0)v‖
= ‖f(t)v − f(0)w‖+ ‖w − v‖

has a universal upper bound of the form Ct. Indeed, the last summand is
bounded by the length of τ times a constant independent of i, α, β by the previ-
ous lemma. Similarly, the first one is bounded by the length of ϕα,β ◦ τ times a
universal constant. But since dϕα,β is bounded by the same reasoning as above,
the result follows.

As a consequence of the last theorem we are able to assemble the EK
i into

a locally trivial Hilbert A-module bundle VL over the universal cover in such a
way that its transition functions are Lipschitz continuous. Its fibers are

(VL) em =
∏
i∈N

(
EK
i

)em .

The universal bound on the twistings γi, that was part of the definition of
a sequence of almost flat twisted bundles, ensures that they form a Lipschitz
continuous map γg : (VL) em −→ (VL) emg−1 . Therefore VL is a twisted Hilbert
A-module bundle with Lipschitz continuous transition functions and twisting.

As we have seen in theorem 3.2.8 the bundle VL corresponds to a Lip-
schitz continuous, projection valued section tL of Mk(A), which can be ap-
proximated arbitrarily close in norm by a smooth projection valued section
tV ∈ C∞(M,Mk(A)). When we view tV as an equivariant smooth projection
valued function

tV : M̃ −→Mk(A) ,

we can recover a smooth twisted Hilbert A-module bundle V as was suggested
by theorem 3.2.8, that is:

V =
{

(m̃, v) ∈ M̃ ×Ak | tV (m̃)v = v
}

together with a smooth, even constant twisting

γgV : V −→ V ; (m̃, v) 7→ (m̃, g · v) ,

where g acts on Ak by the projective representation mentioned prior to this
theorem. In particular tV can be chosen so close to tL that they are (Lipschitz)
isomorphic as finitely generated, projective Hilbert C(M,A)-modules and there-
fore as twisted Hilbert A-module bundles as well. Due to the algebraic structure
of A, V also contains blocks defined via Vi = V · Ai, which are sent to VL · Ai
by the isomorphism V → VL by A-linearity. Since the latter are isomorphic to
EK
i , this is true for Vi as well. This map might just be a Lipschitz isomorphism,

but those can be smoothed. This finishes the construction of V .
Let t = (ti)i∈N ∈ End(A), then V has typical fibers tA. Set C = tAt =

End(tA). A twisted connection on V is defined by a γg-invariant connection
form ηV ∈ Ω1(PV , C) on the principal U(C)-bundle over M̃ . ηV can be re-
constructed from local data in the following way: Given a family of one-forms
ηα ∈ Ω1(Wα, C) taking values in the skew-adjoint part of C, we set

ηVα = Adπ−1
U(C)∗

(π∗Wα
ηα) + π∗U(C)µU(C) ∈ Ω1(Wα × U(C), C) ,
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where µU(C) denotes the Maurer-Cartan-form on U(C). ηVα is a connec-
tion form on the trivial U(C)-bundle over Wα with values in the skew-adjoint
elements of C. Choose a trivialization

ψ1
V : φ∗αPV |Wα×{1}

∼−→Wα × U(C)

and extend it via

ψgV : φ∗αPV |Wα×{g}
∼−→Wα × U(C) ; ψgV = ψ1

V ◦ γ
g
V .

By constructon ψ∗V η
V
α is a γg-invariant connection form on

φ∗αPV ' PV |φα(Wα×π1(M)) .

Let %α be a smooth partition of unity subordinate to Wα on M . Then

ηV =
∑
α

(%α ◦ πWα
) · ψ∗V ηVα (5.3)

is an invariant connection form on PV . It is smooth if the ηα were so. Thus, what
remains to construct are local forms ηα such that ηV has the desired properties.
This can be done just like in [27]. Observe that the Lipschitz isomorphism
between L and V can, in terms of the trivializations over Wα, be expressed by
Lipschitz continuous maps:

κα : In −→ tAt

with values in the unitary elements of tAt. The connection forms η1
i,α ∈

Ω1(In, tiKti), which we can see as smooth functions η1
i,α : In → (tiKti)n

have universally bounded C1-norms (i.e. the bound is indepent of i and α)
by lemma 5.1.2. Therefore they can be assembled into a Lipschitz continuous
map

ηLα : In −→ (tAt)n .

Together with κα we get induced forms on V defined by:

ηα(x) = κα(x) ηLα(x)κα(x)∗ .

Choosing a bump function δε : In → R with total integral 1 and support in the
ε-ball around 0, the local forms ηα can be smoothed via convolution:

η̃α(x) =
∫
In
δε(x− t)ηα(t)dt .

Denote by ηVi,α the form induced by ηα on the ith block of V , i.e. by the
projection A → Ai, analogously define ηLi,α (which then coincides with η1

i,α).
The L1-norms of ηVi,α and ηLi,α satisfy:

‖ηVi,α‖1 ≤ C ‖ηLi,α‖1

for some (global) constant C. Therefore η̃α and its dth derivative are bounded
from above by the supremum norms of δε up to its dth derivative and the
L1-norm of η1

i,α, but the latter tends to 0, if i → ∞ by lemma 5.1.2. Since
ΩVi ∈ Ω2(M, end(V )) can be calculated in terms of ηVi and its first derivative,
which involves only universally bounded quantities in front of terms tending to 0
by (5.3) (note in particular, that the derivative of the twisting map vanishes),
its supremum norm also converges to 0 for i→∞ as stated in the theorem.
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5.2 Index theory

This section will exploit the existence of V established in the last section. From
V we will be able to construct a flat twisted Hilbert Q-module bundle W for
some quotient algebra Q of A we are now going to construct. Inside A we have
the closed two-sided ideal A′ of sequences in K converging to 0, i.e.

A′ =
⊕
i∈N

K
‖·‖
⊂ A .

Let Q = A/A′. The subbundle V · A′ of V → M̃ is mapped into itself by the
twisting γg, therefore the quotient:

W = V/(V ·A′)

is a smooth, twisted Hilbert Q-module bundle over M with fiber [t]Q, where [t]
denotes the image of t ∈ A in Q. ∇V induces a connection on W and from the
last theorem we immediately get:

Corollary 5.2.1. ∇V ∈ Ω2(M, end(V )) yields a form in Ω2(M, hom(V, V ·A′)),
therefore it induces a flat connection on W .

The K-theory of Q is completely understood and the calculations of K0(Q)
can be found in [27].

Theorem 5.2.2. Let Q and A be as above, then

K0(A) '
∏
i∈N

Z , K0(Q) '
∏
i∈N

Z/
⊕
i∈N

Z .

The above isomorphism sends the projection A→ Q to the projection K0(A)→
K0(Q), i.e. the canonical homomorphism:∏

i∈N
Z −→

∏
i∈N

Z/
⊕
i∈N

Z .

5.2.1 Projective holonomy representations

As we have seen in theorem 4.3.31 of section 4.3.4 a flat twisted Hilbert Q-
module bundle W → M̃ gives rise to a projective representation of the fun-
damental group with lifting cocycle cbπ ∈ H2

gr(π1(M), S1) after fixing a point
m̃ ∈ M̃ . In the case of W , this yields a homomorphism:

(π1(M), cbπ) −→ EndQ(Wem,Wem) = [t]Q[t] .

By the universal property of the twisted maximal C∗-algebra, we end up with
a C∗-homomorphism:

φ : C∗max(π1(M), cbπ) −→ [t]Q[t]→ Q .

Corollary 4.5.8 about the naturality of the index with respect to C∗-homomor-
phisms immediately yields:
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Theorem 5.2.3. Let V be the twisted Hilbert A-module bundle constructed
from the sequence of almost flat twisted bundles Ei. Let φ be the C∗-algebra
homomorphism gained from V (via the flat twisted bundle W ) as described above.
Let

DEi
+ : Γ(π!(S+ � Ei)) −→ Γ(π!(S− � Ei))

(where we suppress the flat trivialization in our notation). Denote the index of
DEi

+ by ind(DEi
+ ) ∈ K0(K) ' Z. Then

φ∗(αmax(M)) = [ind(DEi
+ )]i∈N ,

where the right hand side uses the identification of K0(Q) with the group from
theorem 5.2.2.

Proof. Let pi : A→ Ai = K be the projection to the ith factor in A. The block
Vi = V ·Ai of V is isomorphic to EK

i by theorem 5.1.1. Therefore corollary 4.5.8
yields:

pi∗
(
ind(DV

+)
)

= ind(DEK
i

+ ) = ind(DEi
+ ) .

On the other hand:

φ∗(αmax) = φ∗

(
ind
(
DVmax

+

))
= ind(DW

+ ) = q∗(ind(DV
+) ,

where q : A→ Q denotes the canonical projection. To see the middle equality,
observe that

Vmax ⊗φ Q = M̃ × C∗max(π1(M), cbπ)⊗φ Q ' M̃ × [t]Q (5.4)

is an isomorphism of twisted Hilbert Q-module bundles, where the action of the
bundle gerbe on the right hand side is induced by the holonomy representation

(π1(M), cbπ) −→ [t]Q[t]

constructed above. But reducing the frame bundle of W to its holonomy sub-
bundle over M̃ , we see that both of them are trivial and that W is twistedly
isomorphic to the right hand side of (5.4). Since q∗ : K0(A)→ K0(Q) coincides
with the projection the result follows.

Theorem 5.2.4. Let M be an even-dimensional, (area-)enlargeable manifold,
then

αmax(M) 6= 0 .

Proof. By theorem 5.0.12 there exists a sequence (Ei)i∈N of almost flat twisted
bundles with non-vanishing nth Chern number and another sequence (Fi)i∈N
of flat twisted bundles, such that di = rank(Ei) = rank(Fi). Stacking up the
bundles Ei into a twisted Hilbert A-module bundle V and the Fi into a similar
bundle V ′, we can form the associated C∗-algebra homomorphisms:

φ, φ′ : C∗max(π1(M), cbπ) −→ Q .

Let Φ = φ∗ − φ′∗ : K0(C∗max(π1(M), cbπ))→ K0(Q), then

Φ(αmax) = [zi]i∈N ∈ K0(Q) '
∏
i∈N

Z/
⊕
i∈N

Z ,
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where zi = ind(DEi)− ind(DFi) by the last theorem. But, since ch(Ei)−ch(Fi)
is concentrated in degree n, we have:

ind(DEi)− ind(DFi) = 〈 Â(M) ∪ (ch(Ei)− ch(Fi)), [M ] 〉
= C 〈 cn(Ei), [M ] 〉 6= 0

for all i ∈ N. So, in particular Φ(αmax(M)) is non-zero in K0(Q), therefore
αmax(M) is non-zero as well.

In case the manifold is of odd dimension, observe that for the second Stie-
fel-Whitney-classes we have π∗Mw2(M) = w2(M × S1), so that π̂S1 = π̂ × Z,
which fits into the short exact sequence

1 −→ S1 −→ π̂S1 −→ π1(M)× Z −→ 1 .

As in [27], the decomposition:

K0(C∗max(π1(M × S1), cbπS1 )) ' K0(C∗max(π1(M), cbπ)⊗ C∗(Z))
' K0(C∗max(π1(M), cbπ))⊗ 1⊕K1(C∗max(π1(M), cbπ))⊗ e

can be used to define αmax(M) = pre(αmax(M × S1)) ∈ K1(C∗max(π1(M), cbπ)).
In this expression 1 ∈ K0(C∗(Z)) ' K0(S1) and e ∈ K1(C∗(Z)) are the canoni-
cal generators and pre is the projection to the second summand. In fact, by the
product formula from [66] we have αmax(M)⊗ e = αmax(M ×S1) using the ex-
terior Kasparov product. Since M ×S1 is enlargeable if M is, we immediately
get:

Theorem 5.2.5. Let M be an (area-)enlargeable manifold, then αmax(M) 6= 0.
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Chapter 6

Perspectives

Nichts ist getan, wenn noch etwas zu tun übrig ist.

Carl-Friedrich Gauß

The last chapters have shown that the theory of twisted Hilbert A-module bun-
dles merges the non-twisted K-theory with coefficients in a C∗-algebra with
twisted K-theory as defined by Rosenberg. For the rest of this thesis we will
discuss further generalizations in the direction of twisted K-theory as well as
that of obstructions against positive scalar curvature metrics.

6.1 Central extensions

As mentioned in the beginning, it is easy to generalize the results given above
to the case of central extensions of the form

1 −→ B −→ Γ̂ −→ Γ −→ 1 .

for an arbitrary abelian group B. To give an example, why this might be
interesting, suppose Γ̂ is a discrete group and B = Z(Γ̂) the center of Γ̂. Γ acts
by conjugation on the reduced C∗-algebra A = C∗red(Γ̂). Thus, given a principal
Γ-bundle P over M , we may form the C∗-algebra bundle

A = P ×Ad C
∗
red(Γ̂) .

Note that B maps into the center of A and this induces a representation of B on
every finitely generated Hilbert A-module W . K0(C(M,A)) is now described by
an appropriate generalization of twisted Hilbert A-module bundles: There is a
lifting bundle gerbe with a principal B-bundle L̂ −→ P [2] and a corresponding
multiplication over P [3]. A twisted Hilbert A-module bundle now carries an
action of L̂ in the sense of groupoids, i.e. there is a map

L̂⊗ π∗2E −→ π∗1E

where the tensor product denotes the fiberwise quotient by the antidiagonal
action of B. It should restrict to an isomorphism of Hilbert modules on the fiber
over (p1, p2) ∈ P [2] and be well-behaved with respect to the multiplication on
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the bundle gerbe. The Dixmier-Douady-class will be an element of Ȟ2(M,B)
and if it is trivial, P lifts to a principal Γ̂-bundle P̂ . In that case we form:

V = P̂ ×ρ C∗red(Γ̂) ,

with the standard representation of Γ̂. C(M,V ) is our candidate for a Morita
equivalence between C(M,A) and C(M,A).

A similar setup works for more general C∗-algebras A as long as Γ̂ injects
into the unitaries of A in such a way that B is mapped into the center, as we
have seen for A = C∗(π1(M), cbπ) and Γ̂ = π̂.

6.2 Enlargeability and infinite covers

The notion of enlargeability we use is still restricted in that it demands the finite
covers M →M to be spin, whereas there may be spaces, for which no finite spin
cover exists, but which are enlargeable in a wider sense. It was shown in [28] how
to handle enlargeability with infinite covers in the case of spin manifolds. The
general idea is not very different from the above construction: Assemble almost
flat Hilbert bundles into a large one, which remembers the Chern character of
its parts. The ingredients, however, are different. The main proposition is:

Theorem 6.2.1. Let M be an even-dimensional, (area)-enlargeable manifold
and let i ∈ N. There is a C∗-algebra Ci and a Hilbert Ci-module bundle Fi with
connection ∇i, such that the curvature Ωi of Fi satisfies

‖Ωi‖ ≤ C
1
i

with C only depending on the dimension of M . Furthermore, there is a split
extension of the form:

0 −→ K −→ Ci −→ Di −→ 0

for a certain C∗-algebra Di. Let ai ∈ K0(Ci) denote the index of the Dirac ope-
rator twisted with Fi, then the Z = K0(K)-component of ai is different from 0.

Each Fi is again constructed from a vector bundle E → Sn pulled back to
the cover M → M . Set π = π1(M), π = π1(M). Ci is obtained from two C∗-
algebras CS and CT contained in B(H) for H = l2(π/π)⊗ Cd and some d ∈ N
(the rank of Ei in the sequence of almost flat bundles). CS is generated by the
isometric actions of the permutations of π/π on l2(π/π). In the twisted case,
this should presumably be replaced by the algebra generated by the isometries
induced by the projective representation of π on l2(π/π). This ensures that
π still acts in a projective way on the algebras Ci, which is crucial to get a
twisting. CT can be identified with the compact operators and should be left
untouched.

Most of the construction of the Fi should survive the transfer to the twisted
case, for which one would built a twisted Hilbert Ci-module bundle over M̃
together with a bgm-connection ∇i. Thus, it should be possible to drop the
finiteness condition of the covers as well.
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6.3 Non-torsion twists

As we have seen in corollary 4.3.12, the lifting bundle gerbes corresponding to
central S1-extensions of compact groups always yield finite order twists, even
worse – as was mentioned by Murray in [49] – any finite dimensional fiber
bundle Y → M will only lead to torsion twists. Therefore infinite order forces
us to consider extensions of infinite groups. We fill focus on the case:

1 −→ S1 −→ U(H) −→ PU(H) −→ 1

where H is a separable Hilbert space. It is a well-known fact that for each
element x ∈ H3(M,Z) there is up to isomorphism exactly one principal PU(H)-
bundle P over M with dd(P ) = x. In [12] the authors proposed a way to
get a geometric representation of non-torsion twists via modules over bundle
gerbes. Suprisingly, much of their program also works in case of K-theory with
coefficients in a C∗-algebra and we will sketch some ideas in that direction in this
section. Let A be a unital C∗-algebra, K the compact operators on a separable
Hilbert space, and denote by M(A ⊗ K) the stable multiplier algebra. It was
shown by Mingo in [45] that Kuiper’s theorem generalizes and that bounded
Fredholm operators still form a spectrum for K0

A.

Theorem 6.3.1. With A as above, the stable unitary group Us(A) = U(M(A⊗
K)) of M(A⊗K) is contractible.

Let Fred(A) be the bounded Fredholm operators in the sense of Mish-
chenko and Fomenko [47] acting on the countable Hilbert A-module l2(A) =
H ⊗C A. Now the theorem of Atiyah and Jänich generalizes to:

Theorem 6.3.2. For unital A and a compact Hausdorff space M the homotopy
classes of maps [M,Fred(A)] form a group under pointwise composition and
there is a group isomorphism:

K0
A(M) = K0(C(M,A)) = [M,Fred(A)] .

From now on, we will take M to be a connected space. The inclusion of a
point pt→M induces a map in K-theory

K0
A(M)→ K0

A(pt) = K0(A)

evaluating the fiber over pt as a K-cycle in K0(A).

Definition 6.3.3. Let K̃0
A(M) = kern(K0

A(M) → K0
A(pt)), then K̃0

A(M) will
be called the reduced K-theory of M with coefficients in A.

By [47] Fredholm operators are elements in M(A⊗K) = End(l2(A)) that
are invertible modulo the compact operators K(l2(A)) = A ⊗ K. Denote the
Calkin algebra by Q = M(A⊗K)/A⊗K and the invertible elements in Q by
GL(Q).

Theorem 6.3.4. The sequence of topological spaces

A⊗K −→ Fred(A) −→ GL(Q)

is a fibration.
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Proof. Consider the short exact sequence of C∗-algebras:

1 −→ A⊗K −→M(A⊗K)
q−→ Q −→ 1

as an exact sequence of Banach spaces. By the Bartle-Graves selection the-
orem there is a (possibly non-linear!) continuous section σ : Q −→ M(A ⊗ K)
with q ◦ σ = idQ. Now consider the homotopy lifting diagram

M × I

M × {0}

GL(Q)

Fred(A)
.................................................................
...
.........
...

.................................................................
...
.........
...
q

.......................................................................................... ............h

......................................................................... ............
f

The map h̃(m, t) = σ ◦h(m, t)+(f(m)− σ ◦ h(m, 0)) ∈M(A⊗K) runs through
Fredholm operators since the term in brackets is compact and lifts h.

Corollary 6.3.5. The canonical map Fred(A) −→ GL(Q) is a weak equiva-
lence.

Proof. A⊗K is contractible, since it is a Banach space.

From theorem 6.3.2 we see that π0(Fred(A)) = K0(A) and therefore K̃0
A(M)

coincides with the homotopy classes of maps into Fred(A)0 the zero index com-
ponent of Fred(A). But by another proposition cited in [45]:

Theorem 6.3.6. If F ∈ Fred(A) has index 0, then there is G ∈ End(l2(A)) =
M(A ⊗ K) invertible with F − G ∈ K(l2(A)), where K denotes the compact
operators on that Hilbert C∗-module.

Therefore the map Fred(A) −→ GL(Q) sends Fred(A)0 to the subgroup
GL(M(A⊗K))/GLK ⊂ GL(Q), where

GLK = {T ∈ GL(M(A⊗K)) | T = 1 +K with K ∈ A⊗K}

and since the group of invertible elements in a C∗-algebra retracts to the uni-
taries, we can work as well with Us(A)/UK where UK are the unitary elements
in GLK. By theorem 6.3.1 the space Us(A)/UK is a model for BUK. Thus,

K̃0
A(M) = [M,BUK] .

Observe that U(H) −→ Us(A), since A is unital. Therefore U(H) acts on
Fred(A) and on BUK by conjugation. This leads to the following definition:

Definition 6.3.7. Given a PU(H)-bundle P , we can form the associated BUK-
bundle BUK = P ×Ad BUK. The reduced twisted K-theory with coefficients in
A and twist P is given by

K̃0
A,P (M) = [M,BUK] = [P,BUK]PU(H) ,

i.e. either by homotopy classes of sections of BUK or by homotopy classes of
PU(H)-equivariant maps P → BUK.

Note that K̃0
A,P (M) still is a group with respect to pointwise multiplication

like in [12], since our model of BUK is a group.
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Definition 6.3.8. A principal UK-bundle Q→ P is called covariant if there is
a right action of PU(H) on Q covering the one on P , such that

(rg) · a = (r · a) â−1gâ for g ∈ UK, a ∈ PU(H) and a lift â ∈ U(H) .

Let E → P be a twisted Hilbert A-module bundle with fiber l2(A). Denote
by PE the principal Us(A)-frame bundle of E, i.e. each r ∈ PE over p ∈ P
represents an isometric isomorphism of Hilbert A-modules l2(A) → Ep. We
call E a twisted UK-bundle, if PE reduces to a principal UK-bundle Q, which
is transformed into itself by the action of U(H) induced by the bundle gerbe
on PE .

If E is a twisted UK-bundle, then PU(H) acts on Q as follows:

r · a = â−1 (r ◦ â) : l2(A) −→ Epa

for r ∈ Q and a ∈ PU(H), where â ∈ U(H) denotes a lift of a and the action on
the left of r is the one induced by the bundle gerbe. Observe that Q is a covariant
UK-bundle with this action. On the other hand every covariant principal UK-
bundle Q yields a twisted UK-bundle E. Indeed, let E = Q ×UK l2(A) and
set:

γE : L⊗ π∗2E −→ π∗1E ; [â, λ]⊗ [r, w] 7→ [r · a−1, λ â v] .

Now choose an isometry l2(A) × l2(A) −→ l2(A) inducing a group monomor-
phism:

φ : UK(A)× UK(A) −→ UK(M2(A)) ∼−→ UK(A) .

This turns the set of isomorphism classes of covariant principal UK-bundles into
a semi-group via

Q1 ⊕Q2 = (Q1 ×P Q2)×φ UK .

Note that this structure reflects the direct sum operation on twisted UK-bundles.
In fact, the semi-group of covariant principal UK-bundles is isomorphic to the
semi-group of isomorphism classes of twisted UK-bundles with the direct sum
operation, denoted by ModUK(M,P ), if we identify l2(A)⊕ l2(A) with l2(A) via
the above isometry. A stabilization argument shows that the group multiplica-
tion on BUK yields the same H-space structure as the direct sum.

Now the proof of the following result is completely analogues to the proof of
proposition 7.2 and 7.3 in [12].

Theorem 6.3.9. The map

K̃0
A,P (M) −→ ModUK(M,P )

given by pulling back the principal UK-bundle Us(A)→ BUK via the given map
P → BUK and adjoining l2(A) is an isomorphism of semi-groups inducing a
group structure on the right hand side.

In this way we can represent the reduced twisted K-theory by twisted UK-
bundles. In case A = Mn(C), a spectral sequence argument given in [6] shows
that for infinite order twists there are no sections of the Fred(H)-bundle over M
of non-zero index. This implies that the reduced twisted K-theory actually co-
incides with its non-reduced counterpart. It is an interesting question, whether
one can transfer this argument for some more complicated C∗-algebras. This,
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however, requires some knowledge about the cohomology H2(Fred(A)x), where
x ∈ K0(A) labels the path component Fred(A)x of Fred(A).

As we have already noted in the chapter about connections, the extension

1 −→ S1 −→ U(H) −→ PU(H) −→ 1

is not flat. It is still possible to find a connection on corresponding lifting
bundle gerbes that are compatible with the gerbe multiplication as was shown
by Gomi in [24]. The Chern character in this case takes values in a twisted
form of cohomology Heven(M, [P ]), since the rationalization of the Dixmier-
Douady-class no longer vanishes [12]. Another question would be to extend
this to a Chern character with values in Heven(M, [P ])⊗K0(A) like above. This
would require an identification of the reduced twisted K-theory with some C∗-
algebraic K-group, i.e. a result similar to the theorem proven by Rosenberg
in [57].
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[31] Lars Hörmander. The analysis of linear partial differential operators. III,
volume 274 of Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1985.
Pseudodifferential operators.

[32] Max Karoubi. K-theory. Springer-Verlag, Berlin, 1978. An introduction,
Grundlehren der Mathematischen Wissenschaften, Band 226.

[33] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential ge-
ometry. Vol. I. Wiley Classics Library. John Wiley & Sons Inc., New York,
1996. Reprint of the 1963 original, A Wiley-Interscience Publication.

[34] Andreas Kriegl and Peter W. Michor. Regular infinite dimensional Lie
groups. J. Lie Theory, 7(1):61–99, 1997.

[35] E. C. Lance. Hilbert C∗-modules, volume 210 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1995.
A toolkit for operator algebraists.

[36] H. Blaine Lawson, Jr. and Marie-Louise Michelsohn. Spin geometry, vol-
ume 38 of Princeton Mathematical Series. Princeton University Press,
Princeton, NJ, 1989.
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