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CHAPTER 0

Preface

This work deals with the methodical issues of non-inferiority trials whose aim is to demon-

strate that a new test treatment is non-inferior to a well-established reference treatment.

In the context of this work methodical issues incorporate the development of statistical test

procedures and the planning of such trials. The planning of a clinical trial covers the deter-

mination of number of test persons required to attain the aspired information content and

the optimal allocation of the test persons to the different groups - in the setting of this work

a placebo, test and reference treatment group.

The work at hand, basically made up of three papers partially already published, is essentially

constituted by the paper Mielke and Munk (2010). In this paper methods for the assessment

of non-inferiority in clinical trials are developed for the general setting of arbitrary paramet-

ric distributed endpoints, whereas the chronologically preceding paper Mielke et al. (2008)

considers the specific setting of censored, exponentially distributed endpoints. The latter

paper was essentially influenced by a recent study in the treatment of depression which was

kindly placed at the author’s disposal by Lilly Deutschland GmbH. However, in order to avoid

recurrence of the issues, only the main results of the paper have been presented in Section

5.3. The same applies accordingly to the third paper which considers binary endpoints with

the log odds as measure of efficacy (introduced in Section 2.1.2). In contrast to any other

setting considered in this work, it has turned out for this particular setting that the asymp-

totic results for the optimal sample allocation from Mielke and Munk (2010) require further

investigations for finite samples and thus need to be adjusted accordingly. From the author’s

point of view this issue is worth discussing in a separate paper. In this work the issue is

examined in Section 6.2.

As already mentioned, all the other sections not explicitly mentioned here trace back to Mielke

and Munk (2010).

1
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CHAPTER 1

Introduction

The objective of clinical studies is to provide evidence for the efficacy of a new treatment

on the basis of clinical criteria. For example the remission of pain or mortality are feasible

criteria to this end. A classical procedure is to prove the superiority of a treatment over

placebo and consequently the efficacy of the treatment. However, the inclusion of a placebo

group results in ethical concerns for some indications and diseases. Thus, the World Medical

Association states in the declaration of Helsinki (WMA, 2000):

“The benefits, risks, burdens and effectiveness of a new method should be tested

against those of the best current prophylactic, diagnostic, and therapeutic methods.

This does not exclude the use of placebo, or no treatment, in studies where no

proven prophylactic, diagnostic or therapeutic method exists.”

Therefore, nowadays it is common to compare a new treatment with an established reference

(standard) treatment, which often yields smaller differences between the new treatment and

the control treatment effect. Consequently, to detect these differences with a given probability,

the so-called power of a test decision, a relatively large number of samples is required. This

is one reason why non-inferiority trials have gained in importance during the last years. In

contrast to a superiority trial the aim of a non-inferiority trial is to demonstrate only that

the efficacy of a new treatment compared to that of a reference one does not fall below a

clinically relevant value, loosely speaking the test treatment is as good as or superior to the

reference treatment. For example, a two-arm non-inferiority testing problem is given by

H0 : T ≤ R − ∆ vs. H1 : T > R − ∆ (1.1)

where T and R stand for test (new) and reference treatment, respectively, and ∆ > 0 rep-

resents a non-inferiority margin which is judged as clinically irrelevant. It is worth noting

that ∆ = 0 yields a superiority hypothesis. For selective fundamental references, beside the

3



4 CHAPTER 1. INTRODUCTION

pioneering work of Dunnett and Gent (1977) we refer to Jones et al. (1996), Senn (1997),

Röhmel (1998), D’Agostino (2003) and Munk and Trampisch (2005).

The ISI Web of KnowledgeSM database demonstrates that non-inferiority becomes a field of

vigorous research in the last years. Figure 1.1 presents the distribution of 1490 publications

on the topic containing “non-inferiority ” or “noninferiority” over the years and its citations

(in total 25230).
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Figure 1.1: Publications and citations per year on the topic of non-inferiority based on the

ISI Web of KnowledgeSM database (date: November 2009).

Beside the fact that a placebo-controlled trial that demonstrates efficacy could be unfeasible

due to ethical concerns, a non-inferiority is appropriate when the test treatment is already

known for having fewer side effects, improved compliance or leading to a reduction of costs.

In this work we focus on this direct comparison of a test and a reference group.

To this end, it is important to note that in active controlled non-inferiority trials without

a placebo arm (e.g. the non-inferiority testing problem in (1.1)), the assay sensitivity, i.e.

the ability of a study to distinguish between effective, less effective, and ineffective therapies

(ICH, 2000), is based on results from historical trials. In this manner the constancy condition

is presumed, i.e. the active control effects in the active control trial patient population

and the historical trial patient population are assumed to be equal. This assumption is not

directly verifiable and its violation could result in statistical uncontrolled errors. Actually,

for the treatment of depression there exists evidence that the placebo response is substantial

(Dworkin et al., 2005) and that it is increasing over time (Walsh et al., 2002). The above

mentioned problems of active controlled trials are discussed by Rothmann et al. (2003) and

by Temple and Ellenberg (2000) with regard to the declaration of Helsinki. To this end,

the inclusion of a concurrent placebo group is recommended due to the problems of assay

sensitivity if the patients are not harmed by deferral of therapy and are fully informed about



1.1. RETENTION OF EFFECT HYPOTHESIS 5

alternatives (see e.g. Temple and Ellenberg (2000) and Hypericum Depression Trial Study

Group (2004)). Such a design, including a (T)est, (R)eference and (P)lacebo group, has

been named by Koch and Röhmel (2004) as the gold standard design. It can be used to

demonstrate superiority of either the reference or the test treatment over placebo as well as

non-inferiority of the test treatment compared to the reference.

1.1 Retention of effect hypothesis

To demonstrate non-inferiority in the gold standard design we consider the retention of effect

type hypothesis

H0 : θT − θP ≤ ∆ · (θR − θP )

vs. (1.2)

H1 : θT − θP > ∆ · (θR − θP ),

where θk ∈ Θ ⊆ R, k = T, R, P , is the parameter of interest, representing the efficacy of a

treatment, and ∆ ∈ [0,∞) a fixed constant expressing the amount of the active control effect

relative to placebo, which should be retained. For a discussion of various issues encountered

with the choice of ∆ we refer to Lange and Freitag (2005), who provide a systematic review of

332 published non-inferiority studies, and the references given there. Examples for θk are (a)

θk = πk the success probability of a binary endpoint representing e.g. if the patient achieves

remission (Kieser and Friede, 2007), (b) θk = λ−1
k with λk the expectation of an exponentially

distributed endpoint representing e.g. the time until healing or remission (Mielke et al., 2008),

(c) θk = µk the expectation of a normally distributed endpoint representing e.g. the FCV

(forced vital capacity) in a trial on mildly asthmatic patients (Pigeot et al., 2003). Note that

in this set up we presume that large values of θk are associated with higher efficacy of the

treatment. Compared to absolute hypotheses, e.g. H0 : θT ≤ θR − ∆ with ∆ > 0 given in

(1.1), the advantage of the hypothesis (1.2) is that it is invariant with respect to rescaling

or shifts of the parameters θk, i.e. the margin ∆ must not be readjusted to the changes of

parametrization. Thus, the margin ∆ is standardized in that sense and therewith it could

easily be compared for different hypothesis and applications, respectively. Further, the margin

has the advantage that it has an intuitive and clear interpretation. Rejecting H0 implies to

claim that the test treatment achieves at least ∆ · 100% of the active control effect, at which

both are compared relatively to placebo. Rewriting the alternative in (1.2) as

H1 : θT > ∆ · θR + (1 − ∆) · θP

illustrates that in this case the test treatment effect is greater than a convex combination of

the reference and the placebo effect if 0 ≤ ∆ ≤ 1. This includes two extremal cases: for ∆ = 1
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Figure 1.2: Retention of effect hypothesis H0, h(θk) (grey area) for binary endpoints with success

probabilities πk, πP = 0.5, ∆ = 0.5 and different choices of h(θk).

we obtain superiority of the test treatment over the reference one (at least ∆ = 100% of the

reference effect is retained) and for ∆ = 0 superiority of the test treatment over placebo.

As mentioned above, for binary endpoints a typical choice is θk = πk, the success probability.

However, in practical application also transformations of the success probability are of interest,

e.g. log(πk), πk/(1 − πk) or log(πk/(1 − πk)). For a comprehensive discussion of several

hypotheses for binary endpoints see Röhmel and Mansmann (1999). In order to formalize

this we modify the hypothesis (1.2) to

H0,h(θk) : h(θT ) − h(θP ) ≤ ∆ · (h(θR) − h(θP ))

vs. (1.3)

H1,h(θk) : h(θT ) − h(θP ) > ∆ · (h(θR) − h(θP ))

where θk ∈ Θ ⊆ R
d, k = T, R, P , determines the distribution of our endpoints of interest.

Here, h(·) is a differentiable, real-valued function on the parameter space Θ measuring the

efficiency of a treatment, whereas larger values of h(·) correspond to higher efficiency. In the

following, we will omit the alternatives and only state the null hypotheses.

Exemplary for binary endpoints, Figure 1.2 displays the hypothesis H0,h(θk) for different

choices of h(·), h(πk) = πk, log(πk), πk/(1 − πk), log(πk/(1 − πk)), for ∆ = 0.5 and fixed
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πP = 0.5. The margin ∆ determines the deviation of the hypothesis from the classical

superiority hypothesis, represented by ∆ = 1 (dashed line). A choice of ∆ < 1 results in a

non-inferiority hypothesis and a choice of ∆ > 1 in demonstrating substantial superiority of

T to R.

1.2 Complete test procedure

Typically, the hypothesis (1.2) is embedded in a complete test procedure, where in a first

step a pretest for superiority of either the reference or the test treatment over placebo is

performed, and in a second step the non-inferiority is investigated via (1.2), confer Pigeot

et al. (2003), Koch and Röhmel (2004), Kieser and Friede (2007) and Mielke et al. (2008).

All papers figured out as a common result that the pretest is subordinated in the complete

test procedure, in terms of that sample size planning can be performed via the non-inferiority

test without adjustment to the pretest for superiority. This means the power of the non-

inferiority test nearly coincides with the power of the complete test procedure for commonly

used alternatives. In addition, the pretest represents a well-investigated testing problem

where the parameters of comparison coincide on the boundary of the hypothesis. Thus, in

the following we only focus on the non-inferiority hypothesis (1.2) and keep the complete test

procedure at the back of mind. Nevertheless, we will touch this issue for the specific setting

of censored, exponentially distributed endpoints in Section 5.3.4.

1.3 State of research

Closely related to the retention of effect hypothesis (1.2) is the hypothesis where the treatment

effect θT − θR is evaluated relative to a historic active control effect θ̃R − θ̃P , which could

therefore not been estimated concurrently. For a comprehensive discussion we refer to Holgrem

(1999), Hauck and Anderson (1999), Hasselblad and Kong (2001), Rothmann et al. (2003)

and Hung et al. (2009). The most problematic issue of such design is the necessity to project

the active control effect in the current non-inferiority trial setting (Hung et al., 2009). This

issue is not present in the gold standard design, where the active control effect is estimated

concurrently.

A nonparametric version of the retention of effect hypothesis (1.2) was already considered

by Koch and Tangen (1999). Pigeot et al. (2003) consider (1.2) for normally distributed

endpoints. Subsequently, this type of hypothesis was vigorously discussed (see e.g. Hauschke

and Pigeot, 2005) and investigated for different types of endpoints. Koch and Röhmel (2004)

and Schwartz and Denne (2006) also consider normally distributed endpoints and investigate
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(1.2) for θk equals the expectation µk of the groups k = T, R, P , respectively, under homo-

geneity of variance between the groups. Hasler et al. (2008) extend these results to the case

of heterogeneity of the group variances. Mielke et al. (2008) consider censored, exponentially

distributed endpoints. Kieser and Friede (2007) investigate binary endpoints with θk equals

the success probability πk of each group. In contrast to the normal and exponential case,

sample size planning leaves questions open for binary endpoints. In particular, the existing

sample size formulas lack in precision, i.e. a deviation between exact and aspired power (cf.

Kieser and Friede, 2007). The additional difficulties for binary endpoints arise mainly due to

dependency of the variance on the parameters of interest, the success probabilities. In this

work we will provide a general approach for general parametric models which allows to close

the gaps for binary endpoints as a special case.

1.4 Content and organization

The aim of this work is to provide a general testing methodology based on Wald’s maximum

likelihood asymptotic to the general retention of effect hypotheses (1.3). This, among others,

includes the above mentioned situations as special cases. Furthermore, we obtain tests for

Poisson distributed endpoints (for a careful discussion see Section 2.2). Moreover, we discuss

the issue of sample size planning and provide in large generality formulas for optimal allocation

of samples and accurate approximations for the determination of sample sizes in order to

guarantee a certain power. We show that this requires the computation of Kullback-Leibler

divergence minimizer in the null hypothesis to an alternative model.

This work is organized as follows. In Section 2, we discuss two clinical trials: first, a trial

in the treatment of depressions by investigating whether the patients achieve remission at

the treatment end (binary endpoints) measured by the Hamilton rating scale score of depres-

sion (HAM-D); second, a study in the treatment of epilepsy by investigating the number of

seizures (Poisson distributed endpoints). Beside the “classical” retention of effect hypothesis

for binary endpoints, examined by Kieser and Friede (2007), we introduce a retention of effect

hypothesis based on the log odds of the success probabilities for binary endpoints, which could

be perceived as a “classical” one with a variable non-inferiority margin ∆ depending on the

success probabilities of the reference and placebo group.

In Section 3, we present the general theory and derive a Wald-type test procedure for the

generalized retention of effect hypothesis (1.3), which we denote as Retention of Effect Wald-

type Test (RET) in the following. In Section 4, we derive sample size formulas and the

(asymptotically) optimal allocation for planning a three-armed retention of effect trial. In

particular, we include the important case in which the variance is estimated with restriction
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to the null hypothesis. This procedure often improves the asymptotic approximation under

the null hypothesis (see e.g. Farrington and Manning, 1990; Tang et al., 2007) and therefore is

very popular in practice. Our findings can be summarized as follows. The optimal allocation

when the variance is estimated unrestrictedly turns out to be

n∗
T : n∗

R : n∗
P = 1 : ∆

σ0,R

σ0,T
: |1 − ∆| σ0,P

σ0,T
, (1.4)

where σ0,k is the variance within group k, k = T, R, P , under the alternative, specified

later on in Equation (3.6). Here, n∗
k denotes the number of samples assigned to group k =

T, R, P . This is shown to be valid in (essentially) any parametric family. Although the

asymptotic power will change in general when the variance is estimated restrictedly, we argue

that the optimal allocation remains unchanged in an asymptotic sense even when the variance

is estimated restrictedly to the null hypothesis. However, rather different results occur for

the total sample size determination, depending on the variance estimation method, restricted

or unrestricted. As the optimal allocation (1.4) depends on the choice of the alternative we

show in Section 4.1.3 that one may use the allocation 1 : ∆ : (1 − ∆) as a rule of thumb.

We show that this allocation is more appropriate in terms of power than the commonly used

allocation 2:2:1, as well as the balanced allocation, if σ2
0,P /σ2

0,T is (roughly) less than 2. It is

important to note that this result is valid in great generality, independent of the distribution

of the endpoints and of the formulation of the hypothesis (1.3).

In Section 5, we will revisit our examples introduced in Section 2 to demonstrate and to discuss

the results of the previous sections in detail. In addition, we discuss censored, exponentially

distributed endpoints by means of summarizing the results from Mielke et al. (2008). We

show that sample size reductions and therewith reductions in the costs of a trial with up to

20% and more are possible by reallocating to the optimal allocation instead of a balanced or

the commonly used 2:2:1 allocation. In particular, it turns out that our sample size formula

for binary endpoints significantly improves the precision of the existing one by Kieser and

Friede (2007) in terms of that the exact power is close to the aspired one.

In Section 6, we briefly discuss the finite sample behavior of the normal approximation of the

presented procedures and those of the asymptotically optimal sample allocation in detail. As

a major point we observe that the asymptotically optimal sample allocation does not provide

satisfactory finite sample approximations for the log odds retention of effect hypothesis, in

particular, when the success probabilities of the test and reference group become large and the

variance is estimated with restriction to the null hypothesis. According to this observation

we determine numerically the regions of parameters in the alternative where the allocation

1 : ∆ : |1−∆| works quite well and thus no adjustment of the optimal allocation is necessary.

In settings, where the allocation needs to be adjusted, we recommend to numerically determine
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the finite sample optimal allocation. Nevertheless, for the other settings considered in this

work, where it is appropriate to estimate the variance restricted to the null hypothesis, namely

binary endpoints with “classical” hypothesis and Poisson endpoints, it turns out that the

asymptotically optimal allocation provides good finite sample approximations.

In Section 7, we briefly comment on R-software for analysis and planning of the RET, which

is provided in the appendix, in order to allow the reader to reproduce the presented results

and to make the presented methodology directly applicable. Finally, we conclude with a

discussion in Section 8.



CHAPTER 2

Retention of effect models and examples

In this section we introduce two clinical non-inferiority trials, one in the treatment of epilepsy

and the other one in the treatment of depression, and we define retention of effect hypotheses,

which are of interest within these examples.

2.1 Binary endpoints: Treatment of depression

Binomial or binary endpoints, respectively, are most commonly used in non-inferiority trials

(Lange and Freitag, 2005). In this section we introduce a clinical trial in the treatment of

depression from Goldstein et al. (2004) which was also used by Kieser and Friede (2007) for

illustration. In particular, we will find different answers concerning the planning of this study

(see Section 5.1). This randomized, double-blind trial compares duloxetine (Test treatment)

to paroxetine (Reference treatment) and Placebo with regard to efficacy and safety. In

the therapy of depression, achieving remission is the clinically desired goal (Nierenberg and

Wright (1999)), whereas remission is defined as maintaining the Hamilton rating scale score

of depression (HAM-D) total score at ≤ 7. Table 2.1 presents for each group, k = T, R, P ,

the total numbers of patients and the fractions of patients, who achieved remission at week 8

(end of treatment).

2.1.1 “Classical” retention of effect hypothesis

Following Kieser and Friede (2007), we consider the retention of effect hypothesis with h(πk) =

πk for demonstrating that duloxetine is non-inferior over the reference treatment paroxetine,

H0,πk
: πT − πP ≤ ∆ · (πR − πP ) (2.1)

where πk represents the remission probability of treatment k = T, R, P at the end of treat-

ment. The hypothesis is presented in Figure 1.2 (upper left) for ∆ = 0.5,

11
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Table 2.1: Three-armed clinical trial in treatment of depression

No. of Patients Fraction of patients

Treatment No. of patients achieved remission achieved remission

Placebo 88 26 29.55%

Reference 84 31 36.90%

Test 86 43 50.00%

2.1.2 Log odds retention of effect hypothesis

The retention of effect hypothesis for binary endpoints so far considered in the literature

and introduced above (2.1) tolerates a large reduction of the success probability of the test

treatment πT if πR is large or close to one, respectively. Depending on the application this

might be an undesired effect. To overcome this drawback Kim and Xue (2004) and Zhang

(2006) discuss non-inferiority testing with a variable margin. Zhang points out, that for

anti-infective trials a treatment difference of 15% in the response rates is often accepted for a

control rate of 75%, however it may be unacceptably large for a control rate of 95%. Therefore,

we consider the evaluation of these trials on the basis of the log odds, which also is the natural

parametrization for binary endpoints, yielding the hypothesis

H0,log(
πk

1−πk
) : log

(

πT

1 − πT

)

− log

(

πP

1 − πP

)

≤ ∆ ·
(

log

(

πR

1 − πR

)

− log

(

πP

1 − πP

))

(2.2)

presented in Figure 1.2 (lower right). We argue that this overcomes the difficulty of large

reduction of the success probability of the test treatment. For πR close to πP the hypothesis

keeps nearly unchanged compared to the hypothesis (2.1). However, for increasing πR the

success probability of the test treatment πT is forced to be closer to the one of the reference

treatment πR and even nearly the same for πR very close to one. As usual, the margin ∆

determines the deviation of the hypothesis from the classical superiority hypothesis, repre-

sented by ∆ = 1. A choice of ∆ < 1 results a non-inferiority hypothesis and a choice of ∆ > 1

in demonstrating substantial superiority of T over R. Figure 2.1 displays for illustration the

hypothesis (2.2) for different choices of ∆ and πP = 0.5.

The logodds retention of effect hypothesis (2.2) can be perceived as the “standard” retention

of effect hypothesis (2.1), whereat the non-inferiority margin ∆ depends on the success prob-

abilities πR and πP of the reference and the placebo group, respectively, i.e. the margin ∆

represents in that sense a variable margin. This is due to the fact, that the hypothesis (2.2)

with margin ∆logodds coincides with the hypothesis (2.1) when the margin for (2.1) is chosen
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Figure 2.1: Log odds retention of effect hypothesis H
0,log

(

πk
1−πk

) (grey area) for binary endpoints

with success probabilities πk, πP = 0.5 and different choices of ∆.

according to

∆(πR, πP , ∆logodds) =

β
1+β − πP

πR − πP
(2.3)

with

β = exp

(

∆logodds · log

(

πR

1 − πR

)

+ (1 − ∆logodds) · log

(

πP

1 − πP

))

.

For illustration we display this relation in Figure 2.2 for ∆logodds = 0.5, i.e. how the margin

∆logodds from hypothesis (3.2) carries over to ∆ from (2.3) in dependency of πR and πP . As

already mentioned above, ∆ converges to ∆logodds as πR tends to πP and is equal one for

πR = 1. Moreover, we obtain that ∆(πR, πP , ∆logodds) ≥ ∆logodds for πR ≥ max{0.5, 1 − πP },
thus, throughout for πP ≥ 0.5. For πP ≤ 0.5 we obtain that ∆(πR, πP , ∆logodds) ≤ ∆logodds

for πP ≤ πR ≤ 1 − πP , whereat ∆(πR, πP , ∆logodds) is minimal for πR = 0.5.

2.2 Poisson endpoints: Treatment of epilepsy

Typical examples of Poisson distributed endpoints can be found for example in the treatment

of angina pectoris, nausea and epilepsy, see Layard and Arvesen (1978), where the number of
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Figure 2.2: Dependency of the margin ∆ from (2.3) on πR and πP for ∆logodds = 0.5.

attacks are counted within a specified time interval, or in the treatment of depressions where

the (waiting) time until healing or remission is observed (see e.g. Mielke et al., 2008). Here,

we reconsider the randomized, double blind cross-over trial in the treatment of epilepsy from

Sander et al. (1990) which compares a new treatment (lamotrigine) as an add-on treatment

to a placebo add-on by means of 18 patients. Table 2.2 presents the total number of seizures

within the treatment weeks 9-12. Note that Mohanraj and Brodie (2003) highlight that

for evaluating anti-epileptic drugs (AED) as add-on treatment the standard endpoint is the

manipulation in the number of seizures.

Table 2.2: Three-armed clinical trial in treatment of epilepsy

Mean no. of seizures

Treatment No. of Patients Total no. of seizures per patient

Placebo add-on 18 338 18.78

Reference add-on 18 295 16.39

Test add-on 18 288 16.00

As AED trials performed in the past are two-armed, either placebo- or active-controlled (for

an overview see Mohanraj and Brodie, 2003), we add an artificial reference treatment group

(also displayed in Table 2.2) with equal size of 18 patients and seizures of same order of

magnitude as seizures under the test treatment for illustration purposes of our procedures.

We presume that the number of seizures of each patient follows a Poisson distribution de-

termined by the group affiliation (T,R,P), i.e. the observations are from Xk1, . . . , Xknk

i.i.d.∼
Pois(λk) for k = T, R, P with nP = nT = nR = 18. Table 2.2 presents the total number of
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seizures in each group, Xk =
∑nk

i=1 Xki, k = T, R, P . As in this setting small values of λk,

representing less seizures, are desired we choose h(λk) = −λk which yields the retention of

effect hypothesis

H0,−λk
: λP − λT ≤ ∆ · (λP − λR) (2.4)

for demonstrating that the test treatment is non-inferior over the reference one.

We would like to mention that Lui (2005) discuss the assessment of non-inferiority for a new

treatment over a standard treatment under Poisson distributed endpoints, i.e. the consider

a two-arm trial without placebo group. To this end, Lui compares a procedure using the

normal approximation and a exact test procedure, whereat he figures out that approximative

procedure works quite good in general and that exact procedure does not provide significant

improvements.

2.3 Further models

Table 2.3: Survey of retention of effect hypotheses

Distribution θk h(θk) σ2
k

Normal (Pigeot et al., 2003) (µk, τ2) µk τ2

Normal (Hasler et al., 2008) (µk, τ2
k ) µk τ2

k

Binary πk πk πk(1 − πk)

(Kieser & Friede, 2007, this work)

Binary (Figure 1.2, lower right) πk log(πk/(1 − πk)) (πk(1 − πk))−1

Exponential (Mielke et al., 2008) λk log λk 1

Poisson (this work) λk −λk λk

Gamma (α, βk) α · βk [= EXk] β2
kα−1

Weibull (λk, β) λk [= EXk · (Γ(1 + β−1))−1] I11(λk, β)

In Table 2.3 we summarize various endpoints together with some common retention of effect

hypotheses. Moreover, we have included some models which have not been used in the context

of retention of effect hypothesis, including the Weibull- and Gamma-family. However, these

endpoints are of practical interest as recent non-inferiority trials by Yakhno et al. (2006) and

Gurm et al. (2008) highlight. We will not discuss all these situations in detail, but we mention

that our methodology immediately applies to these situations.





CHAPTER 3

Theory: Wald-type test

In this section we derive a Wald-type test procedure for the generalized retention of effect

hypothesis (1.3) introduced in Section 1 and discuss the estimation of the variance with

restriction to the null hypothesis. This generalizes and unifies specific results for binary,

normally and exponentially distributed endpoints. Based on these results, we provide the

theory for sample size planning in the next Section 4.

Model assumptions: Let Xki for i = 1, . . . , nk be independently distributed according to

a parametric family of distributions with densities {f(θ, ·) : θ ∈ Θ}, Θ ⊆ R
d, and parameters

θk ∈ Θ, k = T, R, P , where T, R and P stand for test, reference and placebo group, respec-

tively. We presume that the family of probability densities {f(θ, ·) : θ ∈ Θ} is sufficiently

regular to obtain asymptotic normality of the ML-estimators (MLE) of the parameter θ with

non-singular covariance or Fisher-information matrix, respectively, e.g. an exponential family

or a family which is differentiable in quadratic mean (van der Vaart (1998)). Moreover, none

of the groups should vanish asymptotically, i.e. for k = T, R, P and n = nT + nR + nP

nk

n
−→ wk (3.1)

holds for nR, nT , nP → ∞ and some wk ∈ ]0, 1[, the (asymptotic) proportion of the numbers

of patients in group k = T, R, P .

3.1 Retention of Effect Wald-type Test (RET)

In order to come up with a test for (1.3) we rewrite this as

H0,h(θk) : η := h(θT ) − ∆ h(θR) + (∆ − 1)h(θP ) ≤ 0 . (3.2)

The MLE of h(θk), k = T, R, P , is obtained by plugging in the MLE θ̂k of θk, which is well-

defined and asymptotically normally distributed by assumption. By the delta-method this

17
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yields that
√

nk(h(θ̂k)− h(θk)) is centered asymptotically normally distributed with variance

σ2
k =

(

∂

∂θ
h(θk)

)

· I(θk)
−1 ·

(

∂

∂θ
h(θk)

)T

and I the Fisher-information-matrix, i.e.

I(θ) = −Eθ

[

∂2

∂2θ
log f(θ, X)

]

.

Hence, the linear contrast
√

n(η̂ − η), where the MLE of η is obtained by plugging in the

MLE’s θ̂k, k = R, T, P , in the left hand side of (3.2), is centered asymptotically normal with

variance

σ2 =
σ2

T

wT
+

∆2σ2
R

wR
+

(1 − ∆)2σ2
P

wP
. (3.3)

As we have mentioned in the introduction estimation of σ2 simply by the MLE often leads

to an unsatisfactory approximation of the asymptotic normal law and various improvements

have been suggested in specific settings, mainly for the case of binary endpoints (see next

section). Therefore, we will treat the case of restricted maximum likelihood estimation as

well. To this end, let σ̂2
ML denote the MLE of σ2 and σ̂2

RML denote the MLE with restriction

to the null hypothesis, i.e. the MLE of σ2 under the restriction in (3.2). Further, let σ̂2 either

denote σ̂2
ML or σ̂2

RML, see the next Section 3.2.1 for a discussion of both estimators. Both

estimators are consistent under the null hypothesis. Thus, we obtain in order to test (3.2) as

a test-statistic

T =

√
n · η̂
σ̂

=
√

n · h(θ̂T ) − ∆ h(θ̂R) + (∆ − 1)h(θ̂P )

σ̂
(3.4)

which is asymptotically standard normally distributed. Therefore, H0,h(θk) is to reject if

T > z1−α, where z1−α is the 1 − α-quantile of the standard normal distribution and α a

specified significance level. Due to the formulation of the hypothesis and the test decision we

will denote this test by Retention of Effect Wald Test (RET). The procedure to perform the

RET is summarized in Figure 3.1.

3.2 The estimators of the asymptotic variance σ
2 and their

limits

In some situation, e.g. for normally distributed endpoints, it is sufficient to estimate the

asymptotic variance in (3.3) by the (unrestricted) MLE (see Pigeot et al. (2003)). Roughly

speaking, this is due to the fact that the asymptotic variance of the test statistic does not

depend on the parameters h(θk) (in the normal case the mean) which only enter into the
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hypothesis. However, e.g. for the case of binary endpoints the variance depends on the success

probabilities itself and an improvement in the accuracy of the asymptotic normality can be

obtained by estimation restrictedly to the null hypothesis. This fact has been pointed out

by Farrington and Manning (1990) for the two sample comparison with binomial endpoints

and various improvements have been suggested since (see e.g. Chan (1998), Röhmel and

Mansmann (1999), Skipka et al. (2004)). For the retention of effect hypothesis Kieser and

Friede (2007) demonstrate in an extensive simulation study that the restricted Wald-type test

(Farrington and Manning (1990) adjustment) works satisfactorily and clearly outperforms the

unrestricted Wald-type test concerning the accuracy of the nominal level.

3.2.1 Computation of σ̂
2
ML and σ̂

2
RML

Typically, the variance σ2 is a continuous function of the parameters θk, k = T, R, P . Thus,

the MLE σ̂2
ML is obtained by plugging the MLE’s θ̂k

σ̂ML = σ(θ̂T , θ̂R, θ̂P ).

In order to obtain the restricted MLE σ̂2
RML the θ̂k’s have to be replaced by their restricted

versions, i.e.

σ̂RML = σ(θ̂T,H0 , θ̂R,H0 , θ̂P,H0)

with

(θ̂T,H0 , θ̂R,H0 , θ̂P,H0) = arg sup(θT ,θR,θP )∈H0,h(θk)

∑

k=T,R,P

nk
∑

i=1

log f(θk, xki). (3.5)

The restricted MLEs (θ̂T,H0 , θ̂R,H0 , θ̂P,H0) can be computed in the following way: if the unre-

stricted MLEs θ̂k, k = T, R, P , are located in H0,h(θk), i.e. h(θ̂T )−∆h(θ̂R)+(∆−1)h(θ̂P ) ≤ 0,

they coincide with the restricted MLEs. Otherwise the restricted MLEs can be determined

by restricting the likelihood function to the boundary of H0,h(θk) by means of substituting

θT = h−1(∆h(θR) + (1 − ∆)h(θP )) in the common likelihood function (left hand side from

(3.5)) and maximizing this with respect to θR and θP numerically or, if possible, analytically.

3.2.2 Limits of the variance estimators

The limits of the MLEs σ̂2
ML and σ̂2

RML are fundamental for sample size planning in the fol-

lowing Section 4. For the derivation of the limits let us denote the true (unknown) parameters

by θ
(0)
k , k = T, R, P , and correspondingly η(0) = h(θ

(0)
T ) − ∆ h(θ

(0)
R ) + (∆ − 1)h(θ

(0)
P ) and

σ2
0,k =

(

∂

∂θ
h(θ

(0)
k )

)

· I(θ
(0)
k )−1 ·

(

∂

∂θ
h(θ

(0)
k )

)T

(3.6)
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for k = R, T, P and

σ2
0 =

σ2
0,T

wT
+

∆2σ2
0,R

wR
+

(1 − ∆)2σ2
0,P

wP
. (3.7)

The unrestricted MLE σ̂2
ML is always a consistent estimator, i.e. σ̂2

ML
a.s.−→ σ2

0 as n → ∞.

However, the restricted MLE σ̂2
RML is only consistent when the true parameters are located

in the hypothesis, i.e. η(0) ≤ 0. In other words, the limit of σ̂2
RML is no more equal to σ2

0,

in general. We will now derive the limit of the restricted MLE σ̂2
RML, when the parameters

are located in the alternative, i.e. η(0) > 0. This requires computation of the Kullback-

Leibler-divergence (KL-divergence) between two parameter constellations. To this end, let

ζ = (θT , θR, θP ) denote any parameter in the parameter space Θ3 ⊆ R
3d and ζ(0) the true

parameter. Then we define for the three-sample case a weighted KL-divergence between ζ(0)

and ζ with weights c = (cT , cR, cP ) by

K(ζ(0), ζ, c) =
∑

k=T,R,P

ck · K(θ
(0)
k , θk) , (3.8)

where K(θ
(0)
k , θk) = E

θ
(0)
k

[log f(θ
(0)
k , X)− log f(θk, X)] denotes the usual KL-divergence mea-

suring the difference between two densities.

The next theorem shows that the restricted MLE denoted by ζ̂H0 = (θ̂T,H0 , θ̂R,H0 , θ̂P,H0)

converges to the minimizer of the sample size weighted Kullback-Leibler-divergence (KL-

divergence) with respect to the true parameter, i.e.

ζ̂H0

a.s.−→ ζH0

with

ζH0 = (θT,H0 , θR,H0 , θP,H0) := arg min
ζ∈H0

K(ζ(0), ζ, (wT , wR, wP )).

For this theorem we require two further assumptions. In Assumption 1 we require the min-

imizer to be well-defined and Assumption 2 ensures that the likelihood is bounded, i.e. we

do not end up with a unbounded likelihood as for example in the case of a mixture of two

normal distributions.

Assumption 1 : For ζ(0) in the alternative H1 and nk/n → wk ∈]0, 1[, w = (wT , wR, wP ), the

minimum ζH0 = (θT,H0 , θR,H0 , θP,H0) = arg minζ∈H0 K(ζ(0), ζ, w) is well-defined.

Assumption 2 : For any sequence ζ(n) = (θ
(n)
T , θ

(n)
R , θ

(n)
P ) in H0 with limn→∞ ζ(n) in Θ

3 \Θ3 or

with limn→∞ ‖ ζ(n) ‖= ∞
lim

n→∞

∏

k=T,R,P

f(θ
(n)
k , xk) = 0
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holds P ζ(0)
almost everywhere.

Theorem 1: Let ζ̂H0
n denote the MLE restricted to H0. Then under the Assumptions 1 and

2

ζ̂H0
n

a.s.−→ ζH0 .

Proof. Let

Qn(ζ) = −
∑

k=T,R,P

1

n

nk
∑

i=1

log f(Xki, θk)

and

Q(ζ) = −
∑

k=T,R,P

wk · E
θ
(0)
k

[log f(Xk1, θk)].

Note that by definition

K(ζ(0), ζ, w) = Q(ζ) − Q(ζ(0))

holds and consequently ζH0 = arg minζ∈H0 K(ζ(0), ζ, w) is also the well-defined minimizer of

Q(ζ) in H0.

Assumption 2 ensures that the MLE is asymptotically almost surely located in a compact set,

i.e. there exists compact subset H̃0 such that

lim
n→∞

ζ̂H0
n = lim

n→∞
ζ̂H̃0
n a.s.

A proof for limn→∞ ‖ ζ(n) ‖= ∞ can be found in Wald (1949). However, for limn→∞ ζ(n)

in Θ
3 \ Θ3 this can be proved analogously. Hence, we assume w.l.o.g. that H0 is compact.

Therefore, the convergence

Qn(ζ)
a.s.−→ Q(ζ)

is uniformly in H0 (see Jennrich, 1969, Theorem 2) and we can apply Lemma 2.2 from White

(1980), which yields that ζ̂H0
n = arg minζ∈H0 Qn(ζ) converges almost surely to the well-defined

minimum ζH0 of Q(ζ) in H0.

Therefore, the limit of the restricted MLE σ̂2
RML is obtained by

σ2
RML =

σ2
T,H0

wT
+

∆2σ2
R,H0

wR
+

(1 − ∆)2σ2
P,H0

wP
(3.9)

with

σ2
k,H0

=

(

∂

∂θ
h(θk,H0)

)

· I(θk,H0)
−1 ·

(

∂

∂θ
h(θk,H0)

)T

(3.10)

for k = T, R, P .
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Performing the RET:

Input: h(·) Measure of efficacy

∆ Non-inferiority margin

α Significance level

XT1, . . . , XTnT
sample from the test treatment group

XR1, . . . , XRnR
sample from the reference treatment group

XP1, . . . , XPnP
sample from the placebo group

Procedure:

1. Compute the MLE θ̂k for each group k = T, R, P .

2. Determine

η̂ = h(θ̂T ) − ∆ h(θ̂R) + (∆ − 1)h(θ̂P )

3. Compute σ̂, see Section 3.2.1.

4. Compute the test statistic as

T =
√

nT + nR + nP · η̂

σ̂

5. Reject H0,h(θk) if T > z1−α (quantile of the standard normal distribution).

Figure 3.1: Performing the RET.

3.2.3 Numerical computation of σRML

For computing the minimizers θk,H0 , k = T, R, P , and therewith σRML for a parameter

constellation in the alternative, i.e. η(0) > 0, it is sufficient to restrict to the boundary of

H0,h(θk), i.e. we replace in the weighted KL-divergence (3.8) θT by h−1(∆h(θR)+(1−∆)h(θP ))

and then minimize the KL-divergence with respect to θR and θP .

In practice, the analytic solution to the minimization problem of the KL-divergence may be

hard (confer the example of Poisson endpoints in Section 5.2.3) or even unfeasible to find.

In this case, numerical minimization becomes necessary. To this end, it is important to note

that the minimization of the KL-divergence often results in a convex optimization problem

and fast algorithms for convex optimization, such as the Newton-Raphson algorithm, become

feasible. The following theorem states conditions to obtain a convex optimization problem.

Theorem 2: Let −E
θ
(0)
k

[ ∂2

∂2θ
log f(θ, X)] be non-negative for all θ ∈ Θ and θ

(0)
k , k = T, R, P

and let Θ be a convex set. Further, let h−1(∆h(θR)+(1−∆)h(θP )) be an affine transformation

in θR and θP . Then the minimization in ζ of the weighted KL-divergence (3.8) with restriction

to the boundary of the null hypothesis is a convex optimization problem.

Proof. The condition −E
θ
(0)
k

[ ∂2

∂2θ
log f(θ, X)] ensures that the KL-divergence K(θ

(0)
k , θ) is a
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convex function in θ for θ
(0)
k , k = T, R, P . Thus, the weighted KL-divergence

K(ζ(0), (θT , θR, θP ), c) =
∑

k=T,R,P

ck · K(θ
(0)
k , θk)

is convex in the arguments θk, k = T, R, P . Let us denote

g(θR, θP ) = h−1(∆h(θR) + (1 − ∆)h(θP ))

which is an affine transformation in both arguments by assumption. Hence,

K(θ
(0)
T , g(θR, θP ))

is a convex function in (θR, θP ). Therefore, the weighted KL-divergence with restriction to

the boundary of the null hypothesis H0,h(θk) represented by

K(ζ(0), (g(θR, θP ), θR, θP ), c) = cT · K(θ
(0)
T , g(θR, θP )) + cR · K(θ

(0)
R , θR) + cP · K(θ

(0)
P , θP )

is a linear combination of convex function and therewith convex in (θR, θP ), again.

The conditions of Theorem 1 are fulfilled in our examples of Poisson and binary endpoints

which will be revisited in Section 5.

3.3 Approximating the power function of the RET

The asymptotic normality used in Section 3.1 to derive the RET is valid for parameter

constellations in the hypothesis as well as for constellations in the alternative. Thus, if

the variance σ2 is estimated unrestrictedly, σ̂2 = σ̂2
ML, we obtain as an approximation to the

power function of the RET, i.e. the probability of rejecting the hypothesis H0,h(θk) in (1.3),

by

Pη(0) (T > z1−α) ≈ 1 − Φ

(

z1−α −
√

n
η(0)

σ0

)

. (3.11)

However, estimating the variance σ2 restricted to the null hypothesis, i.e. σ̂2 = σ̂2
RML,

complicates the issue and changes the power function to

Pη(0) (T > z1−α) = Pη(0)

(

T · σRML

σ0
−
√

n
η(0)

σ0
> z1−α · σRML

σ0
−
√

n
η(0)

σ0

)

≈ 1 − Φ

(

z1−α · σRML

σ0
−
√

n
η(0)

σ0

)

. (3.12)

Note that (3.11) can be obtained from (3.12) by means of substituting σRML by σ0.





CHAPTER 4

Theory: Optimal sample allocation and general

strategy for sample size planning (GSSP)

In this section we present a sample size formula for the test of the generalized retention of

effect hypothesis H0,h(θk) (1.3) introduced in Section 1. In particular, we derive the optimal

allocation of the samples to the groups T, R and P in terms of maximizing the power of the

RET under any fixed alternative η(0).

4.1 Optimal sample allocation

In planning a trial, one typically specifies a parameter constellation η(0) in the alternative.

Our aim in this section is to optimize the allocation of samples, represented through wk,

k = T, R, P , as in (3.1), such that the power of the test decision in (3.11) or (3.12), respectively,

is maximized. The power depends on the allocation through σ2
0 and σ2

RML.

4.1.1 Unrestricted estimation of the variance σ
2

When the variance σ2 is estimated unrestricted in the test procedure (σ̂2 = σ̂2
ML) we have

only to consider σ2
0 to investigate the influence of the allocation on the power, confer (3.11).

This means that we have to minimize σ2
0 in order to maximize the power.

To this end, we substitute wP = 1 − wT − wR in (3.7), because the sample allocation has to

fulfill wT + wR + wP = 1, and obtain

σ2
0 =

σ2
0,T

wT
+

∆2 · σ2
0,R

wR
+

(1 − ∆)2 · σ2
0,P

1 − wT − wR
.

Note that σ2
0 is a convex function in (wT , wR). Evaluating the derivatives of σ2

0 w.r.t. wT and

25
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wR at zero yields

∂

∂wT
σ2

0 =
(1 − ∆)2 · σ2

0,P

(1 − wR − wT )2
−

σ2
0,T

w2
T

= 0

∂

∂wR
σ2

0 =
(1 − ∆)2 · σ2

0,P

(1 − wR − wT )2
−

∆2 · σ2
0,T

w2
T

= 0.

Solving the equations for wT and wR yields the minimizer

w∗
T =

σ0,T

σ0,T + ∆ · σ0,R + |1 − ∆| · σ0,P

w∗
R =

∆ · σ0,R

σ0,T + ∆ · σ0,R + |1 − ∆| · σ0,P

and therewith

w∗
P =

|1 − ∆| · σ0,P

σ0,T + ∆ · σ0,R + |1 − ∆| · σ0,P
.

Thus, the optimal allocation in terms of minimizing the variance σ2
0 is given by

n∗
T : n∗

R : n∗
P = 1 : ∆

σ0,R

σ0,T
: |1 − ∆| σ0,P

σ0,T
. (4.1)

The resulting optimal minimal variance is given by

σ2
0,optimal = (σ0,T + ∆σ0,R + |1 − ∆|σ0,P )2 .

Remark: For the specific case of normal endpoints with equal variances (Pigeot et al., 2003;

Schwartz and Denne, 2006) we obtain the optimal allocation 1 : ∆ : |1 − ∆|, again.

4.1.2 Restricted estimation of the variance σ
2

When the variance σ2 is estimated under restriction to H0,h(θk) the asymptotic power in (3.12)

depends additionally on σRML/σ0 because under any alternative the restricted estimator

σ̂RML is not a consistent estimator for σ0. Nevertheless, the asymptotically optimal allocation

derived for the unrestricted case in Section 4.1.1 is again optimal in an asymptotic sense

because the power in (3.12) is dominated by the term
√

n · η(0)/σ0 as n grows. Hence, the

allocation (4.1) derived in the previous section, which minimizes the variance σ0, is also the

(asymptotically) optimal allocation in terms of maximizing the power when the variance σ2

is estimated restricted to H0,h(θk).

Remark: (a) We would like to stress that this result can be applied to the case of binary

endpoints (see Section 5.1.2). This leads to different results as in Kieser and Friede (2007)

who derived the optimal allocation under the additional restriction of a fixed ratio wR/wT .
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Optimal allocation:

Input: h(·) Measure of efficacy

θ
(0)
T , θ

(0)
R , θ

(0)
P Parameter constellation in the alternative, η(0) > 0.

∆ Non-inferiority margin

Procedure:

1. Compute σ2
0,k, k = T, R, P , via (3.6)

σ2
0,k =

(

∂

∂θ
h(θ

(0)
k )

)

· I(θ
(0)
k )−1 ·

(

∂

∂θ
h(θ

(0)
k )

)T

2. Determine the optimal sample allocation via (4.1)

n∗

T : n∗

R : n∗

P = 1 : ∆
σ0,R

σ0,T
: |1 − ∆| σ0,P

σ0,T

Figure 4.1: Summary of the procedure to determine the optimal sample allocation.

(b) The asymptotically optimal allocation presented in (4.1) should be understood as approx-

imative for finite samples as it is customary for asymptotic results. Nevertheless, for in this

paper presented examples we will show in Section 5 that the optimal allocation is also very

accurate for finite samples, e.g. for a power of 80%. However, one should be aware of the

fact that, it is not guaranteed that the allocation (4.1) is optimal, in general, in particular for

small sample sizes.

4.1.3 Rule of thumb

The asymptotically optimal sample allocation (4.1) depends on the choice of the alternative

ζ(0) > 0. If one is not clear about the choice of the alternative or wants to consider more than

one alternative, we recommend to use as a rule of thumb the allocation 1 : ∆ : (1 − ∆). We

show for θ
(0)
R = θ

(0)
T and 0 ≤ ∆ ≤ 1 in Theorem 3 and 4 that the allocation 1 : ∆ : (1 − ∆)

is more appropriate than the commonly used 2:2:1 allocation (the balanced allocation) if

σ2
0,P /σ2

0,T < 1 +
√

5/4 (1 +
√

3). Note that a lower bound for σ2
0,P /σ2

0,T is not required.

Moreover, this result is valid independent of the distribution of the endpoints and of the

formulation of the retention of effect hypothesis.

Theorem 3: If θ
(0)
R = θ

(0)
T and σ2

0,P /σ2
0,T < 1 +

√

5/4 ≈ 2.12 then the allocation 1 : ∆ :

(1 − ∆) results in a smaller variance σ2
0 (3.7) (and hence larger asymptotic power) than the

allocation 2:2:1 for any 0 ≤ ∆ ≤ 1.

Proof. Substituting the allocation 2:2:1 and 1 : ∆ : (1 − ∆), respectively, and θ
(0)
R = θ

(0)
T in
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the variance σ2
0 from (3.7) yields

σ2
2:2:1 =

5 + 5∆2

2
σ2

0,T + 5(1 − ∆)2 σ0,P

and

σ2
1:∆:1−∆ = 2(1 + ∆) σ2

0,T + 2(1 − ∆) σ2
0,P .

Thus, we obtain with r := σ2
0,P /σ2

0,T > 0

g(∆, r) :=
σ2

2:2:1 − σ2
1:∆:1−∆

σ2
0,T

= (2.5 + 5 · r)∆2 + (−2 − 8 · r)∆ + (0.5 + 3 · r) ,

which is as a quadratic function in ∆ with minimum

(a(r), b(r)) =

(

2 + 8 · r
5 + 10 · r ,

−4 · (r − 1 −
√

5/4)(r − 1 +
√

5/4)

10 + 20 · r

)

,

where 0 < a(r) < 1 and b(r) > 0 for r < 1 +
√

5/4. Thus, we obtain for r = σ2
0,P /σ2

0,T <

1 +
√

5/4 that g(∆, r) > 0, which implies σ2
2:2:1 > σ2

1:∆:1−∆, for any 0 ≤ ∆ ≤ 1.

Theorem 4: If θ
(0)
R = θ

(0)
T and σ2

0,P /σ2
0,T < 1+

√
3 ≈ 2.73 then the allocation 1 : ∆ : (1−∆)

results in a smaller variance σ2
0 (3.7) (and hence larger asymptotic power) than the balanced

allocation 1:1:1 for any 0 ≤ ∆ ≤ 1.

Proof. Substituting the allocation 1:1:1 and 1 : ∆ : (1 − ∆), respectively, and θ
(0)
R = θ

(0)
T in

the variance σ2
0 from (3.7) yields

σ2
1:1:1 = (3 + 3∆2) σ2

0,T + 3(1 − ∆)2 σ0,P

and

σ2
1:∆:1−∆ = 2(1 + ∆) σ2

0,T + 2(1 − ∆) σ2
0,P .

Thus, we obtain with r := σ2
0,P /σ2

0,T > 0

g(∆, r) :=
σ2

1:1:1 − σ2
1:∆:1−∆

σ2
0,T

= (3 + 3 · r)∆2 + (−2 − 4 · r)∆ + (1 + r) ,

which is as a quadratic function in ∆ with minimum

(a(r), b(r)) =

(

2 + 4 · r
6 + 6 · r ,

−(r − 1 +
√

3)(r − 1 −
√

3)

3 + 3 · r

)

,

where 0 < a(r) < 1 and b(r) > 0 for r < 1 +
√

3. Thus, we obtain for r = σ2
0,P /σ2

0,T < 1 +
√

3

that g(∆, r) > 0, which implies σ2
1:1:1 > σ2

1:∆:1−∆, for any 0 ≤ ∆ ≤ 1.
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4.2 Sample size computation

When the variance σ2 is estimated unrestrictedly (σ̂2 = σ̂2
ML) we end up with the simplified

power formula (3.11). Thus, the minimal required total sample size to obtain a power of 1−β

for a given alternative η(0) > 0 is determined by

n1−β ≈ (z1−α + z1−β)2 ·
(

σ0

η(0)

)2

(4.2)

with σ0 defined in (3.7). When the variance σ2 is estimated restricted to the null hypothesis

(σ̂2 = σ̂2
RML) the sample size formula has to be derived from (3.12) and becomes more

involved, viz.

n1−β ≈
(

z1−α · σRML + z1−β · σ0

η(0)

)2

=

(

z1−α · σRML

σ0
+ z1−β

)2

·
(

σ0

η(0)

)2

(4.3)

with σRML derived in (3.9). As we will see the additional term σRML/σ0 has a relevant

impact on the sample size planning.

In Figure 4.2 we have summarized the general strategy for sample size planning (GSSP) for

the RET when the variance σ2 is estimated with restriction to the null hypothesis. When the

variance σ2 is estimated unrestrictedly by θ̂ML we may omit the steps 2.-4. in Figure 4.2 and

use the simpler formula (4.2) in step 5. to compute the required sample size n1−β.

Remark: We again stress that the use of σRML will significantly affect the planning of the

trial. If one replaces in (4.3) σRML by σ0 this may result in a too small or too large required

sample size depending on the ratio σRML/σ0. If the ratio σRML/σ0 is greater (smaller) than

one, then we end up with a too small (large) required sample size, i.e. the resulting power is

smaller (larger) than the desired power 1 − β. For example, this will be the case for Poisson

distributed endpoints (see Section 2.2) and the hypothesis (2.4). We will see in Section 5.2

that σRML/σ0 > 1 for all parameter constellations. In contrast, for binary endpoints (see

Section 2.1) and the hypothesis (2.1), we will show in Section 5.1 that there is no strict

relationship between σRML and σ0. Thus, a wrongly specified sample size may result in a too

large or too small power compared to the aspired one.
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General strategy for sample size planning (GSSP)

Input: h(·) Measure of efficacy

θ
(0)
T , θ

(0)
R , θ

(0)
P Parameter constellation in the alternative, η(0) > 0.

wT : wR : wP Allocation of samples

∆ Non-inferiority margin

α Significance level

1 − β Aspired power

Procedure:

1. Compute η(0) = h(θ
(0)
T ) − ∆ h(θ

(0)
R ) + (∆ − 1)h(θ

(0)
P ).

2. Compute σ2
0 via (3.7)

σ2
0 =

σ2
0,T

wT
+

∆2 · σ2
0,R

wR
+

(1 − ∆)2 · σ2
0,P

wP

with σ2
0,k, k = T, R, P , from (3.6)

σ2
0,k =

(

∂

∂θ
h(θ

(0)
k )

)

· I(θ
(0)
k )−1 ·

(

∂

∂θ
h(θ

(0)
k )

)T

.

3. Determine the weighted KL-divergence (3.8) for the endpoint of investigation.

4. Compute the parameter constellation θk,H0
, k = T, R, P , in the null hypothesis,

which minimizes the weighted KL-divergence to the true parameter. This can

be done analytically or numerically (confer Section 3.2.3).

5. Compute

σ2
RML =

σ2
T,H0

wT
+

∆2σ2
R,H0

wR
+

(1 − ∆)2σ2
P,H0

wP

for θk,H0
, k = T, R, P , via (3.9) and (3.10).

6. Use formula (4.3) to compute the minimal total required sample size

n1−β ≈
(

z1−α · σRML + z1−β · σ0

η(0)

)2

.

Figure 4.2: General strategy for sample size planning (GSSP) when the variance σ2 is esti-

mated with restriction to the null hypothesis.



CHAPTER 5

Specific models - applications of theory and

illustration of improvements

In the following we will perform the RET for the examples from Section 2 and we will illustrate

the general strategy for sample size planning (GSSP) including a detailed investigation of the

optimal allocation. In addition, we discuss censored, exponentially distributed endpoints by

means of summarizing the results from Mielke et al. (2008) in Section 5.3.

5.1 Binary endpoints: Treatment of depression

In this section we revisit the example in the treatment of depression introduced in Section 2.1,

whereat we focus on the retention of effect hypothesis with h(πk) = πk (2.1) here to illustrate

the improvements in accuracy of the procedures. The log odds retention of effect hypothesis

(2.2) will be only discussed briefly in Section (5.1.4) as the procedures are quite analogue.

Nevertheless, the deviation of the optimal sample allocation requires further investigations

as it turns out that the finite sample approximation of the asymptotically optimal allocation

does not performs well in general for the log odds retention of effect hypothesis. This will be

discussed in detail in the next Section 6.

5.1.1 Performing the RET

For the sake of completeness we recall the RET for the situation h(πk) = πk, which was

already introduced by Kieser and Friede (2007). The MLE of πk is π̂k = n−1
k

∑nk
i=1 Xki which

is asymptotically normally distributed with variance σ2
k = πk(1−πk). Hence, the unrestricted

MLE of the variance σ2 is given by (cf. (3.3)),

σ̂2
ML = n ·

(

π̂T (1 − π̂T )

nT
+ ∆2 π̂R(1 − π̂R)

nR
+ (1 − ∆)2

π̂P (1 − π̂P )

nP

)

31
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Figure 5.1: Example of binary distributed endpoints: Sample size reduction in % when

optimal allocation (5.3) is used instead of the balanced allocation (right figure) and instead

of the allocation 2:2:1 (left figure) for π0,P = 0.1 and different values ∆ = 0.5 (dotted line),

∆ = 0.6 (dashed line), ∆ = 0.7 (dotdash line), ∆ = 0.8 (solid line).

and we end up with the test statistic (see (3.4))

T =
√

n · π̂T − ∆ π̂R + (∆ − 1)π̂P

σ̂ML
(5.1)

in order to test H0,πk
in (2.1) which is rejected if T > z1−α.

Let us now consider the case where σ2 is estimated restrictedly (cf. Farrington and Manning,

1990). The restricted version of the Wald-type test is observed by replacing the MLEs π̂k

in the denominator by the to H0,πk
restricted ones. Here, we have computed the restricted

MLEs accordingly to Section 3.2.1: if the unrestricted MLEs π̂k, k = T, R, P , are located in

H0,πk
, i.e. π̂T −∆ π̂R +(∆−1)π̂P < 0, they coincide with the restricted MLEs. Otherwise we

have determined the restricted MLEs by restricting the likelihood function to the boundary

of H0,πk
by means of substituting πT = ∆πR + (1−∆)πP in the common likelihood function

and maximizing this with respect to πR and πP numerically. Note, that in contrast to the

two-sample case (Farrington and Manning, 1990), an analytical computation of the restricted

MLE’s is not feasible, anymore.

The RET for the hypothesis (2.1) with ∆ = 0.8 yields T = 2.104 (2.108) in (5.1) using

the restricted (unrestricted) estimator for the variance estimation and corresponding p-values

1.77% (1.75%). Thus, we would reject H0,θk
from (2.1) in both cases and claim that the test

treatment duloxetine is non-inferior over paroxetine.
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Table 5.1: Example of binomial distributed endpoints: Optimal sample allocation, limit

of variance estimator σ̂RML and required samples size from formula (4.3) and (4.2), respec-

tively, to obtain a power of 0.7 and 0.8, respectively, when the variance σ2 is estimated

restrictedly to the null-hypothesis (unrestrictedly), where α = 5%, ∆ = 0.7.

Optimal allocation 2:2:1 allocation

π0,P π0,T w∗

T w∗

R w∗

P
σRML

σ0
n0.7 n0.8

σRML

σ0
n0.7 n0.8

0.1 0.3 0.527 0.369 0.104 0.994 997 (988) 1308 (1297) 1.014 1054 (1076) 1388 (1414)

0.5 0.532 0.372 0.096 0.986 296 (289) 387 (380) 1.006 315 (318) 415 (418)

0.7 0.527 0.369 0.104 0.955 118 (110) 154 (145) 0.965 127 (120) 165 (158)

0.9 0.500 0.350 0.150 0.791 43 (30) 54 (39) 0.759 48 (31) 60 (41)

0.2 0.5 0.515 0.361 0.124 0.995 552 (547) 724 (719) 1.002 582 (583) 765 (766)

0.7 0.510 0.357 0.133 0.977 176 (170) 230 (223) 0.969 188 (179) 245 (235)

0.9 0.476 0.333 0.190 0.835 57 (43) 72 (56) 0.795 63 (44) 79 (58)

0.3 0.5 0.506 0.354 0.139 0.998 1279 (1275) 1680 (1675) 1.012 1341 (1341) 1761 (1762)

0.7 0.500 0.350 0.150 0.986 281 (275) 368 (361) 0.975 298 (287) 390 (377)

0.9 0.463 0.324 0.212 0.867 76 (61) 98 (81) 0.830 84 (63) 106 (83)

0.4 0.7 0.495 0.346 0.159 0.993 504 (499) 661 (655) 0.961 532 (518) 697 (680)

0.9 0.457 0.320 0.224 0.896 107 (91) 138 (119) 0.863 117 (93) 149 (122)

0.5 0.7 0.493 0.345 0.161 0.997 1134 (1129) 1489 (1483) 0.988 1191 (1170) 1561 (1537)

0.9 0.455 0.318 0.227 0.924 161 (143) 209 (188) 0.894 174 (147) 224 (193)

0.6 0.7 0.495 0.346 0.159 0.999 4490 (4484) 5898 (5891) 0.994 4695 (4655) 6162 (6116)

0.8 0.484 0.339 0.178 0.993 904 (894) 1186 (1175) 0.977 953 (921) 1247 (1209)

0.9 0.457 0.320 0.224 0.950 272 (251) 353 (330) 0.923 292 (258) 377 (339)

0.7 0.8 0.489 0.343 0.168 0.998 3505 (3495) 4603 (4591) 0.989 3672 (3611) 4814 (4744)

0.9 0.463 0.324 0.212 0.974 571 (549) 746 (721) 0.949 609 (562) 792 (739)

0.8 0.9 0.476 0.333 0.190 0.992 2101 (2076) 2756 (2727) 0.975 2214 (2130) 2895 (2798)

5.1.2 Optimal allocation

For binary distributed endpoints and the hypothesis (2.1) the optimal allocation of samples

is given by

n∗
T : n∗

R : n∗
P = 1 : ∆

√

π0,R(1 − π0,R)

π0,T (1 − π0,T )
: |1 − ∆|

√

π0,P (1 − π0,P )

π0,T (1 − π0,T )
(5.2)

according to (4.1). For the commonly used alternative π0,R = π0,T the allocation simplifies

to

n∗
T : n∗

R : n∗
P = 1 : ∆ : |1 − ∆|

√

π0,P (1 − π0,P )

π0,T (1 − π0,T )
. (5.3)

In contrast to the case of normally distributed endpoints, where the optimal allocation is

given by 1 : ∆ : |1 − ∆| (cf. Pigeot et al., 2003), the optimal allocation depends on the

parameter of investigation.
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Kieser and Friede (2007) derived the optimal allocation under the additional constraint that

the test and reference group are balanced, n∗
T = n∗

R. Our result (5.2) shows that this re-

striction does not lead to an approximative optimal allocation, in general. Exemplary, Kieser

and Friede (2007) derive that the allocation 2.1 : 2.1 : 1 would be optimal for πP = 0.1,

πT = πR = 0.9 and ∆ = 0.6, whereas (5.3) yields an optimal allocation of 2.5 : 1.5 : 1, giving

more weight to the test group relative to the reference group and nearly the same to the

placebo group. The allocation 2.5 : 1.5 : 1 and the allocation 2.1 : 2.1 : 1 result in a total

required sample size of 79 and 89, respectively, when a power 1 − β of 80% is desired. Thus,

our optimal allocation makes a further reduction of total sample size of about 12% possible

in this specific setting. The sample size reductions which are possible in other settings are

illustrated in Figure 5.1, where the reduction for the optimal allocation instead of a balanced

and a 2:2:1 allocation, respectively, is presented for π0,P = 0.1 and different values of ∆,

exemplary. For the 2:2:1 allocation we observe reductions between about 3% and 10%. For

the balanced allocation there are reductions up to 20% and more possible. Thus, the 2:2:1 al-

location is more apporiate than the balanced allocation. However, it can be further improved

by the optimal one (5.3).

5.1.3 Planning a trial - applying the GSSP

For binary distributed endpoints the weighted KL-divergence is given by

K(ζ(0), ζ, w) =
∑

k=T,R,P

wk ·
(

π
(0)
k · log

π
(0)
k

πk
+ (1 − π

(0)
k ) · log

1 − π
(0)
k

1 − πk

)

(5.4)

with ζ = (πT , πR, πP ) and ζ(0) = (π
(0)
T , π

(0)
R , π

(0)
P ). We restrict our investigations in the

following to the commonly used alternative π
(0)
T = π

(0)
R . To restrict the minimization problem

of the weighted KL-divergence to H0,πk
(2.1) we substitute πT = ∆πR + (1 − ∆)πP in (5.4).

We have minimized the KL-divergence (5.4) in πR and πP by the Newton-Raphson algorithm,

confer Section 3.2.3. Note that this is a strictly convex optimization problem by Theorem 1

because

−E
π

(0)
k

[

∂2

∂2π
log f(π, X)

]

=
π

(0)
k

π2
+

1 − π
(0)
k

(1 − π)2
> 0

for any π and π
(0)
k . This guarantees the existence of a unique minimizer and geometric

convergence of the Newton-Raphson algorithm. Based on the obtained results the limit σ2
RML

of the restricted MLE’s of the variance is computed and compared to the true variance σ2
0, see

Table 5.1, columns 6 and 9. We used throughout Table 5.1 a choice of ∆ = 0.7, exemplary.

We may use (4.2) and (4.3), respectively, to compute the total required samples size. The

results are also displayed in Table 5.1 for a power 1 − β of 0.7 and 0.8, respectively, for the
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optimal allocation, displayed in the columns 3-5 of Table 5.1, and the commonly used 2:2:1

allocation for the purpose of illustrating the influence of allocation on the total required sample

size. The sample size values in brackets are determined by (4.2), i.e. the RET is performed

with unrestricted estimation of variance σ̂2 = σ̂2
ML, and the values in front without brackets

are determined by (4.3), i.e. the RET is performed with restricted estimation of variance

σ̂2 = σ̂2
RML. For large sample sizes the differences between both values are relatively small,

whereas for small to moderate sample sizes (n < 200) the differences are more pronounced.

The amount of difference is driven by the difference between σRML and σ0, see again Table

5.1, column 6 and 9.

It is important to note that these results differ from those obtained by Kieser and Friede

(2007). This is due to the fact, that for the computation of σ2
RML we have used the limit

of the restricted MLE σ̂2
RML instead of only choosing σ2

RML such that the parameters are

on the boundary of H0,πk
. We will see that the usage of the exact limit σ2

RML significantly

improves the precision of the sample size formula (4.3). To this end, we have determined

the required total sample size n via (4.3) with the usage of the exact limit σ2
RML to obtain

a power of 80% at level α = 2.5% (in order to be comparable with the results obtained by

Kieser and Friede (2007)) for different parameter settings and allocations and thereafter we

have computed the resulting exact power (see Table 5.2). Note that we always have rounded

down the group sample sizes nk, k = T, R, P . The results obtained by Kieser and Friede

(2007), who have not used the exact limit σ2
RML, are presented for comparison. Kieser and

Friede (2007) obtain an exact power that increases to 85% or even to 87% for some settings

although n > 200. Whereas the power decreases up to 78% for other settings. In contrast,

our method results in power values between 80% and 82% for all settings (with one exception

for the case wT : wR : wP = 3 : 2 : 1, ∆ = 0.6, π0,P = 0.1 and π0,R = 0.9 due to the small

total sample size of 45). In summary, we find that our approximative formula yields very

satisfactory results over a broad range of scenarios.

5.1.4 Log odds retention of effect hypothesis

For the log odds retention of effect hypothesis (2.2) the procedures modify in the following.

We end up with the test statistic

T =
√

n σ̂−1 η̂ =
√

n σ̂−1

(

log

(

π̂T

1 − π̂T

)

− ∆ log

(

π̂R

1 − π̂R

)

+ (∆ − 1) log

(

π̂P

1 − π̂P

))

with π̂k = n−1
k

∑nk
i=1 Xki and σ̂ either denoting the restricted σ̂RML or the unrestricted ML-

estimator σ̂ML of σ given by

σ̂2
ML = n ·

(

1

nT π̂T (1 − π̂T )
+

∆2

nRπ̂R(1 − π̂R)
+

(1 − ∆)2

nP π̂P (1 − π̂P )

)

.
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Again, σ̂2
RML is observed by replacing the ML-estimators π̂k in the denominator by the to

H0 restricted ones π̂k,H0 , which has to be computed numerically as already discussed for the

“classical” hypothesis (2.1) for binary endpoints. Considering the data set in the treatment of

depression from Section 2.1 the RET for the log odds retention of effect hypothesis (3.2) with

∆ = 0.8 yields T = 2.118 (2.113) using the restricted (unrestricted) estimator for the variance

estimation and corresponding p-values 1.71% (1.73%). Thus, we would reject H
0,log

(

πk
1−πk

)

from (2.2) and claim that the test treatment duloxetine is non-inferior over paroxetine.

In contrast to the “classical” hypothesis (2.1), the allocation

n∗
T : n∗

R : n∗
P = 1 : ∆

√

π0,T (1 − π0,T )

π0,R(1 − π0,R)
: |1 − ∆|

√

π0,T (1 − π0,T )

π0,P (1 − π0,P )
. (5.5)

is asymptotically optimal. The root terms appear in reciprocal values due to the differences

in the variance σ2
0. It is important to note that the optimal allocation significantly differ due

to the formulation of the non-inferiority hypothesis, although the same endpoints of interest

are considered.

The major point of the log odds retention of effect hypothesis is the following: unlike for the

“classical” hypothesis for binary endpoints and all other hypothesis considered in this work the

asymptotically optimal allocation for log odds retention of effect hypothesis, presented in (5.5),

does not possess satisfactory finite sample approximation in general, i.e. the optimal allocation

for the finite setting significantly differ from the asymptotically optimal one. This issue will

be discussed in detail in Section 6 to which we also deferred some exemplary computation of

total required sample sizes to obtain an aspired power 1 − β.
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Table 5.2: Precision of sample size formula (4.3) and comparison to the results obtained by

Kieser and Friede (2007) for a aspired power of 80% at significance level α = 2.5%.

Usage of Eq. (4.3) from this

Kieser & Friede (2007) work with exact limit σRML

wT : wR : wP ∆ π0,P π0,R n Exact Power n Exact Power

1:1:1 0.6 0.1 0.5 309 78.94% 319 80.08%

0.1 0.7 135 81.51% 132 80.77%

0.1 0.9 54 83.05% 53 80.49%

0.3 0.7 318 81.17% 312 80.45%

0.3 0.9 99 83.92% 94 81.52%

0.5 0.9 213 84.95% 195 81.43%

0.8 0.1 0.7 606 81.74% 583 80.18%

0.1 0.9 201 85.57% 182 81.14%

0.3 0.9 345 85.39% 309 81.08%

0.5 0.9 726 84.74% 653 80.51%

2:2:1 0.6 0.1 0.5 270 78.59% 283 80.36%

0.1 0.7 115 79.96% 119 80.62%

0.1 0.9 50 84.71% 49 80.71%

0.3 0.7 290 80.73% 287 80.02%

0.3 0.9 95 84.25% 89 80.82%

0.5 0.9 213 86.06% 186 81.11%

0.8 0.1 0.7 510 81.69% 492 80.15%

0.1 0.9 170 85.42% 156 81.99%

0.3 0.9 300 85.51% 269 81.09%

0.5 0.9 635 84.69% 575 80.88%

3:2:1 0.6 0.1 0.5 252 78.15% 268 80.49%

0.1 0.7 108 80.54% 110 81.05%

0.1 0.9 42 80.12% 45 83.09%

0.3 0.7 276 80.97% 272 80.31%

0.3 0.9 90 85.70% 83 81.07%

0.5 0.9 204 87.31% 173 80.65%

0.8 0.1 0.7 486 82.51% 458 80.17%

0.1 0.9 156 87.36% 135 81.75%

0.3 0.9 282 87.17% 241 81.21%

0.5 0.9 606 86.02% 520 80.30%
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5.2 Poisson endpoints: Treatment of epilepsy

In this section we revisit the example in the treatment of epilepsy introduced in Section 2.2.

5.2.1 Performing the RET

The MLE λ̂k is obtained by the mean value n−1
k

∑nk
i=1 Xki which is asymptotically normally

distributed with variance σ2
k = λk. The unrestricted MLE of the variance σ2 is obtained by

σ̂2
ML = n ·

(

λ̂T

nT
+ ∆2 λ̂R

nR
+ (1 − ∆)2

λ̂P

nP

)

.

Hence, we end up with the test statistic (see (3.4))

T =
−λ̂T + ∆λ̂R + (1 − ∆)λ̂P
√

λ̂T
nT

+ ∆2 λ̂R
nR

+ (1 − ∆)2 λ̂P
nP

(5.6)

in order to test H0,−λk
from (2.4), where H0,−λk

is rejected if T > z1−α. The restricted

version of the Wald-type test is observed by replacing the MLEs λ̂k in the denominator by

the to H0,−λk
restricted ones. Again, we have computed the restricted MLEs numerically as

for binary endpoints in the previous section.

The RET for the hypothesis (2.4) with ∆ = 0.5 yields T = 1.328 (1.349) in (5.6) using

the restricted (unrestricted) estimator for the variance estimation and corresponding p-values

9.21% (8.86%). Thus, we would not reject H0,−λk
from (2.4) at level α = 0.05 and we could

not claim that the test treatment is non-inferior over the reference one.

5.2.2 Optimal allocation

Table 5.3: Optimal allocation of samples for the example of Poisson distributed endpoints

∆ = 0.5 ∆ = 0.7 ∆ = 0.8
λ0,T

λ0,P
=

λ0,R

λ0,P
w∗

T w∗

R w∗

P w∗

T w∗

R w∗

P w∗

T w∗

R w∗

P

0.9 0.49 0.25 0.26 0.50 0.35 0.16 0.50 0.40 0.10

0.8 0.49 0.24 0.27 0.49 0.34 0.16 0.49 0.40 0.11

0.7 0.48 0.24 0.28 0.49 0.34 0.17 0.49 0.39 0.12

0.6 0.47 0.23 0.30 0.48 0.34 0.19 0.49 0.39 0.13

0.5 0.45 0.23 0.32 0.47 0.33 0.20 0.48 0.38 0.14

0.3 0.41 0.21 0.38 0.44 0.31 0.24 0.46 0.37 0.17

0.2 0.38 0.19 0.43 0.42 0.30 0.28 0.44 0.36 0.30

For Poisson distributed endpoints and the hypothesis (2.4) the optimal allocation of samples
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is given by

n∗
T : n∗

R : n∗
P = 1 : ∆

√

λ0,R

λ0,T
: |1 − ∆|

√

λ0,P

λ0,T
. (5.7)

Table 5.3 presents the optimal allocation for the commonly used alternative λ0,T = λ0,R for

different choices of λ0,T /λ0,P = λ0,R/λ0,P and ∆. Note that we may assume w.l.o.g λ0,P = 1

because multiplication of all parameters λ0,k, k = T, R, P , by the same factor does not change

the optimal allocation. This simplifies computation significantly. The sample size reductions

which are possible are illustrated in Figure 5.2 where the reduction for using the optimal

allocation instead of a balanced and a 2:2:1 allocation, respectively, is presented for different

values of ∆. The results are quite similar to the ones for binary endpoints in the previous

section. For the 2:2:1 allocation we observe reductions between about 5% and 15%. For

the balanced allocation reductions between 10% and 20% occur. We again find that the 2:2:1

allocation is more apporiate than the balanced allocation. But again, it is still not the optimal

one in considered settings.
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Figure 5.2: Example of Poisson distributed endpoints: Sample size reduction in % when

optimal allocation is used instead of the balanced allocation (right figure) and instead of the

allocation 2:2:1 (left figure) for different values of ∆, ∆ = 0.5 (dotted line), ∆ = 0.6 (dashed

line), ∆ = 0.7 (dotdash line), ∆ = 0.8 (solid line).

5.2.3 Planning a trial - applying the GSSP

For Poisson distributed endpoints the weighted KL-divergence is given by

K(ζ(0), ζ, w) =
∑

k=T,R,P

wk ·
(

λk − λ
(0)
k + λ

(0)
k ·

(

log λ
(0)
k − log λk

))

(5.8)



40 CHAPTER 5. SPECIFIC MODELS - APPLICATIONS AND IMPROVEMENTS

with ζ = (λT , λR, λP ) and ζ(0) = (λ
(0)
T , λ

(0)
R , λ

(0)
P ). In the following we restrict our investi-

gations to the commonly used alternative λ
(0)
T = λ

(0)
R . To restrict the minimization prob-

lem of the weighted KL-divergence to the boundary of H0,−λk
(2.4) we substitute λT =

∆λR + (1 − ∆)λP in (5.8). For this situation, an explicit minimization of the KL-divergence

is possible. To this end, we evaluate the derivatives of K w.r.t. λR and λP at zero, which is

extremely cumbersome and yields the following rather complex solution for the KL-divergence

minimizer, denoted by λk,H0 , k = T, R, P ,

λR,H0
=

[

∆2(−1 + wT )wT λ0,P − ∆(−1 + wT )wT (λ0,P − λ0,T ) + w2
R((−1 + ∆)λ0,P + (2 − ∆)λ0,T )

+ wR((−1 + ∆)(−1 + wT + ∆wT )λ0,P + (−∆ + wT + 2∆wT − ∆2wT )λ0,T ) − S
]

/ (2(wR + ∆(−1 + wT ))(wR + ∆wT ))

λP,H0
=

[

w2
Rλ0,P + ∆2wT ((−1 + wR + wT )λ0,P − wRλ0,T ) + wR((−1 + wT )λ0,P wT λ0,T )

+ ∆((2 + w2
R − 3wT + w2

T + wR(−3 + 2wT ))λ0,P + (wR − w2
R + wT − w2

T )λ0,T ) − S
]

/
(

2((−1 + wR)wR + ∆2(−1 + wT )wT + ∆(1 − wT + wR(−1 + 2wT )))
)

λT,H0
= ∆λR,H0

+ (1 − ∆)λP,H0

with

S =
{

−4∆(−1 + wR + wT )((−1 + wR)wR + ∆2(−1 + wT )wT + ∆(1 − wT + wR(−1 + 2wT )))λ0,P

· ((−1 + wR + wT )λ0,P − (wR + wT )λ0,T ) + (∆2wT ((−1 + wR + wT )λ0,P − wRλ0,T )

+ wR((−1 + wR + wT )λ0,P − wT λ0,T ) + ∆((2 − 3wR + w2
R − 3wT + 2wRwT + w2

T )λ0,P

+ (wR − w2
R + wT − w2

T )λ0,T ))2
}1/2

.

The KL-divergence minimizer λk,H0 , k = T, R, P are displayed in Table 5.4 (columns 3-5)

for different parameter constellations and choices of ∆. Based on these results the limit

σ2
RML of the restricted MLE’s of the variance is computed (column 6) and compared to the

true variance σ2
0, see Table 5.4 columns 7 and 8. Throughout Table 5.4 we presumed the

usage of the optimal allocation from Table 5.3. In addition, for all parameter constellations

the required total samples size n0.7, n0.8 to obtain a power of 0.7 and 0.8, respectively, are

computed via (4.2) (values in brackets) and (4.3), respectively.

Let us illustrate the use of these tables by the following example. Presume that we would

like to detect the alternative λT = λR = 16, λP = 20 (order of magnitude as in example 2.2)

and ∆ = 0.8 with a probability of 80% at a significance level α = 0.05. Table 5.4 provides

that we require a total sample size of 633 under the optimal allocation of (wT , wR, wP ) =

(0.49, 0.40, 0.11), which yields nT = 310, nR = 253 and nP = 70. A balanced allocation

as present in the example data would require a total sample size of 796. Thus, the optimal

allocation provides a reduction in the required sample sizes of about 20%.
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Table 5.4: Example of Poisson distributed endpoints: Limits of restricted MLE’s, limit

of variance estimator σ̂RML and required samples size to obtain a power of 0.7 and 0.8,

respectively, when the variance is estimated restrictedly to the null-hypothesis (unrestrictedly),

a nominal significance level α = 5%, for different parameter constellations and choices of ∆

for the optimal sample allocation in (5.7).

∆
λ0,T

λ0,P
=

λ0,R

λ0,P

λT,H0

λ0,P

λR,H0

λ0,P

λP,H0

λ0,P

σRML

λ0,P

σ0

λ0,P

σRML

σ0
n0.7 · λ0,P n0.8 · λ0,P

0.5 0.9 0.93 0.88 0.97 1.924 1.923 1.000 6965 (6961) 9150 (9146)

0.8 0.85 0.75 0.95 1.845 1.842 1.002 1601 (1596) 2102 (2097)

0.7 0.78 0.64 0.92 1.763 1.755 1.005 649 (645) 852 (847)

0.6 0.71 0.52 0.89 1.679 1.662 1.011 331 (325) 433 (427)

0.5 0.64 0.41 0.87 1.594 1.561 1.021 190 (184) 248 (241)

0.3 0.51 0.21 0.81 1.426 1.322 1.079 76 (68) 98 (89)

0.2 0.46 0.13 0.80 1.358 1.171 1.160 51 (41) 65 (53)

0.7 0.9 0.92 0.89 0.98 1.913 1.913 1.000 19134 (19131) 25138 (25135)

0.8 0.83 0.77 0.97 1.822 1.821 1.001 4337 (4333) 5697 (5692)

0.7 0.75 0.66 0.95 1.726 1.722 1.002 1729 (1724) 2270 (2265)

0.6 0.66 0.55 0.93 1.624 1.617 1.004 860 (855) 1129 (1123)

0.5 0.58 0.44 0.91 1.515 1.502 1.009 479 (472) 628 (620)

0.3 0.42 0.23 0.86 1.278 1.231 1.038 172 (162) 224 (213)

0.2 0.35 0.14 0.84 1.153 1.060 1.087 105 (92) 135 (121)

0.8 0.9 0.91 0.89 0.99 1.908 1.908 1.000 42813 (42810) 56249 (56245)

0.8 0.82 0.78 0.98 1.810 1.810 1.000 9640 (9636) 12664 (12660)

0.7 0.73 0.67 0.97 1.707 1.706 1.001 3810 (3805) 5004 (4999)

0.6 0.64 0.56 0.95 1.597 1.594 1.002 1875 (1869) 2462 (2456)

0.5 0.55 0.46 0.94 1.479 1.473 1.004 1028 (1021) 1349 (1342)

0.3 0.38 0.25 0.90 1.210 1.186 1.020 348 (338) 456 (444)

0.2 0.30 0.15 0.87 1.054 1.005 1.049 200 (186) 261 (244)
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5.3 Censored, exponentially distributed endpoints

In this section we summarize the paper Mielke et al. (2008), which was already citied several

times in this work and which has formed the impulse for the general theory presented in the

Chapters 3 and 4. Mielke et al. (2008) consider the assessment of non-inferiority for censored,

exponentially distributed endpoints by means of a retention of effect type hypothesis. As

exponentially distributed endpoints fit certainly in the general parametric model considered

in Chapter 3 and 4, this setting just represents a specific application of presented results.

However, Mielke et al. (2008) allow for right-censoring of the observations, which therewith

extends the results so far. The work was mainly motivated by a clinical trial in depression,

which we would like to introduce in the next section.

5.3.1 Refined investigation of the treatment in depression
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Figure 5.3: Three-arm study for treatment of depression: Kaplan-Meier curves with marks for

censored data and fitted exponential survival curves for the endpoint ”time to first response”,

test treatment (red), reference treatment (blue) and placebo (green).

In the therapy of depression achieving remission is the clinically desired goal (Nierenberg and

Wright, 1999), whereas the remission is defined as maintaining the Hamilton Rating Scale of

Depression (HAM-D) total score at ≤ 7. The examples considered in this work (confer Section

2.1 and 5.1) and Kieser and Friede (2007) provide the statistical methodology to examine

remission as binary endpoint or to be more precisely, does the patient achieve remission at

treatment end or not. However, Yadid et al. (2000) point out that in addition to remission

the fast onset of action and the prevention of relapse are important and thus are the major
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goal of the present research. The primary endpoint time to first remission incorporates this

issue. The occurrence of remission can be investigated over the complete time interval of the

study. The data representing the time to first remission in Figure 5.3 are from a randomized,

double-blind study in major depression, where a new antidepressant is compared to a standard

antidepressant known for having a fast onset of action and to placebo. We assume that the

time points to first remission are i.i.d. right censored, exponential distributed in each group.

The PP-plots in Figure 5.4 indicate a quite good fit of this model. Note that due to the heavy

censoring at the right tail the quality of fit is decreased, of course.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Treatment group

Empirical prob.

T
he

or
iti

ca
l p

ro
b.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reference group

Empirical prob.

T
he

or
iti

ca
l p

ro
b.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Placebo group

Empirical prob.

T
he

or
iti

ca
l p

ro
b.

Figure 5.4: PP-Plots for fitted exponential model vs. Kaplan-Meier.

5.3.2 Model and hypothesis

The model considered by Mielke et al. (2008) is formalized in following way. Let Tki for

i = 1, . . . , nk be independent and exponentially distributed survival times with parameter λk,

k = R, T, P . Due to the interpretation of the parameter and therewith combined formulation

of the hypothesis it is assumed that the parametrization of the exponential distribution is

such that E[Tki] = λk. Further, let the corresponding censoring times Uki be independent

distributed of Tki for i = 1, . . . , nk and k = R, T, P . The observations consist of pairs

(Xki, δki), where Xki = min{Tki, Uki} are the observed survival times and δki = 1{Tki≤Uki},

i = 1, . . . , nk, k = R, T, P , are the corresponding censoring indicators. Hence δki = 1 stands

for an uncensored observation. Further, it is assumed that the probabilities for an uncensored

observation should be positive, i.e.

pk := P (δki = 1) > 0

for k = R, T, P . Thus, the distribution of the observations (Xki, δki) are characterized by the

parameter θk = (λk, pk). According to the example in the treatment of depression above it is

assumed that small values for the observations Xki are associated with higher efficacy of the



44 CHAPTER 5. SPECIFIC MODELS - APPLICATIONS AND IMPROVEMENTS

treatment, e.g. we observe the time which elapses until healing or in general until a positive

impact occurs. Therefore, small values of λT are desirable. The hazard ratio, which is in

the case of exponentially distributed endpoints just the ratio of the λ’s, is the usual way of

comparing time to event endpoints. Therefore, Mielke et al. (2008) consider as measure of

efficacy h(λk, pk) = − log λk yielding the retention of effect hypothesis

vs.
H0,− log λk

: log λT − log λP ≥ ∆ (log λR − log λP )

K0,− log λk
: log λT − log λP < ∆ (log λR − log λP )

(5.9)

with ∆ ∈ [0,∞). Alternatively the retention of effect hypothesis from (5.9) could be defined

in the ratio of differences in means, i.e. through H0,−λk
: (λP − λT ) ≤ ∆(λP − λR), (Hung

et al., 2005). The methods presented in this work also provide basics for a Wald-type test

for H0,−λk
. However, in this case the asymptotic variance would depend on the parameters

λk, k = R, T, P . In contrast for the RET for the hypothesis (5.9) the asymptotic variance σ2

is independent of the parameters λk, k = R, T, P . That has the advantage that the variance

can be estimated unrestricted, see (5.10).

5.3.3 RET and optimal sample allocation

According to the general procedure summarized in Figure 3.1 in Chapter 3 Mielke et al. (2008)

obtain for H0,− log λk
in (5.9) as a test statistic

T =
√

n
η̂

σ̂
=

log λ̂T − ∆ log λ̂R + (∆ − 1) log λ̂P
√

1
δT

+ ∆2

δR
+ (∆−1)2

δP

, (5.10)

with the MLE for λk

λ̂k =
Xk

δk
,

for k = R, T, P with Xk =
∑nk

i=1 Xki and δk =
∑nk

i=1 δki. As usual, for a given level of

significance α the hypothesis H0,− log λk
will be rejected and non-inferiority can be claimed if

T < zα, where zα denotes the α-quantile of the standard normal distribution.

Consistent with the optimal allocation derived in Chapter 4, Figure 4.1, Mielke et al. (2008)

obtain that the optimal sample allocation is given by

n∗
T : n∗

R : n∗
P = 1 : ∆

√

pT /pR : |1 − ∆|
√

pT /pP ,

which yields a minimal total required sample size of

n1−β =

(

1√
pT

+
∆√
pR

+
|1 − ∆|√

pP

)2(zα − z1−β

η(0)

)2

. (5.11)
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From (5.11) we see that the total required sample size is a monotone decreasing function in

each pk, k = T, R, P , and it is minimal in the case of uncensored observations, i.e. pT = pR =

pP = 1. Further, the monotonicity provides a worst case scenario for sample size planning

by means of presuming homogeneous censoring probabilities in the three groups, k = T, R, P ,

and setting the common censoring probability to the smallest value, i.e. p = min{pT , pR, pP }.
In planning a clinical trial, one would expect pT , pR > pP and hence pP = min{pT , pR, pP }
because the reference and the test treatment are expected to be efficient, i.e. λT , λR < λP ,

which implies under identically censoring variables Uk in the groups that reference and test

treatment are less affected by censoring than placebo. Hence, a conservative recommendation

for planning the trial is to assume that all censoring probabilities equal pP .
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Figure 5.5: Reduction in total sample size when optimal allocation is used instead of balanced

allocation (left figure), and instead of 2:2:1 allocation (right figure).

As in the examples of binary and Poisson endpoints from the precedent sections the optimal

allocation partly permits a serious reduction in required total sample sizes. This is illustrated

in Figure 5.5, where the reduction for using the optimal allocation instead of a balanced and

2 : 2 : 1 allocation, respectively, is presented. For the balanced design a reduction of at least

10% is always possible and even more than 30% for ∆ close to zero or one. The allocation

2 : 2 : 1 is more appropriate for ∆ ∈ [0.5, 1), but a reduction up to 20% is still possible by

reallocating to the optimal allocation.

5.3.4 Complete test procedure

As already mentioned in the introduction, Chapter 1, the test problem considered so far is

to show non-inferiority of the test treatment over the reference. The inclusion of a placebo

group makes it possible to directly demonstrate the effectiveness of a therapy and therewith
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ensures assay sensitivity of the test procedure. Pigeot et al. (2003) carry out a pretest for

superiority of the reference treatment over placebo, which provides internal evidence of assay

sensitivity. Though, Koch (2005) points out that this procedure would blame a test treatment

that has shown to be superior over placebo and non-inferior over the reference for the fact

that reference could not beat placebo. Therefore, Koch and Röhmel (2004) perform a pretest

for superiority of the test treatment over placebo instead. It was not the objective of Mielke

et al. (2008) to take up this discussion. Thus, they only notice that in any case a two-step

test procedure must be conducted to establish non-inferiority and effectiveness of the test

treatment, where in a first step a pretest for superiority of either the reference or the test

treatment over placebo is performed, and in a second step the non-inferiority is investigated.

For the specific setting of censored, exponentially distributed endpoints from Mielke et al.

(2008) the pretest for superiority of a treatment over placebo coincides with rejecting the null

hypothesis HS,j : λj ≥ λP either for the reference treatment (j = R) or for the test treatment

(j = T ). Thus, the overall hypothesis is given by

H0 : H0,− log λk
∪ HS,j = {log λT − log λP ≥ ∆ (log λR − log λP )} ∪ {λj ≥ λP } ,

where H0 is rejected if the sub-tests for H0,− log λk
and HS,j can be rejected. In order to avoid

a misunderstanding, note that H0 either includes HS,R or HS,T and not both at once. Due to

the principles of intersection-union-tests, this test decision for H0 does not exceed a level α

if H0,− log λk
and HS,j are tested the level α, respectively. Therefore, the power for rejecting

H0 is reduced compared to simple testing H0,− log λk
. However, Mielke et al. (2008) figure out

that this reduction is negligible for the commonly used alternative λT = λR < λP , see Section

4.2. in Mielke et al. (2008). Similar results were obtained by Pigeot et al. (2003) and Kieser

and Friede (2007) for normal and binomial endpoints, respectively.

We would like to note that Mielke et al. (2008) figure out that in their setting from a statistical

point of view the pretest for HS,T is preferred to those for HS,R because the test for superiority

over placebo is more powerful for the test treatment than for the reference treatment in general

(for the settings considered by Mielke et al. (2008)), but especially also for the commonly used

alternative λT = λR due to optimal sample allocation which gives more weight to the test

treatment group.

5.3.5 Clinical trial in depression

We revisit the example in treatment of major depression from Section 5.3.1. In this random-

ized, double blind study a new antidepressant (T) is compared to a standard antidepressant

(R), known for having a fast onset of action, and to placebo (P). The comparison is based

on the analysis of the time to first remission whereas remission is defined as maintaining the
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Table 5.5: P-values for the RET and the pretests.

Hypothesis p-value in %

H0,− log λk
with ∆ = 0.5 1.83

H0,− log λk
with ∆ = 0.8 2.51

H0,− log λk
with ∆ = 1 4.42

HS,R 33.34

HS,T 3.88

Hamilton Rating Scale of Depression (HAM-D) total score at ≤ 7 as aforementioned. The

data set consists of nT = 262, nR = 267, and nP = 135 pairs of observations, the time to first

remission in days, and the censoring indicator with a fraction of 0.51, 0.46, and 0.41 uncen-

sored observations, respectively. For the ML-estimators we obtain λ̂T = 67.75, λ̂R = 83.84,

and λ̂P = 89.87. Thus, one would guess that the new antidepressant has the fastest onset of

action followed by the reference treatment and by placebo.

The resulting p-values for the RET and the pretests are presented in Table 5.5. If we presume

the commonly used significance level of 5%, the hypothesis of the RET could be even rejected

for ∆ = 1 and hence not only non-inferiority but also superiority of the new treatment over

the standard treatment could be claimed. The pretest with the new treatment (HS,T ) would

reject in favor of superiority of new treatment over placebo. In contrast, the pretest with the

reference treatment (HS,R) would fail, i.e. it does not reject. This fact supports the view of

Koch and Röhmel (2004) to perform the pretest for HS,T instead of HS,R.

The present sample size allocation is approximately nT : nR : nP ≈ 2 : 2 : 1. Hence, if

we consider ∆ = 0.5, a sample size reduction of roughly 10% would have been possible by

reallocating to the optimal allocation 2 : 1 : 1 (see Figure 5.5).





CHAPTER 6

Finite sample approximations

The procedures presented and applied in the previous sections, including performing the RET,

the sample size formulas and the optimal allocation of samples, make use of the asymptotic

normality of ML-estimators, i.e. they are based on results which are valid for the number of

total samples n converging to infinity. In Section 6.1 we discuss the finite sample behavior

of this normal approximation. For the derivation of the asymptotically optimal allocation

in Section 4.1 the asymptotically subordinated terms were disregarded, which for this rea-

son yields to a further approximation beside the normal approximation. In Section 6.2 we

investigate the finite sample effect of this procedure.

6.1 Normal approximation

The test decision for the RET in (3.4) as well as the sample size formulas (4.2) and (4.3)

for planning the RET make use of the normal approximation of the test statistic T in (3.4).

As in this work we are faced with regular parametric models it is to expect that the normal

approximation fits well for quite moderate sample sizes. Indeed, extensive simulations studies

by Kieser and Friede (2007) and Mielke et al. (2008) confirm for normally and exponentially

distributed endpoints, respectively, that the approximation works quite well for n > 100, i.e.

the actual type I error nearly attains the nominal significance level exactly. However, note

that for binary endpoints restricted estimation of the variance is necessary to obtain this

improved approximation results due to the dependency of the variance on the parameters

of interest. For Poisson distributed endpoints we have obtained similar results, which are

omitted for the reason of conciseness. We only exemplary present the results for censored,

exponentially distributed endpoints. Figure 6.1 displays the simulated actual type I errors

with 10000 replications for the balanced, the 2 : 2 : 1 and the optimal allocation, respectively,

for ∆ = 0.5. The results for ∆ = 0.7 are similar and omitted again due to the marginal gain

49
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of insight.

Table 6.1: Simulated actual type I error in % for a nominal significance level of α = 0.05,

pT = pR = pP = 0.8, ∆ = 0.5, and 10 000 replications. Values larger than 5.5% are bold.

λP /λR

n nT : nR : nP 10 8 5 3 2 1.5 1.2

30 1:1:1 5.69 5.89 5.71 5.71 6.02 5.94 6.17

2:2:1 5.35 5.10 5.31 5.26 4.91 5.02 5.20

2:1:1 4.68 4.44 4.55 4.78 4.64 4.78 4.63

60 1:1:1 5.90 5.67 5.62 5.29 5.21 5.59 5.35

2:2:1 5.23 5.25 4.91 4.56 5.22 5.19 5.26

2:1:1 4.92 4.23 4.79 4.87 4.84 4.32 5.02

120 1:1:1 5.80 5.29 5.47 5.35 5.60 5.42 5.47

2:2:1 4.83 5.00 5.28 4.80 4.88 5.35 4.66

2:1:1 4.76 4.46 4.30 4.94 4.91 4.56 4.73

240 1:1:1 4.97 5.31 5.43 5.22 4.96 5.09 5.30

2:2:1 5.05 5.20 5.03 5.06 4.87 5.11 4.87

2:1:1 5.02 4.77 4.54 5.05 4.79 5.06 4.61

480 1:1:1 5.01 5.68 5.11 5.03 5.01 5.10 5.15

2:2:1 5.13 5.41 5.06 4.86 5.19 5.32 5.07

2:1:1 4.90 4.75 5.15 5.13 4.55 4.94 5.00

960 1:1:1 5.35 5.13 4.98 5.42 5.02 5.22 5.09

2:2:1 4.89 4.77 4.74 5.14 4.87 4.83 4.97

2:1:1 4.61 4.89 4.74 4.63 4.98 5.09 4.64

1440 1:1:1 4.94 5.23 5.08 5.37 4.98 5.25 5.31

2:2:1 4.84 4.95 5.25 5.08 4.83 4.83 4.75

2:1:1 5.03 5.10 5.23 5.27 4.60 4.89 4.63

6.2 Asymptotically optimal sample allocation

The asymptotically optimal allocation in (4.1) has to be understood as approximation for

finite samples as it customary for asymptotic results. In Section 4.1.2 we have shown that

maximizing the power asymptotically is tantamount to minimize the variance σ2
0. However, if

the variance σ2 is estimated with restriction to the null hypothesis the term σRML in the power

formula (3.12), which is also influenced by the allocation, is disregarded. Asymptotically this

is correct because the term σ2
0 is dominating due to

√
n factor. Nevertheless, as we will see

in the following this may affect the optimal allocation for finite sample sizes.

It is important to note that we only disregard the term σRML when we estimate the variance

σ2
0 with restriction to the null hypothesis. Thus, the case of normal endpoints from Pigeot

et al. (2003) and the case of censored, exponentially distributed endpoints from Mielke et al.

(2008) are not faced with this approximation and possible resulting inaccuracies because in

these settings the variance σ2
0 does not depend on the parameters of interest. For binary
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Figure 6.1: Finite sample reduction from (6.2) of minimal required total sample size relative

to the asymptotic optimal allocation.

endpoints with the “classical” hypothesis (2.1) and for Poisson endpoints with the hypothesis

considered in this work (2.4) numerically investigations turn out that the asymptotically

optimal allocation w∗
T , w∗

R, w∗
P from (4.1) performs satisfactory for finite samples, in general,

in terms of that no other allocation exhibits a significant lower total number of required

sample size. From the examples considered in this work binary endpoints with the log odds

retention of effect hypothesis (2.2) take a particular position in this context. In this setting

the asymptotically optimal allocation is even not nearly optimal (meaning is given in the next

section) for finite samples, in general. Hence, we focus in the following on this setting and

discuss this setting in the next section in detail.

6.2.1 The log odds RET

As already discussed the asymptotically optimal allocation (5.5) for the log odds retention of

effect hypothesis and binary endpoints has to be understood as approximative for finite sam-
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Figure 6.2: Finite sample reduction from (6.2) of minimal required total sample size relative

to the simplified optimal allocation 1 : ∆ : |1 − ∆|.

ples. To investigate the finite sample behavior we compare in this section the asymptotically

optimal allocation to the finite sample optimal allocation, denoted by wf
T , wf

R, wf
P .

To this end, we compute the finite sample optimal allocation numerically, i.e. minimizing the

total required sample size from (4.3)

n1−β(wT , wR) = (z1−α · σRML + z1−β · σ0)
2 · η−2

0 (6.1)

in wT , wR. Note that we write n1−β(wT , wR) as a function of wT , wR, wP , now, to highlight

the dependency on the allocation, in contrast to (4.3). wP is omitted because it is determined

through wP = 1−wT −wR. The minimization of n1−β is performed by means of a grid search

with wT = 0.01, . . . , 0.98 and wR = 0.01, . . . , (0.99 − wT ).

It is self-evident that the allocations should be compared with respect to their resulting

required sample sizes. To this end, we consider the reduction in total sample sizes for the

finite optimal allocation relative to the asymptotic optimal allocation

R =
n1−β(w∗

T , w∗
R) − n1−β(wf

T , wf
R)

n1−β(w∗
T , w∗

R)
(6.2)

with w∗
T = n∗

T /n and w∗
R = n∗

R/n from (5.5). Note that the asymptotically optimal allocation

is also optimal in the finite setting if the reduction R in (6.2) is zero. We have performed the

comparison for many settings which we do not discuss in detail. The results for the commonly

used settings of ∆ = 0.5 and ∆ = 0.7 are presented in Figure 6.1. The reduction in total

sample size from (6.2) is plotted in dependency of π0,P and π0,T = π0,R for a significance

level of α = 5% and a power of 1 − β = 80%. To illustrate the influence of the power 1 − β

we have included for ∆ = 0.5 plots for 1 − β = 70%, 90%, in addition. It turns out that the

asymptotically optimal allocation is also nearly optimal in the finite setting for a broad field of
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parameters π0,P and π0,T = π0,R, more precisely as long as π0,T = π0,R is not very much larger

than π0,P . To this end, we classify an allocation as nearly optimal when the reduction in (6.2)

by the optimal allocation is less than 5%. However, the asymptotically optimal allocation

is no more optimal if π0,T = π0,R is very large compared to π0,P , e.g. if π0,P = 0.5 and

π0,T = π0,R > 0.92 or π0,P = 0.8 and π0,T = π0,R > 0.98 for ∆ = 0.7 and 1−β = 80% (Figure

6.1, upper left). With decreasing ∆ the area, where the asymptotically optimal allocation

is even not nearly optimal, increases, e.g. for ∆ = 0.5 and 1 − β = 80% (Figure 6.1, upper

right) the asymptotically optimal allocation is not nearly optimal in the finite setting for

π0,P = 0.5 and π0,T = π0,R > 0.86 or π0,P = 0.8 and π0,T = π0,R > 0.94. As to be expected,

the area, where the asymptotically optimal allocation is even not nearly optimal, decreases

with increasing power 1 − β, confer Figure 6.1, upper right, lower left and right plots, where

the reduction in total sample size is displayed for ∆ = 0.5 and 1 − β = 70%, 80% and 90%,

respectively.

Practical recommendation: The asymptotically optimal allocation (5.5) depends on the

choice of alternative (π0,T , π0,R, π0,P ). In most practical situations the specification of one

single alternative is undesirable or even impossible, e.g. one wants to consider more than one

alternative. For this, we recommend to use the simplified optimal allocation 1 : ∆ : |1 − ∆|
as a rule of thumb. We have evaluated the finite sample performance analogously to the

asymptotically optimal one. The results are presented in Figure 6.2 for α = 5%, 1−β = 80%,

∆ = 0.5 and 0.7, respectively. The results for the asymptotically optimal and the simplified

optimal allocation are quite the same, i.e. the simplified optimal allocation also performs well

where the asymptotically optimal allocation does, i.e. the asymptotically optimal allocation

w∗
T : w∗

R : w∗
P provides no significant improvement relative to the simplified optimal allocation

1 : ∆ : |1 − ∆|, when the variance is estimated with restriction to the null hypothesis.

Therefore, in summary, we recommend for the general proceeding in sample size planning to

use the simplified optimal allocation

ws
T : ws

R : ws
P = 1 : ∆ : |1 − ∆| (6.3)

where no significant further finite total sample reduction is possible (reduction < 5%, can be

determined from Figure 6.2) and apart from that compute the finite sample optimal allocation

numerically.

The latter case is illustrated in Table 5.1. Here, the total required sample sizes n0.8(·, ·) from

(6.1) to obtain a power of 0.8 for the asymptotically optimal (5.5), the simplified optimal (6.3)

and the finite sample optimal allocation is displayed. This is done for different parameter con-

stellations in the alternative, π0,P and π0,T = π0,R, for ∆ = 0.5 and a significance level α = 5%.

In addition, the underlying asymptotically optimal allocation w∗
T : w∗

R : w∗
P and the finite sam-
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ple optimal allocation wf
T : wf

R : wf
P are presented for each parameter constellation. To this

end, the finite sample optimal allocation is computed by means of a grid search as above. Ac-

cording to our recommendation the total required sample size nearly coincide for the asymp-

totically and the simplfied optimal allocation as long as no significant further reduction is

possible by the finite sample optimal allocation. In settings where the asymptotically and the

simplified optimal allocation, respectively, lack of satisfactory finite sample approximations

(i.e. π0,P ≪ π0,T = π0,R) we observe the following rule of thumb: starting from asymptotically

optimal allocation more weight is given to the reference group relative to the test group to

reduce the total required sample sizes in the finite setting, whereas the weight of the placebo

group remains nearly unchanged. Consider for example π0,P = 0.5 and π0,T = π0,R = 0.96

with asymptotically optimal allocation w∗
T : w∗

R : w∗
P = 0.590 : 0.295 : 0.116 and finite sample

optimal allocation wf
T : wf

R : wf
P = 0.37 : 0.52 : 0.11. Here, the fractions of the reference and

the test group are nearly interchanged and the placebo group fraction remains unchanged.

Note that in this setting the finite sample optimal allocation reduces the total required sample

size about 50%.
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Table 6.2: Required total sample sizes: Required samples size n0.8(·, ·) to obtain a power

of 0.8 for different parameter constellations, ∆ = 0.5 and significance level α = 5% under

different allocation, the asymptotically optimal sample allocation w∗
T : w∗

R : w∗
P , the simplified

optimal allocation ws
T : ws

R : ws
P = 1 : ∆ : |1 − ∆| = 1 : 0.5 : 0.5 and the finite sample optimal

allocation wf
T : wf

R : wf
P .

π0,P π0,T = π0,R w∗

T w∗

R w∗

P wf
T wf

R wf
P n0.8(w∗

T , w∗

R) n0.8(ws
T , ws

R) n0.8(wf
T , wf

R)

0.1 0.3 0.442 0.221 0.337 0.50 0.21 0.29 321 323 318

0.5 0.429 0.214 0.357 0.48 0.24 0.28 103 105 102

0.7 0.442 0.221 0.337 0.43 0.31 0.26 60 62 58

0.8 0.462 0.231 0.308 0.40 0.37 0.23 58 61 51

0.9 0.500 0.250 0.250 0.34 0.49 0.17 103 103 53

0.94 0.527 0.264 0.209 0.30 0.57 0.13 223 198 63

0.96 0.547 0.274 0.179 0.27 0.63 0.10 448 365 76

0.2 0.5 0.471 0.235 0.294 0.49 0.25 0.26 227 227 226

0.7 0.482 0.241 0.276 0.46 0.30 0.24 98 99 97

0.8 0.500 0.250 0.250 0.43 0.36 0.21 84 84 76

0.94 0.557 0.278 0.165 0.33 0.55 0.12 209 174 82

0.96 0.573 0.287 0.140 0.30 0.60 0.10 372 287 97

0.3 0.5 0.489 0.244 0.267 0.50 0.25 0.25 572 572 572

0.7 0.500 0.250 0.250 0.47 0.29 0.24 162 162 160

0.8 0.516 0.258 0.225 0.44 0.35 0.21 120 118 112

0.9 0.547 0.274 0.179 0.39 0.45 0.16 135 123 96

0.94 0.568 0.284 0.147 0.35 0.52 0.13 211 176 104

0.96 0.583 0.292 0.125 0.32 0.58 0.10 341 265 119

0.4 0.7 0.508 0.254 0.238 0.48 0.28 0.24 288 288 287

0.8 0.524 0.262 0.214 0.46 0.33 0.21 179 177 171

0.9 0.554 0.277 0.170 0.41 0.42 0.17 165 152 129

0.94 0.574 0.287 0.139 0.37 0.50 0.13 225 190 131

0.96 0.588 0.294 0.118 0.35 0.55 0.10 334 265 145

0.5 0.7 0.511 0.255 0.234 0.49 0.27 0.24 627 626 625

0.8 0.526 0.263 0.211 0.47 0.31 0.22 293 291 286

0.9 0.556 0.278 0.167 0.43 0.40 0.17 213 200 180

0.94 0.576 0.288 0.137 0.39 0.47 0.14 254 221 171

0.96 0.590 0.295 0.116 0.37 0.52 0.11 345 281 182

0.6 0.8 0.524 0.262 0.214 0.48 0.30 0.22 587 584 580

0.9 0.554 0.277 0.170 0.45 0.37 0.18 304 291 273

0.94 0.574 0.287 0.139 0.41 0.44 0.15 310 279 236

0.96 0.588 0.294 0.118 0.39 0.49 0.12 381 321 237

0.7 0.8 0.516 0.258 0.225 0.49 0.28 0.23 1995 1993 1988

0.9 0.547 0.274 0.179 0.46 0.34 0.20 523 511 495

0.94 0.568 0.284 0.147 0.44 0.40 0.16 432 402 365

0.96 0.583 0.292 0.125 0.41 0.45 0.14 466 409 339

0.8 0.9 0.533 0.267 0.200 0.48 0.30 0.22 1482 1472 1456

0.94 0.557 0.278 0.165 0.46 0.36 0.18 805 778 744

0.96 0.573 0.287 0.140 0.44 0.40 0.16 705 654 595





CHAPTER 7

Implementations

In the foregoing chapters we have discussed the planning and analyzing of the RET in general

and for several specific endpoints in detail. Throughout the following tasks are considered: (a)

Performing the RET (b) optimal sample allocation and (c) sample size formulas. According

to this we provide in the Appendix A the R source code of functions including detailed doc-

umentation for performing this tasks, i.e. planning and analyzing non-inferiority trials with

retention of effect hypothesis, for all endpoints discussed and mentioned in this work. This

covers binary (Section 2.1 and 5.1), Poisson (Section 2.2 and 5.2), normally (Pigeot et al.,

2003) and censored, exponentially distributed endpoints (Mielke et al., 2008, and Section 5.3).

All provided functions have the following common structure:

RET.xx.yy( ) Performs the RET for given data

RET.xx.yy.OptAlloc( ) Computes the optimal sample allocation for the RET

RET.xx.yy.Samplesize( ) Determines the required sample sizes for the RET

where ’xx’ specifies the distribution of the endpoints and ’yy’ the retention of effect hypothesis.

BINARY ENDPOINTS with “classical” hypothesis (Appendix A.1.1):

Model: Xki ∼ B(πk) for k = T, R, P and i = 1, . . . , nk.

Hypothesis: H0,πk
: πT − πP ≤ ∆ · (πR − πP )

Functions: RET.Bin.Id()

RET.Bin.Id.OptAlloc()

RET.Bin.Id.Samplesize()
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BINARY ENDPOINTS with log odds hypothesis (Appendix A.1.2):

Model: Xki ∼ B(πk) for k = T, R, P and i = 1, . . . , nk.

Hypothesis: H0,log(
πk

1−πk
) : log

(

πT
1−πT

)

− log
(

πP
1−πP

)

≤ ∆ ·
(

log
(

πR
1−πR

)

− log
(

πP
1−πP

))

Functions: RET.Bin.LogOdds()

RET.Bin.LogOdds.OptAlloc()

RET.Bin.LogOdds.Samplesize()

POISSON ENDPOINTS (Appendix A.2):

Model: Xki ∼ Pois(λk) for k = T, R, P and i = 1, . . . , nk.

Hypothesis: H0,−λk
: λP − λT ≤ ∆ · (λP − λR)

Functions: RET.Pois.MinusId()

RET.Pois.MinusId.OptAlloc()

RET.Pois.MinusId.Samplesize()

NORMALLY DISTRIBUTED ENDPOINTS (Appendix A.3):

Model: Xki ∼ N(µk, σ
2) for k = T, R, P and i = 1, . . . , nk.

Hypothesis: H0,µk
: µT − µP ≤ ∆ · (µR − µP )

Functions: RET.Norm.Id()

RET.Norm.Id.Samplesize()

CENSORED, EXPONENTIALLY DISTRIBUTED ENDPOINTS (Appendix A.4):

Model: (Xki, δki) with Xki = min{Tki, Uki} and δki = 1{Tki≤Uki} for

k = T, R, P and i = 1, . . . , nk, where Tki is a exponentially

distributed survival time with expectation E(Tki) = λk and

Uki is a censoring time, which distributions is independent

of Tki and not further specified.

Hypothesis: H0,− log(λk) : log(λP ) − log(λT ) ≤ ∆ · (log(λP ) − log(λR))

Functions: RET.Exp.MinusLog()

RET.Exp.MinusLog.Samplesize()



CHAPTER 8

Discussion

In this work we have presented a full analysis and planning of three-armed trials for general

retention of effect hypotheses. The endpoint of interest may follow any (regular) parametric

distribution family. As a major result, we have derived the asymptotically optimal allocation,

see Equation (4.1), and sample size formulas for planning the trial (4.2) and (4.3) for restricted

as well as unrestricted estimation of the variance. To this end, the crucial step was the

determination of the exact limit σ2
RML of the restricted MLE of the variance σ2, which to our

knowledge has not been investigated and incorporated in this context so far in the literature.

As a consequence, note that while planning a non-inferiority trial it is important to decide

in advance which estimation method will be performed as it affects the power and hence the

total number of samples required.

For binomial endpoints our procedures improves on existing ones. This includes the precision

of the sample size formula as well as the issue of optimal allocation. The optimal allocation

reduces the total sample size by amounts up to 10% (20%) compared to the 2:2:1 (balanced)

allocation. In addition, the methods of this work are applied to Poisson endpoints which to our

knowledge have so far not been investigated in the context of three-armed non-inferiority trials,

and the results from Mielke et al. (2008) for censored, exponentially distributed endpoints

are summarized in the context of the general setting of this work.

A problematic issue might be that the sample size planning and evaluation of a study presented

in this paper is based on asymptotically considerations. Thus, the optimal allocation can differ

for finite samples, when the variance is estimated with restriction to the null hypothesis.

However, this is not the case in the examples of binary endpoints with “classical” hypothesis

and Poisson endpoints investigated in this work, or at least numerical studies have shown

that the differences are irrelevantly small. Still, differences can occur e.g. when the ratio

σRML/σ0 is far away from 1 and the signal-to-noise ratio η(0)/σ0 is very small.

Indeed, for binary endpoints with the log odds hypothesis (2.2) it turns out that, in contrast
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to the retention of effect hypotheses considered so far, the asymptotically optimal allocation

of samples significantly deviates from the finite sample optimal allocation and, thus, does

not yield a satisfactory finite sample approximation, when π0,T = π0,R ≫ π0,P . However, it

figured out as long as π0,T = π0,R is not very much larger than π0,P that the simplified optimal

allocation nT : nR : nP = 1 : ∆ : |1 − ∆| is nearly optimal in the finite setting and, thus, the

recommended choice of allocation for a broad field of parameter constellations. Within the

finite sample investigations in Section 6.2.1 we determine this regions, where the simplified

optimal allocation can be applied without a significant reduction in power, and therewith also

the region, where further numerical investigations of the optimal allocation are necessary.

Beside the retention of effect hypotheses extensively discussed in this work there are evidently

further non-inferiority hypotheses of practical interest, where questions regarding sample size

planning are still open. For example, Munk et al. (2007) consider for binary endpoints the

general null hypotheses of the type

HU : π3 ≥ h1(π1) or π3 ≥ h2(π2)

and

HI : π3 ≥ h1(π1) and π3 ≥ h2(π2),

where πi represents a failure or success probability under treatment i, i = 1, 2, 3, and h1 and

h2 are strictly isotonic functions. Munk et al. (2007) highlight that for specific choices of h1

and h2 this includes hypotheses on the differences, the relative risks or the odds ratio of the

parameters. The hypothesis HU captures e.g. the hypothesis of demonstrating that a new

treatment is non-inferior to two standard treatments, whereas the hypothesis HI is suitable

for showing that a new treatment is as effective as one of two given standards, or that one of

two treatments is as effective as a standard, the latter being for example the aim in Hesketh

et al. (1996). Furthermore, the extension of HU to k-samples (Balabdaoui, Mielke and Munk,

2009), i.e. the comparison of treatment to an arbitrary number of other treatments, can be

found in dose finding studies.

The hypotheses HU and HI cannot be formulated in one contrast as the retention of effect

hypothesis (1.2). Therefore, union intersection and intersection union tests (see Berger, 1997),

respectively, or the likelihood ratio test, are considered to come up with a test decision. As

test procedures are developing, there are questions regarding sample size planning that remain

open, in particular the question of the optimal allocation. Here, we cannot easily derive the

limit distribution under an alternative as it is the case in the settings of this work. Note

that the likelihood ratio converges to zero under a parameter in the alternative. To this end,
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Balabdaoui et al. (2009) derive the asymptotic distribution of the likelihood ratio statistic

for HU with k-samples under a local alternative. Another approach fixes the alternative and

considers a higher-order expansion of the likelihood ratio statistic to obtain a non-degenerated

limit distribution (see Mielke, 2007). As it is not clear (at least not clear to us) which approach

should be favored or whether the results for questions of optimal sample allocation coincide,

this issue could be of interest for further research.

This work essentially focuses on developing statistical methodologies and the discussion of

their implementations. However, there are crucial issues related to non-inferiority trials,

which are subjected to an ongoing discussion and require the expertise and the communica-

tion of statisticians, physicians and specialist from the regulatory agencies. To this end, it

should be emphasized that in non-inferiority trials the specification of an appropriate non-

inferiority margin (∆) is a fundamental issue. Referring to this, Lange and Freitag (2005)

claim that the selection of the non-inferiority margin has in principle the same importance

for the interpretation of the statistical result as the significance level. It is not our aim or

the objective of this work to take up this discussion. We want to spark the reader’s interest

in issues of non-inferiority trials which are beyond this work. Confronted with the animated

ongoing discussion in the background we are looking forward to a first draft of the guideline

for non-inferiority trials by the FDA (Food and Drug Administration, Government agency of

the USA), which is expected to be soon published.
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APPENDIX A

Implementations in R

A.1 Binary endpoints

A.1.1 “Classical” retention of effect hypothesis

1 ###############################################################################

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

3 # #

# BINARY ENDPOINTS #

5 # #

###############################################################################

7

#==============================================================================

9 # FUNCTION: RET. Bin . Id

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 # INPUT: x . t Successes in the t e s t group

# x . r Successes in the re f e r ence group

13 # x . p Successes in the p lacebo group

# n . t Total number o f samples in the t e s t group

15 # n . r Total number o f samples in the re f e r ence group

# n . p Total number o f samples in the p lacebo group

17 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

19 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# proc =c (” r e s t r i c t e d ” ,” un r e s t r i c t e d ”)

21 # ” r e s t r i c t e d ” : the var iance sigmaˆ2 i s es t imated

# by r e s t r i c t e d ML to the nu l l−hypo the s i s

23 # ” unr e s t r i c t e d ” : the var iance sigmaˆ2 i s es t imated

# by un r e s t r i c t e d ML

25 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT: proc Variance es t imat ing procedure

27 # t e s t s t a t i s t i c Value o f the t e s t s t a t i s t i c T

# p . va lue To the t e s t s t a t i s t i c corresponding p−va lue

29 #

#==============================================================================

31 RET. Bin . Id <− function ( x . t , x . r , x . p ,

n . t , n . r , n . p ,

33 de l ta ,

proc=c ( ” r e s t r i c t e d ” , ”un . r e s t r i c t e d ” ) )

35 {

# MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37 pi . ml . t <− x . t/n . t

69
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pi . ml . r <− x . r/n . r

39 pi . ml . p <− x . p/n . p

41 # Estimation o f the var iance sigmaˆ2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (proc==” r e s t r i c t e d ” ){

43 # Computation o f the r e s t r i c t e d MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 # l i k e l i h o o d in one group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l . one <− function (p , x , n){

47 r e s <− choose (n , x )∗(pˆx )∗((1−p )ˆ(n−x ) )

return ( r e s )

49 }

# common l i k e l i h o o d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

51 ln <− function (p . t , p . r , p . p , x . t , x . r , x . p , n . t , n . r , n . p){

r e s <− ( l . one (p . t , x . t , n . t ) ) ∗( l . one (p . r , x . r , n . r ) )∗( l . one (p . p , x . p , n . p ) )

53 return ( r e s )

}

55 # minus r e s t r i c t e d l i k e l i h o o d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ln . r e s <− function (par , x . t , x . r , x . p , n . t , n . r , n . p , d){

57 pi . t <− d∗par [1]+(1−d)∗par [ 2 ]

r e s <− −ln ( p i . t , par [ 1 ] , par [ 2 ] , x . t , x . r , x . p , n . t , n . r , n . p )

59 return ( r e s )

}

61

r e s <− optim(c ( p i . ml . r , p i . ml . p ) , ln . res , x . t=x . t , x . r=x . r , x . p=x . p , n . t=n . t ,

63 n . r=n . r , n . p=n . p , d=del ta , method = ”L−BFGS−B” , lower=c ( 0 , 0 ) ,upper=c ( 1 , 1 ) )

65 pi . rml . r <− r e s$par [ 1 ]

p i . rml . p <− r e s$par [ 2 ]

67 pi . rml . t <− de l t a∗pi . rml . r + (1−de l t a )∗pi . rml . p

69 sigma <− sqrt ( p i . rml . t∗(1−pi . rml . t )/n . t + de l t a ˆ2∗pi . rml . r∗(1−pi . rml . r )/n . r+

(1−de l t a )ˆ2∗pi . rml . p∗(1−pi . rml . p )/n . p)

71 }

i f (proc==” un r e s t r i c t e d ” ){

73 sigma <− sqrt ( p i . ml . t∗(1−pi . ml . t )/n . t + de l t a ˆ2∗pi . ml . r∗(1−pi . ml . r )/n . r+

(1− de l t a )ˆ2∗pi . ml . p∗(1−pi . ml . p )/n . p)

75 }

# Te s t s t a t i s t i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77 t e s t s t a t i s t i c <− ( p i . ml . t − de l t a∗pi . ml . r−(1−de l t a )∗pi . ml . p )/sigma

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

79 r e s u l t <− cbind (proc , round( t e s t s t a t i s t i c , 4 ) , round(1−pnorm( t e s t s t a t i s t i c ) , 4 ) )

colnames ( r e s u l t ) <− c ( ” proc ” , ” t e s t s t a t i s t i c ” , ”p . va lue ” )

81 r e s u l t <− as . data . frame ( r e s u l t )

return ( r e s u l t )

83 }

85 #==============================================================================

# EXAMPLE:

87 # Performing the RET for an example in the treatment o f depress ion :

#

89 # Treatment Successes No. o f p a t i e n t s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

91 # T( e s t ) 43 86

# R( e fe rence ) 31 84

93 # P( lacebo ) 26 88

#

95 # ( see Sect ion 2 .1 , Table 2 .1)

#==============================================================================

97 RET. Bin . Id (x . t=43,x . r=31,x . p=26,n . t=86,n . r=84,n . p=88, d e l t a =0.8 ,
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proc=” r e s t r i c t e d ” )

99 RET. Bin . Id (x . t=43,x . r=31,x . p=26,n . t=86,n . r=84,n . p=88, d e l t a =0.8 ,

proc=” un r e s t r i c t e d ” )

101

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

103 # OUTPUT:

#

105 #> RET. Bin . Id ( x . t =43,x . r=31,x . p=26,n . t =86,n . r=84,n . p=88, d e l t a =0.8 ,

# + proc=”r e s t r i c t e d ”)

107 # proc T p . va lue

# 1 r e s t r i c t e d 2.1034 0.0177

109 #

#> RET. Bin . Id ( x . t =43,x . r=31,x . p=26,n . t =86,n . r=84,n . p=88, d e l t a =0.8 ,

111 # + proc=”unr e s t r i c t e d ”)

# proc T p . va lue

113 # 1 unr e s t r i c t e d 2.1079 0.0175

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

115 ################################################################################

117 #==============================================================================

# FUNCTION: RET. Bin . Id . OptAl loc

119 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# INPUT: p i . t Success p r o b a b i l i t y in the t e s t group

121 # pi . r Success p r o b a b i l i t y in the re f e r ence group

# pi . p Success p r o b a b i l i t y in the p lacebo group

123 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

125 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

127 # OUTPUT: Optimal sample a l l o c a t i o n :

# w. t Re l a t i v e propor t ion o f the t e s t group |

129 # w. r Re l a t i v e propor t ion o f the re f e r ence group | rounded on

# w. p Re l a t i v e propor t ion o f the p lacebo group | 3 d i g i t s

131 #

#==============================================================================

133 RET. Bin . Id . OptAlloc <− function ( p i . t , p i . r , p i . p , d e l t a ){

135 w. t <− sqrt ( p i . t∗(1−pi . t ) )

w. r <− de l t a∗sqrt ( p i . r∗(1−pi . r ) )

137 w. p <− abs(1−de l t a )∗sqrt ( p i . p∗(1−pi . p ) )

139 r e s u l t <− round(cbind (w. t ,w. r ,w. p)/ (w. t+w. r+w. p ) , 3 )

colnames ( r e s u l t ) <− c ( ”w. t ” , ”w. r ” , ”w. p” )

141 r e s u l t <− as . data . frame ( r e s u l t )

143 return ( r e s u l t )

}

145

#==============================================================================

147 # EXAMPLE

#

149 # Optimal a l l o c a t i o n fo r the RET under the a l t e r n a t i v e

# pi . t=pi . r=0.5 , p i . p=0.1 and d e l t a=70%

151 #==============================================================================

RET. Bin . Id . OptAlloc ( p i . t=0.5 , p i . r =0.5 , p i . p=0.1 , d e l t a =0.7)

153

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

155 # OUTPUT:

# RET. Bin . Id . OptAl loc ( p i . t =0.5 , p i . r=0.5 , p i . p=0.1 , d e l t a =0.7)

157 # w. t w. r w. p
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# 1 0.532 0.372 0.096

159 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

################################################################################

161

#==============================================================================

163 # FUNCTION: RET. Bin . Id . Samples ize

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

165 # INPUT: p i . t Success p r o b a b i l i t y in the t e s t group

# pi . r Success p r o b a b i l i t y in the re f e r ence group

167 # pi . p Success p r o b a b i l i t y in the p lacebo group

# w. t Re l a t i v e sample a l l o c a t i o n to the t e s t group (n . t/n)

169 # w. r Re l a t i v e sample a l l o c a t i o n to the re f e r ence group (n . r/n)

# de l t a Non−i n f e r i o r i t y margin :

171 # Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

# re ta ined by the t e s t treatment r e l a t i v e to p lacebo

173 # l e v e l S i gn i f i c anc e l e v e l

# pow Aspired power ( one minus the type II−error )

175 # proc =c (” r e s t r i c t e d ” ,” un r e s t r i c t e d ”)

# ” r e s t r i c t e d ” : the var iance sigmaˆ2 w i l l be es t imated

177 # by r e s t r i c t e d ML to the nu l l−hypo the s i s

# ” un r e s t r i c t e d ” : the var iance sigmaˆ2 w i l l be es t imated

179 # by un r e s t r i c t e d ML

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

181 # OUTPUT: proc Variance es t imat ing procedure , which w i l l be used

#

183 # Required sample s i z e s :

# n Total r equ i r ed sample s i z e (n . t+n . r+n . p )

185 # n . t Required samples f o r the t e s t group ( rounded )

# n . r Required samples f o r the re f e rnce group ( rounded )

187 # n . p Required samples f o r the p lacebo group ( rounded )

#

189 #==============================================================================

RET. Bin . Id . Samples ize <− function ( p i . t , p i . r , p i . p ,

191 w. t ,w. r ,

de l ta , l e v e l , pow ,

193 proc=c ( ” r e s t r i c t e d ” , ” un r e s t r i c t e d ” ) )

{

195 i f (proc==” r e s t r i c t e d ” ){

#−−− Kullback−Le i b l e r d ivergence −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

197 KL <− function ( p i . 0 , p )

{

199 pi . 0∗log ( p i . 0/p)+(1−pi . 0 ) ∗log ((1− pi . 0 )/(1−p ) )

}

201 #−−− weighted Kul lback−Le i b l e r d ivergence −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

weighted .KL <− function (par , p i . t . 0 , p i . r . 0 , p i . p . 0 ,w. t ,w. r , d )

203 {

pi . r <− par [ 1 ]

205 pi . p <− par [ 2 ]

207 w.KL <− w. t∗KL( pi . t . 0 , d∗pi . r+(1−d)∗pi . p ) +

w. r∗KL( pi . r . 0 , p i . r ) + (1−w. r−w. t )∗KL( pi . p . 0 , p i . p )

209 return (w.KL)

}

211 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# KL−minimizer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

213 par <− optim(c ( p i . r , p i . p ) , weighted .KL,

p i . t .0= pi . t , p i . r .0= pi . r , p i . p.0= pi . p ,

215 w. t=w. t ,w. r=w. r , d=de l t a )$par

pi . rml . r <− par [ 1 ]

217 pi . rml . p <− par [ 2 ]
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pi . rml . t <− de l t a∗pi . rml . r + (1−de l t a )∗pi . rml . p

219

sigma . sq . rml <− pi . rml . t∗(1−pi . rml . t )/w. t +

221 ( d e l t a ˆ2)∗pi . rml . r∗(1−pi . rml . r )/w. r +

(1−de l t a )ˆ2 ∗ pi . rml . p∗(1−pi . rml . p )/(1−w. r−w. t )

223

sigma . sq <− pi . t∗(1−pi . t )/w. t +

225 ( d e l t a ˆ2)∗pi . r∗(1−pi . r )/w. r +

(1−de l t a )ˆ2 ∗ pi . p∗(1−pi . p )/(1−w. r−w. t )

227

eta <− pi . t−de l t a∗pi . r−(1−de l t a )∗pi . p

229

z . alpha <− qnorm( l e v e l )

231 z . beta <− qnorm(1−pow)

233 n <− ( z . alpha∗sqrt ( sigma . sq . rml)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

}

235 i f (proc==” un r e s t r i c t e d ” ){

237 sigma . sq <− pi . t∗(1−pi . t )/w. t +

( de l t a ˆ2)∗pi . r∗(1−pi . r )/w. r +

239 (1−de l t a )ˆ2∗pi . p∗(1−pi . p )/(1−w. r−w. t )

241 eta <− pi . t−de l t a∗pi . r−(1−de l t a )∗pi . p

243 z . alpha <− qnorm( l e v e l )

z . beta <− qnorm(1−pow)

245

n <− ( z . alpha∗sqrt ( sigma . sq)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

247 }

# rounding the sample s i z e s in each group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

249 n . t <− round(n∗w. t )

n . r <− round(n∗w. r )

251 n . p <− round(n∗(1−w. t−w. r ) )

253 r e s u l t <− cbind (proc , n . t+n . r+n . p , n . t , n . r , n . p )

255 colnames ( r e s u l t ) <− c ( ” proc ” , ”n” , ”n . t ” , ”n . r ” , ”n . p” )

r e s u l t <− as . data . frame ( r e s u l t )

257

return ( r e s u l t )

259 }

261 #==============================================================================

# EXAMPLE

263 #

# Determine the minimal requ i red sample s i z e f o r the a l t e r n a t i v e

265 # pi . t=pi . r=0.5 , p i . p=0.1 and d e l t a=70% under the opt imal sample

# a l l o c a t i o n (w. t ,w. r ,w. p )=(0.532 ,0 .372 ,0 .096) computed with

267 # ’RET. Bin . Id . OptAl loc ( ) ’ when the var iance sigmaˆ2 w i l l be es t imated

# with r e s t r i c t i o n to nu l l h ypo the s i s .

269 #==============================================================================

RET. Bin . Id . Samples ize ( p i . t=0.5 , p i . r =0.5 , p i . p=0.1 ,w. t=0.532 ,w. r =0.372 ,

271 de l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,

proc=” r e s t r i c t e d ” )

273

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

275 # OUTPUT:

# > RET. Bin . Id . Samples ize ( p i . t =0.5 , p i . r=0.5 , p i . p=0.1 ,w. t =0.532 ,w. r=0.372 ,

277 # + de l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,
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# + proc=”r e s t r i c t e d ”)

279 # proc n n . t n . r n . p

# 1 r e s t r i c t e d 387 206 144 37

281 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

###############################################################################

A.1.2 Log odds retention of effect hypothesis

1 #==============================================================================

# FUNCTION: RET. Bin . LogOdds

3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# INPUT: x . t Successes in the t e s t group

5 # x . r Successes in the re f e r ence group

# x . p Successes in the p lacebo group

7 # n . t Total number o f samples in the t e s t group

# n . r Total number o f samples in the re f e r ence group

9 # n . p Total number o f samples in the p lacebo group

# de l t a Non−i n f e r i o r i t y margin :

11 # Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

# re ta ined by the t e s t treatment r e l a t i v e to p lacebo

13 # proc =c (” r e s t r i c t e d ” ,” un r e s t r i c t e d ”)

# ” r e s t r i c t e d ” : the var iance sigmaˆ2 i s es t imated

15 # by r e s t r i c t e d ML to the nu l l−hypo the s i s

# ” un r e s t r i c t e d ” : the var iance sigmaˆ2 i s es t imated

17 # by un r e s t r i c t e d ML

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 # OUTPUT: proc Variance es t imat ing procedure

# t e s t s t a t i s t i c Value o f the t e s t s t a t i s t i c T

21 # p . va lue To the t e s t s t a t i s t i c corresponding p−va lue

#

23 #==============================================================================

RET. Bin . LogOdds <− function ( x . t , x . r , x . p ,

25 n . t , n . r , n . p ,

de l ta ,

27 proc=c ( ” r e s t r i c t e d ” , ” un r e s t r i c t e d ” ) )

{

29 # MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pi . ml . t <− x . t/n . t

31 pi . ml . r <− x . r/n . r

p i . ml . p <− x . p/n . p

33

h <− function ( p i ){

35 value <− log ( p i/(1−pi ) )

return ( va lue )

37 }

39 pi . t . b <− function ( p i . r , p i . p , d){

r e s <− exp(d∗h( p i . r )+(1−d)∗h( p i . p ) )

41 value <− r e s/(1+ r e s )

return ( va lue )

43 }

45 # Estimation o f the var iance sigmaˆ2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (proc==” r e s t r i c t e d ” ){

47 # Computation o f the r e s t r i c t e d MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

49 # l i k e l i h o o d in one group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l . one <− function (p , x , n){

51 r e s <− choose (n , x )∗(pˆx )∗((1−p )ˆ(n−x ) )

return ( r e s )
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53 }

# common l i k e l i h o o d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

55 ln <− function (p . t , p . r , p . p , x . t , x . r , x . p , n . t , n . r , n . p){

r e s <− ( l . one (p . t , x . t , n . t ) ) ∗( l . one (p . r , x . r , n . r ) )∗( l . one (p . p , x . p , n . p ) )

57 return ( r e s )

}

59 # minus r e s t r i c t e d l i k e l i h o o d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ln . r e s <− function (par , x . t , x . r , x . p , n . t , n . r , n . p , d){

61 pi . t <− pi . t . b (par [ 1 ] , par [ 2 ] , d )

r e s <− −ln ( p i . t , par [ 1 ] , par [ 2 ] , x . t , x . r , x . p , n . t , n . r , n . p )

63 return ( r e s )

}

65

r e s <− optim(c ( p i . ml . r , p i . ml . p ) , ln . res , x . t=x . t , x . r=x . r , x . p=x . p , n . t=n . t ,

67 n . r=n . r , n . p=n . p , d=del ta , method = ”L−BFGS−B” , lower=c ( 0 , 0 ) ,upper=c ( 1 , 1 ) )

69 pi . rml . r <− r e s$par [ 1 ]

p i . rml . p <− r e s$par [ 2 ]

71 pi . rml . t <− pi . t . b ( p i . rml . r , p i . rml . p , d e l t a )

73 sigma <− sqrt (1/ ( p i . rml . t∗(1−pi . rml . t )∗n . t ) + de l t a ˆ2/

( p i . rml . r∗(1−pi . rml . r )∗n . r)+

75 (1−de l t a )ˆ2/ ( p i . rml . p∗(1−pi . rml . p )∗n . p ) )

}

77 i f (proc==” un r e s t r i c t e d ” ){

sigma <− sqrt (1/ ( p i . ml . t∗(1−pi . ml . t )∗n . t ) + de l t a ˆ2/

79 ( p i . ml . r∗(1−pi . ml . r )∗n . r)+

(1−de l t a )ˆ2/ ( p i . ml . p∗(1−pi . ml . p )∗n . p ) )

81 }

# Te s t s t a t i s t i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83 t e s t s t a t i s t i c <− (h( p i . ml . t ) − de l t a∗h( p i . ml . r )−(1−de l t a )∗h( p i . ml . p ) )/sigma

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

85 r e s u l t <− cbind (proc , round( t e s t s t a t i s t i c , 4 ) , round(1−pnorm( t e s t s t a t i s t i c ) , 4 ) )

colnames ( r e s u l t ) <− c ( ” proc ” , ” t e s t s t a t i s t i c ” , ”p . va lue ” )

87 r e s u l t <− as . data . frame ( r e s u l t )

return ( r e s u l t )

89 }

91 #==============================================================================

# EXAMPLE:

93 # Performing the RET for an example in the treatment o f depress ion :

#

95 # Treatment Successes No. o f p a t i e n t s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

97 # T( e s t ) 43 86

# R( e fe rence ) 31 84

99 # P( lacebo ) 26 88

#

101 # ( see Sect ion 2 .1 , Table 2 .1)

#==============================================================================

103 RET. Bin . LogOdds (x . t=43,x . r=31,x . p=26,n . t=86,n . r=84,n . p=88, d e l t a =0.8 ,

proc=” r e s t r i c t e d ” )

105 RET. Bin . LogOdds (x . t=43,x . r=31,x . p=26,n . t=86,n . r=84,n . p=88, d e l t a =0.8 ,

proc=” un r e s t r i c t e d ” )

107

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

109 # OUTPUT:

#

111 #> RET. Bin . LogOdds ( x . t =43,x . r=31,x . p=26,n . t =86,n . r=84,n . p=88, d e l t a =0.8 ,

#+ proc=”r e s t r i c t e d ”)
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113 # proc t e s t s t a t i s t i c p . va lue

#1 r e s t r i c t e d 2.1183 0.0171

115 #> RET. Bin . LogOdds ( x . t =43,x . r=31,x . p=26,n . t =86,n . r=84,n . p=88, d e l t a =0.8 ,

#+ proc=”unr e s t r i c t e d ”)

117 # proc t e s t s t a t i s t i c p . va lue

#1 unr e s t r i c t e d 2.1128 0.0173

119 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

################################################################################

121

#==============================================================================

123 # FUNCTION: RET. Bin . LogOdds . OptAl loc

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

125 # INPUT: p i . t Success p r o b a b i l i t y in the t e s t group

# pi . r Success p r o b a b i l i t y in the re f e r ence group

127 # pi . p Success p r o b a b i l i t y in the p lacebo group

# de l t a Non−i n f e r i o r i t y margin :

129 # Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

# re ta ined by the t e s t treatment r e l a t i v e to p lacebo

131 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT: Optimal sample a l l o c a t i o n :

133 # w. t Re l a t i v e propor t ion o f the t e s t group |

# w. r Re l a t i v e propor t ion o f the re f e r ence group | rounded on

135 # w. p Re l a t i v e propor t ion o f the p lacebo group | 3 d i g i t s

#

137 #==============================================================================

RET. Bin . LogOdds . OptAlloc <− function ( p i . t , p i . r , p i . p , d e l t a ){

139

w. t <− 1/sqrt ( p i . t∗(1−pi . t ) )

141 w. r <− de l t a/sqrt ( p i . r∗(1−pi . r ) )

w. p <− abs(1−de l t a )/sqrt ( p i . p∗(1−pi . p ) )

143

r e s u l t <− round(cbind (w. t ,w. r ,w. p)/ (w. t+w. r+w. p ) , 3 )

145 colnames ( r e s u l t ) <− c ( ”w. t ” , ”w. r ” , ”w. p” )

r e s u l t <− as . data . frame ( r e s u l t )

147

return ( r e s u l t )

149 }

151 #==============================================================================

# EXAMPLE

153 #

# Optimal a l l o c a t i o n fo r the RET under the a l t e r n a t i v e

155 # pi . t=pi . r=0.5 , p i . p=0.1 and d e l t a=70%

#==============================================================================

157 RET. Bin . LogOdds . OptAlloc ( p i . t=0.5 , p i . r =0.5 , p i . p=0.1 , d e l t a =0.7)

159 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT:

161 #> RET. Bin . LogOdds . OptAl loc ( p i . t =0.5 , p i . r=0.5 , p i . p=0.1 , d e l t a =0.7)

# w. t w. r w. p

163 #1 0.455 0.318 0.227

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

165 ################################################################################

167 #==============================================================================

# FUNCTION: RET. Bin . LogOdds . Samples ize

169 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# INPUT: p i . t Success p r o b a b i l i t y in the t e s t group

171 # pi . r Success p r o b a b i l i t y in the re f e r ence group

# pi . p Success p r o b a b i l i t y in the p lacebo group
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173 # w. t Re l a t i v e sample a l l o c a t i o n to the t e s t group (n . t/n)

# w. r Re l a t i v e sample a l l o c a t i o n to the re f e r ence group (n . r/n)

175 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

177 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# l e v e l S i gn i f i c anc e l e v e l

179 # pow Aspired power ( one minus the type II−error )

# proc =c (” r e s t r i c t e d ” ,” un r e s t r i c t e d ”)

181 # ” r e s t r i c t e d ” : the var iance sigmaˆ2 w i l l be es t imated

# by r e s t r i c t e d ML to the nu l l−hypo the s i s

183 # ” unr e s t r i c t e d ” : the var iance sigmaˆ2 w i l l be es t imated

# by un r e s t r i c t e d ML

185 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT: proc Variance es t imat ing procedure , which w i l l be used

187 #

# Required sample s i z e s :

189 # n Total r equ i r ed sample s i z e (n . t+n . r+n . p )

# n . t Required samples f o r the t e s t group ( rounded )

191 # n . r Required samples f o r the re f e rnce group ( rounded )

# n . p Required samples f o r the p lacebo group ( rounded )

193 #

#==============================================================================

195 RET. Bin . LogOdds . Samples ize <− function ( p i . t , p i . r , p i . p ,

w. t ,w. r ,

197 de l ta , l e v e l , pow ,

proc=c ( ” r e s t r i c t e d ” , ” un r e s t r i c t e d ” ) )

199 {

h <− function ( p i ){

201 value <− log ( p i/(1−pi ) )

return ( va lue )

203 }

205 pi . t . b <− function ( p i . r , p i . p , d){

r e s <− exp(d∗h( p i . r )+(1−d)∗h( p i . p ) )

207 value <− r e s/(1+ r e s )

return ( va lue )

209 }

211 i f (proc==” r e s t r i c t e d ” ){

#−−− Kullback−Le i b l e r d ivergence −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

213 KL <− function ( p i . 0 , p )

{

215 pi . 0∗log ( p i . 0/p)+(1−pi . 0 ) ∗log ((1− pi . 0 )/(1−p ) )

}

217 #−−− weighted Kul lback−Le i b l e r d ivergence −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

weighted .KL <− function (par , p i . t . 0 , p i . r . 0 , p i . p . 0 ,w. t ,w. r , d )

219 {

pi . r <− par [ 1 ]

221 pi . p <− par [ 2 ]

223 w.KL <− w. t∗KL( pi . t . 0 , p i . t . b ( p i . r , p i . p , d ) ) +

w. r∗KL( pi . r . 0 , p i . r ) + (1−w. r−w. t )∗KL( pi . p . 0 , p i . p )

225 return (w.KL)

}

227 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# KL−minimizer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

229 par <− optim(c ( p i . r , p i . p ) , weighted .KL,

p i . t .0= pi . t , p i . r .0= pi . r , p i . p.0= pi . p ,

231 w. t=w. t ,w. r=w. r , d=de l t a )$par

pi . rml . r <− par [ 1 ]
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233 pi . rml . p <− par [ 2 ]

p i . rml . t <− pi . t . b ( p i . rml . r , p i . rml . p , d e l t a )

235

sigma . sq . rml <− 1/ ( p i . rml . t∗(1−pi . rml . t )∗w. t ) +

237 ( d e l t a ˆ2)/ ( p i . rml . r∗(1−pi . rml . r )∗w. r ) +

(1−de l t a )ˆ2 / ( p i . rml . p∗(1−pi . rml . p )∗(1−w. r−w. t ) )

239

sigma . sq <− 1/ ( p i . t∗(1−pi . t )∗w. t ) +

241 ( d e l t a ˆ2)/( p i . r∗(1−pi . r )∗w. r ) +

(1−de l t a )ˆ2 / ( p i . p∗(1−pi . p )∗(1−w. r−w. t ) )

243

eta <− h( p i . t)−de l t a∗h( p i . r )−(1−de l t a )∗h( p i . p )

245

z . alpha <− qnorm( l e v e l )

247 z . beta <− qnorm(1−pow)

249 n <− ( z . alpha∗sqrt ( sigma . sq . rml)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

}

251 i f (proc==” un r e s t r i c t e d ” ){

253 sigma . sq <− 1/ ( p i . t∗(1−pi . t )∗w. t ) +

( de l t a ˆ2)/( p i . r∗(1−pi . r )∗w. r ) +

255 (1−de l t a )ˆ2/ ( p i . p∗(1−pi . p )∗(1−w. r−w. t ) )

257 eta <− h( p i . t)−de l t a∗h( p i . r )−(1−de l t a )∗h( p i . p )

259 z . alpha <− qnorm( l e v e l )

z . beta <− qnorm(1−pow)

261

n <− ( z . alpha∗sqrt ( sigma . sq)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

263 }

# rounding the sample s i z e s in each group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

265 n . t <− round(n∗w. t )

n . r <− round(n∗w. r )

267 n . p <− round(n∗(1−w. t−w. r ) )

269 r e s u l t <− cbind (proc , n . t+n . r+n . p , n . t , n . r , n . p )

271 colnames ( r e s u l t ) <− c ( ” proc ” , ”n” , ”n . t ” , ”n . r ” , ”n . p” )

r e s u l t <− as . data . frame ( r e s u l t )

273

return ( r e s u l t )

275 }

277 #==============================================================================

# EXAMPLE

279 #

# Determine the minimal requ i red sample s i z e f o r the a l t e r n a t i v e

281 # pi . t=pi . r=0.5 , p i . p=0.1 and d e l t a=70% under the opt imal sample

# a l l o c a t i o n (w. t ,w. r ,w. p )=(0.455 ,0 .318 ,0 .227) computed with

283 # ’RET. Bin . LogOdd . OptAl locs ( ) ’ when the var iance sigmaˆ2 w i l l be es t imated

# with r e s t r i c t i o n to nu l l h ypo the s i s .

285 #==============================================================================

RET. Bin . LogOdds . Samples ize ( p i . t=0.5 , p i . r =0.5 , p i . p=0.2 ,w. t=0.5 ,w. r =0.3 ,

287 de l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,

proc=” r e s t r i c t e d ” )

289 RET. Bin . LogOdds . Samples ize ( p i . t=0.5 , p i . r =0.5 , p i . p=0.2 ,w. t=0.5 ,w. r =0.3 ,

d e l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,

291 proc=” un r e s t r i c t e d ” )
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293 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT:

295 #> RET. Bin . LogOdds . Samples ize ( p i . t =0.5 , p i . r=0.5 , p i . p=0.2 ,w. t =0.5 ,w. r=0.3 ,

#+ de l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,

297 #+ proc=”r e s t r i c t e d ”)

# proc n n . t n . r n . p

299 #1 r e s t r i c t e d 616 308 185 123

#> RET. Bin . LogOdds . Samples ize ( p i . t =0.5 , p i . r=0.5 , p i . p=0.2 ,w. t =0.5 ,w. r=0.3 ,

301 #+ de l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,

#+ proc=”unr e s t r i c t e d ”)

303 # proc n n . t n . r n . p

#1 unr e s t r i c t e d 620 310 186 124

305 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

###############################################################################
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A.2 Poisson endpoints

###############################################################################

2 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

# #

4 # POISSON ENDPOINTS #

# #

6 ###############################################################################

8 #==============================================================================

# FUNCTION: RET. Pois . MinusId

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# INPUT: x . t Sum of ob se rva t i on or a vec to r with each s i n g l e

12 # observa t i on in the t e s t group

# x . r Sum of ob se rva t i on or a vec to r with each s i n g l e

14 # observa t i on in the re f e r ence group

# x . p Sum of ob se rva t i on or a vec to r with each s i n g l e

16 # observa t i on in the p lacebo group

# n . t Total number o f samples in the t e s t group

18 # n . r Total number o f samples in the re f e r ence group

# n . p Total number o f samples in the p lacebo group

20 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

22 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# proc =c (” r e s t r i c t e d ” ,” un r e s t r i c t e d ”)

24 # ” r e s t r i c t e d ” : the var iance sigmaˆ2 i s es t imated

# by r e s t r i c t e d ML to the nu l l−hypo the s i s

26 # ” unr e s t r i c t e d ” : the var iance sigmaˆ2 i s es t imated

# by un r e s t r i c t e d ML

28 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT: proc Variance es t imat ing procedure

30 # t e s t s t a t i s t i c Value o f the t e s t s t a t i s t i c T

# p . va lue To the t e s t s t a t i s t i c corresponding p−va lue

32 #

#==============================================================================

34 RET. Pois . MinusId <− function ( x . t , x . r , x . p ,

n . t , n . r , n . p ,

36 de l ta ,

proc=c ( ” r e s t r i c t e d ” , ” un r e s t r i c t e d ” ) )

38 {

# MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

40 l a . ml . t <− sum( x . t )/n . t

l a . ml . r <− sum( x . r )/n . r

42 l a . ml . p <− sum( x . p )/n . p

44

# Estimation o f the var iance sigmaˆ2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

46 i f (proc==” r e s t r i c t e d ” ){

# Computation o f the r e s t r i c t e d MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48

# log l i k e l i h o o d in one group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 l . one <− function ( lambda , k , n){

k∗log ( lambda ) −n∗lambda

52 }

54 # minus r e s t r i c t e d l o g l i k e l i h o o d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ln . r e s <− function (par , x . t , x . r , x . p , n . t , n . r , n . p , d){

56 r e s <− − l . one (d∗par [1]+(1−d)∗par [ 2 ] , x . t , n . t ) −

l . one (par [ 1 ] , x . r , n . r ) − l . one (par [ 2 ] , x . p , n . p )

58 return ( r e s )
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}

60

r e s <− optim(c ( l a . ml . r , l a . ml . p ) , ln . res , x . t=x . t , x . r=x . r , x . p=x . p , n . t=n . t ,

62 n . r=n . r , n . p=n . p , d=del ta , method = ”L−BFGS−B” , lower=c ( 0 , 0 ) )

64 l a . rml . r <− r e s$par [ 1 ]

l a . rml . p <− r e s$par [ 2 ]

66 l a . rml . t <− de l t a∗ l a . rml . r + (1−de l t a )∗ l a . rml . p

68 sigma <− sqrt ( l a . rml . t/n . t + de l t a ˆ2∗ l a . rml . r/n . r +

(1−de l t a )ˆ2∗ l a . rml . p/n . p)

70 }

i f (proc==” un r e s t r i c t e d ” ){

72 sigma <− sqrt ( l a . ml . t/n . t + de l t a ˆ2∗ l a . ml . r/n . r+

(1−de l t a )ˆ2∗ l a . ml . p/n . p)

74 }

# Te s t s t a t i s t i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

76 t e s t s t a t i s t i c <− (− l a . ml . t + de l t a∗ l a . ml . r + (1−de l t a )∗ l a . ml . p )/sigma

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

78 r e s u l t <− cbind (proc , round( t e s t s t a t i s t i c , 4 ) , round(1−pnorm( t e s t s t a t i s t i c ) , 4 ) )

colnames ( r e s u l t ) <− c ( ” proc ” , ” t e s t s t a t i s t i c ” , ”p . va lue ” )

80 r e s u l t <− as . data . frame ( r e s u l t )

return ( r e s u l t )

82 }

84 #==============================================================================

# EXAMPLE:

86 # Performing the RET for an example in the treatment o f e p i l e p s y :

#

88 # Treatment Total no . o f s e i z u r e s No. o f p a t i e n t s

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

90 # T( e s t ) 288 18

# R( e fe rence ) 295 18

92 # P( lacebo ) 338 18

#

94 # ( see Sect ion 2 .2 , Table 2 .2)

#==============================================================================

96 RET. Pois . MinusId (x . t=288 ,x . r =295 ,x . p=338 ,n . t=18,n . r=18,n . p=18, d e l t a =0.5 ,

proc=” r e s t r i c t e d ” )

98 RET. Pois . MinusId (x . t=288 ,x . r =295 ,x . p=338 ,n . t=18,n . r=18,n . p=18, d e l t a =0.5 ,

proc=” un r e s t r i c t e d ” )

100

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

102 # OUTPUT:

#

104 # > RET. Pois . MinusId ( x . t =288,x . r=295,x . p=338,n . t =18,n . r=18,n . p=18, d e l t a =0.5 ,

# + proc=”r e s t r i c t e d ”)

106 # proc t e s t s t a t i s t i c p . va lue

# 1 r e s t r i c t e d 1.3281 0.0921

108 # > RET. Pois . MinusId ( x . t =288,x . r=295,x . p=338,n . t =18,n . r=18,n . p=18, d e l t a =0.5 ,

# + proc=”unr e s t r i c t e d ”)

110 # proc t e s t s t a t i s t i c p . va lue

# 1 unr e s t r i c t e d 1.3491 0.0886

112 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

################################################################################

114

#==============================================================================

116 # FUNCTION: RET. Pois . MinusId . OptAl loc

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

118 # INPUT: l a . t Success p r o b a b i l i t y in the t e s t group
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# la . r Success p r o b a b i l i t y in the re f e r ence group

120 # la . p Success p r o b a b i l i t y in the p lacebo group

# de l t a Non−i n f e r i o r i t y margin :

122 # Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

# re ta ined by the t e s t treatment r e l a t i v e to p lacebo

124 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT: Optimal sample a l l o c a t i o n :

126 # w. t Re l a t i v e propor t ion o f the t e s t group |

# w. r Re l a t i v e propor t ion o f the re f e r ence group | rounded on

128 # w. p Re l a t i v e propor t ion o f the p lacebo group | 3 d i g i t s

#

130 #==============================================================================

RET. Pois . MinusId . OptAlloc <− function ( l a . t , l a . r , l a . p , d e l t a ){

132

w. t <− sqrt ( l a . t )

134 w. r <− de l t a∗sqrt ( l a . r )

w. p <− abs(1−de l t a )∗sqrt ( l a . p )

136

r e s u l t <− round(cbind (w. t ,w. r ,w. p)/ (w. t+w. r+w. p ) , 3 )

138 colnames ( r e s u l t ) <− c ( ”w. t ” , ”w. r ” , ”w. p” )

r e s u l t <− as . data . frame ( r e s u l t )

140

return ( r e s u l t )

142 }

144 #==============================================================================

# EXAMPLE

146 #

# Optimal a l l o c a t i o n fo r the RET under the a l t e r n a t i v e

148 # la . t=l a . r=10, l a . p=20 and d e l t a=70%

#==============================================================================

150 RET. Pois . MinusId . OptAlloc ( l a . t=10, l a . r=10, l a . p=20, d e l t a =0.7)

152 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT:

154 # > RET. Pois . MinusId . OptAl loc ( l a . t =10, l a . r=10, l a . p=20, d e l t a =0.7)

# w. t w. r w. p

156 # 1 0.471 0.33 0.2

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

158 ################################################################################

160 #==============================================================================

# FUNCTION: RET. Pois . MinusId . Samples ize

162 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# INPUT: l a . t Lambda in the t e s t group

164 # la . r Lambda in the re f e r ence group

# la . p Lambda in the p lacebo group

166 # w. t Re l a t i v e sample a l l o c a t i o n to the t e s t group (n . t/n)

# w. r Re l a t i v e sample a l l o c a t i o n to the re f e r ence group (n . r/n)

168 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

170 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# l e v e l S i gn i f i c anc e l e v e l

172 # pow Aspired power ( one minus the type II−error )

# proc =c (” r e s t r i c t e d ” ,” un r e s t r i c t e d ”)

174 # ” r e s t r i c t e d ” : the var iance sigmaˆ2 w i l l be es t imated

# by r e s t r i c t e d ML to the nu l l−hypo the s i s

176 # ” unr e s t r i c t e d ” : the var iance sigmaˆ2 w i l l be es t imated

# by un r e s t r i c t e d ML

178 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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# OUTPUT: proc Variance es t imat ing procedure , which w i l l be used

180 #

# Required sample s i z e s :

182 # n Total r equ i r ed sample s i z e (n . t+n . r+n . p )

# n . t Required samples f o r the t e s t group ( rounded )

184 # n . r Required samples f o r the re f e rnce group ( rounded )

# n . p Required samples f o r the p lacebo group ( rounded )

186 #

#==============================================================================

188 RET. Pois . MinusId . Samples ize <− function ( l a . t , l a . r , l a . p ,

w. t ,w. r ,

190 de l ta , l e v e l , pow ,

proc=c ( ” r e s t r i c t e d ” , ” un r e s t r i c t e d ” ) )

192 {

i f (proc==” r e s t r i c t e d ” ){

194 #−−− Kullback−Le i b l e r d ivergence −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KL <− function ( l a . 0 , l a )

196 {

l a − l a . 0 + la . 0 ∗ log ( l a . 0/ l a )

198 }

#−−− weighted Kul lback−Le i b l e r d ivergence −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

200 weighted .KL <− function (par , l a . t . 0 , l a . r . 0 , l a . p . 0 ,w. t ,w. r , d )

{

202 l a . r <− par [ 1 ]

l a . p <− par [ 2 ]

204

w.KL <− w. t∗KL( l a . t . 0 , d∗ l a . r+(1−d)∗ l a . p ) +

206 w. r∗KL( l a . r . 0 , l a . r ) + (1−w. r−w. t )∗KL( l a . p . 0 , l a . p )

return (w.KL)

208 }

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

210 # KL−minimizer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

par <− optim(c ( l a . r , l a . p ) , weighted .KL,

212 l a . t .0= l a . t , l a . r .0= la . r , l a . p.0= la . p ,

w. t=w. t ,w. r=w. r , d=de l t a )$par

214 l a . rml . r <− par [ 1 ]

l a . rml . p <− par [ 2 ]

216 l a . rml . t <− de l t a∗ l a . rml . r + (1−de l t a )∗ l a . rml . p

218 sigma . sq . rml <− l a . rml . t/w. t + ( de l t a ˆ2)∗ l a . rml . r/w. r +

(1−de l t a )ˆ2 ∗ l a . rml . p/(1−w. r−w. t )

220

sigma . sq <− l a . t/w. t + ( de l t a ˆ2)∗ l a . r/w. r +

222 (1−de l t a )ˆ2 ∗ l a . p/(1−w. r−w. t )

224 eta <− −l a . t+de l t a∗ l a . r+(1−de l t a )∗ l a . p

226 z . alpha <− qnorm( l e v e l )

z . beta <− qnorm(1−pow)

228

n <− ( z . alpha∗sqrt ( sigma . sq . rml)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

230 }

i f (proc==” un r e s t r i c t e d ” ){

232

sigma . sq <− l a . t/w. t + ( de l t a ˆ2)∗ l a . r/w. r +

234 (1−de l t a )ˆ2 ∗ l a . p/(1−w. r−w. t )

236 eta <− −l a . t+de l t a∗ l a . r+(1−de l t a )∗ l a . p

238 z . alpha <− qnorm( l e v e l )
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z . beta <− qnorm(1−pow)

240

n <− ( z . alpha∗sqrt ( sigma . sq)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

242 }

# rounding the sample s i z e s in each group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

244 n . t <− round(n∗w. t )

n . r <− round(n∗w. r )

246 n . p <− round(n∗(1−w. t−w. r ) )

248 r e s u l t <− cbind (proc , n . t+n . r+n . p , n . t , n . r , n . p )

250 colnames ( r e s u l t ) <− c ( ” proc ” , ”n” , ”n . t ” , ”n . r ” , ”n . p” )

r e s u l t <− as . data . frame ( r e s u l t )

252

return ( r e s u l t )

254 }

256 #==============================================================================

# EXAMPLE

258 #

# Determine the minimal requ i red sample s i z e f o r the a l t e r n a t i v e

260 # la . t=l a . r=10, l a . p=20 and d e l t a=70% under the opt imal sample

# a l l o c a t i o n (w. t ,w. r ,w. p )=(0.471 ,0 .330 ,0 .200) computed with

262 # ’RET. OptAlloc . Pois . MinusId ( ) ’ when the var iance sigmaˆ2 w i l l

# be es t imated with r e s t r i c t i o n to nu l l h ypo the s i s .

264 #==============================================================================

RET. Pois . MinusId . Samples ize ( l a . t=10, l a . r=10, l a . p=20,w. t=0.471 ,w. r =0.33 ,

266 de l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,

proc=” r e s t r i c t e d ” )

268

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

270 # OUTPUT:

# > RET. Pois . MinusId . Samples ize ( l a . t =10, l a . r=10, l a . p=20,w. t =0.471 ,w. r=0.33 ,

272 # + de l t a =0.7 , l e v e l =0.05 ,pow=0.8 ,

# + proc=”r e s t r i c t e d ”)

274 # proc n n . t n . r n . p

# 1 r e s t r i c t e d 31 15 10 6

276 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

###############################################################################
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A.3 Normally distributed endpoints

###############################################################################

2 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

# #

4 # NORMALLY DISTRIBUTED ENDPOINTS #

# #

6 # For a d e t a i l e d d i s cu s s i on see Pigeot e t a l . (2003) . #

# #

8 ###############################################################################

10 #==============================================================================

# FUNCTION: RET.Norm. Id

12 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# INPUT: x . t Vector with ob s e r va t i on s from the t e s t group

14 # x . r Vector with ob s e r va t i on s from re f e r ence group

# x . p Vector with ob s e r va t i on s from placebo group

16 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

18 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 # OUTPUT: t e s t s t a t i s t i c Value o f the t e s t s t a t i s t i c T

# p . va lue To the t e s t s t a t i s t i c corresponding p−va lue

22 #

#==============================================================================

24 RET.Norm . Id <− function ( x . t , x . r , x . p , d e l t a )

{

26 # MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

mu. ml . t <− mean( x . t )

28 mu. ml . r <− mean( x . r )

mu. ml . p <− mean( x . p )

30

n . t <− length ( x . t )

32 n . r <− length ( x . r )

n . p <− length ( x . p )

34 n <− n . t+n . r+n . p

36 sigma <− sqrt ( (1/n . t + de l t a ˆ2/n . r + (1−de l t a )ˆ2/n . p)∗

( ( n . t−1)∗sd ( x . t )ˆ2+(n . r−1)∗sd ( x . r )ˆ2+(n . p−1)∗sd ( x . p )ˆ2)/ (n−3))

38

# Te s t s t a t i s t i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

40 t e s t s t a t i s t i c <− (mu. ml . t − de l t a∗mu. ml . r−(1−de l t a )∗mu. ml . p)/sigma

42 r e s u l t <− cbind (round( t e s t s t a t i s t i c , 4 ) , round(1−pnorm( t e s t s t a t i s t i c ) , 4 ) )

colnames ( r e s u l t ) <− c ( ” t e s t s t a t i s t i c ” , ”p . va lue ” )

44 r e s u l t <− as . data . frame ( r e s u l t )

return ( r e s u l t )

46 }

48 #==============================================================================

# EXAMPLE

50 #==============================================================================

# −−− Generating some data −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

52 set . seed (666)

x . t <− round(rnorm( 100 , 10 , 1 ) , 2 ) # 100 rounded samples from N(10 ,1)

54 x . r <− round(rnorm( 80 , 10 , 1 ) , 2 ) # 80 rounded samples from N(10 ,1)

x . p <− round(rnorm( 70 , 9 , 1 ) , 2 ) # 70 rounded samples from N(9 ,1)

56

# Analyzing data −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

58 RET.Norm . Id (x . t , x . r , x . p , d e l t a =0.7)
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60 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT:

62 # > RET.Norm. Id ( x . t , x . r , x . p , d e l t a =0.7)

# t e s t s t a t i s t i c p . va lue

64 # 1 1.924 0.0272

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

66 ################################################################################

68 #==============================================================================

# FUNCTION: RET.Norm. Id . Samples ize

70 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# INPUT: mu. t Expectat ion o f the t e s t group

72 # mu. r Expectat ion o f the re f e r ence group

# mu. p Expectat ion o f the p lacebo group

74 # p . sigma Standard dev i a t i on o f the groups k=t , r , p , which

# i s presumed to be homogeneous

76 # w. t Re l a t i v e sample a l l o c a t i o n to the t e s t group (n . t/n)

# w. r Re l a t i v e sample a l l o c a t i o n to the re f e r ence group (n . r/n)

78 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

80 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# l e v e l S i gn i f i c anc e l e v e l

82 # pow Aspired power ( one minus the type II−error )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84 # OUTPUT:

# Required sample s i z e s :

86 # n Total r equ i r ed sample s i z e (n . t+n . r+n . p )

# n . t Required samples f o r the t e s t group ( rounded )

88 # n . r Required samples f o r the re f e rnce group ( rounded )

# n . p Required samples f o r the p lacebo group ( rounded )

90 #

###############################################################################

92 RET.Norm . Id . Samples ize <− function (mu. t ,mu. r ,mu. p , sigma ,

w. t ,w. r , de l ta , l e v e l , pow)

94 {

sigma . sq <− (1/w. t + de l t a ˆ2/w. r + (1−de l t a )ˆ2/(1−w. r−w. t ) )∗sigmaˆ2

96

eta <− mu. t−de l t a∗mu. r−(1−de l t a )∗mu. p

98

z . alpha <− qnorm( l e v e l )

100 z . beta <− qnorm(1−pow)

102 n <− ( z . alpha∗sqrt ( sigma . sq)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

104 # rounding the sample s i z e s in each group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n . t <− round(n∗w. t )

106 n . r <− round(n∗w. r )

n . p <− round(n∗(1−w. t−w. r ) )

108

r e s u l t <− cbind (n . t+n . r+n . p , n . t , n . r , n . p )

110

colnames ( r e s u l t ) <− c ( ”n” , ”n . t ” , ”n . r ” , ”n . p” )

112 r e s u l t <− as . data . frame ( r e s u l t )

114 return ( r e s u l t )

}

116

#==============================================================================

118 # EXAMPLE
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#

120 # Determine the minimal requ i red sample s i z e f o r the a l t e r n a t i v e

# mu. t=mu. r=10, mu. p=9 and d e l t a=80% under the opt imal sample

122 # a l l o c a t i o n (w. t ,w. r ,w. p )=(0 .5 ,0 .4 ,0 .1 ) and a var iance of 1 .

#==============================================================================

124 RET.Norm . Id . Samples ize (mu. t=10,mu. r=10,mu. p=9, sigma=1,w. t=0.5 ,w. r =0.4 ,

d e l t a =0.8 , l e v e l =0.05 ,pow=0.8)

126

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

128 # OUTPUT:

# > RET.Norm. Id . Samples ize (mu. t =10,mu. r=10,mu. p=9,sigma=1,w. t =0.5 ,w. r=0.4 ,

130 # + de l t a =0.8 , l e v e l =0.05 ,pow=0.8)

# n n . t n . r n . p

132 # 1 618 309 247 62

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

134 ###############################################################################



88 APPENDIX A. IMPLEMENTATIONS IN R

A.4 Censored, exponentially distributed endpoints

1 ###############################################################################

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

3 # #

# CENSORED, EXPONENTIALLY DISTRIBUTED ENDPOINTS #

5 # #

# For a d e t a i l e d d i s cu s s i on see Mielke e t a l . (2008) . #

7 # #

###############################################################################

9

#==============================================================================

11 # FUNCTION: RET. Exp . MinusLog

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 # INPUT: x . t Observat ions o f the t e s t group

# x . r Observat ions o f the re f e r ence group

15 # x . p Observat ions o f the p lacebo group

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 # where x . k i s a matrix with one s i n g l e ob se rva t i on

# in each row and two columns , the observed va lue in

19 # the f i r s t column and the censor ing i nd i c a t o r in

# the second column

21 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# de l t a Non−i n f e r i o r i t y margin :

23 # Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

# re ta ined by the t e s t treatment r e l a t i v e to p lacebo

25 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT: t e s t s t a t i s t i c Value o f the t e s t s t a t i s t i c T

27 # p . va lue To the t e s t s t a t i s t i c corresponding p−va lue

#

29 #==============================================================================

RET. Exp . MinusLog <− function ( x . t , x . r , x . p , d e l t a )

31 {

# number o f uncensored ob s e r va t i on s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

33 cen t <− sum( x . t [ , 2 ] )

cen r <− sum( x . r [ , 2 ] )

35 cen p <− sum( x . p [ , 2 ] )

37 # MLE’ s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l a . ml . t <− sum( x . t [ , 1 ] ) /cen t

39 l a . ml . r <− sum( x . r [ , 1 ] ) /cen r

l a . ml . p <− sum( x . p [ , 1 ] ) /cen p

41

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

43 sigma <− sqrt (1/cen t + de l t a ˆ2/cen r + ( de l ta −1)ˆ2/cen p)

45 # Te s t s t a t i s t i c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t e s t s t a t i s t i c <− (−log ( l a . ml . t ) + de l t a∗log ( l a . ml . r ) +

47 (1−de l t a )∗log ( l a . ml . p ) )/sigma

49 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

r e s u l t <− cbind (round( t e s t s t a t i s t i c , 4 ) , round(1−pnorm( t e s t s t a t i s t i c ) , 4 ) )

51 colnames ( r e s u l t ) <− c ( ” t e s t s t a t i s t i c ” , ”p . va lue ” )

r e s u l t <− as . data . frame ( r e s u l t )

53 return ( r e s u l t )

}

55

#==============================================================================

57 # EXAMPLE

#==============================================================================
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59 # −−− Generating some data −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Number o f samples

61 n . t <− 200

n . r <− 150

63 n . p <− 100

65 set . seed (666)

t . t <− rexp (n . t , 1/10)

67 t . r <− rexp (n . r , 1/10)

t . p <− rexp (n . p , 1/15)

69 u . t <− rexp (n . t , 1/10) #

u . r <− rexp (n . r , 1/10) # censor ing v a r i a b l e s

71 u . p <− rexp (n . p , 1/15) #

73 x . t <− cbind (apply (cbind ( t . t , u . t ) , 1 ,min) , as .numeric ( t . t<=u . t ) )

x . r <− cbind (apply (cbind ( t . r , u . r ) , 1 ,min) , as .numeric ( t . r<=u . r ) )

75 x . p <− cbind (apply (cbind ( t . p , u . p ) , 1 ,min) , as .numeric ( t . p<=u . p ) )

77 # Analyzing data −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

RET. Exp . MinusLog (x . t , x . r , x . p , d e l t a =0.7)

79

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

81 # OUTPUT:

# > RET.Exp . MinusLog ( x . t , x . r , x . p , d e l t a =0.7)

83 # t e s t s t a t i s t i c p . va lue

# 1 1.7341 0.0415

85 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

################################################################################

87

#==============================================================================

89 # FUNCTION: RET. Exp . MinusLog . Samples ize

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

91 # INPUT: par . t Parameter o f the t e s t group

# par . r Parameter o f the re f e r ence group

93 # par . p Parameter o f the p lacebo group

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

95 # where each parameter par . k c on s i s t s o f the pa i r

# ”( la , prob )” , where ” l a ” rep re s en t s the parameter

97 # of the exponen t i a l d i s t r i b u t i o n ( with expec ta t i on l a )

# and ”prob” repre s en t s the p r o b a b i l i t y f o r an

99 # uncensored obse rva t i on .

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

101 # w. t Re l a t i v e sample a l l o c a t i o n to the t e s t group (n . t/n)

# w. r Re l a t i v e sample a l l o c a t i o n to the re f e r ence group (n . r/n)

103 # de l t a Non−i n f e r i o r i t y margin :

# Fract ion o f a c t i v e c o n t r o l l e f f e c t which shou ld be

105 # re ta ined by the t e s t treatment r e l a t i v e to p lacebo

# l e v e l S i gn i f i c anc e l e v e l

107 # pow Aspired Power ( one minus the type II−error )

#

109 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT:

111 # Required sample s i z e s :

# n Total r equ i r ed sample s i z e (n . t+n . r+n . p )

113 # n . t Required samples f o r the t e s t group ( rounded )

# n . r Required samples f o r the re f e rnce group ( rounded )

115 # n . p Required samples f o r the p lacebo group ( rounded )

#

117 ###############################################################################

RET. Exp . MinusLog . Samples ize <− function (par . t , par . r , par . p ,



90 APPENDIX A. IMPLEMENTATIONS IN R

119 w. t ,w. r , de l ta , l e v e l , pow)

{

121 l a . t <− par . t [ 1 ]

l a . r <− par . r [ 1 ]

123 l a . p <− par . p [ 1 ]

prob . t <− par . t [ 2 ]

125 prob . r <− par . r [ 2 ]

prob . p <− par . p [ 2 ]

127

sigma . sq <− 1/(w. t∗prob . t ) + de l t a ˆ2/(w. r∗prob . r ) +

129 (1−de l t a )ˆ2/((1−w. r−w. t )∗prob . p)

131 eta <− −log ( l a . t)+de l t a∗log ( l a . r )+(1−de l t a )∗log ( l a . p )

133 z . alpha <− qnorm( l e v e l )

z . beta <− qnorm(1−pow)

135

n <− ( z . alpha∗sqrt ( sigma . sq)+z . beta∗sqrt ( sigma . sq ) )ˆ2/eta ˆ2

137

# rounding the sample s i z e s in each group −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

139 n . t <− round(n∗w. t )

n . r <− round(n∗w. r )

141 n . p <− round(n∗(1−w. t−w. r ) )

143 r e s u l t <− cbind (n . t+n . r+n . p , n . t , n . r , n . p )

145 colnames ( r e s u l t ) <− c ( ”n” , ”n . t ” , ”n . r ” , ”n . p” )

r e s u l t <− as . data . frame ( r e s u l t )

147

return ( r e s u l t )

149 }

151 #==============================================================================

# EXAMPLE

153 #==============================================================================

par . t <− c ( 1 0 , 0 . 8 )

155 par . r <− c ( 1 0 , 0 . 8 )

par . p <− c ( 2 0 , 0 . 8 )

157

RET. Exp . MinusLog . Samples ize (par . t , par . r , par . p ,w. t=0.5 ,w. r =0.4 ,

159 de l t a =0.8 , l e v e l =0.05 ,pow=0.8)

161 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# OUTPUT:

163 # > RET.Exp . MinusLog . Samples ize ( par . t , par . r , par . p ,w. t =0.5 ,w. r=0.4 ,

# + de l t a =0.8 , l e v e l =0.05 ,pow=0.8)

165 # n n . t n . r n . p

# 1 1608 804 643 161

167 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

###############################################################################
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