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Chapter 1

Introduction

The present PhD thesis deals with the following generic mathematical problem:

Reconstruct a function f : T → R, where T is a domain in Rd, based on its values at
a �nite set of data points (�sampling locations�) {t1, . . . , tn} ⊂ T .

Such kind of problem arises (directly or indirectly) in applications such as

• surface reconstruction

• numerical solution of partial di�erential equations

• �uid-structure interaction

• learning theory, neural networks and data mining

• modelling and prediction of environmental variables

Speci�c instances from di�erent �elds of application can be found in [8] and [41]. In
order to derive �optimal� procedures for reconstruction and to provide a priori estimates
of their precision it is necessary to make assumptions about f . There are basically two
di�erent �elds of mathematics that deal with the above problem in di�erent ways:
approximation theory and spatial statistics.

In approximation theory f is assumed to belong to some Hilbert space H of functions
of certain smoothness. This allows to use Taylor approximation techniques to derive
bounds for the approximation error in terms of the density of the data points. Smooth-
ness is a comparatively weak and �exible assumption, and the error bounds allow to
control the precision whenever it is possible to control the sampling. In this work the
focus will be on kernel interpolation. This procedure allows to adapt very �exibly the
degree of smoothness of f and it turns out to be optimal in the sense that it leads to
minimal approximation errors with respect to the norm ‖ · ‖H.
In some applications there is only limited or no control over the sampling and one has
to get by with the (sometimes very sparse) data that are available. Typical examples
are environmental modelling or mining where sampling involves high costs or is limited
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Chapter 1: Introduction

by lacking accessibility of the variable of interest. Moreover, in these applications the
variable of interest is often a very rough function, and together with the sparsity of
data this implies that error bounds obtained on the basis of Taylor approximation are
only of limited use. A way out is possible if the stronger model assumption that comes
with a statistical modelling approach is adequate: the assumption that f is a sample
path of a (second-order) random �eld. Then, again optimal approximation procedures
can be derived, and a satisfactory stochastic description of the approximation error is
available.
It is quite remarkable that both approaches �nally come up with the same type of ap-
proximant, despite the di�erent model assumptions and motivations of its construction.
Moreover, even the function that characterizes the magnitude of the approximation er-
ror appears - with di�erent interpretations - in both frameworks. This motivates a
synopsis of the two approaches that have so far been developed completely indepen-
dent of each other (except for their common interest in classes of positive de�nite
functions).

In this thesis we review and compare the approaches taken in approximation theory and
spatial statistics to solve the reconstruction problem sketched above, and we contrast
the di�erent model assumptions that come with these approaches. Our main focus is
to answer the following questions

1. To what extent do the probabilistic assumptions made in spatial statistics already
imply assumptions about the smoothness of f?

2. How sensitive are approximation accuracy and the accuracy of approximation
error prediction with respect to changes of the model / kernel parameters?

3. Which procedures can be used for parameter identi�cation and how does the
e�ciency of those procedures depend on the adequacy of the model assumptions?

Substantial new contributions that considerably exceed the results in the stochastic
literature are made in connection with the �rst question by proving a number of the-
orems providing an extensive characterization of the smoothness of the sample paths
of second-order random �elds. Another major contribution of this thesis consists in
deriving an alternative interpretation of the maximum likelihood estimator for model
parameters in spatial statistics which motivates its use in a non-statistical framework
and helps to identify its scope of application.

In order to make this thesis completely self-contained and readable for mathematicians
from both �elds - statistics and numerical analysis - we give a summary of all relevant
notions of probability theory (Chapter 2) and of reproducing kernel Hilbert spaces
(RKHSs) and show their connection to the Hilbert spaces associated with stochas-
tic processes (Chapter 3). This connection reappears in Chapter 4 where particular
representations of RKHSs and stochastic processes are given that allow to draw �rst
conclusions on the regularity of sample paths. Results of more immediate applicability
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Chapter 1: Introduction

are then derived - from a completely di�erent starting point - in Chapter 5. After
explaining the general principles behind the construction of stochastic processes we
state and generalize some results from the literature on continuity and di�erentiability
in the mean square sense. Continuity and di�erentiability of the sample paths is �rst
discussed for the Gaussian case only. We then propose to focus on criteria for weak
di�erentiability as it will turn out that this type of regularity is entirely determined
by the second-order structure. Necessary and su�cient conditions on the second-order
structure of the process are proved that ensure weak di�erentiability of any degree, and
examples are presented to illustrate these statements.
In Chapter 6 we �nally turn to the actual approximation problem, outline and contrast
the di�erent approaches to solve it and the di�erent ways to quantify the approximation
errors coming with these approaches. We also study the sensitivity of approximation
accuracy and accuracy of the prediction of the approximation error to changes of the
model parameters. Two standard methods (cross validation and maximum likelihood)
for selecting such parameters are introduced in Chapter 7. An alternative derivation of
the maximum likelihood procedure is given, allowing to widen its scope of application
to the non-statistical framework and to better understand the limits of its applicability.
Last but not least we compare the ability of both methods to select parameters that
lead to a good reconstruction of f and to an adequate prediction of the approximation
error in both a statistical and an approximation theory framework.

In this and the following chapters we are often sloppy with the nomenclature of the
mathematical �elds �stochastics�, �statistics�, �spatial statistics�, and �geostatistics�.
These terms are used as synonyms whenever contrasting the stochastic approach with
the deterministic approach. Likewise, when talking about the latter, we use the terms
�numerical analysis� or �approximation theory�. The same is done with the nomencla-
ture for the people working in these �elds.
We often use a �/� between two expressions corresponding to terminology from spa-
tial statistics and approximation theory when making statements that apply to both
frameworks but describe objects with di�erent nomenclature.
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Chapter 2

Basic Notions of Probability Theory

In this section we will give some basic de�nitions and theorems from measure and
probability theory, and from the theory of stochastic processes, which we will frequently
need in subsequent sections. We mainly follow [3] and [5], and these are also our main
references for proofs and further details in this chapter.

2.1 Measure and Probability

De�nition 2.1.1. Let Ω be a set. Then A ⊂ 2Ω is called a σ-algebra on Ω if

1. Ω ∈ A

2. A ∈ A ⇒ Ac := Ω \ A ∈ A

3. (An)n∈N ⊂ A ⇒
⋃
n∈N

An ∈ A

If A is a σ-algebra on Ω, then (Ω,A) is called measurable space and each A ∈ A is
called a measurable set.

A σ-algebra can be interpreted as an information system on Ω. We will only be allowed
to make (probabilistic) statements about subsets of Ω (so-called �events�) that are
contained in A.

Every intersection of (�nitely or in�nitely many) σ-algebras in a set Ω is itself a σ-
algebras in Ω. It follows that for every system Ξ of subsets of Ω there exists a smallest
σ-algebra σ(Ξ) containing Ξ. If A = σ(Ξ), then Ξ is called a generator of A.

Example 2.1.2. An important example for a measurable space is (Rd,Bd), the real
space of dimension d, endowed with the Borel σ-algebra, which is by de�nition the
smallest σ-algebra generated by the open subsets of Rd.

The set of open subsets is not the only generator of Bd. Other generators are
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2.1: Measure and Probability

1. The set of all open cuboids (a, b) in Rd where

(a, b) :=
{
x ∈ Rd : ai < xi < bi, for all 1 ≤ i ≤ d

}
2. The set of all closed cuboids [a, b] in Rd where

[a, b] :=
{
x ∈ Rd : ai ≤ xi ≤ bi, for all 1 ≤ i ≤ d

}
3. The set of all right half-open cuboids [a, b) in Rd where

[a, b) :=
{
x ∈ Rd : ai ≤ xi < bi, for all 1 ≤ i ≤ d

}
.

In many cases, the space Ω of interest is naturally represented as the Cartesian product
of spaces Ωi, i ∈ I, where I is an arbitrary index set. This motivates

De�nition 2.1.3. Let {(Ωi,Ai)}i∈I a set of measurable spaces, let Ω := ×i∈I Ωi and
πj : Ω→ Ωj the j-th canonical projection. Let

G :=
{
π−1
i (Ai) : Ai ∈ Ai, i ∈ I

}
Then the product σ-algebra ⊗i∈IAi on Ω is de�ned as σ(G).

By interpreting Rd as the n-fold Cartesian product of R1, De�nition 2.1.3 yields a
product σ-algebra ⊗di=1B on Rd, generated by all sets of the form{

x ∈ Rd : ai < xi < bi, for one 1 ≤ i ≤ d
}
,{

x ∈ Rd : ai ≤ xi ≤ bi, for one 1 ≤ i ≤ d
}
, or{

x ∈ Rd : ai ≤ xi < bi, for one 1 ≤ i ≤ d
}
.

It is well-known that Bd = ⊗di=1 B, so we have yet another generator for Bd.

When working with real-valued functions f , it is sometimes necessary that f takes
values in the compact extension R := R ∪ {−∞,∞} of R. The corresponding Borel
σ-algebra B then consist of the sets

B0, B0 ∪ {−∞}, B0 ∪ {∞}, and B0 ∪ {−∞,∞} with B0 ∈ B.

De�nition 2.1.4. Let (Ω,A) and (E,B) be measurable spaces. A mapping f : Ω→ E
is called A/B measurable or simply measurable if

f−1(B) ∈ A for all B ∈ B.

Example 2.1.5. Continuous mappings f : Rd → Rn are measurable. This follows
directly from the de�nition of continuity (�preimages of open subsets are open�) and
the next theorem.
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2.1: Measure and Probability

Theorem 2.1.6. (cf. [3, Thm. 1.7.2]) Let (Ω,A) and (E,B) be measurable spaces with
B = σ(Ξ). A mapping f : Ω→ E is measurable if and only if

f−1(B) ∈ A for all B ∈ Ξ.

There is also a reverse point of view on the measurability of mappings:

Consider a set ((Ωi,Ai))i∈I of measurable spaces and a set (fi)i∈I of measurable map-
pings fi : Ω → Ωi, i ∈ I. De�ne σ(fi, i ∈ I) as the smallest σ-algebra with respect
to which every fi is still A/Ai measurable. This sub-σ-algebra of A on Ω induced by
(fi)i∈I re�ects their information content, and we will come back to this interpretation
in subsection 2.5.

We give some results concerning the measurability of functions f : Ω→ R:

Theorem 2.1.7. ([3, Thm. 2.1.2]) A function f : Ω→ R on (Ω,A) is A/B measurable
if and only if it satis�es one of the following conditions

1.
{
ω : f(ω) ≤ a

}
∈ A for all a ∈ R,

2.
{
ω : f(ω) < a

}
∈ A for all a ∈ R,

3.
{
ω : f(ω) ≥ a

}
∈ A for all a ∈ R,

4.
{
ω : f(ω) > a

}
∈ A for all a ∈ R.

Theorem 2.1.8. ([3, Thm. 2.1.3, 2.1.4]) For any two A/B measurable functions f, g :
Ω→ R on (Ω,A), the sets{

ω : f(ω) < g(ω)
}
, and

{
ω : f(ω) = g(ω)

}
,

(and of course their union and their complements) are all in A. Moreover, the functions
f + g, f − g and f · g are also A/B measurable, provided they are de�ned everywhere
on Ω.

Theorem 2.1.9. ([3, Thm. 2.1.5, Cor. 2.1.6, 2.1.7])
Let (fn)n∈N be a sequence of A/B measurable functions on (Ω,A), with values in R.
Then each of the following functions is also A/B measurable:

|f1|, sup(f1, 0), inf(f1, 0), sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, lim inf
n→∞

fn.

If (fn)n∈N is pointwise convergent, i.e. if lim
n→∞

fn(ω) exists in R for each ω, then this

limit function is also A/B measurable.
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2.1: Measure and Probability

The following Lemma ([3, Lem. 3.2.1, 3.2.5]) links measurability of sets and mappings
w.r.t. a product space to measurability of their cross-sections.

Lemma 2.1.10. Let (Ω1,A1), (Ω2,A2) and (E,B) be measurable spaces.

If A ∈ A1 ⊗A2, then we have for the cross-sections:

Aω1 := {ω2 : (ω1, ω2) ∈ A} ∈ A2 for all ω1 ∈ Ω1 and

Aω2 := {ω1 : (ω1, ω2) ∈ A} ∈ A1 for all ω2 ∈ Ω2 .

If f : Ω1 × Ω2 → E is A1 ⊗A2 /B measurable, then

f(ω1, ·) is A2 /B measurable for each �xed ω1, and

f(·, ω2) is A1 /B measurable for each �xed ω2 .

We are now ready to introduce the notion of a (probability) measure:

De�nition 2.1.11. A set function µ : A → [0,∞] on a measurable space (Ω,A) is
called a measure on A, and the triple (Ω,A, µ) a measure space, if

1. µ(∅) = 0

2. (An)n∈N ⊂ A, An ∩ Am = ∅ (n 6= m) =⇒ µ
( ⋃
n∈N

An

)
=
∑
n∈N

µ(An)

If, in addition, µ(Ω) = 1 then µ is called a probability measure (and usually denoted
by P ) and (Ω,A, µ) is called a probability space.

De�nition 2.1.12. A measure µ on (Ω,A) is called σ-�nite if there exists some count-
able or �nite sequence of A-sets (An)n∈N so that

An ↗ Ω as n→∞ and µ(An) <∞ for all n ∈ N.

In many situations, the subsets of Ω with measure 0 (called null sets) are of particular
interest having the interpretation of �exceptional sets� which are somehow negligible.
From this point of view, it is often desirable that subsets of null sets are again null sets,
although they might not even be measurable a priori. This motivates the following

De�nition 2.1.13. A measure space (Ω,A, µ) is called complete if A′ ⊂ A, A ∈ A
and P (A) = 0 imply that A′ ∈ A (and that P (A′) = 0).

In any probability space it is possible to enlarge the σ-algebra and extend the measure
in such way as to get a complete space [3, Sec. 1.5].

Notation: If some property holds for all ω ∈ Ω\N , where N ⊂ Ω is a set of µ-measure
0, we say that the property holds (µ-)almost everywhere (a.e.).

In the same way, in a probabilistic context, we say that some statement is true
(P -)almost surely (a.s.) if it holds for all ω outside a P -null set.
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2.1: Measure and Probability

Example 2.1.14. (Lebesgue Measure)
As noted above, the Borel σ-algebra Bd on Rd is generated by the set

Ξ =
{

[a, b) ⊂ Rd : a, b ∈ Rd, ai < bi for all 1 ≤ i ≤ d
}

of right half-open cuboids in Rd. Now de�ne a measure λd on Ξ by

λd
(
[a, b)

)
:=

d∏
i=1

(bi − ai).

It can be shown ([3, Sec. 1.4,1.5]) that this measure has a unique extension to Bd.
Moreover,

Bn := [−n, n)d, n ∈ N

de�nes a sequence (Bn)n∈N in Ξ with Bn ↗ Rd and λd(Bn) = (2n)d < ∞, so λd is
σ-�nite. This measure λd is called Lebesgue-Borel measure, its completion is called
Lebesgue measure.

Having de�ned products of measurable spaces, we need to introduce the notion of a
product measure.

De�nition and Theorem 2.1.15. Let (Ω,A) := (×ni=1 Ωi,⊗ni=1Ai) be the product
space of measurable spaces (Ωi,Ai, µi), i = 1, . . . , n. The product measure µ = ⊗ni=1µi
is de�ned by

µ
(
×ni=1 Ai

)
:=

n∏
i=1

µi(Ai) for all Ai ∈ Ai, i = 1, . . . , n

Such a measure µ exists and is uniquely determined on (Ω,A) by the preceding require-
ment (cf.[3, Thm. 3.3.1]).

For later use we state the �rst Borel-Cantelli lemma:

Lemma 2.1.16. ([3, Lem. 6.2.1]) Let (Ω,A, P ) be a probability space and (An)n∈N
be a sequence of A measurable events. Then

∑
n∈N

P (An) < ∞ =⇒ P

( ⋂
n∈N

⋃
m≥n

Am

)
= 0.
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2.2: Integration

2.2 Integration

2.2.1 The Lebesgue integral

Following [3, Ch. 2] we give the main ideas of integration of a real-valued function f
w.r.t. some measure µ. The Lebesgue integral is a special case.

In this and all subsequent sections, 1A(x) denotes the indicator function of the set A,
i.e.

1A(x) =

{
1, x ∈ A
0, x /∈ A

De�nition 2.2.1. Let (Ω,A, µ) be a measure space. A function f : Ω→ R+ is called
an elementary or simple function, if it allows the representation

f(·) =
n∑
i=1

ai 1Ai(·), ai ≥ 0, Ai ∈ A, i = 1, . . . , n, n ∈ N. (2.1)

If in addition the sets A1, . . . , An are pairwise disjoint with Ω =
⋃n
i=1Ai, then (2.1) is

called normal representation of f .

Clearly, a normal representation of an elementary function f always exists, but it is
not unique. However, this is of no concern for integration.

De�nition and Lemma 2.2.2. Let f : Ω → R+ be an elementary function on
(Ω,A, µ). Then the number∫

Ω

f(ω) µ(dω) :=
n∑
i=1

ai µ(Ai) ∈ R+

is called the (µ-)integral of f (over Ω).

It is independent of the chosen normal representation.

This de�nition of integrals can be extended to nonnegative A/B measurable functions
f . Such a function can always be represented as the limit of an increasing sequence
(fn)n∈N of elementary functions. Indeed, by de�ning

fn(ω) :=
n·2n∑
j=1

(j − 1) 2−n · 1{ j−1
2n
≤ f(ω)< j

2n}(ω) + n · 1{n≤ f(ω)}(ω), ω ∈ Ω,

we obtain such a sequence with f = sup
n∈N

fn but again, the fn are not unique.

9



2.2: Integration

De�nition and Lemma 2.2.3. Let f : Ω → R+ be a A/B measurable function on
(Ω,A, µ), and (fn)n∈N an increasing sequence of elementary functions with f = sup

n∈N
fn .

Then the number ∫
Ω

f(ω) µ(dω) := sup
n∈N

∫
Ω

fn(ω) µ(dω) ∈ R+

is called the (µ-)integral of f (over Ω).

It is independent of the particular sequence (fn)n∈N.

Finally the de�nition of the integral is extended to certain measurable functions of
arbitrary sign. To this end, for every function f : Ω→ R, we set

f+ := sup (f, 0) and f− := − inf (f, 0).

Clearly, f+ ≥ 0, f− ≥ 0 and we have f = f+ − f− and |f | = f+ + f−. Hence, by
Theorem 2.1.8 and 2.1.9, if f is A/B measurable so is f+ and f−.

De�nition 2.2.4. Let f : Ω→ R be a A/B measurable function on (Ω,A, µ) so that
at least one of the (µ-)integrals∫

Ω

f+(ω) µ(dω) and

∫
Ω

f−(ω) µ(dω) (2.2)

is �nite. Then the number∫
Ω

f(ω) µ(dω) :=

∫
Ω

f+(ω) µ(dω) −
∫

Ω

f−(ω) µ(dω) ∈ R

is called the (µ-)integral of f (over Ω).

If both (µ-)integrals in (2.2) are �nite, then f is said to be (µ-)integrable.

Remark 2.2.5. So far integration was always over the whole of Ω. Now, for any A ∈ A
we know that if f : Ω→ R is an A/B measurable function so is 1A f , and we de�ne∫

A

f(ω) µ(dω) :=

∫
Ω

1A(ω) f(ω) µ(dω).

We note some basic properties of the µ-integral:

Theorem 2.2.6. Let f, g be (µ-)integrable functions on (Ω,A, µ). Then

1. f ≤ g =⇒
∫

Ω

f(ω) µ(dω) ≤
∫

Ω

g(ω) µ(dω).

10



2.2: Integration

2. for any α, β ∈ R the function α f + β g is (µ-)integrable and∫
Ω

α f(ω) + β g(ω) µ(dω) = α

∫
Ω

f(ω) µ(dω) + β

∫
Ω

g(ω) µ(dω).

3.

∣∣∣∣ ∫
Ω

f(ω) µ(dω)

∣∣∣∣ ≤ ∫
Ω

∣∣f(ω)
∣∣ µ(dω).

As an immediate consequence of part 2. in Thm. 2.2.6 we note that both integrals in
(2.2) are �nite (i.e. f is integrable) if and only if |f | is integrable.

One of the big strengths of the µ-integral (which is the Lebesgue integral if µ is the
Lebesgue measure) compared to the Riemann integral lies in the validity of the following
theorems, which provide su�cient conditions under which the passage to the limit of
a sequence of functions and integration can be interchanged.

Theorem 2.2.7. (Monotone Convergence Theorem, [3, Thm. 2.3.4])
For an increasing sequence (fn)n∈N of nonnegative A/B measurable functions on (Ω,A, µ)
it holds that ∫

Ω

(
sup
n∈N

fn

)
(ω) µ(dω) = sup

n∈N

∫
Ω

fn(ω) µ(dω).

Lemma 2.2.8. (Fatou's Lemma, [3, Lem. 2.7.1])
For every sequence (fn)n∈N of nonnegative A/B measurable functions on (Ω,A, µ) it
holds that ∫

Ω

(
lim inf
n→∞

fn

)
(ω) µ(dω) ≤ lim inf

n→∞

∫
Ω

fn(ω) µ(dω).

Lemma 2.2.9. (Dominated Convergence Theorem, [5, Thm. 16.4])
Let (fn)n∈N and f all be A/B measurable functions on (Ω,A, µ), and let g be a non-
negative µ-integrable function on (Ω,A, µ). If

|fn| ≤ g a.e. for all n ∈ N, and fn → f a.e. as n→∞,

then ∫
Ω

f(ω) µ(dω) = lim
n→∞

∫
Ω

fn(ω) µ(dω).

In the following sections we will consider measure spaces (Ω′,A′, µ′) whose measure µ′

is de�ned indirectly by a A/A′ measurable mapping T from a measure spaces (Ω,A, µ)
to (Ω′,A′) by

µ′(A′) := µ
(
T−1(A′)

)
, A′ ∈ A′.

The following theorem shows the connection between µ- and µ′-integrals:

11



2.2: Integration

Theorem 2.2.10. (Transformation theorem, [3, Cor. 2.10.2])

Let (Ω,A, µ) and (Ω′,A′, µ′) be as above, and let f : Ω′ → R be an A′/B measur-
able function. Then the µ′-integrability of f ′ implies the µ-integrability of f ′ ◦ T and
conversely. In this case we have∫

Ω′
f ′(ω′) µ′(dω′) =

∫
Ω

(f ′ ◦ T )(ω) µ(dω).

The next theorem ([3, Thm. 3.2.6, Cor. 3.2.7]) shows the connection between the full
integral and the marginal integrals of functions on product spaces.

Theorem 2.2.11. (Fubini's Theorem)

Let (Ωi,Ai, µi), i = 1, 2 be σ-�nite measure spaces and let f : Ω1×Ω2 → R a A1⊗A2 /B
measurable function. De�ne F1, F2 by

F1(ω1) :=

∫
Ω2

f(ω1, ω2) µ2(dω2), F2(ω2) :=

∫
Ω1

f(ω1, ω2) µ1(dω1).

If f is nonnegative, then F1 and F2 are A1/B and A2/B measurable, respectively,∫
Ω1×Ω2

f(ω1, ω2) (µ1 ⊗ µ2)
(
d(ω1, ω2)

)
=

∫
Ω1

F1(ω1) µ1(dω1) (2.3)

and

∫
Ω1×Ω2

f(ω1, ω2) (µ1 ⊗ µ2)
(
d(ω1, ω2)

)
=

∫
Ω2

F2(ω2) µ2(dω2) (2.4)

(if one side of (2.3) or (2.4) is in�nite, so is the other).

If f is µ1⊗µ2-integrable, then f(ω1, ·) is µ2-integrable for µ1-almost all ω1 and f(·, ω2) is
µ1-integrable for µ2-almost all ω2. Further, F1 is de�ned µ1-a.e., F2 is de�ned µ2-a.e.,
and again (2.3) and (2.4) hold.

We have already emphasized the importance of null sets and introduced the notion
of almost everywhere properties. The following theorem (see [3, Sec. 2.5]) shows the
signi�cance of these concepts in integration theory.

Theorem 2.2.12. Let f, g : Ω → R be two A/B measurable functions on (Ω,A, µ)
that are µ-a.e. equal. Then

1.

∫
Ω

f(ω) µ(dω) = 0 ⇐⇒ f = 0 a.e.

2. if f and g are nonnegative, then

∫
Ω

f(ω) µ(dω) =

∫
Ω

g(ω) µ(dω).

3. if f is µ-integrable, then so is g and

∫
Ω

f(ω) µ(dω) =

∫
Ω

g(ω) µ(dω).

12



2.2: Integration

4. if f is µ-integrable, then it is µ-a.e. �nite on Ω.

Note that this allows us to de�ne the integral for a function f de�ned only almost
everywhere on Ω, provided that f can be extended to an integrable function f ∗ on Ω.

Following [5, Sec. 19], we can now introduce the Lp-Spaces.

2.2.2 Lp-Spaces

Fix a measure space (Ω,A, µ). For a A/B measurable function f : Ω → R and
1 ≤ p ≤ ∞ de�ne

‖f‖Lp(Ω) :=

(∫
Ω

|f |p µ(dω)

) 1
p

, 1 ≤ p <∞, and (2.5)

‖f‖L∞(Ω) := ess sup Ω |f |. (2.6)

where ess sup Ω |f | = inf
{
a ∈ R : µ({ω : |f(ω)| > a}) = 0

}
.

Then for any 1 ≤ p ≤ ∞ we de�ne the function space

Lp(Ω,A, µ) :=
{
f : Ω→ R : f is A/B measurable and ‖f‖Lp(Ω) <∞

}
.

If Ω = T ⊂ Rd, A = Bd
T := Bd ∩ T and µ = λd (restricted to Bd

T ), then Bd
T and λd are

usually dropped from the notation and one writes Lp(T ) instead of Lp(T,Bd
T , λ

d) and∫
T

f(x) dx instead of

∫
T

f(x) λd(dx).

In this context, spaces of locally integrable functions are also of interest. Writing
I ⊂⊂ T for a subset I that is compactly contained in T , i.e. I ⊂ I ⊂ T and I is
compact, we further de�ne

Lploc(T ) :=
{
f : T → R : f ∈ Lp(I) for each I ⊂⊂ T

}
.

The great utility of Lp-spaces is due to their good mathematical structure:

Theorem 2.2.13. Let (Ω,A, µ) be a measure space and 1 ≤ p ≤ ∞. If we identify
functions that are equal µ-a.e. the space Lp(Ω,A, µ) de�ned above becomes a normed
vector space with the norm de�ned in (2.5) and (2.6) respectively. Moreover, it is
complete under the corresponding metric.
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2.3: Fourier Transforms of Measures

Theorem 2.2.13 says that, for any 1 ≤ p ≤ ∞, Lp(Ω,A, µ) is a Banach space. For
p = 2 we can even make it a Hilbert space by de�ning a scalar product

(f, g)µ :=

∫
Ω

fg µ(dω) f, g ∈ L2(Ω,A, µ).

In the following section we will frequently encounter this kind of Hilbert space either
w.r.t. the Lebesgue measure or w.r.t. some probability measure.

The following Lemma allows to draw conclusion about the integrability of products of
functions:

Lemma 2.2.14. (Hölder's inequality)
Let 1 ≤ p, q ≤ ∞ so that p−1 + q−1 = 1 (with the convention ∞−1 = 0). For
f ∈ Lp(Ω,A, µ) and g ∈ Lq(Ω,A, µ) it holds that f · g is µ-integrable and∫

Ω

|f g| µ(dω) ≤ ‖f‖Lp(Ω) · ‖g‖Lq(Ω).

We conclude this subsection by introducing the concept of weak convergence of se-
quences of �nite measures on (Rd,Bd) :

De�nition 2.2.15. Denote by Cb(Rd) the set of all continuous and bounded functions
f : Rd → R. A series of �nite measures (µn)n∈N on (Rd,Bd) is called weakly convergent
towards a �nite measure µ on (Rd,Bd), if

lim
n→∞

∫
Ω

f(ω) µn(dω) =

∫
Ω

f(ω) µ(dω) for all f ∈ Cb(Rd).

In this case we write µn
w−→ µ.

2.3 Fourier Transforms of Measures

We shall brie�y introduce the concept of Fourier transforms of measures, which are a
useful tool for working with probability measures. For proofs and further details we
refer to [3, Sec. 8.1, 8.2].

De�nition 2.3.1. Let µ be a �nite measure on the measure space (Rn,Bn). Then the
function µ̂ : Rn → R de�ned by

µ̂(τ) :=

∫
Rn
eiτ
′y µ(dy) =

∫
Rn

cos(τ ′y) µ(dy) + i

∫
Rn

sin(τ ′y) µ(dy) (2.7)

is called the Fourier transform of µ (by τ ′ we denote the transpose of τ).
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2.4: Random Variables and Vectors

We note some basic properties of Fourier transforms:

Lemma 2.3.2. Let µ, ν be a �nite measures on the measure space (Rn,Bn) and µ̂, ν̂
their Fourier transforms according to (2.7). Then

1. µ̂(τ) is de�ned for every τ ∈ Rn;

2. µ̂(0) = µ(Rn);

3. µ̂ is uniformly continuous on Rn;

4. µ is a symmetric measure ⇐⇒ µ̂ is real-valued and symmetric;

5. µ̂(τ) = ν̂(τ) for all τ ∈ Rn ⇐⇒ µ = ν.

Because of the last uniqueness property, Fourier transforms are usually called characteristic
functions in the stochastic literature. We will stick to the term �Fourier transform� to
avoid confusion with characteristic functions of sets.

The next theorem shows, that weak convergence of measures is equivalent to pointwise
convergence of their Fourier transforms:

Theorem 2.3.3. ([3, Thm. 8.2.7]) Let µ be �nite measure on (Rn,Bn), and (µn)n∈N
a sequence of �nite measures on (Rn,Bn). Then µn

w−→ µ implies

µ̂n(τ)→ µ̂(τ) as n→∞, for all τ ∈ Rn,

and the convergence is uniform on every compact subset of Rn. If in turn there exists
a function f : Rn → C that is continuous at 0, so that

µ̂n(τ)→ f(τ) as n→∞, for all τ ∈ Rn,

then there exists a �nite measure µ on (Rn,Bn) with µ̂ = f and µn
w−→ µ.

2.4 Random Variables and Vectors

De�nition 2.4.1. Let (Ω,A, P ) be a probability space. A measurable mapping X :
(Ω,A)→ (R,B) is called random variable (RV).

It induces a push-forward measure PX on B via

PX(B) := P
(
X−1(B)

)
for all B ∈ B. (2.8)

Instead of push-forward measure we also say distribution of X.

De�nition 2.4.2. Let (Ω,A, P ) be a probability space. A measurable mapping X :
(Ω,A)→ (Rn,Bn) is called random vector (RVct).
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2.4: Random Variables and Vectors

Notation: To express that a RV or a random vector X is distributed according to
some distribution D, it is common to write X ∼ D.

De�nition 2.4.3. (see also [3, Thm. 5.4.4]) Let (Xi)i∈I be a set of RVs on (Ω,A, P ),
where I is an arbitrary index set. For any �nite subset J ⊂ I denote by XJ the
random vector whose components are the RVs Xj, j ∈ J . The RVs Xi, i ∈ I are
called (mutually) independent if

PXJ = ⊗j∈J PXj for any J
�nite
⊂ I. (2.9)

According to De�nition 2.1.15, condition (2.9) is equivalent to

P
(
Xj ∈ Bj, j ∈ J

)
=
∏
j∈J

P (Xj ∈ Bj), Bj ∈ B for all j ∈ J,

which illustrates the idea behind De�nition 2.4.3: changing a marginal (i.e. determined
by only one of the Xj) event Bk, k ∈ J , a�ects the joint probability on the left only
through the change of the respective marginal probability.

The generalization of De�nition 2.4.3 for random vectors is obvious.

Notation: If the RVs Xi, i ∈ I, are independent and have identical marginal distri-
butions, we write

(Xi)i∈I
i.i.d.∼ µ.

to specify their (common) marginal distribution µ.

The de�nition of the push-forward measure reduces everything to the probability space
(Ω,A, P ). In practice however, it is often more natural to specify the distribution on
the image space (R,B), without any reference to the original probability space. This
can be conveniently done using the following notions:

De�nition 2.4.4. Let X : (Ω,A, P )→ (Rn,Bn) be a RV (n=1) or a RVct (n>1). The
distribution function of X is given by

F (t) := P
(
Xi ≤ ti, 1 ≤ i ≤ n

)
t = (t1, . . . , tn)′ ∈ Rn.

The distribution function F uniquely determines the push-forward measure PX . If PX
is absolutely continuous w.r.t. the Lebesgue measure, it can also be characterized by
its probability density:

De�nition and Theorem 2.4.5. ([3, Thm. 2.9.10]) Let X be a RV or a RVct. If PX
is absolutely continuous w.r.t. the Lebesgue measure λd, i.e.

λd(B) = 0 ⇒ PX(B) = 0 for all B ∈ Bn,
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then there exists a non-negative, integrable function f : Rn → R so that

PX(B) =

∫
B

f(x) dx for all B ∈ Bn.

f is called the probability density function.

We give some examples of important univariate distributions (i.e. n = 1):

Example 2.4.6. The uniform distribution U[a,b] with parameters a, b ∈ R, a < b, is
de�ned by its probability density function

f(x) =
1

b− a
1[a,b](x), x ∈ R.

Example 2.4.7. The exponential distribution Exp(λ) with parameter λ ∈ R+, is
de�ned by its probability density function

f(x) = λ e−λx 1[0,∞)(x), x ∈ R.

Example 2.4.8. The Gaussian or normal distributionN (µ, σ2) with parameters µ, σ ∈
R, σ > 0, is de�ned by its probability density function

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R.

In the case where σ = 0, the Gaussian distribution N (µ, 0) is no longer absolutely
continuous w.r.t. the Lebesgue measure. It is then de�ned by its distribution function

F (x) = 1[µ,∞)(x), x ∈ R.

The special case N (0, 1) is called standard Gaussian or standard normal distribution.

The parameters µ and σ of the univariate Gaussian distribution will turn out to be its
expectation and variance. The latter are the two most important quantities that can
be used to characterize random variables.

De�nition 2.4.9. For a RV X ∈ Lp(Ω,A, P )), the k-th moment is given by

E
(
Xk
)

:=

∫
Ω

(
X(ω)

)k
P (dω), k ∈ N, k ≤ p.

E
(
|X|k

)
is called the k-th absolute moment and, for k ≥ 2, E

((
X − E(X)

)k)
is called

the k-th centered moment.

The �rst moment, E(X), is called the expectation or the mean of X, the second cen-
tered moment is called the variance Var(X) of X (provided that p ≥ 1 and p ≥ 2,
respectively).

17
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Remark 2.4.10. The existence of the integrals in De�nition 2.4.9 follows from Lemma
2.2.14 (Hölder's inequality), which yields for k < p

E
(
|X|k

)
≤
(
E
(
|X|p

)) k
p
(
E(1)

) p−k
p︸ ︷︷ ︸

= 1

< ∞.

We also brie�y note the relation Var(X) = E
(
X2
)
−
(
E(X)

)2
.

For many distributions the mean, the variance and higher moments can explicitly be
calculated. We shall only state those for the normal distribution:

Lemma 2.4.11. Let X ∼ N (µ, σ2). Then for any n ∈ N we have

E(X) = µ, E
(
|X − E(X)|2n−1

)
= 0, and E

(
|X − E(X)|2n

)
= (2n)!

2nn!
σ2n.

In particular, all centered moments exist and are determined by σ2.

We note the following inequality (see [5, (21.12)]) that bounds the probability of a
deviation from 0 in terms of the absolute moments:

Lemma 2.4.12. (Markov's inequality) For a RV X ∈ Lp(Ω,A, P )) it holds that

P
(
|X| > ε

)
≤ 1

εp

∫
{ω : |X(ω)|>ε}

∣∣X(ω)
∣∣p P (dω) ≤ 1

εp
E
(
|X|p

)
.

The special case P
(
|X−E(X)| > ε

)
≤ 1

ε2
Var(X) is usually referred to as Chebyshevs's

inequality.

A certain subset of random variables, namely those with existing second moment, are
of particular interest:

De�nition 2.4.13. Let (Ω,A, P ) be a probability space and X, Y ∈ L2(Ω,A, P )
second-order RVs. The (centered) covariance of X and Y is

Cov(X, Y ) := E
((
X − E(X)

)(
Y − E(Y )

))
.

The RVs X and Y are called uncorrelated if Cov(X, Y ) = 0.

Lemma 2.4.14. (cf. [5, Sec. 21] Let X, Y ∈ L1(Ω,A, P ) be independent RVs. Then
E(XY ) exists and E(XY ) = E(X) E(Y ).

In particular, if X, Y ∈ L2(Ω,A, P ) are independent, then they are uncorrelated.

Using the relation Var(X + Y ) = Var(X) + 2 Cov(X, Y ) + Var(Y ) we obtain
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Corollary 2.4.15. For two independent RVs X, Y ∈ L2(Ω,A, P ) we have

Var(X + Y ) = Var(X) + Var(Y ).

Moments of random vectors are de�ned by applying the above notions to their compo-
nents. We are particularly interested in the �rst two moments:

De�nition 2.4.16. Let X be a RVct whose components Xi, i = 1, . . . , n, are second-
order RVs. Then the vector

E(X) :=
(
E(X1), . . . ,E(Xn)

)′
is called expectation or the mean of X and the matrix

Cov(X) :=
(
Cov(Xi, Xj

)
i,j=1,...,n

is called (variance-)covariance matrix of X.

We brie�y note that for any second-order random vector X, any vector b ∈ Rn and
any matrix A ∈ Rm×n we have

1. E
(
AX + b

)
= AE(X) + b

2. Cov(AX + b) = ACov(X)A′

Following [5, Sec. 29] we can now generalize the Gaussian distribution to the multi-
variate case:

De�nition 2.4.17. Let X be a random vector where (Xi)i=1,...,n
i.i.d.∼ N (0, 1). Let

µ ∈ Rn and A ∈ Rn×n. Then the distribution of

Y := AX + µ, (2.10)

denoted by N (µ,Σ), where Σ = AA′, is called n-variate Gaussian or n-variate normal
distribution with mean µ and covariance Σ.

Lemma 2.4.18. Let Y ∼ N (µ,Σ) be a random vector in Rn.

1. Y has mean E(Y ) = µ and covariance Cov(Y ) = Σ.

2. For Z := T Y + b with b ∈ Rm and T ∈ Rm×n, we have

Z ∼ N (Tµ+ b, T ΣT ′) .
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2.4: Random Variables and Vectors

3. If Σ is regular (i.e. Σ has full rank), then PY is absolutely continuous w.r.t. λn

and its probability density function equals

f(x) =
1

(2π)
n
2 |Σ| 12

e−
1
2

(x−µ)′ Σ−1(x−µ).

4. The Fourier transform P̂Y of PY is given by P̂Y (τ) = e i µ
′τ− 1

2
τ ′Σ τ , in particular

(see part 5. in Lemma 2.3.2) N (µ,Σ) is well de�ned by (2.10).

5. Then components Y1, . . . , Yn of Y are stochastically independent if and only if
they are pairwise uncorrelated, i.e. if Σ = In.

Note that the necessity of Σ = In in part 5. follows from Lemma 2.4.14. It is one of
the remarkable properties of the multivariate Gaussian distribution that this is also
su�cient.

Next, we introduce di�erent notions of convergence of a sequence (Xn)n∈N of random
variables or random vectors on a probability space (Ω,A, P ). In the latter case, con-
vergence is with respect to some suitable norm on Rd:

De�nition 2.4.19. The sequence (Xn)n∈N is called almost surely convergent towards
X, if

P
(

lim sup
n→∞

|Xn −X| > ε
)

= 0 for all ε > 0.

In this case we write Xn
a.s.−→ X.

De�nition 2.4.20. The sequence (Xn)n∈N is called stochastically convergent towards
X, if

lim
n→∞

P
(
|Xn −X| > ε

)
= 0 for all ε > 0.

In this case we write Xn
sto.−→ X.

De�nition 2.4.21. Assuming that X,Xn ∈ L2(Ω,A, P ) for all n ∈ N, the sequence
(Xn)n∈N is called convergent in the mean square towards X, if

lim
n→∞

E
(
|Xn −X|2

)
= 0.

In this case we write Xn
m.s.−→ X.

If Xn
m.s.−→ X, then the �rst and second moments must also converge, since

E
(
|Xn −X|2

)
= E(X2

n)− 2 E(XnX)︸ ︷︷ ︸
≤
√

E(X2
n) E(X2)

+E(X2) ≥
(√

E(X2
n)−

√
E(X2)

)2

and

E
(
|Xn −X|2

)
≥

(
E(|Xn −X|)

) 1
2 ≥

∣∣E(Xn)− E(X)
∣∣ 1

2 .
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The following theorems (collecting results from [3, Sec. 2.11, 7.7]) clarify the relations
between the di�erent types of convergence:

Theorem 2.4.22. For (Xn)n∈N and X as above, we have the implications

1. Xn
m.s.−→ X =⇒ Xn

sto.−→ X.

2. Xn
a.s.−→ X =⇒ Xn

sto.−→ X.

3. Xn
sto.−→ X =⇒ PXn

w−→ PX .

The converse statements are not true in general, and there is no implication between
a.s. and m.s. convergence. For part 2. of Theorem 2.4.22 however there exists at least
some kind of converse statement:

Theorem 2.4.23. The sequence (Xn)n∈N converges stochastically towards X if and
only if from every subsequence of (Xn)n∈N we can extract a further subsequence which
converges to X a.s.

2.5 Conditional Expectation

We introduce the notion of conditional expectation of RVs. It can be generalized to
RVcts by applying it componentwise.

Theorem 2.5.1. ([3, Thm. 10.1.1]) Let X ∈ L1(Ω,A, P ), A′ ⊂ A a sub-σ-algebra
on Ω and P |A′ the restriction of P on A′. Then there exists a random variable X̃ ∈
L1(Ω,A′, P |A′) satisfying the condition∫

A′
X(ω) P (dω) =

∫
A′
X̃(ω) P (dω) for all A′ ∈ A′.

X̃ is unique up to P |A′-null sets, is usually denoted by E[X|A′] and is called conditional
expectation of X given A′.

The conditional expectation E[X|A′] re�ects the information about X contained in
A′. In practice we are interested in the information about X contained in another RV
Y or, more generally, in a set (Yi)i∈I of RVs on the same probability space (Ω,A, P ).
As noted in subsection 2.1, the sub-σ-algebra σ(Yi, i ∈ I) on Ω generated by the set
(Yi)i∈I re�ects its information content, and so we call

E
[
X
∣∣Yi, i ∈ I] := E

[
X
∣∣σ(Yi, i ∈ I)

]
the conditional expectation of X given (Yi)i∈I .

For X ∈ L2(Ω,A, P ) we can give an equivalent de�nition of the conditional expectation
as an orthogonal projection:
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2.5: Conditional Expectation

Proposition 2.5.2. Let (Ω,A, P ) be a probability space and X ∈ L2(Ω,A, P ), further
let A′ ⊂ A be a sub-σ-algebra on Ω. Denote by ΠA′ the orthogonal projection of
L2(Ω,A, P ) on L2(Ω,A′, P |A′). Then

ΠA′X = E[X|A′] a.s.

The following two properties of conditional expectations emphasize its meaning as
projection on some �less informative� σ-algebra [3, Sec. 10.1].

Lemma 2.5.3. Let (Yi)i∈I a set of RVs on (Ω,A, P ), and X ∈ L1(Ω,A, P ).

1. If σ(X) ⊂ σ(Yi, i ∈ I), then E
[
X
∣∣Yi, i ∈ I] = X P -a.s.

2. If X is independent of (Yi)i∈I , then E
[
X
∣∣Yi, i ∈ I] = E(X) P -a.s.

In the �rst case, (Yi)i∈I contains exhaustive information about X and so X is projected
onto itself, while in the second case of independent RVs, no information about X is
contained in (Yi)i∈I and Πσ(Yi, i∈I) is simply the projection on the constant RVs.

We note some more properties (see [3, Sec. 10.1] and [5, Sec. 34]), which are more
technical, but will be needed in later chapters.

Lemma 2.5.4. Let X,X1, X2 ∈ L1(Ω,A, P ), Y an A′/B measurable RV on (Ω,A, P )
where A′ ⊂ A is a sub-σ-algebra, and a1, a2 ∈ R.

1. E
(
E[X|A′]

)
= E(X)

2. E[a1X1 + a2X2|A′] = a1 E[X1|A′] + a2 E[X2|A′] P -a.s.

3. E[Y X|A′] = Y E[X|A′] P -a.s.

Note that the integrals are with respect to di�erent measures: the outer expectation
in part 1. in Lemma 2.5.4 for instance, is with respect to P |A′ and not with respect
to P as usual. Here and in the future, we will suppress this subtle di�erence in the
notation to keep notation simple.

Factorization

Lemma 2.5.5. ([3, Lem. 10.2.1]) Let X be a RVs and Y be an n-dimensional ran-
dom vector on (Ω,A, P ). X is σ(Y )/B measurable if and only if there exists a Bn/B
measurable function

g : Rn → R so that X = g ◦ Y
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2.5: Conditional Expectation

Lemma 2.5.5 allows us to de�ne a B/B measurable mapping y 7→ E[X|Y = y] with
the property∫

Y −1(B)

X(ω) P (dω) =

∫
B

E[X|Y = y] PY (dy) for all B ∈ B.

E[X|Y = y] is called factorized conditional expectation and assigns to every observed
value y the expected value of X given that Y = y. It is PY -a.s. and inherits all of the
properties of the conditional expectation.

Apart from the restriction that E[X|Y = y] must be Bn/B measurable it can be
of arbitrary form. It is another remarkable property of the multivariate Gaussian
distribution that the conditioning of some of its components on the remaining ones
leads to a very simple form:

Proposition 2.5.6. Let (X1, X2)′ be a random vector of size n1 +n2 that is distributed
according to a multivariate Gaussian distribution, i.e.(

X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

Then the factorized conditional expectation of X1 given X2 = x2 equals

E[X1|X2 = x2] = µ1 + Σ12 Σ−1
22 (x2 − µ2).

Recalling the projection property of E[X|Y ] from Proposition 2.5.2 and that E[X|Y =
y] is the function g such that E[X|Y ] = g(Y ), we can interpret the factorized conditional
expectation as the best predictor of X given Y = y. Proposition 2.5.6 states that in
the case of a multivariate Gaussian distribution the best such predictor function g is
linear in y, and only depends on the means and the covariances.
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2.6: Stochastic Processes

2.6 Stochastic Processes

De�nition 2.6.1. A (real valued) stochastic process X on a set T is a set (Xt)t∈T of
random variables Xt : Ω→ R sharing the same probability space (Ω,A, P ).

When T ⊆ Rd X is also called a random �eld (RF).

There are two ways of looking at a stochastic process:

1. For �xed t ∈ T, Xt : ω 7→ Xt(ω) is simply a random variable,

2. For �xed ω ∈ Ω, X�(ω) : t 7→ Xt(ω) is a sample path.

Taking the path point of view amounts to interpreting a stochastic process as a map
X : (Ω,A, P )→

(
RT ,BT

)
into the space RT of real-valued functions on T with product

σ-algebra BT .
If T is a metric or at least a topological space (as e.g. in the case of a RF), one can
ask whether the sample paths of (X)t∈T are continuous functions. We postpone this
problem to section 5.

De�nition 2.6.2. A stochastic process (X)t∈T over the probability space (Ω,A, P ) is
of second order if Xt ∈ L2(Ω,A, P ) for all t ∈ T . Then

K(s, t) := Cov(Xs, Xt) for all s, t ∈ T

is called the covariance function or covariance kernel on T × T and

m(t) := E(Xt) for all t ∈ T.

is called the mean function. Sometimes one uses the second moment function

R(s, t) := E(XsXt) for all s, t ∈ T

and it holds that

R(s, t) = K(s, t) +m(s)m(t) for all s, t ∈ T. (2.11)

The following theorem is a consequence of the properties of the covariance (see De�ni-
tion 2.4.16 and the subsequent remark):

Theorem 2.6.3. The covariance and the second moment function of a second order
stochastic process (X)t∈T are symmetric (i.e. R(s, t) = R(t, s) and K(s, t) = K(t, s)
for all s, t ∈ T ) and positive semide�nite (see De�nition 3.1.1) functions on T × T .

The converse, i.e. the existence of a second order stochastic process on T for any positive
semide�nite function on T × T , is also true as is shown later in Corollary 5.1.2.
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2.6: Stochastic Processes

De�nition 2.6.4. A stochastic process (X)t∈T is called a Gaussian process, if for any
�nite subset {t1, . . . , tn} ⊂ T the random vector (Xt1 , . . . , Xtn)′ is n-variate normally
distributed.

Let us now turn to the special case of RFs. This is the case we will deal with in all
subsequent chapters. We shall introduce some important subclasses:

De�nition 2.6.5. A random �eld (X)t∈T is called (strictly) stationary if for any �nite subset
{t1, . . . , tn} ⊂ T and any h ∈ Rd with {t1 + h, . . . , tn + h} ⊂ T it holds that

P(Xt1 ,...,Xtn )′ = P(Xt1+h,...,Xtn+h)′ ,

i.e. if the �nite dimensional marginal distributions are shift-invariant.

De�nition 2.6.6. A second-order random �eld (X)t∈T is called (weakly) stationary if the
mean function m(·) is constant and the covariance function K(s, t) depends on s and t only
via t− s, i.e. if

K(s, t) = Φ(t− s) for all s, t ∈ T.

for some function Φ : T → R (which we will call covariance function as well).

From Lemma 2.4.18 we can see that the multivariate Gaussian distribution is completely
determined by its mean and its covariance. Hence, if a random �eld (X)t∈T is Gaussian and
weakly stationary, it is also strictly stationary, and we will no longer distinguish between the
two notions in this case.
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Chapter 3

Hilbert Spaces in Approximation
Theory and Stochastics

3.1 Reproducing-Kernel Hilbert Spaces

In this section, we shall introduce the notion of a reproducing-kernel Hilbert space (RKHS),
one of the basic notions to describe the classes of functions that are dealt with in approximation
theory. To this end, we study continuous functions R : T × T → R (called kernels in the
following), where T ⊆ Rd is an arbitrary region which contains at least one point.
Requiring R to be continuous is not always necessary, but allowing for discontinuous kernels
would complicate many of our considerations, so we shall stick to continuity as one of our
working assumptions in this and all subsequent chapters.

Another important property we need to impose on kernels is the following:

De�nition 3.1.1. A continuous kernel R : T × T → R is called positive semide�nite on
T ⊂ Rd if for all n ∈ N, all pairwise distinct {t1, . . . , tn} ⊂ T , and all a ∈ Rn \ {0} we have

n∑
j=1

n∑
k=1

aj ak R(tj , tk) ≥ 0. (3.1)

If the sum in (3.1) is strictly > 0, then R is called positive de�nite on T ⊂ Rd.

Now for a positive de�nite kernel R on T ⊂ R with R(s, t) = R(t, s) de�ne

HR :=

{
m∑
i=1

aiR(ti, ·) : ai ∈ R, ti ∈ T, m ∈ N

}
. (3.2)

with inner product m∑
i=1

aiR(si, ·),
n∑
j=1

bj R(tj , ·)


HR

:=
m∑
i=1

n∑
j=1

ai bj R(si, tj) (3.3)
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3.2: Sobolev Spaces

By the positive de�niteness of R we have (f, f)HR ≥ 0 for all f ∈ HR, and (f, f)HR = 0
if and only if f ≡ 0, so the inner product (3.3) de�nes a norm ‖f‖HR = (f, f)1/2

HR on HR.
Furthermore, for any f ∈ HR, we have

(
f,R(t, ·)

)
HR

=

(
m∑
i=1

aiR(si, ·), R(t, ·)

)
HR

=
m∑
i=1

aiR(si, t) = f(t) (3.4)

This is the reproducing kernel property.

The closure of HR under ‖·‖HR is a space of real-valued functions, denoted by HR, and called
the reproducing kernel Hilbert space (RKHS) of R. By the continuity of the inner product,
the reproducing equation (3.4) carries over to HR.

From (3.4) and from the continuity of R it follows that any f ∈ HR is continuous since we
have

|f(t)− f(s)| = |(f,R(t, ·)−R(s, ·))HR | ≤ ‖f‖HR · ‖R(t, ·)−R(s, ·)‖HR
and

‖R(t, ·)−R(s, ·)‖2HR = R(t, t) +R(s, s)− 2R(s, t).

3.2 Sobolev Spaces

Following [12, Sec. 5.2] we introduce an important class of RKHSs, the Sobolev spaces. Each
one of these spaces guarantees a certain smoothness of the functions it contains. They will
turn out to be the natural function spaces for the sample paths of second order random �elds
(see Section 5.5).

Notation: Here and in all following chapters an open subset T ⊆ Rd is called a domain. Its
boundary is denoted by ∂T , its closure by T .

For an (arbitrary) domain T ⊆ Rd we denote by C(T ) the space of continuous (real valued)
functions, by Ck(T ) the space of k times continuously di�erentiable functions and by C∞(T )
the space of in�nitely di�erentiable functions f : T → R.
Further we denote by Cc(T ), Ckc (T ) and C∞c (T ) respectively the corresponding classes of func-
tion which in addition have compact support in T , and by C(T ), Ck(T ) and C∞(T ) respectively
the classes of functions whose partial derivatives up to order 0, k or ∞ respectively can be
extended continuously to T .

Finally, for f ∈ Ck(T ) and a multi-index α ∈ Nd
0 of order |α| ≤ k, |α| :=

∑d
i=1 αi , let

Dαf =
∂|α|f

∂eα1
1 · · · ∂ed

αd
,

where ei is the unit vector in Rd in the direction of the i th coordinate axis.

The notion of smoothness that comes with Sobolev spaces is a weakening of the notion of
partial derivatives (cf. [12, Sec. 5.2.1]).
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3.2: Sobolev Spaces

De�nition and Lemma 3.2.1. Suppose that f, g ∈ L1
loc(T ), and α ∈ Nd is a multi-index.

We say that g is the αth weak partial derivative of f , written

Dαf = g,

provided ∫
T
f(x)Dαϕ(x) dx = (−1)|α|

∫
T
g(x)ϕ(x) dx

for all functions ϕ ∈ C∞c (T ) (so called test functions). A weak αth partial derivative of f , if
it exists, is uniquely de�ned up to a set of measure 0.

If f ∈ Ck(T ), then for any α with |α| ≤ k an αth weak partial derivative of f exists and
coincides (up to a set of measure 0) with the ordinary αth partial derivative. A simple
example of a function that is di�erentiable in the weak, but not in the ordinary sense, is the
function

f : R→ R, x 7→ |x|

with weak derivative

D1f(x) =
{
−1, x ≤ 0
1, x > 0

Note that the notion of weak di�erentiability is always a global one, there is no weak coun-
terpart for di�erentiability of f at a certain point t ∈ T .

We can now introduce a new class of function spaces, whose members have weak derivatives
of order k ∈ N0 lying in some Lp space:

De�nition 3.2.2. Let T be a domain in Rd and 1 ≤ p ≤ ∞. The Sobolev space W k,p(T )
consists of all locally integrable functions f : T → R such that for each multi-index α with
|α| ≤ k, Dαf exists in the weak sense and belongs to Lp(T ). If it only belongs to Lploc(T ), we
obtain the local Sobolev space W k,p

loc (T ).

For f ∈W k,p(T ) we de�ne its norm to be

‖f‖Wk,p(T ) :=


( ∑

|α|≤k ‖Dαf‖pLp(T )

)1/p
, 1 ≤ p <∞∑

|α|≤k ess supT |Dαf | , p =∞.

We note some elementary properties of weak derivatives ([12, Sec. 5.2.3]):

Theorem 3.2.3. Assume f, g ∈W k,p(T ), |α| ≤ k. Then

1. Dαf ∈ W k−|α|,p(T ) and Dα(Dβf) = Dβ(Dαf) = Dα+βf for all multi-indices α, β
with |α|+ |β| ≤ k.

2. For each a, b ∈ R, a f + b g ∈W k,p(T ) and Dα(a f + b g) = aDαf + bDαg, |α| ≤ k.

3. If I is an open subset of T , then f ∈W k,p(I).
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3.2: Sobolev Spaces

Like the Lp-spaces, Sobolev spaces have a good mathematical structure:

Theorem 3.2.4. For each k ∈ N and 1 ≤ p ≤ ∞, the Sobolev space W k,p(T ) is a Banach
space. The special case W k,2(T ) is a Hilbert space.

Next, give a characterization of the class of weakly di�erentiable functions f as functions
which are absolutely continuous on a.e. line parallel to the coordinate axes (taken from [24,
Sec. 5.6]). This will be useful in the study of regularity properties of stochastic processes in
Chapter 5. First we recall the de�nition of absolute continuity in the one-dimensional case:

De�nition 3.2.5. A function f : I → R where either I = R or I = [a, b], a, b ∈ R, is said to
be absolutely continuous (on I) if for every ε > 0, there exists a δ > 0 such that

n∑
i=1

(βi − αi) < δ =⇒
n∑
i=1

∣∣f(βi)− f(αi)
∣∣ < ε,

whenever (α1, β1), . . . , (αn, βn) are disjoint subintervals of I.

Theorem 3.2.6. ([32, Thm. 8.17, 8.18]) Let g ∈ L1(I) with I as above. For some x0 ∈ I
de�ne the function f on I by

f(x) :=
∫ x

x0

g(t) dt.

Then f is absolutely continuous and f ′ = g a.e. on I (f ′ = df
dx in the ordinary sense).

Conversely, if f : I → R is absolutely continuous, then f is di�erentiable (in the ordinary
sense) a.e. on I, f ′ ∈ L1(I), and it holds that

f(x) := f(x0) +
∫ x

x0

f ′(t) dt for all x ∈ I.

The notion of absolute continuity of functions f on [a, b] ⊂ R is generalized to open and
connected subsets T of Rd (domains) by considering the restrictions of f to all straight lines
parallel to the coordinate axes that intersect T . More precisely, let

πi : Rd → R and πi : Rd → Rd−1

denote the projections of some point in Rd on the i th coordinate and on all other coordinates
respectively. For some set B1 ∈ Bd−1 and some set B2 ∈ B denote by

B1 ×i B2 :=
{
t ∈ Rd : πi(t) ∈ B1, πi(t) ∈ B2

}
the Cartesian product of B1 and B2 that is taken in the i th component.

Now �x i ∈ {1, . . . , d}. For some t ∈ πi(T ) consider the line li(t) := t ×i R. For every such
line there exists a (�nite or in�nite) sequence (Jn)n∈I(t), I(t) ⊆ N of disjoint open intervals

Jn = Jn(t) ⊂ R such that

li(t) ∩ T =
⋃

n∈I(t)

t×i Jn(t).
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3.2: Sobolev Spaces

De�nition 3.2.7. Let T be a domain in Rd. A real valued function f de�ned on T is said
to be absolutely continuous on the line li(t) if the function

ft (ξ) := f
(
(t1, . . . , ti−1, ξ, ti, . . . , td−1)

)
, ξ ∈

⋃
n∈I(t)

Jn(t)

is absolutely continuous on every compact subinterval of Jn(t) for any n ∈ I(t).

De�nition 3.2.8. For 1 ≤ i ≤ d and T as above the space ACi(T ) consists of all functions
f that are absolutely continuous on li(t) for almost every t ∈ πi(T ). Further we set

AC(T ) =
d⋂
i=1

ACi(T )

We note the following relation between AC(T ) and W 1,1
loc (T ) (see [24, Lem. 5.6.2 and Thm.

5.6.3] or [28, Sec. 1.1.3]):

Lemma 3.2.9. Let f ∈ ACi(T ) ∩ L1
loc(T ), and denote by ∂f

∂ei
the ordinary partial derivative

of f in the direction ei (it exists a.e. in T since f is absolutely continuous on a.e. line li). If
∂f
∂ei
∈ L1

loc(T ), then it is a weak partial derivative of f .

Theorem 3.2.10. Let f ∈ W 1,1
loc (T ) and Deif a weak derivative of f in the direction ei.

Then there exists a function g ∈ ACi(T ) which is equal to f a.e. on T and whose ordinary
partial derivative ∂g

∂ei
is equal to Deif a.e. on T .

The notion of Sobolev spaces can be extended to non-integer orders ([24, Sec. 6.8]) which
altogether yields a class of function spaces with continuously parametrized degree of smooth-
ness.

For 1 ≤ p <∞, µ ∈ R+\N and k := bµc (the biggest integer ≤ µ) de�ne

|f |Wµ,p(T ) :=

∑
|α|=k

∫
T

∫
T

|Dαf(x)−Dαf(y)|p

‖x− y‖d+p(µ−k)
dx dy

1/p

‖f‖Wµ,p(T ) :=
(
‖f‖p

Wk,p(T )
+ |f |pWµ,p(T )

)1/p

De�nition and Theorem 3.2.11. Let T ⊆ Rd and 1 ≤ p <∞. For µ ∈ R+\N the Sobolev
space Wµ,p(T ), de�ned by

Wµ,p(T ) :=
{
f ∈W k,p(T ) : ‖f‖Wµ,p(T ) <∞

}
is a Banach space. The corresponding local Sobolev space Wµ,p

loc (T ) is de�ned by

Wµ,p
loc (T ) :=

{
f ∈W k,p

loc (T ) : ‖f‖Wµ,p(V ) <∞ for all V ⊂⊂ T
}
.
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3.2: Sobolev Spaces

Now that we have de�ned the full scale of Sobolev spaces we shall outline their connection to
the general idea of RKHS introduced in Section 3.1. To this end we introduce a particular
class of radially symmetric kernels (i.e. R(s, t) = Φ(‖t − s‖)) that will turn out to be the
reproducing kernels for the Sobolev spaces.

De�nition 3.2.12. For τ > d
2 the Whittle-Matérn kernel is given by

Φτ (h) :=
(2π)

d
2 ‖h‖τ−

d
2

2τ−1 Γ(τ)
Kτ− d

2
(‖h‖) , (3.5)

where Kτ is the modi�ed Bessel function of the third kind. It is the Fourier transform (see
De�nition 2.3.1) of a measure on (Rd,Bd) that is absolutely continuous w.r.t. λd with density

ϕτ (ω) =
(
1 + ‖ω‖2

)−τ
. (3.6)

In the Numerical Analysis literature this kernel is also called Sobolev kernel. Its great use in
both Numerical Analysis and Spatial statistics (as a covariance function, see Chapter 5) is
due to its property to quantify the smoothness of the associated RKHS (see next Theorem)
and the associated random �eld (see Sections 5.3 and 5.5) respectively.

Theorem 3.2.13. ([41, Cor. 10.13]) Suppose that Φ ∈ L1(Rd) ∩ C(Rd) satis�es

c1

(
1 + ‖ω‖2

)−τ ≤ Φ̂(ω) ≤ c2

(
1 + ‖ω‖2

)−τ
, ω ∈ Rd

with τ > d
2 and two positive constants c1 ≤ c2. Then the RKHS HΦ coincides with the Sobolev

space W τ,2(Rd), and the norms ‖ · ‖HΦ
and ‖ · ‖W τ,2(Rd) are equivalent.

Note that the kernel Φτ itself (and hence any �nite linear combinations of kernel translates)
is contained in the Sobolev space Wµ,2(Rd) if and only if µ < 2 τ − d

2 which directly follows
from (

1 + ‖x‖2
)−s ∈ L1(Rd) ⇐⇒ s > d

2 ,

and from the alternative characterization of Wµ,2(Rd) as (cf. [41, p. 141]

Wµ,2(Rd) =
{
f ∈ L2(Rd) : f̂(·) (1 + ‖ · ‖2)µ/2 ∈ L2(Rd)

}
.

We have already noted that Sobolev spaces are characterized by the degree of smoothness
of the functions they contain, where smoothness (di�erentiability) was always in the weak
sense. The next two theorems (see [10, Ch. 3.3, 3.4 and 4.2]) are just two of many imbedding
theorems for Sobolev spaces and provide a link to the �classical� notion of smoothness.

De�nition 3.2.14. A domain T ⊂ Rd is called a bounded Ck domain in Rd if it is bounded,
connected, and if the boundary ∂T can be covered by �nitely many open balls Bj ⊂ Rd, j =
1, . . . ,m, centred at ∂T such that - upon relabeling and reorienting the coordinate axes if
necessary - we have

T ∩Bj =
{
x ∈ Bj : xd > γj(x1, . . . , xd−1)

}
with functions γj ∈ Ck(Rd−1). For d = 1 it simply means open bounded interval.

If T is a bounded Ck domain for every k ∈ N, it is called a bounded C∞ domain.
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3.2: Sobolev Spaces

Theorem 3.2.15. Let T be a bounded C∞ domain in Rd. Then, for µ > k + d
2 we have the

implication

f ∈Wµ,2(T ) =⇒ ∃ f̃ ∈ Ck(T ) so that f̃ = f a.e. on T.

This result can be generalized by introducing a class of functions that continuously parametrizes
the degree of smoothness in the classical sense.

For a bounded and continuous function f : T → R on a domain T ⊆ Rd we write

‖f‖C(T ) = sup
t∈T
|f(t)|.

Moreover, for 0 < β ≤ 1 we de�ne the βth Hölder seminorm of f : T → R by

|f |C0,β(T ) = sup
s,t∈T
s 6=t

|f(t)− f(s)|
‖t− s‖β

.

De�nition 3.2.16. The Hölder space Ck,β(T ), k ∈ N0, 0 < β ≤ 1 consists of all functions
f ∈ Ck(T ) for which the norm

‖f‖Ck,β(T ) :=
∑
|α|≤k

‖Dαf‖C(T ) +
∑
|α|=k

|Dαf |C0,β(T )

is �nite. We de�ne the local Hölder space C k,βloc (T ) by

C k,βloc (T ) :=
{
f ∈ Ck(T ) : ‖f‖Ck,β(V ) <∞ for all V ⊂⊂ T

}
.

Theorem 3.2.17. Let T be a bounded C∞ domain in Rd, further let k ∈ N0 and 0 < β < 1.
Then, for µ > k + β + d

2 we have the implication

f ∈Wµ,2(T ) =⇒ ∃ f̃ ∈ Ck,β(T ) so that f̃ = f a.e. on T.

For later use we �nally prove the following

Lemma 3.2.18. For the Whittle-Matérn kernel Φτ from De�nition 3.2.12 it holds that

Φτ ∈ Ck,βloc (Rd) =⇒ 2τ ≥ k + β + d, k = 0, 1, 0 < β ≤ 1.

For k = 1 and β = 1 we even have the strict inequality

Φτ ∈ C1,1
loc (Rd) =⇒ 2τ > 2 + d.
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3.3: Canonical Isomorphism

Proof: Using the expansion

Φτ (h) = a0,τ +O
(
‖h‖2τ−d

)
, d

2 < τ < 1 + d
2

Φτ (h) = a0,τ +O
(
‖h‖2τ−d

∣∣ log ‖h‖
∣∣), τ = 1 + d

2

(3.7)

(stated in [39, p. 31] with a di�erent parametrization) around the origin we see that

lim
h→0

|Φτ (0)− Φτ (h)|
‖h‖β

< ∞ ⇐⇒ 2τ ≥ β + d

which shows the �rst implication for the case k = 0. For k = 1, we calculate the Lagrange
form of the Taylor expansion (order 0) of Φτ at the origin. Due to the radial symmetry of
Φτ , we may w.l.o.g. assume that h = a · e1, a > 0. Then there exists some 0 ≤ ξ ≤ a so that∣∣Φτ (0)− Φτ (ae1)

∣∣ =
∣∣∣∣∂Φτ

∂e1
(ξei) · ‖ae1‖

∣∣∣∣ =
∣∣∣∣∂Φτ

∂e1
(ξe1)− ∂Φτ

∂e1
(0)
∣∣∣∣︸ ︷︷ ︸

≤C ξβ

·a ≤ C a1+β

and so we must have

Φτ (h) = Φτ (0) +O
(
‖h‖1+β

)
or Φτ (h) = Φτ (0) + o

(
‖h‖1+β

)
. (3.8)

For 0 < β < 1 we are still in the �rst case of (3.7) and we conclude 2τ ≥ 1 + β + d. If β = 1,
the second expansion is relevant and for (3.8) to hold we must have 2τ > 2 + d as asserted.

3.3 Canonical Isomorphism

Following [4, p. 61-65], we now go back to De�nition 2.4.13 in Section 2.4 and consider the
space L2(Ω,A, P ) of all second-order random variables on the probability space (Ω,A, P ).
Furthermore, we assume that (Xt)t∈T is a random �eld over that probability space, and we
have the Hilbert space HR in which the second moment kernel R(s, t) = E(XsXt) of (Xt)t∈T
is reproducing. Throughout this section, R is considered to be �xed.

Consider the space SX of all linear combinations of random variables from our stochastic
process (Xt)t∈T , i.e.

SX :=


n∑
j=1

ajXtj : aj ∈ R, tj ∈ T, n ∈ N

 .

This clearly is a subspace of L2(Ω,A, P ), and we know the L2 inner product

〈Xt, Xs〉 = E(XtXs) = R(t, s) for all s, t ∈ T

on its generators. We can map the space SX to HR by the map

ΨX

 n∑
j=1

ajXtj

 :=
n∑
j=1

aj R(tj , ·), (3.9)
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3.3: Canonical Isomorphism

in particular we have
ΨX(Xt) = R(t, ·) for all t ∈ T.

and we will always write ΨX to stress the dependence of Ψ on X.

We still need to prove that the map is well-de�ned. Assume that the zero random variable
Z ≡ 0 ∈ SX has a nontrivial representation

Z =
n∑
j=1

ajXtj .

Then we have to prove that the function

ΨX(Z) = ΨX

 n∑
j=1

ajXtj

 =
n∑
j=1

aj R(tj , ·)

vanishes everywhere. We check this via

ΨX(Z)(t) =
n∑
j=1

ajR(tj , t) =
n∑
j=1

aj E(XtjXt)

= E

 n∑
j=1

ajXtjXt

 = E(ZXt) = 0 for all t ∈ T.

Thus ΨX is an isometry between SX and ΨX(SX) ⊂ HR, and it extends continuously to the
Hilbert space closures. This is why we call ΨX in (3.9) the canonical isomorphism. We de�ne
SX to be the Hilbert space closure of SX under the L2 inner product 〈., .〉, and we know that
the HR closure of ΨX(SX) is all of HR (cf. [41, Ch. 10]). Thus the closure SX of SX under
〈., .〉 is isometrically isomorphic to H, and it still is a closed subspace of L2(Ω,A, P ).

Summarizing, for each second-order random �eld (Xt)t∈T , the canonical isomorphism induces
two isometric Hilbert spaces: a space HR of functions on T and a subspace SX of random
variables in L2(Ω,A, P ). The function space HR is only dependent on the kernel R, while
the space SX of random variables still depends on the particular process (Xt)t∈T , its Hilbert
space structure, however, being only dependent on R.

Finally we note that if (Xt)t∈T is Gaussian, then any random vector Z with components
Z1, . . . , Zm ∈ SX follows an m-variate Gaussian distribution. For Zj ∈ SX , j = 1, . . . ,m ,
this follows from part 2. in Lemma 2.4.18, because in this case Z is a linear transformation
of some random vector (Xt1 , . . . , Xtk)′ which is multivariate Gaussian by de�nition. Now if
Z is the L2-limit of random vectors Z(n) ∼ N (µn,Σn), we have (Theorem 2.4.22)

µn → µ, Σn → Σ and PZ(n)
w−→ PZ as n→∞.

Using Lemma 2.3.3 and part 4. in Lemma 2.4.18 we obtain Z ∼ N (µ,Σ), in particular the
limit distribution is m-variate Gaussian as well.
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Chapter 4

Expansions

4.1 Mercer Eigenfunction Expansions

In this section we give another characterization of a RKHS in terms of the eigenfunctions of a
linear operator associated with the reproducing kernel. This operator, TR : L2(T ) → L2(T ),
is given by

TR(f)(t) =
∫
T
R(s, t) f(s) ds, f ∈ L2(T ), t ∈ T.

For the eigenvalues (λn)n∈N and the eigenfunctions (ϕn)n∈N of TR we have the following
theorem (see [13, Thm. 13.5], [23, Thm. 3.a.1])

Theorem 4.1.1. (Mercer) Let R : T × T → R be a continuous symmetric positive de�nite
kernel that satis�es ∫

T
R(s, t) f(s) f(t) ds dt > 0, for all f ∈ L2(T ). (4.1)

Then there is an orthonormal basis (ϕn)n∈N in L2(T ) consisting of eigenfunctions of TR such
that the corresponding sequence of eigenvalues (λn)n∈N is nonnegative. The eigenfunctions
corresponding to non-zero eigenvalues are continuous on T , and R has the representation

R(s, t) =
∞∑
j=1

λj ϕj(s)ϕj(t) (4.2)

where the convergence is absolute and uniform on T × T .

This representation can now be used to give an alternative characterization of HR:

Theorem 4.1.2. ([1, Lem. 3.2.2]) (
√
λn ϕn)n∈N is an orthonormal basis for HR, and we

have

HR =

f : f(t) =
∞∑
j=1

cf,j ϕj(t), t ∈ T,
∞∑
j=1

c2
f,j

λj
< ∞

 . (4.3)
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4.2: Karhunen-Loève Expansion

The inner product on HR can be rewritten as

(f, g)HR =
∞∑
j=1

cf,j cg,j
λj

. (4.4)

Note that the above series expansion is just a matter of the kernel R and the domain T . It is
completely independent of whether the kernel has a stochastic background or not. However,
(following [1, Sec. 3.1]) we can use it for an alternative representation of a random �eld:

4.2 Karhunen-Loève Expansion

Let (Xt)t∈T be a random �eld with second moment function R and assume that T and the
kernel R are such that a Mercer expansion exists.

From Theorem 4.1.2, using the canonical isomorphism (cf. Section 3.3), we obtain an or-
thonormal basis (ξn)n∈N for SX ⊂ L2(Ω,A, P ) by setting ξn := Ψ−1

X

(√
λn ϕn

)
. Thus we

have the representation

Xt =
∞∑
j=1

ξj E(Xt ξj), for all t ∈ T (4.5)

where the series converges in L2(Ω,A, P ). By using that Ψ is an isometry, we have

E(Xt ξj) =
(
R(t, ·),

√
λj ϕj

)
HR

=
√
λj ϕj(t),

where the last equality follows from the reproducing kernel property of HR. Putting both
together yields the Karhunen-Loève expansion

Xt =
∞∑
j=1

ξj
√
λj ϕj(t), for all t ∈ T, (4.6)

with an orthonormal sequence (ξn)n∈N of random variables.

If (Xt)t∈T has zero mean, then K = R, and all RVs in SX (in particular (ξn)n∈N) also have
zero mean. If, in addition, (Xt)t∈T is Gaussian, then it follows from the last paragraph in
Section 3.3 that any �nite subset of (ξn)n∈N is multivariate normally distributed. But then,
by Lemma 2.4.18 and the orthonormality of (ξn)n∈N we even have

(ξn)n∈N
i.i.d.∼ N (0, 1) .

The equivalence in (4.6) is only in L2(Ω,A, P ), i.e. the sum is, in general, convergent, in each
t, only in the mean square sense. The following result ([1, Thm. 3.1.2]) shows that much more
is true if we know that (Xt)t∈T has continuous sample paths a.s.

Theorem 4.2.1. If (Xt)t∈T has continuous sample paths a.s., then the sum in (4.6) converges
uniformly on T with a.s.
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4.2: Karhunen-Loève Expansion

Based on the representation in (4.3), we can now directly compare the di�erent model as-
sumptions of geostatisticians and numerical analysts:
The common assumption of the latter that f ∈ HR implies that the squared coe�cients c2

f,j

divided by the eigenvalues λj of the Mercer expansion are summable. The typical assumption
of the former that f is a sample path of a zero-mean Gaussian RF implies that the cf,j 's are
realizations of independent RVs Cj with Cj ∼ N (0, λj) , j ∈ N.
The next proposition shows (provided that R and T are such that (4.1) is satis�ed), that
these two assumptions can never be true at the same time (although they lead to the same
interpolation scheme, see Chapter 6).

Proposition 4.2.2. Let (Xt)t∈T be a zero-mean Gaussian RF with covariance kernel K (= R)
that has continuous sample paths a.s. Assume that (4.1) is satis�ed. For a positive sequence
(wn)n∈N and λj , ϕj from (4.2) let

H(w)
R :=


∞∑
j=1

cj ϕj(·) :
∞∑
j=1

c2
j wj

λj
<∞

 .

Then for the sample paths X�(ω) of (Xt)t∈T it holds that

∞∑
j=1

wj < ∞ =⇒ X�(ω) ∈ H(w)
R a.s.

∞∑
j=1

wj = ∞ =⇒ X�(ω) /∈ H(w)
R a.s.

Proof: The preceding arguments show that under the assumptions of the proposition, the
sample paths can a.s. be represented as

X�(ω) =
∞∑
j=1

ξj(ω)
√
λj ϕj(·), (ξn)n∈N

i.i.d.∼ N (0, 1) .

so it follows that X�(ω) ∈ H(w)
R ⇐⇒

∞∑
j=1

ξ2
j (ω)wj < ∞.

The �rst implication then follows via monotone convergence

E

 ∞∑
j=1

ξ2
j wj

 =
∞∑
j=1

E
(
ξ2
j

)
wj =

∞∑
j=1

wj

by noting that a RV that assumes the value ∞ with positive probability cannot have �nite
expectation.
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4.2: Karhunen-Loève Expansion

Now assume that
∑n

j=1wj
n→∞−→ ∞ . Then, for any ε > 0 we have

P

 n∑
j=1

ξ2
j wj ≤ (1− ε)

n∑
j=1

wj

 = P

 n∑
j=1

(ξ2
j wj − wj) ≤ −ε

n∑
j=1

wj


≤ P

∣∣∣ n∑
j=1

(
ξ2
j wj − wj

)∣∣∣ ≥ ε n∑
j=1

wj

 ,

and hence, by the Chebyshev-inequality (Lemma 2.4.12)

P

 n∑
j=1

ξ2
j wj ≤ (1− ε)

n∑
j=1

wj

 ≤ Var
(∑n

j=1 ξ
2
j wj

)
ε2
(∑n

j=1wj

)2 =
2
∑n

j=1wj

ε2
(∑n

j=1wj

)2 ,

where the second equality holds due to the independence of (ξn)n∈N and

Var
(
ξ2
j

)
= E

(
ξ4
j

)
−
(
E
(
ξ2
j

))2 Lemma 2.4.11= 3− 1 = 2.

Now for arbitrary M > 0 we can �nd n0 ∈ N so that (1− ε)
∑n

j=1wj ≥M for all n ≥ n0 and
for these n it holds that

P

 n∑
j=1

ξ2
j wj ≤M

 ≤ P

 n∑
j=1

ξ2
j wj ≤ (1− ε)

n∑
j=1

wj

 ≤ 2
ε2
∑n

j=1wj
.

Using the dominated convergence theorem, we obtain

P

 ∞∑
j=1

ξ2
j wj ≤M

 ≤ lim
n→∞

2
ε2
∑n

j=1wj
= 0

which shows, that the assumption
∑n

j=1wj
n→∞−→ ∞ implies that

∑∞
j=1 ξ

2
j wj exceeds any

bound a.s. which proves the second implication.

For the special sequence of weights wj = 1, j ∈ N, we have H(w)
R = HR, so under the

assumptions of Proposition 4.2.2 the sample paths of (Xt)t∈T are outside HR a.s. Without
the assumption that (Xt)t∈T is Gaussian, however, it is possible to construct a zero-mean
random �eld with covariance function R and sample paths in HR a.s.

Example 4.2.3. Let U and V be independent RVs on (Ω,A, P ) with

U ∼ U[0,1] and P (V = −1) = P (V = 1) = 0.5,

and set

ξj := V · 2 j/2 · 1(1−( 1
2

)j−1, 1−( 1
2

)j] (U).
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4.2: Karhunen-Loève Expansion

Using Theorem 2.2.11 (Fubini) we have

E
(
ξj
)

= E(V ) · 2 j/2 · P
(
1− (1

2)j−1 < U ≤ 1− (1
2)j
)

= 0 · 2 j/2 · (1
2)j = 0, for all j ∈ N,

and

E
(
ξ2
j

)
= E(V 2) · 2j · P

(
1− (1

2)j−1 < U ≤ 1− (1
2)j
)

= 1 · 2j · (1
2)j = 1, for all j ∈ N.

For i 6= j the two conditions

U ∈
(
1− (1

2)i−1, 1− (1
2)i
]

and U ∈
(
1− (1

2)j−1, 1− (1
2)j
]

can never hold at the same time, so it follows that E(ξjξk) = 0.

Hence, (ξj)j∈N is an orthonormal sequence of centred RVs, and we can use it to de�ne a
random �eld (Xt)t∈T by its Karhunen-Loève representation (4.6). By the construction of
(ξj)j∈N for each ω ∈ Ω there is only one nonzero coe�cient

√
λj ξj(ω) , so it follows from (4.3)

that X�(ω) ∈ HR.

The sample paths of the random �eld from Example 4.2.3 would be considered very untypical
by a geostatistician, since they do not re�ect what he has in mind when modelling some
spatial variable by a (stationary) random �eld. The reason for this is that this random �eld
is not ergodic, a property that is tacitly assumed in geostatistical modeling and that basically
means that the behaviour of any sample path of (Xt)t∈T re�ects the probabilistic properties
of this random �eld (see [8, Sec. 1.1.6] for a proper de�nition and discussion of ergodicity in
the geostatistical context).
The non-ergodicity in Example 4.2.3 results from the fact that for every ω, only one component
ϕj is seen, so these paths do clearly not re�ect the probabilistic structure of (Xt)t∈T . The
reason for this is that the members of the sequence (ξj)j∈N are highly dependent (although
uncorrelated). Conversely, the independence of (ξj)j∈N was (besides the existence of fourth
moments) was the crucial point in the proof of Proposition 4.2.2 for which the Gaussian
assumption was needed. It is therefore plausible to conjecture that the result still holds for a
more general class of stationary RFs but so far we did not pursue this issue any further (see
however Proposition 5.5.5 where this issue reappears in a similar context).
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Chapter 5

Sample Path Regularity of Random
Fields

In this chapter we describe how random �elds that have prescribed covariance or second
moment functions can be constructed. We will also look at the sample paths generated by
these random �elds and study their regularity properties. Throughout the whole chapter we
will always consider random �elds on an index set T ⊆ Rd.

5.1 Existence of Stochastic Processes

The most straight-forward image space (from a stochastic point of view) for a random �eld
(Xt)t∈T is the whole of RT with the product σ-algebra BT . If we de�ne the probability space
(Ω,A, P ) by Ω := RT , A := BT , then the process (Xt)t∈T is simply the identity on (Ω,A).
The probability measure P can now directly be interpreted as a probability structure on the
measurable subsets of paths. Potentially any function f : T → R can occur as a path of
(Xt)t∈T , but only special subsets of functions will occur with positive probability.
In other words: while the image space of (Xt)t∈T is completely unspeci�c, it is the probability
measure P that determines the properties of the paths, that are actually observed (in Section
5.2 we will however see, that further assumptions on (Xt)t∈T are needed in order that BT
is an appropriate σ-algebra to study path properties, and in order that these properties are
uniquely determined by P ).

Usually it is most convenient to de�ne P by specifying the distribution ofXt := (Xt1 , . . . , Xtm)′

for every vector of indices t ∈ Tm, m ∈ N . If this is done in a consistent way, then such a
probability measure P on (Ω,A) exists.

Theorem 5.1.1 (Kolmogorov). ([15, Ch. I, �4, Thm. 2])

Let T ⊆ Rd and
{µt = µt1,...,tm : t ∈ Tm, m ∈ N}

be a system of probability distributions that respect the two subsequent consistency conditions

µt1,...,tm(×mi=1Bi) = µtπ(1),...,tπ(m)
(×ki=1Bπ(i)), Bi ∈ B ∀i ∈ J (5.1)
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5.1: Existence of Stochastic Processes

for any permutation π of t := (t1, . . . , tm)′, and

µt1,...,tm−1(×m−1
i=1 Bi) = µt1,...,tm(×m−1

i=1 Bi × R), Bi ∈ B ∀i ∈ J. (5.2)

Then there exists a unique probability measure P on (RT ,BT ) with

PXt = µt for all t ∈ Tm, m ∈ N.

Corollary 5.1.2. For any function m(·) on T and any positive de�nite function K(·, ·) on
T ×T with K(s, t) = K(t, s) there exists a Gaussian random �eld (Xt)t∈T with mean function
m and covariance kernel K.

Proof: It su�ces to prove the corollary for m(·) ≡ 0, the general case follows by simply
adding the desired mean function which doesn't change the covariance structure.

De�ne (Ω,A) and (Xt)t∈T as above, and for any t ∈ Tm let

C(t) :=

 K(t1, t1) · · · K(t1, tm)
...

. . .
...

K(tm, t1) · · · K(t1, tm)

 .

From theorem 5.1.1 we then get the existence of a probability measure P on (Ω,A) that makes
(Xt)t∈T a random �eld with the prescribed properties by verifying the consistency conditions
(5.1) and (5.2) for the system of probability distributions de�ned by µt := N (0,C(t)).

Let tπ := (tπ(1), . . . , tπ(m))′, t↓ := (t1, . . . , tm−1)′ and let ψπ : Xt 7→ Xtπ and ψ↓ : Xt 7→ Xt↓

denote the corresponding permutation and projection maps. We have to show that

ψπ(µt) = µtπ and ψ↓(µt) = µt↓

For the present case, this can be veri�ed by calculating the respective characteristic functions.
For a multivariate Gaussian distribution, these have a nice and simple form with respect to
their dependence on their covariance matrices (see lemma 2.4.18) and using Theorem 2.2.10
we obtain:

ψ̂↓(µt)(τ) =
∫

Rm−1

eiτ
′t↓
(
ψ↓(µt)

)
(dt↓) =

∫
Rm

eiτ
′ψ↓(t) µt(dt)

=
∫

Rm
e i(

τ
0 )′t µt(dt) = e−

1
2( τ0 )′C(t) ( τ0 ) = e−

1
2
τ ′C(t↓) τ = µ̂t↓(τ)

and

ψ̂π(µt)(τ) =
∫

Rm
eiτ
′tπ
(
ψπ(µt)

)
(dtπ) =

∫
Rm

eiτ
′ψπ(t) µt(dt)

= e−
1
2
ψ−1
π (τ)′ C(t)ψ−1

π (τ) = e−
1
2
τ ′C(tπ) τ = µ̂tπ(τ)

The validity of the consistency conditions then follows from the uniqueness of Fourier trans-
forms (cf. Lemma 2.3.2).

41



5.2: Separable Random Fields

5.2 Separable Random Fields

The above construction of random �elds is straightforward and appealing from a point of view,
that is focused on the �nite dimensional distributions (as is taken e.g. in kriging). However,
we will see that in order to study sample path properties such as continuity or di�erentiability,
the information about the �nite dimensional distributions alone is insu�cient, and must be
supplemented by the additional assumption of separability.

To motivate this assumption, we state the following

Proposition 5.2.1. For an open subset T ⊂ Rd let C(T ) ⊂ RT denote the subset of all
continuous functions f : T → R. Then

C(T ) /∈ BT ,

i.e. the set of continuous functions on T is not measurable.

Hence, if we stick to our construction of a random �eld (Xt)t∈T according to Theorem 5.1.1,
we may not even ask for the probability of (Xt)t∈T having continuous paths.

Proposition 5.2.1 is just a special example for the more general fact that a subset A ⊂ RT

cannot lie in BT unless there exists a countable subset D of T with the property that, if x ∈ A
and x(t) = y(t) for all t ∈ D, then y ∈ A (see [5, Thm. 36.3]). This is a consequence of the
de�nition of a product σ-algebra which starts from events de�ned by �nite projections only
(cf. De�nition 2.1.3) and generalizes to countable projections by intersection. Properties of
(Xt)t∈T such as continuity, that e�ectively involve all the points in t ∈ T , in general are not
in the product σ-algebra.

Moreover, de�ning the probability measure P on (Ω,A) = (RT ,BT ) by specifying the �nite-
dimensional distributions PXt does not determine the process (Xt)t∈T uniquely:

Example 5.2.2. (from [5, Sec. 38]) Let (Ω,A, P ) =
(
[0, 1],B ∩ [0, 1],U[0,1]

)
and de�ne the

two processes

Xt(ω) = 0 for all t, ω

Yt(ω) =
{

0 t 6= ω
1 t = ω

Then P
(
Xt = Yt

)
= 1 for all t ∈ T , which implies that they have the same �nite-dimensional

distributions, but

P
(
X� is continuous on [0, 1]

)
= 1,

P
(
Y� is continuous on [0, 1]

)
= 0.

It is because the position of the discontinuity has a continuous distribution that the two pro-
cesses have the same �nite-dimensional distributions.
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De�nition 5.2.3. Let (Xt)t∈T and (Yt)t∈T be two random �elds on some index set T over
the same probability space (Ω,A, P ). If

P
(
Xt = Yt

)
= 1 for all t ∈ T

then (Yt)t∈T is called a version of (Xt)t∈T .

A way out of this dilemma, that important path properties lead to unmeasurable events, and
are not fully determined by �nite-dimensional distributions of (Xt)t∈T , is to restrict attention
to separable processes:

De�nition 5.2.4. [15, Ch. III, �2, Def. 2]
A random �eld (Xt)t∈T over the probability space (Ω,A, P ) is called separable, if there exists
a countable dense subset D ⊂ T and a set N ∈ A of probability 0, so that for any open set
I ⊂ T and any closed set B ⊂ R the two sets

AB,I := {ω : Xt(ω) ∈ B for all t ∈ I}
AB,I∩D := {ω : Xt(ω) ∈ B for all t ∈ I ∩D}

di�er from each other only on a subset of N .

Note that AB,I∩D is measurable while AB,I in general is not, but for a separable process we
can switch from AB,I to AB,I∩D by adding/subtracting a subset Ñ of N . It is convenient
to require all of these subsets to be measurable with P (Ñ) = 0, therefore from now we will
tacitly assume that (Ω,A, P ) is complete (see Def. 2.1.13 and subsequent remark).

A priori, separability is de�ned with respect to some (countable) set of separability D. Under
a mild additional condition, which will always be ful�lled in our case of continuous covariance
kernels (see Section 5.3), the choice of D is arbitrary.

De�nition 5.2.5. A random �eld (Xt)t∈T is called stochastically continuous at point t if for
any ε > 0

P
(
|Xt+h −Xt

∣∣ > ε)→ 0 as h→ 0

The random �eld is called stochastically continuous if it is stochastically continuous at every
t ∈ T .

Theorem 5.2.6. ([15, Ch. III, �2, Thm. 5]) Let (Xt)t∈T be a separable random �eld. If
(Xt)t∈T is stochastically continuous, then any countable dense set D ⊂ T may serve as its set
of separability.

We prove the next statement from [5, Sec. 38] based on De�nition 5.2.4:

Lemma 5.2.7. Let (Xt)t∈T be a separable random �eld. Then

sup
t∈I

Xt = sup
t∈I∩D

Xt a.s. and inf
t∈I

Xt = inf
t∈I∩D

Xt a.s.

for any open set I ∈ T .
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5.2: Separable Random Fields

Proof: Using the same notation as in De�nition 5.2.4 and letting B = [a, b] with a, b ∈ R, a <
b, we note that

A[a,b],I :=
{
ω : a ≤ inf

t∈I
Xt(ω) ≤ sup

t∈I
Xt(ω) ≤ b

}
By De�nition there exists a set N =

⋃
a,b∈Q, a<b

Na,b ⊂ Ω of probability 0 so that

A[a,b],I∩D \A[a,b],I ⊂ N for all a, b ∈ Q, a < b,

Now we have the implication

sup
t∈I

Xt(ω) 6= sup
t∈I∩D

Xt(ω) =⇒ ∃ b ∈ Q : sup
t∈I∩D

Xt(ω) ≤ b < sup
t∈I

Xt(ω)

so if the suprema on the left di�er, then necessarily ω ∈ A[a,b],I∩D \A[a,b],I for some a ∈ Q, a <
b, so this can only happen with probability 0. The argument for the in�mum is the same.

If in addition it is known that the �nite-dimensional distributions of a random �eld (Xt)t∈T
allow for continuous sample paths, then the assumption of separability entails a certain unique-
ness:

Lemma 5.2.8. Let (Xt)t∈T be a separable random �eld and let (Yt)t∈T be a version of (Xt)t∈T
having continuous sample paths a.s. Then

P
(
Xt = Yt for all t ∈ T

)
= 1.

In particular (Xt)t∈T has continuous sample paths a.s.

Proof: (generalizes [2, Ch. 1, Sec. 4, Prop. 1.9] to the case d > 1)

Let D and N be as in the de�nition of separability. Let

A′ =
{
ω : Xt(ω) = Yt(ω) for all t ∈ D

}
.

Since (Yt)t∈T is a version of (Xt)t∈T we have P (A′) = 1. Further let

A =
⋂

J=Bε(a)∩T : ε∈Q+,a∈Qd

{
ω : sup

t∈J
Xt(ω) = sup

t∈J∩D
Xt(ω)

}
and

A =
⋂

J=Bε(a)∩T : ε∈Q+,a∈Qd

{
ω : inf

t∈J
Xt(ω) = inf

t∈J∩D
Xt(ω)

}
.

where Bε(a) denotes the open ball of radius ε centred at a. It follows from Lemma 5.2.7 that
P
(
A ∩ A

)
= 1 and w.l.o.g. we can also assume that (Yt)t∈T has continuous sample paths for

all ω ∈ A′ ∩A ∩A.

Now let ω ∈ A′ ∩ A ∩ A and t ∈ T . For any ε ∈ Q+ we can choose a ∈ Qd so that t ∈ Bε(a).
De�ning J(ε) := Bε(a) ∩ T we have

Xt(ω) ≤ sup
s∈J(ε)

Xs(ω) = sup
s∈J(ε)∩D

Xs(ω) = sup
s∈J(ε)∩D

Ys(ω) ≤ sup
s∈J(ε)

Ys(ω)
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5.2: Separable Random Fields

Letting ε→ 0 it follows from the continuity of Y.(ω) that

Xt(ω) ≤ lim sup
ε→0 s∈J(ε)

Ys(ω) = Yt(ω).

In a similar way one proves Xt(ω) ≥ Yt(ω), so the two versions are identical for all ω ∈
A′ ∩A ∩A, which is a set of probability 1.

Note from the proof that we could replace the requirement that (Yt)t∈T is a version of (Xt)t∈T
by the weaker requirement that

P
(
Xt = Yt

)
= 1 for all t ∈ D,

where D is the set of separability. In particular, if (Xt)t∈T is stochastically continuous, then
the statement of Lemma 5.2.8 still holds as long as

P
(
Xt = Yt

)
= 1 for a.e. t ∈ T,

since by Theorem 5.2.6 we may choose D such that it does not contain any of the exceptional
points.

The next theorem (a special case of [15, Ch. III, �2, Thm. 2]) shows, that among all versions
of (Xt)t∈T we can always �nd a separable one:

Theorem 5.2.9. For any random �eld (Xt)t∈T there exists on the same probability space a
separable version (Yt)t∈T taking on values in the compact extension (R̄, B̄) of (R,B).

When constructing the paths of a separable version (Yt)t∈T , it may be necessary to assign
this path the additional value ∞, but for every �xed t ∈ T the probability of this is zero.
Combining Theorem 5.2.9 with Kolmogorov's existence theorem shows that for any consistent
system of probability distributions {µt : t ∈ Tm, m ∈ N} there exists a separable process
with these �nite-dimensional distributions.

We conclude this section with a lemma (actually a corollary of [5, Thm. 38.2]) that generalizes
Lemma 5.2.8 in that it allows to compare processes over di�erent probability spaces.

Lemma 5.2.10. Let (Xt)t∈T and (Yt)t∈T be two random �elds over the probability spaces
(Ω,A, P ) and (Ω′,A′, P ′) respectively having the same �nite-dimensional distributions. If

A′C := {ω′ ∈ Ω′ : Y�(ω′) is continuous on T}

lies in A′ with P (A′C) = 1, and if (Xt)t∈T is separable, then for

AC := {ω ∈ Ω : X�(ω) is continuous on T}

we also have P (AC) = 1.

Lemma 5.2.10 presents a useful link between the point of view of a numerical analyst and a
statistician. The former would probably not think of constructing a random �eld as in Section
5.1 but rather start from a space like Ω = C(T ) with Borel σ-algebra A on it, de�ne (Xt)t∈T
as the embedding of C(T ) in RT and use P to assign a probability structure on (Ω,A). This
way the continuity of the paths of (Xt)t∈T is trivial. Lemma 5.2.10 now tells us, that any
separable process (Yt)t∈T with the same �nite-dimensional distributions as (Xt)t∈T will also
necessarily have continuous paths a.s.
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5.3: Sample Path Regularity in the Gaussian Case

5.3 Sample Path Regularity in the Gaussian Case

We are mainly interested in regularity properties such as continuity and di�erentiability of the
sample paths of a random �eld. Nevertheless we shall also introduce the (weaker) concepts of
mean square continuity and mean square di�erentiability as these are directly linked to the
second-order structure of a random �eld.

In this and all subsequent sections we always assume that (Xt)t∈T is a second-order random
�eld with second-moment function R, covariance function K and mean function m. As in the
preceding Chapters, we assume that R,K and m are continuous.

5.3.1 Continuity

De�nition 5.3.1. A random �eld (Xt)t∈T is called continuous in the mean square sense
(brie�y m.s. continuous) at point t if

E
(
Xt+h −Xt

)2 → 0 as h→ 0.

The random �eld is called continuous in the mean square sense (brie�y m.s. continuous) if it
is m.s. continuous at every t ∈ T .

Remark 5.3.2. A related notion is that of stochastic continuity at t (see De�nition 5.2.5). By
Lemma 2.4.12 (Markov's inequality) m.s. continuity at t implies stochastic continuity at t.

Continuity of a covariance kernel and m.s. continuity of the corresponding random �eld are
linked in a natural way (cf. [27, P-2-1]):

Theorem 5.3.3. Let (Xt)t∈T be a random �eld with second-moment kernel R : T × T → R.
Then the following statements are equivalent:

1. (Xt)t∈T is m.s. continuous,

2. R is continuous on T × T ,

3. R is continuous on the diagonal of T × T .

The natural link is between m.s. continuity and the second-moment function R. From the
stochastic modelling point of view it is however preferable to work with the covariance function
K rather than R due to the interpretation of a random �eld as some random �uctuation,
controlled by K, around some deterministic mean function m. Recalling that

R(s, t) = K(s, t) +m(s)m(t) for all s, t ∈ T,

we have that in the case of a continuous mean function m continuity of R is equivalent to
continuity of K. Throughout the section, we will therefore assume that (Xt)t∈T is centred (i.e.
m(t) ≡ 0), bearing in mind that the general case can be obtained by adding some continuous
mean function m.
In the same way, we will also study all other regularity properties only for centred random
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5.3: Sample Path Regularity in the Gaussian Case

�elds. Adding a mean function that has itself the required regularity will always give the
general case.

In the special case of a stationary random �eld we note the following

Corollary 5.3.4. Let (Xt)t∈T be a weakly stationary centred random �eld with covariance
kernel K(·, ·) = Φ(· − ·). Then the following statements are equivalent:

1. (Xt)t∈T is m.s. continuous,

2. Φ is continuous on T ,

3. Φ is continuous at the origin.

In the case where Φ is de�ned (and positive de�nite) on the whole of Rd we can obtain a
further equivalent statement (cf. e.g. [41, Thm. 6.6]):

Theorem 5.3.5. (Bochner)
A function Φ : Rd → R is continuous and positive de�nite if and only if a �nite symmetric
non-negative measure ν on Rd exists so that

Φ(h) =
∫

Rd
cos(h′ω) ν(dω) for all h ∈ Rd.

In stochastics, ν is called spectral measure and we will use it frequently in this chapter to
formulate alternative su�cient conditions for the regularity of sample paths. If ν is absolutely
continuous w.r.t. the Lebesgue measure λd (see also De�nition 2.4.5), then there exists a non-
negative, integrable function ϕ : Rn → R so that

ν(B) =
∫
B
ϕ(ω) dω for all B ∈ Bn.

ϕ is called the spectral density. In De�nition 3.2.12 we have already introduced the Whittle-
Matérn class of covariance functions which was characterized by its spectral density

ϕ(ω) =
(
1 + ‖ω‖2

)−τ
.

Note that all statements so far only depend on R respectively K and do not require any
further assumption on the �nite dimensional distributions of (Xt)t∈T . This is no longer true
(see Example 5.5.1) for the following Theorem ([1, Thm. 1.4.1]) on a.s. sample path continuity,
the proof of which explicitly uses the assumption that (Xt)t∈T is Gaussian.

De�ne the (pseudo-)metric d on T by

d2(s, t) := E
(
(Xt −Xs)2

)
= K(s, s) +K(t, t)− 2K(s, t).
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5.3: Sample Path Regularity in the Gaussian Case

Theorem 5.3.6. Let (Xt)t∈T be a separable centred Gaussian process on a compact index set
T ⊂ Rd. If for some 0 < C <∞ and δ, η > 0,

d2(s, t) ≤ C∣∣ log ‖t− s‖
∣∣1+δ

(5.3)

for all s, t ∈ T with ‖t − s‖ < η, then the paths of (Xt)t∈T are a.s. continuous and bounded
on T .

The restriction to compact T ⊂ Rd is not a serious problem. As far as continuity is concerned,
if T is σ-compact (i.e. if it can be represented as a countable union of compact sets) then a.s.
continuity on its compact subsets immediately implies a.s. continuity over T itself (the same
is not true for boundedness).
Condition (5.3) is quite sharp, but not necessary. There are simple examples of processes (see
[1, Sec. 1.4.1]) with a high level of nonstationarity that are a.s. continuous but do not satisfy
(5.3). However, for the class of stationary processes, which are most important in practice,
the following theorem ([1, Cor. 1.5.5]) shows, that this condition is reasonably de�nite.

Theorem 5.3.7. Let (Xt)t∈T be a separable centred stationary Gaussian process on an open
index set T ⊆ Rd with covariance function Φ. If for some 0 < C1, C2 <∞,

C1(
− log ‖h‖

)1+δ1
≤ Φ(0)− Φ(h) ≤ C2(

− log ‖h‖
)1+δ2

,

for all ‖h‖ small enough, then the paths of (Xt)t∈T are a.s. continuous if δ2 > 0 and a.s.
discontinuous if δ1 < 0.

Via Tauberian theory (cf. e.g. [6]), which translates the behaviour of Φ at the origin to that
of ν at in�nity, one can also obtain a su�cient condition for path continuity on the spectral
measure ([1, Sec. 1.4.1]):

Theorem 5.3.8. Let (Xt)t∈T be a separable, centred and stationary Gaussian process on an
open T ⊂ Rd with spectral measure ν. If the integral∫

Rd

(
log(1 + ‖ω‖)

)1+δ
ν(dω)

converges for some δ > 0, then (Xt)t∈T has continuous sample paths a.s. If it diverges for
some δ < 0, then (Xt)t∈T has discontinuous sample paths a.s.
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5.3.2 Di�erentiability

As before, we denote by ei the unit vector in Rd in direction of the i-th coordinate axis. We
study the behaviour of the di�erence quotients

X
(i,h)
t :=

Xt+hei −Xt

h
, t ∈ T, h ∈ R s.t. t+ hei ∈ T.

De�nition 5.3.9. A random �eld (Xt)t∈T has a m.s. partial derivative at t in the direction

ei if there exists a RV X
(i)
t ∈ L2(Ω,A, P ) so that

E
(
X

(i,h)
t −X(i)

t

)2
→ 0 as h→ 0.

If (Xt)t∈T has a m.s. partial derivative in the direction ei at all t ∈ T , we say that it has a

m.s. partial derivative in the direction ei, and we denote by (X(i)
t )t∈T the corresponding m.s.

partial derivative process.

If (Xt)t∈T has a m.s. partial derivative in all directions ei, i = 1, . . . , d, we say that it has
mean square partial derivatives.

M.s. di�erentiability hence corresponds to m.s. convergence (see De�nition 2.4.21) of X
(i,h)
t to

X
(i)
t . When asking for a.s. di�erentiability of the sample paths, we actually want to establish

a.s. convergence (see De�nition 2.4.19). As was pointed out in the remark subsequent to
Theorem 2.4.22, neither of these notions implies the other, but in this subsection we shall
derive additional conditions under which the respective implications hold.

First, we shall however explore the connection between m.s. di�erentiability and di�erentia-
bility of R (or K and m). To this end we need to study the limit behaviour of the covariances

R
(i)
hh′ (s, t) := E

(
X(i,h′)
s X

(i,h)
t

)
=

R(s+ h′ei, t+ hei)−R(s+ h′ei, t)−R(s, t+ hei) +R(s, t)
hh′

.

Theorem 5.3.10. Let (Xt)t∈T be a random �eld with second-moment function R. Then the
following statements are equivalent:

1. (Xt)t∈T has a m.s. partial derivative in the direction ei at t,

2. The generalized mixed partial derivative Di,iR(t, t) := lim
h,h′→0

R
(i)
hh′ (t, t) exists, i.e. for

every ε > 0 exist a δ so that

|h|, |h|′ < δ =⇒
∣∣R(i)

hh′ (t, t)−D
i,iR(t, t)

∣∣ < ε.

If Di,iR(t, t) exists for all t ∈ T , then Di,iR(s, t) exists for all s, t ∈ T .

Proof: (generalizes [15, Ch. IV, �3, Thm. 4] to d > 1)
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(1) ⇒ (2): If X
(i)
t exists as limit in L2(Ω,A, P ), we have∣∣∣∣ lim

h,h′→0
R

(i)
hh′ (t, t)− E

(
X

(i)
t X

(i)
t

)∣∣∣∣
= lim

h,h′→0

∣∣∣ E((X(i,h)
t −X(i)

t

)
X

(i,h′)
t

)
+ E

((
X

(i,h′)
t −X(i)

t

)
X

(i)
t

)∣∣∣
Using the continuity of the scalar product in L2(Ω,A, P ) we get∣∣∣E((X(i,h′)

t −X(i)
t

)
X

(i)
t

)∣∣∣ → 0, as h′ → 0 and

∣∣∣ E((X(i,h)
t −X(i)

t

)
X

(i,h′)
t

)∣∣∣ ≤ ∣∣∣E((X(i,h)
t −X(i)

t

)2)∣∣∣ 1
2︸ ︷︷ ︸

→ 0 as h→0

∣∣∣E((X(i,h′)
t

)2)∣∣∣ 1
2︸ ︷︷ ︸

≤M ∀h′

,

so the limit exists as h and h′ tend to 0 independently.

In the same way, if both X
(i)
s and X

(i)
t exist as limits in L2(Ω,A, P ), we obtain the

existence of lim
h,h′→0

R
(i)
hh′ (s, t).

(2) ⇒ (1): If the limit lim
h,h′→0

R
(i)
hh′ (t, t) exists, then it follows that

E
((

X
(i,h)
t −X(i,h′)

t

)2
)

= R
(i)
hh (t, t)− 2R(i)

hh′ (t, t) +R
(i)
h′h′ (t, t)

tends to 0 as h and h′ tend to 0. Hence, for any null sequence (hn)n∈N, X
(i,hn)
t is a

Cauchy sequence in L2(Ω,A, P ) and has a limit X
(i)
t .

It follows directly from De�nition 5.3.9 that (X(i)
t )t∈T is itself a second-order random �eld

and we have

E
(
X(i)
s Xt

)
= lim

h′→0

1
h′
(
R(s+ h′ei, t)−R(s, t)

)
=

∂R

∂1ei
(s, t),

E
(
Xs X

(i)
t

)
= lim

h→0

1
h

(
R(s, t+ h ei)−R(s, t)

)
=

∂R

∂2ei
(s, t),

E
(
X(i)
s X

(i)
t

)
= lim

h→0
lim
h′→0

R
(i)
hh′ (s, t) =

∂2R

∂1ei ∂2ei
(s, t),

where ∂R
∂1ei

and ∂R
∂2ei

denote the partial derivatives of R in the direction ei with respect to
the �rst and the second argument respectively.

Moreover, by the Hölder inequality we have

E
(∣∣∣X(i,h)

t −X(i)
t

∣∣∣) ≤ ∣∣∣E((X(i,h)
t −X(i)

t

)2)∣∣∣ 1
2
,

and hence the mean function of (X(i)
t )t∈T exist and is given by

E
(
X

(i)
t

)
= lim

h→0
E
(
X

(i,h)
t

)
=

∂m

∂ei
(t).
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M.s. di�erentiability of (Xt)t∈T allows to bound d(s, t) (as de�ned before Thm. 5.3.6) in terms
of the euclidean distance of s and t:

Lemma 5.3.11. If the random �eld (Xt)t∈T on a compact T ⊂ Rd has m.s. partial derivatives
and if these are m.s. continuous, then for some 0 < C <∞ and some η > 0 we have

d(s, t) ≤ C ‖t− s‖

for all s, t ∈ T with ‖t− s‖ < η.

Proof: First �x i ∈ {1, . . . , d} and de�ne the function g : T × [1, 1]→ R by

g(t, h) :=

{
R

(i)
hh (t, t), h 6= 0

Di,iR (t, t), h = 0

We show that g is continuous with respect to the metric max(‖t‖, |h|). At any point (t, h)
with h 6= 0 this is an obvious consequence of the continuity of R. For any point (t, 0) it follows
from the continuity of Di,iR and

|g(s, h′)− g(t, 0)| ≤ |g(s, h′)− g(t, h′)| + |g(t, h′)− g(t, 0)|

=
∣∣R(i)

h′h′(t, t)−R
(i)
h′h′(s, s)

∣∣︸ ︷︷ ︸
→ 0 as s→t

+
∣∣R(i)

h′h′(t, t)−D
i,iR (t, t)

∣∣︸ ︷︷ ︸
→ 0 as h′→0

.

Since T was assumed compact, g is even uniformly continuous on T × [1, 1] and it follows that
for every ε > 0 there exists an ηi > 0 so that for all |h| ≤ ηi∣∣R(i)

hh(t, t)−Di,iR (t, t)
∣∣ ≤ ε for all t ∈ T.

De�ning C2
i := ε+ sup

t∈T

∣∣Di,iR (t, t)
∣∣ this implies

d2(t, t+ hei) = R
(i)
hh(t, t) · h2 ≤ C2

i h
2 for all |h| ≤ ηi.

Finally, setting C := d · max
1≤i≤d

Ci and η := min
1≤i≤d

ηi we have for ‖t− s‖ < η

d(s, t) = d

(
s, s+

d∑
i=1

(ti − si)ei
)

≤
d∑
i=1

d

(
s+

i−1∑
j=1

(ti − si)ei, s+
i∑

j=1
(ti − si)ei

)
︸ ︷︷ ︸

≤ Ci |ti−si| ≤ C ‖t−s‖ / d

≤ C ‖t− s‖

which completes the proof.

By applying Theorem 5.3.6 we obtain
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Corollary 5.3.12. If the random �eld (Xt)t∈T is separable, Gaussian, and has m.s. partial
derivatives, and if these are m.s. continuous, then (Xt)t∈T has continuous sample paths a.s.

From now on, we will again restrict ourselves to centred random �elds and formulate all
subsequent conditions in terms of the covariance kernel K. In the special case of a stationary
random �eld where K(·, ·) = Φ(· − ·) we have the following corollary to Theorem 5.3.10:

Corollary 5.3.13. Let (Xt)t∈T be a weakly stationary centred random �eld with covariance
function Φ and spectral measure ν. Then the following statements are equivalent:

1. (Xt)t∈T has a m.s. partial derivative in the direction ei,

2. (Xt)t∈T has a m.s. partial derivative at some t0 ∈ T in the direction ei,

3. The second partial derivative ∂2Φ
(∂ei)2 exists on T ,

4. The second partial derivative ∂2Φ
(∂ei)2 exists at the origin,

5. The i-th spectral moment Mi :=
∫

Rd
ω2
i ν(dω) exists and is �nite.

Proof:

(1) ⇒ (3), (2) ⇒ (4): follows from Theorem 5.3.10 by noting that

lim
h,h′→0

K
(i)
hh′ (s, t) = − ∂2Φ

(∂ei)2 (t− s) , lim
h,h′→0

K
(i)
hh′ (t, t) = − ∂2Φ

(∂ei)2 (0).

(1) ⇒ (2), (3) ⇒ (4): trivial

(4) ⇒ (5): (from [9, Thm. 6.4.1]) If ∂2Φ
(∂ei)2 (0) exists and is �nite, we have

∂2Φ
(∂ei)2

(0) = lim
h→0

Φ(hei)− 2 Φ(0) + Φ(−hei)
h2

= −2 lim
h→0

∫
Rd

1− cos(ωih)
h2

ν(dω)

by the symmetry of Φ and Bochner's Theorem. Using Fatou's lemma we get∫
Rd
ω2
i ν(dω) = 2

∫
Rd

lim
h→0

1− cos(ωih)
h2

ν(dω)

≤ 2 lim
h→0

∫
Rd

1− cos(ωih)
h2

ν(dω) = − ∂2Φ
(∂ei)2

(0).

(5) ⇒ (1): (oral communication with Prof. Schlather, see also [27, P-3-5])

We show that the existence of Mi implies the existence of

lim
h,h′→0

Φ(i)
hh′ (0) = lim

h,h′→0

Φ((h− h′)ei)− Φ(hei)− Φ(h′ei) + Φ(0)
hh′

.
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5.3: Sample Path Regularity in the Gaussian Case

From Theorem 5.3.5 (Bochner) we have

Φ(i)
hh′ (0) =

∫
Rd

Ihh′(ωi) ν(dω),

where
Ihh′(ωi) :=

cos(ωi(h− h′))− cos(ωih)− cos(ωih′) + 1
hh′

.

By expanding the cosine terms it is easy to see that

Ihh′(ωi) = ω2
i

(
1 + o(ωih) + o(ωih′)

)
as ωih, ωih

′ → 0, .

Next, using | sin(x)| ≤ |x|, 1 − cos(x) ≤ min
(
x2

2 , 2
)
and the trigonometric identity

cos(x− y) = cos(x) cos(y) + sin(x) sin(y) one can derive the inequality∣∣ cos(x− y)− cos(x)− cos(y) + 1
∣∣ ≤ 2 |x| |y| .

Applying this to the enumerator of Ihh′(ωi) yields a dominating, integrable function

∣∣Ihh′(ωi)∣∣ ≤ 2 |ωih| |ωih′|
|h||h′|

= 2ω2
i

and via dominated convergence we get

lim
h,h′→0

C
(i)
hh′ (0) =

∫
Rd

lim
h,h′→0

Ihh′(ωi) ν(dω) =
∫

Rd
ω2
i ν(dω).

But this implies, according to Theorem 5.3.10, that (Xt)t∈T has a m.s. partial derivative
in the direction ei.

For later use we state another characterization of m.s. di�erentiability in the stationary case.
Clearly, the existence of ∂2Φ

(∂ei)2 at the origin implies

∣∣Φ(i)
hh(0)

∣∣ =
∣∣∣∣ 2 Φ(0)− 2 Φ(hei)

h2

∣∣∣∣ ≤ b, for all h ∈ R (5.4)

for some b ∈ R. It is quite remarkable that the converse is also true:

Lemma 5.3.14. ([27, P-3-5]) Let (Xt)t∈T be a weakly stationary centred random �eld with
covariance function Φ. If (5.4) holds for some b ∈ R, then (Xt)t∈T has a m.s. partial derivative
in the direction ei.

Another remarkable property of weakly stationary random �elds is that m.s. di�erentiability

automatically implies that random �elds (X(i)
t )t∈T of the m.s. partial derivatives are m.s.

continuous.
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5.3: Sample Path Regularity in the Gaussian Case

Proposition 5.3.15. The m.s. partial derivative (X(i)
t )t∈T of a weakly stationary centred

random �eld (Xt)t∈T with spectral measure ν, has itself the spectral measure ν(i) de�ned by

ν(i)(B) :=
∫
B
ω2
i ν(dω) for all B ∈ Bd.

In particular the m.s. partial derivatives of a weakly stationary random �eld are always m.s.
continuous.

Proof: In the same way as above, we write

∂2Φ
(∂ei)2

(t) = lim
h→0

Φ(t+ hei)− 2 Φ(t) + Φ(t− hei)
h2

= lim
h→0

∫
Rd

cos(t′ω + ωih)− 2 cos(t′ω) + cos(t′ω − ωih)
h2

ν(dω).

Using the identity cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) it is easily checked that the last
expression simpli�es to

∂2Φ
(∂ei)2

(t) = lim
h→0

∫
Rd

cos(t′ω)
cos(ωih)− 2 + cos(−ωih)

h2︸ ︷︷ ︸
= −Ihh(ωi)

ν(dω) ,

and by the dominated convergence theorem we see that

∂2Φ
(∂ei)2

(t) = −
∫

Rd
cos(t′ω)

(
lim
h→0

Ihh(ωi)
)
ν(dω)

= −
∫

Rd
cos(t′ω) ω2

i ν(dω) = −
∫

Rd
cos(t′ω) ν(i)(dω) .

By Theorem 5.3.5 (Bochner) ∂2Φ
(∂ei)2 must be continuous and hence m.s. continuity of (X(i)

t )t∈T
follows from Corollary 5.3.4.

Since (X(i)
t )t∈T is itself a second-order random �eld, it is straightforward to de�ne higher-

order m.s. partial derivatives of (Xt)t∈T and to formulate the corresponding counterparts of
the above theorems.

The next theorem shows, that if a separable Gaussian RF (Xt)t∈T has k-th order m.s. partial
derivatives, and if these have continuous sample paths, then (Xt)t∈T has paths in Ck(T ).

If all |α|-th order generalized mixed partial derivatives Dα,αK (de�ned as in Theorem 5.3.10
by repeated application of Di,i) exist, we de�ne

d2
α(s, t) := Dα,αK(s, s) +Dα,αK(t, t)− 2Dα,αK(s, t).
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5.3: Sample Path Regularity in the Gaussian Case

Theorem 5.3.16. Let (Xt)t∈T be a separable centred Gaussian process on an open subset
T ⊂ Rd with covariance kernel K. If Dα,αK exists for all α with |α| ≤ k, and if for some
0 < C <∞ and δ, η > 0 it holds that

d2
α(s, t) ≤ C∣∣ log ‖t− s‖

∣∣1+δ
(5.5)

for all α with |α| = k and for all s, t ∈ T with ‖t− s‖ < η, then the sample paths of (Xt)t∈T
are in Ck(T ) a.s.

Corollary 5.3.17. Let (Xt)t∈T be a separable, stationary centred Gaussian process on an
open T ⊂ Rd with spectral measure ν. If∫

Rd

(
log(1 + ‖ω‖)

)1+δ ‖ω‖2k ν(dω) < ∞ (5.6)

for some δ > 0, then the sample paths of (Xt)t∈T are in Ck(T ) a.s.

Proof of Theorem 5.3.16: (The proof given here generalizes the idea given in [2, Ch. 1,
Sec. 4.3] for d = 1 to higher space dimensions)

We state the proof for k = 1, the case k > 1 is proved by applying the following arguments
to separable versions of the kth-order m.s. partial derivatives and repeating the steps of the
proof for k − 1, . . . , 1. Fix i ∈ {1, . . . , d}.

First note that the m.s. partial derivatives (X(i)
t )t∈T are themselves Gaussian processes as a

result of the stability of Gaussian random variables under passage to the limit. According to

Theorem 5.2.9 there exists a separable version (Y (i)
t )t∈T of (X(i)

t )t∈T , and due to (5.5) this
version a.s. has continuous paths on T that are bounded on every compact Q ⊂ T .
We show that there exists a set Ni ∈ Ω with P (Ni) = 0, so that Y

(i)
� (ω) is the partial

derivative of X�(ω) for all ω ∈ Ω \Ni.

Let [a, b] :=
{
x ∈ Rd : ai ≤ xi ≤ bi, for all 1 ≤ i ≤ d

}
be a closed cuboid in Rd, and de�ne

the random �eld (Y [i]
t )t∈[a,b] by

Y
[i]
t (ω) := Xt(ω) +

∫ ti

ai

Y
(i)
t+(h−ai)ei(ω) dh t ∈ [a, b] (5.7)

where t := (t1, . . . , ti−1, ai, ti+1, . . . , td)′.

Note that the existence of all Di,iK, i = 1, . . . , d implies that (Xt)t∈T has m.s. partial
derivatives. Now either (5.5) or the existence of higher order derivatives of K guarantee that
these m.s. partial derivatives are m.s. continuous and hence, by Corollary 5.3.12, (Xt)t∈T has
continuous sample paths a.s. Since the (marginal) integral function of a continuous function

is continuous, it follows that (Y [i]
t )t∈[a,b] has continuous paths a.s.
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5.3: Sample Path Regularity in the Gaussian Case

Now, for all t ∈ [a, b] we have

E
(
Y

[i]
t Xt

)
= K(t, t) +

∫ ti

ai

∂K
∂1ei

(
t+ (h− ai)ei, t

)
dh

= K(t, t) + K(t, t) − K(t, t) = K(t, t).

In the same way we can verify that E
(

(Y [i]
t )2

)
= K(t, t), and hence

E
((
Y

[i]
t −Xt

)2) = E
(
(Xt)2

)
− 2 E

(
Y

[i]
t Xt

)
+ E

(
(Y [i]
t )2

)
= 0,

which implies that (Y [i]
t )t∈[a,b] is a version of (Xt)t∈T restricted to [a, b]. Since it has continuous

sample paths a.s. and (Xt)t∈T was assumed separable, we have, by Lemma 5.2.8, a set N i
a,b

of probability 0 so that for all ω ∈ Ω \N i
a,b with

X�(ω) = Y
[i]
� (ω) on [a, b].

Now T can be represented as the countable union of (overlapping) closed cuboids [a, b], so we
obtain that the sample paths of (Xt)t∈T have continuous partial derivatives in direction ei for
all ω ∈ Ω \Ni with P (Ni) = 0.
Repeating the same argument for all other partial derivatives yields a P -null-set N =

⋃d
i=1Ni

outside of which X�(ω) is continuously di�erentiable.

In both, Theorem 5.3.16 and Corollary 5.3.17, the existence of the k-th order m.s. partial
derivatives is part of the su�cient condition for a.s. sample path di�erentiability. In Propo-
sition 5.5.5 we show that for stationary Gaussian random �elds it is also necessary. The
following counterexample however shows, that it is no longer necessary if the assumption of
(Xt)t∈T being Gaussian is dropped without substitution.

Example 5.3.18. Let ν be a symmetric probability measure on (Rd,Bd).
De�ne (Xt)t∈T by

Xt(ω) :=
√

2 cos
(
t′Θ(ω) + Ψ(ω)

)
, (5.8)

where Θ and Ψ are independent RVs with Θ ∼ ν and Ψ ∼ U[0,2π]. For the mean function of
(Xt)t∈T we have by Fubini's theorem

E
(
Xt

)
=
√

2
2π

∫
Rd

∫ 2π

0
cos
(
t′θ + ψ

)
dψ︸ ︷︷ ︸

= 0

ν(dθ) = 0,

for the covariance function we obtain ([43, p. 92])

E
(
XsXt

)
=
∫

Rd
cos
(
(t− s)′θ

)
ν(dθ) .

so (Xt)t∈T is a weakly stationary centred process with spectral measure ν. Hence, by choosing
ν accordingly (see Corollary 5.3.13), we can realize any order of m.s. di�erentiability. However,
it follows immediately from (5.8) that (Xt)t∈T has always sample paths in C∞(Rd).
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We illustrate the preceding theorems by applying them to the Whittle-Matérn model for
covariance functions introduced in Section 3.2:

Example 5.3.19. (Whittle-Matérn model, part 1)
Consider a separable, stationary centred Gaussian random �eld (Xt)t∈T on an open set T ⊆ Rd

with spectral density
ϕτ (ω) =

(
1 + ‖ω‖2

)−τ
, τ > d

2 .

First note that the �niteness of the integral in (5.6) is only an issue of its �niteness on
Bc
r(0) := Rd \Br(0) for an arbitrary r > 0. Now, for every ε > 0 there exists an η > 0 so that(

log(1 + r)
)1+δ ≤ rε for all r ≥ η.

Hence, we have the inequality∫
Bcη(0)

(
log(1 + ‖ω‖)

)1+δ ‖ω‖2k ν(dω) ≤
∫
Bcη(0)

‖ω‖2k+ε
(
1 + ‖ω‖2

)−τ︸ ︷︷ ︸
≤‖ω‖2(k−τ)+ε

dω

and it follows that (5.6) holds if k < τ − d+ε
2 .

Since ε can be chosen arbitrarily small, we can conclude

τ > k + d
2 =⇒ X�(ω) ∈ Ck(T ) a.s.

In Section 5.5 we prove a theorem that will �nally yield

τ ≤ k + d
2 =⇒ X�(ω) /∈ Ck(T ) a.s.

(we will obtain a statement even stronger than that, see Example 5.5.6).

5.4 Measurable Random Fields

In Section 5.2 we have introduced the notion of separability, which turned out to be a suitable
means to overcome the problem of non-measurability of events related to path properties.
Moreover we have seen that it ensures a certain uniqueness of a random �eld (Xt)t∈T , provided
that �nite dimensional distributions allow for continuous sample paths. The notion of a
measurable random �eld, which will be introduced in this section, will play a similar role in
our discussion of sample paths properties of general second-order processes in Section 5.5.
Throughout this (and the subsequent) section, we will always tacitly assume that T ⊆ Rd is
Lebesgue measurable.

De�nition 5.4.1. Let (Xt)t∈T be a random �eld over the probability space (Ω,A, P ). Let

A⊗ BdT the product σ-algebra of A and BdT , and A⊗ BdT its completion with respect to the

measure P ⊗ λd. Then (Xt)t∈T is called measurable if it is A⊗ BdT /B measurable as a map

X : (Ω× T )→ R.

57



5.4: Measurable Random Fields

It follows from Theorem 2.1.10 that the paths of a measurable random �eld (Xt)t∈T are BdT /B
measurable. The following Theorem (stated in [15, Ch. III, �3, Thm. 1] in more generality)
gives a condition for the existence of a measurable separable version of (Xt)t∈T :

Theorem 5.4.2. If the random �eld (Xt)t∈T is stochastically continuous, then there exists a
measurable (and separable) version (Yt)t∈T of (Xt)t∈T .

In the case where (Yt)t∈T is also required to be separable, it may again assume values in the
compact extension (R̄, B̄) of (R,B).

Note that the condition that (Xt)t∈T is stochastically continuous is always ful�lled in our case.
Indeed, it follows from Remark 5.3.2 and Theorem 5.3.3, that our working assumption that
(Xt)t∈T is second-order with continuous mean and covariance function automatically implies
stochastic continuity. The following Proposition is a another consequence of this working
assumption:

Proposition 5.4.3. The sample paths of a measurable random �eld (Xt)t∈T are in L2
loc(T )

a.s. If in addition ∫
T
R(t, t) dt < ∞, (5.9)

then the sample paths of (Xt)t∈T are in L2(T ) a.s.

Proof: For any compact subset I ⊂ T Theorem 2.2.11 (Fubini) yields

E
(∫

I
X2
t dt

)
=
∫
I

E
(
X2
t

)
dt =

∫
I
R(t, t) dt < ∞. (5.10)

But then necessarily it must hold that

P

(∫
I
X2
t dt <∞

)
= 1, (5.11)

which implies that X�(ω) ∈ L2
loc(T ) a.s. If condition (5.9) holds, we obtain the same conclu-

sions in (5.10) and (5.11) for T instead of I.

Remark 5.4.4. In the weakly stationary centred case we have R(t, t) ≡ Φ(0), so condition
(5.9) holds if and only if T is bounded.

If (Xt)t∈T is stationary Gaussian then, by Lemma 2.4.11, we have∫
T

E
(
X2p
t

)
dt = vol(T )

(2n)!
2nn!

(
Φ(0)

) 2p
< ∞ for any p ∈ N.

With the same arguments as in (5.10) and (5.11) we conclude that for bounded T and for any
p ∈ N the paths of (Xt)t∈T are in Lp(T ) a.s.
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5.4: Measurable Random Fields

The restriction to measurable random �elds entails a certain uniqueness of processes with
given �nite dimensional distributions:

Lemma 5.4.5. Let (Xt)t∈T and (Yt)t∈T be measurable RFs over the probability space (Ω,A, P ).
If

P
({
ω : Xt(ω) = Yt(ω)

})
= 1 for λd-almost all t ∈ T, (5.12)

then there exists a P -null set N ⊂ Ω so that

λd
({
t ∈ T : Xt(ω) 6= Yt(ω)

})
= 0 for all ω ∈ Ω \N, (5.13)

i.e. the sample paths of (Xt)t∈T and (Yt)t∈T are a.s. identical as functions in L2(T ).

Conversely, if almost all sample paths of (Xt)t∈T and (Yt)t∈T di�er only on a subset of T with
Lebesgue measure 0, then (5.12) must hold.

Proof: Since (Xt)t∈T and (Yt)t∈T are measurable processes, so is their di�erence. Hence the
indicator process

(
1{Xt 6=Yt}

)
t∈T is measurable and by assumption we have

E
(
1{Xt 6=Yt}

)
= P

(
Xt 6= Yt

)
= 0 for λd-almost all t ∈ T.

Applying Theorem 2.2.11 (Fubini) yields

E
(∫

T
1{Xt 6=Yt} dt

)
=
∫
T

E
(
1{Xt 6=Yt}

)
dt = 0,

so for all ω outside a set of probability 0 we have

λd
({
t ∈ T : Xt(ω) 6= Yt(ω)

})
=
∫
T

1{Xt(ω)6=Yt(ω)} dt = 0.

Reversing the steps of the proof shows the converse implication.

We already note a special result on measurability that we will need in a proof in the next
section.

Lemma 5.4.6. Let f be a real-valued function on the product space of the measure spaces
(Ω,A, µ) and ([a, b],B[a,b], λ

1), where a, b ∈ Q, a < b. If f(·, t) is A/B measurable for every
�xed t ∈ [a, b] and if f(ω, ·) is continuous on [a, b] for every �xed ω ∈ Ω, then f is A⊗B[a,b] /B
measurable.

Proof: According to Theorem 2.1.7 we must show that for all M ∈ R

GM :=
{

(ω, t) ∈ Ω× [a, b] : f(ω, t) < M
}
∈ A⊗ B[a,b].

First note that

GM =
⋃

tl,tu∈Q, a≤tl<tu≤b

{
ω : f(ω, t) < M ∀t ∈ [tl, tu]

}︸ ︷︷ ︸
=:AM,tl,tu

× [tl, tu] . (5.14)
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Indeed, since f is continuous in t, f(ω, t) < M implies f(ω, s) < M for all s in some interval
[tl, tu] 3 t, where tl, tu ∈ Q, a ≤ tl < tu ≤ b. Hence, if (ω, t) ∈ GM it is also contained in the
set on the rhs of (5.14). The converse inclusion is obvious.

The rhs of (5.14) is a countable union of sets of the form AM,tl,tu ×B, B ∈ B[a,b] and thus is
in A⊗ B[a,b] provided that AM,tl,tu ∈ A.
Now for any tl, tu ∈ Q, a ≤ tl < tu ≤ b and any M ∈ R by using again that f is continuous
in t we obtain

AM,tl,tu =
⋃

m∈Q,m<M

{
ω : f(ω, t) ≤ m ∀t ∈ [tl, tu]

}
=

⋃
m∈Q,m<M

{
ω : f(ω, t) ≤ m ∀t ∈ [tl, tu] ∩Q

}
=

⋃
m∈Q,m<M

⋂
t∈[tl,tu]∩Q

{
ω : f(ω, t) ≤ m

}
.

By assumption,
{
ω : f(ω, t) ≤ m

}
∈ A for any �xed t ∈ [a, b] (and any m ∈ R) and so

AM,tl,tu ∈ A as a countable union and intersection of A measurable sets and this completes
the proof.

5.5 Sample Path Regularity in the General Case

We have seen in Section 5.3 that m.s. continuity and m.s. di�erentiability are linked to the
probabilistic structure of a random �eld (Xt)t∈T only through the covariance function. In
contrast to that, the above results on a.s. sample path continuity and a.s. sample path di�er-
entiability were formulated for the special case of a Gaussian random �eld, and we shall give
an example that shows, that the above theorems indeed do not hold in the general case.
It will however turn out, that m.s. di�erentiability implies a.s. weak di�erentiability (as de�ned
in Section 3.2) of the sample paths, whatever the particular distribution of (Xt)t∈T .

Example 5.5.1. Let K(s, t) = e−‖t−s‖ be the so-called exponential covariance function on
T = Rd. It easily veri�ed that condition (5.3) holds e.g. for δ = 1 and so a separable centred
Gaussian random �eld with exponential covariance function has continuous sample paths a.s.

Now de�ne a process (Xt)t∈T with the same covariance function as follows:

The starting point is a homogeneous Poisson point process on Rd with intensity 1. This is a
stochastic process that assigns to each ω ∈ Ω a countable set of points {ζ1(ω), ζ2(ω), . . .} ⊂ Rd

with the following properties (see e.g. [25, Sec. 11.1])

1. The number N(B) of points inside a set B ∈ Bd is a Poisson RV with parameter vol(B),
i.e.

P
(
N(B) = k

)
= e−vol(B) vol(B)k

k!
, for all k ∈ N0. (5.15)

2. If B1, . . . , Bm ∈ Bd are pairwise disjoint, then the RVs N(B1), . . . , N(Bm) are mutually
independent.
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5.5: Sample Path Regularity in the General Case

For simplicity we take d = 1 (an Rd-counterpart of this example can be constructed via
Poisson tessellation, see [25, Sec. 12.3]). Then we can relabel the random point sets (ζn)n∈N
to (ζn)n∈Z such that ζi(ω) ≤ ζi+1(ω) for all i ∈ Z and all ω ∈ Ω.

Now let (Ui)i∈Z
i.i.d.∼ N (0, 1) and independent of (ζi)i∈Z and de�ne

Xt = Un for t ∈ [ζn, ζn+1)

Since the (Ui)i∈Z are centred so is (Xt)t∈T . By (5.15) and and the independence of (Ui)i∈Z
and (ζn)n∈Z we get

E
(
XsXt

)
= E

(
U2

1

)
· P
(
∃n ∈ Z : s, t ∈ [ζn, ζn+1)

)
= 1 · P

(
N([s, t]) = 0

)
= e−|t−s|.

Hence, (Xt)t∈T has indeed the prescribed covariance function, but obviously does not have
continuous sample paths. To complete this counter-example it remains to show that (Xt)t∈T
is separable.

Let I be a closed, B an open, and D an arbitrary dense subset of R. With the notation from
De�nition 5.2.4) we have

AB,I =
{
ω : Un(ω) ∈ B ∀ n ∈ Z with

[
ζn(ω), ζn+1(ω)

)
∩ I 6= ∅

}
.

Since I is open, we have the implication[
ζn(ω), ζn+1(ω)

)
∩ I 6= ∅ =⇒

(
ζn(ω), ζn+1(ω)

)
∩ I 6= ∅.

Consequently, both intersections must also contain points from D, so it follows that AB,I
and AB,I∩D coincide, which proves separability and shows that it is really the fact that
(Xt)t∈T is not Gaussian that causes Theorem 5.3.6 to fail. (Note that the univariate marginal
distributions are Gaussian, but the multivariate ones are not multivariate Gaussian).

Having shown that Theorem 5.3.6 does no longer hold if we just drop the assumption that
(Xt)t∈T is Gaussian, we might ask for other criteria that ensure a.s. sample path continuity
in the general case. A condition for weakly stationary random �elds on Rd is derived in [22]:

Denote by pd(h) the polynomial of degree d given by the Taylor series expansion of Φ(h)
around h = 0. If Φ ∈ Cd(Rd) and if for some 0 < C <∞ and δ > 0

∣∣Φ(h)− pd(h)
∣∣ ≤ C ‖h‖d

(− log ‖h‖)3+δ
(5.16)

for all ‖h‖ small enough, then the sample paths of (Xt)t∈T are continuous a.s.

As can be expected, the loss of information about the distribution of the random �eld (Xt)t∈T
must be compensated for by requiring much more smoothness from the covariance kernel than
in Theorem 5.3.7.

It is therefore quite remarkable that if one settles for weak di�erentiability, nothing is lost
compared to the Gaussian case, as it turns out that this kind of regularity is completely
determined by the second-order structure:
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Theorem 5.5.2. Let (Xt)t∈T be a measurable centred random �eld on an open subset T ⊆ Rd

with covariance function K. If Dα,αK exists and is continuous on the diagonal of T × T for
all |α| ≤ k, then the sample paths of (Xt)t∈T are in W k,2

loc (T ) a.s. If in addition∫
T
Dα,αK(t, t) dt < ∞ for all α with 0 ≤ |α| ≤ k, (5.17)

then the sample paths of (Xt)t∈T are in W k,2(T ) a.s.

In the stationary case we can again give a criterion in terms of the spectral measure:

Corollary 5.5.3. Let (Xt)t∈T be a measurable, stationary centred random �eld on an open
subset T ⊆ Rd with spectral measure ν. If∫

Rd
‖ω‖2k ν(dω) <∞, (5.18)

then the sample paths of (Xt)t∈T are in W k,2
loc (T ) a.s.

If in addition T is bounded, then the sample paths of (Xt)t∈T are in W k,2(T ) a.s.

The idea of the proof is similar to the one in the proof of Theorem 5.3.16. For the de�nition

of the marginal integrals in (5.7) we only need integrability of (Y (i)
t )t∈Q. The problem is then,

however, that the integrated random �eld (Y [i]
t )t∈Q is not continuous in general, and we must

use another argument to show that its sample paths coincide a.e. with those of (Xt)t∈Q.
Another problem arising from the lack of continuity of (Y [i]

t )t∈Q is that more caution is needed
when patching together these RFs to a RF de�ned on the whole of T . In order to obtain the
statement for any open subset T ⊆ Rd, we therefore need the following technical lemma (with
the notation of Section 3.2):

Lemma 5.5.4. For any open subset T ⊆ Rd and i ∈ {1, . . . , d} there exists a sequence (Qn)n∈N
of bounded measurable subsets of T and a sequence (sn)n∈N of real numbers sn ∈ πi(Qn) with
the following properties:

(a) T =
⋃
n∈NQn.

(b) Qn = Q0
n ×i [an, bn], Q0

n ∈ Bd−1, an, bn ∈ Q, n ∈ N.
i.e. each Qn is cylindrical in the direction of the i-th coordinate axis

(c) If the points tj ∈ Qj and tk ∈ Qk, j < k, are the endpoints of a line segment l ⊆ T that
is parallel to the i-th coordinate axis, then l ⊆ Qk and sk = sj.

Proof: First we construct a sequence (Q̃n)n∈N of cubes with T =
⋃
n∈N Q̃n such that

j < k =⇒ πi(Q̃k) ⊂ πi(Q̃j) or πi(Q̃j) ∩ πi(Q̃k) = ∅.

Such a sequence is obtained as follows:
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We consider cubes of the form Q̃ = Q̃0×i [ã, b̃], ã, b̃ ∈ Q, ã < b̃, where Q̃0 is a right half-open
(see Example 2.1.2) cube in Rd−1 with edge length b̃ − ã. Denote by Qρ the set of all cubes
of that type with edge length ρ and corners on the grid ρZd. For m ∈ N de�ne

Tm :=
{
Q ∈ Q2−m : Q ⊂ T ∩ [−m,m]d, λd(Q ∩ Q̄) = 0 for all Q̄ ∈

⋃
j<m Tj

}
.

Every Tm consists of �nitely many cubes and by enumerating the set
⋃
m∈N Tm starting with all

cubes in T1 and continuing with T2, T3, . . ., we obtain a sequence (Q̃n)n∈N with the prescribed
properties from above. We write Q̃n = Q̃0

n ×i [ãn, b̃n].

We will now modify the sequence (Q̃n)n∈N to obtain a sequence (Qn)n∈N and a sequence
(sn)n∈N of real numbers with the prescribed properties (a) - (c).

Start with Q1 := Q̃1 and s1 := ã1, then (b) and (c) trivially hold so far. Assume now that
these properties hold for the sets Q1, . . . , Qn and points s1, . . . , sn that have been constructed
from Q̃1, . . . , Q̃ñ, and assume that in addition

⋃ñ
j=1 Q̃j ⊂

⋃n
j=1Qj . For all t ∈ Q̃ñ+1 de�ne

the open line segment

lñ+1,t :=
{
s ∈ T : s = t+ γ ei, γ ∈ R and ηs+ (1− η)t ∈ T ∀ η ∈ [0, 1]

}
which is parallel to the i th coordinate axis and entirely contained in T . Further let

αñ+1,t := πi

(
min

{
s ∈ lñ+1,t ∩

⋃ñ+1
j=1 Q̃j

})
and

βñ+1,t := πi

(
max

{
s ∈ lñ+1,t ∩

⋃ñ+1
j=1 Q̃j

})
the minimal (maximal) value of the i th coordinate of all points from lñ+1,t that are contained
in the union of Q̃1, . . . , Q̃ñ+1. For any t ∈ Q̃ñ+1 we have one of the following alternatives:

(i) αñ+1,t = ãj and βñ+1,t = b̃k for some 1 ≤ j, k ≤ ñ, j 6= k,

(ii) αñ+1,t = ãj and βñ+1,t = b̃ñ+1 for some 1 ≤ j ≤ ñ,

(iii) αñ+1,t = ãñ+1 and βñ+1,t = b̃k for some 1 ≤ k ≤ ñ, or

(iv) αñ+1,t = ãñ+1 and βñ+1,t = b̃ñ+1.

This allows to construct disjoint sets Qn+1, . . . , Qn+p by setting

Qn+r := πi
({
t ∈ Q̃ñ+1 : αñ+1,t = ãjr , βñ+1,t = b̃kr

})
×i [ãjr , b̃kr ] (5.19)

for r = 1, . . . , p, where (j1, k1), . . . , (jr, kr) is an enumeration of all pairs of indices 1 ≤ j, k ≤
ñ+ 1, for which one of the above alternatives applies.

Clearly ãjr ≤ ãñ+1 < b̃ñ+1 ≤ b̃kr for all r = 1, . . . , p, and hence Q̃ñ+1 ⊂
⋃p
r=1Qn+r.

Consequently, property (a) follows from T =
⋃
n∈N Q̃n by induction.

Note that this conclusion still holds if we omit all sets Qn+r that correspond to alternative (i)
in the construction of Qn+1, . . . , Qn+p. Indeed, for any t ∈ Q̃ñ+1 so that lñ+1,t intersects both
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Q̃j and Q̃k with j, k as for (i), there must already be a set of the form (5.19), constructed in
an earlier step by alternative (ii) or (iii), that contains the points πi(t)×i [ãj , b̃k).
We assume therefore that each Qn+1, . . . , Qn+p corresponds to (ii), (iii) or (iv). Then we can
relabel these sets in such a way that for some 0 ≤ u ≤ v ≤ p we have

ãj1 < . . . < ãju < ãñ+1, ãju+1 = . . . = ãjv = ãñ+1, and

b̃k1 = . . . = b̃ku = b̃ñ+1, b̃ku+1 > . . . > b̃kv > b̃ñ+1.

We use this to prove that πi
(
Qn+1

)
, . . . , πi

(
Qn+p

)
are measurable. First, for 1 ≤ r ≤ u, we

have y ∈ πi(Qn+r) if and only if

• y ∈ πi
(
Q̃jr
)
∩ πi

(
Q̃ñ+1

)
,

• y /∈ πi
(
Q̃n+s

)
for all 1 ≤ s < r, and

• y ∈
⋂
q ∈ [ãjr ,b̃ñ+1] Ti(q) := J ,

where Ti(·) is a the cross-section of T orthogonal to the i-th coordinate axis, i.e.

Ti(q) := {τ ∈ Rd−1 : (τ1, . . . , τi−1, q, τi+1, . . . , τd) ∈ T}.

Hence, measurability of πi(Qn+r) follows if we can show measurability of J .

If y ∈ J , then the line segment l := y ×i [ãjr , b̃ñ+1] is completely contained in T . Now l is
compact, and so its distance to the boundary ∂T of T assumes its minimum at some point
s ∈ l. Since T is open we must have δ := dist(s, ∂T ) > 0 which implies Bδ(y) ⊂ J . Hence, J
is open and in particular J ∈ Bd−1.

The same argument can be used to prove πi(Qn+r) ∈ Bd−1 for u + 1 ≤ r ≤ v . Finally, if
v < p, Qn+p corresponds to alternative (iv) and we have

πi(Qn+p) = πi
(
Q̃ñ+1

)
\
⋃p−1
s=1 πi

(
Q̃n+s

)
∈ Bd−1,

which concludes the veri�cation of property (b).

Property (c) of (Qn)n∈N is an obvious consequence of its construction, so it only remains to
provide a suitable choice of sn+r, r = 1, . . . , p. If Qn+r corresponds to alternative (iv) we can
simply set sn+r := ãñ+1. Otherwise, it necessarily holds that

πi(Qn+r) ⊂ πi(Qj) for some j ≤ n,

so we �nd that sn+r := sj is a suitable choice that respects property (c) and this completes
the proof.

Proof of Theorem 5.5.2: We state the proof for k = 1, the case k > 1 is obtained by
applying the steps of the proof recursively.

Fix i ∈ {1, . . . , d}. Our assumptions imply the existence of a m.s. partial derivative (X(i)
t )t∈T
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of (Xt)t∈T , and a measurable version (Y (i)
t )t∈T of it. We show that Y

(i)
� (ω) is a weak partial

derivative of X�(ω) for almost every ω.

For any n ∈ N let

Qn = Q0
n ×i [an, bn]

with an, bn, and Q
0
n from Lemma 5.5.4. Since Qn ⊂⊂ T and K is continuous on T × T we

have ∫
Qn

E
((
Y

(i)
t

)2)
dt =

∫
Qn

Di,iK(t, t) dt < ∞.

Hence, by Fubini's theorem there exists a P⊗λd−1-null set N0
i,n ⊂ Ω×Q0

n so that the marginal
integral ∫ bn

an

Y
(i)
t+(h−sn) ei

(ω) dh, t := t0 ×i {sn},

exists for all (ω, t0) ∈
(
Ω × Q0

n

)
\ N0

i,n. Then Ni,n := N0
i,n ×i [an, bn] is a P ⊗ λd-null set

and, denoting by t the orthogonal projection of t ∈ Qn on Q0
n ×i {sn}, we can de�ne for all

(ω, t) ∈
(
Ω×Qn

)
\Ni,n

Y
[i]
n,t(ω) := Xt(ω) +

∫ ti

sn

Y
(i)
t+(h−sn) ei

(ω) dh. (5.20)

For (ω, t) ∈ Ni,n we set Y
[i]
n,t(ω) := Xt(ω). By Lemma 2.1.10 X�(·) is P ⊗ λd−1 measurable

and for every �xed ti ∈ [an, bn] Fubini's theorem implies that the second term of the rhs of
(5.20), set to 0 on Ni,n, is P ⊗ λd−1 measurable as well. For every �xed (ω, t0) ∈

(
Ω × Q0

n

)
Y

[i]
n,t(ω) is continuous as a function of ti and hence, by Lemma 5.4.6, (Y [i]

n,t)t∈Qn is measurable.

Now repeat this construction for all Qn, n ∈ N, and set

N0
i :=

⋃
n∈N N0

i,n, Ni :=
(
N0
i ×i R

)
∩ T.

Let (ω, t) ∈ (Ω × T ) \ Ni and assume that t ∈ Qj ∩ Qk, j < k. Then it follows from (c) in
Lemma 5.5.4 that sj ∈ Qk and sk = sj , so the rhs of (5.20) for j and k coincide and we have

Y
[i]
j,t (ω) = Y

[i]
k,t(ω).

Moreover we have T =
⋃
n∈NQn and so the random �eld (Y [i]

t )t∈T is well-de�ned by

Y
[i]
t (ω) :=

{
Y

[i]
n,t(ω) if (ω, t) ∈ (Ω× T ) \Ni and t ∈ Qn

0 if (ω, t) ∈ Ni

An alternative representation of (Y [i]
t )t∈T is given by

Y
[i]
t (ω) = 1(Ω×T )\Ni(ω, t) · sup

n∈N
Y

[i]
n,t (ω).

and from this and Theorem 2.1.8 and 2.1.9, it follows that (Y [i]
t )t∈T is measurable.
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Next, for some (ω, t0) ∈
(
Ω×πi(T )

)
\N0

i let l be an arbitrary closed line segment on the line
t0×iR that is completely contained in T . By (c) in Lemma 5.5.4 there exists a set Qk so that

l ⊂ Qk, and so it immediately follows from (5.20) that Y
[i]
� (ω) is absolutely continuous on l.

Since l was arbitrary, Y
[i]
� (ω) is absolutely continuous on the line t0 ×i R by De�nition 3.2.7.

Now
(
P ⊗ λd−1

)
(N0

i ) = 0 implies

P
({
ω : λd−1(N0

i (ω)) > 0
})

= 0,

where N0
i (ω) := {t0 ∈ πi(T ) : (ω, t0) ∈ N0

i } denotes the N0
i cross section for �xed ω, and

altogether we conclude that

Y
[i]
� (ω) ∈ ACi(T ) for almost every ω ∈ Ω, (5.21)

with �classical� partial derivative Y
(i)
� (ω) (de�ned a.e. on T ).

Finally we show that the sample paths of (Y [i]
t )t∈T and (Xt)t∈T are a.s. identical in L2(T ).

Note that
(
P ⊗ λd

)
(Ni) = 0 and consequently

λd
({
t ∈ T : P (Ni(t)) > 0

})
= 0

where Ni(t) := {ω : (ω, t) ∈ Ni} denotes the Ni cross section for �xed t. This means that for

λd-almost every t ∈ T, Y [i]
t is a.s. de�ned according to (5.20).

But then, using the same notation as above, we have for almost every t ∈ T

E
(
Y

[i]
t Xt

)
= K(t, t) +

∫ ti

sn

∂K

∂1ei

(
t+ (h− sn)ei, t

)
dh

= K(t, t) + K(t, t) − K(t, t) = K(t, t) and

E
(
Y

[i]
t Y

[i]
t

)
= K(t, t) + 2

∫ ti

sn

∂K

∂1ei

(
t+ (h− sn)ei, t

)
dh

+
∫ ti

sn

∫ ti

sn

Di,iK
(
t+ (h− sn)ei, t+ (h′ − sn)ei

)
dh′ dh

= K(t, t) +
∫ ti

sn

∂K

∂1ei

(
t+ (h− sn)ei, t

)
dh

+
∫ ti

sn

∂K

∂1ei

(
t+ (h− sn)ei, t

)
dh

= K(t, t) +K(t, t)−K(t, t) +K(t, t)−K(t, t) = K(t, t).

Putting both together we have

E
((
Y

[i]
t −Xt

)2) = E
(
(Xt)2

)
− 2 E

(
Y

[i]
t Xt

)
+ E

(
(Y [i]
t )2

)
= 0,
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and therefore

P
({
ω : Xt(ω) = Y

[i]
t (ω)

})
= 1 for λd-almost all t ∈ T.

But then it follows from Lemma 5.4.5 that the sample paths of (Y [i]
t )t∈T and (Xt)t∈T are

indeed a.s. identical in L2(T ). By Proposition 5.4.3 this implies in particular

Y
[i]
� (ω) ∈ L2

loc(T ) for almost every ω ∈ Ω.

and from this and (5.21) we obtain from Lemma 3.2.9 that Y
(i)
� (ω) is a.s. an i th weak derivative

of Y
[i]
� (ω) and hence also of (Xt)t∈T .

Repeating these arguments for all m.s. partial derivatives (X(1)
t )t∈T , . . . , (X

(d)
t )t∈T , completes

the proof.

Theorem 5.5.2 shows that in order for a random �eld (Xt)t∈T to have weakly di�erentiable
sample paths it is su�cient that it is m.s. di�erentiable, and that the m.s. partial derivatives
are m.s. continuous. If (Xt)t∈T is stationary and Gaussian, then we can prove that this is also
necessary:

Proposition 5.5.5. Let (Xt)t∈T be a measurable centred stationary Gaussian process on an
open subset T ⊆ Rd. If (Xt)t∈T does not have m.s. partial derivatives of order k, then its
sample paths a.s. do not have weak derivatives of order k.

Proof: We give the proof for k = 1, the case k > 1 follows in the same way.

For some sequence (hn)n∈N of real numbers with lim
n→∞

hn = 0 de�ne the set

A :=
{

(ω, t) ∈ Ω× T : lim sup
n→∞

∣∣X(i,hn)
t (ω)

∣∣ <∞} .
and denote its the cross sections by

Aω :=
{
t ∈ T : (ω, t) ∈ A

}
and At :=

{
ω ∈ Ω : (ω, t) ∈ A

}
.

Note that the fact that (Xt)t∈T is a A⊗ BT /B measurable random �eld implies that A is an
A⊗ BT measurable set (see Theorem 2.1.9).

If (Xt)t∈T does not have a m.s. partial derivative at t in the direction ei (which can hold for
either no or all t ∈ T , see Corollary 5.3.13), then it follows from Lemma 5.3.14 that (hn)n∈N
can be chosen such that

lim
n→∞

Φ(i)
hnhn

(0) = ∞

Now for the Gaussian density function ϕµ,σ2 (see Example 2.4.8) we have

ϕµ,σ2(x) ≤ ϕµ,σ2(µ) =
1√

2πσ2
,
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and from that we obtain for any �xed t ∈ T and any M <∞

P
(∣∣X(i,hn)

t

∣∣ ≤M) ≤ 2M√
2πΦ(i)

hnhn
(0)
−→ 0, as n→∞.

We can therefore choose a subsequence (nk)k∈N of (n)n∈N so that

P
(∣∣X(i,hn)

t

∣∣ ≤ k) ≤ 2−k for all n ≥ nk.

Then
∞∑
k=1

P
(∣∣X(i,hnk )

t

∣∣ ≤ k) < ∞,

and so Lemma 2.1.16 (Borel-Cantelli) yields

P

( ⋂
m∈N

⋃
k>m

{
ω :

∣∣X(i,hnk )
t (ω)

∣∣ ≤ k}) = 0.

This means that for a.e. ω and every m ∈ N there exists a k = k(ω) > m so that∣∣X(i,hnk )
t (ω)

∣∣ > k, so we have P (At) = 0 for any t ∈ T and hence, by Fubini's theorem(
P ⊗ λd

)
(A) = 0. (5.22)

Now let W ⊂ Ω the set of all ω for which X�(ω) has an i th weak derivative. For every such
ω, according to Theorem 3.2.10, there exists a function Y�(ω) ∈ ACi(T ) that coincides with
X�(ω) λd-a.e. on T . Hence, the following sets

I∞(ω) :=
{
t ∈ T : lim sup

n→∞

∣∣Y (i,hn)
t (ω)

∣∣ =∞
}
,

I6=,0(ω) :=
{
t ∈ T : Yt(ω) 6= Xt(ω)

}
, and

I6=,n(ω) :=
{
t ∈ T : t+ hnei ∈ T and Yt+hnei(ω) 6= Xt+hnei(ω)

}
are all λd-null sets, and so is the set

I(ω) := I∞(ω) ∪
∞⋃
n=0

I 6=,n(ω)

For all t ∈ T \ I(ω) it holds that

lim sup
n→∞

∣∣X(i,hn)
t (ω)

∣∣ = lim sup
n→∞

∣∣Y (i,hn)
t (ω)

∣∣ < ∞.
so we have T \ Aω ⊂ I(ω) and therefore λd(Aω) = vol(T ) for all ω ∈ W . But then, using
(5.22) we get

0 =
(
P ⊗ λd

)
(A) ≥

(
P ⊗ λd

)(
(W × T ) ∩A

) Fubini= P (W ) · vol(T )
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and it follows that P (W ) = 0 which completes the proof.

The assumption that (Xt)t∈T is Gaussian was only needed for the implication

lim
n→∞

Φ(i)
hnhn

(0) = ∞ =⇒ lim
n→∞

P
(∣∣X(i,hn)

t

∣∣ ≤M) = 0 (5.23)

for anyM <∞. The statement of Proposition 5.5.5 should therefore hold under much weaker
assumptions (we could e.g. replace the assumption of Gaussianity by the requirement that
(5.23) must hold). However, as we can again see from Example 5.3.18, it is not possible to
drop this assumption without any substitution.

We continue Example 5.3.19 and illustrate the preceding Theorems with the Whittle-Matérn
model:

Example 5.5.6. (Whittle-Matérn model, part 2)
Consider a measurable, (weakly) stationary centred random �eld (Xt)t∈T on an open and
bounded domain T ⊂ Rd with spectral density

ϕτ (ω) =
(
1 + ‖ω‖2

)−τ
, τ > d

2 .

As in Example 5.3.19 we may compute the integral over Bc
r(0) := Rd \Br(0) only rather than

Rd in condition (5.18). For k < τ − d
2 we have∫

Bcr(0)
‖ω‖2k ν(dω) =

∫
Bcr(0)

‖ω‖2k
(
1 + ‖ω‖2

)−τ︸ ︷︷ ︸
≤‖ω‖2(k−τ)

dω < ∞,

and so Corollary 5.5.3 yields

τ > k + d
2 =⇒ X�(ω) ∈ W k,2(T ) a.s.

On the other hand, if k ≥ τ − d
2 , we �nd that (w.l.o.g. r > 1)∫

Bcr(0)
‖ω‖2k ν(dω) =

∫
Bcr(0)

‖ω‖2k
(
1 + ‖ω‖2

)−τ︸ ︷︷ ︸
≥ 2−τ ‖ω‖−2τ

dω = ∞,

and by Proposition 5.5.5 and Corollary 5.3.13, if (Xt)t∈T is Gaussian, we conclude

τ ≤ k + d
2 =⇒ X�(ω) /∈ W k,2(T ) a.s.

If T is not bounded, both statements hold for W k,2
loc (T ) instead of W k,2(T ).

Now, we go one step further and give conditions for (Xt)t∈T to have sample paths in some
fractional order Sobolev space Wµ,2(T ) a.s.:
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Theorem 5.5.7. Let (Xt)t∈T be as in Theorem 5.5.2. If it holds for some k < µ < k + 1,
0 < C <∞ and δ, η > 0 that

d 2
α(s, t) ≤

C
(
Dα,αK(s, s) +Dα,αK(t, t)

)
‖t− s‖2(µ−k)∣∣ log ‖t− s‖

∣∣1+δ
(5.24)

for all α with |α| = k and all s, t ∈ T with ‖s− t‖ < η, then the sample paths of (Xt)t∈T are
in Wµ,2

loc (T ) a.s.

If in addition condition (5.17) holds, then the sample paths are in Wµ,2(T ) a.s.

Proof: According to De�nition 3.2.11 we must show that for a.e. ω ∈ Ω∑
|α|=k

∫
T

∫
T

|DαXt(ω)−DαXs(ω)|2

‖t− s‖d+2(µ−k)
ds dt < ∞.

This follows again from Theorem 2.2.11 (Fubini) if we can ensure that∫
T

∫
T

E
(
|DαXt −DαXs|2

)
‖t− s‖d+2(µ−k)

ds dt < ∞ for all α with |α| = k.

To this end we split the integral in two parts and verify that∫
T

∫
T

1{‖t−s‖≥η}(s, t)
E
(
|DαXt −DαXs|2

)
‖t− s‖d+2(µ−k)

ds dt < ∞ (5.25)

and ∫
T

∫
T

1{‖t−s‖<η}(s, t)
E
(
|DαXt −DαXs|2

)
‖t− s‖d+2(µ−k)

ds dt < ∞. (5.26)

Taking DαXt = Y
(α)
t (from the proof of Theorem 5.5.2) we prove (5.25), noting that

E
(
|DαXt −DαXs|2

)
= Dα,αK(s, s) +Dα,αK(t, t)− 2Dα,αK(s, t)

≤ Dα,αK(s, s) +Dα,αK(t, t) + 2
√
Dα,αK(s, s)Dα,αK(t, t)

≤ 3
2

(
Dα,αK(s, s) +Dα,αK(t, t)

)
.

Then, denoting by Sd the surface of the d-dimensional unit sphere, and using condition (5.17),
we have for any 0 < η < 1∫

T

∫
T

1{‖t−s‖≥η}(s, t)
E
(
|DαXt −DαXs|2

)
‖t− s‖d+2(µ−k)

ds dt

≤
∫
T

∫
T

1{‖t−s‖≥η}(s, t)
3
2

(
Dα,αK(s, s) +Dα,αK(t, t)

)
‖t− s‖d+2(µ−k)

ds dt

≤ 3
∫
T
Dα,αK(t, t) dt︸ ︷︷ ︸

<∞

·
∫

Rd\Bη(0)

1
‖h‖d+2(µ−k)

dh︸ ︷︷ ︸
= Sd

R∞
η r−1−2(µ−k) dr <∞

< ∞ .
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In the same way, now using condition (5.24), we obtain∫
T

∫
T

1{‖t−s‖<η}(s, t)
E
(
|DαXt −DαXs|2

)
‖t− s‖d+2(µ−k)

ds dt

≤ C

∫
T

∫
T

1{‖t−s‖<η}(s, t)
Dα,αK(s, s) +Dα,αK(t, t)

‖t− s‖d
∣∣ log ‖t− s‖

∣∣1+δ
ds dt

≤ 2 C
∫
T
Dα,αK(t, t) dt︸ ︷︷ ︸

<∞

·
∫
Bη(0)

1

‖h‖d
∣∣ log ‖h‖

∣∣1+δ
dh︸ ︷︷ ︸

<∞

< ∞,

where we have used that∫
Bη(0)

1

‖h‖d
∣∣ log ‖h‖

∣∣1+δ
dh =

∫ η

0

Sd
r |log(r)|1+δ

dr =
∫ log η

−∞

Sd
|r|1+δ

dr.

This shows (5.26) and completes the proof.

Corollary 5.5.8. Let (Xt)t∈T be a measurable (weakly) stationary centred random �eld on
an open subset T ⊂ Rd with spectral measure ν. If∫

Rd

(
log(1 + ‖ω‖)

)1+δ ‖ω‖2µ ν(dω) <∞ (5.27)

for some µ > 0, µ /∈ N, and some δ > 0, then the sample paths of (Xt)t∈T are in Wµ,2
loc (T ) a.s.

If in addition T is bounded, then the paths of (Xt)t∈T are in Wµ,2(T ) a.s.

Proof: We start as in the proof of Theorem 5.5.7 with k := bµc. Then (5.25) directly follows
from the boundedness of T , and we show that (5.26) is implied by condition (5.27).

Note by repeated application of Corollary 5.3.13 and Proposition 5.3.15 that (Xt)t∈T has kth

order m.s. derivatives with spectral measures να and spectral moments

Mα :=
∫

Rd
να(dω) =

∫
Rd

ω 2α1
1 · · · ω 2αd

d︸ ︷︷ ︸
=:ω2α

ν(dω).

Using the simple inequality

1− cos(x) ≤

{
x2

2 , |x| ≤ 2
2, |x| > 2
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we obtain∫
T

∫
T

1{‖t−s‖<η}(s, t)
2 · (−1)|α|

(
D2α Φ(0)−D2α Φ(t− s)

)
‖t− s‖d+2(µ−k)

ds dt

≤ vol(T )
∫
Bη(0)

2 · (−1)|α|
(
D2α Φ(0)−D2α Φ(h)

)
‖h‖d+2(µ−k)

dh

= vol(T )
∫
Bη(0)

∫
Rd

2
(
1− cos(h′ω)

)
‖h‖d+2(µ−k)

να(dω) dh

= vol(T )
∫
Bη(0)

∫
Rd

(h′ω)2 · 1{(h′ω)2≤2}(ω, h)
‖h‖d+2(µ−k)︸ ︷︷ ︸

I1

+
4 · 1{(h′ω)2>2}(ω, h)
‖h‖d+2(µ−k)︸ ︷︷ ︸

I2

να(dω) dh

Now, if (h′ω)2 > 2, we also have ‖h‖2‖ω‖2 > 2 by Cauchy-Schwarz inequality and hence

1
‖h‖2(µ−k)

<
‖ω‖2(µ−k)

2µ−k
< ‖ω‖2(µ−k).

W.l.o.g. we can assume η < 1, and we get for ‖h‖ < η

∣∣ log ‖h‖
∣∣1+δ =

(
log
(

1
‖h‖

))1+δ

≤
(

log ‖ω‖
)1+δ

<
(

log(1 + ‖ω‖)
)1+δ

,

and hence I2 can be bounded by

4 · ‖ω‖2(µ−k) ·
(

log(1 + ‖ω‖)
)1+δ

‖h‖d
∣∣ log ‖h‖

∣∣1+δ

Next, note the Cauchy-Schwarz inequality further implies

− log ‖h‖ ≤ − log |h′ω|+ log ‖ω‖

and hence, assuming again that η < 1, it follows that∣∣ log ‖h‖
∣∣1+δ ≤

(∣∣ log |h′ω|
∣∣+ log(1 + ‖ω‖)

)1+δ
.

For any ε > 0 it holds that aε · | log(a)| → 0 as a → 0, and this implies that there exist
constants C1, C2 > 0, so that for |h′ω| ≤

√
2

(h′ω)2−2(µ−k) ·
(∣∣ log |h′ω|

∣∣+ log(1 + ‖ω‖)
)1+δ ≤

(
C1 + C2 log(1 + ‖ω‖)

)1+δ
.

Now if ‖ω‖ > 1, then log(1 + ‖ω‖) is bounded away from 0, and C1 can be absorbed into C2,
i.e.

1{‖ω‖>1} ·
(
C1 + C2 log(1 + ‖ω‖)

)1+δ ≤ C̃2

(
log(1 + ‖ω‖)

)1+δ
.
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Conversely, if ‖ω‖ ≤ 1, then log(1 + ‖ω‖) is bounded as well, and we have

1{‖ω‖≤1} ·
(
C1 + C2 log(1 + ‖ω‖)

)1+δ ≤ 1{‖ω‖≤1} · C̃1,

so it �nally follows that I1 can be bounded by

C̃1 + C̃2 ‖ω‖2(µ−k) ·
(

log(1 + ‖ω‖)
)1+δ

‖h‖d
∣∣ log ‖h‖

∣∣1+δ
.

By condition (5.27) we have

C∗ :=
∫

Rd

(
log(1 + ‖ω‖)

)1+δ ‖ω‖2(µ−k) να(dω)

=
∫

Rd

(
log(1 + ‖ω‖)

)1+δ ‖ω‖2(µ−k) ω2α︸︷︷︸
≤‖ω‖2k

ν(dω) < ∞,

and hence, in the same way as in Theorem 5.5.7, it follows that∫
T

∫
T

1{‖t−s‖<η}(s, t)
2 · (−1)|α|

(
D2α Φ(0)−D2α Φ(t− s)

)
‖t− s‖d+2(µ−k)

ds dt

≤ vol(T )
∫
Bη(0)

C̃1Mα + C̃2C
∗ + 4C∗

‖h‖d
∣∣ log ‖h‖

∣∣1+δ
dh < ∞,

which completes the proof.

By application of the imbedding theorem for Sobolev spaces from Section 3.2 we can now
state su�cient conditions for a (not necessarily Gaussian) second-order random �eld to have
continuously di�erentiable sample paths a.s.:

Theorem 5.5.9. Let (Xt)t∈T be a separable centred RF on a domain T ⊆ Rd with covariance
function K. If for some µ > k + d

2 Dα,αK exists for all |α| ≤ bµc and

d 2
α(s, t) ≤

C
(
Dα,αK(s, s) +Dα,αK(t, t)

)
‖t− s‖2(µ−bµc)∣∣ log ‖t− s‖

∣∣1+δ

for all |α| = bµc, some 0 < C <∞ some δ > 0, and all s, t ∈ T where ‖s− t‖ is small, then
the sample paths of (Xt)t∈T are in Ck(T ) a.s.

Corollary 5.5.10. Let (Xt)t∈T be a separable (weakly) stationary centred RF on a domain
T ⊆ Rd with spectral measure ν. If∫

Rd

(
log(1 + ‖ω‖)

)1+δ ‖ω‖2µ ν(dω) <∞

for some µ > k + d
2 and δ > 0, then the sample paths of (Xt)t∈T are in Ck(T ) a.s.
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Proof of Theorem 5.5.9: First, instead of T consider the restriction (Xt)t∈V to some
bounded C∞ domain V ⊂⊂ T . By Theorem 5.4.2, we can pass on to a separable measurable
version (Yt)t∈V of (Xt)t∈V . Then the assumptions of either Theorem 5.5.9 or Corollary 5.5.10
imply

Y�(ω) ∈ Wµ,2(V ) for all ω ∈ Ω \N,
where N is a set of probability zero. By Theorem 3.2.15 and our choice of µ we can modify
Y�(ω), if necessary, on a λd-null set I(ω) ⊂ V and we obtain a random �eld (Ỹt)t∈V with
sample paths in Ck(V ) a.s. so that

λd
({
t ∈ V : Ỹt(ω) 6= Yt(ω)

})
= 0 for all ω ∈ Ω \N.

The a.s. continuity of its sample paths implies that (Ỹt)t∈V is measurable and hence, by
Lemma 5.4.5, it follows that

P
({
ω : Ỹt(ω) = Yt(ω)

})
= 1 for λd-almost all t ∈ V.

Using Lemma 5.2.8 (and the subsequent remark) we conclude

X�(ω) ≡ Y�(ω) ≡ Ỹ�(ω) for almost all ω ∈ Ω,

and hence then the sample paths of (Xt)t∈V are in Ck(V ) a.s.

Now the domain T can be covered by a countable union of open balls that are contained in
T . Applying the above arguments to each one of these balls yields the desired result.

Remark 5.5.11. Note that the same proof, if Theorem 3.2.17 is applied instead of Theorem
3.2.15, yields the following result:

If the conditions of Theorem 5.5.7 and Corollary 5.5.8 hold for k + β instead of k, then the
sample paths of (Xt)t∈T are in C k,βloc (T ) a.s.

Example 5.5.12. (Whittle-Matérn model, part 3)
Consider a measurable, (weakly) stationary centred random �eld (Xt)t∈T on an open and
bounded domain T ⊂ Rd with spectral density

ϕτ (ω) =
(
1 + ‖ω‖2

)−τ
, τ > d

2 .

By Corollary 5.5.8, the same calculations as in Example 5.3.19 �nally yield

τ > µ+ d
2 =⇒ X�(ω) ∈ Wµ,2(T ) a.s.

If T is not bounded the statement holds for Wµ,2
loc (T ) instead of Wµ,2(T ).

Recall from Section 3.2 that the RKHS associated with the Whittle-Matérn kernel K corre-
sponding to the above spectral measure is W τ,2(T ). Hence, the Sobolev space containing the
sample paths of a random �eld with covariance function K is �rougher� by a bit more than
d
2 . In the light of kernel interpolation / kriging this means that a statistician and a numerical
analyst who interpolate a sample path of a (weakly stationary) second order random �eld
would use kernels the smoothnesses of which di�er by about d

2 .

The next in our series of examples with the Whittle-Matérn model is the Non-Gaussian
counterpart of Example 5.3.19:
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Example 5.5.13. (Whittle-Matérn model, part 4)
Consider a separable, (weakly) stationary centred random �eld (Xt)t∈T on a domain T ⊆ Rd

with spectral density

ϕτ (ω) =
(
1 + ‖ω‖2

)−τ
, τ > d

2 .

By Corollary 5.5.10, the same calculations as in Example 5.3.19 yield

τ > k + d =⇒ X�(ω) ∈ Ck(T ) a.s.

The price for not requiring (Xt)t∈T to be Gaussian is hence an increase of the required
smoothness of the covariance function by d

2 .

By Remark 5.5.11 we can �nally obtain the more precise characterisation

τ > k + β + d =⇒ X�(ω) ∈ Ck,βloc (T ) a.s.

The su�cient conditions given in Theorem 5.5.2 and Corollary 5.5.3 for (Xt)t∈T to have sample
paths a.s. in some integer order Sobolev space W k,2(T ) were proved to be even necessary in
the stationary Gaussian case. The following example shows that the su�cient conditions for
the sample paths to be in some fractional order Sobolev space Wµ,2(T ) a.s. (Theorem 5.5.7
and Corollary 5.5.8) are also at least very sharp:

Example 5.5.14. (Whittle-Matérn model, part 5)
Let (ζn)n∈N be a labeling of the (random) point sets of a homogeneous Poisson point process
on Rd with intensity 1 (see Example 5.5.1) and de�ne

Xt :=
∞∑
j=1

φτ/2(t− ζj) where φs(h) =
(2π)

d
2 ‖h‖s−

d
2

2s−1 Γ(s)
Ks− d

2
(‖h‖) . (5.28)

This de�nes (cf. [22, Example 5]) a stationary random �eld (Xt)t∈Rd with mean∫
Rd
φτ/2(h) dh, t ∈ Rd

and covariance function Φτ = (φτ/2 ∗ φτ/2) = (2π)d φτ .

This is, up to the constant factor (2π)d, the same Whittle-Matérn model with parameter τ
that was also used in several preceding examples. We have already seen that

τ > k + d =⇒ X�(ω) ∈ Ck(Rd) a.s. and

τ > k + β + d =⇒ X�(ω) ∈ Ck,βloc (Rd) a.s.

However, we noted in Lemma 3.2.18 that τ < k+ β + d implies φτ/2 /∈ C
k,β
loc (Rd) for k = 0, 1

and 0 < β ≤ 1, and that the same implication even holds for τ = k + β + d if k = β = 1.
From the properties of a homogeneous Poisson point process it follows that a.e. realization
contains at least one point, and since φτ/2 > 0 we can conclude for k = 0, 1 and 0 < β ≤ 1:

τ < k + β + d =⇒ X�(ω) /∈ Ck,βloc (Rd) a.s.
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Further, since Ck+1(Rd) ⊂ Ck,1loc (Rd), we have

τ < 1 + d =⇒ X�(ω) /∈ C1(Rd) a.s. and

τ ≤ 2 + d =⇒ X�(ω) /∈ C2(Rd) a.s.

In order for this example not to be overloaded by technicalities we do not attempt to prove
that the RF de�ned by (5.28) is separable. We rather appeal to the reader's intuition that
any other version of it would be even more irregular and would still not have sample paths in
Ck,βloc (Rd) or Ck(Rd) respectively.
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Chapter 6

Kernel Interpolation / Kriging

In this section we present the approach taken in spatial statistics and approximation theory,
respectively, to reconstruct a function f : T → R based on its values at a �nite set of sampling
locations T := {t1, . . . , tn} ⊂ T which we will always assume to be distinct.
Despite of starting o� with di�erent model assumptions, both approaches result in the same
type of interpolants. We will compare the di�erent concepts of evaluating the approximation
errors that correspond to the two modelling approaches and elaborate the di�erent notions of
optimality. We �nally comment on the in�uence of the kernel that is chosen for interpolation.

6.1 Kernel Interpolation

In approximation theory, the model assumption is that f ∈ HR where HR is the RKHS that
corresponds to a kernel R as de�ned in Section 3.1. The idea is now to consider the linear
subspace

VR,T := span
{
R(·, t1), . . . , R(·, tn)

}
⊂ HR,

and to build an interpolant sR of f from this subspace, i.e. we set

sR(t) :=
n∑
j=1

αj R(t, tj) (6.1)

with coe�cients α1, . . . , αn yet to be determined. Now, for sR to interpolate f at the locations
where values are known, it must satisfy

(
sR(tk) =

) n∑
j=1

αj R(tk, tj) = f(tk), k = 1, . . . , n. (6.2)

If this system is solvable (which is ensured if R is strictly positive de�nite), then the coe�cients
α1, . . . , αn are uniquely determined. Apart from being an interpolant of f at T , sR is also
the best approximation to f (cf. [41, Thm. 13.1]):
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Theorem 6.1.1. Suppose that R is a symmetric, continuous and strictly positive de�nite
kernel on T ⊆ Rd. Suppose further that f ∈ HR is known only at T . Then sR is the best
approximation to f from the subspace VR,T in the sense that

‖f − sR‖HR ≤ ‖f − s‖HR for all s ∈ VR,T .

Hence, sR is the orthogonal projection of f onto VR,T .

The interpolant sR can be rewritten in an alternative form (cf. [41, Sec. 11.1]). To this end,
we de�ne the cardinal basis functions u∗1, . . . , u

∗
n that are of the same form as sR , i.e.

u∗i (t) =
n∑
j=1

α
(i)
j R(t, tj), i = 1, . . . , n, (6.3)

and satisfy the Lagrange conditions

u∗i (tk) = δik, i, k = 1, . . . , n. (6.4)

If R is strictly positive de�nite, then this system is solvable and all cardinal basis functions
are uniquely determined. But then, we obviously have

sR(t) =
n∑
i=1

u∗i (t) f(ti) (6.5)

since the rhs of (6.5) has the form (6.1) and satis�es the interpolation condition (6.2). This
is the so-called Lagrange form of sR, and another optimality result ([41, Thm. 13.3]) can be
given for the cardinal basis functions:

Theorem 6.1.2. Suppose that R is a symmetric, continuous and strictly positive de�nite
kernel on T ⊆ Rd. Then for f ∈ HR and �xed t ∈ T it holds that

sup
f∈HR : ‖f‖HR=1

∣∣f(t)− sR(t)
∣∣ ≤ sup

f∈HR : ‖f‖HR=1

∣∣∣∣∣ f(t)−
n∑
i=1

ui f(ti)

∣∣∣∣∣
for all choices of u1, . . . , un ∈ R.

In other words: the interpolant sR is pointwise more accurate in a worst case sense than any
other linear combination of the given data.

Another characterization of sR is given through the following minimal property ([41, Thm.
13.2]):

Theorem 6.1.3. Let R be as above. Then sR according has minimal norm ‖ · ‖HR among all
functions s ∈ HR that interpolate the data f(t1), . . . , f(tn) at T .
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6.2 Generalized Kernel Interpolation

Sometimes it is desirable that certain types of functions (e.g. constant or linear functions) are
reproduced exactly. Some motivation for that in the application of interpolation methods to
the numerical solution of partial di�erential equations is given in [13, Sec. 6.1].

Let P := span{p1, . . . , pq} be a subspace of C(T ). One will usually have in mind the space
πm(T ) of polynomials of degreem restricted to T , but we will formulate all results for a general
subspace of �nite dimension. A �rst challenge that must be dealt with when functions from
P are to be used for interpolation is to guarantee the solvability of a system of interpolation
conditions involving p1, . . . , pq. This motivates the following notion:

De�nition 6.2.1. A �nite subset T ⊂ T containing at least q points is called P-unisolvent
if the zero function is the only function from P that vanishes on T .

Note that the points {t1, . . . , tn} are P-unisolvent if and only if the matrix

P =

 p1(t1) · · · pq(t1)
...

. . .
...

p1(tn, ) · · · pq(tn)

 (6.6)

has full column rank. Criteria for πm(Rd)-unisolvency are discussed in [41, Sec. 2.2] and [13,
Sec. 6.1].

Now, the interpolant sR,P is formed by both the basis functions R(·, t1), . . . , R(·, tn) and the
basis functions p1, . . . , pq :

sR,P(t) :=
n∑
j=1

αj R(t, tj) +
q∑

k=1

βk pk(t). (6.7)

In order to determine the coe�cients α1, . . . , αn and β1, . . . , βq we require sR again to satisfy
the interpolation conditions

n∑
j=1

αj R(ti, tj) +
q∑

k=1

βk pk(ti) = f(ti), i = 1, . . . , n. (6.8)

However, this is no longer enough. To guarantee a unique decomposition of sR,P into the
part made up of the kernel translates R(·, t1), . . . , R(·, tn) and the part made up of the basis
functions from P we additionally require

n∑
j=1

αj pk(tj) = 0, k = 1, . . . , q. (6.9)

The system of equations (6.8), (6.9) can be written in compact form(
A P
P ′ 0

)(
α
β

)
=
(

f
0

)
(6.10)
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with f =
(
f(t1), . . . , f(tn)

)′
, coe�cient vectors α = (α1, . . . , αn)′, β = (β1, . . . , βq)′, the

matrix P corresponding to the basis functions from P (see (6.6)), and the system matrix

A =

 R(t1, t1) · · · R(t1, tn)
...

. . .
...

R(tn, t1) · · · R(tn, tn)

 . (6.11)

If R is strictly positive de�nite, then A has full rank, and together with the remark after
De�nition 6.2.1 this implies that (6.10) has a unique solution. This implies in particular that
any function from P is reproduced exactly by the expansion (6.7).

Remark 6.2.2. Within the generalized kernel interpolation framework discussed in this sub-
section, it is possible to weaken the requirement of R being positive de�nite to requiring only
conditional positive de�niteness with respect to P. In this work we do however not want to go
beyond positive de�niteness and refer to [41, Ch. 8] for a detailed discussion of this concept.

As above, sR,P can be rewritten in the Lagrange form (6.5), now with cardinal basis functions
u∗1, . . . , u

∗
n of the form

u∗i (t) =
n∑
j=1

α
(i)
j R(t, tj) +

q∑
k=1

β
(i)
k pk(t), i = 1, . . . , n, (6.12)

with coe�cients α
(i)
1 , . . . , α

(i)
n and β

(i)
1 , . . . , β

(i)
q , i = 1, . . . , n satisfying (6.9) and the Lagrange

conditions (6.4). The fact that functions from P are reproduced exactly entails the following
additional property of the cardinal basis functions

p(t) =
n∑
i=1

u∗i (t) p(ti) for every t ∈ T and all p ∈ P. (6.13)

This is the form in which the P-reproduction condition will appear in the framework of spatial
statistics in Section 6.4.

We shall at least brie�y comment on the consequences of working with these generalized
kernel interpolants sR,P on the link with RKHS theory. We follow [41, Ch. 10.3], a much
more detailed outline of the theory can be found there.

At the beginning of Section 6.1 kernel interpolation was introduced as a projection of f ∈ HR
onto the subspace spanned by the kernel translates R(·, t1), . . . , R(·, tn). Now that the basis
functions from P are involved in the projection as well the space of functions to be interpolated
must be rede�ned. First, we choose a P-unisolvent set {ξ1, . . . , ξq} ⊂ T and de�ne the
projection operator

ΠP : C(T )→ P, ΠP(f) =
q∑

k=1

f(ξk) pk.

In order to account for the kernel interpolation part we de�ne

HR/P :=

{
m∑
i=1

aiR(·, ti) : ai ∈ R, ti ∈ T, m ∈ N,

with
m∑
i=1

ai p(ti) = 0 for all p ∈ P

}
.
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6.2: Generalized Kernel Interpolation

which is the counterpart of HR in (3.2) but with an additional restriction imposed on the
coe�cients ai. We use the same inner product ‖ · ‖HR as for HR (see (3.3)), de�ne HR/P to
be the closure of HR under this inner product, and further de�ne the mapping

R : HR/P → C(T ), R(f) = f −ΠPf.

Due to the restrictions on the coe�cients ai this mapping is injective ([41, Lem. 10.15]), and
this allows us to de�ne the space

HR,P := R
(
HR/P

)
+ P (6.14)

equipped with the semi-inner product

(f, g)HR,P :=
(
R−1(f −ΠPf), R−1(g −ΠP g)

)
HR
.

as an appropriate function space for our extended interpolation framework.

It can be shown ([41, Cor. 10.23]) that neither the space HR,P nor the inner product (·, ·)HR,P
depend on the choice of the set {ξ1, . . . , ξq} used to de�ne ΠP .

The space HR,P need no longer have a reproducing kernel but it is the natural generalization
of HR for the extended interpolation framework of this subsection. In particular we note the
following generalizations of Theorem 6.1.1 - 6.1.3 (see [41, Sec. 13.1]):

Theorem 6.2.3. Suppose that R is a symmetric, continuous and strictly positive de�nite
kernel on T ⊆ Rd. Suppose further that T := {t1, . . . , tn} is P-unisolvent and that f ∈ HR,P
is known only at T . Then sR,P is the best approximation to f from the subspace VR,P,T in
the sense that

‖f − sR,P‖HR,P ≤ ‖f − s‖HR,P for all s ∈ VR,P,T .

where

VR,P,T :=

s =
n∑
j=1

αj R(·, tj) :
n∑
j=1

αj p(tj) = 0 for all p ∈ P

 + P.

Hence, sR,P is the orthogonal projection of f onto VR,P,T .

Theorem 6.2.4. Suppose that R is a symmetric, continuous and strictly positive de�nite
kernel on T ⊆ Rd. Suppose further that T is P-unisolvent and let t ∈ T be �xed. Then we
have

sup
f∈HR,P : ‖f‖HR,P=1

∣∣f(t)− sR,P(t)
∣∣ ≤ sup

f∈HR,P : ‖f‖HR,P=1

∣∣∣∣∣ f(t)−
n∑
i=1

ui f(ti)

∣∣∣∣∣
for all choices of u1, . . . , un ∈ R with

∑n
i=1 ui p(ti) = p(t) for all p ∈ P.
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6.3: Simple Kriging

Theorem 6.2.5. Suppose that R is a symmetric, continuous and strictly positive de�nite
kernel on T ⊆ Rd. Suppose further that T is P-unisolvent and that values f(t1), . . . , f(tn) are
given. Then sR,P has minimal norm ‖ · ‖HR,P under all functions s ∈ HR,P that interpolate
the given data at T .

Finally we note the orthogonality property (cf. [41, Lem. 10.24]):

Lemma 6.2.6. Let R and f be as above and suppose that T is P-unisolvent. Then we have
for the interpolation errors

(f − sR,P , s)HR,P = 0 for all s ∈ VR,P,T .

In particular, it holds that

‖sR,P‖2HR,P + ‖f − sR,P‖2HR,P = ‖f‖2HR,P .

Both the de�nitions of sR and sR,P as well as the preceding theorems that motivate this
de�nition were linked to the assumption that f belongs to HR or HR,P respectively. It is
therefore quite remarkable that the completely di�erent model assumptions made in spatial
statistics lead to the same interpolant.

6.3 Simple Kriging

In spatial statistics f is assumed to be a sample path of a second-order RF (Xt)t∈T , i.e.
f = X�(ω) for some ω ∈ Ω. The observations f(t1), . . . , f(tn) are then realizations of the
RVs Xt1 , . . . , Xtn . To predict the value of (Xt)t∈T at some (unobserved) location t ∈ T , we
consider all linear predictors of the form

Yt =
n∑
i=1

λi(t)Xti (6.15)

which are themselves random variables. The prediction of f at t given the observations
f(t1), . . . , f(tn) is then

y(t) :=
n∑
i=1

λi(t) f(ti) . (6.16)

We are now looking for the �best� linear predictor Y ∗t , which we de�ne to be the RV with
minimal distance to Xt in L2(Ω,A, P ), i.e.

E
(
(Xt − Y ∗t )2

)
≤ E

(
(Xt − Yt)2

)
for all Yt of the form (6.15).

If R is the second moment function of (Xt)t∈T this amounts to minimizing

E(XtXt)− 2
n∑
i=1

λi(t) E
(
XtiXt

)
+

n∑
i=1

n∑
j=1

λi(t)λj(t) E(XtiXtj )

= R(t, t)− 2
n∑
i=1

λi(t)R(ti, t) +
n∑
i=1

n∑
j=1

λi(t)λj(t)R(ti, tj), (6.17)
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6.4: Ordinary and Universal Kriging

and by standard arguments concerning quadratic forms, it is seen that the minimum is attained
for kriging weights λ∗1(t), . . . , λ∗n(t) satisfying the linear system

n∑
i=1

λ∗i (t)R(ti, tj) = R(t, tj), j = 1, . . . n. (6.18)

If R is strictly positive de�nite then this system is uniquely solvable, and this implies

1. the kriging weights λ∗1(t), . . . , λ∗n(t) have the form (6.3)

2. �prediction� at the sampling points t1, . . . , tn yields

λ∗i (tk) = δik, i, k = 1, . . . , n,

i.e. the kriging weights satisfy the Lagrange conditions (6.4).

It follows that the kriging predictor (6.16) coincides with the Lagrange form of sR if the second
moment function R of (Xt)t∈T is used as interpolation kernel.

Note that the kriging procedure does not require any knowledge of the underlying random
�eld apart from the second moment function. This is because we de�ned optimal prediction
in terms of the L2(Ω,A, P ) distance, which depends on (Xt)t∈T only through R.
Now, from a statistician's point of view working with the second moment function is quite
unnatural. It is much more intuitive to work with the covariance function K which describes
the structure of the random �uctuations of (Xt)t∈T around the (deterministic) mean function
m, while R is a combination of K and m (see (2.11)).
The simplest way to pass from R to K is to assume m(t) ≡ 0. In this case the kernels R and
K coincide, so we can simply replace R with K in all of the above equations. This approach,
which models f as a sample path of a zero mean random �eld, is called simple kriging.

6.4 Ordinary and Universal Kriging

In most cases the assumption of a zero mean random �eld does not seem realistic. Another
possibility to pass from R to K is to further restrict the class of potential predictors by
requiring them to be unbiased, i.e.

E(Yt) = E(Xt)

(
⇐⇒

n∑
i=1

λi(t)m(ti) = m(t)

)
for all t ∈ T (6.19)

This additional condition ensures that the mean function is reproduced exactly. From a
statistical point of view, such a requirement is plausible as it prevents systematic over- or
underestimation of Xt . However, as we are interested in reconstructing a sample path of
(Xt)t∈T rather than its mean function, it is by no means necessary. We will return to this
question at the end of this subsection and give another motivation for condition (6.19) based
on practical considerations. Before, we shall study its implications on the form of the optimal
predictor.
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6.4: Ordinary and Universal Kriging

Introducing the auxiliary function

GR(s, t) := R(s, t)−
n∑
j=1

λj(s)R(tj , t)

we can now write (6.17) (the L2(Ω,A, P ) distance of Yt to Xt) as

E
(
(Xt − Yt)2

)
= GR(t, t)−

n∑
i=1

λi(t)GR(t, ti)

and using (2.11) we see that

GR(s, t) = K(s, t)−
n∑
j=1

λj(s)K(tj , t) +m(s)m(t)−
n∑
j=1

λj(s)m(tj)m(t)

= GK(s, t) +m(t)

m(s)−
n∑
j=1

λi(s)m(tj)


︸ ︷︷ ︸

=0

= GK(s, t).

Hence, if we restrict to the class of unbiased predictors we can again replace R with K in the
target function (6.17) that we want to minimize.

The corresponding equation system, however, is no longer of the form (6.18). While the target
function is still the same, we now have to take into account additional constraints that ensure
the unbiasedness of our predictor. In spatial statistics one usually considers models where
means behave like

m(t) :=
q∑

k=1

βk pk(t) (6.20)

with known functions p1, . . . , pq , and unknown coe�cients β1, . . . , βq. Such a mean function
is also called a trend.

A very simple but common assumption is m(t) ≡ β1, i.e. the mean function is constant (but
unknown), and the corresponding procedure is called ordinary kriging.

If the trend has the more general form (6.20), the corresponding interpolation procedure is
called universal kriging.

Now, if m(t) is of the form (6.20), the unbiasedness condition (6.19) becomes

q∑
k=1

βk pk(t) =
q∑

k=1

βk

n∑
i=1

λi(t) pk(ti) for all t ∈ T.

This condition must hold for any set of coe�cients β1, . . . , βq, and so we have q conditions

pk(t) =
n∑
i=1

λi(t) pk(ti), k = 1, . . . , q, (6.21)
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6.5: Error Analysis

restricting the n kriging weights λ∗1(t), . . . , λ∗n(t). For minimizing the L2(Ω,A, P ) distance of
Yt to Xt subject to (6.21) we need Lagrange multipliers ζ1(t), . . . , ζq(t), and we �nd that the
optimal kriging weights must now satisfy

n∑
i=1

λ∗i (t)K(ti, tj) +
q∑

k=1

ζ∗k(t) pk(tj) = K(t, tj), j = 1, . . . , n. (6.22)

If the set T of sampling points is P-unisolvent with P := span{p1, . . . , pq}, then the linear
system given by (6.21) and (6.22) uniquely solvable.
Solving this system for the kriging weights λ∗1(t), . . . , λ∗n(t) shows that they now must have
the form (6.12), and calculating their values at t1, . . . , tn shows that the Lagrange conditions
are satis�ed. Hence, the universal kriging predictor coincides with the Lagrange form of
the generalized kernel interpolants sR,P , the special case of ordinary kriging corresponds to
interpolants that reproduce constant functions.

Beside the idea that the prediction should be unbiased, another motivation for universal
kriging can now be given based on the representation (6.7):

The second term of the predictor is a linear combination of basis functions p1, . . . , pq, which
account for the global trend of f . Such a component can be very useful to reduce the prediction
error at locations in sparsely sampled subdomains of T , especially when preliminary analyses
suggest that such global trends are present. The �rst term is a linear combination of kernel
translates K(·, t1), . . . ,K(·, tn) which accounts for (local) deviations from this global trend
and provides additional accuracy in more densely sampled subdomains. Universal kriging
therefore compromises between modelling global and local features, and such a compromise
is often adequate in practical situations.

6.5 Error Analysis

No matter how we proceed, in all cases we obtain the same expression for the expected squared
prediction error (also called kriging variance)

E
(
(Xt − Y ∗t )2

)
= R(t, t)− 2

n∑
i=1

λ∗i (t)R(ti, t) +
n∑
i=1

n∑
j=1

λ∗i (t)λ
∗
j (t)R(ti, tj), (6.23)

where we note once again that for all of the di�erent kriging approaches discussed above we
can replace R with K, provided that our respective assumption on the form of the mean
function is correct.

The rhs of equation (6.23) is also well-known to numerical analysts as the square of the
(optimal) power function PR,P(t) for the kernel R (see [41, Sec. 11.1]). Its interpretation in
Numerical Analysis is as follows:

Let ΠR,P : HR,P → HR,P be the map that projects any function g ∈ HR,P on its interpolant
sR,P at T with the convention that P = {0} means standard kernel interpolation. Then

PR,P(t) = sup
g ∈HR,P : ‖g‖HR,P 6= 0

∣∣g(t)−ΠR,P(g)(t)
∣∣

‖g‖HR,P
, (6.24)
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6.5: Error Analysis

i.e. PR,P is the norm of the pointwise error functional of ΠR,P (see [34, Sec. 4.1]).

If the function f to be interpolate is in HR,P , then equation (6.24) yields a bound

|f(t)− sR,P(t)| ≤ PR,P(t) · ‖f‖HR,P for all t ∈ T (6.25)

for the maximal interpolation error, independent of any stochastic assumption about f . Now,
for PR,P(t) itself, a variety of asymptotic bounds in terms of the �ll distance

hT,T := sup
t∈T

min
1≤j≤n

‖t− tj‖

is available (cf. e.g. [41, Sec. 11.2-11.6]), and we shall state one of those bounds that is
applicable in the case where P = {0} and HR is norm-equivalent to some Sobolev Space
W τ,2(T ). In particular we assume that R(·, ·) = Φ(· − ·) and that the Fourier transform of Φ
satis�es

c1

(
1 + ‖ω‖2

)−τ ≤ Φ̂(ω) ≤ c2

(
1 + ‖ω‖2

)−τ
, ω ∈ Rd, (6.26)

for some positive constants c1 ≤ c2 and τ > d
2 .

De�nition 6.5.1. ([41, Def. 3.6]) A domain T ⊆ Rd is said to satisfy an interior cone condition
if there exists an angle θ ∈ (0, π2 ) and a radius r > 0 such that for every t ∈ T a unit vector
ξ(t) exists such that the cone

C
(
t, ξ(t), θ, r

)
:=

{
t+ λu : h ∈ Rd, ‖u‖ = 1, u′ξ(t) ≥ cos θ, λ ∈ [0, r]

}
is contained in T .

Theorem 6.5.2. ([41, Cor. 11.33], cf. also [30, Sec. 4]) Suppose that T ⊂ Rd is a bounded
domain with Lipschitz boundary that satis�es an interior cone condition with radius r and
angle θ. Let f ∈ W τ,2(T ) and ΠR(f) its kernel interpolant based on its values at T :=
{t1, . . . , tn} ⊂ T . Further assume that R(·, ·) = Φ(· − ·) so that (6.26) holds for τ = k + s,
where k is a positive integer and 0 ≤ s < 1. If l ∈ N0 satis�es k > l + d

2 , then there exist
positive constants h0 and C, so that the interpolation error can be bounded by∥∥f −ΠR(f)

∥∥
W l,γ(T )

≤ C h
τ−l−d( 1

2
− 1
γ
)

+

T,T
∥∥f∥∥

W τ,2(T )
, 1 ≤ γ ≤ ∞,

provided that T has �ll distance hT,T < h0.

Corollary 6.5.3. Under the assumptions of Theorem 6.5.2, the power function is bounded by

PR(t) ≤ C h
τ− d

2
T,T , for all t ∈ T,

provided that T has �ll distance hT,T < h0.

It is obvious from equation (6.24) that PR(t) only depends on the domain T , the set T
of sampling locations, and the kernel R used for interpolation. It does not depend on the
particular function f that is interpolated, and thus Corollary 6.5.3 is valid also in the simple
kriging framework:
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If simple kriging of a weakly stationary second-order zero-mean random �eld with covariance
function K (=R) is carried out on a domain T satisfying the assumptions of Theorem 6.5.2,
then the kriging variance is bounded by

E
(
(Xt − Y ∗t )2

)
≤ C h2τ−d

T,T for all t ∈ T,

provided that T has �ll distance hT,T < h0.

For later use we proof the following

Lemma 6.5.4. If f ∈ HR,P has the particular form

f = a0R(·, t0) +
n∑
j=1

aj R(·, tj) +
q∑

k=1

bk pk (6.27)

with coe�cients that satisfy a0 6= 0, a0 p(t0) +
n∑
i=1

ai p(ti) = 0 for all p ∈ P, then

|f(t0)− sR,P(t0)| = PR,P(t0) · ‖f − sR,P‖HR,P .

Proof: De�ne the error function ef := f − sR,P . Since ef has the form (6.27) as well, it
has minimal norm ‖ · ‖HR,P among all functions that have the same values on T ∪ {t0} (see
Theorem 6.2.5). This form moreover implies ef (t0) 6= 0 because otherwise we would have
ef ≡ 0 (by the uniqueness of kernel interpolants) which is impossible since a0 6= 0. Using
Lemma 6.2.6 and the linearity of ΠR we get

PR,P(t0) ≤ sup
g ∈HR,P : ‖g‖HR,P 6= 0

∣∣g(t0)−ΠR,P(g)(t0)
∣∣

‖g −ΠR,P(g)‖HR,P

= sup
g ∈HR,P : g(t0)−ΠR,P (g)(t) = ef (t0)

∣∣g(t)−ΠR,P(g)(t)
∣∣

‖g −ΠR,P(g)‖HR,P
=

∣∣ef (t0)|
‖ef‖HR,P

.

The other inequality follows from (6.25) since ef ∈ HR,P .

Corollary 6.5.5. Let u∗k be the kth cardinal basis function according to (6.12), (6.4) and
PR,P,[−k] the power function for kernel interpolation based on the function values at T \ {tk}
only. Then we have

PR,P,[−k](tk) = ‖u∗k‖−1
HR,P .

We conclude this subsection by showing how the di�erent notions of optimality are linked
to the way prediction errors are measured. A comparison of both modelling approaches is
best possible by looking at the Lagrange forms (6.5) and (6.15) respectively. As usual let
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T := {t1, . . . , tn} be the set of sampling locations. Denote by F(T ) the space of all functions
u : T → Rn and de�ne the set

FP(T ) :=

{
u ∈ F : p(t) =

n∑
i=1

ui(t) p(ti) for all t ∈ T and all p ∈ P

}
of permissible weight functions. For u ∈ FP(T ) de�ne the projection

Πu : RT → span{u1, . . . , nn}, f 7→
n∑
i=1

ui f(ti),

which generalizes the projection ΠR de�ned above. Indeed, for f ∈ HR,P and u∗ according to
(6.12), (6.4) and (6.13) we have ΠR,P(f) = Πu∗(f). Finally, we generalize the power function
and de�ne

Pu(t) = sup
g ∈HR,P : ‖g‖HR,P 6= 0

∣∣g(t)−Πu(g)(t)
∣∣

‖g‖HR,P
, u ∈ FP(T ),

which is the norm of the pointwise error functional for approximation according to (6.5) with
weight functions u1, . . . , un. Now, by Theorem 6.2.4, we have

Pu∗(t) ≤ Pu(t) for all t ∈ T and all u ∈ FP(T ),

and hence the cardinal basis functions u∗1, . . . , u
∗
n can be de�ned pointwise as the minimizers

of Pu(t) in u. On the other hand, the proof of [41, Thm. 13.3] shows

Pu(t) = R(t, t)− 2
n∑
i=1

ui(t)R(ti, t) +
n∑
i=1

n∑
j=1

ui(t)uj(t)R(ti, tj), (6.28)

which is the same expression as (6.17), the expected squared prediction error at t, the mini-
mizers of which were de�ned to be the optimal kriging weights.

As a summary we note:

1. In both approximation theory and spatial statistics the optimal interpolant of a function
f at sampling points t1, . . . , tn can be represented in the form

su∗(t) = Πu∗(f)(t) =
n∑
i=1

u∗i (t) f(ti),

with weight functions u∗1, . . . , u
∗
n de�ned pointwise as the minimizers of (6.28) in u,

where minimization ranges over all u ∈ FP(T ) (this ensures that su∗ reproduces func-
tions in P).

2. For numerical analysts the target function Pu(t) is interpreted as

Pu(t) = sup
g ∈HR,P : ‖g‖HR,P= 1

∣∣g(t)−Πu(g)(t)
∣∣ .

They assume f to belong to some space HR,P and consider an approximant as optimal
if it minimizes for every �xed t ∈ T the worst possible approximation error over all
choices of f ∈ HR,P with ‖f‖HR,P = 1.
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3. For spatial statisticians the target function Pu(t) is interpreted as

Pu(t) = E
((
Xt −Πu(X�)(t)

)2)
.

They leave the function space of f unspeci�ed (i.e. RT ) but assume a probability struc-
ture on this space. Speci�cally they assume f to be a sample path of a second-order
RF (Xt)t∈T with mean function m ∈ P and covariance function K, and consider a
predictor of f as optimal if it minimizes the expected squared prediction error at every
t ∈ T .

6.6 Best Prediction of Random Fields revisited

Simple kriging can also be viewed as a projection of the unknown RVXt on the linear subspace
generated by the RVs at the sampling locations t1, . . . , tn where (Xt)t∈T is observed.

Recall the de�nition of SX in section 3.3 as the Hilbert space closure of the space SX of all
linear combinations of RVs from (Xt)t∈T under the inner product

〈Xt, Xs〉 = E(XtXs) = R(t, s), s, t ∈ T.

The RVs Xt1 , . . . , Xtn de�ne a linear subspace SY of SX

SY :=


n∑
j=1

ajXtj : aj ∈ R

 ,

which inherits the inner product de�ned above. Now simple arguments from Hilbert space
theory show that the construction of the interpolation process (Y ∗t )t∈T by pointwise mini-
mization of (6.28) is equivalent to calculating the orthogonal projection of Xt ∈ SX on SY
for each t ∈ T . This projection property yields a decomposition into two orthogonal RFs

(Xt)t∈T = (Y ∗t )t∈T + (εt)t∈T . (6.29)

Indeed, de�ning ρ(t) :=
(
R(t, t1), . . . , R(t, tn)

)′
, XT :=

(
Xt1 , . . . , Xtn

)′
, and A as in (6.11),

we can combine the kriging system (6.18) and the representation (6.15) and rewrite it in the
compact form

Y ∗t = ρ(t)′A−1XT .

The second moment function of (Y ∗t )t∈T is then given by

E
(
Y ∗t Y

∗
s

)
= ρ(t)′A−1ρ(s) . (6.30)

De�ning the kriging error process (εt)t∈T by εt := Xt−Y ∗t , we note as immediate consequence
of (Y ∗t )t∈T being a pointwise orthogonal projection on SY :

〈εt, Z〉 = 0 for all t ∈ T, for all Z ∈ SY . (6.31)

Hence, the random �elds (Y ∗t )t∈T and (εt)t∈T are indeed orthogonal and (εt)t∈T has second
moment function

E
(
εt εs

)
= R(t, s)− ρ(t)′A−1ρ(s) . (6.32)
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6.6: Best Prediction of Random Fields revisited

Under the simple kriging assumption (m(t) ≡ 0) the second moment functions in (6.30) and
(6.32) coincide with the respective covariance functions and (6.31) implies that any εt, t ∈ T
is uncorrelated with any RV Z ∈ SY .
Remark 6.6.1. If (Xt)t∈T is a Gaussian random �eld then so is (εt)t∈T . More precisely, it
follows from the arguments in the last paragraph in Section 3.3 that any RVct

(εs1 , . . . , εsm , Xt1 , . . . , Xtn)′, m ∈ N,

is multivariate Gaussian and hence, by Lemma 2.4.18, (εt)t∈T is independent of SY .

The interpretation of simple kriging as the pointwise orthogonal projection on a linear sub-
space illustrates why only the covariance information of the underlying random �eld is needed
to construct interpolants and to provide a probabilistic error analysis. However, the restric-
tion to linear subspaces can limit the potential precision of the resulting predictors (see [39,
Sec. 1.4] for an example where linear prediction is suboptimal) compared to the conditional
expectation

E
[
Xt

∣∣Xt1 , . . . , Xtn

]
,

which was found to be the best σ
(
Xt1 , . . . , Xtn

)
/B measurable predictor (see Proposition

2.5.2). However, in the special case where (Xt)t∈T is a Gaussian random �eld, it follows from
Proposition 2.5.6 that E

[
Xt

∣∣Xt1 , . . . , Xtn

]
is a linear function of Xt1 , . . . , Xtn and coincides

with the kriging predictor Y ∗t from (6.15), so simple kriging already yields the best prediction
in the statistical sense that can be obtained.

In the light of the preceding remarks, we can once again contrast the di�erent points of view
from spatial statistics and numerical analysis (see end of Section 6.5) in the special case of
simple kriging (P = {0}):

1. With respect to prediction, spatial statisticians take a somewhat Bayesian point of
view. They impose a �prior distribution� on RT assuming a zero-mean Gaussian RF
with covariance function K. The posterior distribution, i.e. the distribution given the
observations

(
f(t1), . . . , f(tn)

)′ =: f is then a Gaussian RF with mean function

y∗(t) = κ(t)′A−1 f ,

where κ(t) :=
(
K(t, t1), . . . ,K(t, tn)

)′
, and covariance function

Kε(s, t) = K(t, s)− κ(t)′A−1 κ(s) .

2. Numerical analysts on the contrary take a minimax point of view. They limit the space
of considered functions to HR and seek to minimize at each location t ∈ T the maximal
approximation error over all choices of f ∈ HR.

In the case of ordinary and universal kriging Xt is projected on the space

SY,P,t :=


n∑
j=1

ajXtj : aj ∈ R,
n∑
j=1

aj p(tj) = p(t) ∀ p ∈ P

 ,
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which is no longer a linear space. For ordinary kriging it is an a�ne space, for universal kriging
it even depends on t, and the uncorrelatedness of the random �elds (Y ∗t )t∈T and (εt)t∈T can
no longer be guaranteed. However we note

Lemma 6.6.2. Let the RV Z be a contrast of Xt1 , . . . , Xtn with respect to P, i.e.

Z =
n∑
j=1

ajXtj , aj ∈ R,
n∑
j=1

aj p(tj) = 0 for all p ∈ P

Then εt is uncorrelated with Z for any t ∈ T .

Proof: Using the equation (6.22) for the kriging predictor Y ∗t we get

Cov(εt, Z) =
n∑
j=1

aj

(
K(t, tj)−

n∑
i=1

λ∗i (t)K(ti, tj)

)

=
n∑
j=1

aj

n∑
k=1

ζ∗k(t) pk(tj) =
n∑
k=1

ζ∗k(t)
n∑
j=1

aj pk(tj)︸ ︷︷ ︸
= 0

= 0

6.7 Kernel Interpolation / Kriging with Wrong Ker-

nels

So far we have proceeded as if we knew the correct covariance function K that should be
used for constructing the interpolant. However, in practice it is usually unknown and an
appropriate choice for it must be �guessed� based on the available data. In this case we can
no longer assume to be using the covariance function that exactly corresponds to the actual
second-order structure of the random �eld (Xt)t∈T , so it is reasonable to ask how much our
prediction deviates from the prediction based on the true second-order structure.
This question also arises from the perspective of a numerical analyst, who works under the
assumption f ∈ HR or f ∈ HR,P , which is linked to the smoothness of the interpolation kernel
R.

We start with the numerical analysts' point of view but restrict our discussion to the case
P = {0}. We assume that f ∈ HR = Wµ,2(T ) (in the sense that HR and Wµ,2(T ) coincide
as vector spaces and are norm equivalent) but we use a kernel R̃ with HR̃ = W τ,2(T ).

For τ < µ, i.e. in the case were the kernel used for interpolation is too rough, we always have
f ∈Wµ,2(T ) ⊂W τ,2(T ) and hence Theorem 6.5.2 is still applicable and yields for any l ∈ N0

that satis�es τ > l + d
2 :∥∥f −ΠR̃(f)

∥∥
W l,γ(T )

≤ Ch
τ−l−d( 1

2
− 1
γ
)

T,T
∥∥f∥∥

W τ,2(T )
.
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6.7: Kernel Interpolation / Kriging with Wrong Kernels

This means that choosing the interpolation kernel R̃ too rough will in general imply losing
the advantages of R, so that everything works as if we were in the R̃ setting.

For τ > µ, i.e. in the case were the kernel used for interpolation is too smooth, f is no longer in
the RKHS of R̃, and the traditional RKHS techniques do not apply. However, using di�erent
arguments, [30] proved the following �escape� theorem, that extends Theorem 6.5.2 to the
case where f /∈ W τ,2(T ). Beside the �ll distance hT,T it involves another characteristic of T ,
the so-called separation radius

qT := 1
2 min

j 6=k
‖tj − tk‖

which is half of the smallest distance between any two distinct points in T . The mesh ratio
ρT,T := hT,T / qT then characterizes the uniformity of the set T of sampling points in T .

Theorem 6.7.1. ([30, Thm. 4.2]) Let T ⊂ Rd be a bounded domain with Lipschitz boundary
that satis�es an interior cone condition with radius r and angle θ. Suppose that f ∈Wµ,2(T )
and let ΠR̃(f) its kernel interpolant at T with kernel R̃(·, ·) = Φ(· − ·) so that (6.26) holds.
If µ ≤ τ, µ = k + s for some positive integer k > d

2 and 0 ≤ s < 1, then there exist positive
constants h0 and C, so that the interpolation error can be bounded by∥∥f −ΠR(f)

∥∥
Wκ,2(T )

≤ C hµ−κT,T ρ τ−κT,T
∥∥f∥∥

Wµ,2(T )
, for any 0 ≤ κ ≤ µ,

provided that T has �ll distance hT,T < h0.

Hence, if ρT,T is bounded by some constant ρ <∞, the interpolation error w.r.t. ‖ · ‖Wκ,2(T )

tends to zero at the rate µ− κ as long as HR̃ = W τ,2(T ) ⊃Wµ,2(T ) 3 f .

Remark 6.7.2. The �nal conclusion on the issue of misspecifying the smoothness of the in-
terpolation kernel R seems to be that the approximation order is maintained even if R̃ is too
smooth, but is reduced to the order that one could expect in the HR setting if R̃ is too rough.
This is not yet the whole truth, however. [40] shows that for kernels of the type considered
above the approximation order doubles if f is in a certain (smooth) subspace H∗

R̃
of HR̃.

Thus, a kernel R̃ with about half of the smoothness of the �right� kernel R may still yield the
same approximation order. In general, H∗

R̃
must not only guarantee double smoothness, but

also certain boundary conditions of its functions. We shall refer to [40] and [35] for details
and further results (the second author discusses the general case HR,P with P = πm(Rd) and
expresses the smoothness and boundary conditions of H∗

R̃
in a general RKHS framework).

Now, we take the spatial statistician's point of view. Denote by λ̃∗(t) the vector of optimal
kriging weights at t according to either (6.18) or (6.21) and (6.22), respectively, but now
with respect to the covariance function K̃, and by Ỹ ∗t the corresponding (K̃-optimal) kriging
prediction at t. The L2 interpolation error of Ỹ ∗t is then

EK
(
(Xt − Ỹ ∗t )2

)
= EK

(
Xt −

n∑
i=1

λ̃∗i (t)Xti

)2

= K(t, t)− 2
n∑
i=1

λ̃∗i (t)K(t, ti) +
n∑
i=1

n∑
j=1

λ̃∗i (t) λ̃
∗
j (t)K(ti, tj),

92



6.7: Kernel Interpolation / Kriging with Wrong Kernels

which is a non-optimal �mixed� power function for K (respectively R).

We have seen (Remark 6.6.1) that for simple kriging, when (Xt)t∈T is in addition assumed
to be Gaussian, the kriging error process (εt)t∈T is independent of Xt1 , . . . , Xtn . In this case,
we can make the e�ect of misspeci�cation of the covariance function used for kriging explicit
by calculating the kriging error variance conditionally on the available data. By splitting the
interpolation error and using the properties of conditional expectation we obtain

EK
[
(Xt − Ỹ ∗t )2

∣∣ Xt1 , . . . , Xtn

]
= EK

[
(Xt − Y ∗t + Y ∗t − Ỹ ∗t )2

∣∣ Xt1 , . . . , Xtn

]
= EK

[
(Xt − Y ∗t )2

∣∣ Xt1 , . . . , Xtn

]
+ EK

[
(Y ∗t − Ỹ ∗t )2 | Xt1 , . . . , Xtn

]
+ 2 EK

[
(Xt − Y ∗t )(Y ∗t − Ỹ ∗t )

∣∣ Xt1 , . . . , Xtn

]
= EK

(
(Xt − Y ∗t )2

)
+ (Y ∗t − Ỹ ∗t )2 + 2 (Y ∗t − Ỹ ∗t ) · EK

(
Xt − Y ∗t

)︸ ︷︷ ︸
=0= P 2

K(t) + (Y ∗t − Ỹ ∗t )2

The conditional expectation of the squared prediction error given the data is then

EK
[
(Xt − Ỹ ∗t )2

∣∣ Xt1 = f(t1), . . . , Xtn = f(tn)
]

= P 2
K(t) + (y∗t − ỹ∗t )2.

Hence, subject to our assumptions, the kriging variance increases by a deterministic term
(y∗t − ỹ∗t )2 that depends on K, K̃, the given data f(t1), . . . , f(tn), and the geometry of T ∪{t}.
If the misspeci�cation of K̃ is small enough to at least guarantee that ỹ∗t ∈ HK , we can use
(6.25) to get

E
[
(Xt − Ỹ ∗t )2

∣∣ Xt1 = f(t1), . . . , Xtn = f(tn)
]
≤ P 2

K(t) ·
(
1 + ‖y∗t − ỹ∗t ‖2HR

)
The term ‖y∗t − ỹ∗t ‖2HK is an upper bound for the relative increase of the kriging variance when

the covariance function K̃ is used instead of the (correct) covariance function K.

We study the e�ect of misspecifying the covariance function on prediction for a particular
class of stationary covariance functions, i.e. K(·, ·) = Φ(· − ·), the Whittle-Matérn class

Φr,ν(h) =
1

2ν−1Γ(ν)

(
2ν1/2‖h‖

r

)ν
Kν

(
2ν1/2‖h‖

r

)
, r, ν > 0, (6.33)

where Kν is the modi�ed Bessel function of the third kind. This class was already introduced
in De�nition 3.2.12, but here we use an alternative parametrization, that was recommended
by [18], and has the following attractive features:

1. Φr,ν is independent of the state space dimension d and Φr,ν(0) = 1.

2. the parameter r rescales the argument h and therefore determines how quickly the
correlations of the RF decay with distance.

93



6.7: Kernel Interpolation / Kriging with Wrong Kernels

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

νν = 1
νν = 2
νν = ∞∞

Figure 6.1: Plots of the covariance function Φ1,ν for di�erent values of ν.

3. the parameter ν parametrizes the smoothness of Φr,ν at h = 0 and hence of the asso-
ciated RF. Unlike the original smoothness parameter τ it has only moderate in�uence
on the covariances at longer distances (see Figure 6.1).

Due to the last point the interpretation of r is largely independent of ν, which is also illustrated
by the fact that

lim
ν→∞

Φr,ν(h) = e−‖h‖
2/r2

(see [39, p. 50]). This limit model is the Gaussian model with scale parameter r that has the
same interpretation as above.

In later calculations we will need the partial derivatives of Φr,ν with respect to the parameters
r and ν. These are given by

∂
∂r Φr,ν(h) =

%ν+1 Kν−1(%)
2ν−1Γ(ν) r

∂
∂ν Φr,ν(h) =

%ν
(
log
(%

2

)
− ψ(ν)

)
Kν(%)

2ν−1Γ(ν)
+

%ν
(
∂
∂ν Kν

)
(%)

2ν−1Γ(ν)
− %ν+1 Kν−1(%)

2ν ν Γ(ν)

where ψ denotes the Digamma function, and % := 2ν1/2‖h‖
r .

For the derivatives with respect to ν at ν = 0.5, 1 and 2, we can use the formulae

∂
∂ν Kν(z)

∣∣
ν=0.5

= −
( π

2z

)1/2
ez Ei(−2z) where Ei(z) =

∫ z

−∞

et

t
dt

∂
∂ν Kν(z)

∣∣
ν=1

= z−1K0(z)

∂
∂ν Kν(z)

∣∣
ν=2

= 2z−2K0(z) + 2z−1K1(z)
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([16, 8.486(1), 9., 21.]) and the functional relations

K±1/2(z) =
√

π

2z
e−z and K2(z) =

2
z
K1(z) + K0(z)

([16, 8.469, 3., and 8.486, 17]) to obtain the explicit representations

∂
∂ν Φr,ν(h)

∣∣
ν=0.5

=
(

log(%)− ψ
(

1
2

)
− %
)
e−% − Ei(−2%) e %

∂
∂ν Φr,ν(h)

∣∣
ν=1

=
(

log
(%

2

)
− ψ(1)

)
%K1(%) +

(
1− %2

2

)
K0(%)

∂
∂ν Φr,ν(h)

∣∣
ν=2

=
(

log
(%

2

)
− ψ(1)− %2

8

)
%K1(%) +

(
1 +

(
log
(%

2

)
− ψ(2)

)%2

2

)
K0(%)

We consider prediction of f : [−lmax, lmax]→ R at t = 0 based on its values at

T := {± δ,± 2δ, . . .} ∩ [−lmax, lmax].

f is assumed to be a sample path of a zero mean weakly stationary second-order RF with
covariance function Φθ, θ = (r, ν) according to the model (6.33).

Now suppose that prediction is done by simple kriging with the (incorrect!) covariance func-
tion Φθ̃, θ̃ = (r̃, ν̃). We can write the simple kriging system (6.18) in compact form as

Aθ̃ λ̃
∗ = bθ̃

where bθ̃ =
(
Φθ̃(t− t1), . . . ,Φθ̃(t− tn)

)′
, and Aθ̃ is the system matrix (6.11) with Φθ̃ instead

of R. The expected squared prediction error (at t = 0) is then

Vθ(θ̃) := EΦθ

(
(Xt − Ỹ ∗t )2

)
= 1 − 2 b′θ A

−1

θ̃
bθ̃ + b′

θ̃
A−1

θ̃
Aθ A

−1

θ̃
bθ̃ ,

and we will study the second derivatives of Vθ(θ̃) with respect to θ̃1 = r̃ and θ̃2 = ν̃ at θ̃ = θ.
The motivation for this comes from the Taylor expansion

Vθ(θ̃) = Vθ(θ) + (θ̃ − θ)′ (∇Vθ)(θ) + 1
2 (θ̃ − θ)′ Hess(Vθ)(θ) (θ̃ − θ) + O

(
‖θ̃ − θ‖3

)
,

where (∇Vθ)(·) is the gradient and Hess(Vθ)(·) is the Hessian of Vθ(θ̃) w.r.t. θ̃.
Note that

Vθ(θ) = P 2
Φθ

(0) and (∇Vθ)(θ) = 0

since θ̃ = θ is the optimal choice and hence the minimizer of Vθ(θ̃). Consequently, we have

Vθ(θ̃) ≈ P 2
Φθ

(0) + 1
2 (θ̃ − θ)′ Hess(Vθ)(θ) (θ̃ − θ) (6.34)

when the deviation of θ̃ from θ is small. The second derivatives of Vθ(θ̃) at θ̃ = θ can give
us an indication about how strongly a misspeci�cation of r and ν, respectively, increases the
expected squared prediction error.
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Figure 6.2: The variable ∆k
rel Vθ as a function of δ for di�erent values of ν. k = 1 corresponds to prediction sensitivity

to deviations from r, k = 2 corresponds to prediction sensitivity to deviations from ν.

These derivatives are given by

∂2Vθ
∂θ̃k∂θ̃l

(θ) = 2 b′θ A
−1
θ

∂
∂θl
Aθ A

−1
θ

∂
∂θk

Aθ A
−1
θ bθ + 2 ∂

∂θl
b′θ A

−1
θ

∂
∂θk

bθ

−2 ∂
∂θl
b′θ A

−1
θ

∂
∂θk

Aθ A
−1
θ bθ − 2 b′θ A

−1
θ

∂
∂θl
Aθ A

−1
θ

∂
∂θk

bθ

In our calculations we use lmax = 10, r = 1 and plot the variables

∆k
rel Vθ :=

1
2

(
∂2Vθ

(∂θ̃k)2
(θ) · θ2

k

) /
P 2

Φθ
(0), k = 1, 2. (6.35)

for di�erent values of ν as a function of δ (the distance between t = 0 and the nearest sampling
point). The de�nition of ∆k

rel Vθ is motivated as follows:

• Multiplying the second partial derivatives by θ2
k passes from absolute deviations (θ̃k−θk)

to relative deviations (θ̃k/θk − 1) in (6.34)

• Dividing by P 2
Φθ

(0) passes from absolute to relative increase of P 2
Φθ

(0)

This facilitates the interpretation and makes it independent of the magnitude (and physical
dimension) of r, ν and P 2

Φθ
(0). For instance, 10−2 · ∆k

rel Vθ gives the relative approximate

increase of the expected squared prediction error for a relative deviation of 10−1 from the
correct parameter value.

Figure 6.2 shows plots of ∆k
rel Vθ for ν = 0.5, 1 and 2. δ is given in multiples of the scaling

parameter r (the curves are then virtually independent of the choice of r as long as r � lmax).
The following conclusions can be drawn from these plots

1. If the sampling points are very dense (i.e. δ � r) then prediction accuracy depends
mainly on the correct choice of the smoothness parameter ν and hardly on the scale
parameter r.
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Figure 6.3: The variable −∆k
rel P

2
Φθ

(0) as a function of δ for di�erent values of ν. k = 1 and k = 2 correspond to the

changes of the predicted kriging variance due to deviations from r and ν respectively.

2. The in�uence of ν decreases rapidly as the sampling points get thinner. The in�uence
of r increases �rst, becomes maximal when δ ≈ r and then goes down again.

3. The magnitude of ∆k
rel Vθ increases with increasing smoothness. For the values of ν

used here (these are realistic in statistical applications) it is quite moderate: a 10%
misspeci�cation of either r or ν increases the expected squared prediction error by at
most 0.2% (for ν = 0.5), 0.4% (for ν = 1) and 0.9% (for ν = 2) respectively.

In spatial statistics one is not only interested in the best possible prediction of f at an
unknown location t ∈ T , but also in obtaining reliable information about the magnitude of
the prediction error. Such information is given through the kriging variance

P 2
Φθ

(t) = EΦθ

(
(Xt − Y ∗t )2

)
.

Now, if Φθ̃ is falsely assumed to be the covariance function, one would take P 2
Φθ̃

(t) as kriging
variance. Therefore we shall also study the e�ect of misspecifying θ on the value of P 2

Φθ
(t).

In the above setting, we now consider the �rst order approximation

P 2
Φθ̃

(0) ≈ P 2
Φθ

(0) + (θ̃ − θ)′
(
∇P 2

Φθ
(0)
)

where ∇P 2
Φθ

(0) is the gradient of P 2
Φθ

(0) w.r.t. θ, and we study the variables

∆k
rel P

2
Φθ

(0) =

(
∂P 2

Φθ
(0)

∂θk
· θk

) /
P 2

Φθ
(0), k = 1, 2,

which give the relative increase of P 2
Φθ

(0). For instance, if the relative deviation of θ̃ from θ

is 10−1, then the relative increase of P 2
Φθ

(0) is 10−1 ·∆k
rel P

2
Φθ

(0).

Figure 6.3 shows plots of −∆k
rel P

2
Φθ

(0) for ν = 0.5, 1 and 2. We note the following conclusions
from these plots

97



6.7: Kernel Interpolation / Kriging with Wrong Kernels

1. Here, too, the in�uence of the smoothness parameter ν is big if the sampling points are
very dense and decreases rapidly as δ increases.

2. The in�uence of r is now also decreasing as δ increases. For δ very small its in�uence
is biggest, but smaller than that of ν, however the decline of its in�uence is slower.

3. The magnitude of ∆k
rel P

2
Φθ

(0) increases with increasing smoothness.

4. P 2
Φθ

(0) is much more sensitive to parameter misspeci�cation than Vθ(θ̃):
increasing r by 10% decreases the kriging variance by up to 10% (for ν = 0.5), 20% (for
ν = 1) and 40% (for ν = 2), respectively.

Summing up, based on these studies we can expect that the prediction accuracy is relatively
robust against parameter misspeci�cation, but our ability to predict the magnitude of the
prediction error may su�er substantially if we fail to identify the true underlying covariance
function.

In the preceding sensitivity study we took a statistical point of view, but many of our con-
clusions also apply to the numerical analysis framework. For example, we observed that in
�nite settings the scaling of the covariance function (interpolation kernel) plays a role for
prediction (approximation) accuracy as well although it did not appear in the statements on
approximation orders at the beginning of this subsection.
We come back to this issue in the next section, where we discuss methods to identify the true
covariance function or, in the language of numerical analysis, an optimal interpolation kernel.
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Chapter 7

Parameter Identi�cation

In Section 6 interpolation methods for functions f ∈ HR and for sample paths X�(ω) of a
second order RF (Xt)t∈T with covariance function K were derived. These methods were
based on the assumption that the appropriate reproducing kernel R or covariance function
K, respectively, are known. In practice, this is not the case in general, and hence there is a
need for algorithms that select R or K based on the available data

(
f(t1), . . . , f(tn)

)′ =: f.
The ideas of what a �good� choice of a kernel or covariance function is are not the same for
statisticians and numerical analysts. For the latter the main interest is in selecting a kernel
that yields the best possible approximation of f . The former are trying to identify �true�
covariance function K of (Xt)t∈T which, by construction, leads to the best (linear) prediction
in the stochastic sense.

In this section we describe the procedure of leave-one-out cross validation (LOOCV) which was
proposed by Rippa ([31]) in the context of kernel interpolation, and the maximum likelihood
estimator (MLE) which is one of the standard methods in the context of spatial statistics. Both
methods assume that R or K is from a parametric family of kernels {Rθ : θ ∈ Θ ⊂ Rp} and
they try to realize a near-optimal choice of the parameter θ. We show that the MLE, despite
its probabilistic background, has a reasonable interpretation also in the kernel interpolation
framework and we assess the performance of both methods from both a statistical and a
numerical analysis point of view.

7.1 Cross Validation

Cross validation is a very general idea that has long been used in the statistic literature. The
algorithm proposed by Rippa corresponds to LOOCV, one of its variants. The idea is to split
o� one single location tk at a time, calculate the partial interpolant sRθ,P,[−k] of all data pairs
except

(
tk, f(tk)

)
and, from it, the approximation errors at tk

εk := f(tk)− sRθ,P,[−k](tk), k = 1, . . . , n.

If we let εθ = (ε1, . . . , εn)′ be the vector of cross validation errors, the parameter θ is then
chosen as the minimizer of some norm ‖ · ‖p of εθ, i.e.,

θCVp = argmin
θ∈Θ

‖εθ‖p ,
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7.1: Cross Validation

assuming that ‖εθ‖p should depend on θ in the same way as ‖f − sRθ,P‖Lp(T ). The plots in
[31] show, that for p = 1, 2 such an assumption is plausible.

Another way of looking at the LOOCV errors would be to consider the error function fεk :=
sRθ,P − sRθ,P,[−k] of the surrogate problem of interpolating sRθ,P based on the data at the
locations {t1, . . . , tn} \ {tk}. Then we have εk = fεk(tk).

The LOOCV procedure does not make any explicit assumption on the function f that is
to be reconstructed, so in principle it can be used in both the statistical and the numerical
analysis framework. Its performance however depends on the implicit assumption that the
general behaviour of f with respect to interpolation is re�ected well by its behaviour on the
discrete subset T := {t1, . . . , tn} ⊂ T . Its performance relative to other methods will therefore
strongly depend on f and T . This issue will be studied later in this section.

An inconvenient feature about LOOCV from the computational aspect seems to be that n
interpolants sRθ,P,[−1], . . . , sRθ,P,[−n] have to be calculated for each choice of θ. The following
proposition generalizes a similar statement in [31] to the general interpolation framework with
interpolants of the form (6.7) that reproduce functions from a �nite dimensional space P. It
shows how the LOOCV error vector can be obtained with the same computational e�ort that
is needed to calculate a single interpolant.

Consider the interpolation system (6.10). It follows from the calculation rules for block
matrices that the inverse of a block matrix has a block structure as well and so we can
write (

A P
P ′ 0

)−1

=
(

Ψ Ξ
Ξ′ ∗

)
.

We shall use the convention that for interpolants of the simpler form (6.1) we understand
P = {0} and hence (6.10) simply becomes Aα = f. Then, this case is also covered by the
following Proposition.

Proposition 7.1.1. The LOOCV errors ε1, . . . , εn de�ned above are given by

εk =
αk

Ψkk
, k = 1, . . . , n. (7.1)

Proof: (generalizes the proof in [31])

Denote by (
A[−k] P[−k]

(P[−k])′ 0

)(
α[−k]

β−[k]

)
=
(

f[−k]

0

)
the equation system corresponding to sRθ,P,[−k]. A[−k] is obtained by removing the kth row

and the kth column of A, P[−k] is obtained by removing the kth row from P , and f[−k] is

obtained by removing the kth element of f.

Using the same notation for some matrix M and compatible vectors y, z we note

My = z, yk = 0 =⇒ M[−k] y[−k] = z[−k] (7.2)
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7.1: Cross Validation

Denoting by Ψ� k and Ξ� k the kth column of Ψ and Ξ respectively, and by ek ∈ Rn+q the kth

canonical unit vector we can write(
A P
P ′ 0

)(
Ψ� k

Ξ� k

)
= ek , k = 1, . . . , n. (7.3)

Necessarily we must have Ψkk 6= 0, otherwise (7.2) and (7.3) would imply(
A[−k] P[−k]

(P[−k])′ 0

)(
Ψ(k)

� k
Ξ� k

)
= 0.

But since

(
A[−k] P[−k]

(P[−k])′ 0

)
is invertible, this would mean

(
Ψ� k

Ξ� k

)
= 0 which is impossible

since (7.3) has a unique (nonzero) solution.

Now consider the vector (
ϑ(k)

η(k)

)
:=

(
α
β

)
− αk

Ψkk
·
(

Ψ� k

Ξ� k

)
We have(

A P
P ′ 0

)(
ϑ(k)

η(k)

)
=

(
A P
P ′ 0

)(
α
β

)
− αk

Ψkk
·
(

A P
P ′ 0

)(
Ψ� k

Ξ� k

)
=

(
f1, . . . , fk−1, fk − αk

Ψkk
, fk+1, · · · , fn, 0, . . . , 0

)′
and since ϑ

(k)
k = 0, the uniqueness of the coe�cient vectors and (7.2) imply(

α[−k]

β[−k]

)
=
(
ϑ

(k)
1 , . . . , ϑ

(k)
k−1, ϑ

(k)
k+1, . . . , ϑ

(k)
n , η

(k)
1 , . . . , η(k)

q

)′
so we obtain for the interpolant sRθ,[−k] at tk

sRθ,[−k](tk) =
n∑
i=1
i6=k

α[−k],iRθ(tk, ti) +
q∑
j=1

β[−k],j pj(tk)

=
n∑
i=1

ϑ
(k)
i Rθ(tk, ti) +

q∑
j=1

η
(k)
j pj(tk) .

The last term however is simply the kth row of

(
A P
P ′ 0

)(
ϑ(k)

η(k)

)
which we found to be

equal to fk − αk
Ψkk

and this completes the proof.

An interpretation of the variables Ψ11, . . . ,Ψnn can be given by the following
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7.2: Maximum Likelihood

Lemma 7.1.2. For the power function PRθ,P,[−k] corresponding to sRθ,P,[−k] we have the
relation

P 2
Rθ,P,[−k](tk) = Ψ−1

kk .

Proof: Let u∗k be the kth cardinal basis function according to (6.12), (6.4) with coe�cient
vectors α(k), β(k). For functions of this form, the norm ‖ · ‖HR,P can be calculated explicitly
(see Section 6.2) and we obtain

‖u∗k‖2HR,P =
(
α(k)

)′
Aα(k) =

(
α(k)

)′
ek −

(
α(k)

)′
P β(k) =

(
α(k)

)′
ek,

since, by condition (6.9), we have P ′α(k) = 0. Using (6.10) we get

‖u∗k‖2HR,P =
(
α(k)

β(k)

)′ (
ek
0

)
=
(
ek
0

)′ (
A P
P ′ 0

)−1(
ek
0

)
= Ψkk ,

and the assertion of the Lemma follows from Corollary 6.5.5.

7.2 Maximum Likelihood

The idea of maximum likelihood is also a very general idea that is used in many di�er-
ent �elds in statistics for parameter identi�cation. Yet it is not as general as cross val-
idation because it is always based on very speci�c model assumptions under which the
maximum likelihood estimator (MLE) and its counterpart corresponding to universal krig-
ing, the restricted maximum likelihood estimator (REML), are derived. In our case these
assumptions are:

• f is a sample path of a second order random �eld (Xt)t∈T

• (Xt)t∈T has mean function m and covariance function Kθ

• (Xt)t∈T is Gaussian

While the �rst two are standard working assumptions in the kriging framework the last one
has been argued against even by spatial statisticians for being too speci�c (recall that this
assumption is not needed for kriging). In the framework of kernel interpolation none of
these assumptions is necessary and so it is not clear whether the MLE also makes sense in
this context. In Section (7.4) we will show that (RE)ML estimation still can be given a
meaningful interpretation and often yields good results even if the above model assumptions
are not met.

For now, we shall however take the classical approach to derive the MLE and we assume the
model above, initially with m(t) ≡ 0. There usually is a special parameter in each covariance
model which in the stationary case can be interpreted as the variance

Var(Xt) = K(t, t)
stationary case

= Φ(0)
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7.2: Maximum Likelihood

of the random �eld (Xt)t∈T . We shall treat it separately from the other parameters and
consider covariance models of the form

υKθ, υ ∈ R+, θ ∈ Θ,

where Kθ is normalized in an appropriate way. In the stationary case we require Φθ(0) = 1,
then υ indeed parametrizes the variance. In the nonstationary case we could simply set
Kθ(t0, t0) = 1 for a �xed t0 ∈ T .
Treating υ separately is convenient since it will also turn out to allow a special treatment
in estimation. Moreover we note that none of the interpolants derived in Chapter 6 depend
on υ, in particular this parameter is completely meaningless in the framework of numerical
analysis. In spatial statistics it is important, but only for the assessment of the interpolation
error.

For this model the joint probability density of XT := (Xt1 , . . . , Xtn)′ is given by

ϕυ,θ(x) =
1

(2π)
n
2 υ

n
2 |Aθ|

1
2

e−
1

2υ
x′ A−1

θ x.

(see Lemma 2.4.18) where we de�ne Aθ ∈ Rn×n as in (6.11) with Kθ instead of R. The
MLE then chooses ϑ := (υ, θ) so that the corresponding probability distribution for the RVs
Xt1 , . . . , Xtn has maximal density (�likelihood�) at f:

ϑMLE = argmax
ϑ∈R+×Θ

ϕϑ(f).

The idea is that this covariance model is the most likely one to have produced the observations
f(t1), . . . , f(tn) . Since log(·) is a monotone function, it is equivalent to maximize the log
likelihood

l(ϑ; f) = −n
2 log(2π)− n

2 log(υ)− 1
2 log(|Aθ|)− 1

2υ f ′A−1
θ f (7.4)

which is more convenient to work with. Now for any θ ∈ Θ the maximum in υ is attained by

υMLE(θ) = 1
n f ′A−1

θ f,

and by plugging this back into (7.4) we obtain the pro�le log likelihood in θ

l(θ; f) = −n
2 log(2π)− n

2

(
1− log(n)

)
− 1

2 log(|Aθ|)− n
2 log

(
f ′A−1

θ f
)
, (7.5)

which we can use to de�ne the MLE for θ :

θMLE = argmin
θ∈Θ

l(θ; f) .

So far, for the derivation of the MLE, we have made the additional assumption that m(t) ≡ 0
which corresponds to the assumption in simple kriging. We now want to relax this assumption
to the one made in universal kriging that the mean function is given by

m(t) :=
q∑

k=1

βk pk(t)
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7.3: Comparing CV and ML in the Statistical Context

with known functions pk , and unknown coe�cients βk, k = 1, . . . , q (see (6.20)). This leaves
us with the problem that in addition to υ and θ we also have to deal with the unknown
parameters β = (β1, . . . , βq)′, which can be considered as nuisance parameters since our
interest is in estimating θ.

One way to handle this is to pass from f to contrasts f̃ := Qf, Q ∈ Rn×n, so that the
distribution of the corresponding RVs

X̃T = QXT

is independent of β. This approach leads to restricted maximum likelihood (REML) estima-
tion and the idea is similar to what is done in universal kriging: the linear combinations of
Xt1 , . . . , Xtn that may be used for estimation are limited to those that �lter out the mean.
De�ning P as in (6.6) we see that e.g. Q = I −P (P ′P )−1P ′ is a suitable choice which yields
(see Lemma 2.4.18):

XT ∼ N (Pβ, υAθ) =⇒ X̃T ∼ N
(
0, υ QAθQ′

)
.

Now, QAθQ
′ has rank n − q and is therefore not invertible. So, the likelihood for X̃T

cannot be de�ned in the same way as above. Instead, a subset of n− q linearly independent
components must be chosen and the likelihood is then de�ned for the joint distribution of
those components only. It can be shown (see [29, Exc. 7.10-7.13]) that the likelihood functions
for di�erent choices of Q and of the n− q linearly independent components are proportional.
A particular representation of the (restricted) log likelihood is given by (see [19])

l(ϑ; f) = −n−q
2 log(2π)− n−q

2 log(υ)− 1
2 log(|Aθ|)− 1

2 log
(∣∣P ′A−1

θ P
∣∣)

+1
2 log(|P ′P |)− 1

2υ f ′
(
A−1
θ −A

−1
θ P (P ′A−1

θ P )−1P ′A−1
θ

)
f . (7.6)

For given θ ∈ Θ the maximum in υ is attained by

υMLE(θ) = 1
n−q f ′

(
A−1
θ −A

−1
θ P (P ′A−1

θ P )−1P ′A−1
θ

)
f ,

and plugging this back into (7.6) we obtain the restricted pro�le log likelihood in θ

l(θ; f) = −n−q
2 log(2π)− n−q

2

(
1− log(n− q)

)
− 1

2 log(|Aθ|)− 1
2 log

(∣∣P ′A−1
θ P

∣∣)
+1

2 log(|P ′P |)− n−q
2 log

(
f ′
(
A−1
θ −A

−1
θ P (P ′A−1

θ P )−1P ′A−1
θ

)
f
)
. (7.7)

7.3 Comparing CV and ML in the Statistical Context

In this section we shall assume that the function f to be interpolated is a sample path of a
second order Gaussian RF (Xt)t∈T . Then both of the above methods can be used to identify
the (vector of) covariance parameter(s) θ and one may ask which of them is more e�cient. We
show that the MLE and the LOOCV procedure with l2-norm for the error vector (from now
denoted by CV2) both �t into the framework of unbiased estimating functions and we give a
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7.3: Comparing CV and ML in the Statistical Context

criterion that allows for a theoretical comparison of estimation procedures belonging to this
very general class. We carry out a simulation study to assess the quality of these theoretically
motivated precision measures for MLE and CV2, and we compare the performance of MLE,
CV1 and CV2 with respect to their ability to select a parameter value that yields a good
interpolate.

7.3.1 Estimating functions and information criteria

Consider the MLE with the log likelihood (7.4) (to keep calculations simple we only consider
the zero mean case here). Throughout this subsection we shall assume the following regularity
conditions

(a) Kθ is twice di�erentiable w.r.t. θ

(b) di�erentiation and integration can be interchanged in

E
(

Λ(ϑ;XT ) Λ(ϑ;XT )′
)

(the score function Λ is de�ned below).

(c) for all G ∈ G di�erentiation and integration can be interchanged in

E
(
G(ϑ;XT ) Λ(ϑ;XT )′

)
and E

(
Λ(ϑ;XT )G(ϑ;XT )′

)
(G will be a class of unbiased estimating functions, details are given later).

Assume in addition that −l(ϑ; f) is convex at least in a neighbourhood of the true parameter
ϑ0. Then maximizing l(ϑ; f) is equivalent to �nding the root of the so called score function
Λ(ϑ; f) := ∇l(ϑ; f) with components

Λυ(ϑ; f) = − n
2υ + 1

2υ2 f ′A−1
θ f

Λθ1(ϑ; f) = − 1
2 tr

(
A−1
θ

∂
∂θ1

Aθ

)
+ 1

2υ f ′A−1
θ

∂
∂θ1

Aθ A
−1
θ f

...
...

...

Λθp(ϑ; f) = − 1
2 tr

(
A−1
θ

∂
∂θp

Aθ

)
+ 1

2υ f ′A−1
θ

∂
∂θp

Aθ A
−1
θ f .

The CV2, if the (squared) l2-norm of the vector εθ of LOOCV errors is minimized, can also
be represented in this form. As with the MLE we only consider the zero mean case. Then,
by Proposition 7.1.1, we have εθ = DθA

−1
θ f where Dθ is a diagonal matrix with diagonal

elements

(Dθ)ii =
(
e′iA
−1
θ ei

)−1
, i = 1, . . . , n.

Now, the squared l2-norm of εθ can be written as

‖εθ‖2 = f ′A−1
θ D2

θA
−1
θ f,
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and by equating the gradient of ‖εθ‖2 to 0 we obtain θCV2 as the root of the p-variate function
G(θ; f) with components

Gθ1(θ; f) = −2 f ′A−1
θ

∂
∂θ1

Aθ A
−1
θ D2

θ A
−1
θ f + 2 f ′A−1

θ Dθ
∂
∂θ1

DθA
−1
θ f ,

...
...

... (7.8)

Gθp(θ; f) = −2 f ′A−1
θ

∂
∂θp

Aθ A
−1
θ D2

θ A
−1
θ f + 2 f ′A−1

θ Dθ
∂
∂θp

DθA
−1
θ f .

Such a function G of both the data and the parameter θ de�ning an estimate of θ as its root is
called estimating function. The score function encountered above in the maximum likelihood
context is a special case. An additional property of estimating function that is often required
is unbiasedness, i.e.

Eϑ0

(
G(θ0;XT )

)
= 0,

where Eϑ0 denotes the expectation under the probability measure corresponding to ϑ0. Such
a property is reasonable as it ensures that θ0 is the root of G at least in expectation. Using
standard results on the expectation of quadratic forms (cf. [37, p. 55]) it is easy to verify that
both score function and the above estimating function corresponding to CV2 are unbiased
(independently of the assumption of a multivariate Gaussian distribution).

The LOOCV error we de�ned in section 7.1 is completely independent of the parameter υ.
In spatial statistics however, we are interested in identifying υ as well in order to calculate
the kriging error variance. In the LOOCV framework an estimator for υ can be derived as
follows:

Using representation (7.1) of the LOOCV errors we �nd that

Eϑ(εk) = 0, Eϑ
(
ε2
k

)
= (Ψkk)−2 · e′kA−1

θ Eϑ
(
XTX

′
T
)︸ ︷︷ ︸

= υAθ

A−1
θ ek = υ (Ψkk)−1 ,

and hence, for given θ, a reasonable estimator of υ is given by

υCV2(θ) :=
1
n

n∑
i=1

Ψii · ε2
i = 1

n f ′A−1
θ DθA

−1
θ f ,

where we have used that in the simple kriging case Ψkk = (A−1
θ )kk = (Dθ)−1

kk .

The estimator υCV2(θ) of υ is clearly not optimal in the statistical sense since it ignores the
correlations between the di�erent components of ε. Taking these into account would lead to
the estimator υMLE(θ) obtained by the maximum likelihood principle. However, υCV2(θ) is
more in the spirit of LOOCV since θCV2 does not account for these correlations either (see
discussion in Section 7.4). Moreover it will be easier to give an interpretation to υCV2(θ) also
in the framework of Numerical Analysis (Section 7.5). Now, by adding a further component

Gυ(ϑ; f) = 1
n f ′A−1

θ DθA
−1
θ f − υ (7.9)

to (7.8) we obtain an unbiased, (p+1)-variate estimating function G(ϑ; f) for the parameters
υ and θ.
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Within the framework of unbiased estimating functions, measures of information can be de-
�ned that allow to compare the performance of estimators. Following [39, p. 174] we start by
de�ning the Fisher information

I(ϑ0) := Eϑ0

(
Λ(ϑ0;XT ) Λ(ϑ0;XT )′

)
. (7.10)

Under the regularity conditions (a) and (b) stated above it holds that

I(ϑ0) = − Eϑ0

(
JΛ(ϑ0;XT )

)
, (7.11)

where JΛ denotes the Jacobi matrix of Λ. Now, if I(ϑ0) is �large� (in the sense that the
smallest eigenvalue is large) and I(ϑ0)−1 JΛ(ϑ0;XT ) ≈ In with high probability, then standard
asymptotic theory (cf. [14], [21]) suggests that

ϑMLE
approx.∼ N

(
ϑ0, I(ϑ0)−1

)
. (7.12)

In spatial statistics it is often di�cult to prove rigorously that MLEs do indeed have this
behaviour. In fact, there are even di�erent asymptotic frameworks to which one can appeal (cf.
e.g. [45]): increasing domain asymptotics, in which the minimum distance between sampling
points is bounded away from zero and thus the spatial domain of observation is unbounded,
and �xed domain asymptotics in which observations are taken ever more densely in a �xed
and bounded domain. While under increasing domain asymptotics conditions are known (cf.
[26]) that ensure that ϑMLE converges to ϑ0 a.s. (such estimators are called consistent) with
asymptotic distribution as indicated above, it was shown by several authors that under �xed
domain asymptotics even consistency is not ensured for all parameters (cf. [44] for such a
result on the Whittle-Matérn class). For a �xed set of observations it is not clear a priori
which of these two frameworks is is adequate. Some answers to that can be found in [45].
Despite all these di�culties, we note that the Fisher information may give a good indication
about the accuracy of the MLE and in our simulation study presented later in this section we
shall calculate it and compare it with the empirical results from the simulated estimates.

The Fisher information was motivated by the asymptotic theory for MLEs. If instead of the
score function Λ we consider some unbiased estimating function G, then we can de�ne the
information criterion

EG(ϑ0) :=
(
W (ϑ0)

)′ (
H(ϑ0)

)−1 (
W (ϑ0)

)
, (7.13)

where

H(ϑ0) = Eϑ0

(
G(ϑ0;XT )G(ϑ0;XT )′

)
and

W (ϑ0) = − Eϑ0

(
JG(ϑ0;XT )

)
,

which is a natural generalization of the Fisher information and will allow us to compare the
MLE with the CV2. Note that multiplying any component of G with an arbitrary non-zero
constant does not change EG(ϑ0) , which is an important property since these operations
do not change the root of G either. The role of EG(ϑ0) as an information measure can be
motivated as follows ([20, Sec. 1.3]):
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1. Since the parameter estimate is given by the root of G, G(ϑ0) should be as close to zero
as possible. Thus, the �smaller� H(ϑ0) the more accurate the corresponding estimator
can be expected to be.

2. On the other hand, the gradients ∇Gυ,∇Gθ1 , . . . ,∇Gθp should be as steep as possible
because then the root of G will be somewhere near ϑ0 if G(ϑ0) does not di�er from zero
too much. Thus the �bigger� W (ϑ0) the more accurate the corresponding estimator can
be expected to be.

If G depends on more then one parameter, �small� H(ϑ0) and �big� W (ϑ0) are understood in
the sense that all eigenvalues of H and W should be small or big respectively.

In this general framework of unbiased estimating functions there are also a number of theorems
(see [20, Ch. 12]) providing conditions subject to which the corresponding estimators are
consistent and asymptotically normal, so that for n large enough we have

ϑG
approx.∼ N

(
ϑ0, EG(ϑ0)−1

)
. (7.14)

Although in our situation these are even harder to verify than those for the MLE framework,
EG(ϑ0) appears to be a reasonable information measure. It is used by several authors (e.g.
[38], [7]) to compare the accuracy of estimators, and so shall we in the following discussion.

In our situation of estimating the covariance parameters of a zero mean Gaussian RF the
entries of the (1 + p)× (1 + p) Fisher information matrix I(ϑ) are

Iυυ(ϑ) = 1
2
n
υ2 (7.15)

Iυθj (ϑ) = Iθjυ(ϑ) = 1
2υ tr

(
A−1
θ

∂
∂θj
Aθ

)
,

Iθkθj (ϑ) = 1
2 tr

(
A−1
θ

∂
∂θk

Aθ A
−1
θ

∂
∂θj
Aθ

)
.

These formulae follow from the general formula given in [39, p. 179]. The entries of the
(1 + p) × (1 + p) matrices H and W that de�ne the information criterion for the CVE with
estimating functions according to (7.8), (7.9) are

Hυυ(ϑ) = 2υ2

n2 tr
(
A−1
θ Dθ A

−1
θ Dθ

)
, (7.16)

Hυθj (ϑ) = − 4υ2

n tr
(
A−1
θ Dθ A

−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ

)
+ 4υ2

n tr
(
A−1
θ Dθ A

−1
θ Dθ

∂
∂θj
Dθ

)
Hθkθj (ϑ) = 4υ2 tr

(
A−1
θ

∂
∂θk

Aθ A
−1
θ D2

θ A
−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ

)
+ 4υ2 tr

(
A−1
θ

∂
∂θk

Aθ A
−1
θ D2

θ A
−1
θ D2

θ A
−1
θ

∂
∂θj
Aθ

)
− 8υ2 tr

(
A−1
θ

∂
∂θk

Aθ A
−1
θ D2

θ A
−1
θ Dθ

∂
∂θj
Dθ

)
− 8υ2 tr

(
A−1
θ Dθ

∂
∂θk

Dθ A
−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ

)
+ 8υ2 tr

(
A−1
θ Dθ

∂
∂θk

Dθ A
−1
θ Dθ

∂
∂θj
Dθ

)
,
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(Hθkυ(ϑ) is determined by symmetry of H) and

Wυυ(ϑ) = −1, Wθkυ(ϑ) = 0, (7.17)

Wυθj (ϑ) = −2υ
n tr

(
A−1
θ

∂
∂θj
Aθ A

−1
θ Dθ

)
+ υ

n tr
(
A−1
θ

∂
∂θj
Dθ

)
,

Wθkθj (ϑ) = 2υ tr
(
A−1
θ

∂
∂θk

Aθ A
−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ

)
− 2υ tr

(
D−1
θ

∂
∂θk

Dθ
∂
∂θj
Dθ

)
.

The formulae for H(ϑ) are obtained by symmetrizing the �rst terms of Gθ1 , . . . , Gθ1 and using
the formula

Cov
(
Z ′AZ,Z ′BZ

)
= 2 tr (AV BV ) , if Z ∼ N (0, V ) ,

for quadratic forms Z ′AZ and Z ′BZ where Z is a n-variate RVct and A,B ∈ Rn×n are
symmetric matrices (see [37, p. 66]).

To obtain formulae for W (ϑ) we �rst calculate the derivatives of G(ϑ; f), starting with ∂
∂υ :

∂
∂υGυ(ϑ; f) = −1, ∂

∂υGθk(ϑ; f) = 0 , j = 1, . . . , p.

Next, we have for j = 1, . . . , p :

∂
∂θj
Gυ(ϑ; f) = − 2

n f ′A−1
θ

∂
∂θj
Aθ A

−1
θ Dθ A

−1
θ f + 1

n f ′A−1
θ

∂
∂θj
Dθ A

−1
θ f ,

and �nally, for j, k = 1, . . . , p :

∂
∂θj
Gθk(ϑ; f) = 2 f ′A−1

θ
∂
∂θj
Aθ A

−1
θ

∂
∂θk

Aθ A
−1
θ D2

θ A
−1
θ f − 2 f ′A−1

θ
∂2

∂θj∂θk
Aθ A

−1
θ D2

θ A
−1
θ f

+ 2 f ′A−1
θ

∂
∂θk

Aθ A
−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ A
−1
θ f − 4 f ′A−1

θ
∂
∂θk

Aθ A
−1
θ Dθ

∂
∂θj
Dθ A

−1
θ f

+ 2 f ′A−1
θ

∂
∂θk

Aθ A
−1
θ D2

θ A
−1
θ

∂
∂θj
Aθ A

−1
θ f − 2 f ′A−1

θ
∂
∂θj
Aθ A

−1
θ Dθ

∂
∂θk

Dθ A
−1
θ f

+ 2 f ′A−1
θ

∂
∂θj
Dθ

∂
∂θk

Dθ A
−1
θ f + 2 f ′A−1

θ Dθ
∂2

∂θj∂θk
Dθ A

−1
θ f

− 2 f ′A−1
θ Dθ

∂
∂θk

Dθ A
−1
θ

∂
∂θj
Aθ A

−1
θ f

With respect to the derivatives of Dθ we note

(
∂
∂θk

Dθ

)
ii

=
e′iA

−1
θ

∂
∂θk

Aθ A
−1
θ ei

(e′iA
−1
θ ei)2

(
∂2

∂θj∂θk
Dθ

)
ii

= − 2
e′iA

−1
θ

∂
∂θj
Aθ A

−1
θ

∂
∂θk

Aθ A
−1
θ ei

(e′iA
−1
θ ei)2

+
e′iA

−1
θ

∂2

∂θj∂θk
Aθ A

−1
θ ei

(e′iA
−1
θ ei)2

+ 2
e′iA

−1
θ

∂
∂θj
Aθ A

−1
θ ei · e′iA

−1
θ

∂
∂θk

Aθ A
−1
θ ei

(e′iA
−1
θ ei)3

.

Now, by application of the formula

E
(
Z ′AZ

)
= tr (AV ) , if Z ∼ N (0, V ) , and A ∈ Rn×n
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(see [37, p. 55]) and by using the identity

tr
(
A−1
θ

∂
∂θk

Aθ A
−1
θ B

)
=

n∑
i=1

e′iA
−1
θ

∂
∂θk

Aθ A
−1
θ ei · Bii = tr

(
D−1
θ

∂
∂θk

Dθ B
)
,

which hold for any diagonal matrix B ∈ Rn×n, we obtain

Eϑ
(
∂
∂θj
Gθk(ϑ;XT )

)
= 2υ tr

(
A−1
θ

∂
∂θk

Aθ A
−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ

)
− 2υ tr

(
A−1
θ

∂2

∂θj∂θk
Aθ A

−1
θ D2

θ

)
+ 2υ tr

(
A−1
θ

∂
∂θk

Aθ A
−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ

)
− 4υ tr

(
D−1
θ

∂
∂θk

Dθ
∂
∂θj
Dθ

)
+ 2υ tr

(
A−1
θ

∂
∂θk

Aθ A
−1
θ D2

θ A
−1
θ

∂
∂θj
Aθ

)
− 2υ tr

(
D−1
θ

∂
∂θk

Dθ
∂
∂θj
Dθ

)
+ 2υ tr

(
D−1
θ

∂
∂θk

Dθ
∂
∂θj
Dθ

)
+ 2υ tr

(
A−1
θ Dθ

∂2

∂θj∂θk
Dθ

)
− 2υ tr

(
D−1
θ

∂
∂θk

Dθ
∂
∂θj
Dθ

)
Noting that

tr
(
A−1
θ Dθ

∂2

∂θj∂θk
Dθ

)
= tr

(
∂2

∂θj∂θk
Dθ

)
= − 2 tr

(
A−1
θ

∂
∂θj
Aθ A

−1
θ

∂
∂θk

Aθ A
−1
θ D2

θ

)
+ tr

(
A−1
θ

∂2

∂θj∂θk
Aθ A

−1
θ D2

θ

)
+ 2 tr

(
D−1
θ

∂
∂θk

Dθ
∂
∂θj
Dθ

)
and combining all the terms �nally yields Wθkθj (ϑ) as stated above:

Wθkθj (ϑ) = 2υ tr
(
A−1
θ

∂
∂θk

Aθ A
−1
θ

∂
∂θj
Aθ A

−1
θ D2

θ

)
− 2υ tr

(
D−1
θ

∂
∂θk

Dθ
∂
∂θj
Dθ

)
.

Note that if we work with the inverse of EG(ϑ0), then the block with the entries associated
with the estimation of θ is independent of the information on the estimation of υ, and is
therefore not in�uenced by our particular choice of υCV2(θ). Indeed, since H(ϑ) and W (ϑ)
are of the form

W (ϑ) =
(
Wυυ Wυθ

0 Wθθ

)
, H(υ, θ) =

(
Hυυ Hυθ

H ′υθ Hθθ

)
,

we obtain by applying standard rules for the inversion of block matrices(
W (ϑ)

)−1 =
(
W−1
υυ −W−1

υυ WυθW
−1
θθ

0 W−1
θθ

)
(note that Wθθ is symmetric). Using this and writing � ∗ � for convenience for all terms that
are not relevant for our claim we �nd(

EG(ϑ0)
)−1 =

(
∗ ∗
0 W−1

θθ

)(
Hυυ Hυθ

H ′υθ Hθθ

)(
∗ 0
∗ W−1

θθ

)

=
(
∗ ∗
∗ W−1

θθ HθθW
−1
θθ

)
,
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and so the block with the information on θ is the same as if we had only considered θCV2 from
the beginning.

Denote by G the class of all unbiased estimating functions that we consider as potential
candidates for estimating υ and θ. An estimating function G∗ ∈ G is called OF -optimal (�xed
sample optimal) if

EG∗(ϑ)− EG(ϑ)

is nonnegative de�nite for all G ∈ G and all ϑ ∈ R+× Θ. If Λ(ϑ; f) belongs to G then it is
(subject to the regularity conditions stated at the beginning of this subsection) the OF -optimal
estimating function in G (see [20, Ch. 2]).

Consequently, under the assumption that (Xt)t∈T is a zero mean Gaussian RF with covariance
function υKθ it follows that MLE is superior to CV2 in the sense of OF -optimality. The
following result ([20, Thm. 8.1]) claims OF -optimality within a very general class of estimating
functions also for the REML estimator.

As above, let f be a vector of observations of (Xt)t∈T at locations {t1, . . . , tn} ⊂ T , and let
XT := (Xt1 , . . . , Xtn)′ the vector of the corresponding RVs. Assuming a mean function

m(t) =
q∑

k=1

βk pk(t)

we have E(XT ) = Pβ with P as in (6.6), assumed to have full rank. For an arbitrary matrix
Q ∈ Rn×n with rank n− q and QP = 0 we consider the contrasts

f̃ := Qf and X̃T := QXT .

For the covariance of X̃T we set Cov(X̃T ) = υAθ =: Vϑ. In the expectation that it is quadratic
forms of the data that should be used to estimate covariance parameters we then consider the
class of (unbiased) estimating functions

G0 =
{
G = (G1, . . . , Gp+1)′ : Gk(ϑ; f̃) = f̃ ′ Sk f̃ − µSk , 1 ≤ k ≤ p+ 1

}
,

where µSk = E
(
X̃ ′T Sk X̃T

)
.

Theorem 7.3.1. Assume that XT ∼ N (Pβ, Vϑ). Then G∗ is an OF -optimal estimating
function in G0 if

S∗k = (QVϑQ′)−
(
Q ∂

∂ϑj
VϑQ

′) (QVϑQ′)−, 1 ≤ k ≤ p+ 1 ,

for any g-inverse (QVϑQ′)−. Furthermore, the S∗k do not depend on Q.

In order to see the connection to REML, consider the derivatives of the restricted log likelihood
function (7.6) :

∂
∂υ l(ϑ; f) = −n−q

2
1
υ + 1

2υ2 f ′A−1
θ ΠP f,

∂
∂θk

l(ϑ; f) = −1
2 tr

(
ΠP̄

∂
∂θk

Aθ A
−1
θ

)
+ 1

2υ f ′A−1
θ ΠP̄

∂
∂θk

Aθ A
−1
θ ΠP̄ f
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where ΠP̄ := In − P
(
P ′A−1

θ P
)−1

P ′A−1
θ is a projector on the orthogonal complement of the

range space of the matrix P . Using the relation

1
υ A
−1
θ ΠP̄ = Q′(QVϑQ′)−Q

(see [20, eq. (8.2)]) and using that ΠP̄ is idempotent we obtain

f̃ ′ S∗k f̃ = 1
υ2 f ′A−1

θ ΠP̄
∂
∂ϑk

VϑA
−1
θ ΠP̄ f ,

µS∗k = 1
υ2 E

(
X̃ ′T A

−1
θ ΠP̄

∂
∂ϑk

VϑA
−1
θ ΠP̄ X̃T

)
= 1

υ tr
(

ΠP̄
∂
∂ϑk

VϑA
−1
θ

)
.

Resubstituting Vϑ = υAθ , noting that tr (ΠP̄ ) = n−q, and comparing the resulting estimating
function with ∇ l(ϑ; f) �nally yields

Corollary 7.3.2. Under the assumptions of Theorem 7.3.1 the REML estimator is OF -
optimal among all estimators corresponding to an estimating function in G0.

Remark 7.3.3. The assumption in Theorem 7.3.1 of XT that follows a multivariate Gaussian
distribution can be weakened to certain assumptions on some third and fourth moments of

V
−1/2
ϑ

(
XT − Pβ

)
.

Due to this transformation with V
−1/2
ϑ these conditions are not very transparent in our context

of RFs. Nevertheless we note that (RE)ML can make sense even if the distribution assumption
under which they were derived do not hold.

7.3.2 Accuracy of parameter estimates

We present the results of a simulation study in which we compare the performance of MLE
and CV2. We simulated 300 centred stationary Gaussian RFs with covariance function υΦr,ν

as de�ned in (6.33).

Figure 7.1: Examples of simulated sample paths of a Gaussian RF with covariance function Φr0,1 with scale parameter
r0 = 0.1 (left) and r0 = 1 (right).
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The simulation was carried out with parameter values υ0 = 1, ν0 = 1 for two di�erent scale
parameters r0 = 0.1 and r0 = 1 on an equidistant 100 × 100 grid Q ⊂ [−1, 1]2 using the R-
package �RandomFields� (cf. [36]). According to the results of Section 5.3 the corresponding
sample paths are just barely not di�erentiable. One of the respective 300 realizations is
visualized in Figure 7.1 to illustrate the di�erent structures that are observed due to the
di�erent scaling.

First, we compare the ability of MLE and CV2 to estimate the covariance parameters υ, r
and ν based on n = 100, 200, 300, 400, 500 observations of the respective sample path. The n
sampling locations are chosen randomly from the simulation grid Q (identical probabilities,
no replacement) such that

{t1, . . . , t100} ⊂ . . . ⊂ {t1, . . . , t500} ⊂ Q.

This way it is ensured that the information strictly increases. These sets of locations are then
used for both choices of r0 and all 300 respective realizations.

For the moment, we focus on the estimation of r and ν, a discussion of the estimation and use
of υ will follow later in this subsection. Figures 7.2 and 7.3 show plots of the estimated values
of r against ν obtained by MLE and CV2. Especially for small n both estimators sometimes
yield very large estimates of ν (typically when r0 = 0.1) or very large estimates of r (typically
when r0 = 1). Parameter estimation was carried out subject to the constraints r ≤ 40 and
ν ≤ 16 and in particular the CV2 estimates for r0 = 1 attain these bounds quite often, even
for bigger values of n.

With respect to the asymptotic approximations (7.12) and (7.14) to the distribution of the
estimates it can be suspected that they may describe the behaviour of the MLE quite well for
large n. The same may be true, to a lesser extent, for the CV2 in the case where r0 = 0.1.
For r0 = 1, however, the distribution of the CV2 estimates seems far from being multivariate
Gaussian, and we will see that also the dispersion of (r, ν)CV2 around (r0, ν0) is only poorly
described by the information criterion derived above.
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Figure 7.2: Plots of the estimates of r (x-axis) against ν (y-axis) obtained by MLE (top row) and CV2 (bottom row)
for the 300 sample paths simulated with ϑ0 = (1, 0.1, 1).
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7.3: Comparing CV and ML in the Statistical Context
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Figure 7.3: Plots of the estimates of r (x-axis) against ν (y-axis) obtained by MLE (top row) and CV2 (bottom row)
for the 300 sample paths simulated with ϑ0 = (1, 1, 1).

In order to measure the precision of the estimates quantitatively, we calculate

1. the empirical means (r?,i denotes the i
th estimate of r with procedure ? )

r? := 1
300

300∑
i=1

r?,i, ν? := 1
300

300∑
i=1

ν?,i, ? = MLE, CV2,

2. the empirical mean squared errors for ? = MLE, CV2 de�ned by

MSE(r?) := 1
300

300∑
i=1

(r?,i − r0)2, MSE(ν?) := 1
300

300∑
i=1

(ν?,i − ν0)2,

3. the diagonal elements of the inverse Fisher information

(I(ϑ0)−1)rr, and (I(ϑ0)−1)νν ,

4. the diagonal elements of the inverse of the information criterion for CV2

(EG(ϑ0)−1)rr, and (EG(ϑ0)−1)νν .

I(ϑ0) and EG(ϑ0) can be calculated numerically using the formulae (7.15)-(7.17).

The empirical means of the 300 parameter estimates are given in Table 7.1. As could be
expected from the plots, in the simulations with r0 = 0.1 both rMLE and rCV2 are quite close
to r0, while νMLE and νCV2 are considerably larger than ν0 for small n but approach the true
value as n increases. In the simulations with r0 = 1 both νMLE and νCV2 are reasonably
close to ν0 even for small n and get even closer as n increases. The same is true for the ML
estimates of r0 but not for the CV estimates, which are substantially bigger than r0 for all n
and do not show any tendency of convergence. Without the constraint rCV2 ≤ 40 (imposed for
computational reasons) this overestimation of r0 would presumably be even more dramatic.

114



7.3: Comparing CV and ML in the Statistical Context

n rMLE rCV2 νMLE νCV2

100 0.1100 0.1205 3.693 1.885
200 0.0999 0.1077 1.609 2.155
300 0.1011 0.1051 1.192 1.338
400 0.1008 0.1065 1.007 1.152
500 0.1009 0.1064 1.058 1.067

n rMLE rCV2 νMLE νCV2

100 1.041 10.25 1.054 1.119
200 1.019 7.23 1.023 1.066
300 1.020 8.80 1.016 1.046
400 1.017 9.28 1.011 1.033
500 1.017 11.96 1.006 1.025

Table 7.1: Empirical means of the respective 300 parameter estimates for r and ν for the sample paths simulated with
ϑ0 = (1, 0.1, 1) (left) and ϑ0 = (1, 1, 1) (right) respectively.

Tables 7.2 and 7.3 show the empirical mean squared errors of the respective 300 parameter
estimates by ML and CV2 and the corresponding entries of the inverse information matrices.

In both cases r0 = 0.1 and r0 = 1, the dispersion of (r, ν)MLE around (r0, ν0) is predicted
reasonably well by the inverse Fisher information if n is large. For small n, the MSE is
dominated by the large deviation of rMLE from r0, and νMLE from ν0 respectively (see above)
but as n increases this bias disappears and (7.12) seems to be an acceptable approximation
whatever the intricacy of establishing a rigorous asymptotic theory. Analysing the decrease
of (I−1)rr and (I−1)νν with increasing n we also note that the accuracy of νMLE improves
faster than that of rMLE, particularly so in the case r0 = 1. This could be expected since ν is
mainly linked to the local behaviour of the sample paths and so identifying ν0 should bene�t
substantially from an increase of the density of sampling locations.

For the CV2 estimates we �nd that approximation (7.14) of the dispersion of (r, ν)CV2 around
(r0, ν0) is inadequate even for n = 500. In the case r0 = 1 this could be expected since we
already saw that rCV2 does not even seem to converge to r0. For r0 = 0.1 simulation results
not presented here show that for a bigger number of sampling locations (at least 800) the
estimates behave indeed like realizations from a multivariate normally distributed RV with
mean θ0 and covariance E−1

G .

Nevertheless the information criterion for the CV2 estimating functions can help us to identify
the shortcomings of LOOCV from a statistical point of view. Note for instance in the case
r0 = 1 that (E−1

G )rr is increasing rather than decreasing as the number of observations grows.
The explanation for this very peculiar e�ect is that more LOOCV-components (due to more
data) do not necessarily imply more information:

• The LOOCV-components are correlated, quite strongly so for components belonging to
close-by sampling locations. These correlations can lead to a distortion of the estimate
and additional observations may for instance enhance an already existing tendency due
to the �rst LOOCV components to select a very large value of r.

• Perhaps more important is that LOOCV only assesses the accuracy of the prediction (at
the left-out locations). As noted in Section 6.7, if the sampling locations are very close
compared to r0, prediction is insensitive to deviations from the true scale parameter.
The sampling locations are indeed very dense relative to r0 in the case r0 = 1 and
become even denser as n increases and so at the same time the data become less
informative about r.
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n (I−1)rr MSE(rMLE) (E−1
G )rr MSE(rCV2)

100 9.99 · 10−4 26.7 · 10−4 12.1 · 10−4 99.9 · 10−4

200 3.47 · 10−4 3.33 · 10−4 4.70 · 10−4 54.9 · 10−4

300 2.15 · 10−4 2.4 · 10−4 3.41 · 10−4 5.74 · 10−4

400 1.54 · 10−4 1.72 · 10−4 2.68 · 10−4 8.99 · 10−4

500 1.24 · 10−4 1.24 · 10−4 2.33 · 10−4 7.33 · 10−4

n (I−1)νν MSE(νMLE) (E−1
G )νν MSE(νCV2)

100 8.53 · 10−1 361 · 10−1 14.3 · 10−1 91.7 · 10−1

200 2.14 · 10−1 44.2 · 10−1 4.42 · 10−1 113 · 10−1

300 1.07 · 10−1 5.19 · 10−1 2.04 · 10−1 16.1 · 10−1

400 0.60 · 10−1 1.21 · 10−1 1.13 · 10−1 3.0 · 10−1

500 0.41 · 10−1 0.57 · 10−1 0.76 · 10−1 1.08 · 10−1

Table 7.2: Inverse Fisher information and CV2 information criterion for r and ν when the true parameters are
ϑ0 = (1, 0.1, 1), and empirical mean squared errors of the corresponding 300 estimates.

n (I−1)rr MSE(rMLE) (E−1
G )rr MSE(rCV2)

100 1.307 · 10−1 1.928 · 10−1 11.55 · 10−1 3286 · 10−1

200 1.001 · 10−1 1.131 · 10−1 13.40 · 10−1 2133 · 10−1

300 0.895 · 10−1 0.961 · 10−1 17.85 · 10−1 2737 · 10−1

400 0.821 · 10−1 0.875 · 10−1 20.86 · 10−1 2797 · 10−1

500 0.769 · 10−1 0.739 · 10−1 23.39 · 10−1 3920 · 10−1

n (I−1)νν MSE(νMLE) (E−1
G )νν MSE(νCV2)

100 2.217 · 10−2 3.635 · 10−2 8.69 · 10−2 13.2 · 10−2

200 0.906 · 10−2 0.914 · 10−2 3.87 · 10−2 4.79 · 10−2

300 0.551 · 10−2 0.615 · 10−2 2.86 · 10−2 3.35 · 10−2

400 0.385 · 10−2 0.381 · 10−2 1.91 · 10−2 2.15 · 10−2

500 0.297 · 10−2 0.259 · 10−2 1.55 · 10−2 1.60 · 10−2

Table 7.3: Inverse Fisher information and CV2 information criterion for r and ν when the true parameters are
ϑ0 = (1, 1, 1), and empirical mean squared errors of the corresponding 300 estimates.

The same e�ect is not observed with the MLE which also implicitly involves a prediction of
the kriging variance (this will become more obvious in the next section). We have seen that
this kriging variance is sensitive to changes of r especially when sampling locations are dense,
and this translates into much better estimates compared to CV2 in the case r0 = 1.
For the same reason, we should however expect that the estimates θCV2, even when they are
imprecise, should yield reasonably well predictions because they deviate from θ0 in a way that
hardly a�ects prediction accuracy. This will be studied next.

7.3.3 Prediction accuracy with estimated parameters

Estimating the parameters of the covariance function of a RF (Xt)t∈T is only an intermediate
step to predict a sample path f of (Xt)t∈T at an unobserved location based on observations
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f(t1), . . . , f(tn). In Section 6.3 and 6.4, kriging was derived as optimal (in the sense that the
expected squared error is minimized) unbiased prediction, but optimality was based on the
assumption that the correct covariance function is used.
In this subsection we shall therefore investigate to which degree the prediction accuracy de-
grades when the parameter used for kriging is estimated. We use the same respective 300
simulated sample paths with covariance function υΦr,ν and parameters ϑ0 = (1, 0.1, 1), and
ϑ0 = (1, 1, 1), respectively. As a measure of the prediction accuracy we use the root of the
mean squared prediction errors (RMSE) on our simulation grid Q

RMSE(θ) :=
√

1
|Q|

∑
t∈Q

(
f(t)− sΦθ(t)

)2
,

where |Q| denotes the number of points in Q and sΦθ is the (simple) kriging interpolant
corresponding to the covariance function Φθ. Results are presented for prediction based on
the �rst 200 and all 500 observations, respectively, at the sampling locations from above.

We compare the RMSEs that are obtained for

1. the best possible choice θopt of θ, i.e. the minimizer of RMSE(θ) on a �ne grid on
[0, 40]× [0, 16],

2. the �correct� parameter θ0, i.e. the parameter of the covariance function according to
which the sample paths were simulated,

3. the maximum likelihood estimate θMLE, and

4. the cross validation estimates θCV1 and θCV2 corresponding to minimization of the l1-
and l2-norm respectively of the vector of LOOCV errors.

n RMSE(θopt) RMSE(θ0) RMSE(θMLE) RMSE(θCV1) RMSE(θCV2)

200 8.152 · 10−1 8.176 · 10−1 8.215 · 10−1 8.253 · 10−1 8.246 · 10−1

� + 0.30 % + 0.77 % + 1.24 % + 1.16 %

500 6.620 · 10−1 6.636 · 10−1 6.647 · 10−1 6.667 · 10−1 6.659 · 10−1

� + 0.24 % + 0.41 % + 0.71 % + 0.58 %

Table 7.4: Average RMSE and average relative increase over the optimal RMSE for the kriging predictions of the 300
sample paths simulated with ϑ0 = (1, 0.1, 1).

n RMSE(θopt) RMSE(θ0) RMSE(θMLE) RMSE(θCV1) RMSE(θCV2)

200 1.414 · 10−1 1.431 · 10−1 1.434 · 10−1 1.447 · 10−1 1.445 · 10−1

� + 1.20 % + 1.42 % + 2.33 % + 2.22 %

500 8.954 · 10−2 9.016 · 10−2 9.021 · 10−2 9.052 · 10−2 9.054 · 10−2

� + 0.69 % + 0.74 % + 1.10 % + 1.12 %

Table 7.5: Average RMSE and average relative increase over the optimal RMSE for the kriging predictions of the 300
sample paths simulated with ϑ0 = (1, 1, 1).
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Figure 7.4: Plots of the values of r (x-axis) against ν (y-axis) that yield the best predictions (based on 200 and 500
observations, respectively) for the 300 sample paths simulated with ϑ0 = (1, 0.1, 1) (left two plots) and ϑ0 = (1, 1, 1)
(right two plots).

Averages over the respective 300 RMSEs and the average increase of the RMSE over the
optimal RMSE when θ is chosen by one of the estimation procedures are given in Tables 7.4
and 7.5. The following points can be noted:

• The loss of prediction accuracy because of not knowing the optimal parameter θopt is
quite moderate in our simulation setup. This could be expected from the results of
Section 6.7.

• MLE estimates yield better predictions than CV1 and CV2. However, even in the
case r0 = 1 where CV2 produces very poor parameter estimates, the corresponding
predictions are not dramatically worse than those of the MLE.

• In the case r0 = 1 the prediction accuracy using θMLE is hardly worse than the prediction
accuracy that is obtained by using the �correct� parameter θ0.

The last point is quite surprising at �rst. However, as one can see in Figure 7.4, the optimal
parameter θopt itself is strongly dispersed around θ0. This emphasizes that θ0 is the optimal
choice only in expectation whereas the best prediction for an individual sample path may be
obtained for a di�erent value.

7.3.4 Kriging variance prediction with estimated parameters

We shall now investigate to which degree the precision of the kriging variance prediction
degrades when it is based on the estimated parameter rather than the true one. We study
the predicted kriging variance based on 500 observations in the case r0 = 0.1 and based on
200 observations in the case r0 = 1. For these choices the kriging variance under the true
parameters takes on a broad range of values between 0 and 1 (see Figure 7.5)

In order to predict the kriging variance we need to estimate the parameter υ in addition to r
and ν. An estimator in the CV2 context was derived in Section 7.3.
In Figure 7.6 boxplots of the 300 estimates υMLE and υCV2 are given for the two cases r0 = 0.1
and r0 = 1. In the latter case a lot of the CV2 estimates are totally o� the mark. While
υMLE < 2 at least for 93 % of the sample paths, we have υCV2 < 2 in only 63 % of all 300
cases. The reason for this is that the estimates of υ are strongly (positively) correlated with
those of r and ν. As we saw before, especially rCV2 is often very big in the case r0 = 1
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Figure 7.5: Kriging variances under the (true) parameters ϑ0 = (1, 0.1, 1) based on 500 observations (left) and
ϑ0 = (1, 1, 1) based on 200 observations (right). The black dots indicate the sampling locations.

and consequently so is υCV2. The following results will however show that both of these
considerable overestimation partially compensate each other when it comes to predicting the
kriging variance which typically gets small for large values of r and big for large values of υ.

In order to assess if reasonable predictions of the kriging variance can be obtained on the
basis of the estimates (υ, r, ν)MLE and (υ, r, ν)CV2 we proceed as follows:

(a) For each sample path f (j), j = 1, . . . , 300, we compute

• the parameter estimates ϑ?,j = (υ, θ)?,j = (υ, r, ν)?,j , ? = MLE, CV2

(b) the corresponding predictions s (j)

Φθ
of this sample path

(c) the square root P (j)

υΦθ
of the kriging variance, calculated with ϑ = ϑ?,j

(d) Now, for t ∈ T de�ne the standardized prediction errors

Ej(ϑ, t) =
f (j)(t)− s (j)

Φθ
(t)

P (j)

υΦθ

, j = 1, . . . , 300.

If the true parameter ϑ0 is used for the calculation of s (j)

Φθ
and P (j)

υΦθ
, the empirical

distribution of Ej(ϑ0, t), j = 1, . . . , 300, should be approximately standard Gaussian
for any �xed t.

1. We compute the mean of the squared standardized prediction errors

MSSPE(ϑ, t) := 1
300

300∑
j=1

(
Ej(ϑ, t)

)2
According to (b) we should expect that MSSPE(ϑ0, t) ≈ 1 for all t ∈ T .

Hence, by comparing MSSPE(ϑ0, t), MSSPE(ϑMLE, t) and MSSPE(ϑCV2, t) we get an
impression about how well P (j)

υΦθ
describes the magnitude of the prediction errors when

ϑ is estimated from the data.
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Figure 7.6: Estimates of υ for the sample paths simulated with ϑ0 = (1, 0.1, 1), based on 500 observations (left plot),
and with parameters ϑ0 = (1, 1, 1), now based on 200 observations (right plot).

In Figure 7.7 we visualize MSSPE(ϑ, ·) via �lled contour plots. In the di�erent plots the
correct value ϑ0 and the estimates ϑMLE or ϑCV2 respectively are used for prediction and for
the calculation of the kriging variance.

Even MSSPE(ϑ0, ·) deviates from 1 considerably as a consequence of the randomness of
the prediction errors. The magnitude of these deviations could be reduced only by in-
creasing the number of simulations. We are now interested in how far MSSPE(ϑMLE, ·) and
MSSPE(ϑCV2, ·) di�er from MSSPE(ϑ0, ·). A more quantitative study of these variables yields
the following �ndings:

• While, in the case r0 = 0.1, MSSPE(ϑ0, ·) > 1.1 for about 11 % of the points of Q (the
evaluation grid) the same threshold is exceeded at about 15 % and 17 % respectively
of these points if ϑ is estimated by MLE and CV2.
At the same time we have MSSPE(ϑ0, ·) < 0.9 for about 11 % of the points of Q, the
respective percentages for MLE and CV2 are 8 % and 7 %.

This shows that the magnitude of the prediction errors tends to be underestimated.
The di�erence to the �true� kriging variance prediction is not extremely big though,
neither for MLE nor for CV2.

• The results for r0 = 1 are similar but a bit more pronounced. The percentages of points
that exceed 1.1 (fall below 0.9) are 11 % (13 %), 22 % (7 %) and 26 % (6 %) respectively
for ϑ = ϑ0, ϑMLE and ϑCV2.

The deviations from MSSPE(ϑ0, ·) are larger in this case, but they are still not dramatic
which is quite remarkable especially for the CV2 estimates which were seen to be very
poor in the case r0 = 1.

So far we have studied the quality of pointwise kriging variance predictions. We will now study
the possibility to predict some global measure of prediction accuracy like the L2-prediction
error ∥∥f − sΦθ

∥∥
L2(T )

=
(∫

T

(
f(t)− sΦθ(t)

)2
dt

)1/2

.
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Figure 7.7: Contour plots of MSSPE(ϑ0, ·) (top row), MSSPE(ϑMLE, ·) (middle row), and MSSPE(ϑCV2, ·) (bottom
row) for the sample paths simulated with ϑ0 = (1, 0.1, 1) and n = 500 (left) and for the sample paths with ϑ0 = (1, 1, 1)
and n = 200 (right).
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Figure 7.8: Relative deviation (in %) of the predicted RMSE from the actual RMSE for the sample paths simulated
with ϑ0 = (1, 0.1, 1), based on 500 observations (left) and with ϑ0 = (1, 1, 1), based on 200 observations (right).

In our context where f is assumed to be a sample path of a RF (Xt)t∈T , sΦθ is a sample path
of the interpolation process (Y ∗t )t∈T , and we have by Fubini's theorem

E
(∥∥X� − Y ∗�

∥∥2

L2(T )

)
=
∫
T

E
(
(Xt − Y ∗t )2

)
dt =

∫
T
P 2
υΦθ

(t) dt .

If the (Xt)t∈T is ergodic (see Section 4.2) and r is small compared to the diameter of T we
can expect the random �uctuations of the squared prediction errors around their mean to
partially average out over T and hence the variance of ‖X� − Y ∗� ‖2L2(T ) to be small. We then
have ∥∥f − sΦθ

∥∥
L2(T )

≈
(∫

T
P 2
υΦθ

(t) dt
)1/2

(7.18)

so we may use the rhs as a prediction of the L2-prediction error.

We assess the accuracy of this prediction in our simulation setup. Instead of the L2-prediction
error we consider predicting RMSE(θ?) , ? = MLE, CV2. This is more or less equivalent if
our evaluation grid Q is reasonably �ne since∫

T

(
f(t)− sΦθ(t)

)2
dt ≈ vol(T )

|Q|
∑
t∈Q

(
f(t)− sΦθ(t)

)2
(7.19)

and

∫
T
P 2
υΦθ

(t) dt ≈ vol(T )
|Q|

∑
t∈Q

P 2
υΦθ

(t) . (7.20)

In our two experiments on kriging variance prediction from above we calculate the rhs of
(7.19) and (7.20) with ϑ = ϑ0, ϑMLE and ϑCV2. The accuracy of the prediction of RMSE(θ?) is
then illustrated by calculating the relative deviation of the predicted RMSE over the actual
RMSE for the di�erent choices of ϑ.

The deviations of the predicted RMSE from the actual RMSE are illustrated in Figure 7.8.
The boxplots for ϑ = ϑ0 give an idea about how appropriate the approximation (7.18) is apart
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from the additional uncertainty due to unknown model parameters. Predictions are more pre-
cise in the case where r0 = 0.1 which could be expected since at this scale the �uctuations of
the squared prediction errors around their mean are more likely to average out.
A comparison with the boxplots for ϑ = ϑMLE and ϑ = ϑCV2 shows how much the RMSE
predictions deteriorate when estimated parameters are used for both predicting f and pre-
dicting the kriging variance. In the case where r0 = 0.1 there is no noticeable advantage of
the predictions corresponding to ϑMLE over those corresponding to ϑCV2. In the case r0 = 1
there is a slight advantage of MLE over CV2 but again both methods yield good predictions
of the RMSE with deviations mostly smaller than 20%. Note in particular that the CV2 is
competitive to MLE w.r.t. estimation of the L2-prediction error although it yields very poor
estimates of υ.

The results of the comparison between MLE and CV2 made in this subsection can be sum-
marized as follows

• The MLE yields (sometimes considerably) better parameter estimates than the CV2
when the model assumptions (Gaussian RF) are true.

• The parameter estimates obtained by ML lead to better kriging predictions than those
obtained by CV1 and CV2. In our examples the di�erence was not very big though,
and neither was the di�erence of both methods to the case where prediction is carried
out with the optimal parameters.

• The parameter estimates from both methods allow for a satisfactory prediction of the
kriging variance. Even bad estimates seem to be at least consistent with themselves
in the sense that they still lead to more or less acceptable predictions of the kriging
variance. MLE is again slightly ahead of CV2.

All of the simulation results of this subsection were obtained for the case where f is indeed
a sample path of a stationary Gaussian RF and do therefore not allow any conclusion about
the performance of MLE and LOOCV in the kernel interpolation framework. In particular
for the MLE, the derivation of which was explicitly based on these assumptions, it is not clear
if its application in the context of approximation theory is meaningful at all.
We will show in the next section that the MLE can indeed be used in a much more gen-
eral framework and we will conduct a further simulation study with typical examples from
approximation theory in Section 7.5.

7.4 Maximum Likelihood revisited

We already noted that the (RE)ML estimator, which was derived under the assumption of
a Gaussian RF, may perform well also in Non-Gaussian frameworks. In this section we go
even further and motivate its use in the framework of Numerical Analysis which does not
assume any probabilistic model behind the creation of the observations f(t1), . . . , f(tn) at all.
As above we denote by T the set of sampling locations (in kernel interpolation also called
centres).
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Our starting point is the LOOCV procedure which has a meaningful interpretation indepen-
dent of any model assumptions. It can be argued however, that this procedure does not use
the available information in an optimal way, in particular the following two points of criticism
can be made (see also the discussion of the results for rCV2 in the simulation study in Section
7.3):

1. The same observations f(t1), . . . , f(tn) are used for the calculation of every component
εk, either as value to be predicted or as data the interpolant is �tted to. This can
lead to distortions, especially with irregular patterns of sampling locations. To see this
assume that the distance between two sampling location ti and tj is small compared
with the average distance. Then sRθ,P,[−i](ti) is determined mainly by f(tj) and vice
versa, so that the components εi and εj basically contain the same information about
f − sRθ,P . This �redundancy� is not accounted for by LOOCV.

2. The accuracy of sRθ,P,[−k] as a predictor for f(tk) does not only depend on θ, but
strongly depends on the geometry of T . Even for a good choice of θ, data points near
the margin or isolated data points will in general be predicted worse, i.e. lead to bigger
values of εk, than data points in densely sampled areas of T . This is also not taken into
account by LOOCV.

The latter point of criticism suggests that the LOOCV components should be weighted with
weights that re�ect the prediction accuracy that can be expected on the basis of the geometry
of T . A suitable such measure for the �potential� prediction accuracy at t ∈ T is the power
function PRθ,P(t) introduced in (6.24). PRθ,P is the norm of the pointwise error functional
of the interpolation process and thus gives an indication about the magnitude of f − sRθ,P
independent of the actual f .

Writing PRθ,P,[−k] for the power function corresponding to sRθ,P,[−k] we now propose to pass
to the weighted LOOCV errors

ε
(w)
k :=

εk
PRθ,P,[−k](tk)

, k = 1, . . . , n. (7.21)

When ε
(w)
θ :=

(
ε

(w)
1 , . . . , ε

(w)
n

)′
is used instead of εθ components corresponding to hard-to-

predict locations are no longer dominating the norm of the error vector.

Remark 7.4.1. In Section 7.1 we pointed out that the LOOCV error component εk is the value
at tk of the error function fεk := sRθP − sRθP,[−k] . Now, fεk has the form (6.27) with respect
to the centres T \ {tk}, and so Lemma 6.5.4 yields∣∣ε(w)

k

∣∣ = ‖fεk‖HRθ,P . (7.22)

Hence, instead of the LOOCV interpolation errors at the left-out centres we are now consid-
ering the norms ‖ · ‖HRθ,P of the LOOCV error functions fε1 , . . . , fεn .

The weighting according to (7.21) however raises a new problem: the power functions PRθ,P,[−k],
k = 1, . . . , n, themselves depend on θ which has the consequence that minimization of the
weighted errors favours values of θ that lead to big power functions. This calls for a correction
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factor that penalizes big values of the power functions. When the l2 norm of the weighted
errors is used we propose the following weighted cross validation (WCV) procedure

θWCV = arg min
θ∈Θ

∥∥ε(w)
θ

∥∥2 · n
√√√√ n∏

i=1

P 2
Rθ,P,[−i](ti)

 .

The rationale behind using the geometric mean of PRθ,[−1](t1), . . . , PRθ,[−n](tn) as a correc-
tion factor rather than e.g. the arithmetic mean is that this corresponds to averaging on a
logarithmic scale. In our situation, the most important feature about the correction factor is
its behaviour under changes of θ, and the terms

∂
∂θl

log
(
P 2
Rθ,P,[−k](tk)

)
=

∂
∂θl
P 2
Rθ,P,[−k](tk)

P 2
Rθ,P,[−k](tk)

, k = 1, . . . , n

have the big advantage that they can more reasonably be assumed to be of the same magni-
tude. Hence, the penalty factor, too, depends quite uniformly on all the terms involved.

Remark 7.4.2. The weighting of the error components in (7.21) by the power function can be
motivated in the same way in the framework of spatial statistics. There, moreover, a formal
justi�cation of the proposed correction factor can be given:

Consider the log-target function

log
(∥∥ε(w)

θ

∥∥2
)

+ log
(
F (θ)

)
with correction factor F (θ). Taking partial derivatives and multiplying by

∥∥ε(w)
θ

∥∥2
leads to

an estimating function G(θ; f) with components

Gθl(θ; f) = ∂
∂θl

∥∥ε(w)
θ

∥∥2 +
∥∥ε(w)

θ

∥∥2 · ∂
∂θl

log
(
F (θ)

)
, l = 1, . . . , p.

For simplicity we only discuss the case P = {0} in which, using Proposition 7.1.1 and Lemma
7.1.2, we have ∥∥ε(w)

θ

∥∥2 = f ′A−1
θ Dθ A

−1
θ f and

∂
∂θl

∥∥ε(w)
θ

∥∥2 = −2 f ′A−1
θ

∂
∂θl
Aθ A

−1
θ DθA

−1
θ f + f ′A−1

θ
∂
∂θl
Dθ A

−1
θ f .

Noting that tr
(
A−1
θ

∂
∂θl
Aθ A

−1
θ Dθ

)
= tr

(
A−1
θ

∂
∂θl
Dθ

)
= tr

(
D−1
θ

∂
∂θl
Dθ

)
we obtain

E
(
Gθl(θ;XT )

)
= −tr

(
D−1
θ

∂
∂θl
Dθ

)
+ n · ∂

∂θl
log
(
F (θ)

)
, l = 1, . . . , p,

and hence the estimating function G(θ; f) is unbiased if and only if

∂
∂θl

log
(
F (θ)

)
= 1

n tr
(
D−1
θ

∂
∂θl
Dθ

)
, l = 1, . . . , p.
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Now, if we take

F (θ) := n

√√√√ n∏
i=1

P 2
Rθ,P,[−i](ti)

as proposed above, we get (again by using Lemma 7.1.2) for any 1 ≤ l ≤ p :

∂
∂θl

log
(
F (θ)

)
= 1

n
∂
∂θl

log
(

n∏
i=1

Ψ−1
ii

)
= 1

n
∂
∂θl

log
(
|Dθ|

)
= 1

n tr
(
D−1
θ

∂
∂θl
Dθ

)
,

and so this choice of F (θ) is exactly the correction needed to obtain an unbiased estimating
function.

The weighted cross validation procedure proposed above is equivalent to a procedure proposed
in the geostatistical literature by [33] who assume the LOOCV errors to be multivariate
Gaussian.

In our motivation of the weighting (7.21) we did not make any explicit assumption about the
LOOCV errors. Implicitly however, we assume that for some υ > 0(

f(tk)− sRθ,P,[−k](tk)
)2 ≈ υ · P 2

Rθ,P,[−k](tk), k = 1, . . . , n,
(7.23)(

f(t)− sRθ,P(t)
)2 ≈ υ · P 2

Rθ,P(t), t ∈ T

with � ≈ � in the sense that the deviations are not systematic and �average out�. We will assess
the adequacy of this assumption in the numerical experiments in Section 7.5 together with a
similar assumption that comes with the following further re�nement of WCV.

The weighting of the LOOCV errors was suggested in response to our criticism on LOOCV
concerning the ignorance of the possibly di�erent magnitudes of ε1, . . . , εn. Another point of
criticism was the ignorance of the relations (�dependencies�) between di�erent error compo-
nents that are present due to the multiple use of the data f(t1), . . . , f(tn).
One way to deal with this is to pass from the leave-one-out principle to a sequential approach,
i.e. instead of using the data at all locations T \{tk} to predict f(tk), we only use the data at
the locations {t1, . . . , tk−1}. Denoting by sRθ,P,[<k] the corresponding interpolant with the
convention that sRθ,P,[≤q] ≡ 0 , the approximation errors now considered are

ε̃k := f(tk)− sRθ,P,[<k](tk), k = q + 1, . . . , n.

ε̃k is the value at tk of the error function f̃εk := sRθ,P,[≤k]− sRθ,P,[<k] which, unlike the error
function fεk introduced in Section 7.1, is now only de�ned for k > q.

In this sequence of n− q surrogate interpolation problems each data pair is still used several
times, but now we have(

f̃εi , f̃εj
)
HRθ,P

= 0, for all q < i 6= j ≤ n (7.24)

which follows from Lemma 6.2.6 by noting that f̃εi ∈ VRθ,P,{t1,...,tj−1} for all i < j.

In other words: the error functions f̃εq+1 , . . . , f̃εn are pairwise orthogonal functions in HRθ,P
and can therefore be expected to yield essentially di�erent information about the interpolation
behaviour of the given data.
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Remark 7.4.3. In the statistical context the motivation for the sequential approach instead
of the leave-one-out principle is similar. If we regard ε̃q+1, . . . , ε̃n as RVs, condition (6.21) on
the kriging weights implies that ε̃k is a contrast of Xt1 , . . . , Xtk . But then, by Lemma 6.6.2,
ε̃i and ε̃j are uncorrelated for any 1 ≤ i < j ≤ b.

We can now combine both ideas and work with the weighted sequential approximation errors

ε̃
(w)
k :=

ε̃k
PRθ,P,[<k](tk)

, k = q + 1, . . . , n. (7.25)

If we use the (squared) euclidean norm of the error vector ε̃
(w)
θ =

(
ε̃

(w)
q+1, . . . , ε̃

(w)
n

)′
, the same

arguments as above suggest that we should introduce a correction factor and minimize

∥∥ε̃ (w)
θ

∥∥2 · n−q

√√√√ n∏
i=q+1

P 2
Rθ,P,[<i](ti) . (7.26)

The following two Propositions provide the basis for better interpretability and computation-
ally e�ective calculation of this target function.

Proposition 7.4.4. Let ε̃
(w)
θ be the vector of weighted sequential approximation errors as

de�ned above. Then it holds that∥∥ε̃ (w)
θ

∥∥2 =
∥∥sRθ,P∥∥2

HRθ,P
= f ′

(
A−1
θ − A−1

θ P
(
P ′A−1

θ P
)−1

P ′A−1
θ

)
f.

In particular
∥∥ε̃ (w)

θ

∥∥2
does not depend on the ordering of t1, . . . , tn.

Proof: As in Remark 7.4.1 we see that
∣∣ε̃ (w)
k

∣∣ =
∥∥f̃εk∥∥HRθ,P , k = q + 1, . . . , n.

Using the orthogonality relation (7.24) we get∥∥ε̃ (w)
θ

∥∥2 =
n∑

i=q+1

∥∥sRθ,P,[≤i] − sRθ,P,[<i]∥∥2

HRθ,P
(7.27)

=
n∑

i=q+1

(∥∥sRθ,P,[≤i]∥∥2

HRθ,P
−
∥∥sRθ,P,[<i]∥∥2

HRθ,P

)
=

∥∥sRθ,P∥∥2

HRθ,P
.

Now, due to the special form (6.7) of sRθ,P its norm ‖ · ‖HR,P can be calculated explicitly (see
Section 6.2) and we obtain∥∥sRθ,P∥∥2

HRθ,P
= α′Aθ α = α′f − α′P β = α′f,

since by condition (6.9) we have P ′α = 0. Using (6.10) we get∥∥sRθ,P∥∥2

HRθ,P
=
(
α
β

)′ ( f
0

)
=
(

f
0

)′ (
Aθ P
P ′ 0

)−1( f
0

)
,

and the asserted representation follows from standard rules for the inversion of block matrices.
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Proposition 7.4.5. For the product of sequential power functions it holds that

n∏
i=q+1

P 2
Rθ,P,[<i](ti) ∼

∣∣Aθ∣∣ ∣∣P ′A−1
θ P

∣∣
with a proportionality constant that does not depend on θ. In particular the correction factor
in (7.26) does not depend on the ordering of t1, . . . , tn.

Proof: To simplify notation we drop the subscript θ from Aθ during the proof. We rewrite
(6.10) in the form (

0 P ′

P A

)(
β
α

)
=
(

0
f

)
and prove the assertion of the proposition by induction.

Let Ak ∈ Rk×k and Pk ∈ Rk×q denote the submatrices of A and P that correspond to the
interpolation system for the �rst k data points only, further let

Mk :=
(

0 P ′k
Pk Ak

)
,

ak :=
(
Rθ(t1, tk), . . . , Rθ(tk−1, tk)

)′
and pk :=

(
p1(tk), . . . , pq(tk)

)′
.

Let's �rst assume, that
{
p1, . . . , pq

}
is a Lagrange basis of P. In this case Pq = Idq and we

have ∣∣Mq

∣∣ =
∣∣∣∣( 0 Idq

Idq Aq

)∣∣∣∣ = (−1)q
∣∣∣∣( Idq Aq

0 Idq

)∣∣∣∣ = (−1)q

Let q < k ≤ n and writeMk in block form asMk−1 augmented by the kth row and kth column

Mk =

 0 P ′k−1 pk
Pk−1 Ak−1 ak
p′k a′k Rθ(tk, tk)


with Schur complement

Sk = Rθ(tk, tk) −
(
pk
ak

)′( 0 P ′k−1

Pk−1 Ak−1

)−1(
pk
ak

)
.

By standard rules for determinants of block matrices we have
∣∣Mk

∣∣ =
∣∣Mk−1

∣∣ · Sk and hence∣∣∣∣( A P
P ′ 0

)∣∣∣∣ =
∣∣∣∣( 0 P ′n

Pn An

)∣∣∣∣ = (−1)q
n∏

i=q+1

Si .

Now, the inversion rule for block matrices implies

S−1
k =

(
0
ek

)′( 0 P ′k
Pk Ak

)−1( 0
ek

)
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and the same arguments as in the proof of Lemma 7.1.2 show that Sk = P 2
Rθ,P,[<k] (tk).

Noting that −P ′AP is the Schur complement of

(
A P
P ′ 0

)
we apply again the rule for

determinants of block matrices and obtain

n∏
i=q+1

P 2
Rθ,P,[<i](ti) = (−1)q

∣∣∣∣( A P
P ′ 0

)∣∣∣∣ =
∣∣A∣∣ ∣∣P ′A−1P

∣∣.

If
{
p1, . . . , pq

}
is not a Lagrange basis, there exists a regular matrix B so that

p̃k :=
q∑
j=1

Bjk pj , k = 1, . . . , n

is a Lagrange basis, and hence P̃q = (PB)q = Iq as needed above. But then

∣∣A∣∣ ∣∣P ′A−1P
∣∣ =

∣∣A∣∣ ∣∣∣ P̃ ′A−1P̃
∣∣∣ / ∣∣B|2 =

n∏
i=q+1

P 2
Rθ,P,[<i](ti)

/ ∣∣B|2
so the determinant only changes by a factor that is independent of θ.

Via Proposition 7.4.4 we can give the following interpretation to the target function (7.26):

1.
∥∥sRθ,P∥∥2

HRθ,P
re�ects the behaviour of

∥∥f∥∥2

HRθ,P

2. n−q

√
n∏

i=q+1
P 2
Rθ,P,[<i](ti) re�ects the behaviour of P 2

Rθ,P(t)

In the light of the standard bound (6.25) for approximation errors it is desirable to make
both factors small, and the target function (7.26) realizes a compromise between these two
objectives. This seems to be an adequate response to the observation in Section 7.3 that it
may be bene�cial to involve the power function (as a measure of potential prediction accuracy)
in the parameter estimation process. On the other hand, it can be seen as a remedy to the
problem of the procedure presented in [13, Sec. 17.2.1] which is based exclusively on the power
function which, as remarked by the author, ignores the dependency of

∥∥f∥∥HRθ,P on θ.

If we minimize the logarithm of (7.26) and plug in the expressions derived in the two preceding
propositions, a comparison with (7.7) shows that the resulting target function coincides, up
to some unimportant constants, with the negative (restricted) pro�le log likelihood. Hence, in
this section we have given a motivation for (RE)ML that is independent of any assumption on
the mechanism that created f . In the following we shall refer to the procedure that minimizes
(7.26) as MLE or REML estimator.
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Once again we shall point out that implicitly we did make an additional assumption to justify
the weighting of the approximation errors, namely that for some υ > 0(

f(tk)− sRθ,P,[<k](tk)
)2 ≈ υ · P 2

Rθ,P,[<k](tk), k = q + 1, . . . , n,
(7.28)(

f(t)− sRθ,P(t)
)2 ≈ υ · P 2

Rθ,P(t), t ∈ T

with � ≈ � in the sense that the deviations are not systematic and do somehow �average out�.
Whenever this assumption is satis�ed we should expect (RE)ML to perform better than
LOOCV. When (7.28) is inappropriate however, (RE)ML may produce parameter estimates
that are systematically too small or too big. Two typical situations where this is likely to
happen are

• If the sequence ‖sRθ,P,[≤q]‖HRθ,P , ‖sRθ,P,[≤q+1]‖HRθ,P , . . . converges fast.
In this case one can see from (7.27) that the sequence ε̃

(w)
q+1, ε̃

(w)
q+2, . . . quickly tends to

0, i.e. the magnitude of ε̃k decreases faster than PRθ,P,[<k](tk) and hence (7.28) cannot
hold.

If the norms of the interpolants approach ‖f‖HRθ,P only slowly (or not at all in case
f /∈ HRθ,P), then for moderate n the magnitudes of ε̃q+1, . . . , ε̃n should be similar and
so (7.28) is more plausible.

In the context of in spatial statistics we usually have f /∈ HRθ,P (see Proposition 4.2.2)
and so this caveat does not apply.

• If f behaves substantially di�erent in di�erent subregions of T . This can also entail
systematic deviations from (7.28) that may not average out.

Consider for instance a situation where the data are scattered and f exhibits strong
�uctuations in exactly those subregions of T where the sampling locations are sparse.
The corresponding components of ε̃θ will then be assigned small weights, although it is
in these subregions where the prediction errors will be largest.

This is again in contrast to the situation in spatial statistics where the model assump-
tions usually imply that the behaviour of f does not radically di�er from one subdomain
of T to another, and so the weighting of the error components should never entail any
systematic deviations.

We will see instances of both situations in the numerical examples in Section 7.5.

7.5 Comparing CV and ML in a Numerical Analysis

Framework

Once again, we compare the performance of LOOCV and ML but now for functions f :
[0, 1]2 → R without any probabilistic background.

Speci�cally, we use three test functions (F1, F5, F9) from [31] and use the procedures MLE,
WCV, CV1, CV2 to select the parameter of the interpolation kernel that is then used to
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Figure 7.9: Di�erent alignments of sampling locations (here for n = 81) used in the experiments of this section:
equidistant points (left), tensor-product Chebyshev points (middle) Halton points (right).

approximate f based on its values at T := {t1, . . . , tn}. Experiments are carried out with
25, 81, and 289 data points. Since in many of the applications of approximation theory the
centres are not �xed in advance but can be chosen freely, we also try out di�erent alignments
of data points:

• equidistant points

• tensor-product Chebyshev points

• Halton points

The tensor-product Chebyshev points are taken from [13] and have the advantage that they
provide more information about f near the boundaries of T where the approximation accuracy
is often lower. Halton points are an example of a quasi-random number sequence that can
be created e.g. by the R-package �randtoolbox�. We use them to represent the situation of
scattered data. For details about their de�nition we refer to [17] and [42]. The di�erent types
of alignments (abbreviated with E-n, C-n and H-n respectively) are illustrated in Figure 7.9.

7.5.1 Approximation accuracy

Interpolation will be carried out in the standard framework where P = {0} with a scaled
version (with scaling parameter c) of the inverse multiquadrics (in spatial statistics called
cauchy model):

Φc(h) =

(
1 +

(
‖h‖
c

)2
)− 1

2

as interpolation kernel. As in Section 7.3 we de�ne an equidistant 100× 100 evaluation grid
Q ⊂ [0, 1]2 and compare the root of the mean squared approximation errors RMSE(c) on our
simulation grid Q for copt, cMLE, cWCV, cCV1, and cCV2.
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Figure 7.10: Perspective plot of F1 (left) and RMSE-curves for F1 for di�erent point sets (right).

Our �rst test function is Franke's function (F1):

f(x, y) = 0.75 exp
(
−(9x− 2)2 + (9y − 2)2

4

)
+ 0.75 exp

(
−(9x+ 1)2

49
− 9y + 1

10

)
+ 0.5 exp

(
−(9x− 7)2 + (9y − 3)2

4

)
− 0.2 exp

(
−(9x− 4)2 − (9y − 7)2

)
A plot of F1 and the RMSE-curves for the experiments with 81 centres are given in Figure
7.10. We shall use it to make some general remarks:

First of all note that there is indeed for each curve a �nite value of c where the RMSE
is minimal. This is not self-evident and there are indeed examples where the minimum is
attained for c→∞.
A remarkable observation that can be made in Figure 7.10 is that the RMSE-curves di�er
substantially for the di�erent point alignments. While choosing c too small leads to large
approximation errors with all of the point sets, the use of very big c's produces big errors
when Halton points are used, but yields near-optimal approximants when tensor-product
Chebyshev points are used.

In Figure 7.11 we have depicted the kernel interpolants of F1 based on 81 Halton points
for di�erent values of c. For small c our radial interpolation kernels are highly peaked and
therefore cannot produce a good interpolant. If c is chosen too big, however, the corresponding
interpolant approximates f well in the interior of [0, 1]2 but produces undesirable oscillations
near the boundaries which blow up the approximation error (this is due to a connection
between kernel interpolation and polynomial interpolation, see e.g. [11]). The same does
not happen with Chebyshev centres which are comparatively dense near the boundaries and
prevent such oscillations. The price for this, however, is a smaller data point density - and
hence lower approximation accuracy - in the interior.
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Figure 7.11: Approximation of F1 with 81 Halton points for c = 0.03 (left), 0.25 (middle) and 0.8 (right).

Note that the approximations of F1 are much better than those of the simulated sample paths
of Gaussian RFs in Section 7.3. This is not surprising since F1 is much smoother than those
sample paths. On the other hand, for the same reason, the sensitivity of the approximation
accuracy to deviations of c from copt which was found to be small for the simulated RFs is
much bigger for F1.
Table 7.6 shows the optimal parameter and the parameters chosen by the di�erent procedures.
The corresponding RMSEs are given in Table 7.7 with the results from the respective best
procedure printed bold. Neither a clear over- nor a clear underperformance of any of the
methods can be reported based on these results. In particular the MLE is competitive also in
a non-statistical context but is no longer superior to LOOCV. The cases where cMLE deviates
from copt quite strongly can often (but not always) be explained by deviations from the
assumption (7.28). We illustrate this by calculating the components of ε̃c in the experiment
with 81 Halton points, once computed for c = copt and once for c = cMLE (Figure 7.12). For
the optimal c the �rst components tend to be bigger than the later components. The MLE
tries to �correct� this by choosing a value of c that results in more uniform magnitudes of
the di�erent components. In this particular case however such a �correction� implies moving
away from c = copt. We shall study an example where the magnitudes of the components of
ε̃c are even much more di�erent.

Our second test function is a scaled Gaussian kernel (function F5 from [31]):

f(x, y) =
exp

(
− 81

4 ((x− 0.5)2 + (y − 0.5)2)
)
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Figure 7.12: Components of ε̃c for c = copt (left) and c = cMLE (right) in the setup with F1 and H-81.
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copt cMLE cWCV cCV1 cCV2

E-25 0.28 0.31 0.25 0.26 0.28
C-25 0.47 0.32 0.22 0.20 0.25
H-25 0.20 0.40 0.67 0.45 0.45

E-81 0.35 0.38 0.34 0.33 0.39
C-81 0.48 0.44 0.42 0.45 0.43
H-81 0.25 0.36 0.28 0.31 0.28

E-289 0.43 0.39 0.45 0.46 0.47
C-289 0.45 0.39 0.50 0.50 0.50
H-289 0.44 0.39 0.37 0.46 0.46

copt cMLE cWCV cCV1 cCV2

E-25 0.27 0.20 0.31 0.20 0.40
C-25 0.18 0.28 0.40 0.16 0.37
H-25 0.31 0.34 0.39 0.42 0.39

E-81 0.58 0.59 0.72 0.62 0.69
C-81 0.39 0.54 0.77 0.77 0.95
H-81 0.45 0.61 0.57 0.46 0.48

E-289 0.66 0.78 0.67 0.71 0.71
C-289 0.78 0.77 0.59 0.72 0.72
H-289 0.71 0.76 0.65 0.67 0.67

Table 7.6: Optimal parameter and parameter estimates for test function F1 (left) and F5 (right).

RMSE(copt) RMSE(cMLE) RMSE(cWCV) RMSE(cCV1) RMSE(cCV2)

E-25 2.586 · 10−2 2.604 · 10−2 2.603 · 10−2 2.593 · 10−2 2.586 · 10−2

C-25 4.270 · 10−2 4.835 · 10−2 6.675 · 10−2 7.286 · 10−2 5.927 · 10−2

H-25 3.299 · 10−2 4.765 · 10−2 7.986 · 10−2 5.266 · 10−2 5.266 · 10−2

E-81 4.140 · 10−3 4.145 · 10−3 4.142 · 10−3 4.145 · 10−3 4.150 · 10−3

C-81 9.531 · 10−3 9.551 · 10−3 9.577 · 10−3 9.542 · 10−3 9.562 · 10−3

H-81 4.492 · 10−3 5.147 · 10−3 4.567 · 10−3 4.741 · 10−3 4.567 · 10−3

E-289 3.823 · 10−5 4.053 · 10−5 4.095 · 10−5 4.431 · 10−5 4.924 · 10−5

C-289 3.918 · 10−4 3.996 · 10−4 3.949 · 10−4 3.949 · 10−4 3.949 · 10−4

H-289 6.267 · 10−5 9.399 · 10−5 1.252 · 10−4 7.094 · 10−5 7.094 · 10−5

Table 7.7: Optimal RMSE and RMSE corresponding to the estimated parameters for test function F1.

RMSE(copt) RMSE(cMLE) RMSE(cWCV) RMSE(cCV1) RMSE(cCV2)

E-25 1.468 · 10−3 4.104 · 10−3 2.290 · 10−3 4.104 · 10−3 4.747 · 10−3

C-25 7.560 · 10−3 1.073 · 10−2 1.302 · 10−2 8.259 · 10−3 1.258 · 10−2

H-25 5.789 · 10−3 5.882 · 10−3 6.330 · 10−3 6.719 · 10−3 6.330 · 10−3

E-81 4.012 · 10−6 5.355 · 10−6 1.027 · 10−4 2.002 · 10−5 7.297 · 10−5

C-81 5.230 · 10−5 1.180 · 10−4 2.357 · 10−4 2.357 · 10−4 3.644 · 10−4

H-81 1.006 · 10−5 4.268 · 10−5 2.916 · 10−5 1.050 · 10−5 1.255 · 10−5

E-289 2.345 · 10−10 3.633 · 10−10 3.046 · 10−10 1.422 · 10−9 1.422 · 10−9

C-289 7.099 · 10−11 1.054 · 10−10 1.446 · 10−9 3.009 · 10−10 3.009 · 10−10

H-289 1.004 · 10−9 1.946 · 10−9 2.004 · 10−9 1.039 · 10−9 1.039 · 10−9

Table 7.8: Optimal RMSE and RMSE corresponding to the estimated parameters for test function F5.
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Figure 7.13: Components of ε̃c for c = copt (left) and c = cMLE (right) in the setup with F5 and H-81.

F5 is an example of a function where assumption (7.28) cannot hold since the sequence
‖sΦc,[≤1]‖HΦc

, ‖sΦc,[≤2]‖HΦc
, . . . of the RKHS-norms of the interpolants converges to ‖f‖HΦc

rather quickly. As discussed at the end of Section 7.4, this implies that the magnitudes of the
components ε̃k for big k are considerably smaller than those for small k and so it is not clear
if the MLE produces reasonable estimates.

The results in Table 7.6 and 7.8 show that the MLE again performs comparable to the LOOCV
procedures although we can indeed observe a certain tendency of the MLE to choose c too
big for larger n = 81 and n = 289.

In Figure 7.13 we have again calculated the components of ε̃c in the experiment with 81
Halton points, now for F5 and the respective values of copt and cMLE. We observe that
the error components with indices ≥ 50 are quite close to zero which results from the fact
that ‖sΦc,[≤50]‖HΦc

is already very close to ‖f‖HΦc
. As before, for the choice c = cMLE the

magnitudes of the error components become a bit more similar although here the dissimilarities
are only reduced but not eliminated. This �correction� again explains the preference of bigger
c's by the MLE, but at least in this example the resulting bias does not render the MLE
uncompetitive.

In our comparison of MLE, CV1 and CV2 for the other test functions from [31] we found
that in most cases MLE yields comparable or even slightly superior choices of c than CV1
and CV2. Noticeable exceptions are the test functions that favour very big values of c, but in
this case the additional problem of ill-conditioned interpolation systems arises, a discussion
of which would be beyond the scope of this work.

Instead, we want to study if assumption (7.28) even allows for a prediction of the L2-
approximation error.

7.5.2 Prediction of the L2-approximation error

If assumption (7.28) is adequate it implies in our situation

(a) υ ≈ 1
n

n∑
k=1

(
ε̃

(w)
k

)2
=

1
n

∥∥sΦc

∥∥
Φc

=
1
n

f ′A−1
c f

(b)
∥∥f − sΦc

∥∥2

L2(T )
=
∫
T

(
f(t)− sΦc(t)

)2
dt ≈ υ

∫
T
P 2

Φc(t) dt

135



7.5: Comparing CV and ML in a Numerical Analysis Framework

Pred. RMSE (MLE) rel. error Pred. RMSE (CV2) rel. error

E-25 5.411 · 10−2 + 108 % 5.345 · 10−2 + 107 %
C-25 6.376 · 10−2 + 32 % 6.598 · 10−2 + 11 %
H-25 4.830 · 10−2 + 1 % 4.385 · 10−2 - 17 %

E-81 3.861 · 10−3 - 7 % 3.427 · 10−3 - 17 %
C-81 5.082 · 10−3 - 47 % 5.204 · 10−3 - 46 %
H-81 6.868 · 10−3 + 33 % 5.095 · 10−3 + 11 %

E-289 9.421 · 10−5 + 132 % 2.703 · 10−5 - 45 %
C-289 1.999 · 10−4 - 50 % 9.867 · 10−5 - 75 %
H-289 3.061 · 10−4 + 226 % 2.625 · 10−4 + 270 %

Table 7.9: Predicted RMSEs for F1 and relative deviation of this prediction from the actual RMSE.

Approximation (a) suggest a method to determine υ. By comparing with the derivation of
the pro�le log likelihood in (7.5) we see that the υ here coincides with the variance parameter
in the statistical context and (a) coincides with υMLE.

Approximation (b) shows how we can use the estimate of υ suggested by (a) to obtain a pre-
diction of the L2-approximation error. Instead of ‖f−sΦc‖L2([0,1]2), however, we use RMSE(c)
which can be interpreted as a discrete approximation. In the same way, we approximate the
rhs of (b) by

υ

∫
[0,1]2

P 2
Φc(t) dt ≈ 1

|Q|
∑
t∈Q

P 2
υΦc(t) . (7.29)

where |Q| denotes the number of points in our evaluation grid Q. If assumption (7.28) is
adequate, then this yields a prediction of RMSE(c).

In the LOOCV framework, we can make the assumption(
f(tk)− sRθ,P,[−k](tk)

)2 ≈ υ · P 2
Rθ,P,[−k](tk), k = 1, . . . , n,(

f(t)− sRθ,P(t)
)2 ≈ υ · P 2

Rθ,P(t), t ∈ T

similar to (7.28) which leads to the estimate υCV2 introduced in Section 7.3. Plugging this
estimate into (7.29) we have again a prediction of RMSE(c).

Tables 7.9 and 7.10 show the predicted RMSEs that are obtained as described above by
estimating (υ, c)? , ? = MLE, CV2 and calculating (7.29) with kernel υ?Φc? over the grid Q.
In addition, we calculate the relative deviation of this predicted RMSE from RMSE(c?), the
actual RMSE from Tables 7.7 and 7.8 that is obtained when c? is used for interpolation.

Even for test function F1 the predictions are not very good in general, neither for (υ, c)MLE
nor for (υ, c)CV2. They may serve as a guess on the magnitude of the L2-approximation error
but are far less accurate than in the statistical context.

The situation is even worse for test function F5. The bad results for the MLE in the examples
with n = 81 and n = 289 could be anticipated since we already saw that assumption (7.28)
is totally inappropriate in this case. Speci�cally, the value of υ that would be adequate for
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Pred. RMSE (MLE) rel. error Pred. RMSE (CV2) rel. error

E-25 2.712 · 10−2 + 560 % 1.681 · 10−2 + 254 %
C-25 2.651 · 10−2 + 147 % 2.546 · 10−2 + 102 %
H-25 1.794 · 10−2 + 205 % 1.268 · 10−2 + 100 %

E-81 4.678 · 10−4 + 8635 % 5.857 · 10−5 - 20 %
C-81 9.938 · 10−4 + 742 % 9.291 · 10−4 + 153 %
H-81 8.749 · 10−4 + 1950 % 9.095 · 10−5 + 624 %

E-289 5.884 · 10−7 + 161900 % 2.766 · 10−10 - 81 %
C-289 3.715 · 10−7 + 352400 % 1.309 · 10−9 + 335 %
H-289 3.784 · 10−6 + 109400 % 1.293 · 10−9 + 24 %

Table 7.10: Predicted RMSEs for F5 and relative deviation of this prediction from the actual RMSE.

the �rst error components is much bigger than the value for the later components and for
the predictions at unobserved data sites. As a consequence, υ, and hence the predicted L2-
approximation error, is grossly overestimated in these cases. For n = 25 and for the CV2
predictions this explanation does not apply but still we note that the predictions are even
worse than those for F1.

As a conclusion of the experiments so far in this section we note

1. In the context of kernel interpolation both ML and LOOCV methods can be recom-
mended for selecting unknown kernel parameters. At least in the cases where the issue
of ill-conditioned interpolation systems does not come into play the parameters chosen
by these procedures in general lead to satisfactory approximants.

2. A reasonable prediction of the L2-approximation error as obtained under statistical
model assumptions is in general not available in the context of kernel interpolation.
While the MLE estimates turned out to be not very sensitive to violations of assumption
(7.28) when the purpose is approximating f , these assumptions need to be satis�ed
su�ciently well in order to yield adequate predictions of the L2-approximation error.

We �nally study if (RE)ML or LOOCV can be used to guess the smoothness of f .

7.5.3 Choosing the smoothness of the interpolation kernel

The two test function considered above are both in C∞
(
[0, 1]2

)
which justi�es the use of the

in�nitely smooth inverse multiquadric kernel. Now we want to consider a test function f with
�nite smoothness and use the Whittle-Matérn kernel with the parametrization as in (6.33).
By Theorem 6.7.1 we know that we can expect optimal convergence rates also for kernels
whose corresponding RKHS is smoother than f , and so from the point of view of prediction
accuracy it is not clear how smooth the interpolation kernel should �nally be. It is therefore
interesting to ask

• Which kernel smoothness yields the best predictions? In particular, are kernels prefered
whose corresponding RKHS contains f?
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Figure 7.14: Perspective plot of F9 (left) and contour plots of RMSE(r, ν) for E-289 and H-289 (right).

• Which kernel smoothness is suggested by (RE)ML and LOOCV methods based on the
available data?

A �rst answer to this issue is obtained by looking again at the simulation study in Section
7.3. The simulated sample paths studied there were all (according to the theoretical results
from Section 5.5) just barely not in W 1,2

(
[−1, 1]2

)
and we could just ignore their stochastic

background, take a numerical analyst's point of view, and use this smoothness information
only. In any case a look at Figure 7.4 then tells us that the best prediction is obtained
for a smoothness parameter ν somewhere around 1.0, which corresponds to a kernel that is
reproducing in W 2,2

(
[−1, 1]2

)
. This suggests that we should use a kernel for interpolation

whose corresponding RKHS is by d/2 smoother than f . We shall investigate if the same
conclusion holds for a test function without stochastic background.

We study the interpolation behaviour of test function F9 from [31]:

f(x, y) =


1 if y − ξ ≥ 1/2,
2(y − ξ) if 0 ≤ y − ξ ≤ 1/2,
(cos(4πr(ξ, y) ) + 1)/2 if r(ξ, y) ≤ 1/4,
0, otherwise

where

r(ξ, y) =

√(
ξ − 3

2

)2

+
(
y − 1

2

)2

, ξ = 2.1x− 0.1

This function has jumps in its �rst derivative, but the jumps occur only on a set of λ2-measure
zero and one can see that f is just barely not in W 1.5,2([0, 1]2). It is depicted in Figure 7.14
on the left.

We only give results for interpolation based on the point sets E-289 and H-289. Using less
than 289 centres does not give a satisfactory reproduction of f and Chebyshev points also do
not seem appropriate for a function with such irregular behaviour in the interior.

Optimal parameters, parameter estimates and corresponding RMSEs for these two setups are
given in Tables 7.11 and 7.12.
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7.5: Comparing CV and ML in a Numerical Analysis Framework

ropt rMLE rWCV rCV1 rCV2 νopt νMLE νWCV νCV1 νCV2

E-289 0.18 0.222 0.126 0.153 0.147 8.6 3.45 15.3 10.4 11.3
H-289 0.42 0.241 0.235 0.580 0.277 2.1 2.86 2.84 2.24 2.63

Table 7.11: Optimal parameter and parameter estimates for test function F9.

RMSE(θopt) RMSE(θMLE) RMSE(θWCV) RMSE(θCV1) RMSE(θCV2)

E-289 8.220 · 10−3 8.326 · 10−3 8.570 · 10−3 8.263 · 10−3 8.287 · 10−3

H-289 9.082 · 10−3 9.661 · 10−3 9.687 · 10−3 9.161 · 10−3 9.385 · 10−3

Table 7.12: Optimal RMSE and RMSE corresponding to the estimated parameters for test function F9.

First note that the optimal choices of r and ν strongly depend on the geometry of the point
sets. With respect to smoothness we observe that the values of ν that yield optimal inter-
polants are relatively big, especially so for E-289. This is remarkable because W 1.5,2([0, 1]2)
is very rough and corresponds to a reproducing kernel Φr,0.5. Hence, we might expect the
optimal ν to be close to 0.5 but this is neither true for the optimal nor for the estimated ν's.
The precision of the approximation with estimated parameters is again quite satisfactory, now
with superior performance of CV1 and CV2.

To sum up we can say that our parameter selection procedures (MLE, CV1, CV2) are suit-
able to identify parameters that yield good approximants but cannot be used to identify the
smoothness of f . In statistical setup this was possible indirectly by identifying the covariance
function and applying the theorems from Section 5.5.

The situation there is however di�erent in that the sample paths typically have the same
regularity all over T whereas our example here was irregular only on a λ2-null set. This
is obviously a point where the stochastic model assumption (which assumes a probability
measure on the space of all function) is quite crucial and the methodology that can be used to
estimate the smoothness of f in the statistical context cannot be carried over to the context
of approximation theory.
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