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Abstract

Up-to-date software systems are often modular and need to be changeable. While modu-
larity is believed to reduce software production costs, it also leads to increased diXculty
in testing, as the future uses of a module are getting more varied and therefore harder to
guess. Also, reused modules are often represented as black boxes, whose interior struc-
ture is hidden from the system. In consequence, on reusing a module, the testing focuses
on integration testing and monitoring the interfaces of the module.
In order to monitor a system, a model of the system is needed to compare the observed

traces to. However, with the advent of agile development methods and decreasing time
to market, formal models of a system are seldom available. While formal modeling
has not been widely adopted in industry, the importance of testing has increased, in
part thanks to the same agile development methods that obsolete explicit modeling. An
example is the test Vrst paradigm of eXtreme Programming, which requires that the tests
for any software have to be written before the software itself. Therefore, test cases are
available even for systems without a formal model.
In consequence, we propose to generate a system model suitable for monitoring from

a test suite for the system. The approach is based on automata learning. Angluin’s learn-
ing algorithm is used to generate an appropriate model, while state-merging methods
are applied to represent the test cases in a format that can be processed by the learning
algorithm.
Both Angluin’s algorithm and state-merging are tailored to the characteristics of test-

ing. For Angluin’s algorithm, this comprises a mapping of the query mechanisms onto
a test suite. The state-merging is used to construct a generic representation of arbitrary
test suites by exploiting the properties of a given test speciVcation language for a better
coverage. The approach is implemented in a prototypical tool and validated by a case
study.
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Zusammenfassung

Moderne Software-Systeme sind häuVg modular aufgebaut, müssen dabei aber
Ansprüchen an Wartbarkeit und Änderbarkeit genügen. Während man einerseits
annimmt, dass modulare Software mit geringerem Kostenaufwand hergestellt wer-
den kann, wird andererseits die Komplexität des Testens erhöht, da die zukünftigen
Anwendungen eines Moduls sich nur schwer vorhersagen lassen. Dazu kommt, dass
Module häuVg als abgeschlossene Bausteine wiederverwendet werden, so dass die
innere Struktur der Module dem System verborgen bleibt. Daher konzentriert sich der
Test eines wiederverwendeten Moduls oft auf den Integrationstest und das Beobachten
der Schnittstellen des Moduls (Monitoring).
Um das System-Verhalten an der beobachteten Schnittstelle bewerten zu können, wird

ein formales Modell des Systems benötigt, um die beobachteten Ereignisfolgen damit zu
vergleichen. Leider sind formale Modelle nur selten verfügbar, da durch die Anwendung
agiler Entwicklungsmethoden und die immer kürzer werdenden Entwicklungszeiten
häuVg keine formalen Modelle erstellt werden. Gleichzeitig hat sich das Testen von Soft-
ware immer mehr durchgesetzt, so dass für die meisten Software-Systeme eine Samm-
lung von Testfällen vorliegt.
Die vorliegende Arbeit schlägt eine Methode vor, mit deren Hilfe aus den Testfällen

eines Software-Systems ein formales Modell errechnet werden kann. Die Methode
basiert auf Ansätzen zum maschinellen Lernen von endlichen Automaten. Ein Lernalgo-
rithmus, der zuerst von Dana Angluin vorgeschlagen wurde, erzeugt das formale Modell,
während Methoden zur Zustands-Vereinigung die Testfälle in eine für den Lernalgorith-
mus geeignete Datenstruktur umwandeln.
Sowohl der Lernalgorithmus als auch die Methoden zur Zustands-Vereinigung wer-

den an die Eigenschaften des Testens angepasst. Für den Lernalgorithmus von Dana
Angluin bedeutet das, dass die Fragemechanismen auf die Testfälle abgebildet werden
müssen. Die Zustands-Vereinigung wird benutzt um eine generische Repräsentation be-
liebiger Testfälle zu errechnen, wobei die semantischen Eigenschaften der Testsprache
ausgenutzt werden um eine bessere Überdeckung des Zielmodells zu erhalten. Der kom-
binierte Ansatz wird in einem prototypischen Werkzeug implementiert und durch eine
Fallstudie belegt.
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1 Introduction

Today, software systems are generally designed to be modular and reusable. Modular-
ity is used to divide large systems into manageable portions, based on the assumption
that cohesive modules are easier to specify, easier to implement and easier to maintain.
At the same time, specifying self-contained modules almost directly leads to reuse of
modules, as modules can then be regarded as building blocks that can be put together
as needed. The ultimate scenario of a modular, reusable system is a web service, where
simple services are accessed as needed by various clients and orchestrated into larger
systems that can change at any moment.
While this vision of ultimate Wexibility is clearly attractive, there are also drawbacks.

Where the intended scope and responsibility of a software system before was mostly
clearly conVned and foreseeable, the further usage of a module is diXcult to anticipate.
Also, rare events that may lead to failures often cannot be tested beforehand, as the
time and resources used in testing are limited or the conditions that lead to the rare
event cannot be reproduced under laboratory conditions. For all these reasons, it may
be advisable to monitor a system for some time after its deployment.
A monitor for a system needs an oracle that accepts or rejects the observed behavior,

e.g. a system model that accepts or rejects the observed traces of the monitored system.
Unfortunately, the same dynamic software development processes leading to dynamic
modular systems also minimize the generation of formal models, as the speciVcation of
a formal model needs both time and expertise. Generating a formal model in retrospect
for an already running system is even harder, as the real implementation often deviates
from the original speciVcation.
A promising approach for the reconstruction of system models is to use learning algo-

rithms, as has been shown, for example, in [CM96], [HNS03], and [SLG07]. However, all
those approaches use learning algorithms to generate test cases for the active probing of
the system under test. This has two major drawbacks. First, active probing of a running
system may interfere with the system’s normal operation and thereby cause erratic be-
havior or even breakdowns. Also, the learned model will reWect the real implementation,
and is therefore not apt to be used as a means to judge the behavior of the system.
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In contrast, this thesis proposes a method for learning a system model from the sys-
tem’s test cases without probing the system under test itself. Test cases are almost al-
ways available and often more consistent to the system than any other model. Also, they
usually take into account all of the system’s possible reactions to a stimulus, thereby
classifying the anticipated correct reactions as accepted behavior and the incorrect or
unexpected reactions as rejected behavior. Simply put, a system model for passive test-
ing is generated from the artifacts used in active testing.

1.1 Contribution of this Thesis

This thesis deVnes a learning approach to the reconstruction of a system model from
the system’s test cases. We propose a hybrid approach, which is driven by Angluin’s
learning algorithm [Ang87] but uses state-merging to enhance the sample space. The
contribution comprises:

• An adaptation of Angluin’s learning algorithm to the domain of testing, which
comprises the redeVnition of Angluin’s query mechanisms for Vnite and inVnite,
i.e. cyclic, test case behavior.

• A collection of state-merging techniques, inspired by Biermann’s method [BK76],
termed semantic state-merging, which exploit the semantic properties of test cases
to enlarge the sample space. As an interface between Angluin’s learning algorithm
and the state-merging techniques, a generic data structure is introduced, the trace
graph, which is based on the preVx tree acceptor used in state-merging algorithms
and tailored to optimally represent the test cases used in the learning process.

• A prototypical implementation and a case study.

This hybrid approach combines the advantages of both its sources. While the adaptation
of Angluin’s learning algorithm is generic to the domain of testing and can be applied to
any test speciVcation language, it is in consequence also restricted to the small common
subset of the expressiveness of diUerent test languages. In contrast, semantic state-
merging can be speciVcally tailored to a given test speciVcation language and therefore
exploit the speciVc semantic properties of this test language in addition to the structure
of the test cases, but in consequence the generated model is also depending on the test
language. In addition, Angluin’s algorithm always generates a minimal automaton.
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1.2 Impact

Therefore, Angluin’s algorithm is used as a front-end, eXciently generating a generic
model, and the state-merging is used as a back-end, mining the test cases. The trace
graph data structure serves as a bridge between the two approaches.

1.2 Impact

ScientiVc papers on the results of this thesis have been peer-reviewed and published
on international conferences and workshops. In the following, we list the papers with
venue, title, reference, topic, and relate the topic of the paper to the contents of this
thesis.

• SV04: Self-adaptive Functional Testing of Services Working in Continuously Chang-
ing Contexts. Werner, Neukirchen, and Grabowski (2004) [WNG04].
The paper introduces the idea of using test cases to reconstruct a system model
for system monitoring.

• MOTES 08: Using Learning Techniques to Generate System Models for Online Test-
ing. Werner, Polonski, and Grabowski (2008) [WPG08].
In this paper, the approach to learning from test cases is introduced and the Vrst
adaptation of Angluin’s algorithm is presented. A Vrst implementation and proof-
of-concept example are also included. Section 4.2 is based on the contents of this
paper.

In the context of this thesis, several student projects were initiated and supervised by
the author:

• Sergei Polonski [Pol08] formulated the Vrst adaption of Angluin’s learning algo-
rithm in his Master’s thesis and implemented it for Boolean signals. He deVned the
estimation formula for the needed minimal length of the test case traces and iden-
tiVed the relevance of cycles. The results of his thesis form the basis of Section 4.2
and led to the explicit integration of inVnite traces (Section 4.3).

• Sanaz Karimkhani, Christian Otto, SvenWithus, and Hang Zhang in their students
project [AOWZ09] upgraded the basic implementation to accommodate arbitrary
signals in the test cases. They also deVned the foundations for the trace tree data
structure to represent test cases as described in Section 5.1.1.
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• Christian Otto, in his bachelor thesis [Ott09], extended the trace tree structure to
include cycles (Section 5.2.4) and implemented the Vrst adjustments for the test
language Testing and Test Control Notation (TTCN-3).

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 gives an overview of the
state of the art in automata learning. The foundations of the hybrid learning approach
are described in Chapter 3. We provide deVnitions for the basic theoretical concepts
and an overview on the background of our work, the areas of software engineering
and testing. Additionally, we give a preliminary introduction to machine learning and
explain in detail the two learning algorithms that are adapted for learning from test
cases.
The adaptation of Angluin’s learning algorithm to learning from test cases is pre-

sented in detail in Chapter 4. In the beginning of the chapter, the properties of the
learning algorithm are analyzed to identify the necessary adaptations and the proper-
ties of test cases are analyzed with respect to their inWuence on the learning procedure.
Based on this analysis, the query mechanisms of Angluin’s learning algorithm are re-
deVned for learning from test cases. As a Vrst optimization, cycles in the test cases are
exploited for the learning process.
Chapter 5 focuses on the representation of test cases for the learning process. We

introduce a data structure that allows the compact storage of our testing data while at
the same time simplifying the learning process. The relations of test case properties
to the data structure are analyzed and used to preprocess the data structure, thereby
enlarging the sample space.
Subsequently, in Chapter 6, a prototypical implementation is presented. Based on an

academic example system, the conference protocol, the properties of the hybrid learning
approach are validated.
Chapter 7 provides a discussion of our results and identiVes constraints that emerged

during the experimentation. We also describe where our work can proVt from other
existing research.
Finally, in Chapter 8, we conclude this thesis with a summary and an outlook on future

work.
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The reconstruction of a deterministic Vnite automaton from given data has applications
in diUerent areas. Most of the basic research stems from the Veld of language inference,
where a formal language is to be identiVed from positive and negative examples of the
language. In recent years, those algorithms have been adapted for reverse-engineering,
process analysis, and other applications. Learning algorithms can be classiVed according
to three main features.

• The resulting model: Besides deterministic Vnite automata, there are algorithms
for learning formal grammars, trees, and various types of logic formula.

• The learning procedure: Two basic approaches can be distinguished. Synthesis is
based on identifying and merging similar states. Induction1 uses counter-examples
to reVne the generated automaton by splitting states.

• The input data: The main diUerence is whether an algorithm uses positive exam-
ples only, positive and negative examples, or statistical information. Other than
that, a variety of diUerently structured data is used.

As deterministic Vnite automata are among the most expressive models generated by
learning, optimizations based on the restrictions of other target models cannot be trans-
ferred. Therefore, this overview on the related work focuses on approaches to learning
automata.
The nomenclature on learning procedures is by no means uniform, but depends on

the scientiVc community referencing the procedure. In language theory, the term “in-
ference” is used for both state-merging and state-splitting techniques. The same holds
for the terms “learning” and “construction”, which are used inconsistently, depending
on the aspect of the approach the respective authors want to emphasize.
Since Gold introduced the concept of “identiVcation in the limit” [Gol67], approaches

to learning automata or other classiVcations have found a wide reception. Therefore, a

1In machine learning, “induction” refers to the induction of states, not to mathematical induction.
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number of surveys on the topic are available, giving an introduction into the Veld [AS83,
BDGW97, dlH05, Leu07, Pit89].

2.1 Synthesis - State Merging Approaches

The notion of automata synthesis is usually referred to Biermann et al. [BBP75, BK76,
PB76]. The basic idea of this approach is to analyze examples of the target automaton,
identify possible states, and merge similar states until the remaining states are consid-
ered to be suXciently distinct. Since then, his approach has been widely discussed and
adapted to various settings.

Bauer [Bau85] deVnes an algorithm for the synthesis of a procedure from example
computations. He concentrates on soundness and completeness of his algorithm, but
also mentions that the well-formedness of the input traces inWuences the solution of the
synthesis problems of loop detection, renaming, and superWuous assignments.

Koskimies and Mäkinen [KM94] construct state machines from scenario trace dia-
grams using positive data only. They note themselves that distinguishing between de-
sired and undesired merges is very hard without explicit information in the traces. Their
trace diagrams consist of interleaved actions and events, but only linear sequences are
considered.

Carrasco and Oncina [CO96] propose the algorithm “rlips” for inference from stochas-
tic samples. They build a preVx tree automaton, but can also identify cycles.

Alur, Etessami, and Yannakakis [AEY00] synthesize automata from Message Sequence
Charts [ITU99] to check for completeness and realizability of scenario-based speciVca-
tions. The Message Sequence Charts are linearized and then merged into concurrent
automata. Their focus is on providing feedback to software engineers for the speciVca-
tion of scenarios and in automating the generation of state machines from scenarios.

Krüger et al. [FK01, KGSB98, KM03] use Message Sequence Charts to synthesize state
charts. The Message Sequence Charts are extended by guards, which are then mapped
onto states of an automaton. Their goal is an enhancement of the software speciVca-
tion process, by providing techniques to check for consistency between Message Se-
quence Charts and to Vnd behavior implied by the speciVed Message Sequence Charts
but not explicitly speciVed. Along similar lines is the work of Uchitel, Brunet, and
Chechik [UBC07], who generate modal transition systems, a variation of labeled transi-
tion systems, from Message Sequence Charts.
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2.2 Process Mining

Coste and Fredouille [CF03] generate unambiguous automata, an intermediate class of
automata between deterministic Vnite automata and nondeterministic Vnite automata.
The advantage of nondeterministic Vnite automata is a more compact representation
and they are also better suited for some application domains. The authors also research
the usage of domain and typing information for the enhancement of the learning pro-
cess [CFKdlH04, KdlH02].

In [DKU06], Duarte, Kramer, and Uchitel extract a labeled transition system model
automatically from control Wow information and traces by identifying contexts which
are deVned as a combination of a point in the control Wow and a set of attributes consti-
tuting a system state. The traces are generated by executing tests on the software and
capturing the system trace via code instrumentation.

Delamare, Baudry, and Traon [DBT06] use trace analysis to construct UML 2.0 se-
quence diagrams from execution traces. To identify the states of the software, they use
state vectors that consist of characterizing attributes. A tracing tool is applied to catch
the systems traces while a human user inputs data to the software. However, no rule for
the generation of inputs is given.

Hallal, Boroday, Petrenko, and Ulrich [HBPU06] use traces captured during test ex-
ecution for checking properties. The event traces are constructed as a system of com-
municating automata by computing a partial ordering on the events. An industrial case
study using this technique is published in [UP07].

Garcia et al. [GdPAR08] present a state-merging algorithm that generates a nondeter-
ministic Vnite automaton. Their algorithm is independent of the order of state-merging,
provided that a universal sample is available that identiVes the state partitions.

2.2 Process Mining

In the area of process mining, a similar approach to state-merging is used. The main dif-
ference is that the data for process mining approaches is usually collected by monitoring
the processes in question; therefore only positive examples are available.

Cook et al. [CDLW04, CW95, CW98] use state-merging techniques for their process
mining, but the states to be merged are selected according to statistical metrics on the
data sample.

Van der Aalst et al. [vdA09, vdAWM04] use event analysis of system traces for the
generation of models. They develop partial orderings among the diUerent events and
use a technique similar to the state-merging of Biermann.
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2.3 Induction - State Splitting Approaches

Many approaches in automata inference go back to Angluin [Ang87]. The main idea is an
incremental discovery of the concept by asking questions to a teacher. In the following,
an overview on the most interesting reVnements and applications to Angluin’s algorithm
is given.

Rivest and Schapire [RS93] adapt Angluin’s approach for systems without a reset by
using homing sequences. Their example for a system without reset is a robot exploring
unknown terrain. In [RS94], the authors adapt their approach to automata where states
are represented as vectors of observable binary local state variables. They also introduce
another concept of equivalence, test equivalence, to suit their representation, where two
states belong to the same equivalence class if testing the local state variables yields
identical results for both states.

Intelligent agents that generate a model of their opponent’s behavior by learning from
the so far observed behavior are proposed by Carmel and Markovich [CM96]. Based on
Angluin’s algorithm, an unsupervised learning algorithm is developed. The accumula-
tive algorithm is extended such that input sequences contradicting the so far learned
behavior can be integrated into the model without having to regenerate it.

Freund et al. [FKR+97] generalize the learning algorithm for random walks. In their
model, the learner is not allowed to experiment with the machine, but has to use ob-
served system traces. They propose two algorithms, one with and the other without
the possibility to reset the target machine to a Vxed state. The algorithm without reset
uses a local homing sequence, which identiVes the Vnite state of a sequence if a certain
output pattern is matched.

Alur, Madhusudan, and Nam [AMN05, NMA08] address the veriVcation of component-
based system using assumption-guarantee reasoning. Assumptions are learned by a
combination of Angluin’s learning algorithm and symbolic model checking, where
membership queries and equivalence queries are answered by a model checker.

Sinha and Clarke [SC07] also apply Angluin’s learning algorithm to veriVcation. Their
main focus is on ameliorating the alphabet explosion problem, which occurs in inter-
acting systems when the learner has to cope with many shared communication vari-
ables. The proposed solution is lazy learning, where alphabet symbols are clustered and
explored symbolically and partitioned in the same fashion as the states in Angluin’s
original algorithm. Recent work by Chen et al. [CFC+09] ampliVes these results by
identifying minimal separating deterministic Vnite automata, and therefore minimal as-
sumptions for compositional veriVcation.
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2.4 Machine Learning Approaches in Testing

Grinchtein, Leucker, and Piterman [GLP06] use learning to identify network invari-
ants satisfying a given safety property. They overcome the problem of ambiguous in-
formation by combining both Angluin’s and Biermann’s methods, the former to gather
information by querying, the latter to infer a more compact representation from possibly
ambiguous data gathered.

Bollig et al. [BKKL07, BKKL08] use learning to infer a message-passing automaton
from Message Sequence Charts. Their focus is on supporting the software speciVcation
process. By entering Message Sequence Charts into an interactive user interface, the
user can successively specify a software system. Recent work of Bollig et al. [BHKL09]
proposes an adaptation of Angluin’s algorithm to the learning of nondeterministic Vnite
automata.

2.4 Machine Learning Approaches in Testing

For many testing techniques, a model of the system under test is a mandatory source.
However, models often are not available or out of date due to last minute changes to the
implementation. The idea of reconstructing a model from any available source is there-
fore not new. A common technique is for example the reverse-engineering of models
from the source code. For systems whose source code is not available, some approaches
based on machine learning have been proposed. A common property of all of them is
that the system under test itself is used as the teaching oracle, therefore the generated
models are dependent on the implementation.

Hagerer, Hungar, Niese, and SteUen [HHNS02] propose a technique based on regular
extrapolation. They aim at reconstructing a model for an older version of the system
under test and then to use the model to generate test cases for regression testing a
newer version of the system under test. They mine observed system traces and generate
a model by abstracting from details. The resulting model is checked for consistency
against expert speciVcations given in linear-time temporal logic and then validated by
generating test cases from the model that are executed on the system under test. In a
later publication [HNS03], the authors show that automata learning can be successfully
optimized to domain-speciVc structures.

GriUeth, Cantor, and Djouvas [GCD06] use learning techniques to generate an au-
tomaton to use in network testing. They deVne some a priori requirements for the
network, which they state as trace properties. Then, they generate tests according to the
properties and observe the network’s reactions. From the observed network traces, a
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model is learned, which is then used to predict the further behavior of the network and
to generate new test cases. In each iteration, the model is reVned from the reactions to
previously generated test cases, and then the reVned model is used to generate new test
cases.
Berg, Jonsson, and RaUelt [BJR06, BJR08] reVne Angluin’s Algorithm for automata

with parameters, where the parameter space is unbound, thus yielding possible inVnite
state spaces. They propose a two-step approach. In the Vrst step, a Vnite state Mealy
automaton is inferred from a small subset of the parameter domain using Angluin’s
approach. Then, in the second step, the Vnite state Mealy automaton is transferred into
a more compact symbolic presentation with inVnite state.
Shahbaz, Li, and Groz [LGS06, SLG07] present a method to infer parameterized models

based on Angluin’s algorithm. Focusing on integration testing, they construct models
for each of the system’s components and then merge the models. Membership queries
are realized by testing the system under test itself. In [GLPS08] the authors integrate
their inference method into a framework for modular system veriVcation.

2.5 ClassiVcation of the Contribution of this Thesis

The aim of the learning methodology presented in this thesis is to reconstruct a model
of a system from the test cases used to test the system. The similarity between using a
model to generate test cases and learning a deterministic Vnite automaton from traces
seems likely. Therefore, Angluin’s algorithm in particular has been adapted to the do-
main of testing before [BJR06, BJR08, GLPS08, LGS06, SLG07]. However, in all those
approaches, the researchers use the learning algorithm to generate test cases that are
subsequently executed against the system under test whose model is to be discovered,
so that the system under test itself is the oracle for the acceptability of a given behavior.
While this is suitable for discovering a system model for integration testing, we want to
establish a model to be used in online monitoring. To this end, we need a model that
is independent from the implementation itself. Therefore, we use a test suite that was
developed due to external criteria as input to the adapted learning algorithm.
As this somewhat contradicts the basic idea of an online learning approach, which is

to compensate potentially incomplete data by generating queries on its own, the idea of
state-merging is adapted to enhance the sample space. In contrast to the classical state-
merging approaches, which merge states based on the structural information contained
in the sample, we exploit the semantic properties of the data.
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The idea of learning models from test cases connects a number of diUerent research ar-
eas. The notion of automata inference was developed by computer language specialists,
at Vrst with the idea of recognizing a language from a set of example phrases. DeVni-
tions and research regarding models are maintained mostly in the software engineering
community, which overlaps in part with the software test community where testing
and test methods are to be found. The theoretical background of automata, formal lan-
guages, and algorithms is used by all researchers, although we observe that deVnitions
vary slightly.

The main problem of a research topic at the intersection of established research areas
is that the established vocabulary and keywords can overlap. Therefore, the intention
of this chapter is threefold. Section 3.1 provides the theoretical deVnitions that form
the foundation of our own work. In Section 3.2, we give an overview on software en-
gineering methods. Subsequently, Section3.3 deVnes the notion of traces with respect
to automata and to software systems. An overview on software testing is presented in
Section 3.4. The areas of software engineering and software testing form the background
of our adaptation of the learning algorithm. We introduce the established vocabulary of
these domains and describe some basic ideas that we draw upon in our adaptation. Sec-
tion 3.5 introduces the fundamental terms and deVnitions in machine learning. Lastly,
in Sections 3.6 and 3.7, we present the two learning approaches on which our own work
is based. As especially the properties of Angluin’s algorithm, which is described in Sec-
tion 3.7, are essential to our adaptation, this method is described in some detail.

3.1 Preliminary DeVnitions and Nomenclature

There are some terms in computer science that are widely used and therefore assumed
to be known. However, the details of the deVnitions vary with diUerent publications.
Within this thesis, we will adhere to the following deVnitions of languages, graphs,
trees, automata, and traces [DR95, HMU06].
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3.1.1 Words and Languages

DeVnition 1 (Word) Given a Vnite set of symbols Σ, also called alphabet, a word is any
Vnite sequence of symbols a ∈ Σ. The empty word is denoted by ε. For any word w, |w|
denotes the length of w and w[i], i ∈ N and 1 ≤ i ≤ |w| denotes the symbol at the ith
position in w. The Vrst symbol in w is w[1] and the last symbol is w[|w|]. 2

As a Vnite sequence of letters is known as string in most programming languages, this
term is also often used to refer to words.

DeVnition 2 (Formal Language) The set of all possible words over a given alphabet Σ,
including the empty word, is denoted as Σ∗. A formal language L over Σ is an arbitrary
subset of Σ∗. 2

DeVnition 3 (Concatenation of Words) The concatenation of two arbitrary words
w1, w2, denoted as w1 ⊕ w2, is a word w where

w[i] =

w1[i], if 1 ≤ i ≤ |w1|
w2[i− |w1|], if |w1| ≤ i ≤ |w| .

The length of the concatenated word w is the sum of the length of its parts, |w| =

|w1|+ |w2|. 2

DeVnition 4 (Projection) Let Σ be an alphabet andw a word over an arbitrary alphabet.
The projection πΣ(w) of the word w onto the alphabet Σ is deVned as follows:

πΣ(w) =


ε, ifw = ε,

πΣ(u), ifw = u⊕ a, a /∈ Σ ,

πΣ(u)⊕ a, ifw = u⊕ a, a ∈ Σ .

Informally described, a projection of a word w onto an alphabet Σ deletes from w all
symbols that are not in Σ. 2

DeVnition 5 (PreVx) A word wp is called a preVx of another word w, if there is a third
word w′ so that wp ⊕ w′ = w. For any language L over Σ, the set of preVxes is deVned
as

Pr(L) = {w ∈ Σ∗ | ∃w′ ∈ Σ∗, w ⊕ w′ ∈ L} .
2
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DeVnition 6 (SuXx) A word ws is called a suXx of another word w, if there is a third
word w′ so that w′ ⊕ ws = w. For any language L over Σ, the set of suXxes is deVned
as

Suf(L) = {w ∈ Σ∗ | ∃w′ ∈ Σ∗, w′ ⊕ w ∈ L} .
2

3.1.2 Graphs

Graphs are used to represent various concepts in computer science: networks, computer
systems, computer programs, and many more. They also provide a means to deVne some
common notions in a concise way.

DeVnition 7 (Directed Graph) A directed graph G, also called a digraph, is a tuple
(N,E), where N is a set of nodes and E ⊆ N × N is a set of ordered pairs of nodes
called edges. An edge e = (n1, n2), also denoted by n1 → n2, is considered to be directed
from n1 to n2. We call n1 the source and n2 the target of edge e. 2

Both nodes and edges of a graph can be labeled with certain information. Suitable la-
beling functions will be deVned as needed. The notation n1

l→ n2 denotes an edge from
node n1 to node n2, which is labeled with l.

DeVnition 8 (Path) Given a graph G = (N,E), a path is a sequence of nodes
n1, n2, ..., nk, ni ∈ N and k ∈ N, where for every pair of subsequent nodes (ni, ni+1) in
the sequence there is an edge e ∈ E in the graph, e = (ni, ni+1). The length of a path is
the number of nodes it contains, |n1, n2, ..., nk| = k. 2

DeVnition 9 (Simple Cycle) Given a graph G = (N,E), a path (n0, n1, ..., nk), ni ∈ N
and k ∈ N, is called a simple cycle, when n0 = nk and all nodes ni where i < k are
mutually distinct. 2

DeVnition 10 (Predecessor, Successor) Given a graph G = (N,E), a node n1 ∈ N is
called direct predecessor of another node n2 ∈ N , if there is an edge directed from n1 to
n2, ∃e ∈ E : e = (n1, n2), or predecessor, if there is a path of arbitrary length from n1 to
n2. The terms successor and direct successor are deVned accordingly. 2

3.1.3 Trees

A graph theory, a tree is viewed as a special case of a graph and the deVnitions are
formulated accordingly. For programming purposes, trees are usually deVned as recur-
sive data structures. The deVnitions are compatible to each other, but focus on diUerent
properties of the tree. In this thesis, the following deVnitions for trees are used.
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DeVnition 11 (Tree) A tree T is a directed graph G = (N,E) with the following prop-
erties [HMU06].

• There is exactly one node nroot ∈ N such that nroot has no predecessors and there
is a path from nroot to every other node n′ ∈ N . The node nroot is called the root
node of the tree.

• Every node n′ ∈ N other than the root node, n′ 6= nroot, has exactly one direct
predecessor.

A node without direct successors is called a leaf node, a node with at least one succes-
sor is called an internal node. The depth of a tree is the length of the longest path from
its root node to one of its leaf nodes. 2

DeVnition 12 (Binary Tree) A binary tree is a tree T , where every internal node has
exactly two direct successors. 2

DeVnition 13 (Labeled Binary Tree) A labeled binary tree T is a binary tree, where
each node n is represented by a tuple (Tleft, l, Tright), such that Tleft is the left subtree,
l is the label of the node, and Tright is the right subtree. The label of a given node n is
denoted as l(n). 2

3.1.4 Automata

DiUerent kinds of automata are used across diUerent working Velds in computer science.
In this thesis, the following deVnitions and terms will be used.

DeVnition 14 (Finite Automaton) A Vnite automaton (FA) A is a tuple (S,Σ, δ, s0, F ),
where S is a Vnite set of states, Σ a Vnite input alphabet, δ : S × Σ → S the transition
relation, s0 ∈ S the start state, and F ⊆ S a set of accepting states.

An FAA is called deterministic, or deterministic Vnite automaton (DFA), if for all s ∈ S
and for all a ∈ Σ, δ(s, a) has at most one element. 2

For each FA, the transition relation δ deVnes a labeled graph G = (N,E), where the
nodes in the graph are the states of the automaton, N = S, and the edges in the graph
are derived from the transition relation, such that there is an edge e = n1

a→ n2 ∈ E if
and only if there is a transition δ(s1, a) = s2.
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The extended transition function δ̂(s, w) : S × Σ∗ → S is deVned as

(s, w ⊕ a) 7→ δ(δ̂(s, w), a) forw ∈ Σ+ and a ∈ Σ

(s, a) 7→ δ(s, a) for a ∈ Σ

(s, ε) 7→ s .

Informally described, the extended transition function δ̂(s, w) = s′ computes the state
s′ of the automaton, where there exists a path from s to s′ that is labeled by w.

DeVnition 15 (Accepted Language) A word w is accepted by an automaton A =

(S,Σ, δ, s0, F ), if δ̂(s0, w) ∈ F . Therefore, the accepted language L(A) of the automa-
ton consists of all words w that are accepted by the automaton, L(A) = {w | δ̂(s0, w) ∈
F}. 2

DeVnition 16 (Finite State Machine) A Vnite state machine (FSM) is a quintupleM =

(I, O, S, δ, λ), where I is a Vnite input alphabet, O is a Vnite output alphabet, S is a
Vnite set of states, δ : S × I → S is the transition function, and λ : S × I → O is
the output function. The notation ni

a/u−→ nj denotes an edge from node ni to node nj ,
which is labeled with input a ∈ I and output u ∈ O. 2

An FSM can be mapped to a DFA by combining the input and output alphabets of the

FSM to serve as the input alphabet of the DFA, Σ = (I ∪ O). Every edge ni
a/u−→ nj

labeled with an input a ∈ I and an output u ∈ o in the FSM is replaced by a sequence
of two edges ni

a→ nnew and nnew
u→ nj in the DFA, the Vrst labeled with the input and

the second labeled with the output, a, u ∈ Σ. A similar concept is used by Holzmann
[Hol91] in his deVnition of communicating Vnite state machines.

3.2 Automata in System Modeling

Automata of various kinds are widely used to model software and software systems. The
concept of FSMs is especially used to model communication protocols, object-oriented
software and state-based systems.

3.2.1 Communication Protocols

In communication systems, the message and signal interchange is mostly handled via
interfaces. An interface deVnes a set of functions and procedures provided by a given
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software component. The protocol of an interface deVnes the use of those functions.
Holzmann [Hol91] deVnes a protocol as a quintuple of the service provided by the pro-
tocol, some assumptions about the execution environment, a vocabulary or alphabet of
messages, the encoding of each message, and the procedure rules of the message ex-
change. The procedure rules are described as an FSM over the alphabet of messages.

3.2.2 State-based Systems

According to Sommerville [Som06], a system is called state-based, if it responds to events
diUerently over time, depending on its current state. Events may also cause transition
from one state to another. A reactive system is driven by stimuli from its environment.
A typical example for a state-based reactive system is that of a Vre alarm that reacts to
the detection of smoke and heat and accordingly changes state from “idle” to “alarm”.

3.2.3 State Machines in UML

In the UniVed Modeling Language (UML), a hierarchical type of state machines is used,
which was Vst introduced by Harel [Har87]. Although hierarchical state machines are
more structured and thus more readable, they can be Wattened and are therefore iso-
morphic to FSM as described before. UML distinguishes two types of state machines,
behavioral state machines and protocol state machines. Behavioral state machines are
used to model state-based components, e.g. classes, subsystems, or other components,
whereas protocol state machines are used to describe the behavior of an interface to the
component. Accordingly, a component may only have one associated behavioral state
machine but arbitrarily many protocol state machines, as long as the protocol state ma-
chines are consistent with each other and the behavioral state machine. The protocol
state machines may be visualized as a projection of the behavioral state machine onto a
subset of the possible events, where the subset of events depends on the interface.

An example is given in Figure 3.1. On the left side, in Figure 3.1a, a security system
component is displayed. The component provides two interfaces, a sensor interface
and a control panel interface. On the right side, three state machines associated to
the security system are depicted. Figure 3.1b shows a protocol state machine for the
sensor interface. The protocol state machine describes the sequence of events on the
sensor interface. Similarly, Figure 3.1d shows a protocol state machine for the control
panel interface. Figure 3.1c shows the behavioral state machine for the security system.
Where the protocol state machines focus on the events on the respective interfaces, the
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behavioral state machine shows the internal states of the security system and establishes
a relation between the events on the diUerent interfaces.

(a) The Security System Component

(b) Protocol State Machine for the Sensor Interface

(c) Behavioral State Machine for the Security System

(d) Protocol State Machine for the ControlPanel Interface

Figure 3.1: Protocol and Behavioral State Machines for the Security System

3.3 Traces

The term trace is used in diUerent contexts with diUerent constraints. For this thesis,
the usages with respect to automata and to software systems are of interest. In the
following, we will describe traces in the context of both areas and subsequently reconcile
the description for further use in this thesis.
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3.3.1 Automata View

In the automata view, a trace is similar to a word. The diUerence is that a word belonging
to the accepted language of the automaton,w ∈ L(A), necessarily starts in the start state
so of the automaton and ends in an accepting state s ∈ F of the automaton, whereas a
trace may start and end at any state s ∈ S of the automaton.

DeVnition 17 (Trace of an Automaton) A trace of an FA A = (S,Σ, δ, s0, F ) is a se-
quence of symbols b1, b2, ...bk, bi ∈ Σ, where there exists a path s1, s2, ..., sk, sk+1 in the
automaton such that δ(si, bi) = si+1. 2

A trace of an automaton is always ordered with respect to the sequence of the sym-
bols, as the possible sequence of transitions of the automaton is deVned by the transition
relation.

3.3.2 System View

In the software system view, a trace is the observable behavior of a system. The term is
also used to describe the execution logs of computer programs.

DeVnition 18 (Trace of a System) A trace is a sequence of events that a system has par-
ticipated in. Therefore, a trace describes a possible behavior of the system at an arbitrary
point in time. We distinguish

• input events, e.g. messages to the process, user inputs or signals,

• output events, e.g. outputs to a user interface or messages to another process and

• internal events, e.g. assignments. 2

DeVnition 19 (Execution Trace) An execution trace is a trace that documents a com-
plete run of a system, i.e. the execution trace starts in the start state of the system and
ends in the Vnal state of the system. 2

For a system that may only behave sequentially, the ordering of the events in the
trace implies an ordering of the activities of the system. For systems with parallel be-
havior, this is not the case, as events generated by diUerent parallel subsystems may
occur independently.

18



3.4 Testing

3.3.3 Reconciliation

In this thesis, we adhere to the automata view of traces. Therefore, we assume that each
symbol in the trace depends on its predecessors. As a system can be modeled by an
automaton, a trace of the system is also a trace of the system’s model. For a system
with parallel behavior, the model is Wattened by computing the Cartesian product of the
models of the parallel subsystems.

3.4 Testing

Sommerville [Som06] states that software testing has two main goals. On the one hand,
successful tests are meant to increase conVdence that the system correctly fulVlls its re-
quirements. On the other hand, testing aims at Vnding faults and defects in the software
before it is shipped to the customers. In general, testing is an analytic means to assess
and improve the quality of software. To reveal defects in the software, it is not necessar-
ily required to execute the software. By examining the structure of the source code and
computing characteristic Vgures, mostly referred to as metrics [FP98], anomalies can be
detected without executing the source code. Quality assessment without executing the
software is often referred to as static testing, in contrast to dynamic testing where the
software is always executed.
The software to be tested is usually called a system under test (SUT). The term might

refer to software pieces of diUerent size—a function, a program, a class, a component, or
even a whole system.
Testing can be classiVed according to many diUerent aspects, e.g. test methods, suit-

ability for a level in the software engineering process, or suitability to a sort of software.
In the following, we will take a closer look at test methods related to automata.

3.4.1 Test Cases

A test case is itself a software program. It sends stimuli to the SUT and receives re-
sponses from the SUT. Depending on the responses, the test case may branch out, and
a test case can contain cycles to test iterative behavior. To each path through the test
case’s control Wow graph, a verdict is assigned. In almost all test speciVcation languages,
the verdict pass marks an accepting test case and the verdict fail a rejecting test case.
An accepting test case is a test case where the reaction of the SUT conforms to the ex-
pectations of the tester. This can also be the case, when an erroneous input is correctly
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handled by the SUT. A rejecting test case analogously is a test case where the reac-
tion of the SUT violates its speciVcation. Depending on the test speciVcation language,
there may be additional verdicts. The test speciVcation language Testing and Test Control
Notation (TTCN-3) [ETS07], for example, extends the usual verdicts pass and failwith the
additional verdicts none, inconc, and error. The verdict none denotes that no verdict is
set, inconc indicates that a deVnite assessment of the observed reactions is not possible,
e.g. due to race conditions on parallel components, and errormarks the occurrence of an
error in the test environment.

As an SUT may be a modular system, it may also be distributed over a network, so
that diUerent parts of the SUT are located at diUerent nodes of the network. The same
applies to test cases. We distinguish local test cases, which consist of a single test com-
ponent located on a single node, and distributed test cases, which consist of several test
components that may be distributed over the network. To manage concurrent behavior
among distributed test cases, the test components need to be coordinated.

For most SUTs, there is a collection of test cases, where each test case covers a certain
behavioral aspect of the SUT. Such a collection of test cases for one SUT is called a test
suite.

3.4.2 Structure-based Testing

In structure based testing, also called white box testing, the test cases are derived from
the source code of the SUT. To that end, a control Wow graph is computed. The test
cases then cover the control Wow graph according to certain criteria. As structure based
testing is derived from the structure of an underlying graph, the methods can be applied
to any graph based structure [AO08, SLS07].

DeVnition 20 (Control Flow Graph) A control Wow graph is a directed graph (N,E),
where each node n ∈ N represents a statement and each edge e ∈ E represents a
transition from one statement to another, including jumps. 2

If a node in the control Wow graph has more than one outgoing edge, the outgoing edges
are also called branches. An example of a control Wow graph for a small C program is
given in Figure 3.2. The program code in Figure 3.2a is represented in the control Wow
graph in Figure 3.2b.
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(1) int hello(n) {

(2) if (n < 10) {

(3) for (i=0; i < n; i++) {

(4) printf ("Hello World\n");

(5) }

(6) }

(7) return 0;

(8) }

(a) A "Hello World" Program

1

2

3

4

5

6

7

8

(b) Control Flow Graph

Figure 3.2: Program Code and Matching Control Flow Graph

Statement Coverage

A statement coverage of the control Wow graph means that every node of the control Wow
graph is executed at least once in a test case. If there are silent edges, e.g. a condition
without alternative, these might not be covered. For the example in Figure 3.2, a test
case executing the path 1,2,3,4,5,3,6,7,8 satisVes a statement coverage, but the edge from
node 2 to node 6 is never executed.

Branch Coverage

When every branch of the control Wow graph is covered at least once in a test case, it
is called branch coverage. In structural testing, this criterion is regarded as the minimal
required coverage. For the example in Figure 3.2, in addition to a test case executing the
path 1,2,3,4,5,3,6,7,8, another test case for the path 1,2,6,7,8 is needed. However, with this
technique cycles in the graph are executed only once during one test run, so repetitive
behavior is not checked.

Path Coverage

Path coverage of the control Wow graphmeans that every possible path through the graph
has to be executed. For the example in Figure 3.2, this would mean that in addition to the
test cases for branch coverage, test cases repeatedly executing the cycle 3,4,5 are needed.
There are two main problems to this criterion. First, successive branching in the control
Wow graph might be depending on each other, e.g. in the example, the for loop is only
executed for values less than 10. In consequence, so some paths might not be possible to
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execute. Second, if there are cycles in the graph, the number of possible paths might be
inVnite, as the cycle can be traversed multiple times. To combine a repeated execution
of cycles with a manageable number of test cases, there are a number of bounded path
coverage criteria, e.g. the boundary-interior coverage which considers all paths where
cycles are executed once, twice, or not at all.

The achieved coverage of a test suite is observed through instrumentation of the code.
To this end, counters are inserted at strategic points, e.g. after conditional branches
or cycles. The coverage percentage then is computed as the ratio of actually visited
statements, edges, or paths to totally available statements, edges, or paths, respectively.

3.4.3 SpeciVcation-based Testing

In contrast to structure based testing, the test cases for speciVcation based testing, also
called black box testing, are derived from a speciVcation of the SUT. Depending on the
type of the speciVcation, there are diUerent kinds of black box tests.

Informal SpeciVcation

Often, there is only an informal or semi-formal speciVcation of the SUT, e.g. a descrip-
tion of the functionality in natural language or a technical speciVcation document. To
measure the progress of the test, testing against an informal speciVcation focuses on
covering diUerent aspects of the software.

One such aspect is the requirements of the SUT. In requirements testing, the test cases
are selected to cover the diUerent requirements documented in a technical speciVcation
document. For each requirement, a test case is designed to prove that the requirement
has been met. In this method, a test case may cover many requirements, while some
requirements may need several test cases.

Another aspect is the range of the input and output parameters of the SUT. In equiva-
lence partitioning, input and output parameters are partitioned into equivalence classes.
Test cases are selected so that for every valid and invalid equivalence class, at least one
representative is tested. To minimize the number of test cases needed, test cases for
diUerent valid equivalence classes may be combined. However, every test case must
only cover at most one invalid equivalence class, such that the observed reaction of the
SUT can be deVnitely related to the invalid equivalence class. As errors often occur at
the boundaries of equivalence classes, the equivalence class partitioning method can be
complemented by boundary value analysis, where for every equivalence class, the values

22



3.4 Testing

at the boundary and the neighboring values just inside and just outside the boundary
are selected.
In cause-eUect graphing, the description of the SUT is analyzed with respect to desired

eUects and the alleged causes. The cause-eUect graph shows the relation between causes
and eUects using logical operators, i.e. negation, conjunction, and disjunction. From the
graph, a decision table is derived. The test cases then are selected to cover the columns
of the decision table.
In addition to the methods mentioned above, there are also a number of less formal

testing techniques. To give some examples, a smoke test tries to Vnd scenarios where
the SUT crashes or seriously misbehaves; in random testing, the values for test cases are
selected by random or according to a statistical distribution of the input values; and in
error guessing, the tester draws on his experience to determine test cases that are likely
to discover faults in the SUT.

State Based Test

If a formal speciVcation is available, it is often in an automata-like formalism, such as
Petri nets, process algebras, UML state machines, or another type of FSM. Test strategies
for state based speciVcations usually include the generation of a state transition diagram,
and test cases are then derived to cover the states and transitions of the diagram. In
addition to state and transition coverage, the test can also focus on covering all events
that cause a transition.

Object-Oriented Testing

Object-oriented testing often uses a similar strategy as state based testing. Binder [Bin99]
suggests the N+-Strategy for testing modal classes, where every method of the class is
tried in every state. The method should either show a correct output or a correct
handling of the call, e.g. throw an exception. To achieve this, a so called Wattened
regular expression (FREE) model is constructed, which shows the state based behavior
of the class depending on its methods and abstract states. Test cases are selected to
cover the valid behavior of the class and also to check for invalid behavior. To cover
the valid behavior, a state transition tree is constructed. Informally phrased, a state
transition tree corresponds to an unrolled state transition diagram. For every path
in the state transition tree, a test case is generated, which satisVes branch coverage
of the FREE model. In addition to the state transition tree, a state response matrix is
constructed, where possible and impossible transitions for each state are shown. For
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every impossible transition, another test case is generated to check whether the state
does not change.

3.4.4 Protocol Conformance Testing

Protocol conformance testing is a special case of speciVcation based testing suited to com-
munication protocols (Section 3.2.1). For communication protocols, there often is a stan-
dardized speciVcation, but the implementation of the protocols is up to the vendors of
hardware and software. To ensure that hardware or software of diUerent vendors in-
teract correctly when using a protocol, each implementation of the protocol is tested
against the standardized speciVcation.

A protocol speciVcation usually consists of two parts, a data part describing the type
and structure of the data exchanged via the protocol, and a control part describing the
behavior of the protocol, like the input/output behavior and constraints on the sequence
of exchanged messages. The control part can often be described as an FSM. Conformance
to a protocol is regarded as an equivalence relation between the behavior of the imple-
mentation and the speciVed behavior. An implementation conforms to a speciVcation
if for any input, the implementation produces the correct output [Hol91]. A number of
methods have been proposed for protocol conformance testing. Most methods are based
on the coverage of the protocol’s behavior description, i.e. the protocol FSM, and are
related to the structure based test generation methods used in white box testing. How-
ever, in white box testing, it is possible to observe the achieved coverage through code
instrumentation. As the protocol implementation under test usually is only observable
from the outside, in addition to the coverage of the FSM, some eUort has to be taken to
verify the target state of any tested transition.

3.4.5 Monitoring and Passive Testing

The notion of passive testing originates from the area of network management. While
networks are growing larger and more complex, they are also growing more safety crit-
ical. The size and complexity of the networks inhibits extensive testing, while the safety
critical properties increase the need for security.

Passive testing focuses on the observation of the inputs and outputs of the SUT during
normal operation. The observed system traces are then compared to a speciVcation of
the network with the aim of detecting deviations [LNS+97, NSV03]. As passive testing
does not interact directly with the SUT, it can also be applied when a direct stimulation
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of the SUT is too costly or otherwise inopportune. The term monitoring subsumes all
methods needed for observing and logging the communication activities of the SUT.

3.5 Machine Learning

The aim of machine learning is to construct algorithms that are able to discover a system
of rules from a collection of data. The algorithms thereby Vnd a generalized represen-
tation of the available data, such that the generalized representation is able to classify
data items correctly beyond the original input instead of remembering every single data
item by heart.

DeVnition 21 (Input Space) The input space X is the set of objects the learner is inter-
ested in. An element x ∈ X of the target domain is called an instance. 2

In this thesis, the input space contains all possible traces of an arbitrary SUT.

DeVnition 22 (Concept) A concept c : X → {0, 1} deVnes a mapping from the input
space X to {0, 1}, where c(x) = 1 indicates that x belongs to the concept and c(x) = 0

indicates that x does not belong to the concept. 2

The concept class C is the set of all concepts that classify instances equivalently.

DeVnition 23 (Positive and Negative Example) An instance x ∈ X is called a positive
example of the concept if c(x) = 1. If c(x) = 0, x is called a negative example. 2

In this thesis, a concept c is the unknown DFA that models the SUT, and the concept
class C is a set of all DFA that are equivalent to the model of the SUT. In order to learn
the concept, a learning algorithm needs input in the form of a training set, or sample, of
instances that describe the concept to learn.

DeVnition 24 (Training Set) A training set D to a concept c is a set of examples, where
every training example is a pair (x, c(x)) of an instance x and the classiVcation of this
instance c(x). The term domain(D) denotes all instances x where (x, c(x)) ∈ D. The
set of positive examples,D+, contains all instances x where (x, 1) ∈ D, analogously the
set of negative examples, D−, contains all instances x where (x, 0) ∈ D. 2

In order to infer the unknown target concept from a training set, the learning algo-
rithm tries to generalize the observations in the training set. To this end, the algorithm
generates a hypothesis, which ideally should be identical to the concept.
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DeVnition 25 (Hypothesis) A hypothesis h : X → {0, 1} is a concept as per DeVni-
tion 22. 2

The hypothesis classH is the set of all possible hypotheses. As a hypothesis is a concept,
the hypothesis class is also a class of concepts. In general, the hypothesis class H com-
prises the concept class C, H ⊇ C. In this thesis, the hypothesis class is the set of all
DFA.

DeVnition 26 (Consistency) A hypothesisH is called consistentwith the training setD,
if h(x) = c(x) for all x ∈ D. 2

The version space VS contains all hypotheses that are consistent with the training set.

The aim of learning is not only to reproduce the classiVcation of the training examples
correctly, but to use the learned concept to classify future examples. The classiVcation
error is the probability that a hypothesis disagrees with the concept on an instance,
h(x) 6= c(x). Typically, diUerent candidate hypotheses h from the version space VS will
make diUerent classiVcation errors on instances outside the training set. The problem of
Vnding the hypothesis with the least classiVcation error is known as generalization.

Learning a hypothesis from classiVed training examples is known as supervised learn-
ing. A learning algorithm that is restricted to a Vnite training set is called a passive or
oYine algorithm, whereas an algorithm that actively asks for the classiVcation of in-
stances is called an active or online algorithm. In this thesis, we only use techniques
from the domain of supervised learning; therefore, we restrict this overview to the ap-
plied methods.

In the following, we introduce the two learning algorithms on which this thesis is
based. Both algorithms generate a DFA from a classiVed example instances. The Vrst
algorithm (Section 3.6), a state-merging algorithm, needs a complete set of examples at
the beginning, computes the maximal number of states from the examples, and then
merges states according to a set of rules. The second algorithm (Section 3.7), a state-
splitting automaton, assumes the minimal number of states and uses an external oracle
to get the classiVcation for selected instances. In both algorithms, the states of the DFA
are identiVed by a trace leading from the start state of the DFA to the respective state.
Therefore, words and states are interchangeable.
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3.6 Automata Synthesis with State-Merging

One of the earlier approaches on the reconstruction of a DFA from a sample of accept-
ing words, the set of positive examples D+, and a sample of rejecting words, the set
of negative examples D−, was proposed by Biermann and Feldman [BF72]. Their algo-
rithm constructs an automaton that accepts all words inD+ and rejects all words inD−
based on the Constraint Satisfaction Problem (CSP) by guessing a state partitioning of the
sample that preserves accepting and rejecting strings and setting the transition relation
according to the sample. The crucial point of this algorithm is how to guess the state
partitioning and to generate the transition function. Oncina and Garcia [OG92] have
presented an eXcient algorithm to solve that problem based on state-merging.

The main idea of the synthesis algorithm is to Vnd a partitioning of the states in the
positive sample D+ that allows a more compact representation of the complete sample
while preserving or even enlarging the expressiveness. The problem of Vnding such
a state partitioning can be formulated as a guided search on all possible partitionings.
However, as the possible search space is exponential in the number of states in the
positive sample, an exhaustive search is not recommendable. Instead, the algorithm
starts with a partitioning that is equal to all states in the preVx tree acceptor and then
tries to merge pairs of states so that the rejecting words are still rejected by the reduced
automaton.

The inference algorithm starts by constructing the preVx tree acceptor of the positive
sample D+.

DeVnition 27 (PreVx Tree Acceptor) Let D+ be a positive sample from a regular lan-
guage L. The preVx tree acceptor of D+, PT(D+) is deVned as an FA

PT(D+) = (Pr(D+),Σ, δ, ε,D+) ,

where Pr(D+) is the set of preVxes ofD+ (DeVnition 5) and δ is deVned as δ(w, a) = wa,
a ∈ Σ and w,wa ∈ Pr(D+). 2

The preVx tree acceptor can be seen as an automaton whose states are labeled by the
preVxes of the positive sample, where the start state is marked with the empty word ε
and the complete words w ∈ D+ mark the accepting states.

In the each step, the algorithm tries to merge a pair of states of the preVx tree acceptor.
Each time a merge is performed, the language accepted by PT(D+) is increased, thereby
possibly accepting a word form the negative sample D−. In that case, the merge is

27



3 Foundations

reversed and the algorithm proceeds with the next pair of states. The algorithm Vnishes
when there are no more pairs of states that can be merged.
It can be shown that if D+ is a structurally complete sample, it is always possible

to generate a deterministic automaton from the sample data. However, as the state-
merging continually changes the data structure, the algorithm is not incremental, but
needs the complete data at the beginning of the inference procedure.
For this thesis, the structural properties used in merging states are not applicable.

Instead, in Chapter 5, we transfer the idea to the semantic context of test cases. After
this introduction of automata synthesis, we now give the details of Angluin’s learning
algorithm.

3.7 Learning Finite Automata Using Queries

The technique of learning Vnite automata using aminimally adequate teacher (MAT)was
Vrst introduced by Dana Angluin [Ang87]. The algorithm has two parts, the teacher,
which is an oracle that knows the concept to be learned, and the learner, who discovers
the concept. The main idea of the learner is to successively discover the states of an
unknown target automaton by asking the teacher whether a given word is acceptable to
the target automaton.

3.7.1 Main Flow of the Learning Algorithm

We use Angluin’s learning algorithm as described by Kearns and Vazirani [KV94]. The
algorithm is structured into three parts:

• The teacher deVnes the knowledge about the target automatonA = (S,Σ, δ, s0, F ).
The structure of the teacher itself is unknown to the algorithm. The teacher’s
knowledge is accessed via membership queries and equivalence queries.

• The hypothesis automaton AH = (SH ,Σ, δH , s0, F
H) is the learner’s guess at the

target automaton at a given point in time. The hypothesis automaton has the same
input alphabet Σ and the same start state s0 as the target automaton.

• The classiVcation tree is used to store the information about the states of the target
automaton that has already been discovered.

Using the information from the teacher, the algorithm successively discovers the states
of the target automaton. The main Wow of the learning algorithm is quite simple. The
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algorithm starts with a hypothesis automaton that consists of a single state, which is
labeled with the empty word. A membership query on the empty word determines
whether the Vrst state is accepting or not. Then, the hypothesis automaton is presented
to the teacher, who either accepts it as equivalent to the target automaton or returns a
counter-example. The counter-example is used to split one of the states of the hypothesis
automaton, thereby generating a new state. Using the new state, a new hypothesis
automaton is generated and put to test. These steps are repeated until the teacher is
satisVed.
The information about the hitherto discovered states of the target automaton is stored

in a data structure called classiVcation tree, which is central to the learning algorithm.
The classiVcation tree is updated with the information from the counter-example and
used to generate the new hypothesis automaton. A description in pseudo-code is pre-
sented in Algorithm 1; a graphical representation can be seen in Figure 3.3.

Result: DFA
1 Initialize the hypothesis automaton;
2 Initialize the classiVcation tree;
3 while hypothesis automaton is not equivalent do
4 get the next counter-example;
5 use the counter-example to update the classiVcation tree;
6 update the hypothesis automaton;
7 end

Algorithm 1: The Learning Algorithm

3.7.2 Minimally Adequate Teacher

An MAT as deVned by Angluin [Ang87] is able to answer two types of queries: member-
ship queries and equivalence queries. A membership query determines whether a given
word is part of the concept to be learned, i.e. the word is accepted by the target automa-
ton. An equivalence query determines whether the constructed hypothesis automaton
is equivalent to the target automaton.

DeVnition 28 (Membership Query) A membership query mq inquires whether a word
w ∈ Σ∗ is accepted by the target automaton. The answer is either yes or no.

mq(w) :=

yes if δ̂(s0, w) ∈ F
no otherwise

2
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Figure 3.3: Repetitive Flow of the Learning Algorithm

DeVnition 29 (Equivalence Query) An equivalence query inquires whether the learned
hypothesis automaton AH is equivalent to the target automaton A. The answer is a
counter-example c ∈ Σ∗. If the empty word ε is returned as an answer, this means
that no counter-example has been found. In this case, the automata are regarded as
equivalent. 2

3.7.3 The Learner

The second part of the learning algorithm, the learner, depends on the concept class to be
learned. In our case, the concept class is a subset of the class of DFAs. A learner for this
class needs a way of memorizing the already discovered states and a means to generate a
new hypothesis automaton. According to Kearns [KV94], the discovered states are saved
in a tree structure called classiVcation tree, which is also used to generate the hypothesis
automaton.
Every state in the target automaton A is identiVed by an access string. An access

string is a word wa that leads from the start state s0 of the target automaton to the state
s ∈ S it identiVes, such that δ̂(s0, wa) = s. For two distinct states s1, s2, s1 6= s2, the
access strings are also distinct. The access string of a state s is denoted by wa(s). The
access string of the start state s0 is the empty word ε.
Every pair of states (s1, s2) of the target automaton A is separated by a distinguish-

ing string. A distinguishing string is a word wd, where for each pair of access strings
wa(s1), wa(s2), with s1 6= s2, exactly one of wa(s1) ⊕ wd and wa(s2) ⊕ wd is accepted
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by the target automaton. We denote the distinguishing string of two states s1, s2 by
wd(s1, s2).

DeVnition 30 (ClassiVcation Tree) A classiVcation tree T with respect to a target au-
tomaton A is a binary tree (left, w, right), where w ∈ Σ∗ is a word over the signal
alphabet of the target automaton, left is the left subtree, and right is the right subtree.
The word w at a given node n of the classiVcation tree is denoted as w(n), the left sub-
tree is denoted as left(n) and the right subtree as right(n). A word that is stored at a
leaf node of the classiVcation tree is an access string wa, and a word that is stored at an
internal node of the classiVcation tree is a distinguishing string wd.
The classiVcation tree has the following properties. The word w stored at the root

node of the classiVcation tree is the empty word ε. At every node n, in its left subtree
left(n), words w′ are stored where the concatenation w′ ⊕ w(n) is not accepted by the
target automaton, i.e. mq(w′ ⊕ w(n)) = no. In the right subtree right(n), words are
stored where the concatenation w′ ⊕ w(n) is accepted by the automaton, i.e. mq(w′ ⊕
w(n)) = yes. 2

The access strings and distinguishing strings stored in the classiVcation tree deVne a
partitioning on the states of the target automaton, so the transitions of the hypothesis
automaton AH can be derived from the classiVcation tree. The state s that is reached
when an arbitrary word w is processed by the automaton, s = δ̂(s0, w), is computed by
sifting the classiVcation tree, which is shown in Algorithm 2. Starting at the root node
of the classiVcation tree, if the current node is an internal node, a membership query is
made on the concatenation of w and the distinguishing string wd(n) stored at that node.
If the word w⊕wd is accepted, sifting continues in the right subtree of the current node,
otherwise in the left subtree. When a leaf node is reached, the access string stored at
this node deVnes the state s.

Generating a new hypothesis automaton

The transition with input b, b ∈ Σ, from an arbitrary state s in the hypothesis automaton,
s ∈ SH , is computed by sifting the word wa(s) ⊕ b. The word wa(s) ⊕ b can be read
as “starting in the start state, go to state s and then perform transition b” and thereby
describes a path to the target state st, δ(s, b) = st. This technique is used to compute the
new hypothesis automaton in each cycle of the learning algorithm. The new hypothesis
is initialized with the hitherto known states, i.e. all access strings stored at the leaves of
the classiVcation tree. Then, for every state s in the hypothesis automaton, the target
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Data: An arbitrary string w
Result: An access string wa

// Initialize
1 Start at the root of the classiVcation tree;
2 while Current node is an internal node do
3 Get the distinguishing string wd stored at the current node;
4 Ask a membership query on w ⊕ wd;
5 if w ⊕ wd is accepted then
6 Go to the right successor;
7 else
8 Go to the left successor;
9 end
10 end

// The current node is a leaf
11 Get the access string wa stored ad the current node;
12 return wa

Algorithm 2: Sifting the ClassiVcation Tree

states of the outgoing transitions b are determined by sifting wa(s)⊕b for all b ∈ Σ. The
pseudo-code for the generation of a new hypothesis automaton is given in Algorithm 3.

1 Initialize the states of the hypothesis automaton with the leaves of the classiVcation
tree;

2 for every state s in the hypothesis automaton do
3 for every signal b in the signal alphabet do
4 st = sift(wa(s)⊕ b);
5 Set a transition e from s to st;
6 Label the transition e with b;
7 end
8 end

Algorithm 3: Generating a New Hypothesis Automaton

Updating the ClassiVcation Tree

When a hypothesis automaton is queried for equivalence, as long as the learning process
is not completed the answer is a counter-example. This counter-example is used to
split one of the hitherto known states into two sub-states. The algorithm to update the
classiVcation tree works in two phases (Algorithm 4).
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In the Vrst phase, we look for a state that can be split. For this, we check the preVxes
pi of length i of the counter-example, starting with the shortest i = 1, by sifting (Algo-
rithm 2) the preVx, sift(pi), and by processing the preVx on the hypothesis automaton
δ̂(s0, pi). Let pdiU be the shortest preVx where sift(pdiU) and δ̂(s0, pdiU) diUer. Then, the
preVx pmatch = pdiU marks the longest preVx where the results of sifting and hypothesis
match and determines the state to be split as ssplit = sift(pmatch).
In the second phase, ssplit is replaced by an internal node sint with two successors.

The label wd(sint) of the internal node, a distinguishing string, is determined from the
counterexample and the distinguishing strings as

wd(sint) = pdiU[diU]⊕ wd(sift(pdiU), δ̂(q0, pdiU)) ,

where pdiU[diU] denotes the last signal in the preVx pdiU (DeVnition 1). One of the suc-
cessors is marked with the access string of ssplit, wa(ssplit). The other successor is marked
with the preVx pmatch. The successor s, where wa(s) ⊕ wd(sint) is accepted by the au-
tomaton is inserted to the right.
It is noteworthy that the thus obtained deterministic automaton will always be min-

imal, even if the training data, i.e. the teacher that determines the counter-examples, is
not.

3.8 Summary

In this chapter, we have introduced the necessary background for our research. As
particularly well-known theoretical concepts are often used with slight diUerences, we
have provided a collection of deVnitions and concepts as a theoretical foundation for
our own work. In order to introduce the terminology of our application area, we have
given an overview on modeling techniques, the concept of traces and the principles of
software testing. Lastly, we have described the two learning approaches that form the
core of our learning procedure. The state-merging approach uses a preferably complete
collection of positive examples of a language recognized by an automaton to reconstruct
the automaton by merging states with identical suXxes. In contrast, Angluin’s learning
algorithm discovers the states of the hidden target automaton by querying an oracle for
the classiVcation of example strings. In the subsequent chapters, we will tailor Angluin’s
learning algorithm to the domain of testing, with the help of optimizations derived from
the state-merging approach.
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Data: counter-example
// Initialization

1 i = 0;

// Find the state to split
2 repeat
3 i = i+ 1;
4 Compute the current preVx pi as the Vrst i letters of the counter-example;
5 Sift the current preVx: sift(pi);
6 Execute the current preVx on the hypothesis automaton: δ̂(s0, pi);
7 until sift(pi) 6= δ̂(s0, pi);

// Replace the state to split by an internal node with two leafs
8 The state to split is marked with the access string sift(pi−1);
9 The access string of the new state is pi−1;

10 Get the distinguishing string d of the least common predecessor from the diUering
states sift(pi) and δ̂(s0, pi);

11 Compute a new distinguishing string wdnew as concatenation of the last letter of pi

and d, pi[i]⊕ d;
12 Ask a membership query on the string pi−1 ⊕ wdnew , the concatenation of the access

string of the new state and the new distinguishing string;
13 if pi−1 ⊕ wdnew is accepted then
14 Move the old state sift(pi−1) to the left successor;
15 Insert the new state pi−1 as the right successor;
16 else
17 Insert the new state pi−1 as the left successor;
18 Move the old state sift(pi−1) to the right successor;
19 end
20 Mark the parent of pi−1 and sift(pi−1) with the new distinguishing string wdnew ;

Algorithm 4: Updating the ClassiVcation Tree
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4 Adaptation of Angluin’s Algorithm to
Learning from Test Cases

Our aim is to synthesize a deterministic Vnite automaton (DFA) from test cases. Learning
algorithms provide a means of automating this task, while at the same time allowing
for some amount of external regulation. Angluin’s learning algorithm especially has the
advantage of generating a minimal DFA, while the requirements on the input data are
already similar to the structure of a test suite.

The main idea of Angluin’s learning algorithm is to successively discover the states
and transitions of the target automaton by querying an oracle, the teacher. Whether
the teacher is a database, an automaton, or a human being makes no diUerence, as long
as the requirements of a minimally adequate teacher (MAT) are met. In the context of
Angluin’s learning algorithm, an MAT has to be able to answer two types of queries:

• membership queries discover whether a given sequence is accepted by the target
automaton,

• equivalence queries ask whether the hypothesis automaton already matches the
target automaton. If the hypothesis automaton diUers from the target automaton,
the teacher answers by giving a counter-example.

A detailed description of Angluin’s learning algorithm can be found in Section 3.7.

As the learning algorithm generates a DFA, the output of the algorithm is already
well-suited to our needs. Therefore, we use the learner part of the algorithm as it is. The
main adaptation for learning a Vnite automaton from test cases is to deVne a suitable
MAT. We suggest a twofold approach [WGTZ08]. On the one hand, a representation
of test cases has to be found that can be used as input data to the learning algorithm.
On the other hand, the query mechanisms of the algorithm, i.e. membership queries and
equivalence queries, have to be adapted to the properties of test cases. Clearly, there are
interdependencies between the two adaptations.
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In the following, we will present our adaptation of Angluin’s algorithm. First and
foremost, this means an analysis of Angluin’s learning algorithm to show where adap-
tation is necessary. To this end, the learning algorithm is analyzed with respect to the
generated automaton and to the requirements regarding the input traces. Subsequently,
we will introduce two adaptations of the MAT and provide an example and analysis for
each. The Vrst adaptation describes the fundamental redeVnition of the queries in the
context of test cases. Based on the analysis of the Vrst adaptation, the second adapta-
tion deVnes an optimization to exploit explicit information on cyclic behavior for the
learning process.

4.1 Analysis of the Learning Algorithm

To judge the suitability of an algorithm to a certain application, three parts of the algo-
rithm have to be taken into account. First of all, there is the output of the algorithm.
Is the output suitable to our need? Second, we have to regard the input of the algo-
rithm. Can we meet the requirements of the algorithm? Only when those two questions
are solved we can decide whether the adaptation of the algorithm is feasible and which
adaptations are necessary.

4.1.1 Output of the Algorithm: A Deterministic Finite Automaton

The automaton generated by the learning algorithm is a DFA, i.e. there is only an input
alphabet, and no output alphabet further than {0, 1}, which indicates the diUerentia-
tion between accepting and non-accepting states. Usually in system modeling more
advanced automata are used, e.g. Vnite state machines (FSMs) or even extended Vnite
state machines (EFSMs). However, Holzmann [Hol91] uses a linearized variation of FSMs
for his communicating Vnite state machines, on the grounds that simple transitions with
only one input are better adapted to synchronization.
Another property of system modeling is that automata describing system models are

in most cases not fully speciVed, i.e. only the signals of interest are shown in the model.
One possible interpretation is to consider the missing transitions in an under-speciVed
automaton as self-loops, meaning that any inopportune signal is ignored. In contrast,
the learning algorithm always generates a fully speciVed automaton. In this automaton,
all rejected transitions are routed into the same non-accepting state, which is further
referred to as the global fail state. The global fail state is used as a drain for all rejecting
examples. From the properties of the learning algorithm (Section 3.7, we can deduce
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that the global fail state is always the state that is stored at the leftmost leaf of the
classiVcation tree. The learned automaton can therefore be seen as a “strict” version of
the target automaton, which rejects all inopportune signals. As even in small automata
many transitions drain into the global fail state, the learned automata are complicated
and hard to read. However, as the global fail state can be clearly identiVed, it is possible
to remove it and the draining transitions for better readability.

Figure 4.1 shows two versions of a simple automaton, which accepts all strings (a,b,c)*.
The automaton starts and ends in the state S1. In Figure 4.1a, the automaton is shown
as a strict version, where the rejected transitions are explicitly routed into the state S2.
Figure 4.1b shows the same automaton, where the global fail state has been removed.

S1

S2

 c  b 

S4

 a 

 a  c  b 

S3

 c 

 a  b 

 c  a 

 b 

(a) Strict Automaton With Global Fail State

S1

S4

a 

S3

 c 

b 

(b) Automaton Without Global Fail State

Figure 4.1: Elimination of the Global Fail State

The output of the learning algorithm is always a deterministic, minimal, and Wat DFA,
where every possible interleaving sequence of parallel behavior and all data values are
represented explicitly. In particular, the simple DFA will always need more states than
more expressive models. While not being a problem for small examples, this property of
the learning algorithm will result in the well known state space explosion problem with
increasing number of inputs and data values. However, on the whole it can be shown
that simple DFAs are isomorphic to more advanced automata models, so for a Vrst cut
at the learning of a model from test cases, the learning algorithm can be used as it is.
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4.1.2 Input of the Algorithm: Positive and Negative Examples of the

Target Automaton

Angluin’s algorithm receives its input via the query mechanism of the MAT, where the
membership query assesses the acceptance of a word and the equivalence query assesses
the correctness of the inferred automaton and generates counter-examples. Both queries
work on the sample set, which consists of positive and negative examples of the language
to be learned, i.e. words that are accepted by the automaton and words that are rejected
by the automaton. There are two types of aspects to be considered. On the one hand,
the properties of the words themselves are important when mapping test cases to inputs
of the learning automaton. On the other hand, also the structure of the complete sample
has to be taken into account, i.e. all words that are queried by the automaton. When
learning from test cases, the structure of the sample relates to the test suite and the
coverage of the system under test (SUT) rather than to individual test cases.

Let us Vrst consider the properties of the example words. First of all, the learning
algorithm relies on a single starting state of the target automaton. The reason for this
is the state discovering process, where states are named by their access string, which
describes the path from the starting state to the thusly named state. As a consequence,
the learning algorithm simply cannot distinguish diUerent starting states, and will ac-
cordingly map all starting states into one. Test cases, on the other hand, are not required
to start in the starting state of the SUT, as long as they start in a deVned state that can be
reliably established. It is, however, quite usual to preVx a test case by a preamble, which
drives the test case from such a deVned state of the SUT into the state of interest to the
test case. By electing one of the deVned states as the overall starting state and preVxing
all test cases with according preambles, we can make sure that all test cases start in the
same unique starting state.

As the learning algorithm generates a DFA, there is only one input alphabet and the
output alphabet is restricted to accept and reject. Most test speciVcation languages, and
therefore also the test cases, diUerentiate at least between signals sent to the SUT, signals
received from the SUT, and internal computations of the test case itself. The setting of
a verdict, which determines whether a certain behavior should be accepted by the SUT,
is usually part of these internal computations. While a mapping between the alphabets
of the test cases and those of the learning algorithm is certainly necessary, we have to
be careful not to mix up “input” and “output” of test cases and the learning algorithm,
as those terms denote diUerent things for each concept. In addition, we have to consider
ports, as there are software systems that show the same behavior on diUerent ports, e.g.
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when the same interface is implemented for two hardware architectures. To map the
vocabulary of the test case to the learning algorithm, we assume the following.

• Inputs and outputs of the test cases, i.e. signals received from the SUT and sent to
the SUT, are both mapped to the input alphabet of the hypothesis automaton. If
there is a signal a that is both sent to and received from the SUT, we will regard
it as two items in the algorithm’s input alphabet, namely ain and aout, or !a and ?a

for short.

• Ports are regarded as a part of the signal deVnition, so a signal a that can be sent
or received on more than one port will make an item in the algorithm’s input
alphabet for every port it is sent or received on. We will write port!signal or
port?signal.

• The setting of verdicts in the test case is mapped to the output alphabet of the
hypothesis automaton, so that behavior of the SUT which is rated by a pass verdict
is regarded as a word that should be accepted by the hypothesis automaton and
behavior of the SUT which is rated by a fail verdict is regarded as a word that
should be rejected by the hypothesis automaton.

• As we are interested in learning the SUT’s external behavior, we ignore all other
internal actions of the test cases.

Lastly, the learning algorithm uses words, which are by deVnition linear sequences
of items from an alphabet. In contrast, test cases in general are software programs
themselves and may have branching or cyclic behavior. Therefore, every test case maps
to a number of words for the learning procedure, one word for every possible path
through the test case’s behavior.
Given these consideration, we deVne the notion of test case execution trace as input to

our learning procedure.

DeVnition 31 (Test Case Execution Trace) A test case execution trace t is a tuple
(w, v(w)) where w is an execution trace of a test case and v(w) ∈ {pass, fail} is
the verdict that this execution trace is assigned by the test case. In the following, we
will denote the execution trace of a given test case by w(t) and the expected verdict as
v(w(t)). 2

As explained in Section 3.3, a trace can be interpreted as a word. Therefore, an accepting
execution trace t of a test case T , where v(w(t)) = pass, maps to a word that should
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be accepted by the hypothesis automaton. Accordingly, a rejecting execution trace of
a test case, where v(w(t)) = fail, maps to a word that should not be accepted by the
hypothesis automaton. As every test case may contain a number of possible execution
traces, the collection of all test case execution traces belonging to a given test case T
will be denoted by traces(T ). Analogously, we will denote the complete collection of
all test case execution traces of all test cases belonging to a given SUT, i.e. the traces of
the complete test suite T S , as traces(T S). In either case, the trace collection traces(x)

contains both accepting and rejecting test case traces.
Besides the mapping of the single test cases, we also have to take into account the

structure of the whole test suite. Angluin’s learning algorithm relies on examples that
are classiVed as “accepting” and “rejecting”. As described above, we have mapped the
verdicts pass and fail onto accepting and rejecting examples, respectively. However, test
speciVcation languages usually have at least one additional verdict, none, to indicate
that no verdict has yet been set on a given path, and sometimes also verdicts indicating
errors in the test environment like the Testing and Test Control Notation (TTCN-3) error.
While the mapping of the verdicts pass and fail is obvious, the handling of additional
verdicts has to be considered.
Let us take a closer look at the two query mechanisms. The aim of the equivalence

query is to establish that the learned automaton actually represents all the examples.
Essentially, this is also the aim of a test suite, which wants to establish conformance
between the SUT and the speciVcation. For this assessment, the test case traces with
verdicts pass and fail suXce. Therefore, for the equivalence query we can simply ignore
additional verdicts.
In contrast, the membership is used to establish the acceptability of single traces. The

assessment of the queried trace is then used to route a transition in the hypothesis graph
or to determine where in the classiVcation tree a new state hast to be added. While a
wrong transition in the hypothesis automaton can easily be remedied in the next iter-
ation of the learning algorithm, a new state added in the wrong place in the classiV-
cation tree aUects all further iterations, leading to wrong transitions in the hypothesis
automata and Vnally to an erroneous result. For this reason, it is important to answer
membership queries correctly, even if the trace is not explicitly assessed by a pass or fail
verdict. There are two possible approaches, known as closed world approach and open
world approach. The most reliable, but also most restrictive, approach is the closed world
approach, which is to accept only words which can be mapped on a test case with the
verdict pass and to reject anything else. The contrary concept, the open world approach,
assumes that not everything is known about the system to learn. In consequence, only
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words that are explicitly marked as fail by a test case can be rejected, whereas words for
which no verdict can be determined cannot be assessed. As this leads to uncertainties in
the learning procedure, we will adhere to the closed world approach.
The closed world approach’s strategy to reject everything which is not explicitly al-

lowed leads to another question regarding the structure of the test suite. If we only
accept what is deVnitely marked as acceptable, then we need to have all acceptable
traces in our test suite. In the worst case, this means that path coverage of the possible
behavior of the SUT is needed.

4.2 Learning from Finite Traces

Based on the mapping of test cases onto the test case execution traces, we deVne an
adaptation of the MAT in Angluin’s algorithm. Subsequently, we analyze the complex-
ity of our approach with respect to the size of both the generated automaton and the
test suite. We demonstrate the functionality of our adaptation by way of a small and
therefore comprehensible example.

4.2.1 Adaptation of the Teacher

The most important mechanism of the learning algorithm is the membership query,
which determines the acceptability of a given behavior. In our case, the behavior of
the software and thus of the target automaton is deVned by the test cases. Since in the
closed world scenario, the test cases are our only source of knowledge, we assume that
the test cases cover the complete behavior of the system. In consequence, we state that
every behavior that is not explicitly allowed must be erroneous and therefore has to be
rejected, i.e. rejected ≡ ¬accepted. Thus, the membership query is redeVned as follows:

DeVnition 32 (Membership Query on Test Cases) A word w is accepted by the target
automaton if it matches an accepting test case execution trace t in the trace collection of
the test suite, otherwise it is rejected.

mq(w(t)) :=

accept v(w(t)) = pass

reject otherwise
2

Likewise, the equivalence query can be redeVned as an execution of the test suite
against the hypothesis automaton.
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DeVnition 33 (Equivalence Query on Test Cases) The hypothesis automaton AH =

(SH ,Σ, δH , s0, F
H) is equivalent to the target automaton, if for every test case execution

trace t in the traces of the test suite, t ∈ traces(T S), the processing of its execution
trace w(t) on the automaton is accepted or rejected as speciVed by the test verdict
v(w(t)).

eq(AH) :=


yes

∀t ∈ traces(T S) : (δ̂H(s0, w(t)) ∈ FH)⇔ (v(w(t)) = accept)∧
(δ̂H(s0, w(t)) /∈ FH)⇔ (v(w(t)) = reject)

no otherwise

The Vrst test case execution trace that does not reproduce its verdict is returned as a
counter-example. 2

4.2.2 Example

To illustrate the learning from Vnite traces, let us pose a simple example as shown in
Figure 4.2. The system describes a small coUee machine. After inserting money and
requesting the coUee, the machine outputs a cup of coUee. The coUee machine has only
one port, cm, where inputs and outputs are recorded. Each accepted interaction with
the coUee machine starts and ends in state S0.

For the coUee machine example, we generate the test case execution traces shown
in Table 4.1, following a boundary-interior coverage of the target automaton. For the
beginning of the learning algorithm, we also need a classiVcation of the empty trace,
which is stated as test case 1 in Table 4.1. The classiVcation of the empty trace is needed
to correctly determine whether the starting state of the automaton is an accepting or
rejecting state.

S0

S1

 cm!insertMoney  

S2

  cm?outputCoffee

 cm!requestCoffee  

Figure 4.2: A Small CoUee Machine
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ID Test Case Execution Trace Verdict
1 ε pass
2 cm!insertMoney, cm!requestCoUee, cm?outputCoUee pass
3 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!requestCoUee, cm?outputCoUee
pass

4 cm!insertMoney, cm!insertMoney fail
5 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!insertMoney
fail

6 cm!insertMoney, cm?outputCoUee fail
7 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm?outputCoUee
fail

8 cm!insertMoney, cm!requestCoUee, cm!insertMoney fail
9 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!requestCoUee, cm!insertMoney
fail

10 cm!insertMoney, cm!requestCoUee, cm!requestCoUee fail
11 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!requestCoUee, cm!requestCoUee
fail

12 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!requestCoUee

fail

13 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!requestCoUee

fail

14 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm?outputCoUee

fail

15 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm?outputCoUee

fail

Table 4.1: Test Case Execution Traces for the CoUee Machine
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From the generated test case execution traces, we reconstruct the original automaton.
First, the hypothesis automaton is initialized. For the coUee machine, as the empty trace
is accepted, the initial state is an accepting state. The initial hypothesis automaton is
shown in Figure 4.3. In all graphs, the node representing the starting state is shown with
a bold frame, while nodes representing accepting states are shown with a double frame.
If starting and accepting state are represented by the same node, then this node is shown
with a bold double frame.

  cm!requestCoffee    cm?outputCoffee    cm!insertMoney   

Figure 4.3: Initial Hypothesis Automaton

A Vrst counter-example is generated, the trace cm!requestCoUee with the verdict fail,
and the classiVcation tree is initialized (Figure 4.4a). As the start state of the automa-
ton is an accepting state, the Vrst counter-example is the shortest rejecting trace in the
test suite. From the classiVcation tree, a new hypothesis automaton is generated (Fig-
ure 4.4b). The new hypothesis contains the newly discovered state requestCoUee, where
the new state is labeled according to its access string in the classiVcation tree. The new
state requestCoUee also serves as the global fail state (Section 4.1.1). This completes the
Vrst iteration of the learning algorithm (Figure 4.4).

 

requestCoffee 

!reject  

 

!accept

(a) Initial ClassiVcation
Tree

 

requestCoffee 

 cm!requestCoffee    cm?outputCoffee    cm!insertMoney   

 cm!requestCoffee    cm?outputCoffee    cm!insertMoney   

(b) New Hypothesis Automaton

Figure 4.4: First Iteration of the Learning Procedure
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4.2 Learning from Finite Traces

As the new hypothesis automaton (Figure 4.4b) is not equivalent to the target au-
tomaton, a new counter-example c is generated, cm!insertMoney, cm!requestCoUee,
cm?outputCoUee with verdict pass, and the classiVcation tree is updated (Fig-
ure 4.5a). Again, a new hypothesis automaton is generated (Figure 4.5b), and the
second iteration is complete (Figure 4.5). As only a preVx of the counter-example
is used to Vnd the new state insertMoney,requestCoUee, the preVx of length 2
p2(c) = cm!insertMoney, cm!requestCoUee, the new hypothesis automaton still classi-
Ves the complete counter-example incorrectly.

 

outputCoffee 

!reject  

 

!accept

requestCoffee 

!reject  

insertMoney, requestCoffee 

!accept

(a) ClassiVcation Tree

 

requestCoffee 

 cm!requestCoffee  cm?outputCoffee  cm!insertMoney

 cm!requestCoffee    cm?outputCoffee    cm!insertMoney   

insertMoney, requestCoffee 

 cm?outputCoffee

 cm!requestCoffee   cm!insertMoney

(b) Hypothesis Automaton

Figure 4.5: Second Iteration of the Learning Procedure

As the hypothesis automaton is still not equivalent, we get another counter-example,
cm!insertMoney, cm!requestCoUee, cm?outputCoUee, pass. The new counter-example
is the same as the last one, as we have only used a preVx of the counter-example in
the second iteration and the complete counter-example is still not classiVed correctly.
Following the same procedure as before, we update the classiVcation tree (Figure 4.6a)
and build a new hypothesis automaton (Figure 4.6b).
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outputCoffee 

!reject  

 

!accept

requestCoffee 

requestCoffee, outputCoffee 

!reject  

insertMoney, requestCoffee 

!accept

!reject  

insertMoney 

!accept

(a) ClassiVcation Tree

 

requestCoffee 

 cm!requestCoffee  cm?outputCoffee

insertMoney 

 cm!insertMoney  

 cm!requestCoffee    cm?outputCoffee    cm!insertMoney   

insertMoney, requestCoffee 

 cm?outputCoffee  

 cm!requestCoffee   cm!insertMoney  

 cm?outputCoffee   cm!insertMoney  

 cm!requestCoffee  

(b) Hypothesis Automaton

Figure 4.6: Third Iteration of the Learning Procedure
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4.2 Learning from Finite Traces

This completes the learning procedure, as the last hypothesis automaton correctly
reproduces all traces in the test suite as listed in Table 4.1. Figure 4.7a shows the Vnal
automaton without the global fail state, which matches the original automaton. For
easier comparison to the automaton used to generate the test traces, the original coUee
machine automaton (Figure 4.2) is repeated in Figure 4.7b. With the sole exception of
the state labeling, both automata are identical.

 

insertMoney 

 cm!insertMoney  

insertMoney, requestCoffee 

  cm?outputCoffee

 cm!requestCoffee  

(a) Learned Automaton Without Global Fail State

S0

S1

 cm!insertMoney  

S2

  cm?outputCoffee

 cm!requestCoffee  

(b) Target Automaton

Figure 4.7: Elimination of the Global Fail State

4.2.3 Query Complexity in Relation to the Size of the Test Suite

As our adaptation of Angluin’s learning algorithm concerns the query mechanisms, this
is the point where the complexity is inWuenced. At the same time, the requirements of
the respective query also inWuence the structure and the complexity of the test suite.

Query Complexity

For our current deVnition of the MAT, the complexity of both query mechanisms de-
pends on the size of the test suite, i.e. the number and length of the test case execution
traces. The detailed analysis of our query mechanisms is as follows.

Theorem 1 (Estimation of the Number of Membership Queries) The number of mem-
bership queries isO(|Σ| · |Starget|3 + l · |Starget|2), where |Σ| is the size of the signal alphabet,
l is the length of the counter-example, and |Starget| is the number of states in the target
automaton.

Proof Membership queries are used in the generation of a new hypothesis automaton
and in the updating of the classiVcation tree. When generating a new hypothesis au-
tomaton, for every state of the automaton and every signal in the signal alphabet, the
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4 Adaptation of Angluin’s Algorithm to Learning from Test Cases

target state of the corresponding transition has to be determined. This is achieved by
appending the signal b to the access string wa of the current state and sifting the re-
sulting string wab through the hypothesis automaton. As soon as we reach a leaf, we
have found the target state. As every sifting requires in the worst case as many mem-
bership queries as the current depth of the classiVcation tree, we get |Shypothesis| · |Σ| · d
membership queries, where |Shypothesis| is the number of states in the current hypothesis
automaton, |Σ| is the size of the signal alphabet, and d is the current depth of the clas-
siVcation tree. We know that the leaves of the classiVcation tree describe the states of
the current hypothesis automaton. Therefore, as the classiVcation tree is not necessarily
balanced, the current depth of the classiVcation tree is at most one less than the number
of states in the current hypothesis automaton, and in consequence we can simplify our
upper bound as |Shypothesis|2 · |Σ|.
When a counter-example is processed, we sift every preVx of the counter-example,

beginning with the shortest, until a diUerence to the current hypothesis automaton is
found. In the worst case, the diUerence is only found when sifting the whole counter-
example. As before, for every sifting, at each level of the classiVcation tree a membership
query is generated until a leaf is reached. Therefore, the number of membership queries
in the processing of the counter-example is at worst l · d, where l is the length of the
current counter-example and d is the depth of the current classiVcation tree. Again, as
the maximum depth of the classiVcation tree depends on the number of states of the
hypothesis automaton, we can give the estimation also as l · |Shypothesis|.
In every iteration of the learning algorithm, a new hypothesis automaton is generated

and a new counter-example is processed. As every hypothesis automaton has at most
the same number of states as the target automaton, we use the number of states in
the resulting automaton, |Starget|, as an upper bound for the number of states in the
hypothesis automata. Therefore, in every iteration, the learning algorithm generates
O(|Σ| · |Starget|2 + l · |Starget|) membership queries.
As the learning algorithm Vnds a new state in every iteration, the number of iterations

linearly depends on the states in the resulting automaton. Therefore, we can state that
during the complete learning algorithm, the number of membership queries isO(|Starget|·
(|Σ| · |Starget|2 + l · |Starget|)), which can be expanded to O(|Σ| · |Starget|3 + l · |Starget|2).�

The proof of Theorem 1 shows that the number of membership queries asked during
the learning procedure depends on the structure of the target automaton, i.e. the size
of the target automaton and the size of the signal alphabet. The only inWuence of the
test suite on the number of membership queries is the length of the counter-example,
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4.2 Learning from Finite Traces

as this is related to the length of the traces in the test suite. However, as the learning
algorithm always uses the smallest diUering preVx of the counter-example (Section 8),
this inWuence is of minor importance.
In contrast, the runtime complexity of the membership query clearly depends on the

size and structure of the test suite. As membership queries are answered by Vnding a
corresponding test case execution trace, each membership query means a search on the
test suite. Therefore, the runtime complexity of the membership query depends on the
complexity of a search on the test suite execution traces, traces(T S). In consequence,
for larger test suites, an eXcient search strategy has to be implemented.
While the size of the test suite only marginally inWuences the complexity of the mem-

bership query, the need to correctly answer membership queries directly inWuences the
size of the test suite, both with respect to the number and the length of the test case
execution traces. As the requirements of the membership queries lead to a larger test
suite, they directly inWuence the complexity of the equivalence queries.

Proposition 1 (Complexity of the Equivalence Query on Finite Traces) In the worst
case, an equivalence query executes | traces(T S)| traces, where | traces(T S)| is the total
number of test case execution traces in the test suite.

Proof If the counter-example is the last trace in the test suite, the equivalence query
executes all other traces before. �

Corollary 1 (Execution of the Test Suite) In the worst case, the learning algorithm needs
|Starget| executions of the test suite, where |Starget| is the number of states in the target
automaton.

Proof This is a direct consequence of Proposition 1. In every iteration of the learning
algorithm, exactly one equivalence query is made. The number of iterations in turn
depends on the size of the resulting automaton, as in every iteration, exactly one new
state is discovered. �

While the complexity of the equivalence query (Proposition 1) suggests that a small
test suite leads to a better performance of the equivalence query, it is nevertheless nec-
essary that the test suite suXciently covers the acceptable behavior of the SUT. In ad-
dition, as the closed world approach only accepts traces explicitly marked as pass, this
implies the need for a large test suite. However, based on the structure of the member-
ship queries, we can establish an upper bound on the required length of the test case
execution traces.
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4 Adaptation of Angluin’s Algorithm to Learning from Test Cases

Required Length of the Test Case Execution Traces

As we have elaborated in Section 4.1.2, our assumption of a closed world means that
we have to represent every acceptable behavior so that membership queries can be an-
swered correctly. For a system with cycles, this means that cycles have to be expanded
for the test case execution traces. This amounts to path coverage of the SUT, and as
explained in Section 3.4.2, the number and length of paths might be inVnite. However,
when taking a closer look at the queried sequences, an upper bound on the length of the
test case execution traces can be established.

Theorem 2 (Required Trace Length) The upper bound for the length of the test case exe-
cution traces is 2 · |Starget|+1, where |Starget| is the number of states in the target automaton.

Proof The access strings used for identifying the states of the hypothesis automaton
are derived from the counter-examples, i.e. the shortest preVx of the counter-example
that identiVes a new state is added to the classiVcation tree. If we guarantee that always
the shortest available counter-example is returned, then the length of the access strings
is at most |Starget|, as the path from the start state to an arbitrary other state visits every
state in the automaton at most once. The same upper bound holds for the length of
the distinguishing sequences. Therefore, as the longest sequence to sift is derived as
the concatenation of an access string wa, a signal b from the signal alphabet, and a
distinguishing string wd at an internal node of the classiVcation tree, wabwd, the upper
bound for the length of the test case execution traces is 2 · |Starget| + 1, one more than
twice the number of states of the target automaton, so that membership queries can be
answered in every iteration of the learning algorithm. �

Though this limits the length of the test case execution traces, there are two draw-
backs. First, in order to determine the shortest possible counter-example, the equiv-
alence query has to process the test case execution traces against the hypothesis au-
tomaton in sequence to their length, which implies some kind of sorting of the test case
execution traces. Second, in the general case, the number of states of the target au-
tomaton is unknown; therefore we cannot be sure whether the length of the traces is
suXcient.
While the expansion of cycles is necessary to answer the membership queries, it also

increases the number of test case execution traces in the test suite considerably, which
in turn inWuences the complexity of the equivalence query. Ideally, we would like to be
able to expand cycles as needed for the membership query, while keeping the test suite
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compact for the equivalence query. In consequence, we adapt the learning algorithm to
inVnite traces.

4.3 Learning from InVnite Traces

In Section 4.2.3, we stated that a central problem of the learning algorithm is the correct
learning of cycles in the SUT, as we need traces of length up to the established upper
bound to satisfy the expected membership queries (Theorem 2). The naive solution
presented in Section 4.2, the unrolling of cycles up to a given length of the test case
execution traces, has a number of drawbacks. First, the test suite gets larger, as for every
additional execution of a cycle another test case execution trace is needed. Second,
the test case execution traces get longer with the increasing number of cycle iterations.
These two eUects of the unrolling of cycles directly increase the size of the test suite, both
in the number of test case execution traces and in the length of the test case execution
cases. Therefore, both eUects also inWuence the equivalence query, as in our deVnition of
the equivalence, all test case execution traces are tried against the hypothesis automaton.
In addition, there is another drawback of the unrolling of cycles, as the upper bound for
the length of the test case execution traces depends on the number of states of the target
automaton, which in the general case is not known beforehand.

In consequence, we need a more general way to represent cycles in the test case traces.
The aim must be twofold. First, we need a representation of cycles that can be expanded
on the Wy, so that membership queries on repeated cycles can be answered without the
need to know the maximum length of the queried traces beforehand. Second, we need
a deVnition of the equivalence query which is more independent of the membership
query’s requirements on the size of the test suite.

4.3.1 Representing Cycles in the Test Cases

We already know that test cases themselves are software programs and show a control
Wow behavior similar to “normal” software. Particularly, test cases may also explicitly
deVne cyclic behavior, e.g. iteratively polling a certain server. Until now, when generat-
ing the test case execution traces from a test case, we have generated a single trace for
every possible path of the test case. In the case of a cycle, this meant a trace for every
number of cycle iterations from zero up to a given upper bound on the total length of
the trace.
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In contrast, we now propose to mark cycles explicitly in the generated traces. Then, a
cycle can be expanded on-the-Wy when needed for a membership query, without needing
to know the possible length of the queried trace beforehand. We denote a cycle as
(some signals)*, where signals inside the brackets are repeated in exactly the same order,
but arbitrarily often. As the semantics of repeated cycle execution is identical to the
semantics of the Kleene star, we choose the star, “*”, as an easy to understand notation.
In Table 4.2, we show the test case execution traces for the coUee machine example

(Figure 4.2 on Page 42) with explicit cycle representation. In comparison to the test case
execution traces without explicit cycle information (Table 4.1 on Page 43), only about
half the number of test case execution is needed. Also, for this example, we do not need
to explicitly classify the empty trace as accepting, as this case is implicitly contained in
the cyclic path, test case execution trace 1 in Table 4.2.

ID Test Case Execution Trace Verdict
1 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)* pass
2 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee,)*

cm!requestCoUee
fail

3 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee,)*
cm?outputCoUee

fail

4 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee,)*
cm!insertMoney, cm!insertMoney

fail

5 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee,)*
cm!insertMoney, cm?outputCoUee

fail

6 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee,)*
cm!insertMoney, cm!requestCoUee, cm!insertMoney

fail

7 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee,)*
cm!insertMoney, cm!requestCoUee, cm!requestCoUee

fail

Table 4.2: Test Case Execution Traces for the CoUee Machine With Explicitly Marked
Cycles

4.3.2 Adaptation of the Teacher

As we represent cyclic behavior explicitly in the test case execution traces, we are now
dealing with inVnite traces. In consequence, we have to reconsider the query deVnitions
from Section 4.2.1. There, a membership query was deVned as the search for a test case
execution trace, an accepting trace representing a member and a rejecting trace or a
failed search representing a non-member of the concept to be learned (DeVnition 29 on
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Page 30). This still holds for inVnite traces, as the traces are unrolled on-the-Wy when
processing the test suite.
The equivalence query, however, needs to be redeVned, as a complete execution of

an inVnite trace, i.e. iterated execution with increasing number of cycle iterations, is
naturally impossible. The purpose of the equivalence is to prove that the hypothesis
automaton conforms to all test cases in the test suite. This can be regarded as a structural
test of the hypothesis automaton against the test suite. Therefore, instead of complete
path coverage, we propose to execute boundary-interior path coverage of the test cases
and limit the expansion of cycles to at most two. As in the formal deVnition of the
equivalence query for Vnite test case execution traces, DeVnition 33, the Vrst trace that
does not reproduce its assigned verdict is returned as a counter-example.

4.3.3 Example

To show the advantages of inVnite traces, we use the same example as in Section 4.2.2,
a simple coUee machine (Figure 4.2). This time, we specify the test case traces with
explicitly marked loops. The test case execution traces are listed in Table 4.2. The test
suite contains less test case traces than the test suite in Table 4.1, as we can eliminate all
explicit expansions of the loop.
While the smaller test suite allows for a more Wexible membership query, the rest of

the learning procedure works exactly as described in Section 4.2.2, even generating the
same membership queries and the same counter-examples. We therefore only show the
resulting target automaton (Figure 4.8).

 

requestCoffee 

 cm!requestCoffee   cm?outputCoffee  

insertMoney 

 cm!insertMoney  

 cm!requestCoffee   cm?outputCoffee   cm!insertMoney  

insertMoney, requestCoffee 

 cm?outputCoffee  

 cm!requestCoffee   cm!insertMoney  

 cm?outputCoffee   cm!insertMoney  

 cm!requestCoffee  

Figure 4.8: Automaton Learned from InVnite Traces
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4.3.4 Decoupling Query Complexity and Test Suite Size

The query complexity of the membership query on Vnite traces (Theorem 1) still holds
for inVnite traces. The main advantage of the new approach is an increased indepen-
dence of the queries’ complexities, as the size of the test suite needed for the membership
queries no longer directly aUects the complexity of the equivalence query. Also, as cy-
cles are expanded at need, the necessary length of the test case execution traces can be
generated on-the-Wy, without estimating the number of states in the target automaton
beforehand.

Theorem 3 (Complexity of the Equivalence Query on InVnite Traces) In the worst
case, an equivalence query on inVnite traces executes a boundary-interior coverage of the
test suite.

Proof As shown for the equivalence query on Vnite traces (Proposition 1), in the worst
case, the counter-example is the last test case execution trace which is tried against the
hypothesis automaton, which implies that the complete test suite has been executed be-
fore. If the test suite contains only Vnite traces, a boundary-interior coverage of the test
suite amounts to executing every test case execution trace once against the hypothesis
automaton, which is identical to the complexity of the equivalence query on Vnite traces
(Proposition 1).
For an inVnite trace, i.e. a trace that contains at least one cycle, it is necessary to es-

tablish a structural equivalence between the trace and the hypothesis automaton. This
involves three steps. First, behavior speciVed in a cycle can be skipped. To check whether
the hypothesis automaton correctly allows for skipping the according behavior, a trace
without execution of the cycle is tried against the hypothesis automaton. Second, the
behavior speciVed in a cycle can be executed. To check for the existence of the according
behavior, a trace that executes the cycle once is tried against the hypothesis automaton.
Third, the behavior speciVed in a cycle can be repeated. To check for the repeatability
of the behavior, a trace that executes the cycle twice is tried against the hypothesis au-
tomaton. A further expansion of cycles is not necessary, as neither a threefold execution
of a cycle nor the interleaved expansion of cycles can discover additional information
on the structure of the automaton. The described manner of executing cycles, with
zero, one, and two expansions of each cycle, corresponds exactly to the deVnition of a
boundary-interior coverage on the test suite. �

At a Vrst glance, the complexity of the equivalence query on inVnite traces seems
to be worse than the complexity on Vnite traces. However, as stated in the proof for
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Theorem 3, the diUerence between both complexities concerns solely the inVnite traces.
For inVnite traces, it is necessary to execute a boundary-interior coverage of every cy-
cle, amounting to three traces that have to be checked for each cycle. When learning
from Vnite traces, traces specifying the expanded cycles are deVned explicitly in the test
suite, according to the required trace length (Theorem 2). Therefore, the traces that are
generated by cycle expansion for the equivalence query on inVnite traces are already
contained in a test suite suitable for learning from Vnite traces. However, where the
required length of the traces for learning from Vnite traces depends on the needs of the
membership query, and thus on the number of states in the target automaton, the cy-
cle expansions required by the equivalence query on inVnite traces only depend on the
cycles in the test case execution traces, and thus on the structure of the test suite.
In addition, a test suite for learning from inVnite traces can be shorter than a test suite

for learning from Vnite traces. Theorem 2 shows that the length of the required traces
depends on the number of states in the target automaton. However, this length is chieWy
needed for the correct detection of cycles. When cycles are marked in the test suite, they
can be expanded on-the-Wy for the membership query.

4.4 Summary: Adaptations of the minimally adequate

teacher

In this chapter, we have described our adaptations of Angluin’s learning algorithm to the
conditions of test cases. We have analyzed the properties of the automaton generated
by the learning algorithm and established that they are suXciently adequate for our
purposes. The main contribution of this chapter is therefore the deVnition of aminimally
adequate teacher (MAT) that works on a test suite.
An MAT needs to answer two types of queries: the membership query and the equiv-

alence query. We have deVned the membership query as a search for a given trace on
the test suite. If the search locates a trace that is assessed with the verdict pass, this trace
is regarded as an accepting trace of the target automaton. In the same way, a queried
trace that corresponds to a path in the test suite which is assessed with the verdict fail is
regarded as a rejecting trace. Adhering to a closed world approach, we assume that ev-
ery acceptable behavior is represented in the test suite and accordingly reject all traces
for which no counterpart in the test suite can be found.
The equivalence query ensures that the learned automaton represents the data sample.

Therefore, we have deVned the equivalence query as a run of the test suite against the
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current hypothesis automaton, where the Vrst test that fails to reproduce its verdict is
returned as a counter example. We have argued that for establishing the equivalence of
the hypothesis automaton to the test suite, it is suXcient to execute cyclic behavior in
the test cases up to a maximum of two times.
While these deVnitions are suXcient for the learning procedure, we have observed

that we need rather large test suites to be able to answer all membership queries cor-
rectly. In consequence, the eXciency of the queries, especially the membership query,
depends on an eXcient search strategy on the test suite.
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State Merging Techniques

In Chapter 4, we have deVned and analyzed the formal requirements for the recon-
struction of automata from test cases by learning. We have shown that for the equiva-
lence query the traces from a test suite are suXcient, as long as the test suite satisVes
a boundary-interior coverage of the system under test (SUT). This also agrees with the
results of Berg et al. [BGJ+05]. However, it is still necessary to answer the membership
queries correctly. As stated in DeVnition 32, we only accept traces that are labeled pass.
This results in an automaton conforming very closely to the test suite. The drawback of
this restrictive policy is that a falsely rejected trace, especially when updating the clas-
siVcation tree, can introduce errors into the state space that cannot be corrected. On the
other side, in order to answer all membership queries correctly, we need a large number
of test case execution traces, which leads to a large test suite. As a membership query
essentially amounts to a search on the test suite, a large test suite also means increased
eUort in the query mechanism. Therefore, we need a representation of the test case
execution traces which can be eXciently searched.
The method of automata inference by state-merging as introduced in Section 3.6 pro-

poses a possible solution to both problems. In this method, a tree structure, the preVx
tree acceptor, is used to organize the samples. On this tree, merging operations are per-
formed, thus leading to a simpler and more general structure. While a tree structure can
eXciently be searched for traces, the merging approach could be used to generate more
traces for the membership queries. The drawback of this method is that the merging
may lead to over-generalization, i.e. the constructed automaton would accept too many
traces. Also, the method is based on a structural analysis of the preVx tree acceptor,
which in our case would provide only marginal additional information as test cases are
usually written to overlap as little as possible.
We therefore propose a diUerent approach to state-merging. In addition to the struc-

tural information of the test cases we apply our knowledge of test case generation,
thereby exploiting semantic properties to improve the structure. The advantage of our
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approach is a better preservation of the test suite structure, and it also identiVes more
additional information than the original state-merging method. Following the closed
world philosophy, the additional traces generated in the trace graph are used twofold.

• Additional positive traces enhance membership queries, to avoid over-Vtting.

• Additional negative traces mainly inWuence equivalence queries, where they may
provide additional and possibly shorter counter-examples.

In the rest of this chapter, we will elaborate our approach. We start by deVning a
data structure for representing our training set, which consists of positive and negative
test case execution traces. The trace graph is based on the preVx tree acceptor used in
the state-merging method (Section 3.6). To be able to exploit the properties of the test
cases best, the trace graph is modeled to closely represent our test cases. Subsequently,
we describe the construction of the trace graph from the test cases and introduce the
principles of semantic state-merging. Lastly, we relate the trace graph to the learning
procedure we deVned in Chapter 4.

5.1 DeVning a Data Structure for State Merging

As described in DeVnition 27, the preVx tree acceptor used in the state-merging algo-
rithm is deVned as an automaton whose states are marked with preVxes of words from
the language of the automaton to be learned. Since the preVx tree acceptor is merged
into the Vnal automaton, it contains only positive examples of the language and their
preVxes. The start state of the preVx tree acceptor is marked with the empty word ε
and the end states are labeled with the complete words from the positive sample. The
length of the preVxes stored at the nodes increases with the distance to the root node,
as in fact the preVx stored at a node describes the trace from the root node to that node.
With respect to our application, two aspects of the preVx tree acceptor are most inter-
esting. Every preVx of the positive sample, and thus the traces of the target automaton,
is contained in the preVx tree automaton such that it begins in the start state. As traces
may share a common preVx, they will also share a common preVx path in the preVx tree
acceptor, thereby constituting a compact representation of the sample even before the
actual state-merging.
For our notion of semantic state-merging, we also want to start with a compact rep-

resentation of the sample. However, in contrast to the original state-merging approach,
we do not want to generate the target automaton entirely from the preVx tree acceptor.
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Instead, our goal is to deVne a structure that can be used as a basis to Angluin’s learning
approach. Therefore, we would like to represent our complete input data and in conse-
quence, we need to represent positive and negative traces. Essentially, this means that
we have to include the assessment of the traces in the data structure.
As our state-merging techniques are based on semantic knowledge about test case

generation, we need a data structure which is closely related to the test cases themselves.
In the end, our data structure shall be used to represent the complete test suite as input
to the learning algorithm. In the following, we propose a search tree, called the trace
tree, whose edges are labeled with the signals from the test cases and whose nodes are
labeled with the verdicts from the test cases. In a second step, this data structure is
reVned to contain cycles.

5.1.1 The Trace Tree: Representing Test Cases

As described in Section 3.4.1, in general, a test case is itself a piece of software and
can therefore be represented as a control Wow graph. Usually, a test case distinguishes
signals received from the SUT, signals sent to the SUT, and internal actions like the
computation of some values or the setting of verdicts. As we have already explained
in Section 4.1.2, we regard sent and received signals as input symbols to our target
automaton and ignore internal actions except for the setting of verdicts. In consequence,
we deVne the input alphabet of our test case automaton in DeVnition 34 as Σ ∪ V , the
set of sent and received signals Σ and the set of verdicts V . During the execution of a
test case, the verdict may be changed at diUerent points. The overall assessment of a
test case depends on the verdicts set along the execution trace, which depends on the
test language. We deVne the overall verdict of a test case execution path in the test
case automaton by the function v(w), which computes a verdict ∈ V for a word w,
w ∈ (Σ ∪ V )∗ according to the rules of the test language.

DeVnition 34 (Test Case Automaton) A test case automaton is a deterministic Vnite
automaton (DFA) ATC = (S,Σ ∪ V, δ, s0, F ), where S is a Vnite set of states, Σ a Vnite
alphabet of signals, V is the set of verdicts, δ : S × (V ∪Σ)→ S the transition relation,
s0 ∈ S the start state, and F ⊆ S a set of Vnal states.
A transition in the automaton is labeled either by a signal or by a verdict, but not both

at the same time. 2

We call the verdict assigned at a given point during the test case execution local verdict
as opposed to the global verdict, which is the verdict assigned to a complete test case
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execution trace. The global verdict can be computed from the local verdicts in the path,
according to the rules of the used test speciVcation language.
In general, every test case automaton combines a number of traces. At the same

time, a test suite contains a number of test cases, where diUerent test cases may contain
identical traces as they partly overlap. In our data structure, we need to represent all
traces from all test cases in the test suite, thereby eliminating duplicates and exploiting
overlaps.
The trace tree is essentially a labeled search tree which represents all traces from a test

suite. As in the preVx tree acceptor, all traces share the same starting state. This also
corresponds to the learning algorithm’s requirement that all input traces have to start in
the same state. Also, as in the preVx tree acceptor, traces with common preVxes share
their path in the trace tree as long as their preVxes match. In diUerence to the learning
procedure, which only considers positive and negative traces, the trace tree models the
test suite and therefore can contain all verdicts used by the test language. All in all, the
trace tree can be seen as a union of all test cases.

DeVnition 35 (Trace Tree) A trace tree is a tree (N,E, V,Σ, r, l, v), where N is a set of
nodes, E is a set of edges, V is the set of verdicts, Σ is the signal alphabet, and r is the
root node. The edges e ∈ E are labeled with symbols from the signal alphabet Σ of
the test suite by the edge labeling function l : E → Σ. The nodes n ∈ N are labeled
according to the verdicts of the test case by the verdict function v : N → V , which
assigns a label to each node. The root node r corresponds to the start state of the SUT.
Every path of the trace tree, starting with the root node and ending in a leaf of the tree,
represents a trace of a test case in the test suite. 2

Whereas in the test cases, the setting of a verdict is an internal action and thus part of
the input alphabet of the automaton, in the trace tree, the verdict information is stored
at the nodes. In this way, we establish a separation between information about the
behavior of the SUT, i.e. signals sent to and received from the SUT, which is stored at
the edges of the trace tree, and information about the assessment of the behavior of the
SUT, like verdicts, which we store at the nodes of the trace tree.
To give an example of a trace tree, the Vnite test cases used for the coUee machine

example in Section 4.2.2, listed in Table 4.1, are represented in the trace tree shown in
Figure 5.1. For easier comparison, we repeat the test cases in Table 5.1.
Instead of storing preVxes at the nodes as in the preVx tree acceptor, we store single

signals at the edges of our trace tree, as the structure then is easier to search. From
the edge labels, we can compute the preVx p(n) at a given node n of the trace tree as

60



5.1 DeVning a Data Structure for State Merging

ID Test Case Execution Trace Verdict
1 ε pass
2 cm!insertMoney, cm!requestCoUee, cm?outputCoUee pass
3 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!requestCoUee, cm?outputCoUee
pass

4 cm!insertMoney, cm!insertMoney fail
5 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!insertMoney
fail

6 cm!insertMoney, cm?outputCoUee fail
7 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm?outputCoUee
fail

8 cm!insertMoney, cm!requestCoUee, cm!insertMoney fail
9 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!requestCoUee, cm!insertMoney
fail

10 cm!insertMoney, cm!requestCoUee, cm!requestCoUee fail
11 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,

cm!insertMoney, cm!requestCoUee, cm!requestCoUee
fail

12 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!requestCoUee

fail

13 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!requestCoUee

fail

14 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm?outputCoUee

fail

15 cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm!insertMoney, cm!requestCoUee, cm?outputCoUee,
cm?outputCoUee

fail

Table 5.1: Test Case Execution Traces
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FAIL
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FAIL

cm?outputCoffee  

FAIL

cm!requestCoffee  

Figure 5.1: Trace Tree

follows. The start state n0 is labeled with the empty word ε, p(n0) = ε. Then, each node
is labeled as p(n) = p(npre)a, where npre is the direct predecessor of n and a is the label
at the edge from npre to n. The preVxes thus computed conform to the node labeling
in the preVx tree acceptor as described in DeVnition 27. By using the preVx generating
function p(n) to label the nodes and only keeping traces in the tree that were rated as
v(w) = pass, the trace tree could be transformed into a preVx tree acceptor. However,
for our purposes, it serves better to keep all traces in the same data structure.

The trace tree forms the basic data structure for our semantic state-merging. As the
semantic state-merging methods depend on the information contained in the test cases,
which in turn depends on the test language used in specifying the test cases, the trace
tree can be extended to represent diverse structural information on the test cases by
deVning additional node labeling functions. As we already introduced explicit cycles
into our learning procedure, we also need to represent cycles in the trace tree.

5.1.2 The Trace Graph: Including Cycles

The trace tree (DeVnition 35) adequately represents linear test traces. However, in Sec-
tion 4.3, we have introduced explicit cycles into our minimally adequate teacher (MAT)
and explained the advantages. To include cycles into the trace tree, we deVne an adapted

62



5.1 DeVning a Data Structure for State Merging

structure, the trace graph. Cycles are represented by routing the closing edges back to
the starting node of the cycle, therefore the structure is no longer a true tree. For better
control, nodes where a cycle starts are marked as such.

DeVnition 36 (Trace Graph) A trace graph is a directed graph (N,E, V,Σ, F, δ, n0, v, c),
where N is a set of nodes, E is a set of edges, V is the set of verdicts, Σ is the signal
alphabet, F ⊆ N is the set of Vnal nodes, δ : N × Σ → N is the transition relation, n0

is the start node, v : N → V is the verdict function that marks each node in the trace
graph with the according verdict, and c : N → {true, false} is a node labeling function
that marks nodes where a cycle starts. The root node n0 corresponds to the start state
of the SUT. A path through the trace graph beginning in the start node and ending in
an Vnal node corresponds to a trace of a test case in the test suite. 2

With the trace graph structure, cycles in the SUT still need to be deVned explicitly in
the test suite, but they are represented in a more Wexible way for the learning algorithm.
Incidentally, the trace graph itself will be smaller in size compared to the trace tree, as
now only one cycle will be stored where before a number of unrolled iterations of the
same cycle had to be included.
As an example, we show the trace graph for the inVnite test cases from Section 4.3.3

in Figure 5.2. Again, for easier reference, we repeat the test case execution traces in
Table 5.2. In comparison to the trace tree in Figure 5.1, the trace graph in Figure 5.2 is
more compact, but contains an even larger number of traces.

PASS

NONE

cm!insertMoney  

FAIL

cm?outputCoffee  

FAIL

cm!requestCoffee  

NONE

cm!requestCoffee  

FAIL

cm!insertMoney  

FAIL

cm?outputCoffee  

cm?outputCoffee  

FAIL

cm!requestCoffee  

FAIL

cm!insertMoney  

Figure 5.2: Trace Graph

While the adaptation to the representation of cycles is the most important one for our
learning approach, additional structural information on test cases can easily be added
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ID Test Case Execution Trace Verdict
1 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)* pass
2 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,

cm!requestCoUee
fail

3 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm?outputCoUee

fail

4 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm!insertMoney

fail

5 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm?outputCoUee

fail

6 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm!requestCoUee, cm!insertMoney

fail

7 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm!requestCoUee, cm!requestCoUee

fail

Table 5.2: Test Case Execution Traces

by introducing extra node labeling functions. That way, information on the test cases
will only aUect the construction of the trace graph, but not the learning procedure that
depends on its structure.

5.2 Constructing the Trace Graph from Test Cases

In Section 5.1, we have deVned a general representation of test cases, the test case au-
tomaton (DeVnition 34). This representation applies to all test speciVcation languages,
and therefore the trace graph can be used to represent test cases of all test speciVca-
tion languages. When generating the trace graph, however, the properties of the used
test speciVcation language have to be considered, as they inWuence the compatibility of
traces and thus our state-merging approach. While the overall approach to the trace
graph and state-merging is universal, some details, like the handling of verdicts, are
speciVcs to the semantic of the test speciVcation language. Where this is the case,
we adhere to the regulations of the test speciVcation language Testing and Test Control
Notation (TTCN-3) [ETS07].

In the following, we will show how the trace graph is constructed from the traces of
the test cases in the test suite. We start with a universal algorithm for adding linear
and cyclic traces. Subsequently, we highlight the inWuence of verdicts on the construc-
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tion and introduce the Vrst two state-merging techniques, to process cycles and default
branches in the test cases.

5.2.1 Adding Traces

A test case automaton as deVned in DeVnition 34 combines a number of test case ex-
ecution traces, each associated with a control Wow path. In most cases, there is a test
purpose which corresponds to a pass trace and constitutes the main Wow of the test
case as well as a number of deviations corresponding to erroneous reactions of the SUT
which result in the verdict fail. This way, the same (partial) behavior can be referred
to by diUerent test cases, being the focus of the test in one test case and a sideline in
another. As the trace graph is essentially a preVx tree acceptor, common preVxes of test
case traces are mapped onto the same graph nodes. To construct the trace graph, we
separate the test cases into single traces and add them to the trace graph.
Figure 5.3 shows an example test case automaton, Table 5.3 the associated traces. In

the test case automaton, the verdicts are represented as internal signals and therefore
associated with edges of the test case automaton.

state0 

state1 

cm!insertMoney  

state2 

cm!requestCoffee  

state3 

cm?outputCoffee  

s5

cm?outputTea  

s4

internal:setverdict,verdict_pass=true  

s6

internal:setverdict,verdict_fail=true  

Figure 5.3: A Test Case Automaton

In the trace graph, verdicts are associated with the nodes of the graph, whereas they
are associated with special edges in the test case automaton. Therefore, when adding a
test case trace to a trace graph, the verdicts move from an edge to a node. To this end,
when parsing the test case automaton, we check for the keyword indicating the setting
of a verdict. In the test language TTCN-3, for example, this keyword is the function
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ID Test Case Execution Trace Verdict
1 cm!insertMoney, cm!requestCoUee, cm?outputCoUee pass
2 cm!insertMoney, cm!requestCoUee, cm?outputTea fail

Table 5.3: Traces of the Test Case Automaton

setverdict. On reading this keyword, instead of adding a new edge the current node is
labeled with the appropriate verdict.

When adding a linear trace to the trace graph, we start in the start node of the trace
graph and look at the Vrst signal in the trace. If the current node already has an edge
labeled with the current signal, we proceed along this edge to its target node in the trace
graph and proceed to the next signal in the trace. This is repeated until we reach a node
where none of the outgoing edges matches the current signal. Then, the current suXx
of the trace is added as a new subgraph of the current node. Algorithm 5 shows the
algorithm in pseudo code.

Data: A trace w
1 Start at the root node n0 of the trace graph;

2 for all signals in w do
3 Get the Vrst signal b in w;
4 if the current node has an outgoing edge marked b then
5 Move to the b-successor of n, which is δ(n, b);
6 Remove the Vrst signal from w;
7 else

// The signal is unknown at the current node
8 Add w as a new subgraph at the current node;
9 return;
10 end
11 end

Algorithm 5: Add a Trace to the Trace Graph

5.2.2 Adding Cycles

Cycles of the test case automaton need to be specially treated, as a cycle means that an
edge loops back to an existing node. A trace containing a cycle can be separated into
three parts w = wprewcyclewpost, where wpre is the sequence of signals leading into the
cycle, wcycle is the cycle itself, and wpost is the sequence of signals leading out of the cycle.
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The strings wpre and wpost may also be empty. When adding a trace containing a cycle,
we proceed in three steps, adding the linear parts of the trace as described above and
closing the cycle explicitly. First, we add wpre and remember the last node ncycle, which
marks the beginning and ending of the cycle. In the next step, we split the cycle into a
preVx and the last signal, wcycle = wcycle−1a. The preVx of the cycle, wcycle−1 is a linear
sequence and is accordingly added. Again we remember the last node nlast and add the
closing edge of the cycle as (nlast

a→ ncycle). In the last step, we proceed by adding wpost

starting from ncycle. The pseudo code is given in Algorithm 6.

Data: A trace w
1 Partition the trace: w = wprewcyclewpost;

2 Add wpre to the trace graph;

3 Let n0 the root node of the trace graph;
4 Find the target node ncycle on the trace graph as ncycle = δ̂(n0, wpre);
5 Let a the last element of wcycle, which is wcycle[|wcycle|];
6 Remove the last element wcycle[|wcycle|] from wcycle;
7 Add wcycle to the trace graph, starting at node ncycle;
8 Find the target node ncycle−1 on the trace graph as ncycle−1 = δ̂(ncycle, wcycle);
9 Add a transition from ncycle−1 to ncycle so that δ(ncycle−1, a) = ncycle;

10 Add wpost to the trace graph, starting at node ncycle;

Algorithm 6: Add a Cycle to the Trace Graph

5.2.3 Verdicts

While adding traces to the trace graph, we check whether the verdicts in the currently
processed trace are compatible to the verdicts already in the trace graph. In Figure 5.4, an
example for compatible verdicts is given in the terms of the coUee machine. Figure 5.4a
shows an accepted sequence, where the request for a cup of coUee is followed by the
output of the same. The corresponding test case execution trace is cm!insertMoney,
cm!requestCoUee, cm?outputCoUee, pass. The sequence in the second test case, shown
in Figure 5.4b, is only one signal longer than the sequence of the Vrst test case—instead of
stopping after outputting the coUee, the machine outputs another cup. Clearly, this se-
quence of events is rejected, as the output of the second coUee which was not requested
could make the cup overWow. Accordingly, the test case execution traces of the second
test case is cm!insertMoney, cm!requestCoUee, cm?outputCoUee, cm?outputCoUee, fail.
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The trace graph storing the two test cases is shown in Figure 5.4c. It is obvious that both
test case execution traces can be extracted correctly.

state0 

state1 

 cm!insertMoney

state2 

 cm!requestCoffee

state3 

 cm?outputCoffee

state4 

 internal:setverdict,
 verdict_pass=true

(a) Test Case 1

state0 

state1 

 cm!insertMoney

state2 

 cm!requestCoffee

state3 

 cm?outputCoffee

state4 

 cm?outputCoffee

state5 

 internal:setverdict,
 verdict_fail=true

(b) Test Case 2

NONE

NONE

 cm!insertMoney

NONE

 cm!requestCoffee

PASS

 cm?outputCoffee

FAIL

 cm?outputCoffee

(c) Trace Graph

Figure 5.4: Compatible Verdicts in the Trace Graph

Whereas it is acceptable if the verdict is changed along a trace, it is not acceptable if
two traces put diUerent verdicts at the same node. An example is shown in Figure 5.5,
where the test cases in Figures 5.5a and 5.5b share exactly the same sequence of signals,
but apply a diUerent verdict. In the construction of the trace graph in Figure 5.5c, it is
therefore not clear which verdict to put into the Vnal node.

In the example (Figure 5.5), the mismatch of the verdict is due to an error in the
postamble. In general, Vnding incompatible verdicts in the same node of the trace graph
can imply that the same sequence of signals—and therefore the same behavior—was
rated in diUerent ways in the same test suite. This may indicate inconsistencies or errors
in the test suite. In any case, learning from such a test case is not recommendable, as
there is no safe way of guessing which of the two competing verdicts is the correct one.

So far, the state-merging in the trace graph only means the combination of the test
case automata, where traces are only merged as far as their preVxes match. The trace
graph therefore exactly represents the test cases, but nothing more. In the following, we
show two techniques to derive additional traces based on our knowledge of test cases.
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Figure 5.5: Incompatible Verdicts in the Trace Graph

5.2.4 Cycles and Non-Cycles

When testing a software system with repetitive behavior or a cyclic structure, the cycle
has of course to be tested. However, it is usually suXcient to test the correct working
of the cycle in one test case. In all other test cases the shortest possible path through
the software is considered, which may mean that a test case executes only a part of a
cycle or completely ignores a cycle. Depending on the test purpose, the existence of the
cycle might not even be indicated in the test case. As long as the cycle itself is tested by
another test case, the test coverage is not inWuenced. This approach results in shorter
test cases, which usually means shorter execution time and thus faster testing. Also,
readability of the test cases is increased. While the preselection of possible paths for
cycles is appropriate for software testing, for machine learning it is desirable to have
access to all possible paths of the software.

Consider the two test cases shown in Figure 5.6, which are part of the example in
Section 4.3.3. Although this is only a small example for demonstration purposes, the
setting is quite typical. The test case shown in Figure 5.6a tests the positive case, that is,
a repeated iteration of the three signals a, b, and c. The test case shown in Figure 5.6b
tests for a negative case, namely what happens if the system receives an inopportune
signal. Here, the repetitive behavior is ignored, as it has been tested before and the test
focus is on the error handling of the system. However, usually this behavior could also
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be observed at any other repetition of the cycle.

state0

state1

 p!a  

state2

 p!b  

state3

 p!c  

 p:setverdict,
  verdict_pass=true

(a) A Test Case with a Cycle

state0

state1

 p!a

state2

 p!c

state3

 p:setverdict,
  verdict_fail=true

(b) A Test Case without a Cycle

Figure 5.6: Test Cases with and without Cycles

For the learning procedure, we would like to have all those possible failing traces,
not only the one speciVed. We therefore deVne a precedence for cycles, which means
that whenever a cycle has the same sequence of signals as a non-cyclic trace, the non-
cyclic trace is “folded” into the cycle. For the example test cases in Figure 5.6, the trace
graph is shown in Figure 5.7. Besides the trace p!a, p!c, fail explicitly speciVed in the
test case shown in Figure 5.6b, the trace graph also contains the traces where the cycle
is executed, (p!a, p!b, p!c)*, p!a, p!c, fail.

PASS

NONE

 p!a  

NONE

 p!b  

FAIL

 p!c  

 p!c  

Figure 5.7: Trace Graph with Folded Trace

With precedence of cycles, the test suite used as input to the learning algorithm can
be more intuitive, as cycles only need to be speciVed once. For the test suite of the coUee
machine example (Section 4.3.3), this simpliVes the test traces considerably. Table 5.4
shows the test cases from Section 4.3.3, where the cycle is speciVed in every test case. In
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Table 5.5, the cycle is only speciVed in test case 1. The cyclic behavior of the other test
cases is determined via state-merging on the trace graph.

ID Test Case Execution Trace Verdict
1 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)* pass
2 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,

cm!requestCoUee
fail

3 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm?outputCoUee

fail

4 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm!insertMoney

fail

5 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm?outputCoUee

fail

6 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm!requestCoUee, cm!insertMoney

fail

7 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)*,
cm!insertMoney, cm!requestCoUee, cm!requestCoUee

fail

Table 5.4: Test Suite with Explicit Cycles

ID Test Case Execution Trace Verdict
1 (cm!insertMoney, cm!requestCoUee, cm?outputCoUee)* pass
2 cm!requestCoUee fail
3 cm?outputCoUee fail
4 cm!insertMoney, cm!insertMoney fail
5 cm!insertMoney, cm?outputCoUee fail
6 cm!insertMoney, cm!requestCoUee, cm!insertMoney fail
7 cm!insertMoney, cm!requestCoUee, cm!requestCoUee fail

Table 5.5: Test Suite with Implicit Cycles

5.2.5 Default Behavior

Another common feature of test cases is the concentration on one test purpose. Usually,
the main Wow of the test purpose forms the test case, while unexpected reactions of the
SUT are handled in a general, default way. Still, there may exist a test case that tests (a
part of) this default behavior more explicitly.
Default branches usually occur when the focus of the test case is on some speciVed

behavior, and all other possible inputs are ignored or classiVed as fail. Also, sometimes a
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test case only focuses on a part of the system, where not all possible signals are known.
In such cases, the test case often contains a default branch, which classiVes what is to be
done on reading anything but what was speciVed.

For our application, this poses two challenges. The Vrst challenge is for the learning
procedure. For the diUerent queries, we would like to have as many explicitly classiVed
traces as possible, but at the same time we would not want to blow up the size of the
traces too much. The second challenge is in the construction of the trace graph. When
adding all diUerent traces into one combined structure, the implicit context of what is
“default” in the local test case is lost. Also, sometimes another test case uses the same
default, adds more speciVc behavior in the range of the default, or deVnes a new default
which slightly diUers. We therefore need a method of preserving the local concept of
“default” in the test cases and a method of combining diUerent defaults in the trace
graph.

Consider a typical default situation, like a default statement in a case environment.
The default collects all cases that are not explicitly handled beforehand. As branching
on alternatives splits the control Wow in a program, each of the branches belongs to a
diUerent trace. Therefore, when taking the traces one by one, the context of the default
is not clear. To preserve this context, instead of default we record the absolute comple-
mentary of the set of other alternatives, which is {{a, b}. Figure 5.8 shows a test case
with defaults (Figure 5.8a) and its representation as a trace graph (Figure 5.8b).

state0

state1

 request coffee

state2

 output coffee

state4

 else

state3

 setverdict,
 verdict_pass=true

state5

 setverdict,
 verdict_fail=true

(a) Test Case with Default

NONE

NONE

 request coffee

PASS

 output coffee

FAIL

 C{"output coffee"}

(b) Trace Graph

Figure 5.8: Representing Defaults in the Trace Graph
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When adding traces to a trace graph containing defaults, three cases have to be dis-
tinguished.

• Add a trace with a matching complementary set.

• Add a trace that singles out one signal from the complementary set.

• Add a trace with a diUerent complementary set.

Let us split the traces to consider in three parts, t = pdq, where t denotes the trace to be
added, p denotes the common preVx up to the default statement, d denotes the default
statement or the signal at the place of the default, and q denotes the postVx following
the default statement.
The Vrst and simplest case is to add a trace with a matching default and thus a match-

ing complementary set. As the complementary sets are identical, it suXces to add the
postVx of the trace to the subgraph of the default already in the trace graph. Figure 5.9 il-
lustrates this. Figure 5.9a shows the part of the trace graph containing the default before
the new trace is added. As only the nodes surrounding the default edge are of interest,
we show the rest of the trace graph in a stylized way. In Figure 5.9b, we show the trace
to be added, and Figure 5.9c depicts the resulting trace graph after the new trace was
added. The postVx from Figure 5.9b is integrated into the subgraph of the edge marked
with the complementary set.
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Figure 5.9: Adding a Trace with Matching Default

In the second case, we want to add a trace that shares the same preVx as the default,
but does not match any of the existing alternatives. The situation is depicted in Fig-
ure 5.10, the signal following the preVx in the trace shown in Figure 5.10b is not exactly
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matching the existing branches of the trace graph shown in Figure 5.10a. However, the
trace would match the default branch, only not the whole complementary set but a sin-
gle item thereof. Therefore, we split the default branch as shown in Figure 5.11a. The
subgraph of the default branch is copied, so that the new branch has the same postVxes
as before. Then, we can add the postVx of the new trace to the subgraph of the new
branch as described for the simple case. This is shown in Figure 5.11.
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Figure 5.10: Adding a Trace with an Additional Alternative: Initial Situation
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Figure 5.11: Adding a Trace with an Additional Alternative: Adding to the Split
Default Branch

In the third and last case, we add a trace with a diUerent default statement to a trace
graph. The situation is depicted in Figure 5.12. The trace graph contains an edge marked
with the complementary set {{a} and the test trace contains an edge marked with the
complementary set {{b} The problem, as well as the solution, is similar to that of the
second case, but now it is bidirectional. The complementary set of the test trace to be
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added does not Vt the complementary set of the trace graph. As before, we split the
default branch of the trace graph, such that the edge marked b is branched out from
the complementary set (Figure 5.13a). The remaining complementary set in the trace
graph is {{a, b}. However, the complementary set of the test trace still does not match,
therefore we split the test trace, such that the edge marked a is branched out from the
complementary set (Figure 5.13b). The complementary sets of the trace graph and the
test trace are now identical, {{a, b}, but the test trace has been split into two test traces.
Then we add the two resulting test traces traces, resulting in the trace graph shown in
Figure 5.14.
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Figure 5.14: New Trace Tree

The described technique also generalizes to sets with more than one element. In
this case, the sets associated with the split branches are determined as the intersections
and diUerences of the given sets. An example is shown in Figure 5.15, where A is the
complementary set of the default to split and B is the complementary set of the default
in the test trace. To put it simple, a common partition of the sets is built, both for the
trace graph and for the test trace, so that traces with exactly matching sets can be added.
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Figure 5.15: Splitting Default Branches in the General Case

5.3 Learning from the Trace Graph

We have deVned the trace graph to represent test cases and to be able to reWect test lan-
guage speciVc details. For the learning process, we need to abstract from those details.
In Chapter 4, we have described test cases as single traces that end in a verdict. Based on
that, we deVned the notion of test case execution traces, which couple a trace of input
and output signals of the SUT with a verdict assessing the whole trace. This description
is most suitable for the learning algorithm, as the learning algorithm expects a trace and
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a classiVcation of the complete trace. In the trace graph, verdicts are stored locally and
may change along a path through the trace graph. This representation allows to store
traces of diUerent length and with diUerent, yet compatible, verdicts in the same graph.
For learning from the trace graph, we need to map the local verdicts stored in the trace
graph to the global verdicts the learning algorithm expects. Besides the computation of
the global verdict of a trace, we need to relate the learning procedure’s querying mech-
anisms to the trace graph. As the trace graph is designed to be eXciently searchable, we
will see that the membership queries beneVt from our data representation.

5.3.1 Computing the Verdicts

When dealing with the verdicts in the trace graph, there are two issues to solve. First,
we need to ascertain the compatibility of the local verdicts, as incompatible verdicts will
cause problems in the learning procedure. Second, we need a method to compute the
global verdict from the local verdicts along a path of the trace graph.
The Vrst problem is already solved on constructing the trace graph (Section 5.2.3).

When a mismatch of local verdicts is detected, the learning procedure is interrupted, as
it is impossible for the learning procedure to decide which verdict should be correct.
The second question has to be solved according to the semantics of the test speciV-

cation language. In TTCN-3, the policy is that a verdict can only get worse. In con-
sequence, the global verdict of a trace is the worst verdict along the path in the trace
tree. As the learning procedure only accepts pass and fail, complemented with the ver-
dict none that indicates that no verdict has been set, the global verdict of a trace can be
computed according to DeVnition 37.

DeVnition 37 (Global Verdict of a Trace) Let w be a trace in the trace graph G =

(N,E, V,Σ, F, δ, n0, v, c) starting at the root node n0 of the trace graph. The set of local
verdicts V (w) of a test trace w is the collection of all local verdicts vl stored at the target
nodes of all preVxes of w,

V (w) = {vl | ∃wp ∈ Pr(w) : vl = v(δ̂(n0, wp))} .

Then, the global verdict vg of the trace w is computed as

vg(w) =


fail ∀vl ∈ V (w) : vl = none

fail ∃vl ∈ V (w) : vl = fail

pass otherwise .
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In other words, for a trace w to be accepted, there must be at least one pass verdict and
no fail verdicts among the local verdicts. 2

5.3.2 Queries on the Trace Tree

The trace graph is designed to resemble a search tree, where the successor of a state is
reached by the next signal in the sequence to process. Therefore, a membership query
on the trace graph only depends on the length of the queried sequence, which in turn
depends on the length of the access strings and distinguishing strings and therefore
on the length of the counter-example. As explained in Section 4.1.2, the assessment of a
trace that is not found in the test suite depends on the adoption of a closed world or open
world approach. In congruence with the membership query deVned in DeVnition 28, we
rate a trace that is not found on the trace graph as not acceptable and therefore apply
the verdict fail. We apply the same policy to incomplete traces, i.e. the queried trace
doesn’t end in a Vnal state or no verdict has been applied during the trace.
In the equivalence query, we need to test every complete trace of the test suite against

the hypothesis automaton. This means that we have to extract every trace from the trace
graph. As we already explained in Section 4.3.4, it is enough to expand cycles twice for
the equivalence query. Therefore, a tree walking algorithm can be applied to the trace
graph, as long as the number of cycle expansions is registered and the generated traces
are recorded to keep track of interleaved cycles. Yet, as we still prefer short counter-
examples, a simple depth-Vrst tree walking algorithm is not suXcient. To extract the
shortest possible counter-example in each iteration, we need to use an iterative deep-
ening search. The complexity of such an iterative deepening search depends on the
branching factor of the tree to be searched. For the trace graph, the branching depends
on the structure of the test suite. An upper bound on the branching factor is the num-
ber of signals of the SUT. However, usually not every signal is explicitly tested against
every state of the SUT, therefore in most cases the branching of the trace graph would
be limited to a small number of signals and a default branch.

5.4 Summary: A Generic Data Structure for Learning

We have introduced the trace graph, a data structure based on a search tree, to represent
all traces of a test suite in a single graph. As the preVx tree acceptor of the state-merging
approach, the trace graph maps common preVxes of the test case traces onto the same
path in the trace graph. Based on this property, we use the characteristics of test cases
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and the trace graph to generate additional traces for the learning procedure. We call
our proposed state-merging techniques semantic and conservative, as we use semantic
knowledge about the construction of test suites rather than structural information of
the traces and only merge traces where it is justiVed by the properties of the test cases.
Thus, we only generate traces in the trace graph that comply with the test suite.
The trace graph is constructed from the test cases by separating the test cases into

traces and adding these traces one by one to the trace graph. Based on semantic prop-
erties of test cases, the traces of the test suite are merged during the construction of the
trace graph. We have described two basic notions for the merging of test traces, cycles
and defaults. While these are present in most test speciVcation languages, there may
well be other properties that can be used in generating a trace graph, such as global
testing states.
Traces that share part of a cycle trace are considered as implicitly cyclic. In conse-

quence, they share the cycle nodes in the trace graph. The precedence of cycles allows
the test suite used for learning to be smaller and more intuitive.
Default branches in the test cases simplify the trace graph by fusing many branches

into one, but when diUerent default branches share a common preVx, it has to be ensured
that the subsequent behavior is correctly attached. To this end, we have deVned default
branches via their complementary set, and described the merging of branches depending
on the relation of their complementary sets, i.e. equal sets, diUerent sets, and overlapping
sets.
We have also explained how the queries are processed on the trace graph and shown

that the trace graph greatly enhances the membership query, where the complexity of a
single membership query now only depends on the length of the queried trace instead
of on the complexity of a search on the test suite. The trace graph is also suitable for the
execution of an equivalence query. As we always want to generate the shortest counter-
example possible, we need to perform an iterative deepening search. This also is easier
to establish on a centralized graph structure than on separate test cases.
The trace graph also separates the opposing interests of analyzing the test speciVca-

tion language for an extensive exploitation of the test suite and a universal approach to
learning from test cases. With the trace graph, the semantic state-merging can be used
to generate traces according to the needs of the test speciVcation language, and to store
the traces in a general way that can be used by the learning algorithm.
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To assess the power of our learning approach, we have developed a prototypical im-
plementation [AOWZ09, Ott09]. The implementation realizes an Angluin-style learner,
including the adaptations to the queries described in Chapter 4 and the organization
of the test data into a trace graph as discussed in Chapter 5. Using the prototype, we
perform a case study based on a well-known problem, the conference protocol [BRS+00].
The conference protocol describes a chat-box program that can exchange messages with
several other chat-boxes over a network.

The aim of our case study is threefold. First of all, we want to validate our adaptations
on the query mechanisms of Angluin’s learning algorithm and our notion of semantic
state-merging. To this end, we reconstruct a known model from its test cases. The
second goal of our case study is to assess the need for completeness of the test suite. In
Section 4.1.2, we observe that to learn the correct automaton, the membership queries
have to be answered correctly, which in the end suggests a test suite realizing a path
coverage of the system under test (SUT). Therefore, we try test suites satisfying diUerent
coverage criteria, to assess the impact of the test suite’s coverage on the success of the
learning process. Thirdly, we want to draw conclusions on if and how the structure of
the SUT inWuences the learning process from the experiments.

For our experiments, we consider two versions of the conference protocol and gener-
ate two sets of test cases for each of them. In the Vrst version of the conference protocol,
we restrict the valid signal sequences to limit the number of paths of the SUT. The sec-
ond version of the conference protocol includes a wider range of signal sequences. For
both versions of the conference protocol, we Vrst outline the expected structure of the
model to be learned, and then generate increasingly complex test suites until the learned
automaton matches the expected structure.

In the following, we will give a short overview of the prototypical implementation and
describe our setting of the conference protocol. Subsequently, we describe the results
obtained when learning from the diUerent sets of test traces. In the last section of this
chapter, we will compare the two experiments and draw some conclusions.
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6.1 Prototypical Implementation

Our prototype is implemented in the programming language Java, the abstract structure
is shown in Figure 6.1. The class Learner implements Angluin’s learning algorithm.
In every iteration of the learning algorithm, a new counter example is obtained via an
equivalence query and used to detect a new state. The discovered states are organized
in a classiVcation tree, which is also used to generate the new hypothesis automaton as
described in Section 3.7. The two queries, equivalence query and membership query, are
implemented according to our adaptation to learning from test cases (Chapter 4), and
mapped onto a trace graph structure as deVned in Chapter 5. The prototype implements
the equivalence query for inVnite traces (Section 4.3.1). However, the equivalence query
for Vnite traces can be emulated via the structure of the input test suite: for traces
without cycles, the behavior of the equivalence query is the same for Vnite and inVnite
traces.

Figure 6.1: Abstract Structure of the Implementation

In the class TraceGraph, the basic methods of semantic state-merging are imple-
mented. A trace graph structure is constructed by adding traces from test cases. The
precedence of loops (Section 5.2.4) is currently implemented implicitly, as loops are sim-
ply added Vrst to the trace tree. Default branches (Section 5.2.5) are not yet implemented.
In consequence, the TraceGraph and Learner classes are generic and can be used for
any test speciVcation language.
For the input of the test cases and the output of the hypothesis automaton, generic

interfaces were deVned. In our prototype, both interfaces are implemented using the
LTSML format that can be used to represent any type of automaton [Neu09]. For
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the test cases, we focus on the test speciVcation language Testing and Test Control
Notation (TTCN-3), i.e. the TraceReader recognizes TTCN-3 keywords and generates
traces according to the semantics of TTCN-3.

6.2 The Conference Protocol

The conference protocol case study is based on the chat-box program described
in [BRS+00]. We have modiVed it slightly to adapt it to the constraints of our learning
procedure.

6.2.1 Description of the Conference Protocol

The conference protocol describes a chat-box program that allows users to participate
at a conference chat over a network.

• A user enters an existing conference by sending the service primitive join.

• Then, the user can send messages to the conference chat (datareq) and receive
messages from the conference chat (dataind). Each datareq causes dataind mes-
sages to be issued to all other participating users and vice versa.

• At any time after a join, the user can leave the conference by sending the service
primitive leave.

(a) Abstract View of a CPE (b) Two CPEs Connected over a Network Service

Figure 6.2: Environment of a CPE

The CPEs are responsible to provide this service. They translate the service primitives
into protocol data units (PDUs) and back. The PDUs are then exchanged through the
underlying network.
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• A join request by the user is forwarded by the local CPE to each of the other
participating chat-boxes via joinPDU.

• A CPE that receives a joinPDU answers

• A datareq message causes dataPDU to be sent to the other chat-boxes.

• A received dataPDU is indicated to the user be dataind.

• A leave is forwarded as leavePDU.

The environment of the CPEs is depicted in Figure 6.2. Every CPE is connected to a
user interface, where service primitives are received and sent, and a number of other
CPEs, where PDUs are received and sent (Figure 6.2a). The PDUs exchanged between
CPEs are transferred via a network service’s sent and receive functionality (Figure 6.2b).

Figure 6.3: Main Flow of the Conference Protocol

The conference protocol can be regarded to consist of three phases (Figure 6.3).
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• The login phase consists of the user request join, which is forwarded to the other
participating chat-boxes as joinPDU and answered by them via answerPDU.

• In the data transmission phase, the user can send messages via datareq, which are
forwarded to all other chat-boxes as dataPDUout, and receive messages from all
other chat-boxes, which arrive at the CPE as dataPDUin and are indicated to the
user by dataind.

• The last phase is the logout, starting with the user’s request to leave, which is
forwarded to the other chat-boxes as leavePDU.

6.2.2 Test Scenario for the Conference Protocol

For the test case generation, we assume a test environment as depicted in Figure 6.4,
where the SUT is a single CPE and the test environment plays the roles of the user
interface (“upper tester”) and all other participating CPEs (“lower tester”). The signals
sent and received on both interfaces are coordinated by the test driver.

Figure 6.4: Test Environment for a Conference Protocol Entity

In accordance with the need to distinguish between signals sent from the SUT and
signals received by the SUT for the learning procedure (Section 4.1.2), we call the out-
bound dataPDU following a datareq “dataPDUout” and the inbound dataPDU causing a
dataind “dataPDUin”. In addition, as all PDUs can be received from any of the partic-
ipating chat-boxes, we append the suXx n to indicate the identiVcation number of the
particular chat-box that is the sender or receiver of this PDU, thereby representing the
parameterized process via explicit signals.

For all experiments, we assume that the CPE under test enters a conference with a
number of other chat-boxes, exchanges an arbitrary number of messages, and leaves
again. In this scenario, no other CPEs can enter or leave the chat during the observation
period. All test cases for the protocol are therefore designed to ensure the following:
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• A CPE cannot enter the data transmission phase before all participating chat-
boxes have answered the join request, i.e. all joinPDU have been issued and all
answerPDU have been received.

• Data transmission is regarded as uninterruptible, therefore all dataPDUout have to
be issued before another datareq can be processed or a dataPDUin can be received.

6.3 Learning the Conference Protocol: Fixed Signal

Sequence

For the Vrst experiment, we consider a restricted version of the conference protocol. We
assume a reliable medium service where no messages are lost, and where the sequence
of messages is preserved. Also, we presume that the CPE under test sends all joinPDU
before receiving the answerPDU from the other participating CPEs. In consequence,
we expect the automaton representing the conference protocol to resemble the one in
Figure 6.5. In Figure 6.5, we have abstracted from the number of participating CPEs in
the following way. The dotted edges represent a sequence of PDU, depending on the
number of CPE participating in the chat. For the dashed edges, one transition exists for
every CPE participating in the chat.
As an example, the target automaton for two participating CPEs is given in Figure 6.6.

In this graph, the generic edges from Figure 6.5 are replaced by the according concrete
edges. For every dotted edge, there is a sequence of edges, e.g. the dotted edge “send
dataPDU to all other CPEs” is replaced by the sequence dataPDUout_1, dataPDUout_2.
The dashed edge is replaced by two edges: instead of the generic edge “receive dataPDU
from any other CPEs” there are the two edges dataPDUin_1 and dataPDUin_2.

6.3.1 Test Suite 1: No SpeciVed Cycles

We specify the Vrst test suite for the conference protocol without explicitly declaring
cycles. In consequence, the trace graph also does not contain cycles. Instead, we build
the test cases to satisfy a boundary-interior coverage, where the cycles in the data trans-
mission phase of the protocol are executed once or twice, or skipped.
Table 6.1 shows the results of the experiment. We scale the experiment according to

the number of CPEs participating in the chat besides the CPE under test. This number
is shown in the Vrst column of the table. In addition, we compare the number of pass
traces described in the test suite, the size of the trace graph, and the size of the target
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 send joinPDU
 to all other CPEs
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Figure 6.5: Generic Target Automaton for the SimpliVed Conference Protocol
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Figure 6.6: Target Automaton for the SimpliVed Conference Protocol: Two Participating
CPEs
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automaton. For every number of CPEs, the learned automaton matches the expected
automaton shown in Figure 6.5. Representatively, we show the learned automaton for
the scenario with two participating CPEs in Figure 6.7. The time listed in the last column
of Table 6.1 was measured by an integrated development environment (IDE) and therefore
only represents an estimation.

CPEs Pass Traces Trace Graph Learned Automaton Time
1 6 (3) 33 (20) nodes 72 edges, 8 nodes 1 second
2 9 (4) 60 (37) nodes 168 edges, 12 nodes 2 seconds
3 12 (5) 90 (52) nodes 304 edges, 16 nodes 3 seconds
4 15 (6) 120 (75) nodes 480 edges, 20 nodes 5 seconds
5 18 (7) 164 (97) nodes 696 edges, 24 nodes 12 seconds

Table 6.1: Results for Test Suite 1

The inspection of the learner’s logVle shows that the longest traces queried only ex-
pand any cycle once. Therefore, the simple conference protocol can also be learned from
a smaller test suite, which contains traces representing the cycles in the data transmis-
sion phase plus one trace where the CPE under test leaves immediately after login. As
the smaller test suite contains shorter traces, the trace graph is also smaller. The size
of the trace graph and the number of test cases for the reduced test suite are shown in
brackets in Table 6.1. However, we believe that this result is due to the structure of the
protocol, where all cycles start in the same state, and cannot be generalized to other
systems.

6.3.2 Test Suite 2: SpeciVed Cycles

In the second test suite, we explicitly declare cycles so that they can be represented in the
trace graph. As before, we scale the experiment according to the number of CPEs par-
ticipating in the chat besides the CPE under test and every learned automaton matched
the expected automaton shown as in Figure 6.5. In fact, the learned automata were ex-
actly the same as the automata learned in Section 6.3.1, therefore we omit showing an
according automaton here. The numerical results are shown in Table 6.2.

Comparing Tables 6.1 and 6.2, we observe that the time needed for learning is almost
the same for both test suites. Also, both test suites produce the same automata. The main
diUerence is that in the Vrst experiment, a larger test suite is needed. In consequence,
the trace graph representing the test suite is also larger. Also, both the size of the test
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Figure 6.7: Automaton Learned from Acyclic Test Cases
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CPEs Pass Traces Trace Graph Learned Automaton Time
1 2 13 nodes 72 edges, 8 nodes 1 second
2 3 22 nodes 168 edges, 12 nodes 2 seconds
3 4 30 nodes 304 edges, 16 nodes 3 seconds
4 5 40 nodes 480 edges, 20 nodes 5 seconds
5 6 48 nodes 696 edges, 24 nodes 13 seconds

Table 6.2: Results for Test Suite 2

suite and the size of the trace graph increase faster in proportion to the number of CPEs
than for the second test suite.

6.4 Learning the Conference Protocol: Variable Signal

Sequence

In the following, we examine a more complicated version of the conference protocol.
While we also assume that no signals are lost by the medium service, the sequence the
signals are sent in is not preserved, so that the PDUs may be observed in any sequence.
To limit the complexity, we assume that all joinPDU are sent before the Vrst answerPDU
is received. Based on these assumptions, we expect a model like the one shown in
Figure 6.8. As in Section 6.3, the dashed edge stands for a cluster of edges, containing
one edge for every participating CPE. Each of the dotted edges represents a cluster
of signal sequences, containing an edge for every possible sequence of the respective
PDUs. As the number of PDUs sent along each of the dotted edges depends on the
number of participating CPEs, so does the number of diUerent serializations. In fact, if
|CPE| denotes the number of participating CPEs, then there are |CPE| diUerent PDUs of
each type, one to or from every other CPEs, and (|CPE|)! permutations of every series
of PDUs.

An example is given in Figure 6.9. For every dotted edge in Figure 6.8, there are
two sequences of edges in Figure 6.9: e.g. the dotted edge “send dataPDU to all other
CPEs” is replaced by the sequences dataPDUout_1, dataPDUout_2 and dataPDUout_2,
dataPDUout_1. As in Section 6.3, the dashed edge is replaced by two edges: instead
of the generic edge “receive dataPDU from any other CPEs” there are the two edges
dataPDUin_1 and dataPDUin_2.
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Figure 6.8: Generic Target Automaton for the Conference Protocol
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Figure 6.9: Target Automaton for the Conference Protocol: Two Participating CPEs
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6.4.1 Test Suite 3: Branch Coverage

A common coverage criterion in testing is the branch coverage, where every branch of
the SUT is executed. As the problem of messages arriving out of order aUects mostly
the PDUs, this means that we have to generate a trace for every permutation of the
four series of PDUs that are sent in the protocol, joinPDU, answerPDU, dataPDUout,
and leavePDU, as the according service primitives join, datareq, and leave each cause a
series of PDUs to be sent. For the sequences of PDUs, the branch coverage implies that
while every possible serialization of PDUs is represented at least once, the serializations
are recombined among themselves. The cycles in the data transmission phase of the
protocol are speciVed explicitly.

CPEs Pass Traces Trace Graph Learned Automaton Time
1 2 13 nodes 72 edges, 8 nodes 0 seconds
2 4 37 nodes 294 edges, 21 nodes 1 seconds
3 9 134 nodes 1368 edges, 72 nodes 5 seconds
4 28 659 nodes 7848 edges, 327 nodes 10 minutes

Table 6.3: Results for Test Suite 3

While the numerical results shown in Table 6.3 look quite encouraging, as they show
that rather large automata can be learned in acceptable time. However, a closer look
at the learned automata quickly discovers that the learned automata do not match the
target automaton as shown in Figure 6.8. Instead of a compact automaton, the learned
automaton contains the traces exactly as they were speciVed in the test cases. As an
example, the automaton learned for a chat session with two CPEs besides the CPE under
test is shown in Figure 6.10. Instead of generalizing from the input data, the learning
algorithm learned every input trace by heart.

6.4.2 Test Suite 4: Path Coverage

Since the test suite described in Section 6.4.1 did not reproduce the expected automaton,
we generate another test suite for the complex variation of the conference protocol, this
time satisfying path coverage of the expected automaton. Therefore, in addition to rep-
resenting all permutations of every series of PDUs, we also include every combination
of those permutations in the test suite. Again, the cycles in the data transmission phase
of the protocol are speciVed explicitly.
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Figure 6.10: Resulting Automaton for Transition Coverage
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Now, the expected automaton can be learned correctly from the test suite, as demon-
strates the resulting automaton for the scenario of two other CPEs shown in Figure 6.11.
Unfortunately, a test suite satisfying path coverage grows very fast with increasing num-
ber of participating CPEs, as the number of permutations is factorial in the number of
CPEs, |CPE|!, and the number of combinations can be estimated as a multiplication of all
permutations, |CPE|!4. So, while the test suite for two participating CPEs comprises a
manageable number of 32 pass traces, the test suite for three participating CPEs already
includes 1944 pass traces, which surpasses Java’s heap capacity on the experimentation
machine.
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Figure 6.11: Resulting Automaton for Path Coverage
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CPEs Pass Traces Trace Graph Learned Automaton Time
1 2 13 nodes 72 edges, 8 nodes 0 seconds
2 32 90 nodes 224 edges, 16 nodes 1 seconds

Table 6.4: Results for Test Suite 4

6.5 Conclusion of the Case Study

Our experiments have shown that it is possible to reconstruct an automaton model from
a test suite. We have performed four experiments, generating two diUerent test suites
for each of two versions of the conference protocol. In three experiments, the target
automaton was correctly identiVed. However, in all successful experiments, the test
suite satisVed a path coverage on the target automaton. The observed computing times
and automata sizes suggest that while the learner is able to handle quite large automata,
the size of the required test suite is the inhibiting factor.

In the Vrst version of the conference protocol, especially the signals sequences used
in the setup and shutdown phase were Vxed. In consequence, the learner quickly rec-
ognized the main loop of the conference protocol, even when cycles were not explicitly
marked in the test cases. Actually, while both test suites for the simple version of the
conference protocol were designed to satisfy branch coverage of the expected automa-
ton, due to the simple structure of the expected automaton, both test suites also satisfy
a path coverage limited in the number of cycle executions.

In the second version of the conference protocol, we introduced a wide range of alter-
native paths through the protocol automaton. While the resulting automaton should
have been quite compact, allowing for the recombination of diUerent partial paths
through connecting states, the learner only recognized this structure when examples
for all possible paths were given, leading to a rapid growth of the test suite in relation
to the increasing number of participating conference protocol entities (CPEs).

Comparing the two versions of the conference protocol, we deduce that the structure
of the system under test (SUT) has an inWuence on the complexity of the learning process
and that for correct machine learning, the test suite has to be as complete as possible. In
fact, this precondition on the learning sample has been described before as the need for
a “structurally complete” sample. As a rule of thumb, we might say that “the larger the
test suite, the smaller the automaton”, as a large test suite usually allows more possible
paths.
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Experimentation has shown that the growing size of the test suite aUects our learning
procedure in two related points. The Vrst is the generation of the trace graph. For larger
test cases the preprocessing steps, such as cycle detection, are harder to handle. The
second is the equivalence query, where the whole test suite has to be executed again
and again. Interestingly, it is not necessary to compute all interleaving cycle executions
for the equivalence query. Instead, the crucial points for the equivalence query turn out
to be the intersections between diUerent paths through the SUT. Therefore, for a better
scalability of our learning procedure, we should aim at detecting intersections of the test
cases in the trace graph, thereby minimizing the trace graph and reducing the necessary
size of the test suite while keeping its expressiveness.
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While the case study, described in Chapter 6, proved the suitability of the learning ap-
proach, it also raised a number of questions regarding speciVc properties of the used
data structures and the algorithm. Some of the observations conVrmed design deci-
sions, while at other points, decisions turned out to be less then optimal. The following
sections provide an assessment of the parts of our learning approach. We reassess the
generated automaton, the use of a test suite as input sample, and the learning algorithm
itself with respect to their suitability for our purposes. As some of the encountered
questions have also attracted the attention of other researchers, there are a number of
possible solutions available that could be adapted to our learning approach. In other
situations, a number of possible solutions are suggested that have not been investigated
yet.

7.1 Suitability of the Learned Automaton

Angluin’s learning algorithm generates a plain deterministic Vnite automaton (DFA),
which consists of a set of states partitioned into accepting and rejecting states, an in-
put alphabet triggering state transitions and a corresponding state transition relation.
As we have argued in Section 4.1.1, this type of automaton is suitable for representing
system models. The drawback of DFAs is that to express the same information as a
more advanced model, more states are needed, making the automaton large. Contrary
to expectations, it was not the size of the target DFA that proved to be a problem, but its
structure and the repercussions on the size of the sample needed to correctly reconstruct
the automaton.

7.1.1 InWuence of Parameters

A DFA representing a parameterized process such as the conference protocol in Sec-
tion 6.4 contains a number of paths to cover diUerent serializations of the parameters.
The experiments show that to correctly learn all the diUerent serializations, not only
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all of them need to be represented in the learning sample, but also in every possible
combination. This also correlates to the results by Berg et al. regarding preVx-closed
models [BJLS05], which state that preVx-closed automata are harder to learn than ran-
dom automata, as the learning algorithm would need to perform a membership query
for every preVx.
Berg et al. address this problem by proposing an approach to learn parameterized

automata [BJR06]. Based on the original version of Angluin’s learning algorithm, which
uses an observation table to store the discovered information, they introduce a guard-
labeling on the entries of the table, describing an input partitioning. Then, the result of
an equivalence query can also be the splitting of a partition beside the discovery of a
new state or the acceptance of the learned automaton. A similar approach is described
by Li et al. [LGS06], which has the advantage of taking into account both input and
output signals, where Berg et al. only consider input signals.
Both proposed solutions for learning parameterized models rely on the original ver-

sion of Angluin’s learning algorithm, which uses an observation table to store the in-
formation learned, and the table format is essential in computing the parameterization.
In contrast, our approach to learning from test cases uses a variation introduced by
Kearns and Vazirani [KV94], which stores the gathered information in a classiVcation
tree. Therefore, an adoption of those solutions requires some adaptations.

7.1.2 Handling Non-Applicable Signals

Another structural problem of the learned DFA is that the learning algorithm always
generates a fully speciVed automaton, i.e. an automaton where in every state, a target
state for every possible signal is speciVed. As the essence of state based systems is that
the applicable actions depend on the state of the system, most states of an automaton can
only process a subset of the global signal alphabet. The handling of the non-applicable
signals then depends on the semantics of the system. One commonly adopted approach
is that the system should robustly ignore all unspeciVed signals, which implies that
unspeciVed transitions at a given state are treated as self-loops.
However, this approach cannot be adopted by Angluin’s learning algorithm, as the

algorithm only discerns accepted and rejected traces and therefore cannot tell whether
a signal is not speciVed and should be ignored via a self-loop or whether a signal is
explicitly rejected and should lead to a fail state. In consequence, the learning algorithm
routes all unspeciVed or rejected signals into a global fail state (Section 4.1.1), thereby
generating a fully speciVed automaton that rejects non-applicable signals.
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Due to the properties of the learning algorithm, we can identify the global fail state in
the learned automaton, as it is the Vrst rejecting state discovered. Therefore, it would be
possible to remove the global fail state and to replace transitions leading into it by self-
loops to their source states. This is, however, not a safe transformation, as thereby all
explicitly failing transitions would also be transformed into self-loops. In consequence,
to learn a DFA which ignores some inopportune signals, those self-loop transitions need
to be explicitly speciVed in the test suite. This obviously leads to a larger test suite, which
is also less intuitive and less readable. Alternative approaches would be to distinguish
explicitly and implicitly rejected transitions during learning, generating self-loops for
implicitly rejected transitions, or to implement a smart transformation algorithm which
checks transitions to the global fail state before removing them.

7.2 Suitability of a Test Suite as Sample Data

The main idea of our learning approach was to use a test suite as input data, as the ver-
dicts pass and fail readily provided an assessment of acceptable and rejectable system
traces. While this assumption holds true, mapping test cases to input traces of Angluin’s
learning algorithm nevertheless reduces the expressiveness of the test cases consider-
able. As described in Section 4.1.2, the test cases need to be linearized, a common starting
state has to be established, and all circumstantial information as parameters and ports
have to be integrated into the input of the target automaton. Especially the Wattening of
parameters and ports leads to an exponential blowup of the number of test case traces.
While Angluin’s algorithm depends on traces, the semantic state-merging approach

introduced in Chapter 5 is designed to exploit the test language speciVc properties of
test cases. The test language speciVc back-end then represents the sample data in a
generic way to the learning algorithm. This way, the learning algorithm provides a
common front-end to be combined with diUerent test language speciVc back-ends. In
consequence, further optimization regarding the representation of the test suite mainly
concerns the state-merging part of our hybrid algorithm.

7.2.1 Mining Additional Properties

The state-merging techniques introduced in Section 5.2 deVne how to merge traces by
generating a preVx tree, the representation and handling of cycles in the trace graph
and the handling of default branches. However, cycles and defaults are only the most
common properties of test languages.
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Stable testing states deVne known and checkable states of the system under test (SUT).
By marking the according states in the trace graph, a test case containing a marked
testing state could be directly connected at the given state. Thereby, the need for a
common starting state could be avoided.

Parallel behavior can be explicitly deVned, especially in test languages that are tar-
geted at distributed testing. By deVning an according operator on the trace tree, mem-
bership queries containing diUerent sequentializations of parallel behavior could be an-
swered correctly without explicitly representing every such path in the test suite.

Besides the verdicts pass and fail, some test languages deVne additional verdicts as-
signed on inconclusive behavior or on an error in the test environment. In the cur-
rent learning approach, everything not accepted, i.e. assigned a pass verdict, is rejected.
However, in an open world approach, the answer “I don’t know” could be given by the
membership oracle. In this case, the mapping of the test verdicts has to be reconsidered.
The verdict inconc, which is used by Testing and Test Control Notation (TTCN-3) to in-
dicate that the result of the test case cannot be decided, maps naturally on an “I don’t
know” for the learner—the teacher doesn’t know whether the behavior is acceptable or
not. Then again, the verdict error is considered by TTCN-3 to be more severe than a
verdict fail, but for learning purposes it could still amount to an “I don’t know”.

Lastly, information about ports in the test cases could also be used. Considering a
highly connectable SUT, such a system would feature a number of diUerent ports con-
necting to diUerent other systems. To learn a protocol automaton for just a subset of
those communication ports, the test case traces could be restricted to the ports in ques-
tion, excluding all others.

7.2.2 InWuence of Coverage

While the semantic state-merging approach is able to make up for many missing traces,
the case study suggests that the test suite used in learning must at least satisfy a path
coverage of the SUT, as the one experiment where only a branch coverage was used
failed. However, there are other coverage criteria besides branch and path coverage, e.g.
based on condition determination or on the functions of the SUT, or automatic test case
generation techniques. Further research is needed to clarify the dependencies of system
structure, test suite coverage, and learnability.
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7.3 Suitability of the Learning Algorithm

When confronted with the problem of reconstructing a system model from test cases,
learning algorithms seemed to be a simple solution. The starting assumption was that
while the test cases could be used as they were, some adaptations would have to be
made to the algorithm. Instead, research shows that the learning algorithm itself can
be used without changes, while the eUort of adaptation concerns the representation of
the learning sample, i.e. the test cases. In fact, the approach to learning from test cases
proved to be a problem of teaching more than of learning.

7.3.1 Online and OYine Learning

Online learning algorithms, like Angluin’s algorithm, build a system model by query-
ing a teacher. Their main advantage is in generating the necessary queries themselves,
thereby avoiding the need for a complete sample. However, this approach implies the
existence of an omniscient oracle, which is able to answer arbitrary queries. In con-
trast, oYine learning algorithms assume the existence of a structurally complete sample,
which is then merged into the target automaton.

The query mechanisms used by Angluin’s algorithm naturally match the test cases’
verdicts. Also, Angluin’s algorithm is scalable, growing only linearly with the size of
the target automaton, and always generates a minimal DFA. As a test suite always
assumes completeness with regard to certain coverage criteria, it can be assumed that the
completeness of the test suite is suXcient to answer the membership queries. However,
our experiments show that this assumption holds only for high coverage criteria and
even then depends on the structure of the system (Section 7.1).

These results seem to suggest that an oYine learning approach would work better for
the learning from test cases. Lambeau et al. [LDD08] propose an oYine algorithm based
on state-merging, which takes into account merge constraints as well as incompatibility
constraints, requiring some states to be merged obligatorily while others need to stay
separated. This approach might work well for the learning from test cases. However,
state-merging algorithms always need to be closely tailored to the sample data to merge.
Therefore, a state-merging approach would only work for the special semantics it is
designed for.

Our approach combines the advantages of both online and oYine algorithms. The
online algorithm is used to drive the overall learning process, thereby establishing a
learning procedure which is independent from any given test speciVcation language.
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Underlying the learning process, state-merging is used to mine the test language spe-
ciVc information for better coverage of the automaton’s traces and to generate a data
structure to be used as an oracle.

Following this layered approach, existing methods could be integrated for optimiza-
tion. Regarding the online learning part, these optimizations concern the type of au-
tomaton generated, incorporating i.e. parameterization [BJR06, LGS06]. Optimizations
on the oYine learning part should extend the semantic state-merging approach intro-
duced in Chapter 5. Possibly exploitable properties of test cases comprise diUerentiation
of input and output signals and consideration of stable testing states. For example, the
stable testing states could be matched to the merge constraints in the approach by Lam-
beau et al. [LDD08].

7.3.2 Other Versions of Angluin’s Algorithm

Another source for optimization of the learning procedure is the version of Angluin’s
algorithm that is used. The prototypical implementation uses a variation introduced by
Kearns and Vazirani [KV94], which stores the gathered information in a classiVcation
tree (Section 3.7). This version has the advantage of asking less membership queries, but
at the cost of more equivalence queries [BDGW97]. Also, the classiVcation tree provides
a structure which is easy to maintain and therefore quickly to implement.

The original version of Angluin’s algorithm uses an observation table to store the
gathered information. This variation asks more membership queries before constructing
the Vrst hypothesis automaton, thereby reducing the number of needed equivalence
queries [BDGW97]. On the other hand, maintaining the consistency of the observation
table needs more eUort.

Experimentation shows that using the trace graph as an oracle, membership queries
are cheap as their complexity only depends on the length of the queried trace, while
equivalence queries take time as in the worst case, the whole test suite has to be run
against the hypothesis automaton (Section 5.3.2). Also, the adaptations to learning from
test cases are completely independent of the underlying implementation of Angluin’s
algorithm. Therefore, re-implementing the core of the learning algorithm according to
the original version of Angluin’s algorithm might even provide a small performance
advantage.
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7.3.3 Breaking the Closed World Assumption

In most learning scenarios, it is comparatively easy to get a correct answer to member-
ship queries, while the equivalence query is hard to decide. When learning from a com-
plete test suite, it is the other way around. The equivalence query can be matched easily
to a run of the test suite against the hypothesis automaton (DeVnition 29), the only lim-
iting factor being the time needed to run a large test suite. This also relates to the results
of Berg at al. [BGJ+05], who investigate the similarities between conformance testing
and automata inference, Vnding that conformance testing solves a checking problem.
Therefore, we can safely assume that a test suite that is suXcient to declare a system
as conforming to its speciVcation also suXces to decide whether it is equivalent to a
learned hypothesis automaton.

In contrast, when asking membership queries against a limited set of traces, as every
test suite is bound to be, there will always be queried traces that are not contained in
the test suite. As the experiments show, rejecting every unknown trace can lead to
bad generalization in the hypothesis automaton (Section 6.4.1), while trying to provide
for every possibly query leads to inhibitively large test suites (Section 6.4.2). There are
several possible approaches to solve this dilemma.

One way is to mine the test suite for implicit traces by state-merging. First eUorts
in this direction have been integrated into our learning approach (Chapter 5) and have
been proven eUective by the case study. Besides further exploitation of the properties
of the test languages, also input from existing research in state-merging techniques can
be used. The state-merging approach has two main advantages. The approach is self-
contained, as no external input is needed, and it is safe, as the state-merging is based
on information internal to the test suite. The drawback is that the mining depends on
the information available in the test suite. If a test language with restricted descrip-
tion possibilities is used, the possibilities of state-merging are also restricted. Besides,
while state-merging is able to boost the number of covered traces, it cannot make up for
missing test cases if the test suites coverage is insuXcient.

Another possible approach is to include explicit “don’t know” into the possible an-
swers of a membership query. The problem of undecidable membership queries has
occurred to researchers in other settings before, therefore a number of possibly adapt-
able methods exist. Sloan and Turán [ST94] deVne a meta-algorithm for incomplete
membership oracles. For each undecidable membership query, the learning process is
forked, one instance assuming acceptance, the other rejection of the queried string. If a
copy is detected to be inconsistent, it is pruned. While this approach clearly leads to an
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exponential growth in the computation, the diXculty also is how to determine inconsis-
tencies in the forked hypotheses. Bshouty and Owshanko [BO01] propose an extension
of Angluin’s learning algorithm including “don’t know” as a possible answer to a mem-
bership query. Based on the Kearns-Vazirani version of the algorithm, they partition
the possible traces of the target automaton into cover sets, resetting the algorithm when
a counter-example causes a cover set to be split. Grinchtein and Leucker [GL06] also
suggest an extension of Angluin’s algorithm. Using the Angluin’s original version, they
generate an incomplete observation table which they subsequently feed into a satisV-
ability solver, Vlling in the gaps with the most consistent solution. However, all those
approaches share the disadvantage of replacing the uncertainties of the membership or-
acle with assumptions, thereby deviating from exact learning.
The third approach is a combination of passive and active techniques. In this ap-

proach, the target automaton is learned as complete as possible with the available infor-
mation. When an unanswerable query is encountered, the query is either addressed at
an external oracle, e.g. a domain expert, or translated into a test case which is executed
against the SUT. Asking a domain expert leads to a guided learning approach. In this
case, the learning is only semi-automatic. Executing a test case against an SUT could
be conducted automatically. However, as the outcome of the query then would depend
on the SUT, this approach compromises the independence of the learned automaton.
As both approaches draw information from sources beside the test suite, inconsistencies
could be introduced into the learning data.

7.4 Summary: A Suitable Approach With Room for

Further Research

In this chapter, the design decisions of the approach to learning from test cases are
revisited. The main issue is the size and coverage of the test suite used in the learning
process. While the mapping of test cases to learning traces is intuitive and simple, the
size of a test suite suXcient for learning can get inhibitively large. Optimizations to
deal with this problem comprise the extension of the semantic state-merging approach
to better exploit the information contained in the test cases and an extension of the
learning algorithm to work with unanswerable membership queries. In addition, the
relation between test suite coverage, system structure, and learnability oUers interesting
research topics.
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8 Conclusion

In this thesis, a hybrid approach for learning from test cases has been presented. In the
following, we summarize the results of the previous chapters and give an outlook on
further work.

8.1 Summary

The hybrid learning approach combines both online and oYine learning techniques to
generate a deterministic Vnite automaton from a test suite. To control the learning pro-
cess, Angluin’s learning algorithm is used. This online learning algorithm works by
querying assessments of traces from an oracle, which has been adapted to the charac-
teristics of test cases. OYine state-merging methods are used to represent the test cases
in a form that can be processed by the online learning algorithm. The properties of the
test speciVcation language are exploited to enable the recombination of test case traces.
In summary, the hybrid approach combines a generic front-end with a test language
speciVc back-end, thereby utilizing the advantages of both approaches.

The learning algorithm used as a front-end uses membership queries and equivalence
queries to determine the target automaton. The membership queries are mapped to a
search on the test suite, where a trace assessed as pass maps to an accepting trace and
all other traces are mapped onto rejecting traces. An equivalence query is deVned as
a run of the test suite against the hypothesis automaton. It has been shown that while
the membership queries need a test suite satisfying path coverage, for the equivalence
query it is suXcient if the test suite satisVes a boundary-interior path coverage.

As a means to comply with the needs of both membership and equivalence queries,
the trace graph has been introduced as an underlying data structure. Based on this
data structure, the traces executed in an equivalence query can be limited in length,
while at the same time providing longer traces for the membership queries. The trace
graph satisVes the properties of a search tree, optimizing the search for a given trace
and thereby the membership query. On the trace graph, a number of state-merging
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techniques have been deVned, which exploit the features of the used test speciVcation
language to identify implicit traces and present them to the membership oracle of the
learning algorithm.

The combined approach using Angluin’s learning algorithm and the underlying trace
graph structure has been implemented in a prototypical tool. Experiments show that
while the combined approach performs better than Angluin’s learning algorithm alone,
the necessary size of the test suite still presents a limiting factor. In consequence, a num-
ber of possible alterations have been proposed that promise to amend the problematic
points.

8.2 Outlook

Based on the analysis of the learning approach (Chapter 7), the next step is to incorpo-
rate the identiVed optimizations into the prototypical implementation. First and fore-
most, this comprises an extension of the state-merging methods. Initially, the merging
will be based on the test language Testing and Test Control Notation (TTCN-3). In par-
allel, existing approaches to learning parameterized models need to be adapted to the
hybrid learning approach. As the inclusion of parameterized signals also aUects the trace
graph, the query oracle has to be adapted as well. Additionally, a re-implementation of
the learning algorithm could be used as a means for optimization.

In the long run, the hybrid learning approach is intended as the basis of a monitor-
ing framework. Based on an existing test suite, a model of the system under test is
reconstructed via learning. The resulting model is then used as a reference oracle for
monitoring the system under test. When a diUerence between the running system un-
der test and the learned automaton is detected, the monitor notiVes an administrator,
presenting a trace reconstructing the error. Using the knowledge of the learning ap-
proach, this reconstructing trace could also be minimized, e.g. starting in a deVned state
and showing only signals on relevant ports. It could even be possible to correct the sys-
tem under test automatically and test for regression by running the reconstructing trace
against the corrected system under test. In this scenario, as the approach progresses
from passive reconstruction of an automaton to the active testing of a system under test,
the properties of the online learning approach will prove to be an advantage.

Another future application of the learning approach lies in test quality assessment.
Inconsistencies between test cases or incompatibilities of test cases running on diUerent
interfaces could be detected during the learning process. In addition, by learning a model

108



8.2 Outlook

from an existing test suite and comparing it to the initial speciVcation, the coverage of
the test suite could be estimated. To this end, it is necessary to research the relations
between system structure, test suite coverage, and learnability.
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