
A UML Based Methodology

for the Development of

Web Services
An Approach to Model Transformation and Code Generation

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Goerg-August-Universität zu Göttingen

vorgelegt von

Wafi Abed Zaidan Mohammad Dahman

aus Gaza (Barbara) - Palästina

Göttingen 2010

D7

Referent: Prof. Dr. Jens Grabowski

Koreferenten: Prof. Dr. Dieter Hogrefe, Prof. Dr. Helmut Neukirchen

Tag der mündlichen Prüfung: 05 Juli 2010

Abstract
Web services are currently one of the most important technologies for enabling an

effective communication between and within distributed systems. The Web services

technology relies on widely used and well-adopted technologies and open standards.

A current trend in software engineering is model-based software development. One

of the main goals of model-based software development is the efficient production of

high quality software.

This thesis presents a comprehensive approach for the model-based development of

Web services. The approach is based on a Web service profile for the Unified Modeling

Language (UML), which allows an efficient definition of complete Web service models.

Such Web service models allow the generation of the complete source code and

the corresponding platform-specific configuration files necessary in order to run the

modelled Web services. The code generation is realised by means of transformation

and code generation rules defined in the Xpand transformation language. In addition

to the UML Web service profile and the Xpand transformation rules, a straightforward

development model for the application of the profile is proposed. The feasibility of

the proposed approach for the model-based development of Web services is validated

by implementing a library system Web service.

Zusammenfassung
Web Services sind gegenwärtig eine der wichtigsten Technologien, die eine effektive

Kommunikation in verteilten Systemen ermöglicht. Die Web Services Technologie

basiert auf weitverbreiteten und allgemein akzeptierten Technologien und offenen

Standards. Ein aktueller Trend in der Softwaretechnik ist die modellbasierte Soft-

wareentwicklung. Die effiziente Produktion von qualitativ hochwertiger Software ist

eines der Hauptziele der modellbasierten Softwareentwicklung.

In dieser Arbeit wird ein umfassendes Verfahren für die modellbasierte Entwicklung

von Web Services vorgestellt. Das Verfahren basiert auf der Definition eines Web

Service Profils für die Unified Modeling Language (UML), das eine effiziente Defini-

tion von Modellen für Web Services ermöglicht. Zur Ausführung eines Web Services

wird aus dem zugehörigen Web Service Modell der komplette Quellcode inklusive

der zugehörigen Konfigurationsdateien generiert. Die Regeln zur Transformation und

Quelltextgenerierung werden mit der Xpand Sprache definiert. Neben dem erwähn-

ten UML Profil für Web Services und den Xpand-Regeln wird eine einfache Vorge-

hensweise zur Definition von Web Services mit Hilfe des UML Profils vorgeschlagen.

Die Anwendbarkeit des in dieser Doktorarbeit entwickelten Verfahrens wird durch die

Implementierung eines Web Service-basierten Bibliothekssystems nachgewiesen.

Contents

Contents i

1 Introduction 1
1.1 Problem Statement . 2
1.2 Thesis Contribution . 2

1.2.1 UML Profile for Web Services 3
1.2.2 Web Services Development Model 3
1.2.3 Case Study . 4

1.3 Related Work . 4
1.4 Structure of the Thesis . 6

2 Foundations 9
2.1 Service Oriented Architecture and Web Services 9

2.1.1 Advantages of Web Services 10
2.1.2 Web Services Standards . 11

2.2 Unified Modeling Language . 12
2.2.1 The Evolution of UML . 12
2.2.2 UML Diagrams . 12
2.2.3 UML Metamodelling . 16
2.2.4 Unified Modeling Language Extension Mechanism 16

2.3 Model Driven Architecture . 19
2.3.1 Computation Independent Model 20
2.3.2 Platform Independent Model 21
2.3.3 Platform Model . 21
2.3.4 Platform Specific Model . 21

2.4 Model Transformation and Code Generation 21
2.4.1 Code Generation . 22
2.4.2 Rules for Code Generation 22
2.4.3 Integrating Manual Code 23
2.4.4 Benefits of Code Generation 24

i

ii CONTENTS

2.4.5 Code Generation in Example 25

3 UML Profile for Web Services 33
3.1 Web Services Basic Extensions . 34

3.1.1 WebService . 36
3.1.2 DataContainer . 37
3.1.3 DataElement . 37
3.1.4 ProxyImplementation . 38
3.1.5 ProxyMethod . 38
3.1.6 Client . 39
3.1.7 ClientMain . 40

3.2 Making Web Services Executable 40
3.2.1 Executable State Machines 41
3.2.2 Auxiliary Extensions . 47

3.3 Profile Implementation . 49
3.3.1 Model Transformation and Code Generation 49
3.3.2 Implementation Environment 62

3.4 Summary . 68

4 Web Services Development Model 69
4.1 Requirements Analysis . 70

4.1.1 Requirements Elicitation . 70
4.1.2 Requirements Specification and Modelling 70

4.2 Web Service Design . 73
4.2.1 Realisation of Architecture Design 73
4.2.2 Realisation of Behaviour Design 76
4.2.3 Designing the Web Services Platform 77

4.3 Web Service Implementation . 78
4.4 Summary . 79

5 Case Study: Library System Web Service 81
5.1 Service Description . 81
5.2 Library System Web Service Analysis 82
5.3 Library System Web Service Design 85

5.3.1 Identifying and Allocating UML Extensions for the Library
System Web Service . 85

5.3.2 Refinement of Library System Web Service Architecture . . 86
5.3.3 Representing Library System Web Service Behaviour 87

5.4 Library System Web Service Implementation 88
5.4.1 Running the Generator . 89
5.4.2 Executing the Library System Web Service 96

5.5 Summary . 96

CONTENTS iii

6 Conclusion 99
6.1 Summary . 99
6.2 Discussion . 100
6.3 Outlook . 101

Bibliography 103

A Case Study Model 109

B Transformation Rules for Generating Java Code 113
B.1 CommonTemplate Template File 113
B.2 DataContainer Template File . 116
B.3 WebService Template File . 118
B.4 Proxy Template File . 119
B.5 Client Template file . 120
B.6 MyExtensions Xtend File . 122

C Generated Java Source Code 125
C.1 Java Classes in the Service Provider Side 125

C.1.1 Java Classes in data Folder 125
C.1.2 Java Classes in service Folder 127

C.2 Java Classes in the Service Client Side 129
C.2.1 Java Classes in client Folder 129

D Transformation Rules for Generating Configuration Files 133
D.1 XmlFiles Template File . 133
D.2 build.xml File . 135
D.3 services.xml File . 137

E Transformation Rules for Generating the README File 139
E.1 README Template File . 139
E.2 README.txt File . 140

F Executing the Web Service 143
F.1 Web Service Engine . 143

F.1.1 Apache Axis2/Java . 143
F.1.2 Apache Axis2/C . 143

F.2 Setting the Environments . 144
F.2.1 Web Service Engine . 144
F.2.2 Application Server . 144
F.2.3 Operating System . 144
F.2.4 Additional Considerations 144

List of Symbols and Abbreviations 147

iv CONTENTS

List of Figures 149

Listings 151

List of Tables 153

Acknowledgements

With great reverence, I must thank ALLAH the creator of the universe for giving
me the patience and ability to complete this part of my academic life.

I wish to thank all those who helped me in some way during this thesis, without
whom I could not have completed this project.
I would like to express my sincere appreciation to my supervisor Prof. Dr. Jens
Grabowski, and co-supervisors Prof. Dr. Helmut Neukirchen, and Prof. Dr. Di-
eter Hogrefe for their guidance, continuous encouragement, and support through-
out my study and during the preparation of this thesis. Thanks are extended
to Prof. Dr. Jens Grabowski for the nice working atmosphere. I cannot forget
Mrs. Annette Kadziora, and Mr. Gunnar Krull.
I am grateful to Mr. Ulrich Brawand for his support and the valuable time we
spent together in discussing different technical issues in the research, and to
Karsten Thoms, and Christian Dietrich for their valuable help via the forums of
OpenArchitectureWare and Eclipse.
I would like to acknowledge and extend my heartfelt gratitude to the kind per-
sons who made the completion of this thesis possible. I appreciate highly the
efforts of Akhtar Ali Jalbani, Benjamin Zeiss, Edith Werner, Dr. Hanan Almansi,
Dr. Nizar Aouni, Philip Makedoniski, Dr. Saad Suleiman, and Thomas Rings in
the proof-reading.
I am grateful the German Academic Exchange Service (DAAD) for the financial
support. Great appreciation goes to the contact persons, Ms. Cornelia Hanzlik-
Rudolph, Mrs. Kirsten Bönninghausen, Ms. Andrea Gerecke, and Ms. Karla Barth.
Many thanks to the DAAD members in Jerusalem in Palestine, Dr. Helga Baum-
garten, and Mrs. Eveline Muhareb.

Last but not least, huge thanks to my mother, my father, beloved Dalia and
Zaidan. The love, encouragement, and support from them have been outstanding.
Words just can not express how grateful I am for that.

v

Chapter 1

Introduction

Web services are emerging day by day, and gaining more involvement in businesses
especially over the Web. The development of Web services has become one of the
hot topics, which deserve more emphasis and investigation. Web services vary
in size and complexity from a single and small Web service that performs sim-
ple calculations to large-scale Web services that manage multi-nation enterprises
and serve multiple businesses in different locations in the world. They enable the
interaction between various distributed systems over the Web. The interaction
in Web services is normally done between a client agent that represents the ap-
plication requesting the Web service, and a provider agent that represents the
application offering the Web service and providing the responses to the clients.
Web services are a key tool for businesses to promote their existence from narrow
markets to wider horizons, where they can enlarge their profits by reaching a
greater number of customers with minimum costs.

Similar to other software applications, Web services have a specific structure and
behaviour. The structure is the static part of Web services, which is composed
of the candidate objects and entities and their associations. The behaviour is the
dynamic part, which represents how the Web service behaves in terms of sending
requests, preparing responses to these requests, and how they will be sent back
to the clients. Both parts are essential in the development of Web services in
this thesis. Web services use Xtensible Mark-up Language (XML) [XML], which
is the key for enabling the interoperability. Interoperability means that different
types of systems running on a large diversity of platforms can communicate and
exchange date without any troubles.

The Unified Modeling Language (UML) [UML10a, UML10b, UMLa] gains great
acceptance among software developers, not only because of its standardisation

1

2 CHAPTER 1. INTRODUCTION

by the Object Management Group (OMG) [OMG], but also because of the high
support from tool vendors, and the increasing availability of open source tools.
The tools make the development of software with UML easier. Some of these
tools also consider quality attributes (e.g. consistency) of the modelling and the
software development processes and enable the generation of source code out of
UML models. UML offers an extension mechanism, where UML metamodels can
be extended to fit the requirements of specific domains (e.g. Web services).

The Model Driven Architecture (MDA) [MDA03] is a framework for the de-
velopment of software systems based on different types of models that vary in
the level of abstraction. MDA recommends UML as a modelling notation for he
generation of executable systems. This research will investigate this issue, and
check whether it is possible to generate executable Web services from UML mod-
els following the principles of MDA.

The methodology in the field of systems development refers to a comprehensive
framework that includes all activities that follow a specific life cycle in order to
develop systems according to well-defined and complete specifications. Depend-
ing on the life cycle of the methodology, different activities may be found, such as
planning, requirements analysis and design, implementation, testing, and mainte-
nance. The activities can be performed in several fashions, e.g. sequential, paral-
lel, iterative, or incremental. Systems developers have been using different types
of methodologies for systems development. The Rational Unified Process (RUP)
[JBR03] and the V-Modell XT [VMX06] are examples of the methodologies that
may be used in systems development. The thesis will define a development model
for Web services based on the best practises of the RUP. Software development
methodologies can cover several fields like software, hardware, projects manage-
ment, finance, and even social aspects in order to produce systems of high quality.

1.1 Problem Statement

The problem examined in this thesis can be summarised in the following hypothesis:
It is possible to develop executable Web services from UML models.

The model transformation and the code generation techniques are good

enough to produce executable Web services.

1.2 Thesis Contribution

In order to resolve the problem statement stated in the previous section and to
provide a reliable solution, the following contributions are made.

1.2. THESIS CONTRIBUTION 3

1.2.1 UML Profile for Web Services

UML profiles are used to customise UML to fit specific application domains. A
set of UML extensions has been defined to represent the static structure and
dynamic behaviour of the Web services. This thesis defines a UML Profile for
Web Services (UP4WS), which will be used in the model transformation and code
generation process.

1.2.1.1 UP4WS Extensions

The extensions defined in the UML Profile for Web Services (UP4WS) have two
purposes. The first is to represent the basic and mandatory extensions needed for
any Web services application, while the second is to make UML executable and
to enable the generation of source code and output files from the UML models.
The UP4WS has been defined based on thorough studies of different kinds of Web
services implementation, and how they are deployed. Class diagrams are used to
represent the static structure of Web services, while state machine diagrams are
used to represent the dynamic behaviour of the Web services.

1.2.1.2 UP4WS Implementation

The main activity is to transform the model and generate the output files in order
to execute the Web service. This thesis presents a straightforward method for the
UP4WS implementation including the definition of the transformation rules for
the code generation process and environment configurations. The transformation
rules are defined in Xpand [XPA]. In order to execute the code generation process,
the generator has to be configured. The same is also applicable to the execution
of the Web service, where the platform specifications have to be established and
configured correctly. All of this is described in the profile implementation and
the configuration instructions.

1.2.2 Web Services Development Model

The Web Services Development Model (WSDM) specifies a set of tasks to develop
Web services. The main target of the WSDM is to define a straightforward model
for Web services development. The WSDM constrains the use of the UP4WS and
its extensions. The tasks of the WSDM are developed to be synchronised with
the profile definition and implementation as well. The WSDM is composed of
three main tasks described below.

1.2.2.1 Web Service Requirements Analysis

The Web service requirements analysis task is dedicated to capture and gather
the requirements for the target Web service. This includes the identification of

4 CHAPTER 1. INTRODUCTION

the exact services that shall be provided. For this task, the WSDM proposes two
types of UML diagrams, i.e. use case diagrams, and class diagrams.

1.2.2.2 Web Service Design

This Web service design task realises the requirements captured in the require-
ments analysis by extending and refining them. The UML extensions defined by
the UP4WS are identified and allocated to the model elements. At this task,
class and state machine diagrams shall be used. From the class diagrams, the
structure of the source code can be generated, while the state machine diagrams
enable the generation of the behaviour of the Web service.

1.2.2.3 Web Service Implementation

The Web service implementation task represents a realisation of the UP4WS
implementation. This includes the definition of the transformation rules, and
setting the environments for the modelling, code generation, and executing the
Web service.

1.2.3 Case Study

UP4WS and WSDM are validated by implementing a library system Web service
as a case study.

1.3 Related Work

The work presented in this thesis spans a variety of techniques that together
achieve the main goal of this thesis. It includes the definition of UML profiles
for specific domains (i.e. Web services). In addition, it defines an approach for
model transformation and code generation. The examined work covers differ-
ent perspectives that relate to the goal of this thesis. Each perspective corre-
sponds to a sub-goal of this thesis. For example, some of the examined work
tries to model Web services with UML. However, their view to Web services
is only constrained to Web Service Description Language (WSDL) documents
[SCV03, GSSO04, Arm02]. Others take the composition of Web services into
consideration [SGS04, TDE03]. Another category of the examined work concen-
trates on the generation of source code out of UML models independent of the
type of the application and the implementation platform [UN09].

Marcos et al. [SCV03] present a UML extension to model WSDL as interfaces
for Web services. They describe a UML metamodel for WSDL representing all
possible extensions for the concrete and abstract elements of WSDL. They tar-
get the generation of WSDL descriptions from UML models. Armstrong [Arm02]

1.3. RELATED WORK 5

describes the modelling of Web services with UML presenting a general model of
Web services standards (i.e. Web Service Description Language (WSDL), Simple
Object Access Protocol (SOAP), and Universal, Description, Discovery, and
Integration (UDDI)) and their associations in UML.

Skogan et al. [SGS04] introduce a UML-based model-driven method for Web ser-
vice composition. This method shows the possibility of using model transforma-
tion to get executable models from composite Web services models. In addition,
they present a UML profile and guidelines for modelling composite Web services.
Thöne et al. [TDE03] define a similar method to describe a UML-Web Service
Composition (WSC) profile as a replacement for the Business Process Execution
Language for Web Services (BPEL4WS), which is a language for the formal spec-
ification of business processes and business interaction protocols [BPE03].

The conversion rules between UML and Web services described by WSDL doc-
uments and XML Schema is provided by Gronme et al. in [GSSO04]. They
recommend the modelling of Web services by UML disregarding the WSDL con-
structs and present a mapping between WSDL-independent UML models and the
service description in WSDL. They find out that: 1) A WSDL-independent UML
model of a web service is better than a WSDL-dependent model or pure WSDL
in explaining the service, 2) WSDL-independent UML models make the building
of Web services simpler, especially if the Web service is complex, and 3) reverse
and forward engineering between WSDL specifications and WSDL-independent
UML models is possible for all kinds of services.

Usman and Nadeem [UN09] develop a code generation tool known as UJECTOR.
The UJECTOR tool generates code from UML class, sequence, and activity dia-
grams. The structure of the code is generated from the class diagrams, while the
sequence diagrams with incorporation of the activity diagrams generate the code
for the methods in the classes. However, they did not specify Web services as a
target application for the code generation process.

A quick review for the related work shows that the work performed does not
satisfy the main goal of this thesis, which is the development of executable Web
services based on UML models. The related work sees Web services only from one
angle, which is the WSDL documents. WSDL represents only the Web service
interface, which describes the Web service and how it can be communicated.
Examined researches define UML metamodels for WSDL as a Web service, or
for the composition of Web services. They do not take the execution of Web
services into consideration, and thus, not able to generate the complete source
code of the implementation. The researches that concentrate on the generation

6 CHAPTER 1. INTRODUCTION

of source code from UML do not consider any application domain (e.g. Web
services). They try to define a mapping between UML models and source code
constructs to generate an executable source code. However, the source code does
not contain any platform specifications, since the original model is not defined for
a specific domain. The goal of the thesis is to generate a complete source code
for Web services that can be executed on a particular platform. This includes
the generation of the configuration files that enable the source code to run on the
selected platform.

Chapter 3:
UML Profile for Web Services (UP4WS)

Chapter 6:
Conclusion

Summary and Outlook

Chapter 5:
Case Study

Library System Web Service

Chapter 4:
Web Services Development Model (WSDM)

Chapter 2:
Foundations

Chapter 1:
Introduction, Contribution, and Related Work

Figure 1.1: Thesis Structure Overview

1.4 Structure of the Thesis

The thesis is structured in the following order which is depicted in Figure 1.1.
This chapter introduces the problem statement of the thesis, its contributions,
and the related work. The foundations are presented in the second chapter.
The third chapter explains the UML Profile for Web Services (UP4WS) and the
extension mechanism followed to define the characteristics of the Web services.
In addition, it describes the UP4WS implementation. Chapter four presents a
description of a Web Services Development Model (WSDM), and shows how UML
can be integrated into it. The UP4WS and the WSDM are validated in a case

1.4. STRUCTURE OF THE THESIS 7

study in chapter five. The last chapter concludes the thesis by summarising it
and presenting an outlook on the future work. The appendices are presented at
the end of the thesis.

Chapter 2

Foundations

This chapter introduces the underlying technologies that are related to the main
goal of the thesis by presenting a description of each technology discussed within
the thesis. Firstly, it presents an overview of Service Oriented Architecture (SOA)
and Web services. Then, it explains the Unified Modeling Language (UML) as
a modelling notation that is used within the thesis. Since the thesis follows the
Model Driven Architecture (MDA) approach, an overview of it, and its main
models are discussed. In addition, the chapter explains the model transformation
and code generation approach supported with an example.

2.1 Service Oriented Architecture and Web Services

The Service Oriented Architecture (SOA) [Erl04] describes the communication
between two or more services over the Web or any possible network. The pur-
pose of the communication is to perform some functionality that can be very
simple or very complex. SOA has several methods of implementations, such as
the Common Object Request Broker Architecture (CORBA) [COR02], and Web
services. Web services are the most popular implementation of the SOA. There-
fore, they will be described in the following as a real example of the SOA. The
World Wide Web Consortium (W3C) [W3C07] defines Web services as follows:
”A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards”. The word Web in the name of Web services does not mean
that it is a Web application, rather it relies on Web technologies like Hyper Text
Transfer Protocol (HTTP) [Con03]. The main idea and target of Web services

9

10 CHAPTER 2. FOUNDATIONS

is to enhance interoperability of distributed system over networks especially the
Internet, mainly clients and servers, where both sides exchange XML messages.
Web services can interact with and invoke each other, and be aggregated to
form larger Web services with additional functions. The International Business
Machines (IBM) company has defined a model to describe interactions in any
possible implementation of SOA as shown in Figure 2.1 [DDDT03]. The model
shows three main roles involved in the architecture, Deitel et al. [DDDT03] define
these roles as follows:

1. Service Provider is ”a server or system that makes a Web service available
over a network, such as the Internet”.

2. Service Requester is ”a networked server or system that accesses and em-
ploys a Web service and interacts with a service broker to find a Web service
that fills a specific computing needs”.

3. Service Broker is ”a networked server or system that maintains a directory
or clearinghouse for Web services”.

Service ProviderService Client

Service Broker

Bind / Interact

PublishFind

Figure 2.1: Roles in the Service Oriented Architecture (SOA)

2.1.1 Advantages of Web Services

Before and in parallel with the emergence of Web services, similar technologies
have appeared (e.g. CORBA [COR02]). However, Web services have advantages
compared to other technologies. Deitel et al. [DDDT03] identified the following
set of Web services advantages:

• Web services rely on open and textual standards that enable the communi-
cation between different platforms and languages.

• Web services rely on existing infrastructure and software. Therefore, it is
easy to implement them without new investments in a new infrastructure
or software.

2.1. SERVICE ORIENTED ARCHITECTURE AND WEB SERVICES 11

• It is possible to implement Web services in an incremental manner. This
will reduce the costs of adopting Web services and switching to the related
technologies.

• The most important advantage of Web services is actually the interoper-
ability, since it relies on open standards, which enable the smooth commu-
nication between different platforms and applications.

2.1.2 Web Services Standards

Web services standards seem to be promising and problematic at the same time.
They are promising because they depend basically on XML and HTTP. XML
can operate on any platform and HTTP can be sent through firewalls and proxies
without problems. The problematic side in Web services standards is their variety
and massiveness. There is a large number of Web services standards, which are
published by different parties and institutes that have different levels of influence
on Web services. The large number of Web services standards can make the
adoption and publishing of Web services difficult due to the conflicts that may
arise among these standards. An overview of Web services standards are found
in [WSS07, Til07]. The most essential and popular Web service standards are
the Web Service Description Language (WSDL) [WSD07], the Simple Object
Access Protocol (SOAP) [SOA07], and the Universal, Description, Discovery,
and Integration (UDDI) [UDD04].

2.1.2.1 Web Service Description Language

Deitel et al. [DDDT03] define the Web Service Description Language (WSDL) as
follows: ”The XML-based language, through which Web services describe them-
selves to developers and applications over the Internet. WSDL descriptions convey
the methods that a Web service provides and how those methods can be accessed”.
Since WSDL is based on XML, this means that it is interoperable and can be
understood similarly by different platforms. The WSDL document defines some
aspects concerning the service, such as functionalities, location on the network,
and how it can be accessed. WSDL plays an important role within Web ser-
vices, since it defines how to invoke the service and the expected response from
it [Con03]. The WSDL is posted by the service provider to an XML registry
of WSDL repository, where clients look for the relevant services. For any type
of Web services interaction, all parties need to have access to the same WSDL
document. This enables the same interpretation of messages and guarantees that
each party handles the message in the correct way. Additional advantage of using
WSDL is that it makes any implementation of any application possible, since it
provides a common format for encoding and decoding of messages with respect
to any application running in the backend [New02].

12 CHAPTER 2. FOUNDATIONS

2.2 Unified Modeling Language

The Object Management Group (OMG) [OMG] defines UML as follows: ”The
Unified Modeling Language (UML) is a graphical language for visualising, speci-
fying, constructing, and documenting the artifacts of a software-intensive system.
The UML offers a standard way to write a system’s blueprints, including concep-
tual things such as business processes and system functions as well as concrete
things such as programming language statements, database schema, and reusable
software components”. According to [AN05, Fow04], UML is a general purpose
graphical modelling language for the development of systems. UML is the leading
the modelling language in the field of systems engineering and has gained much
tool support. The tool support for UML influences positively its usability and
readability, which enables the effective building of systems. Despite the fact that
UML is mostly used with object oriented systems, it has the capability to develop
other types of systems through its flexible extension mechanism or profiles.

2.2.1 The Evolution of UML

The history of UML started few years before 1994 when different modelling lan-
guages concerned with object oriented development existed. Each one had its own
strengths and weaknesses. The most popular techniques were the Booch Method-
ology [BOM] , the Object Modeling Technique (OMT) [OMT], and the Rational
Objectory Methodology [ROM]. In 1994, the first attempt to unify the languages
and techniques took place. In 1996, OMG issued a Request For Proposal (RFP)
for a graphical modelling language. In response, OMG received UML, which
became an OMG standard in 1997. In 2000, UML versions 1.x were released.
These versions offered additional features, where action semantics could be used
to enable the execution of UML. The term is known as Executable UML (xUML)
[UMLb]. In 2004, UML versions 2.x became available. These versions added new
visual syntax either instead of the 1.x versions or new in addition to them without
changing their basic principles [AN05].

2.2.2 UML Diagrams

Unified Modeling Language v.2.x (UML2) specifies fourteen types of diagrams to
enable the modelling of both static structure and dynamic behaviour of systems,
and help in managing the entire development process. UML2 specifications clas-
sify the diagrams into two categories, i.e. structural and behavioural diagrams.
The structural diagrams are the ones that define the static view of the system.
They represent the entities involved in the system and the relationship among
them. Structural diagrams include: package, class, component, object, composite
structure, deployment, and profile diagrams.

2.2. Unified Modeling Language 13

The behavioural diagrams represent the dynamic view of the system, and how
the entities behave and communicate in order to produce the desired behaviour
of the system under development. Behavioural diagrams include: use case, activ-
ity, state machine, and interaction diagrams, which include sequence, interaction
overview, communication, and timing diagrams [AN05, UML10b].

Taking the decision to adopt UML in the development process does not mean
that all UML diagrams must be used. It is up to the modeller to decide, which
diagrams to use in the development process. The decision is usually based on the
nature of the system, the domain, the functionalities, as well as the preferences of
the modeller, since some UML diagrams might in some cases replace each other.
In this thesis, three types of UML diagrams are used, i.e. a) the use case diagrams
to capture the requirements of the Web service application and to represent the
exact services, which are provided by the Web service, b) the class diagrams
to build the Web service architecture and identify its main entities and their
associations and responsibilities, and c) the state machine diagrams to model the
behaviour of the Web service and its single objects. In the following, a description
of a specific set of the UML diagrams that are used in this thesis is presented.

2.2.2.1 Use Case Diagrams

A use case diagram is ”a diagram that shows a set of use cases and actors and
their relationships; use case diagrams address the static use-case view of a system”
[JBR03]. Use case diagrams are composed of three main elements, which have to
be identified before creating them.

• System Boundary: represents the boundaries that distinguish the system
from the rest of the world. It shows the internal parts of the system, which
appear inside and outside the boundaries.

• Actors: are located outside the system boundary and communicate di-
rectly with the system by either sending or receiving data to/from the
system, or both. Identifying the actors is very important to develop the
system effectively. In order to identify them, it is necessary to specify who
interacts with the system, what uses the system, and what is the system
using? [AN05].

• Use cases: are defined in [JBR04] as ”a specification of sequences or ac-
tions, including variant sequences and error sequences, that a system, sub-
system, or class can perform by interacting with outside actors”. A use case
represents a specific function that the system should do. The use case is
initiated by the actor and written from the actor’s point of view. Identi-
fication of the use cases is also important and they can be recognised by

14 CHAPTER 2. FOUNDATIONS

deciding what the system is supposed to do for each actor, and the way, in
which each actor will use the system.

Bookshop System

borrow
 Book

return Book

External Library

Borrower B
Borrower A

Figure 2.2: Sample Use Case Diagram

Figure 2.2 presents a sample use case diagram that shows the main elements in
any use case diagram. The diagram shows a Bookshop System that offers two
functionalities represented as use cases borrow book and return book. The use cases
are associated with three actors that exchange communication with the system,
i.e. Borrower A, Borrower B, and External Library ; the third actor represents
an external system. The use cases are surrounded with a rectangle that specifies
the boundaries of the Bookshop System.

2.2.2.2 State Machine Diagrams

A state machine diagram is ”a diagram that shows a state machine, with empha-
sis on the flow of control between states” [Sco04]. State machine diagrams are
used heavily in modelling the dynamic behaviour of the system. They aim at
representing the behaviour of a single entity or object within the system. States,
events, and transitions are the main elements that can form any state machine
diagram. A state is ”a condition or situation during the life of an object dur-
ing which it satisfies some condition, performs some activity, or waits for some
event” [JBR04]. An event is the specification of a noteworthy occurrence that
has location in time and space [JBR04]. A transition is ”the movement from one
state to another as a result of an event occurrence” [AN05]. Each state machine
should have a starting state (filled circle), from which the transition(s) begin(s),
and may also have a final state (bull’s eye). UML2 specifies two types of state
machine diagrams, i.e. behaviour state machines, and protocol state machines.
Behaviour state machine specifies the behaviour of a classifier, while the proto-
col state machine specifies a protocol of a classifier via conditions, results, and
ordering of operation calls. Modellers do not often differentiate between the two
types although protocol state machines come with the keyword {protocol} after
the name of the state machine. Furthermore, protocol state machines can not
specify actions, which can only be specified by behaviour state machines. [AN05]

2.2. Unified Modeling Language 15

Figure 2.3 shows a sample state machine diagram for a Book object. The state
machine diagram contains two states, i.e. Available and Borrowed that can be
triggered by the operations, i.e. returnBook() and borrowBook() respectively to
change the state of the Book object.

BorrowedAvailable

StartState

returnBook()

borrowBook()

Figure 2.3: Sample State Machine Diagram

2.2.2.3 Class Diagrams

A class diagram is ”a diagram that shows a set of classes, interfaces, and col-
laborations and their relationships; class diagrams address the static design view
of a system; a diagram that shows a collection of declarative (static) behaviour”
[JBR03]. Jacobson et al. [JBR04] define the Class as ”The descriptor of a set
of objects that share the same attributes, operations, methods, relationships, and
behaviour”. A class is seen as a container of objects that must have the same
operations, attributes, and associations of that class, but with different attribute
values. Class diagrams are used in any system development process that uses
UML as a modelling notation. They are helpful in the development process from
the very beginning, where they can be used for identifying system requirements
and its entities. For example, they construct the initial system architecture in the
analysis phase, while in the design phase, they are refined and extended to repre-
sent the complete system specifications. Any class diagram is mainly composed
of classes and associations between them. There are many types of associations
in the class diagram, e.g. inheritance, aggregation, composition, and dependency,
which can be used for several purposes. Figure 2.4 shows a sample class diagram,
which is composed of three classes, i.e. Book, Publisher, and Borrower. The di-
agram shows the attributes and operations inside those classes. In addition, the
diagram shows different elements, such as associations (i.e. Book-Publisher and
Book-Borrower), role names (i.e. publisher, borrower), and multiplicities (i.e. 1,
1..0, 1..*).

16 CHAPTER 2. FOUNDATIONS

-title : String
-isbn : String

+lendBook(isbn : String) : void
+setIsbn(isbn : String)
+getIsbn() : String{query}
+setTitle(title : String)
+getTitle() : String{query}

Book

-name : String

Publisher

-name : String

+setName(name : String)
+getName() : String{query}

Borrower
+borrower

10..1

+publisher

11..*

Figure 2.4: Sample Class Diagram

2.2.3 UML Metamodelling

The OMG modelling architecture for UML is composed of four layers, which
describe different conceptual levels of abstraction. The layers are referred to as
M0, M1, M2, and M3.

• M0 represents user instances or objects at runtime, e.g. Publisher: Pub-
lisherA

• M1 represents snapshot of the user model, e.g. classes, and associations.

• M2 represents the metamodel level, e.g. UML and Common Warehouse
Model (CWM). This level defines a language for specifying the models.

• M3 forms the foundation of the metamodelling hierarchy. This layer is
responsible for specifying the metamodels.

Figure 2.5 shows these layers together with an example. This example illustrates
the four layers with sample elements. Layer M0 contains the user instances,
while layer M1 involves the corresponding objects for those instances. Layer M2
contains the metamodelling elements, where UML and CWM reside. Both UML
and CWM are instances of the Meta Object Facility (MOF), which reside in the
M3 layer.

2.2.4 Unified Modeling Language Extension Mechanism

UML is a general purpose modelling language and not dedicated to a specific type
of systems or domains. Moreover, further specialisations and extensions to allow
domain-specific models could be valuable. The OMG has standardised many
UML profiles to fit different types of systems and technologies, such as UML
Profile for CORBA [COR02]. The OMG defines two approaches for defining a
domain-specific models, Fuentes and Vallecillo [FV04] described them as follows:

2.2. Unified Modeling Language 17

-title : String
-isbn : String

+lendBook(isbn : String) : void

Book

-name : String

Publisher

Physics PublisherA

Operation

M0 Run-time level

AssociationAttributeClass

Meta Class

M2 UML CWM

M3 MOF

M1 User
Model level +publisher

11..*

<<instanceOf>>
<<instanceOf>>

<<instanceOf>><<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>><<instanceOf>>

<<instanceOf>>

Figure 2.5: UML Metamodel Layers (Example)

• Defining a new language that is independent of UML and based on the
specifications of the OMG. The new language must comply with the OMG
standards, but has nothing to do the UML. It has its own syntax and se-
mantics. An example for this approach is the definition of CWM [CWM03],
which resides in the M2 layer (Figure 2.5).

• Defining a new UML profile to fit the domain-specific characteristics. The
new profile must commit to the UML metamodel and impose no modifica-
tions on its semantics or syntax. For this purpose, UML offers three types of
extension mechanisms, i.e. stereotypes, constraints, and tagged values. The
extension mechanism can be used to enable the adaptation of UML to fit a
specific application domain without changing or modifying the UML meta-
model. For example, in a Java profile, the generalisation between classes is
restricted to single inheritance, which is not the case in UML. Therefore,
additional constraints can be added to restrict the inheritance in UML.

2.2.4.1 Defining UML Profiles

UML offers an extension mechanism, where new UML profile can be defined to
adapt UML for specific domains. The extension mechanism is usually defined in
terms of UML profiles. Arlow and Neustadt [AN05] define a UML profile as ”a
collection of stereotypes, tagged values, and constraints”.

18 CHAPTER 2. FOUNDATIONS

• Stereotypes: are defined in the UML2 specifications as follows: ”a stereo-
type defines how an existing metaclass may be extended, and enables the
use of platform or domain specific terminology or notation in place of, or
in addition to, the ones used for the extended metaclass” [UML10b]. Jacob-
son [JBR04] define stereotypes as ”a variation of an existing model element
with the same form (such as attributes and relationships) but with modified
intent”. Via stereotypes, it is possible to define new elements dependent
on UML metaclasses. This is done by putting the name of the stereotype
between guillemets (e.g. «MyFirstStereotype»). Constraints and tagged
values can be attached to the stereotypes. Images and colours are also
possible although the latter is not recommended, since it might lead to
misinterpretation of the model elements [Fow04].

• Tagged Values: are properties attached to the modelling elements with
value for each. They are normally associated with stereotypes and applied
by the model elements extending those stereotypes. They follow a simple
syntax, i.e. myFirstTag = myFirstValue, mySecondTag = mySecondValue
and so on.

• Constraints: are used to restrict the use of the modelling elements for
particular purpose. They are rules usually expressed in Object Constraint
Language (OCL) [OCL06], which has a specific syntax and appear between
({..}) brackets.

<<profile>>

WidthAndLength

-length : float

<<stereotype>>
Length

[Association, Class]
{length <=5.0} -width : Integer

<<stereotype>>
Width
[Class]

MyWidthAndLengthApplication <<apply>>

Figure 2.6: UML WidthAndLength Profile

Figure 2.6 illustrates a sample UML profile called WidthAndLength shown as
a package with «profile» stereotype. The WidthAndLength profile includes two
stereotypes, i.e. Length extending the Association and Class metaclasses, and
Width extending the Class metaclass. The Length stereotype includes a tagged
value length of type float, while the Width stereotype includes a tagged value
width of type Integer. The Length stereotype contains a constraint limiting the

2.3. Model Driven Architecture 19

length to less than or equal to five ({length<=5.0}). The WidthAndLength pro-
file is applied by MyWidthAndLengthApplication model.

For the definition of a UML profile, few important points must be taken into
consideration [FV04]:

• Identify all elements, which comprise the new profile. These elements shall
be represented using a UML metamodel.

• Once the metamodel elements are recognised, the UML profile is ready to
be defined. This includes defining a stereotype for each needed element
inside a package named «profile». Only extended elements shall be repre-
sented as stereotypes. Classes, associations, attributes, operations, states,
transitions, and packages are examples of those elements.

• If any, specify tagged values for the attributes including types and initial
values.

• Specify the relevant constraints on the profile elements. These constraints
are usually derived from the domain.

2.3 Model Driven Architecture

Model Driven Architecture (MDA) is an approach for the development of soft-
ware. It utilises the modelling languages as programming languages in addition
to their use in the design. The main goal is to improve the quality and produc-
tivity of software development by defining models that fit in different platforms.
The specifications for a certain platform can be defined at later step to form a
complete model for the selected platform. In this case, the single necessity is to
define a platform model for each target platform, while the original model for
the software remains unchanged. MDA [MDA03] is an OMG standard, and has
a specific life cycle for the development process, which starts with defining the
system in an abstract way, and independent of its target platform. The second
step is to specify the possible platforms for implementing the software system,
then choose one of them for the execution. The final step is to transform the
specifications into software, which runs on the chosen platform [MDA03]. MDA
concentrated on the functionality and behaviour of the system and disregards
the platform, which will be taken into consideration at a later phase. For this
purpose, it proposes a Platform Independent Model (PIM), which represents the
functionality and behaviour of the system without considering the implementa-
tion platform. The PIM will be refined into a Platform Specific Model (PSM),
which includes the characteristics of a specific platform. Figure 2.7 represents a

20 CHAPTER 2. FOUNDATIONS

UML model transformation view for MDA models, and how they relate to each
other.

Figure 2.7: A UML View for MDA Models

MDA defines a specific set of models within its approach. Each model corresponds
to a different level of abstraction. In the following a brief description of these
models is presented.

2.3.1 Computation Independent Model

The Computation Independent Model (CIM) describes the system from the com-
putation perspective, where no details of the system structure are considered.
It is sometimes referred to as the domain model and targets the experts of the
system domain. Therefore, it uses the terms of the domain experts. The main
goal of the CIM is to fill in the gap between the domain experts who specify the
system requirements and the design and technology experts who will translate
these requirements into design and architecture. The CIM does not consider how
the system will be implemented. It only shows its environment and what it is
supposed to do, and serves as means of communication between the domain and
technology experts. It should be possible to track the requirements of the CIM
in both PIM and PSM [MDA03].

2.4. MODEL TRANSFORMATION AND CODE GENERATION 21

2.3.2 Platform Independent Model

The Platform Independent Model (PIM) views the system from a platform inde-
pendent perspective in order to make it suitable for multiple and different plat-
forms. It specifies the services and interfaces, which are supposed to be provided
by the software without considering the target platform(s). Therefore, it contains
complete specifications of the software. These specifications can be related to the
enterprise, as well as the computation environment.

2.3.3 Platform Model

The Platform Model (PM) represents the platform, on which the software will
run. It shows a set of technical parts of the target platform and services provided
by it, and helps in the process of transforming the PIM into a PSM.

2.3.4 Platform Specific Model

The Platform Specific Model (PSM) realises and refines the PIM and is reached
through model transformation techniques. It merges the platform independent
specifications together with the details of the target platform in order to enable
the generation of the code and the configuration files that make the software
executable. The PSM should not be seen as a one-to-one mapping to the PIM,
since the PSM includes more details and representations, which are not present in
the PIM [Mil03]. Through model transformation, the code that runs on the target
platform is generated from the PSM [MDA03]. More than one transformation
may be necessary, since the abstraction gap is relatively big [Fra03].

2.4 Model Transformation and Code Generation

The model is the core for any model transformation process. A model is an
abstraction of the reality and its complexity. Czarnecki and Helsen [CH06] de-
fine a model as ”an abstraction of a system or its environment, or both”. MDA
[MDA03] defines the model transformation as ”The process of converting one
model to another model of the same system”. Kleppe et al. [KWB03] present a
more comprehensive definition of model transformation, which is: ”the automatic
generation of a target model from a source model, according to a transformation
definition. A transformation definition is a set of transformation rules that to-
gether describe how a model in the source language can be transformed into a
model in the target language. A transformation rule is a description of how one
or more constructs in the source language can be transformed into one or more
constructs in the target language”. Although these definitions mentioned only one
type of model transformation, i.e. Model-to-Model (M2M), this does in no way
mean that other types of model transformation are not included, since a model

22 CHAPTER 2. FOUNDATIONS

can be graphical or textual. Other possible types of model transformation are the
Model-to-Text (M2T), Text-to-Model (T2M), and Text-to-Text (T2T). Further-
more, the model in the definition includes implicitly metamodels, in other words,
it should be possible to transform a metamodel to another metamodel. This is
known as a horizontal model transformation, since both the source and the target
models remain at the same level. If the transformation moves the model from one
level to another, it is known as a vertical model transformation [MG06]. Another
distinction in model transformation is between endogenous (or rephrasing) and
exogenous transformation. The former corresponds to the transformation confor-
mity to a single metamodel, while the latter corresponds to the transformation
procedures on several metamodels [CH06]. Mens and Van Gorp [MG06] proposed
additional feature for model transformation, where they emphasise that model
transformation should be possible with multiple source models and/or multiple
target models. For example, in terms of Web services, it could be necessary to
define a source model for the target Web service, and another one for the plat-
form, where the Web service will be deployed and implemented. Both will be
combined or merged to generate the target source code that runs on the specified
platform.

This thesis focuses on the M2T transformation, since it targets the generation of
executable source code for Web services from UML models. Code generation is
explained in more detail in Section 2.4.1.

2.4.1 Code Generation

Code generation is the other common name of the Model-to-Text (M2T) or
Model-to-Code (M2C) transformation, where textual code is generated from a
given model or some specifications. Code generation is writing a program that
writes another program [Her03], or code that writes code [Dol04], and is known as
metaprograms, which receive some specifications or model as input and generate
the source code as output [SV06]. The generated code is supposed to be ready for
interpretation or compilation. Therefore, it should be complete and executable
from the modeller’s point of view [KT08].

2.4.2 Rules for Code Generation

Herrington [Her03] specifies the following set of rules to follow when generating
code:

• Understand the framework, write the structure of the code manually, and
reuse it in the generator templates and the definition of the transformation
rules.

2.4. MODEL TRANSFORMATION AND CODE GENERATION 23

• Respect manual coding, since it is sometimes not avoidable. Make its part
as small as possible, because the time of development is valuable. Repetitive
parts of the code must not be written manually.

• Document the process by defining instructions and warnings for the users,
enabling comments inside the generator and in the output as well. This
will enhance the understanding of the process, and avoid re-running the
generator several times without actual need.

• Make the code generation process easy, straightforward, and reusable by
defining simple transformation rules for the process. Complex transforma-
tion rules will quickly become obsolete.

• Let the code generation become a coherent part of the development process.
This must be considered by the developers, i.e. selection of the environment,
and tools for code generation, and how this will affect the development plan.

• Beautify your generated code to follow the same coding style of the lan-
guage you have chosen. This increases its readability, and help to get more
acceptance among the audience.

2.4.3 Integrating Manual Code

The general and common rule in code generation is never modify the generated
code. If the output source code is not as it should be, modify either the model
or the generator. Added code to the output will be lost at each re-run of the
generator. It is important to distinguish between the code written to fit some
specifications (e.g. platform specifications) and that written for a very narrow
purpose in the application. The former type will be applicable for all applications
in the same domain and must be decided by the domain experts. The latter aims
at serving some specific purposes, and is usually added by the modeller. This
type can be added in one or more of the following ways proposed by [KT08].

2.4.3.1 Protected Regions

Protected regions are parts of the generator that shall not be overridden at every
generator run [OAW10]. The generator shall be made aware that these parts are
manually written or shall be written. To enable this feature in the generator,
a specific syntax for protected regions must be inserted and the generator must
know how to handle it. The Xpand transformation language (explained in Sec-
tion 2.4.5) offers this capability by using the syntactical constructs illustrated in
Listing 2.1 in the relevant template.

24 CHAPTER 2. FOUNDATIONS

1 «PROTECT CSTART expression CEND expression ID expression (DISABLE)?»
2

3 // manual code can be inserted here

4

5 «ENDPROTECT»

Listing 2.1: Protected Regions in Xpand

Protected regions are mostly provided by UML tools with code generation fea-
tures. The tool builds the skeleton of the code and specifies the regions, where
the user can insert manual code as shown in Figure 2.8.

-name : String

+borrowMagazine(name : String)

Magazine

public class Magazine
{
 private String name;

 public void borrowMagazine(String name) {
 \\begin protected Region No. 1
 Write your code here ...
 \\end protected Region No. 1
 }
}

Figure 2.8: Protected Regions

The users should work on models, generators, and output when they decide to
use the protected regions.

2.4.3.2 Writing Code in Models

Source code can be inserted in the source model instead of the generated source
code. In this case, all the information required for code generation is located in
one single source. However, the amount of the inserted code should be as small
as possible in order to keep the model readable, and to ensure the efficiency of
the whole code generation process.

2.4.3.3 Files Referenced by Models

Another possibility for the insertion of the manual code is to define an external
and editable file, to which the model should refer. Each part of the code could
reside in a separate file. It is also possible to make the generated code reference
to the manual code in the file(s), which should be generated with the automated
code. Referencing could be done via import statements in the generator.

2.4.4 Benefits of Code Generation

Code generation offers the developers with multiple advantages in the software
development process. In the following, a summary for these advantages is pre-
sented [Her03]:

2.4. MODEL TRANSFORMATION AND CODE GENERATION 25

• Code generation guarantees consistency in the generated code including
all entities and elements. This feature is easy to recognise in the names
of the output entities. In addition, the generated code is consistent with
the architecture, since it maps the architecture model. If the code is not
executable or contains problems, this means that the architecture contains
errors or it is irrelevant to what the system should do. Such advantages
maximise the quality of the generated code.

• No massive changes are required when a change is needed, since only the
template that generates the code should be changed.

• Problems are quickly identified and resolved in the template(s), where the
corresponding transformation rules reside.

• Unit testing is possible, since generators are able to create unit tests for
generated entities.

• It is still possible to generate code for several platforms, since the appli-
cation logic differs from the implementation platform. Platform specific
characteristics in the generator change, depending on the platform itself.

• Source code, configuration files, and even documentation can be generated
at the same time by running the generator only once. This benefit has an
influence on the productivity of the systems development, since much of
the redundant work will be done automatically, and thus developers can
concentrate on the most important work instead of the entire system.

2.4.5 Code Generation in Example

Xpand was initially developed by OpenArchitectureWare [OAW] as a Model-to-
Text (M2T) transformation language. Since September 2009, Xpand has become
part of the M2T transformation languages integrated into the eclipse platform.
Xpand is a template-based transformation language for controlling the code gen-
eration process [OAW10]. It defines one or more template file(s), where each
template file consists of one or more templates that are defined using the key-
words DEFINE and ENDDEFINE, which is also known as DEFINE block, the
example in Listing 2.2 shows:

1 «DEFINE myFirstTemplate FOR Type»
2

3 some statements...

4

5 «ENDDEFINE»

Listing 2.2: Template Definition

26 CHAPTER 2. FOUNDATIONS

Xpand offers different commands known as metacode to enable accessing the
metamodel or source model in order to generate the target output according to
the input source model and the metamodel.

2.4.5.1 Features of Xpand

Xpand provides multiple features to enable code generation in a smooth way.
The following is a set of the important features of Xpand.

2.4.5.1.1 IMPORT

The IMPORT enables importing namespaces and using the unqualified names
contained in the imported namespace (Listing 2.3).
1 «IMPORT myMetamodel::myModel»

Listing 2.3: Import Statement

2.4.5.1.2 EXTENSION

In some cases, it is not easy to describe or specify some behavioural operations or
queries in Xpand. Therefore, the Xtend language, which is heavily used in Xpand
projects [XPA], can be used to define some operations, which are invoked inside
Xpand templates by extending the Xtend file using the EXTENSION keyword
(Listing 2.4).
1 «EXTENSION myRootFiles::myExtensionFile»

Listing 2.4: Extension Statement

2.4.5.1.3 FILE

The FILE block enables the generation of files that contain the target output,
and stored in a specific location, known as outlet. If no outlet is specified, the
file will be stored in a default source folder. The body of the file can contain any
string of code or metacode (Listing 2.5).
1 «FILE expression [myOutlet]»
2

3 any String ...

4

5 «ENDFILE»

Listing 2.5: FILE Block Definition

2.4. MODEL TRANSFORMATION AND CODE GENERATION 27

2.4.5.1.4 FOREACH

This feature enables retrieving a specific collection and manipulating it inside the
body of the FOREACH block (Listing 2.6).
1 «FOREACH expression AS variableName»
2

3 a sequence of statements using variableName to access the elements

4

5 «ENDFOREACH»

Listing 2.6: FOREACH Block

2.4.5.1.5 EXPAND

The EXPAND statement invokes another DEFINE block or template inside or
outside the same template file. More than one EXPAND statement can be found
in the same template (Listings 2.7 and 2.8).
1 «EXPAND anotherTemplate FOR this»

Listing 2.7: EXPAND Statement A

1 «EXPAND anotherTemplate FOREACH expression»

Listing 2.8: EXPAND Statement B

2.4.5.1.6 IF

IF statement is one of the powerful features of Xpand, since it enables applying
some conditions on the output. It includes naturally the ELSE and ELSEIF
statements to enable inserting nested conditions (Listing 2.9).
1 «IF expression»
2

3 some statements

4

5 «ELSEIF expression»
6

7 some statements

8

9 «ELSE»
10

11 some statements

12

13 «ENDIF»

Listing 2.9: IF Statement

2.4.5.1.7 REM

The REM command enables the insertion of textual comments inside the tem-
plate file. The comments have no influence on the output, but they are used
normally to add some explanations on the contents of the templates or the ex-
pected output (Listing 2.10).

28 CHAPTER 2. FOUNDATIONS

1 «REM»
2

3 my comment(s)

4

5 «ENDREM»

Listing 2.10: REM Block

2.4.5.2 Xpand in Example

The example in Figure 2.9 shows a simple class diagram. The diagram is com-
posed of two classes Book and Publisher, and an association between them.

-title : String
-author : String
-isbn : String

+lendBook(isbn : String) : void
+removeBook(isbn : String) : void

Book

-name : String

Publisher
+publisher

11..*

Figure 2.9: Book-Publisher Class Diagram

For the code generation of the classes in Figure 2.9, an Xpand template file as
in Listing 2.11 needs to be developed. The template file contains four templates
(i.e. DEFINE blocks):

1. Class Template: generates a Java class for each UML class. It invokes
the other templates in the same file.

2. Attribute Template: generates the definition for each attribute in the
UML classes.

3. Operation Template: generates the signature of the Java operations for
each operation that appears in the UML class diagram.

4. GettersAndSetters Template: generates getter and setter operations
for the private attributes in UML classes. The template includes an IF
statement to apply this template only for attributes that have a visibility
of type private.

The Xpand template file in Listing 2.11 generates the Book class in Listing 2.12,
and the Publisher class in Listing 2.13 that both correspond to Figure 2.9.
1 «IMPORT uml»
2

3 «EXTENSION templates::Java»
4

5 «REM»∗∗∗∗∗∗∗∗ Class Template ∗∗∗∗∗∗∗∗«ENDREM»
6

2.4. MODEL TRANSFORMATION AND CODE GENERATION 29

7 «DEFINE classTemplate FOR uml::Class»
8 «FILE name + ”.java” »
9 «visibility» class «name» {

10

11 «EXPAND attributeTemplate FOREACH ownedAttribute»
12

13 «EXPAND GettersAndSetters FOREACH ownedAttribute»
14

15 «EXPAND operationTemplate FOREACH ownedOperation»
16

17 }
18 «ENDFILE»
19 «ENDDEFINE»
20

21 «REM»∗∗∗∗∗∗∗∗ Attribute Template ∗∗∗∗∗∗∗∗«ENDREM»
22

23 «DEFINE attributeTemplate FOR uml::Property»
24

25 «visibility» «type.name» «name»;

26

27 «ENDDEFINE»
28

29 «REM»∗∗∗∗∗∗∗∗ Operation Template ∗∗∗∗∗∗∗∗«ENDREM»
30

31 «DEFINE operationTemplate FOR uml::Operation»
32 «visibility−» «IF isStatic−» static «ENDIF−»
33 «IF type==null−» void «ELSE−» «type.name»«ENDIF−» «name−»
34 («FOREACH ownedParameter.reject(e|e.direction.toString().toLowerCase().

35 endsWith(”return”)) AS p SEPARATOR ”, ”−»
36

37 «p.type.name−» «p.name−»
38

39 «ENDFOREACH−»){
40

41 // TODO: Implement code of «name»()

42 }
43 «ENDDEFINE»
44

45 «REM»∗∗∗∗∗ Getters & Setters Template ∗∗∗∗∗«ENDREM»
46

47 «DEFINE GettersAndSetters FOR uml::Property»
48

49 «IF visibility.toString() == ”private”»
50

51 public void set«name.toFirstUpper()»
52 («type.name» «name.toFirstLower()»){
53 this.«name» = «name.toFirstLower()»;

54 }
55

56 public «type.name» get«name.toFirstUpper()» (){
57

58 // TODO: Implement code of «class.name».«name»()

59

60 return this.«name»;

61 }
62 «ENDIF»
63 «ENDDEFINE»

Listing 2.11: Xpand in Example

30 CHAPTER 2. FOUNDATIONS

1 public class Book {
2 private String title;

3 private String author;

4 private String isbn;

5 public Publisher publisher;

6

7 public void setTitle(String title) {
8 this.title = title;

9 }
10

11 public String getTitle() {
12 // TODO: Implement code of Book.title()

13 return this.title;

14 }
15

16 public void setAuthor(String author) {
17 this.author = author;

18 }
19

20 public String getAuthor() {
21 // TODO: Implement code of Book.author()

22 return this.author;

23 }
24

25 public void setIsbn(String isbn) {
26 this.isbn = isbn;

27 }
28

29 public String getIsbn() {
30 // TODO: Implement code of Book.isbn()

31 return this.isbn;

32 }
33

34 public void lendBook(String isbn) {
35

36 // TODO: Implement code of lendBook()

37 }
38

39 public void removeBook(String isbn) {
40

41 // TODO: Implement code of removeBook()

42 }
43 }

Listing 2.12: Java Class Book

1 public class Publisher {
2 private String name;

3

4 public void setName(String name) {
5 this.name = name;

6 }
7 public String getName() {
8 // TODO: Implement code of Publisher.name()

9 return this.name;

10 }
11 }

Listing 2.13: Java Class Publisher

2.4. MODEL TRANSFORMATION AND CODE GENERATION 31

2.4.5.3 Using Xtend in Xpand Projects

Xtend is part of the Xpand project. It is a powerful language used basically
for M2M transformation. However, Xtend can also help in formulating readable
Xpand templates by defining reusable operations that access the source model
and retrieve data from it. For example, the Xpand template in Listing 2.14 used
FOREACH block to get the parameters of the operations.
1 «FOREACH ownedParameter.reject(e|e.direction.toString().toLowerCase().

2 endsWith(”return”)) AS p SEPARATOR ”, ”−»
3

4 «p.type.name−» «p.name−»
5

6 «ENDFOREACH−»

Listing 2.14: Sample FOREACH in Xpand

The Xpand code in Listing 2.14 must be used wherever it is necessary to retrieve
the parameters of operations. In order to improve the quality of the Xpand
templates and sustain their reusability, it is possible to define a simple function
with Xtend and use it inside Xpand templates by only invoking its name in the
appropriate location in the templates. The Xtend operation can be formulated
as shown in Listing 2.15:
1 List[uml::Parameter] getParameters(uml::Operation this):

2 ownedParameter.reject(e|e.direction.toString().toLowerCase().endsWith(”return”));

Listing 2.15: Xtend Sample Operation

A reference to the function getParameters can replace the expression in the
FOREACH block, i.e. (ownedParameter.reject(e|e.direction.toString(). toLower-
Case().endsWith(”return”))) without changing the output. The Xpand template
file must declare the extension of the Xtend file using the EXTENSION keyword
followed by the name of the Xtend file as shown in Listing 2.16:

1 «EXTENSION myExtensionFiles::JavaExtenstions»

Listing 2.16: Using Extensions in Xpand

Chapter 3

UML Profile for Web Services

The proposed UML profile in this thesis is defined after investigating different
types of real Web service implementations. The investigations tried to figure
out the main characteristics of Web services. Therefore, recognising the main
elements of Web services, which form its novelty among the different types of
software applications. This means, we need to identify all the existing elements
and those, which are candidate to be existing in any possible implementation of
a Web service. The UML Profile for Web Services (UP4WS) represents the core
of the modelling of Web services, and the basis, on which the code generation
process will rely, since the proposed code generation process and the transfor-
mation rules will handle directly the stereotypes of the UP4WS. The UP4WS
defines two categories of UML extensions. The first category contains the basic
extensions, which must be found in any Web service application. The second
category includes the stereotypes that make Web services executable by enabling
the generation of a complete and executable source code from the model elements
applying those stereotypes. The target output from the UP4WS are:

• Source code in Java

• Configuration files for the Apache Axis2/Java Web service engine

• Documentation files

The UP4WS is defined in terms of stereotypes and, where necessary appropriate
constraints and tagged values are added to complete the relevant semantics. In
this thesis, two types of views on Web services have been considered. The service
provider side, and service client side. The service client side view has been taken
into consideration, since a Web service may invoke another Web service to provide
a comprehensive response. In this case, the Web service plays the role of service

33

34 CHAPTER 3. UML PROFILE FOR WEB SERVICES

provider and service client at the same time. This leads to the necessity to
implement both sides, and thus in the definition of extensions for both of them.

3.1 Web Services Basic Extensions

The basic extensions are mandatory extensions and must be specified for any
Web service implementation, since they represent the necessary parts for Web
services. Each extension is described by introducing the following characteristics:

1. UP4WS Stereotype

2. Metaclass

3. Semantics

4. Constraints

5. Transformation

In order to avoid the complexity of the OCL syntax, natural language will be
used to formulate the constraints. As mentioned before, the proposed profile
has been defined after thorough investigations of different types of Web services
implementations. As a result of these investigations, the following observations
have been recognised:

• Each Web service application comprises service provider side, and service
client side.

• The service provider side must have a service object representing the differ-
ent services provided by the Web service. These services can be represented
in terms of operations or methods.

• The methods or operations in the service object manipulate data stored
in other objects, i.e. data objects. These objects provide different data
elements, i.e. data variables or attributes.

• The service client side contains always a client object that invokes the ser-
vices provided by the Web service and represented in the service object.
The execution of the Web service is achieved by executing the client object.
Therefore, it must contain an execution mechanism (e.g. main method in
Java or C). Our assumption is to define two objects at the service client
side. The proxy client object, which is accessed by another client object.
The proxy client object implements the services from the client’s perspec-
tive, while the client object contains the execution mechanism of the Web
service.

3.1. WEB SERVICES BASIC EXTENSIONS 35

From the above mentioned observations, the following stereotypes have been de-
fined to reflect the mandatory UML extensions for Web services:

• «WebService» to represent the service object.

• «ProxyMethod» to represent the services provided by the Web service in
the service provider and the service client sides.

• «DataContainer» to represent the concrete data of the Web service.

• «DataElement» to represent the data elements as attributes.

• «ProxyImplementation» to represent the proxy client object that imple-
ments the services from the client’s point of view.

• «Client» to represent the client object that contains the execution mecha-
nism of the Web service.

• «ClientMain» to represent the method that enables executing the Web ser-
vice in the client object (e.g. main method).

Figure 3.1 gives an overview of the basic extensions in the UP4WS, and how
they will be applied by the model elements. The figure describes a weather Web
service, which applies the UP4WS. The weather Web service model includes all
mandatory extensions proposed in the UP4WS as follows:

• WeatherService object applying the «WebService» stereotype.

• setWeather and getWeather methods applying the «proxymethod» stereo-
type.

• Weather object applying the «DataContainer» stereotype.

• temp and wind attributes applying the «DataElement» stereotype.

• WeatherServiceClient object applying the «ProxyImplementation» stereo-
type.

• WeatherServiceClientMain applying the «Client» stereotype.

• main method applying the «ClientMain» stereotype.

In the following, the proposed basic UML extensions for Web services, which have
been defined as mandatory extensions for any Web services application will be
presented in more detail.

36 CHAPTER 3. UML PROFILE FOR WEB SERVICES

Model

<<ProxyMethod>>+setWeather()
<<ProxyMethod>>+getWeather()

<<WebService>>
WeatherService

<<ProxyMethod>>+setWeather()
<<ProxyMethod>>+getWeather()

<<ProxyImplementation>>
WeatherServiceClient

<<DataElement>>-temp
<<DataElement>>-wind

<<DataContainer>>
 Weather

<<ClientMain>>+main()

<<Client>>
WeatherServiceClientMain

<<profile>>

UP4WS

<<stereotype>>
ProxyImplementation

[Class]

<<stereotype>>
WebService

[Class]

<<stereotype>>
DataContainer

[Class]

<<stereotype>>
Client
[Class]

<<stereotype>>
ClientMain
[Operation]

<<stereotype>>
ProxyMethod

[Operation]

<<stereotype>>
DataElement

[Property]

<<apply>>

Figure 3.1: Basic Extensions and Their Usage

3.1.1 WebService

The «WebService» stereotype represents the Web service interface in the imple-
mentation language. The «WebService» stereotype must be considered in any
Web service application, since it includes the implementation of services pro-
vided by the Web service at the service provider side in terms of operations.
The WeatherService object, that appears in Figure 3.1 applies the «WebService»
stereotype. The WeatherService represents a Web service that provides weather
information. It includes the methods setWeather and getWeather, which in turn
correspond to the services provided by the Web service.

• UP4WS Stereotype: «WebService»

• Metaclass: Class (from Classes::Kernel 7.3.7 [UML10b])

• Semantics: The «WebService» stereotype is applied by the object that con-
tains the operations representing the services, which the Web service pro-
vides. Each operation with a public visibility in the «WebService» object
is accessible and can be invoked by the service requester or service client.

• Constraints: The following constraint(s) must be considered:

– Only one object in the service provider side can apply the «WebSer-
vice» stereotype.

• Transformation: For the «WebService» stereotype, a file representing the
service object is to be generated. Inside this file, all relevant contents, such

3.1. WEB SERVICES BASIC EXTENSIONS 37

as attributes and operations are to be generated by invoking the correspond-
ing parts in the transformation rules, which are responsible for generating
them. Import statements and package declarations must also be specified.

3.1.2 DataContainer

The «DataContainer» stereotype represents the data variables processed by the
Web service. In the weather Web service example in Figure 3.1, one object
applying the «DataContainer» stereotype can be seen (i.e. Weather). It is also
possible to decompose the Weather object into two objects Temperature and
Wind, where each object will have its own attributes. The decision is taken by
the developers according to the requirements and their design preferences.

• UP4WS Stereotype: «DataContainer»

• Metaclass: Class (from Classes::Kernel 7.3.7 [UML10b])

• Semantics: The object applying the «DataContainer» stereotype is located
at the service provider side, and represents the entities and objects corre-
sponding to the variable and processable data needed in order to enable the
Web service to offer its functionality.

• Constraints: The following constraint(s) must be considered:

– At least one object must apply «DataContainer» stereotype.

• Transformation: Analogous to the «WebService» stereotype, a file is to be
generated for each object extending the «DataContainer» stereotype.

3.1.3 DataElement

The «DataElement» stereotype represents the data elements that can be found
in any object in the Web service. It is basically defined to represent the data
elements in the objects applying the «DataContainer» stereotype. However, it
can be used in other objects, since it has similar semantics. Figure 3.1 shows two
attributes applying the «DataElement» stereotype, i.e. temp, wind in Weather
object.

• UP4WS Stereotype: «DataElement»

• Metaclass: Property (from Classes::Kernel 7.3.44 [UML10b])

• Semantics: Any property applying the «DataElement» stereotype repre-
sents data definitions with ”processable data” or properties, which can nor-
mally be accessed via setter and getter methods.

• Constraints: The following constraint(s) must be considered:

38 CHAPTER 3. UML PROFILE FOR WEB SERVICES

– Visibility is always private

• Transformation: For the «DataElement» stereotype, an attribute declara-
tion is to be generated. Different scenarios should be taken into consider-
ation. For example; visibility, type, abstract, default value, default value
type.

3.1.4 ProxyImplementation

The «ProxyImplementation» stereotype is applied by the object containing the
implementation of the services from the client’s point of view. This means, the
object, which applies the «ProxyImplementation» stereotyped is located at the
service client side. In the case of the weather Web service in Figure 3.1, the object
applying «ProxyImplementation» stereotype implements the services setWeather
and getWeather from the client’s point of view.

• UP4WS Stereotype: «ProxyImplementation»

• Metaclass: Class (from Classes::Kernel 7.3.7 [UML10b])

• Semantics: The object applying the «ProxyImplementation» stereotype is
located at the client side. It is a proxy client object that implements the ser-
vices from the client’s perspective. It implements only the public methods
of the server side object applying the «WebService» stereotype.

• Constraints: The following constraint(s) must be considered:

– Only one object can apply the «ProxyImplementation» stereotype.

– The object applying the «ProxyImplementation» stereotype must have
the same name of the object applying the «WebService» stereotype
concatenated with the word Client. For example, if the object applying
the «WebService» stereotype has the name MyWebService, the name
of the object applying «ProxyImplementation» stereotype must have
the name MyWebServiceClient. These constraints are important to
execute the Web service according to the assumption of this thesis.

• Transformation: A file declaration for the object applying the «ProxyIm-
plementation» stereotype is to be generated.

3.1.5 ProxyMethod

The «ProxyMethod» stereotype is representing the services provided by the Web
service in the service provider and the service client sides. This means, they ap-
pear in the objects applying the stereotypes «WebService» in the service provider
side, and «ProxyImplementation» in the service client side. However, they are

3.1. WEB SERVICES BASIC EXTENSIONS 39

implemented differently in both sides. Figure 3.1 shows two methods applying
the «ProxyMethod» stereotype, setWeather and getWeather, which appear in the
WeatherService and WeatherServiceClient objects.

• UP4WS Stereotype: «ProxyMethod»

• Metaclass: Operation (from Classes::Kernel 7.3.36 [UML10b])

• Semantics: The «ProxyMethod» stereotype is applied by the public at-
tributes in the object applying the stereotype «WebService» and all prop-
erties in the object applying the «ProxyImplementation» stereotype.

• Constraints: The following constraint(s) must be considered:

– Visibility must be public.

• Transformation: The «ProxyMethod» stereotype is applied by the methods
or operations found in the objects applying the «WebService» or «ProxyIm-
plementation» stereotypes. Therefore, the relevant method declaration is
to be generated for each method applying the «ProxyMethod» stereotype.

3.1.6 Client

Logically, each Web service is invoked by one service client at least. For this
purpose, the «Client» stereotype is defined to test the execution of the Web
service. The object applying the «Client» stereotype includes the mechanism to
execute the Web service. The weather Web service in Figure 3.1 includes one
object (WeatherServiceClientMain) applying the «Client» stereotype. The Web
service can be executed by running the WeatherServiceClientMain object, since
it contains the execution mechanism (e.g. main method).

• UP4WS Stereotype: «Client»

• Metaclass: Class (from Classes::Kernel 7.3.7 [UML10b])

• Semantics: The object, which applies the «Client» stereotype contains the
execution mechanism for the Web service (i.e. main method). It invokes
the methods found in the object applying the stereotype «ProxyImplemen-
tation» to execute the Web service.

• Constraints: The following constraint(s) must be considered:

– The object applying the «Client» stereotype must have the same name
as the object applying the «ProxyImplementation» stereotype concate-
nated with the word Main. For example, if the object, to which the
«ProxyImplementation» stereotype is applied has the name MyWeb-
ServiceClient, the name of the object applying the «Client» stereotype

40 CHAPTER 3. UML PROFILE FOR WEB SERVICES

must have the name MyWebServiceClientMain. The weather Web ser-
vice example in Figure 3.1 shows a realisation of the name constraint.

– Only one object can apply the «Client» stereotype (More than one
client can invoke the Web service. This constraint is only added to
make the illustration of the Web service code generation and its exe-
cution understandable to the readers).

• Transformation: For the «Client» stereotype, an object file is to be gener-
ated. This file will contain the execution mechanism.

3.1.7 ClientMain

The «ClientMain» stereotype is defined to reflect the mechanism required for the
execution of the Web service. This means that it is applied by the method, which
is responsible for executing the application. In the weather Web service example
in Figure 3.1, the main method in the WeatherServiceClientMain object applies
the «ClientMain» stereotype.

• UP4WS Stereotype: «ClientMain»

• Metaclass: Operation (from Classes::Kernel 7.3.36 [UML10b])

• Semantics: The operation applies the «ClientMain» stereotype represents
the main method in the client object, which is usually applying the «Client»
stereotype.

• Constraints: The following constraint(s) must be considered:

– The method applying the «ClientMain» stereotype is only found in
the object applying the «Client» stereotype.

• Transformation: For the «ClientMain» stereotype, a main method declara-
tion is to be generated.

3.2 Making Web Services Executable

In order to enable the generation of a complete source code and configuration
files that make Web services executable, an additional set of UML extensions
is required in the UP4WS. The new set of extensions enables the generator to
access the stereotyped elements in the UML model and generate output according
to their specifications. The extensions in this respect are classified into two
categories, i.e. extensions that enable the generation of Web services behaviour
from state machines, and the extensions that enable completing the source code
(e.g. attribute declarations). These extensions are not Web services specific.
Therefore, they are defined separately.

3.2. MAKING WEB SERVICES EXECUTABLE 41

3.2.1 Executable State Machines

In order to execute a Web service, its behaviour must be specified. Therefore,
additional extensions are required to reflect this behaviour. Since state machines
have been chosen to represent the behaviour of Web services, additional exten-
sions to be applied by state machine diagrams and their elements, such as states
and transitions, have to be specified. The thesis distinguishes between two types
of state machine extensions:

• «ObjectStateMachine» used for the implementation of the behaviour of any
object that has multiple states, and

• «OperationStateMachine» used for the implementation of the class opera-
tions that change the behaviour of the object.

In order to complete the implementation of each stereotype, additional exten-
sions applied by the elements of each state machine have to be specified (Sections
3.2.1.1 and 3.2.1.3).

Figure 3.2 shows a state machine diagram that represent the behaviour of a Light
object. The state machine applies the «ObjectStateMachine» stereotype and in-
cludes two states to reflect the light states LightOn or LightOff triggered by two
events in turn turnOn() and trunOff(). It includes the «ObjectState», «Object-
Transition», and «ObjectFinalState» stereotypes. State machines applying the
«ObjectStateMachine» stereotype are used to specify the behaviour of objects
that can have multiple states, which in turn enable full code generation.

<<ObjectState>>
LightOn

<<ObjectState>>
LightOff

StartState

<<ObjectTransition>>
turnOff()

<<ObjectTransition>>
turnOn()

Figure 3.2: «ObjectStateMachine» Stereotype Implementation

3.2.1.1 ObjectStateMachine

The «ObjectStateMachine» stereotype is defined to enable generating the be-
haviour implementation of the data objects. If one of the data objects has a
behaviour, the state machine representing this behaviour should apply the «Ob-
jectStateMachine» stereotype. Other stereotypes that enable its implementation

42 CHAPTER 3. UML PROFILE FOR WEB SERVICES

shall also be included. Those stereotypes include «ObjectState», «ObjectTransi-
tion» and «ObjectFinalState» as shown in Figure 3.2.

• UP4WS Stereotype: «ObjectStateMachine»

• Metaclass: StateMachines (from StateMachines::BehaviorStateMachines
15.3.12 [UML10b])

• Semantics: The «ObjectStateMachine» stereotype is to be applied by the
state machine representing the behaviour of an object.

• Constraints: The following constraint(s) must be considered:

– The name of the state machine applying the «ObjectStateMachine»
stereotype must have the name of the object, to which it is assigned
concatenated with the word Status. For example, if the object name
is Light, the state machine name must be LightStatus.

– The State machine applying «ObjectStateMachine» stereotype can
describe the behaviour of any object applying the «DataContainer»
stereotype.

• Transformation: The «ObjectStateMachine» stereotype represents the be-
haviour of any object applying the «DataContainer» stereotype. There are
several ways to implement the state machine diagram and generate target
source code. Samek [Sam02] described four possible methods for imple-
menting state machines:

1. The nested switch statement.

2. The state table.

3. The object-oriented state design pattern.

4. A combination of the above.

In this thesis, the nested switch statement approach will be applied. It can
be described in the following steps as described in [Sam02, VKEH06]:

1. create an enumeration object for all states.

2. create an enumeration object for all events.

3. define a variable to store the current state in the state machine.

4. specify a function for events, which trigger the transition. It shall do
the following:

a) check all states to find the current state,

b) check all transitions corresponding to the event,

c) if the current state and the corresponding transition are found,s

3.2. MAKING WEB SERVICES EXECUTABLE 43

i. exit the current state by executing its exit action,

ii. the target state becomes the current state,

iii. enter the target state by executing its entry action,

iv. return.

5. An exception handler can be added.

The stereotypes «ObjectState», «ObjectTransition», and «ObjectFinal-
State» are parts of the implementation of the «ObjectStateMachine» stereo-
type.

3.2.1.1.1 ObjectState

As part of the implementation of the «ObjectStateMachine» stereotype, the
«ObjectState» stereotype is defined to represent the different states of the
object, to which the owning state machine is assigned. Figure 3.2 shows two
states, i.e. LightOff and LightOn applying the «ObjectState» stereotype.

– UP4WS Stereotype: «ObjectState»
– Metaclass: State (from StateMachines::BehaviorStateMachines,

StateMachines::ProtocolStateMachines 15.3.11 [UML10b])

– Semantics: The «ObjectState» stereotype is applied by the states in
the state machine that applies the «ObjectStateMachine» stereotype.
Each state represents a possible status of the object.

– Constraints: The following constraint(s) must be considered:

∗ No constraints specified.

– Transformation: see Section 3.2.1.1

3.2.1.1.2 ObjectTransition

The «ObjectTransition» stereotype is defined to complete the implemen-
tation of the «ObjectStateMachine» stereotype. The «ObjectTransition»
stereotype. It represents the transitions between the states. Figure 3.2
shows how the «ObjectTransition» stereotype participates in the implemen-
tation of any state machine applying the «ObjectStateMachine» stereotype.

– UP4WS Stereotype: «ObjectTransition»
– Metaclass: Transition (from StateMachines::BehaviorStateMachines

15.3.14 [UML10b])

– Semantics: The «ObjectTransition» stereotype is applied by the tran-
sitions in the state machine that applies the stereotype «ObjectStateMa-
chine». It represents the transitions between the states in this state
machine.

44 CHAPTER 3. UML PROFILE FOR WEB SERVICES

– Constraints: The following constraint(s) must be considered:

∗ No constraints specified.

– Transformation: see Section 3.2.1.1

3.2.1.1.3 ObjectFinalState

The «ObjectFinalState» stereotype is part of the implementation of the
«ObjectStateMachine» stereotype, and enables the completion of its imple-
mentation, as shown in Figure 3.2.

– UP4WS Stereotype: «ObjectFinalState»

– Metaclass: FinalState (from StateMachines::BehaviorStateMachines
15.3.2 [UML10b])

– Semantics: The «ObjectFinalState» stereotype is applied by the final
state in the state machine that applies the stereotype «ObjectStateMa-
chine», and represents the final state of this state machine.

– Constraints: The following constraint(s) must be considered:

∗ No constraints specified.

– Transformation: see Section 3.2.1.1

<<DataBehavior>>+tempAverage()

<<DataContainer>>
Weather

<<stereotype>>
OperationStateMachine

[StateMachine]

tempAverageInWeather

<<isAssignedTo>>

Figure 3.3: «DataBehavior» Stereotype

3.2.1.2 DataBehavior

The «DataBehavior» stereotype represents the methods processing the data vari-
ables, excluding setter and getter methods. These methods add behaviour to
the owning object, and thus change some values of that object. A behavioural
diagram (e.g. a state machine) could be assigned to any method applying the
«DataBehavior» stereotype in order to enable its implementation. The assigned
state machine must apply the «OperationStateMachine» stereotype. The code
generated from the state machine will correspond to the implementation of the
method. Figure 3.3 illustrates an example for the «DataBehavior» stereotype.

3.2. MAKING WEB SERVICES EXECUTABLE 45

The figure shows a state machine assigned to the tempAverage operation. The
state machine tempAverageInWeather that applies the «OperationStateMachine»
stereotype, while the operation tempAverage applies the «DataBehavior» stereo-
type. Figure 3.4 extends the example in Figure 3.3 by showing the usage of the
state machine to generate the implementation of the objects methods. It presents
a state machine diagram that applies the «OperationStateMachine» stereotype.
It shows how the elements of the states entry, do, and exit can be used to gener-
ate the implementation of the operations. The «OperationState», and «Opera-
tionTransition» are parts of the implementation of the owning state machine.

// e.g.
Weather weather = new Weather();

entry /

// e.g.
calculate temperature Average

do /

// e.g.
return tempAverage;

exit /

<<OperationState>>
tempAverage

Figure 3.4: «OperationStateMachine» Stereotype Implementation

• UP4WS Stereotype: «DataBehavior»

• Metaclass: Operation (from Classes::Kernel 7.3.36 [UML10b])

• Semantics: The operation applying the «DataBehavior» stereotype repre-
sents any operation that adds behaviour to its owning object.

• Constraints: The following constraint(s) must be considered:

– No constraints specified.

• Transformation: For the «DataBehavior» stereotype, an operation signa-
ture is to be generated. The possible scenarios must be taken into consid-
eration, such as visibility, return type, name, parameters list, and type of
each parameter.

3.2.1.3 OperationStateMachine

The «OperationStateMachine» stereotype is defined to enable the generation of
the implementation of the operations. As parts of the «OperationStateMachine»
stereotype, the «OperationState» and «OperationTransition» stereotypes have
been defined. Figure 3.4 shows an example for the «OperationStateMachine»
stereotype, where it is assigned to an operation called tempAverage.

• UP4WS Stereotype: «OperationStateMachine»

46 CHAPTER 3. UML PROFILE FOR WEB SERVICES

• Metaclass: StateMachines (from StateMachines::BehaviorStateMachines
15.3.12 [UML10b])

• Semantics: The «OperationStateMachine» stereotype can be applied by
any state machine describing the behaviour of an object, and is assigned to
one of its owned operations. The behaviour remains owned by the object,
although it is assigned to the operation.

• Constraints: The following constraint(s) must be considered:

– The state machine applying the «OperationStateMachine» stereotype
must have the same name of the operation, to which it is assigned,
concatenated with the word In and the name of the object owning
this operation. In the example in Figure 3.3, if the operation name
is tempAvgerage and the owning object name is Weather, the state
machine assigned to this operation must have the name tempAvger-
ageInWeather.

• Transformation: For the «OperationStateMachine» stereotype, the imple-
mentation of any operation, to which this state machine is assigned, is to
be generated. The implementation of the «OperationStateMachine» stereo-
type includes the implementation of the stereotypes «OperationState» and
«OperationTransition» stereotypes.

3.2.1.3.1 OperationState

The «OperationState» stereotype is defined to enable the completion of the im-
plementation of the state machine applying the «OperationStateMachine» stereo-
type.

• UP4WS Stereotype: «OperationState»

• Metaclass: State (from StateMachines::BehaviorStateMachines, StateMa-
chines::ProtocolStateMachines 15.3.11 [UML10b])

• Semantics: The «OperationState» stereotype is applied to the states in the
state machine that applies the «OperationStateMachine» stereotype.

• Constraints: The following constraint(s) must be considered:

– No constraints specified.

• Transformation: The state applying the «OperationState» stereotype form
the implementation of the operation, to which the owning state machine is
assigned. The items entry, doActivity, and exit shall correspond to the im-
plementation, where the entry item represents initialisations, the doActivity
item represents the pieces of code that follow initialisations, and the exit
item represents return statements if any.

3.2. MAKING WEB SERVICES EXECUTABLE 47

3.2.1.3.2 OperationTransition

The «OperationTransition» stereotype is defined to complete the implementation
of the «OperationStateMachine» stereotype.

• UP4WS Stereotype: «OperationTransition»

• Metaclass: Transition (from StateMachines::BehaviorStateMachines 15.3.14
[UML10b])

• Semantics: The «OperationTransition» stereotype is applied by the transi-
tions in the state machine that applies the stereotype «OperationStateMa-
chine».

• Constraints: The following constraint(s) must be considered:

– No constraints specified.

• Transformation: see Section 3.2.1.3

3.2.2 Auxiliary Extensions

Another set of extensions is defined to enable the generation of specific imple-
mentation constructs. For example, attributes have different types of declarations
and in order to define the transformation rules that enable the generation of those
different attribute declarations, different types of extensions have to be specified,
for example, the «Enumerizable» stereotype is defined to represent the attributes
that have the type of an enumeration class, while the «Initializable» stereotype
is defined to enable the generation of any attribute that should be initialised.

3.2.2.1 Initializable

The «Initializable» stereotype is defined in order to enable the implementation
of attributes that have or should have initial values. The implementation of the
«Initializable» stereotype is actually an extension of the implementation of the
«DataElement» stereotype.

• UP4WS Stereotype: «Initializable»

• Metaclass: Property (from Classes::Kernel 7.3.44 [UML10b])

• Semantics: Initializable is any property with an initial value.

• Constraints: The following constraint(s) must be considered:

– The property applying «Initializable» stereotype must also apply the
stereotype «DataElement».

– An initial value must be specified for the property.

48 CHAPTER 3. UML PROFILE FOR WEB SERVICES

• Transformation: For the «Initializable» stereotype, an attribute declara-
tion indicating the initial value of the attribute is to be generated. The
«Initializable» stereotype is always applied to the attribute applying also
the stereotype «DataElement» and can not be applied independently.

Figure 3.5 shows the usage of the «Initializable» stereotype. It shows that any at-
tribute applying the «Initializable» stereotype must also apply the «DataElement»
stereotype. In this case, the weather attribute has to be initialised.

<<DataElement>> <<Initializable>>-weather

<<WebService>>
WeatherService

Figure 3.5: «Initializable» Stereotype Example

3.2.2.2 Enumerizable

The «Enumerizable» stereotype is defined to represent any attribute that has a
type of an enumeration object in the model. Since the implementation of such
attributes is unique, the «Enumerizable» stereotype has been defined separately.

• UP4WS Stereotype: «Enumerizable»

• Metaclass: Property (from Classes::Kernel 7.3.44 [UML10b])

• Semantics: Enumerizable is any property that has a type of an enumeration
object.

• Constraints: The following constraint(s) must be considered:

– No constraints specified.

• Transformation: The «Enumerizable» stereotype is dedicated to the at-
tributes with a type corresponding to an enumeration object. Therefore,
the relevant attribute declaration considering the constraint is to be gener-
ated.

Figure 3.6 shows the usage of the «Enumerizable» stereotype. It shows that the
wind attribute is of type WindDirection, which is an enumeration class and can
have one of four enumeration literal values, i.e. east, west, south, and north.

3.3. PROFILE IMPLEMENTATION 49

<<Enumerizable>>-wind : WindDirection

<<DataContainer>>
Weather east

west
south
north

<<enumeration>>
WindDirection

Figure 3.6: «Enumerizable» Stereotype Example

3.3 Profile Implementation

The profile implementation in this thesis is meant to represent the model trans-
formation and the code generation process, which includes defining the trans-
formation rules for transforming the model elements into the Java source code,
configuration files, and documentation files. Each element in the source model
applying any stereotype defined in the UP4WS is eligible to be accessed by the
generator and thus influences the output files for deploying and implementing the
Web service corresponding to the source model.

3.3.1 Model Transformation and Code Generation

The model transformation and code generation process aims at producing the
target output from the UML model. Figure 3.7 gives an overview of the entire
model transformation process. It shows the UP4WS, which is applied by a UML
model. The model is then exported to the generator, which applies the transfor-
mation rules on it in order to generate the relevant output.

UP4WS README.txt

services.xml

build.xml

Source Code
in Java

Web Service

Model

apply

Generator
Transformation Rules

Generate
M2T

export

XMI (Profile+Model)

work on

Figure 3.7: Model Transformation and Code Generation Process

The generator produces three different types of output:

50 CHAPTER 3. UML PROFILE FOR WEB SERVICES

Stereotype Name Template File Name

«WebService» CommonTemplate and WebService
«DataContainer» CommonTemplate and DataContainer
«ProxyImplementation» CommonTemplate and ProxyImplementation
«Client» CommonTemplate and Client

Table 3.1: Mapping Between Template Files and Stereotypes

• Source code in Java (i.e. service provider and client sides),

• Configuration files (i.e. build.xml and services.xml files),

• README.txt file, which provide instructions on how to run the Web service.

The Xpand transformation language will be used for transforming the UML model
into the target output files (i.e. source code and the configuration files for the
platform). The Xpand transformation rules are defined in terms of templates
distributed in several template files. Each template is responsible for generating
the code corresponding to specific elements that applies one stereotype from the
UP4WS in the UML model from the UP4WS in the UML model. It is also
possible that more than one stereotype can be applied by the same element in
the model. Each template file starts normally with IMPORT and EXTENSION
statements and contains one or more templates. In the following, a detailed
description for each template file and its contents is presented. The templates
and the owning template files are used to generate the Java source code and the
associated configuration and documentation files. The Xtend language will be
used to define some operations, which can be used inside Xpand templates. Table
3.1 shows a mapping between the template files and the stereotypes. The right
column shows the template files which contain the templates that generate the
implementation for the stereotypes in the left column. The left column correspond
to the stereotypes, from which all possible objects files can be generated.

3.3.1.1 CommonTemplates Template File

The CommonTemplates template file contains all the templates that can be in-
voked by the templates inside the same or other template files. These templates
can be used in any other implementation of any application in Java.

3.3.1.1.1 createImport Template

The create Import template (Listing 3.1) is responsible for generating the import
statements in the files of the objects.
1 «DEFINE createImport FOR uml::Type»
2 import «packageName()−».«”∗”−»;

3.3. PROFILE IMPLEMENTATION 51

3 «ENDDEFINE»

Listing 3.1: createImport Template

3.3.1.1.2 createDataElement Template for «DataElement»
The createDataElement template (Listing 3.2) generates the declaration of any at-
tribute applying the «DataElement» stereotype. Since the «Initializable» stereo-
type can be applied only to attributes applying the «DataElement» stereotype,
the «Initializable» stereotype is implicitly included in the createDataElement
template. The template implements different possible scenarios for the declara-
tion of any attribute, such as type, default value, and type of the default value.

1 «DEFINE createDataElement FOR UP4WS::DataElement»
2 «IF defaultValue == null && metaType.name

3 != ”UP4WS::DataElement,UP4WS::Initializable”»
4 «visibility» «type.name» «name»;

5 «ELSE»
6 «IF defaultValue == null && metaType.name

7 == ”UP4WS::DataElement,UP4WS::Initializable”»
8 «visibility» «type.name» «name» = new «type.name»();

9 «ENDIF»
10 «IF defaultValue != null && type.name == ”String”»
11 «visibility» «type.name» «name» = ”«value()»”;

12 «ELSE»
13 «IF defaultValue != null && type.name != ”String”»
14 «visibility» «type.name» «name» = «value()»;

15 «ENDIF»
16 «ENDIF»
17 «ENDIF»
18 «ENDDEFINE»

Listing 3.2: createDataElement Template

3.3.1.1.3 Enumerizable Template for «Enumerizable»
The Enumerizable template (Listing 3.3) is responsible for generating the declara-
tion of the attributes that apply the «Enumerizable» stereotype. The «Enumerizable»
stereotype is dedicated to the attributes that have an enumeration object as a
type.

1 «DEFINE Enumerizable FOR UP4WS::Enumerizable»
2

3 «IF defaultValue == null−»
4 «visibility» «type.name» «name−»;

5 «ELSE»
6 «visibility» «type.name» «name» =

7 «type.name».«value().toUpperCase()−»;

8 «ENDIF−»
9

10 «ENDDEFINE»

Listing 3.3: Enumerizable Template

52 CHAPTER 3. UML PROFILE FOR WEB SERVICES

3.3.1.1.4 gettersAndSetters Template for «DataElement» and «Enumerizable»
The gettersAndSetters template (Listing 3.4) creates the getter and setter meth-
ods for the attributes, to which one of these stereotypes is applied. It also checks
whether the visibility of the attribute is private.
1 «DEFINE gettersAndSetters FOR UP4WS::DataElement»
2 «IF visibility.toString() == ”private”»
3 public void set«name.toFirstUpper()»
4 («type.name» «name.toFirstLower()»){
5 this.«name» = «name.toFirstLower()»;

6 }
7 public «type.name» get«name.toFirstUpper()» (){
8 return this.«name»;

9 }
10 «ENDIF»
11 «ENDDEFINE»

Listing 3.4: gettersAndSetters Template

3.3.1.1.5 methodTmpl Template for «DataBehavior»
The methodTmpl template (Listing 3.5) generates the declaration and signature
of any operation applying the «DataBehavior» stereotype. The implementation
of this method is generated by the templates generating the source code for the
state machines that applies the «OperationStateMachine» stereotype.
1 «DEFINE methodTmpl FOR UP4WS::DataBehavior»
2 «visibility» «IF isStatic» static «ENDIF» «IF type==null» void

3 «ELSE» «type.name» «ENDIF»
4 «name» («FOREACH getParameters()

5 AS p SEPARATOR ”, ”»«p.type.name.toJava()» «p.name»«ENDFOREACH»){
6 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

7 (UP4WS::OperationStateMachine) AS wssm−»
8 «IF name+”In”+owner.name == wssm.name−»
9 «EXPAND implementState(wssm) FOREACH

10 wssm.eAllContents.typeSelect(UP4WS::OperationState)−»
11 «ENDIF−»
12 «ENDFOREACH−»
13 }
14 «ENDDEFINE»

Listing 3.5: methodTmpl Template

3.3. PROFILE IMPLEMENTATION 53

3.3.1.1.6 Events Template for «ObjectStateMachine»
The Events template (Listing 3.6) generates an enumeration class containing all
events that appear in the state machine that applyies the «ObjectStateMachine»
stereotype. The template also checks whether the state machine is representing
the behaviour of an object that applies the «DataContainer» stereotype.

1 «DEFINE Events FOR UP4WS::ObjectStateMachine»
2 «IF owner.metaType.name == ”UP4WS::DataContainer”»
3 «FILE eventsEnumFileName() myDataOulet−»
4 package «packageName(this)»;

5 public enum «eventsEnumName()» {
6 «FOREACH events().constantName().toSet() AS s SEPARATOR ”,”−»
7 «s−»
8 «ENDFOREACH»
9 }

10 «ENDFILE»
11 «ENDIF»
12 «ENDDEFINE»

Listing 3.6: Events Template

3.3.1.1.7 States Template for «ObjectStateMachine»
The States template (Listing 3.7) generates an enumeration class containing all
states that appear in any state machine applying the stereotype «ObjectStateMa-
chine» and is assigned to any object, which applies the «DataContainer» stereo-
type.

1 «DEFINE States FOR UP4WS::ObjectStateMachine»
2 «IF owner.metaType.name == ”UP4WS::DataContainer”»
3 «FILE statesEnumFileName()myDataOulet−»
4 package «packageName(this)»;

5

6 public enum «statesEnumName()»{
7 «FOREACH states() AS s SEPARATOR ”,”−»
8 «s.constantName()»
9 «ENDFOREACH»

10 }
11 «ENDFILE»
12 «ENDIF»
13 «ENDDEFINE»

Listing 3.7: States Template

3.3.1.1.8 implementState Template for «OperationState»
The implementState template (Listing 3.8) generates the implementation of any
method, to which the state machine owning this state is assigned.

1 «DEFINE implementState (UP4WS::OperationStateMachine sm)

2 FOR UP4WS::OperationState»
3 «IF entry != null−»
4 «entry.name−»
5 «ENDIF−»
6 «IF doActivity != null−»

54 CHAPTER 3. UML PROFILE FOR WEB SERVICES

7 «doActivity.name−»
8 «ENDIF»
9 «IF exit != null−»

10 «exit.name−»
11 «ENDIF−»
12 «ENDDEFINE»

Listing 3.8: implementState Template

3.3.1.2 WebService Template File

The WebService template file contains all the templates required for the gen-
eration of the object applying the «WebService» stereotype. The WebService
template file contains a set of templates in order to enable the generation of the
corresponding Java file.

3.3.1.2.1 serviceRoot Template for «WebService»
The serviceRoot template (Listing 3.9) invokes the template, which creates the
Java file for the object applying the «WebService» stereotype.

1 «DEFINE serviceRoot FOR UP4WS::WebService»
2 «EXPAND createWebService»
3 «ENDDEFINE»

Listing 3.9: serviceRoot Template

3.3.1.2.2 createWebService Template for «WebService»
The createWebService template (Listing 3.10) is the core template in the Web-
Service template file, since it generates the Java file for the object applying the
«WebService» stereotype. The createWebService template invokes the following
templates to generate the implementation of the Java file:

• createImport from CommonTemplates template file (Section 3.3.1.1.1).

• createDataElement from CommonTemplates template file (Section 3.3.1.1.2).

• Enumerizable from CommonTemplates template file (Section 3.3.1.1.3).

• methodTmpl from CommonTemplates template file (Section 3.3.1.1.5).

• gettersAndSetters from CommonTemplates template file (for «Enumeriz-
able» and «DataElement») (Section 3.3.1.1.4).

• proxyMethodServiceTmpl from the WebService template file (Section 3.3.1.2.3).

3.3. PROFILE IMPLEMENTATION 55

1 «DEFINE createWebService FOR UP4WS::WebService»
2

3 «FILE name + ”.java” myServiceOulet»
4 package «packageName(this)»;

5

6 «EXPAND CommonTemplates::createImport FOREACH usedTypes()»
7 «visibility−» class «name−»{
8 «EXPAND CommonTemplates::createDataElement FOREACH

9 eAllContents.typeSelect(UP4WS::DataElement)−»
10

11 «EXPAND CommonTemplates::Enumerizable FOREACH

12 eAllContents.typeSelect(UP4WS::Enumerizable)−»
13

14 «EXPAND CommonTemplates::methodTmpl FOREACH

15 eAllContents.typeSelect(UP4WS::DataBehavior)−»
16

17 «EXPAND CommonTemplates::gettersAndSetters FOREACH

18 eAllContents.typeSelect(UP4WS::Enumerizable)−»
19

20 «EXPAND CommonTemplates::gettersAndSetters FOREACH

21 eAllContents.typeSelect(UP4WS::DataElement)−»
22

23 «EXPAND proxyMethodServiceTmpl FOREACH

24 eAllContents.typeSelect(UP4WS::ProxyMethod)−»
25 }
26 «ENDFILE»
27 «ENDDEFINE»

Listing 3.10: createWebService Template

3.3.1.2.3 proxyMethodServiceTmpl Template for «ProxyMethod»
The proxyMethodServiceTmpl template (Listing 3.11) is responsible for gener-
ating the methods inside the Java file applying the «WebService» stereotype. It
generates the signature for each method applying the «ProxyMethod» stereotype.
The implementation of the methods will be generated by invoking the template
implementState from the CommonTemplates template file.
1 «DEFINE proxyMethodServiceTmpl FOR UP4WS::ProxyMethod»
2

3 «visibility−» «IF isStatic−» static «ENDIF−»
4 «IF type==null−» void «ELSE−» «type.name−»«ENDIF−» «name−»
5 («FOREACH getParameters().sortBy(e|e.name) AS p SEPARATOR ”,”−»
6 «p.type.name.toJava()−» «p.name−»«ENDFOREACH−»){
7 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

8 (UP4WS::OperationStateMachine) AS wssm−»
9 «IF name+”In”+owner.name == wssm.name−»

10

11 «EXPAND CommonTemplates::implementState(wssm)

12 FOREACH wssm.checkStates()−»
13

14 «ENDIF−»
15 «ENDFOREACH−»
16 }
17 «ENDDEFINE»

Listing 3.11: proxyMethodServiceTmpl Template

56 CHAPTER 3. UML PROFILE FOR WEB SERVICES

3.3.1.3 DataContainer Template File

The DataContainer template file contains all the templates needed for generating
the Java files for the objects that apply the «DataContainer» stereotype. It
contains a set of templates to generate the corresponding Java files and their
implementations.

3.3.1.3.1 dataContainerRoot Template for «DataContainer»
The dataContainerRoot template (Listing 3.12) is developed to make the template
createDataContainer reusable by invoking it where appropriate.

1 «DEFINE dataContainerRoot FOR UP4WS::DataContainer»
2 «EXPAND createDataContainer»
3 «ENDDEFINE»

Listing 3.12: dataContainerRoot Template

3.3.1.3.2 createDataContainer Template for «DataContainer»
The createDataContainer template (Listing 3.13) is the main template in Data-
Container template file, since it generates a Java file declaration for each object
applying the «DataContainer» stereotype. In the createDataContainer template,
the following templates are invoked:

• createImport from CommonTemplates template file (Section 3.3.1.1.1).

• createDataElement for «DataElement» from CommonTemplates template
file (Section 3.3.1.1.2).

• Enumerizable for «Enumerizable» from CommonTemplates template file
(Section 3.3.1.1.3).

• methodTmpl for «DataBehavior» from CommonTemplates template file
(Section 3.3.1.1.5).

• gettersAndSetters for «Enumerizable» and «DataElement»from Common-
Templates template file (Section 3.3.1.1.4).

• ObjectBehavior for «ObjectStateMachine» from the same template file (Sec-
tion 3.3.1.3.3).

• executeTransitionForHandleEvent for «ObjectTransition» (Section 3.3.1.3.4)

• illegalTransitionHandler for «ObjectStateMachine»(Section 3.3.1.3.5)

3.3. PROFILE IMPLEMENTATION 57

1 «DEFINE createDataContainer FOR UP4WS::DataContainer»
2

3 «FILE name + ”.java” myDataOulet−»
4

5 package «packageName(this)»;

6

7 «EXPAND CommonTemplates::createImport FOREACH usedTypes()»
8

9 «visibility−» «IF isAbstract−» abstract «ENDIF−» class «name»
10 «IF !superClass.isEmpty−» extends «superClass.first().name−»«ENDIF−»
11 «IF this.interfaceRealisation.contract.size > 0−» implements

12 «FOREACH this.interfaceRealisation.contract AS i SEPARATOR ”,”−»
13 «i.name−»«ENDFOREACH−»«ENDIF−»{
14

15 «EXPAND CommonTemplates::createDataElement

16 FOREACH eAllContents.typeSelect(UP4WS::DataElement)−»
17

18 «EXPAND CommonTemplates::Enumerizable

19 FOREACH eAllContents.typeSelect(UP4WS::Enumerizable)−»
20

21 «EXPAND CommonTemplates::gettersAndSetters

22 FOREACH eAllContents.typeSelect(UP4WS::Enumerizable)−»
23

24 «EXPAND CommonTemplates::gettersAndSetters

25 FOREACH eAllContents.typeSelect(UP4WS::DataElement)−»
26

27 «EXPAND CommonTemplates::methodTmpl

28 FOREACH eAllContents.typeSelect(UP4WS::DataBehavior)−»
29

30 «EXPAND classBehavior

31 FOREACH eAllContents.typeSelect(UP4WS::ObjectStateMachine)−»
32

33 }
34 «ENDFILE»
35 «ENDDEFINE»

Listing 3.13: createDataContainer Template

3.3.1.3.3 ObjectBehavior Template for «ObjectStateMachine»
The ObjectBehavior template (Listing 3.14) is responsible for generating the be-
haviour of any object applying the «DataContainer» stereotype. The behaviour
is represented by state machine diagrams, and implemented using the nested
switch based approach (Section 3.2.1.1). The ObjectBehavior template starts by
checking that the state machine is assigned to an object applying the «DataCon-
tainer» stereotype. The implementation is done by generating a method named
handleEvent. The nested switch statement will form the implementation of this
method. The ObjectBehavior template invokes the following templates:

• executeTransitionForHandleEvent for «ObjectTransition» (Section 3.3.1.3.4).

• illegalTransitionHandler for «ObjectStateMachine» (Section 3.3.1.3.5)

58 CHAPTER 3. UML PROFILE FOR WEB SERVICES

1 «DEFINE classBehavior FOR UP4WS::ObjectStateMachine»
2

3 «IF name == getOwnerName(this)+”Status” &&

4 owner.metaType.name == ”UP4WS::DataContainer”»
5

6 public void handleEvent(«eventsEnumName(this)» event){
7 switch (currentState) {
8 «FOREACH this.states().reject

9 (s|UP4WS::ObjectFinalState.isInstance(s)) AS s−»
10 case «s.constantName()»:

11 «FOREACH s.outTransitionsWithEventTrigger() AS t−»
12 «IF t.trigger.event !=null−»
13 «FOREACH t.trigger.event AS e−»
14 if (event == «e.eventId(this)») {
15 «EXPAND executeTransitionForHandleEvent(this) FOR t»
16 break;

17 }«ENDFOREACH»«ENDIF»«ENDFOREACH»
18 «EXPAND illegalTransitionHandler»
19 «ENDFOREACH»
20 }
21 }
22 «ENDIF»
23 «ENDDEFINE»

Listing 3.14: ObjectBehavior Template

3.3.1.3.4 executeTransitionForHandleEvent Template for «ObjectTransition»
The executeTransitionForHandleEvent template (Listing 3.15) generates the pieces
of the source code needed for executing the transition. It also checks the events
triggering the transitions to move between the states. In the final state, it termi-
nates.

1 «DEFINE executeTransitionForHandleEvent(UP4WS::ObjectStateMachine sm)

2 FOR UP4WS::ObjectTransition»
3

4 «IF UP4WS::ObjectState.isInstance(source) &&

5 ((UP4WS::ObjectState)source).exit!=null−»
6 «((UP4WS::ObjectState)source).exit.methodName()»();

7 «ENDIF−»
8 «FOREACH trigger.event AS e−»
9 «IF effect!=null−»

10 «effect.methodName()»();

11 «ENDIF»
12 «ENDFOREACH»
13 currentState = «target.stateId(sm)»;

14 «IF UP4WS::ObjectFinalState.isInstance(target)−»
15 terminated = true;

16 «ENDIF−»
17 «IF UP4WS::ObjectState.isInstance(target) &&

18 ((UP4WS::ObjectState)target).entry!=null−»
19 «((UP4WS::ObjectState)target).entry.methodName()»();

20 «ENDIF−»
21 «ENDDEFINE»

Listing 3.15: executeTransitionForHandleEvent Template

3.3. PROFILE IMPLEMENTATION 59

3.3.1.3.5 illegalTransitionHandler Template for «ObjectStateMachine»
The illegalTransitionHandler template (Listing 3.16) generates the exception han-
dler inside the nested switch statement.
1 «DEFINE illegalTransitionHandler FOR UP4WS::ObjectStateMachine»
2 throw new IllegalStateException(”Event ”+event+”

3 for state ”+currentState+” can not be handled”);

4 «ENDDEFINE»

Listing 3.16: illegalTransitionHandler Template

3.3.1.4 Proxy Template File

The Proxy template file contains all the templates required for the generation
of the Java file based on the stereotype «ProxyImplementation». The following
templates are found inside the Proxy template file:

3.3.1.4.1 proxyRoot Template for «ProxyImplementation»
The proxyRoot template (Listing 3.17) invokes the template createProxyImpl
(Section 3.3.1.4.2) for the same stereotype for reusability.
1 «DEFINE proxyRoot FOR UP4WS::ProxyImplementation»
2

3 «EXPAND createProxyImpl−»
4

5 «ENDDEFINE»

Listing 3.17: proxyRoot Template

3.3.1.4.2 createProxyImpl Template for «ProxyImplementation»
The createProxyImpl template (Listing 3.18) generates the Java file for the object
applying the «ProxyImplementation» stereotype. For this purpose, it invokes the
following templates:

• createImport template from CommonTemplates template file to retrieve all
import statements from the model (Section 3.3.1.1.1)

• proxyMethodClientTmpl template for «ProxyMethod» from the same tem-
plate file (Section 3.3.1.4.3).

1 «DEFINE createProxyImpl FOR UP4WS::ProxyImplementation»
2 «FILE name.toFirstUpper()+”.java” myClientOulet−»
3 package «packageName(this)−»;

4

5 «EXPAND CommonTemplates::createImport FOREACH usedTypes()−»
6 import javax.xml.namespace.QName;

7 import org.apache.axis2.AxisFault;

8 import org.apache.axis2.addressing.EndpointReference;

9 import org.apache.axis2.client.Options;

10 import org.apache.axis2.rpc.client.RPCServiceClient;

11 «visibility» class «name.toFirstUpper()−» {

60 CHAPTER 3. UML PROFILE FOR WEB SERVICES

12 «EXPAND ProxyMethodClientTmpl

13 FOREACH eAllContents.typeSelect(UP4WS::ProxyMethod)−»
14 }
15 «ENDFILE»
16 «ENDDEFINE»

Listing 3.18: createProxyImpl Template

3.3.1.4.3 proxyMethodClientTmpl Template for «ProxyMethod»
The proxyMethodClientTmpl template (Listing 3.19) is responsible for generating
the signatures and implementations of all methods that apply the «ProxyMethod»
stereotype and having a public visibility.

1 «DEFINE ProxyMethodClientTmpl FOR UP4WS::ProxyMethod»
2

3 «IF getVisibility(this) == ”public”−»
4 «visibility−» «IF isStatic−» static «ENDIF−»
5 «IF type==null−» void«ELSE−»«type.name−»«ENDIF−» «name−»
6 («FOREACH getParameters().sortBy(e|e.name) AS p SEPARATOR ”, ”−»
7 «p.type.name.toJava()» «p.name−»«ENDFOREACH−»,

8

9 RPCServiceClient rpcClient) throws AxisFault{
10 QName opGet = new QName(”http://service.webservice.sample”, ”«name−»”);

11 rpcClient.getOptions().setAction(”urn:«name−»”);

12 Object[] args = new Object[«count()−1»];

13 «FOREACH getParameters().sortBy(e|e.name) AS p ITERATOR i−»
14 args[«i.counter0»]= «p.name−»;

15 «ENDFOREACH»
16 «IF type.name == ”void”−»
17 rpcClient.invokeRobust(opGet, args);

18 «ELSE−»
19 Class[] returnTypes = new Class[] {«type.name−».class };
20 Object[] response = rpcClient.invokeBlocking

21 (opGet, args, returnTypes);

22 «ENDIF−»
23

24 «FOREACH ((uml::Model)

25 this.eRootContainer).eAllContents.typeSelect

26 (UP4WS::OperationStateMachine) AS wssm−»
27 «IF name+”In”+owner.name == wssm.name−»
28 «EXPAND CommonTemplates::implementState(wssm)

29 FOREACH wssm.checkStates()−»
30 «ENDIF−»
31 «ENDFOREACH−»
32

33 «IF type.name == ”void”−»
34 «ELSE−»
35 return («type.name») response [0];

36 «ENDIF−»
37 }
38 «ENDIF−»
39 «ENDDEFINE»

Listing 3.19: proxyMethodClientTmpl Template

3.3. PROFILE IMPLEMENTATION 61

3.3.1.5 Client Template File

The Client template file contains the templates that are responsible for the gen-
eration of the client Java file, which contains the main method. The file contains
the following templates:

3.3.1.5.1 clientRoot Template for «Client»
The clientRoot template (Listing 3.20) is developed for reusability.
1 «DEFINE clientRoot FOR UP4WS::Client»
2

3 «EXPAND createClientImpl−»
4

5 «ENDDEFINE»

Listing 3.20: clientRoot

3.3.1.5.2 createClientImpl Template for «Client»
The createClientImpl template (Listing 3.21) generates the Java file for the object
applying the «Client» stereotype. The createClientImpl template invokes the
following templates:

• createImport template from CommonTemplates template file to retrieve all
import statements from the model (Section 3.3.1.1.1)

• createException template to generate the behaviour, which is assigned to
the main method (Section 3.3.1.5.3).

1 «DEFINE createClientImpl FOR UP4WS::Client»
2

3 «FILE name.toFirstUpper()+”.java” myClientOulet−»
4

5 package «packageName(this)−»;

6

7 «EXPAND CommonTemplates::createImport FOREACH usedTypes()−»
8

9 import javax.xml.namespace.QName;

10 import org.apache.axis2.AxisFault;

11 import org.apache.axis2.addressing.EndpointReference;

12 import org.apache.axis2.client.Options;

13 import org.apache.axis2.rpc.client.RPCServiceClient;

14

15 «visibility» class «name.toFirstUpper()−» {
16

17 public static void main(String[] args1) throws AxisFault {
18

19 RPCServiceClient serviceClient = new RPCServiceClient();

20 Options options = serviceClient.getOptions();

21 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.

22 typeSelect(UP4WS::WebService) AS ws−»
23 EndpointReference targetEPR = new EndpointReference

24 (”http://localhost:8080/axis2/services/«ws.name»”);

25 «ENDFOREACH−»

62 CHAPTER 3. UML PROFILE FOR WEB SERVICES

26

27 options.setTo(targetEPR);

28 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

29 (UP4WS::ProxyImplementation) AS c−»
30 «c.name.toFirstUpper()−» client = new «c.name.toFirstUpper()−»();

31 «ENDFOREACH−»
32 «EXPAND createException

33 FOREACH eAllContents.typeSelect(UP4WS::ClientMain)−»
34 }
35 }
36 «ENDFILE»
37 «ENDDEFINE»

Listing 3.21: createClientImpl Template

3.3.1.5.3 createException Template for «ClientMain»
The createException template (Listing 3.22) generates the exception handler
inside the main method. The exception handler invokes the methods that rep-
resent the provided services of the Web service. The real implementation of the
exception handler is represented by assigning a state machine that applies the
stereotype «OperationStateMachine» to the main method (Section 3.2.1.3).
1 «DEFINE createException FOR UP4WS::ClientMain»
2

3 try{
4 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

5 (UP4WS::OperationStateMachine) AS wssm−»
6 «IF name+”In”+owner.name == wssm.name−»
7 «EXPAND CommonTemplates::implementState(wssm) FOREACH

8 wssm.eAllContents.typeSelect(UP4WS::OperationState)−»
9 «ENDIF»

10 «ENDFOREACH−»
11 }catch (Exception e){
12 System.out.println(e);

13 }
14 «ENDDEFINE»

Listing 3.22: createException Template

3.3.2 Implementation Environment

For the validation of the profile implementation, different environments need
to be specified and established. The implementation environment comprises all
environments used for performing all the tasks related to this work, i.e. modelling,
model transformation and code generation, and Web service execution. The
following is a description of the different involved environments.

3.3.2.1 Modelling Environment

For the development of the UML profile and the UML model, a corresponding
UML tool is needed. The UML tool should be able to export the profile and the
model in the correct format.

3.3. PROFILE IMPLEMENTATION 63

3.3.2.2 Generator Environment

The generator environment can be set by generating a new Xpand project based
on the instructions available at [XPA]. Part of the project specifications is to
define the Modeling Workflow Engine (MWE) file. The MWE file is an XML
document that specify all characteristics of the project, such as:

• Input Model: on which model the transformation will be executed.

• Output Files/Outlets: where the output will be located.

• Cleaner Component: to clean the output files at each run of the gener-
ator.

• Generator Component: to generate the output and direct them to the
output files. More than one generator component can be specified in the
same workflow file.

It is useful to define an external property file in order to define some variable data
(name and location of the model, name of the profile, and so on). The advantage
of the property file is to keep changes in the MWE file at their minimum, and
enables reuse in different projects.

3.3.2.3 Web Services Execution Environment

In order to enable the execution of Web services, some environment characteristics
have to be specified. The environment in this case has different variables, such
as:

• The Web service engine (Apache Axis2).

• The application server (Apache Tomcat).

• The operating system (Windows).

3.3.2.4 Platform Configuration

The configuration of the platform in the profile implementation refers to the
generation of the platform configuration files needed for the implementation and
deployment of Web service. The files in consideration here are the build.xml, and
the services.xml files. The build.xml file is responsible for the compilation of the
Java files at the service provider side with ant [ANT], while the services.xml file
is used for the deployment of the Web service in the application server. For both
files, one template file (i.e. XmlFiles Template File) is developed. The XmlFiles
template file contains the following templates:

• xmlRoot template for uml::Model

64 CHAPTER 3. UML PROFILE FOR WEB SERVICES

• createBuildXML template for «WebService»

• createServicesXML template for «WebService»

3.3.2.4.1 xmlRoot Template for uml::Model

The xmlRoot template (Listing 3.23) is used to invoke the createBuildXML
and createServicesXML templates inside the same template file, and serves for
reusability. The xmlRoot template must be configured inside the MWE file.
1 «DEFINE xmlRoot FOR uml::Model»
2 «EXPAND createBuildXML

3 FOREACH this.eAllContents.typeSelect(UP4WS::WebService)»
4

5 «EXPAND createServicesXML

6 FOREACH this.eAllContents.typeSelect(UP4WS::WebService)»
7 «ENDDEFINE»

Listing 3.23: xmlRoot Template

3.3.2.4.2 createBuildXML Template for «WebService»
The createBuildXML template (Listing 3.24) generates the build.xml file, which
is used to compile the Java files at the server side and generate the archive file
for the Web service (serviceName.aar). The serviceName.aar file will be located
inside the services folder in the Apache Tomcat to host the Web service. The
compilation is done using the ant command.
1 «DEFINE createBuildXML FOR UP4WS::WebService»
2 «FILE ”build.xml” buildXML−»
3 <project name=”«name»”

4 basedir=”.”

5 default=”generate.service”>

6 <property name=”service.name” value=”«name»”/>

7 <property name=”dest.dir” value=”build”/>

8 <property name=”dest.dir.classes” value=”${dest.dir}/${service.name}”/>

9 <property name=”dest.dir.lib” value=”${dest.dir}/lib”/>

10 <property name=”axis2.home” value=”../../”/>

11 <property name=”repository.path” value=”${axis2.home}/repository”/>

12

13 <path id=”build.class.path”>

14 <fileset dir=”${axis2.home}/lib”>

15 <include name=”∗.jar”/>

16 </fileset>

17 </path>

18

19 <path id=”client.class.path”>

20 <fileset dir=”${axis2.home}/lib”>

21 <include name=”∗.jar”/>

22 </fileset>

23 <fileset dir=”${dest.dir.lib}”>
24 <include name=”∗.jar”/>

25 </fileset>

26 </path>

27

28 <target name=”clean”>

3.3. PROFILE IMPLEMENTATION 65

29 <delete dir=”${dest.dir}”/>

30 <delete dir=”src” includes=”sample/webservice/stub/∗∗”/>

31 </target>

32

33 <target name=”prepare”>

34 <mkdir dir=”${dest.dir}”/>

35 <mkdir dir=”${dest.dir}/lib”/>

36 <mkdir dir=”${dest.dir.classes}”/>

37 <mkdir dir=”${dest.dir.classes}/META−INF”/>

38 </target>

39

40 <target depends=”clean,prepare” name=”generate.service”>

41 <copy file=”src/META−INF/services.xml” overwrite=”true” tofile=

42 ”${dest.dir.classes}/META−INF/services.xml”/>

43 <javac destdir=”${dest.dir.classes}” includes=”

44 sample/webservice/service/∗∗,sample/webservice/data/∗∗” srcdir=”src”>

45 <classpath refid=”build.class.path”/>

46 </javac>

47 <jar basedir=”${dest.dir.classes}”
48 destfile=”${dest.dir}/${service.name}.aar”/>

49

50 <copy file=”${dest.dir}/${service.name}.aar” overwrite=”true”

51 tofile=”${repository.path}/services/${service.name}.aar”/>

52

53 </target>

54

55 <target depends=”clean,prepare” name=”rpc.client”>

56 <antcall target=”rpc.client.compile”/>

57 <antcall target=”rpc.client.jar”/>

58 <antcall target=”rpc.client.run”/>

59 </target>

60

61 <target name=”rpc.client.compile”>

62 <javac destdir=”${dest.dir.classes}” includes=”

63 sample/webservice/client/∗∗,sample/webservice/data/∗∗”srcdir=”src”>

64 <classpath refid=”build.class.path”/>

65 </javac>

66 </target>

67

68 <target name=”rpc.client.jar”>

69 <jar basedir=”${dest.dir.classes}”destfile=”${dest.dir.lib}/rpc−client.jar”

70 includes=”sample/webservice/client/∗∗,sample/webservice/data/∗∗”/>

71 </target>

72

73 <target name=”rpc.client.run”>

74 <java classname=”sample.webservice.client.«name»Client”>

75 <classpath refid=”client.class.path”/>

76 </java>

77 <java classname=”sample.webservice.client.«name»ClientMain”>

78 <classpath refid=”client.class.path”/>

79 </java>

80 </target>

81 </project>

82 «ENDFILE»
83 «ENDDEFINE»

Listing 3.24: createBuildXML Template

66 CHAPTER 3. UML PROFILE FOR WEB SERVICES

3.3.2.4.3 createServicesXML Template for «WebService»
The createServicesXML template (Listing 3.25) generates the services.xml file,
which is required for the deployment of the Web service on the application server
hosting the Web service.
1 «DEFINE createServicesXML FOR UP4WS::WebService»
2

3 «FILE ”services.xml” servicesXML−»
4

5 «REM»get the name of the Web service«ENDREM»
6

7 <service name=”«name»” scope=”application”>

8

9 «REM»get the name of the comment attached to the Web service Java class «ENDREM»
10

11 <description>

12 «ownedComment.get(0).body»
13 </description>

14

15 <messageReceivers>

16 <messageReceiver mep=”http://www.w3.org/2004/08/wsdl/in−only”

17 class=”org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver”/>

18

19 <messageReceiver mep=”http://www.w3.org/2004/08/wsdl/in−out”

20 class=”org.apache.axis2.rpc.receivers.RPCMessageReceiver”/>

21 </messageReceivers>

22

23 «REM»get the name of the Web service«ENDREM»
24 <parameter name=”ServiceClass”>sample.webservice.service.«name»
25 </parameter>

26 </service>

27 «ENDFILE»
28 «ENDDEFINE»

Listing 3.25: createServicesXML Template

3.3.2.5 Web Service Execution

The execution of the Web service means running the Web service on the selected
platform. After setting and establishing the environments for the Web service, it
should be possible to run and test the execution of the Web service. As part of
the output files, a README.txt file is generated to instruct the user how to run
the Web service. The README.txt file contains different types of information,
which should help in understanding the entire process for executing the Web
service. It illustrates mainly the following points.

• A short overview of the Web service application.

• Prerequisites for running the Web service on the platform.

• Compiling the Web service classes at the service provider side.

• Deploying the Web service on the application server.

3.3. PROFILE IMPLEMENTATION 67

• Compiling the Web service classes at the service client side.

• Running the Web service by executing the objects at the client side, which
contain the main method.

• Further information for help and support.

Listing 3.26 represents the template, which is responsible for generating the
README.txt file with the instructions for the execution of the Web service.

1 «IMPORT UP4WS»
2

3 «DEFINE readmeTmpl FOR UP4WS::WebService»
4

5 «FILE ”README.txt”−»
6

7 Introduction

8 =======

9 The («name» Web Service) has been implemented to validate the proposed

10 UML profile for Web services and the code generation process.

11 The case study shows a complete working example that represents the modelling of Web services

12 with UML, and the model transformation and code generation of source code and configuration

13 files for the relevant platform.

14 In the «name» Web service, both perspectives of service provider and service client have been

15 introduced.

16

17 Web Services using Apache Axis2

18 ===================

19 The program contains the source code for the «name» Web service.

20 The source code is generated from a UML model developed using a UML Tool,

21 and transformed into a java code using the Xpand language together with Xtend

22 functions in Eclipse.

23

24 Prerequisites and Environment Settings

25 =======================

26 1. Windows as an Operating System (The case study has been implemented on

27 Windows XP and Vista)

28 2. Apache Ant 1.6.2 or later

29 3. Apache Axis2

30 4. Apache Tomcat

31 5. Java

32

33 How to deploy the service on the Application Server?

34 ===============================

35 1. Compile the server side (service provider side) classes with ANT.

36 2. Put the «name».aar inside the services folder in Tomcat

37 (...\apache−tomcat\webapps\axis2\WEB−INF\services)

38 3. Initiate the tomcat server by typing the relevant command, i.e. tomcat.exe or startup.bat

39 from inside the bin folder.

40 4. Make sure that the service is correctly deployed by typing

41 http://localhost:8080/axis2/services/«name»?wsdl in your browser

42

43 Compile the Client side Classes by typing the following commands:

44 ======================================

45 First go to the location, where the build.xml file resides:

46

47 javac −sourcepath src\sample\webservice\client −classpath build\«name»
48 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”

68 CHAPTER 3. UML PROFILE FOR WEB SERVICES

49 −d build\«name» src\sample\webservice\client\«name»Client.java

50

51 javac −sourcepath src\sample\webservice\client −classpath build\«name»
52 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”

53 −d build\«name» src\sample\webservice\rpcclient\«name»ClientMain.java

54

55 Running the Client Side classes by typing the following commands:

56 =====================================

57 First go to the location which ends with ...\build\«name»
58 N.B. The name of the folder that contains your Web service files

59 must hold the same name of your Web service.

60

61 java −Djava.ext.dirs=”C:\ApacheInstallation\axis2−1.5\lib”

62 sample.webservice.client.«name»ClientMain

63

64 Help

65 ===

66 Please contact (wdahman@informatik.uni−goettingen.de or arrivalsw@yahoo.com)

67 if you have any trouble running the Web service.

68

69 «ENDFILE»
70 «ENDDEFINE»

Listing 3.26: README Template

3.4 Summary

This chapter has introduced a general UML profile for Web services. The UP4WS
aims at enabling the automatic generation of executable Web services by defin-
ing a set of UML extensions for Web services. These extensions are represented
by means of stereotypes, where each stereotyped element can participate in the
model transformation and code generation process. The latter has been intro-
duced as part of the profile implementation. For the code generation process,
Xpand transformation rules are defined for transforming the UML profile and
the UML model into source code and configuration files for the execution of Web
services. The Web service is supposed to run on the Apache Axis2/Java Web
service engine, which has been selected as a platform for its execution. In order
to run the Web service on another platform, the Xpand transformation rules need
some modifications, especially at the service client side, where platform specific
artifacts can be found. However, the basic extensions in the UP4WS are suf-
ficient for Web services, since they represent all main elements for Web service
disregarding the type and nature of the execution platform.

Chapter 4

Web Services Development

Model

The Web Services Development Model (WSDM) specifies a set of activities that
aim at the development of Web services with UML. It is defined in terms of tasks,
which in turn define their own sub-tasks. The WSDM defines mainly three tasks
for the development of Web services. The first is the requirements analysis task,
which specifies what the Web service should offer. The second is the design task,
which specifies how to implement the Web service by providing a model that
reflects the specifications of the Web service. The third is the implementation
task, where the Web service specifications are transformed into a complete and
executable source code and configuration files. The use of the UML Profile for
Web Services (UP4WS) within the WSDM is mandatory. The model elements
that will apply the UP4WS stereotypes must be specified. Figure 4.1 presents

activity Untitled1 Untitled1[]
Web Services Requirements Analysis

Web Services Design

Web Services Implementation

Figure 4.1: Web Services Development Model Overview

an overview of the main tasks of the WSDM. The figure shows intersections
between the tasks to emphasise that some activities can be done in parallel and
not necessarily in a sequential manner.

69

70 CHAPTER 4. Web Services Development Model

4.1 Requirements Analysis

This task includes capturing the requirements, identifying the stakeholders, and
building the initial architecture of the Web service application. This task is
divided into two sub-tasks, i.e. requirements elicitation and requirements specifi-
cation and modelling. For each sub-task, a description of the task and how UML
fits into it will be presented.

4.1.1 Requirements Elicitation

In the requirements elicitation sub-task, the requirements of the Web service ap-
plication are to be identified and gathered. The requirements at this step mean
identifying what services the Web service will provide. For example, a statement
like ”The Web service shall calculate the sum of two numbers” can represent one
of the services that a Web service shall provide. Such a requirement is known as a
functional requirement for the Web service. Furthermore, quality attributes can
be considered as requirements, for example, availability, and reliability are types
of possible requirements. Such requirements are known as non-functional require-
ments. The requirements will be collected and captured from different resources
such as the users of the Web service, the domain, and current and historical data
of similar Web services.

It is important to define a general function for the Web service, which represents
a collective or common goal for the Web service. The function will then be
decomposed into smaller functions representing the exact services provided by
the Web service. The domain of the Web service application must be examined to
identify special requirements imposed by the domain, as well as the constraints of
business, technology, laws. The customer will play an important role in achieving
this purpose. Different techniques, such as interviews and questionnaires can take
place in identifying and gathering the requirements for the Web service.

4.1.2 Requirements Specification and Modelling

During and after the requirements elicitation, the specification and modelling of
requirements shall take place. The modelling can be done by drawing some figures
and shapes reflecting the requirements in understandable way to the customer.
The proposed WSDM uses UML as a modelling notation for Web services. The
allocation of UML to the tasks and sub-tasks will be based on the best practises
proposed by the RUP.

4.1. REQUIREMENTS ANALYSIS 71

4.1.2.1 UML Support

UML provides different types of diagrams that can be used to capture require-
ments. This thesis proposes two types of UML diagrams for this purpose, i.e. the
use case diagram, and the class diagram.

4.1.2.1.1 Use case diagram

The initial step to model the Web service is to develop the use case diagram.
This will initially specify the boundaries of the Web service application. It also
shows the services of the Web service in terms of use cases, since each one can
represent one of the these services. Any use case can extend other use cases or
include them. The actors in the use case diagram represent the objects outside
the Web service application that exchange data with the Web service and interact
with it. They either send data to the Web service application, or receive data
from it, or both. The use case diagram shall be modelled in two steps, where the
first step is to represent the Web service in only one use case. After that, the
single use case shall be decomposed into more use cases according to the number
of services in the Web service. Several steps of decomposition of use cases on
multiple levels can occur. Figure 4.2 shows an example of use case diagrams for
a weather Web service. The first use case diagram in Figure 4.2(A) shows one
use case that represents a collective goal of the Web service. It also shows three
actors, two of which represent normal client applications Client A and Client
B, in addition to another Web service (Web Service X), which can also interact
with the Web service. The second use case diagram in Figure 4.2(B) extends and
refines the first one (Figure 4.2(A)). It decomposes the use case in Figure 4.2(A)
into two use cases representing the exact services of the Web service. Further
refinement of the use cases in other use case diagrams shall be possible. Actors
remain the same, although they can be refined into more detailed actors. Each
actor can request one or more of the provided services. It also shows the system
boundaries by means of a rectangular shape, which distinguishes between the
internal and external parts involved in the Web service.

4.1.2.1.2 Class Diagram

Class diagrams are very important in any UML model. They identify the re-
quirements of Web services, define its architecture, and specify how each element
serves in achieving the final goal of the Web service. In addition, they represent
the objects in the Web service, such as persons, systems, units, objects and how
they are associated. Class diagrams shall be used to represent the basic UML
extensions for Web services proposed in the UP4WS.

Several techniques can be adopted to identify the objects in the class diagram.
One of the techniques is the commonly used Class, Responsibilities, Collaborations

72 CHAPTER 4. Web Services Development Model

uc1[]Weather Web Service

Provide Weather
Info

Weather Web Service

Provide
Temperature Info

Provide Wind Info

Web Service X

Web Service X

(B)

(A)

Client A

Client A

Client B

Client B

Figure 4.2: Sample Use Case Diagrams

Service Object (Weather Service)
Responsibilities Collaborations
set day temperature data object (Temperature and

Wind)provide day temperature
set night temperature proxy client object (Weather

proxy client)provide night temperature
provide average of the temperature
set direction of the wind
provide direction of the wind

Table 4.1: CRC Card for Service Object

(CRC) analysis. In the CRC analysis, nouns and verbs in the description are anal-
ysed. Each noun is a candidate to be an object, while each verb is a candidate
to be an operation of an object. The operations represent the responsibilities of
the objects, while the associations with other objects reflect the collaborations
between the objects. The collaborations represent the possible associations of
the object with other objects. Table 4.1 shows a sample CRC card for the ser-
vice object (e.g. Weather Service). The card is composed of two columns, the
responsibilities column shows the functionalities of the Weather service such as
set day temperature and provide day temperature. The other column reflects the
collaborations, which represents the associations with other objects, such as Tem-
perature, Wind and Weather proxy client. The CRC cards can be done for each
candidate object in the Web service to capture its complete specifications.

4.2. WEB SERVICE DESIGN 73

The class diagrams in the requirements analysis task are drawn in an abstract
way and display only the objects in the Web service and how they relate to each
other by means of associations, without going into details. The relevant details
will be added during the design task. Figure 4.3 shows an initial architecture
for a sample weather Web service. The figure shows the objects in the service
provider side, and the service client side.

Service Provider Side

+setTemp()
+getTemp()
+getTempAvg()
+setWind()
+getWind()

WeatherService

+TempAvg()

-Day
-Night

Temperature

-Direction

Wind

Service Client Side

+setTemp()
+getTemp()
+getTempAvg()
+setWind()
+getWind()

ProxyClient

+main()

ClientA

Figure 4.3: Class Diagram for Requirements Analysis

4.2 Web Service Design

The Web service design is the task of realising the requirements gathered in
the requirements analysis task. The realisation means that the output of the
requirements analysis task will be extended and refined to reflect the complete
specifications of the Web service, in a concrete and detailed way, in order to enable
the implementation of the Web service. The design task aims at building the Web
service architecture and identifying the behaviour of the Web service. The WSDM
proposes two steps to design the Web service, i.e.realisation of architecture design,
and realisation of behaviour design. Both steps can be done in parallel.

4.2.1 Realisation of Architecture Design

The architecture design is concerned with developing the Web service architec-
tures using class diagrams and adding the concrete details of the Web service.
These details shall represent the complete architectural specifications of the Web
service. The design of Web service architecture must take the target platform
into consideration. For example, if the Web service is implemented in the Java
language, no multiple inheritance shall be allowed in the UML model. The syn-
tax of the declarations of classes, attributes, operations imposed by Java must be

74 CHAPTER 4. Web Services Development Model

followed. This is also applicable to the platform, since it may constrain the use
of some constructs or artifacts.

4.2.1.1 UML Support

To build the Web service architecture, the UML class diagrams shall be used.
They have been initially proposed in the requirements analysis task for require-
ments elicitation, and they will also be used for the architecture design.

4.2.1.1.1 Class Diagrams

The class diagrams shall be more concrete and reflect the whole Web service
specifications at this step. Such specifications are related to the requirements
themselves, and to the target platform. Different types of refinements shall be
considered in the class diagram such as:

• Associations: e.g. the exact type of the association between the objects,
multiplicity, directions.

• Attributes: e.g. the exact declaration of the attributes, type, visibility,
default value, initialisation.

• Operations: e.g. the exact and full signature of each operation, visibility,
return type, parameters and their types.

All the above points are samples of the details that should be reflected in the
class diagrams in the design task.

4.2.1.2 Identifying UML Extensions for the Web Service

At this step, the basic UML extensions for Web services in the UP4WS must be
specified. The development team must specify the model elements that will apply
these extensions from the requirements gathered in the requirements elicitation
task. From the description of the Web service, it should be possible to capture
the basic extensions of the Web service. In Web services, it is important to notice
that clients who request the service are not part of the Web service itself, since
they represent external applications. However, the Web service can request each
other. In this case, the Web service plays the role of service provider and service
client at the same time. This is why clients are not considered parts of the Web
service itself, but parts of the entire Web service application. The following steps
shall help in identifying the basic UML extensions for the Web service:

1. Distinguish between the service client side and the service provider side.

2. In the service provider side, identify the object that will represent the ser-
vice. This will be known as the service object. The services will be repre-
sented as methods in the service object.

4.2. WEB SERVICE DESIGN 75

3. Specify the data required by the service object. These data objects must be
identified together with their data variables.

4. At the client side, the proxy client object that implements the services from
the client point of view shall be specified.

5. The client object, which includes the execution mechanism shall be specified.

From Figure 4.3, which represents a class diagram that is developed in the re-
quirement analysis task, the following UP4WS elements shall be allocated on
those objects and their own elements according to the description in Section 3.1.

• WeatherService represents the service object.

• The methods setTemp, getTemp, getTempAvg, setWind, and getWind in
the WeatherService and ProxyClient objects represent the services.

• Temperature and Wind represent the data objects.

• The Day and Night attributes in Temperature object, and Direction at-
tribute in the Wind object represent the data variables.

• The TempAvg method represents a method that adds behaviour to the
owning object. The behaviour of the owning object shall be represented in
a state machine diagram according to the specifications of the UP4WS.

• ProxyClient represents the proxy client object that implements the services
from the client’s perspective.

• ClientA represents the client object that contains the execution mechanism.

• The main method represents the execution method in the implementation
programming language.

4.2.1.3 Allocating UML Extensions to the Design Architecture

Based on the previous section, where the identification of the candidate extensions
took place, the UML basic extensions for Web services shall be allocated to the
identified objects and the attributes and operations in each object. The UP4WS
has defined a specific set of stereotypes that must be found in any Web service
application as follows:

• «WebService» for the service object.

• «ProxyMethod» for the operations that represent the services.

• «DataContainer» for the data objects.

76 CHAPTER 4. Web Services Development Model

• «DataElement» for the attributes that represent the data variables.

• «ProxyImplementation» for the proxy client object.

• «Client» for the client object that contains the execution mechanism.

• «ClientMain» for the main method in the client object.

Figure 4.4 shows two class diagrams representing the main objects in the service
provider side in Figure 4.4(A), and the service client side 4.4(B) for a weather Web
service. Compared to the class diagrams in Figure 4.3, the class diagrams reflect
additional information about the object, such as the type of the attributes and
the return type and parameters of the operations. However, it could include even
more information, such as association types, role names, and so on. The class
diagrams also present the allocation of the stereotypes defined by the UP4WS.
They appear on the relevant elements in the UML model representing the Web
service.

<<ProxyMethod>>+setTemp(temp : float) : void
<<ProxyMethod>>+getTemp() : float
<<ProxyMethod>>+setWind(direction : String) : void
<<ProxyMethod>>+getWind() : String

<<WebService>>
WeatherService

<<ProxyMethod>>+setTemp(temp : float) : void
<<ProxyMethod>>+getTemp() : float
<<ProxyMethod>>+setWind(wind : String) : void
<<ProxyMethod>>+getWind() : String

<<ProxyImplementation>>
WeatherServiceClient

<<ClientMain>>+main(args1 : String) : void

<<Client>>
WeatherServiceClientMain

<<DataElement>>-tempDay : float
<<DataElement>>-tempNight : float

<<DataContainer>>
Temperature

<<DataElement>-direction : String

<<DataContainer>>
Wind

(B)

 (A)

Figure 4.4: A Class Diagram in Architecture Design with UP4WS Stereotypes

4.2.2 Realisation of Behaviour Design

The realisation of the behaviour design is concerned with adding the relevant be-
haviour to the objects. Operations specify some behaviour of the owning object,
since invoking an operation might change some values of the object, or cause
a change in the object’s state. The WSDM specifies two types of dynamic be-
haviour, i.e. the behaviour, which corresponds to the state of an object, and the

4.2. WEB SERVICE DESIGN 77

behaviour, which corresponds to the values of an object. For the former, a state
machine diagram shall be assigned to the object that has the behaviour. The
state machine shall apply the stereotype «ObjectStateMachine». For the latter,
a state machine applying the stereotype «OperationStateMachine» shall be as-
signed to the operation of an object. However, the behaviour is still owned by
the object owning that operation, since operations themselves do not have owned
behaviour.

4.2.2.1 UML Support

UML provides different types of diagrams to represent the dynamic behaviour
of objects such as activity diagram, and state machine diagram. The WSDM
suggests using the state machine diagram for the representation of Web service
behaviour.

4.2.2.1.1 State Machine Diagrams

State machines are powerful means to model the dynamic behaviour of software
systems. In addition, many UML tools provide techniques to generate a source
code from UML state machines. State machines enable specifying the behaviour
of any classifier, including classes, sub-systems, and the whole system. Any state
machine can represent the dynamic behaviour that describes a change in the
object’s state. In this case, the transition from one state to another takes place in
response to a specific trigger or event, which normally corresponds to an operation
call. The UP4WS specified two extensions for state machines that can be used
for the realisation of the Web service behaviour as described in Section 3.2.1.

4.2.3 Designing the Web Services Platform

The target at this step is the selection of the most relevant platform for the imple-
mentation and deployment of the Web service under development. Web service
are targeting the enhancement of interoperability between distributed systems.
Therefore, they have unique platform specifications. The development team shall
decide on which platform the Web service will be deployed and implemented. The
design of the Web services platform includes a set of activities in order to find out
the most relevant platform for the Web service. These activities are summarised
in the following.

• Setting the selection criteria: in order to reach the suitable decision
on the platform, it is very important to specify the criteria for such a deci-
sion. Several platforms can be used to deploy and implement Web services.
Therefore, the decision should be justified. The platform for Web services
has architecture that differs from typical software that runs on a single loca-

78 CHAPTER 4. Web Services Development Model

tion, and thus the selection has some novelty. The following are some points
that should be considered when selecting the platform for Web services.

– Compatibility: In most cases, Web services extend normal appli-
cation and enable them to work over the Internet or other type of
network. Therefore; it is necessary for the platform to be compatible
with the existing technology used for the current application, or in
need for slight changes that would not result in radical modifications
in the current infrastructure. The platform should also be compatible
with the abilities of the team developing the Web service. For ex-
ample, if the team members are familiar with a specific programming
language, the platform is supposed to enable the implementation of
the Web service in the same programming language.

– Cost: this includes the costs resulting from the adoption of certain
platform. It could include different types of the costs such as:

∗ License Costs: if the license for platform has to be purchased.
∗ Hardware Costs: if the platform requires additional hardware.
∗ Training and Material: if the users need training and support-

ing material.

It is important to prioritise the criteria according to the exact needs. This
will make the selection decision easier and justifiable.

• Investigating different platforms: the team should survey the market
in order to find out the relevant Web service platform. In this case a list of
the existing platforms should be provided together with the corresponding
information. The team classifies the investigated platforms according to
the specified selection criteria.

• Selecting the relevant platform: after investigating the different plat-
forms, the selection of the relevant platform should be made. A full docu-
mentation of the selection process as well as the platform should be prepared
in order to enable the implementation and the code generation process.

4.3 Web Service Implementation

The implementation task clarifies how the Web service will be implemented, and
how the model will be transformed into the target output. This task receives
the detailed design specifications from the design task, i.e. Web service design,
in order to build and develop complete implementation specifications. At this
step, the team should decide the parameters for the code generation process and
prepare the plan for it. The plan should indicate several important points as
follows:

4.4. SUMMARY 79

• Input model: What are the model elements that will be used for the
code generation process? Which UML elements will be used in the model
transformation and code generation process?

• Programming language: to which programming language the model el-
ements will be transformed? This is important, since some pieces of the
code might be inserted manually in the input model.

• Code generation environment: This includes the selection of the code
generator (code generation engine), and the transformation language, which
works on it. Similar to the programming language for Web service imple-
mentation, the team should be familiar with the transformation language
used in the code generation process.

• Implementation environment: this comprises all aspects of the imple-
mentation environment and considers its specifications. The team should
identify the requirements for the implementation platform, since they influ-
ence the type of output files that shall be generated. The implementation
environment includes the operating system, the Web service engine, the
type of network.

• Source code and configuration files: the team should specify the source
code and all other configuration and documentation files that should be
generated.

4.4 Summary

This chapter has presented a model for the development of Web services. The
development model is divided into tasks, where each one adds value to the devel-
opment process. UML has been adopted as a modelling notation in the proposed
WSDM. The WSDM constrains the use of the UP4WS in the relevant tasks.
This is important, since the model transformation and code generation process
will handle the stereotyped elements in the source model. The WSDM utilised
different types of UML diagrams such as use case and class diagrams for the
requirements analysis. Class diagrams have also been used together with state
machine diagrams for the design and implementation of Web services. The use
of the UML Profile for Web Services (UP4WS) is obligatory in the WSDM to
enable the code generation process by identifying the relevant UML extensions
for Web services.

Chapter 5

Case Study: Library System Web

Service

For the validation of the UML profile for Web services and the code generation
process, a case study has been implemented in order to prove the feasibility of the
approach introduced in this thesis. The selected case study has been implemented
in the following sequence of steps and represented in Figure 5.1:

• Modelling the requirements and specifications of the selected case study by
the Magic Draw tool [MD].

• Exporting the model and the profile in an EMF UML2 XMI format to be
used by the generator for code generation.

• The generator includes the definition of the transformation rules in Xpand
according to the profile implementation illustrated in Section 3.3.

• After running the generator, the source code and the associated configura-
tion files will be used together for the execution of the library system Web
service. This includes setting the environment for the implementation.

5.1 Service Description

The library system Web service has been chosen for this thesis because of its well-
known characteristics and the familiarity of its functionalities. The functionalities
of the library system Web service are almost the same for any similar application
and thus understandable by the audience. Each functionality represents one of
the services provided by the library system Web service.

81

82 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

UP4WS README.txt

services.xml

build.xml

Source Code
in Java

Library Web

Service Model

apply

Generator
Transformation Rules

Generate
M2T

export

XMI (Profile+Model)

work on

Figure 5.1: Case Study Implementation

A typical library system could have the following brief description:
The library system Web service manages the virtual book list of the library. Each
book is distinguished via title, ISBN, and author. The library system Web service
provides mechanisms for different processes on books; mainly, the client shall be
able to add books to the book list. The books become available and can be borrowed.
If a book is borrowed, it becomes on loan. The borrowed book shall be returned to
the book list and becomes available again.

5.2 Library System Web Service Analysis

In the requirements analysis task, the guidelines and techniques proposed by the
WSDM to gather and analyse the requirements are followed. In the requirements
analysis task, the following set of activities take place:

• Specifying the main goal of the library system Web service, and its sub-goals
as well,

• Specifying the main objects in the Web service,

• For each object, specify its responsibilities and collaborations. This is done
by using the CRC cards technique.

• Modelling the requirements using the use case and class diagrams according
to the guidelines of the WSDM from Chapter 4.

• Identify the main UML extension for the Web service according to the spec-
ifications of the UML Profile for Web Services (UP4WS) from Chapter 3.

5.2. LIBRARY SYSTEM WEB SERVICE ANALYSIS 83

Library System Service Object
Responsibilities Collaborations
provide adding books service Book
provide lending books service Book list
provide returning books service Client

Table 5.1: CRC Card for Library System Service Object

From the library system Web service system description, the following objects
are identified. Normally each name that appears in the description is a candidate
to be an object within the Web service.

• Library System service (service object).

• Book, and Book List (data objects).

• Client (client object).

This is the initial analysis for the library system Web service description, which
aims at identifying the objects in the library system Web service. Further analysis
for the identified objects can be done by means of CRC cards. The WSDM
proposes the CRC cards technique to analyse the objects in order to capture
their responsibilities and collaborations. As an example for the usage of the CRC
cards in the requirements analysis, the CRC cards of the objects Library System
Service and Book objects are presented in the following:

• Library System Service Object: The library system service object rep-
resents the object that includes the services provided by the library system
Web services. The CRC card in Table 5.1 gives an overview of the respon-
sibilities of the library system service object and its collaborations. From
the CRC card in table 5.1 it is possible to identify the main services of the
library system Web service. The following is a list of the identified services:

– Adding Books: enables clients to add new books to the book list.

– Lending Books: enables clients to borrow books from the book list.

– Returning Books: enables clients to return books.

The use case diagram in Figure 5.2 summarises the main services of the
library system Web service as use cases. As specified in the WSDM, the
use case diagram is modelled in, at least, two steps. The first step is to
represent the collective goal of the Web service as one use case as shown in
Figure 5.2(A), the collective goal is to manage the books in the book list.
The second step is to decompose the use case representing the collective

84 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

Book Object
Responsibilities Collaborations
set book title Book List
get book title Library System Service
set book ISBN
get book ISBN
set book author
get book author

Table 5.2: CRC Card for Book Object

goal into more use cases that represent all the services of the Web service.
Each use case will correspond to one of the services. This is shown in Figure
5.2(B).

Library Web Service

manage Book
List

Library Web Service

return Book

add Book

lend Book

(A)

 (B)

Client

Client

Figure 5.2: Requirements Analysis: Library System Web Service Use Cases

• Book Object: The Book object is representing a data object. It is the
main data object in the library system Web service. The Book object
contains three data variables to distinguish it. Furthermore, the Book ob-
ject has multiple states (borrowed or available). Therefore, it has a be-
haviour, which is represented by a state machine diagram as suggested by
the WSDM. However, this will be handled in the design task, since the
WSDM proposes the state machines for modelling the behaviour in the de-
sign task and not in the requirements analysis task. Figure 5.3 shows the
initial architecture for the library system Web service. It identifies objects
according to the library system Web service description. The objects at

5.3. LIBRARY SYSTEM WEB SERVICE DESIGN 85

the service provider side appears in Figure 5.2(A), while the objects at the
service client side appears in Figure 5.2(B).

+addBook()
+lendBook()
+returnBook()

LibrarySystemService

+main()

LibrarySystemServiceClientMain

-name
-isbn
-author

Book

BookList

+addBook()
+lendBook()
+returnBook()

LibrarySystemServiceClient

(B)

 (A)

Figure 5.3: Library System Web Services Initial Architecture

5.3 Library System Web Service Design

In the design task, the findings of the requirement analysis task are refined and
extended in order to enable the implementation of the library system Web service.
At this step, the following activities take place:

• Allocate the UML extensions for Web service to the relevant elements in
the UML model for the library system Web service.

• Refine and extend of the library system Web service architecture. This is
done by extending the class diagram.

• Represent the behaviour of the data objects in the library system Web
service.

5.3.1 Identifying and Allocating UML Extensions for the Library Sys-

tem Web Service

At this point, we identify the UML extensions for the library system Web service.
This is the initial step for allocating the stereotypes on the elements that represent
the UML extensions for Web services. UP4WS defined a set of basic extensions

86 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

that must be specified for any Web service application. The following is a list of
the identified basic extensions for the library system Web service:

• Library System Service represents the service object.

• Add Book, Lend Book, and Return Book represent the provided services.

• Book and Book List represent the data objects.

• Book name, ISBN, and author represent data variables.

• Client represents client object.

Figure 5.3 in section 5.2 gave an overview of the main objects in the library system
Web service, their attributes and operations, and their associations to each other.
The UP4WS divides the client side objects into two objects, i.e. proxy client object
to implement the services from the view point of the client, and client object that
contains the execution mechanism for executing the Web service. The allocation
of the UP4WS stereotypes on the UML model elements for the library system
Web service is shown in Figure 5.4. The following are examples for the allocation
of the stereotypes on the objects of the library system Web service and other
elements in the model.

• LibrarySystemService extends the «WebService» stereotype.

• Book and BookList extend the «DataContainer» stereotype.

• isbn, title, author in Book class extend the «DataElement» stereotype.

• getBook, and lendBook in LibrarySystemService class extend the «Prox-
yMethod» stereotype.

• getBookInfo in Book class extends the «DataBehavior» stereotype.

It is important to notice that setter and getter methods are generated auto-
matically in the source code according to the implementation specifications of
the UP4WS. Therefore, they do not appear in the UML model. Instead, the
«DataElement» is applied by the attributes that need to be accessed by setter
and getter methods (see Sections 3.1.3 and 3.3.1.1.4).

5.3.2 Refinement of Library System Web Service Architecture

The refinement of the architecture of the library system Web service aims at
adding all the details to the UML model, so it reflects the complete specifications
of the library system Web service. At this step, the target platform and the pro-
gramming language for the library system Web service implementation are taken
into consideration, since they influence the type and nature of the added details.

5.3. LIBRARY SYSTEM WEB SERVICE DESIGN 87

For example, the programming language influences the representation of the book
list object and the mechanism of storing the books. Since the library system Web
service is implemented in the Java programming language, the HashMap mecha-
nism from Java has been chosen to represent the book list as a table.

Figure 5.4 gives an overview of the library system Web service objects at the
service provider side. It shows how the different types of details are added to the
class diagram from the requirements analysis task. The figure reflects different
details that have been recognised during the design of the library system Web
service. For example, the method getBook has been added to the LibrarySys-
temService class, and the BookList class. Furthermore, the Book class includes
additional operation getBookInfo to return a String of information about a spe-
cific book. In addition, the direct association between LibrarySystemService and
Book object has been replaced with an indirect relation via the BookList object.

5.3.3 Representing Library System Web Service Behaviour

The description of the library system Web service indicates that the Book ob-
ject has different states, i.e. available, and borrowed. For the representation of the
Book object behaviour, a state machine diagram has been used as proposed by the
WSDM. The state machine diagram enables the implementation of the behaviour
of the corresponding object. Representing the behaviour of the Book object in-
fluences the class diagram in Figure 5.4, since it adds additional elements in the
class diagram. For example, two enumeration classes have been added to repre-
sent the different states of the Book object (BookStatusStates), and the events
that trigger the transitions between the states (BookStatusEvents). In addition,
the getBookStatus operation has been added to the LibrarySystemService object
to return the status of the Book object. Figure 5.5 represents the state machine
diagram modelled to represent the behaviour of the Book object. The state ma-
chine diagram as specified in the UP4WS is named BookStatus. It contains three
states, i.e. NotAvailable, Available, and OnLoan. The state NotAvailable is added
to represent the default state of any book instance before it is added to the book
list.
The BookStatus state machine diagram in Figure 5.5 applies the «ObjectStateMa-
chine» stereotype in order to enable its implementation and the generation of the
source code. The «ObjectState», «ObjectTransition», and «ObjectFinalState»
stereotypes are parts of the implementation of the state machine that applies
these «ObjectStateMachine» stereotype.

88 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

<<ProxyMethod>>+getBook(isbn : String) : Book
<<ProxyMethod>>+lendBook(isbn : String) : String
<<ProxyMethod>>+returnBook(isbn : String) : void
<<ProxyMethod>>+addBook(author : String, isbn : String, title : String) : void
<<DataBehavior>>+getBookStatus(isbn : String) : BookStatusStates

<<WebService>>
LibrarySystemService

<<DataElement>> <<Initializable>>-bookTable : HashMap [*]

<<DataBehavior>>+addBook(book : Book) : void
<<DataBehavior>>+getBook(isbn : String) : Book

<<DataContainer>>
BookList

<<DataElement>>-isbn : String
<<DataElement>>-title : String
<<Enumerizable>>-currentState : BookStatusStates = Available
<<DataElement>>-author : String

+handleEvent(event : BookStatusEvents) : void
<<DataBehavior>>+getBookInfo() : String

<<DataContainer>>
Book

RETURNBOOK
LENDBOOK
ADDBOOK

<<enumeration>>
BookStatusEvents

NotAvailable

Available
OnLoan

<<enumeration>>
BookStatusStates

Library System
Web Service

<<DataElement>>
<<Initializable>>

-allBookList

1

1

1

+book 0..*

1

*

1

Figure 5.4: Class Diagram at Service Provider Side

5.4 Library System Web Service Implementation

The implementation of the library system Web service includes the model trans-
formation process and the execution of the library system Web service on the
selected platform. The implementation process produces the following output in
order to enable the library system Web service execution:

• Source code in Java at service provider and service client sides,

• Configuration files for the Web service engine (build.xml and service.xml
files), and

• Documentation file (README.txt file).

5.4. LIBRARY SYSTEM WEB SERVICE IMPLEMENTATION 89

<<ObjectState>>
NotAvailable

<<ObjectState>>
OnLoan

<<ObjectState>>
Available

StartState

<<ObjectTransition>>
lendBook(isbn : String) : String

<<ObjectTransition>>
returnBook(isbn : String) : void

<<ObjectTransition>>

addBook(author : String, isbn : String, title : String) : void

Figure 5.5: Book Status

5.4.1 Running the Generator

The model transformation process has been performed using the Xpand trans-
formation language on the Eclipse platform. The generator receives the source
UML model for the library system Web service as an Eclipse Modeling Framework
(EMF) UML2 XML Metadata Interchange (XMI) file. This is the file format used
in the library system Web service and exported using the Magic Draw UML tool.
Other format types might need to be adapted in order to be read correctly by
the Eclipse/Xpand generator. Running the Eclipse/Xpand generator requires the
definition of the Modeling Workflow Engine (MWE) file. The MWE file specifies
different parameters of the project, such as the source model, metamodel, and
location of output files. Listing 5.1 represents the MWE file used to generate the
output files for the library system Web service. The MWE file includes different
types components, which serve for various purposes. The following list describes
briefly the main components in the MWE file:

• Cleaner component to clean the output folder at each run of the generator.

• Generator component, which is responsible for generating the Java source
code. It includes different outlets to specify the exact location for each Java
file.

• Generator component for generating the configuration files and to specify,
where each file should be located.

1 <?xml version="1.0" encoding="windows-1252"?>

2 <workflow>

3 <property file="workflow.properties"/>

4

5 <bean class="org.eclipse.xtend.typesystem.uml2.Setup"

6 standardUML2Setup="true"/>

90 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

7

8 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">

9 <modelFile value="${modelFile}"/>

10 <outputSlot value="model"/>

11 </component>

12

13 <!−−Cleaner Component −−>

14 <component id="dirCleaner"

15 class="org.eclipse.emf.mwe.utils.DirectoryCleaner" >

16 <directory value="${srcGenPath}"/>

17 </component>

18

19 <!−−Generator Component −−>

20 <component id="generator" class="org.eclipse.xpand2.Generator"

21 skipOnErrors="true">

22 <metaModel

23 class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>

24 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>

25

26 <metaModel id="ApplicationProfile"

27 class="org.eclipse.xtend.typesystem.uml2.profile.ProfileMetaModel">

28 <profile value="UP4WS.profile.uml"/>

29 </metaModel>

30

31

32 <expand

33 value="templates::main::root FOR model"/>

34 <fileEncoding value="ISO-8859-1"/>

35

36

37 <outlet path=’${srcGenPath}’>

38 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

39 <postprocessor class="org.eclipse.xpand2.output.XmlBeautifier"/>

40 </outlet>

41

42 <outlet name= ’myServiceOulet’

43 path=’LibrarySystemService/src/sample/webservice/service’>

44 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

45 </outlet>

46

47 <outlet name= ’myDataOulet’

48 path=’LibrarySystemService/src/sample/webservice/data’>

49 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

50 </outlet>

51

52 <outlet name= ’myClientOulet’

53 path=’LibrarySystemService/src/sample/webservice/client’>

54 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

55 </outlet>

56

57

58 <outlet name= ’myServicesXMLOulet’

59 path=’LibrarySystemService/servicesXMLFile’>

60 <postprocessor class="org.eclipse.xpand2.output.XmlBeautifier"/>

61 </outlet>

62

63 <outlet path="LibrarySystemService" append="true"

64 name="APPEND" overwrite="true"/>

65

5.4. LIBRARY SYSTEM WEB SERVICE IMPLEMENTATION 91

66 <!−−Generator Component −−>

67 <component id="generator" class="org.eclipse.xpand2.Generator"

68 skipOnErrors="true">

69 <metaModel

70 class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel"/>

71 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>

72

73 <metaModel id="profile"

74 class="org.eclipse.xtend.typesystem.uml2.profile.ProfileMetaModel">

75 <profile value="UP4WS.profile.uml"/>

76 </metaModel>

77

78 <expand

79 value="templates::XmlFiles::xmlRoot FOR model" />

80 <fileEncoding value="ISO-8859-1"/>

81

82 <outlet path=’${MyXMLfiles}’ append="false" name="APPEND"/>

83 <outlet path=’${MyXMLfiles}’ overwrite="true"/>

84

85 <outlet name= ’servicesXML’ path=’LibrarySystemService/src/META-INF’>

86 <postprocessor class="org.eclipse.xpand2.output.XmlBeautifier"/>

87 </outlet>

88

89 <outlet name= ’buildXML’ path=’LibrarySystemService’>

90 <postprocessor class="org.eclipse.xpand2.output.XmlBeautifier"/>

91 </outlet>

92

93 </component>

94

95 </workflow>

Listing 5.1: MWE File for the Library System Web Service

5.4.1.1 Generating Java Source Code

Since the Book object has a behaviour represented by a state machine diagram,
it has been selected as a sample for the generation of the Java source code. The
Book object applies the «DataContainer» stereotype and contains other elements,
namely attributes and operations that apply different stereotypes. Furthermore,
a state machine applying the «ObjectStateMachine» is assigned to the Book ob-
ject to represent its behaviour. The Book object appears in Figure 5.4, while its
behavioural state machine diagram is represented in Figure 5.5. The Java source
code for the Book object in listing 5.2 is produced by running the generator. The
Book class shows the Java class file declaration and the attributes and operations
in the class. It also shows the handleEvent operation, which represents the real
implementation of the Book behaviour, which, in turn, corresponds to the im-
plementation of the BookStatus state machine, as specified in the UP4WS (see
Section 3.3.1.3.3).

1 package sample.webservice.data;

2

3 import java.util.∗;

92 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

4 public class Book {
5

6 private String title;

7

8 private String author;

9

10 private String isbn;

11

12 private BookStatusStates currentState = BookStatusStates.AVAILABLE;

13

14 public void setCurrentState(BookStatusStates currentState) {
15 this.currentState = currentState;

16 }
17 public BookStatusStates getCurrentState() {
18

19 return this.currentState;

20 }
21

22 public void setTitle(String title) {
23 this.title = title;

24 }
25 public String getTitle() {
26

27 return this.title;

28 }
29

30 public void setAuthor(String author) {
31 this.author = author;

32 }
33 public String getAuthor() {
34

35 return this.author;

36 }
37

38 public void setIsbn(String isbn) {
39 this.isbn = isbn;

40 }
41 public String getIsbn() {
42

43 return this.isbn;

44 }
45

46

47 public String getBookInfo() {
48

49 return new String("Title : " + this.getTitle() + " Isbn : "

50 + this.getIsbn() + " Author : " + this.getAuthor()

51 + "status : " + this.getCurrentState());

52 }
53

54 public void handleEvent(BookStatusEvents event) {
55 switch (currentState) {
56 case AVAILABLE :

57 if (event == BookStatusEvents.LENDBOOK) {
58

59 currentState = BookStatusStates.ONLOAN;

60

61 break;

62 }

5.4. LIBRARY SYSTEM WEB SERVICE IMPLEMENTATION 93

63

64 throw new IllegalStateException("Cannot handle event " + event

65 + " for state " + currentState);

66

67 case NOTAVAILABLE :

68 if (event == BookStatusEvents.ADDBOOK) {
69

70 currentState = BookStatusStates.AVAILABLE;

71

72 break;

73 }
74

75 throw new IllegalStateException("Cannot handle event " + event

76 + " for state " + currentState);

77

78 case ONLOAN :

79 if (event == BookStatusEvents.RETURNBOOK) {
80

81 currentState = BookStatusStates.AVAILABLE;

82

83 break;

84 }
85

86 throw new IllegalStateException("Cannot handle event " + event

87 + " for state " + currentState);

88

89 }
90 }
91 }

Listing 5.2: Book Object Java Source Code

5.4.1.2 Generating the Configuration Files

The configuration files are platform dependent files needed to deploy and imple-
ment the library system Web service and any other Web service application and
are required for the platforms that are based on the Apache Axis2/Java Web
service engine. The files in this respect are the build.xml and the services.xml
files. The build.xml file enables the compilation of the Java files at the service
provider side the generation of the archive file LibrarySystemService.aar, which
is uploaded to the Apache Tomcat application server in order to deploy the Web
service and enable its execution. The services.xml file is required to enable the
deployment of the Web service. Listing 5.3 shows the services.xml file for the
library system Web service. The services.xml files appears in the screen shot as
part of the generated output in Figure 5.7.

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

2 <service name="LibrarySystemService" scope="application">

3

4 <description>

5 Library System Web Service

6 </description>

94 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

7 <messageReceivers>

8 <messageReceiver

9 class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"

10 mep="http://www.w3.org/2004/08/wsdl/in-only"/>

11

12 <messageReceiver

13 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"

14 mep="http://www.w3.org/2004/08/wsdl/in-out"/>

15 </messageReceivers>

16

17 <parameter

18 name="ServiceClass">sample.webservice.service.LibrarySystemService

19 </parameter>

20 </service>

Listing 5.3: services.xml File for the Library System Web Service

5.4.1.3 Generating the README.txt File

The README.txt file is a documentation file that aims at giving the user in-
structions on how to execute the Web service application. As specified in Section
3.3.2.5, the README.txt file mainly provides information about the Web service
execution. Listing 5.4 represents the README.txt file that results from running
the generator.
1

2 Introduction

3 =======

4 This case study (LibrarySystemService Web Service) has been implemented to validate

5 the proposed UML profile for Web services and the code generation process.

6 The case study shows a complete working example that represents the modelling

7 of Web services with UML, and the model transformation and code generation of

8 source code and configuration files for the relevant platform.

9 In this case study, both perspectives of service provider and service client has been introduced.

10

11 Web Services using Apache Axis2

12 ===================

13 This program contains the source code for the LibrarySystemService Web service.

14 This source code is resulted from a UML model developed using a UML Tool,

15 and transformed into a java code using Xpand language together with some Xtend

16 functions in Eclipse.

17

18 Prerequisites and Environment Settings

19 =======================

20 1. Windows as an Operating System (The case study has been implemented on

21 Windows XP and Windows Vista)

22 2. Apache Ant 1.6.2 or later

23 3. Apache Axis2

24 4. Apache Tomcat

25 5. Java

26

27 How to deploy the service on the Application Server?

28 ===============================

29 1. Compile the server side (service provider side) classes with ANT.

30 2. Put the LibrarySystemService.aar inside the services folder in Tomcat

31 (...\apache−tomcat\webapps\axis2\WEB−INF\services)

32 3. Initiate the tomcat server by typing the relevant command, e.g. tomcat.exe or startup.bat

5.4. LIBRARY SYSTEM WEB SERVICE IMPLEMENTATION 95

33 from inside the bin folder.

34 4. Make sure that the service is correctly deployed by typing

35 http://localhost:8080/axis2/services/LibrarySystemService?wsdl in your browser

36

37 Compile the Client side Classes by typing the following commands:

38 ======================================

39

40 First go to the root, where the build.xml file resides:

41

42 javac −sourcepath src\sample\webservice\client −classpath build\LibrarySystemService

43 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”−d build\LibrarySystemService

44 src\sample\webservice\client\LibrarySystemServiceClient.java

45

46 javac −sourcepath src\sample\webservice\client −classpath build\LibrarySystemService

47 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”−d build\LibrarySystemService

48 src\sample\webservice\rpcclient\LibrarySystemServiceClientMain.java

49

50 Running the Client Side classes by typing the following commands:

51 =====================================

52

53 First go to the root which ends with ...\build\LibrarySystemService

54 N.B. The name of the folder that contains your Web service files must hold the same name of

55 your Web service.

56

57 java −Djava.ext.dirs=”C:\ApacheInstallation\axis2−1.5\lib”

58 sample.webservice.client.LibrarySystemServiceClientMain

59

60 Help

61 ===

62 Please contact (wdahman@informatik.uni−goettingen.de or arrivalsw@yahoo.com)

63 if you have any troubles running the Web service.

Listing 5.4: Library System Web Service README.txt File

The successful run of the generator is shown in the screen shots in Figures 5.6 and
5.7. The screen shot in Figure 5.7 shows errors in the output Java files. These
errors do not reflect incorrectness in the source code, but they are resulted from
the irrelevant position of the Java files. As soon as the files move to the execution
environment, all errors will be resolved.

Figure 5.6: Code Generator Successful Execution

96 CHAPTER 5. CASE STUDY: LIBRARY SYSTEM WEB SERVICE

Figure 5.7: LibrarySystemService Folder After Generator Execution

5.4.2 Executing the Library System Web Service

Executing the Web service is concerned with running the library system Web
service on the Apache Axis2/Java Web service engine. The execution is done by
following the instructions stated in the README.txt file, which includes setting
up the execution environment. At first, the Java and configuration files have to
be copied in the execution environment. The Java files in the service provider
side are compiled first in order to generate the service archive file (LibrarySys-
temService.aar). This file is responsible for deploying the library system Web
service on the Apache Tomcat application server. The Java clients at the service
client side are then compiled. The LibrarySystemServiceClientMain.java can be
executed to run the library system Web service. Appendix F presents detailed
information about executing the Web service.

5.5 Summary

This chapter introduced the realisation of the UP4WS and WSDM from Chapters
3, and 4. It showed a real implementation of Web services via the library system
Web service case study. The case study has proven the powerful UML customi-
sation by means of UML profiles and the possibility to generate source code and
different types of textual files from UML models. However, in some cases it was
not possible to generate some constructs of the target programming language

5.5. SUMMARY 97

(e.g. Java HashMap). The library system Web service has been modelled using
the Magic Draw UML tool, which can export UML models in the correct format
for the Eclipse/Xpand generator. Other UML tools need additional adaptation
to produce the format, that is understandable by the used Eclipse/Xpand gen-
erator. The Apache Axis2/Java together with the Apache Tomcat have been
used for the implementation and deployment of the Web service. The examples
provided by the Apache Axis2 distribution give different types of Web services
implementations. The implementation of library system Web services represents
a general example that should enable the implementation of any Web service on
the Apache Axis2/Java engine.

Chapter 6

Conclusion

This chapter summarises the work performed in this thesis. It also presents an
outlook illustrating the future perspectives of this work, and its possible exten-
sions.

6.1 Summary

The thesis defines an approach for the development of executable Web services.
The proposed approach is composed of a sequence of steps to produce an exe-
cutable Web service source code. The work includes a specification of a platform
for the implementation and deployment of Web services. The executable code is
generated from UML models which form the starting point in the code generation
process.

At first, a UML Profile for Web Services (UP4WS) is defined. The UP4WS
defines two types of extensions for Web services. The first type is the Web ser-
vice specific extensions which are mandatory and must be specified for any Web
service application disregarding on which platform the Web service will be imple-
mented and deployed. Those extensions consider the service provider and service
client sides, since the Web service can play the role of the service provider and
service client at the same time. The second type is the extensions that enable the
generation of executable source code for Web services. Those extensions enable
basically the implementation of Web services behaviour by generating the source
code from UML state machine diagrams. In addition, they serve to generate
or complete the generation of some parts of the source code, such as attribute
declarations. The thesis defines the UP4WS implementation guidelines together
with the transformation rules for code generation. The transformation rules are
defined in the Xpand language. The second step of the proposed approach is

99

100 CHAPTER 6. CONCLUSION

the definition of the Web Services Development Model (WSDM). The WSDM
defines a set of tasks that shall be followed to develop the model for the selected
Web service. The WSDM consists of three tasks in its life cycle:

• The Web Services Requirements Analysis: in the requirements anal-
ysis task, the requirements for the Web service shall be analysed in order
to identify the general goal for the Web service and the exact service that
the Web service shall provide. At this task, the use case and class diagrams
to model the requirements and the initial architecture for the Web service.

• The Web Services Design: in the design task, the initial architecture for
the Web service is refined and extended to include the complete specification
for the Web service. The allocation of the basic UML extensions defined in
the UP4WS must take place in this task as well. Class diagrams are used
to represent the Web service architecture, while state machine diagrams are
used for modelling the behaviour of the Web service.

• The Web Services Implementation: the implementation task is con-
cerned with explaining how to transform the model and how to deploy and
implement the Web service. This contains specifying the plan for imple-
menting the Web service. The plan includes different specifications con-
sidering the generator, the platform for executing the Web service and it’s
settings.

For the validation of the entire work, the thesis presents a case study to implement
a library system Web service. Running and executing the Web service requires
setting and installation of the platform, which is the Apache Axis2/Java as a Web
service engine, and the Apache Tomcat as the application server to host the Web
service. A full and complete description on how to set the platform environment
is presented in the thesis, and also in the README.txt file which is generated
together with the Java source code and the platform dependent files.

6.2 Discussion

The work described in this thesis is an important step towards the generation
of executable source code from UML models and profiles. The thesis has proven
the flexibility of UML in modelling specific domain requirements by means of
its execution mechanism. It has also shown the efficiency of UML models in
representing the dynamic behaviour of software applications. The flexibility of
UML models, and its extension mechanism have enabled an effective definition
of the transformation rules for the code generation process. In comparison with
the related work, this thesis has introduced a comprehensive approach for the
development of executable Web services, and not only for WSDL documents.

6.3. OUTLOOK 101

Furthermore, the thesis has presented a complete set of transformation rules in
order to generate the output files from the UML model and profile. The trans-
formation rules run on the Xpand/Eclipse generator which, despite its maturity,
has proven efficiency in generating consistent output.

6.3 Outlook

The work in this thesis enables various future work. Below is a description of
worthwhile future research directions.

This thesis showed how to use state machine diagrams for the representation of
Web services behaviour. Using other behavioural diagrams, such as activity dia-
grams is promising as well and could be investigated in future work. Furthermore,
this thesis demonstrated how to generate Java source code for a specific platform
and Web service engine. It should be easily possible to extend this approach
to the implementation of Web services in other programming languages and on
different platforms and Web service engines.

The composition of Web services is one of the most important topics related to
Web services. Composite Web services enable the reuse of already existing Web
services to provide more comprehensive and larger Web services. In such cases,
the Web service plays the role of service provider and service client at the same
time. Therefore, it should have the mechanisms for providing and invoking other
Web services. The UP4WS defines a specific set of UML extensions for a single
Web service. Since the composite Web services have more sophisticated archi-
tecture and behaviour, it may be necessary to define additional UML extensions
for composite Web services. The thesis provides a promising starting point for
investigating the required modifications of the profile definition and its imple-
mentation.

Another important extension of this work is the field of Grid Web services, which
is referred to as Grid services. The community of Grids is now adopting or de-
veloping several standards in connection with Web services such as Open Grid
Services Infrastructure (OGSI) [OGS03], and WS-Resource Framework (WSRF)
[WSR04]. Further investigations are needed to identify the novelty of Grid Web
services and how they can be developed by means of model transformation tech-
niques. Just by adding the definition of relevant UML extensions and their im-
plementation using the appropriate transformation rules, the results of this thesis
should be applicable as well to support the domain of emerging Grid services.

Bibliography

[AA2a] Apache Axis2/C. http://ws.apache.org/axis2/c/, Last visited: June
2010. [cited at p. 143]

[AA2b] Apache Axis2 Installation Guide. http://ws.apache.org/axis2/1_5_1/

installationguide.html, Last visited: June 2010. [cited at p. 144]

[AA2c] Apache Axis2/Java. http://ws.apache.org/axis2/, Last visited: June
2010. [cited at p. 143]

[AN05] J. Arlow and I. Neustadt. UML 2 and the Unified Process. Addison Wesley,
second edition, June 2005. [cited at p. 12, 13, 14, 17]

[ANT] The Apache ANT Project. http://ant.apache.org/, Last visited: June
2010. [cited at p. 63]

[Arm02] C. Armstrong. Modeling Web Services with UML. OMG Web Services Work-
shop 2002, 2002. [cited at p. 4]

[ATO] Apache Tomcat 6.0 Setup. http://tomcat.apache.org/tomcat-6.0-doc/

setup.html, Last visited: June 2010. [cited at p. 144]

[BOM] The Booch Methodology. http://infolab.stanford.edu/~burback/

watersluice/node55.html, Last visited: June 2010. [cited at p. 12]

[BPE03] BPEL4WS V1.1 specification. http://download.boulder.ibm.com/ibmdl/
pub/software/dw/specs/ws-bpel/ws-bpel.pdf, Last visited: June 2010, 5
May 2003. [cited at p. 5]

[CH06] K. Czarnecki and S. Helsen. Feature-based Survery of Model Transformation
Approaches. IBM Systems Journal, 45(3):621–645, 2006. [cited at p. 21, 22]

[Con03] J. Conallen. Building Web Application with UML. Addison Wesley, second
edition, 2003. [cited at p. 9, 11]

[COR02] UML Profile for CORBA, v 1.0. formal-02-04-01, April 2002. [cited at p. 9, 10,

16]

[CWM03] Common Warehouse Metamodel, v1.1. formal/2003-03-02, March 2003.
[cited at p. 17]

103

http://ws.apache.org/axis2/c/
http://ws.apache.org/axis2/1_5_1/installationguide.html
http://ws.apache.org/axis2/1_5_1/installationguide.html
http://ws.apache.org/axis2/
http://ant.apache.org/
http://tomcat.apache.org/tomcat-6.0-doc/setup.html
http://tomcat.apache.org/tomcat-6.0-doc/setup.html
http://infolab.stanford.edu/~burback/watersluice/node55.html
http://infolab.stanford.edu/~burback/watersluice/node55.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

104 BIBLIOGRAPHY

[DDDT03] H. M. Deitel, P. J. Deitel, B. DuWaldt, and L. K. Trees. Web Services A
Technical Introduction. Prentice Hall, 2003. [cited at p. 10, 11]

[Dol04] K. Dollard. Code Generation in Microsoft .NET. Apress, 2004. [cited at p. 22]

[Erl04] T. Erl. Service-Oriented Architecture. A Field Guide to Integrating XML and
Web Services. Prentice Hall, 2004. [cited at p. 9]

[Fow04] M. Fowler. UML Distilled. Addison Wesley, 2004. [cited at p. 12, 18]

[Fra03] D. S. Frankel. Model Driven Architecture, Applying MDA to Enterprise Com-
puting. Wiley Publishing, Inc., 2003. [cited at p. 21]

[FV04] L. Fuentes and A. Vallecillo. An Introduction to UML Profiles. UP-
GRADE the European Journal for the Informatics Professional, V(2), 2004.
[cited at p. 16, 19]

[GSSO04] R. Gronme, D. Skogan, I. Solheim, and J. Oldevik. Model-Driven Web Ser-
vices Development. In Proceedings of the IEEE International Conference on
e-Technology, e-Commerce and e-Service (IEEE’04), pages 42–45, Washing-
ton, DC, USA, 2004. IEEE Computer Society. [cited at p. 4, 5]

[Her03] J. Herrington. Code Generation in Action. Manning, 2003. [cited at p. 22, 24]

[JBR03] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison Wesley, August 2003. [cited at p. 2, 13, 15]

[JBR04] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Modeling Language
Reference Manual. Addison Wesley, second edition, 2004. [cited at p. 13, 14, 15,

18]

[KT08] S. Kelly and J. P. Tolvanen. Domain Specific Modeling. Wiley-Interscience
Publication, 2008. [cited at p. 22, 23]

[KWB03] A. Kleppe, J. Warmer, and W. Best. MDA Explained, The Model-Driven
Architecture: Practice and Promise. Addison Wesley, 2003. [cited at p. 21]

[MD] Magicdraw. http://www.nomagic.com, Last visited: June 2010. [cited at p. 81]

[MDA03] MDA Guide, v1.0.1. omg/2003-06-01, June 2003. [cited at p. 2, 19, 20, 21]

[MG06] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, 152:125–142, 2006. [cited at p. 22]

[Mil03] J. Miller. MDA Model Driven Architecture. Fourth Workshop On UML for
Enterprise Applications: Delivering the Promise of MDA, June 23-26, 2003 -
Burlingame, California, USA, 2003. [cited at p. 21]

[New02] E. Newcomer. Understanding Web Services. Addison Wesley, 2002.
[cited at p. 11]

[OAW] OpenArchitectureWare (oAW). http://www.openarchitectureware.org,
Last visited: June 2010. [cited at p. 25]

http://www.nomagic.com
http://www.openarchitectureware.org

BIBLIOGRAPHY 105

[OAW10] OpenArchitectureWare User Guide. Version 4.3.1, 15 December, 2010.
[cited at p. 23, 25]

[OCL06] Object Constraint Language Specification, v2.0. formal/2006-05-01, May
2006. [cited at p. 18]

[OGS03] Open Grid Services Infrastructure (OGSI), Version 1.0 Status. GFD-R-P.15,
Last visited: June 2010, June 27, 2003. [cited at p. 101]

[OMG] Object Management Group (OMG). http://www.omg.org/, Last visited:
June 2010. [cited at p. 2, 12]

[OMT] Object Modeling Technique. http://infolab.stanford.edu/~burback/

watersluice/node56.html, Last visited: June 2010. [cited at p. 12]

[ROM] Rational Objectory Methodology. http://infolab.stanford.edu/

~burback/watersluice/node57.html, Last visited: June 2010. [cited at p. 12]

[Sam02] M. Samek. Practical Statecharts in C/C++. CMP Books, 2002. [cited at p. 42]

[Sco04] K. Scott. Fast Track UML 2.0. Apress, 2004. [cited at p. 14]

[SCV03] S.Marcos, V.de Castro, and B. Vela. Representing Web Services with UML:
A Case Study. In UNITN - The First International Conference on Service
Oriented Computing. UNITN, December 2003. [cited at p. 4]

[SGS04] D. Skogan, R. Gronmo, and I. Solheim. Web Service Composition in UML.
In Enterprise Distributed Object Computing Conference, Eighth IEEE In-
ternational (EDOC’04), pages 47–57, Washington, DC, USA, 2004. IEEE
Computer Society. [cited at p. 4, 5]

[SOA07] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). http:

//www.w3.org/TR/soap12-part1/, Last visited: June 2010, W3C Recom-
mendation 27 April 2007. [cited at p. 11]

[SV06] T. Stahl and M. Voelter. Model-Driven Software Development. John Wiley
& Sons, Ltd, 2006. [cited at p. 22]

[TDE03] S. Thöne, R. Depke, and G. Engels. Process-Oriented, Flexible Composition
of Web Services with UML. In Advanced Conceptual Modeling Techniques,
pages 390–401. SpringerLink, October 2003. [cited at p. 4, 5]

[Til07] S. Tilkov. Overview: Web Services Standards and Specifications. http:

//www.innoq.com/resources/WebServicesStandardsOverview-2005-01.

pdf, Last visited: June 2010, February 2007. [cited at p. 11]

[UDD04] UDDI Version V3.0.2. http://www.oasis-open.org/committees/

uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm, Last visited: June
2010, UDDI Spec Technical Committee Draft, Dated 19 October 2004.
[cited at p. 11]

[UMLa] Unified Modeling Language. http://www.uml.org/, Last visited: June 2010.
[cited at p. 1]

http://www.omg.org/
http://infolab.stanford.edu/~burback/watersluice/node56.html
http://infolab.stanford.edu/~burback/watersluice/node56.html
http://infolab.stanford.edu/~burback/watersluice/node57.html
http://infolab.stanford.edu/~burback/watersluice/node57.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.innoq.com/resources/WebServicesStandardsOverview-2005-01.pdf
http://www.innoq.com/resources/WebServicesStandardsOverview-2005-01.pdf
http://www.innoq.com/resources/WebServicesStandardsOverview-2005-01.pdf
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.uml.org/

106 BIBLIOGRAPHY

[UMLb] Eclipse UMLX Project. http://dev.eclipse.org/viewcvs/indextech.

cgi/gmt-home/subprojects/UMLX/index.html, Last visited: June 2010.
[cited at p. 12]

[UML10a] Unified Modeling Language: Infrastructure, V2.3. formal/2010-05-03, May
2010. [cited at p. 1]

[UML10b] Unified Modeling Language: Superstructure, V2.3. formal/2010-05-05, May
2010. [cited at p. 1, 13, 18, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48]

[UN09] M. Usman and A. Nadeem. Automatic Generation of Java Code from UML
Diagrams using UJECTOR. International Journal of Software Engineering
and Its Applications, 3(2), 2009. [cited at p. 4, 5]

[VKEH06] M. Voelter, B. Kolb, S. Efftingo, and A. Haase. From Front End
To Code - MDSD in Practice. http://www.eclipse.org/articles/

Article-FromFrontendToCode-MDSDInPractice/article.html, Last vis-
ited: June 2010, June 15 2006. [cited at p. 42]

[VMX06] Documentation of V-Modell XT, 2006. [cited at p. 2]

[W3C07] World Wide Web Consortium (W3C). http://www.w3.org, Last visited:
June 2010, 2007. [cited at p. 9]

[WSA] Web Services Addressing (WS-Addressing) 10 August 2004. http://www.w3.
org/Submission/ws-addressing/, Last visited: June 2010. [cited at p. 144]

[WSD07] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-
guage. http://www.w3.org/TR/wsdl20/, Last visited: June 2010, W3C Rec-
ommendation 26 June 2007. [cited at p. 11]

[WSR] OASIS Web Services Reliable Messaging (WSRM) TC 15 Novem-
ber 2004. http://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=wsrm, Last visited: June 2010. [cited at p. 144]

[WSR04] The WS-Resource Framework (WSRF), Version 1.2.
http://www.globus.org/wsrf/, Last visited: June 2010, January 20,
2004. [cited at p. 101]

[WSS07] Web Services Standards Overview. http://www.innoq.com/soa/

ws-standards/poster/innoQWS-StandardsPoster2007-02.pdf, Last
visited: June 2010, February 2007. [cited at p. 11]

[XML] Extensible Markup Language (XML). http://www.w3.org/XML/, Last vis-
ited: June 2010. [cited at p. 1]

[XPA] Eclipse.org Xpand. , Last visited: June 2010. [cited at p. 3, 26, 63]

http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/UMLX/index.html
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/UMLX/index.html
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html
http://www.w3.org
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/wsdl20/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
http://www.innoq.com/soa/ws-standards/poster/innoQ WS-Standards Poster 2007-02.pdf
http://www.innoq.com/soa/ws-standards/poster/innoQ WS-Standards Poster 2007-02.pdf
http://www.w3.org/XML/

Appendices

107

Appendix A

Case Study Model

<<ProxyMethod>>+addBook(title : String, author : String, isbn : String) : void
<<ProxyMethod>>+getBook(isbn : String) : Book
<<ProxyMethod>>+lendBook(isbn : String) : String
<<ProxyMethod>>+returnBook(isbn : String) : void

<<ProxyImplementation>>
LibrarySystemServiceClient

<<ClientMain>>+main(args1 : String) : void

<<Client>>
LibrarySystemServiceClientMain

+client 1

1

Figure A.1: Class Diagram at Service Client Side

(: String) : Book [

Book book = (Book) response[0];entry /
if(book!= null){

System.out.println(book.getBookInfo());
 }else
 {
 System.out.println("book is not
found ...");
 }

do /

<<OperationState>>
getBook

getBook(isbn : String) : Book

Figure A.2: getBookInLibrarySystemServiceClient

109

110 APPENDIX A. CASE STUDY MODEL

(: String) : void [

client.addBook("My Author","730076","UML2", serviceClient);do /

<<OperationState>>
addBook

String bookInfo = client.lendBook("730076", serviceClient);
System.out.println(bookInfo);

do /

<<OperationState>>
lendBook

client.returnBook("730076", serviceClient);do /

<<OperationState>>
returnBook

Figure A.3: mainInLibrarySystemServiceClientMain

<<ProxyMethod>>+getBook(isbn : String) : Book
<<ProxyMethod>>+lendBook(isbn : String) : String
<<ProxyMethod>>+returnBook(isbn : String) : void
<<ProxyMethod>>+addBook(author : String, isbn : String, title : String) : void
<<DataBehavior>>+getBookStatus(isbn : String) : BookStatusStates

<<WebService>>
LibrarySystemService

<<DataElement>> <<Initializable>>-bookTable : HashMap [*]

<<DataBehavior>>+addBook(book : Book) : void
<<DataBehavior>>+getBook(isbn : String) : Book

<<DataContainer>>
BookList

<<DataElement>>-isbn : String
<<DataElement>>-title : String
<<Enumerizable>>-currentState : BookStatusStates = Available
<<DataElement>>-author : String

+handleEvent(event : BookStatusEvents) : void
<<DataBehavior>>+getBookInfo() : String

<<DataContainer>>
Book

RETURNBOOK
LENDBOOK
ADDBOOK

<<enumeration>>
BookStatusEvents

NotAvailable

Available
OnLoan

<<enumeration>>
BookStatusStates

Library System
Web Service

<<DataElement>>
<<Initializable>>

-allBookList

1

1

1

+book 0..*

1

*

1

Figure A.4: Class Diagram at Service Provider Side

111

<<ObjectState>>
NotAvailable

<<ObjectState>>
OnLoan

<<ObjectState>>
Available

StartState

<<ObjectTransition>>
lendBook(isbn : String) : String

<<ObjectTransition>>
returnBook(isbn : String) : void

<<ObjectTransition>>

addBook(author : String, isbn : String, title : String) : void

Figure A.5: BookStatus

bookTable.put(book.getIsbn(), book);do /

<<OperationState>>
addBook

addBook(book : Book) : void

Figure A.6: addBookInBookList

return (Book) bookTable.get(isbn);exit /

<<OperationState>>
getBook

getBook(isbn : String) : Book

Figure A.7: getBookInBookList

() : String [

return new String("Title : " +
this.getTitle()+ " Isbn : " +
this.getIsbn()+ " Author : " +
this.getAuthor()+
"status : " + this.getCurrentState());

exit /

<<OperationState>>
getBookInfo

Figure A.8: getBookInfoInBook

112 APPENDIX A. CASE STUDY MODEL

Book book = new Book();entry /
book.setCurrentState(BookStatusStates.AVAILABLE);
book.setTitle(title);
book.setIsbn(isbn);
book.setAuthor(author);
allBookList.addBook(book);

do /

<<OperationState>>
addBook

addBook(author : String, isbn : String, title : String) : void

Figure A.9: addBookInLibrarySystemService

Book book = allBookList.getBook(isbn);entry /
return book.getCurrentState();exit /

<<OperationState>>
getBookStatus

getBookStatus(isbn : String) : BookStatusStates

Figure A.10: getBookStatusInLibrarySystemService

String bookInfo = new String();
Book book = allBookList.getBook(isbn);

entry /

if (book == null){
System.out.println("this book is not found...");
return bookInfo; }
else{
book.handleEvent(BookStatusEvents.LENDBOOK); }

do /

return bookInfo=book.getBookInfo();exit /

<<OperationState>>
lendBook

lendBook(isbn : String) : String

Figure A.11: lendBookInLibrarySystemService

Book book = allBookList.getBook(isbn);entry /
if (book == null) {
System.out.println("this book is not found...");
}else
{ book.handleEvent(BookStatusEvents.RETURNBOOK);
}

do /

<<OperationState>>
returnBook

returnBook(isbn : String) : void

Figure A.12: returnBookInLibrarySystemService

Appendix B

Transformation Rules for

Generating Java Code

B.1 CommonTemplate Template File

1 «IMPORT UP4WS»
2

3 «EXTENSION templates::MyExtensions»
4

5 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
6

7 «DEFINE createImport FOR uml::Type»
8 import «packageName()−».«”∗”−»;

9 «ENDDEFINE»
10

11 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
12

13 «DEFINE createImport FOR uml::PrimitiveType»
14 «IF name.hasJavaPath()−»
15 import «name.javaPath()−».«”∗”−»;

16 «ENDIF»
17 «ENDDEFINE»
18

19 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
20

21 «DEFINE createDataElement FOR UP4WS::DataElement»
22

23 «IF defaultValue == null && metaType.name

24 != ”UP4WS::DataElement,UP4WS::Initializable”»
25

26 «visibility» «type.name» «name»;

27 «ELSE»
28 «IF defaultValue == null && metaType.name

29 == ”UP4WS::DataElement,UP4WS::Initializable”»
30

31 «visibility» «type.name» «name» = new «type.name»();

32 «ENDIF»

113

114APPENDIX B. TRANSFORMATION RULES FOR GENERATING JAVA CODE

33

34 «IF defaultValue != null && type.name == ”String”»
35

36 «visibility» «type.name» «name» = ”«value()»”;

37

38 «ELSE»
39

40 «IF defaultValue != null && type.name != ”String”»
41

42 «visibility» «type.name» «name» = «value()»;

43

44 «ENDIF»
45 «ENDIF»
46 «ENDIF»
47 «ENDDEFINE»
48

49 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
50

51 «DEFINE initializable FOR UP4WS::Initializable»
52 «name−» = new «type.name−»();

53 «ENDDEFINE»
54

55 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
56

57 «DEFINE enumerizable FOR UP4WS::Enumerizable»
58 «IF defaultValue == null−»
59 «visibility» «type.name» «name−»;

60 «ELSE»
61 «visibility» «type.name» «name» =

62 «type.name».«value().toUpperCase()−»;

63 «ENDIF−»
64 «ENDDEFINE»
65

66 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
67

68 «DEFINE gettersAndSetters FOR UP4WS::DataElement»
69 «IF visibility.toString() == ”private”»
70 public void set«name.toFirstUpper()»
71 («type.name» «name.toFirstLower()»){
72

73 this.«name» = «name.toFirstLower()»;

74 }
75 public «type.name» get«name.toFirstUpper()» (){
76 return this.«name»;

77 }
78 «ENDIF»
79 «ENDDEFINE»
80

81 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
82

83 «DEFINE gettersAndSetters FOR UP4WS::Enumerizable»
84 «IF visibility.toString() == ”private”»
85 public void set«name.toFirstUpper()»
86 («type.name» «name.toFirstLower()»){
87

88 this.«name» = «name.toFirstLower()»;

89 }
90 public «type.name» get«name.toFirstUpper()» (){
91 return this.«name»;

B.1. COMMONTEMPLATE TEMPLATE FILE 115

92 }
93 «ENDIF»
94 «ENDDEFINE»
95

96 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
97 «DEFINE methodTmpl FOR UP4WS::DataBehavior»
98 «visibility» «IF isStatic» static «ENDIF» «IF type==null» void

99 «ELSE» «type.name» «ENDIF» «name» («FOREACH getParameters()

100 AS p SEPARATOR ”, ”»«p.type.name.toJava()» «p.name»«ENDFOREACH»){
101 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

102 (UP4WS::OperationStateMachine) AS wssm−»
103 «IF name+”In”+owner.name == wssm.name−»
104 «EXPAND implementState(wssm) FOREACH

105 wssm.eAllContents.typeSelect(UP4WS::OperationState)−»
106 «ENDIF−»
107 «ENDFOREACH−»
108 }
109 «ENDDEFINE»
110 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
111

112 «DEFINE implementState (UP4WS::OperationStateMachine sm)

113 FOR UP4WS::OperationState»
114

115 «IF entry != null−»
116 «entry.name−»
117 «ENDIF−»
118

119 «IF doActivity != null−»
120 «doActivity.name−»
121 «ENDIF»
122

123 «IF exit != null−»
124 «exit.name−»
125 «ENDIF−»
126

127 «ENDDEFINE»
128

129 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
130

131 «DEFINE interfaceTmpl FOR UP4WS::Interface»
132 «FILE name + ”.java” myDataOulet−»
133 package «packageName(this)»;

134

135 «EXPAND createImport FOREACH usedInterfaceTypes()»
136

137 public interface «name» {
138 «EXPAND interfaceAttTmpl

139 FOREACH eAllContents.typeSelect(UP4WS::InterfaceElement)»
140 «EXPAND interfaceOpTmpl

141 FOREACH eAllContents.typeSelect(UP4WS::InterfaceMethod)»
142 }
143 «ENDFILE»
144 «ENDDEFINE»
145

146 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
147

148 «DEFINE interfaceAttTmpl FOR UP4WS::InterfaceElement»
149 «IF type.name == ”String”»
150 final «IF isStatic−» static «ENDIF−» «type.name−» «name−» = ”«value()−»”;

116APPENDIX B. TRANSFORMATION RULES FOR GENERATING JAVA CODE

151 «ELSE−»
152 final «IF isStatic−» static «ENDIF−» «type.name−» «name−» = «value()−»;

153 «ENDIF−»
154 «ENDDEFINE»
155

156 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
157

158 «DEFINE interfaceOpTmpl FOR UP4WS::InterfaceMethod»
159 abstract «IF type==null» void

160 «ELSE» «type.name−» «ENDIF−» «name−»
161 («FOREACH getParameters() AS p SEPARATOR ”, ”−»
162 «p.type.name.toJava()−» «p.name−»«ENDFOREACH−»);

163 «ENDDEFINE»
164

165 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
166

167 «DEFINE Events FOR UP4WS::ObjectStateMachine»
168 «IF owner.metaType.name == ”UP4WS::DataContainer”»
169 «FILE eventsEnumFileName() myDataOulet−»
170

171 package «packageName(this)»;

172 public enum «eventsEnumName()» {
173

174 «FOREACH events().constantName().toSet() AS s SEPARATOR ”,”−»
175 «s−»
176 «ENDFOREACH»
177 }
178 «ENDFILE»
179 «ENDIF»
180 «ENDDEFINE»
181

182 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
183

184 «DEFINE States FOR UP4WS::ObjectStateMachine»
185 «IF owner.metaType.name == ”UP4WS::DataContainer”»
186 «FILE statesEnumFileName()myDataOulet−»
187 package «packageName(this)»;

188 public enum «statesEnumName()»{
189 «FOREACH states() AS s SEPARATOR ”,”−»
190 «s.constantName()»
191 «ENDFOREACH»
192 }
193 «ENDFILE»
194 «ENDIF»
195 «ENDDEFINE»

B.2 DataContainer Template File

1 «IMPORT uml»
2

3 «EXTENSION templates::MyExtensions»
4

5 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
6

7 «DEFINE dataContainerRoot FOR UP4WS::DataContainer»
8 «EXPAND createDataContainer»
9 «ENDDEFINE»

10

B.2. DATACONTAINER TEMPLATE FILE 117

11 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
12

13 «DEFINE createDataContainer FOR UP4WS::DataContainer»
14

15 «FILE name + ”.java” myDataOulet−»
16

17 package «packageName(this)»;

18

19 «EXPAND CommonTemplates::createImport FOREACH usedTypes()»
20

21 «visibility−» «IF isAbstract−» abstract «ENDIF−» class «name»
22 «IF !superClass.isEmpty−» extends «superClass.first().name−»«ENDIF−»
23 «IF this.interfaceRealization.contract.size > 0−» implements

24 «FOREACH this.interfaceRealization.contract AS i SEPARATOR ”,”−»
25 «i.name−»«ENDFOREACH−»«ENDIF−»{
26

27 «EXPAND CommonTemplates::createDataElement

28 FOREACH eAllContents.typeSelect(UP4WS::DataElement)−»
29 «EXPAND CommonTemplates::enumerizable

30 FOREACH eAllContents.typeSelect(UP4WS::Enumerizable)−»
31 «EXPAND CommonTemplates::gettersAndSetters

32 FOREACH eAllContents.typeSelect(UP4WS::Enumerizable)−»
33 «EXPAND CommonTemplates::gettersAndSetters

34 FOREACH eAllContents.typeSelect(UP4WS::DataElement)−»
35 «EXPAND CommonTemplates::methodTmpl

36 FOREACH eAllContents.typeSelect(UP4WS::DataBehavior)−»
37 «EXPAND classBehavior

38 FOREACH eAllContents.typeSelect(UP4WS::ObjectStateMachine)−»
39 }
40 «ENDFILE»
41 «ENDDEFINE»
42

43 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
44

45 «DEFINE classBehavior FOR UP4WS::ObjectStateMachine»
46 «IF name == getOwnerName(this)+”Status” &&

47 owner.metaType.name == ”UP4WS::DataContainer”»
48

49 public void handleEvent(«eventsEnumName(this)» event){
50 switch (currentState) {
51 «FOREACH this.states().reject

52 (s|UP4WS::ObjectFinalState.isInstance(s)) AS s−»
53

54 case «s.constantName()»:

55 «FOREACH s.outTransitionsWithEventTrigger() AS t−»
56

57 «IF t.trigger.event !=null−»
58 «FOREACH t.trigger.event AS e−»
59 if (event == «e.eventId(this)») {
60 «EXPAND executeTransitionForHandleEvent(this) FOR t»
61 break;

62 }«ENDFOREACH»«ENDIF»«ENDFOREACH»
63 «EXPAND illegalTransitionHandler»
64 «ENDFOREACH»
65 }
66 }
67 «ENDIF»
68 «ENDDEFINE»
69

118APPENDIX B. TRANSFORMATION RULES FOR GENERATING JAVA CODE

70 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
71

72 «DEFINE executeTransitionForHandleEvent(UP4WS::ObjectStateMachine sm)

73 FOR UP4WS::ObjectTransition»
74

75 «IF UP4WS::ObjectState.isInstance(source) &&

76 ((UP4WS::ObjectState)source).exit!=null−»
77

78 «((UP4WS::ObjectState)source).exit.methodName()»();

79 «ENDIF−»
80 «FOREACH trigger.event AS e−»
81 «IF effect!=null−»
82 «effect.methodName()»();

83 «ENDIF»
84 «ENDFOREACH»
85 currentState = «target.stateId(sm)»;

86 «IF UP4WS::ObjectFinalState.isInstance(target)−»
87 terminated = true;

88 «ENDIF−»
89 «IF UP4WS::ObjectState.isInstance(target) &&

90 ((UP4WS::ObjectState)target).entry!=null−»
91 «((UP4WS::ObjectState)target).entry.methodName()»();

92 «ENDIF−»
93 «ENDDEFINE»
94

95 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
96

97 «DEFINE illegalTransitionHandler FOR UP4WS::ObjectStateMachine»
98 throw new IllegalStateException

99 (”Cannot handle event ”+event+” for state ”+currentState);

100 «ENDDEFINE»

B.3 WebService Template File

1 «IMPORT UP4WS»
2

3 «EXTENSION templates::MyExtensions»
4

5 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
6

7 «DEFINE serviceRoot FOR UP4WS::WebService»
8 «EXPAND createWebService»
9 «ENDDEFINE»

10

11 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
12

13 «DEFINE createWebService FOR UP4WS::WebService»
14 «FILE name + ”.java” myServiceOulet»
15 package «packageName(this)»;

16

17 «EXPAND CommonTemplates::createImport FOREACH usedTypes()»
18

19 «visibility−» class «name−»{
20 «EXPAND CommonTemplates::createDataElement

21 FOREACH eAllContents.typeSelect(UP4WS::DataElement)−»
22 «EXPAND CommonTemplates::enumerizable

23 FOREACH eAllContents.typeSelect(UP4WS::Enumerizable)−»
24 «EXPAND CommonTemplates::methodTmpl

B.4. PROXY TEMPLATE FILE 119

25 FOREACH eAllContents.typeSelect(UP4WS::DataBehavior)−»
26 «EXPAND CommonTemplates::gettersAndSetters

27 FOREACH eAllContents.typeSelect(UP4WS::Enumerizable)−»
28 «EXPAND CommonTemplates::gettersAndSetters

29 FOREACH eAllContents.typeSelect(UP4WS::DataElement)−»
30 «EXPAND proxyMethodServiceTmpl

31 FOREACH eAllContents.typeSelect(UP4WS::ProxyMethod)−»
32 }
33 «ENDFILE»
34 «ENDDEFINE»
35

36 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
37

38 «DEFINE proxyMethodServiceTmpl FOR UP4WS::ProxyMethod»
39 «visibility−» «IF isStatic−» static «ENDIF−» «IF type==null−» void «ELSE−»
40 «type.name−»«ENDIF−» «name−» («FOREACH getParameters().sortBy(e|e.name)

41 AS p SEPARATOR ”, ”−»«p.type.name.toJava()−» «p.name−»«ENDFOREACH−»){
42

43 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

44 (UP4WS::OperationStateMachine) AS wssm−»
45 «IF name+”In”+owner.name == wssm.name−»
46 «EXPAND CommonTemplates::implementState(wssm)

47 FOREACH wssm.checkStates()−»
48 «ENDIF−»
49 «ENDFOREACH−»
50 }
51 «ENDDEFINE»

B.4 Proxy Template File

1 «IMPORT UP4WS»
2

3 «EXTENSION templates::MyExtensions»
4 «EXTENSION org::eclipse::xtend::util::stdlib::counter»
5

6 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
7

8 «DEFINE proxyRoot FOR UP4WS::ProxyImplementation»
9 «EXPAND createProxyImpl−»

10 «ENDDEFINE»
11

12 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
13

14 «DEFINE createProxyImpl FOR UP4WS::ProxyImplementation»
15

16 «FILE name.toFirstUpper()+”.java” myClientOulet−»
17

18 package «packageName(this)−»;

19

20 «EXPAND CommonTemplates::createImport FOREACH usedTypes()−»
21

22 import javax.xml.namespace.QName;

23 import org.apache.axis2.AxisFault;

24 import org.apache.axis2.addressing.EndpointReference;

25 import org.apache.axis2.client.Options;

26 import org.apache.axis2.rpc.client.RPCServiceClient;

27

28 «visibility» class «name.toFirstUpper()−» {

120APPENDIX B. TRANSFORMATION RULES FOR GENERATING JAVA CODE

29 «EXPAND ProxyMethodClientTmpl

30 FOREACH eAllContents.typeSelect(UP4WS::ProxyMethod)−»
31 }
32 «ENDFILE»
33 «ENDDEFINE»
34

35 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
36

37 «DEFINE ProxyMethodClientTmpl FOR UP4WS::ProxyMethod»
38 «IF getVisibility(this) == ”public”−»
39 «visibility−» «IF isStatic−» static «ENDIF−»
40 «IF type==null−» void«ELSE−»«type.name−»«ENDIF−» «name−»
41 («FOREACH getParameters().sortBy(e|e.name) AS p SEPARATOR ”, ”−»
42 «p.type.name.toJava()» «p.name−»«ENDFOREACH−»,

43 RPCServiceClient rpcClient) throws AxisFault{
44

45 QName opGet = new QName(”http://service.webservice.sample”, ”«name−»”);

46 rpcClient.getOptions().setAction(”urn:«name−»”);

47

48 Object[] args = new Object[«count()−1»];

49

50 «FOREACH getParameters().sortBy(e|e.name) AS p ITERATOR i−»
51 args[«i.counter0»]= «p.name−»;

52 «ENDFOREACH»
53

54 «IF type.name == ”void”−»
55 rpcClient.invokeRobust(opGet, args);

56 «ELSE−»
57 Class[] returnTypes = new Class[] {«type.name−».class };
58 Object[] response = rpcClient.invokeBlocking(opGet, args, returnTypes);

59 «ENDIF−»
60

61 System.out.println(”after «name−» invoke”);

62

63 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

64 (UP4WS::OperationStateMachine) AS wssm−»
65 «IF name+”In”+owner.name == wssm.name−»
66 «EXPAND CommonTemplates::implementState(wssm)

67 FOREACH wssm.checkStates()−»
68 «ENDIF−»
69 «ENDFOREACH−»
70

71 «IF type.name == ”void”−»
72 «ELSE−»
73 return («type.name») response [0];

74 «ENDIF−»
75 }
76 «ENDIF−»
77 «ENDDEFINE»

B.5 Client Template file

1 «IMPORT UP4WS»
2

3 «EXTENSION templates::MyExtensions»
4

5 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
6

B.5. CLIENT TEMPLATE FILE 121

7 «DEFINE clientRoot FOR UP4WS::Client»
8 «EXPAND createClientImpl−»
9 «ENDDEFINE»

10

11 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
12

13 «DEFINE createClientImpl FOR UP4WS::Client»
14

15 «FILE name.toFirstUpper()+”.java” myClientOulet−»
16 package «packageName(this)−»;

17

18 «EXPAND CommonTemplates::createImport FOREACH usedTypes()−»
19

20 import javax.xml.namespace.QName;

21

22 import org.apache.axis2.AxisFault;

23 import org.apache.axis2.addressing.EndpointReference;

24 import org.apache.axis2.client.Options;

25 import org.apache.axis2.rpc.client.RPCServiceClient;

26

27 «visibility» class «name.toFirstUpper()−» {
28

29 public static void main(String[] args1) throws AxisFault {
30

31 RPCServiceClient serviceClient = new RPCServiceClient();

32

33 Options options = serviceClient.getOptions();

34 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

35 (UP4WS::WebService) AS ws−»
36 EndpointReference targetEPR =

37 new EndpointReference(”http://localhost:8080/axis2/services/«ws.name»”);

38 «ENDFOREACH−»
39 options.setTo(targetEPR);

40 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

41 (UP4WS::ProxyImplementation) AS c−»
42 «c.name.toFirstUpper()−» client = new «c.name.toFirstUpper()−»();

43 «ENDFOREACH−»
44

45 «EXPAND createException

46 FOREACH eAllContents.typeSelect(UP4WS::ClientMain)−»
47 }
48 }
49 «ENDFILE»
50 «ENDDEFINE»
51

52 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
53

54 «DEFINE createException FOR UP4WS::ClientMain»
55 try{
56

57 «FOREACH ((uml::Model) this.eRootContainer).eAllContents.typeSelect

58 (UP4WS::OperationStateMachine) AS wssm−»
59 «IF name+”In”+owner.name == wssm.name−»
60 «EXPAND CommonTemplates::implementState(wssm) FOREACH

61 wssm.eAllContents.typeSelect(UP4WS::OperationState)−»
62 «ENDIF»
63 «ENDFOREACH−»
64

65 }catch (Exception e){

122APPENDIX B. TRANSFORMATION RULES FOR GENERATING JAVA CODE

66 System.out.println(e);

67 }
68 «ENDDEFINE»

B.6 MyExtensions Xtend File

1 import uml;

2 import Naming;

3 import util;

4

5 extension org::eclipse::xtend::util::stdlib::io reexport;

6 extension org::eclipse::xtend::util::stdlib::counter reexport;

7 extension org::eclipse::xtend::util::stdlib::collections reexport;

8

9

10 String getVisibility(uml::Operation o): o.visibility.toString();

11

12 String constantName(NamedElement this): name.toUpperCase();

13

14 String constantName(State s): s.name.toUpperCase();

15

16 String eventsEnumName(StateMachine this) : name.toFirstUpper()+”Events”;

17

18 String statesEnumName(StateMachine this) : name.toFirstUpper()+”States”;

19

20 String eventsEnumFileName(StateMachine this) : eventsEnumName()+”.java”;

21

22 String statesEnumFileName(StateMachine this) : statesEnumName()+”.java”;

23

24 String stateId(Vertex this, StateMachine m): m.statesEnumName()+”.”+constantName();

25

26 String eventId(Event this, StateMachine m): m.eventsEnumName()+”.”+constantName();

27

28 cached Collection[State] states (StateMachine this) :

29 region.subvertex.typeSelect(State).sortBy(s|s.name);

30

31 Collection[Transition] transitions (StateMachine this) : region.transition;

32

33 Collection[Transition] outTransitionsWithEventTrigger (State this) :

34 container.stateMachine.transitions().select(t|t.source==this &&

35 t.trigger!=null && !t.trigger.event.contains(null));

36

37

38 Collection[Event] events (StateMachine this) :

39 transitions().trigger.remove(null).event.remove(null).toSet().select

40 (e|e.name!=null).sortBy(e|e.name).toSet();

41

42 String getOwnerName(uml::StateMachine this):

43 ((uml::NamedElement)owner).name;

44

45 List[uml::State] checkStates(uml::StateMachine this):

46 region.ownedMember.typeSelect(uml::State).reject(e|uml::FinalState.isInstance(e));

47

48 int count (uml::Operation o) : o.ownedParameter.sortBy(e|e.name).size;

49

50 String value (uml::Property p): p.getDefault();

51

52 List[uml::Parameter] getParameters(uml::Operation this):

B.6. MYEXTENSIONS XTEND FILE 123

53 ownedParameter.reject(e|e.direction.toString().toLowerCase().endsWith(”return”));

54

55 private cached List[String] umlTypes() : {”Integer”,”String”, ”Boolean”};
56 private cached List[String] javaTypes(): {”int”, ”String”, ”boolean”};
57

58 String toJava(String this):

59 umlTypes().contains(this) ? javaTypes().get(umlTypes().indexOf(this))

60 : this;

61

62 String packageName(uml::Class this):

63 this.getNearestPackage() == null ? ””

64 : this.getNearestPackage().packageName();

65

66 String packageName(uml::Package this):

67 this.owner == null ? name

68 : (owner.packageName().length>0 ? owner.packageName()+ ”.”+name : name);

69

70 create Set[uml::Type] usedTypes(uml::Class cls):

71 addAll(cls.ownedOperation.ownedParameter.type.typeSelect(uml::Class)) −>

72 removeDuplicatesByName();

73

74 create Set[uml::Type] usedInterfaceTypes(uml::Interface i):

75 addAll(i.ownedOperation.ownedParameter.type.typeSelect(uml::Interface)) −>

76 removeDuplicatesByName();

Appendix C

Generated Java Source Code

C.1 Java Classes in the Service Provider Side

C.1.1 Java Classes in data Folder

C.1.1.1 Book.java

1 package sample.webservice.data;

2

3 import java.util.∗;
4 public class Book {
5

6 private String title;

7

8 private String author;

9

10 private String isbn;

11

12 private BookStatusStates currentState = BookStatusStates.AVAILABLE;

13

14 public void setCurrentState(BookStatusStates currentState) {
15 this.currentState = currentState;

16 }
17 public BookStatusStates getCurrentState() {
18

19 return this.currentState;

20 }
21

22 public void setTitle(String title) {
23 this.title = title;

24 }
25 public String getTitle() {
26

27 return this.title;

28 }
29

30 public void setAuthor(String author) {
31 this.author = author;

125

126 APPENDIX C. GENERATED JAVA SOURCE CODE

32 }
33 public String getAuthor() {
34

35 return this.author;

36 }
37

38 public void setIsbn(String isbn) {
39 this.isbn = isbn;

40 }
41 public String getIsbn() {
42

43 return this.isbn;

44 }
45

46

47 public String getBookInfo() {
48

49 return new String("Title : " + this.getTitle() + " Isbn : "

50 + this.getIsbn() + " Author : " + this.getAuthor()

51 + "status : " + this.getCurrentState());

52 }
53

54 public void handleEvent(BookStatusEvents event) {
55 switch (currentState) {
56 case AVAILABLE :

57 if (event == BookStatusEvents.LENDBOOK) {
58

59 currentState = BookStatusStates.ONLOAN;

60

61 break;

62 }
63 throw new IllegalStateException("Cannot handle event " + event

64 + " for state " + currentState);

65

66 case NOTAVAILABLE :

67 if (event == BookStatusEvents.ADDBOOK) {
68

69 currentState = BookStatusStates.AVAILABLE;

70

71 break;

72 }
73 throw new IllegalStateException("Cannot handle event " + event

74 + " for state " + currentState);

75

76 case ONLOAN :

77 if (event == BookStatusEvents.RETURNBOOK) {
78

79 currentState = BookStatusStates.AVAILABLE;

80

81 break;

82 }
83 throw new IllegalStateException("Cannot handle event " + event

84 + " for state " + currentState);

85 }
86 }
87 }

C.1. JAVA CLASSES IN THE SERVICE PROVIDER SIDE 127

C.1.1.2 BookList.java

1 package sample.webservice.data;

2

3 import sample.webservice.data.∗;
4

5 import java.util.∗;
6 public class BookList {
7

8 private HashMap bookTable = new HashMap();

9

10 public void setBookTable(HashMap bookTable) {
11 this.bookTable = bookTable;

12 }
13 public HashMap getBookTable() {
14

15 return this.bookTable;

16 }
17

18 public void addBook(Book book) {
19

20 bookTable.put(book.getIsbn(), book);

21

22 }
23

24 public Book getBook(String isbn) {
25

26 return (Book) bookTable.get(isbn);

27 }
28 }

C.1.1.3 BookStatusEvents.java

1 package sample.webservice.data;

2

3 public enum BookStatusEvents {
4

5 ADDBOOK, LENDBOOK, RETURNBOOK

6 }

C.1.1.4 BookStatusStates.java

1 package sample.webservice.data;

2

3 public enum BookStatusStates {
4

5 AVAILABLE, FINALSTATE, NOTAVAILABLE, ONLOAN

6

7 }

C.1.2 Java Classes in service Folder

C.1.2.1 LibrarySystemService.java

1 package sample.webservice.service;

2

3 import sample.webservice.data.∗;
4

128 APPENDIX C. GENERATED JAVA SOURCE CODE

5 public class LibrarySystemService {
6

7 private BookList allBookList = new BookList();

8

9 public BookStatusStates getBookStatus(String isbn) {
10

11 Book book = allBookList.getBook(isbn);

12

13 return book.getCurrentState();

14 }
15

16 public void setAllBookList(BookList allBookList) {
17 this.allBookList = allBookList;

18 }
19 public BookList getAllBookList() {
20

21 return this.allBookList;

22 }
23

24 public String lendBook(String isbn) {
25

26 String bookInfo = new String();

27 Book book = allBookList.getBook(isbn);

28

29 if (book == null) {
30 System.out.println("this book is not found...");

31 return bookInfo;

32 } else {
33 book.handleEvent(BookStatusEvents.LENDBOOK);

34 }
35 return bookInfo = book.getBookInfo();

36 }
37

38 public void addBook(String author, String isbn, String title) {
39

40 Book book = new Book();

41

42 book.setCurrentState(BookStatusStates.AVAILABLE);

43 book.setTitle(title);

44 book.setIsbn(isbn);

45 book.setAuthor(author);

46 allBookList.addBook(book);

47

48 }
49

50 public void returnBook(String isbn) {
51

52 Book book = allBookList.getBook(isbn);

53

54 if (book == null) {
55 System.out.println("this book is not found...");

56 } else {
57 book.handleEvent(BookStatusEvents.RETURNBOOK);

58 }
59

60 }
61

62 public Book getBook(String isbn) {
63

C.2. JAVA CLASSES IN THE SERVICE CLIENT SIDE 129

64 return (Book) allBookList.getBook(isbn);

65 }
66 }

C.2 Java Classes in the Service Client Side

C.2.1 Java Classes in client Folder

C.2.1.1 LibrarySystemServiceClient.java

1 package sample.webservice.client;

2

3 import sample.webservice.data.∗;
4

5 import javax.xml.namespace.QName;

6 import org.apache.axis2.AxisFault;

7 import org.apache.axis2.addressing.EndpointReference;

8 import org.apache.axis2.client.Options;

9 import org.apache.axis2.rpc.client.RPCServiceClient;

10

11 public class LibrarySystemServiceClient {
12

13 public void addBook(String author, String isbn, String title,

14 RPCServiceClient rpcClient) throws AxisFault {
15

16 QName opGet = new QName("http://service.webservice.sample", "addBook");

17 rpcClient.getOptions().setAction("urn:addBook");

18

19 Object[] args = new Object[3];

20

21 args[0] = author;

22 args[1] = isbn;

23 args[2] = title;

24

25 rpcClient.invokeRobust(opGet, args);

26

27 }
28

29 public void returnBook(String isbn, RPCServiceClient rpcClient)

30 throws AxisFault {
31

32 QName opGet = new QName("http://service.webservice.sample",

33 "returnBook");

34 rpcClient.getOptions().setAction("urn:returnBook");

35

36 Object[] args = new Object[1];

37

38 args[0] = isbn;

39

40 rpcClient.invokeRobust(opGet, args);

41

42 }
43

44 public String lendBook(String isbn, RPCServiceClient rpcClient)

45 throws AxisFault {
46

47 QName opGet = new QName("http://service.webservice.sample", "lendBook");

48 rpcClient.getOptions().setAction("urn:lendBook");

130 APPENDIX C. GENERATED JAVA SOURCE CODE

49

50 Object[] args = new Object[1];

51

52 args[0] = isbn;

53

54 Class[] returnTypes = new Class[]{String.class};
55 Object[] response = rpcClient.invokeBlocking(opGet, args, returnTypes);

56

57 return (String) response[0];

58 }
59

60 public Book getBook(String isbn, RPCServiceClient rpcClient)

61 throws AxisFault {
62

63 QName opGet = new QName("http://service.webservice.sample", "getBook");

64 rpcClient.getOptions().setAction("urn:getBook");

65

66 Object[] args = new Object[1];

67

68 args[0] = isbn;

69

70 Class[] returnTypes = new Class[]{Book.class};
71 Object[] response = rpcClient.invokeBlocking(opGet, args, returnTypes);

72

73 Book book = (Book) response[0];

74

75 if (book != null) {
76 System.out.println(book.getBookInfo());

77 } else {
78 System.out.println("book is not found ...");

79 }
80

81 return (Book) response[0];

82 }
83 }

C.2.1.2 LibrarySystemServiceClientMain.java

1 package sample.webservice.client;

2

3 import javax.xml.namespace.QName;

4 import org.apache.axis2.AxisFault;

5 import org.apache.axis2.addressing.EndpointReference;

6 import org.apache.axis2.client.Options;

7 import org.apache.axis2.rpc.client.RPCServiceClient;

8

9 public class LibrarySystemServiceClientMain {
10

11 public static void main(String[] args1) throws AxisFault {
12

13 System.out.println("start main");

14 RPCServiceClient serviceClient = new RPCServiceClient();

15 System.out.println("start rpc client");

16 Options options = serviceClient.getOptions();

17 System.out.println("start epr");

18 EndpointReference targetEPR = new EndpointReference(

19 "http://localhost:8080/axis2/services/LibrarySystemService");

20 System.out.println("start srt to option");

21 options.setTo(targetEPR);

C.2. JAVA CLASSES IN THE SERVICE CLIENT SIDE 131

22 LibrarySystemServiceClient client = new LibrarySystemServiceClient();

23 System.out.println("start lib client");

24

25 try {
26

27 client.addBook("My Author", "730076", "UML2", serviceClient);

28

29 String bookInfo = client.lendBook("730076", serviceClient);

30 System.out.println(bookInfo);

31

32 client.returnBook("730076", serviceClient);

33

34 } catch (Exception e) {
35 System.out.println(e);

36 }
37 }
38 }

Appendix D

Transformation Rules for

Generating Configuration Files

D.1 XmlFiles Template File

1 «REM» XmlFiles Template File «ENDREM»
2

3 «DEFINE xmlRoot FOR uml::Model»
4

5 «EXPAND createBuildXML

6 FOREACH this.eAllContents.typeSelect(UP4WS::WebService)»
7 «EXPAND createServicesXML

8 FOREACH this.eAllContents.typeSelect(UP4WS::WebService)»
9

10 «ENDDEFINE»
11

12 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
13 «DEFINE createBuildXML FOR UP4WS::WebService»
14 «FILE ”build.xml” buildXML−»
15 «REM»Project name holding the name of the Web service«ENDREM»
16 <project name=”«name»”

17

18 basedir=”.”

19

20 default=”generate.service”>

21 «REM»The name of the Web service«ENDREM»
22 <property name=”service.name” value=”«name»”/>

23 <property name=”dest.dir” value=”build”/>

24 <property name=”dest.dir.classes” value=”${dest.dir}/${service.name}”/>

25 <property name=”dest.dir.lib” value=”${dest.dir}/lib”/>

26 <property name=”axis2.home” value=”../../”/>

27 <property name=”repository.path” value=”${axis2.home}/repository”/>

28

29 <path id=”build.class.path”>

30 <fileset dir=”${axis2.home}/lib”>

31 <include name=”∗.jar”/>

32 </fileset>

133

134
APPENDIX D. TRANSFORMATION RULES FOR GENERATING

CONFIGURATION FILES

33 </path>

34

35 <path id=”client.class.path”>

36 <fileset dir=”${axis2.home}/lib”>

37 <include name=”∗.jar”/>

38 </fileset>

39 <fileset dir=”${dest.dir.lib}”>
40 <include name=”∗.jar”/>

41 </fileset>

42

43 </path>

44 <target name=”clean”>

45 <delete dir=”${dest.dir}”/>

46

47 <delete dir=”src” includes=”sample/webservice/stub/∗∗”/>

48 </target>

49

50 <target name=”prepare”>

51 <mkdir dir=”${dest.dir}”/>

52 <mkdir dir=”${dest.dir}/lib”/>

53 <mkdir dir=”${dest.dir.classes}”/>

54 <mkdir dir=”${dest.dir.classes}/META−INF”/>

55 </target>

56

57

58 <target depends=”clean,prepare” name=”generate.service”>

59

60

61 <copy file=”src/META−INF/services.xml” overwrite=”true” tofile=

62 ”${dest.dir.classes}/META−INF/services.xml”/>

63

64

65 <javac destdir=

66 ”${dest.dir.classes}” includes=”

67 sample/webservice/service/∗∗,sample/webservice/data/∗∗” srcdir=”src”>

68 <classpath refid=”build.class.path”/>

69 </javac>

70

71 <jar basedir=”${dest.dir.classes}” destfile=”${dest.dir}/${service.name}.aar”/>

72

73 <copy file=”${dest.dir}/${service.name}.aar” overwrite=”true”

74 tofile=”${repository.path}/services/${service.name}.aar”/>

75

76 </target>

77

78 <target depends=”clean,prepare” name=”rpc.client”>

79

80 <antcall target=”rpc.client.compile”/>

81

82 <antcall target=”rpc.client.jar”/>

83

84 <antcall target=”rpc.client.run”/>

85

86 </target>

87

88 <target name=”rpc.client.compile”>

89 <javac destdir=”${dest.dir.classes}” includes=”

90

91 sample/webservice/client/∗∗,sample/webservice/data/∗∗” srcdir=”src”>

D.2. BUILD.XML FILE 135

92 <classpath refid=”build.class.path”/>

93 </javac>

94 </target>

95

96 <target name=”rpc.client.jar”>

97 <jar basedir=

98 ”${dest.dir.classes}” destfile=”${dest.dir.lib}/rpc−client.jar” includes=”

99 sample/webservice/client/∗∗,sample/webservice/data/∗∗”/>

100 </target>

101

102 «REM»get the name of the Web service«ENDREM»
103 <target name=”rpc.client.run”>

104 <java classname=”sample.webservice.client.«name»Client”>

105 <classpath refid=”client.class.path”/>

106 </java>

107 <java classname=”sample.webservice.client.«name»ClientMain”>

108 <classpath refid=”client.class.path”/>

109 </java>

110 </target>

111 </project>

112

113 «ENDFILE»
114 «ENDDEFINE»
115

116 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»
117 «DEFINE createServicesXML FOR UP4WS::WebService»
118 «FILE ”services.xml” servicesXML−»
119 «REM»get the name of the Web service«ENDREM»
120 <service name=”«name»” scope=”application”>

121 «REM»get the name of the comment attached to the Web service Java class«ENDREM»
122 <description>

123 «ownedComment.get(0).body»
124 </description>

125 <messageReceivers>

126 <messageReceiver mep=”http://www.w3.org/2004/08/wsdl/in−only”

127 class=”org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver”/>

128 <messageReceiver mep=”http://www.w3.org/2004/08/wsdl/in−out”

129 class=”org.apache.axis2.rpc.receivers.RPCMessageReceiver”/>

130 </messageReceivers>

131 «REM»get the name of the Web service«ENDREM»
132 <parameter name=”ServiceClass”>sample.webservice.service.«name»</parameter>

133

134 </service>

135 «ENDFILE»
136 «ENDDEFINE»
137

138 «REM»−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−«ENDREM»

D.2 build.xml File

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

2 <project basedir="." default="generate.service" name="LibrarySystemService">

3

4 <property name="service.name" value="LibrarySystemService"/>

5 <property name="dest.dir" value="build"/>

6 <property name="dest.dir.classes" value="${dest.dir}/${service.name}"/>

7 <property name="dest.dir.lib" value="${dest.dir}/lib"/>

8 <property name="axis2.home" value="../../"/>

136
APPENDIX D. TRANSFORMATION RULES FOR GENERATING

CONFIGURATION FILES

9 <property name="repository.path" value="${axis2.home}/repository"/>

10

11 <path id="build.class.path">

12 <fileset dir="${axis2.home}/lib">

13 <include name="*.jar"/>

14 </fileset>

15 </path>

16

17 <path id="client.class.path">

18 <fileset dir="${axis2.home}/lib">

19 <include name="*.jar"/>

20 </fileset>

21 <fileset dir="${dest.dir.lib}">

22 <include name="*.jar"/>

23 </fileset>

24

25 </path>

26 <target name="clean">

27 <delete dir="${dest.dir}"/>

28

29 <delete dir="src" includes="sample/webservice/stub/**"/>

30 </target>

31

32 <target name="prepare">

33 <mkdir dir="${dest.dir}"/>

34 <mkdir dir="${dest.dir}/lib"/>

35 <mkdir dir="${dest.dir.classes}"/>

36 <mkdir dir="${dest.dir.classes}/META-INF"/>

37 </target>

38

39

40 <target depends="clean,prepare" name="generate.service">

41

42

43 <copy file="src/META-INF/services.xml" overwrite="true"

44 tofile="${dest.dir.classes}/META-INF/services.xml"/>

45

46

47 <javac destdir="${dest.dir.classes}"

48 includes="sample/webservice/service/**,sample/webservice/data/**" srcdir="src">

49

50 <classpath refid="build.class.path"/>

51 </javac>

52

53 <jar basedir="${dest.dir.classes}"

54 destfile="${dest.dir}/${service.name}.aar"/>

55

56 <copy file="${dest.dir}/${service.name}.aar" overwrite="true"

57 tofile="${repository.path}/services/${service.name}.aar"/>

58

59 </target>

60

61 <target depends="clean,prepare" name="rpc.client">

62

63 <antcall target="rpc.client.compile"/>

64

65 <antcall target="rpc.client.jar"/>

66

67 <antcall target="rpc.client.run"/>

D.3. SERVICES.XML FILE 137

68

69 </target>

70

71 <target name="rpc.client.compile">

72 <javac destdir="${dest.dir.classes}"

73 includes="sample/webservice/client/**,sample/webservice/data/**" srcdir="src">

74

75 <classpath refid="build.class.path"/>

76 </javac>

77 </target>

78

79 <target name="rpc.client.jar">

80 <jar basedir="${dest.dir.classes}"

81 destfile="${dest.dir.lib}/rpc-client.jar"

82 includes="sample/webservice/client/**,sample/webservice/data/**"/>

83 </target>

84

85

86 <target name="rpc.client.run">

87 <java classname="sample.webservice.client.LibrarySystemServiceClient">

88 <classpath refid="client.class.path"/>

89 </java>

90 <java classname="sample.webservice.client.LibrarySystemServiceClientMain">

91 <classpath refid="client.class.path"/>

92 </java>

93 </target>

94 </project>

D.3 services.xml File

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

2 <service name="LibrarySystemService" scope="application">

3

4 <description>

5 Library System Web Service

6 </description>

7 <messageReceivers>

8 <messageReceiver

9 class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"

10 mep="http://www.w3.org/2004/08/wsdl/in-only"/>

11

12 <messageReceiver

13 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"

14 mep="http://www.w3.org/2004/08/wsdl/in-out"/>

15 </messageReceivers>

16

17 <parameter name="ServiceClass">sample.webservice.service.LibrarySystemService

18 </parameter>

19

20 </service>

Appendix E

Transformation Rules for

Generating the README File

E.1 README Template File

1 «IMPORT UP4WS»
2

3 «DEFINE readmeTmpl FOR UP4WS::WebService»
4

5 «FILE ”README.txt”−»
6

7 Introduction

8 =======

9 This case study («name» Web Service) has been implemented to validate the proposed

10 UML profile for Web services and the code generation process.

11 The case study shows a complete working example that represents the modeling of Web services

12 with UML, and the model transformation and code generation of source code and configuration

13 files for the relevant platform.

14 In this case study, both perspectives of service provider and service client has been introduced.

15

16 Web Services using Apache Axis2

17 ===================

18 This program contains the source code for the «name» Web service.

19 This source code is resulted from a UML model developed using a UML Tool,

20 and transformed into a java code using Xpand language together with some Xtend

21 functions in Eclipse.

22

23 Prerequisites and Environment Settings

24 =======================

25 1. Windows as an Operating System (The case study has been implemented on

26 Windows XP and Vista)

27 2. Apache Ant 1.6.2 or later

28 3. Apache Axis2

29 4. Apache Tomcat

30 5. Java

31

32 How to deploy the service on the Application Server?

139

140
APPENDIX E. TRANSFORMATION RULES FOR GENERATING THE README

FILE

33 ===============================

34 1. Compile the server side (service provider side) classes with ANT.

35 2. Put the «name».aar inside the services folder in Tomcat

36 (...\apache−tomcat\webapps\axis2\WEB−INF\services)

37 3. Initiate the tomcat server by typing the relevant command e.g. tomcat.exe or startup.bat

38 from inside the bin folder.

39 4. Make sure that the service is correctly deployed by typing

40 http://localhost:8080/axis2/services/«name»?wsdl in your browser

41

42 Compile the Client side Classes by typing the following commands:

43 ======================================

44 First go to the root where the build.xml file resides:

45

46 javac −sourcepath src\sample\webservice\client −classpath build\«name»
47 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”

48 −d build\«name» src\sample\webservice\client\«name»Client.java

49

50 javac −sourcepath src\sample\webservice\client −classpath build\«name»
51 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”

52 −d build\«name» src\sample\webservice\rpcclient\«name»ClientMain.java

53

54 Running the Client Side classes by typing the following commands:

55 =====================================

56 First go to the root which ends with ...\build\«name»
57 N.B. The name of the folder that contains your Web service files

58 must hold the same name of your Web service.

59

60 java −Djava.ext.dirs=”C:\ApacheInstallation\axis2−1.5\lib”

61 sample.webservice.client.«name»ClientMain

62

63 Help

64 ===

65 Please contact (wdahman@informatik.uni−goettingen.de or arrivalsw@yahoo.com)

66 if you have any troubles running the Web service.

67

68 «ENDFILE»
69

70 «ENDDEFINE»

E.2 README.txt File

1

2 Introduction

3 =======

4 This case study (LibrarySystemService Web Service) has been implemented to validate

5 the proposed UML profile for Web services and the code generation process.

6 The case study shows a complete working example that represents the modeling

7 of Web services with UML, and the model transformation and code generation of

8 source code and configuration files for the relevant platform.

9 In this case study, both perspectives of service provider and service client has been introduced.

10

11 Web Services using Apache Axis2

12 ===================

13 This program contains the source code for the LibrarySystemService Web service.

14 This source code is resulted from a UML model developed using a UML Tool,

15 and transformed into a java code using Xpand language together with some Xtend

16 functions in Eclipse.

17

E.2. README.TXT FILE 141

18 Prerequisites and Environment Settings

19 =======================

20 1. Windows as an Operating System (The case study has been implemented on

21 Windows XP and Vista)

22 2. Apache Ant 1.6.2 or later

23 3. Apache Axis2

24 4. Apache Tomcat

25 5. Java

26

27

28 How to deploy the service on the Application Server?

29 ===============================

30 1. Compile the server side (service provider side) classes with ANT.

31 2. Put the LibrarySystemService.aar inside the services folder in Tomcat

32 (...\apache−tomcat\webapps\axis2\WEB−INF\services)

33 3. Initiate the tomcat server by typing the relevant command e.g. tomcat.exe or startup.bat

34 from inside the bin folder.

35 4. Make sure that the service is correctly deployed by typing

36 http://localhost:8080/axis2/services/LibrarySystemService?wsdl in your browser

37

38 Compile the Client side Classes by typing the following commands:

39 ======================================

40

41 First go to the root where the build.xml file resides:

42

43 javac −sourcepath src\sample\webservice\client −classpath build\LibrarySystemService

44 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”−d build\LibrarySystemService

45 src\sample\webservice\client\LibrarySystemServiceClient.java

46

47 javac −sourcepath src\sample\webservice\client −classpath build\LibrarySystemService

48 −extdirs ”C:\ApacheInstallation\axis2−1.5\lib”−d build\LibrarySystemService

49 src\sample\webservice\rpcclient\LibrarySystemServiceClientMain.java

50

51

52 Running the Client Side classes by typing the following commands:

53 =====================================

54

55 First go to the root which ends with ...\build\LibrarySystemService

56 N.B. The name of the folder that contains your Web service files must hold the same name of

57 your Web service.

58

59 java −Djava.ext.dirs=”C:\ApacheInstallation\axis2−1.5\lib”

60 sample.webservice.client.LibrarySystemServiceClientMain

61

62

63 Help

64 ===

65 Please contact (wdahman@informatik.uni−goettingen.de or arrivalsw@yahoo.com)

66 if you have any troubles running the Web service.

Appendix F

Executing the Web Service

F.1 Web Service Engine

The Web service engine is a collection of pieces of software and hardware for the
implementation and deployment of Web services applications. One of the popular
examples of Web service engines is the Apache Axis2. The Apache Axis2 has been
adopted during this research to deploy and implement Web services. The reason
behind this decision is the fact that it is an open source Web service engine, by
which the flexibility, and scalability are guaranteed. Furthermore, it has a large
scale of quality attributes with respect to software applications in general and
Web services in particular. For example, the Apache Axis2 supports flexibility,
stability, composition and extensibility of Web services. In addition, it allows the
addition of different add-ons for security, and new standards to increase reliability
[AA2c]. The Apache Axis2 Web services engine has two different Web services
implementations:

F.1.1 Apache Axis2/Java

As the name indicates this type is using Java as a programming language for the
implementation of Web services. The Apache Axis2/Java engine [AA2c] is used
in this research, since the Java Web services community has a large involvement
in the development of Web services. This option has the advantage that the
examples of Web services implemented in Java can be used in different Web
services engines without massive changes in the source code.

F.1.2 Apache Axis2/C

Apache Axis2/C [AA2a] is another implementation of the Apache Axis2 Web
service engine. It utilises the C programming language for the implementation

143

144 APPENDIX F. EXECUTING THE WEB SERVICE

of Web services. Apache Axis2/C supports different types of WS-standards like
WS-Addressing [WSA] and WS-ReliableMessaging [WSR].

F.2 Setting the Environments

In order to run the Web service, the different environments proposed in this thesis
have to be established, and configured. The Web service in this thesis is designed
to run on the following platform characteristics.

F.2.1 Web Service Engine

The Apache Axis2/Java is the Web service engine, which has been used for the
implementation and deployment of the Web service. Some artifacts belong to
the Apache Axis2 appear in the Java source code at the service client side. The
installation and configuration of the Apache Axis2 are at [AA2b].

F.2.2 Application Server

Although the Apache Axis2 has its own standalone application server, the Apache
Tomcat has been used as an application server to host the Web service. It is an
open source and can be easily configured with Apache Web service engine. The
installation and configuration of the Apache Tomcat are at [ATO].

F.2.3 Operating System

The operating system, on which the Web service has been executed, is Windows.
Environment variables have to be set and defined before executing the Web ser-
vice. Instructions on how to set and define these variables are at [AA2b, ATO]

F.2.4 Additional Considerations

The following points must be taken into consideration before running the Web
service.

• Export your model from the modelling tool to the generator tool in EMF
UML2 XMI.

• Locate your exported model inside the same Xpand project folder as spec-
ified in the workflow file.

• Locate the output folder and its contents inside the sample folder, which is
found inside the folder produced when unzipping the Apache Axis2 distri-
bution.

F.2. SETTING THE ENVIRONMENTS 145

• Follow the instructions found in the README.txt (see Listing 3.26) file,
which is automatically generated together with the output files.

List of Symbols

and Abbreviations

BPEL4WS Business Process Execution Language for Web Services

CIM Computation Independent Model

CORBA Common Object Request Broker Architecture

CRC Class, Responsibilities, Collaborations

CWM Common Warehouse Model

EMF Eclipse Modeling Framework

HTTP Hyper Text Transfer Protocol

IBM International Business Machines

ISBN International Serial Book Number

M2C Model-to-Code

M2M Model-to-Model

M2T Model-to-Text

MDA Model Driven Architecture

MOF Meta Object Facility

MWE Modeling Workflow Engine

OCL Object Constraint Language

OGSI Open Grid Services Infrastructure

OMG Object Management Group

147

148 LIST OF SYMBOLS AND ABBREVIATIONS

OMT Object Modeling Technique

PIM Platform Independent Model

PM Platform Model

PSM Platform Specific Model

RFP Request For Proposal

RUP Rational Unified Process

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

T2M Text-to-Model

T2T Text-to-Text

UDDI Universal, Description, Discovery, and Integration

UML Unified Modeling Language

UML2 Unified Modeling Language v.2.x

UP4WS UML Profile for Web Services

W3C World Wide Web Consortium

WSC Web Service Composition

WSDL Web Service Description Language

WSDM Web Services Development Model

WSRF WS-Resource Framework

XMI XML Metadata Interchange

XML Xtensible Mark-up Language

xUML Executable UML

List of Figures

1.1 Thesis Structure Overview . 6

2.1 Roles in the Service Oriented Architecture (SOA) 10
2.2 Sample Use Case Diagram . 14
2.3 Sample State Machine Diagram . 15
2.4 Sample Class Diagram . 16
2.5 UML Metamodel Layers (Example) 17
2.6 UML WidthAndLength Profile . 18
2.7 A UML View for MDA Models . 20
2.8 Protected Regions . 24
2.9 Book-Publisher Class Diagram . 28

3.1 Basic Extensions and Their Usage . 36
3.2 «ObjectStateMachine» Stereotype Implementation 41
3.3 «DataBehavior» Stereotype . 44
3.4 «OperationStateMachine» Stereotype Implementation 45
3.5 «Initializable» Stereotype Example . 48
3.6 «Enumerizable» Stereotype Example 49
3.7 Model Transformation and Code Generation Process 49

4.1 Web Services Development Model Overview 69
4.2 Sample Use Case Diagrams . 72
4.3 Class Diagram for Requirements Analysis 73
4.4 A Class Diagram in Architecture Design with UP4WS Stereotypes . . 76

5.1 Case Study Implementation . 82
5.2 Requirements Analysis: Library System Web Service Use Cases 84
5.3 Library System Web Services Initial Architecture 85
5.4 Class Diagram at Service Provider Side 88
5.5 Book Status . 89

149

150 LIST OF FIGURES

5.6 Code Generator Successful Execution 95
5.7 LibrarySystemService Folder After Generator Execution 96

A.1 Class Diagram at Service Client Side 109
A.2 getBookInLibrarySystemServiceClient 109
A.3 mainInLibrarySystemServiceClientMain 110
A.4 Class Diagram at Service Provider Side 110
A.5 BookStatus . 111
A.6 addBookInBookList . 111
A.7 getBookInBookList . 111
A.8 getBookInfoInBook . 111
A.9 addBookInLibrarySystemService . 112
A.10 getBookStatusInLibrarySystemService 112
A.11 lendBookInLibrarySystemService . 112
A.12 returnBookInLibrarySystemService . 112

Listings

2.1 Protected Regions in Xpand . 24
2.2 Template Definition . 25
2.3 Import Statement . 26
2.4 Extension Statement . 26
2.5 FILE Block Definition . 26
2.6 FOREACH Block . 27
2.7 EXPAND Statement A . 27
2.8 EXPAND Statement B . 27
2.9 IF Statement . 27
2.10 REM Block . 28
2.11 Xpand in Example . 28
2.12 Java Class Book . 30
2.13 Java Class Publisher . 30
2.14 Sample FOREACH in Xpand . 31
2.15 Xtend Sample Operation . 31
2.16 Using Extensions in Xpand . 31
3.1 createImport Template . 50
3.2 createDataElement Template . 51
3.3 Enumerizable Template . 51
3.4 gettersAndSetters Template . 52
3.5 methodTmpl Template . 52
3.6 Events Template . 53
3.7 States Template . 53
3.8 implementState Template . 53
3.9 serviceRoot Template . 54
3.10 createWebService Template . 55
3.11 proxyMethodServiceTmpl Template 55
3.12 dataContainerRoot Template . 56
3.13 createDataContainer Template . 57
3.14 ObjectBehavior Template . 58

151

152 LISTINGS

3.15 executeTransitionForHandleEvent Template 58
3.16 illegalTransitionHandler Template 59
3.17 proxyRoot Template . 59
3.18 createProxyImpl Template . 59
3.19 proxyMethodClientTmpl Template 60
3.20 clientRoot . 61
3.21 createClientImpl Template . 61
3.22 createException Template . 62
3.23 xmlRoot Template . 64
3.24 createBuildXML Template . 64
3.25 createServicesXML Template . 66
3.26 README Template . 67
5.1 MWE File for the Library System Web Service 89
5.2 Book Object Java Source Code . 91
5.3 services.xml File for the Library System Web Service 93
5.4 Library System Web Service README.txt File 94

List of Tables

3.1 Mapping Between Template Files and Stereotypes 50

4.1 CRC Card for Service Object . 72

5.1 CRC Card for Library System Service Object 83
5.2 CRC Card for Book Object . 84

153

Curriculum Vitae

Wafi Abed Zaidan Dahman

Persönliche Daten

Geburt 19. April 1978 in Gaza - Palästina

Staatsangehörigkeit Palästinensisch

Wissenschaftlicher Werdegang

1984-1990 Grundschule, Gaza ”A” School- Palästina

1990-1993 Al-Zaitoun School, Palästina

1993-1996 Al-Karmel Secondary School - Palästina

Abschluss:

06/1996 General Secondary Education Certificate

(Scientific Stream)

1996-1998 Gaza Training Center/College (GTC)

Abschluss:

Business and Office Practice (2J. Diploma)

1998-2001 Islamic University - Palästina

Faculty of Commerce - Accounting

Abschluss:

02/2001 Bachelor in Commerce - Accounting

2001-2003 The Arab Academy for Banking and Financial Sciences

Computer Science Department

Abschluss:

10/2003 Master in Computer Information Systems

seit 2006 Georg-August-Universität Göttingen - Germany

Doktorand - DAAD Stipendiat

am Institut für Informatik

Forschungsgruppe für Softwaretechnik für Verteilte Systeme

10 Juni 2010

155

	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Contribution
	1.2.1 UML Profile for Web Services
	1.2.2 Web Services Development Model
	1.2.3 Case Study

	1.3 Related Work
	1.4 Structure of the Thesis

	2 Foundations
	2.1 Service Oriented Architecture and Web Services
	2.1.1 Advantages of Web Services
	2.1.2 Web Services Standards

	2.2 Unified Modeling Language
	2.2.1 The Evolution of UML
	2.2.2 UML Diagrams
	2.2.3 UML Metamodelling
	2.2.4 Unified Modeling Language Extension Mechanism

	2.3 Model Driven Architecture
	2.3.1 Computation Independent Model
	2.3.2 Platform Independent Model
	2.3.3 Platform Model
	2.3.4 Platform Specific Model

	2.4 Model Transformation and Code Generation
	2.4.1 Code Generation
	2.4.2 Rules for Code Generation
	2.4.3 Integrating Manual Code
	2.4.4 Benefits of Code Generation
	2.4.5 Code Generation in Example

	3 UML Profile for Web Services
	3.1 Web Services Basic Extensions
	3.1.1 WebService
	3.1.2 DataContainer
	3.1.3 DataElement
	3.1.4 ProxyImplementation
	3.1.5 ProxyMethod
	3.1.6 Client
	3.1.7 ClientMain

	3.2 Making Web Services Executable
	3.2.1 Executable State Machines
	3.2.2 Auxiliary Extensions

	3.3 Profile Implementation
	3.3.1 Model Transformation and Code Generation
	3.3.2 Implementation Environment

	3.4 Summary

	4 Web Services Development Model
	4.1 Requirements Analysis
	4.1.1 Requirements Elicitation
	4.1.2 Requirements Specification and Modelling
	4.1.2.1 UML Support
	4.1.2.1.1 Use case diagram
	4.1.2.1.2 Class Diagram

	4.2 Web Service Design
	4.2.1 Realisation of Architecture Design
	4.2.1.1 UML Support
	4.2.1.1.1 Class Diagrams

	4.2.1.2 Identifying UML Extensions for the Web Service
	4.2.1.3 Allocating UML Extensions to the Design Architecture

	4.2.2 Realisation of Behaviour Design
	4.2.2.1 UML Support
	4.2.2.1.1 State Machine Diagrams

	4.2.3 Designing the Web Services Platform

	4.3 Web Service Implementation
	4.4 Summary

	5 Case Study: Library System Web Service
	5.1 Service Description
	5.2 Library System Web Service Analysis
	5.3 Library System Web Service Design
	5.3.1 Identifying and Allocating UML Extensions for the Library System Web Service
	5.3.2 Refinement of Library System Web Service Architecture
	5.3.3 Representing Library System Web Service Behaviour

	5.4 Library System Web Service Implementation
	5.4.1 Running the Generator
	5.4.1.1 Generating Java Source Code
	5.4.1.2 Generating the Configuration Files
	5.4.1.3 Generating the README.txt File

	5.4.2 Executing the Library System Web Service

	5.5 Summary

	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Outlook

	Bibliography
	A Case Study Model
	B Transformation Rules for Generating Java Code
	B.1 CommonTemplate Template File
	B.2 DataContainer Template File
	B.3 WebService Template File
	B.4 Proxy Template File
	B.5 Client Template file
	B.6 MyExtensions Xtend File

	C Generated Java Source Code
	C.1 Java Classes in the Service Provider Side
	C.1.1 Java Classes in data Folder
	C.1.1.1 Book.java
	C.1.1.2 BookList.java
	C.1.1.3 BookStatusEvents.java
	C.1.1.4 BookStatusStates.java

	C.1.2 Java Classes in service Folder
	C.1.2.1 LibrarySystemService.java

	C.2 Java Classes in the Service Client Side
	C.2.1 Java Classes in client Folder
	C.2.1.1 LibrarySystemServiceClient.java
	C.2.1.2 LibrarySystemServiceClientMain.java

	D Transformation Rules for Generating Configuration Files
	D.1 XmlFiles Template File
	D.2 build.xml File
	D.3 services.xml File

	E Transformation Rules for Generating the README File
	E.1 README Template File
	E.2 README.txt File

	F Executing the Web Service
	F.1 Web Service Engine
	F.1.1 Apache Axis2/Java
	F.1.2 Apache Axis2/C

	F.2 Setting the Environments
	F.2.1 Web Service Engine
	F.2.2 Application Server
	F.2.3 Operating System
	F.2.4 Additional Considerations

	List of Symbols and Abbreviations
	List of Figures
	Listings
	List of Tables

