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Acknowledgment

It is my great pleasure to express my indebtedness and deep sense of gratitude to

Prof. Dr. Laurent Bartholdi for supervising my PhD work. I am also very grateful

to Prof. Dr. Manfred Denker for his assistance and encouragement particularly with

chapter 1-3.

I would like to thank Dr. Manuel Stadlbauer, Dr. Sachar Kablutschko, Tania

Garfias Macedo and Achim Wuebker for several stimulating discussion. I acknowl-

edge the financial support of Gottlieb Daimler and Karl Benz Foundation with deep

appreciation which made this project possible. I am also very much thankful and

indebted to all the members of my family who inspired me every possible way though

we are far apart by time and distance. My very special thanks go to Prof. Dr. Hans

Strasburger for his encouragement and proofreading of my thesis. I am also indebted

to Silke Rossmann for her inspiration and help as I went through the very ups and

downs of life.

I would like to thank both the secretaries, Ms. Carmen Barann and Ms. Hertha

Zimmer, Department of Mathematics, University of Göttingen, and all of my friends

and colleagues who have extended their helping hands every now and then and have

taken every possible effort to create a nice environment for smooth learning.

i



ii



Contents

1 Introduction 1

2 Preliminaries 7

2.1 Rational Map and its Julia set . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Self-similar Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Results from Potential Theory . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Shift space and Ruelle Operator . . . . . . . . . . . . . . . . . . . . . 17

2.5 Entropy Pressure and Gibbs Measure . . . . . . . . . . . . . . . . . . 20

3 Julia Set as a Martin Boundary 25

3.1 Markov Chain on the Word Space . . . . . . . . . . . . . . . . . . . . 25

3.2 Martin Kernel and Martin Boundary . . . . . . . . . . . . . . . . . . 29

3.3 Determination of the Martin Kernel . . . . . . . . . . . . . . . . . . . 32

3.4 Symbolic Space and Julia Set . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Julia set as a Martin Boundary . . . . . . . . . . . . . . . . . . . . . 40

4 Various Measures on the Julia Set 47

4.1 Quasi-invariant Measure on the Julia Set . . . . . . . . . . . . . . . . 47

4.2 Gibbs and Equilibrium Measures . . . . . . . . . . . . . . . . . . . . 53

iii



4.3 Capacity of the Julia Set and Harmonic Measures . . . . . . . . . . . 61

4.4 An Example with a Rational Map . . . . . . . . . . . . . . . . . . . . 65

iv



Chapter 1
Introduction

The study of the dynamics of rational maps on the Riemann sphere

dates back to the early part of the 20th century and involves the work
of Pierre Fatou and Gaston Julia. Iterative dynamical systems had
recently appeared at the forefront of mathematics with the work of

Henri Poincaré on planetary motion; however, it was the announce-
ment of a competition in 1915 in France that prompted research on the

iteration of rational maps [3]. Only a few years before, Paul Montel
had begun his fundamental study of normal families of holomorphic

functions [46]. Julia won the prize in 1918, and Fatou published his
own, nearly identical results a few years later. The two are credited
for building the foundations of complex dynamics, and are particularly

praised for their clever applications of Montel’s theory of normal fam-
ilies [32], [25], [26], [27]. Their work generated a flurry of excitement,

but the subject soon fell out of favor.

Complex dynamics became popular in the last twenty years, due
in part to the advent of quality computer graphics showing the com-

plicated and beautiful objects which appear naturally through itera-
tion [31]. It was quickly discovered that as a branch of pure mathe-
matics, complex dynamics is rich and tantalizing, most especially for
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2 Introduction

its links to other branches of mathematics such as analysis in both one

and several variables, potential theory, and algebraic geometry.

The dynamics on the Fatou set are normal (in the sense of Mon-
tel), and are well understood whereas the dynamics on the Julia set
are quite the opposite – chaotic and unpredictable. The Julia set often

turns out to be fractal. Though Fractals were known to mathemati-
cians early in the twentieth century, they were not of much interest

then. The situation changed dramatically when Mandelbrot coined the
word “fractal” in 1975 and illustrated this mathematical object with

striking computer-constructed visualizations. He claimed (see Mandel-
brot [41], [42]) that many objects in nature are not well described as

collections of smooth components, and are rather better modelled and
studied by using the notion of fractals. His proposal was recognized,
and a new field of mathematics called “fractal geometry” developed

quickly. However, developing a theory of analysis on fractals is a new
challenge because of the absence of smooth structures on fractals. For

example, one can not define a differential operator like the Laplacian
from the classical viewpoint of analysis.

As fractals and chaos are closely related and often coexist, stochastic

tools, such as the Markov chain, martingales, or Brownian motion, are
well suited for analyzing the dynamics on such regions. It was Poincaré
who introduced the probabilistic concept to dynamics. In our case the

Markov chain will be used to model the dynamics.

The classical Poisson formula yields an integral representation of a
bounded harmonic function in the unit disk in terms of its boundary

values. Given a Markov operator P on a state space X, we can eas-
ily define harmonic functions as invariant functions of the operator P,

but in order to speak about their boundary values we need a bound-
ary, because no boundary is normally attached to the state space of a
Markov chain (as distinct from bounded Euclidean domains common
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Introduction 3

for the classical potential theory). One way to overcome this limitation
is to find a topological compactification of the state space naturally

connected with the Markov operator P. That is what was achieved by
Martin by constructing the famous Martin boundary and representing

superharmonic functions as integrals over the boundary (see Martin
[44]). The probabilistic interpretation of Martin’s result was proposed

by Doob [21]. The most important boundary from a probabilistic and
potential theoretic viewpoint is the Martin boundary which describes
all positive harmonic and superharmonic functions by integrals on the

boundary (see Dynkin [22]). In many cases, this also leads to a solution
of the associated Dirichlet problem. It is therefore a natural question

how to identify the Martin boundary. One of our main goals is to make
a contribution to this identification problem.

The existing proofs of such an identification theorem follow a cer-

tain pattern. First one assigns a topological boundary to the paths of
the chain and then proves that it coincides with the Martin boundary.

The Markov chain will be defined on a state space W , the tree of all
finite words over a fixed finite alphabet, and the transitions from one

word to another will be positive for certain pairs of words which are
precisely related to the actions of the branches of the rational map f
on the Riemann sphere C∞. There is a natural compactification of the

space of paths in W which can be identified with the Julia set J(f). We
then show that the Julia set agrees with the Martin boundary. In many

cases the Julia set turns out to be fractal, and it has been investigated
by many authors from different viewpoints. There have been several

approaches to introduce harmonic analysis on different fractal sets. We
mention a few of them: first of all the construction of Brownian motion
on the Sierpi’nski gasket due to Goldstein [29], Kusuoka [36] and Bar-

low/Perkins [6], secondly the identification of the Sierpi’nski gasket as
a Martin boundary of a Markov chain (with an intention to establish

harmonic analysis on the gasket) due to Denker and Sato ([16], [17]),
thirdly the geometric construction by Kigami ([33], [34]). This continu-
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4 Introduction

ing interest to develop harmonic analysis on fractal sets motivated our
research besides its value for the boundary theory of Markov chains.

The representation of the Julia set as the Martin boundary of a certain
random walk may well be considered as the first step towards another

approach to introduce harmonic analysis on the Julia set.

Our basic idea is to identify the set of finite words over a fixed fi-
nite alphabet with the successive contracting pieces of a set containing
the Julia set (and thus tending to the Julia set), and then to define a

Markov chain on the above set as the state space. We give an explicit
formula of the Martin kernel (see Theorem 55) and then identify the

Julia set with the space of exits (see Dynkin [22]). In the sequel, the
formula for the Martin kernel allows us to describe the Martin space

explicitly. There we show one of our main results, that the Julia set
is homeomorphic to the Martin boundary via a Lipschitz map (see

Lemma 64, Lemma 65, Lemma 66, Lemma 67). As a corollary to the
result we have also derived the representation theorem for harmonic
functions of the Markov chain. This result also shows that the Julia

set is the space of exits (see Theorem 68).

The identification of the Julia set J(f) with the Martin boundary
is obtained by using techniques from symbolic dynamics; more specifi-

cally, the one-sided shift space Σ+ is used to “code” the Julia set and
the Martin boundary. This connection enables us to relate different
thermodynamic quantities, such as entropy, pressure, measure of max-

imal entropy, Gibbs measure, and measure of equilibrium, to similar
potential theoretic quantities such as capacity, harmonic measures on

the Julia set with a suitable potential φ.

In our case we have, by using Mañé [43], identified the measure of
maximal entropy for the rational map f on the Julia set J ; it is noth-

ing but the image measure of the ( 1/d, · · · , 1/d︸ ︷︷ ︸
d−times

) Bernoulli measure
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(on Σ+) under the mapping Φ : Σ+ → J, where d is the degree of the
rational map f (see Corollary 62).

We have also proven that the harmonic measure μ1 (related to the

excessive function 1) on the Julia set J (in the sense of Dynkin [22]) is
the image measure of a nonatomic, quasi-invariant, conservative mea-

sure ν on the one-sided shift space Σ+ (see Theorem 69, Lemma 70,
Theorem 74 and Lemma 76). We have shown that this quasi-invariant
measure ν is equivalent to (1/d, 1/d, · · · , 1/d) Bernoulli measure (see

Lemma 75). We have also shown that the measure ν is a Gibbs measure
for a certain potential ψ on Σ+ (see Theorem 83), which arises from

the theory of thermodynamics and thus connects the two different theo-
ries. Corollary 62, Theorem 69 and Lemma 75 imply the equivalence of

the three measures: the Gibbs measure ν, (1/d, 1/d, · · · , 1/d)-Bernoulli
measure and the image measure of the measure of maximal entropy un-

der a certain homeomorphism Φ (see Corollary 84).

Moreover, by using the Ruelle-Perron-Frobenius theorem we have

deduced that the measure γ = hν is the unique σ-invariant probabil-
ity measure, called equilibrium measure for the potential ψ, with the

property that

P (ψ) = hγ(σ) +

∫
Σ+

ψ dγ = 0,

where h > 0 is the eigenfunction of the Ruelle operator Lψ and P (ψ)

denotes the pressure of ψ (see Corollary 85).

We have further found that the measure of equilibrium for the log-
arithmic potential in our case also has close ties with the classical har-
monic measure: it is well known (see e.g. Ransford [50]) that for a

domain D ⊂ C∞, with a non-polar boundary ∂D, there exists a unique
harmonic measure ωD for D. It is also known that if the rational map

R is hyperbolic, then its Julia set J(R) has zero area (see e.g. [12]).
This means that, the Julia set of a hyperbolic rational map is measure-
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6 Introduction

theoretically negligible. However, J(R) still can be a non-polar (which
roughly means “not negligible” in the potential theoretic sense) set

having a positive capacity C(J(R)). In that case there exists a unique
equilibrium measure for the logarithmic potential on J(R) (see e.g.

Ransford [50]).

For a compact non-polar subset K of C, the measure of equilibrium
for the logarithmic potential coincides with this unique harmonic mea-
sure ν = ωD(∞, ·), where D is the component of C∞ \ K containing

∞ (see e.g. Ransford [50]). As these results perfectly fit into our sce-
nario, we have deduced that these two measures coincide in our case

(see Theorem 90).

As our Julia set has special properties (totally disconnected, non-
polar), it is natural to expect that the logarithmic potential (for its

equilibrium measure) at each of its points would be the same. This
is indeed the case: we have proven that the logarithmic potential is a
constant function (see Theorem 91).

Since the logarithmic potential on our non-polar Julia set pν(ζ) =

I(ν), where I(ν) denotes the total energy for the equilibrium measure
ν, at each point ζ ∈ J, it turns out that the Fatou domain D = C∞ \ J
is regular (see e.g. Theorem 4.2.4 in Ransford [50]). Consequently, we
have a unique solution for the Dirichlet problem: that is, for a contin-

uous function φ : ∂D → R, there exists a unique harmonic function h
on D such that limz→ζ h(z) = φ(ζ) for all ζ ∈ ∂D (see Theorem 92).
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Chapter 2
Preliminaries

In this chapter we simply state basic results from complex dynamical
systems, ergodic theory, potential theory and fractal geometry which

are needed in the sequel.

2.1 Rational Map and its Julia set

A rational map f : C∞ → C∞ is a holomorphic dynamical system on

the Riemann sphere C∞ = C ∪ {∞}. Any such map can be written as
a quotient

f(z) =
P (z)

Q(z)
=
a0z

d + · · · + ad
b0zd + · · · + bd

of two relative prime polynomials P and Q. The degree of f can be
defined topologically or algebraically; it is the number of pre-images of

a typical point z, as well as the maximum of the degrees of P and Q.

It is a crucial fact that when f is a rational function of positive

degree d, then f is a d-fold map of C∞ onto itself: that is, for any
w ∈ C∞ the equation f(z) = w has precisely d solutions in z (counting

multiplicities).

We say that two rational maps R and S are conjugate if and only if

there is some Möbius map g with S = g ◦ R ◦ g−1.

An important property of conjugacy is that it respects iteration:

7



8 CHAPTER 2. PRELIMINARIES

that is, if S = g ◦ R ◦ g−1 then Sn = g ◦ Rn ◦ g−1. This means that we
can transfer a problem concerning R to a (possibly simpler) problem

concerning a conjugate S of R and then attempt to solve this in terms
of S. Yet another obvious property of conjugacy is that it respects fixed

points, explicitly, if S = g ◦ R ◦ g−1, then S fixes g(z) if and only if R
fixes z.

The transition probabilities of the Markov chain defined on the word
space W (see § 3.1) and the map Φ which establishes the homeomor-
phism between the shift space Σ+ and the Julia set J are given in terms

of inverse branches of a hyperbolic rational map. We now introduce all
these terminologies and results.

A point z is a critical point of a rational map R if R fails to be
injective in any neighborhood of z. A value w is a critical value for

R if it is the image of some critical point; that is, if w = R(z) for
some critical point z. If R is of degree d and w is not a critical value,

then R−1{w} consists of precisely d distinct points, say z1, · · · , zd. As
none of the zj are critical points, there are neighborhoods N of w, and
N1, · · · , Nd of z1, · · · , zd respectively, with R acting as a bijection from

each Nj onto N. It follows that for each j, the restriction Rj of the map
R to Nj has an inverse

R−1
j : N → Nj,

and we call these the branches of R−1 at w.

Given a rational map f : C∞ → C∞ of degree ≥ 2 on the Riemann
sphere C∞ the Fatou set, F (f), is defined as follows

F (f) = { z ∈ C∞ |∃ U ⊂ C∞ an open neighborhood of z so that

{fn|U}n≥0 is normal }
The Julia set, J(f), is then defined as the complement of the Fatou set,
i.e. J(f) = C∞\F (f). It is well known that J(f) is non-empty, perfect,

and fully invariant, i.e. f(J(f)) = J(f) = f−1(J(f)). Also note that
by definition J(f) is closed and hence compact, as C∞ is compact.

We consider hyperbolic rational maps in the thesis. The dynamics of
hyperbolic rational maps are best behaved and well understood. Now



2.1. RATIONAL MAP AND ITS JULIA SET 9

we give the definition of a hyperbolic rational map and state a theorem
which characterizes such maps.

Definition 1 The postcritical set P (f) is the closure of the forward
orbits of the critical points of f :

P (f) =
⋃

n>0, f ′(c)=0

fn(c)

The postcritical set plays a crucial role with respect to the attractors

of f. We now introduce the property of hyperbolicity.

Theorem 2 Let f be a rational map of degree d ≥ 2. The following
conditions are equivalent:
1. All critical points of f tend to attracting cycles under iteration.

2. The map f is expanding on its Julia set. That is, there exists a
conformal metric ρ on the sphere such that |f ′(z)|ρ > 1 for all z in the

Julia set J(f).
3. The postcritical set and the Julia set are disjoint:

P (f) ∩ J(f) = ∅.
Proof: We refer to McMullen [40].

Definition 3 A rational map f satisfying any (and hence all) of the
above three conditions is said to be hyperbolic.

Now we introduce the notion of exceptional points as they will play
an important role in establishing one of our results on the equivalent

measures on the Julia set.
For any z ∈ C∞, the backward orbit of z for a rational map R, is

the set

O−(z) = {w : for some n ≥ 0, Rn(w) = z}
= ∪n≥0R

−n{z},
and we call the points in O−(z) the predecessors of z. The following
theorem characterizes the exceptional points.
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Theorem 4 The backward orbit O−(z) of z is finite if and only if z is
exceptional.

Proof: We refer to Beardon [7].

The set of exceptional points for a rational map R is denoted by E(R).
The following theorem justifies the terminology by showing that such

points are indeed exceptional. The theorem will be used to prove one
of our results on equivalent measures.

Theorem 5 A rational map R of degree at least two has at most two

exceptional points. If E(R) = {ζ}, then R is conjugate to a polynomial
with ζ corresponding to ∞. If E(R) = {ζ1, ζ2}, where ζ1 = ζ2, then R

is conjugate to some map z �→ zd, where ζ1 and ζ2 correspond to 0 and
∞.

Proof: We refer to Beardon [7].

Corollary 6 If deg R ≥ 2, then the exceptional points of R lie in the

Fatou set F (R).

Proof: We refer to Beardon [7].

2.2 Self-similar Sets

In this section we simply give the definition of self-similar sets and self-
similar structures and state a few resuts which will be used to deduce

a result in our case. The details on self-similar sets can be found in
Kigami [35].

First we state a theorem that ensures uniqueness and existence of

self-similar sets.

Theorem 7 Let (X, d) be a complete metric space. If fi : X → X are
contractions with respect to the metric d for i = 1, 2, · · · , N, then there

exists a unique non-empty compact subset K of X that satisfies

K = f1(K) ∪ f2(K) ∪ · · · ∪ fN(K).

K is called the self-similar set with respect to {f1, f2, · · · , fN}.
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Proof: We refer to Kigami [35].

It is shown in Kigami [35] that the word space W (which consists
of words built from the alphabet A = {1, 2 · · · , N}) and the one-sided

shift space Σ+ are self-similar sets with respect to a set of suitable
contraction maps.

The notion of self-similar structure gives a topological description of

self-similar sets.

Definition 8 Let K be a compact metrizable topological space and let S

be a finite set. Also, let Fi be a continuous injection from K to itself for
any i ∈ S. Then (K,S, {Fi}i∈S) is called a self-similar structure if there
exists a continuous surjection π : Σ+ → K such that Fi ◦ π = π ◦ σi for

every i ∈ S, where Σ+ is the one-sided shift space, and σi : Σ+ → Σ+

is defined by

σi(w1w2w3 · · · ) = iw1w2w3 · · ·
for each w1w2w3 · · · ∈ Σ+.

Remark: It follows from the above definition that

K =
⋃
i∈S

Fi(K).

Obviously, if K is the self-similar set with respect to injective con-

tractions {f1, f2, f3, · · · , fN}, then (K, {1, 2, · · · , N}, {fi}Ni=1) is a self-
similar structure.

Proposition 9 If (K,S, {Fi}i∈S) is a self-similar structure, then the

corresponding surjection π is unique. In fact,

{π(ω)} =
⋂
m≥0

Fω1ω2···ωm(K)

for any ω = ω1ω2 · · · ∈ Σ+.

Proof: We refer to Kigami [35].
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Definition 10 Let L = (K,S, {Fi}i∈S) be a self-similar structure. We
define CL,K = ∪i,j∈S,i =j(Fi(K) ∩ Fj(K)), CL = π−1(CL,K) and PL =

∪n≥1σ
n(CL). CL is called the critical set of L and PL is called the post

critical set of L. We also define V0(L) = π(PL).

For ease of notation, we use C, P and V0 instead of CL, PL and V0(L)
as long as it can not cause any confusion.

The critical set and the post critical set play an important role in

determining the topological structure of a self-similar set. For example,
if C = ∅, (and hence P , V0 are all empty sets), then K is homeomorphic

to the (topological) Cantor set Σ+.

Proposition 11 Let L = (K,S, {Fi}i∈S) be a self-similar structure.

Then
(1) π−1(V0) = P .
(2) If Σw ∩ Σv = ∅ for w,w ∈ W , then Kw ∩Kv = Fw(V0) ∩ Fv(V0),
where Kw = Fw(K).

(3) C = ∅ if and only if π is injective.

Proof: We refer to Kigami [35].

Definition 12 Let L = (K,S, {Fi}i∈S) be a self-similar structure. L
is said to be post critically finite, or p.c.f. for short, if and only if the

post critical set PL is a finite set.

2.3 Results from Potential Theory

In this section we briefly mention few results from potential theory
which will be useful to prove a few of our results.

Definition 13 Let X be a topological space. We say that a function
u : X → [−∞,∞) is upper semicontinuous if the set {x ∈ X : u(x) <

α} is open in X for each α ∈ R. Also v : X → (−∞,∞] is lower
semicontinuous if −v is upper semicontinuous.
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Definition 14 Let U be an open subset of C. A function u : U →
[−∞,∞) is called subharmonic if it is upper semicontinuous and sat-

isfies the local submean inequality, i.e. given w ∈ U, there exists ρ > 0
such that

u(w) ≤ 1

2π

∫ 2π

0
u(w + reit)dt (0 ≤ r < ρ) (2.1)

Also v : U → (−∞,∞] is superharmonic if −v is subharmonic.

Potentials provide an important source of examples of superhar-
monic functions.

Definition 15 Let μ be a finite Borel measure on C with compact sup-
port. Its logarithmic potential is the function pμ : C → (−∞,∞] defined

by

pμ(z) =

∫
log

1

|z − w| dμ(w) (z ∈ C).

Theorem 16 pμ is superharmonic on C, and harmonic on C\(supp μ).

Also
pμ(z) = −μ(C) log |z| + O(|z|−1) as z → ∞.

Proof: We refer to Ransford [50].
Polar sets play the role of negligible sets in potential theory, much

as sets of measure zero do in measure theory. To define them, we first
need to introduce the notion of energy.

Definition 17 Let μ be a finite Borel measure on C with compact sup-

port. Its energy I(μ) is given by

I(μ) :=

∫ ∫
log

1

|z − w| dμ(z)dμ(w) =

∫
pμ(z) dμ(z).

To explain this terminology, think of μ as being a charge distribution
on C. Then pμ(z) represents the potential energy at z due to μ, and so

the total energy of μ is just
∫
pμ(z) dμ(z), in other words I(μ).

It is possible that I(μ) = +∞. Indeed some sets only support measures

of infinite energy. These are important enough to deserve having a
name.
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Definition 18 (a) A subset E of C is called polar if I(μ) = +∞ for
every finite Borel measure μ = 0 for which supp μ is a compact subset

of E.
(b) A property is said to hold quasi-everywhere (q.e.) on a subset S of

C if it holds everywhere on S \ E, for some Borel polar set E.

Clearly singleton sets are polar. Also every subset of a polar set is
polar. In the other direction, if a set is non-polar, then it contains a

compact subset which is non-polar (namely supp μ, for some measure
μ with I(μ) < +∞).

It is easy to see that a measure of finite energy can have no atoms.
More generally, measures of finite energy do not charge polar sets.

Theorem 19 Let μ be a finite Borel measure on C with compact sup-

port, and suppose that I(μ) < +∞. Then μ(E) = 0 for every Borel
polar set E.

Proof: We refer to Ransford [50].

Corollary 20 Every Borel polar set has Lebesgue measure zero.

Proof: We refer to Ransford [50].

Thus, quasi-everywhere implies almost everywhere.

Definition 21 The logarithmic capacity of a subset E of C is given by

c(E) := e−v(E),

where v(E) ≡ inf{I(μ) : μ ∈ Pc(E)}, Pc(E)is the collection of all Borel
probability measures μ on C whose support is a compact subset of E.

Here it is understood that e−∞ = 0, so that c(E) = 0 precisely when E
is polar. A set with positive capacity is called non-polar.

The next theorem lists a few properties of logarithmic capacity.
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Theorem 22 (a) If E1 ⊂ E2, then c(E1) ≤ c(E2.)
(b) If E ⊂ C, then c(E) = sup{c(K) : compact K ⊂ E}.
(c) If K is a compact subset of C then c(K) = c(∂eK), where ∂eK
denotes the exterior boundary of K.

Proof: We refer to Ransford [50].

Lemma 23 Let T (z) = az + b be a linear transformation and E1 =

T (E). Then c(E1) = |a|c(E).

Proof: We refer to Tsuji [54].

Lemma 24 If E is a continuum, then c(E) > 0.

Proof: We refer to Tsuji [54].

Theorem 25 If K is a compact set with positive capacity, then there

is a unique probability measure μ with support contained in K such that

I(μ) = v(K) := inf{I(ν) : ν ∈ P(K)},
where P(K) is the collection of all Borel probability measure on K.

Proof: We refer to Ransford [50].

Definition 26 If K is a compact set and μ ∈ P(K) such that I(μ) =
v(K), then μ is called an equilibrium measure for K. The corresponding

logarithmic potential pμ is called a conductor or equilibrium potential
of K.

Physical intuition would tend to suggest that if μ is an equilibrium
measure for K then pμ should be constant on K ( for otherwise charge

would flow from one part of K to another, disturbing the equilibrium).
The idea is confirmed by the next theorem:

Theorem 27 (Frostman’s Theorem) If K is a compact set and μ

is an equilibrium measure, then pμ ≤ v(K) on C and pμ = v(K) every-
where on K except for an Fσ set with capacity zero.
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Proof: We refer to Ransford [50].
Now we state a few results which are related to the Dirichlet problem

and harmonic measures for a proper subdomain D of C∞.

Definition 28 Let D be a proper subdomain of C∞ and let φ : ∂D → R

be a bounded function. The associated Perron function HDφ : D → R

is defined by

HDφ = sup
u∈U

u,

where U denotes the family of all subharmonic functions u on D such

that lim supz→ζ u(z) ≤ φ(ζ) for each ζ ∈ ∂D.

The next theorem simply states that HDφ is always a bounded har-
monic function.

Theorem 29 Let D be a proper subdomain of C∞, let φ : ∂D → R be
a bounded function. Then HDφ is harmonic on D, and

sup
D

|HDφ| ≤ sup
∂D

|φ|.

Proof: We refer to Ransford [50].

Definition 30 Let D be a proper subdomain of C∞, and let ζ0 ∈ ∂D.

A barrier at ζ0 is a subharmonic function b defined on D∩N, where N
is an open neighborhood of ζ0, satisfying

b < 0 on D ∩N and lim
z→ζ0

b(z) = 0.

A boundary point at which a barrier exists is called regular, otherwise
it is irregular. If every ζ ∈ ∂D is regular, then D is called a regular

domain.

Theorem 31 (Solution of the Dirichlet Problem) Let D be a

regular domain, and let φ : ∂D → R be a continuous function. Then
there exists a unique harmonic function h on D such that

lim
z→ζ

h(z) = φ(ζ)

for all ζ ∈ ∂D.
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Proof: We refer to Ransford [50].
We will use the following theorem to prove that our domain is a

regular one.

Theorem 32 Let D be a proper subdomain of C∞, and let ζ0 ∈ ∂D.

Set K = C∞ \D. Then the following assertions are equivalent:
(a) ζ0 is a regular boundary point of D;

(b) K is non-thin at ζ0.
If also ∞ ∈ D, then these are equivalent to:
(c) K is non-polar, and pν(ζ0) = I(ν), where ν is the equilibrium mea-

sure for K.

Proof: We refer to Ransford [50].

Remark: As we will be using only the equivalence of (a) and (c),
we skip the notion of thinness.

The following theorem will be used to relate the harmonic measure

to the equilibrium measure on the Julia set:

Theorem 33 Let K be a compact non-polar subset of C. Then its equi-
librium measure μ is given by

μ = ωD(∞, ·),
where D is the component of C∞ \K containing ∞.

Proof: We refer to Ransford [50].

2.4 Shift space and Ruelle Operator

Definition 34 Let A be a d × d matrix of zeros and ones (d ≥ 2),

where the (i, j)-th entry is zero precisely when it is a prohibited word of
length 2. We define

Σ := {x = (xn)
n=∞
n=−∞ : xn ∈ {1, · · · , d}, n ∈ Z, A(xn, xn+1) = 1}.

If {1, · · · , d} is given the discrete topology then Σ is compact with
the corresponding Tychonov product topology. The shift σ is defined by
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σ(x) = y, where yn = xn+1 i.e. all sequences are shifted one place to
the left. The pair (Σ , σ) is called a shift of finite type (or topological

Markov chain).

The matrix A is called irreducible if for each pair (i, j), 1 ≤ i, j ≤ d,
there exists n ≥ 1 such that An(i, j) > 0, where An is an n-fold product

of A with itself. Under this condition we define the period p of A to
be the highest common factor of {n : An(i, i) > 0, 1 ≤ i ≤ d}. When

p = 1, A is called aperiodic.
To every (two-sided) shift of finite type we can associate a (one sided)

shift of finite type (Σ+, σ+):

Σ+ = {x = (xn)
n=∞
n=0 : xn ∈ {1, · · · , d}, n ≥ 0, A(xn, xn+1) = 1}

and σ+x = y, yn = xn+1, n ≥ 0, i.e. all sequences are shifted one place

to the left, with the first term being deleted. As before, Σ+ is compact
with the corresponding Tychonov product topology.

An elementary, but important, difference is that whereas the two-
sided shift is a homeomorphism, the one-sided shift is not invertible
(but merely a local homeomorphism). There is a natural continuous

surjection π : Σ → Σ+ with π(x) = y, yn = xn, n ≥ 0, i.e. one
deletes the terms xn, n < 0. This surjection clearly satisfies the identity

π ◦ σ = σ+ ◦ π.
To simplify our notation as far as possible we shall write σ for both

σ and σ+. As we will use the one-sided shift space to “encode” our
Julia set, we study Σ+. The situation is very similar for Σ.

Given 0 < θ < 1 we can define a metric dθ on Σ+ by dθ(x, y) = θN ,
where N is the largest integer such that xi = yi, 0 ≤ i < N. For a
continuous function f : Σ+ → C and n ≥ 0 we define

varnf = sup{|f(x) − f(y)| : xi = yi, 0 ≤ i < n},

|f |θ = sup{varnf
θn

|n ≥ 0}
and |f |∞ = sup{|f(x)| : x ∈ Σ+}.
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It is easy to see that

|f(x) − f(y)| ≤ Cdθ(x, y) ⇐⇒ varnf ≤ Cθn, n = 0, 1, . . .

for some constant C > 0.
We let

F+
θ = F+

θ (Σ+)

= {f : f continuous, varnf ≤ Cθn, n = 0, 1, . . . , for some C > 0}.
Thus F+

θ is the space of Lipschitz functions with respect to the metric

dθ.
For f ∈ F+

θ we define the Ruelle operator Lf : F+
θ → F+

θ (or more
generally, Lf : C(Σ+) → C(Σ+), C(Σ+) being the space of continuous

functions on Σ+), by

(Lfw)(x) =
∑
σy=x

ef(y)w(y).

It is easy to see that Lf is a bounded linear operator. When f is real

and Lf1 = 1 we say that f or Lf is normalised.
We need the following result which is called the Ruelle-Perron-Frobenius

Theorem:

Theorem 35 Let f ∈ F+
θ be real valued and suppose A is aperiodic.

Then we have:

(i) There is a simple maximal positive eigenvalue β of Lf : C(Σ+) →
C(Σ+) with a corresponding strictly positive eigenfunction h ∈ F+

θ .

(ii) The remainder of the spectrum of Lf : F+
θ → F+

θ (excluding

β > 0) is contained in a disc of radius strictly smaller than β.

(iii) There is a unique probability measure μ such that L∗
fμ = βμ,

i.e.
∫ Lfvdμ = β

∫
vdμ for all v ∈ C(Σ+).

(iv) 1
βnLnfv → h

∫
vdμ uniformly for all v ∈ C(Σ+) where h is as

above and
∫
hdμ = 1.

Proof: We refer to Parry [47].
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2.5 Entropy Pressure and Gibbs Measure

Entropy and pressure are important quantities giving useful informa-
tion on the dynamics of a system. In this section we briefly mention a

few results on these two quantities together with their connections to
the Gibbs measure.

If C = {C1, · · · , Ck} is a partition of a measure space (X,B, μ) (i.e.,
the Ci’s are pairwise disjoint and X = ∪ki=1Ci), one defines the entropy

Hμ(C) =

k∑
i=1

(−μ(Ci) logμ(Ci)).

If D is another (finite) partition of that space,

C ∨ D = {Ci ∩Dj : Ci ∈ C, Dj ∈ D}.
Lemma 36 If D is a (finite) partition of (X,B, μ) and T is an auto-

morphism of (X,B, μ), then

hμ(T,D) = lim
m→∞

1

m
Hμ(D ∨ T−1D ∨ · · · ∨ T−m+1D)

exists.

Proof: We refer to Bowen [10].
Notation: The set of Borel probability measures on Σ+ which are

invariant (i.e. μ(σ−1E) = μ(E)) is denoted by Mσ(Σ
+).

Definition 37 Let μ ∈Mσ(Σ
+) and U = {U1, U2, · · · , Ud} where Ui =

{x ∈ Σ+ : x0 = i}. Then s(μ) = hμ(σ,U) is called the entropy of μ.

Suppose now that φ ∈ C(Σ+) and that a0a1 · · · am−1 are integers

between 1 and n satisfying Aakak+1
= 1. Write

sup
a0a1···am−1

Smφ = sup{
m−1∑
k=0

φ(σkx) : x ∈ Σ+, xi = ai, for all 0 ≤ 1 < m}

and Zm(φ) =
∑

a0a1···am−1
exp(supa0a1···am−1

Smφ).
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Lemma 38 For φ ∈ C(Σ+), the following limit

P (φ) = lim
m→∞

1

m
logZm(φ)

exists (called the topological pressure of φ).

Proof: We refer to Bowen [10].

Lemma 39 The topological pressure of f is P (f) = log β.

Proof: In order to show that P (f) = log β, we simply apply (iv)
of the Ruelle-Perron-Frobenius Theorem 35 to the function v which is

constantly equal to 1.
Remark: Note that since

sup
a0a1···am−1

Smφ ≥
m−1∑
k=0

φ(σk(x) ≥ −m‖φ‖,

we have
Zm(φ) ≥ exp( sup

a0a1···am−1

Smφ) ≥ exp(−m‖φ‖);

which in turn implies

logZm(φ) ≥ −m‖φ‖.
As φ is continuous on the compact space Σ+, φ is bounded. Hence the

pressure P (φ) is finite.

We need the following two theorems to prove one of our results.

Theorem 40 Entropy is a conjugacy invariant and hence an isomor-
phism invariant.

Proof: We refer to Walters [55]. �

Theorem 41 Let Ti : Xi → Xi (i = 1, 2) be a continuous transforma-
tion of a compact metrizable space and suppose Ti has a unique measure,



22 CHAPTER 2. PRELIMINARIES

μi, with maximal entropy. Suppose hμ1
(T1) = hμ2

(T2). If φ : X1 → X2 is
a bimeasurable bijection with φ ◦T1 = T2 ◦φ then μ1 ◦ φ−1 = μ2 [and so

φ is an isomorphism between the measure-preserving transformations
Ti on (Xi,B(Xi), μi)].

Proof: We refer to Walters [55].

�

Usually Gibbs measures are studied as invariant probability measures
in the literature. However, they can be non-invariant; the following

definition of the Gibbs measure appears in Parry [47].

Definition 42 A probability measure m on Σ+ is called a Gibbs mea-
sure if there exists ψ ∈ C(Σ+) such that

A ≤ m([x0x1 · · · xn])
exp (C · n+ Snψ(x))

≤ B

for n ≥ 0 and fixed constants A, B > 0, and C ∈ R.

Note that we do not necessarily require thatm should be σ-invariant.

The following proposition describes those measures which have the
Gibbs property for a certain class of functions.

Proposition 43 When f ∈ F+
θ is real and normalized we have the

following inequality:

exp(−|f |θ θn) ≤ m[x0 · · ·xn] exp(−f(x))

m[x1 · · ·xn] ≤ exp(|f |θ θn)

where |f |θ = sup
{
varnf
θn | n ≥ 0

}
, and L∗

fm = m as in Ruelle-

Perron-Frobenius’ Theorem.

Proof: We refer to Parry [47].

Corollary 44 m is a Gibbs measure with pressure P(f)=0.
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Proof: We refer to Parry [47].
Remark: The above two results can easily be adjusted to deal with

the case where f ∈ F+
θ and where we no longer necessarily assume

that Lf is normalized: we simply apply the above proposition to g =

f − log h ◦ σ + log h − log β, where h, β are the positive eigenfunction
and eigenvalue guaranteed by the Ruelle-Perron-Frobenius Theorem.
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Chapter 3
Julia Set as a Martin Boundary

In this chapter we prove that a totally disconnected Julia set of a hyper-
bolic rational map can be identified as a Martin boundary of a certain

Markov chain on the word space W . The definition of our Markov chain
and the notion of the Martin kernel and boundary appear in § 3.1 and
§ 3.2 respectively. We have calculated an explicit formula for the Mar-

tin kernel associated with the Markov chain in § 3.3. The notion of
shift space appears in § 3.4 where we have proven that the Julia set is

homeomorphic to the shift space via a Lipschitz map. The last § 3.5
contains the proof of the identification of the Julia set as a Martin

boundary of a certain Markov chain.

3.1 Markov Chain on the Word Space

Definition 45 Let A = {1, 2, · · · , d} be the alphabet of d letters (d ≥
2) and

W+ = {w1w2w3 · · ·wn : wi ∈ A, n ≥ 1}
be the space of finite words. The empty word is denoted by the formal
symbol ∅, which satisfies w∅ = ∅w = w for any element w ∈ W+.

Define the word space W = W+ ∪ {∅}.
For a fixed alphabet A = {1, 2, · · · , d}, a Markov chain with state

space W will be defined by the transition probabilities p(·, ·) on W ×W
25
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as given in Definition 46. The existence of such a Markov chain is well-
known (see Chung [13] or Meyn [45]):

Notation: For u ∈ W+, let u[n], 1 ≤ n ≤ d(u), denote the word

that is obtained from the word u by deleting n consecutive letters from
the right. We also put u(d(u)) = ∅. For example, if u = u1u2 · · ·ul,
then u[1] = u1u2 · · ·ul−1, u[2] = u1u2 · · · ul−2 and u[l] = ∅. We further
put

fu(z) = fu1
◦ fu2

◦ · · · ◦ ful
(z),

where fi (i = 1, 2, · · · , d) is an inverse branch of the rational map f
with degree d ≥ 2, and z, z ∈ J, is a (non-exceptional) point in a

sufficiently small neighborhood Uε of the Julia set J(f).

Definition 46 The one-step transition probability on W for a contin-
uous map φ : Uε → R, a constant c ∈ R, and x = x1x2 · · · xN , y =

y1y2 · · · yN ′ ∈ W , is defined by

p(x,y) := p(1; x,y) :=
e[φ(fy(z))−c] χ{w:w=x1x2···xN l, l=1,2,··· ,d}(y)∑

{w:w=x1x2···xN l, l=1,2,··· ,d} e[φ(fw(z))−c]

From Definition 46 we immediately have

p(1; x,y) =

∑d
l=1 e

[φ(fy(z))−c] χ{w:w=x1x2···xN l}(y)∑d
l=1 e

[φ(fxl(z))−c]

For d = 2 we have the following tree diagram (Figure 3.1) which

shows the transitions on the word space W . Each node in the diagram
represents a word and an arrow connecting two words depicts the one-

step transition.

Lemma 47 If p(1; x,y) > 0 for x ∈ W , y ∈ W+ and y = ua for
some u ∈ W , a ∈ A, then x = u.

Proof: The proof is obvious: If x = u, then from Definition 46 we
immediately have p(1; x,y) = 0. �
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Figure 3.1: Transitions on the word space

The n-step transition probabilities are defined recursively by

p(n; v,w) =
∑
u∈W

p(n− 1; v,u)p(1; u,w), v,w ∈ W , n ≥ 1,

where p(0; v,w) = δv(w) with δv denoting the Dirac function at v.

Clearly we have p(n; v,w) > 0 only if d(v,w) = n, hence the Green
function g : W ×W → R+ is well defined by

g(v,w) =

∞∑
n=0

p(n; v,w) = p(d(v,w); v,w), v,w ∈ W .

A word v is called an ancestor of a word w and w is called a successor

of v if g(v,w) > 0. This is denoted by v � w(or w � v). In particular,
if v � w and d(w)− d(v) = k, then v is called a k-ancestor of w. The

set of all k-ancestor of w is denoted by Anck[w]. A 1-ancestor of w is
also called a parent of w. By definition, every w ∈ W has at most one

parent.

Lemma 48 For any v,w ∈ W and 1 ≤ k ≤ d(v,w) we have

g(v,w) =
∑

d(v,u)=k, v�u�w

g(v,u)g(u,w) (3.1)
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Proof: We have

g(v,w) = p(d(v,w); v,w)

=
∑
u∈W

p(k; v,u)p(d(v,w) − k; u,w)

=
∑

d(v,u)=k, v�u�w

p(k; v,u)p(d(v,w) − k; u,w)

=
∑

d(v,u)=k, v�u�w

p(k; v,u)p(d(w) − d(u); u,w)

=
∑

d(v,u)=k, v�u�w

g(v,u)g(u,w)

�

Lemma 49 For any y ∈ W+, we have

g(∅,y) =
e[φ(fy(z))+φ(fy[1](z))+φ(fy[2](z))+···+φ(fy[d(y)−1](z))−d(y)c]

Θ(y[1])Θ(y[2])Θ(y[3]) · · ·Θ(y[d(y) − 1])Θ(∅),

where for v ∈ W

Θ(v) =

d∑
l=1

e[φ(fvl(z))−c].

Proof: We prove the lemma by induction on d(y). By using Defini-
tion 46, it is easy to see that the result holds for d(y) = 1. Assume that

the lemma is true for d(y) = k ≥ 1 and let y ∈ W , d(y) = k+ 1. Then
y can be written as y = ul′k+1 for some u = l′1l

′
2 · · · l′k ∈ W , l′k+1 ∈ A,
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and d(u) = k. Now by using equation (3.1) we obtain

g(∅,y) =
∑

d(∅,u′)=k, ∅�u′�y

g(∅,u′)g(u′,y)

= g(∅,u)g(u,y)

= g(∅,y[1])g(y[1],y)

= g(∅,y[1])p(1; y[1],y)

=
e[φ(fy[1](z))+φ(fy[2](z))+···+φ(fy[1][d(y[1])−1](z))−d(y[1])c]

Θ(y[2])Θ(y[3]) · · ·Θ(y[1][d(y[1]) − 1])Θ(∅) ×
e[φ(fy(z))−c]

Θ(y[1])

=
e[φ(fy(z))+φ(fy[1](z))+φ(fy[2](z))+···+φ(fy[1][d(y[1])−1](z))−(d(y[1])+1)c]

Θ(y[1])Θ(y[2])Θ(y[3]) · · ·Θ(y[1][d(y[1]) − 1])Θ(∅)
=

e[φ(fy(z))+φ(fy[1](z))+φ(fy[2](z))+···+φ(fy[d(y)−1](z))−d(y)c]

Θ(y[1])Θ(y[2])Θ(y[3]) · · ·Θ(y[d(y) − 1])Θ(∅)
since y[1][d(y[1]) − 1] = y[d(y) − 1]. �

3.2 Martin Kernel and Martin Boundary

We shall give a brief description of the theory of Martin boundaries

adapted to our purpose. The details can be found in Dynkin [22].

Let p(1; v,w) with v,w ∈ W be the transition probability and let

{Xn} be the associated Markov chain. The Markov operator P is de-
fined by

(Pf)(v) =
∑
w∈W

p(1; v,w)f(w), v ∈ W

for a non-negative function f on W .

A non-negative function f : W → R is called P -excessive if

(Pf)(v) ≤ f(v), v ∈ W ,

and P -harmonic if

(Pf)(v) = f(v), v ∈ W .
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The Martin kernel is defined by

k(v,w) =
g(v,w)

g(∅,w)
, v,w ∈ W .

By Lemma 49,g(∅, ·) is positive, so the Martin kernel is well defined for

g.
Now we define a metric ρ on W as in the following lemma:

Lemma 50 The map ρ : W ×W → R defined by

ρ(v,w) := |2−d(v) − 2−d(w)| +
∑
u∈W

a(u)
|k(u,w) − k(u, v)|

1 + |k(u,w) − k(u, v)| (3.2)

where {a(u); u ∈ W} is some fixed sequence of strictly positive numbers
such that

∑
u∈W a(u) = 1, is a metric on W .

Proof: Clearly ρ(v,w) ≥ 0, ρ(v, v) = 0 and ρ(v,w) = ρ(w, v)
for all v,w ∈ W . The triangle inequality follows from the following

inequality:

|α + β|
1 + |α + β| ≤

|α|
1 + |α| +

|β|
1 + |β| , α, β ∈ R.

Now we show that ρ(v,w) = 0 implies that v = w. Then from (3.2)
we have d(v) = d(w) and k(u,w) = k(u, v) for all u ∈ W . Letting

u = w in the last equality and using the fact that k(w,w) = 0 we
obtain v = w.

�

In this metric ρ, it is easy to see that a sequence {wn} in W is
Cauchy if and only if wn is eventually constant, say equal w ∈ W , or

d(wn) → ∞ and lim
n
k(v,wn) exists for any v ∈ W .

Two Cauchy sequences {wn} and {un} are called equivalent if

lim
n→∞ ρ(un,wn) = 0.
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Let W be the collection of all equivalence classes of Cauchy sequences
in W . Then W is the ρ-completion of W and is called the Martin space.

This is a compact metric space(see Lemma 54 below) with the extension
of ρ, and W is an open dense subset of W . The boundary

M = ∂W = W\W
is called the Martin boundary. Clearly, it is also a compact metric
space.

Lemma 51 For every fixed v ∈ W , the map w �→ k(v,w) is uniformly
continuous in the metric ρ.

Proof: Let ε > 0 be given. We need to show that there exists

δ = δ(ε) > 0 such that

ρ(w1,w2) < δ, w1, w2 ∈ W ⇒ |k(v,w1) − k(v,w2)| < ε.

Now as

ρ(w1,w2) = |2−d(w1) − 2−d(w2)| +
∑
u∈W

a(u)
|k(u,w2) − k(u,w1)|

1 + |k(u,w2) − k(u,w1)|

= |2−d(w1) − 2−d(w2)| + a(v)
|k(v,w2) − k(v,w1)|

1 + |k(v,w2) − k(v,w1)|
+

∑
u∈W , u=v

a(u)
|k(u,w2) − k(u,w1)|

1 + |k(u,w2) − k(u,w1)|,

and if we choose δ = ε
ε+1a(v), it follows

ρ(w1,w2) < δ ⇒ a(v)
|k(v,w2) − k(v,w1)|

1 + |k(v,w2) − k(v,w1)| < δ

⇒ |k(v,w2) − k(v,w1)| < ε

�

Lemma 52 Let (X, d) be a metric space and let A be a non-empty
subset of X. Then the mapping x �→ d(x,A) is uniformly continuous.
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Proof: Let ε > 0. Choose δ ≤ ε. Then,

d(x, y) < δ ⇒ |d(x,A)− d(y, A)| ≤ d(x, y) < δ ≤ ε.

Thus, d(x, y) < δ ⇒ |d(x,A) − d(y, A)| ≤ d(x, y) < ε. �

Lemma 53 Let (X, d1) be a metric space and A be a dense subset of
X. Let (Y, d2) be a complete metric space and f : A→ Y be a uniformly
continuous function. Then f can be extended uniquely to a uniformly

continuous function g : X → Y.

Proof: We refer to any standard text on metric spaces.

As a consequence of the above three lemmas, for every fixed v ∈ W the

functions w → k(v,w) and w → ρ(v,w) have extensions to uniformly
continuous functions on W . The extensions are also denoted by k(v, ζ),

ρ(v, ζ), ζ ∈ W .

Lemma 54 W is a compact metric space.

Proof: Let {wn}n∈N be any arbitrary but fixed sequence in W .

We note that the sequence {k(w,wn)}n∈N is a bounded sequence of real
numbers for fixed w ∈ W . So we can choose a subsequence {wN(n)}n∈N ⊂
W such that {k(w,wN(n))}n∈N is convergent. Then by using the prop-
erty of the metric ρ in (3.2) we can conclude that {wN(n)}n∈N is Cauchy

in W . Since W is complete, {wN(n)}n∈N converges in W . Thus W is
sequentially compact which is equivalent to compactness for metric
spaces.

3.3 Determination of the Martin Kernel

In this section we compute the n-step transition probability p(n; x,y)
with a view to calculating the Martin kernel. For simplicity, we set

S1 = {u ∈ W|u = xl, l = 1, 2, · · · , d}
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and

S2 = {u ∈ W|u = xl, l = 1, 2, · · · , d},

where x = x1x2 · · ·xN . Then

p(2; x,y) =
∑
u∈W

p(1; x,u)p(1; u,y)

=

(∑
u∈S1

+
∑
u∈S2

)
p(1; x,u)p(1; u,y)

=

(∑
u∈S1

+
∑
u∈S2

)[∑d
l1=1 e

[φ(fu(z))−c] χ{w:w=xl1}(u)∑d
l1=1 e

[φ(fxl1
(z))−c] ×

∑d
i1=1 e

[φ(fy(z))−c] χ{w:w=ui1}(y)∑d
i1=1 e

[φ(fui1
(z))−c]

]

=
∑
u∈S1

[∑d
l1=1 e

[φ(fu(z))−c] χ{w:w=xl1}(u)∑d
l1=1 e

[φ(fxl1
(z))−c] ×
∑d

i1=1 e
[φ(fy(z))−c] χ{w:w=ui1}(y)∑d
i1=1 e

[φ(fui1
(z))−c]

]

=
e[φ(fx1(z))−c]∑d
l1=1 e

[φ(fxl1
(z))−c] ×

∑d
i1=1 e

[φ(fy(z))−c] χ{w:w=x1i1}(y)∑d
i1=1 e

[φ(fx1i1
(z))−c]

+
e[φ(fx2(z))−c]∑d
l1=1 e

[φ(fxl1(z))−c] ×
∑d

i1=1 e
[φ(fy(z))−c] χ{w:w=x2i1}(y)∑d
i1=1 e

[φ(fx2i1(z))−c]

...

+
e[φ(fxd(z))−c]∑d
l1=1 e

[φ(fxl1
(z))−c] ×

∑d
i1=1 e

[φ(fy(z))−c] χ{w:w=xdi1}(y)∑d
i1=1 e

[φ(fxdi1
(z))−c]
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=
1∑d

l1=1 e
[φ(fxl1

(z))−c]

d∑
i2=1

[
e[φ(fxi2

(z))−c]∑d
l2=1 e

[φ(fxi2l2
(z))−c]×

d∑
i1=1

e[φ(fy(z))−c] χ{w:w=xi2i1}(y)

]

=

d∑
i1,i2=1

[
e[φ(fy(z))+φ(fxi2

(z))−2c] χ{w:w=xi2i1}(y)∑d
l1=1 e

[φ(fxl1
(z))−c]∑d

l2=1 e
[φ(fxi2l2

(z))−c]

]

We claim that p(n; x,y)

=

d∑
i1,i2,··· ,in=1

e[φ(fy(z))+φ(fxinin−1···i2(z))+···+φ(fxin(z))−nc]

Θ(x)Θ(xin)Θ(xinin−1) · · ·Θ(xinin−1 · · · i2) ×

χ{w:w=xinin−1···i2i1}(y)

Clearly, the claim holds for n = 1, 2. Suppose it holds for n. We show

that it also holds for n+ 1. Now

p(n+ 1; x,y) =
∑
u∈W

p(1; x,u)p(n; u,y)

=
∑
u∈W

[∑d
l1=1 e

[φ(fu(z))−c]χ{w:w=xl1}(u)∑d
l1=1 e

[φ(fxl1
(z))−c] ×

d∑
i1,i2,··· ,in=1

e[φ(fy(z))+φ(fuinin−1···i2(z))+···+φ(fuin(z))−nc]

Θ(u)Θ(uin)Θ(uinin−1) · · ·Θ(uinin−1 · · · i2)×

χ{w:w=uinin−1···i2i1}(y)
]

=
∑

u∈S1∪S2

[∑d
l1=1 e

[φ(fu(z))−c]χ{w:w=xl1}(u)∑d
l1=1 e

[φ(fxl1
(z))−c] ×

d∑
i1,i2,··· ,in=1

e[φ(fy(z))+φ(fuinin−1···i2(z))+···+φ(fuin(z))−nc]

Θ(u)Θ(uin)Θ(uinin−1) · · ·Θ(uinin−1 · · · i2)×

χ{w:w=uinin−1···i2i1}(y)
]



3.3. DETERMINATION OF THE MARTIN KERNEL 35

=
e[φ(fx1(z))−c]∑d
l1=1 e

[φ(fxl1
(z))−c] ×

d∑
i1,i2,··· ,in=1

e[φ(fy(z))+φ(fx1inin−1···i2(z))+···+φ(fx1in(z))−nc]

Θ(x1)Θ(x1in)Θ(x1inin−1) · · ·Θ(x1inin−1 · · · i2) ×

χ{w:w=x1inin−1···i2i1}(y)

+
e[φ(fx2(z))−c]∑d
l1=1 e

[φ(fxl1
(z))−c] ×

d∑
i1,i2,··· ,in=1

e[φ(fy(z))+φ(fx2inin−1···i2(z))+···+φ(fx2in(z))−nc]

Θ(x2)Θ(x2in)Θ(x2inin−1) · · ·Θ(x2inin−1 · · · i2) ×

χ{w:w=x2inin−1···i2i1}(y)
...

+
e[φ(fxd(z))−c]∑d
l1=1 e

[φ(fxl1
(z))−c] ×

d∑
i1,i2,··· ,in=1

e[φ(fy(z))+φ(fxdinin−1···i2(z))+···+φ(fxdin(z))−nc]

Θ(xd)Θ(xdin)Θ(xdinin−1) · · ·Θ(xdinin−1 · · · i2) ×

χ{w:w=xdinin−1···i2i1}(y)

=
d∑

in+1=1

e[φ(fxin+1
(z))−c]∑d

l1=1 e
[φ(fxl1

(z))−c] ×

d∑
i1,i2,··· ,in=1

e[φ(fy(z))+φ(fxin+1inin−1···i2(z))+···+φ(fxin+1in(z))−nc]

Θ(xin+1)Θ(xin+1in) · · ·Θ(xin+1inin−1 · · · i2) ×

χ{w:w=xin+1inin−1···i2i1}(y)

=

d∑
i1,i2,··· ,in+1=1

e[φ(fy(z))+φ(fxin+1in···i2(z))+···+φ(fxin+1
(z))−(n+1)c]

Θ(x)Θ(xin+1)Θ(xin+1in) · · ·Θ(xin+1in · · · i2) ×

χ{w:w=xin+1inin−1···i2i1}(y)
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=
d∑

i1,i2,··· ,in+1=1

e[φ(fy(z))+φ(fxin+1in···i2(z))+···+φ(fxin+1
(z))−(n+1)c]

Θ(x)Θ(xin+1)Θ(xin+1in) · · ·Θ(xin+1in · · · i2) ×

χ{w:w=xin+1inin−1···i2i1}(y)

Hence the claim is established.

Thus for x,y ∈ W , and in, in−1, · · · , i2, i1 ∈ A we have

p(n; x,y) =

⎧⎪⎨⎪⎩
e
[φ(fy(z))+φ(fxin···i2 (z))+···+φ(fxin (z))−nc]

Θ(x)Θ(xin)Θ(xinin−1)···Θ(xinin−1···i2) if y = xin · · · i2i1

0 otherwise
(3.3)

Now we are in a position to express the Martin kernel k(·, ·). For
x,y ∈ W , the numerator g(x,y) has the following form:

g(x,y) = p(d(x,y); x,y)

=
e[φ(fy(z))+φ(fy[1](z))+···+φ(fy[d(x,y)−1](z))−d(x,y)c]

Θ(y[1])Θ(y[2]) · · ·Θ(y[d(x,y) − 1])Θ(y[d(x,y)])

And the denominator g(∅,y) of the kernel becomes:

g(∅,y) =
e[φ(fy(z))+φ(fy[1](z))+···+φ(fy[d(y)−1](z))−d(y)c]

Θ(y[1])Θ(y[2]) · · ·Θ(y[d(y) − 1])Θ(∅)
Consequently, the Martin kernel k(x,y) is given by

k(x,y) =

⎧⎪⎨⎪⎩
Θ(y[d(x,y)+1]) Θ(y[d(x,y)+2]) ··· Θ(y[d(y)−1]) Θ(∅)
e
[φ(fy[d(x,y)](z))+φ(fy[d(x,y)+1](z))+···+φ(fy[d(y)−1](z))−d(x)c] if x � y

0 otherwise

As the Martin kernel obtained above is going to play an important

role, we record the result as a theorem.

Theorem 55 For x,y ∈ W , the Martin kernel has the following form:

k(x,y) =

⎧⎪⎨⎪⎩
Θ(y[d(x,y)+1]) Θ(y[d(x,y)+2]) ··· Θ(y[d(y)−1]) Θ(∅)
e
[φ(fy[d(x,y)](z))+φ(fy[d(x,y)+1](z))+···+φ(fy[d(y)−1](z))−d(x)c] if x � y

0 otherwise
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3.4 Symbolic Space and Julia Set

In this section we prove that a certain class of Julia sets can be identified
with the one-sided shift space via a Lipschitz map.

Definition 56 Let (X1, d1), (X2, d2) be metric spaces. A map f : X1 →
X2 is said to be Hölder continuous with exponent α, or α-Hölder, if there
exist real constants C, ε > 0 such that

d1(x, y) < ε ⇒ d2(f(x), f(y)) ≤ C(d1(x, y))
α,

is said to be Lipschitz continuous if it is 1-Hölder, and biLipschitz if it
is Lipschitz and has a Lipschitz inverse.

We need the following general result for our next theorem.

Proposition 57 Let X be a locally compact Hausdorff space, let K be
a compact subset of X, and let U be an open subset of X that includes

K. Then there is an open subset V of X that has a compact closure and
satisfies K ⊂ V ⊂ V ⊂ U.

Proof: We refer to Cohn [14].

Theorem 58 Let f be a hyperbolic rational map of degree d, where
d ≥ 2. Let its Julia set J(f) be totally disconnected. Then the map

Φ : Σ+ → J(f) (3.4)

defined by
Φ(w1w2w3 · · · ) := ∩n≥1fw1

◦ · · · ◦ fwn
(Uε), (3.5)

where Uε is a sufficiently small open set containing J(f) on which f is

expanding, is bijective and Lipschitz continuous. Moreover, the inverse
map Φ−1 is also continuous.

Proof: The existence of Uε follows from Proposition 57 simply by

taking X = C∞, K = J(f) and U = C∞ − P (f) and by using the fact
that f is hyperbolic.
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First, Φ is well defined: Since f is expanding on Uε, all its inverse
branches fwi

are contraction on Uε. Consequently, we have

fw1
◦ · · · ◦ fwn

(fwn+1
(Uε)) ⊂ fw1

◦ · · · ◦ fwn
(Uε) (3.6)

By using the compactness of J and the fact that σ(z,C∞ −Uε) > 0 for
all z ∈ J, we can obtain a nonempty closed neighborhood V ⊂ Uε of J

such that {fw1
◦ · · · ◦ fwn

(V )}n≥1 forms a decreasing sequence of sets.
As fw1

◦ · · · ◦ fwn
(V ) is compact, ∩n≥1fw1

◦ · · · ◦ fwn
(V ) is a non-empty

compact set. For A ⊂ C∞, the diameter of A, diam(A), is defined
by diam(A) = supz,z′∈A σ(z, z′). Set K = max1≤i≤dLip(fwi

). Then it
follows that diam(fi(A)) ≤ Kdiam(A). Hence

diam(fw1
◦ · · · ◦ fwn

(Uε)) ≤ Kndiam(Uε).

So diam(∩n≥1fw1
◦ · · · ◦ fwn

(Uε)) = 0. Thus ∩n≥1fw1
◦ · · · ◦ fwn

(Uε) con-
tains only one point and the map Φ is well-defined.

Second, Φ is one-one: Let w,w′ ∈ Σ+, w = w′. Let w,w′ differ at

their l-th coordinate, that is, wl = w′
l. This implies that

fwl
(Uε) ∩ fw′

l
(Uε) = φ.

Since each fwi
is one-one it follows that

fw1
◦ fw2

◦ · · · ◦ fwl
(Uε) ∩ fw1

◦ fw2
◦ · · · ◦ fw′

l
(Uε) = φ.

Hence Φ(w) = Φ(w′), as required.

Third, Φ is onto: Let z0 ∈ J(f). We produce w ∈ Σ+ such that

Φ(w) = z0. Since J(f) ⊂ ∪di=1fi(Uε), where fi (i = 1, 2, · · · , d) are
inverse branches of f, it follows that there exist unique i ∈ {1, 2, · · · , d}
such that z0 ∈ fi(Uε). Now, the proof continues by induction.

Assume z0 ∈ S := fwl
◦ fw2

◦ · · · ◦ fwn
(Uε) ∩ J(f). Since

[∪dj=1fw1
◦ fw2

◦ · · · ◦ fwn
◦ fj(Uε)] ∩ J(f)

= fw1
◦ fw2

◦ · · · ◦ fwn
[∪dj=1fj(Uε)] ∩ J(f)

= fw1
◦ fw2

◦ · · · ◦ fwn
(Uε) ∩ J(f),



3.4. SYMBOLIC SPACE AND JULIA SET 39

it follows that z0 is in fw1
◦ fw2

◦ · · · ◦ fwn
◦ fwn+1

(Uε)∩J(f) for a unique
wn+1 in {1, 2, · · · , d}. Hence Φ(w1w2 · · · ) = z0.

Fourth, Φ is continuous, and in fact Lipschitz: Let w = w1w2w3 · · ·
be an arbitrary but fixed point in Σ+. We show that Φ is continuous
at w.

Consider the following set of points in Σ+ :

N (w) := {v ∈ Σ+ : vi = wi, i = 1, 2, · · · , m}
That means, the set N (w) consists of points in Σ+ that coincide with

w up to its m-th coordinate (not that we can make m as large as we
want). Clearly for v ∈ N (w) we have

Φ(w),Φ(v) ∈ fw1
◦ fw2

◦ · · · ◦ fwm
(Uε)

Hence

σ(Φ(w),Φ(v)) ≤ diam(fw1 ◦ fw2 ◦ · · · ◦ fwm(Uε))

≤ Kmdiam(Uε)

This immediately implies that Φ is continuous (in fact uniformly con-

tinuous) on Σ+. And that Φ is Lipschitz also follows from the same
inequality simply by choosing r, C > 0 such that K < r < 1 and
C ≥ diam(Uε)/r; since then we have

σ(Φ(w),Φ(v)) ≤ rmrC ≤ Cρ(w, v)

Finally, Φ−1 is continuous: This follows from a general result (see
Aggarwal [1]) that states that if Φ is a continuous bijection from a
compact topological space X onto a Hausdorff space Y, then Φ is a

homeomorphism.

Corollary 59 Let σ : Σ+ → Σ+ be the left shift map on Σ+. Then σ is
topologically conjugate to the rational map f : J → J. In other words,
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we have Φ ◦ σ = f ◦ Φ; that is, the following diagram commutes:

Σ+ σ−−→ Σ+

Φ

⏐⏐� ⏐⏐�Φ

J −−→
f

J

Corollary 60 The topological entropy htop(f) of the map f : J → J is

log d.

Corollary 61 For a continuous map ψ : J → R we have

P (f, ψ) = P (σ, ψ ◦ Φ).

Proof: This follows from Theorem 9.8 at Walter [55].

Corollary 62 The measure, say μm, of maximal entropy for the ratio-

nal map f : J → J is equal to the image measure of the (1/d, · · · , 1/d)
Bernoulli measure, say μb, under the mapping Φ; that is: μb◦Φ−1 = μm.

Proof: The existence of a unique measure of maximal entropy for the

rational map f : J → J is established by Mañé [43]. Now the corollary
follows from Theorem 40 and Theorem 41.

Corollary 63 Let J be the Julia set in the above Theorem 58. Then
(J, {1, 2, · · · , d}, {fi}di=1), where the fi are the inverse branches of the

rational map f, is a postcritically finite self-similar structure.

Proof: The proof follows from Proposition 11.

3.5 Julia set as a Martin Boundary

In this section we identify the Julia set with the Martin boundary M
of the transition probability function defined in Section 3.1. Since by

Theorem 58 the Julia set is homeomorphic to the space Σ+, it suffices
to show the existence of a homeomorphism

H : Σ+ →M.



3.5. JULIA SET AS A MARTIN BOUNDARY 41

Lemma 64 Let x = {xk} be an infinite sequence of letters and define

wn = x1x2x3 · · · xn, n ≥ 1.

Then T0(x) = {wn} is a Cauchy sequence in W = (W , ρ).

Proof: Let u = u1u2 · · ·um be any word. We may assume that

d(wn) = n (also d(wn′) = n′) is sufficiently large, say d(wn) ≥ m + 1.
If wm = u, then u � wn and consequently k(u,wn) = 0 for any

n ≥ m+ 1. Thus ρ(wn,wn′) → 0 as n, n′ → ∞.

Without loss of generality we may assume that n′ > n. If wm = u,

then wn (also wn′) is a successor of u. Since k(u,wn) and k(u,wn′)
has got the same value according to Theorem 55 for all n, n′ ≥ m + 1,

it also follows that ρ(wn,wn′) → 0 as n, n′ → ∞.

�

In view of Lemma 64 we can define the map

H : Σ+ →M

by setting H(x) := {wn : n ≥ 1}̃, where wn = x1x2 · · ·xn and x =
(xm) ∈ Σ+, and where {wn : n ≥ 1}̃ denotes the equivalence class

of the Cauchy sequence {wn : n ≥ 1}. We shall prove that H is a
homeomorphism.

Lemma 65 The map H : Σ+ →M defined above is one-to-one.

Proof: Suppose x, y ∈ Σ+, and x = y. We need to show that

H(x) = H(y). Define

xn := x1x2 · · · xn and yn := y1y2 · · · yn
It follows from Lemma 64 that both the sequences (xn) and (yn) are
Cauchy in (W , ρ). It suffices to prove that

lim
n→∞ ρ(xn,yn) = 0.
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As x = y, define k := min{l ≥ 1 : xl = yl}. Now let us put u′ =
x1x2 · · ·xk−1xk (= y1y2 · · · yk−1xk). Then∑

u∈W
a(u)

|k(u,yn) − k(u,xn)|
1 + |k(u,yn) − k(u,xn)|

= a(u′)
|k(u′,yn) − k(u′,xn)|

1 + |k(u′,yn) − k(u′,xn)| +∑
u∈W , u =u′

a(u)
|k(u,yn) − k(u,xn)|

1 + |k(u,yn) − k(u,xn)|

≥ a(u′)
|k(u′,yn) − k(u′,xn)|

1 + |k(u′,yn) − k(u′,xn)|
Now as u′ � yn, we have k(u′,yn) = 0, whereas k(u′,xn) = 0 since

u′ � xn. Thus the above inequality takes the following form:∑
u∈W

a(u)
|k(u,yn) − k(u,xn)|

1 + |k(u,yn) − k(u,xn)| ≥ a(u′)
|k(u′,xn)|

1 + |k(u′,xn)|
Since a(u′) > 0 and the value of k(u′,xn) is also positive and constant
for all n, it follows that

lim
n
ρ(xn,yn) = 0.

�

Lemma 66 The map H : Σ+ →M defined above is surjective.

Proof: Let {wn} be a Cauchy sequence in W . Then, since A is a
finite set, there exists a subsequence {wn(1,k); k ≥ 1} such that the first

letter of all wn(1,k), k ≥ 1, is x1 ∈ A. Next we can extract a subse-
quence {wn(2,k); k ≥ 1} of {wn(1,k); k ≥ 1} such that the second letter
of all wn(2,k), k ≥ 1, is x2 ∈ A. Similarly we can extract a subsequence

{wn(j+1,k); k ≥ 1} of {wn(j,k); k ≥ 1} such that the (j + 1)-th letter of
all wn(j+1,k), k ≥ 1, is xj+1 ∈ A. Define w0

k = wn(k,k), k ≥ 1. Then w0
k,

being a subsequence of {wn}, is a Cauchy sequence. Moreover, {w0
k}

is equivalent to {wn} :
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ρ(wk,w
0
k) = |2−d(wk) − 2−d(w

0
k)| +

∑
u∈W

a(u)
|k(u,w0

k) − k(u,wk)|
1 + |k(u,w0

k) − k(u,wk)|
≤ |2−d(wk) − 2−d(w

0
k)| +

∑
u∈W , d(u)≥p

a(u)

+
∑

u∈W , d(u)<p

|k(u,w0
k) − k(u,wk)|

Clearly the first term on the right tends to zero as k → ∞. The
second term can be made arbitrarily small since

∑
u∈W a(u) = 1. And

since {wk} is Cauchy, ρ(wk,w
0
k) → 0 as k → ∞. Thus, by uniform con-

tinuity of k(u, ·) each term of the finite sum tends to zero. Hence {wk}
and {w0

k} belong to the same equivalence class of Cauchy sequences.

Now consider the sequence {vn}, where vn = x1x2 · · ·xn. By Lemma 64,
{vn} is a Cauchy sequence. We claim that {vn} and {w0

k} are equiv-

alent, that is, limk→∞ ρ(w0
k, vk) = 0. Clearly, |2−d(w0

k) − 2−d(vk)| → 0
since d(w0

k) and d(vk) tend to infinity as k → ∞. Now

∑
u∈W

a(u)
|k(u, vk) − k(u,w0

k)|
1 + |k(u, vk) − k(u,w0

k)|
≤

∑
u∈W , d(u)≥p

a(u) +

∑
u∈W , d(u)<p

|k(u, vk) − k(u,w0
k)|

Depending on the situation of vk, whether or not v′
ks are successors

of the u′s ( if so, w0
k’s are also successors of u′s ), the second term

on the right is always zero. Thus it follows that {vn} is equivalent to
{wk}. So they are in the same equivalence class of Cauchy sequences.

Now, by construction, it follows that if we take x = x1x2x3 · · · ∈ Σ+,
then H(x) = {wn : n ≥ 1}̃. Hence H is surjective.

Lemma 67 The map H : Σ+ →M defined above is continuous.
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Proof: Let {x(n)} be a convergent sequence in Σ+ : x(n) → u. We

show H(x(n)) → H(u) as n → ∞, where H(x(n)) = {x̄(n)
k : k ≥ 1}̃,

H(u) = {ūk : k ≥ 1}̃ and x̄
(n)
k := x

(n)
1 x

(n)
2 · · ·x(n)

k , ūk := u1u2 · · · uk.
Then

ρ(H(x(n)), H(u)) = lim
k→∞

ρ(x̄
(n)
k , ūk)

= lim
k→∞

(
|2−d(x̄(n)

k ) − 2−d(ūk)| +
∑
v∈W

a(v)
|k(v, ūk) − k(v, x̄

(n)
k )|

1 + |k(v, ūk) − k(v, x̄
(n)
k )|

)
≤ lim

k→∞
|2−d(x̄(n)

k ) − 2−d(ūk)| +
∑

v∈W d(v)≥p
a(v) +

lim
k→∞

∑
v∈W , d(v)<p

|k(v, ūk) − k(v, x̄
(n)
k )|

Hence the result follows by taking the limit on both sides as n→ ∞.

�

We are now in a position to prove a representation theorem for har-

monic functions. We recall from Dynkin [22] that every excessive func-
tion h : W → R+ has a representation

h(v) =

∫
J∪W

k(v, y)μh(dy)

for some finite measure μh. Moreover, each function ky defined by
ky(v) = k(v, y) is excessive. The space of exits consists of those ξ ∈ J

for which μkξ
is the unit mass in ξ.

Theorem 68 (1) The function w �→ ky(w) = k(w, y) is P -harmonic
on W for every y ∈ J.
(2) J is the space of exits.

(3) For every P -excessive function h ≥ 0 there exists a unique finite
measure μh on W ∪ J such that

h(w) =

∫
J∪W

k(w, y)μh(dy)
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(4) For every P -harmonic function h ≥ 0 there exists a unique finite

measure μh on J such that

h(w) =

∫
J

k(w, y)μh(dy)

(5) For every bounded P -harmonic function h ≥ 0, μh is absolutely

continuous with respect to μ1 with bounded Radon-Nikodym derivative
φ such that

h(w) =

∫
J

k(w, y)φ(y)μ1(dy).

We also have

lim
n→∞h(Xn) = φ(X∞) Pw-almost sure ∀w ∈ W
∃X∞ such that h(w) = Ew[φ(X∞)] ∀w ∈ W .

(6) Let φ be a non-negative μ1-integrable function on J. Then

h(w) =

∫
J

k(w, y)φ(y)μ1(dy)

defines a P -harmonic function on W and

lim
n→∞h(Xn) = φ(X∞) Pw-almost sure ∀w ∈ W .

Here {Xn|n ∈ N} denotes the associated Markov chain and Pw is the
probability measure concentrated on the paths starting from w, given
by

Pw[X0 = x0,X1 = x1, · · · ,Xn = xn] = δw,x0p(x0,x1)p(x1,x2) · · · p(xn−1,xn).
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Proof: (1) Let y ∈ J and v ∈ W be fixed. Then

Pky(v) =
∑
u∈W

p(v,u)ky(u)

=
∑
u∈W

p(v,u) lim
w→y

g(u,w)

g(∅,w)

=
∑
u∈W

lim
w→y

∑∞
n=0 p(v,u)p(n,u,w)

g(∅,w)

= lim
w→y

∑∞
n=0 p(n+ 1, v,w)

g(∅,w)

= lim
w→y

g(v,w) − δv(w)

g(∅,w)

= ky(v)

Hence ky is P -harmonic.
(2) Let y ∈ J. Since ky is P -harmonic, by Dynkin [22] the measure

μky
has its support in J. Therefore it suffices to show that

J \ {y} =
⋃

v∈W ; k(v, y)=0

{ξ ∈ J : k(v, ξ) > 0}. (3.7)

Indeed, if v ∈ W and k(v, y) = 0, then

0 = k(v, y) =

∫
J

k(v, ξ)μky
(dξ),

so that μky
(ξ : k(v, ξ) > 0) = 0.

Let ξ ∈ J, ξ = y. Express Φ−1(ξ) = ξ1ξ2 · · · and Φ−1(y) = y1y2 · · ·
as the two points of Σ+ by using the homeomorphism Φ. Let s denote
the smallest integer for which ξs = ys. Consider v := ξ1ξ2 · · · ξk and

u = y1y2 · · · yk for some k > s. Then obviously k(v,u) = 0 and hence
also k(v, y) = 0. Since k(v, ξ) > 0 by construction of v, it follows that
equation (3.7) holds.

The remaining parts follows from Dynkin [22].



Chapter 4
Various Measures on the Julia Set

In this chapter we study different measures on our totally disconnected
Julia set identified as a Martin boundary of a certain Markov chain

on the word space W . In Section § 4.1 we prove that the harmonic
measure μ1 (in the sense of Dynkin [22]) on the Julia set J is the

image measure of a nonatomic, quasi-invariant, conservative measure
ν on the one-sided shift space Σ+. We will also show that this quasi-

invariant measure ν is a Gibbs measure for a certain potential ψ on
Σ+. In Section § 4.2, we then prove that the measure ν gives rise to

an equilibrium measure γ = hν (where h is the eigenfunction of a
suitable transfer operator). Next, in Section § 4.3 we show that our
Julia set is non-polar and then, by using that property, we prove that

the logarithmic potential pμ(z), for z ∈ J, is a constant function, where
μ is the equilibrium measure supported on J. As a consequence of these

results it will turn out that the Fatou domain D = C∞ \ J is regular
and we have a unique solution for the Dirichlet problem correspoding

to this domain D in our case.

4.1 Quasi-invariant Measure on the Julia Set

We have seen that the totally disconnected Julia set J of a hyperbolic
rational map can be identified with the Martin boundaryM of a certain

47
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Markov chain and in the sequel we will not distinguish between them.

Define hn : Σ+ �→ W , n ∈ N by

hn(x) := x1x2 · · · xn ∈ Wn

for x = x1x2 · · · ∈ Σ+.

Theorem 69 The harmonic measure μ1 on J in Theorem 68 coincides
with the measure μ := ν ◦ H−1 (called image measure of ν under the

mapping H), where ν is the measure on Σ+ such that for v ∈ W

ν([v]) =

∏d(v)−1
i=0 e[φ(fv[i](z))]∑d

l=1 e
φ(fv[1]l(z))

∑d
l=1 e

φ(fv[2]l(z)) · · · ∑d
l=1 e

φ(fl(z))

Proof: By Theorem 68, the harmonic measure μ1 is uniquely deter-
mined by

1 =

∫
J

k(v, ξ)μ1(dξ), ∀v ∈ W .

From the transformation rule we know that∫
J

k(v, y)μ(dy) =

∫
Σ+

k(v, H(ω))ν(dω)

for any fixed v ∈ W .
Therefore it suffices to show that for every fixed v ∈ W we have∫

Σ+

k(v, H(ω))ν(dω) = 1. (4.1)

We note that for every v ∈ W we have

k(v, H(ω)) = lim
n→∞ k(v, hn(ω))

and

k(v, hn(ω)) =
Θ(v[1]) Θ(v[2]) · · · Θ(∅)∏d(v)−1

i=0 e[φ(fv[i](z))−c]

for all n ≥ 1.
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Thus for every v ∈ W we have∫
Σ+

k(v, H(ω)) ν(dω)

=

∫
Σ+

lim
n→∞ k(v, hn(ω))ν(dω)

=

∫
Σ+

Θ(v[1]) Θ(v[2]) · · · Θ(∅)∏d(v)−1
i=0 e[φ(fv[i](z))−c]

ν(dω)

=
Θ(v[1]) Θ(v[2]) · · · Θ(∅)∏d(v)−1

i=0 e[φ(fv[i](z))−c]

∫
[v]

ν(dω)

The last equality holds since k(v, hn(ω)) = 0 if ω does not belong to

the cylinder set [v]. Once the expression outside the integral sign is
simplified, it follows that∫

Σ+

k(v, H(ω))ν(dω) = 1.

�

Lemma 70 ν is a σ-finite, nonatomic measure on Σ+.

Proof: ν, being a probability measure, is obviously σ-finite. By ex-
pressing a point x ∈ Σ+ as the intersection of a sequence of decreasing

cylinder sets, it is easy to see that ν({x}) = 0. �

Definition 71 A probability measure μ on Σ+ is quasi-invariant if
σ∗μ� μ and μ� σ∗μ, where σ∗μ is the image measure of μ under the

map σ.

We will use the following two results to prove the quasi-invariance

of our measure ν:

Lemma 72 Let (X,A) be a measurable space, let m1 be a measure
on (X,A), and let m2 be a finite measure on (X,A). Then m2 � m1

if and only if for each ε > 0 there exists a positive δ such that each
A-measurable set A that satisfies m1(A) < δ also satisfies m2(A) < ε.
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Proof: We refer to Cohn [14].

Lemma 73 If 0 < tj < 1, then
∏∞

j=1(1 − tj) converges if and only if∑∞
j=1 tj converges.

Proof: We refer to Apostol [5].

Theorem 74 Let the potential φ (which is defined in a neighborhood

of the Julia set J(f)) satisfy the following inequality

1 − bn ≤ e[φ(fa0···an−1l(z))]

e[φ(fa0···an−1m(z))] ≤ 1 + bn,

where bn is a sequence of real numbers with the property that 0 < bn < 1

and bn ≤ c
np for some constants c > 0, p > 1. Then ν is a quasi-

invariant measure on Σ+.

Proof: First we show that the ratio of the image measure ν ◦ σ−1 to

the measure ν for a cylinder set [a0a1 · · · al−1] is bounded by a constant
k, i.e., there exists a constant k such that

ν ◦ σ−1([a0a1 · · · al−1])

ν([a0a1 · · · al−1])
≤ k (4.2)

By using the definition of ν we have the following estimation for the

numerator in (4.2):

ν ◦ σ−1([a0a1 · · · al−1])

≤ max
j∈A

pj ·
d∑
i=1

Pi,ia0
Pia0,ia0a1

· · ·Pa0a1···al−2,a0a1···al−1

≤ max
j∈A

pj ·
d∑
i=1

1

d(1 − b1)
· 1

d(1 − b2)
· · · 1

d(1 − bl)

= max
j∈A

pj · 1

dl−1 · (1 − b1) · (1 − b2) · · · (1 − bl)

≤ max
j∈A

pj · 1

dl−1 ·∏∞
n=1(1 − bn)

(by Lemma 73)
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Next for the denominator we have the estimation

ν([a0a1 · · · al−1])

≥ min
j∈A

pj ·
(

e[φ(fa0···al−1
(z))]∑d

i=1 e
[φ(fa0···al−2i(z))]

)l−1

≥ min
j∈A

pj ·
(

1

d(1 + bl−1)

)l−1

= min
j∈A

pj ·
(

1

dl−1(1 + bl−1)l−1

)
.

This minimum is above zero since b(l−1) ≤ c
(l−1)p and thus

(
1 + b(l−1)

)l−1 ≤
(

1 +
c

(l − 1)p

)l−1

≤
(

1 +
c

(l − 1)

)l−1
l→+∞−−−−→ ec <∞.

We have thus shown inequality (4.2). We complete our proof by

using an arbitrary measurable set A ∈ B.
Let ε > 0. Choose δ = ε/k. Let A ∈ B with ν(A) < ε/k. Set

ε1 = ε/k− ν(A) > 0. By regularity of ν there exists an open set O ⊃ A

such that

ν(A) > ν(O) − ε1 = ν(O) − ε/k + ν(A)

⇒ ν(O) < ε/k

As the class of cylinder sets form a countable basis for the product

topology on Σ+ and is a semi-algebra, we can express O as a disjoint
union of cylinder sets Ci, i ≥ 1 :

O = ∪iCi ⇒ ν(∪iCi) < ε/k (4.3)



52 4. VARIOUS MEASURES ON THE JULIA SET

Hence

σ∗ν(A) ≤ σ∗ν(O) =
∑
i

σ∗ν(Ci)

≤ k ·
∑
i

ν(Ci) < k · ε/k = ε(by inequalities (4.2) and (4.3)).

Hence, by using Lemma 72 above, we get σ∗ν � ν. The other part
of quasi-invariance ν � σ∗ν is easily obtained in a similar calculation.

�

Lemma 75 Let the potential φ satisfy the same inequality as in The-
orem 74. Then the measure ν is equivalent to a (1/d, 1/d, · · · , 1/d)-
Bernoulli measure and hence ergodic.

Proof: The proof is similar to the above theorem.

�

The concept of the wandering set in dynamical systems and ergodic
theory formalizes a certain idea of movement and mixing in such sys-

tems. When a dynamical system has a wandering set of non-zero mea-
sure, then the system is called dissipative. This is very much the op-
posite of a conservative system, for which the ideas of the Poincaré

recurrence theorem apply. Intuitively, the connection between wander-
ing sets and dissipation is easily understood: if a portion of the phase

space “wanders away” during normal time-evolution of the system, and
is never visited again, then the system is dissipative. A traditional

question asked about quasi-invariant measures is whether they are dis-
sipative or conservative. Recall that an ergodic measure is called con-

servative if it satisfies the Poincaré Recurrence Theorem and is called
dissipative otherwise. Now we show that the measure ν is conservative:

Lemma 76 The measure ν is conservative.

Proof: Let A ∈ B(Σ+) have ν(A) > 0. We prove that for almost
all points x ∈ A the orbit {σnx}n≥0 returns to A infinitely often. Let



4.2. GIBBS AND EQUILIBRIUM MEASURES 53

F = {x ∈ A : σnx ∈ A, ∀n ≥ 1}; then it suffices to show that ν(F ) = 0.
Towards this end, we first observe that σ−mF ∩σ−nF = ∅ when n > m,

say. If this were not the case and w ∈ σ−mF ∩ σ−nF, then σmw ∈ F
and σn−m(σmw) ∈ F ⊂ A, which contradicts the definition of F. Thus

since the sets {σ−nF}n≥0 are disjoint we see that for any σ-invariant
measure μ we have

∞∑
n=0

μ(σ−nF ) = μ(∪∞
n=0σ

−nF ) ≤ μ(Σ+) = 1

and then, because μ is σ-invariant, μ(F ) = μ(σ−1F ) = · · · = μ(σ−nF ) =
· · · , we can only have μ(F ) = 0. Since our measure ν is absolutely con-

tinuous with respect to the σ-invariant (1/d, 1/d, · · · , 1/d) Bernoulli
measure, we immediately have ν(F ) = 0 as required.

�

4.2 Gibbs and Equilibrium Measures

Now we proceed to prove that ν is a Gibbs measure for a suitable
potential on the space Σ+. We need the notion of the Jacobian of the

shift map with respect to a probability measure and a few other results.

Consider x ∈ Σ+, so x = x1x2 · · · xn · · · . For n ∈ N, define

Jn(x) =

{
μ(x2 · · · xn)/μ(x1 · · · xn) if the denominator is nonzero,

+∞ otherwise.

Note that the function Jn is bounded below by 1 when μ is a shift
invariant measure.

Lemma 77 The sequence 〈Jn〉 is an L1(μ) martingale with respect to

the filtration (Bn), where Bn is the σ-algebra generated by the set An

of cylinders [x1 · · ·xn].
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Proof: Consider x ∈ An, and assume μ([x1 · · ·xn]) > 0. On this cylin-
der, we have the conditional expectation

E(Jn+1|Bn)(x1x2 · · · xn · · · ) =
1

μ([x1 · · · xn])
∫

[x1···xn]
Jn+1 dμ

=
1

μ([x1 · · ·xn])
∑

xn+1∈A

∫
[x1···xnxn+1]

Jn+1 dμ

=
1

μ([x1 · · ·xn])
∑

xn+1∈A
μ([x1 · · · xnxn+1])

μ([x2 · · · xnxn+1])

μ([x1 · · · xnxn+1])

= Jn(x1x2 · · ·xn · · · ).
Furthermore E(Jn), is finite, since

E(Jn) =

∫
Σ+

Jn(x) dμ(x)

=

∫
∪An

Jn(x) dμ(x)

=
∑

[x1···xn]

μ([x2 · · · xn])
μ([x1 · · · xn])μ([x1 · · ·xn])

=
∑

[x1···xn]

μ([x2 · · · xn])

≤ d

�

Corollary 78 The function Jμ(x) = limn→∞Jn(x) exists almost every-

where. It is called the Jacobian of the shift map σ with respect to the
measure μ.

Proof: The proof is a direct consequence of the martingale convergence

theorem( see e.g. Resnick [51]).
�

We will see that the Jacobian of the shift map σ with respect to
the measure ν can be made Lipschitz continuous by imposing suitable
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conditions on the map φ which appears explicitly in ν. Before doing
that, we state the well-known Weierstrass M-test which will be used

to prove our result. We also need the notion of infinite products. An
introduction to the theory of infinite products can be found in Apos-

tol [5].

Theorem 79 Weierstrass M-test
Let

∑
un(z) be an infinite series of one-valued functions of z defined

in a bounded, closed domain D and let there exist a series
∑
Mn of

positive constants independent of z such that |un(z)| ≤Mn for all n ∈ D

and
∑
Mn is convergent. Then the series

∑
un(z) is uniformly and

absolutely convergent in the domain D.

Now we are ready to prove the following result which will be used to

prove that the Jacobian of the shift map σ with respect to our measure
ν is Lipschitz continuous under a suitable condition on the map φ.

Lemma 80 Let the potential φ (which is defined in a neighbourhood of

the Julia set J(f)) satisfy the following inequality

1 − bn ≤ e[φ(fa0···an−1l(z))]

e[φ(fa0···an−1m(z))] ≤ 1 + bn,

where bn is a sequence of real numbers with the property that 0 < bn < 1
and bn ≤ c

np for some constants c > 0, p > 1. Then the Jacobian Jν of

the measure ν, defined by

Jν(x0x1 · · · ) := lim
n→∞ Jn(x0x1 · · · ) := lim

n→∞
ν([x1 · · ·xn])
ν([x0 · · ·xn]),

is a continuous map on Σ+.

Proof: To prove the result we use the well-known fact that the limit

f of a uniformly convergent sequence {fn} of continuous functions on
a topological space X is a continuous function.
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Clearly, each Jn is (uniformly) continuous on Σ+. Now we have

Jn(x0x1 · · · ) :=
ν([x1 · · · xn])
ν([x0 · · · xn])

=
1

px0

× px1

Px0,x0x1

× Px1,x1x2

Px0x1,x0x1x2

× · · · × Px1···xn−1,x1···xn

Px0···xn−1,x0···xn

Set

1 + un(z) =
Px1···xn−1,x1···xn

Px0···xn−1,x0···xn

=
eφ(fx1···xn(z))∑d

l=1 e
φ(fx1···xn−1l(z))

×
∑d

l=1 e
φ(fx0···xn−1l(z))

eφ(fx0···xn(z))

With a little calculation we obtain that

−bn + bn−1

1 + bn−1
< un(z) <

bn + bn−1

1 − bn−1
,

which implies that |un(z)| < bn+bn−1

1−bn−1
=: Mn. Clearly, the series

∑
Mn is

convergent.

�

Theorem 81 Let the potential φ be as above in Lemma 80 satisfying
the same condition. Then the Jacobian of the shift map σ with respect

to the measure ν is Lipschitz continuous.

Proof: Let us consider x = x0 · · ·xk−1y, x
′ = x0 · · · xk−1y

′ ∈ W
Now for n ≥ k,

Jn(x)

Jn(x′)
=

ν([x1 · · · xk−1y])

ν([x0 · · · xk−1y])
× ν([x0 · · · xk−1y

′])
ν([x1 · · · xk−1y′])

=
ν([x1 · · ·xk−1y])

ν([x1 · · · xk−1y′])
× ν([x0 · · · xk−1y

′])
ν([x0 · · ·xk−1y])

Let us consider only the first term of the right side; the second term
can be treated similarly.
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ν([x1 · · · xk−1y])

ν([x1 · · ·xk−1y′])

=
px1
Px1,x1x2

Px1x2,x1x2x3
· · ·Px1···xk−1,x1···xk−1y

px1
Px1,x1x2

Px1x2,x1x2x3
· · ·Px1···xk−1,x1···xk−1y′

=
Px1···xk−1,x1···xk−1y

Px1···xk−1,x1···xk−1y′

=
exp[φ(fx1···xk−1y(z))]∑d
l=1 exp[φ(fx1···xk−1l(z))]

×
∑d

l=1 exp[φ(fx1···xk−1l(z))]

exp[φ(fx1···xk−1y′(z))]

By using the condition on φ we can easily obtain the following two
inequalities for the first and second term on the right hand side of the
above equality:

1

d(1 + bk−1)
≤ exp[φ(fx1···xk−1y(z))]∑d

l=1 exp[φ(fx1···xk−1l(z))]
≤ 1

d(1 − bk−1)

d(1 − bk−1) ≤
∑d

l=1 exp[φ(fx1···xk−1l(z))]

exp[φ(fx1···xk−1y′(z))]
≤ d(1 + bk−1)

Consequently, we have

1 − bk−1

1 + bk−1
≤ ν([x1 · · ·xk−1y])

ν([x1 · · ·xk−1y′])
≤ 1 + bk−1

1 − bk−1

Similarly for the second term we have

1 − bk
1 + bk

≤ ν([x0 · · ·xk−1y
′])

ν([x0 · · ·xk−1y])
≤ 1 + bk

1 − bk

Hence
(1 − bk−1)

(1 + bk−1)
· (1 − bk)

(1 + bk)
≤ Jn(x)

Jn(x′)
≤ (1 + bk−1)

(1 − bk−1)
· (1 + bk)

(1 − bk)

which implies that ∣∣∣∣ Jn(x)Jn(x′)
− 1

∣∣∣∣ ≤ 2(bk + bk−1)

1 − (bk + bk−1)
.
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Since the sequence <Jn(x
′)> is convergent, |Jn(x′)| is bounded, say

by a constant K. Therefore, we have

|Jn(x) − Jn(x′)| ≤ 2(bk + bk−1)

1 − (bk + bk−1)
· |Jn(x

′)|

≤ 2K(bk + bk−1)

1 − (bk + bk−1)

≤
2K

(
c
kp + c

(k−1)p

)
1 − 2c

(k−1)p

≤ 2K ·
2c

(k−1)p

1 − 2c
(k−1)p

= 2K · 2c

(k − 1)p − 2c

= K̃θk = K̃ · d(x, x
′),

where 2K = K̃, and the value of c is given by cθ := c = 1
2
θk(k−1)p

1+θk .

�

By using the above Theorem 81 and the fact that the composition

of two Lipschitz continuous functions is also Lipschitz continuous, it
follows that the function ψ(x) = − log(Jν(x)), x ∈ Σ+, belongs to the
family F+

θ .

We also need the following Lemma containing the formula for the

change of variables:

Lemma 82 For every g ∈ C(Σ+) and a quasi-invariant measure μ we
have

d∑
i=1

∫
Σ+

g(ix)
1

Jμ(ix)
dμ(x) =

∫
Σ+

g dμ.

Proof: Note first of all that σ∗(gμ) � μ. Indeed, if μ(E) = 0, then

quasi-invariance of μ implies

|σ∗(gμ)(E)| = |gμ(σ−1E)| = |
∫
σ−1E

g dμ| ≤ ||g||∞ σ∗μ(E) = 0.
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From the Radon-Nikodym theorem we have σ∗(gμ) = λμ, with λ ∈
L1(μ) defined by the formula

λ(x) = lim
n→∞

σ∗gμ([x1 · · ·xn])
μ([x1 · · · xn]) μ−almost everywhere

However, we also have

σ∗gμ([x1 · · · xn]) =

d∑
i=1

∫
[ix1···xn]

g dμ =

d∑
i=1

g(ix)μ([ix1 · · · xn]) + εn,

with |εn| ≤ ωn+1(g) σ
∗μ([x1 · · · xn]).

Since σ∗μ is absolutely continuous with respect to μ, it follows easily
from here that

λ(x) =

d∑
i=1

g(ix)
1

Jμ(ix)
.

We obtain the result from these observations and the identity

σ∗gμ(Σ+) = 1 =

∫
Σ+

d(σ∗gμ) =

∫
Σ+

λ dμ

�

Let us take ψ(x) = − log(Jμ(x)), then

Lψ(g)(x) =

d∑
i=1

g(ix) e− log(Jμ(ix)) =

d∑
i=1

g(ix)
1

Jμ(ix)
.

Thus the equality in the above lemma becomes

∫
Σ+

Lψ(g)(x) dμ(x) =

∫
Σ+

g dμ

⇒
∫

Σ+

g dL∗
ψμ(x) =

∫
Σ+

g dμ

⇒ L∗
ψμ = μ

Thus we may paraphrase the change of variable formula by saying

L∗
ψμ = μ.
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Now, it follows from Proposition 43 and Corollary 44 that our mea-
sure ν is a Gibbs measure (for a suitable potential g(x) as described in

the remark after Corollary 44). We state this as a theorem:

Theorem 83 The measure ν is a Gibbs measure for a suitable potential

on Σ+.

Corollary 84 The Gibbs measure ν, the (1/d, 1/d, · · · , 1/d) Bernoulli
measure, and the image measure of the measure of maximal entropy
under the homeomorphism Φ are equivalent.

Proof: Follows from Corollary 62, Theorem 69 and Lemma 75.

Now let us consider the quasi-invariant measure ν and ψ = − log(Jν).
We have seen that ψ is Lipschitz. The change of variable formula shows
that L∗

ψ(ν) = ν. Let β > 0 and h > 0 be the eigenvalue and eigenfunc-

tion, respectively, of the operator Lψ guaranteed by the Ruelle-Perron-
Frobenius Theorem 35; that is, Lψh = βh with ν(h) = 1. Then we

have

L∗
ψν(f) = ν(f) for all f ∈ C(Σ+)

⇒ ν(Lψf) = ν(f) for all f ∈ C(Σ+)

⇒ ν(Lψh) = ν(h)

⇒ ν(βh) = ν(h)

⇒ β = 1

From Corollary 39 we know that P (ψ) = log β, therefore P (ψ) =
log β = 0. Consequently, we have the following result:

Corollary 85 The measure γ = hν is the unique σ-invariant probabil-
ity measure with the property that

P (ψ) = hγ(σ) +

∫
Σ+

ψ dγ = 0.

�
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4.3 Capacity of the Julia Set and Harmonic Mea-

sures

Let E be a bounded closed set in the z-plane and let μ be a positive

mass distribution on E of total mass 1, and set

v = inf
μ(E)=1

∫
E

∫
E

log
1

|z − ζ| dμ(z) dμ(ζ).

When c(E) > 0 (i.e. v < +∞), by Theorem 25 there exists a unique

positive mass distribution μ∗ on E of total mass 1 such that

v =

∫
E

∫
E

log
1

|z − ζ| dμ
∗(z) dμ∗(ζ).

We call μ∗ the equilibrium distribution of E. The supp μ∗ is defined

as the set of a ∈ E, such that any small neighborhood U of a contains
a positive μ∗-mass. supp μ∗ is a closed subset of E.

Lemma 86 Let

g(z) =
az + b

cz + d
(ad− bc = 0)

be a Möbius transformation, F1 = g(F ), F and F1 be closed and bounded
sets. Then c(F ) = 0 iff c(F1) = 0.

Proof: We only need to prove c(F ) = 0 ⇒ c(F1) = 0. Let μ be any
positive mass distribution on F1 of total mass 1. Then σ = μ ◦ g is a

distribution on F with unit mass and∫
F1

∫
F1

log
1

|z − ζ| dμ(z) dμ(ζ)

=

∫
F

∫
F

log
1

|g(z) − g(ζ)| dσ(z) dσ(ζ)

=

∫
F

∫
F

log
1

|z − ζ| dσ(z) dσ(ζ) − log |ad− bc|

+

∫
F

∫
F

log |(cz + d)(cζ + d)| dσ(z) dσ(ζ)
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Since g(F ) = F1, g(z) = az+b
cz+d, the sets F1 and F are compact subsets

of C. Hence, there exists a positive number A such that |cz+d| ≥ A > 0,

for any z ∈ F. Therefore,∫
F1

∫
F1

log
1

|z − ζ| dμ(z) dμ(ζ)

≥
∫
F

∫
F

log
1

|z − ζ| dσ(z) dσ(ζ) − log |ad− bc| + 2 logA.

Since c(F ) = 0, by definition,∫
F

∫
F

log
1

|z − ζ| dσ(z) dσ(ζ) = +∞,

and hence ∫
F1

∫
F1

log
1

|z − ζ| dμ(z) dμ(ζ) = +∞,

for any μ ≥ 0, μ(F1) = 1, that is c(F1) = 0.

�

Lemma 87 Let T : C∞ → C∞ be a rational function with deg T ≥ 2
and J be the Julia set of T. If J is totally disconnected, then the Fatou

set J c = C∞ − J cannot be parabolic.

Proof: J c = U is a Sullivan domain for TU = U. By Theorem 7.7
of Blanchard [9], if U is a parabolic domain, then there exists a fixed

point P on ∂U, and it holds T k(z) → P with k → ∞ for all z ∈ U
and T ′(P ) = 1. By Theorem 3.10 of Blanchard [9] , there are a local

homeomorphism h and an integer k > 1, such that h(P ) = 0 and
h ◦ T ◦ h−1(z) = z(1 + zk) = R(z). For R(z), there are k petal domains

and k rays. For any point on the rays, Rn(z) → 0 (z = 0). Since h is a
homeomorphism and J is totally disconnected, we have a z0 ∈ U such
that h(z0) belongs to these rays. From h ◦ T ◦ h−1(z) = R(z), we know

h(T n(z0)) = Rn(h(z0)). Since T n(z0) → P, we have h(T n(z0)) → 0.
But Rn(h(z0)) → 0 is a contradiction. It follows that U cannot be a

parabolic domain.
�
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Lemma 88 Let R(z) = zn+a1z
n−1+···+an

b1zn−1+···+bn , n ≥ 2, |b1| < 1, J be the Julia

set and totally disconnected, then c(J) > 0.

Proof: We refer to Yongcheng [58].

Theorem 89 Let T : C∞ → C∞ be a rational function with deg T =

n ≥ 2 whose Julia set J is bounded. Then c(J) > 0.

Proof: If J is not totally disconnected, J has a component E which

is a continuum, and by Lemma 24, c(E) > 0. Hence c(J) ≥ c(E) > 0.

If J is totally disconnected, U = J c is connected, TU = U, and by
Blanchard [9] (page 116 ), U is a Sullivan domain for which five kinds
of dynamics are possible:

1. U is an attractive domain;

2. U is a superattractive domain;

3. U is a parabolic domain;

4. U is a Siegel disk;

5. U is a Herman ring.

Since J is totally disconnected, (4) and (5) are not possible. By

Lemma 87, (3) is not possible. So U is an attractive or even superat-
tractive domain. There exists p ∈ U such that T (p) = p and |T ′(p)| < 1.

Let

g(z) =
1

z − p
(if p = ∞, g(z) = z).

Then

R(z) =
zn + a1z

n−1 + · · · + an
b1zn−1 + · · · + bn

.

∞ is an attractive (or superattractive) fixed point of R(z), so |b1| <
1. J1 = g(J) is the Julia set of R(z) . From Lemma 88, we get c(J1) > 0.
Hence by Lemma 86, c(J) > 0.
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�

As a direct consequence of Theorem 89 and Theorem 33 we obtain

the following result in our case:

Theorem 90 Let T : C∞ → C∞ be a rational map with deg T = n ≥ 2
whose Julia set J is bounded. Then its equilibrium measure μ is given

by
μ = ωD(∞, ·),

where D is the component of C∞ \ J containing ∞.

In our case the logarithmic potential for the equilibrium measure

turns out to be constant; this follows from the following theorem:

Theorem 91 Let K be a compact set containing the bounded Julia set
J of a rational map T : C∞ → C∞ with deg T = n ≥ 2. Let μ be the

equilibrium measure for K. Then pμ(z) = v(K) for all z ∈ int K, where
int K denotes the interior of K.

Proof: Let a ∈ int K and let B = B(a; r) such that B̄ ⊆ int K.

Since the logarithmic potential is superharmonic, and by using Frost-
man’s Theorem 27, we have

(πr2)−1
∫
B

pμ dA ≤ pμ(a) ≤ v.

But, again from Frostman’s Theorem, we know that pμ(z) = v =
v(K) quasi-everywhere. Since quasi-everywhere implies almost-everywhere

we immediately obtain that

pμ(z) = v a.e. ⇒ (πr2)−1
∫
B

pμ dA = (πr2)−1 · v · A(B) = v.

Hence pμ(a) = v as required.

Theorem 92 (Dirichlet Problem) Let T : C∞ → C∞ be a rational
function with deg T = n ≥ 2 whose Julia set J is bounded. Then the

Dirichlet Problem for the domain U := C∞ \ J has a unique solution.

Proof: The proof follows from Theorem 89, Theorem 91, Theo-
rem 32, and Theorem 31.
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4.4 An Example with a Rational Map

In this last section we will look at an example map to illustrate the
concept. Examples of maps with totally disconnected Julia sets include

polynomials z2 + c for c ∈ C large enough. We will see, in this section,
that there are degree-2 rational maps, not conjugate to polynomials,

whose Julia set have the same features as z2 + c. This is summarized
in the following:

Theorem 93 There exists a one-parameter family of degree-2 rational

maps, which are hyperbolic, have a totally disconnected Julia set, and
are not conjugate to a polynomial.

Proof: Let us consider the one-parameter family of degree-2 rational

maps given by fa : C∞ → C∞, z �→ 1 + az − 1
z , where a > 1.

Fixed Points of fa : Solving fa(z) = z we obtain

z =
−1 ±√

1 + 4(a− 1)

2(a− 1)
.

Clearly, both the fixed points, say z1 and z2, are real since a > 1, and
z = ∞ is also a fixed point. As fa is a rational map of degree d = 2,
these d+ 1 = 3 points constitute the set of the function’s fixed points.

Since the first derivative f ′
a(z) = a+ 1

z2 , and z1 and z2 are real, it follows
that f ′

a(z1) > a > 1 and f ′
a(z2) > a > 1. So z1, z2 are repelling fixed

points of fa belonging to the Julia set J(fa). It is easy to calculate that

F (z) := g ◦ fa ◦ g−1 =
z

a+ z − z2 , where g : z �→ 1

z
,

F ′(z) =
a+ z2

(a+ z − z2)2

and hence F ′(0) = 1
a
< 1. So, z = ∞ is an attracting fixed point of fa,

which belongs to the Fatou set F (fa).
Critical Points of fa : Setting f ′

a(z) = a + 1
z2 = 0 we obtain that

z = ± i√
a

are the critical points of fa. Now we wish to find out whether

J ∩ P (fa) = ∅.
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We recall that the postcritical set P (fa) is the closure of the forward
orbits of the critical points of fa :

P (fa) =
⋃

n>0, f ′
a(c)=0

fna (c).

We will show in two ways that the map fa is hyperbolic, analytically
and numerically (by using Matlab).

Analytic Proof : The analytic proof follows easily from the well-
known Fatou’s Theorem which states:

Every attracting cycle for a polynomial or rational function attracts

at least one critical point.

We have seen that there are three fixed points – two, z1 and z2, are
repelling (and belong to the Julia set) and the point of infinity ∞ is the

only attracting fixed point (which gives rise to an attracting cycle of one
point). So, by Fatou’s Theorem, it immediately follows that the orbit

of one of the two critical points of the rational map fa, say z = + i√
a
,

converges to the point at infinity. Since the points of the orbit of the

other critical point z = − i√
a

are simply the complex conjugate of the

points of the orbit of z = + i√
a
, it follows that the orbit of the critical

point z = − i√
a

also converges to the point at infinity.

Numerical Proof : Now we use Matlab to compute the orbits of
the critical point z = + i√

a
for fa. The orbit of the other critical point

generates simply the conjugate numbers of the orbits of z = + i√
a
.

The following Matlab script asks the user to provide the parameter
value a and the number of points in the orbit. After providing these
input values, the script calculates the orbit and plots the absolute values
of these points which help to see the pattern.

% As our map f_a and the critical point depend on the parameter a, let us
% use Matlab’s symbolic math for the calculations.

syms a z

% Enter the rational map
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f_a=inline(’1+a*z-1/z’,’a’,’z’)

% Enter the critical point
cr_pt=inline(’i/(sqrt(a))’,’a’)

% Now just by entering the value for the parameter we can calculate
% the orbit

a=input(’Enter the value of the parameter a >1 ’);
orb_len=input(’Enter the length of your orbit ’);

% Create an array x to contain the orbit

x=[1:1:orb_len];

% Evaluate the rational map at one of its critical points and calculate the
% orbit of the critical point

x(1)=f_a(a,cr_pt(a));
for n=1:orb_len-1
x(n+1)=f_a(a,x(n));
end;

% Calculate the absolute value of the points in the orbit

abs_x=abs(x);

% Plot the absolute values to see the pattern

figure;plot(1:4:orb_len, abs_x(1:4:end),’r*’)
xlabel(’Number of orbital points’)
ylabel(’Absolute values of the orbital points’)

Here is a typical output of the script for parameter value a = 2 and
orbit length 500:

x =
1.0e+150 *
Columns 1 through 4
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

.

.

.
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Figure 4.1: log10 of the absolute values of 500 (left graph) and 1000 (right graph)
orbital points versus the number of orbital points

Columns 497 through 500
0.3932 + 0.6199i 0.7865 + 1.2398i 1.5730 + 2.4795i 3.1459 + 4.9591i

abs_x =
1.0e+150 *
Columns 1 through 8
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

.

.

.
Columns 497 through 500
0.7341 1.4682 2.9364 5.8727

The example uses a rather small number of 500 points which still give
us a clear pattern of increasing absolute values of the orbital points.

The same pattern appears for 1000 points as shown in the above figure
on the right which confirms that the points tend to infinity.

As z = ∞ ∈ F (fa), we conclude that J(fa) ∩ P (fa) = ∅. In other
words, fa is hyperbolic. Now we proceed to determine whether the
Julia set of the map fa is bounded and totally disconnected.

The boundedness of the Julia set J(fa) is immediate since ∞ ∈ F (fa)
and J(fa) ∩ F (fa) = ∅.

The total disconnectedness of the Julia set follows from the following
theorem:

Theorem 94 Let f be a rational map of degree d, where d ≥ 2, and
let ζ be a (super)attracting fixed point of f. If all of the critical points
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of f lie in the immediate attracting basin of ζ, then J(f) is a Cantor
set.

Proof: See Beardon [7]: Theorem 9.8.1, P 227.
Is fa conjugate to a polynomial? Theorem 2.4.1 in Beardon [7]

states that a non-constant rational map R is conjugate to a polyno-
mial if and only if there is some w in C∞ with R−1{w} = {w}.

For z ∈ C we know that the points z1 and z2 are the only fixed points
of fa. It can easily be seen that f−1

a (z1) = {z1} and f−1
a (z2) = {z2}.

For z = ∞ we have f−1
a (∞) = {0,∞}. Hence fa is not conjugate to a

polynomial.

Now we analyze the map fa in order to locate its Julia set and get
more information on the formation of the Julia set. After expressing

the map as

fa(z) = 1 + az − 1/z = [1 + ax− x/(x2 + y2)] + i ∗ y[a+ 1/(x2 + y2)],

we see that the real line is mapped onto itself and the preimage of a

point in the real line also belongs to the real line. That is, the real line
in union with infinity R ∪ {∞} is completely invariant under the map

fa, and hence, by minimality of the Julia set as a complete invariant
set under fa, implies that J is contained in the real line. By restricting
fa on R we can visualize the map’s dynamics (see the graph of fa in

Figure 4.2 below) which we will use in the following derivation showing
that the Julia set is totally disconnected.

Now we prove that the whole half plane Re(z) > 1 is contained in
the attracting basin of infinity. Indeed, if z = x + iy with x > 1, then

from fa(z) = 1 + ax− x/(x2 + y2) + i � (ay + y/(x2 + y2)) we get that
the real part of fa(z) is 1 + ax− x/(x2 + y2) > 1 + ax− 1/x > ax > x.
Iterating, we see that the orbit of a point in the half plane Re(z) > 1

tends to ∞, since the real part tends to ∞. In particular, the interval
(1,∞) is in the Fatou set.

As and aside, we also observe easily that the upper half plane (Im(z) =
y > 0) and lower half plane (Im(z) = y < 0) are mapped into them-
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Figure 4.2: Graph of fa(a, x) = 1 + ax− 1
x

selves.

It is easy to see from the graph of fa that the interval (2,∞) has two
preimages – one is the interval (1,∞) and the other interval is (−1

2, 0) on
the negative real line. These two intervals (1,∞) and (−1

2, 0) each have

again two preimages; each of these preimages has again two preimages
– one on the negative real line and the other one in the positive real

line and so on. Once we remove all those preimages, what remains is
the Cantor Julia set.

Finally, we briefly point out how several results in Ransford [50]

and Yongcheng [58] concerning the measure of equilibrium, harmonic
measure and capacity can be discussed for such an example map.

Let us find a Möbius map which transforms the set R ∪ {∞} into a
unit circle in the complex plane C. This map is easily obtained by se-

lecting three points on the extended real line, say 0, 1,∞, which should
be mapped to three non-collinear points on the circle say 1, i,−1. Now



4.4. AN EXAMPLE WITH A RATIONAL MAP 71

i−w
i+w

Z=

W−Plane Z−Plane

Figure 4.3: Möbius map z = i−w
i+w

we compute this map:

Let z be mapped onto w and since a Möbius map preserves a cross-
ratio we have

(w − 0)(1−∞)

(0 − 1)(∞− w)
=

(z − 1)(i+ 1)

(1 − i)(−1 − z)

⇒ z =
i− w

i+ w

Writing w = u+ iv the transformation can be written as

z =
i− w

i+ w
=
i− (u+ iv)

i+ (u+ iv)
=
u+ i(1 − v)

u+ i(1 + v)

Therefore |z| = u2+(1−v)2
u2+(1+v)2 . Clearly |z| = 1 when v = 0, i.e. the real axis

in the w-plane is mapped into the circle |z| = 1.
By applying such a Möbius map g on R ∪ {∞} we see that the

image of the Julia set J(fa), i.e. g(J(fa)), will be contained in the
circle |z| = 1. We know from a theorem in Beardon (Theorem 3.1.4, on
page 50) that g(J(fa)) = J(g ◦ fa ◦ g−1). Since g ◦ fa ◦ g−1 is a rational

map of degree 2 with a bounded Julia set J(g ◦ fa ◦ g−1), the capacity
c(J(g◦fa◦g−1)) = c(g(J(fa))) > 0.We also note that g(J(fa)) is totally

disconnected since g is a homeomorphism, and total disconnectedness
is a topological property.
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Since g(J(fa)) is compact and non-polar, several results in Rans-
ford [50] and Yongcheng [58] related to the measure of equilibrium, to

the harmonic measure, and to capacity can be derived. Further, by
establishing certain relations between measures such as absolute con-

tinuity or equality of the measures on g(J(fa)), and since g : J(fa) →
g(J(fa)) is a homeomorphism, we can draw conclusions similar to those

in Ransford [50] and Yongcheng [58] for the corresponding measures on
J(fa).
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[52] Ruelle, D.: Statistical Mechanics on a compact set with Zν ac-
tion satisfying expansiveness and specification, Trans. Amer. Math.

Soc. 185, 237-252 (1973).

[53] Ross, S. M.: Stochastic Processes, John Wiley & Sons, Inc., New

York, 1996. John Wiley and Sons, 1996.

[54] M. Tsuji, Potential theory in modem function theory, Maruzen,

Tokyo, 1959.

[55] Walters, P.: An Introduction to Ergodic Theory, Graduate Text in

Mathematics, 79, Springer, Berlin, 1982.

[56] Walters, P.: A variational principle for the pressure of continuous

transformations, Amer. J. Math. 17, 937-971 (1976).

[57] Woess, W.: Random walks on infinite graphs and groups - a survey

on selected topics, Bull. London Math. Soc. 26 (1994), 1-60.

[58] Yongcheng, Y.: Capacities of Julia Sets of Rational Functions,

Acta. Mathematica Sinica, New Series, 1990, Vol. 6, No. 2, 120-
130.



78 BIBLIOGRAPHY

[59] A. Zdunik: Harmonic measure on the Julia set for polynomial-like
maps. Invent. math. 128, 303-327, (1997).



Curriculum vitae

25.09.1969 Born in Munshigonj, Bangladesh.

1979 Completed Primary education.

1985 Obtained Secondary School Certificate from K. K.

Govt. Institution, Munshigonj.

1987 Obtained Higher Secondary School Certificate from
Haraganga College, Munshigonj.

1993 Completed Bachelor of Science(Mathematics) from
Dhaka University, Bangladesh.

1995 Completed Master of Science(Mathematics) from

Dhaka University, Bangladesh.

1997 Completed a postgraduate diploma(Mathematics) from

the International Center for Theoretical Physics, Italy.

1999 Completed Master of Science(Mathematics) from
Goettingen University, Germany.


	Introduction
	Preliminaries
	Rational Map and its Julia set
	Self-similar Sets
	Results from Potential Theory
	Shift space and Ruelle Operator
	Entropy Pressure and Gibbs Measure

	Julia Set as a Martin Boundary
	Markov Chain on the Word Space
	Martin Kernel and Martin Boundary
	Determination of the Martin Kernel
	Symbolic Space and Julia Set
	Julia set as a Martin Boundary

	Various Measures on the Julia Set
	Quasi-invariant Measure on the Julia Set
	Gibbs and Equilibrium Measures
	Capacity of the Julia Set and Harmonic Measures
	An Example with a Rational Map


