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der Georg-August-Universität zu Göttingen

vorgelegt von

Aleksey Min

aus

Koshkupir, Usbekistan

Göttingen 2004



D7

Referent: Prof. Dr. Manfred Denker

Korreferentin: Prof. Dr. Susanne Koch

Tag der mündlichen Prüfung: 23.06.2004
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Introduction

In [27] Hausdorff laid the foundation of dimension theory of sets generaliz-

ing the classical notion. His definition can be extended via Caratheodory’s

construction (see Mattila [41]). Investigations of this type were at least partly

inspired by the problem of finding space filling curves. One of the most popular

fractal set (the Sierpiński gasket) also originates in this context. Basic results

were obtained in the 1920’s by Besikovič [7] and Jarnick [34].

The theory being dormant for many years was revived about 30 years ago (mainly

in physics), when new methods for computing dimension were introduced. This

led to box dimension (Kolmogorov [36]) and packing dimension (Taylor and

Tricot [49], Sullivan [48]). All these notions are based on some distance func-

tions and the exterior measure generated from it.

Starting with Rényi [45], some notions of dimensions were introduced for random

variables and later by Hentschel and Procaccia [29] for probability measures.

This has been developed in mathematical terms by Cutler and Dawson [13],

[14] and Cutler [10]. These dimensions are called local dimension and informa-

tion dimension.

It is one of the important problems in dimension theory to examine the relations

between the different types of dimension. If we denote Hausdorff, packing,

lower box and upper box dimensions by dimhaus, dimpack, dim
−
box and dim+

box, re-

spectively, then one has the following inequalities

dimhaus(E) ≤ dim−
box(E) and dimpack(E) ≤ dim+

box(E)

for any bounded set E ∈ Rd and

dimhaus(F ) ≤ dimpack(F )

5
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for any set F ⊆ Rd. Equality holds, for example, for many hyperbolic dynamical

systems restricted to their attractors.

One of the main drawbacks in this theory is the fact that Hausdorff dimension

may not be computable. As is clear from the definition that it becomes com-

putable if it agrees with one of the ”measure theoretic” notions of dimension.

Since the early 1980’s several methods have been introduced to estimate the di-

mension consistently. The basic assumption which has to be made is the equality

of dimension to at least one of the other computable dimensions.

In case this is the correlation dimension the first paper is Grasberger and

Procaccia [22], rigorously put into the framework of regression analysis by

Denker and Keller [17], [18]. This method is based on estimating consistently

the correlation integral

C(ε) =

∫
µ(B(x, ε))µ(dx)

for some given sequence of radii ε1, . . . , εm by the sample proportion Cn(ε) of

pairs of observations that are no more than ε apart. Here and in the sequel

B(x, ε) denotes a ball of radius ε centered at x and µ denotes a probability

measure of interest. Then the slope of the least square line through the data

pairs (log ε1, logCn(ε1)), . . . , (log εm, logCn(εm)) is taken as a point estimator for

the correlation dimension.

In case of local dimension Guckenheimer [23] has introduced the method of

the nearest neighbors, again rigorously examined by Cutler and Dawson [13],

[14]. This method is based on computing distances δj(x) between the point x

where we want to estimate local dimension and its j-th nearest neighbors. Then,

for some chosen m (m < n), the reciprocal of the slope of the least squares line

through the data pairs (log(1/n), log δ1(x)), . . . , (log(m/n), log δm(x)) is taken as

a point estimator for the local dimension at x.

The first estimation method for information dimension on the basis of indepen-

dent observations was developed by Cutler [10]. It consists of combination of

Guckenheimer’s method and the averaging over several basepoints and requires

three independent samples of observations. Later this method was extended by

Hamann [24] to dependent observations.

Keller [35] extended the method of Grasberger and Procaccia [22] to
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estimate information dimension by introducing some type of outlier analysis. Re-

quiring continuity of a distribution function of µ(B(X, ε)) where X is distributed

according to µ and using some known score function J on [δ, 1− δ] (0 < δ < 1/2)

such that
∫
J(t)dt = 1, he generalized the method of correlation dimension for

estimating information dimension.

In all these cases the mathematical background is well understood. For the Gras-

berger and Procaccia method one has asymptotic normality of each finite

dimensional statistics (Cn(ε1), . . . , Cn(εm)). Cutler and Dawson [14] showed

that the log minimum distance, when observations are sampled from measures

belonging to a special family of fractal distributions, follows either the normal

distribution or the extreme value distribution. Cutler [10], Hamann [24] and

Keller [35] proved asymptotic normality of the statistics arising in their meth-

ods.

Cutler [10] reduced the general problem of dimension estimation to the problem

for classes of measures (and not of dynamic origin). Here one can start with an

independent identically distributed sample, which makes the analysis simple but

still meaningful in the stationary case.

Each of two methods for information dimension has its merits from a numerical

point of view. However they also have some drawbacks. The method of Cutler

[10] does not equally use three samples while in the method of Keller [35] it is

not clear how to select the score function J in general and what is the impact of

the choice of J on the accuracy of the estimation is.

The first part of this thesis solves a problem originating from the work of Keller

[35]. Note that µ(B(x, ε)) can always be estimated by µ̂(B(x, ε)), where µ̂ is

the empirical probability measure of independent identically distributed random

variables. It is evident that µ̂(B(x, ε)) = 0 if no observation falls into B(x, ε)

hence log µ̂(B(x, ε)) does not make sense at all. This was pointed by Keller

[35]. One of purposes of this work is to show how such procedure is meaningful

if enough data is available to fall into B(x, ε).

The second part of the dissertation deals with a different but related problem. In

the late 1980’s Brosamler [8] and Schatte [46] independently proved a new

type of limit theorems. This type of statements extends the classical central limit

theorem to a pathwise version and is therefore called the almost sure central limit
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theorem (ASCLT). The first ASCLT for a sequence of independent identically dis-

tributed (i.i.d.) random variables X1, . . . , Xn states that if EX1 = 0, V ar(X1) = 1

and E|X1|2+δ <∞ for some δ > 0 (δ = 1 in Schatte [46]) then

lim
n∞

1

log n

n∑
k=1

1

k
1l

{
Sk√
k
≤ x

}
= Φ(0,1)(x) a.s. for any x, (1)

where 1l denotes the indicator function and Φ(0,1) denotes the distribution function

of the standard normal random variable. If (1) holds then we say that the sequence

Sn/
√
n satisfies the ASCLT. It should be mentioned that the first version of

ASCLT for a kind of martingales has already been stated without proof by Lévy

[40], and a special case of statement (1), namely for x = 0, was established by

Erdös and Hunt [19].

In the 1990’s, a lot of theoretical investigations have been done to prove the

ASCLT in different situations. First, Fisher [20] and Lacey and Philipp [38]

proved the ASCLT under finite second moment for X1. Moreover, Lacey and

Philipp [38] gave a general condition for the validity of (1) so that a large class

of dependent sequences satisfies the ASCLT. Later Peligrad and Shao [44]

proved (1) directly for associated, strongly mixing and ρ-mixing sequences under

the same conditions that assure the usual central limit theorem.

Statements of type (1) with some non-normal limiting distribution function G

are usually called almost sure (or pointwise) limit theorems (ASLT). The first

result in this field belongs to Peligrad and Révész [43]. They showed that

a weak convergence of properly normalized and centered partial sum of i.i.d.

random variables to a limiting α-stable distribution Gα (0 < α < 2) implies the

corresponding ASLT. Analogous result was proved by Berkes and Dehling [5]

for the normal limiting distribution. Thus for i.i.d. random variables, almost sure

limit theorems are weaker results than corresponding classical limit theorems.

Moreover, Berkes, Dehling and Móri [6] provided counterexamples which

show that the reverse is not valid. An excellent survey on this topic can be found

in Berkes [3] as well as in Atlagh and Weber [1].

Recently Berkes and Csáki [4] obtained a general result in the almost sure

limit theory. They used it to prove almost sure versions of several classical limit

theorems. In particular they proved the ASLT for U -statistics under finite second

moment of the kernel.
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The second part of this thesis is devoted to the ASCLT and ASLT for U -statistics.

We show that Hoeffding’s decomposition for U -statistics which plays an im-

portant role in deriving their weak limits is still significant in this context. It

will be shown that a small modification of the standard technique for proving

classical limit theorems for U -statistics allows us to refine and extend the result

of Berkes and Csáki [4].

The thesis has the following structure.

In Chapter 1 we give the most popular measure dependent notions of dimension

and discuss some relations between them. Then we briefly review estimation

theory for local and information dimensions. Next we introduce a new estimator

for the information dimension. Finally we give some preliminary results which

will be used in the next chapter.

In Chapter 2 we establish consistency and asymptotical normality of the estimator

introduced in Chapter 1. Then we give a consistent estimator for the variance

arising in the central limit theorem. Finally, we prove the multivariate central

limit theorem for a vector of statistics whose components are the introduced

estimator constructed for a given finite sequence of radii.

In Chapter 3 we apply our theory to some fractal distributions on the unit cube.

We construct confidence intervals for the information dimension when underlying

probability measures are the Cantor distribution in R2 and the generalized Cantor

distribution in R3.

In Chapter 4 we prove the ASCLT for non-degenerate U -statistics of a sequence

of strongly mixing and absolutely regular random variables. Then we relax the

moment condition of Berkes and Csáki’s ASLT for U -statistics of i.i.d. random

variables. Finally, we prove the ASLT with a stable limiting distribution for non-

degenerate U -statistics of i.i.d. random variables X1, . . . , Xn (for the i.i.d. case

see Holzmann, Koch and Min [32]).

We will index definitions, theorems and lemmas in the following way: the first

number will refer to the chapter and the second number will refer to their order

in the chapter. The same holds for numbering of equations and formulas.
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Chapter 1

Preliminaries on Dimension

Theory

1.1 Measure dependent definitions of fractal di-

mension

In this section we give three different definitions of dimension for probability

measures and some relations between them.

Let µ denote the probability measure defined on the Borel sets of Rd and S ⊆ Rd

denote its support. Further, let B(x, ε) be a closed ball of radius ε centered at

x ∈ S.

Definition 1.1. The spatial correlation integral C(ε) is defined by

C(ε) =

∫
S

µ(B(x, ε))µ(dx)

and the correlation dimension νµ of a probability measure µ is defined by

νµ = lim
ε→0

logC(ε)

log ε
= lim

ε→0

1

log ε
log

∫
S

µ(B(x, ε))µ(dx) . (1.1)

It is obvious that C(ε) = Eµ((B(X, ε))), where X is distributed according to

µ. Thus, the spatial correlation integral measures the concentration of µ and

describes the mean volume of a ball of radius ε.

11
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The correlation dimension which is also often called the correlation exponent was

initially introduced and first numerically studied by Grassberger and Pro-

caccia [22]. They found that the spatial correlation integral is proportional to

ενµ for small ε. Moreover, they noticed that in many cases the correlation expo-

nent νµ agrees with the dimension of the support S of a probability measure µ

and so they suggested to estimate it.

It should be noted that the correlation dimension is the most popular dimension

for experimentalists since it is relatively easy to estimate it. The natural choice

for an estimator of the spatial correlation integral C(ε) is the sample correlation

integral Cn(ε) which is defined as follows

Cn(ε) =
2

n(n− 1)

∑
1≤i<j≤n

1l{‖Xi −Xj‖ ≤ ε},

where X1, . . . ,Xn is a sample drawn from a distribution µ and ‖.‖ is some norm

in Euclidean space Rd. So, we can easily see that the sample correlation integral

Cn(ε) is, in fact, a U -statistic of degree 2 with kernel 1l{‖x− y‖ ≤ ε}.
The first rigorous results on dimension estimation of probability measures, namely

for the correlation dimension, were obtained by Denker and Keller [18]. They

studied asymptotical properties of the spatial correlation integral using the theory

of U -statistics and proved its consistency and asymptotical normality.

However, it turns out that it is more important to consider the local dimension

than the correlation dimension since in many examples the local dimension re-

flects a complexity of the support of a probability measure µ much better than

the correlation dimension. We will illustrate this after the definition of the local

dimension and a comment following it.

Definition 1.2. The local (or pointwise) dimension αµ(x) of a probability mea-

sure µ at a point x ∈ S is defined by

αµ(x) = lim
ε→0

log µ(B(x, ε))

log ε
. (1.2)

It is not difficult to show that if x ∈ S then αµ(x) = 0 µ-a.s. for all discrete dis-

tributions µ in Rd and αµ(x) = d µ-a.s. for all absolutely continuous distributions

µ in Rd (see e.g. Cutler [12]).
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Now we are ready to illustrate an example where the information dimension

is preferred to the correlation dimension. For this purpose we cite Cutler’s

example. Consider the absolutely continuous measure µγ on (0, 1) with the density

function f(x) = γxγ−1, where γ > 0. Since µγ is absolutely continuous αµγ (x) = 1

µγ-a.s., but it can be shown that νµγ = 2γ for 0 < γ < 1/2 (see Cutler [12] for

more information).

This example is specifically important since it shows that an observation of a

fractional correlation dimension does not imply that a measure can be supported

on a set of fractional dimension. By contrast, if a measure µ has a constant

fractional local dimension α µ-a.s. then the support S of µ must be a set of

fractional dimension α (see Ott, Withers and Yorke [42] for more details).

In many examples, the local dimension coincides with the information dimension.

In general, there is a more deep connection between them. If αµ(x) is constant

µ-a.s. and the support S of µ is a bounded subset of Rd then the local dimension

coincides with the information dimension (see Cutler [12]).

Definition 1.3. The information dimension σµ of a probability measure µ is

defined by

σµ = lim
ε→0

1

log ε

∫
log µ(B(x, ε))dµ(x). (1.3)

There is a simple relation between the correlation and information dimensions of

a probability measure µ, namely

νµ ≤ σµ. (1.4)

This inequality follows from (1.1), (1.3) and Jenssen’s inequality. It should be

mentioned that a strict inequality in (1.4) may occur (see Cutler [12]).

Since smooth ergodic dynamical systems naturally give rise to an exact dimen-

sional invariant measure which means that αµ(x) is constant µ-a.s., and they

usually have bounded attracting sets, in this work, we will consider only those

probability measures whose local dimension αµ(x) is equal to their information

dimension σµ.
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1.2 Estimation methods for the local dimension

In this section, we briefly describe two estimation methods for the local dimension,

namely the least square method and the nearest neighbor method. These methods

will be generalized in the next two sections devoted to the information dimension.

We start the section with describing the least square method.

Equation (1.2) suggests a trivial method of estimating the local dimension αµ(x)

at x. First, one has to obtain an appropriate estimator µ̂(B(x, ε)) of µ(B(x, ε)) for

small ε. Since a measure µ typically is not given in analytical form but instead

by a finite sample X1,X2, . . . ,Xn of d-dimensional vectors drawn from it, the

natural choice of estimators µ̂(B(x, εk)) is a sample proportion of observations

falling within a distance ε to the point x, i.e.

µ̂(B(x, ε)) =
1

n

n∑
i=1

1l{‖Xi − x‖ ≤ ε} . (1.5)

It should be noted that we also do not have any other additional information

about µ. Secondly, one has to take the ratio log µ̂(B(x, ε))/ log ε as an estimator

for αµ(x).

This method usually does not work well even if we get a very accurate esti-

mator µ̂(B(x, ε)) of µ(B(x, ε)). The reason is that log µ(B(x, ε))/ log ε typically

converges to αµ(x) very slowly.

The solution here is to detect a linear relationship of the type log µ(B(x, ε)) ≈
C(x) + αµ(x) log(ε) for a sequence of radii 0 < ε1 < . . . < εm on the basis of the

observations. In practice, one has to obtain estimators µ̂(B(x, εk)) (k = 1, . . . ,m)

for a sequence of radii 0 < ε1 < . . . < εm and take the slope of least square line

through the data pairs (log µ̂(B(x, ε1)), log ε1), . . . , (log µ̂(B(x, εm)), log εm) as an

estimator for the local dimension αµ(x).

The main advantage of using least squares analysis is that it elim-

inates the intercept effect over the employed ε-range. The least

squares analysis also allows us to examine the fit of the data pairs

(log µ̂(B(x, ε1)), log ε1), . . . , (log µ̂(B(x, εm)), log εm) to a straight line.

However, the error of estimators obtained from ordinary least squares will

generally be wrong since the estimators µ̂(B(x, εj)), j = 1, . . . , k are al-

ways correlated with unequal variances. If a covariance matrix of a vector
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(log µ̂(B(x, ε1)), . . . , log µ̂(B(x, εm))) is available and we can consistently esti-

mate its components from the data, then it is possible to perform generalized

least squares analysis. As far as we know, there are no results for the local di-

mension which show a preference of using the generalized least square analysis

instead of the least squares analysis.

The second approach of estimating the local dimension is the nearest neighbor

method which is an opposite method to the least square method. In this method

radii constitute statistics unlike the least square method, where they are fixed. In

the language of regression analysis it means that the dependent and independent

variables are reversed. As a result, we will expect that the slope of the least

squares line in this method is an estimator of 1/αµ(x).

Now let us describe this method. Let X1,X2, . . . ,Xn be an independent sample

from the distribution µ. First calculate the distances δj(x) = ‖Xj − x‖ for each

j = 1, 2, ..., n and write them in the ascending order. We do it by computing

the order statistics δ1:n(x), δ2:n(x), ..., δn:n(x). Then we perform the least squares

analysis of log δj:n(x) vs. log(j/n), j = 1, ..., k for some chosen integer k and

take reciprocal of the slope of the resulting least square line as an estimate of

αµ(x). Note that δ1:n(x), δ2:n(x), ..., δn:n(x) are in fact the distances from x to

its k nearest neighbors in the sample. This method was originally proposed and

numerically studied by Guckenheimer [23].

The validity of the nearest neighbor method procedure has been shown by Cut-

ler and Dawson [13] and Cutler [11]. They showed that if the actual pointwise

dimension αµ(x) exists then

lim
n→∞

log δ1:n(x)

log(1/n)
=

1

αµ(x)
w.p. 1.

Moreover, the asymptotic behavior of the statistic log δ1:n(x)/ log(1/n) has also

been investigated by them.

As noted previously, we usually deal with probability measures whose pointwise

dimension is constant µ-a.s. and coincides with the information dimension. So, it

is very natural to develop statistical methods for estimating the information di-

mension because an application of these two last methods is always accompanied

with a local effect of point x ∈ S.
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1.3 Estimation methods for the information di-

mension

In this section we outline two estimation methods for the information dimension.

The first method for estimating the information dimension has been proposed

and investigated by Cutler [10]. This method is a generalization of the nearest

neighbor method for the local dimension. We start the section with it.

Let B = {X1, . . . ,Xk}, S1 = {Y1,1, . . . ,Y1,n} and S2 = {Y2,1, . . . ,Y2,m·n} be

three independent samples from a distribution µ of interest. Further, the first

sample B will be called the basepoint sample. Then the minimum distances from

each basepoint Xj to each of the two samples S1 and S2 are computed as follows

δ1,n(Xj) = min
1≤i≤n

‖Xj −Y1,i‖ and δ2,m·n(Xj) = min
1≤i≤m·n

‖Xj −Y2,i‖ .

Furthermore, for each basepoint Xj, the statistic

Rm,n(Xj) =
1

logm
log

(
δ1,n(Xj)

δ2,m·n(Xj)

)
is computed and the reciprocal of the sample mean of these statistics

Rm,n(Xj), j = 1, . . . , k is taken as an estimator for the σµ, i.e.

(
Rm,n

)−1
=

(
1

k

k∑
j=1

Rm,n(Xj)

)−1

.

Cutler [10] established asymptotical normality of the statistic Rm,n and con-

structed a confidence interval for 1/σµ which can easily be transformed into a

confidence interval for the information dimension σµ. Numerical results based on

this method were also provided.

Since data from dynamical systems are correlated and the above theory is based

on independent observations, it was desirable to extend this method for dependent

observations. This was done by Hamann [24] for a stationary sequence of random

vectors which satisfies ψ-mixing condition.

The main disadvantage of this method, from our point of view, is that we

do not utilize the information which is contained in the collective sample

X1, . . . ,Xk,Y1,1, . . . ,Y1,n,Y2,1, . . . ,Y2,m·n.
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The second estimator for the information dimension has been proposed and in-

vestigated by Keller [35]. Note that the expression (1.3) in Definition 1.3 differs

from the expression (1.1) in Definition 1.1 in the order of integral and logarithm

which makes it difficult for finding a good estimator for the information dimen-

sion. Keller avoided this problem by finding an alternative definition for the

information dimension which has the same order of integral and logarithm as in

Definition 1.1 for the correlation dimension. The following theorem was proved

by him.

Theorem 1.1. Let µ be a dimension regular probability measure on Rd with

bounded support, and Fε denote the distribution function of µ(B(X, ε)), where

X has a distribution µ. Suppose that Fε is continuous. Consider a continuous

functional J : [0, 1] → [0,∞) with
∫ 1

0
J(t)dt = 1 and J(t) = 0 if t /∈ (δ, 1− δ) for

some δ > 0. Then

σµ = lim
ε→0

1

log ε
log

∫
µ(B(x, ε))J(Fε(µ(B(x, ε)))µ(dx)) . (1.6)

Denote the argument of the logarithm in expression (1.6) as C(ε), i.e.

C(ε) =

∫
µ(B(x, ε))J(Fε(µ(B(x, ε)))µ(dx)) .

Further, define the following location parameter T (Fε) of Fε by

T (Fε) =

∫ 1

0

F−1
ε (s)J(s)ds . (1.7)

Note that, if Fε is continuous then C(ε) = T (Fε) and hence, the problem of

estimation of the information dimension reduces to a problem of estimating the

statistical functional T (Fε).

From the theory of statistical functionals, a natural choice of an estimator for

T (Fε) is T (Gn), where Gn is the empirical distribution function of the sam-

ple proportions µ̂(B(X1, ε)), . . . , µ̂(B(Xn, ε)) which, in turn, are approximations

of unobserved random variables µ(B(X1, ε)), . . . , µ(B(Xn, ε)). Now T (Gn) can

be easily written as a mixture between a U -statistic and a L-statistic and its

asymptotic behavior can be studied through the well advanced theory of U - and

L-statistics (see Keller [35] for more details).
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The asymptotical normality of
√
n (T (Gn)− T (Fε)) has been proven by Keller

[35] for independent samples as well as for random vectors which are absolutely

regular with mixing coefficients β(n) decreasing at a suitable polynomial rate. He

also provided numerical results for data produced by a cubic full-unimodal map

and data from a Henon system.

Keller [35] also pointed out that the sample average of

log µ̂(B(X1, ε)), . . . , log µ̂(B(Xn, ε)) is not always a meaningful estimator

for E log µ(B(X, ε)). However, if sufficient data is available, then from our point

of view, this averaging procedure deserves attention and we will deal with it in

the next section.

1.4 Statistical functionals of unobservables

The object of this section is to introduce a new estimator for the information

dimension whose asymptotical behavior will be studied in Chapter 2. First we

would like to discuss the main problem in estimating the information dimen-

sion. Let X1,X2, ...,Xn be independent Rd-valued observations from distribu-

tion µ. In order to estimate the information dimension σµ accurate, without

any additional assumptions, we have to properly estimate E log µ(B(X1, ε)).

However this can not be done in the standard way since we do not observe

µ(B(X1, ε)), . . . , µ(B(Xn, ε)). This circumstance provides an explanation for us

about the existence of two completely different methods developed by Cutler

[10] and Keller [35].

Now we present a third method of solving this problem which can be gen-

eralized for other statistical problems and this generalization will be dis-

cussed at the end of this section. As noted before, the standard estimator

for µ(B(x, ε)) is the sample proportion µ̂(B(x, ε)) which was defined in (1.5).

Therefore we replace unobservable sample log µ(B(X1, ε)), . . . , log µ(B(Xn, ε))

in the standard estimator sample mean for E log µ(B(X1, ε)) by observable

log µ̂(B(X1, ε)), . . . , log µ̂(B(Xn, ε)) assuming that µ̂(B(Xj, ε)) > 0 for all j =

1, . . . , n. The last assumption holds, for example, if ε > maxj δ(Xj), where
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δ(Xj) = mini:i6=j ‖Xj −Xi‖. Thus we obtain the following statistic

Tn(ε) =
1

n

n∑
j=1

log

(
1

n− 1

n∑
i=1 ; i6=j

1l{‖Xi −Xj‖ ≤ ε}

)
(1.8)

as an estimator for E log µ(B(X1, ε)).

The statistic Tn(ε) can be considered as a U -statistic whose kernel has a U -

statistical structure. The advantage of this estimator is that it makes use of the

information contained in the whole sample as much as possible. We also hope

that its relative simplicity will make it popular for experimentalists. It should

be mentioned that this estimator requires huge calculations, but that should not

make any difficulty in the coming future.

In order to avoid an effect of the intercept, the least squares analysis of Tn(εj)

vs. log εj for some appropriate sequence of radii 0 < ε1 < ε2 < ... < εk should

be performed. Then the slope of the least squares line can be considered as an

estimator of σµ. Numerical results of Chapter 3 show that the errors of disregard-

ing the dependence of Tn(εj), j = 1, . . . , k in the least square analysis are usually

very small.

Another heuristic justification for this approach can be made by observing the

connection between the local and information dimensions. Recall that we only

deal with probability measures whose information dimension coincides with their

local dimension, i.e. σµ = αµ(x) µ−a.s. Assume now for a moment that ”lim” and

”
∫

” in (1.3) can be interchanged. Then it follows that σµ = Eαµ(X1). Choose

some small ε and compute estimators of the local dimension α̂µ(Xj) for j =

1, . . . , n based on the sample X1, . . . ,Xj−1,Xj+1, ...,Xn. Since σµ = Eαµ(X1),

the standard estimator σ̂µ for the information dimension σµ will be a sample

mean of α̂µ(X1), . . . , α̂µ(Xn). Thus we find out that σ̂µ = Tn(ε)/ log ε.

One of the main goals of this work is to investigate the asymptotic behavior of

a slightly more general form of the statistic Tn(ε) which is denoted by Tn and is

given by

Tn =


1
n

n∑
j=1

log

 1
n−1

n∑
i=1
i6=j

h(Xi, Xj)

 if
n∑

i=1
i6=j

h(Xi, Xj) > 0 for j = 1, . . . , n

−∞ otherwise

(1.9)
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where h : R2d → R is some measurable symmetric function. If h(x,y) = 1l{‖x−
y‖ ≤ ε} then Tn = Tn(ε).

Note that the statistic Tn can also be rewritten in a more general form

T̃n =
1

n

n∑
j=1

g

(
1

n− 1

n∑
i=1:i6=j

h(Xi,Xj)

)

and considered as an estimator for the superposition of statistical functionals

T̃ =

∫
g

(∫
h(x,y)dF (y)

)
dF (x)

assuming that T̃n and T̃ are well defined.

Such estimators naturally appear when statistics are based on an unobservable

sample which has an observable approximation. The simplest example of the

statistic T̃n is a wide class of statistics which can be written as U -statistics of

degree 2, for instance, the sample correlation integral. Another example is the

statistic Tn(ε) defined in (1.8). The special form of the statistic T̃n also appears

in the theory of nonparametric statistics in factorial designs (see Brunner and

Denker [9]). It would be desirable to develop a theory for statistical functionals

of unobservables analogously to the theory of U -statistics.

At the end of this section we would like to explain what we mean by ”unobserv-

ables”. First let us give the notion of a random variable by Halmos [25]:

”A random variable is a quantity whose values are determined by chance. . . .

Accordingly a random variable is a function: a function whose numerical values

are determined by chance. This means in other words that a random variable is

a function attached to an experiment-once the experiment has been performed

the value of function is known. . . .”

Thus, an ”unobservable” is a random variable whose value is not known after

performing an experiment.

1.5 Auxilary results

In this section we introduce U -statistics and give some auxilary results which will

be used in the next chapters. We begin the section with U -statistics.
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Many important statistical functionals may be represented as

θ(F ) =

∫
· · ·
∫
h(x1, x2, . . . , xm)dF (x1) · . . . · dF (xm) , (1.10)

where m ∈ N, h is some measurable function, called the kernel and F is a distri-

bution function from some given set of distribution functions. A minimal number

m ∈ N is called a rank of a statistical functional θ(F ) if there exists a kernel h with

m arguments such that (1.10) holds . Without loss of generality, we can assume

that h is symmetric. If it would be not the case then the following transformation

1

m!

∑
1≤i1 6=i2 6=... 6=im≤n

h(xi1 , . . . , xim)

will give us a symmetric kernel for θ(F ).

Statistical functionals of type (1.10) are called regular or parametric functionals.

The simplest examples of regular functionals are the mean and the variance with

the following kernels h(x) = x and h(x, y) = 1
2
(x− y)2, respectively.

Hoeffding [30], partly influenced by the early work of Halmos [26], intro-

duced U -statistics as unbiased and asymptotical normal estimators for regular

functionals θ(F ). They also possess good consistency and optimality properties.

In fact, they have a minimal variance among all unbiased estimators. And this

property of optimality makes them a popular object for theoretical investigations

of statisticians and probabilists.

Let X1, . . . , Xn be i.i.d. random variables from some distribution F .

Definition 1.4. A U-statistic with kernel h of degree m based on a sample

X1, . . . , Xn is a statistic

Un =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim) .

It should be mentioned that U -statistics are closely connected to von Mises’

functionals (see von Mises [50]).

The main achievement of Hoeffding [30] is that he developed an analytical

method to investigate asymptotic properties of U -statistics. It is based on his

decomposition theorem for U -statistics. Before stating it here, we need some

additional notation.
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We introduce the following auxilary symmetric functions

h̃1(x1) =

∫
· · ·
∫
h(x1, . . . , xm)dF (x2) · · · dF (xm) , (1.11)

h̃2(x1, x2) =

∫
· · ·
∫
h(x1, x2, . . . , xm)dF (x3) · · · dF (xm) , (1.12)

... =
...

h̃m(x1, . . . , xm) = h(x1, . . . , xm) . (1.13)

Further, define the following functions for 1 ≤ c ≤ m

hc(x1, . . . , xc) = (−1)cθ(F ) +
c∑

d=1

(−1)c−d
∑

1≤i1<...<id≤c

hd(xi1 , . . . , xid) . (1.14)

It is not difficult to see that hc, c = 1, . . . ,m are also symmetric and moreover,

degenerate, i.e. the integral over one variable with respect to the distribution of

any random variable Xi with i ∈ {1, . . . , n} vanishes (see for example Denker

[16] or Koroljuk and Borovskikh [37]). A number r is called a rank of a U -

statistic with kernel h if h1 ≡ . . . ≡ hr−1 ≡ 0 and hr 6= 0 a.s.. It is obvious, that

r takes values from 1, . . . ,m. If r = 1 then a U -statistic is called non-degenerate

and otherwise, degenerate.

Now we are ready to state Hoeffding’s decomposition theorem for U -statistics.

The proof of this theorem can be found in any classical textbook on U -statistics

as well as in Hoeffidng’s original article [30].

Theorem 1.2. If r is a rank of a statistic Un then the following decomposition

holds

Un − θ(F ) =
m∑

c=r

(
m

c

)
Unc , (1.15)

where Unc are U-statistics with degenerate kernels hc, i.e.

Unc =

(
n

c

)−1 ∑
1≤i1<...<ic≤n

hc(Xi1 , . . . , Xic) . (1.16)

The next theorem gives upper bounds for the second moments of degenerate U -

statistics Unc and shows that the first term in Hoeffding’s decomposition (1.15)

determines a limiting behavior of Un.
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Theorem 1.3. If

Eh2(X1, . . . , Xm) <∞ (1.17)

then the following moment inequality holds for 1 ≤ c ≤ m

EU2
nc ≤ K1n

c , (1.18)

where K1 is some absolute constant depending on Eh2(X1, . . . , Xm).

Moreover, if r is the rank of Un then

E

((
m

r

)
Unr − (Un − θ(F ))

)2

≤ K2n
−r−1 , (1.19)

where K2 is some absolute constant depending on Eh2(X1, . . . , Xm).

Hoeffding [30] originally considered a non-degenerate U -statistic and proved its

asymptotical normality. But it should be mentioned that asymptotic distribution

of a degenerate U -statistic completely differs from the normal distribution. In

fact, if r ≥ 2 is a rank of Un then nr/2Un converges weakly to a multiple Wiener

integral whenever (1.17) holds (see Denker [16]).

Now we give Hoeffding’s central limit theorem for non-degenerate U -statistics.

Theorem 1.4. If (1.17) holds and

σ2 = Eh2
1(X1) > 0

then
√
n(mσ)−1(Un − θ(F )) is asymptotically normal with mean 0 and variance

1.

Many limit theorems for sums of i.i.d. random variables have their analog for

U -statistics. For example, the strong law of large numbers for U -statistics was

established by Hoeffding [31] and Berk [2].

Theorem 1.5. If

E|h(X1, . . . , Xm)| <∞

then Un → θ(F ) a.s.

The rest of this section is devoted to obtaining preliminary results for Chapter 2

and we start with the definition of complete convergence.
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Definition 1.5. A sequence (ξn)∞n=1 of random variables is said to converge com-

pletely to 0 if for all ε > 0,
∞∑

n=1

P (|ξn| > ε) <∞.

The concept of complete convergence was introduced by Hsu and Robbins [33].

It is not difficult to see that complete convergence is stronger than almost sure

convergence. It is also one of the main tools for proving an almost sure convergence

of a sequence of random variables.

Now we are going to give another representation of the statistic Tn defined in (1.9)

using the auxilary functions (1.11)–(1.14). For convenience, we rewrite them for

a function h with two arguments.

h̃1(x) = E(h(X1,X2)/X1 = x) , (1.20)

h1(x) = h̃1(x)− Eh(X1,X2) , (1.21)

h2(x,y) = h(x,y)− Eh(X1,X2)− h1(x)− h1(y) . (1.22)

Recall that functions h1 and h2 are degenerate with respect to the distribution

of Xi, i = 1, . . . , n.

Now using (1.20) – (1.22), we find out that (1.9) is equivalent to

Tn =
1

n

n∑
j=1

log

(
h̃1(Xj) +

1

n− 1

n∑
i=1:i6=j

h1(Xi) +
1

n− 1

n∑
i=1:i6=j

h2(Xi,Xj)

)
whenever lim infn Tn > −∞ µ-a.s.

Here and in the sequel, we will make use of the following notation ηj,n for j =

1, . . . , n which denote random variables defined by

ηj,n =
1

n− 1

n∑
i=1:i6=j

h1(Xi) +
1

n− 1

n∑
i=1:i6=j

h2(Xi,Xj) . (1.23)

Now the statistic Tn can be rewritten in the following form

Tn =
1

n

n∑
j=1

log
(
h̃1(Xj) + ηj,n

)
. (1.24)

The representation (1.24) will be used in Chapter 2 and plays a major role in

investigating the asymptotic behavior of Tn.

The following lemma gives us some important properties of the sequence ηj,n for

fixed j ∈ {1, . . . , n}.
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Lemma 1.1. Let ηj,n for j = 1, . . . , n and n ∈ N be random variables defined in

(1.23). Then ηj,n’s are identically distributed w.r. to j for every fixed n. Moreover,

if Eh4(X1,X2) <∞ then for every fixed j

Eη4
j,n = O

(
1

n2

)
(1.25)

and consequently,

ηj,n → 0 completely as n→∞. (1.26)

Proof. The first statement is obvious. The statement (1.26) follows from the

relation (1.25) and from Definition 1.5.

Thus, it suffices to prove the relation (1.25). By cr-inequality, it follows

Eη4
j,n = E

(
1

n− 1

n∑
i=1:i6=j

h1(Xi) +
1

n− 1

n∑
i=1:i6=j

h2(Xi,Xj)

)4

≤ 23E

(
1

n− 1

n∑
i=1:i6=j

h1(Xi)

)4

+ 23E

(
1

n− 1

n∑
i=1:i6=j

h2(Xi,Xj)

)4

= 8Wr1 + 8Wr2 . (1.27)

Consider Wr1. Using the degeneracy of h1 and the assumption of the lemma, we

have

Wr1 =
1

(n− 1)4

n∑
i=1:i6=j

Eh4
1(Xi) +

3

(n− 1)4

n∑
i=1:i6=j

n∑
k=1:k 6=j

Eh2
1(Xi)Eh

2
1(Xk)

= O

(
1

n2

)
. (1.28)

A similar argument yields the next bound for Wr2

Wr2 =
1

(n− 1)4

n∑
i=1:i6=j

Eh4
2(Xi,Xj)

+
3

(n− 1)4

n∑
i=1:i6=j

n∑
k=1:k 6=i:k 6=j

Eh2
2(Xi,Xj)Eh

2
2(Xk,Xj)

= O

(
1

n2

)
. (1.29)

Combining relations (1.27)–(1.29), we obtain the relation (1.25).

Remark 1.1. Statement (1.26) can be proved under the condition Eh2(X1,X2) <

∞. It is enough for it to use the results of Hsu and Robbins [33] and Dehling

[15].



Chapter 2

Asymptotic properties of the

statistic Tn

2.1 Consistency

In this section, we prove the consistency of the statistic Tn. Here and in the sequel,

we will make use of notations (1.20)–(1.23) without any notice.

Theorem 2.1. Let X1,X2, . . . ,Xn be i.i.d. Rd-valued random variables with

a probability distribution µ and Tn be the statistic defined in (1.9) such that

lim infn Tn > −∞ µ-a.s. Suppose that

Eh4(X1,X2) <∞ (2.1)

and

P{h̃1(X1) ≥ A} = 1 (2.2)

for some constant A > 0. Then Tn → E log h̃1(X1) in probability.

Remark 2.1. Before starting to prove the theorem, we would like to explain

assumption (2.2) for the special kernel h(x,y) = 1l(||x− y|| ≤ ε). Note that

E(h(X1,X2)/X1) = E(1l{||X1 −X2|| ≤ ε}/X1) = µ(B(X1, ε)).

So, (2.2) means that the measure of the ball B(X1, ε) for given ε should not be

less than given positive constant A which is quite natural to assume.

26
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Proof. First, we note that 0 < Eh̃1(X1) ≤ E|h(X1,X2)| and | log u| ≤
max{logA, u} for u ≥ A > 0. From (2.1) it follows now that

E| log h̃1(X1)| ≤ ∞ . (2.3)

For convenience, we introduce the following notation

a = E log h̃1(X1). (2.4)

Thus, we need to show that P (|Tn − a| > ε) → 0 as n→∞ for ∀ ε > 0.

The representation (1.24) of Tn and a simple argument now yield that

P (|Tn − a| > ε) = P

(∣∣∣∣∣ 1n
n∑

j=1

(log(h̃1(Xj) + ηj,n)− a)

∣∣∣∣∣ > ε

)

= P

(
1

n

∣∣∣∣∣
n∑

j=1

(log(h̃1(Xj) + ηj,n)− a)

∣∣∣∣∣ > ε; max
k=1,...,n

|ηk,n| >
A

2

)

+ P

(
1

n

∣∣∣∣∣
n∑

j=1

(log(h̃1(Xj) + ηj,n)− a)

∣∣∣∣∣ > ε; max
k=1,...,n

|ηk,n| ≤
A

2

)
= Wg1 +Wg2. (2.5)

Consider Wg1. From (2.1) and Lemma 1.1, it follows that

Wg1 ≤ P

(
max

k=1,...,n
|ηk,n| >

A

2

)
≤

n∑
k=1

P

(
|ηk,n| >

A

2

)
= nP

(
|η1,n| >

A

2

)
→ 0, as n→∞. (2.6)

Consider Wg2. Using the Taylor expansion of log(b+ x) with the remainder term

in the Lagrange form, we find

Wg2 = P

(∣∣∣∣∣ 1n
n∑

j=1

[
log h̃1(Xj)− a+

ηj,n

h̃1(Xj) + θj,nηj,n

]∣∣∣∣∣ 1l
{

max
k=1,...,n

|ηk,n| ≤
A

2

}
> ε

)

≤ P

{∣∣∣∣∣ 1n
n∑

j=1

[
log h̃1(Xj)− a

]∣∣∣∣∣ 1l
{

max
k=1,...,n

|ηk,n| ≤
A

2

}
>
ε

2

}

+ P

(∣∣∣∣∣ 1n
n∑

j=1

ηj,n

h̃1(Xj) + θj,nηj,n

∣∣∣∣∣ 1l
{

max
k=1,...,n

|ηk,n| ≤
A

2

}
>
ε

2

)
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= Wh1 +Wh2, (2.7)

where θj,n, j = 1, . . . , n are random variables depending on h̃1(Xj) and ηj,n,

moreover, 0 < θj,n < 1 µ-a.s.

Consider Wh1. From (2.3) and the law of large numbers for {log h̃1(Xj)}j∈N, we

deduce that

Wh1 = P

(∣∣∣∣∣ 1n
n∑

j=1

[
log h̃1(Xj)− a

]∣∣∣∣∣ 1l
{

max
k=1,...,n

|ηk,n| ≤
A

2

)
>
ε

2

}

≤ P

(∣∣∣∣∣ 1n
n∑

j=1

[
log h̃1(Xj)− a

]∣∣∣∣∣ > ε

2

)
→ 0 as n→∞. (2.8)

Consider Wh2. Using Tchebychev and Cauchy-Schwarz inequalities, we have that

Wh2 = P

(∣∣∣∣∣ 1n
n∑

j=1

ηj,n

h̃1(Xj) + θj,nηj,n

∣∣∣∣∣ 1l
{

max
k=1,...,n

|ηk,n| ≤
A

2

}
>
ε

2

)

≤ 4

ε2
E

(
1

n

n∑
j=1

ηj,n1l
(
maxk=1,...,n |ηk,n| ≤ A

2

)
h̃1(Xj) + θj,nηj,n

)2

≤ 4

ε2n

n∑
j=1

E

(
ηj,n

h̃1(Xj) + θj,nηj,n

)2

1l

(
max

k=1,...,n
|ηk,n| <

A

2

)
.

Further, note that if |ηjn| ≤ A/2 then(
ηj,n

h̃1(Xj) + θj,nηj,n

)2

≤ 4

A2
η2

j,n µ− a.s. (2.9)

and hence,

Wh2 ≤ 4

ε2n

n∑
j=1

E

(
ηj,n

h̃1(Xj) + θj,nηj,n

)2

1l

(
max

k=1,...,n
|ηk,n| <

A

2

)

≤ 16

A2ε2n

n∑
j=1

Eη2
j,n

=
16

A2ε2

(
Eh2

1(X1)

n− 1
+
Eh2

2(X1,X2)

n− 1

)
→ 0. (2.10)

In the relation (2.10) we have used the following equality

Eη2
j,n = E

(
1

n− 1

n∑
i=1:i6=j

h1(Xi) +
1

n− 1

n∑
i=1:i6=j

h2(Xi,Xj)

)2
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=
Eh2

1(X1)

n− 1
+
Eh2

2(X1,X2)

n− 1
for any j = 1, 2, . . . , n. (2.11)

Finally, the theorem is proved by putting together the relations (2.5), (2.6), (2.7),

(2.8) and (2.10).

2.2 Asymptotic distribution

In this section, we examine the asymptotic distribution of the statistic Tn. First,

we need to introduce some notation.

A1 = E

(
1

h̃1(X1)

)
; (2.12)

Φ(x,y) =
1

2

(
1

h̃1(x)
h2(y,x) +

1

h̃1(y)
h2(x,y)

)
; (2.13)

ψ(x) = E(Φ(X1,X2)/X1 = x); (2.14)

Zj = log h̃1(Xj)− a+ A1h1(Xj) + 2ψ(Xj); (2.15)

σ2 = V ar(Z1). (2.16)

Theorem 2.2. Let X1,X2, . . . ,Xn be i.i.d. Rd-valued random variables with

a probability distribution µ and Tn be the statistic defined in (1.9) such that

lim infn Tn > −∞ µ-a.s. Assume that

P (h̃1(X1) ≥ A) = 1 for some A > 0 and (2.17)

Eh4(X1,X2) < ∞. (2.18)

If σ > 0 then
√
nσ−1(Tn− a) is asymptotically normal with mean 0 and variance

1, where a was defined in (2.4).

Remark 2.2. Note that, using (1.20) – (1.22), Zj’s can also be written in the

following form

Zj = log(h̃1(Xj))− a+

∫
h(Xj,y)

h̃1(y)
µ(dy)− 1. (2.19)

We will make use of this form of Zj’s for constructing a consistent estimator σ̂2

for σ2 when h(x,y) = 1l{‖x − y‖ ≤ ε}. First we will simulate random variables
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Ẑj by replacing µ(dy) by µ̂(dy) and the expectation by the sample mean in (2.19),

i.e.

Ẑj = log(µ̂(B(Xj, ε))− â+
1

n− 1

n∑
i=1:i6=j

1l{‖Xj −Xi‖ ≤ ε}
µ̂(B(Xi, ε))

− 1,

where

µ̂(B(Xj, ε) =
1

n− 1

n∑
i=1:i6=j

1l{‖Xj −Xi‖ ≤ ε}

and

â =
1

n

n∑
j=1

log (µ̂(B(Xj, ε)) .

Then we take the sample second moment of {Ẑj}n
j=1 which we denote by σ̂2 as an

estimator for σ2 since EZj = 0 for j = 1, . . . , n. The consistency of σ̂2 will be

proved in the next section.

Proof. First we give some simple consequences of the assumptions (2.17) and

(2.18) which will be used in the sequel:

E

∣∣∣∣h1(X1)

h̃1(X1)

∣∣∣∣ <∞ ; V ar

(
1

h̃1(X1)

)
<∞ ; EΦ2(X1,X2) <∞ . (2.20)

An analogous argumentation as at the beginning of the proof of Theorem 2.1

shows that

E log(h̃1(X1)) = a <∞ and σ2 <∞,

and consequently, σ2 in (2.16) is well defined under the assumptions of the theo-

rem.

Consider
√
nσ−1(Tn − a). Now relation (2.10) in the proof of Theorem 2.1 does

not hold anymore and we need one more term in the Taylor expansion of the

representation (1.24) of Tn, namely

√
nσ−1(Tn − a) =

1√
nσ

n∑
j=1

[log(h̃1(Xj) + ηj,n)− a]

=
1√
nσ

n∑
j=1

[
log(h̃1(Xj))− a+

ηj,n

h̃1(Xj)

]

− 1√
nσ

n∑
j=1

η2
j,n(

h̃1(Xj) + θj,nηj,n

)2



2.2 Asymptotic distribution 31

= W1 −W2, (2.21)

where θj,n, j = 1, . . . , n are random variables depending on h̃1(Xj) and ηj,n,

moreover, 0 < θj,n < 1 µ-a.s.

The first step in the proof is to show that

W2 → 0 in probability. (2.22)

A simple argumentation yields

W2 = P

 1√
nσ

n∑
j=1

η2
j,n(

h̃1(Xj) + θj,nηj,n

)2 > ε


= P

 1√
nσ

n∑
j=1

η2
j,n(

h̃1(Xj) + θj,nηj,n

)2 > ε ; max
k=1,...,n

|ηk,n| ≤
A

2


+ P

 1√
nσ

n∑
j=1

η2
j,n(

h̃1(Xj) + θj,nηj,n

)2 > ε ; max
k=1,...,n

|ηk,n| >
A

2


= W21 +W22. (2.23)

Consider W21. By virtue of (2.9), (2.11), (2.17) and Chebyshev inequality, we

have

W21 = P

 1√
nσ

n∑
j=1

η2
j,n(

h̃1(Xj) + θj,nηj,n

)2 > ε ; max
k=1,...,n

|ηk,n| ≤
A

2


≤ P

(
1√
nσ

n∑
j=1

4

A2
η2

j,n > ε ; max
k=1,...,n

|ηk,n| ≤
A

2

)

≤ P

(
1√
nσ

n∑
j=1

4

A2
η2

j,n > ε

)

≤ 4√
nσεA2

n∑
j=1

Eη2
j,n

=
4n√
nσεA2

Eη2
1,n → 0. (2.24)
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Consider W22. By Lemma 1.1 it follows

W22 = P

 1√
nσ

n∑
j=1

η2
j,n(

h̃1(Xj) + θj,nηj,n

)2 > ε ; max
k=1,...,n

|ηk,n| >
A

2


≤ P

(
max

k=1,...,n
|ηk,n| >

A

2

)
≤ nP

(
|η1,n| >

A

2

)
→ 0. (2.25)

Thus, the relations (2.23), (2.24) and (2.25) together prove (2.22).

The second step in the proof is to establish asymptotical equivalence of W1 and

Sn in distribution, where

Sn =
1√
nσ

n∑
j=1

Zj,

Zj’s and σ are defined in (2.15) and (2.16), respectively. To verify this, it is enough

to show that

E(W1 − Sn)2 → 0 as n→∞. (2.26)

First, note that

1√
nσ

n∑
j=1

ηj,n

h̃1(Xj)
=

1√
nσ

n∑
j=1

1

h̃1(Xj)

1

n− 1

n∑
i=1:i6=j

h1(Xi)

+
1√
nσ

n∑
j=1

1

h̃1(Xj)

1

n− 1

n∑
i=1:i6=j

h2(Xi,Xj)

= SS1 + SS2.

Secondly, define the following random variables

SS =
A1√
nσ

n∑
i=1

h1(Xi)

and
2
√
n

σ
U1 =

1√
nσ

n∑
i=1

2ψ(Xi),

where A1 and ψ(x) defined in (2.12) and (2.14), respectively.

Simple calculation yields that

E(W1 − Sn)2 = E

(
SS1 + SS2 − SS − 2

√
n

σ
U1

)2

. (2.27)
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By virtue of cr-inequality and (2.27), (2.26) follows now from

E (SS1 − SS)2 → 0 (2.28)

and

E

(
SS2 −

2
√
n

σ
U1

)2

→ 0. (2.29)

In order to prove the relation (2.28), rewrite SS1 in the following form

SS1 =
1√
nσ

n∑
i=1

h1(Xi)
1

n− 1

n∑
j=1:j 6=i

1

h̃1(Xj)

and consequently, we have

E(SS − SS1)
2 =

1

nσ2

n∑
i=1

E

(
h1(Xi)

1

n− 1

n∑
j=1:j 6=i

[
1

h̃1(Xj)
− A1

])2

+
1

nσ2
E

(
n∑

i=1

n∑
m=1:m6=i

h1(Xi)
1

n− 1

[
n∑

j=1:j 6=i

(
1

h̃1(Xj)
− A1

)]

× h1(Xm)
1

n− 1

[
n∑

l=1:l 6=m

(
1

h̃1(Xl)
− A1

)])
= QQ1 +QQ2. (2.30)

Consider QQ1. It follows from (2.18) and (2.20) that

QQ1 =
1

nσ2

n∑
i=1

E

(
h1(Xi)

1

n− 1

n∑
j=1:j 6=i

[
1

h̃1(Xj)
− A1

])2

=
1

nσ2

n∑
i=1

Eh2
1(Xi)E

(
1

n− 1

n∑
j=1:j 6=i

[
1

h̃1(Xj)
− A1

])2

=
1

σ2

1

(n− 1)2
Eh2

1(X1)E

(
n∑

j=2

[
1

h̃1(Xj)
− A1

])2

=
1

σ2

1

(n− 1)2
Eh2

1(X1)
n∑

j=2

E

(
1

h̃1(Xj)
− A1

)2

=
1

σ2

1

(n− 1)
Eh2

1(X1)E

(
1

h̃1(X2)
− A1

)2

→ 0. (2.31)

Consider QQ2. Using (2.20) and the degeneracy of the function h1(x) , we find

QQ2 =
1

nσ2

n∑
i=1

n∑
m=1:m6=i

E

(
h1(Xi)

1

n− 1

[
n∑

j=1:j 6=i

(
1

h̃1(Xj)
− A1

)]



2.2 Asymptotic distribution 34

× h1(Xm)
1

n− 1

[
n∑

l=1:l 6=m

(
1

h̃1(Xl)
− A1

)])

=
1

n(n− 1)2σ2

n∑
i=1

n∑
m=1:m6=i

E

(
h1(Xm)

[
n∑

j=1:j 6=i

(
1

h̃1(Xj)
− A1

)]

× Ei h1(Xi)

[
n∑

l=1:l 6=m

(
1

h̃1(Xl)
− A1

)])

=
1

n(n− 1)2σ2

n∑
i=1

n∑
m=1:m6=i

E

(
h1(Xm)

[
n∑

j=1:j 6=i

(
1

h̃1(Xj)
− A1

)]
Ei

h1(Xi)

h̃1(Xi)

)

=
1

n(n− 1)2σ2

n∑
i=1

n∑
m=1:m6=i

E
h1(Xm)

h̃1(Xm)
E
h1(Xi)

h̃1(Xi)

=
1

(n− 1)σ2
E
h1(X1)

h̃1(X1)
E
h1(X2)

h̃1(X2)
→ 0, (2.32)

where Ei denotes the conditional expectation with respect to Xi.

The relations (2.30),(2.31) and (2.32) together prove the relation (2.28).

To estabilsh (2.29), we rewrite SS2 in the following form

SS2 =
1√
nσ

n∑
j=1

1

h̃1(Xj)

1

n− 1

n∑
i=1:i6=j

h2(Xi,Xj)

=
1√

n(n− 1)σ

n∑
1≤i6=j≤n

1

h̃1(Xj)
h2(Xi,Xj)

=
1√

n(n− 1)σ

n∑
1≤i6=j≤n

1

2

(
1

h̃1(Xj)
h2(Xi,Xj) +

1

h̃1(Xi)
h2(Xj,Xi)

)

=
1√

n(n− 1)σ

n∑
1≤i6=j≤n

1

2

(
1

h̃1(Xj)
h2(Xi,Xj) +

1

h̃1(Xi)
h2(Xj,Xi)

)

=
1√

n(n− 1)σ

n∑
1≤i6=j≤n

Φ(Xi,Xj),

where Φ(x, y) was defined in (2.13).

Now we see that SS2 can be represented through a U -statistic with the kernel

Φ(x,y) in the following way

SS2 =

√
n

σ
Un.

Noting that EΦ(X1,X2) = 0, the relation (2.29) follows from (2.20) and (1.19).
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Finally, the relations (2.21), (2.22), (2.26) and an application of the central limit

theorem to Sn complete the proof.

2.3 Consistent estimator of the variance

In this section, we prove the consistency of σ̂2 mentioned before in Remark 2.2.

Since we are going to apply Theorem 2.1 for h(x,y) = 1l{‖x−y‖ ≤ ε}, we assume

further that

P (0 ≤ h(X1,X2) ≤ C1) = 1. (2.33)

Theorem 2.3. Let X1,X2, . . . ,Xn be i.i.d. Rd-valued random variables with

a probability distribution µ and Tn be the statistic defined in (1.9) such that

lim infn Tn > −∞ µ-a.s. Assume that (2.2) and (2.33) hold. Then the follow-

ing statistic

σ̂2
n =

1

n

n∑
j=1

log2

(
1

n− 1

n∑
i=1:i6=j

h(Xi,Xj)

)
− T 2

n

+
1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi)
1

n−1

∑
u 6=i h(Xu,Xi)

· h(Xs,Xj)
1

n−1

∑
v 6=j h(Xv,Xj)

+ 1

− 2

n2

n∑
s=1

n∑
i=1

h(Xs,Xi)
1

n−1

∑
u 6=i h(Xu,Xi)

− 2Tn

+
2

n2

n∑
s=1

n∑
j=1

[
log

(
1

n− 1

∑
u 6=s

h(Xu,Xs)

)]
· h(Xs,Xj)

1
n−1

∑
v 6=j h(Xv,Xj)

(2.34)

is a consistent estimator for σ2 defined in (2.16).

Proof. The proof of the theorem consists of several steps. First we will give an

exact formula for σ2. Further we give consistent estimators for each term of this

formula.

Simple calculation shows that

σ2 = V ar(Z1) = EZ2
1

= E

(
log(h̃1(X1))− a+

∫
h(X1,y)

h̃1(y)
µ(dy)− 1

)2
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= E
(
log(h̃1(X1))− a

)2

+ E

(∫
h(X1,y)

h̃1(y)
µ(dy)− 1

)2

+ 2E
(
log(h̃1(X1))− a

)(∫ h(X1,y)

h̃1(y)
µ(dy)− 1

)
= E1 + E2 + 2E3 , (2.35)

where a was defined in (2.4).

Now we give consistent estimators for E1, E2 and E3.

Consider E1. It is enough to find a consistent estimator for E log2(h̃1(X1)) since

E1 = E log2(h̃1(X1)) − a2 and a2 can be consistently estimated by T 2
n which is

a consequence of Slutzky’s Theorem and Theorem 2.1. The natural choice of the

estimator for E log2(h̃1(X1)) is

Ê1 =
1

n

n∑
j=1

log2

(
1

n− 1

n∑
i=1:i6=j

h(Xi,Xj)

)
.

Using the representation (1.24) and the Taylor expansion, we can rewrite Ê1 in

the following form

Ê1 =
1

n

n∑
j=1

(
log h̃1(Xj) +

ηj,n

h̃1(Xj) + θj,nηj,n

)2

=
1

n

n∑
j=1

log2 h̃1(Xj)

+
2

n

n∑
j=1

log h̃1(Xj) ·
ηj,n

h̃1(Xj) + θj,nηj,n

+
1

n

n∑
j=1

(
ηj,n

h̃1(Xj) + θj,nηj,n

)2

= S1n + 2S2n + S3n , (2.36)

where ηj,n are defined in (1.23) and θj,n, j = 1, . . . , n are (0, 1)-valued random

variables depending on ηj,n and h̃1(Xj).

By virtue of (2.2) and (2.33), it follows that E log2 h̃1(X1) <∞ and therefore

S1n
P−→ E log2 h̃1(X1) as n→∞ (2.37)

by the law of large numbers.
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It remains now to prove that

S2n
P−→ 0 as n→∞ (2.38)

and

S3n
P−→ 0 as n→∞. (2.39)

Consider S2n. Thus, by the conditions imposed on h̃1 and h, we find that

| log h̃1(X1)| < C2 µ-a.s., where C2 = max{| logA|, | logC1|}. Further, a simple

argumentation yields that

P (|S2n| > ε) ≤ P

(
n∑

j=1

∣∣∣∣∣ ηj,n

h̃1(Xj) + θj,nηj,n

∣∣∣∣∣ > ε · n
C2

)

≤
n∑

j=1

P

(∣∣∣∣∣ ηj,n

h̃1(Xj) + θj,nηj,n

∣∣∣∣∣ > ε

C2

)

=
n∑

j=1

P

(∣∣∣∣∣ ηj,n

h̃1(Xj) + θj,nηj,n

∣∣∣∣∣ > ε

C2

; |ηj,n| ≤
A

2

)

+
n∑

j=1

P

(∣∣∣∣∣ ηj,n

h̃1(Xj) + θj,nηj,n

∣∣∣∣∣ > ε

C2

; |ηj,n| >
A

2

)
= P2an + P2bn. (2.40)

Consider P2bn. By Lemma 1.1 we get that

P2bn ≤
n∑

j=1

P

(
|ηj,n| >

A

2

)
= nP (|η1,n| >

A

2
)

→ 0. (2.41)

Consider P2an. Using Lemma 1.1 and (2.2), we find that

P2an =
n∑

j=1

P

(∣∣∣∣∣ ηj,n

h̃1(Xj) + θj,nηj,n

∣∣∣∣∣ > ε

C2

; |ηj,n| ≤
A

2

)

≤
n∑

j=1

P

(∣∣∣∣∣ ηj,n

A− A
2

∣∣∣∣∣ > ε

C2

; |ηj,n| ≤
A

2

)

≤
n∑

j=1

P

(
|ηj,n| >

Aε

2C2

)
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= nP

(
|η1,n| >

Aε

2C2

)
→ 0 . (2.42)

Now the relation (2.38) follows from the relations (2.40), (2.41) and (2.42).

In order to prove the relation (2.39), we use the same technique as in (2.40) and

get that

P (|S3n| > ε) = P

 1

n

n∑
j=1

(
ηj,n

h̃1(Xj) + θj,nηj,n

)2

> ε


≤

n∑
j=1

P

( ηj,n

h̃1(Xj) + θj,nηj,n

)2

> ε


=

n∑
j=1

P

( ηj,n

h̃1(Xj) + θj,nηj,n

)2

> ε ; |ηj,n| ≤
A

2


+

n∑
j=1

P

( ηj,n

h̃1(Xj) + θj,nηj,n

)2

> ε ; |ηj,n| >
A

2


= P3an + P3bn . (2.43)

In the same way as in the derivation of the relations (2.41) and (2.42), one can

show that

P3an → 0 and P3bn → 0 , as n→∞. (2.44)

Now the relation (2.39) follows from the relations (2.43) and (2.44).

Combining together (2.36), (2.37), (2.38) and (2.39), we obtain that Ê1−T 2
n is a

consistent estimator for E1.

Further, consider E2. Simple calculation yields that

E2 = E

(∫
h(X1,y)

h̃1(y)
µ(dy)− 1

)2

= E

(∫
h(X1,y)

h̃1(y)
µ(dy)

)2

+ 1− 2E

(∫
h(X1,y)

h̃1(y)
µ(dy)

)
= E2a + 1− 2E2b (2.45)

and hence, it is enough to estimate consistently E2a and E2b.
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Rewrite E2a in the following form

E2a = E

(∫
h(X1,y)

h̃1(y)
µ(dy)

)2

= E

(∫
h(X1,x)

h̃1(x)
µ(dx)

)
·
(∫

h(X1,y)

h̃1(y)
µ(dy)

)
= E

∫ ∫
h(X1,x)

h̃1(x)
· h(X1,y)

h̃1(y)
µ(dx)µ(dy)

and we see that the natural estimator for the E2a is

Ê2a =
1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi)
1

n−1

∑
u 6=i h(Xu,Xi)

· h(Xs,Xj)
1

n−1

∑
v 6=j h(Xv,Xj)

.

Using the same technique as for Ê1, we obtain that

Ê2a =
1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi)

h̃1(Xi) + ηi,n

· h(Xs,Xj)

h̃1(Xj) + ηj,n

=
1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi) · h(Xs,Xj)

×

(
1

h̃1(Xi)
− ηi,n

(h̃1(Xi) + θi,nηi,n)2

)
·

(
1

h̃1(Xj)
− ηj,n

(h̃1(Xj) + θj,nηj,n)2

)

=
1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi)

h̃1(Xi)
· h(Xs,Xj)

h̃1(Xj)

+
1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi)ηi,n

(h̃1(Xi) + θi,nηi,n)2
· h(Xs,Xj)ηj,n

(h̃1(Xj) + θj,nηj,n)2

− 1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi)

h̃1(Xi)
· h(Xs,Xj)ηj,n

(h̃1(Xj) + θj,nηj,n)2

− 1

n3

n∑
s=1

n∑
i=1

n∑
j=1

h(Xs,Xi)ηi,n

(h̃1(Xi) + θi,nηi,n)2
· h(Xs,Xj)

h̃1(Xj)

= Ê2a1 + Ê2a2 + Ê2a3 + Ê2a4 , (2.46)

where θj,n, j = 1, . . . , n are (0, 1)-valued random variables depending on h̃1(Xj)

and ηj,n.

It is not difficult to see that

Ê2a1
P−→ E2a as n→∞ (2.47)
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by the law of large numbers for U -statistics and therefore, it remains to prove

that

Ê2a2, Ê2a3 and Ê2a4
P−→ 0 as n→∞ . (2.48)

The relation (2.48) can be derived in the same way as the relations (2.38) and

(2.39). Now from (2.46), (2.47) and (2.48), it follows that

Ê2a
P−→ E2a as n→∞. (2.49)

Analogously, one can show that

Ê2b =
1

n2

n∑
s=1

n∑
i=1

h(Xs,Xi)
1

n−1

∑
u 6=i h(Xu,Xi)

. (2.50)

is a consistent estimator for E2b, i.e.

Ê2b
P−→ E2b as n→∞. (2.51)

Combining (2.45)–(2.51), we obtain that Ê2a + 1− 2Ê2b is a consistent estimator

for E2.

Consider now the last term of (2.35), namely E3. Note that E3 can be written in

the following form

E3 = E
(
log(h̃1(X1))

)
·
∫
h(X1,y)

h̃1(y)
µ(dy)− a

= E3a − a. (2.52)

By Theorem 2.1, a can be consistently estimated by Tn and hence, it remains

only to find a consistent estimator for E3a. The same technique, used for proving

consistency of Ê1 and Ê2a, will show that the estimator

Ê3a =
1

n2

n∑
s=1

n∑
j=1

[
log

(
1

n− 1

∑
u 6=s

h(Xu,Xs)

)]
· h(Xs,Xj)

1
n−1

∑
v 6=j h(Xv,Xj)

.

is a consistent estimator for E3a.

Finally, note that the following equality for σ̂2
n defined in (2.34) holds

σ̂2
n = Ê1 − T 2

n + Ê2a + 1− 2Ê2b + 2Ê3 − 2Tn

and therefore, σ̂2
n consistently estimates σ2.
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2.4 Multivariate Central Limit Theorem

In this section, we prove the multivariate central limit theorem for the vector

Tn = (Tn(ε1), Tn(ε2), . . . , Tn(εm)), where 0 < ε1 < ε2 < . . . < εm < 1 and Tn(ε)

was defined (1.8). Note that the statistic Tn(ε) has a kernel depending on ε. We

will indicate this by an upper index k enclosed in brackets which ranges from 1

to m. In the same way we modify notations (2.12)–(2.16), i.e.

A
(k)
1 = E

(
1

h̃
(k)
1 (X1)

)
;

Φ(k)(x,y) =
1

2

(
1

h̃
(k)
1 (x)

h
(k)
2 (y,x) +

1

h̃
(k)
1 (y)

h
(k)
2 (x,y)

)
;

ψ(k)(x) = E(Φ(k)(X1,X2)/X1 = x);

Z
(k)
j = log h̃

(k)
1 (Xj)− a+ A

(k)
1 h

(k)
1 (Xj) + 2ψ(k)(Xj);(

σ(k)
)2

= V ar(Z
(k)
1 ).

Finally, denote the vector of expectations (E log h̃
(1)
1 (X1), . . . , E log h̃

(m)
1 (X1)) by

a.

Theorem 2.4. Let X1,X2, . . . ,Xn be i.i.d. Rd-valued random variables with a

probability distribution µ. Assume that

P (h̃
(k)
1 (X1) ≥ A) = 1 for some A > 0 and (2.53)

E
(
h(k)(X1,X2)

)4
< ∞ (2.54)

for all k = 1, . . . ,m. Then the distribution of
√
n(Tn−a) converges weakly to m-

dimensional normal distribution with zero expectation and the covariance matrix

V, whose entries are given by v
kl

= EZ
(k)
j · Z(l)

j .

Proof. According to Cramer-Wald device, it is enough to prove that a distribu-

tion of a linear combination
√
n
∑m

k=1 ckTn(εk) tends to the normal distribution

with zero expectation and the variance
∑m

k=1

∑m
l=1 ckvkl

cl, where c = (c1, . . . , cm)

is some arbitrary fixed vector of constants such that ∃k0 : ck0 6= 0. Without loss

of generality, we may assume that c has positive entries.

A simple argumentation yields that

4n(c) = P

(∣∣∣∣∣
m∑

k=1

ck

[
√
nTn(εk)−

1√
n

n∑
j=1

Z
(k)
j

]∣∣∣∣∣ > ε

)
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≤
m∑

k=1

P

(∣∣∣∣∣√nTn(εk)−
1√
n

n∑
j=1

Z
(k)
j

∣∣∣∣∣ > ε

ckm

)
. (2.55)

It follows from (2.21), (2.22), (2.26), (2.53) and (2.54) that every term of

the sum on the right hand side of (2.55) converges to 0 as n → ∞. Hence,∑m
k=1 ck

√
nTn(εk) and

∑m
k=1 ck

1√
n

∑n
j=1 Z

(k)
j have the same limit distribution.

In order to investigate an asymptotic distribution of
∑m

k=1 ck
1√
n

∑n
j=1 Z

(k)
j , rewrite

it in the following form

m∑
k=1

ck
1√
n

n∑
j=1

Z
(k)
j =

1√
n

n∑
j=1

m∑
k=1

ckZ
(k)
j

=
1√
n

n∑
j=1

Vj(c) .

Note that V1(c), . . . , Vn(c) is a sequence of i.i.d. random variables with zero ex-

pectation and variance τ 2 given by

τ 2 = EV 2
1 (c) = E

(
m∑

k=1

ckZ
(k)
1

)2

=
m∑

k=1

m∑
l=1

ckclEZ
(k)
1 Z

(l)
1 =

m∑
k=1

m∑
l=1

ckvkl
cl .

An application of the central limit theorem to V1(c), . . . , Vn(c) completes the

proof.



Chapter 3

Numerical results

3.1 Theoretical background

In this chapter we will give applications of the theoretical results from the previous

chapter. First, let us give some theoretical background of our practical algorithm.

Assume that the information dimension

σµ = lim
ε→0

1

log ε

∫
log µ(B(x, ε))dµ(x)

exists and note that if X has a distribution µ then E log µ(B(X, ε)) =∫
log µ(B(x, ε))dµ(x).

Further, we require E log µ(B(X, ε)) to obey a linear law with respect to log ε,

i.e. E log µ(B(X, ε)) ≈ K + σµ log ε (ε → 0) for some constants K and σµ.

For a sequence of radii ε1 < ε2 < . . . < εm and n ≥ 2 the vectors Tn =

(Tn(ε1), Tn(ε2), . . . , Tn(εm)) provide consistent estimators for

E log µ(B(X, ε1)) ≈ K + σµ log ε1 ; (3.1)

E log µ(B(X, ε2)) ≈ K + σµ log ε2 ; (3.2)
...

...

E log µ(B(X, εm)) ≈ K + σµ log εm . (3.3)

Moreover,
√
nTn converges weakly to them-dimensional normal distribution with

zero expectation and a covariance matrix V.

43
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Introduce the following vector u = (u1, . . . , um) with entries defined by

ui =
log εi − 1

m

∑m
k=1 log εk

1
m

∑m
k=1 log2 εk −

(
1
m

∑m
k=1 log εk

)2 .
Now assume that a strict equality holds in (3.1)–(3.3). Then σ̂µ given by

σ̂µ =
1

m

m∑
i=1

uiTn(εi) (3.4)

is a least squares estimator for σµ, i.e. σ̂µ and K̂ = K−σ̂µ · 1
m

∑m
i=1 log εi minimize

the sum of squares of deviations
∑m

i=1 (Tn(εi)− a− b log εi)
2 over all possible

choices a ∈ R and b ∈ R. Furthermore,
√
n(σ̂µ − σµ) is asymptotically normal

with expectation 0 and variance σ2
LS defined by

σ2
LS =

1

m

m∑
i=1

1

m

m∑
k=1

uivijuk .

Note that the entries of the covariance matrix V can be consistently estimated

from the underlying data in the same way as it was done for σ2 in Theorem 2.3.

We will denote a consistent estimator of σ2
LS by σ̂2

LS, i.e.

σ̂2
LS =

1

m

m∑
i=1

1

m

m∑
k=1

uiv̂ijuk . (3.5)

By virtue of (3.4), (3.5) and Theorem 2.4, a two sided 95%-confidence interval

for σµ is given by [
σ̂µ −

1.96 · σ̂LS√
n

, σ̂µ +
1.96 · σ̂LS√

n

]
.

In the next two sections we apply our theory to probability measures of frac-

tional information dimension. Without loss of generality, we restrict ourselves

by considering a special family of probability measures on the unit cube in Rd,

originally introduced by Cutler [10], since usually dynamical systems have a

bounded attractor. Another reason for considering this special family of prob-

ability measures is that it is well studied while the true information dimension

of many well-known dynamical systems is still unknown. We also hope that this

family of probability measures exhibits dimension behavior of most distributions

on the unit cube. The general construction of this family of probability measures



3.2 Cantor distribution in R2 45

can be found in Cutler [12]. To illustrate the main idea, we will construct the

generalized Cantor distribution on unit cube in R3 in Section 3.3.

In both numerical simulations of this chapter, the 95%-confidence intervals cover

the true value of the information dimension in 97 out of 100 cases. In Section 3.3

we even obtained slightly shorter confidence intervals than Cutler [10]. Note

that we construct confidence intervals on the basis of 5000 observations while

she did them on the basis of 20400 observations. However, the main point of our

investigations is to show how the whole sample can be used in such estimation

problems without splitting into parts.

Simulations have been performed using a software TSTOOL based on the core

platform MATLAB.

3.2 Cantor distribution in R2

In this section we present numerical results for a two-dimensional Cantor dis-

tribution. If we denote by C the Cantor set then the two-dimensional Cantor

distribution is a uniform distribution on the Cartesian product of C × C. It is

known that the information dimension σµ of this distribution is approximately

equal to 1.2619 (see Cutler [12]).

We have produced 100 simulations. In each simulation a sample of a size 5000

was randomly drawn from the two-dimensional Cantor distribution. εk = 0.0021+

0.0001·k, k = 0, . . . , 8 were chosen as a radii for balls B(Xi, ε), for i = 1, . . . , 5000.

Then points which did not have any neighbor in their ε1-neighborhood have been

thrown out. Results of the simulations are shown in Tables 3.1-3.4. Intervals which

do not cover the true value of the dimension are marked by asterisk ”∗”.
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Table 3.1: Cantor distribution in R2

(σµ ≈ 1.2619, ε = 0.0021 + 0.0001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.1780 , 1.3344] 0.1564 2.5210 3993

[ 1.2007 , 1.3617] 0.1610 2.6053 4024

[ 1.1414 , 1.2987] 0.1573 2.5358 3995

[ 1.1276 , 1.2830] 0.1553 2.4845 3931

[ 1.1371 , 1.2898] 0.1528 2.4641 3997

[ 1.1679 , 1.3209] 0.1530 2.4677 3997

[ 1.1561 , 1.3139] 0.1577 2.5489 4012

[ 1.1489 , 1.3066] 0.1578 2.5376 3974

[ 1.1132 , 1.2672] 0.1539 2.4639 3936

[ 1.1474 , 1.3029] 0.1555 2.5083 3999

[ 1.1218 , 1.2779] 0.1561 2.5070 3962

[ 1.1339 , 1.2909] 0.1570 2.5311 3996

[ 1.1499 , 1.3071] 0.1573 2.5497 4038

[ 1.1491 , 1.3030] 0.1539 2.4809 3993

[ 1.1769 , 1.3342] 0.1573 2.5299 3974

[ 1.1204 , 1.2762] 0.1558 2.5008 3960

[ 1.1474 , 1.3060] 0.1585 2.5420 3950

[ 1.1435 , 1.2970] 0.1535 2.4688 3973

[ 1.2047 , 1.3641] 0.1594 2.5766 4016

[ 1.2030 , 1.3612] 0.1582 2.5423 3967

[ 1.1642 , 1.3252] 0.1610 2.5800 3944

[ 1.1416 , 1.3044] 0.1628 2.6213 3984

[ 1.1743 , 1.3307] 0.1564 2.5135 3970

[ 1.1439 , 1.2997] 0.1558 2.5201 4019

[ 1.1526 , 1.3064] 0.1539 2.4704 3960
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Table 3.2: Cantor distribution in R2

(σµ ≈ 1.2619, ε = 0.0021 + 0.0001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.1432 , 1.3012] 0.1580 2.5399 3972

[ 1.1185 , 1.2741] 0.1556 2.5120 4007

[ 1.1791 , 1.3383] 0.1592 2.5661 3992

[ 1.1281 , 1.2812] 0.1530 2.4684 3999

[ 1.1317 , 1.2896] 0.1579 2.5550 4021

[ 1.1726 , 1.3322] 0.1596 2.5769 4007

[ 1.1820 , 1.3404] 0.1583 2.5535 3996

[ 1.1351 , 1.2914] 0.1563 2.5053 3946

[ 1.2095 , 1.3676] 0.1581 2.5392 3965

[ 1.1408 , 1.2980] 0.1572 2.5214 3955

[ 1.1116 , 1.2626] 0.1511 2.4334 3987

[ 1.1885 , 1.3471] 0.1586 2.5346 3924

[ 1.1692 , 1.3285] 0.1593 2.5590 3966

[ 1.1372 , 1.2950] 0.1578 2.5415 3986

[ 1.2087 , 1.3654] 0.1567 2.5302 4007

[ 1.1819 , 1.3397] 0.1578 2.5332 3961

[ 1.1498 , 1.3028] 0.1530 2.4818 4043

[ 1.1290 , 1.2833] 0.1543 2.4728 3946

[ 1.1244 , 1.2805] 0.1561 2.5106 3974

[ 1.1699 , 1.3226] 0.1527 2.4800 4055

[ 1.1464 , 1.3001] 0.1537 2.4700 3968

[ 1.1312 , 1.2876] 0.1564 2.4997 3926

[ 1.1341 , 1.2882] 0.1541 2.4829 3989

[ 1.1489 , 1.3061] 0.1571 2.5285 3978

[ 1.1767 , 1.3373] 0.1605 2.5802 3970
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Table 3.3: Cantor distribution in R2

(σµ ≈ 1.2619, ε = 0.0021 + 0.0001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.1608 , 1.3198 ] 0.1590 2.5615 3990

[ 1.1322 , 1.2864] 0.1542 2.4914 4010

[ 1.1446 , 1.3012] 0.1565 2.5097 3950

[ 1.1275 , 1.2811] 0.1536 2.4732 3984

[ 1.1916 , 1.3520] 0.1605 2.5699 3941

[ 1.1510 , 1.3097] 0.1587 2.5563 3986

[ 1.1870 , 1.3449] 0.1579 2.5512 4009

[ 1.1679 , 1.3276] 0.1597 2.5730 3991

[ 1.1716 , 1.3257] 0.1540 2.4850 4000

[ 1.1509 , 1.3084] 0.1575 2.5304 3965

[ 1.1460 , 1.3040] 0.1580 2.5557 4021

[ 1.1072 , 1.2638 ] 0.1565 2.5145 3965

[ 1.1173 , 1.2708 ] 0.1535 2.4692 3976

[ 1.1728 , 1.3356 ] 0.1627 2.6113 3956

[ 1.1351 , 1.2882 ] 0.1532 2.4806 4031

[ 1.1548 , 1.3138 ] 0.1590 2.5515 3956

[ 1.1220 , 1.2787 ] 0.1567 2.5286 4002

[ 1.1142 , 1.2692 ] 0.1550 2.5150 4046

[ 1.1196 , 1.2760 ] 0.1564 2.5259 4007

[ 1.1754 , 1.3332 ] 0.1578 2.5391 3978

[ 1.1241 , 1.2780 ] 0.1540 2.4819 3993

[ 1.1797 , 1.3347 ] 0.1550 2.4977 3990

[ 1.1437 , 1.2964 ] 0.1527 2.4619 3994

[ 1.2072 , 1.3626 ] 0.1554 2.5181 4033

[ 1.1402 , 1.2991 ] 0.1589 2.5548 3970
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Table 3.4: Cantor distribution in R2

(σµ ≈ 1.2619, ε = 0.0021 + 0.0001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.1356 , 1.2873 ] 0.1518 2.4472 3995

[ 1.1267 , 1.2818 ] 0.1552 2.4980 3982

[ 1.1735 , 1.3331 ] 0.1595 2.5554 3942

[ 1.1481 , 1.3028 ] 0.1547 2.4848 3966

[ 1.1658 , 1.3233 ] 0.1575 2.5268 3954

[ 1.1195 , 1.2687 ] 0.1492 2.4054 3995

[ 1.1055 , 1.2594 ]* 0.1539 2.4786 3988

[ 1.1067 , 1.2617 ]* 0.1550 2.4845 3949

[ 1.0639 , 1.2120 ]* 0.1481 2.3881 3994

[ 1.1504 , 1.3089 ] 0.1585 2.5598 4009

[ 1.1364 , 1.2916 ] 0.1553 2.4992 3981

[ 1.1580 , 1.3138 ] 0.1558 2.5199 4018

[ 1.1636 , 1.3203 ] 0.1567 2.5226 3981

[ 1.1871 , 1.3427 ] 0.1555 2.5128 4011

[ 1.1320 , 1.2858 ] 0.1538 2.4761 3983

[ 1.1832 , 1.3457 ] 0.1625 2.6095 3963

[ 1.1806 , 1.3380 ] 0.1575 2.5552 4045

[ 1.1566 , 1.3131 ] 0.1565 2.5197 3985

[ 1.2390 , 1.3993 ] 0.1604 2.5791 3974

[ 1.1642 , 1.3169 ] 0.1527 2.4812 4059

[ 1.1900 , 1.3474 ] 0.1575 2.5435 4009

[ 1.1409 , 1.2981 ] 0.1572 2.5219 3956

[ 1.1288 , 1.2804 ] 0.1516 2.4569 4035

[ 1.1390 , 1.2949 ] 0.1559 2.5108 3984

[ 1.1320 , 1.2875 ] 0.1555 2.4968 3963
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3.3 Generalized Cantor distribution in R3

In this section we consider a generalization of 3-dimensional Cantor distribution

on the Cartesian product C × C × C. First we describe a construction of this

measure by the following procedure.

Consider the unit cube U in R3 and divide it into 33 nonoverlapping equal cubes

U1, . . . , U27. We assign the order numbers to them in each vertical stratum from

left to right, beginning with the leftmost bottom cube. Now define a vector of

probabilities p = (p1, . . . , p27) whose entries are given by p1 = 0.83, p3 = p7 =

p19 = 0.82 · 0.2, p9 = p21 = p25 = 0.8 · 0.22, p27 = 0.23 and pi = 0 otherwise.

Further, we assign the probability pi to Ui.

Repeat this process for each Ui: divide Ui into 33 nonoverlapping equal subcubes

Ui,1, . . . , U1,27 (maintaining the same pattern of labelling the cubes as used at

the first stage) and assign probability pipj to Ui,j. Continuing this procedure, we

obtain, for each positive integer n, a collection of 33n nonoverlapping equal cubes

Ui1,...,in , 1 ≤ ik ≤ 27, with the product probability pi1 · . . . ·pin assigned to Ui1,...,in .

Now there exists a unique probability measure µp defined on the Borel sets of U

such that µp(Ui1,...,in) = pi1 · . . . ·pin . This measure is considered here. It is known

that its information dimension is approximately equal to 1.3665 (see Cutler

[12]).

Note that if the nonzero entries of a vector of probabilities p would be given

by p1 = p3 = p7 = p9 = p19 = p21 = p25 = p27 = 0.53 then we obtain the

three-dimensional Cantor distribution.

We have produced 100 simulations. In each simulation sample of size 5000 was

randomly drawn from the generalized three-dimensional Cantor distribution.

εk = 0.030 + 0.001 · k, k = 0, . . . , 8 were chosen as a radii for balls B(Xi, ε),

for i = 1, . . . , 5000. Then points which did not have any neighbor in their ε1-

neighborhood have been thrown out. Results of the simulations are shown in Ta-

bles 3.5-3.8. Intervals which do not cover the true value of dimension are marked

by asterisk ”∗”.
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Table 3.5: Generalized Cantor distribution in R3

(σµ ≈ 1.3665, ε = 0.030 + 0.001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.3102 , 1.4381] 0.1279 2.2786 4876

[ 1.2898 , 1.4174] 0.1276 2.2698 4862

[ 1.2539 , 1.3785] 0.1246 2.2180 4870

[ 1.3129 , 1.4417] 0.1288 2.2939 4874

[ 1.3165 , 1.4427] 0.1263 2.2446 4857

[ 1.3120 , 1.4392] 0.1273 2.2656 4870

[ 1.3295 , 1.4588] 0.1293 2.2997 4861

[ 1.2960 , 1.4231] 0.1271 2.2628 4868

[ 1.3258 , 1.4553] 0.1295 2.2980 4842

[ 1.2965 , 1.4224] 0.1259 2.2394 4865

[ 1.3397 , 1.4689] 0.1292 2.2974 4860

[ 1.3418 , 1.4712] 0.1293 2.3018 4866

[ 1.2694 , 1.3964] 0.1270 2.2577 4857

[ 1.3058 , 1.4308] 0.1250 2.2242 4861

[ 1.2702 , 1.3986] 0.1283 2.2788 4847

[ 1.2844 , 1.4121] 0.1277 2.2709 4861

[ 1.2658 , 1.3918] 0.1261 2.2358 4832

[ 1.2983 , 1.4213] 0.1230 2.1880 4861

[ 1.2823 , 1.4128] 0.1305 2.3249 4880

[ 1.3626 , 1.4921] 0.1295 2.3009 4852

[ 1.2527 , 1.3800] 0.1273 2.2596 4844

[ 1.2996 , 1.4294] 0.1298 2.3092 4863

[ 1.2899 , 1.4131] 0.1231 2.1890 4855

[ 1.3361 , 1.4627] 0.1266 2.2488 4851

[ 1.2406 , 1.3656]* 0.1249 2.2217 4858
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Table 3.6: Generalized Cantor distribution in R3

(σµ ≈ 1.3665, ε = 0.030 + 0.001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.3375 , 1.4634] 0.1259 2.2354 4847

[ 1.3268 , 1.4542] 0.1275 2.2680 4865

[ 1.3215 , 1.4473] 0.1258 2.2380 4863

[ 1.2984 , 1.4260] 0.1276 2.2722 4874

[ 1.2934 , 1.4171] 0.1237 2.1968 4845

[ 1.2990 , 1.4283] 0.1293 2.3012 4866

[ 1.3030 , 1.4306] 0.1276 2.2668 4849

[ 1.3145 , 1.4428] 0.1283 2.2796 4853

[ 1.3277 , 1.4566] 0.1288 2.2952 4876

[ 1.3301 , 1.4595] 0.1294 2.3036 4869

[ 1.3853 , 1.5122]* 0.1269 2.2593 4868

[ 1.2585 , 1.3852] 0.1266 2.2490 4848

[ 1.3436 , 1.4705] 0.1269 2.2548 4853

[ 1.3164 , 1.4457] 0.1294 2.2943 4834

[ 1.3551 , 1.4863] 0.1312 2.3322 4858

[ 1.3119 , 1.4413] 0.1293 2.3006 4862

[ 1.3038 , 1.4303] 0.1265 2.2526 4873

[ 1.3326 , 1.4549] 0.1223 2.1745 4859

[ 1.2902 , 1.4168] 0.1266 2.2547 4874

[ 1.3328 , 1.4599] 0.1271 2.2578 4849

[ 1.2788 , 1.4064] 0.1276 2.2714 4866

[ 1.2824 , 1.4079] 0.1255 2.2313 4855

[ 1.3084 , 1.4366] 0.1281 2.2834 4879

[ 1.3440 , 1.4699] 0.1259 2.2352 4847

[ 1.3132 , 1.4400] 0.1268 2.2565 4866
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Table 3.7: Generalized Cantor distribution in R3

(σµ ≈ 1.3665, ε = 0.030 + 0.001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.2637 , 1.3903] 0.1267 2.2520 4858

[ 1.2913 , 1.4189] 0.1276 2.2664 4846

[ 1.2819 , 1.4063] 0.1244 2.2164 4874

[ 1.2870 , 1.4150] 0.1280 2.2770 4863

[ 1.2675 , 1.3925] 0.1249 2.2226 4862

[ 1.3176 , 1.4440] 0.1264 2.2534 4883

[ 1.2394 , 1.3663]* 0.1270 2.2569 4856

[ 1.3378 , 1.4683] 0.1305 2.3211 4858

[ 1.2637 , 1.3886] 0.1250 2.2256 4873

[ 1.3256 , 1.4532] 0.1276 2.2689 4858

[ 1.3307 , 1.4586] 0.1279 2.2747 4860

[ 1.3108 , 1.4369] 0.1261 2.2435 4864

[ 1.2746 , 1.4029] 0.1283 2.2841 4867

[ 1.3005 , 1.4281] 0.1276 2.2725 4872

[ 1.3183 , 1.4474] 0.1291 2.2900 4835

[ 1.3035 , 1.4302] 0.1268 2.2536 4855

[ 1.3595 , 1.4908] 0.1313 2.3341 4857

[ 1.2658 , 1.3934] 0.1277 2.2697 4857

[ 1.2842 , 1.4083] 0.1241 2.2045 4851

[ 1.3016 , 1.4269] 0.1254 2.2277 4851

[ 1.3428 , 1.4735] 0.1306 2.3194 4846

[ 1.3090 , 1.4364] 0.1275 2.2664 4859

[ 1.3377 , 1.4680] 0.1303 2.3199 4874

[ 1.2905 , 1.4202] 0.1296 2.3041 4854

[ 1.3235 , 1.4506] 0.1271 2.2650 4882
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Table 3.8: Generalized Cantor distribution in R3

(σµ ≈ 1.3665, ε = 0.030 + 0.001 · k, k = 0, . . . , 8)

confidence intervals length of confidence intervals σ̂ sample size

[ 1.3353 , 1.4645] 0.1292 2.2991 4863

[ 1.3349 , 1.4596] 0.1247 2.2254 4890

[ 1.3229 , 1.4519] 0.1290 2.2927 4850

[ 1.3632 , 1.4904] 0.1271 2.2579 4848

[ 1.3382 , 1.4675] 0.1293 2.2977 4854

[ 1.3004 , 1.4284] 0.1280 2.2755 4855

[ 1.2926 , 1.4226] 0.1300 2.3137 4867

[ 1.2507 , 1.3795] 0.1288 2.2885 4852

[ 1.3183 , 1.4489] 0.1306 2.3230 4864

[ 1.3438 , 1.4757] 0.1318 2.3425 4852

[ 1.3057 , 1.4318] 0.1262 2.2453 4867

[ 1.3479 , 1.4753] 0.1274 2.2663 4860

[ 1.3446 , 1.4714] 0.1267 2.2546 4862

[ 1.3498 , 1.4804] 0.1306 2.3260 4877

[ 1.3019 , 1.4284] 0.1265 2.2506 4863

[ 1.3369 , 1.4671] 0.1302 2.3113 4841

[ 1.2899 , 1.4193] 0.1294 2.3002 4857

[ 1.3099 , 1.4381] 0.1282 2.2758 4844

[ 1.2979 , 1.4244] 0.1266 2.2481 4846

[ 1.3259 , 1.4550] 0.1290 2.2939 4857

[ 1.3480 , 1.4757] 0.1277 2.2733 4870

[ 1.3161 , 1.4433] 0.1272 2.2594 4849

[ 1.2961 , 1.4221] 0.1260 2.2449 4877

[ 1.3177 , 1.4457] 0.1280 2.2766 4858

[ 1.2651 , 1.3908] 0.1257 2.2360 4860



Chapter 4

ASCLT and ASLT for U-statistics

4.1 U-statistics of dependent random variables

Here we give some preliminary results which will be used in the next two sections.

First, we recall some definitions of mixing coefficients. Let

X1, X2, . . . , Xn (4.1)

be a strictly stationary sequence of random variables defined on probability space

(Ω,=, P ). Denote the distribution function of Xi by F (x). Further, let =b
a denote

a σ-algebra of events generated by Xa, Xa+1, . . . , Xb, where 1 ≤ a ≤ b <∞, and

=∞a denote a σ-algebra generated by Xa, Xa+1, . . .. If σ-algebras =k
1 and =∞k+n are

independent then for all events A ∈ =k
1 and B ∈ =∞k+n we have

P (A ∩B)− P (A)P (B) = 0. (4.2)

In general, (4.2) doesn’t hold, and the expression on the left hand side of (4.2) is

taken as a basis of the measure of dependence between =k
1 and =∞k+n.

Definition 4.1. The sequence (4.1) is called strongly mixing or α-mixing if

α(n) := sup{|P (A ∩B)− P (A)P (B)| : A ∈ =k
1, B ∈ =∞k+n, k = 1, 2, . . .}

tends to zero as n→∞.

Definition 4.2. The sequence (4.1) is called absolutely regular if

β(n) := sup
k∈N

E[sup{|P (A/=k
1)− P (A)| : A ∈ =∞k+n}]

tends to zero as n→∞.

55
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It is well known that

α(n) ≤ β(n) (4.3)

and therefore a class of all sequences of strongly mixing random variables contains

a class of all sequences of absolutely regular random variables.

Consider a statistical functional θ(F ) defined in (1.10) and take a non-degenerate

U -statistic Un based on the sample (4.1) as an estimator for θ(F ). It should be

mentioned that Un is not an unbiased estimator for θ(F ) anymore, but it is still

a consistent and asymptotical normal estimator for a wide class of dependent

variables (see Sen [47], Yoshihara [51], Denker and Keller [17], Yoshihara

[52]).

In this chapter we make use of the functions h̃c and hc defined in (1.11)–(1.14)

for c = 1, . . . ,m. It is not difficult to see that the functions hc, c = 1, . . . ,m are

degenerate even if (4.1) is not a sequence of i.i.d. random variables. Note that

if Un is based on the independent sequence (4.1) then the functions h̃c can also

be written through conditional expectations, but in general, this cannot be done.

Further, Hoeffidng’s decomposition is valid for Un based on (4.1) and therefore,

Theorem 1.2 holds in the context of this chapter. But the upper bounds of the

second moment of Unc, c = 1, . . . ,m defined in (1.16) and based on (4.1), differ

from (1.18) and depend on the type of the dependency of the sequence (4.1). We

give them in the corresponding sections.

Next, we introduce the value

σ2 = Eh2
1(X1) + 2

∞∑
k=1

Eh1(X1)h1(Xk+1) , (4.4)

which is well defined under conditions given in the next two sections.

The main idea of the proofs in Section 4.2 and Section 4.3 is to approximate
√
n(σm)−1(Un − θ(F )) by a sequence of random variables Wn which satisfies the

ASCLT and obtain the following bound for the probabilities

P
(∣∣√n(σm)−1(Un − θ(F ))−Wn

∣∣ > ε
)

= O

(
1

(log n)τ

)
(4.5)

for all ε > 0 and some τ > 0. Then (
√
n(σm)−1(Un − θ(F )) also satisfies the

ASCLT by virtue of the next Lemma which is due to Lesigne [39]. Here we cite

a bit modified Preposition 1 from [39].
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Lemma 4.1. Let
√
n(σm)−1(Un − θ(F )) and Wn be two sequences of random

variables. Assume that the sequence Wn satisfies the ASCLT. Further, let (4.5)

holds. Then the sequence
√
n(σm)−1(Un − θ(F )) also satisfies the ASCLT.

If Un is a non-degenerate U -statistic then the natural choice of the approximating

sequence Wn is
√
nσ−1Un1, where Un1 is the first term of Hoeffding’s decom-

position (1.15). Since Un1 is a sample average of sequence {h1(Xi)}n
i=1 the next

lemma which is due to Peligrad and Shao [44] is used for showing that the

approximating sequence Wn satisfies the ASCLT.

Lemma 4.2. Let {Xn, n ≥ 1} be a stationary strongly mixing sequence with

EX1 = 0 and E|X1|2+δ <∞ for some δ > 0. Assume

∞∑
n=1

αδ/(2+δ)(n) <∞.

Then σ2
1 = EX2

1 + 2
∑∞

k=2EX1Xk < ∞. If in addition σ2
1 > 0 then (

√
nσ1)

−1Sn

satisfies the ASCLT, where Sn =
∑n

i=1Xi.

4.2 ASCLT for U-statistics of absolutely regular

random variables

In this section, we prove the ASCLT for U -statistics of absolutely regular ran-

dom variables. Assume that sequence (4.1) is absolutely regular with mixing

coefficients β(n).

First, we give upper bounds for the second moment of degenerate statistics

Unc, c = 2, . . . ,m, which are due to Yoshihara [51].

Assume that for some r > 2

µr =

∫
· · ·
∫
|h(x1, . . . , xm)|rdF (x1) · · · dF (xm) ≤M0 <∞ (4.6)

and for all integers i1, i2, . . . , im (i1 < i2 < · · · < im)

νr = E|h(Xi1 , Xi2 , . . . , Xim)|r ≤M0 <∞ , (4.7)

where M0 is some absolute constant.
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Lemma 4.3. If there is a positive δ such that for r = 2 + δ (4.6) and (4.7) hold,

and for some δ′ (0 < δ′ < δ) β(n) = O(n−(2+δ′)/δ′), then we have

E(Un(hc))
2 = O(n−1−γ) (2 ≤ c ≤ m)

where γ = 2(δ−δ′)
δ′(2+δ)

> 0.

Now we are ready to state our theorem and give its simple proof.

Theorem 4.1. Let {Xn, n ≥ 1} be a stationary absolutely regular sequence of

random variables. If there is a positive δ such that for r = 2 + δ (4.6) and (4.7)

hold, and for some δ′ (0 < δ′ < δ) β(n) = O(n−(2+δ′)/δ′), then the series (4.4)

converges absolutely; if σ2 > 0 holds then
√
n(σm)−1(Un(h) − θ) satisfies the

ASCLT.

Remark 4.1. The assumptions of Theorem 4.1 ensure the central limit theorem

for U-statistics of absolutely regular random variables (see Yoshihara [51]).

Proof. The first statement of the theorem was proved in Theorem 1 of Yoshi-

hara [51] and hence, σ2 in (4.4) is well defined.

From the Hoeffding’s decomposition (1.15) it follows that

n1/2

σm
(Un(h)− θ)− n1/2

σ
Un(h1) =

n1/2

σm

m∑
k=2

(
m

k

)
Un(hk). (4.8)

Note that if the sequence {Xn} is absolutely regular (β-mixing) then it is strongly

mixing (α-mixing) which follows from (4.3). Secondly, if {Xn} is β-mixing then

a sequence {f(Xn)} is also β-mixing for any measurable function f with some

mixing coefficient which is not greater than β(n).

These remarks give us a possibility of applying Lemma 4.2 to the second term

on the left hand side of (4.8) and therefore, n1/2σ−1Un(h1) satisfies the ASCLT.

Lemma 4.3 yields

E

(
n1/2

σm
Un(hc)

)2

= O(n−γ) (4.9)

for any c = 2, . . . ,m, where γ = 2(δ−δ′)
δ′(2+δ)

> 0.

Now (4.5) follows from (4.8) and (4.9) using Chebyshev and cr- inequalities. Thus,

the assumptions of Lemma 4.1 are fulfilled and its application to the random

variables on the left hand side of (4.8) completes the proof.
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4.3 ASCLT for U-statistics of strongly mixing

random variables

In this section we prove the ASCLT for U -statistics of strongly mixing random

variables. Assume that sequence (4.1) is strongly mixing with mixing coefficients

α(n).

Yoshihara [52] investigated an asymptotic distribution of Un based on (4.1)

when all degenerate kernels hc, c = 2, . . . ,m can be represented as a Fourier sum

by some orthogonal basis of L2(R, F ) defined below. We make use of his method

for deriving the ASCLT for Un.

Let L2(R, F ) be the Hilbert space of square integrable functions with respect to

a distribution function F of X1. Further, let {gi}∞i=0 be an orthogonal basis of

L2(R, F ) such that g0 = 1. For each c (1 ≤ c ≤ m) put

gi1,...,ic(x1, . . . , xc) =
c∏

j=1

gij(xj).

It is well known that for each c (1 ≤ c ≤ m) the system {gi1,...,ic : 0 ≤ i1 < i2 <

. . . < ic <∞} is a basis of the Hilbert space L2(Rc, F c). Let λc(i1, . . . , ic) be the

Fourier coefficient of the function hc, i.e.,

λc(i1, . . . , ic) =

∫
· · ·
∫
hc(x1, . . . , xc)

c∏
j=1

gij(xj)
c∏

j′=1

dF (xj′).

Then, for each c (1 ≤ c ≤ m)

hc(x1, . . . , xc) =
∑
{ij}

λr(i1, . . . , ic)gi1,...,ic(x1, . . . , xc) (4.10)

in the L2-sense. Moreover, it follows from the Parseval inequality that∫
· · ·
∫
h2

c(x1, . . . , xc)
c∏

j=1

dF (xj) =
∑

|λc(i1, . . . , ic)|2 <∞.

Define

λ(i1, . . . , ic, 0, . . . , 0) = λc(i1, . . . , ic) (1 ≤ c ≤ m− 1)

and

λ(i1, . . . , im) = λm(i1, . . . , im).
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One of the main assumptions in this section is∑
|λ(i1, . . . , im)| <∞ . (4.11)

Let

σ2
n = E

(
n∑

j=1

h1(Xj)

)2

. (4.12)

Under the conditions of Lemma 4.4 given below, the series in (4.4) converges

absolutely and hence, σ2 is well defined. Moreover,

σ2
n = nσ2(1 + o(1)) as n→∞ .

We use the following notation. For any random variables η and r ≥ 1, let ‖η‖r =

(E|η|r)1/r if E|η|r <∞.

Now assume that for some δ > 0

‖h1(X1)‖2+δ/m <∞ (4.13)

and

max
2≤c≤m

sup
k≥1

‖gk,c(X1)‖2m+δ <∞. (4.14)

The next lemma gives the upper bound for the second moments of Unc, c =

2, . . . ,m, which is due to Yoshihara [52].

Lemma 4.4. Let {Xn, n ≥ 1} be a stationary sequence of strongly mixing random

variables with mixing coefficients α(n). Suppose that (4.10) holds for all c (2 ≤
c ≤ m) and (4.11) is satisfied. Assume that there exists a positive δ such that

(4.13) and (4.14) hold. Further, assume that

∞∑
n=1

nmαδ/(2m+δ)(n) <∞ .

Then

E|Unc|2 ≤ C(r)n−r r = 2, . . . ,m

where C(2), . . . , C(m) are absolute constants which do not depend on n.

Now we state the ASCLT for the U -statistic Un.
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Theorem 4.2. If σ2 > 0 then under the assumptions of Lemma 4.4,
√
nσ−1(Un(h)− θ) satisfies the ASCLT.

Proof. First note that if Xn is a strongly mixing sequence with mixing coefficients

α(n) then for any measurable function f , f(Xn) is also a strongly mixing sequence

with some mixing coefficient which is not greater than α(n).

Now from the Hoeffding decomposition, we have that

n1/2

σ
(Un(h)− θ)− n1/2

σ
mUn(h1) =

n1/2

σ

m∑
k=2

(
m

k

)
Un(hk). (4.15)

By Lemma 4.2 and the remark at the beginning of the proof, we can conclude

that the second term on the left hand side of (4.15) satisfies the ASCLT.

Using Lemma 4.4 we find out that for any c = 2, . . . ,m

E

(
n1/2

σ
Un(hc)

)2

= O(n1−c) .

Thus, the assumptions of Lemma 4.1 are fulfilled and its application to random

variables on the left hand side of (4.15) completes the proof.

4.4 Refinement of Berkes and Csáki’s Theorem

In the rest of this chapter we present another technique, developed by Holz-

mann, Koch and Min [32], for proving the ASLT for U -statistics based on i.i.d.

random variables X1, . . . , Xn. Here we describe this method and improve Theo-

rem F of Berkes and Csáki [4].

Let (Yn)n≥1 be a sequence of random elements taking values in a Polish space

(S, d) and let G be a probability measure on the Borel σ-field in S. We say that

(Yn)n≥1 satisfies the ASLT with a limiting distribution G if

(log n)−1

n∑
k=1

δYk
/k ⇒ G as n→∞

with probability 1. Here δYk
is the Dirac measure at Yk and ” ⇒ ” denotes weak

convergence of measures.

The following lemma illustrates the main idea of the method.
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Lemma 4.5. Let (Yn)n≥1 be a sequence of S-valued random elements which sat-

isfies the ASLT with some limiting distribution G. Assume that Zn is another

sequence of S-valued random elements on the same probability space such that

almost surely, d(Yn, Zn) → 0. Then Zn also satisfies the ASLT with limiting dis-

tribution G.

Proof. By a well known principle in almost sure limit theory (see e.g. Lacey and

Philipp [38], (Yn)n≥1 satisfies the ASLT with limiting distribution G if and only

if

(log n)−1

n∑
k=1

1

k
Ψ
(
Yk(ω)

)
→
∫
S

Ψ(x) dG(x) a.s.

for any bounded Lipschitz function Ψ. Using the Lipschitz property of Ψ and the

assumption that d(Yn, Zn) → 0 we conclude that

1

log n

∣∣∣∣ n∑
k=1

1

k

[
Ψ
(
Yk(ω)

)
−Ψ

(
Zk(ω)

)]∣∣∣∣ ≤ C

log n

n∑
k=1

1

k
d
(
Yk(ω), Zk(ω)

)
→ 0 a.s.,

where C is a Lipschitz constant for Ψ. This proves the Lemma.

In the sequel we will make use of the following lemma which is a consequence of

a more general result due to Gine and Zinn [21].

Lemma 4.6. Let h(x1, . . . , xl) be measurable and degenerate. Let q ∈ ( l
2
, l). If

E|h(X1, . . . , Xl)|l/q <∞, (4.16)

then with probability 1

n−q
∑

1≤i1<...<il≤n

h(Xi1 , . . . , Xil) → 0.

For the weak convergence of nc/2Un(h) (where c denotes the rank of Un(h)) Ko-

rolyuk and Borovskich [37] weakened the assumption (1.17) to

E|hi(X1, . . . , Xi)|2k/(2k−c) <∞, i = c, . . . ,m. (4.17)

Now we show that these conditions also imply the validity of the ASLT for U -

statistics of i.i.d. random variables.



4.5 ASLT for U-statistics with limiting stable distribution 63

Theorem 4.3. Let c be the rank of the U-statistic Un(h) based on i.i.d. random

variables X1, . . . , Xn. If (4.17) is satisfied then the following relation holds

lim
n→∞

1

log n

n∑
k=1

1

k
1l
{
kr/2(Uk(h)− θ(F )) < x

}
= G(x) a.s. for any x ∈ CG,

where G is the limit distribution of nr/2(Un(h) − θ(F )), CG denotes the set of

continuity points of G and θ(F ) defined in (1.10).

Remark 4.2. Note that the moment assumptions of the Theorem imposed on

degenerate functions hi, i = c, . . . ,m are weaker than the moment assumption

(1.17) of Berkes and Csáki [4].

Proof. First of all note that, if c is the critical parameter of Un(h), then the

functions hi(x1, . . . , xi) = 0 a.s. for all i = 1, . . . , c−1, and so from Hoeffding’s

decomposition

nc/2Un(h)− nc/2

(
m

c

)
Un(hc) = nc/2

m∑
k=c+1

(
m

k

)
Un(hk). (4.18)

Using Theorem F of Berkes and Csáki [4], we conclude that nc/2
(

m
c

)
Un(hc)

satisfies the ASLT.

By virtue of Lemma 4.6, the sum on the right-hand side of (4.18) converges to

zero a.s. by letting l = k and q = k − c/2 for k = c+ 1, . . . ,m. An application of

Lemma 4.5 to the random variables on the left hand side of (4.18) completes the

proof.

4.5 ASLT for U-statistics with limiting stable

distribution

As we shall see in this section, under some mild moment conditions weak conver-

gence of a sequence of non-degenerate U-statistics to a stable limit distribution

implies the validity of the corresponding ASLT. Let Gα denote a stable law of

order α, 0 < α ≤ 2 .
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Theorem 4.4. Let Un(h) be a U-statistic based on i.i.d. random variables

X1, . . . , Xn. Assume that for some α ∈ (1, 2]

n1− 1
α

mL(n)
Un(h)− An ⇒ Gα, (4.19)

where L(n) is a slowly varying function for which lim infn→∞ L(n) > 0. If

E|hk(X1, . . . , Xk)|
αk

α(k−1)+1 <∞, k = 2, . . . ,m, (4.20)

then

lim
n→∞

1

log n

n∑
k=1

1

k
1ln k1−1/α

mL(k)
Uk(h)−Ak<x

o = Gα(x) a.s.

Remark 4.3. (i) Assumption (4.19) is very common in almost sure limit theory,

when one deduces an ASLT from the validity of the corresponding weak limit

theorem (see e.g. Berkes and Dehling [5]).

(ii) One has weak convergence in (4.19) if the distribution function of h1(X1)

belongs to the domain of attraction of Gα and if the moment condition

E|h(X1, . . . , Xm)|
2α

α+1 <∞ (4.21)

holds (see Heinrich and Wolf [28]).

(iii) It is not difficult to see that (4.21) implies (4.20).

(iv) Theorem 4.4 will be true for any slowly varying function L(n), if

E|hk(X1, . . . , Xk)|pk <∞ for some pk >
αk

α(k−1)+1
, k = 2, . . . ,m.

Proof. Let us start by showing that

n1− 1
α

mL(n)

(
Un(h)−mUn(h1)

)
→ 0 a.s. (4.22)

Indeed
n1− 1

α

mL(n)

(
Un(h)−mUn(h1)

)
=

m∑
k=2

(
m

k

)
n1− 1

α

mL(n)
Un(hk), (4.23)

and letting q = k− 1+ 1
α

and l = k we can apply Lemma 4.6. This proves (4.22).

Making use of (4.19) and (4.22) we conclude that also

n1− 1
α

L(n)
Un(h1)− An ⇒ Gα. (4.24)
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It is known that weak convergence of normalized sums of real valued i.i.d. random

variables to some stable law Gα implies the corresponding ASLT (see Peligrad

and Révész [43]). Hence (4.24) implies

lim
n→∞

1

log n

n∑
k=1

1

k
1l
{ k

1− 1
α

L(k)
Uk(h1)−Ak<x}

= Gα(x) a.s.

An application of Lemma 4.5 to the random variables on the left hand side of

(4.23) completes the proof.
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