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Chapter 1

Introduction

The goal of this thesis is to bring together two different theories about critical
points of a scalar function and their relation to topology: Discrete Morse theory and
Persistent homology. While the goals and fundamental techniques are different,
there are certain themes appearing in both theories that closely resemble each
other. In certain cases, the two threads can be joined, leading to new insights
beyond the classical realm of one particular theory.

1.1 Overview

Discrete Morse theory [28, 30] provides combinatorial equivalents of several
core concepts of classical Morse theory, such as discrete Morse functions,
discrete gradient vector fields, critical points, and a cancelation theorem for the
elimination of critical points of a vector field. Because of its simplicity, it not
only maintains the intuition of the classical theory, but allows to surpass it in
a certain sense by providing explicit and canonical constructions that would
become quite complicated in the smooth setting.

Persistent homology [23, 67] quantifies topological features of a function. It
defines the birth and death of homology classes at critical points, identifies pairs
of these (persistence pairs), and provides a quantitative notion of their stability
(persistence).

Whereas (discrete) Morse theory makes statements about the homotopy type
of the sublevel sets of a function, persistence is concerned with their homology.
While homology is an invariant of homotopy equivalences, the converse is not
true: not every map inducing an isomorphism in homology is a homotopy
equivalence. In this thesis we establish a connection between both theories and
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Chapter 1 Introduction

use this combination to solve problems that are not easily accessibly by any
single theory alone. In particular, we make contributions to the following topics:

1.1.1 Topological simplification

Measured data and functions constructed from measured data suffer from
omnipresent noise introduced during the measuring process. Separating relevant
information from noise is therefore a widely considered problem. Various
approaches to this problem found in the literature are based on partial differential
equations or energy functionals derived from differential quantities. In contrast,
we take a purely topological point of view and regard noise as a source of
critical points. Indeed, even arbitrarily small amounts of noise (with respect to
the supremum norm) may give rise to an arbitrarily large number of critical
points. We may hence interpret critical points that can be eliminated by small
perturbations as being caused by noise. Consequently, we consider the following
optimization problem:

Problem (Topological simplification on surfaces). Given a function f on a surface
and a real number δ > 0, find a function fδ subject to ‖ fδ − f ‖∞ ≤ δ such that fδ has a
minimum number of critical points.

Of course, in order to make this problem precise, one needs to choose a class
of admissible functions that provides a meaningful notion of critical points. We
present a solution to this problem for the class of discrete pseudo-Morse functions,
which generalizes the class of discrete Morse functions introduced by Forman
[28]. In particular, we consider a critical point not in the strict analytical sense as
a point of vanishing differential, but in the more general sense as a point where
the topological type of the sublevel set changes. Our notion of pseudo-Morse
functions incorporates both piecewise linear functions and pixel data. Our
solution to the above problem relies on several results, which are outlined in the
following.

1.1.2 Canceling a single pair of critical points from a function

Forman [28] describes a simple method for eliminating a pair of critical points
from a discrete vector field. Modifying a function accordingly requires a slight
extension of Forman’s method. We first observe that a discrete gradient vector
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1.1 Overview

field in the sense of Forman induces a partial order on the cells of the underlying
complex, giving rise to the notion of ascending and descending sets (in analogy
to the notion of ascending and descending manifolds in the classical theory).
Building on these concepts, we describe a method for eliminating a pair of
critical points from a discrete Morse function. Our construction complements
Forman’s cancelation method for discrete gradient vector fields; in particular, it is
applicable to general CW complexes (Section 4.3).

In order to cancel a pair of critical points whose values differ by 2δ, our method
modifies the function by δ in the supremum norm, which is the minimum
required for canceling such a pair. To achieve this minimum, the function values
have to be modified on the ascending and descending sets of the canceled pair.
Since these sets may contain cells of any dimension, other critical values might
also have to be changed in this process.

1.1.3 Degenerate functions

Morse theory, in any of its variations, fundamentally relies on the assumption
that critical points are non-degenerate. This condition prevents the theory
from being directly applicable to arbitrary input functions. Additionally, in our
construction, the canonical function arising from canceling a single pair of critical
points has a plateau and is hence a degenerate function in the sense of discrete
Morse theory. This necessitates a method to deal with degenerate functions. To
do so, we devise a symbolic perturbation scheme based on discrete gradient
vector fields, which allows to treat the degenerate case in much the same way
as the generic case by introducing the larger class of pseudo-Morse functions
(Section 2.4). In order to obtain a notion of critical points for pseudo-Morse
functions, we work with an explicit gradient vector field consistent with the
function, which coincides with the usual discrete gradient vector field in the
non-degenerate case. Our symbolic perturbation scheme can be interpreted as
providing a Morse function that is consistent with the given gradient vector
field and is arbitrarily close to the given pseudo-Morse function.

A refinement of this scheme additionally allows to relax the assumption
that critical cells have unique function values. It extends the first perturbation
scheme by explicitly maintaining a total order on the cells that is consistent with
both the function and the gradient vector field.
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Chapter 1 Introduction

1.1.4 Extensions of discrete Morse theory

We extend the results of discrete Morse theory in several aspects. In Section 2.7,
we investigate how the structure of critical points changes when interpolating
linearly between two discrete Morse functions. It turns out that the results are
significantly easier than in the smooth case, where a corresponding statement
has been obtained by Cerf [14].

In Section 2.8 we discuss the interplay between piecewise linear (PL) functions
and discrete Morse functions. We show how to translate from PL functions to
discrete (pseudo-)Morse functions and vice versa. This equivalence can be used
to solve certain problems involving PL functions using discrete Morse theory.
Vice versa, it also allows to apply certain theorems regarding PL functions to
our setting.

While discrete Morse theory is mostly concerned with regular CW complexes,
the theory can also be applied to general CW complexes under certain assump-
tions. Forman [28, 30] considers a discrete gradient vector field as a certain set
of pairs of cells (φ, ρ), where φ is a regular face of ρ. In Section 2.9, we show how
these assumptions can be weakened. In particular, the fundamental statements
of discrete Morse theory also hold without the assumption that the closure of φ
is a topological disk.

1.1.5 Multiple cancelations

In principle, multiple pairs of critical points can be eliminated by sequentially
applying the (single pair) cancelation method of Forman [28]. However, as
a prerequisite for cancelation, this method relies on the existence of a unique
gradient path between the pair of critical points to be canceled. For every step in
a cancelation sequence, this requires finding an admissible pair of critical points
that satisfies this prerequisite. It is natural to ask whether such admissible
cancelation pairs can be related to persistence pairs in some way. In particular, can
every persistence pair eventually be eliminated using a cancelation sequence?

For the case of surfaces, the answer is indeed affirmative if persistence pairs
are canceled in a nested order. Concretely, we show that a persistence pair (σ, τ)
can be canceled after all persistence pairs (σ̃, τ̃) with f (σ) < f (σ̃) < f (τ̃) < f (τ)
have been removed (assuming, by symbolic perturbation, that all critical points
have distinct values). This result is established by introducing a certain hierarchy
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1.1 Overview

on the persistence pairs with indices (0, 1), which by duality extends to the pairs
with indices (1, 2), see Section 4.2.

We note that in general this statement does neither hold for manifolds of
dimension greater than two nor for non-manifold 2-complexes.

1.1.6 Tightness of the stability bound

The Bottleneck Stability Theorem [18], a fundamental result in the theory of
persistent homology, provides a lower bound on the number of critical points:

Proposition (Stability Bound). For any function fδ with ‖ fδ − f ‖∞ ≤ δ, the number
of critical points of fδ is bounded from below by the number of those critical points of f
that have persistence > 2δ.

Based on a nested sequence of persistence pairs, our cancelation method is
capable of removing all pairs with persistence ≤ 2δ without removing other
critical points. In view of the topological simplification problem, it remains to show
that the corresponding sequential cancelations do not violate the δ-tolerance
constraint. Indeed, we show that a nested cancelation sequence of persistence
pairs leads to a function that matches the stability bound (Theorem 4.2), providing
an optimal solution to the topological simplification problem:

Theorem (Tightness of the stability bound). Given a function f on a surface and
a real number δ ≥ 0, there exists a function fδ such that ‖ fδ − f ‖∞ ≤ δ and the
number of critical points of fδ equals the number of those critical points of f that have
persistence > 2δ.

A similar statement does not hold in higher dimensions or for non-manifold
2-complexes, see Section 6.6.

The main difficulty in proving this result stems from the fact that even
canceling a single persistence pair might affect an arbitrary number of other
critical points. Consequently, it is not possible to independently analyze the
cancelation of persistence pairs with indices (0, 1) and (1, 2), respectively. This
stands in contrast to previous related methods [25, 2], which modify the function
independently on two disjoint subsets of the surface, corresponding to the
cancelation of persistence pairs of indices (0, 1) and (1, 2), respectively.
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Chapter 1 Introduction

1.1.7 Efficient solution

Our construction of sequential cancelations is convenient for establishing tight-
ness of the stability bound, but yields an algorithm with quadratic time complex-
ity. Devising a more efficient algorithm requires a slightly different approach.

Our (inefficient) sequential construction amounts to alternating between
two processes: (i) canceling persistence pairs from a discrete vector field and
(ii) adapting the function correspondingly. In order to obtain an efficient solution,
we perform these processes separately instead: In a first step, we compute a fully
simplified vector field from the persistence pairs; in a second step, we construct
a simplified function from the input function and the simplified vector field
resulting from the first step. Both steps can be performed in time O(n) using
simple graph traversal methods (Chapter 5). Note that computing persistence
pairs takes time O(sort(n)) [2]. Here n denotes the number of cells of the surface
and O(sort(n)) denotes the time complexity of sorting n numbers.

The existence of an efficient algorithm for the topological simplification
problem is perhaps surprising in view of the fact that the problem is NP-
hard when restricted to simplexwise linear functions on a triangulated surface.
The NP-hardness result follows from extending a recent result by Gray et al.
[33], which states that minimizing the number of extrema of a simplexwise
linear function with interval constraints for the vertex values is NP-hard. We
adapt the argument to our problem setting where all tolerance intervals are
assumed to have length 2δ (see Section 6.10). Here, a simplexwise linear function
on a triangulated surface is a function that is linear on each simplex of a fixed
triangulation, while a piecewise linear function is only required to be linear on each
simplex of some triangulation of the same surface. In particular, a simplexwise
linear function on a subdivision of a triangulation is piecewise linear but not
necessarily simplexwise linear with respect to the original triangulation. The
emphasis on simplexwise linear as opposed to just piecewise linear functions
is crucial here: a multiple saddle can be split into several non-degenerate
saddles by an arbitrarily small perturbation (in the supremum norm) in the
space of piecewise linear functions, but not in the subspace of simplexwise
linear functions. This emphasizes the important role of discrete Morse theory:
the hardness of the problem in the simplexwise linear setting arises from
the possibility that the input contains multiple saddles, which is excluded
by definition in discrete Morse theory. A discrete pseudo-Morse function
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constructed from a simplexwise linear function can again be interpreted as
a simplexwise linear function on the barycentric subdivision of the original
triangulation (Section 2.8).

1.1.8 Energy minimization of simplified functions

The solution to the topological simplification problem is not unique in general:
both the δ-constraint and the simplified discrete gradient vector field impose
a set of linear inequalities on the simplified function, so the solution set is a
convex polytope. This additionally allows to minimize a suitable convex energy
functional. We employ this technique to remove artifacts from the initial solution
and to improve the similarity to the input function (Section 6.5).

1.2 Related work

Topological simplification of functions within a δ-tolerance constraint has been
considered before by Edelsbrunner et al. [25] and Attali et al. [2]. The problem
considered there differs from ours by a seemingly small but significant detail:
in [25, 2] the critical points of the input function f that are not eliminated are
additionally assumed to exactly maintain their original values. This restriction
has some drawbacks: while it allows for eliminating all critical points of f with
persistence ≤ δ, it does not in general allow to eliminate all critical points with
persistence ≤ 2δ; an example is given in [25]. Hence, under this restriction it is
not always possible to match the stability bound.

The methods presented in [25, 2] can be interpreted as variants of the so-called
carving method proposed by Soille [61] in the context of terrain simplification.
Similarly, there is another popular method for removing extrema from terrains,
called filling or flooding [37, 1, 21]. A combination of both methods has been
proposed in [62]. Our method of canceling critical points from a function can be
interpreted as a combination of carving and flooding in the realm of discrete
Morse theory.

Apart from the above mentioned works, persistent homology provides the
basis for several other methods for computing and simplifying multi-scale struc-
tures derived from a function. In their original paper on persistent homology,
Edelsbrunner et al. [23] discuss the closely related problem of simplifying a
filtration of a simplicial complex. Edelsbrunner et al. [24] and Gyulassy et al. [34]
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Chapter 1 Introduction

consider simplification of cell decompositions (Morse–Smale complexes) resulting
from a given gradient vector field. Unfortunately, a simplified Morse–Smale
complex does not directly give rise to a simplified function. Indeed, simplifying
a Morse–Smale complex is closely related to simplifying a discrete gradient vector
field.

The problem of constructing discrete gradient vector fields that minimize the
number of critical points without constraints is addressed by Lewiner et al. [49]
for surfaces and by Joswig and Pfetsch [39] for complexes of arbitrary dimension.
King et al. [42] were the first to propose the combination of persistence with
discrete Morse theory to simplify the gradient vector field of an input function on
a 3-dimensional simplicial complex. Their method has quadratic time complexity
and produces a simplified discrete gradient vector field but not a function. It
does not aim at optimality, since on 3-dimensional complexes in general not
every persistence pair can be canceled (see Section 6.7).
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Chapter 2

Discrete Morse theory

Classical (smooth) Morse theory [51] relates the critical points of a generic
smooth real-valued function on a manifold to the global topology of that
manifold. Forman [28, 30] carried over the main ideas of Morse theory to a
combinatorial setting. We introduce the main concepts and results of discrete
Morse theory, together with some extensions to Forman’s theory that provide
important tools for our results. To emphasize the connection to the smooth
theory, we present the smooth counterparts alongside with the corresponding
definitions and theorems of discrete Morse theory.

2.1 CW complexes

A CW complex K is a topological space constructed inductively. Starting with
a discrete setK0 of 0-cells called the 0-skeleton, we form the n-skeletonKn ofK
by attaching closed n-cells (closed n-dimensional balls) by continuous attaching
maps Sn−1

→ Kn−1 from their boundary to the (n − 1)-skeleton. More precisely,
Kn is the quotient space of the disjoint union ofKn−1 with a collection of closed
n-balls under the identifications given by the attaching maps. Throughout this
thesis, we consider only finite CW complexes, meaning thatK = Kd for some
large enough d. A CW complex is always a Hausdorff space, i.e., disjoint points
have disjoint neighborhoods.

The image of of one of the closed n-dimensional balls by the quotient map
is called a closed cell of K , while the image of its interior is called an open cell.
The set of open cells is denoted by K. Whenever we simply talk about a cell, we
quietly assume the cell to be open. For a cell σ, the restriction of the quotient
map to the corresponding closed n-ball yields a map Φσ : Bn → Kn ⊂ K from
the closed unit ball Bn, called the characteristic map of σ. The restriction of the
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Chapter 2 Discrete Morse theory

characteristic map to the open unit ball Bn is a homeomorphism onto σ, while
the restriction to Sn−1 yields the attaching map.

Whenever a cell τ ∈ K is attached to a cell σ (i.e., σ ⊂ ∂τ, where ∂τ denotes
the boundary bdKd τ of τ in the d-skeleton Kd with d = dim τ), we call σ a face
of τ; a face of codimension 1 is called a facet. If the characteristic map Φτ of τ (or,
equivalently, the attaching map) restricts to a homeomorphism on the preimage
Φ−1
τ (σ) and the closure of Φ−1

τ (σ) is a closed ball, then σ is a regular facet of τ. If
all facets are regular, or equivalently, if all characteristic maps are topological
embeddings, i.e., homeomorphisms onto their respective images, then K is
called a regular CW complex. If the union of a set of cells is closed, then this
union is itself a CW complex, called a subcomplex.

The notions of face [28] and facet resemble the standard notions for convex
polytopes. However, our definition of face applies to open cells, whereas a
face of a convex polytope is considered to be a (closed) convex polytope again.
Moreover, a cell of a CW complex is not a face of itself (corresponding to the
notion of a proper face for polytopes). Note that in general the boundary of a cell
is not the union of its faces.

A regular CW complex whose underlying space is a PL manifold is called a
combinatorial manifold. This name reflects the fact that regular CW complexes
are determined up to homeomorphism by the combinatorial data of the face
relation. A combinatorial 2-manifold is called a combinatorial surface. We refer to
[50, 35] for further details on CW complexes.

2.2 Discrete vector fields

One of the central concepts of discrete Morse theory is that of a discrete vector
field – a purely combinatorial analogue of a classical vector field.

Definition (discrete vector field, critical cell [28, 30]). A discrete vector field V
on a regular CW complexK is a set of pairs of cells (σ, τ) ∈ K × K, with σ a facet of τ,
such that each cell of K is contained in at most one pair of V. A cell σ ∈ K is critical
with respect to V if σ is not contained in any pair of V. The dimension of a critical cell
is also called its index.

A pair (σ, τ) in a discrete vector field V can be visualized as an arrow from σ

to τ (as in Fig. 2.1). A critical cell is also called a critical point.

12



2.2 Discrete vector fields

ρ

φ

Figure 2.1: Reversing a gradient vector field along the unique path from ∂ρ toφ produces
a gradient vector field in which the 1-cell φ and the 2-cell ρ are no longer critical.

Figure 2.2: Critical cells of dimension (index) 0, 1, 2

We occasionally drop the attribute discrete when this causes no ambiguity.
In the following, we consider an important subclass of vector fields in which

the arrows do not form closed paths. This can be made precise using the concept
of V-paths.

Definition (V-path [30]). Let V be a discrete vector field. A V-path Γ from a cell σ0 to
a cell σr is a sequence (σ0, τ0, σ1, . . . , τr−1, σr) of cells such that for every 0 ≤ i ≤ r − 1:

• σi is a facet of τi with (σi, τi) ∈ V, and
• σi+1 is a facet of τi with (σi+1, τi) < V.

A V-path Γ is called closed if σ0 = σr and nontrivial if r > 0. We call dim σ0 the
dimension of Γ.

If ρ, φ are critical cells of V, then a V-path from ∂ρ to φ means a V-path
Γ = (σ0, τ0, σ1, . . . , τr−1, σr) with σ0 a facet of ρ and φ = σr (see Fig. 2.1 for an
example). We also say that Γ is a V-path between ρ and φ.

Definition (discrete gradient vector field [30]). A discrete vector field V is a discrete
gradient vector field if it contains no nontrivial closed V-paths.

2.2.1 Reversing gradient vector fields

The main technique for reducing the number of critical points is that of reversing
a gradient vector field V along a V-path between two critical cells ρ and φ.

13



Chapter 2 Discrete Morse theory

Consider a V-path (σ0, τ0, σ1, . . . , τr−1, σr) from ∂ρ to φ. Now replace every pair
(σi, τi) ∈ V by (σi+1, τi) for 0 ≤ i ≤ r−1 and add the pair (σ0, ρ) to obtain a discrete
vector field Ṽ where φ and ρ are no longer critical (see Fig. 2.1 for an example).
Moreover, if there is no other V-path from ∂ρ to φ, then Ṽ is again a gradient
vector field because no nontrivial closed Ṽ-path is created.

Theorem 2.1 (Forman [28]). Let φ and ρ be two critical cells of a gradient vector
field V with exactly one V-path Γ from ∂ρ to φ. Then there is a gradient vector field Ṽ
obtained by reversing V along the path Γ. The critical cells of Ṽ are exactly the critical
cells of V apart from {φ, ρ}. Moreover, V = Ṽ except along the path Γ.

This provides a discrete analogue of Morse’s cancelation theorem [57], which
was prominently used by Milnor [52] in his Morse-theoretic proof of the h-
cobordism Theorem. Before stating the theorem, we introduce some definitions.

A smooth function f on a manifold is a Morse function if the Hessian at
each critical point p is non-degenerate, i.e., all eigenvalues are different from 0.
According to the Morse lemma [51, Lemma 2.2], there is a chart centered at p
with coordinates (x1, . . . , xn) such that f has the standard form

f (x1, . . . , xn) = f (p) − x2
1 − · · · − x2

λ + x2
λ+1 + · · · + x2

n.

Such a chart is called a Morse chart. The number λ is the number of negative
eigenvalues of the Hessian at p. It is called the index of p. A smooth vector field
is gradient-like if there is a Morse function f such that X( f ) > 0 away from the
critical points of f , and for each critical point of f there is a Morse chart such
that X = ∇ f with respect to the Euclidean metric on that chart.

Theorem 2.2 (Milnor [52], Theorem 5.4). Let φ and ρ be two critical points of
consecutive index of a gradient-like vector field X on a manifold M with exactly one flow
line γ from ρ to φ. Then there is a gradient-like vector field X̃ obtained by modifying X
in an arbitrarily small neighborhood U of the path γ such that the critical points of X̃
are exactly the critical points of X apart from {φ, ρ}. Moreover, X ≡ X̃ except at U.

2.2.2 Gradient vector fields on surfaces

Gradient vector fields on combinatorial surfaces have additional properties that
do not hold in higher dimensions. The following property is readily checked
using the fact that a 1-cell is only attached to at most two 0-cells, and at most
two 2-cells are attached to a 1-cell:
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2.3 The Morse complex

Lemma 2.3. Two V-paths of dimension 0 cannot branch at a common cell, and two
V-paths of dimension 1 cannot merge (except at their last cell).

Proof. Let Γ = (σ0, τ0, σ1, . . . , τr−1, σr), Γ̃ = (σ̃0, τ̃0, σ̃1, . . . , τ̃s−1, σ̃s) be two V-paths
of dimension 0. We show that the paths cannot branch: if σi = σ̃ j, then τi = τ̃ j as
well; if τi = τ̃ j, then σi+1 = σ̃ j+1 as well. The second statement can be shown in a
similar way. First, note that the successor of σi = σ̃ j in any V-path is uniquely
determined by the vector field V. Second, the 1-cell τi = τ̃ j is attached to exactly
two 0-cells, one of which is σi = σ̃ j. By the definition of a V-path, the other 0-cell
must be the successor σi+1 = σ̃ j+1 of τi = τ̃ j in both Γ and Γ̃. �

Corollary 2.4. Let ρ be a critical 1-cell of a discrete vector field V on a combinatorial
surface. Then there are at most two V-paths from ∂ρ to critical 0-cells, each starting
at one of the two 0-cells in ∂ρ. Similarly, there are at most two V-paths from facets of
critical 2-cells to ρ.

2.3 The Morse complex

A gradient vector field V gives rise to the construction of the Morse complex
MV, a (possibly non-regular) CW complex that is homotopy equivalent to the
original CW complexK but has fewer cells.

Theorem 2.5 (Forman [28], Corollary 3.5). Let V be a discrete gradient vector field
on a finite regular CW complex K . Then K is homotopy equivalent to the Morse
complexMV, which is a CW complex with as many d-cells as there are critical cells
of V of dimension d.

This theorem is an analogue of the following classical result:

Theorem 2.6 (Milnor [51], Theorem 3.5). Let f be a smooth Morse function on a
manifold M. Then M is homotopy equivalent to a CW-complex with as many d-cells as
there are critical points of f of index d.

The Morse complex and its attaching maps have an intuitive description: MV

can be thought of as the result of internally collapsing each pair of the gradient
vector field V simultaneously. In this process, all non-critical cells vanish, while
the critical cells are glued together to form the new complexMV.

15



Chapter 2 Discrete Morse theory

2.3.1 Cellular homology

We revisit some basic definitions of cellular homology [50, 35]. The cellular
chain group of K with coefficients in an abelian group G is defined as the
abelian group C∗(K ; G) consisting of formal sums

∑
σ∈K gσσ, where gσ ∈ G. The

restriction to formal sums of cells of dimension i is denoted by Ci(K ; G). The
cellular boundary operator ∂ : C∗(K ; G)→ C∗(K ; G) is defined by

∂
∑
τ∈K

gττ =
∑
σ,τ∈K

∂τ,σgτσ,

where G is considered as an additive group and the coefficients ∂τ,σ ∈ Z are
given as follows. If σ is a facet of τ with dim σ = d, let ϕτ : Sd

→ Kd be the
attaching map of τ and let sσ : Kd → Sd be the quotient map sending Kd \ σ

to a point. Define ∂τ,σ as the degree of the map sσ ◦ ϕτ : Sd
→ Sd. If σ is not

a facet of τ, let ∂τ,σ = 1G (the neutral element of G). The restriction of ∂ to a
map Ci(K ; G)→ Ci−1(K ; G) is denoted by ∂i. The sequence of maps ∂i is called
the cellular chain complex of K . The kernel of ∂ is called the group of cycles
Z∗(K ; G), the image of ∂ is called the group of boundaries B∗(K ; G). The quotient
H∗(K ; G) = Z∗(K ; G)/B∗(K ; G) is called the homology of (C∗(K ; G), ∂). Again,
the subgroups Zi(K ; G), Bi(K ; G), and Hi(K ; G) are obtained by restriction to
dimension i.

2.3.2 Homology of the Morse complex

The boundary maps ∂̃ of the cellular chain complex (C∗(MV,Z), ∂̃) for the Morse
complex can be obtained by counting all V-paths between critical cells, taking
orientation into account [28]. This can be understood as a discrete analogue
to the definition of a cellular chain complex via the degree of attaching maps.
Another description can be given by considering the (discrete time) gradient
flow Φ : C∗(K ,Z) → C∗(K ,Z) associated to V. To do so, we interpret V as the
unique linear map satisfying

V(ρ) :=

−〈∂ψ, ρ〉ψ if there is a pair (ρ, ψ) ∈ V,

0 otherwise.

This gradient flow Φ is now defined by linear extension of

Φ(τ) := τ + V(∂τ) + ∂V(τ), τ ∈ K.
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2.4 Morse and pseudo-Morse functions

Here we use the canonical inner product 〈·, ·〉 on C∗(K ,Z) defined by declaring
the oriented cells to be an orthonormal basis, i.e., 〈φ, ρ〉 = δφ,ρ. According to [28,
Theorem 7.2], this map Φ stabilizes in finite time to a map Φ∞, that is, there is
an N large enough such that ΦN = ΦN+1 = · · · = Φ∞. In particular, Φ∞ maps a
critical cell τ ∈ K to a Φ-invariant chain of C∗(K ,Z). It turns out that the d-cells
ofMV are in bijection with the set {Φ∞(τ) | τ ∈ K critical d-cell of V} of invariant
chains generated by a critical cell, and that the boundary map ∂̃ ofMV can be
expressed in terms of the boundary map ∂ ofK using this identification. In other
words, we can identify each critical cell ρ of V bijectively with a cell ρ̃ ∈ MV

such that the following equation [28, (8.3)] holds whenever σ and τ are critical
cells of V:

〈∂̃τ̃, σ̃〉 = 〈∂Φ∞(τ), σ〉 = 〈Φ∞(∂τ), σ〉.

Note that in contrast to our nomenclature, Forman [28] uses the name Morse
complex to denote the cellular chain complex (C∗(MV,Z), ∂̃) ofMV. The cellular
homology ofMV is also called the Morse homology of (K ,V). It is isomorphic to
the cellular homology ofK sinceMV is homotopy equivalent toK and cellular
homology is a homotopy invariant. The same names are also used for the
analogous concepts of smooth Morse theory [4].

2.4 Morse and pseudo-Morse functions

As in smooth Morse theory, a discrete gradient vector field can be understood as
the gradient of some non-degenerate function in the following sense:

Definition (discrete Morse function [28]). A function f : K → R on the cells of
a regular CW complex K is a discrete Morse function if there is a gradient vector
field Vf such that whenever σ is a facet of τ,

• (σ, τ) < Vf implies f (σ) < f (τ), and
• (σ, τ) ∈ Vf implies f (σ) ≥ f (τ).

Vf is called the gradient vector field of f .

In contrast to piecewise linear functions, which are determined by their
function values at the vertices of the triangulation, discrete Morse functions take
values on cells of any dimension.
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Chapter 2 Discrete Morse theory

Although this is not evident from the definitions, discrete Morse functions are
indeed very closely related to smooth Morse functions in the sense that their
respective critical points share the same characteristic properties. This will be
clarified later in Section 2.6.

Every gradient vector field can be associated with some discrete Morse
function:

Theorem 2.7 (Forman [28]). Let W be a discrete gradient vector field. Then there is a
discrete Morse function f with Vf = W.

An explicit construction of such a function will result from the techniques in
Section 2.5.

The gradient vector field of a discrete Morse function encodes only the sign
of the difference between function values, not the difference itself. Therefore
a discrete gradient vector field does not uniquely determine a discrete Morse
function, just like a smooth gradient-like vector field X does not uniquely
determine a Morse function f satisfying the consistency condition X( f ) > 0.
However, there is exactly one gradient vector field Vf for every discrete Morse
function f . In contrast, in the smooth theory there are many gradient-like
vector fields for a given Morse function: different choices of Riemannian metric
generally lead to different gradient vector fields (note that not every gradient
vector field is actually gradient-like for a given metric because of the additional
technical condition at the critical points).

In order to be able to treat non-generic functions, it is useful to consider a more
general class of functions, which we call pseudo-Morse functions. Pseudo-Morse
functions substitute the strict inequality in the definition of Morse functions by
a weak one.

Definition (pseudo-Morse function, consistency). A function f : K→ R on the
cells of a regular CW complex K is a discrete pseudo-Morse function if there is a
gradient vector field V such that whenever σ is a facet of τ,

• (σ, τ) < V implies f (σ) ≤ f (τ), and
• (σ, τ) ∈ V implies f (σ) ≥ f (τ).

In this case, we call f and V consistent.

Note that a gradient vector field V consistent with a pseudo-Morse function f
is not unique in general.
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2.4.1 Properties of pseudo-Morse functions

As a direct consequence of the definitions we have the following property of
positive linear combinations of (pseudo-)Morse functions:

Lemma 2.8. Let f and g be two pseudo-Morse functions consistent with a gradient
vector field V and let λ, µ ≥ 0. Then λ f + µg is also consistent with V. Moreover, if f
is a Morse function and λ > 0, then λ f + µg is also Morse.

From this fact we can derive a useful characterization of discrete pseudo-Morse
functions. For a given gradient vector field V, the set of pseudo-Morse functions
consistent with V is the closure of the set of Morse functions consistent with V
with respect to the standard topology on the set of functions K→ R as a vector
space isomorphic to R|K|. However, not every function K→ R is pseudo-Morse.

Theorem 2.9. Let f : K → R be a function on the cells of a regular CW complex
K and let V be a gradient vector field on K . Then f is a discrete pseudo-Morse
function consistent with V if and only if for every ε > 0 there is a discrete Morse
function fε : K→ R with ‖ fε − f ‖∞ ≤ ε such that V is the gradient vector field of fε.

Proof. Assume that f is a pseudo-Morse function consistent with a gradient
vector field V. Then according to Theorem 2.7, there exists a discrete Morse
function g whose gradient vector field Vg is precisely given by V. Let G be the
maximum absolute value of g. Given ε > 0, for each cell σ define

fε(σ) := f (σ) + ε
g(σ)
G
.

Lemma 2.8 implies that fε is a discrete Morse function with gradient vector
field V, and clearly we have ‖ fε − f ‖∞ ≤ ε.

On the other hand, assume that for every ε > 0 there is a discrete Morse
function fε : K→ R consistent with V and ‖ fε − f ‖∞ ≤ ε. Choose ε such that for
every φ, ρ ∈ K with f (φ) , f (ρ) we have

ε <
| f (φ) − f (ρ)|

2
.

Without loss of generality, assume that f (φ) > f (ρ). Then f (φ) − f (ρ) > 2ε and
hence fε(φ) − fε(ρ) > 0 or fε(φ) > fε(ρ). Since fε is consistent with V, one easily
verifies that f is consistent with V as well. �
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Chapter 2 Discrete Morse theory

2.5 Symbolic perturbation

Theorem 2.9 suggests a symbolic perturbation scheme based on gradient vector
fields in order to allow for non-generic (degenerate) input functions. Starting
with a pseudo-Morse function f , we can choose a consistent gradient vector
field V, which may not be unique. Theorem 2.9 asserts that there is a discrete
Morse function fε arbitrarily close to f and consistent with V. Therefore we can
work with f as if it were a discrete Morse function with gradient vector field V.
In particular, we use Theorem 2.9 to associate critical points to a pseudo-Morse
function by choosing a consistent gradient vector field.

This first symbolic perturbation scheme is not sufficient for all our purposes;
the definition of persistence pairs given later in Chapter 3 not only requires a
gradient vector field, but also a total order on the critical cells, which again is
not always uniquely defined by a pseudo-Morse function f and a consistent
gradient vector field V. We now derive a second perturbation scheme that meets
these requirements.

2.5.1 The partial order induced by a gradient vector field

Since a gradient vector field imposes certain inequality constraints on the
functions consistent with it, we can ask how these inequalities affect the relation
between the function values of any two cells. We observe that any discrete
gradient vector field gives rise to a strict partial order on the set of cells:

Definition (induced partial order). Let V be a discrete gradient vector field and
consider the relation←V defined on K such that whenever σ is a facet of τ,

• (σ, τ) < V implies σ←V τ, and
• (σ, τ) ∈ V implies σ→V τ,

where→V is the inverse of←V. Let ≺V be the transitive closure of ←V. Then ≺V is
called the (strict) partial order induced by V.

It is readily checked that this relation is indeed a strict partial order since V is
assumed to have no non-trivial closed V-paths. The interpretation of this partial
order is that for any pseudo-Morse function f consistent with V and any two
cells φ and ρ, the relation φ ≺V ρ implies f (φ) ≤ f (ρ). This fact is easily verified
from the definitions. There is an interpretation in terms of V-paths: φ ≺V ρ
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2.5 Symbolic perturbation

implies that there is a sequence of V-paths, the first one starting at ∂ρ, every
other path starting at a facet of the end cell of the previous path, and the last
one ending at φ or a facet thereof. In particular, dimφ ≤ dimρ + 1.

The relation←V is the covering relation of ≺V, i.e., φ←V ρ implies that φ ≺V ρ

and that there is no ψ with φ ≺V ψ ≺V ρ. The covering relation of a partial order
forms a directed acyclic graph called the Hasse diagram. We use the convention
that the edges are oriented as suggested by the arrow symbol←V. The Hasse
diagram HV of ≺V is obtained from the Hasse diagram of the face relation on K
by inverting the orientation of all edges corresponding to pairs (σ, τ) ∈ V, as
described by Chari [15]. HV has the property that φ ≺V ρ if and only if there is a
directed path from ρ to φ. Note that σ←V τ implies f (σ) ≤ f (τ), i.e., both the
arrow visualizing (σ, τ) ∈ V and the arrow symbolizing σ←V τ point towards a
(weakly) decreasing function value of f .

A related approach to defining partial orders based on gradient vector fields
was proposed by Kozlov [45]. The main difference is that the partial order
considered there is defined on the union of the pairs V with the critical cells
of V, i.e., the pairs in V are taken as single elements. This approach has the
technical disadvantage that one has to work with partial orders on different sets
when working with different gradient vector fields. Our approach instead uses
different partial orders on the same underlying set, which is more convenient
for our purposes.

This partial order on the cells gives rise to the notion of ascending and descending
sets, resembling the ascending and descending manifolds in smooth Morse theory.
This notion serves as an important tool in our constructive methods.

Definition (ascending and descending set). Let V be a discrete gradient vector field
onK . The ascending set of a cell φ ∈ K is defined as the upper set of φ in �V,

{ρ : ρ �V φ},

and the descending set is the lower set of φ in �V,

{ρ : ρ �V φ}.

The related smooth objects are defined as follows:

Definition (ascending and descending manifolds [63]). Let V be a smooth gradient-
like vector field on a manifold M and let γx : R→M be the flow curve of M at x, i.e.,
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Chapter 2 Discrete Morse theory

γx(0) = x and γ′x(t) = V(γx(t)). The ascending manifold of a critical point p ∈M is
defined as the set

{x ∈M : lim
t→∞

γx(t) = p},

and the descending manifold of p is the set

{x ∈M : lim
t→−∞

γx(t) = p}.

Note that the discrete object actually corresponding to an ascending (descend-
ing) manifold is the ascending (descending) region of a critical cell φ, i.e., those cells
in the ascending (descending) set of φ that are not contained in the ascending
(descending) set of a higher- (lower-) dimensional critical cell than φ [38].

Thom [63] observed that the ascending and descending manifolds of a
critical point of index λ on a manifold of dimension n are always open balls of
dimension n − λ and λ, respectively. In contrast, even if K is a combinatorial
manifold, the ascending and descending regions of critical cells need not form
a partition of K into topological balls. It is however possible to subdivide
the complex and extend the gradient vector field such that the subset of the
ascending (descending) regions become collapsible [38].

2.5.2 Consistent total orders

Assume we are given a pseudo-Morse function f consistent with a gradient
vector field V. On the one hand we have the induced partial order ≺V. On the
other hand the function f canonically induces a strict partial order ≺ f given by

φ ≺ f ρ⇔ f (φ) < f (ρ).

Since the two orders ≺ f and ≺V are compatible by assumption (there are no two
cells (φ, ρ) with φ ≺V ρ and φ � f ρ), we can merge them into a strict partial
order ≺ f ,V (the transitive closure of (≺ f ∪ ≺V) ⊂ K × K). A linear extension of
this order is now called consistent with both f and V:

Definition (consistent total order). Let V be a discrete gradient vector field V
consistent with a discrete pseudo-Morse function f . Then a strict total order ≺ is called
consistent with ( f ,V) if it is a linear extension of ≺ f and ≺V.

Such a total order ≺ gives rise to a canonical bijection i : K → {1, . . . , |K|},
which is a discrete Morse function and consistent with V, providing a simple
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proof of Theorem 2.7. If we use this function as the function g in the proof of
Theorem 2.9 to construct fε, then fε is an injective discrete Morse function with
gradient vector field V and the total order induced by fε is ≺ again. We thus
obtain a second symbolic perturbation scheme for situations where a total order
on the cells is required.

2.6 Level and order subcomplexes

A classical object of study in smooth Morse theory is the sublevel set

M(t) = {x ∈M : f (x) ≤ t}

of a function f : M→ R on a manifold M.

Theorem 2.10 (Milnor [51], Theorem 3.1). Let f be a smooth real-valued function
on a manifold M. If a < b are real numbers such that f−1[a, b] is compact and contains
no critical point of f , then M(b) is diffeomorphic to M(a). Moreover, M(a) is a strong
deformation retract of M(b), so the inclusion M(a) ↪→M(b) is a homotopy equivalence.

Recall that a subspace A of a topological space X is called a strong deformation
retract if there is a homotopy F : X × [0, 1]→ X such that for all x ∈ X, a ∈ A, t ∈
[0, 1] we have F(x, 0) = x, F(x, 1) ∈ A, and F(a, t) = a. The homotopy F is called a
strong deformation retraction.

Theorem 2.11 (Milnor [51], Theorem 3.2 and Remark 3.4). Let f be a smooth
real-valued function on a manifold M. Suppose that σ is a non-degenerate critical point
of index d with

a < f (σ) ≤ b

such that f−1[a, b] is compact and contains no other critical points of f . Then M(b) is
homotopy equivalent to

M(a)
⋃
ϕ

Bd

with ϕ : Sd−1
→M(a).

In the discrete theory, the analogous object to the sublevel set is the level sub-
complex, and the equivalent construction using our second symbolic perturbation
scheme is the order subcomplex:
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Definition (level subcomplex [28], order subcomplex). Let f be a pseudo-Morse
function on a regular CW complexK . Let the carrier of a subset L ⊂ K be the smallest
subcomplex of K containing all of L. Then for t ∈ R, the level subcomplex is

K (t) = carrier
( ⋃
ρ∈K: f (ρ)≤t

ρ

)
.

Similarly, let ≺ be a strict total order on the cells K of a regular CW complexK . Then
for a cell σ ∈ K, the order subcomplex is

K (σ) = carrier
( ⋃
ρ∈K:ρ�σ

ρ

)
.

The connection between the two notions is as follows. Let ≺ be a strict total
order consistent with a discrete gradient vector field V. As mentioned before,
≺ gives rise to a canonical bijection i : K→ {1, . . . , |K|}, which is a discrete Morse
function with gradient vector field V. Clearly the order subcomplexes K(σ)
are in one-to-one correspondence with the level subcomplexes K(i(σ)). This
equivalence allows to translate statements about level subcomplexes to order
subcomplexes. We make use of this fact in the following two theorems.

2.6.1 The homotopy type of order subcomplexes

We can now express the characteristic property of critical points of a discrete
Morse function. Like in the smooth theory, the homotopy type of level subcom-
plexes changes only at critical cells.

Theorem 2.12 (Forman [28], Theorem 3.3). If a < b are real numbers such that [a, b]
contains no critical value of f , thenK (b) collapses toK (a).

Recall the definition of a collapse [16, 28]. Consider a CW complexK . Let τ
be a cell of K . The cell σ is called a free facet of τ if σ is a regular facet of τ and
σ is not a face of any other cell than τ. If σ is a free regular facet of τ, then
K̃ = K \ (σ ∪ τ) is a strong deformation retract of K and the corresponding
homotopy equivalence K → K̃ is called an elementary collapse. A homotopy
equivalence which is the composition of elementary collapses is called a collapse.
IfK collapses to K̃ , we writeK ↘ K̃ .
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Theorem 2.13 (Forman [28], Theorem 3.4). Suppose that σ is a critical cell of index d
with

a < f (σ) ≤ b

and f−1([a, b]) contains no other critical cells. ThenK (b) is homotopy equivalent to

K (a)
⋃
ϕ

Bd

with ϕ : Sd−1
→ K (a).

The statements can be rephrased for order subcomplexes:

Theorem 2.14. Let V be a gradient vector field on a regular CW complexK and let ≺
be a linear extension of ≺V. If ρ and ψ are two cells such that ρ ≺ ψ and there is no
critical cell φ with respect to V such that ρ ≺ φ � ψ, thenK (ψ) collapses toK (ρ).

Theorem 2.15. Let V be a gradient vector field on a regular CW complexK and let ≺
be a linear extension of ≺V. Suppose that ρ and ψ are two cells such that ρ ≺ ψ and
there is exactly one critical cell φ of index d with respect to V such that

ρ ≺ φ � ψ.

ThenK (ψ) is homotopy equivalent to

K (ρ)
⋃
ϕ

Bd

with ϕ : Sd−1
→ K (ρ).

Note that we obtain Theorem 2.5 as a direct corollary of Theorems 2.14
and 2.15.

The order subcomplexes provide a finer filtration of the complexK (by single
cells or pairs of cells) than the level subcomplexes, in particular if f is degenerate.
This turns out to be useful when working with persistent homology in Chapter 3.
As a direct consequence we obtain the following result (see also [51] for the
smooth case):

Corollary 2.16 (Morse inequalities; Forman [28], Theorems 1.7 and 1.8). Let V be
a gradient vector field on a regular CW complexK . Let cd denote the number of d-cells
ofK and let md denote the number of critical d-cells of V. Furthermore, let F be a field
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of coefficients and let βd = rank Hd−1(K ,F) denote the dth Betti number of K . Then
for each d,

d∑
i=0

(−1)d−ici ≥

d∑
i=0

(−1)d−iβi.

In particular,
cd ≥ βd

and
χ(K ) =

∑
i≥0

(−1)iβi =
∑
i≥0

(−1)ici,

where χ(K ) denotes the Euler characteristic ofK .

2.6.2 Flat pseudo-Morse functions

It is evident from the definition that a cell σ might already appear in a level
subcomplex K(t) with t < f (σ), or in an order subcomplex K(τ) with τ ≺ σ.
This possibility is somewhat counterintuitive, and it is sometimes helpful or
even necessary to work with functions where this situation is excluded. Such
functions are characterized by the following definition, extending a definition
due to Forman [29]:

Definition (Flat pseudo-Morse function). A pseudo-Morse function f consistent
with a discrete gradient vector field V on a CW complex K is a flat pseudo-Morse
function if

σ is a facet of τ⇒

 f (σ) ≤ f (τ) if (σ, τ) < V,

f (σ) = f (τ) if (σ, τ) ∈ V.

An alternative characterization of flat pseudo-Morse is given by the following
statement, which is a direct consequence of the definitions:

Proposition 2.17. A pseudo-Morse function f is flat if and only if it consistent to the
empty vector field ∅.

We now describe how to obtain a flat pseudo-Morse function from an arbitrary
pseudo-Morse function such that the two functions are equivalent with respect
to their level subcomplexes. First, recall that pseudo-Morse functions do not
necessarily have a unique consistent gradient vector field. There is however
a certain unique gradient vector field associated with every pseudo-Morse
function:
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Definition (minimal consistent vector field). Let f be a pseudo-Morse function.
Then

V =
{
(σ, τ) : σ is a facet of τ and f (σ) > f (τ)

}
is the minimal vector field consistent with f .

The name is justified by the following property, which is again a direct
consequence of the definitions:

Proposition 2.18. The minimal vector field consistent with a pseudo-Morse function f
is the intersection of all gradient vector fields consistent with f .

We can explicitly construct a flat pseudo-Morse function from a given pseudo-
Morse function.

Definition (flattening). Let f be a pseudo-Morse function and let V be the minimal
vector field consistent with f . Then

f̄ (σ) :=

 f (τ) if (σ, τ) ∈ V for some τ,

f (σ) otherwise.

is the flattening of f .

It is obvious from the definition that f̄ is indeed flat. From a Morse-theoretic
point of view, f and f̄ are equivalent:

Proposition 2.19. Let f be a pseudo-Morse function and let f̄ be the flattening of f .
Then the corresponding level subcomplexes of f and f̄ coincide.

The statement is again directly verified from the definitions. Another impor-
tant property is that flattening two pseudo-Morse functions does not increase
their distance in the supremum norm. We require the following lemma:

Lemma 2.20. Let a, b, c, d ∈ R. Then

|max(a, b) −max(c, d)| ≤ max(|a − c|, |b − d|).

Proof. Without loss of generality, assume a > b and max(a, b) > max(c, d). Then
|max(a, b) −max(c, d)| = a −max(c, d) ≤ a − c ≤ max(|a − c|, |b − d|). �

Theorem 2.21. Let f , g be pseudo-Morse functions onK and let f̄ , ḡ be their respective
flattenings. Then ‖ f̄ − ḡ‖∞ ≤ ‖ f − g‖∞.
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Proof. Consider an arbitrary cell τ ∈ K. We show that | f̄ (τ) − ḡ(τ)| ≤ ‖ f − g‖∞.
Let V be a discrete gradient vector field consistent with f . If τ is a critical cell

of V, let σ = τ; otherwise, let σ be the cell such that (σ, τ) ∈ V. Define φ for g
analogously to how σ is defined for f .

By the definition of a flattening we have f̄ (τ) = f (σ) and f̄ (φ) ≥ f (φ). By the
definition of a pseudo-Morse functions we have f̄ (τ) ≥ f̄ (φ). Together we have
f̄ (τ) = max( f (σ), f (φ)), and analogously we also obtain ḡ(τ) = max(g(σ), g(φ)).
Thus, by Lemma 2.20 we have

| f̄ (τ) − ḡ(τ)| ≤ |max( f (σ), f (φ)) −max(g(σ), g(φ))|

≤ max(| f (σ) − g(σ)|, | f (φ) − g(φ)|)

≤ ‖ f − g‖∞. �

2.7 Straight-line homotopies of discrete Morse functions

Cerf theory is concerned with families of smooth functions on a manifold. A
fundamental result is the following statement about homotopies between two
excellent Morse functions, i.e., Morse functions whose critical points have distinct
critical values:

Theorem 2.22 (Cerf [14], Proposition 2.4). Let M be a compact orientable smooth
manifold. Let (x, t) 7→ ft(x) ∈ C∞(M× [0, 1]) be a smooth 1-parameter family of smooth
functions ft ∈ C∞(M) such that f0 and f1 are excellent Morse functions. Then every
open neighborhood U ⊂ C∞(M× [0, 1]) of the family (x, t) 7→ ft(x) in the compact-open
topology also contains a family (x, t) 7→ Ft(x) ∈ U such that F0 = f0, F1 = f1, and Ft is
an excellent Morse function at all but a finite number of times t.

In other words, a generic homotopy between f0 and f1 yield a Morse function
apart from a finite number of times.

We are particularly interested in homotopies of the form ft = (1 − t) f + tg
(called straight-line homotopies). Again, the discrete case turns out to be much
simpler, and the following statements can be obtained by elementary means:

Theorem 2.23. Let f and g be two flat pseudo-Morse functions consistent with gradient
vector fields Vf and Vg, respectively. Then ft = (1 − t) f + tg is a flat pseudo-Morse
function consistent with the gradient vector field V = Vf ∩Vg for every t with 0 ≤ t ≤ 1.
If both f and g are additionally Morse, then so is ft.
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Proof. The function ft is a flat pseudo-Morse function by Lemma 2.8 and Propo-
sition 2.17. For each pair (φ, ρ) ∈ K × K such that φ is a facet of ρ we have
f (φ) ≤ f (ρ) and g(φ) ≤ g(ρ). Thus we have ft(φ) ≤ ft(ρ). Moreover we have
ft(φ) = ft(ρ) if and only if both f (φ) = f (ρ) and g(φ) = g(ρ), which in turn holds
for every pair (φ, ρ) ∈ V. Hence ft is consistent with V. Finally, if both f and g
are Morse, then we have ft(φ) = ft(ρ) if and only if (φ, ρ) ∈ V. Thus ft is Morse
with gradient vector field V. �

In contrast to Theorem 2.22, the critical cells change only at t ∈ {0, 1}. This is
due to the requirement that f and g are flat. Note that without this requirement,
ft is no longer guaranteed to be a pseudo-Morse function.

Regarding the ordering of critical values (and other function values) of ft, we
obtain the following result:

Theorem 2.24. Let f and g be two pseudo-Morse functions and let ft = (1 − t) f + tg.
Then there exists a partition 0 = t0 < t1 < · · · < tk = 1 of the interval [0, 1] such that
for any 0 ≤ i < k, the order ≺ ft induced by ft is unchanged for all t ∈ (ti, ti+1).

Proof. For each pair (φ, ρ) ∈ K ×K with f (φ)− g(φ) , f (ρ)− g(ρ), there is exactly
one value t such that ft(φ) = ft(ρ), which is given by

tφ,ρ =
f (φ) − f (ρ)

f (φ) − f (ρ) − g(φ) + g(ρ)
.

If f (φ)− g(φ) = f (ρ)− g(ρ), we have ft(φ) = ft(ρ) for all t if and only if f (φ) = f (ρ).
Since ft is continuous in t, the order ≺ ft can change only at the values t = tφ,ρ for
some (φ, ρ) ∈ K × K, implying the claim. �

Combining Theorems 2.23 and 2.24, we find that we can choose a single total
order ≺i on K consistent with ( ft,V) for all t ∈ [ti, ti+1].

2.8 Piecewise linear functions and discrete Morse
functions

The framework of discrete Morse theory is well-suited both for concise proofs
as well as for fast and simple algorithms. Most relevant to our work is the
elimination of critical points of discrete gradient vector fields (Theorem 2.1). A
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comparably simple construction is not available (and seems difficult to achieve)
in the setting of PL Morse theory [44, 26, 3].

In this section we discuss a canonical relationship between discrete and piece-
wise linear (PL) Morse theory. As it turns out, it is possible to translate statements
from one setting to the other seamlessly. This has important consequences: it
allows to develop robust and rigorous methods for dealing with real-world data,
making no assumptions on the input function.

2.8.1 Simplicial complexes

First we review some definitions concerning simplicial complexes. A simplex
of dimension d is the convex hull of (d + 1) affinely independent points in Rn,
called vertices. A face of a simplex s is the convex hull of any nonempty subset
of the vertices of s. A simplicial complex S is a set of simplices such that every
face of a simplex from S is also contained in S, and any nonempty intersection
of two simplices from S is a face of both simplices. In this thesis, all simplicial
complexes are assumed to be finite. The union of simplices of S, endowed with
the subspace topology of Rn, is a topological space |S| called the underlying space
of S. It has the structure of a regular CW complex, the cells being the interiors
of the simplices. Therefore, by a slight abuse of notation, we often drop the
mention of the underlying space and simply consider a simplicial complex as
a CW complex. We sometimes call a simplicial complex geometric in order to
emphasize the difference from the following purely combinatorial definition.

An abstract simplicial complex or simplicial scheme is a family of nonempty finite
sets which is closed under the operation of taking subsets. Again, we only
consider finite complexes. A set s in an abstract simplicial complex is called
simplex. The elements in s are the vertices of s. A subset of a simplex s is called
face of s. Given a geometric simplicial complex, the vertices of the simplices
form an abstract simplicial complex, called the vertex scheme. Vice versa, every
abstract simplicial complex ∆ is the vertex scheme of some geometric simplicial
complex. The underlying space of this geometric simplicial complex is unique
up to homeomorphisms. We call it the underlying space of ∆ and denote it by |∆|.

The following definitions apply to both geometric and abstract simplicial
complexes. The vertices of a simplicial complex are the union of the vertices of its
simplices. A subcomplex of ∆ is a subset of ∆ which is also a simplicial complex.
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2.8 PL functions and discrete Morse functions

Given a subset W of the vertices of ∆, the induced subcomplex of ∆ on W consists
of all simplices from ∆ which are a subset of W.

2.8.2 Transforming PL functions into pseudo-Morse functions

Assume thatK is a simplicial complex. Let fPL be a simplexwise linear function
on |K| and let f0 be its restriction to the 0-skeleton of K . The function f0
inductively gives rise to a discrete pseudo-Morse function f in the following
way. For each 0-cell α, let f (α) = f0(α). For a cell τ with dim τ > 0, let f (τ) be the
maximum value of f on any facet of τ. The function f can easily be seen to be
pseudo-Morse since it is consistent with the empty vector field V = ∅ (all cells
are critical). Equivalent constructions have been used in [42, 53, 2]. We have the
following fact:

Proposition 2.25 (Kühnel [47], Morozov [53]). Let fPL be a simplexwise linear
function on a simplicial complexK and let f0 be its restriction to the 0-skeleton ofK .
Let

F(t) = {φ ∈ K0 : f0(φ) ≤ t}.

Then the induced subcomplex of K on F(t) is homotopy equivalent to the sublevel set
{x ∈ K : fPL(x) ≤ t}.

Now observe that any level subcomplexK (t) of f coincides with the induced
subcomplex of K on the corresponding sublevel set F(t) of f0. This induced
subcomplex, in turn, is homotopy equivalent to the corresponding sublevel set
of fPL according to Proposition 2.25. This means that from a Morse-theoretic
point of view, the PL function fPL and the pseudo-Morse function f are equivalent.
We conclude:

Theorem 2.26. Let fPL be a simplexwise linear function on a simplicial complex K .
Then there is a canonical pseudo-Morse function f onK such that for every t ∈ R the
sublevel set {x ∈ K : fPL(x) ≤ t} is homotopy equivalent to the level subcomplexK (t).

2.8.3 Transforming pseudo-Morse functions into PL functions

Vice versa, we can interpret any discrete pseudo-Morse function f on a regular
CW complex K as a simplexwise linear function fsd : |sdK| → R on the
geometric realization of the derived subdivision sdK . The derived subdivision
(or barycentric subdivision) of a regular CW complex K is the order complex of
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Figure 2.3: Illustration to Theorem 2.27. The level subcomplexK (t) (left) is homotopy
equivalent to to the sublevel set {x ∈ |sdK| : fsd(x) ≤ t} (right), with t = 5. The homotopy
equivalence is shown using a sequence of simplicial collapses of the barycentric
subdivision sdK .

the face relation, i.e., the abstract simplicial complex sdK whose vertices are
the cells of K and whose simplices are the totally ordered subsets of K with
regard to the face relation. The geometric realization |sdK| is homeomorphic
toK [50]. The function fsd is assumed to linearly interpolate the values of f at
the vertices of |sdK| inside each simplex of |sd(K)|. Again, the sublevel sets
of fsd are homotopy equivalent to the corresponding level subcomplexes of f :

Theorem 2.27. Let f be a pseudo-Morse function on a simplicial complex K . Then
f induces a simplexwise linear function fsd on |sdK| such that for every t ∈ R the level
subcomplexK (t) is homotopy equivalent to the sublevel set {x ∈ |sdK| : fsd(x) ≤ t}.

Proof. Let V be a discrete gradient vector field on K that is consistent with f
and let ≺ be a total order consistent with ( f ,V). Let K(t) and K(ρ) denote the
cells of the level and order subcomplexesK (t) andK (ρ), respectively. Let ∆(U)
denote the induced subcomplex of sdK on a vertex set U ⊂ K (recall that the
cells K are the vertices of sdK ). The induced subcomplex ∆(K(t)) is easily seen
to be identical to sdK (t). Let

F(t) = {φ ∈ K : f (φ) ≤ t} ⊂ K(t).

We now show that ∆(K(t)) collapses simplicially onto ∆(F(t)). See Fig. 2.3 for an
example.

Let σ ∈ K(t) \ F(t) and let σ− denote its predecessor with respect to ≺. We write
∆(ρ) for ∆({φ ∈ K : φ ≺ ρ}). We first show that ∆(σ) collapses onto ∆(σ−). It
follows from the definition of a level subcomplex that a cell σ with f (σ) > t can
only be contained in K(t) if it is a free face of some cell τwith f (τ) ≤ t, i.e., σ has no
other cofaces than τ. Consequently, we have τ ≺ σ. For every simplex S ∈ ∆(σ)
with σ ∈ S and τ < S, the simplex T = S ∪ {τ} is also contained in ∆(σ), and S is a
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free face of T in ∆(σ). Hence, the set of all such pairs (S,T) constitutes a discrete
gradient vector field W on ∆(σ) such that exactly the simplices containing σ
(the vertex star of σ) are non-critical. This vector field W provides a simplicial
collapse of ∆(σ) onto ∆(σ−) by applying Theorem 2.14 with an arbitrary linear
extension of ≺W.

By repeatedly applying this argument, we find that ∆(K(t)) collapses onto ∆(F(t)).
This implies that the geometric realizations |∆(K(t))| and |∆(F(t))| are homotopy
equivalent.

Finally, let fsd be the simplexwise linear extension of f from the vertices
of sdK to the whole complex. Recall that |∆(F(t))| is homotopy equivalent to
the sublevel set {x ∈ |sdK| : fsd(x) ≤ t} according to Proposition 2.25. The claim
now follows. �

This equivalence allows us to translate back and forth between piecewise
linear functions and pseudo-Morse functions, and to use theorems of piecewise
linear Morse theory in the context of discrete Morse theory.

In a similar fashion, a discrete pseudo-Morse function can be constructed
from a function defined only on the set of 2-cells of a combinatorial surface
by defining f (σ) as the minimum value of all cells that contain σ as a facet.
This can be used to construct discrete pseudo-Morse functions from functions
defined on cubical grids, such as pixel images, by interpreting each pixel as a
2-cell. The resulting level subcomplexes correspond to the cubical complexes
extracted from image data as described by Kaczynski et al. [40]. Vice versa, a
pseudo-Morse function on a cubical complex can be interpreted as a function
defined on a subdivided grid. This construction has been used in the examples
in Chapter 6.

Note that starting with a PL function and constructing a pseudo-Morse
function consistent with the empty vector field implies that initially all cells
are considered critical. King et al. [42] propose to construct an initial discrete
gradient vector field with critical cells corresponding to the critical vertices (in
the PL sense, see [44, 26, 3]) of a (non-degenerate) input PL function instead.

We do not consider the problem of constructing such an initial discrete gradient
vector field separately, since it is a special case of the topological simplification
problem discussed in Theorem 4.2 with δ = 0. In this case, the problem reduces
to minimizing the number of critical points among all gradient vector fields
consistent with the input function. We discuss the simplification of a gradient
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vector field in Sections 4.2 and 5.3. As it turns out, a solution to the topological
simplification problem can be found independently of the gradient vector field
consistent with the input function. Therefore we do not require a simplified
initial gradient vector field but use the empty vector field instead.

2.9 Morse theory for general CW complexes

Forman [28] briefly discusses how to extend the results of discrete Morse theory
to general CW complexes. On a general CW complex, a discrete vector field
consist of pairs (σ, τ) such that σ is a regular facet of τ. Recall that for a regular
facet σ, the characteristic map Φτ restricts to a homeomorphism on the preimage
Φ−1
τ (σ) and the closure of Φ−1

τ (σ) is a closed ball.
As an example, consider a simple CW decomposition of the closed unit d-ball

into 3 cells ρ, σ, τ of dimension 0, (d − 1), and d, respectively. By the original
definitions of discrete Morse theory, we are not able to express the contraction
of the ball to a point using a discrete vector field: the closure of Φ−1

τ (σ) is a
(d− 1)-sphere. Nevertheless, it seems natural to allow the pair (σ, τ) in a gradient
vector field.

We extend the theory by dropping the requirement on the closure of Φ−1
τ (σ) to

be a ball:

Definition (semi-regular facet). Let σ be a facet of τ in a CW complex. If the
characteristic map Φτ of τ restricts to a homeomorphism on the preimage Φ−1

τ (σ), then
σ is a semi-regular facet of τ.

This generalization gives rise to a new definition for discrete vector fields on
CW complexes, generalizing the one considered by Forman [28].

Definition (discrete vector field). A discrete vector field V on a CW complexK is
a set of pairs of cells (σ, τ) ∈ K × K, with σ a semi-regular facet of τ, such that each cell
of K is contained in at most one pair of V.

2.9.1 A generalization of elementary collapses

As it turns out, we can carry over the central results of discrete Morse theory to
this generalized setting. The key construction is an extension of the notion of
an elementary collapse for semi-regular facets. We make use of the generalized
Schoenflies theorem:
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Theorem 2.28 (Brown [9], Morse [56]). Let h be a homeomorphic embedding of
Sd−1

× [0, 1] into Sd. Then the closure of either complementary domain of h
(
Sd−1

×
1
2

)
is a closed d-ball.

This is a higher dimensional version of the Jordan-Schoenflies theorem [11],
which asserts that any Jordan curve divides the plane into two regions homeo-
morphic to the interior and exterior of the unit circle, respectively. The require-
ment that the embedding x 7→ h(x, 1

2 ) of the sphere Sd−1 can be extended to an
embedding of the thickened sphere Sd−1

× [0, 1] is crucial; a counterexample
where this requirement is not met is given by the Alexander horned sphere [35].

Moreover, we require the following lemma, which we use for transporting a
strong deformation retraction through a characteristic map.

Lemma 2.29. Let X be a topological space, let A be a strong deformation retract of X,
and let U = X \ A. Let q : X → Y be a continuous map such that q−1 restricts to a
homeomorphism on V = q(U) and bdY V ⊂ q(A), where bdY V denotes the boundary
of V in Y. Then Y \ V is a strong deformation retract of Y.

Proof. Let Ft be a strong deformation retraction of X onto A. We show that

F̃t : x 7→

q ◦ Ft ◦ q−1(x) x ∈ V

x x < V

is a strong deformation retraction of Y onto Y \ V.
Clearly the map (y, t) 7→ F̃t(y) is continuous both on V × I and on (Y \ V) × I.

The boundary of both V × I and (Y \ V) × I is bdY V × I. Since q−1 restricts
to a homeomorphism on V = q(U), we know that q(A) ∩ q(U) = ∅ and thus
q−1
◦ q(A) = A. Moreover, since the map Ft restricts to the identity on A, we have

q ◦ Ft ◦ q−1({y}) = {y} for y ∈ q(A). In particular, q ◦ Ft ◦ q−1 restricts to the identity
on bdY V ⊂ q(A). We conclude that F̃t is continuous on both clY V and clY(Y \ V)
and thus (y, t) 7→ F̃t(y) is continuous on all of Y × I. Finally, we directly have
F̃0(y) = y, F̃1(Y) = Y \V, and F̃t(y) = y for y ∈ Y \V, so F̃t is a strong deformation
retraction of Y onto Y \ V. �

We can now combine Theorem 2.28 and Lemma 2.29 to construct a generalized
elementary collapse for semi-regular facets.

Theorem 2.30. Let K be a CW complex and let σ and τ be open cells of K such
that σ is a semi-regular facet of τ and no other cells are attached to either σ or τ.
Let K̃ = K \ (σ ∪ τ). Then K̃ is a strong deformation retract of K .
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Proof. Let d = dim σ, let Φσ be the characteristic map of σ, and let B = Φσ(Bd
r ),

where Bd
r = {x ∈ Rd : ‖x‖ < r} for some 0 < r < 1. Let Ad

a,b = {x ∈ Rd : a ≤ ‖x‖ ≤ b}
denote the d-dimensional annulus with radii a and b. Choose ε such that
0 < r − ε < r + ε < 1. The cylinder Sd−1

× [0, 1] is homeomorphic to the annulus
Ad

r−ε,r+ε by the mapα : (x, λ) 7→ (r+(2λ−1) ε) x. Moreover, it is homeomorphically
embedded into Sd by h = Φ−1

τ ◦Φσ ◦ α, since by assumption both the restrictions
of Φ−1

σ and Φ−1
τ to σ are homeomorphisms. We have h(x, 1

2 ) = Φ−1
τ (∂B). Hence,

by Theorem 2.28, both Φ−1
τ (B) and Sd

\ Φ−1
τ (B) are closed d-balls. This implies

that Sd
\Φ−1

τ (B) is a strong deformation retract of the closed (d + 1)-ball Bd+1.
We have

Φτ(Sd
\Φ−1

τ (B)) = ∂τ \ B = τ̄ \ (B ∪ τ).

Moreover, Φ−1
τ restricts to a homeomorphism on B ∪ τ. Since no other cells are

attached to either σ and τ, both B and τ are open inK , and we have

bdK (B ∪ τ) = τ̄ \ intK (B ∪ τ) = τ̄ \ (B ∪ τ).

Hence, by Lemma 2.29 with X = Bd+1, A = Sd
\ Φ−1

τ (B), Y = K , q = Φτ, and
V = B ∪ τ, we find thatK \ (B ∪ τ) is a strong deformation retract ofK .

The sphere Sd−1 is a strong deformation retract of the annulus Ad
r,1. Note that

Φσ(Sd−1) = ∂σ. Moreover, Φ−1
σ restricts to a homeomorphism on σ \ B. Since τ is

the only cell attached to σ, the set σ \ B is open inK \ (B ∪ τ) and we have

bdK\(B∪τ)(σ \ B) = (σ̄ \ B) \ intK\(B∪τ)(σ \ B) = (σ̄ \ B) \ (σ \ B) = ∂σ.

Thus, again by Lemma 2.29 with X = Ad
r,1, A = Sd−1, Y = K \ (B∪ τ), q = Φσ, and

V = σ \ B, we find thatK \ (σ ∪ τ) is a strong deformation retract ofK \ (B ∪ τ).
Together we have thatK \ (σ ∪ τ) is a strong deformation retract ofK . �

2.9.2 The main results of Morse theory for general CW complexes

Theorem 2.30 enables us to generalize the main results of discrete Morse theory
to discrete vector fields with semi-regular facet pairs. The proofs are nearly
identical, using the deformation retraction of Theorem 2.30 wherever elementary
collapses are originally used.

First we recall the following basic fact about attaching cells:
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Lemma 2.31 (Milnor [51], Lemma 3.7). Let X be a topological space and let ϕ :
Sd−1

→ X be an attaching map. Any homotopy equivalence f : X → Y extends to a
homotopy equivalence

F : X
⋃
ϕ

Bd → Y
⋃
f◦ϕ

Bd

defined by

x 7→

 f (x) x ∈ X

x x ∈ Bd.

Theorem 2.32 (cf. Theorem 2.14). Let V be a gradient vector field on a CW complex
K and let ≺ be a linear extension of ≺V. If ρ and ψ are two cells such that ρ ≺ ψ and
there is no critical cell φ with respect to V such that ρ ≺ φ � ψ, thenK (ρ) is a strong
deformation retract of K (ψ).

Proof. We show that if φ is a non-critical cell thenK (φ−) is a strong deformation
retract of K(φ), where φ− is the predecessor of φ in ≺. The statement then
follows by induction.

First assume that (σ, φ) ∈ V for some σ. Then K(φ) = K(φ−). Now assume
that (φ, τ) ∈ V for some τ. ThenK (φ) = K (φ−)∪ (φ∪ τ). By Theorem 2.30K (φ−)
is a strong deformation retract ofK (φ). �

Theorem 2.33 (cf. Theorem 2.15). Let V be a gradient vector field on a CW complex
K and let ≺ be a linear extension of ≺V. Suppose that ρ and ψ are two cells such that
ρ ≺ ψ and there is exactly one critical cell φ of index d with respect to V such that

ρ ≺ φ � ψ.

ThenK (ψ) is homotopy equivalent to

K (ρ)
⋃
Φ

Bd,

with Φ : Sd−1
→ K (ρ).

Proof. From Theorem 2.32, we have thatK (ρ) is a strong deformation retract of
K (φ−), where φ− is the predecessor of φ in ≺. By definition,K (φ) is obtained by
attaching a d-cell to K(φ−). By Lemma 2.31, K(φ) is homotopy equivalent to
K (ρ) with a d-cell attached. Again by Theorem 2.32,K (φ) is a strong deformation
retract ofK (ψ). We conclude thatK (ψ) is homotopy equivalent toK (ρ) with a
d-cell attached. �
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Corollary 2.34 (cf. Theorem 2.5). Let V be a discrete gradient vector field on a CW
complexK . ThenK is homotopy equivalent to a CW complexMV with as many d-cells
as there are critical cells of V of dimension d.

Theorem 2.35 (cf. Theorem 2.1). Let φ and ρ be two critical cells of a gradient vector
field V with exactly one V-path Γ = (σ0, τ0, σ1, . . . , τr−1, σr) from ∂ρ to φ. Assume that
for every 0 ≤ i ≤ r, σi is a semi-regular facet of τi−1, where τ−1 = ρ. Then there is a
gradient vector field Ṽ obtained by reversing V along the path Γ. The critical cells of Ṽ
are exactly the critical cells of V apart from {φ, ρ}. Moreover, V = Ṽ except along the
path Γ.

2.9.3 Partial collapses

Our generalized definition of gradient vector fields can be used to remove
an unfortunate restriction in the original formulation of discrete Morse the-
ory: In general, the original theory does not allow for partitioning a gradient
vector field V into disjoint subsets U,W and performing the induced partial
collapsesK ↘MU ↘MV sequentially.

In order to overcome this restriction, we need the following lemma. Let ≺ be
a linear extension of ≺V. Consider the induced filtration by order subcomplexes.
By repeatedly applying Lemma 2.31 and Theorem 2.30, we obtain an explicit
expression for the homotopy equivalence of Corollary 2.34:

Corollary 2.36. Let V be a discrete gradient vector field on a CW complexK . ThenK
is homotopy equivalent toMV via

hV : x 7→

Φρ̃ ◦Φ−1
ρ (x) x ∈ ρ, ρ ∈ Cr(V)

hV ◦ cσ,τ(x) x ∈ σ ∪ τ, (σ, τ) ∈ V,

where cσ,τ : K(τ) → K(τ−) = K(τ) \ (σ ∪ τ) denotes the homotopy equivalence of
the generalized elementary collapse associated with (σ, τ), and ρ̃ is the cell of MV

corresponding to a critical cell ρ of V. In particular, the homotopy equivalence hV

restricts to a homeomorphism on any critical cell ρ of V.

Note that the definition of the map hV is recursive. The recursion terminates
since a point x ∈ σ ∪ τ for (σ, τ) ∈ V is sent to a point in K(τ−) by cσ,τ, i.e., to
some cell φ with φ ≺ τ, and there are only a finite number of cells.

As a consequence, we obtain the following theorem:
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Theorem 2.37. Let V be a gradient vector field on a CW complexK and W ⊂ V. Then
V \W induces a gradient vector field onMW.

Proof. Let (φ, ρ) ∈ V \W. Since φ is a semi-regular facet of ρ, the characteristic
map Φρ of ρ restricts to a homeomorphism on the preimage Φ−1

ρ (φ). Moreover, φ
is a critical cell of W, and so by Corollary 2.36 hV restricts to a homeomorphism
φ→ φ̃. Thus Φρ̃ = hV ◦Φρ restricts to a homeomorphism on Φ−1

ρ (φ) = Φ−1
ρ̃ (φ̃),

and so φ̃ is a semi-regular facet of ρ̃. �

Let V = U tW and let W̃ be the vector field induced by W onMU . Then we
have hV = hW̃ ◦ hU, up to a homeomorphism of the respective Morse complexes.
In other words, the collapseK ↘MV induced by V can be split into a sequence
of partial collapsesK ↘MU ↘MV.
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Chapter 3

Persistent homology of discrete Morse
functions

Persistent homology aims at investigating the change of the homology groups in
a filtration of a topological space (a nested sequence of subspaces). In particular,
it determines how long changes in homology last before they are reverted again.

The theory was introduced in the seminal paper of Edelsbrunner et al. [23],
which also provides the nomenclature used in this thesis. Some of the ideas
already appeared in two largely overlooked articles of Morse [54, 55], with the
goal of extending the results of Morse theory to arbitrary metric spaces and
functions that are not as well-behaved as Morse functions. The basic concept has
also been discovered independently several times in the context of topological
data analysis [31, 59] and as a way of describing the size of mountains [32]. The
theory has been significantly extended and continues to attract much interest
[67, 18, 13].

The concepts of persistent homology can naturally be applied to nested
sequences of order subcomplexes or level subcomplexes of discrete pseudo-
Morse functions. The following definitions are concerned with cellular homology
with coefficients in an arbitrary field F, unless explicitly stated otherwise. We
write Hd(K) as a shorthand for the dth homology group Hd(K ; F) of K and
H∗(K ) =

⊕
d Hd(K ). For definitions see Section 2.3.1 or [50, 35].

Convention and notation Throughout Chapter 3 we consider a pseudo-Morse
function f consistent with a gradient vector field V on a regular CW complexK
and a strict total order ≺ consistent with ( f ,V).
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3.1 Birth, death, and persistence pairs

As a consequence of Theorem 2.14, the homology groups of order subcomplexes
change only at critical cells of V. Let σ and τ be critical cells such that σ ≺ τ and
consider the inclusion map

i σ, τ : K (σ) ↪→ K (τ)

between the order subcomplexes with regard to the total order ≺. This map
induces a homomorphism

i σ, τ∗ : H∗(K (σ))→ H∗(K (τ))

between homology groups. The subgroup im(i σ, τ∗ ) ⊂ H∗(K(τ)) is called a
persistent homology group. For a particular dimension d, the rank of the persistent
homology group rank im(i σ, τ∗ ) is called the dth persistent Betti number of K(σ)
inK (τ) (or, in the language of Morse [55], the dth connectivity ofK (σ) onK (τ)).

Now consider the critical cells {ρ1, . . . , ρN} of V, ordered such thatρi ≺ ρi+1, and
the corresponding filtration of order subcomplexesK (ρi) ⊂ K (ρi+1). We compare
the corresponding homology groups using the homomorphisms induced by
inclusion. The set of critical cells decomposes into two disjoint subsets: positive
and negative cells. A positive cell creates homology classes and a negative cell
merges pairs of homology classes. More precisely, for every cell ρ let ρ− denote
its predecessor with regard to ≺. A critical d-cell ρ is called positive if it increases
the dth Betti number βd = rank Hd, i.e., βd(K(ρ)) = βd(K(ρ−)) + 1, and negative
if it decreases the (d − 1)th Betti number i.e., βd−1(K(ρ)) = βd−1(K(ρ−)) − 1. It
follows from the Morse inequalities (Corollary 2.16) that every critical cell is
indeed either positive or negative.

We further require the notions of birth, death, and persistence pairs for Morse
functions, following the definitions of [23]. Intuitively, a persistence pair (σ, τ)
is a pair of a positive cell σ and a negative cell τ that represents the life cycle
for a class born at σ and merged into an older class at τ. To make this precise,
consider the sequence

H∗(K (σ−))→ H∗(K (σ))→ H∗(K (τ−))→ H∗(K (τ))

of homomorphisms iφ, ρ∗ : H∗(K (φ))→ H∗(K (ρ)) induced by the inclusion maps
iφ, ρ : K(φ) → K(ρ) for each φ ≺ ρ. Here we allow for the cases σ = τ− and
K (σ−) = ∅ (if σ is the first cell in ≺).
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Definition (birth, death, persistence pair [23]). We say that a class h ∈ H∗(K (σ)) is
born at (or created by) a positive cell σ if

h < im(i σ−, σ∗ ).

Moreover, we say that a class h ∈ H∗(K(σ)) that is born at σ dies entering (or gets
merged into h̃ by) a negative cell τ if there is a class h̃ ∈ H∗(K (σ−)) such that

i σ, τ−∗ (h) < im(i σ−, τ−∗ ) but i σ, τ∗ (h) = i σ−, τ∗ (h̃) ∈ im(i σ−, τ∗ ).

If there exists a class h that is born at σ and dies entering τ, then (σ, τ) is a persistence
pair. The difference f (τ) − f (σ) is called the persistence of (σ, τ). If a positive cell σ is
not paired with any negative cell τ, then it is called essential.

The merging of h and h̃ is not symmetric, because the younger class h (with
respect to ≺) gets merged into the older class h̃. The classes born at essential
cells generate the homology ofK . Note that in this definition we always have
dim τ = dim σ + 1. Thus the number of critical d-cells of K equals the Betti
number βd (a topological invariant ofK ) plus the number of persistence pairs of
dimensions (d − 1, d) and (d, d + 1). On combinatorial surfaces, the only possible
cases for (dim σ,dim τ) are (0, 1) and (1, 2).

In the language of Morse [55], a positive cell (understood as a cycle relative to
K(σ−)) is called a linkable cap, while a negative cell is called a non-linkable cap,
and the persistence is called the cap span.

3.1.1 Choice of coefficients

If K is an orientable combinatorial surface, then Hd(K ;Z) is free abelian and
by the universal coefficient theorem for homology [35, Theorem 3A.3] we have
Hd(K ; F) = Hd(K ;Z)⊗F = Fβd(K ;Z), where⊗denotes the tensor product of abelian
groups. Hence, in this case the definitions are independent of the particular
choice of F. The same holds for connected non-orientable combinatorial surfaces
with nonempty boundary.Even if K is a closed non-orientable combinatorial
surface with boundary, the definitions coincide in almost all cases. The only
difference appears in the pairing of the last 2-cell τ in each non-orientable
connected component: τ is a positive cell if and only if F = Z2.
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3.1.2 Persistence for filtrations

We point out that the previous definitions are straightforward adaptions of the
definitions for filtrations of simplicial complexes and general chain complexes
[23, 67]. In particular, a simplexwise filtration of a finite simplicial complex
∆ (a nested sequence of subcomplexes ∅ = ∆0 ⊂ ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆n = ∆

with ∆i \∆i−1 = {σi}, where σi is a simplex) directly gives rise to a discrete Morse
function σi 7→ i, whose level subcomplexes are the subcomplexes of the filtration.
This function has an empty gradient vector field, i.e., all cells are critical. More
generally, an arbitrary (not necessarily simplex-wise) filtration with ∆i \∆i−1 = Si

gives rise to a discrete pseudo-Morse function σi 7→ i⇔ σi ∈ Si.

The definition of a persistence pair by Cohen-Steiner et al. [18] does not
assume a cell-by-cell filtration. As a consequence, persistence pairs can only
be identified as pairs of critical values, not of critical cells. For our purposes,
it is however crucial to identify the birth and death of homology classes with
particular cells, not only with certain subcomplexes in the filtration. The original
definition [23] considered a simplex-wise filtration as described above.

3.1.3 Gradient vector fields as zero-persistence pairs

Note that depending on V there might be persistence pairs with persistence 0.
In particular, if f is a flat pseudo-Morse function, then the pairs in V can actually
be interpreted as persistence pairs with persistence 0. To do so, we chose the
total order ≺ to be consistent not with V, but instead with the empty vector
field ∅; this is possible since f is by definition also consistent with ∅. We can now
choose ≺ such that the pairs in V are consecutive. Then these pairs are clearly
persistence pairs, called local persistence pairs in [2], and have zero persistence
with regard to f by the definition of a flat Morse function.

3.2 Duality and persistence

For any closed combinatorial d-manifoldK , there is an associated dual complexK ∗,
a combinatorial manifold homeomorphic toK whose i-cells correspond to (d− i)-
cells of K [35, 10]. A discrete pseudo-Morse function f on K gives rise to a

44



3.3 Stability of persistence diagrams

discrete pseudo-Morse function f ∗ on K∗ via σ∗ 7→ − f (σ) [28]. If V is consistent
with f , then V∗ = {(τ∗, σ∗) : (σ, τ) ∈ V} is consistent with f ∗. As a consequence,

Γ = (σ0, τ0, σ1, . . . , τr−1, σr)

is a V-path from ∂τ to σ = σr if and only if

Γ∗ = (τ∗r−1, σ
∗

r−1, τ
∗

r−2, . . . , σ
∗

0, τ
∗)

is a V∗-path from ∂σ∗ to τ∗.
Moreover, the persistence pairs of dimension (d− 1, d) forK correspond to the

persistence pairs of dimension (0, 1) for the dual complex K ∗ (with τ∗ ≺ σ∗ ⇔
σ ≺ τ) when using Z2 coefficients or ifK is orientable [19, 2, 22].

The homology groups H0(K(ρi)) (generated by the connected components
of K(ρi)), and hence the persistence pairs of dimension (0, 1), are determined
solely by the 1-skeleton ofK , also called the (primal) graph ofK . Consequently,
the persistence pairs of dimension (d − 1, d) are determined by the 1-skeleton
ofK ∗, called the dual graph. In particular, this means that all persistence pairs on
a surface can be determined in terms of Morse functions on graphs. Note that
both the primal and the dual graph can contain multiple edges.

3.2.1 Surfaces with boundary

In order to treat surfaces with boundary, we employ the canonical construction
of attaching an additional 2-cell (with function value ∞) to each boundary
component. In this way we obtain a closed surface having the same sequence of
order subcomplexes (up to the additional cells) and hence the same persistence
pairs as the original surface. The corresponding dual graph contains an addi-
tional vertex (with value −∞) for each boundary component. Moreover, if σ is a
boundary 1-cell and τ the single 2-cell attached to σ, then the edge σ∗ of the dual
graph connects the additional vertex for the boundary component of σ to the
vertex τ∗.

3.3 Stability of persistence diagrams

Cohen-Steiner et al. [18] studied properties of persistence diagrams, which are a
representation of the value pairs ( f (σ), f (τ)) corresponding to the persistence
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pairs (σ, τ) of a function f . We give the according definition for pseudo-Morse
functions. Here we use R = R ∪ {−∞,∞}.

Definition (Persistence diagram). The persistence diagram D( f ) of a pseudo-Morse

function f is the multiset on ⊂ R
2

containing one instance of ( f (σ), f (τ)) for each
persistence pair (σ, τ) of f , one instance of ( f (σ),∞) for each essential cell σ, and each
point on the diagonal with countably infinite multiplicity.

A multiset on a set S is a tuple (S,m), where the multiplicity m is a function
from S to some set of cardinal numbers (see [8] for a survey on multiset theory).

Although the definition of persistence pairs depends on the choice of a total
order, the persistence diagram is invariant of this choice and is therefore a
property of the pseudo-Morse function alone:

Theorem 3.1. The persistence diagram of a discrete pseudo-Morse function f is well-
defined; in particular, it is independent of the gradient vector field V consistent with f
and of the total order ≺ consistent with ( f ,V).

Proof. Assume that there are k positive d-cells σi with non-zero persistence
and the same function value f (σi) = s. Let s− = max{ f (φ) : φ ∈ K, f (φ) < s}.
According to the definition of a positive cell, we have

βd(K (s)) = βd(K (s−)) + k.

The Betti numbers are however independent of ≺, and thus there must be k
positive d-cells σi with non-zero persistence and f (σi) = s for any total order
consistent with f .

Likewise, assume that there are k persistence pairs (σi, τi) of dimension (d, d+1)
with ( f (σi), f (τi)) = (s, t). Let β s, t

d = rank im(i s, t
d ) denote the dth persistent Betti

number ofK (s) inK (t). The subgroup of Hd(K (t)) consisting of the classes born
at s has rank (β s, t

d − β
s−, t
d ). By the definition of a persistence pair, the rank of

the subgroup of classes born at s decreases at t by k from the next smaller value
t− = max{ f (φ) : φ ∈ K, f (φ) < t}. Hence we have

(β s, t
d − β

s−, t
d ) = (β s, t−

d − β s−, t−
d ) − k.

Again, the persistent Betti numbers are independent of the total order ≺. There-
fore the persistence diagram depends only on f . �

This result implies that properties of a pseudo-Morse function f that depend
only on the persistence diagram D( f ) are independent of the choice of the
symbolic perturbation data (V,≺).
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3.3 Stability of persistence diagrams

3.3.1 A metric on persistence diagrams

We now introduce a metric on the space of persistence diagrams considered
by Cohen-Steiner et al. [18]. Loosely speaking, the distance of two diagrams is
expressed by the maximal distance of two corresponding points.

By the individual elements of a multiset X = (S,m) we mean the disjoint union E
of m(x) instances of each x ∈ S, where m(x) is the multiplicity of x. By a slight
abuse of notation we write x ∈ X for x ∈ E.

Definition (Bottleneck distance [18]). Let X and Y be two multisets of R
2
. The

bottleneck distance is dB(X,Y) := infγ supx∈X ‖x − γ(x)‖∞, where γ ranges over all
bijections from the individual elements of X to the individual elements of Y.

Here we assume (a,∞) − (b,∞) = (a − b, 0), (a,∞) − (b, c) = (a − b,∞), and
‖(a,∞)‖∞ = ∞ for a, b, c ∈ R.

For a given complex, the bottleneck distance actually provides a metric on the
set of persistence diagrams:

Proposition 3.2. The bottleneck distance is a metric on the persistence diagrams of
discrete pseudo-Morse functions on a regular CW complex K . Thus, it induces a
pseudometric on the discrete pseudo-Morse functions onK .

Proof. We first show that the distance dB(D( f ),D(g)) for two pseudo-Morse
functions onK is always finite. To see this, note that the number of essential d-
cells equals the Betti number βd(K ). This implies that there is always a bijection γ
that maps essential to essential cells, and persistence pairs to persistence pairs
or diagonal points and vice versa. As a consequence, the distance ‖x − γ(x)‖∞ is
finite for all x ∈ D( f ), and so is the bottleneck distance of the diagrams.

Non-negativity dB(D( f ),D(g)) ≥ 0, identity of indiscernibles dB(D( f ),D(g)) =

0⇔ D( f ) = D(g) and symmetry dB(D( f ),D(g)) = dB(D(g),D( f )) are obvious.
Finally, the triangle inequality dB(D( f ),D(h)) ≤ dB(D( f ),D(g)) + dB(D(g),D(h))

holds by the following simple argument. Let γ be a bijection from D( f ) to D(g)
and let η be a bijection from D(g) to D(h). Then

sup
x∈D( f )

‖x − η ◦ γ(x)‖∞ ≤ sup
x∈D( f )

‖x − γ(x)‖∞ + ‖γ(x) − η ◦ γ(x)‖∞

≤ sup
x∈D( f )

‖x − γ(x)‖∞ + sup
x∈D( f )

‖γ(x) − η ◦ γ(x)‖∞.

47



Chapter 3 Persistent homology of discrete Morse functions

Taking the infimum over all γ, η yields the desired result since every bijection
from D( f ) to D(h) can be obtained by some η ◦ γ. The statement that ( f , g) 7→
dB(D( f ),D(g)) is a pseudometric follows immediately from the above properties,
since indiscernibility of identicals dB(D( f ),D( f )) = 0 is a direct consequent of
the identity of indiscernibles. �

3.3.2 The stability theorem

The main result of [18] is the Bottleneck Stability Theorem for persistence diagrams:
if two functions are close, then their persistence diagrams are also close. Due to
the correspondence between piecewise linear functions and discrete pseudo-
Morse functions (Section 2.8), the statement can be translated into the language
of discrete Morse theory. We present a proof along the lines of [17], where
stability is shown in a more elementary way for flat pseudo-Morse functions
constructed from piecewise linear functions as described in Section 2.8.

Theorem 3.3 (Bottleneck Stability Theorem; Cohen-Steiner et al. [18, 17]). Let f , g :
K → R be two discrete pseudo-Morse functions. Then the respective persistence
diagrams satisfy

dB(D( f ),D(g)) ≤ ‖ f − g‖∞.

Proof. Without loss of generality, assume that f and g are flat pseudo-Morse
functions. Otherwise, replace the functions with their respective canonical flat-
tenings f̄ and ḡ, which satisfy dB(D( f ),D(g)) = dB(D( f̄ ),D(ḡ)) by Proposition 2.19
and ‖ f̄ − ḡ‖∞ ≤ ‖ f − g‖∞ by Theorem 2.21.

Now consider the family ft(σ) = (1 − t) f (σ) + tg(σ), t ∈ [0, 1]. Each ft is a flat
pseudo-Morse function according to Theorem 2.23. However, the order ≺ ft
changes for varying t. According to Theorem 2.24 there exists a partition 0 =

t0 < t1 < · · · < tk = 1 of [0, 1] such that for any 0 ≤ i < k, the order ≺ ft is constant
for t ∈ (ti, ti+1). This means that we can choose a single total order ≺i on K
consistent with ft for all t ∈ [ti, ti+1]. Consequently, all such functions ft have the
same set of persistence pairs Pi, and the corresponding points in the persistence
diagrams D( ft) can be identified with each other. To simplify notation, we
represent an essential cell σ as the pair (σ,∞) ∈ Pi and apply the convention
ft(∞) = ∞. For each r, s ∈ [ti, ti+1] we can use the identification of persistence
pairs to bound the bottleneck distance from above by

dB(D( fr),D( fs)) ≤ max
(σ,τ)∈Pi

‖( fr(σ), fr(τ))−( fs(σ), fs(τ))‖∞ ≤ ‖ fr− fs‖∞ = |s−r| ‖ f−g‖∞.
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3.3 Stability of persistence diagrams

Summing over the partition and using the triangle inequality for the bottleneck
distance, we obtain the claimed inequality

dB(D( f ),D( f )) ≤
k−1∑
i=0

dB(D( fti),D( fti+1))

≤

k−1∑
i=0

(ti+1 − ti)‖ f − g‖∞ = ‖ f − g‖∞. �

Theorem 3.3 can be paraphrased as follows:

Corollary 3.4. Let FK denote the metric space of pseudo-Morse functions onK with
the metric induced by the supremum norm, and let DK denote the metric space of
persistence diagrams of FK with the bottleneck distance. Then the function FK → DK ,
f 7→ D( f ) mapping a function f to its persistence diagram is 1-Lipschitz.

A 1-Lipschitz map is also called metric or short. Metric maps are the morphisms
in the category of metric spaces [36]: compositions of metric maps are metric
again.
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Chapter 4

Optimal topological simplification of
functions on surfaces

In this chapter we solve the problem of minimizing the number of critical
points within a prescribed tolerance δ from a given pseudo-Morse function on
a combinatorial surface. The result is achieved by establishing a connection
between discrete Morse theory and persistent homology. Our method completely
removes homological noise with persistence less than 2δ, achieving the lower
bound on the number of critical points dictated by the stability theorem of
persistent homology.

Convention and notation Throughout this section we consider a given pseudo-
Morse function f consistent with a gradient vector field V on a combinatorial
surfaceK and a strict total order ≺ consistent with ( f ,V). Moreover, we assume
that eitherK is orientable or that Z2 coefficients are used in the definitions of
persistent homology.

4.1 Topological denoising by simplification

Small perturbations of a function can have a significant effect on the number
of critical points. Since the characterization of critical points is highly unstable
with respect to the supremum norm, critical points alone do not provide any
meaningful information about uncertain data.

Assume for now that we know that the noise or uncertainty in our data is
bounded by some small δ > 0 in the supremum norm. Clearly, all critical pairs
that have been created by noise can also be eliminated by a small perturbation
again. On the other hand, we consider a critical point to be relevant if it cannot
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be eliminated by a small perturbation. Therefore we consider the following
strategy to recover from noisy data a function that reflects the relevant critical
points of the original: find a function close to the noisy input with the least
number of critical points.

Problem (Topological simplification on surfaces). Given a pseudo-Morse function f
on a combinatorial surface and a real number δ ≥ 0, find a pseudo-Morse function fδ
subject to ‖ fδ − f ‖∞ ≤ δ and a gradient vector field Vδ consistent with fδ such that Vδ

has a minimum number of critical points.

Persistent homology, and in particular Theorem 3.3, provides a lower bound
on the number of persistence pairs and thus on the number of critical points
among all pseudo-Morse functions fδ with ‖ fδ − f ‖∞ ≤ δ:

Theorem 4.1 (Stability Bound). Let f be a pseudo-Morse function consistent with a
gradient vector field V. For any pseudo-Morse function fδ consistent with a gradient
vector field Vδ and satisfying ‖ fδ − f ‖∞ ≤ δ, the number of critical points of Vδ is
bounded from below by the number of those critical points of V that have persistence> 2δ.

Proof. Let D and Dδ be the persistence diagrams of f and fδ, respectively. By
Theorem 3.3 we have dB(D,Dδ) ≤ δ. This means that there is a bijection γ

between the individual elements of D and Dδ such that ‖x − γ(x)‖∞ ≤ δ for all
x ∈ D. Let

p = (p∗, p†) = ( f (σ), f (τ)) ∈ D

represent a persistence pair (σ, τ) of f with persistence p† − p∗ > 2δ. Letting
q = (q∗, q†), this implies that p∗+δ ≥ q∗ and p†−δ ≤ q†. Together with p†−p∗ > 2δ,
this yields q† − q∗ > 0. Hence there must be a persistence pair (σ̃, τ̃) of fδ
corresponding to each persistence pair (σ, τ) of f with persistence > 2δ. Since
moreover ‖p − γ(p)‖∞ < ∞ implies that γ must map the essential critical cells
of f exactly to those of fδ, the claim follows. �

The question about the tightness of this bound is a central criterion for
estimating the informative value of the Bottleneck Stability Theorem 3.3. We are
thus interested in functions that achieve the lower bound of Theorem 4.1:

Definition (Perfect δ-simplification). Let f be a pseudo-Morse function consistent
with a gradient vector field V and let δ ≥ 0. A perfect δ-simplification of f is a pseudo-
Morse function fδ consistent with a gradient vector field Vδ such that ‖ fδ − f ‖∞ ≤ δ
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and the number of critical points of Vδ equals the number of those critical points of V
that have persistence > 2δ.

In this chapter, we prove the following central result:

Theorem 4.2 (Tightness of the stability bound). Let f be a discrete pseudo-Morse
function on a combinatorial surface and let δ ≥ 0. Then there exists a perfect δ-
simplification of f . In particular, the stability bound is tight for every discrete
pseudo-Morse function f on a combinatorial surface and for every δ ≥ 0.

The proof of Theorem 4.2 is constructive and hence leads to an algorithm.
The corresponding construction is outlined in Section 4.3 and the proof is given
in Section 4.4. However, the resulting algorithm has a running time that is
quadratic in the input size. We present a more efficient algorithm in Chapter 5.
Nevertheless, our proof of correctness for this algorithm makes use of the fact
that Theorem 4.2 is already established. This is the reason why we present two
separate constructions.

A similar result holds for (non-degenerate) discrete Morse functions (in a
slightly different form, because in general only critical points with persistence <
2δ can be eliminated within a tolerance of δ in the set of discrete Morse functions):

Theorem 4.3. Given a discrete Morse function f on a surface and δ > 0, there exists a
discrete Morse function fδ such that ‖ fδ − f ‖∞ < δ and the number of critical points
of fδ equals the number of those critical points of f that have persistence ≥ 2δ.

Proof. Let p be the largest persistence value of f such that p < 2δ and let δ̃ =
p
2 .

According to Theorem 4.2 there exists a discrete pseudo-Morse function f̃
consistent with a gradient vector field Vδ such that ‖ f̃ − f ‖∞ ≤ δ̃ and the number
of critical points of Vδ equals the number of those critical points of f that have
persistence > 2δ̃. By the way δ̃ is chosen, this is the same as the number of those
critical points of f that have persistence ≥ 2δ. Now according to Theorem 2.9,
there exists a discrete Morse function fδ consistent with Vδ with ‖ fδ − f̃ ‖∞ ≤ ε
for any ε > 0. By choosing ε < δ − δ̃ we obtain

‖ fδ − f ‖∞ ≤ ‖ fδ − f̃ ‖∞ + ‖ f̃ − f ‖∞ ≤ δ̃ + ε < δ. �

4.2 The persistence hierarchy and sequential cancelations

Persistence pairs on surfaces carry a certain hierarchical structure that allows us
to establish a connection to the cancelation theorem of discrete Morse theory.
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The main result of this section is that persistence pairs on surfaces can always
be canceled sequentially if the order of cancelations respects this hierarchy. This
fact is notable because persistence only considers the homology of sublevel
sets, while a cancelation in Morse theory actually means a simplification in the
stricter sense of homotopy type.

4.2.1 A hierarchy of persistence pairs

As motivated in Section 3.2, the persistence pairs on a surface are completely
determined by the restriction of the function to the primal and dual graphs.
Consequently, we now turn our attention to the dimension 0 persistence of a
pseudo-Morse function f consistent with a gradient vector field V on a graph G
(or, equivalently, a 1-dimensional CW complex). Again, let G(σ) denote the level
subcomplex of G at σ. Consider the minimum spanning tree M(G) of G with edge
weights given by f . As noted by Attali et al. [2], the edges of M(G) correspond
exactly to the negative 1-cells of G with regard to ≺. This is evident from
the incremental construction of the minimum spanning tree in the algorithm
of Kruskal [46]: edges of the graph G are visited in increasing order of their
function value; if an edge τ closes a cycle, it is positive and both vertices of
the edge belong to the same connected component of G(τ−); otherwise, two
connected components of G(τ−) are merged and the edge is negative. Consider
a negative cell τ merging two connected components of G(τ−); both connected
components are created by their respective least 0-cell with regard to ≺. Let σ̃
be the 0-cell creating the older class and σ the 0-cell creating the younger class
(σ̃ ≺ σ). By definition, (σ, τ) is a persistence pair. Moreover, this defines a
hierarchical structure on the 0-cells: σ̃ is the parent of σ. We call this relation the
persistence hierarchy. By duality (see Section 3.2), we can define a hierarchy on
the 2-cells in the same way.

Definition (parent, child, persistence hierarchy). On a combinatorial surfaceK ,
let (σ, τ) be a persistence pair with dim σ = 0, and let [σ] ∈ H0(K (σ)) be the class created
by σ (considered as a 0-cycle). Let σ̃ be the unique cell creating the class [σ̃] ∈ H0(K (τ))
into which [σ] gets merged by τ, i.e.,

[σ̃] < im(i σ̃−, τ∗ ) and [σ̃] = i σ, τ∗ ([σ]).

Then σ̃ is called the parent of σ (in the persistence hierarchy), and σ is called the
child of σ̃. The transitive closure of the child relation is called descendant.
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τ̃τ

σ̃

σσ̂

τ̂

Figure 4.1: The persistence hierarchy. Both (σ, τ) and (σ̂, τ̂) are children of, and hence
nested in, (σ̃, τ̃). Only (σ, τ) needs to be canceled before (σ̃, τ̃) can be canceled.

Let (σ, τ) and (σ̃, τ̃) be two persistence pairs. If either dim σ = dim σ̃ = 0 and σ̃
is the parent of σ, or dim τ = dim τ̃ = 2 and τ̃∗ is the parent of τ∗ (with regard
to the persistence hierarchy on the dual complex), then we also call the pair
(σ̃, τ̃) the parent of (σ, τ) and (σ, τ) the child of (σ̃, τ̃). The following definition and
lemma justify this nomenclature:

Definition (nested persistence pairs). Let (σ, τ) and (σ̃, τ̃) be two persistence pairs.
We say that (σ, τ) is nested in (σ̃, τ̃) if σ̃ ≺ σ ≺ τ ≺ τ̃.

Lemma 4.4. Let (σ, τ) be a descendant of (σ̃, τ̃) in the persistence hierarchy. Then (σ, τ)
is nested in (σ̃, τ̃).

Proof. Without loss of generality, assume dim σ = 0; otherwise, by duality, the
argument can be applied to (τ∗, σ∗) instead of (σ, τ).

By definition of the persistence hierarchy, [σ] gets merged into the class [σ̃] ∈
H0(K(τ)) created by σ̃. This implies that σ̃ ≺ σ. It also implies that the class
created by σ̃ has not been merged by any cell ofK (τ), hence τ ≺ τ̃. �

4.2.2 Persistence cancelation sequences

We now turn our attention to the sequential cancelation of persistence pairs.
Note that the cancelation theorem (Theorem 2.1) applies to vector fields, which
only provide a partial order on the cells, while the notion of persistence is based
on a total order. After canceling a persistence pair, the new vector field is no
longer consistent with the initial total order. It is important to keep in mind
that we only talk about persistence pairs of the initial total order ≺, which is
consistent with ( f ,V); we do not consider a new total order after applying a
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cancelation (which would complicate things considerably). Applying several
cancelations results in a sequence of simplified vector fields:

Definition (persistence cancelation sequence). A persistence cancelation se-
quence is a sequence of gradient vector fields (V0,V1, . . . ,Vn) such that each Vi is
constructed from Vi−1 by canceling a persistence pair (σi, τi) using Theorem 2.1.

A persistence cancelation sequence is called nested if in this construction every pair
(σi, τi) nested in another pair (σ j, τ j) is canceled first, i.e.,

σ j ≺ σi ≺ τi ≺ τ j ⇒ i < j.

A persistence cancelation sequence is called a δ-persistence cancelation sequence
if exactly those persistence pairs are canceled that have persistence ≤ δ.

We can now state the key result connecting persistence pairs to cancelation
pairs: A persistence pair (σ, τ) can be canceled from a vector field as soon as all
descendants have been canceled.

Lemma 4.5. On a combinatorial surface K , let (V0,V1, . . . ,Vi) be a persistence
cancelation sequence. Assume that a persistence pair (σ, τ) has not been canceled in
the sequence but that every descendant of (σ, τ) has been canceled. Then there exists a
Vi-path from ∂τ to σ, and this path is unique.

Assume further that every persistence pair nested in (σ, τ) has been canceled. If there
is a unique Vi-path from ∂τ to another cell σ̃ , σ that is critical for Vi, then we have
σ � σ̃.

Fig. 4.1 shows that the condition is sufficient but not necessary. The proof of
Lemma 4.5 relies on a few auxiliary lemmas and is given after Lemma 4.8. The
existence part of the statement is also shown in [24] for a particular cancelation
sequence.

Lemma 4.6. Let (V0,V1, . . . ,Vi) be a persistence cancelation sequence and let (σ, τ) be
a persistence pair with dim σ = 0 that has not been canceled in the sequence. Let C be
the connected component of the subcomplexK (τ−) containing σ, and let C denote the
cells of C. Then every (φ, ρ) ∈ Vi with dimφ = 0 satisfies φ ∈ C⇔ ρ ∈ C.

Proof. The claim is shown by induction over i. The base case follows from
consistency of the total order ≺ with ( f ,V). Consider the cancelation of a
persistence pair (σi, τi). If dim σi , 0, the pairs in Vi of dimensions (0, 1) stay
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4.2 The persistence hierarchy

τ

σ

Figure 4.2: Example illustrating Lemma 4.6, showing the graph of a function f together
with a simplified gradient vector field Vi. Note that some arrows are pointing upward.
The highlighted cells form the connected component C of the subcomplex K(τ−)
containing σ. Every pair in Vi is either completely in C or not at all.

unchanged and the claim immediately follows from the induction hypothesis.
Now assume dim σi = 0. We show that the claim holds for every (φ, ρ) ∈ Vi \Vi−1.

The non-critical cells of the vector field Vi \ Vi−1 are τi and the cells on the
Vi−1-path (φ0, ρ0, φ1, . . . , ρr−1, φr) from φ0 ∈ ∂τi to φr = σi. By the induction
hypothesis we have φk ∈ C⇔ ρk ∈ C. Because C is a subcomplex, we also have
ρk−1 ∈ C⇒ φk ∈ C (with ρ−1 = τi). Moreover, if σi ∈ C, then σi is a descendant
of σ and by Lemma 4.4 (σi, τi) is nested in (σ, τ), implying that σi and τi are in
the same connected component ofK (τ−). Hence we also have σi ∈ C⇒ τi ∈ C.
Consequently, either all or none of the non-critical cells of Vi \Vi−1 are contained
in C and the claim immediately follows. �

We also require the notion of the restriction of a vector field to a subcomplex:

Definition (restriction of a vector field to a subcomplex). Let V be a discrete vector
field onK and let K̃ be a subcomplex of K with cells K̃. The restriction of V to K̃ is
Ṽ = V ∩

(
K̃ × K̃

)
, i.e., the pairs of cells in V that are both in K̃.

Note that new critical cells may arise when restricting a vector field to a
subcomplex:

Lemma 4.7. Let Ṽ be the restriction of a discrete vector field V onK to a subcomplex K̃ .
The critical d-cells of Ṽ are exactly the critical d-cells of V that are contained in K̃ if
and only if each pair (σ, τ) ∈ V with dim σ = d satisfies σ ∈ K̃⇔ τ ∈ K̃.

Moreover, we use the following fact:
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Chapter 4 Optimal topological simplification of functions on surfaces

Lemma 4.8. Let V be a discrete gradient vector field V on K with only one critical
0-cell σ. Then there is a V-path from every 0-cell σ̃ to σ.

Proof. Each V-path of dimension 0 ending at a non-critical cell σ̃ , σ, (σ̃, τ̃) ∈ V,
can be extended by τ̃ and the unique 0-cell σ̂ ∈ ∂τ̃, σ̂ , σ̃. Since K is finite and V
does not contain nontrivial closed paths, the extension will eventually end up
at σ. �

Proof of Lemma 4.5. Without loss of generality, assume dim σ = 0; otherwise, by
duality, the argument can be applied to (τ∗, σ∗) instead of (σ, τ).

Let C be the connected component of the subcomplexK (τ−) corresponding to
the homology class [σ] ∈ H0(K (τ−)) created by σ. Apart from σ, every 0-cell in C
that is critical for V is a descendant of σ. By assumption, all descendants of σ
have been canceled, and hence σ is the only 0-cell in C that is critical for Vi. By
Lemmas 4.6 and 4.7, σ is also the only critical 0-cell in the restriction of Vi to C.
By Lemma 4.8, there is a Vi-path to σ from every 0-cell in C, in particular from
exactly one of the two 0-cells in ∂τ, since ∂τ ∩ C contains exactly one cell. By
Lemma 2.3, this path is unique.

Now assume that every persistence pair nested in (σ, τ) has been canceled
and there is a unique Vi-path from ∂τ to another cell σ̃ , σ that is critical
for Vi. By assumption, σ̃ is not a descendant of σ, meaning that σ̃ and σ are
in different connected components of K(τ−). Assume that σ ≺ σ̃. Then by
assumption there is no persistence pair (σ̃, τ̃) nested in (σ, τ). This implies that
the component C̃ , C ofK (τ−) containing σ̃ is created by σ̃. But by the definition
of a persistence pair, τmergesC into a component created before σ, contradicting
the assumption σ ≺ σ̃. Thus we conclude that σ � σ̃. �

As a consequence of Lemma 4.5, we can construct a sequence of cancelations
that eliminate all persistence pairs below a certain persistence threshold:

Theorem 4.9. Let f be a pseudo-Morse function on a combinatorial surface K and
let δ ≥ 0. Then there exists a nested δ-persistence cancelation sequence.

Proof. If the subsequence (V0,V1, . . . ,Vi−1) satisfies the assumptions of Lemma 4.5
for some persistence pair (σi, τi), we can use Theorem 2.1 to construct Vi from
Vi−1. A canonical choice satisfying these assumptions is given by canceling the
persistence pairs (σi, τi) with persistence ≤ δ according to the order ≺ on the
negative cells, i.e., τi ≺ τi+1 for every i. The claim then follows by induction. �
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4.3 The plateau function

Note that hierarchical cancelation of persistence pairs has also been considered
in [24] in the context of Morse–Smale complexes on surfaces. While the existence
of a gradient path between a persistence pair is already asserted in [24], the
authors do not claim that every persistence pair can actually be canceled.
Lemma 4.5 can also be applied in this context to show the uniqueness of
the gradient path. As a consequence, we can obtain an analogous result to
Theorem 4.9, stating that a hierarchical persistence simplification of Morse–
Smale complexes is always possible on surfaces. The statement no longer holds
in higher dimensions or for non-manifold 2-complexes, see Section 6.7.

4.2.3 Morse subcomplexes arising from a cancelation sequence

The vector fields Vi constructed in the proof of Theorem 4.9 by canceling pairs
in the order of their negative cells have interesting properties. Consider the
subcomplex K(τi) and the Morse complex defined by restricting Vi to this
subcomplex; let us call this Morse complexMi. Recall thatMi is homotopy
equivalent toK (τi) by Theorem 2.5. We can observe thatMi has a particularly
simple structure: every negative cell τi is canceled by reversing the vector field
and becomes a non-critical cell in Vi and all subsequent vector fields. Therefore,
the cells of Mi are in one-to-one correspondence to the positive critical cells
ofK (τi). As a consequence, the homology groups H∗(Mi) are isomorphic to the
cellular chain groups ofMi: since all cells are positive as stated above, each cell
increases the rank of a homology group by one. This in turn implies that the
boundary group B∗(Mi) must be trivial. In other words, the boundary map ∂̃
of the cellular chain complex ofMi is 0. The Morse complexMi is therefore
the simplest CW complex (in terms of number of cells) having the homotopy
type ofK (τi), and Vi is the gradient vector field onK (τi) with the least number
of critical points. Every connected component ofMi must consist of either a
single 0-cell, a wedge of circles (i.e., a set of 1-cells attached to a single 0-cell), or
a closed surface consisting of a single 2-cell attached to a wedge of circles.

4.3 The plateau function

Assume now that we are given a nested 2δ-persistence cancelation sequence
(V0, . . . ,Vn) with V0 = V. For every Vi in the cancelation sequence, we induc-
tively define a pseudo-Morse function fi consistent with Vi, see Fig. 4.3 for an
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τ

σ

τ

σ

(a) (b)

τ

σ

τ

σ

(c) (d)

(e) (f)

Figure 4.3: Cancelation of critical points. Starting with the graph of a function fi−1

together with gradient vector field Vi−1 (a), the values of the descending set (b) of
the upper critical point τ and of the ascending set (c) of the lower critical point σ are
cut off at the average value mi of the two critical points, creating a plateau (d). The
old gradient directions are still consistent with the new function. The gradient vector
field can now be reversed along the path between the critical points, eliminating the
pair (e). The resulting function has a plateau, but can be perturbed slightly to become
non-degenerate (f).
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4.3 The plateau function

illustration. In Section 4.4, we show that ‖ fi − f ‖∞ ≤ δ and thus fn is a perfect
δ-simplification. Throughout this chapter, let ≺ j := ≺V j denote the partial order
induced by V j.

By assumption we start with a pseudo-Morse function f0 := f consistent
with V0 := V. Suppose that we have constructed a pseudo-Morse function fi−1

consistent with Vi−1. Let (σ, τ) be the persistence pair that is canceled in the
construction of Vi from Vi−1 using Theorem 2.1. We define the corresponding
plateau function fi as follows:

mi =
f (σ) + f (τ)

2
and fi(ρ) :=


mi

if ρ �i−1 σ and fi−1(ρ) < mi

or ρ �i−1 τ and fi−1(ρ) > mi,

fi−1(ρ) otherwise.

This means that the ascending set {ρ : ρ �i−1 σ} of σwith respect to Vi−1 is raised
to at least the value mi, and analogously the descending set {ρ : ρ �i−1 τ} of τ is
lowered. Hence, fi creates a local plateau at the value mi. The following lemma is
a consequence of the way we construct fi from fi−1 and the fact that fi is constant
along the path from ∂τ to σ.

Lemma 4.10. The plateau function fi is consistent with both Vi−1 and Vi.

Proof. We show the claim by induction; the base case i = 0 is satisfied by
assumption. It suffices to show that fi is consistent with Vi−1: consistency
with Vi then follows from the facts that Vi differs from Vi−1 only along the path
from ∂τ to σ and that fi has constant value mi along this path, since it is contained
in both the ascending set of σ and the descending set of τ. Let φ and ψ be two
cells with φ←i−1 ψ. To show consistency of fi with Vi−1, it suffices to show that
fi(φ) ≤ fi(ψ).

If fi(φ) = fi−1(φ) and fi(ψ) = fi−1(ψ), then the claim follows by the induction
hypothesis. Moreover, if fi(φ) , fi−1(φ) and fi(ψ) , fi−1(ψ), then from the
definition of fi we have fi(φ) = fi(ψ) = mi and the claim holds trivially. We
now assume fi−1(φ) , fi(φ) and fi−1(ψ) = fi(ψ); for the other case the proof is
analogous. If fi(φ) < fi−1(φ), the claim follows by the induction hypothesis.
Hence assume fi(φ) > fi−1(φ). Let (σ, τ) be the pair that is canceled when
constructing Vi from Vi−1. We can deduce from the definition of fi that φ �i−1 σ

and hence also ψ �i−1 σ. It also follows from the definition that fi(φ) = mi and
fi(ψ) ≥ mi, and thus fi(φ) ≤ fi(ψ). We conclude that fi is consistent with Vi−1. �
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Chapter 4 Optimal topological simplification of functions on surfaces

Note that the construction of the plateau function does not depend on the
properties of combinatorial surfaces and can be applied to CW complexes of
arbitrary dimensions. Moreover, it is not restricted to the cancelation of persistence
pairs: whenever we have a pseudo-Morse function f consistent with a gradient
vector field V and construct Ṽ from V by a cancelation using Theorem 2.1, we
can obtain a plateau function f̃ that is consistent with both V and Ṽ.

4.4 Checking the constraint

It remains to show that the plateau construction above produces admissible func-
tions for the topological simplification problem, i.e., that each of the functions fi
satisfies the δ-constraint.

Lemma 4.11. Each plateau function fi satisfies ‖ fi − f ‖∞ ≤ δ.

Proof. We show the statement by induction. The base case is trivial since f0 = f .
Let (σ, τ) be the persistence pair that is canceled when constructing Vi from

Vi−1. We show that the δ-constraint is neither violated by increasing the value of
any cell ρ in the ascending set of σ in Vi−1, nor by decreasing the value of any
cell in the descending set of τ. Since fi(ρ) = fi−1(ρ) for all cells ρ not treated in
these two cases, the claim follows.

We first show | fi(ρ) − f (ρ)| ≤ δ for any cell ρ �i−1 σ with fi−1(ρ) < mi. By
induction hypothesis we have a lower bound fi−1(ρ) ≥ f (ρ) − δ. By construction
of fi, the value of ρ is increased: fi(ρ) = mi > fi−1(ρ). Therefore, the lower bound
remains valid after step i:

fi(ρ) > fi−1(ρ) ≥ f (ρ) − δ.

To show the upper bound fi(ρ) ≤ f (ρ) + δ, we first use f (τ) − f (σ) ≤ 2δ to obtain

fi(ρ) = mi =
f (σ) + f (τ)

2
≤

f (σ) + ( f (σ) + 2δ)
2

= f (σ) + δ.

This is almost the desired inequality, except that the right hand side contains f (σ)
instead of f (ρ). To finish the proof, it therefore suffices to show that f (σ) ≤ f (ρ).
This, in turn, is a consequence of the facts that, according to the upcoming
Lemma 4.12, σ ≺i−1 ρ implies σ ≺ ρ, and that ≺ is consistent with ( f ,V).

It remains to show that | fi(ρ) − f (ρ)| ≤ δ for any cell ρ �i−1 τ with fi−1(ρ) > mi.
The proof of this statement is analogous to the above. �
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μ
ν

ψ

φ φ

ψ

Figure 4.4: Example illustrating Lemma 4.13. Left: gradient vector field W (before
reversing the path from ∂ν to µ). Right: gradient vector field W̃ (after path reversal).
Note that we have the new relation φ ≺W̃ ψ (corresponding in this example to a W̃-path
from ψ to φ). In the example, the conclusion φ �W ν and µ �W ψ of Lemma 4.13 is
reflected by the two W-paths from ∂ν to φ and from ψ to µ, respectively.

Lemma 4.12. Let (V0, . . . ,Vn) be a nested persistence cancelation sequence and let
(σ, τ) be a persistence pair of ≺ with σ and τ critical cells of Vi. Then for any ρ ∈ K,

(a) ρ �i σ implies ρ � σ, and
(b) ρ ≺i τ implies ρ ≺ τ.

Informally, this lemma guarantees that the ascending set of a positive paired
critical cell in the simplified vector field Vi is consistent with the original function f ,
and analogously for the descending set of a negative cell. The proof crucially
depends on the special properties of gradient vector fields on combinatorial
surfaces. The statement does not hold in higher dimensions.

In order to prove Lemma 4.12, we first need to investigate how the reversal of
a gradient vector field may change the induced partial order (see Fig. 4.4 for an
example). The following statement holds for arbitrary regular CW complexes:

Lemma 4.13. Letµ, ν, φ, ψ be (not necessarily disjoint) cells of a regular CW complexK .
Let W and W̃ be two gradient vector fields such that the cells µ and ν are critical for W.
Assume further that there is a unique W-path from ∂ν to µ, and W̃ is constructed by
reversing W along this path. If φ ⊀W ψ and φ ≺W̃ ψ, then φ �W ν and µ �W ψ.

Proof. By definition of the induced partial order, φ ≺W̃ ψ implies that there
exists a path from ψ to φ in the Hasse diagram HW̃, i.e., a sequence (ρ1, . . . , ρk)
with ρ1 = ψ, ρk = φ and ρi →W̃ ρi+1 for all 1 ≤ i < k. Here either ρi is a facet of ρi+1

or ρi+1 is a facet of ρi, and we therefore also have either ρi →W ρi+1 or ρi ←W ρi+1.
But since ψ �W φ, there exists a smallest index j such that ρ j ←W ρ j+1. Since we
have ρ j →W̃ ρ j+1 and the relations←W and←W̃ differ only along the W-path
from ∂ν to µ (including ν), it follows that the cells ρ j and ρ j+1 are contained in
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Chapter 4 Optimal topological simplification of functions on surfaces

this W-path. Hence we have ρ j �W µ. Moreover, by the choice of j we have
ψ = ρ1 �W ρ j. Therefore we conclude that ψ �W µ. By an analogous argument
one also shows that φ �W ν. �

Proof of Lemma 4.12. We only present the proof of part (a), which is done again
by induction: We show that ρ �i σ implies ρ � σ for all 0 ≤ i ≤ n. Part (b) can be
shown analogously.

The base case i = 0 is trivial since � is a linear extension of �0. Assume that
ρ �i σ. If ρ �i−1 σ, the claim follows directly from the induction hypothesis.
Hence we assume that ρ �i−1 σ. Let (σ̃, τ̃) be the persistence pair that is canceled
when constructing Vi from Vi−1; this implies σ̃ ≺i−1 τ̃. From Lemma 4.13
with (W, W̃) = (Vi−1,Vi) and (µ, ν, φ, ψ) = (σ̃, τ̃, σ, ρ), we infer that σ �i−1 τ̃ and
σ̃ �i−1 ρ. This has two consequences:

(i) σ ≺i−1 τ̃ (since σ is critical for Vi while τ̃ is not), and
(ii) σ̃ � ρ (by the induction hypothesis).

To finish the proof of the claim, by (ii) it suffices to show that σ ≺ σ̃. We proceed
by case analysis on the dimensions of σ̃ and σ. Since these two cells are paired
by assumption, they have dimension less than 2.

Case 1 (dim σ = 1, dim σ̃ = 0): This case cannot occur since reversing the
Vi−1-path from the 1-cell τ̃ to the 0-cell σ̃ does not change the ascending set of
any critical 1-cell (and in particular σ), contradicting ρ �i−1 σ and ρ �i σ.

Case 2 (dim σ = 0, dim σ̃ = 1): First assume τ ≺ τ̃. If additionally σ̃ ≺ σ, this
contradicts the assumption that the cancelation sequence is nested and (σ, τ) is
canceled after (σ̃, τ̃). Therefore τ ≺ τ̃ implies σ ≺ σ̃.

Now assume τ � τ̃. This means that σ creates a connected component ofK (τ̃).
Since σ ≺i−1 τ̃ by (i), there is a path (ρ1, . . . , ρk) from ρ1 = τ̃ to ρk = σ in the Hasse
diagram HVi−1 . For each ρ j we trivially have ρ j ≺i−1 τ̃ and hence ρ j ≺ τ̃ by the
induction hypothesis, implying that ρ j ∈ K(τ̃). Moreover, since either ρ j is a
facet of ρ j+1 or ρ j+1 is a facet of ρ j, we know that all ρ j, and in particular σ and τ̃,
are in the same connected component ofK (τ̃). In an analogous way one shows
that σ̃ and τ̃, and hence σ and σ̃, are in one and the same connected component.
Since we know that σ created that component, it follows that σ ≺ σ̃.

Case 3 (dim σ = dim σ̃ ∈ {0, 1}): Since both σ and τ̃ are critical cells of Vi−1,
the relation σ ≺i−1 τ̃ from (i) above implies the existence of a Vi−1-path from ∂τ̃

to σ. We will show by contradiction that this path must be unique. To see this,
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assume that there are two Vi−1-paths from ∂τ̃ to σ. Without loss of generality,
assume that dim σ = dim σ̃ = 0 (and hence dim τ̃ = 1); otherwise, by duality the
following argument can be applied to σ∗, τ̃∗ instead of τ̃, σ. By Corollary 2.4,
each of the 0-cells in ∂τ̃must belong to exactly one of the two Vi−1-paths from ∂τ̃

to σ. Now by a similar argument as in Case 2 above, we see that each cell of
these two Vi−1-paths is contained in the same connected component of K(τ̃−)
as σ. But since τ̃ is a negative 1-cell, the two 0-cells in its boundary belong to
different connected components ofK (τ̃−), a contradiction.

Hence, there is a unique Vi−1-path from ∂τ̃ to σ. Since by assumption all
pairs nested in (σ̃, τ̃) are canceled in Vi−1, Lemma 4.5 asserts that σ̃ is the largest
cell (with regard to ≺) with a unique Vi−1-path from ∂τ̃ to σ̃. Since σ , σ̃, we
obtain σ ≺ σ̃. �

Proof of Theorem 4.2. According to Theorem 4.9, there exists a nested 2δ-persistence
cancelation sequence (V0,V1, . . . ,Vn) for the vector field V0 = V consistent with
the pseudo-Morse function f . Let fn be the plateau function corresponding to Vn.
Since fn is consistent with Vn by Lemma 4.10 and ‖ fn − f ‖∞ ≤ δ by Lemma 4.11,
it is a perfect δ-simplification. �
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Chapter 5

Efficient computation of topological
simplifications

The definition of the plateau function in Section 4.3 canonically leads to an
algorithm that runs in time quadratic in the input size. In this section we present
a method for computing a perfect δ-simplification in time dominated by the
computation of persistence pairs, i.e., O(sort(n)), where n = |K| is the number of
cells ofK . Apart from this computation, all steps of our algorithm take linear
time O(n). We stress that pre- and post-processing steps, like conversion from
and to PL functions, also require only linear time O(n).

The algorithm can be summarized as follows. First, persistence pairs are
computed using a variant of Kruskal’s algorithm for minimum spanning trees.
Next, the persistence pairs are used to construct a simplified gradient vector
field by graph traversals of both the primal and dual 1-skeleton. In a third step,
the simplified vector is used to compute the simplified function by a graph
traversal on the Hasse diagram of the partial order induced by the simplified
vector field.

Algorithm 1 Computing a perfect δ-simplification

compute persistence pairs using Algorithm 2
compute simplified gradient vector field using Algorithm 3
compute simplified function using Algorithm 4
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5.1 Defining a consistent total order

Assume we are given a pseudo-Morse function f consistent with a discrete
gradient vector field V as input. Let ≺T be a linear extension of ≺V. If f is
constructed from data given as a PL or piecewise constant function as explained
in Section 2.8, then f is a flat pseudo-Morse function, i.e., V can be assumed to
be the empty vector field (all cells are critical). In this case, ≺T can be constructed
by choosing an arbitrary total order on the d-cells for each d and defining φ ≺T ρ

if dimφ < dimρ.
We define the order ≺ by combining ≺ f and ≺T lexicographically: we have

φ ≺ ρ if and only if either

(a) f (φ) < f (ρ) or
(b) f (φ) = f (ρ) and φ ≺T ρ.

Since ≺ is equivalent to the lexicographic order on the product of the two totally
ordered sets ( f (K), <) and (K,≺T) restricted to the pairs {( f (ρ), ρ) : ρ ∈ K}, it is
also a total order. It is consistent with ( f ,V) by construction.

5.2 Computing persistence pairs

Recall that the persistence pairs of dimension (0, 1) are determined solely by
the 1-skeletonK1. Therefore, persistence pairs can be computed by applying a
variant of Kruskal’s algorithm [46] for finding a minimum spanning tree to both
the primal and the dual 1-skeleton [23, 2]. Let G = K1 be the 1-skeleton of K
and let M(G) be the minimum spanning tree of G (using the total order ≺ for
determining the edge weights, which implies uniqueness of M(G)). Kruskal’s
algorithm for computing M(G) initializes a graph T with the vertices of G, sweeps
over the edges of G in order ≺, adds to T every edge of G that does not create a
1-cycle, and returns the final graph T. Note that the set of edges of M(G) consists
of all negative 1-cells together with all 1-cells τ such that (σ, τ) ∈ V for some σ;
all other 1-cells create a cycle in T. When encountering a negative 1-cell, we
compute the persistence of the corresponding dimension (0, 1) pair by storing for
each connected component of the intermediate graph T the 0-cell that created it.
Clearly we obtain all dimension (0, 1) persistence pairs this way. Simultaneously,
we construct the subgraph Mδ(G) of M(G) by removing the negative 1-cells
with persistence > 2δ. In an analogous way, for the dual 1-skeleton G∗ we can
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compute the minimum spanning tree M(G∗) and obtain the subgraph Mδ(G∗)
together with all (1, 2) persistence pairs. The algorithm is given in pseudo-code
as Algorithm 2.

Kruskal’s algorithm has a time complexity ofO(n log n) when using comparison-
based sorting. Assuming that the function values are represented by a small
(i.e., O(log n)) word size, Attali et al. [2] point out that persistence pairs on a
graph can be computed in linear time O(n) on a RAM using radix sort together
with a linear-time algorithm for minimum spanning trees.

Algorithm 2 Constructing low-persistence pairs on a graph

function LowPersistenceEdges(graph G, δ ≥ 0)
Tδ ← (VertexSet(G), ∅)
MakeSet(VertexSet(G))
for all edges τ = (u, v) ∈ G in order ≺ do

ru ← Find(u), rv ← Find(v)
if ru , rv then

σ̃← min≺(ru, rv), σ← max≺(ru, rv)
if f (τ) − f (σ) ≤ δ then

add e to Tδ
Union(σ̃, σ)

end if
end if

end for
Rδ ← VertexSet(G)
for all vertices v ∈ G do

rv ← Find(v)
Rδ ← Rδ \ {rv}

end for
return (Tδ,Rδ)

end function

(Mδ(G),Rδ(G))← LowPersistenceEdges(G, δ)
(Mδ(G∗),Rδ(G∗))← LowPersistenceEdges(G∗, δ)
return Mδ(G),Rδ(G),Mδ(G∗),Rδ(G∗)
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5.3 Extracting the gradient vector field

We now explain how to construct a simplified gradient vector field Vδ. To this
end, we traverse (using depth-first search) each of the connected components of
the primal graph Mδ(G) (constructed in the previous section) from the 0-cell that
created the component. During this traversal, whenever we encounter an edge
(1-cell) ψ that connects a previously visited vertex (0-cell) ρ with an unvisited
vertex φ, we add (φ,ψ) to the gradient vector field Vδ. This construction takes
O(n) time.

We perform an analogous traversal for the dual graph Mδ(G∗). Again, when-
ever we encounter an edge ψ∗ that connects a visited vertex ρ∗ with an unvisited
vertex φ∗ (i.e., ψ is a 1-cell and ρ, φ are 2-cells of the original complex), we add
(ψ,φ) to the gradient vector field Vδ. Note that the final Vδ results from both
the primal and dual traversals and is a vector field on K . Pseudo-code of the
algorithm is given by Algorithm 3.

Theorem 5.1. The gradient vector field Vδ is identical to the final vector field Vn of a
2δ-persistence cancelation sequence (V0, . . . ,Vn).

Proof. First observe that if (σ, τ) ∈ Vn and dim σ = 0, then both σ and τ are
cells of Mδ(G) since all non-critical cells of Vn either are non-critical for V as
well or have persistence ≤ 2δ (with respect to f and ≺). Moreover, the 0-cells
creating a connected component of Mδ(G) are the only critical 0-cells of Vn (by
definition) and of Vδ (by construction). Since Mδ(G) is a tree, the pairs (σ, τ) ∈ Vn

with dim σ = 0 are uniquely defined by this property. Thus the dimension (0, 1)
pairs of Vn and Vδ coincide. By applying the dual argument to Mδ(G∗), the
statement follows. �

5.4 Constructing the simplified function

Finally, we construct a function fδ (different from the plateau function defined
in Section 4.3) that is consistent with the simplified gradient vector field Vδ.
Consider the Hasse diagram H := HVδ of the strict partial order ≺Vδ as described
in Section 2.5.1. We visit the vertices K of H in a linear extension of ≺Vδ . The
problem of finding a linear extension of a partial order is also called topological
sorting and can be solved using depth-first search on H [20], with each edge of H
being traversed according to its orientation. At each visited cell σ, we define
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Algorithm 3 Constructing the simplified gradient vector field

function Visit(vertex ρ, graph M, bool primal)
if ρ has not been visited yet then

mark ρ as visited
for all vertices φ in M with an edge ψ from ρ to φ do

if primal then
add (φ,ψ) to Vδ

else
add (ψ,φ) to Vδ

end if
Visit(φ,M, primal)

end for
end if

end function

Vδ ← ∅

for all vertices ρ in Rδ(G) do
Visit(ρ,Mδ(G), true)

end for
for all vertices ρ∗ in Rδ(G∗) do

Visit(ρ∗,Mδ(G∗), false)
end for
return Vδ

fδ(σ) as the minimum value that satisfies the lower bound fδ(σ) ≥ f (σ) − δ and
renders fδ consistent with Vδ, i.e.,

fδ(σ) = max
(

f (σ) − δ, max
ρ←Vδσ

fδ(ρ)
)
.

The construction of fδ also takes O(n) time.

5.5 Correctness of the algorithm

Theorem 5.2. The function fδ constructed using the above algorithm is a perfect
δ-simplification of f .
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Chapter 5 Efficient computation of topological simplifications

Algorithm 4 Constructing the simplified function

function Visit(vertex σ, graph H)
if σ has not been visited yet then

mark σ as visited
for all vertices ρ in H with an edge from σ to ρ do

Visit(ρ,HVδ)
end for
fδ(σ)← f (σ) − δ
for all vertices ρ with an edge from σ to ρ do

fδ(σ)← max( fδ(σ), fδ(ρ))
end for

end if
end function

for all vertices σ in HVδ do
Visit(σ,HVδ)

end for
return fδ

Proof. By construction, fδ is consistent with Vδ. At the same time, by Theorem 5.1,
Vδ is the final vector field of a 2δ-persistence cancelation sequence. Therefore,
by the definition of a perfect δ-simplification, it only remains to show that the
constraint ‖ fδ − f ‖∞ ≤ δ is satisfied. The lower bound fδ ≥ f − δ is satisfied by
construction. It thus remains to show the upper bound fδ ≤ f + δ.

Observe that the set of all perfect δ-simplifications consistent with Vδ is defined
by a set of linear inequalities: the upper and lower bounds on the function values
given by f ± δ, and the inequalities imposed by consistency with Vδ. Therefore,
the set of δ-simplifications is a convex polyhedron P ⊂ Rn with n = |K|. The
polyhedron P is bounded since it is a subset of the product of intervals∏

σ∈K

[ f (σ) − δ, f (σ) + δ].

From Theorem 4.2, we know that P is not empty. We now show that fδ is
contained in P.

First, consider the (unbounded) convex polyhedron P̃ defined by the lower
bound fδ ≥ f − δ and the inequalities induced by Vδ. By construction, fδ is
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5.5 Correctness of the algorithm

contained in P̃. Moreover, again by construction, fδ minimizes the function
value of any cell among all functions in P̃. In other words, for any function f̃
in P ⊂ P̃, we have f̃ ≥ fδ. This implies the upper bound fδ ≤ f̃ ≤ f + δ. �
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Chapter 6

Discussion

6.1 Computational results

We implemented the algorithm of Chapter 5 in C++. For a complex with over 4
million cells (the cubical complex for a 1025 × 1025 pixel image), we obtained a
running time of about 15 seconds for computing a perfect δ-simplification on a
2.4GHz Intel Core 2 Duo laptop.

6.2 Relation to simplification of persistence diagrams

We comment on two previously published results on topological simplification
within a specified tolerance. The first method by Edelsbrunner et al. [25] is
described specifically for PL functions; the second one by Attali et al. [2] works
with a general filtration and is close to the formalism we use, without explicitly
referring to discrete Morse theory. In both cases, the problem statement is
different from the one considered in the present thesis. In particular, the problem
is not set as an optimization problem. Rather, the goal is to simplify the persistence
diagram in the following sense:

Problem. Given a function f , find a function g with ‖ f − g‖∞ ≤ δ such that the
persistence diagram of g consists of those points in the diagram of f except for the
off-diagonal points with persistence ≤ δ, i.e., D(g) = D( f ) \ {(s, t) : 0 < t − s ≤ δ}.

In particular, the values of all critical points that are not canceled are required
to remain unchanged. This requirement implies that in general only pairs with
persistence ≤ δ can be canceled, missing a factor of 2 compared to our result
and to the lower bound of Theorem 4.1. The problem is depicted in Fig. 6.1;
a variation of this example can be found in Edelsbrunner et al. [25]. In this
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Figure 6.1: Canceling a volcano. Left: There are two persistence pairs; assume that only
the right pair (with persistence 2δ) is canceled. Middle: If uncanceled critical points
have to remain at their original value, as assumed by previous methods, the peak of
the volcano can only be canceled by raising the saddle that is paired with the peak,
perturbing the function by 2δ. Right: Since our approach does not have this restriction,
the function only needs to be perturbed by δ in order to cancel the pair.

example, the peak of a volcano is paired with a saddle on its right. Moreover, on
the crater at roughly the same height as the peak there is another saddle, which
is paired with a minimum inside the volcano. It is evident that the peak of the
volcano cannot be lowered significantly without also lowering the saddle on the
crater. Therefore, if we want to cancel the saddle-peak pair and keep the other
pair at their original values, the saddle has to be raised all the way up to the
peak.

In the language of the present thesis, the method of Attali et al. [2] can be
described as a variant of the plateau construction: for each canceled pair (σi, τi),
set the new value mi to the value of the cell of (σi, τi) that is not a 1-cell. Hence,
only the ascending/descending set of the critical 1-cell of each persistence pair is
raised/lowered to the value of the paired cell. Note that both the ascending and
descending sets of a critical 1-cell are each the union of two gradient paths.

6.3 Symmetrizing the algorithm

The method described in Chapter 5 assigns to each cell the smallest possible
value. As a consequence, the output function differs from the input function f
even if the input function itself is already a perfect δ-simplification. Moreover,
the method is not symmetric in the sense that we obtain an output function
which maximizes the values if we apply the algorithm to the function − f on
the dual complex and return the negative of the simplified function. Since
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6.4 Flooding and carving artifacts

Figure 6.2: Visualization of simplification artifacts. Function values are indicated by gray
levels. Left: Original function. Middle: Function obtained by the algorithm of Chapter 5.
Note the bright path joining the two spots. Right: Function obtained after constraint
energy minimization according to Section 6.5. While the simplified topological structure
is maintained, the visual appearance is closer to the original function.

both the minimal and maximal solutions are points of a convex polyhedron as
explained in Section 5.5, we can take the component-wise arithmetic mean to
obtain another perfect δ-simplification.

With this modification, if the input function f is already a perfect δ-simplification,
then the minimal solution is given by f − δ, while the maximal solution equals
f + δ, so the arithmetic mean of both solutions returns f again as desired.

6.4 Flooding and carving artifacts

The methods presented in the present thesis can be seen as combinations of the
so-called carving and flooding approaches. Consequently, they also inherit some
characteristics of these methods that may not always be desirable in practical
applications (see Fig. 6.2).

Carving methods [61, 25, 2]) cancel a pair of critical cells by changing only the
descending or ascending set of the 1-cell (saddle), as discussed in Section 6.2.
This results in a noticeable thin path being carved in the function. On the other
hand, modifying only the descending or ascending set of extrema, i.e., lowering
maxima and raising minima, produces regions with constant function value;
this is called filling or flooding [37, 21]). Although this effect is less disturbing, it
might appear unnatural in certain applications. In the next section, we propose
a way to remedy both kinds of artifacts.
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Figure 6.3: Topographic map of the elevation data set “Puget Sound” [48], showing
the region around Tacoma. Contour lines are shown every 500 meters. The elevation
data are converted from a 512 × 512 grid into a pseudo-Morse function on 1050625 cells.
33120 critical cells have persistence > 0 (persistence diagram shown in Fig. 6.6).
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6.4 Flooding and carving artifacts

Figure 6.4: Simplified elevation function fδ obtained after constraint Dirichlet energy
minimization of the difference f − fδ according to Section 6.5 with δ = 500 meters. The
function has one minimum, three saddles, and three maxima. Despite the quite drastic
perturbation, the overall appearance of the contours is largely kept intact.
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Figure 6.5: Topologically constrained smoothing, obtained after constraint energy
minimization of the simplified function fδ according to Section 6.5 with δ = 50 meters.
Although the allowed tolerance is only one tenth of the one shown in Fig. 6.4, the visual
appearance is significantly different due to the smoothing.
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Figure 6.6: Persistence diagrams of the elevation data set visualized in Fig. 6.3.

6.5 Combining topological simplification and energy
methods

As mentioned in Section 5.5, the set of perfect δ-simplifications consistent with
the simplified gradient vector field Vδ is a convex polyhedron P. Hence, the
presented method can be combined with energy minimization methods, since
the polyhedron P can be used as the feasible region for an arbitrary convex
optimization problem. For example, we used the interior point solver Ipopt [65]
to minimize (a discretization of) the Dirichlet energy of the difference fδ − f
in order to obtain a function fδ that looks as similar as possible to the input
function f (see Figs. 6.2 and 6.4). Alternatively, we minimized the Dirichlet
energy of the simplified function itself in order to obtain smooth contour lines
(see Fig. 6.5). Note, however, that solving a constraint optimization problem is
much more expensive than finding an initial perfect δ-simplification. Computing
the functions shown in Figs. 6.4 and 6.5 each took about an hour, while the initial
simplification took only five seconds to compute.

6.6 Topological simplification on regular CW complexes

The example of Fig. 6.7 shows that a perfect δ-simplification may not exist on
a non-manifold 2-dimensional cell complex. For the sake of simplicity, the
example is given for a non-regular CW complex; it is straightforward to rephrase
this example using a regular CW complex by subdividing the cells. The complex
consists of two 0-cells ζ and γ with f (ζ) = f (γ) = 0, three 1-cells a, b, and c
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with f (a) = 1, f (b) = 2, and f (c) = 0, and two 2-cells A and B with f (A) = 2 and
f (B) = 3. Note that the complex is not a manifold since it is not locally euclidean
at the 1-cell b. A canonical ordering leads to the persistence pairs (a,A), (b,B),
and (γ, c). To obtain a perfect δ-simplification for δ = 0.5, one would need to
set fδ(b) = fδ(B) = 2.5 and fδ(a) = fδ(A) = 1.5. The corresponding simplified
gradient vector field would be Vδ = {(a,A), (b,B)}. But since b is a facet of A, we
must have fδ(b) ≤ fδ(A). Hence, we cannot cancel both (a,A) and (b,B) at the
same time. This constellation also appears in [23] under the name conflict of type
(1,2).

A (2)

a (1)

c (0)

γ (0)

ζ (0)

B (3)
b (2)

Figure 6.7: A discrete Morse function on a 2-complex that does not have a perfect
δ-simplification. The function values of the cells are indicated in parentheses.

Since such a 2-complex can also appear as a level subcomplex of an n-manifold
CW complex for n ≥ 3 (e.g., a triangulated 3-ball), the example also shows that a
perfect δ-simplification does not always exists for functions on manifolds. Thus
the topological simplification problem is more difficult in higher dimensions.

In fact, we will see in a moment that the following generalization of the
simplification problem considered in this thesis to non-surface complexes is
NP-hard:

Problem (Topological simplification on regular CW complexes). Given a pseudo-
Morse function f on a regular CW complex K and a real number δ ≥ 0, find a
pseudo-Morse function fδ subject to ‖ fδ − f ‖∞ ≤ δ and a gradient vector field Vδ

consistent with fδ such that Vδ has a minimum number of critical points.

We will show the claim by a reduction from the following problem, which
does not refer to a function and has no tolerance constraint, but depends only
on the properties of the complexK itself:

Problem (optimal discrete gradient vector field). Given a regular CW complexK ,
find a discrete gradient vector field onK with a minimum number of critical cells.
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6.7 Persistence pairs that cannot be canceled

Finding an optimal discrete gradient vector field, in turn, has been shown to
be NP-hard:

Theorem 6.1 (Eğecioğlu and Gonzalez [27], Joswig and Pfetsch [39]). Computing
an optimal discrete gradient vector field is NP-hard for regular CW complexes of
dimension 2.

Thus, we learn that there is no hope to extend our efficient solution method
beyond surfaces:

Corollary 6.2. Topological simplification on a regular CW complexK of dimension 2
is NP-hard.

Proof. Given any pseudo-Morse function f , there exists a δ such that any gradient
vector field on K is consistent with some function fδ satisfying ‖ fδ − f ‖∞ ≤ δ.
For example, we can choose δ = maxρ | f (ρ)| and fδ : ρ 7→ 0. Therefore finding an
optimal discrete gradient vector field can be reduced to topological simplification.
Since finding an optimal discrete gradient vector field is NP-hard for 2-complexes,
so is topological simplification. �

6.7 Persistence pairs that cannot be canceled

Not every persistence pair can be canceled in the strict sense of Morse theory:
there are CW complexes on which every discrete Morse function must have
a persistence pair. In other words, they do not admit a perfect discrete Morse
function (a discrete Morse function with only positive critical cells, for any
field of coefficients). This can have several reasons. A discrete Morse function
on a complex that is contractible but not collapsible must have a persistence
pair. This is explained by the following observation. Collapsibility would
mean by definition that there is a gradient vector field with only one critical
0-cell. Any gradient vector field on a non-collapsible complex thus must have
additional critical cells. But since contractibility implies that the complex has the
homology of a point, all additional critical cells must be paired in persistence
pairs. Classical examples are given by the dunce hat [66] or Bing’s house with two
rooms [7].

Certain triangulations of the n-sphere for n ≥ 3 do not admit perfect discrete
Morse functions [41]. However, any PL triangulation of the n-sphere admits
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a perfect discrete Morse functions after a finite number of subdivisions [28].
Note that not every triangulation of the n-sphere is a PL manifold: Cannon
[12] showed that the double suspension of a (n − 2)-homology sphere Σn is
homeomorphic to an (n + 2)-sphere, but the homeomorphism is not PL if Σn is
not homeomorphic to the n-sphere.

Such homology spheres are also known to admit no perfect Morse functions.
Assume that a triangulated homology n-sphere Σn has a nontrivial fundamental
groupπ1(Σn). Thenπ1(Σn) must be generated by a nonempty set of critical 1-cells
for V for any gradient vector field V on Σn. There are even some submanifolds
of R3 that admit no perfect Morse function. The complement C of a nontrivial
knot in S3 is embeddable in R3 and has a fundamental group π1(C) of rank at
least 2, where the rank of a group is the smallest cardinality of a generating set.
Thus every discrete Morse function on C has at least 2 critical 1-cells. But the
first homology group H1(C) has only rank 1 by Alexander duality [35], so at
least one of the critical 1-cells must be negative. Since a knot complement can
also occur as the sublevel set of a function on the 3-ball, this problem adds to the
difficulties regarding topological simplification in higher dimensions discussed
in Section 6.6.

6.8 Removing local extrema from functions on manifolds

Recall that the proof of tightness of the stability bound relies heavily on the fact
that only persistence pairs containing a local extremum (minimum or maximum)
can appear, and no persistence pairs of middle dimensions, which cannot always
be canceled in the stronger sense of Morse theory as explained in Sections 6.6
and 6.7. In fact, as a consequence the same constructions and proofs presented in
Chapter 4 can also be applied to the problem of minimizing the number of local
extrema of a pseudo-Morse function within a δ-tolerance on any d-dimensional
manifold CW complex.

Problem (Extrema simplification on manifolds). Given a pseudo-Morse function f
on a regular manifold CW complex and a real number δ ≥ 0, find a pseudo-Morse
function fδ subject to ‖ fδ − f ‖∞ ≤ δ and a gradient vector field Vδ consistent with fδ
such that Vδ has a minimum number of local extrema.

By a local extremum we mean a critical cell of dimension 0 or d. Note that
in the case d = 2 this problem is equivalent to the topological simplification
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problem by the following simple counting argument. Let ci denote the number
of critical cells of dimension i. Since the Euler characteristic χ = c0 − c1 + c2 is a
topological invariant, we have c0 + c1 + c2 = 2(c0 + c2) − χ. Thus the number of
critical points is minimal if and only if the number of extrema is minimal.

We obtain the following theorem, which can be proven by a straightforward
modification of the proof of Theorem 4.2.

Theorem 6.3. Given a pseudo-Morse function f on a regular closed manifold CW
complex and a real number δ ≥ 0, there exists a pseudo-Morse function fδ consistent
with a gradient vector field Vδ such that ‖ fδ − f ‖∞ ≤ δ and the number of local extrema
of Vδ equals the number of those local extrema of f that have persistence > 2δ. This
number is minimal.

We call such a function fδ a perfect δ-extrema simplification of f .

6.9 Matching local extrema of functions on manifolds

The persistent extrema of a function have another interesting property. Assume
that the original (noise-free) function has no extrema of low persistence. Then it
turns out that we can match its extrema to the extrema of the simplification of a
noisy function close to the original one in a canonical, well-defined way. First,
we obtain the following corollary from Theorem 6.3:

Corollary 6.4. Let f be a discrete pseudo-Morse function on a surface all of whose
persistence pairs have persistence > 4δ. Let g be another pseudo-Morse function f
with ‖g − f ‖∞ ≤ δ. Let gδ be a perfect δ-extrema simplification of g. Then gδ has the
same numbers of local minima and maxima as f .

The following theorem shows how the discrete gradient flow yields a bijection
of the local extrema of f and gδ:

Theorem 6.5. Let ( f ,V) be a discrete pseudo-Morse function with a consistent gradient
field all of whose local extrema have persistence > 4δ. Let g be another pseudo-Morse
function f with ‖g − f ‖∞ ≤ δ. Let (gδ,Wδ) be a perfect δ-extrema simplification of g.

Then there is a bijection γ from the minima (maxima) of f to the minima (maxima)
of gδ defined by the property that every minimum (maximum) σ of f is contained in
the ascending (descending) set of γ(σ) and vice versa.
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Proof. Without loss of generality assume that σ is a local minimum, i.e., a critical
0-cell of V. Let γ : Cr0 V → Cr0 Wδ, ρ 7→ Φ∞δ (ρ), where Cr0 V denotes the critical
0-cells of V and Φδ denotes the discrete gradient flow of the vector field Wδ, i.e.,
ρ is mapped to the cell ending the maximal Wδ-path starting at ρ. Let σ̃ = γ(σ).
This cell is critical for Wδ, being the last cell of a maximal Wδ-path. First note
that f (σ̃) − f (σ) ≤ 4δ, since

f (σ̃) ≤ gδ(σ̃) + 2δ ≤ gδ(σ) + 2δ ≤ f (σ) + 4δ.

This implies that σ̃ is contained in the level subcomplex K( f (σ) + 4δ). Since f
has no minima with persistence ≤ 4δ, the connected component ofK ( f (σ) + 4δ)
created by σ contains no critical 0-cells apart from σ. Since σ̃ is contained in that
connected component, it follows that Φ∞(σ̃) = σ, where Φ denotes the discrete
gradient flow of the vector field V. Hence γ has a left inverse: Φ∞ ◦ γ(σ) = σ.
Since f and gδ have the same same numbers of minima and maxima, it follows
that γ is a bijection. �

6.10 Topological simplification for simplexwise linear
functions is NP-hard

In view of our results, it seems surprising that a very slight modification of the
problem setting leads to an intractable problem, as we now discuss.

Gray et al. [33] show that minimizing the number of extrema is NP-hard for
simplexwise linear functions with individual tolerance intervals for each vertex.
Recall that in our problem we consider a single tolerance value δ instead. We
extend their argument so that it can also be applied to our problem. Recall from
Section 6.8 that on a surface, minimizing extrema is equivalent to minimizing
critical points. We consider the following variant of the topological simplification
problem:

Problem (Simplexwise linear topological simplification on surfaces). Given a
simplexwise linear function f on a simplicial surface and a real number δ ≥ 0, find a
simplexwise linear function fδ subject to ‖ fδ − f ‖∞ ≤ δ such that fδ has a minimum
number of critical points.

We deliberately talk about simplexwise linear functions instead of just piecewise
linear functions here. The key difference is that a simplexwise linear functions,
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as the name suggests, must be linear on each simplex of the given triangulation,
while a piecewise linear function is linear on each simplex of some arbitrary
triangulation. It turns out that this is what makes the big difference in complexity:
the hardness of the problem in the simplexwise linear setting arises from the
possibility that the input contains multiple saddles. Going from simplexwise
linear functions to discrete Morse functions (Section 2.8) can be interpreted as
splitting multiple saddles.

It is also easy to see that the stability bound cannot always be matched in
this setting. Consider a vertex which is a multiple saddle of a PL function. The
change in homotopy type at the level of this saddle corresponds to attaching
multiple 1-cells. Assume that one of these cells is positive and another one
is negative. Assume further that both cells are contained in persistence pairs
of persistence 2δ. Canceling both of these pairs within the δ-tolerance would
require raising and lowering the multiple saddle vertex at the same time. Hence,
without subdividing the complex, it is not possible to cancel both persistence
pairs.

We show NP-hardness of the simplexwise linear topological simplification
problem by a reduction to the following problem, called the Planar 2-Disjoint
Maximally Connected Subgraphs problem, or P2-MaxCon for short:

Problem (P2-MaxCon). Given a finite planar graph G = (E,V) and two disjoint
subsets R,B ⊂ V, R ∩ B = ∅, find two disjoint subsets R′ ⊃ R, B′ ⊃ B, R′ ∩ B′ = ∅,
such that the total number of connected components of the respective subgraphs of G
induced by R′ and B′ is minimized.

We interpret the problem as a coloring problem: The vertices R and B are
colored red and blue, respectively. The problem asks to color the remaining
white vertices W = V \ R \ B in either color such that the total number of red
and blue components is minimized.

Theorem 6.6 (Gray et al. [33]). P2-MaxCon is NP-hard.

Theorem 6.7. Topological simplification for simplexwise linear functions on simplicial
surfaces is NP-hard.

Proof. We present a polynomial time reduction of P2-MaxCon to the simplexwise
linear topological simplification problem, i.e., we show that any instance of
P2-MaxCon can be transformed into an instance of topological simplification.
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Let G = (V,E) be a finite planar graph with vertices partitioned into pairwise
disjoint subsets R ∪ B ∪W = V. We assign the values 1, 3, and 5 to the vertices
in B, W, and R, respectively. Next, we embed the graph into the plane, insert a
triangle into the interior of each inner face, and triangulate the resulting graph,
see Fig. 6.8. The newly inserted triangles are further subdivided as indicated by
the label a in Fig. 6.8. This subdivision of the triangle a involves quadrangles
labeled b and c; these are again triangulated as indicated in Fig. 6.8. In the
triangulation b there are k vertices with value 2 and k + 1 vertices with value 6,
where k > |V| + 3|F| and |F| denotes the number of inner faces of G. Similarly, in
the triangulation c there are k vertices with value 0 and k + 1 vertices with value
4. The function values of the additional vertices are assigned as shown.

We thus obtain a triangulation of a planar domain together with a simplexwise
linear function f given by the values on the vertices. Letting δ = 1, this yields a
problem instance of simplexwise linear topological simplification on surfaces.

We now argue that any optimal solution for the above problem instance must
take on certain fixed values on the vertices of the triangles labeled a, as indicated
by a′, b′, and c′ in Fig. 6.8. First observe that the indicated partial solution has
two maxima (with value 5) and one minimum (with value 1) inside each instance
of the triangle a. This implies that there exists a function on the triangulation
within distance δ from f that has at most |V| + 3|F| extrema. Here, when we talk
about extrema of a simplexwise linear function, we mean extremal components,
i.e., a connected subgraph whose vertices all have the same extremal value
counts as one single extremum.

As a consequence, the vertices in the triangulation b with original values 6 and
4 must take on the value 5 in the simplified function, as otherwise the k vertices
with original value 6 are extrema of the simplified function. Such a function
cannot be optimal since we know that a function with less than |V| + 3|F| < k
extrema exists. Similarly, the vertices in the triangulation C with original values
0 and 2 must take on the value 1 in the simplified function. Now consider one
of the boundary vertices of the triangle a (with original value 3). This vertex
is adjacent to at least k + 1 vertices with input value 4 (from a triangulation c).
In order to prevent these adjacent vertices from being extrema of the solution,
the value 3 of the vertex must not be lowered in the solution. At the same time,
the vertex is also adjacent to at least k + 1 vertices with original value 2 (from a
triangulation b), so by a similar argument the value also must not be raised. We
conclude that the solution value of the vertex remains 3, and all adjacent vertices
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Figure 6.8: Gadgets used in the reduction of PL topological simplification to P2-MaxCon.
Upper left: Graph G with vertex subsets B and R colored blue and red. Upper right:
triangulation of G with triangles labeled a embedded in each face. Red and blue vertices
of G are assigned the function values 5 and 1, respectively. Middle: Triangulation for
each instance of the triangle a and for the quadrangles b and c appearing in a, together
with function values. Bottom: Function values for the vertices of the triangle a in every
optimal δ-simplification with δ = 1.
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with original values 2 and 4 also obtain the solution value 3. The solution values
are therefore determined for all vertices inside the triangle a as shown in Fig. 6.8.
Note that the vertices in the boundary of the triangle a (with output value 3) are
not extrema of the solution, since they are adjacent both to vertices with values 1
and 5, respectively.

Now the problem of simplexwise linear topological simplification of f is
equivalent to that of minimizing connected components of G after recoloring
[33]: The only way to eliminate minima of f on G is by connecting minima (blue
components) by lowering a connecting set of white vertices to the level 2 of
the new minimum component (corresponding to coloring the white vertices
blue). Likewise, maxima can only be eliminated by raising the connecting white
vertices to the level 4, corresponding to coloring them red. Hence our reduction
is complete. �
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Future work

As we have discussed in Sections 6.6 and 6.7, topological simplification in
dimensions higher than 2 involves additional difficulties, and a perfect sim-
plification cannot always be achieved. However, the problem is still of great
practical interest, since a standard method for visualization of 3-dimensional
scalar data sets such as medical images is the rendering of contour surfaces.
Due to the instability of critical points under small perturbation, this method is
highly susceptible to noise. Simplifying only the extrema of the data, i.e., the
persistence pairs of dimensions (0, 1) and (2, 3) (Section 6.8), already provides
promising results with regard to the removal of topological artifacts (see Fig. 7.1
for an example). This method could be extended by a heuristic algorithm, which
greedily cancels persistence pairs of dimensions (1, 2). How well would such an
algorithm perform on noisy real-world data?

What can be said if one relaxes the notion of critical point, considering changes
in the homology of sublevel sets (like in persistent homology) instead of changes
in their homotopy type (like in Morse theory)? One would expect that all
persistence pairs can be canceled in this sense. Is it possible to use a variant
of the cancelation method of discrete Morse theory in this context, possibly
dropping the restriction to gradient vector fields? Can one construct nested
cancelation sequences like in Theorem 4.9? Even if the stability bound cannot
be matched in general, can it possibly be approximated?

Certain previous denoising methods are already known to have good proper-
ties with regard to the removal of noise-induced critical points. Worth particular
mention is the minimization of the Rudin-Osher-Fatemi functional [60], also
known as TV-L2 denoising. In [5], a first attempt has been made to relate this
method to persistence and the simplification methods presented in this thesis.
For an input function on an interval, TV-L2 denoising minimizes the number
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Figure 7.1: Visualization of a MRT angiography of a human head [64] by contour
surfaces. Top: The noise in the data generates a large number of critical points, which in
turn create a large number of small connected components in the level surface. Bottom:
Simplification of the local extrema (Section 6.8) leads to a function whose contour
surfaces are cleaned from topological artifacts, without diminishing the sharpness of the
data. Note, however, that small details of the data may get lost in the denoising process.
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of critical points among all functions whose antiderivative is within a given
distance from the antiderivative of the input function. This opens up a number
of opportunities for further developments. Can a descriptor analogous to the
persistence diagram be constructed? Can we also obtain a stability result with
respect to appropriate metrics on the spaces of functions and descriptors?

Topological denoising and robust extraction of critical points is not only
interesting for scalar functions, but also for vector fields. Methods using discrete
Morse theory have been proposed to analyze the structure of vector fields [58]
and to track critical points in time series of discrete vector fields [43]. Can the
idea of persistence be generalized in a meaningful way to vector field data? Can
the methods presented in this thesis lead to robust simplification algorithms
with guarantees, like in the case of scalar functions?

Another interesting point of departure for further developments is the connec-
tion between persistence and singularity theory. Smooth Morse functions are
the stable scalar functions in the sense of singularity theory. Roughly speaking,
a stable map has the property that varying the map continuously (in the Ck

norm for some k ≥ 1) within a sufficiently small neighborhood also moves the
critical points continuously, and in particular will not eliminate them. This
notion of stability is different from the one encountered in persistent homology,
where the supremum (C0) norm is relevant instead of the Ck norm. Moreover,
while singularity theory considers stability against infinitesimal perturbations,
persistent homology provides a quantitative notion of stability. It would be
interesting to extend the connections between both theories further beyond the
results of this thesis.
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