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der Georg-August-Universität zu Göttingen

vorgelegt von
Alireza Sarveniazi
aus Teheran-Iran

Göttingen, 2003



2

D7

Referent: Prof. Dr. U. Stuhler

Korefferent: Prof. Dr. L. Smith

Tag der mündlichen Prüfung : 20.01.2004
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Chapter 0

Preface

We introduce in this thesis Ramanujan regular hypergraphs, generalizing
the definition of Ramanujan graphs introduced by Lubotzky, Philips, Sar-
nak [33]. Ramanujan graphs are regular graphs, whose adjacency matrices,
(or equivalently their Laplacians), have eigenvalues satisfying some natural
upper bounds. Graphs satisfying such bounds have many interesting proper-
ties. For example they are very powerful expander graphs, which make them
interesting objects for many applications from communication networks to
computer science. The interesting situation here, is that on the one hand it
is known and easy to see that almost all regular graphs in a precise sense are
Ramanujan graphs. On the other hand it is difficult to show for an explicitly
given regular graph that it is a Ramanujan graph. It is therefore quite sur-
prising and has lot of interest, that some very explicit graphs coming from
number theory can be shown to be Ramanujan graphs. These graphs are
constructed using unit groups of quaternion algebra and their action on the
associated symmetric spaces, which in these examples just are the trees in
the sense of [55] or [61]. The quotients of these trees by the action of the
unit groups mentioned above give already the Ramanujan graphs we are dis-
cussing. To show the Ramanujan property requires deep tools from the the-
ory of automorphic representations. In fact it turns out that the Ramanujan
property of these graphs is equivalent to the fact, that the associated rep-
resentations satisfy the Ramanujan-Petersson conjecture. This is not very
difficult to prove because one sees rather directly that the adjacency opera-
tors of the quotient graph above is more or less nothing else than the Hecke
operator of the corresponding prime. The first examples given where working
with quaternion algebras over the rational numbers and were using Deligne’s
proof of the Ramanujan-Petersson conjecture plus the Jaquet-Langlands cor-
respondence between automorphic representations of quaternion algebras and
cuspidal automorphic representations of GL(2,Q) of an appropriate type. A
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later variant of this by M.Morgenstern [40] was using instead quaternion
algebras over the rational function field Fq(t) and corresponding results of
Drinfeld [21] for the associated automorphic representations. It is this class
of examples of Morgenstern, which we will generalize to higher dimensions.
This is made possible by the observation, that the quaternion algebras in
Morgenstern’s examples are nothing else than the quotient (skew) fields of
skew polynomial rings which are well known in the theory of Drinfeld mod-
ules. So we consider the skew polynomial ring Fqd{τ} over the field Fqd of
qd elements, where the indeterminate τ satisfies the rule τ · λ = λq · τ for
λ ∈ Fqd .
The center of this ring is the polynomial ring Fq[t], the (skew) quotient field
Fq(τ) is a division algebra of dimension d2 over the center Fq(t), the field of
rational functions over Fq.
This division algebra is ramified exactly at the primes t = 0 and t = ∞.
We consider the localization Fqd{τ}[1

p
] at a prime p = p(t) of Fq[t] different

from t. The unit group associated with this maximal order over the cen-
ter Fq[t][

1
p
] is acting on the Bruhat-Tits building at the prime p, which is a

building of type Ãd−1. The quotients by the unit groups we define, will be
simplicial complexes of dimension (d − 1). It is these simplicial complexes
and their adjacency matrices, we are studying in this thesis. In this thesis,
we partly work in the category of simplicial complexes and more specialized
buildings and partly in the category of hypergraphs. The procedure to be
followed now, is quite similar to the case of graphs. It consists in identi-
fying the adjacency operator of these quotient complexes with some Hecke
operator acting on certain corresponding spaces of automorphic forms and
then making use of the relevant results about automorphic representations
in this context. The main result we are relying on here, is Lafforgue’s recent
proof of the Langlands conjecture for GL(n) over a function field and in par-
ticular the Ramanujan-Petersson conjecture for these cuspidal automorphic
forms. What causes difficulties, is that here the Jacquet-Langlands corre-
spondence between automorphic representations for GL(n) and automorphic
representations for the division algebra is not effective enough. Using this
correspondence, it is possible that noncuspidal automorphic representations
come up. Lafforgue’s result however requires the automorphic representation
to be cuspidal.
Nevertheless, using additionally a result of Arthur and Clozel [1, Weak Lift-
ing theorem, 4.2] it is possible to concude the Ramanujan property at least
for the d a prime from Lafforgue’s result.
It should be metioned also, that after this thesis was (more or less) finished,
preprints of W.-C. Winnie Li [65] and Lubotzky, Samuels and Vishne [35],
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[36] become avilable to us. In particular W. Lie using a trick of L.Clozel,
reduce the the Ramanujan property of the automorphic representation to the
Ramanujan property of the moduli scheme of D elliptic sheaves [32].
Let us add at this point, that there is another treatment of higher dimensional
situations in the literature, namely [24] B.W.Jordan and R.Livne. These
results work again with unit groups of quaternion algebras, but allow de-
nominators at more than one prime. Correspondingly, their unit groups are
acting on a product of trees. As this is again the GL(2)-case, the Ramanujan-
Petersson property holds. Also C.Ballantine [2] has given a hypergraph for
d = 3 related to the Bruhat-Tits building associted to PGL(3;Qp).
We end this introduction with a description of the content of the different
chapters of this thesis.
Chapter 1 gives basic material on locally compact fields, Haar measures and
division algebras.
Chapter 2 describes buildings of type Ãn and various concepts related to this.
In chapter 3 we describe our examples in general. We indicate some of of the
concepts from the theory of automorphic representations. In particular we
describe the relationship between adjacency operators and Hecke operators.
Finally we discuss in this chapter, what would be needed additionally from
the theory of automorphic representations, in particular regarding the work
of L.Lafforgue. In the final chapter 4 we specialize our situation to the case
of skew polynomial rings and the related quotient (skew) fields. Here we are
able to compute explicity the quotient of the building by the action of the
discrete groups of units we have chosen.
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very thankful to Prof. Dr. Larry Smith for his careful reading of this thesis.
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Chapter 1

Some basic material

1.1 Introduction:

After a short review about local fields and Haar measure we give a survey of
skew polynomial rings. In the category of rings, the ”good” objects are the
rings in which we have not only additive inverse elements, but also there exist
multiplicative inverses of nonzero elements. These are called division rings,
or skew fields. Fields are special examples of division rings. All division rings
may be broadly classified into two types, according to whether they are finite
dimensional (as vector spaces) over their center or not. The objects we study
here are usually finite dimensional central division algebras (rings).

1.2 Local Fields and Basics

A general reference for local fields is chapter I of Andre Weil’s book [64].

Definition 1. A local field is a locally compact topological field, which is not
discrete.

Theorem 2. A local field is isomorphic as a topological field either to
i) R or C, the field of real resp. complex numbers, or to
ii) a finite algebraic extension of the fields Qp of p-adic numbers, p a prime
or to
iii) a field of Laurent series

Fq((t)) = {
∞∑

i=N

ait
i | ai ∈ Fq, N ∈ Z}

where Fq is a finite field of q elements.
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Remark. i) As usual the field of p-adic numbers Qp is obtained from the field
Q of rational numbers by completing with respect to the p-adic valuation |.|p
of Q, which on Z satisfies

|a|p := p−vp(a) ,

where a = pvp(a)a′ such that p and a′ are prime to each other.
ii) A basis for the topology of Fq((t)) is given by the complete open subgroups
tiFq[[t]] in the ring of formal power series in t over the finite field of q elements

Fq, i ∈ Z.

We consider now the field of rational functions Fq(t) over the finite field
Fq of q elements, By a theorem of Ostrowski we know all discrete valuations
of Fq(t) up to equivalence. [?, page 80], [64, III, Theorem 2].

Theorem 3. Any discrete nontrivial valuation of Fq((t)) is given up to equiv-
alence as either
1) The valuation corresponding to an irreducible polynomial p = p(t) ∈ Fq[t],
such that

|a|p := cp
vp(a) ,

for a = a(t) ∈ Fq[t], 0 ≤ cp < 1 is a real number and a = pvp(a)a′ such that p
and a′ are prime to each other in Fq[t]. Given |a|p in the way above on Fq[t],
it extends uniquely to discrete valuation of Fq(t).
2)There is additionally the degree valuation at ∞, such that

|a(t)|∞ := cdeg(a) ,with 0 ≤ c ≤ 1 fixed.

for a = a(t) ∈ Fq[t]. Again,

|a(t)
b(t)

|∞ := cdeg(a)−deg(b)

Remark. To obtain the product formula below, it is useful to normalize the
valuations given above as follows:
Choose c ∈ R, 0 ≤ c < 1 once and for all, then choose cp = cdeg(p) for the
valuation corresponding to an irreducible prime p = p(t) ∈ Fq[t]. One obtains
immediately the
Productformula: For a ∈ Fq(t)(a 6= 0) has∏

ν∈X

|a|ν = 1

Here X denotes the set of all valuations of Fq(t) normalized as above.
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Definition 4. For a valuation v ∈ X, Fv denotes the completion of F = Fq(t)
at v. Ov denotes the corresponding ring of integer, that is:

Ov := {x ∈ Fv | |X|v 6 1}

Definition 5. Associated with the field F = Fq(t) of rational functions over
the finite field Fq of q elements is the locally compact topological ring of adeles
over F ,

A(F ) =
∏
ν∈X

(Fv,Oν),

where∏
ν∈X

(Fv,Oν) = {(xν |ν ∈ X)|xν ∈ Fν , for almost all ν ∈ X xν ∈ Oν}.

Remark. Denote for S ⊂ X, a finite subset;

AS(F ) :=
∏
ν∈S

Fν ×
∏
ν 6∈S

Oν ,

equipped with the product topology. By Tychonoff’s theorem AS(F ) is a
locally compact topological ring. Furthermore

A(F ) = lim−→
(S)

AS(F )

obtains the induced topology. A(F ) is a locally compact topological ring also.
(see [64, chapter IV ], for details). Besides the locally compact topological
ring of adeles we use its group of units, the so called group of ideles. This is
given as

I(F ) = lim−→
(S)

IS(F ),

where
IS(F ) :=

∏
ν∈S

F×ν ×
∏
ν 6∈S

O×
ν ,

with the product topology. I(F ) is a locally compact topological group, see
[64, IV,3, IV,4], for details.
Finally suppose, Fν is locally compact topological field, ν the related valua-
tion, D is a finite dimensional central skew field over Fν .

See [?] for the following theorem:

Theorem 6. The valuation | |ν of Fν can be prolongated to a valuation of
D by the formula:

|a|ν :=
1

(D : Fν)
|ND

Fν
(a)|ν

where ND
Fν

: D −→ Fν is the norm of D over Fν.
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1.3 Haar measures

This subsection will be short. We remind the reader of the basic facts about
Haar measures which are well known (see [29]). Any locally compact topolog-
ical group has a left invariant positive measure, that is a measure µ satisfying
the following proposition:

Proposition 7. i) µ(A) ≥ 0 for any measurable subset A ⊂ G.
ii) µ(gA) = µ(A) for any measurable subset A and g ∈ G.

In particular gA is measurable again. One has associated with the measure
µ the corresponding Haar integral∫

G
f(g)dµ(g)

for any f : G −→ R, f continuous with compact support. For A measurable
as above, one has

µ(A) =
∫

G
χA(g)dµ(g)

where χA : G −→ R,

χA(x) =

0 for x /∈ A
1 for x ∈ A

is the characteristic function. This measure resp. its associated integral is
unique up to a positive scalar. Similarly one has right invariant Haar mea-
sures with their associated integrals.
In general, right and left invariant Haar measure are not the same. How-
ever for compact topological groups or more generally for topological groups
generated by compact open topological subgroups it is true, that one has a
bi-invariant Haar measure.

1.4 A review of finite dimensional algebras

In this section we remind the reader of some fundamental facts about central
simple algebras A over a field F . In the first part of this section the field F
will be arbitrary. Later on we consider the cases of F a finite field resp. a
local field in the sense of number theory. Finally we describe the classification
for the case that F is a global field. Quite generally we have

Theorem 8. (Wedderburn) Any central simple algebra A over a field F is
isomorphic to a matrix ring M(r,D), where D is a central division algebra
over F . r and D are uniquely determined by A.
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For a proof see [27].
The classification of central simple algebras is therefore reduced to the clas-
sification of central division algebras over F .

Definition 9. A splitting field F ↪→ F1 for a central simple algebra A over
F has the property, that the tensor product of A with F1 satisfies

A⊗F F1
∼= M(n, F1).

Remark. :
i) A splitting field F ↪→ F1 of A is also a splitting field for the unique division
algebra D over F , A ∼= M(r,D). Conversely any splitting field F ↪→ F1 of D
is also a splitting field of A.
ii) We have :

(A : F ) = (A⊗F F1 : F1) = n2.

Therefore it follows, that

r2(D : F ) = (A : F ) = n2

and in particular

(D : F ) = (
n

r
)2.

n
r

is a natural number.

iii) Splitting fields for A always exist. For example, any maximal com-
mutative subfield F ⊂ F1 ⊂ D, where (F1 : F ) = n

r
, is a splitting field. Such

fields F1 always exist, F1 can be even chosen to be a separable field extension
of F .
Splitting fields F1, F ↪→ F1, can be used to define the reduced norm of A
over F , which is a multiplicative map

rn : A −→ F.

This can be defined as follows:
We have the sequence of ring homomorphisms

ρ : A ↪→ A⊗F F1
∼−→ M(n, F1)

Combining this with the determinant map

det : M(n, F1) −→ F1,

det · ρ : A −→ F1

is a multiplicative map and it turns out that in fact Im(det · ρ) ⊂ F .
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Therefore we have the multiplicative map

(1.1) rn := det · ρ : A −→ F

It turns out, that rn is independent of the choice of the splitting field F ↪→ F1,
see for all of this [27]. This map is called the reduced norm of A over F .
There is a slightly different more direct construction of the reduced norm,
which is as follows:
Suppose F ↪→ F1 is a maximal commutative subfield of D, that is:

(F1 : F )2 = (D : F ).

We consider D as a F1-vector space of dimension (D : F1) = (D : F )1/2,
where F1 is acting on D from right. Then for a ∈ D,

La : D −→ D

x 7→ ax

is a F1-linear map of the F1-vector space D/F1. One has

rn(a) = det (La)

where La is considered as F1-linear map. The proof of this fact is easy by
using the splitting D ⊗F F1

∼−→ M(n, F1) and using the first description of
the reduced norm.

A special class of central simple algebras are cyclic algebras over F , which
can be described as follows:
Suppose, F1 ⊃ F is a cyclic Galios extension of F , Gal(F1/F ) =< σ >, where
σ is a specified generator of the cyclic Galios group Gal(F1/F ) of order n.
Furthermore α is an additional element, such that

A =
n−1⊕
i=0

αi · F1, with the rule

αxα−1 = σ(x)

for x ∈ F1. Additionally, the relation

αn = a ∈ F× holds.

It is well known, that such an algebra A is a central algebra of dimension n2

over F .
It is called a cyclic algebra over F and is denoted by (F1/F ;σ; a) where
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F1/F, σ, a are as above. Not all central simple algebras A over an arbitrary
field F are cyclic. This, however is true, if F is a local or global field from
number theory. For a general commutative field F , the classification of the
central simple algebras resp. skew fields over F is not known. However, for
the restricted class of fields related F to number theory, a classification is
available.

A) Suppose first, F is finite field.

Theorem 10. (Wedderburn) Any finite dimensional central division algebra
D over F is trivial, that is, it is isomorphic to F .

B) Next, we assume that F is a local field in the sense of number theory
(defined in the section 1.2). Then, any division algebra D of F , of dimension
(D : F ) = n2 is a cyclic algebra, which can be described as follows:
i) If F ∼= C, the field of complex numbers, then again D ∼= C is the only
division algebra over C up to isomorphism.
ii) If F ∼= R, the field of real numbers, the only possibilities, by a theorem of
Frobenius, are :

D ∼= R or D ∼= H,

the Hamiltonian quaternions. D ∼= H is a cyclic algebra over R ∼= F with
invariant (see iii) below) inv(D/F ) = 1

2
.

iii) Suppose now, F is a local nonarchimedean field, so we have a discrete
valuation on F . As already mentioned, F is either a finite extension of Qp,
the field of p-adic numbers, or F ∼= Fq((t)), the field of Laurent series over the
finite field Fq. The valuation of F extends uniquely to D. One has e = f = n
for ramification index e and residue field extension degree f . D is a cyclic
algebra, which can be described as follows:
D contains an extension F1 of F , (F1 : F ) = n, which is unramified. F1 is
unique up to conjugation. It is a cyclic Galois extension of F with canonical
generator the Frobenius automorphism Frob : F1 −→ F1, which is a lift of the
Frobenius automorphism of the corresponding cyclic residue field extension
f1 of f .
By Skolem-Noether one has d ∈ D×, such that:

dxd−1 = Frob(x) for x ∈ F1.

It is immediate to see, that dn ∈ F×.
We consider the valuations vF , vF1 , and vD related to F , F1 D. These are
taken as additive valuations and we have normalized vF , such that vF (π) = 1,
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for π a uniformizing element of F . Then :

vD(d) =
1

n
vD(dn) =

1

n
vF (dn) ∈ Q/Z

= i/n in Q/Z.

We denote
i/n =: inv(D/F )

the invariant of D over F . We have the classical :

Theorem 11. Two division algebras D1,D2 over F are isomorphic iff

inv(D1/F ) = inv(D2/F ).

All invariants i/n ∈ Q/Z occur, the corresponding division algebra D/F is
of dimension n2 ( where (i, n) = 1).

C) Finally, we assume, that F is a global field, X denotes the set of valuations
of F up to equivalence. Then one has the

Theorem 12. (Hasse - Brauer - Noether)
i) Two division algebras D1,D2 over F are isomorphic iff for all v ∈ X,

inv(D1 ⊗F Fv/Fv) = inv(D2 ⊗F Fv) holds.

ii) Any subset of invariants {λv ∈ Q/Z | v ∈ X} can be realized by a
division algebras D/F iff 1, 2), 3) below hold :

1)almost all λv = 0.

2)λv ∈ {0,
1

2
} for the archimedean valuations v ∈ X,

λv = 0 for v ∈ X, Fv
∼= C.

3)
∑
v∈X

λv = 0 in the abelian group Q/Z.

For references concerning all this, see [64], in particular chapters IX,X, XI.
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Chapter 2

Buildings of type Ãd−1

2.1 Introduction

A building is a geometrica-combinatorical objectB. uildings were introduced
by Jacques Tits in the 1960′s. They have been studied intensively from that
time to present. In general there are three types of buildings. Spherical Build-
ings, characterized by their finite apartments, have much in common with
compact symmetric spaces. Affine buildings, characterized by apartments
shaped like real affine space, can be compared to non-compact symmetric
spaces. Hyperbolic buildings have no such classical analogue. This note deals
almost exclusively with affine buildings. One example of non-compact sym-
metric spaces are the symmetric spaces SL(n,R)/SO(n,R), upon which space
the group SL(n,R) acts. What happens if we wish to replace R by a local
field F ? Nothing prevents us from forming and studing SL(n, F )/SO(n, F ),
but the global shape of the resulting object differs greatly from that of sym-
metric space. One reason for this difference is that SO(n, F ) is not a maximal
compact subgroup of SL(n, F ), nor indeed, is it compact at all. For many
purposes the correct analogue of the symmetric space is something completely
different, namely the affine building of SL(n, F ). This building is acted upon
by GL(n, F ), and if K is any maximal compact subgroup of GL(n, F ), then
the building contains a copy of GL(n, F )/K. It is stretching things only a
little to say that affine buildings were invented in order to play the role of
symmetric spaces for semi-simple matrix groups over nonarchimedean local
fields . The definition of affine building is strictly combinatorial, and there
do exist affine buildings which do not correspond to any semi-simple matrix
group. Nonetheless, understanding the relation to matrix groups is one of
the keys to understanding affine buildings. In particular, unless an affine
building is of dimension 1 or 2, or unless it is a Cartesian product and has a
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factor of dimension 1 or 2, it will be the affine building of some semi-simple
matrix group. In this chapter we discuss the affine buildings associated to
the matrix groups PGL(d,F).
The aim of this chapter is to give a very brief introduction, largely self-
contained and as elementary as possible to the subject of buildings of type
Ãd−1 related to non-archimeadian local fields. Let us mention also that there
are three main books devoted to buildings: ”Buildings” by K.S.Brown [9],
and ”Lectures on buildings”, by Mark Ronan [46] and the book of J. Garret.
There are also extensive survey articles by Mark Ronan [45]. These contain
long lists of references to earlier work, especially that of J. Tits.

2.2 Affine Buildings

In this section F denotes a local non archimedean field with valuation ring
O, (π) is the maximal ideal with specified uniformizing element π ∈ O.
F d denotes the d-dimensional vector space over F .

Definition 13. i) A lattice in F d is a O-submodule of F d, for which there
exists a basis {b1, . . . , bd} of F d such that L =

∑d
i=1Obi holds.

(ii) Two lattices L,L′ ⊂ F d are similar iff there exists λ ∈ F×, such that
L′ = λL. In this situation we denote L ∼ L′.

Remark. (i) If L is a finitely generated torsion free O-submodule of F d

satisfying F ·L = F d, then L is a lattice in the sense of the definition above.
(ii) Of course a similar definition as above can be made for arbitrary abstract
vector spaces V over F of finite dimension.

The group GL(d, F ) of F -linear isomorphisms of the vector space F d acts on
the set of lattices by

gL = {g(l)|l ∈ L}
for g ∈ GL(d, F ) = AutF (F d), L ⊂ F d an O-lattice.

Lemma 14. The action of GL(d, F ) is transitive on L where L is the set of
all lattices.

Proof. Denote L0 :=
⊕d

i=1Oei the standard lattice Od ⊂ F d, {e1, . . . , ed} the
standard basis of F d.
It is sufficient to show, that for an arbitrary lattice L ∈ L there exists
g ∈ GL(d, F ), g.L0 = L.
By definition, there exists a basis {b1, . . . , bd} of F d, such that L =

∑d
i=1Obi.

Define g ∈ GL(d, F ) by g(ei) = bi for i = 1, . . . , d. Obviously g.L0 = L
holds.
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Lemma 15. The action of GL(d, F ) on L induces a corresponding action
on L/ ∼, which is again transitive.

Proof. It is enough to remark , that L ∼ L′ implies g.L ∼ g.L′ for any
element g ∈ GL(d, F ).

Definition 16. A simplicial complex X∗ is given as
(i) a set X0 (the set of vertices of the simplicial complex X∗)
(ii) For any natural number d ≥ 0, the set of d-simplexes Xd where Xd ⊂
P(X0), the power set of X0 and for Y ∈ Xd one has |Y |= d + 1 for the
cardinality |Y | of Y .
(iii) If Y ∈ Xd and Y ′ ⊂ Y , Y ′ 6= ∅, then Y ′ ∈ Xd′ , d

′ ≤ d, where d′ + 1 =
|Y ′|.

Remark. (a) (iii) says the following:
If Y is a d-simplex, any nonempty subset Y ′ of (d′ + 1)-elements is a d′-
simplex of X..
(b) There are various concepts related to the concept of a simplicial complex
as ordered simplicial complex and simplicial set. To all of these, one can as-
sociate functorially a topological space |X∗| (the so called realization of X∗)
and X∗ gives in a certain sense a combinatorial description of the topological
space |X∗|. For all of these materials see [46, chapter 8].
We define now the so called affine building associated with the group GL(d, F )
(or if one prefers, the projective linear group PGL(d, F )). It will be a sim-
plicial complex of dimension (d− 1).

Definition 17. The affine building X∗ = X∗(F
d) (associated to the group

PGL(d, F )) is a simplicial complex given as follows:
(i) the set of vertices X0 is L/ ∼, the set of lattices up to similarity in F d.
(ii) If

L0 ⊃ L1 ⊃ . . . Lr ⊃ πL0

is a flag of (r + 1) different lattices in F d, then < L0, L1, . . . , Lr > is a r-
simplex in X∗, that is < L0, L1, . . . , Lr >∈ Xr. Any simplex of X∗ is obtained
in this way.

Remark. (i) As dimk (L0/πL0) = d, where k = O/πO is the residue field,
it follows:
dim (X∗) = d−1, that is, the maximum dimension of a simplex in X. is d−1.
(ii) There is an obvious action of GL(d, F ) on X∗, given by:

g < L0, L1, . . . , Lr >=< gL0, gL1, . . . , gLr >

for g ∈ GL(d, F ), < L0, L1, . . . , Lr >∈ X∗. This action induces an action of
PGL(d, F ), because the center of GL(d, F ) acts trivially on X∗.
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(iii) In the language of buildings the (d− 1)-dimensional simplices are called
chambers of X∗. They are given as complete flags:

L0 ⊃ L1 ⊃ . . . Ld−1 ⊃ πL0

of length (d− 1). As is shown in [9], X∗ is a building in the sense of [9].
In particular, the apartments of X∗(F

d) are given as follows: if F d = ⊕d
i=1Wi

is a direct decomposition of F d into one-dimensional linear subspaces,

< L > ∈ A(W1, . . . ,Wd) iff L = ⊕d
i=1(Wi ∩ L)

for a lattice L. A(W1, . . . ,Wd) is the full sub complex of X∗(F
d) generated

by these vertices. In more concrete terms one can give the following de-
scription of the set of A(W1, . . . ,Wd). Suppose Wi = Fωi, (i = 1, . . . , d),
such that {ω1, . . . , ωd} is a basis of F d. Then < L >∈ A(W1, . . . ,Wd) iff
L = ⊕d

i=1Oπn
i ωi for a system of appropriate n1, . . . , nd ∈ Z.

simplicial complex X∗(F
d) is simplicially contractible.

(ii) The associated topological space |X∗(F
d)| is contractible.

Proof. (i) Fix the vertex < L0 >=< Od >. We will describe a contraction
of X.(F

d) towards the vertex < Od >. Suppose < L > is an arbitrary vertex
of X.(F

d). We can assume (up to change by a scalar factor) L0 ⊆ L ⊆ πmL0

and m is maximal with this property. Then we define the map

L 7−→ T (L) := L+ πm−1L0 if 1 ≤ m.

If m = 0, we define T (L) = L0, as L = L0 exactly holds. One can check the
following points easily:
1) T induces a well defined map T0 : X0(F

d) −→ X0(F
d) on the vertices of

X.(F
d).

2) T0 induces a simplicial morphism

T : X.(F
d) −→ X.(F

d).

3) T is homotopic to the identity morphism.
For a proof of these facts see [46]. This shows i) in the proposition, ii) is an
immediate consequence.

Fixing a vertex < L > in the building X∗(F
d), we consider the link lkX∗(L)

of the vertex < L > in X∗(F
d). This is the simplicial complex, given by all

simplices ∆ ∈ X∗(F
d), such that ∆ does not contain < L > as a vertex, but

∆ ∪ L is a simplex in X∗(F
d).

Proposition 18. The simplicial complex lkX∗(L) is isomorphic to the Tits
building X∗(V ) associated to the vector space V := L/πL ∼= kd
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Proof. The vertices of the Tits building associated to the vector space V ∼= kd

are given as < W >, where 0 $ W $ V are the proper linear subspaces of
V . A r-simplex is given as < W0,W1, . . . ,Wr >, where W0 % W1 . . . % Wr

and the < Wj > are vertices. It is then immediate to see that the morphism

lkX∗(L) −→ X∗(V )

< L0, . . . , Lr >7−→< L0/πL, L1/πL, . . . , Lr/πL >

(where L ⊃ L0 ⊃ . . . ⊃ Lr ⊃ πL holds) is in fact an isomorphisms of
simplicial complexes.

Corollary 19. i) The Tits building of V resp. lkX∗(L) is a labeled simplicial
complex or building in the sense of [9] by the map < W >7−→ dim(W ) for
< W >∈ X∗(k

d). The set of labels is {1, . . . , dim(V )− 1}.
ii) lkX∗(L) is a labeled simplicial complex or even a building.

Proof. i) is clear, ii) follows from i) and the above proposition.

Remark. Of course the labeling in ii) depends on the choice of the lattice
L or the vertex < L >. It does not correspond to a global labeling of the
whole building X∗(F

d).
On the other hand there is the possibility to give a labeling to X∗(F

d).This
is only SL(d, F )-invariant, not GL(d, F )-invariant.It is obtained by fixing a
Haar measure µ on the commutative locally compact abelian group F d such
that µ(Od) = 1. For any lattice L ∈ L there is a lattice L′ ∼ L, such that

1 ≥ µ(L′) ≥ 1

|k|d

holds. This follows immediately from the formula

µ(πmL) =
1

|k|md
µ(L)

Furthermore , one has |µ(L′)| = |k|−d, 0 ≤ d′ ≤ d − 1. To a neighboring
vertex L′ to L one can define a labeling λ : X∗(F

d) −→ {0, 1, . . . , d − 1},
λ(L′) := d′.

Remark. This global labeling of X.(F
d) is different from the local labeling

considered before.

Suppose now, ∆1,∆2 ∈ X.(F
d) are two simplices of the building.
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Definition 20. A gallery in the building X.(F
d) is a sequence of chambers

[C0, . . . , Cr], such that Ci, Ci+1 are neighboring chambers in X.(F
d) for i =

0, . . . , r − 1.

Definition 21. The combinatorial distance between ∆1,∆2 ∈ X.(F
d) is given

as:

min {(r − 1) ∈ N ∪ {0} | ∃ a gallery [C0, . . . , Cr], ∆1 ⊂ C0,∆2 ⊂ Cr}

Proposition 22. ∆1,∆2 ∈ X.(F
d) are given as above, A is any apartment,

such that ∆1,∆2 ∈ A. Then any shortest gallery [C0, . . . , Cr] as in the defi-
nition above satisfying C0, Cr ∈ A, is contained completely in A.

Proof. see [9, IV.4.Prop., p.88]
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2.3 Some More Facts About Affine Buildings

(a). Volumes of Lattices :
Discrete lattices in Rd have Lebesgue measure zero in Rd, but lattices over
local fields have positive Haar measure (or volume). The standard lattice
has measure

µd(L0) = µd(Od) = µd(O ×O × . . .O) = 1

for the d-fold product measure µd = µF d on F d. It follows from elementary
matrix theory arguments that

(2.1) µd(g(L)) = |det (g)|F µd(L)

for L ∈ L and g ∈ GL(d,F ). In particular

µd(g(Od)) = |det(g)|F(2.2)

µd(aL) = |det(aI)|F µd(L) = |a|dF µd(L), a ∈ F.(2.3)

(b). Simultaneous diagonalization of lattices :
Let F ,O, G = GL(d,F ), and K = GL(d,O) be as before and π a uni-
formizer. The purpose of this subsection is to prove the following theorem:

Theorem 23. Let L1, L2 be any pair of lattices in F d. Then, there exists a
unique d-tuple of integers
−∞ < n1 ≤ n2 ≤ . . . ≤ nd < ∞ and a(non-unique) basis {v1, v2, . . . , vd} in
F d such that

L1 = Ov1 +Ov2 + . . .+Ovd and(2.4)

L2 = Oπn1v1 +Oπn2v2 + . . .+Oπndvd(2.5)

Proof. Let for any m ∈ Z define m− as follows:

m− =

 0 if m ≥ 0

−m if m < 0.

Consider now the quotient groups

S(j) := (L1 + πjL2)/L1 for −∞ < j <∞.

Now the number of elements in S(j) is n(j) =
∏d

i=1 q
(ni+j)− where q =

card(O/πO) as before. The function n(j) determines the integers ni as
claimed in the theorem, up to their order. This implies the uniqueness of the
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expressions 2.4 and2.5. It remains to prove that, for every g ∈ G, there exists
a diagonal d×d matrix D = diag(πn1 , πd2 , . . . , πnd) such that KgK = KDK.
First note that, if g ∈ G, then KgK = Kg1K where g1 is derived from g by
one of the following operations (by elementary divisor theory):
(i) transposing two rows or two columns,
(ii) multiplying a row or column by a constant in O×

(iii) subtracting an O-multiple of row from another row, or an O−multiple
of a column from another column.
Since each of these operation is equivalent to either pre- or post-multiplying
g by a matrix in K, the proof now proceeds by induction. The matrix entries
gij of g of maximal norm can be moved to the (1, 1) position by operations
of type (i). The matrix entries can be changed into pn1 for some integer
n1 by (ii). Then the remainder of the first row of the matrix, and also the
remainder of the first column, can be set equal zero by (iii). We now proceed
inductively on the lower block by first moving an element of maximal norm
to (2, 2) position, etc. This completes the proof of Theorem 23.

(c). The underlying graph of a building X∗(F
d) :

Associated with the building X∗(F
d) is its underlying graph, consisting only

the set of vertices X0(F
d) and the set of edges (1-simplices) X1(F

d). One
has the usual distance function d of a graph. In particular, for neighboring
vertices x, y ∈ X0(F

d) one has d(x, y) = 1. One has the :

Proposition 24. : A set {x0, . . . , xs} ⊂ X0(F
d) is an s-simplex in X∗(F

d)
iff d(xi, xj) = 1 holds for all i, j ∈ {0, . . . , s}, i 6= j.

Proof. If {x0, . . . , xs} is an s-simplex in X∗(F
d), d(xi, xj = 1 for the xi, xj

above obviously holds. We show the converse: We can choose lattices Lj ⊃
F d, such that < Lj >= xj for j ∈ {0, . . . , s} and additionally

L0 ⊃ Lj ⊃ πL0

holds for j ∈ {0, . . . , s}. Upon reordering indices, we can additionally as-
sume, that

µ(L0) > µ(L1) . . . > µ(Ls) > µ(πL0)

holds. Considering arbitrary Li, Lj for i ≤ j, we can find a ∈ F×, such that

Li % aLj % πLi

holds. We obtain for the volumes

1 6
µ(Li)

µ(Lj)
6 |π|−d
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and

1 <
µ(Li)

µ(Lj)
= |a|−d µ(Li)

µ(aLj)
< |π|−d

that is:

|a|d <
µ(Li)

µ(Lj)
< |a

π
|d

and alltogether

|π|d < |a|d < |π|−d.

But then it follows, that a ∈ O×, that is:

Li % Lj % πLi

and alltogether in particular

L0 ⊃ L1 ⊃ . . . ⊃ Ls ⊃ πL0,

that is, < L0, L1, . . . , Ls > is a simplex in X∗(F
d).

(d). Description of a standard appartment:
We want to give an explicit numerical description of an appartmentA(W1, . . . ,Wd),
where the Wi ⊂ F d are one-dimensional linear spaces and ⊕d

i=1Wi = F d is a
direct sum decomposition. It suffices to assume for this purpose, that Wi =
Fei, {e1, . . . , ed} the standard basis of F d. A vertex < L >∈ A(W1, . . . ,Wd)
in this case iff

L = ⊕d
i=1(L ∩Wi) = (Oπn1e1 ⊕ . . .⊕Oπnded).

Therfore L is given by the vector v(L) = (n1, . . . , nd) ∈ Zd, a vertex < L >
is uniquely given by the residue class of (n1, . . . , nd) ∈ Zd/Z(1, . . . , 1).
we are going to give a description of the chambers < L0, . . . , Ld > in the
appartment A(W1, . . . ,Wd). Denote

v(Lj) := (n
(j)
1 , . . . , n

(j)
d )

v(< Lj >) := (n
(j)
1 , . . . , n

(j)
d ) mod Z(1, . . . , 1)

Fixing the lexiographical order on the abelian group Zd, we can denote rep-
resentatives Lj ∈< Lj >, such that, upon reordering indices j ∈ {0, . . . , d},
we can assume that

v(L0) < v(L1) < . . . < v(Ld) < v(L0) + (1, . . . , 1)
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holds. This is equivalent to

L0 ⊃ L1 ⊃ . . . < Ld ⊃ πL0.

Finally, if we went to fix types, such that µ(L0) = µ(Od), the standard
lattice, we have a unique choice of j ∈ {0, . . . , d}, such that

logq µ(Lj) ≡ 0 mod (d)

Upon replacing Lj by an appropriate representative παLj, we can assume,
that

µ(παLj) = µ(Od) = 1.

We obtain the simplices

< παLj, π
αLj+1, . . . , π

αLd, π
α+1L0, . . . , π

α+1Lj−1, . . .)

satisfying

i) παLj ⊃ παLj+1 ⊂ . . . ⊃ πα+1Lj−1 ⊃ πα+1Lj

ii)µ(παLj) = 1

and correspondingly for the other volumes.

2.4 Combinatorics and definition of Ramanu-

jan Hypergraph

Introduction
For a finite regular graph, the eigenvalue λ of the adjacency matrix which
has the second largest absolute value is of particular importance in esti-
mating different invariants of the graph such as girth, independence number
and expansion coefficient. A large expansion coefficient is determined by
a small λ as shown in [33]. Lubotzky, Philips and Sarnak, in [33], have
constructed a family of expander graphs called Ramanujan graphs. Asymp-
totically, their graphs have the smallest possible λ. They have called these
expanders Ramanujan graphs, because all eigenvalues, except the largest (of
course in absolute value), satisfy Ramanujan’s conjecture (or more precisely
Ramanujan-Petersson conjecture).
We shall give at first the definition of regular Ramanujan hypergraphs. These
hypergraphs are a natural generalization of Ramanujan graphs. The eigen-
values of the adjacency operators satisfy inequalities associated of a higher
dimensional version of Ramanujan-Perterson conjecture. In order to obtain a
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natural and simple definition of Ramanujan hypergraphs, first we need some
combinatorial definitions and concepts. Our main references here are [4] and
[5].

Definition 25. A graph is a pair of sets (VX , EX) such that:
EX ⊂ {{x, y}|{{x, y} ⊂ VX} and VX 6= ∅.
The set VX is the set of vertices of X and EX is the set of edges of X. The
vertices x and y are said to be adjacent if {x, y} is an edge. The number of
vertices adjacent to x is denoted by d(x) and is said to be the degree of x. If
every vertex of X has degree s, then x is said to be s-regular.

Definition 26. iIf X is a graph with a finite number of vertices {x1, x2, . . . , xn},
The adjacency matrix A = [aij] of X is the n×n matrix with entries aij equal
1 if xi is adjacent to xj and 0 otherwise.
ii) Denoting L2(VX) (or L2(X)) the space of functions f : VX −→ C with the
usual L2-norm and with standard basis the set of delta functions δv, v ∈ VX ,
the adjacency matrix induces an operator

A : L2(VX) −→ L2(VX)

with respect to the basis {δv|v ∈ VX}.

Definition 27. A hypergraph X is a set V together with a family Σ of
subsets of V . The elements of V and Σ are called vertices and faces of
the hypergraph. If S ∈ Σ, the rank of S is the cardinality |S| of S and the
dimension of S is given by |S| − 1.

We have seen the definition of labeled simplicial complex, and chamber com-
plex in chapter one. So we are ready to give the definition of labelable
hypergraph.

Definition 28. A chamber complex is a set ∆, whose elements are called
chambers, together with a set {∼i : i ∈ I} of equivalence relations on ∆. Call
c, c′ ∈ ∆ i-adjacent if c∼ic

′. In this situation we refer to ∆ as a chamber
complex over I

Definition 29. Suppose that c and c′ are in ∆, and that c0 = c, c1, . . . , cs = c′

is a finite sequence of chambers such that ck−1 is adjacent to and distinct from
ck for each k ∈ {1, 2, . . . , s}. Then (c0, c1, . . . , cs) is called a gallery from c
to c′. If ck−1∼ikck for each k ∈ {1, 2, . . . , s}, then we say that the gallery
is of type (i1, i2, . . . , is)

Very occasionally we need to consider slightly more general galleries, where
the requirement that ck−1 6= ck for each k is dropped. Such things will be
called stutter-galleries.
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Definition 30. A simplicial complex is a set X together with a set S
of subsets of X such that

1. each singleton subset {x} of X belongs to S.
2. if S ∈ S and if A ⊂ S, thenA ∈ S;

The sets S ∈ S are called simplexes or simplces. If S ∈ S and A ⊂ S,
the simplex A is called a face of S. If s is a simplex and S is not a proper
subset of any simplex S ′, we call S a maximal simplex, or a chamber.

Definition 31. A simplicial complex X is called labeled, if there is a set
I of ”labels” or ”types”, so that each vertex v has a type t(v) ∈ I, and
such that each chamber has exactly one vertex of each type. In other words,
t : X −→ I is map such that for each chamber C, the restriction t|C of t to C
is a bijection C −→ I. This implies that each chamber has exactly Card(I)
vertices.

Under suitable conditions one can obtain labeled simplicial complex from a
chamber complex and vice versa. (see [46] and [45]) for more detail.

Remark. Specially our building X∗(F
d) has satisfies all conditions in view

of above correspondence between chamber and labeled simplicial complex.

Definition 32. A hypergraph X is labelable if it is a chamber complex and
there exist a set I and a function which assigns to each vertex of X an element
of I in such a way that the vertices of every chamber are mapped bijectively
onto I.

Definition 33. Let X be a labelable hypergraph X with the label set I =
{0, 1, . . . , s}, if every vertex x ∈ X has exactly nk number of neighbor of type
k, then X is called a (n1, n2, . . . , ns)-regular hypergraph. In this situation
we can associate to any vertex x of X a function tx defined by tx(y) :=
t(x)− t(y) mod d. where t is the label map defined as the definition (31).

denoted by X.

Definition 34. Let X be a (n1, n2, . . . , ns)-regular hypergraph. We define
for every k ∈ {0, 1, . . . , s} the kth adjacency matrix A(k) as follows : denote
for every k ∈ {0, 1, . . . , s} and for any two vertices x,y

(2.6) ε(k)(x, y) =

1 if tx(y) = k

0 otherwise

now A(k)(i, j) := ε(k)(xi, xj)A(i, j) where A(i, j) is the ijth entries of the
adjacency matrix of underlying graph X.
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We are ready now to give our main definition in this thesis, namely the def-
inition of a Ramanujan hypergraph.

Definition 35. A (n1, n2, . . . , nd−1)-regular hypergraph X is called a Ra-
manujan hypergraph with the bound (c1, c2, . . . , cd−1) where for all
k ∈ {1, 2, . . . , d− 1}, ck are positive real number, if every eigenvalue λ(k) of
the kth adjacency matrix A(k) of X is either λ(k) = nk or |λ(k)| 6 ck.

As we will see in the next chapter the structure Γ\X0(F
d) will be a finite

regular hypergraph. These quotients would be our main object of study in
the next chapters.
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Chapter 3

Representation Theory and
Hypergraphs

3.1 Introduction

In this section we describe our candidates for Ramanujan hypergraphs in gen-
eral. The main point to be explained is the relation between the different ad-
jacency operators in a hypergraph and the corresponding Hecke operators for
certain automorphic representations, which are related. To really conclude
the Ramanujan property, one has to use the relevant results for automorphic
representations. Here the case d = 2 is easier than the case of general d,
because only in this case there is a fully worked out Jacquet-Langlands cor-
respondence between automorphic representations of unit groups of division
algebras and general linear groups over, which should allow to relate the situ-
ation to automorphic representations of the general linear group and thereby
to the recent results of Lafforgue, Instead we use a result of W.Li resp. L.
Clozel, which work with the theory of D-elliptic sheaves and does not make
use of the Jacquet-Langlands correspondence.
In section 2.1. we explain our situation, 2.2. gives a short review of some
fundamental facts concerning automorphic representations. In particular the
Hecke algebra and the standard generators of the local Hecke algebras will
be explained. 2.3. identifies the adjacency operators of the quotient complex
resp. quotient hypergraph with the corresponding Hecke operators of the
automorphic situation. Finally the Ramanujan property is discussed in this
section.
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3.2 Quotient hypergraphs, the general situa-

tion

F = Fq(t) is again a rational function field over Fq. {p1
, . . . , p

m
} is a set of

places of F , such that pm = ∞, p is a prime of degree one of F , such that

p /∈ {p
1
, . . . , p

m
}

p = p(t) is an irreducible polynomial, such that p = (p(t)). We have the
orders Fq[t][

1
p
] as well as

O(p)
F := {x ∈ Fq[t][

1

p
] | v∞(x) > 0}

D is a central division algebra over F of dimension d2, which is ramified
exactly at {p

1
, . . . , p

m
}. For simplicity we assume, that D is totally rami-

fied in ∞, such that there exists a unique valuation v∞ of D extending the
corresponding valuation of F . OD is a maximal order of D over Fq[t]. Then

OD[
1

p
] := Fq[t][

1

p
]⊗Fq [t] OD

is a maximal order in D over Fq[t][
1
p
], similarly

O(p)
D := {x ∈ OD[

1

p
] | ṽ∞(x) > 0}

(where ṽ is standard extension of v into D) is a maximal order in D over

O(p)
F .

Definition 36.

Γ(1) :=

(
OD[

1

p
]

)×
/Z,

where Z is the center of the group OD[1
p
]
×
, the unit group of the maximal

order OD[1
p
]

We are considering in the following congruence subgroups Γ of Γ(1). We
have the embedding

Γ(1) ↪→ D×
p /Z

∼= GL(d,Fq(t)p)/Z

as obtained earlier and the corresponding action of the different groups on
the Bruhat-Tits building X∗(Fq(t)p

d).
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We consider now only congruence subgroups Γ ⊂ Γ(1), which are torsion
free. In particular their action on X∗(Fq(t)p

d) is fixpoint free. Again the
quotient complex (or quotient hypergraph, if preferred) is a locally labeled
complex resp. locally labeled hypergraph. We have quite generally :

Theorem 37. The quotient complex

Γ\X∗(Fq(t)p
d)

is a finite complex.

Proof. This follows from Godement’s criterion.

Remark. Of course here one can argue also directly, because the class num-
ber of a maximal order OD (and all the variants above) is finite. We consider
the C-vector space of C-valued cochains:

C0(Γ\X∗(Fq(t)p
d)) =: C0(Γ\X∗) := Map(Γ\X0;C).

Because X∗ is a locally labeled simplicial complex, and the action of Γ is
compatible with the local labeling, also Γ\X∗(Fq(t)p

d) is a locally labeled
simplicial complex.

Definition 38. For each i, 1 6 i 6 d−1, we have the i-th adjacency operator

A(i) : C0(Γ\X∗) −→ C0(Γ\X∗)

f 7−→ A(i)(f)

where

A(i)(f)(x) =
∑

t(y;x)=i

f(y)

Remark. We remind, that t(y;x) = i means:

y ∈ Γ\X0, such that < x, y > ∈ Γ\X1,

that is, x and y are neighbors resp. there is a one-simplex joining them and
furthermore the type of the vertex y with respect to x is i.
Next, we give an adelic description of the set Γ\X0 above and similarly of
the associated space of C-valued functions. Denote AF the adeles over F ,
similarly

D×(AF ) :=
∏

v∈|F |
(D×(Fv);D

×(Ov))
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the adeles of the multiplicative group of D, D×. Z denotes in this context
again the center of D×(A), we have ( in the sense of algebraic groups)

(D×/Z)(AF ) = D×(AF )/Z

The order OD defines local orders OD,r ⊂ Dr for all primes r 6= ∞. We have
identified earlier

Dp −̃→ M(d, Fp)

and thereby O×
D,p/Z with the stabilizer of the standard lattice

L0 = Od
p = (Fq[t]p)

d ⊂ F d
p .

Definition 39.
i) We have

K(1) :=
∏

r 6=∞,p

(O×
D,r/Z)×D×

∞/Z,

an open subgroup of (D×(AF )/Z.
ii) Any congruence subgroup Γ ⊂ Γ(1) of finite index defines in a natural
way a congruence subgroup K ⊂ K(1) of finite index.

Proposition 40. There is a natural bijection

Γ\X0(Fq(t)
d
p) −̃→ D×\D×(AF )/Z.K.D×(Op)

Proof. We can identify

X0(Fq(t)
d
p) −̃→ D×(Fp)/D

×(Op).Z.

Therefore we obtain a mapping

X0(Fq(t)
d
p) −→ D×(AF )/Z.K.D×(Op)

This mapping induces a map

Γ\X0(Fq(t)
d
p) −̃→ D×\D×(AF )/Z.K.D×(Op).

We construct now an inverse map. Suppose, given an adele (xv) ∈ D×(AF ),
and thereby the doubled class

D×(xv)(Z.K.D
×(Op)).

Using strong approximation theorem and also,that the class number of Fq[t]
is one, we can find γ ∈ D×, such that

D×(γxv)v∈|F |(Z.K.D
×(Op)),
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is of the form

D×(yv)(Z.K.D
×(Op)),

where

yv =

1 for all v 6= p

yp ∈ D×(Fp) at p

We construct the inverse map then as

D×(γxv)v(Z.K.D
×(Op)) 7−→ Γ.(yp).Z.D

×(Op)) ∈ Γ\D×(Fp)/D
×(Op).Z.

It is immediate to see, that this gives a well defined map, where one has to
take into regard additionally, that we have, consideringD×(Fp) as a subgroup

of D×(AF )

(3.1) D×(Fp) ∩ K = Γ

and

X0(Fq(t)
d
p) −̃→ D×(Fp)/D

×(Op)Z.

We have therefore immediately

Corollary 41. There is a canonical identification

C(Γ\X0(Fq(t)
d
p);C) −̃→ C(D×\D×(AF )/Z.K.D×(Op);C).

In particular the Hecke-algebra of biinvariant functionsH(D×(AF )//K.D×(Op))

is acting on C(Γ\X0(Fq(t)
d
p);C), by convolution. As a subalgebra the spheri-

cal Hecke algebra H(D×(Fp)//D
×(Op)) is acting on C(Γ\X0(Fq(t)

d
p);C).

Proof. The identification of the space of functions follows immediately from
Proposition 40. The assertions concerning the action of the Hecke algebra
are also obvious, but there will be some discussion in 3.3.

3.3 Adjacency operators and Hecke opera-

tors

In the last section we had identified the set of vertices

Γ\X0(F
d
p )
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of the quotient hypergraph associated to the discrete group Γ ⊂ D×(Fp)/Z
with the set of adelic double classes

D×(F )\D×(AF )/Z.K.D×(Op).

Correspondingly we have an identification of the spaces of functions

C(Γ\X0(Fq(t)
d
p);C) −̃→ C(D×(F )\D×(AF )/Z.K.D×(Op);C).

The Hecke algebra associated to K.D×(Op) in D×(AF ) is acting and in par-
ticular the local spherical Hecke algebra

H(D×(Fp);Z.D
×(Op)).

For the convenience of the reader we remind at this point about some basic
concepts of the theory of automorphic representations in connection with the
situation above. So,

C(D×(F )\(AF )/Z.K.D×(Op);C)

is a finite dimensional subspace of the space of functions

Cc(D
×(F )\D×(AF )/Z;C)

On this infinite dimensional C-vector space there is an obvious smooth action
R of the locally compact topological group D×(AF ) by

R(x)(f)(g) = f(gx),

where g ∈ D×(F )\D×(AF )/Z, x ∈ D×(AF ) resp. (D×/Z)(AF ) (as wanted)
and f ∈ C∞c (D×(F )\D×(AF )/Z;C) the space of locally constant functions
on D×(F )\D×(AF )/Z, with compact support. We have the identification of
the subspace of K.D×(Op)-invariants:

Cc(D
×(F )\D×(AF )/Z;C)

K.D×(Op) −̃→ C(D×(F )\D×(AF )/Z.K.D×(Op);C).

There remains the action of the Hecke algebra of biinvariant functions

H(D×(AF )//K.D×(Op))

∼= (⊗r 6=p,∞H(D×(Fr)//Z(Kr))⊗H(D×(Fp)//D
×(Op))

where
K = (

∏
r 6=p,∞

Kr)×D×(F∞)×D×(Op).
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The (local) spherical Hecke algebra

H(D×(Fp)//Z.D
×(Op)) ∼= H(GL(d;Fp)//Z.GL(d;Op))

has as C-vector space the generators

GL(d;Op) diag(pn1 , . . . , pnd) GL(d;Op).Z/Z

where we have

(n1, . . . , nd) ∈ Zd/Z · (1, . . . , 1), n1 6 n2 6 . . . 6 nd.

We denote the set

A+ := {(n1, . . . , nd) ∈ Zd/Z · (1, . . . , 1) | n1 6 n2 6 . . . 6 nd}.

Proposition 42. As a C-vector space

H(D×(Fp)/Z.D
×(Op)) ∼=⊕

(n1,...,nd)∈A+

(
H(D×(Op)) diag(pn1 , . . . , pnd) H(D×(Op)) ∗ Z/Z

)

The different Hecke algebras form, as the word indicates, algebras under the
convolution of functions, that is

(f1 ∗ f2)(x) :=
∫

D×(Fp)/Z
f1(xy

−1d)f2(y)µ(y)

where dµ denotes the Haar measure on D×(Fp)/Z, In particular, we have the
double classes

D×(Op)) diag(1, . . . , 1, p, . . . , p) D×(Op)) ∗ Z/Z

(i-times 1 above, at least one p occurring) and the associated characteristic
functions χp,i.

Definition 43. The Hecke operator Tp,i is given as the convolution operator

C(D×(F )\D×(AF )/Z.K.D×(Op);C) −→
C(D×(F )\D×(AF )/Z.K.D×(Op);C)

f 7−→ f ∗ χp,i =: Tp,i(f).
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We will now identify the Hecke operators Tp,i with the corresponding adja-
cency operators. The Hecke operators Tp,i can be seen best using the isomor-
phism

C(D×(F )\D×(AF )/Z.K.D×(Op);C) −→ C(Γ\D×(Fp)/Z.D
×(Op);C)

As the Hecke operators Tp,i are acting by convolution from the right side,
they will be commute with the action of Γ from the left side. It is therefore
enough to compute the action of the Hecke operators Tp,i on the space of
functions

C(D×(Fp)/Z.D
×(Op);C) resp. C∞(D×(Fp)/Z.D

×(Op);C).

As it will turn out, the Hecke operators will be defined locally and act there-
fore on both spaces. We have the identification

D×(Fp)/Z.D
×(Op) −̃→ GL(d;Fp)/GL(d;Op) ∗ Z

−̃→ X0(F
d
p ).

Therefore, the action of the Hecke algebra H(D×(Fp)//Z ∗D×(Op)) can be

seen also on the space of functions C(X0(F
d
p );C) as well as Cc(X0(F

d
p );C).

Theorem 44. i) The Hecke operator Tp,i equals the adjacency operator A(i)

for each i = 1, . . . , d− 1.
ii) The Hecke algebra at p and the algebra generated by the adjacency opera-

tors A(i) (i = 1, . . . , d− 1) act equally.
iii) The action of both algebras commutes with the action of

GL(d;Fp) ∼= D×(Fp).

Proof. iii) is obvious. For the case of adjacency operators it follows directly
from the formulas for the A(i), acting on the space of functions C(X0(F

d
p );C).

For the case of the Hecke algebra it follows, because GL(d;Fp) ∼= D×(Fp) is
acting from the left side, where as the Hecke operators are given by convo-
lution with biinvariant functions from the right.
i) As a GL(d;Fp) ∼= D×(Fp)-module, Cc(X0(F

d
p );C) is generated by the char-

acteristic function

χD×(Op)∗Z/Z = χL0 ,

under the identification above. But
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χD×(Op).Z/Z ∗ Tp,i

= χD×(Op).Z/Z ∗ χD×(Op)diag(1, . . . , 1, p, . . . , p)χD×(Op).Z/Z

= χD×(Op)diag(1, . . . , 1, p, . . . , p) χD×(Op).Z/Z

=
∑

type(L;L′)=i

χL′

= A(i)(χL)

Here we have used, that χD×(Op).Z/Z is the unit element of the Hecke algebra

H(D×(Fp)//Z.D×(Op)). This altogether shows i).
ii) is an immediate consequence of i), as both algebras of operators are
generated by the Hecke operators Tp,i resp. the A(i) (i = 1, . . . , d− 1).

3.4 The Ramanujan Property

As is well known, one can decompose the representation space

Cc(D
×(F )\D×(AF )/Z;C) =

⊕
π

Vπ

into a direct sum of irreducible automorphic representations, (Vπ, π) ofD×(AF ).
The subspace

C(D×(F )\D×(AF )/Z.K.D×(Op);C) ⊂ C(D×(F )\D×(AF )/Z;C)

can be written then in the form

C(D×(F )\D×(AF )/Z.K.D×(Op);C)

=
⊕
π

(Vπ)H(D×(AF )//Z.K.D×(Op))

=
⊕
π

(Vπ)H(D×(A(p)
F )//Z.K) ⊗ (V

D×(Op)
p )

decomposing the representation

Vπ = (Vπ
p ⊗ Vp)

and correspondingly
(Vπ)H(D×(AF )//Z.K.D×(Op))
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∼= (V
H(D×(A(p)

F )//Z.K)

π
(p) )⊗ (V

D×(Op)
p ).

Therefore, only those representations π occur in the decomposition, for which

V
D×(Op)
p 6= 0

If this is the case, Vp is a spherical representation. As the local Hecke algebra

H(D×(Fp)//D
×(Op)) is commutative, it follows that V

D×(Op)
p has to be one-

dimensional. The action of

H(D×(Fp)//D
×(Op)),

is then given by a character ( ring homomorphism )

χπp : H(D×(Fp)//D
×(Op)) −→ C

into the field of complex numbers. In particular,

χπp(Tp,i) ∈ C

and the Ramanujan property of the automorphic representation at p deals
with these. We have to make one further remark:
Obviously in

C∞(D×(F )\D×(AF )/Z;C),

we have the subrepresentations given by characters

χ : D×(F )\D×(AF )/Z −→ C×.

In particular the trivial character, corresponding to the subspace of constant
functions, occurs as D×(AF )-invariant subspace.

Definition 45. i) An irreducible automorphic representation π, such that πp

is a spherical representation, is said to satisfy the Ramanujan property at p,
iff the eigenvalues χπp(Tp,i) satisfy

|χπp(Tp,i)| 6
(
d

i

)
q

i(d−i)
2 |σi(z1, . . . , zd)|,

where z1, . . . , zd ∈ C are complex numbers with absolute value |zj| = 1 for
j = 1, . . . , d and σi(z1, . . . , zd) i-th elementary symmetric polynomial.
ii) The Ramanujan property at the prime p holds for the representation

C∞(D×(F )\D×(AF )/Z;C),

if it holds in the sense above for all automorphic representations π comple-
mentary to the invariant subspaces, generated by the multiplicative charac-
ters.
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Theorem 46. (W.Li.) The Ramanujan property at p holds in the sense of
Definition 45 (i).

Corollary 47. The quotient hypergraphs Γ\X0(F
d
p ) are Ramanujan hyper-

graphs (simplicial complexes) in the sense of Definition 45 in Chapter 2.

Remark. In the case d = 2, the Ramanujan property can be shown by using
the so called Jacquet- Langlands correspondence between automorphic repre-
sentations of D×(AF ) (then D is a quaternion algebra) and automorphic rep-
resentations of GL(2; AF ), not given by multiplicative characters. For these,
the Ramanujan property is a consequence of results of Drinfeld [21]. Though
in our situation one has now the recent results of L.Lafforgue, showing the
Langlands correspondence for GL(d; AF ) for arbitrary d and in particular the
Ramanujan property for cuspidal automorphic representations, one can not
conclude immediately here the Ramanujan property. What is missing, is a
completely worked out Jacquet- Langland correspondence as above for d = 2.
Nevertheless, due to a trick from L.Clozel, one can conclude the Ramanujan
property by working with the moduli scheme of D-elliptic modules [32], in-
stead of working with the moduli scheme of shtukas. Concerning this, then
reader has to consult [65]. We close this chapter indicating another method
to show the Ramanujan property. We use a theorem of Arthur and Clozel
[1, Theorem 4.2.], which gives the Jacquet-Langlands correspondence for the
case d a prime number. After that we can use the recent result of Lafforgue
to conclude the Ramanujan property for this case. It might be mentioned
that we found this approch at a time, when the preprints [65] and [36], [35]
avilable to us.

Assume d is a prime number, f is an irreducible element of Fq[t] with (f) 6=
(p) and different from all other primes in which D = Fqd(τ) is ramified . The
canonical homomorphism

Fq[t]
1

p
] −→ OD[

1

p
]/fFq[t][

1

p
],

induces following homomorphism :

OD[
1

p
] −→ OD[

1

p
]/fOD[

1

p
],

where as before OD = Fqd{τ}. So we obtain group homomorphism

α
(p)
f : Γ(1) −→ (OD[

1

p
]/fOD[

1

p
])×/Z.

Recall that Γ(1) = (OD[1
p
])×/Z. We define Γ

(p)
f := kerα

(p)
f . So Γ

(p)
f is a

normal subgroup of Γ(1) of finite index and we have:
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Theorem 48. (Main Abstract Theorem)

(1) Γ
(p)
f \X∗(Fq(t)

d
p) is a finite (n1, . . . , nd−1)-regular graph with

ni = number of i-dimensional subspaces of Fq̃ where q̃ = qdeg p,

for i = 1, . . . , d− 1, more precisely

ni =

(
d

i

)
q̃

:=

∏d
m=d−i+1(q̃

m − 1)∏i
m=1(q̃

m − 1)
.

(2) Γ
(p)
f \X∗(Fq(t)

d
p) is a Ramanujan hypergraph in the sense of Definition

45 from Chapter 2,i.e. It is Ramanujan with the bound (c1, . . . , cd−1) where

ci =
(

d
i

)
q

i(d−i)
2

deg p for i = 1, . . . , d− 1.

Proof. By Theorem 37 the quotient complex (hypergraph) Γ
(p)
f \X∗(Fq(t)

d
p) is

a finite. the expression about regularity is inherited from the structure of the
Bruhat-Tits Building X∗(Fq(t)

d
p). So (1) is done. Following isomorphisms are

known from Chapter 3:

C(D×\D×(AF )/Z.K.D×(Op);C) −̃→ C(Γ\D×(Fp)/Z.D
×(Op);C)

C(GL(d;Fp)/GL(d;Fq[t]p).Z;C) −̃→ C(PGL(d;Fp)/PGL(d;Fq[t]p);C)

−̃→ C(X0(F
d
p );C).

which hold for all congruence subgroups of Γ(1). in particular for Γ
(p)
f . Thus

we define first associated to f the congruence subgroup

Jf := ker (O×
D,f/Z −→ (OD,f/fOD,f )

×/Z),

and we define

K :=
∏

r 6=p,∞,f

(O×
D,r/Z).D×/Z(Fp).D

×/Z(F∞).Jf ,

and let M := D×/Z.K

Remark. For any group G here, we use notation G(1) for the subgroup of G
of elements with reduced norm 1.

Applying Strong approximation Theorem two times sequentially, we see that
D×/Z(A).FA (FA, diagonal embedding of F in A) is a finite index subgroup
of M. This plus

|D×/Z(A)/D×/Z(A).FA| <∞ ,
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shows |D×/Z(A).FA/M| <∞. Also

[D×/Z\D×/Z(A)/K : D×/Z\M/K] <∞ .

But as we have seen by 3.1

Γ
(p)
f = D×(Fp) ∩ K.

So D×/Z\M/K ∼= Γ
(p)
f \D×

∞/ZD
×(Fp)/Z and finally

[D×/Z\D×/Z(A)/K : Γ
(p)
f \D×

∞/Z.D
×(Fp)/Z] <∞ .

Let π∞ ⊗ πp be an irreducible representation of the right regular represen-

tation of D×/Z(Fp)/Z.D
×/Z(Fp) in C(Γ

(p)
f \D×/Z(Fp)/Z.D

×/Z(Fp). There

is an irreducible subrepresentation of D×/Z(A)F ) in π̃ = ⊗rπ̃p such that
π̃p = πp and π̃∞ = π∞.

Suppose πp does not occur in V
D×/Z(Op

p (,i.e. It is not one-dimensional). So

π̃ occurs in C(D×/Z\D×/Z(AF );C). Since d is assumed a prime number, we
can apply the Weak Lifting Theorem [1, Theorem 4.2.], and obtain a cuspi-
dal subrepresentation ρ∞ ⊗ ρp of C(PGL(d;Fp)/PGL(d;Fq[t]p);C), which is
cuspidal and ρp = πp. By recent reslt of L. Lafforgue [26] we have

|Tp,i| <
(
d

i

)
q

i(d−i)
2

deg pσi(z
′
1, . . . , z

′
d) ,

where z′1, . . . , z
′
d ∈ C are complex numbers with absolute value |z′j| = | zj

q(d−1)/2 | =
1 for j = 1, . . . , d and σi(z

′
1, . . . , z

′
d) i-th elementary symmetric polynomial.

Choose suitable zi as in Lafforgue’s expression of Ramanujan-Peterson con-
jecture ,i.e. the proof of 2 is complete.
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Chapter 4

Explicit Constructions

4.1 Introduction

To give explicit examples of Ramanujan regular hypergraphs, we specialize
the situation of section 3 even further. So our examples of division algebras,
we consider, Ore skew polynomial rings over finite fields or more precisely
their quotient fields. These are unramified outside the primes zero and infin-
ity. The arithmetic groups, we consider here are obtained again by allowing
denominators at a prime p = p(t) different from zero and infinity. The
properties of those arithmetic groups can be described to a large extent by
divisibility properties of the skew polynomial ring Fqd{τ}.
In section 4.2 we consider the main properties of skew polynomial rings
Fqd{τ} and some related rings. Section 4.3 describes the arithmetic groups
we want to study. Sections 4.4 gives the explicit construction of the Ramanu-
jan hypergraphs, our simplicial complexes we are introduced in. Again these
will be described in terms of Cayley graphs of various groups.

4.2 The Skew polynomial ring Fqd{τ}
In this section we collect various well known fundamental facts concerning
skew polynomial rings. These rings are well known in the theory of non
commutative rings and many of the facts we note below hold in greater
generality. However we have written up the relevant properties in the form
we will need later on. For more details see [13],[14],[15],[11],[10],[12] and [42],
[41].
We consider the finite field Fq of q = ln elements of characteristic l. Fqd is a
finite extension of Fq of degree d.
We will construct now the skew polynomial ring Fqd{τ}. As a set this is
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given by

{
n∑

i=0

aiτ
i |n ≥ 0, ai ∈ Fqd}

Addition is defined by

n∑
i=0

aiτ
i +

n∑
i=0

biτ
i :=

n∑
i=0

(ai + bi)τ
i.

For Fqd{τ} one obtains the structure of an infinite dimensional vector space
over Fq.
Regarding the multiplication, the fundamental rule is

τλ = λqτ

for λ ∈ Fqd . There is a unique multiplication on the ring Fqd{τ} satisfying
this rule.

Proposition 49. The center of the ring Fqd{τ} is given as Fq[τ
d].

Proof. It is obvious, that Fq[τ
d] is contained in the center Z(Fqd{τ}). On the

other hand, if c =
∑n

i=0 aiτ
i is a central element in Fqd{τ}, it has to commute

with all elements λ ∈ Fqd . This forces the ai for i 6≡ 0( mod d) to be zero.
Therefore c is of the form

c =
∑

i ≡ 0 mod (d)
0≤i≤n

ai(τ
d))d/i

Because τc = cτ , it follows additionally, that the ai occurring are elements
in Fq.

Remark. It is immediate, that

{αiτ j | 0 ≤ i, j ≤ d− 1}

where
Fqd = Fq(α)

is a basis of the left (-right) modules Fqd{τ} over Fq[τ
d].

We denote τ d =: t. The center Fq[t] is of course the polynomial ring in the
indeterminate t over the finite field Fq. The following proposition is due to
Ore, see [42], [41].

Proposition 50. The skew polynomial ring Fd
q{τ} is a left resp. right Eu-

clidean ring.
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Proof. One has to show the following property: given polynomials f(τ), g(τ) ∈
Fqd{τ}, there are polynomials s(τ) and r(τ) such that

f(τ) = s(τ)g(τ) + r(τ) such that degτ (r(τ)) < degτ (g(τ))

for the τ -degrees of the polynomials above in the obvious sense. This would
show that Fqd{τ} is a left Euclidean ring. But of course this can be seen by
the usual division procedure of polynomials taking only into consideration,
that one can write λτ = τλ1/q because Fqd −→ Fqd , u 7−→ uq is a bijection.
The property, that the ring Fqd{τ} is right Euclidean means, one can find in
the situation above elements s′(τ) and r′(τ) such that

f(τ) = g(τ)s′(τ) + r′(τ) where degτ (r
′(τ)) < degτ (g(τ)) holds.

This is shown in the same way.

Remark. Of course, all of this can be found in the literature ( as given above)
even for more general skew polynomial rings k{τ}, where k is commutative
field with automorphism σ : k −→ k, such that the rule

τλ = σ(λ)τ

holds for λ ∈ k.

Corollary 51. i) Any left ideal I in Fqd{τ} is a principal ideal of the form
I = Fqd{τ}.a, with a ∈ I appropriate.
ii) Similarly any right ideal J in Fqd{τ} is a principal ideal of the form
J = b.Fqd{τ} with b ∈ J appropriate.

Proof. Given I, choose g(τ) ∈ I of minimal degree, if I 6= (0). Otherwise we
are ready. Suppose, f(τ) is an arbitrary element of I. We can find s(τ) and
r(τ) such that

f(τ) = s(τ)g(τ) + r(τ) where degτ (r(τ)) < degτ (g(τ)).

Because f(τ), g(τ) ∈ I, it follows that r(τ) ∈ I, because I is a left ideal.
But then r(τ) = 0, because otherwise we would have a contradiction to the
choice of g(τ) as nonzero element of I with degτ (g(τ)) minimal. Therefore
we have f(τ) = s(τ)g(τ).
This implies that I = Fqd{τ}g(τ) and therefore I is a principal left ideal.
ii) is shown in the same way.

Remark. The generating elements as g(τ) above in i) are uniquely deter-
mined up to multiplication by an element of F×qd from the left side.
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We have the following well known structure theorem for finitely generated
Fqd{τ}-modules (left or right modules). It corresponds to similar results for
finitely generated modules over commutative principal ideal domains:

Theorem 52. i) Any finitely generated left Fqd{τ}-module M is the direct
sum of cyclic left Fqd{τ}-modules:

M =
r⊕

i=1

Fqd{τ}/Fqd{τ}fi(τ)

where we can assume additionally

f1(τ)|lf2(τ)|l . . . |lfr(τ).

Here a|lb means left-divisibility, i.e. there is r ∈ Fqd{τ} satisfying r.a = b.
ii) If M is a finitely generated torsion free left Fqd{τ}-module, then M is a
free Fqd{τ}-module, that is, the fi(τ) above are all zero.

Proof. see [13] or take any proof for the corresponding statement in the
commutative situation.

Proposition 53. i) The ring Fqd(τ) := Fqd{τ}⊗Fq [t] Fq(t) , obtained by
extension of the center Fq[t] of Fqd{τ}, is as a left(right) module free of rank
d2 over the rational field Fq(t).
ii) The center of Fqd(τ) is Fq(t) under the canonical embedding of Fq(t) into
Fqd(τ).
iii) Fqd(τ) is a division algebra. In particular Fqd(τ) is a central simple
algebra of dimension d2 over the rational function field Fq(t).

Proof. i) is clear, because Fqd{τ} is a free module of rank d2 over Fq[t].
ii) If u ∈ Z(Fqd(τ)), then there exists a nonzero polynomial f(t) ∈ Fq[t] such
that f(t).u ∈ Z(Fqd{τ}) = Fq[t].
Conversely, Fq(t), canonically embedded, is in the center of Fqd(τ),
iii) To show, that Fqd(τ) is a division algebra, consider the canonical homo-
morphism of algebras

Fqd(τ)
⊗
Fq(t)

Fq((t)) −→ Fqd((τ))

with f ⊗ g 7−→ f.g

Here we are using following notations:

Fq((t)) = {
∞∑

i=N

ait
i | N ∈ Z ai ∈ Fq}
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is the field of Laurent series (at the place t = 0 of the field Fq(t)), Fqd((τ)) is
given as the skew field of Laurent series

Fq((τ)) = {
∞∑

i=N

aiτ
i | N ∈ Z ai ∈ Fqd}

where we have again the communication rule

τλ = λqτ

for λ ∈ Fqd . It is immediate to see that Fqd((τ)) is a skew field. It is a
d-dimensional vector space over the field Fq((t)) of Laurent series over Fq.
Now, as vector space over Fq((t)) both Fqd(τ)

⊗
Fq(t) Fq((t)) and Fqd((τ)) are

d2-dimensional. Furthermore, the canonical homomorphism

φ : Fqd(τ)
⊗
Fq(t)

Fq((t)) −→ Fqd((τ))

is surjective, as the image contains the elements {αiτ j | 0 ≤ i, j ≤ d− 1},
where Fqd = Fq(α) as above, which form a basis of the vector space Fd

q((τ))
over Fqd((t)). Then, as a surjective homomorphism between vector spaces of
equal dimension, φ is an isomorphism. Furthermore, φ is compatible with
the multiplicative structure, therefore φ is even an isomorphism of algebras.
Because Fqd((τ)) is a skew field, the algebra Fqd(τ)

⊗
Fq(t) Fq((t)) is a skew

field as well. So the algebra Fqd(τ) ( as a sub algebra ) has no zero divisors.
Furthermore it is a finite dimensional algebra over its center Fq(t), which is
a field. Then Fqd(τ) is a skew field itself. This shows iii)

Remark. i)It follows from the considerations above, that the division alge-
bra Fqd(τ) over its center Fq(t), where t = τ d, is ramified at the place t = 0
with completion the skew field of Laurent series Fqd((τ)),
ii) Similarly at the place t = ∞, the place corresponding to the degree valu-
ation of Fq(t), Fqd(τ) is totally ramified.

We will show now, that these places are the only places of Fqd(τ) over Fq(t),
which are ramified.
The skew field Fqd(τ) can be described as a cyclic algebra over its center
Fq(t) in the following way. First we have the cyclic Galois extension Fqd(t)
of Fq(t) with canonical embedding Fqd(t) ↪→ Fqd(τ) by mapping t 7→ t = τ d.
Of course

Gal(Fqd(t)/Fq(t)) ∼= Gal(Fqd/Fq) ∼=< τ >

where τ : Fqd −→ Fqd , u 7→ uq is given by the Frobenius automorphism.
Fqd(t) is an unramified field extension of Fq(t) at all places of Fq(t). As it
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can be compute the invariants of the skew field Fqd(τ) over Fq(t) at all places
of Fq(t) in the sense of the classical theory. The element τ ∈ Fd

q(τ) satisfies
the rule τλ = λqτ and τ d = t. But for all places p = p(t) 6= 0,∞ we have
vp(t) = 0, which implies that the central cyclic algebra Fd

q(τ) is unramified
at all places p 6= 0,∞. On the other hand, computing the invariants at the
places t = 0,∞ we obtain for the invariants

inv0(Fd
q(τ)/Fq(t) =

1

d

inv∞(Fd
q(τ)/Fq(t) = −1

d

We have obtained

Theorem 54. :
Fqd(τ) is up to isomorphism the unique central algebra over Fq(t) with the
following properties:
i) Fqd(τ) is unramified at all places p = p(t) 6= 0,∞ of Fq(t).
ii) It has invariants 1

d
, −1

d
at t = 0 resp. t = ∞.

Proof. All the properties have been shown, the uniqueness statement is a part
of the theorem of Hasse - Brauer - Noether see [64, chapter XIII,3.Theorem
2 and 6. theorem 4]

Lemma 55. Fqd{τ} is a maximal Fq[t]-order in Fqd(τ).

Proof. We have to check only the maximality. Assume that R is an order
with Fqd{τ} ⊆ R. By definition of the concept of order, R is finite over
Fq[t], so there exist a nonzero element f ∈ Fq[t] such that Rf ⊆ Fqd{τ}. As
Fqd{τ} is a PID (left and right), there exists an element µ in Fqd{τ} with
R = Fqd{τ}µ. Thus Rf = Fqd{τ}µf−1. Now since R is a domain the proof
is complete.

Finally we give another description of the skew polynomial ring Fqd{τ}.
Consider an algebraic closure Fq of Fq. Fq is a vector space over the field
Fq and we have the ring of vector space endomorphisms EndFq(Fq). As
mentioned above, there is also the skew polynomial ring Fq{τ}, satisfying in
particular again the rule τλ = λqτ for λ ∈ Fq. We choose an embedding

Fqd{τ} ↪→ Fq{τ}

by choosing a homomorphism Fqd → Fq.
With any polynomial f(τ) =

∑n
i=0 aiτ

i, f(τ) ∈ Fq{τ} we associate the poly-
nomial endomorphism

(4.1) ϕf : Fq −→ Fq, x 7→
n∑

i=0

aix
qi
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Proposition 56. (i) ϕ : F̄q{τ} −→ EndFq(Fq)

f(τ) =
n∑

i=0

aiτ
i 7→ ϕf

as above, is an injective homomorphism.
ii) kerϕf = {x ∈ F̄q : ϕf (x) =

∑n
i=0 aix

qi
= 0}

is an Fq-vector subspace of F̄q. One has:

dimFq ker (ϕf ) ≤ n

iii) ϕf is injective, iff f is purely inseparable as a polynomial, that is,
f(τ) is of the form cτn with c 6= 0.
iv) If f(τ) 6= 0, ϕf is surjective.

Proof. i) ii) and iii) are evident, iv) follows immediately, because the poly-
nomial equations

n∑
i=0

aix
qi

= c

have solutions for all c ∈ F̄q, iff f(τ) 6= 0.

Proposition 57. Given a finite dimensional Fq-vector space V ⊂ F̄q, there
is a polynomial f(τ) ∈ F̄q{τ}, unique up to a scalar from F̄×q , such that
i) f(τ) is not divisible by τ (left or right would be equivalent for this).
ii) ker (ϕf ) = V ⊂ F̄q,
iii) f(τ) moreover can be chosen to be in Fqd{τ} iff V ⊂ F̄q satisfies
ϕτd(V ) = V , that is, the map

F̄q −→ F̄q

x 7→ xqd

= ϕτ (x)

maps V bijectively onto itself.

Proof. Given V ⊂ Fq a finite dimensional vector space over Fq, we define the
polynomial

p(x) :=
∏
v∈V

(x− v)

By induction with respect to the dimension dimFq(V ), it is easy to show
that p(x) is a Fq-linear (in particular additive) polynomial function, which
therefore is of the form p(x) = ϕf (x) for a skew polynomial f(τ) ∈ F̄q{τ}.
If there would be another such element g(τ) ∈ Fq{τ} satisfying kerϕg = V ,
then the additive polynomial functions ϕf , ϕg : Fq −→ F̄q would have the
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same zeros in Fq, furthermore they have the same degree. Therefore there

exists a c ∈ Fq
×

satisfying cϕf = ϕg.

iii) If V ⊂ Fq satisfies ϕτd(V ) = V , that is, the map Fq −→ Fq, x 7→ xqd
=

ϕτ (x) maps V bijectively onto itself, then ϕf , as constructed above, satisfies

ϕτdϕf (x) = (
∏
v∈V

(x− v))
qd

=
∏
v∈V

(xqd − vqd

)

=
∏
v∈V

(xqd − v) (as τ d(V ) = V )

= ϕf (ϕτd(x))

for all x ∈ F̄q. This implies immediately

τ df(τ) = f(τ)τ d

which implies, that f(τ) is of the form

f(τ) =
n∑

i=0

aiτ
i where ai ∈ Fqd .

Proposition 58. If f(τ), g(τ) ∈ Fq{τ} satisfy ker (ϕf ) = ker (ϕg) and if
f(τ) is not divisible by τ , then there is m ∈ N, such that

g(τ) = τmf(τ)

Proof. Given g(τ), one can find m maximal, such that g(τ) = τmf̃(τ) but
then ϕ

f̃
is a separable polynomial function satisfying ker (ϕ

f̃
) = ker (ϕg)

and therefore also ker (ϕ
f̃
) = ker (ϕf ), furthermore ϕ

f̃
, ϕf are separable

polynomial functions, which we can assume to have highest coefficient 1.
Therefore we obtain f̃ = f and therefore also

g(τ) = τmf(τ)

Proposition 59. i) Suppose f1(τ), f(τ) ∈ Fq{τ}, are separable polynomials.
Then there is a separable polynomial f2(τ) satisfying

f2(τ)f1(τ) = f(τ) iff ker (ϕf1) ⊆ ker (ϕf ) as Fq-subspaces.
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ii) If f1(τ), f(τ) ∈ Fqd{τ}, are separable polynomials, then there is

f2(τ) ∈ Fqd{τ}

satisfying

f2(τ)f1(τ) = f(τ)

Proof. (=⇒) This direction is trivial.
Conversely, suppose that, ker (ϕf1) ⊆ ker (ϕf ). Consider the separable poly-
nomial

ϕf1 : Fq −→ Fq

and denote for

V := ker (ϕf ), ϕf1(V ) =: V ⊂ Fq

Obviously V̄ is given as Fq-subspace in Fq and we can find accordingly f2(τ) ∈
Fq{τ}, such that ϕf2 is separable and kerϕf2 = V̄ . Then

ϕf2ϕf1 : Fq −→ Fq

has kernel V and is again separable with highest coefficient 1, Therefore we
obtain ϕf = ϕf2ϕf1 , which implies immediately f = f2f1. This shows i).
ii) is an immediate consequence of i).

Corollary 60. Suppose, f(τ) ∈ Fqd{τ} is not divisible by τ , that is, the
corresponding polynomial function ϕf is separable.
Decompositions of the form

f(τ) = f1(τ) . . . fr(τ)

in Fqd{τ} are in bijective correspondence with t = τ d-invariant flags of Fq-
linear subspaces,

0 ⊂ W1 ⊂ . . . ⊂ Wr = V

where Wr−j = ker (ϕfj
. . . ϕfr) for j = 1, . . . , r.

Proof. We can assume in the corollary, that f(τ) and all of the fj for j =
1, . . . , r have highest coefficient 1. We then have the map above associating
with a decomposition

f(τ) = f1(τ) . . . fr(τ)

the corresponding flag of subspaces

0 ⊂ W1 ⊂ . . . ⊂ Wr = V
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where V = kerϕf and Wj = ker (fr−j+1(τ)) . . . fr(τ)).
Conversely, suppose that, the flag of t-invariant subspaces

0 ⊂ W1 ⊂ . . . ⊂ Wr = V

is given. We find f(τ) ∈ Fq{τ}, separable, with highest coefficient 1, such
that kerϕf = V holds. f(τ) ∈ Fq{τ} is an element in Fqd{τ}, because
V = kerϕf is invariant under t = τ d (not elementwise however).

Similary we find f̃j(τ) ∈ Fqd{τ}, such that ker (ϕ
f̃j

) = Wj, By repeated

application of Proposition.59, we can conclude:

f̃r(τ) = f1(τ) . . . fr(τ)

f̃r−1(τ) = f1(τ) . . . fr−1(τ)

...

f̃1(τ) = fr(τ)

where the fj(τ) ∈ Fqd{τ}. This shows the Corollary.

4.3 Arithmetic groups associated to the divi-

sion algebra Fqd(τ )

We consider again the division algebra of skew polynomials D = Fqd(τ) with
center Fq(t) as in the last section.
Associated with this algebra are the algebraic groups D×, D(1) and D×/Z
given as group functors on the category of Fq(t)-algebras R (that is, there is
a homomorphism of commutative algebras with unit elements
Fq(t) −→ R) given by :

(4.2) D×(R) := (Fqd(τ)⊗Fq(t) R)×

the group of units, and similarly

(4.3) D(1)(R) := (Fqd(τ)⊗Fq(t) R)(1) := {x ∈ (Fqd(τ)⊗Fq(t) R)(1)|nr(x) = 1}

where nr : D×(R) −→ R× is the reduced norm of the central simple algebra
Fqd(τ) over Fq(t), seen as a polynomial map and extended by R.
Finally we have the group functor:

R 7→ (D×/Z)(R) = D×(R)/Z(R×)
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Remark. Other notation for these groups areGL(1, D), SL(1, D) and PGL(1, D).
For a proof, that these group functors are in fact representable by algebraic
groups see [6].

Besides these algebraic groups, we have the corresponding group schemes
D×, D(1) and D×/Z over the ring Fq[t] respectively. Over its spectrum space
Fq[t], given similarly by the group valued functors :

Fq[t]− Alg −→ groups

From the category of commutative Fq[t]-algebras to the category of groups,
given by

R 7→ D×(R) = (D ⊗Fq [t] R)×

The arithmetical groups we are considering here can be described as follows.
Suppose p(t) ∈ Fq[t] is an irreducible polynomial. Denote by O := Fq[t][

1
p(t)

]

the localization of the polynomial ring Fq[t] with respect to the multiplicative
system S := {p(t)n|n = 0, . . .}, that is, one considers the rational functions
in Fq(t), whose denominators are powers of p(t).
The basic arithmetic groups in our situation are thenD×(O),D(1)(O),(D×/Z)(O),
which are given explicitly as

D×(O) =(Fd
q{τ} ⊗Fq [t] O)×

=(Fd
q{τ} ⊗Fq [t] Fq[t][

1

p(t)
])×.

Furthermore

(4.4) D(1)(O) = {x ∈ D×(O) | nr(x) = 1}

and D×/Z)(O) = D×(O)/O×.
We study these groups in the usual way by their operation on the product of
the Bruhat-Tits building of the algebraic groupD×(respectively, D(1), D×/Z)
at the primes missing, which in this case are (p(t)) and ∞ of Fq(t).
As the division algebra Fqd(τ) is totally ramified at ∞, the corresponding
Bruhat-Tits building is just a point. It is therefore sufficient to consider the
Bruhat-Tits building at the prime (p(t)). This is the building associated to
the algebraic group D×⊗Fq(t) Fq(t)(p(t)), where Fq(t)(p(t)) is the completion of
Fq(t) at the prime p(t) := p. (and similarly for the groups D(1), D×/Z).
Because D is unramified at (p(t)) = (p), it follows, that, we have an isomor-
phism

D ⊗Fq(t) Fq(t)p −̃→ M(d;Fq(t)p).
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Therefore, we have an induced isomorphism

(D ⊗Fq(t) Fq(t)p)
× −̃→ GL(d;Fq(t)p).

We also have an induced embedding

Γ = (Fqd{τ}[ 1

p(t)
])×

= (Fqd{τ} ⊗Fq [t] Fq[t][
1

p(t)
])×

↪→ (Fqd(τ)⊗Fq(t) Fq(t)p)
× ∼= GL(d;Fq(t)p)

and using this, an action of Γ and its subgroups on the Bruhat-Tits building
corresponding to p = p(t) respectively also for For GL(d;Fq(t)p) and the
related subgroups SL(d;Fq(t)p) for D(1) and PGL(d;Fq(t)p) for D×/Z. As

described in section 2.2, that is the building X.(p) := X.(Fq(t)p
d), associated

to the vector space Fq(t)p
d over the locally compact topological field Fq(t)p.

The problem we have is to understand the quotient Γ\X.(p) for the group Γ
under consideration. To be able to do this we add some further considera-
tions.
First, because Fqd{τ} is a maximal order over Fq[t] in Fqd(τ) = D, we can
choose the isomorphism above in such away that it induces an isomorphism
of the corresponding local orders

Fqd{τ} ⊗Fq(t) Fq[t]p −̃→ M(d;Fq[t]p),

where as before Fq[t]p is the valuation ring of Fq(t)p.

We denote L0 := Fq[t]p
d, the standard lattice. For any lattice L ⊂ Fq(t)p

d

over Fq[t]p, we consider HomFq [t]p(L,L0).
This is in an obvious way a left module over the ring

EndFq [t]p(L0) ∼= Fqd{τ} ⊗Fq(t) Fq[t]p

Proposition 61. There is a bijective correspondence between lattices
L ⊂ Fq(t)p

d over Fq[t]p and Fqd{τ}-left modules M equipped additionally with
an isomorphism

φ : Fq[t][
1

p(t)
]⊗Fq [t] M −̃→ Fqd{τ}[ 1

p(t)
]

which are free of rank 1 over Fqd{τ}p = Fq[t]p ⊗Fq [t] Fqd{τ}
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Proof. Given a pair (M,φ), we have to reconstruct the lattice L ⊂ Fq(t)p
d

over Fq[t]p. Denoting φp the obvious extension of φ to

φp : Fq(t)p ⊗Fq(t) M −̃→ Fqd(τ)p

and the φ̃p as the following composition of maps:

Fq(t)p ⊗Fq(t) M −̃→ Fqd(τ)p −̃→ M(d;Fq(t)p)

where the first map is φp, and the second is the isomorphism fixed above.
We consider the restriction map

φ̃p| : Mp = Fq[t]p ⊗Fq [t] M −→ M(d;Fq(t)p)

The image is a free module of rank one over End(Fq[t]
d
p). It is immediate to

see that there exists a unique local lattice L ⊂ Fq(t)p
d, such that

φ̃p|(Mp) = HomFq [t]p(L,L0)

holds, where L0 = Fq[t]p
d. This is a version of the Morita- equivalence.

Conversely, given the lattice L, we obtain an Fqd{τ}-module M in obvious
way from the

Fq[t][
1

p(t)
]⊗Fq [t] M −̃→ Fqd{τ}[ 1

p(t)
] and

Fq[t]p ⊗Fq [t] M−̃→ HomFq [t]p(L,L0)

with the canonical identification. It is immediate to see, that these two
constructions are inverse to each other.

Proposition 62. The group Γ = (Fqd{τ}[ 1
p(t)

])× acts transitively on the set

of lattices L ⊂ Fq(t)p
d over Fq[t]p.

Proof. Consider the Fqd{τ}-module M given by the pair

M (p) := (Fqd{τ}[1
p
],Hom(L,L0))

(in the sense of the discussion above). Now any such module (as a left
Fqd{τ}-module ) is isomorphic to Fqd{τ}. Such an isomorphism α induces
an isomorphism α(p) of Fqd{τ}p-modules

M (p) := Fqd{τ}[1
p
] −→ Fqd{τ}[1

p
]
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Any such isomorphism is given as right multiplication by a unit

g ∈ Fqd{τ}[ 1

p(t)
]
×

As α induces also an isomorphisms of Fqd{τ}
p
-modules

Mp = HomFq [t]p
(L,L0)−̃→ EndFq [t]p

(L0),

it is immediate to see that this is equivalent to the fact, that

g(L) = L0

But this shows the transitivity of the action of Γ on the set of lattices.

Corollary 63. The group D×(O)×/Z = (Fq{τ}[1p ])
×/Z acts transitively on

the set of vertices X0(Fq(t)p
d) of the building X.(Fq(t)p

d).

Proof. We have Z = (Fq[t][
1
p
])×, which acts by scalar multiplication on the

set of lattices. Therefore the group (Fqd{τ}[1
p
])×/Z induces an action on

X.(Fq(t)p
d), which is transitive on the set of the vertices X0(Fq(t)p

d) by
proposition 62.

Corollary 64. For any subgroup Γ of finite index in Γ(1) = (Fqd{τ}[1
p
])×/Z

the quotient Γ\X.(Fq(t)p
d) is a finite simplicial complex.

Proof. This is an immediate consequence of Corollary 63.

Remark. In fact this is a very special case of Godement’s compactness the-
orem mentioned earlier, but in our situation it can be shown in a direct way
as above.
We consider in the group Γ(1) = (Fqd{τ}[1

p
])×/Z the following subgroup

Γ(τ). We consider the composition of group homomorphisms

(4.5) Γ(τ) := ker (Γ(1) −→ Fqd{{τ}}×/Z) −→ F×qd/F×q

where the first homomorphisms corresponds to the embedding to the place
t = 0 considered easier and the second homomorphism is the evaluation
homomorphism for τ = 0. Γ(τ) is the kernel of the composition of these
homomorphisms.

Proposition 65. Let Γ(τ) be as 4.5, then
i) Γ(τ) is a torsion free group,
ii) Γ(τ) acts fixed point free on the simplicial complex X.(Fq(t)p

d) and also

on its realization |X.(Fq(t)p
d)|. In particular no simplex is mapped to itself

in a nontrivial way under the action of Γ(τ).
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Proof. i) We consider the embedding

(Fqd{τ}[1
p
])×/Z ↪→ Fqd{{τ}}×/Z

Any element g ∈ Γ(τ) g 6= 1 is mapped to a power series in τ of the form
(1 + aiτ

i + higher terms in τ), where ai ∈ Fqd , ai 6= 0. It is immediate to
see that (1+aiτ

i +higher terms inτ)n 6= 1 if (n,Char(Fq) = 1. On the other
hand for any j ≥ 1

(1 + aiτ
i + higher terms in τ)pj

= (1 + aiτ
i(1 + b1τ + . . .))pj

= 1 + (ai)
pj

+ . . .

Thus the lowest term in τ is (ai)
pj

, which obviously is not zero. This shows
i).
ii) If g ∈ Γ(τ) g 6= 1, stabilizes a simplex, it would have a fixed point in the
realization X.(Fq(t)p

d). As the stabilizer is discrete ( as a subgroup of Γ(τ))
and compact ( being a closed subset in the compact stabilizer of a point of the
building X.(Fq(t)p

d)), it follows, that such a stabilizer group is finite. This
implies immediately that g has a finite order, which is a contradiction.

Proposition 66. Γ(τ) is transitive on the set of the vertices of the building
X.(Fq(t)p

d)).

Proof. We have seen above, that the group Γ = (Fq{τ}[1p ])
× is transitive on

the set of verticesX0(Fq(t)p
d)). Therfore, given a vertex< L >∈ X0(Fq(t)p

d)),

we find g ∈ Γ(τ), gL = L0, where L0 = Fq[t]p
d. If there is another g′ ∈ Γ(τ)

with g′L = L0, then we have g−1g′L0 = L0. It follows immediately from
Proposition 65 (i) that g−1g′ = 1 and so g = g′. This completes the proof of
the corollary.

Corollary 67. Γ(τ) acts simply transitive on the building X.(Fq(t)p
d).

Proof. Immediately obtained from the above propositions.

4.4 Explicit description of some arithmetic

quotients

In 4.3 we have introduced the arithmetic group Γ(τ)

Γ(τ) ⊂ Γ(1) =

(
Fqd{τ}[1

p
]

)×
/Z
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which acts simply transitive on the building X.(Fq(t)
d
p) and also on its topo-

logical realization |X.(Fq(t)
d
p)|.

We consider now arbitrary linear polynomials p(t) = (t−λ) for λ ∈ Fq, λ 6= 0.
Associated to the polynomial p(t) = t− λ is the Fq-linear homomorphism

ϕp : Fq −→ Fq, x 7→ (xqd − λx)

Denote V := ker (ϕp) = {x ∈ Fq | xqd − λx = 0}

Of course, V = V (λ) is explicitly given as

(
Fqd. qd−1

√
λ

)
, a one-dimensional

Fqd-sub-vector space in Fq.
In particular for the case λ = 1 we have V (λ = 1) = Fqd ⊂ Fq. We apply
Corollary 60 from 4.2. to this situation :

Proposition 68. There is a bijective correspondence between decompositions

p(t) = f1(τ) . . . fd(τ)

into τ -linear factors fj(τ) ∈ Fqd{τ}, j = 1, . . . , d, and arbitrary full flags

0 ⊂ W1 ⊂ . . . ⊂ Wd = V

of Fq-linear subspaces Wj ⊂ V (such that dim (Wj) = j. This correspondence
is given as in corollary 60, section 4.3.

Proof. We only have to check that an arbitrary full flag

0 ⊂ W1 ⊂ . . . ⊂ Wd = V

is t = τ d-invariant. But on V the relation τ d = λ resp. xqd
= λx holds.

Therefore the action x 7→ xqd
on V is exactly the homothety V −→ V, x 7→

λx with λ ∈ Fq. Because λ.Wj = Wj, as the Wj are Fq-vector-spaces in V ,
the result follows.

We fix now again the standard lattice L0 := (Fqd{τ})d ⊂ Fqd(τ)d
p as well as

the associated vertex < L0 >. By Proposition 18 from Chapter 2 we have
the isomorphism of simplicial complexes

lk

(
< L0 >;X.(Fq(t)

d
p)

)

and the Tits building associated to the Fq-vector-space (L0/πL0). We remind
the reader again of the following situation. We have fixed an isomorphism

Fqd{τ}(p)−̃→M(d;Fq[t]p)
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of the corresponding completions at p = p(t). Upon doing this we get a
corresponding standard lattice Fq[t]

d
p = L0, which is acted upon by Fqd{τ}(p)

resp. M(d;Fq[t]p) by the standard action. We have the quotient (L0/πL0),

where π = p(t), isomorphic to (Fq[t]/(p(t))
d as Fq[t]/(p(t) ∼= Fq-vector space.

Furthermore we have V = V (p(t)) = ker (ϕp) ⊂ Fq, which is also an Fq-vector
space of dimension d. Both (L0/πL0) and V are naturally simple modules
over

Fqd{τ}/p(t)Fqd{τ} ∼= M(d;Fq[t]/(p(t)).

An isomorphism between these two modules, so compatible with the action
Fqd{τ}/(p(t)) on both sides, by Schur’s lemma will be unique up to a central
nonzero element of Fq[t]/(p(t) ∼= Fq, that is, up to a scalar, 6= 0. This implies
in particular a unique isomorphism between the simplicial complexes

lk

(
< L0 >;X.(Fq(t)

d
p)

)

and the Tits building of the Fq-vector space V = V (p(t)) = ker (ϕp) ⊂ Fq,

compatible with the action of

(
Fqd{τ}/(p(t))

)×
.

In particular, to any neighboring vertex < L >∈ X0(Fq[t]
d
p), such that

< L0, L1 >∈ X1(Fq[t]
d
p) (1-simplices), there is, unique element γL ∈ Γ(τ),

because Γ(τ) acts simply transitive on the set of vertices.
We can also obtain explicit descriptions of the elements γL using the canon-
ical isomorphisms above.
So, suppose we have a neighboring vertex < L > of < L0 >, so we assume
the situation

L0 % L % p(t)L0.

We have γL < L0 >=< L > upon multiplying by an appropriate power of
p(t), we can even assume, that γL(L0) = L.
In particular, we obtain then γL(L0) ⊂ L0 and therefore, because γL is free
of all other primes, we obtain γL ∈ Fqd{τ}. But then we obtain the induced
equality

γL.

(
L0/p(t)L0

)
=

(
L/p(t)L0

)
,

That is, in term of the vector space V = V (p(t)) ⊂ Fq : γL.V = W (L) ⊂ V .
The divisor of p(t) corresponding to γL will be therefore given by the equality
above. We have proved

Theorem 69. There is canonical bijection between the sets{
γL | γL ∈ Fqd{τ}, γL(L0) = L, such that < L0, L >∈ X1(Fq[t]

d
p)

}
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and {
f(τ) ∈ Fqd{τ} | f(τ) is a nontrivial divisor of p(t)

}
,

γL 7→ f(τ),

given by the equation
γL(L0)/p(t)L0

∼= f(τ).V

with respect to the canonical identification

L0/p(t)L0 −̃→ V = ker (ϕp).

We consider now the Cayley graph of Γ(τ) with respect to the set of gener-
ators{

γL | γL ∈ Fqd{τ}, γL(L0) = L, such that < L0, L >∈ X1(Fq[t]
d
p)

}
,

We denote Cayley(Γ(τ); {γL}) the associated graph.

Theorem 70. There is a canonical isomorphism of graphs

Cayley(Γ(τ); {γL}) −̃→ τ61

(
X.(Fq(t)

d
p)

)
,

where τ61

(
X.(Fq(t)

d
p)

)
is the graph underlying the simplicial complex X.(Fq(t)

d
p).

This isomorphism is given by the map

Cayley(Γ(τ); {γL})(0) = Γ(τ) −→ X0(Fq(t)
d
p),

γ 7→ γ < L0 > .

Proof. The map above on the 0-level is a bijection, because Γ(τ) is simply
transitive on X0(Fq(t)

d
p). Two vertices < γ > and < γ′ >, where γ, γ′ ∈ Γ(τ)

define a 1-simplex < γ, γ′ > in the Cayley graph Cayley(Γ(τ); {γL}), iff there
is γL ∈ Γ(τ), satisfying γγL = γ′. But then

< γγL(L0), γL0 >= γ < γL(L0), L0 >,

which obviously is a one-simplex in X.(Fq(t)
d
p), because < γL(L0), L0 > is

a one-simplex in X.(Fq(t)
d
p) by definition.Furthermore, this isomorphism is
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label-preserving and induces an isomorphism of the corresponding hyper-
graphs resp. simplicial complexes. The converse is equally clear, furthermore
it is clear, that our isomorphism will preserve labels, which can be introduced
via the set of generating elements {γL}. By proposition 24 from Chapter 2
the graph structure in our situation induces in a unique way a simplicial
structure resp. the structure of a hypergraph. Obviously, our isomorphism
induces an isomorphism of this structure.

Theorem 71. Suppose, Γ ⊂ Γ(τ) is a normal subgroup of finite index, γL :=
proj(γL), where

proj : Γ(τ) −→ Γ(τ)/Γ

is the canonical projection. Then the isomorphism of Theorem 70 induces an
isomorphism of the graph

Cayley(Γ(τ)/Γ; {γL}) = −→ τ61

(
Γ\X.(Fq(t)

d
p)

)

This isomorphism of graphs is again label-preserving and induces an isomor-
phism of the corresponding hypergraphs resp. simplicial complexes.

Proof. This follows immediately from Theorem 70.

4.5 Explicit construction

In this section we fix p(t) = 1 − t where as before t = τ d. Our goal is a
suitable linear factorization of p(t) in Fqd{τ}. More precisely we hvae:

Theorem 72. There are x1, . . . , xd−1, xd ∈ Fqd (provided xd = 1) such that

(a) For any i ∈ {0, . . . , d − 1} there exist the linearly indepndent set {y(j)
d−i}

(provided y
(0)
d = 1) with

kerϕ∏i

j=0
(1−x1−q

d−j
τ)

=
i⊕

j=0

Fq · y(j)
d−i.

(b) The following linear factorization of p(t) in Fqd{τ} holds:

(4.6) p(t) = 1− t = (1− τ)(1− x1−q
d−1τ) . . . (1− x1−q

1 τ).

Recall that the Fq-linear map ϕ is defined by 4.1.
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Proof. Let i = 0 then kerϕ(1−τ) = Fq · 1 so y
(0)
d = 1. Assume (Inductive

assumption) now, {y(j)
d−i} is defined for 1 ≤ j ≤ i < k such that (1) holds.

We must determine xd−k and kerϕ∏k

i=0
(1−x1−q

d−j
τ)

.

z ∈ kerϕ∏k

i=0
(1−x1−q

d−j
τ)
⇐⇒ ϕ(1−x1−q

d−k
τ) ∈ kerϕ∏k−1

i=0
(1−x1−q

d−j
τ)

by inductive assumption

⇐⇒ z − x1−q
d−kz

q ∈
i⊕

j=0

Fq · y(j)
d−i .

Let

V ⊥k := {u ∈ Fq | TrF
qd/Fq(

y
(j)
d−i

u
) = 0, 0 ≤ j ≤ k − 1}

and choose a nonzero element xd−k ∈ V ⊥k . We have for any i ≤ k

ϕ1−x1−q
d−k

τ (z) = z − x1−q
d−kz

q = y
(j)
d−i ⇐⇒ (

z

xd−k

)− (
z

xd−k

)q = (
y

(j)
d−i

xd−k

)q .

By Theorem Hilbert 90, (see [28, page 215 ]), we can find for 0 ≤ j ≤ k

θ
(j)
d−i, (provided θ

(0)
d−k = 1) such that

θ
(j)
d−i − (θ

(j)
d−i)

q = (
y

(j)
d−i

xd−k

)q,

let y
(j)
d−k := xd−kθ

(j)
d−k. Then y

(j)
d−k ∈ kerϕ∏k−1

i=0
(1−x1−q

d−j
τ)

.

Cliam : The set {y(0)
d−k, y

(1)
d−k, . . . , y

(k)
d−k} is linearly independent.

Proof. Of cliam:

Let
k∑

j=0

cjy
(j)
d−k = 0

=⇒
k∑

j=0

cj
y

(j)
d−k

xd−k

= 0

=⇒
k∑

j=0

cjθ
(j)
d−k = 0 =⇒ (

k∑
j=0

cjθ
(j)
d−k)

q = 0 =⇒
k∑

j=0

cj(θ
(j)
d−k)

q = 0

=⇒
k∑

j=0

cj(θ
(j)
d−k − (θ

(j)
d−k)

q) = 0

=⇒
k∑

j=1

cj
y

(j−1)
d−k+1

xd−k

= 0 =⇒
k∑

j=1

cjy
(j−1)
d−k+1 = 0



65

Now by inductive assumption we know that the set {y(0)
d−k+1, y

(1)
d−k+1, . . . , y

(k−1)
d−k+1}

is a linearly independent set over Fq. So

c1 = . . . ck = 0 =⇒ c0 = 0.

We have by definition dimV ⊥j = d− j. So we find xd = 1, xd−1, . . . , x1 and a

linearly indepndence set {y(0)
1 = x1, y

(1)
1 , . . . , y

(d−1)
1 } such that :

kerϕ∏d−1

j=0
(1−x1−q

d−j
τ)

=
d−1⊕
j=0

Fq · y(j)
1 .

This proves (1).
In order to prove (2), we see that the map ϕ on the both side of 4.6 has the
same kernel (in this case, the kernel is Fqd).
Clearly kerϕ1−t = Fqd , and also by (1) we have :

kerϕ(1−τ)(1−x1−q
d−1

τ)...(1−x1−q
1 τ) = Fqd .

Thus by Proposition 58 there is a non-negative integer m such that

(4.7) 1− t = τm(1 +
d−1∑
i=1

x1−q
i τ)(1− x1−q

d−1τ) . . . (1− x1−q
1 τ)·

From the following lemma, all factors in the left side of (4.6) have reduced
norm equal to 1− t. Take the reduced norm from both sides of (4.7). Then
we must have tm = 1, so m = 0. Thus the proof of (2) is complete.

Lemma 73. For any x,∈ F×qd we have:

rn(1− x1−qτ) = 1− t.

where rn is the reduced norm defined by 1.1 in Chapter 1, Section 4.

Proof. We have

rn(1− x1−qτ) = det



1 −x1−q . . . 0

0 1 −xq−q2
. . .

...
...

...
. . .

...

0 0 0 . . . −xqd−2−qd−1

−txqd−1−qd
0 0 . . . 1


= 1 + (−1)d+1(−1)dx

∑d−1

i=0(qi−qi+1)t

= 1− t.
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Definition 74. For any i = 0, . . . , d− 1 let Fi be the set of all

i∏
j=0

(1− x1−q
d−jτ),

where xd = 1 and xj ∈ Fqd j = d − i, . . . , d − 1 such that there exists
(xd−i+1, . . . , x1) with

(x1, . . . , xi, xi+1, . . . , xd−1) ∈ B1−t
q,d ·

We define the fundamental domain of p(t) = 1 − t as the disjoint union of
Fi’s and we denote it by FUND1−t.

Corollary 75. There is a bijective correspondence between Fis in the above
definition and Gri(Fq) (the Grassmanian of Fqd over Fq).

Proof. The discussion in the Proof of Theorem 72 makes this bijective cor-
respondence clear.

Now we return to Γ(τ) as 4.5.

Definition 76. If in (4.5) p(t) = 1−t, then we denote instead Γ(τ), Γ1−t(τ),
that is:

Γ1−t(τ) := ker

(
Γ1−t(1) −→ Fq{{τ}}×/Z

)

where

(4.8) Γ1−t(1) := (Fqd{τ}[ 1

1− t
])×/(Z = F×qd)

Remark. From now on, we shall be working with groups modulo their cen-
ters. However, our calculations are made in the groups themselves (by taking
arbitrary liftings).

Proposition 77. Let Γ1−t(τ) as definition (76). Then we have:
i) Γ1−t(τ) is a torsion free group.
ii) Γ1−t(τ) is a finitely generated group which is generated by the setFUND1−t.
iii) The Cayley graph of Γ1−t(τ) with respect to the generator set FUND1−t

is isomorphic with the vertex set of Building X.(Fq(t)
d
1−t), i.e.X0(Fq(t)

d
1−t

∼=
PGL(d,Fq(t)1−t/PGL(d,Fq[t]1−t).
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Proof. We can see directly that any element of Γ1−t(τ) can be written as
1 + τ sµ in which µ is not divisible by τ . Thus the group Γ1−t(τ) has torsion
elements iff there are positive integers N and m respectively such that:

(4.9) (1 + τ sµ)N = (1− t)m·

Thus we have :

1 +Nτ sµ+ τ sµτ sµ+ . . . = 1−mt+m(m− 1)/2t2 − . . . ·

Now if s 6= d we obtain a contradiction, since µ is not divisible by τ and
neither is the coefficient of t in the right-hand side of above equation.
So the only possibility is that s = d. That is (1 + τ sµ) must be in

Γ(1−t)(t) := {α ∈ Γ1−t(τ) | α ≡ 1 mod t}

which is by [20, Chapter 5], an analytic torsion free group. This proves i).
We have µ ∈ Γ1−t(τ) ⇐⇒ rn(µ) = (1− t)m for some positive integer m.
Suppose that s is the maximal power of (1−t) dividing µ; then γ = µ/(1−t)s

is not divisible by 1−t. But nr(γ) = (1−t)m−ds, and on the other hand, since
Fqd{τ} is a (left) PID, there exists an element θ ∈ Fqd{τ} which generates
the ideal (γ, 1− t). So γ = αθ, and using associativity ( multiplication by a
unit on the left ) θ can be chosen uniquely. Also since θ divides 1− t , nr(θ)
divides (1−t)m, which shows that rn(θ) = (1−t)i for some i = 1, . . . ,m, and
ϕθ must have the same kernel as some ϕ∏i

j=0
(1−x1−q

d−j
τ)

(again since θ divide

1 − t and using Proposition 57 iii)). This shows that by Proposition 58
there exists a non-negative integer n such that θ = τn∏i

j=0(1−x
1−q
d−jτ). Take

reduced norm of both sides to see n must be 0. Now we can repeat this
discussion with γ/θ = α. This completes the proof of ii).
iii) is obtained immediately from Corollary 67.

Definition 78. Let f ∈ Fq[t] be an irreducible element, different from t and
1− t. Then we define:

Γ1−t
f (τ) := {µ ∈ Γ1−t(τ) | µ ≡ 1 mod f}

We are now ready to present our main results of this Chapter.

Theorem 79. (Main Explicit Theorem)
Let f ∈ Fq[t] be an irreducible element, different from t and 1− t. Then the
Cayley graph of Γ1−t(τ)/Γ1−t

f (τ) with respect to the FUND1−t

(the image of FUND1−t in the quotient group Γ1−t(τ)/Γ1−t
f (τ)), is a Ra-

manujan (n1, n2, . . . , nd−1)-regular hypergraph, where ni is the number of all
i-dimensional sub-vector spaces of Fqd with the bound (c1, . . . , cd−1) where

ci =
(

d
i

)
q(d−1)/2 for i = 1, 2, . . . , d− 1.
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Proof. We can consider the quotient group

Γ1−t(τ)/Γ1−t
f (τ)

as Γ1−t
f (τ)\Γ1−t(τ). By above Proposition 77 iii) Γ1−t(τ) can be identified

with X0(Fq(t)
d
1−t), so the hyper graph properties come from the building

structure on X.(Fq(t)
d
1−t), and finiteness from Corollary 64. The Ramanujan

property is an immediate consequence of Theorem 48 if d is a prime number,
and Corollary 47 in the Chapter 3.

Notation :
We denote the hypergraph in Theorem 79 with Hypf (1− t). Our goal is, to
give a very simple form of Hypf (1− t).
In order to the simplify calculations, we assume that deg f = dn for some
positive integer n. We define now the isomorphism :

(4.10) ψ : Γ1−t(τ) −→ PGL(d,Fqdeg(f))

by

ψ([
d−1∑
i=0

αiτ
i]) =



α0 α1 α2 . . . αd−1

tσ(αd−1) σ(α0) σ(α1) . . . σ(αd−2)

tσ2(αd−1) tσ2(α0) σ2(α1) . . . σ2(αd−2)
...

...
...

. . .
...

tσd−1(α1) tσd−1(α2) tσd−1(α3) . . . σd−1(α0)


where [

∑d−1
i=0 αiτ

i−1] is the image
∑d−1

i=0 αiτ
i−1 in Γ1−t(τ), and

: Fq[t] −→ Fq[t]/(f) ∼= Fqdeg(f) is the natural map (which extended simply
over constant field ). We have

kerψ = Γ1−t
f (τ)

Thus the Cayley graph Hypf (1−t) is exactly isomorphic to the Cayley graph
of ψ(Γ1−t(τ)) with respect to the following generators:

(4.11) ψ(
i∏

j=0

(1− x1−q
d−jτ)) =

i∏
j=1

ψ(1− x1−q
d−jτ)

where for any i = 1, . . . , d− 1

ψ(ϕj) =



1 −x1−q
d−i . . . 0

0 1 −xq−q2

d−i . . .
...

...
...

. . .
...

0 0 0 . . . −xqd−2−qd−1

d−i

−txqd−1−qd

d−i 0 0 . . . 1


,

for all elements (x1, . . . , xd−1) ∈ B1−t
q,d .
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Definition 80. Motivated by the classical Legendre symbol, we define here
an extended Legendre symbols for arbitrary d and A,B ∈ Fq[t] (or in Z) by:

(4.12)

(
A

B

)
d

:=

1 if Xd ≡ A mod B has a solution

−1 otherwise

Theorem 81. Let q be a an odd prime power and f(t) be irreducible of degree
equal to dn for some positive integer n, and let ψ be as (4.10). Then:

Image(ψ) =


PSL(d,Fqdeg f ) if

(
1−t
f(t)

)
d

= 1

PGL(d,Fqd) otherwise

Proof. Set

U := D(1)(Fq[t]∞)
∏

h 6=t,1−t

JhΓ
′(1)(τ)

where D(1) given by 4.3 and

Jf := ker

(
D(1)(Fq[t]h) −→ D(1)(Fq[t]h/fFq[t]f )

)

and

Jh := D(1)(Fq[t]h) if h 6= f

and finally

Γ′(1)(τ) := ker

(
Fqd{τ}[ 1

1− t
]× −→ Fq{{τ}}×

)
.

Define

ψ̃ : U −→ PGL(d,Fqdeg f )

as composition Projfmodf where

(ζ∞, . . . , ζf , . . .) 7→ ζf ,

By Theorem 54 we know that D = Fqd(τ) is unramified at f . Thus we have
an isomorphismDf = D⊗Fq(t)Fq(t)f

∼= M(d,Fq(t)f ) which takes the maximal
order Fqd{τ} ⊗Fq [t] Fq[t]f to the maximal order M(d,Fq[t]f ). So

Fqd{τ} ⊗Fq [t] Fq[t]f/fFq[t]f ∼= M(d,Fq[t]f/fFq[t]f )
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and this induces an isomorphism :

(Fqd{τ} ⊗Fq [t] Fq[t]f/fFq[t]f )
×/Z ∼= PGL(d,Fq[t]f/fFq[t]f )

∼= PGL(d,Fqdeg f )

Thus ψ̃ acts as projection on the f th component and after reduction modulo
f sends this component, under the above isomorphism (which can be exactly
our ψ) to the element defined by (4.11). Again applying Theorem 54 we see
that

D(1)(Fq[t]1−t) ∼= SL(d,Fq[t]1−t),

and so from Strong approximation Theorem, it follows immediately that

D(1)(Fq[t])D
(1)(Fq[t]1−t)

is dense inD(1)(A), i.e, for the open set U (and for all open sets) ofD(1)(A)/D(1)(Fq[t]1−t),
D(1)(Fq[t]) ∩ U must be dense in U .

Now since ψ̃ is a continuous function over U with a finite range, we must
have :

ψ̃(D(1)(Fq[t]) ∩ U) = ψ̃(U).

We can see directly that

D(1)(Fq[t]) ∩ U = {µ ∈ Γ′(1)(τ) | µ ≡ 1 mod f}.

So this shows that

ψ̃(D(1)(Γ1−t(τ))) = ψ(D(1)(Γ1−t(τ))) ⊇ ψ̃({µ ∈ Γ′(1)(τ) | µ ≡ 1 mod f}
= PSL(d,Fqdeg f )ψ̃(U).

since

X ∈ PSL(d,Fqdeg f ) iff

(
detX

f(t)

)
d

= 1.
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It is an immediate result of the following diagram:

1 1 1

1 - Ud

?
- k×

? x 7→ xd
- k×d

?
- 1

1 - SL(d; k)
?

- GL(d; k)
? det

- k×
?

- 1

1 - PSL(d; k)
?

- PGL(d; k)
?

- k×/k×d
?

- 1

1
?

1
?

1
?

where k = Fqdeg f and Ud := {u ∈ k | ud = 1}. Exactness of columns
and rows and commutativity of the diagram (for arbitrary k) is well known.
We see by assumption that any generator of Γ1−t(τ) is in PSL(d,Fqdeg f ) iff(

1−t
f(t)

)
d

= 1. The other case will be handled exactly as the known case for

d = 2, see [40, Theorem 4.13].

Corollary 82. Associated to any element (x1, . . . , xd−1) ∈ B1−t
q,d are the ma-

trices:

(4.13) Mi,...,1 :=
d−1∏
j=1

Qj

where for any j = 1, . . . , d− 1

Qj =



1 −x1−q
d−j . . . 0

0 1 −xq−q2

d−j . . .
...

...
...

. . .
...

0 0 0 . . . −xqd−2−qd−1

d−j

−txqd−1−qd

d−j 0 0 . . . 1



i) If

(
1− t

f(t)

)
d

= 1

Then Hypf (1− t) is exactly isomorphic to the Cayley graph of PSL(d,Fqdeg f )
with respect to the generators 4.13.
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ii) If

(
1− t

f(t)

)
d

= −1

Then Hypf (1−t) is exactly isomorphic to the Cayley graph of PGL(d,Fqdeg f )
with respect to the generators 4.13.

Proof. This follows immediately from the above Theorem.
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