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IV 1 PREFACE

1 Preface

The theory of polynomial functions is one of the oldest constituents of mod-

ern mathematics. Numerous attempts in the course of history have been

leading to versatile methods for studying the different aspects of such func-

tions, among them methods for extending their domains of definition, which

play an important role in various branches of mathematics like the theory of

the Riemannian surfaces and differential topology, as well as several iterating

processes for locating their zeros, which once perhaps motivated by approx-

imating an irrational number by rational ones, come partly from the theory

of ordinary differential equations and dynamical systems.

Among the different kinds of iterating methods, the one which is of in-

terest to us is the so-called relaxed Newton’s method. Its basic idea comes

from a process known as Euler’s method for approximating the solutions of

the initial value problems.

If we look at the differential equation

(1) z
′
(t) = f(z(t)) = f(t, z),

where t is a real number, and z takes values from the set of complex

numbers, then solving this differentail equation is geometrically equivalent

to determining a curve z = z(t) which passes through a given initial point

z(t0) = z0 and has its slope at each point equal to the value prescribed by

the function f applied to that point. Suppose now that we are at the initial

point z0. As t increases by a small step h, we move along the tangent line in
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the direction of f(z0) = f(t0, z0) to the point z1 = z0 + hf(t0, z0), which is

the result of truncating of the actual solution

z(t1) = z0 + hf(t0, z0) + 1
2
h2z

′′
(t0) + · · ·, t1 = t0 + h,

after the linear term in h.

If the step size h > 0 is small enough, and if the slope is not changing

too drastically near (t0, z0), the value z1 will be close to z(t1). In the same

way we can start from z1, using the slope given by f(t1, z1), to get

(t2, z2) = (t1 + h, z1 + hf(t1, z1)).

Actually, we are going through an iterating process defined by

(2)

 tn = tn−1 + h = t0 + nh

zn = zn−1 + hf(tn−1, zn−1)

to approximate the solution z(t) of our differential equation by zn’s.

The first formal description of this method is attributed to Euler, but

the first proof of the fact that the approximate solution zn converges to a

solution as the step h gets smaller is due to Cauchy; Newton had also used this

method without comment in the very first book using differential equations.

Indeed, one can use an algorithm based on this method to approximate the

solutions to the differential equation x
′
= rx for real valued x, which match

some tables of calculations dating back to babylonians of 2000 B.C.. [Henrici,

Hubbard-West]

Let us assume a fixed polynomial P0 defined on the Riemann sphere C,

P0 : C −→ C. If we apply first the formula (1) to the rational function

f(z) = −P0(z)

P
′
0(z)

, we get the so-called Newton flow



VI 1 PREFACE

(3) z′(t) = −P0(z)

P
′
0(z)

for the complex polynomial P0(z). A zero of P0 is called an equilibrium

of (3), and a zero of P
′
0 which is not also a zero of P0 is a critical point of

(3) [Benzinger]. Substution w = P0(z) leads to the flow

w′ = −w

which is one of the simplest linear systems in R2 ∪ {∞}. After solving,

w(t) = (w1(t), w2(t)) = (c1e
−t, c2e

−t),

and we recognize a stable node (sink) at the origin and an unstable node

(source) at ∞ (see for example [Perko, chap. 1]). Indeed,

P0(z(t)) = P0(z0)e
−t,

which means the solutions of the main system are the inverse images of

the lines θ = θ0, θ0 ∈ [0, 2π), under P0. Further, the zeros of P0(z) are all

sinks, and ∞ is a source of the Newton flow, respectively. [Haeseler-Kriete]

What we mean by a relaxed Newton’s method is now the discretized

Euler’s method related to the Newton flow (3). In our case, we choose a

small step 0 < h0 ≤ 1 and apply the second formula of (2) to the function

f(z) = P0(z)

P
′
0(z)

to obtain

(4) NP0,h0(z) = z − h0
P0(z)
P ′

0(z)

The functionNP0,h0 : C −→ C is called the relaxed Newton’s method

for the polynomial P0. For an initial value z0 the iterating process is then

defined by

zn+1 = NP0,h0(zn), n ≥ 0.
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The set {zn}n≥0 is called the (forward) orbit of the initial point z0

under the family {Nn
P0,h0

}n≥0, where Nn
P0,h0

=

n−times︷ ︸︸ ︷
NP0,h0 ◦ · · · ◦NP0,h0 . This dis-

crete system divides the Riemann sphere into two sets: the open Fatou

set F(NP0,h0), where the family {Nn
P0,h0

}n≥0 is normal, and the orbits of the

points of each connected component of F(NP0,h0) move stabely according to

some prescribed pattern, and the closed perfect Julia set, where the orbits

of the points behave chaotic. The study of the orbits of the points z0 ∈ C

under {Nn
P0,h0

}n≥0 falls within the scope of the classical theory of iterations of

one rational map [Beardon, Milnor, Carleson-Gamelin]. As one may expect,

there are qualitative similarities between these orbits and the trajectories of

the Newton flow as h −→ 0 ([Kriete, Haeseler-Kriete, Benzinger]):

Theorem 1 [Haeseler-Kriete, Theorem B] Let P be a polynomial, deg(P ) ≥
2, and Γ be the union of all trajectories which reach some critical point of

the Newton flow (3) in finite time. Then for h −→ 0:

• the Julia sets of NP,h tend to Γ (with respect to the Hausdorff metric)

• for every z0 6∈ Γ the orbits {Nn
P,h(z0)}n≥0 of z0 under the families

{Nn
P,h}n≥0 tend to its trajectory {zz0(t)| t ≥ 0} under the Newton flow

(with respect to the Hausdorff metric).

While trying to trace the trajectories of the Newton flow or even the dis-

crete dynamical system produced by iterating the relaxed Newton’s method

of a polynomial as above on the monitor of a computer one confronts some

distortions in the dynamics of the orbits which emerge from two main error

sources: the truncation of the Taylor series for a solution, and the limitations

of finite accuracy due to the computing on actual machines. In order to pro-

viding better aproximations to the orbits, one can consider other families of
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rational maps, e. g. {NPn,hn ◦ · · · ◦ NP1,h1}n∈N, where {Pn}n∈N is a set of

polynomials ”suitabely close” to an initial polynomial P0, {hn} is a sequence

of real numbers in (0,1], and NPi,hi
is the relaxed Newton’s method defined

for (Pi, hi).

This approach will be developed in this paper for an initial polynomial

P0 and sequences of polynomials {Pn}, which satisfy certain conditions, and

sequences {hn} of positive real numbers in a small neighborhood of some

fixed number 0 < h0 ≤ 1.

The next chapter gives an overview of the main results already known in

the theory of the standard and random iterations of rational maps.

In chapter 3 we begin our study of random iterations of the relaxed New-

ton’s methods {Nn} explained above near a given pair (P0, h0) with the prop-

erty that the rational function NP0,h0 produced by (P0, h0) is a subhyperbolic

rational function. We restrict ourselves first to the small neighborhoods of

(P0, h0) and show that the Julia set of the family {Nn} is still a nonempty,

perfect, nowhere dense set (Theorem 1 and 2, Lemma 1, sec. 3.2.2), and

there is no “wandering domains” among the connected components of its

Fatou set (the last paragraph of sec. 3.2.3). Then we consider arbitrary se-

quences {(Pi, hi)}i∈N convergent to (P0, h0) in such neighborhoods and prove

that the Julia set of {Nn} is a connected and locally connected closed per-

fect nowhere dense set of measure zero (sec. 3.3.3 and Theorems 9 and 10,

sec. 3.4.4), and the Fatou set consists of contracting domains (Theorem

6, sec. 3.2.2). At last, we deduce the same results for a general sequence

{(Pi, hi)}i∈N convergent to (P0, h0) (sec. 3.3).

Chapter 4 gives an application of subhyperbolic families of relaxed New-

ton’s methods to the case when NP0,h0 has a parabolic periodic point, and

therefore not any more a subhyperbolic rational function. Using a special

method from the theory of quasiconformal mappings known as “quasiconfor-
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mal surgery” we show how the parabolic periodic point and its basin can be

approximated by means of a family of random iterations of definite subhy-

perbolic relaxed Newton’s methods which converge to NP0,h0 . Hence we turn

this case to the one already studied in chapter 3.
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2 Known Results

2.1 Preliminaries

2.1.1 The Extended Complex Plane

The set of complex numbers C = {z = x + iy| x and y ∈ R} has many

advantages when used as the domain of definition of a function. One can

see for example that C is algebarically closed, i. e. every polynomial with

complex coefficients has at least one root in C. On the other hand, one can

give C some topological structure by considering it as the Euclidean plane

R2. The set C regarded in this way is called the complex plane. This is a

metric space with the usual distance between two points z1 = x1 + iy1 and

z2 = x2 + iy2 defined by

d(z1, z2) = ((x1 − x2)
2 + (y1 − y2)

2)
1
2 .

There are also disadvantages of using C as the domain of definition,

among them that C is not compact, or equivalently not every sequence of

points in C has a convergent subsequence. On the other hand, division by 0

is impossible, and some functions are not decined every where, for example

f(z) = z−1 is not defined at 0. To avoid these disadvantages, we introduce

the set C = C ∪ {∞}, where ∞ (called the point at infinity) is a symbol

which does not represent an element of C. We call the set C the extended

complex plane.

To define a suitable topology on C, we notice first that there is a well-

defined map between the 2-sphere S2 = {(x1, x2, x3) ∈ R3| x2
1 +x2

2 +x2
3 = 1}
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and the extended complex plane C, known as the stereographic projection

π : S2 −→ C defined by
π(x1, x2, x3) = (x(x1, x2, x3), y(x1, x2, x3)), if (x1, x2, x3) 6= (0, 0, 1)

π(0, 0, 1) = ∞,

where

x(x1, x2, x3) = x1

1−x3

y(x1, x2, x3) = x2

1−x3
.

This map is one to one and onto and transfers the Euclidean metric of

S2 (induced from R3) to a metric σ on C defined by

σ(z, w) = |π−1(z)− π−1(w)|.

We get therefore an explicit formula for σ:



σ(z, w) = |z−w|
(1+|z|2)

1
2 (1+|w|2)

1
2
, if z and w ∈ C,

σ(z,∞) = limw→∞ σ(z, w) = 2

(1+|z|2)
1
2
.

The metric σ is called the chordal metric on C since σ(z, w) is the Eu-

clidean length of the chord joining π−1(z) and π−1(w) in S2. It converts C

to a metric space so that the stereographic projection π defines a homeomor-

phism between the 2-sphere S2 and the extended complex plane C, i. e. the

map π and its inverse π−1 : C −→ S2 are both continuous [Jones-Singerman,

chap. 1].
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The space C with the topology induced by the metric just defined on it

is indeed nothing else than the one-point compactification of C [Munkres].

Hence C is compact, and every open set U in C is either open in C or the

complement of a compact subset K ⊂ C in C, U = C \K. We are now able

to recognize among others special subsets of C known as domains which are

nonempty, path-connected, open subsets of C.

There is another metric on C, equivalent to the chordal metric, known as

the spherical metric χ. The spherical distance χ(z, w) between z and w in

the extended plane is by definition the Euclidean length of the shortest path

on S2 between π−1(z) and π−1(w). The both metrics relate to each other by

the formula

σ(z, w) = 2 sin(χ(z,w))
2

),

which yields the inequalities

( 2
π
)χ(z, w) ≤ σ(z, w) ≤ χ(z, w),

i. e. the two metrics χ and σ are equivalent, and the topological structures

produced by them on C are the same. [Beardon, sec. 2.1]

If we pull the spherical metric χ “locally” from an open subset U ⊂
C back to its preimage V ⊂ R2 under an embedding η which is either

a restriction of stereographic projection π to U , or the embedding f ◦ π,

where f(z) = 1
z

in case ∞ ∈ U , we obtain a conformal metric of the form

γ(z)|dz| = ds = 2 |dz|
(1+|z|2)

on V . This enables us to define a bounded measure

µ (by defining such concepts as length, area and so on) for the subsets of

C in the sense of Lebesgue measure on R2. For example if we consider the

above mentioned embedding for U :

η : V −→ U ⊂ C,
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which pulls the spherical metric χ back to V in the form of the metric

γ(z)|dz| = 2 |dz|
(1+|z|2)

, the “area” of V in this metric is by definition the integral

A =
∫ ∫

V
γ(x+ iy)2 |dx||dy|.

[Milnor, p. 21, chap. 17]

2.1.2 Rational Functions

Let M(C,C) be the class of all functions from C to itself ( we recall that

a map f is said to be defined near ∞ if it is defined on some subset {|z| >
r} ∪ {∞} which is as mentioned above an open neighborhood of ∞). We

define a metric on M(C,C) by

ρ(f, g) = sup{σ (f(z), g(z)) |z ∈ C},
∀f, g ∈M(C,C).

The metric ρ is called the uniform metric (or the metric of uniform con-

vergence) on M(C,C) ([Ahlfors, Munkres, Beardon]). We could equally well

use the spherical instead of the chordal metric to define the uniform metric

on M(C,C).

The convergence in the metric space M(C,C) equipted with ρ can be

defined as usual:

Definition 1 A sequence of elements {fn}n∈N ⊂ M(C,C) converges to

some f ∈ M(C,C) with respect to the uniform metric, if for every ε > 0

there exists some positive integer n0 so that

ρ(fn, f) < ε, whenever n > n0.
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We note that a map f ∈ M(C,C) is continuous at ∞ if the map z 7−→
f(1

z
) is continuous at 0. The subclass C(C,C) , in short C, is by definition the

class of all continuous maps of C to itself. This subclass is actually a closed

subset of M(C,C), which means the limit of every convergent sequence of

continuous functions on C is itself a continuous function on C. [Munkres,

Ahlfors]

Now we concentrate on C.

Definition 2 A family F ⊂ M(C,C) is equicontinuous at z0 ∈ C if and

only if for every positive ε there is a positive δ such that for all z ∈ C and

for all f ∈ F ,

σ(z0, z) < δ =⇒ σ (f(z0), f(z)) < ε.

The family F is equicontinuous on a subset U of C if it is equicontinuous

at every point of U. [Beardon]

From the above definition we see that every equicontinuous family is

actually a subset of C. A map f in C is holomorphic in a domain D ⊂ C

if the derivative f
′
exists and is bounded at each point of D. The map f is

meromorphic in D if each point of D has a neighborhood on which either f

or 1
f

is holomorphic. A pole of f is a point w where f(w) = ∞. Near such

a point w the map z 7−→ 1
f(z)

is holomorphic with value 0 at w. Indeed, 1
f

is continuous at w in the Euclidean metric, hence in chordal metric. Since

σ(1
z
) = σ(z),

σ (f(z), f(w)) = σ
(

1
f(z)

, 1
f(w)

)
= σ( 1

f(z)
, 0) −→ 0, as z −→ w.

A complex polynomial P : C −→ C, is a function of the form
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P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n,

where n is a positive integer, and a0, · · · , an are complex numbers. The

number n ≥ 0 is called the degree of the polynomial P : deg(P ) = n.

A rational function R : C −→ C is a function of the form R(z) = P (z)
Q(z)

,

where P and Q are both polynomials as defined above, where P (z) and Q(z)

are not both being the zero polynomial. If P ≡ 0 (Q ≡ 0) then R is the

constant function 0 (∞).

If a function R : C −→ C is rational then it is meromorphic on C; con-

versely, each meromorphic map on C is a rational function. [Jones-Singerman,

Milnor]

The rational funtion R is not defined at the common zeros of P and Q. If

there is some common zero, we may cancel the corresponding linear factors

and thereby assume that P and Q are coprime, i.e. they have no common

zeros. We assume always that this has been done. The degree deg(R) of R

is then defined by

deg(R) = max {deg(P ), deg(Q)},

where deg(S) is the degree of a given polynomial S. If R is a constant

map with the constant value α ∈ C, then deg(R) = 0.

Theorem 1 Suppose that Rn is meromorphic in a domain D on C and Rn

converges to R with respect to uniform metric ρ restricted to C(D,C). Then

R is meromorphic in D, too. [Beardon, p. 46]

Therefore the subclass R ⊂ C of all rational functions on C is a closed

subset of C with respect to the topology induced by the metric ρ.

Let us consider now the function
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deg : R −→ Z+

which maps each rational map R to its degree deg(R). This function enables

us to deduce some facts about the connected components of the metric space

R.

Theorem 2 The map deg : R −→ Z+ is continuous. In particular, if the

rational functions Rn converge in uniform metric to some function R, then

R is rational and for sufficiently large n, deg(Rn) = deg(R). [Beardon, p.

46]

The class Rn of rational maps of degree n is the inverse image of the open

and closed set {n} ⊂ Z+ under the continuous map deg. HenceRn is an open

and closed subset of R. On the other hand we can always slide zeros and

poles of R ∈ Rn to those of S ∈ Rn maintaining the same degree ([Ahlfors]).

Thus each Rn is connected and {Rn} make the connected components of R
with respect to uniform metric ρ.

Each R ∈ Rn of degree d determines its d zeros and d poles (counted with

multiplicity) uniquely, so it determines its coefficients up to scalar multiples,

i.e. there is a map

ψ : Rd −→ CP2d+1

from Rd to the complex projective space obtained form C2d+2 − {0} by

identification of the vectors which are nonzero scalar multiples of each other.

The map ψ is actually a homeomorphism of Rd onto its image ψ(Rd) =

{(x0 : · · · : xd : y0 : · · · : yd) ∈ CP2d+1|xd 6= 0 or yd 6= 0} with the induced

topology from CP2d+1. The image ψ(Rd) is an open dense subset of CP2d+1.

[Beardon, p. 47]
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As we mentioned, if {Rn} ⊂ Rd is a sequence of meromorphic functions

on C which converges to some function R in uniform metric, then R is also

meromorphic on C. The convergence of {Rn} in Rd can be interpreated as a

kind of convergence of the sequence of functions {Rn} on C which is known

as the uniform convergence:

Definition 3 The sequence of the maps {fn}n∈N is uniformly convergent to

a map f on a domain D ⊆ C if for each ε > 0 there is a positive integer N

such that for every n ≥ N and each x ∈ D, σ(fn(x)− f(x)) < ε.

This definition of convergence is evidently stronger than the pointwise

convergence of a family {fn}n∈N of functions to a limit function f on a

domain D ⊆ C. We recall that such a family converges pointwise to f on

D if the sequence of complex numbers {fn(z)}n∈N converges to the complex

number f(z), for every point z ∈ D.

For our purposes we need also a weaker form of the uniform convergence:

Definition 4 A sequence {fn}n∈N of maps on C converges localy uniformly

on some domain D of C to some map f if each point x in D has a neighborhood

on which {fn} converges uniformly to f. In this case, the convergence is

uniform on each compact subset of D.

Definition 5 A family F ⊂ C is called a normal family on a domain D ⊂ C

if every sequence of maps {fn}n∈N ⊂ F has a subsequence which converges

locally uniformly to some limit map f on D.

Theorem 3 (Arzelà-Ascoli Theorem) Let D ∈ C be a domain, and F
be a family of continuous maps in C. Then F is equicontinous in D if and

only if it is a normal family on D. [Ahlfors, p. 222]
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Let us further assume F ⊂ R to be a set of the form {fn}n∈N of rational

functions fn.

Definition 6

• The set

F(F) := {z ∈ C| {fn|U}n∈N is normal in a neighborhood U of z}

is called the Fatou set of the family F .

• The set J(F) := C \ F(F) is called the Julia set of the family F .

From the definition, the set F(F) is an open set and hence J(F) is a

closed one. Therefore the connected components of F(F) are domains:

Definition 7 The connected components of F(F) are called stable domains

of F .

Definition 8 G(D) is by definition the set of limit functions of all possible

convergent subsequences of F on a domain D. If all elements of G(D) are

constant functions, the domain D is called a contracting domain.

With this background, we are now able to state some standard theorems

from complex analysis which play an important role in the next sections.

Theorem 4 (Theorem of Vitali) Suppose that the family F is normal in

the domain D, and fn’s converge pointwise to a map f on some nonempty

open subset W of D. Then there is a map F meromorphic on D such that

F |W = f , and fn −→ F locally uniformly on D. [Beardon, p. 56]
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Theorem 5 (Theorem of Montel) Let D be a domain on C, and let Ω

be the domain C \ {0, 1,∞}. Then the family consisting of all analytic maps

f : D −→ Ω is normal in D. [Beardon, p. 57]

There is a weeker version of Montel’s theorem which we shall also need:

Theorem 6 (The weaker Theorem of Montel) Let F be a family of maps

as before, each meromorphic in a domain D on the complex sphere. Suppose

also there is a positive constant m and, for each f ∈ F , three distinct points

af , bf , and cf in C such that:

1. f ∈ F does not take the values af , bf , and cf in D; and

2. min{σ(af , bf ), σ(bf , cf ), σ(af , cf )} ≥ m.

Then F is normal in D. [Beardon, p. 57]

The next theorem known as Koebe’s Distorsion Theorem enables us to

deduce some facts about the measure (produced for example by the spherical

metric on C) of the Julia set of definite families of rational functions:

Theorem 7 (Koebe’s Distorsion Theorem) Let D ⊂ C be a bounded

region , and E be a closed subset of D. There is a finite positive number M

for E such that for every meromorphic function R : D −→ C which is one

to one on D, and each z1 and z2 ∈ E we have

1
M
≤ |R

′(z1)
R′(z2)

| ≤M .

[Golusin, p. 44] [Carleson-Gamelin, sec. 1.1] [Lyubich 1986]
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2.2 Iteration of One Rational Map

We consider first a family Υ = {Rn}n∈N of forward iterations Rn of one

rational map R of degree at least 2 on C. The set {Rn(z)}n∈N is called the

(forward) orbit of the point z ∈ C under the family Υ, as mentioned before.

There are several standard results about the Fatou and Julia sets (cf. Def. 4)

and the dynamical behavior of such families, some of which are listed below.

Theorem 8 Let R be as above. The Fatou and Julia sets, F(Υ) and J(Υ)

respectively, are completely invariant under R:

R (F(Υ)) = F(Υ) = R−1 (F(Υ))

R (J(Υ)) = J(Υ) = R−1 (J(Υ)).

[Beardon, p. 54]

Theorem 9 The Julia set J(Υ) is nonempty. Furthermore it is a perfect set

either equal to the whole C or nowhere dense. [Beardon, p. 68]

Therefore the Julia set is uncountable.

Theorem 10 For Υ as above, let W be any nonempty open set which meets

J(Υ). Then for all sufficiently large integers n > 0, J(Υ) ⊂ Rn(W ). [Beardon,

p. 69]

Theorem 11 Let E be a closed, completely invariant subset of the complex

sphere which has nonempty intersection with the Julia set J. Then E is infi-

nite and J ⊂ E. [Beardon, p. 67]
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Definition 9

• Let R be as above. If there exists some α ∈ C and some positive integer

n > 0 such that Rn(α) = α and Rm(α) 6= α for 0 < m < n, then we

call α a periodic point of (minimal) period n. The number |(Rn)′(α)|
is called the multiplier of α. The set {α,R(α), · · · , Rn−1(α)} is called

a cycle of order n. A periodic point of order 1 is called a fixed point.

• If a point α ∈ C is not periodic, but for some natural number m > 0,

Rm(α) is periodic, then α is called a preperiodic point of R.

All of the periodic points of order n in a cycle {α,R(α), · · · , Rn−1(α)}
have the same multiplier |(Rn)′(α)|, according to the chain rule.

Definition 10 A periodic point α of order n is called super-attracting, at-

tracting, indifferent or repelling according as |(Rn)′(α)| = 0, < 1, = 1 or

> 1, respectively.

Related to the last definition is the following

Theorem 12 The repelling periodic points of the family Υ are dense in

J(Υ). [Beardon, p. 148]

Definition 11 Let the point α ∈ C be an indifferent periodic point of the

family Υ, and λ be the multiplier of α. If λ is a root of unity, α is called a

rationally indifferent periodic point. Otherwise α is an irrationally indifferent

periodic point of Υ.

Theorem 13 Every rationally indifferent periodic point of Υ lies in J(Υ).

[Beardon, p. 110]

From the definitions, every (super-)attracting periodic point of the family

Υ is in the Fatou set F(Υ). There are three different kinds of stable domains:
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Definition 12 Let V be a stable domain of Υ. Then

1. V is periodic if for some n ∈ N, Rn(V ) ∩ V 6= ∅;

2. V is preperiodic if V is not periodic but there exist n,m ∈ N with n 6= m

and Rn(V ) ∩Rm(V ) 6= ∅;

3. V is wandering, if V is neither periodic nor preperiodic.

Therefore, if a stable domain is not wandering, then it is either periodic

or preperiodic:

Theorem 14 (Theorem of Sullivan) Consider the family Υ = {Rn}n∈N

as before. There exists no wandering stable domain in the Fatou set of this

family. Every periodic stable domain V has one of the forms below:

1. V has a super-attracting periodic point z0 ∈ V of order p, and limn→∞R
np =

z0 locally uniformly on V. V is called in this case a Boettcher domain.

2. V has an attracting periodic point z0 ∈ V of order p, and limn→∞R
np =

z0 locally uniformly on V. Furthermore, Rp can be linearized in a neigh-

borhood of z0, i.e. there is a local diffeomorphism g from a neighbor-

hood of z0 to a neighborhood of 0 such that g ◦ Rp ◦ g−1(z) = λz with

0 < λ < 1, for each z in the above neighborhood of 0. The real number

λ denotes the multiplier of Rp at z0. Such a V is called a Schroeder

domain.

3. The boundary ∂V ⊂ J(Υ) of V has a rationally indifferent periodic

point z0 ∈ ∂V of order p such that limn→∞R
np = z0, locally uniformly

on V. Especially, z0 belongs to J(Υ). This V is called a Leau domain

associated with z0.
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4. There is a conformal mapping φ : V −→ ∆, where ∆ is the open unit

disc {z ∈ C| |z| < 1}, and an irrational number α ∈ R \Q such that

on V

φ (Rp(φ−1(z))) = e2πiαz.

V is called a Siegel disc. (Recall: a conformal mapping φ from a domain

V⊂ C to a domain W⊂ C is an element of C(V,W ) which is angle-

and direction-preserving.)

5. There is a conformal mapping ϕ : V −→ Λ, where Λ := {z ∈ C|1 <
|z| < r, r > 0}, and an irrational number β ∈ R \Q such that on V

ϕ (Rp(ϕ−1(z))) = e2πiβz.

V is called a Herman ring.

[Beardon, Milnor, Carleson-Gamelin]

Definition 13

• If α is a (super-)attracting fixed point of the family Υ, the connected

component of the Fatou set F(Υ) which contains α is called the im-

mediate basin of α. If B denotes this immediate basin, it follows

that Rn(z) −→ α exatly when z lies in some inverse image R−n(B),

m ≥ 0, of B. The set of such z is called the basin of the attracting

fixed point α. More generally, the immediate basin of attraction of a

(super-)attracting periodic point α of period p, which is also known as

the immediate basin of attraction of the cycle {α,R(α), · · · , Rm−1(α)},
is the union of all (Boettcher) Schroeder domains which contain one of
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the elements of the cycle. The basin for such a periodic point (or its

cycle) is the union of the immediate basin and all of its inverse images

under R.

• If α is a rationally indifferent fixed point of the family Υ, the union of

those Leau domains associated with α is called the immediate basin of α.

The basin of α is the union of its immediate basin and all of the inverse

images of this immediate basin under R. More generally, the immediate

basin of a rationally indifferent periodic point α of period m, which is

also known as the immediate basin of the cycle {α,R(α), · · · , Rm−1(α)},
is the union of all Leau domains associated with some element of the

cycle. The basin for such a periodic point (or its cycle) is the union

of its immediate basin and all of the preimages of this immediate basin

under R.

If α is a (super-)attracting periodic point of period m with the cycle

{ζ0, · · · , ζm−1}, where ζ0 = α and ζi = Ri(α) for i = 1, ...,m−1 , then each ζi

in the cycle belongs to a stable domain which is contained in the immediate

basin of the cycle. For a rationally indifferent periodic point the situation is

more complicated.

We first explain the dynamics near a rationally indifferent fixed point α

which we suppose to be at 0 without loss of generality. For each positive t,

each positive integer p and each k in {0, 1, · · · , p− 1} we define the sets

Πk(t) = {reiθ| rp < t(1− cos(pθ)); |2kπ/p− θ| < π/p}.

These sets are called petals at the origin ( Figure 1 for p = 4). [Beardon,

p. 116]
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�
�-

Π0(t)

��6

Π1(t)

�
�

Π2(t)

��Π3(t)

Figure 1

Four petals at the origin, for some t > 0.

Theorem 15 (Petal Theorem) Suppose that the analytic map R has a

Taylor expansion

R(z) = z − zp+1 +O(z2p+1)

near 0. Then for sufficiently small t:

1. R maps each petal Πk(t) into itself (Figure 2);

2. Rn −→ 0 uniformly on each petal as n −→∞ (Figure 2);

3. arg Rn −→ 2kπ/p locally uniformly on Πk(t) as n −→∞ (Figure 2);

4. |R(z)| < |z| on a neighborhood of the axis of each petal (Figure 2);
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5. R : Πk(t) −→ Πk(t) is conjugate to a translation.

[Beardon, p. 116]

$

%
�
�

-

6

Figure 2

For an arbitrary rational function R with a rationally indifferent fixed

point at 0, whose multiplier is equal to 1, we have

Lemma 1 Let R be as above with a Taylor expantion

R(z) = z + azp+1 +O(zp+2), a 6= 0

at 0. Then R is conjugate near 0 to a function of the form

R(z) = z − zp+1 +O(z2p+1).

[Beardon, p. 122-124]
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Therefore the petals of such function are the conformal images of Πk(t)

under some conjugating map. The conclusions of the Petal Theorem are

valid for this arbitrary rational function except for the fact that we no longer

have an explicit expression for the petals, however each deformed petal still

subtends an angle 2π/p at the origin, and the (small enough) petals are

pairwise disjoint (since the conjugacies are all conformal maps).

If R has the following Taylor espansion at the origin:

R(z) = az + bzp+1 + · · ·,

where a 6= 1 but a = exp(2πir/q) for positive integers r, q which are

coprime, then Rq has the form

Rq(z) = z + czl+1 + · · ·

for some positive integer l, so Rq has l petals at the origin, which yields

that R is a composition of, say, k disjoint cycles each of length q, such that

l = kq. Thus in this case, R has l = kq petals at the origin, these dividing

into k sets of q petals such that R acts as a cycle of length q on each such

set. The positive integer l is equal to p if and only if the numbers p and q

are coprimes. [Beardon, p. 130]

Now let the point 0 belong to a rationally indifferent cycle {ζ0, · · · , ζm−1}
of R, say ζ0 = 0, and ζi = Ri(0). The essential difference between this case

and the previous one is that now, R maps each connected component of its

Fatou set that contains a petal at ζj to some other component which contains

a petal at ζj+1, where j = 0, · · · ,m− 1. Since Rm fixes each ζj in the cycle,

the previous version applies to Rm. Indeed, we have the following

Theorem 16 (The General Theorem of Petals) Let {ζ0, · · · , ζm−1} be

a rationally indifferent cycle for R, and let the multiplier of Rm at each
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point of the cycle be exp(2πir/q), where (r, q) = 1 (they are coprimes). Then

there exist an integer l, and mlq distinct components F0, · · · , Fmlq−1 of the

Fatou set F(R) such that at each ζj, there are exactly lq of these components

containing a petal of angle 2π/lq at ζj. Further, R acts as a permutation τ

on {F0, · · · , Fmlq−1}, where τ is a composition of l disjoint cycles of length

mq, and a petal based at ζj maps under R to a petal based at ζj+1. [Beardon,

p. 131]

There are some other points in C which play an important role in de-

termining the behavior of the family Υ on C, namely the critical points of

R.

Definition 14 The point z0 ∈ C is a critical point of a rational map R if R

is not injective in any neighborhood of z0. The orbit of such a point is called

a critical orbit.

The two main theorems concerning critical points, which we will need

later are

Theorem 17 (Riemann-Hurewitz) For every non-constant rational map

R of degree d, the number of the critical points of R counted with multiplicity

is at most 2d-2. [Beardon, p. 43]

Theorem 18 Let C be the set of all critical points of the rational map R.

Then the set of all critical values of Rn is

R(C) ∪ · · · ∪Rn(C).

[Beardon, p. 45]

Definition 15 The postcritical set of R is
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C+ =
⋃∞

n=0R
n(C),

where C is the set of critical points of R.

Theorem 19 Let R be a rational map of degree at least 2, and Υ = {Rn}n∈N.

Then

1. The immediate basin of each (super-)attracting cycle of Υ contains a

critical point of R;

2. Each immediate basin of a rationally indifferent cycle of Υ has a critical

point of R.

3. Let {Ω1, · · · ,Ωq} be a cycle of Siegel discs or Herman rings of Υ. Then⋃
∂Ωj ⊂ C+.

4. Every irrationally indifferent cycle of Υ which belongs to J(Υ), lies in

the derived set of C+.

[Beardon, chap. 9]

Definition 16 A rational map R is called hyperbolic if R is expanding on

the Julia set J(Υ), i.e. there is a Riemannian metric ||.||, defined on a

neighborhood of J(Υ), such that the derivative DRz at every point z ∈ J(Υ)

satisfies

||DRz(v)|| > ||v||,

for every nonzero vector v in the tangent space TCz.
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Since J(Υ) is a compact set, there exists some k > 1 with the property

||DRz(v)|| > k||v|| for all points z in some neighborhood of J(Υ), and for

every nonzero vector v in the tangent space TCz. Furthermore if R is hyper-

bolic with respect to one Riemannian metric, it is hyperbolic with respect to

every Riemannian metric [Carleson-Gamelin].

Theorem 20 A rational map R of degree at least 2 is hyperbolic if and only

if the closure of its postcritical set is disjoint from the Julia set J(Υ) related

to it. [Milnor, p. 189]

Or more:

Theorem 21 A rational map R of degree at least 2 is hyperbolic if and only

if the orbit of every critical point of R converges to a (super-) attracting cycle.

[Milnor, p. 189]

According to [Mañe, Sad, Sullivan], the Julia set J(Υ) related to the hy-

perbolic map R deforms continuously under deformations of R through hy-

perbolic maps. Here we have another important

Theorem 22 If the Julia set of a hyperbolic map is connected, then it is

locally connected. [Milnor, p. 191]

One can consider a wider class of rational functions, namely of those which

have critical points in their Julia sets only if each orbit of such a critical point

is allowed to have only finitely many elements. Such rational functions are

called subhyperbolic. Obviously, the class of subhyperbolic rational functions
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contains the hyperbolic ones. In order to define subhyperbolicity exactly, we

need some additional definitions. The first two of them are rather topological.

We recall that a map f : X −→ Y from the topological space X to the

topological space Y is called a proper map if the inverse image f−1(K) of

each compact subset K of Y is a compact subset of X.

Definition 17 A holomorphic map p : S
′ −→ S between two Riemann sur-

faces will be called a branched covering map if every point of S has a connected

neighborhood U so that each connected component of p−1(U) maps onto U by

a proper map. [Milnor]

Definition 18 Let f : D −→ C be a holomorphic function defined from a

domain D ⊂ C into the Riemann’s sphere so that in a suitable neighborhood

of a point z0 ∈ D:

f(z) = w0 + c(z − z0)
n + (higher terms).

The integer n(f, z0) = n ≥ 1 is called the local degree of f at the point z0.

Hence n(z) ≥ 2 if z is a critical point, and n(z) = 1 otherwise.

Definition 19 A metric on a domain D ⊂ C with the expression γ(z)|dz|
is called an orbifold metric if the function γ(z) is smooth and nonzero on D

except at a locally finite collection of points a1, a2, · · · known as ramification

points. [Milnor]

Definition 20

• The singularities a1, a2, · · · of such an orbifold metric are points for

which some integers known as ramification indices νj ≥ 2 at aj

are defined so that if one takes a local branched covering by setting

z = φaj
(w) = aj + wνj , then the induced metric γ (z(w)) | dz

dw
|.|dw| on

the w-plane is smooth and nonzero throughout some neighborhood of

the origin.
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• An orbifold (S, ν) is a subspace S ⊂ C, together with a localy finite

collection of marked points aj which are called ramified points, each of

which is assigned a ramification index νj ≥ 2 as above. For any point

z which is not one of the aj we set ν(z) = 1. [Milnor, p. 196]

Definition 21 The rational function R is expanding with respect to an orb-

ifold metric γ(z)|dz| if the absolute value ||.|| of its derivative in this metric

satisfies

||DRz|| ≥ k > 1,

whenever z and R(z) are not one of the above aj’s. In other words:

γ (R(z)) |R′
(z)| ≥ kγ(z),

where |.| is the spherical metric, and z and k are as above.

Definition 22 The rational map R is subhyperbolic if it is expanding with

respect to some orbifold metric on a neighborhood of its Julia set. [Milnor,

p. 195]

If a rational function R is subhyperbolic, and c is a critical point in

its Julia set, then every forward image Rn(c), n > 0, must be one of the

ramification points a1, · · · , aq of the orbifold metric in the Julia set, since the

function Rn has derivative zero at the critical point c, and yet must satisfy

||DRn
z || ≥ kn at the points arbitrarily close to c ([Milnor]). Indeed, we have

the following

Theorem 23 A rational map is subhyperbolic if and only if each of its crit-

ical orbits is either finite or converges to an attracting cycle. [Milnor, p.

195]
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The proof of this theorem contains the construction of an orbifold metric

for a given rational function with the critical orbits as mentioned in the

theorem. To each such function one assigns the canonical orbifold (S, ν)

as follows. As the underlying surface S we take the Riemann Sphere C

with all (super)attracting periodic orbits removed. As ramification points aj

we take all strictly postcritical points Rn(c), where c is a critical point and

n > 0. In order to specify the ramification indices ν(aj) we consider all pairs

(c,m) where c is a critical point with Rm(c) = aj, and choose ν(aj) = νj to

be the least common multiple of the corresponding local degrees n(Rm, c) (

aj itself may be a critical point, since one critical point may eveutualy map

to another). There are only finitely many such pairs (c,m) since we have

removed all superattracting periodic orbits, so this least common multiple

is well defined and finite. If R(z) is an attracting periodic point, and hence

not in S, then we set ν(R(z)) = ∞. For any other z ∈ S \ {a1, a2, · · ·} the

ramification index ν(z) is defined to be 1. So we can define the orbifold metric

γ(z)|dz| as before, i.e. γ(z) is smooth and nonzero except at ramification

points a1, a2, · · ·, and if we take a local branched covering at the point aj

by setting z = φj(w) = aj + wνj , then the induced metric γ (z(w)) | dz
dw
|.|dw|

on the w-plane is smooth and nonzero throughout some neighborhood of the

origin. [Milnor]

We illustrate these ideas in the following

Example. Consider P (z) = z2−2. The critical points are 0 and ∞. The

point ∞ is indeed a superattracting fixed point. The postcritical points are

∞ −→ ∞ and 0 −→ −2 −→ 2. The surface S is defined to be the complex

plane C = C \ {∞}. The Julia set of the family {P n}n∈N is the closed set

[−2, 2] [Carleson-Gamelin, p. 29]. The function P is not hyperbolic, since

the postcritical set is in the Julia set. But P is subhyperbolic, since the set
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of the postcritical points is finite. The ramification points are a1 = −2 and

a2 = 2 both in the Julia set J (P ). The first ramification index ν(a1) is the

local degree of P at 0, hence ν(a1) = 2. The second one ν(a2) is the local

degree of P 2 at 0. The local form of P 2 at 0 is

P (z) = 2− 4z2 + z4.

Therefore ν(a2) = 2, too.

The canonical orbifold metric γ(z)|dz| must have singularities at the ram-

ification points. We define this metric by

γ(z) := 1√
|z+2||z−2|

.

In a neighborhood U1 of a1 we set z = φ1(w) = −2 + w2. This is a local

branched covering map from U1 to a neighborhood of the origin. Then the

induced metric γ (φ1(w)) |dφ1

dw
|.|dw| has the form 1√

|w2−4|
|dw| which is smooth

and nonzero at the origin.

Similarly, we choose z = φ2(w) = 2+w2 in a neighborhood U2 of a2 which

produces a local branched covering map from U2 to some neighborhood of the

origin. The induced metric γ (φ2(w)) |dφ2

dw
|.|dw| is then equal to 1√

|w2+4|
|dw|

which is again smooth and nonzero at the origin.

The next step is to show that γ (P (z)) |P ′
(z)| ≥ kγ(z), which should mean

that P (z) is expanding with respect to the orbifold metric γ(z)|dz|. For k = 2

we have the equality γ (P (z)) |P ′
(z)| = kγ(z) on C \ {a1, a2} = C \ {−2, 2}

and therefore on a neighborhood of the Julia set [−2, 2], which was our

purpose.

There is another theorem concerning subhyperbolic functions which will

be used in the next chapter.
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Theorem 24 If R is subhyperbolic, and its Julia set is connected, then the

Julia set is locally connected. [Milnor, p. 195]

Denote the Lebesgue measure generated by the spherical metric on the

Riemann Sphere C by µ (sec. 2.1.1, p. 7).

Definition 23 A set Y is said to be a wandering set if R−m(Y )∩Y = ∅ for

every positive integer m ≥ 1. A point z is called a wandering point if it has a

wandering open neighborhood. The set of wandering points on C is denoted

by B, and its complement is denoted by Ω [Lyubich 1983].

The above definition works if we consider the condition Rm(Y )∩Rn(Y ) =

∅ for every two nonegative integers m 6= n instead of R−m(Y ) ∩ Y = ∅ for

every positive integer m ≥ 1, since these two conditions are equivalent. From

Theorem 10 in this section we see that J(Υ) ⊂ Ω, where Υ = {Rn}n∈N as

before.

Theorem 25 Let Ω 6= C. If the rational function R is subhyperbolic, then

the orbits of almost all points on C (with respect to the measure µ) con-

verge to (super-)attracting cycles. Consequently, µ(Ω) = 0 in this case.

[Eremenko-Lyubich]

Hence if R is subhyperbolic, then µ(J(Υ)) = 0. Indeed, in this case

the set Ω \ J(Υ) consists only of (super-)attracting periodic points. This,

however, does not happen in the general case, i. e. when the function R is

not subhyperbolic, although the Julia set of the family of the iterates of R is

always nowhere dense. See for example [Lyubich 1986].
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2.3 Random Iterations: General Case

Let {fn}n∈N be an arbitrary family of rational maps of degree at least 2 on

the Riemann’s sphere. What we will study is the family F = {Fn}n∈N, where

Fn = fn ◦ · · · ◦ f1.

This family is an extension of the standard case of iterations of one ratio-

nal map mentioned before. So the natural question is how far we can extend

the results of the classical iteration theory to such families. The general

case, where there are no restrictions on fj’s, has been studied by M. Bueger

in [Bueger]. We mention here some results from [Bueger] and other references

to provide a suitable background for the next sections.

Theorem 26 The Julia set of the family F is nonempty. [Bueger]

Proof.

We prove by contradiction. Let the Julia set J be an empty set. Then

there is a subsequence {Fnk
} of {Fn} and a function G such that

limk→∞ Fnk
= G, locally uniformly on C.

Indeed this subsequence is uniformly convergent on the whole C, since C

is a compact space. Therefore the function G must be meromorphic on C

and hence rational. There are two cases to be considered:

• The function G is a constant function.

We can assume G to be identically equal to ∞, since otherwise we can

map it to ∞ by a translation. But then
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limk→∞ Fnk
= ∞,

i. e. for every ε > 0 there is some positive integer k0 such that for each

k > k0, χ (Fnk
(z),∞) ≤ ε. As we have mentioned before, Fnk

is not

constant and has some zero zk. Therefore for every positive integer k

there is some complex number zk such that χ (Fnk
(zk),∞) = χ (0,∞) =

2, a contradiction.

• The limit function G is not constant.

The number N of the zeros of G counted with multiplicity is an integer

between 1 and the degree of G: 1 ≤ N ≤ deg G. We can find some

disjoint open discs U1, · · · , UN at the zeros of G such that ∪N
k=1Uk has

no poles of the function G. Denote the compact complement of ∪N
k=1Uk

in C by K and min{|G(z)| : z ∈ K} by ε. Therefore ε > 0. From the

uniform convergence of Fnk
to G on K we can find some k0 such that

for every k > k0 and each z ∈ K

χ (Fnk
(z), G(z)) = |Fnk

(z)−G(z)| ≤ ε ≤ |G(z)|.

Hence from Rouché Theorem Fnk
6= 0. Further we deduce that G and

Fnk
have the same number of zeros (with multiplicity) on ∪N

k=1Uk and

therefore on C for k ≥ k0, i. e. for such k’s deg G = deg Fnk
. But

fnk
’s are all rational functions with deg fnk

≥ 2. Hence deg Fnk
goes

to ∞ as k −→∞, a contradiction. 2

Theorem 27 For each positive integer n:

1. F−1
n (Fn(F)) ⊂ F;

2. F−1
n (Fn(J)) ⊂ J.
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[Bueger]

Proof.

1. Let z be in F, there is a neighborhood U of z where {Fnk
} is defined

and normal. Denote Un := Fn(U), and Gk := fn+k ◦ · · · ◦ fn+1, for

positive integers k. Thus the family {Gn} is defined and normal in Un.

For w ∈ F−1
n (Fn(z)) there exists a neighborhood V with the property

Fn(V ) ⊂ Un. Hence the family {Gn} is normal in Un from which we

deduce that {Fk} is normal in V, i. e. w ∈ F.

2. Now assume z ∈ J and w ∈ F−1
n (Fn(z)). Thus Fn(w) = Fn(z) which

means z ∈ F−1
n (Fn(w)). Therefore if w ∈ F, then from the first part

we have z ∈ F, a contradiction. 2

For an arbitrary family F , the Julia set J(F) = J is not necessarily

nowhere dense. But under some conditions on the sequence {fn} we have

this property again:

Theorem 28 Let U ⊂ C be a nonempty open set whose complement has at

least three points. If the sequence {fn}n∈N satisfies fn(U) ⊂ U , ∀n ∈ N,

then U ⊂ F, and J is nowhere dense. U is called an invariant domain of the

family F . [Bueger]

Proof.

For every positive integer n we have fn(U) ⊂ U . Hence Fn(U) ⊂ U . Since

](C \ U) ≥ 3, we deduce from Montel’s Theorem that {Fn} is normal in U,

which means U ⊂ F.

Now we show by contradiction that J is nowhere dense: otherwise there

is some domain D ⊂ J such that {Fn} is holomorphic in D.
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We claim there is some positive integer n such that Fn(D) ∩ U 6= ∅;
otherwise from Montel’s theorem D ⊂ F (as U is open and not empty),

which is a contradiction.

Hence there is a domain V ⊂ D with Fk(V ) ⊂ U , and therefore Fn(V ) ⊂
U for every n ≥ k. According to Montel’s Theorem it can not occure, since

then V ⊂ F. This completes the proof. 2

Let V be a stable domain (cf. Definition 7, sec. 2.1.2) of F and W be

a connected component of F−1
n (Fn(V )) , then W ⊂ F. Indeed, we have

∂W ⊂ J [Bueger, p. 41]: if there is some z0 in ∂W ∩ F, then there is some

connected neighborhood U of z0 such that U ⊂ F. Specially, U ∩W 6= ∅.
Therefore Fn(U)∩Fn(W ) 6= ∅ which means W ∩F−1

n (Fn(U)) 6= ∅. Let U’ be

a connected component of F−1
n (Fn(U)) which meets W. The case U ′ ⊂ W

can not accure, since then Fn(U) = Fn(U ′) ⊂ Fn(W ) which yields U ⊂ W .

Therefore U ′∩∂W 6= ∅, and U ′∩J 6= ∅ which contradicts Theorem 27. Thus

we have

Theorem 29 Let V be a stable domain. Then for every positive integer n,

every connected component of F−1
n (Fn(V )) is also a stable domain. [Bueger]

An easy application of Theorem 27 and Theorem 29 yields

Theorem 30 Let V and W be two stable domains of the family F . Then

either Fn(V ) = Fn(W ) or Fn(V ) ∩ Fn(W ) = ∅ for every positive integer

n.[Bueger, p. 41]

Theorem 31 Let V be a stable domain. Then the following two statements

are equivalent

1. V is a contracting domain;



31

2. For every z,w in V,

χ (Fn(z), Fn(w)) −→ 0 as n −→∞.

[Bueger]

Proof.

First we show that 1 ⇒ 2. Let V be contracting domain and z, w ∈ V

such that χ (Fn(z), Fn(w)) 6−→ 0 as n −→∞. Hence there are a subsequence

(nk) and some positive ε for which we have χ (Fnk
(z), Fnk

(w)) ≥ ε for every

positive integer k. As {Fn} is normal in V, it has a subsequence {Fnk
}

convergent in V. We denote its limit function by F. But V is a contracting

domain (cf. Definition 8, sec. 2.1.2), i. e. F is a constant function: F ≡ c

for some complex number c ∈ C. We conclude

Fnk
(z) −→ c and Fnk

(w) −→ c as k −→∞,

which is a contradiction.

Now we will show that 2 ⇒ 1. Let F be in G(V ) and {Fnk
} be a sub-

sequence of {Fn} convergent to F on V. For some arbitrary w ∈ V we put

F (w) = c. Then for every z in V:

χ (Fnk
(z), c) ≤ χ (Fnk

(z), Fnk
(w)) + χ (Fnk

(w), c).

The first summand on the right goes to 0 according to the assumption 2.

As F (w) = c, the second summand goes to 0, too. Hence for every z in V

(Fnk
(z), Fnk

(w)) −→ 0 as k −→ 0,

which means F ≡ c for some c ∈ C. 2

Similar to the standard case we can define here the notion of a periodic

point of the family F :
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Definition 24 If there exist some z0 ∈ C and some positive integer n0 such

that for every integer n ≥ n0, fn(z0) is defined and equal to z0, then z0 is

called a periodic point of order n0 of the family F .[Bueger]

Theorem 32 Let z0 be a periodic point of order n0. If the sequence {∏n |f ′n(z0)|}n≥n0

is divergent, then F−1
n0

(z0) ⊂ J. We call such z0 a repelling periodic point of

order n0 of the family F . [Bueger, p.23]
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3 The Subhyperbolic Relaxed Newton’s Method

3.1 Introductory Remarks

Let P0(z) ∈ Rd be a polynomial of the form

P0(z) = a0 + a1z + · · ·+ adz
d, d ≥ 2 and ad 6= 0,

with [(a0, · · · , ad) : (1, · · · , 1)] ∈ CPd.

The relaxed Newton’s method for such a polynomial is by definition

(∗) NP0,h0(z) = z − h0
P0(z)
P ′

0(z)
,

where h0 is an arbitrary number in (0,1].

Therefore,

N ′
P0,h0

(z) = 1− h0 + h0
P0(z)P ′′

0 (z)

(P ′
0(z))

2 .

If h0 = 1, the formula (∗) takes the form

NP0(z) = z − P0(z)
P ′

0(z)
,

which is called the Newton’s method for the polynomial P0. In this case

z0 is a simple root of P0 if and only if z0 is a superattracting fixed point of

the rational function NP0 .

From now on we assume the following conditions:
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1. P0 has at least two different roots;

2. NP0,h0 is a subhyperbolic rational function.

These facts are then immediate:

• NP0,h0 is a rational function of degree d with 2 ≤ d ≤ deg(P0).

• z0 ∈ C is a zero of P0 of multiplicity k if and only if z0 is an attracting

fixed point of NP0,h0 of multiplicity k−h
k

.

• If N
′
P0,h0

(c) = 0 for some c ∈ C, then the set {Nn
P0,h0

(c)}n∈N has either

finitely many elements, or every accumulation point of it is a (super-)

attracting periodic point of the family {Nn
P0,h0

}n∈N.

• If for such c as in the last paragraph {Nn
P0,h0

(c)} converges to some

complex number z0, then

NP0,h0(z0) = NP0,h0

(
limn→∞N

n
P0,h0

(c)
)

= limn→∞N
n+1
P0,h0

(c) = z0;

thus if for every critical point c of NP0,h0 , the orbit of c converges, then

the limit point is an attracting fixed point, which means there are no

attracting periodic points of period ≥ 2. Hence the Fatou set F(NP0,h0)

is equal to
⋃

P0(ζ)=0A(ζ), where A(ζ) is the basin of attraction of ζ.

• ∞ is a repelling fixed point of NP0,h0 with multiplier d
d−h0

.

Indeed, ∞ is the only repelling fixed point for the family {Nn
P0,h0

}n∈N.

From a theorem due to Shishikura [Shishikura, Corollary II of Theorem I]

we deduce that the Julia set J(NP0,h0) is connected, therefore also locally

connected, since NP0,h0 is subhyperbolic ([Milnor, chap. 19]).
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Now let {Pn}n∈N be a sequence of polynomials

Pn(z) = an,0 + an,1z + · · ·+ an,dz
d,

all in Rd with an,d 6= 0, and {hn} ⊂⊂ (0, 1] be a sequence of real num-

bers. These two families produce a sequence of relaxed Newton’s meth-

ods {NPn,hn}n∈N which works as the base family for the main sequence

{Nn := NPn,hn ◦ · · · ◦ NP1,h1}, i. e. we are now in the zone of random

iterations of rational functions. According to the different conditions on the

sequence {Pn}n∈N we have different dynamical behaviors for the family {Nn},
which will be studied in following sections.

We denote the open disc of radius r and center z∈ C (in the relevant

topology) by Dr(z).
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3.2 Near (P0,h0)

3.2.1 Introduction

Let the real number ε > 0 be so small that Uε(P0) lies in Rd (each Rd is

an open set, and d ≥ 2), and h0 > 0. Uε(P0) is as mentioned before the

ε-neighborhood of P0 in Rd with respect to the uniform metric.

Beginning with a sequence of polynomials {Pn}n∈N in Uε(P0) and a se-

quence of real numbers {hn} in the interval (max{0, h0−ε},min{1, h0+ε}] of

h0 > 0, we consider the family {Nn}n∈N where Nn = NPn,hn ◦· · ·◦NP1,h1 . Our

aim is to find out how small this ε can be chosen to let the family {Nn} have

a dynamical behavior similar to that of the standard family {Nn
P0,h0

}n∈N.

As NPn,hn ’s are nonconstant rational functions of degree at least 2, we

note that {Nn} is a family of rational functions of degree at least 2.

3.2.2 The Julia Set

The inverse function φ(z) = 1
z

maps a small neighborhood U of 0 to a neigh-

borhood of ∞ so that the map MP0,h0 = φ−1 ◦NP0,h0 ◦ φ has the form

MP0,h0(z) = α0z + · · · , |α0| > 1
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in U . The maps NPn,hn ’s are the relaxed Newton’s methods for Pn’s and hn’s.

Since each component Rd is open in R, we can choose ε so that for

every polynomial Pn in the neighborhood Uε(P0) ⊂⊂ Rd of P0, and every

hn in the real interval (max{0, h0 − ε},min{1, h0 + ε}] around h0 the maps

MPn,hn(z) = φ−1 ◦NPn,hn ◦ φ(z) have the form

MPn,hn(z) = αnz+ (terms of higher degrees of z),

and for some C > 1

infn |αn| ≥ C, in U .

We denote this modified ε by ε0.

Theorem 1 The Julia set J of {Nn} is nonempty.

Proof.

The point ∞ is a repelling fixed point (of order 1) for the family {Nn},
or 0 is a repelling fixed point for the family {Mn = MPn,hn ◦ · · · ◦MP1,h1}.
Therefore 0 is in the Julia set of the family {Mn}, since otherwise {Mn}
is normal at 0 , i. e. it has a subsequence {Mk} which converges locally

uniformly on some neighborhood V of 0 to some meromorphic map g. Since

g(0) = 0, g′(0) is finite. On the other hand, g′(0) = limk→∞(Mk)
′(0). But for

each positive integer k, (Mk)
′(0) ≥ Ck. This implies g′(0) = ∞ which is a

contradiction. Thus 0 belongs to the Julia set of {Mn}, or ∞ is in the Julia

set J of {Nn}. 2

Lemma 1 For every attracting fixed point ζ of {Nn
P0,h0

} there exist some r >

0 and a neighborhood Uε1(P0)× (max{0, h0− ε1},min{1, h0 + ε1}] of (P0, h0)
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in Rd× (0,1] such that for every sequence {(Pn, hn)} in this neighborhood,

Dr(ζ) is contained in the Fatou set F of the family {Nn}, and the Julia set

J of this family is nowhere dense.

Remark 1 In the proof we do not use the (sub-)hyperbolicity. The lemma

is valid without condition (2) on NP0,h0 (sec. 3.1).

Proof.

Let ζ be an attracting fixed point of {Nn
P0,h0

} with the immediate basin

A(ζ) (such a point exists because P0 satisfies condition 1, sec. 3.1, and

h0 6= 0). From the definition, {Nn
P0,h0

} converges uniformly to ζ in A(ζ), i.e.

there are q ∈ (0, 1) and r > 0 such that

∀z ∈ Dr(ζ) ⊂⊂ A(ζ): |(NP0,h0)
′(z)| ≤ q.

Therefore NP0,h0 (Dr(ζ)) ⊂ Drq(ζ) ⊂⊂ Dr(ζ).

Since NP,h is continuous with respect to P and h, there is some ε1 ∈ (0, ε0]

such that for every polynomial P in Uε1(P0) and any h in Dε1(h0) we have

NP,h

(
Dr(ζ)

)
⊂ Dr(ζ).

But Dr(ζ) is a nonempty open subset of C with a complement which has

more than three points, so from the Theorem of Montel (Theorem 5, sec.

2.1.2) and Theorem 28 (sec. 2.3) the proof is complete. 2

Remark 2 Since the number of (super-)attracting fixed points of {Nn
P0,h0}

is finite, we can choose ε1 > 0 so that the two neighborhoods Uε1(P0) ⊂ Rd

and (max{0, h0− ε1},min{1, h0 + ε1}] ⊂ (0, 1] satisfy the previous lemma for

every attracting fixed point of {Nn
P0,h0}.
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Remark 3 From the last theorem of section 2.3 we know that every repelling

fixed point of the family {Nn} is in the Julia set J.

Theorem 2 If the family {Nn} is chosen as in the previous lemma, then its

Julia set J is a perfect set.

Proof.

If z0 ∈ J is an isolated point of J, then there is an open neighborhood V

of z0 such that V ∩ J = {z0} and V \ {z0} ⊂ F. From our assumptions on

P0, there are two different points ζ1, ζ2 in the set P−1
0 (0). Since ζ1, ζ2 are

attracting fixed points for {Nn
P0,h0

}, we can find numbers r1, r2 > 0 so that :

• Dr1(ζ1) ∩Dr2(ζ2) = ∅,

• for j = 1, 2 and every positive integer n:

Nn

(
Drj

(ζj)
)
⊂⊂ Drj

(ζj) ⊂⊂ A∗(ζj),

where A∗(ζj) is the standard immediate basin of the attracting fixed

point ζj under iterations of the rational map NP0,h0 .

There are also positive integers n1, n2 sufficiently large such that

Nnj
(V ) ∩Drj

(ζj) 6= ∅,

otherwise the family {Nn} omits at least three different values (for exam-

ple in Dr1(ζ1)) on the domain V which enables us to deduce from Montel’s

Theorem that V is a subset of the Fatou set F of the family {Nn}n∈N. This

contradicts V ∩ J = {z0}.
If Wj are defined as Wj = N−1

nj

(
Nnj

(V ) ∩Drj
(ζj)

)
∩ V for j = 1, 2, then

each Wj is an open subset of V . Therefore by taking n0 = max(n1, n2), we

have
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Nn(Wj) ⊂ Drj
(ζj), ∀n ≥ n0.

Hence Nn0(V \ {z0}) ∩ Drj
(ζj) 6= ∅, j = 1 ,2 (Figure 1, below). On the

other hand, we know that the derivative sequence {N ′
n} is a normal family on

V \ {z0} [Ahlfors, p. 225]. This sequence converges to 0 on the subdomains

Wj, j = 1, 2. Therefore by Vitali’s theorem the sequence {N ′
n} converges

locally uniformly to 0 on V \ {z0}. Consequently, each limit function of

{Nn|Wj
} is a constant contained in Drj

(ζj).

But V \ {z0} ⊂ F, therefore there is a subsequence {Nnk
} converging to

a meromorphic limit function locally uniformly on V \ {z0} so that this limit

function is constant on each Wj. We obtain Nnk
|Wj

→ ξj ∈ Drj
(ζj). By the

identity theorem, ξ1 = ξ2 which contradicts the fact Dr1(ζ1) ∩ Dr2(ζ2) = ∅.
Therefore z0 is not an isolated point of J. 2

Nn0(V \ {z0})

V

J(NP0,h0)

r
w

qζ1

q ζ2

q q
z0

z1

Figure 1
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Remark 4 The last theorem is also valid in general, i. e. without the (sub-

)hyperbolicity assumption on NP0,h0.

Theorem 3 There exists some positive number η > 0 so that if (Pn, hn) ∈
Uη(P0)×(max{0, h0−η},min{1, h0+η}] for positive integers n, then O−(∞) =

J. The set O−(∞) is the closure of the set of the backward images of ∞ under

the family {Nn}, Nn = NPn,hn ◦ · · · ◦NP1,h1.

Proof.

As we know ∞ ∈ J(NP0,h0), and O−
NP0,h0

(∞) = J(NP0,h0) (Theorem 11, sec.

2.2). Thus there is some positive integer m0 > 0 such that ](N−m0
P0,h0

(∞)) ≥
3. We take three different complex numbers a0, b0, c0 in {N−m0

P0,h0
(∞)} and

choose open neighborhoods U, V,W at a0, b0 and c0 respectively, so that

U, V ,W are mutually disjoint (Figure 2). From the continuity, there is some

η > 0 such that for every finite sequence ((Pn+1, hn+1), · · · , (Pn+m0 , hn+m0))

in Uη(P0)× (max{0, h0 − η},min{1, h0 + η}] there are three points an, bn, cn

in (NPn+m0 ,hn+m0
◦ · · · ◦ NPn+1,hn+1)

−1(∞) with an ∈ U , bn ∈ V and cn ∈ W ,

where n ∈ {0, 1, 2, · · ·}.

Let D be a domain with D ∩ J 6= ∅. If for all but finitely many positive

integers n, an, bn and cn are not in Nn(D), then according to the weaker

theorem of Montel (Theorem 6, sec. 2.1.2) D ⊂ F, which is a contradiction.

Thus there are some z0 ∈ D and some positive integer n0 such that for

example Nn0(z0) = an0 . This means that Nn0+m0(z0) = ∞ and therefore,

z0 ∈ O−(∞). 2
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qa0q
an

qb0 q bn

q
c0

qcn J(NP0,h0)

Figure 2

To have a neighborhood of (P0, h0) where all of the theorems proven so

far in this chapter are valid, we define ε2 to be the positive number min(η, ε1)

(η comes from the last theorem). Our suitable neighborhood will be then the

set Uε2(P0)× (max{0, h0 − ε2}, min{1, h0 + ε2}].

3.2.3 The Stable Domains

First we recall that the set G(D) denotes the set of limit functions of all

possible convergent subsequences of the family {Nn} on a domain D. If all

of the elements of G(D) are constant functions, then D is called a contracting

domain.
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Lemma 2 Let {(Pn, hn)}n∈N be in Uε2(P0)× ( max{0, h0 − ε2},min{1, h0 +

ε2}]. If ζ is a repelling fixed point of the family {Nn}, then ζ /∈ G(D) for

every stable domain D.

Proof.

Let D denote the given stable domain and ζ ∈ C be a repelling fixed

point of the family such that ζ ∈ G(D). There is a subsequence {Nk} of

{Nn} which converges to ζ on D. If there is some k0 ∈ N such that Nk0 ≡ ζ

on D, then deg Nk0 ≡ 0 which contradicts the fact deg Nk0 ≡ dk0 .

Therefore the subsequence {Nk} must be infinite. For an arbitrary z0 ∈ D we

define zk = Nk(z0). Thus (zk) converges to ζ. But (zk) is an infinite sequence,

otherwise for some m, zm = Nm(z0) = ζ, which means z0 ∈ N−1
m (ζ) =

N−1
m (Nm(ζ)) since ζ is a fixed point of the family. This would imply z0 ∈ J

(Theorem 8, sec. 2.3), which is a contradiction to the assumption z0 ∈ D.

Thus zk 6= ζ for every k, and for infinitely many k:

|zk+1 − ζ| < |zk − ζ|.

However, we can find a number ck+1 > 1 so that |(NPk+1,hk+1
)′(ζ)| ≥

ck+1 > 1. Hence in some neighborhood V of ζ:

|NPk+1,hk+1
(z)− ζ| = |NPk+1,hk+1

(z)−NPk+1,hk+1
(ζ)| ≥ ck+1|z − ζ|,

for every z ∈ V . By taking z = zk for suitably large k, we come to a

contradiction. Thus ζ /∈ G(D). 2

So the point ∞ for example can not be an element of G(D) for every

stable domain D of the Fatou set F.

Indeed, we can prove a stronger
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Lemma 3 Let {(Pn, hn)}n∈N be as in the previous lemma. If V is a con-

tracting domain, then each element of G(D) belongs to the Fatou set F of the

family {Nn}.

Proof.

Let V be a contracting domain, and {Nnk
}k∈N be a subsequence of {Nn}

which converges on V to some element ζ in G(V ). First we claim that every

Nnk
(V ) is a subset of F: otherwise there is some v0 ∈ Nnk

(V ) such that

v0 ∈ J. As Nnk
(V ) is an open set, and O−(∞) is dense in the Julia set J,

there are some positive integer m0 and some complex number w0 ∈ Nnk
(V )

such that w0 ∈ N−1
m0

(∞). Since the point ∞ is a fixed point of the family

{Nn}, this means that for some positive integer k0 :

Nnj
(w0) = ∞, ∀j ≥ k0.

At least one preimage of N−1
nk

(w0) is in V . Hence we deduce that ζ = ∞
which is a contradiction according to the previous lemma. Therefore for every

positive integer k we have Nnk
(V ) ⊂ F, and there is some stable domain Wk

which contains Nnk
(V ).

Next we claim that Nnk
(V ) is the whole stable domain Wk; otherwise

there is some positive integer k0 such that ∂Nnk0
(V )∩Wk0 6= ∅. Let v0 be in

∂Nnk0
(V ) ∩Wk0 . As V is a connected component of (Nnk0

)−1
(
Nnk0

(V )
)

we

see that Nnk0
(∂V ) = ∂Nnk0

(V ). Therefore there is some z0 ∈ ∂V ⊂ J such

that v0 = Nnk0
(z0). On the other hand, there is some open neighborhood

U0 of v0 in Wk0 . Hence U0 ∩ Nnk0
(∂V ) 6= ∅. As O−(∞) = J, we can

find some positive integer m0 so that N−1
m0

(∞) ∈ N−1
nk0

(
U0 ∩Nnk0

(∂V )
)
, i.

e. Nnk0

(
N−1

m0
(∞)

)
∈ Nnk0

(∂V ) ∩Wk0 . For every positive integer k we have

Nnk
(V ) ⊂ Wk, according to the definition of Wk. Therefore for every positive

integer m:
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Nnk0+m

(
N−1

m0
(∞)

)
∈ W k0+m ∩Nnk0+m

(∂V ).

This yields either ∞ ∈ Wk0+m which is a contradiction (Wk0+m is a stable

domain), or∞ ∈ ∂(Wk0+m)∩∂Nnk0+m
(V ). ButNnk0+m

(V ) −→ ζ asm −→∞
which gives ζ = ∞, again a contradiction according to the previous lemma.

Therefore Nnk
(V ) = Wk for every positive integer k. We deduce there

is some positive integer k0 so that ζ ∈ Nnk0
(V ), otherwise the previous

paragraph gives the contradiction ζ = ∞ again! 2

From the above proof we have an important result which we formulate in

the following

Theorem 4 Let {(Pn, hn)}n∈N be as in Lemma 2, and V be a contracting

domain of the Fatou set F of the related family {Nn}n∈N . If {Nnk
} is a

subsequence of {Nn} convergent to an element ζ ∈ C of the limit set G(V ),

then each set Nnk
(V ) is a stable domain of F. Further, there is some positive

integer k0 such that ζ ∈ Nnk0
(V ), Nnk0

(V ) remains invariant under NPk,hk
’s

for k > k0 and has therefore ∞ on its boundary ∂Nnk0
(V ).

Notation 1 In what follows, we denote the real interval ( max{0, h0−ε2},min{1, h0+

ε2}] briefly by Dε2(h0).

Definition 1 A stable domain V of the Fatou set F is called a “wandering”

domain if Nm(V ) ∩ Nn(V ) = ∅ for every distinct positive integers m and

n. For n = 0 we assume N0(V ) = V . We denote by W the set of the

points z ∈ C with the property that each z ∈ W has an open “wandering”

neighborhood Uz, i. e. with the property Nm(Uz)∩Nn(Uz) = ∅, for all positive

integers m,n. The complement of W is denoted by A.
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The set W is an open set according to the definition and therefore A a

closed one.

The Julia set J is a subset of A: if z ∈ J, then for every open neigh-

borhood U of z there exists a positive integer m with the property zm =

(Nm)−1(∞) ∈ U . Let U1, U2 be two such neighborhoods with U2 ⊂⊂ U1. We

can find two positive integers m1 6= m2 with z2 = (Nm2)
−1(∞) ∈ U2 and

z1 = (Nm1)
−1(∞) ∈ U1. This means ∞ ∈ Nm1(U1) ∩ Nm2(U1). As U1 was

arbitrary, J can not be a subset of W .

Lemma 4 Let W ⊂ W be a domain. Then for every compact subset K of

W , diam[Nn(K)] −→ 0 as n −→∞ ([Beardon, p. 177]).

Proof.

Suppose that this is false. Then there is a compact subset K of W , a positive

number α, and some increasing sequence nj of positive integers such that for

j = 1, 2, · · ·,

(∗) diam[Nn(K)] ≥ α.

Since J ⊂ A, the family {Nn} is normal inW . Thus there is a subsequence

of {Nnj
} which converges locally uniformly on W to some meromorphic func-

tion g. We relabel this subsequence and assume that {Nnj
} itself has this

property. If g is constant with value c on W , then Nnj
converges uniformly

to c on K, and therefore for large j, Nnj
(K) lies in an α

3
-neighborhood of c.

This contradicts (∗). We conclude that g is non-constant on W .

Therefore we can find a point ζ ∈ W where g′(ζ) 6= 0 and drew a small

circle C with center ζ which with its interior D lies in W , and which is such

that g(z) 6= g(ζ) when z is on the circle C. As infw∈C |g(w)−g(ζ)| > 0, there

is some positive integer j0 such that for j ≥ j0,

|Nnj
(z)− g(z)| < infw∈C |g(w)− g(ζ)| < |g(z)− g(ζ)|
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on C. So by Rouché’s Theorem, Nnj
(D) contains the point g(ζ) for j ≥ j0

which contradicts the wandering character of W . This completes the proof.

2

From the previous lemma (Lemma 4) and Theorem 31, sec. 2.3., we de-

duce that each wandering stable domain V is actually a contracting (stable)

domain. But this contradicts the wandering nature of V , according to the

proof of Lemma 3. In fact, for each contracting domain V there are suffi-

ciently large positive integers m and n such that Nm(V ) = Nn(V ). Therefore

there is no wandering stable domains in the Fatou set F!
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3.3 Convergent Sequences Near (P0,h0)

3.3.1 Introduction

Let {(Pn, hn)}n∈N be in Uε2(P0)×Dε2(h0) as before, with the extra prop-

erty

Pn −→ P0 and hn −→ h0 as n −→∞.

We assume again that NP 0,h0 is a subhyperbolic rational function.

As we know so far, the Julia set J(NP 0,h0) of the family {Nn
P 0,h0

} is con-

nected and locally connected ([Milnor]). Further, µ (J(NP 0,h0)) = 0, where µ

is the two-dimentional Lebesgue measure produced by the spherical metric

on C ([Lyubich 1983]). Its Fatou set F(NP 0,h0) consists of simply-connected

contracting (stable) domains ([Milnor, Beardon]). In the following sections

we try to find out if there is some ε > 0 such that for every convergent

sequence {(Pn, hn)}n∈N in Uε(P0) ×Dε(h0), the Julia and Fatou sets of the

family {Nn = NPn,hn ◦ · · · ◦ NP1,h1} have similar behaviours as of J(NP 0,h0)

and F(NP 0,h0), respectively.
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3.3.2 The Structure of the Fatou Set

Theorem 5 Let {Nn}n∈N, Nn = NPn,hn◦· · ·◦NP1,h1, be a family in Uε2(P0)×
Dε2(h0) as mentioned in sec. 3.2.2, such that Pn −→ P0 and hn −→ h0

as n −→ ∞. If there is a subsequence {Nnk
}k∈N which converges locally

uniformly on a stable domain W ∈ F to a constant map ζ ∈ C, then ζ is a

(super-)attracting periodic point of {Nn
P 0,h0

}.

Proof.

First, ζ is not in J(NP0,h0), since otherwiseNP0,h0 (which is subhyperbolic)

expands in a neighborhood of ζ except perhaps at ζ, and therefore for some

suitable positive integer k0, {NPnk
,hnk

}k≥k0 expands in a neighborhood of ζ,

too. This contradicts the assumptions of the theorem. Thus there is some

stable domain V of F(NP0,h0) which contains ζ. So we can find some r > 0

so that Dr(ζ) ⊂ V .

We know that every stable domain of F(NP0,h0) is a basin of attraction

for some (super-)attracting periodic point of {Nn
P0,h0

}. If ζ is not a (super-

)attracting periodic point of {Nn
P0,h0

}, then there exists some other point

η 6= ζ in V such that for a subsequence of the family which we denote also by

{Nm
P0,h0

}m∈N we have limm→∞N
m
P0,h0

= η locally uniformly on V . Therefore

for each neighborhood Dε(η) of η there is a neighborhood Dδ(ζ), and some

M0 ∈ N such that

(*) Nm
P0,h0

(Dδ(ζ)) ⊂ Dε(η), ∀m ≥M0.

Now let K be a nonempty compact subset of W . There is some subse-

quence {Nnk
} of {Nn} which is convergent on K to ζ. Hence there is some
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positive integer M1 such that for every z ∈ K and every k ≥M1:

|Nnk
(z)− ζ| < δ

2

We can choose δ, ε > 0 so that Dδ(ζ) ∩ Dε(η) = ∅. On the other hand,

for every positive integer l there is some positive integer Ml with

|NPnk+l,hnk+l
◦ · · · ◦NPnk+1,hnk+1(z)−N l

P0,h0
(z)| < δ

4
,

for every z in C, and every k ≥Ml.

Let M = max(Ml,M1) and zl = NPnM +l,hnM +l
◦ · · · ◦NPnM +1,hnM +1(z1) for

some z1 = NnM
(z0), where z0 ∈ K. Then zl ∈ D δ

2
(ζ) ⊂ Dδ(ζ) and

|N l
P0,h0

(zl)− ζ| ≤

|N l
P0,h0

(zl)−NPnM +l,hnM +l
◦ · · · ◦NPnM +1,hnM +1(z1)|+

|NPnM +l,hnM +l
◦ · · · ◦NPnM +1,hnM +1 (NnM

(z0))− ζ| ≤

δ
4

+ |NnM+l(z0)− ζ| ≤ δ
4

+ δ
2

< δ.

So we have shown that for every positive integer l there is some zl ∈ Dδ(ζ)

such that N l
P0,h0

(zl) remains in Dδ(ζ). Since Dδ(ζ) and Dε(η) are disjoint,

this contradicts (*). Thus ζ is a periodic point of {Nn
P0,h0

}. 2

Corollary 1 If V is a contracting domain of {Nn}, then G(V ) = O+(ζ) for

some periodic point ζ ∈ C.

Proof.

Let K be a compact subset of V . If ζ and η are two different complex values

in G(V ), then we can find two subsequences {Ni} and {Nj} of {Nn} with
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Ni −→ ζ and Nj −→ η as i −→ ∞ and j −→ ∞, respectively. Therefore

there are disjoint neighborhoods Uζ at ζ and Uη at η such that for some

positive integers i0 and j0, Ni(K) ⊂ Uζ and Nj(K) ⊂ Uη, for some i ≥ i0

and some j ≥ j0 respectively. Since ζ and η are two different periodic points

of {NP0,h0}, we can find two disjoint neighborhoods Vζ ⊂ Uζ and Vη ⊂ Uη at

ζ and η respectively, and some positive integer n0 so that NPn,hn(Vζ) ⊂ Vζ

and NPn,hn(Vη) ⊂ Vη for every n > n0. Therefore Nn(K) ⊂ Vζ ∩ Vη, ∀n >

max(n0, i0, j0), which contradicts our assumption that Vζ ∩ Vη = ∅. 2

Notation 2 Let ζ be a complex number. The set B(ζ) denotes the contract-

ing domain for which {ζ} ∈ G (B(ζ)). The number ζ is called a contracting

value of the family {Nn}.

Recall 1 The number of attracting periodic points for the family {Nn
P0,h0

} is

a finite number s > 0, according to Riemann-Hurewitz Theorem. Therefore

there are s distinct contracting values ζi, 1 ≤ i ≤ s, for the family {Nn},
where 1 ≤ s <∞. The positive integer d is the degree of NP0,h0. If we denote

the set

{z ∈ C| limk→∞N
nk
P0,h0

(z) = αj, where αj is some attracting periodic point

equal to ζi, 1 ≤ j ≤ t and s ≤ t <∞}

by A(ζi), then F(NP0,h0) =
⋃t

i=1A(ζi).

Definition 2 For every ξ > 0, the ξ-neighborhood of a set A in C is

Uξ(A) = {z ∈ C|χ(z, A) ≤ ξ},

where χ is the spherical distance.
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Lemma 5 For every η > 0 there is some ε ∈ (0, ε2] such that for every

{(Pn, hn)}n∈N in Uε(P0)×Dε(h0),

F \ ⋃s
i=1B(ζi) ⊂ Uη (J(NP0,h0)) ,

where each ζi is an attracting periodic point of the family {Nn
P0,h0

}, and 1 ≤
s < ∞. The set F is the Fatou set defined for the family {Nn}, where

{(Pn, hn)} are now in Uε(P0)×Dε(h0).

Proof.

Since for every η > 0, C \Uη(J(NP0,h0)) is compact, there is some r > 0 and

some positive integer m with

Nm
P0,h0

(
C \ Uη(J(NP0,h0))

)
⊂ ⋃s

i=1Dr(ζi), for some s <∞.

From the continuity with respect to the norm on the space of rational

maps we deduce that there is some ε ∈ (0, ε2] such that

NP,h (
⋃s

i=1Dr(ζi)) ⊂⊂
⋃s

i=1Dr(ζi),

and

NPm,hm ◦ · · · ◦NP1,h1 (F(NP0,h0) \ Uη(J(NP0,h0))) ⊂⊂
⋃s

i=1Dr(ζi),

where (P, h) and (Pn, hn) are in Uε(P0)×Dε(h0).

So from Theorem 8, sec. 2.2:

C \ Uη(J(NP0,h0)) ⊂ F.

Since F(NP0,h0) ∪ J(NP0,h0) = C,
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F \ ⋃s
i=1B(ζi) ⊂ F \ ⋃s

i=1Dr(ζi) ⊂ Uη(J(NP0,h0)). 2

We choose ε2 equal to the positive number ε in the previous lemma.

Lemma 6 Assume NP0,h0 to be subhyperbolic as before. Then for every c > 1

there is a neighborhood U of J(NP0,h0) and a positive integer n0 such that for

every n ≥ n0

supz∈U |(NPn,hn ◦ · · · ◦NPn0 ,hn0
)′(z)| ≥ c.

Proof.

From the definition of subhyperbolicity there is a neighborhood U of the

Julia set J(NP0,h0), where the rational function NP0,h0 is expanding except at

finitely many points in U . Therefore for every s > 1 there is some positive

integer K such that

supz∈U |(Nn
P0,h0

)′(z)| ≥ s, ∀n ≥ K

(the critical orbits in J(NP0,h0) are finite).

On the other hand, {NPn,hn} converges locally uniformly on compact

subsets to NP0,h0 , and J(NP0,h0) is invariant under NP0,h0 . Thus for every

δ > 0 there is some positive integer L such that on U :

|
(
NPn+K−1,hn+K−1

◦ · · · ◦NPn,hn

)′
(z)− (NK

P0,h0
)′(z)| ≤ δ, ∀n ≥ L.

We can also modify L so that for every n ≥ L,

|(NPn,hn)′ − (NP0,h0)
′| < δ,

on compact subsets.

Now we can choose n0 := max(L,K). Thus for every n ≥ n0:
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supz∈U |(NPn,hn ◦ · · · ◦NPn0 ,hn0
)′(z)| =

supz∈U [|(NPn,hn ◦ · · · ◦NPn0+K ,hn0+K
)′(NPn0+K−1,hn0+K−1

◦ · · · ◦ NPn0 ,hn0
)(z)|·

|(NPn0+K−1,hn0+K−1
◦ · · · ◦NPn0 ,hn0

)′(z)|]≥

(s− δ)n−(n0+K)−1 sup
(
|(NK

P0,h0
)′(z)|−

|(NPn0+K−1,hn0+K−1
◦ · · · ◦NPn0 ,hn0

)′(z)− (NK
P0,h0

)′(z)| ≥ (s− δ)2.

The number δ > 0 can be chosen so small that (s − δ)2 := c remains

greater than 1. Hence for every n ≥ n0:

supz∈U |(NPn,hn ◦ · · · ◦NPn0 ,hn0
)′(z)| ≥ c > 1. 2

Theorem 6 For every convergent sequence {(Pn, hn)} ⊂ Uε2(P0)×Dε2(h0)

there is positive integers s and k such that the Fatou set F of the family of

the relaxed Newton’s methods {Nn} generated by {(Pn, hn)}n≥k consists only

of contracting domains:

F =
⋃s

i=1B(ζi).

Proof.

From Lemma 6 we can find for every c > 1 some ξ > 0 and a positive

integer n0 so that for some x1, x2 ∈ Uξ (J(NP0,h0)) and every n ≥ n0:

|NPn,hn ◦ · · · ◦NPn0 ,hn0
(x1)−NPn,hn ◦ · · · ◦NPn0 ,hn0

(x2)| ≥ c|x1 − x2|.

From Lemma 5 there exists some positive integer n1 with

F({NPn,hn ◦ · · · ◦NPn1 ,hn1
}n≥n1) \

⋃
B(ζ) ⊂ Uξ(J(NP0,h0)),
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where the union
⋃
B(ζ) is over all (super-)attracting periodic points ζ of

the family {Nn
P0,h0

}. Thus if U is a connected open subset of F({NPn,hn ◦· · ·◦
NPn1 ,hn1

}n≥n1)\
⋃
B(ζ), then U ⊂ Uξ(J(NP0,h0)) (from the proof of Lemma 6).

On the other hand, as NPn,hn −→ NP0,h0 , and J(NP0,h0) is invariant under

{Nn
P0,h0

}, we can find some positive integer n2 ≥ n1 so that for every n ≥ n2

NPn,hn ◦ · · · ◦NPn2 ,hn2
(Uξ(J(NP0,h0))) ⊂ Uξ(J(NP0,h0)).

Since NP0,h0 is expanding on J(NP0,h0) except at finitely many points, we

can choose x1, x2 ∈ U ⊂ Uξ(J(NP0,h0)) and n2 so that for every m ≥ n2:

|NPm,hm(x1)−NPm,hm(x2)| ≥ λm|x1 − x2|,

for some λm > 1 . If we put k = max(n0, n2), then for the above x1, x2 ∈
U ⊂ Uξ(J(NP0,h0)) we deduce the inequality (*)

|NPn,hn ◦ · · · ◦NPk+1,hk+1
(NPk,hk

(x1))−
NPn,hn ◦ · · · ◦NPk+1,hk+1

(NPk,hk
(x2)) | ≥

λn · · ·λk+1(c|x1 − x2|).

As x1, x2 are in the connected set U ⊂ F({NPn,hn ◦ · · · ◦ NPk,hk
}n≥k) \⋃s

i=1B(ζi) as mentioned before, the inequality (*) contradicts the normality

of the family {NPn,hn ◦ · · · ◦NPs,hs}n≥s on U . Therefore

F =
⋃s

i=1B(ζi). 2
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3.3.3 The Measure of the Julia Set

We intend here to show that the Julia set J of the convergent family {Nn}n∈N

is a set of measure zero. The measure µ is the image of the two dimentional

Lebesgue measure of R2∪{∞} under the inverse map π−1 of the stereographic

projection defined in sec. 2.1.1 on the Riemann’s sphere C. The proof is

almost the one given in [Lyubich 1983] for the same property of the standard

Julia set J(NP0,h0), however with some changes in the related definitions.

In what follows, we choose the positive number ε2 so small that Theorem

6 of the previous section holds for our family {Nn} mentioned above, i. e.

the Fatou set F of the family {Nn} consists only of contracting domains.

We know from sec. 3.2.3 that J ⊂ A (A is defined in Definition 1, sec.

3.2.3). Indeed, each point in W (Definition 1, sec. 3.2.3) has a “wandering”

neighborhood which goes under {Nn} to some contracting value ζ of the

family as n −→ ∞ (Lemma 4, sec. 3.2.3). Therefore each point in W
belongs to the Fatou set, and we deduce again that W ⊂ F.

Notation 3 Let C(Ni) and C(NPi,hi
) denote the sets of critical points of Ni

and NPi,hi
, respectively. Then for 1 ≤ m ≤ ∞ the set Cm defined by

Cm = C(NP1,h1) ∪ N−1
P1,h1

(C(NP2,h2)) ∪ · · · ∪ (Nm−1)
−1 (C(NPm,hm))

denotes the set of critical points of Nm. The set of critical values of Nm

will be therefore the set

Zm = Nm (C(NP1,h1)) ∪ (NPm,hm ◦ · · · ◦NP2,h2 (C(NP2,h2))) ∪ · · · ∪
NPm,hm (C(NPm,hm)).
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Also, the spherical distance of the point z from the set Cm is denoted by

rm(z) := χ (z, Cm). We recall that the ball of radius r at z in this metric is

denoted by Dr(z).

Lemma 7 Under the above assumptions on the family {Nn} we have

J ⊂ ∂W.

Proof.

Let z ∈ J be an arbitrary point. As J is nowhere dense, there is some

open neighborhood Uz of z with the property

Uz ∩ F 6= ∅.

We can find a connected open set Vz in Uz ∩ F so that there exists a

contracting domain V ⊂ F with Vz ⊂ V . There is some complex number

ζ ∈ C with G(V ) = {ζ}. So we can find some subsequence {Nnk
} of {Nn}

which converges uniformly on Vz to ζ as k goes to ∞. On the other hand,

ζ is a (super-)attracting periodic point of the family {Nn
P0,h0

}. We assume

first that ζ is a (super-)attracting fixed point of NP0,h0 . There is some open

neighborhood Dζ of ζ such that NP0,h0(Dζ) ⊂⊂ Dζ and |N ′
P0,h0

(z)| = λ < 1.

Let w be some point in Vz such that for every positive integer n, Nn(w) 6= ζ,

and n0 be the smallest positive integer with Nn0(w) ∈ Dζ . Since NPn,hn −→
NP0,h0 as n −→ ∞, there is some positive integer m0 such that for every

m ≥ m0:

NPm,hm(Dζ) ⊂ Dζ ,

|N ′
Pm,hm

(z)| = λm < 1 and

λm −→ λ as m −→∞.
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Let k0 be the positive integer max(n0,m0). The open ball Drw(Nk0(w))

around Nk0(w) with rw := min
(
χ(Nk0(w), ∂Dζ), (

1−λk0

1+λk0
)

χ(Nk0
(w),ζ)

10

)
has the

property

(NPn,hn ◦ · · · ◦NPk0+1,hk0+1
)(Drw(Nk0(w))) ∩ (NPm,hm ◦ · · · ◦

NPk0+1,hk0+1
)(Drw(Nk0(w))) = ∅,

for every m,n > k0, m 6= n. On the other hand, the rational functions

NPi,hi
, 1 ≤ i ≤ k0, are in the ε2-neighborhood of NP0,h0 . Since the points w,

NP0,h0(w), · · ·, Nk0
P0,h0

(w) are mutually distinct, the points Ni(w) (1 ≤ i ≤ k0)

are mutually distinct, too (ε2 can be chosen suitably small, if necessary).

Therefore there are open neighborhoods Ui at Ni(w), 1 ≤ i ≤ k0 − 1,

which are mutually disjoint and have empty intersection with Dζ . Now

we consider the open neighborhood (Nk0)
−1(Drw(Nk0(w))) ∩ (N1)

−1(U1) ∩
· · · ∩ (Nk0−1)

−1(Uk0−1) ∩ Vz. This is an open neighborhood of w in Uz which

“wanders”(Definition 1, sec. 3.2.3)!

If ζ is an attracting periodic point of period s of the family {Nn
P0,h0

}, then

we work with mutually disjoint neighborhoods Dζj
’s, where {ζ1 = ζ, · · · , ζs =

N s−1
P0,h0

(ζ)}, which play the same as of Dζ mentioned above. Since Uz and w

were arbitrary, we have J ⊂ ∂W . 2

Theorem 7 For almost all points z (with respect to the Lebesgue measure

on the plane) in W \ {∞}:

limm→∞ rm(z) = 0.

The proof of this theorem is similar to the standard one. As mentioned

in [Lyubich 1983], we need three lemmas for the proof of this theorem, which

we state again since they are a little bit different in the form from the ones

in [Lyubich 1983].
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The first lemma comes from the Koebe’s Distortion Theorem (Theorem

7, sec. 2.1.2): since Nm|Drm(z)(z) is univalent on Drm(z) for every z not

belonging to a finite set of critical points with at most 2m(d − 1) elements,

{z1, · · · , z2m(d−1)}, we have:

Lemma 8 Let 0 < α < 1. There exists a positive number M(α) such that

for any two measurable subsets Y1, Y2 in Dαrm(z), z 6∈ {z1, · · · , z2m(d−1)} :

µ(Nm(Y1))
µ(Nm(Y2))

≤M(α)µ(Y1)
µ(Y2)

.

As we know, each x ∈ W has a wandering open neighborhood Ux. There-

fore for every positive number δ > 0, the set Vx := Ux ∩ Dδ(x) defines a

wandering open neighborhood with diameter less than δ. We consider the

covering (
⋃

x∈W Vx)∪ (
⋃

x∈∂W Dδ(x)) of the compact closed set W . There is a

Lebesgue number η for this covering ([Munkres]). If we denote the positive

number min(η, δ
3
) by ξ(δ), then we have the next

Lemma 9 For any δ > 0 there is a ξ(δ) > 0 and a finite set of points Yδ

such that if z ∈ W, then the disc Dδ(z) contains a wandering disc Dξ(δ)(w)

centered at some point w ∈ Yδ. [Lyubich 1983]

Notation 4 Let ε > 0 be given. Denote Γm(ε) := W\Dε(Zm) and Xm(ε) :=

Nm(Γm(ε)).

Lemma 10
∑∞

m=1 µ(Xm(ε)) <∞. [Lyubich 1983]

Proof.

For δ = ε
3

we find a finite set Y ′
δ ⊂ Γm(2δ) so that Y ′

δ ⊂ Yδ and Γm(ε) ⊂
Dδ(Y

′
δ ). By Lemma 8, for every y ∈ Y ′

δ :
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µ(Nm(Dδ(y)))

µ(Nm(Dξ(δ)(y)))
≤M(1

2
) µ(Dδ(y))

µ(Dξ(δ)(y))
≡ C(δ).

According to the subadditivity of the measure,

µ(Xm(ε)) ≤ C(δ)
∑

y∈Y ′
δ
µ

(
Nm(Dξ(δ)(y))

)
≤ C(δ)

∑
y∈Yδ

µ
(
Nm(Dξ(δ)(y))

)
.

Note that Yδ is a finite set. Again since Dξ(δ)(y) is a wandering disc, we

have

∑∞
m=1 µ

(
Nm(Dξ(δ)(y))

)
= µ

(⋃∞
m=1Nm(Dξ(δ)(y))

)
<∞. 2

Proof of Theorem 7.

Let X(ε) = limm→∞Xm(ε). Then X(ε) = {z| z is a point in W with

limm→∞rm(z) > ε}. From the last lemma, µ(X(ε)) = 0. 2

From Theorem 7 we see that the orbits of the critical points converge to

the contracting values in F. Since the points on J do not have this property,

and J ⊂ ∂W , we deduce again from Theorem 7 that µ(J) = 0.
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3.4 A General Convergent Sequence

3.4.1 Introduction

Let {Pn}n∈N be a sequence of polynomials of the same degree of P0 which

converges to P0, {hn}n∈N be a sequence of positive real numbers which con-

verges to some h0 > 0, and k be as in the Theorem 4 (sec. 3.2.3).

There are two families to be considered:

the main family:

A = {N1 = NP1,h1 , · · · , Nn = NPn,hn ◦ · · · ◦NP1,h1 , · · ·};

the truncated family:

B = {M1 = NPk+1,hk+1
, · · · ,Mn = NPk+n,hk+n

◦ · · · ◦NPk+1,hk+1
, · · ·}.

The Julia set J(B) and Fatou set F(B) of the family B have been already

studied. The main goal is now to study these two sets for the new family A.

The norm on C is the spherical norm.

3.4.2 The Fatou Set

The first thing to be considered is the relation between two families:
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Lemma 11 For every compact subset K of a stable domain of the Fatou set

F(A), Nk(K) ⊂ F(B), where F(B) is the Fatou set of the family B.

Proof.

For every x0 in K and for every ε
′
> 0 there is some δ

′
> 0 such that if

|x− x0| < δ
′
, then |Nn(x)−Nn(x0)| < ε

′
, for every integer n. We show that

for every ε > 0 there is some δ > 0 such that if |Nk(x0)− y| < δ, then

|Mj (Nk(x0))−Mj(y)| < ε, ∀j ∈ N.

Given ε > 0, there is some δ1 > 0 such that

|x− x0| < δ1 =⇒

 |Nk(x)−Nk(x0)| < ε

|Mj (Nk(x))−Mj (Nk(x0)) | < ε

SinceNk (Uδ1(x0)) is open, there is some δ such that Uδ (Nk(x0)) ⊂ Nk (Uδ1(x0)).

Hence for every y in Uδ (Nk(x0)) there is some x in Uδ1(x0) with y = Nk(x).

Then for every j

|Mj (Nk(x))−Mj (Nk(x0)) | < ε

Thus we have found a δ for the given ε, which means that {Mj}j∈N is

equicontinuous on Nk(K).

Therefore

Nk(K) ⊂ F(B). 2

Lemma 12 For every compact subset K of a stable domain of F(B), N−1
k (K) ⊂

F(A) (for every branch N−1
k ).

Proof.

For every x0 in K we have
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∀ε > 0 ∃δ′ > 0 such that ∀n ∈ N, |x− x0| < δ
′
=⇒ |Mn(x)−Mn(x0)| < ε.

But Nk is a rational function, therefore it satisfies a Lipschitz condition

([Beardon]):

|Nk(x)−Nk(x0)| ≤ L|x− x0|.

Thus if δ is so that Lδ < δ
′
, then for each x in Uδ

(
N−1

k (x0)
)

we have:

|Nk(x)− x0| = |Nk(x)−Nk

(
N−1

k (x0)
)
| ≤ L|x−N−1

k (x0)| < Lδ < δ
′
.

Therefore

|Nn(x)−Nn

(
N−1

k (x0)
)
| =

Mn (Nk(x))−Mn

(
Nk(N

−1
k (x0))

)
|

< ε.

Hence

N−1
k (K) ⊂ F(A). 2

Now consider a stable domain V of F(A). For every integer s, every x

and y in V and every compact subset K of V containing x and y we deduce

Ns(K) ⊂ F(B),

for every n greater than s. From the previous results, the stable domain V

is actually a contracting domain, hence of the form B
′
(ζi), where P0(ζi) = 0

and B
′
(ζi) = {z ∈ C|Nn(z) −→ ζi as n −→∞}. It yields that
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F(A) =
⋃

P0(ζi)=0B
′
(ζi).

3.4.3 The Julia Set

The Julia set J(A) is by far a nonempty, closed, nowhere dense and perfect

subset of C.

Let x0 be in J(A). If Ns(x0) ∈ F(B) for some positive integer s, then a

subsequence {Mnk
} of {Mn} converges uniformly to a P0-root ζ on a neigh-

borhood of Ns(x0) as k goes to infinity. Since Ns is a rational map, it is

an open map which means that a neighborhood of Ns(x0) can be consid-

ered as an image Ns(U) of an open connected neighborhood of x0. Thus

{Mnk
◦ Ns}k∈N is uniformly convergent on U. The family {Mnk

◦ Ns}k∈N

defines a subsequence {Nnk
} of {Nn} on U, i.e. {Nn} is equicontinuous on

U, therefore normal at x0 which contradicts our assumption. Hence

(1) Ns (J(A)) ⊂ J(B).

Indeed, Ns(J(A)) = J(B), since for every stable domain V of F(B) there

is some stable domain U of F(A) such that

Ns(U) = V

and vice versa. Therefore the connected components of N−1
s (V ) are

stable domains of F(A), too. Hence for every stable domain V of F(B),
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∂V = Ns(∂U).

Thus

(2) J(B) ⊂ Ns (J(A)).

From (1,2) we have

N−1
s (J(B)) = J(A).

Thus J(A) has no isolated points, too, and is therefore perfect.

3.4.4 Connectedness of the Julia Set

To study the behavior of the Julia set of the family {Nn} with respect to the

Julia set of the family {Nn
P0,h0

} as (Pn, hn) converges to (P0, h0), we need a

distance on the set of all nonempty, compact subsets of the complex sphere

C:

Definition 3 Consider the complex sphere C to be equipped with the spher-

ical metric. Let ε be a positive number and A ⊂ C. We define the set Uε(A)

as follows:

Uε(A) =
⋃

a∈ADε(a).

We denote the collection of all nonempty compact subsets of C by H.
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Definition 4 For the elements A,B ∈ H we define

D(A,B) = sup {ε > 0|A ⊂ Uε(B) and B ⊂ Uε(A)}.

The function D : H×H −→ R+ defines a distance known as Hausdorff

distance on H so that the space H with the metric induced by D is a

compact metric space [Munkres].

Theorem 8 Assume the sequence of polynomials {Pn}n∈N converges to the

fixed polynomial P0 with respect to the uniform metric, and {hn} converges

to h0 ∈ (0, 1], as n goes to ∞. Also assume the Euler’s map NP0,h0 is subhy-

perbolic as before. Then

limn→∞N
−1
n (J(NP0,h0)) = J,

with respect to Hausdorff metric (we recall that J is the Julia set of the

family {Nn}).

Proof.

We know already from Lemma 5, sec. 3.3.2 that for every ε > 0 there is

some m > 0 such that

J(A)⊂ Uε (J(NP0,h0)),

where A={Nm+n}n∈N. But N−1
m (J(A)) = J, thus

Nm (J) ⊂ Uε (J(NP0,h0)).

Second, we will show that for every ε > 0 there is some integer m such

that for every n > m:

N−1
n (J(NP0,h0)) ⊂ Uε(J).
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If this is not true, there is a sequence {zn} ⊂ C outside an ε-neighborhood

Uε(J) of J such that

Nn(zn) = ζn, where ζn ∈ J(NP0,h0).

Since {zn} lies in the compact set S := C \ Uε(J), it has a subsequence

{zλn} which converges to z0 ∈ S as n goes to ∞. This yields z0 ∈ F. Thus

{Nn} is normal in a neighborhood Vz0 of z0. Hence the subsequence {Nλn}
has again a convergent subsequence denoted as {Ns} such that

Ns(z) −→ G(z) = G(z0) as s −→∞,

locally uniformly on Vz0 for some meromorphic function G. Specially,

Ns(zs) −→ G(z0), as s −→∞. But Ns(zs) = ζs ∈ J(NP0,h0) which is a closed

set. Therefore

G(z0) := ζ ∈ J(NP0,h0).

So it yields that Ns(z0) goes to ζ ∈ J(NP0,h0), while z0 ∈F. But it con-

tradicts the fact that every such ζ belongs to F(NP0,h0). 2

NP0,h0 is subhyperbolic. Therefore its Julia set J(NP0,h0) is a (connected,)

locally connected closed set in C [Milnor, chap. 19]. On the other hand, the

Hausdorff limit of connected sets is connected, too. Thus

Theorem 9 The Julia set J is connected. 2

Corollary 2 The Fatou set F has simply connected components. 2

Indeed, we can prove a stronger result, namely

Theorem 10 J is locally connected.
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Proof.

The set J(NP0,h0) is locally cannected, that is each point z ∈ J(NP0,h0)

has an open neighborhood Uz which is connected. Since J(NP0,h0) is a

compact set, the covering {Uz} has a finite subcovering {U1, · · · , Up} such

that J(NP0,h0) ⊂ ⋃p
j=1 Ui. If we let λ := min{diam(Uj)|1 ≤ j ≤ p},

where diam(Uj) is the diameter of the set Uj in spherical metric, then

0 < λ <∞. According to Theorem 8, there is some m0 such that Nm0(J) ⊂
Uλ

2
(J(NP0,h0)). So each point w ∈ J maps by Nm0 to some Uj. Therefore

the connected component of N−1
m0

(Uj) which contains w is a connected open

neighborhood of w. 2
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4 An Application: the Newton’s Petals

4.1 Basic Assumptions

We begin this section with the following assumptions on the relaxed Newton’s

function NP0,h0 introduced in section 3.1:

1′. The polynomial P0 with degP0 = d ≥ 2 has at least two different roots,

and h0 ∈ (0, 1], as before (sec. 3.1);

2′. NP0,h0 has just one parabolic cycle {0, NP0,h0(0) = ζ1, · · · , Nm−1
P0,h0

(0) =

ζm−1} assumed to contain the origin (without loss of generality, since

otherwise we can map this point to 0 by a suitable conjugacy) of

length (period) m for some positive integer m > 1, and multiplier

(Nm)′P0,h0
(0) = λ for which there is some positive integer q with λq = 1.

The first assumption is the same as “assumption 1” in sec. 3.1. From the

second one we deduce that the forward orbit of 0 under the function NP0,h0

is the finite set {0, NP0,h0(0) = ζ1, · · · , Nm−1
P0,h0

(0) = ζm−1}, where all of ζi’s are

in C. We already know from section 2.2 that {0, ζ1, · · · , ζm−1} ⊂ J(NP0,h0),

and the rational function Nm
P0,h0

has the following form (if necessary, after

applying a conjugacy) in a neighborhood of the origin which is now a fixed

point of Nm
P0,h0

:

Nm
P0,h0

(z) = λz − zs+1 +O(zs+2),

where s = lq, for some positive integer l.

Hence there are s petals at z = 0 for Nm
P0,h0

, these dividing into l sets of

q petals such that Nm
P0,h0

acts as a cycle of length q on each such set, i. e.

each such set is invariant under Nm
P0,h0

.
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Theoretically, these s petals are defined by

Πk(t) = {reiθ| rs < t(1 + cos(sθ)) ≤ 2t; |2kπ/s− θ| < π/s},

for some suitable positive number t. We may define ε = 1/t and write

the above formula in the form

Πk(t) = {reiθ| ε1/sr < (1 + cos(sθ))1/s; |2kπ/s− θ| < π/s}

which we use in section 4.2.2.

In practice, one can only trace the petals with approximating methods.

One of these methods is based on the fact that a rationally indifferent fixed

point can be considered as the limit of the attracting case, as we move the

attracting fixed point in its immediate attracting basin U to the boundary

∂U ⊂ J(NP0,h0) [Beardon].The important point in this process is that our

movements are not any more defined by the isometries of the plane domains

which are conformal transformations, but by the quasiconformal ones. We

develop this approach in the next paragraphs for petals Πk of the function

NP0,h0 mentioned above by means of the subhyperbolic approximations pro-

duced by a method known as “quasiconformal surgery” .
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4.2 Virtual Petals

4.2.1 Quasiconformal Mappings

Let f : D −→ D be any function with continuous partial derivatives fx =

∂f/∂x and fy = ∂f/∂y in a domain D ⊂ C . We first fix the notations

dz = dx+ idy , dz̄ = dx− idy

and then introduce the two differential operators

∂f/∂z̄ = 1
2
(∂f/∂x+ i∂f/∂y)

∂f/∂z = 1
2i

(∂f/∂x− i∂f/∂y).

Following the above terminology, we denote ∂f/∂z̄ by fz̄ and ∂f/∂z by

fz. We see also that the Jacobian Jf of f is given by

Jf = |fz|2 − |fz̄|2

which shows that f preserves orientation if and only if |fz̄| < |fz|.
If f is an analytic function, i. e. it is derivable with respect to the

complex variable z, then according to the Cauchy-Riemann equations for

analytic functions we have

∂f/∂z̄ = 0 and ∂f/∂z = f ′(z).

Therefore, fz̄/fz = 0. For a general function f with partial derivatives

fx, fy in the domain D we can generalize the Cauchy-Riemann equations to

the Beltrami equation ([Carleson-Gamelin, chap. I, sec. 5], [Beardon, sec.

8.3]):
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(*) fz̄/fz = µ,

where µ : D −→ C is a Lebesgue measurable function with ||µ||∞ < 1 in

D, and so |µ| ≤ ||µ||∞ everywhere in D except on a set of Lebesgue measure

zero. A function µ with these properties is called a Beltrami coefficient.

The norm |.| comes from the metric ρ defined in sec. 2.1.2.

Definition 1 Given a domain D and a Beltrami coefficient µ on D, we say

that a homeomorphism f on D is quasiconformal with complex dilatation µ

in D if f is a L2-solution of (*) in D ([Beardon, p. 180], [Lehto, p. 24],

[Ahlfors, chap. I]).

We always assume that the quasiconformal function f is an orientation-

preserving diffeomorphism, which means that µ is a continuous function

with |µ| < 1 for such f .

If we let f be represented in the form w = f(z) = f(x+ iy) = u(x+ iy)+

iv(x+ iy), then dw = du+ idv = fzdz + fz̄dz̄. Therefore:

du2 + dv2 = (u2
x + v2

x)dx
2 + 2(uxuy + vxvy)dxdy + (u2

y + v2
y)dy

2.

This yields that df maps an infinitesimal ellipse in the tangent plane at

z with the generators (dx, dy) to a circle in the tangent plane at f(z) with

the generators (du, dv) . Since

(|fz| − |fz̄|)|dz| ≤ |dw| ≤ (|fz|+ |fz̄|)|dz|,

we see that the ratio of the major axis of this infinitesimal ellipse to its

minor axis is

Df = |fz |+|fz̄ |
|fz |−|fz̄ | ≥ 1.
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Definition 2 This ratio Df is called the dilatation of f at the point z in the

domain D. The quasiconformal map f with Df ≤ K < ∞ in D is said to be

K-quasiconformal in D. [Ahlfors]

The argument of the minor axis of the infinitesimal ellipse (in the tangent

plane with generators (dx, dy)), which is indeed the argument of dz (dz and

dz̄ are not perpendicular: they make an angle of arg(µf ) at the origin), is

arg(µf )/2, where µf is the complex dilatation of f . Therefore the argument

of the major axis is arg(µf )/2 + π/2 . [Carleson-Gamelin, p. 16], [Ahlfors,

chap. 1]

The relation between the comlex dilatation µf of a quasiconformal map

f and its dilatation Df is [Ahlfors, chap. 1]

Df =
1+|µf |
1−|µf

.

Therefore, we can assign some 0 ≤ k < 1 to each K-quasiconformal

function f (0 ≤ K < ∞) so that |µf | < k in the domain D, and call f

k-quasiconformal as well. For most applications, we take C as D and just

say f is quasiconformal.

In order to have a quasiconformal function on a domain, we need to show

that the solutions of (*) do exist and are unique [Beardon, p. 180]:

Theorem 1 Let µ be a Beltrami coefficient on a domain D on the the sphere.

Then:

1. there exists a quasiconformal map with complex dilatation µ almost

everywhere (with respect to the Lebesgue measure on the sphere) on D

[Lehto, Theorem 4.4, p. 28]; and

2. if φ and ψ are two such maps, then φψ−1 is conformal (hence analytic)

[Lehto, Theorem 4.2, p. 24].
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There is also another important theorem known as Measurable Riemann

Mapping Theorem [Beardon, p. 181]:

Theorem 2 (Measurable Riemann Mapping Theorem) Given a sim-

ply connected domain D (conformally equivalent to the unit disc ∆ = {z|
χ(0, z) < 1}), and a Beltrami coefficient µ on D, there is a quasiconformal

map φ of D onto ∆ with the complex dilatation µ almost everywhere (with

respect to Lebesgue measure on the sphere) in D.

The case µ ≡ 0 is the classical Riemann Mapping Theorem.

4.2.2 The Process of Approximating

As mentioned in the introduction to this chapter, one can purterb a ratio-

nal function f : C −→ C with the help of the quasiconformal surgery to

make all of its nonrepelling periodic points attracting . We explain this

so-called surgery by applying a method used in the proof of Theorem 1 in

[Shishikura 1987] to our special case explained in sec. 4.1. Let us assume

the rational function f to be NP0,h0(z) = z − h0P0(z)/P
′
0(z). According to

assumption 2′ it has one rationally indifferent periodic point at z = 0 with

period m among its nonrepelling periodic points, the others being all (super-)

attracting periodic points. Thus we have

Nm
P0,h0

(z) = λz − zs+1 +O(zs+2),
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in a neighborhood of 0, where λ is the multiplier (Nm)′P0,h0
(0) for which

there is some positive integer q with λq = 1, and s = lq as mentioned in sec.

4.1. If we define

U ′0 = {z| 0 < |z| < r0, |arg zq| < π/2l}

for some suitably small r0 > 0, then we haveNm
P0,h0

(U ′0) ⊂ U ′0∪{0}([Beardon,

Lemma 6.5.2, p. 111]). Let us consider first some w0 ∈ N−1
P0,h0

(U ′0 ∪ {0}) \
Nm−1

P0,h0
(U ′0) and define the automorphism (holomorphic diffeomorphism of the

sphere) T as

T (z) = w0z
z−a

,

where a ∈ C, a 6= w0 and aw0 6= 0. We note that the composition

f = T−1 ◦ NP0,h0 ◦ T takes ∞ to some finite point in T−1(U ′0) for suitably

small r0, and fm has a rational indifferent fixed point at 0. In order to use

the next theorems we first apply the surgery process to f and T−1(U ′0) which

we denote again by U ′0, and then change the scale.

There is a complex polynomial h such that h(ζi) = 0 and h′(ζi) = −1,

where i = 0, · · · ,m− 1, ζ0 = 0 and ζi = f i(0), then

Lemma 1 If Hε : C −→ C is defined by

Hε(z) = z + ε h(z) · η(ε1/m|z|) z ∈ C, ε > 0 ;

Hε(∞) = ∞,

where η is a smooth real function on the set of real numbers R with

values in [0, 1] such that η ≡ 1 on [0, 1] and η ≡ 0 on [2,∞), then Hε is

quasiconformal for small numbers ε. Furthermore, Hε −→ idC uniformly,

and ||µHε ||∞ −→ 0, as ε −→ 0. [Shishikura 1987, Lemma 2, p. 8-9]
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We consider the function gε = f ◦ Hε. For small ε > 0 as above the

function gm
ε is equal to fm out of a neighborhood of zero which contains the

petals of fm.

The function gm
ε has a Taylor expantion in a suitably small neighborhood

of 0:

gm
ε (z) = λz[(1− ε)m − zs +O(εz) +O(zs+1)]

[Shishikura 1987, p. 10]. There is also a subset U ′ε = U ′0 ∩ {z ∈ C||z| <
εr/2m−1} of U ′0 such that gm

ε (U ′ε) ⊂ U ′ε, for suitably small r > 0 ([Shishikura 1987,

p. 10]). Hence the point 0 is an attracting fixed point of gm
ε , or an attracting

periodic point of gε of period m.

The function gε, which is the quasiconformal perturbation of f , inherits

the attracting periodic points of f . It changes the rationally indifferent nature

of zero to an attracting one. Furthermore, gε −→ f uniformly as ε −→ 0.

The function gm
ε joins all petals of f at zero to build an open set which is

the immediate basin of 0 and has 0 naturally in its interior (Fig. 1; compare

also with Figure 1, sec. 2.2).

To make the functions gε rational we need the following

Lemma 2 Suppose that a polynomial h(z), a rational function f(z) and open

sets Eε of C (0 ≤ ε < ε0) satisfy:

a. E0 ⊂ Eε, and Eε’s are uniformly bounded sets in C;

b. f(∞) ∈ E0;

c. f ◦ (id+ ε h)(Eε) ⊂ Eε.

If we set
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Hε(z) = z + εh(z) · η(ε1/k|z|) z ∈ C, ε > 0,

Hε(∞) = ∞,

and gε = f ◦ Hε, then for small ε > 0 there exist quasiconformal mappings

φε of C such that fε = φε ◦ gε ◦ φ−1
ε are rational functions. Furthermore,

φε −→ idC̄ , and fε −→ f as ε −→ 0. [Shishikura 1987, p. 9]

�
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Figure 1

The perturbed domain for s = 4

First we apply the last lemma to the case where gε and f are defined

as above, and Eε = U ′ε ∪ gε(U
′
ε) ∪ · · · ∪ gm−1

ε (U ′ε). The rational functions fε
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obtained are subhyperbolic (since the composition fε = φε ◦ gε ◦φ−1
ε does not

change the nature of an attracting periodic point) and converge uniformly to

f . Then we change the scale to obtain the functions FεT̄ ◦fε ◦T−1. Although

they still have the origin as an attracting periodic point of order m and are

equal to NP0,h0 out of a neighborhood of zero, they are not yet our candidates

for approximating the petals, since they do not have the form of a relaxed

Newton’s function. To this purpose we need the following theorem which is

a special case of the well known “Runge’s Theorem” [Rudin, p. 257]:

Theorem 3 Suppose K is a compact set in the plane, C \ K is connected,

and f is a function holomorphic in some open set containing K. Then there

is a sequence {Pn} of polynomials such that Pn(z) −→ f(z) uniformly on K.

In our case we take the union of the closures of the petals of NP0,h0 ,

Π0 ∪ · · · ∪ Πmlq−1, as the compact set K in the above theorem. Since Fε is

holomorphic for small ε > 0, we can introduce the holomorphic function

Gε(z) = exp{
∫ h0

z−Fε(z)
dz}.

According to Theorem 1, for each suitably small ε > 0 there exist a

polynomial Pε and a real number cε > 0 such that

|Pε(z)−Gε(z)| < ε

and

|NPε,h0(z)− Fε(z)| < εcε,

in a domain Ω which contains K, where the rational function NPε,h0 is the

relaxed Newton’s function for the pairs (Pε, h0).

For suitably small ε the function NPε,h0 has an attracting periodic point

zε of order m near 0 with the property zε −→ 0, as ε −→ 0. Furthermore,

Nm
Pε,h0

(Uε) ⊂ Uε. Let us take a strictly decreasing sequence of positive real
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numbers {εn}n∈N so that εn −→ 0 as n −→ ∞, and Nm
Pεn ,h0

(U εn) ⊂ U εn+1 ⊂
Uεn . If we define the functions Nn by

Nn(z) = NPεn ,h0|Ω ◦ · · · ◦NPε1 ,h0|Ω(z),

then we obtain a family {Nn}n∈N already studied in chapter 3, whose

dynamics near zero approximates that of the family {Nn
P0,h0

} near zero.
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