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Chapter 1

Introduction

1.1 Introduction

Two problems are said to be inverse to each other if the solution to the first is
required to formulate the second and vise-versa. There are several simple examples
of inverse problems such as division and multiplication or differentiation and inte-
gration. Usually one of them has been studied or investigated for a longer time and
is therefore better understood or comprehended than the other. In this way this
problem has become easier to solve and is therefore called the direct problem. The
inverse problem is then remaining problem of the pair. Solving the inverse problem
usually requires harder or even new techniques.

Scattering theory has been studied over the last century (see [6, 7, 40]). Scat-
tering theory is concerned with modeling the effects of objects and inhomogeneities
on the propagation of waves. In the direct scattering problem the object is given
and it is required to find the scattered wave. In the inverse scattering problem one
wants to receive information on the shape or physical parameters of the scattering
objects.

For Problems in mathematical physics, in particular for initial and boundary
value problems, Hadamard [24] postulated three properties:

1. Existence of a solution.

2. Uniqueness of the solution.

3. Continuous dependence of the solution on the data.

A problem satisfying all three requirements is called well-posed or properly-posed
and if one of these properties is violated then the problem is said to be ill-posed or
improperly-posed. In most cases the inverse scattering problem is ill-posed. This
means it fails to be uniquely solvable or the solution does not continuously depend
on data, i.e., small errors in the data cause large errors in the solution. The ill-
posedness is a great challenge for numerical methods to solve the inverse scattering
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8 CHAPTER 1. INTRODUCTION

problem since they have to somehow stabilize the ill-posedness of the problem. It is
not seldom that mathematical problems arising from applications are ill-posed and
therefore this is an area of great interest for several areas of science today.

The mathematical modeling of the application of scattering phenomena in var-
ious non-destructive evaluation techniques leads to inverse scattering problems for
time-harmonic electromagnetic waves. In principle, in these approaches the effects
of scattering objects on the propagation of electromagnetic waves are exploited to
obtain images of the nature of the scattering objects, i.e., inverse scattering consti-
tutes a particular method of imaging. As opposed to classical techniques of imaging
such as computerized tomography, that is based on the fact that X-rays travel along
straight lines, inverse scattering problems take into account that the propagation
of electromagnetic waves has to be modeled by a wave equation. This, in particu-
lar, implies that inverse scattering leads to nonlinear models whereas inverse X-ray
tomography is linear.

The inverse scattering problem that we are consider in this manuscript is in fact
ill-posed. We are interested in considering obstacle scattering problems. Roughly
speaking, the main concern about these problems are to study the effect that ob-
stacle has on some incident plane waves. Furthermore, we want to observe how this
effect is influenced by the property of the obstacle, namely its shape, location and
physical constitution. We consider an obstacle D embedded in some known homo-
geneous background. Knowing the physical properties of the background medium
and the obstacle, and considering the total field u is to be the sum of the incident
plane wave ui and the scattered field us, then the direct scattering problem consists
of determining the scattered field us from the knowledge of the obstacle, including
the boundary condition, differential equation that governess the propagation of the
field. The inverse scattering problem is however much more challenging and inter-
esting than the direct scattering problem. Given information on the scattered field
us either in the near field or in the far field, and the incident wave ui, the inverse
scattering problem consists of determining some unknown properties of the obsta-
cle, such as its location and shape, or physical constitution. There are a variety of
applications since its early statement for radio location, for instance according to
Sleeman [46]

� construction of images of tumors ( X-ray tomography);

� location of cracks in elastic materials;

� location and identification of discharges in storms for the analysis of the storms
themselves and prediction of tornadoes from characteristic source patterns;

� construction of images of aircrafts, missiles, surface vessels and submarines;

� analysis of sound speed variation in water and the sea bed sedimentary layer.
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In inverse obstacle scattering problems for time-harmonic waves the scattering
object is a homogeneous obstacle and the inverse problem is to obtain an image of
the scattering object, i.e., an image of the shape of the obstacle from a knowledge
of the scattered wave either at near distances or at large distances, i.e., from the
far field pattern. In the current manuscript we deal with dielectric scatterers and
confine ourselves to the case of infinitely long cylinders.

We are interested in the special case of time-harmonic acoustic scattering as
motivated in section 2.1, i.e., we are interested only in the space dependence us

of the scattered field. We assume D ⊂ IR2 is a simply connected bounded domain
with C2-smooth boundary ∂D that represents the cross section of a dielectric infinite
cylinder having constant wave number kd with Rekd ≥ 0 and Imkd ≥ 0 embedded in
a homogeneous background with positive wave number k0. Denote by ν the outward
unit normal vector to ∂D. Then, given an incident plane wave ui(x) = eik0x·d with
incident direction given by the unit vector d, the direct scattering problems for E-
polarized electromagnetic waves is modeled by the following transmission problem
for the Helmholtz equation: Find solutions u ∈ H1

loc(IR
2 \ D̄) and v ∈ H1(D) to the

Helmholtz equations

∆u+ k2
0u = 0 in R2 \ D̄, ∆v + k2

dv = 0 in D (1.1.1)

satisfying the boundary conditions

u = v,
∂u

∂ν
= Bv on ∂D (1.1.2)

in the trace sense such that u = ui + us with the scattered wave us. The operator
B defines the boundary condition that is to be satisfied and is related to physical

properties of domain D. For Bv =
∂v

∂ν
and for Bv =

∂v

∂ν
+ iηv the boundary

condition (1.1.2) turn out to be transmission boundary condition and conductive
boundary condition respectively. The function η is called conductive function. Since
these are exterior problems, to ensure uniqueness of the solution for each problem a
condition at infinity needs to be imposed. Sommerfeld [47] suggested the radiation
condition

lim
r→∞

√
r(
∂us

∂r
− ik0u

s) = 0, r = |x| (1.1.3)

the limit holds uniformly in all directions x
|x| . The physical meaning of this condition

is that energy is radiating to infinity, in another words, no energy sources are at
infinity. With this radiation condition the direct problems are well-posed, since they
are uniquely solvable and the scattered wave depends continuously on the incident
plane wave ui.

It can also be shown that the solution us to the direct scattering problems can
be represented by Green’s formula

us(x) =

∫
∂D

{us(y)
∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)}ds(y) x ∈ IR2 \ D̄.
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under appropriate assumptions(see Theorem 2.1.5). Here Φ stands for the funda-
mental solution to the Helmholtz equation. Moreover, one can show (see Theorem
2.2.1) that the solution us has an asymptotic behavior of an outgoing cylindrical
wave of the form

us(x) =
eik|x|√
|x|
{u∞(x̂) +O(

1

|x|
)}, |x| → ∞,

where the function u∞ defined on a unit circle Ω is called the far-field of the scattered
field us. Furthermore, by Rellich’s lemma( see Lemma 2.3) it uniquely determines
the scattered field us.

The inverse scattering problems we are interested in are to determine some prop-
erty of the obstacle from the knowledge of the scattered field us either at the large
distances or at near distances generated by a known incident plane wave. In this
sense we assume that the near field pattern obtained from the scattered field at
near distances or far field pattern is the given data. We also assume the priori
knowledge that the obstacle is a dielectric and satisfies transmission or conductive
boundary condition. Now the inverse scattering problems can be formulated as fol-
lows: Given an incident plane wave ui and the corresponding near field pattern or
far field pattern u∞, determine shape, interior wave number kd, and simultaneously
shape and interior wave number kd, and the conductive function η for the first,
second, third, and fourth problems respectively. More generally, we also consider
the reconstruction of these properties from the far field patterns for a small finite
number of incident plane waves with different incident directions. These inverse
problems are non-linear and ill-posed, since the solution of the scattering problem
(1.1.1)-(1.1.3) is non-linear with respect to the boundary and since the mapping
from the boundary to the far field pattern is extremely smoothing. To find an ap-
proximating solution to these inverse problems in a stable way we will use Tikhonov
regularization.

We summarize the four problems we are interested in:
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Problem 1 : Given the far
field pattern u∞ for one incident
field ui, determine the shape of
the boundary ∂D of the dielectric
scatterer D.
Problem 2 : Given the far field
pattern u∞ for one incident field
ui, determine the interior wave
number kd of the dielectric scat-
terer D.
Problem 3 : Given the far field
pattern u∞ for one incident field
ui, simultaneously determine the
shape of the boundary ∂D and
the interior wave kd of the dielec-
tric scatterer D.

Problem 4 : The inverse scatter-
ing problem is formulated as follows:
Given the far field pattern u∞ for one
incident field ui, determine the con-
ductive function η of the dielectric
scatterer D.

The first three problems have the same direct problem,i.e., the scattered field is
obtained from (1.1.1) with transmission boundary condition and the scattered field
for the fourth problem is founded from (1.1.1) with conductive boundary condition.

At this point we note that uniqueness results for this inverse transmission prob-
lem are only available for the case of infinitely many incident waves (see [28]). A
general uniqueness result based on the far field pattern for one or finitely many
incident waves is still lacking. In this manuscript we will include a uniqueness re-
sult for recovering a dielectric disk from the far field pattern for scattering of one
incident plane wave. We also give an overview of some classical and some more
recent uniqueness results in section 3.2.1.

In the literature, there exists a large number of numerical methods for solving
inverse scattering problems. According to Kress [33], their classification can be
split into three groups: iterative, decomposition and sampling or probe methods.
Iterative methods interpret the inverse obstacle scattering problem as a nonlinear
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ill-posed operator equation in the form

F (∂D) = u∞ (1.1.4)

where the operator F maps the boundary ∂D of the obstacle D onto far field pattern
u∞ of the scattered field us for a fixed incident field ui. The operator equation (1.1.4)
can be solved by regularized Newton iteration methods because of the availability
of Frechet differentiability of the operator F . The regularized Newton iteration
methods converge to a local minimum and therefore a good initial guess is required.
Furthermore, these methods suffer from high computational effort because they
require direct solver at each iteration step. On the other hand, the main advantage
of these methods is that the reconstructions are generally very good. For details on
how these methods are implemented for such an operator equation (1.1.4), we refer
the Colton and Kress [7], Hohage [14], and Kress [30, 31].

Decomposition methods split the ill-posedness and non-linearity of the inverse
scattering problem into two parts. In the first part, the scattered field is recon-
structed from the ill-posed measured far field data. This is done by representing
the scattered field us as a suitable layer potential over some appropriate closed
curve. The density for the layer potential is found from the given measured far field
data. In the second part, the boundary of the scatterer is found by the location
where the boundary condition is satisfied. This is done by linearizing L2-norm of
the boundary condition and finding a curve that is minimal with respect to this
linearized equation in a least square sense. The main advantage of that method
is that it does not require a direct solver. However, the reconstructions obtained
by this method are generally worse than the reconstruction obtained from iterative
methods. For details we refer to Colton and Monk [8, 9] and Potthast [43].

Sampling or probe methods are based on the numerical evaluation of a criteria in
terms of indicator functions that determine whether a point lies inside or outside of
the obstacle. In the literature, there exists subclasses of these methods, for instance,
the linear sampling method suggested by Colton and Kirsch [5], the factorization
method suggested by Kirsch [27], the point source method suggested by Potthast
[43], and the probe method suggested by Ikehata [16]. The main advantage of these
methods is that they do not require a priori knowledge on the boundary condition.
However, a big drawback occurs for these type of methods since they require a huge
amount of data in order to obtain a reasonable reconstruction. In addition to this,
they usually just reconstruct the obstacle and not the boundary condition.

Recently three new iterative methods were proposed and so far mainly consid-
ered for impenetrable scatterers. The first method was suggested by Kress [32]
and further investigated by Kress and Serranho [37, 38, 45] and denoted as hybrid
method. The second method suggested by Kress and Rundell [36] and developed for
inverse scattering problems by Ivanyshyn and Kress [19, 21, 23] and named simul-
taneous linearization method, and the third method was suggested by Johansson
and Sleeman [25].
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The aim of this manuscript is to extend these approaches to penetrable scatterers.

� Firstly, we numerically solve the inverse scattering problems for an infinitely
long dielectric cylinder embedded in homogeneous background via the hybrid
method [37, 38, 45], the simultaneous linearization method [19, 21, 23], and the
Johansson and Sleeman method [25] and illustrate their numerical feasibility
via synthetic and experimental data.

� Secondly, we include a uniqueness result for recovering a disc from the far
field pattern for scattering of one incident plane wave.

� Thirdly, we show connections and differences to the traditional regularized
Newton type iterations as applied to the boundary to far field map, including
alternatives for the implementation of these Newton iterations.

For the first three problems we represent the solution v and us to the forward
scattering in terms of single-layer potentials in D and in IR2 \ D̄ with densities ϕd
and ϕ0, respectively. The boundary condition (1.1.2) with transmission condition
provides a system of two boundary integral equations on ∂D for the corresponding
densities, that in the sequel we will denote as field equations. The inverse problem
for the first problem,i.e., for the shape reconstruction, the required coincidence of
the far field of the single-layer potential representing us and the given far field
u∞ provides a further equation that we denote as data equation. The system of
the field and data equations can be viewed as three equations for three unknowns,
i.e., the two densities and the boundary curve. They are linear with respect to the
densities and nonlinear with respect to the boundary curve. This opens up a variety
of approaches to solve the system by linearization and iteration.

For the first problem,i.e., for the shape reconstruction, three methods were im-
plemented for this system in the current manuscript. In the spirit of the Johansson
and Sleeman method [25], given an approximation ∂Dapprox for the boundary ∂D in
a first step the well-posed field equations can be solved for two densities on ∂Dapprox.
Then in a second step, keeping the densities fixed, the ill-posed data equation can
be linearized with respect to the boundary and the solution of the ill-posed lin-
earized equation can be utilized to update the boundary approximation. Because
of the ill-posedness the solution of this update equation requires stabilization, for
example, by Tikhonov regularization. These two steps can be iterated until some
suitable stopping criterion is satisfied.

In the spirit of the simultaneous linearization method [19, 21, 23, 32, 36] given an
approximation ∂Dapprox for the boundary ∂D and for the densities ϕdapprox ,ϕ0approx ,
all three equations are simultaneously linearized with respect to the boundary and
the densities. The solution of the ill-posed linearized equations can be utilized both
update the densities and the boundary approximation. This can be iterated un-
til some suitable stopping criterion is satisfied. Because of the ill-posedness the
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solution of this update equations require stabilization, for instance, Tikhonov regu-
larization. Note that in order to obtain a suitable initial guess for the densities we
solve the well-posed field equations on ∂Dapprox.

In the spirit of the hybrid method [32, 37, 38, 45] given an approximation ∂Dapprox

for the boundary ∂D in a first step from the ill-posed data equation, regularized
by Tikhonov regularization as above, z density ϕ0 can now be found on ∂Dapprox.
Then, in a second step, keeping the density ϕ0 fixed, we find the density ϕd from one
of the field equations. Then in a third step, keeping the densities fixed, we linearize
the remaining field equation with respect to the boundary and the solution of the
ill-posed linearized equation can be utilized to update the boundary approximation.
Because of the ill-posedness the solution of this update equation requires stabiliza-
tion, for example, by Tikhonov regularization. These three steps can be iterated
until some suitable stopping criterion is satisfied. Here we note that the linearized
equation is ill-posed because this ill-posedness is inherited by linearization from the
original equation.

For the shape reconstruction, experimental data were also implemented. We
obtained the data from the following system and used that data to obtain recon-
struction via all three methods.

The experimental system which
can be seen in the photo was con-
ducted at the faculty of Electron-
ics and Communication of Istan-
bul Technical University. For a
sufficiently long dielectric obsta-
cle we used a circular cylindrical
wood with radius 3 cm. In this
system, the transmitter sends
electromagnetic plane waves with
the frequency one GHz polarized
in the direction of the cylinder
axis. The distance between the
transmitter and the cylinder axis
is one meter. The receiver is lo-
cated one meter away from cylin-
drical wood and rotates around it
and collects data. In order to de-
crease the reflection of the waves
and noise, absorbers are settled
around the system.
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We used electromagnetic waves with frequency one GHz which means that the
exterior wave number k0 is equal to 20.944 and the interior wave number is taken
kd =

√
3k0. Since we obtain the data from the near distance, it requires to use near

field pattern instead of far field pattern.

For the second and the third problems only the simultaneous linearization and the
hybrid method can be used, since the data equation does not include the interior
wave number. For the second problem, the simultaneous linearization and the
hybrid methods proceed the same line as the shape reconstruction with difference
that the unknown boundary ∂D is replaced by interior wave number kd. For the
third problem, the simultaneous linearization and the hybrid methods proceed the
same line as the shape reconstruction with the difference that the interior wave
number kd is included as an unknown parameter.

For the fourth problem we represent the solution v and us to the forward scat-
tering in terms of single-layer potentials in D and in IR2 \ D̄ with densities ϕd and
ϕ0, respectively, the (1.1.2) with conductive boundary condition provides a system
of two boundary integral equations on ∂D for the corresponding densities, that in
the sequel we will denote as field equations. The inverse problem, the required co-
incidence of the far field of the single-layer potential representing us and the given
far field u∞ provides a further equation that we denote as data equation. The
system of the field and data equations can be viewed as three equations for three
unknowns, i.e., the two densities and the conductive function η. This inverse prob-
lem is ill-posed determination of η does not depend continuously on the far field
pattern. Furthermore, it is non-linear in the sense that the scattered field depends
non-linearly on the conductive function η. The inverse problem is formulated as
follows: Given an incident plane wave and corresponding far field pattern u∞ is to
determine conductive function η.

In the sense of the hybrid method [32, 37, 38, 45], in a first step, the ill-posed
data equation is regularized, for instance, by Tikhonov regularization then density
ϕd is solved from regularized data equation on ∂D. In a second step, the density ϕd
is solved from the first field equation. And in a third step, the conductive function
is reconstructed from the second field equation. However, reconstruction of the
conductive function is not straightforward because of ill-posedness of the inverse
problem and of sensitivity to the errors in the vicinity of zeros. In the spirit of
Akduman and Kress [1], to obtain more stable solution, we express the unknown
impedance function in terms of some basis functions. Then, we satisfy the second
field equation in a least square sense. For the ill-posedness we will use Tikhonov
regularization.

1.1.1 Organization

This manuscript consists of six chapters. In the second chapter some results about
scattering theory is given. In the first section, we begin with the Helmholtz equation
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and give some motivation on it and then we proceed by the Green’s formula and
theorems. In the second section, some properties of far-field pattern are discussed
and some related theorems are given and Rellich’s lemma is stated. In the third
section, we present single- and double-layer potentials and some related theorems
and corollaries are stated. Moreover, We give definition of Hölder and Sobolev
spaces and some related theorems are stated. In addition, we introduce the single-
and double-layer operators and state their mapping properties in these spaces. In
the fourth section, we give some information about ill-posedness and regularization,
and state some related theorems. We mainly focus on Tikhonov regularization and
its theorems. In the fifth section, we state Riesz theorems because they will be
vital tools for showing well-posedness of the direct problems. Furthermore, we also
state definition of the Fréchet differentiability and give some properties and related
theorems.

In the third chapter, in the first section, we present the direct scattering problems
for the first three problems. The direct scattering problems are stated and related
theorems are stated and proved. In the second section, some classical uniqueness
results for penetrable and impenetrable obstacles are stated. In addition, we also
include a uniqueness result for recovering a dielectric disc from the far field pattern
for scattering of one incident plane wave. In the third section, the inverse scatter-
ing problems are stated and related theorems are stated and discussed. Moreover,
iterative schemes for three problems are deeply discussed for the hybrid, the simul-
taneous linearization, and the Johansson and Sleeman method.

In the fourth chapter, we numerically solve the direct and inverse scattering
problems. We also illustrate numerical feasibility of the hybrid, the simultaneous
linearization, the Johansson and Sleeman method and establish their advantages
and disadvantages. Moreover, we compare these methods via the quality of their
reconstructions, tolerance to noise level, and computational effort. In addition, we
also obtain some reconstructions via experimental data and include some numerical
examples. We illustrate the experimental result and examples at the end of this
chapter.

In the fifth chapter, we present the direct and inverse scattering problem for the
fourth problem. In the first section, the direct scattering problem is stated and
related theorems established and proved. Furthermore, its numerical solution is
stated and as mentioned above, we obtain field equations,i.e., system of integral
equations and we solve this system of integral equations approximately via collo-
cation method combined with numerical quadrature based on approximation by
trigonometric polynomials. In the second section, the inverse scattering problem
stated and related theorem stated and proved. Moreover, its numerical solution is
established. In addition, the solution of the problem is deeply described. In the
third section, the numerical feasibility is stated and discussed.

In the final chapter, we make some considerations and final conclusion on meth-
ods and present some future perspectives.



Chapter 2

Acoustic Scattering Theory

In this chapter we mainly follow the sources [6, 7, 31].

2.1 The Helmholtz Equation

Consider the propagation of sound waves of small amplitude in a homogeneous
isotropic medium in IR2 which can be seen as an inviscid fluid. Assume v = v(x, t)
is the velocity field and assume S = S(x, t), p = p(x, t), and ρ = ρ(x, t) denote the
specific entropy, pressure, and density, respectively, of the fluid. Then, the motion
of the field is given by Euler’s equation

∂v

∂t
+ v · ∇v +

1

ρ
∇p = 0,

the equation of continuity
∂ρ

∂t
+∇ · (ρv) = 0,

and the state equation

p = f(ρ, S),

where f depends on the nature of the fluid. Let v, p, ρ and S be small perturbations
of the initial value v0 = 0, p0 = constant, ρ0 = constant and S0 = constant then
the linearized Euler equation is obtained as

∂v

∂t
+

1

ρ0

∇p = 0,

and the linearized equation of continuity turns out to be of the form

∂ρ

∂t
+ ρ0∇ · v = 0,

17
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and the linearized state equation has of the form

∂p

∂t
=
∂f

∂ρ
(ρ0, S0)

∂ρ

∂t
.

From this equation we obtain the wave equation

1

c2

∂2p

∂2t
= ∆p

where the speed of the sound c is defined by

c2 =
∂f

∂ρ
(ρ0, S0).

From the linearized Euler equation, we see that there exist a velocity potential
U = U(x, t) such that

v =
1

ρ0

∇U and p = −∂U
∂t
.

We observe that the velocity potential U also satisfies the function

1

c2

∂2U

∂2t
= ∆U.

For the time-harmonic acoustic waves of the form

U(x, t) = Re{u(x)e−iwt}

with frequency w > 0, we conclude that the complex valued time independent part
u satisfies the reduced wave equation or Helmholtz equation

∆u+ k2u = 0

where the wave number k is given by the positive constant k = w
c
.

2.2 Green’s Theorem and Formula

A domain D ⊂ IR2, i.e., an open and connected set, with boundary ∂D is said to
have a boundary of class Cn, n ∈ IN, if for each point x0 of the boundary ∂D there
exist neighborhood V of x0 with following properties:

� Firstly, the intersection V ∩ D̄ can be mapped bijectively onto the half disk

{z ∈ IR2 : |z| < 1, z2 ≥ 0};

� secondly, this mapping and its inverse have continuous partial derivatives up
to order n;
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� thirdly, the intersection V ∩ ∂D is mapped onto the interval

{z ∈ IR2 : |z| < 1, z2 = 0}.

This mapping generates a parametrization

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ T,

of a curve patch of ∂D containing x0. We denote by Cn(D) the linear space of
real- or complex-valued functions defined on the domain D for which the partial
derivatives up to order n exist and are continuous. In addition we denote by Cn(D̄)
the subspace of all functions in Cn(D) which together with all their derivatives up
to order n can be extended continuously from D into the closure D̄ := D ∪ ∂D.

Now we can state Green’s first and second integral theorem

Theorem 2.2.1 Let D ⊂ IR2 be a bounded domain of class C2 and let ν denote
the unit normal vector to the boundary ∂D directed into the exterior of D. For
functions u ∈ C1(D̄) and v ∈ C2(D̄) the equality∫

D

{u∆v +∇u · ∇v}dx =

∫
∂D

u
∂v

∂ν
ds, (2.2.1)

holds.

Theorem 2.2.2 Let D ⊂ IR2 be a bounded domain of class C2 and let ν denote
the unit normal vector to the boundary ∂D directed into the exterior of D. For
functions u ∈ C2(D̄) and v ∈ C2(D̄) the equality∫

D

{u∆v − v∆u}dx =

∫
∂D

{u∂v
∂ν
− v∂u

∂ν
}ds, (2.2.2)

holds.

Most of the basic properties of solutions to the Helmholtz equation

∆u+ k2u = 0

with positive wave number k can be produced from its fundamental solution that
we are going to introduce now.

Definition 2.1 Solution to the Helmholtz equation satisfying the Sommerfeld radi-
ation condition (1.1.3) are called radiating solutions.
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The fundamental solution of the Helmholtz equation in IR2 is given by

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, (2.2.3)

where the function H
(1)
0 denotes the Hankel function of first kind and of order

zero. It can be shown that for fixed y ∈ IR2 the fundamental solution satisfies
the Helmholtz equation in IR2 \ {y}. In addition,it satisfies the radiation condition
uniformly with respect to y on compact subsets of IR2. Physically speaking, the
fundamental solution represents an acoustic point source located at the point y
(see[7]). The Hankel functions of the first and the second kind of order n are
defined by

H(1,2)
n := Jn ± iYn, n = 0, 1, 2, ... (2.2.4)

with the Bessel functions of order n

Jn(t) :=
∞∑
p=0

(−1)p

(n+ p)!p!
(
t

2
)n+2p, (2.2.5)

and the Neumann functions of order n

Yn(t) :=
2

π
{ln(

t

2
) + CE}Jn(t)− 1

π

∞∑
j=0

(−1)p

(n+ p)!p!
(
t

2
)n+2p{ψ(p+ n) + ψ(p)}

− 1

π

n−1∑
p=0

(n− 1− p)!
p!

(
2

t
)n−2p (2.2.6)

Here ψ(0) := 0,

ψ(p) =

p∑
m=1

1

m
, p = 1, 2, ...

and CE ≈ 0.57721 denotes Euler constant

CE = lim
p→∞
{

p∑
m=1

1

m
− ln p}.

From the series (2.2.5) and (2.2.6) it can be seen that

Jn(t) =
tn

2nn!
(1 +O(

1

n
)), n→∞, (2.2.7)

uniformly on compact subset of IR and

H(1)
n (t) =

2n(n− 1)!

iπtn
(1 +O(

1

n
)), n→∞, (2.2.8)
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uniformly on compact subsets of (0,∞). For the large arguments the Hankel func-
tions have the following asymptotic behavior

H(1,2)
n (t) =

√
2

πt
e
±i(t−

nπ

2
−
π

4
)
(1 +O(

1

t
)), t→∞, (2.2.9)

From the expansions (2.2.5) and (2.2.6) we yield that

Φ(x, y) =
1

2π
ln

1

|x− y|
+
i

4
− 1

2π
ln
k

2
− CE

2π
+O(|x− y|2ln 1

|x− y|
. (2.2.10)

for |x − y| → 0. Therefore, the fundamental solution to the Helmholtz equation
in two dimensions has the same singular behavior as the fundamental solution of
Laplace’s equation. This will be used later on in deriving Green’s representation
formula and the jump relation for the single- and double-layer potentials. Using
Green’s integral theorems one can derive representation formulas for the solution
to the Helmholtz equation.

Theorem 2.2.3 Let u ∈ C2(IR2 \D) ∩ C1(IR2 \ D̄) be a solution to the Helmholtz
equation

∆u+ k2u = 0 in D.

Then

u(x) =

∫
∂D

{∂u
∂ν

(y)Φ(x, y)− u(y)
∂Φ(x, y)

∂ν(y)
}ds(y) x ∈ D (2.2.11)

Proof : See Theorem 2.1 in [7]

Theorem 2.2.4 (Holmgren)
let u ∈ C2(D) ∩ C1(D̄) be a solution to the Helmholtz equation in D such that

u = 0 and
∂u

∂ν
= 0 on Γ (2.2.12)

for some open arc Γ ⊂ ∂D. Then u vanishes identically in D.

Proof : We use the Green’s representation formula (2.2.11) to extend the definition
of u by setting

u(x) =

∫
∂D\Γ
{∂u
∂ν

(y)Φ(x, y)− u(y)
∂Φ(x, y)

∂ν(y)
}ds(y) (2.2.13)

for x ∈ (IR2 \ D̄) ∪ Γ. The equation (2.2.13) can be written as

u(x) =

∫
∂D

{∂u
∂ν

(y)Φ(x, y)−u(y)
∂Φ(x, y)

∂ν(y)
}ds(y)−

∫
Γ

{∂u
∂ν

(y)Φ(x, y)−u(y)
∂Φ(x, y)

∂ν(y)
}ds(y)

(2.2.14)
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Now if we use hypothesis of the theorem the equation (2.2.14) has of the form

u(x) =

∫
∂D

{∂u
∂ν

(y)Φ(x, y)− u(y)
∂Φ(x, y)

∂ν(y)
}ds(y), x ∈ (IR2 \ D̄) ∪ Γ. (2.2.15)

Now we apply Green’s second theorem (2.2.2) to (2.2.15) we have that

u(x) =

∫
D

Φ(x, y){∆u+ k2u}ds(y), x ∈ (IR2 \ D̄) ∪ Γ. (2.2.16)

The equation (2.2.16) implies that u = 0 in IR2 \ D̄. Let G denote a complement
of IR2 \ D̄ with Γ ∩ ∂G 6= ∅. We observe that u solves the Helmholtz equation in
(IR2 \ ∂D)∪ Γ and therefore u = 0 in D, since D and G are connected through the
gap Γ in D. 2

Theorem 2.2.5 Let u ∈ C2(IR2 \ D̄) ∩ C(IR2 \ D) be a radiating solution to the
Helmholtz equation

∆u+ k2u = 0 in IR2 \ D̄.
Then the following formula

u(x) =

∫
∂D

{u(y)
∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)}ds(y) x ∈ IR2 \ D̄, (2.2.17)

holds.

Proof : See Theorem 2.4 in [7].

Definition 2.2 Solutions of the Helmholtz equation which are defined in all of IR2

are said to be entire solutions.

Theorem 2.2.6 An entire solution to the Helmholtz equation satisfying the Som-
merfeld radiation condition vanishes identically.

Proof : Let u satisfy the Sommerfeld radiation condition and be an entire solution.
And let ∂D be a circle of radius R with outward drawn unit normal vector ν. Since
u is the solution of the Helmholtz equation in D, from the Green’s formula (2.2.17)
we have that

u(x) =

∫
∂D

{u(y)
∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)}ds(y), x ∈ IR2 \ D̄. (2.2.18)

If we use Green’s second theorem (2.2.2) then equation (2.2.18) has of the form

u(x) =

∫
D

Φ(x, y){∆u+ k2u}dy x ∈ IR2 \ D̄. (2.2.19)

Since u is entire solution it satisfies Helmholtz equation in D. Hence, u = 0 in
IR2 \ D̄. From the analyticity of u we conclude that u = 0 in IR2. 2
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2.3 Far Field Pattern

We are now in a position to introduce the notion of the far− field pattern or the
scattering amplitude of radiating solutions to the Helmholtz equation.

Theorem 2.3.1 Every radiation solution u to the Helmholtz equation has an asymp-
totic behavior of an outgoing spherical wave

u(x) =
eik|x|√
|x|
{u∞(x̂) +O(

1

|x|
)}, |x| → ∞, (2.3.1)

uniformly in all directions x̂ = x/|x|, where the function u∞ defined on the unit
circle

Ω := {x̂ ∈ IR2 : |x̂| = 1}
is called the far field pattern of u. Under the assumption of Theorem (2.2.5) we
have

u∞(x̂) = γ

∫
∂D

{u(y)
∂e−ikx̂·y

∂ν(y)
− ∂u

∂ν
(y)e−ikx̂·y}ds(y) (2.3.2)

where γ :=
ei
π
4

√
8πk

and x̂ ∈ Ω.

Proof: The proof can be found for the 3 dimensional case in [6] and for the 2
dimensional case in [13] respectively.

Lemma 2.3 (Rellich)
Assume the bounded domain D is the open complement of an unbounded domain
and let u ∈ C2(IR2 \ D̄) be a solution to the Helmholtz equation satisfying

lim
r→∞

∫
|x|=r
|u(x)|2ds = 0. (2.3.3)

Then u = 0 in IR2 \ D̄.

Proof: See Lemma 2.11 in [7].

Theorem 2.3.2 Assume u ∈ C2(IR2 \ D̄) ∩ C2(IR2 \D) is a radiating solution to
the Helmholtz equation with wave number k > 0 such that

Im

∫
∂D

u
∂ū

∂ν
ds ≥ 0. (2.3.4)

Then u = 0 in IR2 \ D̄.

Proof: See Theorem 2.12 in [7]
Rellich’s lemma also establishes a one-to-one correspondence between radiating
waves and their far field patterns.
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Theorem 2.3.3 Let u ∈ C2(IR2 \ D̄) be a radiating solution to the Helmholtz equa-
tion for which the far field pattern u∞ vanishes identically. Then u = 0 in IR2 \ D̄.

Proof: See Theorem 2.13 in [7].

2.4 Single- and Double-layer Potentials

Assume that D ⊂ IR2 is a bounded domain with boundary ∂D of class C2. We
denote by ν the unit normal vector to the boundary ∂D directed into exterior of D.

Given an integrable function ϕ, the integral

u(x) :=

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ IR2 \ ∂D,

and

v(x) :=

∫
∂D

∂Φ(x, y)

∂ν(y)
ds(y), x ∈ IR2 \ ∂D,

are called, respectively, acoustic single-layer and acoustic double-layer potentials
with density ϕ. They are solutions to the Helmholtz equation in D and in IR2 \ D̄
and satisfy the Sommerfeld radiation condition (1.1.3). Their far field patterns are
given by

u∞(x̂) = γ

∫
∂D

e−ikx̂·yϕ(y)ds(y), x̂ ∈ Ω,

v∞(x̂) = γ

∫
∂D

∂e−ikx̂·y

∂ν(y)
ϕ(y)ds(y), x̂ ∈ Ω,

respectively. Physically speaking, the single- and double- layer potential correspond
to a layer of acoustic monopoles and dipoles, respectively. Green’s formulas (2.2.11)
and (2.2.17) show that any solution to the Helmholtz equation can be represented
as a combination of single- and double-layer potentials in terms of the boundary
values and the normal derivatives on the boundary.

The behavior of the curve potentials at the boundary is described by the following
regularity and jump relations. By

‖ f ‖∞,G:= sup
x∈G
|f(x)|

we denote the supremum norm of a real- or complex-valued bounded continuous
function f defined on a subset G ⊂ IR2.
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Theorem 2.4.1 Let ∂D be of class C2 and let ϕ be continuous. Then the single-
layer potential u with the density ϕ is continuous throughout IR2 and

‖ u ‖∞,IR2≤ C ‖ ϕ ‖∞,∂D

for some constant C depending on ∂D. On the boundary we have

u(x) =

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ ∂D, (2.4.1)

and
∂u±
∂ν

(x) =

∫
∂D

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y)∓ 1

2
ϕ(x), x ∈ ∂D, (2.4.2)

where
∂u±
∂ν

(x) := lim
h→+0

ν(x) · gradu(x± hν(x))

is to be understood in the sense of uniform convergence on ∂D and where the in-
tegrals exist as improper integrals. The double layer potential v with the density ϕ
can be continuously extended from D to D̄ and from IR2 \ D̄ to IR2 \D with limiting
values

v±(x) =

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y)± 1

2
ϕ(x), x ∈ ∂D, (2.4.3)

where
v±(x) := lim

h→+0
v(x± hν(x))

and where the integral exists as an improper integral. Furthermore,

‖ v ‖∞,D̄ + ‖ v ‖∞,IR2\D ≤ C ‖ ϕ ‖∞,∂D

for some constant C depending on ∂D and

lim
h→+0

{∂v
∂ν

(x+ hν(x))− ∂v

∂ν
(x− hν(x))} = 0 (2.4.4)

uniformly for x ∈ ∂D.

Proof: See Theorem 3.1 [7].

Corollary 2.4 We have jump relations

u+ = u−, and
∂u+

∂ν
− ∂u−

∂ν
= −ϕ on ∂D, (2.4.5)

for the single-layer potential and

v+ − v− = ϕ, and
∂v+

∂ν
=
∂v−
∂ν

on ∂D, (2.4.6)

for the double-layer potential with the continuity of the normal derivative to be
understood in the sense (2.4.4).
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Since the fundamental solution to the Helmholtz equation has the same singular
behavior as fundamental solution to the Laplacian equation, the above regularity
and jump relations for the Helmholtz equation can be deduced from those for the
Laplace equation.

Definition 2.5 (Hölder Continuity)
A real- or complex-valued function ϕ defined on set Γ ⊂ IR2 is called uniformly
Hölder continuous with Hölder exponent 0 < α ≤ 1 if there exists a constant C such
that

|ϕ(x)− ϕ(y)| ≤ C|x− y|α, for all x, y ∈ Γ.

The Hölder space C0,α(Γ) is the space of all bounded and uniformly Hölder contin-
uous functions on Γ with exponent α. The norm in C0,α(Γ) is defined by

‖ ϕ ‖α,Γ:= sup
x∈Γ
|ϕ(x)|+ sup

x,y∈Γ,x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α

.

Here, we will use the Hölder spaces in the cases where Γ = D̄, Γ = IR2 \D, Γ = ∂D.
In addition, we need to introduce the Hölder space C1,α(∂D) as the space of all
uniformly Hölder continuously differentiable functions on ∂D, i.e., of all real- or

complex-valued functions ϕ on ∂D that have a derivative
dϕ

ds
∈ C0,α(∂D) with

respect to arclength s. The norm on C1,α(∂D) is defined by

‖ ϕ ‖1,α,∂D:=‖ ϕ ‖∞ + ‖ dϕ
ds
‖α,∂D .

Definition 2.6 The single- and double-layer operators S and K are defined by

(Sϕ)(x) := 2

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ ∂D, (2.4.7)

(Kϕ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂D, (2.4.8)

and the normal derivative operators K ′ and T are defined by

(K ′ϕ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ ∂D, (2.4.9)

(Tϕ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂D. (2.4.10)
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In terms of these operators the above jump relations can be written in short hand
in the form

u± =
1

2
Sϕ (2.4.11)

and
∂u±
∂ν

=
1

2
K ′ϕ∓ 1

2
ϕ (2.4.12)

for the single-layer potential u with continuous density ϕ and

v± =
1

2
Kϕ± 1

2
ϕ (2.4.13)

and
∂v±
∂ν

=
1

2
Tϕ (2.4.14)

for the double-layer potential v with continuous density ϕ; the relation (2.4.14)
involving T requires that ϕ ∈ C1,α(∂D).
The operators S,K, and K ′ are integral operators with weakly singular kernels,
since for C2 curves one can be prove an estimate of the form

|ν(x) · {x− y}| ≤ C|x− y|2

for all x, y ∈ ∂D and some positive constant C depending on ∂D (see Theorem 2.2
in [7]). However, the operator T representing the normal derivative of the double-
layer potential is not weakly singular; it is a hyper-singular operator as expressed
in the following theorem.

Theorem 2.4.2 Let ∂D be of class C2.

� The operators S,K, and K ′ are bounded operators from C(∂D) into C0,α(∂D).

� The operators S and K are also bounded from C0,α into C1,α.

� The operator T is bounded from C1,α(∂D) into C0,α.

� The operators S,K, and K ′ are compact operators from C(∂D) into C(∂D)
and from C0,α(∂D) into C0,α(∂D).

� The operators S and K are compact operators from C1,α(∂D) into C1,α(∂D).

Proof:. See Theorems 2.12, 2.15, 2.16, 2.17, 2.22, 2.23, and 2.30 in [6]

The hyper-singular operator T defined by (2.4.14) can be expressed by following
theorem
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Theorem 2.4.3 (Maue’s formula)
Assume that ϕ ∈ C1,α(∂D) then

Tϕ =
d

ds
S
dϕ

ds
+ k2ν · S(νϕ), (2.4.15)

where
d

ds
denotes tangential derivative along ∂D.

Proof: See [41] and for the numerical solution of a hyper-singular integral equation
see also [29].

As a basis of our presentation of Sobolev spaces we begin with a brief review on
the classical Fourier series expansion. For a function ϕ ∈ L2[0, 2π] the series

∞∑
m=−∞

ame
imt (2.4.16)

where

am :=
1

2π

∫ 2π

0

ϕ(t)e−imtdt

is called the Fourier series of ϕ, its coefficient am are called the Fourier coefficients
of ϕ. On L2[0, 2π], as usual, we introduce the mean square norm by the scalar
product

(ϕ, ψ) :=

∫ 2π

0

ϕ(t)ψ̄(t)dt. (2.4.17)

Definition 2.7 (The Sobolev Space Hp[0, 2π])
Let 0 ≤ p < ∞. By Hp[0, 2π] we denote the space of all functions ϕ ∈ L2[0, 2π]
with the property

∞∑
−∞

(1 +m2)p|am|2 <∞

for the Fourier coefficients am of ϕ. The space Hp[0, 2π] is called a Sobolev space.
Note that H0[0, 2π] coincides with L2[0, 2π].

Theorem 2.4.4 The Sobolev space Hp[0, 2π] is a Hilbert space with the scalar prod-
uct defined by

(ϕ, ψ)p :=
∞∑
−∞

(1 +m2)pamb̄m

for ϕ, ψ ∈ Hp[0, 2π] with Fourier coefficients am and bm, respectively. In addition,
the trigonometric polynomials are dense in Hp[0, 2π].

Proof: See Theorem 8.2 in [31].
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Definition 2.8 ( The dual space of the Sobolev space)
For 0 ≤ p < ∞ by H−p[0, 2π] we denote the dual space of Hp[0, 2π], that is, the
space of bounded linear functionals on Hp[0, 2π].

Theorem 2.4.5 For F ∈ H−p[0, 2π] there holds

‖ F ‖p= {
∞∑
−∞

(1 +m2)−p|cm|2}
1
2

where cm = F (eimt). Conversely, to each sequence (cm) satisfying

∞∑
−∞

(1 +m2)−p|cm|2 <∞

there exists a bounded linear functional F ∈ H−p[0, 2π] with F (eimt) = cm.

Proof: See Theorem 8.9 in [31].

Theorem 2.4.6 For each function g ∈ L2[0, 2π] the duality pairing

G(ϕ) :=
1

2π

∫ 2π

0

ϕ(t)ḡ(t)dt, ϕ ∈ Hp[0, 2π],

canonically defines a linear functional G ∈ H−p[0, 2π]. In this sense, L2[0, 2π] is a
subspace of each dual space H−p[0, 2π], and trigonometric polynomials are dense in
H−p[0, 2π].

Proof: See Theorem 8.10 in [31].
Let ∂D be the boundary of simply connected bounded domain D ⊂ IR2 of class Ck,
k ∈ IN. With the aid of a regular and k times continuously differentiable parametric
representation

x(t) = (x1(t), x2(t)), t ∈ [0, 2π].

Definition 2.9 ( The Sobolev space Hp(∂D))
For 0 ≤ p ≤ k the Sobolev space Hp(∂D) is the space of all functions ϕ ∈ L2(∂D)
with the property that ϕ ◦ x ∈ Hp[0, 2π]. The scalar product and norm on Hp(∂D)
are defined through the scalar product on Hp[0, 2π] by

(ϕ, ψ)Hp(∂D) := (ϕ ◦ x, ψ ◦ x)Hp[0,2π].

Theorem 2.4.7 The operators K : H1/2(∂D) → H1/2(∂D) defined by the double-
layer potential (2.4.8) and K ′ : H−1/2(∂D) → H−1/2(∂D) defined by the normal
derivative of single-layer potential (2.4.9) are compact and adjoint in the dual system
(H1/2(∂D), H−1/2(∂D))L2(∂D), that is,

(Kϕ,ψ)L2(∂D) = (ϕ,K ′ψ)L2(∂D)

for all ϕ ∈ H1/2(∂D) and ψ ∈ H−1/2(∂D).
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Proof: The proof is the same as the proof of Theorem 8.20 in [31].

Theorem 2.4.8 The operator S : H−1/2(∂D) → H1/2(∂D) defined by the single-
layer potential (2.4.7) and T : H1/2(∂D) → H−1/2(∂D) defined by the normal
derivative of double-layer potential (2.4.10) are bounded. The operator S is self ad-
joint with respect to dual systems (H−1/2(∂D), H1/2(∂D))L2(∂D) and (H1/2(∂D), H−1/2(∂D))L2(∂D),
that is,

(Sϕ, ψ)L2(∂D) = (ϕ, Sψ)L2(∂D)

for all ϕ, ψ ∈ H−1/2(∂D). The operator T is self adjoint with respect to dual systems
(H1/2(∂D), H−1/2(∂D))L2(∂D) and (H−1/2(∂D), H1/2(∂D))L2(∂D), that is,

(Tϕ, ψ)L2(∂D) = (ϕ, Tψ)L2(∂D)

for all ϕ, ψ ∈ H1/2(∂D).

Proof: The proof is the same as the proof of Theorem 8.21 in [31].

2.5 Ill-Posed Problems and Regularization

For Problems in mathematical physics, in particular for initial and boundary value
problems, Hadamard [24] postulated three properties:

1. Existence of a solution.

2. Uniqueness of the solution.

3. Continuous dependence of the solution on the data.

The third postulate is motivated by the fact that in all applications the data will
be measured quantities. Therefore, one wants to make sure that small errors in
the data will cause only small errors in the solution. A problem satisfying all three
requirements is called well-posed or properly posed. If one of these requirements
is violated then the problem is said to be ill-posed or improperly-posed. We will
make Hadamard’s concept of well-posedness more precise through the following

Definition 2.10 Let A : X → Y be an operator from a normed space X into a
normed space Y .

Aϕ = f (2.5.1)

is called well-posed or properly-posed if A is bijective and the inverse operator A−1 :
Y → X is continuous. Otherwise the equation is said to be ill-posed or improperly-
posed.

One of the primary interest in the study of ill-posed problem is the case of
instability, that is, when the third requirement is violated. To handle this problem,
regularization methods have been implemented, which approximate the unbounded
inverse operator A−1 : A(X)→ X by a bounded linear operator R : Y → X.
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Definition 2.11 Let A : X → Y be an injective bounded linear operator. Then
a family of bounded linear operators Rα : Y → X, α > 0, with the property of
point-wise convergence

lim
α→0

RαAϕ = ϕ (2.5.2)

for all ϕ ∈ X is called a regularization scheme for the operator A. The parameter
α is called the regularization parameter.

The (2.5.2) is equivalent to Rαf → A−1f as α → 0, for all f ∈ A(X). The
regularization scheme approximates the solution ϕ of (2.5.1) by the regularized
solution

ϕδα := Rαf
δ. (2.5.3)

Then, for the approximation error, writing

ϕδα − ϕ = Rαf
δ −Rαf +RαAϕ− ϕ,

by the triangle inequality we have the estimate for the approximation error

‖ ϕδ − ϕ ‖≤ δ ‖ Rα ‖ + ‖ RαAϕ− ϕ ‖ . (2.5.4)

This estimate illustrates the error consists of two parts: the first term reflects the
influence of the incorrect data and second term is due to the approximation er-
ror between Rα and A−1. To achieve an acceptable total error for the regularized
solution we need to have a strategy for choosing the regularization parameter α
depending on the error level δ. On one hand, the accuracy of the approximation
asks for small error ‖ RαAϕ−ϕ ‖,i.e., for a small parameter α. On the other hand,
the stability requires for a large parameter α in order to make ‖ Rα ‖ small. An
optimal choice would try to make the right hand side of (2.5.4) minimal. The corre-
sponding parameter then kind of compromises between the accuracy and stability.
One expects from the regularization strategy that the regularization converges to
the exact solution when the error level δ tends to zero.

Definition 2.12 A strategy for a regularization scheme Rα, α ≥ 0, i.e., the choice
of the regularization parameter α = α(δ) depending on the error level δ and the data
f δ, is called regular if for all f ∈ A(X) and for all f δ ∈ Y with ‖ f δ − f ‖≤ δ we
have

Rα(δ)f
δ → A−1f, δ → 0.

Definition 2.13 (Discrepancy Principle)
The regularization parameter α for the error level δ should be chosen

‖ ARαf
δ − f δ ‖= τδ

with some fixed parameter τ ≥ 1.



32 CHAPTER 2. ACOUSTIC SCATTERING THEORY

2.5.1 Tikhonov Regularization

Theorem 2.5.1 Let A : X → Y be a compact linear operator. Then for each
α > 0 the operator αI + A∗A : X → X is bijective and has a bounded inverse.
Furthermore, if A is injective then

Rα := (αI + A∗A)−1A∗

describes a regularization scheme with ‖ Rα ‖≤ 1
2
√
α

.

Proof: See Theorem 4.13 in [7]

Theorem 2.5.2 Let A : X → Y be a compact linear operator and let α > 0. Then
for each f ∈ Y there exists a unique ϕα ∈ X such that

‖ Aϕα − f ‖2 +α ‖ ϕα ‖2= inf
ϕ∈X
{‖ Aϕ− f ‖2 +α ‖ ϕ ‖2}. (2.5.5)

The minimizer ϕα is given by the unique solution of the equation

αϕα + A∗Aϕα = A∗f (2.5.6)

and dependence continuously on f.

Proof: See Theorem 4.14 in [7].

Theorem 2.5.3 Let A : X → Y be an injective compact linear operator with dense
range in Y and let f ∈ Y with 0 < δ <‖ f ‖. Then there exists a unique parameter
α such that

‖ ARαf − f ‖= δ.

Proof: See the Theorem 4.15 in [7].

2.6 Riesz Theory and Fréchet Differentiability

We now present the basic theory for an operator equation

ϕ− Aϕ = f

of the second kind with a compact linear operator A : X → X mapping a normed
space X into itself.
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2.6.1 Riesz Theory for Compact Operators

We define
L : I − A

where I denotes the identity operator.

Theorem 2.6.1 (First Riesz Theorem)
The null space of the operator L

N(L) := {ϕ ∈ X : Lϕ = 0} (2.6.1)

is a finite dimensional subspace.

Proof: See Theorem 3.1 in [31].

Theorem 2.6.2 (Second Riesz Theorem)
The range of the operator L

L(X) := {Lϕ : ϕ ∈ X}

is a closed linear subspace.

Proof: See Theorem 3.2 in [31].

Theorem 2.6.3 (Third Riesz Theorem)
There exists a uniquely determined non-negative integer r, called the Riesz number
of the operator A, such that

{0} = N(L0) $ N(L1) $ · · · $ N(Lr) = N(Lr+1) = · · · ,

X = L0(X) % L1(X) % · · · % Lr(X) = Lr+1 = · · · .
Furthermore,

X = N(Lr)⊕ Lr(X).

Proof: See Theorem 3.3 in [31].

Theorem 2.6.4 (Fundamental result of the Riesz Theory)
Let X be a normed space, A : X → X a compact operator, and let I−A be injective.
Then the inverse operator (I − A)−1 : X → X exists and is bounded.

Proof: See Theorem 3.4 in [31].

Corollary 2.14 Let X be a normed space and A : X → X a compact linear opera-
tor. If the homogeneous equation

ϕ− Aϕ = 0

only has the trivial solution ϕ = 0, then for all f ∈ X the inhomogeneous equation

ϕ− Aϕ = f

has a unique solution ϕ ∈ X and this solution depends continuously on f.
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2.6.2 Fréchet Differentiability

Definition 2.15 Let X, Y be normed spaces, and let U be an open subset of X.
A mapping A : X → Y is called Fréchet differentiable at ϕ ∈ U if there exists a
bounded linear operator A′[ϕ] : X → Y such that

‖ A(ϕ+ h)− Aϕ− A′[ϕ]h ‖= ◦(‖ h ‖)

uniformly as ‖ h ‖→ 0. A′[ϕ] is called the Fréchet derivative of A at ϕ. A is called
Fréchet differentiable if it is differentiable at every point ϕ ∈ U .

Theorem 2.6.5 Let A : U ⊂ X → Y be Fréchet differentiable and Z be a normed
space.

1. The Fréchet derivative of A is uniquely determined.

2. If B : U → Y is Fréchet differentiable then λ1A+ λ2B is differentiable for all
λ1, λ2 ∈ C and

(λ1A+ λ2B)′[ϕ] = λ1A
′[ϕ] + λ2B

′[ϕ], ϕ ∈ U.

3. If B : Y → Z is Fréchet differentiable, then B ◦ A : U → Z is Fréchet
differentiable and

(B ◦ A)′[ϕ] = B′[A(ϕ)]A′[ϕ], ϕ ∈ U.

4. If A−1 exists, then the mapping A−1 is Fréchet differentiable and

(A−1)′[ϕ] = −A−1A′[ϕ]A−1, ϕ ∈ U.

Proof: For the first three statements see [26] and for the last statement see
[7].

Theorem 2.6.6 Let A : U ⊂ X → Y be a completely continuous operator from an
open subset U of a normed space X into a Banach space Y and assume A to be
Fréchet differentiable at ψ ∈ U . Then the derivative A′[ψ] is compact.

Proof: See Theorem 4.19 in [7].
Note that the above theorem shows that ill-posedness of a non-linear problem is
inherited by its linearization.



Chapter 3

The Inverse Scattering Problem
for a Dielectric

3.1 The Direct Problem

Let the simply connected bounded domain D ⊂ IR2 with C2 boundary ∂D repre-
sent the cross section of an infinite dielectric cylinder having constant wave number
kd with Re{kd}, Im{kd} > 0 and denote the exterior wave number of the background
by k0 ∈ IR. Denote by ν the outward unit normal vector to ∂D. Then, given an in-
cident plane wave ui = eik0x.d with incident direction given by the unit vector d, the
direct scattering problem for E-polarized electromagnetic waves by the dielectric D
is modeled by the following transmission problem for the Helmholtz equation: Find
solutions u, v to the Helmholtz equations

∆u+ k2
0u = 0 in IR2 \ D̄, ∆v + k2

dv = 0 in D (3.1.1)

u = v,
∂u

∂ν
=
∂v

∂ν
on ∂D (3.1.2)

such that u = ui+us with the scattered wave us fulfilling the Sommerfeld radiation
condition (1.1.3).

The following uniqueness and existence results follow from Kress and Roach [34]
and the book [6].

Theorem 3.1.1 The scattering problem (3.1.1)–(3.1.2) has at most one solution.

Proof: Let (u1, v1) and (u2, v2) be two solutions (3.1.1)–(3.1.2). And let us =
us1 − us2 and v = v1 − v2. Then, we have

∆us + k2
0u

s = 0 in IR2 \ D̄, ∆v + k2
dv = 0 in D (3.1.3)

us = v,
∂us

∂ν
=
∂v

∂ν
on ∂D (3.1.4)

35
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and us satisfies the Sommerfeld radiation condition. Let ∂BR be a circle of radius
R with outward drawn unit normal vector ν. Assume that ∂BR contains ∂D in its
interior and let BR := {x ∈ IR2 \ D̄ : |x| < R}. Applying Green’s theorems over
BR and D and using the differential equation (3.1.3) and the boundary condition
(3.1.4) we obtain∫

∂BR

us
∂ūs

∂ν
ds = −k2

0

∫
BR

|us|2dx+

∫
BR

|∇us|2dx−k̄2
d

∫
D

|v|2dx+

∫
D

|∇v|2dx (3.1.5)

Now we write the interior wave number as kd := α + iβ with α, β ≥ 0 due to the
assumption on kd. If we take the imaginary part of (3.1.5) we get

Im

∫
∂BR

us
∂ūs

∂ν
ds = 2αβ

∫
D

|v|2dx (3.1.6)

The equation (3.1.6) implies that

Im

∫
∂BR

us
∂ūs

∂ν
ds ≥ 0 (3.1.7)

Hence from Theorem (2.3.4) we obtain us = 0 in IR2 \ D̄ and from (3.1.4) we have

v = 0 and
∂v

∂ν
on ∂D. From Green’s theorems we conclude that v = 0 in D. 2

For the case k0 ∈ C we refer to [34] and see also Theorem 3.40 in [6].
In order to show the existence of a solution to the transmission problem we seek

the solution in the form of combined double- and single-layer potentials

us(x) =

∫
∂D

[
∂Φk0(x, y)

∂ν(y)
ψ(y) + Φk0(x, y)φ(y)]ds(y), x ∈ IR2\D̄,

v(x) =

∫
∂D

[
∂Φkd(x, y)

∂ν(y)
ψ(y) + Φkd(x, y)φ(y)]ds(y), x ∈ D,

(3.1.8)

with continuous densities ψ and φ. Φkd and Φk0 denote fundamental solutions of
Helmholtz equation in D and in IR2\D̄ as given by (2.2.3) with wave numbers kd
and k0 respectively. Clearly, us and v satisfy the respective Helmholtz equations
and us satisfies the Sommerfeld radiation condition (1.1.3). Define f := −ui and

g := −∂u
i

∂ν
on ∂D and we rewrite (3.1.2) in the form

us − v = f,
∂us

∂ν
− ∂v

∂ν
= g on ∂D. (3.1.9)

If we approach to the boundary ∂D and use jump relation on ∂D, for the potentials
(3.1.8) we get

us|∂D =
1

2
Kk0ψ +

1

2
ψ +

1

2
Sk0φ,

v|∂D =
1

2
Kkdψ −

1

2
ψ +

1

2
Skdφ,

(3.1.10)
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We distinguish boundary operators as in definition 2.6 for the two wave numbers
k0 and kd by corresponding subscripts.

If we take the normal derivative of th potentials (3.1.8) and approach the bound-
ary and use the jump relation on the boundary, then we obtain

∂us

∂ν
=

1

2
Tk0ψ +

1

2
K ′k0φ−

1

2
φ on ∂D,

∂v

∂ν
=

1

2
Tkdψ +

1

2
K ′kdφ+

1

2
φ on ∂D.

(3.1.11)

Using equations (3.1.9), (3.1.10), and (3.1.11) we observe that the potentials (3.1.8)
satisfy the transmission conditions (3.1.2) provided the densities satisfy the system
of integral equations

2ψ + (Kk0 −Kkd)ψ + (Sk0 − Skd)φ = 2f on ∂D,

2φ− (Tk0 − Tkd)ψ − (K ′k0 −K
′
kd

)φ = −2g on ∂D.
(3.1.12)

Theorem 3.1.2 The potential (3.1.8) solve the direct scattering problem provided
the densities ψ and φ solve the system of integral equation (3.1.12).

On the product space C(∂D)×C)∂D) equipped with ||
(
ψ
φ

)
|| := max(||ψ||∞, ||φ||∞),

we introduce the operator A defined by

A :=

[
−(Kk0 −Kkd) −(Sk0 − Skd)

(Tk0 − Tkd) (K ′k0 −K
′
kd

)

]
We can rewrite the system of integral equation of (3.1.12) in the abbreviated form

2χ− Aχ = 2h on ∂D, (3.1.13)

where χ =

(
ψ
φ

)
and h =

(
f
−g

)
.

Theorem 3.1.3 The equation (3.1.13) has a unique solution.

Proof : Let χ =

(
ψ
φ

)
be a solution to the homogeneous equation χ− Aχ = 0.

Then the potentials us and v given by (3.1.8) solve the homogeneous scattering
problem. Therefore, by the uniqueness Theorem 3.1.1, we have that us = 0 in
IR2\D̄ and v = 0 in D. Now we define,
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ps(x) :=

∫
∂D

[
∂Φkd(x, y)

∂ν(y)
ψ(y) + Φkd(x, y)φ(y)]ds(y), x ∈ IR2\D̄,

q(x) := −
∫
∂D

[
∂Φk0(x, y)

∂ν(y)
ψ(y) + Φk0(x, y)φ(y)]ds(y), x ∈ D.

If we use jump relation on the boundary ∂D, we get

ps − v = ψ, and q + us = ψ on ∂D,

∂ps

∂ν
− ∂v

∂ν
= −φ, and

∂us

∂ν
+
∂q

∂ν
= −φ, on ∂D.

(3.1.14)

Since we have that v = 0, us = 0,
∂us

∂ν
= 0, and

∂v

∂ν
= 0 on the boundary

∂D, the equations (3.1.14) imply that

ps = q, and
∂ps

∂ν
=
∂q

∂ν
on ∂D. (3.1.15)

We also have that

∆ps + k2
dp
s = 0 in IR2 \ D̄, ∆q + k2

0q = 0 in D, (3.1.16)

where ps satisfies Sommerfeld radiation condition(1.1.3). From (3.1.15), (3.1.16)
and Theorem 3.1.1 we obtain

ps = 0 in IR2\D̄, and q = 0 in D. (3.1.17)

Now the equations (3.1.17) also imply that q = 0, ps = 0,
∂ps

∂ν
= 0, and

∂q

∂ν
= 0

on the boundary ∂D. Hence, from the equations (3.1.14) we conclude that ψ = 0
and φ = 0, i.e., χ = 0. Clearly, the operator A is compact since all its components
are compact (see Theorem 2.4.2). In particular, T : C(∂D) → C(∂D) is a hyper-
singular operator that is only defined on subspace V ⊂ C(∂D) of sufficiently smooth
function. However, the difference operator T0 − Td : C(∂D) → C(∂D) again has a
weakly singular kernel and therefore it is compact (see Theorem 2.21 in [31]). Since

the null space N(I − 1

2
A) = {0}, i.e., the operator I − 1

2
A is injective, existence of

a solution follows from fundamental Riesz Theorem 2.6.4

Theorem 3.1.4 The direct scattering problem has a unique solution.

Proof: The proof follows from the Theorems 3.1.1 and 3.1.3.
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As one of the ingredients of our inverse algorithm, we provide an alternative
existence proof and suggest a single-layer approach. Since this leads to an integral
equation of the first kind, the existence analysis requires either Hölder or Sobolev
spaces. Here we choose the Sobolev spaces. In Sobolev space setting, for k = k0

and k = kd, we introduce the single-layer potential operators

Sk : H−1/2(∂D)→ H1/2(∂D)

by

(Skϕ)(x) := 2

∫
∂D

Φk(x, y)ϕ(y)ds(y), x ∈ ∂D, (3.1.18)

and the normal derivative operators

K ′k : H−1/2(∂D)→ H−1/2(∂D)

by

(K ′kϕ)(x) := 2

∫
∂D

∂Φk(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ ∂D, (3.1.19)

Now we try to find the solution in the form of the single-layer potentials

us(x) =

∫
∂D

Φk0(x, y)ϕ0(y)ds(y), x ∈ IR2\D̄,

v(x) =

∫
∂D

Φkd(x, y)ϕd(y)ds(y), x ∈ D,

(3.1.20)

with ϕ0, ϕd ∈ H−1/2(∂D). If we approach to the boundary ∂D and use the jump
relation on the boundary for the single layer potential(3.1.20) we obtain

us =
1

2
Sk0ϕ0, on ∂D,

v =
1

2
Skdϕd, on ∂D.

(3.1.21)

Now if we take normal derivative of potentials (3.1.20) and approach to the bound-
ary ∂D, use the jump relation on the boundary, and use the boundary data then
we obtain

∂us

∂ν
=

1

2
K ′k0ϕ0 −

1

2
ϕ0, on ∂D

∂v

∂ν
=

1

2
K ′kdϕd +

1

2
ϕd, on ∂D.

(3.1.22)

From the equations (3.1.21),(3.1.22) it can be seen that the single layer potentials
(3.1.20) satisfy the boundary conditions (3.1.2) provided the densities ϕ0, ϕd satisfy
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the system of integral equation,

Skdϕd − Sk0ϕ0 = 2ui, on ∂D,

ϕd + ϕ0 +K ′kdϕd −K
′
k0
ϕ0 = 2

∂ui

∂ν
, on ∂D.

(3.1.23)

We denote these system of integral equations (3.1.23) as field equations.
We assume that k0 is not a Dirichlet eigenvalue for D, that is, for each solution

w to ∆w + k2
0w = 0 in D with w = 0 on ∂D, we have that w = 0 in D. As a

consequence of this assumption, the operator Sk0 : H−1/2(∂D) → H1/2(∂D) has a
bounded inverse.

Theorem 3.1.5 Provided k0 is not a Dirichlet eigenvalue for the domain D the sys-
tem of integral equation (3.1.23) has a unique solution in H−1/2(∂D)×H−1/2(∂D).

Proof: We first establish that (3.1.23) has at most one solution. If ϕ0 and ϕd
satisfy the homogeneous form of (3.1.23), then single-layer potentials (3.1.20) solve
the scattering problem with zero incident field. Therefore we have that

∆us + k2
0u = 0 in IR2 \ D̄, ∆v + k2

dv = 0 in D,

us = v,
∂us

∂ν
=
∂v

∂ν
on ∂D.

(3.1.24)

In the proof of the Theorem 3.1.1 we have shown that equations (3.1.24) have only
the trivial solution. That is, us = 0, in IR2\D̄ and v = 0 in D. Hence these results

imply that us = 0, v = 0,
∂us

∂ν
= 0, and

∂v

∂ν
= 0 on the boundary ∂D. Now we

define

w1(x) :=

∫
∂D

Φk0(x, y)ϕ0(y)ds(y) x ∈ D,

w2(x) :=

∫
∂D

Φkd(x, y)ϕd(y)ds(y) x ∈ IR2\D̄,

(3.1.25)

where w1 and w2 solve the Helmholtz equation in D and in IR2\D respectively, and
w2 satisfies the Sommerfeld radiation condition(1.1.3). From the jump relation we
have that

w1 = us on ∂D. (3.1.26)

Hence, w1 = 0 on the boundary ∂D. Since k0 is not a Dirichlet eigenvalue in D and
w1 vanishes on the boundary ∂D, we conclude that w1 = 0 in D. Therefore, we

have
∂w1

∂ν
= 0 on the boundary ∂D. From the jump relation, we have

ϕ0 =
∂us

∂ν
− ∂w1

∂ν
on ∂D. (3.1.27)
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(3.1.27) implies that ϕ0 = 0 on the boundary ∂D.
Now it remains to show that the density ϕd vanishes. If we again use the jump

relation we have that
w2 = v on ∂D. (3.1.28)

(3.1.28) implies that w2 = 0 on the boundary ∂D. If kd is real, then w2 satisfies
the Sommerfeld radiation condition (1.1.3). The boundary condition w2 = 0 on ∂D
then implies that w2 = 0 in IR2 \D. If Imkd > 0, then w2(x) decays exponentially

as |x| → ∞ because of the exponential decay of the Hankel function H
(1)
0 (kd|x|) as

|x| → ∞. Hence, we can apply Green’s integral theorem 2.2.2 in IR2 \D to obtain∫
IR2\D

{k2
d|w2|2 − |∇w2|2}dx =

∫
∂D

w2
∂w2

∂ν
ds = 0.

Taking the imaginary part, gives∫
IR2\D

|w2|2dx = 0,

and consequently we deduce w = 0 in IR2 \D also in this case. Hence in both case
we have

w2 = 0 in IR2\D̄. (3.1.29)

(3.1.29) also implies that
∂w2

∂ν
= 0 on the boundary ∂D. Now if we use the jump

relation, we obtain

ϕd =
∂w2

∂ν
− ∂v

∂ν
, on ∂D. (3.1.30)

Finally, (3.1.30) implies that ϕd = 0.
To establish a solution, we note that due to the assumption on k0 the inverse

operator
S−1
k0

: H1/2(∂D)→ H−1/2(∂D),

exists and bounded. With its aid, if we multiply the equation (3.1.23) by the
operator S−1

k0
from the left-hand-side, add and subtract ϕd we obtain the equivalent

system
ϕd − ϕ0 + S−1

k0
[Skd − Sk0 ]ϕd = 2S−1

k0
ui on ∂D

ϕd + ϕ0 +K ′kdϕd −K
′
k0
ϕ0 = 2

∂ui

∂ν
on ∂D.

(3.1.31)

We can rewrite the equations (3.1.31) of the form

A

 ϕd

ϕ0

+K

 ϕd

ϕ0

 = 2


S−1
k0
ui|∂D

∂ui

∂ν

∣∣∣∣
∂D


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with the matrix operators

A,K : H−1/2(∂D)×H−1/2(∂D)→ H−1/2(∂D)×H−1/2(∂D)

given by

A =

 I −I

I I

 and K =

 S−1
k0

[Skd − Sk0 ] 0

K ′kd −K ′k0

 .

Clearly, A has a bounded inverse and given by

A−1 =
1

2

 I I

−I I

 .

K is compact since its components are compact (see the Theorem (2.4.7)). In partic-
ular, Skd − Sk0 : H−1/2(∂D)→ H1/2(∂D) is compact because of cancellation of sin-
gularities in the two single-layer operators, i.e., Skd −Sk0 : H−1/2(∂D)→ H1/2(∂D)
has continuous kernel therefore it is compact (see Theorem 2.20 in [31]). The oper-
ator A−1K : H−1/2(∂D)×H−1/2(∂D) → H−1/2(∂D)×H−1/2(∂D) is compact (see
Theorem 2.15 in [31]). Since the null space N(I − A−1K) = {0}, i.e.,the operator
I − A−1K is injective, existence of a solution follows from the fundamental Riesz
Theorem 2.6.4. 2

From the asymptotic for the Hankel functions, it can be deduced that the far
field pattern of the single-layer potential us with density ϕ0 is given by

u∞(x̂) = γ

∫
∂D

e−ik0 x̂·yϕ0(y) ds(y), x̂ ∈ Ω, (3.1.32)

where γ =
ei
π
4

√
8πk0

and ϕ0 is the solution of the field equation (3.1.23).

3.2 The Inverse Scattering Problem

Problem 3.1 (Inverse Scattering Problems)
Given the far field pattern u∞ for one or finitely many incident plane waves ui and
knowing that the scatterer either is sound-soft or sound-hard or dielectric, determine
either the shape and location of the scatterer D,i.e., reconstruction the boundary ∂D
or the conductive function of the scatterer D.

Note that these inverse problems are nonlinear since the scattered wave us depends
nonlinearly on the scatterer D. In addition, they are ill-posed. Example 2.51 in
[19] illustrates ill-posedness for the case of sound-soft scatterer. We rewrite that
example below.
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Example 3.2 Let D be a sound-soft disk of radius r centered at the origin and
d = (1, 0) the direction of the incident plane wave. Then using the polar coordinates
(ρ, θ) for x ∈ IR2 we write the Jacobi-Anger(see [7]) expansion

eikx·d =
∞∑

n=−∞

inJn(kρ)einθ, x ∈ IR2. (3.2.1)

From this expansion we find that the total field u = ui + us can be represented in
the form

u(x) =
∞∑

n=−∞

in

H
(1)
n (kr)

{Jn(kρ)H(1)
n (kr)− Jn(kr)H(1)

n (kρ)} |x| ≥ r.

the asymptotic of the Hankel functions give

u∞(x̂) = −γ
∞∑

n=−∞

Jn(kr)

H
(1)
n (kr)

einθ,

where γ = ei
π
4√

8πk
, x̂ ∈ Ω, Jn is the Bessel function defined by (2.2.5) and H

(1)
n is

the Hankel function defined by (2.2.4). To illustrate the ill-posedness we consider a
perturbed far field pattern

uδ∞(x̂) = u∞(x̂) + δeinθ,

with δ > 0, n ∈ IN. Then, due to the asymptotic behavior of the Hankel functions
for large arguments (2.2.8), the corresponding total field is given by

uδ(x) = u(x) + δ

√
πk

2
e
i
π

4
(2n+1)

H(1)
n (k|x|).

By the asymptotic of the Hankel functions for large orders this implies the estimate

|uδ(x)− u(x)| ≈ δ

√
πk

2
(n− 1)! (

2

kR
)n, |x| = R.

Hence, small changes in the data u∞ lead to large errors in the solution of the
inverse problem.

The inverse scattering problems that we are interested in are formulated as fol-
lows:
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Problem 1 : Given the far
field pattern u∞ for one incident
field ui, determine the shape of
the boundary ∂D of the dielectric
scatterer D.
Problem 2 : Given the far field
pattern u∞ for one incident field
ui, determine the interior wave
number kd of the dielectric scat-
terer D.
Problem 3 : Given the far field
pattern u∞ for one incident field
ui, simultaneously determine the
shape of the boundary ∂D and
the interior wave kd of the dielec-
tric scatterer D.

3.2.1 Uniqueness for impenetrable obstacles

An important question in inverse problems is uniqueness, which settles the identifi-
ability, i.e., whether there is enough information to uniquely determine the obstacle
from its far field pattern for incident plane waves. The following classical unique-
ness result due to Schiffer is concerned with inverse scattering from a sound-soft
obstacle.

Theorem 3.2.1 (Schiffer)
Assume that D1 ⊂ IR2 and D2 ⊂ IR2 are two sound-soft scatterers such that the far
field patterns coincide for an infinite number of incident plane waves with distinct
directions and one fixed wave number. Then D1 = D2.

Proof: Assume that D1 6= D2. Since by Rellich’s lemma 2.3 the far field pattern
uniquely determines the scattered field, for each plane wave ui(x, d) = eikx·d the
scattered wave us for both obstacles coincides in the unbounded domain G of the
complement of D1∪D2 and the total field vanishes on ∂G. Assume that D∗ := (IR2\
G)\D̄2 is non-empty. Then us is defined in D∗ since it describes the scattered waves
for D2, i.e., the total field satisfies the Helmholtz equation in D∗ with homogeneous
boundary condition on ∂D∗. Hence, the total field u is a Dirichlet eigenfunction
for the negative Laplacian in the domain D∗ with eigenvalue k2. This implies that
the total field u is an element of the Sobolev space H1(D∗). Now, our aim is to
show these total fields are linearly independent for distinct incoming incident plane
waves. To do so, assume that

N∑
n=1

cnu(x, dn) = 0 (3.2.2)
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in D∗ for some constants cn and N distinct incident direction dn. Then, by analyt-
icity, (3.2.2) is satisfied in exterior of some circle containing D1 and D2. The total
field can be written as the sum of incident plane with distinct incident direction
and scattered field of the form

u(x, dn) = eikx·dn + us(x, dn)

and using the finiteness us(x, dn) = O(1/|x|), from (3.2.2) we yield,

lim
R→∞

1

R

N∑
n=1

cn

∫
|x|=R

eikx·(dn−dmds(x) = 0.

On the other hand, we apply the Funk-Hecke formula (see [7] for IR3)

lim
R→∞

1

R

N∑
n=1

cn

∫
|x|=R

eikx·(dn−dm)ds(x) = 2πcm.

Therefore, cm = 0 for m = 1, . . . , N , that is, the total functions u(x, dn, n =
1, . . . , N are linearly independent. Whereas, there exist only finitely many Dirich-
let eigenfunction of the negative Laplacian in H1(D∗). This is contradiction and
therefore we conclude that D1 = D2. 2

Theorem 3.2.2 Let D1 and D2 be two scatterers which are contained in a disk of
radius R, let

N :=
∞∑
n=0

(2n+ 1)zn,

where zn is the number of zeros of the Bessel functions Jn lying in the interval
(0, kR) and assume that the far field patterns coincide for N + 1 incident plane
waves with distinct directions and wave number k. Then D1 = D2.

Proof: The proof is based on the strong monotonicity property of the eigenvalues
the negative Laplacian with Dirichlet boundary condition, see [10]

Corollary 3.3 Let D1 and D2 be two planar scatterers contained in a disk of radius
R such that kR < λ0, where λ0 is the smallest positive zero of the Bessel function
J0 (λ0 ≈ 2.4048),and assume that the far field patterns coincide for one incident
field with wave number k. Then D1 = D2.

More recently the bound in Corollary 3.3 was improved to kR < 3.8322 by Gin-
tides [12]. Schiffer’s proof can not be generalized to the other boundary conditions.
This due to the fact that the finiteness of the dimension of the eigenspaces for eigen-
values of the negative Laplacian for the Neumann or impedance boundary condition
requires the boundary of a domain to be sufficiently smooth.
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Isakov [17] has obtained uniqueness results on inverse scattering for penetrable
obstacles by using techniques different from Schiffer’s method. The following theo-
rem stated by Kirsch and Kress [28] simplified version of Isakov’s approach to prove
a uniqueness with respect to impenetrable sound-hard obstacles.

Theorem 3.2.3 Assume that D1 and D2 are two sound-soft scatterers such that for
a fixed wave number the far-field patterns for both scatters coincide for all incident
directions. Then D1 = D2.

Proof: See Theorem 3.3 in [28].

3.2.2 Uniqueness for Penetrable obstacles

The following theorem was stated by Kirsch and Kress [28] who simplified version
of Isakov’s approach [17] to prove a uniqueness for penetrable obstacles.

Theorem 3.2.4 Assume that D1 and D2 are two penetrable scatterers such that for
a fixed wave number the far field patterns for both scatters coincide for all incident
directions. Then D1 = D2.

Proof: See Theorem 4.1 in [28].
We do not have general uniqueness result for one or finitely many incident plane

waves yet. However, if we restrict the scatterer to a disk then we have a uniqueness
result. The following theorem express that fact (see [3])

Theorem 3.2.5 A dielectric disk is uniquely determined by the far field pattern for
one incident plane wave.

Proof: Using the Jacobi–Anger expansion (3.2.1), it can be seen that the scattered
field us and the transmitted field v for scattering from a disk of radius R centered
at the origin have the form

us(x) =
∞∑

n=−∞

in
k0Jn(kdR)J ′n(k0R)− kdJn(k0R)J ′n(kdR)

kdH
(1)
n (k0R)J ′n(kdR)− k0Jn(kdR)H

(1)′
n (k0R)

H(1)
n (k0ρ)einθ

(3.2.3)
for |x| ≥ R and

v(x) =
2

πR

∞∑
n=−∞

in−1

kdH
(1)
n (k0R)J ′n(kdR)− k0Jn(kdR)H

(1)′
n (k0R)

J (1)
n (kdρ)einθ

(3.2.4)

for |x| ≤ R. Here the H
(1)
n denote the Hankel functions of the first kind of order n

and in (3.2.4) we have used the Wronskian for the Bessel and Hankel functions. As a
consequence of the uniqueness of the solution to the forward scattering problem, the
determinant in the denominator in (3.2.3) and (3.2.4) is different from zero. From
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the asymptotic of the Bessel and Hankel functions for large n (see [7]) uniform con-
vergence can be established for the series (3.2.3) in compact subsets of IR2 \{0} and
for the series (3.2.4) in compact subsets of IR2. In particular, this implies that the
scattered wave us has an extension as solution to the Helmholtz equation across the
boundary into the interior of the disk with the exception of the center. Now assume
that two disks D1 and D2 with centers z1 and z2 have the same far field pattern
u∞,1 = u∞,1 for scattering of one incident plane wave. Then by Rellich’s lemma
(see [7]) the scattered waves coincide us1 = us2 in IR2 \ (D1∪D2) and we can identify
us = us1 = us2 in IR2\(D1∪D2). Now assume that z1 6= z2. Then us1 has an extension
into IR2 \ {z1} and us2 an extension into IR2 \ {z2}. Therefore, us can be extended
from IR2 \ (D1∪D2) into all of IR2, that is, us is an entire solution to the Helmholtz
equation. Consequently, since us also satisfies the radiation condition it must vanish
identically us = 0 in all of IR2. Without loss of generality we set D = D1, assume
its center at the origin and denote its radius by R and have the expansions (3.2.3)
and (3.2.4) available. Equating Fourier coefficients in the uniformly convergent se-
ries (3.2.1) and (3.2.4) and the corresponding series for the normal derivatives on
|x| = R, we observe that associated pairs of terms in the series (3.2.1) and (3.2.4)
satisfy the transmission condition (3.1.2) separately, i.e., each pair constitutes an
eigenfunction pair for an interior transmission eigenvalue for the piecewise constant
refractive index with values one in IR2 \ D̄ and kd/k0 in D. Clearly, these eigen-
functions are linearly independent. However, for a complex-valued refractive index
no interior transmission eigenvalues exist (this is a straightforward consequence
of Green’s second integral theorem) and for a real-valued refractive index interior
transmission eigenvalues have finite multiplicity (see [4] and also the proof of The-
orem 8.32 in [7]). Hence we arrived at a contradiction and therefore the two disks
must have the same center. In order to show that D1 and D2 have the same radius,
we observe that by symmetry, or by inspection of the explicit solution given above,
the far field pattern for scattering of plane waves at a dielectric disk depends only
on the angle between the observation direction and the incident direction. Hence,
knowledge of the far field pattern for one incident direction implies knowledge of
the far field pattern for all incident directions. Now the statement follows from the
uniqueness result for infinitely many incident waves in [28]. 2

3.2.3 Reconstruction Algorithm

We proceed describing an iterative algorithm for approximately solving the inverse
scattering problem by extending the methods proposed by Johansson and Sleeman
[25], Ivanyshyn, Kress and Rundell [19, 21, 23, 36], and Kress and Serranho[32, 37,
38, 45]. After introducing the far field operator S∞ : H−1/2(∂D)→ L2(Ω) by

(S∞ϕ)(x̂) := γ

∫
∂D

e−ik0 x̂·yϕ(y) ds(y), x̂ ∈ Ω, (3.2.5)
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from (3.1.20) and (3.1.32) we observe that the far field pattern for the solution to
the scattering problem (3.1.1)–(1.1.3) is given by

u∞ = S∞ϕ0 (3.2.6)

in terms of the solution to (3.1.23). Therefore we can state the following theorem
as theoretical basis of our inverse algorithm. For this we note that all our integral
operators depend on the boundary curve ∂D.

Theorem 3.2.6 For a given incident field ui and a given far field pattern u∞,
assume that ∂D and the densities ϕd and ϕ0 satisfy the system of three integral
equations

Skdϕd − Sk0ϕ0 = 2ui,

ϕd +K ′kdϕd + ϕ0 −K ′k0ϕ0 = 2
∂ui

∂ν
,

S∞ϕ0 = u∞.

(3.2.7)

Then ∂D solves the inverse problem.

The ill-posedness of the inverse problem is reflected through the ill-posedness of
the third integral equation, the far field equation that we denote as data equation.
Note that (3.2.7) is linear with respect to the densities and nonlinear with respect
to the boundary ∂D. This opens up a variety of approaches to solve (3.2.7) by
linearization and iteration.

3.2.4 The Johansson and Sleeman Method

We now proceed with describing in detail the extension of the Johansson and Slee-
man Method [25] from the case of impenetrable scatterers to the case of scattering
from a dielectric.

Given a current approximation for the unknown boundary ∂D we solve the first
two equations, that is, the system (3.1.23) that we denote as field equations for the
unknown densities ϕd and ϕ0. Then, keeping ϕ0 fixed we linearize the data equation
with respect to the boundary ∂D to update the approximation. To describe this in
more detail, we chose a parametrization

∂D = {z(t) = r(t)(cos t, sin t) : t ∈ [0, 2π]}, (3.2.8)

with a 2π periodic positive smooth function r. Then, via ψ = ϕ◦z emphasizing the
dependence of the operators on the boundary curve, we introduce the parametrized
single-layer operator

S̃k : H−1/2[0, 2π]× C2[0, 2π]→ H1/2[0, 2π],
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by

S̃k(ψ, z)(t) :=
i

2

∫ 2π

0

H
(1)
0 (k|z(t)− z(τ)|)ψ(τ)|z′(τ)|dτ, (3.2.9)

where ψ := ϕoz, Skϕ ◦ z := S̃k(ψ, z) and parametrized normal derivative operators

K̃ ′k : H−1/2[0, 2π]× C2[0, 2π]→ H−1/2[0, 2π]

by

K̃ ′k(ψ, z)(t) :=
ik

2

∫ 2π

0

[z′(t)]⊥ · (z(τ)− z(t))

|z′(t)||z(t)− z(τ)|
|z′(τ)|H(1)

1 (k|z(t)− z(τ)|)ψ(τ)dτ,

(3.2.10)

for t ∈ [0, 2π] and where K ′kϕ◦z := K̃ ′k(ψ, z)(t). Here we made use of H
(1)′

0 = −H(1)
1

with the Hankel function H
(1)
1 of order one and of the first kind. Furthermore, we

write v⊥ = (v2,−v1) for any vector v = (v1, v2), that is, v⊥ is obtained by rotating
clockwise by 90 degrees.

We also need the parameterized version

S̃∞ : H−1/2[0, 2π]× C2[0, 2π]→ L2(Ω)

of the far field operator as given by

S̃∞(ψ, z)(x̂) := γ

∫ 2π

0

e−ik0 x̂·z(τ)|z′(τ)|ψ(τ) dτ, x̂ ∈ Ω. (3.2.11)

Then the parameterized form of (3.2.7) is given by

S̃kd(ψd, z)− S̃k0(ψ0, z) = 2ui ◦ z,

ψd + ψ0 + K̃ ′kd(ψd, z)− K̃
′
k0

(ψ0, z) =
2

|z′|
[z′(t)]⊥ · gradui ◦ z,

S̃∞ψ0 = u∞.

(3.2.12)

For a fixed ψ the Fréchet derivative S̃ ′∞ of the operator S̃∞ with respect to the
boundary curve z in the direction h is given by

S̃ ′∞(ψ, z;h)(x̂) := γ

∫ 2π

0

e−ik0 x̂·z(τ)

[
−ik0 x̂ · h(τ) +

z′(τ) · h′(τ)

|z′(τ)|2

]
|z′(τ)|ψ(τ) dτ

(3.2.13)
for x̂ ∈ Ω. Then the linearization of the third equation in (3.2.12) at z with respect
to the direction h reads

S̃∞(ψ0, z) + S̃ ′∞(ψ0, z;h) = u∞ (3.2.14)

and is a linear equation for the update h.
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Iterative Scheme for the Johansson and Sleeman Method

Now, given an approximation for the boundary curve ∂D with parameterization z,
each iteration step of the proposed inverse algorithm consists of two parts.

1. We solve the first two well-posed equations of (3.2.12), i.e., the field equations
for the densities ψd and ψ0. This can be done through the numerical method
as described in the next chapter.

2. Then we solve the ill-posed linearized equation (3.2.14) for h and obtain an
updated approximation for ∂D with the parameterization z + h. Since the
kernels of the integral operators in (3.2.14) are smooth, for its numerical
approximation the composite trapezoidal rule can be employed. Because of
the ill-posedness the solution of (3.2.14) requires stabilization, for example,
by Tikhonov regularization.

These two steps are now iterated until some stopping criterion is satisfied. The
stopping criterion for the iterative scheme is given by the relative error

‖ u∞;N − u∞ ‖
‖ u∞ ‖

≤ ε, (3.2.15)

where u∞;N is the computed far field pattern after N iteration steps.
The above algorithm has a straightforward extension for the case of more than one
incident wave. Assume that ui1, . . . , u

i
M are M incident waves with different incident

directions and u∞,1, . . . , u∞,M the corresponding far field patterns for scattering
from ∂D. Then the inverse problem to determine the unknown boundary ∂D from
these given far field patterns and incident fields is equivalent to solving

S̃kd(ψd,m, z)− S̃k0(ψ0,m, z) = 2uim ◦ z,

ψd,m + ψ0,m + K̃ ′kd(ψd,m, z)− K̃
′
k0

(ψ0,m, z) =
2

|z′|
[z′]⊥ · graduim ◦ z,

S̃∞(ψ0,m, z) = u∞,m.

(3.2.16)

for m = 1, . . . ,M . Given an approximation z for the boundary we first solve the first
two equations in (3.2.16) for m = 1, . . . ,M to obtain 2M densities ψd,1, . . . , ψd,M
and ψ0,1, . . . , ψ0,M . Then we solve the linearized equations

S̃∞(ψ0,m, z) + S̃ ′∞(ψ0,m, z;h) = u∞,m, m = 1, . . . ,M, (3.2.17)

for the update h by interpreting them as one ill-posed equation with an operator
from Hp[0, 2π] 7→ (L2[0, 2π])M and applying Tikhonov regularization. The stopping
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criterion for the iterative scheme is given by the relative error

‖ u∞,m;N − u∞,m ‖
‖ u∞,m ‖

≤ ε, (3.2.18)

for m = 1, . . . ,M where u∞,m;N are the computed far field patterns after N itera-
tion steps.

Corresponding to (3.2.8) the perturbations are of the form

h(t) = {q(t)(cos t, sin t) : t ∈ [0, 2π]}, (3.2.19)

with a real function q. In the approximations we assume r and its update q to have
the form of a trigonometric polynomial of degree J , in particular,

q(t) =
J∑
j=0

aj cos jt+
J∑
j=1

bj sin jt. (3.2.20)

Then the update equation (3.2.14) is solved in the least squares sense, penalized
via Tikhonov regularization, for the unknown coefficients a0, . . . , aJ and b1, . . . , bJ
of the trigonometric polynomial representing the update q. As experienced in the
application of the above approach for related problems, it is advantageous to use an
Hp Sobolev penalty term rather than an L2 penalty in the Tikhonov regularization,
i.e, to interpret S̃ ′∞ as an ill-posed linear operator

S̃ ′∞ : Hp[0, 2π]→ L2[0, 2π] (3.2.21)

for some small p ∈ IN.
As a theoretical basis for the application of Tikhonov regularization from [20] we

cite that, after the restriction to star-like boundaries, the operator S̃ ′∞ is injective
provided k2

0 is not a Neumann eigenvalue for the negative Laplacian in D.
We note that, in principle, we also could incorporate arc length into the pa-

rameterized densities, i.e., parametrize via ψ = |z′|ϕ ◦ z instead of ψ = ϕ ◦ z.
In particular, this would avoid the second term in the Fréchet derivative (3.2.13).
However, in our numerical experiments we observed that this leads to a poorer
accuracy in the numerical reconstructions.

We can relate the above approach to traditional Newton iterations for solving the
inverse obstacle scattering problem as described in [15]. Denoting by F : z → u∞
the operator that maps the boundary ∂D represented by the parameterization z
onto the far field pattern for scattering of the incident wave ui from the dielectric
D, the inverse problem is equivalent to solving the nonlinear operator equation

F (z) = u∞. (3.2.22)
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With the above notations, in the case when k2
0 is not a Dirichlet eigenvalue of the

negative Laplacian in D, we can represent

F (z) = S̃∞(ψ0(z), z) (3.2.23)

where ψ0(z) is the second component of the solution of the first two equations of
(3.2.12) depending on z. By the product and chain rule this implies that the Fréchet
derivative of F at z in the direction h is given by

F ′(z;h) = S̃ ′∞(ψ0(z), z;h)) + S̃∞(ψ′0(z;h), z) (3.2.24)

with the Fréchet derivative ψ′0(z;h) of ψ0 at z in the direction h. Hence, we have es-
tablished an interrelation between our proposed iterative scheme and the traditional
Newton iterations for the boundary to far field map as expressed by the following
theorem.

Theorem 3.2.7 The iteration scheme as given through the first two equations, or
field equations, of (3.2.12) and the linearization of the data equation (3.2.14) can be
interpreted as Newton iterations for (3.2.22) with the derivate of F approximated
through the first term in the representation (3.2.24) only.

3.2.5 The Simultaneous Linearization Method

In this section, we describe the extension of the simultaneous linearization method
[19, 22, 21, 23, 36] from the case of impenetrable scatterer to the case of a dielectric.

In the spirit of the simultaneous linearization method, given an approximation
∂Dapprox parametrized by z for boundary ∂D and for densities ψd and ψ0, we si-
multaneously linearize the system (3.2.12) with respect to all three variables. For
fixed z, ψ0 and ψd, the linearized system of integral equations obtains the form

S̃kd(ψd, z) + S̃kd(ηd, z) + S̃ ′kd(ψd, z;h)− S̃k0(ψ0, z)− S̃k0(η0, z)

−S̃ ′k0(ψ0, z;h) = 2ui ◦ z + 2gradui ◦ z · h,

ψd + ηd + ψ0 + η0 + K̃ ′kd(ψd, z) + K̃ ′kd(ηd, z) + (K̃ ′d)
′(ψd, z;h)

−K̃ ′k0(ψ0, z)− K̃ ′k0(η0, z)− (K̃ ′k0)
′(ψ0, z;h) =

2

|z′|
[z′]⊥ · gradui ◦ z + 2ξ(z) · h,

S̃∞(ψ0, z) + S̃∞(η0, z) + S̃ ′∞(ψ0, z;h) = u∞.
(3.2.25)

Here the term ξ(z) · h is the form ( see [45])

ξ(z) · h = −∂u
i

∂τ

ν · h′

|z′|
+ (

∂2ui

∂ν∂τ
−H∂ui

∂τ
)τ · h+

∂2ui

∂ν2
ν · h (3.2.26)
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and τ and H stand for the tangential vector and the mean curvature respectively.
They are given by

τ =
z′

|z′|
, and H = −z

′′ · ν
|z′|2 (3.2.27)

In the system (3.2.25) the operators S̃ ′k(ψ, z;h) and (K̃ ′k)
′(ψ, z;h) stand for the

Fréchet derivative of the parametrized single-layer operators (3.2.9) and the parametrized
normal derivative of single-layer operator (3.2.10) with respect to the boundary z

in the direction h. The Fréchet derivative of the operators S̃k and K̃ ′k with respect
to the boundary z in the direction h are given by (see [42])

S̃ ′k(ψ, z;h)(t) = − ik

2

∫ 2π

0

(z(t)− z(τ)) · (h(t)− h(τ))

|z(t)− z(τ)|
|z′(τ)|H(1)

1 (k|z(t)− z(τ)|)ψ(τ)dτ

+
i

2

∫ 2π

0

z′(τ) · h′(τ)

|z′(τ)|
H

(1)
0 (k|z(t)− z(τ)|)ψ(τ)dτ,

(3.2.28)
and

(K̃ ′k)
′(ψ, z;h)(t) =

− ik

2|z′(t)|
∫ 2π

0

[z′(t)]⊥·(h(t)−h(τ))+[h′(t)]⊥·(z(t)−z(τ))

|z(t)−z(τ)|
|z′(τ)|H(1)

1 (k|z(t)−z(τ)|)ψ(τ)dτ

+
ik

|z′(t)|

∫ 2π

0

[z′(t)]⊥·(z(t)−z(τ))(h(t)−h(τ))·(z(t)−z(τ))

|z(t)−z(τ)|3
|z′(τ)|H(1)

1 (k|z(t)−z(τ)|)ψ(τ)dτ

− ik2

2|z′(t)|

∫ 2π

0

[z′(t)]⊥·(z(t)−z(τ))(h(t)−h(τ))·(z(t)−z(τ))

|z(t)−z(τ)|2
|z′(τ)|H(1)

0 (k|z(t)−z(τ)|)ψ(τ)dτ

+
ik

2

h′(t) ·z′(t)
|z′(t)|2

∫ 2π

0

[z′(t)]⊥ ·(z(t)−z(τ))

|z(t)− z(τ)|
|z′(τ)|H(1)

1 (k|z(t)−z(τ)|)ψ(τ)dτ

− ik

2|z′(t)|

∫ 2π

0

[z′(t)]⊥ ·(z(t)−z(τ))h′(τ)·z′(τ)

|z(t)−z(τ)||z′(τ)|
H

(1)
1 (k|z(t)−z(τ)|)ψ(τ)dτ,

(3.2.29)

respectively for t ∈ [0, 2π]. Here we made use of H
(1)′

1 (z) = H
(1)
0 −

1

z
H

(1)
1 .

For fixed boundary z densities ψd and ψ0 we obtain the linear system with un-
knowns h, ηd, and η0. If we rearrange (3.2.25) with respect to the unknown variables
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we arrive at

S̃ ′kd(ψd,z;h)−S̃ ′k0(ψ0,z;h)−2gradui◦z ·h+S̃kd(ηd,z)−S̃k0(η0,z)

= 2ui◦z−S̃kd(ψd, z)+S̃k0(ψ0, z)

(K̃ ′kd)
′(ψd, z;h)−(K̃ ′k0)

′(ψ0,z;h)−2ξ(z)·h+ ηd +K̃ ′kd(ηd,z)+ η0 −K̃ ′k0(η0,z)

=
2

|z′|
[z′]⊥ ·gradui◦z−ψd−K̃ ′kd(ψd,z)−ψ0+K̃ ′k0(ψ0,z)

S̃ ′∞(ψ0, z;h) + S̃∞(η0, z) = u∞ − S̃∞(ψ0, z)

(3.2.30)
and the matrix form of (3.2.30) can be written as

S̃ ′kd(ψd, z; ·)− S̃
′
k0

(ψ0, z; ·)− 2gradui ◦ z S̃kd(·, z) −S̃k0(·, z)

(K̃ ′kd)
′(ψd, z; ·)− (K̃ ′k0)

′(ψ0, z; ·)− 2ξ(z) I + K̃ ′kd(·, z) I − K̃ ′k0(·, z)

S̃ ′∞(ψ0, z; ·) 0 S̃∞(·, z)




h

ηd

η0



=



2ui ◦ z − S̃kd(ψd, z) + S̃k0(ψ0, z)

2

|z′|
[z′]⊥ · gradui ◦ z − ψd − K̃ ′kd(ψd, z)− ψ0 + K̃ ′k0(ψ0, z)

u∞ − S̃∞(ψ0, z)


(3.2.31)

Now we can describe the method in a short form as follows.

Iterative Scheme for the Simultaneous Linearization Method

Each iteration step of the proposed inverse algorithm consists of one part.

� Given an approximation z for the boundary and densities ψd, ψ0, we solve
the linearized (3.2.30), or (3.2.31), for h, ηd, and η0 to obtain updates z + h,
ψd + ηd, and ψ0 + η0.

Here we note that only in the first iteration step, it is convenient to start from an
approximation z for the boundary and solve the first two equations in (3.2.12) for
the densities.
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We continue this procedure until some suitable criteria is satisfied. The stopping
criterion for the iterative scheme is given by the relative error (3.2.15). Because
of the ill-posedness the solution of (3.2.30) requires stabilization, for instance, by
Tikhonov regularization. We choose for the boundary Hp penalty term and the
regularization parameter λ = (0.8)j decreasing with the iteration step j, and for
the densities L2 penalty term and the regularization parameter α = 10−6.

Analogous to the Johannson and Sleeman method, the simultaneously lineariza-
tion method has an extension for the case of more than one incident wave. As-
sume that ui1, . . . , u

i
M are M incident waves with different incident directions and

u∞,1, . . . , u∞,M the corresponding far field patterns for scattering from ∂D. Then
the inverse problem to determine the unknown boundary ∂D from these given far
field patterns and incident fields is equivalent to solve (3.2.16) for m = 1, . . . ,M .
Given an initial guess for the boundary ∂D parametrized by z and for densities
ψd,1, . . . , ψd,M and ψ0,1, . . . , ψ0,M , we simultaneously linearize the system (3.2.16)
with respect to all 2M + 1 variables. For fixed z, ψ0,m and ψd,m, m = 1, . . . ,M the
linearized system of integral equations obtains the form

S̃ ′kd(ψd,m,z;h)−S̃ ′k0,m(ψ0,m,z;h)−2graduim◦z ·h+S̃kd(ηd,m,z)−S̃k0(η0,m,z)

=2uim◦z−S̃kd(ψd,m, z)+S̃k0(ψ0,m, z),

(K̃ ′kd)
′(ψd,m, z;h)−(K̃ ′k0)

′(ψ0,m,z;h)−2ξm(z)·h+ ηd,m +K̃ ′kd(ηd,m,z)+ η0,m −K̃ ′k0(η0,m,z)

=
2

|z′|
[z′]⊥ ·graduim◦z−ψd,m−K̃ ′kd(ψd,m,z)−ψ0,m+K̃ ′k0(ψ0,m,z),

S̃ ′∞(ψ0,m, z;h) + S̃∞(η0,m, z) = u∞,m − S̃∞(ψ0,m, z).
(3.2.32)

Each iteration step of the proposed inverse algorithm also consists of one part.

� Given an approximation z for the boundary and densities ψd,m, ψ0,m we solve
the linearized (3.2.32) for h, ηd,m, and η0,m to obtain updates z+h, ψd,m+ηd,m,
and ψ0,m + η0,m for m = 1, . . . ,M .

Here we again note that only in the first iteration step, it is convenient to start from
an initial guess z for the boundary and solve the first 2M equations in (3.2.16) for
the densities.

We continue this procedure until some suitable criteria is achieved. The stop-
ping criterion for the iterative scheme is given by the relative error (3.2.18). For
the ill-posedness, we choose the same penalty terms and regularization parameters
for the case of one incident field.
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The simultaneously linearized equations (3.2.25) again exhibit relations to the
traditional Newton iteration

F ′(z;h) = u∞ − F (z) (3.2.33)

obtained by linearization of (3.2.22). The interrelation between simultaneous lin-
earization method and the traditional Newton method was established in the paper
published by Ivanyshyn, Kress, and Serranho [18] for impenetrable scatterer. In the
following theorem we state an interrelation between these two iterative method for
penetrable scatterer.

Theorem 3.2.8 Assume that k2
0 is not a Dirichlet eigenvalue of the negative Lapla-

cian in D. Set
ψd

ψ0

 := 2

 S̃kd(·, z) −S̃k0(·, z)

I + K̃ ′kd(·, z) I − K̃ ′k0(·, z)

−1  ui ◦ z
∂ui

∂ν
◦ z


Provided h satisfies the linearized boundary to far field equation (3.2.33) then h and
the perturbed densities
ηd

η0

 :=


S̃kd(·, z) −S̃k0(·, z)

I + K̃ ′kd(·, z) I − K̃ ′k0(·, z)


−1 
−S̃ ′kd(ψd, z;h) + S̃ ′k0(ψ0, z;h) + 2gradui ◦ z · h

−(K̃ ′kd)
′(ψd, z;h) + (K̃ ′k0)

′(ψ0, z;h) + 2ξ(z) · h


satisfy the linearized field and data equations (3.2.30). Conversely, if h, ηd, and η0

solve (3.2.30) then h satisfies (3.2.33).

Proof: Define

A(·, z) :=

 S̃kd(·, z) −S̃k0(·, z)

I + K̃ ′kd(·, z) I − K̃ ′k0(·, z)

 and R(z) := 2

 ui ◦ z
∂ui

∂ν
◦ z

 .
We also define an operator

P0 :


ψd

ψ0

 → ψ0

and it is mapping from L2[0, 2π]×L2[0, 2π] to L2[0, 2π]. Now, from definition of ψ0

we can write
ψ0 = P0(A−1(·, z)R(z)). (3.2.34)
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From the assumption of the theorem, we have that

F ′(z;h) = u∞ − S̃∞(ψ0, z). (3.2.35)

Since k2
0 is not Dirichlet eigenvalue of the negative Laplacian in D, we can represent

F (z) = S̃∞(P0(A−1(·, z)R(z)), z) (3.2.36)

By the product and chain rule this implies Fréchet derivative

F ′(z;h) = S̃ ′∞(P0(A−1(·, z)R(z)), z;h)

(3.2.37)

+ S̃∞(P ′0(A−1(·, z)R(z))(−A−1(·, z)A′(A−1(·, z);h)R(z)+A−1(·, z)R′(z;h), z)

If we use the definition of ψ0 and η0 in (3.2.37) we arrive at

F ′(z;h) = S̃ ′∞(ψ0, z;h) + S̃∞(η0, z). (3.2.38)

Finally, from (3.2.35) and (3.2.38) we obtain the last equation of (3.2.30)

S̃ ′∞(ψ0, z;h) + S̃∞(η0, z) = u∞ − S̃∞(ψ0, z). (3.2.39)

The definition of ηd and η0 imply that

S̃ ′kd(ψd,z;h)−S̃ ′k0(ψ0,z;h)−2gradui◦z ·h+S̃kd(ηd,z)−S̃k0(η0,z) = 0

(3.2.40)

(K̃ ′kd)
′(ψd, z;h)−(K̃ ′k0)

′(ψ0,z;h)−2ξ(z)·h+ ηd +K̃ ′kd(ηd,z)+ η0 −K̃ ′k0(η0,z) = 0.

The definition of ψd and ψ0 also imply that

S̃kd(ψd, z)− S̃k0(ψ0, z)− 2ui ◦ z = 0

(3.2.41)

ψd + ψ0 + K̃ ′kd(ψd, z)− K̃
′
k0

(ψ0, z)− 2
∂ui

∂ν
◦ z = 0.

Therefore in view of (3.2.40) and (3.2.41), the first two equations of (3.2.30) are
also satisfied. Conversely, the proof can be obtained by following converse of the
above proof. 2

3.2.6 The Hybrid Method

Iterative Scheme

In this section, we describe the extension of the hybrid method [32, 37, 38, 45] from
the case of impenetrable scatterer to the case of a dielectric.
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1. Given a current approximation to the boundary ∂D, parametrized by z. Find
the density ψ0 from the regularized data equation via Tikhonov regularization

(αI + S̃∗∞ S̃∞)ψ0 = S̃∗∞ u∞, (3.2.42)

where S̃∗∞ is the adjoint operator of S̃∞.

2. Keep ψ0 fixed and find the density ψd from

(I + K̃ ′kd)(ψd, z) =
2

|z′|
[z′(t)]⊥ · gradui ◦ z − ψ0 + K̃ ′k0(ψ0, z), (3.2.43)

3. Keep the densities ψd and ψ0 fixed and find the perturbed boundary h form
the linearized equation

S̃ ′kd(ψd,z;h)−S̃ ′k0(ψ0,z;h)−2gradui◦z·h = 2ui◦z−S̃kd(ψd, z)+S̃k0(ψ0, z). (3.2.44)

4. Update the boundary z := z + h then go to first step. We continue this
procedure until some stopping criteria is achieved. The stopping criterion for
the iterative scheme is given by the relative error (3.2.15). In the equation
(3.2.42) the regularization parameter λ is chosen small such as 10−6 and L2

penalty term is implemented. Since the solution of the equation (3.2.44) is ill-
posed, it also requires stabilization, for example, by Tikhonov regularization.
We choose Hp penalty term and regularization parameter (0.9)j decreasing
with each iteration step j.(See also [37]).

Analogous to the other methods, the Hybrid method has also an extension for
the case of more than one incident wave. Assume that ui1, . . . , u

i
M are M incident

waves with different incident directions and u∞,1, . . . , u∞,M the corresponding far
field patterns for scattering from ∂D. Then the inverse problem to determine the
unknown boundary ∂D from these given far field patterns and incident fields is
equivalent to solve

1. Given a current approximation to the boundary ∂D, parametrized by z. Find
the densities ψ0,1, . . . , ψ0,M from the regularized data equations via Tikhonov

(αI + S̃∗∞ S̃∞)ψ0,m = S̃∗∞ u∞,m, for m = 1, . . . ,M. (3.2.45)

2. Keep the ψ0,1, . . . , ψ0,M fixed and find densities ψd,1, . . . , ψd,M from

(I + K̃ ′kd)(ψd,m, z) =
2

|z′|
[z′(t)]⊥ · graduim ◦ z − ψ0,m + K̃ ′k0(ψ0,m, z), (3.2.46)

for m = 1, . . . ,M .
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3. Keep the densities ψ0,1, . . . , ψ0,M and ψd,1, . . . , ψd,M fixed and find the per-
turbed boundary h form the linearized equation

S̃ ′kd(ψd,m,z;h)−S̃ ′k0(ψ0,m,z;h)−2graduim◦z·h = 2uim ◦z−S̃kd(ψd,m, z)+S̃k0(ψ0,m, z),
(3.2.47)

for m = 1, . . . ,M .

4. Update the boundary z := z + h then go to first step. We continue this
procedure until some stopping criteria is achieved. The stopping criterion for
the iterative scheme is given by the relative error (3.2.18). In the equations
(3.2.45) and (3.2.47) we choose as the same regularization parameter and
penalty term as in the equations (3.2.42) and (3.2.44) respectively.

3.2.7 Reconstruction the Interior Wave Number via the
Hybrid Method

The inverse problem we are interested is that given an incident plane wave ui, far
field pattern u∞ and the shape of the scatterer, to determine the interior wave
number of the field that occurs inside the obstacle. We now proceed describing an
iterative algorithm for approximately solving this inverse problem for the interior
wave number via the hybrid Method. Now we consider an operator S̃kd : L2[0, 2π]×
C→ L2[0, 2π].

Iterative Scheme

1. After the boundary ∂D is parametrized by z, find the density ψ0 from the
stabilized data equation,i.e., from

(αI + S̃∗∞ S̃∞)ψ0 = S̃∗∞ u∞ (3.2.48)

2. Given a current approximation for the interior wave number kd. Then find ψd
from

(I + K̃ ′kd)(ψd, kd) =
2

|z′|
[z′(t)]⊥ · gradui ◦ z − ψ0 + K̃ ′k0(ψ0, z), (3.2.49)

3. Linearize the first field equation with respect to interior wave number kd then
keep the density ψd fixed and find perturbed interior wave number σ from the
linearized equation

S̃ ′kd(ψd,kd;σ) = 2ui ◦ z − S̃kd(ψd, z) + S̃k0(ψ0, z). (3.2.50)
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The Fréchet derivative of the operator S̃kd with respect to the interior wave
number kd in the direction σ is given by

S̃ ′kd(ψd, kd;σ) = −iσ
2

∫ 2π

0

H
(1)
1 (kd|z(t)− z(τ)|)|z(t)− z(τ)||z′(τ)|ψd(τ)dτ,

(3.2.51)
for t ∈ [0, 2π].

4. Update the interior wave number as kd := kd + σ and then go to second
step and repeat this procedure until some stopping criteria is achieved. The
stopping criterion for the iterative scheme is given by the relative error

|kd;N − kd|
|kd|

≤ ε, (3.2.52)

where kd;N is the computed interior wave number after N iteration steps.

3.2.8 Simultaneous Reconstructions the Boundary and the
Interior Wave Number via the Hybrid Method

The inverse problem we are interested is that given an incident plane waves uim and
far field patterns u∞,m for m = 1, . . . ,M , to simultaneously determine the boundary
∂D and the interior wave number of the field that occurs inside the obstacle.

Iterative Scheme

1. Given a current approximation to the boundary ∂D, parametrized by z. Find
the density ψ0,m from the regularized data equation via Tikhonov regulariza-
tion

(αI + S̃∗∞ S̃∞)ψ0,m = S̃∗∞ u∞,m, (3.2.53)

2. Given a current approximation to the interior wave number kd. Then keep
the ψ0,m fixed and find density ψd,m from

(I+K̃ ′kd)(ψd,m, z, kd) =
2

|z′|
[z′(t)]⊥ ·graduim◦z−ψ0,m+K̃ ′k0(ψ0,m, z), (3.2.54)

3. For fixed densities ψd,m and ψ0,m, simultaneously linearize the first field equa-
tion with respect to boundary z in the direction h and interior wave number
kd in the direction σ. Then find perturbed boundary h and perturbed interior
wave number σ from the linearized equation of the form

S̃ ′kd(ψd,m, z, kd;h)− S̃ ′k0(ψ0,m, z;h)− 2graduim ◦ z · h+ S̃ ′kd(ψd,m, z, kd;σ)

= 2uim ◦ z − S̃kd(ψd,m, z, kd) + S̃k0(ψ0,m, z). (3.2.55)
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4. Update the boundary z := z + h and the interior wave number kd = kd + σ
then go to first step and repeat this procedure until some stopping criteria
is satisfied. The stopping criterion for the iterative scheme is given by the
relative errors ε1, ε2

‖ u∞,m;N − u∞,m ‖
‖ u∞,m ‖

≤ ε1, and
|kd;N − kd|
|kd|

≤ ε2, (3.2.56)

for m = 1, . . . ,M where u∞,m;N are the computed far field patterns and kd;N

is the computed interior wave number after N iteration steps.
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Chapter 4

Numerical Solution and Examples

4.1 Numerical Solution of the Direct Problem

For the numerical solution of (3.1.23) and presentation of our inverse algorithm we
assume that the boundary curve ∂D is represented through regular parametrization
of the form

∂D := {z(t) : 0 ≤ t ≤ 2π}, (4.1.1)

where z : IR → IR2 is a 2π-periodic and twice continuously differentiable function
such that the orientation of ∂D is counter-clockwise. Then the parametrized form
of (3.1.23) is given by

S̃kdψd − S̃k0ψ0 = 2uioz,

ψd + ψ0 + K̃ ′kdψd − K̃
′
k0
ψ0 =

2

|z′|
[z′]⊥ · graduioz,

(4.1.2)

The kernels,

M(t, τ ; k) := i
2
|z′(τ)|H(1)

0 (k|z(t)− z(τ)|),

L(t, τ ; k) := ik
2

[z′(t)]⊥.[z(τ)− z(t)]

|z′(t)||z(t)− z(τ)|
|z′(τ)|H(1)

1 (k|z(t)− z(τ)|)
(4.1.3)

of the operators S̃k and K̃ ′k can be written in the form

M(t, τ ; k) = M1(t, τ ; k) ln(4 sin2 t− τ
2

) +M2(t, τ ; k)

L(t, τ ; k) = L1(t, τ ; k) ln(4 sin2 t− τ
2

) + L2(t, τ ; k),

(4.1.4)
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where

M1(t, τ ; k) := − 1

2π
|z′(τ)|J0(k|z(t)− z(τ)|),

M2(t, τ ; k) := M(t, τ ; k)−M1(t, τ ; k) ln(4 sin2 t− τ
2

),

L1(t, τ ; k) := − k

2π

[z′(t)]⊥ · [z(τ)− z(t)]

|z′(t)||z(t)− z(τ)|
|z′(τ)|J1(k|z(t)− z(τ)|),

L2(t, τ ; k) := L(t, τ ; k)− L1(t, τ ; k) ln(4 sin2 t− τ
2

).

The functions M1, M2,L1 and L2 turn out to be smooth with diagonal terms. Their
diagonal terms are obtained as

M1(t, t; k) = − 1

2π
|z′(t)| & M2(t, t; k) = { i

2
− 1

π
ln(

k

2
|z′(t)|)− CE

π
}|z′(t)|

L1(t, t; k) = 0 & L2(t, t; k) = − 1

2π

[z′(t)]⊥ · z′′(t)
|z′(t)|2

in terms of Euler’s constant CE. The system of integral equations (4.1.2) can be
written as the form∫ 2π

0

M(t, τ ; kd)ψd(τ)dτ −
∫ 2π

0

M(t, τ ; k0)ψ0(τ)dτ = 2ui ◦ z(t),

ψd(t) + ψ0(t) +

∫ 2π

0

L(t, τ ; kd)ψd(τ)dτ −
∫ 2π

0

L(t, τ ; k0)ψ0(τ)dτ

=
2

|z′(t)|
[z′(t)]⊥ · gradui ◦ z(t). (4.1.5)

If we insert equations (4.1.4) into (4.1.5) then we obtain∫ 2π

0

[M1(t, τ ; kd) ln(4 sin2 t− τ
2

) +M2(t, τ ; kd)]ψd(τ)dτ

−
∫ 2π

0

[M1(t, τ ; k0) ln(4 sin2 t− τ
2

) +M2(t, τ ; k0)]ψ0(τ)dτ = 2ui ◦ z(t),

ψd(t) + ψ0(t) +

∫ 2π

0

[L1(t, τ ; kd) ln(4 sin2 t− τ
2

) + L2(t, τ ; kd)]ψd(τ)dτ

−
∫ 2π

0

[L1(t, τ ; k0) ln(4 sin2 t− τ
2

) + L2(t, τ ; k0)]ψ0(τ)dτ

=
2

|z′(t)|
[z′(t)]⊥ · gradui ◦ z(t). (4.1.6)
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We solve the systems of integral equations approximately via collocation method
combined with numerical quadrature as described in Section 3.5 of [7] or in [39]
based on approximation by trigonometric polynomials. In our case of 2π-periodic

integrals, we choose an equidistant set of knots tj :=
jπ

n
, j = 0, 1, 2, ...2n − 1 and

use the quadrature rule;

∫ 2π

0

ln(4 sin2 t− τ
2

)f(τ)dτ ≈
2n−1∑
j=0

R
(n)
j (t)f(tj), 0 ≤ t ≤ 2π (4.1.7)

with quadrature weights given by

R
(n)
j (t) := −2π

n

n−1∑
m=1

1

m
cosm(t−tj)−

π

n2
cosn(t−tj), j = 0, 1, 2, ..., 2n−1, (4.1.8)

and the trapezoidal rule

∫ 2π

0

f(τ)dτ ≈ π

n

2n−1∑
j=0

f(tj). (4.1.9)

The integral equations (4.1.6) are replaced by the approximating equations

2n−1∑
j=0

R
(n)
j (t)M1(t, tj; kd)ψ

(n)
d (tj) +

π

n

2n−1∑
j=0

M2(t, tj; kd)ψ
(n)
d (tj)

−
2n−1∑
j=0

R
(n)
j (t)M1(t, tj; k0)ψ

(n)
0 (tj)−

π

n

2n−1∑
j=0

M2(t, tj; k0)ψ
(n)
0 (tj) = 2ui ◦ z(t),

ψ
(n)
d (t) + ψ

(n)
0 (t) +

2n−1∑
j=0

R
(n)
j (t)L1(t, tj; kd)ψ

(n)
d (tj) +

π

n

2n−1∑
j=0

L2(t, tj; kd)ψ
(n)
d (tj)

−
2n−1∑
j=0

R
(n)
j (t)L1(t, tj; k0)ψ

(n)
0 (tj)−

π

n

2n−1∑
j=0

L2(t, tj; k0)ψ
(n)
0 (tj)

=
2

|z′(t)|
[z′(t)]⊥ · gradui ◦ z(t). (4.1.10)

The solution of (4.1.10) can be reduced to solve a finite dimensional linear system.

For any solutions of (4.1.10) the values ψ
(n)
i,d = ψ

(n)
d (tj) and ψ

(n)
i,0 = ψ

(n)
0 (tj), i =
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0, 1, 2, ..., 2n− 1, at the quadrature points trivially satisfy the linear system,

2n−1∑
j=0

R(n)|ti − tj|)M1(ti, tj; kd)ψ
(n)
d (tj) +

π

n

2n−1∑
j=0

M2(ti, tj; kd)ψ
(n)
d (tj)

−
2n−1∑
j=0

R(n)|ti − tj|)M1(ti, tj; k0)ψ
(n)
0 (tj)−

π

n

2n−1∑
j=0

M2(ti, tj; k0)ψ
(n)
0 (tj)= 2ui ◦ z(ti),

ψ
(n)
d (ti) + ψ

(n)
0 (ti) +

2n−1∑
j=0

R(n)|ti − tj|)L1(ti, tj; kd)ψ
(n)
d (tj) +

π

n

2n−1∑
j=0

L2(ti, tj; kd)ψ
(n)
d (tj)

−
2n−1∑
j=0

R(n)|ti − tj|)L1(ti, tj; k0)ψ
(n)
0 (tj)−

π

n

2n−1∑
j=0

L2(ti, tj; k0)ψ
(n)
0 (tj)

=
2

|z′(ti)|
[z′(ti)]

⊥ ·gradui◦z(ti). (4.1.11)

for i = 0, 1, 2, ..., 2n− 1. It is clear how to modify this system for M incident fields
with distinct directions.

Since the integral equation (4.1.2) is uniquely solvable and the kernels M1, M2,

L1 and L2 and right hand sides ui and
∂ui

∂ν
are continuous, a rather involved error

analysis (for detail we refer to [7]) show that

1. the approximating linear system (4.1.11) is uniquely solvable for all sufficiently
large n;

2. as n→∞ the approximate solutions ψ
(n)
0 and ψ

(n)
d converge uniformly to the

solution ψ0 and ψd of the integral equation (4.1.2), respectively;

3. the convergence order of the quadrature error for (4.1.7) and (4.1.9) carries

over to the error ψ
(n)
0 − ψ0 and ψ

(n)
d − ψd.

The latter, in particular, means that since we have analytic kernels M1, M2, L1

and L2 and analytic right hand sides ui and
∂ui

∂ν
the approximation error decreases

exponentially, i.e., there exist positive constants C1, C2, σ1 and σ2 such that

|ψ(n)
0 − ψ0| ≤ C1e

−nσ1 and |ψ(n)
d − ψd| ≤ C2e

−nσ2 , 0 ≤ t ≤ 2π, (4.1.12)

for all n.
The parametrized form of (3.1.32), i.e., the parametrized far field pattern is given

by

u∞ = γ

∫ 2π

0

e−ik0 x̂·z(τ)|z′(τ)|ψ0(τ) dτ, x̂ ∈ Ω. (4.1.13)
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The expression can be evaluated by the composite trapezoidal rule and after solving
the linear system of integral equations (4.1.11) for ψ

(n)
0 , the far field patterns can

be obtained as

u∞ =
γπ

n

2n−1∑
j=0

e−ik0x̂(ti)·z(tj)|z′(tj)|ψ(n)
0 (4.1.14)

for i = 0, 1, . . . , 2n− 1.

For a numerical example, we consider the scattering of a plane wave by a dielectric
cylinder with a non-convex kite-shaped cross section with boundary ∂D described
by the parametric representation

z(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π. (4.1.15)

Table 4.2 gives some approximate values for the far field pattern u∞(d) and
u∞(−d) in the forward direction d and the backward direction −d. The direction d
of the incident wave is d = (1, 0) and the wave numbers are k0 = 1 and kd = 2 + 3i.
Note that the exponential convergence is clearly exhibited.

Table 4.1: Numerical results for direct scattering problem

n Reu∞(d) Imu∞(d) Reu∞(−d) Imu∞(−d)

8 -0.6017247940 -0.0053550779 -0.2460323014 0.3184957768
16 -0.6018967551 -0.0056192337 -0.2461831740 0.3186052686
32 -0.6019018135 -0.0056277492 -0.2461946976 0.3186049949
64 -0.6019018076 -0.0056277397 -0.2461946846 0.3186049951

4.2 Numerical Solution of the Inverse Problem

In order to solve the inverse problem numerically we need parametrization for the
unknown boundary ∂D in the form (3.2.8) with non-negative function r representing
the radial distance of ∂D from the origin. The perturbed boundary h is of the form

h(t) = q(t)(cos t, sin t), for 0 ≤ t ≤ 2π, (4.2.1)
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with a real function q. In the approximation we assume r and its update q to have
the form of a trigonometric polynomial of degree J

r(t) =
J∑
j=0

αj cos jt+
J∑
j=1

βj sin jt,

q(t) =
J∑
j=0

aj cos jt+
J∑
j=1

bj sin jt. (4.2.2)

The kernels,

A(t, τ ;h; k) := −ik
2

(z(t)− z(τ)) · (h(t)− h(τ))

|z(t)− z(τ)|
|z′(τ)|H(1)

1 (k|z(t)− z(τ)|),

B(t, τ ;h; k) :=
i

2

z′(τ) · h′(τ)

|z′(τ)|
H

(1)
0 (k|z(t)− z(τ)|),

of the operator (3.2.28) can be written in the form

A(t, τ ;h; k) = A1(t, τ ;h; k) ln(4 sin2 t− τ
2

) + A2(t, τ ;h; k),

B(t, τ ;h; k) = B1(t, τ ;h; k) ln(4 sin2 t− τ
2

) +B2(t, τ ;h; k), (4.2.3)

where,

A1(t, τ ;h; k) :=
k

2π

(z(t)− z(τ)) · (h(t)− h(τ))

|z(t)− z(τ)|
|z′(τ)| J1(k|z(t)− z(τ)|),

A2(t, τ ;h; k) := A(t, τ ;h; k)− A1(t, τ ;h; k) ln(4 sin2 t− τ
2

),

B1(t, τ ;h; k) := − 1

2π

z′(τ) · h′(τ)

|z′(τ)|
J0(k|z(t)− z(τ)|),

B2(t, τ ;h; k) := B(t, τ ;h; k)−B1(t, τ ;h; k) ln(4 sin2 t− τ
2

).

The functions A1, A2,B1 and B2 turn out to be smooth with diagonal terms. Their
diagonal terms are in the form

A1(t, t) = 0, & A2(t, t;h) = − 1

π

z′(t) · h′(t)
|z′(t)|

.

B1(t, t;h) = − 1

2π

z′(t) · h′(t)
|z′(t)|

, & B2(t, t;h; k) = { i
2
− 1

π
ln(

k

2
|z′(t)|)− CE

π
}z′(t) · h′(t).
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And the kernels,

C(t, τ ;h; k) :=
−ik([z′(t)]⊥ · (h(t)− h(τ))+[h′(t)]⊥ · (z(t)− z(τ)))

2|z′(t)||z(t)− z(τ)|
|z′(τ)|H(1)

1 (k|z(t)− z(τ)|).

D(t, τ ;h; k) :=
ik[z′(t)]⊥ · (z(t)− z(τ))(h(t)− h(τ))· (z(t)− z(τ))

|z′(t)||z(t)− z(τ)|3
|z′(τ)|H(1)

1 (k|z(t)− z(τ)|).

E(t, τ ;h; k) :=
−ik2[z′(t)]⊥· (z(t)−z(τ))(h(t)−h(τ)) · (z(t)− z(τ))

2|z′(t)||z(t)− z(τ)|2
|z′(τ)|H(1)

0 (k|z(t)−z(τ)|).

F (t, τ ;h; k) :=
ik

2

h′(t) · z′(t)
|z′(t)|2

[z′(t)]⊥ · (z(t)− z(τ))

|z(t)− z(τ)|
|z′(τ)|H(1)

1 (k|z(t)− z(τ)|).

G(t, τ ;h; k) := − ik

2|z′(t)|
[z′(t)]⊥ · (z(t)− z(τ))h′(τ) · z′(τ)

|z(t)− z(τ)||z′(τ)|
H

(1)
1 (k|z(t)− z(τ)|).

of the operator (3.2.29) can be written in the form

C(t, τ ;h; k) = C1(t, τ ;h; k) ln(4 sin2 t− τ
2

) + C2(t, τ ;h; k),

D(t, τ ;h; k) = D1(t, τ ;h; k) ln(4 sin2 t− τ
2

) +D2(t, τ ;h; k),

E(t, τ ;h; k) = E1(t, τ ;h; k) ln(4 sin2 t− τ
2

) + E2(t, τ ;h; k),

F (t, τ ;h; k) = F1(t, τ ;h; k) ln(4 sin2 t− τ
2

) + F2(t, τ ;h; k),

G(t, τ ;h; k) = G1(t, τ ;h; k) ln(4 sin2 t− τ
2

) +G2(t, τ ;h; k), (4.2.4)



70 CHAPTER 4. NUMERICAL SOLUTION AND EXAMPLES

where

C1(t, τ ;h; k) :=
k([z′(t)]⊥ ·(h(t)−h(τ))+[h′(t)]⊥ ·(z(t)−z(τ)))

2π|z′(t)||z(t)− z(τ)|
|z′(τ)|J1(k|z(t)−z(τ)|),

C2(t, τ ;h; k) := C(t, τ ;h; k)− C1(t, τ ;h; k) ln(4 sin2 t− τ
2

).

D1(t, τ ;h; k) :=
−k[z′(t)]⊥ ·(z(t)−z(τ))(h(t)−h(τ))·(z(t)−z(τ))

π|z′(t)||z(t)− z(τ)|3
|z′(τ)|J1(k|z(t)−z(τ)|),

D2(t, τ ;h; k) := D(t, τ ;h; k)−D1(t, τ ;h; k) ln(4 sin2 t− τ
2

).

E1(t, τ ;h; k) :=
k2[z′(t)]⊥ ·(z(t)−z(τ))(h(t)−h(τ))·(z(t)− z(τ))

2π|z′(t)||z(t)− z(τ)|2
|z′(τ)|J0(k|z(t)−z(τ)|),

E2(t, τ ;h; k) := E(t, τ ;h; k)− E1(t, τ ;h; k) ln(4 sin2 t− τ
2

).

F1(t, τ ;h; k) := − k

2π

h′(t) · z′(t)
|z′(t)|2

[z′(t)]⊥ · (z(t)− z(τ))

|z(t)− z(τ)|
|z′(τ)|J1(k|z(t)− z(τ)|),

F2(t, τ ;h; k) := F (t, τ ;h; k)− F1(t, τ ;h; k) ln(4 sin2 t− τ
2

).

G1(t, τ ;h; k) :=
k

2π

1

|z′(t)|
[z′(t)]⊥ · (z(t)− z(τ))h′(τ) · z′(τ)

|z(t)− z(τ)||z′(τ)|
J1(k|z(t)− z(τ)|),

G2(t, τ ;h; k) := G(t, τ ;h; k)−G1(t, τ ;h; k) ln(4 sin2 t− τ
2

).

The functions C1, C2,D1, D2, E1, E2,F1, F2 G1, and G2 turn out to be smooth with
diagonal terms. Their diagonal terms are in the form

C1(t, t) = 0, & C2(t, t;h) =
1

2π

[z′(t)]⊥ · h′′(t) + [h′(t)]⊥ · z′′(t)
|z′(t)|2

.

D1(t, t) = 0, & D2(t, t;h) = − 1

π

[z′(t)]⊥ · z′′(t) z′(t) · h′(t)
|z′(t)|4

.

E1(t, t) = 0, & E2(t, t) = 0.

F1(t, t) = 0, & F2(t, t;h) = − 1

2π

[z′(t)]⊥ · z′′(t) z′(t) · h′(t)
|z′(t)|3

.

G1(t, t) = 0, & G2(t, t;h) =
1

2π

[z′(t)]⊥ · z′′(t) z′(t) · h′(t)
|z′(t)|4

.

The kernel,

P (t, τ ; kd) := − i
2
|z(t)− z(τ)||z′(τ)|H(1)

1 (kd|z(t)− z(τ)|), (4.2.5)

of the operator (3.2.51) can be written in the form

P (t, τ ; kd) = P1(t, τ ; kd) ln(4 sin2 t− τ
2

) + P2(t, τ ; kd), (4.2.6)
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where

P1(t, τ ; kd) =
1

2π
|z(t)− z(τ)||z′(τ)|J1(kd|z(t)− z(τ)|),

P2(t, τ ; kd) = P (t, τ ; kd)− P1(t, τ ; kd) ln(4 sin2 t− τ
2

).

The functions P1 and P2 turn out to be smooth with diagonal terms. Their diagonal
terms are in the form

P1(t, t; kd) = 0 & P2(t, t; kd) = − 1

πkd
|z′(t)|.

4.2.1 Numerical Solution of the Johansson and Sleeman
Method for Shape Reconstruction

Here, we are now going to shortly describe how the Johansson and Sleeman method
can be implemented for the numerical solution of shape reconstruction.

1. We solve the two well-posed field equations in (3.2.12) for the densities by the
method described in section 4.1.

2. We solve the ill-posed linearized data equation in (3.2.14) by Tikhonov reg-
ularization with the trapezoidal rule. Inserting (4.2.2) into the Tikhonov
equation leads to a linear system for the unknown Fourier coefficients a and
b.

4.2.2 Numerical Solution of the Simultaneous Linearization
Method for Shape Reconstruction

In this subsection, we are going to shortly describe how we apply the simultaneous
linearization method for the numerical solution of shape reconstruction.

� We solve the linearized ill-posed equations (3.2.30) by Tikhonov regularization
with the method described in section 4.1. Substituting (4.2.2) into the regu-
larized Tikhonov equations lead to a linear system for the unknown Fourier
coefficients a and b and unknown densities ηd and η0.

4.2.3 Numerical Solution of the Hybrid Method

In this subsection, we shortly present how we implement the hybrid method for the
numerical solution of shape reconstruction.

1. We solve the regularized equation (3.2.42) via Tikhonov regularization with
the trapezoidal rule for the density ψ0.
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2. We find the density ψd from the equation (3.2.43) by the method described
in section 4.1 for fixed ψ0.

3. For fixed ψ0 and ψd, we solve the ill-posed linearized equation (3.2.44) by
Tikhonov regularization with the method described in section 4.1. Inserting
(4.2.2) into the Tikhonov equation leads to a linear system for the unknown
Fourier coefficients a and b.

4.2.4 Numerical Solution of Reconstruction the Interior Wave
Number via the Hybrid Method

In this subsection, we shortly describe how the hybrid method can be applied for
the numerical solution of reconstruction for the interior wave number kd.

1. We solve the regularized equation (3.2.48) via Tikhonov regularization with
the trapezoidal rule for the density ψ0.

2. We find the density ψd from the equation (3.2.49) by the method described
in section 4.1.

3. For fixed ψd, we solve the ill-posed linearized equation (3.2.50) by Tikhonov
regularization with the method described in section 4.1. Inserting (4.2.2) into
the Tikhonov equation leads to a linear system for the unknown σ.

4.2.5 Numerical Solution of Simultaneous Reconstructions
the Boundary and the Interior Wave Number via the
Hybrid Method

This is just combination of the above two last subsections.

4.3 Numerical Examples

For the numerical examples we choose the number of incident plane waves M = 8.
There are six parameters which effect the quality of the reconstruction. In order to
understand the influence of these parameters, we keep five of them fixed and vary
the remaining sixth parameter. They are given as fallows;

� initial guess

� interior and exterior wave numbers are represented by kd and k0 respectively,

� degree of trigonometric polynomials is represented by J ,
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� regularization parameter used for the boundary is represented by λ decreasing
with each iteration step j,

� regularization parameter used for the densities is represented by α.

� Sobolev norm is represented by Hp,

� Noise level is represented by δ. In order to obtain noisy data, random errors
are added point-wise to u∞,

ũ∞ = u∞ + δξ
||u∞||
|ξ|

(4.3.1)

where the random variable ξ ∈ C and {Reξ, Imξ} ∈ (0, 1)

Table 4.2: Parametric representation of boundary curves.

Counter type Parametric representation

Apple-shaped : z(t) = {0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.7 cos t
(cos t, sin t) : t ∈ [0, 2π]}

Drop-shaped : z(t) = {(−0.5 + 0.75 sin
t

2
,−0.75 sin t) : t ∈ [0, 2π]}

Ellipse : z(t) = {(a1 cos t, a2 sin t) : t ∈ [0, 2π]}, a1, a2 : constant

Kite-shaped : z(t) = {(cos t+ 1.3 cos2 t− 1.3, 1.5 sin t) : t ∈ [0, 2π]}

Peanut-shaped : z(t) = {
√
cos2 t+ 0.25 sin t (cos t, sin t) : t ∈ [0, 2π]}

Rounded triangle : z(t) = {(2 + 0.3 cos 3t)(cos t, sin t) : t ∈ [0, 2π]}

4.3.1 Numerical Examples for the Johansson Sleeman Method
with Synthetic Data

In the sequel, the purple curve with stars represents the initial guess, the dashed
curve represents the boundary of the scatterer and the red curve represents the
reconstruction for all examples.

Firstly, the figures 4.1 and 4.2 show examples of slim ellipse-shaped scatterer. In
these examples, we try to understand the influence of the degree J of trigonometric
polynomials and of the noise level δ on the quality of the reconstruction.
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k0 = 1, kd = 10+10i, J = 5 k0 = 1, kd = 10 + 10i, J = 10,
λ = (0.9)j, H2, δ = 0. λ = (0.9)j,H2, δ = 0.
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Figure 4.1: Dependence on J

Secondly, the figures 4.3–4.9 show examples of an apple-shaped scatterer. In the
example 4.3, we illustrate how the reconstructions are influenced when we change
the interior wave number kd. In the example 4.4, we illustrate how the reconstruc-
tions are influenced when we increase the degree J of trigonometric polynomials.
In the examples 4.5, 4.6 and 4.7, we illustrate how the Sobolev norm Hp effects the
quality of the reconstructions. In example 4.8, we investigate how the regularization
parameter λ influences the quality of the reconstructions. In the example 4.9, we
show how the noise level δ influences the quality of the reconstructions.

Thirdly, the figures 4.10–4.13 show examples of a kite-shaped scatterer. In the
example 4.10, we show how the interior wave number kd influences the quality of the
reconstructions. In the example 4.11, we illustrate how the exterior wave number
k0 effects the quality of the reconstructions. In the example 4.12, we show how the
degree J of trigonometric polynomials influences the quality of the reconstructions.
In the examples 4.13, we illustrate how the noise level δ influences the quality of
the reconstructions.

Finally, the figures 4.14 and 4.15 show examples of a peanut-shaped scatterer.
In the examples 4.14 and 4.15 we illustrate how the interior wave number kd and
noise level δ influence the quality of the reconstructions, respectively.
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k0 = 1, kd = 10+10i, J = 5 k0 = 1, kd = 10 + 10i, J = 5,
λ = (0.9)j, H2, δ = 0.05. λ = (0.9)j,H2, δ = 0.1.
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Figure 4.2: Dependence on δ

k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 1i, J = 5,
λ = (0.8)j, H2, δ = 0. λ = (0.8)j,H2, δ = 0.
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Figure 4.3: Dependence on kd
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k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 20,
λ = (0.8)j, H2, δ = 0. λ = (0.8)j,H2, δ = 0.
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Figure 4.4: Dependence on J

k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
λ = (0.8)j, H2, δ = 0. λ = (0.8)j,L2, δ = 0.
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Figure 4.5: Dependence on Hp
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k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
λ = (0.8)j, H1/2, δ = 0. λ = (0.8)j,H1, δ = 0.
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Figure 4.6: Dependence on Hp

k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
λ = (0.8)j, H3, δ = 0. λ = (0.8)j,H4, δ = 0.
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Figure 4.7: Dependence on Hp
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k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
λ = 0.1 ∗ (0.8)j, H2, δ = 0. λ = 0.01 ∗ (0.8)j,H2, δ = 0.
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Figure 4.8: Dependence on λ

k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
λ = (0.8)j, H2, δ = 0.03. λ = (0.8)j,H2, δ = 0.05.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
reconstructed
exact
int−guess

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
reconstructed
exact
int−guess

Figure 4.9: Dependence on δ
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k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 8i, J = 5,
λ = (0.8)j, H2, δ = 0. λ = (0.8)j,H2, δ = 0.
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Figure 4.10: Dependence on kd

k0 = 1, kd = 10+1i, J = 5 k0 = 3, kd = 10 + 1i, J = 5,
λ = (0.8)j, H2, δ = 0. λ = (0.8)j,H2, δ = 0.
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Figure 4.11: Dependence on k0
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k0 = 1, kd = 10+1i, J = 10 k0 = 1, kd = 10 + 1i, J = 20,
(0.8)j, H2, δ = 0. λ = (0.8)j,H2, δ = 0.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
reconstructed
exact
int−guess

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
reconstructed
exact
int−guess

Figure 4.12: Dependence on J

k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 1i, J = 5,
λ = (0.8)j, H2, δ = 0.03. λ = (0.8)j,H2, δ = 0.05.
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Figure 4.13: Dependence on δ
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k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
λ = (0.8)j, H2, δ = 0. λ = (0.8)j,H2, δ = 0.
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Figure 4.14: Dependence on kd

k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 1i, J = 5,
λ = (0.8)j, H2, δ = 0.03. λ = (0.8)j,H2, δ = 0.05.
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Figure 4.15: Dependence on δ
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From the examples 4.1, 4.4 and 4.12, we observe that the degree J of trigono-
metric polynomials has not significant effect on the quality of the reconstructions.
Of course this does not mean that the degree J of trigonometric polynomials does
not have an influence on the quality of the reconstructions. When we select J = 1
we could not obtain a reasonable reconstruction, for instance. From the examples
4.3, 4.10 and 4.14, we observe that the interior wave number kd has a significant
influence on the quality of the reconstructions. From the example 4.11, we see that
the quality of the reconstructions is significantly effected by changing the exterior
wave number k0. From the examples 4.5 and 4.6, we observe that the Sobolev norm
Hp has a significant influence on the quality of the reconstruction. From the exam-
ple 4.7, we also observe that the quality of the reconstructions does not significantly
change when we select p ≥ 2. From the example 4.8, we see that the regularization
parameter λ has a significant influence on the quality of the reconstructions. From
the examples, 4.2, 4.9, 4.13 and 4.15, we observe that the Johansson and Sleeman
method tolerates noise level up to 5 percentage.

To sum up, in order to have a reasonable reconstruction one has to appropriately
select all parameters. There is no theoretical result available for how these parame-
ters should be chosen. We found these parameters by trial and error. However, we
keep in mind that since the Johansson and Sleeman method can be viewed as the
traditional Newton method (see theorem 3.2.7), this method converges to a local
minimum. Therefore, one has to start with a good initial guess. The exterior wave
number k0 should be chosen in the resonance region, i.e., length of the incident
plane wave should approximately equal to the diameter of the scatterer.

Comparing with the numerical examples (see Hohage and Schormann [15]) ob-
tained by Newton method for the boundary to far field mapping, we observe that
the examples obtained by the Johansson and Sleeman method are not as good as the
examples obtained by the Newton method. The main advantage of the Johansson
and Sleeman method is that it has a simple implementation.

4.3.2 Numerical Examples for the Simultaneous Lineariza-
tion Method with Synthetic data

In the following subsection, the green curve represents initial guess, the dashed
curve represents the boundary of the scatterer and the red curve represents the
reconstruction for all examples. In order to avoid redundancy, we will only mention
what conclusion we obtain from all the following examples for the simultaneous
linearization method. In all following examples, we use parameters given above
each figures. The figures 4.16 and 4.17 show examples of a peanut-shaped scatterer,
the figures 4.18 and 4.19 illustrate examples of a rounded-triangle-shaped scatterer,
the figures 4.20 and 4.21 are examples of an apple-shaped scatterer, the figures 4.22
and 4.23 are examples of a dropped-shaped scatterer, and the figures 4.24 and 4.25
are examples of a kite-shaped scatterer.
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k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
α = 10−8, λ = (0.9)j, H2, δ = 0. α = 10−8, λ = (0.9)j,H2, δ = 0.05.
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Figure 4.16: Dependence on δ

k0 = 1, kd = 10+5i, J = 5, k0 = 1, kd = 10 + 5i, J = 5,
α = 10−8,λ = (0.9)j, H2, δ = 0.1. α = 10−8, λ = (0.9)j,H2, δ = 0.2.
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Figure 4.17: Dependence on δ
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k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 1i, J = 5,
α = 10−7, λ = (0.9)j, H2, δ = 0. α = 10−8, λ = (0.9)j,H2, δ = 0.05.
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Figure 4.18: Dependence on δ

k0 = 1, kd = 10+1i, J = 5, k0 = 1, kd = 10 + 1i, J = 5,
α = 10−8,λ = (0.9)j, H2, δ = 0.1. α = 10−8, λ = (0.9)j,H2, δ = 0.2.
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Figure 4.19: Dependence on δ
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k0 = 1, kd = 10+10i, J = 5 k0 = 1, kd = 10 + 10i, J = 5,
α = 10−8, λ = (0.8)j, H2, δ = 0. α = 10−8, λ = (0.8)j,H2, δ = 0.05.
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Figure 4.20: Dependence on δ

k0 = 1, kd = 10+10i, J = 5, k0 = 1, kd = 10 + 10i, J = 5,
α = 10−8,λ = (0.8)j, H2, δ = 0.1. α = 10−8, λ = (0.8)j,H2, δ = 0.2.
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Figure 4.21: Dependence on δ
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k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
α = 10−5, λ = (0.9)j, H2, δ = 0. α = 10−5, λ = (0.9)j,H2, δ = 0.05.
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Figure 4.22: Dependence on δ

k0 = 1, kd = 10+1i, J = 5, k0 = 1, kd = 10 + 1i, J = 5,
α = 10−5,λ = (0.9)j, H2, δ = 0.1. α = 10−5, λ = (0.9)j,H2, δ = 0.2.
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Figure 4.23: Dependence on δ
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k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 1i, J = 5,
α = 10−8, λ = (0.9)j, H2, δ = 0. α = 10−8, λ = (0.9)j,H2, δ = 0.05.
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Figure 4.24: Dependence on δ

k0 = 1, kd = 10+1i, J = 5, k0 = 1, kd = 10 + 1i, J = 5,
α = 10−8,λ = (0.9)j, H2, δ = 0.1. α = 10−8, λ = (0.9)j,H2, δ = 0.2.
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Figure 4.25: Dependence on δ
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In conclusion, in the above examples, we focused on the noise level δ in order to
prevent redundancy.

Comparing with the numerical examples (see Hohage and Schormann [15]) ob-
tained by the Newton method, we observe that the examples obtained by the simul-
taneous linearization method compete with the examples obtained by the Newton
method. The main advantage of the simultaneous linearization method is the sim-
ple form of derivatives. Moreover, it tolerates noise level up to %10, on the other
hand, the Newton method tolerates noise level up to %5. In addition, from the all
examples, we observe that the simultaneous linearization method is better than the
Johansson and Sleeman method since it provides better reconstruction and tolerates
higher noise level.

4.3.3 Numerical Examples for the Hybrid Method with
Synthetic data

In the following subsection, the color of the curves has the same meaning as de-
scribed in the simultaneous linearization method. For decreasing the redundancy,
we will only mention about what conclusion we obtain for the hybrid method. In
all following examples, we use parameters given above each figures.

The figures 4.26 and 4.27 are examples of a peanut-shaped scatterer, the figures
4.28 and 4.29 are examples of a rounded-triangle-shaped scatterer, the figures 4.30
and 4.31 are examples of an apple-shaped scatterer, the figures 4.32 and 4.33 are
examples of a dropped-shaped scatter, and the figures 4.34 and 4.35 are examples
of a kite-shaped scatterer.
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k0 = 1, kd = 10+5i, J = 5 k0 = 1, kd = 10 + 5i, J = 5,
α = 10−7, λ = (0.9)j, H2, δ = 0. α = 10−7, λ = (0.9)j,H2, δ = 0.01.
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Figure 4.26: Dependence on δ

k0 = 1, kd = 10+5i, J = 5, k0 = 1, kd = 10 + 5i, J = 5,
α = 10−7,λ = (0.9)j, H2, δ = 0.02. α = 10−7, λ = (0.9)j,H2, δ = 0.03.
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Figure 4.27: Dependence on δ
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k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 1i, J = 5,
α = 10−7, λ = (0.9)j, H2, δ = 0. α = 10−7, λ = (0.9)j,H2, δ = 0.002.
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Figure 4.28: Dependence on δ

k0 = 1, kd = 10+1i, J = 5, k0 = 1, kd = 10 + 1i, J = 5,
α = 10−7,λ = (0.9)j, H2, δ = 0.003. α = 10−7, λ = (0.9)j,H2, δ = 0.005.
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Figure 4.29: Dependence on δ
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k0 = 1, kd = 10+10i, J = 10 k0 = 1, kd = 10 + 10i, J = 20,
α = 10−6, λ = (0.8)j, H2, δ = 0. α = 10−6, λ = (0.8)j,H2, δ = 0.
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Figure 4.30: Dependence on J

k0 = 1, kd = 10+10i, J = 5, k0 = 1, kd = 10 + 10i, J = 5,
α = 10−6,λ = (0.8)j, H2, δ = 0.01. α = 10−6, λ = (0.8)j,H2, δ = 0.02.
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Figure 4.31: Dependence on δ
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k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 1i, J = 5,
α = 10−5, λ = (0.9)j, H2, δ = 0. α = 10−5, λ = (0.9)j,H2, δ = 0.003.
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Figure 4.32: Dependence on δ

k0 = 1, kd = 10+1i, J = 5, k0 = 1, kd = 10 + 1i, J = 5,
α = 10−5,λ = (0.9)j, H2, δ = 0.005. α = 10−5, λ = (0.9)j,H2, δ = 0.01.
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Figure 4.33: Dependence on δ
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k0 = 1, kd = 10+1i, J = 5 k0 = 1, kd = 10 + 1i, J = 20,
α = 10−5, λ = (0.9)j, H2, δ = 0. α = 10−5, λ = (0.9)j,H2, δ = 0.
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Figure 4.34: Dependence on J

k0 = 1, kd = 10+1i, J = 5, k0 = 1, kd = 10 + 1i, J = 5,
α = 10−5,λ = (0.9)j, H2, δ = 0.005. α = 10−5, λ = (0.9)j,H2, δ = 0.01.
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Figure 4.35: Dependence on δ
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To sum up, the quality of the reconstruction depends on the all parameters. To
have a reasonable reconstruction, one has to choose suitable parameters and these
parameters have to be selected in appropriate manner. We choose these parameters
via trial and error.

Comparing the examples that are obtained by the hybrid method with examples
that are obtained by Newton method (See Hohage and Schormann [15]) we observe
that the hybrid method compete with the Newton method via the quality of the
reconstruction. The big drawback of this method is that it is vulnerable to noise
level. In the view of the quality of reconstruction, the hybrid method has almost
the same quality as the simultaneous linearization method and better quality then
the Johansson and Sleeman method.

We now give a general overview on the reconstructions that are obtained by the
three methods that we deal with:

� Increasing the number of incident fields, or illuminations, give better recon-
struction than one incident field. However, This increase does not have a
significant effect on the quality of the reconstruction above some number of
incident fields. We obtain almost the same quality of reconstructions with 8
and 16 incident directions, for examples.

� If the directions of incident fields are symmetric to each other then the quality
of reconstruction increases.

� Reconstruction depends on initial guess. If we choose initial guess far away
from the object then the reconstruction may fail. Moreover, due to the re-
striction on theorem (3.1.5), we should start initial guess small because of the
fact that we decrease the possibility of hitting a Dirichlet eigenvalue and the
methods converge to a local minimum.

� Reconstruction depends on wave numbers. The exterior wave number k0 has
to be in resonance region. If you have a dielectric scatterer with 1 meter
diameter and use an incident field with 10 meter wave length, you can not
obtain a reasonable reconstruction, for example.

� It seems to be enough to select degree of trigonometric polynomials m = 5.

� We have got reasonable reconstruction when we choose the regularization
parameter λ in the range between 0.1 and 1, and increasing with each iteration
step j.

� We need to select the regularization parameter α sufficiently small such as
10−6.

� We have got a reasonable reconstruction when we choose H2 penalty term.
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4.3.4 Simultaneously Reconstruction the Shape and the In-
terior wave number kd

In the following example, the table shows the reconstruction of the interior wave
number kd and the figure shows the reconstruction of a circle after 15 iteration
steps. Initial guess for the interior wave number is kd = 5+3.5i and the exact value
of it is kd = 6 + 3i.

j Re kd Im kd

1 11.0395162371 1.8591428622
2 7.1262095657 0.5910320885
3 7.0605679805 0.6317525981
4 7.1183586985 0.7713567402
5 7.0978164742 1.1142157466
6 6.7877484915 1.7601039965
7 6.4182938086 2.4436691343
8 6.0756484419 2.8851109484
9 6.0007133176 2.9782074624

10 5.9963101217 2.9978738350
11 5.9987548077 3.0003488868
12 5.9997523215 3.0002332761
13 5.9999618896 3.0000776416
14 5.9999839302 3.0000316851
15 5.9999813584 3.0000238253

k0 = 1, J = 5, α = 10−7, λ = (0.8)j, H2
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In the following example, the table shows the reconstruction of the interior wave
number kd and the figure shows the reconstruction of an ellipse after 15 iteration
steps. Initial guess for the interior wave number is kd = 5+3.5i and the exact value
of it is kd = 6 + 3i.
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j Re kd Im kd

1 10.3203398376 2.5632097678
2 6.8297190825 0.6248314106
3 6.6350856304 0.7747469455
4 6.5418991220 1.0375083511
5 6.4628680240 1.5967582744
6 6.0633220487 2.4436691343
7 5.7307529586 3.1753741772
8 5.9292088043 3.0873077976
9 5.9953107737 3.0079510245

10 6.0048692420 3.0079510245
11 6.0051298619 3.0043323485
12 6.0049806286 3.0037773471
13 6.0050156114 3.0036649731
14 6.0050693251 3.0036157051
15 6.0050980299 3.0035906292

k0 = 1, J = 5, α = 10−7, λ = (0.8)j, H2
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4.4 Numerical Examples via Experimental Data

The experimental system which
can be seen in the photo was con-
ducted at the faculty of Electron-
ics and Communication of Istan-
bul Technical University. For a
sufficiently long dielectric obsta-
cle we used a circular cylindrical
wood with radius 3 cm. In this
system, the transmitter sends
electromagnetic plane waves with
the frequency one GHz polarized
in the direction of the cylinder
axis. The distance between the
transmitter and the cylinder axis
is one meter. The receiver is lo-
cated one meter away from cylin-
drical wood and rotates around it
and collects data. In order to de-
crease the reflection of the waves
and noise, absorbers are settled
around the system.
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We used electromagnetic waves with frequency one GHz which means that the
exterior wave number k0 is equal to 20.944 and the interior wave number is taken
kd =

√
3k0. Since we obtain the data from the near distance, it is required to use

near field pattern instead of far field pattern. Now the data equation has to be
replaced by

Sk0ϕ0 = AΓR (4.4.1)

where AΓR is called near field pattern of scattered field and the index ΓR represents
a circle with radius R. It maps from the boundary ∂D to a circle ΓR and is given
by

AΓR(x) =

∫
∂D

Φk0(x, y)ϕ0(y)ds(y) x ∈ ΓR. (4.4.2)

The measured data or the experimental data represented by Ameasure require
some calibration κ. The latter requirement is posed in the least square sense, i.e.,
the calibration quantity κ is chosen such that

g(κ) :=
M∑
j=1

[AΓR(xj)− κAmeasure(xj)]2, xj ∈ ΓR, (4.4.3)

attains a minimal value. Here, xj is given by xj = R(cos tj, sin tj), tj =
2π

M
j

for j = 0, . . . ,M − 1 and AΓR represents the synthetic data obtained from direct
problem for a known scatterer. The calibration factor κ consists of 60 rows and one
column and is found of the form
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Table 4.3: The value of calibration factor κ

rows 1− 15 rows 16− 30 rows 31− 45 rows 46− 60

1.0639 - 0.1096i 1.1242 + 0.0358i 1.0855 + 0.3213i 0.9521 - 0.1206i
1.0157 - 0.0745i 1.0910 + 0.0261i 1.0514 + 0.2847i 0.9494 - 0.1452i
0.9778 - 0.0277i 1.0416 + 0.0553i 1.0047 + 0.2103i 0.9726 - 0.1454i
0.9639 + 0.0107i 1.0051 + 0.0952i 0.9723 + 0.1540i 1.0139 - 0.1187i
0.9805 + 0.0201i 0.9967 + 0.1230i 0.9648 + 0.1278i 1.0503 - 0.0814i
1.0192 - 0.0155i 1.0140 + 0.1299i 0.9768 + 0.1193i 1.0615 - 0.0664i
1.0486 - 0.0910i 1.0354 + 0.1215i 0.9965 + 0.1062i 1.0426 - 0.0919i
1.0412 - 0.1589i 1.0359 + 0.1173i 1.0138 + 0.0715i 1.0021 - 0.1406i
1.0109 - 0.1670i 1.0114 + 0.1335i 1.0229 + 0.0190i 0.9621 - 0.1812i
0.9833 - 0.1111i 0.9811 + 0.1656i 1.0256 - 0.0299i 0.9466 - 0.1975i
0.9659 - 0.0233i 0.9684 + 0.1980i 1.0278 - 0.0559i 0.9660 - 0.1894i
0.9653 + 0.0599i 0.9824 + 0.2154i 1.0288 - 0.0570i 1.0131 - 0.1650i
0.9940 + 0.1129i 1.0010 + 0.2018i 1.0207 - 0.0501i 1.0676 - 0.1390i
1.0525 + 0.1204i 0.9697 + 0.1518i 1.0001 - 0.0572i 1.1032 - 0.1259i
1.1101 + 0.0826i 0.8579 + 0.0914i 0.9734 - 0.0850i 1.1007 - 0.1229i

In the figures 4.36 and 4.37, we compare absolute value of the calibrated measured
data and the synthetic data in the direction d evaluated at 60 points. In the figures
4.38 and 4.39, we compare phase of the calibrated measured data and the synthetic
data in the direction d evaluated at 60 points. The red and green curves represent
the calibrated measured data and the synthetic data, respectively.

In the examples 4.40 and 4.41, we obtain a reconstruction via the calibrated
measured data. The red curve represents reconstruction and the blue dashed curve
represents the boundary of cross section of the wood cylinder. The left hand side
of figure in 4.40 is obtained by simultaneous linearization method for one incident
field with incident direction d = (1, 0). From this example, we observe that recon-
struction almost coincides with the exact boundary, however, the figure is a little
bit shifted along the shadow region. Due to the high noise level in the experimental
data, we could not obtain any reasonable reconstruction neither by the Johansson
and Sleeman method nor by the hybrid method. The right hand side of 4.40, the
left hand side of 4.41, and the right hand side of 4.41 figures represent examples of
reconstructions obtained via the simultaneous linearization method, the Johansson
and Sleeman method, and the hybrid method for four illuminations, or incident
fields, respectively.
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d = (1, 0) d = (0, 1)
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Figure 4.36: Comparing absolute value of the measured and synthetic data

d = (−1, 0) d = (0,−1)
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Figure 4.37: Comparing absolute value of the measured and synthetic data
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d = (1, 0) d = (0, 1)
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Figure 4.38: Comparing phase of the measured and synthetic data

d = (−1, 0) d = (0,−1)
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Figure 4.39: Comparing phase of the measured and synthetic data



4.4. NUMERICAL EXAMPLES VIA EXPERIMENTAL DATA 101

SLM one illumination SLM four illuminations
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Figure 4.40: Examples of the simultaneous linearization method(SLM) via the cal-
ibrated measured data

JS method four illuminations Hybrid Method four illuminations
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Figure 4.41: Examples of the Johansson and Sleeman(JS) and the hybrid method
via the calibrated measured data
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From these examples, we observe that the quality of the reconstructions are suf-
ficiently good for all three methods and they almost coincide with exact boundary.
In addition, increasing the number of incident direction has a significant effect on
the quality of the reconstruction.



Chapter 5

Inverse Obstacle Scattering with
Conductive Boundary Condition

5.1 The Direct Problem

Let the simply connected bounded domain D ⊂ IR2 with C2 boundary ∂D repre-
sent the cross section of an infinitely long homogeneous dielectric cylinder having
constant wave number kd with Im{kd}, IRe{kd} > 0 and denote the exterior wave
number of background by k0 ∈ IR. Denote by ν the outward unit normal vector to
∂D.

Then, given an incident plane wave ui = eik0x.d with incident direction given
by the unit vector d, the direct scattering problem for E-polarized electromagnetic
waves by a coated dielectric is modeled by the following conductive boundary value
problem for the Helmholtz equation: Find solutions u, v to the Helmholtz equations

∆u+ k2
0u = 0 in R2 \ D̄, ∆v + k2

dv = 0 in D (5.1.1)

with the conductive boundary conditions

u = v,
∂u

∂ν
=
∂v

∂ν
+ iηv on ∂D (5.1.2)

for some continuous function defined in one continuously differentiable complex
valued function space η ∈ C1(∂D) with Re{η} ≤ 0 and where the total field is
given by u = ui + us with the scattered wave us fulfilling the Sommerfeld radiation
condition (1.1.3). For a more general case of conductive boundary conditions and
for the IR3 version, we refer to Gerlach and Kress [11]. The following theorem is
the IR2 version of the uniqueness result in [11].

Theorem 5.1.1 The direct scattering problem (5.1.1)-(5.1.2) has at most one so-
lution.

103
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Proof: Proceeding as in the proof of theorem 3.1.1, Green’s theorem leads to∫
∂BR

us
∂ūs

∂ν
ds = −k2

0

∫
BR

|us|2dx+

∫
BR

|∇us|2dx

− k̄2
d

∫
D

|v|2dx+

∫
D

|∇v|2dx− i
∫
∂D

η̄|v|2ds. (5.1.3)

instead of (3.1.5). Taking imaginary part of (5.1.3), we obtain

Im{
∫
∂BR

us
∂ūs

∂ν
ds} = 2Re{kd}Im{kd}

∫
D

|v|2dx−
∫
∂D

Re{η}|v|2ds. (5.1.4)

Due to the assumption on η and kd, the equation (5.1.4) implies that

Im{
∫
∂BR

us
∂ūs

∂ν
ds} ≥ 0. (5.1.5)

Now the proof is completed as in the theorem 3.1.1. 2

Now we try to find the solution in the form of single-layer potentials

us(x) =

∫
∂D

Φk0(x, y)ϕ0(y)ds(y), x ∈ IR2\D̄,

v(x) =

∫
∂D

Φkd(x, y)ϕd(y)ds(y), x ∈ D,

(5.1.6)

with ϕ0, ϕd ∈ H−1/2(∂D). From the jump relation it can be seen that the single
layer potentials (5.1.6) satisfy the boundary conditions (5.1.2) provided the densities
ϕ0, ϕd satisfy the system of integral equation,

Skdϕd − Sk0ϕ0 = 2ui, x ∈ ∂D,

ϕd + ϕ0 + iηSkdϕd +K ′kdϕd −K
′
k0
ϕ0 = 2

∂ui

∂ν
, x ∈ ∂D.

(5.1.7)

Theorem 5.1.2 Provided k0 is not a Dirichlet eigenvalue for the domain D the
system of integral equation (5.1.7) has a unique solution in H−1/2(∂D)×H−1/2(∂D).

Proof: The proof is analogous to the proof of theorem (3.1.5). To establish a
solution, we note that due to the assumption on k0 the inverse operator

S−1
k0

: H1/2(∂D)→ H−1/2(∂D),
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exists and bounded. With its aid, if we multiply the equation (5.1.7) by the operator
S−1
k0

from the left-hand-side, add and subtract ϕd we obtain

ϕd − ϕ0 + S−1
k0

[Skd − Sk0 ]ϕd = 2S−1
k0
ui, on ∂D

ϕd + ϕ0 + iηSkdϕd +K ′kdϕd −K
′
k0
ϕ0 = 2

∂ui

∂ν
, on ∂D

(5.1.8)

We can rewrite the equations (5.1.8) in the form of

A

 ϕd

ϕ0

+R

 ϕd

ϕ0

 = 2


S−1
k0
ui|∂D

∂ui

∂ν

∣∣∣∣
∂D


with the matrix operators

A,R : H−1/2(∂D)×H−1/2(∂D)→ H−1/2(∂D)×H−1/2(∂D)

given by

A =

 I −I

I I

 and R =

 S−1
k0

[Skd − Sk0 ] 0

iηSkd +K ′kd −K ′k0

 .

Clearly, A has a bounded inverse (see Theorem 3.1.5). R is compact since it differs
from the operator K introduced in 3.1.5 only by the additional term iηSkd which
is compact from H−1/2(∂D) into H−1/2(∂D). Now the proof is completed as in
theorem 3.1.5. 2

5.1.1 Numerical Solution of The Direct Problem

For the numerical solution of (5.1.7) and the presentation of our inverse algorithm we
assume that the boundary curve ∂D is represented through regular parametrization
of the form

∂D := {z(t) : 0 ≤ t ≤ 2π}, (5.1.9)

where z : IR→ IR2 is 2π-periodic and twice continuously differentiable function such
that the orientation of ∂D is counter-clockwise. Using the parametrized single-layer
operator (3.2.9) and the parametrized normal derivative of single layer operator
(3.2.10) we obtain parametrized form of (5.1.7) given by

S̃kdψd − S̃k0ψ0 = 2ui ◦ z,

ψd + ψ0 + i(η ◦ z) S̃kdϕd + K̃ ′kdψd − K̃
′
k0
ψ0 =

2

|z′|
[z′]⊥ · gradui ◦ z,

(5.1.10)
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The difference between the parametrized system of integral equations (4.1.2) and

(5.1.10) is that i(η◦z) S̃kdϕd additionally appears in (5.1.10). Therefore, the numer-

ical solution of (5.1.10) requires dealing with additional term i(η ◦ z) S̃kdϕd. Since
this term has also a weakly kernel M(t, τ) which is defined in (4.1.3), we apply
quadrature rules based on trigonometric interpolation and the trapezoidal rule.

We recall that the far field pattern of the single-layer potential us with density
ψ0 is given by

u∞(x̂) = γ

∫ 2π

0

e−ik0 x̂·z(τ)|z′(τ)|ψ0(τ) dτ, x̂ ∈ Ω, (5.1.11)

where γ =
ei
π
4

√
8πk0

and ψ0 is the solution of the system of integral equations (5.1.10).

The following conductive functions are chosen in our experiments.

�

η1 = − sin4(0.5t) + i cos4(0.5t) (5.1.12)

�

η2 = −1.5− sin3 t+ i sin t (5.1.13)

�

η3 = −0.5e−(t−pi)2 + i(0.6 + 0.2 sin t) (5.1.14)

For a numerical example, we consider the scattering of a plane wave by a dielectric
cylinder with a non-convex kite-shaped cross section with boundary ∂D described
by the parametric representation

z(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π. (5.1.15)

Table 5.1 gives some approximate values for the far field pattern u∞(d) and
u∞(−d) in the forward direction d and the backward direction −d. The direction d
of the incident wave is d = (1, 0) and the wave numbers are k0 = 2.8 and kd = 1+1i,
and the conductive function η1 is chosen. Note that the exponential convergence is
clearly exhibited.
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Table 5.1: Numerical results for direct scattering problem

n Reu∞(d) Imu∞(d) Reu∞(−d) Imu∞(−d)

8 -2.5727739209 0.4381005402 -2.4613551693 0.6118414535
16 -2.6086999117 0.5099897666 -2.4645038927 0.5815194742
32 -2.6087198359 0.5099895695 -2.4645127478 0.5815282913
64 -2.6087198065 0.5099895747 -2.4645127414 0.5815282789

5.2 The Inverse Problem

The inverse scattering problem that we are concerned with is, given the shape of the
scatterer, to determine the conductive function η from a knowledge of the far field
pattern for one incident wave. The inverse problem is ill-posed since the mapping
taking conductive function η into the farfield pattern associated with the scattering
problem (5.1.1) and (5.1.2) is highly smoothing, that is, analytic function. We will
handle this issue of ill-posedness by using Tikhonov regularization. We note that
the far field pattern for one incident plane wave uniquely determine the conductive
function η. As a consequence of Rellich’s lemma (2.3), the far field pattern uniquely
determine us in IR2 \ D̄. Then from the first condition in (5.1.2) using Imkd > 0 we
observe that v is also uniquely determined in D. From (5.1.2) we can read off the
uniqueness of conductive function η. If we assume that ∂D is analytic since in this
case v can not vanish on open intervals of ∂D.

The inverse scattering prob-
lem is formulated as follows:
Given the far field pattern
u∞ for one incident field
ui, determine the conductive
function η of the dielectric
scatterer D.

We proceed describing an algorithm for approximately solving the inverse scatter-
ing problem by extending the methods proposed by Kress and Serranho[38], and for
the reconstruction of the conductive function η we implement the method proposed
by Akduman and Kress in [1]. For an conductive cylinder buried in a dielectric
cylinder was studied by Akduman, Kress, Yaman, and Yapar [2]. After introducing
the far field operator (3.2.5), from (3.1.20) and (5.1.11) we observe that the far field
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pattern for the solution to the scattering problem (5.1.1)–(5.1.2) is given by

u∞ = S∞ϕ0 (5.2.1)

in terms of the solution to (5.1.7). Therefore we can state the following theorem as
theoretical basis of our inverse algorithm.

Theorem 5.2.1 For a given incident field ui and a given far field pattern u∞,
assume that conductive function η and the densities ϕd and ϕ0 satisfy the system
of three integral equations

Skdϕd − Sk0ϕ0 = 2ui,

ϕd + ϕ0 + iηSkdϕd +K ′kdϕd −K
′
k0
ϕ0 = 2

∂ui

∂ν
,

S∞ϕ0 = u∞.

(5.2.2)

Then η solves the inverse problem.

Given the far field pattern u∞, the density ϕ0 is found by solving the third
equation in (5.2.2), i.e., the data equation

S∞ϕ0 = u∞. (5.2.3)

Since the operator S∞ : L2(∂D) → L2(Ω) is compact, it can not have bounded
inverse. Therefore the equation (5.2.3) is ill-posed. Moreover, it is severely ill-posed
due to analytical kernel of S∞. Hence the equation (5.2.3) requires stabilization for
this we use Tikhonov regularization, i.e., the ill-posed equation (5.2.3) is replaced
by

αϕ+ S∗∞S∞ϕ = S∗∞u∞, (5.2.4)

with some positive regularization parameter α and the adjoint operator S∗ : L2(Ω)→
L2(∂D) of S∞.
After finding the density ϕ0 from the (5.2.4) we can now find density ϕd from the
first equation of (5.2.2).

ϕd = S−1
kd

(2ui − Skdϕ0) (5.2.5)

Now it remains to find the conductive function η from the second equation of (5.2.2).

η = −i
2∂u

i

∂ν
− ϕ0 − ϕd −K ′kdϕd +K ′k0ϕ0

Skdϕd
(5.2.6)

The reconstruction of the conductive function from equation (5.2.6) will be sensitive
to errors due to the fact that it blows up in the vicinity of zeros of the Skdϕd. To
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obtain a more stable solution (see [1]), we express the unknown conductive function
in terms of some basis functions µj, j = 0,∓1,∓2, . . . ,∓N as a linear combination

η =
N∑

j=−N

ajµj on ∂D. (5.2.7)

A possible choice of basis functions consists of splines or trigonometric polynomials.
We satisfy second equation of (5.2.2) in a least square sense, i.e., we determine the
coefficients a−N , . . . , aN in (5.2.7) such that for a set of grid points x1, . . . , xM on
∂D the least square sum

M∑
m=1

|ϕd(xm)+ϕ0(xm)+i
N∑

j=−N

ajµj(xm)Skdϕd(xm)+K ′kdϕd(xm)−K ′k0ϕ0(xm)−∂u
i

∂ν
(xm)|2

(5.2.8)
is minimized.
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5.3 Numerical Result via Synthetic Data

For the numerical examples we choose the number of incident plane wave M . There
are six parameters which effect quality of reconstruction. They are given as follows;

� interior and exterior wave numbers are represented by kd and k0 respectively,

� degree of trigonometric polynomials is represented by J ,

� regularization parameter which uses for the boundary is represented by λ,

� regularization parameter which uses for the densities is represented by α,

� Sobolev norm for conductive function is represented by Hp,

� noise level is represented by δ. In order to obtain noisy data, random errors
are added point-wise to u∞,

ũ∞ = u∞ + δξ
||u∞||
|ξ|

(5.3.1)

where the random variable ξ ∈ C and {Reξ, Imξ} ∈ (0, 1)

In the following all examples, the green curve represents exact graph of conduc-
tive function η, the blue curve represents reconstruction that is obtained by noisy
data and the red curve represents reconstruction that is obtained by noiseless data.

In the figures 5.1, 5.2, 5.9 and 5.10, the obstacle is apple-shaped scatterer and
the conductive functions η1 and η2 given in (5.1.12) and (5.1.13) are reconstructed.
In the figures 5.3, 5.4, 5.11 and 5.12, the obstacle is kite-shaped and the conductive
functions η1 and η2 given in (5.1.12) and (5.1.13) are reconstructed. In the examples
5.5, 5.6, 5.13 and 5.14, the obstacle is peanut-shaped and the conductive functions
η1 and η3 given in (5.1.12) and (5.1.14) are reconstructed, respectively. In the
examples 5.7, 5.8, 5.15 and 5.16, the obstacle is rounded-shaped and the conductive
functions η1 and η2 given in (5.1.12), (5.1.13) and (5.1.14) are reconstructed. The
reconstructions are obtained with the parameters which is written above each pair
of the figures.
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k0 = 4.8, kd = 2 + 2.5i, J = 10 α = 10−7, λ = 8, H2, δ = 0.003
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Figure 5.1: Real part of η1 on left & Imaginary part of η1 on right, which are
obtained for one incident field, i.e., M=1

k0 = 4.8, kd = 2 + 2.5i, J = 10 α = 10−7, λ = 5, H2, δ = 0.003
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Figure 5.2: Real part of η2 on left & Imaginary part of η2 on right, which are
obtained for one incident field, i.e., M=1
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k0 = 4.8, kd = 2 + 2.5i, J = 10 α = 10−8, λ = 6, H2, δ = 0.002
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Figure 5.3: Real part of η1 on left & Imaginary part of η1 on right, which are
obtained for one incident field, i.e., M=1

k0 = 4.8, kd = 2 + 2.5i, J = 10 α = 10−8, λ = 1, H2, δ = 0.002
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Figure 5.4: Real part of η2 on left & Imaginary part of η2 on right, which are
obtained for one incident field, i.e., M=1
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k0 = 5, kd = 2 + 2.5i, J = 10 α = 10−7, λ = 5, H2, δ = 0.002
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Figure 5.5: Real part of η1 on left & Imaginary part of η1 on right, which are
obtained for one incident field, i.e., M=1

k0 = 5, kd = 2 + 2.5i, J = 10 α = 10−7, λ = 5, H2, δ = 0.002
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Figure 5.6: Real part of η3 on left & Imaginary part of η3 on right, which are
obtained for one incident field, i.e., M=1
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k0 = 5, kd = 2.5 + 2i, J = 10 α = 10−8, λ = 1.2, H2, δ = 0.001
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Figure 5.7: Real part of η2 on left & Imaginary part of η2 on right, which are
obtained for one incident field, i.e., M=1

k0 = 5, kd = 2.5 + 2i, J = 10 α = 10−8, λ = 1.2, H2, δ = 0.001
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Figure 5.8: Real part of η3 on left & Imaginary part of η3 on right, which are
obtained for one incident field, i.e., M=1
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k0 = 4, kd = 2 + 2i, J = 5 α = 10−7, λ = 1, H2, δ = 0.003
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Figure 5.9: Real part of η1 on left & Imaginary part of η1 on right, which are
obtained for one incident field, i.e., M=8

k0 = 4, kd = 2 + 2i, J = 5 α = 10−7, λ = 1, H2, δ = 0.003
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Figure 5.10: Real part of η2 on left & Imaginary part of η2 on right, which are
obtained for one incident field, i.e., M=8
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k0 = 2.8, kd = 1 + 1i, J = 5 α = 10−8, λ = 0.6, H2, δ = 0.003
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Figure 5.11: Real part of η1 on left & Imaginary part of η1 on right, which are
obtained for one incident field, i.e., M=8

k0 = 2.8, kd = 1 + 1i, J = 5 α = 10−8, λ = 0.6, H2, δ = 0.003
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Figure 5.12: Real part of η2 on left & Imaginary part of η2 on right, which are
obtained for one incident field, i.e., M=8
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k0 = 4.5, kd = 1.5 + 1.5i, J = 5 α = 10−7, λ = 0.8, H2, δ = 0.003
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Figure 5.13: Real part of η1 on left & Imaginary part of η1 on right, which are
obtained for one incident field, i.e., M=8

k0 = 4.5, kd = 1.5 + 1.5i, J = 5 α = 10−7, λ = 0.8, H2, δ = 0.003
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Figure 5.14: Real part of η3 on left & Imaginary part of η3 on right, which are
obtained for one indent field, i.e., M=8
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k0 = 3.5, kd = 2.5 + 2.5i, J = 5 α = 10−7, λ = 1.2, H2, δ = 0.003
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Figure 5.15: Real part of η1 on left & Imaginary part of η1 on right, which are
obtained for one indent field, i.e., M=8

k0 = 3.5, kd = 2.5 + 2.5i, J = 5 α = 10−7, λ = 1.2, H2, δ = 0.003
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Figure 5.16: Real part of η2 on left & Imaginary part of η2 on right, which are
obtained for one indent field, i.e., M=8
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To sum up, we first note that the quality of reconstruction depends significantly
on parameters. In order to obtain a reasonable reconstruction, one has to choose
appropriate parameters. We select these parameters by trial and error. Form all
examples we observe that quality of reconstructions is satisfactory. We also see that
hybrid method is sensitive to noise level for reconstruction a conductive function.
From the all examples, we see that the quality of the reconstruction increases when
we use 8 incident fields with distinct directions, i.e., M=8.
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Chapter 6

Discussion and Outlook

In this thesis, we extended three numerical methods in inverse obstacle scattering
from the case of impenetrable obstacles to the case of penetrable obstacles, that
is, dielectrics. These three methods are the Johansson and Sleeman method [25],
the simultaneous linearization method due to Ivanyshyn, Kress and Rundell [19,
21, 23, 32, 36] and a hybrid method due to Kress and Serranho [32, 37, 38, 45]. In
particular, we illustrated the numerical feasibility of these methods by a number
of examples. Moreover, we compared the numerical reconstructions obtained from
these methods with those from the Newton iteration method [15] for the boundary
to far field map. We also investigated interrelations between the Newton type
iterations and the above three methods. In addition, we gave a new uniqueness
result for recovering a disc from the far field pattern for scattering of one incident
plane wave.

All three methods are based on a system of three integral equations for the
parameterization of the unknown boundary of the scatterer and two densities on
the boundary. The three iterative procedures differ with respect to which of the
three equations are linearized and in which order. The Johansson and Sleeman
method is the simplest of the three methods and the most easy to implement since
it only linearizes the data equation. However, the quality of its reconstructions
is not as good as for the hybrid and simultaneous linearization method. In the
simultaneous linearization method all three equations are linearized with respect
to all three unknowns. From the three methods it yields the best reconstructions
and their quality compares well with the reconstructions obtained with the Newton
iterations for the boundary to far field map (see [15]) at decreased computational
cost because of a simpler form to the Fréchet derivatives that are involved. However,
from the three methods considered in this thesis it is the most costly computational
wise. The simultaneous linearization method can tolerate more noise than the
Johansson and Sleeman method.

The hybrid method linearizes only two equations and therefore is sort of in be-
tween both methods from its design and its performance both for accuracy, compu-
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tational cost and tolerance to noise. All three methods require good initial guesses
for the unknown boundary.

As is mentioned in this manuscript, there are no general uniqueness or even local
uniqueness results available for inverse transmission scattering problems for one or
a finite number of incident waves. In this thesis, a new uniqueness result is proved
for the inverse scattering from a dielectric disc for one incident wave.

The reconstructions obtained for experimental data are sufficiently good when
we used four incident fields. However, when we used only one incident direction
we could only obtain a reasonable reconstruction by the simultaneous linearization
method. This is because the simultaneous linearization tolerates higher noise level
then the other methods. Further research is required to make the methods also work
for more complex geometries such as apple-shaped or peanut-shaped scatterers via
experimental data.

In principle, our methods can be extended to the three-dimensional case and
to related problems such as multiple inclusions of dielectric cylinders or buried
dielectrics.

In the last problem of this thesis we considered a transmission problem with a
conductive boundary condition where the inverse problem was to reconstruct the
conductive function. One can also extend this inverse scattering problem to a simul-
taneous reconstruction of the conductive function and the shape of the scatterer.
Similar problems have recently been considered by Kress and Rundell [35] and Ser-
ranho [44] for impenetrable scatterers. Uniqueness in inverse obstacle scattering
with the conductive boundary condition was established by Gerlach and Kress [11].
However, again there is no uniqueness result for one or finitely many incident fields
for conductive transmission problem.
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