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Abstract

Visual object tracking uses cameras to track target objects in the environment, which has many

applications nowadays, such as intelligent surveillance, medical care, intelligent transportation and

human-machine interaction. However, it is still a challenging task because of background noises,

occlusions, illumination changes and fast motion. The goal of this dissertation is to improve

measurements in Bayesian filtering frameworks for visual object tracking as follows:

First, we combine multiple visual cues to improve the measurement for lane tracking. The

lane is modeled by a linear-parabolic shape, which is a trade-off between accuracy of the fit and

robustness with respect to image artifacts. In contrast to previous methods for linear-parabolic

lane tracking, we use not only the color and edge information, but also the gradient orientation

as visual cues. The lane tracking becomes a statistical reference problem when these local visual

cues are available. The probabilistic distribution of lane parameters are estimated from the visual

cues by multiple kernel density estimation, which is proved to be very robust to the image noise.

Furthermore we use this probabilistic distribution function as the measurement model of the parti-

tioned particle filter to update lane parameters. The experiments show that our novel lane tracking

framework has its strength in a new combination and improvement of various advanced methods.

Second, we use color invariant histograms to improve the measurement for rigid object track-

ing. Color histograms have become popular and important descriptors for object tracking, due to

their simplicity, effectiveness and efficiency. However, they suffer from illumination changes, e.g.,

the RGB color histogram is the most prevalently used histogram, but it has no invariance prop-

erties to illumination changes. This paper addresses this problem by: a) studying the invariance

properties and the distinctiveness of color histograms; b) evaluating the color histograms on large

benchmark datasets; c) studying the effects of the kernel mask which adds the spatial information

to the color histogram; d) investigating three state-of-the-art object tracking algorithms for evalua-

tions: the integral histogram based exhaustive search, the kernel based mean shift and the particle

filter. The results reveal that color histograms which have invariance properties can improve the

performance of object tracking. If no prior knowledge about the environment of the dataset is

available, the HSV, Spherical and nRGB histograms are recommended.



Third, we employ multiple sensors to improve the measurement for moving object tracking.

Tracking systems can be more accurate, complete and robust by using fused information from

multiple sensors. Therefore, we develop a new filter called central difference information filter

(CDIF) for nonlinear estimation and sensor fusion, which has fewer predefined parameters as

compared to the unscented information filter (UIF) which was introduced in the literature recently.

In addition, we introduce the square-root extensions of the CDIF and UIF to improve the numerical

stability, e.g., improved numerical accuracy, double order precision and preservation of symmetry.

In summary, we have proposed three methods to improve the measurement for robust object

tracking, i.e., multiple visual cues combination, color invariant histograms and multiple sensor

fusion. We believe that the new ideas and theoretical insights presented in this thesis, will open

new ways of research for future algorithms and applications.
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Harm-Friedrich Steinmetz, Simon Reich, Timo Nachstedt, Steffen Zenker, Dennis Goldschmidt,

Birk Urmersbach and our secretary Ursula Hahn-Wörgötter.

Last but not least, I wish to thank my family who have always supported me since the begin-

ning of my life. I would also like to thank all my friends for helping me maintain a life outside

work.



6



Contents

Abstract 3

Acknowledgements 5

1 Introduction 11

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Multiple Visual Cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Color Invariant Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Multiple Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Bayes Filters 19

2.1 General Form of Bayes Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Linear Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Central Difference Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Information Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Linear Information Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Extended Information Filter . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Unscented Information Filter . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Standard Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Partitioned Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



8 CONTENTS

3 Multiple Visual Cues for Lane Tracking 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Lane Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Local Image Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Lane Parameter Estimation by Kernel Density . . . . . . . . . . . . . . . . . . . 45

3.4.1 Line Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Parabolic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Linear-Parabolic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Partitioned Particle Filter for Lane Detection and Tracking . . . . . . . . . . . . 49

3.5.1 Multiple Lane Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 State Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.4 Initialization Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.5 Linear Part Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.6 Parabolic Part Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 PPF-Kernel vs. PPF-NoKernel . . . . . . . . . . . . . . . . . . . . . . 54

3.6.2 PPF-Kernel vs. PF-Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.3 The Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Color Invariant Histograms 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Illumination Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Diagonal-Offset Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Definition of Illumination Changes . . . . . . . . . . . . . . . . . . . . . 61

4.3 Color Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 Mean Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.3 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.4 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS 9

4.6.1 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.2 Mean Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.3 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Multiple Sensor Fusion 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Central Difference Information Filter . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Stirling’s Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Measurement Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.4 Global Information Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Square-Root Central Difference Information Filter . . . . . . . . . . . . . . . . . 79

5.3.1 SRCDIF for State Estimation . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 SRCDIF for Multiple Sensor Fusion . . . . . . . . . . . . . . . . . . . . 82

5.4 Square-Root Unscented Information Filter . . . . . . . . . . . . . . . . . . . . . 82

5.5 Experiment on Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Space-Vehicle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.2 Bearing-Only Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Experiment on Numerical Stability . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 General Discussion 91

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A Cholesky Factorization for Drawing Error Ellipses 97

B Inverse Perspective Mapping 99

Bibliography 101

Curriculum Vitae 111



10 CONTENTS



Chapter1
Introduction

1.1 Motivation

Visual object tracking is a process of continuously estimating the state of an object in an image

given prior states from previous frames [Zimmermann, 2008]. The state of an object can be po-

sition, velocity, shape, size and so on. This process is a very important step for video analysis

applications, such as motion recognition, automated surveillance, video indexing, traffic monitor-

ing and vehicle navigation [Yilmaz et al., 2006]. Object tracking can be difficult due to noise,

partial or full occlusions, complex object motion, and shape and illumination changes. In order to

deal with these difficulties, object tracking algorithms require robust measurements which can de-

scribe the appearance of objects correctly when the environmental conditions change. Therefore,

our main goal in this dissertation is to push forward advances in visual object tracking by focusing

on improving the measurement process. More precisely we investigate the use of multiple visual

cues, color invariant features and multiple sensors.

Multiple visual cues can give a more complete description of objects for tracking. For instance,

humans can visually distinguish between objects using features, such as color, texture, shape and

size. It can be difficult or even impossible to recognize an object using only one visual cue. For

example, two colored balls can be of the same size and shape but differ in their colors. If we only

know the size or shape of these balls, we can not distinguish them. Consequently, to track an object

in a complex environment, it is reasonable to use multiple visual cues to give a comprehensive

description of the target object.

Color invariant features can improve the performance of object tracking under various lighting

conditions, such conditions can be different light sources, shadows and highlights. Cameras are

passive sensors, sensing light from the environment. The same object under different lighting

conditions can have dissimilar appearances in images recorded by the same camera. In other words,

the appearance of the target object can change distinctly under these different lighting conditions
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during tracking. Therefore, color invariant features which are robust to lighting condition changes

are desired for object tracking.

Multiple sensors can provide complementary and redundant information that can contribute

to the tracking performance. Such sensors can consist of cameras only, forming a smart camera

network, or cameras combined with other sensors, e.g., acoustic, infrared and thermal sensors,

forming a multi-model sensor network [Aghajan and Cavallaro, 2009]. Such a sensor network can

offer multiple views, multiple properties of target objects and long distance tracking, whereas a

single camera gives a single visual view information only. As a result, object tracking can be

improved by fusing information from multiple sensors.

The measurements improved by multiple visual cues, color invariant features and multiple sen-

sors, can be used in a Bayesian filtering framework for object tracking. As mentioned, the goal

of object tracking is to estimate the state of objects, given some prior knowledge. Hence, object

tracking can be described as a statistical inference process. One of the most popular methods

in the literature accomplishing such a process is Bayesian filtering. Bayesian filtering for object

tracking comprises two steps: state prediction and measurement update. The state prediction uses

amotion model of the target object to predict possible states. In practice this motion model is often

unknown, but can be approximated by setting it to a random-walk [Isard and Blake, 1998], con-

stant velocity, constant acceleration [Yilmaz et al., 2006], etc. The measurement update employs

the measurement model to update the predicted state of the object. This measurement model is a

function that describes the mathematical relation between the state and the measurements. In this

way, Bayes filters encode both motion and measurement information of the object.

As we mentioned in the beginning of this section, this dissertation focuses on improvements

of the measurements in Bayesian filtering frameworks for object tracking. We demonstrate these

improvements in three scenarios. First, we focus on combining multiple visual cues to improve the

performance of a lane tracker which we choose as application. Second, we present an evaluation

framework for color invariant histograms. Third, we introduce a new Bayesian filtering framework

for sensor fusion which has better numerical characteristics than previous work. We will introduce

each framework in the following sections.

1.2 Multiple Visual Cues

In this section we introduce the combination of multiple visual cues for object tracking in detail.

Visual cues are representations of appearance features of objects in images. These visual cues can

be color, shape, texture, etc. Most modern cameras employ the RGB (red, green blue) color space

to represent colors in a digital image. The basic element in an image is the pixel, which is assigned

a digitalized RGB color vector. The color of a pixel, and the color difference between this pixel

and its surrounding pixels are basic visual cue elements, which are sometimes called local image

descriptors [Dahyot, 2009]. If such an image is interpreted as a 2D function, we can compute
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the gradient for each pixel, which is characterized by its direction and magnitude. Based on these

basic local image descriptors, we can compute higher level visual cues for objects. e.g., shape and

texture. For instance, Dahyot [2009] has proposed a method to estimate straight lines from local

image descriptors.

As we mentioned in Section 1.1, a single visual cue is usually not sufficient to distinguish

the target from the environment. That is why multiple visual cues are required to have sufficient

measurements of objects. This leads to the following questions:

• which visual cues should be used? First of all, visual cues should be representative, which

means that they should represent the main features of objects. Second, they should be dis-

tinguishable, which means they should represent features specific to the target object. Third,

visual cues should be computable, which means they can be estimated from basic visual

cue elements. Last but not the least, they should be robust against geometric distortions and

lighting changes, which means they should be constant or change slowly when geometric

distortions or lighting changes occur.

• How to estimate these visual cues from basic visual cue elements? One of the criteria to

choose visual cues is that it should be possible to compute visual cues from the basic visual

cue elements. Not all visual cues are computable using current techniques, due to the com-

plexity of algorithms, limited computational power, etc. For example, if the computation of

one visual cue takes a long time, it can not be used for applications that require real-time

implementations.

• How to combine these visual cues as measurements in a tracker? After selecting of a set of

appropriate cues, we must decide how to use them as measurements in a tracker. A tracker

is an algorithm that uses prior knowledge about an object, e.g., measurements of an object

from an initial frame, to find possible candidates of the object in the next frames. These

measurements are usually combinations of various visual cues. The tracker can compare

prior known measurements to current measurements. In this way, the target can be found in

the current frame by looking for the best match.

For testing and evaluating our new ideas concerning multiple visual cues, we require a repre-

sentative application. We chose the task of lane tracking. Our decision for doing so is based on the

following reasons: first, lane tracking is susceptible to geometric distortions, e.g., parallel lanes in

real world usually do not appear parallel in images. As a result, the visual cues in original images

require additional techniques to describe the parallel feature of lane markers. For instance, we can

warp original images to top-view images using inverse perspective mapping (IPM) as discussed in

Appendix B. In this way, the geometric distortion is removed and the lane markers look parallel to

each other in the resulting IPM images. Second, multiple visual cues are required for lane tracking.

Since the main features of lane markers are color and shape, we have to consider how to combine
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them in the algorithm. Third, lane tracking is a good example to show how to estimate visual cues

from basic visual cue elements. The lane shape is one of the main visual cues of lane markers.

Therefore, how to estimate the lane shape from basic visual cue elements becomes an important

issue.

To conclude this part, we have explained why using multiple visual cues as measurements can

improve object tracking. Three essential questions related to this have been introduced. Based on

these three questions, we motivated our decision to use the task of lane tracking in Chapter 3 as a

representative application.

1.3 Color Invariant Histograms

Color is an important cue in the distinction and recognition of objects. For example, we humans,

require color to segment the surface of objects, and then acquire higher level features, e.g., texture

and structure [Swain and Ballard, 1991]. However, the color of an object depends not only on

the object itself, e.g., its material, but also on the surrounding lighting conditions, e.g., the type

of light source and shadows. For instance, a person under a lamp usually appears different than

under sun light. Different lighting conditions can change the color of objects, and further influence

higher level color features. If we use these color features that are susceptible to color changes for

object tracking, the tracker might fail to track the target object when lighting condition changes.

Therefore, color features that are invariant to lighting condition changes are preferable for robust

object tracking.

One of the most commonly used color features is the color histogram. Given a discrete color

space, a color histogram counts how often each color occurs in the image [Swain and Ballard,

1991]. A discrete color space is similar to the Euclidean space, but each point in the color space rep-

resents a color, whereas each point in the Euclidean space represents a point in the world. The most

popular color space is the RGB color space, which includes three channels, i.e., red, green and blue.

A color in the RGB color space is defined as a mix of three components. There are also some other

color spaces, e.g., HSV (hue, saturation, and value), nRGB (normalized RGB), Opponent and

Spherical color space [Gevers and Smeulders, 1999; van de Weijer et al., 2006]. Since color his-

tograms are invariant to translation and rotation about the viewing axis [Swain and Ballard, 1991],

they have been widely used in the field of object tracking [Birchfield, 1998; Comaniciu et al., 2000;

Pérez et al., 2002; Khan et al., 2009].

To improve the performance of color histograms concerning illumination changes, the color

histograms that are color invariant are preferred [Funt and Finlayson, 1995]. The color invariant

property of color histogram depends on its color space. For instance, RGB color space is not

color invariant, so the RGB color histogram has no color invariant properties. On the other hand,

the nRGB color space is invariant to light intensity changes [van de Sande et al., 2010], such that

the nRGB color histogram is more preferable than the RGB color histogram in the case of light
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intensity change.

Our work is to evaluate the performance of color histograms against illumination changes for

object tracking. Most of previous works on color invariance are in the field of image classifica-

tion [van de Sande et al., 2010; Burghouts and Geusebroek, 2009]. In contrast, we focus on object

tracking. The goal is to analyze the color invariant properties of color histograms for the per-

formance of object tracking, and to compare these color histograms on benchmark datasets with

various lighting conditions.

1.4 Multiple Sensor Fusion

For some applications of visual object tracking, e.g., video surveillance and monitoring, the mea-

surements of objects from a single camera or cameras are not sufficient. First of all, it is not

possible for a single camera to see all areas at once [Collins et al., 2001]. For example, objects

sometimes can be occluded by buildings and trees. A single camera has difficulty to solve such a

problem because of its limited field of view. In order to expand the field of view, multiple cam-

eras which are installed in different places can be used. Furthermore, cameras have difficulties

to handle bad lighting conditions, e.g., bad weather or dark environment. This problem can be

solved by using other sensors that are not influenced by lighting conditions, e.g., laser or ther-

mal infrared sensors. Consequently, visual object tracking can benefit from measurements from

multiple sensors, which provide complementary and redundant information.

To fuse informations from multiple sensors, one of the most commonly used methods is

Bayesian filtering [Aghajan and Cavallaro, 2009]. As we mentioned in Chapter 1, Bayes filters

have two steps: prediction and update. The state is first predicted using the motion model of the

target object, then the information from multiple sensors are fused in the update step. Therefore,

the update step is very important, since it can affect the computational cost and the structure of

the sensor network. Durrant-Whyte [2001] recommended the information filter, which is one of

the Bayesian filters, because the update step in the information filter for multiple sensor fusion is

simply achieved by a linear summation of information contribution from each sensor node.

In practical terms, standard information filters are known to be susceptible to numerical errors

due to limited word-length arithmetics. As will be discussed in Chapter 2, information filters

use the information vector and information matrix to represent the Gaussian distribution of state

variables. In addition, the information matrix is the inverse of the covariance of state variables. In

order to derive this information matrix, the covariance of state variables has to be symmetric and

positive definite. However, the numerical errors introduced by limited word-length arithmetics

can destroy the symmetric and positive definite properties of the covariance, which can cause the

filter to diverge. To improve the numerical stability of information filters, a square-root of the

covariance can be used in information filters instead of full covariance. The square-root forms can

improve numerical accuracy, and yield twice the effective precision of the conventional approach
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[Kaminski et al., 1971; Arasaratnam and Haykin, 2008].

Our work improves the numerical stability of nonlinear information filters using square-root

forms. In the scenario of object tracking using multiple sensors, the motion model and measure-

ment model can be nonlinear. In this case, a nonlinear information filter is required, e.g., the

unscented information filter (UIF) [Lee, 2008a]. In this dissertation, we first introduce an alterna-

tive, nonlinear information filter, which is called central difference information filter (CDIF). We

show that the CDIF has fewer predefined parameters than the UIF. Furthermore, we introduce our

square-root extensions of UIF and CDIF, which have better numerical stability than the original

ones.

1.5 Contributions

The contributions of this thesis can be summarized as follows:

• Multiple kernel density for parabolic and linear-parabolic shape estimation

We propose a new nonparametric method for parabolic and linear-parabolic shape estima-

tion using multiple kernel density. Dahyot [2009] has utilized multiple kernel density to

estimate straight lines from local image descriptors, i.e., gradient magnitude, gradient direc-

tion and alignment. Here we extend her work to the parabolic and linear-parabolic cases.

In contrast to straight lines, the gradient angle of parabolic shape is not constant, so addi-

tional numerical methods are required to derive the probabilistic distribution of parabolic

and linear-parabolic lane parameters. This work has been published in [Liu et al., 2011a].

• Partitioned particle filter for linear-parabolic lane tracking

For lane tracking, we utilize the partitioned particle filter with a novel measurement func-

tion derived from multiple kernel density estimation. Previous work for linear-parabolic

lane tracking usually employs least squares estimation [Jung and Kelber, 2004, 2005] or

Kalman filter [Lim et al., 2009]. The least squares method is sensitive to edge noise, and

Kalman filter maintains only one hypothesis which leads to poor performance in a cluttered

environment [Liu et al., 2010, 2011a]. In contrast, the partitioned particle filter maintains

multiple hypotheses, and needs less particles for high dimensional states than the standard

particle filter [MacCormick and Blake, 2000]. Furthermore, the measurement model of the

partitioned particle filter can be defined as any function that describes how well particles fit

visual cues, e.g., the probabilistic distribution of lane parameters modeled by the multiple

kernel density estimation. Therefore, here we present a new framework for linear-parabolic

lane tracking using a partitioned particle filter. This work has been published in [Liu et al.,

2010, 2011a].

• Evaluating color invariant histograms for object tracking
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Color histograms have been widely used for visual object tracking, due to their simplicity

and efficiency. However, color histograms are susceptible to illumination changes. As far as

we know, none of the previous work considers color invariant properties of color histograms

in the scenario of object tracking. Recently, van de Sande et al. [2010] have analyzed the

color invariant properties of color descriptors for object and scene recognition. In this disser-

tation, we extend their work to the field of object tracking. The robustness and performance

of color histograms for object tracking are evaluated on several open-access data sets.

• Central difference information filter

We propose an alternative to the unscented information filter (UIF) for sensor fusion, which

we call central difference information filter (CDIF). Recently, Lee [2008a] proposed the

UIF for nonlinear estimation and sensor fusion, which employs a number of deterministic

sigma-points to calculate the mean and covariance of a random variable which undergoes

a nonlinear transformation. These sigma points are generated by the unscented transform

in the UIF. In contrast, our CDIF employs Stirling’s interpolation instead of the unscented

transform to generate sigma points which has fewer predefined parameters. This work has

been published in [Liu et al., 2011b].

• Square-root sigma point information filters

The UIF and CDIF require the Cholesky factor of the covariance to calculate the sigma

points, so the covariance must be positive definite. Therefore the numerical stability be-

comes an important issue in the UIF and CDIF. In order to improve the numerical stability,

we introduce the square-root extensions of the UIF and CDIF. These square-root versions

have better numerical properties than the original ones, e.g., improved numerical accuracy,

double order precision and preservation of symmetry. We also show that the square-root un-

scented information filter (SRUIF) might lose the positive-definiteness due to the negative

Cholesky update, whereas the square-root central difference information filter (SRCDIF)

has only positive Cholesky updates. As a result, the SRCDIF is preferable to the SRUIF

concerning numerical stability. This work has been published in [Liu et al., 2012].

1.6 Thesis Outline

We introduce the following Bayes filters in Chapter 2 as far as relevant for this thesis: Kalman

filters, information filters and particle filters.

In chapter 3, we introduce our method for combining multiple visual cues in the application

of lane tracking. We present how to use multiple kernel density to estimate the probabilistic dis-

tribution of lane parameters, i.e., straight line, parabolic and linear-parabolic shapes. Furthermore,

we introduce a new lane tracking framework using a partitioned particle filter. The measurement
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model of this partitioned particle filter is derived from the probabilistic distribution function of

lane parameters.

Chapter 4 presents our evaluation framework for the color invariant histogram based object

tracking. We first analyze color invariant properties of various color spaces and corresponding

color histograms, then compare the performance of the color histograms for object tracking. Three

tracking algorithms are utilized for the evaluation: exhaustive search, mean shift and particle filter.

Chapter 5 describes the sigma-point information filters and their square-root extensions for

nonlinear estimation and sensor fusion in the scenario of object tracking. We show that the CDIF

uses less parameters than the UIF, but achieves a similar performance. Furthermore, the square-

root extensions of the CDIF and UIF are derived which have better numerical characteristics. Fi-

nally, two classical simulation experiments are used to evaluate the proposed filters concerning

sensor fusion and numerical stability.

Chapter 6 concludes our approaches and discusses our key results. The advantages of the

proposed algorithms along with their limitations are discussed. We also identify some directions

for future work.



Chapter2
Bayes Filters

Since the main hypothesis of this dissertation is to improve the measurements in the Bayesian

filtering framework for visual object tracking, we would like to introduce the theoretical back-

ground of Bayes filters in advance. Also, in this chapter, the advantages and disadvantages of

three commonly used Bayes filters are analyzed and compared in detail.

In the literature, Bayes filters have been widely used for object tracking, due to their robust-

ness and efficiency in dealing with the uncertainty in the tracking system. This uncertainty can

be modeled by a probability function, e.g., Gaussian distribution. For instance, the position of

an object at a discrete time is uncertain, then the probability distribution of the position can be

modeled by a Gaussian distribution. One of the most famous Bayes filters is the Kalman filter,

which was introduced by Kalman [1960]. The Kalman filter has one main assumption concerning

the uncertainty in the system, i.e., the uncertainty of variables in the tracking system has a Gaus-

sian distribution. In the Kalman filter, the moments (mean and covariance) are used to represent

this Gaussian distribution. In contrast, the information filter, which is also called inverse covari-

ance filter [Maybeck, 1979], employs information vector and information matrix (inverse of the

covariance) to represent the Gaussian distribution. The differences in representing of Gaussian

distributions, will lead to different algorithmic structures, which will be discussed in following

sections. However, the distribution of the uncertainty in the tracking system sometimes is not the

Gaussian distribution. In this case, a particle filter can be utilized, since the particle filter uses a

number of particles to approximate the real probability distribution, which can have any profile

[Arulampalam et al., 2002]. These three Bayes filters are popularly used for object tracking tasks,

and they have various extensions to deal with the nonlinear, ill conditions, numerical stabilities,

etc.

In Section 2.1, we start with an introduction of the basic idea of Bayesian filtering. Next we

show the standard Kalman filter and its extensions in Section 2.2. Then the information filters are

discussed in Section 2.3. Finally, we present the particle filters in Section 2.4.
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2.1 General Form of Bayes Filters

The goal of Bayes filters is to estimate the current system state given prior knowledge, i.e., prior

control inputs and measurements. For instance, the system state of a simple robot system can

be the position and velocity of the robot. The control inputs can be the velocity, e.g., setting

the velocity to be 5cm per second in the actuator. The measurements are from the sensors, e.g.,

cameras and lasers, which describe a momentary state of the environment [Thrun et al., 2005].

For a certain estimation problem, we first need to define the system state vector x that includes

one or more variables of the system, e.g., position coordinates, velocities and acceleration. Then

we can estimate the probability distribution of the current state xt at time t using prior control

inputs u1:t and measurements z1:t:

Goal : prob(xt) = p(xt|u1:t, z1:t), (2.1)

where prob is the abbreviation for the posterior distribution, and 1 : t means the discrete time

from beginning until now. Here, the posterior prob(xt) incorporates the current measurement zt.

However, it has been proved to be useful to calculate the posterior before incorporating zt:

Prediction : ˆprob(xt) = p(xt|u1:t, z1:t−1). (2.2)

This process is called prediction, which implies that we first derive a predicted state by considering

the current control input ut. The next step is to calculate the prob(xt) from ˆprob(xt) by incorpo-

rating the current measurement zt using the Bayes rule, which is referred to as the measurement

update:

Measurement update : prob(xt) = η p(zt|xt, z1:t−1, u1:t) ˆprob(xt), (2.3)

where η is a constant normalizer, which ensures 0 ≤ prob(xt) ≤ 1. In this way, the whole process of

the Bayesian filtering is separated into two individual steps: prediction and measurement update.

In practice, it is often impossible and not necessary to keep all the prior information to estimate

the current state. To reduce the complexity of the estimation, we can assume that the current state

is a complete summary of the part, which is known as theMarkov assumption [Thrun et al., 2005].

Following this assumption, the prediction step in Eq. (2.2) and measurement update step in Eq.

(2.3) can be rewritten as:

Prediction : ˆprob(xt) = p(xt|z1:t−1, u1:t)

=

∫

p(xt, xt−1|z1:t−1, u1:t) dxt−1

=

∫

p(xt|xt−1, z1:t−1, u1:t) p(xt−1|z1:t−1, u1:t) dxt−1

=

∫

p(xt|xt−1, ut) prob(xt−1) dxt−1, (2.4)
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Measurment update : prob(xt) = η p(zt|xt, z1:t−1, u1:t) ˆprob(xt)

= η p(zt|xt) ˆprob(xt). (2.5)

The Eq. (2.4) and Eq. (2.5) shape up the fundamental of Bayes filters. A remaining question

is how to represent the probabilities in these two equations. As we mentioned at the beginning of

this chapter, a commonly used distribution is the Gaussian distribution. Both the Kalman filter and

information filter use the Gaussian distribution. In contrast, for other cases where the Gaussian

distribution can not be employed, a particle filter can be used.

2.2 Kalman Filters

The Kalman filter introduced by Kalman [1960], is one of the most used Bayes filters for tracking.

A number of variants of the Kalman filter has been developed to handle different scenarios. The

Kalman filters represent the probability distribution of the state by the mean µt and the covari-

ance Pt of the Gaussian distribution. The recursive estimation of the system state becomes the

propagation of the moments.

2.2.1 Linear Kalman Filter

As we mentioned in the last section, the Bayes filtering has two steps: prediction and measurement

update as shown in Eq. (2.4) and Eq. (2.5). For prediction, we require a state transition model (also

called motion model) which describes the state transition from the last state xt−1 to the current state

xt. For measurement update, we also require a measurement model which describes the mathemat-

ical relation between the current state xt and current measurement zt. For the linear Kalman filter

(LKF), both the state transition model and the measurement model are linear functions, which can

be presented as

Transition model : xt = Axt−1 + But + ǫt, (2.6)

Measurement model : zt = Cxt + δt, (2.7)

where ǫt and δt are Gaussian noises: ǫt ∼ N(0,Rt) and δt ∼ N(0,Qt), and A, B and C are matrices.

The state transition probability p(xt|xt−1, ut) in Eq. (2.4) and the measurement probability

p(zt|xt) in Eq. (2.5) can be calculated from Eq. (2.6) and Eq. (2.7) respectively:

p(xt|xt−1, ut) = N(Axt−1 + But,Rt), (2.8)

p(zt|xt) = N(Cxt,Qt). (2.9)

Then the predicted posterior ˆprob(xt) can be computed by substituting Eq. (2.8) into Eq. (2.4)

and then integrating on xt−1. Furthermore, the final estimated distribution prob(xt) is derived by
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substituting Eq. (2.9) into Eq. (2.5) and then timing the predicted posterior ˆprob(xt).

The whole algorithm for the LKF is shown in Algorithm 1. Because the LKF is a well studied

algorithm, we do not present the mathematical derivations of the algorithm. A good derivation of

the LKF can be found in [Thrun et al., 2005].

Algorithm 1 Linear Kalman filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

.

• For t = 1, · · · ,∞:

1. Prediction:

µ̂t = Aµt−1 + But (2.10)

P̂t = APt−1A
T + Rt (2.11)

2. Measurement update:

Kt = P̂tC
T (CP̂tC

T + Qt)
−1 (2.12)

µt = µ̂t + Kt(zt −Cµ̂t) (2.13)

Pt = (I − KtC)P̂t (2.14)

To gain an intuition for the mechanism of the Kalman filter, we give an example which tackles

the so-called robot localization problem. A robot at time t has the state Xt = (xt, vt, αt)
T , where

xt, vt and αt are the robot’s position, speed and acceleration respectively. The measurement Zt

measures the position. The state transition model and measurement model are:

Transition model : Xt = AXt−1 + ǫt (2.15)

Measurement model : Zt = CXt + δt (2.16)

where A =



























1 ∆t 0.5∆t2

0 1 ∆t

0 0 1



























, C = [1, 0, 0]T , and ǫt ∼ N(0,R) and δt ∼ N(0,Q) are Gaussian

noise. The corresponding covariances are: R =



























σ2x 0 0

0 σ2v 0

0 0 σ2α



























and Q = σ2m.

In the simulation, we set ∆t = 1, σ2x = σ
2
v = σ

2
α = 1 and σ2m = 10. The robot has only an

observation Zt = 5 at t = 5, otherwise there is no observable data. The estimated robot’s position x

and speed v, and their error ellipses are shown in Fig. 2.1. The error ellipses are drawn by using the

Cholesky factorization, which is introduced in Appendix A. Since there are no measurement data

available at the first four time steps, we can see that the covariance of (x, v) becomes larger from

t = 1 to t = 4, and the mean does not change very much. However, when the robot receives the
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measurement at time t = 5, the covariance becomes smaller (blue ellipse), and the mean is close

to the true value. Afterwards, the robot observes nothing at time t = 6 from the environment, so

the covariance becomes larger again, which means the uncertain of the robot’s position and speed

increases. This experiment illustrates that the prediction step in the Kalman filter always increases

the uncertain of the system state. On the other hand, this uncertain will be decreased when the

measurement is available.
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Figure 2.1: The error ellipses of the position x and speed v of the robot from t = 1 to t = 7. The

measurement data is only available at t = 5.

2.2.2 Extended Kalman Filter

The LKF assumes that the models of state transition and measurement are linear. However, this is

not true in most practical cases. In this section, we introduce a nonlinear version of the Kalman

filter, which is called extended Kalman filter (EKF). The nonlinear state transition model and

measurement model are defined as:

Transition model : xt = g(xt−1, ut) + ǫt, (2.17)

Measurement model : zt = h(xt) + δt, (2.18)

where g and h are nonlinear functions, and ǫt and δt are defined in Eq. (2.6) and Eq. (2.7).

The main idea behind the extended Kalman filter is the linearization of nonlinear functions
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using first order Taylor expansion:

g(xt−1, ut) ≈ g(µt−1, ut) +Gt(xt−1 − µt−1) (2.19)

h(xt−1) ≈ h(µ̂t) + Ht(xt − µ̂t) (2.20)

where Gt =
∂g(xt−1,ut)

∂xt−1
|(xt−1=µt−1) and Ht =

∂h(xt)
∂xt
|(xt=µ̂t) are the first order partial derivatives. The state

transition probability p(xt|ut, xt−1) and measurement probability p(zt|xt) can be derived using this

approximation:

p(xt|ut, xt−1) ≈ det(2πRt)
− 1

2 exp{−1
2
[xt − g(µt−1, ut) −Gt(xt−1 − µt−1)]T

R−1t [xt − g(µt−1, ut) −Gt(xt−1 − µt−1)]} (2.21)

p(zt|xt) ≈ det(2πQt)
− 1

2 exp{−1
2
[zt − h(µ̂t) − Ht(xt − µ̂t)]T

Q−1t [zt − h(µ̂t) − Ht(xt − µ̂t)]}, (2.22)

where det is determinant. The algorithm of the EKF is derived by substituting p(xt|ut, xt−1) and
p(zt|xt) into Eq. (2.4) and Eq. (2.5) respectively, as shown in Algorithm 2.

Algorithm 2 Extended Kalman filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

.

• For t = 1, · · · ,∞:

1. Prediction:

µ̂t = g(µt−1, ut) (2.23)

P̂t = GtPt−1G
T
t + Rt (2.24)

2. Measurement update:

Kt = P̂tH
T
t (HtP̂tH

T
t + Qt)

−1 (2.25)

µt = µ̂t + Kt(zt − h(µ̂t)) (2.26)

Pt = (I − KtHt)P̂t (2.27)

2.2.3 Unscented Kalman Filter

The EKF linearizes the nonlinear functions by the first order Taylor expansion, which can cause

large estimation errors when the system is highly nonlinear. To overcome this limitation, [Julier et al.,

1995] introduced the unscented transform to the framework of the Kalman filter, which is called

the unscented Kalman filter (UKF). In the UKF, the unscented transform is used instead of Taylor

series to linearize the nonlinear functions, which can accurate up the second order. Therefore, the
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UKF can achieve more accurate result than the first order EKF. In this section, we first present the

idea of the unscented transform, then the algorithm of UKF is derived.

The unscented transform propagates a set of sigma points through the nonlinear transition

function g and measurement function h, then the moments (mean and covariance) of the Gaussian

distribution p(xt|xt−1, ut) and p(zt|xt) can be derived from these sigma points. It is built on the prin-

ciple that it is easier to approximate a probability distribution than an arbitrary nonlinear function

[Van der Merwe, 2004].

For a nonlinear model y = g(x) where x is a L dimensional variable and meets x ∼ N(µ, Px), a

set of 2L + 1 weighted sigma points are deterministically chosen according to the following rule:

Xi =



































µ, i = 0

µ + (
√
(λ + L)Px)i, i = 1, · · · , L

µ − (
√
(λ + L)Px)i, i = L + 1, · · · , 2L

(2.28)

where λ = α2(L + κ) − L, α and κ are scaling parameters that determine how far the sigma points

spread from the mean µ [Van der Merwe, 2004; Thrun et al., 2005], and i denotes the ith column

of the square root of the prior covariance matrix Px. An efficient way to calculate the square root

of a positive-define matrix is the Cholesky factorization.

These sigma points Xi are then propagated through the nonlinear system function g:

Yi = g(Xi). (2.29)

The mean µy, covariance Py and cross-covariance Pxy of the variable y are extracted from the

output sigma points Yi as follows:

µy =

2L
∑

i=0

wm
i Yi, (2.30)

Py =

2L
∑

i=0

wc
i (Yi − µy)(Yi − µy)T , (2.31)

Pxy =

2L
∑

i=0

wc
i (Xi − µ)(Yi − µy)T , (2.32)

where the weights wm
i
and wc

i
are defined as follows:

wm
0 =

λ

L + λ
,

wc
0 =

λ

L + λ
+ (1 − α2 + β),

wm
i = wc

i =
1

2(L + λ)
i = 1, · · · , 2L, (2.33)
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where β, κ and α are constant parameters. As discussed by Van der Merwe [2004], the optimal

value β for a Gaussian distribution is 2. In addition, the positive semi-definiteness of the covariance

matrix requires κ ≥ 0 and 0 ≤ α ≥ 1 .

Finally, the UKF is derived using the unscented transform on the state transition function g

and measurement function h, as shown in Algorithm 3 where γ =
√
λ + L in Eq. 2.34 and Eq.

2.38 for simplifying the algorithm.

In Algorithm 3, we use the unscented transform twice to generate sigma points, since the state

transition and measurement update have different additional Gaussian noise. If we use an aug-

mented state vector to include the additional noise information, two operations can be simplified

to one. The augmented state vector is defined as

xat =



























xt

ǫt

δt



























, (2.45)

where xt ∼ N(µt, Pt), ǫt ∼ N(µrt ,Rt) and δt ∼ N(µ
q
t ,Qt). The augmented mean and covariance of

xat are

µat =



























µt

µrt

µ
q
t



























, Pa
t =



























Pt 0 0

0 Rt 0

0 0 Qt



























. (2.46)

We substitute µat and Pa
t into the UKF algorithm to derive the augmented version, as shown in

Algorithm 4 where the augmented sigma point Xa
t = [Xx

t ,Xr
t ,X

q
t ]

T .

The augmented UKF and the non-augmented UKF are identical only if L + κ = constant

[Wu et al., 2005]. The augmented version can capture the odd-order moment information, such

that it can give a better estimation result than the non-augmented version for nonlinear problems.

However, the augmented version has a larger state dimension than the non-augmented one, so it

requires more computation to propagate the sigma points.

2.2.4 Central Difference Kalman Filter

The UKF uses the unscented transform to handle nonlinear functions. Another option to linearize

the nonlinear functions is to use the Stirling’s interpolation. If we use the Stirling’s interpolation

instead of the unscented transform in the Algorithm 3, a new filter can be derived, which is called

the central difference Kalman filter (CDKF) [Ito and Xiong, 2000].

Similar to the unscented transform, the 2L + 1 prior sigma points used in the Stirling’s inter-

polation are given by the prior mean µ plus or minus the columns of the scaled square root of the
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Algorithm 3 Unscented Kalman filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

.

• For t = 1, · · · ,∞:

1. Generate sigma points for prediction:

Xt−1 = [µt−1 µt−1 + γ
√

Pt−1 µt−1 − γ
√

Pt−1] (2.34)

2. Prediction:

Xt|t−1 = g(ut,Xt−1) (2.35)

µ̂t =

2L
∑

i=0

wm
i Xi,t|t−1 (2.36)

P̂t =

2L
∑

i=0

wc
i (Xi,t|t−1 − µ̂t)(Xi,t|t−1 − µ̂t)T + Rt (2.37)

3. Generate sigma points for measurement update:

X̂t =

[

µ̂t µ̂t + γ

√

P̂t µ̂t − γ
√

P̂t

]

(2.38)

4. Measurement update equations:

Ẑt = h(X̂t) (2.39)

P̂zt =

2L
∑

i=0

wc
i (Ẑi,t − ẑt)(Ẑi,t − ẑt)T + Qt (2.40)

P̂xtzt =

2L
∑

i=0

wc
i (X̂i,t − µ̂t)(Ẑi,t − ẑt)T (2.41)

Kt = P̂xtzt P̂
−1
zt

(2.42)

µt = µ̂t + Kt(zt − ẑt) (2.43)

Pt = P̂t − KtP̂ztK
T
t (2.44)
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Algorithm 4 Augmented unscented Kalman filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

.

• For t = 1, · · · ,∞:

1. Generate sigma points for prediction and measurement update:

µat−1 =





















µt−1
µr
t−1
µ
q

t−1





















, Pa
t−1 =





















Pt−1 0 0

0 Rt−1 0

0 0 Qt−1





















(2.47)

Xa
t−1 =

[

µat−1 µat−1 + γ
√

Pa
t−1 µat−1 − γ

√

Pa
t−1

]

(2.48)

2. Prediction:

Xx
t|t−1 = g(ut,Xx

t−1,Xr
t−1) (2.49)

µ̂t =

2L
∑

i=0

wm
i Xx

i,t|t−1 (2.50)

P̂t =

2L
∑

i=0

wc
i (Xx

i,t|t−1 − µ̂t)(X
x
i,t|t−1 − µ̂t)

T (2.51)

3. Measurement update equations:

Ẑt = h(Xx
t|t−1,X

q

t−1) (2.52)

ẑt =

2L
∑

i=0

wm
i Ẑi,t (2.53)

P̂zt =

2L
∑

i=0

wc
i (Ẑi,t − ẑt)(Ẑi,t − ẑt)T (2.54)

P̂xtzt =

2L
∑

i=0

wc
i (Xx

i,t|t−1 − µ̂t)(Ẑi,t − ẑt)T (2.55)

Kt = P̂xtzt P̂
−1
zt

(2.56)

µt = µ̂t + Kt(zt − ẑt) (2.57)

Pt = P̂t − KtP̂ztK
T
t (2.58)
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prior covariance matrix Px:

Xi =



































µ, i = 0

µ + (h
√
Px)i, i = 1, · · · , L

µ − (h
√
Px)i, i = L + 1, · · · , 2L,

(2.59)

where h is a scaling parameter and L is the dimension of the state vector. The subscript i indicates

the ith column of the matrix. A set of the posterior sigma points can be derived by propagating

these prior sigma points through the nonlinear system function g: Yi = g(Xi). Furthermore, the

estimations of mean ȳ, covariance Py and cross-covariance Pxy are obtained as follows:

ȳ =

2L
∑

i=0

w
(m)

i
Yi, (2.60)

Pxy =

√

w
(c1)

1
Px(Y1:L − YL+1:2L)

T , (2.61)

Py =

L
∑

i=1

w
(c1)

i
(Yi − Yi+L)(Yi − Yi+L)

T

+

L
∑

i=1

w
(c2)

i
(Yi +Yi+L − 2Y0)(Yi +Yi+L − 2Y0)

T . (2.62)

The corresponding weights for the mean and covariance are defined as:

w
(m)

0
= h2−L

h2

w
(m)

i
= 1

2h2 ,

w
(c1)

i
= 1

4h2 ,

w
(c2)

i
= h2−1

4h4 , i = 1, · · · , 2L.

(2.63)

As proved in [Van der Merwe, 2004], if the random variables obey a Gaussian distribution, the

optimal value of h is
√
3. In addition, the Stirling’s interpolation only depends on the interval size

h, in contrast to three parameters (α, β, κ) required in the unscented transform. This makes the

Stirling’s method simpler and easier to adjust.

By employing the Stirling interpolation instead of the unscented transform in Algorithm 3, we

can further derive the central difference Kalman filter as shown in Algorithm 5. The augmented

version also can be derived following the ideas of Algorithm 4, as shown in Van der Merwe [2004].
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Algorithm 5 Central difference Kalman filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

.

• For t = 1, · · · ,∞:

1. Generate sigma points for prediction:

Xt−1 =
[

µt−1 µt−1 + h
√

Pt−1 µt−1 − h
√

Pt−1
]

(2.64)

2. Prediction:

Xt|t−1 = g(ut,Xt−1) (2.65)

µ̂t =

2l
∑

i=0

wm
i Xi,t|t−1 (2.66)

P̂t =

l
∑

i=1

w
(c1)

i
(Xi−Xi+l)(Xi−Xi+l)

t+

l
∑

i=1

w
(c2)

i
(Xi+Xi+l−2X0)(Xi+Xi+l−2X0)

t+ rt (2.67)

3. Generate sigma points for measurement update:

X̂t =

[

µ̂t µ̂t + h

√

P̂t µ̂t − h
√

P̂t

]

(2.68)

4. Measurement update equations:

Ẑt = h(X̂t) (2.69)

ẑt =

2L
∑

i=0

wm
i Ẑi,t (2.70)

P̂zt =

L
∑

i=1

w
(c1)

i
(Ẑi−Ẑi+L)(Ẑi−Ẑi+L)

T +

L
∑

i=1

w
(c2)

i
(Ẑi+Ẑi+L−2Ẑ0)(Ẑi+Ẑi+L−2Ẑ0)

T +Qt

(2.71)

P̂xtzt =

√

w
(c1)

1
Px(Ẑ1:L − ẐL+1:2L)

T (2.72)

Kt = P̂xtzt P̂
−1
zt

(2.73)

µt = µ̂t + Kt(zt − ẑt) (2.74)

Pt = P̂t − KtP̂ztK
T
t (2.75)
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2.3 Information Filters

In the framework of Kalman filters, the Gaussian distribution is represented by the moments (mean

and covariance). Another way to represent the Gaussian distribution is to use the information

vector and information matrix. Here the information matrix is an inverse of the covariance, and

the information vector is equal to the product of the information matrix and the mean. If we use

information matrix and information vector to replace the covariance and mean in the algorithm

of Kalman filter, a new filter can be derived, which is referred to information filter or inverse

covariance filter [Fraser, 1967].

The information vector and information matrix are used in the information filter to represent a

Gaussian distribution. This representation is also named canonical parameterization [Thrun et al.,

2005]. We can derive the canonical parameters from the moments:

In f ormation matrix : Y = P−1, (2.76)

In f ormation vector : y = Yµ, (2.77)

where Y is the information matrix and y is the information vector. We can see that the information

matrix and the information vector are a complete parameterization of a Gaussian distribution.

More over, the moments can also be derived from canonical parameters:

P = Y−1, (2.78)

µ = Py. (2.79)

The difference in the representation of multivariate Gaussian distributions leads to a different up-

date procedure. In the following sections, we will review the state of the art of the information

filters, and analyze the difference between the information filter and the Kalman filter.

2.3.1 Linear Information Filter

The linear information filter (LIF) assumes that the state transition model and measurement model

are linear as defined in Eq. (2.6) and Eq. (2.7). The algorithm of LIF is obtained by simply

replacing the moments by the canonical forms in the linear Kalman filter (LKF) using Eq. (2.78)

and Eq. (2.79) as shown in Algorithm 6.

By comparing the LIF algorithm in Algorithm 6 and the LKF algorithm in Algorithm 1, we

see that the LIF needs more computational cost than the LKF in the predict part, since it requires

an inverse of a L × L matrix, where L is the dimension of the state vector. By contrast, the LKF

needs more computational cost than the LIF in the update part, since the calculation of the Kalman

gain K requires the matrix inverse.

The measurement update part of the LIF in Algorithm 6 is additive, which is useful for the
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multiple sensor fusion, since the predicted information vector and information matrix can be up-

dated by simply summing the information contributions (CTQ−1t C and CTQ−1t zt) from each of the

individual sensors [Durrant-Whyte, 2001].

Algorithm 6 Linear information filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

, Y0 = (P0)
−1, y0 = Y0µ0.

• For t = 1, · · · ,∞:

1. Prediction:

Ŷt = (AY−1t−1A
T + Rt)

−1 (2.80)

ŷt = Ŷt(AY
−1
t−1yt−1 + But) (2.81)

2. Measurement update:

Yt = CTQ−1t C + Ŷt (2.82)

yt = CTQ−1t zt + ŷt (2.83)

2.3.2 Extended Information Filter

To deal with the nonlinear state transition model and measurement model, we need to linearize

the nonlinear functions in the information filter. If we use the Taylor series for linearization, a

new filter can be derived, which is called extended information filter (EIF) as shown in Algorithm

7. It replaces the moments by the canonical forms in the EKF algorithm [Maybeck, 1979]. The

nonlinear models are the same as Eq. (2.17) and Eq. (2.18).

2.3.3 Unscented Information Filter

We have shown that the unscented transform can also be used for linearization instead of Taylor

series in Section 2.2.3. Therefore, a new nonlinear information filter can be derived by using

unscented transform for linearization, which is the unscented information filter (UIF) developed

by [Lee, 2008a; Kim et al., 2008] as shown in Algorithm 8.

2.4 Particle Filters

Since both the Kalman filters and information filters have the same assumption on the probability

distribution of the state variables, i.e., Gaussian distribution, they can not work well when the

system has non-Gaussian noises. To solve this challenging problem, a number of samples can

be used to approximate this probability distribution. Then these samples are propagated through

the state transition model and measurement model which can be linear or nonlinear. In this way,
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Algorithm 7 Extended information filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

, Y0 = (P0)
−1, y0 = Y0µ0.

• For t = 1, · · · ,∞:

1. Prediction:

µt−1 = Y−1t−1yt−1 (2.84)

µ̂t = g(µt−1, ut) (2.85)

Ŷt = (GtY
−1
t−1G

T
t + Rt)

−1 (2.86)

ŷt = Ŷtµ̂t (2.87)

2. Measurement update:

Yt = Ŷt + HT
t Q
−1
t Ht (2.88)

yt = ŷt + HT
t Q
−1
t (zt − h(µ̂t) + Htµ̂t) (2.89)

it can handle any probability distributions, e.g., Gaussian, Log-normal, uniform and chi-square

distributions. A commonly used Bayes filter that utilizes this mechanism is the particle filter. In

the particle filter, these samples are called particles. Each single particle represents one hypothesis

of the state variables, in contrast to the Gaussian filters which have only one state hypothesis. After

the particles are propagated through the state transition model, the measurement model can be used

to check how well one particle (hypothesis) fits the measurements. The degree of the fitness can

be represented by a weight. In other words, if the particle coincides with the measurements well,

it will be given a high weight. The probability value of one particle is proportional to its weight

value. As a result, the particles together with their weights present the profile of the probability

distribution of the state variables. In this section, we will introduce the standard particle filter and

one of its extensions, i.e., the partitioned particle filter.

2.4.1 Standard Particle Filter

The particle filter is one of the Bayes filters, so it also composes two processing steps: state

prediction and measurement update. However, in the particle filter, they usually have different

names: sampling (prediction) and resampling (measurement update). In the step of sampling, the

particle filter draws a number of samples from a known distribution, e.g., Gaussian distribution.

Given m particles Xt−1 = {x1t−1 · · · xmt−1} and their weightsWt−1 = {w1
t−1, · · · ,wm

t−1} at time step t−1,
the new predicted particles can be drawn from the state transition probability:

x̂it ∼ p(xt|xit−1, ut), (2.105)
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Algorithm 8 Unscented information filter

• Initialization: µ0 = E(x0), P0 = E
(

(x0 − µ0)(x0 − µ0)T
)

.

• For t = 1, · · · ,∞:

1. Generate sigma points for prediction:

µat−1 =

[

µt−1
µr
t−1

]

, Pa
t−1 =

[

Pt−1 0

0 Rt−1

]

(2.90)

Xa
t−1 =

[

µat−1 µat−1 + γ
√

Pa
t−1 µat−1 − γ

√

Pa
t−1

]

(2.91)

2. Prediction:

Xx
t|t−1 = g(ut,Xx

t−1,Xr
t−1) (2.92)

µ̂t =

2L
∑

i=0

wm
i Xx

i,t|t−1 (2.93)

P̂t =

2L
∑

i=0

wc
i (Xx

i,t|t−1 − µ̂t)(X
x
i,t|t−1 − µ̂t)

T (2.94)

Ŷt = (P̂t)
−1 (2.95)

ŷt = Ŷtµ̂t (2.96)

3. Generate sigma points for measurement update:

Xt =

[

µ̂t µ̂t + γ

√

P̂t µ̂t − γ
√

P̂t

]

(2.97)

4. Measurement update equations:

Ẑt = h(Xt) (2.98)

ẑt =

2L
∑

i=0

wm
i Ẑi,t (2.99)

P̂xtzt =

2L
∑

i=0

wc
i (Xi,t − µ̂t)(Ẑi,t − ẑt)T (2.100)

φt = ŶtP̂xkzkQ
−1
t

[

zk − ẑt + (P̂xkzk )
T ŷt

]

(2.101)

Φt = ŶtP̂xkzkQ
−1
t (Pxkzk )

T (Ŷt)
T (2.102)

yt = ŷt + φt (2.103)

Yt = Ŷt + Φt (2.104)
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where i = 1, · · · ,m and the state transition can be a linear or nonlinear process.

The second step is to resample the particle set X̂t = {x̂1t , · · · , x̂mt } based on the new weights

defined by:

ŵi
t = wi

t−1p(zt|x̂it), (2.106)

where measurement probability p(zt|x̂it) is determined by the measurement model. Afterwards, the

weights have to be normalized to ensure that they sum up to one:

wi
t =

ŵi
t

∑m
i=1 ŵ

i
t

. (2.107)

From the Eq. (2.106), the weight is proportional to the measurement likelihood, which means

a high weight indicates that the hypothesis given by this particle is likely to be true (close to the

true state). The mechanism of the resampling step is to keep these particles which have high

weights, and in the mean time, remove these particles which have lower weights. This is known

as survival of fittest. On the other hand, Thrun et al. [2005] noted that the sampling variance is

amplified through repetitive resampling. One solution is resampling the particle set only when the

effective number of particles Ne f f is less than a threshold Nthr:

Ne f f =
1

∑m
i=1(w

i
t)
2
. (2.108)

Another solution is to use the low variance sampler, e.g., the Stratified resampling introduced by

Kitagawa [1996] as shown in Algorithm 9. The function rand(1,m) samples m random numbers

from a uniform distribution on the interval [0, 1]. After the resampling, the final estimated result

can be derived by a weighted sum of all particles. Finally, we can summarize the algorithm of

particle filter in Algorithm 10.

To better understand the idea of the particle filter, we again use the example of the robot

localization problem, which was introduced in Section 2.2.1. The demonstration of the particle

filter for solving this problem is as follows:

• Sampling from the state transition probability. The predicted particle set X̂t = (x̂1t , · · · , x̂mt )
is drawn from the state transition probability p(xt|xt−1) = N(Axt−1,R).

• Calculate the weights. wi
t = wi

t−1p(z
i
t|xit) = N(zit,Q) =

1√
2πσ2

m

exp(− (zit−ẑit)2
2σ2

m
), where ẑit =

Cx̂it is the predicted measurement and zit is the measurement from the sensor. Finally the

normalized weight set isWt = (w1
t , · · · ,wm

t ).

• Importance resampling. A new particle set Xt is derived using the Stratified resampling

method, then the weights are reset to be equal again: Wt = (1/m, · · · , 1/m).

In order to show the effect of the resampling, we plot the distribution of the particles before
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Algorithm 9 Stratified resampling

1: Given a particle set Xt = (x1t , · · · , xmt ) and its weight Wt = (w1
t , · · · ,wm

t ) at time t

2: Xt = φ

3: r = rand(1,m)/m

4: c = w1
t

5: k = 1

6: for i = 1 to m do

7: U = r(i) + (i − 1)/m
8: while U > c do

9: k = k + 1

10: c = c + wk
t

11: end while

12: add xit to Xt

13: end for

14: Xt = Xt

Algorithm 10 Particle filter

1: For particle set Xt−1 = (x1
t−1, · · · , xmt−1) and corresponding weights Wt−1 = {w1

t−1, · · · ,wm
t−1} at

time t − 1:
2: for i = 1 to m do

3: sample x̂it ∼ p(xt|ut, xit−1)
4: ŵi

t = wi
t−1p(zt|xit)

5: end for

6: normalize the weights: wi
t =

ŵi
t

∑m
i=1 ŵ

i
t

7: effective number: Ne f f =
1

∑m
i=1(w

i
t)

2

8: if Ne f f < Nthr then

9: resample particles set Xt with probability ∝ Wt = (w1
t , · · · ,wm

t )

10: reset the weights to be equal: wi
t =

1
m

11: end if

12: return Xt and Wt

(red stars) and after (green stars) resampling in the 2D coordinates of the position x and speed v

during first six time steps in Fig. 2.2. The corresponding weights are shown in Fig. 2.3. In the first

four time steps, i.e., t < 5, the robot receives no measurement data, so the weights of particles are

all equal and the resampling does nothing. Therefore, the red stars and green stars are overlapped

in Fig. 2.2a and Fig. 2.2b. However, as we mentioned in Section 2.2.1, the state transition step

will increase the covariance, so the particles spread to a larger area as time goes on. Until t = 5,

the robot senses its position is z = 5 from the sensor, so the particles close to x = 5 have higher

weights than others as shown in Fig. 2.3. As a result, after resampling only these particles close

to x = 5 are kept (green stars in Fig. 2.2c), whereas others are removed from the set (red stars

in Fig. 2.2c). We can also see that the distribution of particles is shrunk at t = 5, which means

the covariance of these particles is smaller than before. However, at time step t = 6, the robot
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senses nothing again, so the weights are equal again and the distribution of particles is expanded

to a larger area again.

From this simple experiment, we can see how particle filter works, and how the particles

together with their weights approximate the probability distribution. In addition, to compare with

Kalman filters and information filters, the particle filter can deal with both linear and nonlinear

models, and does not require the calculation of Jacbian matrix. More importantly, the particle

filter can handle different probability distribution. Therefore, the particle filter is a very easy and

powerful tool for solving state estimation problems.
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(d) t=6

Figure 2.2: The distribution of particles before (red) and after (green) resampling at time=1, 4, 5

and 6.
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Figure 2.3: The weights for particle set at time=1, 4, 5 and 6

2.4.2 Partitioned Particle Filter

As we mentioned in Section 2.4, the particle filter uses a number of particles (samples) to ap-

proximate the true probability distribution. The accuracy of this approximation depends on the

number of the particles, i.e., more particles usually give more accurate results, but more particles

also means that more computational cost are required. In general, a high dimensional probability

distribution needs more particles to approximate than the low dimensional one. To reduce the pre-

requisite number of particles for a high dimensional distribution, MacCormick and Blake [1999]

presented an extension of the standard particle filter, which is called partitioned particle filter

(PPF). The PPF first divides the whole state space into several subspaces, then for each subspace

except the final one, an individual sampling and weighted resampling process is employed. The
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main difference between weighted resampling and normal resampling is that the former does not

reset the weights to be equal after resampling. Instead, the weights are set to be the inverses of

previous normalized weights. In this way, the weighted resampling improves the concentration of

samples at specific subspace within the distribution of the whole state space, without introducing

a bias to these regions[Louw, 2004]. On the other hand, the standard resampling, e.g., Stratified

resampling, is only used for the last subspace. The hierarchical processing of PPF can reduce the

required number of particles, and has been proved very robust for the multi-objects tracking and

multi-cues tracking [MacCormick and Blake, 1999; Louw, 2004; Duffner et al., 2009].

To better illustrate the process of PPF, we here give a simple example. Concerning the

problem of tracking three individual objects, the whole state space x includes three subspaces

x = {x1, x2, x3} which correspond to three objects. First, given the prior distribution at time t − 1

defined by the m particles x = {xi
t−1,w

i
t−1}, i = 1, · · · ,m, we use the state transition model of the

first object to predict its new state x1, which is denoted as ∗p(x1|x). Second, we apply the weighted
resampling on subspace x1 using the likelihood function g1 of the first object, which is denoted as

⊗g1. Because we only resample on the subspace x1, this will introduce a bias to the whole distribu-

tion if the standard resampling mechanism is used. Instead, we employ the weighted resampling

to set w
′i
t = wi

t/ρi for the predicted particle xit at time t, where ρi = g1(x
i
t)/

∑m
i=1 g1(x

i
t). Third, we

uses the same procedure as we did for the first object to estimate the second object x2. Fourth,

we uses the state transition model of the third object to predict its new state, which is denoted

as ∗p(x3|x2). Then the predicted particles are resampled using the standard resampling method,

which is denoted as ⊙g3. Finally, the posterior distribution is derived after the whole hierarchical

processing. These steps are summarized as follows:

prior → ∗p(x1|x) → ⊗g1

→ ∗p(x2|x1) → ⊗g2

→ ∗p(x3|x2) → ⊙g3 → posterior

In this section, we have introduced the basic idea of the PPF. More details are referred to

[MacCormick and Blake, 1999]. From our discussions, we can see that the PPF is suitable to

handle the high dimensional state. In Chapter 3, we will demonstrate the PPF on a real application

for lane tracking.

2.5 Conclusion

In this chapter, we have shown the general form of Bayes filters, which is a theoretical basis of

Bayesian filtering. In addition, we have discussed three commonly used Bayes filters, i.e., Kalman

filter, information filter and particle filter. More over, the extensions of these three filters have
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also been introduced to handle difficult cases, e.g., nonlinear models and high dimensional states.

Although this chapter is mostly about the state of the art works in the field of Bayesian filtering, we

want to illustrate the pros and cons of each filter compared to others. In this way, we can choose

the suitable Bayes filter for a specific task.



Chapter3
Multiple Visual Cues for Lane Tracking

This chapter presents a novel lane tracking framework using improved measurements by combin-

ing multiple visual cues. The related works in this field are reviewed in Section 3.2. We introduce

the local image descriptors as visual cues in Section 3.3. In Section 3.4, the multi-kernel density

estimation for line, parabolic and linear-parabolic shapes are presented. Section 3.5 describes the

partitioned particle filter (PPF) for linear-parabolic parameters estimation. Results and analyses

are given in Section 3.6, which introduces experimental results on different road situations.

3.1 Introduction

Autonomous navigation on various roads requires the knowledge of lane information, which is

also an open problem for Driver Assistance Systems. To extract lane boundary information, vi-

sion is a natural and powerful tool. However, high curvature, occlusions, varying illumination

and unmarked or partly marked lanes in the image are still challenging situations for this task

[McCall and Trivedi, 2006; Kim, 2008].

This chapter presents a new lane tracking framework. A linear-parabolic model is chosen to

depict the lane shapes in top-view images. The visible lanes are separated into two parts: the near

part and the far part, which depend on the distance to the vehicle. There are few reasons to design

the shape of the lane markers in this way: first, the lane markers in real situations have curved

shape, but the near parts in most cases are straight. Second, because of the projection geometry

of the camera, the lane markers in the near part have higher resolution than in the far part, so

the estimation of the near part in general is more accurate than that of the far part. Third, for

the drivers, the near part of lane markers is very important information for immediate behavioral

response.

We introduce a new lane shape estimation mechanism for the linear-parabolic model. The pre-

viously used method for the linear-parabolic lane shape estimation is the least-squares or Kalman
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filter [Jung and Kelber, 2004; Lim et al., 2009]. However, the least-squares method is sensitive

to image noise, and the Kalman filter only maintains one hypothesis of the lane parameter. In

contrast, the Particle filter (PF) has multiple hypotheses of lane parameters, and has the ability to

recover the true state from the tracking failure. Our chapter applies the novel Partitioned Particle

filter (PPF) to the linear-parabolic model estimation. The PPF employs the partitioned sampling

to estimate the lane parameters in a hierarchical processing scheme. In our case, the PPF first sam-

ples on the parameters of the linear part and then on the parameters of the parabolic part. The PPF

has superiority over the standard PF for the linear-parabolic shape estimation: a) the PPF requires

a smaller number of particles than the PF to model a distribution of the high dimensional system

state, b) the importance of the linear part estimation is emphasized by the PPF.

The other main contribution of this chapter is the multiple kernel density based measurement

function for the PPF. For each particle in the PPF, we want to use a measurement function to

describe howmuch this particle (one hypothesis of the lane parameter) fits the image. In contrast to

other works which only employ the color and edge information (thresholded gradient magnitude)

as the measurements, we consider the local gradient orientation as an important information for

estimation. The statistical relation between the global lane model and the local image descriptors

(color, edge and gradient orientation) is modeled using the multiple kernel density. Furthermore,

we show how to derive the measurement function in the PPF from this statistical relation.

3.2 Related Work

3.2.1 Lane Model

Numerous approaches for vision based lane detection and following have been developed in the

past [McCall and Trivedi, 2006]. Different lane models have been studied, e.g., straight line,

parabolic, circular and spline based models. Normally, simple models are more robust against

image artifacts, but can not give an exact fit. Complex models, such as parabolic, circular and

spline models, are flexible, but are more sensitive to the image noise [Jung and Kelber, 2004;

Danescu and Nedevschi, 2009]. Jung and Kelber [2004] introduced a linear-parabolic model for

lane following, which splits the lanes into two parts: the linear part and the parabolic part. This

model is a trade-off between accuracy of the fit and robustness with respect to image artifacts

[Jung and Kelber, 2004].

In contrast to Jung and Kelber’s work which employed the linear-parabolic model in the origi-

nal image, we use this model on a top-view image which is also known as Inverse Perspective

Mapping (IPM) image. IPM is an image transformation that removes the perspective effect,

based on the flat ground hypothesis with known extrinsic and intrinsic parameters of the cam-

era [Bertozzi and Broggi, 1998]. It remaps pixels from the original image to a top view image that

has a different coordinate system. This remapping procedure can be done by a fast lookup table
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(a) (b)

Figure 3.1: (a) An image from the data set, where the lane markers are not parallel. (b) the

transformed image after applying IPM shows a top-view of the scene and the lane markers appear

nearly parallel.

with a distortion compensation [Bergener and Bruckho, 1999]. As the resolutions for near and far

objects are different in the original image, an interpolation process is needed in the IPM algorithm.

A resulting example image is shown in Fig. 3.1b, which is a top-view image of Fig. 3.1a with a cu-

bic interpolation. The lanes in the IPM images look parallel and the width between lanes becomes

nearly constant.

3.2.2 Estimation Method

After the lane model is defined, the parameters of the model can be estimated from image se-

quence. Jung and Kelber [2004] employed the Hough transform for initial detection, and updated

the parameters of the linear-parabolic model by minimizing a weighted square error. However, a

tracking mask with fixed width is needed to find possible lane edges in every iteration, and the

least squares method is sensitive to edge noise. Lim et al. [2009] used a Kalman filter to update

the linear-parabolic parameters. The Kalman filter continuously estimates the model parameters.

The nearby edges of the estimated boundaries are found as measurements for the Kalman filter.

This method increases the robustness of the algorithm as compared to the previous least squares

method, but the Kalman filter only maintains one hypothesis, so that it is difficult to recover the

true state once a tracking failure occurs [Zhou et al., 2006].

This chapter applies the Partitioned Particle filter for estimating the linear-parabolic shape. The

Partitioned Particle filter was introduced by MacCormick and Blake [2000], which was designed
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for multiple object tracking. The PPF inherits the advantages of the PF, such as the multiple hy-

potheses of the system state and the ability to recover from tracking failure [Danescu and Nedevschi,

2009]. In addition, the PPF also has its own special advantage compared to the standard PF, which

is that the PPF uses a smaller number of particles to estimate a distribution of the high dimensional

state [Southall and Taylor, 2001]. In addition, the other reason for us to employ PPF instead of

the PF is that the parabolic part has more noises than the linear part. Because of the perspective

geometry of the camera, the parabolic part has lower resolution in the image than the linear part.

This lead to more noises in the parabolic part, which makes its estimation more difficult. The PPF

handles this problem by estimating each part in a hierarchical way, first the linear part and second

the parabolic part. In this way, the accuracy of the linear part is enhanced, and the noise in the

parabolic part does not affect the linear part estimation.

3.2.3 Measurement Model

The estimator of the lane models requires a measurement model to update the lane parameters. In

previous works, the color and edge are used as main measurement features for the linear-parabolic

shape estimation [Jung and Kelber, 2004; Lim et al., 2009], but the gradient orientation informa-

tion is omitted. Dahyot [2009] presented the statistical Hough transform (SHT), where the statis-

tical distribution of the lane parameters is modeled by the multiple kernel density estimation. One

advantage of the SHT is that the local gradient orientation is considered for estimation.

However, the SHT only handles straight lines. This chapter extends Dahyot’s work to the

parabolic case, and uses the statistical distribution function of the lane parameters as the measure-

ment function in the PPF.

3.3 Local Image Descriptors

For every pixel in an image, basic descriptors can be defined, e.g., color C, position (x, y) and

gradient (Ix, Iy). The advanced descriptors can be derived from those basic descriptors, e.g., the

magnitude, alignment, and direction of the gradient: ∆I, ρ and θ. In an urban environment, lanes

are not always of the same color, such that the color information C can not as robustly be used as

on a highway, whereas position and gradient information are useful for this case.

Our algorithm uses local image descriptors (x, y, θ,C) as observation, and models them by ker-

nel density, e.g., Gaussian kernel, which includes color, position and gradient information [Dahyot,

2009]. The observation space of one image is Qcxyθ = {ci, xi, yi, θi, i = 1, · · · , n}, where n denotes

the total number of pixels used for estimating the lane parameters. In addition, the lane parame-

ters are independent of the color information, so we first study the statistical relation between the

global model and the local image descriptors on the subspace Qxyθ = {xi, yi, θi, i = 1, · · · , n}, then
the color kernel will be added in the final measurement model.
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3.4 Lane Parameter Estimation by Kernel Density

In this section, we first introduce the line parameters estimation using the multi-kernel density

[Dahyot, 2009], then we show the new estimation method for the parabolic estimation, and finally

we extend the work to the linear-parabolic parameter estimation.

3.4.1 Line Model

For a straight line model we have

ρ = xcosθ + ysinθ, (3.1)

where x and y are image coordinates, ρ and θ are line parameters, which need to be estimated.

The probability distribution p(ρ, θ, x, y|Qxyθ) can be written according to the Bayes rule as

p(ρ, θ, x, y|Qxyθ) = p(ρ|x, y, θ,Qxyθ) · p(x, y, θ|Qxyθ). (3.2)

In Eq. (3.2), the first probability p(ρ|x, y, θ,Qxyθ) is determined by Eq. (3.1), and the second proba-

bility p(x, y, θ|Qxyθ) can be modeled by the multi-kernel density function. Thus Eq. (3.2) becomes

p(ρ, θ, x, y|Qxyθ) = δ(ρ − xcosθ − ysinθ)1
n

∑

i

KxKyKθ (3.3)

where δ is the Dirac delta function, Kx = N(xi, σ
2
xi
), Ky = N(yi, σ

2
yi
) and Kθ = N(θi, σ

2
θi
) are

Gaussian kernels. σ2xi , σ
2
yi
and σ2

θi
are variances of xi, yi, and θi, respectively. In the experiment,

we set σ2xi = 1, σ2yi = 1 and σ2
θi
= 1
∆I
.

The distribution p(ρ, θ|Qxyθ) can be obtained by integrating Eq. (3.3) over (x, y):

p(ρ, θ|Qxyθ) =
1

n

∑

i

Kθ ·Gli(ρ, θ) (3.4)

where

Gli(ρ, θ) =
1

√

2π(σ2xicos
2θ + σ2yi sin

2θ)

·

exp













−(ρ − xicosθ − yisinθ)2

2(σ2xicos
2θ + σ2yi sin

2θ))













(3.5)

A detailed description of Eq. (3.5) can be found in [Dahyot, 2009]. Given observation space Qxyθ

of an image, the statistical distribution of the lane parameters can be calculated using Eq. (3.4).

One example result is shown in Fig. 3.2.
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Figure 3.2: Statistical distribution p(ρ, θ|Qxyθ) given observation space Qxyθ of Fig. 3.1b

3.4.2 Parabolic Model

Similar to the line model estimation, the parabolic lane model also can be estimated using the

kernel densities. However, the parameter θ is not constant in the parabolic case. To model Kθ

correctly, the gradient information is introduced to our parameter estimation.

For a parabolic lane model we have:

x = c + dy + ey2 (3.6)

where c, d and e are the parabolic lane parameters. The orientation of gradient θ is derived by the

first order derivation of Eq. (3.6):

θ = atan(−2ey − d). (3.7)

The probability distribution p(c, d, e, x, y, θ|Qxyθ) can be written as:

p(c, d, e, x, y, θ|Qxyθ) = p(c, d, e|x, y, θ,Qxyθ) · p(x, y, θ|Qxyθ) (3.8)

where p(c, d, e|x, y, θ,Qxyθ) is determined by Eq. (3.6) and Eq. (3.7), and the second probability
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term p(x, y, θ|Qxyθ) can be modeled by multiple Gaussian kernel density:

p(c, d, e, x, y, θ|Qxyθ) = δ1 · δ2 ·
1

n

∑

i

KxKyKθ (3.9)

where δ1 = δ(c+dy+ey
2− x) and δ2 = δ(θ−atan(−2ey−d) are Dirac functions, Kx, Ky and Kθ are

Gaussian kernels which are same as in Eq. (3.3). The distribution p(c, d, e|Qxyθ) can be obtained

by integrating Eq. (3.9) over (x, y, θ):

p(c, d, e|Qxyθ) =
1

n

∑

i

Gpi(c, d, e) (3.10)

where

Gpi(c, d, e) =

$ ∞

−∞
δ1δ2KxKyKθ dxdydθ (3.11)

Eq. (3.11) also is known as the Radon transform. Because x and θ are represented by y using

δ1 and δ2 functions, the three-fold integration over (x, y, θ) in Eq. (3.11) is simplified to a single

integration over y:

Gpi(c, d, e) =

∫ ∞

−∞
K′xKyK

′
θ dy (3.12)

where

K′x =
1

√

2πσ2xi

exp













− (c + dy + ey
2 − xi)

2

2σ2xi













(3.13)

K′θ =
1

√

2πσ2
θi

exp















− (atan(−2ey − d) − θi)
2

2σ2
θi















(3.14)

The analytic expression of the Radon transform Eq. (3.12) can not be obtained. To solve it, the

Gauss-Hermite numerical method is used to calculate Gpi [Liu et al., 2009].

3.4.3 Linear-Parabolic Model

The linear-parabolic model includes two parts: the linear part and the parabolic part. The linear

part is used to model the lanes in the near vision field, whereas the parabolic part is used for the

lanes in the far vision field [Jung and Kelber, 2004; Lim et al., 2009].

x = f (y) =















a + by i f y > ym

c + dy + ey2 i f y ≤ ym
(3.15)

where ym is the border between the near and far vision fields, and the observation space Qxyθ is

divided into two subspaces: Qnear and Q f ar. In next sections, we consider the separate line ym is
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Figure 3.3: The coordinate system of the image and linear-parabolic multiple lane model. In this

case the number of lanes are three. ym is the separate line between the linear part (near vision field)

and the parabolic part (far vision field). dlm and dmr are distances between the multiple lanes.

constant and to be the half of the image height as shown in Fig. 3.3.

We impose continuity and differentiability conditions on the function Eq. (3.15) at point ym,

such that f (y−m) = f (y+m) and f ′(y−m) = f ′(y+m). Combining with the Eq. (3.1), we can further obtain:



















































a =
ρ

cos(θ)

b = −tan(θ)

c =
ρ

cos(θ)
+

ym
2
(−tan(θ) − d)

e = 1
2ym

(−tan(θ) − d)

(3.16)

According to Eq. (3.16), the linear-parabolic model is totally determined by three parameters:

(ρ, θ, d) given ym. The coordinate system of the linear-parabolic model can be seen in Fig. 3.3.

To estimate the linear-parabolic parameters (ρ, θ, d), we first estimate the linear part (ρ, θ) by

Eq. (3.4) using observation Qnear, and then we estimate the parabolic part d by Eq. (3.10) using

observation Q f ar. Because c and e are functions of (ρ, θ, d), we find:

p(d|Q f ar) =
1

n f ar

∑

i

Gpi(c(ρ, θ, d), d, e(ρ, θ, d)) (3.17)

This hierarchical process can be implemented by the PPF as shown in Section 3.5.
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3.5 Partitioned Particle Filter for Lane Detection and Tracking

In [Dahyot, 2009; Liu et al., 2009], the authors estimate line and parabolic parameters by combin-

ing the Hough transform with a multi-kernel probability model, which is called SHT. However,

the SHT is computational expensive for curved lane detection.

Here we use the PPF instead of the Hough transform to estimate the lane parameters. The

multiple kernel density based probability function for the linear-parabolic model is used as the

measurement model of the PPF. The PPF was designed for solving high dimensional state prob-

lems [MacCormick and Blake, 2000]. The high dimensional state space in the PPF is partitioned

into multiple subspaces. Each subspace is estimated hierarchically. This hierarchical process

increases efficiency and robustness of the condensation algorithm [Southall and Taylor, 2001].

Our whole algorithm is shown in the Fig. 3.4. In the image preprocessing part, the perspective

effect is removed by the IPM algorithm as shown in Appendix B, then the local image descriptors

are calculated, e.g., gradient magnitude and orientation. Afterwards, the initialization samples

drawn from the default lane model are introduced to the particle array. As we mentioned in the

Section 3.2, those initialization samples can be used to recover the state from tracking failure.

Finally the linear and parabolic part are estimated hierarchically using the PPF with the observation

model based on the multi-kernel density.

3.5.1 Multiple Lane Model

Here we use a simple multiple lane model as shown in Fig. 3.3. The additional conditions between

the parallel lanes can be used to check the quality of the particles. For instance, the distances

between each pair of nearby lanes are larger than 12 pixels, e.g., dlm > 12 and dmr > 12, and the

difference between dlm and dmr is smaller than 5 pixels.

3.5.2 State Definition

In section 3.4.3, we introduce the probability estimation of linear-parabolic lane parameters from

local image descriptors. The linear-parabolic lane model is defined by three parameters (ρ, θ, d).

For the situation that the road has multiple lanes, the whole state probability distribution at time t

is given by a set of N particles Xt = {x jt , j = 1, · · · ,N}, where x
j
t = {ρ

j

k
, θ

j

k
, d

j

k
, k = 1, · · · , nl} is a

single particle state, and nl is the number of lanes.

The dimension of the state x
j
t is 3×nl which depends on the number of lanes nl. In case of three

lanes nl = 3, the state x
j
t has nine parameters. That means we need a large number of particles

to correctly model this high dimensional state distribution, which leads to the high computational

cost.

The solution to decrease the number of particles is to use the PPF, which separates the state x
j
t

into two subgroups: the linear part S l = {ρ jk, θ
j

k
, k = 1, · · · , nl} and the parabolic part S p = {d j

k
, k =
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Figure 3.4: Flow chart of our lane detection and tracking algorithm.

1, · · · , nl}. The subgroups are estimated by the partitioned sampling in a hierarchical way. Because

each subgroup requires less number of particles, the burden of the computational cost is eased off.

3.5.3 Image Preprocessing

To remove the perspective effect of the image, the IPM algorithm is implemented on the consec-

utive frames, then the local gradient magnitude and orientation are calculated from the top-view

image. To save computational cost, we threshold the gradient magnitude image to get an image

mask. Only the pixels that have higher gradient values are considered to be measurement.

3.5.4 Initialization Samples

When lanes suddenly disappear, e.g., occluded by a car, a robust algorithm has to maintain the best

hypothesis or find the lanes again when possible. The solution is to introduce a constant percentage

of initialization samples into the state distribution at every iteration, The initialization samples

are drawn from the distribution of the default lane models. In our algorithm, we use N′ = 50

initialization particles. This mechanism can recover the lane state from failures [Zhou et al., 2006].

Here we use the straight lane model as the default lane model, such that the value of d in random

samples are defined as d = b = −tan(θ).
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3.5.5 Linear Part Estimation

The linear part estimation includes two steps: the first step is state prediction using a random-walk

probability model. The second step is resampling using a specific observation model, i.e., multi-

kernel density model. Finally, only the particles which have high weight values are kept. This

resampling process follows the idea of “survival of the fittest” [Thrun et al., 2005].

Linear Part Prediction

Assuming the change of the lane boundary between two consecutive frames is small, a normal

distribution can be used to model the state transition of the jth particle as

p(x̂
l j
t |x

j

t−1) = N(Alx
j

t−1,Σ
l), (3.18)

where N is the normal distribution. The matrix Al is an identity matrix as we assume the lane

boundaries have smooth changes, and Σl is the covariance which handles the difference of lane

boundaries between two consecutive frames. Because we only predict the linear part, Σl is defined

as

Σl = diag{V l
k, k = 1, · · · , nl}, (3.19)

where diag is the diagonal matrix function, and V l
k
= {σ2ρk , σ

2
θk
, 0}. σ2ρk and σ

2
θk
are the covariances

of the kth lane parameters ρk and θk. The predicted particle set is X̂l
t = {x̂

l j
t , j = 1, · · · ,Nl}, where

Nl = N′ + N is the number of particles used in the linear part estimation.

Linear Part Resampling

The observation space Ql
k
of the linear part describes the local features in the image. For the jth

predicted particle, the measurement of the kth lane is z
l j

kt
which includes nl

k
pixels in Ql

k
that near the

predicted lane. The observation model is derived from Eq. (3.4) with additional color information

p(z
l j

kt
|x̂l jt ) =

1

nl
k

∑

i

Kci · Kθ j
kt

·Gli(ρ
j

kt
, θ

j

kt
), (3.20)

where Kci = N(µc, σ
2
c) is the Gaussian kernel model of the color information, and µc and σ

2
c are

mean and covariance of this model. The weight for the jth particle is

w
l j
t = η

nl
∏

k=1

nlk p(z
l j

kt
|x̂l jt ), (3.21)

where η is a normalization factor, which ensures that the weights sum to one. The number of can-

didate pixels nl
k
is considered as an important factor for weighting the particles, because only the

pixels which have higher gradient magnitude values are selected as the candidate measurements.
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Finally, the new particle set Xl
t = {x

l j
t , j = 1, · · · ,Np} is obtained by resampling X̂l

t based on the

weights where Np is the number of particles used to estimate the parabolic parameters. Those

particles in X̂l
t that have high weights will be kept and the others that have lower weights will be

removed from the particle set [Liu et al., 2010].

3.5.6 Parabolic Part Estimation

The algorithm of parabolic part estimation is similar to the linear part, but the number of particles

and the observation model used for estimation can be different.

Prediction of Parabolic Part

The normal distribution is also used to model the state transition of curve part:

p(x̂
p j
t |x

l j

t−1) = N(Apx
l j

t−1,Σ
p), (3.22)

where functionN is a normal distribution, the matrix Ap is an identity matrix and Σp is the covari-

ance defined as:

Σp = diag{V p

k
, k = 1, · · · , nl}, (3.23)

where V
p

k
= {0, 0, σ2

dk
} and σ2

dk
is the covariance of the parabolic parameter dk for the kth lane. As

a result, the predicted particle set X̂
p
t = {x̂

p j
t , j = 1, · · · ,Np} is obtained.

Resampling of Parabolic Part

For the jth particle, the measurement of the kth lane in the far vision field observation space Q
p

k
is

z
p j

kt
, which corresponds to n

p

k
pixels in Q

p

k
that near the predicted lane. The observation model can

be derived from Eq. (3.17):

p(z
p j

kt
|x̂p jt ) =

1

n
p

k

∑

i

Kci ·Gpi(ρ
j

kt
, θ

j

kt
, d

j

kt
) (3.24)

The weight for the jth particle using above observation model is

w
p j
t = η A

nl
∏

k=1

n
p

k
p(z

p j

kt
|x̂p jt ) (3.25)

where η is the normalization factor. This process is called weighted resampling because it has

an additional term A = 1

w
l j
t

, such that it does not alter the distribution represented by the particle

set [MacCormick and Isard, 2000]. However, this weighted resampling can introduce the impov-

erishment effect on the particle set [Duffner et al., 2009; Smith and Gatica-perez, 2004; Liu et al.,

2011a]. To avoid impoverishment effect of original PPF algorithm, and enforce the importance
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(a) IPM frame 38 (b) IPM frame 195 (c) IPM frame 470 (d) IPM frame 505 (e) IPM frame 748

(f) original frame 38 (g) original frame 195 (h) original frame 470 (i) original frame 505 (j) original frame 748

Figure 3.5: The estimation results are drawn on the IPM images of the Suburban Bridge dataset.

The top images show the results estimated by PPF-Kernel (Partitioned Particle filter with ker-

nel density based measurement, red), PF-Kernel (Particle filter with kernel density based mea-

surement, green) and PPF-NoKernel (Partitioned Particle filter with color and edge measurement,

blue). The bottom images are the original images from the camera.

of the linear part, we set A = 1

nl
k

. After resampling on X̂
p
t by the weights, the new particle set

Xt = {xp jt , j = 1, · · · ,N} for the next iteration is obtained, and the weights are reset to be equal.

3.6 Results

In order to demonstrate the proposed algorithm, we selected two datasets from the DRIVSCO

database [Baseski et al., 2009; Markelic et al., 2011]: Suburban Bridge dataset and Trailer dataset.

These datasets contain a variety of challenging situations like high-curvature roads, partly marked

and occluded lanes, etc.

As we mentioned in Section 3.5, the proposed algorithm has two highlights: one is the Par-

titioned particle filter (PPF), the other is the multiple kernel density based measurement model.

In order to evaluate each highlight, we design the experiment in this way: first, we compare the

PPF to the standard Particle filter (PF) using the same kernel density based measurement model.

Second, we compare the multiple kernel density based measurement model to the color and edge

based measurement model using the same PPF. Therefore, three algorithms are required to be im-

plemented in the experiment, which are: the Partitioned Particle filter with the proposed multiple

kernel density based measurement model (PPF-Kernel). the standard Particle filter with the pro-

posed multiple kernel density based measurement model (PF-Kernel), the Partitioned Particle filter

with color and edge based measurement model (PPF-NoKernel), In other words, we compare the

PPF-Kernel to PF-Kernel to show the performance of the PPF, and we compare the PPF-Kernel to
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Figure 3.6: The RMSE of estimated lane parameters (ρ, θ, d) by PPF-Kernel (Partitioned Parti-

cle filter with kernel density measurement), PF-Kernel (Particle filter with kernel density mea-

surement) and PPF-NoKernel (Partitioned Particle filter with color and edge measurement) on

Suburban Bridge dataset. le f t, middle and right mean the left lane, middle lane and right lane

respectively.

PPF-NoKernel to show the performance of the kernel density based measurement model,

In order to have quantitative analyses, we manually choose the lane markers in the IPM frames

(every 5 frame), then calculate the ground truth of lane parameters using the least-square. The root

mean square error (RMSE) of the results from PPF-NoKernel, PF-Kernel and PPF-Kernel are

shown in Fig. 3.6 for the Suburban Bridge dataset, and Fig. 3.8 for the Trailer dataset. On the

other hand, we project the estimation results on the IPM images to allow visual inspection of the

results, as shown in Fig. 3.5 for the Suburban Bridge dataset and Fig. 3.7 for the Trailer dataset. In

the following sections, we will give more details and analyses on these estimation results.

3.6.1 PPF-Kernel vs. PPF-NoKernel

To show the performance of the proposed kernel density based measurement model, we compare

the PPF-Kernel to the PPF-NoKernel. For the PPF-NoKernel, we only employ the color informa-

tion in the measurement models which are defined as:

p(z
l j

kt
|x̂l jt ) =

1

nl
k

∑

i

Kci, (3.26)

p(z
p j

kt
|x̂p jt ) =

1

n
p

k

∑

i

Kci, (3.27)

where p(z
l j

kt
|x̂l jt ) and p(z

p j

kt
|x̂p jt ) are measurement models for the linear part and the parabolic part

respectively, nl
k
is the number of particles for the linear part, n

p

k
is the number of particles for the

parabolic part. Kci = N(µ0, σ
2
0
) is the Gaussian kernel model of color information. As in general
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lane markers have white color, i.e., high intensity value in the gray image, we set µ0 = 1 and

σ2
0
= 0.5 for the normalized image in the experiment.

For the Suburban Bridge dataset, the RMSE of the estimated lane parameters is shown in

Fig. 3.6. It is clear that the PPF-Kernel has smaller RMSE than the PPF-NoKernel for most of

the lane parameters. We could also see the robustness of the PPF-Kernel against to the occlusions

and the noise information from the bridge, whereas the PPF-NoKernel has larger error for the

estimation of the parabolic part, as shown in Fig. 3.5a, Fig. 3.5b and Fig. 3.5e. On the other hand,

the most challenge part is to estimate the left lane because of the occlusions by the car, as shown in

Fig. 3.5a and Fig. 3.5d. However, the PPF still can recover from the occlusions. One reason is that

we separate the lane into two parts. In spite of one part is occluded, the other part still can support

the right particles. The other reason is we introduce the random particles into the algorithm loop,

such that the PPF can recover from tracking failure . For the Trailer dataset, the curvature of the

lanes is very small, thus the difference of the estimation results between the PPF-Kernel and PPF-

NoKernel are not obvious, which can be seen in Fig. 3.7. However, the PPF-Kernel has smaller

RMSE than the PPF-NoKernel for most of the lane parameters as shown in Fig. 3.8.

3.6.2 PPF-Kernel vs. PF-Kernel

To show the performance of the PPF, we compare the performance of the PPF-Kernel to the PF-

Kernel in this section. Both of the PPF and PF employ the kernel density based measurement

model. The PPF uses Nl = 350 particles to track the linear part and Np = 350 particles to estimate

the parabolic part. For every iteration, N′ = 50 initialization particles drawn from default lane

models, are introduced to the particle set. The covariances in the tests are σρk = 1, σθk = 0.02,

and σdk = 0.05. The weighted mean of particle state in the set Xt is used as the estimation result.

The standard PF uses N = 350 particles and N′ = 50 initialization particles. The PF uses the

same covariances as the PPF. The results show that the PF can handle small curvature lanes as

good as the PPF, see estimation results in Fig. 3.7 for Trailer dataset, but performs worse when the

curvature increases, see Fig. 3.5 for Suburban Bridge dataset. The reason is that the standard PF

can not give accurate estimation when it only uses N+N′ = 400 particles for the high dimensional

state, i.e., 9 for three lanes in the experiments. However, the PPF fits the high curvature lanes

nicely using 350 particles for the linear part and parabolic part respectively.

From the RMSE charts in Fig. 3.6 and Fig. 3.8, we can conclude that the PPF-Kernel has

better estimation results than the PF-Kernel for the most of the lane parameters. One exception is

in Fig. 3.6, where the (ρ, θ) estimated by the PF-Kernel for the middle lane has smaller RMSE than

the PPF-Kernel. That is because the second resampling of the PPF and the linear part of middle

lane has large curvature. The first resampling of the PPF keeps those particles that have better

estimation for the linear part, but the second resampling of the PPF keeps the particles that have

better estimation for the parabolic part. That is why the PPF-Kernel has larger RMSE of (ρ, θ), but
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(a) IPM frame 20 (b) IPM frame 112 (c) IPM frame 123 (d) IPM frame 321 (e) IPM frame 446

(f) original frame 20 (g) original frame 112 (h) original frame 123 (i) original frame 321 (j) original frame 446

Figure 3.7: The estimation results are drawn on the IPM images of the Trailer dataset. The top

images show the results estimated by PPF-Kernel (Partitioned Particle filter with kernel density

based measurement, red), PF-Kernel (Particle filter with kernel density based measurement, green)

and PPF-NoKernel (Partitioned Particle filter with color and edge measurement, blue). The bottom

images are the original images from the camera.

Table 3.1: The comparison of computation time

Dataset Method Run time per frame (s)

PPF-NoKernel 0.11s

Suburban Bridge PF-Kernel 0.27s

PPF-Kernel 0.62s

PPF-NoKernel 0.13s

Trailer PF-Kernel 0.29s

PPF-Kernel 0.66s

has smaller RMSE of d as shown in Fig. 3.8c.

3.6.3 The Computational Cost

The current algorithm is programmed on a modern computer with the Intel Core 2 Quad CPU and

each CPU is 2.5GHz for simulation and analysis purpose. The comparison of computational time

is shown in Table 3.1. The PPF with the simple color model is faster than the multi-kernel density

model. The reason is that the Gauss-Hermitte numerical integral method in PPF is computation

expensive. However, there are several ways to speed up the proposed algorithm. For example,

the pixels in the observation space can be processed independently. Therefor it can be easily

parallelized, and computed by the GPUs [Abramov et al., 2010].
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Figure 3.8: The RMSE of estimated lane parameters (ρ, θ, d) by PPF-Kernel (Partitioned Particle

filter with kernel density measurement), PF-Kernel (Particle filter with kernel density measure-

ment) and PPF-NoKernel (Partitioned Particle filter with color and edge measurement) on Trailer

dataset. le f t, middle and right mean the left lane, middle lane and right lane respectively.

3.7 Conclusion

In this chapter, we presented a framework of the linear-parabolic shape estimation using the PPF

on the IPM frames, and a novel statistical measurement model is built using the multiple kernel

density. The algorithm was tested on the DRIVSCO datasets and has shown its robustness con-

cerning challenging scenes.

The advantages of our algorithm, as compared to the state of the art in this field, are threefold.

First, we use not only the position and color information, but also the gradient information in

the statistical observation model, which improves performance. Second, we estimate the linear-

parabolic model in a hierarchical architecture using the PPF. This reduces the prerequisite number

of particles. Third, the PPF maintains multiple hypotheses of the lane model and can recover from

tracking failure, whereas the Kalman filter and least-squares based methods do not support this

feature.

Although we have achieved notable progress, our current algorithm has some limits, for exam-

ple, the simple multiple lane model, flat ground assumption and constant separate line ym. Future

work will require research on a robust multiple lane model [Nieto et al., 2008], online pitch angle

estimation using the stereo vision [Danescu and Nedevschi, 2009] and adaptive separate line ym

estimation to improve the proposed algorithm.

Apart from the lane shape estimation, the proposed parabolic shape estimation using the

multiple kernel density estimation can be also used for other applications, e.g., eyelid detection

[Liu et al., 2009].



58 Multiple Visual Cues for Lane Tracking



Chapter4
Color Invariant Histograms

This chapter presents an evaluation framework for color invariant histograms for object tracking.

Section 4.2 describes illumination changes by photometric analysis. The illumination changes

are identified as five types based on the diagonal-offset model. Section 4.3 introduces eight color

histograms and their invariance properties to the illumination changes. Section 4.4 discusses the

histogram distance metric used in experiments. Three state-of-the-art trackers are used for evalua-

tion in Section 4.5. The final results and analyses are shown in Section 4.6 and 4.7.

4.1 Introduction

The color histogram is one of the most popular region descriptors for object tracking. In general,

the appearance of objects in an image can be represented by various colors defined in a specific

color space, e.g., RGB (red, green and blue) space and HSV (hue, saturation and intensity value)

space. The color distribution of objects can be approximated by a color histogram [Porikli, 2005],

which counts the number of pixels that have colors in each of bins. Since color histograms are

simple, effective to use and invariant to translation and rotation around the axis perpendicular

to the image, they have been widely used for object tracking in the literature [Comaniciu et al.,

2003; Cannons, 2008]. However, many color histograms are susceptible to illumination changes

[Cannons, 2008]. For instance, the RGB color space is the most popular color space for color

histograms, but it is one of the least robust to illumination changes [Cannons, 2008]. In con-

trast, the normalized RGB (nRGB) color histogram is invariant to intensity changes, e.g., shadow.

Therefore, it is natural to choose the nRGB instead of RGB for object tracking to achieve a better

performance. In this thesis, we address this problem by analyzing and evaluating a number of

commonly used color histograms against illumination changes.

As far as we know, none of the previous work considers color invariant properties of color

histograms in the scenario of object tracking. In the literature, most analyses and evaluations
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on the color invariant features to illumination changes are for object recognition and classifica-

tion. Gevers and Smeulders [1999] studied the illumination invariance of color spaces for object

recognition, and evaluated them under known illumination conditions. van de Sande et al. [2010]

studied the invariance properties and distinctiveness of color descriptors (histograms and corners)

in the context of image category recognition. Geusebroek et al. [2001] established color invariant

descriptors based on differentials in the spectral and spatial domain, and tested the proposed color

space on the static images. We have not found any work investigating color spaces related to ob-

ject tracking scenarios. To achieve robust object tracking using color histograms, it is necessary to

investigate and compare the performance of different color spaces.

Besides color invariant properties of color histograms, we are also interested in how to include

spatial information in the color histograms. The normal color histograms do not preserve the spa-

tial information of colors, which means the histograms do not knowwhich color comes fromwhich

part of the image. To address this problem, Comaniciu et al. [2003] proposed a spatial masking

with an isotropic kernel to regularize the RGB histogram representation. The spatial information

is introduced into the histogram by the isotropic kernel, but this isotropic kernel is symmetric such

that it is not sensitive to rotation. Teuliere et al. [2009] introduced a multiple kernel configura-

tion with the RGB histogram, and gave evidences of its improved sensitivity over single kernel

approaches. Khan et al. [2009] employed the anisotropic kernel with the RGB histogram instead

of the isotropic kernel to cope with the rotation estimation. The proposed kernels indeed improve

the performance of the RGB histogram, but these works have not considered the color invariance

properties of the histograms.

In contrast to other works, we focus on color invariance and distinctiveness of color histograms

for object tracking. In addition, the effects of the spatial kernels are also investigated. This Chapter

addresses this problem by: a) studying the invariance properties and the distinctiveness of color

histograms; b) evaluating the color histograms on large benchmark datasets; c) studying the effects

of the kernel mask which adds the spatial information to the color histogram; d) investigating three

state-of-the-art object tracking algorithms for evaluations: the integral histogram based exhaustive

search, the kernel based mean shift and the particle filter.

4.2 Illumination Changes

The illumination changes in an image can be modeled by a linear transformation. von Kries [1970]

introduced the diagonal model which describes the transformation between two images which

have different illuminations. To include diffuse light effects, Finlayson et al. [2005] appended an

additional term to the diagonal model, which is known as diagonal-offset model. Furthermore,

van de Sande et al. [2010] introduced five types of illumination changes based on the diagonal-

offset model. This section introduces the basic idea of the diagonal-offset model and discusses the

definitions of illumination changes.
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4.2.1 Diagonal-Offset Model

von Kries [1970] proposed a linear transformation for modeling illumination changes:

f c = Du,c f u, (4.1)

where f u and f c are the original image and the transformed image respectively, and Du,c is a

diagonal matrix. The image f u is taken under an unknown light source u, and the image f c is taken

under the reference light source c, which is also called canonical illuminant [van de Sande et al.,

2010]. In case of the RGB color space, Eq. (4.1) can be represented by:
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where a, b and c act as factors describing intensity changes for three color channels. To include

the effects from diffuse lights, the diagonal model was extended by Finlayson et al. [2005] to the

diagonal-offset model:
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where (o1, o2, o3) is the offset vector to three color channels. Obviously, the diagonal-offset model

has three more parameters than the diagonal model, so it can deal with a wider range of lighting

conditions [van de Sande et al., 2010].

4.2.2 Definition of Illumination Changes

Based on the diagonal-offset model, five basic types of the illumination changes can be defined

[van de Sande et al., 2010], which are light intensity change, light intensity shift, light intensity

change and shift, light color change, and light color change and shifts. The definitions of these

five illumination changes are shown as follows.

• Light intensity changes: a = b = c in Eq. (4.2). The shadow and shading in the image

belong to this category.

• Light intensity shifts: a = b = c = 1 and o1 = o2 = o3 in Eq. (4.3). As shown in

van de Sande et al. [2010], the light intensity shifts normally include scattering of a white

light source, object highlights, inter reflections, and infrared sensitivity of the camera sensor.

• Light intensity changes and shifts: a = b = c and o1 = o2 = o3 in Eq. (4.3).

• Light color changes: a , b , c in Eq. (4.2).
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• Light color change and shifts: a , b , c and o1 , o2 , o3 in Eq. (4.3).

4.3 Color Histograms

Given the definitions of the illumination changes, we can analyze the color invariance properties

of color histograms. A color histogram depicts the color distribution of the objects in a specific

color space, e.g., RGB, HSV and HSI. Therefore, the color constancy of color spaces determines

the color invariance properties of color histograms. In this section, we describe eight types of color

spaces and their corresponding histograms, and give the proofs of the color invariance properties.

The summary of the color invariance properties of color histograms are shown in Fig. 4.1.

• RGB histogram. The RGB color space has three channels: red, green, and blue. A 3D

histogram can be derived by calculating the number of pixels that have colors in a fixed range

which depends on the number of bins. The RGB histogram has no illumination invariance

properties [van de Sande et al., 2010].

• HSV histogram. The HSV color space has three channels: hue, saturation, and value

(lightness). The formula to convert the RGB color space to HSV is [Smith, 1978]:

V = M (4.4)

S =
C

V
(4.5)

H =



























G−B
6×C i f M = R

B−R
6×C +

1
3

i f M = G
R−G
6×C +

2
3

i f M = B

(4.6)

where M = max(R,G, B) and C = M −min(R,G, B). In case of H < 0, then H = 1−H. The

saturation S is invariant to light intensity changes, which can be proved as follows:

S =
C

V

=
max(Rc,Gc, Bc) − min(Rc,Gc, Bc)

max(Rc,Gc, Bc)

=
max(aRu, aGu, aBu) − min(aRu, aGu, aBu)

max(aRu, aGu, aBu)

=
max(Ru,Gu, Bu) − min(Ru,Gu, Bu)

max(Ru,Gu, Bu)
. (4.7)

It is similar to prove that the hue H is invariant to light intensity and shift changes, but

the intensity value V has no invariance property. We only use H and S channels in the

experiment.
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• nRGB histogram. The nRGB color space is the normalized RGB color space [Gevers and Smeulders,

1999]:
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(4.8)

The nRGB histogram is invariant to light intensity change. Since the nB = 1 − nR − nG, we
only use nR and nG channels in the experiment.

• Opponent histogram. The Opponent color space is defined by:
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The channels O1 and O2 are invariant to light intensity shift, which can be proven by:
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The third channel O3 has no invariance properties, so we use O1 and O2 channels in the

experiment.

• Transformed histogram. The invariants to light color change and shift can be achieved by

normalizing the pixel value distribution [van de Sande et al., 2010]:
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where µi and σi are the estimated mean and standard derivation of the channel i on the

region of interest. After the normalization, the color distribution of each channel is a normal

distribution N(0, 1), so the Transformed histogram is invariant to light color change and

shift.
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• Gaussian histogram. The Gaussian color space was introduced by Geusebroek et al. [2001]:
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where the three components E, Eλ and Eλλ denote the intensity, blue-yellow and green-

red channel. Although the features derived by spatial differential on the Gaussian color

space could offer some invariance properties [Burghouts and Geusebroek, 2009], the Gaus-

sian color histogram itself has no invariance properties to illumination changes.

• Spherical histogram. The Spherical color space given in [van de Weijer et al., 2006] is:
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The first two channels θ and φ are invariant to the light intensity change, but the third channel

r has no invariance properties, so we only use θ and φ channels in the experiment.

• HSI histogram. The HSI color space is defined by:
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where O1, O2 and O3 are defined in Eq. (4.9). Because the O1 and O2 are invariant to light

intensity shift, the components h and i also have this property. In addition, h is invariant to

the light intensity changes. In the experiment, we only use h and s channels .

4.4 Distance Metrics

For histogram based object tracking, first we need to learn a histogram of the known target object

from one image or a set of images. This learned histogram is called target histogram. Then we can

find the object in the other images by matching the target histogram to the candidate histograms

using distance metrics. In this chapter, we uses the Bhattacharyya distance, which is nearly optimal

due to its link to the Bayes error [Comaniciu et al., 2003].

The accuracy of the matching depends not only on the color space, but also on the distance met-

rics between the target histogram and the candidate histogram. Here we use five commonly used
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Figure 4.1: The illumination invariance properties of the color histograms. “+” means invariance

and “-” means lack of invariance.

distance metrics. The Bhattacharyya distance between the target histogram Ht and the candidate

histogram Hc is defined by:

d(Ht,Hc) =
1

√

H̄tH̄cn2

n
∑

i

√

Ht(i)Hc(i), (4.15)

where n is the number of bins in the histogram. Here we assume Ht and Hc have the same number

of bins.

4.5 Experimental Setup

To compare the color histograms, we employ three state-of-the-art trackers: exhaustive search,

mean shift and the particle filter. For all trackers, the target histogram is calculated from the

manually selected object image in the first frame, where the scale of the object is constant. The

experimental setup for each tracker is described in the following.

4.5.1 Exhaustive Search

The exhaustive search might be one of the easiest ways to do object tracking. It searches all image

parts, and compares candidate histograms from each part to the target histogram. Of course, the

computational cost of the exhaustive search is high.
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Porikli [2005] introduced a faster way to calculate image histograms using the integral his-

togram. The integral histogram based searching first calculates an integral histogram image which

has the same size as the original image, but each point in this integral histogram image represents a

histogram of the rectangle image area from the left-top corner to the current pixel. In this way, the

histogram of any rectangular subregion can be easily calculated using simple arithmetics which

are independent of the size of the region.

4.5.2 Mean Shift

Comaniciu et al. [2003] introduced a kernel based mean shift tracking method. As we mentioned

in Section 4.1, an isotropic kernel is used for masking the target representation. The histogram

from the target image is weighted by this kernel. The similarity function used in the kernel based

mean shift is the Bhattacharyya distance, then a gradient optimization method is used to localize

the position of the object in next frames.

The kernel based mean shift is much faster than the exhaustive search, because it only evaluates

the similarity within a limited search region (kernel mask) [Porikli, 2005]. Another advantage of

the mean shift is that the spatial information of the object is added to the histogram using kernel

mask. In this chapter, we employ the kernel with Epanechnikov profile [Comaniciu and Meer,

2002]:

k(x) =















1
2
c−1
d
(d + 2)(1 − ‖x‖2) i f ‖x‖ ≤ 1

0 otherwise
(4.16)

where cd is the volume of a d dimensional sphere, e.g., cd = 2π when d = 2, and ‖x‖ is the

normalized distance to the coordinate center. Fig. 4.2 shows an example of the Epanechnikov

kernel for a 100 × 80 image.
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Figure 4.2: The Epanechnikov kernel mask for a 100 × 80 image.
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4.5.3 Particle Filter

Nummiaro et al. [2003] proposed an adaptive particle filter using weighted color histograms. The

particle filter employs a number of particles to approximate the real probability distribution of the

system state, e.g., the coordinates of the object center. Each particle is a hypothesis of the state.

The particle filter has two steps: the first step is prediction using the motion model of the object.

The second step is the measurement update using the measurement function, e.g., Bhattacharyya

distance for weighted color histograms.

The particle filter can deal with rapid movement if the system dynamics represents the move-

ment of the object very well [Nummiaro et al., 2002]. On the other hand, the particle filter tracks

multiple hypotheses, so it is more reliable for tracking objects in a cluttered environment.

In our experiment, the state of the particle filter is defined by X = {x, y}which is the coordinates
of the object center. The dynamics of the system between frames is given by a normal distribution:

Xi
t = AXi

t−1 + R, (4.17)

where Xi
t is the state of ith particle at time t. A is an identity matrix and R is the covariance of

the noise in the prediction step. In the experiment we define R = diag{152, 152} where diag is the

diagonal function. The measurement function used for weighting particles is defined by:

wi
t =

1
√
2πσ

e
− (di−µ)2

2σ2 , (4.18)

where di is the distance metric value defined in Section 4.4 for the ith particle. The histograms are

weighted by the kernel mask defined in Eq. (4.16). We define σ = 0.2, µ = 1 for the Bhattacharyya

distance.

After resampling on the particle set {Xi
t , i = 1, · · · , n}, a new particle set {X̂i

t , i = 1, · · · , n} is
obtained where n is the number of particles. We set n = 200 in the experiment. The final estimated

result X̄t is derived by the weighted mean of all particles:

X̄t =

n
∑

i

wi
tX̂

i
t . (4.19)

4.5.4 Evaluation Criteria

Given the ground truths, we want to known how good the tracker is, so a criterion to measure

the goodness of localization is required. Here we use the same measurement criterion as in

[Martinkauppi et al., 2002]:

Eo =
Aov

√

AgtAtr

, (4.20)
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where Eo is the similarity between the tracking result and the ground truth, Agt is the area of the

ground truth bounding box, Atr is the area of the tracked bounding box, and Aov is the overlap area

of the ground truth and tracking bounding box. In our experiment, we assume that the scale of the

object does not change, i.e., Atr is constant for a certain dataset.

4.5.5 Datasets

(a) David indoor (b) David outdoor (c) Liu apple (d) Irene apple

(e) almov1 (f) almov2 (g) almov9 (h) almov11

(i) almov12 (j) nomov1 (k) nomov2 (l) nomov3

Figure 4.3: The benchmark datasets used in the evaluation experiment. The dataset nomov4 is not

shown here because it is not permitted to publish.

To compare the color histograms, three benchmark datasets are used in our experiment: Toronto

David [Ross et al., 2008], BCCN Apple and Oulu face [Martinkauppi et al., 2002] which have

many kinds of illumination changes, e.g., light intensity change (shadow and shading), light color

change (different color temperature), light illumination direction change and uneven lights. The

ground truth data of Oulu face is available online [Martinkauppi et al., 2002]. For the other two

datasets, we get the ground truth by manually selecting the object in the images. Some sample

images are shown in Fig. 4.3.

The Toronto David has two subsets for face tracking: David indoor and David outdoor. In
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the subset David indoor, the main light source is a fluorescent lamp. The people walk from

the shadow to the light with different poses, so the light intensity changes and the illumination

direction changes. For the other subset David outdoor, the main light source is natural sun light.

The person walks underneath a trellis with large illumination change and casts shadows while

changing its pose.

The BCCN Apple has two subsets for apple tracking: Liu apple and Irene apple. The light

source is the indoor incandescent lamp. The light intensity changes in the frames, and a strong

interference occurs in the Irene apple sequences where the apple has a similar color as the person’s

cloth.

The Oulu face has nine subsets for face tracking: almov1, almov2, almov9, almov11, almov12,

nomov1, nomov2, nomov3, and nomov4. These frames are recorded under different illumination

conditions: almov1 and almov2 were recorded in the indoor environment with light color changes.

almov9, almov11 and almov12 were recorded in a car but under the natural sun light. nomov1,

nomov2, nomov3, and nomov4 were recorded in the indoor environment with light color change

and pose change.

4.6 Results

4.6.1 Exhaustive Search

The exhaustive search is a method that will search all sub-regions in the image and get the opti-

mum candidate by comparing the distance metric. The goodness value Eo for each candidate is

calculated by Eq. (4.20).

To have a statistical analysis on the performance of each color histogram on a dataset, we

compute the mean of Eo on all the frames which is shown in Fig. 4.4a. From the result, we

conclude that the histograms that have color invariance properties show better performance than

the others, e.g., nRGB is better than RGB and Gaussian. The top three best color histograms

are HSV, Spherical and nRGB color histograms, which shows good performance not only on the

images that have shadow and shading, but also on those that the background has similar appearance

as the object. The Transformed color histogram is only one that is invariant to all illumination

changes, see Fig. 4.1, but it does not work as well as expected. The reason is that we use the

whole image to estimate the mean and variance value, whereas the illuminations for subregions

of the image might come from different light sources, so the estimations might not correct for the

subregions.

Since each video has variety illumination conditions, it is hard to give a conclude about which

color histogram is the best one for the specific illumination condition. However, we can give a

general recommendation for the object tracking under variety illumination conditions. The HSV,

Spherical and nRGB color histograms are recommended based on the results which are showed in
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(a) Exhaustive search
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(b) Mean shift
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(c) Particle filter without kernel
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(d) Particle filter with kernel

Figure 4.4: The comparison between different color histograms using the (a) exhaustive search,

(b) mean shift, (c) particle filter without kernel and (d) particle filter with kernel.

Fig. 4.4a

4.6.2 Mean Shift

The mean shift uses a kernel mask to include the spatial information for the color histograms,

and gives high weight values to the central pixels of the object. The results using different color

histograms are shown in Fig. 4.4b. The mean shift indeed gives better results than the exhaustive

search, since the spatial information is encoded in the histograms. Another reason is that the mean

shift only evaluates the pixels nearby the kernel center, based on the assumption that the object
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moves slowly between frames, which makes the mean shift more robust against background noise.

The results show that the HSV, Spherical and nRGB perform better than the others.

4.6.3 Particle Filter

The particle filter uses a random walk motion model as defined in Eq. (4.17), which equals to

randomly select the candidates from the nearby region. The particle filter can handle larger motion

than the mean shift, and has less computational cost than the exhaustive search.

In order to study the effects of the kernel mask for the color histogram based object tracking,

the particle filter runs twice with and without the kernel mask. The tracking results are shown in

Fig. 4.4c and in Fig. 4.4d respectively. Again, the HSV, Spherical and nRGB have better perfor-

mance than the others. In addition, it is clear that the particle filter with the kernel performs better

than the one without the kernel.

4.7 Conclusion

In this chapter, we presented our evaluation framework on the color invariance properties of color

histograms for the object tracking. The experiments show that the HSV, Sperical and nRGB color

histograms perform better than the others for object tracking in three tracker algorithms. They

have invariant properties against the illumination changes, and show good distinctive capability

compared to the others. Although the Transformed histogram is invariant to all types illumination

changes, it does not work well in our experiment because the true mean and variance of the color

distribution are difficult to estimate, and sensitive to the background noise.

The experiment shows that the performance of the color histograms can be improved by using

the kernel mask. Because the spatial information of the color is embedded into the histogram. The

particle filter with the kernel performs better than without the kernel. On the other hand, the mean

shift and particle filter use the motion information of the object for object tracking, so they are

more robust than the exhaustive search against the background noise.
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Chapter5
Multiple Sensor Fusion

This chapter introduces new sigma-points information filters to improve measurements using mul-

tiple sensors for object tracking. First, we present our central difference information filter (CDIF)

algorithm for nonlinear estimation and multiple sensor fusion in Section 5.2, which has fewer pre-

defined parameters than the unscented information filter (UIF) introduced by [Lee, 2008a]. Then

the square-root extensions of CDIF and UIF are proposed in Section 5.3 and Section 5.4 respec-

tively. These square-root forms have better numerical stability than the orginal ones. Simulation

results of target tracking are presented and discussed in Section 5.5 and 5.6.

5.1 Introduction

The accuracy and robustness of control systems can be improved using fused information from

multiple sensors. Therefore, sensor fusion techniques have been widely studied in many research

fields, i.e., robot navigation, surveillance, and intelligent vehicles [Lee, 2008b]. Recently, the

information filter (IF), which is the dual of the Kalman filter (KF), has attracted much attention

for multiple sensor fusion [Wang et al., 2010b]. Both the IF and the KF represent distributions of

random state variables with Gaussians. However, in contrast to moment parametrization as done

in the KF, the IF uses an information matrix and an information vector to represent the Gaussians.

This difference in parameterization makes the IF superior to the KF concerning multiple sensor

fusion, as computations are simpler and no prior information of the system state is required [Lee,

2008a].

In the case of nonlinear estimation problems, an extended version of the IF can be obtained

using the first order term of the Taylor series expansions of the nonlinear functions, i.e., the dy-

namic and measurement functions of the system, which is called extended information filter (EIF).

This approximation can introduce large errors when the system model is highly nonlinear, and the

higher order terms of Taylor series are important [Van der Merwe, 2004]. To address this issue,
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the unscented information filter (UIF) has been proposed by Kim et al. [2008] and Lee [2008a].

Kim et al. [2008] developed the UIF by using minimum mean square error estimation. In con-

trast, Lee’s UIF algorithm is derived by embedding statistical linear error propagation into the EIF

architecture. Although their methods are different, results are essentially identical [Lee, 2008a;

Kim et al., 2008; Liu et al., 2011b]. The UIF uses a number of deterministic sigma points to cap-

ture the true information matrix and the information vector, which can be accurate up to the second

order of any nonlinearity. However, three parameters (α, β, κ) must be defined for the UIF, which

depend on the system models. As shown in [Lee, 2008a; Wang et al., 2010a], the UIF is superior

to the EIF not only in terms of estimation accuracy but also concerning the convergence speed

for nonlinear estimation and multiple sensor fusion. However, the choice of system parameters

(α, β, κ) can affect the filter’s estimation precision.

In this chapter, we first propose an alternative to the UIF, which we call central difference in-

formation filter (CDIF). Where the UIF uses the unscented transform to compute the sigma points,

the CDIF employs Stirling’s interpolation. As proved in [Van der Merwe, 2004], Stirling’s inter-

polation based central difference Kalman filter (CDKF) has the same or superior performance as

the unscented transform based Kalman filter (UKF), with one advantage over the UKF: Stirling’s

interpolation only needs a single parameter, the interval size h, whereas the unscented transform

needs three [Zhu et al., 2009].

Second, we propose to use square-root forms for both UIF and CDIF, which have shown im-

proved numerical characteristics compared to their regular forms. Here we call them square-root

unscented information filter (SRUIF) and square-root central difference information filter (SR-

CDIF) respectively. The square-root filters predict and update the square-root covariance instead

of the full covariance. In this way, the square-root filters achieve better numerical characteristics

than the regular ones, e.g., improved numerical accuracy, double order precision and preserva-

tion of symmetry [Arasaratnam and Haykin, 2009]. The first square-root filter was developed by

Potter and Stern. [1963] and was used in the Apollo manned mission [Maybeck, 1979]. Since then,

many square-root extensions of conventional filters have been introduced and analyzed. Our work

was inspired by Van der Merwe [2004] who proposed square-root forms of sigma-point Kalman

filters. Here we introduce the square-root extensions of UIF and CDIF and their numerical advan-

tages for solving nonlinear state estimation.

5.2 Central Difference Information Filter

In this section, we present our CDIF framework, which replaces the unscented transform with

Stirling’s interpolation to generate the sigma points. The algorithm includes three steps: prediction,

measurement update and global information fusion.
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5.2.1 Stirling’s Interpolation

Stirling’s interpolation has been used previously with the Kalman filter in the literature, referred

to as the central difference Kalman filter (CDKF) [Zhu et al., 2009; Van der Merwe, 2004]. The

CDKF uses a symmetric set of 2L+1 sigma points to approximate nonlinear functions. In the case

of Gaussian distributions of the system variables, the mean and covariance can be represented by

those sigma points. As we mentioned in Section 5.1, the IF is a dual filter of the KF, such that the

information vector and matrix also can be derived by those sigma points. In this section, we first

show how the mean and covariance are derived using Stirling’s interpolation, then show how the

information vector and matrix are obtained from the mean and covariance.

The 2L + 1 prior sigma points used in Stirling’s interpolation step are given by the prior

mean x̂ plus or minus the columns of the scaled square root of the prior covariance matrix Px

[Van der Merwe, 2004]:

Xi =



































x̂, i = 0

x̂ + (h
√
Px)i, i = 1, · · · , L

x̂ − (h
√
Px)i, i = L + 1, · · · , 2L

(5.1)

where h is a scaling parameter and L is the dimension of the state x̂. The subscript i indicates the

ith column of the matrix. A set of the posterior sigma points can be derived by propagating these

prior sigma points through the nonlinear function g: Zi = g(χi). Furthermore, the estimations of

mean ẑ, covariance Pz and cross-covariance Pxz are obtained as follows:

z ≈
2L
∑

i=0

w
(m)

i
Zi (5.2)

Pz ≈
L

∑

i=1

w
(c1)

i
(Zi −Zi+L)(Zi −Zi+L)

T

+

L
∑

i=1

w
(c2)

i
(Zi +Zi+L − 2Z0)(Zi +Zi+L − 2Z0)

T (5.3)

Pxz ≈
√

w
(c1)

1
Px(Z1:L −ZL+1:2L)

T . (5.4)
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The corresponding weights for the mean and covariance are defined as

w
(m)

0
= h2−L

h2

w
(m)

i
= 1

2h2 ,

w
(c1)

i
= 1

4h2 ,

w
(c2)

i
= h2−1

4h4 , i = 1, · · · , 2L

(5.5)

As proved in [Van der Merwe, 2004], if the random variables obey a Gaussian distribution,

the optimal value of h is
√
3. Stirling’s interpolation only depends on one parameter, the interval

size h, in contrast to three parameters (α, β, κ) which are required in the unscented transform. This

makes Stirling’s method simpler and easier to tune.

5.2.2 Prediction

Here we consider the discrete-time nonlinear dynamic system

xk = F(xk−1, v), (5.6)

where xk is the state vector of the system at time step k, and v ∼ N(v,Rv) is Gaussian noise.

First, the state vector is augmented with the noise variable and the corresponding augmented

covariance matrix is derived by:

x
av
k−1 =















xk−1

v















, P
av
k−1 =















Pk−1 0

0 Rv















. (5.7)

A symmetric set of 2L + 1 sigma points is generated:

Xav
i,k−1 =
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av
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av
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P
av
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(5.8)

where h is a scaling parameter and L is the dimension of the state x
av
k−1. The subscript i indicates the

ith column of the matrix. Each sigma pointXav
i,k−1 contains the state and noise variable components

Xav
i,k−1 =















Xx
i,k−1
Xv

i,k−1















. (5.9)

These sigma points are further passed through the nonlinear function Eq. (5.6), such that the pre-

dicted sigma points for the discrete time k are derived as:

Xx
i,k|k−1 = F(Xx

i,k−1,X
v
i,k−1). (5.10)
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Finally, the first two moments of the predicted state vector are obtained by weighted sum of the

transformed sigma points:

x̂k =

2L
∑

i=0

wm
i Xx

i,k|k−1 (5.11)

P̂k =

L
∑

i=1

w
(c1)

i
αiα

T
i +

L
∑

i=1

w
(c2)

i
βiβ

T
i , (5.12)

where αi = Xx
i,k|k−1−X

x
i+L,k|k−1 and βi = X

x
i,k|k−1+X

x
i+L,k|k−1−2X

x
0,k|k−1. The corresponding weights

for the mean and covariance are defined as
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= 1

2h2 ,

w
(c1)

i
= 1

4h2 ,

w
(c2)

i
= h2−1

4h4 , i = 1, · · · , 2L

(5.13)

where h ≥ 1 is the scalar central difference step size. If the random variables obey a Gaussian

distribution, the optimal value of h is
√
3 [Van der Merwe, 2004].

As stated in [Anderson and Moore, 1979], the information matrix and information vector are

the dual of the mean and covariance, so that the predicted information matrix Ŷk and the informa-

tion vector ŷk are derived as:

ŷk = Ŷk x̂k (5.14)

Ŷk = (P̂k)
−1. (5.15)

5.2.3 Measurement Update

The measurement function of the nonlinear system is defined as

zk = H(xk) + n, (5.16)

where zk is the measurement and n ∼ N(n,Rn) is the Gaussian noise of the measurement.

The sigma points used for the measurement update are derived as:

Xi,k|k−1 =



































x̂k, i = 0

x̂k + (h
√

P̂k)i, i = 1, · · · , L

x̂k − (h
√

P̂k)i, i = L + 1, · · · , 2L

(5.17)

The predicted measurement points are obtained by transforming the sigma points through Eq. (5.16)

Zi,k|k−1 = H(Xi,k|k−1). (5.18)
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Furthermore, the mean and cross-covariance are derived by:

ẑk =

2L
∑

i=0

wm
i Zi,k|k−1 (5.19)

P̂xkzk =

√

w
(c1)

1
P̂k(Z1:L −ZL+1:2L)

T . (5.20)

Finally, the measurement update of the information vector and the information matrix are

derived as:

yk = ŷk + φk (5.21)

Yk = Ŷk + Φk (5.22)

where φk and Φk are information contribution terms for the information vector and matrix respec-

tively, which can be derived by:

φk = ŶkP̂xkzkR
−1
n (zk − ẑk + P̂T

xkzk
ŷk) (5.23)

Φk = ŶkP̂xkzkR
−1
n (P̂xkzk )

T (Ŷk)
T . (5.24)

The derivation of Eq. (5.23) and Eq. (5.24) are referred to [Lee, 2008a; Kim et al., 2008].

5.2.4 Global Information Fusion

For multiple sensor fusion, if the measurement noises between the sensors are uncorrelated, the

measurement update for information fusion is simply expressed as a linear combination of the

local information contribution terms [Chong, 1979]:

yk = ŷk +

N
∑

i=1

φi,k (5.25)

Yk = Ŷk +

N
∑

i=1

Φi,k, (5.26)

where N is the number of sensors. Eq. (5.25) and Eq. (5.26) show the main advantage of the

information filters, which is the efficient measurement update. This superiority makes information

filters more suitable for multiple sensor fusion than the Kalman filters. Note that the information

matrix Yk is the inverse of the covariance matrix Pk as shown in Eq. (5.15). When there is no prior

information concerning the initial state, the Kalman filters are hard to cope with this situation

since Pk is infinite. However, the information filters can deal with this special situation well with

Yk = (Pk)
−1 = 0. Other comparisons between information filters and Kalman filters can be found

in [Anderson and Moore, 1979].
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5.3 Square-Root Central Difference Information Filter

The CDIF requires the square-root of the covariance to calculate the sigma-points in each discrete

time update and measurement update, as shown in Eq. (5.8) and Eq. (5.17). The square-root

operation is computationally expensive and demands that the covariance matrix must be positive

semi-definite. To avoid the square-root operation and improve the numerical stability, we introduce

the square-root central difference information filter (SRCDIF).

The square root form has important numerical advantages over the regular one: First, since

the square-root of the covariance matrix is directly available, the SRCDIF saves computational

cost for generating the sigma-points. Second, the numerical accuracy is improved because the

condition number of the square root of the covariance matrix is only half of the covariance matrix

[Anderson and Moore, 1979]. Third, the square-root filters can achieve twice the effective preci-

sion of the regular forms [Arasaratnam and Haykin, 2008]. Fourth, the symmetry and nonnegative

properties of the covariance matrix are kept [Anderson and Moore, 1979].

5.3.1 SRCDIF for State Estimation

The SRCDIF benefits from three powerful matrix factorization techniques: QR decomposition,

Cholesky factor updating and efficient least squares. In the following, we will use qr, chol, cholup-

date to refer to the QR decomposition, Cholesky decomposition, and Cholesky factor updating

respectively

• QR decomposition. In the CDIF, the square-root of the covariance matrix S is derived by

Cholesky decomposition on P: S = chol(P)T where S is a lower triangular matrix and

fulfills P = S S T . If we know P = AAT , the square-root factor S can be directly calculated

from A by QR decomposition: S = qr(A)T . If the matrix A ∈ RL×N , then the computational

complexity of a QR decomposition is O(NL2).

• Cholesky factor updating. If the original update of the covariance matrix is P ± uuT and S

is the Cholesky factor, then the rank 1 update of S is S = cholupdate(S , u,±) where u is the
update vector and ± means the positive (+) or negative (−) update. The positive update is
usually numerical stable, but the negative update may destroy the positive definite property

of S [Arasaratnam and Haykin, 2008; Seeger, 2004]. If u is a matrix, we can update each

column of u one by one in a loop. For each column vector, the computational complexity

is O(L2). This procedure can alternatively be implemented as S = qr([S ± u]T ) using QR

decomposition without the loop updates.

• Efficient least squares. The least squares solution for the linear equation Px = b can be

solved efficiently using forward and back substitution if the Cholesky factor S is known and
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Algorithm 11 SRCDIF for state estimation

• Initialization:

x0 = E(x), S x0 = chol
{

E
(

(x − x0)(x − x0)
T
)}

, S v =
√
Rv and S n =

√
Rn.

• For k = 1, · · · ,∞:

1. Generate sigma points for prediction:

x
av
k−1 =

[

xk−1
v

]

, S
av
k−1 =

[

S xk−1
0

0 S v

]

(5.27)

Xav
k−1 =

[

x
av
k−1 x

av
k−1 + hS

av
k−1 x

av
k−1 − hS

av
k−1

]

(5.28)

2. Prediction equations:

Xx
k|k−1 = F(Xx

k−1,X
v
k−1, uk−1) (5.29)

x̂k =

2L
∑

i=0

w
(m)

i
Xx

i,k|k−1 (5.30)

A =

√

w
(c1)

1

(

Xx
1:L,k|k−1 − X

x
L+1:2L,k|k−1

)

(5.31)

B =

√

w
(c2)

1
(Xx

1:L,k|k−1 + X
x
L+1:2L,k|k−1 − 2X

x
0,k|k−1) (5.32)

Ŝ xk = qr {[A B]} (5.33)

ŷk = Ŝ −Txk
(

Ŝ −1xk x̂k
)

(5.34)

Ŝ yk = qr
{

Ŝ −1xk I
}

(5.35)

3. Generate sigma points for measurement update:

Xk|k−1 =
[

x̂k x̂k + hŜ xk x̂k − hŜ xk

]

(5.36)

4. Measurement update equations:

Zk|k−1 = H
(Xk|k−1

)

(5.37)

ẑk =

2L
∑

i=0

w
(m)

i
Zi,k|k−1 (5.38)

P̂xkzk =

√

w
c1

1
Ŝ xk [Z1:L,k|k−1 −ZL+1:2L,k|k−1]

T (5.39)

U = Ŝ −Txk
(

Ŝ −1xk P̂xkzk

)

S −Tn (5.40)

yk = ŷk + US −1n (zk − ẑk + P̂T
xkzk

ŷk) (5.41)

S yk = cholupdate{Ŝ yk ,U,+} (5.42)
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satisfies P = S S T . For example, we can solve the linear equation Px = b by x = S −T (S −1b).

This operation has computational complexity O(L2).

The whole process is shown in Algorithm 11, where h is the scaling parameter, L is the di-

mension of the state, Rv and Rn are the process noise covariance and observation noise covariance

respectively, w
(m)

i
and w

(c)

i
are weights calculated in Eq. (5.13), and I is the identity matrix.

In the prediction step, the Cholesky factor Ŝ xk is updated using QR decomposition on the

weighted sigma points. This step replaces the P̂k update in Eq. (5.12) and has the complexity

O(L3). The information vector ŷk = P̂−1
k
x̂xk = Ŝ −Txk

(

Ŝ −1xk x̂k
)

is derived using efficient least squares

in Eq. (5.34). Because Ŝ xk is a square and triangular matrix, we can directly use back-substitution

for solving ŷk without the need for matrix inversion. The back substitution only requires O(L2).
Next is the calculation of the square-root information matrix Ŝ yk in Eq. (5.35). This step requires a

QR decomposition since Ŝ yk is a upper triangular matrix and Ŝ xk is a lower triangular matrix. Ŝ yk

and Ŝ xk meet Ŝ T
yk
Ŝ yk = Ŝ −Txk Ŝ

−1
xk
. To avoid the inversion, here we use efficient least squares to solve

Ŝ −1xk as Ŝ −1xk I, where I is the identity matrix.

In the measurement update step, the updated information vector in Eq. (5.41) is derived from

Eq. (5.21) as follows:

yk = ŷk + ŶkP̂xkzkR
−1
n (zk − ẑk + P̂T

xkzk
ŷk)

= ŷk + P̂−1k P̂xkzkR
−1
n (zk − ẑk + P̂T

xkzk
ŷk)

= ŷk + (Ŝ xk Ŝ
T
xk
)−1P̂xkzk (S nS

T
n )
−1(zk − ẑk + P̂T

xkzk
ŷk)

= ŷk + Ŝ
−T
xk
(Ŝ −1xk P̂xkzk )S

−T
n S −1n (zk − ẑk + P̂T

xkzk
ŷk)

= ŷk + US −1n (zk − ẑk + P̂T
xkzk

ŷk), (5.43)

where U = Ŝ −Txk (Ŝ
−1
xk
P̂xkzk )S

−T
n as shown in Eq. (5.40). Since Ŝ xk and S n are square and triangular

matrices, yk can be calulated using efficient least squares without the matrix inverse. The updated

information matrix in Eq. (5.22) can be rewritten as:

Yk = Ŷk + ŶkP̂xkzkR
−1
n (P̂xkzk )

T (Ŷk)
T

= Ŷk + ŶkP̂xkzkS
−T
n S −1n (ŶkP̂xkzk )

T

= Ŷk + ŶkP̂xkzkS
−T
n (ŶkP̂xkzkS

−T
n )T

= Ŷk + UUT . (5.44)

Because Ŝ yk is the Cholesky factor of the information matrix Ŷk, the updated Cholesky factor

S yk of Yk can be derived using the Cholesky update. If the observation dimension is M, the

updated square-root information matrix S yk is calculated in Eq. (5.42) by applying anM-sequential

Cholesky update to Ŝ yk . The columns of matrix U are update vectors. This sequential Cholesky

update only requires O(L2M).
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5.3.2 SRCDIF for Multiple Sensor Fusion

In the case where information from multiple sensors is available, i.e., N > 1, we can fuse this

using the Square-Root CDIF. For the ith sensor, the information contribution for the information

vector is

φi,k = US −1n (zk − ẑk + P̂T
xkzk

ŷk) (5.45)

where U is defined in Eq. (5.40). The information contribution for the square-root information

matrix is

S i,φk = U. (5.46)

The final estimated result is derived by:

yk = ŷk +

N
∑

i=0

φi,k (5.47)

S yk = cholupdate{Ŝ yk , [S 1,φk S 2,φk · · · S N,φk ],+}. (5.48)

5.4 Square-Root Unscented Information Filter

In this section we consider the square-root implementation of the UIF. Because the UIF uses the

unscented transform to calculate the sigma points, the architecture of the Square-Root unscented

information filter (SRUIF) has few differences from the SRCDIF. As mentioned in Section 5.3, the

main techniques behind the square-root form estimators are: QR decomposition, Cholesky factor

updating and efficient least squares. We show how to use these in the SRUIF in the following.

The SRUIF is shown in Algorithm 12, where γ =
√
(λ + L) in Eq. (5.50) is the composite

scaling parameter, λ = α2(L + κ) − L, α and κ are scaling parameters that determine how far the

sigma points spread from the mean value [Van der Merwe, 2004], L is the dimension of the state,

Rv and Rn are process noise covariance and observation noise covariance respectively, w
(m)

i
andw

(c)

i

are weights calculated by wm
0
= λ

L+λ
, wc

0
= λ

L+λ
+ (1 − α2 + β), wm

i
= wc

i
= 1

2(L+λ)
i = 1, · · · , 2L,

and sign{}̇ in Eq. (5.55) is the signum function.

We compare the SRUIF in Algorithm 12 to the SRCDIF in Algorithm 11. First, the SRUIF

uses the unscented transform to calculate the sigma points in Eq. (5.50) and Eq. (5.58), where the

scaling parameter becomes γ =
√
(λ + L) and λ = α2(L + κ) − L. In contrast to only one scaling

parameter h used in the SRCDIF, the SRUIF depends on three parameters λ, α and κ. Second,

since the weight w
(c)

0
might be negative, we need an additional cholupdate to update the Cholesky

factor Ŝ xk in Eq. (5.55), whereas the SRCDIF does not need this step since all weights used for

the covariance update are positive. As we mentioned in Section 5.3.1, the negative update might

destroy the positive definite property of the Cholesky factor, such that the SRCDIF is preferable

to the SRUIF concerning the numerical stability. Finally, for multiple sensor fusion, the SRUIF is
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Algorithm 12 SRUIF for state estimation

• Initialization:

x0 = E(x), S x0 = chol
{

E
(

(x − x0)(x − x0)
T
)}

, S v =
√
Rv and S n =

√
Rn.

• For k = 1, · · · ,∞:

1. Generate sigma points for prediction:

x
av
k−1 =

[

xk−1
v

]

, S
av
k−1 =

[

S xk−1
0

0 S v

]

(5.49)

Xav
k−1 =

[

x
av
k−1 x

av
k−1 + γS

av
k−1 x

av
k−1 − γS

av
k−1

]

(5.50)

2. Prediction equations:

Xx
k|k−1 = F(Xx

k−1,X
v
k−1, uk−1) (5.51)

x̂k =

2L
∑

i=0

w
(m)

i
Xx

i,k|k−1 (5.52)

Ŝ xk = qr

{

√

w
(c)

1

(

Xx
1:2L,k|k−1 − x̂k

)

}

(5.53)

C =

√

w
(c)

0

(

Xx
0 − x̂k

)

(5.54)

Ŝ xk = cholupdate
{

Ŝ xk ,C, sign{w
(c)

0
}
}

(5.55)

ŷk = Ŝ −Txk
(

Ŝ −1xk x̂k
)

(5.56)

Ŝ yk = qr
{

Ŝ −1xk I
}

(5.57)

3. Generate sigma points for measurement update:

Xk|k−1 =
[

x̂k x̂k + γŜ xk x̂k − γŜ xk

]

(5.58)

4. Measurement update equations:

Zk|k−1 = H
(Xk|k−1

)

(5.59)

ẑk =

2L
∑

i=0

w
(m)

i
Zi,k|k−1 (5.60)

P̂xkzk =

2L
∑

i=0

w
(c)

i
[Xi,k|k−1 − x̂−k ][Zi,k|k−1 − ẑk]T (5.61)

U = Ŝ −Txk
(

Ŝ −1xk P̂xkzk

)

S −Tn (5.62)

yk = ŷk + US −1n (zk − ẑk + P̂T
xkzk

ŷk) (5.63)

S yk = cholupdate{Ŝ yk ,U,+} (5.64)
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equivalent to the SRCDIF in Eq. (5.47) and Eq. (5.48).

5.5 Experiment on Sensor Fusion

5.5.1 Space-Vehicle Tracking

To demonstrate the performance of the CDIF, UIF and their square-root forms SRCDIF and SRUIF,

here we consider a classic space-vehicle reentry tracking problem, which was used in [Lee, 2008a;

Julier and Uhlmann, 2004; Särkkä, 2008]. Two radars, which measure range and bearing, are used

for tracking a high speed vehicle. The true trajectory of this vehicle is shown in Fig. 5.1.

The state space of the filter consists of the position (x1 and x2), the velocity (x3 and x4) and

a parameter related to the aerodynamic force x5. As described in [Julier and Uhlmann, 2004], the

vehicle state dynamics for the discrete case are given by

x1(k + 1) = x1(k) + ∆tx3(k)

x2(k + 1) = x2(k) + ∆tx4(k)

x3(k + 1) = x3(k) + ∆t(D(k)x3(k) +G(k)x1(k)) + v1

x4(k + 1) = x4(k) + ∆t(D(k)x4(k) +G(k)x2(k)) + v2

x5(k + 1) = x5(k) + ∆tv3,

(5.65)

where v1, v2 and v3 are Gaussian process noises, D(k) is the drag-related force,G(k) is the gravity-

related force, and ∆t = 0.1s is the sampling time. The force terms are given by

D(k) = β(k)V(k)exp
{

R0−R(k)
H0

}

G(k) = − Gm0

R3(k)
,

(5.66)

where β(k) = β0 exp {x5(k)}, R(k) =
√

x2
1
(k) + x2

2
(k) is the distance between the vehicle and the

earth center, and V(k) =

√

x2
3
(k) + x2

4
(k) is the vehicle’s speed. The constants in Eq. (5.66) are

defined as: β0 = −0.59783,H0 = 13.406,Gm0 = 3.9860 × 105,R0 = 6374. The discrete process

noise covariance in our simulation is defined by

Rv = diag(2.4064 × 10−5, 2.4064 × 10−5, 10−6), (5.67)

where diag means the diagonal matrix. The vehicle is tracked by two radars which are located at

(xs, ys), where s = 1, 2, and the measurements model is

rs(k) =
√

(x1(k) − xs)2 + (x2(k) − ys)2 + er,s
θs(k) = tan−1

(

x2(k)−ys
x1(k)−xs

)

+ eθ,s,
(5.68)

where [er,s, eθ,s]
T ∼ N(0,Rn,s) is the measurement noise. In the simulation, the radars are located
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Figure 5.1: Earth surface, radar position and the real trajectory of the vehicle.

at (x1, y1) = (6474, 0) and (x2, y2) = (6475,−30), and their measurement noise variances are

Rn,1 = diag((1 × 10−3)2, (1.7 × 10−4)2)
Rn,2 = diag((2 × 10−3)2, (1.7 × 10−4)2).

(5.69)

The initial true state and the covariance of the vehicle are given by

x0 = [6500.4, 349.14,−1.8093,−6.7967, 0.6932]T

P0 = diag(10−6, 10−6, 10−6, 10−6, 0),
(5.70)

and the prior state and the covariance are given by

x̂0 = [6500.4, 349.14,−1.8093,−6.7967, 0]T

P̂0 = diag(10−6, 10−6, 10−6, 10−6, 1),
(5.71)

which are the same as those used in [Julier and Uhlmann, 2004].

The time step ∆t in Eq. (5.65) is set to 0.1s, and measurements from both radars are received

during each step, such that the observation frequency of both radars is 10Hz.

The results of the simulation are derived from 100 Monte Carlo simulations, and summarized

in Table 5.1, where UIFa, CDIFa, SRUIFa and SRCDIFa consider only the measurement from

the first radar, and UIFb, CDIFb, SRUIFb and SRCDIFb consider measurements from both radars.

The results indicate that, all filters have almost identical RMSE over time (at least to the fourth

decimal place). This is to be expected, since the advantage of the square-root forms is that they
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have better numerical stability than the regular forms in the case of ill conditions, e.g., near perfect

measurement (see our second experiment in Section 5.6). However, the square-root forms run

slightly faster than the regular forms when two sensors are available, e.g., the SRCDIF has the

lowest computational cost in this simulation. In addition, the filters can achieve more accurate

results by fusing two sensors as we expected.

Table 5.1: Means (E) and standard deviations (STD) of RMSE values of the position and average

run time in 100 Monte Carlo runs of the space-tracking problem

Number of Sensors Method E[RMSE] STD[RMSE] Average run time(s)

UIFa 0.0083 0.0007 4.0632

One CDIFa 0.0083 0.0007 3.5140

SRUIFa 0.0083 0.0007 4.0667

SRCDIFa 0.0083 0.0007 3.5022

UIFb 0.0060 0.0005 5.3660

Two CDIFb 0.0060 0.0005 4.6454

SRUIFb 0.0060 0.0005 5.3364

SRCDIFb 0.0060 0.0005 4.5743

5.5.2 Bearing-Only Tracking

In this section, we consider a nonlinear bearing-only tracking (BOT) problem using the UIF,

CDIF, SRUIF and SRCDIF and compare their performances. The bearing-only tracking prob-

lem has become an important benchmark for different probability inference methods. By solv-

ing a BOT problem on a moving sensor platform, Bar-Shalom et al. [2001] analyzed the per-

formance of the Taylor linearization in the EKF, Lin et al. [2002] compared the performance of

the EKF, pseudo-measurement filter and particle filter, and Sadhu et al. [2004] proposed a new

track-loss criterion for the comparison between the EKF and the square-root UKF. In addition,

Hartikainen and Särkkä [2008] developed a toolbox which includes the comparison between the

UKF, the EKF, and their smoothers by solving the BOT problem with static sensors.

Here we use the same system model as in [Hartikainen and Särkkä, 2008]. A moving target

object is tracked by two static angular sensors. The discrete time update of the dynamic object on

time step k is

xk =
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xk−1 + vk−1 (5.72)

where the system state is xk = (xk, yk, ẋk, ẏk)
T , which includes the target position (xk, yk) and

velocity (ẋk, ẏk). ∆t is the time interval between time step k and k − 1, which is set to ∆t = 0.01 in
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the simulation. vk−1 is Gaussian noise with zero mean and the covariance is

Rv =
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β (5.73)

where β is the spectral density of the noise [Hartikainen and Särkkä, 2008] and set to β = 0.1 in

our experiment. The target is tracked by sensors located at (xs, ys), where s = 1, 2 in the case of

two sensors. The measurement model of the sth sensor is defined as

θs = tan−1
(

yk − ys
xk − xs

)

+ eθ,s (5.74)

where eθ,s ∼ N(0,Rn,s) is the measurement noise of the sth sensor. The sensors are located at

(x1, y1) = (−1,−2) and (x2, y2) = (1, 1), and their measurement noise variances are Rn,1 = Rn,2 =

0.052. The initial prior state x̂0 and the covariance P̂0 are given by:

x̂0 = [0, 0, 1, 0]T (5.75)

P̂0 = diag(0.1, 0.1, 10, 10). (5.76)

To achieve a curved trajectory the target has a randomized acceleration in our simulation

[Hartikainen and Särkkä, 2008]. The estimated results from different filters are summarized in

Table 5.2. It can be seen that the UIF and SRUIF have equal accuracy, as do the CDIF and the

SRCDIF. Here we only show the comparison between the SRUIF and SRCDIF in Fig. 5.2. When

only one sensor is available, the filters are hardly able to track the target and have very large RMSE

errors as can be seen in Fig. 5.2a. Although the CDIFs still run faster than the UIFs in this simu-

lation, the CDIFs have larger errors and covariances at the beginning of the trajectory. The filters

achieve better results by fusing one more sensor which is shown in Fig. 5.2b.

Table 5.2: Means (E) and standard deviations (STD) of RMSE values of the position and average

run time in 100 Monte Carlo runs of the bearing-only tracking

Number of Sensors Method E[RMSE] STD[RMSE] Average run time(s)

UIFa 0.6435 0.1364 0.5169

One CDIFa 0.6647 0.1638 0.3512

SRUIFa 0.6435 0.1364 0.5042

SRCDIFa 0.6647 0.1638 0.3596

UIFb 0.1127 0.0277 0.8240

Two CDIFb 0.1147 0.0294 0.5760

SRUIFb 0.1127 0.0277 0.7952

SRCDIFb 0.1147 0.0294 0.5736
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Figure 5.2: Comparison between the ground truth and the estimated trajectory for bearing-only

tracking. (a): the comparison results when only one sensor is available. (b): the comparison

results by fusing two sensors.

5.6 Experiment on Numerical Stability

To demonstrate the improved numerical characteristics of the proposed square-root filters, we

consider a classic space-vehicle reentry tracking problem as shown in Section 5.5.1. In this exper-

iment, The vehicle is tracked by a radar which is located at (xs, ys), and the measurement model

is

rs(k) =
√

(x1(k) − xs)2 + (x2(k) − ys)2 + er,s(k)
θs(k) = tan−1

(

x2(k)−ys
x1(k)−xs

)

+ eθ,s(k),
(5.77)

where [er,s(k), eθ,s(k)]
T ∼ N(0,Rs(k)) is the measurement noise. In the simulation, the radar is

located at (xs, ys) = (6474, 0) and the measurement noise variance is

Rs(k) = diag(e2, e2), (5.78)

where e is a small number and meets e ≪ 1, 1 + e
r
, 1 and 1 + e2

r
= 1. Here

r
= means equality due

to rounding.

In addition, we set the scaling parameter h =
√
3 in CDIF and SRCDIF, (α = 0.001, β =

2, κ = −2) in UIF and SRUIF. The results of the simulation are derived from 100 Monte Carlo

simulations.

It is well known that the cumulative effects of round-off errors eventually cause the esti-

mated covariances to drift away from symmetry and positive definiteness [Howard and Jebara.,
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Figure 5.3: Root mean square error (RMSE) in (a) position, (b) velocity and (c) aerodynamic force

(x5) estimations of the SRCDIF.
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2005]. To illustrate the improved numerical characteristics of square root filters against the round

off error, we set the measurement noise to be e2 where e is the distance from 1.0 to the next

larger double precision number as shown in Eq. (5.78) [Maybeck, 1979]. On the other hand, the

near perfect measurement often causes the estimated covariance to be non-positive definite too

[Arasaratnam and Haykin, 2008]. Since e is a very small number, it can be used to test the pro-

posed square-root filters against the near perfect measurement as well. In the simulation, we set

e = 2−52 for a 32bit system.

The simulation shows that only SRCDIF successfully run over all 100Monte Carlo simulations

as shown in Fig. 5.3, whereas CDIF, UIF and SRUIF failed to maintain the positive definiteness

of the covariance matrix. Here the SRUIF can not enjoy the same numerical advantages as the

SRCDIF, because the negative weight used in Eq. (5.55) destroyed the positive definiteness of

resulting matrix.

5.7 Conclusion

In this chapter, a new central difference information filter (CDIF) algorithm for multiple sensor

fusion and target tracking was presented. It is analogous to the UIF, but uses Stirling’s interpo-

lation instead of the unscented transform. Therefore, the CDIF only depends on one parameter

(interval size) in contrast to three parameters which are required in the unscented transform. This

makes the CDIF simpler, faster and easier tune than the UIF. Furthermore, we have introduced

the square-root extensions of the CDIF and UIF. Although the proposed square-root forms have

the same computational complexity as the regular ones, i.e., O(L3), the SRCDIF and SRUIF have

better numerical properties, such as the improved numerical accuracy, double order precision and

preservation of symmetry. In addition since the square-root of the covariance matrix is directly

available, the SRCDIF and SRUIF can save computational costs in the step of sigma-point calcula-

tion. From the simulation, we conclude that the SRCDIF outperforms the others against the round

off errors and near perfect measurements. The reason that SRUIF has failed in our simulation is

that the negative weight used in the unscented transform causes non-positive eigenvalues of the

resulting matrix. In the future, we plan to investigate their performances with different sensor net-

work architectures [Lee, 2008b], and further improve the estimation accuracies, e.g., by combining

the proposed filters with the adaptive consensus algorithm [Casbeer and Beard, 2009; Wang et al.,

2010b].



Chapter6
General Discussion

The main goal tackled in this thesis was how to improve the measurements in the Bayesian filtering

framework for visual object tracking. We addressed three ways to improve the measurements,

which are multiple visual cues, color invariant histograms and multiple sensor fusion. In this

chapter, we will conclude the thesis, and evaluate the proposed methods and discuss the plans for

future works.

6.1 Summary

Efficient and sufficient measurements of objects play a key role in visual object tracking. Visual

object tracking is an important task for real world applications, e.g., intelligent surveillance, face

recognition, smart room and intelligent robots. In order to track an object in image sequences

recorded by cameras, A necessary prior step is to compute its appearance features, such as color,

shape, texture, structure, etc. In the images, these appearance features are represented by visual

cues which can be used as measurements of an object in a tracker. Because of geometric distortions

and lighting changes, these visual cues usually are not always identical to the true appearance

features. For instance, parallel lines in the real world are often not parallel in images, and the

same object can have different colors under different lighting conditions. In addition, a single

image usually provides only a partial information of objects, i.e., it may happen that only part

of an object is visible. This partial information sometimes are not sufficient to distinguish the

target object from other objects. Therefore, how to utilize efficient and sufficient visual cues as

measurements for object tracking is an important and difficult problem. In order to obtain efficient

and sufficient visual cues, we suggested to use multiple visual cues, color invariant features and

multiple sensors, according to our main hypothesis mentioned in Chapter 1.

To illustrate how multiple visual cues can improve the measurements of object tracking, we

selected lane tracking as a representative application, as shown in Chapter 3. In order to reveal
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the effectiveness of our method for combining multiple visual cues, we introduced two measure-

ment model: one uses the multiple kernel density estimation to combine the color and intensity

gradient (magnitude and direction) information, and the other one uses a simple combination of

the color and edge (thresholded gradient magnitude) information. Clearly, the main differences

between two measurement models are whether the gradient direction is used, whether the gradient

magnitude is thresholded and whether the multiple kernel density is employed. As we expected,

the experimental results show that the tracker using the former measurement can achieve better

performance than the latter. Therefore, we have proved the idea that using multiple visual cues as

measurements indeed can improve the performance of object tracking.

We given an evaluation framework of color invariant histograms to show how color invariant

features can improve the measurements of object tracking in Chapter 4. Color histograms have

been widely used for object tracking, due to their simplicity and effectiveness. However, they are

susceptible to illumination changes. Therefore, it is necessary to investigate the color invariant

properties of color histograms. The prior evaluations of color histograms mainly focus on appli-

cations concerning the classification. In our thesis, we evaluated the color invariant properties

of color histograms for object tracking. The experiments was demonstrated on 13 open-access

datasets, and 8 color histograms have been evaluated. As we expected, the results of our eval-

uations indicate that the trackers with color histograms that have color invariant properties, e.g.,

HSV, nRGB and Spherical, perform better than the ones that using color variant histograms, e.g.,

RGB. Consequently, our experiments prove that using color invariant features as measurements

can improve the performance of object tracking.

We proposed new Bayes filters for multiple sensor fusion, which can improve the performance

of object tracking by using the measurements from multiple sensors, as shown in Chapter 5. As

discussed in Chapter 2, information filters have advantages for solving multiple sensor fusion

problems, due to their simplicity in the measurement update step. In this thesis, we first introduced

a new nonlinear information filter, which is called central difference information filter (CDIF).

This CDIF has fewer predefined parameters than the unscented information filter (UIF) which has

been introduced by [Lee, 2008a; Kim et al., 2008] recently. In addition, we introduced square-root

extensions of the CDIF and UIF, which have better numerical characteristics. Finally, we tested

the proposed information filters for solving sensor fusion problems in two simulations of object

tracking: bearing-only tracking and reentry vehicle tracking. As we expected, the simulation

results illustrate that the tracker can achieve better estimation accuracy by using multiple sensors.

In addition, the square-root version of CDIF is more robust than the others against round-off errors

and near perfect measurements for object tracking.

In this dissertation, we propose to improve the measurements in the Bayesian filtering frame-

work for object tracking by using multiple visual cues, color invariant features and multiple sen-

sors. This main hypothesis has been systematically tested and verified by a number of experiments,
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and we can conclude that the performance of object tracking indeed can be improved by using mul-

tiple visual cues, color invariant features and multiple sensors. Besides our achievements, there

are also some limitations in our work, which will be analyzed in the following section.

6.2 Discussion

In the last section, we summarized the achievements in this dissertation. Now we would like to

discuss the implications and limitations of our work.

For the fusion of multiple visual cues, we use a combination of color and shape together with

multiple kernel density. We already showed that, for the application of lane tracking, our approach

led to improvements. We want to point out that these improvements are not limited to the presented

application. The possible extensions of our work are as follows: first, for objects which have a

similar shape, i.e., parabolic or linear-parabolic shape, we can directly use our estimation method

for tracking. For example, the human eyelid can be modeled by a parabolic shape [Liu et al.,

2009], so we can use our method to detect and track eyelids, which is a very important process

for iris recognition. Second, multiple kernel density estimation offers a natural way to estimate

any shape from local visual cue elements, so it is also possible to use this method for estimating

other shapes. Therefore, our idea can be employed in more applications, e.g., cell detection for

medical care where cells can be modeled by circular shapes [Cao et al., 2009]. In contrast to our

presented shape estimation, the color feature of the lane markers is very simple, so we did not

need a complex method to estimate the color feature of lane markers. However, for some objects

which require the color feature for identification, e.g., a colorful cup, the color feature can be very

complex. In this case, we require a more elaborate method for color feature estimation from local

visual cues. In addition, other features can be used for fusion, e.g., texture, which was shown to

be important for tracking certain objects that usually have a specific pattern, e.g., zebras. Despite

these possible extensions, we have shown the effectiveness of using multiple visual cues in the

application of lane tracking, and our lane shape estimation method can be used for solving general

shape estimation problems in other fields.

To evaluate color invariant features, we introduced a framework for evaluating color his-

tograms. As far as we know, this is the first work in the literature to evaluate the color invari-

ant properties of color histograms concerning the problem of object tracking! By analyzing the

experimental results, we concluded that the tracker can achieve better result by using color his-

tograms which have color invariant properties. In particular, we recommend three color invariant

histograms for practical use, i.e., HSV, nRGB and Spherical color histograms. In addition, we

used a diagonal-offset model, which is introduced by [Finlayson et al., 2005], to analyze the color

invariant properties of color histograms. This model can also be used for analyzing the color in-

variant properties of other color invariant features, such as the features based on color differential
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geometry [Geusebroek et al., 2001], e.g., color-invariant and scale-invariant feature transform (C-

SIFT) [Abdel-Hakim and Farag, 2006]. Since C-SIFT is invariant to both the scale and the color,

the C-SIFT is usually more powerful than the color histograms. However, the C-SIFT requires

more computational cost, which is a limitation for real time applications. In conclusion, our eval-

uation work can serve as recommendation to decide which color histograms should be used in

practice for tracking.

Another important contribution of our work is the development of new Bayes filters to fuse

multiple sensor information, i.e., central difference information filter (CDIF) and its square root

form (SRCDIF), square root form of unscented information filter (SRUIF). Our new filters have the

advantages compared to previous method for state estimation and sensor fusion, i.e., they require

fewer predefined parameters and have better numerical stability. Information filters have a long

history in the literature and many related real applications have been introduced [Fraser, 1967;

Kaminski et al., 1971; Maybeck, 1979; Durrant-Whyte, 2001; Lee, 2008a]. Our new filters can

also be utilized in all of these scenarios, e.g., multi-sensor data fusion using stereo camera, laser

range finder and GPS receiver for vehicle localization [Wei et al., 2011]. Besides the sensor fusion,

the proposed information filters can also be used for solving robotic simultaneous localization and

mapping (SLAM) problems. For instance, Thrun et al. [2004] presented a SLAM framework using

sparse extended information filter. Therefore, it is possible to use our new nonlinear information

filters instead of the extended information filter. However, how to sparsify our new nonlinear

information filters requires further analysis. Finally, we can see that the proposed new nonlinear

information filters can be extensively used for solving state estimation and sensor fusion problems.

A limitation of our proposed work is that we only show the performance of proposed filters by

means of simulations. It will be interesting to demonstrate the proposed filters on the real sensor

networks.

In summary, although we are aware of several limitations of our work as discussed above, we

have successfully improved the measurements for object tracking by combining multiple visual

cues, using color invariant histograms and fusing multiple sensors. Furthermore, we show that the

new ideas inside of our work can be applied to other scenarios as well.

6.3 Future Works

Regarding the works we have done in this thesis, there are some open issues which can be studied

in future. The possible extensions are discussed as follows.

For the lane shape estimation part, a very simple multiple lane model was used where the

relations between multiple lanes are defined by the simple distance constraint. This simple model

introduces a high dimensional state, i.e., the dimension of the state is three times of lane numbers.

A better multiple lane model can be defined using the distance constraint and perspective analysis

[Nieto et al., 2008]. In this way, the dimension of the state can be reduced. On the other hand, the
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inverse perspective mapping (IPM) images are used in our algorithm which offer a top-view of the

road scene. The IPM algorithm has the assumption of the flat ground plane, so a constant pitch

angle is used to calculate IPM images. However, the real situation in the urban environment is

that the road plane is not flat. To solve this problem an online pitch angle estimation is necessary

[Danescu and Nedevschi, 2009], which can guarantee the lanes are parallel in IPM images. In

addition, the constant dividing line in the linear-parabolic model is the other limitation. It is better

to have an adaptive solution.

For the color invariant histogram part, the evaluation is limited by the distance metric, the

number of color spaces and databases. In future, we would like to investigate more color spaces

and distance metrics on databases with various illumination conditions. In our experiment, the

spatial information is included by using an isotropic kernel mask to the target region. It is possible

to further investigate the performance of an anisotropic kernel [Khan et al., 2009] or multiple

kernel solutions [Teuliere et al., 2009].

In the sensor fusion part, two simulations are implemented to demonstrate the performance of

the proposed sigma point information filters for nonlinear estimation and sensor fusion. In future,

we would like to run this framework on the real camera network and evaluate the performance of

the proposed algorithms. This idea will be useful for real world applications, such as the intelligent

surveillance using multiple cameras [Kulkarni et al., 2005].
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AppendixA
Cholesky Factorization for Drawing Error

Ellipses

This chapter explains how we draw the 2D error ellipse in Fig. 2.1 using Cholesky factorization.

We first define the error ellipse as:

Γ(µ,Σ) =
{

X : (X − µ)TΣ−1(X − µ) = 1
}

, (A.1)

where the covariance matrix Σ is a 2×2 positive definite matrix and the mean µ is a 2D state vector,

Γ(µ,Σ) represents a collection of the sampling points X in the error ellipse.

Now we can draw Γ(µ,Σ) using a known collection of the sampling points Y from a unit ellipse

Γ(µ0,Σ0). For a 2D state error ellipse, µ0 and Σ0 are defined by

µ0 =















0

0















, Σ0 =















1 0

0 1















, (A.2)

then the ellipse can be represented by

X = LY + µ, (A.3)

where L is the lower triangle Cholesky factor of covariance matrix Σ, such that Σ = LLT . The

proof is as follows:

(X − µ)TΣ−1(X − µ) = (LY + µ − µ)TΣ−1(LY + µ − µ)
= (LY)T (LLT )−1(LY)

= YTLT (LT )−1(L)−1LY

= YTY

= 1 (A.4)
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AppendixB
Inverse Perspective Mapping

As we mentioned in Chapter 3, the inverse perspective mapping (IPM) is a method that transforms

the original image to a top-view image. The IPM makes some assumptions, such as that intrinsic

and extrinsic parameters of the camera are known and the ground plane is flat. In this chapter, we

will give details about how to computer the IPM image.

The relationships between the world coordinates XwYwZw, IPM image coordinates XgYg, cam-

era coordinates XcYcZc, and original image coordinates XiYi are shown in Fig. B.1. To derive the

IPM image, we need first calibrate the camera, then get the homogeneous transformation matrices

between the XgYg and XiYi. The detail of each step is presented as following:

Figure B.1: The relationships between the world coordinates (black), inverse perspective mapping

(IPM) image coordinates (red), camera coordinates (green) and image coordinates (blue).

• Camera calibration. The camera can be calibrated using the Matlab calibration toolbox
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[Bouguet, 2010] or OpenCV library [Willowgarage, 2011]. One necessary step is we need

one image that the checkerboard is on the ground XgOgYg, so we can measure the pitch angle

θc and the hight of the camera h from this special image. After the camera is calibrated, the

intrinsic matrix Mc2i and extrinsic matrix Mw2c are derived by:

Mc2i =









































fx 0 cx 0

0 fy cy 0

0 0 1 0

0 0 0 1









































(B.1)

Mw2c =















Rw2c Rw2cTw2c

0 1















, (B.2)

where fx and fy are the focal length expressed in units of horizontal and vertical pixels

respectively, cx and yx are the coordinates of the principle point. Rw2c and Tw2c are the

rotation matrix and translation vector respectively, which can be derived from the pitch

angle θc and the hight of the camera h:

Rw2c =



























1 0 0

0 cos(θc + π/2) −sin(θc + π/2)
0 sin(θc + π/2) cos(θc + π/2)



























, Tw2c =



























0

0

−h



























. (B.3)

Note that here the rotation angle is positive when the coordinate rotation is clockwise viewed

from the anti-rotation-axis-direction.

• From the ground plane coordinates XgYg to the world coordinates XwYwZw. Assuming

the coordinates of the original point Og in the world coordinates XwYwZw are [xog, yog]
T , we

can calculate the rotation matrix Rg2w and translation vector Tg2w as follows:

Rg2w =



























1 0 0

0 cos(π) −sin(π)
0 sin(π) cos(π)



























, Tg2w =



























−xog
−yog
0



























. (B.4)

The transformation matrix Mg2w between the ground plane coordinates XgYg and the world

coordinates XwYwZw is

Mg2w =















Rg2w Rg2wTg2w

0 1















. (B.5)

• Mapping. Given one point Pg on the ground plane, we can calculate its image coordinate

vector Pi = [xi, yi,w, 1]
T in the homogeneous space by

Pi = Mc2iMw2cMg2wPg. (B.6)
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The final two dimensional image coordinate vector [u, v]T are derived by u = xi/w and

v = yi/w.

• Image distortion. For many cameras we need take the image distortion into out account,

such as wide angle cameras. In this case, we can not directly use the Eq. (B.6). The distor-

tion must be removed. For a point Pc = [xc, yc, zc, 1]
T = Mw2cMg2wPg in the camera coor-

dinates, the normalized image coordinate vector Pn = [xn, yn]
T is calculated by xn = xc/zc

and yn = yc/zc. The distorted image coordinate vector Pd = [xd, yd]
T is derived as:

Pd =















xd

yd















=















rdxn + 2kc(3)xnyn + kc(4)(r
2 + 2xnxn)

rdyn + 2kc(4)xnyn + kc(3)(r
2 + 2ynyn)















, (B.7)

where kc is a five dimensional vector containing both radial and tangential distortion coeffi-

cients, r2 = x2n + y
2
n and rd = 1+ kc(1)r

2 + kc(2)r
4 + kc(5)r

6. Once the distortion applied, the

distorted image pixel coordinate vector can be calculated by Pi = Mc2iPd.

The IPM algorithm in fact is a mapping procedure between the ground plane and the image

pixels, so a fast look-up table can be used to speed up this algorithm for real-time applications

[Bergener and Bruckho, 1999].
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