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Chapter 1

Introduction

Random matrix theory (RMT) has been attracting attention of researchers in dif-
ferent branches of science since it was introduced by Wishart in the late 1920s.
Nowadays, it has been successfully applied to an extraordinarily large variety of
problems in fields as diverse as multivariate statistics [4], [88], harmonic analysis on
groups [30], combinatorics [9], nuclear physics [87], quantum gravity [41], wireless
communications [113], etc.

Although random matrices were first encountered by Weyl [114, 115] in connection
with the integration over the unitary group, the explicit study of their properties
began in 1928 with Wishart [121], who obtained the joint distribution of sample
variances and covariances from multivariate normal population. After a relatively
slow start, investigation of random matrix ensembles intensified in the 1950s, when
Wigner [118, 119] proposed the use of RMT to characterize certain properties of
complex many-body systems such as heavy nuclei, complex atoms and molecules.
Predictions of RMT were successfully applied in describing statistical properties of
excited states of atomic nuclei. Seemingly, that was the first time when matrix
models were used to simulate physical reality. Later the scope of RMT has broad-
ened enormously, and connections to other branches of physics and mathematics
were established. A number of interesting models were found to lead to random
matrix ensembles, among which are the random growth model, the length of the
longest increasing subsequence of a random permutation, non-colliding random pro-
cesses and tandem queues, directed last percolation, and others. Random matrices
became widely used in experimental studies in economics, physics, electrical engi-
neering, etc. In these studies a stochastic phenomenon (e.g. a channel in wireless
communications) can be simulated by a matrix with random elements. Such an
extension of the range of possible applications of RMT led to the rigorous math-
ematical treatment of certain properties of random matrices and resulted in many
important discoveries.
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The purpose of this thesis is to develop an exact (that is, non-asymptotic) and
asymptotic estimation theory for a class of probability distributions arising in RMT.
The models that we consider have been studied extensively, but the problem of sta-
tistical estimation of their parameters seems to be unaddressed in the literature,
although estimation issues are of interest for both theoretical and practical applica-
tions.

In Chapter 3 of the thesis we consider a statistical experiment generated by an
observation X = (X1, . . . , Xn) ∈ Rn(Zn). Here X1, . . . , Xn are (strongly dependent)
eigenvalues of a random matrix H. We assume that H belongs to a certain class
of parametric random matrix ensembles. One of the main questions in Chapter 3
is whether one is able to obtain explicit expressions for the maximum likelihood
estimators of model parameters for arbitrary fixed n ≥ 2. This leads to certain
non-trivial problems such as evaluation of Selberg-type integrals.

Chapters 4 and 5 are devoted to an asymptotical estimation in the framework
of spectral random matrix theory. For a class of models under consideration we
derive central limit theorems for sufficient statistics. Moreover, we obtain that the
information about the true parameter value, contained in a sample of size n, is of
order O(n2) under certain natural conditions (e.g. convergence of empirical measures
to a proper distribution as n →∞).

Formally, we consider the sequence of statistical experiments {En}n≥2, with

En = (Rn,B n, Pn
θ,θ ∈ Θ) , or En = (Zn,A n, Pn

θ,θ ∈ Θ) , (1.1)

where B n(A n) is the σ-algebra of Borel (all) subsets of Rn(Zn), and Pn
θ is the

probability measure with the density

pn; wθ; n
(x) = C−1

β, n(wθ; n)
∏

1≤i<j≤n

|xi − xj|β
n∏

i=1

wθ; n(xi), x ∈ Rn(Zn), (1.2)

with respect to the Lebesgue (counting) measure on Rn(Zn). Here, β > 0 is the
fixed repulsiveness parameter, Cβ, n(wθ; n) is a normalizing constant, and wθ; n is a
weight function depending on the dimension parameter n, and on an r-dimensional
parameter θ = (θ1, . . . , θr) ∈ Θ ⊂ Rr to be estimated. We assume that the weight
function is of exponential form

wθ; n(x) = exp

{
n

r∑
i=1

θiVi(x)

}
, x ∈ R(Z), (1.3)

where V1, . . . Vr are suitable known real-valued functions on R(Z). Under this as-
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sumption the probability densities (1.2), known as β-ensembles in RMT, belong to
the class of exponential (geometric) families of probability density functions which
are briefly reviewed in Chapter 2. The exponential form of the weight function
wθ; n(x) in (1.3) is justified from several arguments (see Section 3.1), while the pres-
ence of the dimension parameter n in wθ; n(x) is discussed in Chapter 4.

It is known that β-ensembles arise in many different settings in physics: the
spectral theory of complex quantum systems and of single particle systems with
chaotic dynamics, in the theory of log-potential gases, etc. In random matrix theory
β-ensembles represent the joint probability distribution of eigenvalues of a certain
class of n × n random matrices, while in log-potential theory they coincide with
the Boltzmann factor of the one-dimensional Coulomb gas consisting of n particles
free to move on the real line R (lattice Z) in an external field with the potential
−n

∑r
i=1 θiVi(x)/β. In the Coulomb gas interpretation, the parameter β > 0 is the

inverse temperature of the system.

Several properties of the probability densities (1.2) should be emphasized here.

(a) β-ensembles with β = 1, 2, 4, known as orthogonal, unitary and symplectic en-
sembles respectively, have been seen as special primarily due to two reasons:
existence of explicit matrix models from which they can be constructed, and
availability of analytical methods for the derivation of their exact or asymptot-
ical properties. Recently, ensembles of sparse random matrices which lead to
the probability densities (1.2) with general β (but specific choice of the weight
function wθ; n) were identified in Dumitriu, Edelman [42], Killip, Nenciu [82].
In the following, we will allow β to be arbitrary positive number, unless stated
otherwise.

(b) We interpret X1, . . . , Xn as coordinates of n particles on the real line R (lattice
Z). Then presence of the absolute value of the Vandermonde determinant

∆(x) =
∏

1≤i<j≤n

(xi − xj) = (−1)
n(n−1)

2

∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn

. . . . . .
xn−1

1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣
, (1.4)

in formula (1.2) models a strong repulsive interaction between the particles.
The larger β is, the stronger are the repelling forces between the observations
with joint probability density (1.2). Due to repulsiveness structure, the asymp-
totical behavior of the maximum likelihood estimator θ̂n is in deep contrast to
the classical theory of i.i.d. samples under regularity conditions (see Lehmann,
Casella [85]). In Chapter 4 we show that the maximum likelihood estimator
θ̂n, based on n dependent observations with joint probability density (1.2),
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converges to the true parameter value θ0 significantly faster than in the case
of n independent observations, precisely

n(θ̂n − θ0)
D−→ N (0, Σ(θ0)), n →∞. (1.5)

(c) Multiple integrals of the functions

fn(x) =
∏

1≤i<j≤n

|xi − xj|β
n∏

i=1

wθ; n(xi), x ∈ Rn (1.6)

from which the normalizing constant Cβ, n(wθ; n) is evaluated, have been the
subject of investigation of many mathematicians, including Selberg [97], Ao-
moto [6], Anderson [3], Andrews, Askey, Roy [5], amongst others. The explicit
expressions for Cβ, n(wθ; n) with general β are known for wθ; n being one of the
classical weight functions: Hermite, Laguerre, Jacobi or Cauchy. They are
derived from Selberg’s integral

I(a, b, β, n) =

∫

[0,1]n
|∆(x)|β

n∏
i=1

xa−1
i (1− xi)

b−1dx

=
n−1∏
i=0

Γ(1 + (i + 1)β/2)Γ(a + iβ/2)Γ(b + iβ/2)

Γ(1 + β/2)Γ(a + b + (n− 1 + i)β/2)
, Re a, Re b, β > 0,

(1.7)

by changing variables of integration, choosing appropriate values for a and
b, or taking limits. The computation of Cβ, n(wθ; n) for general β and other
choices of the weight function wθ; n of the form (1.3) seems to be an open
problem. However, if β = 2 and wθ; n is a weight function on the unit circle
T, it follows from the determinant identity due to Heine and Szegö (see e.g.
[105]) that

C2, n(wθ; n) = (2π)nn!Dn[wθ; n],

where Dn[wθ; n] is the nth Toeplitz determinant with respect to wθ; n. For
detailed discussion of this remarkable connection, the reader is referred to
Chapter 5.

The main results of this thesis are the following. We obtain the exact distribution
of sufficient statistics for the four classical β-ensembles: β-Hermite, β-Laguerre, β-
Jacobi and Cauchy unitary ensemble. Exact distributions of certain linear statistics
for β-Hermite and β-Laguerre ensemble have been computed by Baker and For-
rester [18]. We reestablish and extend some of their results. Furthermore, we prove
central limit theorems for sufficient statistics of the four classical β-ensembles and
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the generalized circular unitary ensemble. Central limit theorems were obtained
(in a broader context) for β-Hermite and Dyson’s circular ensembles in Johansson
[69], [71], Dumitriu, Edelman [43], Diaconis, Evans [40], Corresponding theorems
for sufficient statistics of β-Laguerre, β-Jacobi, the Cauchy unitary and the gener-
alized circular unitary ensemble seem to be new results. In the author’s opinion,
the main contribution of the thesis are results regarding the asymptotical behavior
of the maximum likelihood estimators (MLE) of model parameters. We analyze
the four classical β-ensembles, two discrete orthogonal polynomial ensembles and
the generalized circular unitary ensemble. Existence, uniqueness, consistency and
asymptotical normality of MLE for random matrix ensembles seem to be unexam-
ined previously in the literature. We hope that these and related results may be of
interest to specialists on asymptotic estimation theory.

The organization of this thesis is as follows.

In Chapter 2 we review some basic properties of exponential families of distribu-
tions. In particular, we formulate a theorem concerning existence and uniqueness of
the maximum likelihood estimator for standard exponential families.

In Chapter 3 we focus our attention on the exact analysis of four classical β-
ensembles: β-Hermite, β-Laguerre, β-Jacobi and β-Cauchy. We review the historical
development of RMT, and discuss its connection to the theory of orthogonal poly-
nomials on the real line. Results regarding the exact distribution of the sufficient
(vector) statistics for these four models are established. Moreover, we obtain exis-
tence and uniqueness of the maximum likelihood estimators for the (vector-valued)
parameters of these ensembles. Additionally, we consider two discrete orthogo-
nal polynomial models (the Krawtchouk and Charlier ensemble), and derive the
maximum likelihood estimators of their parameters. Throughout Chapter 3, the
dimension parameter n is fixed.

In Chapter 4 we develop an asymptotical theory for four classical random matrix
ensembles. We derive a central limit theorem for the sufficient (vector) statistics
in β-Hermite, β-Lagurre, β-Jacobi and Cauchy unitary ensemble. Furthermore, we
show that the maximum likelihood estimator of the (vector-valued) parameter is
consistent and asymptotically normal in the sense of convergence in (1.5).

Chapter 5 is devoted to statistical analysis of circular unitary ensembles. Obser-
vations ξ = (ξ1, . . . , ξn) are the phases of the eigenvalues of a random n× n unitary
matrix. We introduce the formal definition of the parametric generalized Dyson’s
circular unitary ensemble by setting the probability density of n eigenphases to be
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of the form

pθ; n(ζ) = C−1
n (θ)

n∏
j=1

wθ(e
iζj)

∏

1≤j<k≤n

|eiζj − eiζk |2, ζ ∈ [0, 2π]n, (1.8)

where θ = (θ1, . . . , θr) is an r-dimensional parameter, Cn(θ) is a normalizing con-
stant, and wθ is a suitable weight function on the unit circle T. We show that
consistent estimation of parameter θ is not possible unless the dimension parame-
ter n is included into the weight function wθ. Finally, we consider the third-order
phase transition model of Gross and Witten [57], and show that its concentration
parameter γ0 ∈ (0, 1− ε], 0 < ε < 1, can be estimated consistently. The asymptoti-
cal maximum likelihood estimator γ̂n is given in closed form. The variance of γ̂n is
shown to asymptotically attain the Cramér-Rao lower bound.

Chapter 6 contains a short summary and discussion of open problems to be con-
sidered in further investigations.
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Chapter 2

Exponential Families

2.1 Introduction

This chapter is an overview of the general theory of statistical exponential families.
We recall some well known facts, which are needed in the sequel, and we base the
terminology on Brown [34].

The fundamental role played by exponential families in the theory and applica-
tions of statistics is generally known. Specific examples of exponential families of
distributions include the normal, exponential, gamma and beta, binomial and multi-
nomial, geometric, negative binomial and Poisson family. These families and their
properties have been studied extensively, individually and from a general perspective
of belonging to the exponential family of distributions. For a more detailed discus-
sion, we refer the reader to Barndorff-Nielsen [20, 21], Brown [34] and Chentsov
[35].

The chapter is divided into three sections. In section 2 we introduce exponential
families and standard exponential families of probability distributions on Rk and
recall some of their basic properties, while section 3 is devoted to initiation of the
mean-value parametrization and discussion of the maximum likelihood estimation
problem. The proofs of results formulated here can be found in Brown [34].
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2.2 Definitions and Basic Properties

Let µ be a σ-finite measure on
(
Rk,B

)
, where B is the σ-algebra of Borel subsets

of Rk. Define

λ(θ) =

∫
exp〈θ,x〉dµ(x) (2.1)

on the set

N = {θ ∈ Rk :

∫
exp〈θ,x〉dµ(x) < ∞}, (2.2)

and let

ψ(θ) = log λ(θ), θ ∈ N, (2.3)

pθ(x) = exp(〈θ,x〉 − ψ(θ)), θ ∈ N, (2.4)

where 〈x,y〉 =
∑k

i=1 xiyi is the scalar product in Rk.

Let Θ ⊂ N. The family of probability densities {pθ : θ ∈ Θ} is called a k-
dimensional standard exponential family. The convex set N is called the natural
parameter space, θ ∈ Θ is referred to as a canonical parameter and ψ(θ) is the
cumulant-generating function.

The family is called full if Θ = N , and regular if N is an open set in Rk.

We define a convex support of µ as

K = cl conv supp(µ), (2.5)

where supp(µ) is the support of µ, cl S is the closure, and conv S is the convex hull
of S ⊂ Rk. The dimension of S, dim S, is the dimension of the linear space spanned
by the set of vectors {(x1−x2) : x1, x2 ∈ S}. A k-dimensional standard exponential
family is minimal if

dim K = dim N = k. (2.6)

A full minimal standard exponential family is called a canonical exponential fam-
ily.

In the following definition we introduce a class of exponential families of distri-
butions.

Definition 1. Let {Pω, ω ∈ Ω} be a family of probability distributions on the
measurable space (Y, A ), such that Pω ≺≺ ν, ω ∈ Ω, for some σ-finite measure ν on
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(Y, A ). Suppose there exist functions

C :Ω → (0,∞),

R :Ω → Rk,

T :Y → Rk, (Borel measurable),

h :Y → [0,∞), (Borel measurable),

such that

pω(y) =
d Pω

d ν
(y) = C(ω)h(y) exp〈R(ω), T (y)〉. (2.7)

Then {pω, ω ∈ Ω} is called a k-dimensional exponential family of probability densi-
ties.

Proposition 2.1. Any k-dimensional exponential family (2.7) can be reduced by
sufficiency, reparametrization, and proper choice of measure µ to a k-dimensional
standard exponential family (2.4). The distributions of the sufficient statistics X =
T (Y ) form an exponential family with canonical parameter θ = R(ω).

The moments of the sufficient statistics X can be calculated by differentiating
under the integral sign. This result is formulated as theorem.

Theorem 2.2. Let {pθ : θ ∈ Θ} be a standard exponential family and θ0 ∈ intN .
Then all derivatives of λ and ψ exist at θ0 and are obtained by differentiation under
the integral sign. In particular, the following relations are valid

∂l

∂θl1
1 . . . ∂θlk

k

λ(θ0) =

∫ k∏
i=1

xli
i exp〈θ0,x〉dµ(x), ∀ l = (l1, . . . , lk) ∈ Zk

+,

k∑
i=1

li = l,

(2.8)
Eθ0 [X] = ∇ψ(θ0). (2.9)

One of the properties of the normalizing factor λ(θ) that we will need in the
sequel is its analyticity. We extend the definition of λ to the complex domain by
setting

λ(θ) =

∫
exp〈θ,x〉dµ(x) (2.10)

on L := {θ ∈ Ck : Re(θ) = (Re(θ1), . . . , Re(θk)) ∈ N}. Then

Theorem 2.3. Let {pθ : θ ∈ Θ} be a regular canonical exponential family. Then
λ(θ) is the analytic function on the set L.

A family {Pθ : θ ∈ Θ} of probability distributions with corresponding densities
{pθ : θ ∈ Θ} relative to a σ-finite measure µ on Rk is called complete, if for every
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T : Rk → R such that
∫

T (x)pθ(x)dµ(x) = 0, ∀θ ∈ Θ,

we have that
T (x) = 0 Pθ - a.e. ∀θ ∈ Θ.

The following theorem provides a sufficient condition of the completeness of an
exponential family.

Theorem 2.4. ?? Let {pθ : θ ∈ Θ} be a standard exponential family with int (Θ) 6=
∅. Then {pθ : θ ∈ Θ} is complete.

2.3 Parametrization and Maximum Likelihood Es-

timation

The standard parametrization of the canonical family is convenient for the analy-
tical treatment of the probability distributions under consideration. Nevertheless,
it does not allow a direct probabilistic interpretation. In order to introduce the
parametrization with probabilistic meaning, we define the map ξ : N → int K by

ξ(θ) = Eθ(X), θ ∈ N. (2.11)

Theorem 2.5. Let {pθ : θ ∈ N} be a canonical regular exponential family. Then
the map

ξ(θ) = Eθ(X) (2.12)

defines a homeomorphism between N and intK.

Under the conditions of Theorem 2.5, the family {pθ : θ ∈ Θ} can be reparametrized
by ξ = ξ(θ), and such a parametrization is called the mean-value parametrization.
The map ξ(·) is invertible on int K, and we denote its inverse ξ−1(·) by θ(·). In
regular exponential families the mean-value parametrization is closely related to the
maximum likelihood estimation as described below.

Let {pθ : θ ∈ Θ} be an exponential family. Define

l(θ, x) = log pθ(x), θ ∈ N. (2.13)

For S ⊂ N let
l(S, x) = sup

θ∈S
l(θ,x) (2.14)
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and
θ̂S(x) = {θ ∈ S : l(θ,x) = l(S, x)}. (2.15)

Then θ̂ ∈ θ̂S(x) is called the maximum likelihood estimate of θ at x relative to
S ⊂ N . A function δ : int K → Θ such that δ(x) ∈ θ̂Θ(x) µ-a.e. is called the
maximum likelihood estimator.

The following theorem establishes the conditions for the existence and the unique-
ness of the maximum likelihood estimate for exponential families of distributions.

Theorem 2.6. Let {pθ : θ ∈ Θ} be a regular canonical exponential family. If
x ∈ intK, then

θ̂Θ(x) = {θ(x)} ∈ Θ. (2.16)

Otherwise, θ̂Θ(x) = ∅.
Remark 2.7. Since ξ(θ) = Eθ(X) is the homeomorphism of N and int K, we have
that x is the maximum likelihood estimate of the mean-value parameter ξ, i.e.

ξ̂(x) = x, x ∈ int K.

It is important to notice that from the definition of the mean-value parameter ξ
it immediately follows that its method-of-moments estimator and the maximum
likelihood estimator ξ̂ agree.
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Chapter 3

β-Ensembles

3.1 Introduction

The aim of this chapter is to develop an exact (non-asymptotical) estimation theory
for a class of distribution families arising in RMT. For every integer n ≥ 2, the class
of probabilities under consideration consists of collections of joint n-dimensional
probability distributions of exchangeable random variables. The random variables
take values in the real line R, the positive ray R+, the unit interval (0, 1), or their
discrete subsets. The estimation theory for observations taking values in the unit
circle will be developed in Chapter 5.

A paradigmatic example of the measure under consideration is given by the joint
probability density in Rn

C−1
β, n(w)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

w(xi), (3.1)

where w is a suitable weight function on the real line R (or its subset), β > 0 is
a fixed parameter and Cβ, n(w) is the normalization constant. Function w can be
viewed as an infinite-dimensional functional parameter and its estimation can be
dealt with within a non-parametric framework. However, we focus our attention on
the examples where

w(x) = exp

[
r∑

i=1

θiVi(x)

]
, x ∈ R. (3.2)

Here, θ = (θ1, . . . , θr) ∈ Θ ⊂ Rr is an r-dimensional parameter to be estimated,
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and Vi are suitable (known) functions, called confining potentials in the theory of
one-dimensional Coulomb gases on the real line. An alternative problem, when β in
(3.1) is regarded as a parameter to be estimated is also possible, but not considered
here. The generalities for all exponential families do not depend on β.

Such a choice of the weight function w is motivated by several reasons. First of all,
a considerable number of models discussed in the literature allow such a description.
Secondly, the argument of Shannon’s information theory, applied in the situation
common for RMT, leads to distributions that have an exponential form (see Balian
[19], Mehta [87] for details). These distributions are distinguished among others
by the property of maximizing the entropy of the system under certain prescribed
conditions. As the third source of justification one can see the applicability of the
theory of exponential families which is well-developed in the framework of mathe-
matical statistics. However, our models are in deep contrast to the classical theory
of i.i.d. samples of size n: the order of random fluctuations of certain quantities
is different. This can be explained by a strong (repulsive) interaction between the
observations, due to the presence of the Vandermonde determinant in (3.1).

Throughout this section, we regard n and β > 0 as fixed. Presence of the size
parameter n, and applications of the models in physics suggest consideration of
our estimation problem in an asymptotical setting. This situation will be discussed
in Chapter 4, while here we obtain rigorous analytical results for every fixed n.
Asymptotic behavior of certain quantities and estimators will be considered just for
the sake of comparison with the respective situation in the i.i.d. case.

The chapter is organized as follows. In section 2 we give a short review of histor-
ical development of RMT and describe ensembles that will be treated statistically
in the subsequent sections. Section 3 is devoted to the analytical initiation of the
Gaussian (Hermite), Wishart (Laguerre), MANOVA (Jacobi) and Cauchy ensemble,
and to an overview of the theoretical results related to our further analysis. We focus
our attention on the concepts and contributions that are of significant relevance for
our later investigation, providing the reader with the list of references where more
detailed account of the analytical tools and wide-ranging applications is given. In
sections 4, 5, 6, 7 we derive exact probability distributions for certain linear statistics
arising in the study of random matrix ensembles. In particular, we reestablish and
extend some of the results of Baker, Forrester [18]. These results are further incorpo-
rated into the maximum likelihood estimation problem. Existence and uniqueness of
the maximum likelihood estimators is derived. Finally, two examples of exponential
(geometric) discrete matrix ensembles are considered in section 8. The exact distri-
butions of the sufficient statistics arising in their study are obtained. Additionally,
the variance of the maximum likelihood estimators is computed.
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3.2 Historical Development

In many applications of mathematical statistics, a random phenomenon can be mod-
eled by a matrix whose elements are random variables. The problems arising in
related studies are very involved theoretically, as well as computationally. These
problems produced the need to obtain rigorous methods that will give efficient ana-
lytical tools under such circumstances. An enormously large class of issues in RMT
is related to the spectral properties of random matrices, rather than to the matrix
structure itself. We follow the pattern of spectral RMT and investigate the probabil-
ity distributions on spectra, providing the reader with the underlying matrix models
when possible.

Random matrices were introduced by Wishart [121] in 1928, as sample covariance
matrices for n independent identically distributed p-variate normal vectors. In fact,
in 1915, Fisher [46] derived this distribution for the bivariate case (p = 2) in his
study of sample correlation coefficient from normal population. Wishart’s model,
which came to be known as the real Wishart ensemble, was further extended and
modified. One may see Anderson [4], or Johnson, Kotz [75] for details. One of
the extensions led to the definition of zonal polynomials in James [67], and to the
study of eigenvalues of sample covariance matrices in terms of special functions. A
thorough account of the results related to the spectral properties of the Wishart
ensembles can be found in Muirhead [88].

Another matrix model originating from mathematical statistics, which will be
treated in this chapter is connected to the multivariate analysis of variance (and
thus called the MANOVA ensemble). The references include Hsu [63], Olkin, Rubin
[92], etc. We refer the reader to Muirhead [88] for the detailed description of this
model.

Independently of the developments in multivariate statistics, another type of ma-
trix ensembles was initiated in the framework of nuclear physics by Wigner. The
model is commonly known as the Gaussian ensemble, since the entries of matrices
follow Gaussian distribution. This model is dominant in physics literature and it
has found broad extensions of its domain of applications connecting fields as diverse
as log-potential theory, quantum chromodynamics, transport properties of disor-
dered systems, etc. We refer the reader to Mehta [87] and Guhr, Müller–Groeling,
Weidenmüller [58] for recent applications of RMT concepts in physics. Although for-
mally introduced in nuclear physics, spectral theory of Gaussian ensembles appeared
to be closely connected to many classical problems in mathematics such as zeros of
Riemann ζ-function, distribution of primes on the real line, length of longest in-
creasing subsequence in a random permutation, etc. (see Mehta [87], Forrester [47],
Katz, Sarnak [80], Keating, Snaith [81] for details). Since the analytical tools are
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the most developed for Gaussian ensembles, particular attention will be payed to
this specific case in our further investigation.

Recently, a new spectral model, called the Cauchy ensemble, was introduced by
Forrester [47]. A particular case of this model is independently discussed in physics
under the name Laurentzian ensemble (see Brouwer [33], Tierz [106]). The Cauchy
ensemble will be described in detail in section 7.

It should be mentioned here that there are two independent sources that en-
couraged us to consider four ensembles described above: the Gaussian, Wishart,
MANOVA and Cauchy. Apart from the fact that they are the most discussed in the
literature, one can obtain connections to the

• theory of classical orthogonal polynomials on the real line

• theory of exponential families in mathematical statistics.

We will pay particular attention to these connections after the analytical initiation
of ensembles. Following this pattern of thinking, we have decided to include two dis-
crete ensembles (the Krawtchouk and the Charlier polynomial ensemble), since they
are the natural analogue of the four ensembles on the real line from the point of view
of connections to the theory of orthogonal polynomials and theory of exponential
families.

3.3 Definitions and Summary of Known Results

This section is devoted to the formulation of basic concepts and analytical results in
RMT, definitions of orthogonal, unitary and symplectic random matrix ensembles
and their β-generalizations. In particular cases, asymptotical results are given.

For almost 80 years, researchers in different branches of science are using ma-
trix models to simulate random phenomena. Special attention is focused on the
study of the Gaussian ensembles for a number of reasons. The Gaussian ensembles
were introduced as a statistical model of an (infinite-dimensional) Hamiltonian of
the physical system in order to describe its spectral properties. In such a model,
physical system (e.g. heavy nucleus or complex atom) is represented by its Hamil-
tonian, which in turn can be modeled by a random Hermitian matrix H of large
size. Physical consideration of the system imposes constraints on possible choices
of the probability measure P(H) on the set of all Hermitian matrices, such as in-
variance under orthogonal, unitary or symplectic transformations. The invariance
properties of P(H) depend on certain symmetries of the system like time-reversal
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or rotational symmetry. This reasoning led Wigner and Dyson to the definitions of
three Gaussian ensembles.

Definition 2. The Gaussian orthogonal ensemble (GOE) is a probability measure
P(H) defined on the space T1G of all n× n real symmetric matrices by two require-
ments

1. The measure is invariant under every transformation

H → WHW T

of T1G into itself, where W is an arbitrary orthogonal matrix.

2. Various elements Hj, k, j ≤ k are statistically independent.

In physics literature the Gaussian orthogonal ensemble is used to model systems
with even spin in the presence of rotational symmetry and invariance under time
reversal. Requirement of statistical independence of various elements Hj, k, j ≤ k is
added for convenience and lacks physical motivated interpretation. The definition
of the Gaussian symplectic ensemble (GSE) is similar (see Mehta [87]).

Much simpler mathematically is the Gaussian unitary ensemble defined as follows.

Definition 3. The Gaussian unitary ensemble (GUE) is a probability measure P(H)
defined on the space T2G of all n×n Hermitian matrices by the following properties

1. The measure is invariant under every automorphism

H → UHU−1

of T2G into itself, where U is an arbitrary unitary matrix.

2. The (real) diagonal entries and the (complex) upper-diagonal entries of H are
independent random variables.

GUE is used to model systems without invariance under time-reversal.

It appeared that the two postulates of statistical independence and invariance
under orthogonal, unitary end symplectic transformations, lead to the measure of
the form

P(H) = exp[−a tr H2 + b tr H + c], (3.3)

on the spaces of real symmetric, Hermitian and self-dual Hermitian matrices respec-
tively. Here a is real and positive, b and c are real. For the details of the derivation
we refer the reader to Porter, Rosenzweig [96] or Mehta [87].



22 3. β-Ensembles

Further developments in nuclear physics were primarily connected to the spectral
properties of three ensembles and their comparison with experimental results. The
joint probability density of the eigenvalues x1, . . . , xn was derived and shown to be
equal to

p∗β, n(x) =
∏

1≤i<j≤n

|xi − xj|β
n∏

i=1

exp[−ax2
i + bxi + c], x ∈ Rn, (3.4)

where β is the symmetry parameter equal to 1, 2, 4 for orthogonal, unitary, sym-
plectic ensemble respectively. Many authors prefer the scaled version of the density
(3.4)

pβ, n(x) = C−1
β, n

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

exp[−x2
i /2], x ∈ Rn, (3.5)

which can be obtained from p∗β, n by the change of coordinates. Cβ, n is the normal-
izing constant dependent on the symmetry parameter β. This form of the density
is more convenient in examining the statistical properties of the system, such as
1- and 2 -point correlation functions, extremal eigenvalues, e.t.c. Computationally,
a sample following the density (3.5), can be obtained by the diagonalization of
a random real symmetric, Hermitian or self-dual Hermitian matrix with diagonal
elements having standard normal distribution and off-diagonal elements following
normal distribution with variance σ2 = 1/2. All the elements are supposed to be
independent up to the symmetry constraints.

For many years, the attention of mathematicians and physicists has been at-
tached to the three values of β equal to 1, 2 or 4. The analytical methods employed
in the investigation of various statistical properties of orthogonal, unitary and sym-
plectic ensembles were highly parameter-specific. The case β = 2 is considered as
the easiest one, since for its evaluation one needs to know properties of orthogonal
polynomials (the Hermite polynomials for the Gaussian ensemble). The analysis
in orthogonal and symplectic case involves Pffafians, anti-symmetric scalar prod-
ucts and the associated skew-orthogonal polynomials. Recently, the three isolated
cases (β = 1, 2, 4) have been unified and studied in the general β framework. The
initial step in this direction was made by Baker and Forrester [17], who consid-
ered Calogero-Sutherland-type models for quantum systems. Further development
of general β concept was made in Dumitriu, Edelman [42] through the construction
of the model of random sparse matrices whose eigenvalues follow pβ, n(x) for general
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β > 0. To formulate their result, we introduce the symmetric random matrix

Hβ =




Yn Zn−1 . . . 0
Zn−1 Yn−1 . . . 0

0 . . . . . . Z1

0 . . . Z1 Y1


 , (3.6)

where Yi, 1 ≤ i ≤ n have the standard normal distribution. The sub-diagonal
elements Zi are distributed as square roots of non-homogeneous random variables
following the gamma distribution with shape parameter iβ and scale parameter 1
for arbitrary i ∈ {1, . . . , n− 1}. All 2n− 1 distinct elements of Hβ are supposed to
be independent. We can formulate the theorem.

Theorem 3.1 (Dumitriu, Edelman [42]). Let Hβ = QβΛβQT
β be the eigenvalue

decomposition of Hβ, β > 0. Fix the signs of the first row q of the matrix Qβ to
be non-negative, and order the eigenvalues in non-increasing order. Then q and
λ = diag Λβ are independent. Furthermore, the joint density of eigenvalues λ is

pβ, n(λ) = C−1
n, β

∏
1≤i<j≤n

|λi − λj|β
n∏

i=1

exp[−λ2
i /2], λ ∈ Rn. (3.7)

Proof. See [42].

The ensemble of sparse random matrices Hβ is called β-Hermite ensemble in
Dumitriu, Edelman [42]. We adopt their terminology, since such a description may
be considered as more accurate because of its connection to the type of weight
function in (3.7).

The model under our consideration is closely connected to β-Hermite ensemble,
but it contains a scaling parameter which will be estimated based on the observation
of respective eigenvalues. To be more precise, we consider the density of the scaled
β-Hermite ensemble

pβ(x; σ) = C−1
n, β(σ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

e−
x2

i
2σ2 , x ∈ Rn, (3.8)

and estimate the parameter σ2 from a sample (X1, . . . , Xn) of exchangeable random
variables with the joint probability density as specified in (3.8). Our estimation
procedure does not rely on any inference about correlation functions of the system
such as level density, distribution of level spacings etc. Instead, we apply the theory
of exponential families and use the fact that the information about the scaling
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parameter σ2 can be extracted from a sample by means of sufficient statistic

H(X1, . . . , Xn) =
n∑

i=1

X2
i .

Remark 3.2. We notice that numerical generation procedure of the scaled β-Hermite
ensemble is rather simple. Namely, the density pβ(x; σ) is easily obtained from
Theorem 3.1 by diagonalizing the matrix σHβ.

In section 5 of this chapter, we apply the maximum likelihood procedure to the
eigenvalue density of scaled β-Laguerre (Wishart) ensemble given by

pβ(x; α, θ) = C−1
n, β(α, θ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

xα−1
i e−xi/θ, x ∈ (0,∞)n. (3.9)

As in the Gaussian case, the density (3.9) was first obtained for ”classical” values
of β = 1, 2, 4 from the probability density

pβ, n, p(H) = C−1
β;n,p detHβ(n−p+1)/2−1 exp[− tr H/2], H > 0, n ≥ p− 1, (3.10)

on the set of p×p positive-definite real symmetric, Hermitian and self-dual Hermitian
matrices, respectively. The induced measure on the set of eigenvalues is absolutely
continuous with respect to the Lebesgue measure on Rp

+ and its density coincides
with pβ(x; α, θ), x ∈ Rp

+, where α = β(n− p + 1)/2, θ = 2, and β ∈ {1, 2, 4}.
The joint density of matrix elements (3.10) was derived by Wishart [121], who

considered the probability distribution of the sample covariance matrix XT X from
multivariate normal population. Here, X is n× p matrix with standard normal real
entries, and XT is its transpose. Further, the complex (β = 2) and quaternion (β =
4) cases were considered. Many other derivations of the density (3.10) were given
subsequently (see James [67]). Recently, the unifying β theory has been established
by construction of sparse random matrix models with eigenvalues as in (3.9). To
formulate the result, we introduce the random matrix Lβ; α, θ = Bβ; α, θB

T
β; α, θ, where

Bβ; α, θ =




Yn 0 . . . 0
Zn−1 Yn−1 . . . 0

0 . . . . . . 0
0 . . . Z1 Y1


 . (3.11)

Here Y 2
i follows the gamma distribution with shape parameter α + (i − 1)β/2 and
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scale parameter θ, while Z2
i has the probability density function

p(x) =
θ−βi/2

Γ(βi/2)
xβi/2−1e−x/θ, x > 0,

and all 2n− 1 random variables are independent.

Theorem 3.3. Let Lβ; α, θ = Qβ; α, θΛβ; α, θQ
T
β; α, θ be the spectral decomposition of the

tridiagonal random matrix Lβ; α, θ = Bβ; α, θB
T
β; α, θ, where Bβ; α, θ is given in (3.11).

Fix the signs of the first row q of the matrix Qβ; α, θ to be non-negative, and order the
eigenvalues in non-increasing order. Then q and λ = diag Λβ; α, θ are independent.
Furthermore, the joint density of eigenvalues λ is

pβ, n(λ) = C−1
n, β

∏
1≤i<j≤n

|λi − λj|β
n∏

i=1

λα−1
i e−λi/θ, λ ∈ Rn

+. (3.12)

Again, as in the case of β-Hermite ensemble, we consider the scaled version of
β-Laguerre ensemble (3.9), and obtain the MLE of parameters α and θ. The in-
formation about their properties is extracted from the the corresponding sufficient
statistics

L1(X1, . . . , Xn) =
n∑

i=1

log Xi,

L2(X1, . . . , Xn) =
n∑

i=1

Xi,

and the results on their exact distributions.

The third classical ensemble in RMT is MANOVA (Jacobi) ensemble. It was
introduced in multivariate statistics in testing the independence of two Gaussian
populations. Random matrix from MANOVA ensemble is numerically generated by
setting C = (A + B)−1/2A(A + B)−1/2, where A and B are independent Wishart
matrices with the densities pβ, n1, p(A) and pβ, n2, p(B) as in (3.10), and X1/2 denotes
a unique positive definite square root of a matrix X (notice that a Wishart matrix
is always positive definite by its construction, and consequently, its square root can
be defined uniquely). The probability density of the eigenvalues of matrix C is

pβ(x; a, b) = C−1
p, β(a, b)

∏
1≤i<j≤p

|xi − xj|β
p∏

i=1

xa−1
i (1− xi)

b−1, x ∈ [0, 1]p, (3.13)
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where a = β(n1 − p + 1)/2, b = β(n2 − p + 1)/2 and β = 1, 2, 4 for real symmetric,
Hermitian and self-dual Hermitian matrices respectively. In (3.13) we recognize the
celebrated Jacobi weight w(x) = xa−1(1 − x)b−1, x ∈ (0, 1). Generalizations over β
were established shortly after β-generalizations of Hermite and Laguerre ensemble
in Killip, Nenciu [82]. Respective densities are called the β-Jacobi ensembles. In
section 6, we obtain the exact distribution of the statistics

J1(X1, . . . , Xp) =

p∑
i=1

log Xi,

J2(X1, . . . , Xp) =

p∑
i=1

log(1−Xi)

based on a sample (X1, . . . , Xp) with the joint eigenvalue density pβ, p(x; a, b) as in
(3.13), and incorporate them into the maximum likelihood estimation procedure.

The last ensemble on the real line that is considered in this chapter is β-Cauchy
ensemble. The ensemble is defined in terms of its eigenvalues

pβ(x; α) = C−1
n, β(α)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

(1 + x2
i )
−α, x ∈ Rn, (3.14)

where α > β(n−1)/2+1/2, β > 0, and Cn, β(α) is the normalizing constant. Further
details are given in Section 7.

To summarize this section, we want to point out the connections between the
four ensembles described above. First of all, the density of their eigenvalues can be
written in the form

pβ, w(x) = C−1
β, n(w)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

w(xi), x ∈ Rn (3.15)

where

w(x) =





e−x2/2σ2
, x ∈ R, Hermite,

xa−1e−x/θ, x ∈ R+, Laguerre,

xa−1(1− x)b−1, x ∈ (0, 1), Jacobi,

(1 + x2)−α, x ∈ R, Cauchy.

(3.16)

The weight functions in (3.16) have the common property that their logarithmic
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derivative is a rational function. Namely, if we consider

d

dx
log w(x) =

w
′
(x)

w(x)
=: − g(x)

f(x)
, (3.17)

where polynomials f and g have no common factors and f > 0 on the support of
the corresponding weight, then

(f, g) =





(σ2, x), Hermite,

(θx, x− (a− 1)θ), Laguerre,

(x(1− x),−a(1− x)− bx + 1), Jacobi,

(1 + x2, 2αx), Cauchy.

(3.18)

Note that
degreef ≤ 2, degree g ≤ 1.

The weight functions (3.16) are called classical in the theory of orthogonal polyno-
mials on the real line. For more details regarding the connection of random matrix
theory and the theory of orthogonal polynomials, the reader is referred to Deift [37]
and König [83].

The second connection is established through the theory of exponential families.
Namely, every density in (3.15) with the weight function as specified in (3.16), can
be written in a general form

C−1
β, n(θ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

exp[
r∑

j=1

tj(θj)Vj(xi)], (3.19)

where r is the number of parameters, θ ∈ Ω ⊂ Rr is the r-dimensional parameter
and ti, Vi are suitable functions. The density (3.15) with classical weight functions w
from (3.16), can be written in the form (3.19) with r = 1, 2, 2, 1 for scaled β-Hermite,
scaled β-Laguerre, β-Jacobi and β-Cauchy ensembles, respectively.

Notice also that the weights in (3.16) are proportional to the probability densities
of well-known distributions from exponential families on the real line: the Gaussian,
Gamma, Beta and Pearson type VII distribution. From this perspective, one can
think of (3.15) as a spectral random matrix modification of

p0,w(x) = C−1
0, n(w)

n∏
i=1

w(xi), x ∈ Rn,

which corresponds to a sample of n i.i.d. random variables with the density propor-
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tional to w(x).

This connection to the standard situation of i.i.d. samples encouraged us to
include into our consideration the following two discrete ensembles: the Krawtchouk
and Charlier unitary polynomial ensembles, which can be considered as a spectral
random matrix modifications of the binomial and Poisson distribution, respectively.
Formally, we will consider the densities

pw(x) = C−1
n (w)

∏
1≤i<j≤n

|xi − xj|2
n∏

i=1

w(xi), x ∈ Zn, (3.20)

where

w(x) =





(
N

x

)
px(1− p)N−x, x ∈ {0, . . . , N}, Krawtchouk,

ax/x!, x ∈ Z+, Charlier.

(3.21)

We confine our attention to the unitary case (β = 2) since the normalizing constant
Cn(w) is explicitly given for this case only. The references where these two ensembles
were studied are given in Section 8.

3.4 Scaled β-Hermite Ensemble

In this section we derive the exact distribution of the sufficient statistics for the
scaled β-Hermite ensemble, and obtain the maximum likelihood estimator σ̂2

n of the
scaling parameter σ2 in the explicit form.

Consider the probability density of the scaled β-Hermite ensemble

pβ(x; σ) = C−1
n, β(σ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

e−
x2

i
2σ2 , x ∈ Rn, (3.22)

where

Cn, β(σ) = σn[β(n−1)/2+1](2π)n/2

n∏
i=1

Γ(1 + iβ/2)

Γ(1 + β/2)

is the normalizing constant, obtained from the change of coordinates in Selberg’s
integral (1.7), and n ≥ 2, σ2 > 0, β > 0. The logarithmic derivative of the partition
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function Cn, β(σ) is given by

n[β(n− 1)/2 + 1]

σ
=

1

σ3
En[

n∑
i=1

X2
i ],

where En denotes the expectation with respect to the measure (3.22), and X =
(X1, . . . , Xn) is a sample of exchangeable random variables with the joint probabil-
ity density (3.22). Thus, the unbiased estimator σ̂2

n of the scaling parameter σ2,
obtained from a sample (X1, . . . , Xn), is given by

σ̂2
n =

∑n
i=1 X2

i

n[β(n− 1)/2 + 1]
. (3.23)

The probability distribution of the statistic

Hβ(X1, . . . , Xn) =
n∑

i=1

X2
i (3.24)

is derived from its Laplace transform in the following proposition.

Proposition 3.4. Let (X1, . . . , Xn) be a sample with the joint probability density

pβ(x; σ) = C−1
n, β(σ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

e−
x2

i
2σ2 , x ∈ Rn,

where Cn, β(σ) is the normalizing constant. The probability density of the statistic

Hβ(X1, . . . , Xn) =
n∑

i=1

X2
i ,

is given by

hβ(x) =
(2σ2)−n[β(n−1)/2+1]/2

Γ(n[β(n− 1)/2 + 1]/2)
xn[β(n−1)/2+1]/2−1e−

x
2σ2 , x > 0. (3.25)

Proof. Consider the Laplace transform of Hβ(X1, . . . , Xn)

L [Hβ] (s) = En[e−sHβ(X1,...,Xn)]

= (1 + 2sσ2)−n[β(n−1)/2+1]/2,

for s > 0. Since the Laplace transform of the random variable Y that follows the
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Figure 3.1: The probability density and qq-plot of Hβ(X) for n = 50, β = 3/2, σ2 =
1/4.

gamma distribution with the scale parameter a and the shape parameter ρ is

L [Y ] (s) = (1 + sa)−ρ, s > 0,

we arrive at the conclusion that the statistics Hβ(X1, . . . , Xn) follows the gamma
distribution with the scale parameter 2σ2 and shape parameter n[β(n− 1)/2+1]/2.
Its density is exactly as specified in (3.25).

In Figure 3.1 we illustrate the result of Proposition 3.4 by empirically calculating
500 values of Hβ(X) based on the spectra of random matrices from the scaled β-
Hermite ensemble with β = 3/2, σ2 = 1/4, n = 50, and comparing the obtained
histogram with the theoretical density of the corresponding gamma distribution.
The comparison of respective quantiles is provided in the qq-plot.

The proposition that we obtained has a consequence related to the maximum
likelihood estimation procedure. More precisely, σ̂2

n given in (3.23) is the maximum
likelihood estimator of σ2 based on a sample (X1, . . . , Xn), and its mean and variance
can be deduced from the corresponding moments of the gamma distribution, namely

En[σ̂2
n] = σ2, (3.26)

Varn[σ̂2
n] =

2σ4

n[β(n− 1)/2 + 1]
. (3.27)
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Remark 3.5. Notice that the variance of σ̂2
n is of order O(1/n2).

Remark 3.6. In order to point out the difference between the random matrix setting
and the common situation in mathematical statistics, where independent observa-
tions are usually considered, we recall some basic results from the theory of point
estimation. The standard problem encountered in mathematical statistics is the es-
timation of the mean and variance of a population following normal distribution. If
we consider a sample (X1, . . . , Xn) of n independent observations with the Gaussian
distribution with mean 0 and variance σ2, the joint probability density is given by

p0(x; σ) = C−1
n, 0(σ)

n∏
i=1

e−
x2

i
2σ2 , x ∈ Rn,

and the maximum likelihood estimator σ̃2
n of the population variance σ2 is

σ̃2
n =

∑n
i=1 X2

i

n
.

Notice that σ̃2
n coincides with σ̂2

n if β = 0 in (3.23). Observe that when dependence
between the observations is introduced into the population in a way specific for
random matrix theory, where the joint eigenvalue density is as in (3.22), we arrive at
the maximum likelihood estimator given by the sufficient statistic Hβ(X1, . . . , Xn)
rescaled quadratically in n. The variance of the estimator σ̃2

n, obtained from the
sample of n independent observations is of order O(1/n). The rescaling procedure
for dependent observations reduces the variance of the respective estimator to the
order O(1/n2).

3.5 Scaled β-Laguerre Ensemble

In this section we derive the exact distribution of the sufficient vector-statistics
for the scaled β-Laguerre ensemble. Additionally, we prove that the maximum
likelihood estimators of the shape parameter α and scale parameter θ exist and are
unique for every n ≥ 2.

The probability density function of the scaled β-Laguerre ensemble is

pβ(x; α, θ) = C−1
n, β(α, θ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

xα−1
i e−xi/θ, x ∈ (0,∞)n, (3.28)
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where

Cn, β(α, θ) = θn[β(n−1)/2+α]

n−1∏
i=0

Γ(1 + (i + 1)β/2)Γ(α + iβ/2)

Γ(1 + β/2)
(3.29)

is the normalizing constant and n ≥ 2, α > 0, θ > 0. Applying Theorem 2.2, we get
the equalities

∂

∂θ
log Cn, β(α, θ) =

1

θ2
En[

n∑
i=1

Xi],

∂

∂α
log Cn, β(α, θ) = En[

n∑
i=1

log Xi],

that provide us with unbiased estimators

L1, β(X) =
n∑

i=1

Xi, (3.30)

L2, β(X) =
n∑

i=1

log Xi, (3.31)

of the respective quantities
θ n[β(n− 1)/2 + α]

and
n∑

i=1

ψ(α + iβ/2) + n log θ,

where ψ(x) is the logarithmic derivative of the Gamma function, X = (X1, . . . , Xn)
is a sample of exchangeable random variables with the joint probability density
(3.28). The exact distribution of the vector statistic Lβ(X) = (L1, β(X), L2, β(X))
is derived in the following proposition.

Proposition 3.7. Let (X1, . . . , Xn) be the sample with joint probability density
(3.28). Assume that Y 2

i , Z2
i , 1 ≤ i ≤ n, are as specified in Theorem 3.3. Then

L1, β(X) =
n∑

i=1

Xi
D
=

n∑
i=1

Y 2
i +

n−1∑
i=1

Z2
i ,

and its probability density function is

lβ(x) =
θ−n[β(n−1)/2+α]

Γ(n[β(n− 1)/2 + α])
xn[β(n−1)/2+α]−1e−x/θ, x > 0,
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while

L2, β(X) =
n∑

i=1

log Xi
D
=

n∑
i=1

log Y 2
i .

Proof. Although the distributions of statistics L1, β(X), L2, β(X) can be obtained
from their Laplace transforms, we present a different (hopefully more elegant) ap-
proach to their derivation. Recall that the density (3.28) is obtained from diagonal-
ization of n× n random matrix Lβ; α, θ = Bβ; α, θB

T
β; α, θ, where

Bβ; α, θ =




Yn 0 . . . 0
Zn−1 Yn−1 . . . 0

0 . . . . . . 0
0 . . . Z1 Y1


 .

Here Y 2
i follows the gamma distribution with the shape parameter α + (i − 1)β/2

and scale parameter θ, while Z2
i has the probability density function

p(x) =
θ−βi/2

Γ(βi/2)
xβi/2−1e−x/θ, x > 0,

and all 2n− 1 random variables are independent.

Let Lβ; α, θ = Qβ; α, θXβ; α, θQ
T
β; α, θ be the spectral decomposition of the tridiagonal

matrix Lβ; α, θ. Since the determinant and the trace of a matrix are invariant under
orthogonal transformations, we have

det Lβ; α, θ =
n∏

i=1

Y 2
i , tr Lβ; α, θ =

n∑
i=1

Y 2
i +

n−1∑
i=1

Z2
i .

On the other hand, we have the following relations

det Xβ; α, θ =
n∏

i=1

Xi, tr Xβ; α, θ =
n∑

i=1

Xi.

As a consequence, we obtain that

n∑
i=1

log Y 2
i

D
=

n∑
i=1

log Xi,

n∑
i=1

Y 2
i +

n−1∑
i=1

Z2
i

D
=

n∑
i=1

Xi

providing us with the distribution of the statistics L1, β(X), L2, β(X).
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Figure 3.2: The probability density function and qq-plot of 500 statistics L1, β(X)
for n = 30, β = 3/2, θ = 4, α = 5/2.
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Figure 3.3: The probability density function and qq-plot of 500 statistics L2, β(X)
for n = 30, β = 3/2, θ = 4, α = 5/2.
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In Figures 3.2 and 3.3 we illustrate the result of Proposition 3.7 by empirically
calculating 500 values of L1, β(X), L2, β(X) based on the spectra of random matrices
from the scaled β-Laguerre ensemble with n = 30, β = 3/2, θ = 4, α = 5/2, and
comparing the obtained histogram with the density of corresponding theoretical
distribution. The comparison of respective quantiles is provided in the qq-plot.

Remark 3.8. The analysis of asymptotical behavior of correlation between L1, β(X)
and L2, β(X) appropriately rescaled will be discussed in Chapter 4.

Remark 3.9. The statistics L1, β(X), L2, β(X) have a natural Coulomb gas interpre-
tation. Namely, as indicated in Baker, Forrester [17], the linear statistic L1, β(X)
corresponds to the dipole moment, while L2, β(X) represents the potential at the
origin of the one-dimensional Coulomb gas of n particles free to move on the half-line
R+ in the external field with the potential

Vα, θ(x) = θ−1x− (α− 1) log x, x ∈ (0,∞), (3.32)

when the inverse temperature is equal to β.

3.5.1 Maximum Likelihood Estimation

Estimation of parameter θ, when α is known. First we consider the max-
imum likelihood estimation of the scaling parameter θ in the situation when the
shape parameter α is known. The maximum likelihood estimator θ̂n of θ is given in
closed form

θ̂n =

∑n
i=1 Xi

n[β(n− 1)/2 + α]
. (3.33)

Again we observe that the asymptotic variance of the scaling parameter is of order
O(1/n2) (compared to O(1/n) in the case of independent observations).

Estimation of the shape parameter α, when θ is known. The maximum
likelihood estimator α̂n is obtained from the equation

n−1∑
i=0

ψ(α̂n + iβ/2) + n log θ =
n∑

i=1

log Xi. (3.34)

Since the explicit theoretical solution of (3.34) is not available, one can use the
iterative procedure and incorporate asymptotical expansions for function ψ(x) in
order to solve the equation numerically. As a starting value in the Newton–Raphson
procedure, one could use an unbiased estimator α̃n defined as

α̃n =

∑n
i=1 Xi

nθ
− β(n− 1)

2
. (3.35)
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Notice that from Proposition 3.7 it immediately follows that

En[α̃n] = α,

Varn[α̃n] =
β(n− 1)/2 + α

n
.

We observe that the estimator α̃n is unbiased, but not consistent since its asymp-
totical variance is constant. Thus we suggest to use it just as a starting value when
solving the maximum likelihood equation (3.34) iteratively. The derivation of the
asymptotical variance of αn is presented in Chapter 4.

Existence and uniqueness of the maximum likelihood estimator α̂n follow from
the properties of the function f (n)(α) =

∑n
i=1 ψ(α + jβ/2). Namely, f (n)(α) is

increasing and

lim
α→0+

f (n)(α) = 0,

lim
α→+∞

f (n)(α) = +∞,

for every fixed n ∈ N. Therefore the equation (3.34), whose right hand side is
positive with probability 1, has a unique root in the interval (0, +∞) for arbitrary
fixed n ∈ N.

Estimation of the shape parameter α and scale parameter θ. The maxi-
mum likelihood estimator (θ̂n, α̂n) satisfies

θ̂n n [β(n− 1)/2 + α̂n] =
n∑

i=1

Xi, (3.36)

n−1∑
j=0

ψ(α̂n + jβ/2) + n log θ̂n =
n∑

i=1

log Xi. (3.37)

Consequently, we have

n−1∑
j=0

ψ(α̂n + jβ/2)− n log(β(n− 1)/2 + α̂n) = n log

∏n
i=1 X

1/n
i∑n

i=1 Xi/n
. (3.38)

The right hand side of the equation (3.38) is negative with probability 1 since

P(Xi > 0) = 1, 1 ≤ i ≤ n, P(Xi = Xj) = 0, 1 ≤ i < j ≤ n,
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and therefore

P(
n∑

i=1

Xi/n >

n∏
i=1

X
1/n
i ) = 1, n ≥ 2.

The function

f (n)(α) =
n−1∑
j=0

ψ(α + jβ/2)− n log(β(n− 1)/2 + α)

is increasing, f (n)(α) < 0 in the interval (0, +∞) and

lim
α→0+

f (n)(α) = −∞, (3.39)

lim
α→+∞

f (n)(α) = 0. (3.40)

While monotonicity and the limit (3.39) follow immediately from the properties of
the digamma function ψ(x), equality (3.40) needs more detailed discussion. The
asymptotical expansion of digamma function (see Abramowitz, Stegun [1])

ψ(x) = log x− 1

2x
+ O

(
1

x2

)
, x →∞, (3.41)

induces the following asymptotical identity

f (n)(α) =
n−1∑
j=0

log

(
α +

jβ

2

)
− n log

(
α +

(n− 1)β

2

)
+ o(1)

=
n−2∑
j=0

log

(
1− (n− 1− j)β/2

α + (n− 1)β/2

)
+ o(1), α →∞,

for arbitrary fixed n ∈ N. Therefore, the limit (3.40) is established.

3.6 β-Jacobi Ensemble

In this section we focus our attention on the derivation of the exact distribution
of sufficient statistics for β-Jacobi ensemble. Further, we show that the maximum
likelihood estimators of parameters a and b exist and are unique for n ≥ 2.
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Consider the probability density of the β-Jacobi ensemble

pβ(x; a, b) = C−1
n, β(a, b)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

xa−1
i (1− xi)

b−1, x ∈ [0, 1]n, (3.42)

where

Cn, β(a, b) =
n−1∏
i=0

Γ(1 + (i + 1)β/2)Γ(a + iβ/2)Γ(b + iβ/2)

Γ(1 + β/2)Γ(a + b + (n− 1 + i)β/2)

is the normalizing constant and n ≥ 2, a > 0, b > 0.

From Theorem 2.2, we have equalities

∂

∂a
log Cn, β(a, b) = En[

n∑
i=1

log Xi],

∂

∂b
log Cn, β(a, b) = En[

n∑
i=1

log(1−Xi)],

and the unbiased estimators

J1, β(X1, . . . , Xn) =
n∑

i=1

log Xi, (3.43)

J2, β(X1, . . . , Xn) =
n∑

i=1

log(1−Xi) (3.44)

of the respective quantities

n−1∑
i=0

ψ(a + iβ/2)−
n−1∑
i=0

ψ(a + b + (n− 1 + i)β/2),

and
n−1∑
i=0

ψ(b + iβ/2)−
n−1∑
i=0

ψ(a + b + (n− 1 + i)β/2).

Here, X = (X1, . . . , Xn) is the sample of exchangeable random variables with joint
probability density (3.42). In the following proposition we derive the exact distri-
bution of the sufficient statistics J1, β(X) and J1, β(X).

Proposition 3.10. Let (X1, . . . , Xn) be a sample with the joint probability density
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function (3.42). The distribution of the statistic

J1, β(X1, . . . , Xn) =
n∑

i=1

log Xi,

coincides with the distribution of the sum of n independent random variables Zi, 1 ≤
i ≤ n, where Zi = log Yi, and Yi follows the beta distribution with parameters a+iβ/2
and b + (n− 1)β/2 for i ∈ {0, . . . , n− 1}. Similarly, the distribution of the statistic

J2, β(X1, . . . , Xn) =
n∑

i=1

log(1−Xi),

coincides with the distribution of the sum of n independent random variables with
components Z̃i = log Ỹi, where Ỹi is beta distributed with parameters b + iβ/2 and
a + (n− 1)β/2 for i ∈ {0, . . . , n− 1}.

Proof. The distribution of the statistics J1, β(X) and J2, β(X) can be obtained from
their moment-generating functions, namely

M [J1, β] (s) = E[esJ1, β(X1,...,Xn)]

=
n−1∏
i=0

Γ(a + iβ/2 + s)

Γ(a + iβ/2)

Γ(a + b + (n− 1 + i)β/2)

Γ(a + b + (n− 1 + i)β/2 + s)
, s > −a.

The moment-generating function of the random variable Z = log Y , where Y follows
the beta distribution with parameters p and q is

M [Z] (s) = E[es log Y ]

=
Γ(p + s)

Γ(p)

Γ(p + q)

Γ(p + q + s)
, s > −p,

Moreover, the moment-generating function of the sum of independent random vari-
ables is the product of moment-generating functions of summands. Since the dis-
tribution of a random variable X is determined by its moment-generating function
M [X] (s) if M [X] (s) exists in a neighborhood of 0 (see e.g. Bilingsley [27]), we
obtain the statement of the proposition for J1, β(X). The proof of the statement for
J2, β(X) is analogous.
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3.6.1 Maximum Likelihood Estimation

The maximum likelihood estimators ân and b̂n satisfy the following equations

n−1∑
j=0

ψ(ân + jβ/2)−
n−1∑
j=0

ψ(ân + b̂n + (n− 1 + j)β/2) =
n∑

i=1

log Xi,

n−1∑
j=0

ψ(b̂n + jβ/2)−
n−1∑
j=0

ψ(ân + b̂n + (n− 1 + j)β/2) =
n∑

i=1

log(1−Xi).

(3.45)

Existence and uniqueness of the maximum likelihood estimators for n ≥ 2 follow
from Theorem 2.6 since the support of the vector sufficient statistic

Jβ(X) = (J1, β(X), J2, β(X))

is the set C = {(t1, t2) ∈ R2 : t1 < 0, t2 < log(1−et1)}. The condition Jβ(X) ∈ int C
of Theorem 2.6 is satisfied if and only if n ≥ 2 and

∑n
i=1(Xi − X̄)2 > 0. The event∑n

i=1(Xi − X̄)2 = 0 occurs with probability 0 when n ≥ 2, and therefore the

maximum likelihood estimators ân and b̂n exist with probability one if n ≥ 2.

Remark 3.11. Closed algebraic forms for ân and b̂n seem to be unobtainable. There-
fore, iterative procedures should be used for solving the system of equations (3.45),
or direct numerical maximization of the log-likelihood function should be performed.

3.7 Cauchy Ensemble

This section is devoted to the derivation of the probability distribution of a sufficient
statistics for Cauchy unitary ensemble. The β-Cauchy ensemble was analytically
introduced in Forrester [47] as a counterpart to β-circular Jacobi ensemble, where
the probability density of the phases of n eigenvalues is

pβ(ζ) = C−1
β (b)

∏

1≤j<k≤n

|eiζj − eiζk |β
n∏

j=1

|1− eiζk |2b, ζ ∈ [0, 2π]n. (3.46)

The correspondence is obtained via the Cayley transform

eiζ =
1 + ix

1− ix
, ζ ∈ [0, 2π], (3.47)



3.7. Cauchy Ensemble 41

which maps a point eiθ on the unit circle into a unique point x on the real line, and
transforms the density (3.46) into

pβ(x; α) = C−1
n, β(α)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

1

(1 + x2
i )

α
, x ∈ Rn, (3.48)

with α = b+1+β(n−1)/2 and Cn, b(α) as the normalizing constant. In the physics
literature the ensemble with the joint eigenvalue density (3.48) and α = 1+β(n−1)/2
is known as the Lorentzian ensemble (see Brouwer [33], Tierz [106], and references
therein). It arises in the study of scattering matrices in a chaotic cavity with non-
ideal leads.

The analysis that follows is performed for the density of the Cauchy unitary
ensemble (β = 2) with arbitrary α > n − 1/2. We notice that our investigation
can be generalized and similar results can be obtained for arbitrary β > 0, α >
β(n− 1)/2 + 1/2.

Consider the probability density

p(x; α) = C−1
n (α)

∏
1≤i<j≤n

|xi − xj|2
n∏

i=1

(1 + x2
i )
−α, x ∈ Rn, (3.49)

where

Cn(α) = πn2−n2−2αn+n

n−1∏
i=0

Γ(2α− n− i)

[Γ(α− i)]2

is the normalizing constant and α > n− 1/2. From Theorem 2.2 we know that

d

dα
log Cn(α) = En[−

n∑
i=1

log(1 + X2
i )],

where X = (X1, . . . , Xn) is a sample of exchangeable random variables with the
joint probability density (3.49). Thus,

2

{
n−1∑
i=0

ψ(2α− n− i)−
n−1∑
i=0

ψ(α− i)− n log 2

}
= En[−

n∑
i=1

log(1 + X2
i )],

where ψ(x) is the logarithmic derivative of the Gamma function.
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In order to find the distribution of the statistic

C(X1, . . . , Xn) = −
n∑

i=1

log(1 + X2
i ), (3.50)

we will consider its moment-generating function, namely

M [C] (s) = 2−2sn

n−1∏
i=0

Γ(2(α + s)− n− i)

Γ(2α− n− i)

[Γ(α− i)]2

[Γ(α + s− i)]2
, s > n− α− 1/2.

Note that

Cα :=

∫

R

(1 + x2)−α =
4π

22α

Γ(2α− 1)

[Γ(α)]2
(3.51)

and thus the moment-generating function of the random variable Y = − log[1+Z2],
where Z is the Pearson type VII random variable with probability density function

pα(x) = C−1
α (1 + x2)−α, x ∈ R, α > −1/2, (3.52)

is equal to

M [Y ](s) =
1

22s

Γ(2(α + s)− 1)

Γ(2α− 1)

[Γ(α)]2

[Γ(α + s)]2
, s > −α− 1/2.

For more detailed account of Pearson type VII distribution see Nadarajah, Kotz
[90].

Using the property of the Gamma function Γ(x + 1) = xΓ(x), one can for i ∈
{0, . . . , n− 2} rewrite the term

Γ(2(α + s)− n− i)

Γ(2α− n− i)

[Γ(α− i)]2

[Γ(α + s− i)]2

as
Γ(2(α + s)− 2i− 1)

Γ(2α− 2i− 1)

[Γ(α− i)]2

[Γ(α + s− i)]2

n∏
j=i+2

2α− j − i

2(α + s)− j − i
.

The function

φ1(s) =
Γ(2(α + s)− 2i− 1)

Γ(2α− 2i− 1)

[Γ(α− i)]2

[Γ(α + s− i)]2

is the moment-generating function of the random variable Yi = − log[1+Z2
i ], where
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Zi has the probability density function pα−i(x) defined in (3.52), and

φ2(s) =
n∏

j=i+2

α− (j + i)/2

α + s− (j + i)/2

is the Laplace transform of −Wi, where Wi

Wi =
n∑

j=i+2

Ej,

is distributed as the sum of n− i− 1 independent exponentially distributed random
variables

Ej
D
= Exp

(
α− i + j

2

)
.

Since the sum of independent identically exponentially distributed random variables
follows the gamma distribution, we obtain the proposition

Proposition 3.12. The statistic

C(X1, . . . , Xn) =
n∑

i=1

log(1 + X2
i ),

obtained from a sample (X1, . . . , Xn) with the joint probability density function
(3.49), is distributed as the sum of 3n− 3 independent random variables

C(X1, . . . , Xn)
D
=

n−1∑
i=0

Yi +
2n−2∑
i=2

Ui.

Here, Yi = log[1 + Z2
i ] with Zi having the Pearson type VII probability density

function pα−i(x) introduced in (3.52), and Ui follows the gamma distribution with
the scale parameter α− i/2 and shape parameter gn(i) defined by the function

gn(i) =

{
[ i
2
] if i = 2, . . . , n

[2n−i
2

] if i = n + 1, . . . , 2n− 2.

.
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3.7.1 Maximum Likelihood Estimation

The maximum likelihood estimator α̂n based on a sample (X1, . . . , Xn) of dependent
random variables with joint probability density (3.49) satisfies

2

{
n−1∑
i=0

ψ(2α− n− i)−
n−1∑
i=0

ψ(α− i)− n log 2

}
= −

n∑
i=1

log(1 + X2
i ). (3.53)

From Theorem 2.6 we have that α̂n exists and is unique with probability one for
n ≥ 1 because Pn(C(X1, . . . , Xn) ∈ (−∞, 0)) = 1 if n ≥ 1.

3.8 Discrete Orthogonal Ensembles

This section is devoted to the analysis of examples of discrete distributions from
exponential families arising in random matrix theory: the Krawtchouk and Charlier
orthogonal polynomial ensembles. Discrete orthogonal polynomials have been in-
vestigated in detail by Johansson [72, 73, 74] in connection with the random growth
models and the Plancharel measure on partitions. For a survey of models in physics,
statistical mechanics, probability theory and combinatorics which are described in
terms of orthogonal polynomial ensembles, the reader is referred to König [83]. Since
the analytical results and practical applications in the discrete case are discussed
exclusively for β = 2, we restrict our attention to this particular case. For this
specific instance, the theory of discrete Riemann-Hilbert problems was developed
in Borodin, Boyarchenko [28]. Moreover, the distribution of the first particle was
obtained through a certain recurrence procedure for a class of weight functions. We
show that the results regarding the distribution function of sufficient statistics are
similar to those obtained for ensembles on the real line: sufficient statistics from
n-dimensional orthogonal polynomial ensemble appears to be distributed as a ran-
dom variable with probability density specified by the discrete weight function under
consideration, rescaled and shifted appropriately.

3.8.1 Krawtchouk Polynomials Ensemble

In this section we consider a point process with fixed configuration size n on the set
X = {0, 1, . . . , N}, where 2 ≤ n ≤ N + 1. The probability distribution is given on
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all n-point subsets of X by the probabilities

P(x1, . . . , xn) = C−1
n,N(p)

∏
1≤i<j≤n

(xi − xj)
2

n∏
i=1

(
N
xi

)
pxi(1− p)N−xi , (3.54)

where the normalizing constant is obtained from

Cn,N(p) =
n−1∏
i=0

(Pi, Pi)wp ,

and Pi(x) is the ith normalized Krawtchouk polynomial

Pi(x) = (−N)ip
i

2F1

(−i,−x
−N

∣∣∣∣
1

p

)
.

Here, (N)i is Pochhammer symbol defined as

(a)i =

{
1 if i = 0,

a(a + 1) . . . (a + i− 1) if i ≥ 1,

for a ∈ R, i ∈ Z≥0, while Pi satisfy

(Pi, Pi)wp =
N∑

x=0

(
N
x

)
px(1− p)N−xPi(x)2

= (−1)ii!(−N)ip
i(1− p)i, 0 ≤ i ≤ N.

For detailed information about the system of Krawtchouk orthogonal polynomials,
we refer the reader to Borodin, Boyarchenko [28] and references therein. We observe
that

Cn,N(p) = p
n(n−1)

2 (1− p)
n(n−1)

2

n−1∏
i=1

(−1)ii!(−N)i.

Rewriting the probabilities in (3.54) as

P(x1, . . . , xn) =
(1− p)Nn

Cn,N(p)

∏
1≤i<j≤n

(xi − xj)
2

n∏
i=1

(
N
xi

)
exp

[
xi log

p

1− p

]
,
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we obtain the equality

Cn,N(p)

(1− p)Nn
=

∑

{x1,...,xn}⊂{0,...,N}

∏
1≤i<j≤n

(xi − xj)
2

n∏
i=1

(
N
xi

)
exp

[
xi log

p

1− p

]
.

Taking the logarithms on both sides and differentiating them with respect to p, we
get

En[
n∑

i=1

Xi] =
n(n− 1)

2
(1− p)− n(n− 1)

2
p + Nnp

=
n(n− 1)

2
+ n(N − n + 1)p,

where (X1, . . . , Xn) is a sample of random variables with the joint probability (3.54).
The distribution of the statistic

K (X1, . . . , Xn) =
n∑

i=1

Xi

can be easily obtained from its moment-generating function

En[es K(X1,...,Xn)] =
∑

(x1,...,xn)⊂{0,...,N}
P(x1, . . . , xn)es

Pn
i=1 xi

= esn(n−1)/2(1− p + pes)Nn−n(n−1), s > 0,

that coincides with the moment-generating function of the random variable following
the binomial distribution with the probability of success equal to p and n(N−n+1)
trials, shifted by the factor n(n− 1)/2.

Proposition 3.13. Consider a statistic K (X) =
∑n

i=1 Xi, obtained from a sample
X = (X1, . . . , Xn) with the joint distribution (3.54). The probability distribution of
K (X) is given by

P

(
K(X1, . . . , Xn) = i +

n(n− 1)

2

)
=

(
n(N − n + 1)

i

)
p i(1−p)n(N−n+1)−i, (3.55)

for 0 ≤ i ≤ n(N − n + 1).

The maximum likelihood estimator p̂n of parameter p for the Krawtchouk unitary
ensemble is equal to

p̂n =

∑n
i=1 Xi − n(n− 1)/2

n(N − n− 1)
. (3.56)
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Notice that

Varn[p̂n] =
p(1− p)

n(N − n− 1)
,

and if N = κn, κ > 1, the order of the variance is O(n−2).

3.8.2 Charlier Polynomials Ensemble

Fix a positive integer n ≥ 2 (the number of particles in the configuration) and
consider the probability measure on all n-point subsets of Z≥0 given by

P(x1, . . . , xn) = C−1
n (a)

∏
1≤i<j≤n

(xi − xj)
2

n∏
i=1

axi

xi!
, (3.57)

where Cn(a) is the normalizing constant and a is a parameter.

Constant Cn(a) can be estimated from the formula

Cn(a) =
n−1∏
i=0

(Pi, Pi)wa ,

where Pn is the nth normalized Charlier polynomial (the nth monic orthogonal poly-
nomial with respect to the weight w(x) = ax/x! defined on Z≥0),

Pn(x) = (−a)n
2F1

(−n,−x
∣∣∣∣ −

1

a

)
.

Since (Pn, Pn)wa = anean! (see, e.g. Borodin, Boyarchenko [28] ), we conclude that

Cn(a) = a
n(n−1)

2 ena

n−1∏
i=0

i !.

From the definition of the joint probability distribution (3.57) it follows that

En[
n∑

i=1

Xi] =
n(n− 1)

2
+ na,

where (X1, . . . , Xn) is a sample of random variables with the joint probability dis-
tribution (3.57).



48 3. β-Ensembles

In order to find the distribution of the sufficient statistic

Ch (X1, . . . , Xn) =
n∑

i=1

Xi, (3.58)

we consider its moment generating function, namely

En[es Ch (X1,...,Xn)] =
∑

{x1,...,xn}⊂Z≥0

∏
1≤i<j≤n

(xi − xj)
2

n∏
i=1

axiesxi

xi!

= ena(es−1)e
sn(n−1)

2 , s > 0.

The first term in the product above is the moment generating function of a random
variable following the Poisson distribution with parameter an, and the second therm
is the moment generating function of the point mass at n(n − 1)/2. Thus, the
following proposition is obtained.

Proposition 3.14. Let Ch (X1, . . . , Xn) be a statistic (3.58) obtained from a sam-
ple (X1, . . . , Xn) with the joint distribution (3.57). The probability distribution of
Ch (X1, . . . , Xn) is

P(Ch (X1, . . . , Xn) =
n(n− 1)

2
+ y) = e−an (an)y

y!
, y ∈ Z≥0. (3.59)

The maximum likelihood estimator ân of parameter a is thus given in closed form

ân =
n∑

i=1

Xi/n− (n− 1)/2. (3.60)

Its variance is therefore
Varn[ân] = a/n.

If parameter a is proportional to the sample size n, i.e. a = hn for some h > 0,
the mean spectral measure En[n−1

∑n
i=1 δXi/n] converges in distribution to a ran-

dom variable specified in Lemma 4.4, and the maximum likelihood estimator ĥn of
parameter h is

ĥn =
n∑

i=1

Xi/n
2 − (n− 1)/(2n). (3.61)

Notice that under such a parametrization, the variance of ĥn is of order O(n−2).



Chapter 4

Asymptotical analysis

4.1 Introduction

The asymptotical theory plays the central role in the analysis of random matrix mod-
els since the practical applications involve matrices of growing dimension. Proofs
of the asymptotical results employ various combinatorial techniques and properties
of orthogonal polynomials related to a certain class of weight functions, combined
with such elaborated tools of asymptotical analysis as the mean-field method or
the steepest descent method of the Riemann-Hilbert problem. Among distinguished
features that are analyzed asymptotically, one can identify two groups

• global properties, such as the limiting level density (the distribution of ran-
domly chosen eigenvalue) and the fluctuations around the limiting distribution,

• local properties, such as the distribution of level spacings, distribution of
appropriately rescaled extremal eigenvalue, etc.

The term local refers to the properties of an individual or a constant number of
eigenvalues, while global refers to characteristics of the whole spectrum or a sig-
nificant portion of the eigenvalues. In most cases the analysis is performed for
classical values of β = 1, 2, 4, while results of Johansson [71], Dumitriu [44] and
Dumitriu, Edeleman [43] cover general β ensembles. We allow β to be arbitrary
positive number, and organize this chapter as follows. Section 2 is a review of the
main asymptotical results for β-ensembles introduced in Chapter 3. In section 3 we
prove the cental limit theorem for the sufficient statistics in ”classical” β-ensembles,
while section 4 is devoted to the derivation of the asymptotical properties of the
maximum likelihood estimators θ̂n. We establish their consistency and asymptotic
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normality in the sense that n(θ̂n − θ0)
D−→ N (0, Σθ0) as n → ∞, where θ0 denotes

the true parameter value and Σθ0 is explicitly specified matrix.

4.2 Historical Overview and Motivation

In this section we overview the asymptotical results in RMT. Our attention is re-
stricted to global properties since they are of higher relevance for our further anal-
ysis. The reader interested in local properties of random matrix spectra is referred
to Mehta [87], Tracy, Widom [107, 108, 109], where the properties of level spacings
are derived, and to Tracy, Widom [108, 110, 112], Soshnikov [101, 104], Johnstone
[76], for the results related to the distribution of extremal eigenvalue from Hermite
and Laguerre ensembles.

The nontrivial question in global asymptotic theory of random matrix ensembles
is: ”What is the right way to plug the dimension parameter into the parameter
set in order to ensure convergence of empirical spectral measures to some proper
distribution?”. For a certain class of models the answer is known (see Deift [37]):
the weight function of a model should depend on n as in (1.2). This choice of
the model can be explained by the argument of log-potential theory: the external
field of a system of n repulsive charges should be proportional to n to assure a
stable behavior of the system. In Chapter 5 we show that the naive idea to follow
the i.i.d. pattern where n is not plugged into the weight function, fails completely:
dependence on parameters disappears in the large n limit, and consistent estimation
of parameters is impossible.

The first and the most celebrated global asymptotical result in RMT is due to
Wigner [119, 120], who established the weak convergence of spectral distribution for
Wigner (in particular, Gaussian hermitian and symmetric) random matrices to the
semi-circle law. The result was improved to convergence in probability by Grenander
[56], and to almost sure convergence by Arnold [7, 8]. The rate of convergence to
the limiting distribution has been considered by several authors including Girko
[49, 50], Bai and coauthors [15, 11, 12, 16], Götze, Tikhomirov [51, 52]. Although
the asymptotical results mentioned above apply to symmetric or Hermitian Wigner
matrices, they are constrained to particular values of β = 1 or 2. The general
β result for Hermite ensembles was obtained in Dumitriu [44], and formulated as
follows.

Theorem 4.1. Let β > 0 and Hβ, n be the matrix from β-Hermite (3.6) ensemble
scaled by 1/

√
2βn. Let Fβ, n(x) be the empirical distribution function for the eigen-

values of Hβ, n. Then, Fβ, n(x) → S(x) a.s. as n →∞, where S(x) is the cumulative
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distribution function with the density

s(x) =

{
2
π

√
1− x2, x ∈ [−1, 1],

0, x /∈ [−1, 1].
(4.1)

Remark 4.2. The function s(x) is the probability density of the celebrated Wigner’s
semi-circle law. Notice that if we consider β-Hermite ensemble with the varying
weight wn(x) = exp(−nx2/2), then the empirical distribution of the eigenvalues
rescaled by a constant 1/

√
2β converges to the semi-circle law.

The asymptotical analysis of spectral density for Wishart matrices has a long
history. The weak convergence of spectral distribution to the Marčenko-Pastur
law is due to [86]. The result was strengthened to convergence in probability by
Jonsson [77], while the almost sure convergence is established in Silverstein, Bai
[98]. The rate of convergence is investigated by Bai [14], Goetze, Tikhomirov [53]
(see references therein for more detailed historical account). The general β result
(for β-Laguerre ensemble) may be found in Dumitriu [44].

The spectral density for a number of discrete orthogonal polynomial ensembles is
derived in Ledoux [84]. For the Charlier and Krawtchouk ensembles the following
results are valid.

Lemma 4.3. Let (X1, . . . , Xn) be a sample of random variables with the joint prob-
ability distribution (3.54) of the Krawthchouk orthogonal polynomial ensemble with
0 < p < 1 and N = N(n) ∼ κn, n → ∞, κ > 1. Then the mean spectral measure
En

[
n−1

∑n
i=1 δXi/n

]
converges in distribution to

Z = 2
√

p(1− p)U(κ− U)Y + p(κ− U) + (1− p)U,

where Y has the arcsine law on (−1, 1), and U is uniformly distributed on [0, 1] and
independent from Y .

Lemma 4.4. Let (X1, . . . , Xn) be a sample of random variables with the joint prob-
ability distribution (3.57) of the Charlier polynomial ensemble with a = a(n) ∼
hn, n →∞, h > 0. Then

En[n−1

n∑
i=1

δXi/n]
D−→ 2

√
hUY + h + U

as n →∞, where Y has the arcsine law on (−1, 1), and U is uniformly distributed
on [0, 1] and independent from Y .
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Figure 4.1: The probability density of Wigner’s semi-circle law (red line). The
independent observations (upper plot), (rescaled) spectrum of a random matrix
from GUE (lower plot), and the kernel estimators of their probability densities
(black line).

One of the key issues in global asymptotics of random matrix models is the central
limit theorem for linear statistics of eigenvalues F (X) =

∑n
i=1 f(Xi). The random

variable F (X) is called a linear statistics since products of different eigenvalues Xi

do not appear, although the function f(·) may depend nonlinearly on its argument.
The distribution of linear statistics F (X) reflects the fluctuations of random spectra
around the limiting distribution. To illustrate this fact, we consider β-Hermite
ensemble and the limiting density s(x) of Wigner’s semi-circle law. Convergence in
Theorem 4.1 implies that for arbitrary bounded f ∈ C(R)

lim
n→∞

1

n

n∑
i=1

f(Xi) =

∫ 1

−1

f(t)s(t)dt, a.s. (4.2)

but does not provide us with the information about fluctuations of random variable∑n
i=1 f(Xi). Remarkably, it appears that the variance of statistics

∑n
i=1 f(Xi) does

not grow to infinity if function f(·) satisfies certain regularity conditions (see Johans-
son [71] for general β, Soshnikov [103] for β = 2). The fact that the variance of F (X)
remains bounded when n tends to infinity can be explained by the strong repulsive-
ness of eigenvalues, which results in effective cancelations in the sum

∑n
i=1 f(Xi).

To stress the difference from the situation when a sample of i.i.d. random variables
is considered, we propose the following setting: let Y = (Y1, . . . , Yn) be the sample
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of independent observations from Wigner’s semi-circle law and X = (X1, . . . , Xn)
be the eigenvalues of Gaussian unitary (2-Hermite) ensemble scaled by 1/2

√
n (no-

tice that from Theorem 4.1 we have that limiting densities of X and Y coincide as
n → ∞). Then, from the central limit theorem for i.i.d random variables we have
that as n →∞

1√
n

n∑
i=1

Yi
D−→ N (0, 1/4), n →∞ (4.3)

while
n∑

i=1

Xi
D−→ N (0, 1/4), n →∞. (4.4)

Notice that
∑n

i=1 Xi is not normalized by 1/
√

n. The difference between the
samples X and Y for n = 50 is illustrated in Figure 4.1. Although the limiting
density for both samples is Wigner’s semi-circle, Xi’s are more regularly spaced on
the support [−1, 1], and this fact results in different scalings in central limit theorems
(4.3) and (4.4).

The fluctuation properties of the random matrix spectra influence asymptotical
behavior of the maximum likelihood estimators discussed in Chapter 3. Namely, it
will be shown that the asymptotical variance of MLE is of order O(1/n2), compared
to O(1/n) when the sample of i.i.d. random variables is considered. In Section 3
we prove the CLT for the complete sufficient statistics in classical random matrix
ensembles, while Section 4 is devoted to discussion of the asymptotical properties
of the maximum likelihood estimators. Throughout this chapter we consider the
models with varying wight, i.e. we will assume that a weight function depends on
the dimension parameter n.

We conclude this section with the list of references where CLT for linear statistics
in various random matrix models and global fluctuations of eigenvalues of large
random matrices are discussed. Heuristical derivations of Gaussian limit for linear
statistics may be found in Politzer [95], Beenakker [24, 25], Costin, Lebowitz [36]
while some of the references where rigorous analysis is performed include Johansson
[71], Basor [22], Sinai, Soshnikov [100], Soshnikov [103], Bai, Silverstein [13] and
Dumitriu, Edelman [43]. It should be noticed that similar results are obtained for
spectrum fluctuations of matrices from classical compact groups, but they will be
discussed in detail in Chapter 5.



54 4. Asymptotical analysis

4.3 Central Limit Theorem for Sufficient Statis-

tics

4.3.1 β-Hermite Ensemble

Consider the joint probability density of eigenvalues of β-Hermite ensemble

pβ, n(x) = Cβ, n(σ)−1
∏

1≤i<j≤n

|xi − xj|β
n∏

i=1

exp

{
−nx2

i

2σ2

}
, x ∈ Rn, (4.5)

with scaling parameter dependent on n and n ≥ 2. The result that we state here
has been established in Johansson [71] and Dumitriu, Edelman [43] in a broader
context.

Proposition 4.5. Let X = (X1, . . . , Xn) be the sample with joint probability density
(4.5). The random variable

Hβ(X) =
n∑

i=1

X2
i − σ2

[
β

2
(n− 1) + 1

]
(4.6)

converges weakly to the normal distribution with 0 mean and variance β σ4 as n →
∞.

Proof. From the expression for the normalizing constant Cβ, n(σ), we have that the
characteristic function of the random variable Hβ(X) is

φn(t) = exp

{
itσ2

[
β

2
(n− 1) + 1

]}(
n− 2itσ2

n

)−n(β(n−1)/2+1)/2

= exp

{
itσ2

[
β

2
(n− 1) + 1

]
− n

2

[
β

2
(n− 1) + 1

]
log

(
1− 2itσ2

n

)}

= exp

{
itσ2

[
β

2
(n− 1) + 1

]
− n

2

[
β

2
(n− 1) + 1

](
−2itσ2

n
− (it)2

2

4σ4

n2
+ O

(
t3

n3

))}

= exp

{
−t2

2

2σ4n[β(n− 1)/2 + 1]

n2
+ O

(
t3

n

)}
,

and consequently

lim
n→∞

φn(t) = exp

{
−t2

2
σ4β

}
.

Thus, the asymptotic distribution of the statistic (4.6) is normal with 0 mean and
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variance βσ4.

4.3.2 β-Laguerre Ensemble

The proofs of asymptotical normality for minimal sufficient statistics of β-Laguerre
and β-Jacobi ensemble involve asymptotical result for sums of trigamma function.
The result is formulated as proposition.

Proposition 4.6. Let α, β ≥ 0, n ∈ N and define

fn(α, β) =
n−1∑
j=0

ψ
′
(αn + jβ/2), (4.7)

where ψ
′
(x) is the second derivative of log Γ(x). Then

lim
n→∞

fn(α, β) =
2

β
log

(
1 +

β

2α

)
. (4.8)

Proof. Using the asymptotic expansion for ψ
′
(x) (see Gradshtein, Ryzhik [54])

ψ
′
(x) =

1

x
+

1

2x2
+ o

(
1

x2

)
,

we obtain that

fn(α, β) =
n−1∑
j=0

1

αn + βj/2
+ o(1)

=
2

β
log

(
1 +

β

2α

)
+ o(1),

and consequently

lim
n→∞

fn(α, β) =
2

β
log

(
1 +

β

2α

)
.

Consider the probability density of scaled β-Laguerre ensemble

pβ(x; α, θ) = C−1
n, β(α, θ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

xαn−1
i e−nxi/θ, x ∈ (0,∞)n, (4.9)



56 4. Asymptotical analysis

where α, θ > 0, n ≥ 2. Notice that both shape and scale parameter depend on
dimension parameter n. We examine the asymptotical distribution of the sufficient
vector statistic and formulate the result as lemma.

Lemma 4.7. Let X = (X1, . . . , Xn) be a sample with the joint probability density
(4.9) and define the vector statistics L(X) = (L1(X), L2(X)), where

L1(X) =
n∑

j=1

Xj − θ[αn + (n− 1)β/2], (4.10)

L2(X) =
n∑

j=1

log Xj −
n−1∑
j=0

ψ(αn + jβ/2)− n log
θ

n
. (4.11)

The distribution of the random vector L(X) converges weakly to the centered normal
distribution with the covariance matrix

Σθ, α =

(
θ2(α + β/2) θ

θ 2
β

log
(
1 + β

2α

)
)

. (4.12)

Proof. Consider the characteristic function of L(X)

φn(t1, t2) = En exp{it1L1(X) + it2L2(X)}
= I

(n)
1 (t1, t2) I

(n)
2 (t1, t2) I

(n)
3 (t1, t2),

with

I
(n)
1 (t1, t2) :=

(
θ

n−it1θ

)n[αn+β(n−1)/2+it2]

(
θ
n

)n[αn+β(n−1)/2]
,

I
(n)
2 (t1, t2) :=

n−1∏
j=0

Γ(αn + jβ/2 + it2)

Γ(αn + jβ/2)
,

I
(n)
3 (t1, t2) := exp {−it1θ[β(n− 1)/2 + αn]}

× exp {−it2

n−1∑
j=0

ψ(αn + jβ/2)− it2n log(θ/n)}.

Notice that

I
(n)
1 (t1, t2) =

(
θ

n

)it2n (
n− it1θ

n

)−n[αn+β(n−1)/2+it2]
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= exp

{
it2n log

(
θ

n

)
− n

[
αn +

β

2
(n− 1) + it2

]
log

(
1− it1θ

n

)}

= exp

{
it2n log

(
θ

n

)
− n

[
αn +

β

2
(n− 1) + it2

](
−it1θ

n
+

t21
2

θ2

n2
+ O

(
t31
n3

))}
,

and that the Taylor expansion for log Γ(x) gives us

I
(n)
2 (t1, t2) = exp

{
n−1∑
j=0

log Γ(αn + jβ/2 + it2)−
n−1∑
j=0

log Γ(αn + jβ/2)

}

= exp

{
it2

n−1∑
j=0

ψ(αn + jβ/2)− t22
2

n−1∑
j=0

ψ
′
(αn + jβ/2) + o(t22)

}
.

The last two expressions and Proposition 4.6 result in

lim
n→∞

φn(t1, t2) = exp

{
−t21

2
θ2

(
α +

β

2

)
− t22

2

2

β
log

(
1 +

β

2α

)
− t1t2θ

}
.

Since the convergence of characteristic functions is equivalent to the weak conver-
gence of distributions, we obtain that the asymptotic distribution of L(X) is normal
with the covariance matrix as specified in (4.12).

4.3.3 β-Jacobi Ensemble

Consider the probability density of β-Jacobi ensemble with varying weight

pβ(x; a, b) = C−1
n, β(a, b)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

xna−1
i (1− xi)

nb−1, x ∈ [0, 1]n, (4.13)

where Cn, β(a, b) is the normalizing constant, a, b > 0, n ≥ 2. We prove the following
lemma.

Lemma 4.8. Let X = (X1, . . . , Xn) be a sample with the joint probability distribu-
tion and define the vector statistic J(X) = (J1(X), J2(X)) by

J1(X) =
n∑

j=1

log Xj − En

[
n∑

j=1

log Xj

]
, (4.14)

J2(X) =
n∑

j=1

log(1−Xj)− En

[
n∑

j=1

log(1−Xj)

]
. (4.15)
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The distribution of the random vector J(X) converges in distribution to the centered
normal distribution with the covariance matrix

Σ(a,b) =

(
2
β

log (2a+β)(2a+2b+β)
2a(2a+2b+2β)

− 2
β

log 2a+2b+2β
2a+2b+β

− 2
β

log 2a+2b+2β
2a+2b+β

2
β

log (2b+β)(2a+2b+β)
2b(2a+2b+2β)

)
. (4.16)

Proof. The characteristic function of the random vector J(X) is

φn(t1, t2) = En exp {it1J1(X) + it2J2(X)}
= I

(n)
1 (t1, t2) I

(n)
2 (t1, t2) I

(n)
3 (t1, t2) I

(n)
4 (t1, t2),

where

I
(n)
1 (t1, t2) :=

n−1∏
j=0

Γ(an + it1 + jβ/2)

Γ(an + jβ/2)
,

I
(n)
2 (t1, t2) :=

n−1∏
j=0

Γ(bn + it2 + jβ/2)

Γ(bn + jβ/2)
,

I
(n)
3 (t1, t2) :=

n−1∏
j=0

Γ(an + bn + (n− 1 + j)β/2)

Γ(an + bn + i(t1 + t2) + (n− 1 + j)β/2)
,

I
(n)
4 (t1, t2) := exp

{
−it1 En

[
n∑

j=1

log Xj

]
− it2 En

[
n∑

j=1

log(1−Xj)

]}

From the Taylor expansion for log Γ(x), we have the following asymptotic expressions

I
(n)
1 (t1, t2) = exp

{
it1

n−1∑
j=0

ψ(an + jβ/2)− t21
2

n−1∑
j=0

ψ
′
(an + jβ/2) + o(t21)

}
,

I
(n)
2 (t1, t2) = exp

{
it2

n−1∑
j=0

ψ(bn + jβ/2)− t21
2

n−1∑
j=0

ψ
′
(bn + jβ/2) + o(t21)

}
,

I
(n)
3 (t1, t2) = exp

{
−i(t1 + t2)

n−1∑
j=0

ψ(an + bn + (n− 1 + j)β/2)

}

× exp

{
(t1 + t2)

2

2

n−1∑
j=0

ψ
′
(an + bn + (n− 1 + j)β/2) + o((t1 + t2)

2)

}
.
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Consequently, from Proposition 4.6 and asymptotic expansions above, it follows that

lim
n→∞

φn(t1, t2) = exp

{
−t21

2

2

β

[
log

(
1 +

β

2a

)
− log

(
1 +

β

2a + 2b + β

)]}

× exp

{
−t22

2

2

β

[
log

(
1 +

β

2b

)
− log

(
1 +

β

2a + 2b + β

)]}

× exp

{
t1t2

2

β
log

(
1 +

β

2a + 2b + β

)}
,

and the convergence of φn(t1, t2) to characteristic function of bivariate normal dis-
tribution with 0 mean and covariance matrix (4.16) is established.

4.3.4 Cauchy Ensemble

Consider the Cauchy unitary ensemble with the probability density function

p(x; α) = C−1
n (α)

∏
1≤i<j≤n

|xi − xj|2
n∏

i=1

(1 + x2
i )
−αn, x ∈ Rn, (4.17)

with a varying parameter αn > n− 1/2. The reasoning similar to the derivation of
CLT for sufficient statistics in Laguerre and Jacobi ensembles leads to the following
proposition.

Proposition 4.9. Let (X1, . . . , Xn) be a sample of exchangeable random variables
with the joint probability density (4.17). Then

C(X) =
n∑

i=1

log(1 + X2
i )− En[

n∑
i=1

log(1 + X2
i )]

D−→ N (0, σ2
α), n →∞, (4.18)

where

σ2
α = 4 log

(
1 +

1

2(α− 1)

)
− 2 log

(
1 +

1

α− 1

)
, α > 1. (4.19)

Proof. The characteristic function of the statistic
∑n

i=1 log(1 + X2
i ) is equal to

φ̃n(t) = 2itn

n−1∏
j=0

Γ(2(αn− it)− n− j)

Γ(2αn− n− j)

[Γ(an− j)]2

[Γ(an− it− j)]2
.
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The Taylor expansion of the right hand side and Proposition 4.6 result in

lim
n→∞

φn(t) = exp

{
−t2

2

(
4 log

(
1 +

1

2(α− 1)

)
− 2 log

(
1 +

1

α− 1

))}
, t ∈ R,

where φn(t) denotes the characteristic function of the statistic C(X).

4.4 Maximum Likelihood Estimation

4.4.1 β-Hermite Ensemble

Since for β-Hermite ensemble the maximum likelihood estimator of σ2 is available
in closed form, and its asymptotical properties can be derived from the properties
of the sufficient statistics

∑n
i=1 X2

i , we formulate the following proposition.

Proposition 4.10. Let (X1, . . . , Xn) be a sample of random variables with the joint
probability density of β-Hermite ensemble (4.5) with the true parameter value σ2

0.
The maximum likelihood estimator σ̂2

n is consistent and asymptotically normal, i.e.

n(σ̂2
n − σ2

0)
D−→ N (0, 4σ4

0/β). n →∞. (4.20)

Proof. The consistency of σ̂2
n follows immediately from the expressions (3.26, 3.27)

for the mean and the variance of the maximum likelihood estimator. From Propo-
sition 4.5 we have that

n∑
i=1

X2
i − σ2

0

[
β

2
(n− 1) + 1

]
D−→ N (0, σ4

0β), n →∞.

Since

σ̂2
n =

∑n
i=1 X2

i

β(n− 1)/2 + 1
,

we obtain the convergence (4.20).

In Figure 4.2 we illustrate the result of Proposition 4.10 in the qq-plot. The
empirical quantiles of n(σ̂2

n− σ2
0) are compared with the theoretical quantiles of the

limiting normal distribution for β-Hermite ensemble with β = 1.2, σ2
0 = 4, n = 50.
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Figure 4.2: The asymptotic normality of the maximum likelihood estimator σ̂2
n in

the scaled β-Hermite ensemble with β = 1.2, σ2
0 = 4, n = 50.

4.4.2 β-Laguerre Ensemble

In order to prove consistency and asymptotical efficiency of the MLE for β-Lagurre
and β-Jacobi ensemble, we will use the unified approach described below. Namely,
consider the probability density function

pβ(x; θ) = C−1
β, n(θ)

∏
1≤i<j≤n

|xi − xj|β
n∏

i=1

wn, θ(xi), (4.21)

with θ = (θ1, θ2) ∈ R2
+ and

wn, θ(x) =

{
e−nx/θ1xnθ2−1, x ∈ R+, Lagurre,

xnθ1−1(1− x)nθ2−1, x ∈ (0, 1), Jacobi.
(4.22)

The true parameter value will be denoted by θ0. We will consider the behavior of
the log-likelihood function l(θ, X) on the sphere Qr of radius r with center at the
true parameter θ0, and show that for sufficiently small r and θ ∈ Qr, the probability

Pθ0(l(θ0,X) > l(θ, X)) → 1, n →∞.

Consequently, l(θ) has a local maximum in the interior of Qr. Since the maximum
likelihood equations must be satisfied at the local maximum and it was shown that
the solution of the maximum likelihood equation is unique, it will follow that with
probability tending to 1 as n → ∞ for any r > 0 sufficiently small, the maximum
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likelihood equations have the unique solution θ̂n within Qr, and hence

Pθ0(||θ̂n − θ0|| < r) → 1, n →∞.

In the proof of the asymptotic efficiency we utilize the following lemma.

Lemma 4.11 (Lehmann, Casella [85]). Let (T1n, . . . , Tsn) be a sequence of random
vectors converging in distribution to (T1, . . . , Ts), and suppose that for arbitrary fixed
j and k, Ajkn is a sequence of random variables tending in probability to constants
ajk for which the matrix A = || ajk|| is nonsingular. Let B = || bjk|| = A−1. Then,
if the distribution of (T1, . . . , Ts) has a density with respect to Lebesgue measure
over Es, the solutions (Y1n, . . . , Ysn) of the system of random linear equations in s
unknowns

s∑

k=1

AjknYkn = Tjn, j ∈ {1, . . . , s}, (4.23)

tend in probability to the solutions (Y1, . . . , Ys) of

s∑

k=1

ajkYk = Tj, j ∈ {1, . . . , s}, (4.24)

given by

Yj =
s∑

k=1

bjkTk, j ∈ {1, . . . , s}. (4.25)

In the following lemma we show that the maximum likelihood estimators of the
scale and shape parameter for β-Laguerre ensemble with varying coefficients are
consistent and asymptotically efficient.

Lemma 4.12. Let β > 0 and X = (X1, . . . , Xn) be a sample of exchangeable ran-
dom variables with the joint probability density of β-Laguerre ensemble with varying
coefficients (4.9) and the true parameter value (α0, θ0). The maximum likelihood
estimator (α̂n, θ̂n) is consistent and asymptotically efficient in the sense that

n(α̂n − α0, θ̂n − θ0)
D−→ N (0, Σ(α0, θ0)), (4.26)

with

Σ(α0, θ0) =

(
2
β

log
(
1 + β

2α0

)
1/θ0

1/θ0 (α0 + β/2)/θ2
0

)−1

. (4.27)

Proof. First we prove consistency. To obtain the needed facts concerning the behav-
ior of the log-likelihood function ln(α, θ) on the sphere Qr of radius r with center at
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the true point (α0, θ0), we will use the Taylor expansion about (α0, θ0) and divide it
by n2

1

n2
ln(α, θ)− 1

n2
ln(α0, θ0) = I

(n)
1 (α, θ) + I

(n)
2 (α, θ) + I

(n)
3 (α, θ),

with

I
(n)
1 (α, θ) := (θ − θ0)

{
1

n
L1(X; α0, θ0)

}

+ (α− α0)

{
1

n
L2(X; α0, θ0)

}
,

I
(n)
2 (α, θ) :=

1

2
(θ − θ0)

2

{
1

n

1

θ2
0

[β(n− 1)/2 + α0n]− 1

n

2

θ3
0

n∑
i=1

Xi

}

+
1

2
(α− α0)

2

{
−

n−1∑
j=0

ψ
′
(α0n + jβ/2)

}
+ (α− α0)(θ − θ0)

{
− 1

θ0

}
,

I
(n)
3 (α, θ) :=

1

6
(α− α0)

3

{
−n

n−1∑
j=0

ψ
′′
(α∗n + jβ/2)

}

+
1

6
(θ − θ0)

3

{
6

n

1

θ4∗

n∑
i=1

Xi − 2

n

1

θ3∗
[β(n− 1)/2 + α∗n]

}

+
1

2
(θ − θ0)

2(α− α0)

{
1

θ2∗

}
,

where (α∗, θ∗) is a point on the line segment connecting (α, θ) and (α0, θ0). We
notice that from Lemma 4.7 it follows

1

n
L(X; α0, θ0) −→ 0, n →∞

in probability, and consequently

1

n
|L1(X; α0, θ0)|+ 1

n
|L2(X; α0, θ0)| < r2

with probability tending to 1. Since the norms ‖x‖1 = |x1| + |x2| and ‖x‖2 =
(|x1|2 + |x2|2)1/2 are equivalent in R2, we have that there exists s > 0 such that with
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probability tending to 1 and arbitrary r

|I(n)
1 (α, θ)| ≤ sr3.

Further, from Lemma 4.7 we have that the term

1

n

1

θ2
0

[β(n− 1)/2 + α0n]− 1

n

2

θ3
0

n∑
i=1

Xi → −α0 + β/2

θ2
0

, n →∞

in probability, and hence

I
(n)
2 (α, θ) = I

(n)
21 (α, θ) + I

(n)
22 (α, θ),

where

I
(n)
21 (α, θ) := −1

2
(θ − θ0)

2α0 + β/2

θ2
0

− (θ − θ0)(α− α0)
1

θ0

− 1

2
(α− α0)

2

n−1∑
j=1

ψ(α0n + jβ/2)

is negative (nonrandom) quadratic form, while

I
(n)
22 (α, θ) := − 2

nθ2
0

(θ − θ0)
2L1(X; α0, θ0)

converges to 0 in probability. Consequently, there exist constants C > 0 and r0 > 0
such that for every r < r0

I
(n)
2 (α, θ) ≤ −Cr2.

Finally, with probability tending to 1, there exists a constant C1 > 0 such that

|I(n)
3 (α, θ)| ≤ C1s

3r3/6

since n
∑n−1

j=0 ψ
′′
(α∗n + jβ/2) is bounded for α∗ between α and α0, and

6

n

1

θ4∗

n∑
i=1

Xi − 2

n

1

θ3∗
[β(n− 1)/2 + α∗n]

≤ 6

θ4∗

∣∣∣∣∣
1

n

n∑
i=1

Xi

∣∣∣∣∣ +
2

n

1

θ3∗
[α∗n + β(n− 1)/2]

≤ C2

for n large enough and (α∗, θ∗) lying in the segment connecting (α, θ) and (α0, θ0).



4.4. Maximum Likelihood Estimation 65

−5 0 5

−5

0

5

Theor. Quantiles

E
m

p.
 Q

ua
nt

ile
s

−10 −5 0 5 10

−10

−5

0

5

10

Theor. Quantiles

E
m

p.
 Q

ua
nt

ile
s

Figure 4.3: The asymptotic efficiency of the maximum likelihood estimators α̂n (left
plot), θ̂n (right plot) in β-Laguerre ensemble with β = 1.5, α = 1.25, θ = 2.4, n =
1000.

Since

max
(α, θ)∈Qr

{
I

(n)
1 (α, θ) + I

(n)
2 (α, θ) + I

(n)
3 (α, θ)

}
≤ (s + C1s

3/6)r3 − Cr2 < 0

with probability tending to 1, if r < C(s + C1s
3/6)−1, we obtain that

lim
n→∞

P(α0, θ0)(ln(α0, θ0; X) > ln(α, θ; X)) = 1, ∀(α, θ) ∈ Qr

and therefore ln(α, θ; X) has a local maximum (α̂n, θ̂n) inside Qr for every r small
enough. Since the maximum likelihood equations have to be satisfied at the point
(α̂n, θ̂n) and it was shown that the solution of the maximum likelihood equations is
unique for β-Laguerre ensemble, we have that

lim
n→∞

P(α0, θ0)(|θ̂n − θ0|2 + |α̂n − α0|2 < r2) = 1,

and the consistency of the maximum likelihood estimator (α̂n, θ̂n) follows.

To prove asymptotic efficiency we consider the partial derivatives of the log-
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likelihood function and their Taylor expansions

∂

∂θ
ln(α̂n, θ̂n; X) =

n

θ2
0

L1(X; α0, θ0) + (θ̂n − θ0)

{
−2n

θ3
0

n∑
i=1

Xi +
n

θ2
0

[β(n− 1)/2 + α0n]

}

− n

θ0

(α̂n − α0) +
1

2
(θ̂n − θ0)

2

{
6n

θ4∗

n∑
i=1

Xi − 2n

θ3∗
[β(n− 1)/2 + α∗n]

}

+
n2

θ2∗
(θ̂n − θ0)(α̂n − α0),

∂

∂α
ln(α̂n, θ̂n; X) = nL2(X; α0, θ0) + (α̂n − α0)

{
−n2

n−1∑
j=0

ψ
′
(α0n + jβ/2)

}

− n2

θ0

(θ̂n − θ0) +
1

2
(α̂n − α0)

2

{
−n3

n−1∑
j=0

ψ
′′
(α∗n + jβ/2)

}

+
n2

2θ2∗
(θ̂n − θ0)

2.

Since
∂

∂θ
ln(α̂n, θ̂n; X) = 0,

∂

∂α
ln(α̂n, θ̂n; X) = 0,

we have that

Y1n = n(α̂n − α0),

Y2n = n(θ̂n − θ0),

satisfy the system of (random) linear equations

2∑

k=1

AjknYkn = Tjn, j = 1, 2,

with

T1n = L2(X; α0, θ0),

T2n = L1(X; α0, θ0)/θ
2
0,

and

A11n → 2

β
log

(
1 +

β

2α0

)
, A12n = A21n → 1

θ0

, A22n → α0 + β/2

θ2
0

, n →∞,
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in probability. Consequently, from Lemma 4.7 and Lemma 4.11, we have that the
random vector (Y1n, Y2n) = n(α̂n − α0, θ̂n − θ0) converges weakly to the bivariate
normal distribution with 0 mean and covariance matrix Σ(α0,θ0) as specified in (4.27).

In Figure 4.3 we illustrate the result of Lemma 4.12. The quantiles of the random
variables n(α̂n − α0) and n(θ̂ − θ0) are compared with the quantiles of the limiting
normal distribution in (4.26).

4.4.3 β-Jacobi Ensemble

In the following lemma we obtain consistency and asymptotic efficiency for the
maximum likelihood estimators of parameters in β-Jacobi ensemble.

Lemma 4.13. Let β > 0 and X = (X1, . . . , Xn) be a sample of exchangeable
random variables with the joint probability density of β-Jacobi ensemble with varying
coefficients (4.13), and the true parameter value (a0, b0). The maximum likelihood
estimator (ân, b̂n) is consistent and asymptotically efficient in the sense that

n(ân − a0, b̂n − b0)
D−→ N (0, Σ−1

(a0,b0)). (4.28)

with

Σ(a0,b0) =

(
2
β

log (2a0+β)(2a0+2b0+β)
2a0(2a0+2b0+2β)

− 2
β

log 2a0+2b0+2β
2a0+2b0+β

− 2
β

log 2a0+2b0+2β
2a0+2b0+β

2
β

log (2b0+β)(2a0+2b0+β)
2b0(2a0+2b0+2β)

)
. (4.29)

Proof. The proof of consistency and asymptotic efficiency is analogous to the proof
of Lemma 4.12. Namely, the Taylor expansion of the log-likelihood function divided
by n2 is

1

n2
ln(a, b)− 1

n2
ln(a0, b0) = I

(n)
1 (a, b) + I

(n)
2 (a, b) + I

(n)
3 (a, b),

where

I
(n)
1 (a, b) =

1

n
(a− a0)J1(X; a0, b0)− 1

n
(b− b0)J2(X; a0, b0),
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I
(n)
2 (a, b) =

1

2
(a− a0)

2

{
−

n−1∑
j=0

ψ(a0n + jβ/2) +
n−1∑
j=0

ψ(a0n + b0n + (n− j + 1)β/2)

}

+
1

2
(b− b0)

2

{
−

n−1∑
j=0

ψ(b0n + jβ/2) +
n−1∑
j=0

ψ(a0n + b0n + (n− j + 1)β/2)

}

+ (a− a0)(b− b0)

{
n−1∑
j=0

ψ(a0n + b0n + (n− j + 1)β/2)

}
,

and
|I(n)

3 (a, b)| ≤ C1s
3r3/6

for n sufficiently large, (a, b) ∈ Qr. From Lemma 4.8 we have that

1

n
J(X; a0, b0) → 0, n →∞

in probability, hence
|I(n)

1 (a, b)| ≤ sr3

with probability tending to 1, while I
(n)
2 (a, b) is negative (nonrandom) quadratic

form such that
|I(n)

2 (a, b)| ≤ −Cr2

for some constant C > 0. Consequently,

max
(a, b)∈Qr

{
I

(n)
1 (a, b) + I

(n)
2 (a, b) + I

(n)
3 (a, b)

}
≤ (s + C1s

3/6)r3 − Cr2 < 0

for r < C(s + s3C1/6)−1 with probability tending to 1, and

lim
n→∞

P(a0, b0)(ln(a0, b0; X) > ln(a, b; X)) = 1, ∀(a, b) ∈ Qr.

Therefore, the maximum likelihood function has a maximum (ân, b̂n) at the interior
of Qr with probability tending to 1. Since the solution of the maximum likelihood
equations for β-Jacobi ensemble is unique with probability 1 for every n ≥ 2, we
obtain that

lim
n→∞

P(a0, b0)(|b̂n − b0|2 + |ân − a0|2 < r2) = 1,

and the consistency of (ân, b̂n) follows.

Asymptotic efficiency is obtained like in Lemma 4.12. The Taylor expansions of
the partial derivatives of the log-likelihood function lead to the system of random
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linear equations
2∑

k=1

AjknYkn = Tjn, j = 1, 2,

with

Y1n = n(ân − a0), Y2n = n(b̂n − b0),

T1n = J1(X; a0, b0), T2n = J2(X; a0, b0),

and
Ajkn → ajk, n →∞,

in probability, where A = ||ajk|| = Σ(a0,b0) is the covariance matrix in (4.16). From
Lemma 4.8 and Lemma 4.11, we obtain that

n(ân − a0, b̂n − b0)
D−→ N (0, Σ−1

(a0,b0)).

4.4.4 Cauchy Ensemble

Proposition 4.14. Let X = (X1, . . . , Xn) be a sample of exchangeable random
variables with the joint probability density of Cauchy unitary ensemble with varying
coefficients (4.17) and the true parameter value α0 > 1. The maximum likelihood
estimator α̂n is consistent and asymptotically efficient in the sense that

n(α̂n − α0)
D−→ N (0, σ−2

α0
), (4.30)

where σ2
α0

is given in (4.19).

Proof. The Taylor expansion of the log-likelihood function divided by n2 is

1

n2
ln(α)− 1

n2
ln(α0) = I

(n)
1 (α) + I

(n)
2 (α) + I

(n)
3 (α),

where

I
(n)
1 (α) :=

1

n
(α− α0)C(X; α0),

I
(n)
2 (α) :=

1

2
(α− α0)

2

{
−4

n−1∑
i=0

ψ
′
(2αn− n− i) + 2

n−1∑
i=0

ψ
′
(αn− i)

}
,
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I
(n)
3 (α) :=

1

6
(α− α0)

3

{
−8n

n−1∑
i=0

ψ
′′
(2α∗n− n− i) + 2n

n−1∑
i=0

ψ
′′
(α∗n− i)

}
,

The arguments analogous to those in the proof of Lemma 4.12 lead to the limit

lim
n→∞

Pα0(|α̂n − α0| < r) = 1, ∀r > 0,

and consistency of α̂n is obtained. The Taylor expansion for the derivative of
ln(α̂n, X) results in the linear random equation AnYn = Tn, where

Yn = n(α̂n − α0), Tn = C(X; α0),

An → σ2
α0

in probability, as n →∞, and C(X; α0) is the sufficient statistics defined
in Proposition 4.9. From Lemma 4.11 and Proposition 4.9 asymptotic efficiency
(4.30) follows.



Chapter 5

Circular Ensembles

5.1 Introduction

The theory of random matrices has been developed in order to investigate properties
of complex spectra. Although the Gaussian ensembles, introduced in Wigner [118],
allow wide applications in different branches of mathematics and physics, they have
a drawback of being defined on the space of matrices which is not compact. As
a consequence, there is no way to assign the same weight to every matrix and
hence matrices representing different quantum systems can not be treated in the
same manner. To avoid this deficiency, Dyson [45] modified Wigner’s treatment
of a nucleus and defined three ensembles, similar to Gaussian, but mathematically
simpler to deal with. In Dyson’s paper, the system is characterized by a random
unitary n×n matrix U , which is supposed to be a function of the Hamiltonian H of
the system, but no detailed specification of this functional relationship can be given
globally. As mentioned in Mehta [87], one can think of a connection such as

U = exp[iτH] or U =
1− iτH

1 + iτH
,

although these relations can be valid only locally. In such a setting, the eigenvalues
exp[iζj], 1 ≤ j ≤ n of U are supposed to be functions of the eigenvalues Ej of H,
and the following basic assumption is formulated as ”the behavior of n0 consecutive
levels of an actual system, whenever n0 is small compared to the total number of
levels, is the same as that of n0 consecutive angles ζ1, . . . , ζn0 , where n0 is small
compared with n”.

The purpose of this chapter is to generalize Dyson’s circular ensembles and develop
their rigorous statistical treatment. Attention of physicists and mathematicians is
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centered around the asymptotical behavior of the spectra of random matrices rather
than around the structure of random matrices themselves. Therefore, our asymptoti-
cal analysis and estimation procedures are developed for the densities of eigenvalues
of matrices taken at random from the generalized circular unitary ensemble. Al-
though the estimation problem can be dealt with within a general non-parametric
framework, we restrict our attention to the densities belonging to exponential fam-
ilies of probability distributions, since numerous examples discussed in the physics
literature allow this interpretation. Additionally, remarkable analytical tools from
the theory of exponential families described in Chapter 2 can be applied to this
setting.

The outline of this chapter is as follows. In section 2, we state the basic facts
concerning Dyson circular ensembles and introduce their generalizations by setting
the probability density of the phases of n eigenvalues to be of the form

pθ; n(ζ) = C−1
n (θ)

n∏
j=1

wθ(e
iζj)

∏

1≤j<k≤n

|eiζj − eiζk |2, ζ ∈ [0, 2π]n, (5.1)

where θ = (θ1, . . . , θr) is an r-dimensional parameter, Cn(θ) is the normalizing con-
stant, and wθ is a suitable weight function on the unit circle T. Our investigation
is motivated by their numerous applications in physics in the areas such as chaotic
scattering (Jalabert, Pichard [66]), conductance in mesoscopic systems (Beenaker
[26]), periodically driven systems (Haake [59]), and mathematics, where they arise
in the theory of orthogonal polynomials on the unit circle (Ismail, Witte [65], Simon
[99]), the theory of Toeplitz determinants (Adler, van Moerbeke [2], Borodin [31]),
etc. Section 3 is devoted to Weyl’s integration formula for unitary group U(n), while
section 4 provides a brief overview of the results related to the theory of Toeplitz
determinants. In particular, the strong Szegö theorem is formulated. In section 5
the asymptotic normality of the sufficient statistics for the parametric generalized
Dyson circular unitary ensemble (GCUE) is established. Finally, the asymptotic
maximum likelihood procedure is applied to estimate parameters of the joint eigen-
value distribution of GCUE, and the properties of the estimators are derived in
section 6. From asymptotical behavior of the Fisher information matrix and ex-
plicit expressions for the asymptotic maximum likelihood estimators, we conclude
that consistent estimation of the parameter θ is not possible, unless the dimension
parameter n is included into the weight function wθ in (5.1). For this reason in
section 8, we analyze the model with varying weight from Gross, Witten [57], where
the probability density of n eigenphases is equal to

pγ; n(ζ) = C−1
n (γ)|∆(ζ)|2

n∏
i=1

exp

{
γn

n∑
i=1

cos ζi

}
, ζ ∈ [0, 2π]n, (5.2)
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with Cn(γ) as the normalizing constant and γ > 0. We show that the true parameter
value γ0 can be estimated consistently, provided that γ0 ∈ (0, 1 − ε), ε > 0. Addi-
tionally, we obtain that the maximum likelihood estimator γ̂n of γ0 is asymptotically
normal in the sense that

n(γ̂n − γ0)
D−→ N (0, 2), n →∞, (5.3)

if γ0 ∈ (0, 1− ε), ε > 0.

5.2 Circular Ensembles and Generalizations

For motivational purposes in this section we review the construction of the circu-
lar unitary ensemble of Dyson, introduce its parametric as well as nonparametric
generalizations and, for the sake of completeness, state basic properties of circular
orthogonal and symplectic ensembles. Our attention is especially restricted to the
unitary case since the analytical tools are the most developed for this specific in-
stance. In particular, the eigenvalue density and its asymptotic behavior are easily
derived by methods described in sections 3 and 4.

Circular ensembles were defined by Dyson [45] as subsets of a set U(n) of all
n × n unitary matrices. Uniqueness of the ensembles is imposed by introducing
measures invariant under appropriate groups of transformations. As mentioned
above, unitary matrices have applications in quantum physics, particulary in the
theory of periodic quantum systems (kicked tops) and in the scattering of plane
waves within an irregular shaped domain (cavity), or a cavity of arbitrary shape
containing random impurities (see Forrester [47] and references therein).

Recall that U(n) consists of all n×n invertible complex matrices U which satisfy
the relation UU∗ = I, where U∗ is the complex conjugate transpose of the matrix
U and I denotes the identity matrix. In order to define the circular unitary ensem-
ble, we endow U(n) with the normalized Haar measure dU . The normalized Haar
measure is the unique probability measure on U(n) invariant under left (also right)
multiplications by an arbitrary unitary matrix. As a consequence, we have that
all the matrices in the group receive equal weights in group averages. Notice that
this homogeneity requirement makes the measure invariant under unitary changes
of basis. This remarkable invariance property implies the explicit definition of an
ensemble of random unitary matrices.

Definition 4. A circular unitary ensemble (CUE) is a group of unitary matrices
endowed with the normalized Haar measure.
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Since circular orthogonal and symplectic ensembles, defined on the spaces of sym-
metric and self-dual unitary quaternion matrices respectively, are not of primary
interest for our analysis, and their introduction involves more detailed discussions
about the definition of a homogeneous measure on relevant spaces (on the space of
symmetric, respectively self-dual unitary quaternion matrices) which do not form
groups, we will escape their formal definitions and refer the reader to Forrester [47]
and Mehta [87].

As mentioned above, motivation for the initiation of circular ensembles primarily
came from the need to assign the same probability to each matrix in the ensemble.
Enormously wide applications of this concept were discovered subsequently. Never-
theless, it appeared that some physical systems which could be described by random
unitary matrices show deviations from this homogeneity property. As mentioned in
Muttalib, Ismail [89], numerical studies related to disordered conductors [66] and
periodically driven systems [78], exhibit statistical behavior different from that of
Dyson’s models. To remedy this deficiency, a new analytical model, containing CUE,
is considered. Namely, the probability of a matrix U to be taken from the unitary
group is set to be proportional to L(U)dU , where L : U(n) → R is an arbitrary
integrable function invariant under conjugacy transformations U → WUW−1, for
any W ∈ U(n). Of our particular interest are the exponential parametric general-
izations, where the function L is assumed to be of the form

L(U) = exp

{
r∑

j=1

θj tr Vj(U)

}
. (5.4)

Here θj are the parameters and Vj are the real-valued functions. For the moment,
we are being informal about conditions on Vj under which such a generalization
is possible. Notice that all powers and their linear combinations (provided that
they are real-valued) give an example of such a parametrization, e.g. functions
Vj(U) = U j + U−j can be used in (5.4). The initiation of the weight function
on the unitary group may come from any system-dependent physical constraint
as the measure under consideration may depend on various physical parameters
(see Muttalib, Ismail [89]). To summarize the discussion, we introduce the formal
definition of a generalized circular unitary ensemble.

Definition 5. A generalized circular unitary ensemble (CGUE) is a unitary group
U(n) endowed with the probability measure

P(dU) = L(U)dU, (5.5)

where L : U(n) → R is a function invariant under conjugacy transforms U →
WUW−1 for every W ∈ U(n), and dU denotes the Haar measure on U(n).



5.3. Weyl’s Integration Formula 75

Remark 5.1. We should mention a particular class of probability densities (5.5) with

L(U) = exp(tr V (U)),

where V : T→ R is such that exp(V (z)) is integrable on T. Ensembles of this form
can be seen as dominant in RMT and the theory of log-potential systems (see e.g.
Deift [37]).

5.3 Weyl’s Integration Formula

The aim of this section is to obtain the joint density of eigenvalues of a matrix taken
at random from GCUE. For this purpose, some well-known results from representa-
tion theory will be given, and their applications to our problem will be discussed.

In the middle 1920s Hermann Weyl obtained an explicit formula to integrate
functions on compact simple Lie groups. The formula, commonly known as Weyl’s
integration formula, is an analogue of the classical formula for the transformation of
integrals over R3 under the change of Cartesian to spherical coordinates. We will
restrict our attention to its specific case–integration over the unitary group with
respect to the normalized Haar measure, since Weyl’s formula in its full generality
involves a number of analytical details, which are not of main interest for our inves-
tigation. For the full description, we refer the reader to Weyl [116], noticing that a
nice review over the unitary case may be found in Pasquale [93].

Consider the group of unitary matrices U(n) endowed with the normalized Haar
measure and its subgroup T (n) consisting of diagonal matrices, i.e.

T (n) := {D(ζ) = diag{eiζ1 , . . . , eiζn} : ζj ∈ [0, 2π), 1 ≤ j ≤ n}.

Recall that every U in U(n) is conjugate to a diagonal unitary matrix, namely for
arbitrary U ∈ U(n) there exist V ∈ U(n) and D ∈ T (n), such that U = V DV −1,
where the diagonal elements of D are the eigenvalues of U . In order to identify all
the matrices with the same spectrum, we introduce the conjugacy classes as subsets
of U(n) consisting of all matrices with the same set of eigenvalues. It is easy to
show that unitary matrices U and V belong to the same conjugacy class if and only
if there exists a unitary W such that U = WV W−1. To formulate Weyl’s formula
we need a notion of a class function.

Definition 6. A class function is a function f : U(n) → C which is invariant on
conjugacy classes, i.e. f(V UV −1) = f(U) for arbitrary U, V ∈ U(n).

The celebrated integration formula due to Weyl can be stated now.
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Lemma 5.2 (Weyl). Let f ∈ L1(U(n)) be a class function. Then the following
integration formula holds

∫

U(n)

f(U)dU =
1

(2π)nn!

∫

[0,2π]n
f(D(ζ))|∆(ζ)|2dnζ, (5.6)

where

∆(ζ) =
∏

1≤j<k≤n

(eiζj − eiζk) =

∣∣∣∣∣∣∣∣

1 1 . . . 1
eiζ1 eiζ2 . . . eiζn

. . . . . .
ei(n−1)ζ1 ei(n−1)ζ2 . . . ei(n−1)ζn

∣∣∣∣∣∣∣∣
(5.7)

is the Vandermonde determinant.

From Weyl’s formula the probability density of the spectrum for GCUE can be
easily obtained. Since the eigenvalues λj of a unitary matrix lie on the unit circle,
they can be written in the form λj = exp[iζj], where the eigenphases ζj are assumed
to be from the interval [0, 2π] for every j. The probability measure of the eigenvalues
of a matrix chosen at random from GCUE is given in the following proposition.

Proposition 5.3. The joint distribution of the eigenphases of n × n matrix taken
randomly from the generalized circular unitary ensemble (5.5) is absolutely contin-
uous with respect to the Lebesgue measure

∏n
j=1 dζj on [0, 2π]n and its density is

pn(ζ) = C−1
n V (D(ζ))|∆(ζ)|2, ζ ∈ [0, 2π]n, (5.8)

where Cn is the normalizing constant.

Proof. The statement immediately follows from Weyl’s integration formula applied
to the function V (U) in Definition 5.

It should be mentioned that a certain inconsistency related to the terminology
can be observed in the literature on random matrix theory. Namely, some authors
use the therm ”ensemble” exclusively for the space of matrices endowed with the
probability measure, while in other sources the same notion refers to the probability
distribution on the spectra of random matrices. The latter case is commonly used
in the issue of generalizations of Dyson’s model, namely, both Nagao, Wadati [91]
and Muttalib, Ismail [89] initiate generalized circular ensembles through the joint
probability density of the eigenvalues without specifying the measure on the set of
matrices. The brief outline of their reasoning is given below.
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eigenvalues
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Figure 5.1: The eigenvalues of Dyson’s circular unitary ensemble, n = 50.

Dyson’s circular ensembles can be defined by the probability density function of
n eigenphases

pβ; n(ζ) = C−1
β; n

∏

1≤j<k≤n

|eiζj − eiζk |β, ζ ∈ [0, 2π]n. (5.9)

Here β is the symmetry parameter equal to 1, 2 and 4 for Dyson orthogonal, unitary
and symplectic ensemble, respectively. The eigenvalues of circular unitary ensemble
(n = 50) are plotted in Figure 5.1. In two papers mentioned above [89], [91], Dyson’s
model is generalized by introducing an additional weight w on the unit circle and
setting the density of n eigenvalues to be of the form

pw, β; n(ζ) = C−1
w, β; n

n∏
j=1

w(eiζj)
∏

1≤j<k≤n

|eiζj − eiζk |β, ζ ∈ [0, 2π]n. (5.10)

The weight w could take into account some physical-dependent constraints of the
system. For instance, in the Coulomb gas model, this generalization is equivalent to
applying an external field to the system of n particles free to move on the circular
wire. One of the main problems regarding such a definition is the evaluation of
the normalizing constant Cw, β; n, which is known as the partition function in the
theory of log-potential systems. However, for the unitary case (β = 2), the explicit
expression for Cw, β; n can be given in terms of Toeplitz determinants with respect to
the weight function w. For this purpose, Toeplitz determinants together with their
asymptotical behavior are reviewed in the next section.

Remark 5.4. Notice that for the parametric model introduced in (5.4), the density of
eigenphases is exactly of the form (5.10), where the weight w depends on parameters
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θ1, . . . , θr, and can be written as

w(eiζ) = exp

{
r∑

i=1

θjVj(e
iζ)

}
, ζ ∈ [0, 2π].

Remark 5.5. The problem of specifying CGUE from the numerical generation sense
remains open as a part of our further development of this subject.

Remark 5.6. It should be noted here that circular ensembles may be generalized in a
way different from the one described above. The recent paper by Killip, Nenciu [82]
discusses an ensemble of random sparse matrices whose eigenvalues follow the dis-
tribution given in (5.9) for general β > 0. Our approach allows further investigation
from this perspective as well. Namely, not only the unitary case can be considered,
but also generalizations over β may be established. We suppose that the numerical
generation procedure of such a model would bring new insights into the subject and
give rise to an additional analysis of this matter.

5.4 Toeplitz Determinants and Strong Szegö The-

orem

In this section we briefly review the theory of Toeplitz determinants and give the
exact expression for the normalization constant Cw, β; n in (5.10). As a consequence,
the rigorous definition of the parametric generalized circular unitary ensemble will
be obtained.

Various remarkable issues in the modern mathematics are closely connected to
the analysis of certain hermitian forms whose matrices, finite or infinite, have the
elements of the structure ai−j. A very attractive field in this respect is the theory
of Toeplitz operators, in particular–asymptotics of Toeplitz determinants, which is
associated to a variety of problems in physics, probability theory and mathematical
statistics, theory of orthogonal polynomials, information and control theory and sev-
eral other branches of mathematics. In this section we present some classical results
on the asymptotics of Toeplitz determinants which have relevance to our analysis
of the generalized circular ensemble. The selection of the material is determined by
the applications of the strong Szegö theorem to the ensembles on the unitary group,
while the reader with particular interest in this subject may consider the celebrated
book by Grenander, Szegö [55]. For the recent insight into the theory of Toeplitz
operators one is referred to Böttcher, Silbermann [32]. The classical theory of or-
thogonal polynomials on the unit circle together with historical remarks related to
its development is thoroughly described in Simon [99].
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Recall that for a function f ∈ L1(T), the nth-order Toeplitz determinant is defined
as

Dn[f ] = det[f̂(j − k)]n−1
j,k=0 =

∣∣∣∣∣∣∣∣

f̂(0) f̂(−1) . . . f̂(−n + 1)

f̂(1) f̂(0) . . . f̂(−n + 2)
. . . . . .

f̂(n− 1) f̂(n− 2) . . . f̂(0)

∣∣∣∣∣∣∣∣
, (5.11)

where {f̂(k)}k∈Z is the sequence of Fourier coefficients of f . In this context, the
function f is frequently referred to as the symbol of the corresponding determi-
nant. The analysis of the asymptotical behavior of Dn[f ] has had an illustrious
history. The initial step was made by Szegö in 1915, when the theorem regarding
the first-order asymptotics of Dn[f ] was established. This result was subsequently
extended in different directions. Particularly, the problem of analyzing the second-
order asymptotics was raised by Onsager, who encountered it in his study of the
Ising model. Motivated by Onsager’s question, Szegö sharpened his 1915 result. For
this reason, the theorem and its further generalizations, are nowadays commonly
known as the strong Szegö theorem. The result was formulated as follows

Theorem 5.7 (Szegö). Let f ∈ C1(T) be a positive function on the unit circle
with the derivative f ′ satisfying the Lipschitz condition of order α (0 < α < 1) and
g = log f . Then

lim
n→∞

Dn[f ]

G[f ]n
= E[f ], (5.12)

where

G[f ] = exp {ĝ(0)} , (5.13)

E[f ] = exp

{∑

k∈N
kĝ(k)ĝ(−k)

}
, (5.14)

and {ĝ(k)}k∈Z is the sequence of Fourier coefficients of g.

The smoothness condition needed by Szegö was subsequently relaxed in the series
of articles including Kac [79], Baxter [23], Hirschman [60, 61, 62], Geronimus [48],
Devinatz [38, 39], etc. Finally, the conclusive contribution was made by Ibragimov
[64], who replaced the Lipschitz condition on f ′ by the requirement log f ∈ L1(T).
The ultimate result can be rephrased as follows (see Johansson [69]).

Theorem 5.8 (Ibragimov). Let g ∈ L1(T) be a complex-valued function on T with
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Fourier coefficients {ĝ(k)}k∈Z . Assume that

∑

k∈Z
|k||ĝ(k)|2 < ∞. (5.15)

Then

Dn[exp g] = exp

{
nĝ(0) +

∑

k∈N
kĝ(k)ĝ(−k) + o(1)

}
(5.16)

as n →∞.

The condition (5.15) is of crucial importance for our definition of the parametric
generalized circular unitary ensemble. Its precise formulation is as follows.

Definition 7. The parametric generalized circular unitary ensemble is the ensemble
of random unitary matrices whose joint distribution of n eigenphases is given by the
density

pθ; n(ζ) = C−1
n (θ)

n∏
j=1

wθ(e
iζj)

∏

1≤j<k≤n

|eiζj − eiζk |2, ζ ∈ [0, 2π]n. (5.17)

with θ = (θ1, . . . , θr) as the r-dimensional parameter, Cn(θ) as the normalizing
constant and

wθ(e
iζ) = exp

{
r∑

i=1

θjVj(e
iζ)

}
, ζ ∈ [0, 2π], (5.18)

where real-valued functions Vj with Fourier coefficients {V̂j(k)}k∈Z are assumed to
satisfy the condition

Ej =
∑

k∈N
k

∣∣∣ V̂j(k)
∣∣∣
2

< ∞, 1 ≤ j ≤ r. (5.19)

Notice that the function wθ is integrable on the unit circle if the condition (5.19)
is satisfied. This fact is obtained from the proposition

Proposition 5.9. Let V ∈ L1(T) be a real-valued function on the unit circle with
Fourier coefficients {V̂ (k)}k∈Z, such that

E =
∑

k∈N
k

∣∣∣ V̂ (k)
∣∣∣
2

< +∞,

and define w(eiζ) = exp V (eiζ), ζ ∈ [0, 2π]. Then wp ∈ L1(T) for every p ∈ R.
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Proof. See Simon [99].

From this it follows that exp(θjVj) ∈ L1(T) for every θj ∈ R, 1 ≤ j ≤ r, and
consequently wθ ∈ L1(T) for every θ ∈ Rr, if the condition (5.19) is satisfied.

We proceed with giving a list of arguments for the initiation of the model described
in (5.17). First of all, most models from practical applications can be written in this
form and although a non-parametrical set up (5.10) can be considered, our class
of models is sufficient for most practical objectives. Secondly, statistical analysis
of our model can be partially carried out by means of the theory of exponential
families: the model allows sufficient reduction of data, the normalizing constant
Cθ; n is an analytical function of parameter θ ∈ Rr for arbitrary fixed n ∈ N, etc.
Another justification of our choice of the model is supplied from an argument of
the information theory: densities with exponential form maximize the entropy of
the system, provided that extra constraints on the system performance are imposed
(see Balian[19]). In addition to these properties, we must mention that parameters
θ1, . . . , θr may have a clear physical interpretation, and their estimation may be of
high importance for our understanding of the system behavior.

The main examples of the weight function wθ as described in (5.18), include

w
(1)
θ (eiζ) = exp (θ cos ζ) , ζ ∈ [0, 2π],

w
(2)
θ (eiζ) = exp (θ1 cos ζ + θ2 cos 2ζ) , ζ ∈ [0, 2π],

w
(3)
θ (eiζ) = (1 + ρ2 − 2ρ cos ζ)θ, ζ ∈ [0, 2π].

The weight function w
(1)
θ and the corresponding system of orthogonal polynomials

have arisen from the studies on the length of the longest increasing subsequence of
a random permutation in Baik, Deift, Johansson [9], and random matrix models in
Gross, Witten [57], Periwal, Shewitz [94]. Recursion relations for Toeplitz deter-
minants of this symbol can be found in Borodin [31], or Adler, van Moerbeke [2],
while the properties of orthogonal polynomials with respect to this weight (called
the Bessel weight) appear in detail in Ismail, Witte [65]. It should be noted here that

in the literature on circular statistics, w
(1)
θ (eiζ) is known as the density of von Mises-

Fisher distribution on 2-dimensional sphere (see e.g. Jammalamadaka, SenGupta

[68]). The weight w
(2)
θ arises in the studies of the longest increasing subsequence in a

random odd permutation (see Tracy, Widom [111]). Rational recursion relations for
the respective Toeplitz determinants are described in detail in Adler, van Moerbeke
[2]. For the discussion on the weight w

(3)
θ and the Toeplitz determinants with respect

to this symbol, one is referred to Borodin [31], Borodin, Okounkov [29], Adler, van
Moerbeke [2].
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The key connection of the parametric GCUE with the theory of Toeplitz determi-
nants lies in the following determinant identity due to Heine and Szegö, from which
the explicit expression for the normalizing constant Cθ; n can be deduced.

Lemma 5.10 (Szegö [105]). Let f ∈ L1(T) be the function on the unit circle with
Fourier coefficients {f̂(k)}k∈Z. Then the following identity holds

1

(2π)nn!

∫

[0,2π]n

n∏

k=1

f(eiζk)|∆(ζ)|2dn(ζ) = Dn[f ]. (5.20)

From this we can see that Cn(θ) in (5.17) is a multiple of Toeplitz determinant
with respect to the symbol wθ, namely

Cn(θ) = (2π)nn!Dn[wθ]. (5.21)

We conclude this section with an important remark regarding the applications of
identity (5.20) and strong Szegö theorem in asymptotical analysis of the sufficient
statistics of random unitary matrices. The connection of the identity (5.20) with the
limiting behavior of linear statistics for Dyson’s circular unitary ensemble was first
observed by Johansson [69], who in particular established the asymptotic normality
of tr Uk, k ≥ 1 for matrix U taken from circular unitary ensemble. Our approach in
the next section is similar to Johansson’s–it incorporates results on the asymptotical
behavior of Toeplitz determinants with the identity (5.21), resulting in the central
limit theorem for sufficient statistics of the parametric GCUE.

5.5 Asymptotic Normality

The aim of this section is to obtain a central limit theorem (CLT) for the vector
statistic

V (n)(ξ) =

(
n∑

k=1

V1(e
iξk), . . . ,

n∑

k=1

Vr(e
iξk)

)
, (5.22)

where ξ = (ξ1, . . . , ξn) is a sample of exchangeable random variables with the prob-
ability density function

pθ; n(ζ) = C−1
n (θ)

n∏
j=1

wθ(e
iζj)

∏

1≤j<k≤n

|eiζj − eiζk |2, ζ ∈ [0, 2π]n. (5.23)
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introduced in Definition 7. This issue is of special interest for comparison with
experiments, since physicists are mainly interested in those features of the statis-
tical model that tend to definite limits as n → ∞. Our approach is based on the
strong Szegö theorem and identity (5.21), which will be used to prove point-wise
convergence of the characteristic functions to the corresponding limit.

In the case of Dyson’s circular unitary ensemble

p0; n(ζ) = C−1
n (0)

∏

1≤j<k≤n

|eiζj − eiζk |2, ζ ∈ [0, 2π]n,

the central limit theorem was obtained for the statistics of the form

n∑
j=1

f(eiζj),

where f ∈ L1(T) is assumed to be real-valued function such that

∑

k∈N
k|f̂(k)|2 < ∞. (5.24)

This result together with the rate of convergence for f equal to a trigonometric
polynomial is due to Johansson [69]. For further developments of this subject see
Soshnikov [102] and Diaconis, Evans [40].

In order to state the CLT for our model, we need to define a non-negative bilinear
form on the space H

1/2
2 of real-valued functions f ∈ L1(T) satisfying the condition

(5.24). The bilinear form is defined by

〈f, g〉1/2 =
∑

k∈Z
f̂(k)ĝ(−k)|k|, f, g ∈ H

1/2
2 . (5.25)

The space H
1/2
2 is the example of Besov potential space and alternative definitions

of the bilinear form (5.25) are possible. For further details we refer the reader to [40]
and references therein. Once the bilinear form is defined, we can state the theorem

Theorem 5.11. Consider the sequence of probability density functions {pθ; n(ζ)}n≥2

defined in (5.17), where the real-valued functions Vj belong to H
1/2
2 , 1 ≤ j ≤ r.

Assume in addition that
V̂j(0) = 0, 1 ≤ j ≤ r. (5.26)

Then the vector statistic V (n)(ξ) introduced in (5.22), has asymptotically normal
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distribution with mean

µ =

(
r∑

j=1

θj〈V1, Vj〉1/2, . . . ,

r∑
j=1

θj〈Vr, Vj〉1/2

)
, (5.27)

and covariance matrix

Σ =




〈V1, V1〉1/2 〈V1, V2〉1/2 . . . 〈V1, Vr〉1/2

〈V2, V1〉1/2 〈V2, V2〉1/2 . . . 〈V2, Vr〉1/2

. . . . . .
〈Vr, V1〉1/2 〈Vr, V2〉1/2 . . . 〈Vr, Vr〉1/2


 . (5.28)

Proof. The asymptotical distribution of the statistics V (n)(ξ) is obtained from the
convergence of its characteristic function

ψn(t) = En exp

{
r∑

j=1

n∑

k=1

itjVj(e
iξk)

}
, t ∈ Rr,

where En denotes the expectation with respect to the measure (5.17). Substitution
of the expression for the density pθ; n(ζ) into the mathematical expectation above
gives

ψn(t) = C−1
n (θ)

∫

[0,2π]n
|∆(ζ)|2

n∏

k=1

exp

{
r∑

j=1

(θj + itj)Vj(e
iζk)

}
dnζ

=
Cn(θ + it)

Cn(θ)

Taking into account identity (5.21) and Ibragimov’s version of the strong Szegö
theorem (Theorem 5.8), we arrive at the expression that has the following form

lim
n→∞

ψn(t) = exp

{
−

∑

k∈N
k

(
r∑

j=1

θjV̂j(k)

) (
r∑

j=1

θlV̂j(−k)

)}

× exp

{ ∑

k∈N
k

(
r∑

j=1

(θj + itj)V̂j(k)

)(
r∑

j=1

(θj + itj)V̂j(−k)

)}
.

Rewriting the expression on the right hand side, we observe that

lim
n→∞

ψn(t) = exp

[
r∑

j=1

itj

(
r∑

k=1

θk〈Vj, Vk〉1/2

)]
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× exp

[
−1

2

r∑

j,k=1

tjtk〈Vj, Vk〉1/2

]
,

where the limiting function coincides with the characteristic function of the multi-
variate normal distribution with mean and covariance matrix as specified in (5.27),
(5.28). Since asymptotic normality is equivalent to the pointwise convergence of
characteristic functions to the corresponding limit, the proof of our theorem is com-
pleted.

Remark 5.12. Notice that

V (n)(ξ)
D−→ N (µ, Σ), n →∞,

without the normalization by
√

n, and that the components of the vector statistics
V (n)(ξ) are asymptotically independent if and only if the functions Vj, 1 ≤ j ≤ r,

are orthogonal in the Sobolev space H
1/2
2 , i.e. 〈Vj, Vk〉1/2 = 0 for j 6= k. In that

case, the covariance matrix (5.28) obtains the diagonal structure

Σ = diag
{〈V1, V1〉1/2, . . . , 〈Vr, Vr〉1/2

}
.

5.6 Asymptotic Maximum Likelihood Estimation

The aim of this section is to construct the asymptotic maximum likelihood estimator
θ̂(n) for parameter θ of the generalized circular unitary ensemble. The maximum
likelihood estimator θ̃(n) is defined as the solution of the system of equations

∂

∂θj

log Cn(θ̃(n)) =
n∑

l=1

Vj(e
iζl), 1 ≤ j ≤ r, (5.29)

and is not available in the closed form. We show that

∂

∂θj

log Cn(θ) −−−→
n→∞

r∑

k=1

θk〈Vj, Vk〉1/2, 1 ≤ j ≤ r,

uniformly over θ ∈ K,K ⊂ Rr, K compact, and replace (5.29) by the system of
linear equations

r∑

k=1

θ̂
(n)
k 〈Vj, Vk〉1/2 =

n∑

l=1

Vj(e
iζl), 1 ≤ j ≤ r, (5.30)
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which defines the asymptotic MLE θ̂(n) in closed form. The estimator θ̂(n) is asymp-
totically unbiased, but not consistent. We conclude that consistent estimation of
parameter θ is not possible, unless the dimension parameter n is included into the
weight function wθ.

It is known from Szegö’s theory that the normalizing constant Cn(θ) is the mul-
tiple of the nth-order Toeplitz determinant with respect to the symbol wθ, namely

Cn(θ) = (2π)nn! Dn[wθ].

Since pθ, n(ζ) is the density of the distribution from an exponential family for any
θ ∈ Rr, n ≥ 2, it follows from Theorem 2.2 that the derivatives of λn(θ) = Cn(θ)
may be obtained by differentiation under the integral sign. Additionally, λn(θ)
admits an analytical continuation to Cr by the identity

λ̃n(θ) =

∫

[0,2π]n
|∆(ζ)|2

n∏

k=1

wθ(e
iζk)dnζ, θ ∈ Cr.

Assume that the conditions of Theorem 5.11 are satisfied and consider the se-
quence of Toeplitz determinants {Dn[wθ]}n≥2 with respect to the symbol wθ,θ ∈ Cr.
Since the functions Vj, 1 ≤ j ≤ r are fixed, the Toeplitz determinants Dn[wθ] be-
come functions of parameter θ ∈ Cr. In order to avoid misinterpretation, we define
the new sequence of functions {dn(θ)}n≥2 by setting

dn(θ) = Dn[wθ], θ ∈ Cr, n ≥ 2. (5.31)

From the theory of exponential families and the determinant identity (5.20), we
obtain that dn(θ) = λ̃n(θ)(2π)−n/n! is an entire function for every n ≥ 2. In
addition to that, as shown in the following lemma, the sequence {dn(θ)}n≥2 is locally
uniformly bounded.

Lemma 5.13. The sequence {dn(θ)}n≥2 of entire functions on Cr is locally uni-
formly bounded, i.e. for every compact set K ⊂ Cr there exists a constant CK > 0
such that

|dn(θ)| ≤ CK , ∀θ ∈ K.

Proof. From the determinant identity (5.20) we have

dn(θ) =
1

(2π)nn!

∫

[0,2π]n
|∆(ζ)|2

n∏

k=1

wθ(e
iζk) dnζ, θ ∈ Cr,
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and consequently

| dn(θ)| ≤ 1

(2π)nn!

∫

[0,2π]n
|∆(ζ)|2

n∏

k=1

|wθ(e
iζk)| dnζ, θ ∈ Cr.

Since the functions Vj, 1 ≤ j ≤ r, are real-valued, we observe that

|wθ(e
iζk)| = exp

{
r∑

l=1

Re(θl)Vl(e
iζk)

}
.

From the last equality it follows that it is enough to prove the locally uniform
boundness for the sequence {dn(θ)}n≥2 with respect to the real-valued symbols wθ

with parameter θ ∈ Rr. For the real-valued symbol wθ, we have from Szegö’s theory
that

Dn[wθ]

Dn−1[wθ]
= min

p∈Pn−1

∫ 2π

0

|p(eiζ)|2wθ(e
iζ)dζ, n ≥ 2, (5.32)

where Pn is the set of all polynomials of degree non-exceeding n, with leading
coefficient equal to 1. Observe that the left-hand side in (5.32) is non-increasing in
n and it tends to 1 as n →∞ because limn→∞ Dn[wθ] exists. Thus, for every θ, the
sequence {Dn[wθ]}n∈N increases to its limit

exp

{∑

k∈N
k

(
r∑

i=1

θiV̂i(k)

)(
r∑

i=1

θiV̂i(−k)

)}

as n increases. As an immediate consequence of this fact, we obtain that

|dn(θ)| ≤ exp

{
1

2

r∑
i=1

r∑
j=1

θiθj〈Vi, Vj〉1/2

}
, ∀n ∈ N, θ ∈ Rr, (5.33)

where 〈Vi, Vj〉1/2 is the bilinear form in the Sobolev space H
1/2
2 . The function on the

right-hand side is bounded on compacts in Rr, and the lemma is proved.

The strong Szegö theorem applied to the symbol wθ ∈ L1(T), states that

lim
n→∞

dn(θ) = exp

{
1

2

r∑
i=1

r∑
j=1

θiθj〈Vi, Vj〉1/2

}
, (5.34)

under the conditions of Theorem 5.11. Thus, we have the following lemma

Lemma 5.14. Suppose the conditions of Theorem 5.11 are satisfied. The sequence
{dn(θ)}n≥2 of Toeplitz determinants with respect to the (complex-valued) generating
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function wθ, converges locally uniformly in Cr to its limit

d(θ) = exp

{
1

2

r∑
i=1

r∑
j=1

θiθj〈Vi, Vj〉1/2

}
. (5.35)

Moreover, all partial derivatives of dn(θ) converge locally uniformly to the corre-
sponding derivatives of the limiting function (5.35).

Proof. Since the sequence of analytic functions {dn(θ)}n≥2 is locally bounded and
it converges to the entire function on Cr, from Vitali’s theorem for several com-
plex variables it follows that it converges locally uniformly on Cr. If we apply
Weierstrass’ theorem for several complex variables to the sequence of Toeplitz de-
terminants {dn(θ)}n≥2, we get that for arbitrary multi-index l = (l1, . . . , lr), with∑r

i=1 li = l, li ≥ 0, 1 ≤ i ≤ r, derivatives

∂l

∂θl1
1 . . . ∂θlr

r

dn(θ)

exist and converge uniformly on compact sets in Cr to the corresponding derivatives
of the limiting function (5.35).

In order to obtain the probabilistic interpretation of the uniform convergence
of derivatives in Lemma 5.14, we will consider the cumulant-generating function
ψn(θ) = log λn(θ) corresponding to the density pθ; n(ζ) and formulate the following
corollary.

Corollary 5.15. Let {pθ; n(ζ)}n≥2 be the sequence of probability density functions
defined in (5.17) and suppose that the conditions of Theorem 5.11 are satisfied.
Denote the cumulant-generating function of pθ; n(ζ) by ψn(θ). Then the sequence of
gradients {∇ψn(θ)}n≥2 converges locally uniformly in θ ∈ Rr to the vector

(
r∑

j=1

θj〈V1, Vj〉1/2, . . . ,

r∑
j=1

θj〈Vr, Vj〉1/2

)
.

Proof. The statement follows from Lemma 5.14 applied to compact sets K ⊂ Rr

and functions
∂

∂θj

ψn(θ) =
∂

∂θj

dn(θ)/dn(θ).
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As discussed in the beginning of the section, our aim is to obtain the asymptotic
maximum likelihood estimator for the vector parameter θ ∈ Rr. Since all prelimi-
nary results are stated, we may summarize the discussion in the following theorem.
We denote the true parameter value by θ0.

Theorem 5.16. Let {pθ; n(ζ)}n≥2 be the sequence of probability density functions
given in (5.17), and assume that the conditions of Theorem 5.11 are satisfied. Then
the asymptotic maximum likelihood estimator θ̂(n) of θ0, defined as the unique solu-
tion of the system of linear equations

r∑

k=1

θ̂
(n)
k 〈Vj, Vk〉1/2 =

n∑

l=1

Vj(e
iξl), 1 ≤ j ≤ r, (5.36)

converges weakly to N (θ0, Σ
−1), where Σ is as specified in (5.28).

Proof. The maximum likelihood estimator θ̃(n) is defined as the solution of the
system of equations

∂

∂θj

ψn(θ̃(n)) =
n∑

l=1

Vj(e
iξl), 1 ≤ j ≤ r. (5.37)

The convergence in Corollary 5.15 implies that the left-hand side in (5.37) can be
approximated by the expression

r∑

k=1

θ̃
(n)
k 〈Vj, Vk〉1/2

and we arrive at the system of linear equations (5.36), which defines the asymptotic
maximum likelihood estimator θ̂(n). Consequently, we have that

θ̂(n) = V (n)(ξ)Σ−1. (5.38)

From Theorem 5.11 the convergence

θ̂(n) D−→ N (θ0, Σ
−1), n →∞, (5.39)

follows.

Remark 5.17. We notice that although θ̂(n) is asymptotically unbiased and follows
asymptotically normal distribution, it is not consistent. This fact can be explained
by the behavior of the Fisher information matrix In(θ) corresponding to the density
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p θ; n(ζ). Namely,

In(θ) =

∥∥∥∥
∂2

∂θj∂θk

ψ(θ)

∥∥∥∥
j,k=1,...,r

(5.40)

converges to a constant matrix Σ defined in (5.28), and therefore, the information
contained in the sample (ξ1, . . . , ξn) of exchangeable random variables with probabil-
ity density pθ; n(ζ) remains bounded as n increases. We conclude that the consistent
estimation of parameter θ is not possible, unless the dimension parameter n is intro-
duced into the weight function wθ defined in (5.18). To remedy this deficiency, we
consider the model (5.2) with varying weight and the third-order phase transition,
and show that under such a model, the concentration parameter γ can be estimated
consistently.

5.7 The Third-Order Phase Transition Model

In this section we consider the model from two-dimensional lattice gauge theories
which was analyzed heuristically by the steepest descent method in Gross, Witten
[57]. The same model arose in the studies of the length of the longest increasing
subsequence in a random permutation. Its properties were rigorously analyzed in
a series of papers including Johansson [70], Baik, Deift, Johansson [9], Baik, Deift,
Rains [10] and Widom [117]. It was shown that the ensemble exhibits the third-order
phase transition at γ = 1. Formally, the model is defined by the joint probability
density of n eigenphases equal to

pγ; n(ζ) = C−1
n (γ)|∆(ζ)|2 exp

{
γn

n∑
i=1

cos ζi

}
, ζ ∈ [0, 2π]n, (5.41)

where Cn(γ) = (2π)nn!Dn[wγn] is the normalizing constant and γ > 0.

The following lemma, due to Gross, Witten [57] and Johansson [70], describes the
asymptotical behavior of the free energy fn(γ) = n−2 log Cn(γ).

Lemma 5.18. If fn(γ) = n−2 log Cn(γ), then

lim
n→∞

fn(γ) = f(γ) =

{
γ2

4
, if 0 ≤ γ ≤ 1,

γ − 1
2
log γ − 3

4
, if 1 < γ.

(5.42)

Remark 5.19. The limiting function f(γ) in Lemma 5.18 is not analytic. Its deriva-
tive d3f/dγ3 is discontinuous at γ = 1, thus the third-order phase transition occurs
at this point. The asymptotic eigenvalue distribution is supported on the whole unit
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circle for γ < 1, whereas for γ > 1 its support is the subset of T. For more details
regarding the limiting distribution one is referred to Johansson [70].

In the lemma that follows we show that the limit (5.42) can be used to prove the
asymptotic normality of the sufficient statistics Tn(ξ1, . . . , ξn) defined below.

Lemma 5.20. Let ε > 0, γ ∈ (0, 1 − ε], and ξ = (ξ1, . . . , ξn) be a sample with the
joint probability density function (5.41). The sufficient statistics

Tn(ξ1, . . . , ξn) =
n∑

i=1

cos ξi − nγ/2 (5.43)

converges in distribution to the normal distribution with 0 mean and variance 1/2.

Proof. The moment-generating function of the statistics Tn(ξ) is

Mn(s) = C−1
n (γ)e−sγn/2

∫

[0,2π]n
|∆(ζ)|2

n∏
i=1

exp

{
(γn + s)

n∑
i=1

cos ζi

}
dnζ

= e−sγn/2 Dn[wγn+s]

Dn[wγn]
,

for s ∈ R. Consider γ ∈ (0, 1− ε] and the sequence of functions {Mn(s)}n∈N in the
interval s ∈ Iγ = [−min(γ, 1 − γ), min(γ, 1 − γ)]. From the construction of Iγ, we
have that 0 ≤ γ + s/n ≤ 1 for every s ∈ Iγ, n ≥ 1. It was shown in Johansson [72]
that for every ε > 0 there exists a constant C > 0 such that

| log Cn(γ)− n2γ2

4
| ≤ C

n
, (5.44)

for arbitrary n ≥ 1, γ ∈ [0, 1− ε]. Consequently,

e−C/n ≤ Cn(γ)e−γ2n2/4 ≤ eC/n, n ≥ 1 (5.45)

uniformly for γ ∈ [0, 1− ε]. Thus, we have the following asymptotics

Mn(s) = exp
{
−snγ

2

}
exp

{
n2

4

(
γ +

s

n

)2

− n2

4
γ2 + O

(
1

n

)}

= exp

{
s2

4
+ O

(
1

n

)}
, ∀s ∈ Iγ.

Therefore,
lim

n→∞
Mn(s) = exp(s2/4), s ∈ Iγ,
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where the function on the right hand side is the moment generating function of
normal distribution. Since the convergence of the moment-generating functions
in the neighborhood of the origin implies weak convergence of distributions (see
Billingsley [27]), we have obtained the asymptotical normality of the statistics Tn(ξ).

Corollary 5.21. If conditions of Lemma 5.20 are satisfied, the asymptotical maxi-
mum likelihood estimator

γ̃n =
2

n

n∑
i=1

cos ξi (5.46)

is asymptotically unbiased and

n(γ̃n − γ)
D−→ N(0, 2) (5.47)

as n →∞.

Proof. The maximum likelihood estimator γ̂n of parameter γ is obtained from the
equation

d

dγ
log Cn(γ̂n) = n

n∑
i=1

cos ξi. (5.48)

Since it was proved in Johansson [70] that there exists a constant C > 0, such that

∣∣∣∣
d

dγ
log Cn(γ)− n2γ

2

∣∣∣∣ ≤
C

n
,

for every n ≥ 1, γ ∈ (0, 1− ε], we replace the equation (5.48) by

n2γ̃n

2
= n

n∑
i=1

cos ξi, (5.49)

which leads to the estimator

γ̃n =
2
∑n

i=1 cos ξi

n
. (5.50)

We notice that

En[γ̃n − γ] = En[2 Tn(ξ)/n] −→ 0, n →∞,

and
n(γ̃n − γ)

D−→ N(0, 2), n →∞.

The statement of the corollary is obtained.
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Remark 5.22. The case γ > 1 is not considered here. In this instance, the maximum
likelihood equation (5.48) can be replaced by the asymptotical expression

1− 1

2γ̃n

=

∑n
i=1 cos ξi

n
(5.51)

that follows from Lemma 5.42 and leads us to the equation which defines the asymp-
totic maximum likelihood estimator γ̃n. Asymptotical properties of γ̃n are the sub-
ject of our further investigation. Heuristical derivation of the asymptotical distribu-
tion of sufficient statistics

Tn(ξ1, . . . , ξn) =
n∑

i=1

cos ξi − n

(
1− 1

2γ

)

leads us to the following convergence of moment-generating functions

lim
n→∞

Mn(s) = exp

[
s2

2

1

2γ2

]
, s ∈ [1− γ, γ − 1], (5.52)

and consequently, the asymptotical distribution of Tn(ξ) is normal with variance
(2γ2)−1. However, to prove the convergence (5.52) rigorously, one needs to establish
that for γ > 1, the rate of convergence to the limiting function in Lemma 5.42 is of
order o(n−2).
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Chapter 6

Summary and Open Questions

This thesis presented a brief historical overview of random matrix theory and some
existing theoretical results. We developed statistical estimation theory for certain
classes of random matrix ensembles. We derived exact and asymptotical distribu-
tions of the sufficient statistics for β-Hermite, β-Laguerre, β-Jacobi and Cauchy
unitary ensemble. Furthermore, we examined properties of the maximum likelihood
estimators of their parameters. Two discrete orthogonal polynomial ensembles (the
Krawtchouk and Charlier ensemble) have been considered, and the maximum like-
lihood estimators of their parameters were obtained in closed form. We general-
ize Dyson’s circular unitary ensemble, and analyze the properties of the sufficient
statistics and asymptotic maximum likelihood estimator for the generalized circu-
lar unitary ensemble. This was followed by the discussion of the third–order phase
transition model of Gross and Witten [57].

Throughout the thesis, we have formulated numerous proposals for future re-
search. Here we highlight the major open questions to be addressed from pure
mathematics point of view, as well as from the perspective of applications.

(1) In Section 3.1 we have noticed that the estimation problem can be dealt with
within the framework of non–parametric mathematical statistics. One of the
possible approaches in non–parametrical setting would be the implementation
of the results of Deift [37] into the estimation procedure. Numerical simula-
tions strongly support further investigation in this direction.

(2) Among the major non–parametrical questions related to the further devel-
opment of the statistical estimation theory for random matrix ensembles we
mention the kernel density estimation of the level density. The motivation
for the theoretical analysis comes from numerical simulations that we per-
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formed. Though the numerical results are not presented here, we observed
that the kernel density estimator ρ̂n(x), based on n eigenvalues of random
matrix ensemble, converges to the theoretical limiting density ρ(x) consider-
ably faster than the corresponding estimator based on n i.i.d. observations
with the probability density ρ(x). The greater rate of convergence can be
explained by repulsiveness property. The main problem in this issue is the
evaluation of multiple integrals from which the properties of the bias, variance
and mean-squared error of ρ̂n(x) should be derived.

(3) Possible extensions of the results of Chapter 4 for the weight function with gen-
eral exponential form (1.2) should be carried out. Additionally, as mentioned
in Section 3.1, the repulsiveness parameter β can be regarded as a parameter
to be estimated.

(4) The results of Chapter 5 can be extended in several directions. The problem of
construction of the explicit random matrix models for the generalized circular
unitary ensembles remains open. The estimation of γ > 1 in the Gross–Witten
third order phase transition model (5.41) is one of the main questions to be
addressed in our future research.
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Sept. 1998 bis Juni 2003: Mathematikstudium, Studienrichtung Theoretische

Mathematik, Abteilung Stochastik,

Staatliche Universität Sankt-Petersburg, Russland

11.06.2003 Abschluss: Diplom

seit September 2003: Doktorandin am Institut für Mathematische Stochastik

der Universität Göttingen

bei Herrn Prof. Dr. Manfred Denker

mit dem Ziel der Promotion

seit September 2003: Teilnahme am interdisziplinären Promotionsstudiengang

”Angewandte Statistik und Empirische Methoden” der

Universität Göttingen

Mai 2005 bis Okt. 2005: wissenschaftliche Mitarbeiterin am Institut

für Mathematische Stochastik der Universität Göttingen

bei Herrn Prof. Dr. Manfred Denker

und Herrn Prof. Dr. Edgar Brunner




	Estimation Problems Related to Random Matrix Ensembles
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography
	Curriculum Vitae

