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Abstract

Frank M. Rieger:
Rotating jet phenomena in Active Galactic Nuclei

Highly collimated and often bipolar outflows have been observed in many
Active Galactic Nuclei (AGN). The present thesis considers in detail the
implications of an intrinsic and extrinsic rotation in such jets:

The first part deals with the centrifugal acceleration of charged test particles at
the base of an intrinsically rotating jet magnetosphere. The equation characteriz-
ing the radial accelerated motion is derived and an analytical solution presented.
For electrons moving outwards along rotating magnetic field lines, the maximum
attainable Lorentz factor is found to be limited to a few hundred by (i) inverse-
Compton losses in the disk radiation field and (ii) the breakdown of the bead-
on-the-wire approximation which occurs in the vicinity of the light cylinder. The
results show that this mechanism may not only provide pre-accelerated seed par-
ticles required for efficient Fermi-type particle acceleration at larger scales, but
could also contributes to the hard X-ray hump observed in AGN.

The second part extends the investigation of the previous chapter. Following previ-
ous work by Webb (1989), steady-state Green’s solutions of the kinetic equations
describing the transport of energetic particles in a collisionless, rotating back-
ground flow are discussed for conditions assumed to prevail in the jets of active
galactic nuclei. By considering rigid and keplerian rotation profiles the centrifu-
gal and shear acceleration of particles scattered by magnetic inhomogeneities are
distinguished. In the case of rigidly rotating background flows shearing is absent
and the energy gain is analogous to the bead-on-the-wire approach of part 1. For
keplerian rotation profiles both shear and centrifugal effects are present. In the
case where the shear effects dominate, it is confirmed that power-law particle mo-
mentum solutions exist if the mean scattering time is an increasing function of
momentum. The relevance of shear acceleration in addition to Fermi-type particle
acceleration in AGN jets is finally pointed out with reference to recent observations
(e.g. in 3C273).

The final part considers the influence of an extrinsic caused jet rotation in the case
of the well-kown AGN Mkn 501. It has been shown for the first time that the TeV
and X-ray periodicity of ~ 23 days, observed in 1997, could be basically interpreted
as a doppler-shifted flux modulation due to the orbital motion of the relativistic
jet in a supermassive binary black hole system. Using typical jet parameters the
intrinsic orbital period and the centre-of-mass distance have been determined,
indicating a very close binary system. A simple upper limit on the allowed binary
masses has been obtained assuming that the current binary separation is of such
an order that gravitational radiation might become dominant, yielding black hole
masses which interestingly agree with expectations from merger scenarios.
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Chapter 1

Basic properties and the
physics of AGN

Galaxies are the fundamental building blocks of the universe. In the major-
ity of cases, galaxies exhibit a quite regular structure and, by using Hubble’s
classification scheme for normal galaxies, may be divided in elliptical, lentic-
ular, spiral or barred spiral galaxies.

Since the discovery of quasars (3C273) by Maarten Schmidt in 1963
(Schmidt 1963), the class of objects called “active galaxies” has become a
matter of particular astrophysical interest (cf. Blandford, Netzer & Wolt-
jer 1990; Duschl & Wagner 1992). “Active galaxies”, to which around 1—3%
of all galaxies may be counted among, display particular spectral properties
not related to ordinary stellar processes. The variable continuum emission
observed from those objects is centered in a bright, compact core of the
galaxy and outshines the light of all constituent stars by up to a factor of
10%. The activity centres of such galaxies with linear extension of less than
one pc are usually called “Active Galactic Nuclei” (AGN) and exhibit at least
one of the following properties: a high absolute luminosity, a nonthermal and
often highly variable continuum emission, broad emission lines and /or rather
unusual morphological structures like jets.

1.1 Taxonomy of AGN

The taxonomy of AGN appears to be rather complex and sometimes a bit
confusing, for historically, AGN have been often classified using different
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schemes.[] The so-called Seyfert galaxies (Seyfert 1943) and the quasar
group constitute the two largest subclasses of AGN. Seyfert galazies (Sy)
are radio-quiet, lower luminosity (M, > —23) AGN which are typically
found in early-type spiral galaxies. Spectroscopically they are characterised
by strong, high-ionization emission lines. Seyfert galaxies could again be
divided into two subclasses (cf. Khachikian & Weedman 1974), the type 1
and type 2 Seyfert galaxies. Seyfert 1 galaxies display two distinct set of
emission lines superimposed on one another, the broad lines and the narrow
lines, while the less luminous Seyfert 2 only seems to have narrow lines. If
the line width is interpreted as due to doppler motion around the central
object, the broad lines indicate high velocities up to 10 km/s (full width
half maximum) while the narrow lines imply lower velocities < 10% km/s.
Today however, polarization measurements indicate that broad emission
lines (e.g. of hydrogen and Fell) may be also present in Seyfert 2, the
polarization being probably due to scattering. Some intermediate types (e.g.
Sy 1.5, Sy 1.8, Sy 1.9) based on the appearance of the optical continuum
have also been introduced (e.g. Osterbrock 1981).

Quasars, on the other hand, belong to the most luminous class of AGN
(M, < —23), showing a bluish (U-B< 0) continuum and strong broad
optical emission lines. Historically, they have been distinguished from the
Seyfert galaxies by being spatially unresolved on the Palomar Sky Survey
photographs, implying an angular size smaller than ~ 7”. Most, if not
all, quasars are associated with elliptical galaxies. Following Kellermann
et al. 1989, quasars could be divided into radio-quiet quasars (sometimes
called QSO) and radio-loud quasars (QSR) depending on whether their ratio
of specific radio (5 GHz) to optical (680 THz) fluxes is smaller or larger
than 10. Only 10% of all quasars are radio-loud, the majority appears to
be radio-quiet but detectable through optical surveys. Radio-loud quasars
have been further divided into steep-spectrum radio quasars (SSRQ) and
flat-spectrum radio quasars (FSRQ), according to the value of their radio
spectral index « (S, < v~%), i.e. a < 0.5 for FSRQ and a > 0.5 for SSRQ.
Additionally, radio-loud but lower luminous (M, > —23) AGN, which reside
in elliptical galaxies, are called radio galaxies (like M 87, Cen A) . Broad-
emission line radio galaxies (BLRG) which show both, broad (asymmetric)
and narrow emission lines, and the narrow-line radio galaxies (NLRG) which
display only narrow lines, compose subclasses of radio galaxies. BLRG and
NLRG may be regarded as the radio-loud (elliptical) counterparts of the
Seyfert 1 and Seyfert 2 galaxies.

!The following overviews may serve as an introduction, e.g. Browne & Jackson 1992;
Dermer & Schlickeiser 1992; Netzer 1990; Padovani 1999; Peterson 1997 and Woltjer 1990.
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LINERs (low ionization nuclear emission line region galaxies) constitute
another subclass of AGN which is similar to the Sy 2 class (i.e. no broad but
only narrow emission lines) except that their low-ionization lines (e.g. [OI],
[NII]) are relatively strong. Almost half of all spiral galaxies show LINER
activity.

Blazars comprise one of the most interesting subclass of radio-loud AGN,
characterized by their unusual rapid variability (e.g. Am > 0.1 mag/day),
their strong and variable optical linear polarization (P.p > 3%) and their
flat radio spectrum and featureless broad nonthermal continuum. VLBI
(Very Large Baseline Interferometry) observations have revealed that some
blazars are superluminal sources showing apparent transverse velocities of
components larger than the speed of light (see also below). Theoretically,
blazars are radio sources thought to be viewed-on (i.e. small [viewing| angles
of jet axis to the line of sight), i.e. their emission is believed to be enhanced
and their time scales believed to be shortened due to Doppler boosting.
Three groups of radio sources have been counted to the blazar class: the
optically violent variable quasars (OVVs), which are characterized by rapid
and large amplitude optical continuum variations; the highly polarized
quasars (HP(@s) with a high percentage of optical linear polarization; and
the low luminous BL Lac objects which show no or only weak detectable
emission lines. All blazars seem to be associated with elliptical galaxies.
Historically, extragalactic radio sources have for a long time also been
divided into two classes according to their radio morphology and luminosity,
i.e. in the (unresolved, flat spectra) compact radio sources and the (resolved,
steep spectra) extended radio sources where the emission originates from
regions (e.g. lobes) more than one kpc from the center of the associated
galaxy. Fanaroff & Riley (1974) have introduced two subclasses for the
extended radio sources, called FR I and FR II. FR I are lower luminosity
(< 2-10% W/Hz at 178 MHz), edge-darkened sources which show no
prominent hot spots in their outer lobes. They have only weak optical
emission lines and show only weak cosmological evolution. FR II sources,
on the other hand, are high luminous (> 2 - 10% W/Hz at 178 MHz),
edge-brightened sources where the radio lobes are dominated by bright
hot spots, probably due to shock heating in the surrounding medium. In
contrast to FR I sources, they exhibit strong optical emission lines and show
strong cosmological evolution. There is now mounting evidence that BL
Lacs are related to FR I and quasars/OVVs to FR II radio sources.
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1.2 Black hole - accretion disk paradigm

Today, it is generally believed that the central engine of an AGN consists of an
(eventually spinning) supermassive black hole surrounded by a hot accretion
disk, where the disk is formed when gas endowed with angular momentum is
accreted onto the central object (cf. Rees 1984; Frank, King & Raine 1995).
Soon after the discovery of powerful radio sources it was argued that only
high-efficient conversion of gravitational into radiant energy seems to be able
to account for the observed high luminosity in those objects (e.g. Zeldovic
& Novikov 1964; Lynden-Bell 1969). For, the required high efficiency of
1 ~ 0.1 could not be provided by any known atomic or nuclear processes
leaving gravitational potential energy of infalling material (i.e. accretion) on
a massive, compact object as the most likely energy source. Several lines
of arguments may be added to support the black hole paradigm (note that
the following overview is by no means complete): first the production, col-
limation and stability of AGN jets seem to be (only) plausibly explainable
by MHD scenarios via the formation of rapidly rotating magnetospheres in
black hole - accretion disk systems (e.g. Camenzind 1996). Secondly, the ob-
servations of (apparent) superluminal motion of radio components (see also
below) indicate relativistic fluid motion in the source (Rees 1966) which in
turn implies the presence of a relativistic deep gravitational potential well (cf.
Blandford 1990). Thirdly, by causality arguments, the time scale for rapid
variability is related to the light travel time across the size of the source.
Observations of rapid variability, occasionally on time scales At of the order
of one minute, as observed for example in the Sy 1 galaxy NGC 6814 (cf.
Kunieda et al. 1990), imply a compact source whose size is of the order of
the Schwarzschildradius for a black hole of mass M = ¢* At/(2G) ~ 10" My,
Forthly, VLBA observations of water maser emitting material in the thin
gaseous disk around the Sy 2 galaxy NGC 4258 show almost perfect keple-
rian motion (over the distance of 0.13 — 0.26 pc) around the central object
indicating the presence of a central mass of M ~ 3 x 10" M, within the inner
0.13 pc (Miyoshi et al. 1995). Fifthly, recent reverberation mappingf| of a
sample of 17 Sy 1 galaxies and two quasars yields strong evidence for central
masses up to 4 x 10® M, (Wandel et al. 1999). Sixthly, kinematic studies of
the radio galaxy M 87 using optical emission lines allow a determination of
the rotation curve of the ionized gas disk to a distance as close as ~ 5 pc to
the dynamical center, which points to the presence of a central black hole of

2Reverberation techniques use the light travel time delayed emission-line response to
a continuum variation for a determination of the size and kinematics of the emission-line
region, see e.g. Peterson 1997.
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mass M ~ 3 x 10° M (Maccheto et al. 1997). Seventhly, the detection of
relativistic effects (i.e. relativistic Doppler and gravitational redshift) in the
Ka X-ray emission line from ionized iron in the disk of the AGN MCG-6-30-
15 may add another argument to the black hole - accretion disk paradigm
(Tanaka et al. 1995).

There is also increasing observational evidence that supermassive black holes
do not only reside in AGN but are also present in the center of all galax-
ies (e.g. Rees 1984; Kormendy & Richstone 1995; Ho 1998; Magorrian et
al. 1998; Richstone et al. 1998). The most prominent example is probably
our own galaxy where near-infrared imaging reveal proper motions of stars
which increase with a kepler law down to separations of less than five light
days from the compact radio source Sgr A* at the dynamic center of the
Milky Way. The observational findings provide strong evidence for the pres-
ence of a black hole of mass M ~ 3 x 10° M, (Eckart & Genzel 1996; Genzel
et al. 2000; see also Falcke et al. 1993; Melia & Falcke 2001).

Several correlations for the (putative) black holes masses in galaxies have
been established in the last years. The correlation between the black hole
mass and the bulge luminosity, for example, seems to be well-represented
(apart from some scatter) by the relation M, = 2 x 107 (Lpyge/5 X 10° L)'2
(e.g. Richstone et al. 1998), whereas recently a more tight correlation be-
tween the black hole mass and the velocity dispersion o within the half-light
radius has been established, i.e. M, ~ 1.2 x 108 M (0/200 km s~ 1)3-75 (+0-3)
(Gebhardt et al. 2000).

There exists a critical luminosity in the black hole paradigm, called the Ed-
dington luminosity, if one assumes spherical accretion of material. Despite
the general expectation for the accreted gas to (more likely) form an accre-
tion disk (as a consequence of being endowed with angular momentum), the
assumption of spherical accretion allows the derivation of some useful quan-
tities, generally used in accretion theory. The Eddington luminosity Lggq
describes the maximum possible luminosity of a source of mass M and is
given by the condition of a balance between the (outwards directed) radiation
pressure acting on an electron-proton pair and the attractive gravitational
force

47 GMm,c
or

Lpaq = ~ 1.2 x 10 (

-1
108M@) ergs s, (1.1)

where m,, denotes the proton mass and o7 the Thomson cross-section, G is
the gravitational constant and ¢ the speed of light. The related Eddington
accretion rate MEdd, i.e. the accretion rate required to sustain an Eddington
luminosity with n = 0.1 efficiency of conversion of mass into radiant energy,
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may then be defined as

: Lrqa M 1
Mggq = ~22(— | M . 1.2
Edd N (108 M@) o Yr (1.2)

This definition also allows a derivation of a mass-independent Eddington
time (sometimes called the salpeter time), which is the e-folding time for a
black hole mass accreting at the Eddington rate, i.e.

M
tpad = —— ~ 4.5 x 107 yrs. (1.3)
Edd

1.3 Superluminal motion and flux enhance-
ment in relativistic jets

In the context of AGN, the term “superluminal motion” has been intro-
duced in order to describe the observations of (apparent) motion of radio
source components with velocities exceeding the speed of light. Superlumi-
nal motion has been observed in many blazars (see above). Recent VLBA
observations of 42 gamma-loud blazars, for example, reveal apparent veloc-
ities of jet components ranging up to velocities of ~ 40 c¢. The distribution
of apparent velocities for the general population peaks at 11 ¢ and shows
a long high-velocity tail of sources with motion exceeding 20 ¢ (Marscher
et al. 2000). The apparent discrepancy with special relativity theory how-
ever, could be solved by assuming relativistic (but sub-c) motion of source
regions at small angles to the line of sight (Rees 1966; Blandford, McKee
& Rees 1977). For, consider a source moving at an inclination ¢ to the line

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

””””””””””””””” i A
vt cosi

Figure 1.1: Sketch explaining the superluminal motion observed in radio
sources.

of sight from point A to point B at velocity § = v/c (see Fig. [.1). The
observed difference in arrival times for radiation emitted at A and B then
appears to be shortened due to the source motion towards the observer and
is given by tops = (1 — (3 cosi) t, where t denotes the (true) time interval for
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source motion from A to B. The observer measures a transverse dimension
St of St = (¢t sini and thus derives an apparent transverse velocity of

St Besing (1.4)

T
c= =)
b tobs 1 — [ cosi

which may exceed the speed of light for small viewing angles. Eq. ([.4) has a
maximum for 4,, = arccos 3 where the apparent velocity becomes 3 = « 3

with v = 1/4/1 — 32. Thus, for v > 1 one finds 8L > 1. The depen-
dence of the apparent transverse velocity on the viewing angle is illustrated

in Fig. .. If the source region moves at a small viewing angle ¢ with rela-
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Figure 1.2: Apparent superluminal motion measured by a distant observer
for different source velocities [3.

tivistic speed 3 towards the observer, there is another important effect, called
doppler boosting or beaming, which may lead to a (drastical) enhancement of
the observed flux. The Doppler boosting formulas relate the quantities mea-
sured in the comoving frame of the source to those measured in the observer
frame (using Lorentz transformations). From relativistic Doppler formula
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we know, that the frequency v/ measured in the rest frame of the sourcef] is
related to the observed frequency v by v = § / where ¢ is the Doppler factor
given by

5= 1
(1 — 3 cosi)

(1.5)

with 7, the bulk Lorentz factor of the flow, i.e. 7, = 1/4/1 — 2. Since it
can be shown that the quantity I(v)/v3, where I(v) denotes the intensity
of radiation, is a Lorentz invariant (e.g. Rybicki & Lightman 1979), the
transformation law for the intensity becomes I(v) = 63 I'(v'). For a resolved
emission region (e.g. a blob of plasma) the flux S(v) is transformed in the
same way as the intensity. The spectral flux modulation by doppler boosting
therefore can be written in the formf!

S(v)=885) =615 (v), (1.6)

where S’ is the spectral flux density measured in the comoving frame and the
final equality holds if the source has a spectral index «, i.e. S'(V) o (/).
Doppler boosting of emission has an additional advantage of solving the
problem that in several cases the deduced (variability) brightness tempera-
ture 7}, for radio (synchrotron) sources violates the inverse Compton limit
of 102 K (e.g. Wagner & Witzel 1992). This inverse Compton limit may
be derived from the requirement that the energy of (one-scattered) Compton
radiation must not exceed the synchrotron radiation energy in order to avoid
catastrophic losses (e.g. Kellermann & Pauliny-Toth 1969; Melrose 1980). If
Doppler boosting occurs, the observed brightness temperature appears to be
enhanced by Tj ~ 6T} (e.g. Blandford 1990), thus allowing an accomoda-
tion for most sources.

Beaming may also account for the ~-ray transparency of blazars (e.g.
Maraschi et al. 1992). For, if beaming does not occur in blazars, the source di-
mensions derived from variability studies are so small, that all (co-existent)
~v-ray photons, which are produced inside the source, should be absorbed
through photon-photon collisions with target photons in the X-ray band,
resulting in the production of ete™ pairs.

3Note, that quantities measured in the rest frame of the source are labelled with a
prime superscript.

“Note, that if one additionally has to consider the redshift dependence, i.e. the expan-
sion of the universe, the doppler factor ¢ in Eq. ([[.§) should be replaced by ¢/(1 + 2).
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1.4 Unified models

There have been many attempts to develop unified models which may ac-
count for the observed, wide variety of AGN-types (see sect. [[.1). Some
overviews may be found in Netzer (1990), Woltjer (1990), Antonucci (1993),
Urry & Padovani (1995), Peterson (1997) and Padovani (1999). The fun-
damental idea behind most unification models is the assumption that the
observed AGN properties depend on their viewing angle, i.e. that all AGN
may intrinsically belong to the same class but are viewed under different
angles. A simplified sketch of the working paradigm is shown in Fig. [.3.
According to this paradigm, an AGN consists of a black hole which is sur-
rounded by an accretion disk. The central part is believed to be obscured by
an absorbing torus with inner radius of several parsecs which is composed
of dense molecular clouds. The fast moving clouds of the Broad line region
(dark spots) are inside the torus, while the slower moving clouds outside the
torus (grey spots) comprise the Narrow line region. Radio-loud objects ad-
ditionally have a relativistic jet perpendicular to the disk, which is absent or
only weak in radio-quiet objects.

Seyfert 2 galaxies are supposed to correspond to those sources which are
viewed edge-on (i.e. at large viewing angle) so that the central part is ob-
scured and can only be seen through reflected radiation due to scattering
by hot electrons (black dots). Seyfert 1 galaxies, which in addition display
broad emission lines, are believed to be face-on versions where the central
part is unobscured. Also, BL Lacs and radio-quasars have been unified with
FR I and FR II radio sources. BL Lacs are thought to correspond to the low-
luminosity FR I radio sources viewed face-on, i.e. at small viewing angle, the
observed properties thus being modified by Doppler boosting. Flat-spectrum
(FSRQ) and steep-spectrum (SSRQ) radio quasars, on the other hand, might
correspond to the more luminous FR II radio galaxies viewed at small (i.e.
< 15°) and intermediate (i.e. 15° < i < 40°) angles, respectively. A sim-
ple unification scheme is shown in Tab. [T using two parameters, i.e. their
radio-loudness and their orientation with respect to the observer.

1.5 The formation and collimation of jets

Many efforts have been undertaken in order to account for the observed
well-collimated, often superluminal (on parsec scales) jets in AGN. Several
theoretical models for the formation and collimation of jets have been pro-
posed. Each of these models however, seems to have its own problem (e.g.
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Figure 1.3: Sketch illustrating the current paradigm of (radio-loud) AGN
(adopted from Urry & Padovani 1995).

Begelman et al. 1984). Mainly three types of models may be distinguished
(cf. Blandford 1990; Celotti & Blandford 2000):

Hydrodynamical self-collimation and acceleration of an adiabatically out-
flowing fluid, assumed to be in pressure equilibrium with the surrounding
gas, has been proposed in so-called “twin-exhausts” models (e.g. Blandford
& Rees 1974). However, for powerful radio sources the required large gas
pressure would imply an X-ray luminosity exceeding the observational con-
straints.
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11

Radio loudness | Orientation: Orientation:
Edge-On Face-On
Radio-quiet Seyfert 2 Seyfert 1
Radio-quiet quasars
Radio-loud Fanaroff-Riley 1 BL Lacs
Narrow-line radio galaxies | Broad-line radio galaxies
Fanaroff-Riley 11 Radio-quasars

Table 1.1: A possible, simplified AGN unification scheme, following the sug-
gestion by Urry & Padovani 1995 and Padovani 1999.

A second class comprises radiation pressure driven outflows assuming that
the radiation pressure may be sufficient to accelerate pairs along certain
directions (e.g. funnels). However, high luminosities of the order of the
Eddington limit are required despite increasing observational evidence for
sub-Eddington accretion in BL Lac-type objects. Additionally, due to the
induced radiation drag only midly relativistic bulk velocities are expected.
Today magnetohydrodynamical models seem to represent the most promis-
ing class for production and collimation of astrophysical jets (e.g. Blanford
& Zmajek 1977; Blandford & Payne 1982; Camenzind 1989; Begelman 1994).
The required magnetic flux could be advected from the interstellar magnetic
field via the accretion process or possibly be produced through a disc dy-
namo effect (e.g. Khanna & Camenzind 1996). Co-rotation of gas with the
central rotator (i.e. a rapidly spinning black hole or the surrounding accre-
tion disk) then allows for the centrifugal acceleration. For, if the magnetic
field is strong enough, (cold) matter, which is forced to corotate with the
rotating field lines but free to slide along them, may be flung away from the
disk by the centrifugal force. Hence the flow is accelerated centrifugally in
an inner region bounded by the Alfvén surface, which in the relativistic limit
is located close to the light surface (Camenzind 1986). Outside this surface
however, the flow would exceed the Alfvén speed and therefore stops to be
accelerated beyond this surface. The inertia of the plasma then governs the
motion. Generally, the jet is assumed to be collimated by a toroidal field
component which develops beyond the Alfven surface. For the associated
“hoop stress” then produces a force directed towards the axis. It should be
noted that there is an extensive, ongoing discussion concerning the stability
of the generated solutions since (experimentally) toroidal magnetic fields are
known to be unstable.

If the magnetic flux that gives rise to the jet is concentrated towards the in-
nermost part of the disk, differential rotation of the crank could possibly be
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Figure 1.4: Ilustration of the jet structure as expected in MHD scenarios.
The jet consists of a family of nested magnetic surfaces (e.g. Camenzind &
Krockenberger 1992).

neglected and the magnetic surfaces are characterized by the same angular
velocity of their footpoints (e.g. Lesch et al. 1989; Camenzind & Krocken-
berger 1992). The jet may then be regarded as a family of nested magnetic
surfaces rotating at constant angular velocity. Such a possible structure is
illustrated in Fig. [.4. In the high conductivity limit these surfaces can
never cross and normal plasma from the disk is streaming along the surfaces.
In the case where the toroidal collimation is destroyed by non-axisymmetric
instabilities, powerful poloidal collimating effects are still possible (e.g.
Spruit 94, Spruit et al. 1997). It is then required however, for the magnetic
flux to thread the disk over several decades of radius in order to produce
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highly collimated jets. The internal velocity structure of the jet could then
be still more complex (e.g. Blandford 1993).

1.6 High energy emission and particle accel-
eration in AGN

AGN are characterized by their nonthermal emission over the whole electro-
magnetic spectrum from the radio to the y-ray band, i.e. by emission over
a range up to about 20 orders of magnitudes in frequency. In the case of
v-ray-loud blazars, the overall energy distribution (v F,) shows two broad
humps, the first peaking in the infrared-optical and sometimes in the X-rays
(e.g. for Mkn 421; Mkn 501; PKS 2251+158), and the second in the ~-rays
(e.g. Dondi & Ghisellini 1995). At least four BL Lac objects have recently
been detected at very high energies (above 250 GeV) with ~-ray emission
extending up to at least 10 TeV in Mkn 421 and Mkn 501 (Catanese &
Weekes 1999).

The first hump is usually interpreted as synchrotron emission of relativistic
electrons in a jet which itself moves at relativistic speed towards the observer.
Synchrotron emission is produced by charged, relativistic particles in a mag-
netic field. Depending on the assumed intrinsic magnetic field strength, high
Lorentz factors for the radiating particles are required (v, oc v B; Lorentz
factor up to ~ 10° in leptonic models, e.g. Rieger 1997). Several acceleration
mechanisms have been proposed which may explain the generation of high en-
ergy particles (e.g. via rectilinear acceleration by an electric field: Bednarek
et al. 1996, Schopper et al. 1998; or via the formation of a two-stream instabil-
ity: Pohl & Schlickeiser 2000) among which Fermi-type (shock) acceleration
seems to be most promising. The original idea of shock acceleration goes
back to a seminal work by Fermi (1949, 1954) who considered the (stochas-
tic) acceleration of particles by scattering off randomly moving magnetic
mirrors (i.e. irregularities in the magnetic field), showing that a particle may
gain energy o< (V/v)? (sometimes called Fermi process of second order with
the V' typical mirror velocity and v ~ ¢ the particle velocity) due to the
enhanced probability for head-on collisions. In the late 1970s, an effective
version of Fermi’s original mechanism called “diffusive shock acceleration”,
was proposed (Krymsky 1977; Axford et al. 1977; Bell 1978; Blandford &
Ostriker 1978). In the underlying picture, high energy particles are supposed
to pass unaffected through a shock front and scatter elastically off magnetic
irregularities (Alfvén waves) in the plasma flow on either side of the shock.
The acceleration mechanism then is essentially a first order process (energy



14

Basic properties and the physics of AGN

gain o« V/v) due to the fact that in the rest frame of shock the upstream
velocity u; exceeds the downstream velocity us in which case only head-on
collisions are possible. In its simplest version, this process generates a parti-
cle spectrum N () which follows a power law whose slope s depends only on
the shock compression ratio p = u;/uy and not on the microphysics involved
in the scattering process (for review, see Drury 1983; Kirk et al. 1994; Kirk &
Duffy 1999). Diffusive shock acceleration thus promises a natural explanation
for the observed (apparent) universality of ~ 2 (i.e. N(v) oc v72), predicted
for strong shocks with compression ratio p = 4, which is one of the main
attractions of the theory. In the context of supernova remnants, the diffusive
acceleration theory could reasonable account for the origin of the observed
radio emission (e.g. Ball & Kirk 1992, 1995; Duffy et al. 1995). In the case
of AGN, a simple time-dependent model for the X-ray emission in blazar
jets, incorporating both diffusive shock acceleration and synchrotron losses
of electrons, has been recently applied by Kirk, Rieger & Mastichiadis (1998).
They successfully show that the observed spectral index variations observed
in many blazars (i.e. “soft lag”, “hard lag”) could be understood as an
interplay between the time scale for acceleration and the time scale for syn-
chrotron losses, giving additional credit to shock acceleration mechanisms.
There is an increasing consensus that the nonthermal X-ray emission in
blazars might be understood as synchrotron radiation of relativistic charged
particles. However, there remain considerable questions concerning the pro-
duction of the observed high energy gamma-rays. Various explanations
have been introduced (for review, see Schlickeiser 1996; Mannheim 1997).
These explanations cover leptonic Synchrotron-Self-Compton (SSC) models,
in which electrons are assumed to emit synchrotron photons directly and
scatter them to high (gamma-ray) energies via the inverse-Compton process
(e.g. Maraschi, Ghisellini & Celotti 1992; Mastichiadis & Kirk 1997). Some
models suggest external photons as seed for inverse Comptom scattering (e.g.
accretion disk photons: Dermer, Schlickeiser & Mastichiadis 1992; accre-
tion disk photons reprocessed /rescattered in the surrounding matter: Sikora,
Begelman & Rees 1994). Additionally, the importance of shock-accelerated
protons have been stressed in hadronic models (e.g. Mannheim et al. 1991;
Mannheim 1993). Since the radiative losses are smaller for protons than for
electrons, much higher energy particles can be achieved. Pions, which are
produced in proton-photon collisions, decay in pairs, neutrinos and ~y-rays.
The pion decay products (except for the neutrinos) will then subsequently
initiate an electromagnetic cascade leading to further pairs and ~-rays until
the medium becomes optically thin for the produced v-rays. The resulting
radiation could then account for the observed high energy emission.

Up to now, however, no consensus has emerged concerning the origin of the
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high energy ~-rays. For a realistic approach it seems, that to some degree all
described processes might contribute to the observed high energy emission.

1.7 The concept of this work

The main focus of this work is concentrated on a detailed investigation of
(intrinsic and extrinsic) jet rotation in AGN. Since there is increasing the-
oretical and observational evidence for jet rotation, we feel that there is a
need for a detailed investigation which considers the impact of rotation on
particle acceleration and jet morphology. By explaining the objects and re-
lated terms, the preceding comments might have set the frame for such an
investigation. In the course of this work we will frequently refer to the results
and expectations of the previous sections.

The present work opens with an analysis of centrifugal acceleration of test
particles at the base of rigidly rotating jet magnetospheres. In magneto-
hydrodynamical scenarios, such rotating magnetospheres are believed to be
responsible for the relativistic jet phenomena in AGN. A simple analytical
approach is presented which allows of a determination of the Lorentz factor
for particles following the rotating magnetic field lines. It is explicitly shown
that (even if one neglects radiation losses) the energy gain of a particle is
limited by the breakdown of the bead-on-the-wire approximation which oc-
curs in the vicinity of the light cylinder.

In the subsequent chapter, the investigation of particle acceleration is ex-
tended. By using relativistic transport theory in the diffusion approxima-
tion, particle acceleration in rotating and shearing jet flows is considered.
Our analysis makes recourse to previous work for the transport of cosmic
rays in the galaxy by Webb (1989) and Webb, Jokipii & Morfill (1994), but
incorporates rotation profiles more relevant for AGN jets. Following an ana-
lytical approach, solutions are derived for rigidly and keplerian rotating flow
profiles. In the case of rigid rotation, shearing is absent and it is shown that
the energy gain might be correlated with the test particle approach of the
foregoing chapter. For keplerian rotation profiles shearing is present and the
solution becomes more complex. The consequences of particle acceleration
by rotating and shearing jet flows and the special relevance to observations
are indicated.

Occasionally, observational evidence for intrinsic jet rotation, i.e. for rotation
of material inside the jet, seems not unambiguous. For, the rotation of jets
due to an extrinsic cause, e.g. the precession of a jet due to the gravitational
torque or the rotation of a jet in a binary system, might also mimic the ob-
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servational effects. Hence, modelling of intrinsic and extrinsic jet rotation
might be of particular relevance. As an example, the extrinsic caused jet
rotation in a binary system is therefore considered in a further chapter. It
is shown that a binary black hole interpretation may properly account for
the observed periodicity in the X-ray and ~-ray bands of the well-observed
blazar Mkn 501. Additional evidence for the presence of binary black hole
systems is discussed. If verified by further observations, Mkn 501 could be
the first object where v-ray astronomy contributes to the evidence for binary
black hole systems.[{

SResults of chapter | and chapter [| have already been published, see for example
Rieger & Mannheim (2000a,b).



Chapter 2

Test particle acceleration by
rotating jet magnetospheres

2.1 Introduction

In this chapter we consider the acceleration of test particles by rotating jet
magnetospheres which are widely believed to be responsible for the rela-
tivistic jet phenomenon in active galactic nuclei (AGN). Our main focus is
related to the question whether centrifugal acceleration of particles may pro-
vide an explanation for the required existence of relativistic electrons with
high Lorentz factors. An answer to this question seems to be very interesting
for the origin of the nonthermal, highly variable emission in AGN. Several
acceleration mechanisms have been proposed which may explain the observed
high energy emission extending up to TeV energies at least in four blazars
(Mkn 421, Mkn 501, 1ES 23444514, PKS 2155-304: for review, see Catanese
& Weekes 1999) among which Fermi-type particle acceleration mechanisms
(i.e. diffusive shock acceleration) are quite promising (see sect. [.). How-
ever, such kind of mechanisms require a pre-accelerated seed population of
electrons with Lorentz factors of the order of 100. For, in order to work
efficiently, a minimum Lorentz factor Ymin of Ymin ~ m,/m. (where m, and
m. are the proton and electron masses, respectively) seems to be demanded
in the case of diffusive shock wave acceleration and resonant acceleration by
magnetohydrodynamical turbulence (e.g. Lesch & Birk 1997). This threshold
condition is associated with the requirement for an electron to resonate with
Alfven waves, which in turn requires v > Q. v4/(w ¢), where v4 denotes the
Alfven velocity and 2. is electron cyclotron frequency. Since Alfven modes
only exist for w < Q,, where §, = e B/(m, c) is the ion cyclotron frequency,
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one may arrive at the quoted limit. To overcome this difficulty (also referred
to as the “injection problem”), it has been suggested that acceleration by
whistler modes (which exists in the range Q, < w < €).) may reduce the
lower bound on the electron Lorentzfactor down to ymm > (m,/m.)??, see
for example Levinson (1992), Melrose (1994). While this seems possible (for
a critic, however, see Lesch & Birk 1997), there again remains the problem
to be solved of how this pre-acceleration is achieved. Thus, it might be well
worth considering whether in the case of AGN centrifugal acceleration at the
base of a rotating jet magnetosphere may serve as an efficient acceleration

mechanism, potentially providing the required pre-accelerated seed particles.

2.2  On centrifugal acceleration in AGN

Centrifugal acceleration models have a long and prominent history: Since
the pioneer work of Gold in the late 1960s (Gold 1968, 1969), centrifugal
acceleration has often been discussed in the context of pulsar emission theory
(for recent contributions, see e.g. Machabeli & Rogava 1994; Chedia et
al. 1996; Gangadhara 1996; Contopoulos et al. 1999, Beskin et al. 2000). In
the application to accreting black hole systems, i.e. AGN, Blandford and
Payne (1982) have first pointed out that centrifugal driven outflows (jets)
from magnetized accretion disks are possible, if the poloidal magnetic field
direction is inclined at an angle less than 60° to the radial direction (cf.
sect. [[.F). However, as has been shown recently, for a very rapidly rotating
black hole system this critical angle could be as large as 90° (Cao 1997). In
all these models, a rotating magnetosphere could emerge from the accretion
disk (or the rotating black hole itself: Blandford & Znajek 1977), initiating
a plasma outflow with initially spherical shape until the flow is collimated
on a scale of less than a few hundred Schwarzschild radii into an essentially
cylindrical, relativistic jet (e.g. Camenzind 1995, 1996; Fendt 1997a). For
illustration, a typical model topology is given in the figure below (Fig. B.1)).

Detailed calculations in such magnetohydrodynamical (MHD) scenarios for
the origin of relativistic jets show, that in the MHD case centrifugal acceler-
ation is rather limited, leading to typical maximum bulk Lorentz factors for
the outflowing plasma of the order of 10 (Camenzind 1989). Despite such
results however, it seems quite interesting to ask whether supra-thermal test
particles (e.g. from magnetic flares on the accretion disk) could be acceler-
ated to even higher energies at the base of such rotating jet magnetospheres.
Following this question, Gangadhara & Lesch (1997) have recently proposed
a model for spinning active galactic nuclei, in which charged test particles are
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Figure 2.1: Model topology for the jet structure around a rotating black hole
as expected in magnetohydrodynamical scenarios.

accelerated to very high energies by the centrifugal force while moving along
rotating magnetic field lines. According to their calculations, the nonthermal
X-ray and even 7-ray emission in AGN could arise via the inverse-Compton
scattering of UV-photons by centrifugal accelerated electrons.

In the following section, we reinvestigate the acceleration of charged test
particles in an idealized two-dimensional model topology where the magnetic
field is supposed to rotate rigidly with a fraction of the rotational velocity
of the black hole (cf. Fendt 1997a). Centrifugal acceleration then occurs
as a consequence of the bead-on-the-wire motion. A charged particle gains
rotational energy as long as it is directed outwards. But as shown below, its
energy gain is substantially limited not only by inverse-Compton losses, but
also in consequence of the relativistic Coriolis force. First of all, based on an
analysis of forces, the special relativistic equation of motion is derived and
solved in closed form. An estimate is then given for the maximum Lorentz
factor attainable in the case of AGN. At the end of this chapter, the results
are discussed in the context of the particle acceleration problem for rotating
AGN jets.

2.3 Analysis of forces in a rotating reference
frame

Usually, the motion of a particle along rotating magnetic field lines is treated
in the bead-on-the-wire approximation where a bead is assumed to follow the
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rotating field line and experiences centrifugal acceleration (or deceleration)
while moving in the outward direction (e.g. Machabeli & Rogava 1994; Che-
dia et al. 1996; Cao 1997). This simple approach yields indeed quite useful
results, though - as we will show further below - such an approximation
breaks down in the region near the light cylinder.

Let us first consider the forces acting on a particle in a rotating frame of
reference (Gangadhara 1996; Gangadhara & Lesch 1997). A particle with
rest mass mg and charge ¢, which is injected at time ¢, and position ry with
initial velocity wvg parallel to the magnetic field line B.(ty), experiences a
centrifugal force in the radial direction given by

Fog =moy (@ x7) x Q, (2.1)

where v is the Lorentz factor of the particle and O = Qé, is the angular
velocity of the field. Additionally, there is also a relativistic Coriolis force in
the noninertial frame governed by the equation

- dr dvy ~
Feor =mo [ 27— 4+1r— ) (6 x Q), 2.2
(205G ) @x 9 (22)
which acts as a deviation-force in the azimuthal direction. In the inertial rest
frame now, the particle sees the field line bending off from its initial injection
position. Thus, it experiences a Lorentz force, which may be written as

F, = q(ta x B), (2.3)

where v, is the relative velocity between the particle and the magnetic field
line and where the convention ¢ = 1 has been used. Due to the Lorentz force
a charged particle tries to gyrate around the magnetic field line. Initially, the
direction of the Lorentz force is perpendicular to the direction of the Coriolis
force. But as a particle gyrates, it changes direction and eventually becomes
antiparallel to the Coriolis force. Hence one expects the bead-on-the-wire
approximation to hold, if the Lorentz force is not balanced by the Coriolis
force. In this case the accelerated motion of the particle’s guiding center due
to the centrifugal force is given by

d*  dr dy
2~ 2.4
T w7 (24)
with v the Lorentz factor
1
(2.5)

LV ooy
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and 7 the radial coordinate. The left hand side of Eq. (B.4) is simply given
by the time-derivative of the momentum -y mq dr/dt. On the other hand, the
bead-on-the-wire motion for the guiding center is supposed to break down,
if the Coriolis force exceeds the Lorentz force, i.e. if the following inequality,
given by the azimuthal components of the forces, holds:

dy 1 [/ Bqu dr
—_— > - — 27— . 2.6
dt ~ r ( my €2 7dt) (26)

2.4 Analytic solution for the radial accelera-
tion

The general solution of Eq. (B.4) can be found using the simple argument that
the Hamiltonian H of the particle is a constant of motion (see appendix [A]).
The Hamiltonian may be identified with the energy of the particle in the
rotating reference frame. In the non-relativistic limit we know, that if Ej
denotes the energy of the particle in the inertial rest frame, then the energy
E in the uniformly rotating frame (angular velocity ) is given by ([A.4):
E = Ey—myQ%*r? (e.g. Landau & Lifshitz 1960). The generalization of this
equation to the relativistic case is rather straightforward and leads to the

equation [see appendix, Eq. (A.9)]
H = ~vymg (1 —Q?r?) = const., (2.7)

where 7 is the Lorentz factor defined above, see Eq. (.5).

Assume now the general case of a particle to be injected at time t = tg
and position r = rg with initial velocity v = vy. Using Eq. (B.71) the time-
derivative of the radial coordinate r may be written as

dr(t)

Tl V(1= Q2r2)[1 —m (1 — Q%r2)], (2.8)

where ) )

- )
In the particular case rqg = 0, this expression reduces to the equation given
in Henriksen & Rayburn (1971).

Following Machabeli & Rogava (1994), Eq. (B.§) could be solved analytically
by introducing the variables

m =

(2.9)

k = arccos({2r) (2.10)
A = Qt, (2.11)
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noting that

de 1 dr (2.12)
d - V122 dt’ '
Thus, using Eq. (B.8) and Eq. (B.12) one has
1
A _ | (2.13)
dr V1 —1msin?k
which may be integrated yielding the formal solution
¢ dx! ¢ dr!
)\——/ . —)\U—/ " , (2.14)
po /1 —m sin® K/ 0 /1 —1h sin®K/

where g = k(rg) = arccos(2ry), and where for 0 < m < 1 the abbreviation
Ao denotes a Legendre elliptic integral of the first kind

(2.15)

#0 dx’
Y A
0 1—msin®k

Since A in Eq. (B.13) is a monotonic decreasing function of x for 0 < m < 1,
i.e. dA\/dk < 0, the inverse function for (A\g — A), called the amplitude ¢ =
am(Ag — \), exists. By using the definition for the standard Jacobian elliptic
function (e.g. Abramowitz & Stegun 1965, p. 5691f; cf. also Télke 1967) one
finds

cos p = cos(am(A — Ag)) = cn(A — Ag) , (2.16)

with cn the Jacobian elliptic cosine. Thus, by noting that ¢ = arccos(2r),
we finally obtain
1

r(t) = ) en(Ag — §2t) . (2.17)
From Eq. (B.17) it follows that the time-derivative of  could also be expressed
as 7 = dn(Ag — Qt) sn(A\g — 2¢). Note, that the Jacobian elliptic functions
sn and dn satisfy the identities sn? + cn? = 1 and msn? + dn? = 1.
Using Eq. (B.§), the Lorentz factor may be written as a function of the radial

coordinate r
1
W) = S (2.18)

or, on the other hand, in terms of Jacobian elliptic functions

(t) = 1
= Vi sn(\g — Q1)]2

(2.19)
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For the particular conditions where the injection of a test particle is described
by 7(to = 0) = 0 and v(ty = 0) = vy, the time-dependence of the radial coor-
dinate is given by a much simpler expression. For in this situation, Ay reduces
to a complete elliptic integral K of the first kind and thus, by noting that
for the change of argument we have (e.g. Abramowitz & Stegun 1965, 16.8.)

— sn(\)
—K)=V1- 2.2
the time-dependence of the radial coordinate becomes
vosn(€2t) (2.21)

r(t) = m

For non-relativistic motions, where m ~ 1, and for the special condition

ro = 0, the limiting cases are given by sn(2t¢) — tanh(Q2¢) and dn(Qt) —

sech(Qt) (cf. Abramowitz & Stegun 1965), therefore Eq. (B.21)) reduces to
vo tanh(2¢) v

r(t) = O sech(00) =q sinh(Q2¢). (2.22)

This expression is known to be the general solution of the equation
i—Q*r =0, (2.23)

which describes the motion of a particle due to the centrifugal force in the
non-relativistic limit. In Fig. 2.2, we compute the time-dependence of the
radial coordinate r for different initial conditions under the (unphysical) as-
sumption that the bead-on-the-wire motion continues until the light cylinder
(with radius 71,) is reached. For visualization, a comparison with the non-
relativistic limit is shown in Fig. B.3. Note that in the relativistic case all
particles would turn back at the light cylinder due to the reversal of the cen-
trifugal acceleration (Machabeli & Rogava 1994). Using the definition of the
Lorentz factor, the equation for the accelerated motion, Eq. (B.4), may also

be written as
dr\?
1—-0%r2 -2 —
-2 ()

(cf. Chedia et al. 1996; Kahniashvili et al. 1997) or, if entirely written as a
function of the radial coordinate r, as

d?r O2%r

el oy (2.24)

d2r

@:927“[27%(1—9273)—1]. (2.25)
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log (Qt)

Figure 2.2: The time-dependence of the radial coordinate r for bead-on-
the-wire motion in the relativistic case, plotted using the initial conditions
vg = 0.99¢ and 9 = 0.17y, (solid line), v9 = 0.6¢ and ry = 0.4r (short
dashed) and vy = 0.4 ¢ and r9 = 0.9, (dotted - short dashed).

By inserting the above relations, the solution for the radial acceleration could
again be expressed in terms of the Jacobian elliptic functions

i=Q -cn(Ag — Qt) [1 —2dn*(\y — Qt)]. (2.26)

According to our simple model, one expects a charged test particle to gain
energy due to rotational motion as long as it is directed outwards. There-
fore the relativistic Lorentz factor increases with distance r as the particle
approaches the light cylinder. This is illustrated in Fig. 2.4 where the evo-
lution of the relativistic Lorentz factor v is plotted as a function of r for
different initial velocities vy and fixed 79 = /10 (using a typical light cylin-
der radius of r;, ~ 10%cm). Note, that v(r/ry) is not scale-invariant with
respect to the injection velocity vy (i.e. the injection energy). If one identifies
Eq. (.24) with the general expression for the centrifugal force, which in the
non-relativistic limit reduces to the well-known classical expression, the cen-
trifugal force changes its signs and becomes negative for r?/r2 > 1 — (2m)~!
(see Fig. 2.5; cf. also Machabeli & Rogava 1994). Hence, if one assumes the
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Figure 2.3: Comparision of the time-evolution of the radial coordinate r in the
relativistic case (rg = 0.17, vo = 0.99 ¢, solid line) and the non-relativistic
limit 7(t) Q/vy = sinh(2t) (dotted line).

bead-on-the-wire approximation to hold in the vicinity of the light cylinder,
the radial velocity becomes zero at the light cylinder and changes direction
in any case. Thus r will decrease (e.g. Fig. B.Z). The reversal of direc-
tion of the centrifugal force, according to which the centrifugal force may
attract rotating matter towards the centre, is well-known in strong gravita-
tional fields (for Schwarzschild geometry: Abramowicz 1990; Abramowicz &
Prasanna 1990; for Kerr geometry: Iyer & Prasanna 1993; Sonega & Mas-
sar 1996). For illustration, the evolution of the effective radial acceleration
a, = d?r/dt? as a function of the radial coordinate r, is shown in Fig. .5 for
different initial velocities. Obviously, there exists a point where the effective
acceleration, i.e. the centrifugal force, becomes negative.

2.5 Results for the maximum Lorentz factor

Consider now the centrifugal acceleration of electrons (rest mass mg = m,,
charge ¢ = e) via rotating magnetospheres in AGN. Imagine an electron
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log(7)

Figure 2.4: The relativistic Lorentz factor v for a particle approaching the
light cylinder r, using rq = r1,/10 and injection Lorentz factors vy = 10
(solid line), 9 = 50 (dotted) and 79 = 100 (dashed).

which moves along a rotating magnetic field line towards the light cylinder.
Generally, one expects there to be at least two processes which could limit
the energy gain of a particle:

First, there are inverse-Compton energy losses due to interaction with accre-
tion disk photons: low-energy accretion disk photons are scattered to higher
energies by the accelerated electrons so that the photons gain energy while
the electrons lose energy. Near the disk the electrons might encounter a very
strong disk radiation field, which substantially limits the maximum attain-
able energy (this needs not be the case if electrons are accelerated far away
from the disk, e.g. Bednarek, Kirk & Mastichiadis 1996). The maximum
energy, which an electron is able to reach under the influence of inverse-
Compton scattering, is given at the point where the acceleration time scale
equals the cooling time scale. In the case, where the energy of the photon
in the electron rest frame is small compared to the energy of the electron
(Thomson scattering), the cooling time scale for inverse-Compton losses can
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Figure 2.5: The radial acceleration a, as a function of r/ry, for the initial
conditions ry = 0 and vy = 0.3 ¢ (dashed), v9 = 0.6 ¢ (dotted).

be approximated by (e.g. Rybicki & Lightman 1979)

v

¢ =3%x10" ————
: ('72 - 1) Urad

COoOo

5], (2.27)

where Up,q = T Laisk /47 7% is the energy density of the disk radiation field
and 7 < 1.
Using Eq. (B.I§), the acceleration time scale t,.. may be written as:

Vv1—Q2r2
2027 /1T —m(1—02r2)

tace = '7/’7 = (228)

By equating these two time scales, we may obtain an estimate for the maxi-
mum electron Lorentz factor vax.

A second, general constraint, which was neither considered in the calculation
by Machabeli & Rogava (1994) nor by Gangadhara & Lesch (1997), is given
by the breakdown of the bead-on-the-wire approximation which occurs in
the vicinity of the light cylinder. Beyond this point, where the Coriolis
force exceeds the Lorentz force [see condition Eq. (B.6)], the particle leaves
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the magnetic field line and the rotational energy gain ceases. Hence the
acceleration mechanism becomes ineffective. In the case of AGN, where the
magnetic field strength is much smaller than in pulsars, this constraint may
be quite important. From a mathematical point of view, the position of the
breakdown of the bead-on-the-wire approximation determines the limit, up
to which one may transform self-consistently into a rotating reference frame.

For illustration, we apply our calculations in the following to a typical AGN
with a central black hole mass Mpy = 108 M, and a light cylinder ra-
dius ry, ~ 10" Mpg/(103My) cm, where M, denotes the solar mass. The
Eddington luminosity, i.e. the maximum luminosity of a source of mass
Mgy which is powered by spherical accretion [e.g. Eq. ([[.1)], is given by
Lgaqa ~ 10%ergs s7t. Typically, we may express the disk luminosity as
Laisc = le X Lpaq, with 107% < [, < 1. The equipartition magnetic field
strength at the radius r is then given by B(r)? = 2 Lgg /72, where B is mea-
sured in Gauss. Electrons are assumed to be injected at an initial position
ro =~ 0.4 r;, with a characteristic escape velocity from the last marginally sta-
ble orbit around a black hole of vy ~ 0.6 c. By applying the two constraints
above, we may have three generic regimes for the acceleration of electrons by
rotating magnetospheres:

1. the region, in which inverse-Compton losses dominate entirely over the
energy gains, leading to an inefficient acceleration (generally in the case
of Eddington accretion, i.e. [, ~ 1).

2. the region, in which inverse-Compton losses are important but not dom-
inant (generally the sub-Eddington range: I, < 2 x 1072). In this case
the acceleration mechanism works, but there exists a maximum Lorentz
factor given at the position where the energy gain is exactly balanced
by losses. This is illustrated in Fig. B.6, where we have calculated
the cooling and the acceleration time scale as a function of the Lorentz
factor ~y for I, = 5 x 1073. For this value, the maximum Lorentz factor
is roughly v ~ 150. Typically, the expected maximum Lorentz factors
in the range under consideration are of the order of 100 to 1000 (cf.

Fig. R.7).

3. the region, in which the inverse-Compton losses are rather unimpor-
tant (generally [, < 107?). In this case the maximum Lorentz factor
is determined by the breakdown of the bead-on-the-wire approxima-
tion [see Eq. (B.6)], which yields a general upper limit for the Lorentz
factor of the order of 1000. This limit is found if one approximates
vrel Dy the light velocity which amounts to the highest possible value
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Figure 2.6: Cooling time scale t!¢ for inverse-Compton scattering,

Eq. (B:27), and acceleration time scale t,.., Eq. (B.2§), as a function of the
Lorentz factor vy using lo =5 x 1073 and 7 = 1 (i.e. Lgix = 5 x 10 ergs/s).
The maximum electron Lorentz factor, given at the position where the cool-
ing time scale equals the acceleration time scale, is approximately 150.

for the Lorentz forces. The results are shown in Fig. B.8, where we
also allow the injection position to vary. It should be noted that the
results, presented in Fig. 2.8, depend essentially on the assumed in-
trinsic magnetic field strength and the size of the light cylinder radius
(i.e. the angular velocity). Generally, the breakdown condition may be

written as [e.g. Eq. (.6)]:
dy 1 [ Beuvyg dr
&y _: ~ 9,0 2.2
dt 7’( me O th) (2.29)

Using Eq. (.1§) and Eq. (B.§) the time-derivative of the Lorentz factor
~ near the light cylinder (i.e. r ~ r1,) may be approximated by
dvy 2Q)
dt — m (1 —Q2r2)3/2’
while it can be easily shown that for the range considered here, the
first term in brackets on the right hand side of Eq. (B.29) is the leading

(2.30)
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Figure 2.7: Maximum electron Lorentz factor v,., attainable under the in-
fluence of inverse-Compton losses as a function of the disk luminosity Lgjsx
for 7 = 0.5 (dotted) and 7 = 1 (solid), where 7 = 4712 Uaq/ Laisk and Uaq
is the energy density of the disk radiation field.

term (setting v ~ )] Hence, in a sufficiently good approximation
the position of the breakdown is given by

1— (%)m] : (2.31)

which corresponds to an upper limit for the Lorentz factor (B measured
in Tesla, r;, in meter)

2
2 C

T

~ L (B(TL)eTL)Q/S. (2.32)

lymax —  ~
mi/6 \ 2m,c?

Thus, even if one uses a magnetic field strength of B(ry) = 100G =
0.01 T, which is roughly three times the corresponding equipartition
field, the maximum Lorentz factor does not exceed 2.5 x 103.

'For a concrete estimate, the light velocity c is explicitly written in the following ex-
pressions.
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Figure 2.8: Maximum electron Lorentz factor yy,.x as a function of the initial
injection position 7 for vg = 0.6 ¢ and B(r,) = 30G (i.e. a disk luminosity
Laisk =~ 1.35 x 10%ergs s71). The dotted line shows the decrease in efficiency
of energy gain ey = Ymax/70, while the dashed line indicates the relativistic
limit for injection given by the condition 1 — v — Q%72 > 0.

2.6 Discussion

In this chapter we have considered the acceleration of charged test parti-
cles via rotating magnetospheres based on a simple model topology which is
motivated by the standard MHD model for AGN (cf. Begelman 1994; Ca-
menzind 1995; Fendt 1997a). Accordingly, the jet magnetosphere originates
very closely to the central black hole from an accretion disk, with initially
spherical profile until the relativistic jet is collimated to a cylindrical shape
outside the light cylinder.

The centrifugal particle acceleration model described in this chapter ex-
tends the calculations by Machabeli & Rogava (1994) and Gangadhara &
Lesch (1997). We find that the maximum Lorentz factor attainable for an
electron moving along a rotating magnetic field line is substantially limited
not only by radiation losses (e.g. inverse-Compton) but in particular (even if
one neglects these radiation losses) by the breakdown of the bead-on-the-wire
approximation which occurs in the vicinity of the light cylinder. Due to these
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limiting effects, particle acceleration by rotating jet magnetospheres seems to
be rather less important for the origin of the nonthermal high energy emis-
sion in AGN. In particular, our calculations show that for sub-Eddington
accreting black holes, such as black holes with advection-dominated accre-
tion flows (e.g. Narayan & Yi 1994; Narayan 1997), efficient pre-acceleration
of electrons to Lorentz factors of the order of a few hundred might be possi-
ble, at least under the idealized conditions of our analytical model. Hence,
inverse-Compton scattering of accretion disk photons seems not to provide an
explanation for the high energy GeV-TeV gamma-rays observed from AGN
of the BL Lac type (cf. Kanbach 1997; Catanese 1999), which very likely
accrete in a sub-Eddington mode (e.g. Celotti, Fabian & Rees 1998).
A more quantitative estimate for the scattered photon energy may be derived
by considering an optically thick standard disc around a black hole with mass
108 M, and light cylinder radius r1, ~ 10 cm. If, as commonly assumed, the
disk radiates (locally) roughly as a black body, the emission at the relevant
position of the inner disc is maximized at the photon energy ~ 101%2° eV (cf.
Frank, King & Raine 1995, p. 199). Inverse-Compton scattering of accretion
disc photons by centrifugally accelerated electrons with Lorentz factor v then
yields (scattered) photons with energy of about

E, ~13 <i>2 (10 19%5) MeV . (2.33)

7 1000 c

Using the results presented, for example, in Fig. R.6, i.e. I, = 5 x 1073,
Ymax = 150, one arrives at an upper limit £, < 80 keV. The expected photon
energy is thus too low to account for the observed high energy GeV-TeV
gamma-rays in blazars.
However, it seems quite interesting to note, that the expected upper limit
for the scattered photon energy falls in the range of the AGN X-ray hump
between ~ 10 — 100 keV. Such a hard X-ray hump is typically expected if a
nonthermal power law X-ray spectrum (e.g. from a hot, nonthermal corona)
is reprocessed in the cold matter in AGN (i.e. gas at amount the equivalent
black body temperature, most probably in the form of an accretion disk) (cf.
Guilbert & Rees 1988; Lightman & White 1988; George & Fabian 1991).
Photoelectric absorption then leads to a flux reduction of the X-ray spec-
trum below 10 keV while Comptonization introduces a curvature above ~ 50
keV. Our above calculations show that - depending on the strength of the
disk radiation field - inverse-Compton scattering of accretion disk photons
by centrifugally accelerated electrons may also significantly contribute to this
X-ray hump.
Additionally, the acceleration of supra-thermal test particles by rotating mag-
netospheres might possibly provide an interesting explanation for the pre-
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acceleration which is required for efficient Fermi-type particle acceleration at
larger scales in radio jets (cf. sect. B.1)).

It should be mentioned that our upper limits for the maximum Lorentz fac-
tor calculated in this chapter, essentially depend on the assumed intrinsic
magnetic field and the angular frequency (2, i.e. on the size of the light cylin-
der radius (Ymax o< B3 Ti/ 3). Therefore it seems possible to obtain higher
Lorentz factors by assuming for example, a light cylinder radius in BL Lac
type objects which is much greater than 10 cm for a black hole mass of
Mgy = 10® M. But in view of magnetohydrodynamic models already exist-
ing, such a possibility appears to be rather improbable (e.g. Camenzind &
Krockenberger 1992; Camenzind 1995; Fendt 1997a).

There are some restrictions on the present approach which should be kept in
mind. For example, we have assumed a projected, two-dimensional geometry
and rigid rotation of magnetic field lines almost up to the light cylinder and
hence, concerning the last point, neglected a kind of toroidal twist (Begel-
man 1994), when the inertial forces overcome the tension in the field line so
that the field line is swept back opposite to the sense of rotation. However,
one would not expect these restrictions to alter our conclusions essentially
since they should lower the upper limit for the maximum Lorentz factor by
making the acceleration mechanism ineffective somewhat earlier. Another
restriction is related to the use of special relativity in our analysis, which is
only justified far away from the black hole. A detailed, general relativistic
model may be valuable to overcome the limitations of the present approach.
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Chapter 3

Particle acceleration in rotating
and shearing jet flows

3.1 Introduction

The observation of jets from radio-loud AGN are among the most interesting
phenomena relevant to astrophysics. Today there is convincing evidence
that the central engine in these AGN is a rotating, supermassive black hole
surrounded by a geometrically thin accretion disk which gives rise to the
formation of a pair of relativistic jets. If jets and disks are indeed symbiotic
features (e.g. Falcke and Biermann, 1995), the presence of jets may however
be related to a much wider class of objects.

The observations of superluminal motion and theoretical opacity arguments
indicate that the plasma in these jets moves at relativistic speeds along
the axis. In the case of BL Lac objects, assumed to be oriented at small
viewing-angles, this may result in a strong Doppler-boosting of the observed
flux (cf. sect. [.3).

So far, theoretical acceleration and emission models usually consider rather
idealized flow dynamics assuming that the relevant variable is the bulk
velocity in the direction of the jet axis. In real jets however, one also
expects there to be a significant velocity shear perpendicular to the jet
axis. We know indeed of several observational evidence pointing to intrinsic
rotation in AGN jets, e.g. in the case of NGC 4258 (Cecil et al. 1992), M87
(Biretta 1993) and for the blazar 3C345 (Schramm et al. 1993). It should
be noted however, that there might remain some uncertainties as it proves
not simple for any case to distinguish observationally between the intrinsic
rotation of jet material and the extrinsic rotation due to jet precession or a
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compact binary system (cf. Livio 1999; Rieger & Mannheim 2000b; see also
chapt. f).

From a theoretical point of view, intrinsic jet rotation is also expected
in magnetohydrodynamical models for the formation and collimation of
astrophysical jets (e.g. Begelman, 1994). In such jet models intrinsic
rotation with speeds up to some fraction of the velocity of light is a natural
consequence of the assumption that the flow is centrifugally accelerated
from an accretion disk. It should be noted however, that the rotation
profile in the jet itself does not need to be necessarily disk-like, i.e. the
set of available jet rotation profiles could be much wider and might
include, for example, rigid, flat and keplerian profiles (e.g. Hanasz, Sol
& Sauty 2000). In particular, rigid rotation inside a well-defined light
cylinder might be related to foot points of the magnetic field lines near the
last inner stable orbit (e.g. Camenzind 1996; Fendt 1997a), while more
general differential rotation might be intuitively expected if there is an
intrinsic connection between jet motion and the rotationg disk (cf. Bland-
ford & Payne 1982; Fendt 1997b; Lery & Frank 2000; Fendt & Memola 2001).

The acceleration of particles by shear flows has been investigated so far by
several authors. A pioneer approach has been given by the kinetic analysis
of Berezhko (1981; 1982a,b; 1984) and Berezhko & Krymskii (1981, 1982).
They have shown that the steady state particle distribution might follow a
power law spectrum if the mean interval between scattering events increases
with momentum according to a power law.

Independently, particle acceleration in the diffusion approximation at a grad-
ual shear transition for non-relativistic flows has been analysed by Earl,
Jokipii & Morfill (1988). They derived Parker’s equation, i.e. the transport
equation including the well-known effects of convection, diffusion and adia-
batic energy changes (Parker 1965), but augmented by new terms describing
the viscous momentum transfer and the effects of inertial drifts (see also ap-
pendix B). Jokipii and Morfill (1990) have used a microscopic treatment to
analyse the non-relativistic particle transport for a moving, scattering fluid
which undergoes a step-function velocity change in the direction normal to
the flow, showing that particles may gain energy at a rate proportional to the
square of the magnitude of the velocity change. Based on a Monte Carlo sim-
ulation method, Ostrowski (1990), has studied diffusive particle acceleration
at a sharp tangential velocity discontinuity involving relativistic speeds. He
finds that only relativistic flows can provide conditions for efficient accelera-
tion resulting in a very flat particle energy spectra which depends only weakly
on the scattering conditions near the discontinuity (cf. also Ostrowski 1999).
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The acceleration of particles by Fermi processes in shear flows and the re-
sultant acceleration-induced viscosity has been studied by Katz (1991). In
particular, he considered the application to second-order Fermi acceleration
in the low density corona due to flux tubes anchored in a keplerian accretion
disk. Following this approach, Subramanian, Becker & Kazanas (1999) have
recently investigated Fermi acceleration of protons in a coupled disk-corona-
wind model assuming that the pressure-driven wind transforms into a jet far
from the central object.

The work on (gradual) shear acceleration by Earl, Jokipii and Morfill (1988)
has been extended to the relativistic regime by Webb (1989). Assuming the
scattering by small-scale magnetic field irregularities to be strong enough
to keep the distribution function almost isotropic in the comoving frame,
i.e. the diffusion approximation to apply, he derived the relativistic diffusive
particle transport equation for rotating and shearing flows employing the co-
moving particle momentum p’. Our present approach in this chapter utilizes
a simple version of the transport equation derived by Webb (cf. also Webb
et al. 1994) and examines the effect of different intrinsic flow rotation profiles
on the acceleration of energetic particles using a basic jet model. If intrinsic
jet rotation is considered, it should be noted that particle energization may
in general be a consequence of both, centrifugal and shear effects.

3.2 Relativistic transport theory

Using relativistic transport theory, the propagation of energetic charged par-
ticles in electromagnetic fields is governed by the relativistic Boltzmann equa-
tion (e.g. Lindquist 1966; Stewart 1971; Webb 1985)

pa af « ﬁfyaf

of
B —
Or Fﬁvpp apa

op©

where [ = f(x,p) denotes the invariant phase space distribution function,
z® and p® (o = 0,1,2,3) are the particle position and momentum four
vectors, respectively, ¢ is the charge, F* ;5 is the electromagnetic Faraday
field tensor, I'G are the affine connection coefficients of the reference frame
K and S, represents the scattering of the energetic particles by MHD
turbulence.

In the case of relativistic bulk flows with four velocity © ¢, it has been found
useful to evaluate the scattering operator in the local Lorentz frame in which
the fluid is at rest, i.e. in the so-called comoving frame K’ (e.g. Webb 1985;
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Riffert 1988; Kirk, Schlickeiser & Schneider 1988; cf. also appendix B).f] For
in this frame K’, a simple form of the scattering operator could be applied
if one assumes, as in the present approach, the rest frame of the scattering
centres to be essentially that of the background flow. From relativity theory
we know that the metric in K’ could locally be specified by the Minkowski
metric 7,3 with signature (— + ++). The quantities which are operated
upon the scattering operator, e.g. the momentum, are then conveniently
evaluated in this comoving frame while the time and space coordinates are
measured in the laboratory frame K characterized by the metric tensor g, s.
However, since K’ is in general a non-inertial coordinate system (i.e. an
accelerated frame), the connection coefficients do not vanish and thus the
covariant form of the Boltzmann equation is required. This covariant form
may be achieved by replacing the ordinary (partial) space-time derivatives
by their covariant derivatives (e.g. Webb 1989).

Starting from Eq. (B.) and using the differential moment equations,
Webb (1989, 1992) has derived the relativistic generalization of the par-
ticle transport equation. The scattering of high energetic particles has
been modelled using a simple BKG-type time relaxation approximation
(cf. Bhatnagar, Gross & Krook 1954; also Berezhko & Krymskii 1981;
Earl, Jokipii & Morfill 1989), i.e. using S, = —p° v.(f'— f3)/c with v. = 1/7,
the collision frequency and f{ the isotropic part of the comoving frame
particle distribution function f’. 7. denotes the mean time interval between
two scattering events and may be a function of position and momentum.
In the underlying physical picture, scattering of high energy particles by
small-scale magnetic field irregularities carried in a collisionless plasma
background flow is assumed to occur. In each scattering event the particle
momentum is randomized in direction but its magnitude p’ is assumed to
be conserved in the (local) comoving flow frame where the electric field
vanishes. Since the rest frame of the scattering centres is regarded to be
essentially that of the background flow, particles would not gain energy
or momentum merely by virtue of the scattering if there is no shear or
rotation present (cf. also Williams & Jokipii 1993). However if shear in
the background is present, for example, the particle momentum relative to
the flow changes for a particle which travels across the shear flow. Since
the particle momentum in the local flow frame is preserved in the next
scattering event, a net increase in particle momentum may occur (Jokipii
and Morfill, 1990). Thus, if rotation and shear is present, high energy
particles which do not corotate with the flow will sample the shear flow and

'In the following, quantities which are measured relative to K’ are labelled with a prime
superscript.
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may be accelerated by the centrifugal and shear effects (Webb et al, 1994).

3.3 The general steady state transport equa-
tion in the diffusion approximation

By using a perturbation solution of the moment equations in the diffusion
approximation, i.e. by assuming the deviation of the particle distribution
from isotropy in the comoving frame to be small, Webb (1989) has derived
a general equation describing steady state particle transport in relativistic
rotating and shearing flows. From Eq.(4.4) of Webb (1989) the special rel-
ativistic diffusive particle transport equation for the mean scattering frame
distribution (averaged over all momentum directions) fj(z®,p) =< f' >
may be written as

L 0 p? ' 8 110N - u_ 0ff

R R _ a_ 1

p/g ap/ ( 3 CfO Vﬂu p (p ) Uqq P Tc ap,
+Vao (cu® fo+¢%)=0. (3.2)

with z¢ the position four vector in the laboratory frame K, where the back-
ground plasma is in motion with four velocity u®, and p’ the (magnitude of
the) particle momentum as measured in the local (comoving) fluid frame K.
The particle energy and momentum in this frame K’ may be written as

E'=m?=p% and p=m'v =/(p°)2%—mc2, (3.3)

respectively, with m’ the relativistic particle mass and ¢ the speed of light.
The terms in the first line of Eq. (B.J) represent particle energy changes due
to adiabatic expansion or compression of the flow (i.e. the term proportional
to the fluid four divergence Vg u®), due to shear energization (i.e. the term
involving I') and due to the fact that K’ is an accelerated frame (i.e. the
term o %,). The second line gives the effects of diffusion and convection.
In Eq. (B.2), V, denotes the covariant derivative while ¢ denotes the heat
flux. This heat flux contains a diffusive particle current plus a relativistic
heat inertial term o< 15 and is given by

(p'°)? 8f6) | (3.4)

@ = kg (Vs fl —u
q ( ﬁfO B p/ ap/

As shown by Webb (1989), Eq. (B.2) could be regarded as the relativistic
generalization of the non-relativistic particle transport equation first derived
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by Earl, Jokipii and Morfill (1988) (cf. appendix [H).
The acceleration four vector i, of the comoving (or scattering) frame in

Egs. (B.2) and (B.4), is defined by
U = u’ Vg, . (3.5)

The fluid energization coefficient I' in Eq. (B.2) represents energy changes
due to viscosity. Since the acceleration of particles draws energy from the
fluid flow field, one expects on the other hand the flow to be influenced by
the presence of these particles. As was shown, for example, by Earl, Jokipii
& Morfill (1988) and Katz (1991), the resultant dynamical effect on the flow
could be modelled by means of an (induced) viscosity coefficient. If one
considers the strong scattering limit, i.e. the case where w . < 1, with w the
gyrofrequency of the particle in the scattering frame (i.e. w = ¢ B ¢/p"), 7. =
1/v. the mean time interval between two scattering events and v, the collision
frequency, this fluid energization coefficient could be written as (Webb 1989,

Eq. 34)
2

T — ?f_o o 0®?, (3.6)

where 0, is the (covariant) fluid shear tensor given by

2
Oap = Valg + Vs + Uaug + Ugty + 3 (Gap + Uaug) Vsul (3.7)

with g,s the (covariant) metric tensor. Additionally, for the strong scattering
limit the spatial diffusion tensor £*? reduces to a simple form given by

K =k (g*° +u*uP), with k =077./3, (3.8)

the isotropic diffusion coefficient and v" the comoving particle speed.

3.4 The steady state transport equation for
cylindrical coordinates

We are interested in a close investigation of particle acceleration in rotating
and shearing AGN jets. Hence, for the present application, we consider an
idealized (hollow) cylindrical jet model where the plasma moves along the
z-axis at constant (relativistic) v, while the velocity component in the plane
perpendicular to the jet axis is purely azimuthal and characterized by the
angular frequency €). For an analysis of such cylindrically rotating flows it
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proves useful to apply cylindrical coordinates x® = (ct, r, ¢, z). We may then
choose holonomic basis vectors, i.e. a coordinate basis {e,,« = 0,1, 2,3} for
which the commutation coefficients vanish and the affine connection coeffi-
cients reduce to the well-known Christoffel symbols. Such (non-normalized)
holonomic basis vectors might be defined by e, = 0x/0z* and determine
a 1—form basis {€“}, known as its dual basis.j For cylindrical coordinates
x“ the metric tensor g.s becomes coordinate-dependent. Writing the line
element ds? as

ds? = nap dE® dEP = gop da®™ da” (3.9)

with (nag) = diag{—1,1,1,1} the Minkowski metric and £* cartesian coor-
dinates, and setting £ = (ct,r cos ¢, r sin ¢, z) the covariant metric tensor
may be simply written as

(9ap) = diag{~1,1,7% 1}, (3.10)

while for the contravariant metric tensor one consequently has (¢®%) =
diag{—1,1,1/r% 1}. Thus, except for the g coefficient all partial derivatives
of the metric coefficients vanish. Noting that the connection coefficients or
Christoffel symbols of second order are determined by

9" (09 | Ogu  Ogw
== - = 3.11
D) ( ozt~ Oxk  Oxt ) ’ (3:11)
the only non-vanishing coefficients are then given by
1 2 2 1
Pp=—r, Iy =I= o (3.12)

Using the chosen holonomic basis the considered flow four velocity could
be written in coordinate form as u®e, = veq + (7Q/c) ez + (yv,/c)es and

u,e® = —ye? + (yr2Q/c)e® + (yv./c) e®, respectively, or in shortened no-
tation as
u® = ~v(1,0,Q/c,v./c), (3.13)
U = ’7(—170797”2/0, UZ/C>7 (314)

where the normalization

1
B V1—Q2r2/c2 —v2/e?

2Note that the chosen basis vectors e, are not normalized. For cylindrical coordinates

the normalized basis vectors &,,&, are related to the chosen ones by &, = e; = el and

&y =ex/r =re’.

Y (3.15)
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denotes the Lorentz factor of the flow and where the angular frequency
may be selected to be a function of the radial coordinate, i.e. Q = Q(r).
We may note, that compared with the flow profile treated in the model by
Webb, Jokipii & Morfill (1994), the chosen flow velocity additionally includes
a v,-component. Also, galactic rotation (i.e. Q(r) o< 1/r) is not assumed.
For a contravariant four vector A® the covariant derivative could generally
be written as

= —— + 175, A", (3.16)
while for the covariant derivative of a covariant four vector A, one has

0A,,
oxP

Agjig = — I Ay (3.17)
Hence, for the assumed four velocity Eq. (B.I3) the fluid four divergence
becomes zero, i.e. Vgu? = 0, while the fluid four acceleration Eq. (B.5)
reduces to

g € = —u? (THug) et = —(1*Q%*r/c?) et (3.18)

For the components of the shear tensor Eq. (B.7) we may then derive the
following relations

dQ)
gp1 — 010:—(’737’2/02)95, (319)
Opp = 011 = 099 = 033 = Og2 = 090 = 023 = 032 = 0, (3-20)
df
o1n = o091 = (V*r?/c) o (1—2v2/c?), (3.21)
ds
o3 = o3 = r*v./)Q et (3.22)

and thus, the viscous energization coefficient Eq. (B.6) becomes

CZ

I' = %<0'010'01 + 0'100'10 + 0'210'21 + 0'120'12 + 0'130'13 + 0'310'31) (323)
L 4 o (d§ ? 2,2
- - 1— 3.24
s (G) - e, (3.24)
using that 0% = —oqy, 0'? = 015 /r? and '3 = 0y3.

For the assumed four velocity the fluid four divergence vanishes; i.e. the first
term in Eq. (B.J) becomes zero, while for the second term in Eq. (B.3) we
have

U ¢ =11 q", (3.25)
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with the radial particle current ¢' = ¢" [cf. Eq. (B.4)]

1 r_ afo 7% (p°)? 0fy
87" c2 p op )

(3.26)

We are interested in steady state solutions of Eq. (B.2) in which case the fifth
term reduces to

ot 0¢
Vaq® = aq + aqg +T5, ¢
10

= ;g(“ﬂ k(1 +7%02 /)

1
022"’

(3.27)

noting that the third component of the heat flux is given by

/

¢’ =~k (L+~%02/c? ) (3.28)

while the fourth term in Eq. (B.g) results in

u*Vofy = (’yvz/c) il :

(3.29)

Collecting the relevant terms together and introducing a source term
(which may depend on r,z and p’), the relativistic steady state transport
equation for rotating and shearing flows in cylindrical coordinates could be
written as

0

1 0 [, ,00?0r . 442 dao\? . of
R P s A 2/@)(—) i

p/2 8p/ C2 15 p/
afs 9 f}
— k(1 - ™) = .
+y 0, o k(1 +~y*?2/c ) +r8r( rq") =@, (3.30)

where the flow Lorentz factor is given by v = 1/(1 — Q%72 /c? — v?/c?)1/2,
For purely azimuthal, special relativistic flows with v, = 0, the transport
equation (B.30) reduces to Eq. (5.2) derived in Webb, Jokipii & Morfill (1994)
[henceforth abbreviated as WJM 94].

As suggested by WJM 94, the derived transport equation may be cast in a
more suitable form by introducing the variable

o = In(H) (3.31)
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replacing the comoving particle momentum variable p’. Following WJM 94,
we may define H such that (0f/0r)y = —q" /K, with ¢" given by Eq. (B.26),
the index H denoting a derivative at constant H, i.e.

r 292 /
H=p"cexp (—/ dr' 2 5 T). (3.32)

C

For a physical interpretation of H we may note, that in the case of rigid
rotation (i.e. € = const.) H could be related to the Hamiltonian for a bead
on a rigidly rotating wire [cf. WJIM 94; see also Eq. (B.73)].

Hence, writing f{(r,z,p") — f{(r,z, ®), the relevant derivatives transform
like

f(r=®)\ _ Of(ray) | () Ofred)
< or q>_ or + or ) e op' =—q/r, (3.33)

using that  9p’/dp”° = p°/p) and noting that p°c =
exp[[dr' v Q%1 /c*] exp®.  As usual, the index ® in Eq. (B.33) de-
notes a derivative at constant ®. For the momentum-derivatives one

finds
Afo(r, 2z, p') 00 0fy(r.z, @) p 9fg(r,z @)

= = 34
op' op 0P (pe)? @ (33

and consequently
82f(,](ra Z7p,) . (p,0)2 - 2p,2 afé(ra 2, ®) p/2 an(/)(T7 2, qD) (3 35>

(9])’2 o (p’0)4 oD (p’0)4 P2

Using Eq. (B.33) and collecting all terms together in the transport equa-
tion (B.30) which depend on Jf]/0r and additionally recalling that x =

(v 7,.)/3 we may arrive at

1 Ok/or af; 1 0 s oo VT Ao\ _
() (50), gy [P0 (), =

1 of} p"° 2 V2 r (Of)
—Kk—(1+ — + — — )
h (14 05) ( o). K[3+ q] p’ 2 o q)(,?) 36)
where the position and momentum dependence of the collision time 7, (and

thus of the diffusion coefficient) has been caught into the definition of the
variables a and (3, i.e. a and (§ are given by

JlnT,
o= 5 oy (3.37)
g = OlnT, 7 (3.38)

Olnr
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respectively. Eq. (B.36) has been obtained by making use of

2
v =

K
op
or./]op

Te

In a similar manner, the terms

Ap?/(p°)? and (3.39)
1 [ ov? 01,

o),
1

~a 3.41
p, (3.41)

depending on 0f}/0p’ in Eq. (B.30) may be

rewritten using Eq. (B.34) as

1|0 [~*r? 9, o (dQ2 2 " off(r,z,p)
S 1— & GI\n2P)
p/2 [ap/ ( 15 ( UZ/C ) (dr) p T 8p/
4,.2 2 /
ot 5, dQ\° Of{(r, z, ®)
e (1—v/c*) 4+ (—dr) 5 (3.42)

Similarly, for the terms in Eq. (B:30) depending on 9% f;/0p"* one finds

p? \ 15¢2 dr a2
4,2 2 2 . , P

ﬁ;,y " (]__U_Z) @ [1_2 p ]afO(r7Za(I)) + p 0 fo(T,Z,(I))
bct © T \dr (02 0P P02 09

where Eq. (B.35) has been used.
Now, collecting all relevant terms together the steady state transport
equation (B.30) may finally be rewritten as

1 (wz - Z_é (dﬂ)2 p'4n> PLir.2p) _ (3.43)

D’ fi 147 P2 (pP\*\ of
or? +< r +[3+af c? <?) Or
4 9 2 N\ 2 / /N 2 92 pr
VT 2y (99 o (PN %, (P O S
T sa (1—v/c) (dr) < db+a 2(p/o) ] 20 T 70 ) 0d?

1v: 0fg rfy_ _Q (3.44)

Kk 0z K

— + (1 +~%02/c?) =

022 K’

with f} = fl(r,z,®) and where the r-derivatives should be understood as
derivatives keeping ® constant, i.e. we may treat r,z,® as independent
variables. Again, for v, = 0 the partial differential equation (B.44) reduces
to the steady state transport equation given in WJM 94 [e.g. see their
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Eq. (5.5)].
For the present purpose, we are especially interested in the case of highly
relativistic particles with p® ~ p’ which allows a further simplification of

Eq. (B.49), yielding

G PO O
or? ( r +al c? ) or
r2 40 2 ot o2 f!
+ é (1—22/c?) (E) ([S—i-oz]aé)—i—aq{g)
92
- aﬁj (L2 efe) S oo :_% (3.45)

3.5 On Green’s function solutions for the
steady state transport equation

3.5.1 Fourier method and the Green’s functions for in-
finite domains

For general applications one may search for Green’s function solutions of the
steady state transport equation (see also WJM 94), i.e. solutions of Eq. (B.43)
with source term

Q = qo 5(7’ - Ts) 5(27/ - p;) 5(2 - Zs) ) (346>

or equivalently (i.e. utilizing the properties of the delta function) with source
term

Q= f)—?é(r 1) (D — D) 5(z — ), (3.47)

describing monoenergetic injection of particles with momentum p’ = p/ at
position r = ry, z = z,. For consistency, the constant ¢y in Eqgs. (B.46), (B.47)
has to be defined such, that the relevant expression satisfies the requirement
that 6(7"—7) §(p’ — ps ) vanishes unless r = r,, ¢ = @5, p' = p’, and integrate
to unity (or Ny if N, particles are injected) over all space and momentum
directions. Using cylindrical coordinates, performing the ¢-integration and
taking into account that f) is assumed to be independent of momentum
directions (isotropic) one arrives at the following condition

////Ndr—?“s )6(p" — P,/ rdrdodz (4m p®) dp

= o (4m ) a0 / / / 5(r — 1) 85 — 1) 8(= — 2,) drdp! dz = N(3.48)
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which requires
N

. 4
872 pirs (349)

qo =

In order to solve the inhomogeneous differential equation Eq. (B.4H), Fourier
techniques are applied in the following, i.e. we use the double Fourier trans-

form defined by

Fy(r; p,v / dz / d® expli (v ® + pz)| fo(r,z,®), (3.50)

where the inverse Fourier transform is given by
folr,z, @) / du / dv exp[—i (v ® + pz)] Fy(r;p,v).  (3.51)
Denoting the Fourier transform of the source term —Q/x by Q, we have

Q = / dz/ d® expli V(ID—I—,uz)] 5(7"—7“5)5(@—‘135)5(2—25)

=~ expli (v B+ pr2)] O(r — 7). (3.52)

S s

By taking the Fourier transform of the steady state transport equation (B.43)
one finds

02};16 1+ ﬁ ’yQ O%r 8F6
3
or? +( r T3+al c? ) or
4,2 v? 2 2
yr (1—C—g> ds) . 2 YUz . 2V 2
T (@) (vl T | A
_0. (3.53)

Let FY{, be the Green’s solution of this equation satisfying homogeneous, i.e.
zero Dirichlet boundary conditions, then Fourier inversion [i.e. Eq. (B.51)]
yields the Green’s function f/(r, z,p'; s, zs, pl;) for infinite domains.

3.5.2 On the method of images and the Green’s func-
tions for bounded domains

Fourier technique yields the Green’s function for infinite domains. The proper
Green’s function for bounded domains, i.e. for finite z, may be obtained by
the method of images (e.g. Morse & Feshbach 1953, pp. 812-816) in the case
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where the boundaries are restricted to straight lines in two dimensions or
planes in three dimensions. For homogeneous Dirichlet boundary conditions
the method of images involves the introduction of a line charge of opposite
sign at the relevant image point, the resultant potential satisfying the bound-
ary conditions thus being regarded as a superposition of the source and its
image. Consider now an idealized jet model where U denotes the appropriate
volume over which the source Q = Q(r, z,p') may be distributed and let U
be defined by the Cartesian product

G =V x[py,p] (3.54)
where V' marks the volume specified for an application to cylindrical jets
V=Ard,2):0<rn<r<rou, 0<0¢ <21, —hmin <2< hpax} (3.55)

with r, the jet inner radius and rqy its relevant outer radius and Ay, Amax >
0. For simplicity one may choose momentum boundaries fixed at p] = 0,
ph = 00. Determining the general solution of the steady state transport
equation with Dirichlet boundary conditions (not necessarily homogeneous,
i.e. zero Dirichlet boundary conditions) on the boundary dU then involves
specifying the Green’s function solution satisfying homogeneous boundary
conditions on 90U, i.e.

fIG(rimZp/'r&Zsap;) = fé;(Tout>Z,p/§7"s,Zs7p;):0 and
fa(ry —=Pmin, D575, 26, 05) =[G, hinax, D5 75, 25, 0) = 0. (3.56)

As stated above, Fourier technique yields the Green’s function solution for
infinite domains (i.e. for |z| — oo) while the method of images may be
applied to derive the Green’s function for bounded domains (i.e. for 0 < |z| <
h). In order to illustrate the method of images in the case considered here,
suppose that the solution for the steady state transport equation Eq. (B.53)
which satisfies homogeneous Dirichlet boundary conditions, could be written
in the form

Fly(ryre; pr,v) = Fy(r,r; p,v) explipzs +iv®,). (3.57)

Then by Fourier inversion (cf. Eq. (B.51)) the required Green’s function for
infinite domains is given by

fG’(r 2y ; TS,ZS, / dlu/ dVF T Tss 1,V )
X exp[—ip(z — z5) —iv(P — D) (3.58)
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Evaluating the p-integration may now be done by performing contour inte-
gration and taking into account the possible poles of Fé which might be a
function of p. Using the calculus of residues, the value of the contour integral
then equals 274 times the sum of the residues at the relevant poles enclosed
by the chosen contour. Thus, by choosing the proper contour (e.g. see Morse
& Feshbach 1953, p. 416) one may obtain a sum over n which entails terms of
the form exp(—i p, |z — 25|) with the p,, determined by the corresponding nth
positive zero of the denominator of the integrand (which may also depend
on v). Consider now the special case where the bounded region is symmetric
with respect to z = 0, i.e. Amin = hmax = h. Applying the method of images
then implies a substitution of each term exp(—i p, |z — zs|) by the expression

(7l H(z — 2,) + e =5 H(z, — 2)) [H(z + h) — H(z — h)]
_ <efi,un\zfzg\ H(z — 2z,) + e im0 (2, — Z)) [H(z 4+ h) — H(z — h{B.59)

with the image points 2z, = 2h — z,, 2/ = —2h — z, and H(z) the Heaviside
step function. After some straightforward manipulations, (B.59) could also

be written as

et ) B () e G B ()
— e EE (2 — h) et G (2 — b
+ e T H(z - h) — et BRI [ (2 4 )
el G2 H(z — z,) 4 e i GF22 (2 — 2 (3.60)

For an application to extragalactic jets originating from accreting black hole
systems however, it may be more appropriate to consider a bounded region
specified by hpin — 0 and hp.e — 00. For such a simplified choice, the
resultant Green’s function satisfying homogeneous Dirichlet conditions on
the boundary z = 0 may be written as a superposition of the line source at
z, and its image at —z, (25 > 0), i.e. one has

emibmlz=msl [(2) — emimmlatal [ () (3.61)

3.5.3 General Green’s formula for Dirichlet boundary
conditions

The Green’s formula for Dirichlet boundary conditions which gives the
general solution of the transport equation in terms of the Green’s func-
tion, has been derived by WJIM 94 [see their Eqs. (3.24), (7.12)]. Let
few(r, 2,05 s, 25, 0) be the Green’s function solution for the bounded re-
gion under consideration satisfying homogeneous Dirichlet conditions at the
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surface 2 = —hmin, Amax and at 7 = ry,, roue. Then by using the steady state
version of the Green’s formula, the general solution of the steady state trans-
port equation with source term @) satisfying Dirichlet boundary conditions
(not necessarily homogeneous ones) is given by

Tout hmax
o\ 2 p Zs Py Tsy Zsy Pg Gb
fol " Q( o) fe
;:nax o be Ts=Tout
/ dps/ Zs [ Tsaps) Or f(/)(rsazwp;)}
h 2 2 70\ 2 !/ Ts=Tout
e v ()N 9,
/ dps/ 2 { Ts,ps)( Z - ) apC:‘b fo(rs, zs, pl)

Tout f/ zs=hmax
/ dps/ [ Tsvps) @sz f(l)(rs,zs,p;) , (3.62)

Zs :_hmin

where the subscript s at the bracket in line 3 indicates that the enclosed
expression has to be evaluated at the position (s, zs, p,). The derivatives of
féy should first be calculated at points inside U and subsequently, the limit
should be taken for 0U. Eq. (B.62) represents the general Green’s formula for
the case where the boundary values of f{ are not necessarily zero. However,
if f) satisfies homogeneous Dirichlet boundary conditions, i.e. if one has
fé(rimz?p/) = f(l)(routazvp/) fO( m1n7p> = f(l)(rv hmaX7p/> = 0 at the
surface, Eq. (B.62) simplifies to

Tout hmax [e'e)
fi(r = p) = / dr, / T / A, Qe 2t) fly- (3.63)
Tin —Mmin 0

3.5.4 One- and two-dimensional Green’s functions

Even for the simplification v, = 0 and a simple galactic rotation law (i.e.
2 o 1/r), the Green’s function solution for the steady state transport equa-
tion Eq. (B.43) is not straightforward to evaluate (cf. WJM 94). However, we
are especially interested in an analysis of the azimuthal effects of particle ac-
celeration in rotating jet flows and may thus be content with a z-independent
solution of the transport equation, i.e. with an investigation of the so-called
one-dimensional Green’s function which preserves much of the physics in-
volved (cf. Morse & Feshbach 1953, pp. 842-847). The one-dimensional
Green’s function may be found by integrating the two-dimensional ring source
@ (which depends on the space coordinates r, z5) from z; = —00 to 23 = 00;
i.e. the one-dimensional Green’s function represents the Green’s function
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solution for a steady state monoenergetic injection of particles from a infi-
nite cylindrical surface parallel to the jet axis at radius r,. Correspondingly,
the general solution of the steady state transport equation may be calcu-
lated by taking the limit Ay — 00, hmax — 00 and replacing f§, by f&
in Eq. (B.67). The connection between the two-dimensional and the one-
dimensional Green’s function may be demonstrated more transparently using
the solution Eq. (B.58) for the two-dimensional Green’s function

fo(r, 2, ®;ry, 24, O) / du/ dv F}(r, re; p1,v)
X expl—ip(z — z5) —iv(P — Py)]. (3.64)

Integrating Eq. (B.64) over z; from —oo to oo yields the required one-
dimensional Green’s function fg1p(r, ®;7s, @5), i.e.

f/G,lD = / dZS f,G(nZ?(I);rs;Zsa(Ds)- (365)

[e.o]

Using the fourier integral theorem, i.e.

1o e |
T on / dk/ dn explik (n — )] f(n), (3.66)
Eq. (B.69) becomes
1 o0 -
faap = 7 lim dv Fy(r,re; p,v) exp[—iv(® — @,)]. (3.67)
=0 J_

We may arrive at the one-dimensional Green’s function solution f¢ ,p how-
ever more immediately, by searching for a z-independent solution of the trans-
port equation Eq. (B.45) from the outset (cf. WJM 94), using the source term
Q(r,p') = qod(r—rs) 6(p' —pl). For, integrating Eq. (B.49) over z; from —oo
to oo, using the expression Eq. (B.64) and taking the first z-derivative results
in an integral of the form

/ dzs/ du/ dv (—ip) Fy(r,rs; p, v)

x exp[—ip(z — z5) —iv(d — D) (3.68)

which, applying the fourier integral theorem, can be shown to be zero.
Similarly, the integral involving the second z-derivative vanishes. Thus, the
one-dimensional Green’s function we are seeking for, represents the solution
of the modified transport equation
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O2f) v\ Of;
or? N ( +al c? ) ar
’}/ 0 2 8f a2f/
+ 5 2 ( 2/C ) (5) ([3+ ]aq()) + a@§>
_ _qu‘;/s 5(r — 1) 6(® — ®,). (3.69)

Since we are especially interested in the azimuthal evolution of the
particle distribution function, we hereafter use Eq. (B.69) for our analysis of
particle acceleration in rotating and shearing jet flows.

3.6 Particle acceleration by rigidly rotating
flows

In the previous chapter we have investigated the acceleration of charged
test particles at the base of a rigidly rotating jet magnetosphere. It has
been shown there, that the maximum attainable Lorentz factor is limited
by the breakdown of the bead-on-the-wire approximation which occurs in
the vicinity of the light cylinder (see also Rieger & Mannheim 2000a, 2001a).
Here we supplementary consider the transport of relativistic particles further
away from the base where the jet might be well-represented by a cylindrical
model. To this end the evolution of the particle distribution is investigated
by using the transport equation (B.69) for the case of rigid rotation € = €.

Such rotation profiles could be related to dynamo action in the inner accretion
disk creating a jet magnetosphere filled with disk plasma and rotating with
the angular frequency of its foot points near the last marginally stable orbit
around a spinning black hole (e.g. Camenzind 1996). In the case of solid
body (uniform) rotation shearing in the background flow is absent since the
fluid moves without internal distortions. For the case under consideration the
one-dimensional Green’s function corresponds to a z-independent solution of
the steady state transport equation, i.e. to a solution of Eq. (B.69) which,
using a constant 2 = )y, simplifies to the purely spatial transport equation

il SR B 1V G R

R A=) or ~ % B
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where Q is defined by

- 0
Qo= —2 (3.71)

V1=’

while Qo = —qo 6(r — r5) 6(P — )/ (ks pl), with gy given by Eq. (B:49), and
where the diffusion coefficient is assumed to be of the form

— (ﬁ—;)a (;)ﬁ . (3.72)

where k., pl, and «a, # are constants, cf. Eq. (B.§) and Eq. (B.37).
For rigid rotation Eq. (B-39) yields

r 202y
H(r,p)) = p cexp (—/ dr' 00 207”)
c

1
= pPcexp (5 In[l1 — Q37"%/c* — vﬁ/cﬂ)

p/OC
= pc(1-02r%/? =2/ =2 (3.73)
f)/

where 7 denotes the Lorentz factor of the flow. If one generalizes the results
given in appendix [A.9 in order to include a v,-component (i.e. if one considers
the three-dimensional case), one may immediately recognize, that H(r,p’) is
analogous to the Hamiltonian for a bead on a relativistically rotating wire, i.e.
that H(r,p') is a constant of motion (cf. Noether’s theorem). The variable
H thus describes a balance between the centrifugal force and the inertia of
the particle in the comoving frame (e.g. WJM 94) while Eq. (B.73) indicates
that the ratio of the particle to the flow Lorentz factor is constant.

Since H = H(rs,p,) is a constant of motion, the particle momentum p’ in
the comoving frame could be simply expressed as a function of the radial
coordinate

2
p'(r) =moc o
m3ct (1 —Q%r2/c? —v2/c?)

—1, (3.74)

with mq the rest mass of the particle [see also Fig. B.1]]. Hence, by solving
Eq. (B.70) for the distribution function as a function of the radial coordinate,
one may immediately calculate the corresponding particle momentum
related to the position 7.



54

Rotating and shearing jet flows
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Figure 3.1: The particle momentum p'(r)/(mgc) as a function of the radial
coordinate for particles injected a.) at position 7, = 0.1 7y, (where r, = ¢/,
v, small) with initial Lorentz factor 75 = 5 (solid line) and b.) at position
rs = 0.2, with v, = 10 (dotted line).

3.6.1 Solution of the transport equation

In order to solve Eq. (B.7() consider the substitution y(r) = df}/0r for which
the solution of the homogeneous part of Eq. (B.70) could be written as

3 3
y(r) = exp [—(1 +0) Inr + ta ln(02 — Qg 7’2)}
~ (3+a)/2
QQ 2
cta p—(1+6) (1 — EZT ) ) (3.75)

For the general solution f; of the homogeneous equation one therefore finds

fn=a /T y(r')dr' + co (3.76)

where ¢; and ¢y are constants. In the following, the integral of y(r’) over the
interval dr’ is evaluated analytically for some special cases of interest:

e Consider first the case of a constant diffusion coefficient, i.e. a = = 0.
By substituting u = Q%r?/c? in the integrand, we arrive at an integral
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of the form
_ 2,)3/2 J1 =
/%du = / ! udu—/\/l—udu

— 9T —u-In HV —u

2
N 1—u 3

(1- w2,
(3.77)
Noting that In[(14++v/1 —u)/(1—+/1 — u)] = 2In[(14++/1 — u)/\/u], the

general solution of the homogeneous equation could then be written as
fi(r) = & y1(r) + cay2(r) where the two independent solutions 1, ya

are given by
~ 4 22
0 (r) =\h—QwW&(§—§;)

c(l+4/1— Q%TQ/CQ)

—In =
QO r
pa(r) = 1. (3.78)
For the appropriate Wronskian
W(r) = W(yi(r), y2(r)) = y1 dya/dr — yo dy1 /dr (3.79)

one then simply has

BN 72
W(r) = —r! (1 _ ) . (3.80)

c2

e In the case, where 3 is negative, the integral may be expressed in terms
of the incomplete Beta function. Defining the incomplete Beta function
by (cf. Abramowitz & Stegun 1965, p. 263)

B(z,a,b) = / (1 — ) da, (3.81)
0

where a, b > 0, writing f;,(r) = ¢, y1(r)+cz ya(r) for the general solution
of the homogeneous equation and using the substitution u = Q2% r?/c?,
one finally may arrive at the system

-\ B N
IR MBr? B 5+a
— — (2 B _P
n(r) 2(0) ( 2 T2 2

for a > =5, and B <0
ya(r) (3.82)

Il
—
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Note, that now the solutions v, 7> have been defined such that the
appropriate Wronskian reduces to Eq. (B.80) for a = 8 = 0, i.e. we

have (1))
~ 3+a)/2
QZ 2
W(r) = —r= 0 (1 _ 0 ) . (3.83)

c2

Generally, the solution space of the homogeneous part of Eq. (B-70) may be
described by a set of two independent solutions, e.g. by the functions ()
and yo(r) with Wronskian W (r) (where for an appropriate choice yq(r) =
1). The general (one-dimensional Green’s) solution of the inhomogeneous
differential equation Eq. (B.70) with monoenergetic source term )y defined
above could then be written as (e.g. Morse & Feshbach 1953, p. 530)

By = nlr) {kl— / %d}
+y2(r) [k:2+ / T%Wyi&(;)dr} . (3.84)

where ki, ko are integration constants specified by the boundary conditions.
In the disk-jet scenario the accretion disk is usually assumed to supply the
mass for injection into the jet, thus for simplicity one may consider a rather
hollow jet structure (cf. Marcowith et al. 1995, Fendt 1997a; Subramanian,
Becker & Kazanas 1999) where the plasma motion in the azimuthal direction
is restricted to a region ry, < r < ro < rr, where 7y, denotes the jet inner
radius, 7y the relevant outer radius and rp, the light cylinder radius. The
size of the inner radius 7, may be chosen to be of the order of the radius
of the last marginally stable orbit around a rotating black hole while the
outer radius r.,; may be associated with the Alfvén radius derived in MHD
scenarios. Particles are supposed to be injected at position rg with initial
momentum pl, where ry, < ry < roy. By chosing the boundary conditions
fo(r =ryn) =0 and f{(r = row) = 0, the integration constants in Eq. (B.84)
are determined by

]i]l = —kQ ; and
hn (Tin)
q [?/1 (Tout) — W (TS)]
k , 3.85
T T (o) 9 () (3.85)
where
j=—— 0 50— D), (3.86)

ks Py W(rs)
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with qo given by Eq. (B.49), i.e. qo = N/ (87 p2ry).
Therefore the (one-dimensional) Green’s solution may be written as

fé(r7p,§ Ts;p;) = y(r) [k 0(r —rs) + k1 0(rs — 1) — GO(r — 1))
+ [k2O(r —rs) + ko O(rs — 1) + Gua (1) O(r — 15)] (3.87)

where 6(z) denotes the Heaviside step function. The delta function in
Eq. (B:8G) and Eq. (B.87) indicates that the particle momentum in the co-
moving frame is directly related to the relevant radial position by Eq. (B.74).
In order to gain insight into the efficiency of the acceleration process one may
introduce a spatial weighting function N(7) defined by

f(/](ra p/; Tsap,s) = N<T) (5(@ - ch) = N(T> Hs 5(H - Hs) (388)

The evolution of the function N(r) is illustrated in Figs. B.2-B.5, where we
have plotted the normalized distribution function N(r)/N(rs) as a function

of the radial coordinate r/ry, for different initial conditions. Here, using
Eq. (B.71)), the radius 7, has been defined by 1, = ¢/Qy.

3.6.2 Results and discussion

The new function N represents the spatial weighting function for the steady-
state distribution of particles which where injected mono-energetically at
position r, and distributed by diffusion over all relevant r. As one would
expect, the solutions are characterized by a point of discontinuity at the po-
sition r, of the point source.

In order to understand the evolution in the case of rigidly rotating back-
ground flows, we might consider the original transport equation: For rigidly
rotating flows of the form (B.I3) the components 0,5 of the shear tensor
Eq. (B-1I9-B.22) vanish, and thus, the viscous energization coefficient I', see
Eq. (B:23), does also. Since the fluid four divergence also becomes zero, the
only non-vanishing contribution responsible for a change of the particle en-
ergy in Eq. (B.2) is given by the acceleration vector term 1, ¢* = w1 ¢* (cf.
Eq. B:29]). Eq. (B.I§) then indicates, that the energy changes which take
place are due solely to centrifugal effects. Hence, the increase of the particle
energy with increasing radial distance, i.e. p/(r) [cf. Eq. (B:74)], is the same
as in the test particle approach of chapter . For, if we generalize the results
of chapter g to include a v,-component, the test particle momentum p’ in the
comoving fluid frame could be written as

, moT

a V1I-D2r2/c2 —v2/c2 —72/c?

p
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Figure 3.2: The normalized distribution function N(r)/N(rs) for a constant
diffusion coefficient (i.e. o = 8 = 0) using ry, = 0.057L, 7oue = 0.999 1, with
particles injected at the positions r/ry, = 0.1 (solid line), 0.2 (dotted line),
0.3 (dashed line).

m07'“
_ , 3.89
V(1 —Q2r2/c2 —v2/c?) ( )

e.g. see Eq. (B:1§), where m might be chosen to be m = mct/H? (cf.
Eq. [2.9]). Noting that

7= c\/(l —Q2r2/c2 —v2/) (1 —m[l — Q3r2/c? —v2/c?)) (3.90)

cf. Eq. (.8), we finally arrive at

2
p(r) =moc <
m3ct (1 —Q%r2/c? —v2/c?)

which is indeed the same result as that given in Eq. (B.74).

Figs. B.2, B.3, B.4 indicate that particle acceleration by rigidly rotating
background flows might be very efficient. Related results have been already
anticipated using the test particle approach in the bead-on-the-wire approx-

imation (Gangadhara & Lesch 1997; Rieger & Mannheim 2000a, 2001a; see

—1, (3.91)
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log N(r)

Figure 3.3: The normalized distribution function N(r)/N(rs) for = —2 and
6 = —0.01, again using 7, = 0.057ry, 7ouy = 0.999 7, and different injection
positions rs/ry, = 0.1 (solid line), 0.2 (dotted line).

chapter P)). However, as one would expect and as might be seen from Fig. B.5,
the acceleration efficiency, i.e. the transport of relativistic particles, essen-
tially depends on the form of the diffusion coefficient

K = Ko (%)a (TL)B . (3.92)

Especially, an increased efficiency is found, if the time interval for scattering

7. is a monotonic decreasing function of p’ (assuming only a weak spatial
dependence), i.e. if scattering occurs more rapidly for the higher than for
the lower energy particles (note that x o 7. for relativistic particles). In the
case where 7. is an increasing function of p’ the efficiency may be reduced.
However it should be noted that one requires |v'7./Lf| < 1 (with Ly the
typical length scale for the evolution of f), e.g. Webb 1989) for the diffusion
approximation to be valid which in some cases could be violated near the
light cylinder.
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log N(r)

Figure 3.4: The normalized distribution function N(r)/N(rs) for a = 2 and
6 = —0.01, again using r, = 0.057,, rous = 0.999 71, and injection positions
rs/r, = 0.1 (solid line), 0.2 (dotted line).

3.7 Particle acceleration by keplerian rotat-
ing flows

In this section we consider the acceleration of particles in a keplerian rotating
background flow with Q(r) = kr=%/2, k = /G M. Keplerian flow profiles
might be related to jets or disk winds originating from the accretion disk
around the black hole and dragging the keplerian rotation of the disk with
them. A keplerian rotation profile may thus be regarded as one of the most
realistic descriptions for rotating of source producing jets. Motivated by such
arguments Lery & Frank (2000) have recently investigated the structure and
stability of astrophysical jets including keplerian rotation in the outermost
part of the outflow and rigid rotation close to the axis (cf. also Hanasz, Sol
& Sauty 2000). They also studied the application to non-relativistic outflows
from young stellar objects. One may thus eventually envisage a simple model
where rigidly accelerated particles are subsequently injected into a keplerian
flow profile.

For keplerian rotation both centrifugal and shear effects in the background
flow are present. Using the transport equation (B.69), the one-dimensional
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log N(r)

Figure 3.5: A comparison of the normalized distribution functions
N(r)/N(rs) for a different energy dependence of the diffusion coefficients,
ie. for « = § =0 (solid line), « = =2, § = —0.01 (dotted line) and o = 2,
B = —0.01 (dashed line). 7y, = 0.057, rs = 0.17 and roy = 0.999 71, has
been used for the calculations.

Green’s function is the solution of the partial differential equation

or? c? or
~ 2
S(ryt? (a0 ofy R\ _
+ g (dr ) <[3+O‘]a_<1§+8<1>20>_%’ (3.93)

where, in analogy to the previous section, Q(r) is defined by
~ Q
Qr) = _ o) ,
V1—v2/c?

while 4(r) is defined by F(r) = v(r) /1 — vZ/c?, with 7 the Lorentz factor
of the flow. The source term is given by

(3.94)

Qo = —H:];’j,s 5(r — 1) 8(® — B,). (3.95)
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By applying Fourier transformation, i.e.

Fy = / d® expliv @] f, (3.96)

[e.9]

where the inverse Fourier transform is given by

1 o0
13 / dv exp[—iv @] Fy, (3.97)

:E N

the transport equation (B.93) could be written as

0?F} 1 F(r)?\ OF}
e ;(“1”2 r )W
y(r)!

r3

(ivas+asv?) Fy = Q. (3.98)

=

where Qo denotes the Fourier transform of the source term Eq. (B.93), i.e.

~ qo expliv Oy

Qo = = o(r —rs). (3.99)

In Eq. (B.98) the abbreviations ay, as, as, a4 are defined by

a = (148), (3.100)
GM
as = (3 + Oé) m > (3101)
9 GM
9 GM

3.7.1 Solution of the transport equation

The analytical evaluation of Eq. (B.98) is complicated. However, a simple
solution may be written down in the special case eventually being appropriate
for the (outer) jet or wind solutions in AGN. For, consider the case of r
being so large that the rotational velocity becomes non-relativistic and the

approximation

1
Y(r) = ~1 (3.104)

Y(r) = \/1_ (Cﬁi]\é)r
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holds. The Fourier transformed transport equation then simplifies to

or? +; W—ﬁ(iV(ZB‘i‘aAVQ)Fé:QO’ (3105>

Using the substitution y = as/r, ag # 0 (i.e. a # —3), one arrives at

0*Fy 1 ( a2> oF) 1
a1

0°F} 2

OF) ivas+asv
Y 3y? -

+(2—a1—vy) F,=0, (3.106)

(9y a9

for the homogeneous part of Eq. (B.I03), noting that relevant derivatives
transform like

OF] y* OF

- 2 20 3.107
or as Oy ( )
2F1 F 4 2F/ 3 E
Oty _ 0 (0% _y 0t oy Of (3.108)
or? or \ or a3 0y? a3 Oy

Eq. (B.I0G) is known in the literature as Kummer’s equation (e.g.
Abramowitz & Stegun 1965, p. 504; Bateman 1964, p. 457). In the gen-
eral case where ay # 0 and (2 — a;) # —n, n € Ny, the complete solution of
this equation, i.e. of the homogeneous part of Eq. (B.107), may be written
as

Fy(r,v) =1 filr,v) + ¢ fo(r,v) (3.109)
where the functions fi, fo are given by
- 2
fl(r7y) — M(M’Q_ah@) (3.110)
a2 T
- 2
fg(r7y) = U(M72_ah%) . (3111)
a9 T

Here, M(a,b,y) and U(a,b,y) denote the confluent hypergeometric func-
tions (cf. Abramowitz & Stegun 1965, pp. 504f; Buchholz 1953, pp. 1-9;
Kamke 1944, pp. 643f), with M(a,b,y) being characterized by the series
representation

a ala+1) 5, a(a+1)(a+2)
/T mernY TIern0+2)

M(a,b,y) =1+ Y+ ... (3.112)

while U(a, b,y) is given by the series

T ( M(aabvy) l—bM(1+a_b72_bay>>
I( ’

sin b

Ula,b,y) =

1+a-br@p) 7 T(a)T(2 —b)
(3.113)
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with I'(x) the Gamma function.

M (a,b, z) has a simple pole at b = —n for a # —m or for a = —m if m > n,
and is undefined for b = —n, a = —m and m < n. U(a,b, z), however, is
defined even for b — +n.

For the relevant Wronskian one has (e.g. Abramowitz & Stegun 1965, p. 505)

Wi(y) =W (M(a,b,y),U(a,b,y)) = -T'(b)y~"e¥/T(a). (3.114)

Thus, for the Wronskian W (r) = W( f1, f2) we find

_ ay Qo az ~(2-a) az/r
W) =W = SrC—a) (2) e Maw),  (3.115)
where . )
a(y) = st ar (3.116)

a2

In the particular case, where a; is not a positive integer, one may replace
the confluent hypergeometric function fo(r,v) = U(a(v),2 — a1, y(r)) by
the hypergeometric function fo(r,v) = y(r)® ! M(a(v) + a1 — 1,a1,y(r))
(cf. Bateman 1964, p. 457; Morse & Feshbach 1953, p. 605), which then
also represents a (quite simplier) second linearly independent solution to
the Kummer’s equation Eq. (B.106), with Wronskian now being given by
W(y) = (a1 = D y(r)n—2 e

For the general solution of the inhomogeneous fourier equation (B.98) one

finds [cf. Eq. (B.84)]

Fy(r,v) = fi(r,v) {kle(r—rs)+/€19(7’s—7’)—l—%fg(rs,u)ﬁ(r—rs)}

+  fo(r,v) [/{;2 O(r —rs) + ko O(rs — 1) — % fi(rs,v)0(r — rs)] ,
(3.117)

where ¢ has been defined by

expliv D]

j = , 3.118
4= qo Ko . ( )
with qo given by Eq. (B-49) and where k1, ko are integration constants speci-
fied by the boundary conditions. For homogeneous Dirichlet conditions at the
boundaries 7y, and 7oy, i.e. Fo(rin, V) = Fo(Tout, V) = 0 with 7, < 7 < roy

and ry, < 15 < Toy the integration constants are fixed (for each v) and given
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by
kQ(V) _ Wq fl(rinay) f2(r0utay> fl(r&V)_fl(routal/)fZ(TmV) :
(Ts) f2(7nout7 l/) fl(Tinv V) - fl(routa I/) f2(rin7 V)
(3.119)
fo(Tin, V)
k = - k. A2
1(v) Firm) (3.120)
Fourier inversion now yields the required (one-dimensional) Green’s function
1 o0
folr, @1, @) = P / dv exp[—iv ®] Fi(r,v), (3.121)
™ —00

with F{(r,v) given by Eq. (B.I17). As may be obvious from the foregoing
investigation this fourier inversion is not easy to evaluate, not even using
numerical methods. However, in order to cope with the integration, one may
consider the following substitution (« # —3)

3 3+a .
w= \/W <V—f—?l) : (3.122)

for which one finds [cf. Eq. (B-116) and Eqgs. (B.100)-(B-103)]
a(v) =w’+0o?, (3.123)

where ¢ is defined by o = 3/3 + a//80.

Performing the substitution in Eq. (B.121]), one arrives at an integral with
the path of integration A now in the complex plane, i.e. parallel to the
real axis at a distance 3 (3 4+ «)i/[2 /20 (3 + a)], extending from —R to R
with R — o0o. We may close the path by choosing a rectangular contour
C which consists of the stated parallel A, the real axis, and the outer lines
By, By parallel to the imaginary axis at R and —R, respectively. For the
relevant ranges of o (v # —3; 2 — a; # —n) of interest, the integrand has
no poles within the region bounded by C' and thus, by virtue of Cauchy’s
integral theorem, the value of the contour integral around C' sums to zero.
For R — oo the integrals over B; and over By vanish as might be shown
by using asymptotic expansion formulas for the integrand. Noting that by
means of Euler’s equation e'® = cosx + i sinz we have

/00 e f(a?)do = 2/00 f(z%) coszdz, (3.124)
- 0

e}
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and collecting all relevant expressions together, one finally may arrive at the
integral (2 — a; # —n;a # —3)

3+«

f(/)(rap,;r&p;) = (r&psa 76) |i (q)_q)s):|

/OO dw cos (Mw (¢ — CIDS)>

h rin,TS;WQ
X F(w2 + 02) {fl(h WQ) f2(r°ut7w2> hNETin7rout;“22)

h(TS7rin;w2>
hN(ﬁna Touts w2)
for r>ry (3.125)

+ fa(r,w?) f1(rous, w?)

3+«

[\

= g(rs,p, o, B) exp [— (<I>—<I>s)]
/OO dw cos (—”20(3—1—) w (P — CIDS)>

Q

3

h(Tout, Ts; w?
T ) [0 ) T

h(TSa Touts w2)
hN (Tina Touts WQ)
for r<ry (3.126)

+ fQ(T7W2) fl(rim w2>

where we have introduced the following abbreviations

20 /5(3 + a) as\ ' M
— TS — eX
3mhsp, (2 —ay) T
= M(w2+a2 2 —ay,ay/r), 3.128

) )
) (3.128)
fo(r,w?) = Uw?+ 02,2 —ay,ay/7), (3.129)
) = filrim,w )f?(rsa 2) = fo(rin, w )fl(Tm )7 (3.130)

) ( )

(

) (3.127

Tout7w2> fl('rinaw2) - fl(rou‘m )fQ(TlrU 2 )
3.131)

:f2

with ¢o given by Eq. (B:49). A further simplification may be exploited in
the limit roy — oo in which case as/roye — 0 and thus, fi(reu,w?) =
1 and fo(rouw,w?) = T(a; — 1)/T(ag — 1+ w? +0%)if 0 < (2—ay) < 1
(cf. Abramowitz & Stegun 1965). Eq. (B.123) is evaluated using numerical
methods (cf. Wolfram 1996). fi(r,w?) and fi(r,w?) are bounded for w =
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0 while the integrand behaves well enough when w — oo to allow for a
numerical evaluation. As an example, the run of the integrand as a function
of w is shown in Fig. for roue = 10007, Tin = 107ms, s = 2075,
r=40rys, « = 1, f = 0 and p'/p, = 10. Here, the radius rys has been
defined such that the relevant quotient as/r becomes independent of v, if
one writes 7 in units of ryg, i.e.

-7 (3.132)

Tms = T'sw
1—v2/c? 2 — 0?2’

where 7y, denotes the half of the Schwarzschild radius.

Figure 3.6: Illustrating the solution for the fourier transformed equation, i.e.
the run of the integrand given by Eq. (B.125) as a function of w.

3.7.2 Results and discussion

For the special flow profiles considered in this chapter, the fluid four di-
vergence vanishes. Hence, energy changes due to adiabatic compression or
expansion of the fluid are absent and particle acceleration therefore (only)
occurs as a consequence of the centrifugal and differential shear effects. As
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was shown above, the shear effects are additionally absent if we consider
rigidly rotating background flows, i.e. for such flow profiles energy changes
are due solely to the centrifugal force. In the case of keplerian rotation gen-
erally both, shear and centrifugal effects are present. However, estimating
the relative strength of the contribution by shear and centrifugal effects in
the present application, one obtains a scaling r—2 for the centrifugal and up
to r~1° for the shear effects (cf. also WIM 94). Thus, for the approxima-
tion above [i.e. Eq. (B.104)], shear effects may eventually be dominant. This
is especially illustrated in Fig. B.7, where we have plotted the logarithmic

—
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Figure 3.7: The momentum-dependence of the (normalized) distribution
function f for keplerian rotation using 5 = 0, calculated for o = 1,2,3
at fixed r = 40 rys. Boundary and injection conditions have been specified
as iy = 10 7ms, Tour = 1000 7y, 76 = 20.0 7.

of the (normalized) particle distribution function f} using # = 0 (i.e. no
spatial dependence for the collision time). In order to evade possible numer-
ical complications near the injection momentum p’, the distributions have
been calculated for values p’'/p, > 5. Obviously, excellent powerlaw-type
momentum spectra are recovered, e.g. f§ o< p'~* for a = 1.0, f} o< p'~ for
a =2 and f} o< p'~¢ for a = 3, suggesting f} o p'~B+ for the range con-
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sidered. The existence of simple power-law momentum solutions, as derived
by Berezhko & Krymskii (1981), is thus confirmed. Using the Boltzmann
kinetic equation for a collisionless plasma with shear flow U(y)e, and a
simple BGK term, they found the shear acceleration to give rise to a power-
law momentum spectrum for the steady state comoving particle distribution
n'(r,p') o< p'? fb oc p'~(1+9) if the collision time 7, depends on momentum as
7. o< p'®. If the momentum index o however, is smaller than zero, i.e. o < 0,
an exponential spectrum might be developed. In their approach however,
only a momentum dependence of the scattering time 7. has been considered.
Besides providing the possibility for a detailed consideration of centrifugal
effects, the derivation presented here has the additional advantage also to
allow for a radial dependence of 7, (e.g. 7. o 7p'®, 3 # 0). An example is
illustrated in Fig. revealing a slightly steepening of the momentum dis-
tribution if 7, is a decreasing function of the radial distance r. This may be
understood as a consequence of the shear (and also the centrifugal) effects to
be more important at smaller radii (i.e. they increase with decreasing radii),
but the mean time between scattering events there to be enlarged as well.

The generation of a power law particle distribution is usually considered
to be of wide astrophysical relevance. If we convolve, for example, a power
law electron distribution with index —(1 4+ «) with the synchrotron Green’s
function, a power law for the volume spectral emissivity j, is obtained, i.e.
4, o< v=*?2_ For many synchrotron sources a spectral index in the range of
0.5 —0.75 is observed. Using the above power law, a would then required to
be in the range (1 — 1.5).

3.8 Conclusion

Observational and theoretical arguments suggest that astrophysical jets
should exhibit intrinsic rotation of material perpendicular to the jet axis. In
the present study we therefore have investigated the acceleration of energetic
particles by centrifugal and viscous shear effects in a collisionless rotating
background flow. Our investigation utilizes a simple version of the relativistic
(steady-state) particle transport equation derived by Webb (1989) (cf. also
Webb et al. 1994) assuming that the diffusion approximation holds. The
results indicate that under special conditions the acceleration of particles by
rotating jet flows may be a very efficient mechanism for the production of
high energy particles.

In the present study we have examined the influence of rigid and keplerian
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Figure 3.8: The momentum-dependence for the (normalized) distribution
function fj using o = 1, calculated for § = 0,—1 at fixed r = 40 7.
Boundary and injection conditions have been specified as ry, = 107y, Tout =
1000 s, 75 = 20 7.

rotation profiles on the steady-state particle distribution. Such rotation
profiles are particularly interesting if one considers, for example, a simple
jet model where rigidly accelerated particles (in the inner part of the jet)
are subsequently injected into a keplerian flow (in the outer part of the jet).
For the considered rotation profiles, we may distinguish the acceleration of
particles by centrifugal and by shear effects.

In the case of rigid rotation, shearing in the background flow is absent
and the energy changes are solely due to the centrifugal effects. Analogous
to the test particle approach of chapt. B, particles gain energy due to
the centrifugal force while moving outwards by diffusion until the rigid
rotation of the background flow is suppressed in the immediate vicinity of
the light cylinder. The position of the decoupling point then limits the
maximum energy attainable by rigid rotation, similar to the breakdown of
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the bead-on-the-wire approximation in the test particle approach.

In the case of keplerian rotation profiles shearing in the differentially rotating
background flow is present and particle energy changes are in general due to
both, centrifugal and viscous shear effects. To allow of a simple analytical
treatment, we have considered the case of non-relativistic keplerian rotation
eventually being appropriate for the outer jet solutions where the shear
effects dominate. We confirm the formation of powerlaw-type momentum
spectra n(r,p') oc p’ =¥ if the collision time depends on momentum as
T, x ' a > 0 (cf. Berezhko & Krymskii 1981). If there is a more complex
interplay between centrifugal and shear effects, however, one expects that
the spectrum may become flatter with increasing rotational velocity.

Our present results reveal the power of shear and centrifugal acceleration
in intrinsically rotating astrophysical jets. The operation of such a mecha-
nism may not only provide the high energy particles required for efficient
Fermi-type acceleration, also generally expected to occur in relativistic jets
(e.g. Drury 1983, Kirk et al. 1994). But probably more important, the
analysed mechanism could be of particular relevance for an explanation of
the continuous emission observed from the jets of several AGN (e.g. for
3C273; M87; PKS 0521-36; cf. Meisenheimer, Yates, Roser 1997; Jester et
al. 2001). For, since intrinsic jet rotation is expected in the AGN setting,
efficient acceleration might occur over the whole relevant jet length. Thus, in
contrast to shock acceleration, this mechanism is generally not constrained
to a localized region. Recent observations indeed indicate that the radiating
particles could be widely distributed such that the optical emission from
radio jets, for example, is not confined to bright individual knots (cf. Meisen-
heimer, Roéser, Schlételburg 1996; Meisenheimer, Yates, Roser 1997). In
addition to diffusive shock acceleration, an extended acceleration mechanism
associated with velocity shear has thus been suggested by Meisenheimer,
Yates & Roser (1997). Meanwhile, the need of an extended acceleration
mechanism is strengthened by recent HST observations of the jet in 3C273
showing no evidence for localized acceleration or emission zones throughout
the jet (Jester et al. 2001).

The present approach therefore appears to be quite fruitful. We would like to
mention however, that the validity of the underlying transport equation im-
poses the restriction that scattering is strong enough to allow for the diffusion
approximation. This may represent a serious limitation if highly anisotropic
distributions are expected, as for example near shock fronts. Hence in such
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cases the diffusion approximation is expected to break down. Also, in the
situation where the individual particle’s motion is dominated by the Lorentz
force of the background magnetic field, the gyrofrequency of the charged par-
ticle may become a large quantity and thus, the distribution function may be
regarded as nearly independent of the gyration phase. For this case it seems
more appropriate to average the Boltzmann equation over gyrophase which
results in the well-known pitch angle evolution equation for the particle trans-
port (e.g. Skilling 1975; Webb 1985; Kirk, Schlickeiser & Schneider 1988).
In the present application energy changes due to radiative (e.g. synchrotron)
losses or second-order Fermi acceleration have not yet been considered. The
inclusion of radiative losses introduces an upper bound to the possible par-
ticle energy when acceleration is balanced by losses and therefore may lead
to a cut-off in the momentum spectrum. The effects of second-order Fermi
acceleration would lead to an additional diffusion flux in momentum space
and may be taken into account by a more careful treatment of the scattering
term in the Boltzmann equation (cf. WJM 94; Schlickeiser 1989), which in
the current approach (e.g. following Webb 1989) has been modelled by a
simple BGK collision term.



Chapter 4

Rotating jets in binary black
holes

4.1 Introduction

The study of variability in extragalactic objects (e.g. AGN) is usually con-
sidered as an important diagnostical tool for the underlying jet physics and
the corresponding particle acceleration mechanisms and nonthermal emission
processes. The observed time scale At for short-time variability, for ex-
ample, allows of an estimate of the (intrinsic) source size R ~ ¢ Atqps /2]
where c is the velocity of light. On the other hand, the observation of peri-
odical variations (on larger time scales) may yield insights into the internal
structure of astrophysical jets (e.g. internal rotation: Camenzind & Krock-
enberger 1992) or the presence of an external effect causing the observed
periodicity (e.g. precession of jets or rotation of jets in a binary system). In
order to gain an adequate interpretation of the observed variability one thus
has to discriminate between a real jet-intrinsic cause (e.g. internal rotation or
effects depending on the acceleration and emission mechanism) and a rather
extrinsic cause (e.g. depending on the jet morphology) which (only) mimics
the results of the former. Modelling the variability behaviour in AGN may
thus be of particular relevance in order to discern the real cause.

In this chapter we consider the noteworthy case of the well-observed blazar
Mkn 501. A simple model is presented showing that the TeV and X-ray pe-
riodicity of ~ 23 days observed during a flaring state in 1997 may basically
be interpreted as a doppler-shifted flux modulation due to the (extrinsic) ro-

IFor a source region which moves relativistically, the appropriate relation should be
R~ ¢ § Atops /2 (1 + z), where & denotes the doppler factor and z the redshift
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tation of a relativistic jet in a binary black hole system. An intrinsic orbital
period of (6 — 14) yrs and a centre-of-mass distance of (2.0 — 3.5) x 10! cm
is derived for the special relativistic jet properties which one may infer from
theoretical emission models. If the binary is very close with a separation of
an order of which gravitational radiation becomes dominant, an upper limit
on the allowed binary masses might be set. Interestingly, the derived values
are in accordance with the black hole masses expected from merger scenarios.
Hence, the case of Mkn 501 may not only illustrate the influence of an extrin-
sic cause on the observed variability, but may also strengthen the evidence
for the existence of binary black holes in AGN. In the following sections the
plausibility of binary systems in AGN is shortly reviewed and later applied
to Mkn 501.

4.1.1 Evolution of binary black hole systems

Binary black hole systems (BBHSs) are expected to be a common phe-
nomenon in the universe as a result of mergers between galaxies. In the
underlying picture for the morphological evolution, galaxies were formed as
part of a hierarchical clustering process (e.g. White 1997). Following an old
hypothesis by Toomre & Toomre 1972, giant elliptical galaxies, such as the
host galaxy of Mkn 501, might be regarded as products of mergers between
spiral galaxies (cf. also Fritze v.- Alvensleben 1996, Kauffmann 1996). De-
tailed numerical simulations have indeed shown that merging between two
spiral galaxies of comparable mass leads to the formation of a spheroidal
merger remnant whose physical properties (e.g. density profiles, gravitational
radii, surface brightness, mean velocity dispersions) are similar to those ob-
served from elliptical galaxies (e.g. Barnes & Hernquist 1992). Since the
brightest galaxies generally seem to contain massive black holes in their nu-
clei (e.g. see sect. [.2), merging would then naturally lead to the formation
of massive BBHS (Begelman et al. 1980, abbreviated: BBR 80; Rees 1994;
Artymowicz 1998; Richstone 1998; Merritt 1999).

Based on the pioneer work of Begelman, Blandford and Rees 1980 (BBR 80;
see also Artymowicz 1998), the evolution of a pair of two black holes with
masses of the order of 108 M., where each is embeded in a dense stellar
cluster, could be divided into several stages (see Fig. @.1]): first, due to
dynamical friction resulting from the fluctuating part of the gravitational
field of a random distribution of stars (cf. Chandrasekhar 1943, Ostriker &
Tremaine 1975), the initial stage is characterized by a rapid approach of the
nuclei on a time scale of tg < 108 yrs. The second stage, which occurs on
a similar time scale, is marked by the settling of the secondary black hole



4.1 Introduction

75

towards the core of the merged system until the two black holes may be con-
sidered as a true, gravitationally bound binary with orbital speed exceeding
the velocity dispersion of the stars. The subsequent evolution of the binary
is then controlled by the formation of a “loss cone” in the stellar distribution
around the binary at a separation dj., i.e. the formation of a phase space
region surrounding the binary which contains elongated stellar orbits with
ideal impact parameter and which gets depleted due to close encounter with
the binary. Repopulation of the loss cone (e.g. by diffusion) occurs on a
very long time scale, i.e. the time scale for the binary evolution ¢, jumps
up to ~ 10 yrs. Hence, one typically might expect the binary to spend
most of its time at the corresponding separation of ~ 0.05 — 1 pc. However,
this conclusion is only valid as long as the binary does not lose further angu-
lar momentum e.g. by slingshot interaction with new stars from subsequent
merging events (Roos 1988; Roos et al. 1993), infall of gas (BBR 80; Gould &
Rix 2000) or by interactions with an accretion disk (Ivanov et al. 1999). For,
in case of loss, gravitational radiation would eventually become important
and the binary evolution could proceed very rapidly to coalescence (i.e. on
a time scale tgr o< d*).

4.1.2 Evidence for binary black holes

Up to now, a whole range of phenomena have been attributed to binary black
hole systems: Examples include explanations for the observed misalignment
(Conway & Wrobel 1995; see also Appl, Sol & Vicente 1996), precession
(BBR 80) or wiggling of extragalactic jets. The latter phenomenon for ex-
ample, is supposed to be induced by orbital motion (Kaastra & Roos 1992;
Roos et al. 1993).

Double-peaked Balmer lines of certain broad-line radio galaxies (e.g. 3C
390.3) have been explained as doppler-displaced peaks due to two separate
broad line regions, each associated with its own black hole in a supermassive
binary at the center of the associated host galaxy (Gaskell 1996a, 1996b; but
see also Eracleous et al. 1997).

Periodic outburst activity in the well-observed quasar OJ 287 has commonly
been related to a binary system. Several models have been proposed accord-
ing to which the observed periodicity of about 12 yrs might be related to
tidal perturbations (Sillanpdé et al. 1988) or to one black hole crossing the
accretion disk of the other (Lehto & Valtonen 1996). On the other hand,
Villata et al. (1998) have considered a pair of two bent jets in a binary sys-
tem, whereas Katz (1997) has suggested the relevance of Newtonian-driven
precession when the orbital plane of the binary is inclined to the accretion
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Figure 4.1: Sketch, illustrating the time scales involved in the evolution of a
massive binary black hole system with masses M = 10® M, and m = 0.3 M
and separation d. The binary is assumed to lose angular momentum by gas
accretion onto the larger black hole which leads to an evolution time scale
tgas = 10° yrs (after Begelman et al. 1980). The merger remnant has been
modelled as an elliptical galaxy with core radius d.. At the separation d, the
holes may be considered as bound to each other, while the binary becomes
hard at d;, where the orbital speed exceeds the ambient velocity dispersion.

disk.
Precession of the (inner) jet in a binary system has also been proposed as

an explanation for the observed kinematic behaviour of superluminal fea-
tures (velocities, position angles) in the quasar 3C273 (e.g. Abraham &
Carrara 1998; Abraham & Romero 1999). There is also mounting observa-
tional evidence for a helical motion of jet components in other extragalactic
radio sources. A three-year VLBI monitoring of the blazar PKS 0420-014, for
example, has recently revealed superluminal jet components following curved
trajectories, suggested to be explainable within the framework of a binary
black hole system (Britzen et al. 2000).

Additional support for the interacting and merging scheme may also been
found in the observations of radio sources with double nuclei (e.g. 3C75:
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Owen 1985). There are about 10 known quasars of which about 40 are
pairs or multiples with separation smaller than 10” (e.g. Kochanek et
al. 1999). Most of them seem to be confirmed gravitational lenses, but
there is increasing evidence for true binaries (where no plausible lens can-
didate has been found and the optical and radio flux ratios are highly dis-
crepant). With the recent detection of the binary quasar associated with
FIRST J164311.3+315618 (Brotherton 1999), which is the smallest separa-
tion binary quasar so far identified (separation 2.”3, z = 0.586), at least
four binary quasars seem to be confirmed. As has been noted by Mortlock
et al. (2000), one should observe about one percent of all merger-formed
quasars to be in a double nucleus system, if one is taking into account that
only collision between two large galaxies can result in a binary quasar and
is estimating the result using a Schechter mass function. A recent Hubble
Space Survey of ~ 100 BL Lac objects with redshift 0.05 < z < 1.2 also
shows three BL Lac objects with double nuclei (with a projected distance
on the kpc-scale). However, it has not been clarified so far whether they are
true binaries or gravitational lensed objects (Scarpa et al. 1999).

4.2 The gamma-ray blazar Mkn 501

In the particular case of Mkn 501, the complex morphology of its radio jet
and the peculiar behaviour of its spectral energy distribution (SED) have
prompted elaborate models relating these properties to a binary black hole
system: Conway & Wrobel (1995), for example, have proposed a saturated
helix model in order to explain the misalignment of the radio jet on parsec
and kiloparsec scales. Recently, Villata & Raiteri (1999) have argued that the
X-ray variations in the SED of Mkn 501 might be due solely to the changing
orientation of a helical synchrotron emitting jet in a close black hole binary.
In the following, we show that the recent discovery of periodicity in the TeV
and X-ray fluxes of Mkn 501, believed to be associated with moving features
in the jet of Mkn 501, might add another aspect for assessing the relevance
of a binary black hole system in this galaxy.

Mkn 501 is one of at least four active galactic nuclei which have been detected
at TeV energies (for review, see Catanese & Weekes 1999). Being the second
closest among these with a redshift of z = 0.034, Mkn 501 has in the past been
classified as an X-ray selected BL Lac object showing virtually no emission
lines. Its host galaxy is known to be the elliptical galaxy UGC 10599 (Stickel
et al. 1993). As a BL Lac object, Mkn 501 belongs to the blazar class of
AGN which are thought to have relativistic jets oriented at a small viewing
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angle. The flux measured by a distant observer thus appears to be enhanced
by Doppler boosting (e.g. see sect. [[.3).

At the beginning of 1997, Mkn 501 had suddenly undergone a phase of high
activity becoming the brightest source in the sky at TeV energies. Subsequent
multiwavelength campaigns revealed a variable, two component SED with a
low energy part extending up to 100 keV (Pian et al. 1998) and a high
energy part which extends at least up to 20 TeV (Samuelson et al. 1998;
Konopelko 1999; for implications, see for example Mannheim 1998). During
this activity phase, particular types of variability have been observed (e.g.
Protheroe et al. 1998), consisting of flaring episodes of several days and
additional intraday-variabilities. While the TeV and X-rays variations seem
to be well correlated, the evidence for correlations with the optical U-band
appears to be rather weak (e.g. Catanese et al 1997; Djannati-Atai et al. 1999;
Aharonian et al. 1999, Petry et al. 2000). One of the most fascinating features
is the observed periodicity in the TeV region with a period in the range of
(23 —26) days, which has been found in the data taken by several Cherenkov
telescopes (see Protheroe et al. 1998; Hayashida et al. 1998). For illustration
Fig. shows the lightcurve of Mkn 501 above 1.5 TeV as measured by
the stereoscopic HEGRA system, an array consisting of six air Cherenkov
telecopes located on the Canary Island of La Palma (Spain). A recently
performed fourier analysis of the X-ray data from April to July 1997 taken by
the all sky monitor (ASM) onboard the Rossi X-ray timing explorer (RXTE)
(e.g. Fig. B.3) additionally seems to support a periodicity of ~ 23 days
(Kranich et al. 1999; Nishikawa et al. 1999), see Fig {.4.
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Figure 4.2: Observed flux variability of Mkn 501 above 1.5 TeV as measured
by the HEGRA Cherenkov telescope system in 1997 (MJD [24]50540 = April
1, 1997). Figure adopted from Kranich et al. 1999.

In the following section, we consider the possibility that this periodicity in the
flaring state arises due to the orbital motion of the relativistic jet in a binary
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Figure 4.3: Observed X-ray flux variability of Mkn 501 as measured by RXTE
between 2 — 10 keV. The data are binned in daily bins for clarity. Figure
adopted from Kranich et al. 1999.

black hole system. The nonthermal radiation is supposed to be emitted by
a relativistic jet which emerges from the less massive black hole and the
periodicity thus being due mainly to geometrical origin (i.e. Doppler-shifted
modulation).

4.3 Possible evidence for a binary system in
Mkn 501

4.3.1 Doppler-shifted flux modulation

Consider a simple binary model for Mkn 501 where the binary orbit is as-
sumed to be circular, because dynamical friction between two parent galaxies
during the merger might ensure that the initial eccentricity of the resulting
binary is small (e.g. Polnarev & Rees 1994). Using Kepler’s third law, the
intrinsic orbital frequency €2, of a binary with separation d is given by

G (m+ M)

= 372 ’

(4.1)
where m and M denotes the mass of the smaller and the larger hole respec-
tively, and G is the gravitational constant.

Let us further assume the observed jet to be formed by the less massive
black hole and the nonthermal X-ray and ~-ray radiation in the flaring state
being emitted by a relativistic emission region (e.g. knot, blob or shock)
which propagates outwards from the core along the jet with gamma factor
Y. Owing to the (non-relativistic) orbital motion, the true trajectory of
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Figure 4.4: Fourier analysis of the TeV and X-ray data using the normalized
Lomb periodogram. The periodicity of ~ 23 days is clearly identifiable.
Figure courtesy of D. Kranich.

the knot is a long stretched helix (see Fig. @.5). The modulation of the
emission then occurs as a consequence of the slight variation of the inclination
angle due to the orbital ¢-component of the velocity field of the knot. This
observed flux modulation by Doppler boosting is well-known (e.g. Blandford
& Konigl 1979; Rieger 1997). For a resolved emission region (e.g. a blob
of plasma) with spectral index «, the spectral flux modulation by doppler
boosting can be written in the form (see sect. [[.3)

S(v) =65 (v), (4.2)

where S’ is the spectral flux density measured in the comoving frame and o
denotes the Doppler factor given by

1
o) = Y [1 — By cosO(t)]’
with 6(¢) as the actual angle between the velocity 3, = ,(t)/c of the emission
region and the direction of the observer. The bulk Lorentz factor is defined
by 7 = (1 —67)7".
Due to the orbital motion around the center-of-mass, the Doppler factor
for the emission region is a periodical function of time. In the simplest

(4.3)
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Figure 4.5: Idealized sketch of the assumed model, where an emission re-
gion follows a helical jet path. Due to differential doppler boosting the flux
measured by an observer (lying in the (z, z)-plane with inclination i to the
central axis) from position 1 appears enhanced relative to the flux observed
from position 2.

case where the angle between the jet axis and the direction of the total
angular momentum of the binary is assumed to be zero (e.g. neglecting any
kind of precessional motion) the Doppler factor may be deduced using the
following arguments: Denote i = (sini, 0, cosi) as the normalized vector
directing towards the observer and let @(t) = (R cos Qi t, R sinQyt, v, 1)
be the position vector of the emission region, with R = M d/(m + M) the
centre-of-mass distance and v, the outflow velocity in the direction of the
total angular momentum. Then, noting that cos 6(t) = i x Zy(t)/(|i] |Z(t)]),
the Doppler factor Eq. (f.3) may be written as

§(t) _ \/1 B (Ug + QiR2)/C2

= 4.4
1 — (v, cosi— QR sinisin Qi t)/c’ (4.4)

with ¢ the velocity of light. Obviously, the Doppler factor Eq. (f.4) becomes
maximal for ¢ = 0.75 P, and minimal for ¢ = 0.25 Py, where P, = 27/
denotes the keplerian period. The effect of doppler boosting is illustrated for
appropriate values in Fig. @.6. From the TeV flux ratio of f ~ 8 between
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Figure 4.6: Flux modulation assuming only differential doppler boosting.
The y co-ordinate gives the relative intensity 6(¢)* as a function of time.

the maximum and the minimum state during the observation (cf. Protheroe
et al. 1998; Hayashida et al. 1998, Aharonian et al. 1999) and the assumption
that the periodicity arises mainly due to geometrical origin, we now obtain
the condition dmax/0min ~ YT [see Eq. (.2)]. Consequently, by using
Eq. (£4) one finds

B fl/(3+a) -1 1 v, .
QkR_f1/(3+a)+1 sini_;COtZ c. (4.5)

For a source region which moves in the time interval dt from point A to
point B with relativistic velocity v, and at an angle ¢ to the line of sight,
the observed difference in arrival times for radiation emitted at A and B is
generally given by dtons = dt — dt (v,/c) cosp, thus leading to a shortening
of the observed time interval. Along this line of argument, one may easily
derive that the observer in the model presented here will only perceive a
strongly shortened period, i.e. the observed period P, is related to the
intrinsic period Py, measured in the frame fixed in the center of the galaxy,
by (cf. Camenzind & Krockenberger 1992, Roland et al. 1994)

Po = (14 2) /Pku B, cosO(t)) dt (4.6)
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Performing the integration, one immediately arrives at

P = (142) (1 — 2 cosi) Py . (4.7)
C

From a theoretical point of view, relativistic blazar jets are thought to be
oriented at a small viewing angle. Current emission models favour an in-
clination angle i ~ 1/v, (Spada 1999; cf. also Chiaberge et al. 2000) with
typical bulk Lorentz factors in the range 10 — 15 (e.g. Mannheim et al. 1996;
Hillas 1999; Spada et al. 1999). For such values and by using an observed
period of 23 days and a characteristic outflow velocity of v, /c >~ (1—1/47)%?,
Eq. (.7) results in an intrinsic period of

P, = (6 —14) yrs. (4.8)

Combining Eq. (.7) and Eq. (.5) we may also derive an expression for the
centre-of-mass distance

Pobs fl/(3+a) -1 ¢
2w (14 2) fYGT) 41 sind

(4.9)

Given the observed period and the spectral index, Eq. (.9) only depends
on the inclination angle. Accordingly, for an observed period of 23 days, a
ratio f = 8 and a TeV spectral index of v ~ (1.2 — 1.7) (cf. Aharonian et
al. 1999), one gets

R~ (2.0 -3.5) x 10'® cm, (4.10)

using the inclination values above.

By inserting Eq. (1) in Eq. (£.9), noting that R = M d/(m + M), the
appropriate binary mass ratio is given by

v
(m+ M)23 — (27[1+ 2] G)Y/3 sini
fl/(3+a) -1 v, -
Xm (1 — ? COS Z>2/3 . (411)

For a secondary mass in the range of (10° — 10%) M, the required primary
masses are shown in Fig. .7 [i.e. the curves K (10), K(15)] for two different
inclination angles and f = 8, yielding primary masses of the order of 108 M.
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Figure 4.7: Required mass dependence K (1/i) for a binary black hole system
in Mkn 501. The solid [K(10)] and long dashed [K(15)] curve are given by
the Doppler condition Eq. ({.11]) for inclination angles i = 1/7;, with v, = 10
and 15, respectively. A TeV spectral index of 1.2 and an observed period of
23 days have been applied for the calculation.

4.3.2 Upper limits for the binary masses

Observationally, BL: Lacs are generally less luminous radio sources, showing
a lack of strong optical emission lines and rather little signs of cosmologi-
cal evolution (cf. Bade et al. 1998; Cavaliere & Malquori 1999). Celotti et
al. (1998) have suggested that BL Lac objects correspond to the final evolu-
tionary stage of sources accreting at low radiative efficiencies (i.e. a dormant
black hole system). This seems to be supported by HST observation, indi-
cating that the less luminous AGN stages occur after the original quasar has
dimmed (Bahcall et al. 1994). Recently, Villata & Raiteri (1999) have argued
that BL Lacs represent advanced and close binary black hole systems with a
decreased mass accretion rate, the binary separation in the case of Mkn 501
being of an order for which gravitational radiation becomes dominant. As
outlined in sect. .1 1], the formation of a loss cone in the stellar distribution
around the binary and a decreasing mass accretion rate would generally re-
sult in a hardening of the binary above the separation at which gravitational
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radiation eventually becomes dominant. This state may thus be associated
with little signs of cosmological evolution and a less luminous stage. There-
fore, one might set an upper limit on the allowed binary masses in Mkn 501
by assuming that the current separation equals the gravitational separation
dg, i.e. the position where the gas dynamical time scale is balanced by the
time scale for gravitational energy losses (BBR 80). Accordingly, let us sup-
pose that gas has been constantly supplied up to now (for example, by tidal
interaction between galaxies, cf. Heidt 1999) and accreted onto the more
massive black hole. Theoretical support for such a picture may be found in
simulations of merging galaxies (e.g. Barnes & Hernquist 1996) indicating
that interaction drives gas towards the central regions of the galaxy where
it can be used as fuel for new activity. In such a case the binary separation
shrinks on a time scale of

toas > M ————— yrs, (4.12)

where M denotes the accretion rate (BBR 80). For a simple estimate one
may assume that during the optical bright QSO phase mass accretion occurs
at about the Eddington limit. Since this phase of nuclear activity seems
to be rather short with a typical duration of a few times 107 yrs (Haehnelt
et al. 1998; Richstone et al. 1998), the gas dynamical time scale should be
small also, i.e. the gas accretion rate should be of the order of one solar mass
per year for the primary masses expected from the results of sect. £.3.1. In
particular, for a duration of nuclear activity of the order of the salpeter time

ty=nopc/in Gm, =451, x 107 yrs, (4.13)

and for a primary black hole mass of ~ 10® My, gas infall rates of ~ 2 Myyr—!
would have been required in order to sustain the Eddington luminosity, using
a canonical 10% efficiency. For such values, the gas dynamical time scale and
the salpeter time scale are about the same size.

On the other hand, assuming a circular orbit, the decrease of the total energy
E=-GMm/(2d) = —G p M /(2d) (cf. virial theorem) via gravitational
radiation may be written as (e.g. Misner, Thorne & Wheeler 1973)

dE 322G @2
dt 5 & M3,

(4.14)

where the term on the right hand side denotes the power radiated in grav-
itational waves, Mo, = m + M is the total mass and p = m M/(m + M)
the reduced mass. Using Eq. (f.14) the time scale Ty = d/d, on which
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gravitational radiation shrinks the orbit, then is given by
5 ¢ 1
v = =g d*. 4.15
e = 64 G3 Mm (m + M) (4.15)
By applying appropriate values, Eq. ({.15) may be written as

4

d
rav — 2.52 105 16 4.16
Tg % Mg msg (mg + Mg) M ( )

where the distance and the masses are expressed in units of 106 cm and
10® My, respectively.

Solving Eq. (f.I4) for the separation d, the solution is simply given by d(t) =
do (1 — at/d})??, where dy = d(t = 0) and a = 256 G® u M2, /(5¢c°). Thus,
for the assumed separation, the expected binary gravitational lifetime 7
may then be defined as the spiral time in which the binary black holes will
spiral together (i.e. Tife = dj/a = Tgray/4 With dy = d, the assumed binary
separation).

Now, by equating the gas dynamical time scale ¢z With T4y, the separation

at which gravitational radiation becomes dominant may be written as

Mg yr—!
M

Using Eq. (.I7) and Eq. (.I) we immediately arrive at the relation

1/4
dg = 4.46 X 1016 M81/2 mé/4 (mg + M8)1/4 ( ) cml . (417>

: 1/4
M2 /4 v
=2 __ = 1.82x 10 | ———
(m + M)1/12 Mo yrl
P y
g 27 [1+2])2/3 (1 — % cosi)?/3 [g/s]7". (4.18)

This mass dependence is illustrated in Fig. (curves (). The respective
upper limit is given by the point of intersection with the relevant curve K.
For example, applying @ = 1.2 and using ¢ = 1/10, we have a maximum
secondary mass m ~ 7 x 10% M, and a corresponding primary mass of M ~
108 My, for M = 1 M, /yr (cf. also Table .1)). The masses shown in Fig. 4.8
are in a reasonable range for ellipticals. Masses of the order of one million
solar masses for the companion black hole appear to be in agreement with
the concept that the galaxy swallowed in the merger process was a minor
spiral galaxy. On the other hand, the host galaxy of Mkn 501 seems to
be particularly large and high-luminous (Nilsson et al. 1999) and therefore
probably belongs to those classes of ellipticals which may have black holes in
the centers of at least a few hundred million solar masses (cf. sect. [.2). A
binary scenario for Mkn 501 may properly account for such a difference.
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Figure 4.8: Required mass dependence for a binary black hole system in Mkn
501 (see also Fig. [.7). The solid [K(10)] and long dashed [K(15)] curve are
given by the Doppler condition Eq. ({.11) for inclination angles i = 1/, with
7 = 10 and 15, respectively. The curves G(1/i) are given by the condition
that the current binary separation equals the gravitational distance d,, see
Eq. (£1§), and may thus be considered as upper limits on the allowed binary
masses. The allowed part for the masses has been drawn in blue. A TeV
spectral index of 1.2, an inflow rate M = 1 Mg /yr and an observed period
of 23 days have been applied for the calculation.

4.4 Discussion

In this chapter we have suggested that the periodicity in the flaring state
observed in Mkn 501 might be caused by the orbital motion of the jet in
a close binary black hole system. The periodical behaviour may thus be
primarily considered as the result of an extrinsic cause. In applying a simple
toy-model it has been shown that the binary system may have a period of
~ (6 — 14) yrs and a centre-of-mass distance of ~ (2.0 — 3.5) x 10'° cm.
Several upper limits for binary black hole masses could be derived if one
assumes that the current separation roughly corresponds to the distance at
which gravitational radiation becomes important. This has been done in
Tables E.1], E.2 using an observed period of P, = 23 days for mass inflow
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rates M = 2 M, /yr (Tab. 1)) and M = 1 M /yr (Tab. 1.9).

The allowed mass ranges interestingly agree with expectations from merger
scenarios and recent suggestions for a binary system in Mkn 501 made by
Villata & Raiteri (1999). A direct determination for the mass of the central

li=1/y | 1/10 | 1/15 |
m [10% M) 0.13  (0.18) 0.81 (0.98)
M [108 M) .11 (0.92) 1.44  (1.31)
d [10° cm] 2.58  (2.48) 5.40 (5.43)
Py [yrs] 6.10 13.7
Tiige [107 yrs] 1.57  (1.30) 2.04 (1.86)
P, [10% yrs] 0.69 (0.59) 5.88  (6.05)

Table 4.1: Maximum allowed binary masses, binary separation d, intrinsic
orbital period Py, gravitational life‘gime Tiige and precessional period P, for

inclination angles ¢, accretion rate M = 2 M, /yr, i.e. tgas ~ ts, and spectral
index v = 1.2 (1.7).

object in spiral galaxies, has been done so far only in a few cases (e.g. M 31,
and our own galaxy). The results, however, indicate central masses which
do not exceed 10" M. A recent estimate from the innermost (< 100 pc)
kinematics of spirals yields upper limits on the black hole masses resident in
late-type spirals of M < 10° — 107 M, while the upper limits on early-type
(Sa) spirals are in the same range as those for ellipticals (Salucci et al. 2000).
This is quite compatible with our derived mass estimates.

Additionally, a recent estimate of the central black hole masses for gamma-
loud blazars, using luminosity constraints and variability time scales, results
in an expected black hole mass for Mkn 501 of 107 M, (Fan et al. 1999). This
result however has been derived by using a small Doppler factor of the order
of one and a doubling time scale of 6 h. Nevertheless, their mass estimate
[see, for example, their Eq. (4)] remains quite similar, i.e. m < 0.9 x 10" M,
if one uses a Doppler factor of ~ 15 and considers a time scale for variability
of less than 20 min, in accordance with recent measurements of optical micro-
variability in Mkn 501 (Ghosh et al. 2000). The very latest RXTE-results
concerning X-variability of Mkn 501 in 1998 on a time scale of less than 10
min (Catanese & Sambruna 2000) may provide further evidence for (high)
doppler boosting.

The TeV observations of Mkn 501 indicate that we may have N < 6 for
the number N of periodic oscillations (cf. Aharonian et al. 1999; Catanese
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li=1/v | 1/10 | 1/15 |
m [10° M) 0.07 (0.11) 0.52  (0.65)
M [10° M| 1.02  (0.82) 1.21  (1.09)
d [1016 cm)] 247 (2.34) 4.95 (4.95)
Py [yrs] 6.10 13.7
Tiige [107 yrs] 2.89  (2.32) 3.44  (3.09)
P, [10% yrs] 0.58  (0.47) 417 (4.17)

Table 4.2: The same quantities as in Tab. L1, but now using an accretion
rate M = 1 Mg /yr, i.e. tgas ~ 215 ~ 10® yrs.

& Weekes 1999; Quinn et al. 1999), which results in a required propagation
length for the emitting component of

l,=N Pyv, ~ 11 — 26 pc. (4.19)

Thus, for the projected length at the position of Mkn 501 one finds [, >~ 1.4 —
2.1 mas for the respective angles ¢ = (1/15)—(1/10) rad. Remarkably, the jet
of Mkn 501 bends dramatically at about 3 mas from the core (Marscher 1999;
see Fig. [.9). Hence, a change in the jet parameters might be the reason for
the termination of the observed periodicity.

For the proposed model to be valid, the jet has to be perfectly collimated with
an intrinsic opening angle of less then arctan(d/l,) ~ 0.05°. Such values are
indeed expected in scenarios for the formation and collimation of magnetized
BL Lac jets (cf. Camenzind & Krockenberger 1992; Appl & Camenzind 1993;
Schramm et al. 1993). At first sight however, such a cylindrical jet structure
seems to be at least ~ 20 times more collimated than the radio jet seen on
VLBA maps (cf. Marscher 1999). There is evidence though, for an at least
two-component jet structure in Mkn 501 suggesting an inner spine with a
transverse magnetic field and an envelope with a longitudinal magnetic field
(Aaron 1999; Marscher 1999). The polarization properties of the inner spine
strongly support shocked-jet models (cf. Attridge et al. 1999). The proposed
model requires in fact that the high energy emission originates in a chan-
nel along the jet axis as in two-fluid models (e.g. Sol et al. 1989, Roland et
al. 1994), the inner emission probably being self-absorbed on the VLBA scale.
Recent observations of radio jets indeed indicate a confinement of the higher
energy emission to a well-defined channel within a much more extended radio
emission (Bahcall et al. 1995; Perlman et al. 1999; Swain et al. 1998) giv-
ing credit to a central spine-shear layer morphology (cf. also Giovannini et
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P -2
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Figure 4.9: VLBA observations of Mkn 501 at 15 GHz in Au-
gust 15, 1997, taken from Marscher 1999. Contour levels are
—0.25,0.25, 0.5, 1, 2, 4, 8, 16, 32 and 64% of the peak intensity of
0.44 Jybeam™ while the scale of the polarization electric vectors is
0.0078 Jy beam ™! mas~!. The magnetic field is perpendicular to the jet near
the axis and parallel to the jet along the boundaries. A strong bend at about
3 mas from the core, which at a distance of 160 Mpc (for a Hubble constant
of 65kms~! Mpc™') corresponds to a length of ~ 2.3 pc (i.e. 1 mas ~ 0.78
pc), is clearly visible.

al. 1999). The unification of BL Lacs and Fanaroff-Riley (FR) I objects (see
sect. [.4) may add another piece of evidence to such a jet configuration: in
order to account for the observed spectral properties an at least two-fold jet
velocity structure seems to be required in which a fast spine is surrounded
by a slow (but still relativistic) layer (Chiaberge et al. 2000). Support for
such a possibility is now positively provided by numerical jet simulations (cf.
Aloy et al. 2000; Frank et al. 2000).

If the observed periodical flux variability results primarily from doppler
boosting, the relative amplitude depends on the spectral index [e.g.
Eq. (B.2)]. Hence, for a TeV flux ratio between minimum and maximum
of ~ 8, the X-ray flux ratio should be ~ (5 — 7) applying a hard X-ray spec-
tral index o ~ 0.6 — 0.9 (cf. Lamer & Wagner 1998; Pian et al. 1998) and
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the corresponding shift in the break frequency (i.e. Avy,s = A v) should
be given by a factor of ~ (1.5 — 1.6). Such values seem to be consistent
with observations made by the BeppoSAX X-ray astronomy satellite (Pian
et al. 1998) and may also be recovered, using a broken power law fit, in
RXTE observations of Mkn 501 (cf. Krawczynski et al. 2000, their Figs. 1
and 2a). Gamma-ray observations carried out by the Cherenkov Array at
Themis (CAT) imaging telescope, also reveal a shift of the maximum peak
energy apparently in accordance with the expectation above (Djannati-Atai
et al. 1999). Small changes in the maximum electron Lorentz factor or the
magnetic field along the trajectory of the emission region may further add
to flux variations. If there is indeed an additional flux contribution, e.g.
low energy emission from the layer, a stationary component comparable to
the observed infrared-optical flux (e.g. Pian et al. 1998; cf. also Kataoka
et al. 1999) or an additional component responsible for the soft X-ray emis-
sion (e.g. Lamer & Wagner 1998; Wagner et al. 1999), the amplitude of the
Doppler modulation may decrease to lower frequencies.

In the above presentation, an influence of jet precession due to gravitomag-
netic and geodetic origin (e.g. Thorne et al. 1986) has not been consid-
ered so far. For the geodetic precession due to the gravitational field of
the companion M we have Qg = 3G M?*Q/[2(m + M) c*d] while the
gravitomagnetic precession due to the motion of the companion is given by
Qem =2Gm M Q. /[(m + M) ¢*d], with Q, the keplerian angular frequency
and d the separation. Thus, the total precessional angular frequency €2, may

be written as

3m+p) G
Qp = Qgeo + ng - (QTIL) g Qk 5 (420)

where p denotes the reduced mass. Hence, using appropriate values, the total
precessional period is determined by

2m 5/2 1/2 1 1 1
P, =21 ~ 580 x d*% (M, St s (4921
"7 Q, X dyg (M +ms) ms My (1+ 3M/4m) > (4.21)

Since this driving period is much larger than the orbital period (cf. Ta-
ble .1, f.9), a precessional modulation should be negligible during a few
revolutions. Interestingly, a precessional period of ~ 10* yrs agrees with the
driving frequency found by Conway & Wrobel (1995) in order to explain the
misalignment of the radio jet in Mkn 501 on parsec and kiloparsec scale (see
also Villata & Raiteri 1999).

If the binary hypothesis is correct, the observable period should remain sim-
ilar during different outburst phases unless there is a change in the general
jet properties. For example, an increase in the observed period should then
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be accompanied by a decrease in the bulk Lorentz factor or, on larger time
scales, by an increase of the inclination angle due to the jet precession [cf.

also Eq. 1.7



Chapter 5

Summary

There is increasing observational and theoretical evidence for jet rotation
in AGN. In this thesis we have considered the effects of jet rotation by
dividing them into intrinsic and extrinsic caused phenomena. The former
ones have been related to rotation of matter inside the jet while the latter
ones describe the rotation of the whole jet due to an external cause (e.g. in
a binary system).

In the first part the centrifugal acceleration of particles at the base of an
(intrinsically) rotating jet magnetosphere has been considered. In MHD
scenarios such rotating magnetospheres are usually regarded as the essential
ingredient required to produce relativistic outflow velocities and to account
for the observed well-collimated jets. Following a test particle approach,
the equation for the radial acceleration has been derived and solved using
analytical methods. We have found that for particles moving outwards
along rotating magnetic field lines, the energy gain is limited in particular
by the breakdown of the bead-on-the-wire approximation which occurs in
the vicinity of the light cylinder ;. This has not been taken into account
up to now. The corresponding upper limit for the maximum Lorentz factor
Ymax for electrons scales oc B%/3 Ti/ 3, with B the magnetic field strength at
r1,, and is at most of an order of 10?2 — 10® for the conditions regarded to be
typical for BL Lac objects. Additionally it has been found, that inclusion
of inverse-Compton losses in a disk radiation field which approaches the
Eddington limit results in a decreasing upper bound for the maximum
Lorentz factor. Our results show that centrifugal acceleration may provide
pre-accelerated particles which are required for efficient Fermi-type particle
acceleration mechanisms on larger scales in radio-jets. It has been further
pointed out that inverse-Compton scattering of accretion disk photons
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by centrifugally accelerated electrons may be of particular relevance by
contributing to the observed 10 — 100 keV X-ray humps in AGN typically
attributed to Compton reflection.

The study of particle acceleration has then been extended in the second part.
Following previous work by Webb (1989) and Webb, Jokipii & Morfill (1994),
but incorporating velocity profiles more relevant to AGN jets, steady state
solutions of the kinetic equation describing the transport of energetic
particles in a collisionless, (intrinsically) rotating background flow have been
investigated. Our analysis utilizes a simple version of the (mixed-frame)
relativistic transport equation derived in the diffusion approximation. For
this approximation to be valid, the scattering of energetic particles by
magnetic field irregularities carried in the background flow is required to
occur rapidly enough to allow for nearly isotropy of the particle distribution
in the comoving fluid frame.

By considering rigid and keplerian rotation profiles, Green’s solutions for
the (comoving) steady-state distribution f(r,p’) are derived in a basic jet
model where the plasma moves along the jet axis at relativistic v, while
the velocity component in the azimuthal direction is purely azimuthal
and characterized by its angular frequency (). Particle acceleration then
generally occurs as a consequence of centrifugal and/or shear effects. In the
special case of rigid rotation, shearing in the background flow is absent and
energy changes are due solely to the centrifugal force. Hence the energy gain
is found to be analogous to that in the bead-on-the-wire approach presented
in part 1. Additionally, the acceleration efficiency is shown to be essentially
dependent on the form of the diffusion coefficient. If one considers for
example, a simple momentum-dependence for the mean time interval 7.
between collisions, i.e. 7. o p®, the efficiency is enhanced for o < 0 and
reduced for a > 0. In the case of keplerian rotation on the other hand, both
shear and centrifugal effects are present and the transport equation becomes
quite more complex. However, for non-relativistic rotation where the shear
effects eventually dominate, solutions of the transport equation have been
found using analytical techniques which are likely to be appropriate for
keplerian flows in the outermost part of the jet. Most interestingly, a
powerlaw-type particle momentum spectrum fo(r, p’) oc p’~3t®) is recovered
in the case where the collision time (only) depends on momentum as
Te x p®, with a > 0, in agreement with the results derived by Berezkho &
Krymskii (1981). Besides providing the possibility for a detailed inclusion
of centrifugal effects, the derivation presented here has the additional
advantage to allow of a radial dependence of the scattering time 7. which
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could result in a slightly steepening of the momentum distribution (if 7. is a
decreasing function of the radial distance from the jet axis).

It is pointed out that the acceleration of particles by rotating and shearing
jet flows could thus be of important relevance for the interpretation of
powerlaw-like high energy spectra. This seems particularly interesting in
view of recent observational evidence for extended acceleration processes in
AGN jets (e.g. in the optical jet of 3C273).

Occasionally, observational evidence for intrinsic jet rotation, i.e. for rota-
tion of material inside the jet, seems not unambiguous. For, the rotation of
jets due to an extrinsic cause, e.g. the precession of a jet due to the grav-
itational torque or the rotation of a jet in a binary system, might result in
a similar observational effect. Modelling of intrinsic and and extrinsic jet
rotation might thus be important in order to discern the real cause. As an
illustrative example thus, the extrinsic caused jet rotation in a binary black
hole system has been investigated in the last part of this thesis. It is shown
that the observed TeV and X-ray periodicity of ~ 23 days, measured during
a flaring state in the BL Lac object Mkn 501, could be basically interpreted
as a doppler-shifted flux modulation due to the orbital motion of the rela-
tivistic jet. Using typical jet properties inferred from emission models, we
find an intrinsic orbital period of (6 — 14) yrs and a centre-of-mass distance
of (2 —3.5) x 10'® cm. These results indicate a binary system which is very
close. Upper limits on the allowed binary masses have been derived assuming
the binary separation to be of an order for which gravitational radiation be-
comes dominant. We find a primary mass of ~ 108 M and a corresponding
maximum allowed secondary mass in the range of ~ (1 —9) x 10" My, if gas
accretion occurs on around the salpeter time scale. The derived mass ranges
interestingly agree with the expectations from merger scenarios. Further ob-
servational evidences and implications have been disussed. If confirmed by
further observations, Mkn 501 will be the first object where v-ray astronomy
notedly contributes to the increasing evidence for binary black hole systems.
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Appendix A

On the Hamiltonian for a bead
on a rigidly rotating wire

A.1 Non-relativistic limit

We may gain some insights into the physical comprehension of centrifugal
acceleration by first considering the motion of a bead on a rigidly rotating
wire in the non-relativistic limit. Let mg be the mass of a bead on a wire
where the wire rotates rigidly with uniform angular velocity €2 in the x —
y—plane. Then there are two constraints on the particle motion, first, a
so-called “holonomic-scleronomic” (i.e. z = 0) and secondly, a so-called
“holonomic-rheonomic” constraint (time-dependent, y = x tanQt). Hence,

y A

m
r

o) i

one may describe the motion of the bead by one generalised co-ordinate, an
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appropriate choice being the co-ordinate r. The Lagrangian L for the bead
is given by the kinetic energy term 7'

1 :
L=T-= 5 Mo (7% + Q%) . (A.1)

Since L is not explicitly time-dependent (i.e. 0L/0t = 0), Noether’s the-
orem implies, that the Hamiltonian H is a constant of motion. Using the
generalised momentum P

the Hamiltonian is given by
1
H=iP—L=zmy (% —r*Q?) . (A.3)

To be sure, this Hamiltonian is not identical with the overall energy of the
bead in the inertial, non-rotating reference frame [cf. Eq. (AJ])]. In contrast
to Newtonian mechanics, constraint forces are eliminated in Lagrangian me-
chanics (cf. d’Alembert’s principle). Thus, the work actually done by a
constraint force will not appear in the Hamiltonian. Although this does not
make any difference for scleronomic constraints, it does for rheonomic con-
straints. Hence the homogeneity of time only implies conservation of the
overall energy for holonomic-scleronomic, conservative systems. Taking the
difference of Eq. (A.3) and Eq. (A1) one gets H — L = —mg Q% r?, which is
two times the centrifugal potential energy. Accordingly, the Hamiltonian H
may be interpreted as the conserved energy of the bead in the noninertial,
rigidly rotating frame of reference. The rotation then simply adds a centrifu-
gal potential energy term —0.5mg Q2 r? to the kinetic energy in the rotating
frame 0.5mg 2. Changing from the inertial reference frame K at rest to the
noninertial, rigidly rotating reference frame K’, the energy of the bead is
not the same but consequently transforms like (see also Landau & Lifshitz,
p.128)

E' =E—Q*r*, (A.4)

where E’ denotes the energy in K’ and F = T the energy in K.

A.2 Relativistic case

Consider now the case of a relativistically moving wire. Using the principle
of least action, the Lagrangian of the bead with rest mass my may be written
as

L=—myc®\/1—Q2r2/c2 —52/c2, (A.5)
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where the action integral is defined by

b ty
I'=—mgyc / ds = / Ldt, (A.6)
a ta

with ds? being the line element and where for an arbitrary but chosen inertial
reference frame ds = cdr = /1 —42/c?dt with ¢ = dZ/dt. Here, the
Lagrangian is not identical with the energy of the bead in the inertial frame
K which, using cylindrical co-ordinates, is given by the zero component of
the four momentum (multiplied by c¢)

1
\/1 —02r2/2 — 2/ ’

and metric (g, g) = diag(—1,1,7%,1). By using Eq. (A.5), the generalised
momentum P may be written as
oL mo r

P:—,: .
o JT—Q2r2]2 —2]c2

(p*) =ymo (¢, 7,Q,0) with =

(A7)

(A.8)

Now, since L is not explicitly time-dependent, the Hamiltonian H is a con-
stant of motion (cf. Noether’s theorem)

21 _O2,2/.2
HeiP_I— moc? (1 —Q%r?/c?)
V1—Q2r2/c —i2/c2

= const. (A.9)

For an interpretation of this expression, let us consider the transformation of
the particle four momentum from the laboratory frame K to a local Lorentz
frame K’ moving with the rotating wire (which is not identical with the
comoving frame of the particle). Transformations from one Lorentz frame
to another are given by V'® = A4 V? with (A$) the relevant Lorentz matrix.
For a general representation one has A = —u,/c, where u, denotes the
covariant components of the four velocity of wire in the laboratory frame K.
Hence, one immediately arrives at the following transformation for the zero
component of the (contravariant) four momentum

plo = —pa ua/C with Uq = N1 (—C, 07 Q 7"2, O) ) (AlO)

where the normalization is given by v = 1/4/1 —Q%7r2/c2. Eq. (),
multiplied by ¢, may be identified with the energy of the bead in the comoving
frame K’, where the energy is given as a function of quantities measured in
the laboratory frame. Using Eq. ([A.7) one easily finds

) \/ﬁ
0 1—-02r2/c (A1)

=mgcC )
b 0 \/1—927“2/02—7'“2/02
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Thus, the Hamiltonian could be written as
H=7p"/y. (A.12)

Here, the additional gamma factor ~; takes into account that time is mea-
sured in the laboratory frame K (where dr = /1 — Q?7r2/c2dt). However,
if we transform to the momentary rest frame of the rotating wire (where
dr = dt), this additional gamma factor vanishes. Hence, in analogy to non-
relativistic mechanics, the Hamiltonian H may be interpreted as the energy
of the bead in the momentary rest frame of the rotating wire (cf. Machabeli
& Rogava 1994). Then, for small velocities H reduces to

1 1
H:m002+§m0f2—§m0§22r2, (A.13)

which (neglecting a rest mass energy term) is indeed the same as Eq. (A.3).



Appendix B

Derivation of the
non-relativistic diffusive
particle transport equation

By following the work of Earl, Jokipii and Morfill 1988, we derive in this
appendix the equation for the transport of energetic particles in a non-
relativistic, collisionless plasma background flow which explicitly includes
for example, energy changes due to the flow shear. In the course of this
analysis the background plasma is treated as collisionless (i.e. mutual inter-
actions amongst the particles are neglected) while the energetic particles are
assumed to be scattered and driven near to isotropy by small-scale magnetic
field irregularities carried in the background flow. The simple derivation
presented here utilizes the comoving particle momentum and may thus give
insights into the use of a mixed-frame transport equation providing a valu-
able background for the (quite more extensive) relativistic treatment.

Now, denote by p'= mw, m being the relativistic particle mass, the particle
momentum in the laboratory frame (the lab. frame) where the background
plasma is in motion with velocity u;. The time-evolution of the phase-space
particle distribution function in the lab. frame is governed by the Boltzmann

equation
of of of _ (of
8t+w18xi+FZ8pi_<8t . (B.1)

where f = f(Z,p,t) denotes the particle distribution function, F; is the
external force and the term on the right hand side describes the scattering
by magnetic field irregularities.

Since the electric field vanishes in the plasma rest frame (i.e. the comoving
frame), the magnitude of the particle momentum is conserved in that frame
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and thus, in a first approach the scattering in the comoving frame may be
modelled using a simple BKG-type collision term of the form

(5r). ~ =<t (B2)

where the relaxation time 7 could be a function of momentum. As one would
like to keep this simple form of the scattering operator, it proves useful to use
a mixed system of phase-space coordinates in Eq. (B.]) such that quantities
which are operated upon the scattering operator, i.e. the momentum, are
evaluated in the comoving frame while the time and space coordinates are
still measured in the lab. frame (for details see, for example Kirk, Melrose,
Priest 1994, p. 248):

Now, for non-relativistic flow speeds the components p; of the particle mo-
mentum in the plasma rest frame (i.e. the comoving frame) are related to
those in the lab. frame by a simple Galilean transformation

/
pi=muw; =p; +mau;.

Hence, to the lowest order the space derivative transforms in detail like

(UER0Y (W(f,ﬁ,t))ﬁ(a_p})ﬂw B3)

Ox; 7 Oz, ox; 0p9
@AY 0w Of(E 7Y
(9@- 8% 8p§ ’

where (0f /0x;); means a derivative at constant p. A similar transformation
holds for the time-derivative. Substituting these expressions in Eq. (B.1]), we
obtain the following equation

/
L (D) () o) - ),
ot m ) Ox; ot Oz, 7 0x; | Op) ot ) 4
(B.4)
Consider now the case in which the external force vanishes (F; = 0). In
the diffusion approximation, which is applied here, the distribution func-
tion is assumed to be almost isotropic, the departure from isotropy being
small. Thus the distribution function may be written as f = fy + f1, with
fo = fo(Z,p',t) being the isotropic and f; being the anisotropic part of the
distribution function, i.e. < f >= fy and < f; >= 0 when averaged over
solid angle. By inserting this approximation in Eq. (B.4) and averaging over
solid angle we arrive at

% 4 uafo i p_’zafl —m 8uz i u@uz 8f1
ot "Ox; m Ox; ot T Ox; op!

7
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8“1‘ /afO /afl .
O <<pj 3p2> i <pj p; >> - (B.5)

For this diffusion approximation to be valid, one requires the phase, space and
time derivatives of f; being small compared to the corresponding derivatives
of fo. Hence, by subtracting Eq. (B.5) from Eq. (B.4), the anisotropic part
f1 of the distribution function may be approximated in terms of f

o (P00 Ouy, Oux| p Ofo
fl_T( m@xk+m [82& T Ox; | p' Op

Oug pl, Ofo  Oux _ , ,  10f
Uk Pr OJo _ 9tk ~9Jo B.
o (pl oz, p Oy 0x, Ty ) (B6)
where we have used the relation Jfy/dp, = (9p'/0p,)0fo/0p" =

(Pk/P") 8fo/0p'.
If we insert Eq. (B.G) into Eq. (B-), we get the full non-relativistic transport
equation. Note, that averaging over solid angle yields the following relations

<pi> =0
1
<pip;> = gp/25ij
<pfpl> = 0forat+b=3
1
<ppf> = gyt fori]
1
<pit> = gp'4 (B.7)

which may be easily verified by using spherical coordinates (¢ for the Colat-
itude, @ for the azimuth) and the definition of solid angle Q = [ sin ¢ d¢ df
equal to 4 7 if integrated over all space.

Neglecting in Eq. (B.f) all terms which are proportional to (Ou;/0t)(0u;/0t),
w;(0u;/0x;)(0u; /0t) and w;(Ou;/Ox;) w(Ou;/Ox;) we arrive at:

% i u'%_laui/afO_i< RS anO
ot "Or; 3 8x¢p ap)  m? Pi Py Ox;0xy,
[ O%up  Ouy Ouy O*uy, | < pipl, >0fo
+ 7 +
| 0t0x;  Ox; Oxy 0x,;0x; P’ op’

[Ou <piph > 02
+ 7 _k_|_ul% D;i Py fO
| Ot ) p Opox;
[ Ou,; 0 0 <pip. > 0? <pp. >0
o [ By, T fo ik fo | <wink> O
| Ot Oz, 0x; P’ Oz 0p’ P’ oy,
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Qu; <p;py > Oup 0fy  Ou; <Pjp; > Ou; fo
T —_—

oz P’ ox; Op Oz, P’ ox; Op'

OQu; Quy <D;DIDiPy > Ofy  Ou; Ouy < P;pIPip), > 0 fy

T Oz; Ox; p'3 o 4 Oz; Ox; p'3 op’?
1 0uz 8uk < p; p; > 8f0 1 8uz auk ' 82f0
+ 57 =T — <p;p; >
3 Oz; Oxy e op 3 Oz; Oxy J op’?
ot Ou; Ouy, <p; p;p;p% > 8f0 1 01 Ou; Ouy, A 8f0 —0
op' dxj Ox 2 dp’ 3 0p dx;j Oy, Pil; op
(B.8)
Using the relations for the mean values above [e.g. Eq. (B.1)], especially:
8ui aUk ’ auz auz AN AW
—F <y > = < ol >
o, Oz P D1 P; Py Oz O Dy Py, Pi Di
8ui 8uk I,
— < >
Ou; Ouy PP
< : ;> B.9
t Due 9, < PRPiPkD (B.9)

and collecting the appropriate terms together, the full non-relativistic
transport equation may be written in the following form:

O 0f _ P Owdf_ 0 (7”0
ot " Ox; 3 Jx; Op)  Ox; \ 3 m? Ox;
27 A 9 fo N 1 0(rp”) A d fo
3 ox;0p  3p? Op ox;

r o 14 0f0 pl a(TAl) afo
- 2 — =0 B.10
p’? op/ (Tp ap’ ) + 3 Ox; Op ( )
where the new quantities are defined by:
ou; Ju;
A== : B.11
T " (B.11)
and )
1 [Ou;  Ouy 2 Ou; Ouy,
= — - — —. B.12
30 <8xk + axi) 45 Ox,; Oxy, ( )

In the special case of quasi-steady flows, the first term on the right hand side
of Eq. (B:I1) might be neglected. In addition, for non-relativistic flow speeds
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we have p?/m? ~ w?. Inserting these results, Eq. (B.10) reduces to Eq. (6)
given in Earl, Jokipii and Morfill 1988. As already stated by Earl et al., the
second, third and fourth term in Eq. (B.I() describe the well-known effects
of convection, adiabatic energy change and diffusion. The terms involving
A; describe the effects of inertial drifts while the term involving I' includes
energy changes due to the shear and the divergence of the flow and might be
related to the viscosity of the background flow.

It should be noted that the present derivation did not consider the influence
of an average background magnetic field on the particle transport. As was
shown by Williams and Jokipii 1991, the inclusion of a magnetic field may
lead both to an anisotropic viscosity and a reduction of the magnitude of the
isotropic viscosity.
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