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Abstract

Das Anderson-Störstellen-Modell ist ein generisches Modell, um Systeme zu beschreiben,

in denen ein oder mehrere Energieniveaus an ein elektronisches Bad gekoppelt sind. Auf

den Energieniveaus unterliegen die Elektronen einer Coulombwechselwirkung. Mögliche

Anwendungsgebiete dieses Modells sind magnetische Atome in Metallen oder Systeme

bestehend aus Quantenpunkten. Dieses Modell zeigt bereits für eine Störstelle interes-

sante physikalische Eigenschaften, insbesondere den wohlbekannten Kondoeffekt. Bei zwei

und mehr Störstellen werden die Eigenschaften des Systems im Bereich lokaler magne-

tischer Momente durch ein Zusammenspiel von Kondoeffect und einer Kopplung der Spins

auf den Störstellen bestimmt. Wegen des Zusammenspiels verschiedener Energieskalen

stellt dieses Modell ein echtes Problem für jede mathematische Behandlung dar. Im

Falle einer einzelnen Störstelle kann das Modell sehr effektiv mit Wilsons numerischer

Renormierungsgruppe (NRG) behandelt werden. Da der numerische Aufwand der NRG

exponentiell mit der Zahl der Störstellen steigt, kann sie im Allgemeinen nicht auf Sys-

teme mit mehr als zwei Störstellen angewandt werden.

Die funktionale Renormierungsgruppe (fRG) ist in der Vergangenheit sehr erfolgreich

auf Quanten-Störstellenprobleme angewandt worden [16]. In dieser Arbeit wird sie ver-

wendet, um die Einteilchendynamik für Anderson-artige Quanten-Störstellensysteme im

Gleichgewicht zu berechnen. Ein Vergleich mit der NRG im Fall einer Störstelle wird als

Maßstab dienen, bevor Systeme mit zwei Störstellen und Quantenpunktsysteme mit zwei

und drei Quantenpunkten untersucht werden. Das Zusammenspiel zwischen Kondoeffekt

und magnetischer und orbitaler Ordnung wird in diesen Systemen untersucht werden.

Obwohl die Abschneidevorschrift in dem hier verwendeten fRG-Schema durch Störungs-

theorie in zweiter Ordnung motiviert ist, liefert die fRG auch in den Fällen gute Resultate,

in denen die Störungstheorie versagt. Im Allgemeinen wird sich zeigen, daß die fRG in

der Lage ist, eine große Zahl verschiedener Anderson-Störstellen-Systeme zu behandeln,

inklusive solcher mit asymmetrischen Energieniveaus und einer Wechselwirkung zwischen

den Störstellen.



Abstract

The Anderson Impurity Model is a generic model to describe systems in which one or

more energy levels are coupled to an electronic host. On the energy levels the electrons

are subject to a Coulomb interaction. Possible applications of this model are magnetic

atoms in a metal or quantum dot systems. Already for one impurity it displays very

interesting physics including the well known Kondo effect. For two and more impurities

the properties of the system in the local moment regime are determined by an interplay

of the Kondo effect and the coupling between the impurity spins. Due to the interplay

of multiple energy scales, this model poses a serious task for any computational tool.

For a single impurity the model can be very efficiently treated using Wilson’s numerical

renormalization group (NRG). Since the numerical effort of NRG calculations rises expo-

nentially with the number of impurities, generically it cannot be applied to systems with

more than two impurities.

The functional renormalization group (fRG) has been very successfully applied to quan-

tum impurity problems in the past [16]. In this work it will be used to calculate the

single-particle dynamics for Anderson-like quantum impurity systems in equilibrium. A

comparison to NRG in the case of a single impurity will serve as a benchmark before

systems with two impurities and quantum dot systems with two and three dots will be

studied. The interplay between the Kondo effect and magnetic and orbital ordering will

be investigated in these systems. Although the truncation in the presented fRG scheme

is motivated by second order perturbation theory, it will be shown that fRG works also in

those cases where perturbation theory fails. Generally it will turn out that fRG is capa-

ble of treating a broad variety of Anderson impurity systems within the same framework,

including asymmetric impurity levels and interaction between multiple impurities.
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Chapter 1

Introduction

Almost all quantum many-body systems pose a considerable task to any theoretical

method as soon as interaction comes into play. A huge variety of methods has been

developed to calculate the properties of these systems. But although there are so many

methods available, none of them can be used as a universal tool for all systems and for all

applications. Especially perturbative methods can usually only focus on a specific energy

window. This can either lead to divergences or to a lack of accuracy since multiple energy

scales play an important role in the system under consideration. A general scheme, that

has been very successfully applied to various quantum many-body problems in the past,

is the renormalization group (RG) [1]. The idea behind this is to integrate out degrees of

freedom in the high-energy region, avoiding infrared divergences and finally approaching

the low energy region. The precise way of doing so depends on the specific system under

investigation. In this work a RG scheme is used that has become known as functional

Renormalization Group (fRG) [2]-[7]. It has successfully been applied to quite a number

of many-body systems in the recent years [8]-[16].

In the systems that are investigated in this work the interaction is restricted locally. In

this sense, they can all be considered as zero-dimensional interacting systems. They are

all described by an Anderson-like Hamiltonian. That means that they consist of one or

more energy levels, which are referred to as impurities, that are coupled to a bath of non-

interacting electrons. The electrons from the bath can hop onto the impurities, where

they will be subject to a Coulomb repulsion. This kind of models describes a rather gen-

eral quantum impurity situation. Experimentally such a situation can be found when an

atom with a partially unoccupied d− or f−orbital is deposited in or on a metallic host,
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like Cr−atoms on Au [64]. Another situation, that can be described by such a model, is

a quantum dot structure, where electrons can hop in and out of the dot, while interacting

only on the dot (charging effects).

Such systems of only locally interacting electrons seem to be very simple on first sight, but

they display very rich physics and have all ingredients to pose a real quantum many-body

problem. Their behaviour is governed by the interplay of different energy scales. With

only a single impurity the model is called ’Single Impurity Anderson Model’ (SIAM) and

was suggested by Anderson in 1961 [19]. For large interaction strengths it can be mapped

to the Kondo model by a Schrieffer-Wolff-transformation [20]. The Kondo model was

suggested by J. Kondo in 1964 to describe anomalous behaviour of the resistivity at low

temperatures [21]. This behaviour has been traced back to a magnetic moment of the

impurity that is locally screened by the conduction electrons. It took until the seventies

that Wilson’s Numerical Renormalization Group (NRG) allowed to solve these models at

least numerically [23].

For more than one impurity the situation is even more complex. If two or more impurity

levels are coupled to the same host, an indirect interaction comes into play. This so-called

RKKY-interaction leads to a coupling of the spins on the different impurity levels. Es-

pecially in the case of two impurities the question arises, whether individual magnetic

moments survive and are Kondo screened or if both impurities form a singlet state.

Wilson’s NRG is still the best tool to solve Anderson impurity systems. Unfortunately,

the numerical effort rises exponentially with the number of correlated degrees of freedom

in the model. A system with two impurities is treatable with NRG, generally a system

with three impurities is already too complex. The structure of the functional RG used

here is such that the numerical effort of this method does not rise exponentially but only

with a power-law at worst. To be more precise, the numerical effort is directly related

to the number of diagrams needed to perturbatively calculate the self-energy and the

two-particle vertex function. This allows more complex systems to be investigated. It is

possible to examine systems with one, two and three impurities. This work will focus on

dynamical one-particle properties as the self-energy and the impurity spectral function

but some static observables will be calculated as well. Only systems in equilibrium and

at T = 0 will be studied.

First a brief derivation of the functional RG scheme used in this work will be given. The

method used here has a field theoretical basis, using a generating functional for the parti-

tion function of the studied system. After introducing a cut-off into the free propagator,
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an exact infinite hierarchy of flow equations will be derived. Here a scheme using one-

particle irreducible vertex-function will be employed. For practical use the hierarchy will

be truncated such that only an equation for the self-energy and for the two-particle vertex

will remain. In this approximation these equations will be the basis for all functional RG

calculation in the following chapters. The resulting self-energy will allow for the calcula-

tion for the single-particle dynamics of the quantum impurity systems.

In the next chapter the functional RG is applied to the Single Impurity Anderson Model.

The model will be presented in some detail and flow equations for the self-energy and for

the two-particle vertex will be derived for this special model. In the particle-hole sym-

metric case the self-energy and impurity spectral function will be presented and compared

to the one computed with second order perturbation theory in the interaction strength

and with NRG. Compared to perturbation theory, the result from fRG calculations will

turn out to be a clear improvement in the low energy region. In the asymmetric case the

occupancy of the impurity level will be calculated in addition to the dynamical properties

mentioned before. A calculation of the impurity static spin susceptibility is presented. It

will be shown that the fRG can be used to obtain reliable data as long as the interaction

strength does not get too large. It will turn out that while the perturbative result is satis-

fying only in the symmetric case the fRG calculations work equally well in both cases. At

the end of this chapter further approximation schemes motivated by perturbation theory

will be discussed. Especially one scheme will be presented that combines most of the

benefits with a largely reduced numerical effort.

Chapter 4 will deal with the two impurity Anderson model. Two different electronic hosts

will be studied. In the first case the two impurities are coupled to a single non-interacting

one-dimensional tight-binding chain. It will turn out that the fRG scheme works as well as

in the one impurity case. The self-energy and impurity spectral function will be presented

and analyzed. It will be shown that the coupling between the impurities always leads to a

splitting of the Kondo resonance in the spectral function. A phase where both impurities

are individually Kondo screened cannot be found. Using a 3d free electron gas as elec-

tronic host, the situation changes dramatically. The correlation effects decay quickly and

for a sufficiently large inter-impurity distance, the system displays an individual Kondo

screening of the two impurity spins.

In chapter 5 the single particle dynamics for quantum dot systems will be presented. First

the SU(N)-symmetric SIAM will be studied to analyze the ability of fRG to describe the

effects of an inter-dot interaction. The first quantum dot setup studied is a linear double
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quantum dot. Depending on the strength of the hopping parameter, the system can be

in three different phases. Spectral function for all three phases will be presented and

analyzed. Additionally the effects of an external gate voltage and an inter-dot interaction

are studied. The second quantum dot system is a linear triple quantum dot. Like the

double quantum dot before, the properties of the system depend strongly on the hopping

parameter. Up to now this system has only been analyzed by calculating static properties.

Here, the spectral functions will be presented and analyzed. Finally a Y-shaped triple

quantum dot will be studied. In addition to the dependence on the hopping parameter t

an additional hopping between the outer dots will be introduced and the resulting frus-

tration effects will be studied.

Chapter 6 will present a conclusion and an outlook.
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Chapter 2

The Functional Renormalization

Group

In this section a short derivation of the flow equations used to calculate the one-particle

dynamics of various quantum impurity models is given. The method used here is based on

a field theoretical approach that uses a generating functional for the partition functions of

the investigated system. Using this generating functional, an infinite hierarchy of coupled

differential equations is derived.

In the past various versions of such functional renormalization group (fRG) schemes have

been discussed. In the Polchinski scheme [2] one uses amputated connected Green func-

tions. In other schemes the amputated connected Green functions are expanded in terms

of one-particle irreducible (1PI) vertex functions [3],[4],[5] or the generating functional is

expanded by Wick ordered polynomials [6]. It should be noted that all these schemes are

exact in all orders perturbation theory and thereby equivalent as long as treated exactly.

But for practical use the infinite hierarchy of flow equations has to be truncated in some

way. After that, the results do depend on the choice of the scheme.

In the following a set of flow equations for the 1PI vertex functions is derived by intro-

ducing a frequency cut-off into the free propagator. It follows the steps presented in [29].

More theoretical details on renormalization group methods in general can be found in [7].
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2.1 The generating functional

The starting point of the derivation is the functional integral representation of the grand

canonical partition function of the quantum mechanical system under consideration [17].

Z
Z0

=
1

Z0

∫

Dψ̄ψ exp
{

(ψ̄,
[
G0
]−1

ψ) − Sint

(
{ψ̄}, {ψ}

)}

, (2.1)

where

Sint

(
{ψ̄}, {ψ}

)
=

1

4

∑

k′

1
,k′

2
,k1,k2

v̄k′

1
,k′

2
,k1,k2

ψ̄k′

1
ψ̄k′

2
ψk2

ψk1
(2.2)

describes the two-particle interaction and Z0 corresponds to the non-interacting system.

In this work only fermionic systems are of interest, so ψ and ψ̄ are Grassman fields. The

multi-indices k
(′)
j generally stand for a set of quantum numbers in a one-particle basis

and a Matsubara frequency. In this work it will usually be a spin index, a Matsubara

frequency and an impurity number in the case of multiple impurities. The short notation

(

ψ̄,
[
G0
]−1

ψ
)

=
∑

k,k′

ψ̄k

[
G0
]−1

k,k′
ψk′ (2.3)

was used, where G0 is the propagator of the non-interacting system. The antisymmetrized

two-particle interaction is described by v̄k1′,k2′;k1,k2 including a factor δω′

1
+ω′

2
,ω1+ω2

to ensure

energy conservation.

For the m−particle Green function the generating functional then is given by

W ({η̄}, {η}) =
1

Z0

∫

Dψ̄ψ exp
{(

ψ̄,
[
G0
]−1

ψ
)

− Sint({ψ̄}, {ψ})

−
(
ψ̄, η

)
− (η̄, ψ)

}
. (2.4)

Taking the logarithm of W, one obtains the generating functional for the connected

m−particle Green functions Wc, which can be calculated by derivation with respect to

the external fields. Performing a Legendre transformation,

Γ
(
{φ̄}, {φ}

)
= −Wc ({η̄}, {η}) −

(
φ̄, η
)
− (η̄, φ) +

(

φ̄,
[
G0
]−1

φ
)

, (2.5)
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the generating functional of the 1PI vertex functions is obtained. They are calculated

according to

γm (k′1, . . . , k
′
m; k1, . . . , km) =

δm

δφ̄k′

1
. . . δφ̄k′

m

δm

δφkm
. . . δφk1

Γ
(
{φ̄}, {φ}

)

∣
∣
∣
∣
∣
φ=0=φ̄

. (2.6)

In contrast to the usual definition of Γ, the last term in eq.(2.5) has been added for

convenience. The relation between the 1PI vertex function and the other Green functions

can be found in various text books, e.g. [17].

The interacting part of the grand canonical potential can be calculated directly from the

0-particle vertex according to

Ω = −T lnZ = Tγ0 − Ω0 , (2.7)

where Ω0 is the grand canonical potential for the non-interacting case. The 1-particle

Green function can be calculated from

G1(k
′; k) = Gc

1(k
′; k) = Gk′,k =

[

γ1 +
[
G0
]−1
]−1

k′,k
(2.8)

with the self-energy Σ = −γ1. The 2-particle vertex can be interpreted as an effective

interaction.

2.2 A flow equation for ΓΛ

The next step on the way to the flow equations is the introduction of a cut-off Λ into the

non-interacting propagator. The new cut-off dependent progagator G0,Λ will replace G0 in

eq.(2.1) and eq.(2.4). Z0 will be replaced by Z0,Λ, which is calculated using G0,Λ instead

of G0. The cut-off has to satisfy the boundary conditions

G0,Λ0 = 0 , G0,Λ=0 = G0 . (2.9)

This means, at the starting point of the flow Λ0 all degrees of freedom are ’frozen out’

and become turned on as Λ approaches 0. For Λ = 0 the original problem is recovered. In

this work generally a sharp Matsubara frequency cut-off will be used. That means G0,Λ
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is of the form

G0,Λ = Θ (|ω| − Λ)G0 (2.10)

with Λ0 → ∞. By this replacement the quantities defined in eq.(2.1) to eq.(2.6) become

dependent of Λ.

To finally derive flow equations for the generating functional one differentiates Wc,Λ with

respect to Λ. Introducing

QΛ =
d

dΛ

[
G0,Λ

]−1
, (2.11)

this yields

d

dΛ
Wc,Λ = − Tr

(
QΛG0,Λ

)
+ Tr

(

QΛ δ
2Wc,Λ

δη̄δη

)

−
(
δWc,Λ

δη
,QΛ δWc,Λ

δη̄

)

. (2.12)

Using eq.(2.12) and considering φ and φ̄ as the fundamental variables, eq.(2.5) leads to

d

dΛ
ΓΛ
(
{φ̄}, {φ}

)
= − d

dΛ
Wc,Λ

(
{η̄Λ}, {ηΛ}

)
−
(

φ̄,
d

dΛ
ηΛ

)

−
(
d

dΛ
η̄Λ, φ

)

+
(
φ̄,QΛφ

)
.(2.13)

With the help of the chain rule this can be transformed to

d

dΛ
ΓΛ = Tr

(
QΛG0,Λ

)
− Tr

(

QΛ δ
2Wc,Λ

δη̄ΛδηΛ

)

. (2.14)

Note, that the term introduced in eq.(2.5) now exactly cancels, which justifies its earlier

addition. To continue, the relation between the second functional derivatives of Γ and

Wc is used [17]. The result is the following functional differential equation for ΓΛ:

d

dΛ
ΓΛ = Tr

(
QΛG0,Λ

)
− Tr

(

QΛV1,1

φ̄,φ
(ΓΛ,G0,Λ)

)

. (2.15)

Here the matrix

Vφ̄,φ(Γ
Λ,GΛ) =





δ2ΓΛ

δφ̄δφ
+
[
G0,Λ

]−1 δ2ΓΛ

δφ̄δφ̄

δ2ΓΛ

δφδφ
δ2ΓΛ

δφδφ̄
−
[[
G0,Λ

]−1
]t





−1

(2.16)
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has been defined, where V1,1

φ,φ̄
denotes the upper left block Vφ,φ̄ and t implies the use of

the transposed matrix. To include self-energy corrections in the flow equations, Vφ,φ̄ is

expressed in terms of GΛ instead of G0,Λ. This can be done by defining

Uφ̄,φ =
δ2ΓΛ

δφ̄δφ
− γΛ

1 . (2.17)

Using

GΛ =
[[
G0,Λ

]−1
+ γΛ

1

]−1

, (2.18)

one can write the differential equation for ΓΛ as

d

dΛ
ΓΛ = Tr

(
QΛG0,Λ

)
− Tr

(

GΛQΛṼ1,1

φ̄,φ
(ΓΛ,GΛ)

)

(2.19)

with

Ṽφ̄,φ

(
ΓΛ,GΛ

)
=

[

1 −
(

−GΛ 0

0
[
GΛ
]t

)(

Uφ̄,φ
δ2ΓΛ

δφ̄δφ̄
δ2ΓΛ

δφδφ
−U t

φ̄,φ

)]−1

. (2.20)

The easiest way to determine the correct initial condition for ΓΛ is to turn to the pertur-

bative expansion for the γm. For Λ = Λ0 the free propagator vanishes: G0,Λ0 = 0. This

means that all perturbative expressions except for the bare interaction are equal to 0.

Consequently only the two-particle vertex has a non vanishing initial condition and one

finds

ΓΛ0

(
{φ̄}, {φ}

)
= Sint

(
{φ̄}, {φ}

)
. (2.21)

A lengthy algebraic calculation gives the same result.
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2.3 Expansion of ΓΛ

Since the goal is a set of flow equations for the γΛ
m, ΓΛ is expanded in the external sources.

This gives:

ΓΛ
(
{φ̄}, {φ}

)
=

∞∑

m=0

(−1)m

(m!)2

∑

k′

1
,...,k′

m

∑

k1,...,km

γΛ
m (k′1, . . . , k

′
m; k1, . . . , km)

×φ̄k′

1
. . . φ̄k′

m
φkm

. . . φk1
(2.22)

and eq.(2.20) is expanded using a geometric series. Uφ,φ̄ as well as the second functional

derivatives of ΓΛ are at least quadratic in the external sources. Comparing powers of fields

on both sides, one finally deduces the flow equations for the γΛ
m. For γΛ0 the equation

reads

d

dΛ
γΛ

0 = Tr
(
QΛG0,Λ

)
− Tr

(
QΛGΛ

)
. (2.23)

γ0 is coupled to the self-energy via G. The flow of the self-energy itself is determined by

d

dΛ
γΛ

1 (k′; k) = − d

dΛ
ΣΛ

k′,k = Tr
(
SΛγΛ

2 (k′, . . . ; k, . . .)
)

(2.24)

with

SΛ = GΛQΛGΛ (2.25)

being the so-called single-scale propagator. Apart from the self-energy, γ2 enters the flow

equation for Σ. The flow equation for γΛ
2 is

d

dΛ
γΛ

2 (k′1, k
′
2; k1, k2) = Tr

(
SΛγΛ

3 (k′1, k
′
2, . . . ; k1, k2, . . .)

)

− Tr
(

SΛγΛ
2 (. . . , . . . ; k1, k2)

[
GΛ
]t
γΛ

2 (k′1, k
′
2; . . . , . . .)

)

− Tr
(

SΛγΛ
2 (k′1, . . . ; k1, . . .)GΛγΛ

2 (k′2, . . . ; k2, . . .)

− [k′1 ↔ k′2] − [k1 ↔ k2] + [k′1 ↔ k′2, k1 ↔ k2]
)

. (2.26)

A flow equation for γΛ
3 , that would be necessary to exactly calculate γΛ

2 , is not presented

here. Generally γΛ
m+1 enters the flow equation for γΛ

m. Only by truncating this hierarchy
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k k’ k k’

Figure 2.1: Diagrammatic form of the flow equation for γΛ
1 = −ΣΛ. The slashed line

stands for the single scale propagator SΛ.

a finite set of flow equations can be obtained. In this work the hierarchy is truncated by

setting γΛ
3 = γΛ0

3 = 0. This leaves two coupled differential equations for Σ and γ2, which

can be integrated from Λ = Λ0 to Λ = 0, giving an approximate result for ΣΛ and γΛ
2 . A

diagrammatic representation of the flow equation for ΣΛ is shown in fig.(2.1) and of the

flow equation for γΛ
2 in fig.(2.2).

Looking at the systematics of the flow equations hierarchy this truncation scheme emerges

quite naturally. For mc ≥ 2, γΛ
mc+1 always enters the rhs of the flow equation for γΛ

mc
.

By setting γΛ
mc+1 to its initial value, which is 0 for mc ≥ 2 if only two-particle interac-

tions are present in the Hamiltonian, a closed set of equations for γΛ
m, m ≤ mc, follows.

Solving this closed system of equations, an approximate solution for the original problem

is produced. Comparing this approximate result to conventional perturbation theory by

expanding the vertex functions in terms of the bare interaction strength, it can be shown

that the approximate solution is at least correct up to order mc in the bare interaction.

Depending on the application one has in mind, it can be sensible to make further approx-

imations to the flow equations. In some cases this might even be necessary to obtain a set

of equations, that is numerically manageable. In some cases such approximations allow

an analytical treatment of the flow. This has been done in the past very successfully when

Figure 2.2: Diagrammatic form of the flow equation for γΛ
2 . The slashed line stands for

the single scale propagator SΛ, the unslashed line for GΛ.
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treating one- and two-dimensional quantum many-body systems.

In this work only truncation of order mc = 2 without any further approximations will be

considered, unless explicitly stated differently. This is possible since only locally interact-

ing (zero-dimensional) many-particle systems will be treated.

A modification to the flow equations that will be included in this work was suggested in

[18]. Since only mc = 2 is considered here, only the necessary changes up to this order

will be stated here. Motivated by the fulfillment of a certain Ward identity, the single

scale propagator SΛ in the flow equation for γ2 is replaced by −dGΛ/dΛ. Since

dGΛ

dΛ
= −SΛ + GΛdΣ

Λ

dΛ
GΛ , (2.27)

the contributions of the modification are obviously at least of third order in the bare

interaction strength. In fRG treatment of order mc = 2 of some models this modification

leads to exact results for γ1 and γ2. Therefore an improvement of results for the models,

treated here is possibly to be expected. It will be shown that this is indeed true.

2.4 Observables

The most convenient way to calculate observables from fRG is to calculate them indirectly

using the resulting vertex functions like the self-energy or the spectral function obtained by

analytic continuation if possible. For some observables however, it is possible to directly

derive a flow equation so that they can be determined directly from the RG flow. If

one would solve the complete hierarchy of flow equations to obtain the exact solution of

the problem under consideration, the results from both approaches would be identical.

Since this is not possible and since the flow equations are only solved in a truncated

scheme, calculating observables from vertex functions or directly from the flow only gives

approximate results. In some cases the direct calculation can produce more accurate

results. In this work, flow equations for the ground state energy and for the density profile

will be presented. The ground state energy could be computed from the full propagator on

the real axis [32]. To obtain this propagator, an analytic continuation from imaginary to

real frequencies is necessary. Since this process itself is a serious numerical problem, it is

preferable to obtain the ground state energy directly from the RG flow. In the case of the

local density it is possible to calculate this quantity directly from the one-particle Green
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function on the imaginary axis. In [14] it was shown that applying fRG with a truncation

scheme, that leads to a frequency independent self-energy, on a Luttinger liquid system,

it is necessary to calculate the density from a separate flow equation to obtain convincing

results. Whether this is also true for the frequency dependent version used here will be

investigated in chapter 3.

The ground state energy can be calculated from the 0-particle vertex γ0, for which a

flow equation has already been presented (eq.(2.23)) [28]. Tγ0 is the interaction caused

contribution to the grand canonical potential (eq.(2.7)). For µ = 0 and at T = 0 the

ground state energy is given by Ω. With these preliminaries the ground state energy E0

is given by

E0 = E0
0 + lim

T→0
Tγ0, (2.28)

where E0
0 is the ground state energy in the non-interacting case. Using eq.(2.23) and the

cut-off dependent propagator defined in eq.(2.10) and after expanding the product QΛGΛ

in terms of GΛ
0 ΣΛ and summing up again, the result reads

d

dΛ
lim
T→0

TγΛ
0 =

d

dΛ
eΛ0 = − 1

2π
Tr ln

[
1 − G0 ΣΛ

]
. (2.29)

To derive a flow equation for the density nk the method presented in [14] is used. A term

φknk with a small field φk is added to the Hamiltonian. The local density can then be

calculated by simple derivation:

nk =
∂Ω(φk)

∂φk

∣
∣
∣
∣
φk=0

. (2.30)

The additional term is considered to belonging to the interacting part of the Hamiltonian.

It results in a frequency independent contribution to the self-energy. A flow equation for

the grand canonical potential (with an additional factor T ) is already given by eq.(2.29).

To obtain a flow equation for the density, the derivative of eq.(2.30) can be performed

directly in the flow equation. This results in

∂

∂Λ
nΛ

k = − 1

2π
TrGΛRΛ

k , (2.31)
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where the density response vertex

RΛ
k =

∂ΣΛ

∂φk

∣
∣
∣
∣
φk=0

(2.32)

has been defined. The propagators GΛ have to be determined in the absence of φk. A

flow equation for RΛ
k can be derived from eq.(2.24):

∂

∂Λ
RΛ

k;j′,j = Tr
(
GΛRΛ

kGΛγΛ
2 (j′, . . . ; j, . . .)

)
. (2.33)

2.5 Padé Approximation

Although k
(′)
i is a multi-index representing an arbitrary set of quantum numbers and

a Matsubara frequency, it was mentioned that in this work it will usually consist of a

Matsubara frequency iω, a spin index σ and, in the case of more than one impurity, an

impurity index m. Consequently all results of the fRG calculations will be vertex functions

given at imaginary frequencies, like Σ(iω). To determine a spectral function for a given

problem, it will be necessary to perform an analytic continuation to the real axis. Since

it will usually not be possible to solve the flow equations analytically, only numerical

data of the vertex functions will be available. The analytic continuation from numerical

data is known to be an ill posed problem. To be able to present spectral functions

despite of this problem, a technique called Padé approximation will be employed. It is

based on the idea to approximate a rational function to the given data and perform the

analytic continuation on this function. In contrast to fitting a polynomial and doing the

continuation, this method is capable of capturing features like poles in the complex plane

and the approximant does not necessarily grow to infinity for large arguments. It will be

shown that Padé approximation gives very good results although one has to be careful,

since it is very difficult to control the error made. The best way to ensure the reliability

of the results is to perform repeated calculations with different frequency meshes on the

imaginary axis. In this work the scheme from [30] is used. More detailed information on

this topic is presented in appendix A.
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Chapter 3

The Single Impurity Anderson

Model

The first application of the fRG will be the Single Impurity Anderson Model (SIAM). This

model has been investigated very closely and its equilibrium properties are understood

very well. For a good overview see e.g. [22]. With Wilson’s NRG a method is at hand

that can be used to calculate the single-particle properties of the SIAM very accurately

[23]. These results will be compared to those obtained from fRG . Therefore this model

can serve as a benchmark to get an idea of how successfully fRG can be used to calculate

dynamics of Anderson impurity models. In the previous chapter it was pointed out that

the fRG result is correct at least up to order mc in the interaction strength. For this

reason the fRG results will also be compared to second-order perturbation theory in the

interaction strength (2PTh). Some results presented in this chapter, especially those for

the particle-hole symmetric case, have been published in [29].

3.1 The Model

The Single Impurity Anderson Model, originally suggested by P.W. Anderson in 1961 [19],

is a generic model to describe a single strongly localized energy level being coupled to an

electronic bath. Experimentally the localized energy level can be the d- or f-orbital of a

transition metal atom or some kind of quantum dot structure allowing for two electrons

21



to occupy it (one with spin up and one with spin down). The electronic host can be any

kind of conduction band.

The Anderson Hamiltonian consists of three parts. First, there is the conduction electron

part describing an electron band with an energy dispersion ǫk. The second term represents

the impurity level, which has an energy ǫd relative to the chemical potential µ of the

conduction band electrons (µ = 0). If the impurity level is doubly occupied, the electrons

are subject to a Coulomb repulsion U > 0. The last part is the coupling between the

band and the impurity. The band electrons hybridize with the impurity level with an

amplitude V . It is assumed here that the hybridization amplitude is independent of k.

Collecting all these parts, in second quantization the Hamiltonian looks like this:

H =
∑

~kσ

ǫ~kc
†
~kσ
c~kσ

+ ǫd
∑

σ

d†σdσ + Ud†↑d↑d
†
↓d↓ +

∑

~kσ

Vk

(

c†~kσ
dσ + h.c.

)

. (3.1)

As one can clearly see, the interaction takes place only locally on the impurity site, which

makes the model a zero-dimensional interacting system. Later this model will be extended

to more than one impurity site.

As simple as it looks, this model is a quite complicated many-body problem, which dis-

plays a rich variety of physical behaviour, depending on the interplay of the four bare

energy scales, namely the Coulomb repulsion U , the position of the impurity level ǫd, the

conduction electron bandwidth W and ∆0 = πV 2ρc(0), which is the width of the bare

level generated by the hybridization. ρc(ǫ) is the density of states of the conduction band

electrons, which is assumed to be slowly varying around ω = 0.

In this chapter the electronic host is a flat electron band of infinite bandwidth and the

hybridization will be assumed to have no k-dependence (Vk = V ). The so-called hy-

bridization function is then given by

∆(z) := V 2

∫

dǫρc(ǫ)/(z − ǫ) = −i ∆0sign(Im(z)). (3.2)

The non-interacting Green function for this problem is given by

G0
d(z) =

1

iω − ǫd + i sign(Im(z))∆0

. (3.3)
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The dynamics for U 6= 0 are determined by first calculating the self-energy Σ(z). The

impurity Green function is then given by

Gd(z) =
1

[G0
d(z)]

−1 − Σ(z)
. (3.4)

The impurity spectral function can be calculated directly from the Green function:

ρ0
d(ω) = −1

π
Im Gd(ω + i0). (3.5)

In the noninteracting case (U = 0), the spectral function is a Lorentzian centered around

ǫd:

ρ0
d(ω) =

1

π

∆0

(ω − ǫd)2 + ∆2
0

. (3.6)

The one-particle dynamics consist of a single resonance at ǫd. For V = 0 the resonance

would be a δ−peak. Due to the hybridization, an added electron (ǫd > 0) or a hole (ǫd < 0)

can only remain on the localized level for a finite time. This leads to a broadening of the

resonance to a width of ∆0. In the weak coupling regime U/∆0 ≪ 1 this behaviour does

not change very much. For larger U the one-particle dynamics change considerably. Due

to the Coulomb repulsion, there is now one resonance at ω = ǫd and one resonance at

ω = ǫd +U . The width of these atomic peaks is 2∆0. These two resonances are caused by

charge excitations. Additionally a new resonance has formed near the chemical potential

(ω = 0), the Kondo or Abrikosov-Suhl resonance. For the particle-hole symmetric case

(ǫd = −U/2) spectral functions for the non-interacting and the interacting case are shown

-10 -5 0 5 10
ω/∆0

0

0,2

0,4

0,6

0,8

1

π
∆ 0ρ d(ω

)

U=0
U/∆0=10

atomic peaks

Kondo resonance

Figure 3.1: Spectral functions for the symmetric SIAM.
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in fig.(3.1). For U,−ǫd ≫ ∆0 charge fluctuation from the average value 1 are negligible.

In this parameter regime the Anderson model can be mapped to a Kondo model using

a Schrieffer-Wolff transformation [20],[21]. The Kondo model describes a local moment

instead of an energy level being coupled to an electronic host. In contrast to the Anderson

model it cannot include charge fluctuations on the impurity site. The above conditions for

U and ǫd assure that the impurity level in the Anderson model is occupied by one electron

and that charge fluctuations are irrelevant for the physics of the system. Consequently,

in this limit the Anderson model displays Kondo physics. The spin of the singly occupied

impurity level is coupled antiferromagnetically to the conduction electrons. This results

in a screening of the local spin with a characteristic energy scale ln(TK) ∝ −1/∆0, with

TK being the so-called Kondo temperature. This exponentially small energy scale is a

severe problem for any computational method.

For ω ≪ TK the system locally behaves like a Fermi liquid [33],[34]. In this region the

system can be described by a non-interacting Anderson Hamiltonian with renormalized

parameters that are U → U∗ = 0, ǫd → ǫ∗d = 0 and ∆0 → ∆∗
0 ∝ TK [22]. Therefore the

low-energy dynamics can universally be described by the Kondo temperature TK .

3.2 Second Order Perturbation Theory

Figure 3.2: Diagrammatic contribution to the self-energy in second order in U .

Maybe the simplest way to calculate the self-energy is to use perturbation theory. In the

case of the SIAM generally two perturbative expansions are possible and have been carried

out in the past. One possibility is perturbation theory in the hybridization, i.e. around

the atomic limit. This perturbation theory in ∆0/U naturally works very well for large U ,
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i.e. when ∆0/U is small [22], [24]. The other method, that is used here, is perturbation

theory in U , i.e. the perturbative expansion is made around the non-interacting case.

The lowest order, in which non-trivial behaviour of dynamical properties can be found,

is U2. The calculations in this order are particularly easy when using the Hartree-Fock

propagator GHF instead of the free propagator. Only one diagram has to be taken into

account in this case. It is shown in fig.(3.2). The self-energy in second order perturbation

theory is then calculated to be

Σ2PTh(iω) = − U2

4π2

∫

dω1 dω2 GHF (iω1)GHF (iω2)GHF (iω1 + iω2 − iω) .

Using a spectral representation of the free propagator and a contour integral technique,

the analytic continuation of this expression can be obtained. This allows for the calcu-

lation of spectral functions without the help of Padé approximation. In the particle-hole

symmetric case (2ǫd + U = 0) this approach works particularly well. It already cap-

tures the qualitative features of the spectral function for fairly large U/∆0. The spectral

function includes the two atomic peaks. By comparison to a local moment approach, it

has been shown that 2PTh gives accurate results here [26]. The Kondo resonance at the

chemical potential is described qualitatively correct as well. Using 2PTh the width of this

resonance shows an algebraic behaviour with growing U . In the strong coupling regime

the quantitative description of the Kondo resonance is therefore rather poor. 2PTh is not

capable of describing the exponential behaviour in this regime. In the non-symmetric case

second order perturbation theory cannot produce convincing results. Already for rather

small U/∆0 the discrepancy between results from 2PTh and the ones from Wilson’s NRG

becomes apparent. 2PTh cannot reproduce the suppression of the effective level shift by

the interaction sufficiently. The impact of a shift of the impurity level away from the

symmetric value is therefore overestimated. The reason why 2PTh works so extraordi-

narily well in the symmetric case can be traced to two causes. First, perturbation theory

correctly describes the atomic limit as well as the non-interacting case. For finite U the

result can be seen as an interpolation between these two cases. Since the exact result

continuously changes from one case to the other, it is not surprising that an interpolation

captures the main features of the exact result. Second, one can easily see that in the

symmetric case, only diagrams of even order contribute to the self-energy. In particular

there are no diagrams of third order. Additionally it was shown by Yamada that the con-

tribution in fourth order stay small for rather large U [35]. This is the reason why 2PTh
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gives surprisingly good results for rather large U/∆0 in the symmetric case. The results

from 2PTh can also be obtained from the fRG flow equations. This will be discussed later.

3.3 The Numerical Renormalization Group

The Numerical Renormalization Group (NRG) developed by Wilson in 1975 is capable

of accurately describing the properties of the SIAM for arbitrary interaction strength [1],

[23]. With this method it is especially possible to correctly calculate the Kondo resonance.

The key to solving this problem is to treat all energy scales alike and in a non-perturbative

way.

The main idea in the NRG calculation is to perform an iterative diagonalization of the

Hamiltonian. The energy states of the conduction band are discretized using a logarithmic

discretization. In each step of the NRG procedure the Hamiltonian is diagonalized on a

certain energy interval. The energy levels of the diagonalized Hamiltonian are rescaled

and truncated. Only a certain number of the most relevant energy levels is kept in every

step. In this way the whole energy axis is included in the calculation step after step. If one

could keep all energy levels and if no truncation were necessary, the calculation would give

the exact result. Especially the low-energy physics can be described with high accuracy

using this method. In the the high-energy region broadening effects occur. Although

NRG is a very useful tool in the treatment of the Single Impurity Anderson Model, it has

a major drawback when turning to models with more degrees of freedom. The numerical

effort rises exponentially. Therefore more than two impurities are generally not treatable.

In two impurity systems the results for dynamical properties at small and intermediate

interaction strengths are not as convincing as in the single impurity case as well.

3.4 The Flow equations

To derive flow equations for the self-energy ΣΛ and the two-particle vertex γΛ
2 , the starting

point are eq.(2.24) and eq.(2.26). Since mc = 2, γΛ
3 = γΛ0

3 = 0 are used here, no flow

equations for higher order vertex functions are required. In this chapter the ground state

energy will not be calculated, so no equation for γ0 is needed as well. The cut-off will be
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a sharp frequency cut-off:

G(0),Λ
σ (iω)Θ(|ω| − Λ)GΛ

σ (iω) .

Since in this chapter only one impurity is considered, the multi-index k is replaced by a

spin index σ and a Matsubara frequency iω. With this the two particle vertex can be

written in the form

γ̄Λ
2 (ξ′1, ξ

′
2; ξ1, ξ2) = δ(ω1 + ω2 − ω′

1 − ω′
2)
{

δσ1,σ′

1
δσ2,σ′

2
γΛ

2,freq(iω
′
1, iω

′
2; iω1, iω2)

−δσ1,σ′

2
δσ2,σ′

1
γΛ

2,freq(iω
′
2, iω

′
1; iω1, iω2)

−δσ2,σ′

1
δσ1,σ′

2
γΛ

2,freq(iω
′
1, iω

′
2; iω2, iω1)

+δσ2,σ′

2
δσ1,σ′

1
γΛ

2,freq(iω
′
2, iω

′
1; iω2, iω1)

}

= δ(ω1 + ω2 − ω′
1 − ω′

2)
{

δσ1,σ′

1
δσ2,σ′

2
UΛ(iω′

1, iω
′
2; iω1, iω2)

−δσ1,σ′

2
δσ2,σ′

1
UΛ(iω′

2, iω
′
1; iω1, iω2)

}

,

(3.7)

with

UΛ(iω′
1, iω

′
2; iω1, iω2) = γΛ

2,freq(iω
′
1, iω

′
2; iω1, iω2) + γΛ

2,freq(iω
′
2, iω

′
1; iω2, iω1) . (3.8)

Note, that other parametrizations of the two-particle vertex are possible, as long as the

vertex-function is totally antisymmetric. Later a parametrization distinguishing different

spin channels will be used to calculate the static spin susceptibility. These different

parametrizations give identical results for the self-energy. When aiming only at Σ(iω),

the parametrization with only one frequency dependent function is the most convenient

one. After parametrizing the two-particle vertex, the sum over the spins in eq.(2.24) can

be performed, giving for the self energy

d

dΛ
ΣΛ

σ (iω) = − 1

2π

∑

α=±1

1

G
(0)
σ (iαΛ)

−1
− ΣΛ

σ (iαΛ)

[

2UΛ(iω, iαΛ; iω, iαΛ)−

UΛ(iαΛ, iω; iω, iαΛ)
]

.

(3.9)

27



Now a flow-equation for UΛ(iω′
1, ω

′
2;ω1, ω2), ω′

1 + ω′
2 = ω1 + ω2 is needed. This is ac-

complished by performing the spin sum in eq.(2.26) and setting the external spins to

σ′
1 = σ1 6= σ′

2 = σ2. The result is

d

dΛ
UΛ(iω′

1, iω
′
2; iω1, iω2) = − 1

2π

∫ ∞

−∞

dω

[

PΛ(iω, iω1 + iω2 − iω)

(

−UΛ(iω, iω1 + iω2 − iω; iω1, iω2)UΛ(iω′
2, iω

′
1; iω1 + iω2 − iω, iω)

−UΛ(iω1 + iω2 − iω, iω; iω1, iω2)UΛ(iω′
1, iω

′
2; iω1 + iω2 − iω, iω)

)

+
{

PΛ(iω,−iω1 + iω′
1 + iω)

(

2UΛ(iω′
1, iω; iω1,−iω1 + iω′

1 + iω)UΛ(iω′
2,−iω1 + iω′

1 + iω; iω2, iω)

−UΛ(iω′
1, iω; iω1,−iω1 + iω′

1 + iω)UΛ(−iω1 + iω′
1 + iω, iω′

2; iω2, iω)

−UΛ(iω, iω′
1; iω1,−iω1 + iω′

1 + iω)UΛ(iω′
2,−iω1 + iω′

1 + iω; iω2, iω)
)

+(1′ ↔ 2′; 1 ↔ 2)
}

−
{

PΛ(iω,−iω1 + iω′
2 + iω)

UΛ(iω, iω′
2; iω1,−iω1 + iω′

2 + iω)UΛ(−iω1 + iω′
2 + iω, iω′

1; iω2, iω)

+(1′ ↔ 2′; 1 ↔ 2)
}]

.

(3.10)

P can either be Pcon for the conventional version of the fRG or Pmod for the modified

version (mfRG) proposed by Katanin and introduced in chapter 2. The initial conditions

for ΣΛ and UΛ are given by ΣΛ=∞ = 0, UΛ=∞ = U . Numerically, the integration of the

flow equations can only start at a Λ0 ≫ max(U,∆0). The flow from Λ = ∞ to Λ0 gives a

contribution of U/2 to ΣΛ, which leads to new initial conditions:

ΣΛ0

σ =
U

2
; γΛ0

2,ω = U . (3.11)
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What is left now, is the calculation of SΛ(iω) = GΛ(iω)QΛ(iω)GΛ(iω) for eq.(3.9) and

the combined propagator PΛ
con(iω, iω′) = SΛ(iω)GΛ(iω′) and PΛ

mod = −dGΛ/dΛ GΛ for

eq.(3.10). In any case, combinations of distributions δ(Λ−ω) and Θ(Λ−ω) appear. It is

not immediately clear how these expressions should be treated. Introducing a broadening

ǫ into the step function Θǫ and using δǫ = dΘǫ/dǫ, it can be shown that for ǫ → 0 these

expressions are well defined and can be calculated to be

δ(a)f(Θ(a)) → δ(a)

1∫

0

f(x)dx . (3.12)

Using this result for the combined propagators, they are given by

SΛ
σ (iω) =

1
[

1 −G
(0),Λ
σ (iω)ΣΛ

σ (iω)
]2G

(0)
σ (iω)δ(|ω| − Λ)

→ δ(|ω| − Λ)G(0)
σ (iω)

1∫

0

1
[

1 − x ·G(0)
σ (iω)ΣΛ

σ (iω)
]2dx

= δ(|ω| − Λ)
1

G
(0)
σ (iω)

−1 − ΣΛ
σ (iω)

(3.13)

and

SΛ
σ (iω)GΛ

σ (iω′) → δ(|ω| − Λ)
1

G
(0)
σ (iω)

−1
− ΣΛ

σ (iω)

1

G
(0)
σ (iω′)

−1
− ΣΛ

σ (iω′)
Θ(|ω′| − Λ)

(3.14)

with Θ(0) = 1/2. For the modified version proposed by Katanin, the combined propagator

PΛ
mod = −dGΛ/dΛ GΛ can be explicitly calculated as well and it is found to be

− d

dΛ
GΛ

σ (iω) ·GΛ
σ (iω′) → δ(|ω| − Λ)

1

G
(0)
σ (iω)

−1
− ΣΛ

σ (iω)

Θ(|ω′| − Λ)

G
(0)
σ (iω′)

−1
− ΣΛ

σ (iω′)

− d

dΛ
ΣΛ

σ (iω) · Θ(|ω| − Λ)

[G
(0)
σ (iω)

−1 − ΣΛ
σ (iω)]2

Θ(|ω′| − Λ)

G
(0)
σ (iω′)

−1 − ΣΛ
σ (iω′)

.

(3.15)

One can see that the modification does not change the flow equations drastically, but

adds another term, that is at least of third order in the bare interaction, since Σ̇Λ is at
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least of order U . Note, that the additional term in the second line of eq.(3.15) does not

contain a factor δ(|ν|−Λ). This leads to a considerably higher numerical effort in solving

the modified version of the flow equations.

To integrate the flow equations, the continuous frequencies have to be discretized. Due to

the different energy scales of the problem, it is not possible to use simple linear mesh. To

have a sufficiently good resolution at small and intermediate frequencies and still capture

the high frequency features, a mesh with increasing stepsize is needed. This can either

be achieved by a logarithmic mesh, behaving like ωn = ω0a
n, or by a geometric mesh,

obeying ωn = ω0(a
n − 1)/(a − 1). In both cases ω0 is the smallest frequency and a

determines how fast the frequencies are growing. It turns out that both approaches give

good results, although the second one seems to be slightly better. It needs less frequencies

to resolve both, the very small and the intermediate regime, sufficiently well and produces

a smoother frequency mesh. A comparison of both approaches is shown in fig.(3.3).

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Figure 3.3: Comparison of a exponential (top) and a geometric (bottom) mesh.

The numerical effort rises with the third power of the number of frequencies in the conven-

tional formulation and with the fourth power in the modified version of the fRG. Despite

this highly increased numerical effort in the modified version, it will be shown that it

is necessary to use this version to obtain good results for U/∆0 & 3. Especially in the

symmetric case, it is surprising that, while 2PTh still shows good agreement with NRG,

there is a severe deviation of the fRG results calculated with the unmodified version. For

U/∆0 & 7 it is necessary to use the modified version to obtain any results at all, since

the flow of the conventional fRG is divergent for larger U .

The results of second order perturbation theory can be recovered from the flow equations
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given above in a relatively simple way, just by replacing ΣΛ on the rhs of eq.(3.9) and

eq.(3.10) and UΛ on the rhs of eq.(3.10) by their initial values. The new flow equation for

the self-energy is then

d

dΛ
ΣΛ

σ (iω) = − 1

2π

∑

α=±1

1

G
(0)
σ (iαΛ)

−1

[

2UΛ(iω, iαΛ; iω, iαΛ)−

UΛ(iαΛ, iω; iω, iαΛ)
]

.

(3.16)

It is convenient to treat the two terms on the rhs of eq.(3.9) as one function. This is

possible, since UΛ does not enter its own flow equation when reproducing 2PTh. With

UΛ,2PTh(iω′
1, iω

′
2; iω1, iω2) = 2UΛ(iω′

1, iω
′
2; iω1, iω2) − UΛ(iω′

2, iω
′
1; iω1, iω2)

the flow equation for UΛ,2PTh is

d

dΛ
UΛ,2PTh(iω′

1, iω
′
2; iω1, iω2) = −U

2

2π

∑

α=±1

1

G
(0)
σ (iαΛ)

−1×

[
Θ(|ω1 + ω2 − αΛ| − Λ)

G
(0)
σ (iω1 + iω2 − iαΛ)

−1

+
{ Θ(| − ω1 + ω′

1 + αΛ| − Λ)

G
(0)
σ (−iω1 + iω′

1 + iαΛ)
−1

− ΣΛ
σ (−iω1 + iω′

1 + iαΛ)

+(1′ ↔ 2′; 1 ↔ 2)
}

−2
{ Θ(| − ω1 + ω′

2 + αΛ| − Λ)

G
(0)
σ (−iω1 + iω′

2 + iαΛ)
−1

− ΣΛ
σ (−iω1 + iω′

2 + iαΛ)

+(1′ ↔ 2′; 1 ↔ 2)
}]

(3.17)

for the frequency dependent part of the two-particle vertex. Especially the last equation

is simplified compared to eq.(3.10).

These equations can be used to numerically calculate results for 2PTh relatively easily. In

the special case of particle-hole-symmetry it is even possible to solve the flow-equations

analytically. Since the self-energy does not couple to the equation of the two-particle
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Figure 3.4: The frequency dependence of each term in eq.(3.19).

vertex any more, the two-particle vertex can be calculated, solving elementary integrals

of the form ∫
1

ω + ∆0

1

ω̃ + ω + ∆0

. (3.18)

The result for the frequency dependent part of the two-particle vertex is

U2PTh(iω′
1, iω

′
2; iω1, iω2) = U (3.19)

+
U2

π

[

ln
∆0

∆0 + |ω′
1 + ω′

2|

(
1

|ω′
1 + ω′

2|
− 1

|ω′
1 + ω′

2| + 2∆0

)

+ ln
∆0

∆0 + |ω′
1 − ω1|

(
1

|ω′
1 − ω1|

− 1

|ω′
1 − ω1| + 2∆0

)

− 2 ln
∆0

∆0 + |ω′
2 − ω1|

(
1

|ω′
2 − ω1|

− 1

|ω′
2 − ω1| + 2∆0

)]

.

To calculate the self-energy, one has to calculate UΛ for finite Λ. Inserting this result

into the equation for the self-energy, one is left with another integration. The result for

the self-energy cannot be expressed by elementary functions. But using the dilogarithmic

function

dilog(x) =

x∫

1

ln t

1 − t
dt, (3.20)
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it is found to be

ImΣPTh(iω) =
3iU2

2π2

[

dilog

(
∆0

∆0 + ω

)(
1

ω − ∆0
− 1

ω + ∆0

)

+dilog

(

1 +
∆0

∆0 + ω

)(
1

ω + ∆0

− 1

ω + 3∆0

)

+ ln

(
∆0

∆0 + ω

)

ln

(

1 +
∆0

∆0 + ω

)(
1

ω + ∆0
− 1

ω + 3∆0

)

+
1

2
ln

(
∆0

∆0 + ω

)2(
1

ω − ∆0
− 2

ω + ∆0
+

1

3∆0 + ω

)

−π
2

12

(
1

ω − ∆0
+ 13∆0 + ω

)]

.

(3.21)

An analytic result for the self-energy from 2PTh for real frequencies has been calculated

in [31]. A closer look to the frequency dependent part of the two-particle vertex shows

that it consists of three parts. Each part has basically the same structure and each

part depends on a combination of frequencies namely ν1 = ω1 + ω2, ν2 = ω′
1 − ω1 and

ν3 = ω′
2 −ω1. A fourth frequency is not needed because of frequency conservation. While

for large νi the frequency dependence tends to zero, the interesting structures appear for

small νi. The form of the frequency dependence of each single part is shown in fig.(3.4).

An analysis of U resulting from integrating the full fRG equations shows the same global

behaviour. There are peaked structures around νi = 0, and for large νi U is constant.

This can be seen quite well in a contour plot of U shown in fig.(3.5). The single peaks

result from the discrete frequency mesh. The quantitative behaviour is of course different

from the one found in 2PTh. One might now argue, that using these new frequencies for

the frequency mesh of U would be better, since the structures for small frequencies would

be resolved more precisely. This is indeed possible, but numerically it turns out that

using the new frequencies νi instead of the old ones gives the same result for a sufficiently

smooth mesh. Even more, using the new frequencies the dependence on the number of

used frequencies and the smoothness of the mesh are increased compared to the old ωi.

This might be due to the fact that even though the structure of the frequency dependence

is better resolved with the νi, the number of evaluations of U at interpolated frequencies

rises significantly. This already becomes apparent in the equation for the self-energy. In

eq.(3.9) each UΛ(iν ′1, iν
′
2; iν1, iν2) has one entry that is not an exact frequency from the

discretized mesh and therefore has to be interpolated somehow. The equation for the
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Figure 3.5: Contour plot of the frequency dependent part of the two-particle vertex from
fRG for U/∆0 = 1. ω′

1 and ω1 are varied in x− and y−directions. The four panels show
the contour for various values of ω′

2. The structure that can analytically be found in 2PTh
is clearly visible. There are peaked structures for ω′

1 = −ω′
2, ω

′
1 = ω1 and for ω′

2 = ω1.

self-energy using the νi reads

d

dΛ
ΣΛ

σ (iω) = − 1

2π

∑

α=±1

1

G
(0)
σ (iαΛ)

−1
− ΣΛ

σ (iαΛ)

[

2UΛ(iω + iαΛ, 0.0; iαΛ− iω)−

UΛ(iαΛ + iω, iαΛ − iω; 0.0)
]

.

(3.22)

It can be seen very clearly that here Λ + ν and Λ − ν will both not be contained in

the frequency mesh for most values of Λ. The number of entries, at which one has to

interpolate instead of using the exact known value, has risen by a factor of two. One can

easily convince oneself that the same happens in the equation for UΛ. The gain from the

better resolution for small frequencies can obviously not compensate for a higher number
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of necessary interpolations.

In chapter 2 it was mentioned that for applications of the fRG to other, especially one-

and two-dimensional problems, further approximations to the flow equations were made

while still obtaining surprisingly good results, e.g. [12]-[16]. Looking at the complicated

structure of the flow equations, in particular the one for UΛ, the question arises whether

further approximations can be made in this context without losing too much of the quality

of the fRG result. This question will be addressed later in this chapter. The flow equations

that recover 2PTh for example are a lot easier to treat because knowledge of UΛ is only

needed on a two-dimensional frequency mesh, since it does not enter the rhs of eq.(3.17)

anymore. This reduces the numerical effort considerably. It should be noted, that as long

as an approximation is made somewhere between eq.(3.9) and eq.(3.10) on one side and

eq.(3.16) and eq.(3.17) on the other side, the approximate result is still exact up to second

order in the bare interaction U . This will be discussed in some detail later on. For now,

only the full flow equations up to order mc = 2 will be considered.

3.5 Results

In this section, results for the self-energy calculated by integrating the fRG flow equations

and the corresponding spectral function, obtained by performing an analytical continua-

tion using Padé approximation, will be presented and compared to the results from 2PTh,

which are known to be surprisingly good at least in the symmetric case, and to NRG,

which is known to be in excellent agreement with the exact result. Selected observables

will be calculated and compared as well. From the results of these comparisons it will

be possible to analyze the quality and reliability of fRG. This can be used to make a

statement on the question in which parameter regimes fRG can be used to describe the

dynamics of more complex Anderson impurity systems treated in the following chapters.

3.5.1 Particle-hole-symmetric case

From the fRG one naturally obtains vertex functions for imaginary frequencies, so the

first thing to look at is the self-energy Σ(iω) on the imaginary axis. In the particle-

hole-symmetric case, ǫd = −U/2, on the imaginary axis the real part of the self-energy
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Figure 3.6: Imaginary part of the self-energy for U/∆0 = 1 (left) and U/∆0 = 5 (right)
from mfRG, 2PTh and NRG.

is exactly U/2 while the frequency dependence is completely contained in the imaginary

part of the self-energy. This imaginary part Im Σ(iω) is shown in the left panel of fig.(3.6)

for U/∆0 = 1, which is a rather small value. No discrepancy between perturbation theory

and fRG can be found. The discrepancies for large ω compared to the NRG-curve are

due to broadening effects in the NRG. When the interaction strength U is increased to

intermediate values up to U/∆0 = 5, the overall picture does not change too much as

long as the modified version of the fRG is used. This can be seen in fig.(3.6) (right

panel) quite clearly. All three curves are in good agreement. A closer look to the low

energy regime (inset) reveals a change. While the slope of the 2PTh curve is too small,

mfRG and NRG are hardly distinguishable. Fig.(3.7) shows a comparison between the

conventional fRG and mfRG for U/∆0 = 5. It is obvious that the curve obtained from the

unmodified scheme is not describing the problem very well. For larger interaction strength

the situation gets even worse and roughly from U/∆0 = 7 on, the conventional scheme is

not usable at all, since the integration of the flow equations fails. Of course the question

arises, whether this might be due to the discretization of the frequency mesh or whether

this is a genuine problem of the truncated flow equations. Since it is not possible to

analytically find a reason for this divergency, a rigorous answer is not possible. But for a

given U the value of the flow-parameter Λ, where the flow diverges, is almost independent

of the choice of the frequency mesh. This is a strong indication that the problem is not

caused by the discretization but is caused by the flow equations themselves. However,

using the modified scheme, divergences are no problem and curves for larger values of
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Figure 3.7: Imaginary part of the self-energy calculated with the conventional and the
modified fRG scheme; U/∆0 = 5.

U/∆0 can be calculated. It is known that with perturbatively motivated truncations

of the flow equations, fRG fails to correctly describe the behaviour of strong coupling

systems. This becomes apparent here as well. The self-energy curves for U/∆0 = 7.5

(fig.(3.8), left panel) and U/∆0 = 10 (right panel) show a growing discrepancy between

mfRG and NRG. The overall shape is still correct but the quantitative agreement is

getting poorer. It is surprising to some extend that for those values of U/∆0 2PTh shows

a better general agreement with NRG than mfRG does. Later on it will be shown that

this is a specific feature of the particle-hole-symmetric case, in which 2PTh is known to

work much better than in the more general asymmetric case. It was shown for U/∆0 = 5
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Figure 3.8: Imaginary part of the self-energy; left: U/∆0 = 7.5, right: U/∆0 = 10, insets
show the low-energy region.
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Figure 3.9: The effective mass from mfRG, 2PTh and NRG

that mfRG shows a low energy behaviour which is superior to the one of 2PTh even in

the symmetric case. This can be extended to larger U/∆0 as fig.(3.8) clearly shows. For

a further analysis of this low-energy behaviour, a look at the effective mass is useful.

This quantity is closely connected to the Kondo temperature [22]. Basically, the Kondo

temperature is given by the inverse effective mass. The exact value, as obtained from

NRG, will show an exponential behaviour in U/∆0 in the strong coupling regime. It can

be obtained from the self-energy by

m∗ = 1 + lim
ωց0

ℑmΣ(iω)

ω
.

In fig.(3.9) the effective mass determined from mfRG, 2PTh and NRG are displayed. It

is obvious that mfRG cannot reproduce the effective mass obtained from NRG and does

not show an exponential behaviour. Nevertheless, it is a clear improvement compared to

2PTh. Via the Kondo temperature the effective mass is directly connected to the width

of the Kondo resonance in the spectral function, which is therefore described much better

with mfRG than with 2PTh.

The point where the results from mfRG start to lose accuracy coincides with the value

of U where the slope of the curve in fig.(3.9) is decreasing. Furthermore, the analysis
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Figure 3.10: Analytical continuation of curves shown in fig.(3.6); left: U/∆0 = 1, right:
U/∆0 = 5.

of the effective mass allows to connect the quality of the mfRG results to the Kondo

temperature. This criterion allows to make an estimate for the value of U/∆0 up to

which fRG results can be trusted in systems where no data from other reliable methods

is available for comparison.

Using Padé approximation, it is possible to determine an analytic continuation to the real

axis from the self-energy calculated on the imaginary axis. Even though both, real and

imaginary part, show a non-trivial frequency dependence already in the symmetric case,

it is sufficient to study the imaginary part of the self-energy on the real axis Im Σ(ω+ i0)

since the real part can be calculated from the imaginary part by Hilbert transformation:

ReΣ(ω + i0) = −1

π

∫
ImΣ(ǫ+ i0)

ω − ǫ
. (3.23)

On the real axis the symmetries of the real and the imaginary part are inverted. While

the imaginary part is symmetric (ImΣ(ω + i0) = ImΣ(−ω + i0)), the real part is point

symmetric. In a neighbourhood around ω = 0 the imaginary part of the self-energy

displays a parabolic behaviour. The width of the corresponding parabola is given by the

effective mass of the electrons. This is the region in which the Fermi liquid description of

the low energy physics is valid.

For the curves shown in fig.(3.6) the imaginary part of the self-energy for real frequencies

can be seen in fig.(3.10). The excellent agreement between mfRG and NRG is still clearly

visible. Having determined the self-energy on the real axis, the spectral function is given
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Figure 3.11: Spectral functions or U/∆0 = 5 (left) and U/∆0 = 10 (right); in the panel
only the low-energy region is shown.

as the imaginary part of the impurity Green function

ρd(ω) = −1

π
ImGd(ω + i0) . (3.24)

The different spectral functions for U/∆0 = 5 and U/∆0 = 10 are shown in fig.(3.11).

In the first case the agreement between all three curves is very good. In the low energy

region the mfRG provides a clear improvement to the 2PTh curve. This can in particular

be seen for U/∆0 = 10 in the right panel. Furthermore the lineshape of the mfRG Kondo

resonance does obviously not follow a simple Lorentzian but rather a more complex form

like NRG and as predicted in [27]. The development of the spectral functions from mfRG

alone is displayed in fig.(3.12). The formation of the resonance at the chemical potential

is clearly visible, while at the same time spectral weight is shifted towards the forming

atomic peaks. Comparing the spectral functions one should keep in mind that, while the

low energy behaviour can be described very reliable with Padé approximation, the details

of the atomic peaks are a lot more difficult to obtain from Padé approximation. For a

quantitative analysis one should either concentrate on the low-energy behaviour or on

data that can be directly obtained using imaginary frequencies.

To summarize the above, the mfRG results are in excellent agreement with the exact data

for small and intermediate interaction strength. For larger U the quality of the results

is reduced. In the special case of particle-hole-symmetry an improvement compared to

2PTh can only be made in the low-energy region.

40



-10 0 10
ω /∆0

0

0,2

0,4

0,6

0,8

1

π
∆ 0

ρ d(ω
)

U=∆
0

U=5∆
0

U=10∆
0

Figure 3.12: Spectral functions from fRG for different U/∆0.

3.5.2 The asymmetric case

In the asymmetric case both, the imaginary part of the self-energy and the real part,

contain relevant information. On one side the constant value of the real part for large

frequencies is important, especially for calculating the occupation of the impurity level.

On the other side it develops a frequency dependence that is important for the dynamics

of the system. For this reason, in this section both, imaginary and real part of the self-

energy, will be investigated.

The curves in fig.(3.13) show the real and imaginary part of Σ(iω) for U/∆0 = 1 and

ǫd + U/2 = U/4 for NRG, fRG and 2PTh. Already for this rather small interaction

strength a difference between the perturbative result and the other two curves, which are

hardly distinguishable, is visible. With growing interaction strength this is getting even

more visible. For U/∆0 = 2.5 and again ǫd + U/2 = U/4 the situation is depicted in

fig.(3.14). While in the symmetric case for this value of the bare interaction still excellent

agreement between all three curves can be observed, here only fRG reproduces the NRG

curve. 2PTh is quantitatively wrong already for rather small U . It becomes obvious

that 2PTh does not only get the frequency dependence wrong, but also the constant
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Figure 3.13: Self-energy from fRG, 2PTh and NRG for U/∆0 = 1 and ǫd = −U/4.
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Figure 3.14: Self-energy from fRG, 2PTh and NRG for U/∆0 = 2.5 and ǫd = −U/4.

value of the real part for large frequencies differs from the NRG result, while fRG is still

correct. For larger U/∆0 it becomes even more apparent how 2PTh results get worse

for increasing asymmetry, while fRG still gives accurate curves compared to NRG data.

For U/∆0 = 2π and various ǫd this is shown in fig.(3.15). Looking at the right panel it

becomes obvious, that the real part acquires a constant contribution that counteracts the

shift of the impurity level. The stronger the interaction is, the smaller is the effective

shifting of the impurity level. As a consequence of this behaviour, the shift of the Kondo

resonance is suppressed. Additionally the occupancy is kept close to one. This will be

discussed further down.
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Figure 3.15: Self-energy for U/∆0 = 2π and various ǫd; fRG curves are shown as solid
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The spectral functions shown in fig.(3.16) for mfRG and NRG for various interaction

strength and ǫd + U/2 = U/4 show exactly this behaviour. The Kondo resonance is

pinned to the chemical potential. The stronger the interaction is, the stronger is the

pinning effect. Especially the Kondo resonance is described very well by mfRG. For

U/∆0 = 2π the spectral functions calculated with mfRG are presented in fig.(3.17). It is

clearly visible, that the Kondo resonance shifts slightly to the right, but the shift is much
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Figure 3.16: Spectral functions from fRG for different U/∆0 and ǫd = −U/4.
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Figure 3.17: Spectral functions from fRG for U/∆0 = 2π and different ǫd.

smaller than the absolute value of the impurity level shift. Additionally the frequency

dependence of the real part of the self-energy causes the spectral function to lose its

symmetry. For 2PTh no spectral functions are presented. From the discrepancy in the

self-energy curves it is already clear that they are not appropriate to correctly describe

the dynamics away from the Lorentzian behaviour around U = 0.

One observable of interest in the asymmetric case is the filling of the impurity level. This

occupancy can be calculated relatively easily. Starting from Σ(iω) this can be basically

done in three ways. The simplest one is to use the generalized Friedel sum rule [22], which

relates the occupancy of the impurity level to the real part of the self energy at the Fermi

level, i.e. at ω = 0,

〈n〉Fr = 1 − 2

π
arctan

ǫd + ReΣ(0)

∆
. (3.25)

This especially allows to calculate the occupancy of the impurity level without includ-

ing frequency dependence. For some applications this can be quite useful, e.g. for the

calculation of the static spin susceptibility that is presented later on. Another way is to

calculate 〈nd〉 from the Green function on the imaginary axis according to

〈n〉Gr = lim
δ→0

∫ ∞

−∞

dω

2π
G(iω)eiωδ . (3.26)
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The third method is to directly calculate the occupation number from its flow equation

using eq.(2.31) and eq.(2.33). Of course the occupation number could also be calculated

from the spectral function using

〈n〉 =

∫ 0

−∞

dωρd(ω) (3.27)

as well. But since the process of Padé approximation was necessary to obtain the spectral

function, it seems favourable to choose a method depending on the imaginary axis data

only, since the quantitative accuracy of the analytic continuation is hard to determine

especially away from the Kondo resonance. The results are shown in the table further

down for various levels of asymmetry and for U/∆0 = 2π and for fRG and NRG. 2PTh

results are not shown since it has already been made clear that the perturbative result

shows strong deviations from the correct result.

(εd + U
2
)/∆0 〈n〉Fr; NRG 〈n〉Gr; NRG 〈n〉Fr; fRG 〈n〉Gr; fRG 〈n〉flow; fRG

0 1.00 1.00 1.00 1.00 1.00

1 0.92 0.91 0.90 0.91 0.86

2 0.76 0.76 0.79 0.79 0.71

3 0.53 0.55 0.62 0.56 0.53

4 0.36 0.38 0.39 0.36 0.35

Comparing the three ways of calculating 〈nd〉, it becomes apparent that 〈n〉Fr and 〈n〉Gr

agree more or less. This means that mfRG does fulfill the Friedel sum rule. For larger

asymmetries minor deviations show up. In these cases eq.(3.26) gives the better result.

Looking at the numbers, it is immediately obvious that the impressions from comparing

the self-energy curves are confirmed by these numbers. The occupancy calculated from

mfRG agrees extremely well with the one from NRG. The influence of the impurity level

shift on the occupancy calculated from 2PTh is too strong. fRG and NRG show a stronger

tendency of the interacting system to keep the occupancy near 1. The conclusion is that

mfRG is capable of reliably describing the properties for small and intermediate interac-

tion strength regardless of the other parameters. 2PTh only works well in the specific

situation of particle-hole-symmetry. The results from the flow-equations for the density

are not very convincing in this case.

Another observable that can be quite easily calculated is the static impurity spin suscep-
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tibility defined as

χ =
d

dh
(n↑ − n↓)

∣
∣
∣
∣
h=0

, (3.28)

where h is an external magnetic field. This is introduced in the model by just shifting

the impurity level positions for electrons with up and down spin by ±h/2, which leads

to different free propagators for spin up and down electrons. Consequently the vertex

functions develop a dependence on the spin direction as well. This has to be taken into

account when parametrizing the two-particle vertex. Now there is a channel for the

interaction between two spin up electrons, two spin down electrons and between a spin

up and a spin down electron. The new parametrization of the two-particle vertex is given

by

γ̄Λ
2 (ξ′1, ξ

′
2; ξ1, ξ2) = δ(ω1 + ω2 − ω′

1 − ω′
2)

{

δσ1,σ2
δσ′

1
,σ′

2
δσ1,σ′

1
UΛ
↑ (iω′

1, iω
′
2; iω1, iω2)

+δσ1,σ2
δσ′

1
,σ′

2
δσ1,σ′

1
UΛ
↓ (iω′

1, iω
′
2; iω1, iω2)

+δσ1,−σ2
δσ′

1
,−σ′

2

(

δσ1,σ′

1
UΛ
↑↓(iω

′
1, iω

′
2; iω1, iω2)

−δσ1,−σ′

1
UΛ
↑↓(iω

′
2, iω

′
1; iω1, iω2)

)}

. (3.29)

In complete analogy to the procedure described above, flow equations for UΛ
↑ , UΛ

↓ , UΛ
↑↓,

ΣΛ
↑ and ΣΛ

↓ are derived.

The results for approximations neglecting the frequency dependence can be found in [15].

In the simplest case, i.e. particle-hole symmetry, the UΛ
i in the flow equations for the

self-energy are replaced by their initial value. The static spin susceptibility can then be

analytically calculated to be

χapprox ∝ exp
U

π
. (3.30)

In the symmetric case the inclusion of the flow of UΛ
i (without frequency dependence) does

not change the exponential behaviour and the exponent is unchanged. Only the prefactor

and consequently the absolute value of the susceptibility is improved. In fig.(3.18) the

static spin susceptibility is shown depending on the interaction strength U calculated

with fRG neglecting the frequency dependence of UΛ
i and ΣΛ, with NRG and with fRG
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Figure 3.18: Static spin susceptibility calculated with fRG and different levels of approx-
imation; NRG curve for comparison.

including frequency dependence. The exponential behaviour of data from NRG and the

static version of fRG is clearly visible. One should expect these results to improve when

including the frequency dependence. This is however only partially the case. Like for the

effective mass, where NRG predicts exponential behaviour in the strong coupling regime

as well, the frequency dependent fRG cannot deliver an exponential behaviour. For small

to intermediate U the absolute value of the susceptibility improves and gets very close to

the exact NRG value. But on the same scale as for the effective mass, around U/∆0 = 10,

the result gets worse before really reaching the strong coupling regime. The conclusion of

this is that the fRG, including frequency dependence of the self-energy, can be used to very

accurately calculate dynamic and static properties for not too large interaction strengths.

The exponential behaviour in the strong coupling regime cannot be reproduced in contrast

to the case when frequency dependence is neglected. When calculating the susceptibility

from 〈n〉flow, like for the occupancy the results are quantitatively not convincing in the

region where fRG gives accurate results. However, they are more suitable than the other

methods to describe the behaviour for large interaction strength, as the inset with the

logarithmic scale shows. The flow equation for the density seems to include terms that

are important at large U , while the prefactors at smaller U are described less accurately.
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It should be noted that the approximations neglecting frequency dependence are less

accurate concerning absolute values. This is due to prefactors that play an important

role before the spin susceptibility is described by the exponential behaviour in the strong

coupling regime.

3.6 Further Approximations

It has been indicated already that it is possible to make further approximations to simplify

the integration of the flow equations. Since the frequency dependence of the self-energy is

only generated by the frequency dependence of the two-particle vertex, any approximation

replacing UΛ(iω′
1, iω

′
2; iω1, iω2) by a constant, i.e. not frequency dependent, value, like it

has been done in other cases, e.g [15], is not sensible here. The most basic way to calculate

a frequency dependent two-particle vertex using flow equations is reproducing 2PTh as it

has been presented above. There are a few possible intermediate approximations between

2PTh and using the full flow equations for mc = 2. A short discussion of the quality of

these approximations shall be given here.

Starting from 2PTh as calculated from eq.(3.16) and eq.(3.17), the first step towards

the full fRG equations is to include the self-energy corrections on the rhs of eq.(3.16)

again, while calculating UΛ using 2PTh. In the following this scheme is referred to as

approximation 1 (App1). Including the self-energy on the rhs of eq.(3.17) as well is

the next approximation. Comparing it to the full fRG equations this is achieved by

replacing UΛ on the rhs of eq.(3.10) by its initial value (App2). In both approximations

the numerical effort is reduced considerably, since UΛ has to be calculated on a two

dimensional frequency mesh only. It will turn out that both approximations schemes

are not capable of producing very accurate data. Therefore another scheme shall be

introduced here. The starting point are the full fRG flow equations. Studying eq.(3.19),

it is obvious that in 2PTh UΛ can be written as a sum of three parts namely

UΛ(iω′
1, iω

′
2; iω1, iω2) = UΛ

1 (iω′
1 + iω′

2) + UΛ
2 (iω′

1 − iω1) + UΛ
3 (iω′

2 + iω1).

Using this representation on the rhs of eq.(3.10) and determining UΛ
1 only from the first

term on the rhs of eq.(3.10), UΛ
2 only from the second and UΛ

3 only from the third term,

one arrives at an approximation scheme that conserves most features of fRG (App3). It
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Figure 3.19: The imaginary part of the self-energy calculated with different approximation
schemes for U/∆0 = 5. The inset shows the low-energy region.

is important to use only one term from the rhs of eq.(3.10) for each Ui since constant con-

tributions will otherwise lead to divergences. A more detailed description of the technical

details, that lead to this approximation, is given in appendix B. In the schemes App2 and

App3 it is possible to use the modified propagator PΛ
mod. Like in the full fRG scheme this

leads to an improvement of the results. In this section all results presented have been

calculated using the modified propagator.

To analyze these three schemes, the symmetric case will be considered first. Fig.(3.19)

shows the results for U/∆0 = 5. A surprising thing is that the three approximation

schemes do not lead to results between 2PTh and fRG as on could expect from their

construction. All three schemes show a qualitative agreement with full fRG. Quantita-

tively App2 is the worst one while App1 and App3 are comparably close to the full fRG

curve. The picture changes when the low energy part is examined. Here App1 and App2

completely fail to reproduce the result from full fRG while App3 is in excellent agreement

with it. For U/∆0 = 10 these impressions are validated. Especially the fact that App2

produces the worst curve is confirmed. In the low energy region only App3 can be used

to obtain good results.

One question that arises when looking at the self-energy in fig.(3.20) is, what conse-

quences the difference between the full fRG and the approximate version has on the real
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axis. It is to be expected that the Kondo resonance remains more or less unchanged,

since this feature is strongly coupled to the low energy behaviour on the imaginary axis.

Fig.(3.21) shows spectral functions for U/∆0 = 5 and U/∆0 = 10 obtained from full

fRG, from App3 and from NRG. For U/∆0 = 5 all three curves are very similar. For

this interaction strength the approximate scheme can be used as well as the full fRG.
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Figure 3.21: Spectral functions for U/∆0 = 5 (left) and U/∆0 = 10 (right) calculated
with full mfRG and App3.
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For U/∆0 = 10 there is an observable difference between the curves. The discrepancy

between fRG and NRG has already been discussed earlier. Like one could expect from

the low energy behaviour of the self-energy, the Kondo resonances from full fRG and from

App3 are very similar, while at higher energies discrepancies become apparent. App3

shows a quicker broadening at the basis of the resonance and the atomic peaks are closer

to the ones from NRG. One can trace the broader basis to the scheme itself. The atomic

peaks in the spectral function of App3 are only visible if the frequency mesh used for the

integration of the flow equation is interpolated with very much effort. Since the overall

numerical effort for App3 is much lower than for the full fRG, this can easily be done

here. For this reason it is not clear whether the difference in the atomic peaks is due to

the scheme. For values of U/∆0, where the atomic peaks are not yet well separated from

the resonance in the center, this does not have a major impact. For larger U it should be

kept in mind that the self-energy determined from the approximate scheme is less reliable

than the one obtained with the full fRG, although this might not have a major impact

on the spectral functions.

When examining the asymmetric case, one has to differentiate between the frequency

dependence in both, imaginary and real part, and the constant shift of the real part. As

fig.(3.22) shows for U/∆0 = 2π and ǫd = −U/2 + ∆0, all three approximations are quite

close to the full fRG, i.e. they are capable of describing the constant shift much better

than 2PTh. The accuracy of the frequency dependence of App2 and App3 is as good as

in the symmetric case while App1 is worse than in the symmetric case. As the asymmetry
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Figure 3.23: Self-energy from fRG, NRG and the different approximation schemes for
U/∆0 = 2π, ǫd = −U/2 + 2∆0

rises, these observations are confirmed. Fig.(3.23) shows the results for U/∆0 = 2π and

ǫd = −U/2+2∆0. App3 is still very well describing the constant shift in the real part. The

frequency dependence is as good as before. The accuracy of App2 and App1 is getting

worse. App2 is describing the frequency dependence more accurately than App1 and the

shift of the real part as calculated with App1 differs significantly from the others.

Over all these results are not very surprising. While App1 is quite close to 2PTh and

gains from the knowingly good results of 2PTh in the symmetric case, it fails rather

quickly in the asymmetric case. App2 takes into account all self-energy corrections and it

therefore shows the same stability towards a shift in ǫd as the full fRG, but replacing the

UΛ by a constant on the rhs of eq.(3.10) is not suitable to give an accurate description of

the frequency dependence. Only App3 is an approximation scheme that is worth using.

While being not as accurate as full fRG on the imaginary axis, it reproduces the low

energy behaviour excellently and like full fRG it is usable in the symmetric as well as in

the asymmetric case. Additionally the reduced overall numerical effort allows to spend

much effort on the interpolation of the frequency mesh and on the integration of the flow

equations. For this reason it can be preferable to use this scheme, especially in more

complex systems.
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3.7 Summary

In this chapter the results from fRG calculations for the self-energy, the spectral functions,

the occupancy of the impurity level and the static spin susceptibility have been compared

to NRG, which is known to produce very accurate results for the Single Impurity Anderson

Model, and to 2PTh, which is contained in fRG in the sense, that fRG with mc = 2 is

exact up to second order in the bare interaction. The fRG has been found to lead to

reliable results for not too large interaction strengths. While 2PTh only works well in

the special case of particle-hole symmetry, fRG does not suffer from such a drawback.

Especially in the non-symmetric case it provides a clear improvement compared to 2PTh.

The fact that in the symmetric case improvements can only be observed in the low-energy

region is not due to a problem of fRG but to the fact that 2PTh works particularly well

in this case, even for larger U . The fRG is simply not gaining anything from turning

to particle-hole symmetry. Two versions of fRG results were presented, the conventional

scheme and a modified scheme. For small U both schemes give practically identical results.

If the interaction strength grows to regions of U/∆0 > 3, the modified scheme has to be

used to obtain accurate results. From U/∆0 ≈ 7 on the conventional scheme cannot be

used to produce any results anymore due to divergences in the integration flow. This

is the same parameter region where the results from the modified scheme start to differ

from the exact ones. The comparison of results from the conventional scheme and from

the modified scheme could give a hint for the quality of the results when treating systems

where an exact solution is not at hand for comparison. It was pointed out that fRG can be

used to calculate dynamical properties like the self-energy and the Green function as well

as static observables like the impurity occupancy number and the static spin susceptibility.

Including frequency dependence was confirmed to be important to get accurate results for

small and intermediate bare interactions, while other schemes are preferable when aiming

at exponential behaviour in the strong coupling regime.

Finally different approximations to the full fRG scheme were discussed. It was pointed out

that for sensible frequency dependent results for the self-energy, the frequency dependency

of the two-particle vertex has to be taken seriously and cannot even be neglected in the

flow equation for UΛ. One approximation was presented, that reproduces the full fRG to

a large degree and that is especially capable of describing the low-energy behaviour rather

well.
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Chapter 4

Two Impurities Anderson Model

The two impurities Anderson model describes two impurities, coupled to the same metallic

host. If the position of the impurity α is given by ~Rα, α = 1, 2 the Hamiltonian of this

system is

H =
∑

~k,σ

ǫ~kc
†
~kσ
c~kσ

+ V
∑

α,~k,σ

ei~k ~Rα

(

c†~kσ
dα,σ + h.c.

)

+ǫd
∑

α,σ

d†α,σdα,σ + U
∑

α

d†α,↑dα,↑d
†
α,↓dα,↓ . (4.1)

Compared to the SIAM (eq.(3.7)) the Hamiltonian has changed only in so far that the

impurity operators have obtained an additional index α that can take the values α = 1, 2

representing the two impurities. Although the Coulomb interaction is restricted locally

and a direct exchange between the two impurities is not present, an indirect coupling via

the conduction band electrons leads to new interesting physics compared to the single

impurity case. Heuristically there is a competition between two effects. On one side

V V

U

thop

Figure 4.1: Two impurity sites coupled to a 1d chain.
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the two impurities are screened individually by the band electrons so that each impurity

behaves like a single impurity as described in the previous chapter. On the other side the

interaction mediated by the conduction band electrons, the so-called Rudermann-Kittel-

Kasuya-Yosida (RKKY) interaction, leads to a coupling of the two impurity spins. In

general both, a ferromagnetic and an antiferromagnetic coupling, are possible. Which of

the two is present in the system under investigation depends on details of the coupling,

i.e. the electronic host and the position of the impurities. It seems obvious that for small

inter-impurity distances the RKKY interaction should be dominant. With a growing

distance between the impurities the coupling should get weaker and at large distances

the individual screening of each impurity should be dominant. What distance is small

or large in this context is of course depending on the other parameters of the system

especially the bare interaction U and the single impurity Kondo temperature TK . Due to

the spatial extension of the screening cloud it is not clear whether a complete individual

screening can take place at a finite distance at all. It will turn out that the behaviour of

the system is largely dependent on the choice of the electronic host. In this chapter two

different hosts will be studied. The first host will be a linear tight-binding chain, which

is a typical 1d system. Free electrons in three dimensions will be the second electronic

host. The impurity level will be set to ǫd = −U/2 throughout this chapter.

The problem of two magnetic impurities coupled to a metallic host has been studied in

various publications in the past. Refs. [36]-[53] have closely investigated the TIAM using

various methods. Using the fRG, it is possible to reliably calculate the single particle

dynamics of different variants of the TIAM within the same framework. It is possible to

use a microscopic model like the linear chain as electronic host as well as a free electron

gas. Additionally the two impurities Kondo model (TIKM) has been studied in numerous

publications as well [55]-[61].

If the interaction strength U is much larger than the bandwidth of the electronic host,

the behaviour of a system with two Anderson impurities can accurately be described by

a TIKM [55], like in the one impurity case. A generalized Schrieffer-Wolff transformation

that connects the TIAM to the Kondo model was presented in 2006 [54]. Like the TIAM

in eq.(4.1), the TIKM does not contain any terms directly coupling the two impurities. A

perturbative treatment in the coupling J between the impurity spins and the electronic

host gives rise to a term

JRKKY
~S1 · ~S2 (4.2)
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in second order in J . The behaviour of the TIKM is determined by two parameters: the

single impurity Kondo temperature TK and the effective RKKY coupling JRKKY . The

RKKY coupling can be both ferromagnetic or antiferromagnetic. For large antiferromag-

netic JRKKY , the system is in a spin singlet state. If JRKKY /Tk is small, the system

displays a normal Kondo effect that becomes a correlated Kondo effect when a growing

ferromagnetic JRKKY leads to a spin triplet state. In [59] Jones and Varma find a critical

point between the Kondo and the spin singlet phase. The existence of this critical point

has been discussed controversially, because others like Fye and Hirsch did not find this

critical point in their finite temperature Monte Carlo calculations [55]. NRG calcula-

tions on the related Anderson model by Sakai et al. did not display this critical point

either [41]. In [61] Affleck et al. solved this discrepancy by field theoretical methods.

They conclude that two different kinds of particle hole symmetry can be found in models

with two magnetic impurities. Either the even and odd parity orbitals (explained fur-

ther down) are both particle-hole symmetric (ρeven/odd(ω) = ρeven/odd(−ω)) or only obey

ρeven(ω) = ρodd(−ω) resulting in a particle-hole symmetric total spectral function as well.

A critical point only exists in the first case. Both, the TIKM studied by Fye and Hirsch

and the TIAM, will usually not have the kind of particle hole symmetry that is necessary

for the existence of such a critical point. These systems show a cross-over from the spin-

singlet to the Kondo phase.

The dynamics of the TIAM, namely the spectral density, has been calculated with pertur-

bative methods [46],[49], with NRG [41] and recently with the dynamical Density Matrix

Renormalization Group (DDMRG) [53]. Still all these methods have their problems. Per-

turbation theory can be used to obtain an accurate picture of the dynamics in certain

limiting cases but is not universally applicable. In the previous chapter these limitations

have been discussed for the single impurity case. NRG provides very accurate low energy

results but is less precise at larger energies. Furthermore the standard implementation

loses precision at small interaction strengths. DDMRG results have been only presented

in the limit of vanishing inter-impurity distance. In this chapter the single particle dy-

namics of the TIAM obtained from fRG will be studied. In particular their dependence

on the inter-impurity distance and the consequences of the competition between Kondo

effect and RKKY interaction for the spectral function will be studied.

Throughout this chapter the two impurities will be equivalent (ǫd, U and V in eq.(4.1)

do not depend on the impurity index α). All quantities, like the free propagator G0, the

full propagator G, the self-energy Σ and the hybridization matrix Γ, now have a diagonal
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part and an off-diagonal part. Using a matrix representation, the free propagator is now

given by

G0(iω) =

(

iω − ǫd − Γ1,1 −Γ1,2

−Γ1,2 iω − ǫd − Γ1,1

)−1

, (4.3)

with the hybridization matrix Γ being given by the conduction band’s Green function

Γα,β = V 2G0
c (iω, |~Rα − ~Rβ |) = V 2G0

c (iω, R) . (4.4)

The full propagator is obtained from the free propagator by replacing Γi,j with Γi,j +Σi,j.

In the case of two impurities it is helpful to switch from a description using diagonal and

off-diagonal quantities to one, using states of even and odd parity with respect to the

exchange of impurity numbers. The creation/annihilation operators of these states are

given by

d
(†)
even/odd =

1√
2
(d

(†)
1 ± d

(†)
2 ). (4.5)

The corresponding hybridization matrix reads

Γeven/odd = Γ1,1 ± Γ1,2 (4.6)

and the Green function for even/odd states is given by

Geven/odd(z) =
1

z − ǫd − Γeven/odd

(4.7)

or expressed by the matrix elements of the original Green function

Geven/odd(z) =
1

2
(G1,1(z) ± G1,2(z)) . (4.8)

The spectral function for the even and odd states can be calculated in the same way, since

it is given by the imaginary part of the propagator. The details of the dynamics depend

largely on the details of the hybridization matrix. In particular the influence of the inter-

impurity distance depends rather strongly on the off-diagonal part of the hybridization

matrix and thereby on the specific electronic host [41],[40]. Some general things about

the spectral function at U = 0 of the TIAM can be said however. At R = 0 one obviously

finds Γ1,1 = Γ1,2 =: Γ which directly leads to Γeven = 2Γ and Γodd = 0. This results in

a Lorentzian of width 2Γ in the even case and in a δ-peak in the odd case. The odd
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Figure 4.2: Typical spectral functions at U = 0 in a system with a finite Re(Γ1,2).

parity states are decoupled from the rest of the system in this case and form a bound

state. They are coupled to the system by the interaction which leads to a broadening of

the sharp resonance. In the limit R → ∞ it is expected that the hybridization between

the impurities tends to 0. This results in Γeven = Γodd = Γ. Both channels now behave

like single Anderson impurities. These limits will be discussed in detail for the different

electronic hosts. In general the off-diagonal part of the hybridization can be a complex

function. In [40] Jones et al. point out that in particular the real part of this function

is crucial for the dynamics of a two impurities system because it leads to a splitting

of the central resonance in the diagonal part of the spectral function. This real part

is added/subtracted to Γeven/odd. This causes a shift of the impurity level in different

directions. The peak of the even/odd spectral function is shifted in different directions,

too. The diagonal part of the spectral function is the sum of the even/odd spectral

function. A sufficiently large shift in the even/odd channel leads to a splitting of the

central resonance. This situation is shown in fig.(4.2). A smaller shift will only result in a

suppression of the resonance, while there is still one maximum at ω = 0. The imaginary

part of Γ1,2 determines the difference of the widths of the even and the odd resonance.

The interaction can influence both, the shift of the resonance in the even and odd spectral
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function and the width of both resonances. From the above analysis it follows that even

if ǫd = −U/2, the system will only be particle-hole symmetric if Γ1,2 is either purely

imaginary or purely real. If it is real, the even and the odd resonance are identical but

shifted in opposite directions, so that the sum is symmetric again. If it is imaginary, both

resonances are symmetric around ω = 0 and therefore the sum is also symmetric.

4.1 Flow equations

The main difference between the SIAM and the TIAM with respect to the flow equations

is that the multi-index k now contains an additional index m = 1, 2 to denote the two

impurities. In the parametrization of the two particle vertex one has to take into account

the indirect interaction between the different impurities. There are basically two different

forms of indirect interaction. First, there is the interaction of one electron on one impurity

and one on the other impurity. This is described by MΛ
2 and MΛ

3 . Second, there is

an indirect hopping starting with two electrons on one impurity and ending with both

electrons on the other impurity, described by MΛ
4 . The easiest way to parametrize a

vertex with these interactions would be

γ̄Λ
2 (ξ′1, ξ

′
2; ξ1, ξ2)

= δm1,m′

1
δm2,m′

2
δm1,m2

(δσ1,σ′

1
δσ2,σ′

2
UΛ

1 − δσ1,σ′

2
δσ2,σ′

1
Ũ1

Λ
)

︸ ︷︷ ︸

MΛ
1

+δm1,m′

1
δm2,m′

2
δm1,m̄2

δσ1,σ′

1
δσ2,σ′

2
UΛ

2
︸ ︷︷ ︸

MΛ
2

−δm1,m′

1
δm2,m′

2
δm1,m̄2

δσ1,σ′

2
δσ2,σ′

1
Ũ2

Λ

︸ ︷︷ ︸

MΛ
3

+δm1,m2
δm′

1
,m′

2
δm1,m̄′

1
(δσ1,σ′

1
δσ2,σ′

2
UΛ

4 − δσ1,σ′

2
δσ2,σ′

1
Ũ4

Λ
)

︸ ︷︷ ︸

MΛ
4

.

This is not sufficient to be exact up to second order in the interaction strength. The

interaction of electrons carrying opposite spin on different impurities has to be separated

into a channel where each electron stays on its original impurity and one in which the

electrons exchange their positions. If both electrons are on the same impurity, these

two channels are indistinguishable in an antisymmetrized vertex. The two-particle vertex
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taking this into account reads

γ̄Λ
2 (ξ′1, ξ

′
2; ξ1, ξ2)

= δm1,m′

1
δm2,m′

2
δm1,m2

(δσ1,σ′

1
δσ2,σ′

2
UΛ

1 − δσ1,σ′

2
δσ2,σ′

1
Ũ1

Λ
)

︸ ︷︷ ︸

MΛ
1

+δm1,m′

1
δm2,m′

2
δm1,m̄2

(δσ1,σ′

1
δσ2,σ′

2
UΛ

2 + δσ1,σ′

2
δσ2,σ′

1
UΛ

3 )
︸ ︷︷ ︸

MΛ
2

−δm1,m′

1
δm2,m′

2
δm1,m̄2

(δσ1,σ′

2
δσ2,σ′

1
Ũ2

Λ
+ δσ1,σ′

1
δσ2,σ′

2
Ũ3

Λ

︸ ︷︷ ︸

MΛ
3

+δm1,m2
δm′

1
,m′

2
δm1,m̄′

1
(δσ1,σ′

1
δσ2,σ′

2
UΛ

4 − δσ1,σ′

2
δσ2,σ′

1
Ũ4

Λ
)

︸ ︷︷ ︸

MΛ
4

,

where

UΛ
i = UΛ

i (iω′
1, iω

′
2; iω1, iω2), ŨΛ

i = UΛ
i (iω′

2, iω
′
1; iω1, iω2) . (4.9)

Using this parametrization and performing the sum over the impurity indices in eq.(2.26),

the flow-equations for the two-particle vertex are

d

dΛ
MΛ

1 = − 1

2π

∑

σ,σ′

∫ ∞

−∞

dν ×
[

PΛ
1 (iν, iν + iν1 + iν2)

(

MΛ
1MΛ

1 + MΛ
4MΛ

4

)

+PΛ
2 (iν, iν + iν1 + iν2)

(

MΛ
1MΛ

4 + MΛ
4MΛ

1

)

+
{

PΛ
1 (iν,−iν1 + iν ′1 + iν)

(

MΛ
1MΛ

1 + MΛ
2MΛ

2

)

+PΛ
2 (iν,−iν1 + iν ′1 + iν)

(

MΛ
1MΛ

2 + MΛ
2MΛ

1

)

+(1′ ↔ 2′; 1 ↔ 2) − (1′ ↔ 2′) − (1 ↔ 2)
}]

,

(4.10)
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d

dΛ
MΛ

2 = − 1

2π

∑

σ,σ′

∫ ∞

−∞

dν ×
[

−PΛ
1 (iν, iν + iν1 + iν2)

(

MΛ
2MΛ

3 + MΛ
3MΛ

2

)

+PΛ
2 (iν, iν + iν1 + iν2)

(

MΛ
2MΛ

2 + MΛ
3MΛ

3

)

+
{

PΛ
1 (iν,−iν1 + iν ′1 + iν)

(

MΛ
1MΛ

2 + MΛ
2MΛ

1

)

+PΛ
2 (iν,−iν1 + iν ′1 + iν)

(

MΛ
2MΛ

2 + MΛ
1MΛ

1

)

+(1′ ↔ 2′; 1 ↔ 2)
}

−
{

PΛ
1 (iν,−iν2 + iν ′1 + iν)

(

MΛ
3MΛ

3 + MΛ
4MΛ

4

)

+PΛ
2 (iν,−iν2 + iν ′1 + iν)

(

MΛ
3MΛ

4 + MΛ
4MΛ

3

)

+(1′ ↔ 2′; 1 ↔ 2)
}]

(4.11)

and

d

dΛ
MΛ

4 = − 1

2π

∑

σ,σ′

∫ ∞

−∞

dν ×
[

PΛ
1 (iν, iν + iν1 + iν2)

(

MΛ
1MΛ

4 + MΛ
4MΛ

1

)

+PΛ
2 (iν, iν + iν1 + iν2)

(

MΛ
1MΛ

1 + MΛ
4MΛ

4

)

+
{

−PΛ
1 (iν,−iν1 + iν ′1 + iν)

(

MΛ
3MΛ

4 + MΛ
4MΛ

3

)

+PΛ
2 (iν,−iν1 + iν ′1 + iν)

(

MΛ
3MΛ

3 + MΛ
4MΛ

4

)

+(1′ ↔ 2′; 1 ↔ 2) − (1′ ↔ 2′) − (1 ↔ 2)
}]

,

(4.12)

where Mi are frequency and spin dependent functions as defined in eq.(4.9). For MΛ
3

no flow equation is needed since the frequency dependent functions UΛ
2 and UΛ

3 can be

determined from MΛ
2 . The remaining sum over the spin indices is performed in complete
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analogy to the procedure in the one impurity case and the result is not shown here.

Appendix C gives a more detailed derivation of the flow equation for UΛ
1 as an example.

For the self-energy there is one flow equation for the diagonal part

d

dΛ
ΣΛ

σ (iω)diag = − 1

2π

∑

ω

SΛ
1,1(iω) ×

[

2UΛ
1 (iω, iαΛ; iω, iαΛ)− UΛ

1 (iαΛ, iω; iω, iαΛ)

+2UΛ
2 (iω, iαΛ; iω, iαΛ) + UΛ

3 (iαΛ, iω; iω, iαΛ)
]

(4.13)

and one for the off-diagonal part

d

dΛ
ΣΛ

σ (iω)off = − 1

2π

∑

ω

SΛ
1,2(iω) ×

[

−2UΛ
3 (iω, iαΛ; iω, iαΛ)− UΛ

2 (iαΛ, iω; iω, iαΛ)

+2UΛ
4 (iω, iαΛ; iω, iαΛ)− UΛ

4 (iαΛ, iω; iω, iαΛ)
]

.

(4.14)

Again, these equations have to be integrated numerically using a suitable mesh of fre-

quencies. The initial conditions for ΣΛ0 and the UΛ0

i are given by

ΣΛ0

diag =
U

2
; ΣΛ0

off = 0 (4.15)

UΛ0

1 = U ; UΛ0

2 = UΛ0

3 = UΛ0

4 = 0. (4.16)

In eq.(4.10) to eq.(4.12) the combined propagator PΛ
i appears with an additional index

i = 1, 2. This is due to the matrix structure of the propagators G0,Λ, GΛ and SΛ. The

combined propagators are given by

PΛ
k,con(iν, iν

′) = SΛ
1,k(iν)GΛ

1,k(iν
′) (4.17)

and

PΛ
k,mod(iν, iν

′) = − d

dΛ
GΛ

1,k(iν)GΛ
1,k(iν

′) . (4.18)
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These can be calculated in the same way as in the one impurity case, using eq.(3.12).

Without looking at the explicit result of these calculations, it is immediately obvious,

that from Γ1,2 = 0 it follows P2=0. This and the initial conditions eq.(4.15) directly lead

to Σ1,2 = U2 = U3 = U4 = 0 leaving the flow equations for the single impurity case as

presented in chapter 3.

Compared to the one impurity case, the numerical effort for the integration of the flow

equations is increased roughly by a factor 8. This is due to the four frequency dependent

functions in the parametrization of γΛ
2 on the one side and the increased number of terms

on the rhs of eq.(4.10) to eq.(4.12) compared to eq.(3.10).

In the case of two impurities it is interesting to analyse the behaviour of the ground state

energy as function of the distance between the impurities R. In chapter 2 the general flow

equation for the zero-particle vertex was presented in eq.(2.29). Here it takes the form

d

dΛ
lim
T→0

TγΛ
0 =

d

dΛ
eΛ0 = − 1

2π

∑

α,β

∑

ω=±Λ

ln
[
1 − G0

α,β(iω) ΣΛ
β,α(iω)

]
. (4.19)

This is only the interaction dependent part of the ground state energy. The ground state

energy for the non-interacting case can be easily calculated from

〈H〉 =
∑

k≤kF ,σ

ǫk,σ − 1

π
Im

∫ 0

−∞

dω
[

(ω + ǫd + Γ1 − 2ωΓ′
1)G1 + (Γ2 − 2ωΓ′

2)G2

]

, (4.20)

where Γ′ is the derivative of Γ with respect to ω and G = G0 [32]. Although this formula

could be used in the interacting case as well, it is preferable to use the flow-equation

for eΛ0 . Since the truncation of the fRG flow equation hierarchy is a non-conserving ap-

proximation, the use of a separate flow equation is formally the correct way to determine

the value of γ0. Additionally one can expect the approximation made by truncating the

hierarchy to be the better the lower the order of the calculated vertex is. Truncating the

hierarchy after the two-particle vertex should therefore give a better approximation for

the zero-particle vertex than for the self-energy. Another reason for the use of the flow

equation is that otherwise it would be necessary to use the analytic continuation of G(iω),

which is numerically less reliable than the direct result from eq.(4.19).

Another observable, that is of great interest in the two impurity case, is the spin-spin

correlation function 〈~S1 · ~S2〉. This value characterizes the correlation between the two

magnetic moments. From this value one can see whether the coupling between the mag-
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netic moments is ferromagnetic or antiferromagnetic and how strong it is. The standard

way to calculate this property from fRG would be to derive a separate flow equation like

it has been done in chapter 2 for the occupation number 〈nd〉 (eq.(2.31)).The comparison

of different methods to calculate 〈nd〉 showed, that this does not necessarily give the most

accurate result. Therefore a different method will be used here. Using the Pauli spin

matrices σx,y,z, the spin operator Sx,y,z
i can be written as

Sx,y,z
i =

1

2

∑

a,b

d†i,aσ
x,y,z
a,b di,b, (4.21)

where i is the impurity index and a, b can be ↑ and ↓. Using this, the spin-spin correlation

function can be expressed in terms of the d(†)i:

〈~S1 · ~S2〉 =
1

2

(

〈d†1,↑d1,↓d
†
2,↓d2,↑〉 + 〈d†1,↓d1,↑d

†
2,↑d2,↓〉

)

+
1

4
〈(n̂1,↑ − n̂1,↓)(n̂2,↑ − n̂2,↓)〉 . (4.22)

Using the two-particle vertex function, the two-particle Green function can be calculated

according to [17]:

G2(k
′
1, k

′
2; k1, k2) = G(k′1; k1)G(k′2; k2) − G(k′1; k2)G(k′2; k1)

+
∑

q′
1
,q′

2
,q1,q2

G(k′1; q
′
1)G(k′2; q

′
2)γ2(q

′
1, q

′
2; q1, q2)G(q1; k1)G(q2; k2), (4.23)

where k
(′)
i = (m

(′)
i , σ

(′)
i , iω

(′)
i ). Now the expectation values in eq.(4.22) can be calculated

from the two-particle Green function in analogy to eq.(3.26). In the non-interacting case

the expression reduces to

〈~S1 · ~S2〉0 = − 3

32
(〈neven〉0 − 〈nodd〉0)2. (4.24)

4.2 Results

Before turning to the results from fRG calculations for specific systems, the quality and

the reliability of these results should be discussed briefly. Comparing the results to 2PTh

and comparing the results from conventional and modified fRG, it turns out that in

situations with an antiferromagnetic RKKY coupling between the impurities fRG is at

least as good as in the one impurity case, i.e. interaction strengths up to U/∆0 = 10 are
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reliably treatable. Unfortunately a comparison to NRG is not possible, since NRG is not

capable of producing reliable results for dynamical properties at small and intermediate

interaction strengths. If the coupling between the impurities leads to a weak ferromagnetic

correlation, the quality of fRG results is still comparable to the one impurity case. For

strong ferromagnetic couplings, the effective on-site interaction grows very large during

the integration of the flow equations. In these situations fRG is not capable of producing

convincing results. Therefore no quantitative results are presented for such systems. All

results shown in this chapter are obtained from the modified fRG scheme.

4.2.1 1d Tight-Binding Chain

The first electronic host studied will be a one-dimensional tight-binding chain of infinite

length. The impurities are coupled to chain sites that have a distance R measured in

chain sites. The Green function of this host can be calculated analytically. If the hopping

between the chain sites is t, it reads

G0
c (iω, R) =

−i sign(ω)√
w2 + 4t2

[

iω

2t
− i sign(ω)

√

ω2

4t2
+ 1

]R

. (4.25)

The corresponding bandwidth is W = 4t. Unless explicitly stated differently, t is set to

t = 1/2. Note, that for imaginary frequencies no band-edge singularities appear. The

hybridization between chain and impurities is set to V = 0.1 throughout this chapter.

This leads to

∆0 := −ImΓ1,1(0 + i0) = 0.01 , (4.26)

which is much smaller than the bandwidth.

For real frequencies, ω + i0 within the bandwidth G0
c can be transformed to

G0
c (ω + i0, R) =

−i√
4t2 − ω2

e−ik(ω)R, k(ω) = arccos
( ω

2t

)

. (4.27)

For large R this function is heavily oscillating for small frequencies. These oscillations will

be visible in the spectral function at large distances R as well. Looking at G0
c in eq.(4.25),

it becomes apparent, that there will be a strong even-odd effect in this system. For even R

the hybridization Γ1,2 will be imaginary, while for odd R it is real. The consequence of this

behaviour becomes more obvious when looking at the states with an even and odd parity.
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Figure 4.3: Off-diagonal part of the hybridization function for various thop and R.

An even R will result in Γodd(0+i0) = 0, which leads to a δ−peak in the spectral function.

Although this peak is broadened when turning on the interaction, a reminiscence of this

peak remains for even R. Additionally the results from [55] suggest that for even R the

impurities are coupled with a rather strong ferromagnetic RKKY interaction. For R = 0

this result is confirmed in [53]. As stated above, fRG is not capable of producing reliable

results in this situation. Therefore the discussion here will be restricted to odd R. For

odd R there is an oscillatory effect as well. The hybridization function changes its sign for

neighbouring odd R. The impact of this effect is only a minor one. The change of sign in

the off-diagonal part of the hybridization causes a change of sign in the off-diagonal part

of the Green function. The result is that even and odd parity properties are exchanged.

Especially the diagonal part of the spectral function remains unchanged.

The choice of thop = 1/2 might be considered a special case, but as long as the bandwidth

W = 4t of the linear chain is much larger than ∆0, a changed thop only leads to a rescaling

of the R-dependence of the results. The R-dependence is caused by the off-diagonal part

of the hybridization function, which is shown in fig.(4.3). The diagonal part shows no

relevant frequency dependence as long as W ≫ ∆0. The reduction of thop for a given R

has the same effect as the increase of R for a constant thop. The qualitative influence of

the inter-impurity distance on the dynamics of the system does therefore not depend on
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the choice of thop. Only the quantitative dependence on the distance R is effected by a

given thop. As in the one impurity case, the most basic question is how the one-particle

dynamics depend on the interaction strength U/∆0. Fig.(4.4) shows the even and odd

67



parity spectral functions at R = 1 and for different interaction strengths. In the high

energy region the behaviour is similar to the single impurity case. The dynamics are

governed by the atomic peaks again. The peaks of the spectral functions are shifted away

from the chemical potential resulting in a splitting of the central resonance in the total

spectral function (fig.(4.5)). This behaviour is to be expected from NRG calculations

by Sakai et al. on the same kind of system [41]. Obviously the position of the peaks

depends strongly on the interaction strength. While for U = 0 the shift is exactly ∆0

corresponding to the value of Γ1,2(0 + i0) = ∆0, with growing interaction strength the

shift of the even/odd parity peaks is getting smaller. The even and odd spectral functions

show the same pinning effect that counteracts the shift of the Kondo resonance in the one

impurity case if going away from ǫd = −U/2. The reason for this behaviour is the compe-

tition between the inter-impurity coupling and the Kondo physics caused by the on-site

interaction. Fig.(4.8) shows the spin-spin correlation function and the effective mass as

a function of R. The values for R = 1 can be found there for different values of U . The

correlation of the spins at R = 1 increases almost linearly with growing U . The plot

for the effective mass only shows the effective mass relative to its single impurity value.

Although this relative value is decreasing with growing U , the absolute value, which is

relevant here, grows much faster than the spin correlations, since the single impurity value

of the effective mass is increasing very fast with growing U . For this reason the level shift

caused by the hybridization between the impurities is suppressed by the Kondo effect with

growing interaction strength. Although an increase of the interaction strength causes a

sharpening of the resonances in the even and odd channel as well as in the full spectral

function, these resonances are much broader than in the single impurity case. The effec-

tive mass, that is inversely connected to the Kondo temperature and to the width of these

resonances, is much smaller than the one from the corresponding SIAM. With growing U

the relative effective mass is decreasing. This is caused by the growing spin-spin correla-

tions (fig.(4.8)). Due to the RKKY interaction, 〈~S1 · ~S2〉 is getting stronger with growing

U and the effect on the two impurity system relative to the corresponding single impurity

system is getting stronger, too.

For much larger interaction strengths, fRG data is getting less reliable. An accurate

calculation of the shift in the even/odd spectral function for values U/∆0 > 20 is not

possible. To answer the question whether the splitting of the central resonance will van-

ish for any finite U , another observation is useful. With growing interaction strength the

value of the spectral function is decreasing. The increasing spin-spin correlations cause a
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growing suppression of the Kondo resonance. Although fRG is not capable of producing

quantitatively accurate data for very large U , it is obvious that the spectral weight at the

chemical potential is decreased. The conclusion is that with growing interaction strength

the splitting of the central resonance is getting arbitrarily small while at the same time

the spectral weight at the chemical potential is more and more suppressed. In ref.[52] the

same result was found using perturbation theory. Only in the limit U → ∞ the gap will

close.

Summarizing, one can say that the antiferromagentic RKKY coupling has a grave impact

on the low energy behaviour in this system. With an increased interaction strength the

correlation of the spins is increased as well and the effect relative to a single impurity

system is growing. This correlation suppresses the fluctuations that lead to the Kondo

resonance in the one impurity case. The splitting of the Kondo resonance is existant for

all finite interaction strengths. While the suppression of the Kondo resonance is increased

with growing interaction strength, i.e. with growing correlation of the impurity spins, the

shift in the even and odd spectral function leading to the splitting is decreased.

Besides the interaction strength U , the other parameter in this models that directly

influences the multi-impurity character of the system is the distance between the impuri-

ties R. This influence will now be further investigated, especially aiming at the question,

whether for a finite value of R the system shows a cross-over from a state with antiferro-

magnetically correlated spins to a state, where both impurities are individually screened

like in the one impurity case. The even and odd spectral functions for U/∆0 = 5 and
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Figure 4.6: Even and odd parity spectral functions for different values of R;
left: U/∆0 = 5; right: U/∆0 = 10.
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U/∆0 = 10 are shown in fig.(4.6) for different values of R. Two things are to be ob-

served for both interaction strengths. The resonances in the even and the odd channel

are getting higher and slightly sharper and the shift of the resonances away from the

chemical potential is decreasing with an increasing inter-impurity distance R. Although

the resonance shift is getting smaller, its dependence on the inter-impurity distance is

rather weak. This impression is confirmed by the occupation number of the states with

even parity. Without a resonance shift, this quantity would be 〈n̂even〉 = 1. The deviation

from this value can be serve as a measurement for a resonance shift. The left panel of

fig.(4.7) confirms this observation. The occupancy of the even states is approaching 1 but
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Figure 4.9: Spectral functions for R = 1000; U/∆0 = 5 and U/∆0 = 10.

the process is rather slow. The smaller deviation from 1 for larger interaction strength is

caused by the smaller shift of the even and odd parity resonance as it was discussed above.

Fig.(4.8) shows the spin-spin correlation function and the effective mass as a function of

R for different interaction strengths. The correlation of the impurity spins is decaying

slowly as the suppression of the central resonance is getting weaker. At the same time

the effective mass is slowly approaching the single impurity value as the resonances are

getting sharper. The interaction strength U has no great influence on the R-dependence

of the dynamics.

For very large distances the quantities shown approach their single impurity value. The

ground state energy shown in the right panel of fig.(4.7) clearly shows a saturation for

R > 1000. The spectral functions for R = 1000 are shown in fig.(4.9). In addition to the

interaction caused effects, the hybridization causes an oscillatory behaviour here. Near

the chemical potential two peaks can be observed but their position, as well the position

of all other extrema, does not depend on the interaction strength. Their distance corre-

sponds to the frequency of the eik(w)R term in eq.(4.27).

Overall, the dependence of the dynamics of two impurities coupled to a 1d tight-binding

chain on the inter-impurity distance is rather weak. A clear cross-over from a state with

an antiferromagnetic correlation between the impurity spins and a state with two individ-
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ual Anderson impurities is not observable. The properties of the system approach their

single impurity values as the inter-impurity correlations are decaying, but this process is

extremely slow. This results from the specific form of the hybridization function. The

R-dependence is only given by a faster decay at large frequencies. The strength of the

hybridization at ω = 0 is independent of R. This causes visible effects for all finite R since

the inter-impurity hybridization will always be as strong as the on-site interaction around

ω = 0. The hybridization function in the next section will behave differently. This will

result in a completely different R-dependence of the single particle dynamics.

4.2.2 Free Electron Gas

To show the dependence of the TIAM’s properties on the electronic host, now a three-

dimensional free electron gas is used. With such an electronic host, the TIAM can be

used to describe magnetic atoms in a bulk metal. The hybridization matrix used here is

the same as in [39] and [40]. It is an approximation to the exact hybridization matrix of

the free electron gas that is good if kFR is not too small. The diagonal part is given by

Γ1,1(iω) = −i sign(ω)∆0, (4.28)

like in the one impurity case studied in chapter 3. The off-diagonal part is

Γ1,2(iω) = − ∆0

kFR
(cos kFR+ i sign sin kFR). (4.29)

In contrast to the previous section, the hybridization matrix is frequency independent

except for the sign of ω. Here the strength of the inter-impurity hybridization is reduced

with growing kFR. Furthermore the off-diagonal part of the hybridization matrix has

a finite real and imaginary part at the same time. This leads to an interplay of the

ferromagnetic and an antiferromagnetic coupling mediated by the imaginary and the real

part, respectively. In addition a competition of the magnetic coupling and the Kondo

effect is to be expected. Since the strength of the inter-impurity coupling is getting

arbitrarily weak, the single impurity behaviour is expected to be restored at finite kFR.

For small kFR the two impurities are coupled ferromagnetically, see e.g. [39], [49]. Since

the coupling is rather strong, the system shows a combined Kondo effect and the Kondo

temperature is much smaller than in the single impurity case. In this regime fRG is
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not capable of reliably calculating the single-particle dynamics, since the effective on-site

interaction is growing very large, like for the 1d-chain at even distances R.

The left panel of fig.(4.10) shows the spin-spin correlation function as a function of kFR.

The result is consistent with the one from [39]. The correlation function is oscillating while

the strength is decaying fast. In [40] Jones et al. have estimated the RKKY interaction

for the TIKM to decay with the third power of the impurity distance. Here the strength of

the spin-spin correlation decays a little slower but still faster than 1/(kFR)2. The effective

mass is shown in the right panel of fig.(4.10). It is approaching its single impurity value

as quickly as the correlations are decaying. One can observe that for a ferromagnetic

correlation the effective mass is increased, while it is decreased for an antiferromagnetic

coupling. The consequences of this behaviour for the single particle dynamics can be

observed in fig.(4.11) for U/∆0 = 10 and various kFR. In the strong ferromagnetic

coupling regime at small kFR, the odd parity channel shows a sharp resonance while the

even channel shows a rather broad resonance. In the diagonal part of the spectral function,

the low energy region is dominated by the resonance from the odd parity channel. As

the correlation of the impurity spins is getting weaker, the resonances in the even and

in the odd parity channel are both getting closer to the shape known from the single

impurity case. For values of kFR > 4 no significant change in the spectral function can be

observed. The interaction strength has only for rather small values of kFR a significant

influence on the inter-impurity coupling. Qualitatively the same behaviour was observed

using perturbative methods in [49]. In the high energy region the system is governed

by the single impurity physics for all distances kFR. There is no region in which an
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Figure 4.10: Spin-spin correlation (left) and effective mass (right) as a function of kFR.

73



-4 -2 0 2 4
ω/∆0

0

0,1

0,2

0,3

0,4

0,5

0,6

ρ ev
en

(ω
) π

∆ 0

k
F
R=1.8

k
F
R=2.4

k
F
R=4.5

0
0

0,1

0,2

0,3

0,4

0,5

0,6
k

F
R=1.8

k
F
R=2.4

k
F
R=4.5

-4 -2 0 2 4
ω/∆0

0

0,5

1

ρ ev
en

(ω
) π

∆ 0

k
F
R=1.8

k
F
R=2.4

k
F
R=4.5

-0,2 -0,1 0 0,1 0,2
0

0,5

1
k

F
R=1.8

k
F
R=2.4

k
F
R=4.5

Figure 4.11: Even (right) and odd (left) parity spectral functions for U/∆0 = 10 and
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antiferromagnetically coupled system would show a splitting of the Kondo resonance like

it was observed in the case of the 1d chain.

Summarizing, one can state, that the TIAM with a 3d free electron gas as electronic host

behaves completely different compared to the TIAM with a 1d chain. While the system

shows a correlated Kondo effect for small inter-impurity distances, it goes over to a system

displaying single impurity behaviour for larger distances. Although there are phases in

between where the impurity spins show a weak antiferromagnetic coupling, it is too weak

to leave significant traces in the spectral function.

4.3 Summary

In this chapter the single particle dynamics of the TIAM were analysed with a 1d tight-

binding chain and a 3d free electron gas as electronic hosts. It was made clear that the

behaviour of the system largely depends on the electronic host and the corresponding

hybridization matrix.

In the case of the 1d tight-binding chain the system showed a strong even/odd effect.

For impurities coupled to sites with an even number of chain sites between them, the

impurities are coupled ferromagnetically while for an odd number of chain sites in between

the impurities are coupled antiferromagnetically. In this case fRG was used to calculate

the one particle dynamics. At small inter-impurity distances the spectral function shows

a splitting of the Kondo resonance. The antiferromagnetic coupling causes a suppression
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at the chemical potential. This suppression gets stronger for larger interaction strengths,

since the coupling of the impurity spins via RKKY interactions is also increased. With

a growing inter-impurity distance the correlation effects are wearing off only slowly and

remain visible for all finite R. The reason for this is the weak R-dependence of the

hybridization matrix. The absolute value of the off-diagonal element at ω = 0 shows

no R-dependence at all. In this sense not the strength of the inter-impurity coupling is

changed with R but only the frequency dependence.

If the host is a 3d electron gas, the behaviour is different. For small inter-impurity

distances, the system displays a correlated Kondo effect with a much smaller Kondo

temperature than in the single impurity case. With growing distance the correlations are

decaying quickly and the spectral function is almost the same as in the single impurity

case. The reason for this is that the off diagonal part of the hybridization function decays

like 1/kFR. The strength of the inter-impurity coupling is getting weaker. Although

there are distances at which the two impurity spins are antiferromagentically coupled, the

coupling in these regimes is already too weak to cause something like a splitting of the

Kondo resonance as in the 1d chain case.
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Chapter 5

Quantum Dots

In the last few years the Anderson model has extensively been used to describe quantum

dot (QD) systems [16],[65]-[71]. Although an artificial nanoscopic structure like a QD

seems to be something entirely different than one or more impurity atoms in a metal,

it turns out that both systems are very similar. A typical QD is a structure in which

electrons are locally confined and subject to a Coulomb interaction. The mesoscopic

size of the QD causes discrete energy levels that are well separated. For a theoretical

description of the relevant physics only a few, or even only one, energy level near the

Fermi surface is sufficient. The QD is connected to one or more electronic leads so that

electrons can tunnel in and out of the dot. The Hamiltonian for such a QD system is

given by

H =
∑

~k,σ,β

ǫβ,~kc
†

β,~kσ
c
β,~kσ

+
∑

α,σ

ǫαd
†
α,σdα,σ + U

∑

α

d†α,↑dα,↑d
†
α,↓dα,↓ +

∑

α,β,~k,σ

Vα,β

(

c†
α,~kσ

dα,σ + h.c.
)

+
∑

α6=α′,σ

tα,α′

2

(

d†α,σdα′,σ + h.c.
)

+
∑

α6=α′,σ,σ′

U ′
α,α′

2
d†α,σdα,σd

†
α′,σ′dα′,σ′ . (5.1)

The model consists of N QDs described by the second and the third term coupled to

M electronic leads described by the first term. The N ×M-matrix Vα,β describes the

connection of the QDs to the different leads. The level position ǫα of a QD can be
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Figure 5.1: Geometries of quantum dots studied in this chapter.

controlled by an external gate voltage Vg. The last two terms describe the direct coupling

of the different QDs by a direct hopping t and a Coulomb repulsion U ′. For U ′
α,α′ = tα,α′ =

0, N = M and Vα,β = V δα,β the system reduces to N decoupled single impurity systems.

In this chapter four different QD geometries will be studied. The first one is the SU(N)

symmetric SIAM. It can be obtained from eq.(5.1) by setting N = M , Vα,β = V δα,β,

tα,α′ = 0 and U ′
α,α′ = U , i.e. N dots, every one coupled to its own host, without any

hybridization between them, but with a Coulomb repulsion that does not differentiate

between the different dots. This model can be used to describe degenerate levels with

orthogonal wavefunctions like in rare earth impurity systems [22]. In this chapter it is also

treated to analyse the ability of fRG to describe the effects of an inter-impurity Coulomb

repulsion on the dynamics of a system.

The second geometry will be a linear chain of two QDs ((A) in fig.(5.1)). In this system

the influence of the inter-dot hopping t, the level position ǫα and the inter-dot interaction

U ′ will be investigated.

Additionally two different types of three dot systems will be studied. First a linear

geometry with two leads as shown in (B) will be used. Finally a Y-shaped geometry

as shown in (C) will be investigated. In this case the parameter t1,3 is varied against

t1,2 = t2,3 and the influence of an inter-dot Coulomb interaction is analysed in the special

case t1,2 = t1,3 = t2,3.

In other publications, systems with parallel QD geometries have been studied [16],[65],[66].

In these geometries two or more dots are coupled to a left and a right lead in a parallel

way. In these systems the indirect coupling between the dots leads to a ferromagnetic

coupling of the spins on the dots as like in the R = 0 case of the TIAM. As for the TIAM,

fRG is not capable of producing reliable results for these systems without a strong direct
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hopping between the impurities. For this reason such systems will not be studied in this

work.

5.1 Flow Equations

Very similar to the proceeding in the previous chapter, the first step towards flow equations

for the QD model is the calculation of the free propagator. It has to be determined by

an inversion of a N × N -matrix. For the cases studied in this chapter, this can be done

analytically and the result for each case will be given in the corresponding section. Like the

electronic host in chapter 3, the leads in this chapter will be flat electronic bands of infinite

bandwidth. Consequently the hybridization matrix Γα,α′(iω) is frequency independent

except for a dependence on the sign of ω in the imaginary part. The next step towards

a set of flow equations is the parametrization of the two-particle vertex. When including

an inter-dot interaction U ′
α,α′ , the parametrization of the vertex is more complicated than

in the previous chapters:

γ̄Λ
2 (ξ′1, ξ

′
2; ξ1, ξ2)

= δm1,m′

1
δm2,m′

2
δm1,m2

∑

α

δm1,α M1,Λ
α (ξ̃′1, ξ̃

′
2; ξ̃1, ξ̃2)

+δm1,m′

1
δm2,m′

2
δm1,m̄2

∑

α6=β

δm1,αδm2,β M2,Λ
α,β(ξ̃′1, ξ̃

′
2; ξ̃1, ξ̃2)

−δm1,m′

2
δm2,m′

1
δm1,m̄2

∑

α6=β

δm1,αδm2,β M3,Λ
α,β(ξ̃′1, ξ̃

′
2; ξ̃1, ξ̃2)

+δm1,m2
δm′

1
,m′

2
δm1,m̄′

1

∑

α6=β

δm1,αδm′

1
,β M4,Λ

α,β(ξ̃′1, ξ̃
′
2; ξ̃1, ξ̃2)

+δm1,m2
δm′

1
,m̄′

2
δm1,m′

1

∑

α6=β

δm1,αδm′

2
,β M5,Λ

α,β(ξ̃′1, ξ̃
′
2; ξ̃1, ξ̃2)

−δm1,m2
δm′

1
,m̄′

2
δm1,m′

2

∑

α6=β

δm1,αδm′

1
,β M6,Λ

α,β(ξ̃′1, ξ̃
′
2; ξ̃1, ξ̃2)

+δm1,m̄2
δm′

1
,m′

2
δm1,m′

1

∑

α6=β

δm1,αδm2,β M7,Λ
α,β(ξ̃′1, ξ̃

′
2; ξ̃1, ξ̃2)

−δm1,m̄2
δm′

1
,m′

2
δm1,m′

2
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1
,β M8,Λ
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2; ξ̃1, ξ̃2) ,
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with ξ̃
(′)
i = (σ

(′)
i , iω

(′)
i ) and α, β = 1, ..., N being impurity indices. In all cases Mi,Λ

α,β =

Mi,Λ
β,α, but the number of terms needed is increasing with the number of impurities N .

Due to special symmetries, the number of different functions, which are necessary to

parametrize the vertex, can be considerably reduced. The last four terms Mi,Λ
α,β, i =

5, ..., 8, are only needed in systems with an inter-impurity interaction U ′. For two identical

impurities and with U ′ = 0, the same parametrization as in the previous chapter remains.

In systems with four or more impurities and an inter-impurity interaction, additional terms

are necessary but since such systems are not studied in this work, these terms are not

given here. Like in the previous chapter the Mi,Λ
α,β consist of spin conserving δ− functions

and frequency-dependent functions U i,Λ
α,β(iω′

1, iω
′
2; iω1, iω2). It is easy to convince oneself

of the necessity of the last four terms due to the inter-impurity interaction by drawing all

possible diagrams for the two-particle vertex in second order perturbation theory. The

flow equations for the U i,Λ
α,β and the components of the self-energy ΣΛ

i,j are calculated in

the same way as for the TIAM.

5.2 Results

The results presented in this chapter are obtained from the modified fRG scheme (mfRG)

and the approximative scheme App3, that was introduced in chapter 3 and that is ex-

plained in detail in appendix B. The reason for the use of the approximative scheme is

that the discrepancies between full fRG and the modified scheme App3 are very small

for the multi-dot systems studied here. Due to these small discrepancies the approxima-

tive scheme is preferable for the calculation of spectral functions, because the reduced

numerical effort allows the use of a finer frequency mesh, leading to better results from

the analytic continuation.

5.2.1 The SU(N) Anderson Model

From the Hamiltonian given in eq.(5.1) this model is obtained for U ′
α,α′ = U , tα,α′ = 0,

N = M and Vα,β = V δα,β. In the QD framework, this model describes N identical
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dots or degenerate dot levels that are coupled to independent leads, so that no inter-

dot hybridization is present, while at the same time the inter-dot Coulomb repulsion

is as strong as the on-site interaction. This is a rather unphysical situation for a QD.

The physical application of this model is found in the description of rare-earth impurity

systems, where it very effectively describes the degenerate f−orbitals of the impurities

with their orthogonal wavefunctions [22]. Additionally this model allows to judge the

ability of fRG to describe the influence of an inter-dot interaction on the dynamics of a

multi-dot system. This is possible because the scaling of the Kondo temperature with the

degeneracy factor, i.e. the number of dots N , is known for the Coqblin-Schrieffer model,

which is a generalization of the Kondo model [62].

The free propagator for this problem as well as the self-energy and the full propagator

are diagonal in the impurity indices since there is no inter-dot hybridization. The high

symmetry of this model makes it possible to use only one frequency-dependent function for

the parametrization of the two-particle vertex. The flow equations are basically the same

as for the SIAM. The degeneracy factor N only enters the flow equations as a multiplying

factor. For this reason the treatment of arbitrary degeneracy factors is easily possible

within the fRG scheme. Here only the particle-hole symmetric case (ǫd = −U(N − 1/2))

will be studied.

From mean-field considerations one would expect the effective interaction strength to

increase with growing N . The result of this increased interaction would be an increase of

the effective mass and consequently a decrease of the Kondo temperature and a sharpening

of the Kondo resonance in the spectral function. 2PTh shows exactly this behaviour. The

self-energy from 2PTh can be related to the one from the SIAM. If the self-energy for the

SIAM as calculated in chapter 3 is given by

Σ2PTh,N=1(iω) = U2χ(ω) ,

with χ being the evaluated diagram shown in fig.(3.2) for U = 1, the self-energy for

arbitrary N is given in second order perturbation theory by

Σ2PTh(iω) =
(

U2 + 2(N − 1)U2
)

χ(ω),

i.e. the diagrammatic structure does not change. Therefore the effective mass, which is

given by the slope of Σ(iω) at ω = 0, is scaled up with growing N .
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Figure 5.2: SU(N) SIAM: Spectral functions for U/∆0 = 5 and M = 2 impurities.

Calculations using NRG and Bethe ansatz show that the Kondo temperature is increasing

instead of decreasing with growing N . This seems plausible, since the on-site interaction

favours a single-occupancy of the impurity levels leading to a local moment and the Kondo

resonance. At the same time the inter-dot interaction suppresses this single-occupancy

and therefore counteracts the on-site interaction and suppresses the Kondo effect.

Fig.(5.2) shows the spectral functions from NRG, fRG and 2PTh forN = 2 and U/∆0 = 5.

2PTh already shows severe discrepancies to fRG and NRG, while the latter two are in

good agreement. This means that while 2PTh is not able of correctly including an inter-

impurity interaction, fRG is capable of correctly treating the effects of such an interaction.

While NRG can be used to obtain results for systems with two impurities, it is not

capable of going beyond this, due to an exponential rise of the numerical effort. For

fRG this is no problem as pointed out above. The spectral functions for U/∆0 = 5 are

depicted in fig.(5.3) for different degeneracy factors N . While it generally looks like in

the single impurity case, the Kondo resonance shows severe differences. With growing

N the Kondo resonance is getting broader. This is caused by the influence of the inter-

impurity interaction that suppresses the Kondo effect by suppressing a single occupancy

of the impurity sites. The more impurity levels are involved, the greater the influence of
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Figure 5.3: SU(N) SIAM: Spectral functions for U/∆0 = 5 and different impurity num-
bers M .

the inter-dot interaction is. For constant interaction strength, the shape of the spectral

function is getting closer to the one of the non-interacting SIAM.

To further analyze the way the dynamics of a multi-impurity system change with growing

impurity number, the effective mass is shown as a function of the degeneracy factor N for

different interaction strengths (fig.(5.4)). In the non-interacting case it naturally takes

the value of 1. For all values of U the effective mass drops rather fast for small impurity

numbers and seems to saturate for large impurity numbers. It is noticeable that all three

curves seem to converge against different values. That means that for N → ∞ there is

a finite Kondo temperature, that depends on the interaction strength U = U ′, and that

the Kondo temperature is not scaled to infinity as the impurity number grows.

For the SU(N)-symmetric Coqblin-Schrieffer model it was predicted that the exponent

of the effective mass scales like 1/N [62]. Consequently mN
eff should show the same

exponential behaviour as a function of U for different values of N . Although fRG is not

capable of reproducing the exponential behaviour in the strong coupling limit, the curves

in fig.(5.5) display the same logarithmic derivative (the curves are almost parallel). That

means fRG shows the predicted scaling behaviour with growing N . This scaling behaviour

cannot be observed in fig.(5.4), due to additional prefactors in the effective mass.
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impurity numbers.

Overall it can be said that in contrast to 2PTh, fRG correctly describes the influence of

an inter-dot interaction on the one-particle dynamics. It can be used to reliably calculate

spectral properties of the SU(N)-symmetric SIAM, as long as the interaction strength does

not get too large. The value of U , up to which reliable data can be obtained increases

with growing N .

5.2.2 Linear Double Quantum Dot

The double quantum dot (DQD), that is investigated in this section, consists of a left and

a right lead with one quantum coupled to each. Both dots are connected with a direct
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Figure 5.6: Lin. DQD: Spectral functions for U/∆0 = 10, U ′ = 0

hopping t. Experimentally such a setup was studied in [63]. The parameters in eq.(5.1)

are set to N = M = 2, Vα,β = V δα,β, tα,α′ = t, U ′
α,α′ = U ′, ǫα = −U/2 − U ′ − Vg, where

Vg is an external gate voltage. The free propagator in this section is the same as for the

TIAM (eq.(4.3)) with

Γ1,1(iω) = −i sign(ω)∆0, Γ1,2(iω) = t . (5.2)

For t = ∆0 and U ′ = 0 this model is equivalent to the TIAM with the linear chain as

electronic host if the frequency dependence of the hybridization matrix is neglected. The

R = 1 case of the linear chain TIAM, where the frequency dependence is not important,

has an almost identical spectral function as this linear DQD. Thus the results from the

DQD can be applied to the TIAM for small values of R and vice versa. This is especially

true for the dependence on the inter-impurity interaction U ′, that was not investigated

for the TIAM.

First of all the influence of the direct hopping on the one-particle dynamics is going to

be analyzed. The inter-impurity interaction is set to U ′ = 0 for the moment as well as

the gate voltage Vg = 0. Using various numerical methods for the calculation of transport

properties, especially the conductance, it has been shown that a DQD has three phases
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depending on the strength of the direct hopping t [67]. For small t both dots form an

individual Kondo singlet with their adjacent leads. For larger t the system displays a

local singlet state, where the electrons on both dots are antiferromagnetically coupled.

At very large t the system is in a molecular orbital state, where the even parity orbital,

that is defined in the same way as for the TIAM, is doubly occupied. The system shows

a smooth cross-over from one state to the other. In fig.(5.6) spectral functions for various

values of t are shown. The three phases are clearly visible. For t/∆0 = 0.1 the spectral

function looks like the one from the SIAM. Both dots form an individual Kondo singlet

with their lead. With growing t the Kondo resonance is suppressed and for t/∆0 = 1 the

system is in a local singlet phase. If the hopping is increased further, there are two or-

bital resonances instead of the split Kondo resonance. Only in this phase the high-energy

physics are effected by the hopping. For very large t only the orbital peaks remain in the

spectral function.

Like in the previous chapter the splitting of the Kondo resonance can be understood in

terms of a level shift in the even and odd parity channel. This shift δ of the resonance

in the even and odd spectral function is depicted in the left panel of fig.(5.7). Without

interaction the resonance is shifted exactly by a value of t. With interaction the shift

is suppressed for small values of t before growing linearly with t. The three phases can

be observed here as well. In the Kondo singlet phase the level-shift is close to 0. In the

phase where the system forms an antiferromagnetic singlet the shift is slowly increasing

and in the orbital molecular phase the shift is growing linearly with t. One can observe

very clearly that for a larger interaction strength a larger value of t is needed to drive the
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Figure 5.7: Lin. DQD: Splitting of the spectral function as a function of t.
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system out of the Kondo phase or into the molecular orbital phase. The splitting of the

resonance in the total spectral function is influenced not only by the level shift, but also

by the width of the resonances in the even and odd parity channel. If the resonances are

sharper, the resonance shift that is necessary to observe a splitting of the total resonance

is smaller. For this reason the splitting of the resonance in the total spectral function

appears around t = 0.7∆0 for interaction strengths from U = 0 to U = 15∆0.

These phases can also be found in the spin-spin correlation function. In the Kondo phase

the spin-spin correlation is weak. The local moments on both dots are almost uncorrelated

and are individually screened. The correlation continuously increases in the local singlet

phase, before it saturates in the molecular orbital phase, where both electrons form a spin

singlet in the even orbital.

In contrast to systems of impurity atoms in metal, in a quantum dot system it is often

possible to tune the impurity level position by applying an external gate voltage Vg. The

influence of such a gate voltage on the single particle dynamics is now going to be analyzed

in a system that is in the combined singlet phase. The way Vg is defined here, a positive

Vg shifts the impurity levels down. Only positive Vg will be considered since negative gate

voltages would just shift the spectral function in the opposite direction. The spectral
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functions for U/∆0 = 10, t = ∆0 and different gate voltages are presented in fig.(5.8). For

small gate voltages the peak above the chemical potential, which is caused by the shift

in the odd parity channel, approaches ω = 0. The gate voltage counteracts the shift of

the resonance in the odd parity channel due to the hopping. Like the shift due to the

hopping the effect of the gate voltage is suppressed by the on-site interaction. For not too

large gate voltages the odd parity resonances are pinned against the chemical potential.

This pinning effect is stronger for a larger interaction strength. Approaching the chemical

potential the weight of the odd parity resonance is increased. For a sufficiently large gate

voltage the odd parity resonance is shifted below the chemical potential and the spectral

weight is quickly shifted away. The even parity resonance, that was below the chemical

potential, is suppressed first and then shifted by a value of approximately Vg.

This behaviour can be understood when looking at the occupation numbers. Increasing

Vg, the occupancy of the even parity channel quickly approaches 2. Consequently the

Kondo resonance in this channel disappears very fast. In the odd parity channel, the

interaction counteracts the double occupancy causing the pinning effect. When a suffi-

ciently large Vg leads to a doubly occupied odd parity channel, the Kondo resonance is

suppressed here as well. For large Vg the hole spectral weight is concentrated around
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the right atomic peak that is now at ω = −Vg. The spectral function now has the same

shape as in the non-interacting case only shifted by a value of Vg − U/2. The system is

now occupied by four electrons. The interaction does not influence the systems dynamics

anymore.

The inclusion of an inter-dot interaction U ′ has a severe impact on the spectral prop-

erties of the DQD. For U/∆0 = 10 and t = ∆0 the results of a growing inter-impurity

interaction for the spectral function are displayed in fig.(5.9). Like in the case of the

SU(N)-symmetric SIAM the inter-dot interaction counteracts the Kondo effect caused

by the on-site interaction. The effective mass is lowered and the splitting of the Kondo

resonance is increased. Besides the effect already known from the SU(N) SIAM, which

leads to a lowering of the effective mass, the reason for this behaviour is that the inter-dot

interaction creates a constant contribution to the off-diagonal part of the self-energy that

serves as an effective hopping that is much larger than the bare hopping. Consequently

the system is driven away from the Kondo singlet phase already for rather small values

of t and the transition to the molecular orbital phase takes place for smaller t as well.

Summarizing one can say that an inter-dot interaction strengthens the correlation effects

between the dots while it suppresses the forming of an individual Kondo singlet on each

dot.

5.2.3 Linear Triple Quantum Dot

In this section the dynamics of a linear triple quantum dot (TQD) are investigated. The

system consists of a left (1) and a right dot (3), which are connected to a left and a right

lead. Both dots are connected to a central dot (2) with a hopping amplitude t. This

system is obtained from the Hamiltonian given in eq.(5.1) with the parameters N = 3,

M = 2, V1,1 = V = V3,2 and Vα,β = 0 in all other cases, t1,2 = t2,3 = t, t1,3 = t′. The inter-

dot interaction and the gate voltage will be set to 0 in this section (U ′
α,α′ = 0, ǫα = −U/2).

The free propagator is obtained by the inversion of an 3 × 3-matrix, which reads

G0(iω) =






iω + U/2 + i sign(ω)∆0 −t −t′
−t iω + U/2 −t
−t′ −t iω + U/2 + i sign(ω)∆0






−1

. (5.3)
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Figure 5.10: Lin. TQD: Spectral functions of dot 1 (left) and dot 2 (right) for U/∆0 = 5
and various values of t.

Here only the case Vg = 0 and t′ = 0 is treated. For these values the system shows

particle-hole symmetry and the total number of electrons on the TQD is three. Conse-

quently there is a magnetic moment interacting with the lead electrons in every possible

configuration. The phases of a linear TQD have been analysed in [70],[71] as a function

of the hopping strength t.

Like the DQD, this model has three phases. If t is small, the system shows a two stage

Kondo effect (TSK). The spins on dot 1 and 3 are screened by conduction electrons in

the adjacent leads. The spin on the middle dot causes a Kondo effect with a much lower

Kondo temperature and a much higher effective mass than the other two. The spins on the

three dots are almost uncorrelated. When t is increased, the hopping causes antiferromag-

netic correlations between the neighbouring dots. The system forms an antiferromagnetic

spin chain (AFM) with a total spin 1/2, that is screened by the conduction electrons.

For large t the system crosses over to a molecular orbital (MO) regime like in the DQD

case. The bonding orbital is filled with two electrons. The spin of the third electron in

the antibonding orbital is screened by the lead electrons.

In the TSK regime fRG cannot be used to obtain reliable data. The strong Kondo effect

on the middle dot results in a very large effective on-site interaction. Like in other systems

with a very low Kondo temperature, fRG is not capable of describing this strong coupling

regime. For larger t the spectral functions are shown in fig.(5.10). For the smallest value

of t, one can still see that the Kondo resonance on the middle dot is a lot sharper than

on the outer dots.

89



The AFM regime is characterized by strong spin-spin correlations with an absolute value

depending on the interaction strength. The local moments on the three dots bind into

a rigid antiferromagnetic chain with total spin 1/2. The coupling between the spins has

been estimated to be J = 4t2/U in [70]. The red curve in fig.(5.10) (t = 0.75∆0) belongs

to this phase. The spectral functions on all three dots are almost identical here. They

are dominated by two peaks at ω ≈ ±J . These peaks correspond to the spin chain and

are not shifted Kondo resonances. Although the total spin 1/2 is Kondo screened, there

is hardly any Kondo resonance in this case. The total spin is screened by the electrons

in both leads. This leads to an effective hybridization of ∆0,eff = 2∆0. The consequence

is not only a greater width of the resonance but also a reduced height, which is now

1/π∆0,eff = 1/2π∆0. Knowing this, the Kondo resonance can be identified as the tiny

maximum at ω = 0.

For larger values of t the system crosses over to the MO phase. The broad peaks of the

bonding and the antibonding orbital form on all three dots, while their weight on the mid-

dle dot is approximately twice as large as on the outer dots. The unpaired electron leads

to a clear Kondo resonance on the outer dots as it is screened by the lead electrons. This

can be understood by looking at the eigenfunctions of a three-site tight-binding model

without interaction and open boundary conditions. The wavefunction of the binding or-

bital in this case is a sine-function with knots on the boundaries and a single maximum

in the middle. Therefore the corresponding resonance has the most weight on the middle

dot. The wavefunction of the antibonding orbital is a sine-function with knots on the

boundaries and in the middle. Consequently the Kondo resonance from the electron in

the antibonding orbital is visible only on the outer dots but not on the middle dot. The

height of this Kondo resonance is again 1/2π∆0, like in the AFM phase. One electron is

screened by the electrons in two leads. The Kondo temperature belonging to the screen-

ing of the antibonding electron is determined by U and ∆0. For large t it approaches the

single impurity value corresponding to U/2∆0.

The values of t belonging to a certain phase are non-universal and depend on U . For

the cross-over from the TSK to the AFM phase the interplay between the single impurity

Kondo temperature T1,K and the coupling of the spins J is relevant. For the crossover from

the AFM to the MO phase the relation between J and the hopping t is important. Gener-

ally the value of t, where the transitions take place, is larger the stronger the interaction is.
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Figure 5.11: YTQD: Spectral functions of dot 1 (left) and dot 2 (right) for U/∆0 = 5,
t′ = 0 and various values of t.

5.2.4 Triple Quantum Dot with Y-Geometry

The configuration investigated in this section is very similar to the one in the last section.

The only difference is that not only the outer dots 1 and 3 are coupled to leads. Here the

middle dot is coupled to a lead as well. The parameters in the Hamiltonian (eq.(5.1)) are

N = M = 3, Vα,β = δα,β , t1,2 = t2,3 = t, t1,3 = t′ and U ′
α,α′ = U ′. The level position is set

to ǫα = −U/2 −U ′. The case U ′ 6= 0 will only be considered at the end of the section for

the symmetric situation t = t′. The free propagator is the same as in the previous section

except for one difference: Due to the additional coupling of the middle dot to a lead, all

diagonal elements of the inverse propagator are identical including a hybridization term.

Besides its application to quantum dot geometries, this configuration can be used to study

clusters of atomic impurities in metals, like Cr-clusters in Au [64]. In [69] Savkin et al.

used a Green function for the electronic host, which is given by

G−1
c (iω, R) = G−1

c (iω, |~Rα − ~R′
α|) = δα,α′G−1

c (iω, 0) − tα,α′ . (5.4)

The inter-impurity hybridization is given by tα,α′ . By the use of this conduction band

Green function, a connection between quantum dots and impurity atoms in a metal is

possible. Since all impurities have a direct hybridization with the embedding metal, this

connection between QDs and impurity atoms can only be made if all dots are connected

to a lead. In this section only real tα,α′ will be considered, leading to antiferromagnetic

correlations. Like in the previous section the case t′ = 0 will be studied first. As the
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linear TQD, this system is particle-hole symmetric for t′ = 0 and the above choice for ǫα.

The TQD with Y-geometry (YTQD) shows some similarities to the linear TQD and some

similarities to the DQD. Like the linear TQD, this system is filled with three electrons in

the particle-hole symmetric case. Depending on the strength of the hopping parameter t,

the system can be in different phases. For small t the system rather behaves like a DQD

than like a linear TQD. Due to the additional lead, the system is not in a TSK regime

but all three dots are screened individually with the same Kondo temperature, that is

approximately given by the single impurity value. The spin-spin correlations are weak in

this phase. The spectral functions of the outer and the middle dot look like in the single

impurity case (fig(5.11)).

For larger t the antiferromagnetic coupling is increased. Unlike the linear TQD this system

does not show a separate AFM phase, in which the three spins bind into an antiferromag-

netic spin chain. The spin-spin correlations behave like in the DQD case. They increase

monotonically and saturate for large values of t. At intermediate values of t the system

behaves very similar to the DQD in the local singlet phase. In the spectral function on the

outer dots, the Kondo resonance is suppressed and approaches the resonance caused by

the screening of the electron in the antibonding orbital. On the middle dot the splitting

of the Kondo resonance known from the DQD can be observed as the molecular orbitals

develop. Overall, the system shows a smooth transition from the individual Kondo phase

to the MO phase.

The MO phase is very similar to the one in the linear TQD. The Kondo screening of

the electron in the antibonding orbital is completely unaffected by the third lead, since

the relevant wavefunction has no weight on the middle dot. The height and width of the

Kondo resonance are the same as for the linear TQD. Only the bonding is slightly differ-

ent. The additional lead causes charge fluctuations that result in a greater width of the

peaks. Therefore the peaks belonging to the bonding orbital are less well developed for a

given value of t than in the case of the linear TQD. Again values of t, where the system

shows a certain behaviour, are non-universal and depend on the interaction strength U .

Like in the other dot systems, that were investigated for larger values of U , also larger

values of t are needed for correlation effects to influence the systems properties. Compared

to the linear case, the hopping has to be a little bit larger to enter the MO phase.

Especially for the description of atomic clusters in a metal but also for the description

of QDs the inclusion of t′ is important. A non-zero value of t′ corresponds to a triangular

arrangement of the dots instead of a linear one. In the special case t = t′ the three dots
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Figure 5.12: YTQD: Spin-spin correlation function for U/∆0 = 5 and t = ∆0 as a function
of the hopping t′.

form an equilateral triangle. First the influence of an increasing t′ is studied while t is

kept constant. Afterwards the case t = t′ will be studied, including the influence of an

inter-impurity interaction.

For t′ = 0 the system has been described above. The spins of adjacent dots are antifer-

romagnetically coupled by the hopping t. The inclusion of t′ leads to frustration effects.

One expects the spin correlations to be suppressed first before, for larger t′ > t, the dots

1 and 3 form a dimer with an almost uncorrelated dot 2. The spin-spin correlation func-

tion shown in fig.(5.12) shows the expected behaviour. The antiferromagnetic correlation

between the outer and the middle dot is suppressed and goes to 0 for t′ > t while the
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Figure 5.13: YTQD: Spectral functions of dot 1 (left) and dot 2 (right) for U/∆0 = 10
and various values of t.

93



-4 -2 0 2 4
ω/∆0

0

0,2

0,4

0,6

0,8

1

ρ α(ω
) π

∆ 0

t=t’=0.2∆0
t=t’=0.6∆0
t=t’=∆0
t=t’=2∆0

Figure 5.14: YTQD: Spectral functions for U/∆0 = 5 and for various t = t′.

ferromagnetic correlation between dot 1 and 3 is suppressed for small t′ as well and turns

into a strong antiferromagnetic correlation for large t′ > t.

The spectral functions mirror this development (fig.(5.13)). On the outer dots the in-

creased t′ leads to a broadening and to a shift of the Kondo resonance. While for small

t′ the shift is suppressed, for larger t′ the resonance shift grows linearly with t′. For large

t′ the spectral function shows the same MO behaviour as for the DQD. The system has

changed from a trimer to a dimer with an additional dot. The spectral function of the

middle dot displays the inverted development. A single Kondo resonance is forming that

has the shape of a single impurity resonance for large t′. These results agree qualitatively

with the ones from [69] for antiferromagnetically coupled Kondo impurities. For different

interaction strengths the influence of t′ is very similar. The relation that is important for

the influence of t′ is the relation between t′ and t.

A special case is given for t = t′. The three dots now form an equilateral triangle. For

clusters of identical atoms in a metal this setup is of great importance [64]. Since this

system is not particle-hole symmetric, the value of t′ influences the occupation number.

While for t = 0 the total occupancy of the dot is three, it approaches four as t increases.

In this case the four electrons form a total spin 0 on the dot. Consequently the system

does not display any Kondo effect in this case. Since the spin-spin correlations in such

a frustrated system are rather weak compared to other geometries with comparable hop-

ping parameters, t will have to be rather large for a complete suppression of the Kondo

resonance.

The spectral functions shown in fig.(5.14) show exactly this behaviour. For small t they
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Figure 5.15: YTQD: Spectral functions for U/∆0 = 5, t = t′ = ∆0 and various U ′.

show no great difference to the single impurity case. With growing t the Kondo resonance

is suppressed due to the developing antiferromagnetic correlations that reduce the net spin

of the system. The shift of the Kondo resonance is suppressed by the on-site interaction

U . Only for fairly large t no resonance can be found around the chemical potential.

Due to the symmetry of the system the influence of an additional inter-dot interaction

can be easily investigated in this system. Fig.(5.15) shows spectral functions for constant

U and constant t = t′. Qualitatively the influence is the same as in the DQD system.

The inter-dot interaction generates an additional effective hopping and suppresses the

Kondo effect by increasing the correlations between the dots. Qualitatively the picture

has changed. While in the DQD an inter-dot interaction of U ′ = U had a major impact on

the one particle dynamics and significantly suppressed the Kondo effect, here the effective

mass and the width of the Kondo resonance are only influenced very slightly. This is

caused by the frustration in the system. It was already stated above that the hopping has

a smaller influence on this system than on non-frustrated systems. The same is true for

the effective hopping. This frustration does not only suppress the influence of the hopping

but also suppresses correlations caused by the inter-dot interaction. Summarizing, one

can generally say that an inter-dot interaction creates an effective hopping and supports

correlation effects, but that the impact on frustrated systems is much smaller than on

other systems.
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5.3 Summary

In this chapter the single particle dynamics of quantum dot systems described by an An-

derson impurity Hamiltonian were calculated using fRG. After a brief description of the

technical details needed to derive fRG flow equations for these systems, spectral proper-

ties for four different systems were presented.

The first system that was investigated was not a typical QD system but a SU(N) sym-

metric SIAM. In the QD framework this model describes N dots without an inter-dot

hybridization with every dot being coupled to its own lead. The inter-dot interaction is

equal to the on-site interaction. Besides its application on rare-earth impurity systems,

this model can serve as a benchmark for the ability of fRG to correctly describe the

influence of an inter-dot interaction on the one-particle dynamics. It was shown that,

while 2PTh completely fails to include the inter-dot interaction, fRG correctlydescribes

the impact of the inter-dot interaction on the one-particle dynamics.

The second system studied was a linear double quantum dot. The spectral properties

were analyzed depending on the strength of the hopping between the dots, an external

gate voltage and an inter-dot interaction. It was found that the system can be in three

different phases depending on the strength of the inter-dot coupling. For a weak cou-

pling a Kondo singlet phase was observed. At intermediate couplings the two dots form

a local singlet before going over to a molecular orbital phase at large couplings. These

three phases could be identified in the spectral functions of the system. The inter-dot

interaction was found to create an effective hopping and to enhance coupling effects.

In the next section a linear triple quantum dot was analyzed. Like the DQD it has three

phases depending on the strength of the hopping parameter: a two stage Kondo effect

phase for small couplings, a phase where the three dots form an antiferromagnetic spin

chain and a MO phase. In the TSK phase the local moments on all three dots are indi-

vidually screened but with a much smaller Kondo temperature on the middle dot. In the

AFM phase the three spins bind into a rigid spin chain and the total spin is screened. The

MO phase is characterized by a Kondo resonance on the outer dots due to the screening

of an unpaired electron in the antibonding orbital.

The last system studied was a TQD with a Y-shaped geometry. Three dots are coupled

to individual leads and are coupled by a direct hopping between the dots. If there is

no direct coupling between the dots 1 and 3, the system can be in two different phases

depending on the strength of the hopping parameter. For small hoppings a Kondo singlet
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phase is found. With a growing hopping parameter, the system crosses over to a MO

phase that behaves very similarly to the MO phase in the linear TQD. Additionally the

influence of a hopping between the dots 1 and 3 was studied. In this system frustration

effects between the spins become relevant. It was found that these frustrations suppress

the correlation effects. If the hopping between the dots 1 and 3 is large, these dots form

a dimer behaving like a DQD, while the third dot displays an individual Kondo effect.

The special case of three impurities on an equilateral triangle was studied, depending

on the strength of the hopping parameter. It was found that for large t the system was

occupied by four electrons with a total spin 0. Consequently the spectral function of such

a system shows no Kondo resonance for large t. Additionally the impact of an inter-dot

interaction was analyzed in this system. The result was that the qualitative effect is the

same as in the DQD case, i.e. an effective hopping is created and the Kondo effect is

suppressed. Quantitatively the impact of an inter-dot interaction is much smaller than in

the DQD case because of the frustration of the spins.

Summarizing, fRG was found to be capable of correctly describing single-particle dynam-

ics in quantum dot systems, as long as the systems are not dominated by strong coupling

physics. Especially in three dot systems up to now spectral functions and other dynami-

cal properties have only been calculated in very special cases. Using fRG, it was possible

to calculate spectral functions for systems that have been analyzed only by their static

properties up to now.
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Chapter 6

Conclusion and Outlook

In this work the functional renormalization group scheme was successfully used to cal-

culate the one-particle dynamics of Anderson-like impurity models. First, the general

framework of the fRG was presented. The flow equations for the self-energy, the two-

particle vertex and selected observables were derived for an arbitrary fermionic system.

In the next chapter the fRG was applied to the Single Impurity Anderson Model. A brief

description of the technical proceedings was given. The results from fRG were compared

to second order perturbation theory, which can be recovered from fRG and to NRG. The

flow equations were used to analytically calculate the self-energy and the two-particle

vertex in 2PTh. It was found that fRG is capable of reliably describing the single particle

dynamics of the SIAM for small and intermediate interaction strengths. In the strong

coupling regime it loses accuracy. Unlike 2PTh the fRG scheme works equally well in

different parameter regimes. While perturbation theory loses accuracy very quickly if the

system is away from particle-hole symmetry, fRG keeps its accuracy for values away from

ǫd = −U/2. Apart from the self-energy and spectral functions, selected observables were

calculated and compared. The earlier results, that fRG is a reliable tool as long as the

interaction is not too strong, were validated. Finally possible approximations to the full

fRG scheme were discussed. In particular one scheme was presented, that kept most of

the benefits from fRG, while reducing the numerical effort considerably.

Chapter 4 dealt with the Two Impurity Anderson Model with a linear tight binding chain

and with a 3d free electron gas as electronic hosts. After a short description of technical

details, fRG was used to calculate spectral properties and selected observables. In partic-

ular the interplay between a coupling of the impurity spins due to a RKKY-interaction
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and the Kondo effect caused by the on-site interaction was studied. In the case of the

linear chain it was found that both, an increased interaction strength at a constant inter-

impurity distance as well as an increased distance at a given interaction, do not lead to

an individual Kondo screening. In this system the antiferromagnetic RKKY-interaction

always has a relevant impact on the single particle dynamics. Using the 3d electron gas

as electronic host, the behaviour was completely different. Due to the fast decay of the

spin-spin correlations with growing inter-impurity distance, the dynamics of the system

were dominated by an individual Kondo screening of the impurity spins already for rather

small inter-impurity distances.

In chapter 5 the Anderson model was used to calculate the dynamics of quantum dot

systems. Four different types of systems were studied. First, a SU(N)-symmetric SIAM

was analyzed. In the QD-framework this system consists of N dots, with each dot coupled

to its own lead. The dots do not have a hybridization between them, but the inter-dot

interaction is as strong as the on-site interaction. The application of this model is found

rather in rare-earth impurity systems, but it can be used very well to analyze the ability

of fRG to treat an inter-dot interaction. It was found that while 2PTh completely fails

to correctly describe the effects of such an inter-dot interaction on the single-particle dy-

namics, fRG was able to give correct results here.

The next system studied was a linear double quantum dot. Depending on the strength of

the inter-dot hopping this system displays three different phases. A Kondo singlet phase,

where both spins are screened individually, a local singlet phase, where the spin-spin cor-

relations increase and a molecular orbital phase. In the local singlet phase, the system

behaves almost like two single dot systems. In the local singlet phase, the spectral func-

tion shows a splitting of the Kondo resonance due to a shift in the even and odd parity

channel. For large t, in the molecular orbital phase, the system has a doubly occupied

even orbital and an empty odd orbital. Additionally the influence of an external gate

voltage and an inter-dot interaction on the single particle dynamics were studied.

A linear triple quantum dot was studied next. Again the dependence on the hopping

strength was analyzed. Like the DQD this system has three different phases. A two-

stage Kondo effect phase, where the spins on all three dots are screened individually but

with a much lower Kondo temperature on the middle dot, a phase where the spins bind

into a antiferromagnetic spin chain and a molecular orbital phase. In the MO phase two

electrons occupy the bonding orbital and one electron is in the antibonding orbital. The

antibonding electron causes a Kondo resonance on the outer dots.
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Finally a triple quantum dot with a Y-shaped geometry was analyzed. If the outer dots

are not directly connected, the system behaves very similar to the linear TQD, but does

not show an AFM phase. The individual Kondo resonance on the outer dots is directly

transformed into the Kondo resonance of the antibonding electron with growing t. The

resonance on the middle dot is split and smoothly transforms to the molecular orbital

resonances.

The inclusion of a direct hopping between the outer dots causes frustration effects. If the

hopping between the dots 1 and 3 gets very large, these two behave like a dimer, while

the third dot shows an individual Kondo effect.

In the special situation of all three dots being on an equilateral triangle, the increase of

the hopping causes the total occupancy to approach four. The total spin of the three dots

consequently approaches zero, suppressing all Kondo effects in the system. For this sym-

metric situation the influence of an inter-dot interaction was studied once again. Like in

the DQD case it strengthens correlation effects and creates an effective hopping, but the

quantitative effect in frustrated systems is much smaller than in non-frustrated systems.

Up to now, the dynamics in TQDs or systems with three impurities have only been stud-

ied in very special situations and usually in the Kondo limit. Using fRG it was possible

to calculate spectral function for three Anderson impurities in various situations.

It has been shown throughout this work that the truncated fRG scheme used here is

capable of reliably calculating dynamical properties of zero-dimensional quantum impu-

rity systems if the interaction strength is not too strong. The SIAM has been used as

a benchmark. Unlike NRG, fRG cannot capture exponential behaviour in the strong

coupling regime, but also unlike NRG, it is applicable to systems with two and more

impurities without losing accuracy. Although the truncation of the scheme used here is

motivated by perturbation theory, it does not show the drawbacks of perturbation theory.

In the absence of particle-hole symmetry or with an included inter-impurity interaction,

fRG works as good as for the symmetric SIAM, if not better. In more complex systems,

where the Kondo temperature is raised, due to antiferromagnetic couplings, fRG works

even better. In systems with strong ferromagnetic couplings fRG does not work very well.

The inclusion of a magnetic field has already been presented when calculating the static

spin susceptibility for the SIAM. With a suitable parametrization of the two-particle

vertex an inclusion of Hund’s coupling should be possible. An extension to finite temper-

atures should also be possible, especially using the approximation scheme App3 presented

in chapter 3. With this approximation scheme the treatment of systems with four, five or
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even six impurities should be possible without losing accuracy.

Already the study of the triple quantum dots made it clear that with increased number

of impurities, the number of possible geometries and parameters rises very quickly. The

fRG scheme used here does not require any special geometries or symmetries. It should

be possible to treat a broad variety of problems with this scheme in the future.
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Appendix A

Padé Approximation

A problem that turns up when using fRG, is the analytic continuation of the numerical

data for e.g. the self-energy to the real axis. This is generally an ill posed problem and

therefore no ’solution’ can be offered. Nevertheless it is possible to obtain data for the

real axis, by calculating an analytically known approximation to the numerical data and

performing the analytic continuation on this approximation. The easiest and most often

used approximation technique, polynomial approximation is of no great use here for two

reasons. First a polynomial is not able to describe poles in the complex plane and sec-

ond a polynomial will always go to ±∞ as the frequencies go to infinity. The functions

considered in the context of this work will rather go to zero instead to infinity for large

frequencies. A better way of approximation that includes existing poles and displays the

right behaviour for large frequencies is a rational approximation, e.g. to use a quotient of

two polynomials as approximant. If the power series of the original function agrees with

the power series of the approximant to highest possible order, such a rational approxi-

mation is called Padé approximation. A basic introduction in rational interpolation and

Padé approximation can be found in [25].

One problem using Padé approximation is that most algorithms need the coefficients of

the power series of the function to be approximated. Although these coefficients can be

determined from numerical data, this is not a stable process. To overcome this problem a

method presented in ref.[30] is used in this work that determines the value of the approx-

imant without calculating any coefficients. This method is used throughout this work.

Still, the question of accuracy and stability arises. It turns out, that although the pre-

sented scheme usually works rather well, it occasionally produces results that are clearly
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unphysical and for larger interaction strengths the details of the results show a depen-

dence on the frequency mesh of the supplied data.

In this work two ways of judging the reliability of data from Padé approximation have

been used. First, if repeated calculations with changed frequency mesh give the same

result, this result is considered reliable. The second option is perform a spline inter-

polation on the numerical data and to choose the data used for continuation from this

approximation. If the result is stable for different choices of data sets, the approximation

seems reliable. It turned out that for small frequencies the results are very stable and

reliable. The width and lineshape of the central resonance of the spectral function can be

calculated very accurately with this method. In the region of the atomic peaks the results

can give a qualitative picture but are not stable enough for a quantitative analysis.
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Appendix B

Approximative fRG Scheme

In chapter 3 a approximation to the full fRG scheme was presented and discussed. It was

shown that this scheme is able to reproduce most of the features from the truncated fRG

scheme without any further approximations. Especially the low-energy region is described

very well with this scheme. A detailled description of how to derive this scheme is given

here.

The starting point are the full fRG eqs.(3.9) and (3.10). First, the frequencies ω′
1, ω

′
2, ω1

and ω2 = ω′
1 + ω′

2 − ω1 are replaced by

ν1 = ω′
1 + ω′

2,

ν2 = ω′
1 − ω1,

ν3 = ω′
2 − ω1. (B.1)

The frequency dependent part of the two-particle vertex can then be written as

UΛ(iω′
1, iω

′
2; iω1, iω2) = ŨΛ(iν1, iν2, iν3). (B.2)

The flow equations can be expressed in the new ŨΛ as well. For the self-energy it reads:

d

dΛ
ΣΛ

σ (iω) = − 1

2π

∑

α=±1

1

G
(0)
σ (iαΛ)

−1 − ΣΛ
σ (iαΛ)

[

2 ŨΛ(iω + iαΛ, 0, iαΛ − iω)−

ŨΛ(iαΛ + iω, iαΛ − iω, 0)
]

(B.3)
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The next step is to write ŨΛ(iν1, iν2, iν3) as a sum

ŨΛ(iν1, iν2, iν3) = ŨΛ
1 (iν1, iν2, iν3) + ŨΛ

2 (iν1, iν2, iν3) + ŨΛ
3 (iν1, iν2, iν3) + U . (B.4)

By the addition of U in the end the initial condition of all three ŨΛ
i becomes zero. The

ŨΛ
i represent the three parts of the flow equations: the particle-particle channel, the

particle-hole channel and the particle-hole’ channel. Their flow equations are

d

dΛ
ŨΛ

1 (iν1, iν2, iν3) = − 1

2π

∫ ∞

−∞

dν

[

PΛ(iν, iν1 − iν)

(

−ŨΛ(iν1, iν − 1
2
(iν1 − iν2 − iν3),

1
2
(iν1 + iν2 + iν3) − iν)

ŨΛ(iν1, iν − 1
2
(iν1 + iν2 − iν3), iν − 1

2
(iν1 − iν2 + iν3))

−ŨΛ(iν1,
1
2
(iν1 + iν2 + iν3) − iν, iν − 1

2
(iν1 − iν2 − iν3))

ŨΛ(iν1, iν − 1
2
(iν1 − iν2 + iν3), iν − 1

2
(iν1 + iν2 − iν3))

)]

,

(B.5)

d

dΛ
ŨΛ

2 (iν1, iν2, iν3) = − 1

2π

∫ ∞

−∞

dν

[

+
{

PΛ(iν, iν2 + iν)

(

2UΛ(iν + 1
2
(iν1 + iν2 − iν3), iν2, iν − 1

2
(iν1 − iν2 − iν3))

ŨΛ(iν + 1
2
(iν1 + iν2 + iν3),−iν2, iν − 1

2
(iν1 − iν2 + iν3))

−ŨΛ(iν + 1
2
(iν1 + iν2 − iν3), iν2, iν − 1

2
(iν1 − iν2 − iν3))

ŨΛ(iν + 1
2
(iν1 + iν2 + iν3), iν − 1

2
(iν1 − iν2 + iν3),−iν2)

−ŨΛ(iν + 1
2
(iν1 + iν2 − iν3), iν − 1

2
(iν1 − iν2 − iν3), iν2)

ŨΛ(iν + 1
2
(iν1 + iν2 + iν3),−iν2, iν − 1

2
(iν1 − iν2 + iν3))

)

+(ν2 ↔ −ν2; ν3 ↔ −ν3)
}]

(B.6)
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and

d

dΛ
ŨΛ

3 (iν1, iν2, iν3) = − 1

2π

∫ ∞

−∞

dν

[

−
{

PΛ(iν, iν3 + iν)

ŨΛ(iν + 1
2
(iν1 − iν2 + iν3), iν − 1

2
(iν1 − iν2 − iν3), iν3)

ŨΛ(iν + 1
2
(iν1 + iν2 + iν3), iν − 1

2
(iν1 + iν2 − iν3),−iν3)

+(ν2 ↔ −ν2; ν3 ↔ −ν3)
}]

.

(B.7)

It is important to note, that up to here, no approximation has been made. The approxi-

mation is made by setting

ŨΛ
1 (iν1, iν2, iν3) = ŨΛ

1 (iν1, 0, 0),

ŨΛ
2 (iν1, iν2, iν3) = ŨΛ

2 (0, iν2, 0),

ŨΛ
3 (iν1, iν2, iν3) = ŨΛ

3 (0, 0, iν3). (B.8)

This approximation reduces the 3-dimensional frequency mesh to three one-dimensional

ones, which reduces the numerical effort hugely. In second order perturbation theory this

relation is fulfilled exactly. Therefore the results from the approximative scheme are still

correct up to order U2.

106



Appendix C

TIAM Flow Equations

In chapter 4 a very brief description of the flow equations for the frequency dependent

functions in the two-particle vertex was given. Here the derivation of the flow equation

for UΛ
1 is presented as a example.

Starting with the parametrization of the two-particle vertex as given in eq.(4.9) and the

flow equation for the two particle vertex (eq.(2.26)) the first step is to set the external

spin indices to

m′
1 = m′

2 = m1 = m2 (C.1)

This leaves the derivative of MΛ
1 on the lhs of eq.(2.26) and the rhs has to be evaluated.

On the rhs the terms

γ̄Λ
2 (ξ, ξ′; ξ1, ξ2)γ̄

Λ
2 (ξ′1, ξ

′
2; ξ

′, ξ)

= [δm1,mδm1,m′δm1,m1
MΛ

1 + δm1,mδm1,m′δm1,m̄1
MΛ

2 − δm1,m′δm1,mδm1,m̄1
MΛ

3

+δm1,m1
δm,m′δm1,m̄ MΛ

4 ]

[δn′,m1
δn,m1

δn′,n MΛ
1 + δn′,m1

δn,m1
δn′,n̄ MΛ

2 − δn′,m1
δn,m1

δn′,n̄ MΛ
3

+δn′,nδm1,m1
δn′,m̄1

MΛ
4 ],
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γ̄Λ
2 (ξ′1, ξ; ξ1, ξ

′)γ̄Λ
2 (ξ′2, ξ

′; ξ2, ξ)

= [δm1,m1
δm′,mδm1,m′ MΛ

1 + δm1,m1
δm′,mδm1,m̄′ MΛ

2 − δm1,mδm′,m1
δm1,m̄′ MΛ

3

+δm1,m′δm1,mδm1,m̄1
MΛ

4 ]

[δm1,m1
δn,n′δm1,n MΛ

1 + δm1,m1
δn,n′δm1,n̄ MΛ

2 − δm1,n′δn,m1
δm1,n̄ MΛ

3

+δm1,nδm1,n′δm1,m̄1
MΛ

4 ]

and

γ̄Λ
2 (ξ′2, ξ; ξ1, ξ

′)γ̄Λ
2 (ξ′1, ξ

′; ξ2, ξ)

= [δm1,m′

1
δm′,mδm1,m′ MΛ

1 + δm1,m′

1
δm′,mδm1,m̄′ MΛ

2 − δm1,mδm′,m′

1
δm1,m̄′ MΛ

3

+δm1,m′δm′

1
,mδm1,m̄′

1
MΛ

4 ]

[δm1,m1
δn,n′δm1,n MΛ

1 + δm1,m1
δn,n′δm1,n̄ MΛ

2 − δm1,n′δn,m1
δm1,n̄ MΛ

3

+δm1,nδm1,n′δm1,m̄1
MΛ

4 ]

appear in the three channels. Eq.(C.1) has already been used here. The evaluation of the

sum over m, m′, n and n′. Gives eq.(4.10). For a further evaluation, the external spins

are set to be

σ1 = σ′
1 6= σ2 = σ′

2. (C.2)

On the lhs the derivative of UΛ
1 remains. On the rhs the spin sums over σ and σ′ with

terms like (xi = (σi, iωi))

M(x, x′; x1, x2)M(x′1, x
′
2; x

′, x)
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= (δσ1,σδσ2,σ′ UΛ
1 + δσ1,σδσ2,σ′ UΛ

2 )(δσ′,σ′

1
δσ,σ′

2
UΛ

1 + δσ′,σ′

1
δσ,σ′

2
UΛ

2 ), (C.3)

M(x′1, x; x1, x
′)M(x′2, x

′; x2, x)

= (δσ1,σ′

1
δσ′,σ UΛ

1 + δσ1,σ′

1
δσ′,σ UΛ

2 )(δσ2,σ′

2
δσ,σ′ UΛ

1 + δσ2,σ′

2
δσ,σ′ UΛ

2 ) (C.4)

and

M(x′2, x; x1, x
′)M(x′1, x

′; x2, x)

= (δσ1,σ′

2
δσ′,σ UΛ

1 + δσ1,σ′

2
δσ′,σ UΛ

2 )(δσ2,σ′

1
δσ,σ′ UΛ

1 + δσ2,σ′

1
δσ,σ′ UΛ

2 ) (C.5)

have to be evaluated. The result looks very similar to eq.(3.10) but the total number of

terms is increased approximately by a factor of four. To derive flow equations for the

other UΛ
i the external impurity indices and spins have to be set accordingly.
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