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Chapter 1

Introduction

The aim of the present thesis is twofold: On one hand it considers the
treatment of time observables in quantum mechanics. In particular, it is
concerned with the application of a particular spin-boson detector model
to arrival and passage times. On the other hand it explores the possibility
of extending the quantum jump approach to a model beyond its original,
quantum optical framework. It also examines by means of numerical ex-
amples whether the quantum jump approach, which employs a continuum
of bath modes, promises to provide a good approximation to situations
where one actually has to deal with a number of discrete bath modes.

Quantum theory has been one of the most successful and most important
scientific theories of the past century, and its success and importance still con-
tinue. After the introduction of the Wirkungsquantum by Planck in 1900 and
the attempts to apply this new concept to atomic spectra by Bohr in 1913,
a consistent mathematical formalism was developed in the mid-twenties, the
main contributions being the matrix-mechanics by Heisenberg [Hei25] and the
wave-mechanics by Schrédinger [Sch26]. Complemented with contributions of
other authors as, e.g., Born and Jordan [BJ26, BHJ26] or Dirac [Dir26], the
formalism was brought into that form which is still the standard in textbooks
on quantum mechanics'. Since then, the importance of quantum mechanics has
continuously been increasing as new branches arose. Examples for these new
branches are quantum optics (including the important commercial application
of the laser), the theory of semi-conductors (including the application in mod-
ern computers), and the rather new and rapidly developing field of quantum
computing and quantum information.

Surprising as it might be in face of all this success, there are still open
questions at the very foundations of quantum mechanics. One such a field of
open questions is the treatment of time observables. This indeed may appear
surprising since it is very natural for a physicist to ask questions concerning
time as an observable, like, e.g., ‘When does this particle arrive at a specific
position in space?’, or, ‘How much time does this particle spend in a particular
region of space?’ In the framework of classical physics questions of this kind

! A beautiful systematic account can be found in Reference [vN32]; for details of the his-
torical development see, e.g., [Jam74].
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have a rather obvious meaning and are easily answered (at least in principle
— technically, it may be pretty much complicated to conduct an appropriate
experiment, but these complications are not due to conceptual difficulties con-
cerning the meaning of ‘to arrive somewhere at a given instant of time’ or ‘to
spend time in a region’). Indeed, time-of-flight experiments are a standard
tool for many experimentalists. In typical time-of-flight experiments a classical
treatment is justified since the particles of interest are very fast, and hence the
quantum nature of their wave function plays no role. However, the advance of
cooling techniques has made it possible to create ultracold gases in a trap and
to produce very slow atoms, e.g., by opening the trap. For these low velocities
the quantum nature of the center-of-mass wave function of an atom can have
noticeable quantum effects. Such quantum effects of the center-of-mass wave
function have been seen, e.g., in the diffraction and interference experiments by
Szriftgiser et al. using temporal instead of spatial slits [SGOADY6].

But when a quantum mechanical treatment becomes necessary, the notion of
time-related observables suddenly is far from clear. Questions concerning, e.g.,
position, momentum, and energy, can be treated by means of the well known
position operator X, the momentum operator p, and the Hamiltonian H. The
existence of a self-adjoint time operator conjugate to the Hamiltonian, how-
ever, is widely regarded as precluded for most systems of physical interest by
an argument Pauli put forward in a famous footnote [Pau33], see Appendix A.
Pauli’s argument has loopholes allowing for the definition of bounded time op-
erators conjugate to a Hamiltonian [Gal02]. The main progress regarding time
in quantum mechanics, though, has not been made by searching for the general
time operator but by considering specific time-related questions.

Two of such specific time-related questions are investigated in the present
thesis: In Part [ we investigate some aspects of ‘arrival times’, and in Part 1T we
consider aspects of ‘passage times’. The approach taken in this thesis may be
called ‘operational’: We do not aim at ‘ideal’ quantities depending on the sys-
tem of interest alone, which then may be linked by more or less sound arguments
to some physical quantities. Instead, we will consider Gedanken experiments
in which the system of interest is coupled to a particular measurement device,
and calculate the outcome of these experiments.

In Part T a spin-boson detector model is presented and its application to the
measurement of quantum arrival times is investigated. It turns out that in a
continuum limit the arrival-time measurement is effectively described by means
of a complex (‘absorbing’) potential model. A similar result had been obtained
earlier for a particular limit of another operational approach to quantum arrival
times, the so called ‘fluorescence model’. This agreement between the effective
description of two physically different models helps to illuminate the physical
background of complex potentials, which originally had been proposed rather
heuristically. Transmission and reflection without detection as well as a detec-
tion delay are found in the present spin-boson detector model as well as in the
fluorescence model, and are typical for the complex potential approach. They
may thus be viewed as typical properties of arrival-time measurements, their
occurrence being to some extent independent of the particular kind of model



under consideration.

In Part IT the spin-boson detector model then is applied to a specific mea-
surement scheme for quantum passage times. It turns out that detectors re-
sponding too slowly to the presence of the particle yield rather broad passage-
time densities, as do detectors responding very quickly. The broadening mech-
anism in the latter case is seen to be a quantum effect due to the distortion of
the wave function by the measurement. In intermediate cases, however, nar-
row densities can be obtained. For an optimal setup the precision is estimated
to behave as E~3/4, where E is the kinetic energy of the particle. One thus
sees that an E~! behavior obtained earlier with quantum clock models is not a
fundamental quantum limit.

The calculational method for most of the investigation presented in the
present thesis is the so called quantum jump approach. This approach was
originally formulated in the framework of quantum optics and is extended in
the present thesis to the spin-boson model at hand. In particular, employing the
quantum jump approach means that we treat the spin-boson detector model,
which originally uses discrete boson modes, by the limit of continuous boson
modes and under the assumption that the Markov property holds. For a number
of examples, however, results from the quantum jump approach are compared to
those obtained from straightforward calculations in the discrete model with only
a modest number of boson modes, N ~ 15...40. Such comparisons have been
presented for the first time, to our knowledge, in References [HNS06, HNS07] on
which the present thesis is based in part. There, only examples with constant
density of states were considered while in the present thesis also examples with
non-constant density of states are investigated. In spite of the modest number
of boson modes the results are in very good agreement. This is interesting
since it does not only illustrate the validity of the quantum jump approach.
It further suggests that under certain conditions the continuum limit of the
quantum jump approach may provide a good approximation to cases where one
actually has to deal with a discrete model as, e.g., in cavity quantum optics.
Such an approximation is interesting since the explicit treatment of a number
of discrete bath modes typically is rather cumbersome. The quantum jump
approach provides a continuum model with reduced dimensions which is much
easier to work with.

Part I and Part II of the present thesis are each opened by a separate
introduction. The introductions review some relevant literature, but are not
meant to be a complete review of the extensive literature on time in quantum
mechanics. A collection of contributions addressing several aspects of time in
quantum mechanics, accompanied by broad references, can be found, e.g., in
Reference [MSE02]. Each introduction ends with a plan of the respective part.
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A spin-boson detector model
for arrival times






Chapter 2

Arrival times: Introduction

Some approaches to quantum arrival times are briefly sketched. This is
not meant to be a complete review of the extensive literature on quantum
arrival times; we just gather for the reader’s convenience some approaches
relevant for the present thesis. For a more exhaustive and detailed review
see, e.g., Reference [ML00]. Further, an outline of Part I is given.

2.1 Quantum arrival times

The probably simplest approach to a quantum mechanical formulation of a time-
of-flight experiment is considering ‘arrival times’. One would prepare a particle
at t = 0 with localized but extended wave function and then ask for the arrival
time of the particle at some given point of space. Repeating this experiment, one
would get an ‘arrival-time density’ depending on the particle’s wave function.
But it is not clear from the start how one should measure the arrival time of
the particle at some point of space, and what the resulting density should look
like. In particular, it is not clear how this density is influenced by the spatial
extent and by the spreading of the wave packet describing the particle, and to
what extent it depends not only on the wave function but also on the particular
measurement process.

2.2 Allcock’s proposal: Absorbing potentials

In the late sixties Allcock investigated the problem of arrival times in quantum
mechanics in a series of papers [All69a, AlI69b, All69¢]. He suggested to include
a ‘detector’ in the Hamiltonian, modeled by an imaginary step potential. This
approach may appear rather heuristic since a priori the physical background of
the imaginary potential is not clear. In main results, however, it agrees nicely
with other approaches, as will be noted in the course of this introduction.
Moreover, complex potentials have recently been related to particular physical
models for the detection process, see Section 2.5.4. Such a relation is also seen
(among other results) in the present thesis.

In case of a detector extending over the R, axis the Hamiltonian proposed
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by Allcock reads
52

_r 5
H_2m Vo (z),

where V' > 0 and © is Heaviside’s step function. This Hamiltonian is not self-
adjoint, and hence the time development is not unitary. In fact, the norm of the
wave function decreases, the particle being ‘absorbed’ into the imaginary poten-
tial. Allcock then identified the absorption rate with the measured arrival-time
density at z = 0,

d i 2V [ 9

MAncock(t) = % (Pulehe) = 7 <¢t ‘H—HT‘¢t> = 7/ dz [z |4)]" -

0
(2.1)
To obtain the second equality the Schrédinger equation has been used.

In general, this density will not be normalized to one since part of the wave
packet will be reflected from the step potential rather than being absorbed. To
be specific, the eigenstate of H for energy eigenvalue Ej, corresponding to a
plane wave incident from the left, is given by

7

2

tkx —tkx
(2 |By) = 1 ]e +R(ﬁ)e , <0
T(k)elk)z, z>0

where k = \/2mEj /h and

2
q(k) = /K2 +¢h—?v, Tmgq > 0. (2.2)

The coefficients R, T are determined by the usual matching condition that
both (z |®x) and its derivative with respect to z must be continuous at z = 0,
yielding
k— 2k
=1 Tk =
k+gq k+q

As can be seen from Equations (2.2) and (2.3), the coefficient R(k) for to the
reflection is in general non-zero. Additionally, it depends on the wave num-
ber k. Consequently, the momentum density of the actually absorbed part
of the wave packet must be expected to differ from that of the original wave
packet. This leads to deviations of the absorption rate as compared to ‘ideal’
quantities related to the original wave packet alone. Also, since Im ¢(k) < oo,
the penetration depth [Img(k)]~! is non-zero. In other words, that part of
the wave packet which is not reflected may penetrate to some depth into the
potential before being absorbed, thus causing a ‘detection delay’. In case of
finite extension of the vector potential, part of the wave packet will possibly
even be transmitted through the potential rather than being absorbed. This
leads to a second source of non-normalization of ITajcock- As the reflection also
the penetration depth and thus delay and transmission depend on k. It was
noted already by Allcock and can also be seen from Equations (2.2) and (2.3)
that decreasing V' reduces reflection but enlarges delay (and transmission), and,
vice versa, increasing V reduces delay (and transmission) but enlarges reflection.

R(k) (2.3)
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Allcock though managed to obtain an ‘approximate density’ from a semi-infinite
step potential as above. He investigated the limit of very small V to avoid
reflection and dealt with the delay by means of a deconvolution (similar to the
deconvolution technique sketched in Section 2.5). This ‘approximate density’
turns out to agree with the density derived axiomatically by Kijowski, which
will be discussed in the next subsection.

The delay/transmission-versus-reflection problem was at least in part due
to the fact that Allcock restricted himself to rectangular potentials. Much more
recently, it has been shown in References [MBM95, PMS98] that it is possible to
absorb nearly the complete wave packet in a very short spatial interval; given a
wave packet of specific energy range, an appropriate imaginary potential can be
constructed by means of inverse scattering techniques. A rather simple example
for an optimization scheme is given in Section 5.2.3.

2.3 Kijowski’s axiomatic arrival-time density

Allcock’s proposal is based on the introduction of a measurement device, viz. the
absorbing potential, and thus may be called ‘operational’ (although originally
the physical background of the absorbing potential has not been clear). In con-
trast to this, Kijowski [Kij74] aimed at an ‘ideal’ arrival-time density depending
on the particle’s wave function alone. We first give a rather intuitive derivation
of his arrival-time density. This derivation has been suggested by Hegerfeldt.
Kijowski’s original, axiomatic derivation is sketched in Section 2.3.2.

2.3.1 Intuitive derivation

We first consider in one spatial dimension an ensemble of free classical particles
with a normalized time-dependent phase-space density o:(x,p). For simplicity,
we stick to the case of particles with only positive momenta, g(z,p) = 0 if
p < 0. It is easy to see that the fraction of particles which pass the position
z = a in the infinitesimal time interval [¢,¢ + dt] is given by

H(a)

= p
classical(t) dt = /0 dp Qt(a,p) dt.

m
Thus,

T et (1) :/ dp or(a,p) 2 Z/dx/ dpor(z,p)d(z —a) L, (2.4)
0 m 0 m

where ¢ is Dirac’s ¢ function, is the classical probability density for arrival,
at the time ¢, at the position £ = a. When trying to transfer this expression
to quantum mechanics, one identifies gy = (¢|1)¢) where [¢;) is the quantum
mechanical wave function, and replaces position z and momentum p with the
corresponding operators Z and p. But one also has to choose a symmetrization
in £ and p, which is not unique. A simple example for a symmetrization would
be

5z — a)p = % 5z — a)p + pé(z — )],



14 Arrival times: Introduction

which yields the quantum mechanical flux at the time ¢ and at the position
T =a,

Tat) = ~ig a0 /(a0) ~ Fla, (a1

~ A~

5[5 (2~ a) p-+ 56 (5 — o)

- (w

At first glance the quantum mechanical flux indeed appears to be a natural
candidate for a quantum arrival-time density. But even for wave functions with
only positive momenta, 1(p) = 0 if p < 0, the flux can become negative and
thus cannot be regarded as a probability density. An example for this ‘backflow
effect’ can be found, e.g., in Reference [HSMO03].

Another possible symmetrization is

Mz —a)p=+/pé(z —a)\/p,

which yields the positive density

00 = (|2 V356~ 0) V5

¢t> . (2.5)

This expression can be evaluated by inserting 1 = ffooo dp |p) (p| and 1 =
[ dz|z) (z|, with momentum eigenstates |p) and position eigenstates |z) with

(z|p) = \/1/27F &P/, One finds
000 = [y [ asdd (] V|p) i) (215 -l
(e |#) ! |V )

2

! , (2.6)

2mhm

/0 dp /p €%/ 4y (p)

where 9, (p) is the wave packet in momentum space at time ¢. This agrees with
Kijowski’s arrival-time density derived axiomatically in Section 2.3.2 [see Equa-
tion (2.67)]. The advantage of the derivation sketched in the present subsection,
however, is that the density Hg ) is easily seen to emerge by an appropriate sym-
metrization rule from the classical arrival-time density given in Equation (2.4).
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2.3.2 Kijowski’s axiomatic derivation

Kijowski’s original derivation of an ideal arrival-time density for free parti-
cles with only positive momenta is based on an axiomatic characterization of
arrival-time densities. The starting point is the observation that the arrival-
time density for an ensemble of classical point particles which at ¢ = 0 have
a given position and momentum density can be uniquely characterized by a
bunch of surprisingly few properties. Kijowski then showed that an analogous
reasoning in quantum mechanical context also uniquely characterizes a partic-
ular density which he consequently regarded as quantum arrival-time density.
In one spatial dimension his reasoning reads as follows.

First, the arrival-time problem of classical physics is considered. Let go(z, p)
be the position and momentum density which the ensemble is prepared with at
t = 0; since the particles are assumed to be free the density at a time ¢ reads

P
o:(x,p) = 0o (w - —t,p) .
m

The candidates for the density of time-of-arrival at a position £ = a are given
by means of distributions F(%),

Y (1) = F@ [g)) = / dzdp F(z,p) ot (2, p)-

The true arrival-time density for an ensemble of free particles,
o
e t:/ dp L (a—ﬁt ) 2.4’
classmal( ) 0 pm Qo m ,P), ( )
corresponds to the distribution
p

Fya(@,p) = 8z — a; (2.7)

this is just the expression that was symmetrized in a twofold way in the pre-
ceding subsection. These distributions F(@) are supposed to be positive,

>0 = F@[g>0, (2.8)

and normalized,
o0
/dxdp ooz, p)=1 = / dt F(®@ [o] = 1. (2.9)
—0o0

While these are just properties of general probability densities, the specific
position = a is characterized by means of PT symmetry,

d(z,p)=02a-z,p) = F[J]=FI] (2.10)

Kijowski then proves the following theorem [Kij74]:
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Theorem 2.3.1
Let F(®) fulfill Equations (2.8), (2.9), and (2.10), and let further

/ At t2F@ (g;) < o0

—00
Then

[ artr@ o= [ ater o] = (40 (o) (2.11)

for all densities py(z,p), where Fé C)l has been defined in Equation (2.7). Further,

/ Z at (t— (1 [go]>)2 F) [g] > / C: at (t— (4 [Qo]>)2 Fy e

and the equality sign holds for all densities oo(x,p) if and only if F(@) = Fy%).

Theorem 2.3.1 states two interesting facts. First, Equation (2.11) means
that the average arrival time is independent of the choice of F(®). Second, the
true arrival-time density is uniquely characterized by the property of minimal
width for all densities go(x,p). This characterization appears rather technical
at first glance. It may become more plausible, however, by the view that for
any given density go(z,p) the width of the true arrival-time density is an opti-
mum defined by the properties of gy alone; all other arrival-time densities Hg?)
are additionally broadened, i.e., made more uncertain by the properties of the
respective Fla),

In the quantum mechanical case the particle is prepared at ¢t = 0 in a state
|to). Again, Kijowski assumes that the particle is free, i.e., the Hamiltonian
is given by H = $?/2m, and that there are only positive momenta in the
momentum density, (p|thy) = 0 for p < 0. We denote the space of the states
under consideration' by D,. Since the particle is free the state at time ¢ is
given in momentum representation by

he(p) = e P2 (g )

The candidates for the density of time-of-arrival at a position £ = a are given
by bilinear forms of the wave function,

() = 7 )] = [ dpd B (5.8") G2lo) e ()
Again, these forms are to be positive,
W) eDy = FO[$)]>0, (2.12)

and normalized,

ol =1 = [ " 4t F@ )] = 1. (2.13)

1To be specific, ‘states under consideration’ are those space which in momentum represen-
tation v (p) = (p|yp) are represented by test functions with support in Ry.
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In order to characterize analogously to Equation (2.10) the position z = a
where the arrival time is to be measured, note that a translation in position
space by y amounts to a phase shift 9 (p) — €®¥P/"4(p) in momentum space,
and that a parity transformation z — —x amounts to a complex conjugation,

¥(p) — 1 (p). Thus, the analogue to Equation (2.10) reads

¥'(p) = ¥ hyp(p) = FO[|¢)] = F [|y)]. (2.14)
Kijowski then defines the density

(a) iap/h —ip t/2mh ’
MO0 = | [ o vpe date Lee)
corresponding to
1 I
Fo(a) ( ,p) py— pp! gtaw’=p)/h (2.15)

In Reference [Kij74] this definition is rather ad hoc. We note, however, that
H%?) is just the density of Equation (2.5), as evaluated in Equation (2.6); in
the preceding subsection, this density was seen to emerge from the classical
arrival-time density by means of an appropriate symmetrization rule. Finally,
Kijowski proofs the following theorem:

Theorem 2.3.2
Let F'® fulfill Equations (2.12), (2.13), and (2.14), and let further

/ T AR )] < oo

[ artr@ = [ arer ] = (19 )

—o0

Then

for all initial states |1o) € Dy, where Fé %) has been defined in Equation (2.15).
Further,

/O; ar (1= (i <I¢o>>>)2 F [|yy)]

> [ at (£ (19 Q)" B ),

and the equality sign holds for all initial states |1y) € D, if and only if F(®) =
.

Thus, the average arrival time is independent of the choice of F(@) and the
arrival-time density H%? ) given in Equation (2.67) is uniquely characterized as
the narrowest one of all admissible candidates. In analogy to the classical case
Kijowski therefore regarded H% ) as an ideal quantum arriwal-time density. Fur-
ther significance is lend to H% ) by the observation that it agrees with Allcock’s
‘approximate density’ mentioned in Section 2.2, and that it can also be obtained
by means of a positive operator valued measure, see Section 2.4. The relation

of H% ) to a measurement based approach will be discussed in Section 2.5.
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2.4 The time-of-arrival operator

In 1969, Aharonov and Bohm introduced in Reference [AB61] (among other
things) a ‘clock’ to measure time by means of position and momentum of a
freely moving test particle. In the same spirit, Muga, Sala, Palao, and Leavens,
asserted in References [MSP98, MLP98] that a freely moving classical particle of
mass m which is located at position z and has momentum p arrives at position a
after a time t, = m(a — z)/p. They concluded that, by proper symmetrization,
a quantum mechanical ‘time-of-arrival operator’ related to the arrival time of
a free particle at the spatial position £ = a is given by
.~ m

fa= 3 (la— 25" +p" fa—3]). (2.16)

Several mathematical properties of this operator are discussed in Refer-
ence [EMO00b] (for more on #, see also Reference [ORU99] and references therein).
We mention here that it is not self-adjoint but maximally symmetric with de-
ficiency indices (2,0)?. Its domain is given by those square integrable func-
tions ¢ which in momentum representation vanish at p = 0 according to
lim, o ¢(p)p~2/2 = 0. For each value t € R there are two degenerate weak
eigenfunctions which in momentum representation read

hlk| e ,
klt,+; a) = _ezhk: t/2m e—zka(_) +k),
(klt, 4 a) = /5o (k)
where |k) with (z|k) = 1/1/27 ¢’** is a momentum eigenstate, |k) = Fhk |k),
i.e., k = p/h. The eigenstates |t, £; a) are not orthogonal but fulfill
50,0’

(t',o';s alt,o; a) = - (5 (t'—1t) + %’Pﬁ) , o0 =4,

where P denotes the principal value. Still, the eigenstates |t,+; a) provide a
resolution of the identity,

o
1 :Z/ dT |T, +,a) (T, +, al.
+ —0oQ

This allows to define an arrival-time density in terms of a positive operator val-
ued measure (POVM)?. The arrival-time density obtained from the Aharonov-
Bohm operator #, given in Equation (2.16) reads

)

/OO dk J(ik)\/];ef’iﬁth/Qmeiika
0

e — <¢0

h

2mm T

> It +,a) (t,+,q]
+

2

7

2That means that the adjoint operator has two eigenstates with eigenvalue 7 and none with
eigenvalue —1.

3POVMs generalize standard quantum mechanics: While in standard quantum mechanics
observables correspond to self-adjoint operators, and probabilities are evaluated as expectation
values of the projection operators onto the corresponding eigenspaces, the theory of POVMs
shows that measurement probabilities can also be derived from eigenstates of maximally sym-
metric operators, see, e.g., Reference [BGLI5].
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this density is evidently positive, and for only positive momenta, J(k) =0 if

k < 0, it agrees with Kijowski’s density H%?) given in Equation (2.6).

2.5 The fluorescence model

2.5.1 The model. Basic properties

The approaches to the arrival-time problem sketched in the preceding sections
were of more mathematical nature. In particular, no measurement procedure
for the density H%) was proposed, and its status, properties, and general-
izations, are still being critically discussed, see, e.g., the discussion in Refer-
ences [Lea02, EMNRh03, Lea05]. Complementing these approaches, an opera-
tional and realistic laser-based approach to the arrival-time problem has been
investigated only recently by Hegerfeldt, Muga, and collaborators [DEHMO02,
HSM03, NEMH03a, DEHM03, HSMN04, RDN*"04, HHMO05]. This ‘fluores-
cence model” proposes to measure the arrival time by means of laser induced
fluorescence: One considers a two-level atom with center-of-mass motion, illu-
minates some region of space with a laser resonant on the atom’s transition
frequency or slightly detuned, and takes the detection time of the first fluores-
cence photon as measured arrival-time in the illuminated region, see Figure 2.1.
The probability density for the first fluorescence photon to be detected at time

AR

€Y (b)

Figure 2.1: Basic idea of the fluorescence model for the measurement of quan-
tum arrival times: A moving atom is described as a two level system with an
extended spatial wave function. Some region of space is illuminated by a laser
with Rabi frequency Q(z) and possibly with a detuning A(z) with respect to
the transition frequency of the atom. The atom is prepared in its ground state
far away from the laser-illuminated region (a). When the wave function sig-
nificantly overlaps the laser-illuminated region the transition between the two
atomic levels is pumped by the laser, and the atom starts to emit fluorescence
photons (b). The first fluorescence photon indicates the ‘measured’ arrival in
the laser-illuminated region.

t can be calculated by means of the quantum jump approach, sketched in differ-
ent context in Section 4.1. It turns out [Heg03] that the state of the two-level
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system, as long as no photon is detected, obeys a Schrédinger quation®

A2

m%\@fmd) = (24 2@ma+n el

— [iv +2A(2)]12) (2]} | ¥lona)

= ond “I’cond (2'17)

where [1), |2) are the ground state and the excited state of the two-level system,
resp., and [®L o) = |[41) |1) 4 [¢%) |2) with the spatial wave functions |¢f) is
the state of the two-level atom under consideration. 2(z) and A(z) are space
dependent Rabi frequency and detuning of the laser, which is treated as a
classical electromagnetic field, and +y is the Einstein coefficient (‘decay rate’) of
the two-level system. The subscript ‘cond’ stands for ‘conditional’, reminding
the reader that this time development holds only under the condition that no
fluorescence photon has been detected until time ¢; the superscript ‘fl’ indicates
the fluorescence model.

The Hamiltonian HY , defined in Equation (2.17) is not self-adjoint due to
the contribution —ihy/2|2) (2|, and hence the norm of the state is not conserved.
Indeed (compare Section 4.1),

Pﬂ = <‘I’ ond ‘\I’fzond>

is the probability that no fluorescence photon is detected until £, and conse-
quently the probability density for detecting the first fluorescence photon at
time ¢ is given by [compare Section 2.2 and in particular Equation (2.1)]

d
o) = - R0 = £ (g

Hcond (Hcond) ‘ ‘I’cond> Y <¢2 |¢2

We consider the simple case of a resonant laser illuminating the right half
space, A(z) =0 and Q(z) = QO(z). The eigenstate of HY . for energy eigen-
value E}, and corresponding to a plane wave incident from the left while the

atom initially is in its ground state, is given by [DEHMO02]

eika: +Rle—ika:
1 1%26_1.(]3C ’ v<0
(z[®r) =1/ 5= ;
2 1 . 1 .
Cy e+ + C_ ek 0<z
22,/Q 22_ /0
(2.18)

where we have set |1) = ((1)), |2) = ((1)), and

V2mEy
k:%, ,/k2+z7 Tmg > 0,

' 2mA
=== (YFVA?AQE), ke =[R2 - EE Imke 20, (219)

h

“In the derivation of this equation the electric-dipole and rotating-wave approximations
familiar from quantum optics have been used.
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From the matching condition that both (z |®j) and its derivative with respect
to = have to be continuous at = 0 one finds

R Mlat k) (kb)) A (@rk)(b—ky) o k(g ko)A
= o ’
D D
Ck(k-—k)Q _ k(g + k)
RZ_ D ’ c_=2 D s
(2.20)

with the common denominator

=(k+k)(@+k) A —(k+ke)(g+k)A.

The contribution R;e %7 |1) corresponds to the event that the atom is reflected
from the laser in ground state and will therefore never emit a fluorescence pho-
ton, leading to a non-normalized first-photon density wf(¢). (Remember that
only the time development up to the first fluorescence photon is considered,
and thus Ry is indeed the amplitude for reflection in ground state without ever
having emitted a fluorescence photon.)® In addition, the pumping of occupation
number from ground state |1) to excited state |2) and the decay |2) — |1) take
some time, leading to a delay in the first-photon density w{l (t) as compared to
ideal arrival-time densities. Similar to Allcock’s absorbing potential approach
(Section 2.2), decreasing the delay (by tuning © and 7) will enlarge the reflec-
tion without detection, and vice versa. Still, some interesting results could be
derived from the fluorescence model; we will sketch three of these in the sequel.

2.5.2 The quantum mechanical flux

As can be found from Equations (2.19) and (2.20), reflection without detection
becomes negligible, |R;|? < 1, in a ‘weak measurement regime’ Q/y < 1.
Increasing v with all other parameters kept fixed, however, leads to a strong
delay of the first fluorescence photon. In the limit 7y — oo the wave packet
even remains unaffected, without reflection but also without any excitation
[DEHMO02]. This is consistent with the observation that a two-level system at
rest driven for £ > 0 by a resonant laser has a probability density for the first
fluorescence photon which reads [KKW87]

702 / _a1/0|2 1
W(t) = I5E° —2 ‘eSt/Q St20 Q(t), S:= 5\/72—492. (2.21)

This yields an average waiting time

2
(trest) / detW(t 7 +9229 % =00, v— o0, fix. (2.22)

5Since there are no fluorescence photons considered in the present time development, this
reflection clearly cannot be due to a recoil by an emission of such a photon. Instead, it is
due to the interaction of the atom with the laser field: The laser pumps occupation number
from |1) to |2), changing the dipole moment of the atom; this in turn changes the laser field
and hence its momentum density. Because of momentum conservation, the momentum of the
atom is changed. A similar effect can be seen in classical mechanics, considering an electric
dipole impinging on a homogeneous magnetic field in a half space.
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Aiming at arrival times, one may deal with this delay by means of a deconvolu-
tion technique similar to a proposal by Allcock [All69a, AlI69b, All69c]. Assum-
ing that the first-photon density w{l is the convolution of some ‘ideal’ arrival-
time density II;q with the probability density W given in Equation (2.21), one
has
~ wi

w?:Hid*W = Il;q = :1,
w

where the asterisk, %, denotes the convolution and the tilde, ~, denotes the
Fourier transform. By means of the inverse Fourier transform one finally obtains
[DEHMO02]

Hid(t) —)J(t,.’E:O), vy — 00, Q fix,

where J denotes the quantum mechanical flux. Thus, the fluorescence model
in the weak coupling regime and by means of a deconvolution to handle the
delay provides a way to measure the quantum mechanical flux. As noted in
Section 2.3.1, however, even for wave packets with only positive momenta the
flux can become negative for some ¢t (‘backflow effect’) and thus cannot be
regarded as a probability density for arrival times.

2.5.3 Kijowski’s density

As can be seen from Equation (2.21), one can also expect to eliminate the delay
by means of a limit Q — oo, Q/v = const,

1 Q
(trest) ~ — = 0, Q — oo, — = const.
Y Y

As can be found from Equation (2.20), however, in this limit one has Ry — —1,
i.e., the wave packet is completely reflected. Even for large but finite 2 and
v much of the wave packet is reflected in ground state, and hence the first-
photon density will be far from being normalized to one. Dividing by the time-
integral, wil(t)/ ffooo dt wi(t), would yield a normalized probability density; but
in contrast to w! this density is not bilinear in the wave function. Brunetti
and Fredenhagen recently developed a normalization procedure which preserves
the bilinear structure of the probability density [BF02]. This normalization
procedure does not deal with expectation values or probability densities but
directly with the quantum mechanical operators, and hence is called ‘operator
normalization’; its application to the fluorescence model has been investigated
in Reference [HSMO03].

For the present example, A = 0 and Q(z) = Q0(z), wave packet inci-
dent from the left with only positive momenta, operator normalization yields a
normalized first-photon density [HSMO3]

0o 0o o a2 (2 iﬁ(szk'2)t/2m
Tox(t) =y /_ dz /0 akay YRVE) (@) (@)e (2.23)

(- m®E) (1= mE)P)
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where 1; is the momentum density of the originally prepared wave packet, (D,(f)

is the excited state component of the eigenstate of energy Ey = h%k?/2m, and
R; is given in Equation (2.20). This normalization can be seen as changing the

~1/2
momentum density of the incident wave packet by a factor (1 - |R1(k)|2) ,

-1/2 ~

k) = (1= R®)E) " B(k).

This change favors those momenta which are reflected the most (i.e., typi-
cally low momenta), and in this way compensates for the reflection losses.
The limit Q@ — oo, /7y = const of Equation (2.23) has been calculated in
Reference [HSMO3]. It turns out that in this limit, with negligible delay as
indicated above and compensating for reflection losses by means of operator
normalization, Kijowski’s arrival-time density is recovered [see Section 2.3 and
in particular Equation (2.67)],

Q
Ton(t) - T@ (1), Q — oo, -, = const.

This is an interesting result since the justifications for Kijowski’s arrival-time
density so far have been of more mathematical nature: It has been derived
from the classical arrival-time density by an appropriate symmetrization rule
(Section 2.3.1), or, by Kijowski himself, it has been derived axiomatically based
on analogy to the classical arrival-time density (Section 2.3.2); it has also been
derived from the absorbing potential approach by Allcock (Section 2.2), and
from the time-of-arrival operator of Section 2.4. The fluorescence model in the
present limit with operator normalization provides for the first time a derivation
of this density from a realistic measurement procedure.

2.5.4 One-channel limit: Absorbing potential

Interesting results can also be obtained from the fluorescence model in the limit

h|2A(z) + 4 h

w > 290(2), By. (2.24)
The conditional Schrédinger Equation (2.17) decouples in this limit. The am-
plitude of the excited state of the two-level system becomes approximately

proportional to the ground-state amplitude,
Q(2)
|95) ~ st
2A (%) + iy
and the conditional time independent Schrodinger equation for the ground state
reads

[¥1) (2.25)

ﬁ2
[— -V (:f:)] [41) = Bi [91) (2.26)

2m
with
RA(z)Q(z)? — ihyQ(z)? /2
REETE

V(z) = (2.27)
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The contribution of the excited state’s occupation number to the no-photon
probability Pfl(t) = (4! ‘ P+ (8 ‘ ¥4) can be neglected due to Equations (2.24)
and (2.25), and the first-photon density is calculated by means of the one-
channel model with Equations (2.26) and (2.27) alone. We note that the com-
plex potential V' from Equation (2.27) becomes purely imaginary in case of
a resonant laser, A(z) = 0. Thus, in this ‘one-channel limit’ the fluorescence
model provides an operational justification for Allcock’s heuristically introduced
absorbing potential approach of Section 2.2.

Physically, the condition specified in Equation (2.24) means that the excited
state decays very rapidly compared to the time-scales of the pumping and the
center-of-mass motion. Thus, the first fluorescence photon is emitted, i.e., the
particle is detected, at the instant of time and at the position in space when and
where the excitation took place. The only possible source of detection delay (up
to the time needed for detecting the fluorescence photon, which is not included
in this model) is the time needed for pumping.

2.5.5 Possible objections against the fluorescence model

The three interesting results sketched in the preceding section show that the
fluorescence model is indeed a very useful model. There are, however, two
main objections which one may raise against this model. First, it is not a fully
quantum mechanical model — the pumping laser is modeled as a classical elec-
tromagnetic field. Second, there is a strong back-reaction on the particle under
consideration which includes the possibility of reflection without detection. In
extreme cases this may render the measurement useless, in any case it requires
some sophistication to obtain useful results. This strong back-reaction is not
surprising since the measurement scheme is based on a strong interaction with
the particle under consideration through its internal degrees of freedom.

Both objections do not apply to the spin-boson detector model investigated
in the present thesis. This model is formulated in fully quantum mechanical
terms (see Section 3.1), and the particle under consideration does not interact
via its internal degrees of freedom with the measurement device. Indeed, inter-
nal degrees of freedom of the particle are not at all included in the model. The
measurement procedure rather regards the particle only as a catalyst for a tran-
sition in the detector and its associated environment. As regards to these two
points, the spin-boson model is fundamentally different from the fluorescence
model. The investigation of such model is interesting whether or not the results
will turn out to agree with the fluorescence model: If some results differ from
those obtained from the fluorescence model, this will help to identify apparatus
dependent artefacts; if other results of the two different models agree, it is more
likely that these results indeed show intrinsic features of quantum arrival-times
(or any other time observable where different measurement schemes yield the
same results).
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2.6 Plan of Part I

Part I is organized as follows. Chapter 3 is devoted to the introduction of the
spin-boson detector model and to a first investigation of a simplified, single-
spin model by means of standard unitary quantum mechanics. In particular,
a Jaynes-Cummings like model with only one boson mode is investigated ana-
lytically in Section 3.2.3. The model with several, discrete boson modes is
investigated numerically by considering a couple of examples in Sections 3.2.5
and 3.2.6. In Chapter 4 we treat the limit of continuous boson modes, under
the assumption that the Markov property holds. The calculational method is
the so called ‘quantum jump approach’ which in the present thesis is extended
from quantum optics to the spin-boson model at hand. The main ideas of
this approach, as far as they are relevant in the present context, are sketched
in Section 4.1. For greater clarity we start the application of the quantum
jump approach with the simplified, single-spin model. The continuum limit of
the examples considered in Sections 3.2.5 and 3.2.6 is evaluated numerically in
Sections 4.2.2 and 4.2.3, and the results are compared to those obtained in the
case of discrete boson modes. The extension of the continuum limit to the full,
three-dimensional model with several spins is presented in Section 4.2.4. In
Chapter 5 we discuss the relation of the spin-boson model to the fluorescence
model (Section 5.1) as well as possible optimization schemes (Section 5.2).
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Chapter 3

The spin-boson detector
model

A particular model for the measurement of arrival-time densities is pre-
sented. The detector consists of a collection of spins in a metastable state;
in the presence of the particle the coupling of the spins to their environ-
ment is enhanced. The appearance of bosons from particular spins signals
the presence of the particle at the spin location, the first boson indicates its
arrival. Further, a simplified model is introduced, consisting of only one
spin and considering only one spatial dimension. This simplified model
allows for a discussion by means of standard, unitary quantum mechanics.
An analytical treatment is given to some extent for the case of a single bo-
son mode, comparable to the Jaynes-Cummings model of quantum optics.
For the case of several, discrete boson modes examples are investigated
numerically.

3.1 The spin-boson detector model

3.1.1 Physical idea

An interesting quantum mechanical model for particle detection has been sug-
gested some years ago by Schulman. The internal dynamics of the detector, in
particular the probability of erroneous detections and the details of the ampli-
fication process, have been investigated (partly in collaboration with Gaveau)
in References [GS90, Sch91, Sch97]. Thus, we will remark only rather briefly
on these issues. The internal dynamics of the detector have been discussed by
means of quantum mechanics in these references, while the motion of the parti-
cle was assumed to be classical. In the present context of quantum arrival times,
though, we are particularly interested in the effects of the quantum nature of
the center-of-mass motion. These effects will be investigated in the subsequent
chapters.

The physical idea of the model is as follows: The detector consists of a three-
dimensional array of spins with ferromagnetic interaction. In the presence of
a homogeneous magnetic field, and for sufficiently low temperature, all spins
are aligned with the field. Reversing the field very fast, such that the spins



28 The spin-boson detector model

cannot follow the reversal, one can produce a metastable state of this compound
spin system, see Figure 3.1 (a). If the strength of the field is just above the
threshold for a single spin flip to be energetically favorable, and if the coupling
of the spins to their environment (the ‘bath’) is only weak, this state can be
very long-living. But when the particle’s wave function overlaps with that of a
spin, the coupling of this spin to the bath is strongly enhanced. Thus when the
particle is close to a spin, this spin flips much faster due to the enhanced spin-
bath coupling, and a boson of the according energy is created, see Figure 3.1
(b). By means of the ferromagnetic interaction, the flipped spin in turn triggers
the subsequent spontaneous flipping of the neighboring spins, and finally by a
kind of domino effect of all spins, even in the absence of the particle. Each
spin flip is accompanied by a boson creation. In this way, the single spin flip
induced by the presence of the particle is amplified to a macroscopic event, see
Figure 3.1 (c). Either the change in the detector state or in the bath state can
be measured.

—

Figure 3.1: Initially, the detector is in a metastable state (a). When the
particle is close to a spin, the spin-bath coupling is strongly enhanced; this
spin flips and a boson of the according energy is created (b). Due to the
reduced ferromagnetic forces, all spins flip by a kind of domino effect even in
the absence of the particle (c).

Remark 3.1.1 Apart from the particular realization, the spin-boson detector
model is essentially based on the idea of using a detection device which is ini-
tially in a metastable state; the microscopic interaction with the particle under
consideration then triggers the macroscopic transition to an energetically favor-
able state. This is indeed a realistic and important concept. It is realized, e.g.,
in the familiar cloud chamber: The chamber is filled with a gas in a metastable
state, and a passing particle ionizes a gas molecule. This ionized molecule then
serves as a germ for condensation, which is a macroscopic event. Thus, the
spin-boson detector model is more than a mere toy-model for a Gedanken ex-
periment. It is worthwhile to be investigated as a solvable model incorporating
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a realistic concept of measurement and amplification.

3.1.2 Hamiltonian

The mathematical description for the spin-boson detector model sketched in
the preceding subsection is based on the following Hamiltonian. Let the excited
state of the j'™ spin be denoted by |1) ; and its ground state by I4) ;» and define

6§:j) = ‘T>H<T| - H)”(H .

The Hamiltonian for the detector alone is given by

1 Ny 1 ; .
Hger = 3 Z ﬁw(()”&gj) ~3 Zﬁwyk)égj) @6k (3.1)
J J<k

() 4

where hwg’ is the energy difference between ground state and excited state of
the j** spin, and hw(J]k) > 0 is the coupling energy between the spins j and k.
The environment is modeled as bath of bosons (phonons or photons) with wave

vectors £ and energy hiwy, £ = ||€||. The free Hamiltonian of the environment is
Hyan = Y gty
L

where d, is the annihilation operator for a boson with wave vector £. In Chap-
ter 4 a continuum limit for the boson modes will be taken. In general, the spins
will be coupled to the bath, and there is the possibility of spontaneous spin flips

due to R _
Hspon = Z h (’)’éj)ez‘fl &Ié'(_]) + HC) .
it

There, &(_j) is the lowering operator for the 7' spin, its adjoint being the cor-

responding raising operator which is denoted by 652),

oD =1y, 6% = (69) =, 0.

The coupling constants *yt(] ) and the phases féj ) depend on the particular re-
alization of the detector and the bath. The crucial ingredient, now, is the
enhancement of the coupling between the ;' spin and the bath when the par-
ticle is close to this spin. Let the j*™ spin be located in a spatial region G\).
The enhancement is taken to be proportional to a sensitivity function (/) which
vanishes outside G). An example would be the characteristic function which
is 1 on G and zero outside, but other and in particular smooth sensitivity
functions are also allowed. The additional coupling depending on the particle’s
position is thus

- N ) -
Heop = 3 X (%) S (gy)elf/ ae? + H.c.) , (3.2)
j ¢
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with ) )
‘géj)‘ > ‘,75.7)‘ (33)

The full Hamiltonian finally is
H = Hpart + Hdet + Hbath + Hspon + Hcoup ) (34)

where Hp,rt is the free Hamiltonian of the particle,

~2
p
Hpart = o

Remark 3.1.2 We note that in the coupling Hamiltonians Heoyp and Hgpon a
boson creation operator &Z is always accompanied by a spin lowering operator
6@, and, vice versa, a boson annihilation operator d, is always accompanied
by a spin raising operator &, Thus, the ‘excitation number’, i.e., the sum of
the number of bosons and the number of up-spins, is a conserved quantity in

the present model.

3.1.3 The detection process

The detection process starts with the bath in its ground state |0) (no bosons
present) and all D spins in the excited state |11 ... Tp). In view of Remark 3.1.2
it is sufficient to measure the vacuum state |0) of the bath in order to check
whether or not a spin has flipped. We stress that no direct observation of the
particle or the detector is necessary, and that there is no explicit interaction of
the particle with the detector or the bath. The particle is merely regarded as a
catalyst for a change in the detector-bath state.

The general ideas of the detection and the subsequent amplification have
been sketched in Section 3.1.1, see in particular Figure 3.1. Two issues are of
particular importance for the usability of the spin-boson model as a detector for
a moving particle: the likelihood of a ‘false positive’, i.e., a spontaneous first spin
flip in the absence of the particle, and an understanding of the amplification
process. Both have been investigated in detail in References [GS90, Sch91,
Sch97] by means of standard, unitary quantum mechanics. The main results,
however, can also be found from the results presented in Chapter 4, obtained
by means of the quantum jump approach (see Section 4.1). We will comment
on these issues in Section 4.4, when the relevant equations have been derived.

3.2 Investigation by unitary quantum mechanics

3.2.1 A simplified model

We first consider a simplified model consisting of a particle in one dimension
and only one spin. This simplification is reasonable if the radius of the coupling
region G\) is smaller than the distance between the spins'. The vectors x and

'In Section 3.2.2, however, for calculational convenience we will extend the region GY) to
a half-line, x(z) = O(z).
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£ are replaced by z and £. Also, we will neglect Hypon in view of Equation (3.3).
Obviously, false positives and amplification play no role in this simplified model.
We will therefore concentrate on the evaluation of the probability density for
the spin to flip, indicating the particle’s arrival.

The free Hamiltonian for the particle motion in one dimension is

i p

part — om’

— (3.5)

and the free detector Hamiltonian with only one spin simplifies to

The free bath Hamiltonian is given by
Hidy = hwgdba. (3.6)
14
Further, let the spin be located in the interval [0, d] = Z4 so that
Héét% = Xz, (z) Z h (ggeif‘»’&}tff_ + H.C.) ,
¢

where Xz, is the characteristic function of the interval Z; or, more general, a
smoothed out version of the characteristic function. The full Hamiltonian of
the simplified model is then given by

Hl,ld — Hld

1 1d 1,1d
part + Hdet + Hbath + H,

coup *
This simplified model allows for a direct investigation by means of standard
quantum mechanics.

3.2.2 Energy eigenstates
Evaluation of the relevant eigenstates

In order to get a first idea of how the spin-boson detector model works for an
arrival-time measurement, we simplify the model a little further in the remain-
der of this chapter: We assume the detector to be semi-infinite, extended over
the whole R, axis, and temporarily take

X, (@) = O(2),

where © is Heaviside’s step function. In addition, we assume f; = 0 for the
phases in the coupling Hamiltonian. The stationary Schrodinger equation with
energy eigenvalue Fj,

HY'|®) = By |®),
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can be solved piecewise in position space. For a plane wave coming from the
left, initially no bosons present, and the spin in state |1), the solution for z < 0
simply reads

;i (z) = \/; ([e“” + Ro(R)e™| [t 0) + 3 Re()e ™ e®z || 1@)) :
14

k>0, (3.7)
where the wave numbers k, ky(k) are fixed by
B2k hwo R2ke(k)?  Rwg
om T2 T B= T, T The (3:8)
and [T 0) =[1)]0), |[J 1) accordingly. We note that
2m
ke(k) = \/kz + = (wo —we)
is imaginary if
k}2
wy > % + wp- (39)

In this case we choose the root with Tm k,(k) > 0, yielding an evanescent wave?.

Otherwise, k¢(k) > 0.

We further note that there is the possibility that the particle is reflected
from the detector. It may either be reflected with the detector spin flipped and
a boson of mode /¢ created, i.e., the particle has been detected. The coefficient
for this event is Ry(k). Or, it may be reflected without being detected, the
coefficient being Ry(k). The latter will lead to a non-normalized arrival-time
density. As in the cases of Allcock’s absorbing potentials (see Section 2.2) and
of the fluorescence model (see Section 2.5), this no-detection probability is in
general momentum dependent. Hence, the momentum density of the actually
detected part of the wave packet must again be expected to differ from that
of the originally prepared wave packet, leading to deviations of the ‘measured’
arrival-time density from corresponding ‘ideal’ quantities.

For £ > 0 the operator

A

2
Ha e [ il _ 2P_m ] = %hwo&z n %: Fuwgdlig + %: K (gea}&_ n H.c.)
is independent of z, due to the assumption x, (z) = ©(z), and it commutes
with $?/2m. Since Ha is a Hermitian operator its eigenvalues are real. They
will be denoted by 7£,/2. The corresponding eigenvectors are superpositions
of [t 0) and |} 1) and denoted by |u) so that

Ha ) = "5 | (3.10)

% Ascribing to the incident particle a kinetic energy %*k?/2m, and to the spin flip an energy
gain hwo, one may wonder if the situation described by Equation (3.9) should not be forbidden
by energy conservation. We note that this is not the case since states of the form |k) |1)|0) or
|—ke) [4) |1e) are no eigenstates of the Hamiltonian and thus do not posses a definite energy.
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The eigenvalues /), /2 may be calculated numerically, using the matrix repre-
sentation of Ha in the basis of the states [+ 0), || 17)®. Once they are known,
the eigenvectors |u) can be calculated in terms of the states [t 0), || 1) by
a calculation outlined in Reference [GS95]: Multiplying Equation (3.10) from
the left with (+ 0|, (J 14|, resp., yields

Q,
TW#+Z@41W)=h t olu)

hwo

e = w0/2) (L Lalu) + hge (1 Oy = () 1),

From the second equation one has

g1 (T O|p)
(L Lol = . (3.11)
5 (Q 4 wo) — we
Substituting this into the normalization condition
(1 Ol |* + D)1 Lew)* =1
l
finally yields*
1
¢ olw) (3.12)

Calculating (t 0|p) from Equation (3.12) and substituting the result in Equa-
tion (3.11) gives the eigenvectors |p) in terms of the [t 0), || 1;). In a numer-
ical calculation, obtaining the |u) this way will be much faster than using some
standard algorithm for the evaluation of the eigenvectors of a general matrix,
especially for large N.

To obtain now an eigenvector of H'4 on = > 0 for the eigenvalue Ej, one
has to choose an eigenfunction e'%(*)% of 52 /2m such that

() | 9

E,. =
k om 2

From Equation (3.8) one has

qu(k) = \/k2 + (wo — ) - (3.13)
Note that g, (k) is imaginary if Q, > wy and

m
k2 < E(QN—WO),

3This subspace of spin-bath states with excitation number 1 is sufficient since the detection
process will start with detector and bath in state |1 0), see Section 3.1.3. The time devel-
opment is then bound to the subspace of states with excitation number 1, due to excitation
number conservation, see Remark 3.1.2.

*Actually, only the modulus of (+ 0|u) is fixed by Equation (3.11) and the normalization
condition. The phase, however, turns out to be a meaningless overall-phase and is chosen
according to convenience.
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leading to exponential decay. Otherwise g, (k) is real. The solution of the
stationary Schrédinger equation for z > 0 belonging to the eigenvalue Fj can

then be written as
1 .
k(@) =/ 7 > ay(k)eET ) (3.14)
u

The coefficients a,(k), Ro(k), Re(k) are obtained from the usual matching
condition, i.e., both

) @5 if z<0
(z|®) -—{ ‘I’%(ﬂv) >0 (3.15)

and its first derivative with respect to = have to be continuous at z = 0. To
be specific, after multiplication from the left with (1 0|, (| 1|, resp., the
matching conditions read

1+ Ro(k) = Zau(km 0 )
ik —ikRo(k) = quu )(T 0|p)
Ry(k) = Zau b lelp)

—iko(k)Re(k) = quu ) (L 1e|p). (3.16)

For N boson modes, this is a system of 2(N + 1) coupled equations. We note
that these equations depend on k£ and thus when investigating a wave packet,
and integrating over k, they have to be solved for every k individually. The
numerical effort can be reduced a little by eliminating Ry, Ry from the equation
system, and then solving the resulting system for the «,,

2k = Y [k+gu(k)] au(k) (T 0|p)

0 = Y[k +qu®)] auk) (b Lelu). (3.17)
o

Then, one evaluates Ry, R, by substituting a,, into Equations (3.16). However,
Equations (3.17) still form a system of N + 1 coupled equations, dependent on
k. Thus the numerical investigation of the time development of a wave packet
still is rather time consuming.

Subspace of states, orthogonality and normalization

The remainder of this subsection is devoted to some technical remarks.
We first note that the energy eigenstate |®;) of Equation (3.15) is not the
only state with energy eigenvalue Ej, even if one considers only states with
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excitation number 1. A full basis of the space of states with excitation number
1 would be obtained by taking into account a number of further states. First,
there are states corresponding to plane waves incident from the left but with

the detector spin in its ground state and one boson present, described for z < 0
by

1 : )
5y o@) = /5= | [+ B ke 1L 1)

+ Z R(\L, 1[) —ikl/(kg)m H/ 1@) + R(()wlra 11) (k ) —Zk k:g |T )
=

where kg, kp and k are related to Ej as in Equation (3.8). Further, there are
states corresponding to left going waves, described for < 0 by

1 .
®<,. = (/5= T+ o(k)e ™t 0
“k; 1, 0 or Lt o(k)e [t 0)
1 .
1, = Var Th 1 (ke)e™ ™ [ 1)

For z > 0, these states can be calculated similar to the preceding subsection,
although for the latter states of course contributions containing e~"+(k)% haye
to be taken into account.

However, we are interested in states which asymptotically, for very early
times ¢ — —oo, behave as free states incident from the left while detector spin
and boson bath are in state |1 0). To be more specific, if |¥y) denotes the state
of the complete system, spin, bath, and particle, at time ¢, we are interested
in states for which

R ~ ; ’

| W) ~ e~ H0t'/2 |4 0)/ Ak (k)e™ PR 2m gy gy oo (3.18)
0

holds, where |k) with (z|k) = \/1/27 e**®, k > 0 is the free momentum eigen-

state, and % is the momentum density of the incoming, asymptotically free

state. These states belong to the subspace spanned by the |®j) evaluated in

the preceding subsection: For very early times |®¥,) is located very far on the
left side,

Uy(z) = (z|®y) =0, x>0, — —o0.

Consequently, being interested in the overlap of |¥y) with the energy eigen-
states |®y), we have

(Br |Ty) = /_00 dz @ (z) ¥y (2)

N / QB (@) Ty (2) ~ PR 1 oo,



36 The spin-boson detector model

where @5 is extended to the whole real axis, and Ej, is given in Equation (3.8).
Similarly, one has

(Pry 41, [ Re) ~ (Bogy 0 [Ty ) ~ (Bogyy 1, [By) ~0, ¢ = —o0.

Thus, at a very early time ¢ the asymptotically free state can be expanded into
the states |®y),

o o0
o)~ [k @) (@) = [ AR @), o o
’ " (3.19)
Since the states |®;) are eigenstates of the Hamiltonian the state |¥;) for all
times remains in the subspace spanned by the |®;). From the expansion in
Equation (3.19) the time development of the scattering state |¥;) is obtained
by applying e_iHl’ld(t_t')/h, yielding

@) = / kP (k) |y e BN (3.20)

Orthogonality and normalization of the eigenstates |¥y) can be calculated
directly from Equations (3.7), (3.14), and (3.15), but are most easily seen by
means of the asymptotic freedom of the scattering states. We consider two

asymptotically free states, \Ilgj )> , 7 =1,2 with

. oo ~y . .

) = [ g ) g e,
0

The overlap between these two states for very early times can be evaluated by

means of the asymptotic freedom, i.e., by replacing |®;) with the free momen-

tum and spin-bath eigenstate |k) [t 0) [compare Equation (3.18)], yielding

(50 o)~ [ 0T, 1>
For t = 0 one finds
(w2l = /0 dkdk! §0 (k) ) (k) (S5 | B ).

The two expressions must agree, due to the unitarity of the time development,
and since this argument is independent of the choice of the functions J(j ) we
have

(@ | By ) =6 (k—K).

3.2.3 Jaynes-Cummings approach

Already for a rather modest number of boson modes N ~ (O(10), solving the
coupled Equations (3.17) will typically require a numerical treatment. Some
insight can be obtained, however, from an analytical treatment of a simple
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model with N = 1, similar to the Jaynes-Cummings model of quantum optics
[JC63]°.

We take the coupling constants to be of the the form gy = —i|ge| (as will
also be done in Sections 3.2.5 and 3.2.6 investigating numerically examples with
several, discrete boson modes). For N = 1 the space of detector-bath states
with excitation number 1 is two-dimensional, and we choose the basis

[t 0>£((1)>, il mﬁ(?)-

The eigenvalue Equation (3.10) can then be written as

(o 1) (o -2 N0 ) = ()

We introduce the notations

A:=wy—wy and R:=1/A%+4|g%. (3.21)

Thus, A denotes the detuning of the boson mode with respect to the transition
frequency wq of the spin, and R corresponds to the ‘Rabi flopping frequency’
of quantum optics. Then, the eigenvalues are given by

Qr=w £ R

with corresponding eigenvectors
cos isind
) = ( isind ) and |2) = ( cos 9 )’

—A 2
cos? = R and sind := l9¢]

VO = A)? + 4ge? VR = A)2 +4dlg

In the sequel we will further assume the boson mode to be in resonance with
the transition frequency of the spin, wy = wy, i.e.,

A =0, consequently R =2|g. (3.22)
In this case one simply has

Q= wo £ 2|gg

2 -y5(1). |n+>=\/§(j). (3.23)

®For a review of the Jaynes-Cummings model and its impact on quantum optics see, e.g.,
the review article Reference [SK93], containing an extensive list of references up to 1993.

and
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Further, in case of resonance one has ky(k) = k, by Equation (3.8). Equa-
tions (3.17) hence can easily be solved, yielding

kv2 ikv/2
Trrem M T T m

where [see Equation (3.13)]

wh) = R+ T -0 = s e e

From Equations (3.16) one finally obtains the reflection coefficients in the eigen-
state for z < 0, ®5 [see Equation (3.7)],

1 1
Rolk) = k<k+q_(k)+k+q+(k)>_1

1 1
R = (o~ ) (520
We note that the coefficient for reflection without detection, Ry(k), indeed
depends on k, leading to deviations of the ‘measured’ arrival-time density with
respect to ‘ideal’ quantities, as remarked earlier.
From Equations (3.26) together with Equation (3.25) one easily finds the
limits of the reflection coefficients for very small and very high energies and
coupling constants:

a_(k) (3.24)

lim Re(k) =0= lim Re(k)  lim Re(k) =0= lim Ry(k)
%

k—o0 |ge|—0 |ge|—o0
lim Ry(k) =0 = lim Ro(k)  limRo(k)=—-1= lim Ro(k). (3.27)
k—00 |ge|—0 k—0 |ge|—o0

The last limit is particularly interesting. It states that for very slow particles as
well as for very strong spin-bath coupling the particle under consideration will
be reflected with probability close to 1 while spin and bath remain unaffected.
One sees that there is a back-reaction on the particle, including the possibility
of reflection, which for an unsuitable choice of parameters may render the mea-
surement useless. In the framework of the limit of continuous boson modes we
will discuss optimization schemes for the detection of wave packets of a given
energy range, see Section 5.2.3.

The eigenstate ®; for z > 0 is obtained by inserting a4 (k), ¢+(k), and
|4 ) from Equations (3.24), (3.25), and (3.23), into Equation (3.14), yielding

> — 1 k
@ = o e R T+ a ()]

( ¢i0-(7 s 4 . (k)] + €4+ (7 [ + (k)] )
i) [k 4 g, (k)] — i+ BT [k 4+ q_(K)] )

We consider a limit of weak coupling,

2m
2 |ge| < K.
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By means of the Taylor series expansion

m

Qi(k)=k¥—|gz|+o<

k3

(2m|9e\/h)2>
hk

one finds for the ratio of population
2 .
(= 1 0|®)" _ |[2k — (mlgel/fk)] + e~ "Crisel/™) [2k + (mgy|/ k)]
(z 4 1[@7) |12k — (mlgel/Ak)] — e @mlad /W) 2k + (im| gl /)]

‘2
In particular, for z = 0 one has

|2

(z=0, 1 0|®7) 4k*
=~ > 1.
(z=0, | 1,|®7)]>  (mlgl/P)?

This ratio is inverted at
Rk

r=mT——.
2m|gg|

Indeed, the ratio of population is oscillating with respect to z,

[z t o[@)°  [{z+X t 0]®7))

(o L 1]®87) [(e+x 4 1]87)[
with b
A (k) = .

Thus, when a wave packet of the form (3.18) has entered the detector region
z > 0 and propagates forward along the z axis, population in the spin-bath
space will be transferred back and forth between the states [t 0) and || 1,).
We consider the case that the wave packet is sharply peaked around kg in
momentum space, Ak/ky < 1, and sufficiently fast such that Az/A\;(ky) ~
h/2kgAk < 1 holds. Then, all momentum components of the wave packet
essentially ‘see’ the same spatial oscillation length Ay (k) and at a time ¢t > 0
after entering the interaction region z > 0 the wave packet is located essentially
at a position z(t) = hkot/m. In this case, the population number integrated
over z will oscillate in time with period

po (ko) _ ™
hko/m |gel’
yielding a circular frequency
27
— = 2
T R, (3.28)

where R is the ‘Rabi flopping frequency’ from Equations (3.21) and (3.22). If
the wave packet, however, is broad in momentum space, Ak 2 kg, and/or in
position space, Az 2 A (kg), the oscillation in the population number inte-
grated over x will (partly) be washed out. This is similar to the oscillations in
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occupation number investigated in Reference [NEMHO03b] for a two-level system
with center-of-mass motion in the presence of a laser field.

Equation (3.28) states that (for a sufficiently fast and peaked wave packet)
the population in the spin-bath state flops back and forth between the states
|t 0) and || 0) with flopping frequency PR. This is consistent with the results
obtained for the Jaynes-Cummings model of quantum optics, considering a two-
level system at rest coupled to a single photon mode. It has been shown in that
context that for a large but finite number of field modes the population in the
excited state shows a complicated sequence of collapses and revivals. This is
due to the interference of the floppings associated with the several bath modes.
In the limit of a continuum of modes the population of the excited state finally
shows exponential and irreversible decay. This indicates that also in the present
detector model it will be necessary to go to a continuum limit for the boson
bath in order to prevent revivals || 1y) — |+ 0), and thus to truly relate the
spin flip and the associated boson creation to the first detection of the particle.
This will be the aim of Chapter 4.

3.2.4 Detection of a wave packet

We return to the model with many discrete boson modes and discuss the detec-
tion of a wave packet in this model. Let the state of the complete system, spin,
bath, and particle, at time ¢ be denoted by |®;). The probability of finding the
bath in some boson state |1;) (and hence the spin in state |)) at time ¢ is given
by integration over the modulus square of the respective component of |¥;),

Pldisc(t) — Z/ dz |<CE J/ 15“1’1&)'2
7 oo

o0
~ 1 _/ dz |(z 1 0%, = 1 — Pdise(y),
—00
where the superscript ‘disc’ distinguishes the discrete model from the continuum
limit discussed in Chapter 4. As long as no revivals occur, i.e., no transitions
|4 1g) = |1 0), one can regard
wfie(s) = SP() = - S Pf0)

as the probability density for a spin flip (i.e., for a detection) at time .

For examples with N = 20 and N = 40 boson modes the probability density
for detection will be evaluated numerically in the subsequent subsections and
will be compared to the probability density obtained from the corresponding
continuum limit of Chapter 4. This comparison is a test of the validity of
the approximations made in the derivation of this limit. It further gives an
idea to which extent the continuum limit provides a good approximation to the
discrete case, even for modest numbers of N = 20 or N = 40 bath modes. This
is interesting since in some cases as, e.g., in cavity QED, one actually has to
deal with discrete boson baths. The numerical investigation of continuum limit,
though, typically is far less time consuming than that of the discrete case.
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3.2.5 Examples with constant density of states

As an example we consider a maximal boson frequency w,, and a constant
density of states,

w = wyn/N n=1,...,N
g¢e = —iGyVw/N. (3.29)

We start with detector and bath in state |t 0) as described in Section 3.1.3.
As particle we consider a cesium atom. The particle is prepared in the remote
past very far away from the detector as an asymptotically free state [see Equa-
tion (3.18)]. The momentum density is chosen such that the corresponding
free packet (i.e., in the absence of the detector) at ¢ = 0 would be a Gaussian
minimal uncertainty packet around x = 0 with width Ap in momentum space
and average velocity vg. Decomposing this into the eigenstates of H, the wave
packet at time ¢ is given by (see Section 10)

) = [ AR pE) @) (3.20)

with

Bik) = (ﬁ)w exp (—% (k —mvo/h)z) L (330)

where the parameters vy, Ap will be chosen such that \i(k) ~ 0 for k <0.
Two numerical illustrations of w{i*¢ are given in Figure 3.2 (with N = 40)
and in Figure 3.3 (with N = 20). The average velocity vg of the incident wave
packet is the same in both figures. The main difference between the two figures
is the width of the wave packet in momentum space, Ap = 20 um™' x A in
Figure 3.2 and Ap = 2 pym~! x k in Figure 3.3. This difference in Ap has
important consequences: We note that if Az is the width of the wave packet
in position space, then the width of the probability density for detection is at
least of the order of Az/vg since it takes some time for the wave packet to
enter the detection region. (Further broadening of the detection density arises
from the width of the delay of the first spin flip once the particle is inside
the detector.) Consequently, wave packets with small Ap and thus large Az
yield rather broad detection densities, as is seen in Figure 3.3. As soon as a
significant part of the wave function overlaps with the detector, though, the time
scale of the revivals is essentially determined by the properties of the detector
and the bath and by their coupling. The detector and bath parameters are
of the same order of magnitude in both figures, and hence in both figures the
time scales for the revivals are similar. This time scale is sufficient to obtain
a reasonable resolution of the probability density for detection in the case of
the wave packet with larger Ap in Figure 3.2. In the case of wave packets
with small Ap as in Figure 3.3 longer recurrence times would be needed to
obtain a good resolution of the typically broad detection densities. This would
require a significantly larger number of bath modes. Already for the present
examples with NV = 20 and N = 40, however, the numerical calculation is quite
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e discrete model
— continuum limit

wy() [
N

N

t[us]

Figure 3.2: Dots: spin-flip probability density w$is¢(¢) for an incoming Gauss-
ian wave packet of Equations (3.20, 3.30) with Ap = 20 um~! x h and vg =
1.79 m/s; wy as in Equation (3.29), wp = 2.39 x 108 s7!, w, = 4.6wy, G =
2.782 x 10% s~%/2, N = 40. Solid line: w;(t) from Equation (4.21) for the
corresponding continuum limit. In the continuum limit, the flip rate of the
excited spin state in the presence of the particle is A = 1.057 x 107 s~ !, and
the ‘line shift’ is dgpniry = —1.979 x 107 s™! [see Equations (4.23)]. Up to the
time of revivals, || 1¢) — |1 0) (due to the discrete nature of the bath), the
discrete and continuum probability densities are in good agreement.

1 : : —

0 8; o - discrete model
: — continuum limit

Figure 3.3: Dots: spin-flip probability density w$i5¢(t) for an incoming Gauss-
ian wave packet of Equations (3.20, 3.30) with vg = 1.79 m/s as in Fig-
ure 3.2, but with Ap = 2 pm~! x h; wy = 2.39 x 10® s7!) w, = 2.3w,
G =6.955 x 102 s~1/2) N = 20. Solid line: wy(t) from Equation (4.21) for the
corresponding continuum limit. In the continuum limit, the flip rate of the
excited spin state in the presence of the particle is A = 1.321 x 10 s~1, and
the ‘line shift’ is dsniry = —1.078 x 10% s=! [see Equations (4.23)]. The time
scale for the revivals is similar as in Figure 3.2, but as explained in the text
the probability density is much broader and thus is not reasonably resolved in
the discrete case. Up to the time of revivals in the discrete case, however, the
discrete and continuum probability densities again are in good agreement.
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time consuming since the Equations (3.17) have to be solved for every k in
the course of the integration. The numerical calculation in the continuous case
with the quantum jump approach, discussed in the Chapter 4, is much faster.
In addition, there are no revivals in the continuum limit. We further note that
for more complicated incident wave packets as, e.g., the coherent superposition
of several Gaussian wave packets with different mean velocities, the probability
density exhibits a more complicated structure due to the self-interference of the
wave function.

3.2.6 Example with non-constant density of states

As an example for a non-constant density of states we consider a maximal boson
frequency w,, as before, but

n2
we=(7) wa, n=1...,N. (3.31)
Again, we set gy = —iG+\/wy/N. A numerical illustration of w{i* is given in
Figure 3.4 for the same incoming wave packet as in Figure 3.2. As in that figure,
the discrete and the continuum probability density are in good agreement up
to revivals in the discrete case.

T T [

8- « discrete model
— continuum limit

6 -

wy(0) (ks ]

t [ps]

Figure 3.4: Dots: spin-flip probability density wis¢(¢) for an incoming Gauss-
ian wave packet of Equations (3.20, 3.30). The parameters Ap and vg for the
wave packet and wp, w,, G, N = 40 for the boson bath are the same as in
Figure 3.2, but the frequencies wy now are given by Equation (3.31). Solid
line: wy(t) from Equation (4.21) for the corresponding continuum limit. In
the continuum limit, the flip rate of the excited spin state in the presence of the
particle is A = 1.134 x 10”7 s71, and the ‘line shift’ is Sgpire = —1.183 x 107 571
[see Equations (4.24)]. Up to the time of revivals, |[{ 1;) — |1 0) (due to the
discrete nature of the bath), the discrete and continuum probability densities
are in good agreement.
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Chapter 4

The continuum limit and the
quantum jump approach

The application of the spin-boson detector model of Chapter 3 to arrival-
time measurements is investigated by means of the so called ‘quantum
jump approach’. This approach uses continuous bath modes as a limit, so
there are no revivals, in contrast to the discrete case of Chapter 3. It is
easily generalized to multiple spins, and it is more accessible to analytic
treatment. The bath modes are eliminated, but in contrast to Bloch equa-
tions one can work with a (conditional or effective) Hamiltonian and has
reduced dimensions. In the derivation of the continuum limit we assume
that the Markov property holds. Analytical expressions are derived for
the ‘conditional Hamiltonian’, governing the time development up to the
detection of the first boson, and for the probability density for detection.
The probability density for the first boson detection is compared numer-
ically to the density obtained in Chapter 3 for the case of discrete boson
modes, and the presented examples show a good agreement. Further, ex-
amples for arrival time-measurements with smooth sensitivity functions
are presented. Finally, we briefly comment on the internal dynamics of
the detector.

4.1 The quantum jump approach: Conditional time
development

To measure truly the first appearance of a boson, implying the first spin flip
and thus detection as remarked in Section 3.1.3, one would have to observe
the bath continuously. In standard quantum mechanics with the simple von
Neumann measurement theory (see Chapter V.1 of Reference [vN32]) this leads
to difficulties due to the quantum Zeno effect [BNG7, Kha68, MS77]. This is
very similar to problems in quantum optics, where one is interested, e.g., in
measuring the appearance of the first fluorescence photon from an atom. In
that context the so called ‘quantum jump approach’ has been developed by
Hegerfeldt and co-workers® [HW92, Heg93, HS96, Heg03]; for a review see, e.g.,

!The quantum jump approach is essentially equivalent to the Monte-Carlo wave-function
approach by Dalibard, Castin, and Mgllmer [DCM92], and to the quantum trajectories of
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[PK98]. In this chapter the extension of the quantum jump approach to the
spin-boson detector model is investigated.

The general idea of the quantum jump approach is to circumvent the prob-
lems related to a continuous measurement by observations which are coarse-
grained in time, and by employing a coarse-grained time scale. The continuous
measurement is replaced by repeated, instantaneous measurements, separated
by a time At. For a Markovian system with correlation time 7. [see Equa-
tion (4.14)], one takes At > 7. to avoid the quantum Zeno effect, but At
much shorter than the lifetime of the excited state |11 ... Tp) in order to ob-
tain a good time resolution. Typical numbers for quantum optical models are
At ~ 10783s...1071%. To find no boson until t = nAt means that no boson
has been found in the first n measurements. We will sketch in this section how
to evaluate the probability for this to happen.

Let the complete system (bath, detector, and particle) at ¢ = 0 be prepared
in the state

[To) = [0) [11 --- TD) [to) »

where |1y) denotes the spatial wave function of the particle. If no boson is
found at the first measurement then, by the von Neumann-Liiders reduction
rule? [vN32, Liid51], the state right after the measurement is given up to nor-
malization by projecting with |0)(0],

|W&E4) = [0)(0| U(AL,0)[0) [11 ... Tb) [0) , (4.1)

where U (t,t') denotes the time development operator of the complete system.
The probability for no boson detection, Py(At), is the norm squared of the
vector in Equation (4.1),

Py(At) = [[[0){0] U(AL,0)[0) 11 .. Tp) %) [I*-

The state then develops with U(2At, At) until the next measurement, and so

on. The state after the n'? consecutive no-boson measurement, |\I/?£1’é>, is given
up to normalization by
[Wiona) = [0)(0| U(nAt, [n — 1]At) [0) - -
-+ (0[U(AL,0) [0) [11 ... Tb) |¢bo) - (4.2)

The probability of finding the bath in the state |0) in all of the first n measure-
ments, Py(nAt), is given by its norm squared,

Py(nAt) = (Unih [wrdt (4.3)

cond cond / *

Note that (0| U(vAt, [v—1]At) |0) is an operator in the particle-detector Hilbert
space which does not rotate |1 ... Tp), by excitation number conservation men-
tioned in Remark 3.1.2. Thus, one can introduce a ‘conditionally developed’

Carmichael [Car93].

*We note that the projection postulate as commonly used nowadays is due to Liiders
[Liid51). His formulation differs from that by von Neumann [vN32] if one considers observables
with degenerate eigenvalues.



4.2. CONDITIONAL HAMILTONIAN AND PROBABILITY

DENSITY FOR DETECTION 47
spatial wave function |¢C0nd> of the particle by writing ‘\Ilcond from Equa-
tion (4.2) in the form

‘\I}Z)An?d = |O> |T1 cee TD> ‘wgond> ’ (44)

where t = nAt. It is of particular importance to note that |¢éond> denotes
the spatial wave function developed in time not freely but under the condition
that no boson has been found in all of the repeated measurements on the bath
until t; this is called the ‘conditional time development’. Therefore, the norm
of |¢C0nd is not conserved but decreases due to the repeated projections |0)(0].
Since |0) and |1y ... Tp) are normalized states, Equation (4.3) can be written

Py (t) = <’(/J(t;ond‘1‘/}(t:0nd> . (45)

This is the probability that no transition |0) — |[1), i.e., that no detection
occurs until the time t. We note that Equation (4.5) gives this probability solely
in terms of the conditionally developed wave function of the particle. Detector
and bath contribute only implicitly via the conditional time development. The
probability for the first detection to occur at the next measurement is just given
by

Py(t) — Po(t + At) =: wy(t)At. (4.6)

The crucial point now is to calculate the conditional time development of
|4 a ) i-€., to calculate the time development ‘under the condition that no de-
tection occurs’. For this one has to evaluate (0| U(vAt, [v —1]At) |0) |11 ... Tb).
This will be the aim of Section 4.2.

4.2 Conditional Hamiltonian and probability density
for detection

4.2.1 A simplified model

For greater clarity, we first investigate the simplified model introduced in Sec-
tion 3.2.1. The generalization to the full model will be discussed in Section 4.2.4.
We use the interaction picture with respect to

Hé’ld _ gbild _ gl

coup?

and calculate i i
Up(t, 1) == o’ Wy (t,1))e o "t'/h

in second order perturbation theory with respect to Hcloifé,

. # 1 t t1
U; (t,t’) :]1—%/ dt1 Hy (tl)_ﬁ/ dtl/ dto Hy (tl)HI (t2)+... (47)
t t t

with
1 ,1d

Hi(t) := el t/h ppl1d —iHy Hy 't/

coup®



48 The continuum limit and the quantum jump approach

One arrives at

0| Ur(vAt, [v = 1JAG) [0) [1) = 1) | 1 -

vAt t1

[t [ Y, @) x, @ ) a0 |

[v-1]At  [v—1]At ¢

where Z(t) = Z+ pt/m is the time development of the operator Z in the Heisen-
berg picture of the free particle. The phases f;, in the coupling terms have
canceled; even if one would assume these phases to be dependent on the par-
ticle’s position, f; = fy(x), this would be the case to very good approximation
since At is very small and thus Z(¢1) ~ &(t2) for |t; — to| < At [Heg03]. We
introduce the correlation function

k(1) =) |gof* e (el (4.9)
V4

and write Equation (4.8) in the form

(0| Ur(vAt, [v = 1JAG) [0) [1) = 1) | 1 -

vAt t1

[ an [, 600, Ge) k6 -) | @)
[v—1]At [v—1]At

To have irreversible decay we go to the continuum limit as follows. At first the
bath modes are indexed by ‘wave numbers’

21n
= , n=12,...,
Lbath
and wy is chosen as
Wwg==~¢C ((x)g) e’
so that ) )
prp - C) iy W —l C) 2 (4.11)
c(w) — wc'(w) ¢(w) —wc(w) Lbath
The coupling constants are taken to be of the form
1 Wy
9¢ = [T(we) + O (Lyyyn)] I (4.12)
bath

where I'(wy) does not depend on Lyp,sn. One then goes to the limit of continuous
bath modes, Ly, — 00. By Equations (4.9) and (4.11) one finds that

k(1) = % /OOO do Wuﬂf(w)ﬁei(wwoh ) (4.13)
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We assume I'(w) to be of such a form that the Markov property holds, i.e.,
k() =0 if 7> (4.14)

for some small correlation time 7.. This is the case, e.g., for I'(w) = I as in
quantum optics. In the double integral of Equation (4.10) then only times with
t1 — to < 7. contribute, and if 7. is small enough one can write

Xz, (& (1) Xz, (& (t2)) = X, (& (11))*. (4.15)

With a change of variables 7 := t; — t3 and t' = t; — [v — 1]At, the double
integral of Equation (4.10) then becomes

[ an [ s, @), @) s -t

v—1]At [v—1]At
At 9 t
z/ &', (3( + (v — 1) A1) / dr k(7).
0 0

With At > 7. the second integral can be extended to infinity, by the Markov
property of Equation (4.14). Putting

A == 2Re / ” drk(r) :woc(“’(’)czw‘;’;’f(w(’) IT(wo)]?, (4.16)

0
o0
5Shift = 2Im dr KZ(T) (417)
0
one obtains

(0| Ur(vAt, [v — 1]At) |0) [1)

VAt
1 . N
=) |- g @risan [ dn, P
[v—1]At
. VAt
=1) exp ¢ =5 (A + isnire) / dty x,, [ (0] ¢
[v—1]At

up to higher orders in At. Note that A is a decay rate of the upper spin
level; in quantum optics A and dgpigy correspond to the Einstein coefficient and
to a line shift. Going back to the Schrodinger picture one then obtains by
Equations (4.2) and (4.4)

‘wéond> — e_iHcond(t_tO)/h' |¢O> (418)
with the ‘conditional Hamiltonian’
~2
D h ) u
Hcond = % + 5(6shift - ZA)ngl ($)2 (4'19)
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Note that this result is independent of the particular choice of At as long as At
satisfies the above requirements. As a consequence, on a coarse-grained time
scale in which At is small, ¢ can be regarded as continuous and ‘¢cond> obeys
a Schrodinger equation with a complex potential,

%
"wcond (2_ +35 [(5Shlft - ZA] de '% ) |"/)cond
In this continuous, coarse-grained, time scale, Equation (4.6) yields for the

probability density for the first detection, w (),

wi(t) = — dl:;)t(t) . (4.20)

With Equations (4.5) and (4.18) one easily finds
1
w1 (t) = 3z <¢€ond Heong — H;rond ¢€ond>

= A/ dIXI ‘ "chond ‘ : (4'21)

If x;, (2) is the characteristic function of the interval [0,d] this is just the decay
rate of the excited state of the detector multiplied by the probability that
the particle is inside the detector but not yet detected — a physically very
reasonable result.

4.2.2 Example with constant density of states

As an example with a constant density of states we consider the continuum
limit of the discrete model of Equations (3.29). In this case one has, with w,,
the maximal frequency,

clw) = ¢
n 2mn
= — = =1,..- N
Wy wMN Co Lbath’ n 3 ’
2mcg N
Lbath =
M
a Y= i 2mey wy
¢ = —1 —_ = —1
g VN oy V Loam
—iG+\/2 =T if w<
T(w) = { i@ mo/w ' wl “u (4.22)
else,

We are interested in the continuum limit, N or Ly, — oo. In order to ob-
tain the correlation function k, one can either insert the above equations into
Equation (4.13) giving the general form of x in the continuum limit. This yields

K(T) _ /‘{.UM wdw 27'('0() |G|2 e—i(OJ—UJO)T
0 2mcy w,, '
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Or, one can insert Equations (3.29) into Equation (4.9) giving & in the discrete
case, and then calculate the continuum limit directly for this specific example.
This yields

N
1 . .
K(T) — (JJM|G|2§ :N%efsz’r(n/N)—}—zwo’r
n=1

1
— wM|G|2/ de £ e7@nTEROT  for N o0,
0

From both approaches one obtains in the case w,, > wo

IG)? (1 + iwy,T) e~ Uwy —wo)T _ giwoT
= 2

K(7)

w T

M

Consequently, from Equations (4.16) and (4.17),

A = 27T|G|2ﬂ
wM
dae = 206 (Lm0 1), (4.23)
wy  Lwy — wo

and 7. is of the order of w, !. Tn the integral for wy (t) in (4.21) one has

Xz, (@) = O(a).

The resulting w; (¢) is plotted in Figures 3.2 and 3.3 for the same wave function
and parameters as for w{*¢(¢) in the respective figure. The densities obtained
from the discrete model and from the continuum limit are in good agreement
up to the occurrence of revivals || 17) + |t 0) in the discrete case. This
agreement is seen most nicely in Figure 3.2. In the case depicted there both
the discrete model and the continuum limit yield a reasonable resolution of the
‘measured’ arrival-time density. In the case of small Ap, depicted in Figure 3.3,
the revivals distinguishing the discrete model from the continuum limit play a
much more dominant role. Since their time scale is shorter than the width of the
probability density for detection, the arrival-time measurement by the discrete
model with only N = 20 boson modes is rendered useless in that case. The
continuum limit, where no revivals occur, can be applied without any problems.

4.2.3 Example with non-constant density of states

As an example with a non-constant density of states we consider the continuum

limit of the example of Equation (3.31). In this case one has, with w,, the
maximal boson frequency,

w

cw) = ¢ -t

wM

2 2mn 27n?
wy = —) w,, =clw =c n=1,...,N.
¢ (N ) " (we) Loath NLpam’ Y
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Lyath, g¢ and T'(w) have the same form as in Equations (4.22). In contrast to
the preceding section we have ¢’(w) # 0, and hence Equation (4.13) yields a
more complicated form for the correlation function,
| G|2 Wt
2\/ Wy Jo
In order to evaluate the decay rate A and the ‘line shift’ dgp;f it is convenient
to change the order of integration,

K(T) dw v/w e7H@wo)T

1 [e.e]
2 (A + ibshiry) = / d7 k(1)
0

2 w o]
— |G| /de\/a/ dTe—i(w—wo)T
2\/wy Jo 0
Vw )

_ 6P W\/uT—I—iP/Wde
2/, 0 0 wy — w

where P denotes the principal value of the integral. One finally obtains

A = W|G|2\/@
wM
9 wo wy Jwo + 1
S = |C \/: m Y/t 1) o (4.24)
V(e
The resulting w; (¢) is plotted in Figure 3.4 for the same wave function and
parameters as for w{* in the discrete case. Again, the densities obtained from
the discrete case and from the continuum limit are in good agreement up to
revivals || 17) — |1 0) in the discrete case.

The agreement between the quantum jump approach and the discrete case
of Chapter 3 is quite interesting. It indicates that the continuum limit of the
quantum jump approach may provide a good approximation to situations where
one is faced with a discrete boson bath as, e.g., in cavity QED, up to the time of
revivals. This will surely be useful since the explicit handling even of a modest
number of bath modes, N =~ 10...100, makes a numerical investigation rather
time consuming. But already for such modest boson numbers the discrete model
is well approximated by the continuum limit of the quantum jump approach,
up to the occurrence of revivals, as the examples show. We note that this
continuum limit was derived under the assumption that the Markov property
Equation (4.14) holds, and that in all examples 7. < 1/A. The latter inequality

is a necessary assumption in the derivation of the quantum jump approach, as
indicated in Section 4.1.

4.2.4 The three-dimensional model with several spins

The continuum limit and quantum jump approach for the full three-dimensional,
multiple-spin model introduced in Section 3.1 are quite similar until Equa-
tion (4.8). Analogously to Section 4.2.1 we use the interaction picture with
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respect to
HO = H — (Hspon + Hcoup) .

In second order perturbation theory with respect to Heoup + Hspon One obtains

(O Us(vAL, [y — 1A [0) 41 .. 10} = |11 ... ) [ 1

VAt t1
— Z / dtq / dts exp @ w(()j) — Zw(ka) —wy | (t1 — t2)
S p-1ar [p-1]at oy

x (x0 & (1) g +47) (X & @) g +47) |, (@25)

which generalizes Equation (4.8) to the three-dimensional, multi-spin case. The
phases f, ) have canceled similar to the single-spin case since only products of

the form aga(j Y I&@ contribute to the second order, and consequently the
contributions from different spins do not mix.
We introduce ‘modified resonance frequencies’

J) = w Z wj (4.26)
kséj

taking into account the ferromagnetic spin-spin coupling. This definition can

be rephrased by saying that h&(()] ) is the energy gap between |11 ...1p) and

IT1...4j ... Tp). We further define correlation functions analogously to Equa-
tion (4.9),

=l —i(eem)r (4.27)

(4

and similarly for ngv) , g g) and KZ—) With these definitions one can write Equa-
tion (4.25) as

0|Ur(vAt, [v —1]JAL) [0) [T ... tp) = [T ... Tp) | 1

vAL t1

-3 [ [ O s e -

v—1]At [v—1]At

XD (1)) 1) (01— t2) + X1 ((t2)) ) (61— t2) + 2) (1 — 1)

(4.28)
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In analogy to (4.12), the coupling constants are taken in the form

. . ~ W
g,@ = [P(J)(wﬁ, el) + O(Lbalth)] L3
ba,th
. , ~ 7,
W = [Pl + 0Lk /75 (4.29)
bath
with wy = c(wy)? as before, e = £/£, and
) ) ?
‘F g (wﬁa el) ‘ > Pspon (wfa el)‘ (430)

Again the Markov property Equation (4.14) is assumed to hold for the correla-
tion functions in the continuum limit. The several integrals in Equation (4.28)
can then be evaluated analogously to the single-spin case of Section 4.2.1.
Again, one obtains a conditional Schrodinger Equation (4.18), but now with
the conditional Hamiltonian

P> h o a
Hcond - ;)_m + 35 [(5shlft( ) - 'LA(X)] ) (4'31)

with A(x) given by

Alx) = 2ReZ/ ar {59 (r)xD (%) + 9 (1)}
» c w(]) _&(])C/ a(j) 0o
- [ @;)4( i
< (00 (@) X ? + [ (38,

(4.32)

generalizing Equation (4.16). In Equation (4.32) the dQe integral is taken over
the unit sphere; the contributions from n%), ng) have been neglected, due to
Equation (4.30). The terms have the familiar form of the Einstein coefficients
in quantum optics, where there would also be a sum over polarizations. The
real part of the potential contribution to Heong, the ‘line shift’ dghiy (x) is given

by
Senite (X _2ImZ/ dr {0 (1)x D (x)? + kL) (1)}. (4.33)

Since the k5, term leads to a constant it just gives an overall phase factor and
can therefore be omitted. We note that A and dgniry depend on the modified
resonance frequencies w(() ), through KZ(] ) and H,%,W rather than on w(() ) This is as
one would expect since the ferromagnetlc coupling between the spins results in a
decreased energy gap between |11 ... Tp) and |t1 ... |; ... Tp) when compared

to the single spin states |1) and ||).
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The probability density for the first detection, on the continuous, coarse-
grained time-scale on which At is small, is obtained from Equations (4.6), (4.5),
and Equation (4.18), together with Equation (4.31), and is again similar to
Equation (4.21),

1
wi(t) = 7 <¢(t;ond Heona — Hog ¢§ond>

_ / Bz A (%) |(x |[$lona ) (4.34)

This is an average of the position dependent decay rate of the detector, weighted
with the probability density for the particle to be at position x, and to be
undetected yet.

4.3 Example: Detector with smooth sensitivity func-
tion

4.3.1 General setup

So far, the examples considered numerically always employed Heaviside’s ©
function as sensitivity function of the detector spin. In this section we consider
a further example of an arrival-time measurement by means of the contin-
uum limit of the spin-boson detector model, but now with a smooth sensitivity
function. For simplicity, we will stick in this section to the simplified, one-
dimensional model introduced in Section 3.2.1. As outlined in Section 3.1.3
we again assume that spin and bath are initially in state [t 0). Furthermore,
we again assume that the Markov property Equation (4.14) holds, and so the
analysis of the previous sections applies. According to Equation (4.18), the
conditional time development in the continuum limit thus is governed by the
conditional Hamiltonian

H2 h . N
Heong = 2p_m + 5(5shift - ZA)de (x)Q’ (4'19)

containing a complex potential. A and dgphig; are defined in Equations (4.16)
and (4.17), and x,, now is assumed to be smooth.

We note that in contrast to typical problems in scattering theory it will not
be sufficient to investigate the asymptotic behavior, for ¢ — +oo, of a wave
packet subject to scattering off the potential

h . 9
Vi(z) = 5(5shift - ZA)de (z)”.
In order to investigate the probability density for detection we need to calculate
the complete time development of the wave packet, and in particular need to
calculate the behavior of the wave packet just at those times when it hits the
potential describing the detector.

We first aim at evaluating the eigenstates of the Hamiltonian of Equa-
tion (4.19) with smooth sensitivity function Xz,- The conditional time de-
velopment of a given wave packet is then obtained as usual by means of a
decomposition of the wave packet into these eigenstates.
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V.
J .
ij-l—l

Vi1

Aj—1 A4 Aj1
Bj-1 B; Bj1

|
aj—1 aj T G4l aj+2

Figure 4.1: A piecewise constant potential. The eigenfunctions of the corres-
ponding Hamiltonian are given piecewise in Equation (4.35). In any interval
[a;j,a;j+1] an eigenfunction is given by a superposition on plane waves etikiz
with the possibly complex wave number k; defined in Equation (4.36), and
with coefficients A; for right-going waves and coefficients B; for left-going
waves.

4.3.2 Eigenfunctions

Although the physical model under consideration is the continuum limit of the
spin-boson detector model or rather its simplification described in Section 3.2.1,
we stress that the reasoning outlined in this subsection is valid for all smooth
potentials V(z), independent of their physical interpretation.

Starting point: Piecewise constant potential

We start our reasoning from a piecewise constant potential, from which the
smooth potential will be obtained as a limit. Let x| a;j < aji1, be the
characteristic function of the interval [a;, a;1],

aj,a;41]>

1 ifaj <z <aj4q1
X[aj,aHl](ﬂf) = { 0 else )

and let a piecewise constant potential V' be defined by

V(J") = Z ij Xlaj,a;j+1] (.’E),
J

see Figure 4.1. The eigenfunctions of the corresponding Hamiltonian

~2

Hy =2
14 om +V(‘T)a
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to energy eigenvalue Ej, are given by

1 ks ik
u() =\ 5= 3 (A5e™57 + Bje™™7) x4, 1) (2) (4.35)
J

with

2m
k=55 (Br = Vi). (4.36)

The coefficients A;, Bj, j = 1, 2, ... are related via the usual matching

condition that both ®; and its derivative with respect to £ must be continuous.
Introducing the matrix

eikj.’l; e—ik‘jz‘
M;(z) == ( kjeika _k.je—ikjac ) ’
this matching condition can be written as
A Aj
Mirta) (570 ) =M (). (431)

Smooth potential limit

From Equation (4.37) one finds that the coefficients on the left and on the right
side of the interval [a;,a;41] are related by

A _ _ A
( Bj’i ) = Mj (a5401) Mj (aj41) M5 (a) M1 (aj) ( B;_i )
oo [ A
— M, ( 5 ) . (4.38)
It is convenient to introduce the notations
Az :=aji1 —aj, Ak:=kjy—kj 1, and D% :=ky+k;, j'=j+1.

With these definitions the ‘transfer matrix’ Mj reads

M= — (m“ m”) (4.39)
4kjkji1 \ m21 mo2
with
my = etk (Di_lDfle—iD’flAz _ D];—IDJ;—He—iDZfIAx)
myy = e (kiitki)e (Di_lDZ“e*iDi“Ax _ Di_lDi+1e*iDi+lA$)
mor = eki-itkitias (Di’lD{+leiDi+lAz _ ng1Di+1ez'Dj_+1Ax>

s i1 il spitl i1 .11 jpitt
mey = %8k (DJ+ 'DIfleiPm Ae _ DIt pitl iy A@”). (4.40)
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We are interested in the limit of a smooth potential, i.e., in the limit
aj+1 — Q5 and kj—l — k}j — k‘j+1.
In this case one has
Jj—1pni+l 2
Dy Dy =~ 4kj,
DD DI DI & 2kA,

and
D7D ~ 0 (18KP) .

Keeping only terms linear in Az, Ak, the transfer matrix M ;j defined in Equa-
tions (4.39) and (4.40) simplifies to

Mon [ L—iegAk emTRO Ak 2k
I\ e¥kivi Ak/2k; 1 +iajAk ’

and with Equation (4.38) one finds
Aj > Aj 1 v A
_ M., —1 J
( Bj_|_1 Bj_l ( J ) Bj_l
; —2ikja;
_ . —ta; e J J/2kj Aj—l
= Ak ( e2ikja; /Qk'j 10 B; 4 ’
up to higher orders in Az, Ak. We divide both sides of this equation by Az and
then consider the limit Az — 0 and Ak — 0 which yields a smooth potential.

With Equations (4.35) and (4.36) we find that in the limit of a smooth potential
an eigenfunction for energy eigenvalue Fj, is given by

Dp(x) = % (A(a:)eik(‘”)z + B(av)e*ik(z)w) , (4.41)

where

k) = /2% (B - V(e

and the coefficients A(x), B(z) fulfill a kind of ‘continuous matching condition’

( P ) — K (2) ( s e i) ) ( 40 ) s

We note that for this result to be valid it is necessary that k(z) # 0 and
mV'(z)/h?
V2 (B - V()

exists. This condition will be fulfilled for all z € R in the examples discussed
in Section 4.3.3, where V' will always be smooth and Im V' (z) # 0 for all z € R.

K (z) = -
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Boundary conditions: Asymptotic behavior

Similar to scattering theory, one will typically be interested in somehow ‘local-
ized’ potentials,

lim V(z)=0.
|z|—o0
One then considers a wave packet which has been prepared in the remote past,
far away from the potential, as a superposition of plane waves. Say, the wave
packet is prepared far away on the left side, and contains only positive mo-
menta. Such a wave packet can be decomposed into eigenfunctions ®;, given by

Equation (4.41) with
) :(RﬁN)
T(k) N

) - () e

Such an eigenstate corresponds to a plane wave incident from the left, with a
normalization constant N, together with a reflected part with a coefficient R(k)
and a transmitted part with a coefficient T'(k).

We note that one prescribes the normalization N of the incident wave and
also lim,_,« B(z) = 0 which indicates that no wave is incident from the right.
The coefficients R(k) and T'(k), though, are not prescribed from the start but
are evaluated from Equation (4.42). Hence, the asymptotic behavior neither on
the far left nor on the far right provides a suitable boundary value for a numeri-
cal integration of Equation (4.42). One can, however, integrate Equation (4.42)

for
mm(59)-(4),

~ < \T
yielding a solution (A(:C) B(a:)) . Due to the linearity of Equation (4.42), the

correct solution with the asymptotic behavior of Equation (4.43) is then given
by

4.3.3 Numerical example

As a numerical example we consider similar to Sections 3.2.5, 3.2.6 and 4.2.2,
4.2.3 a cesium atom. The wave packet is prepared in the remote past far away
from the detector such that the corresponding free packet (i.e., in the absence of
the detector) at ¢ = 0 would be a Gaussian minimal uncertainty packet around
z = zo with width Ap in momentum space, and with an average velocity
vg. The conditional time development of the wave packet is obtained from



60 The continuum limit and the quantum jump approach

the decomposition into eigenstates (4.41) of the conditional Hamiltonian (4.19)
with smooth sensitivity function Xz,

(@ |[$eona) = /0 " Ak (k) @y ()i (4.44)

with a momentum distribution

~ B h 1/2 h2 9 '
P(k) = (Ap\/2_7r> €xp (—W (k — mwo/h) +zkx0) . (4.45)

The parameters vy, Ap will be chosen such that U(k) ~ 0 for k < 0. The
probability density for detection is given by

wi (t) = % <w€0nd Heond — Hzond wgond>
oo
[ e 0 ) (1)
-0

see Section 4.2.1.

In the sequel we will neglect the ‘line shift’ dgpiry; negligible dgnisr can be
obtained, e.g., in the example of Sections 3.2.5 and 4.2.2 by choosing a max-
imal boson frequency® w,, ~ 1.278wy. The sensitivity function Xz, in Equa-
tion (4.19) is taken as a Gaussian around z = 0,

Xz, (@) = e/ (4.46)
In Figure 4.2 two examples with the same incident wave packet are plotted,
but with different decay rates A and with different widths b of the sensitiv-
ity function. Also plotted is Kijowski’s arrival time density IIx at z = 0 for
the same wave packet [see Section 2.3 and in particular Equation (2.6")]. In
both examples reflection from the absorbing potential, i.e., reflection without
detection does not play a significant role. In the example with the broad and
only weakly absorbing potential, however, about 5% of the wave packet are
transmitted through the potential rather than being absorbed, i.e., detected.
We also note that this broad detector yields a broad detection density (dashed
line) which exhibits strong deviations when compared to Kijowski’s arrival-time
density at = 0 (dots). In contrast to this it is seen that the probability density
from the spin-boson detector model with narrow sensitivity function (solid line)
is in excellent agreement with Kijowski’s axiomatically predicted density Ilk.
The distinctive point is that in this case the width b of the sensitivity function
is small compared to the relevant length scales of the wave packet and thus
provides a useful tool to detect the arrival at a specific position.

3We note that dsniey given by Equation (4.23) is exactly zero for w,, = [W(1/e) + 1] wo,
where W denotes Lambert’s ‘W function’. The W function solves W (y) eV W) = y; for a discus-
sion of the W function, including a number of practical applications, see Reference [CGH'96].
The decay rate A is independent of w,, as long as w,; > wo.



4.4. DETECTOR DYNAMICS: FALSE POSITIVES, DETECTION,
AND DOMINO EFFECT 61

3.0

2.5

16 20 24
t[s]

Figure 4.2: Solid line: spin-flip probability density wi(t) for an incoming
Gaussian wave packet of Equations (4.44) and (4.45) with vg = 0.903 cm/s,
g = —18.5 mm, and Ap = 0.38 mm~! x A. The detector is described by
its continuum limit with a decay rate A = 2.84 x 10° s~! and with a smooth
sensitivity function of Equation (4.46) with width b = 0.27 um. Dashed line:
spin-flip probability density w; (¢) for the same incident wave packet, but now
for detector parameters A = 1.69 x 10! s7! and b = 2 mm. The density
obtained from the detector with narrow sensitivity function is in excellent
agreement with Kijowski’s axiomatically predicted arrival-time density (dots).

4.4 Detector dynamics: false positives, detection,
and domino effect

In Section 4.2 we have derived all the necessary formulas to briefly comment
on the detector dynamics. We note, however, that we do not aim at a complete
analysis of the detector dynamics. Rather, the main features of the detector
shall be made plausible. For a detailed analysis see References [GS90, Sch91,
Sch97].

We start with the likelihood of a spontaneous first spin flip in the absence
of the particle, a ‘false positive’. We note that the spin flip rate A(x) of Equa-
tion (4.32) can be written as

A(x)

= Aot (a(()j))3 (

@) — s’ (@)

c (Lf)éj)>4

J 8 o0 .9 o

(4.32")
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with

s [e@) =3 G f g 1 s v
AO:;(“’SJ)) c(agj))4 / el (@)
(4.47)

We now consider the case that the particle’s wave function has negligible overlap
with all spins,

(% |0 )|* X9 (x) 0, j=1,...,D.

Then, those parts of A(x) which are proportional to the squared sensitivity
functions, x{¥)(x)2, do not contribute to the spin-flip density w1 (t) given by
Equation (4.34). Thus, A is regarded as spin flip rate in the absence of the
particle. In this case the life time of the state |11 ... Tp) is simply given by

1

To = —.
0 A

One sees from Equation (4.47) that Ty typically will be large, and false positives
consequently will be rather unlikely, if the energy gap hfu(()] ) between the states
|11 ...1p)and |1 ... ] ... Tp) is small for all j = 1,..., D, and the spin-bath
coupling in the absence of the particle is weak.

But when the particle is close to the j*® spin, the enhanced spin-bath cou-
pling according to ') becomes valid as can be seen from Equations (4.32) and
(4.34). The excited state [1); hence decays much more quickly. As an example

we consider the case that all spins are located in the same volume V,
X9 (x) = x,, (%).
Specializing Equation (4.32’) to this case yields
A(x) = Ag + Adetection Xy (%)

with

Adetection = Z (E;Sj))g ¢ (a(()j)> _ a(()j)cl (a(j)) / dQe

N 2
i c(af)ﬂ)4 (27)? re (w(()]),e>‘ '

One thus obtains from Equation (4.34) a probability density for the first spin
flip reading

2
w1 (t) = Ao + Agetection /dgx Xy (x)2 |<x ‘¢fxond >‘
Adetection 18 much larger than Ay, due to Equation (4.30), and its contribution
to the spin-flip rate is proportional to the overlap of the wave function with the
detector region V. This is how a detector is supposed to work.

When the first spin has flipped, the ferromagnetic force experienced by its
neighbors is strongly reduced, and thus these spins can flip rather quickly even
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in the absence of the particle by means of the ’y(] ); by a kind of ‘domino effect’,
the whole array of spins will eventually flip, amplifying the first spin flip to a
macroscopic event.

As an example we consider a ring of D identical spins with nearest-neighbor
interaction,

)

wy’' =wy and w

09 = w; 0j+1,ks

and j = D + 1 identified with j = 1. For simplicity, we further assume c(w) =
co and I‘(j)(w) = I', accordingly for I'spon. We are interested in the further
time development of the spin system after the first spin flip. The numbering
of the spins is arbitrary, so we can assume that the spin which flipped first
has the number 1. It has been argued in References [GS90, Sch91, Sch97]
that, due to the relevant time scales, one may neglect processes of the kind of
|...Tj—1dj --) = |-.. Lj=1Tj .. .). Consequently, we may calculate the flip rate
of the neighboring spins, numbers 2 and D, under the assumption that all other
spins are fixed. A calculation parallel to that outlined in Section 4.2 yields a
flip rate for the spin number 2, reading

3
m6) = () [ g (I (@75, 0 + T @F) . (48)
The index 1 indicates that this is the decay rate under the assumption that
spin number 1 has flipped already. As compared to Equation (4.32), the main
difference is that wy has been replaced with wy since the ferromagnetic forces
on this spin just cancel. One typically has wg > @Wg, and thus A4 (x) > A(x).
Even if we take into account only the weak spin-bath coupling according to
[spon, the spin still flips with a flip rate

3
_(wo dQe
o= (22) |

The same results also holds for the other neighboring spin, number D, and then
in turn for their neighbors, and so on. Thus, even in the absence of the particle
the whole ring flips, the average time needed for this given by

. 2
T (€)] > 4o,

D

Trin ~ —.
& 2Al,spon

These results are in agreement with those obtained in References [GS90,
Sch91, Sch97] by means of standard, unitary quantum mechanics. This illus-
trates the validity of the quantum jump approach. In the sequel, however, we
will concentrate on the crucial event of the first spin flip.
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Chapter 5

Application to arrival times:
Discussion and extensions

The application of the spin-boson detector model to measurements of
quantum arrival times is discussed, together with possible extensions. It
is noted that the effective mathematical description (absorbing potential)
is closely related to the one-channel limit of the fluorescence model. This
relation between physically different models may help to illuminate the
physical background of otherwise heuristically introduced complex poten-
tials. Further, possible optimization schemes are discussed.

5.1 Relation of the detector model to the fluores-
cence model

The fluorescence model for particle detection has been introduced in Section 2.5.
Originally it is a two-channel model since excitation number is not conserved
due to the pumping by means of the classical laser field. In a certain limit,
however, it yields a one-channel model (see Section 2.5.4). In this one-channel
model, the conditional time development is governed by a Schrédinger equation
with a complex potential

hA(z)Q(x)? — ihyQ(z)?/2

M TP F

(2.27)

For A(z) = 0 (laser in resonance) V is a purely imaginary potential, similar
to the spin-boson detector model when the ‘line shift’ contribution dgniry can
be neglected'; only the physical interpretation of the height of this imaginary
potential differs. In other words, the one-channel limit of the fluorescence model
coincides with the full quantum mechanical spin-boson detector model from
Section 3.1 when considering the conditional time development for the particle
until the first detection. In this way, the fully quantum mechanical detector
model of Section 3.1 justifies the fluorescence model for quantum arrival times,

'For the possibility of neglecting dsnif; see the remarks preceding Equation (4.46) in Sec-
tion 4.3.3.
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at least in the limit of Equation (2.24). Further, one can conversely immediately
carry over the results of the fluorescence model to the detector model. The
investigation of the fluorescence model (see Section 2.5) has shown that the
essential features like reflection and delay [DEHMO2], and main results like,
e.g., linking Kijowski’s arrival-time density to a particular measuring process
[HSMO03], can be obtained from the full two-channel model as well as from its
one-channel limit. Hence these results immediately carry over to the present
detector model.

This close relation is seen as a result of the careful analysis of both the
models which yields in both cases a description by means of a complex potential.
It is not at all obvious from the start since the models are physically quite
different. We note that the derivation of a complex potential model for particle
detection from two different physical models, viz. the fluorescence model and the
spin-boson detector model, indicates the importance, and relevance of complex
potentials.

Differences between the spin-boson detector model and the fluorescence
model arise, however, when the models are applied to more complicated mea-
surements than that of arrival time. An example for such an application showing
differences between the models is the application to passage times, which will
be investigated in Part II of the present thesis. In contrast to an arrival-time
measurement the measurement of passage times requires knowledge about the
particle’s state after the first detection, the so called ‘reset state’. This reset
state is not the same in the two models.

5.2 Attempts to reduce the back-reaction

5.2.1 General remarks

The detector model introduced in Chapter 3 has three ingredients, viz. a par-
ticle in whose spatial properties one is interested, a ‘detector’ based on spins,
and a bath of bosons, originally in the ground state. There is neither a di-
rect measurement on the particle of interest nor on the detector but only on
the bath, which is checked for bosons. In this way one can hope to keep the
disturbance of the particle by the measurement to a minimum. However, the
spin-boson detector model, in the limit of continuous boson modes, yields an
effective description by a complex potential, just as the fluorescence model of
Section 2.5 does. In Reference [Hal99] this has also been seen for a simplified
spin-boson model. Thus, the spin-boson detector model shows the typical un-
wanted features mentioned in Section 2.2: There is a detection delay, due to the
finite spin decay or flip rate, and there is also necessarily the possibility that
the particle is reflected by the detector without the detection of a boson, due to
the increased spin-bath coupling caused by the particle’s wave function inside
the detector. Due to this reflection without boson detection the probability
density for the first detection, wi(t) given by Equation (4.34), in general will
not be normalized. A similar effect arises from the transmission of the particle
without boson detection.
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In order to reduce the detection delay one may be tempted to increase the
spin-bath coupling in the presence of the particle, that is, to increase the cou-
pling constants g,(fj ) in Equation (3.2). As a by-product this would also decrease
transmission without detection. But the increase of this spatially dependent
coupling means an increase of the complex potential (%/2) [dshitt(x) — 1A(x)]
[see Equations (4.32) and (4.33)], and this will also increase the reflection with-
out boson detection. In the limit of infinite coupling, finally, everything is
reflected while nothing is detected. This is in agreement with the explicit re-
sults obtained in the Jaynes-Cummings approximation of the detector model,
see Section 3.2.3 and in particular Equations (3.26) and (3.27). The same phe-
nomenon occurs in the fluorescence model [DEHMO02] and is a typical feature
of complex potentials, as already noted by Allcock [All69a, All69b, All69c].

5.2.2 Large number of spins, weak coupling

One might also try to reduce the influence of the spin-bath system on the
particle and thus the latter’s disturbance by decreasing the coupling of the
individual spin to the boson-bath and simultaneously increasing the number
of spins located in a given region. This seems promising because it is the flip
of a single spin which gives rise to the detection. The reduced coupling of
the individual spin could be expected to result in a reduced disturbance on
the particle, while the increased number of spins compensates for the weaker
coupling. To investigate this idea quantitatively we consider D spins, later to
be taken to the limit D — oo, in the same volume V and x\)(x) = xy(x) for
all j. The coupling constants are taken in the form [compare Equation (4.29)]

O T (we,ep) + O (Lyg) [ @i
L — - = )
D L%ath

and similarly for fyéj ), Further, the ferromagnetic force experienced by the
individual spin is assumed not to grow with increasing D such as for nearest

neighbor interaction. Then (4.32) becomes

Ax) = zD:(Go)3 [c(a")_%i'(ao)]

= c(wo)
/dQe I (@0, €)|* xv (%) + [Tspon (@0, €)
(2m)? D
_ (o3 [€®0) = Goc’ (@)
= (wo) [ ¢ @o)’ ]

< [ s (T @o.6) Py (02 + Pen @i,

which is just the decay rate for a single spin in V, with resonance frequency wy
and the coupling as for D = 1. A similar result holds for dgpis(x), defined in
(4.33).
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Thus, simply increasing the number of spins D and scaling the coupling
constants with 1/1/D leaves A and dgpify invariant and thus does not change
the dynamics until the first detection (spin flip). In particular, it does not help
to avoid reflection without detection. Any other scaling power of D, however,
would not lead to a reasonable detector model in the limit D — oo since then
A and i, would either go to zero or to infinity?. It is interesting to note
that, although it is the flip of one single spin which triggers the detection, it
is the totality of all spins located in V' which determines the conditional time
evolution.

5.2.3 Optimized detectors

It has been shown in the framework of complex potentials that one can deal with
the delay/transmission-versus-reflection problem by means of an appropriate
choice of the shape of the potential. In Reference [NEMHO03a] a rather simple
idea was investigated in the framework of the fluorescence model to optimize
the reflection and transmission properties. This idea is easily applied to the
present spin-boson model.

For simplicity we consider only one dimension, but several spins. The sen-
sitivity functions x() of the spins are assumed to be characteristic functions of
the intervals G{) where the respective spins are located, and these intervals are
assumed not to overlap, G N G®) = ( if j # k. Each spin is allowed to have
its own coupling constants, i.e., we allow gg ) #+ ggc), Jj # k. We neglect Hg,op
in view of Equation 3.3, and accordingly neglect the possibility of spontaneous
spin flips (false positives). We further assume that the model can be described
by the continuum limit of Chapter 4. Since the contributions of different spins
to the conditional time development do not mix, as was argued in Section 4.2.4,
the analysis of Section 4.2.1 for the one-dimensional case is easily generalized
to many spins. Analogously to Equations (4.16) and (4.17) we put

~G)Y _ 5@ 1 (~0)
s B o oy

65{12& =2Im /0 dr Hg]) (7).

The conditional Hamiltonian then reads

and

Lo 3 [0k - 149] 9 @) (5.1)

9
b
Hcond = m 9
J

Since the xU) are assumed to be characteristic functions of non-overlapping in-
tervals this notation emphasizes that the potential contained in Hy,q is piece-

2We mention, based on unpublished calculations by Hegerfeldt et al., that similar results
also hold for the quantum optical fluorescence model of Section 2.5.
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wise constant, as depicted in Figure 4.1. The height of each rectangular poten-
tial barrier in Equation 5.1 can be adjusted independently of the other barriers
by adjusting the model parameters of the respective spin.

We assume that the detector consists of D spins, the first spin being located
in the open interval G() = (z1,z5) and the last spin being located in G(P) =
(zp,zp+1)- As in Section 4.3.3 before taking the smooth-potential limit, the
eigenstates of H.ong, to energy eigenvalue Ej, have the form

1 ik;x —ik; T [
(@) =y 5= 2 (4657 + Bie ™) Xy p1(@)  (4:39)
J

with & given by Equation (4.36). We assume that the particle is incident from
the left, i.e., the coefficients on the left of the detector have the form

(5 )= (i )

and those on the right of the detector have the form

( Ap+ ) _ ( T(k) N )

Bpi1 ) 0 ’

where N is the normalization constant of the incident plane wave. The coef-
ficients A; and Bj, and in particular By = R(k) N and Apy1 = T'(k) N, can
be evaluated by the transfer-matrix method sketched in Section 4.3 (without
the smooth-potential limit). The probability for reflection is given by |R(k)|?,

and the probability for transmission is given by |T'(k)|?. Consequently, the
probability for non-detection is given by

Prr (k) := |R(K)]* + [T(k)]” .

For given k the probability Prr(k) depends on the heights of the several rect-
angular potential barriers. If one considers a model with D barriers at fixed
locations, minimizing Prr(k) thus is an optimization problem with 2D vari-
ables (real and imaginary part of each barrier) which can be solved numerically
by standard routines. This procedure can be extended to a finite range of
wave numbers k: One discretizes this range by choosing a finite number of
ki, 1 =1, ..., N, and then minimizes the weighted average with weights
w = (w1,...,wN),

N
(Prr)w = sz’PRT(ki)-
i1

As an example we consider a cesium atom incident from the left, and opti-
mize (Prr),, for a range k = mwvy/h with vg = 2...10 cm/s with equal weights
w; = 1/D. The detector is assumed to be described by eight rectangular po-
tential barriers with equal widths, located between £ = 0 and x = 1 ym. We
neglect the real part of the potential, 65{12& (see the corresponding remarks in
Section 4.3.3, in particular the footnote there), and minimize the non-detection



70 Application to arrival times: Discussion and extensions

probability with respect to the AU). The optimized potential is depicted in
Figure 5.1, and the non-detection probability Pry (k) for the individual & ob-
tained for the optimal choice of the AU is shown in Figure 5.2. It is seen that it
is possible to construct detectors such that neither reflection nor transmission
without detection play a role for a given energy range of the incident particles.

More elaborated optimization techniques for general and in particular smooth
complex potentials have been studied in References [MBM95, PMS98]. It has
been shown that it is possible to absorb nearly the complete wave packet in a
very short spatial interval; given a wave packet with a specific energy range, an
appropriate complex potential can be constructed by means of inverse scatter-
ing techniques. Again, these results immediately carry over to the continuum
limit of the spin-boson detector model. We stress that there is no such a thing
as the optimal imaginary potential for all wave packets, but the construction
of the optimized potential requires a priori information about energy range of
the wave packet under consideration.

5.3 Outlook: Application to passage times

In Part IT of the present thesis a more complicated application of the spin-boson
detector model will be discussed: The measurement of quantum passage times.
Like quantum arrival times, quantum passage times (and the related dwell, re-
flection, and tunnel times) are an extensively and sometimes controversially dis-
cussed topic. We investigate a particular measurement scheme which mimicks
the way a passage-time measurement is typically performed by an experimen-
talist. The spin-boson detector model is used to model the individual particle
detections during the measurement process.
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Figure 5.1: Optimal choice of decay rates A when the detector is described
by eight rectangular, imaginary barriers with equal widths, located between
z = 0 and = 1 pm; optimized for cesium atoms incident from the left with
velocities v = 2...10 cm/s.
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Figure 5.2: Non-detection probability Pgrr as a function of the velocity
v = hk/m for a cesium atom incident from the left on the detector de-
picted in Figure 5.1. Over most of the range, the non-detection probability is
less than 107°.
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Part 11

Application to passage times






Chapter 6

Passage times: Introduction

Some approaches to quantum passage and related times are briefly sketched.
This is not meant to be a complete review of the extensive literature on
this topic. In order to give a first idea about quantum dwell and pas-
sage times, we just present two examples for ‘ideal’ approaches and briefly
discuss their conceptual differences, and one example for an ‘operational’
approach. Idea and results of the latter example will later be compared
to the measurement scheme investigated in Chapters 7 and 8. For a more
exhaustive and detailed review (with main focus on tunneling times) see,
e.g., References [HS89, LM94]. Further, an outline of Part IT is given.

6.1 Quantum passage times

The arrival time discussed in Part I is, of course, not the only possible time
observable in quantum mechanics. Preparing a particle at ¢ = 0 with localized
but extended wave function as before, one may also ask for the time this particle
spends in some given region of space. Repeating this experiment would yield a
‘dwell-time density’ or ‘sojourn-time density’. Again the question poses itself,
how to measure the dwell time, and what to expect the resulting density to
look like? One may also ask similar but more detailed questions than that con-
cerning dwell times: Discriminating between those particles which eventually
transmit the region of interest and those which are reflected, one may sepa-
rately consider ‘passage times’ and ‘reflection times’. Related to the passage
time is the ‘tunneling time’ when in the region of interest there is a barrier
which classically cannot be traversed by the particle.

Similar to the approaches to arrival time, the approaches to dwell and re-
lated times may be separated into those aiming at ‘ideal’ quantities depending
on the system of interest alone, and ‘operational’ ones coupling the system of
interest to some kind of ‘measurement device’. Examples for the first class of
approaches are the average dwell time for the stationary case by Smith [Smi60],
the dwell-time operator by Ekstein and Siegert [ES71] (see Section 6.2), the ap-
proach via Feynman path integrals by Sokolovski and Baskin, yielding complex
valued passage times [SB87], and the dwell time for a localized wave packet
and its separation into passage and reflection times by Jaworski and Wardlaw
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[JW88], e.g., or by Muga, Brouard, and Sala [MBS92]. Examples for the latter
class of approaches are the Lamor clock approaches by Baz’ and Rybachenko
[Baz67, Ryb67], further investigated and related to Smith’s ideal dwell time by
Bittiker [Bit83], or the experimental approach by means of optical tunneling
by Balcou and Dutriaux yielding both real and imaginary part of complex pas-
sage time [BD97]. Another model based on the particle’s coupling to a clock is
due to Salecker and Wigner [SW58], elaborated further by Peres [Per80], and
extended to semi-continuous particle-clock coupling by Alonso, Sala, and Muga
[ASMO3] (see Section 6.4).

6.2 The dwell-time operator by Ekstein and Siegert

In the early 70ies, Ekstein and Siegert put forward a ‘dwell-time operator’
[ES71]: Consider first an ensemble of particles with time dependent position
density g;(z). The average time a particle spends between the position z = a
and z =b, L:=b—a >0, is given by

00 b
7_]c)lassmal(a’ b) — / dt/ dz Qt(-T)- (61)
—00 a

The quantum mechanical counterpart of this classical average dwell time is
formally' found to be [JW88, MBS92]

[ b
TD(a,b):/ dt/ dz |t (2)[2, (6.2)

where 1); is the wave function of the particle. This ‘quantum average dwell
time’ can be written as

(@, b) = (vo |7p(a, b)| o) ,

where (z |19 ) = 1o(z) is the initial wave function, and the dwell-time operator
7p is defined by

[ee]
7p(a, b) ::/ dt etft/h Pla.b) e~ Ht/h (6.3)
—00
with the Hamiltonian H and the projector on the interval [a, b],

b
Py = / dz |z) (x|

In order to sketch some basic properties of 7p we consider the free case,
i.e., H = $?/2m. It can be shown [DEMNO04] that 7p is essentially self-adjoint;

'Note that in the standard interpretation of quantum mechanics there are no particle
trajectories, and thus the interpretation of Equation (6.2) as ‘average dwell time’ is not quite
straightforward. However, arguments for the extension of Equation (6.1) to the quantum case
can be found, e.g., by means of the Feynman integral approach to quantum mechanics [Fey48],
see Reference [SC92].
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further, it commutes with H, and hence these operators can be diagonalized
simultaneously. Expanding the eigenstates of 7p into momentum eigenstates

k), (z|k) = /1/27 %%, yields
1 ik(a
|y = \@ (R E) B (6.4)

and the corresponding eigenvalues are

2 mL <1 n Sin(’“L)) . (6.5)

hk kL
Note that
L, . _y _ mL
3 (" +7) = Tk
is the classical dwell time of a free particle with momentum p = hk. In the
limit £ — 0 one finds 7',;" — 00, but 7,7 — 0. Since 7p is essentially self-adjoint
its eigenstates are complete,

7 ak (e |+ ) (o) = 1

and thus by means of Equations (6.4) and (6.5) the dwell-time density for a
given initial state |1)y) is calculated to be

Op(r) = (¥old(7p(a,b) —7)|%0)
[ ak (16 0 (5 =) + (i 1) (5 =)

6 (k517 — k)
/dkz (i [o)|” —‘F—I|-<k;_[7-])‘
(5 =H))

+ | | o) |” ‘ (k [T)

6.6)

where l~s;C [r] for given 7 denotes the zeros of the transcendental function

Py =L (1 + Sin(kL)) _—

hk kL

and the prime denotes the derivative with respect to k. This dwell-time density
exhibits a resonance structure since the denominators are given by the modulus
of one of the derivatives

mL  mL
FL (k) = ~ w2 + — 2 5 cos(kL) F hk3 sin(kL),
and either F! or F! vanishes at kK = nw/L, n = 1,2,.... Hence, IIp diverges

whenever k;t [r] = nw/L and <k;t [T]‘ ¢0> # 0. We note that for £k = nn/L one

. + _ —
finds degenerate eigenvalues 7,7 = 7, .
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6.3 The passage time as difference of arrival times

The dwell-time operator 7p introduced in the preceding section does not dis-
criminate between transmitted and reflected particles. Now we turn to passage
time, i.e., to the time spent in some given region by those particles which even-
tually are transmitted through this region. The typical way to measure such a
passage time in a time-of-flight experiment is not to continuously observe the
particle. Instead, the particle is detected upon entering the region of interest
and upon exit, and the time interval between these signals is regarded as pas-
sage time. In the present section we treat the ‘passage time as difference of
arrival times’ as ideal quantity determined by the properties of the particle’s
wave function alone. An operational approach based on a particular detector
model, viz. the spin-boson detector model introduced in Chapter 3, will be
investigated in Chapters 7 and 8.

In case of free particles, an operator for the difference of arrival times at
positions x = a and x = b, L := b — a > 0 can be constructed by means of
the respective arrival-time operators [see Section 2.4 and in particular Equa-
tion (2.16)],

Poassage (@,0) 1= |By — fa| = mL |p|”" . (6.7)

One immediately sees that the momentum eigenstates |k) are eigenstates of
Tpassage (@, b), the eigenvalue mL/hk being twofold degenerate,

N mL
Tpassage(a; b) |:|:k> = ﬁ |:|:k> , k>0.

The corresponding passage-time density is calculated by means of the complete-
ness relation of the momentum eigenstates as

Hpassage(T) - <¢0|5(7A—passage—7')|¢0>
N 2 2 mL
- /0 dk (I<k|¢o>| + |(~k 40| ) 5 (ﬁ —7)

mL mL 2 mL 2
2 (-0 e

this is just the passage-time density for an ensemble of classical particles with
momentum density

oo(p) = [(p|4o)]>, = hk.

In contrast to the dwell-time density IIp of the preceding section, the
passage-time density Ilpassage does not exhibit a resonance structure. This dif-
ference is interesting to note since we investigated both operators, 7p as well
as Tpassage, in the free case. Classically, one would argue that in this case there
is no reflection and thus dwell time and passage time should be identical. In
quantum mechanics, however, we see that it is not that easy. We note that the
ideas behind the two operators are different: The dwell-time operator 7p(a, b)
defined in Equation (6.3) can be understood as checking continuously the prob-
ability density for the particle to be in [a,b] and then integrating this density
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over the time. From this point of view 7p is the abstract image of one con-
tinuous measurement, or one continuous observation of the probability density
|9(z,t)|? inside [a,b]. In contrast to this, Tpassage Cal be seen as abstract im-
age of a passage-time measurement based on two distinct measurements at the
positions z = a and = = b while the probability density |1 (z,t)|? inside [a, b]
is not directly observed. As seen above, the quantum mechanical operators re-
lated to these two different ideas yield different densities although the classical
picture would suggest agreement. This illustrates that in quantum mechanics
one has to be very careful to clarify the measurement by which a particular
observable is to be obtained. It thus appears indeed useful to not merely rely
on mathematical approaches aiming at ‘ideal’ passage, dwell, or related times.
As in the case of arrival times, these approaches should be complemented by
‘operational’ approaches, i.e., by the formulation and investigation of particu-
lar Gedanken experiments aiming at the ‘measurement’ of the observable under
consideration.

6.4 Clock models

Already in 1958, Wigner and Salecker made a proposal for a ‘quantum clock’
based on eigenstates of the angular momentum [SW58]. The application of this
clock to the measurement of the duration of several physical processes, and in
particular to the measurement of dwell time, was investigated by Peres [Per80].

6.4.1 The quantum clock of Wigner and Salecker

The idea of the quantum clock reads as follows. The clock’s Hamiltonian is
given by
Heock = wjzi —thw—,
dp
where w is an angular frequency, ¢ € [0,2x[, and J,= — ihd/0y is the z-
component of the canonical angular momentum. Normalized and orthogonal®
eigenstates of Hjocx are given by |u,) with

1
Up ) = e, neZ.
(¢ |un) VoS
The corresponding eigenvalue to |u,) is fiwn,
Heock [un) = hwn [ug) . (6.8)

Now consider a coherent superposition

1 J
vy) = —— Un), N =254+ 1.

n=—j

*Here, ‘orthogonal’ is meant with respect to {f|g) = f027r de f()g(p)-
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One has
(@) == (vo |@|vo) = 0,

and from Equation (6.8) the time development of the initial state |vp) is found

to be '
(i o) = (p |e7Hetoert/

’U()> = (¢ — wt|vg) . (6.9)
Thus,
(@) == (vt [@]ve)
can serve as a hand of a clock, indicating time as
(@)

t=-~t
w

which is unique for 0 < ¢ < 27/w. The overlap between states at different
times, v; and vy, is calculated as

sin ([N/2]w [t — t'])

N sin (w[t — t']/2)

(vg Jvg ) =

Consequently, two states at different times ¢, t' are orthogonal, and thus can
be clearly distinguished by a single measurement, if

‘t—t'|:n;—7;, n € N\ {0}.

The smallest time difference for which such a clear distinction is possible,

2T

Ay = —
t Nw’

(6.10)

is called the ‘hand width’ and indicates the precision of the quantum clock.

6.4.2 Applications to dwell times

In order to measure by means of this clock the dwell time of a particle in
an interval Zy = [0, d] one couples the particle to the clock when being in the
interval. If the particle is free up to the coupling to the clock, the corresponding
Hamiltonian reads
p N A
H= 3 + Xz, (&) wl,

with the characteristic function

1 ifo<a<d
XI"’(I)_ 0 else

In case of interaction, the interaction potential V(z) would be added to the
Hamiltonian. The particle, as long as it is in Zg, is continuously coupled to the
clock, and no distinction is made between transmitted and reflected particles.
This is in line with the understanding of the dwell-time operator 7p, as it has
been outlined at the end of Section 6.3.
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Since H and J commute one has

A2

H1) i) = ( e+, (@) ) 14) ), (6.11)

where [1) is the state of the moving particle. Consequently, the initial state
|1o) |vg) develops according to

J
e~ 1/" o) |vo) = Z i) un)

with » A
‘¢§n)> _ e—z(p2/(2m)+x1d (w)hwn)t/h 1%0) .

In other words, ‘¢§n) >, which may be regarded as a kind of partial wave, behaves
as if scattered by a rectangular potential of height (or depth, resp.)

Vo =hwn, n=—j,...,7, (6.12)

due to the coupling to the clock.

We consider an incident plane wave, (z|k) = \/1/27 e***, with wave number
k = /2mEy/h, Ej being the kinetic energy. The wave number inside the
potential barrier V;, is k' = /2m(Ey — V,,)/h. Consequently, for |V,| < Ej
(‘small disturbance’) the phase shift caused by this barrier is given by

V [ m [ m
r_ = _n —_— = — —_— = —
(k k)d " d 5, nw d om, nwTy,

up to higher orders in V/E,i/ ®. There, 74 = d(2Ey/m)~'/2 is the classical
dwell time of a free particle with kinetic energy Ej in the interval Z;. Thus,
if the incident wave packet is sharply peaked around wave number k, |1y) ~
|k) |vo), the outgoing state after passing through the barrier will be [compare
Equation (6.9)]

N

[Winar) ~ \/—Ik) Z T |ug) = (k) o)

the clock’s hand pointing at the classically expected dwell time.

The hand width of the clock is the smaller the more eigenstates |u,) are
coherently superposed in the clock’s initial state |vg), as can be seen from Equa-
tion (6.10). For given kinetic energy Ej of the incident particle, though, the
number N = 2j+1 of superposed eigenstates is limited by the small disturbance
condition |V,| <« Ej for all n = —j,...,j. This limits the hand width of the
clock and thus the accuracy of the measurement scheme to [see Equations (6.10)
and (6.12)]

Ar> —-. (6.13)
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Alonso, Sala, and Muga in Reference [ASMO03] replaced the continuous cou-
pling to the clock, Equation (6.11), by a pulsed coupling with a time 7" between
the pulses,

2m

9 00
Hpulsed = P + wT ( Z é (t - nT)) Xz, ('/i‘) Jy.

n=—oo

They argued that even if Equation (6.13) is violated a dwell-time measurement
fulfilling some kind of small disturbance condition is possible provided T' >
A¢ (25 +1)/7 and
s 2
E;, -

Since the dwell time is measured by the number of ‘kicks’ the clock’s hand expe-
riences while the particle is inside Zy, the accuracy again is proportional to £} L
although the clock’s hand width may be smaller than the limit set by Equa-
tion (6.13). One might be tempted to conjecture that this limitation in precision
is directly due to some kind of ‘time-energy uncertainty relation’, but this is not
the case. In Chapter 7 we will present a measurement scheme for passage times
based on the detection of the particle upon entering and exiting the region of
interest, much like a time-of-flight experiment is typically performed. For the
individual detections we employ the spin-boson detector model introduced and
investigated in Part I of the present thesis. The accuracy of this measurement
scheme will be estimated in Section 8.2. Under optimal conditions it behaves

like £, 3/ 4, thus for low velocities breaking the E,;l behavior.

6.5 Plan of Part 11

Part I1 is organized as follows. In Chapter 7 the measurement scheme is sketched
(Section 7.1), and the quantities necessary for its investigation are derived. In
particular, in Section 7.3 we calculate the ‘reset state’, i.e., the state immedi-
ately after the detection of the first boson. For some examples the reset state
is calculated numerically for the case of a discrete boson bath as well as for
the corresponding limit of continuous boson modes, and the results are com-
pared. Further, a formula for the ‘measured’ passage-time density is derived
in Section 7.6. In Chapter 8 properties of the passage-time density are dis-
cussed. In Section 8.1.1 three examples with different detector accuracies are
investigated numerically. Mechanisms for the broadening of the obtained den-
sities are discussed in Section 8.1.2, where a classical broadening mechanism for
slowly responding detectors is distinguished from a quantum mechanism in the
case of detectors responding quickly to the presence of the particle. The width
of the passage-time density is estimated, and its optimization is discussed in
Section 8.2.



Chapter 7

Application of the spin-boson
detector model

A Gedanken experiment is described, aiming at the measurement of the
passage-time density for a spread-out quantum particle to traverse a spe-
cific region. The measurement employs the detector model investigated in
Part I. The continuum limit of the model is treated, under the assumption
of the Markov property, and the particle state immediately after the first
detection is calculated. Two explicit examples with 15 boson modes show
excellent agreement between the discrete model and the continuum limit.
Analytical expressions for the passage-time density are presented.

7.1 Measurement scheme

We investigate passage-time densities by means of a measurement scheme which
mimicks the way an actual time-of-flight experiment is typically performed.
The measurement scheme involves two measurements of arrival time, one upon
entering the region of interest and one when exiting, see Figure 7.1. For the

X
0o \&mmpm 100 aﬁ"ﬂ"izokm
w (t) wo (t')
oo
g(t-t)

Figure 7.1: The first detector detects the particle upon entry into the region
of interest, the second one when exiting. From the correlation of these two
arrival-time densities, ng), the passage-time density G is obtained. The z-
positions correspond to the numerical examples discussed in Chapter 8.
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two measurements of arrival time the spin-boson detector model introduced in
Section 3.1 and investigated in Part I of the present thesis is used. Between the
two measurements the particle state develops freely. This scheme is in contrast
to the scheme sketched in Section 6.4 which was based on the (semi-) continuous
coupling of the particle under consideration to a ‘clock’. Due to the reduced
interaction, the present measurement scheme can be expected to distort the
particle’s wave function less than that scheme.

7.2 Quantum jump approach: The reset operation

For the intended application of the spin-boson detector model we need more
than the time development up to the first detection, which was investigated in
Part I. In particular, we require knowledge about the particle state immedi-
ately after the first boson detection. A similar problem arises in quantum optics
when one wants to simulate fluorescence trajectories of a multi-level system in-
teracting with a bath of photon modes and possibly a pumping laser. Then,
knowledge is required about the state of the multi-level system after each indi-
vidual photon detection. In the framework of the quantum jump approach, this
state is called the ‘reset state’, and is obtained by means of the so called ‘reset
operation’ [Heg93]. In the present context, the main idea reads as follows.

Let the complete system (bath, detector, particle) be described at a partic-
ular time by a density matrix of the form

e=10)[T1 .- Tp) &p (T --- Tn[ (0]

There, o, denotes the particle density matrix, the boson bath is in its vacuum
state, and all spins are in the excited state. According to the quantum jump
approach the bath is checked for bosons not continuously but by means of
instantaneous measurements separated by a time At (see Section 4.1). Until
the next measurement the system develops freely, and a time At later it is in
the state
o(At) = U (At,0) oUT (At,0)

with the free time-development operator U(t,t'). Now, let a boson be found
in the broadband boson measurement at Af. The density matrix for the cor-
responding subensemble is obtained by sandwiching the above expression with
the projector onto the one-boson space,

Pr=) |Le){Ll,
¢

by the von Neumann-Liiders reduction rule [vN32, Liid51]. The trace gives the
probability for this event. The subsystem consisting solely of the particle, after
the detection of a boson, is described by a partial trace,

trdet trhatn P1 U(AL,0)0 UT(AL,0) Py =: R(At)gp. (7.1)

In general, the reset operation R(At) must be expected to depend on the choice
of At. When treating the limit of continuous bath modes, however, we will



7.3. EVALUATION OF THE RESET STATE 85

in the sequel always choose At small enough so that in Equation (7.1) only
contributions at most linear in At have to be taken into account. In that case
one can define

R(At)op = Rop At + O ([At]Q) : (7.2)

as will explicitly be seen in Equation (7.14). The state ﬁgp is called the ‘reset
state’. We will numerically justify this linear approximation for an example in
Section 7.3.4. An abstract justification in the framework of photon-statistics,
valid also for systems with more than two levels, has been given in Refer-
ence [HS96].

7.3 Evaluation of the reset state

7.3.1 The general result

The aim of the present section is the evaluation of the reset state. We split the
model Hamiltonian introduced in Section 3.1 into two parts, H = Hy+ Hy with

HO = H - (Hcoup + Hspon) = Hpa.rt + Hdet + Hbath
H1 = Hcoup + Hspon

as in Chapter 4, and again use standard second-order perturbation theory for
UI(t’ t,) = e’LHOt/rl U(t, t,) e—ZHOt’/ﬁ,

compare Equation (4.7). The zeroth order does not contribute to Equation (7.1),
neither does the first order since P; acts once on |0). Only the second order
term with H; on the left and on the right survives in second-order perturbation
theory, and one thus obtains

, At
R(At)0p = trges trparn P1 e HoAYR (—%) / dty etfot/hpp g iHoti/h o
0

. At ) . .
X (%> / dty ettlot2/h ) g=iHot2/heiHoAt/Ap (7 3)
0

For later use it will be convenient to split the rectangular integration area into
two triangles,

At At At t1 At [
/ dtq / dty = / dtq / dty + / dts / dty.
0 0 0 0 0 0

We note that the two double integrals in this decomposition of the right hand
side of Equation (7.3) are a complex conjugate of each other. Thus, one has

X At t1 ) —G( 9 .
sl st et [ [ s
e; 70 0

x [+ !x) (x(02))| e 17 + g XD ((12)) [ MBI, (7.9)
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where %(t) = % + pt/m is the free time development of % in the Heisenberg
picture as in Chapter 4, and the modified resonance frequencies (.T)(()J ) have been
defined in Equation (4.26). The phases féj ) in H; have canceled since we are

taking the trace over detector states.

7.3.2 Examples with constant and non-constant density of states

As an example we again consider the simplified model with only one spatial
dimension and only one spin introduced in Section 3.2.1. Again we take x(z) =
O(z), and as particle we consider a cesium atom. The initial state at t = 0
now is assumed to be a pure state, g, = |to) (¥o|. When it comes to actual
calculations [below Equation (7.7)], we will specify that |¢y) is a Gaussian
minimal uncertainty package around position x = 0, with width Az in position
space and with mean velocity vy,

(o190) = || g T i, (75)
x ™

With the above simplifications the first line of Equation (7.3) yields
(z|R(At)op| x)

At At
= Z |g£|2/ dtl/ dts i(we—wo)(t1—t2)
Y 0 0
X <,7,'

o~ tHpart At/h gy (ﬂﬁ(t1))‘ ¢0> <¢0 ‘9 ((t)) ez’HpartAt/h‘ x>

At 2
_ Z e dt eiwe—wo)t <x ‘e—inart(At—t)/ﬁ@ (&) e—inartt/ﬁ‘ ¢0> . (7.6)
7 0
The contribution (z|---|yp) has an intuitive explanation: The initial state

develops freely until ¢ and is then projected onto the detector region. In an
intuitive picture, the time ¢ may be viewed as time of occurrence of a boson.
Since a boson can only be created when the spin couples to the bath, the
particle has to be inside the detector at ¢, hence the projection. Then the state
continues to develop freely until A¢. The integration is understood as sum
over all possible ‘paths’ satisfying the above picture, i.e., as sum over all times
t. This is similar to the path decomposition for multidimensional tunneling
by Auerbach and Kivelson [AKS85] (see also Reference [AKN84] by the same
authors together with Nicole); there, a propagator is decomposed into parts
valid ‘before’ and ‘after’ an event, and the full propagator is obtained by an
integration over the time of occurrence of the discriminating event.

The evaluation of the second line of Equation (7.6) is somewhat involved
due to the projector ©(£). We proceed as follows. We first insert on the right
side of the © function a decomposition of the identity into eigenstates of the
momentum and the position operator,

o [e.e] 1 [e.e] [e.e] 3 ,
1 :/ dz’ |z') (2| / dk |k) (k| = ,/—/ dac'/ dk etke
—0o0 —0o0 27 —00 —0o0

o) (k|
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This yields
<$ ‘e—inart(At—t)/fi@ (&) e—inartt/h‘ ¢0>

B /oo de’ <x ‘e—inm(At—t)/ﬁ@ (%)

1 [~
x,/—/ dk ek <k
2 )

The integral over k in the last line of Equation (7.7) describes the free time
development of the Gaussian wave packet |1g) given in Equation (7.5). We
evaluate this Gaussian integral and introduce the notation

P(a!) = \/; /_ " ke (I e Fomst/] )

”)

e*inarct/h‘ ¢0> . (77)

- A.’L‘ 2 . ht _1/2

] 2
ikox! _—ihk2t/2m __[#' — hkot/m]
xeme T eXp{ 280 + 2imtjm [ 78)

where we have set ko := muvg/h.
In order to evaluate the integral over z’ on the right hand side of Equa-

tion (7.7) we insert 1 = [ dk |k) (k| on the left side of the © function. With

1(2') as introduced in Equation (7.8) one obtains

<$ ‘e—z’Hpart(At—t)/h@ (&) e—inmt/h‘ ¢0>

_ / ~ dk (oo it ) / T (k10 @) o) %) (7.9)

o

The integral over z’ can be evaluated by noting that
(k10 (#)| 2') = O() 1/ — ei*7"
2

After a lengthy calculation one obtains

/_ T (k10 (@) ) ()

T ihk2 m)?
VAT s/ exp{‘(ASfﬁ/m%t/m} v, (110

T 2(2m)1/4
where we have introduced
1/2

hkot/m (7.11)

_ [(Ax)* + 2int/m] k) g
° 2 (ko =) [(Az)2 + 2iht/m]1/2 .
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The function w is defined by
w(z) = efz2erfc(—iz) (7.12)

with the complimentary error function [AS68]

2 & 2 2 ? 2
erfc(z) = — dte™ =1—erf(z), erf(z)=—= [ dte ".
\/7_T/z VT Jo

We substitute Equation (7.10) into Equation (7.9) and note further that

<$ ‘ e—z’Hpart(At—t)/h‘ k> _ L kAt jom ks
27 ’

Substituting Equation (7.9) into Equation (7.6) finally yields
<$ |R(At)9p| I)
At . T oo . .
- Z ge dt efwe=wolty [ = / dk e~k (At=t)/2m gike
) 0 2 — 0

VAT imk2e/om (hkot/m)?
*emi eXp{_(Aw)2 +2z’ht/m} w(2)

2

bl

where z has been defined in Equation (7.11) and the function w has been
introduced in Equation (7.12). The remaining two integrals and the summation
over £ can be evaluated numerically.

As an example with a constant density of states we consider the example
investigated in Section 3.2.5 with a maximal boson frequency w,, and N boson
modes,

wp=wyn/N n=1,...,N

ge = —iG\/wy/N. (3.29)

A numerical illustration of (z|R(At)gp|z) /At for N = 15 bosons modes is
given in Figure 7.2 (dots). [Note the division by At as compared to Equa-
tions (7.3) and (7.4) or Equation (7.6).] As an example with a non-constant
density of states we consider the example investigated in Section 3.2.6 with a
maximal boson frequency w,, and N boson modes,

n\ 2
wg:(ﬁ) wy, n=1,...,N. (3.31)

A numerical illustration of (z |R(At)gp|z) /At for N = 15 bosons modes in
that case is given in Figure 7.3 (dots).
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Figure 7.2: Dots: reset state (z|R(At)op|z) /At for a pure state g, =
|10} (o] with |¢pg) being the Gaussian wave packet of Equation (7.5), Az =
50 nm and vg = 1.79 m/s; wy as in Equation (3.29), wp = 2.38 x 102571, w,, =
46wy, G =2.782 x 10° s7'/2, N = 15, and At = 100 wy ' = 4.185 x 107! s.
Solid line: spatial probability density of the reset state, A |(z|O(&)|0)|*,
from Equation (7.16) for the corresponding continuum limit. Up to small de-
viations around x = 0, the reset states from the discrete and the continuum

model are in very good agreement.
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Figure 7.3: Dots: reset state (x|R(At)op|z) /At for a pure state g, =
[o) (o] with |ihg) being the Gaussian wave packet of Equation (7.5);
At = 75 wy !, all other parameters as in Figure 7.2, but w; now given by
Equation (3.31). Solid line: spatial probability density of the reset state,
A |(z |©(2)|¥o)|*, from Equation (7.16) for the corresponding continuum
limit. Up to small deviations around z = 0, the reset states from the dis-
crete and the continuum model again are in good agreement.
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7.3.3 The continuum limit

We return to the general expression in Equation (7.4). For simplicity, we will
assume in the following that all D spins are located in the same volume V and
thus have same sensitivity function,

X(j)(X)EXv(X)a .7:1”D
In view of Equation (3.3) we neglect the 'yt(j ) terms as long as no spin has flipped.
In other words, we neglect the possibility of spontaneous spin flips before the
first particle-induced spin flip; see the remarks about such ‘false positives’ in

Section 4.4. We introduce the ‘collective correlation function’
. N2 _~()
) =S = E o[ CH L
J i 2

where the ﬂ%) have been defined in Equation (4.27). As in Chapter 4 we assume

that the coupling constants are such that in the continuum limit the Markov
property holds, i.e.,

kx(t) =0 if 7>7,

for some small correlation time 7. [compare Equation (4.14)]. Thus, in the
double integral of Equation (7.4) only times with ¢; — ¢2 < 7, contribute, and
if 7, is small enough one again can write

Xy (X(t1)) = x,, (X(t2)) - (4.15%)
With these assumptions Equation (7.4) reads

, At
R(At)gy = 2Re ¢~ /lan A/ /0 dt1 x,, (%(1)) epxy (X(t1))

t1 .
X / dity k3 (tl — t2) GZHpartAt/ﬁ .
0

Then, with a change of variable, 7 := t; — {9, the integration over 7 can be
extended to oo if 7. < At, by the Markov property. Again, we take the coupling
constants to be of the form given in Equation (4.29), so that the continuum limit
can then be taken as in Chapter 4. Specializing the definition in Equation (4.32)
to the case at hand, we put

o0
A = 2Re/ d7 kx(T)
0

One then obtains
R(At)op
At . . . )
_ A/ dtle—szart(At—tl)/ﬁXv ()Ac)e—szarttl/hgpeszarth/ﬁXv ()Ac)eszart(At—tl)/h )
0

(7.14)
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In general, it is cumbersome to work with the rather complicated full reset state
given by Equation (7.14). For At small enough, however, it is sufficient to take
into account only terms at most linear in A¢. This yields

R(At)gy = Ax,(®)opx, () At+0 (A1)

= Rop At+0 ([Af1), (7.15)

compare Equation (7.2). If g, is a pure state, then the reset state 7%91, is a pure
state, too. We are particularly interested in the case gp = |9, ) (¥, 4], ie-.,
op originates from the conditional time development of the particle until the

time ¢. Then, the reset state is given by

ﬁf@p = ‘¢$eset> <¢§eset|

with the pure reset state

‘¢feset> = A1/2Xv ()Ac) |¢zond> . (7'16)

We note that this result is physically very reasonable. It means that if the
particle has been detected by a detector located in the region V, immediately
afterwards it will be localized in V. We also note that

<"/’1§eset "wlt*eset> = A/d3$ Xy (X)2 KX |¢€ond>|2 = w1 (t)a (717)

which is the probability density for the first detection at time ¢ [see Equa-
tion (4.34)]. This is in line with the physical understanding of the conditional
time development and the reset state: no boson detection until time ¢, but a
boson detection a time At later which is small compared to the coarse grained
time scale of the quantum jump approach.

7.3.4 Continuum limit: Examples

In the preceding section 7%@1, has been obtained in the limit of continuous boson
modes, under the assumptions that the Markov property Equation (4.14) holds
and that only terms at most linear in At have to be taken into account. In
contrast to this, in Section 7.3.2 (z |R(At)op| ) /At has been computed exactly
for the discrete case. From Equation (7.15), however, it is seen that up to higher
orders in At one has
B R(At).
At

Thus, for At short enough the quantities (z |R(At)g,|z) /At and (z|Rep|x)
should agree when computed for the same g, provided that the approximations
of the preceding section are valid and that the discrete case is well approximated
by the continuum limit of the quantum jump approach.

We therefore apply Equation (7.16) to the continuum limit of the examples
of Section 7.3.2. In that case of the simplified model introduced in Section 3.2.1,
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there is no summation over j since we consider only one spin. The wave vector
£ is replaced by the wave number £ in this one-dimensional example, and 5(()1)
may simply be written as wg. Accordingly, the collective correlation function
introduced in Equation (7.13) reduces to the correlation function of the simpli-
fied model, which is given in Equation (4.9). Thus, for w,, > wp one obtains in
the continuum limit in the case of the example with constant density of states

[see Equation (3.29)]

IG)? (1 +iw,y,T) e Wy —wo)T _ giwor

w(7)

Wy, T2
A=2r|GP 2L
M
Sonite = 2|G|? (ﬂ In [L] - 1) (4.23)
w, |lwy —wo

as in Section 4.2.2, and in the case of the example with non-constant density of
states [see Equation (3.31)]

_ |G|2 Wyt

K(T) = 2 Iy

A=q|G]2, |2
wM
9 wo Vwy, Jwo +1
Sonite = |G2 | /o [ V20T ") (4.24)
Wy Vwy, Jwo —1
as in Section 4.2.3. In any case, 7. is of the order of wal. As in Section 7.3.2 we
consider as initial state the pure state g, = |¢o) (10| with |¢) given by Equa-

tion (7.5), and take x,,(z) = ©(z). For the sake of comparison, the resulting
spatial probability densities of the respective reset states,

dw \/L_ue*i(‘*’*‘*’o)T

(z|Rep|a) = 4 I(z|0(@) o),

are plotted in Figures 7.2 and 7.3 for the same parameters as in the discrete
case. The plots are in very good agreement. This again indicates that the
continuum limit of the quantum jump approach is a very good approximation
to the discrete case and may help to find a way around the generally cumbersome
numerical calculations in the latter case. We stress that we obtained the nice
agreement in Figures 7.2 and 7.3 with as little as N = 15 boson modes in the
discrete case.

7.4 Short discussion of the reset state

Two basic properties of the reset state of Equation (7.16) have been noted
already: First, right after a detection of the particle by a detector located in
a specific region the particle is localized in that region; second, the squared
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norm of the reset state, <¢feset ‘zpfeset >, gives the probability density for the
first detection to occur at time ¢ [see Equation (7.17)].

We further note that in the present model with phases ft(J ) independent of
x there is no explicit recoil on the particle from the created boson. This is in
line with the original idea of a minimally invasive measurement. The absence
of an explicit recoil distinguishes the present detector model from other models
which are based on the direct interaction with the particle’s internal degrees
of freedom. In the case of the fluorescence model sketched in Section 2.5, e.g.,
the reset state after the detection of the first fluorescence photon explicitly
incorporates a recoil due to the momentum of the emitted photon [Heg03]. It
appears reasonable that in the present model no such recoil on the particle
occurs: After all, the boson is not emitted by the particle but by the spin
lattice. Hence, the recoil should be experienced by this lattice, rather than by
the particle, similar to what occurs in the Mossbauer effect. We note, however,
that although there is no recoil the particle’s wave function still is changed by
the detection, due the projection onto the detector region by means of the reset
operation. This changes position and momentum density of the wave packet,
as will be seen in the examples discussed in Chapter 8.

Finally, we note that Blanchard and Jadczyk [BJ93, Jad95] in the framework
of Event Enhanced Quantum Theory described the detection of a particle by
means of a sensitivity function of the detector, —iV (z) with V(z) > 0, and put

2V (x
|¢detected) = }_E ) |¢undetected> (7-18)

as the particle’s state immediately after the detection. In case of the spin-boson
detector model we may define

h
V(x) := iAXv (x)
and neglect the line-shift term dgpigy for the moment (see the remarks in the
Section 4.3.3 about the possibility of neglecting dghir;). The conditional Hamil-
tonian of Equation (4.31) then takes the same form as the Hamiltonian in
References [BJ93, Jad95], and the reset state of Equation (7.16) takes the form

2V (x
‘¢£eset> = 7—5 ) "‘p(t:ond>7

exactly as in Equation (7.18). Thus, the spin-boson detector model provides
a microscopic justification for the rather phenomenological description of the
detection process in References [BJ93, Jad95].

7.5 Subsequent time development

After detection of a boson, the further interaction of the particle with the de-
tector depends on the particular choice of parameters of the detector model.
The internal dynamics of the detector after the first spin flip was investigated
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in detail in References [Sch97, GS90, Sch91], and a short account in the frame-
work of the quantum jump approach has also been given in Section 4.4 of the
present thesis. Based on these results, several choices are possible such that
the amplification of the first spin flip will not significantly change the spatial
wave function after the first spin flip, |¢§eset>. This means that effectively only
one reset operation, associated with the very first spin flip, has to be performed
on the spatial wave function. Such ‘minimally invasive’ detector models will
be of interest if one is interested in actual quantum mechanical limitations of a
passage-time measurement.

As a simple example we consider as in Section 4.4 a ring of D identical spins
with nearest-neighbor interaction,

wy’ =wp and w(ij) =wydjq1k (7.19)
x9(x) = X, (x) as before, and j = D + 1 identified with j = 1. We choose
wo > wp and I', Tgpon independent of wy as well as c(wy) = cg, The rate for
the neighbors of the first-flipped spin to flip into their ground state is denoted
by Ai(x) and is given by Equation (4.48). These flips can be rather fast since
the ferromagnetic forces on these spins cancel and hence the energy gain for
flipping can be very large. In other words, one has A; > A since the resonance
frequency occurring in A; is wq instead of Wy, and wy > wy. By a kind of domino
effect the whole ring flips into the ground state; the mean time needed for this
given by D/2A; [Sch97, GS90, Sch91], see Section 4.4. If this time is very short
compared to the time scale of the particle’s center-of-mass motion, as one can
achieve by making wg large (while wy remains small to prevent spontaneous spin
flips before the first particle-induced spin flip), the reset operations associated
with these subsequent spin flips will not significantly change the particle’s state
since the wave function has been projected onto the detector by the first reset
operation already.

Another possibility to prevent the spatial wave function from being changed
by the amplification process would be to couple only one spin to the particle,
by choosing gt(]) = gp0jj, in Equation (3.2). (In fact, this is the de facto
setup of the detector actually investigated in References [GS90, Sch91, Sch97]:
Effectively only one spin couples to the particle, and subsequently the other
spins flip spontaneously, i.e., without particle-enhanced spin-bath coupling.)

7.6 Passage-time density

By now, we have all ingredients to evaluate a passage-time density based on the
measurement scheme sketched in Section 7.1. As described there, and depicted
in Figure 7.1, we consider two spin-boson detectors separated by some distance.
We assume in the sequel that the detectors can be described by the continuum
limit of Chapter 4. We further assume that the detectors are separated much
farther than the width of the wave packet when it is near to or inside the
region of interest. Neglecting for the moment undetected transmission through
the first detector, this means that we can neglect the presence of the second
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detector until the particle has been detected by the first one. If the particle is
not detected by the first detector, however, it will not at all contribute to the
measured passage-time density. The above approximation thus remains valid
even if one takes the possibility of transmission without detection into account.
Thus, the probability density for the first spin flip in the first detector can be
calculated as outlined in Chapter 4 for a single detector.

As indicated in Section 7.5, we assume that the amplification of the first
spin flip to a macroscopic event is very fast' and does not change the spatial
wave function. Thus, we take the probability density wi(t) [Equation (4.34)]
for the first spin flip to be the ‘measured arrival-time density’ and |¢1’feset>
[Equation (7.16)] as the particle’s state after the detection. Once the particle
has been detected by the first detector, this detector is in its ground state.
Since in the continuum limit there are no revivals the detector remains in its
ground state and does not participate in the subsequent time development.
The bosons have either been detected in a destructive measurement or have
propagated away. In any case, we may assume that the bath is effectively in its
vacuum state again, and calculate the probability density for detection by the
second detector again as outlined in Chapter 4.

The joint probability density for the first detector to detect the particle at
T and the second one to detect it at 7'+ 7 is now given by

Y . (2) . ‘qprTeset>
G(T, T+ 1) =wy’ (Ts|¢o)) wy” | 73 m )
reset

where the superscripts indicate the detector under consideration and the second
argument is the initial state for which the respective probability density is
calculated. Since w; is bilinear in the wave function [see Equation (4.34)], this
simplifies to
2 T
g(T’T + T) = wg ) (T; |¢reset>)

by Equation (7.17). The desired measured passage-time density is then given
by integration over the entry time 7"

Gg(r) = /dT w?) (T; \¢£set>) ) (7.20)

!We note that it is actually not the length of the amplification process that leads to a
problem in the passage-time measurement. If the time needed for the amplification of the
first spin flip to a macroscopic, measurable event was identical in both the detectors, this
amplification delay would cancel when one takes the difference of the measured arrival times.
It is thus only the spread of the time needed for the amplification which would cause trouble.
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Chapter 8

Discussion of the passage-time
density

The passage-time density obtained in Chapter 7 is investigated numeri-
cally. Slowly responding detectors as well as quickly responding ones yield
broad densities, while intermediate detectors yield narrower ones. The
mechanisms of the density broadening are investigated by closely examin-
ing the first detection and the corresponding reset state. It is shown that
the mechanism responsible for the broadening in the case of slowly re-
sponding detectors is different from that responsible in the case of quickly
responding ones. In the latter case the broadening is shown to be a quan-
tum effect. The precision of the measurement scheme is estimated and
its optimization discussed. For slow particles, the precision in an opti-
mized setup behaves like E~3/4, which improves previous E~! estimates,
obtained with the quantum clock model sketched in Section 6.4.

8.1 Numerical investigation

8.1.1 Three examples

In Chapter 7 a measurement scheme for passage times was sketched (Sec-
tion 7.1), and the application of the spin-boson detector model to this scheme
was investigated analytically. In particular, in Section 7.6 a formula was given
for the ‘measured’ passage-time density G, see Equation (7.20). But what does
this density look like, and how does it depend on the detector properties, in par-
ticular on the decay rate A? The aim of the present chapter is the investigation
of basic features of the passage-time density G.

We consider as a simple example a cesium atom in one dimension. The ini-
tial wave packet is prepared in the remote past far away from the detector such
that the free wave packet (with no detectors present) would be described at
t = 0 by a Gaussian minimal uncertainty packet around z = 0 with Az = 1ym
and average velocity vgp = 0.717cm/s. Each of the two identical detectors is
described in the continuum limit by an absorbing potential —iV = —ihA/2, ex-
tending from 0 to 20pm or 100um to 120pum, resp. We consider three examples
A =1.4337 x10% s71, A =2.3895 x 10% s~!, and A = 2.3895 x 10* s~1. These
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parameters are chosen in such a way that transmission and reflection without
detection, which are typical for imaginary potentials [All69a, All69b, All69c]
and have been extensively studied in the framework of quantum arrival times
[DEHMO02, HSM03, NEMHO03a, DEHMO03], play no significant role. Conse-
quently, all densities shown in the following are normalized to 1 to a good ap-
proximation. The passage-time densities, calculated as described in Section 7.6,
are shown in Figure 8.1. It is seen that small and large values of A give rise to
rather broad densities, while the intermediate value yields a narrower one. The
mechanisms for the broadening are discussed in Section 8.1.2.

— A=1.4337x10°s*
-~ A=2.3895x10°s’
= A=2.3895x10s "

o N -+ semiclassical

w0 .

'§'0.25

e

[\>)}

11 12 13 14 15 16 17 18 19
T [mg]

Figure 8.1: Passage-time densities calculated from the detector model in the
continuum limit for three different values of the rate A for the first spin flip in
the presence of the particle, all other parameters kept fixed. For comparison,
the dotted line shows the passage-time density for an ensemble of classical par-
ticles which have the same momentum density as the initial wave packet; this
classical passage-time density equals the density Il assage Which was obtained
from the difference of two arrival-time operators in Section 6.3.

8.1.2 Broadening mechanisms
Small A: slowly responding detectors

The reason for the broad density arising for small A can be understood by
looking at the arrival-time density measured by the first detector, see Figure 8.2:
It is already this density which is rather broad for small A. Physically, small A
means that the detector is responding only slowly to the presence of the particle;
the undetected amplitude |¢zond> decays only slowly, yielding a broad arrival-
time density at each of the two detectors. This broadening of the arrival-time
density remains valid even if the particles are fast enough for their center-of-

mass motion to be treated classically. We assume that such a classical, dot-like
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Figure 8.2: Arrival-time densities as obtained from the first detector. The
detector with small A yields a broad density indicating poor quality of this
measurement. Enlarging A carefully (to avoid reflection), one may approach
Kijowski’s axiomatically derived arrival-time density at x = 0 (dotted line; see
Section 2.3).

particle has entered the detector at t = 0. After the particle has entered the
detector, the detector state |11 ... Tp) has a life time A1, i.e., the probability
to find all spins in the excited state at a time ¢ after the particle has entered
the detector is given by

Pod(t) =e A,

The probability density for the first spin flip at time ¢ is thus given by

_dpg'
dt

wi'(t) = (t) = Ae™*,

yielding an average waiting time or detection delay

<td > ~ [T attedy = L.
delay 0 1 A

An identical delay in both detectors would cause no problems for the passage-
time measurement but would cancel when taking the difference between their
signals. The main problem is the width of this delay, which is given by

Atdaay = | [t ((thay) )" w0 ol

and thus is large for small decay rates A. This width of the delay yields broad
arrival-time densities and in consequence broad passage-time densities.
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We have thus identified a broadening mechanism for the measured passage-
time density for small A which is not due to the quantum nature of the wave
packet: The density is broadened by shortcomings of the detectors for the indi-
vidual arrival-time measurements, in particular, by the width of the detection
delay which broadens the measured arrival-time densities. This effect, however,
can be reduced by making A large, which makes the detector respond faster to
the presence of the particle and simultaneously reduces the width of the detec-
tion delay. This has to be done carefully in order to avoid reflection without
detection, which becomes significant if A becomes too large. In Figure 8.2 it is
seen, e.g., that for A = 2.3895 x 10* s~! one comes much closer to Kijowski’s
arrival-time density IIx [Kij74] discussed in Section 2.3. In Section 4.3.3 an
example has been presented in which the measured arrival-time density from
the spin-boson detector model with a smooth sensitivity function numerically
agrees with IIkx. Kijowski’s density in turn is known to have minimum stan-
dard deviation width among all those densities fulfilling the axioms outlined
in Section 2.3, which were transferred to quantum mechanics from classical
arrival-time densities. One thus may view the width the IIx as determined
solely by the the quantum nature of wave packet under consideration and free
from shortcomings of the detector as the width of the detection delay.

Large A: Quickly responding detectors

We now turn to the case of large A. In this case the A~! contribution of the
width of the detection delay can be neglected, and the broadening cannot be
understood in the simple picture of classical particles which remain unaffected
by the measurement. In the full quantum mechanical picture, however, it can
be understood by looking at the reset state immediately after the detection by
the first detector, evaluated in Section 7.3. Of course, the reset state depends
on the instant of time when the detection took place; as examples we consider
detection times Ty = 0.041 ms if A = 2.3895x 10* s™! and T = 0.167 ms if 4 =
1.4337 x 103 s—!, which are close to the maximum of the respective probability
density wi(t) (see Figure 8.2). The reset states and the free packet at the
respective times are shown in Figure 8.3. It is seen that the fast detection has a
strong impact on the wave function. Large A means that |w€0nd>, in particular
that part of ‘1ﬁzond> which overlaps with the detector, decays very fast. But since
the reset state (7.16) immediately after the detection is essentially the projection
of Wﬁond) onto the detector region the fast decay of this overlap yields a reset
state which is very narrow in position space, located at the very beginning of the
detector. Thus, by the Heisenberg uncertainty relation, the reset state in this
case is very broad in momentum space as can be seen explicitly in Figure 8.4. It
is intuitively clear that such a broad momentum density immediately after the
measurement of the entry time by the first detector yields a broad passage-time
density. Thus, the broad passage-time density in the case of large A is due to
the strong distortion of the wave function by the first measurement. We stress
that in the present spin-boson detector model there is no recoil from the created
boson on the particle, as was discussed in Section 7.4. The change of the wave
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Figure 8.3: The normalized reset state in position space immediately after
a detection at (a) 7o = 0.167 ms (with A = 1.4337 x 10® s7!) and at (b)
Ty = 0.041 ms (with A = 2.3895 x 10* s7!), compared with the free wave
packet at the respective instance of time (dotted line). The fast detection in

case (b) has a strong impact on the wave function.
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Figure 8.4: Momentum densities of reset states immediately after a detection
at Tp = 0.167 ms (solid line, with A = 1.4337 x 10% s71) and at 77 = 0.041 ms
(dash-dotted line, with A = 2.3895 x 10* s~1), compared to the momentum
density of the initial wave packet (dotted line). The fast detection in the latter
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case leads to a strong broadening of the momentum density.
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packet in momentum space is a consequence solely of the projection in position
space by the reset operation. Since the broad momentum density of the typical
reset states in this case is enforced by the Heisenberg uncertainty relation, it is
a pure quantum effect.

8.2 Width of the passage-time density

In Section 6.4 a measurement scheme for passage times was sketched, which
had been investigated in References [Per80, ASMO03]. This scheme is based on
the (semi-) continuous coupling of the particle under consideration to a clock.
It was argued that the precision of the measurement behaves like E~!, where
E denotes the kinetic energy of the particle. One now may wonder whether or
not the E~! behavior is a fundamental quantum limit for measuring passage
times. In the present section it is argued that this is not the case since the
present measurement scheme by means of two spatially separated spin-boson
detectors yields, for optimal parameter choices, passage-time densities with
widths behaving like E~3/%. Thus, for low energies, we have an example which
breaks the E~! limitation of the clock model.

8.2.1 Estimating the precision

In this subsection we give an estimate for the width of the passage-time density
obtained from the present measurement scheme. We assume that the detectors
can be described by the continuum limit and that transmission and reflection
without detection are negligible. This assumption is justified in the examples
discussed in the preceding sections of the present chapter, which employed
rectangular sensitivity functions. It can also be justified in general if one drops
the restriction to rectangular sensitivity functions y(z)!.

Considering particles with mean velocity vy, the detector is assumed to be
constructed in such a way that the first detection occurs with high probability
in a spatial interval of length L. The length L is related to A of Equation (4.16),
an average detection rate, L being of the order of vg/A. The length L imposes
an upper limit on the width of the reset state in position space,

v
Areset < L ZO . (8.1)

By the Heisenberg uncertainty relation, this immediately yields a lower bound
for the width Apreget Of the reset state in momentum space,

h h
> —— 2> —.
T 2AZreset 2L

!Given an energy range, an optimized absorbing potential can be constructed which almost
completely absorbs wave packets of this energy range in a very short spatial interval; this was
shown in References [MBM95, PMS98] by means of inverse scattering techniques, see also
Section 5.2.3. Such a potential can then be considered as a continuum limit of a discrete spin-
boson detector. Again, we stress that the optimization depends on the energy range under
consideration, and that there is no such thing as the optimal detector for all energy ranges.

Apreset (8.2)
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Note that this is only a very rough estimate, without taking into account details
of the actual wave packet. If the incident wave packet is very narrow in posi-
tion space, then AzZyeset also may be much smaller than L, and consequently
Apreses may be much larger than i/2L. Also, the reset state may be far from
being a Gaussian, and then already the first inequality in Equation (8.2) may
underestimate the width of Appeset seriously.

Let A7 denote the width of the measured passage-time density. There are
several contributions to this width. First, a particle with velocity vy takes the
time 7 = d/vy to travel the distance d between the two detectors, and therefore
the width of the reset state in position space contributes

AT reset

A'7'reset,ac = (83)
Vo
to A7. Second, the width in momentum space contributes according to
A d h d
ATreset,p = Preset 2 > (8.4)

mug Vg 2D Zreset mvg )
Third, the width of the detection delay, ATgelay, is roughly

1 L
AT, =~ —
delay A o )
as was argued in Section 8.1.2. We note that ATgeay contributes twice to At
since it arises in both detectors. An estimate for the width of the passage-time

density is given by the sum of these contributions,

AT = 2A'7—delay + A7’reset,alc + A'7'reset,p

Z E + AT reset + ;id )
A o 2muy A reget

(8.5)

From this estimate it is again seen that both small as well as large values
of A, i.e., both slow as well as fast detectors, lead to rather broad passage-
time densities (due to ATgelay ~ 1/A and ATresetp ~ 1/A%reget ~ 1/L ~ A,
respectively).

8.2.2 Optimal parameters

Having established the general estimate for A7 in Equation (8.5), we now turn
to the task of finding optimal parameters, minimizing A7. We are interested in
measuring the passage time through a spatial interval of length d, the distance
between the starting points of the two detectors, which we regard as fixed. First,
we consider given detectors, i.e., a given detection rate A. Again, particles with
mean velocity vy would be detected within an interval with length L given
approximately by L = vy/A. This means that the velocities must not be too
large since in order to avoid undetected transmission L must not exceed the
actual length of the detector (and in particular L must not exceed d). Quantum
effects, however, are expected to play a role for slow particles while fast particles
may be treated classically, hence this is not a serious drawback.
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We assume that the reset state is a Gaussian wave packet, or at least close
to a Gaussian, so that in the second line of Equation (8.5) the approximate

equality holds,
AT ~ E + AZreget 2hd .
A N 2mug A reset

(8.6)

We note that 2/A is a purely detector-related quantity, viz. the width of the
detection delay in each of the two detectors due to the finite decay rate A. The
remaining contribution to A7 is determined by the shape of the reset state only.
We will first optimize this latter quantity. For given particles with given mean
velocity, i.e., m and vg fixed, this is minimal for

opt _
A"I"reset -

(8.7)

2mug

Substituting this into Equation (8.6) and writing E = mw3/2 for the kinetic
energy of the incident particles yields

2 _
Aopy; reset & 5 + |/ fidy/m/2 B~/ (8.8)

The subscript “opt; reset” indicates that only the reset state was optimized
while the detection rate A was considered as a given quantity.

Aiming at optimizing also the detection rate A for minimal A7, one would
like to choose A as large as possible in order to reduce the 2/A contribution to
A7. However, one has to take into account that the width of the reset state
is bounded by Equation (8.1). Thus, given d, m, and vy, the decay rate must
be at most of the order of vy/Az%Y, with Az%" as in Equation (8.7). In
fact, we may choose the incoming state such that it forms a Gaussian minimal
uncertainty packet at the starting point of the first detector with width in
position space
hd

2mug

Az = Az°P

reset —

and choose further A as large as possible in view of Equation (8.1) with Azyeset =

Az e
Vo m . 3/2
A — =,/ — ; .
oAz \ 2rd 0 (8.9)

reset?

We note that, by this parameter choice, yet another requirement of a good
measurement scheme is fulfilled: The detection by the first detector will not
change the wave function too strongly. The reset operation after this detection
is essentially a projection onto the detector region, and the detection is slow
enough that at typical detection times most of the wave packet overlaps with
the detector, hence the projection does not change the wave function too much.
Thus, the reset state will be close to a Gaussian wave packet with width Az =
Az . Substituting Equation (8.9) into Equation (8.8) finally yields

reset”

ATopy & £/ Bhidr/m ]2 E73/*
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Remark 8.2.1 We stress that, independent of the detection rate A, the opti-
mal energy dependence of A7 is limited to E~3/* already by the dependence
of At on the width of the reset state in position space, ATpeset,z ~ AZreset [s€€
Equation (8.3)], and on its width in momentum space, ATreget,p ~ APreset ~
1/AZreset [see Equation (8.4)]. This will be discussed further in Section 8.2.3.

For the example of a cesium atom with vy = 0.717 cm/s and a distance of
d = 100 pm between the detectors (with rectangular sensitivity function) of the
preceding section, optimal values would be according to Equations (8.7) and
(8.9)
Azop, = 1.83 pm, and Agpy = 1.959 x 10° s71.

Considering the wave packet with Az = 1 ym actually investigated in the exam-
ples, the optimal decay rate according to Equation (8.9) would be Aoyt (Az =
1 pm) = 3.585 x 10% us !. This is consistent with the observation that the
example with A closest to Agpt(Az =1 pm) yields the narrowest density.

8.2.3 A detector-independent lower bound for the width

In view of Remark 8.2.1 one may ask whether or not the £~3/ limitation is valid
solely for the spin-boson detector model or for any measurement scheme based
on two spatially separated detectors, independent of the particular detector
model involved. The latter is indeed the case as can be seen from the fact
that up to Equation (8.8) only the influence of the reset state on the width of
the passage-time density was discussed, and only the shape of the reset state
was optimized. For greater clarity, however, we give a reasoning very much
in parallel to that of Equation (8.6) through Equation (8.8) of the previous
section, but without assuming a particular detector model.

Assume that a particle is detected by the first detector (‘entry’). Then it
travels a distance dy, and then it is detected by the second detector (‘exit’). If
the particle has a velocity vg, the time elapsed between the two detections will
be

T = d() / vo-

This is the measured passage time.

Independent of the particular detector model, there are two ‘intrinsic’ sources
of uncertainty: Both dy and vy are not known exactly. We take dy and py = muvg
as average values of probability densities of the distance to be traversed and of
the momentum of the particle. The width of the passage-time density, A7, de-
pends on the width of the distance density, Ad, and of the momentum density,
Ap, according to

m md,
ATintrinsic = —Ad + —QOAP. (8.10)
bo Dy

We are not interested in classical contributions to the widths Ad and Ap, which
could (in principle) be reduced by choosing a more accurate scheme for mea-
suring the distance to be traversed and for preparing the particle.

According to quantum mechanics, however, the particle is described by a
wave function. This wave function has a width in momentum space, Ap, and
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in position space, Az. These widths are related by the Heisenberg uncertainty
relation

Az Ap > g (8.11)

If we drop the restriction to two identical detectors, we may assume that the
second detector (‘exit’) is responding very quickly to the presence of the particle.
Thus, the width of the wave function in position space immediately after the
detection by this detector is very narrow. In other words, we know quite exactly
where the particle has been detected by the ‘exit’ detector. The distance d
which the particle has traversed then since it has been detected by the first
detector (‘entry’), however, cannot be known more exactly than the position of
the particle immediately after this first detection. Thus, one has

Ad = AZreset ’

where Az yeget is the width, in position space, of the reset state immediately after
the first detection. The width of the reset state in momentum space, Apreset,
is related to Azieset by the Heisenberg uncertainty relation Equation (8.11).
Equation (8.10) then yields

m mdy
ATintrinsic = —ATreset + —QApreset
Po Po
mdo h

> U Apeser +
> —AZpeget + —5oc——-
Po rese p% 2AZreget

The right hand side is minimal for

opt _
Axrese‘c - ’

AR o =\ Bidor/m /2 B3/

with E = mv? /2. Thus, the E~3/* limitation is obtained solely from the Heisen-
berg uncertainty relation Equation (8.11), and without any assumption about
the detector model used for the particle detection.

leading to
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Chapter 9

Time observables from a
spin-boson detector model

9.1 Summary

In Part I of the present thesis a fully quantum mechanical spin-boson detector
model for the detection of a moving, spread-out quantum particle has been
investigated, and in Part 1T its application to passage times has been discussed.
Such an operational approach to time observables in quantum mechanics is
interesting since nowadays experiments with ultra-cold atoms are possible in
which the quantum nature of the center-of-mass motion yields noticeable effects.
In contrast to this, the description of time observables in the framework of
quantum mechanics is not yet clear.

As concerns the application of the spin-boson detector to arrival times in
Part I, it has been shown in Chapter 4 that in the limit of continuous boson
modes it is effectively described by means of a complex potential model. A
similar result had been obtained earlier for the fluorescence model for particle
detection, but only under additional assumptions which yield a one-channel
limit for that model. This close relation, though, is seen only as a result of the
careful analysis of both the models. It is by no means obvious from the start
since the two models for particle detection are physically different. The deriva-
tion of complex potentials from two different physical models for the detection
process helps to illuminate the physical background of otherwise heuristically
introduced complex potentials. In particular, it suggests that complex poten-
tials provide an effective description for arrival-time measurements which to
some extent is independent of the particular detector model under considera-
tion. Only the interpretation of the height of the complex potential depends on
the particular model. When applied to an arrival-time measurement, complex
potentials show typical and generally unwanted features: There is a detection
delay and there is also necessarily the possibility of reflection without detec-
tion. However, these features are as general for operational approaches to arrival
times as the effective description by complex potentials is. We stress in partic-
ular that as in any complex potential model also in the spin-boson model there
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is the possibility of reflection without detection, showing a back-reaction of the
measurement on the particle. This is in contrast to what one might expect
since there is no direct interaction of the particle, neither with the detector
nor with the bath modes. The particle is regarded merely as a catalyst for a
change in the detector-bath state. Further, no measurement is performed on
the particle or on the detector; only the bath is checked for bosons. The possi-
bility of reflection without detection even in such a minimally invasive detector
model suggests that this reflection may indeed be a very general feature of op-
erational approaches to arrival times. Possible optimization schemes for the
detection of wave packets of a given energy range, though, have been discussed
in Section 5.2.

The measurement scheme for passage times investigated in Part 1T mimicks
typical time-of-flight experiments: The particle is detected upon entry and exit,
and the correlation between these detections yields the passage time. In Chap-
ter 7 analytical expressions have been derived for the reset state, i.e., the state
immediately after the detection of a boson, and for the ‘measured’ passage-time
density. Further, numerical examples have been presented in Section 8.1.1. The
application of the present spin-boson detector model to the above measurement
scheme has shown that the spin-boson detector model has a special feature
which makes it particularly useful for this kind of Gedanken experiment: The
evaluation of the reset state in Section 7.3 has yielded no explicit recoil of the
created boson on the particle of interest. Physically, this is due to the fact that
the boson is emitted by the spin lattice and not by the particle, hence the recoil
is experienced by this lattice similarly to the Mossbauer effect. This is in con-
trast to, e.g., the fluorescence model. There, the fluorescence photon is emitted
by the particle of interest, and hence the reset state explicitly contains a recoil.
But in spite of the absence of an explicit recoil in the spin-boson model there
still is an effect of the reset operation on the wave function: The reset operation
is essentially a projection of the wave packet in position space onto the detector
region, and this projection changes the wave function in position space and
in momentum space. The more accurate the individual detection is, i.e., the
faster the detector responds to the presence of the particle, the stronger is the
distortion of the wave function by the reset operation. In particular, very fast
detectors yield typical reset states which are very narrow in position space and
hence, by the Heisenberg uncertainty relation, very broad in momentum space.
This has been illustrated by the numerical examples in Section 8.1.1. Such re-
set states which are broad in momentum space then lead to broad passage-time
densities. This broadening mechanism is essentially based on the Heisenberg
uncertainty relation and hence is a quantum effect. Very slow detectors, on
the contrary, also yield broad passage-time densities. This is simply due to
the poor quality of the individual detections. Intermediate detectors, however,
yield narrower passage-time densities. It has been argued in Section 8.2 that
for optimal parameters the precision of the measurement behaves like E~3/%,
where F is the kinetic energy of the incident particle. For slow particles this
is better than, and in contrast to, the E~! behavior obtained from a quantum
clock model. We thus conclude that this £~! behavior cannot be due to a
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fundamental quantum limit. It has further been argued that for the present
measurement scheme the E~3/4 behavior is already the optimum that can be
obtained, independent of the particular detector model under consideration.

In the present thesis the examination of the spin-boson model has mainly
been based on the quantum jump approach, treating the limit of continuous
boson modes under the assumption that the Markov property holds. In Sec-
tion 3.2, however, a simplified, single-spin model has also been treated in the
case of discrete boson modes, by means of standard unitary quantum mechan-
ics. For a number of examples we have compared the results obtained from the
two approaches, i.e., from unitary quantum mechanics in the discrete case and
from the quantum jump approach in the limit of continuous bath modes. It has
turned out that the results are in good agreement, up to revivals in the discrete
case. This agreement illustrates the validity of the quantum jump approach
for the model under consideration. This is interesting since the quantum jump
approach has originally been developed in the framework of quantum optics,
and the successful application to the spin-boson model shows that the approach
is valid also beyond quantum optics. We further stress that in the examples
only modest numbers of boson modes, N = 15...40, were necessary to obtain
the agreement with the quantum jump approach. This suggests that the quan-
tum jump approach may provide a convenient and accurate approximation to
situations where one actually has to deal with a discrete model, as, e.g., in
cavity quantum optics. All examples presented in the present thesis have in
common that the correlation time is much smaller than the inverse decay rate,
7o € 1/A. This is a necessary condition for the applicability of the quantum
jump approach, as outlined in Section 4.1.

9.2 Outlook

The results presented in the present thesis provide a basis for further research.
A rather obvious extension, e.g., would be the application of the spin-boson
detector model to arrival or passage times in the presence of interaction. In
other words, one would consider model Hamiltonians as in Section 3.1.2 but
with an additional real potential U(x). The application of such a model to
arrival times should proceed along similar lines as the investigation presented in
Part T of the present thesis, and we expect that the detection again is effectively
described by a complex potential. Besides the complex potential describing the
detector, the conditional Hamiltonian should contain the real potential just
as it would occur in the original model Hamiltonian. The measurement of
arrival times by complex potentials in the presence of interaction, i.e., real
potential, was investigated in Reference [HSMNO04]. The results were compared
to phase-time approaches, and the Hartman effect [Har62] was explicitly seen
in numerical examples. As soon as it is verified that the spin-boson model in
the presence of interaction is indeed described by a complex potential model,
these results immediately carry over to the spin-boson model. In order to model
a measurement of tunneling times, one may further extend the measurement
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scheme of Part IT and put a real potential U(x) between the detectors at entry
and exit.

Another interesting line of further research would be to precisely determine
the conditions under which the continuum limit of the quantum jump approach
agrees with the unitary investigation of models with discrete bath modes. Since
there are no recurrences in the quantum jump approach, i.e., no transitions of
the kind || 1) — |t 0), it is clear that the agreement can only hold up to
the time of recurrences in the discrete model. Further, in the derivation of the
quantum jump approach it is assumed that the Markov property holds, and
that the correlation time of the system under consideration is much shorter
than the inverse decay rate of the excited state(s) of the multi-level which is
supposed to emit a boson. This is necessary to ensure that the separation
in time, At, between the instantaneous measurements on the bath may fulfill
T € At < 1/A. In the framework of photon statistics it has been shown,
however, that one obtains the correct statistics even if in the evaluation of
the reset states one formally considers a limit At — 0 which physically is
not justified [HS96]. This suggests that the validity of the quantum jump
approach may exceed the assumptions under which it was derived. Indeed,
while investigating the examples presented in the present thesis, we noted that
an excellent agreement between the quantum jump approach and the discrete
model is sometimes seen even for parameters 7, &~ 1/A. Since it is generally
more convenient to work with the quantum jump approach than with a number
of discrete bath modes, a detailed clarification of the validity of the quantum
jump approach as an approximation to a discrete model would be useful.
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Appendix A

Pauli’s ‘No-Go footnote’

The existence of a self-adjoint time operator conjugate to the Hamiltonian is
widely regarded as precluded for most of the systems of physical interest by an
argument Pauli put forward in a famous footnote [Pau33]. We briefly sketch
his argument.

Assume that there is an operator T such that

H,T| = —ih (A1)
[#.7]

holds, mirroring the well known commutation relation for momentum and po-
sition, and let |E) be an energy eigenstate with eigenvalue E € R,

H|E) = E|B); (A2)

consider then the state e~*£17/h |E), E1 € R. By means of the series expansion

e—iEVT/h _ Z (_LW (A.3)

n

one finds from Equation (A.1) the commutation relation
[H, e—iElf/n] _ _Ele—z’Eli“/h_
Then it follows from Equation (A.2) that
H (7B E)) = (B - Br) (7T E)), EieR

and consequently the spectrum of H, i.e., the energy spectrum, would extend
continuously over the whole range (—o0,00). This contradicts the assumption
of a lower bound for the energy spectrum, which is crucial for the stability of
matter, and also precludes the possibility of discrete energy eigenvalues typical
for bound states. Pauli thus concluded that there cannot be such a thing as a
time operator conjugate to H.

Although often regarded as a No-Go theorem, we note that Pauli presented
this statement as a casual remark in a footnote, based on the mere formal ar-
gument above, and by no means as a theorem proved with mathematical rigor.
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In particular, he did not pay attention to the question of domains of the respec-
tive operators. Galapon emphasized this point and investigated the question
under which conditions and for which E; € R the expansion (A.3) makes sense.
He showed that one can consistently assume a self-adjoint bounded operator
conjugate to a Hamiltonian with unbounded, semi-bounded, or countable point
spectrum [Gal02].
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