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Chapter 1

Introduction

Hydrogen dissolved in metals is a widely studied system due to some particular phe-
nomena found in these hydrides. There is a large solubility of hydrogen in a number
of metals, like Pd or Nb, V and Ta, where the H concentration can achieve 100% or
more, indicating the formation of a metal mono-hydride. This makes that hydrogen-
metal systems are studied as models for mobile energy storage devices, since hydro-
gen release from the hydride and subsequent oxidation sets free a large amount of
energy for further use, e.g. for acceleration of vehicles, like cars or air-crafts [Sch88].

A further peculiarity of hydrogen in metals is its large mobility, which is a nec-
essary prerequisite for energy storage applications, as it allows rapid storage and
detraction of hydrogen from the metal hydrides. This large mobility turned out an
interesting question by its own, as it is related to quantum mechanical features of hy-
drogen in metals, that is tunnelling between adjacent positions rather than thermally
overcoming the separating potential barriers.

A third point is that hydrogen, in case of large solubility in metals, can be con-
sidered as a lattice gas. It is a lattice gas, since the hydrogen atoms reside in a space
structured by the metallic lattice, and it is a gas, since the hydrogen atoms are free
to move and to establish the equilibrium distribution in space. While the dynam-
ics of the hydrogen atoms play a minor role for the lattice gas aspects (assuming
that the mobility is large enough to establish the equilibrium partition), major con-
tributions come from the local deformations of the lattice holes by the embedded
hydrogen atoms, and from the interaction among the H atoms. These indirect and
direct coupling between the hydrogen atoms make that the lattice gas can undergo
phase transformations, form two-phase mixtures, etc. [Pei78, Fuk04].

The present study considers these lattice gas aspects of hydrogen in metals, where
in particular hydrogen in palladium is investigated, and where the main focus is laid
on establishing a formal treatment that allows to describe the lattice gas system in
case of reduced dimensions, especially in clusters.

Hydrogen (H) dissolves interstitially in bulk fcc-Palladium (Pd) occupying octahe-
dral sites. An H-atom causes local displacements of the Pd atoms from their regular
sites. Up to concentrations x = 0.008 H/Pd (α phase) there is a continuous macro-
scopic volume change ∆V/V = 0.19 ·x [Pei78]. At higher x concentrations, the rela-
tive volume change is 0.2 ·x − 0.0493 ·x2 [FGG86]. Isotherm p-x curves at different
temperatures show that at low concentrations x the amount of absorbed hydrogen is
proportional to the square root of the external hydrogen gas pressure. At x = 0.008
H/Pd, a ’plateau’ appears indicating an existence of a miscibility gap where the phases
α and α′ coexist. At x ≈ 0.6 H/Pd the curve raises sharply, indicating the entrance into

1



CHAPTER 1. INTRODUCTION

the α′ regime. A special peculiarity is the asymmetry of the isotherms in x and 1− x.

A central question in earlier times was the reproduction and interpretation of the
p-x isotherms. The first approach is due to LACHER [Lac37]. He derived a theoretical
equation containing a term such that the derived isotherm reached a solubility limit
at a determined composition (x = 0.59). The equation can be derived by assuming
that the entropic part of the hydrogen free energy can be modelled by the ideal
solution approximation and that the energetic part is due to a finite solution energy
for the dilute hydride and an attractive hydrogen-hydrogen interaction. It has the
form:

kBT ln

√
p

po

= µH = kB ln
x

xo − x
+ (κ2 − κ1x) (1.1)

LACHER uses xo = 0.59 and proves that the properly selection of the parameters κ1

and κ2, allows to reproduce fairly well the p − x isotherm up to x = 0.59.

GRIESSEN ET AL [FGG86] use this model with xo=1 but they assume that there is
in the chemical potential an additional term due to the increased number of electrons
in the PdH system with increased H content. In a rigid band model, the additional
electrons fill up the band structure of the material. Also they carried out p-x isotherm
measurements above the critical point, as well as in the α and α′ phase regions at
lower temperatures in Pd bulk. They obtained the following form for the heat of
solution

∆H(x) = −0.066 − 0.549 ·x + 0.487 ·x2. (1.2)

GRIESSEN ET AL [GD84] found empirically that the heat of formation of binary
hydrides is related to the characteristic electron band energy parameter ∆E,

∆H(x) =
ns

2
(α∆E + β) (1.3)

where ∆E = EF − ES. EF is the Fermi energy, ES is the center of the host metal
electronic band with a strong s character at the interstitial sites occupied by hydrogen,
ns is the number of electrons per atom in the lowest s-like conduction band of the host
metal, and α and β are constants. Eq. (1.2) was interpreted using the semiempirical
band structure model for the heat of formation, and the hydrogen concentration
dependence of ∆H(x) can be written as [FGG86],

d∆H(x)

dx
=

−B(x) · V 2
H(x)

Vm(x)
+

α

N(EF(x))
(1.4)

where B(x) is the bulk modulus, VH(x) is the partial volume of hydrogen, Vm(x) is
the volume of the host metal, α is an empirical constant and N(EF) is the density
of states in PdHx above the Fermi level in pure Pd. The first term of the RHS of
Eq.1.4 is called the elastic contribution and the second term is called the electronic
contribution, because it describes the rise of EF due to the extra hydrogen electrons.
The sign reversal that Eq.1.2 shows at x ≈ 0.55 is a result of the filling of d-band
states. Also the reduction of the elastic term at higher concentrations is equally
important.

With a thermodynamical analysis, FLANAGAN [FL75], using the p-x isotherm mea-
surements of WICKE AND NERNST [WN64], calculated the heat of solution ∆H of
hydrogen in palladium, derived from d(ln(

√
p)/d(1/T ) as function of x and obtains also a

dependency similar as the one from GRIESSEN ET AL.

2



CHAPTER 1. INTRODUCTION

SALOMONS [Sal90] carried out atomistic computer simulations for the bulk PdH
system with a set of interaction models proposed by GILLAN [Gil86]. This set de-
scribes the Pd-Pd interaction with a sixth order polynomial yielding an equilibrium
lattice constant of a=4.0 Å for pure Pd, a H-Pd first neighbour model fitted to repro-
duce the frequency of hydrogen in Pd and an H-H first neighbour interaction repul-
sive model, which predicts that nearest neighboring (N) H atoms, interact through
V(Ndistance)=0.005 eV/pair. Using Widom’s method [Wid63] within a molecular dy-
namics simulation, he determined for the bulk PdH system µH at 600, 800 and 1000
K. His calculation was based on the formalism of WAGNER AND HORNER [Pei78]
which is a statistical model that assumes that the entropic part of the hydrogen free
energy can be modelled by the ideal solution approximation and that the energetic
part is due to a finite solution energy for the dilute hydride, the vibrational energy
contribution and an attractive hydrogen-hydrogen described with the mean field ap-
proximation, that is:

µH = Eb + uelastic + udirectHH + kBT ln
x

1 − x
+ µvib + pVH (1.5)

From the µH calculation at 600 K, the presence of a α-α′ phase transition was es-
tablished. However, using these interaction models, at a constant concentration x,
µH increases with decreasing temperature, contrary to experimental results. This
discrepancy was attributed to the missing electronic band structure effects. After ob-
taining µH from the MD simulation, assuming values for µvib, -kBT · ln(x/1−x), pVH and
udirectHH (in the mean field approximation), Eb+uelastic was estimated and resulted in
discrepancy to the model of WAGNER AND HORNER [Pei78].

In PdHx clusters, p-x isotherm measurements [Sul03, SA01a] indicate that in the
α phase region, the solubility is enhanced compared to bulk Pd. There also exists a
two-phase region, which is narrowed compared to bulk. The two phase field region
has a plateau with a small slope. The assumption of additional occupation of surface
and subsurface sites explains the enhanced solubility in the α phase. It also explains,
the narrowing of the miscibility gap. The pressure of the miscibility gap is the same
in bulk and in cluster, indicating that bulk-like sites in cluster are similar to sites in
bulk. The slope cannot be explained so far. A sketch of the isotherm curves of bulk
and cluster is shown in Fig. 1.1, to illustrate the difference between the two curves.

CALVO AND CARRE [CC06] investigated the hydrogen loading of 147 atoms Pd
cluster (and bulk Pd) by molecular dynamics and monte carlo calculations. They
use the Pd-Pd interaction potential from REY ET AL [RGGR+93] and the H-H, H-Pd
interaction potentials taken from the work by TOMANEK ET AL [TSL91]. For pure Pd
bulk, they obtain good agreement with the experimental cohesion energy Ecoh(3.89
eV), however, at an equilibrium lattice constant a=3.6 Å which is nearly 10% lower
than the experimental value. By introducing single H atoms, they determine the
binding energy Eb, of hydrogen in palladium as Eb=-2.413 eV. In their work, the
PdH cluster was investigated using a cuboctahedral and an icosahedral structure with
147 Pd, aimed at studying structural changes under hydrogen loading. They used a
combined monte carlo-conjugate gradient local minimization procedure. For both
clusters there is a hydrogen concentration by which Eb has a minimum value. It is to
be observed that for finite x concentration, they use Eq. 3.33 instead of Eq. 3.36 for
the binding energy calculations. In the MC calculations, they use a rigid Pd structure,
neglecting the lattice relaxation when inserting hydrogen atoms. This means a rather
severe approximation, as the energy gain due to the relaxation is large compared with
kBT .

3
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Figure 1.1: Isotherms of the system PdH bulk and cluster. It is shown the differences of
the isotherm curves in bulk and cluster.

In the present work, the central aspect is the use of a novel expression for the
chemical potential of H in bulk Pd and in clusters, which is a straightforward result
from the partition function of the system and follows from an extension of Widom’s
[Wid63] particle insertion method. The novel expression has the simple form of a
phenomenological approach that uses the ideal solution model for the configuration
entropy part for the chemical potential, it involves an interaction expression for the
coupling between the particles, and it contains a vibration part, i.e.,

µH = kBT ln

(
x

1 − x

)
+ 〈ǫ(x)〉 + µvib (1.6)

The quantity 〈ǫ(x)〉 is well defined from basic statistical physics and is accessible to
numerical computation within a hybrid monte carlo - molecular dynamics (MC-MD)
procedure. It involves direct hydrogen-hydrogen interactions, the deformations of
the lattice by the absorbed hydrogen atoms and, in particular, the energy gain from
lattice relaxation, the so-called self-trapping energy from the dilute hydrogen limit
up to large hydrogen concentrations. The main approximation in the derivation of
〈ǫ(x)〉 lies in the neglect of transition state (that means saddle point) contributions
to the equilibrium partition function of the system. The used approach is applicable
to all kinds of crystalline homogeneous substitutional and interstitial alloy systems,
also to spatially structured arrangements with internal or external boundaries, and
to systems with reduced dimensions like layer-structures or clusters. In the present
work it will be used to analyse aspects of the chemical potential of hydrogen in bulk
Pd and in a 923 Pd-atoms cuboctahedral cluster, where the latter question combines
the statistical mechanics of a many-body system with the problem of spatially varying
site energies.

This work is organized as follows: In chapter 2, an introduction to molecular
dynamics and monte carlo simulations is given, together with their implementation
to the calculations made in this work. In chapter 3, a brief description of the elastic
interaction of the H atoms in the metal is presented and its relationship to the relative
volume change under H loading, which is important for the development of the H-Pd
interaction potential. Also there are presented thermodynamical properties of the

4



CHAPTER 1. INTRODUCTION

system PdH bulk, such as the free energy F and the chemical potential of H in the
metal, µH. Chapter 4, describes the interaction models used in this work. For the
Pd-Pd interaction several models were tested, which include a first, second or third
shell of neighbours. The H-Pd interaction is a first neighbour model. For the H-H
interaction model, a next neighbour model and next nearest neighbour model are
compared. In chapter 5, results of the simulations in PdH-bulk and PdH-cluster are
presented, compared with the experimental results, and discussed. Finally, in chapter
6, conclusions are given.

5
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Chapter 2

Molecular Dynamics Simulation

In this work the binding energy (Eb) and the chemical potential (µH) of H in a
Pd cluster are determined, using a molecular dynamics (MD) simulations and a
combined monte carlo - molecular dynamics (MC-MD) approach, respectively. The
present chapter (section 2.1) explains the basic concepts involved in a MD simula-
tion and the steps used. Section (2.2) describes the main elements of the MC-MD
procedure.

2.1 MD procedure

By the MD method [AT87, FS05, Rap04] the trajectories ~ri(t) of atoms i are deter-
mined by means of numerical integration of Newton’s equations:

mi · ~̈ri = ~fi (2.1)

where the total force ~fi acting on the atom i is determined from the potential energy
U(r1, · · · , rN) between atom i and the other j particles in the system as:

~fi = − ~▽iV (r). (2.2)

Newton’s third law implies that ~f ji=-~f ij . So each atom pair needs to be examined
only once. The numerical integration is done with a Predictor-Corrector algorithm of
5th order where the integration step was chose to resolve the thermal vibrations of
an atom with mass mi and frequency ω. The simulations were performed in an NPT
ensemble (number of particles (N), pressure (P ) and temperature (T ) constant).

2.1.1 Pressure control

At each integration step the pressure in the system is calculated through the atomic
virial (v) expression:

v = −1

3

∑

i

∑

j>i

~rij · ~fij(r), (2.3)

and the instantaneous pressure Pi is:

Pi ·V = v +
N · 2 ·Ekin

3
, (2.4)

7



CHAPTER 2. MOLECULAR DYNAMICS SIMULATION

Table 2.1: Parameters used by the Berendsen Scaling. Time constants for the Berendsen
thermostat and barostat are shown. Instead of using the isothermal compressibility the ratio C/τP was
adjusted together with τT1 and τT2 to deliver a faster relaxation of the system. τT1 (H) and τT2 (Pd)
are chosen different because of the different masses of the atoms.

C τP τT1 τT2

(Å3/eV) (fs) (fs) (fs)

0.000046 0.02 10 100

where V is the volume and Ekin is the total kinetic energy of the system. The instan-
taneous pressure Pi is used afterwards to scale the box length (Box) and the position
(~ri) of the atoms. In the MD simulations the scale factor λP is

λP =
(Pi − Pd)ξ + Box

Box
, (2.5)

where ξ is a friction coefficient and in this work the value ξ = 1/100 Å4/eV was used.
If λP is < 0.99, λP is set to 0.99. If λP is > 1.01, λP is set to 1.01. In this way λP is
chosen close to 1. For a current integration step:

Boxcurrent = Boxprevious × λP (2.6)

and

~ri = ~ri, previous × λP , (2.7)

where the index previous stands for a previous integration step.
For the MC-MD simulations the Berendsen barostat [BPvG+84] was used. In this

case the scale factor λP is given by:

λP =

[
1 +

(
∆t

C

τP

)
· (Pi − Pd)

]1/3

(2.8)

where ∆t is the integration step, C is the isothermal compressibility of the system
and τP is a time constant. The values used in this work are given in table 2.1. τP

controls how fast the desired Pd is achieved. Afterwards the box length and the
atomic positions are given by Eq. (2.6) and Eq. (2.7).

2.1.2 Temperature control

At each integration step an instantaneous temperature (Ti) is calculated through the
kinetic energy Ekin of the system

3

2
kBTi =

1

N

N∑

i=1

1

2
mi · ṙ2

i . (2.9)

The temperature is maintained constant rescaling the velocities of each atom. In the
MD simulations this was done by using a simple rescaling where the scale factor λT

is given by

λT =
√

Td/Ti, (2.10)

8
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where Td is the desired simulation temperature and Ti is calculated using Eq. (2.9).
The velocities in the current integration step (~vi, current) are rescaled as

~vi, current = ~vi, previous × λT , (2.11)

where the index previous stands for a previous integration step.

In the MC-MD simulation a Berendsen thermostat was used. In this thermostat
the scale factor is given by

λT =

√[
1 +

(
∆t

τT

)
·
(

Td

Ti
− 1

)]
, (2.12)

where ∆t is the integration step and τT is a constant which describes the strength of
the coupling of the system to a hypothetical heat bath. The larger τT the weaker the
coupling and it takes longer to achieve a given Td after a previous Ti. The values used
are given in table 2.1. Since the H and Pd atoms have masses in a ratio ≈ 1:100, the
values of τT were chosen different for each atom type. Afterwards the velocities were
scaled according to Eq. (2.11).

2.1.3 Integration algorithm

The simulation program used in this work was already available in the group and it
was written in Fortran 77. It was modified in order to include the interaction poten-
tials, the Berendsen scaling, to account for surface effects, to include a MC procedure
and to calculate after a given number of integration steps physical quantities with
the corresponding fluctuations. The program was structural rearranged in order to
optimize the simulation time.

As mentioned before, the equations of motion are solved numerically by means
of a modified Predictor-Corrector algorithm [Tei96, Rap04]. The algorithm is called
predictor-corrector because it makes use of information computed at earlier time
step. The goal is to solve the second order differential equation:

ẍ = g(x, ẋ, t) (2.13)

The predictor step P(x) for time t+∆t is an extrapolation of values computed at
earlier times t, that is

P (x) : x(t + ∆t) = x(t) + ∆t · ẋ +
∆t2

24
· [19 · ẍ(t) − 10 · ẋ(t − ∆t) + 3 · ẍ(t − 2∆t)] .

(2.14)
With this predictor value x(t+∆t) the forces on the individual atoms -and therefrom
ẍ(t + ∆t)- are calculated and corrected values for x(t + ∆t) are determined through

C(x) : x(t + ∆t) = x(t) + ∆t · ẋ +
∆t2

24
· [3 · ẍ(t + ∆t) + 10 · ẍ(t) − ẍ(t − ∆t)] , (2.15)

C(ẍ) : ẍ(t + ∆t) = ẍ(t) +
∆t

12
· [5 · ẍ(t + ∆t) + 8 · ẍ(t) − ẍ(t − ∆t)] . (2.16)

9
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2.1.4 Force calculations

Interaction potentials such as tight binding potentials (TB), embedded atom method
(EAM) and Finnis- Sinclair potentials (FS) have similar analytical forms:

UTOT(i)(r) =
∑

j 6=i

UP(r) + UN(i)(r), (2.17)

where the contribution of atom i to the total energy (UTOT) is given by a pair con-
tribution UP and a many body term (or local density) given by UN. The many body
term is a nonlinear function of the separation r between atoms and it is generally
written as:

UN(i) = −C ·
∑

j 6=i

√
ρi(r). (2.18)

The total force ~f TOT
i on an atom i derived from this potential is:

~f TOT
i (r) = −

∑

j 6=i

[
∂

∂r
U(r) − C

2

∂

∂r

(
ρ

1/2
i + ρ

1/2
j

)]
· ~r
r
. (2.19)

In the case of simple pair potentials where only the pair contribution UP is available
the force is calculated as:

~f TOT
i (r) = −

∑

j 6=i

[
∂

∂r
U(r)

]
· ~r
r
. (2.20)

In a MD simulation the most time consuming part of each integration step is the
force calculation. In order to reduce the amount of work required for the interac-
tion and force calculation, a neighbours list was used in order to restrict the force
calculations to atom pairs with relevant interactions. This list was updated every 10
integration steps. The cutoff radius of the neighbours list was chosen different for
each interaction potential. It was set to ≈ 1.5 × cutoff radius of the interaction.

2.1.5 Conservation of momentum

In the absence of external forces at each integration step and after the corrector step
the total momentum of the system is set to zero in order to suppress translations of
the overall system. In clusters, the periodic boundary conditions are removed and
additionally degrees of freedom are introduced, in order to avoid rotations of the
system around its center of mass.

2.1.6 Volume calculation

In bulk the usual way to calculate the pressure is using Equation (2.4) where the
volume is determined by the box length. In bulk, the volume is calculated with the
previous knowledge of the shape of the system. If the simulation cell is cubic then
the volume is simply:

V = Box3 (2.21)

There is a difficulty with the concept of volume when simulating a cluster in an
NPT ensemble. In the literature, there are given at least four ways to define the
volume of a system consisting of N atoms: using the fact that the volume is an

10
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Figure 2.1: Volume of the Cuboctahedral Cluster. It is shown the upper part of a 923 Pd

unrelaxed cluster. The length | ~A| of the innermost layer (at z=0.0), which has the largest number of
atoms, is taken as the Box length.

additive quantity which can be written as a summation of the volume of individual
atoms [SG02], spherical approximation [CXWB92] where the cluster is assumed to
be a sphere of radius R, whose center is defined as the center of mass of all atoms,
using a Voronoi cell whose interior consists of all points in 3Dim which are closer
to a particular lattice point than to any other [Rap04] and using the convex hull
algorithm [BDH96] where the convex hull from a set of points is determined and the
volume of this hull is calculated. In this work, due to the simulation temperature
used (T=0.05K), the cluster does not experience any deformation. Therefore, it was
chosen, to take the box length (see figure 2.1) of an unrelaxed cluster as an initial
condition. Then at each integration step this box length and the position of the
atoms were rescaled according to Eq. (2.8), Eq. (2.6) and Eq. (2.7). In this way no
real volume is needed for the rescaling of positions. However, in Eq. (2.4) the volume
is taken approximately as the scalar triple product of three vectors ~A, ~B, ~C:

V = 2 · | ~A · ( ~B × ~C)|. (2.22)

2.2 Monte Carlo-Molecular Dynamics (MC-MD) hybrid

program

In classical statistical mechanics context [AT87], a system of N particles at tempera-
ture T will have an average energy 〈U〉 given by the thermal average of the potential
energy U(~rN ):

〈U〉 =
1

Z

∫
d~rNU(~rN) exp

[
−U(~rN )

kBT

]
, (2.23)

11



CHAPTER 2. MOLECULAR DYNAMICS SIMULATION

where Z is the partition function and the integral concerns N , that means 3N con-
figurational degrees of freedom. Only an extreme small area in the 3N -space of en-
ergetic favourable configurations contributes to the integral, while most of the space
gives only a negligible contribution to the integral due to the large values U/kBT . By
the monte carlo procedure with importance sampling such as the Metropolis method,
the main contributions to the integral are selected by restricting the integral to con-
figurations that have sufficient low energy from the actual configuration. Usually the
MC simulations follows the following scheme:

• Choose an atom (or more) at random

• Move it at a random amount and generate by this from a counted configuration
a test configuration. The displacement should allow to sample the configuration
space as efficiently as possible.

• Calculate the acceptance probability Π caused by the random shift, where

Π = exp

[
−∆E

kBT

]
, ∆E = U(~rN)test − U(~rN )old (2.24)

• Accept or reject the test configuration (Metropolis algorithm):

– If ∆E < 0, accept the test configuration and count it as the new configu-
ration

– If ∆E > 0, accept the test configuration if a random number between 0
and 1 is smaller than Π

– Otherwise, reject the test configuration, count the old configuration once
again and choose new test configuration

• Repeat many times for making averages. Averaging over the counted configu-
rations means an ensemble average with canonical probability exp(−Ui/kBT) of
the configurations.

In this work, a hybrid Monte Carlo procedure was used. Each MC step is followed
by a 5000 MD steps. Instead of moving an atom, different configurations α with NH

H atoms were generated. With this procedure one move in the configuration space
consists in integrating the system (MD part) through phase space for a fixed time.
After this using the metropolis algorithm the configuration is accepted or rejected
(MC part). The aim of using a MC procedure is to sample the whole available energy
landscape by means of comparing two successive configurations using the metropolis
algorithm. In this way different energetic favourable configurations at a temperature
TMC will be found, see figure 2.2. We were interested in obtaining statistical averages
of energy gains in the system when adding an extra H atom to the already generated
MC configurations. In the following section the the whole procedure is explained in
detail.

2.2.1 MC-MD algorithm

In what follows, a state α consists of a 923 Pd atoms cuboctahedral cluster (or of 864
Pd atoms in the fcc lattice) and NH, H atoms randomly distributed over octahedral
sites. Different states α corresponds to different random H distributions with the

12
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E
[e

V
]

moves

b) Accepted moves

Figure 2.2: MC simulation using the metropolis algorithm. Energetic favourable config-
urations at a temperature TMC are found. For TMC, different states α corresponding to different H
distributions are generated.

same number NH. Starting with NH H atoms it is required to generate different
states α each with energy Eα. The first part of the algorithm follows the scheme:

• A first state is generated by randomly choosing a number NH of octahedral sites
and setting H atoms at these sites.

• 5000 MD integration steps allows the system to relax at TMD=0.05 K. Averages
are computed over the last 1000 MD integration steps where Eα is taken as the
total potential energy average, over the last steps.

• The metropolis algorithm is used to accept or to reject an α state. In either case
a new configuration is generated by choosing randomly one occupied site to be
emptied and randomly one empty site to be occupied.

• All the above is repeated. Altogether 1000 MC steps × 5000 MD steps are
carried out.

The energy Eα is the configurational energy of the state which comprises two contri-
butions,

Eα = Evib + EIE, (2.25)

where Evib is the vibrational energy of all atoms and EIE is the interaction energy
contribution. At T → 0, Evib is negligible and the configurational energy reduces to
only the interaction potential contribution.

The second part of the algorithm consists of obtaining the energy gain, from
adding one extra H atom to the system. The following scheme is performed:

• We chose 10 Xα
NH

configurations with energy Eα as initial states.

• Taking a Xα
NH

configuration, a new state Xγ
NH+1 is generated by selecting 1

empty octahedral site and setting at this site a H atom. The system has now
(NH + 1) H atoms.

• 5000 MD integration steps are used to relax the system at TMD=0.05 K. Av-
erages are computed over the last 1000 MD integration steps where Eγ

NH+1 is
taken as the total potential energy average.

13
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(a) Positions of palladium and hy-
drogen atoms

(b) free hydrogen positions

Figure 2.3: Energy gain by adding 1 extra H atom. Starting with a configuration with NH

hydrogen atoms ( ) in a palladium lattice ( ) see part (a), all different empty sites ( ) are tested with
an additional H atom in order to determine the energy gain at a temperature TMC.

• All the above is repeated. Altogether No − NH steps × 5000 MD steps are
carried out, where No − NH is the number of available unoccupied sites (See
figure 2.3).

The energy gain of the system 〈ǫ(x)〉 is a function of the H concentration x 1 and
it is the statistical average of the energy difference between states α belonging to a
MC-chain and γ states:

〈ǫ(x)〉 = −kBT ln

(
1

Nα

∑

α

1

Nγ

∑

γ

exp[−∆Eγ
α/kBT ]

)
, (2.26)

where Nα is the number of configurations α, Nγ is the number of available unoccu-
pied sites (No − NH) and ∆E is given by

∆E = Uγ(NH + 1) − Uα(NH) (2.27)

As deduced in Section 3.3.2, the chemical potential µH is:

µH = kBT ln

(
x

1 − x

)
+ 〈ǫ(x)〉 + µvib(x) (2.28)

where µvib(x) describes vibrational contributions of the H atoms.

2.3 Physical quantities determined through MD and

MC-MD simulations

Using MD, two different sets of simulations were made. In bulk, to prove the adapt-
ability of the interaction potentials, and in the cuboctahedral clusters to estimate
their chemical potential. The simulations in bulk use periodic boundary conditions,
those in Clusters without periodic boundary conditions in order to account for surface
effects. Simulations performed on pure Pd were carried out by using an integration

1x=NH/NPd in bulk. x=x̃=NH/Nσ in cluster. Nσ: number of available sites
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step ∆t = 2.0 fs and on Pd loaded with H by using an integration step ∆t = 0.26 fs in
order to resolve the movement of the H atoms which have 100 times less mass than
the Pd atoms. For each simulation an equilibration run is allowed before taking av-
erages. When determining binding energies the simulation temperature was chosen
to be 0.05K. In this way the system relaxes faster because of the small vibrations of
the Pd atoms around their equilibrium positions. Quantities such as kinetic (Ekin)
and potential energy (Epot) per atom, cohesion Energy (Ecoh) of Pd as a function of
H concentration x, the binding energy (Eb) of H in Pd as a function of the concen-
tration x, the change in lattice energy and relative volume changes under H loading
are calculated.

The MC-MD procedure was used to simulate H loaded bulk and clusters. After
1000 MC steps × 5000 MD steps the binding energy of H in Pd as a function of the
concentration x, Eb(x), the average energy gain 〈ǫ(x)〉 and the chemical potential of
H at T = 300 K, µH(x) is determined.

In both MD and MC-MD simulations, the initial velocities are generated using
random directions and Gaussian distribution of the absolute values with variance
adapted to the desired simulation temperature. They are adjusted to ensure that
the center of mass of the system is at rest. The system is then allowed to relax.
The identification of a fully relaxed system follows an empirical rule. It is assumed
that the system is fully relaxed when the change of Epot between two successive
steps is about 0.001 eV because of the proper comparison with experimental results
which have an error of ± 0.01 eV. In Bulk-MD simulation, Pd alone was allowed
to equilibrate for 200 ps before loading it with H followed by approximately 80 ps.
Afterwards averages of quantities were taken within the next 2.6 ps. For the MC-MD
simulations an already relaxed system was taken as the initial condition. After an
MC step the system was allowed to relax for 1.3 ps. Averages of energies with their
respectively fluctuations [AT87] were calculated. In the Appendix A it is given as an
example the output of the simulation of Bulk Pd with 1 H atom.
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Chapter 3

Theory

Regarding the origin of the interaction between the H atoms in a metal, it is known
that there are two contributions: A short range repulsive interaction which comprises
the electrostatic interaction of the screened H protons and also the induced polariza-
tion of the electronic cloud and an elastic interaction mediated by the metal lattice,
which is long range and attractive. An interstitial H atom deforms the host lattice
and creates a long ranged strain field which is felt by other H atoms. It is accepted
that the H-H interaction in the metal causes the plateau in the solubility isotherm of
H in Pd. In this chapter a brief description of the elastic interaction is given. We begin
in section 3.1 by describing the relationship between local lattice deformation and
macroscopic volume changes. The material presented here was adopted from the
work of LIEBFRIED [LN78]. In section 3.3 some basic thermodynamical properties
of the system Pd-H are presented, followed by a description of how to calculate the
chemical potential of hydrogen in a metal. In this work we used a modified approach
of Widom’s method.

3.1 Lattice dilatation and volume change of the metal

Lattice due to a point defect

A Hydrogen atom will induce a distortion of the metal lattice at the absorption site.
The displacement field due to the distortion can be represented by virtual forces (the
Kanzaki forces, see figure 3.1) applied to each lattice atom to reproduce the actual
displacement of the metal atom. The Kanzaki force distribution is describable by a
multipole expansion of which the first relevant term is the dipole term Pij, where

Pij =
∑

m

κm
j xm

i (3.1)

where κm is the Kanzaki force applied to the m’th atom situated at a distance xm from
the hydrogen atom. i, j label cartesian coordinates. Because the octahedral sites of
the fcc lattice provide six metal atoms equidistant from the occupying hydrogen atom,
Pij is isotropic, that is Pij = Poδij . Pij describes the dilating/contracting action of the
force distribution and has the dimension of an energy.

In the lattice, the induced displacement field Sm
i of atom m′ is given by:

Sm
i =

∑

m′

Gmm′

ik κm′

k , (3.2)
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Figure 3.1: Kanzaki forces and displacement field at an octahedral site of a fcc lattice.
~S is the displacement field caused by the point defect. In the perfect harmonic lattice the same
displacements ~S are produced by the virtual Kanzaki forces ~f .

where Gmm′

ik is the static Green’s function evaluated at the separation distance be-
tween the sites m and m′. The static Green’s function Gmm′

ik represents the displace-
ment of atom m in i-direction when a unit force in k direction is applied at site m′.
For an infinite and isotropic medium the Green’s function from linear elasticity theory
is:

Gij(r) =
1

16π(1 − ν)µ

[
(3 − 4ν)δij +

xixj

r2

] 1

r
, (3.3)

where r = (xixi)
1
2 denotes the distance from the force center, µ (µ = C44) is the shear

modulus and ν is poisson’s ratio of the isotropic elastic medium. Eq. (3.3) can also
be written as

Gij(~x − ~x′) =
1

4πµ

δij

|~x − ~x′| −
1

16πµ(1 − ν)

∂2

∂xi∂xj

|~x − ~x′| . (3.4)

For a system with cubic symmetry it is not always possible to evaluate G analyti-
cally but in table 3.1 the Green’s functions in the main symmetry directions of a cubic
crystal is given.

In a first neighbour model, the springs (force or spring constants) connecting
atoms at a distance R1 are given by:

f
(1)
l = V ′′(R1), (3.5)

where l stands for longitudinal and V ′′(R1) is the second derivative of the interac-
tion potential V (r) evaluated at the first neighbour equilibrium distance. In a second

neighbour model there are two longitudinal springs f
(n)
l = V ′′(Rn) and two transver-

sal springs f
(n)
t = V ′(Rn)/Rn, where t stands for transversal and n = 1, 2.

On the other hand, one can express the springs by the elastic data, the three first
neighbour springs of the fcc lattice are:

fl =
a

4
(C11 + C12 + C44) (3.6)

ft =
a

4
(−C11 + 2 ·C44) (3.7)

f ′
t =

a

4
(C11 − C12 − C44) (3.8)
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Table 3.1: Numerical values of the Green’s function for Pd in the main symmetry
directions of the fcc lattice. The values shown are given in units [1/f]. Taken from [LN78].

Metal G0 G110 G200

Pd-Pd 0.421 -0.164 -0.074

Table 3.2: Elastic data for Pd. Elastic Moduli and bulk modulus (B) for Pd. The equilibrium
lattice constant is (a). Taken from [LN78, Fuk04].

Metal C11 C12 C44 B a

(eV/Å3) (eV/Å3) (eV/Å3) (eV/Å3) (Å)

Pd 1.41 1.1 0.45 1.22 3.89

where C11, C12, C44 are the elastic constants and a is the lattice constant (See ta-
ble 3.2). For a first neighbour model the transversal springs ft and f ′

t are zero and
f = fl. Therefore C11 = 2f/a, C12 = C44 = f/a and C̄11 = 12f/5a. C̄11 = C11 − 2Ca/5 is a
Voigt’s average where Ca is a measure of the anisotropy (Ca = C11 − C12 − 2C44).

With a force pattern as shown in figure 3.2, the radial displacement of the nearest
neighbours can be calculated. Let us assume that the force on the nearest neighbours
is given by:

~κ(~r) = κr̂ r̂ =
~r

|~r| . (3.9)

Then, from Eq. (3.2) and Eq. (3.9) and the numerical values of G (table 3.1), it
follows that the radial displacement is

Sr = 0.183
κ

f
, (3.10)

where κ is the Kanzaki force and f is the spring constant.
The local lattice displacement around a dilatation center can be related to the

relative macroscopic volume change. The volume change due to an isotropic dipole
force tensor is expressed by a surface integral

∆V =

∫

S

d~S · ~S, (3.11)

where ~S is the displacement field.

For a dilatation center ~k = −Po · ∂δ(~(r)) in the middle of a sphere of isotropic
material (see figure 3.3), the displacement is:

Si = −Psk∂sGik(r) =
Po ·xi

4πC11r3
=

Po · r̂
4πC11r2

= Srr̂, (3.12)

and from Eq. (3.11) the relative volume change (∆V/V ) becomes

∆V

V
=

Po

C11

=
5

3
· Po

fa2
, (3.13)

where additionally it has been used that the atomic volume in a fcc lattice is given by
V = a3/4 and the elastic constant C̄11 = 12f/5a for a first neighbour model with spring
f and lattice constant a.
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Figure 3.2: Radial displacements of the Pd nearest neighbours due to a point defect.
Calculation of the radial displacement of the Pd NN using Green’s function of table 3.1. It follows that
Sr=κ/f · (0.421 + 4 × (-0.164) -0.074) ⇒ Sr=0.183κ/f, where f is the spring.

~S = G~κ ⇒ G~κ =
1

4πrC44
~κ

Figure 3.3: Volume change (∆V ) due to a dilatation center. Assuming a concentrated force
density at the defect site in an elastically isotropic sphere, the radial displacement is Sr = Po

4πC11

r̂
r2 ,

and the volume change by this field is ∆V = 4πR2Sr(R).

With Eq. (3.13) and Eq. (3.10) it is possible to obtain a relationship between local
radial displacement of the metal atoms and the relative volume change of the lattice:

S

a
= 0.183 · 6

10
· ∆V

V
. (3.14)

In the last equation, V is the atomic volume. Substituting its value (V=d3
o/4) for a fcc

structure, yields
S
a/2

= 0.22 · ∆V

V
⇒ ∆d

do

=
1

3
· ∆V

Vo

, (3.15)

which is the relationship between relative lattice change and relative volume change
for a cubic crystal [Pei78].

3.2 Interaction energy of two point defects

The solution of the problem of ellipsoidal inclusions in an isotropic infinite body
has been given by Eshelby [Esh56]. He has determined the strain and stress fields
for points inside and outside the inclusions. If the inclusion produces a dilatational
strain, ǫij = δijǫo, the elastic strain (W ) energy per unit volume V of inclusions is a
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constant independent of the shape of the inclusions:

W

V
= 2µǫ2

(
1 + ν

1 − ν

)
. (3.16)

The stress field is in this case

σii =

{
−4µ

(
1+ν
1−ν

)
, inside the inclusion

0, outside the inclusion.
(3.17)

Also, the strain elastic energy W = −1
2
σiiǫoV is zero for points outside the inclu-

sion (no elastic interaction of the inclusions). In general, two defects in an infinite
medium at sites ~r and ~r′ have an interaction energy:

W (~r~r′) = −Pli Ui,l(~r, ~r′) = PliGij,lk(~r − ~r′)P ′
k,j, (3.18)

where ~u(~r, ~r′) is the displacement at ~r produced by the force dipole at ~r′. If in the
isotropic medium one dilatation center P a

o interacts with one general P b, the elastic
interaction energy is

W =
P a

o

4πC11r3

[
trP b − 3(~r, P br̂)

]
, (3.19)

and 〈W 〉r̂ = 0, that is the interaction of two dilation centres vanishes. Since G ∽ 1/r,
the elastic interaction between force dipoles scales as ∽ 1/r3.

If the medium is anisotropic with two dilatation centres of the form P a
ij = P a

o δij;
P b

mn = P b
o δmn, they interact according to

W (~r) ≈ −15

8πr3

P a
o P b

o

C2
11

Ca ·A(r̂), (3.20)

where Ca is a measure of the anisotropy and A(r̂) is a directional dependent quantity:

A(r̂) =
3

5
−
∑

j

x̂4
j =





−2
5

, 〈100〉
3
15

, 〈111〉
1
10

, 〈101〉
(3.21)

which means that Ca > 0 for the interaction between two point defects is attractive in
〈100〉 and repulsive in 〈101〉, 〈111〉 directions. In this case ǫij = δijǫo and the solutions
of the strain fields are given by

ǫr(r) = −2

3

ǫoa
3

r3

(
1 + ν

1 − ν

)
, (3.22)

ǫθ(r) = ǫφ(r) =
1

3

ǫoa
3

r3

(
1 + ν

1 − ν

)
. (3.23)

The long range stress field within the matrix is given by:

σij ∝
Bǫoa

3

r3

(
1 + ν

1 − ν

)
δij, (3.24)

where B is the bulk modulus of the medium. These long-ranged stress fields give rise
to long ranged elastic interactions between the point defects.
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Figure 3.4: Phase Diagram of PdH bulk. At room temperature there are two solid phases with
the same fcc lattice structure but different lattice constant a. At low H concentrations (x < 0.0008)
the phase is called α. At high H concentration (x > 0.6) there is a pure α′ phase. At concentra-
tions in between (0.0008 < x < 0.6) a two phase region exist with regions α and α′ that coexist in
thermodynamical equilibrium. Taken from PUNDT [Pun05]

3.3 Thermodynamical properties of the H-Pd system

Under ordinary conditions (T > 300 K, P < 10 MPa), hydrogen can be described as
an ideal gas. The chemical potential is given by [Fuk04]:

µg = kBT ln
P

Po(T )
− Ed, (3.25)

Po(T ) =
(4πMkBT )3/2 · 4π2IkBT

h5
, (3.26)

with M the mass of the hydrogen molecule and I its moment of inertia. For T =300 K,
Po(T ) has a value for 13002 Pa.

When a Hydrogen molecule enters the surface of Pd, it dissociates. The H atoms
occupy interstitial sites. Upon absorption, the lattice structure of Pd undergoes struc-
tural changes in order to accommodate a large number of H atoms. The phase dia-
gram of Pd-H bulk is known and it is shown in figure 3.4. In the diagram, the com-
position is written as a ratio of the number of H atoms to the number of Pd atoms,
x = NH/NPd. At room temperature and at low H concentrations there is a so-called
α phase which exists up to a concentration x = 0.0008. At higher H concentrations,
there is a two- phase region α − α′ where the two phases coexist in thermodynamic
equilibrium. For x > 0.6 there is a pure α′ phase. Upon phase transformation, the
system retains its fcc lattice structure but the lattice constant changes form a = 3.89 Å
to a = 4.02 Å at 300 K.

At low H concentrations the system exhibit an ideal solution behavior. The sol-
ubility of hydrogen in the metal at a given temperature increases with increasing H
pressure PH2

. All isotherms have a common slope

x ∝
√

PH2
, (3.27)

a relationship known as Sievert’s law.
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At high H concentrations, the interactions between the H atoms plays a significant
role. Upon H loading, the heat of solution initially decreases, followed by an increase
at higher H concentrations.

The H gas at a pressure PH2
in equilibrium with the α or α′ phase allows to write

for the chemical potential

1

2
µg(p, T ) = µH(α or α′, T ), (3.28)

where µH is the chemical potential of H in the metal. Using Eq. (3.25) and Eq. (3.28)
the pressure PH2

can be written as

P = Po(T ) exp

{
2µH + Ed

kBT

}
(3.29)

which allows to determine the pressure-composition isotherms when µH is given.

3.3.1 Energy of a Hydrogen atom dissolved in a metal

The energy of a hydrogen atom dissolved in a metal has different contributions and
can be written as

E = Evib + Epot (3.30)

where Evib can be calculated assuming that the H atoms form a harmonic oscilla-
tor system with vibrational density of states (per H atom) ν(ω) independent of the
number NH of H atoms,

Evib = 〈Evib〉 = NHkBT

∫
νH(ω) ln (1 − exp (~ω/kBT))dω. (3.31)

Epot is the configurational potential energy. Lacher’s [Lac37] treatment of the H-
metal system assumed that E is given by the following expression

E = NHẼb + NHHχ, (3.32)

where Ẽb is the binding energy of 1 H in the metal, NH is the number of hydrogen
atoms in the system, χ is the interaction energy of a H atom with another H atom
and NHH is the number of H-H pairs. The binding energy of 1 H atom is given by

Ẽb =
1

NH

(Epot(H + Pd) − Epot(Pd)) (3.33)

where Epot(H + Pd) is the potential energy of the system Pd with H and Epot(Pd) is
the potential energy of pure Pd. The enthalpy change under desorption ∆H or heat
of solution is given by

∆H = −∂H(NH)

∂NH
, (3.34)

where
H(NH) = H(Pd, NH) − H(Pd). (3.35)

H(Pd, NH) is the enthalpy of the Pd system with NH H atoms and H(Pd) is the
enthalpy of the Pd system alone. The binding energy Eb of a system with a finite
number of H atoms can be obtained from the heat of solution ∆H,

Eb = ∆H +
Ed

2
. (3.36)
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Figure 3.5: Heat of Solution of H in Pd Bulk as a function of hydrogen concentration.
Experimental Results. It is shown the heat of formation of PdH as a function of the H concentra-
tion x. H is related with Eb through Eb−Ed/2 = H , where Ed is the H2 dissociation energy (-4.46 eV).
Taken from [Fuk04].

For Pd-H bulk

Eb ≈ −0.2 eV +
Ed

2
⇒ Eb ≈ −2.43 eV. (3.37)

The experimental results from OATES AND KUJI [Fuk04] (See Figure 3.5) show that
the heat of solution of H in Pd is a function of the H concentration. The heat of
solution turns from exothermic to endothermic at a certain H concentration.

The interaction energy χ is a quantity which can be estimated by comparing the
change of lattice energy of two isolated hydrogen atoms (in the lattice, sitting far
apart from each other) with the change of lattice energy of two hydrogen atoms sit-
ting at a NN distance. That is, assuming that χn represents the H-H effective interac-
tion, with elastic (lattice mediated, attractive) and electronic (repulsive interaction)
the change in lattice energy upon H absorption is

δElattice = EPd(H + Pd) − EPd(Pd). (3.38)

EPd is only the potential energy of the Pd atoms. Therefore

χn = (δElatticeisol − δElatticepair
) × 6. (3.39)

where n is the number of hydrogen atoms with which a selected H atom can interact.

3.3.2 Chemical potential of Hydrogen in a metal

For evaluating the chemical potential of Hydrogen in Palladium clusters, we have
used an approach deduced from WIDOM’S [Wid63] particle insertion method. The
particle insertion method is described, e.g., in the textbook by FRENKEL AND SMIT

[FS05]. An application to the bulk Pd-H system has been given by SALOMONS

[Sal90].
The present treatment is tailored to deal with situations where for the N-particle

system well defined configurations Xα exist, characterized for example by different
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distributions of the H atoms in interstitial sites of the Pd matrix, that means by dif-
ferent distributions of the H atoms in the cluster.

Thermodynamics then concern the competition between the various Xα and vi-
brational excitation of the atoms around their equilibrium positions. It is in particular
assumed that the so-called transition states, where atoms are on the way between two
adjacent equilibrium positions, are of negligible weight in the partition function. The
main difference to Widom’s [Wid63] original method lies in the fact that this method
mixes entropic contribution from vibration and configuration degrees of freedom,
while we use here a treatment that allows to take into account the configurational
effects without their masking by vibrations.

In our application to Pd-H clusters, we assume that the Pd atoms form the back-
bone of the cluster, e.g., a fcc cuboctahedron with NPd Pd atoms. The number of H
atoms is denoted by NH. They occupy a fraction x = NH/Nσ of the octahedral sites,
with Nσ the total number of available sites 2 .

The equilibrium thermodynamics of the system are determined by the partition
function

Q(N, T ) =
1

N !

1

~3N
·
∫

dΛ exp (−HNβ), (3.40)

where β = 1/kBT and the integration covers the whole phase space of the system.
The phase space integral shall be evaluated by assumption of classical particles and
classical dynamics. The prefactor takes place of quantum phenomena, that means the
fact that the particles are indistinguishable and that the uncertainty principle ascribes
a phase space volume ~

3N to one N-particle state in the 6N-dimensional phase space.
The treatment makes use of the concept of stationary classical configurations

Xα = {~xα
1 , . . . , ~xα

N}, where α labels the various configurations. The configurations
are minima of the potential energy landscape and can be determined as fix points of
the iterative mapping

~xi → ~x′
i = ~xi −

1

2
δt2 ▽i ·U(~xj) i · · · N, (3.41)

where U(~xj) is the potential energy for configuration {~xj}. To each of the fix points
Xα we ascribe, e.g., via a Voronoi construction, a phase space volume Λα, leading to
the expression

Q(NH) =
1

NH!NPd!

∑

α

1

~3N
·
∫

Λα

dΛ exp {[−H(r) − Uα(NH)] β} · exp {−Uα(NH)β}.

(3.42)
For simplicity, in the following we explicitly take into account the fact that the

Pd atoms are indistinguishable. We contract into one configuration Xᾱ all configura-
tions that arise from exchange between the Pd atoms. This implies that for situations
where only one type of Pd cluster counts, for instance one cuboctahedral arrange-
ment with NPd Pd-atoms, the configuration Xᾱ differ by the distribution of H atoms
over the octahedral sites, while for all Xᾱ the matrix of Pd-atoms has the same topol-
ogy. With this simplification Eq. (3.42) becomes

Q(NH) =
1

NH!

∑

ᾱ

1

~3N
·
∫

Λᾱ

dΛ exp {[−H(r) − Uᾱ(NH)] β} · exp {−Uᾱ(NH)β}.

(3.43)

2x=NH/NPd in bulk. x=x̃=NH/Nσ in cluster. Nσ: number of available sites
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The free energy

F (NH) = − 1

β
ln (Q(NH)) (3.44)

now can be written as

F (NH) = Fvib(NH) − 1

β
ln (Qo(NH)), (3.45)

with

Qo(NH) =
1

NH!

∑

ᾱ

exp {−Uᾱ(NH)β} (3.46)

Fvib(NH) = − 1

β
ln 〈exp {−fᾱ,vib(NH) · β}〉ᾱ (3.47)

where

〈Aᾱ〉ᾱ =

∑
ᾱ Aᾱ exp {−Uᾱ(NH)β}∑

ᾱ exp {−Uᾱ(NH)β} , (3.48)

fᾱ,vib(NH) = − 1

β
ln

[∫

Λᾱ

dΛ

~3N
exp {−(H(r) − Uᾱ(NH))β}

]
. (3.49)

If in Eq. (3.49) the exploration of the phase-space volume Λᾱ around Xᾱ can be
approximated by an harmonic expansion, Eq. (3.49) reduces to

fᾱ,vib(NH) = +
1

β

3N−6∑

j=1

ln (1 − exp (~ωj,ᾱβ)), (3.50)

where j = 1, . . . , 3N − 6 labels the vibrational modes of the Pd-H system in config-
uration ᾱ. Fvib(NH) thus describes the effects of the vibrations around the Xᾱ in the
free enthalpy, while Qo(NH) measures the configuration part.

Evaluation of the H-atoms chemical potential µH(NH, T ) from Eq. (3.45) follows
the idea of Widom’s particle insertion method. We use

µH(NH, T ) = F (NH + 1) − F (NH), (3.51)

µH(NH, T ) = Fvib(NH + 1) − Fvib(NH) − 1

β
ln

[
1

NH + 1

Qo(NH + 1)

Qo(NH)

]
. (3.52)

According to our construction we have

Qo(NH + 1)

Qo(NH)
=

∑
ᾱ′ exp {−Uᾱ′(NH + 1)β}∑

ᾱ exp {−Uᾱ(NH)β} . (3.53)

In classical physics, insertion of one H additional atom into all unoccupied intersti-
tial sites generates from one configuration Xᾱ(NH) a set of No − NH configurations
Xᾱ′(NH + 1). Let us denote the set of these configurations by S(α, NH). Further,
we use S(NH) and S(NH + 1) to denote the set of all configurations of the NH -
respectively- NH+1 system. With this notation we have

∑

α′∈S(NH+1)

=
∑

α∈S(NH)

·
∑

γ∈S(α)

, (3.54)
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and

Qo(NH + 1)

Qo(NH)
= (3.55)

∑
ᾱ∈S(NH)

(
exp {−Uᾱ(NH)β}

∑
γ∈S(ᾱ,NH)

exp {− (Uγ(NH + 1) − Uᾱ(NH)) ·β}
)

∑
ᾱ∈S(NH)

exp {−Uᾱ(NH)β} .

Therefore we find

µH(NH) = Fvib(NH+1)−Fvib(NH)+
1

β
ln

x + N−1
o

1 − x
− 1

β
ln 〈exp {−β∆ǫᾱ(NH)}〉ᾱ (3.56)

with

∆ǫᾱ(NH) = − 1

β
ln


 1

No − NH

∑

γ∈Sᾱ,NH

exp {−β (Uγ(NH + 1) − Uα(NH))}


. (3.57)

For evaluation of Eq. (3.57) we generate a MC chain of states Xᾱ, ᾱ = 1, . . . , Nstates,
at constant NH. In each MC step, randomly one of the H atoms in the current con-
figuration Xᾱ is removed and also randomly one H atom is transferred to one of the
empty octahedral sites of Xᾱ (See Section 2.2.1). By a MD like steepest descent itera-
tive mapping (Eq. (3.41)) for this geometry a tentative configuration Xo

ᾱ is generated
with potential energy U(Xo

ᾱ). By MC using the metropolis algorithm, it is decided,
whether Xo

ᾱ is accepted or whether Xᾱ is retained:





U(Xo
ᾱ) − U(Xᾱ) < 0, accept Xo

ᾱ

exp {− (U(Xo
ᾱ) − U(Xᾱ)) · β} > ςc, accept Xo

α

otherwise, retain and count again Xo
ᾱ

(3.58)

where ςc is a random number. Afterwards, a representative group of Xα ∈ Xᾱ is
chosen (See Section 2.2.1). Additional states Xγ are generated by introducing 1 H
atom at No − NH sites and ∆E = Uγ(NH + 1) − Uα(NH) is calculated.
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Chapter 4

Interaction Potentials

An important issue in any molecular-dynamics simulation is the selection of a suit-
able approach to the forces. Much work has been directed along these lines, i.e., to
construct empirical and ab initio sets of two-body potentials for pure Pd and for the
system Pd-H [FS86, MDB84, Gil86, TSL91, RGL89]. However there is no model capa-
ble of describing all desired physical properties of the Pd-H system. In this work, we
choose as important properties to be reproduced by the model the following quan-
tities: the equilibrium lattice constant (a), the cohesion energy (Ecoh) and the bulk
modulus (B) of pure Pd, also the relative volume change (∆V/V) upon H loading
and the binding energy (Eb) of H in Pd as a function of H concentration. Also it
is considered how much time the model needs to perform a MD simulation. This
last factor is important regarding implementation in the MD-MC hybrid calculation,
which requires at least 1000×5000 MD integration steps.

In this chapter we describe different interaction potentials used in this work. In
section 4.1, three different Pd-Pd interaction potentials are proposed: The EAM po-
tential from BASKES et. al. [FS86] and two new Pd-Pd interaction potentials which
have the advantage of taking into account less neighbours than the EAM potential.
In section 4.2 it is explained how the H-Pd interaction is constructed to account for
the relative volume change upon H loading. A set of parameters is given for each
Pd-Pd interaction potential. Finally in section 4.3 the H-H interaction potential is
constructed to reproduce not only qualitatively the shape of the solubility isotherms
of H in bulk-Pd but also Sievert’s law at low H concentrations.

4.1 Pd-Pd Interaction Potential

4.1.1 Embedded Atom Method potential (EAM)

The EAM model [FS86, MDB84] is a third neighbour model (see Appendix B). In this
model the energy of a system of N atoms is

V (r) =
1

2
·
∑

i

∑

j 6=i

VP(r) +
∑

i

F (ρi) (4.1)

where VP is the pair potential describing the interaction between atoms i and j. r
is the separation distance between the atoms and F(ρ) is the embedding function
or many body function. The embedding function is evaluated for each atom i and
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accounts for the local variation of electron density, ρi is the contribution of neigh-
bouring atoms j at the position of the atom i

ρi =
∑

j 6=i

φj(r), (4.2)

where φj, a function of the distance r between atoms i and j, is interpreted as the
contribution of atom j to the electron density at the position of atom i. The function
φj(r) is a sum of the atomic s- and d- like spherically averaged electronic densities.

The embedding function and the pair potential are fitted to reproduce as closely as
possible the following equilibrium properties of Pd: Equilibrium lattice parameters,
cohesive energy, elastic moduli and vacancy formation energy which are shown in
table 4.1. The embedding function is given numerically (in the form of a Table) in
the MD program and it is shown together with the pair potential in figure 4.1
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Figure 4.1: Pd-Pd EAM Interaction Potential. Left: The embedding function F (ρ) approaches
zero when the density ρ becomes small. The bonding strength decreases as the particles separate.
When the density becomes large the cohesion increases. This part of the energy is attractive. Right:

The pair potential part of the EAM interaction is repulsive. For atomic distances r≥rcut=5.34 Å. the
interaction is set to zero.

4.1.2 Pair potential I (ppI)

Here our so called pair potential I (ppI) will be described. ppI is a fist neighbour
model. The following function is proposed to model the first neighbour Pd-Pd inter-
action:

V (r) = −α(r − ro)
3 + γ(r − ro) + δ. (4.3)

The parameters α, γ, δ and ro are chosen to reproduce the experimental quantities
for an acceptable description of Bulk Pd, which are shown in table 4.1. Additionally
the analytical form of equation (4.3) possess some properties which makes the fitting
straightforward. These properties are:

• V(r)=0 for:
r = rcut =

√
γ/3α + ro, (4.4)

r = r1 = −2
√

γ/3α + ro, (4.5)

• V′(r)=0 for:
r = rmin = −

√
γ/3α + ro, (4.6)
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Table 4.1: Experimental Quantities for Bulk Pd. The observed experimental quantities are
to be reproduced by the interaction potentials. ppI was fitted to reproduce the equilibrium lattice
constant (a) and the bulk modulus (B). ppII was fitted to reproduce the lattice constant (a), the bulk
modulus (B), the vacancy formation energy (Ev

f ) and the cohesion energy (Ecoh). EAM potential
was fitted to reproduce a, Ecoh, Ev

f and also the elastic constants C11, C12 and C44. Taken from
[LN78, Fuk04].

a B Ev
f Ecoh C11 C12 C44

(Å) (eV/Å3) (eV) (eV) (eV/Å3) (eV/Å3) (eV/Å3)

3.89 1.22 1.4 3.94 1.41 1.1 0.45

Table 4.2: Pd-Pd ppI Interaction Potential parameters. ppI is a first neighbour model. The
parameters were fitted to reproduce the lattice constant (a) and the bulk modulus (B)

Interaction α γ δ ro rcut

(eV/Å3) (eV/Å) (eV) (Å) (Å)

Pd-Pd 1.32 0.7998 -0.2396 3.20 3.65

where rcut is the cutoff radius, that is, the separation distance between two atoms, at
which the interaction energy goes to zero. r1 is the distance at which a Pd atom feels
the restoring force far from the equilibrium position rmin.

The Bulk modulus is related to the second derivative of the interaction potential.
It is basically the curvature at the minimum. For a first neighbour model one obtains
(see Appendix B):

B =
4

3
· V ′′(rmin − ro)

a
. (4.7)

With the experimental Bulk modulus value and using equation (4.7) the value of α
is obtained. Using equations (4.4) and (4.6) the two parameters left, γ and δ can be
calculated. The parameters are shown in table 4.2 and the interaction potential is
plotted in figure 4.2.

Basic properties of bulk Pd described by the ppI potential

MD simulations in pure bulk Pd with 864 atoms (box size = 23.34 Å) are performed
using the ppI model. These simulations use periodic boundary conditions, an inte-
gration step ∆t=2.0fs and a temperature of 300 K. The system was allowed to relax
and after 20 ps statistical averages over the last 5000 integration steps were taken.
Using the ppI potential, a first approximation in describing pure Pd is obtained.

As shown in Table 4.3 this pair potential is suited for describing the equilibrium
lattice parameter a and the Bulk modulus B but it does underestimate the cohesion
energy Ecohby approximately 1 eV when compared to the experimental value for pure
Pd. In order to overcome this difficulty an electron gas term (See Appendix C) was
introduced to provide the difference which, in this work, is delivered through the
energy of the s electrons in the system. MD simulations were also carried out with
this electron gas term and the results are shown in Table 4.3. The lattice parameter
a and the bulk modules B remain almost unchanged. Besides from the fact that
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Figure 4.2: Pd-Pd pair potential I (ppI). The interaction potential has a minimum at r =
rmin=2.7506 Å which is the nearest neighbour (NN) equilibrium distance in Bulk Pd. Each Pd atom
interacts with 12 NN. The contribution per atom to the total potential energy is 6×V (rmin). That is
Ecoh = −0.4792eV ×6=-2.88 eV. rcut is a value between the first and second shell of neighbours. For
atomic distances r ≥ rcut the interaction is set to zero.

Table 4.3: Basic Properties of Pd Bulk described by the ppI potential. The ppI was
fitted to reproduce the equilibrium lattice constant (a) and the bulk modulus (B) which are given in
Table 4.1. Values of the cohesion energy (Ecoh) also with changes in a and B with and without the
contribution of the electron gas term are given. (For the experimental values see Table 4.1).

a B Ecoh

(Å) (eV/Å3) (eV)

without Egas 3.89 1.4 (-0.01) -2.88
with Egas 3.88 1.2 -3.90

this is a first neighbour model the potential ppI is a good choice for describing basic
properties of Pd bulk.

4.1.3 Pair potential II (ppII)

For many metallic systems, a two body core-core interaction generally fails. The
reason for this is that two-body potentials imply Cauchy relation for the elastic con-
stants (C12=C44) which is not true for transition metals. A model that avoids this
problem was proposed by FINNIS AND SINCLAIR [FS84]. The potential energy is
constructed from two terms; a two body core-core repulsive interaction (VP), and a
N-body potential (VN), which describes the energy changes due to variation of atomic
configurations at constant average density φ. VN incorporates the essential character
of metallic cohesion through an embedding function f(φ) similar to the one used in
the embedded atom method. The parameterization of the Pd-Pd potential used here,
has the same form as the one proposed by FINNIS AND SINCLAIR [FS84]. However,
the potential parameters used here, were adjusted to reproduce cohesion energy, lat-
tice parameter, bulk modulus, vacancy formation energy and the stability conditions
at the potential minima. In order to improve the Pd-Pd ppI interaction model we
considered an analytical fit to include the second shell of neighbours. We proceeded
to write the N-body term UN in an empirical way. The contribution of atom i to the
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total energy is:

UTOT(i) = UN +
∑

j 6=i

UP. (4.8)

UN is given by
UN(i) = −AA · f(φi), (4.9)

where the form f(φi) is taken similar to the tight-binding calculation [RGL89] of the
energy within the second moment approximation of the density of states. f(φi) is
analytic and equal the negative square root of φi. The physical meaning of φi is that
it represents the sum of the squares of the bond integrals between atomic sites i and
j. We follow FINNIS AND SINCLAIR [FS84] and use for the function φ the form:

φ = (r − d)2, (4.10)

and

f(φi) = −AA ·
√√√√
∑

j 6=i
j

(r − d)2. (4.11)

The many body term f(φi) is a nonlinear function of the distance r between atoms i
and j. d is a unknown parameter to be determined.

UP is given by
UP = V = (r − rcut)

2 · (a + b ∗ r + c ∗ r2), (4.12)

r is the distance between atoms i and j and rcut, a, b and c are parameters to be fitted.
The bulk modulus (B), the cohesion energy (Ecoh), the vacancy formation energy

(Ef
v ) and the stability conditions at the potential minima allows us to parameterize

Eq. (4.11) and (4.12). For a second neighbour interaction model we obtain (see
Appendix B):

B =
4

3 · a2
·
[
a ·V ′′

1 + a ·V ′′
2 − 2 ·

√
2 ·V ′

1 − 2 ·V ′
2

]

−8 ·AA

3 · a2
·
[
6 · a · f ′′ · (

√
2 ·φ′

1 + φ′
2)

2

+a · (φ′′
1 + φ′′

2) − 2 · (
√

2 ·φ′
1 + φ′

2)
]
, (4.13)

Ef
v = −AA · (12 ·

√
11 ·φ1 + 6 ·φ2 + 6 ·

√
12 ·φ1 + 5 ·φ2

−18 ·AA ·
√

12 ·φ1 + 6 ·φ2) − (6 ·V1 + 3 ·V2), (4.14)

Ecoh = 6 ·V1 + 3 ·V2 − AA ·
√

12 ·φ1 + 6 ·φ2, (4.15)

6 ·V ′
1 + 3 ·V ′

2 − AA · 12 ·φ1 + 6 ·φ2√
12 ·φ1 + 6 ·φ2

= 0. (4.16)

where V1, V2 are the values of Eq. (4.12) evaluated at r the distance of the first nearest
neighbors R1, and the distance of the second nearest neighbors R2, respectively. V ′

1 ,
V ′

2 , V ′′
1 and V ′′

2 are the first derivatives of Eq. (4.12) and the second derivatives of
Eq. (4.12) evaluated at r=R1 and at r=R2 respectively. φ1, φ2, φ′

1, φ′
2, φ′′

1, φ′′
2 are the

values of Eq. (4.10), the first derivative of Eq. (4.10), and the second derivative of
Eq. (4.10) evaluated at r=R1 and at r=R2 respectively.
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Conditions (4.13), (4.14), (4.15) and (4.16) together with the experimental quan-
tities (shown in table 4.1) allows to give the set of parameters given in table 4.4. The
fitting was done by using the program Maple [Map05] (see Appendix B.2). The ppII
interaction potential is plotted in figure 4.3. The interaction potential goes smoothly
to zero after rcut, that is, atoms that would be at a separation distance r=rcut expe-
rience some forces. However, in PdH atoms would experience a maximum displace-
ment to R2=4.025 Å being this distance much smaller than rcut.

Table 4.4: Pd-Pd ppII Interaction Potential parameters. ppII is a second neighbour model.
The parameters were fitted to reproduce the lattice constant (a), the bulk modulus (B), the cohesion
energy (Ecoh), the vacancy formation energy (Ef

v ) and the stability conditions at the minima. The
choice of parameters is not unique, but with this choice the value of Ecoh is comparable with the
experiment

Interaction a b c d rcut AA

(eV/Å2) (eV/Å3) (eV/Å4) (Å) (Å) (eV/Å)

Pd-Pd 5.786536 -3.985932 0.644633 4.4 4.2 0.023760
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Figure 4.3: Pd-Pd pair potential II (ppII). This potential has two minima. The first NN
neighbours are at a separation distance of R1=2.7506 Å. The second NN are at a separation distance
R2=3.89 Å. The contribution to the Ecoh from each shell of neighbours is Ecoh = 6 × V 1 + 3 × V 2 =
3.91 eV. rcut lies between the second and third shell of neighbours.

4.2 H-Pd interaction potential

As already mentioned in Section 3.1, the H atom causes a local displacement of the
neighbouring Pd atoms. This displacement can be represented by effective forces
that produce the actual displacements in the crystal. These forces are restricted to a
small region of space and can be characterized by the force dipole tensor (or double
force tensor) Pij. If the medium is isotropic then Pij=Pδij. The trace of the force
dipole for H in Pd has been experimentally determined (see table 4.5) and can be
used to fit the H-Pd interaction potential. Using Eq. (3.1) the force constant κ can
be calculated: κ=TrP/a ∼ =0.9 eV/Å. The first neighbour model Eq. (4.3) was used
to make an analytical fit of the H-Pd interaction. The force exerted to a Pd atom is
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Table 4.5: Experimental bulk H-Pd Quantities. It was required that the H-Pd Interaction
should be able to reproduce the binding energy of H in Pd (Eb), the relative volume change of the Pd
lattice under H loading (∆V/V ) and the force dipole (P) [Pei78]

Eb ∆V/V Pii

(eV) x = 0.008 (eV)

-2.43 0.19 3.30

Table 4.6: H-Pd Interaction Parameters. It is shown a set of parameters corresponding to each
Pd-Pd interaction. With this choice of parameters the required Pd displacement S=0.04 Å is assured.
The value shown in parenthesis is obtained without the requirement to reproduce Eb.

Interaction Model α γ δ ro rcut

(eV/Å3) (eV/Å) (eV) (Å) (Å)

EAM 0.3560 0.3 -0.3 2.77 3.3
PPI 0.4527 0.3 -0.4395 (-0.094) 2.83 3.3
PPII 0.4938 0.3 -0.48 2.85 3.3

equal to the force constant but with opposite sign, that is:

V ′(r1) = −0.9 eV/Å (4.17)

where r1 is the distance between a H and a Pd atom. Using equations (4.3) and
(4.17), parameter γ can be calculated. Then using conditions (4.4), (4.6) and (4.5)
the other parameters were determined.

The next question that arises is, whether this set of parameters supplies the cor-
rect displacement S of the Pd atoms. From condition (3.14) S must be 0.04 Å in
order to have the correct relative volume change. It was also required that the H-Pd
interaction gives the experimental H binding energy (see table 4.5). Regarding this,
an additional adjustment on the parameters was carried on. A final set of parameters
is given in table 4.6. Also in figure 4.4 the H-Pd interaction potentials are plotted. As
can be seen, a further adjustment of the potential was made for r > 3 Å, in order to
assure that it goes smoothly to zero beyond rcut. In any case, the distance r between
a H atom and its neighboring Pd atoms is never > 2.03 Å.

Testing the H-Pd interaction

In order to test the H-Pd interaction, MD simulations using one hydrogen atom at an
octahedral site in bulk Pd were carried out. The first fitting of the interaction poten-
tial was made to guarantee the theoretical local displacement S of the next nearest
Pd neighbours when a point defect is introduced in the lattice. The displacement S is
related to the relative lattice volume change through Eq. 3.14. A second adjustment
was made to obtain the correct value of the binding energy Eb. The simulations
were performed using a relaxed Pd lattice, placing a hydrogen atom randomly at an
octahedral site. The system was allowed to further relax using an integration step
δt = 0.25 fs for 5000 integration steps and a temperature of 0.05 K. Statistical aver-
ages over the last 1000 integration steps were taken and the results are shown in
Table 4.7.
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Figure 4.4: H-Pd (HPd) Interaction Potential. In this figure it is shown as an example the H-
Pd interaction potential corresponding to the ppI Pd-Pd interaction potential. Curve a corresponds to
the original fitting of Eq. (4.3). A H atom has 6 NN Pd atoms. The contribution to the H-Pd interaction
energy is -0.046 eV × 6=-0.27 eV. Curve a corresponds to the set of parameters obtained when the
system is required to give the correct value of S. The contribution to the H-Pd interaction energy
is -0.3912 eV × 6=-2.35 eV. Curve c is the same as curve b, but multiplied by the Fermi function
(exp((x− 3.3)/0.05)+ 1)−1. This assures that the potential goes smoothly to zero beyond rcut. In this
case δ was adjusted within a MD simulation in order to obtain the correct value of Eb.

Table 4.7: Basic Properties described by the HPd potential. The HPd interaction potential
was fitted to reproduce the relative lattice volume change ∆V/V through the displacement S of the Pd
nearest neighbours generated by the Kanzaki forces. This model also reproduces the binding energy
of H in Pd Eb. Values obtained in the simulation are the following:

S Eb

(Å) (eV)

0.04 -2.43

At room temperature, experimentally the monohydride PdH has fcc structure with
HPd-distance r of 2.013 Å [WB78]. In the solid solution, PdHx at high H concentra-
tions (x > 0.1), the Kanzaki force, produce a r comparable with these results. This
change is accompanied by a significant change of the contribution of the HPd inter-
action energy, as shown in figures 4.6 and 4.7. As described later, in Section 5.2 (See
Fig. 5.6) this effect must be corrected in order to be able to reproduce qualitative
the binding energy curve of bulk Pd with high H concentrations. This is achieved
through a modified HPd interaction potential (HPdmod) which is given by:

V (r) =

{
−α(r − ro)

3 + γ(r − ro) + δ, rHPd < 2 Å

−α′(r − ro)
3 + γ′(r − ro) + δ′, rHPd ≥ 2 Å

(4.18)

The parameters for the HPdmod are given in Table 4.8. A sketch of the HPdmod inter-
action potential is shown in figures 4.5 and 4.6 and its effect on the average distance
a H atom and its neighboring Pd atoms is shown in figure 4.7.
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Figure 4.5: H-Pd modified (HPdmod) Interaction Potential. It is shown the H-Pd and the
H-Pd modified interaction potential.
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Figure 4.6: Effect of the HPd modified Interaction Potential on the energy contribu-
tion per H atom. It is shown the H-Pd interaction as a function of the H concentration in bulk Pd
per pair for the interaction potential described in Section 4.2 and the interaction per pair of a modified
H-Pd interaction (H-Pdmod) as a function of the H concentration in bulk Pd. The contribution of the
H-Pd interaction per H atom increases from -2.49 eV (-0.42 × 6) at low H concentrations to -2.65 eV
(-0.44 × 6) at high H concentrations. The modified H-Pdmod changes slowly with the H concentration.
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Table 4.8: HPd modified Interaction Parameters for the ppI interaction model. With
this choice of parameters the required Pd displacement S=0.04 Å is assured at low H concentrations.
For H concentrations x ≥ 0.1 the interaction energy changes not so drastically.

α α′ γ γ′ δ δ′ ro rcut r′cut

(eV/Å3) (eV/Å3) (eV/Å) (eV/Å) (eV) (eV) (Å) (Å) (Å)

0.4527 -0.1999 0.3 -1.7821 -0.4395 1.54696 2.83 3.3 2.4
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Figure 4.7: Effect of the HPd modified Interaction Potential on the average distance
between H and nearest neighbour Pd atoms. It is shown the average distance between the H
atoms and the NN Pd atoms as a function of the concentration x. It was calculated using the HPd and
the HPd modified interaction potential. With the modified HPd interaction at low H concentrations
the distance rHPd changes fast with the H concentration in contrast at higher concentrations.

4.3 H-H interaction potential

As already mentioned in Section 3.2, the effective H-H interaction in metal has two
contributions: an attractive long range contribution mediated by the lattice which is
a result of the interaction of one point defect with the stress field of another point
defect and a repulsive short range interaction arising from the interaction with the
metallic electrons. While the attractive contribution is already implicit in the H-Pd
interaction, we need explicitly to account for the repulsive contribution. According
to the effective medium theory [CDJ+89] the H-H interaction in Pd is more repulsive
than in the gas phase. Also it is known from experiments [Swi79, RJ85] that in
the metal two H atoms do not come closer than 2 Å. Taking this into account it is
proposed the following first neighbour model (HH*) for the H-H interaction in Pd:

V (r) = C1 · exp(−r/C3) (4.19)

where C1 is a scaling factor which essentially determines the strength of the H-H
interaction per pair of H atoms. C3 delivers the range of the interaction. The pa-
rameters were adjusted to assure that at high H concentrations, the H atoms do not
come closer than 2 Å. The adjustment was done with the help of the MC-MD proce-
dure described in Section 2.2. In figure 4.8 the H-H interaction potential is plotted
that corresponds to the Pd-Pd ppI interaction potential. In table 4.9 a set of parame-
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ters is given. As described later in Section 5.2 this H-H interaction potential does not
reproduce the expected binding energy curve of bulk at high H concentrations. In
order to try overcome this problem this potential was made more repulsive (HH*mod)
and its is shown in figure 4.8. To reproduce qualitative the solubility of H in bulk Pd

Table 4.9: H-H Interaction Parameters for the ppI interaction model. It is shown a set of
parameters corresponding to the repulsive H-H interaction (HH*). This is a first neighbour model.

C1 C3 rcut

(eV) (Å) (Å)

0.045 0.4 3.0
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Figure 4.8: H-H (HH* and HH*mod)) Interaction Potentials. It is shown the H-H in-
teraction potential HH* and an interaction potential that is more repulsive HH*mod. V (r) HH*mod

= 9.82 · exp(−2.3 · r). At an equilibrium H-H distance r ≈ 2.75 Å, V (r) ≈ 0.00004eV (HH*) in con-
trast with V (r) ≈ 0.02 (HH*mod).

and clusters known from experiments it is necessary to take also into account H-H
interaction contributions arising from the next nearest neighbours so that at high H
concentrations the mean H-H contribution per atom is reduced. Such a model can be
written as:

V (r) = 0.75 ·
[

1

(0.398 · r)2
− 1

]
· exp

[
1

0.398 · r − 1.99

]

+0.75 · 0.105 · exp
[
−3.25 · (r − 3.21)2

]
+ 0.05 (4.20)

It is shown in Figure 4.9.
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Figure 4.9: H-H (HH**) Interaction Potential. It is shown a modified H-H interaction poten-
tial which takes into account contributions from the N and NN neighbours. At low H concentrations
the hydrogen atoms would have an interaction of -0.023 eV pro pair. At high H concentrations the
hydrogen atoms would have an interaction of −0.023× 3 + 0.004× 6 eV.
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Chapter 5

Simulations of Hydrogen Loaded Pd

In this chapter the results of the simulations of hydrogen loaded bulk Pd and clus-
ter are presented and discussed. In order to test the simulation models, calculations
for bulk Pd are first done. Then, using the same set of interaction potentials, cal-
culations for Pd clusters are performed. We mainly focused on describing correctly
the equilibrium lattice constant a of pure Pd, the binding energy of hydrogen Ebin
Pd, the cohesion energy Ecoh of Pd and PdH, the relative volume change ∆V/V un-
der hydrogen loading. Afterwards, the chemical potential and solubility isotherms
in dependence on the hydrogen concentration are calculated. Comparison between
experimental and simulation results are made. Also comparison between the results
from bulk and cluster simulations are discussed.

5.1 Relative Volume Change in Bulk Pd under H Load-

ing

The relative lattice volume change (∆V/V ) was calculated with the H-Pd interaction
model of Section 4.2 (See Table 4.6). The relative lattice volume change under hy-
drogen loading is comparable at low H concentrations with the experimental results
presented in Section 3.3. As seen in Figure 5.1, although the displacement S was
chosen to follow the Kanzaki forces, only at low H concentrations the simulation
results are comparable with the experimental results. At higher H concentrations,
the difference is about 2.4%. This deviation can be attributed to interaction effects
between hydrogen atoms, making that the linear response model is no longer valid,
which is assumed in the Green’s function approach.

The cohesion energy of a metal consists of a volume energy, which is structure
dependent, and a pair interaction energy. In our case, the volume energy is taken
as the contribution Eeg of an homogeneous electron gas provided through the s and
p electrons in the system. As described in Appendix C, the relative number of s
electrons was taken to be nPd = 0.4 and nH = 1 for Pd and H respectively. According
to Figure 5.1, the electron gas contribution has nearly no effect on the H induced
expansion in the lattice.
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Figure 5.1: Relative volume change ∆V/V of PdH as a function of hydrogen con-
centration. It is shown the lattice expansion under hydrogen loading due to different contributions.
Only at low H concentrations the results are comparable with the experimental results [FGG86]. The
electron gas term taking into account the s electron contributions provided by the H and Pd atoms,
has nearly no effect on the lattice expansion.

5.2 Binding Energy Calculations

As described in Section 1, experimentally there is a shift of the lower solubility limit
to higher H concentrations when comparing the solubility isotherms of bulk Pd and
clusters. This shift is ascribed to an increase of absorption sites in clusters compared
to bulk. The absorption sites are interpreted as surface sites. It is known that in
a small cluster there are more surface-like atoms than bulk-like atoms. In order to
test this assumption, calculations of the binding energy Eb of 1 H atom in Pd as
a function of surface and subsurface sites were made. It was calculated following
Eq. 3.33. A fcc system with 792 Pd atoms was used. In order to simulate surface
effects, periodic boundary conditions for the Z axis were removed, yielding a Pd
(100) surface. The system was allowed to relax (200 ps) and then one H atom was
placed at an octahedral site. The system was allowed to equilibrate (80 ps). In order
to calculate Eb at this site, statistical averages over the last 1000 integration steps
(2.6 ps), were taken.

Calculations were carried out with the potential models ppI, ppII, and EAM de-
scribed in Chapter 4, together with their corresponding H-Pd interaction potentials.
Different sites were tested corresponding to surface (5s), subsurface (6s, 6ss, 6sss)
and bulk (6i) sites (See Fig. 5.2). The indexes s, ss, sss and i denotes surface, sub-
surface, subsubsurface and inner sites, respectively (when going from the surface to
the inner sites). The number 5 or 6, denotes the number of Pd nearest neighbours
a H atom has. The results are presented in Table 5.1. For comparison, the experi-
mental results are also displayed. The results corresponding to the 3 different Pd-Pd
interaction potentials follow the same tendency. In each case, we observed surface,
subsurface and bulk like places, which are distinguished by different Eb values. As
observed experimentally by OKUYAMA ET AL [OST+98], the H binding energy, Eb,
at subsurface sites is larger than in bulk. OKUYAMA additionally found a dissociative
chemisorption state on the surface, which corresponds to a four-fold hollow site com-
posed of the outermost Pd atoms. In the present work this surface site is labelled as
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Table 5.1: Binding Energy Eb calculations of H in Pd at a Pd (100) Surface. Eb was
estimated by using the different interaction potentials for Pd with their corresponding H-Pd inter-
action potentials described in Chapter 4. The simulation results follow the same tendency than the
experimental results from OKUYAMA. There are surface, subsurface and bulk-like sites. The numbers
5 and 6 means that the hydrogen atom at this sites has 5 or 6 nearest neighbours. The indexes s, ss,
sss and i corresponds to surface, subsurface, subsubsurface and inner (See Fig. 5.2).

NN-Site Eb(eV)
Exp EAM PPI PPII

5-s -2.28 -2.137 -2.135 -2.278
6-s -2.38 -2.361 -2.418 -2.413
6-ss -2.393 -2.412 -2.505
6-sss -2.389 -2.411 -2.399
6-sss -2.385 -2.411 -2.399
6-i -2.33 -2.391 -2.411 -2.399
∆6s−6i -0.05 0.03 -0.007 -0.014

5s. The H atom sits at a four-fold hollow site and has 5 Pd nearest neighbors (4 Pd
atoms at the same layer and 1 Pd atom from the layer below). The value of Eb for
H at this site agrees qualitative with the results form OKUYAMA. It is smaller than the
subsurface and bulk Eb values. The Eb values calculated in our work correspond to
single atom adsorption experiments and those values from OKUYAMA to more than
1 L coverage. With increasing H concentration, the binding energy Eb decreases,
explaining the difference in the values of Eb between experiment and the present
calculations. However, the tendency between surface, subsurface and bulk values is
in agreement with the experiments. The value of Eb for H on a Pd (100) surface was
calculated in previous studies by WILKE ET AL [WHL94] and by BASKES [MDB84].
WILKE ET AL made ab initio calculations and found a surface and a subsurface site at
a coverage 1. In contradiction to OKUYAMA, they found that the subsurface site has a
larger energy than the surface site and also that there are small differences between
a subsurface site and bulk sites. BASKES made calculations with the embedded atom
potential (EAM) and found surface states on the Pd (100) and Pd (111) surface both
with the same Eb value (-2.91 eV). They found also top and bridge sites, which were
not found in the present work.

Although our results for the EAM, ppI and ppII models display the same tendency
in the energy of surface, subsurface and bulk Eb values, the relative difference be-
tween sites is different. This is due to relaxation effects of the different Pd atomic
layers provided by the interaction models.

For pure Pd surfaces, the top atomic layer and the inner atomic layers relax dif-
ferently [WFG+99]. It is known from experiments at the (100) Pd surface [QLT+90]
that there is an outward relaxation (3%) for the last Pd atomic layer while the second
layer exhibit an inward relaxation (-1%). At the (111) Pd surface there is an inward
relaxation for the first two atomic layers.

Although simple pair potentials do not predict correctly surface relaxations, with
the ppI and ppII models the top layer undergoes an outward expansion opposed
to the predictions of our EAM calculations and in agreement with the experimental
results (See table 5.2). As can also be observed for the ppI and ppII models, there
is a slight difference in the distance between the first (d12) and second (d23) layer.
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Figure 5.2: Testing sites at a Pd (100) surface. Periodic boundary conditions along the z
direction were removed in order to yield a Pd (100) surface.The atoms in red correspond to H atoms
sitting at different octahedral sites, which are labelled as s: surface, ss: subsurface, sss: subsubsurface
and i: inner sites. 6 or 5 denotes the number of Pd nearest neighbours a H atom has.

Table 5.2: Pd (100) Surface Relaxation. It is shown the difference in % between the first (d12)
and second d23 Pd layer as calculated with the 3 different interaction models for Pd: ppI, ppII and
EAM. The difference was taken comparing the values in the relaxed surface and the values for relaxed
bulk.

Pd (100) surface
ppI ppII EAM Exp

d12 (Å) 0.31 1.1 -3.1 3.0

d23 (Å) 0.57 0.8 0.34 -1.0

Therefore, for these two models the difference in Eb values is mostly due to the
coordination number of the H atoms at surface and subsurface sites. The three Pd-
Pd interaction models do not describe properly the surface relaxation. However,
when a H atom is introduced it displaces the nearest Pd atoms by the same amount
independent of the original distance between neighboring Pd atoms. This is a direct
consequence of the way the H-Pd interaction was constructed. Therefore the Eb

values follow the experimental observed tendency.

The interaction potentials are also used in calculations for clusters. Calculations
were performed on a 923-Pd cuboctahedral cluster (See Figure 5.4). In order to
simulate free surfaces, boundary conditions corresponding to the X- Y- and Z- axes
are removed.

As seen in Section 4.1.2, the model ppI can be used to describe basic Pd proper-
ties, like the lattice constant a and the bulk modulus B. If the model is completed
by an electron gas term, the cohesion energy Ecoh can also be described. It is es-
tablished [Sul03] from experiments that in a cluster there is a change in the lattice
constant in comparison to bulk. Also, between different atomic layers, the lattice
constant can decrease when going from inner to outer layers. The lattice constant in
clusters is also a function of the cluster size as determined experimentally [SA01b]
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Table 5.3: Basic Properties of Pd Cluster described by the ppI potential. It is shown the
average lattice constant (aavrg), the bulk modulus (B) and values of the cohesion energy (Ecoh) with
and without the contribution of the electron gas term. a varies inside the cluster (See Fig. 5.3)

a per Layer aavrg B Ecoh

(Å) (Å) (eV/Å3) (eV)

3.8938
3.8903
3.8895

without Egas 3.89 1.2 -2.48
3.8952
3.8889
3.8889

with Egas 3.89 0.9 -3.68

Figure 5.3: Lattice constant variation in the 923-Pd cuboctahedral cluster. Calculated
using the electron gas term. The lattice constant is not uniform inside the cluster. There are small
variations.

and also proved by computer simulations [SA96]. Table 5.3 shows the predictions
for a, B and Ecoh from ppI. Obviously, there is a difference in the lattice constant
inside the cluster when going from the inner to the outer layers. When including
the electron gas term in the calculations, the lattice constant decreases as observed
experimentally. The electron gas term provides a pressure contribution which yields
a positive (tensile) stress at the surfaces, favouring smaller lattice constants. Also in
comparison with bulk, the cohesion energy is smaller. Each Pd atom at the surface
has a contribution to the potential energy given by 5 nearest neighbour Pd atoms,
making this contribution smaller than the contribution of the Pd atoms in the inner.
As a consequence the total potential energy per atom is smaller.

In small clusters, there is a larger number of surface atoms than of volume atoms.
For cuboctahedral clusters, the following equation relates the number of atoms ni to
the number i of the shell:

ni = 10 ∗ i2 + 2. (5.1)
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Figure 5.4: Testing sites in the Pd cluster. It is shown a Pd surface and the different sites that
can occur. The atoms in red correspond to H atoms sitting at octahedral sites, which are labelled as
s: surface, ss: subsurface, sss: subsubsurface and i: inner sites. 3, 4, 5 or 6 denotes the number of
nearest neighbours a H atom has.

The total number of atoms, N , belonging to a cluster with i shells is:

N = 1 +

i∑

j=1

(10 ∗ j2 + 2). (5.2)

A cuboctahedral cluster with 923 atoms has i = 6 shells. Pd surface atoms belong
to the last shell. Therefore, in this case the number of surface atoms is Ns=362
[Sac98]. It is of interest to calculate the dependence of the binding energy Eb for
the various sites in a cluster. An already relaxed pure Pd cluster was used and Eb

was calculated (with Eq. 3.33) by setting 1 H atom into an octahedral site. Differ-
ent octahedral sites were tested along the 〈111〉 and 〈100〉 directions. The results
are shown in Table 5.4. It is found that surface sites, subsurface sites and bulk-like
sites have different Eb values. Also edge sites exists, but because of their low Eb

values, they do not contribute to the solubility of H in the Pd cluster. The simulation
results for the cluster follow the same tendency as the results at the surface. A direc-
tional dependence was not found, instead the Eb value turned out to depend on the
number of nearest neighbours, indicating that the relaxations at the (100) and (111)
surfaces are similar. As seen in Table 5.4, our EAM calculations done in this work do
not predict energetic preference of 5s or 6ss sites in the cluster in contradiction with
the experimental results of PUNDT, SACHS AND SULEIMAN [PSW+99, SA01a, Sul03].
PII predicts preference of the 6ss site but not of the 5s, while the model ppI pre-
dict energetic preference of both surface states. Therefore it was decided to use the
model ppI for further chemical potential calculations. For the 923 Pd cuboctahedral
cluster, we found 994 sites for H occupation. All site energies (Eb at that site) were
calculated and the values are shown in Figure 5.5.

As function of the H concentration, the binding energy Eb was calculated using
the model ppI for the Pd-Pd interaction (without electron gas term) and using the
two different H-H interaction models (HH*, HH**) described in Section 4.3. In or-
der to compare Eb with the experimental heat of solution values, it was calculated
following Eq. 3.34 and Eq. 3.36. The results are shown in Figure 5.6 (more details
about the H-H interaction potentials will be discussed later). As can be seen, if the
HH* nearest neighbour is used, the absolute value of Eb increases drastically (at x >
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(b) Left: Innermost layer at z=0. Middle: Layer I at z=a/2. Middle: Layer
II at z=a.
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(c) Leftmost: Layer III at z=3a/2. Rightmost: Layer VI at z=3a.

Figure 5.5: Site energies in the 923-Pd cuboctahedral cluster. It is shown how Eb is
distributed in the cluster. Different cross sections corresponding to layers along the positive z direction
are also shown The negative z direction is similar.
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Table 5.4: Binding Energy Eb in a 923-Pd Cuboctahedral Cluster. A hydrogen atom has
different values of Eb depending on surface or bulk-like sites. The numbers 3, 4, 5 or 6 means that
the hydrogen atom at this sites has 3, 4, 5 or 6 NN. The indexes e, s, ss, sss and i corresponds to edge,
surface, subsurface, subsubsurface or inner sites (See Fig. 5.4).

NN-Site Eb(eV)
EAM PPI PPII

3-s -1.678 -1.601 -1.710
4-s -2.16 -2.1 -2.296
5-s -2.23 -2.447 -2.34
6-ss -2.432 -2.439 -2.43
6-sss -2.468 -2.432 -2.411
6-i -2.473 -2.430 -2.416
∆5s−6i 0.243 -0.016 0.076
∆6ss−6i 0.041 -0.009 -0.014
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Figure 5.6: Binding energy Eb for H in Bulk Pd as function of hydrogen concentra-
tion. The models HH* with HPd (which takes into account only the nearest neighbours) and HH**
with HPdmod (which takes into account the nearest and next nearest neighbours) were used and are
described in Section 4.3. Exp is the experimental data taken from Fig. 3.5.

0.5) with increasing H concentration in contradiction with the experimental results.
If the HH** interaction model with nearest and next nearest neighbours is used one
finds the expected behavior, that is, for all H concentrations there is a mild increase
of the absolute value of Eb with increasing x. This is due, to the HPd interaction used
in this case. With HH** the HPd interaction (HPdmod), was fitted so that the change
in total potential energy is milder than when using the HPd. The interaction between
the H atoms is for all x concentrations attractive. Therefore, the repulsive effect of
the H atoms will not cause a decrease of the absolute value of Eb. Experimentally the
absorption heat turns from exothermic to endothermic at x ≈ 0.5 (See Figure 3.5).
This is not reproduced by the present simulation. One may take this as an indica-
tion that either band structure effects play an essential role, which are not included
here, or that there are rather strong repulsive effects between the H atoms at higher
concentrations.
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Figure 5.7: H-H elastic interaction in bulk at low H concentrations. Left: Calculations
made using ppI without the direct H-H interaction, that is, the lattice mediated elastic part is esti-
mated. At low x, the chain configuration along a 〈100〉 direction is energetically more favourable
than the closed shell configuration along the 〈110〉 direction. Right: Using ppI with the direct H-H
interaction, that means the effective H-H is estimated.

5.3 H-H Effective Interaction in Pd

As already mentioned in Section 4.3, the effective H-H interaction is composed of two
contributions: the long-range lattice mediated attractive interaction and the short
range repulsive interaction from local electronic effects. Following Section 3.3.1, the
effective H-H interaction can be estimated. Using the ppI and neglecting any direct H-
H interaction, the magnitude and behavior of the elastic lattice mediated interaction
energy was calculated, as function of the H concentration. Results are shown in
Figure 5.7. In the cubic Pd structure, the elastic H-H interaction is different along the
〈110〉 and 〈100〉 directions (see Section 3.2). Although ppI is a first neighbour model,
the direction dependency arises from the fact that the transversal springs are zero,
therefore Ca = −f/a (see Section 3.1). The H-H effective interaction χ was estimated
following Eq. 3.39. As seen in Figure 5.7, a second hydrogen atom in the structure
prefers a next nearest neighbour (NN) site rather than a nearest neighbour (N) site.
Also, at low H concentrations, chain like H configurations in 〈100〉 directions are
energetically more favourable than closed shell like configurations.

Also, as can be deduced by comparing the data in Figure 5.7 at low H concentra-
tions, the direct H-H interaction is irrelevant. SALOMONS [Sal90] performed molecu-
lar dynamics simulations of the Bulk PdH system. Using a first neighbour H-H inter-
action model he obtained that the repulsion between two H-H atoms is VH−H=0.005
eV at a H-H separation rHH = 2.8284 Å. In our work VH−H=0.00004 eV at a H-H
separation rHH = 2.75 Å when using HH*, or VH−H=(0.004 · rHHN

- 0.0227 · rHHNN
)

when using HH**.
The H-H elastic lattice mediated interaction is calculated in the the cluster at low

H concentrations along the 〈100〉 (a chain of H atoms starting from a central site)
and 〈110〉 directions (considered is a shell around a central atom). The results are
shown in Fig 5.8. As in bulk, due to the anisotropy present in the lattice, chain like
configurations are energetically more favourable than the closed shell like configu-
rations. However, the H-H elastic interaction is weaker in clusters (See Table 5.5).
It is found that the direct HH* interaction (first neighbour model, See Section 4.3)
influences mainly H atoms sitting at nearest neighbour positions, while its influence
is negligible in cluster. A direct HH** interaction (second neighbour model, See Sec-

49



CHAPTER 5. SIMULATIONS OF HYDROGEN LOADED PD

Table 5.5: H-H interaction in Pd clusters. It is shown the H-H interaction per pair along
the 〈100〉 and 〈110〉 directions (as origin the center of the cluster was taken). The elastic interaction
was calculated through Eq. 3.39. The effective interaction is also calculated through Eq. 3.39 but
additionally with the direct H-H (HH* or HH**) interaction potential. HH* takes into account a first
neighbour interaction and HH** takes into account a first and second neighbour interaction.

bulk cluster
〈100〉 〈110〉 〈100〉 〈110〉

HHelastic (eV) -0.012 0.018 -0.0107 0.0105
HH*effective (eV) -0.010 0.011 -0.0107 0.0105
HH**effective (eV) -0.011 0.011 -0.0114 0.0103
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Figure 5.8: H-H elastic interaction in cluster at low H concentrations. The chain con-
figuration is energetically more favourable than the shell configuration. However, in the cluster it is
weaker than in bulk Pd.

tion 4.3) has a small influence in the cluster, while it is not noticeable in bulk, due to
the strong elastic interaction.

5.4 Chemical Potential Calculations of H in Pd

The chemical potential µH in bulk Pd and in cluster was calculated following the
method described in Section 2.2. Calculations were carried out at T=300K using at
first the ppI interaction potential for Pd-Pd and the HH* model for the H-H interac-
tion. Also, calculations were done for ppI with the HH*mod interaction model. The
results are shown in Section 5.4.1. Later on, these curves are discussed and it is
shown that it is necessary to introduce a HPdmod and a HH** interaction models in
order to obtain results that are comparable with the experiments.

5.4.1 Testing of the interaction potentials

Figure 5.9 shows the results for 〈ǫ(x)〉 (Eq. 2.26) and µH (Eq. 2.28) from bulk and
in cluster using the interaction models ppI-HH*-HPd. For both bulk and cluster the
energy gain 〈ǫ(x)〉 decreases with increasing H concentration.
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Eq. 2.26.
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(b) Chemical potential and Maxwell construction for
bulk. The areas of the shaded regions above and below
f(x) are approximately equal. f(x) = −2.536 eV, indi-
cates that for the applied ppI-HH*-HPd model the upper
limit of the α phase in the applied model lies around
x=0.003.

Figure 5.9: Chemical Potential of H in Pd bulk and cluster - I. Using the HH* interaction
model for the H atoms, only the α phase appears at low H concentrations. For the cluster, the limit is
displaced to higher H concentrations in comparison to bulk.
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Figure 5.10: HH direct interaction (using HH*mod) as function of hydrogen concen-
tration. It is shown the direct H-H interaction (total and per pair). At low H concentrations the
interaction is zero (as expected) and increases as the H concentration increases, in order to deliver a
more repulsive interaction at higher concentrations.

As can be seen, the shape of the isotherms in bulk and in cluster indicates the
existence of an α phase at low H concentrations. According to the experimental ob-
servations, for clusters the α phase is displaced to higher H concentrations compared
to bulk.

The instability of the system against the formation of a two-phases structure is
modelled in Figure 5.9 by means of the Maxwell construction corresponding to bulk
Pd. With help of this construction, in the ppI-model with HH* interaction, the upper
limit of the α phase is found at approximately x = 0.003, in contradiction to the ex-
perimental results, where one has x = 0.015 (see Figure 5.20). Further modifications
were therefore performed for the H-H and H-Pd interaction potentials in order to ob-
tain the expected behavior for µH, that is, at least a reasonable value for the α phase
solubility limit. In what follows, these modifications are described.

About the H-H interaction model

The chemical potential shown in Figure 5.9 is calculated with the HH* interaction
model described in Section 4.3. For testing effects of the H-H interaction, we made
this interaction potential more repulsive (HH*mod) (See Figure 4.8). In HH* the
interaction between two H atoms is modelled by V (r)= 9.82 ∗ exp(−2.3 ∗ r). The
contribution Ehhtotal to the total potential energy of the system is given by summing
V (r) over all H pairs in the system. In Figure 5.10, this contribution is shown and
also the contribution per pair, Ehh/pair.

Figure 5.11 shows the chemical potential curve for H in bulk Pd, when using the
models ppI-HPd-HH*mod. As can be seen, at higher H concentrations the chemical
potential still decreases. According to the Maxwell construction, the upper limit of
the α phase lies far beyond x=0.015. A two phase region can be observed with α′

above x ≈ 0.98. Although the H-H interaction HH*mod is more repulsive, than in the
HH* model, the chemical potential µH still shows the beginning of the α′ at x > 0.6.

Modifying this first neighbour H-H interaction model to account for a more repul-
sive interaction still delivers a similar behavior for the chemical potential shown in
Figure 5.9.
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Figure 5.11: Chemical potential of H in bulk Pd - II. Calculations made using an HH*mod

interaction potential (See Section 4.3). With help of the Maxwell construction, x ≈ 0.25. f(x) = −2.56
eV.
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Figure 5.12: HH direct interaction (using HH**) as function of hydrogen concentra-
tion. Calculation made using an HH** interaction potential (See Section 4.3). It is shown the direct
H-H interaction per pair obtained using this interaction potential. As expected for NH=2 or NH=3
the H atoms prefer to be at NN neighbour positions with ≈ -0.02 eV, at higher H concentrations they
receive contributions from the N and NN atoms.
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As already shown in Figure 5.7, the lattice mediated H-H interaction receive con-
tributions from the first and second neighbours. At diluted H concentrations, the
NN neighbour positions are preferred because they are energetically favourable (the
interaction is attractive) compared to the N neighbour positions (repulsive interac-
tion). At higher H concentrations, and without the H-H direct interaction potential,
the H-H elastic interaction would have contributions arising from −a×NN/2 + b×N/2

(with NN the number of next nearest neighbours and N the number of nearest neigh-
bours). Because of the elastic contributions arising from nearest and next nearest
neighbours, a direct H-H interaction potential is chosen so that −a×3+b×6 delivers
an attractive interaction. As seen in Figure 5.12, at low H concentrations still the
NN configurations are preferred and at high H concentrations −a × 3 + b × 6 deliv-
ers a mean attractive interaction. Therefore, a second neighbour interaction model
(HH**) is appropriate. This model is described in Section 4.3. Figure 5.12 shows the
contribution per pair Ehh/pair of the HH** interaction potential. If NH=2 or NH=3,
the H atoms prefer to sit either at next nearest (NN) neighbour positions (due to
the elastic interaction) or they prefer to be far apart. Therefore, their contribution is
≈ −0.02 eV. For x > 0.1, the H atoms have contributions from N and NN positions,
thus this contribution is ≈ -0.01 eV per pair.

About the H-Pd interaction model

The chemical potential shown in Figure 5.9 is calculated using the H-Pd interaction
model (HPd) described in Section 4.2. According to its construction, this potential
reproduces well the Kanzaki forces at low H concentrations. However, at high H
concentrations, the resulting lattice expansion is accompanied by a significant change
of the H-Pd interaction energy. That is, the contribution of the H-Pd interaction
per H atom increases from -2.49 eV at low H concentrations to -2.65 eV at high
H concentrations (See Figure 4.6). The distance between the H and the nearest
neighbour Pd atoms changes from 1.98 Å to 2.02 Å (See Figure 4.7). This significant
contribution is the cause of the change in binding energy of 0.18 eV from low to high
H concentrations (See Figure 5.6).

A slightly modified HPd (HPdmod) was developed to overcome this problem (See
Figure 4.5). The modified HPd potential still reproduces the change in next neigh-
bour distance S = 0.04 at low H concentrations and at high H concentrations, the
distances rHPd between H and the N neighboring Pd atoms remains nearly constant
with the increasing H concentration allowing that the change in the H-Pd interaction
remains very weak. Figure 5.13 shows the effect of this modification on the binding
energy Eb in bulk. At lower x concentrations (x < 0.1), the Eb values calculated
with HPdmod, tend to increase with increasing x concentration, more than the Eb

calculated with the HPd.

With increasing H concentration, the contribution Ehh/pair (Figure 5.14), allows
to overcome the effect arising from the H-Pd interaction per H atom to the total
potential energy. As can be deduced from Figure 5.15, with the use of a H-H interac-
tion potential (HH**), which includes contributions from the N and NN neighbours
and with the modified H-Pd interaction (HPdmod), the existence of the transition re-
gion (miscibility gap) is also obtained. In comparison to Figures 5.9 and 5.11 the
beginning of the α′ phase is displaced to lower x concentrations. Also at concentra-
tions x 6 0.1 the same µH is obtained using the two different potential combinations
(HH**-HPd,HH**-HPdmod). HPdmod is essentially the same HPd for x 6 0.1.

54



CHAPTER 5. SIMULATIONS OF HYDROGEN LOADED PD

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

 0  0.2  0.4  0.6  0.8  1

E
b 

[e
V

]

x [NH/NPd]

HH**-HPdmod

Exp

HH**-HPd

Figure 5.13: Effect of the modified Interaction Potential HPdmod on Eb in bulk. It
is shown the Eb dependence on x using a second neighbour model for the H-H interaction and
the modified H-Pd interaction model. HPd: Original HPd interaction, HPdmod: similar to HPd, but
modified at higher x concentrations (x > 0.1), HH**: second neighbour interaction model.
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Figure 5.14: Effect of the HPd modified Interaction Potential on the Direct H-H In-
teraction in bulk. It is shown the direct H-H interaction per pair obtained using the modified H-Pd
potential and a second neighbour model for the H-H interaction. As expected for 2 or 3 H atoms they
prefer to be at NN neighbour positions at higher H concentrations they receive contributions from the
NN and NNN.
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Figure 5.15: Effect of the HPd modified Interaction Potential on µH in bulk. It is shown
the µH dependence on x using a second neighbour model for the H-H interaction and a modified
H-Pd interaction model. HPd: Original HPd interaction, HPdmod: same HPd, but modified at higher
x concentrations (x > 0.1), HH**: second neighbour interaction model.

As pointed out by BRODOWSKY [WB78], µH in the metal is composed of a protonic
contribution and an electronic contribution. The protonic contribution refers to the
H-H lattice mediated interaction and the screened electrostatic repulsive interaction
between the H atoms at high x concentrations. In addition, there is an electronic
contribution (µe) from the ascent of the Fermi energy by the electrons of the dissolved
hydrogen. The x-dependence of µe [WB78] provides a strong rise of µH in the α′

phase due to the rise of the Fermi energy of the 4d band. At x > 0.5, there is a
sharp rise coming from the filling of the 5s band density of states in Pd. This rise
is not observed in our work because only the protonic contribution was taken into
account in our present study. Besides the absence of the sharp rise for x > 0.8, the
curve corresponding to the HH**-HPdmod combination qualitatively reproduce the
behaviour of µH in bulk Pd at 300 K.

For the cuboctahedral cluster the chemical potential µH was calculated using the
HPdmod-HH**-ppI potential models. The curve is shown in Figure 5.16 together with
the bulk µH curve. It indicates that the lower solubility limit is shifted to higher con-
centrations in comparison to bulk, in agreement with the experimental observations.
At higher x concentrations the sharp rise, ascribed in some studies [WB78, FGG86]
to the electronic contribution, is missing.

From the Eb calculations using a single H atom in the Pd cluster (with Eq. 3.33),
different surface- and bulk-like sites were identified by comparing the Eb values
obtained in the cluster with the Eb values obtained for the Pd surface (See Tables 5.1
and 5.4). Surface-like sites have Eb values between -2.5 eV and -2.44 eV. Bulk-like
sites have Eb values between -2.430 eV and -2.435 eV. Edge sites have Eb values
of approximately -1.6 eV. For a 923 Pd cuboctahedral cluster the total number of
surface- and bulk-like sites is 504 and 490 respectively. The average ∆̄Ei, over all
configurations X̄γ

NH+1, of the energy difference (ENH+1-ENH
) is defined in this work as

the site energy. For NH=1, ∆̄Ei is the same Eb. For NH > 1, ∆̄Ei changes with x, as
observed in Fig. 5.17. In our work it was found at all x concentrations, the number
of surface-like available sites that can be occupied in the X̄γ

NH+1 configurations, is
slightly larger than the number of bulk-like sites. The former sites have an average
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Figure 5.16: Chemical Potential in bulk and cluster - III. Calculations were done using the
ppI-HH**-HPdmod potentials. It is shown 〈ǫ(x)〉 and µH as a function of x in bulk and cluster. At low H
concentrations the curves follow qualitatively the experimental results. At high H concentrations the
strong rise of the chemical potential is missing. The uppermost x value in the left figure is x=0.99.
The logarithmic increase of µH apparently takes place at higher x values.
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cuboctahedral cluster as a function of the H concentration. Left: It is shown the number
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Figure 5.18: Binding Energy of H in Pd bulk and cluster using the HPd modified
interaction potential. It is shown Eb as a function of x in Bulk and Cluster.

energy ∆̄Esurface ≈ -2.45 eV, whereas bulk-like sites have an average energy ∆̄Ebulk

≈ -2.43 eV at x < 0.3 concentrations. There are also surface states 4s, belonging to
the (111) surface, with ∆̄Esurface ≈ -2.1 eV. These states were observed for x > 0.25.
Accordingly, the chemical potential slope in Fig. 5.16(b) (0.1 < x > 0.25) arises from
the surface-like sites (surface, subsurface and subsubsurface) contributions.

At higher x, a nearly identical number of surface- and bulk-like places can be oc-
cupied. At these x concentrations, the surface sites have an average energy ∆̄Esurface

≈ -2.5 eV, whereas bulk-like sites have an average energy ∆̄Ebulk ≈ -2.6 eV. This
slightly reduces µH to lower values. As observed in Fig. 5.17, with increasing num-
ber of H atoms, all site energies (besides the corresponding to edge sites) tend to
follow the behavior of Eb seen in Fig. 5.18. That is, Eb decreases with increasing x
concentration. This contributes also to the behavior of the µH curve for x > 0.3.

The binding energy Eb, which is the mean desorption energy as a function of
the hydrogen concentration x, decreases with increasing x concentration, for both
systems bulk and cluster. Particularly, in cluster, there is observed a constant value
of the binding energy up to x ≈ 0.1. This is due to occupation of one type of sites
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Figure 5.19: Vibrational Contribution of the Chemical Potential µH in bulk. Using
the ppI-HH**-HPdmod, µvib is calculated for two different dependencies of ~ω(x). The vibrational
contribution of µH as a function of the hydrogen concentration x displaces the µH to lower energy
values.

(the surface-like sites). For higher concentrations the Eb behaviour is similar as in
bulk. Like in bulk Pd, there was not observed in the cluster the change in the heat of
formation from exothermic to endothermic [Pei78]. This may be due to the neglect
of the band structure electronic effects.

About the vibrational contribution

The vibrational energy (~ω) of a hydrogen atom is a function of the hydrogen con-
centration as established experimentally [NT83, SN67, BG60]. In the literature there
were found two different dependencies ~ω(x) as function of concentration x. These
can be written as:

~ω(x)I = (3.5x + 60) meV, (5.3)

~ω(x)II = (−16.3934x + 66.3279) meV, (5.4)

where Eq. 5.3 was deduced for vibrations of H in Pd surface sites, and Eq. 5.4 inter-
polates the data in bulk Pd. The vibrational contribution of the chemical potential
can be written as

µvib = 3kB ln(1 − exp(−~ω/kBT)). (5.5)

Using equations 5.3, 5.4 and 5.5, µvib calculated for the bulk system as a function
of the H concentration is shown in Fig. 5.19. Although ~ω(x)I and ~ω(x)II have an
opposite x dependence, µH is displaced to lower energy values for both expressions.

5.4.2 Solubility isotherms and determination of the solubility limit

As demonstrated by Figure 5.9 at low x concentrations it is possible to identify the
existence of an α phase. Sievert’s law establishes a proportionality at low x concen-
trations between the square root of the H2 pressure and the x concentration in the
metal, given by Eq. 3.27. In bulk Pd at 300 K, Sievert’s law holds in the entire α
phase regime, up to x ≈ 0.015. In the cluster, Sievert’s law is fulfilled for x ≈ 0.04,
while in the α phase with higher x,

√
PH2

lies below Sievert’s line. It is possible to
determine the limit of Sievert’s law by calculating the x concentration at which the
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proportionality no longer holds. In Figure 5.20, an analytical fit was made to the
curves and Sievert’s law limits, that means deviation from proportionality between√

PH2
and x, were determined for both systems, bulk and cluster.

In Figure 5.21 the solubility isotherms at low H concentrations obtained in this
work, are shown corresponding to bulk and cluster. The H2 calculated gas pressure
was calculated using µH, through Eq. 3.29.
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Sievert’s law limit is x ≈ 0.04 as determined by fitting the data, where f(x)=383*x+0.461.

Figure 5.20: Solubility Isotherm of H in Pd in bulk and cluster at low H concentra-
tions at 300 K - Experiment. It is shown the experimental PH2

curve as function of x at low H
concentrations in bulk and cluster. The curves

√
PH2

are also shown to demonstrate the validity of
Sievert’s law.

As can be appreciated, at low H concentrations, the cluster curve is shifted to
higher H concentrations in comparison to bulk for both HH*-HPd and HH**-HPdmod

models. Our results describe qualitative the behavior of both solubility curves when
compared to the experimental curves seen in Figure 5.20. The pressure ranges are
different from the experimental values. The small difference (≈ 0.1 eV) between the
calculated Eb values and the experimental Eb values results in larger differences in
the H2 pressure.

Figure 5.22 shows the simulation results at 300 K, for to the square root of the
H pressure for bulk and cluster as a function of x. An analytical fit was made to
the curves and it was found that in both systems cluster and bulk, Sievert’s law is
satisfied for both HH*-HPd and HH**-HPdmod models. As can be observed the upper
limit of Sievert’s law for cluster are shifted to higher x concentrations in comparison
to bulk. The H-H interaction affects these limits. When HH* is used, the limits lies
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Figure 5.21: Solubility Isotherm of H in Pd in bulk and cluster at low H concentra-
tions at 300 K. The cluster curve is shifted to higher x concentrations in comparison with bulk.

at x ≈ 0.012 and at x ≈ 0.03 for bulk and cluster respectively, and are in reasonable
agreement with the experimental results (see Figure 5.20). The H-H interaction per
pair is weaker for the HH* model as for the HH** model.

Determining the solubility limit requires the Maxwell construction, since the crossover
between increasing µH and Maxwell plateau means the upper solubility limit in the

α-phase. The Maxwell construction was calculated for the model ppI-HH**-HPdmod

for both bulk and cluster and it is shown in Figure 5.23. As observed, the lower limit
of the two phase region in cluster is shifted to higher x concentrations in comparison
to bulk (xbulk ≈ 0.06 and xcluster ≈ 0.09). The upper limit of the two phase region
is similar for both bulk and cluster. At higher x concentrations there is missing the
electronic contribution, therefore the determination of the limits is not exact. It is not
really possible to determine the solubility limits, however, the presence of an α − α′

two phase region is observed.
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Figure 5.22: Sievert’s law in bulk and cluster at 300 K. The calculated Sievert’s law limit of
the cluster is displaced to higher H concentrations when compared to bulk.
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5.4.3 About the distribution of H atoms in the cluster

With the use of the MC-MD procedure, for a fixed number NH of H atoms, different
possible states (accepted configurations) (X̄α

NH
) were found in the MC-chain (See

Figure 5.24).
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Figure 5.24: State energies for the Cluster with NH=5. The accepted steps are those taken
into account in the MC chain.

At these low x concentrations, the H atoms prefer to be far away from each other.
They can also occupy next nearest (NN) neighboring positions or they occupy near-
est (N) neighboring positions. In Figures 5.25(a), 5.25(b) and 5.25(c), there are
shown, as an example, some configurations corresponding to NH=5. Configurations
I and II correspond to a lower energy state with E=-2301 eV and configuration III
corresponds to a higher energy state with E=-2298.5 eV. This last configuration was
chosen as accepted (although its high energy value) according to the Metropolis al-
gorithm.

In Figure 5.25(c) a nearest neighbour H atom (shell-like) and a next nearest neigh-
bour H atom (chain-like) configurations are shown. It was shown in Section 5.3 that
the chain-like configuration is energetically favourable in comparison with the shell-
like configuration. In the present simulation, however, the shell like configurations
belongs to a lowerer energy state than the chain configurations. The combination
shell like with atoms sitting at surface-like sites, are configurations which have a
lower energy than the chain like with atoms sitting at surface-like sites. As displayed
in Figure 5.26, at higher x concentrations, half of the occupied sites corresponds to
surface-like sites and half of the occupied sites corresponds to bulk-like sites. There
is no preference in occupying surface- or bulk-like sites. For different configurations
(X̄α

NH
), the number of N and NN neighboring atoms per H atom were calculated. Re-

sults are shown in Table 5.6. As can be observed it is found more NN neighbours per
H atom, than N neighbours, as the concentration x increases. That is, there is a cer-
tain preference to allow the formation of chain-like H distributions. As an example,
in Figures 5.27(a)-5.27(d) it is shown the H distribution in the cluster when H=230
atoms (x = 0.25).
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In bulk Pd at this concentration, there is a observed, sharp interfaces between re-
gions of α phase and α′ phase [Pei78] (this corresponds to the two phase region). In
this work, we found for the small cluster, no sharp interfaces but appreciable strong
spatial concentration fluctuations. Experimental results in clusters [Sul03] have not
shown α or α′ regions coexisting at these concentrations. The experimental results
show clusters with a defined α or α′ regions, depending on the hydrogen concen-
tration. The formation of surfaces already costs an amount of energy. Additionally,
formation of interfaces costs energy. The cluster, would not be a energetically stable
system with surfaces and interfaces.

In this work, it was observed in the cluster a curve which increases with increasing
x, until x ≈ 0.25 (see Fig 5.16(b)). However, its form cannot be compared to the
beginning of the slope in the experimental results of SULEIMAN [Sul03]. His results
show that the slope appears when the system is already in the two phase region. In
this work, it was determined that the form of the curve (observed until x ≈ 0.25) is
an indicator of the amount of surface sites involved and arises from the contribution
of the site energies that corresponds to surface-like sites. It does not extend to higher
x concentrations, due to the limited number of absorption sites that corresponds to
surface-like sites (compared to the amount of bulk-like sites), and/or, the behavior of
〈ǫ(x)〉 at higher x (see Fig 5.16(a)). GRIESSEN [Gri83] studied an amorphous metal
hydride system. He assumed that as a consequence of configurational disorder, the
site energy varies from site to site. He calculated µH and obtained a slope in the
region that corresponds to the two phase region. Our explanation for the curve agrees
with the explanation of GRIESSEN which relates the existence of different sites and
the form of the curve. However, GRIESSEN assumes that the H-H interaction would
not contribute in a significantly way. Meaning, that a two phase region could not be
obtained. SULEIMAN finds a two phase region and also a slope. Which means that the
different site existence explanation of GRIESSEN, cannot explain the slope existence.
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(a) Left: The different layers from the Pd cluster where separated along the z direction. Configuration I
with E=-2301 eV. Middle: Layer -III. Right: Layer 0.
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(b) Configuration I. Left: Layer I. Middle: Layer II. Right: Layer V.
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(c) Left: Configuration II Layer 0. This configuration has an E=-2301
eV. Right: Configuration III Layer IV. This configuration has an E=-
2298.5 eV.

Figure 5.25: H distributions in cluster. Possible configurations with NH=5. The posi-
tions of the palladium atoms correspond to ( ) and NH hydrogen atoms to ( ).
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Table 5.6: Chain and shell like H distributions in cluster. It is shown the number of nearest
(N) neighbours and next nearest (NN) neighbours per H atom.

H NN/atom N/atom
〈100〉 〈110〉

10A 0 0
10B 1 1
30 1 1
46 1.33 1

160 1.75 1.24
230 1.98 1.37
497 3.16 1.95
845 4.94 2.69
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(a) Configuration I. Left: Layer 0. Middle: Layer I. Right: Layer II.
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(b) Configuration I. Left: Layer III. Middle: Layer IV. Right: Layer V.
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(c) Configuration I. Left: Layer VI. Middle: Layer -I. Right: Layer -II.
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(d) Configuration I. From Left to Right: Layer -III to Layer -VI.

Figure 5.27: H distributions in cluster. Possible configurations with NH=230. The
positions of the palladium atoms correspond to ( ) and NH hydrogen atoms to ( ).
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Chapter 6

Conclusions

From the preceding results some conclusions can be drawn, which seems valid on
general reasons beyond the particular values from the special models considered
here.

First, there is the verification of Sievert’s law in the low H concentration limit.
Like in the phenomenological ideal solution models, validity of Sievert’s law is based
on the fact that in the chemical potential there is a kBT ln(x/1−x) contribution which
gives the dominant x-dependence of µH in the dilute limit. In the present treatment,
its validity thus is based on the observation that a separation of µH in a kBT ln(x/1−x)

term and 〈ǫ(x)〉 in a strict way is possible, with 〈ǫ(x)〉 weakly dependent on x or
〈ǫ(x)〉 varying proportional to ln x.

In particular, in the dilute concentration regime, 〈ǫ(x)〉 in bulk Pd has a similar
slope like the phenomenological desorption energy, which means that the range of
applicability of Sievert’s law from the present modelling shall be similar to experi-
mental bulk Pd. Experimentally Sievert’s law is limited by the solubility limit of the
α phase, which is, however, determined by the effects of the competing α′ and hence
reflects properties of the concentrated H-system. In the cluster, the here and in the
experiments [Sul03] observed deviation from Sievert’s law with increasing x seems
to be an effect of the x-dependence of 〈ǫ(x)〉, since the kBT ln(x/1−x) contribution
would give a raise of

√
PH2

above Sievert’s line.

Secondly, at intermediate concentrations where the miscibility gap between α and
α′ phase is found, the present simulations do not show a separation of the concentra-
tion profile in the cluster, that means coexistence of α and α′ within one cluster. Nev-
ertheless, there are marked concentration fluctuations visible, e.g. in Figures 5.27(a)-
5.27(d) for the 230 H-atoms cluster. One may speculate that the missing long-range
deformation field around a hypothetical α′ particle and the structural flexibility of
the cluster reduce the probability for forming α′ regions. According to our present
results, the two phase regime in the p-x isotherm reflects a mixture of clusters, each
either in the α or in the α′ configuration, in agreement with recent experimental
studies [Sul03]. There shall be, however, marked fluctuations among the individual
clusters, as each cluster presents a small, finite system, where the thermodynamic
limit means consideration of an infinite set of clusters.

Thirdly, in agreement with the prediction from the lattice-Green’s function for-
malism, our results demonstrates that two hydrogen atoms in next nearest (NN)
neighbour (100) configuration show a rather strong attractive lattice mediated inter-
action, while the nearest (N) neighbour pairs (110) have a repulsive lattice mediated
coupling. This predicts that in the α-phase regime at moderate temperatures (100)
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chain-like H distributions shall be preferred in the structure.
Fourth, from the here used formalism, which is exact up to the neglect of saddle-

point configurations to the equilibrium partition function, the asymmetry in the
Pd-H phase diagram, visible as a shift of the miscibility gap towards the lower H-
concentrations, is fully encoded in the quantity 〈ǫ(x)〉. The asymmetry may be either
caused by strong repulsive interactions at larger x, as considered for the statistical
treatment of H surface layers on Pd by BINDER ET AL [BL81], or it may be due to,
e.g., the electron band structure effects. Although the treatment of the asymmetry
was outside the present study it is quite clear that the present formalism leaves space
for both interpretations.
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Summary

In this work, a new expression for the chemical potential µH of H in Pd is used,
which relies on an extension of Widom’s particle insertion method. Being an exact
expression, this µH contains a term that agrees with the configurational entropy of
the ideal solution model, and a term which describes the energy gain in the system
when adding an extra H atom. This latter term is due to direct hydrogen-hydrogen
interactions, deformations of the lattice by the absorbed hydrogen atoms, the energy
gain from lattice relaxation and the binding energy Eb of H in Pd. The calculation
of µH is carried out in bulk Pd and in a 923 Pd-atoms cuboctahedral cluster within
a hybrid monte carlo - molecular dynamics (MC-MD) procedure. Also Eb is deter-
mined as function of the hydrogen concentration x in bulk and in cluster. In order
to perform the calculations a set of interaction potentials are applied to describe the
Pd-Pd, H-Pd and the H-H interactions. For the Pd-Pd interaction several models were
tested, which include a first, second or third shell of neighbours. The H-Pd interac-
tion is a first neighbour model. For the H-H interaction a next neighbour model and
next nearest neighbour model are used. The chosen Pd-Pd interaction describes the
equilibrium lattice constant of pure Pd. The H-Pd interaction model was constructed
to reproduce the elastic properties of the H atoms in the metal and its relationship
to the relative volume change under H loading, and also the binding energy Eb at
dilute concentrations. The H-H interaction potential describes the appearance of the
two phase region in PdH bulk.

Binding energy Eb calculations are carried out with 1 H atom to test sites at the
surface and in the cluster. Energies are found for different surface-like and bulk-
like sites, in agreement with experimental results. Eb calculation in cluster shows
no directional dependence, but one that follows the geometry of the system. Also
Eb as function of x, at low x concentrations, is in qualitative good agreement with
experimental results. The discrepancy at higher x concentrations is due to the miss-
ing electronic band structure effects or due to very strong H-H repulsive interactions
that were not taken into account. Also at low x concentrations, the relative volume
change ∆V/V reproduces the experimental results. It is found that, with the interac-
tion potential set ppI-HH**-HPdmod, it is possible to describe µH in bulk at 300 K. The
presence of a α-α′ phase transition was established. In cluster, µH at 300 K, was also
calculated. It was possible to identify an α-α′ phase transition. Sievert’s law limit was
estimated in good agreement with the experiment, for both bulk and cluster. In clus-
ter it is shifted to higher x concentrations when compared to bulk in agreement with
the experiments. Using the Maxwell construction, the phase solubility limits were
determined both in cluster and bulk. It was not possible to calculate them properly,
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due to a neglect of the empirical electronic contribution to µH at higher x in bulk
Pd and in the cluster. Experimentally, in a cluster system, µH displays a finite slope
in the α-α′ two phase regime [Sul03]. For amorphous systems, such a behaviour
was related by GRIESSEN [Gri83] to the fluctuating site energies. Although there is
a wide spread of site energies in the present clusters with surface, subsurface, and
bulk sites, the shape of 〈ǫ(x)〉 at higher x, presented e.g. in Fig. 5.16(a)), leaves no
space for a linear increase in µH. Accordingly, the form of the µH curve until x ≈ 0.25
should not be interpreted as the beginning of the experimentally found slope. How-
ever, the present results leave space to relate the slope to fluctuations in the cluster
distribution or couplings between the clusters.
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Appendix A

Output of the simulation of bulk Pd

with H=2. Example

****************** number of total atoms n=nh+npd 866 ******************

Energy of Initial Structure : -2486.7305 eV

Average Values for the last 1000 out of 1000 Dynamics Steps

Simulation Time 260.0000 Picosecond

Tot real Time 4.0154 Second

Ekin 0.02847609 eV (+/- 0.01446185)
Tot Energy -2489.10843856 eV (+/- 0.01885515)
Ehpd -5.00958628 eV (+/- 0.06525077)
Epd -2484.12732836 eV (+/- 0.06282376)
Epot -2489.13691464 eV (+/- 0.01607635)
Eb -2.40641650 eV (+/- 0.01607635)
Ehh 0.00000000 eV (+/- 0.00000000)
box 23.34130217 A (+/- 0.00021270)
Temp 0.25461241 K (+/- 0.12929634)
Press 0.00015991 eV/A3 (+/- 0.00003555)

Average Values for the last 1000 out of 2000 Dynamics Steps

Simulation Time 520.0000 Picosecond

Tot real Time 7.9678 Second

Ekin 0.01113447 eV (+/- 0.00242025)
Tot Energy -2489.14319906 eV (+/- 0.00458235)
Ehpd -5.01073250 eV (+/- 0.01681043)
Epd -2484.14360103 eV (+/- 0.01653460)
Epot -2489.15433353 eV (+/- 0.00279359)
Eb -2.42383539 eV (+/- 0.00279359)
Ehh 0.00000000 eV (+/- 0.00000000)
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box 23.34182476 A (+/- 0.00010108)
Temp 0.09951497 K (+/- 0.02164835)
Press 0.00007565 eV/A3 (+/- 0.00001630)

Average Values for the last 1000 out of 3000 Dynamics Steps

Simulation Time 780.0000 Picosecond

Tot real Time 11.9272 Second

Ekin 0.00684281 eV (+/- 0.00086841)
Tot Energy -2489.15199162 eV (+/- 0.00116887)
Ehpd -5.01086511 eV (+/- 0.00840088)
Epd -2484.14796933 eV (+/- 0.00813914)
Epot -2489.15883443 eV (+/- 0.00069445)
Eb -2.42833629 eV (+/- 0.00069445)
Ehh 0.00000000 eV (+/- 0.00000000)
box 23.34207348 A (+/- 0.00004825)
Temp 0.06115817 K (+/- 0.00775750)
Press 0.00003617 eV/A3 (+/- 0.00000781)

Average Values for the last 1000 out of 4000 Dynamics Steps

Simulation Time 1040.0000 Picosecond

Tot real Time 15.8836 Second

Ekin 0.00583417 eV (+/- 0.00055249)
Tot Energy -2489.15422022 eV (+/- 0.00034658)
Ehpd -5.01080381 eV (+/- 0.00410511)
Epd -2484.14925058 eV (+/- 0.00427867)
Epot -2489.16005439 eV (+/- 0.00057237)
Eb -2.42955625 eV (+/- 0.00057237)
Ehh 0.00000000 eV (+/- 0.00000000)
box 23.34219240 A (+/- 0.00002317)
Temp 0.05216357 K (+/- 0.00493980)
Press 0.00001732 eV/A3 (+/- 0.00000369)

Average Values for the last 1000 out of 5000 Dynamics Steps

Simulation Time 1300.0000 Picosecond

Tot real Time 19.8400 Second

Ekin 0.00539407 eV (+/- 0.00063207)
Tot Energy -2489.15478742 eV (+/- 0.00010629)
Ehpd -5.01135991 eV (+/- 0.00773876)
Epd -2484.14882157 eV (+/- 0.00779479)
Epot -2489.16018148 eV (+/- 0.00065532)
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Eb -2.42968334 eV (+/- 0.00065532)
Ehh 0.00000000 eV (+/- 0.00000000)
box 23.34224943 A (+/- 0.00001109)
Temp 0.04822826 K (+/- 0.00565120)
Press 0.00000836 eV/A3 (+/- 0.00000177)
Step: 1 Accept: 1.000 Current: -2489.1602 Global: -2489.1602
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Appendix B

Fitting of the Interaction Potentials

In the fcc lattice structure, an atom N has different number of neighbours, with which
it interacts, depending on how many shells of atoms are considered in the interaction
model. In Table B.1 it is shown how many neighbours the atom N has per shell and
also the distance (rNS) between N and the other atoms belonging to the same shell
[Wal72]. This knowledge becomes important when fitting the interaction potentials.

Table B.1: Number of Neighbours per shell in the fcc lattice. It is shown the number
of atoms per shell in the fcc lattice, also the distance (rNS) between an atom N and the other atoms
belonging to the shell. As a reference it is given the cutoff distances rcut for Pd used in different
interaction models.

Shell Number of atoms Distance (rNS) rcut

(Å) (Å)

1 12 a
√

2
2

3.65
2 6 a 4.2

3 24 a
√

6
2

5.4
4 12

√
a 6.0

5 24 a
√

10
2

7.4

B.1 Fitting of the Pd-Pd 1st neighbour interaction model.

In Figure B.1 it is shown a sketch on the interaction potential between two metal
atoms as a function of their separation distance r. The cohesion energy Ecoh of the
metal is given through the contribution of the interaction potential at the equilibrium
separation distance rmin multiplied by half the number of nearest neighbours, that is,
Ecoh = 6 ·V (rmin). In the case of Pd, the pair potential contribution must be supple-
mented with an additional contribution delivered through an electron gas term, in
order to reproduce the experimental cohesion energy, therefore:

Ecoh = 6 ·V (rmin) + Eeg/atom (B.1)

To describe the pair potential contribution of the Pd-Pd interaction, a third order
polynomial was chosen:

V (r) = −α(r − ro)
3 + γ(r − ro) + δ (B.2)
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where the parameters α, γ, δ and ro are to be fitted. The pressure P of the system

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6  3.8

V
(r

)[
eV

]

r[A]

rcut

rmin

r1

r0

V(r)

Figure B.1: Sketch of the pair potential between two metal atoms. The cohesion energy
is given by Ecoh = 6 ·V (rmin) + Eeg

can be derived from the potential energy U and the atomic volume Ω:

P = −dU

dΩ
(B.3)

For a fcc structure Ω is given by a3/4. For a 1st neighbour model, U = 6 ·V1, where V1 is

the interaction potential (B.2) evaluated at the nearest neighbour distance R1 =a
√

2
2

.
Therefore,

P = −4 ·
√

2V ′
1 (B.4)

The Bulk Modulus B is determined using the pressure:

B = −Ω
dP

dΩ
(B.5)

Using Eq.(B.4) it is possible to write B as a function of V1:

B =
4V ′′

1

3a
(B.6)

that is, the bulk modulus B is proportional to the curvature of the potential at the
equilibrium separation distance. a is the lattice constant. With Eq. (B.2), (B.6) and
the experimental value of the bulk modulus B, the parameter α can be written as:

α = − aB

8 · (rmin − ro)
(B.7)

Eq. (B.2), has the following properties:

V (r) = 0

{√
γ/3α + ro = r = rcut

−2
√

γ/3α + ro = r = r1

(B.8)

V ′(r) = 0
{
−
√

γ/3α + ro = r = rmin (B.9)

For Pd, rmin=2.7506 Å. Choosing rcut at 3.65 Å and ro at 3.2 Å, parameters γ and δ
are determined.
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B.2 Fitting of the Pd-Pd 2nd neighbour interaction model.

For an interaction potential with a N-body term UN and a pair potential term UP

(=V (r)) of the form:

UTOT(i) = UN +
∑

j 6=i

UP (B.10)

UN is given by
UN(i) = −AA · f(φi) (B.11)

where f(φ) and UP are a function of the separation r between the Pd atoms, using
Eq. (B.3) the pressure can be written as:

P = − 4

a2

[√
2V ′

1 + V ′
2

]
+

8AAf ′

a2

[√
2φ′

1 + φ′
2

]
(B.12)

where it has been taken into account that the potential energy UP and φ have contri-
butions arising from the first and second shell of neighbours, that is:

UP = 6 ·V1 + 3 ·V2 (B.13)

φ = 12 ·φ1 + 6 ·φ2 (B.14)

The bulk modulus can be determined through Eq. (B.5) and (B.12) and it is given by

B =
4

3a2

[
aV ′′

1 + aV ′′
2 − 2

√
2V ′

1 − 2V ′
2

]

−8 ·AA

3 · a2
·
[
6 ·a · f ′′ · (

√
2 ·φ′

1 + φ′
2)

2

+a · (φ′′
1 + φ′′

2) − 2 · (
√

2 ·φ′
1 + φ′

2)
]

(B.15)

Taking into account Eq. (B.13) and (B.14), the cohesion energy Ecoh is:

Ecoh = 6 ·V1 + 3 ·V2 − AA · f(12 ·φ1 + 6 ·φ2) (B.16)

The stability condition at the potential minima is dUTOT/dr = 0, therefore:

6 ·V ′
1 + 3 ·V ′

2 − AA · 12 ·φ1 + 6 ·φ2√
12 ·φ1 + 6 ·φ2

= 0 (B.17)

Additionally, the vacancy formation energy can be written as:

Ef
v = −AA · (12 ·

√
11 ·φ1 + 6 ·φ2 + 6 ·

√
12 ·φ1 + 5 ·φ2

−18 ·AA ·
√

12 ·φ1 + 6 ·φ2) − (6 ·V1 + 3 ·V2) (B.18)

Assuming the following analytical forms for UP and UN

UP = V = (r − rcut)
2 · (a + b ∗ r + c ∗ r2) (B.19)

UN = −AA ·
√

(r − d)2 (B.20)

and choosing some appropriate values for rcut and d, the unknown parameters a, b, c
and AA can be determined through conditions (B.15), (B.16), (B.17) and (B.18).
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Appendix C

Electron Gas Term

The cohesion energy of a transition metal may be decomposed into contributions
from the s and d electrons:

E = Es + Ed (C.1)

In this work it was assumed that the s-electron contribution corresponds to the energy
of an electron gas which can be taken into account in terms of a volume energy. The
energy of the electron gas pro atom is taken as [Haf87]:

Eeg = Zs ·Ryd · [0.982 ·a2
o/r

2
s − 0.712 ·ao/rs + 0.031 · ln(rs/ao) − 0.110] (C.2)

where Zs is the number of free s electrons pro ion, ao is the Bohr radius (ao=0.5291777
Å), Ryd is the rydberg constant (Ryd=13.6058 eV), rs is the radius of a sphere con-
taining one electron on average (in this case, rs is the mean electron density in the

alloy) and it is related to the Wigner-Seitz radius rws (rs = rws ·Z
1/3
s ). The volume of

the Wigner-Seitz sphere is equal to the atomic volume Ω. Therefore:

rs =

[
3Ω

4 ·π

]1/3

·Z−1/3
s (C.3)

In this work, Ω was taken as

Ω =
a3

o

4
+

a3
o

4
· ∆V

V
·x (C.4)

where ao is the lattice constant of pure palladium and ∆ V/V is the relative volume
change under H loading.

Zs is taken as:
Zs = nH ·x + nPd · (1 − x) (C.5)

nH and nPd are the electronic contributions provided by the H and Pd atoms respec-
tively and x is the H concentration.

WILLIS ET AL [WH83] made a calculation of the total energy of a transition metal
by extending the nearly free electron theory to include the effect of the d band to the
cohesion energy for the pure crystal metal and obtained nPd=1.5. In this work in
order to reproduce the experimental value of Ecoh it was established that the number
of s electrons nPd from Pd should be 0.4. With this value the experimental value of
the cohesion energy of Pd can be reproduced. In order to reproduce the cohesion
energy of the system PdH and the relative volume change at higher concentrations it
is necessary to know the relative number of s electrons nH for H, that is how many s
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electrons participates in the bonding with the Pd atoms. Two different values for nH

were assumed. From an ab initio calculation [PNM81] it was established that nH =
0.2, that is, the bonding between H and Pd is more of a covalent character. However,
we used in the calculations involving the electron gas term the value nH = 1 because
as seen in Figure C.1 this value would deliver the expected energy contribution to
the cohesion energy (See Figure C.2).
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Figure C.1: Contribution to the total cohesion energy of PdH provided through the
electron gas term as a function of hydrogen concentration. Two values for the relative
number of s electron nH were tested. With the value nH = 1 an decreasing energy contribution is
obtained. This energy decrease would give the right cohesion energy tendency under H loading (See
figure below).
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Figure C.2: Cohesion energy of PdH bulk as a function of hydrogen concentration.
It is shown the tendency for the cohesion energy of PdH. Using ppI alone does not give the expected
experimental tendency for the cohesion energy. Therefore the contribution of the electron gas term
is used, and in this case the expected tendency can be reproduced. In this calculation was not taken
into account the H-H interaction.
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