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AbstratThis thesis investigates irreversible dynamis. It is shown analytially that the reent Flutua-tion Theorem extends to relativisti dynamis. In the analyti onsideration of non-relativistigranular gases with broken time-reversal symmetry we �nd violations of the Flutuation The-orem for large �utuations. This is on�rmed by simulations of wet granular matter in drivenstationary states. It is shown that the theorem persists to hold for small �utuations, whihexplains earlier reports of on�rmation in literature as a onsequene of their measurementrange. The partile interation in wet granular matter is experimentally shown to be hysteretiwith the formation and rupture of apillary bridges. The measured dissipation is quanti�edby the rupture length and energy of the bridges. For a kinemati desription of wet granularmatter based on these experimental �ndings, the Enskog fator is generalized analytially toa set of six fators, whih aount for the hystereti interation in a statistial desription.Suh a statistial and, moreover, ontinuum desription is made possible by the analytialand numerial omputations of the Kolmogorov-Sinai entropy, whih demonstrates the sub-stantial inrease of dynamial haos due to the apillary interation in wet granular matter.On this basis, the equation of state of wet granular matter is derived analytially. A van-der-Waals-like mehanial instability is predited, and veri�ed in simulations and experiments.In the simulations, the instability leads to the breakup of apillary bridges. This nonequi-librium dynamis is desribed analytially by a mean-�eld theory in quantitative agreementwith the simulations. The experimentally determined ritial point of this instability agreesquantitatively with the theory. A novel method, whih allows to measure the veloity dis-tribution in nonequilibrium steady states of granular matter based on the Mössbauer e�et,is suggested. In a �rst measurement, an exponential veloity distribution is observed for the�uid-like state. It is demonstrated that the global instantaneous state of the dynamial ap-illary network in wet granular matter is observable by eletrial ondutivity, when an ioniliquid is added. This allows to detet the transition of wet granular matter from the solid tothe �uid state in the bulk, exluding surfae e�ets, and to demonstrate experimentally withunpreedented preision that this transition is disontinuous and hystereti with respet tothe external driving. Simulations and experiments show that this nonequilibrium transitionsets in at a ritial aeleration of the external driving. Furthermore, the transition from the�uid-like to the gaseous state of wet granular matter is demonstrated experimentally and bysimulations. In both approahes it is shown quantitatively that this transition is determinedby a ritial veloity of the driving, whih is diretly related to the apillary energy. States of�uid/gas oexistene, whih emerge in experiments and simulations are explained analytiallyas subritial instabilities in the balane of power. Applying the derived equation of state, thespatial distributions of temperature, density and dissipation are omputed. Order parametersare measured, and the global phase diagram of the nonequilibrium states and transitions ofwet granular matter is presented.
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ZusammenfassungIn dieser Dissertationsshrift wird irreversible Dynamik untersuht. Es wird analytish gezeigt,dass das jüngst entwikelte Fluktuationstheorem auf relativistishe Dynamik erweiterbar ist.Die analytishe Betrahtung niht-relativistisher granularer Gase mit gebrohener Zeitum-kehrsymmetrie zeigt dagegen, dass das Fluktuationtheorem durh groÿe Fluktuationen ver-letzt wird. Dies wird durh Simulationen feuhter Granulate in getriebenen Zuständen be-stätigt. Es wird gezeigt, dass das Theorem für kleine Fluktuationen weiterhin Bestand hat,wodurh frühere Bestätigungen in der Literatur durh ihren Messbereih erklärt werden. Eswird experimentell nahgewiesen, dass die Teilhenwehselwirkung in feuhten Granulatenhysteretish ist durh die Bildung und das Reiÿen von Kapillarbrüken. Die gemessene Dissi-pation wird quantitativ durh die Abrisslänge und -energie der Brüken beshrieben. Aufdieser Basis wird für die Kinematik feuhter Granulate der Enskog-Faktor analytish er-weitert zu einem Satz von sehs Faktoren, die eine statistishe Beshreibung der hystere-tishen Wehselwirkung ermöglihen. Die Zulässigkeit einer statistishen und ferner hydro-dynamishen Beshreibung ist das Ergebnis analytisher und numerisher Berehnungen derKolmogorov-Sinai-Entropie, welhe eine erheblihe Zunahme des dynamishen Chaos durhdie Kapillarwehselwirkung in feuhten Granulaten zeigt. Auf dieser Grundlage wird dieZustandsgleihung feuhter Granulate analytish hergeleitet und eine van-der-Waals-ähnliheInstabilität vorhergesagt. Diese wird in Simulationen und Experimenten nahgewiesen. Inder Simulation führt diese Instabilität zum Aufbrehen von Kapillarbrüken, deren zeitliheEntwiklung analytish in Molekularfeldnäherung berehnet wird mit dem Ergebnis quan-titativer Übereinstimmung. Die experimentelle Bestimmung des kritishen Punktes der In-stabilität ist in quantitativer Übereinstimmung mit der Theorie. Eine neue Methode zurMessung der Geshwindigkeitsverteilung in granularen Nihtgleihgewihtszuständen unterAnwendung des Mössbauere�ekts wird vorgeshlagen. Eine erste Messung zeigt eine expo-nentielle Verteilung im granularen Fluid. Eine direkte Messung des globalen Zustands desdynamishen Kapillarnetzwerkes im feuhten Granulat wird durh Benetzung mit ionishenFlüssigkeiten durhgeführt. Dies ermögliht, den Übergang feuhter Granulate vom festen inden �uiden Zustand im Volumen zu beobahten. Dadurh kann mit bislang unerreihter Präzi-sion experimentell nahgewiesen werden, dass dieser Phasenübergang diskontinuierlih undhysteretish ist. Weiter zeigen Numerik und Experiment, dass dieser Nihtgleihgewihtsüber-gang bei einer kritishen Beshleunigung der äuÿeren Anregung auftritt. Es wird ferner derÜbergang feuhter Granulate vom �uiden in den gasförmigen Zustand in Experimenten undSimulationen gezeigt. In beiden Zugängen wird quantitativ nahgewiesen, dass dieser Über-gang bei einer kritishen Geshwindigkeit der Anregung einsetzt, welhe direkt aus der Kapil-larenergie folgt. Fluid/Gas-Koexistenzen treten in Experimenten und Simulationen auf undwerden analytish als subkritishe Instabilität des Energie�usses erklärt. Unter Anwendungder Zustandsgleihung werden räumlihe Temperatur-, Dihte- und Dissipationsverteilungenberehnet. Ordnungsparameter werden gemessen und ein umfassendes Phasendiagramm derNihtgleihgewihtszustände und Phasenübergänge feuhter Granulate wird erstellt.iii





Aus demselben Grunde ist unser Leben in der Kindheit so unendlih bedeutend,in jener Zeit ist uns alles gleih wihtig, wir hören alles, wir sehen alles, bei allenEindrüken ist Gleihmäÿigkeit, statt dass wir späterhin absihtliher werden, unsmit dem Einzelnen ausshlieÿlih beshäftigen, das klare Gold der Anshauung fürdas Papiergeld der Büherde�nitionen mühsam einwehseln und an Lebensbreitegewinnen, was wir an Lebenstiefe verlieren. Heinrih HeineDie Harzreise
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Chapter 1Irreversibility as the Starting PointThe sienti� motivation of this dissertation originates from irreversibility. The homo sapienspreferably applies symmetries [222℄ in her or his pereption and thinking, and in physis thetime-reversal symmetry (and its later preise formulation as the CPT theorem in quantum�eld theory [210℄) is among the highest priniples1. Researh on nonequilibrium proesses,whih are irreversible and violate the time-reversal symmetry, was substantially stimulatedby the Flutuation Theorem of G. Gallavotti and E.G.D. Cohen [89℄ in reent years. Thistheorem is fasinating as it explains inrements of entropy2 for reversible haoti dynamis,and revived the disussion on the apparent on�it between mirosopi reversibility andmarosopi irreversibility, formulated, e.g., as the Loshmidt paradox [145℄ more than aentury ago. Among the various answers to the question how irreversibility an emerge fromfundamentally reversible laws, the H-Theorem of L. Boltzmann (1872) was the �rst. Hereentropy grows beause orrelations of partiles prior to their ollision are ignored. In thisthesis the entropy prodution in a dissipative gas will be investigated in Chap. 5 in termsof the Kolmogorov-Sinai entropy. Another lassial explanation, dating bak to Boltzmannand further emphasized by the Ehrenfests, suggests that entropy rises beause its initial valuewas exeptionally low, due to the initial ondition de�ned by the osmi Big Bang3. Chap. 2presents a modern stohasti formulation of the Flutuation Theorem in this lassial ontextof osmi expansion, in order to �nd the relativisti in�uene on entropy prodution. It turnsout that for suh a relativisti Ornstein-Uhlenbek proess, the osmologial expansion atsin the osmi frame of referene exatly as an additional visous damping.1.1 Musi as an Example of Irreversibility in PereptionLet us have for the beginning a pleasurable look on irreversibility by studying musi. Weall would agree that a master piee of musi has a well de�ned diretion in time, usuallythe reverse diretion is not pleasant at all. The Flutuation Theorem measures irreversibilityby omparing the probability of forward and bakward transition rates, as will be de�nedand investigated in detail in Chap. 2. We onsider the probability that the note n follows1Symmetry priniples guide physis sine 1905. From a positivisti point of view, one might regard Ein-stein's Speial Theory of Relativity as a mere reinvention of the results of Maxwell (whose equations oneletrodynamis obey the Poinaré symmetry group), Poinaré, and Lorentz (having published his famoustransformation in 1904). Of ourse, this point of view misses what is essential for physis. Physis aims atrevealing the priniple behind experiments, whih is for this ase the Poinaré symmetry group: �The 1905Speial Theory of Relativity was the beginning of a general aeptane of symmetry priniples as a valid basisfor physial theories.� (S. Weinberg [235℄).2In the Gallavotti-Cohen Flutuation Theorem, entropy is assoiated to the ontration of phase spae.3In the philosophial literature [167℄ this is referred to as the �past hypothesis�.1



2 Chapter 1. Irreversibility as the Starting PointTune S
(2)
+ S

(2)
− ∆S(2)/S

(2)Sisters At 0.318 0.324 -0.019Der Mond ist aufgegangen 0.312 0.307 +0.016Bah's Toata (beginning) 0.605 0.607 -0.003US national anthem 0.528 0.516 +0.023Table 1.1: Test for irreversibility in musi. S(α)
± measures the omplexity of transitions withmemory of length α, so that S(α) = 0 for a preditable tune (for example a sale) and S(α) = 1for omplete unpreditability. There is no signi�ant asymmetry with respet to time-reversal(similar results for higher α). Quite satisfatorily, J. S. Bah exhibits the highest omplexity.after a sequene Nα of α notes. The entropy prodution per note may then be de�ned asin [25℄ by averaging the negative logarithm of this transition probability over all preedingstrings of notes Nα and `�nal states' n, weighted by the probability of their joined ourrene.Mathematially, we are free to do the same omputation for the piee of musi reversed intime. Results for the forward entropy prodution S

(α)
+ and the reverse diretion, S(α)

− , aregiven in Tab. 1.1. In the ase of �Toata and Fugue� of J. S. Bah, we restrit ourselves tothe beginning of the Toata (the dramati opening of the organ). As we an see, not onlythe laws of physis, but also those of musi show to a high degree time-reversal symmetry,with respet to the de�nition of entropy applied, indiating that the irreversibility of musi isaused by our previous knowledge (whih is not inluded in the omparatively ignorant S(α)
± )and our pereption4.The physial origin of irreversibility is the intrinsi probabilisti nature of quantum mea-surements5. The indeterminay on the smallest sales is exponentially ampli�ed by lassialhaos, and neessitates the statistial desription of many-partile systems. This thesis isdevoted to the part played by lassial physis for irreversible dynamis.1.2 Equilibrium Statistis and ThermodynamisThe existing (miro-/grand-) anonial ensemble theory provides a statistial desription ofstationary states with Hamiltonian or quantum dynamis in the thermodynami limit6. Ageneral dynamial system is said to ful�ll detailed balane, if its mirosopi transition urrentsanel pairwise, i.e. the probability �uxes j(A→ B) and j(B → A) between any pair (A,B)of on�gurations or states are balaned,

j(A → B) = P (A) P dttrans(A→ B) = P (B) P dttrans(B → A) = j(B → A) , (1.1)as is skethed in panel (A) of Fig. 1.1. This is for example true for a quantum system whenFermi's golden rule desribes the transition rates7. In other words, detailed balane meansmirosopi reversibility8. The lassial example is the Glauber dynamis [100℄ of the Ising4This is obviously related to the exiting question for a physial explanation why the human brain, subjetto the reversible laws of physis, does not remember the future.5These may be regarded as quantum �utuations, as the 'ollapse' of a quantum state, or as the unitarytime-evolution of relative quantum states aording to H. Everett (1957).6Here we think for example of the explanation by T. D. Lee and C. N. Yang (1952) for phase transitions asthe non-analyti behavior of the grand anonial potential (and hene, of the pressure) due to the distributionof the zeros of the partition funtion in the omplex plane of the fugaity.7The symmetry of the transition matrix P dttrans(i 7→ j) is a stronger ondition than detailed balane for thestationary state, as this implies uniformity.8In the ase of a stohasti model suh dynamis is referred to as a reversible Markov proess.



1.3. Nonequilibrium: Broken Detailed Balane 3
(A) (B)Figure 1.1: Equilibrium systems ful�ll the priniple of detailed balane, whih states thatthe forward and bakward hannels for hanges of the system state anel pairwise in thestationary state. In wet granular matter this priniple is violated by the hysteri liquid bridgeinteration, whih is the formal reason why wet granular matter is a dynamial system out ofequilibrium.model in the stationary state. A biophysial ounterexample are ioni hannels, where gatingmay be investigated by observing violations of detailed balane statistially [185℄. On themarosopi sale, an equilibrium system is homogeneous with respet to all its intensivethermodynami variables. Certainly, equilibrium is an idealized onept9. To the bene�tof struture formation and self-organization, systems out of equilibrium predominate. Theuniverse is under osmi expansion, the solar system is powered by the sun, metabolismde�nes living organisms, and the prodution of numerial results (whih redues entropy) bya proessor is entropially overompensated by the prodution of heat. As the boundaries ofsuh open or dissipative systems are essential to provide mass or energy urrents, there annotbe a thermodynami limit, and the question naturally arises whether the established oneptsof equilibrium an be generalized. This inludes the important onept of entropy, whihdeveloped along with the theory of equilibrium thermodynamis10, and there is at present anopen debate on the onept and de�nition of entropy in nonequilibrium situations [151℄.1.3 Nonequilibrium: Broken Detailed BalaneDynamial systems whih violate detailed balane are said to be out of equilibrium [116℄.Granular matter is a very atively studied example of suh a dissipative non-Hamiltoniansystem, in whih the equations of motion have broken time-reversal symmetry. The breakingof time-reversal is exeptionally obvious for wet granular matter, as shown in Fig. 1.1B. Twopartiles overed by a liquid �lm interat hysteretially with the formation and rupture of aapillary bridge [114℄.9As R. Kubo pointed out in a leture [132℄, thermo-�dynamis� is really a theory of �thermostatis�.10The histori starting point is S. Carnot's onsideration of general reversible proesses in 1824. The�rst formulation, dSClausius = δQ/T , as well as the name entropy from the Greek �entrepein� (transform) and�tropé� (potential for transformation) was given by R. Clausius in 1850. We owe J. W. Gibbs, 1876, the generalexpression SGibbs = −

R

f ln f dvol(Γ) for an arbitrary ensemble density f . The Gibbs formula was rederived in1948 by C. Shannon in the ontext of information theory. In 1877 L. Boltzmann introdued the on�gurationentropy SBoltzmann = kB ln Ω, where Ω is the number of mirosopi on�gurations. With A. Einstein [73℄, wemay interpret Ω as the number of mirosopi realizations belonging to the same marosopi state.



4 Chapter 1. Irreversibility as the Starting Point1.3.1 The Flutuation TheoremThe aforementioned Flutuation Theorem [89℄ requires mirosopi time-reversal. It preditsthat the probability to observe a redution of entropy, −∆s < 0, as ompared to the positiveinrement +∆s, is exponentially small:Prob(−∆s)Prob(+∆s)
= exp

(−∆s

kB )
. (1.2)It ame therefore as a surprise when S. Aumaître et al. (with simulations in [10℄) andK. Feitosa and N. Menon (experimentally in [78℄) reported the observation of the Flutu-ation Theorem for granular matter, whih does not meet the requirement of a time-reversalmap.1.3.2 The Kolmogorov-Sinai EntropyA seond requirement of the Flutuation Theorem is haotiity. A measure for dynamialhaos is the Kolmogorov-Sinai entropy hKS. Its de�nition is as follows [61℄. Suppose we aregiven a partition Wi of phase spae {Γ} (for example hyperubes with linear dimension ǫ).Denote the probability to �nd the trajetory Γ(t) of the system in (Wi0,Wi1 ,Wi2 , . . . ) attimes (0,∆t, 2∆t, . . . ) by P (i0, . . . , in). It is then natural to de�ne the entropy per time stepas

h({Wi}) = − lim
n→∞

1

n

∑

i0,...,in

P (i0, . . . , in) lnP (i0, . . . , in) . (1.3)In order to have an entropy independent of the hoie of the partition Wi, the Kolmogorov-Sinai entropy is de�ned as the supremum of all partitions:
hKS = sup

{Wi}
h({Wi}) . (1.4)For a time-ontinuous system one takes the limit ∆t → 0. The Kolmogorov-Sinai entropygives the rate at whih orrelations deay exponentially in time.1.3.3 The Lyapunov Exponents and How It is All ConnetedThe Kolmogorov-Sinai entropy is very losely related to the Lyapunov exponents λj , whihdesribe the exponential rate at whih perturbations grow (λj > 0) or shrink (λj < 0), to bede�ned in the Chaps. 4 and 5. For a losed system, the sum of all positive exponents is equalto the Kolmogorov-Sinai entropy [170℄:

hKS =
∑

λj>0

λj . (1.5)Entropy prodution is identi�ed with phase spae ontration in the Gallavotti-CohenFlutuation Theorem [90℄. On long time sales, the mean phase spae ontration rate is equalto the sum of all Lyapunov exponents. The latter is aording to (1.5) equal to hKS − h†KS,where h†KS is the Kolmogorov-Sinai entropy of the time-reversed system. For wet granularmatter there is no time-reversal map due to the unidiretional arrows in Fig. 1.1B.Just to mention one remarkable dynamial property, wet granular matter is dissipative andat the same time (everywhere loally) sympleti11 with respet to the partile positions andmomenta in phase spae. The sympletiity implies that the sum of all Lyapunov exponents iszero. This is for example not ful�lled for dry granular matter modeled by inelasti ollisions.11By sympleti it is meant throughout this thesis that the tangent spae dynamis, restrited to the



1.4. Outline of this Thesis 51.3.4 Nonequilibrium Statistial Mehanis and HydrodynamisThe statistial desription of equilibrium is motivated by the impossibility to observe the fullmirosopi dynamis of olletive systems, and justi�ed by haotiity12. Complexity remainsto be the motivation for a statistial desription far from equilibrium, and dynamial haospersists to be its rigorous foundation: in order for the system to be properly desribed bydistribution funtions and for marosopi �elds to approah well-de�ned (loal) values, thesystem has to be su�iently haoti [61, 64℄. This is � besides the Flutuation Theorem �another reason to quantify the haotiity of nonequilibrium systems.Given the requirement of dynamial haos, with statistial methods a marosopi or hy-drodynami ontinuum desription may be derived, for instane using the Boltzmann-Enskogkineti theory. This is well established [106℄ for systems ful�lling mirosopi time-reversalsymmetry. Hereby the Enskog fator, whih desribes partile orrelations, is a non-trivialfuntion of density. It is therefore preferable to generalize and apply this mahinery to thehystereti interation in wet granular matter. Furthermore, to solve the ontinuum equations,one is interested in onstitutive equations, suh as the equation of state relating pressure totemperature and density. The existene of suh an equation of state is by far not obvious fordissipative systems [113℄.1.3.5 Phase Transitions far from EquilibriumBy virtue of its hystereti interation, wet granular matter has an intrinsi energy sale (as willbe shown in Chap. 3). It is therefore among the most widespread dissipative olletive systems[160, 122, 114℄: e.g. as wet sand on the beah, in geology, and pharmaeutial prodution.The extration of a de�ned energy in partile ollisions is also a model for planetary formation,as has been investigated in mirogravity experiments �own onboard the spae shuttle [22℄.At the same time, phase transitions are among the most interesting phenomena in thermo-dynamis and statistial physis, sine unexpeted ooperative properties arise from elemen-tary interation laws. It is natural to ask if the hystereti interation of wet granular mattergives rise to phase transitions, and whether, e.g., states of phase oexistene are possible whihwould generalize the established onept of a �rst order transition to nonequilibrium. As a ge-ologial phenomenon, wet granulates exhibit a number of striking dynamial transformations,suh as soil liquefation due to earthquakes [191, 98, 114℄.In spite of its widespread relevane, the nonequilibrium dynamis and transitions of wetgranular matter have hardly been subjet of sienti� investigation. The fundamental ap-proah based on dynamial system theory to this nonequilibrium system is laking. Muh ofthe experimental, analytial and numerial work presented in this thesis is therefore devotedto the dynamis of wet granular matter and the systemati desription of its nonequilibriumphase transitions, where there has been no unifying phase diagram before.1.4 Outline of this ThesisNonequilibrium statistis and dynamis, espeially for wet granular matter as a nonlineardynamial system, are developed in the Chaps. 2, 3, 4, 5, 7, and 9. Based on these results,ontinuous phase spae of position and momentum, onserves the sympleti form S, as disussed in theChaps. 4, 5, and 10. The full dynamis inludes the hystereti disrete bridge status, for whih reason there isno time-reversal map for wet granular matter. Sympletiity is therefore understood as a loal property, andnot in the global sense of sympleti manifolds.12The existene of a measure in phase spae, whih is de�ned as the in�nite time average of the trajetory,is the Birkho� ergodi theorem [20℄. Ergodiity then leads to the miroanonial distribution.



6 Chapter 1. Irreversibility as the Starting Pointthe nonequilibrium phase transitions of wet granular matter are desribed in the Chaps. 6, 8,and 10.We begin with the Flutuation Theorem whih is introdued in Chap. 2. Sine dissi-pative gases our in the aretion disks of stellar formation, we take the opportunity togeneralize the Flutuation Theorem to aount for relativisti partile motion. This allowsus furthermore to prove Flutuation Theorems under osmi expansion as motivated by thehistorial remark above. Here the physial meaning of time-reversal for a stohasti proesswith multipliative oupling is lari�ed. In Chap. 3 the hystereti interation of wet granularmatter is quanti�ed theoretially and on�rmed experimentally. The reported experimentresolves in time the hystereti formation of single apillary bridges. This leads us to theMinimal Capillary Model [114℄ for the hystereti partile interation in wet granular matter,whih will be applied prevalently in simulations and for analyti omputations in this thesis.A �rst simulation result shows the very di�erent strutures whih emerge from a gas withthe `wet' hystereti interation as ompared to inelasti ollisions that model dry granularmatter. In Chap. 4 we begin with the stationary states of wet granular matter in one dimen-sion based on the Minimal Capillary Model. The on�it between the broken time-reversalin the granular dynamis, and the Flutuation Theorem having been observed in literature[10, 78℄, is resolved. It is shown that the Flutuation Theorem is ful�lled only for small�utuations of entropy. At high �utuations the funtional form of the Flutuation Theorem(1.2) is violated. For wet granular matter, this violation is shown to be diretly related to anonequilibrium phase transition, the �uid/gas transition. The Lyapunov spetrum and theKolmogorov-Sinai entropy are omputed aross this �uid/gas transition. The Kolmogorov-Sinai entropy is found to derease with temperature beause the dynamial haos is enhanedby the hystereti bridges in �uid lusters, whih evaporate at higher temperature. This nu-merial observation is diretly ontinued by the analyti omputation of the Kolmogorov-Sinaientropy for the wet granular gas (general w.r.t. the dimensionality D > 1) in the followingChap. 5. The exeptional ase D = 1 is mapped to a `wet billiard' and the Lyapunov spe-trum is omputed numerially. The Kolmogorov-Sinai entropy is found to be greater than onein units of the system ollision frequeny, whih extends the moleular haos hypothesis forthis nonequilibrium system, and opens the road to generalize the Boltzmann-Enskog kinetiapproah by taking broken detailed balane into aount. This is done for the free oolingin one dimension in Chap. 6. The bridge energy density, as well as the binding and rupturefrequenies are omputed analytially on the mean-�eld level. In quantitative agreement withsimulations, it is found that the apillary network undergoes an unlustering transition abovea ritial density, with the segregation of dense granular droplets. In two dimensions thepersistent mirosopi probability �uxes of the hystereti interation are solved for the steadynonequilibrium state in Chap. 7. The analytial result is a set of pair orrelation funtionsnear ontat. These detailed orrelation funtions depend on the bond status and generalizethe Enskog fator to allow for the hystereti dynamis. An expliit formula for the bridgeoordination number is derived. For the solid state of wet granular matter, the formula isompared with on�gurations resulting from simulations and very good agreement is found.The equation of state of wet granular matter is derived analytially, whih gives the pressurein wet granular matter as a funtion of the granular temperature and densities, ranging fromgas to jamming. A van-der-Waals-like mehanial instability is shown to exist. The ritialpoint is diretly related to the length and energy sale of the hystereti interation. Thistheoretial predition is followed by an experiment in Chap. 8, whih uses an ioni liquid,so that the global state of the apillary network in driven wet granular matter is detetedby eletrial ondutivity. The phase segregation, driven by the mehanial instability belowthe ritial point, is learly observed. Quantitative agreement of the ritial density and the



1.4. Outline of this Thesis 7ritial temperature with the theoretial preditions is found. The experimental method isfurthermore applied to demonstrate that the solid/�uid transition in wet granular matter isdisontinuous with respet to the driving fore. The veloity distribution is required for manyomputations, suh as the Flutuation Theorem, the equation of state and the Kolmogorov-Sinai entropy. For this, a novel experimental method is suggested based on the Mössbauere�et in Chap. 9. A �rst measurement shows its feasibility, and an exponential veloity distri-bution in the volume of a granular �uid is observed. The theoretially established dynamialhaos and the analyti omputation of the hystereti pair orrelation funtion enables theBoltzmann-Enskog kinemati approah to wet granular matter, and leads to a ontinuumdesription in Chap. 10. The theory explains the �uid/gas transition in wet granular matter.Order parameters are de�ned, and the global phase diagram of wet granular matter is derivedfrom experiment and simulation in quantitative agreement. Besides nonequilibrium states ofsingle phases, the phase diagram ontains regions of �uid/gas and solid/gas oexistene. Forthe �uid/gas oexistene the pro�les of temperature, density and dissipation are derived fromthe ontinuum theory and the equation of state. Finally, the oalesene dynamis of granulardroplets is disussed.The results of eah hapter are outlined at the beginning and summarized in the onlu-sions of the hapter. Chap. 11 summarizes the results obtained in this thesis and gives a briefoutlook to future researh. Parts of this thesis are published in [79, 82, 81, 83, 80, 84, 86℄ andhave ontributed to [85℄.





Chapter 2Relativisti Flutuation TheoremsDissipative gases, forming the entral topi of this thesis, our in aretion disks [38℄ andthe irumstellar formation of planetesimals [127℄, for whih initial state relativisti partilemotion is required. Guided by the interest in entropy prodution, we follow the introdutoryremarks in the last hapter on the Ehrenfests and investigate the Seond Law in speialrelativisti and osmologial ontext1. This provides an opportunity to onisely introduethe Flutuation Theorem, whih will be reverted to in the following hapter.To reveal how nonequilibrium physis and relativity theory intertwine, this hapter studiesrelativisti Brownian motion under osmi expansion. Two Flutuation Theorems for theentropy ∆s, whih is loally produed in this extreme nonequilibrium situation, are presentedand proven. The �rst, 〈e−∆s
〉

= 1, is a generalization of the Seond Law of thermodynamis,whih remains valid at relativisti partile energies and under high osmi expansion rates.From this relation it follows that the probability to observe a loal redution of entropyis exponentially small even if the universe was to reollapse. For the speial ase of theEinstein-de Sitter universe an additional relation, 〈e−∆s−∆h
〉

= 1, is derived whih holdssimultaneously with the �rst relation and where ∆h is proportional to the Hubble onstant.Furthermore, the Flutuation Theorems are shown to provide a physial riterion to resolvethe known disretization dilemma arising in speial-relativisti Brownian motion. Expliitexamples and a general method for the omputation of non-Gaussian entropy �utuations areprovided.2.1 A Human Question Put in Physial TermsThe physial basis of the diretion of time has been disussed at least sine Boltzmann's H-Theorem in 1872. A priori, the thermodynami arrow of time has to be distinguished fromthe possibility of a prime diretion of time de�ned by the expansion of the universe [243℄. Bynow we know that due to the dominating dark energy omponent of about 72%, our universeis very likely to expand forever [209, 18℄. Yet the fasinating osmologial arrow of time ouldnot be based on �rm theoretial ground [107, 166, 108, 2, 34℄. So one may still ask: Is it a mereoinidene that our memory stritly refers to times when the size of the universe was smaller?Put in physial terms, the guiding question of this hapter is: Does the osmi expansionrate e�et the prodution of entropy by nonequilibrium proesses? While a general theoryof nonequilibrium thermodynamis does not exist, Flutuation Theorems provide a uniquestarting point to develop the means to address suh a fundamental question. First progressin the desription of entropy prodution and giant �utuations beyond linear-response was1The results of this hapter are published in [79℄. 9



10 Chapter 2. Relativisti Flutuation Theoremsmade in the 1970s [23℄, and major advane was ahieved in reent years with the derivation ofFlutuation Theorems for various lasses of systems [75, 89, 90, 137, 229, 199, 125, 124, 126℄.Flutuation Theorems generalize the Seond Law of thermodynamis. The Seond Law statesthat the Gibbs entropy S of an ensemble may not derease,
∆S ≥ 0 at any time. (2.1)The Flutuation Theorems naturally extend the onept of entropy and allow statementsabout the probability to observe isolated �violations� of (2.1). To this end the FlutuationTheorems assign a hange ∆s of entropy to an observation of few or even single partiles.When a nonequilibrium system of �nite size is observed, the entropy ∆s produed within aertain time interval is a �utuating quantity. The founders of statistial mehanis, L. Boltz-mann and J.W. Gibbs were well aware that the Seond Law holds only for the entropy

∆S = 〈∆s〉 of an in�nite ensemble. The angle brakets denote the ensemble average overobservations of equal systems. Boltzmann mentioned the possibility of �violations�, ∆s < 0,in his famous reply to the Poinaré reurrene objetion (in a written argument with E. Zer-melo) and designated the Seond Law as a theorem of probability (�Wahrsheinlihkeitssatz�),emphasizing that the Seond Law annot be expeted to hold for few partiles [24℄. Loo i-tato, he referred to Gibbs [99℄ who had onluded: �The impossibility of an inompensatedderease of entropy seems to be redued to an improbability.� It is this improbability that isquanti�ed by Flutuation Theorems.For the steady state of strongly haoti systems the detailed Flutuation Theorem,Prob(∆s = +a)Prob(∆s = −a) = exp
( a
kB) for any a, (2.2)was proven in the limit of in�nite observation time [89, 90℄. The detailed Flutuation Theorem(2.2) was also derived in [137℄ for a non-relativisti partile in ontat with a heat bath attemperature T . Initially, only the external hange in the bath entropy, ∆se = ∆Q/T with theenergy ∆Q dissipated into the surrounding bath, was taken into aount [137, 229℄. In [199℄ itwas pointed out that when the partile is assigned an intrinsi entropy ss = −kB lnP (with thepartile's phase spae density P ), the sum of intrinsi and external entropy, ∆s = ∆ss + ∆se,obeys the Flutuation Theorem (2.2) even for �nite observation time2. This is the de�nitionof entropy applied throughout this hapter. Furthermore, for non-stationary states in thepresene of time-dependent driving fores, an integral Flutuation Theorem of the form

〈e−∆s/kB〉 = 1, (2.3)was proven and linked to the Jarzynski relation [125, 124, 126℄. Tehnially, the averagingover observations, 〈. . . 〉, is a path integral over trajetories, whih is explained in the followingsetion.The detailed Flutuation Theorem (2.2), the integral Flutuation Theorem (2.3), andthe Seond Law of thermodynamis (2.1) form a onsistent hierarhy of statements: fromEq. (2.2) follows (2.3) by integrating over a, and Eq. (2.3) implies (2.1) by virtue of theJensen inequality.We proeed as follows. A modern stohasti formulation of the Flutuation Theorem isgiven in the following setion. The reent uni�ation [51, 66, 67℄ of Einstein's 1905 publiations2In the earlier Flutuation Theorem of Evans and Searles a similar term was added to the dissipationfuntion (Eq. (2.6) in [77℄), that is not present in the Gallavotti-Cohen Flutuation Theorem [89, 90℄, resultingin a Flutuation Theorem for haoti systems whih holds for �nite time. For the stohasti formulation of�nite time Flutuation Theorems suh a term was onsidered in [150℄, Eqs. (5.9) and (5.11).



2.2. The General Stohasti Formulation of Flutuation Theorems 11on Brownian motion [71℄ and speial relativity [72℄ is brie�y reviewed in the following Se. 2.3.Based on these �ndings, the results of Se. 2.4 are twofold. First, for the relativisti Brownianproesses of [66℄ and [67℄, we reonile the Flutuation Theorems (2.2) and (2.3), whihhave beome a paradigm of nonequilibrium physis, with speial relativity. For the similarproess suggested in [51℄, Flutuation Theorems follow by analogous reasoning. In [66℄ and[67℄ it was pointed out that the relativisti time dilation leads to multipliative oupling,neessitating a areful hoie of the disretization rule. We show expliitly that there isone relativisti detailed Flutuation Theorem (2.2) and one relativisti integral FlutuationTheorem (2.3) valid for all hoies. Seond, we shall �nd the physially orret expression forthe entropy prodution following from relativisti Flutuation Theorems when the Hänggi-Klimontovih disretization rule is applied. In Se. 2.5 we go beyond speial relativity witha set of two general-relativisti integral Flutuation Theorems for the osmologial standardmodel. These expose learly the role of osmi expansion in entropy prodution. We shallidentify the entropy prodution whih is solely due to the Hubble expansion of spae. Suhentropy produing proesses dominate when the expansion rate of the universe exeeds thepartile sattering rate, for instane in an early in�ationary phase after the big bang. TheSes. 2.4 and 2.5 onlude eah with examples where we expliitly ompute the non-Gaussian�utuations P (∆s), P (∆ss) and P (∆se) of entropy prodution.2.2 The General Stohasti Formulation of Flutuation Theo-remsThis setion gives a general derivation of the Flutuation Theorem for stohasti proessesand emphasizes that every broken symmetry implies a Flutuation Theorem.2.2.1 The Integral Flutuation TheoremLet Γ(t) denote the state of the observed system, whih performs a time ontinuous stohastiproess under the in�uene of a thermal environment. Its stohasti dynamis are desribedompletely by the probability distribution P [Γ,C], whih gives the probability to observe aertain system trajetory Γ. This probability depends on the environmental onditions: Cdesribes a set of external parameters, suh as the environmental temperature T (t), externalfores (for example ating on a harged system by an eletri �eld E(t)), or � as we shallonsider �nally in the general-relativisti ase � the urvature of spaetime. All these externalparameters may vary during the proess, so that C(t) is a deterministi protool. The generalidea underlying stohasti formulations of Flutuation Theorems is as follows. Consider anarbitrary transformation T , whih does not leave the physial dynamis (represented by aLangevin or Fokker-Plank equation) invariant. While P [Γ,C] desribes the dynamis ofthe original stohasti system, the transformed stohasti dynamis will be given by anotherprobability distribution P̃ [Γ,C]. Assuming P and P̃ to have the same support, we de�ne
∆s[Γ,C] ≡ kB lnP [Γ,C] − kB ln P̃ [Γ,C] , (2.4)to quantify the symmetry breaking of the transformation T for every trajetory Γ. Forthe quantity ∆s de�ned in (2.4), an integral Flutuation Theorem of the form (2.3) is amathematial identity,

〈e−∆s/kB〉 =

∫
D [Γ] P [Γ,C] e−∆s/kB =

∫
D [Γ] P̃ [Γ,C] = 1 .



12 Chapter 2. Relativisti Flutuation TheoremsThe path integration ∫ D [Γ] overs all ontinuous funtions Γ, weighted by the probability
P [Γ,C].We are interested in a Flutuation Theorem that quanti�es the irreversibility of thestohasti proess. This is why we hoose the transformation T to be time reversal3,

P̃ [Γ,C] = P [Γ̃, C̃],with Γ̃(+t) = Γ(−t)and C̃(+t) = C(−t) for all t.To get a result on the total entropy prodution, the transformation T ats globally by reversingboth, the stohasti system trajetory Γ and the time dependene of the environment C.The probability P [Γ,C] to observe a stohasti trajetory [Γ]+τ
−τ in the time interval

(−τ,+τ) depends on the initial onditions, whih are given by Γ(−τ) for a Markov proessor by the history [Γ]−τ
−τ−T for a system with memory time T (whih may be in�nite):

P [Γ,C] = Pin PF , (2.5)with Pin =

{
P (Γ,C)|−τ , if Markovian
P [Γ,C]−τ

−τ−T , if with memoryand PF = P
(
[Γ,C]+τ

−τ in) .We refer to the initial state or the history as the in-state of the system, whih is distributedaording to the �rst fator Pin in (2.5). The seond fator PF is the (forward) propagator onthe time interval (−τ,+τ) under the in�uene of the thermal environment. Analogously, thetime-reversed probability is written as
P̃ [Γ,C] = P̃ [Γ̃, C̃] = Pout PR . (2.6)Inserting (2.5) and (2.6) in (2.4), ∆s deomposes into the sum

∆s = ∆ss + ∆se , (2.7)with ∆ss = −kB lnPout + kB lnPin, (2.8)and ∆se = kB ln
PF
PR . (2.9)The �rst term (2.8) is the hange of the system entropy ss = −kB lnPj as the system statehanges from �j = in� to �j = out�. The expression ss(Pj) = −kB lnPj for the system entropywas suggested in [199℄ for a Markov proess and is a widely aepted de�nition beause ssresembles the Boltzmann entropy and Ss = 〈ss〉 = −kB 〈lnPj〉 oinides with the Gibbsentropy of the ensemble Pj .The seond term (2.9) is a Crooks relation [48, 49, 42℄ de�ned by the forward and reversedtime evolution under the stohasti in�uene of the thermal environment. We have to showthat ∆se as introdued in (2.9) equals exatly the entropy produed in the thermal environ-ment, so that ∆s = ∆ss + ∆se is the total entropy prodution. A major objetive of thishapter is to evaluate (2.9) for a thermal environment at relativisti energies to adjudiate onthe physial interpretation as environmental entropy.For Markov proesses, suh as the relativisti Brownian motion disussed in the next3If Γ is the phase spae vetor (x,p), the momenta are inverted, Γ̃(t) = (x(−t),−p(−t)).



2.2. The General Stohasti Formulation of Flutuation Theorems 13setion, the forward and reverse propagators are in�nite produts of transition probabilities,
PF = lim

n→∞

n∏

k=1

P∆tktrans (Γk−1 7→ Γk,C(∆tk)) and
PR = lim

n→∞

n∏

k=1

P∆tktrans (Γk 7→ Γk−1,C(∆tk)) ,so that entropy prodution is loal in time: For the environmental entropy follows
∆se =

∫ +τ

−τ
ṡe(t) dt with

ṡe(t) dt = kB ln
P dttrans (Γ− 7→ Γ+,C(t))

P dttrans(Γ̃− 7→ Γ̃+,C(t))
, (2.10)and the hange in system entropy is ∆ss = ss(+τ)−ss(−τ) with ss(t) = −kB lnP (Γ(t),C(t)).The probability density P (Γ, t) = P (Γ,C(t)) evolves aording to the ontinuity equation,

∂tP (Γ, t) + ∇Γ ◦ j(Γ, t) = 0 , (2.11)with the probability urrent
j(Γ, t) =

∞∑

n=0

(−∇Γ)n

n!
◦ Mn+1(Γ, t) P (Γ, t) . (2.12)The Helfand moments Mn are tensors of order n whih are related to the transition probability

P dttrans by [183℄
Mn(Γ, t) dt =

∫ (
Γ′ − Γ

)n
P dttrans (Γ 7→ Γ′,C(t)

)
dΓ′ .The higher moments are present only if the heat bath in whih the system is embedded isout of equilibrium. A possible system for relativisti Brownian motion is an eletron whihouples by Compton sattering to a gas of photons. We assume that suh a heat bath isin loal equilibrium so that we have a well-de�ned temperature T (x, t) yielding an isotropidi�usion M2 ∝ T1I with vanishing higher moments, Mn = 0 for n > 2. Equation (2.11) thenredues to the Fokker-Plank equation and the transition probabilities are Gaussian.2.2.2 The Detailed Flutuation TheoremWhile the integral Flutuation Theorem derived above holds for arbitrary environmental on-ditions C, the stronger detailed Flutuation Theorem (2.2) holds if the deterministi protoolis invariant under time-reversal, C = C̃. The general derivation for the quantity ∆s de�nedin (2.4) is also done onveniently by path integration. The probability to observe a produtionof entropy ∆s = a kB is Prob(∆s = a kB)

=

∫
P [Γ,C] δ(∆s[Γ,C] = a kB) D[Γ]

=

∫
P [Γ̃, C̃] e∆s/kB δ(∆s[Γ,C] = a kB) D[Γ]

= ea

∫
P [Γ̃, C̃] δ(∆s[Γ,C] = a kB) D[Γ]

= ea

∫
P [Γ̃, C̃] δ(∆s[Γ̃, C̃] = −a kB) D[Γ] .



14 Chapter 2. Relativisti Flutuation TheoremsIn the seond and last equality we exploited Eq. (2.4). Using the trivial fat that the pathintegration an be reordered in time, we arrive atProb(∆s = a kB) = ea

∫
P [Γ, C̃] δ(∆s[Γ, C̃] = −a kB) D[Γ] .Comparing this result with the probabilityProb(∆s = −a kB) =

∫
P [Γ,C] δ(∆s[Γ,C] = −a kB) D[Γ]to observe a redution ∆s = −a kB, yields the detailed Flutuation Theorem (2.2) for anysymmetri protool, C = C̃. Therefore the detailed Flutuation Theorem holds not only inthe steady state, whih the system reahes under time-independent foring, C(t) = onst, butalso for example in periodially hanging onditions that are symmetri with respet to theobserved time-frame (−τ,+τ).We onlude this general derivation of Flutuation Theorems with the remark that thepresented formulation gives a unifying perspetive on the distint Flutuation Theorems of[199℄ and [152℄. Equation (6) in [152℄ is generalized by Eq. (2.4), while the Eqs. (2.8) and(2.9) orrespond to the deomposition of entropy aording to the Eqs. (5) and (14) in [199℄respetively.2.3 Speial-Relativisti Brownian MotionThe derivation of the Flutuation Theorems (2.2) and (2.3) in Se. 2.2 uses the abstrat ex-pression (2.10) for the entropy prodution ṡe in the embedding heat bath. As emphasizedbefore, this expression has to be evaluated for a physial proess to allow for a physial inter-pretation as entropy. An instrutive proess is relativisti Brownian motion.To minimize tehnialities, we onsider �rst the one-dimensional speial-relativisti mo-tion of a partile with rest mass m in a heat bath at temperature T . The generalization tohigher spatial dimensions is straightforward. Even if we would allow the partile to equili-brate with its environment, the mean squared veloity may not obey the non-relativisti law〈

v2
〉

= kBT/m in the high temperature limit, sine the �nite speed of light de�nes an in-surmountable upper bound. The speial-relativisti nonequilibrium Brownian motion, givingrise to bounded veloity distributions, has been set forth in [51, 66, 67℄ using both, the lan-guage of stohasti di�erential equations (relativisti Langevin equations) and the languageof probability densities (relativisti Fokker-Plank equations). Simulations of this relativististohasti proess have been applied to analyze sattering experiments of quark-gluon plasma[227℄. As in the familiar non-relativisti ase [183℄, a deterministi fore Fd ats on the partilein the rest frame of the heat bath,
dpd = Fd dt = −νp dt , (2.13)so that the time sale of dissipation is 1/ν. In the relativisti generalization (2.13), thenon-relativisti momentum mv is replaed by p = p1 = mv/

√
1 − v2/c2, whih is the spa-tial omponent of the relativisti momentum vetor pα. As ommon, Greek indies refer totemporal (α = 0) and spatial omponents. The signature of the Minkowski metri tensor is

ηαβ = ηαβ = diag(−1, 1). Moreover, Einstein's summation onvention is invoked throughout.



2.3. Speial-Relativisti Brownian Motion 15Sine the rest mass is not altered in elasti ollisions, pαpα = −(mc)2 = onst, the hange inthe momentum vetor dpα is always �orthogonal� to pα in the sense of
pαdpα = 0 . (2.14)This means that the lassial partile annot leave its mass shell pαpα = −(mc)2, whih isnothing but its dispersion relation,

E = p0c =
√

(mc2)2 + (pc)2 . (2.15)The general solution of (2.14) is the projetion dpα = (δα
β + pαpβ/(mc)

2)ξβ of an arbitraryLorentz vetor ξβ. It is readily on�rmed that the hoie
dpαd = −mν

(
δα
β +

pαpβ

(mc)2

)
vβbathdτ (2.16)redues to Eq. (2.13) in the rest frame of the bath with the bath veloity vetor vαbath =

(c, 0) and the partile's proper time τ . Hene, Eq. (2.16) is the generalized Lorentz-invariantdeterministi part of the Brownian motion4.The desription of relativisti Brownian motion is ompleted by Lorentz-invariant stohas-ti hanges dpαs of the momentum aused by the impats of the surrounding heat bath attemperature T . The derivation is guided by two priniples: �rst, the relativisti momentumis the proper quantity performing a Wiener proess, sine it is physially exhanged and ad-ditive, whereas the veloity is well-known not to be additive in speial relativity. The seondpostulate demands that the distribution is Gaussian in the instantaneous rest frame of thepartile. This onnets the relativisti Brownian motion to the non-relativisti ase. Thesepriniples determine the exhanged momenta dpαs to be distributed aording to (f. Eq. (35)in [66℄)
Poll(pµ,dpνs ) =

mc δ
(
pβdpβs )

2
√
πDdτ

exp
(
− dpαs dps α

4Ddτ

)
. (2.17)The Dira distribution δ(pβdpβs ) in (2.17) guarantees that the mass-shell ondition (2.14) isalso ful�lled by the stohasti impats, sine they are elasti. While the relativisti momentum

p is additive and unbounded, the veloity is restrited to the open interval (−c,+c). This anbe seen by the elegant relation v/c2 = p/E in the rest frame of the bath, whih is equivalentto
dx =

pc√
(mc)2 + p2

dt . (2.18)As mentioned before in the ontext of the general Kramers-Moyal expansion (2.12), thebath temperature T is de�ned by the Einstein relation,
D = kBTmν , (2.19)with the momentum di�usion onstant D (f. Eq. (59) in [66℄).4Equation (16) in [66℄ ontains an identially vanishing term.



16 Chapter 2. Relativisti Flutuation Theorems2.4 Flutuation Theorems for High Energy PhysisWe have now the manifestly Lorentz-invariant Langevin equation
dpα = dpαd + dpαs (2.20)with the deterministi part given by (2.16) and the stohasti part desribed by (2.17) athand. Speifying (2.20) to the rest frame of the bath yields

dp = −νp dt+ dps . (2.21)The probability density of the exhanged momenta dps is found by integrating out the dp0s -omponent in (2.17), f. [66℄:
Poll(p,dps) =

exp
(
−dp2s/(4D√1 + p2

(mc)2
dt)
)

2
√
πDdt 4

√
1 + p2

(mc)2

. (2.22)This exhibits the disretization dilemma: A disretization rule has to be imposed on (2.22)sine relativisti invariane does not determine whether p in (2.22) refers to the partilemomentum p− before the ollision (pre-point rule of It�), to the post-point p+ = p− + dp(Hänggi-Klimontovih), or to the midpoint (p− + p+)/2 (Fisk-Stratonovih).The Eqs. (2.18), (2.21) and (2.22) establish the relativisti stohasti motion of the Brow-nian partile in phase spae. The orresponding transition probability is uniquely determinedby the disretization rule:
P dttrans ( x 7→ x+ dx

p 7→ p+ dp

)
=

δ
(
dx− pc2

E dt
)

2
√
πDEdt/mc2

× exp

(
−

(
dp+ νpdt− (1 − κ) D

mc2
dE
dp dt

)2

4DEdt/mc2

)
. (2.23)The disretization is ontained in the parameter κ, 0 ≤ κ ≤ 1. Hänggi-Klimontovih, Fisk-Stratonovih, or It� orrespond to the values κ = 0, 1

2 , or 1 respetively.Let us now investigate the onsequenes for entropy prodution arising out of the speial-relativisti disretization dilemma. As derived in Se. 2.2, the total entropy is a sum ofthe partile intrinsi entropy ss(t) = −kB lnP (x(t), p(t), t) with the partile's nonequilib-rium phase spae density P (x, p, t), and the external entropy se of the ambient heat bath attemperature T .Inserting the probability urrent (2.12) in momentum spae
jp(x, p, t) = −

(
νp+ κ

D

mc2
dE

dp

)
P (x, p, t) − DE

mc2
∂P (x, p, t)

∂p
(2.24)in the di�erential dss of the partile entropy ss(t) = −kB lnP (x(t), p(t), t) we �nd the equationof motion (generalizing Eq. (7) in [199℄) for ss,

dss = dss|κ=0 + κ kB d lnE . (2.25)Here we have isolated the seond term whih depends on the disretization rule applied.The entropy prodution dse in the bath follows by ontrasting the transition probabilitiesof the trajetory Γ = (x, p) with its time-reverse Γ̃ = (x̃,−p̃) to extrat the irreversible



2.4. Flutuation Theorems for High Energy Physis 17part, lnP dttrans (Γ− 7→ Γ+) − lnP dttrans(Γ̃− 7→ Γ̃+), ausing the dissipation (2.10). From a briefomputation we �nd:
dse = kB ln

P dttrans ( x 7→ x+ dx
p 7→ p+ dp

)

P dttrans ( x+ dx 7→ x
−p− dp 7→ −p

)

= −dE

T
− κ kB d lnE . (2.26)The Eqs. (2.25) and (2.26) reveal that although the relativisti Brownian motion is phys-ially inequivalent depending on κ, the �utuations of the total entropy s = ss + se areindependent of κ. Expliitly, the hange of the total entropy is

ds

kB = −∂ lnP

∂t
dt− ∂ lnP

∂x
dx+

mc2jp
DEP

dp .Two tehnial omments are here in order. First, when omputing dse in (2.26) the no-tation has to arefully distinguish between initial Γ− and �nale state Γ+, and one shouldonsider the quotient P (Γ− → Γ− + dΓ)/P (Γ− + dΓ → Γ−) as done in (2.26). Writing thebak transition in the numerator in the form P (Γ+ → Γ+−dΓ) would be orret yet unfavor-able for evaluation, beause ommon Γ−-fators ould not be aneled out. In transforming
P (Γ+ → Γ+ − dΓ) to P (Γ− + dΓ → Γ−) the known spurious drift of the multipliativeoupling has to be taken into aount [183℄. Seond, the disretization term in (2.26) anbe absorbed by de�ning a more ompliated �utuation-dissipation theorem, however in thisdissertation we use exlusively the Einstein relation (2.19).The path integration of the results (2.25) and (2.26) aording to Subse. 2.2 yields thedetailed Flutuation Theorem (2.2) for time-symmetri environments, and the integral Flu-tuation Theorem (2.3) for arbitrary environmental onditions, with entropy �utuations ∆sobserved over �nite time. Therewith we have proven relativisti Flutuation Theorems thatare una�eted by the disretization dilemma.Furthermore, we are now in a position to address the physial hoie of κ by virtue of theFlutuation Theorem. Beause of energy onservation, the energy −dE in (2.26) lost by thepartile equals the heat dQ gained by the ambient bath:

dse =
dQ

T
− κ kB d lnE . (2.27)In the non-relativisti regime the partile energy E = mc2 +Ekin is dominated by the energyof the rest mass m so that the seond term in (2.27) vanishes for mc2 ≫ Ekin,

d lnE =
Ekin

mc2 + Ekin d lnEkin ,and we reover the non-relativisti Flutuation Theorems [199℄. At arbitrary relativistienergies (2.15) the Hänggi-Klimontovih rule, κ = 0, entails the orret expression for theentropy
dse =

dQ

T
, (2.28)whih is produed in the heat bath.
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Figure 2.1: A Brownian partile ommuting between di�erent thermal environments. Thenon-Gaussian �utuations of entropy ourring in this system an be evaluated analytially(f. Figs. 2.2 and 2.3).2.4.1 Generalizations in the Framework of Speial RelativityTo generalize the Flutuation Theorems to D spatial dimensions, momentum and fore inEq. (2.13) are simply substituted by their spatial vetors and the Greek indies in the Lorentz-invariant Eqs. (2.16) and (2.17) take values up to D. After integrating out the temporalomponent p0, the distribution (2.22) is found to ontain a quadrati form A instead of thesquare in the exponent (f. Eq. (15) in [67℄) with tensor omponents
Aij = δij −

c2

E2
pipj . (2.29)The Flutuation Theorems follow using the fat that p is an eigenvetor of A. No omplia-tions are aused by allowing an inhomogeneous heat bath, where the temperature T and thedissipation rate ν vary in spae. As far as the integral Flutuation Theorem (2.3) is onerned,a bath temperature evolving in time is also permitted (as part of the environmental ondition

C(t) in Se. 2.2). Sine the time-asymmetri part enters (2.28), the dissipation rate ν maybe an even funtion of the momentum, ν(p) = ν(−p). This is of physial relevane sine ν isknown not to be onstant even for most non-relativisti proesses [176℄. As mentioned in thegeneral derivation of Se. 2.2, an arbitrary time-dependent external fore Fe(t) (being alsopart of the environmental ondition C(t) de�ned in the rest frame of the bath) does not posea problem. After adding Fe(t) to the deterministi fore Fd in (2.13) we �nd the expression
dse = dQ/T with the heat dQ = −dE + Fedx. This is the First Law of thermodynamisstated in the frame of the bath.2.4.2 First Expliit Example: The Commuting Brownian PartileWe give (to the author's knowledge) the �rst example where the non-Gaussian �utuationsof partile entropy ∆ss, environmental entropy ∆se, and total entropy ∆s an be evaluatedexatly. A omplementary method whih allows the general numerial omputation of �u-tuations by iteration will be proposed in the ontext of a osmologial example in 2.5.3.Consider two heat baths at temperatures T1 and T2 with a Brownian partile moving ini-tially in T1. After the equilibration time, its momentum pi (in units of mc) will be distributedaording to the Jüttner-Maxwell distribution ϕ(pi, T1) [128℄, where

ϕ(p, T ) = C−1e−E(p)/T = C−1e−√1+p2/T

=
e−p2/

“

T+T
√

1+p2
”

Z(T )
(2.30)



2.4. Flutuation Theorems for High Energy Physis 19is the equilibrium solution of the Brownian motion presented in Se. 2.3. The last formulationin (2.30) (following from√1 + p2−1 = p2/(1+
√

1 + p2)) is onvenient for the low momentumlimit. To keep formulas onise, we measure heat in units of mc2 and entropy in units of kB,so that temperature T is measured in units of mc2/kB. The relativisti partition sum Z(T )equals
Z(T ) = 2 exp (1/T ) K1(1/T ) , (2.31)withK1 being the �rst modi�ed Bessel funtion of the seond kind. The Brownian partile anpass to the bath T2 through an opening (f. Fig. 2.1). This opening is small enough to keepthe baths at di�erent temperatures and to ensure that the Brownian partile spends enoughtime in T2 before returning to T1. So its momentum pf on return has beome unorrelated tothe initial value pi and is distributed aording to ϕ(pf, T2). The hange of the partile entropy

∆ss and the environmental entropy ∆se during the relaxation of the Brownian partile in T2an be expressed using ϕ:
∆ss = ss(tf) − ss(ti) = ln

ϕ(pi, T1)

ϕ(pf, T2)
(2.32a)

∆se = ∆Q
T2

= ln
ϕ(pf, T2)

ϕ(pi, T2)
(2.32b)

∆s = ∆ss + ∆se = ln
ϕ(pi, T1)

ϕ(pi, T2)
(2.32)The total entropy ∆s in (2.32) follows from the above de�nitions of partile entropy (2.32a)and environmental entropy5 (2.32b). From the resulting expression (2.32) we �nd the maro-sopi Gibbs entropy,

∆S = 〈∆s〉 =

∫
ϕ(pi, T1) ln

ϕ(pi, T1)

ϕ(pi, T2)
dpi ,to equal the relative entropy of the baths,

∆S = SKL (T1‖T2) , (2.33)whih is also known as the Kullbak-Leibler distane [136, 135℄.The trajetory entropies (2.32) depend only on the pair (pi, pf) of initial and end point inmomentum spae. Therefore the distributions P (∆s), P (∆ss) and P (∆se) follow not frompath integrals but ordinary integrals suh as
P (∆se) =

∫
ϕ(pi, T1)ϕ(pf, T2) δ (∆se − ∆se(pi, pf)) dpidpf ,where the expression ∆se(pi, pf) (2.32b) is inserted in the Dira delta funtion to sum overall trajetories yielding a ertain entropy inrement ∆se. Beause of its physial relevane,we begin with the expliit non-relativisti results, T ≪ mc2/kB, when ϕ (2.30) beomes theMaxwell-Boltzmann distribution:

P (∆s) =
Θ (A (∆s− s0))√
πA (∆s− s0)

e−∆s−s0
A (2.34a)

P (∆ss) =
K0(|∆ss − s0|)

π
(2.34b)

P (∆se) =

√
α

π
e∆se 1−α

2 K0

(
|∆se|1 + α

2

) (2.34)5Aside from the physial expression ∆Q/T used in (2.32b), the expression ln (ϕ(pf, T )/ϕ(pi, T )) in terms ofthe equilibrium distribution ϕ is diretly related to the de�nition (2.10) by the priniple of detailed balane,
ϕ(pi, T ) P

(∆t)trans(pi 7→ pf, T ) = ϕ(pf, T ) P
(∆t)trans(pf 7→ pi, T ), beause the baths themselves are in loal equilibrium.
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Figure 2.2: The exat expressions (2.34) for the distribution of partile entropy ∆ss (blue),environmental entropy ∆se (green), and total entropy ∆s = ∆ss + ∆se (red). The plot isfor T1 = 4T2 ≪ mc2/kB. The inset shows the dependene on the temperature ratio for themarosopi entropies (2.35): ∆Ss = 〈∆ss〉, ∆Se = 〈∆se〉, and ∆S = ∆Ss + ∆Se whih isnon-negative aording to the Seond Law of thermodynamis (2.1).The abbreviations A = α−1 − 1 and s0 = 1
2 lnα ontain the dependene on the temperatureratio α = T2/T1. The Heaviside step funtion is denoted by Θ. The distribution funtions(2.34) are plotted in Fig. 2.2. With the Bessel funtion K0 appearing in (2.34), the distribu-tions for ∆ss and ∆se have logarithmi divergenes at s0 and 0 respetively. The distributionof ∆s has the stronger inverse square root divergene as ∆s approahes s0 from above andvanishes below s0. From (2.34a) the integral Flutuation Theorem (2.3) an be veri�ed di-retly, while the detailed Flutuation Theorem (2.2) is obviously not ful�lled (as it has tobe sine the embedding temperature for the Brownian partile hanges randomly with time).We remark that (2.34a) is not simply the onvolution of (2.34b) and (2.34) beause ∆ss and

∆se are highly orrelated.The marosopi entropies ∆Ss = 〈∆ss〉, ∆Se = 〈∆se〉, and ∆S = 〈∆s〉 = ∆Ss + ∆Se ≥ 0are the mean values of the distributions (2.34):
∆Ss = s0 =

lnα

2
(2.35a)

∆Se =
α−1 − 1

2
(2.35b)After the Brownian partile has visited both reservoirs one, the total marosopi entropyinrement has the symmetri form

∆S(T1 → T2 → T1) = ∆S(T2 → T1 → T2) =
(T1 − T2)

2

2T1T2
> 0 . (2.36)In the relativisti regime, mc2 de�nes a third energy sale, so that the results no longerdepend only on the ratio of temperatures. The singularity at ∆s = s0 is shifted to the position

s0 = ln
Z(T2)

Z(T1)
(2.37)



2.4. Flutuation Theorems for High Energy Physis 21in terms of the partition sum (2.31). The �rst relativisti orretion of the partition sum is
Z(T ) =

√
2πT

(
1 +

3

8
T + O(T 2)

)
, (2.38)so that s0 depends on the temperature di�erene ∆T = T2 − T1 in �rst order:

s0 =
1

2
ln
T2

T1
+

3

8
∆T + O(T 2

1 , T
2
2 ) . (2.39)In the ultra-relativisti regime, T ≫ mc2/kB, the partition sum beomes linear in T ,

Z(T ) = 2T + 2 + O(1/T ) , (2.40)so that the position s0 of the singularity depends on the ratio of temperatures as in thenon-relativisti limit and reahes twie its non-relativisti value,
lim

kBT≫mc2
s0 = 2 lim

kBT≪mc2
s0 = ln

T2

T1
. (2.41)The relativisti distribution funtions are sums of Bessel funtions. For example the systementropy ∆s is distributed at arbitrary temperatures T1 and T2 aording to

P (∆ss) =
1

N(T1, T2)

{
f(T1, T2, |∆ss − s0|), ∆s > s0
f(T2, T1, |∆ss − s0|), ∆s < s0

. (2.42)The normalization fator in (2.42) is
N(T1, T2) =

Z(T1)Z(T2)

2
√
T1T2

(2.43)and the funtion f in (2.42) is de�ned by the integral
f(a, b, z) = e−z

∫ ∞

0
dx

e−x

√
x
√
x+ 2z

1 + ax/2√
1 + ax/4

1 + b(x/2 + z)√
1 + b(x/4 + z/2)

. (2.44)The non-relativisti limit (2.34b) follows from f(0, 0, z) = K0(z) and N(0, 0) = π. The �rstrelativisti orretions are
P (∆s) = g0(∆ss − s0)

+ T g1(∆ss − s0)
+ ∆T g2(∆ss − s0) +O(T 2

1 , T
2
2 , T1T2) , (2.45)with the mean temperature T = (T1 + T2)/2 and the temperature di�erene ∆T = T2 − T2.We remark that the funtions

g0(z) =
K0(|z|)
π

(2.46a)
g1(z) =

3

4π
(|z|K1(|z|) −K0(|z|)) (2.46b)

g2(z) =
3

8π
zK0(|z|) (2.46)exhibit the symmetry T1 ↔ T2 of the system, g1(−z) = g1(z), g2(−z) = −g2(z), and preservethe normalization at any order, ∫∞−∞ gj(z)dz = δ0,j .
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Figure 2.3: This plot shows the distribution of system entropy, P (∆ss), as we pass fromthe non-relativisti regime to the ultra-relativisti regime. The parameter attahed to eahgraph is kB√T1T2/(mc
2) whih assumes the values zero (non-relativisti limit), 1, 10 and ∞(ultra-relativisti limit). As we approah the ultra-relativisti limit, the mean doubles and thespread of �utuations widens, but does not diverge. The logarithmi peak redues to a kink.Note that we are disussing the lassial relativisti regime. Quantum orretions, dependingon the partile spin, are expeted when pair reation sets in.In the ultra-relativisti limit, we �nd N → 2

√
T1T2 (2.43) and f(T1, T2, z) → √

T1T2e−z(2.44), so that
P (∆ss) =

e−|∆ss−s0|

2
(2.47)is an exponential distribution. It is only in the ultra-relativisti limit that the logarithmidivergene at s0 vanishes in favor of a kink (f. Fig 2.3). In the intermediate relativistiregime (kBT ≈ mc2) the distribution P (∆ss) has skewness. The exat distribution (2.42) isshown for a �xed temperature ratio T1 = 4T2 as the geometri mean √

T1T2 is inreased formzero (non-relativisti limit) to in�nity (ultra-relativisti limit) in Fig 2.3.2.5 Generalizations in the Framework of General RelativityThe monotoni inrease of entropy is a fundamental priniple of physis and the universe isknown to expand, as was disovered by E. Hubble in 1929. The disussion whether thereis a diret onnetion between these observations has never stopped [107, 166, 108, 2, 34℄.Therefore we aspire a formulation of the Flutuation Theorem onsistent with general rela-tivity, but we restrit ourselves to the lass of Friedmann-Lemaître models, whih desribe aspatially homogeneous and isotropi, expanding or ontrating universe. The orrespondingline element (given by the Robertson-Walker metri) is −dt2 + dr2. The important di�ereneompared to speial relativity is that the spatial part, dr2, is saled by a time dependentfator R(t) desribing the expansion or ontration of the universe:
dr2 = R2(t) hij(ξ) dξi dξj . (2.48)The Latin indies desribe spatial omponents numbered by 1 to 3. We do not have todeal with the details of the metri tensor h desribing the spatial urvature. The result will
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Figure 2.4: A sketh of spaetime showing a spatial slie of the heat bath at �xed time andthe world line of a Brownian partile in a (loally) expanding universe.be valid for all possible geometries. The expansion rate H(t) = Ṙ(t)/R(t), named Hubblefuntion, is one of the most important quantities in osmology and its present value is adiret observable [169℄. The typial frame for a osmi heat bath is the frame of the osmimirowave bakground.2.5.1 Cosmologial Flutuation TheoremIn general relativity, the orret equations of motion inlude the ovariant di�erential Dp of themomentum. (Denoting by p the 4-vetor, the omponents of Dp are Dpα = dpα + Γα
µνp

µdxν .)Its spatial omponents replae the left hand side of (2.21) and an be split up into a spatiallyovariant part, (3)Dp, and a ontribution due to the time-dependent saling:
Dp = (3)Dp +H(t) p dt . (2.49)Therefore the ovariant Langevin equation, generalizing Eq. (2.21) to be valid in an expandingor ontrating universe of arbitrary spatial geometry, reads

(3)Dp = − [ν(p, t) +H(t)]p dt+ (3)Dps . (2.50)Herein, H enters as an additional damping term, whih has aused the ooling during theexpansion of our universe and is responsible for the osmologial red shift. The distributionof the stohasti impats (3)Dps is found after substituting hij for the Eulidean metri δij in(2.29). Applying the time-reversal map, we �nd that Eq. (2.28) gains a seond term due tothe osmi expansion:
dse = −dE

T
− ‖p‖2

ET
d lnR

= −dE

T
−H

(p,dr)

T
(2.51)

= ds(partile)e + ds(osmi)e .The numerator (p,dr) in (2.51) is the anonial line integral (anonial one-form) in phasespae. The integral Flutuation Theorem (2.3) extends to an expanding (H > 0) or ontrat-ing (H < 0) spaetime when this seond term is taken into aount. It has a lear geometriinterpretation: the Hubble funtion is the external urvature of spae,
DN = H dr , (2.52)



24 Chapter 2. Relativisti Flutuation Theoremswith N being the time-like normal vetor to the spae of the heat bath as depited in Fig. 2.4.Put more formally, DN = Sdr with the seond fundamental form S, whih is due to themaximum symmetry of spae a salar and equal to H. This permits the seond term in (2.51)to be written as
ds(osmi)e = −(p,DN)

T
.Sine the partile energy E = p0 = −p0 = −(p,N) is the zero omponent of the 4-vetor p,the �rst term in (2.51) equals the di�erential

ds(partile)e =
d(p,N)

T
=

(Dp,N) + (p,DN)

T
,suh that the sum of both terms is

dse =
(Dp,N)

T
. (2.53)It is natural to think of the numerator (Dp,N) as the heat dQ = Tdse exhanged withthe bath, sine it is the projetion of the exhanged 4-momentum Dp on the loal energyomponent N of the heat bath.Cosmology is an example for the breaking of the First Law, −dE = d(p,N) 6= (Dp,N) =

dQ, by non-stati metris. So we �nd ourselves in a remarkable situation: There is no FirstLaw in osmology, while the Seond Law and furthermore the integral Flutuation Theoremhold.The isolated osmologial entropy term ds
(osmi)e in (2.51) would indeed undergo a hangeof sign if the expansion turned into ontration. But in the entire bath entropy (2.53) thegeodesi �ow N enters as a projetion, whih does not imply a hange of sign if N was toontrat. Eventually, a dereasing total entropy s = ss + se is always exponentially unlikelyas expressed by the integral Flutuation Theorem (2.3).2.5.2 Additional Theorems for the Einstein-de Sitter UniverseSo far, we applied the time-reversal transformation to arrive at 〈e−∆s

〉
= 1. As emphasized atthe outset of the general derivation in Se. 2.2, we are free to hoose any other transformationfrom the mathematial point of view. Then the funtion in the exponent will no longer equalthe entropy ∆s. For instane, if the system is invariant under the hosen transformation,we will get the trivial result 〈e0〉 = 1. But for physially sensible transformations, theFlutuation Theorem will remunerate us with non-trivial relations. In order to derive aFlutuation Theorem that ontains the osmi expansion rate H, let us hoose a loal time-reversal transformation, whih ats only on the loal partile dynamis and leaves the sign ofthe global osmi expansion rate H unhanged. Repeating the omputation of Se. 2.5.1 withthe transformation H̃ = H (loal time reversal) instead of H̃ = −H (global time reversal)yields

〈e−(∆s+∆h)
〉

= 1, with ∆h =
AH

T
. (2.54)The additional term ∆h is proportional to the Hubble onstant, the inverse temperature andthe ation A =

∫
((p,v) − ∆E) dt of the energy hange ∆E = Ė/ν.This demonstrates that the Flutuation Theorem is an e�ient tehnique to design rela-tions that inlude those physial observables, whih are most interesting for a given system orexperiment. The seond general relativisti Flutuation Theorem (2.54) holds in addition to
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Figure 2.5: The distribution of partile entropy ∆sp is shown for a osmi in�ationary phase.The system starts in equilibrium at time t = −1/ν with temperature Ti, undergoes a periodof in�ation entered at t = 0 (f. the inset), and equilibrates again until the time 1/ν with thelower bath temperature Tf. The maximum of the Hubble funtion is Hmax = 100ν for the dis-tribution shown in solid line. The ase of a stati universe with zero mean entropy is plotted indashed line. This system is desribed ompletely by the ratio Hmax/ν of the osmi expansionrate and the thermal relaxation rate, the temperature to mass ratio kBTmean/(mc2) = 10, andthe in�ation fator Rf/Ri = 2.(2.3). At �rst glane one might be surprised that there is an in�nity of Flutuation Theorems,all onstraining the �utuations of ∆s. But sine the distribution funtion P (∆s) is a pointin the in�nite dimensional (Banah) spae of integrable funtions, there has to be an in�nityof physial onstraints to determine P (∆s) uniquely.In many interesting stages of the osmi evolution, suh as the early (hypothetial) in�a-tionary phase and the future phase of aelerated expansion, the size of the universe growsexponentially with time so that H is onstant. During these periods the osmi impat onthe loal relativisti Brownian motion with (2.49) is time-independent. We an therefore im-mediately infer from the general derivation in Se. 2.2.2, that for these phases of the osmievolution the stronger detailed formulations of the Flutuation Theorem hold as well.2.5.3 Seond Expliit Example: The Expanding UniverseThe osmologial Flutuation Theorems of the Ses. 2.5.1 and 2.5.2 restrit the entropy �utu-ations ∆s aused by a relativisti partile. In this setion we ompute the detailed distributionof �utuations expliitly for evolving osmi environments.The entropy hange ds = dss + ds
(partile)e + ds

(osmi)e has ontributions of the systementropy, ss = − lnP , and by heat exhange, dse = dQ/T . Sine there is no First Law,
dE + dQ 6= 0, for the time dependent osmi metri, the heat ontribution dse splits up ina term due to the hange of partile energy, ds

(partile)e = −dE/T , and a osmologial term,
ds

(osmi)e = −p2Hdt/(ET ), as derived in Eq. (2.51). The method to ompute distributionsof �utuations will be presented for the partile term, s(partile)e , whih we abbreviate by sp.It is straight forward to apply the method to the other terms.



26 Chapter 2. Relativisti Flutuation TheoremsTo ompute the distribution P (∆sp,∆t) of produed entropy ∆sp, we have to sum up
dsp = −dE/T (t) over the observation time ∆t. Therefore we have to evolve the proess p(t)while book keeping the hange of entropy sp. This is done by extending the Fokker-Plankequation to evolve the joint distribution P (p, sp, t). The evolution of entropy sp is diretlyrelated to the dynamial variable p by the di�erential dsp = −dE(p)/T (t), sine relativistiBrownian motion is restrited to the mass-shell (2.15). The similar evolution of P (p,E, t)is easily determined. One method is to inlude the Helfand moments 〈dE〉, 〈dE2

〉, and
〈dE dp〉 into the probability urrent (2.12), from whih we �nd the Fokker-Plank equation
∂tP + ∂pjp + ∂EjE = 0 for P (p,E, t). The orrelation 〈dE dp〉 is important beause dE isnot independent from dp on the mass-shell. Equivalently, we an proeed using the Fokker-Plank equation ∂tP + ∂pjp = 0 for P (p, t) with the urrent (2.24) and substitute everydi�erentiation ∂p by ∂p + ∂E

∂p ∂E so that the probability urrent is tangential to the mass-shell.After identifying ∂se = −T∂E (2.28) we arrive at the Fokker-Plank equation
1

ν
∂tP = F0(∂p −

E′(p)
T

∂sp) P
=

[
F0(∂p) − F1(∂p) ∂sp + F2 · ∂2

sp]P (2.55)for the distribution P (p, sp, t). The momentum operator is
F0(∂p) = λ+ (λ+ T/E)p∂p +ET∂2

p .The entropi extensions of the Fokker-Plank Eq. (2.55) are
F1(∂p) = 1 + λF2 + 2p∂p and F2 = p2/(ET ) .The funtion λ(t) = 1 +H(t)/ν ontains the osmi driving by expansion. This funtion oftime is deterministi sine we an safely neglet the bak reation of our tiny system on theosmi evolution. The entropy �utuations P (∆sp,∆t) follow from (2.55) when solved for theinitial ondition

P (p, sp, t)|t=0 = δ(sp) P0(p) (2.56)and after integrating out the momentum p:
P (∆sp,∆t) =

∫

R

P (p,∆sp,∆t) dp . (2.57)The Fokker-Plank Eq. (2.55) is solved by orthogonal funtions. We expand the distribution
P (p, sp, t) in a series of Hermite polynomials with respet to the entropy dependene, sothat the two-dimensional Fokker-Plank (2.55) for P (p, sp, t) redues to an one-dimensionalsystem for the oe�ients ak(p, t). The oe�ients ak(p, t) are simple linear ombinations ofthe moments Ml(p, t),

Ml(p, t) =

∫
P (p, sp, t) slp dsp ,so that the singular initial ondition (2.56) are represented byM0(p, 0) = P0(p) andMl(p, 0) =

0 for all l > 0 in a regular way. From (2.55) follows after integrating by parts a hierarhy ofdi�erential equations for the moments Ml(p, t):
1

ν
∂tMl = F0(∂p)Ml + l F1(∂p)Ml−1 + l(l − 1) F2 Ml−2 . (2.58)



2.6. Conlusions 27The ase l = 0 redues to the Fokker-Plank equation for the momentum, M0(p, t) ≡ P (p, t).Sine (2.58) is a paraboli di�erential equation, numerial solutions for theMl(p, t) an be ob-tained by standard tehniques. Integrating p, we have the moments ml(∆t) =
∫
Ml(p,∆t) dpfor the distribution of entropy (2.57). After omputing iteratively a su�ient number of mo-ments ml, the probability distribution for the entropy (2.57) an be reonstruted by thealgorithm presented in appendix 2.7.Let us illustrate (2.57) for a universe undergoing a transient in�ation as skethed in theinset of Fig. 2.5. Suh a transition of the sale fator ranging from Ri to Rf aording to

R(τ) =
Ri e−τ +Rf eτe−τ + eτis a ommon toy-model for partile reation in quantum �eld theory [21℄. The peak of theHubble funtion shall be Hmax, so that τ = tHmax/I. The in�ation fator is I = 2(

√
Rf −√

Ri)/(√Rf +
√
Ri). Negleting quantum e�ets, the thermal heat bath, whih may onsistof photons or other massless partiles, ools proportional to the inverse sale fator [234℄,

T (t) =
Tmean

R−1i +R−1f 2

R(t)
.We hoose the mean temperature Tmean in the relativisti regime, kBTmean = 10mc2. Theuniverse in�ates by the fator Rf/Ri = 2. The osmi foring of the system depends on theratio of the relaxation rate ν and the expansion rateHmax. For the nonequilibrium distributionof the partile entropy ∆sp shown as solid line in Fig. 2.5 the dimensionless ontrol parameter

Hmax/ν equals 100. As referene, the symmetri distribution of the relativisti equilibriumwith Hmax = 0 is plotted in dashed line. When Hmax/ν assumes the values 1, 10 and 100, thewidth σsp of the distribution P (∆sp) inreases monotonially, being equal to 1.45, 1.48 and
1.64 respetively. In ontrast, the mean ∆Sp is not monotoni and assumes the values 0.68,
0.69 and 0.15 respetively. Five moments have been omputed to onstrut Fig. 2.5.2.6 ConlusionsRelativisti Flutuation Theorems have been established that remain valid for high tempera-tures or low masses, mc2 ≪ kBT . The integral Flutuation Theorem, 〈e−∆s

〉
= 1, was foundto hold also in the framework of general relativity as far as the osmi expansion is onerned.With the additional Flutuation Theorem 〈e−∆s−∆h

〉
= 1 and the numerial example ofSe. 2.5.3 we an answer the question raised in the introdution: yes, the osmi expansion hasan in�uene on the total entropy �utuations ∆s, and the mean values of individual terms suhas the partile ontribution ∆s

(partile)e an undergo a hange of sign for osmi ontration.However the relation 〈e−∆s
〉

= 1 holds, whih implies the Seond Law, ∆S = 〈∆s〉 > 0, sothat for a marosopi system the sign of ∆S is independent of the osmologial evolution.We have the remarkable situation that the First Law is violated by osmi expansion, whilethe Seond Law and moreover the Flutuation Theorem hold.On the theoretial road ahead, one may expet integral Flutuation Theorems to hold forarbitrary time-dependent and inhomogeneous �elds, suh as gravitational waves, when theonise expression (2.53) is applied. For the proess originally introdued in [51℄, the weakerinequality (2.1) has been proven reently [182℄ under general onditions.Experimentally, the hange of the environmental entropy ∆se = −∆E/T an be measuredby deteting single partiles after a sequene of elasti ollisions, i.e. ollisions without deayor exitation of internal degrees of freedom. Suh ollisions are observed for heavy quarks
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Figure 2.6: A sketh of the spae spanned by the funtions (2.61). The �rst n oe�ients
a3, . . . , an are predetermine by the known moments (vertial line). The higher oe�ients
an+1, . . . are determined iteratively. The shaded region represents the non-linear (onvex)spae of non-negative funtions. The inset shows the rapid onvergene of the algorithm.(for instane the harm quark) whih traverse the expanding quark-gluon plasma reated byheavy-ion ollisions. Nonequilibrium thermodynamial desriptions are being developed atpresent for these relativisti media [227℄. Moreover, the relativisti Flutuation Theorem isnot only subjet of high energy physis and osmology. The speial-relativisti FlutuationTheorem an be tested with a high-preision spetrosopy experiment by shining a laser onan exited granulate of glass or re�eting steal beads, so that the granulate serves as a heatbath and the photons are the ultra-relativisti �Brownian� partiles whih satter inelastiallydue to the Doppler shift6. The environmental entropy ∆se = −∆E/T then follows from themeasurement of the frequeny shift ∆ν = ∆E/h.2.7 Appendix: Treating the Trunated Moment ProblemIn order to reonstrut a distribution funtion, we are interested in an e�ient algorithm thatgenerates uniquely out of n ≥ 2 given moments mk a ontinuous and non-negative funtion
f on the real line, so that

∫

R

f(x) xk dx = mk for k ≤ n, and (2.59)
∣∣∣∣
∫

R

f(x) Hk dx

∣∣∣∣ = minimal for k > n. (2.60)In (2.60) the Hermite polynomials Hk(y) =
∑k

l=0 hkl y
l are written in the variable y =

(x−m1)/
√

2σ resaled by the width σ =
√
m2 −m2

1. The trunated moment problem (2.59)has to be augmented by the omplementary ondition (2.60) for uniqueness. Funtions solvingthe Eqs. (2.59) are readily given by
f(x) =

e−y2

√
2πσ

(
1 +

∞∑

k=3

ak

2nn!
Hk(y)

)
. (2.61)By virtue of the orthogonality of the Hermite polynomials, the �rst n oe�ients ak = 〈Hk〉f =∫

fHkdx =
∑k

l=0 hkl ml are diretly determined by the known moments ml. If one was totrunate the series (2.61) after the n's oe�ient, the resulting funtion f0 may take negativevalues. If so, we use this negative part f−0 = f0 Θ(−f0) of the funtion f0 = f+
0 + f−0 to6Cf. the introdutory disussions of Chap. 9, in whih ase the photon is absorbed and not sattered.



2.7. Appendix: Treating the Trunated Moment Problem 29determine the higher oe�ients to be ak = −〈Hk〉f−
0
for k > n. This yields a new funtion

f1 = f+
1 +f−1 with a smaller negative part f−1 . Iteratively one approahes the desired solution

f∞ with arbitrary preision (f. Fig. 2.6).We will use the Hermite expansion (2.61) in the following hapter (f. Se. 4.3) also forgranular matter.





Chapter 3The Paradigm System: Wet GranularMatterThe hystereti interation between a pair of wetted spheres has been pointed out in the �rsthapter (f. Fig. 1.1B) as a mehanism that breaks time-reversal symmetry. In the presenthapter, the hystereti pair interation between wetted surfaes is quanti�ed theoretiallyand experimentally veri�ed. The formation and rupture of single liquid bridges is temporallyresolved. The impat veloities are hosen to over the range of typial partile veloitiesin agitated wet granular matter. The results will therefore form the basis for the analytiand numerial modeling of many-partile systems in the following hapters, where we willfurthermore ompare theoretial preditions on the olletive marosopi dynamis with ex-periments. For this program the partile interation is determined in this hapter, so thatthere will be no free parameters left in the following modeling and experimental omparisons.It is shown that the hystereti formation and rupture of liquid apillary bridges betweenadjaent grains aounts for most relevant ases of wet granular matter. The various dissipa-tion mehanisms are disussed with partiular emphasis on their relevane. Variations of therupture energy loss with the impat energy are quanti�ed and disussed. From the brokentime-reversal symmetry, observed experimentally, we arrive at the Minimal Capillary Modelwhih desribes wet granular matter by the bridge energy Eb and rupture length srit as theinteration parameters.The �rst setion introdues dry and wet granular matter. In the Se. 3.2 the mehanismsof dissipation in wet granular matter are disussed theoretially. The results of the singlebridge experiment are presented in Se. 3.3. This leads us to the Minimal Capillary Model inSe. 3.4 whih is diretly applied in a �rst simulation showing the di�erent strutures formedin dry and wet granular matter.3.1 Dry and Wet Granular MatterGranular materials are truly ubiquitous, on earth and in spae. They form the rings of Saturn,and are present in nature as sand and mineral resoures for example. The industrial handlingof granular materials aounts for about 10% of the world wide energy onsumption [68℄.The reason for suh an energeti investment is intrinsi to the granular materials: granularmatter is a dissipative system. The dissipation is aused by the vast number of internaldegrees of freedom whih eah granular partile possesses. To onsider a well-de�ned example,a glass sphere with 1 millimeter in diameter onsists of more than 1019 SiO2 moleules.Shaking suh glass beads reates a `heat bath' represented by the haoti enter-of-massmotion of the grains, whih easily orresponds to giga- or even tera-Kelvins when onverted31



32 Chapter 3. The Paradigm System: Wet Granular Matterto temperature using Boltzmann's onstant. At the same time the internal degrees remainlargely at ambient temperatures, and provide an energeti sink. This strong nonequilibriumsituation has attrated muh sienti� interest within the last 25 years1 (f. [105, 123, 27, 114℄and referenes therein, just to mention a few). Beside the physial importane of granularmatter as a model nonequilibrium systems and its industrial relevane, it is noteworthy thatthe mesosopi and marosopi granular materials have the bene�t to be well aessible toontrolled experiments. The vigorously shaken dilute state is a granular gas whih allows fora Boltzmann-Enskog desription yet is, unlike a `usual' gas of moleules, out of equilibriumwith, e.g., non-Maxwellian veloity distributions [113℄. The `�uid'-like state at milder shakingshows further rih nonequilibrium phenomena, suh as the Brazil nut e�et [184℄ and states ofgranular osillons [225℄. The interest in granular materials among the soft-matter ommunityinreased within the last years, as it has been widely reognized that many onepts whihare well established for olloidal systems and glasses apply as well to granular systems [213,43, 27, 14, 153℄, and vie versa [161, 7, 33, 130℄. Furthermore, both olloidal and granularmatter play a ertain role as models for other systems whih are too omplex to be tratable.In partiular, granular systems are of great interest in the ontext of dynamial systems farfrom thermal equilibrium [78, 10, 114℄.The sienti� interest in wet granular matter strongly inreased in reent years2 [215,216, 143, 205, 206, 217, 119, 144, 237, 122, 198, 87, 114, 120, 142, 163℄. The term `softmatter' applies partiularly well to wet granulates, whih an be shaped to stable strutures([220℄, Fig. 3.10B), but yield to rather small shear stress [119, 158, 179, 196, 181℄. Thisplastiity stands out against dry granulates, suh as the sand in an hourglass, whih runsthrough the ori�e like a �uid ([68℄, Fig. 3.10A). While earlier studies [119, 163℄ foused onthe stability of the stati state, the investigation of the dynamis of wet granular matter hasjust begun [198, 87, 114℄. The hange in bulk properties is due to a fundamental hange ofthe underlying partile interation. In the wet system, small liquid apillary bridges formbetween adjaent grains, exerting an attrative fore upon them by means of the surfaetension of the liquid [144, 204℄. It is lear that these only form when the liquid wets thematerial the grains onsist of, whih is well ful�lled for most sands. When a wet granulate isbeing sheared, or otherwise mehanially agitated, the repeated formation and rupture of themany liquid objets inside gives rise to onsiderable dissipation, whih is then experiened asa notieable resistane to the external drive imposed on the material. In order to understandthe mehanial properties of wet granular matter, it is thus indispensable to understand thedissipation proesses onneted to the liquid apillary bridges in detail.The hystereti formation and rupture of liquid bridges has been emphasized in the �rsthapter as a mehanism whih breaks the time-reversal symmetry of a hard sphere system.Sine a liquid bridge mediates an attrative fore between partiles, wet granular matterinterats by hystereti fores, as has been introdued in the sienti� literature in [198, 87, 114℄.With these hystereti fores, the interation and dissipation in wet granular matter is ofqualitative di�erent nature [114℄ ompared to dry granular matter. In ollision of dry partilesa ertain fration of the initial kineti energy is dissipated into the atomi degrees of freedom ofthe partiles. This is in sharp ontrast to the hystereti interation in wet granular matter. Aliquid bridge is formed between partiles in ontat. Being strethed between moving partiles,the bridge bears a de�ned maximal potential energy. With the rupture of the apillary bridge,this intrinsi energy ∆Eb is dissipated into the moleular degrees of freedom of the liquid.1The �rst sienti� investigations of granular materials started muh earlier, usually redited to R. A. Bag-nold [11℄ about 70 years ago.2There exist individual pioneering sienti� works among whih [40℄, e.g., dates forty years bak, as wellas engineering results [188℄.



3.2. The Mehanisms of Dissipation in Wet Granular Matter 33Wet granular matter has therefore an intrinsi energy sale, as will be disussed theoretiallyin the following setion and on�rmed experimentally under realisti impat onditions in thishapter.3.2 The Mehanisms of Dissipation in Wet Granular MatterThis setion disusses �ve di�erent mehanisms (and regimes) by whih energy is dissipatedin the wet granular dynamis.Inelasti Collisions. � Collisions of marosopi partiles are inelasti. This dissipationis responsible for the fat that even the perfetly dry granulate in the hourglass behavesdistintly di�erent from a regular �uid. Some fration of the kineti energy of the grains istransferred at eah impat to the mirosopi degrees of freedom on atomi sale. The heatbath represented by the haoti motion of the grains orresponds to giga- or tera-Kelvinsas emphasized above. In ollisions, this heat bath is oupled to the room-temperature heatbath of the internal degrees of freedom of the partiles, for example by the exitation of thepartiles' phonon spetrum. Some of the most striking features of granular motion owe tothis intrinsi nonequilibrium harater.On the level of a ontinuum desription, an elasti and an inelasti fore omponent anbe distinguished in the ollision of partiles. The ontinuum theoreti desription of a spherepressed against a �at wall (or equivalently up to a fator 1/
√

2, when two spheres exhangefores) was derived by H. Hertz in 1882. The surfae separation is denoted by s throughoutthis thesis (f. Fig. 3.1A). The elasti Hertz fore for a ompression ξ = −s > 0 reads
Felasti = c1ξ

3/2 . (3.1)The oe�ient c1 =
√

2Re� E/3(1 − ν2) ontains the Young modulus E, the Poisson ratio ν,and the Derjaguin relation
R−1e� = (R−1

1 +R−1
2 )/2 . (3.2)This is the quasi stati fore, while ollisions at �nite impat veloity give rise to a dissipativefore, sine the partiles are marosopi whih allows for internal frition. The visoelastigeneralization of Eq. (3.1) has the additional term [27℄

Fviso = c2ξ
1/2 ξ̇ . (3.3)The restitution oe�ient ε quanti�es the dissipation aused by inelasti fores, and is de�nedas the residual fration of the momentum, i.e. the ratio of the momenta after and before theimpat,

ε =
pf
pi =

−ξ̇(toll)
ξ̇(0)

. (3.4)Integrating the visoelasti fores (3.1) and (3.3) shows that this ratio is fairly independentof the initial kineti energy of the grains in a wide range, and tends to be smaller for largeenergies [27℄. The assoiated loss in energy is
∆Einelasti = E0(1 − ε2) , (3.5)with the initial energy (in the enter-of-mass system) denoted by E0.Other mehanism of dissipation in `dry' ollisions, suh as plasti deformations, an beinluded to further redue the fator 1 − ε2. The most important aspet of this dissipationmehanism is that the energy lost in the impats, ∆Einelasti, sales with the impat energy,

E0. There is thus no spei� energy sale set by this proess.



34 Chapter 3. The Paradigm System: Wet Granular Matter
(A) s

q

d R= 2

(B) F
c
b

/ 
F

0

1.0

0.8

0.4

0.2

0

0.6

0.2 0.4 0.6 0.8 1.0

s R s R/ ( ) = /
2

VV
~Figure 3.1: (A) A liquid apillary bridge between two spherial `grains' of radius R. Theapillary bridge an span a ertain distane between the grains, until it pinhes o� at aritial distane whih depends upon the liquid volume in the bridge. (B) A typial fore-vs-distane urve observed as a liquid bridge has formed. It is shown as normalized with respetto the ontat fore, F0 = 2πγR cos θ.

Figure 3.2: Surfae tension of water at di�erent temperature [140℄. Water is an ubiquitousas well as exeptional �uid in many respets. When used to wet granular materials, its highsurfae tension and simultaneously low visosity allows for a lear-ut approah to wet granularmatter, where apillary fores dominate over visous fores, as desribed quantitatively by thesmallness of the apillary number Ca = ηv
γ .



3.2. The Mehanisms of Dissipation in Wet Granular Matter 35The Capillary Interation. � Contrary to the inelasti ollision, the liquid apillarybridges whih are present in a wet granulate do provide their own energy sale. This is due totheir harateristi dynamis of bridge formation and rupture. When two wet grains approaheah other, the liquid adsorbed on their surfae will not reat until they ome into ontat. Atthis point, liquid is rapidly dragged to the area of ontat due to the interfaial fores, and aapillary bridge forms. When the grains withdraw from eah other after the impat, the bridgeremains intat for quite some distane, exerting an attrative fore upon the grains. This isillustrated in Fig. 3.1A for the idealized ase of spherial grains. The angle θ is the ontatangle the liquid makes with the grain material, and haraterizes its wetting properties. Foromplete wetting, we have θ = 0. At a ertain ritial separation of the grain surfaes, whihshall be denoted by srit throughout this thesis, the bridge ruptures and distributes its liquidontent bak onto the grain surfaes. The rupture length srit depends on the liquid volumeof the apillary bridge, If Ṽ = V/R3 is the normalized liquid volume of a bridge betweenspherial grains of radius R, and s̃ = s/R is the normalized separation of the grain surfaes,rupture ours at
s̃rit =

(
1 +

θ

2

)(
Ṽ 1/3 + 0.1Ṽ 2/3

) (3.6)in good approximation [237℄.A typial fore-vs-distane urve is shown shematially in Fig. 3.1B. The fore is normal-ized with respet to the ontat fore,
F0 = 2πRγ cos θ , (3.7)where γ is the surfae tension of the liquid ([237℄, f. Fig. 3.2 for the surfae tension of water).It should be noted that the apillary fore easily exeeds the gravitational fore of the partile.For instane, the apillary fore (3.7) aused by water ating on a glass sphere of 1 millimeterdiameter is 17 times its weight. Sine there is no liquid bridge (and thus no fore) when thegrains are approahing, the energy lost in the entire proess of formation and rupture of theliquid bridge is given by the area under the desending urve,

∆Eb =

∫ srit
0

F (s) ds . (3.8)For spherial grains, the shape of this urve is well known in the quasi-stati ase [237℄.It orresponds to the fore exerted by a rotationally symmetri minimal surfae spannedbetween the spheres, where the liquid volume of the bridge and the ontat angle are themain geometri parameters. A good approximation is
F =

F0

1 + 1.05S + 2.5S2
, (3.9)where S = s̃/

√
Ṽ [237℄. This is in fat the urve displayed in Fig. 3.1B. It terminatesat Srit = s̃rit/√Ṽ as given by Eq. (3.6). Using this approximation, we an evaluate theintegral and obtain

∆Eb = 0.67 F0R
√
Ṽ arctan (0.35 + 1.68Srit) (3.10)for omplete wetting (θ = 0). Srit is at least of order unity, suh that the arctan(...) ≈ 1.1 orlarger in (3.10), and it never goes beyond 1.57. Hene a reasonable approximation is

∆Eb ≈ F0R
√
Ṽ . (3.11)



36 Chapter 3. The Paradigm System: Wet Granular MatterGiven the fat that we have negleted side e�ets suh as ontat angle hysteresis, this shouldbe as good as it gets.The presene of a de�ned energy loss, whih does not sale with the impat energiesof the olliding grains, has dramati onsequenes for the olletive physial properties ofthe system. Most prominently, it will be shown in the following hapters to lead to phasetransitions whih our when the granular temperature is omparable to the energy loss. Itis illustrative to express the �xed energy loss in terms of an energy-dependent restitutionoe�ient. We readily obtain
εb =

√
1 − ∆Eb

E
, (3.12)where ∆Eb is onstant. Obviously, ε beomes zero when E = ∆Eb. As a onsequene,an energy-driven phase transition may be antiipated when the granular temperature omeslose to ∆Eb (f. Chaps. 4 and 10). This is not the ase in a dry system desribed by aonstant restitution oe�ient.If the impat dynamis is su�iently slow as ompared to the dynamis of bridge formationand rupture, we may assume that the dynami fore-vs-distane urve orresponds to thequasi-stati ase, as represented by Eq. (3.9). However, when we onsider dynamial proesses,as they take plae in a sheared or otherwise agitated wet granular material, we have to disussthe in�uene of this dynamis on ∆Eb. In doing so, we will also have to onsider the energyloss due to damping in the liquid.Quadrati Damping. � Starting in the moment when the thin wetting layers of theinterating partiles touh, the interjaent liquid is moved laterally outwards, as the surfaesof the partiles ome loser to ontat. The Reynolds number for the liquid phase is, in the aseof water, Rewater = ρwatervR/ηwater ≈ 223 (ηwater = 0.894 mN s/m2, ρwater = 998 kg/m3, v =

0.4 m/s). Therefore the kineti term in the Navier-Stokes is not negligible, whih desribesthe propagation of a irular pressure front moving outwards from the impat point. Thissound wave is rapidly damped due to the shear mode imposed by the boundary onditionin the extremely shallow liquid �lm. The details of the spatially separated attenuation iswithout relevane for the partile. (At this point, the experiment ould be even done withsuper�uid helium.) The energy emitted into the liquid �lm is taken from the partile by theloal damping fore Finertia ∝ −v2, whih is neessary to squeeze out the liquid against itsinertial resistane. For a general fore F (s, v), there is no expliit time dependene in (therelative omponent of) the equation of motion3, v̇ = F/mred, so that one an substitute v(t)in favor of v(s) using v′v = v̇ to arrive at
v′(s) =

F (s, v(s))

mredv(s) . (3.13)(This is atually a generalization of the di�erential p = ∂L/∂v de�ning the anonial mo-mentum, sine Eq. (3.13), pdv = Fds, holds for dissipative fores.) For the kineti damping,
Finertia ∝ −v2, Eq. (3.13) implies that the veloity falls of exponentially with the intrusion.When the ross setion 2πR (s�lm − s) , 0 < s < s�lm, of the sphere dipped into the �lm is takeninto aount, we �nd Finertia = −πR(s�lm − s)ρwaterv2. Thus the veloity at ontat deaysexponentially with the �lm thikness s�lm aording to v = v0 exp [−πρwaterRs2�lm/(2mred)].Furthermore, the lateral �ow u speeds up4 as the surfaes ome loser aording to the ontinu-3We write the redued mass so that the ases of partile-partile interation and the ollision with the wall(of `in�nite' mass, mred = m) are inluded.4For partile-wall ollisions, and for large apillary bridges, the bak�ow of liquid gives rise to an experi-mentally visible tapering of the apillary bridge at the wall, whereas the equilibrium shape would be broaderat the wall.
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Figure 3.3: Sketh of a wetted spherial partile approahing a wetted wall. This impatdynamis is disussed theoretially in Se. 3.2 and studied experimentally in Se. 3.3. Asshall be onvention throughout this thesis, the variable s denotes the minimal separation ofsurfaes, here between partile and wall at ρ = 0, h(0) = s.ity equation (for inompressible wetting liquid), divv = 0: us ≈ v(s�lm− s) in linear approxi-mation. This gives rise to a spatial dependent fore, Finertia(s, v) = −πRρwaterv2(s�lm−s)2/s,whih is easily integrated aording to Eq. (3.13):
v ≈ v0

(
r

s�lm) 3s2�lmρwater
4R2ρgrain

, (3.14)where the (small) roughness r (≪ s�lm) is the lower integration bound. Hene the dissipatedenergy, ∆E ∝ v2
0 − v2 is

∆Einertia = E0
3

2

ρwater
ρgrain (s�lm

R

)2
ln
s�lm
r

. (3.15)Compared to Eq. (3.14), we ould safely neglet the fourth order in s�lm/R in the expres-sion (3.15). A fator of two for approah and retration is inluded. So for glass spheres andthe rather high �lm thikness of s�lm ≈ 100µm used in the single partile experiment to ensurehomogeneity, we �nd ∆Einertia ≈ 2.7E0(s�lm/R)2. It is of great importane to realize that thisis simply another ontribution to the restitution oe�ient. Sine 1−ε2 ≈ 2(1−ε) = 2
∑

j ∆εj ,the restitution oe�ient is redued by
∆εinertia = 0.3

(s�lm
R

)2
ln
s�lm
r

≈ 1.4
(s�lm
R

)2
= 0.014 , (3.16)without a qualitative hange of the partile interation.Linear Damping of Visous Dissipation. � The essential di�erene ompared to thepreviously regarded damping fore, Finertia ∝ −v2, is that the visous damping is linear in v:

Fvis = −vmred f(s). Thus, aording to Eq. (3.13), the veloity does not deay exponentiallywith distane, but algebraially or even logarithmially (for f(s) ∝ 1/s):
v(s) = v0 −

∫
f(s)ds . (3.17)



38 Chapter 3. The Paradigm System: Wet Granular MatterHene the loss in energy, ∆E ∝ v2
0 − v2 , has one term whih is independent of the initialenergy and ould give rise to the stiking of the partiles.The visous dissipation is aused by the lateral �ow of the wetting liquid. This �ow isdriven by the time-dependent boundaries of the two olliding spheres, or by one sphere and a�at wall. Suh visous frition falls in the lass of lubriation problems, whih are desribedby the Stokes equation, ∇P = η∆u, in the plane parallel to the wall that we onsider asthe ollision partner (f. Fig 3.3). The result for no-slip boundary onditions is the lassialReynolds equation (derived by O. Reynolds in 1886 [180℄), whih is here stated in polaroordinates with the radial oordinate ρ, so that (the Laplae operator is ∆ = ρ−1∂ρρ∂ρ)aording to the axial symmetry of the problem (f. Fig. 3.3):

η−1ρ−1∂ρ

(
ρh3(ρ, t)∂ρP

)
= 6U∂ρh(ρ, t) + 12∂th(ρ, t) . (3.18)The U desribes the tangential motion of the sphere, whih we neglet to arrive at the mainontribution whih is due to the perpendiular approah, ∂th < 0, of the sphere. The solutionof Eq. (3.18) is the pressure P (ρ, t), whih gives the visous fore after being integrated overthe part of the boundary of the sphere, whih is wetted by the apillary bond to the wall.Inserting the loally urved shape of the sphere, h(ρ, t) = s(t) + r2/(2R), and integrating theReynolds equation (3.18) twie over ρ, yields the visous fore [74℄

Fvis =
3π

2
R2η

v

s
(3.19)for spherial grains, where η is the visosity of the liquid and v is the relative veloity of thegrains at impat. The overwhelming part of the visous dissipation falls in the withdrawalregime, sine srit ≫ s�lm. If visous fores are dominant, the equation of motion duringwithdrawal reads Fvis = −ms̈, with the grain mass m, and the dot indiating the derivativewith respet to time. Diret integration leads to

∆Evis = mvvis ∫ srit
r

ṡ

s
ds =

1

2
mv2vis ln

srit
r

(
2
v

vvis − ln
srit
r

)
, (3.20)where v denotes the veloity diretly after the impat and r is the lower uto� parameter,whih is bounded away from zero by the roughness of the grains [114℄ as applied before. Here

vvis =
9η

8ρR
(3.21)is a harateristi veloity, where ρgrain is the density of the grain material. If v = vvis ln srit

r ,the grains stik together in the sense that their kineti energy is not su�ient to supply thevisous energy required for reahing the rupture distane, srit, even at zero surfae tension.If v is onsiderably larger, one obtains the known result [114℄
∆Evis ≈ 3π

2
R2ηv ln

srit
r

. (3.22)Eq. (3.20) may as well be expressed in terms of an energy dependent restitution oe�ient as
εvis = 1 −

√
Evis
E

, (3.23)where Evis = m
2 [vvis ln(srit/r)]2 is the impat energy below whih stiking ours. We seefrom the Eqs. (3.12) and (3.23) that there are great similarities between the apillary and thevisous e�ets, and both strongly di�er from the sale-free energy loss enountered with the
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Figure 3.4: Top view of the experimental setup. The high speed amera views the senefrom the bottom end of this piture (arrow). The sene is illuminated either through a slitfrom the left or a old light soure from the right, so that re�etions from the sidewalls ofthe avity are avoided. The avity was dry when this piture was taken, whih is why theroughed bottom plate has appears hazy (ompared to the perfetly �at plate to its right).For the wet experiment the avity was vapor saturated anddry systems. The smallness of the Capillary number5, Ca = ηwaterv/γwater = 0.0012 ≪ 1,(v = 10 m/s) indiates that the apillary bridge energy ∆Eb dominates over the visousenergy Evis. It is the main motivation of the experiment reported in this hapter to determinethe relative relevane of these two dissipation mehanisms under realisti dynamial � andtherefore nonequilibrium � onditions.The Frition in Air. � If not evauated, the granular partiles move in a gas phase of�nite visosity. For air the visosity is ηair = 18.4 µPa s at 20◦C. The imposed resistanefore is Fair = −6πηairvR (Stokes frition) if Reair = ρairvR/ηair is small, otherwise Fair ≈
0.71ρairR2v2 under turbulene. For a realisti system, suh as the reported experiment of thishapter, Reair is of the order of 10. (ρair = 1.204 kg/m3).3.3 The Time-resolved Measurement of Collision and SingleBridge InterationIn order to investigate to what extent the onepts disussed above in Se. 3.2 apply underrealisti onditions, we have performed an experiment partiularly designed to map the on-ditions in agitated wet granular matter as losely as possible. As model grains, we have usedspherial glass beads with radius R = 1 mm. The surfae of eah glass sphere has been wettedwith the �ne mist generated from (Millipore) water by a piezo spray.The spheres fell freely in a losed box (30.4 m3 in volume, shown from top in Fig. 3.4)�lled with water saturated air. As the initial height is hi = 29 mm, the impat veloities wereon the order of a few m/se, whih orresponds to typial granular temperatures in agitated5The apillary regime is also disussed in the review artile [114℄, f. espeially Fig. 7 therein.
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Figure 3.5: An experimental run as aptured by a fast amera yields the trajetory of a singlewetted glass bead bouning on a wetted glass plate within a vapor saturated environment.The size of the irle orresponds to the atual size of the glass sphere (1.94 mm in diameter),and the positions shown have been traed optially by a amera with Complementary-metal-oxide-semiondutor (CMOS) sensor at 491.29 frames per seond. From the trajetories,we an derive the total energy as a funtion of time. The superimposed blak squares isthe instantaneously measured sum of potential and kineti energy, dedued from height andveloity. Note that �rstly, there is no air-frition damping the ballisti branhes of the traje-tory, and seondly, the partile undergoes bound osillations at the very end of the trajetory.These type of motions will play a ertain role in the analytial treatment of Kolmogorov-Sinaientropy in Chap. 5.granulates. With this initial veloity the spheres ollided with a wet horizontal glass plate,with de�ned roughness amplitude (r =
√〈

h2
0

〉
≈ 1µm) to ensure a low ontat angle6.The motion of the glass spheres was reorded with a fast CMOS amera, the images weresubsequently analyzed by standard image proessing tehniques.Sine all arguments put forward above onerning fores between two spherial grainsapply as well to fores between a sphere and a �at wall, we have studied the latter beause ofits better experimental aessibility. We just have to keep in mind that in formulas developedfor two spherial grains, the radius of the sphere must be multiplied by two. This orrespondsto the well-known Derjaguin approximation (3.2). Although this is not an highly aurateexpression for the system under study [237℄, it provides a reasonable approximation sineother e�ets, like ontat angle hysteresis, give rise to larger unertainties [114℄.The result is shown in Fig. 3.5. The height of a bouning glass sphere is plotted as afuntion of time (irles). On the same time sale, the total energy as obtained from the6The ontat angle θ′ may be desribed aording to the Wentzel law cos θ′ = r cos θ, with r the inreasedmirosopi surfae area divided by the geometri surfae area.
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Figure 3.6: Irreversibility at work: as pointed out in Se. 1.3, the system undergoes temporallydireted transitions. The three onseutive images are taken around the time of impat withthe bottom glass plate. The hystereti harater of the bridge is learly seen. The timeelapsed between two onseutive images is 2.04 ms. (1) The partile approahes the glassplate freely. (2) The liquid bridge is formed almost instantaneously (ompared to the partilemotion) as the overing wetting �lms overlap. At this point in time, the attrative apillaryfore is swithed on. (3) The partile is bound by the liquid bridge to the plate.instantaneous veloity and height is indiated by the blak squares. While there is somesattering in the viinity of the impats, mostly due to the �nite delay between onseutiveimages, the energy is observed to be onstant with high auray away from the impats,allowing for an aurate determination of the energy level of eah boune.Below in Fig. 3.6, we show three onseutive loseup images in the ultimate temporalviinity of an impat with the glass plate. The time elapsed between the images is 2.04 ms.The hystereti harater of the apillary bridge formation and rupture is learly visible fromits absene before the impat (left) and its persistene afterwards (right). The wet surfaesapproah freely, until the surfae �lms touh. Then, on a very short time sale whih is farbelow one milliseond, the liquid aumulates around the ontat due to apillary fores whihminimize the Free Energy of the liquid/air interfae. A apillary bridges grows out at theontat and mediates an attrative fore beause of its negative Laplae pressure. This liquidbridge is strethed but remains intat (or even ontinues to grow in volume) as the surfaesmove apart. Therefore the partiles are subjet to an attrative fore until a ertain ritialseparation srit is reahed, where liquid bridges beomes unstable and ruptures. Assoiatedwith this elongation is the hystereti loss of energy, ∆Eb.From the di�erene in the energy levels of onseutive bounes, we an dedue the energy
∆Eb lost in the impat with the glass plate. For a quantitative analysis, we have to onsideras well the energy loss due to visous frition in the air, ∆Eair. Using Stokes' formula, it isstraightforward to see that

∆Eair ≈ 4πRηair
g

(
2E

m

)3/2 (3.24)where ηair is the visosity of air. This is valid at low Reynolds numbers. We have Reair ≈
v/vvis, air ≈√H/15.6µm, where H is the height of the boune, suh that Reair reahes values



42 Chapter 3. The Paradigm System: Wet Granular Matterat most up to 30 in our experiment. Sine turbulene sets in only at muh higher Reair [218℄,we an safely assume Eq. (3.24) to desribe our system well.The most onvenient way of analyzing the data is to plot the energy of eah boune as afuntion of the energy of the previous one. Taking all dissipation mehanisms into aount,we obtain
En+1 = ε2En − ∆Eb − ∆Evis − ∆Eair (3.25)where n numbers the bounes, and the last two terms depend upon En. The result is displayedin Fig. 3.8A. The full squares represent the results for En+1 as obtained form the experiment,while the open irles have been orreted for ∆Eair aording to Eq. (3.24), whih is knownwithout any free parameters. As one an learly see, the orretion is of minor importane,as suggested already by the energy data from the trajetories in Fig. 3.5. From Eq. (3.22),we see that the visous energy loss in the liquid is of order mv0v, whih is readily hekedto be below 3 nJ in our experiments. It is thus even smaller than the visous dissipation inthe air, and will heneforth be negleted. The experimental error of the results displayed inFig. 3.8A is well below the size of the symbols.The three data points for the largest energies lie on a straight line within errors. From theslope of this line, we obtain the restitution oe�ient onneted to the solid impat of the glasssphere with the bottom plate. The result is ε = 0.82 ± 0.02. Interpreting the interept withthe vertial axis as the apillary bridge energy, we obtain ∆Eb = 0.07 ± 0.02µJ. However,this interept an be determined in priniple for eah pair of onseutive energy levels, En.The orresponding results for ∆Eb are shown in the inset of Fig. 3.8A as a funtion of theinident energy. The deviation of the datum point at lowest energy from the straight line inthe main panel transforms into a pronouned inrease of ∆Eb at low energy.From the few times at whih we ould apture the formation of a bridge with the amera,we ould estimate the bridge volume assuming an axisymmetri shape. For the bridge at theslowest impat, we obtained Ṽ = 0.25 ± 0.06 for the dimensionless volume. Together withEq. (3.11) this leads to ∆Eb = 0.214 ± 0.056µJ, where we have assumed omplete wetting(θ = 0). This result is indiated by the shaded area in the inset of Fig. 3.8A and omparesvery favorably with the experimental value obtained at low impat energy.The redution of ∆Eb at larger impat energies may be understood when one onsidersthe dynamis of formation of the bridge. There is some time needed for the liquid to rearrangefrom the thik wetting layer around the ontat point into the liquid apillary bridge struture.The entire proess spans several time sales, starting from the miroseond range at individualasperities of the grain roughness [245℄ to ripening proesses on the sale of minutes [131℄.Consequently, although the impat duration of the glass sphere with the bottom is su�ientto form a small bridge, the volume of the latter will be larger when it has more time to form.The harateristi time sale of the early stage of bridge formation an be estimated fromthe typial height of the bridge at ontat, whih is h̃ = h/R ≈

√
Ṽ /2π ≈ 0.2. Knowingthat visous damping is of minor importane, we onsider the dispersion relation of undampedapillary waves, ω2 = γq3/ρwater. With q ≈ 1/h we obtain the time sale τ = 1/ω ≈ 3.3×10−4se. It is straightforward to alulate the kineti impat energy Eτ at whih the solid surfaesare loser than h for a duration equal to τ . We obtain

Eτ =
8πR2γρgrain

3h̃ρwater ≈ 780nJ (3.26)whih is of the same order as the transition seen in the inset of Fig. 3.8A.However, the dynamis not only of bridge formation, but also of bridge rupture gives riseto variations in ∆Eb. If the solid surfaes withdraw rapidly, the formation of the extended
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Figure 3.7: Final energy as a funtion of initial energy, EOUT = ε2EIN−∆E, at four impats.The main panel shows the energies extrated diretly from the experimental run (shown inFig. 3.5). The partile energy has been omputed between subsequent ollisions from thetrajetory of the wetted sphere as it bouning against a wetted glass plate. There is a learnegative interept whih orresponds to an energy loss, ∆E, whih does not vanish at lowimpat energies, so that the sphere �nally stiks to the glass plate. The dashed line is a �t toall four points assuming an equal energy loss ∆E for all four ollision events. This mean bondenergy is ∆E = (141 ± 36)nJ. Although this dashed �t falls within the (too onservative)error bars, dedued from the sattering of instantaneous energy measurements, a loser lookat the measured energies learly reveals two regimes: the �rst three ollisions fall perfetly onthe solid line. For these ollision events the ripening time of the apillary bridge is above thetime the bridge exists before it ruptures. Hene, the bridge volume is redued ompared tothe �nal fourth impat, for whih the interation time is above the apillary ripening time (f.omputation in text). The inset shows the analogous experiment in a very dry environmentheated to 40◦C. The points are ollisions of one glass bead for di�erent initial heights (notollisions onseutive in time on a single trajetory). There is no measurable interept. (Theslope is higher in the absene of (3.16) and beause the glass plate used had a smooth surfae).
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nek will be impeded and the bridge is expeted to pinh o� at a separation whih is smallerthan the `quasi-stati' srit. This redues the upper limit of the integral in Eq. (3.8), and thusthe value of ∆Eb. By measuring the bridge volumes for di�erent impats independently,we an distinguish these two e�ets. This is shown in Fig. 3.8B, where ∆Eb is plotted as afuntion of the bridge volume, as determined from images lose to the respetive impats. Thesolid line represents Eq. (3.11) and has no �tting parameters. Good agreement is found forthe larger bridge volume, whih orresponds to the leftmost point in the inset of Fig. 3.8A. Atsmaller volume, ∆Eb is indeed redued, but this redution in is muh stronger than preditedby the solid line, whih represents the quasi-equilibrium shapes.If we �nally return to the onversion of the energy loss into an energy-dependent restitutionoe�ient, we see that the variations in ∆Eb will ause ε(E) to derease even stronger withdereasing impat energy than suggested by Eq. (3.12). This stresses again the qualitativedi�erenes to the dry systems, where ε(E) tends to be dereasing with inreasing impatenergy. When one looks at the results in the main panel of Fig. 3.8A, one might not antiipatethat the small negative interept with the vertial axis should be of any importane for theolletive behavior of many spheres. Quite surprisingly, the dramati mehanial di�erenesbetween dry and wet sand show that this is nevertheless the ase.



46 Chapter 3. The Paradigm System: Wet Granular Matter3.4 The Minimal Capillary Model3.4.1 The Experimental BasisWe have demonstrated in the last setion experimentally, that the apillary interation be-tween urved wetted surfaes gives rise to a de�ned bond energy Eb. (The ∆ in ∆Eb isheneforth suppressed to shorten notation.) This energy is not taken from the relative mo-tion of the partiles in the moment of the ollision, but transferred into the surfae energyof the apillary bridge being strethed as the partiles move. The sum of granular energyand apillary energy is onserved as long as the bridge remains intat. The formation andrupture of apillary bridges is spatially separated (f. Fig. 3.6). This implies that the apillaryfore is swithed on and o� hysteretially. When the surfae separation exeeds the intrinsilength sale srit, the bridge ruptures and the surfae energy Eb is irreversibly lost. We havetherewith shown that the interation in wet granular matter is dominated by
• the hystereti formation and rupture of apillary bridges, whih are haraterized bytheir
• rupture length, srit, and the assoiated
• apillary energy, Eb, whih is dissipated in the event of rupture.Note that this mehanism of dissipation does not rely on the visosity of the wetting liquid,but on its surfae tension γ.The measurement resolved the dynamis down to 1 ms. The liquid bridge volume in thissetup would orrespond to a liquid volume fration (in relation to the total jammed granularvolume) of approximately W = 11% if six liquid bridges7 of this size were residing on onepartile in a solid on�guration of wet granular matter. The liquid bridge volume has beendeliberately hosen to be su�iently high in order to resolve the bridge energy on the miro-Joule sale by observing the wet granular kinematis. The formation of the liquid bridge itselfwas found not to be resolved on the milliseond time sale. Hene, this puts an upper boundon the initial formation time of the apillary bridge, whih will be even faster for the liquidontent W ≤ 2% we will work with in this thesis. On the other hand, the strething of theapillary bridge up to its ritial length has been learly resolved, so that we may apply inthe analyti and numerial modeling a separation of time sales, assuming an instantaneousbridge formation.3.4.2 The Fore LawFor analyti omputations and numerial simulations of the full many-partile system pre-sented in this thesis, we will apply the Minimal Capillary Model [114℄, whih assumes thatthe apillary fore is onstant, Fb = Eb/srit. This model has been found to reprodueexperimental results, e.g. for the shearing of wet granular matter [87℄. The wet granularinteration is onsequently desribed by two parameters, the intrinsi length sale srit andenergy sale Eb. These parameters are not free but uniquely determined for the hosen wetgranular matter: namely by the surfae tension γ of the wetting liquid, the ontat angle θ, theamount of added liquid, and the partile size, aording to the expressions (3.6) and (3.10).Figure 3.9 illustrates the Minimal Capillary Model whih inorporates the three importantproperties summarized above in 3.4.1.7Six is a typial value [114℄ and equal to the oordination number of isostati networks in three dimensions,as is disussed in Chap. 7.



3.4. The Minimal Capillary Model 47We will furthermore investigated the dependene of dynamial and transition propertieson the details of the fore law in this thesis. Variation of the Minimal Capillary Model will beomputed for the Kolmogorov-Sinai entropy (f. the Extended Capillary Model in Chap. 5),and for the nonequilibrium phase diagram of wet granular matter (f. the square-well potentialin Chap. 10). We will show in these omputations that the simplifying assumption of aonstant fore is well justi�ed. Furthermore, we �nd in all experimental results presented inthis thesis support without ontradition for the Minimal Capillary Model.3.4.3 Fundamental PropertiesBy virtue of this hystereti interation wet granular matter is a remarkable system, wherethe following aspets are found to onur. Its widespread relevane in geology, industry andastrophysis has been pointed out in the �rst hapter. There the peuliar dynamial propertyto be (everywhere loally) sympleti and still dissipative has been mentioned (and will beproven in Chap. 4). This means that the wet granular dynamis is lose to a Hamiltoniansystem and still dissipative with Eb > 0. The dissipation is experimentally ontrolled by thehoie of the wetting liquids, sine aording to the Eqs. (3.7) and (3.10) we have Eb ∝ γdepending on the surfae tension γ. The sympletiity is related to the fat that in wetgranular matter the mehanism of dissipation is not `hidden' in the moment of the ollision,but present in the partile dynamis as �nite hystereti fores. The hystereti apillary foreslargely in�uene the haotiity (as will be derived in the Chaps. 4 and 5). Finally, the intrinsienergy sale set by the hystereti loss will be shown to ause nonequilibrium transition (in theChaps. 4, 6, 8, and notably 10). With these properties wet granular matter may be regardedas a paradigm system to study entropy prodution, nonequilibrium dynamis, and transitions.3.4.4 Qualitative Change of Material Properties Caused by Wetting Liq-uidsDry sand trikles easily through hinks and revies, as everyone knows well from the hourglass, or just personal experiene. However, the addition of small amounts of liquid aresu�ient to transform it into a plasti (or, more preisely, a visoplasti) material. The sameis true for all granular matter when a few volume perent of liquid are added, provided thelatter wets the grains well and the grains are not too large.As we have dislosed in the preeding setions of this hapter that there is a qualitativehange in the dissipative interation aused by the wetting additive, whih is quanti�ed bythe apillary bridge energy Eb, the rupture length srit, and the bridge fore Eb/srit, wean envisage that this partile-partile interation will lead to entirely di�erent marosopimaterial properties for wet and dry granular matter. Before we investigate this hange quan-titatively on the level of many-partile systems in this thesis, we brie�y allude to the followingexamples by visual inspetion.First and indubitably the most popular wet-granular-e�et is the stability of sand astles,whih annot be built from dry, but only from wetted sand. In an arhitetural objet suhas the one pitured in Fig. 3.10B, the liquid bridge topology in the bulk exeeds the isostativalue of six bonds per partile, so that this liquid bridge network is stable as long as the bulkstress does not exeed the liquid bridge fore on the level of single apillary bridges. Thisinternal liquid struture is studied in [197℄ by means of tomography measurements at theEuropean Synhrotron Radiation Faility in Grenoble, whih the author has had the pleasureto attend one.While sand astles represent a stati state frozen far from equilibrium, a seond and slightlymore dynamial example ours with shifting sand dunes. These are ontinuously reshaped
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(A) (B)Figure 3.10: (A) Dry granular matter has no plastiity and streams, very reminisent to a �uid,through the onstrition of an hourglass (Copyright provided by `WilHei', aboutpixel.de). (B)shows an example of what is probably the most famous steady state of wet granular matter:a sand astles on the beah. This stability of wet granular matter under gravity shows itsresistane against shear stress (Copyright provided by D. Erny, piture-newsletter).by saltation, an eolian sand transport in whih individual grains are lifted and hit bak thesurfae to release others, observed on Earth [15℄ as well as on Mars [168℄. Yet this transportproess omes to rest in the Namib desert at about 200 days a year in the early morning hours[139℄. At that time old thermohaline irulation at the Skeleton Coast has ooled the seaair, letting moisture ondensate to form oastal sea fogs, whih move inland over the ridgesof the dunes to wet their surfaes.3.4.5 Qualitative Changes of Dynamis:Solid, Gas and Floulation in Wet Granular MatterAs a dynamial example, let us take a �rst look at a simulation whih takes apillary bridgesinto aount, with the hystereti interation as established experimentally in Se. 3.3 andsummarized in Se. 3.4.1. Results from various simulation tehniques will be quantitativelyanalyzed in the ontext of analytial and experimental results in the following hapters. TheFigs. 3.11 and 3.12 show snapshots of typial two-dimensional strutures whih result infreely evolving granulates (without gravity), jargonized as the `free ooling state'. We willquantitatively desribe a free ooling proess in Chap. 6. Here we are interested in thequalitative di�erene of the strutures whih emerge in dry and wet granular matter. Inboth ases, the granulate was prepared initially to �ll approximately the left half of thequadrati simulation domain homogeneously with an area overing of 68%. The initial veloitydistribution is a Maxwellian of temperature T0. Figure 3.11 is the `dry' struture resulting frominelasti ollisions with a onstant oe�ient of restitution, ε = 0.9 (f. the �rst paragraphin 3.2), while the quite di�erent struture in Fig. 3.12 is a result of the hystereti interation.Dry granulates have in partiular an instability to form density inhomogeneities. This isso beause for partiles whih happen to be in a region of slightly inreased density, the meanfree paths are shorter, so that dissipation by ollisions is enhaned, until the partiles havelargely lost their relative kineti energies. The orrelated enter of mass motion of the regionremains. At the same time faster partiles from dilute regions bump into the old denseregions, ompress it further, and get stuk inside due to the inreased number of ollisionpartners. As a result dense louds and voids are formed, visible in the simulation snap shotof two million partiles in Fig. 3.11. It is emphasized that this simulation assumed a onstant
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Figure 3.11: Dry granular matter: a snap shot of two million diss olliding inelastially witha onstant oe�ient of restitution. In eah partile-partile ollision, 10% of the energy in theenter of mass system is dissipated. The diss were initially distributed homogeneously, with68% overing fration, in a subdomain spanning approximately half of the full retangularsimulation domain on the left. The initial veloity distribution was a Maxwellian. Thesubdomain expanded and formed the �lamentous strutures at the boundaries, of whih theinset provides a loseup view. The interior exhibits dense paked louds and voids. Thesimulation domain has ylindrial topology with periodi boundaries onneting left and right,while there are re�eting boundaries at the top and bottom end of the domain.
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Figure 3.12: Wet granular matter: the very di�erent struture whih emerges from thehystereti interation with apillary bridge energy Eb, when ompared to Fig. 3.11. Thespatial initial distribution was as in Fig. 3.11 (for a smaller system of one million partiles).The initial temperature was hosen to be 20 times higher than the bridge energy. A shokwave of gas partiles is emitted out of the initial subdomain in the very beginning. At the timeshown, the hystereti formation and rupture of liquid bonds has ooled the dense blok onthe left to its �nal frozen state (T ≪ Eb), while the gas emitted in the beginning is on�nedbetween growing �oulent lusters whih shield the gas layer from the dense blok. Thebridge oordination number is lose to four in the frozen blok, whih is the isostati valuefor two-dimensional systems. The zoom-in shows the internal liquid network struture whihis the mirosopi origin of the bulk stability of wet granular matter, also in three dimensionswhen wet sand is used to mold a sandastle on the beah (f. Fig. 3.10B.)



3.5. Conlusions 51oe�ient of restitution, so that the system has no intrinsi energy sale, and time is salable:i.e. with higher initial veloities the dynamis speeds up, but the resulting struture is thevery same.Very muh di�erent is the situation with wet granular matter. At high granular temper-atures, T ≫ Eb, the system behaves as a gas of hard spheres. For granular temperaturesbelow the intrinsi energy Eb, the apillary bridges form a stable network whih endows theplastiity to this solid state. Suh a frozen state we see on the left hand-side of Fig. 3.12. Inthis region of high initial density, the rapid formation and rupture of apillary bridges hasooled the material, resulting in a wide meshed stable network. The enlarged region showsthe apillary bridges in blak, while the blue partiles are masked out in the inset. Thisallows us to diretly view the underlying apillary network, whih has a fratal appearane8.In ontrast, the dilute stripe on the right-hand side is �lled by fast partiles, whih esapedinitially (at T0 = 20Eb) from the dense region on the left, to form a gas phase. Sine thesimulation domain has periodi boundary onditions in the horizontal diretion, the gas ison�ned by and oexists with the solid material. At the interfae, the partiles are at lowdensity and low temperature, whih auses them to from �u�s of wet granular matter whihpreipitate out of the gas. We will enounter frequently in this thesis di�erent phases, suh asthe wet granular gas or solid, whose learly distinguishable state will be shown to result fromthe intrinsi length and energy sales of the apillary interation established in this hapter.The density instability in dry granular gases reates beautiful louds, but hardly allowsto introdue the notion of a solid lusters with boundaries de�ned in a topologial senseby onnetivity. In ontrast, the wet granular interation forms networks, where the liquidbridges naturally de�ne the neighborhood relations. The number of liquid bonds residing ona partile are 4.1 in the dense regime of Fig. 3.12, whih ompares niely to the value 2D = 4of a two-dimensional network that is isostati (meaning roughly speaking that the network isstable and has no redundant bonds, f. Proposition 2.2 in [44℄). We will address the liquidbridge oordination when we derive the equation of state in Chap. 7. The liquid bonds alsoplay a ruial role for the haoti properties, as is quanti�ed in the following two hapters.3.5 ConlusionsDry and wet granular matter are dissipative systems. The fundamentally di�erent partileinteration in wet granular matter has been disussed theoretially and on�rmed experi-mentally in this hapter. It has been demonstrated that the impat dynamis between wetsurfaes dissipates a de�ned amount of energy Eb. This enables the stiking of partiles, inontrast to the restitution model of dry granular matter whih is sale-free for energy. Wetgranular matter is for this reason a paradigm dissipative system, whih inludes astrophysialmodels of planetary formation. Partiles interat hysteretially with the formation of ap-illary bridges at ontat, and their rupture at a positive separation srit. This length saleand the bond energy, Eb, neessary to break the liquid bridge, haraterize wet granularmatter. Both parameters have been quanti�ed in the experiment and are aording to thehysteresis inorporated in the Minimal Capillary Model. Therewith the partile interationin wet granular dynamis has been lari�ed. The formation of stable network on�gurationshas been demonstrated in a two-dimensional simulation. The results of this hapter aboutthe wet-partile interation allow us to proeed with the analyti and numerial investigationof dynamial and bulk properties far from equilibrium in the following hapters.8This struture is at present investigated in ooperation with S. Ulrih (U. Göttingen) and K. Röller (MPIDS Göttingen).





Chapter 4The Flutuation Theorem and PhaseTransitions in One DimensionThe Flutuation Theorem is shown to hold for small �utuations ∆s in driven steady states ofdissipative gases. Small means ∆s < Nm
〈
v2
〉
/T , where N is the number of partiles, m thepartile mass, T the granular temperature, and v the driving speed. For higher �utuations,substantial deviation from the funtional form of the Flutuation Theorem are preditedby a minimal analyti model and observed in simulations. This resolves the ontraditionbetween the derivation of the Flutuation Theorem based on time-reversal symmetry [89℄,and numerial reports of the Flutuation Theorem for granular gases whih were limited tosmall �utuations [10℄. For wet granular matter, it is shown numerially that the onset of thedeviations oinides with the ritial driving, where a nonequilibrium transition is disovered.The granular temperature is shown to rise disontinuously by three orders of magnitude froma �uid state with T ≈ 2Eb to a gaseous state, as m 〈v2

〉
/4 exeeds the apillary energy

Eb. The number of wet lusters sales lose to the evaporation with the driving veloitywith an exponent lose to 1/3. The evaporation of wet lusters provides an opportunity tomeasure the in�uene of the hystereti apillary fores on the haotiity of the dynamis.This is quanti�ed by the Kolmogorov-Sinai entropy whih is omputed aross the transition.Remarkably, the slower �uid dynamis is found to have a higher Kolmogorov-Sinai entropyprodution rate than the gas. This is the �rst numerial observation of the inrease in haosby the presene of apillary bridges, whih is diretly ontinued by the analyti omputationin the following hapter.This hapter begins with the analyti on�rmation of the Flutuation Theorem for anequilibrium, non-dissipative gas in the Ses 4.1 and 4.2. The `violation' is desribed ana-lytially for a nonequilibrium state in Se. 4.3. In Se. 4.4 the distribution of the energyexhanged at the boundaries, ∆E, is derived from simulation over eight orders of magnitude.A minimal onstrution to reover the Flutuation Theorem by modifying the Clausius rela-tion ∆s(∆E) for nonequilibrium states is disussed. Se. 4.5 presents the numerial resultsof the �uid/gas transition. In Se. 4.6 the Dellago-Posh formula for the omputation of Lya-punov exponents is generalized to take the hystereti apillary bridge formation into aount.With the expliit matries for the tangent spae evolution, the full Lyapunov spetrum andthe Kolmogorov-Sinai entropy are omputed as a funtion of driving.4.1 Elementary Phase Spae Evolution under DrivingTo maintain a dissipative system, suh as granular matter, in a stationary nonequilibriumstate, power must be steadily injeted by an external driving. This is done in experiments53
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Figure 4.1: A dissipative granular gas driven by a moving boundary, symbolized as blakbar at the bottom of the left �gure. On the right side a spae-time plot shows the vertialmotion of the boundary and two partile trajetories, denoted by A and B. While in Aenergy is gained from the boundary, the trajetory B ollides �rst with the wall in the phaseof expansion when heat is extrated.with dry and wet granulates1 by a vibrating boundary or wall whih injets energy throughits ollisions with the grains. A realisti motion of the wall is ontinuous in spae, so thatthere is a period of time for inward and outward movement. An `ideal' sawtooth pro�lewith in�nite withdrawal speed is not suitable: it would violate the Flutuation Theoremfrom the start, beause the probability for entropy redution (by extrating energy) would beidential zero2. The wall we onsider for this setion shall have a triangular driving signal as isshown in Fig. 4.1. Generalizations, to e.g. sinusoidal motion, are possible but mathematiallyumbersome. The main result an be obtained with the more tratable triangular driving.To keep it as simple as possible we neglet the in�uene of gravity. (As a general lawthe Flutuation Theorem should hold in mirogravity environments, too.) We assume thegranular gas to be su�iently dilute, so that we an neglet partile ollisions within theregion where power is exhanged with the wall.Looking at the �rst half period of the driving motion in the time interval [0, 1
2f ], we animmediately write down the phase spae transformation for partiles that will not hit thewall,
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, (4.1)and those (suh as partile A in Fig. 4.1) that hit the upwards moving wall,

(
z( 1

2f )
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. (4.2)Herein v = 4Af is the onstant amplitude of the wall veloity at frequeny f . As often in1A method used in simulations and theory to ahieve a stationary state is to a add a stohasti fore termto the equations of motion [221℄. This is theoretially favorable, however more realisti is to drive the systemfrom the boundaries.2This would imply that the left-hand side of (1.2) is zero in ontradition to the stritly positive exponentialon the right-hand side.
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Figure 4.2: The evolution of phase spae under the in�uene of the driving boundary shownas the blak bar at the bottom. The upside down letters are to illustrate that these phasespae regions have undergone a ollision with the boundary (whih rotates them by π withrespet to their initial orientation at time zero).this thesis, the boundary motion with veloity v(t) is used to de�ne a temperature sale3,
Twall =

m
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v2
〉

2kB , (4.3)whih is set by the motion of the wall. The ondition for a ollision with the inwards movingwall,
A− z(0) − 1

2f
ż(0) > 0 , (4.4)de�nes a region in phase spae whih we denote by A. Similarly, all trajetories B (f. Fig. 4.1for an example) are at time 1
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. (4.7)These transformations an be learly visualized in phase spae, as done in Fig. 4.2.We note in passing that the determinants of all transformations are unity. The partile-wall system is a Hamiltonian system with a time dependent Hamilton funtion. Thereforethe phase spae volume is onserved but energy is not.3The notion of a wall temperatures is used in the Chaps. 8 and 10.
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Figure 4.3: The distribution of energy exhanged within one driving yle aording toEq. (4.10). The δ-peak at ∆E = 0 stems from the phase spae region C, while the positiveand negative values of ∆E are due to A and B respetively. (This plot is for the dimensionlessparameters b = c = 0.5.)We denote by ∆E the energy brought into the gas by the wall within one period ofagitation. The distribution of ∆E follows from the phase spae distribution of the partiles,
fp(z, ż), at the beginning of the driving period and the hange in veloity aused by the wall.Denoting the �nal veloity after one period of driving for a partile with initial state (z, ż) by
vf(z, ż), the distribution of exhanged energy ∆E is

P∆E(∆E) =

∫
dzdż fp(z, ż) δ (∆E −m (vf (z, ż)2 − ż2)/2

)
. (4.8)Depending on whether the initial phase spae point (z, ż) lies within the domain A or B ofFig. 4.2, the �nal veloity vf is given by the seond line of (4.2) or (4.7) respetively. In Awe have energy injetion (2mv(v − ż) > 0) and in B energy extration (2mv(v + ż) < 0). Inthe region C the veloity is unhanged so that these partiles ontribute to ∆E = 0. Thedistribution of ∆E will therefore have a delta-peak at zero.4.2 Expliit Demonstration of the Flutuation Theorem for aNon-dissipative GasWe �rst on�rm the Flutuation Theorem expliitly for an equilibrated gas with onservativefores that ful�lls detailed balane, so that the phase spae distribution is the equilibriumMaxwell-Boltzmann distribution4 with temperature T :

fp(ż) = nz

√
m

2πkBT e−m ż2

2kBT . (4.9)4The Maxwell veloity distribution follows by setting the probability urrent of the Fokker-Plank equationequal to zero, whih is the ondition of detailed balane (f. e.g. Eq. (4.50) in [183℄).



4.3. `Violation' of the Flutuation Theorem for a Dissipative Gas 57The distribution of energy exhange, whih results from (4.8) when (4.9) is inserted, reads
P∆E(∆E) = (1 − ab) δ(∆E) +

b

16

|∆E|
(kBTgm)2

e−“

∆E
4kBTgm−c

”2

. (4.10)There are two independent physial parameters: the wall veloity or equivalently the wall`temperature' Twall = mv2/(2kB), and the gas temperature T . In the exponent of (4.10)appears their geometri mean,
Tgm =

√
Twall T . (4.11)In the result (4.10) we used the following dimensionless abbreviations:

a = e−c2 +
√
π c erf(c) (4.12)

b =
nz

f

√
kBT
2πm

(4.13)
c =

√
Twall
T

. (4.14)Although the underlying veloity distribution is Gaussian, the distribution (4.10) for theexhanged energy ∆E has quite some struture. The �rst term in (4.10) is the delta-peakwith probability mass (1−ab) due to partiles that miss the wall in one period. These partilesare loated in the region of the phase spae denoted by C in Fig. 4.2. The region A gives riseto the instanes of positive ∆E, whih are more frequent than the onverse events B. WithEq. (4.10) we an readily verify the relation of the Flutuation Theorem for any ∆E 6= 0.Taking the quotient of the probabilities to observe the events −∆E and +∆E, the quadratiterms and the wall temperature drop out in the exponent of (4.10), with the result:
P∆E(−∆E)

P∆E(∆E)
= e− ∆E

kBT . (4.15)After inserting ∆s = ∆E/T in (4.15) and transforming the probability distribution, we arriveat the relation
P∆s(−∆s)

P∆s(∆s)
= e−∆s

kB (4.16)of the Flutuation Theorem for entropy5 prodution, whih expresses that the observation ofentropy redution is exponentially unlikely as disussed in Chap. 2.4.3 `Violation' of the Flutuation Theorem for a DissipativeGasIn the last setion we have been heating a gas of partiles, that ful�lls detailed balane, by thefast, non-adiabati motion of the driving wall. How is the situation with dissipative systems,suh as dry or wet granular gases? Their equations of motion have no time-reversal symmetry:reversing the momenta does not lead bak to the earlier system state. However, time-reversalsymmetry is the essential requirement in derivations of Flutuation Theorems for dynamialsystems [77, 89, 90℄.5Following the ommon notation in the literature and of Chap. 2, the �utuating entropy on short timesales is denote by lower ase ∆s. In ontrast, the mean entropy per driving yle is ∆S = 〈∆s〉 > 0.
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Figure 4.4: Deviation of the veloity distribution as desribed by the kurtosis exess γ2.

Figure 4.5: `Violation' of the Flutuation Theorem. In a dissipative system with brokentime reversal symmetry, the assumptions of the Flutuation Theorem are not ful�lled. Thereported experimental [78℄ and numerial [10℄ on�rmations were limited to small �utuation.The present analyti model and the simulation (inset) resolve deviations at higher energies.The inset results from a simulation of wet granular matter in one dimension. The kurtosisexess is γ2 = 1.4 in the main panel.



4.3. `Violation' of the Flutuation Theorem for a Dissipative Gas 59The more surprising were reports on the experimental [78℄ and numerial [10℄ on�rmationof the relation (4.15) of the Flutuation Theorem for dry granular gases. We therefore general-ize the analysis of the previous setion. In dissipative gases, the veloity distribution deviatesfrom a Gaussian [78, 27℄. For a general partile veloity distribution fp(ż), the distributionof power �utuations is, aording to the phase spae onsideration in 4.1 and Eq. (4.8):
P∆E(∆E) = C δ(∆E) +

nz
2f

∑

ṽ=±v

1

2m|ṽ|

∫

ṽ−ż>0

dż fp(ż) (ṽ − ż) δ

(
∆E

2mṽ
− ṽ + ż

)

= C δ(∆E) +
nz

16mf

|∆E|
kBTwall fp [(v − ∆E

2mv

) sgn(∆E)

]
. (4.17)For a Maxwellian fp, Eq. (4.17) redues to the result (4.10). The onstant C is determinedby normalization and f in the denominator is the shaking frequeny. From Eq. (4.17) we seeimmediately that the quotient of the probabilities to observe �utuations ±∆E, expressed inthe general veloity distribution fp, is equal to

P∆E(−∆E)

P∆E(∆E)
=
fp ( ∆E

2mv + v
)

fp ( ∆E
2mv − v

) . (4.18)As a ontrolled departure from equilibrium we onsider deviations from the Maxwell distri-bution as desribed by higher umulants. This is onveniently done by an expansion of theveloity distribution fp in Hermite polynomials6, as introdued in Se. 2.7:
fp(ż) =

√
m

2πkBT 
1 +

γ2

96
H4



√

mż2

2kBT exp

(
− mż2

2kBT ) . (4.19)Herein the �rst order measure for nonequilibrium is the kurtosis exess γ2, 0 < γ2 < 4, whihhas been observed to assume positive values in simulations of dry and wet granular matter inone dimension [241℄. Figure 4.4 shows how probability mass is shifted away from the enter(at zero veloity) for γ2 > 0 without inreasing the granular temperature T . Plugging theveloity distribution (4.19) in the general expression7 (4.18) we �nd that the FlutuationTheorem (4.15) is violated : Writing the �rst terms of an expansion in energy expliitly, yields
ln

(
P∆E(∆E)

P∆E(−∆E)

)
=

∆E

Te� +
γ2

162

432 − 72γ2 − 29γ2
2

(γ2 + 4)3

(
∆E

Te� )3

+ O
(

∆E

Te� )5

. (4.20)The funtional form of the Flutuation Theorem is extended by non-linear order terms. Thedenominator abbreviated by Te� in the analyti result (4.20) is
Te� =

12 − γ2

12 + 3γ2
T . (4.21)

Te� deviates the more from the granular temperature T , the further we are away from equi-librium as desribed by γ2. The analyti result therefore predits the initial slope to deviatefrom the inverse temperature of the granular system. A deviation of the temperature Te�,whih was de�ned by the slope of the Flutuation Theorem, from the granular temperature
T , has been also observed in the experiment of K. Feitosa and N. Menon [78℄.6Similar expansions of the veloity distribution frequently use Sonine polynomials (whih are assoiatedLaguerre polynomials) [27℄.7To redue the number of free parameters, we assume an ideal oupling to the wall by equating walltemperature and granular temperature.
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Figure 4.6: (A) A sketh of wet granular matter in one dimension. The system is dissipativedue to the hystereti liquid bridge interation. A stationary state is maintained by the periodishaking of the boundaries. (B) A spae-time plot with time inreasing to the left. We see asmall luster of 4 partiles interating with an osillating boundary. On average the boundariesinjet energy into the system. Here we observe the rarer ase when energy �ows out of thesystem. (The inset arrow illustrates the enter of mass motion of the luster.)
Furthermore, this experiment [78℄ was interpreted as the on�rmation of the funtionalform (4.15) of the Flutuation Theorem, aording to whih the right-hand side of (4.20)should be a linear funtion in ∆E. The full funtional form aording to the analyti modelfor the nonequilibrium state (4.19) is shown in Fig. 4.5. For low energies exhanged withthe boundary, the linear relations seems to hold. However at higher energies per partile,

∆E/N , whih are of the order of the wall temperature, Twall, or above, there are substantialdeviations. The inset in Fig. 4.5 shows a simulation result of wet granular matter. Thequalitative agreement to the simple analyti model is obvious, and as good as an be expeted,sine we used the kurtosis as the only parameter to desribe the nonequilibrium state. (Toompare with the analyti desription based on the one-partile distribution funtion, theexhanged energy per partile is shown on the absissa in both plots of Fig. 4.5.)Therewith the seeming on�it between the requirements for the Flutuation Theoremand the observation is resolved by the analyti model in general and by the simulation inthe ase of wet granular matter: the funtional form of the Flutuation Theorem holds as anapproximation for small �utuations, whereas at higher energies a revision is needed. Thisrevision is addressed in the following setion for wet granular matter.



4.4. Suggestion for a De�nition of Entropy for Systems far from Equilibrium 614.4 Suggestion for a De�nition of Entropy for Systems far fromEquilibriumWe have seen in the last setion (in Eq. (4.20)) that the probability to observe a redution inentropy ∆s < 0 with ∆s de�ned8 by
∆s =

∆E

T
(4.22)(and kB set equal to unity to shorten notation) does not ful�ll the Flutuation Theorem

∆s = ln
P∆s(∆s)

P∆s(−∆s)
, (4.23)aording to whih the relation

∆E

T
= ∆s = ln

P∆s(∆s)

P∆s(−∆s)
= ln

P∆E(∆E)

P∆E(−∆E)
(4.24)is predited. In this setion, a suggestion is worked out how the Flutuation Theorem an bereovered for wet granular. We assume for this setion that the Flutuation Theorem bearsthe potential of being more general, while the Clausius expression is limited to equilibrium.We thus intend to onstrut a modi�ed quantity ∆s̃ whih ful�lls the Flutuation Theoremand redues to the Clausius expression in equilibrium.We start with the following observation: It has been shown in the Ses. 4.2 (Eq. (4.15))and 4.3 (Eq. 4.20) that the ratio of probabilities,

∆s̃(∆E) := ln
P∆E(∆E)

P∆E(−∆E)
, (4.25)onverges to the Clausius de�nition of entropy (4.22), ∆s̃→ ∆s, as equilibrium is approahed.The Clausius de�nition is well known to be limited to equilibrium. In the important searhfor a generalized de�nition of entropy, whih is diretly observable in nonequilibrium experi-ments, it is therefore admissible to study the ratio ∆s̃, de�ned by Eq. (4.25), as a andidatefor a generalized de�nition of entropy, whih ould remain valid for experiments far fromequilibrium.As stated in beginning of this setion, we demand that this new quantity ∆s̃ ful�llsthe Flutuation Theorem (4.23). First we note that ∆s̃ aording to (4.25) already ful�llsthe Flutuation Theorem (4.23) if the Jaobian d(∆s̃)/d(∆E) of the odd funtion ∆s̃(∆E)(4.20) an be aneled out in the fration (4.23). This is possible if the funtion ∆s̃ growsmonotonially with the exhanged energy ∆E, so that the funtion ∆s̃(∆E) is injetive,i.e. we have ontributions to ∆s̃ from one value ∆E in the general transformation rule forprobabilities,

P∆s̃(x) =

∫ ∞

−∞
P∆E(y) δ(x − ∆s̃(y)) dy , (4.26)whih then redues to P∆s(∆s) = P∆E(∆E)/ [d(∆s)/d(∆E)].However we have seen with the example in Fig. 4.5 that the funtion ∆s̃(∆E) is in generalnot monotoni, but has horizontal or negative slope. For this reason, the ourrene ofsuh extrema in ∆s̃(∆E) is investigated systematially by (event-driven) simulations of wet8This is the Clausius de�nition of entropy whih has been applied in the aforementioned publiations[78, 10℄.
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Figure 4.7: The distribution of exhanged energy with the boundaries. This distribution hasbeen measured by simulating more than 1011 driving periods at vrms = 2.03
√
Eb/m. ∆E isthe energy exhanged within on period. At ∆E = 0 a very pronouned delta-peak is learlyresolved (f. the inset), as predited by the phase spae evolution in Se. 4.1. Almost allprobability mass is ontained in the delta-peak. (Note the logarithmi sale of probability).granular matter. The 1D system is driven by parabola segments as shown in Fig. 4.6, similarto the sinusoidal driving in most experiments9. The driving veloity is haraterized by

vrms =
√

〈v2〉. As the ontrol parameter the driving amplitude A is varied at �x frequeny f ,so that vrms = 8Af/
√

3. It is indispensable to hoose unequal masses in the one-dimensionalsimulation. Otherwise the momentum of a single partile olliding with a luster transitsthe luster ballistially up to the last partile on the other end of the luster10. In order toavoid this Newton-radle e�et in favor of a homogeneous state, we hoose inommensurablemasses,
mj

m
= 1 + δ sin (j ϕG) ,with the irrational golden angle ϕG = 2π/(1 +

√
5) and polydispersity δ = 1/10. The drylimit of suh a 1D system without the hystereti interation has been investigated intensivelywithin the last �ve years11 [162, 39℄, so that we have a well-de�ned starting point to introduedissipation by the apillary bridges.The distribution P∆E(∆E) of the exhanged energy is measured in the simulation. Fig-ure 4.7 presents the numerial result for the driving veloity vrms = 2.03

√
Eb/m. Thedelta-peak at ∆E = 0 is present in the simulation as predited by the analytial models(f. Eqs. (4.10) and (4.17)). To resolve the extremely rare events of high energy exhange,9N = 100 partiles are driven symmetrially from both ends. The dimensionless density of the system ishosen to be nzsrit = 1.10This last partile would then be ejeted from the luster with the rupture of a apillary bridge if thekineti exeeds the apillary energy.11Espeially the di�usive transport of heat has been investigated in [162, 39℄.
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Figure 4.8: Simulation results on the funtion ∆s̃(∆E), de�ned by Eq. (4.25). Dependingon the state of the system, branhes are observed along whih the `entropy' ∆s̃ dereases asmore energy ∆E is injeted.

Figure 4.9: A lose-up of Fig. 4.8 showing three nonequilibrium steady states of wet granularmatter whih di�er slightly in the driving veloity. On this double logarithmi plot we see theexistene of a ritial driving veloity lose to vrms = 2.07
√
Eb/m, below whih the funtion

∆s̃(∆E) develops negative slopes. Branhes of negative slope de�ne the region ontoured bythe dashed line. The minimum of this region is the ritial veloity, where simulations showan abrupt rise of the granular temperature (f. Fig. 4.11).
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Figure 4.10: The onstrution of a funtion ∆s(∆E) whih ful�lls the Flutuation Theorem.In equilibrium, this funtion redues to the Clausius entropy ∆E/T . The blue urve is ∆s̃whih results aording to Eq. (4.25) from the distribution P∆E , whih has been measuredin the simulation (f. Fig. 4.7) at driving vrms = 2.03
√
Eb/m. The green urve is theonstruted funtion ∆s, suh that the Flutuation Theorem is ful�lled.the event driven simulation was run for 1011 driving yles to have su�ient statistis. Themeasured probabilities span eight orders of magnitude. Using Eq. (4.25) the funtion ∆s̃ isinferred from P∆E. The results presented in Fig. 4.8 show that small hanges of the drivingleads to qualitative hanges in ∆s̃(∆E). While for the lower and higher driving veloities(blue and red urve) ∆s̃ is monotoni and lose to linear, the intermediate driving parameter

vrms = 2.00
√
Eb/m leads to a maximum (blak urve). As we investigate the viinity ofthis parameter value, shown as double logarithmi plot in Fig. 4.9, we observe that ∆s̃ hasa universal asymptote at high energies. Moreover, there is a ritial veloity of the drivingbelow whih ∆s̃ is non-monotoni12. The domain of negative slope is indiated by the dottedurve in the ∆s-∆E plane of Fig. 4.9.To have the Flutuation Theorem ful�lled, it is suggested to onstrut a modi�ed funtion

∆s(∆E) out of ∆s̃(∆E) as follows. Inserting the general expression for the transformationof probabilities (4.26) in the relation (4.23) we �nd the funtional ondition
x = ln

P∆s(x)

P∆s(−x)
= ln

∫∞
0 P∆E(y) δ(∆s(y) − x) dy∫∞
0 P∆E(y) δ(∆s(y) + x) dy

(4.27)whih has to be ful�lled for all x > 0. A minimal onstrution of ∆s(∆E) out of ∆s̃(∆E),suh that the Flutuation Theorem (4.27) holds, replaes the branh of negative slope by ahorizontal line. The Flutuation Theorem (4.27) determines the position of this line uniquelyby the impliit equation12For weak driving the granular temperature is low, so that large �utuations ∆E are extremely rare. Forthis reason the funtion ∆s̃(∆E) ends from the physial point of at a value ∆E of the order of TN , whih isbefore the theoretial maximum.



4.5. The Diret Observation of the Fluid/Gas Transition 65
∆s̃trans = ln

∫ E+(∆s̃trans)
E−(∆s̃trans) P∆E(y) dy

∫ E+(∆s̃trans)
E−(∆s̃trans) P∆E(−y) dy

, (4.28)as a onsequene of Eq. (4.27). Figure 4.10 shows this onstrution arried out at vrms =
2.03

√
Eb/m. The probability distribution P∆E(∆E) (shown before in Fig. 4.10) and Eq. (4.25)lead to the blue urve for ∆s̃. For the onstruted funtion ∆s shown in green, the `loop'of the blue urve has been replaed by a horizontal line. This funtion ∆s ful�lls the Flu-tuation Theorem (4.23). The onstrution is reminisent to the Maxwell onstrution (usedin equilibrium thermodynamis in the di�erent ase of a van-der-Waals loop). At this pointthe question arises whether this onstrution has the physial meaning of a disontinuoustransition. The following setion shows by simulations of wet granular matter the existeneof a disontinuous transition.4.5 The Diret Observation of the Fluid/Gas TransitionWe have onstruted a funtion ∆s(∆E), shown in Fig. 4.10, whih ful�lls the FlutuationTheorem (4.23) for the dissipative wet granular gas and redues in equilibrium to the Clausiusexpression (4.22) of entropy. In order to asses if one may interpret this funtion as a andidatefor entropy, we onsider the derivatives

1

Te� =
∂s

∂E
, (4.29)whih would predit a disontinuous hange in the granular temperature aording to thedi�erent slopes at the points marked by irles in Fig. 4.10. The e�etive temperatures,de�ned by the slope of ∆s, have the values Te�,− = (22 ± 4)Eb and Te�,+ = (1800 ± 90)Eb.We therefore measure the granular temperature T in the simulation as the driving amplitudeis varied. The protool of the simulation is to inrease the amplitude in small steps. Datais not olleted until there is no measurable drift in the granular temperature T (t), so thatwe are in the nonequilibrium steady state at any time of measurement. The result is shownin Fig. 4.11. We observe a rapid inrease of the granular temperature at a ertain drivingamplitude A, whih is shown as upper absissa. The absissa at the bottom is the root meansquare driving veloity. The transition point is lose to the value vrms = 2

√
Eb/m, whihis where the negative slope, disussed in the preeding setion (f. e.g. Fig. 4.9), ours inthe relation of the Flutuation Theorem. The number of transient lusters Nl, de�ned bythe onnetivity of apillary bridges, shows a power-law form, N∞l − Nl ∝ (A − A)β . Thedata points available in the viinity of the ritial point span one order of magnitude and areplotted on logarithmi sales in Fig. 4.12. The slope of the red line is 1/3.So far frequeny has been kept onstant. In general, the driving allows for two independentparameters, whih are ontrolled in an experimental situation as aeleration a and frequeny

f . The transition points in the plane spanned by these ontrol parameters are shown inFig. 4.13 and fall on a line through origin, a = 4
√

3vrmsf . This demonstrates that the�uid/gas transition in one dimension is determined by the driving veloity vrms, or equivalentlyby the wall temperature Twall de�ned in Eq. (4.3). The ritial wall temperature, T, wall =
(2.1 ± 0.1)Eb, is in proportion to the apillary energy Eb as there is no other energy salein the simulation.It should be noted that simulation with apillary bridges to the driving walls have alsobeen performed: All numerial results reported above have been found to hold for hydrophobiand hydrophili boundary onditions. Furthermore, simulations taking gravity into aounthave shown no in�uene on the ritial driving veloity, provided the apillary fore is equal
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Figure 4.11: The �uid/gas transition of wet granular matter, observed in simulations of aone-dimensional system as depited in Fig. 4.6. The frequeny of the boundary motion is�xed while its amplitude A is inreased. At the amplitude Anz ≈ 0.55, with the density
nz = L/N , the granular temperature inreases disontinuously. To the left of the transitionpoint, at Anz = 0.53, the granular `�uid' has the temperature T = (2.8 ± 0.2)Eb, where Ebis the maximal potential energy stored in a liquid bridge prior to rupture. At the transitionthe granular temperature inreases by three orders of magnitude. The seond ordinate onthe right gives the number of transient lusters, Nl, de�ned by the onnetivity of apillarybonds. It exhibits a power-law behavior at the transition.
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Figure 4.12: The number of lusters at the �uid/gas transition, shown before in Fig. 4.11, inthe viinity of the transition on logarithmi sales. The red line has slope 1/3.

Figure 4.13: The �uid/gas transition for di�erent amplitudes and di�erent frequenies of thedriving. The transition line is shown in the plane spanned by aeleration and frequeny,whih are diret observables in an experiment. If the �uid/gas transition would depend onthe fore, Fb, of the apillary bridges, the transition points would form a horizontal line inthis plot with the aeleration on the ordinate. The aeleration a = 32Af2 = 4
√

3vrmsf isfound to grows linearly with the frequeny f , so that the transition is determined by a ritialveloity, whih is lose to vrms = 2
√
Eb/m. (f. Fig.4.11).



68 Chapter 4. Flutuation Theorem and Phase Transitions in One Dimensionor greater than the gravitational fore of one partile. The one-dimensional simulations showno phase oexistene and no hysteresis of the �uid/gas transition when the ontrol parametersare hanged slowly as desribed above.The �uid/gas transition in wet granular matter will be extended to higher dimension inChap. 10, in onjuntion with experiments and an ontinuum desription. It is interesting tonote that � analogously to the oexistene of two di�erent densities desribed by the equilib-rium Maxwell onstrution � the two di�erent slopes at the points marked by irles in theonstrution of Fig. 4.10 orrespond to the oexistene of two di�erent e�etive temperature,
Te�,− and Te�,+ (f. Eq. 4.29). Sine the e�etive temperatures is known to be saled as om-pared to the granular temperature (desribed by Eq. (4.21)), we onsider the ratio whih isequal to Te�,+/Te�,− = 82. Suh a oexistene state will be atually reported in Chap. 10 forthe two-dimensional system. An analyti desription of the disontinuous �uid/gas transitionis also presented in Chap. 10. As emphasized in the introdution, in order to develop an ana-lyti statistial desription of wet granular matter as a nonequilibrium system, it is essentialto study the haotiity of the system. This will be onsidered in the following setions below.4.6 The Sympletiity of Wet Granular MatterSimilar to the ase of the Flutuation Theorem disussed in this hapter, it is luid to performthe expliit proof of the (loal) sympleti struture of wet granular in D = 1 dimension. Thisis done in the present setion. Using the expliit result of the proof, we an readily performthe numerial omputation of the Lyapunov spetrum and the Kolmogorov-Sinai entropy forthe one-dimensional driven system. This prepares and omplements the analyti omputationof the Kolmogorov-Sinai entropy in higher dimensions in following hapter. We will �nallytake the opportunity to ombine the nonequilibrium transition of the last setion with theKolmogorov-Sinai entropy, whih will be omputed as an `order parameter' of the �uid/gastransition.4.6.1 Generalization of the Dellago-Posh Formula to Wet Granular Mat-terThe lassial Benettin algorithm [17℄ for the omputation of Lyapunov spetra (whih rests onthe �multipliative ergodi theorem� for oyles of V. I. Oselede [164℄) has been generalizedin [53, 54, 55, 56℄ to inlude the disrete ollision events ourring in a gas of hard spheres.Here the Dellago-Posh formula is further generalized to take the formation and breakingof liquid bonds into aount. Formation and rupture events are present as submanifoldsof odimension one in phase spae (f. Fig 4.14), beause they are determined by a singleondition for the radial distane. The system has a smooth Hamiltonian evolution, Φ

(∆t)
j−1 ,prior to any event and again after the event, Φ

(∆t)
j :

Φ
(0)
j = identity (4.30)

∂tΦ
(∆t)
j (Γ) = Fj

(
Φ

(∆t)
j (Γ)

) (4.31)within the regions denoted by Cj in Fig. 4.14, so that
Γ(t+ ∆t) = Φ

(∆t)
j (Γ(t)) (4.32)solves the anonial equations of motion within Cj,

Γ̇ = Fj (Γ) (4.33)
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Figure 4.14: A general phase spae with disrete events when the �ow rosses from one smoothpart Cj to another Cj+1. In wet granular matter made of hard partiles the phase spae �ow isdisontinuous (left rossing) in ollisions and not di�erentiable (right rossing) when a liquidbridge ruptures.with the sympleti form (being represented by) S and the loal Hamiltonian Hj whih isgenerating the phase spae �ow,
Fj = S∇Hj . (4.34)The tangent spae dynamis desribes the evolution of small perturbations of the initialphase spae point. We �rst look at the unperturbed trajetory, and then at the perturbation.The full evolution to a state Γ(t) ∈ Cj inluding the (binding or rupture) event Mj is theomposition

Γ(t) = Φ(t)(Γ(0)) = Φ
(t−tj)
j ◦Mj ◦ Φ

(tj−tj−1)
j−1 ◦ . . . (4.35)where tj denotes the time the unperturbed trajetory undergoes the event Mj . While theunperturbed trajetory evolves from event to event, Γ(tj−1+) 7→ Γ(tj+), the hange of per-turbations δΓ is given by the Jaobian ∂Γ(tj+)/∂Γ(tj−1+). The + expresses that Γ(tj+)refers to the system state diretly after the time-disrete event Mj has ourred. When om-puting this Jaobian we have to di�erentiate (4.35) and bear in mind that the event time tjdepends on the preeding state Γ(tj−1+). Using the Eqs. (4.30) and (4.31), the di�erentiationyields immediately the general formula

∂Γ(tj+)

∂Γ(tj−1+)

=

[
−Fj(Γ(tj+)) +

∂Mj(Γ)

∂Γ
Fj−1(Γ(tj+))

]
∂tj

∂Γ(tj−1+)

+
∂Mj(Γ)

∂Γ

∂Φ
(tj−tj−1)
j−1 (Γ)

∂Γ(tj−1+)
. (4.36)We speify Eq. (4.36) to the ase of the Minimal Capillary Model in one dimension. Sinethe Minimal Capillary Model assumes the liquid bridge fore to be independent of the partileseparation, the aelerations aj are onstant within the ontinuous regions of phase Cj and the�ow vetor is Fj = (v,aj)

T. (Here (., .) denotes the extended vetor and not a salar produt.)When two partiles with masses m1 and m2 ollide, the time-disrete hange Γ 7→ M(Γ) in
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Figure 4.15: The multipliation of stability matries within a given event topology. Eahline orresponds to the free ontinuous motion given by (4.42) and eah irle depits a time-disrete event given by (4.43), (4.45), or (4.46). The evolution does not require global timeslies. The tangent spae dynamis is desribed by a sequene of matries, whih an bediretly read o� this graph, as desribed in the text leading to Eq. (4.47). (Only the initialtime, ti, and �nal time, tf, have to be globally equal for all partiles.)phase spae is linear and perturbations
δΓ =




δx1

δv1
δx2

δv2


 (4.37)evolve aording to the matrix

∂M
∂Γ

=




1 0 0 0
0 α 0 r2
0 0 1 0
0 r1 0 −α


 , (4.38)with α = m1−m2

m1+m2
and r1,2 =

2m1,2

m1+m2
. The ollision time tj = tj (Γ(tj−1+)) is omputedonveniently from the impliit ondition h(Γ(tj−1+), tj) = 0 with h(t) = x1(Γ1(tj−1+), t) −

x2(Γ2(tj−1+), t):
∂tj

∂Γ(tj−1+)
= −∂h/∂Γ

∂h/∂tj
. (4.39)For the Minimal Capillary Model this yields

∂tj
∂Γ(tj−1+)

=
(1,∆t1,−1,−∆t2)

v2(tj−) − v1(tj−)
, (4.40)where ∆t1,2 are the times elapsed sine the olliding partiles have partiipated in a ollisionor rupture event. Suh a temporal deomposition of the preeding partile state is shown asa graph13 in Fig. 4.15. The lines have temporal length ∆tj and eah vertex (irle) representsan event Mj. The denominator of (4.40) is the relative veloity in the instant before theollision.13Suh a loalized evolution is implemented in e�ient event-driven simulations. Combined with the so-alled heap struture to organize the events, this is the building priniple of event-driven simulations.



4.6. The Sympletiity of Wet Granular Matter 71Inserting (4.38) and (4.40) in the general expression (4.36) one ends up with a produt ofmatries,
∂Γ(tj+)

∂Γ(tj−1+)
= MollC (4.41)that desribes the shearing of phase spae in the ontinuous part of the evolution,C =




1 ∆t1 0 0
0 1 0 0
0 0 1 ∆t2
0 0 0 1


 , (4.42)and a matrix for the subsequent time-disrete ollision eventMoll =




α 0 r2 0
g1 α −g1 r2
r1 0 −α 0
−g2 r1 g2 −α


 . (4.43)The abbreviations g1 and g2 desribe the in�uene of the hystereti interation fores, andread

g1 =
a−1 − a+

1 − r2(a
−
1 − a−2 )

v−2 − v−1
. (4.44)In g2 the subindies 1 and 2 are exhanged as ompared to g1 in Eq. (4.44). The supersript+ and - indiate quantities diretly before and after the ollision respetively. Analogously,one �nds the matrix for the rupture event,Mrupt =




1 0 0 0
g1 1 −g1 0
r1 0 1 0
−g2 0 g2 1


 , (4.45)(with r1,2 = 0 in (4.44)) and the matrix for the wall ollision,Mwall =

(
−1 0
2a−

v−−vw −1

)
, (4.46)(whih ats on one partile) where vw is the wall veloity (whih is unhanged due to thewall's in�nite mass) at the impat.We denote by Cj , M(jk)oll , M(jk)rupt, and M(jk)wall the matries as de�ned above and extended tosystem size by zeros o� the diagonal and unity on the diagonal in the rows and olumns ofpartiles l 6= j, k. With these expliit matries, we an for any system trajetory diretly writedown the generalized Dellago-Posh formula for wet granular matter, whih takes the bindingand rupture events into aount. As an example, we onsider the event sequene shown asa graph in Fig. 4.15. We number the three partiles (visible as lines during the period ofontinuous phase spae �ow) in the graph from top to bottom by supersript (1),..,(3). Timeinreases from left to right in the graph, whereas in a produt of matries the outer right ats�rst. Therefore time inreases from right to left in the produt sequene of matries:M(ti, tf) =

∂Γ(tf)
∂Γ(ti) = . . .M(23)oll C(2)C(1)C(3)M(12)oll C(2)C(1)M(1)wallC(1)M(23)ruptC(3)C(2) (4.47)Therewith we have the tangent spae evolution of wet granular matter expliitly. Note thatmatries ating on di�erent partiles ommute. This general proedure is not limited to theone-dimensional system, and we will evaluate the produt sequene in the following hapterfor D > 2.



72 Chapter 4. Flutuation Theorem and Phase Transitions in One Dimension4.6.2 The Proof of Sympletiity(Loal) Sympletiity is the property MTSM = S , (4.48)whih expresses that the tangent spae evolution M preserves the sympleti form (repre-sented by the matrix) S. We have been using the position-veloity representation of phasespae throughout this hapter (whih is furthermore appropriate for the following numeri-al omputation), in whih S has the representation (as before restrited to the two-partilesubspae) S =




0 −m1 0 0
1

m1
0 0 0

0 0 0 −m2

0 0 1
m2

0


 . (4.49)The fundamental properties of S are S2 = −1I (4.50)and

det S = 1 . (4.51)(The unity matrix is denoted by 1I.) Sympletiity is a group property, i.e. with sympletimatries M1 and M2, the omposed matrix M1 ◦M2 is as well sympleti, as is obvious using(4.48). Therefore an arbitrary wet granular trajetory is sympleti if and only if all matriesMevent assoiated with disrete events preserve the sympleti struture (4.48). This followsby inserting the expliit representations (4.43), (4.45), (4.46), and (4.49) in Eq. (4.48). Hene,the dynamis of wet granular matter is (everywhere loally) sympleti.4.6.3 The Proof of Conjugate Pairing of the Lyapunov ExponentsConjugate pairing refers to the property of a dynamial system to have its Lyapunov exponentsin pairs ±λj. This follows from the sympleti properties (4.48), (4.50), and (4.51), as is shownin what follows.The Lyapunov exponents are the limits
{λ1, λ2, . . . } = lim

t→∞
1

2t
ln
(spe MTM) , (4.52)where the stability matrix M = M(t) = ∂Γ(t)

∂Γ(0) follows from the diagrammati rules, whihwe have disussed in Se. 4.6.1 and Fig. 4.15. Denoting the eigenvalues by σj = e2λj , thespetrum is the zero set of the harateristi polynomial
det(MTM− σ1I) = 0 . (4.53)The onjugate paring rule then states, that whenever σ = σj > 0 solves (4.53), σ = 1/σj isanother solution.
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Figure 4.16: The Lyapunov spetrum of wet granular matter aross the �uid/gas transition.The spetrum obeys onjugate pairing, λj + λ2N−j+1 = 0, sine this dissipative system issympleti, as proven in the Ses. 4.6.2 and 4.6.3.The following diret omputation shows that σ−1 is indeed a simultaneous solution ofEq. (4.53):
det(MTM− σ1I) = det(MTMS− σS)

= det(MTMS− σMTSM)

= det(M) det(MS− σSM)

= det(M) det (S(MS− σSM)S)
= det(M) det(−SM+ σMS)
= det(−MTSM+ σMTMS)
= det(−S+ σMTMS)
= det(σMTM− 1I)
= σ2N det(MTM− 1

σ
1I) .Hene, the Lyapunov spetrum of wet granular matter is of the form (λ1, λ2, . . . ,−λ2,−λ1).4.7 The Kolmogorov-Sinai Entropy as an `Order Parameter' ofNonequilibrium Phase TransitionWe found a disontinuous transition in Se. 4.5, whih we refer to as the �uid/gas transition ofwet granular matter, beause the �uid state has a granular temperature equal to few multiplesof the apillary bond energy, and the gas temperature is more than three orders of magnitudes



74 Chapter 4. Flutuation Theorem and Phase Transitions in One Dimensionabove Eb. The wet granular �uid onsists of transient lusters of partiles, onneted by theapillary bridges. In the gas state the bridge fore is to weak to have a signi�ant in�uene onthe partile motion, so that the fast hystereti formation and rupture of apillary bridges oolsthe system homogeneously. In this setion we are interested to see the Lyapunov spetrumin onjuntion with this nonequilibrium transition. Sine the transition auses the lustersto evaporate, we an observe the in�uene of the apillary bridges on the haotiity of thewet granular dynamis whih is quanti�ed by the Kolmogorov-Sinai entropy. Intuitively, onemight expet the gas phase to be more haoti than the �uid.To ompute the Lyapunov spetrum, we use the generalized Dellago-Posh formula ofwet granular matter, as derived above with Eq. (4.47). The prinipal idea is as follows: Theomputer simulates the phase spae trajetory of wet granular matter, dedues from the eventsequene (represented by a graph as in Fig. 4.15) the sequene of matries (f. Eq. (4.47)), andmultiplies them all. The numerial realization needs some re�nement, sine there are millionsof matries in Eq. (4.47). From multipliation to multipliation the entries grow or dereaseexponentially depending on the diretions in tangent spae whih streth or shrink. To avoidan over- or under�ow in the �oating point representation of numbers, a produt sequene of50 matries is QR-deomposed into a produt of an orthogonal matrix Q and a triangularmatrix R. The omputation is then ontinued with Q as the initial matrix, sine Q is of orderunity and ontains the Lyapunov vetors sorted from fastest growth to fastest derease. Thelogarithm of the diagonal elements of R are the �nite time Lyapunov exponents λj, whih areadded up over the long simulation time for eah Lyapunov vetor separately.The result is shown in Fig. 4.16. On the vertial axis the Lyapunov exponents λj are plot-ted. Sine the system has N = 100 partiles in D = 1 dimensions, there are 200 independentdiretions in tangent spae spanned by the Lyapunov vetors. Eah Lyapunov vetor, hasits harateristi rate of growth, λj (or shrinkage if λj is negative). As we vary the drivingamplitude A (upper absissa) at �xed frequeny f , we measure the Lyapunov exponents λj asfuntions of the driving. The lower absissa shows the driving veloity, where we see that atthe ritial value of the driving the spetrum hanges ompletely. The �gure shows a zoom-inso that we an see the individual funtions λj(v
rms) in the �uid phase, vrms < 2

√
Eb/m.First, we observe that the spetrum is symmetri with respet the line λ = 0, as derived an-alytially above in 4.6.2 and 4.6.3. Furthermore, we see that the lowest Lyapunov exponents(around zero) form band strutures at low driving. The lowest three Lyapunov exponentsform one bundle whih breaks up as the driving is inreased. The fourth and the �fth ex-ponent (ounted from zero) form a pair of exponents at weak driving. Suh band strutureshave been termed Hydrodynami Lyapunov Modes [56℄ and attrated reent attention. Theinset displays the full extent of the spetrum whih � as we see learly � ollapses to smallervalues at the transition to the gas state.Form the full Lyapunov spetrum, the Kolmogorov-Sinai entropy follows immediately,whih is the sum of all the positive exponents as mentioned in the introdution (Eq. (1.5))aording to the Pesin-Theorem [170℄. The Kolmogorov-Sinai entropy of wet granular matteras a funtion of the driving is shown in Fig. 4.17, aross the �uid/gas transition. The errorbars are dedued from the deviation of ∑j λj from the theoretial value zero. (In the gasstate, the error bars are more than one order of magnitude below the symbol size.) TheKolmogorov-Sinai entropy has a maximum value within the �uid state, and falls o� veryrapidly at the transition to the gas.It is emphasized that the Lyapunov spetrum (in Fig. 4.16) and the Kolmogorov-Sinaientropy (in Fig. 4.17) are given in units of the (onstant) shaking frequeny f , so that thepresented result gives hKS in `absolute units' and has not been divided by the ollisionsfrequeny, whih largely inreases in the gas state. Therefore 1/hKS is the time sale for the



4.8. Conlusions 75

Figure 4.17: The Kolmogorov-Sinai entropy of wet granular matter in the viinity of the�uid/gas transition.deay of orrelation due to the haotiity of the dynamis. The kinemati time sale, set bythe partile veloity and ollision frequeny, dereases in the gas state as desribed by theinrease of temperature in Fig. 4.11. We have therefore the remarkable result, that in spiteof the substantial derease in the kinemati time sale, the time sale of haotiity, 1/hKS,inreases in the gas state. This might appear at �rst glane to be ounterintuitive. Howeverit should be onsidered that in the gas state the lusters formed by apillary bridges breakup. The in�uene of the apillary bridges on the dynamis is marginal at T ≫ Eb. Thus thepresent numerial result points towards a substantial in�uene of the apillary bridges, suhthat the e�et of the inreased ollision frequeny is over-ompensated: the higher the apillaryenergy, Eb, ompared to the granular temperature, T , the more haoti is the dynamis ofwet granular matter. In the following hapter the in�uene of the apillary bridges on theKolmogorov-Sinai entropy is quanti�ed analytially as a funtion of Eb/T .4.8 ConlusionsThe Flutuation Theorem has been investigated analytially and numerially in this hapter.While for a onservative gas the Flutuation Theorem was shown to hold, the non-equilibriumstate of a dissipative gas violates the Flutuation Theorem at high values of exhanged energiesand entropies. This deviation has been derived for a minimal hange in the Maxwell veloitydistribution desribed by the kurtosis, and observed in simulations. This is onsistent withthe fat, that the requirement of time-reversal symmetry for the Flutuation Theorem tohold, is not ful�lled in a dissipative gas. Moreover, this result resolves the seeming on�itbetween the laking requirement and reports of the Flutuation Theorem being ful�lled at



76 Chapter 4. Flutuation Theorem and Phase Transitions in One Dimensionsmaller �utuations in earlier experiments [78℄ and simulations [10℄.The distribution of exhanged energies has been systematially investigated in simulationsof wet granular matter. The ourrene of negative slopes, that violate the funtional formof the Flutuation Theorem, where shown to oinide with a disontinuous transition in thetemperature of the steady nonequilibrium state. Based on simulation results, a minimalonstrution to alter the Clausius relation between entropy and energy has been disussed,whih redues to ∆s = ∆E/T in equilibrium and allows to generalize the Flutuation Theoremfor wet granular matter.We �nally employed the evaporation of wet lusters in the �uid/gas transition to quantifythe in�uene of apillary bridges on the granular haotiity: The Kolmogorov-Sinai entropyhas been determined aross the transition. We found that the haotiity inreases as Eb/Tinreases from gas to �uid, beause of the presene of apillary bonds. This physially relevantobservation and the mathematial onept to evolve tangent spae by an in�nite produt ofmatries (Eq. (4.47)), are ontinued in the analyti omputation of the Kolmogorov-Sinaientropy as a funtion of Eb/T in the following hapter.



Chapter 5The Kolmogorov-Sinai Entropy:Wetting Inreases ChaotiityCommon knowledge about wet granular matter might be due to hildhood experienes inbuilding sandastles, whih imparts knowledge about the striking in�uene a wetting additivehas on the quasi-stati mehanial properties of dense granulates. Let us be omplementaryin this hapter: we investigate the dilute granular gas at T ≫ Eb. Rather surprisingly, thein�uene of the liquid bridge formation is dramati, also in this gaseous limit.We will derive an analyti expression for the Kolmogorov-Sinai entropy, the measure forhaos in non-linear systems, applied to dilute wet granular matter. Our results shall be generalwith respet to spatial dimensionality D ≥ 2. The grains are modeled as hard spheres andthe in�uene of the wetting liquid is desribed aording to the Capillary Model, in whihdissipation is due to the hystereti ohesion fore of apillary bridges. The Kolmogorov-Sinai entropy is expanded in a series with respet to density. We �nd a rapid inrease of theleading term when liquid is added. This demonstrates the sensitivity of the granular dynamisto humidity, and shows that the liquid signi�antly inreases the haotiity of the granulargas. The Lyapunov spetrum, whih exhibits the sympleti symmetries of the wet granulardynamis, is omputed numerially for the exeptional ase of D = 1.Before performing the detailed omputation, let us antiipate from physial intuition whatwe expet. The qualitatively novel aspet, introdued by the wetting liquid, is the possibilityof stiking ollisions. Obviously at the ritial energy of stiking, a strong in�uene on thefuture ourse of the trajetory is exerted by the apillary bridge. We therefore expet theseritial slie of phase spae to ontribute the most to the Kolmogorov-Sinai entropy. Basedon the preeding hapter, the presentation is self-ontained inluding the de�nition of theKolmogorov-Sinai entropy in terms of the Lyapunov spetrum1.5.1 The Dynamial System PerspetiveThe �eld of granular physis has undergone onsiderable progress in reent times [101, 27℄.As part of soft matter physis, granulates have inspired the development of nonequilibriumstatistial mehanis [65, 149℄. Its potential to the foundation of physis an hardly beoverestimated, sine granular gases provide a road away from the well-developed Boltzmann-Enskog theory of onservative gases towards dissipative systems far from thermal equilibrium.In onnetion with geophysis, some aspets of landslides may be understood in terms of1Further referene on dynamial systems are the lassial review artiles [187℄, [200℄, [69℄, and [95℄, as wellas the books of Gaspard [94℄ und Dorfman [61℄. 77



78 Chapter 5. The Kolmogorov-Sinai Entropy: Wetting Inreases Chaotiitysolid/liquid phase transitions of wet granular matter (f. the Chaps. 8 and 10, and [114℄),and wet granular gases are of tehnologial relevane in granulators, pelletizers, and otherinstanes in proess engineering.Wet granular gases are systems onsisting of mesosopi partiles and a liquid phasewetting the partiles. Despite their importane, the theory of wet granular matter is stillnasent. There is a growing number of experimental [211, 141℄ and numerial work [52, 181℄on this subjet, but the hystereti nature of the liquid bridge interation (as established inChap. 3 and [114℄) was not taken into aount in the modeling. We stress that the attrationfore mediated by apillary bridges is not a funtion of distane but depends on the ollisionhistory. The theory of wet granular matter advaned with reent simulation and modelsdesribing the free ooling state [241, 80℄. To the best of our knowledge, the hysteretidissipative dynamis of wet granular matter was treated analytially for the �rst time inFingerle et al. [83℄. In the present hapter this approah is presented in detail, whih treatsthe wet granulate as a omplex dynamial system and uses powerful tools available in thisarea. Suh is the Lyapunov spetrum,
λj = lim

t→∞
1

t
ln
δΓj(t)

δΓj(0)
, (5.1)where j numbers the degrees of freedom in phase spae, as introdued in Chap. 4. It givesthe rate of exponential divergene or onvergene of two equal opies of the system in phasespae, δΓj(t) = Γ

(1)
j (t)−Γ

(2)
j (t), with perturbed initial onditions δΓj(0). A positive Lyapunovexponent indiates haoti behavior, i.e. sensitive dependene on the initial onditions [129℄.Sine we are dealing with a losed system, the sum of all positive Lyapunov exponents equalsthe Kolmogorov-Sinai entropy (KS entropy) [170, 171, 69℄.The KS entropy is an indispensable tool in the modern desription of dynamial systems.Firstly, from it we learn about the degree of haotiity beause its inverse is the time sale ofpreditability. Seondly, this dynamial entropy is a well-de�ned quantity for both equilibriumand nonequilibrium systems. Thirdly, when tiny deviations of initial onditions that were notobservable in the beginning are enlarged by the evolution, this an be interpreted as theprodution of information about the initial onditions. Finally, the KS entropy is known tobe related to marosopi properties suh as transport oe�ients [93, 96, 62, 12, 36, 37, 231℄.Our objetive is to ompute the KS entropy for the wet granular gas. Pioneering workhas been done by H. van Beijeren, J. R. Dorfman et al. [226, 63℄ in the analyti treatment ofsums of Lyapunov exponents for the gas of hard elasti spheres. Here a generalization of themethod suggested in [226℄ is developed.This hapter is organized as follows. In Se. 5.2 we desribe the hystereti interationof wet granulates, introduing the extended apillary model. This interation allows thestiking of partiles by attrative fores in ontrast to the restitution model for dry granulateswhih assumes that a ertain fration of energy is lost instantaneously by inelasti ollisions.In Se. 5.3 we use the terminology developed in Se. 5.2 to relate the behavior of the two-partile system to the fullN -partile system. Thereby we are lead to determine the probabilitydistribution for olliding pairs of partiles in Se. 5.4. In Se. 5.5 we derive the formula thatexpresses the expansion of veloity spae as a funtion of the two-partile initial onditionsfor arbitrary spatial dimension. In Se. 5.6 the results of the Ses. 5.3-5.5 are ombined toaomplish the omputation of the KS entropy. Setion 5.7 points out why, surprisingly, theone-dimensional stationary state is more omplex. In Se. 5.8 the relation between the KSentropy and the Gibbs entropy is disussed.
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dFigure 5.1: Radial fores between a pair of wetted spheres. Solid line: The radial fore ofthe Extended Capillary Model is plotted versus the enter distane r. There is no interationbetween the partiles as they approah. After the ollision applies ~F (r) = −F0
rrit−r
rrit−d

~r
r for

r ∈ (d, rrit), otherwise there is no fore. Dashed line: Experiments yield a dereasing forelaw (aording to Eq. (3.9) and [207, 237℄) with a disontinuity at the rupture. Thereforethe even simpler Minimal Capillary Model (f. Se. 3.4) whih assumes a onstant fore thatdrops to zero at the ritial separation is a good alternative approximation. The hysteretiinteration is the relevant property whih is desribed by both the Minimal and the ExtendedCapillary Model.5.2 The Minimal and the Extended Capillary ModelWe have experimentally on�rmed the Capillary Model for the dynamis of wet granulatesin Chap. 3, and it will be applied here. The system onsists of hard spherial grains withequal diameter d and equal mass m. These are overed by a liquid �lm, so that every timetwo partiles touh, a liquid bridge is formed. The Capillary Model assumes that bridges areformed instantaneously. As we fous on the dilute gas, we may restrit our onsiderations topair interations.Experiments and omputations (f. Chap. 3 and [207, 237℄) yield a apillary fore law,
F (s), that is exellently desribed by Eq. (3.9) with s being the surfae separation (expressedin the natural length unit of the liquid bridge volume, Vb, as S = s

√
d/(2Vb) in Eq. (3.9)).The Capillary Model assumes that the bridge pinhes o� at a ritial surfae separation

s = srit (i.e. at a distane rrit = d + srit of the enters). To leading order, the rupturedistane srit equals the ubi root of the bridge volume Vb. The energy that was stored inthe strethed liquid bridge before the rupture is dissipated into the liquid and lost for thegranular motion. We emphasize that this is the only dissipative mehanism in the CapillaryModel and e�ets due to the visosity of the liquid are expliitly ignored, as established anddisussed in detail in Chap. 3. In the moment of the rupture, the system is non-Hamiltonianbeause the atomi degrees of freedom of the liquid to whih energy �ows are masked out inthe desription of the granular dynamis. Of ourse the fores ating on the grains are �niteat the rupture, so that the trajetories (as funtions of time) are ontinuous in the granularphase spae and di�erentiable with respet to the initial state before the rupture.By a ollision we denote the moment when two partiles in the entire N -partile systemtouh eah other. Sine we are interested in statistial statements and a point in time is ofmeasure zero, we an assume without loss of generality that there is a unique sequene of



80 Chapter 5. The Kolmogorov-Sinai Entropy: Wetting Inreases Chaotiityollisions. For a ertain pair of olliding partiles, we refer to the �ollision yle� as the timeinterval [ti, tf] that omprises the ollision of these two partiles. The ollision yle starts at
ti when the last partile of the two breaks free from its former ollision partner and ends at
tf in the moment when the liquid bridge between them ruptures.During its ollision yle the radial motion of the two-partile system traverses a hysteresisloop. This is shown in Fig. 5.1 for the fore (3.9) (dashed line) and for a simpler fore law(solid line). The solid line in Fig. 5.1 falls o� linearly with the surfae separation s. This is theExtended Capillary Model in ontrast to the Minimal Capillary Model (f. Se. 3.4 and [87℄)whih assumes a onstant fore. The orresponding hystereti `potential' of the ExtendedCapillary Model is

φ(r)

Eb =





−1, d < r before �rst ollision,
−
(

rrit−r
rrit−d

)2
, d < r ≤ rrit after ollision,

0, rrit ≤ r after ollision,
∞, r < d.

(5.2)In both, the Minimal and the Extended Capillary Model, the hystereti loss of energy, i.e.the area Eb = −
∫ d+srit
d Fr dr in Fig. 5.1, is a harateristi system property. When theenergy in the enter of mass system is below Eb, olliding partiles will form a stable boundstate with periodi ollisions. With faster relative motion the liquid bridge exists for a �nitetime until the partiles satter o� eah other. We de�ne a orresponding relative veloity vbby Eb = mv2b/4 (with the additional fator 1/2 beause m/2 is the redued mass). Fromthis point on we distinguish between sattering events and ollisions leading to bound states.For the sattering, the restitution oe�ient ǫ = vf/vi of the Capillary Model is an inreasingfuntion of the initial energy or veloity:

ǫ(Ei) =

√
1 − Eb

Ei or ǫ(vi) =

√
1 − v2b

v2i . (5.3)The binding threshold Eb of the Capillary Model 2 ontrasts sharply with the widespreadmodels for dry granules that assume either a onstant or with inreasing veloity dereasingoe�ient of restitution for the ollision of visoelasti partiles [27℄.Let us denote by vrit the ritial modulus of the relative veloity ~vi ≡ ~v1 − ~v2, thatdetermines whether the inoming partiles will form a bound state or satter. For head-onollisions (impat parameter b = 0) vrit = vb, otherwise vrit > vb sine there is additionalenergy in the rotary motion. The next step is to determine vrit as a funtion of b.Determination of the Critial VeloityThe bridge interation is a entral fore problem. If vi is lower than vb, the e�etive potential
φe�(r) =

mb2v2i
4r2

+ φ(r) (5.4)(of the liquid bridge potential given by (5.2)) does not reah a maximum in r after the ollisionand leads to a bound state. For most vi > vb the partiles satter, but there are some boundases with high angular momenta, orresponding to high impat parameters. Figure 5.2 showsthree e�etive potentials for a given initial veloity vi and di�erent impat parameters b. Inthe ase drawn with solid lines, b and vi ful�ll the ritial relation vi = vrit(b). For the higher
b (�ne dotted line in Fig. 5.2) we have vi < vrit(b) so that a bound system is formed. Hene2In the apillary regime desribed in [114℄, the dissipation by inelasti ollisions [27℄ is dominated by thehystereti liquid bridge interation as we have seen in Chap. 3.
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Figure 5.2: The e�etive potential for vi > vb and three di�erent impat parameters. For thesolid line in the middle b and vi are ritial. For the higher b (�ne dotted line) the partilesare bound, for a lower b (roughly dotted line) they satter. The inset shows the ompletespae of ollision parameters. The ritial veloity vrit (plotted in units of vb for rrit = d)as a funtion of the saled impat parameter b/d divides the plane in bound and satteringstates.the riterion is that φe�(r) touhes the asymptoti energy Eb−mv2i /4 in a single point. Forthe Extended Capillary Model it is possible to alulate these intersetions expliitly. Theseare the roots of (Eb −mv2i /4 + φe�) r2, whih is a fourth order polynomial in r with onetrivial root at r = 0 and another unphysial root for r < d. So there are two real roots forthe bound state whih turn into a omplex onjugated pair of roots for the sattering state.(Sine the derivative of φe� is ontinuous and negative at r = rrit, the turning point rmaxof a bound state follows orretly from this analyti onsideration to be rmax < rrit withoutthe need to take the non-analyti point r = rrit of φe� into aount.) The easiest way is toompute the disriminant of the fourth order polynomial (Eb −mv2i /4 + φe�) r2, whih isequal to
16v4 b4

+
(
8v6 − 4v4 (5γ + 9) + v2

(
27 + 18γ − γ2

))
b2

− v6 + v8 + 3v6γ + 3v4 (γ − 1) γ + v2 (γ − 3) γ2 − γ3 ,with γ = d 2rrit−d
(rrit−d)2

. The disriminant vanishes as the two physial roots oinide. Sine theimpat parameter b enters the problem only trough the angular momentum term in (5.4), thedisriminant is a quadrati funtion of b2. Therefore it is elementary to give brit(vi) as theinverse funtion of vrit(b) expliitly:
brit(vi)

d
=

√
−8 − 20δ2 + δ4 + 16w2 + 20δ2w2 − 8w4 − δ (8 + δ2 − 8w2)3/2

4
√

2w(δ − 1)
, (5.5)
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Figure 5.3: The ollision sequene s(t) and the ollision yles: the step funtion s(t) is thetotal number of ollisions in the entire N -partile system until time t. The horizontal solidand dashed bars symbolize the ollision yles for sattering and bound pairs respetively.For the derivation is important that overlapping yles a�et di�erent pairs of partiles. Thedashed arrow indiates a third partile that hits and breaks up a bound two-partile state.with δ = rrit
rrit−d and w = vi

vb . This funtion is plotted as inset in Fig. 5.2. Muh more oniseis the orresponding funtion for the Minimal Capillary Model:
vrit(b) =

vb√
1 − b2

r2rit . (5.6)In the following setions inluding the main results (5.40)-(5.43) of this hapter, we shall beompletely general without the need to speify for the Minimal or Extended Capillary Model.5.3 How to Relate the Two-Partile System to the N-PartileSystemIn the previous setion we have shown how on the level of two-partile interations the mostimportant property of the real wet granular gas, namely the hystereti binding and breakingof liquid bridges, an be modeled. Further, we have seen that the bond energy of the liquidbridge gives rise to the stiking of partiles. In this setion we treat the many-partile system.Let ν denote the mean ollision frequeny per partile. If the modulus of the initialrelative veloity vi is lower than vrit, so that partiles stik together, the ollision yle isnot terminated until a third partile bumps into the bound two-partile system. We assumethat the outstate of suh a three-partile event ontains free partiles, beause the formationof higher mass lusters is rare in the gas-like state (f. Fig. 5.11). The pair interationstaking plae in the N -partile system may be envisaged as shown in Fig. 5.3. The number ofollisions up to time t is denoted by s(t). Sine s(t) is stritly monotoni its inverse t(s) exists.The ollision rate of the system, s/t(s), tends for s→ ∞ to Nν/2 (eah ollision involves twopartiles). To have the steps visible Fig. 5.3 has been drawn for low N . The horizontal barsrepresent the onept of ollision yles introdued in the last setion. There are two partileswhih are going to ollide. As the beginning of the ollision yle we take the time whenthe last of these two partiles has ruptured its liquid bridge onnetion to some previousollision partner. The ollision yle will end when these two partiles rupture the liquidbridge between them. Thus a solid arrow in Fig. 5.3 shows that one of the partiles whih



5.3. How to Relate the Two-Partile System to the N-Partile System 83just �nished its ollision yle immediately begins another one. The dashed arrow indiatesthat a third partile (that ame out of another ollision yle) ends a bound two-partile state.With this piture in mind the omputation of the KS entropy an be takled. As stated byPesin's theorem the KS entropy equals the sum of all positive Lyapunov exponents, beausethe system is losed and su�ient haoti [170, 171℄. Lyapunov exponents desribe the rate atwhih a ertain diretion in phase spae grows or shrinks for large times. There is a orthogonalset of Lyapunov vetors ξj desribing the diretion while the assoiated Lyapunov exponent
λj desribes the exponential rate

ξj(t) ≃ ξj(0) eλj t (5.7)for long times t. Aording to the sign of λj one speaks of stable and unstable diretions.The deviations in the initial onditions are in�nitesimal small, i.e. the Lyapunov exponentsharaterize the tangent spae map assoiated with a ertain trajetory. In an ergodi systemthe Lyapunov spetrum {λj} is independent of the trajetory aording to Oselede's theorem[164, 165℄. There is no doubt about the ergodiity of the gas of N ≫ 1 hard spheres [202℄.Sine in a dilute system the free �ight time and the mean free path are large omparedto the interation time and the range rrit of the interation, perturbations of veloities areampli�ed as ompared to spatial deviations [226℄. This is not to be understood as a neglet ofthe spatial Lyapunov exponents. The Capillary Model is sympleti (f. Chap. 4), so that foreah positive exponent λj there is a negative exponent λk = −λj and the fat that the spatialdeviations remain small means that the spatial diretions mainly ontain negative Lyapunovexponents, while the positive ones are assigned to veloities. So the onjeture is that theveloity spae oinides (approximately) with the unstable manifold of the system. Basedon this onjeture the KS entropy, hKS, is given by the logarithmi volume growth rate inveloity spae:
hKS = lim

s→∞
1

t(s)
ln

∣∣∣∣∣det

s∏

i=1

Mi

∣∣∣∣∣ . (5.8)The deviation matrix Mi of the i's ollision yle is restrited to veloity spae, so that itdesribes the evolution of veloity perturbations. There are three ruial points here: (i) Thislimit exists by virtue of Oselede's multipliative ergodi theorem [164, 165℄. (ii) We havean unique ollision sequene. (iii) Although there are pair interations ourring with timeoverlaps, there is no ordering problem when writing down the total deviations as a produt ofollision yles, beause the oexisting liquid bridge interations a�et always disjoint pairs (bythe assumption that there are two-partile lusters only) and deviation matries of disjointpairs ommute. Therefore the matries Mi an desribe the full ollision yle of a singlepair of partiles, ignoring all other interations taking plae simultaneously in the N -partilesystem. This temporal deomposition has also been disussed in the ontext of Fig. 4.15 in thelast hapter. Our approah di�ers from [226℄, beause the Capillary Model has a hysteretiinteration with �nite interation time. The dry limit follows by turning o� the interation,
Eb → 0, as a speial ase.



84 Chapter 5. The Kolmogorov-Sinai Entropy: Wetting Inreases ChaotiityThe expression (5.8) an be simpli�ed dramatially:
hKS
N

=
1

N
lim

s→∞
1

t(s)
ln

∣∣∣∣∣det
s∏

i=1

Mi

∣∣∣∣∣

=
1

N
lim

s→∞
1

t(s)

s∑

i=1

ln |detMi|

=
1

N
lim

s→∞
s

t(s)

∑s
i=1 ln |detMi|

s

=
ν

2
〈ln |detM|〉 . (5.9)Herein the brakets < · · · > denote averaging over the two-partile phase spae only.Sine we expet the Lyapunov exponents to be of the order of the ollision frequeny ν,they are (aording to the limit in (5.8)) only well-de�ned if we let the system evolve for atime

tLyapunov ≫ 1

ν
= toll .In the subsequent disussion we will point out that this an be ful�lled even if there wasno external driving mehanism to keep the dissipative system in a stationary state. Clearly,without a thermostat the system ools, Ṫ < 0, [241, 80℄. The ollision frequeny ν is of theorder |Ṫ |/Eb. On the other hand, ooling will be irrelevant on time sales below tool = T/|Ṫ |. So the hierarhy

toll ≪ tLyapunov ≪ toolof time sales an be ful�lled if
Eb ≪ T . (5.10)This implies that for weak liquid bridges as ompared to the thermal energy we may speakof a Lyapunov spetrum independently from the question of the thermostat. No additionallimitation is set, sine the ondition (5.10) is already required to be onsistent with the gasstate (displaying mainly single partiles instead of lusters as on�rmed by the simulation inFig. 5.11) whih is studied in this hapter.Two tasks remain. The determination of the probability distribution for the formula (5.9)is done in the next setion. To make use of momentum onservation the subspae is spannedby the enter of mass position ~R ≡ ~r1+~r2

2 and veloity ~V ≡ ~v1+~v2
2 of the two-partile system,as well as the distane ~r ≡ ~r1−~r2 between the enters of the spheres and their relative veloity

~v ≡ ~v1 −~v2. The last step is to ompute for any spatial dimension D the matrix M appearingin (5.9), whih maps for a spei� point in the 4D-dimensional phase spae (~R,~r, ~V ,~v) theinitial veloity deviations (
δ~Vi
δ~vi )from the beginning of the ollision yle to the �nal deviations

(
δ~Vf
δ~vf ) = M( δ~Vi

δ~vi ) (5.11)at the end of the ollision yle. This is done in Se. 5.5.Before we derive the joint probability density a omment on the veloity distribution itselfis in order. It is well-known that for dissipative gases the veloity distribution an deviate
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d

Figure 5.4: The relative oordinate system with respet to partile 2.from the Maxwell-Boltzmann veloity distribution [113℄ depending on the state and drivingmehanism. For expliit results we shall use the Maxwell-Boltzmann veloity distribution,
P (v1, v2) dDv1 dDv2 =

(α
π

)D e−α(v2
1+v2

2) dDv1 dDv2

=
(α
π

)D e−α(2V 2i + 1
2
v2i ) dDVi dDvi

= P (Vi, vi) dDVi dDvi (5.12)with α = m
2T . The result for the KS entropy will also be given in a form that is readilyevaluated for any veloity distribution. For the distribution (5.12) the modulus vi of theinitial relative veloity is distributed aording to

P (vi) dvi =
2
(

α
2

)D
2

Γ
(

D
2

) vD−1i e−α
2

v2i dvi . (5.13)5.4 The Ensemble AverageWe determine the probability distribution for two partiles under the ondition that theywill ollide in the future. Therefore we depit the initial on�guration of an arbitrary pair ofpartiles in relative oordinates ~ri = ~r1 − ~r2 as follows (Fig. 5.4): we rotate our oordinateframe suh that the horizontal axis is per de�nition
~ex ≡ ~vi

vi , (5.14)with the initial relative veloity ~vi = ~v1 − ~v2. This means that partile 2 rests in the originwhile partile 1 moves horizontally to the right. Clearly, the partiles will ollide if and onlyif
(i) the impat parameter is low enough,

b =

√
r2i − (~ri, ~vivi) ≤ d,

(ii) and partile 1 is to the left of partile 2,
(~ri, ~vi) < 0.For any pair of veloities ~v1, ~v2, there are initial relative spatial positions that lead to aollision. So we have to integrate over the entire veloity spae RD × RD,

(α
π

)D
∫

RD

dDv1

∫

RD

dDv2 e−α(v2
1+v2

2) . (5.15)



86 Chapter 5. The Kolmogorov-Sinai Entropy: Wetting Inreases ChaotiityWe take ondition (i) into aount by integrating the impat parameter over the interval [0, d].From the onventional assumption of moleular haos (i.e. the positions and veloities of twopartiles are unorrelated) follows that the impat is uniformly distributed within the rosssetion,
P (b) db = (D − 1)

bD−2 db

dD−1
, 0 < b < d . (5.16)Further, we need to know the horizontal distane xi > 0 to the ollision point. Together withthe impat parameter b this determines the relative spatial position ompletely in the planeof inidene, sine aording to (ii), ~r = b ~ey − (xi + √
d2 − b2) ~ex always points to the left.The probability distribution of xi follows from the distane overed by the partiles in thelaboratory frame. Denoting by x1 and x2 the length that partile 1 and 2, respetively, havetraveled in the laboratory frame sine the beginning of the ollision yle, we have the equaltime ondition

x1

v1
= tfree =

x2

v2
, (5.17)where tfree stands for the time of free �ight that both partiles have in ommon. From thisfollows for the initial separation of partiles

xi = vi tfree =
vi
v1
x1 . (5.18)The probability density of the traveled distanes x1 and x2 are known in a gas to bee−xj/l dxj

l
, j = 1, 2. (5.19)The length sale l is the mean free path in the laboratory frame. Hene, under the assumptionof moleular haos the probability density of the initial separation xi is

P (xi|v1, v2) = C

∫ ∞

0

dx1

l

∫ ∞

0

dx2

l
e−(x1+x2)/l

× δ

(
xi − x1

vi
v1

)
δ

(
x1

v1
− x2

v2

)

= C ′ e−xi
l

v1+v2
vi (5.20)up to a normalization fator. Obviously this yields the integration

v1 + v2
vi ∫ ∞

0

dxi
l

e−xi
l

v1+v2
vi (5.21)as part of the ensemble average. Putting (5.15), (5.16) and (5.21) together we an omputearbitrary expetation values:

〈. . . 〉 = (D − 1)
(α
π

)D
∫

RD

dDv1

∫

RD

dDv2
v1 + v2
vi

×
∫ d

0

db bD−2

dD−1

∫ ∞

0

dxi
l

× e−α(v2
1+v2

2)−
xi
l

v1+v2
vi . . . (5.22)with vi = ‖~v1 − ~v2‖. In passing we take a look at the distribution of xi in Fig. 5.5. The jointdistribution (5.22) implies that xi is approximately distributed aording to an exponentialfall o�, as one may expet, beause the distanes in the laboratory frame follow suh a law.However there are di�erenes: the mean is lower, e.g. < xi > ≈ 0.71 l for D = 2, and thedistribution falls o� faster than exponentially for small xi (f. [226℄).
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Figure 5.5: The distribution of xi after averaging out the veloities. The dashed urve is anexponential distribution with the same mean. Clearly P (xi) deviates from an exponential atdistanes xi below the mean free path l.5.5 The Expansion of Veloity SpaeWe aim to ompute the determinant of the matrix M as de�ned by Eq. (5.11). There arealways two distint deviation matries Mbound for vi < vrit and Msatt for vi > vrit, so thatthe phase spae average naturally deomposes into
〈ln |detM|〉 = 〈ln |detMbound|〉vi<vrit

+ 〈ln |detMsatt|〉vi>vrit .After determining these matries, Eq. (5.9) will enable us to ompute
hKS
N

=
ν

2

[
〈ln |detMbound|〉vi<vrit

+ 〈ln |detMsatt|〉vi>vrit ] . (5.23)Beause of momentum onservation, ~Vi = ~Vf, the matrix M is of the bloked formM =

( 1ID ΘD

ΘD M′ ) ,where 1ID and ΘD are unity and zero matries of dimension D ×D respetively. Thereforethe only ontribution to the growth in veloity spae stems from the relative veloities,det M = det M′ . (5.24)The �nal relative veloity 3 is
~vf =

√
v2i − v2b (cos ϑ ~ex + sinϑ ~ey) . (5.25)As de�ned in (5.14) ~ex points in the diretion of the inoming veloity and ~ey = ~ex × ~r×~vi

‖~r×~vi‖ =
~rv2i −~vi (~r,~vi)
‖~rv2i −~vi (~r,~vi)‖ is the orthogonal vetor spanning the plan of motion, suh that

~r = −Xi~ex + b~ey3Note that in this ontext vb is given by mv2b/4 = φ + Eb as a funtion of r for the ase of stikingpartiles, when '�nal' does not refer to the rupture event.
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√
d2 − b2 is the x-distane of the partiles in themoment of ollision.When onsidering deviations of (5.25) one has to take into aount ontributions due tothe hange of the angle 4 ϑ = ϑ(b(~r,~vi), v),

δϑ =
∂ϑ

∂b
δb+

∂ϑ

∂b

Xi
vi δvy +

∂ϑ

∂vi δvx , (5.26)as well as ontributions aused by rotations and inlinations of the orbital plane of motion:



δ~ex

δ~ey

δ~ez... 
 =




0
δvy

vi δvz
vi . . .

− δvy

vi 0 Xi
b

δvz
vi . . .

− δvz
vi −Xi

b
δvz
vi 0... ... . . .







~ex

~ey

~ez...  . (5.27)The Eqs. (5.26) and (5.27) hold for arbitrary spatial dimension D. The resulting deviationmatrix M′ is rather ompliated:
M′ = 

cos ϑ
ǫ − ǫviϑv sinϑ − (1 +Xiϑb) ǫ sinϑ 0 . . .

sinϑ
ǫ + ǫviϑv cosϑ + (1 +Xiϑb) ǫ cos ϑ 0 . . .

0 0 ǫ
(
cos ϑ+ Xi

b sinϑ
)

0 . . .... ... 0 ǫ
(
cosϑ+ Xi

b sinϑ
)... . . .


(5.28)with the restitution oe�ient (5.3) and the abbreviations ϑb ≡ ∂ϑ

∂b , ϑv ≡ ∂ϑ
∂v . The determinantof M (whih equals M′, f. Eq. (5.24)) is surprisingly simple:det M =

(
−1 + xi∂ϑ

∂b

)(
1 − v2b

v2i )D
2
−1

×
(
1 +

xi
b

sinϑ
)D−2

, (5.29)where we eliminated xoll ≪ xi using
xollϑb ≈ −2

xoll
b

sinϑ ≈ 2 − 2
b2

d2

cosϑ ≈ 2
b2

d2
− 1 .This redues in the dry ase, vb = 0, to the expressions (18) (D=2) and (19) (D=3) in [226℄.The �rst fator in (5.29) is always non-zero sine ∂ϑ
∂b < 0.5.6 Results for the Kolmogorov-Sinai EntropyIn Fig. 5.6 the relative dynami ~r(t) (whih equals the motion of one of the two partiles inthe enter of mass system up to a fator of 2) is skethed. In both ases, the determinant of4One has to distinguish between the variation of the funtion b (as given in item (i) on page 85), δb(~ri, ~vi) =

δ(~ri,~ey) = δb− Xi
vi δvy , and δb = (δ~ri,~ey) as an opportune notation for the spatial deviation δy.
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(A)
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(B)

Figure 5.6: The relative motion for (A) stiking and (B) sattering.M is of the form (5.29), but the meaning of the angle ϑ(b, vi) is quite di�erent. For impatveloities above the ritial value, ϑ is the sattering angle
ϑsatter(b, vi) = π − arcsin

b

d

− arcsin
b

rrit √1 −
(

vb
vi )2

−
∫ rrit

d
dϕφ(r) ,whereas for vi < vritial the angle ϑ is a funtion of time,

ϑbound(t3, b, vi) =
π

2
− arcsin

b

d

− t3
ϕar(b, vi)
tar(b, vi) − ϕos(t3, b, vi) .Here t3 denotes the time during whih the two-partile systems remains bound until it isfreed by a third partile. The angle between two ontats ϕar(b, vi) equals 2

∫ rmax(b,vi)
d dϕφ(r)and there is a similar integral for the time tar it takes to run through one ar. The index

φ ought to remind us that the potential (5.2) enters only through these integral expressions.For t3 ≫ tar the angle ϑbound grows linearly with time, while the bound osillations ϕos arenegligible.Depending on the details of the interation potential, ϕar and tar an grow beyond allbounds as the pair (b, vi) approahes the ritial line (b, vrit(b)) (f. Fig. 5.2) in the boundregime (from below). This singular behavior ours in the Extended Capillary Model (linearfore, Fig. 5.1), whereas in the Minimal Capillary Model (onstant fore) both quantitiesremain �nite. Close to the divergene the motion is an outward direted spiral, so that theturning point is never reahed and the periodi ollisions end. The interation time an alsodiverge for sattering states (reahing the ritial line in Fig. 5.2 from top), but this singularityis integrable with respet to veloity. In the bound ase the divergene is ut o� by the thirdpartile and beause of angular momentum onservation we have the estimate
ϑbound(t3, b, vi) ≤ onst +

t3bvi
d2

. (5.30)We will use the right-hand side as an approximation. The stopping time t3 is a randomvariable itself and distributed aording to
Vi
l′

e−Vi
l′

t3 dt3 , (5.31)



90 Chapter 5. The Kolmogorov-Sinai Entropy: Wetting Inreases Chaotiityfor a given enter of mass veloity Vi of the bound system. There is a smaller mean free path l′for the bound two-partile system: sine its total ross setion hanges with time the e�etivediameter de� is 3
2d so that the mean enter-enter distane at ontat is 5

4d. Another fatorof √2
3 is aused by the mass ratio [97℄, thus

l′ =

(
4

5

)D−1
√

2

3
l . (5.32)In the following, we shall evaluate averages that are linear in t3, so that we an forthwithsubstitute the expetation value, t3 = l′

Vi , of the distribution (5.31). Then from (5.30) follows
∂ϑbound
∂b

(vi) ≈ vi l′
Vi d2

. (5.33)In both ases, binding and sattering, ∂ϑ
∂b is at least of the order of 1

d , while xi is of the orderof the mean free path
l =

Γ
(

D+1
2

)
√

2π
D−1

2

(
dD−1n

)−1
, (5.34)with n being the number density of grains. Formulas for the mean free path are well established[35℄ and other harateristi quantities for the motion of traer partiles are also available [97℄.We remark that investigating the trajetories of traer partiles is a promising tehnique forthe experimental on�rmation of results presented in this hapter.Our goal is to expand the KS entropy in the small dimensionless parameter ndD ≪ 1. Sothis is an expansion for the dilute wet granular system. The unity in the �rst and the lastfator in (5.29) ontributes to the KS entropy only in linear and higher orders, while we areinterested in the logarithmi and zeroth order terms:
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)D−2

. (5.35)With the step funtion θ, Eq. (5.35) is valid for sattering and binding, beause we assumethat the ollision with the third partile rethermalize the two-partile system, so that the nextollision yle starts with the same initial distribution. This is to say that the third partile isregarded as a signal to break the bound state, as is shown in relative oordinates in Fig. 5.7.Sine the 'third' partiles have an energy of the order of the granular temperature T ≫ Ebwe an safely neglet the formation of bound states of three or more partiles (f. Fig. 5.11).A luster size expansion will be disussed at the end of this setion.After introduing the appropriate length sales l and d we are lead to examine
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. (5.36)



5.6. Results for the Kolmogorov-Sinai Entropy 91
r23

hard corehard core

r12

r23

r12

1+2 3 1+2 2+1

Figure 5.7: The left panel shows the typial ase at gas temperatures T ≫ Eb: a bound stateis broken by a thrird partile. In the omputation we use the ollision between a bound stateand a third partile as the event whih terminates the bound state. The possibility shown inthe right panel, to have a bound states in the �nal state after a ollision, is exponentially rareat high temperature.The �rst two terms in the square braket yield
− lnndD − CD , (5.37)with a numerial onstant CD = D−1

2 ln 2 + (D−1)2

2 lnπ − D−2
D−1 − (D − 1) ln Γ

(
D+1

2

). This isindependent of the ensemble average and the interation potential.If xi was distributed exponentially with mean l, the third term in (5.36) would give riseto the negative of Euler's onstant, −γEuler ≈ −0.5772, independent of the dimensionality ofthe problem. As disussed before, lower values of xi are favored. That is why we �nd bynumerial omputation a lower expetation value, e.g. for D = 2:
〈
ln
xi
l

〉
≈ −1.01. (5.38)The fourth term in (5.36) is (f. Eq. (5.33))
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Vi〉vi<vrit , (5.39)with the numerial onstant C̃D = (D − 1) ln 5

4 + ln 3
2 + D−1

2 lnπ − ln Γ
(

D+1
2

).Together with (5.37) the logarithm lnndD herein forms the leading term of the densityexpansion. Therefore the logarithm lnndD in (5.39) is a orretion of the leading term as itis known for the dry ase [226℄. The KS entropy has the following density expansion:
hKS
N

= −νAD lnndD + νBD + O(ndD), (5.40)
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cbFigure 5.8: The inrease ∆AD = Pbound
2 of the leading oe�ient AD = D−1

2 + ∆AD: Thesolid line is for two, the dashed line for three dimensions D. Sine A = D−1
2 in the abseneof the liquid bridge interation we reover the result for dry granulates as a speial ase.With the approximation for the wet granular gas used in the derivations one is restrited totemperatures above the bridge energy Eb. Otherwise the method applied has to be extendedto take lusters of more than two partiles stiking together into aount. The far extremease, Eb ≫ T , is known as the so-alled stiky gas.with the leading oe�ient
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, (5.41)and the density independent part
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. (5.42)The general form of the leading term, valid for any veloity distribution, is
AD =

D − 1

2
+
Pbound

2
. (5.43)We want to emphasize that so far all results of this setion are general with respet tothe spatial dimensionality of the problem and the details of the partile interation. Theprobability Pbound = 〈1〉vi<vrit in (5.43) is given by integrating veloity and impat fatorover the bound states in Fig. 5.2. Only here the detailed interation models (5.5) and (5.6)enter the problem. The veloity distribution for this integration may also be taken diretlyfrom an experiment, as the one desribed in Chap. 9.



5.6. Results for the Kolmogorov-Sinai Entropy 93Let us now turn to expliit results. For the Gaussian veloity distribution (5.13) and oddspatial dimensions the veloity integral of Pbound is an inomplete Gamma funtion. In evendimensions the integral is elementary, yielding for D = 2

A2(ε, γ) = 1 − 1
2

∫ 1
0 dx e−ε f(x,γ), ε = Eb

T ,as a funtion of the bridge energy over granular temperature, ε, and the wetting ontent,
γ = rrit/d ≥ 1. The remaining integration variable is the impat parameter, x = b/d. Theexess of the ritial energy over the bridge energy, f(x, γ) = Erit/Eb, depends on the modeldetails. In the Minimal Capillary Model from Eq. (5.6) follows

f(x, γ) =

(
1 − x2

γ2

)−1

.The oe�ient AD of the Minimal Capillary Model is plotted in Fig. 5.8 as a funtion ofthe liquid bridge energy for two and three dimensions. Very similar urves follow from theExtended Capillary Model. For the plot the limit of short liquid bridges, rrit = d, washosen. This orresponds to a small amount of liquid that is just su�ient to wet the surfaeroughness of realisti spheres. Independent of rrit/d ≥ 1, in the dry limit (or equivalentlythe high temperature limit) AD approahes (D − 1)/2, whih is the known result for hardspheres [226℄. For a higher ontent of wetting liquid, rrit/d > 1, the dependene of theleading term on the binding energy beomes �atter, but in an experimental situation thereis a simultaneous gain in Eb when liquid is added. Varying the surfae tension of water byadding a salt to the wetting solution is an experimentally feasible way to measure this urvediretly with a �xed amount of wetting liquid, suh that rrit/d an be kept onstant and Ebinreases aording to Eq. 3.10.From this graph we see the sensitive dependene of the KS entropy on the ohesion foreof the wetting liquid. To gain analyti insight we investigate exemplarily the two-dimensionalase plotted. Substituting z = 1/(1 − x2) gives
A2(ε, 1) = 1 − 1
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(5.44)Splitting up the integration at z = 1/ε allows to separate the non-analyti part.
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(5.45)The �rst integral in (5.45) an be expanded in powers of ε ∈ [0, 1) sine z > 1. The seondintegral equals 2 for ε→ 0, while its �rst derivative has a logarithmi divergene:
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4

)
+ O(ε2) . (5.46)The onstant C is ∫∞1 exp (−z)/4z + ln 2/2 + (1 − 1/e)/4 ≈ 0.56. This shows that the slopeof A2 is vertial at Eb = 0.Let us �nally look at the next higher order term BD of the density expansion. Forsimpliity we restrit ourselves to the ase D = 2, so that
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Figure 5.9: The oe�ient B2 of the density expansion (5.40).The last term in (5.47) is exatly equal to unity in the limit of dry granulates,
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)2 = 1 ,but dereases as the ritial veloity inreases when we turn on the liquid bridge interation.The oe�ient B2 for the zeroth order in the expansion (5.40) is plotted in Fig. 5.9.It is known for the dry limit [226℄, that the aordane of BD with numerial simulationannot keep up with the suessful on�rmation of AD. The origin of this disrepany is theassumption that the unstable manifold oinides with veloity spae and it is quite involvedto improve on that [50℄. In the dry limit our method yields B2 = −0.52(8), whih is lowerthan the analytial estimate (B2 = 0.1045) and the simulated result (B2 = 0.679) of [226℄.From the knowledge of the oe�ients AD and BD follows the KS entropy in the dilutesystem for various wetting ontents as shown in Fig. 5.10 for D = 2.The Cluster ExpansionIn Eq. (5.23) we onsidered events inluding bound states of two partiles (a + b +  →ab +  → a + b + ) and sattering events (a + b → a + b) by writing
〈ln |detM|〉 = 〈ln |detMbound|〉vi<vrit

+ 〈ln |detMsatt|〉vi>vrit . (5.48)The �rst term is proportional to Pbound whih led to Eq. (5.43). Here we wish to point out howto generalize the omputation of the KS entropy to inlude lusters of higher partile number.All equalities in (10) hold for arbitrary types of events, when Mi denotes the deviation matrixassoiated with the ith event and ν is the generalized event frequeny. Referring to the eventtype by T we reorder the averaging. Colleting the events of type T by introduing δtype(j),T(whih is unity for an event T and otherwise zero) we write 〈. . . 〉T for 〈. . . δtype(j),T〉:
2

νN
hKS = 〈ln |detM|〉 =

∑T 〈ln |detMT|〉T . (5.49)
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Figure 5.10: The two-dimensional KS entropy as a funtion of the density for three di�erentbridge energies Eb. This energy depends on the amount of wetting liquid added to thegranular gas as is indiated in the plot. Another way to hange Eb is to add a salt or asurfatant.
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Figure 5.11: The probability for a sphere to have a ertain number of liquid bonds endingon its surfae. This distribution is derived from a three dimensional moleular dynamissimulation of a wet granular gas with an oupied volume fration of 3.9%, whih orrespondsto nd3 = 0.074. The granular temperature T has been varied as indiated. The probabilityfor two liquid bridges ending on one partile, as neessary for a three-partile-luster, issuppressed by more than three orders of magnitude. An analyti approah to the KS entropyis favorable beause the diret numerial integration su�ers from high omputing times forthe full tangent spae dynamis and yields noisy results [239℄. The liquid bond distributionshown is a robust and reliable single-partile quantity.



96 Chapter 5. The Kolmogorov-Sinai Entropy: Wetting Inreases ChaotiityThe summation an be written as a systemati expansion in the luster size:




a + b → a + b (T1)a + b +  (T2)
րa + b +  → ab +  →





a + bb + aab +  (T3)
(T4)
(T5)

ց ab (T6)...with the events T1 and T2 onsidered before in (5.48). The events Tj with j > 2 result innew many-partile-lusters whih are exponentially rare omponents of the wet granular gasas is evident from Fig. 5.11. We remark that the sattering of a bound state (T5) prolongsthe mean bond time t3 to beome t′3 = αt3, with α = 1 + 2PT5 + 3P 2T5
+ · · · = 1/(1 − PT5)

2.The unity in front of this series orresponds to breaking the bound state in its �rst ollision(T2), the seond term orresponds to one sattering event of the bound pair and the followingterms to multisattering. The ontribution to the KS entropy is proportional to the logarithmof this time, ln t′3 = ln t3 − 2 ln(1−PT5). The �rst term ln t3 ∝ − ln(ndD) is the wet granularontribution to the leading oe�ient A as identi�ed in Eq. (44). The seond term gives aorretion to the B-oe�ient whih is of the order PT5 = O
(√

Eb/T 3
) for three dimensions.This onludes our disussion of systems of two and higher spatial dimensionality. Beforewe turn to a general diagrammati desription of entropy prodution, it is pointed out inthe following setion why the ase D = 1 has to be treated as an exeptional ase for theomputation of the KS entropy.5.7 The One-Dimensional System as an Exeptional CaseHere we disuss why, ontrary to what we might expet, the one-dimensional gas is moreomplex.The `dry term', (D−1)/2, in Eq. (5.43) predits the orret result for one spatial dimensionin the absene of the apillary interation, namely zero KS entropy: After the oordinationtransformation yi = xi −

∑i−1
k=1 di, the partiles transform to point-like objets. In ollisionsthey exhange their veloities if they have equal masses, so that after renumbering, the par-tiles an be regarded as moving ballistially. Obviously this dry system is integrable andhas therefore all its Lyapunov exponents equal to zero, whih implies hKS = 0. Also theone-dimensional system with arbitrary masses is linearly (not exponentially) unstable withrespet to perturbations of the initial onditions, so that the one-dimensional system is nothaoti until it is wetted.We have seen in this hapter that the wetting liquid has a stronger in�uene in twodimensions (logarithmi divergene of the slope shown in Eq. (5.46)) than in three dimensions.In one spatial dimension the wet e�et is even stronger, and of qualitative di�erent nature.While the free ooling state presented in the following Chap. 6 inherits its randomness fromthe initial state, the thermostated steady state has to be su�iently haoti in order to behomogeneous without luster growth. This is not ful�lled in one dimension. In the derivationfor D > 1, we ould assume that the high granular temperature prevents lustering in thestationary state due to the intrinsi haotiity (for whih reason the senario on the left-handside in Fig. 5.7 dominates for D > 1 dimensions). Yet in one dimension, a bound state annot
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Figure 5.12: Without liquid bridges the 1D-system is equal to a triangular billiard, whih isintegrable. (A) shows an example of a three-partile system with periodi boundary ondi-tions. (B) Plotting the relative oordinates xj in Cartesian oordinates, the isohore dynamisis restrited to the triangular plane.be broken up by a third partile. If the partile masses are too similar or even equal, Newton'sradle e�et auses a simple exhange of the binding partners. For this reason the wet termin Eq. (5.43) gives the orret ontribution from 2-lusters, however bigger lusters are notnegligible for D = 1 even at T ≫ Eb.One might think at �rst glane that here a numerial fator greater but still of the orderof unity might be su�ient to desribe the in�uene due to n-lusters for n > 2. This is notthe ase beause there is a dramati di�erene between a 2-luster and a n-luster for n > 2from the point of view of dynamial systems. While a 2-luster is an integrable subsystem, inany dimension and for all fore laws5, already the one-dimensional 3-luster forms a haotisubsystem with positive Lyapunov exponents.5.7.1 The Cluster-Internal ChaotiityThis haotiity aused by the bridge interation an be represented by an equivalent dynamialsystem as is shown in the Figs. 5.12 and 5.13. Figure 5.12 shows that a dry system of threepartiles, represented in relative oordinates xj, is equivalent to a triangular billiard: systemis onstrained to the plane ∑j xj = L. Beause of its �at boundaries the triangular billiardis integrable, and hene hKS = 0. With the liquid bridge interation, the stable lusters areloated in the the wedges of this triangular billiard (f. Fig. 5.13B). However, the trajetoryis paraboli under the fore of the apillary bridge. Therefore the system is equivalent to asingle point partile whih moves under gravity in the wedge (illustrated in Fig. 5.13C). Thisdynamial system has six degrees of freedom, four of whih orrespond to vanishing Lyapunovexponents due to onservation laws (as is explained in the ontext of the expliit numerialspetrum in the following paragraph). Beause of the sympleti symmetry of the spetrumthere is one pair of nonzero Lyapunov exponent, (λ1,−λ1), and the KS entropy is λ1 > 0.The generalization to N > 3 partiles is straightforward: the on�guration spae is in generalan (N − 1)-simplex instead of the triangle for N = 3.The full Lyapunov spetrum of a 1D system with N = 10 partiles is omputed numeriallywith an event-driven algorithm, and shown in Fig. 5.14. To measure the Lyapunov exponents,the system is kept in a stationary state by a Gaussian thermostat. The spetrum is omputedby evolving not only the phase spae trajetory, but also the tangent spae dynamis, asderived in Se. 4.6.1. After a ertain number of ollisions, the stability matrix M of the5The two-body problem is, analogous to the Kepler problem, integrable in relative oordinates, as there isa su�ient number of �rst integrals of motion.
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Figure 5.13: (A) With the liquid bridge interation, the 3-lusters on�gurations are loatedin the wedges of the triangular on�guration spae. (B) One out the three possible lusteron�guration is shown in gray. As long as the energy is insu�ient to break a apillary bond,the system is equivalent to a single mass point moving ballistially in a wedge under gravity,as is shown in (C). With the parabola trajetories due to the apillary fore, the system hasone positive exponent, one negative (of equal magnitude), and four Lyapunov exponents equalto zero.
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Figure 5.14: The Lyapunov spetrum of ten wet granular partiles with a Gaussian thermostatin one spatial dimension under periodi boundary onditions.deviations in tangent spae has very large and very small value aording to the stable andunstable diretions. The matrix isQR-deomposed to retain the diretions (the eigenvetors ofMTM) and the logarithmi growth rates, as disussed in Se. 4.7. The tangent spae evolutionis ontinued with the eigenvetors as initial values, so that these eigenvetors are aligned tothe stable and unstable manifolds in phase spae. Sine wet granular matter is sympleti, theLyapunov spetrum is point-symmetri (f. proof in 4.6.2), as is on�rmed here numeriallywith high auray. Beause of energy onservation (due to the thermostat) and momentumonservation (pair interation under periodi boundary ondition), we have two onservedquantities, and in addition their sympleti onjugated diretions6 with vanishing growth.For this reason there are in total four Lyapunov exponents equal to zero. Note that thisis not the ase with the spetrum omputed for the system driven by shaking boundariesin Se. 4.7. Here all exponents are bounded away from zero, beause the boundaries breaktranslation invariane and energy is not onstant but �utuates (f. 4.7), as investigated indetail in the ontext of the Flutuation Theorem in the Ses. 4.3 and 4.4.5.7.2 Remark on Numerial Tehniques and the DimensionalityWhile the liquid bridge oordination shown in Fig. 5.11 is a robust numerial quantity also forthe time-driven simulation method, this is not the ase for the sensitive Lyapunov spetrum ofa many partile system for the following reason. The diret integration algorithm has to adaptthe time steps to allow for an aurate integration of the extremely short ontat repulsion.With these �ne integration steps it takes extremely long until the system has explored itshigh dimensional phase spae as is neessary for reliable Lyapunov spetra. Assoiated withthe high number of integration steps is an inrease of the numerial error. The superiorevent-driven tehnique an simulate the dynamis aording to the Capillary Model of wet6For energy onservation, the onjugated diretion is the translation along the phase spae trajetory itself.Cf. p. 24 in [94℄ on the relation between symmetry and vanishing exponents.
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Figure 5.15: Topology of the state spae. In this sketh the ontinuous part C is plotted tothe right and the disrete part D extends vertially. The ontinuous parts Cσ are in generalnot one-dimensional so that the shown onnetivity is a simpli�ed example.granular matter in one-dimension only. This stresses the signi�ane of an analyti approah,as the one presented in this hapter for D ≥ 2, while for D = 1 numerial methods areomplementary.5.8 A Diagrammati Approah to Entropy ProdutionThe general expression for the entropy produed by pieewise smooth dynamial systems isderived. Its onnetion to the Kolmogorov-Sinai entropy is pointed out. The ase of wetgranular matter as a pieewise Hamiltonian system is disussed.We onsider a general dynamial system. Its spae of states, M , may not only ontain aontinuous phase spae C = {Γ}, but also disrete degrees of freedom D = {b}, so that ingeneral: State Spae M = {Γ,b} . (5.50)In onnetion with the Flutuation Theorem, theorist have most often onsidered smoothdynamial systems, suh as the non-Hamiltonian sheared �uid of the seminal work [89℄ andthe presentment [187℄. A smooth dynamial system possesses a smooth vetor �eld F(Γ),so that the physial dynamis are generated by the following system of non-linear �rst orderdi�erential equations: Γ̇ = F(Γ). We proeed to the important ase when the generator F isnot smooth everywhere. The �ow only needs to be smooth within ertain subsets Cσ:

Γ̇ = F(Γ,b) (5.51)
b = onst for Γ ∈ Cσ . (5.52)The subsets Cσ tessellate the entire ontinuous part C of the state spae:
C =

⋃

σ

Cσ . (5.53)At the borders ∂Cσ of Cσ, the disrete part b of the system may alter, b 7→ b′, so that thediretion of the �ow has a disontinuity, F(Γ,b) 7→ F(Γ,b′).This is all we need to know to ompute the entropy prodution. Entropy is de�ned as theGibbs-Shannon funtional of the probability distribution P (Γ,b) on the state spae M :
S(t) = −

∑

D

∫

C
P lnP dv . (5.54)First, we split up the integration in a sum of integrals over the Cσ. Seond, we use theonservation of probability within eah Cσ, as is expressed by the ontinuity equation,

∂tP + div j = 0 ,

j = PF .



5.8. A Diagrammati Approah to Entropy Prodution 101Finally, we integrate by parts twie, taking the boundary terms into aount.
Ṡ =

∑

σ

∑

Dσ

(∫
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P div F dv +

∫

∂Cσ

jn lnP dµ

)

−
∑

σ

∑

Dσ

∫

∂Cσ

jn dµ (5.55)Herein, Fn = (F,n) is the normal omponent n of the generator F. The last term in (5.55) isidential zero, sine the probability urrent jn = (j,n) rossing the boundaries is onserved.So we have the result
Ṡ =

∑

D

∫

C
P div F dv

+
∑

σ

∑

Dσ

∫

∂Cσ

jn lnP dµ . (5.56)Sine the probability for leaving Cσ aross the border element dµ within time dt is jn dµ dt,we an write (5.56) in the onise form
Ṡ = 〈div F〉 +

∑

σ

∑

b∈Dσ

νσ(b) 〈lnP 〉σ,b , (5.57)with the bulk average
〈. . . 〉 =

∑

D

∫

C
. . . P dv ,and the border average

〈. . . 〉σ,b =

∫
∂Cσ

. . . jn dµ
∫
∂Cσ

jn dµ
. (5.58)The denominator in (5.58) is the esape rate νσ(b) of Cσ through the hannel b. Note thatthe sign of νσ is positive for a deterministi ensemble �ow leaving Cσ, and negative if the �ow

F points to the interior of Cσ.With (5.57) we have generalized the ommon result for smooth systems, in whih asethere is only the divergene term: Smooth dynamial systems produe entropy by phasespae ontration.An instrutive example of the additional term is the wet granular gas: The rate νbound atwhih the binding state is entered, is the ollision frequeny times the probability for stiking,
νbound = νoll Pbound. Furthermore, the probability P that the binding state is oupied, hasto be proportional to some power of the system density. This allows an abstrat view on theresult on the Kolmogorov-Sinai entropy. All we used was the multi-sheet struture of phasespae.In the ase of smooth dynamial systems the divergene is the sum of all Lyapunovexponents and the Kolmogorov-Sinai entropy is the sum of the positive ones. Hene, we anrelate the Gibbs-Shannon entropy and the Kolmogorov-Sinai entropy by

Ṡ = hKS − h†KS . (5.59)The dagger (†) refers to the time-reversed system, whih has the signs of all Lyapunov expo-nents reversed. Equation (5.59) also holds for pieewise smooth and reversible systems.
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Figure 5.16: The elementary event of information loss.

Figure 5.17: Change of entropy at vertex.Fousing on the ase of wet granular matter at any density and in any dimension, the �rstterm in (5.57) is absent, sine the system is pieewise Hamiltonian and Hamiltonian systemsonserve phase spae (Liouville theorem). When we go to higher densities, there will be biggerand bigger lusters, and the transition from one binding on�guration to another yields esaperate terms analogous to the one disussed above. When a ollision between grain i and j takesplae, the initial on�guration an be bounded (1) or unbounded (2). Eventually, there willalways be a bridge. This situation is skethed in Fig. 5.16. Aording to (5.57) the entropylost by the system in this proess is
Ṡ = ν1 lnP1 + ν2 lnP2 − (ν1 + ν2) ln(P1 + P2) . (5.60)For equal transition rates ν1 = ν2 = ν and equal oupation probabilities P1 = P2 = P , thisresults in ln 2, as on my have expeted aording to the binary nature information is storedin the apillary bond.Colletion of Diagrammati Formulas The entropy produed by a pieewise smoothdynamial system is −Ṡ with

Ṡ = 〈div F〉
+

∑

i

ν
(out)
i lnPi −

∑

f

ν
(in)
f lnPf . (5.61)The summation runs over initial deay hannels (i) and future branhes (f). This sum overhistories is skethed in Fig. 5.17. The onservation of probability aross the vertex (alwaysful�lled) onstrains

∑

i

ν
(out)
i =

∑

f

ν
(in)
f .The onservation of phase spae aross the vertex (holds for our model of wet granular matter,but not for the restitution model) onstrains

∑

i

Pi =
∑

f

Pf .



5.9. Conlusions 1035.9 ConlusionsWe worked out the e�et of the apillary interation on the haotiity of the granular dynamis.Liquid bridges give rise to radial hystereti fore over �nite distane. The detailed distanedependene was found to be of minor importane in the omparison of the Minimal andthe Extended Capillary Model, whereas the deisive property is the extration of the bridgeenergy, whih is independent of the initial veloity in ontrast to the restitution model ofdry granulates. As part of the omputation, the expliit distribution of relative partileseparations prior to ollision was derived, whih deviates from a simple exponential (Eq. (5.20)and Fig. 5.5).An enhaned haoti dynamis of the wet granular system as ompared to dry sphereswas derived analytially. The leading term in the expansion of the KS entropy with respetto density is sensitive to the stiking of partiles. It was shown that the prolonged interationtime of stable pairs enfores the exponential separation in veloity spae. The ontinuousbut in general not di�erentiable transition to the dry limiting ase has been established.The exeptional one-dimensional ase ould be mapped to the equivalent dynamis of a `wetbilliard', and the Lyapunov spetrum was omputed numerially.The dynamial property derived in this hapter reommends the wet granular system asa suitable andidate for a Gallavotti-Cohen-type Flutuation Theorem [89, 90℄, sine the re-quirement of haotiity is met. Future work an therefore onentrate on the generalizationregarding the broken time-reversibility (pointed out in Chap. 4). Moreover, the presented re-sult on the inreased haotiity extends the moleular haos hypothesis to the nonequilibriumstates of wet granular matter, so that we an generalize a Boltzmann-Enskog-type kinetitheory by taking the hystereti interation into aount in the following Chaps. 6, 7, and 10.The rigorous derivation of phenomenologial laws suh as the Navier-Stokes equation forvisous �ow and the Fourier law for heat transport is a fundamental problem under intense dis-ussion. Relations between the Lyapunov spetrum of the mirosopi dynamis and maro-sopi properties suh as visosity and heat ondutivity have been established within thelast years, most detailed for the Lorentz gas [93, 96, 62, 12, 36, 37, 231℄. The importane ofsuh relations is apparent from the fat they bridge the gap between mirosopi reversibilityand marosopi irreversibility hallenging physiists sine L. Boltzmann. It is natural thatfuture work extends transport relations for the hystereti interation, based on the result forthe KS entropy.A further interesting problem is the omputation of the KS entropy for dense wet gran-ulates, sine this might lead to a novel desription of lustering � as a nonequilibrium phasetransition � in terms of the Lyapunov spetrum. Yet this problem is hallenging as it needsnew onepts, beause the identi�ation of the veloity spae with the instable manifold islimited to the dilute gas. Here the general diagrammati approah in the last Se. 5.8 of thishapter may serve as a starting point.





Chapter 6Unlustering Transition in FreelyCooling Wet Granular MatterAs in Chap. 4 we start with the 1D system1. In the present hapter it is demonstratedanalytially and by extensive simulations that above a ritial density, the lustering of wetgranular matter under isohori onditions is not monotoni in time, but undergoes a sharpunlustering transition. At this point the liquid bridge onnetions, whih are homogeneouslydistributed in the hot initial state, suddenly break at ertain loations and old granulardroplets preipitate out of the homogeneous initial state. These droplets have an intrinsi size,whih depends on the density of the initial gas. The formation of these droplets interruptsthe lustering proess, and the number of lusters an easily rise by more than one order ofmagnitude. This transition takes plae when the granular temperature omes lose to theenergy sale set by the apillary interation. After this preipitation, the resulting gas ofdroplets undergoes stiky oalesene events, so that the systems onverges asymptotially tothe saling law of the stiky gas. This asymptote is shown to be universal when time is saledwith density. The veloity distribution of lusters is shown to be lose to an exponential,while the thermal partile motion inside lusters is Gaussian.6.1 IntrodutionFor more than a entury, attempts have been made to extend thermodynamis to systemsout of equilibrium. Some progress has been ahieved reently with the advent of so-alled�utuation theorems [75, 89, 90, 125, 199℄, but we still lak a general method to feasiblyderive marosopi properties from the mirosopi interation. Due to its dissipative nature,granular matter is a paradigmati system of nonequilibrium physis and the dry ase has been1The ase of three-dimensional free ooling is a urrent joint projet in ooperation with S. Ulrih (U. Göt-tingen) and K. Röller (MPI DS Göttingen).
Figure 6.1: A shemati representation of wet granular matter in one dimension. For aninterval of length L′ we denote by L the on�guration length, whih is redued by the sum ofall partile diameters, L = L′ − Ljamming. 105



106 Chapter 6. Unlustering Transition in Freely Cooling Wet Granular Matterstudied extensively [105, 123, 155, 101, 27, 16℄. In this hapter wet granular matter is pre-sented as an example of a dissipative and pieewise Hamiltonian system. An analyti methodis proposed to predit marosopi quantities for suh systems based on the omputation ofonditional probabilities. In quantitative agreement with diret simulations we will �nd aself-organized unlustering transition in ooling wet granular matter.As has been shown in Chap. 3, apillary bridges give rise to a hystereti interation fore:for a bridge to form, adjaent grains must touh, but as their separation x is inreased again,the bridge remains and exerts an attrative fore Fb(x) until it ruptures when a ritialdistane srit is reahed2. This entails dissipation even without the liquid to be visous, sinethe energy Eb =
∫ srit
0 Fb(x) dx is lost whenever a bridge is formed and then ruptured again[207℄. The inreased haotiity of this dynamial system as ompared to the dry gas of sphereshas been demonstrated in Chap. 5. The dilute wet granular system has been reently shownto luster monotonially in time [241℄. Here we fous on the dense ase, when many partilesinterat, suh that the ollision frequeny is on the order of, or even larger than, the averageinverse life time of a apillary bridge. In this hapter, we will adopt what has been termedthe Minimal Capillary Model (f. Chap. 3 and [114, 87℄), in whih Fb is assumed to beonstant as the liquid bridge is strethed, as introdued in Chap. 3. There we observed withthe �oulent strutures emerging in 2D wet granular matter in 3.4.5, that the free oolingis quite omplex in higher dimensions. In this hapter we restrit ourselves to dimensionality

D = 1 to simplify the analysis. This furthermore allows us to simulate the Minimal CapillaryModel for large systems at high densities. This is possible beause the Capillary Model anbe exatly realized by the event-driven tehnique3 for D = 1. The hosen dimensionalitywill eventually turn out not to be a signi�ant restrition, sine the transition establishedtheoretially in this hapter is reported for a three-dimensional experiment in Chap. 8.The Stiky Gas Saling LawBefore we solve the full dynamis, we remind of a simple saling analysis [88℄ whih allowsto determine the low temperature asymptoti at late times, when eah ollision leads to thestiking of partiles. The ollision frequeny in the system is quadrati in the number oflusters, N2l, and proportional to the mean luster veloity ∝
√
T/M . The luster mass

M is inversely proportional to the number of lusters beause of mass onservation. Thetemperature is onstant, beause eah stiky ollision eliminates one degree of freedom. Hene,
Ṅl = −fbind ∝ −N5/2l , (6.1)whih is readily integrated to

Nl ∝ t−2/3 . (6.2)As is shown and explained analytialy in the following setions, the ooling senario ofdense wet granular matter is surprisingly di�erent. With a dense system, we think of partileswhih have a mean separation whih is less than the ritial length of the liquid bridge, srit.6.2 Numerial Observation of the TransitionIn order to set the stage for the senario to be studied, we onsider an initial state onsistingof an ideal gas of N equal partiles at temperature T (0) = Ti ≫ Eb, i.e. the veloities of2Quantities referring to apillary bonds, suh as the number of bonds (Nb) and the bond energy (Eb) aredenoted by the subindex `b'.3In dimensions D > 1, the interation has to be simpli�ed for the event-driven simulation tehnique, whihauses artifats at high densities disussed in Chap. 10.



6.3. Analyti Desription of the Full Cooling Senario 107partiles at random positions are distributed aording to Maxwell. The Boltzmann onstantis set to unity. We de�ne a luster as a sequene of partiles onneted by liquid bridges.There are no liquid bonds initially, so that the number of `lusters' is Nl(0) = N . Obviouslyin one dimension we have N = Nl + Nb at any time, where Nb denotes the number ofapillary bridges. Note that we onsider the isohori system with �xed on�guration length
L (f. Fig. 6.1). The number of lusters Nl hanges in eah rupture and binding event. Inthe marosopi limit, N → ∞, relative �utuations vanish and the number of lusters Nlbeomes a smooth funtion of time. The simulations were performed with N = 107 partilesin order to obtain good statistis. The high number of partiles is the reason why all resultsreported hold for periodi as well as elasti boundary onditions.A log-log plot of the number of lusters Nl as a funtion of time is shown in Fig. 6.2A,where the density of partiles is varied as an additional parameter. We an learly distinguishfour stages: starting from the ideal gas on�guration ofN partiles at temperature Ti = 10Eb,the number of lusters dereases as the �rst bonds are formed. This orresponds to the initialdeline whih is universal for all densities, ρ = N/L, on the saled time axis, τ = ρsritt. In theseond stage, the ongoing fast rearrangements of lusters ool down the system. The numberof lusters �utuates around a onstant value whih depends on the partile density only.As the third stage, we observe, quite unexpetedly at �rst glane, an unlustering transitionthat sets in when the granular temperature T reahes Eb. At high density, the number oflusters may inrease suddenly by roughly an order of magnitude. In the �nal stage, almost allollisions lead to stable lusters sine T ≪ Eb, yielding a self similar power-law reminisentof the 'stiky gas' [32℄. Quite remarkable is the asymptoti data ollapse for all densities whenplotted versus τ . The intermediate stages distinguish the free ooling of dense wet granularmatter from the monotoni lustering of dry granular gases [16℄.There is a handy argument for the appearane of the unlustering peaks at densities
N/L > 3/srit: on the plateau, lusters are formed mainly due to the geometri on�nement
L, while the liquid bridge fore is too weak to have a signi�ant in�uene on the granularmotion at the initially high temperatures. Later, with less energy being stored in the liquidbridges, the lusters ontrat in their spatial extension and break up into smaller units. Theooling granulate ondenses to `droplets' 4. Sine there is spae for more of these shorterlusters, Nl inreases. This is obviously a diret onsequene of the isohori setting.6.3 Analyti Desription of the Full Cooling SenarioLet us now attempt a mean-�eld-type desription of our system. Every time a liquid bridgeis formed, the number of lusters dereases by one and a rupture event implies the inreaseof Nl by unity. Hene

Ṅl = frupt − fbind , (6.3)where the rupture frequeny frupt and binding frequeny fbind are the transition rates forthe proesses Nl 7→ Nl ± 1. The hystereti interation of the Minimal Capillary Modelredues the system energy E by the bridge energy Eb, where a fration γ is dissipated in theformation of the bridge,
Ė = −Eb (γfbind + (1 − γ)frupt) . (6.4)To solve the set of di�erential equations (6.3) and (6.4) we use the simplifying assumptionthat the ooling state an be desribed by a single granular temperature T ≡

〈
v2
〉, so that the4The experimental observation of a related e�et has been reported in [98℄.
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Figure 6.2: The evolution of the number of lusters in an isohori ensemble of wet granularmatter is shown for nine di�erent densities. The log-log plot (A) results from diret simulationsand (B) shows solutions of the di�erential equation (6.3). The dimensionless density ρsritassumes the values 1/10, 1, 2, . . . 8. Plot (A) inludes also the density 1/20, whih di�ers from
1/10 by less than the line width representing the dilute limit ρsrit → 0. Dense systemsexhibit a plateau as long as the granular temperature T is higher than the bond energy Eb.Later, the ohesion fore mediated by the liquid bridges beomes signi�ant and leads to theontration of the liquid bridges. Consequently, formerly big lusters break up into severalontrated droplets. This unlustering transition is visible as a peak in the funtion Nl(t).In the �nal asymptoti stage these small lusters regroup in 'stiky gas' ollisions. The insetsshow the emergene of the peak as the density ρsrit is inreased (A) and the saling relationbetween Npeakl and Nplateaul (B). Note the ollapse on the same universal asymptote whenplotted w.r.t. τ = ρsritt for all densities. (The mass sale is set by the partile mass so thatthe natural time unit is srit/√Eb.)



6.3. Analyti Desription of the Full Cooling Senario 109kineti energy Ekin is NT/2. The partiles de�ne the mass unit. The potential energy storedwithin the liquid bridges is Ebond = NbEb (〈x〉bond /srit − γ), sine the liquid bridge foreis assumed onstant in the Minimal Capillary Model. In the following we derive expressionsfor the frequenies frupt, fbind and the wet granular energy E = Ekin +Ebond in terms of thepresent number of lusters and the granular temperature. This allows to replae E by T asan independent variable, and the evolution equations (6.3) and (6.4) beome independent of
γ sine the granular motion is determined uniquely by the liquid bridge fores.The expetation value 〈x〉bond has to be omputed using the distribution of interpartiledistanes x under the ondition of a liquid bond. In the dense system the partile ollisionfrequeny is exponentially larger than the ooling rate. This separation of time sales justi�esto use a anonial distribution ∼ exp (−W (x)/T ) inside the lusters. W (x) inludes theenergy stored in the bridge and the work done against the external pressure P = NT/L.Normalizing aording to the ondition x < srit, we obtain the distribution of bond lengths
x:

pbond(x) =
α

srit e−α x
srit

1 − e−α
with α =

Eb
T

+ ρsrit . (6.5)The �rst appliation of this distribution is to ompute the mean bridge length
〈x〉bond
srit =

1

α
− 1eα − 1

, (6.6)and hene the system energy E as a funtion of T and Nl:
E = N

T

2
+NbEb( 1

α
− 1eα − 1

)
. (6.7)At low granular temperatures, T ≪ Eb, Eq. (6.7) yields E = NT/2+NbT+O(T/Eb). Thuswe reover the equipartition theorem of equilibrium physis [117℄ as a limiting ase: in thelow temperature limit few liquid bridges break and the system is asymptotially Hamiltonian.The kineti degrees of freedom are quadrati in the Hamiltonian having mean energy T/2,while eah liquid bridge has a linear potential with mean energy T .The rupture frequeny of a liquid bridge is the probability pbond(srit) (for the bridge beingstrethed to its maximum length) multiplied by the mean relative veloity in the diretionto break the bridge, 〈ẋ θ(ẋ)〉 (with the Heaviside step funtion θ). The separation of timesales mentioned above implies that the veloities within a luster follow a Maxwellian distri-bution, so that 〈ẋ θ(ẋ)〉 =

√
T/π, as on�rmed by simulations. This gives the system rupturefrequeny
frupt =

Nbα
srit √T

π

1eα − 1
. (6.8)It is proportional to the Bose-Einstein fator beause the rupture dissipates pakages of en-ergy Eb into the wetting liquid just as a Plank radiator emits photons. The only taskremaining is to �nd the expliit expression for the binding frequeny. The mean number ofpartiles within a luster is m = N/Nl. We denote by y the gap length between neighbor-ing lusters. Sine the mean-�eld approah neglets orrelation in the spatial distribution oflusters, the probability for neighboring lusters to have a separation between y and y + dyis exp(−y/ 〈y〉gap) dy/ 〈y〉gap. The luster ollision frequeny is this probability at ontat,

y = 0, times the luster veloity fator 〈ẏ θ(ẏ)〉. Hene the system binding frequeny ausedby the translational motion of lusters is f transbind = Nl√T/mπ/〈y〉gap. The mean luster sep-aration 〈y〉gap follows from the isohori ondition L = Nb 〈x〉bond +Nl 〈y〉gap . With f transbind
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Figure 6.3: Length �utuations of a luster made up of m = 2, 3, 4, 5 partiles. The distribu-tion onverges aording to the entral limit theorem quikly to a Gaussian. In these plots
α = 2 was hosen. On the horizontal axis the luster length X is plotted in units of srit.we have taken the translation of lusters into aount. This desribes one out of m degrees offreedom eah luster possesses. Finally, we treat the remaining m− 1 osillatory modes aus-ing �utuations of the total luster length X. Sine the distribution funtion for the length
x of a single liquid bridge (Eq. (6.5)) is known, the �utuations of the total length X of an
m-luster are given by onvoluting pbond with itself m − 1 times. Aording to the entrallimit theorem, the distribution of the length �utuations onverges rapidly to a Gaussian withinreasing m (Fig. 6.3). Therefore in the relevant ase of large m, the luster length X obeysthe normal-distribution pl(X) with mean 〈X〉l = (m− 1) 〈x〉bond and width

σX =
√

(m− 1)srit√ 1

α2
−

1
2

coshα− 1
. (6.9)The onsideration of time sales also implies the equal thermal exitation of all modes. Thisgives the seond term, fosbind = Nl(m−1)

√
T/mπ pl(〈X〉l+〈y〉gap), for the binding frequeny,whih desribes the merger of lusters by short range length �utuations. This binding meh-anism dominates in the hot and dense system, whereas the probability pl(〈X〉l + 〈y〉gap)to lose the gap 〈y〉gap by length �utuations is over-exponentially suppressed at late times.With the total binding frequeny, fbind = f transbind + fosbind, the derivation of the mean-�eldtheory is ompleted. We have now a losed set of non-linear di�erential equations withoutfree parameters at hand determining the time evolution of marosopi quantities suh as thegranular temperature and the number of lusters:

Ṅl = frupt − fbind (6.10a)
Ṫ = −(srit − 〈x〉bond) frupt + 〈x〉bond fbind

Nsrit
2Eb + (N −Nl) d〈x〉bond

dT

(6.10b)The solution of Nl(t) aording to the theory is onfronted with diret simulations atvarious densities in Fig. 6.2. While the upper plot (A) results from full simulations of 107partiles, (B) shows solutions of the di�erential equations (6.10) for the same initial data anddensities. Both approahes learly exhibit the unlustering e�et. With both methods theplateau and peak height is found to obey a square root saling law. (The dots in the insetof Fig. 6.2B result from simulations). The explanation of this saling turns out to be farfrom straightforward, and will be as part of the author's future researh left to a forthomingpubliation.
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Figure 6.4: The thermalization of the luster motion and the internal degrees of freedom ofa luster deouple at late times. (A) Initially, the partiles are given an equilibrium veloitydistribution. As the system ools, the Gaussian shape is onserved for the osillatory degreesof freedom inside a luster, beause a stable luster is a haoti Hamiltonian subsystem (f.the result 5.7.1 in Chap. 5 on the luster intrinsi dynamis). (B) Veloity distribution for theenter of masses of lusters in the saling (stiky gas) regime, for density ρ srit = 1. In sharpontrast to (A), this nonequilibrium distribution has exponential tails. (C) Development oftwo di�erent temperatures in the free ooling of a one-dimensional system with dimensionlessdensity sritρ = 1. The total system temperature T = (1 − Nl
N )Tos + Nl

N Tl ≈ Tos inludesall degrees of freedom, and the temperature Tl is de�ned by the enter of mass motion of thelusters. (The apparent reheating at the onset of lustering is due to the fat that the fastestpartiles are the �rst to �nd a binding partner.)
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Figure 6.5: The unlustering transition is also present in entropy and energy measurements.Note the rossing of potential energy Ebond and kineti energy Ekin at the transition.6.4 The Thermal DeouplingThere are di�erenes in the time sales between simulation and mean-�eld theory. This isbeause the osillatory and translational modes do not have the same temperature as hasbeen assumed for simpliity. Indeed, the diret simulation reveals that Tl > Tos at latetimes, as is shown in Fig. 6.4C. Here Tl is the temperature as derived from the translatory(i.e. enter of mass) motion of lusters. This inequality is understood easily: when lustersbind, the energy of the eliminated translational degree of freedom is distributed among theenergies of the new osillatory degree of freedom and the liquid bridge potential. This yieldsa lower temperature Tos within the lusters. It is straightforward to split up the �rst term,
Ekin = NT/2, on the right hand side of (6.7) into Ekin = Etrans + Eos to aount for this.With the lower internal temperature Tos (f. Fig. 6.4), the rupture events are suppressed inthe �nal phase of the free ooling, whih explains the steeper slope of Fig. 6.2A.6.5 Energy and EntropyAside from the number of lusters, energeti as well as entropi signatures of the unlusteringtransition may be traed. In the phase spae of wet granular matter, sympleti ollisionand rupture events are onneted by smooth Hamiltonian trajetory segments. This givesthe system the mathematially beautiful property to be dissipative and still to onserve itsanonial phase spae volume. Beause there is no ontration of phase spae (x,p), thereis also no assoiated entropy prodution, as it is the ase for inelasti ollision models of drygranular matter [156℄. The system state is given by (x,p,b), whih inludes the bond status
b = (b1, b2, . . . ), bj = 0, 1. Figure 6.5 shows the Gibbs entropy Sbond of the distribution of



6.6. A Simpli�ed Visualization 113

Figure 6.6: A highly simplisti piture of the unlustering peak. The initial luster is over-heated. In the real experiment (presented here theoretially and realized in Chap. 8), theisohori ondition fores the luster to redue its granular temperature until it reahes thegranular bond energy. Then the apillary fore destabilizes the thermal motion of the granulargas and leads to the break-up of lusters into smaller droplets. These granular droplets havean inreased mean free path whih suspends the lustering until these droplets aggregate inthe �nal state, whih is the reason for the self-similar stiky gas asymptoti. Note that in thisspaetime plot, the visual inspetion is simpli�ed by inreasing the mean free path manuallyat t = 0. Eah olor represents the trajetories of an individual partile, of whih there areonly 50 in this small system.bridge bonds. With the formation of the �rst liquid bridges, Sbond raises quikly from zerolose to its equilibrium value Smax. At the transition the isolated entropy Sbond dereasesabruptly, indiating this simple struture formation proess, and �nally grows towards itsequilibrium value. Of ourse, the total entropy prodution is never negative. Most of theentropy is not produed by the evolution of the wet granular system (x,p,b), but ausedby the energy Ediss(t) = E(0) − E(t) whih is dissipated into the wetting liquid. The im-portane to sum up the system and environmental entropies has been reognized reently forthe formulation of �utuation theorems [199℄. For wet granular matter the environmentalentropy prodution, ∆Sliq = Ediss/Tliq, dominates sine its peuliarity is the smallness of theliquid temperature Tliq by more than 10 orders of magnitude in omparison with the granulartemperature T in realisti experiments (f. Chap. 3 and [87℄).6.6 A Simpli�ed VisualizationWe an (strongly simpli�ed) illustrate the droplet formation by inspeting the spae-timepaths of 50 partiles originating out of an overheated luster on a logarithmi time saleas shown in Fig. 6.6. Here the voids between droplets are exaggerated for the purpose ofillustration by manually inreasing the system size5 at t = 0. We an learly see the formationof smaller droplets out of the initial state, whih �nally reollet.5We remark that the system has re�eting boundaries whih in�uene the �nal state of suh a small systemas the one shown, while re�eting and periodi boundaries give equal free ooling dynamis for a huge systemas the one simulated above.



114 Chapter 6. Unlustering Transition in Freely Cooling Wet Granular Matter6.7 Inelasti Collisions and Unequal Partile MassesSimulations have also been performed beyond the Minimal Capillary Model by ombiningbridge interation with inelasti partile ollisions. For restitution oe�ients between 0.8 and
1.0, the higher ooling rate merely shifts the unlustering peak to earlier times. With resti-tution oe�ients below 0.5, the peak is overed by the initial deline so that the monotonibehavior of dry granular matter is reovered. To observe the transition at lower restitution theinitial temperature has to be inreased beyond 10Eb. The unlustering proess for inelastisystems is shown in Fig. 8.7 of Chap. 8 in the ontext of the experimental demonstration ofthe unlustering e�et. Furthermore, it has been ensured that the results reported in thishapter are reproduible with unequal partile masses (random mass distributions as well asalternating masses).6.8 ConlusionsA transition in the apillary onnetivity of dense ooling wet granular matter has been dis-overed numerially and desribed analytially. The transition sets in when the overheatedliquid network has ooled down to the energy sale set by the apillary interation. The homo-geneous wet granulate breaks up into isolated granular droplets, as desribed in quantitativeagreement by the presented mean-�eld theory6. This preipitation of granular droplets out ofthe homogeneous gas opens up voids that prolong the mean free path. This was shown to beessential in the omputation of the ollision frequeny sine the lustering is suspend at thistime in the free evolution. Here the unlustering peak is observed. In the �nal state of thefree ooling, the droplets agglomerate with self-similar mass-time dependene. This asymp-tote was shown to be universal when time is resaled by density in Fig. 6.2. The position ofthe unlustering peak is determined by the granular temperature with T ≈ Eb/4.The unlustering e�et was shown to require a ritial density. Expressed in linear dimen-sions, the mean partile separation s has to be less than one third of the rupture length ofthe bridge, srit. We shall �nd similar onditions for instabilities in two (Chap. 7) and threedimensions (Chap. 8).The partile motion inside lusters was shown to have a Gaussian veloity distributionalso at late times, whih is a onsequene of the luster-internal haotiity disussed in thepreeding Se. 5.7. The luster veloities were shown to follow an exponential distributionover three orders of magnitude.The numerial on�rmation of the mean �eld theory derived above makes it a promisingstarting point for higher dimensional generalization (f. the `Equation of State' in Chap. 7),and extensions to stationary states whih exhibit strong spatial inhomogeneities suh as phaseseparation whih we shall enounter in Chap. 10. The experimental on�rmation of the pre-sented unlustering transition is reported in Chap. 8. One may expet that the method ofonditional probabilities applied here is neither limited to one spatial dimension nor wet gran-ular matter at all, but appliable to the entire lass of dissipative and pieewise Hamiltoniansystems. It would be interesting to formulate and prove a �utuation theorem for this lassof systems with broken time-reversal symmetry.6The desription has spatial dependene in so far it distinguishes onneted domains (desribed by x above)and unonneted domains (y) whih oexist.



6.9. Appendix: A Comment on the Notion of Clusters 1156.9 Appendix: A Comment on the Notion of ClustersHere it is pointed out that the loal de�nition of a `stable bond' by inspeting the kineti energy of a bondpair in its enter of mass system is inonsistent with the equations of motion. At �rst glane, one might bemislead by intuition to think of a separation of variables: the enter of mass motion and the relative motion.However, as is well-known, this is only possible for 2-partile lusters, sine the two-body problem is integrable(for any radial fore law), while the three body-problem is generially haoti; and wet granular matter is a
N-partile system with N ≫ 2. As the simplest ounter example we onsider for the moment three partileson a line obeying the Minimal Capillary Model. If there was only a single apillary bond in the system, thestability argument would hold. As soon as the enter partile is bond to both sides, the bridge fores anel.The enter partile moves freely, rendering the loal energeti riterion irrelevant. If one was still to de�nea number of �stable� lusters, Ñl = N − (N − Nl)erfpEb/T ),7 there appears even both, a peak and aminimum, for κ ≥ 2 in the single-temperature model desribed above.To summarize, three reasons are stated why the natural objets emerging in dense wet granular matter,for whih we are free to agree upon some name � be it �luster�, �network� or another term � ought to bede�ned by the apillary topology: Firstly, the equations of motion do not allow for a unique loal riterion ofstable bonds. Seondly, the instantaneous topology is a diret experimental observable, as is demonstrated inChap. 8. Thirdly, an approah that starts with the de�nition of a luster by a ertain energy, forestalls theresult of a transition at this energy. Rather, it is most natural to approah wet granular matter as a dynamialsystem, whih demands an enlargement of the state spae so that the instantaneous bridge status is inludedin order to desribe the hystereti formation and rupture of bridges. With the bridge topology as an impartialorder parameter it is possible to detet the ritial point at T ≈ Eb/4 avoiding any irular reasoning.

7(N −Nl)erfpκEb/T is the number of �stable� bonds.





Chapter 7
Pair Correlation and Equation ofState of Wet Granular Matter� The Theoretial Predition of theCritial Point
In this hapter an expression is presented for the near-ontat pair orrelation funtion of
D-dimensional weakly polydisperse hard spheres, whih arises from elementary free-volumearguments. Its derivative at ontat agrees very well with presented simulations for D = 2.For jammed states, the expression predits that the number of exat ontats is equal to 2D,in agreement with established simulations. When the partiles are wetted, they interat bythe formation and rupture of liquid apillary bridges. Sine formation and rupture events ofapillary bonds are well separated in on�guration spae, the interation is hystereti with aharateristi energy loss Eb. The pair orrelation is strongly a�eted by this apillary inter-ation depending on the liquid-bond status of neighboring partiles. A theory is derived forthe nonequilibrium probability urrents of the apillary interation whih determines the pairorrelation funtion near ontat. This �nally yields an analyti expression for the equation ofstate, P = P (N/V, T ), of wet granular matter for D = 2, valid in the omplete density rangefrom gas to jamming. Driven wet granular matter exhibits a van-der-Waals-like unstablebranh at granular temperatures T < T orresponding to a �rst order segregation transitionof lusters. For the realisti rupture length of the liquid bridge, srit = 0.07d, the ritial pointis loated at T = 0.274Eb. While the ritial temperature weakly depends on the rupturelength, the ritial density φ is shown to sale with srit aording to srit = 4d(

√
φJ/φ−1).The segregation transition is losely related to the preipitation of granular droplets reportedfor the free ooling of one-dimensional wet granular matter in Chap. 6, and extends the ef-fet to higher dimensional systems. Sine the limiting ase of stiky bonds, Eb ≫ T , is ofrelevane for aggregation in general, simulations have been performed whih show very goodagreement with the theoretially predited oordination K of apillary bonds as a funtionof the bond length srit. This result implies that partiles that stik at the surfae, srit = 0,form isostati lusters. An extension of the theory in whih the bridge oordination number

K plays the role of a self-onsistent mean-�eld is proposed.117
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dFigure 7.1: The hystereti interation in wet granular matter, as established experimentallyin Chap. 3. In this hapter we apply this Minimal Capillary Model to derive the equationof state. Capillary bridges form at ontat and mediate an attrative fore Fb. At thebridge length srit the bridge beomes unstable and pinhes o�. The hystereti interationby apillary bridges auses a well-de�ned loss of energy denoted by Eb. While the partilediameter d is the only length sale for dry granulates, in wet granular matter there is a seondsale set by srit. A realisti value is srit ≈ 0.07d, whih is realized when 1% of the jammingvolume is added by a wetting liquid (with zero ontat angle). Furthermore, the bond energy
Eb de�nes an intrinsi energy sale, whih is absent in dry granulates. As is shown in thishapter, the length and energy sale set by the apillary interation give rise to a phasetransition with a ritial density φ and a ritial granular temperature T.7.1 The Nonequilibrium StateThe in�uene of apillary bridges on the mirosopi struture has been disussed in Chap. 3.There we observed that the proesses of formation and rupture of liquid bridges ause substan-tial hanges in the mehanial properties of the granular material. Beause of the generalityof the e�ets, it has beome ommon to study systems with spherial grains (usually glassbeads in experiments), in order to ease theoretial modeling and to avoid side e�ets. Wedeided to follow this approah.In this hapter we show analytially that the peuliar interation by apillary bridgesgives rise to a �rst order transition, and we ompute the ritial density and the ritialtemperature. We shall fous on the two dimensional ase, but many onepts arry over todimensionality D = 3. Sine there is no lear observation of a �rst order phase transition inthe hard-sphere �uid for D ≤ 2 [19, 154℄, the added liquid leads to a qualitative hange. Moreimportantly, this transition is determined entirely by the geometri and energeti propertiesof the apillary bridges.A dry system of N hard spheres with diameter d on�ned to an area or volume V has nointrinsi energy sale, so that the equation of state is of the form P = T f(N/V ) with thetemperature T = 〈mvivi〉 and a nonlinear density dependene, f . The de�ned size of hardpartiles is onveniently used to restate the density n = N/V as the dimensionless oupiedfration φ = σDnd

D/(2D D) (σD the surfae of a D-dimensional unit sphere), whih is thearea fration φ = π
4nd

2 for two, and volume fration φ = π
6nd

3 for three dimensions.The apillary interation of wet granular matter has a well-de�ned binding energy Eb[237℄, and it has been demonstrated experimentally in Chap. 3 under realisti dynamialonditions with impat veloities typial for strongly �uidized wet granular matter that thehystereti harater of the interation is essential: the dominant mehanism of dissipation



7.1. The Nonequilibrium State 119is the hystereti formation and rupture of apillary bridges, the energy Eb of whih is irre-versibly taken from the kineti energy of the granular motion whenever a liquid bridge ruptures[114℄. There the bridge energy has been quanti�ed, aording to whih Eb is proportional
d2
√
W (f. Eq. (3.10)). W is the volume fration of the added liquid with respet to the totalvolume of the jammed granular sample. Figure 7.1 illustrates the hysteresis of the MinimalCapillary Model, whih assumes a onstant bridge fore Fb as disussed in Chap. 3, and isapplied in this hapter. This may appear as an oversimpli�ation at �rst glane, but thereis inreasing experimental evidene that the details of the fore law are insigni�ant for theolletive dynamis on whih we fous here [114℄, as also on�rmed from the point of view ofdynamial systems theory in Chap. 5 where the Minimal and the Extended Capillary Modelyielded very similar results. The strongest experimental support for the Minimal CapillaryModel under dynamial onditions is due to the quantitative experimental on�rmation ofthe unlustering transition in Chap. 8 and the �uid/gas oexistene of wet granular matterin Chap. 10.Obviously, an external energy urrent has to be ontinuously injeted to drive the systeminto a nonequilibrium steady state. In the equilibrium limit, Eb → 0, we will have a pressureof the form P = T f(φ). It is the objetive of this hapter to derive the equation of state forthe hystereti liquid bridge interation of wet granular matter in suh a driven state. In viewof the intrinsi energy sale Eb, this relation has to be of the form P = P (φ, T/Eb).The equation of state is understood as an intrinsi property of homogeneous wet granularmatter, kept in a stationary nonequilibrium state of granular temperature T . With this giventemperature we may subsume various ways in whih the system an be externally driven toompensate for the dissipation by rupturing liquid bridges, so that this granular temperature

T is maintained over many partile diameters.We remark that in most experimental situations involving wet granular matter, the gran-ular temperature is a nonlinear, even disontinuous, response depending on the details ofthe driving, suh as boundary motion or air �ow in air-�uidized beds. In this hapter wedeliberately regard the granular temperature as the ontrol parameter, so that the theoretialdesription of the boundary oupling is onveniently separated. Yet we emphasize that forthe full desription of an experimental situation one has to insert the equation of state intothe equation for the external energy input, and then solve for the granular temperature asthe nonlinear response to the external driving.We aim at desribing the steady nonequilibrium states of wet granular matter, whih areso multifaeted that at �rst glane one might think that aside from density and granulartemperature further physial parameters are neessary in order to desribe suh a state. Yetas simulations have shown, states of wet granular matter far from equilibrium are very welldesribed analytially by a granular temperature T assuming a Gaussian veloity distributionas we did in Chap. 6, negleting higher umulants1. Furthermore, it is known that the self-organized veloity distribution of free ooling wet granular matter has a vanishing fourthumulant [241℄. We point out that the ondition of a loally isotropi and homogeneous stateused in this hapter implies that the temperature �eld may vary only slowly over many partilediameters so that there is no strong in�uene by a heat urrent, whih would otherwise beonsidered as a third parameter of the loal nonequilibrium state.Throughout this study, we allow for a ertain polydispersity, 0 ≤ ∆d/d < 0.1. (For higherpolydispersity, the dense system undergoes a kineti glass transition [192, 193℄). First of all,1It is straightforward to use a veloity distribution with more umulants as parameters, suh as for exampleEq. (4.19), at all plaes where expetation values of veloities are evaluated (for instane in the Eqs. (6.8) and(7.60)). The resulting equation of state will then have the umulants as additional parameters desribing thenonequilibrium steady state.



120 Chapter 7. The Equation of State of Wet Granular Matterpolydispersity is frequently used in simulations and experiments to prevent the monorys-talline state. Seondly, most systems of pratial relevane exhibit some polydispersity. An-other harateristi of 'real' granulates is that the surfaes of the grains are not ideal, bearingertain roughness. This does, however, only hange the amount of liquid whih must beadded in order to ahieve the apillary interation: �rst some liquid is required to �ll therevies and tiny reesses in the grain surfaes, until the grains e�etively have a smoothliquid oating, whih is then ompletely wetted by all additional liquid. For glass beads,as those used in most of the experiments, this is typially the ase above a volume fration
Wmin = 0.1%. We also require an upper limit on the volume fration of the wetting liquid, sothat the maximal length srit of liquid bridges is of the order or below the polydispersity ∆dof the spheres. This is to demand that srit/d ≈ 3

√
W/3 is smaller than ∆d/d < 0.1, so that

W < Wmax = 2.8%. This happens to losely oinide with the upper limit set on the liquidontent to ensure that neighboring apillary bridge do not merge [197℄. For this range of theliquid ontent the apillary interation is a truly pairwise interation with the apillary foreating radially between pairs of partiles. Another impliation of roughness is that there is asubstantial tangential frition between adjaent grains. This means that in priniple one hasto inlude all rotational degrees of freedom in the kineti onsiderations for any statistialphysial treatment of our system. However, we are here fousing on the e�ets due to theliquid apillary bridges, whih mediate entral fores. These do not ouple to the (tangential)rotational modes. We therefore expet that the rotational degrees of freedom play, in oursystem, the role of a spetator heat bath whih follows the translational dynamis, but doesnot in�uene it greatly, aside from a quantitative inrease of the granular spei� heat. Infat, experiments and simulations of wet granular systems (f. Chaps. 8 and 10) show thatthis approah yields remarkable agreement with experimental data. In this hapter, we thusompletely neglet all rotational degrees of freedom.7.2 Dry Spheres as the Starting PointBefore we add the wetting liquid to the hard sphere system, we investigate the dry ase in thissetion and derive expressions for the pair orrelation near ontat, whih will be extendedto the wet ase in the following setion.Due to their �nite size, the positions of hard spheres are not distributed independentlyfrom eah other, as it is the ase for the point-partiles of the ideal gas. The on�gurationspae of N spheres is not V N , but restrited to a onave subset in whih the systems moveshaotially as a high dimensional billiard. With the absene of an intrinsi energy sale, thedry system is athermal, whih means that a hange in temperature is equivalent to resalingthe time axis. The exluded volume gives rise to orrelations in the partile positions, whihare measured by the pair orrelation funtion. Denoting by n = N/V the mean marosopipartile density and by nm(r) =
∑N

i δ(r − ri) the mirosopi density, the isotropi pairorrelation G(r) is de�ned as the probability
〈nm(r)〉partile at 0 d vol = n G(|r|) d vol = n g(s) d vol (7.1)to �nd the enter of a partile in the shell d vol = σD r(D−1) dr of radius r = ri + rj + sand thikness dr = ds entered around a referene partile. We have onveniently subtratedthe partile radii ri + rj in the last equality of (7.1), so that s > 0 is the surfae separation.The funtion g(s) is advantageous for polydispersity sattered around the mean diameter d2, beause of its de�ned ontat point, s = 0, whih is smeared out in the funtion G(r).2We do not distinguish between the mean value and the root mean square of the diameter (relevant to theVoronoï area), beause they di�er only by (∆d/d)2/2 < 5× 10−3.



7.2. Dry Spheres as the Starting Point 121

Figure 7.2: The pair orrelation of wet granular matter in a �uidized state resulting from amoleular dynamis-type simulation in D = 2 dimensions (with driving aeleration Γ = 15).The orrelation funtion G(r) vanishes in the range (0, d) where the �nite partile size leadsto exluded volume. We use the funtion g(s) with the surfae separation s of neighboringpartiles as it is onvenient for wet granular matter where interstitial liquid bridges have thelength s. Note that this is not exatly idential to the funtion G(d+s) shifted by one partilediameter d, sine a realisti granular system has some polydispersity ∆d around the meandiameter d. Aside from kineti ontributions, the pressure is due to the interation foreswhih beome dominant with inreasing density. The internal fores in wet granular matterare short-ranged. Therefore our interest fouses on the sharp fall-o� in the indiated range
0 < s < srit of apillary interation. This highlighted region indiates the typial rangeof srit, and orresponds to the region highlighted in Fig. 7.4. Furthermore, we derive moredetailed orrelation funtions, gu(s) and gb(s), for unbound and apillary onneted pairs,respetively, in order to desribe the hystereti interation in wet granular matter.
Furthermore it is the natural way to desribe an interstitial liquid bridge between the on-sidered pair of partiles, with s the length of the bridge. For a ertain liquid volume perpartile and ontat angle of the wetting liquid, there is a well de�ned ritial bridge length
srit at whih the bridge beomes unstable and ruptures. The mean density n is fatored outin (7.1) so that the dimensionless g would be equal to unity for all separations if there wasno partile-partile orrelation. Figure 7.2 shows the pair orrelation of a �uidized state inwhih long range order is lost, so that g(s), respetively G(r), tends to unity for r ≫ d.The fores in wet granular matter, hard-ore repulsion and liquid bridge attration, areshort-ranged and radial, ating between pairs of partiles over a separation range 0 < s < sritwith srit ≪ d. We are therefore interested in the short-range behavior of the pair orrelation
g(s) up to leading order in s/d. For suh short partile separations the pair orrelation g(s)is (up to a normalization onstant) just the probability to �nd next neighbors at a separation
s. Put in equivalent words: deomposing the pair orrelation funtion g(s) =

∑∞
k=1 gk(s) inontributions gk of the k's shell of Voronoï neighbors, we have g(s) = g1(s) in the range ofinterest, 0 < s < srit ≪ d. To shorten notation we suppress the subindex 1.
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7.2. Dry Spheres as the Starting Point 1237.2.1 The Dense LimitFigure 7.3 gives an overview of results by [193℄, [58℄ (Fig. 15 therein), and [212℄ for thephases of the two-dimensional system depending on density and polydispersity. For poly-dispersity below 0.1, there are two density regimes separated by the ordering transition at
φo 3. These transitions are a purely geometri property (i.e. exluded volume e�et) ofthe on�guration spae and are therefore athermal. To ompute the radial next-neighbordistribution at densities above the ritial density, φ > φo, we onsider the Voronoï tessel-lation of the system, whih embeds eah partile into a onvex polygonal ell. The sizes
{Vi} of the Voronoï ells sale as (d + s)D, where the partile separation is denoted by
s. For instane in D = 2, the area of a single Voronoï ell in the ensemble is given by∑

j

(
2(d+ sj)(d+ sj+1) −

[
(d+ sj)

2 + (d+ sj+1)
2
]
cosαj

)
/(8 sinαj). This formula holds fordiret and indiret Voronoï neighbors, and averaging over the angles αj between neighborsyields C(d + s)2 on the mean-�eld level, where we use a single separation s in aordanewith the assumption of an isotropi state. (The assumption of isotropy will be relaxed in thedisussion of lustering in wet granular matter in Se. 7.4.1.) In what follows we eliminate thegeometry fator C in favor of the jamming density. The mean ell size∑N

i Vi/N = V/N = 1/nis exatly the inverse density n. Hene,
〈(

1 +
s

d

)D
〉

=
n(s→ 0)

n
=
φ(s → 0)

φ
, (7.2)where the triangle brakets denote averaging over next neighbors whih are in ontat (s→ 0)with the enter partile at the jamming density φ(s → 0). We refer to those pairs of partileswhih ome into ontat at jamming as neighbors of type A, i.e the surfae separation sA ofA-neighbors is

sA = 0 at φ = φJ . (7.3)In the monodisperse limit for D = 2, φJ assumes the value of the triangular rystal, φmax =
π/(2

√
3) = 0.91. Polydispersity dereases the (maximal random) jamming density φJ andinreases the ritial density φo for the onset of triangular order as shown in Fig. 7.34Contribution to the Contat Correlation: The A-NeighborsSine the Voronoï ells exhange their free volume, V − Vmin ∝

(
1 + s

d

)D − 1, and the totalvolume is onserved we assume an exponential distribution of the free volume, whih is wellon�rmed by experiments with dry granulates [6℄. The onditions (7.2) and (7.3) determinethe A-neighbor distribution uniquely:
PA(s) d vol(s) =

D/(σDd
D)

φJ/φ− 1
exp

(
−
(
1 + s

d

)D − 1

φJ/φ− 1

)
d vol(s) . (7.4)The volume element for D = 2 is

d vol(s) = σD r(D−1) dr = πd (1 + s/d) ds . (7.5)3Numeris reported at present [19, 154℄ ould not distinguish between a weak �rst order transition (withonstant pressure at φo), and two subsequent ontinuous transitions (with slowly inreasing pressure at φo).4For monodisperse diss, ∆d = 0, amorphous states have been reported to exist at φ = 0.805 and loaljamming is possible at φ = 0.844 [238℄, while olletive jamming ours not until φ = 0.88 [60℄. An extremeand quite nie example for arti�ial onstrutions whih are stable at densities far below φmax is the Kagomélattie whih has ordered defets.



124 Chapter 7. The Equation of State of Wet Granular MatterThe ontribution gA whih A-neighbors give to the pair orrelation is equal to the A-neighbordistribution PA (7.4) up to a prefator, so that
gA(s) = gat exp

(
−
(
1 + s

d

)D − 1

φJ/φ− 1

) (7.6)is determined as soon as we know the athermal ontat value, gat = gA(0). This ontat valuefollows from the lassial free volume theory [190℄ (whih was based on [29℄),
P

nT
=

D

φJ/φ− 1
+ O(1) , (7.7)in onjuntion with the general relation between the partile-wall orrelation gatwall and thepair orrelation gat ,

P

nT
= gatwall = 1 + 2D−1φ gat . (7.8)As a onsequene, we obtain
2D−1

D
φ gat =

1

φJ/φ− 1
(7.9)lose to jamming. Expression (7.9) is exat for D = 1, and has been on�rmed as theasymptoti behavior of the diverging pressure lose to jamming for D = 2 [148, 91℄ in event-driven simulation with auray 10−4. We remark that this expression is not limited toweak polydispersity and has been on�rmed for polydispersity far above 0.1 in the glass state[208, 57℄. An independent elementary derivation of Eq. (7.7) is given for D = 2 in Appendix7.9.Inserting (7.9) in (7.6), we have as the �rst entral result a losed expression for the near-ontat pair orrelation of neighbors whih form exat ontats in the jamming limit (so-alledA-neighbors):

gA(s) = gat exp

(
−2D−1

D
φ gat [(

1 +
s

d

)D
− 1

])
. (7.10)Eq. (7.10) implies for the derivative at ontat,

d g′A(0) = −2D−1φ g2A(0) , (7.11)a quadrati dependene on the ontat value gat = gA(0). Eq. (7.11) an be viewed as aonsequene of normalization: the height of the ontat peak is gat and so the width is ofthe order 1/gat , whih means that the negative slope is of the order g2 . In fat, writing theA-neighbor orrelation funtion gA(s) in terms of the ontat value gat , as we did in (7.10),is the natural form to express the density dependene of gA beause this manifests that theoordination number of A-neighbors is density independent:
KA = n

∫
gA d vol

=
2D D

d
φ gat ∫ ∞

s=0
exp

(
−2D−1

D
φ gat [(

1 +
s

d

)D
− 1

]) (
1 +

s

d

)D−1
ds

= 2D . (7.12)



7.2. Dry Spheres as the Starting Point 125More signi�antly, KA equals exatly the isostati ontat value 2D, whih is obviously orretfor partiles on a line (D = 1) and is the aepted value for ideal diss and spheres inD = 2 and
D = 3 dimensions respetively [59, 58, 153℄. The �nding (7.12) is an essential on�rmationof onsisteny of our approah, sine it is independent from onventional arguments basedon the rank of the rigidity matrix (whih aounts for global onstraints on the degrees offreedom) [59℄.As the ontat value gat (7.9) grows to in�nity in the jamming limit, φ→ φJ, the onstantintegral (7.12) implies that n gA(s) beomes a delta distribution with 'weight' 2D at ontat,
s = 0.The Bakground Contribution: The B-NeighborsThe on�guration spae is spanned by all partile positions {ri}. Consequently, a jammedon�guration is � aside from a small fration of rattlers 5 � an isolated on�guration point,and the set of jammed on�guration is a set of disrete points. When the density is slightlyrelaxed, a �nite system remains on�ned to a �nite environment around the jamming point(f. [46℄, p. 35). As density is lowered further, these environments are no longer isolated sothat the system is able to migrate between these 'islands of jamming'.The stability analysis of ontat networks [186, 44, 45, 59, 60℄ has put forth the resultthat fritionless spheres (exept for the singular limiting ase of a monodisperse rystal)jam stritly in an isostati paking with 2D ontats per partile on average, as on�rmednumerially [59℄ for D = 3, be the state random (glass regime in Fig. 7.3) or loally ordered.Therefore we an identify within an island of jamming on average four neighboring partilesin D = 2 dimensions whih are lose to the referene partile, and whih will be in ontatwith the referene partile, sA → 0, in the jamming limit, φ → φJ. These are the A-neighbors with the ontribution gA to the pair orrelation derived in (7.10). Furthermore, itis a mathematial fat that any disrete set of points in �at two-dimensional spae has onaverage six Delaunay/Voronoï neighbors [157℄, two of whih have no ontat to the referenepartile, gB(0) = 0. Hene, on the mean �eld level the following piture arises: Beside thefour A-neighbors there are two B-neighbors whih are sterially hindered by other partilesfrom further approah to the referene partile. Summing up the ontributions of A- andB-neighbors,

gdense(s) = gA(s) + gB(s) , (7.13)gives us the pair orrelation funtion near ontat. The pair orrelation near ontat whiharises from these bloked states, gB, is disussed in detail in appendix 7.6. The essential resultis that the on�guration spae of bloked states tends quadratially to zero in sB, so that toleading order the normalization of two B-neighbors for D = 2 determines the B-ontributionin (7.13):
gB(sB) = N PB(sB)

=
1

φc3B (sB
d

)2 e−h

(1+ s
d)

2−1
i

/cB [1 + O
(sB
d

)] (7.14)with cB = φmax/φ − 1. In Fig. 7.4 the resulting near-ontat pair orrelation 7.13 for thedense regime is shown as the sum of gA and gB.5Typially one or two perent for pakings produed by the Lubahevsky-Stillinger algorithm (Lubahevsky[147℄ for 2D, [59℄ for 3D)
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Figure 7.4: The pair orrelation near ontat resulting from free-volume onsiderations. Closeto jamming we distinguish between neighbors whih form exat ontats in the jamming limit(ontribution gA, Eq. (7.10)) and those that are bloked at positive separation s (urve gB,Eq. (7.14)). The near-ontat orrelation is the sum of both ontributions. For this plot thedensity is hosen to φ = 0.8. The dashed urve skethes a typial seond shell onsisting ofthe seond Voronoï neighbors. They are out of the interation range, 0 < s < srit, whih isindiated by the highlighted stripe.7.2.2 The Dilute and Moderately Dense RegimeIn this part we turn to the free rheologial regime, 0 < φ < φo. When two spheres are loserthan one diameter, s < d, they shield eah other from ertain ollisions events. If one wasto neglet three-partile orrelations, the isotropi bombardment by `third' partiles givesrise to the well-known attrative depletion fore �rst proposed by S. Asakura and F. Oosawa[4, 5℄. As is evident from Fig. 7.5, summing up equal ontributions over the aessible rosssetion is equivalent to the pressure exerted onto the submanifold indiated by the solid linein Fig. 7.5C and denoted by Σ.This depletion fore, as well as the liquid bridge fore whih we will take into aountin the next setion, will a�et the pair orrelation funtion. A systemati way to study thise�et has been worked out by Hansen et al. [172℄, resulting in a Fokker-Plank equation forthe two-partile distribution funtion. After integrating out the momenta and the enter ofmass oordinates, one �nds that the depletion fore as well as other non-entropi pair fores(suh as the liquid bridge fore), give rise to a Boltzmann fator,
g(s) ∝ exp

(
−V (s)

T

)
. (7.15)For the depletion fore

Fdepl = −V ′depl = T n gat Σ , (7.16)where
n gat Σ ds =

dVonf
Vonf = −d ln g(s) (7.17)
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Figure 7.5: Origin of the depletion fore attrating neighboring partiles that are separatedby less than a partile diameter. One may either think of this as an entropi fore, due to thederease of exluded volume when the shells of exluded volume overlap. Equivalently onemay view this as the net fore due to isotropi bombardment. Obviously, the integration overthe solid ar in A is up to a sign equivalent to the integration in plot B. In B the integrationis over the outer solid ar, whih is the on�guration spae of the third partile's oordinateat impat. Sine the integration in B is projeted by a cos-fator to give the axial symmetrifore omponent, we an equivalently drop the cos-fator and integrate over the submanifoldindiated by the solid line Σ in C.is the in�nitesimal logarithmi hange of the exluded area (or the on�guration spae perpartile, Vonf), when the partiles are separated by s < d, and Σ denotes the size of theorresponding setion (line or area) in Fig. 7.5C. At ontat, s = 0, the size of the integrationsetion Σ is

Σ =
σD−1

D − 1

(√
3

2
d

)D−1

, (7.18)whih yields Vdepl to leading order in s. The depletion e�et with the potential
Vdepl
T

=
9

2
φ gat s

d

(
1 − s

3d
−
( s

3d

)2
) (7.19)for D = 3 has been on�rmed in [214℄ by omputer simulations. Polydispersity is known tohave a minor e�et on the depletion attration [104℄. For D = 1 (7.17) gives the Poissondistribution Vdepl/T = φ gat s/d whih is exat only for D = 1.In two dimensions, the depletion potential is

Vdepl
T

=
2

π
φ gat (

4 arctan
γvol
W

+ γvolW − C
) (7.20)

= 2gat φ

φmax sd + O
(s
d

)2 (7.21)for D = 2 with γvol(s) = 1 + s/d, the square root W (s) =
√

(1 − s/d)(3 + s/d) and theonstant C = 2π/3 +
√

3 to have Vdepl = 0 at s = 0. The �rst line (7.20) is valid for
0 ≤ s ≤ d, and the seond line (7.21) su�es for the region of interest, 0 ≤ s ≤ srit ≪ d. Forthe appliation of results on the near-ontat deay of the pair orrelation funtion, suh as(7.21), we prefer the exponential notation (used before in the dense ase (7.10)) beause it ismost elegant to perform volume integration:

gdiluteAO (s) = gat exp

(
− φ

φmax gat [(
1 +

s

d

)2
− 1

])[
1 + O

(sB
d

)2
] (7.22)



128 Chapter 7. The Equation of State of Wet Granular Matterfor D = 2. In this notation the dilute and dense behavior of the pair orrelation are onve-niently ompared, showing that the result (7.22) for the gaseous/�uid regime di�ers by thefator 1/φmax = 1.10 in the exponent from the dense result (7.10) lose to jamming, so thataording to (7.22) the depletion fore falls-o� slower than the on�guration density φgat .We will now show that this is due to an over-estimation of the depletion fore, aused bynegleting orrelated three-partile events: when the plane of inidene of the third partilelosely oinides with the symmetry plane Σ, the inoming partile will hit in short sequenethe pair of partiles onsidered, whih inreases very e�etively the exhange of momentum,i.e. the depletion attration is redued.To determine analytially and numerially the e�et of orrelated ollisions whih orretthe Asakura-Oosawa result (7.22) we de�ne the dimensionless measure
Z =

4

π

Fdepl
nTdgat = − dg′

φ g2 , (7.23)for whih the Asakura-Oosawa approah (7.16) and (7.18) gives ZAO = 4
π

√
3 ≈ 2.205 (LineA in Fig. 7.7). When we take orrelated three-partile events into aount, there are threeontributions. Firstly, an attrative ontribution Z1 > 0 due to ollisions on the front sideof the pair, indiated by '1' in Fig. 7.6, whih fall in the range −π/2 < ϕ < π/2. Theorresponding value Z1 is easily integrated. Isotropy of the state demands that the angle

α between the symmetry axis of the pair P ′P and the inoming momentum pi is uniformlydistributed, as well as the impat parameter b (f. Fig. 7.6). These ollision parameters arerelated by (α, b) = (ϕ + θ, d sin θ) to the position ϕ on P and the angle of inidene θ withrespet to the normal of P, whih implies that ϕ is uniformly distributed and θ is weighted bythe osine-fator cos θ. Integration over −π/2 < ϕ < π/2 yields the axial fore ontribution
F1 = 2Tngat d , (7.24)so that Z1 = 8/π ≈ 2.546.Seondly, the attration is weakened by ollisions hitting P in the remaining range π/2 <

|ϕ| < ϕmax(s) (whih we refer to as the 'broad side') giving rise to Z2 < 0. At ontat
ϕmax(s = 0) is 2π/3. For these ollisions the inidene is shadowed by the partner partileP' so that the angle of inidene θ is restrited to −π/2 < θ < θmax(ϕ). (Confer the ollisionevent '2' in Fig. 7.6.) Some trigonometry determines θmax(s, ϕ) by the relation

(1 + γvol(s) cosϕ) sin θmax = 1 − γvol(s) cos θmax sinϕ , (7.25)whih allows for an expliit funtion of ϕ at s = 0:
2 cos θmax(ϕ) = tan

ϕ

2
−
√

1 + 2 cosϕ . (7.26)After integrating over the impat momenta pi in the rest frame of P, the axial fore imposedon P is
F2(s) =

4

π
Tngat d ∫ ϕmax(s)

π/2
dϕ cosϕ

∫ θmax(ϕ)

−π/2
dθ cos2 θ , (7.27)where the cosϕ projets the fore on the symmetry axis of the pair PP'. The cos θ fatorappears quadratially in the integrand (7.27) beause of the osine-distribution (or equivalent,beause the Enskog ollision frequeny is proportional to the radial veloity (pi/m) cos θ), and



7.2. Dry Spheres as the Starting Point 129the transferred momentum whih is pi cos θ. Symmetry allows us to integrate over the upperhalf, π/2 < ϕ < ϕmax(s) in (7.27) and multiply by 2 with the general result
Z2(s) =

8

π

∫ ϕmax(s)
π/2

dϕ cosϕ

[
1

2
+
θmax(s, ϕ)

π
+

sin 2θmax(s, ϕ)

2π

]
, (7.28)and the numerial value Z2(0) = −0.32813(9).Thirdly, the most obvious and important orretion on the three-partile level omesfrom double ollisions denoted by 3 in Fig. 7.6. The third partile hits �rst P' (gray arrow inFig. 7.6) from the broad side at ϕ′ ∈ (π/2, θmax). The radial omponent pi cos θ′ of its inomingmomentum pi is transferred to P', whih is why the third partile moves on tangentially to theirular ross setion of P' with momentum pi sin θ′ to ollide shortly afterwards with partileP. Here the momentum transferred is the radial omponent with respet to P, pi sin θ′ cos θ,so that

F3(s) =
4

π
Tngat d∫ ϕmax(s)

π/2
dϕ′ cosϕ(ϕ′) cos θ(s, ϕ′)

∫ θmax(s,ϕ′)

0
dθ′ cos θ′ sin θ′ . (7.29)The ollision point on P' desribed by ϕ′(ϕ) is related to ϕ (the subsequent ollision pointon P) by cos(ϕ′ − ϕ) = 1 + γvol(s) cosϕ. The inident angle θ on P is independent of θ′ andgiven by sin θ(s, ϕ′) = 1 + γvol(s) cosϕ′. After the elementary θ′-integration we �nd

Z3(s) =
8

π2

∫ ϕmax(s)
π/2

dϕ′ cosϕ(ϕ′) cos θ(s, ϕ′) sin2 θmax(s, ϕ′) , (7.30)and Z3(0) = −0.091593(7). Summing up the three ontributions gives Zorr =
∑3

i=1 Zi ≈
2.127 whih is shown as the line B in Fig. 7.7.Based on the numerial data presented in Fig. 7.7, we shall in the sequel assume the value

Zsim = 2 . (7.31)By virtue of good statistis the simulation at φ = 0.097 gave Zsim = 2.0009 ± 0.0050, andFig. 7.7 suggest this result to hold with few perent limits very well over the entire densityregime 0 < φ < φo onsidered in this subsetion. The value Z = 2 determines the near-ontatpair orrelation uniquely to be
gdilute(s) = gat exp

(
−φ gat [(

1 +
s

d

)2
− 1

])[
1 + O

(sB
d

)2
] (7.32)for D = 2. Satisfatorily, this result (7.32) has exatly the same funtional dependene onthe on�guration density φ gat as the formula put forward for the dense ase (7.10) in theprevious subsetion. While three-partile ollisions are obviously important sine they shift Zin the right diretion, no analyti explanation for this oinidene orresponding to the value

Z = 2 is provided at present. Yet we shall see in the next setion that any value other than
Z = 2 would lead to inonsistenies when we introdue the liquid bridge interation.We �nally remark that the result (7.32) strongly di�ers from the 'Poissonian �uid' [70℄,for whih the ontat orrelation gat − 1 > 0 is ignored. Even at the lowest density (φ = 0.1)onsidered in Fig. 7.7 the Poisson �uid would give ZPoisson(φ = 0.1) = 1.7 whih is 15% belowthe simulation value, and the deviation from Z = 2 grows with density φ.
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Figure 7.6: Three ontributions to the e�etive fore between a pair of partiles P and P'.The ollisions events 1 are attrative, while the events 2 ause a weaker repulsive fores.Furthermore the attration is weakened by the temporally orrelated ollisions events 3.
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fFigure 7.7: Funtional test of the near-ontat pair orrelation (7.32). The vertial axis isproportional to the depletion fore, Fdepl ∝ −d ln g/ds at ontat, divided by the on�gurationdensity φ gat . This fration Z is predited to be density independent by (7.32) and to assumethe value Z = 2 (line C). Line A orresponds to the lassial Asakura-Oosawa result, whihis only valid for large beads immersed in a bath of small beads. In line B the orretions dueto temporally orrelated ollisions events (derived in the text) have been taken into aount.These events our when a third partile of equal size strikes a pair of partiles with a givenseparation s≪ d as skethed in Fig. 7.6. We proeed using the value Z = 2 (line C) beause itagrees best with the simulation. Furthermore, Z = 2 orresponds to a near ontat orrelationfuntion whih is of exatly the same form as the funtion gA we use in the dense ase, whenexpressed in terms of the on�guration density φ gat (φ).



7.3. The Pair Correlation under the Hystereti Interation 1317.3 The Pair Correlation under the Hystereti InterationIn this setion we dress up the pair orrelation funtion in order to desribe the status ofthe liquid-bonds whih are reated and ruptured hysteretially in wet granular matter. Wewill proeed in two steps: �rst, we introdue in part 7.3.1 the liquid bridges as hysteretibut foreless objets whih follow the unperturbed partile dynamis. As a result, a diretrelation of the dynamial system and the limiting ase of isostati granular pakings [60, 153℄at rest is found. In 7.3.2 we turn on the liquid bridge fore to its physial value, so thatthe bridges unfold their bak-reation on the granular dynamis. In the limit of low granulartemperatures, T ≪ Eb, the partiles stik together. For this frozen state of wet granularmatter the bridge oordination K is omputed analytially as a funtion of the rupture length
srit, and we �nd very good agreement with simulations.7.3.1 The Hystereti CouplingDue to the hystereti interation, the pair orrelation g is no longer a funtion of the partileseparation s. In order to inlude the knowledge about the ollision history the on�gurationspae has to be enlarged in two respets: Obviously we distinguish between pairs with andwithout liquid bridges, whih we denote by supersript indies, gb(s) and gu(s) respetively,for `bridged' and `unbridged' neighbors (f. Fig. 7.8). In addition, time reversal-symmetry isbroken by the formation of the apillary bridge at ontat. Hene we distinguish approahingpairs (with a negative relative veloity) whih might ollide and form a liquid bridge in thefuture, and those that move apart so that they an rupture the liquid-bond in the future.This relative veloity is denoted by a subsript arrow.As we disuss the radial pair distribution, ontat and rupture beome the importantpoints on the s-axis of the pair orrelation funtion. At these points the funtions gb and
gu are oupled aording to the hystereti transition of the bond status. We use an intuitivenotation, writing `' and `r' in the subsript for ontat and rupture distane, respetively:

gu←©r =





The probability for a pairat rupture distaneapproahing without bridge.
gb©c→r =





The probability for a pairat ontatmoving away with bridge.et.A on�guration at ontat, s = 0 (or to be more preise: the right-sided limit s = 0+), isdenoted by a irled ©c , and the rupture at s = srit by the irled ©r . The unirled letterallows to onveniently indiate the diretion of motion with the arrow. In�nitesimally lose toontat, there are four detailed orrelation values: the bridge-onneted and the unonnetedstates, either partiularized by the sign of the relative veloity. The same is true for theleft-sided limit s = srit− of the rupture point. An in�nitesimal distane beyond this point,at s = srit+, there is only the unbound state possible with the two signs for inoming andoutgoing veloities. This gives us in total ten detailed pair orrelation oe�ients. These aredetermined by the following ten equations desribing the hystereti �ow of probability, as itwe an be read o� from Fig. 7.8: Conditions on the ontat shell
gu©c→r = 0 (7.33)
gb©c→r = gu©c←r + gb©c←r (7.34)



132 Chapter 7. The Equation of State of Wet Granular MatterThe Eq. (7.33) expresses that no partiles rebound without a liquid-bond, but rather that allreturn with a bridge as stated by (7.34). This implies that the partile number is onservedin ollisions (in ontrast to the absorbent dynamis modeled in [241℄ for D = 1).Domain of apillary interation
gb©r = γb(srit) gb©c (7.35)
gu©r = γu(srit) gu©c (7.36)

gu→©r = γpass gu←©r (7.37)The funtions γu(s) and γb(s) take into aount the near-ontat deay of the pair orrelationwithout and with liquid bond, respetively. The last Eq. (7.37) desribes spetator grains, i.e.grains whih pass through the domain of possible apillary interation without bridge forma-tion. The fration of these passing partiles, γpass = 1− (1+srit/d)1−D (= 1/(1 + d/srit) for
D = 2) equals the gap between the onsidered ross setion (2d + 2srit)D−1 of the apillaryinteration and the hard-ore ross setion (2d)D−1.Conditions on the rupture shell

gb←©r = 0 (7.38)
gu←©r = gu©r← (7.39)

gb→©r + gu→©r = gu©r→ (7.40)The Eqs. (7.38, 7.39) state that only unbound partiles enter the domain of apillary inter-ation, and (7.40) desribes the rupture of a apillary bridge when the pair esapes from thedomain.The hystereti apillary dynamis is oupled to the hard partile dynamis by the soureterm of new unbound pairs of partiles entering the apillary interation range:Soure Term
gu©c←r + gu←©r /γu(srit) = (1 −K/Ksites)gat©c (7.41)The left-hand side is the urrent of approahing unbound neighbors (measured at ontat).If all neighbors were unonneted, K = 0, this urrent would equal the dry value gat©c . Butsine there are K neighbors with bonds out of the Ksites 'doking sites' whih are steriallyaessible for liquid bonds, the remaining unonneted fration is 1 −K/Ksites.The �nal tenth equation is the stationary state ondition, whih demands that the rupturefrequeny equals the binding frequeny:Stationary state ondition

fbind = frupt . (7.42)These frequenies follow from the probability to have a partile on the ollision or rup-ture shell, respetively, multiplied by the radial omponent of the relative veloity under theondition that the partile moves in the appropriate diretion for the event to our. Thisis analogous to the ase D = 1 in Chap. 6, with the only di�erene that here we have tointegrate over shells:
fbind = 2D+1D

√
T

π

φ

d
gu©c←r, and (7.43)

frupt = 2D+1D

√
T

π

φ

d
gb→©r γvol(srit) . (7.44)
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Figure 7.8: The hystereti interation in a wet granular gas or �uid an either lead to sat-tering or bound states. Note that the formation and rupture of the liquid bridge is spatiallyseparated, whih gives rise to a hystereti loss and a oupling between the pair orrelationfuntions gb for neighbors with and without, gu, apillary bridge. In this sketh the maximalliquid bridge length srit is drawn largely exaggerated. For a typial volume fration of 1%wetting liquid added to the volume of jammed granular matter one �nds srit/d ≈ 0.07 [114℄.The volume fator γvol(s) = (1 + s/d)(D−1) takes the inreased size of the outer rupture shellas ompared to the inner binding shell into aount.Eliminating those orrelation oe�ients that are identially zero (7.33, 7.38), we anarrange the oupling equations for the domain of apillary interation as a 6 × 6 matrixsystem:Collision:With Bridge:Unonneted:Stationarity:Spetators:Soure:



1 1 −1 0 0 0
0 γb γb 0 −1 0
γu 0 0 −1 0 −1
−1 0 0 0 γvol 0
0 0 0 −1 0 γpass
1 0 0 0 0 1/γu



◦




gu©c←r
gb©c←r
gb©c→r
gu→©r
gb→©r
gu←©r




= (1 −K/Ksites) gat©c  0
0
0
0
0
1


(7.45)The γ-funtions in the matrix are to be evaluated at s = srit. As it has to be on physialgrounds, this system is non-singular with determinant (1+srit/d)D−1 (2+γpass) γb(srit) > 0.The last row of the system (7.45) desribes the reation of new liquid bridges as disussedbefore in the ontext of the equivalent Eq. (7.41). We remark that here we used that theorrelation gat©c of the dry system at ontat has equal ontributions from positive and negativerelative veloities, immediately before and after the ollision, whih is still true for the wettedelasti partiles we onsider. This symmetry between positive and negative radial relativeveloities is broken if one wishes to introdue a restitution oe�ient 0 < ǫ < 1 to modelinelasti ollisions: the ontat orrelation of positive veloities is then inreased by a fator

1/ǫ as ompared to the negatives.One should see learly the very di�erent meaning ofK and Ksites. The dynamial quantity
K is the number of instantaneously existing apillary bonds:

K = 2DD φ
gb©c
d

∫ srit
0

γb(s) γvol(s) ds . (7.46)
K rapidly deays lose to zero in dilute systems. As K omes loser to the value of Ksitesin a very dense system, the binding frequeny fbind ∝ gu©c←r ∝ K − Ksites (7.43) goes to



134 Chapter 7. The Equation of State of Wet Granular Matter

capillary bridge regime
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0.10.010.001Figure 7.9: The apillary bridge oordination K in the low temperature limit, T ≪ Eb. Asproven in the text, K onverges to the athermal funtion Ksites(φ, srit) in this low tempera-ture limit. The solid line is Ksites(φo, srit) over a wide range of maximal bridge lengths srit.Points represent �nal states of free ooling simulations with 1000 partiles of uniformly dis-tributed polydispersity ∆d = 0.06d. The open symbols are lusters with winding number one(ylindrial topology), onneted over one periodi boundary on a retangular domain. Suhstrutures have internal tensile strength whih neessitates a slightly inreased oordination,visible as a small shift ompared to the losed symbols whih represent loalized lusters (asthe two examples drawn in the plot). As predited by Eq. (7.51) of the presented theory,the strutures emerging with exat ontats, srit → 0, are found to be preisely isostati,
Ksites = 4. The line is the analyti result (7.50), for whih very good agreement is found withthe simulations over the entire range of the apillary bridge regime, 0 < s < 0.2r (with r thepartile radius), whih is indiated in the �gure. Beyond this regime, the theory does nothold beause in the derivation we limited ourselves to the leading order in srit/d. More im-portantly, the rupture length srit annot be further inreased beyond the apillary regime bysimply inreasing the liquid ontent in the granular sample. As mentioned in the introdution,liquid bridges residing on the same sphere would rather merge [197℄ into more ompliatedobjets.
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K drops down in the viinity of the ritial temperature as lustered strutures break up. Forthis plot the mean density is hosen to be φ = 0.75.zero beause steri hindrane prohibits the formation of further apillary ontats: K−Ksitesgives the number of vaant sites for apillary bonds. Therefore Ksites is the maximum numberof `doking sites' for apillary bonds. It is a pure geometri property and grows with srit,beause srit > 0 still allows for a slight rearrangement of partiles in the formation of newapillary bridges without breaking existing ones. In the limit srit → 0, Ksites is the numberof `ontat sites'. We therefore expet Ksites to equal the number of exat ontats, 2D = 4.So let us ompute Ksites(φ, srit) in the following paragraph.The maximum number of possible bonds, Ksites, is an athermal funtion of density φand the ritial liquid bridge length srit. We determine Ksites from the obvious fat, thatthe granular dynamis is una�eted by the introdution of foreless bridges: for γb = γuwe reover the dry ontat orrelation gb©c + gu©c = gat©c . This is the athermal limit, or hightemperature limit of wet granular matter.High temperature limit{ γb = γu

gb©c + gu©c = gat©c (7.47)From the hystereti bridge system (7.45) follows in this foreless or high granular temper-ature limit (7.47):
(

1 − γuγvol
1 + γpass) Ksites = (1 + γuγvol) K and (7.48)

gb©c =
gat©c

1 + γu γvol . (7.49)The γ-funtions with the argument s suppressed are understood to be evaluated at s = srit.



136 Chapter 7. The Equation of State of Wet Granular MatterInserting the Eqs. (7.48) and (7.49) in (7.46) yields
Ksites = 2DD φ gat©c ∫ srit

0 γu(srit) γvol(srit) ds/d

1 − γuγvol/(1 + γpass) (7.50)
= 4

1 − γu + O
(
s3rit)

1 − γu + O
(
s2rit) = 4 + O (srit) . (7.51)In the last line we have set D = 2, so that we ould use (7.10) and (7.14). The result (7.51) isthe seond important onsisteny test. Finding the number of exat ontats in the jamminglimit to equal four in (7.12) showed the onsisteny of the free-volume argument appliedthere. Here in (7.51) we �nd for any density that the di�erent funtion Ksites for the numberof possible bridges sites equals four as well when srit = 0. This is as intuitively expeted anda on�rmation of the onsisteny between the hystereti system (7.45) and the near-ontatpair orrelation. In view of the numerial �nding Zsim = 2 for the derivative at ontat ofthe pair orrelation (as de�ned in (7.23)) we remark that the entirely analyti desription bythe hystereti system gives in general Ksites = 8/Z + O (srit), whih is why the onsistenyis non-trivial and the �nding Zsim = 2 �ts favorably into the entire piture.Thus the hystereti system (7.45) provides a diret onnetion between the stati granularproperties aptured in Ksites and the granular system in motion at positive granular temper-ature whih we are treating in general. We remind that Ksites is determined by the steriself-hindrane and therefore a pure geometri property independent of the granular temper-ature. When inspeting a snapshot of a lose granular paking we an �nd loal ases ofontat oordination (srit = 0) higher than four. These are �utuations within the granularensemble, while Ksites and K are mean-�eld quantities. Of ourse, for a �nite bridge length

srit > 0, a mean bridge oordination K ∈ (0,Ksites) with Ksites higher than four is possibledue to elongated bridges, as desribed by (7.50). Before we evaluated the expression (7.50) of
Ksites for positive srit (plotted in Fig. 7.9), it is enlightening to swith on the apillary foresin the following setion beause this allows us to apply Ksites to 'frozen' wet granular matter.7.3.2 Swithing On the Fore of Capillary BridgesUnder the attration of a liquid bridge, the pair orrelation gb(s) of onneted neighbors fallso� faster than gu(s) for unbound partiles, depending on the granular temperature T/Ebompared to the bridge energy. The logarithmi derivative of the radial pair orrelation is tobe interpreted as the e�etive radial fore [112, 111℄, βF = ∂s ln g(s), as disussed before inSe. 7.2.2. This exponential dependene an be justi�ed as the solution of the Fokker-Plankequation derived in [172℄. Moreover, in the ontext of the hystereti interation of wet granularmatter this exponential fator has been suessfully applied in the ase D = 1 (f. Eq. (6.5) inChap. 6). Therefore we proeed by swithing on the liquid bridge fore to the physial valueof the Minimal Capillary Model (f. 3 and [114℄), Fb = Eb/srit, inluding this exponentialin the short-range dependene of the pair orrelation funtion for bridges neighbors:

γb(s, T ) = γu(s) exp

(
−Eb

T

s

srit) . (7.52)At low granular temperatures this exponential gives rise to shorter average bridge lengths,and desribes the redued probability that a bridge reahes its ritial length srit. Thereforethe hystereti system (7.45) desribes the stiking of partiles and the onset of lustering.We have disussed in the previous Se. 7.3.1 that steri e�ets in the dynamial systemlimit the mean number of bonds to a maximum of Ksites, and we derived that Ksites onvergesto the number of isostati ontats in the limit srit → 0. Here this onnetion is put on



7.4. The Equation of State and the Critial Point 137�rm grounds with a lear physial interpretation attributed to Ksites: Ksites is the bridgeoordination K of solid wet granular matter.Proof of K → Ksites in the low temperature limit. Solving (7.45) for K/Ksites, weobtain
K(T, srit, φ)

Ksites(srit, φ)
=

1

1 +X(T )/Y (T )
, (7.53)with

X(T ) = γb(srit, T ) Ksites (γpass + 2)γvol and (7.54)
Y (T ) = 8I(T ) φgat©c (γpass + 1) , (7.55)where I(T ) stands for the integral over bond states,

I(T ) =

∫ srit
s=0

γbγvol ds/d =

∫ srit
s=0

e− Ebs

Tsrit γuγvol ds/d =
Tsrit
Ebd + O

(
T 2
)
, (7.56)whih goes linearly to zero, while γb(T ) ∝ e−Eb/T vanishes for T → 0 faster than any powerof T . Hene X/Y → 0 so that Eq. (7.53) implies

lim
T→0

K = Ksites (7.57)as onjetured.This low temperature limit (T ≪ Eb) is of general interest sine it represents a stikygas of ideal spheres, whih serves as a model for aggregation in various areas of physis [173℄and astrophysis [22℄: one two partiles had ontat, the remaining degree of freedom istangential motion. The analyti predition of formula (7.51) is Ksites = 4 in the limit of exatontats, srit = 0. In order to evaluate (7.50) for positive srit we insert the near-ontatdeay γu given by the general results (7.10), (7.14), and (7.32), setting D = 2. The expliitexpression for γu, whih we use throughout this thesis for results without free parameters, isgiven in the appendix 7.7. Here we take into aount known formulas for the ontat value
gat©c at low densities, as well as higher orretions to the free volume theory. Inserting thisexpression in (7.50) results in the urve shown in Fig. 7.9. We have performed simulationsin this low-temperature limit. The wet granular matter was initially prepared in a gas statewith T = 50Eb and ooled by the formation and rupture of bonds. The insets in Fig. 7.9show �nal states when the granular temperature T is more than one order of magnitude below
Eb and no further hange in the on�guration was observed on exponential time sales. Thesymbols in Fig. 7.9 have been measured in this �nal state. In perfet agreement with thepredition of Eq. (7.51), we �nd in the ontat limit, srit → 0, the oordination to be exatly
4. Moreover, the inrease in the number of bonds per partile with the inrease of the maximalbridge length srit is found to be in very good agreement with the simulations.Further analyti results for high densities are shown in Fig. 7.10 (A). As is intuitively learand shown by the family of urves in Fig. 7.10 (A), the onvergene of the limit srit → 0is not uniform with respet to density, sine Ksites is pinned to the kissing number 6 of themonodisperse rystal density at φmax.7.4 The Equation of State and the Critial PointWe are now in the position to derive the equation of state, P = P (T, φ), for wet granularmatter with apillary bonds tensile up to the rupture length srit. The ohesion of apillary



138 Chapter 7. The Equation of State of Wet Granular Matterbridges will redue the pressure as ompared to a dry hard-sphere system of equal temperature.By virtue of Eq. (7.53), we have the bridge oordination number K as a funtion of density φand granular temperature T . Sine in the Minimal Capillary Model the bridge fore is assumedto be independent of the bridge length s, the knowledge of the mean number of bridges K willallow us to evaluate the redution of the pressure due to ohesion. Furthermore, the partile-partile ollisions are enhaned by the bridge attration, inreasing the ontat orrelation.The ontat orrelation gwet©c for wet granular matter derives from the Eqs. (7.45) and (7.46):
gwet©c = gat©c (1 + γpass)(1 + γbγvol) Iu

(1 + γpass − γuγvol)Ib + (2 + γpass)γbγvolIu (7.58)with the integrals
Iu/b =

∫ srit
0

γu/b(s) γvol(s) ds . (7.59)The analyti expression (7.58) for the ontat orrelation of wet granular matter, gwet©c , isindeed stritly greater than the one of the dry system, gat©c , to whih it onverges in thehigh temperature limit when the apillary energy Eb is small ompared to the granulartemperature T . This limit follows obviously from (7.58) beause the funtions with supersriptindex 'b' turn into those with 'u' for T ≫ Eb. In the low temperature limit, liquid bondsosillate with an amplitude proportional to the kineti energy whih equals T on average, sothat the probability to �nd the partiles at ontat, gwet©c , grows proportional to 1/T , as anbe derived easily from (7.58) using the expansion (7.56).7.4.1 Frozen Degrees of FreedomAs the system starts to luster at temperatures lose to Eb, voids remain between the lusterswith linear dimensions large ompared to the partile diameter. Clearly, this growing lengthsale, whih is set by the sizes of lusters and voids, is not aptured by the short-range behaviorof the pair orrelation funtion. Here we advane the theory beyond the level of two-partileorrelations to take orrelation on large sales, suh as the olletive partile motion in aluster, in an approximative fashion into aount.The olletive motion of a luster is due to stable apillary bonds whih impose onstraints,suh that the internal degrees of freedom of lusters are frozen. Sine K is the number ofinstantaneous apillary bridges of whih the fration erf(√Eb/T) with kineti energiesbelow Eb forms stable bonds, we have
Kfrozen = K erf(√Eb

T

) (7.60)for the number of frozen degrees of freedom.We are interested in the density of the remaining degrees of freedom. The idea is simpleand powerful: As a general mathematial property of triangulations, there are on averagepreisely six Voronoï neighbors [157℄, independent of density or ordering. In Fig. 7.11 we anobserve that the Voronoï neighbors with stable bonds ontribute less to the area 1/n of theVoronoï ell. This piture suggest a two-�uid model with frozen and free neighborhoods asthe two onstituents. The fration of frozen and free triangulation bonds is proportional to
Kfrozen and Kfree respetively, and the area ontributions assoiated to eah bond sum up tothe total size of the Voronoï ell:

Kfrozen +Kfree = 6 (7.61)
Kfrozen
nfrozen +

Kfree
nfree =

6

n
. (7.62)
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Figure 7.11: A loal on�guration of two-dimensional wet granular matter at moderate density.The ell borders are loated at one half of the surfae separation for polydisperse diameters(not half enter distane), so that eah ell ontains one partile ompletely. Sine there is onepartile in eah Voronoï ell, the mean area equals the inverse density. In Se. 7.2.1 we haveused the Voronoï tessellation to ompute the derivative of the pair orrelation at ontat fora dry and dense system. For suh a dense system, the Voronoï ell resembles a hexagon witha size proportional to (d+ s)2, where s is the partile separation. In wet granular matter, wedistinguish the densities nfree and nfrozen assoiated with the binding status of the apillaryinteration. A stable apillary bond ontributes 1/(6nfrozen) to the ell area, 1/n, and thusless than an unonneted neighborhood with 1/(6nfree) does. The areas sum up to the ellsize, so that these densities are related as expressed by the Eqs. (7.61) and (7.62).Beause of this reiproal sum rule for the densities one may all this a reiproal two-�uidmodel. The densities nfree < n < nfrozen introdued by Eq. (7.62), generalize the meandensity n by deomposing the volume 1/n per partile into bound and free neighborhoodson the mean-�eld level. 1/(6n) is the average volume of a neighborhood, sine there are sixneighborhoods on average. The ontribution of a free Voronoï neighbor is 1/(6nfree), and
1/(6nfrozen) is the ontribution of a neighborship frozen by a apillary bridge. Put in physialterms, nfrozen is the loal density inside a luster.The density nfrozen of the stable bond omponent follows analogously to (7.2) when aver-aged with the additional exponential fator (7.52) due to the apillary fore:

〈(
1 +

s

d

)D
〉frozen =

nJ
nfrozen (7.63)

〈. . . 〉frozen =

∫ srit
0 . . . γfrozen(s) γvol(s) ds∫ srit

0 γfrozen(s) γvol(s) ds
(7.64)

γfrozen(s) = exp

(
−φ gat©c [(1 +

s

d

)D
− 1

]
− Eb

T

s

srit) (7.65)Without a�eting the leading order in s/d one is free to replae the last s in the exponent(7.65) by s+ s2/(2d), so that the integral (7.63) is elementary resulting in
nJ

nfrozen − 1 =

[(
1 +

srit
d

)D
− 1

] (
1

α
− 1eα − 1

) (7.66)with α =

[(
1 +

srit
d

)D
− 1

](
φ gat©c +

Eb
T

d

Dsrit) . (7.67)We point out that Eq. (7.66) implies Eq. (6.6) in Chap. 6 for D = 1.
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Figure 7.12: The pressure P of wet granular matter is shown as funtion of the granulartemperature T . The dimensionality is D = 2 and the overed area fration is φ = 0.1,so that at high temperatures the system is a dilute gas. The maximum bridge length is
srit = 0.07d. The behavior below the ritial temperature T = 0.274Eb of wet granular anbe understood in the following way: the system agglutinates to lusters. With these e�etivepartiles the pressure is redued aording to the redued number density of e�etive partiles.The breakup of lusters is re�eted by the rising pressure around T. The straight line is theathermal pressure of hard diss, P dry = ngatwallT whih is reahed asymptotially when thegranular temperature is higher than the energy sale Eb set by the apillary interation.From the Eqs. (7.53), (7.60)-(7.62), and (7.66)-(7.67) follows the density of degrees offreedom whih are not frozen out by apillary bonds, nfree(T, srit, φ). One may regard nfreeas the density of lusters.We remark that the two-�uid model of neighborhoods is the only onept presented inthis theory of wet granular matter whih annot be generalized in a straight forward mannerto three dimensions, beause for D = 3 the number of Voronoï neighbors is not a universalonstant (suh as 6 for D = 2 and 2 for D = 1), but depends on the granular order (reahingits minimum value 12 for lose paking and its maximum of approximately 15.5 in the idealgas limit) [8℄. The reason for this is that three-dimensional spae annot be �lled withtetrahedrons, while �at spae an be tiled by triangles. As a onsequene, the number ofonstituents in the two-�uid model of neighborhoods would not be onserved for D = 3 andthe numerator on the right-hand side of (7.62) is not a onstant.7.4.2 The Pressure of Wet Granular MatterHere we arrive at the pressure P (T, φ) using the density nfree(T, φ) (7.61) of degrees of freedom,the oordination K(T, φ) (7.53), and the ontat orrelation gwet©c (T, φ) (7.58). The pressureis the trae of the stress tensor

P = − 1

D
trσ . (7.68)The stress tensor σ = σkin+σfore desribes the �ow of momentum. The kineti term has om-ponents σkini,j = −∑N

k

〈
mv

(k)
i v

(k)
j δ(r − r(k))

〉. With the granular temperature T = 〈mvivi〉,its trae yields nT for unorrelated partile motion (as in an ideal gas). In general we have
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Figure 7.13: Isotherms of wet granular matter for the realisti rupture length srit = 0.07d.In the high temperature limit the liquid bridges forfeit their in�uene on the dynamis, sothat the equation of state redues to the hard sphere pressure. This an be seen by the twoblak isotherms of wet granular matter, of whih the higher is at T = Eb and onverges tothe top urve in the limit T ≫ Eb. The lower blak isotherm is at T = 0.2Eb and exhibitsan unstable branh. The ritial point is at T ≈ 0.274Eb (f. Fig. 7.14 for a lose-up).the kineti ontribution
P kin = nfreeT (7.69)wherein there frozen degrees of freedom have been taken out. For moderate densities, onemay interpret (7.69) as the kineti ontribution to the pressure due to a gas of lusters.The interpartile fores F give rise to the Cauhy tensor σfore, whih is the tensor produtof the enter-to-enter vetor r and the pair fore F,

σfore =
nfree

2
〈F ⊗ r〉 , (7.70)so that σfore is diagonal for radial fores. The fator 1/2 assigns half of the momentumurrent to either of the interation partiles, i.e. r/2 may be seen as the transport vetorwithin the Voronoï ell. The Cauhy tensor (7.70) has ontributions only by the unfrozenpairs of partiles with density nfree, beause in frozen neighborhoods the repulsive momentumexhanged in ollisions is exatly balaned by the bridge attration under the time averageon the right-hand side of (7.70).A omment on the signi�ane of the reiproal two-�uid model as represented by Eq. (7.61)and (7.62) is in order here. We onsider for instane a ompressed state of wet granular matterwith Kfrozen around �ve and Kfree around unity. While Kfree is small, the prefator nfree in(7.70) is not neessarily small. From (7.61) and (7.62) follows that both, nfree and nfrozen,onverge to nJ as the system gets jammed (n→ nJ), so that the repulsive dominated state isorretly desribed by the Cauhy tensor (7.70) whih grows beyond all bounds as n→ nJ. Ifone had (in ontradition to the additivity of areas) summed up densities linearly instead ofthe reiproal sum rule (7.62), the free density would vanish or ould even beome negativeunder suh onditions.
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Figure 7.14: A lose-up of the transition region in wet granular matter. The dashed line inthe main panel is the spinodal of the homogeneously driven wet granular system in D = 2dimensions. The solid blak lines are wet granular isotherms around the ritial point, whihis loated at Trit = 0.273(5)Eb for srit = 0.07d. The hange of the ritial point with theamount of added liquid (represented by srit) is shown in Fig. 7.15. The urve in the upper leftorner is the athermal pressure P dry of the hard dis system [148℄ without liquid bridges, andthe line at the bottom is the ideal gas pressure (P iddD(φ) has a de�ned slope). P dry = gat©c P idis inreased ompared to the ideal gas by the Enskog fator gat©c . The pressure of wet granularmatter is redued ompared to the dry system P dry due to the apillary ohesion. The insetshows the spinodal in the temperature-density plane, where the ritial temperature an belearly determined.
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/ dFigure 7.15: The in�uene of the rupture length srit on the position of the ritial pointin the phase diagram Fig. 7.14 of wet granular matter. The position of the ritial point isdesribed by the ritial parameters (φ, T), whih are plotted on the left and right vertialaxis respetively. Solid lines result from the full theory (7.74) by solving for the intersetionof ∂φP (φ, T ) = 0 and ∂2
φP (φ, T ) = 0. For the ritial temperature we �nd a very mildvariation with the rupture length, so that over the entire physially relevant range of apillaryinteration we have T ≈ Eb/4. The in�uene of the rupture length srit on the ritialdensity φ an be understood very learly with the help of the dashed line. The dashedline is the impliit equation srit = 4s(φ) for the density φ, whih is expressed in terms ofthe mean partile separation s(φ) = d

(
D
√
φJ/φ− 1

). Sine the dashed line losely followsthe full theory, the ritial density is suh that the mean partile separation sales with therupture length srit. This shows that both intrinsi harateristis of the apillary interation,the rupture length and the bridge energy Eb, determine the ritial point of wet granularmatter.



144 Chapter 7. The Equation of State of Wet Granular MatterIt is �nally easy to determine the time average on the right-hand side of (7.70) for the twodi�erent fores ating in wet granular matter, the delta-fore in ollisions of hard partilesand the �at fore Fb = Eb/srit of the apillary bonds. In a ollision at time toll the radialmomentum ∆p is transferred instantaneously:
〈Foll ⊗ r〉 = 〈∆p⊗ r δ(t− toll)〉 = 1I 〈∆p (r,−v) θ ((r,−v)) δ(r − d)〉 = −1I gwet©c nσDd

DT .(7.71)In the last equality the δ-funtion gives rise to the ontat orrelation gwet©c and the trivialintegration of angles leaves σDd
D−1. 1I is the unity matrix and θ is the Heaviside step funtion.Inserting (7.71) in (7.70) and taking the trae (7.68) yields
Poll = 2D−1nfree T φ gwet©c . (7.72)The ohesive virial due to apillary bridges is

〈Fb ⊗ r〉 =

〈
K
Eb
srit r⊗ r

r

〉
=

1I
D
K
Eb
srit 〈d+ s〉 ≈ 1I

D
K
Eb
srit d . (7.73)Hene the �nal result

P = nfreeT (
1 + 2D−1 φ gwet©c ) − nfreeEb K

2D

d

srit , (7.74)where the last term is the bridge ohesion (7.73). Sine nfree, the ontat orrelation gwet©c and
K have been derived expliitly in (7.61), (7.58) and (7.53) as funtions of φ and T , we havethe equation of state for wet granular matter, P = P (φ, T ).The Figs. 7.12 and 7.13 show the analyti result (7.74) as a funtion of the granulartemperature T and the density φ. In the high temperature limit wet granular matter behavesas a hard-spheres system. Below the ritial point granular lusters are predited to segregatedue to the mehanially unstable branh of the pressure as a funtion of density, whih appearsin Fig. 7.13 below the ritial temperature. Figure 7.14 provides a lose-up of the ritial pointof wet granular matter and its spinodal. The ritial density of this transition is high, beausethe partiles have to be lose enough in order to form a dynamial apillary network. As weshow in Fig. 7.15, the ritial density is determined by the length sale of apillary bridges,suh that the rupture length srit sales with the mean partile separation s. Moreover, therupture length is approximately four times the mean partile separation, srit ≈ 4s (dashedline shown in Fig. 7.15 for omparison). This result is to be ompared with the very sameratio for the reported ritial density of the unlustering e�et in Chap. 6: in the free oolingof dense one-dimension wet granular matter, the granular network was found to break upinto granular droplets whih preipitate out of the homogeneous initial state, as soon as thedensity exeeded a ritial value. This ritial density was shown numerially and analytiallyto be set by srit ≈ 3s in Chap. 6. The di�erent prefator is due to the additional oolingdynamis and the dimensionality D = 1. The theory of wet granular matter presented in thishapter predits this transition to persist in higher dimensions.As we shorten the rupture length srit (whih an be easily done experimentally by evap-orating the wetting liquid), the dry system is approahed in suh a way that the spinodalnarrows in the T − φ plane and is shifted to the jamming point, where it eventually shrinksto a line and vanishes. Figure 7.15 shows the onvergene of the ritial density to the jam-ming density. Sine the apillary bridge regime sets an upper limit on the rupture length,the ritial point is on�ned on the density axis between the ordering transition at φo andthe jamming density φJ. The ritial temperature almost exlusively depends on the bridgeenergy, aording to T ≈ Eb/4, over the entire apillary regime.



7.5. Conlusions 145With this disussion of transitions ourring in wet granular matter the presentation ofthe theory for wet granular matter is ompleted for this hapter. The reader may �nd inappendix 7.8 a brief methodial extension of the theory where a self-onsistent equation isderived for future works.7.5 ConlusionsStarting with the hard-sphere �uid, an expression (7.10) for the narrowing of the near on-tat pair orrelation was derived, whih desribes in the jamming limit the delta-peak of 2Disostati ontats per partile, in agreement with the aepted value of simulations. In thegas and �uid regime the fall-o� predited by this expression for the pair orrelation at on-tat was found to be well on�rmed by simulations. We then addressed the nonequilibriumase of wet granular matter by the introdution of apillary bridges whih are formed hys-teretially. The Enskog desription in terms of the pair-orrelation funtion was extendedwith six di�erent non-vanishing orrelation oe�ients whih take the bridge status into a-ount and allow for the hystereti dissipative dynamis. The oordination number of bondswas omputed analytially as a funtion of the rupture length of the apillary bridges, thegranular temperature, and the density. The limiting ase of strong bonds led to the stikygas dynamis for whih simulations have been performed whih showed very good agreementwith the analyti predition of the oordination number. Based on the derived expressionsfor the ontat orrelation and the bridge oordination, we �nally omputed the pressure ofwet granular matter analytially as a funtion of density and granular temperature. Here themethod of the reiproal two-�uid was put forward, whih desribes the e�etive degrees offreedoms in order to take the orrelated motion of partiles glued to lusters into aount.The isotherms of wet granular matter were found to have an unstable branh whih gives riseto the segregation of dense lusters. The ritial temperature of this transition was derivedto be approximately one quarter of the apillary bond energy. The ritial density is diretlyrelated to the pinh-o� distane of the apillary bridges. The lose relation to the unlusteringe�et reported for one dimension in Chap. 6 was pointed out, for whih reason the latter e�etpersists also in higher dimensions.Clearly it will be interesting to probe the ritial point of wet granular matter experimen-tally and by diret simulations. As was shown in this hapter, the position of the ritialpoint is determined by the length and energy of the apillary bridges. These quantities anbe ontrolled aurately in an experiment of shaken wet granular matter. This experiment isreported in Chap. 8. Future measurements of the ritial temperature will allow to disernbetween extensions suh as the nonlinear oupling disussed in appendix 7.8.Future analyti work inludes the bakground ontribution gB in the dense regime, sineour numeris indiate that the pair orrelation is �atter near the ontat as predited by gAalone. This task might be addressed in onjuntion with the analogous bakground ontribu-tion in three dimensions, for whih in the jamming limit an integrable power-law divergene,
gB ∝ 1/sδ, has been reported in numerial studies (with δ = 0.5 [201℄ or δ = 0.6 [59℄) andexperiments [9℄, but is as well laking a theoretial explanation at present.7.6 Appendix A: The Bakground Contribution gB7.6.1 The Weighting FatorsWith gA in (7.10) we onsidered the four (f. Eq. (7.12)) A-neighbors, whih form isostationtats at jamming, sA → 0 for φ→ φJ (7.3), and are separated by sA aording to Eq. (7.4)



146 Chapter 7. The Equation of State of Wet Granular Matterbefore jamming. Analogously, the separation sB of the two B-neighbors is weighted by
PB(sB) ∝ exp

(
−
(
1 + sB

d

)2 − 1

φmax/φ− 1

)
. (7.75)While in Eq. (7.4) the denominator in the exponential is cA = φJ/φ − 1 so that sA → 0 atthe jamming density, in Eq. (7.75) the denominator is cB = φmax/φ − 1 sine the bloked Bis only fored to form a ontat, sB → 0, for a perfet rystal with φ→ φmax. Of ourse thislimit is kinematially unreahable beause the system omes to rest at the jamming density

φJ < φmax. φmax would be reahed. We note that cB is a small dimensionless quantity: for
φ > φo = 0.71 we have 0 < cB < 0.2774.Close to jamming, the B-neighbors are �xed in spae by partiles other than the referenepartile. Exept for arh-like onstrutions whih are rare for fritionless partiles, and wouldinlude seond Voronoï neighbors keeping B at a separation larger than our region of interest,
sB > srit, this hindrane is due to the A-neighbors. Therefore the probability gB(sB) to �nda B-neighbor at separation sB from the referene partile (skethed with hathing in Fig. 7.17)is given by the integral over all on�gurations where four A-neighbors hinder two B-neighbors.The on�gurations will be weighted by a phase spae fator C and the exponential fator
PB. We are above the ordering density φo, so that the neighborhood has (by de�nition of thephase) hexagonal order as skethed in the inset of Fig. 7.16. Projeting the on�gurationswith the two B-neighbors bloked (gray subset in Fig. 7.16) on a single θ-axis, we �nd theon�guration spae fator

C(θ) =
3(5π − 6θ)

2π2
. (7.76)In the sequel we abbreviate

γvol(s) ∝ 1 + s/d . (7.77)for the volume fator (7.75) in D = 2. Wide gaps of length sB are exponentially suppressedby PB.7.6.2 The Con�guration SpaeLet us now address the on�guration spae plotted in Fig. 7.17. If the opening angle θ of theA-neighbors exeeded θT(sA),
cos

θT(sA)

2
=

√
sA(2d+ sA)

d+ sA , (7.78)the B-partile ould slip through and turn into an A-neighbor, whih is de�ned by having afree path towards the referene partile. This transition orresponds to the nek onnetingdi�erent jamming island in the on�guration spae. Only along the line (PQ in Fig. 7.17)de�ned by θ = θC(sA),
cos

θC(sA)

2
=

sA + d

2d
, (7.79)the B-neighbor an touh the referene partile, so that sB = 0. The Eqs. (7.78) and (7.79)de�ne the upper boundary of the domain of integration for all sA,

θmax(sA) =

{
θC(sA) sA/d ≤

√
2 − 1

θT(sA) sA/d ≥
√

2 − 1
, (7.80)
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Figure 7.16: The angular on�guration spae of four neighbors lose to the referene partile.These we denote as A-neighbors. The faeted inner subset shown in gray is the subspaeonditioned to the property that two further partiles, the B-neighbors, are hinder by theA-partiles in approahing the referene partile. The projetion of this subset onto an θ-axis (for the angle between a bloking A-pair, θ1 or θ3 in this example) gives rise to a linearon�guration spae fator C(θ). Obviously a B-neighbor ats like a wedge driven betweentwo A-neighbors, and therefore inreases θ. This is taken into aount by the weighting fator
PB(sB) whih favors shorter separations sB between the partile B and the referene partile,depending on the density φ.



148 Chapter 7. The Equation of State of Wet Granular Matterwhih is ontinuously di�erentiable but not smooth at the point Q.The lower boundary is
cos

θS(sA, sB)

2
=

(sA + d)2 + s2B + 2dsB
2(sA + d)(sB + d)

, (7.81)where B hits A.The simple lower bound on θ,
cos

θmin(sA)

2
=

√

1 −
(

d/2

d+ sA)2

, (7.82)whih ensures that the A-neighbors do not overlap is without appliatory relevane, as itimplies that the B-neighbor is pushed out to sB/d > √
3− 1 ≈ 0.73. This is suppressed in thedense regime φ > φo by the fator F of Eq. (7.75).The on�guration spae ends to its right in a usp where the lower and upper boundinterset at

suspA (sB) =
√
s2B + 2dsB + 2d2 − d . (7.83)This usp onverges to the point Q for sB → 0.With the integration bounds (7.80), (7.81), (7.83), and the weighting fators (7.75), (7.76)we have

gB(sB) = N PB(sB)

[∫ suspA (sB)

0
dsA PA(sA) γvol(sA)

∫ θmax(sA)

θS(sA,sB)
dθ C(θ)

]2 (7.84)
= N PB(sB)

[
sB
d
I1(n) +

(sB
d

)2
I2(n) + O

((sB
d

)3
)]2

. (7.85)We emphasize that the on�guration spae (sA, θ) desribes the relative position of one A-neighbor skethed symmetrially in Fig. 7.17. Sine there are two independent A-neighborsinvolved, their on�guration is the diret produt (sA1, θ1) × (sA2, θ2). On this aount theon�guration integral is squared in (7.84), with the important onsequene that the leadingorder in gB(sB) is quadratial. The normalization onstant N is determined by the knowledgethat there are two B-neighbors. While the exponential prefator dominates the long rangedeay, we expand the near-ontat inrease in sB/d. Substituting the dimensionless area zA =(
(1 + sA/d)2 − 1

)
/cA for integration in favor of the partile separation sA, the expressions Ii,

i = 1, 2 are of the form
Ii = cA ∫ 1/cA

0
e−zAfi(cAzA) dzA (7.86)with

f1(x) =
3(x− 1)α(x)

2π2
√

(3 − x)(x+ 1)
(7.87)

f2(x)

f1(x)
=

2

x− 3
− 2

x− 1
+

6
√
x+ 1

α(x)
√

3 − x
− 6

√
3 − x

α(x)
√
x+ 1

− 1 (7.88)
α(x) = π − 12 arcsin

√
x+ 1

2



7.6. Appendix A: The Bakground Contribution gB 149

A

A

A

B

AA

B

A

B

A

A

sB

A

B

A
sA

q

s dA /

0.2 0.4 0.6 0.8 10

Q

q

p/3

p/2

2 /3p
P

s dB /

0.05

0.30

0.60

qC A( )s

qT A( )s

qS B( , )ssA

qmin A( )s

R

Figure 7.17: A setion of the on�guration spae of neighboring partiles. Within the graydomain the partile denoted by B is bloked: the two neighbors labeled A sterially hinderthe partile B from approahing the referene partile (shaded). Only at the boundary θC(sA)(urve PQ ranging from [sA, θ]P = [0, 2π/3] to [sA, θ]Q = [(
√

2 − 1)d, π/2]) the B-neighboran touh the referene partile. The probability gB(sB) to �nd a B-neighbor at a separation
sB follows from integrating over the gray domain, whih grows with inreasing sB. The lowerbound, θS(sA, sB), is plotted for the values sB = 0.05, 0.30, and 0.60. Large areas spanned bythis neighborhood are exponentially rare the higher the mean density φ, so that the probabilitydistribution in this plot onentrates in the viinity of the upper left orner P as we omeloser to the jamming limit. At the line QR the B-neighbor slips through and turns intoan A-neighbor, so that QR is the transit to another jamming island in on�guration spae.The orresponding transition rate is proportional to the probability density along QR andtherefore vanishes in the jamming limit.
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Figure 7.18: The sA-θ-plot of Fig. 7.17 with the full sB dependene shown on the additionalvertial axis.The integrals Ii an be treated by expanding the funtions fi =
∑

ν f
(ν)
i xν :

Ii =
∞∑

ν=0

f
(ν)
i cν+1A ∫ 1/cA

0
e−z zν dz

︸ ︷︷ ︸
=ν!−Γ(ν+1,1/cA)

. (7.89)All inomplete Gamma funtions an be eliminated by virtue of the reurrene relation (f.(6.5.2) and (6.5.22) in [1℄)
Γ(ν + 1, 1/cA) = νΓ(ν, 1/cA) + (−1)νc−νA e−1/cA . (7.90)As is apparent from the reurrene relation, the result will be of the form

Ii = Ri(cA) + e−1/cA Si(cA) . (7.91)The regular part, for instane in �rst order of sB/d,
R1(cA) = cA √

3

2π
+ c2A 9 − 2

√
3π

3π2
+ c3A−27 + 2

√
3π

3π2
+ . . . , (7.92)is a series expansion about the point of jamming, cA = 0. It is asymptotially diverging dueto the fatorial whih appears in the reurrene relation. Fortunately this does not restrainus from an exellent approximation, sine for the relevant density, φ > φo, the quality of theexpansion inreases for more than 10 terms in the expansion (f. panel (a) of the Fig. 7.19).The seond part in (7.91), for whih the �rst order of sB/d is given by

S1(cA) = cA √
3

2π
+ c2A 9 − 2

√
3π

3π2
+ c3A−27 + 2

√
3π

3π2
+ . . . , (7.93)and has a positive radius of onvergene (f. panel (b) in Fig. 7.19). This part is over-exponentially suppressed by the prefator exp−1/cA lose to jamming.In the appliation to wet granular matter the sub-leading order (sB/d)3 < 4 · 10−4 isnegligible for a realisti value of s ≤ srit ≈ 0.07d, whereby we have the onise result

gB(sB) = N e−zBz2B + O
(
z3B) (7.94)
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(A) (B)Figure 7.19: The radii of onvergene rk for expansions around the jamming point. Theontribution bloked B-neighbors give to the pair orrelation an be expanded in a seriesaround the jamming point, cA = 0. The radius of onvergene is given by the Cauhy-Hadamard formula rj = 1/ j

√
Kj for the term Kj(sB/d)j . (A) The asymptoti divergene ofthe R-series in (7.92) poses no pratial problem sine few terms (less than 10) give su�ientauray. (B) The S-series in (7.92) onverges.with the abbreviation zB =
(
(1 + sB/d)2 − 1

)
/cB and 1/cB ≈ φgat . The normalization

8φ cB
2

∫
gB dzB = 2 aording the two B-neighbors determines N in (7.94). Hene the result(7.14).7.7 Appendix B: Expliit Expressions for the Pair Correlationin Two Dimensions without free ParametersIn our general derivation of the theory of wet granular matter we distinguished between thejamming density φJ and the (highest possible) rystalline paking φmax = π/(2

√
3) ahievedin monodisperse domains. The exat value of the jamming density φJ depends on manydetails suh as the distribution of polydispersity and the jamming protool for the inreaseof density. When we want to give expliit results without free parameters on the bridgeoordination K(T, φ, srit) and the equation of state P = P (T, φ, srit) we do this for weakpolydispersity, where the di�erene between φJ and φmax is negligible and the limiting aseof 'dry' diss has been studied extensively.7.7.1 High DensityFor monodisperse 'dry' diss, φJ = φmax, there are higher order orretions to the free vol-ume result (7.9) available in the literature whih are inorporated in the �nal results on thebridge oordination and the equation of state for wet granular matter. These orretions areexpansions with respet to x = φJ − φ �tted to simulations:

gdense =

(
1

x
+ a0 + a2x

2 + . . .

)
φJ
φ

=

(
1

x
+ a0 + a2x

2 + . . .

) (
1 +

x

φJ + . . .

)
,(7.95)Equation (7.95) holds in the dense regime, φo < φ < φmax, above φo = 0.71. The numerialoe�ients are a0 = −1.07 and a2 = 5.89 [148℄, on�rmed by our own simulations. Similarempirial expressions are also available for polydisperse diss in the glass state (Eq. (6) in[58℄).



152 Chapter 7. The Equation of State of Wet Granular MatterSaled Partile Theory Heuristi FitsD gat gatwall gat gatwall1 1
1−φ

1
1−φ

1
1−φ

1
1−φ2 1−φ/2

(1−φ)2
1

(1−φ)2
1−7φ/16

(1−φ)2
− φ3/128

(1−φ)4
1+φ2/8

(1−φ)2
− φ4/64

(1−φ)43 1−φ/2+φ2/4

(1−φ)3
1+φ+φ2

(1−φ)3
1−φ/2

(1−φ)3
1+φ+φ2−φ3

(1−φ)3Table 7.1: The partile-partile orrelation gat and the partile-wall orrelation gatwall at ontatfor di�erent spatial dimensions valid up to moderate densities. The enter olumn shows theresults of the Saled Partile Theory and the right olumn ontains the exat expressionfor one dimension, and heuristi expressions [13℄ of Henderson [110℄ for two dimensions andCarnahan-Starling [31℄ in three dimensions.7.7.2 Low and Moderate DensityFor the analyti treatment an expliit expression for the ontat orrelation gat in Eq. (7.32)is needed (as the ounterpart to the dense expression (7.95)). Aside from the trivial one-dimensional ase 6, exat expressions for the ontat orrelation of hard spheres are unknownfor the dilute regime. Yet there are well-established approximations in the literature result-ing from Saled Partile theory [178, 109℄, from the virial expansions [177℄, as solutions ofthe Perus-Yevik losure [106℄, as well as heuristi expressions [194℄ suh as the Carnahan-Starling formula with orretions to better �t simulation results (f. Tab. 7.1).As in the dense regime 7.7.1 we shall use the Henderson-Luding expression [148, 110℄ (f.also the earlier work [230℄)
gdilute =

1 − 7φ/16

(1 − φ)2
− φ3/128

(1 − φ)4
(7.96)for the unaged regime, 0 < φ < φo, and the merging funtion m(φ) = 1/(1 + exp((φo −

φ)/m0)) with a ross-over width m0 = 0.0111 to smoothly onnet the dense (7.95) anddilute (7.96) expressions [148℄:
g(s) = m(φ) gdilute(s) + (1 −m(φ)) gdense(s) (7.97)with gdilute(0) = gdilute and gdense(0) = gdense as given by the Eqs. (7.95) and (7.96). Thenear-ontat deay has been established in the Eqs. (7.10) and (7.14) for φ > φo, and inEq. (7.32) for 0 < φ < φo:

gdilute(s) = gat γudilute and (7.98)
gdense(s) = gat γudense = gat γudilute [1 +

(
φgat s

d

)2
] (7.99)up to leading order in srit with

γu(s)dilute = exp

(
−φ gat [(

1 +
s

d

)2
− 1

])
. (7.100)6The on�guration spae of the one-dimensional gas is L−Nd, so that the equation of state is P (L−Nd) =

NT . Comparison with the general expression P = gatwallnT yields gatwall = (1− φ)−1.
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1

2

3

4

1 2 3 40Figure 7.20: A typial graphial solution of the self-onsistent equation (7.102). Here thedensity is hosen to be φ = 0.6 and the granular temperature is T = 0.2Eb.With the ontat expressions (7.95, 7.96), as well as the short-range deay formulas (7.10,7.32), we have su�ient information on the dry system over the entire density range. We maytherefore proeed by introduing the hystereti apillary bridges.7.8 Appendix C: Self-Consisteny of Bridge Coordination KAll results presented so far on the oordination K(φ, T ) and pressure P (φ, T ) allowed expliitanalyti results. Here we want to demonstrate how to treat more ompliated soure terms ofthe hystereti system (7.45) numerially. Suh an extension of the theory ould be motivatedas follows. The urrent of free (unbound) approahing partiles ould be a funtion of the freedensity nfree instead of the mean density, sine some of the unonneted neighbors traversethe voids between lusters, so that Eq. (7.41) is hanged to
φ gu©c←r + φ gu←©r /γu(srit) = (1 −K/Ksites) φfree gat©c (φfree) . (7.101)Obviously this approah is a lower estimate for the urrent of freely approahing partiles,whih is why (7.101) is onsidered as a methodial example rather than a physial ompetitorto the theory presented above.With the altered Eq. (7.101) the hystereti system (7.45) an still be solved analytially to�nd the orrelation oe�ients g = {gu©c←r, gb©c←r, gb©c→r, gu→©r , gb→©r , gu←©r }. Unlike before,due to the oupling (7.101) and the Eqs. (7.60)-(7.62), the orrelations g are a highly nonlinearfuntion of K. Therefore Eq. (7.46) beomes a nonlinear self-onsistent equation:

K(g(K, φ, T ), φ, T ) = K . (7.102)The physial value K(φ, T ) of the oordination is the solution K of (7.102). The numerialsolution of (7.102) is found to be very robust, as Fig. 7.20 indiates. Plugging the resultingself-onsistent K(φ, T ) bak into the equation for the pressure (7.74) of wet granular matter,we �nd that the ritial point is shifted from T = 0.273(5)Eb to T = 0.216(5)Eb . Thisredution of the ritial temperature is intuitively lear sine with less partiles arriving toform bonds, the wet granular matter 'evaporates' at lower granular temperatures.7.9 Appendix D: Contat Correlation Near JammingIn the jammed state of weakly polydisperse partiles, φ → φJ ≈ φmax, the A-neighbors formexat ontats, sA = 0, so that the gA(sA) ∝ δ(sA) has a delta peak at zero and the ontat
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s

s sin 3

d+sFigure 7.21: A sketh of the dry system around lose paking. The partiles are equallydistributed in the diretion of the approximate triangular lattie vetors. As we rotate theoordinate frame to be aligned with the wall, we see that the free on�guration spae perpartile is (d+ s) s sin π
3 .value gat is in�nite. When the density is redued by saling the partile position by a fator

α > 1, the partile separation sA and the density φ are related by
(φmax/φ)1/D = α = 1 + s/d . (7.103)Denoting the partile-wall orrelation by gatwall, the probability to �nd a partile with ontatto the wall an be read o� Fig. 7.21 to be

n gatwall =
1

(d+ s) s sin π
3

=
2√
3

1

(d+ s) s
(7.104)Inserting (7.103) we �nd the partile-wall ontat orrelation to be

gatwall =
1

1 −
√
φ/φmax

=
2

φmax/φ− 1
asympt. for φ→ φmax. (7.105)The pressure P of the hard sphere �uid follows by taking the trae of the pressure tensor,whih yields a kineti term (the ideal gas term) and seond ontribution from the hard-orerepulsion (whih is proportional to the partile-partile ontat orrelation gat . Cf. alsoEq. (7.74) for the speial ase without bridges, K = 0):

P

nT
= 1 + 2D−1φ gat . (7.106)In omplete analogy7, the pressure P an also be omputed from partile-wall ollisions:
P

nT
= gatwall . (7.107)After equating (7.106) and (7.107), from formula (7.105) follows the asymptoti expressionfor the partile-partile orrelation,

gat =
1

2
√
φ
(√
φmax −√

φ
)

=
1

φmax − φ
asympt. for φ→ φmax, (7.108)We remark that the Eqs. (7.106) and (7.107) are not restrited to high densities, φ > φo.7The probability to �nd a partile in ontat to the wall is n gatwall where gatwall is the partile-wall ontatorrelation analogeous to the partile-partile orrelation gat . In a hard sphere systems without ohesion,momentum is exhanged with the walls in ollisions where the normal omponent hanges by 2pn whih givesrise to the momentum �ow n gatwall 〈2pn vn θ(vn)〉 = n gatwall ˙

mv2n¸

= n gatwall T at the boundaries.
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Figure 7.22: An illustrative two-partile system. In (A) partile 1 moves freely in the box and partile 2moves on the dashed line. The resulting on�guration spae is skethed in (B). The system is haoti and verysimilar to the Sinai billiard. Chaotiity means that two lose initial on�gurations are separated exponentiallyin time, as illustrated by the blue trajetories in (B). The one-dimensional system (C) (with both partilesmoving on a line) is integrable. Veloity perturbations grow linear in time, spatial perturbations do not growat all as shown in (D).
Figure 7.23: The two-partile orrelation funtion aused by the exluded volume (green ylinder). Thepieewise linear orrelation funtion follows assuming ergodiity, so that the free volume is equally visitedby the system. A general property aused by the exluded volume of �nite size partiles is the peak in thetwo-partile orrelation funtion at ontat.7.10 Appendix E: On the Contat Correlation in Dilute HardDis SystemsWhy is there a peak at ontat?An instrutive system that exhibits exluded volume e�ets onsists of two hard diss moving in a box withone dis restrited to move on a horizontal line as shown in Fig. 7.22 (A). This system is tratable beause ithas three degrees of freedom. Its three dimensional on�guration spae is shown in Fig. 7.22 (B). This simpleexample allows to follow a general property of the two-partile orrelation funtion: at the partile-partileontat the orrelation jumps from zero to a peak value. To see this we projet the probability mass of thefull on�guration spae onto the one-partile spae (of partile 2) as done geometrially in Fig. 7.23.Saled Partile TheoryA lassial and luent way to derive the ontat value gpp(φ) = g(d+, φ) is provided by the Saled PartileTheory put forward by Reiss, Frish and Lebowitz [178℄. For a reent extension see [115℄. Here one onsidersthe probability p0(φ,λ) to �nd no partile enter within a randomly positioned sphere of radius λ. Formonodisperse partiles of radius d there an be at most one partile enter within a sphere of radius λ ≤ d/2,so that

p0(λ, φ) = 1− nwDλD for 0 ≤ λ ≤ d/2, (7.109)



156 Chapter 7. The Equation of State of Wet Granular Matterwhere wD is the volume of the unit sphere. Logarithmi derivatives of probabilities are in general onditionalprobabilities, and so is −d ln p0 the probability to �nd a partile enter within two shells of radii λ and λ+dλ,given that there is no partile enter in the inner shell. Sine this onditional probability is proportional tothe partile density n and the volume dV = wD dλD between the shells, one de�nes a funtion G(λ, φ) by therelation −∂ ln p0/∂λ = G(λ, φ) n ∂V/∂λ, so that G(λ, φ) is the ontat orrelation between a partile and ahollow avity with radius λ− d/2. The general onept of the Saled Partile Theory is to study the analytiproperties of G(λ, φ) as a funtion of λ. From (7.109) follows
G(λ, φ) =

1

p0(φ, λ)
=

1

1−
`

2λ
d

´D
φ
for 0 ≤ λ ≤ d/2 . (7.110)For a hard sphere system without attrative fores the ontat orrelation between a hollow sphere of diameter

d and a partile equals the orrelation between two partiles, so that the partile-partile ontat orrelationis
gpp(φ) = g(d+, φ) = G(d, φ) . (7.111)Furthermore, a �at wall is nothing but a sphere with in�nite radius, so that the partile-wall ontat orrelationis

gpw(φ) = G(∞, φ) . (7.112)Equating the loal pressure in the volume (whih is the trae of the stress tensor depending on the partile-partile orrelation gpp) and the pressure measure at the boundaries (where the partile-wall ontat orrelation
gpw enters the omputation) one �nds the relation [106℄

gpw(φ) = 1 + 2D−1 φ gpp(φ) . (7.113)Beause of the Eqs. (7.111) and (7.112), Eq. (7.113) relates G(d, φ) and G(∞, φ). This suggests to expand thefuntion G(λ, φ) in powers of 1/λ:
G(λ, φ) =

D−1
X

j=0

Gj(φ) λ−j . (7.114)The oe�ients Gj have a diret physial interpretation as pressure, surfae tension and line tension [115℄.Note that suh an ansatz is reasonable for the di�erentiable void-partile orrelation G, whereas the partile-partile orrelation g of hard spheres is disontinuous as we have seen before, beause voids are ompressiblebut the partiles are not. The value G(d/2, φ) and its �rst derivative G′(d/2, φ) given by (7.110), togetherwith the relation (7.113), determine the three oe�ients Gj for D = 3 spatial dimensions. The resultingexpressions for gpp and gpw are shown in Tab. 7.1 for various spatial dimensions. Aside from the trivial one-dimensional ase8, exat expressions for the ontat orrelation of hard diss and spheres are unknown. Thelast olumn presents the heuristi �ts to simulations suggested by Henderson [13, 110, 31℄.The In�uene of Polydispersity on the Contat CorrelationMost granular media are polydisperse9, and the hard sphere system is the basis for the equation of statefor wetted spheres. Let us brie�y disuss how one an obtain expliit results on the two-partile ontatorrelation in suh dry polydisperse media. From the trae of the stress tensor follows the loal pressure of ahard sphere systems,
P

nT
= 1 + 2D−1φ

*

`

d1+d2
2

´D

µD
gpp(d1, d2, φ)

+

, (7.115)where brakets denote averaging over the quenhed disorder of size polydispersity. The detailed ontatfuntion gpp(d1, d2, φ) is the orrelation for a pair of partiles with diameters d1 and d2. The information about8The on�guration spae of the one-dimensional gas is L −N 〈d〈, so that the equation of state is P (L−
N 〈d〉) = NT . Comparison with the general expression P = gpwnT yields gpw = (1− φ)−1.9Polydispersity in�uenes the ompativity of the undriven solid state and redues the liquid bridge o-ordination number. Therefore the �uidization transition under vertial sinusoidal driving sets in at a higheraeleration Γrit for less polydisperse media, as veri�ed by the author experimentally: a highly monodispersesystem of 500 µm spheres undergoes the solid-�uid transition at a peak aeleration Γrit ≈ 6.5 (at 200 Hzshaking frequeny, f. Chap. 8), while a system with 6% polydispersity �uidizes at Γrit ≈ 2 (f. Chap. 10).Both systems have been wetted with 1% water.



7.10. Appendix E: On the Contat Correlation in Dilute Hard Dis Systems 157the distribution of partile sizes in the medium is aptured in the moments µk =
˙

dk
¸. The moment µD =

˙

dD
¸in the denominator of (7.115) stems from the de�nition of φ as the oupied volume, φ = volovolsys =

N 〈volsph(d)〉volsys .The numerator (d1 + d2/2)
D results from the radial integration in the stress tensor.Santos, Yuste and de Haro [194℄ have suggested a method whih is mathematially similar to the SaledPartile Theory: The ontat orrelation gpp(d1, d2, φ) for a pair of partiles is expanded in powers of themean inverse diameter:

gpp(d1, d2, φ) =
D

X

n=0

Hn(φ) zn , with z =
2

d−1
1 + d−1

2

µD−1

µD
. (7.116)From the point of view of billards, gpp(d1, d2, φ) is the probability distribution on the boundary of the on�g-uration spae. This boundary is loally an geometrial objet with odimension 1 and D−1 dimensions of theboundary have a non-vanishing urvature. The ansatz (7.116) is just an expansion in the loal mean urvatureof the boundary of the on�guration spae. To generalize the result to arbitrary dimensions we ollet themoments in (7.115) and arrive at
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, (7.117)Analogous to the Saled Partile Theory, we equate the pressure in the volume and the pressure measured atthe system walls. The partile-wall orrelation for a partile of diameter d is gpw(d, φ) = gpp(d,∞, φ), so that
P

nT
= 〈gpw(d, φ)〉 =

D
X

k=0

2kHk
µk µk
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µD
. (7.118)Comparision of (7.117) and (7.118) yields equations for the oe�ients Hk. Furthermore, the monodisperselimit (with z = 1 in the ansatz (7.116)) is known,

gpp(d, d, φ) =

D
X

n=0

Hn(φ) = gpp(d, φ) , (7.119)and the limit of a bidisperse system with a point-partile omponent (so that z = 0 in the ansatz (7.116))determines the zero oe�ient to be
gpp(d, 0, φ) = H0(φ) =

1

1− φ
, (7.120)beause a point partile an visit every nihe of the unoupied system spae whih volume fration is 1− φ.The Eqs. (7.117)-(7.120) determine all oe�ients Hk. For D = 2 we �nd the oe�ients to be

H1 = (2− φ) gpp − 2− φ/2

1− φ
, H2 =

1− φ/2

1− φ
− (1− φ) gpp . (7.121)





Chapter 8The Critial Point of Wet GranularMatter� The Quantitative ExperimentalCon�rmationIn this hapter, the experimental observation of the ritial point in �uidized wet granularmatter is reported. The experimental data show quantitatively that the ritial density andtemperature are set by the length and energy of the apillary bridges. This on�rms thetheoretial preditions of the Chaps. 6 and 7. The experiment is sensitive to the global stateof the apillary network: 105 small steel spheres are wetted with an ioni liquid solution whileagitated vertially. The global eletrial ondutivity, Σ = 1/R, of the apillary networkis measured. R is shown to be a well-suited order parameter for the instantaneous liquidbridge topology and the nonequilibrium states of wet granular matter. The method is inpartiular advantageous beause transitions of the bulk struture are deteted, where optialmethods are limited to surfae e�et. Furthermore, this hapter reports preise measurementsof the hysteresis in the �uidization/solidi�ation transition of wet granular matter. Theexperimentally observed sharp step in R(Γ) at the �uidization transition, ∆ΓSF/ΓSF ∼ 10−4,demonstrates for the �rst time learly that the solid to �uid transition is a disontinuousnonequilibrium transition. The apillary network is shown to signi�antly strengthen aftersolidi�ation, whih retards �uidization and explains the large lag of �uidization at ΓSF asompared to solidi�ation at ΓFS. It is demonstrated that this hysteresis an almost doublethe driving aeleration, ΓSF ≈ 1.9ΓFS. Moreover, the temporal �utuations 〈(R(t) −R
)2〉allow the diret observation of the granular temperature T : the �utuations are theoretiallyderived to be proportional to √

T . In the experiments, the granular temperature is shown tovanish quadratially in the driving veloity at the solidi�ation, and to jump disontinuouslyat the �uidization.Setion 8.1 presents the onept of assessing the nonequilibrium states by virtue of theeletrial ondutivity of the apillary network. We begin with the mildly driven statesin Se. 8.2, where the disontinuous �uidization, the solidi�ation and their hysteresis aredemonstrated. The loation of the ritial point in the density-temperature plane is deter-mined experimentally in Se. 8.3. Conlusions are given Se. 8.4. The granular heat equationis solved analytially for the experimental geometry in appendix 8.5. Important experimentalross-heks are reported in the appendix 8.6.159



160 Chapter 8. The Critial Point of Wet Granular Matter8.1 Condutivity as an Experimental Order Parameter of theCapillary NetworkThe apillary network plays a ruial role for the mehanial stability of wet granular matterat rest, as disussed in the Ses. 3.4.4 and 3.4.5. In the solid state, the granular motion isfrozen by the rigidity onstraints of the apillary network. The failure of the apillary networkgives rise to the �uidization transition [87, 114℄, whih is a nonequilibrium transition fromthe disordered solid state to the driven granular �uid. This proess is reminisent of soilliquefation whih an lead to land slides.A further nonequilibrium transition is the unlustering e�et observed in simulations anddesribed analytially in the free ooling of wet granular matter of Chap. 6 in one dimension.Closely related is the segregation transition derived theoretially for steady states in twodimensions by the equation of state in Chap. 7. Both transitions are mehanial instabilities,as desribed by the van-der-Waals-like loop for the wet granular isotherms. These transitionsare preditions of the theory developed in this thesis for nonequilibrium states. In order toverify them experimentally, it is desirable to have an instantaneous experimental measure forthe apillary network struture, whih allows to follow suh transitions in real-time.8.1.1 The Measurement MethodThis is realized by an eletrially ondutive wetting liquid of high surfae tension, whih wetssteel spheres. So we have the apillary bridges for the wet dynamis, and simultaneously,the eletrial ondutivity due to the apillary network. As an essential preondition, theauthor found that the ontat resistane between dry steel spheres (with the quarter of amillimeter in radius) is more than �ve orders of magnitude higher than the resistane withthe apillary bridges formed at the ontat points. This is due to the few metal atoms forminga ommon eletron band in the point-like ontat. In ontrast, the apillary bridge (aroundthe mehanial ontat point) eletrially ontats the spheres with a ross setion whih is ofthe order of the partile radius. Therefore eah apillary bridge ontributes as a bond of �niteresistane to the apillary network. For this reason, the global resistane R of this wet granularmatter is a diret measure for the global onnetivity of the mirosopi apillary network,and R serves as an order parameter of the dynamial apillary network. It is emphasized thatthis method is sensitive to the bulk struture, while optial methods are limited to surfaee�ets.Moreover, the eletrial signal aptures the instantaneous state of the network, whih isunder permanent formation and rupture of apillary bonds. This dynamis leads to measur-able temporal �utuations R(t). These �utuations about the mean resistane, R, are diretlyrelated to the binding and rupture frequeny of the apillary bonds. Sine these frequeniesare known funtions of the granular temperature T , we an measure relative hanges of thegranular temperature. With a time-resolved measurement of the resistane, R(t), we an fol-low the hanges in the bulk oordination of the apillary network and (up to a onstant fator)the granular temperature of wet granular matter in any aessible nonequilibrium state.8.1.2 The Experimental SystemThe granular material onsists of small hardened steel spheres1 with radius R = 250µm.The partiles are monodisperse, with size deviation ∆R/R ≈ 2 × 10−3. Suh partiles areommerially available for miro ball bearings and pen balls, so that their spherial shape is1The steel grade is AISI 420 C, whih has the high Rokwell hardness 60 HRC.
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Figure 8.1: A granulate of steel spheres is wetted by an ondutive liquid. The ondutivityis an order parameter of the apillary network, and allows to determine the state of wetgranular matter. (A) Sketh of the horizontal ylindrial ell, whih is set under sinusoidalvertial motion. (B) Top view of the experimental setup. It is onstruted to withstand thevis inertiae ating at aelerations up to 100 g. The granulate onsists of 1.12× 105 stainlesssteel spheres with radius r = 250µm inside the horizontal ylinder. The inner rod eletrodeE1 protrudes at the left end of the ylindrial ell. The ell is gastight, sealed by PTFE plugsat the left and right end. Both eletrodes, the inner and the outer ylindrial eletrode E2,are made of stainless steel with whih the partiles have a restitution oe�ient εpw = 0.85.The hole H of 1 mm diameter is used to injet the wetting solution with a syringe needle, andlosed during the experiment. The ell and an aeleration sensor A are mounted on the plateP of an eletromagnetially driven shaking system. M is an elasti membrane, whih allowsfor sinusoidal motion of the entire setup perpendiular to the image plane at frequenies from100 to 300 Hz, and aelerations up to 50 g. The ondutivity of the granulate is measuredontinuously (105 samples per seond) as a funtion of the driving frequeny and aeleration.



162 Chapter 8. The Critial Point of Wet Granular Matterof high preisions. The partiles used have deviations from spheriity, ∆R =
∑

l,m al,mY
m
l ,with amplitudes al ≈ 0.12 µm at long sales (l = 1-15), whih redue to the level of 0.05 µmat short sales (l = 50-500). The granulate is shaken vertially in a horizontal ylindermade of unhardened stainless steel, whih serves as the outer eletrode (f. Fig. 8.1). Theinner eletrode is a rod of the same material along the symmetry axis of the ylinder, whihontributes as well as the outer ylinder in the mehanial exitation of the granular medium.The jammed state of the system was found to have a paking fration φJ = 0.62, whih isslightly below the maximal random jammed density in a box (φ = 0.63) or under periodiboundary onditions (φ = 0.64) [60℄, beause of the more ompliated boundary geometry2.The density in the ell is hosen aording to the predited ritial densities (in the Chaps. 6and 7). There, the ritial density is predited to be a funtion of the rupture length, srit(f. Fig. 7.15). The wet granular dynamis is measured under isohori onditions at overalldensities φ = 0.923φJ and φ = 0.939φJ expressed in units of the jamming density φJ. Thedimensionless system size is designed to be rather big, with N = 1.12 × 105 spheres and aninner length L = 280R of the ylindrial avity holding the granulate. The inner diameter is

D = 64R, and the radial separation of the eletrodes is 24R. The prolonged geometry yieldsgood statistis for the eletrial resistane measurement ombined with a very homogeneousmehanial driving of the granulate. It has been furthermore srutinized that all e�etsreported in this hapter are reproduible in smaller ells of the same geometry, saled downto half the volume, as well as to the tenth of the full volume, while the partile radius R waskept. Hene �nite size or spurious boundary e�ets are exluded.A very dry initial state is prepared by heating the leaned steel spheres to 250◦C for severalhours. At approximately 50◦C the partiles are �lled in the ell. The ell is losed by gastightplugs of polytetra�uoroethylene (PTFE) at its ends. A de�ned amount of the wetting andondutive liquid is injeted through a small hole (item H in Fig. 8.1B) with a syringe needle,and sealed during the measurement.8.2 The Solid/Fluid TransitionThe granulate is initially brought in the �uid state at a driving frequeny of fshaker = 100 Hz.The resistane and the aeleration, measured by means of a piezo sensor mounted on thesystem, are reorded 105 times a seond. From this data the aeleration Γ(t) = a(t)/g andthe resistane R(t) is dedue for eah single driving yle. As throughout this thesis, thedimensionless Γ (without expliit time-dependene) denotes the peak aeleration. As it isshown in Fig. 8.2A by the dashed line, the aeleration of the driving is then ontinuouslyredued at �xed frequeny fshaker. At the ritial aeleration ΓFS = 4.72, the resistanesharply falls o� to the plateau value Rsolid of the solid state.The amplitude of the driving is then inreased again, linearly in time over more than 10minutes. Within that period the solid system is annealed, whih strengthens the apillarynetwork by further inreasing the number of apillary bonds per partile. This strongly in-reases the ritial aeleration neessary to �uidize the wet granular matter. At ΓFS = 8.74the solid state abruptly breaks up within a quarter of a seond. The red squares superimposedin Fig. 8.2 within this short period of time, show the data points underlying the measuredresistane urve, separated 10 ms in time. It is seen that the breakup �rst aelerates start-ing with the points of onstant frequeny being lose-by, reahes a maximum, and �nallydeelerates again. Expressed in the dimensionless aeleration Γ of the external driving, the2This shows also that the granulate does not rystallize.



8.2. The Solid/Fluid Transition 163

(A) 0

G

5 10 15 20 25

10 s-2

time / min.

0

2

4

6

8

10

R
  
 R/

s
o
lid

1.0

1.5

2.0

2.5

3.0

Acceleration G

Resistance R

t t- sf / s

0 4 8
0.9

12 16

1.0

1.1

R
  
 R/

fl
u

id

t

(B)

R
  
 R/

s
o
lid

Acceleration G

Gfs GsfFigure 8.2: The �uid/solid and solid/�uid transition in wet granular matter. The aeleration(dashed line) is redued ontinuously (early times in (A)), so that the �uidized wet granularmatter enters the solid state with a sharp fall-o� in the resistane at ΓFS = 4.72, as indiatedin panel (B) where the data is plotted as a funtion of the dimensionless driving fore Γ. Atthis point the granular motion, in the sense of partiles interhanging their relative loations,omes to rest. Beause of the inreased relaxation time, the granular matter is not in astationary state at ΓFS, and R rosses over to Rsolid. The slower the protool for the rampingof Γ, the steeper is the slope at ΓFS, so that in the steady state limit, the solidi�ationpoint has vertial slope for in�nitesimally slow hange of Γ. (As is shown in Se. 8.2.1, thesolidi�ation point is determined best by the diret measurement of the granular temperature
T , whih allows a �nite protool.) The aeleration is then slowly ramped up again (late timesin (A)) over more than 10 minutes. The more time the wet granular matter is given underthis annealing, the higher is the ritial aeleration, ΓSF, neessary to break the apillarynetwork in the abrupt �uidization transition. The strengthening of the apillary network inthe granular annealing gives rise to the strong hysteresis, whih is observed for this transitionin (B). For the slow ramping shown here, ΓSF = 8.74 is inreased by a fator of 1.85 omparedto the reversed transition at ΓFS, whih is independent of the granular history.



164 Chapter 8. The Critial Point of Wet Granular Mattersharpness of the �uidization edge is
∆ΓSF
ΓSF = 3 × 10−4 . (8.1)This gives unpreedented experimental evidene that the solid/�uid transition in wet granularmatter is a prominent example for a disontinuous transition far from equilibrium. We remarkthat the sharpness of this transition has beome possible beause the transition has beenobserved in the volume, and not on the surfae where few partiles, partiipating in surfaemelting e�ets, are subjet to strong �utuations. The �uidization transition is a olletivephenomenon far from equilibrium whih involves all 105 partiles. If we assume that thistransition is aompanied by a propagating front, the veloity of the latter an be estimatedfrom the length of the ylinder, whih yields

vprop ≈ 30 m/s ≈ 12fshakerR = 6fshakerd . (8.2)Sine the densely paked state has a oordination number lose to 6 [60, 114℄, this is what onewould expet for a partile that undergoes one ring-ollision with its neighbors per drivingyle. (In a ollision the momentum is exhanged over the enter-enter distane 2R = d.)The hysteresis in the solid/�uid transition an be studied by varying the speed of thedriving protool. For the slow ramping (over minutes as shown in Fig. 8.2), ΓSF is inreasedby a fator of 1.85 ompared to the reversed ΓFS. The latter is found to be independentof the granular history. As we speed up the ramping by a fator of 100, the �uidizationpoint ΓSF redues from 8.74 to 5.2. Without time to `anneal' voids in the granular solid,the transition beomes asymptotially reversible, suh that the �uidization onverges to thepoint of solidi�ation, ΓSF → ΓFS = 4.72. The strengthening of the apillary network duringthe period of `granular annealing' is the reason for the strong hysteresis in the solid/�uidtransition.Immediately after the �uidization, the resistane shows a sharp overshooting. The nasent�uidized granulate has a higher resistane, whih relaxes to the resistane R�uid as is shownin the inset of Fig. 8.2A. As we ompare the full width at half maximum of this overshooting,we �nd that this relaxation time is τ = 5.2 seonds, independent of the ramp speed (τ asindiated for the slow run in Fig. 8.2A and the 100 times faster run in Fig. 8.9). Therefore
τ is the intrinsi relaxation time of the wet granular system. The pronouned �utuationsaround the value R�uid re�et the rupture frequeny of apillary bonds in the �uid state. Thesudden inrease in resistane by almost a fator of three at the �uidization edge is due tothe redued oordination number in the �uid state. The mean oordination number in the�uidized state an be estimated from the known value KS ≈ 6 in the solid state, and theinrease of resistane3 by the fator R�uid/Rsolid = 2.65, to be KF ≈ 2.3. In this ontext weremind that the �uidized granular matter is on�ned to the high density φ = 0.923φJ.8.2.1 The Granular TemperatureIn this setion it is shown that the granular temperature an be diretly measured up to aonstant fator. The basi idea is that the frequeny, at whih apillary bonds are formedand broken, gives rise to de�ned and measurable �utuations in the resistane of wet granularmatter. Quantitatively, we have the relation (f. the Eqs. (7.43) and (7.44))

frupt/bind = Grupt/bind(φ)
√
T (8.3)3The time sale for the formation of a liquid bridge (as disussed in detail in Chap. 3) is muh shorterthan the time sale for transport of liquid on the surfae of the sphere [87℄. The redution of the oordinationnumber is therefore not aompanied by an inrease of the bridge volume. If we assume that the liquid bridgeshave equal volume, we have the linear relation R�uid/Rsolid = Σsolid/Σ�uid = KS/KF.



8.2. The Solid/Fluid Transition 165

(A)
390

S

F

F

S

R
/

W

G
=

/
a
  

 g

time / s

time / s

time / s

(B)

2.0

1.0

1.5

á
ñ

(
/ 
m

V
)

D
U

2

6

4

2

0

1

3

5

3 4 5 6

Acceleration G

4.70 4.75 4.80

0.8

0.4

0

1.2

1.6

1.4

1.0

1.2

á
ñ

(
/ 

m
V

)
D

U
2

Figure 8.3: (A) Flutuations in the resistane. The temporal �utuations originate frombinding and rupture events of the apillary network. The binding and rupturing frequeny isproportional to the square root of the granular temperature T . This is why these �utuationsprovide a diret measure for T . The �utuations are very pronouned in the �uid state Fand vanish in the solid state S. The inset S shows the absene of �utuations on the samesale as the inset for the �uid F. (B) Measurement of the �utuations (blak urve) at thesolidi�ation point ΓFS. The resistane R (blue urve) rosses over to Rsolid beause of the�nite ramping speed. In ontrast, the �utuations measure the partile motion and allow todetermine the point of solidi�ation even at a �nite ramping speed. The granular temperatureis given, up to a onstant fator, by the voltage �utuations 〈∆U2
〉
∝

√
T at the ell. The�utuations 〈∆U2

〉
= M−1

∑M
j=1 ∆U2

j shown here result from M = 300 driving yles at
100 Hz. The inset provides a lose-up at �ner voltage sale. It shows that the �utuations〈
∆U2

〉 go linearly to zero at in the viinity of the solidi�ation point. This shows that thegranular temperature is quadratially related to the driving veloity, v ∝ fshakerA, of theboundaries (f. Eq. (8.12)).
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Ṙ = −(R−R)/τ + ṘS (8.4)around the mean value R with the relaxation time τ as introdued before in Se. 8.2. Thestohasti term RS in the Langevin Eq. (8.4) is aused by the rearrangements of the dynamiapillary network. Here the granular temperature enters: if we assume that the breaking andformation of a single apillary bond perturbs the global resistane by a small onstant ±Rb,we have RS = R+S − R−S with the two Poisson proesses R+/−S , whih aount respetivelyfor the rupture events (by inreasing the resistane) and the binding events (by reduing theresistane):
〈
Ṙ

+/−S 〉
= Rb frupt/bind , (8.5)with the (temporal) Poisson distributionsProb(∆R

+/−S = kRb) = e−frupt/bind ∆t (frupt/bind ∆t)k/k! , (8.6)where ∆t = t2 − t1 and ∆R
+/−S = R

+/−S (t2) − R
+/−S (t1). In the stationary state (i.e. wehange the external driving slowly enough, and do not perform a free ooling experiment) wehave f = frupt = fbind. The �utuations in RS(t) have a distribution

P (f ∆t,∆R/Rb = k) = Prob(R(t2) −R(t1) = kRb) . (8.7)



8.2. The Solid/Fluid Transition 167To arrive at this distribution, we sum over the probability to have k− new bonds and k+broken bonds (whih is given by Eq. (8.6)), for a given net hange k with k = k+ − k−. Thissum an be written as a hypergeometri series pFq:
P (f ∆t, k) =

e−2f ∆t

|k|! (f ∆t)|k| 0F1

(
|k| + 1; (f ∆t)2

)
. (8.8)The distribution (8.8) is shown in Fig. 8.4. The funtion is saled to P̃ (k) =

√
f ∆t) P (k

√
f ∆t)in order to ompare di�erent time sales ∆t. While the �utuations on short time sales (ofthe order of the event frequeny f) obey the more ompliated distribution (8.8), the long-timebehavior has a Gaussian noise amplitude with zero mean,

〈∆RS〉 = (frupt − fbind)∆t = 0 , (8.9)and variane
〈
∆R2S〉 = R2b (frupt + fbind)∆t ∝ √

T ∆t . (8.10)This onsideration shows that it is not neessary to resolve individual rupture events, whihour in the experimental system up to gigahertz rates for fast driving. The �utuations ofthe resistane, 〈∆R2S〉, are proportional to the square root of the granular temperature asdesribed by Eq. (8.10). (This is not akin to the veloity distribution where the variane islinear in temperature.)The granular ell is onneted to the power soure with a large series resistane, so thatwe an (equivalently to Eq. (8.10)) measure the �utuations of the ell voltage:
〈
∆U2

〉
∝

√
T ∆t . (8.11)The solid state is haraterized by iso- or hyperstati [60℄ onstraints imposed by theapillary bonds, whih freeze the relative motion of the granular partiles (and give rise to theplasti material property as disussed in Se. 3.4). We therefore expet the wet granular solidto have zero �utuations, also at positive driving. This is atually seen in the experiment: theblak urve in Fig. 8.3B are the measured �utuations, whih vanish at a preisely de�neddriving aeleration Γ. This allows to learly determine the solidi�ation of wet granularmatter. In ontrast, the resistane R(Γ) (blue urve) rosses over, whih does not learlydetermine the transition for a �nite ramping speed. This is so beause the wet granular �uidis not in its steady state, as the rearrangements slow down lose to the solidi�ation, whilethe ramping speed is kept onstant. Therefore the value of the resistane R is also not thesteady state value, but rosses over to Rsolid.Furthermore, we see in Fig. 8.6 (red urve) that the �utuations go linearly to zero at

ΓFS, so that aording to Eq. (8.11), Γ − ΓFS ∝
√
T . The experimental protool for thedriving keeps the frequeny fshaker �xed and hanges the driving amplitude A, so that thedriving aeleration Γ ∝ Af2shaker is proportional to the veloity of the driving boundaries,

vD = Afshaker. Hene the experimental �nding: the granular temperature vanishes at thesolidi�ation aording to
(v − vFS)2 ∝ T . (8.12)A quadrati relation is obviously expeted based on dimensional analysis.
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Figure 8.6: A look inside the apillary network. The high quality of the data allows todeeply zoom inside the solid/�uid hysteresis. At the �uidization transition the resistane(blak urve) has a rapid ross over struture, and the granular temperature (observed as the�utuations shown in the red urve) goes linearly to zero. The granular temperature T remainszero throughout the solid state. The integration time for the �utuations in resistane, whihare proportional to √
T , is 10 s (M = 1000 driving yles). At the solid/�uid transition, theapillary network breaks up, whih auses the abrupt jump in the resistane. The granulartemperature is found to be also disontinuous at this transition.8.2.2 Capillary Strengthening and the Hystereti FluidizationThe solid state exhibits also a ertain dynamis, whih an be resolved by virtue of theresistane measurements. As a general �nding, the resistane redues in the solid state. Thisstrongly indiates that the apillary bridges grow on a longer time sale, whih is of the orderof one minute. Further, there are two distint regimes. When the ramping is fast, i.e. oneminute or less, there is a very reproduible sudden drop in the resistane, prior to the breakupof the network at the �uidization. Typial examples of this rearrangement are shown Fig. 8.5.The main panel shows a sequene of three ramps. The sharp dip in the resistane is learlyvisible. The inset with the �ner time sale suggests that there are two di�erent mehanismfor the redution in R.The quality of the data shown in Fig. 8.2 allows to zoom in by two orders of magnitude,whih reveals the hange of the resistane R(t) within the solid state in Fig. 8.6. This is theregime when the ramping speed is slow, with one driving yle lasting more than ten minutes.Here we �nd that the sudden drop in the resistane does not our. Let us have a look atthe full yle beginning with the �uid state. The branh of R(Γ) in Fig. 8.6, along whih thedriving amplitude is redued (where the arrow points downwards and to the left), has a pole-like funtional form on this sale with the rapid fall-o� loated preisely at the solidi�ationpoint ΓFS, where the granular temperature T (Γ) (red line) simultaneously vanishes. As theexternal driving inreases again in the solid state denoted by S, the apillary bridges arehardly exposed to strething fores until the point Γdry ≈ 1.4, at whih the dry granulate



170 Chapter 8. The Critial Point of Wet Granular Matterwould �uidize. Beyond that point, �uidization is prevented by the apillary attration. Theslight inrease in resistane orresponds to few out of a thousand apillary bonds, whihbreak beyond this point. The degrees of freedom released by these broken apillary bondsause loal rearrangements of bonds in the apillary network, still at unmeasurable granulartemperature. With these slight rearrangements within the solid state denoted by S', the wetgranular system evolves within a tiny subspae of the on�guration spae towards more andmore stable on�gurations, beause the weakest links within the granular sample are the �rstto break and being replaed. It is reasonable to assume that the speed of this evolution,whih strengthens the apillary network, is approximately linear in the driving amplitude,
Ṙ ∝ −Γ. This explains why we observe the paraboli redution of resistane, ∆R(Γ) ∝ −Γ2,until �uidization suddenly sets in at ΓSF. This period of the apillary network evolution(labeled C) an be seen as a ompetition between the rate of strengthening and the rate atwhih the driving is inreased. For this reason it is lear that a slower inrease of the drivingprolongs the ompati�ation period, and auses the pronouned hysteresis of the solid/�uidtransition.The red urve in Fig. 8.6 shows the �utuations also at the �uidization transition at
ΓSF. At this transition point we see learly that the �utuations rise (as the resistane Rshown in blak) disontinuously. We an therefore onlude the investigation of the hysteretisolid/�uid transitions, by pointing out that in the diretion of solidi�ation the granulartemperature goes quadratially to zero (Eq. (8.12) with the driving. By ontrast, the granulartemperature is disontinuous for the reversed diretion at the �uidization transition.8.3 The Critial PointThe Chaps. 6 and 7 led independently to the theoretial predition of a ritial point in densewet granular matter. Above a ritial density a transition in the apillary network has beenobserved in simulations of freely ooling wet granular matter in agreement with an analytialmodel (Chap. 6). An expliit equation of state for the homogeneously driven steady state ofwet granular matter has been derived in Chap. 7, whih predits the existene of a ritialpoint by the onset of a van-der-Waals instability. Both theories predit the ritial density
φ to be set by the rupture length of the apillary bridge suh that the mean separation, s, isbelow the bond length srit: the one-dimensional free ooling shows s ≈ srit/3 for the ritialdensity. The equation of state predits s ≈ srit/4 for the ritial point (in two dimensions).The ritial temperature T is predited to be losely equal to Eb/4 in both ases, the freeooling and the steady state. Free ooling simulations below the ritial density (monotoni)and above the ritial density (with the unlustering peak) are shown in Fig. 8.7A. Thepanel B shows simulations whih take the in addition to the Minimal Capillary Model arestitution oe�ient into aount. The theoretial spinodal, derived from the equation ofstate in Chap. 7, is shown in Fig. 8.7C. This setion reports the experimental observation ofthe ritial point in wet granular matter.8.3.1 The Critial DensityThe ritial density has been theoretially predited to be set by the rupture length of theapillary bridge, srit, whih is the natural length sale of the apillary interation (f. Fig. 8.7).In order to detet the ritial point one an gradually inrease the density φ, while sanningthrough the granular temperature T , until the segregation transition is observed. With the
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Figure 8.8: Measurement of the ritial density. The granular temperature is varied in eahmeasurement (A) to (D). The density an be equivalently expressed as the mean partileseparation s. Below the ritial density, s is longer than a ertain fration of the apillarybond length denoted by srit. The system is isohori, suh that s is kept �xed. As weinrease the liquid ontent from (A) to (D) � and therewith the maximal bond length srit� we �nd that at srit/s ≈ 4, between the ases (A) and (B), a peak develops. This is theritial point. The density is su�iently high so that the range of the apillary interationan ause a density instability. Yet this is only possible if the apillary bridge energy is notexeeded by the granular temperature T . At strong driving (around the time stamp t = 5 s),the granular partiles move randomly. The partiles remain instantaneously onneted bythe elongated bridges. This `passive' apillary network auses the observed redution of theresistane, visible as the plateau in the enter of eah measurement. As the driving amplitudeis redued, the granular temperature T is also redued. When T omes lose to the apillarybridge energy Eb, granular droplets preipitate out of the dense granular gas, as has beenpredited theoretially in Chap. 6. Between the dense droplets voids remain, whih inreasethe resistane and ause the observed peak in R(Γ).
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Figure 8.9: Measurement of the ritial density at higher frequeny. (A) In the perfetlydry system, there is no measurable resistane, the voltage drop at the ell equals the sourewith subperent preisions and with a series resistane of 1 MΩ. Hene R ≫ 100 MΩ. (B)After 40 µl of wetting and ondutive solution has been added and mixed, the solid/�uidtransition beomes learly visible. This orresponds to a liquid fration W = 0.33% withrespet to the jamming volume of the sample. Beyond the �uidization, the resistane inreasesas the onnetivity of the apillary network dereases towards the random state at highgranular temperature. This shows that we are still below the ritial point. (C) With 60 µlliquid (W = 0.49%), we observe the �rst appearane of the segregation peak P. At 80 µl(W = 0.66%), the peak P is fully developed as shown in the main panel (D). The higherbond energy and the higher driving frequeny (fshaker = 200 Hz as ompared to 100 Hz inFig. 8.8) lead to a lear separation of the �uidization edge K and the segregation peak P.The homogeneous state G is haraterized by a plateau of the resistane. The value of theplateau only depends on the geometri ration between mean partile separation and maximalapillary bridge length, srit/s, and is independent of the granular temperature T beause theapillary bonds have no in�uene on granular dynamis. This homogeneous state G is not agas in the sense of a dilute system, sine the density is onstant throughout the experiment.Rather, G is energetially a gas state with T ≫ T > Eb. With the homogeneous distributionof partiles, we have a highly linked dynamial network of apillary bonds whih failitatethe redution in resistane. At the ritial temperature, T = T ≈ Eb/4, dense granulardroplets preipitate out of the homogeneous state Chap. 6 due to a mehanial instability,similar as desribed by the equation of state for the stationary state in Chap. 7. The voidswhih open up in-between the droplets, give rise to the pronouned peak P of the resistanes.In the denser system shown before in Fig. 8.8 the segregation peak P losely oinided withthe �uidization edge K for two reasons. First, the apillary bridges are shorter at the ritialpoint and have therefore less bond energy. Seondly, the segregation peak is shifted to lower
Γ beause of the lower driving frequeny at 100 Hz.



174 Chapter 8. The Critial Point of Wet Granular Matterinrease of density φ, the mean partile separation
s = 2R

(
3

√
φJ
φ

− 1

) (8.13)is redued. The segregation transition is predited to set in when s is below srit. Equivalently,one an perform the experiment with the inrease of srit by inreasing the liquid volume, whilekeeping density φ �xed. Sine the liquid ontent an be ontrolled very preisely within anisohori ell, we have onduted the experiment in the latter way: the mean separation is�xed with s = 10.6 µm (for the denser system at φ = 0.939φJ) and s = 13.55 µm (for the lessdense system at φ = 0.939φJ), while srit is inreased.We observe the onset of the peak shortly before 60 µl wetting solution has been addedin the latter system (f. the panels (B) and (C) in Fig. 8.9 where the peak develops). Sinethe jammed volume of the sample is Vsys = 12.18 ml, the liquid fration is W = 0.49% withrespet to the solid state at φJ. For omplete wetting (zero ontat angle) this yields a rupturedistane (f. Eq. (8) in [114℄)
srit = 1.31 W 1/3R = 0.223 R = 55.7 µm . (8.14)Hene we an report the experimental �nding:

srit
s

= 4.1 ± 0.1 . (8.15)The unertainty in this result is due to the theoretial formula (8.14), applied to the presentdynamial onditions. In the denser system with φ = 0.939φJ, the mean partile separation is
s = 10.6 µm, and we �nd the peak shortly before the liquid ontent has reahed W = 0.29%,as shown in Fig. 8.8. This amount of wetting liquid orresponds to srit = 46.9 µm, so thathere we �nd from Fig. 8.8A and B in onordane: 3.1 < srit

s < 4.4.The last run shown in Fig. 8.8D is for higher liquid ontent, W = 1.64%. Here we see thatthe dynamial apillary network has almost reahed the ondutivity of the solid state. Thisshows that with the inrease of the maximal apillary bond length, srit, the oordinationnumber has been inreased in the dense isohori system, lose to the value K ≈ 6 even underdynamial onditions.The �nding that the mean partile separation has to be signi�antly smaller than therupture length of the apillary bond for the preipitation to set in (as also predited by thetheoretial omputations in the Chaps. 6 and 7) is a diret onsequene of the hysteretiformation and rupture of the apillary bridges. The high ramping speed (5 seonds) in theexperiment shown in Fig. 8.8 an be regarded as to mimi the free ooling state of Chap. 6.8.3.2 The Critial TemperatureIn this setion we ompare the ritial temperature T for the segregation transition (shortlybelow the ritial point) with the bond energy Eb of a apillary bridge.While the apillary fore weakly depends on the liquid ontent W , the apillary energy isproportional to Eb ∝
√
W [237℄. In the denser system, φ = 0.939φJ, the apillary bridge isshorter at the ritial point, as ompared to the system at φ = 0.923φJ. With this lower energy

Eb ≈ 2 nJ, the segregation peak almost oinided with the �uidization edge (f. Fig. 8.8). Inthe less dense system the apillary bridge is longer at the ritial point, whih inreases theapillary energy to 3.7 nJ.The onset of �uidization at ΓSF and the solidi�ation at ΓFS, depend on the aelerationof the driving. In ontrast, the luster segregation is predited by the preeding theories
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15.24±0.40 nJ, when multiplied with the partile massm. This is the ritial energy assoiatedwith the boundary motion in the vertial diretion of shaking. This orresponds to a boundarytemperature Tmax = ε2pwm 〈v2drive〉 /3 = εpwm 〈v2rit〉 /6 = 3.67nJ. The granular temperatureinside the ell follows from the granular heat equation, and has a mean temperature between
0.75 nJ and 1.45 nJ. The apillary bridge energy is Eb = 3.27 nJ for this liquid ontent.Hene 2.25 < Eb/Trit < 4.39, of whih the upper bound is the better estimate.
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Figure 8.12: While a diret measurement of the restitution oe�ient in partile-partileollisions is not feasible, it is easily measured using the symmetry of the interation. In theenter-of-mass system of the olliding pair, the seond partile an be replaed by a hard �atwall of in�nite mass. In suh a way the restitution oe�ient ε for partile-partile ollisionsis easily measuredpresented in this thesis to be determined by energy, not by the driving fore. The energysale, expressed by the granular temperature T , is proportional to the squared veloity ofthe driving. We therefore expet the peak of the luster segregation to be determined by thedriving veloity. The driving veloity is linear in fshaker, whereas the aeleration is quadratiin fshaker: Γ = 4πAf2shaker/g. Inreasing the driving frequeny yields a higher granular tem-perature for the same aeleration. Figure (8.10) demonstrates that the segregation peakis indeed shifted by the inrease of the apillary energy and an be further shifted by thedriving frequeny. This shows that the segregation transition is determined by energy, whilethe �uidization transition is determined by fore.We aim to quantify the ritial energy in terms of the ritial `granular temperature' Tfor the segregation transition. Figure 8.11 shows the aeleration Γpeak at whih the lustersegregation is observed for di�erent frequenies. The data follow a straight line through theorigin whih shows that
Γpeak = Aω2/g = (Aω)ω/g = 2πvshakerfshaker (8.16)de�nes the ritial veloity of the driving, vshaker.As has been shown in Se. 8.2, the solid/�uid transition is inreased as ompared to the�uid/solid transition due to ompati�ation. At 100 Hz the �uidization threshold for thesolid/�uid transition omes very lose to the peak of the segregation transition. The overlaywith the �uidization edge spuriously shifts the peak to higher aelerations. For this reasonFig. (8.11) does not inlude a `heating' run at 100 Hz.Now that we have measured the ritial veloity of the driving vshaker, we wish to relatethe driving veloity to the granular temperature, so that we arrive at the ritial granulartemperature, T. This is aomplished in the following.Computation of the Granular Temperature in the CellSine in the experimental systems the mean partile separation is below the rupture lengthof the apillary bonds, we an fous on the inelastiity desribed by the restitution oe�ient

ε. The diret measurement of the restitution oe�ient for partile-partile ollisions is not



178 Chapter 8. The Critial Point of Wet Granular Matterfeasible, beause it is extremely di�ult to ontrol the impat parameter b≪ R = 250 µm atsuh small length sales. Fortunately this is not neessary. Due to symmetry, the deformationof a head-on partile-partile ollision auses a �at deformation of the partiles as skethed inFig. 8.12. The very same inelasti dynamis an therefore be a ahieved with a hard �at wall.The experimental result is εpp = 0.96 for the partile-partile restitution, and εpw = 0.85 forthe partile-eletrode ollisions.The motion of the eletrodes de�nes the boundary value of the `granular temperature' TG.We derive the boundary temperature as funtion of the driving frequeny and aeleration.The granular temperature is de�ned by the mean squared veloity vetor v, aording to
T =

m

3

〈
v2
〉
. (8.17)This de�nition of the granular temperature is analogous to the temperature of a moleulargas, where the partile massm is the mass of the granular partiles. While the partile motionin the bulk is haoti, the boundary motion is neither isotropi nor stohasti, but vertialand periodi with amplitude A and frequeny ω = 2πfdrive:

v(t) = ez A0ω sin(ωt) . (8.18)In ollisions with the boundaries, momentum is exhanged normal to the boundary surfae,suh that the boundary motion feeds energy into the normal diretion, n, with n · ez = sinϕ.Hene the granular temperature as `seen' from a partile at the boundary is
Tboundary(ϕ) = Tmax sin2 ϕ with (8.19)

Tmax =
ε2pwmg2Γ2peak
24π2f2shaker . (8.20)The restitution oe�ient εpw aounts for the inelastiity in the oupling between partileand wall. In this ontext we remark that the ritial driving amplitude A(t) = A0 sin(ωt) is

A0 = 370 µm at 100 Hz and redues to A0 = 110 µm at 300 Hz, so that the A0 is lose to butstill below the partile size of 500 µm. In Eq. (8.19), the amplitude has been substituted infavor of the aeleration Γ = A0ω
2/g, whih is diretly measured in the experiment.From the slope in Fig. 8.11 follows the boundary temperature (8.19) with
Tmax = 3.67 nJ , (8.21)aording to (8.20).The granular temperature in the bulk follows from the granular heat equation solved withthe anisotropi Dirihlet boundary ondition T (ϕ) = Tmax sin2 ϕ (8.19), as is done analytiallyin the Appendix 8.5. The boundary ondition (8.19) de�nes a good lower estimate for themean temperature T . We an furthermore set an upper limit on the mean temperatureassuming that the granular temperature is isotropi on the boundary, T (ϕ) = Tmax. Thiswould be the ase if tangential frition would feed energy into the granulate as e�etive as thenormal fores do. As is shown in the appendix 8.5, the isotropi boundary onditions yield

T = 0.396 Tmax, while the normal oupling gives T = 0.203 Tmax.The volume Vb of a apillary bridge is related to the liquid ontent W = 0.82% by(Eq. (18) in [114℄)
Vb = R3Ṽb = R3 8πW

3KJφJ ≈ 0.29 nl , (8.22)



8.4. Conlusions 179(whih is approx. 16 n mol) with KJ ≈ 6. Expressed in units of the apillary energy (Eq. (20)in [114℄ for omplete wetting, θ = 0)
Eb ≈ 5.5

√
ṼbγR2 ≈ 3.27 nJ , (8.23)we an put the following bounds on the mean granular temperature at the ritial point:

Eb
4.4

< T < Eb
2.25

. (8.24)Sine the tangential oupling is not expeted to be as e�etive as the normal oupling, theritial granular temperature is loser to the lower bound on the left-hand side of (8.24).This experimental result on the ritial behavior of the three-dimensional wet granular sys-tem notieably agrees with the theoretial preditions T ≈ Eb/4 whih were given for one(f. Chap. 6) and two (f. Chap. 7) dimensions.Shemati Representation of Nonequilibrium StatesBefore we onlude, a shemati overview of the nonequilibrium states observed in wet gran-ular matter as the external driving is inreased and dereased again, is provided in Fig. 8.13.This depition reemphasizes that in the isohori system the resistane R (measured in theexperiment) and the number of lusters Nl (determined in the simulation) are monotoniallyrelated. This is why we the peak in the experiment (shown in Fig. 8.9) is the diret obser-vation of the theoretially predited unlustering transition, as shown in Fig. 8.7 and derivedChap. 6.8.4 ConlusionsWe have demonstrated experimentally that the ondutivity allows to determine the state ofwet granular matter and its internal apillary network. With the ondutivity as an orderparameter, the hystereti solid/�uid transition ould be measured in the bulk. This methodallows, to the authors knowledge, the most preise observation of the �uidization transition.The �utuation in the apillary network have been theoretially related to the granular tem-perature. Therefore the method enables the measurement of the mean onnetivity in thebulk struture and the granular temperature in real-time. The �uidization was demonstratedexperimentally to be a disontinuous nonequilibrium phase transition. Most signi�ant inonjuntion with the analytial preditions of a ritial point for wet granular matter in thepreeding Chaps. 6 and 7, is the experimental observation of this segregation transition as pre-dited. The values for the ritial density and the ritial temperature have been determinedexperimentally. The ritial point was shown to be set by the apillary bridge length and theapillary bridge energy, on�rming the preeding theoretial preditions quantitatively.8.5 Appendix A: Analyti Solution of the Granular Heat Equa-tionThe granular heat urrent
q = −κ∇T − µ∇n (8.25)has been derived for dilute (f. [27℄ and referenes therein) and dense systems (Eq. (37) in[92℄). The latter ase is relevant to the present experimental system, sine φ/φJ = 0.92 is
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(A) (B)

(F)

(C)

(D)(E)

Figure 8.13: A highly simpli�ed two-dimensional illustration of the states observed in wetgranular matter. (A) The apillary network, made of liquid bridges between adjaent andlose-by spheres, endues the solid state with rigidity against shear fores. (B) At the ritialaeleration ΓSF ≈ 9 of the agitation, the network fratures with the breaking of apillarybonds along the loal shear plains. For this reason the resistane instantly inreases byalmost a fator of three. This frature is diretly assoiated with the apillary bridge fore,
Fb = 2πγR, and the oordination number K of apillary bonds per sphere. The apillarynetwork inreases the ritial aeleration ΓSF = Γdry + ∆Γ as ompared to the dry system.The inrease ∆Γ ∝ Kγ of the aeleration is therefore proportional to the surfae tensionof the wetting liquid and the oordination number K. In the exited state of wet granularmatter, the mean oordination number K is observable as the global resistane R, whihis approximately inversely proportional to K. (D) When the granular temperature T is farabove the apillary energy, T ≫ Eb we have a homogeneous hard sphere �uid. This is agas state (denoted by G in Fig. 8.9) in terms of the granular energy. The dense wet granularsystem has a dynamial apillary network of high onnetivity in the state G, whih lowersthe resistane. At 94% of the jamming density and a liquid fration W = 1.6%, the resistaneis as low as in the solid state, whih indiates KG ≈ 6. With more wetting liquid even K > 6is possible in this state. The theoretial maximum of Voronoï neighbors is approximately 15.5in an ideal gas, and the kissing number is well-known to be 12 in the rystal state. Both valuesare never realized in a real system, beause the apillary bridges are muh shorter than themean separation in the dilute ideal gas, and ordering is e�etively prevented by the geometrifrustration and the apillary network even for a monodisperse system. The homogeneousstate shown in the panel (D) breaks up into dense granular droplets under the apillaryattration at the ritial granular temperature T = T as shown in (C) and (E). Beause ofthe voids remaining between the droplets, the global resistane has a peak (denoted by P inFig. 8.9) at this preipitation transition. The loation of the peak, ΓP, is linear in the drivingfrequeny and the bond energy Eb. (F) As the driving is further dereased, the granularsystem ollapses in the solid state at ΓFS ≈ 5. Annealing eliminates inhomogeneities andleads to the more rigid on�guration (A) as disussed in Se. 8.2.2.



8.5. Appendix A: Analyti Solution of the Granular Heat Equation 181not small but lose to unity. Heat transport due to density gradients, as desribed by theseond term in (8.25), is a peuliarity aused by inelasti ollisions. Sine εpp = 0.96 in theexperimental system, the seond term is suppressed by more than one order of magnitudeas ompared to the �rst term (f. the Figs. 1 and 4 in [92℄). We an therefore neglet it,whih allows for an analyti solution of the isohori heat equation. The heat ondutivity
κ(εpp, T ) = κ̃(εpp)√T depends on the partile restitution oe�ient εpp and is proportionalto the square root of the granular temperature. We an shift the temperature dependene tothe right of the di�erentiation,

q = −2

3
κ̃∇T 3/2 , (8.26)so that the stationary heat equation

0 = divq + Pdiss
= −2

3
κ̃∆T 3/2 + Pdiss , (8.27)has the Laplae operator ating on the �eld T 3/2. The dissipation Pdiss is derived easily. Ineah ollision the normal omponent of the partile veloity is redued by εpp. The initialkineti energy of the normal veloity is T/2, so that the energy loss per partile is T (1−ε2pp)/2in eah ollision event. Multiplying with the partile density n and the partile ollisionfrequeny νE, we arrive at the dissipation power per volume element,

Pdiss = νEnT 1 − ε2pp
2

. (8.28)The partile density n and paking fration are related by φ = π
6nd

3. The Enskog ollisionfrequeny is
νE = 2DD gφ

vth
d

, (8.29)with the thermal veloity vth =
√

T
πm . The ontat orrelation g rapidly grows with density.In the experimental system (D = 3, φJ = 0.62) we have (aording to Chap. 7)

g =
D

2D−1(φJ − φ)
= 15.7 . (8.30)From the Eqs. (8.29) and (8.28) we see that the energy sink Pdiss in the heat equation (8.27) isproportional to T 3/2, as is well known [102℄. Hene, the heat equation turns into a Helmholtzequation for T 3/2:

(
∆ − 1

λ2

)
T 3/2 = 0 , (8.31)with the intrinsi length sale λ(n, εpp),

1

λ2
=

3

4

νE
κ
n
(
1 − ε2pp) , (8.32)whih is independent of the granular temperature. The heat ondutivity κ is altered byinelastiity [92℄), εpp < 1,

κ = κ∗(gφ, εpp) κE , (8.33)



182 Chapter 8. The Critial Point of Wet Granular Matteras ompared to the equilibrium Enskog value κE, whih is
κE = N

vth
dD−1g

, (8.34)with N = 2 in D = 2 and N = 75/64 in D = 3 dimensions. The e�et of inelastiity (andexluded volume) is aptured in the dimensionless fator κ∗ of Eq. (8.33), whih is for thethree-dimensional experimental system (f. Table 1 in [92℄) equal to
κ∗ =

(1 + 6
5 gφ (1 + εpp))

1
2 (1 + εpp) − 7

32 (1 − ε2pp) +
256

25π
(gφ)2 (1 + εpp) ≈ 539 . (8.35)This yields for the length sale (8.32) of heat transport

λ = 3.41R = 852 µm . (8.36)The distribution of granular temperature arising aording to the heat equation (8.31) andthe boundary onditions leads to a mean granular temperature T (λ) in the system dependingon the known heat penetration depth λ (8.36). We onsider two limiting ases. The Dirihletboundary ondition (8.19), T (ϕ) = Tmax sin2(ϕ), allows for normal oupling between theboundary motion and the granular partiles. This is regarded as the lower estimate of thegranular temperature. Equally strong oupling of the granular motion to normal (∝ sin2 ϕ)and tangential (∝ cos2 ϕ) boundary motion de�nes a onstant boundary temperature T (ϕ) =
Tmax, whih provides us with an upper limit of T . The analyti solution of the heat equation(8.31) in the ylindrial geometry is

T (r, ϕ) = Tmax  ∞∑
j=0

cj cos(2jϕ) (AjI2j(r/λ) +BjK2j(r/λ))




2/3 (8.37)with Aj = (K2j(R1/λ) −K2j(R2/λ)) /Nj

Bj = (I2j(R2/λ) − I2j(R1/λ)) /Nj

Nj = I2j(R2/λ) K2j(R1/λ) − I2j(R1/λ) K2j(R2/λ) .

I and K are the modi�ed Bessel funtions of the �rst and seond kind. The radii of theinner and outer eletrode are R1 = 2 mm and R2 = 8 mm respetively. For the isotropiboundary ondition there is only the zero term, (c0 = 1, all other zero) in Eq. (8.37), whilefor the boundary ondition with normal oupling (8.19), the oe�ients are c0 = 4
3π and

cj = 24/(9 − 40j2 + 16j4) for j > 1. These solutions are plotted in Fig. 8.14. The resultingmean temperature is
T =

{
0.203 Tmax for normal oupling only
0.396 Tmax for normal and tangential oupling , (8.38)in units of the `hottest' loation on the boundary,

Tmax =
ε2pwmg2Γ2drive

24π2f2drive . (8.39)
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Figure 8.14: The solutions (8.37) of the heat equation (8.31). (A) Result for isotropi bound-ary onditions, whih hold if the tangential oupling between granular motion and boundarymotion is equal to the normal oupling. This provides us with an upper limit for the granulartemperature. The radial setion of this temperature pro�le is shown in Fig. 8.15A. (B) Thelower limit and better estimate of the granular temperature follows from boundary onditionswhih assume perfetly �at surfaes, so that only the normal omponent of the boundaryveloity drives the granular material.8.6 Appendix B: Experimental Cross-Cheks8.6.1 Exlusion of Artifats due to the Inelasti Heat ProdutionNonequilibrium phase transitions have been learly observed as hanges in the resistane (orequivalently the ondutivity) of wet granular matter. In order to ompare the ondutivityat di�erent driving, we exlude the possibility of artifats due to the hange of the sampletemperature. When the granulate enters the �uidized state, the dissipation of inelasti ol-lisions and the ruptures of apillary bridges produes heat whih inrease the temperatureof the sample. Sine the ion mobility of the ioni solution is temperature dependent, suh atemperature hange ould a�et the measurement of the global ondutivity.The ondutivity of the aqueous solution has a maximum at approximately 25 volume per-ent of the ioni liquid omponent. The full name of the ioni liquid reads 1-Butyl-3-methyl-imidazolium tetra�uoroborate (empirial formula C8H15BF4N2) and has density 1.1 g/m3 at298 K. On a time sale of a few days, the ondutivity of the solution inreases signi�antlywhen left in ontat with the steel granulate, sine ferri ions enter the solution.As is evident from the ondutivity of the ioni solution we use in Fig. 8.16, and themeasurement of the thermodynami temperature in the ell, dissipation auses only perente�ets, whih an be easily orreted from the data.8.6.2 Exlusion of Gravitational ArtifatsWe made sure that the system does not expand under gravity. As mentioned in the intro-dution, the paking density of the dry randomly jammed state has been measured to be
φJ = 0.62, while the mean density in the losed ell is lower by a fator 0.923: φsys = 0.57.This allows for su�ient spae for the apillary bridge dynamis. One might therefore thinkat �rst glane that the �uidized state would not �ll the system volume ompletely, but leavea gap at the top. If this was the ase, the resistane ould fall o� to the plateau level at high
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Figure 8.16: The inrease of the ondutivity of the ioni liquid dissolved in water as afuntion of temperature. The inset shows the struture formula of the ions. The ondutivityof the solution shown here, as well as the ondutivity of the wet granular sample, have beenmeasured with AC urrents at 1 to 5 kHz.driving veloities beause of a spurious expansion of the granular matter, whih would inreasethe ontat area of the granular matter with the outer eletrode as the granular temperatureis inreased. Suh an artifat an be exluded based on existing knowledge about wet gran-ular matter, as well as diretly with a modi�ation of the experiment. From the theoretialpoint of view we ompare the gravitational fore mg of a partile with the apillary fore ofa bridge, Fb ≈ 2πγR (f. Eq. (3.7)),
Fb
Fg =

3γ

2ρgR2
≈ 22 , (8.40)whih shows the dominane of the apillary fore for the small grains. The apillary foresare atually even more dominant than re�eted by the ratio (8.40), beause there are K ≈ 6bridges per sphere. Moreover, the density of volume-�uidized wet granular matter in anopen system is equal or below the density of `random loose paking', whih is φ = 0.57 [114℄.Therefore the system �lls the ell volume ompletely in the �uidized state, in both experimentsat densities 0.923φJ and even more for 0.939φJ. Ultimately, we masked 30% of the top areaof the outer ylindrial eletrode with an adhesive foil, so that this setion of the eletrodedoes not ontribute to the ondutivity, independent of the granular state. The segregationpeak and the fall-o� to the plateau were found unhanged4.

4Also the position of the segregation peak was found unhanged at frequenies up to 200 Hz. Furthermore,at high frequenies, the aeleration for the segregation grows faster than linear with frequeny, due to thevisoelasti damping of the adhesive foil.
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Figure 8.17: (A) Diret measurement of the hange in the thermodynami temperature dueto the dissipation in the driven granular system. A platinum sphere, few times the mass of agranular partile, was plaed in the ell to measure the thermodynami temperature duringthe external driving. (B) Data for the ritial point of wet granular matter are only takenin the highlighted region on the left for fast ramping, Tramp < 100 s, where the hange intemperature is a perent e�et, whih an be easily orreted.



Chapter 9The Veloity Distribution of GranularMatter Measured by the MössbauerE�etThe partile veloity distribution P (v) is needed in many plaes, suh as Eq. (5.43) in theomputation of the Kolmogorov-Sinai entropy. In this hapter, a method to measure theveloity distribution in three-dimensional granular matter is put forward, whih is at presentabsent in the literature. The method is developed theoretially and demonstrated experimen-tally. The experiment is based on the Mössbauer e�et and demonstrated for the gas-like and�uidized state of granular matter. The entral idea is that the resolution of nulear resonaneabsorption suits perfetly the veloities in `granular' �uids and gases, analogously to the op-tial Doppler broadening in `moleular' gases. An exponentially shaped veloity distributionis found in the �uidized state. Future measurements that allow to detet the rotation statesof partiles are disussed.9.1 The Mössbauer E�et from the Point of View of GranularPhysisAlready in the year 1927, Werner Kuhn predited nulear resonane absorption, and vis-ited Rutherford in Cambridge to perform experiments, yet with negative result [133℄. Thephysial onept is analogous to (and was historially guided by) the �uoresene of atoms,exited by photons in the visible range. Kuhn suggested to establish the nulear physisanalogue, by replaing the light soure by a radioative soure. Not until three deades later,Rudolf L. Mössbauer demonstrated the e�et experimentally in 1957 [159℄. He was the �rstto realize that the nulei, as part of the harmonially bound rystal lattie, an only takeup quantized energy and momentum in the reation and annihilation of phonons. The Möss-bauer e�et has been immediately appreiated as a powerful tool for material analysis andsolid state physis, whih awarded him the Nobel prize in 1961.We want to measure the veloity distribution of a granular �uid or gas in the bulk, i.e.away from boundary e�ets where energy is injeted and wall ordering dominates, and inthree dimensions. The Doppler broadening of the `equilibrium' gas of atoms points to a wayof doing this in granular matter: the idea is to use the Doppler shift to measure veloities. Asthe speed of light is the referene veloity, high spetral resolution is needed. The speed ofgas moleules at room temperature is three orders of magnitude higher than that of a typialgranular partile, whih an move at speeds of 100 mm/s in the granular gas state. Therefore187



188 Chapter 9. The Veloity Distribution Measured by the Mössbauer E�etwe are interested in frequeny resolutions of ∆ω/ω = 10−11 or better, whih orrespond to aresolution in veloity spae of 3 mm/s. Suh resolutions are nowadays possible in the optialrange by virtue of the `frequeny omb' developed in the group of T.W. Hänsh [223℄, andwould be interesting to apply to a granulate of glass spheres to test the relativisti �utuationtheorem of Chap. 21. In ontrast to the �utuation theorem, in this hapter we are not inter-ested in multiple sattering events, whih would yield a Gaussian spetrum (aording to theentral limit theorem). To resolve the single partile veloity, the photon should interat onlyone with a granular partile. At this point the author appreiated the Mössbauer e�et as afavorable method for granular physis, beause the photon is absorbed in resonane with thedesired spetral resolution (∆ω/ω < 10−12). At present, experiments on the veloity distribu-tion in granular matter use high speed ameras (f. Chap. 3, [232℄), x-ray tomographs [197℄,positron emission partile traking (PEPT) [236℄, and nulear magneti resonane (NMR)methods [240℄2. It is the intention of this hapter to point out the advantages of the well-established Mössbauer e�et as a reliable approah to the granular veloity distribution. Thismethod measures veloity diretly, while the methods mentioned above determine the partileveloity as the derivative of several position measurements. Aside from orretion due to thehyper�ne interation, the Mössbauer spetrum taken from driven granular matter is diretlythe veloity distribution.After summarizing brie�y the priniples of the Mössbauer spetrosopy in Se. 9.2, thepreparation of glass spheres with the Mössbauer isotope enlosed inside the glass is desribedin Se. 9.3. The experimental properties of the glass spheres at rest are studied in Se. 9.4. Thee�et of the granular motion on the measured spetrum is disussed analytially in Se. 9.5.The reonstrution of the veloity distribution is derived in Se. 9.6, where experimentalexamples are given. The possibility to measure the rotation of the granular partiles, as wellas the translation-rotation orrelation is outlined in Se. 9.7.9.2 The Prinipal E�ets for Mössbauer Spetrosopy9.2.1 The Soure of γ-QuantaMössbauer photons have to originate from a transition to the ground state, so that thesephoton an, in turn, be absorbed by a nuleus whih is initially in the ground state. AMössbauer soure with ideal properties for the 'reoilless emission' of γ quanta is the deayasade of the unstable isotope 57Co. 57Co deays to 57Fe. These isotopes have been used inthe present granular experiment.
57Fe in the ground state an be born out of the �ommon� 56Fe by the nulear reation

56Fe(d,p)57Fe3 [47℄. As a Mössbauer soure providing 57Fe in exited states serves 57Co, whihan be produed by the reation 56Fe(d,n)57Co. The deay sheme of 57Co is shown in Fig. 9.1with data taken from [195℄. The soure nuleus deays by K-eletron apture (EC), i.e. aneletron of prinipal quantum number n = 1 interats with a proton of the nuleus aordingto the reation p + e− → n + νe ,1Suh an experiment is suggested in the onluding paragraph of the Relativisti Flutuation Theorem inChap. 2.2The Mössbauer e�et had beome extremely en vogue in the 1960s, when for instane lunar samples wereanalyzed. It is tempting to assume that the granular ommunity, rising a generation of sientists later (mainlyin the 1990s after the works of Goldhirsh, Jenkins and Ha� around 1983, with the notable exeption ofBagnold) therefore overlooked this method.3The traditional notation for nulear reation is Target nuleus (Projetile, Ejetile) Final nuleus.
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Figure 9.1: The deay of the radionulide 57Co and the nulear term sheme of 57Fe. The14.4 keV photons serve as Mössbauer quanta.whih is the time-reversal of the beta deay. The energy released by this nulear reation istaken by the neutrino, while the vaant eletroni state in the shell after EC is reoupiedunder x-ray emission and the emission of Auger-eletrons. EC has to take plae whenever theenergy, QEC, released is not su�ient to reate an eletron-position pair (whih would ost
2mec2 = 1022 keV). The lowest exitation of 57Fe provides the 14.4 keV Mössbauer photons.9.2.2 Phonons - The Quanta of Lattie VibrationsThe Hamiltonian desribing the lattie vibrations has 3pN degrees of freedom, where N isthe number of Bravais lattie sites, and p is number of nulei forming one basis. Sine thereare N lattie momenta, kn =

∑3
j=1 njGj , in reiproal spae, we have 3p eigenstates foreah k. Out of these, there are 3 `aousti' and 3(p − 1) `optial' normal modes. In thelassial piture, the �rst represent oherent modes of the basis, while the latter orrespondto osillatory motion within the basis. The ruial di�erene is that the aousti branheshave zero energy ΩA(0) = 0 for zero momentum k = 0, while the optial dispersion relation

ΩO(k) is bounded away from zero.In `phonon oordinates', Qn =
√
M/N

∑
m qm exp

(
−2πi

∑3
j=1mjnj/Nj

)4, the Hamil-tonian reads
H =

∑

n,s

(
P †n,sPn,s

2
+ Ω2(kn,s)

Q†n,sQn,s

2

) (9.1)
=

∑

n,s

~Ωs(kn)

(
a†n,san,s +

1

2

)
, (9.2)4where the Rj span the Bravais lattie suh that rm =

P3
j=1 mjRj are the Bravais lattie sites, and

rm + qm are the nulei positions.
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~Ω(k) and momentum ~k.where the index s denotes the phonon branh. The a† and a are the familiar bosoni reationand annihilation operators respetively. The reation and annihilation of phonons is theessential property of the solid emitter and absorber for the Mössbauer e�et to work, asdisussed in the following paragraph.9.2.3 The Mössbauer - Lamb FatorThe spetra emitted out of the eletroni shells of gas moleules su�er from two mehanismsof broadening: �rstly, ollisions redue the life time of eletroni states and hene give riseto a Lorentzian shaped spetral line (pressure broadening). Seondly, the Gaussian veloitydistribution in onjuntion with the Doppler shift (in �rst order) auses a Gaussian shapedspetral line (Doppler broadening). The absene of these familiar e�ets for nulei embeddedin the rystal lattie of a solid is the basis of the Mössbauer e�et. Non of these broadeninge�ets redue the spetral resolution. Moreover, the emission is `reoilless'. This allowsemission and absorption in resonane.The prinipal line at ω0 in Fig. 9.3 orresponds to the ase of interest, when the momentumof the emitted photon, pγ = ~k, is distributed over the entire rystal of mass NM , so thatthe emitted energy,

Eγ = ~ω0 −
p2

γ

2NM
= E0 −

E2
γ

2NMc2
(9.3)is shifted by

∆Ereoil = E0 −NMc2

(√
1 +

2E0

NMc2
− 1

)

=
E2

0

2NMc2
+ O(1/N2) , (9.4)whih is less than the natural line width, sine even for a powder (as suh shall be broughtinside granular partiles) is N ≫ 1012. For a free atom, N = 1, the reoil shift would largelyexeed the natural line width, in the ase of 57Fe by more than �ve orders of magnitude.
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Figure 9.3: The photon spetrum emitted by a nuleus bound in a lattie. Emission eventsof the prinipal line at ω0 do not reate or annihilate phonons. The photon momentum isdistributed over the entire lattie, so that the line is unshifted and has the natural line width
Γ. The probability of suh a reoilless emission is given by the Mössbauer -Lamb fator fS ofthe soure.Now the ruial point is to understand why there is suh a dominant prinipal line at ω0.The aousti phonons an take up arbitrary small energies, however does the Debye densityof state

Z(Ω) =
9N~

kB Ω2

Θ3
, Ω < ΩD (9.5)vanish quadratially for small energies. (Θ in (9.5) is the Debye temperature.) The optialphonons have an approximately onstant dispersion relation, whih orresponds to the Ein-stein model of solid state physis. Figure 9.3 outlines the distribution of photon energies,emitted by the soure. For zero temperature there are no optial phonons to be annihilatedin the emission proess, whereas at positive temperature a photon with ω > ω0 is possible.The Mössbauer - Lamb fator fML gives the fration of reoilless emissions among alltransitions from the Mössbauer state to the ground state, i.e. the weight under the prinipalline in Fig. 9.3. The quantum mehanial probability for the photon momentum pγ to beabsorbed or emitted by the solid, while the state vetor |L〉 of the lattie is unhanged (noreation or annihilation of phonons), is given by the transition probability

fML = | 〈L| exp i(pγ ,qm)|L〉 |2 , (9.6)where exp i(p,qm) is the operator for the momentum transfer at the lattie sitem = (m1,m2,m3)
5.The integration involved in the expetation value (9.6) results in

fML = exp−k2
〈
q2
〉
/3 , (9.7)whih has formal similarity with the Debye-Waller fator for sattering (of x-ray and neutrons),but physially Eq. (9.7) holds for emission and absorption events. The expetation value〈

q2
〉 involves in total three averaging steps: the quantum mehanial expetation value, theaveraging over the thermodynamial ensemble, and for the Debye model the integration overthe density of states Z(Ω)6. The exponent 〈q2

〉 inreases quadratially with temperature T5q is a vetorial operator and pγ a numerial vetor.6The Einstein approah yields ˙
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1
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.



192 Chapter 9. The Veloity Distribution Measured by the Mössbauer E�etbelow the Debye temperature Θ (whih is 464 − 470 K for α-iron), and linearly above Θ.Typial values for the Mössbauer -Lamb fator of a 57Co-soure at room temperature are ofthe order of 75% [195, 138℄.9.2.4 Natural Line WidthIn the absene of phonon reation or annihilation, the remaining width of the Mössbauer lineat ω0 is the natural line width. The sharpness ∆ω/ω of the natural emission line (and forthe time-reversed resonane absorption proess) is extraordinarily high, and determined bythe half-life time of the nulear state, whih is T1/2 = 98.1 ns for the Mössbauer level of 57Fe:
Γ = ~/τ = ~ ln 2/T1/2 = 4.7 × 10−9 eV. The line shape is well-known to have Breit-Wigner7form, ∝ 1/(1 + (2∆E/Γ)2) as skethed in the right panel of Fig. 9.3. Resonane absorptionis possible beause the energy shift E2

γ/2NMc2 is far below the natural line width of
∆ω

ω
= 3.3 × 10−13 . (9.8)9.2.5 Longitudinal and Transverse Doppler ShiftThe frequeny is tuned by virtue of the Doppler e�et. The soure is brought in motion withrespet to the lab frame. If one assumes that the loal �ow of time for the soure equals thelab time, one arrives at the non-relativisti Doppler-shift:

ω

ω0 L =
1

1 − v
c

≈
(
1 +

v

c

)
. (9.9)(v is positive for the soure moving towards the sample). In order to take time dilatation intoaount, one simply has to multiply by the famous square root fator to arrive at the exatlongitudinal Doppler e�et:

ω

ω0 L =

√
1 − v2

c2

1 − v
c

=

√
1 + v

c

1 − v
c

= 1 +
v

c
+

v2

2c2
+ . . . . (9.10)In the transverse diretion, there is only the quadrati time dilatation:

ω

ω0 T =

√
1 − v2

c2
= 1 − v2

2c2
+ . . . . (9.11)The linear term of the longitudinal e�et (9.10) is used to tune the frequeny in the range

v/c = −10−10 . . . 10−10. The natural line width (9.8) orresponds to the Doppler veloity
∆v = 0.1

mms . (9.12)Clearly, the quadrati term is ompletely negligible for this range of driving veloities. Forthis reason the Mössbauer e�et measures the longitudinal veloity omponent only. This isfavorable for nonequilibrium statistis as it allows to measure eah omponent separately, andto detet a possible anisotropy of the granular temperature.There is a well-known thermal shift due to the quadrati Doppler e�et 8, whih is referredto as the seond order Doppler shift (SOD) in the speialized literature. A simple alulation7This distribution is also given the names of H.A. Lorentz and A.L. Cauhy.8Due to thermal motion, whih is isotropi, so that there is no thermal ontribution by the linear term onaverage. In the quadrati order there are two negative transverse ontributions and one positive longitudinalontribution. Hene the isotropi average yields a negative shift of ω with temperature.



9.2. The Prinipal E�ets for Mössbauer Spetrosopy 193for the present system with 57Fe shows, that the soure and the absorber would have to di�erby more than 100 K for a measurable SOD e�et, whih is not the ase for the granularsample.9.2.6 The Chemial Isomer ShiftThe energy levels of the nuleus an be perturbed due to hyper�ne interations. Expandingthe loal eletri potential φE at the nuleus, yields the oulomb term in zero order, whih isidential for all isotopes. The Mössbauer spetrosopy is sensitive to di�erenes in the energylevels (between soure and absorber), so that this term is irrelevant. The �rst order gives thedipole interation. The nuleus state has de�ned parity, PψN ± = ±ψN ±, so that the hargedistribution ρ = Ze|ψ|2 is invariant under the spatial inversion P . Hene, there is no eletridipole moment. The seond order of the spatial expansion, E(2) = 1
2

∫
rarbρ dvol (∂a∂bφE)an be split up in an isotropi part, whih is refereed to in the literature as the monopoleterm EC9, and the traeless quadrupole term EQ. The monopole term is

EC =
Ze2

6ǫ0
|ψ(0)|2

〈
r2
〉
, (9.13)with the harge density ǫ0(∆φE)(0) = e|ψ(0)|2 at the nuleus due to the eletroni state

ψ. The squared radius of gyration of the nuleus with respet to its harge distribution iswritten as 〈r2〉 in Eq. (9.13). The state vetor of a (single Shrödinger) eletron with quantumnumbers (n, l,m) is in polar oordinates
ψ(r, θ, ϕ) = 〈r, θ, ϕ|n, l,m〉

=
1

a
3/2
0

2

n2

√
(n− l − 1)!

(n + l)!

(
2r

a0n

)l e− r
a0nL2l+1

n−l−1

(
2r

a0n

)
Yl m(θ, ϕ) . (9.14)Sine the Laguerre polynomials equal ( n+ l

n− l − 1

)
> 0 at r = 0, we immediately see that

|ψ(0)|2 > 0 if and only if l = 0. Hene the monopole term is due to s-eletrons, whih havenon-vanish probability at the nuleus. The monopole term is sensitive to the outer s- andalso p-eletrodes, beause the latter an shield the nulear harge against the �rst. Thereforethe monopole term is sensitive to the ionization state of the atom. It allows to determine theratio of Fe2+ and Fe3+.9.2.7 The Eletri Quadrupole SplittingThe quadrupole term is
EQ =

e

6
Q : ∇⊗ E , (9.15)with the tensor ontration (denoted by the olon) between the eletri �eld gradients and thequadrupole moment, Q, of the nuleus harge distribution. Rewritten in terms of the nuleusquantum numbers (I,M), the quadrupole energy is

EQ = ~ωQ(3M2 − I(I + 1)) (9.16)The ground state of 57Fe has I = 1/2 (therefore M = ±1/2 and EQ = 0), so that this levelremains degenerated, whereas the Mössbauer state has I = 3/2 and therefore splits in twoperturbed levels. This auses a doublet in the Mössbauer spetrum. The separation of thetwo lines is a measure for the loal eletri �eld gradients10.9Although in eletrostatis this usually denotes the zero order term mentioned before.10Latties with ubi symmetry have no �eld gradients and onsequently no quadrupole splitting.
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Figure 9.4: The solution of 57Fe2+ ions and the preipitation reation to obtain iron oxide aspowder. The test tube ontains 200 mg of 57Fe.9.2.8 Magneti SplittingThe nulear Zeeman e�et breaks the degeneration with respet to the axial quantum number
M of angular momentum (in the diretion of the loal magneti �ux B):

Em = −(µ,B) = −gNµNBM , (9.17)where µN is the nulear magneton e~/(2mp) and gN is the Landé fator. No magneti splittingis found for the iron oxide used in the granular experiment.9.3 Granular Glass Spheres with Highly Enrihed 57FeWhile iron is rank nine in osmologial abundane (with atomi fration 1.4 × 10−5), about
4.7% of the earth's mass is iron (rank four among all elements, and seond most abundantmetal), sine our solar system desends from a mixture of later stellar generations [30℄, whereheavier elements have been produed in onseutive supernovae. There are four stable isotopesof iron, among whih 56Fe dominates with 91.7%, beause it is well-known for having thehighest mean binding energy per nuleon of all nulei. The rarer frations are 54Fe (5.8%),
57Fe (2.2%) and 58Fe (0.3%). For the resonane absorption of gamma quanta emitted by 57Cowe need the isotope 57Fe, whih has been provided by Chemotrade GmbH (Düsseldorf) with95.70% enrihment in form of a porous hunk.The iron is �rst brought in a �ne powdered form. This allows to disperse the iron homo-geneously within the glass phase. The size of the rystals in the powder has to be kept highenough for the Mössbauer e�et to work, as emphasized before with Eq. (9.3). The powderis mixed with a �uid glass melt, out of whih �nally the glass spheres of the granular systemare formed.9.3.1 Prodution of 57Fe2O3 PowderIn order to disperse the iron in the spherial glass beads, the enrihed iron annot be used asdelivered. The author deided to dissolve the iron in hydrohlori aid, to obtain an aqueous



9.4. The Granular Mössbauer Setup 195solution of 57Fe2+ as an intermediate step:Fe + 2HClaq →
(Fe2+ + 2Cl−)aq + H2 .Adding the base of an alkali metal, suh as sodium hydroxide (NaOH) or potassium hydroxide(KOH) auses preipitation:

4
(Fe2+ + 2OH− + 2Na+ + 2Cl−)aq + O2 + 2H2O → 4Fe(OH)3 + 8NaClaq .The solution has been �ltered to reover the iron oxide as powder. Being heated up at 150◦Cwhile exposed to air, the fration of 57Fe3+ inreases as indiated by initial green olor (forthe oxidation state +2) whih turned blak (due to the unstable intermittent Fe3O4 · aq) andeventually brown, indiating the end of the oxidation reation. Weighing showed that thestoihiometri is preisely that of 57Fe2O3.9.3.2 Prodution of Glass Melt with Enrihed 57FeA gas-�red melting furnae has been onstruted whih ontained a vertial ylindrial ruibleof graphite (2.8 ml total inner volume). The material graphite was hosen beause test runshad shown that graphite has a high ontat angle with molten glass. The ruible was�lled at room temperature with the iron oxide powder (orresponding to 150 mg 57Fe) andommerially available glass spheres as the raw material for the glass melt (2 g in mass). Theruible was losed and heated up to approximately 1500◦C and kept at onstant temperaturefor 15 minutes. The glass melt and the 57Fe2O3 powder are stirred with an titanium rod.After ooling, a homogeneous and dark-green glass was obtained.9.3.3 Prodution of Spherially Shaped PartilesThe following method for the prodution of glass spheres had been worked out by my olleagueM. Sheel before. The glass blok was mehanially broken in piees whih approximate thedesired granular partile mass. Distributed on a haroal surfae, the piees were reheatedby the �ame of a blowpipe. Above the glass transition temperature, the surfae tension ofthe glass forms droplets. The surfae tension and the zero ontat angle of the molten glassdroplets with the mildly burning haroal surfae produe spherial glass partiles. In viewof the high osts of the 57Fe material, glass spheres of unwanted small size were remelted andthose resulting from oalesene broken up again.Finally three size frations were separated by sieving (with the total granular mass indi-ated in brakets):

• d=250-355µm (370 mg),
• d=355-500µm (504 mg), and
• d=500-710µm (543 mg).The mass fration of the 57Fe nulei, distributed homogeneously inside the glass spheres,is 6.0%. Due to the ruible and the haroal, the glass spheres ontain arbon with a massfration of at the most 3%.
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Figure 9.5: The granular Mössbauer setup. The absorber is replaed by the granular sample.The granular partiles are glass beads, whih ontain a highly enrihed fration of the stableisotope 57Fe. The granulate is driven by the vertial motion of its polyarbonate ontainer.9.4 The Granular Mössbauer SetupMost measurements, inluding those reported here, are sensitive to the resonane absorptionobserved in transmission. Here the soure of the photons, the granular sample, and thedetetor (a proportional ounter in our ase) are in line, as is shown by Fig. 9.5. It is mentionedin passing that one may as well observe with a sattering geometry the �uoresene photonsresulting from the absorption. Furthermore, the relaxation of an exited Mössbauer state doesnot neessarily deay with the re-emission of a �uoresene photon. A ertain fration ofdeay events undergo internal onversion (IC), in whih ase the nuleus interats diretlywith its eletroni shell by emitting a onversion eletron instead of a photon. This is atuallythe dominant deay branh of the 14.4 keV state of 57Fe, for whih approximately 85% ofthe relaxation proesses to the ground state involve IC. Sine IC leaves an eletron stateunoupied, the eletroni shell undergoes subsequent transitions [195℄, whih gives rise tothe emission of both, x-ray photons and Auger-eletrons (similar as after EC). The high ICrate is favorable for the granular measurement, beause the probability that a �uoresenephoton is re-emitted from a granular partile (whih ould �nd its way in the detetor, orause multiple absorption and re-emission) is suppressed.9.4.1 The Atomi Density and the E�etive Absorber ThiknessSine the density of iron oxide is losely twie the density of glass, the volume fration of
57Fe2O3 is 3% within the glass spheres. As throughout this thesis, the volume fration ofthe spherial granular sample is denoted by φ. Hene the total moleular volume fration of
57Fe2O3 is aAφ = 0.03φ. Typial values at measurement are φ = 0.1 for the strongly �uidizedstate and 10−2 for the gas state. The moleular number density of 57Fe2O3 is

NA = 1.976 × 1022 moleulesm3
, (9.18)so that the number of 57Fe-nulei per volume is

nAφ = 2NA aAφ = 1.2 × 1021 nuleim3
φ . (9.19)
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Figure 9.6: The Mössbauer spetrum of the 57Fe-glass spheres at rest. The isomer shift is
1.03 mm/s and the quadrupole splitting is 1.84 mm/s.With this information we ompute the absorption length. The probability for a photon ~ω0at the resonane frequeny to penetrate into the absorber, reahing the depth x, deaysexponentially, exp (−x/λA), sine the probability for the photon being absorbed within asegment dx of its path is onstant in the homogeneous absorber material. The resonaneabsorption length λA is given by the nulear ross setion σ0, the number density of nulei nA,and the reoilless fration fA (the Mössbauer - Lamb fator of the absorber): 1/λA = σ0 nA fA.For 57Fe at room temperature we have fA ≈ 0.75 [195℄ and the resonane ross setion is
σ0 = 256.6 × 10−20 m2, whih yields

λA = 4.33 µm (9.20)for the glass material of our 57Fe-enrihed spheres. We ompare this length sale (9.20), setby the nulear resonane absorption, with the granular length sale of the partile diameter d,and the e�etive geometri depth dA = Lφ of the granular system, whih is rossed by the raywith length L inside the sample. The dimensionless exponent of the resonane attenuation,
τA = dA/λA, is alled the e�etive absorber thikness, and assumes in the experimental systemthe values

τA = σ0 nA fA{ d
dA } =

{
58, diametrially for single partile d = 250µm
51, for the entire gas state. (9.21)9.4.2 The Mössbauer Spetrum at RestThe Mössbauer spetrum of the granular system at rest is already non-trivial, beause of thehemial isomer shift and the eletrostati quadrupole splitting of iron oxide. Obviously, thefull information about the detailed spetrum at rest is neessary, in order to uniquely extratthe broadening of the Mössbauer spetrum due to the granular veloity distribution from theMössbauer spetrum taken of driven granular matter.A monolayer of the 57Fe-enrihed glass spheres was �xed between two plates (free of 57Fe)and used as absorber material. The ray rossed the monolayer perpendiularly. The resultingspetrum Irest(v) is shown in Fig. 9.6 for monolayers of the three di�erent size frations (f.



198 Chapter 9. The Veloity Distribution Measured by the Mössbauer E�et9.3.3). The soure is 57Co di�used into the metal matrix rhodium, whih provides a singleline, and the veloity axis has been alibrated with an α-Fe foil. We see a doublet due to thequadrupole splitting 9.2.7 of iron oxide, whih is shifted towards positive veloities aordingto the isomer shift 9.2.6. The splitting is ∆v ≈ 1.94 mm/s. Typially, 57Fe2+ has a quadrupolesplitting lose to ∆v=3 mm/s, while 57Fe3+ shows doublets with ∆v=0.5 mm/s [233℄. Theposition of the lines in Fig. 9.6 are similar but not idential with a reent study of iron oxidein glass [134℄. There is no nulear Zeeman splitting (whih would ause a sextet aordingto the ∆M = ±1 transition from I = 3/2 to I = 1/2) measurable at room temperature.The widths of the two dips is muh larger than the theoretially possible values for a singleiron oxidation state (as well as those widths found in [134℄), whih indiates that the 57Fe2O3powder, brought initially in the glass melt, has been redued to a large extent. While thepositions of the doublet lines are independent of the partile diameter, the widths have asystemati dependene on the ratio d/λA of partile diameter and absorption length.9.5 The Transmission Integral for the Granular Mössbauer Ef-fetThe transmission intensity observed at the detetor depends on the following three spetraldistributions.9.5.1 The Emission Distribution of the SoureThe Mössbauer line, emitted by the deay asade of the 57Co soure, has in its instantaneousinertial frame the Breit-Wigner shape
PBW(E) =

1

2π

Γ

(E − E0)
2 + Γ2/4

, (9.22)with E0=14.4 keV and ΓS = 4.7 × 10−9 eV. Boosted in the lab frame, the distribution isDoppler shifted, so that the probability for a photon entering the sample with energy in theinterval between E and E + dE is
PS(E, vS) dE = PBW(E − vS

c
E0) dE , (9.23)in the moment when the time dependent veloity of the soure is vS.9.5.2 The Transmission Distribution of the AbsorptionThe resonane absorption length τA, as de�ned in Se. 9.4 with the result (9.20), holds forphotons of energy E0. When the photon energy is detuned, the ross setion σ(E) is reduedompared to σ0 aording to the Breit-Wigner line shape, σ(E) ∝ σ0PBW(E). Therefore theabsorption length is, as a funtion of energy E,

τA(E,Γ) =
τA

1 + 4 (E − E0)
2 /Γ2

. (9.24)The orresponding transmission probability for a photon of energy E is
PA(E,Γ) = e−τA(E,Γ) . (9.25)Equation (9.25) holds for a single line. The granular absorber has in general not only oneabsorption line. Rather, as seen in the last Se. 9.4.2, the spetrum at rest is a non-trivial



9.5. The Transmission Integral for the Granular Mössbauer E�et 199intrinsi spetral funtion. The hyper�ne splitting of the exited states shifts the energies by
∆Ej, so that the transmission probability beomes

PA(E) =
∏

j

e−τAj(E−∆Ej ,Γj) = exp


−

∑

j

τAj(E − ∆Ej; Γj)


 = e−τA total(E) . (9.26)If the hemial environments of the 57Fe in the sample were known, one ould in prinipleompute the transmission probability theoretially. However, the most aurate and feasibleapproah de�nes the funtion PA(E) of the Mössbauer spetrum with the granular partilesat rest by the experiment. In modifying the Mössbauer theory for driven granulates we usethe relation between the absorption length and the transmission probability of the absorber(9.26):

τA(E) = − lnPA(E) . (9.27)9.5.3 The Granular Veloity DistributionThe distribution in whih we are mainly interested from the point of view of granular andnonequilibrium physis, is the veloity distribution, whih we want to denote by
Pgran(vgran) . (9.28)Given the three distribution funtions (9.23), (9.26), and (9.28), we an write down thetransmission intensity, I(vS). The transmission intensity is diretly observed, and the �nalstep of the analysis will be to reonstrut the granular veloity distribution, Pgran, from themeasured intensity I(vS).Let us begin with the standard ase of an absorber at rest. We shall then modify theexpression for the driven granular state. The ativity I(vS) at the detetor is due to reoillessphotons emitted by the soure with probability fS, and the thermal bakground ontribution

(1− fS). The intensity is attenuated by quantum eletrodynami interations of the photonswith the atomi shells11 aording to the Beer-Lambert law, I ∝ exp (−µAdA). In additionto that, the reoilless photons have a probability 1 − Ptrans for resonane absorption, so thatthe deteted ativity I obeys
I(vS)
IS = fS e−µAdA Ptrans(vS) + (1 − fS) e−µAdA

= e−µAdA [1 − fS (1 − Ptrans(vS))] . (9.29)The soure intensity in the solid angle of the detetor is IS. The probability Ptrans in (9.29),that a photon (whih originated from a reoilless emission) reahes the detetor, is the produtof the probability of the energy E under the emission line of the soure, multiplied by theprobability that the photon rosses the absorber. Finally we integrate over E, sine the photonenergy is not resolved by the detetor at this level:
Ptrans(vS) =

∫
PS(E, vS) PA(E) dE =

∫
PBW (E − vS

c
E0

) e−τA(E) dE . (9.30)Equation (9.30) is a onvolution of the emission line shape and the transmission probability.11The Compton e�et has a ross setion σ ∝ Z/Eγ and the photoeletri e�et has σph ∝ Z5/E
7/2
γ .Rayleigh sattering is negligible at energies above 2keV.



200 Chapter 9. The Veloity Distribution Measured by the Mössbauer E�etNow we turn to the ase of driven granular matter. Here the deisive physial point isthat the photon with energy E does not `see' the entire granulate as a resonane absorber,but only those partiles whih move at the veloity of the soure within emission line width,so that resonane absorption is possible. Therefore the e�etive absorber thikness τA(E) =
σ(E)nAfAdA (Eqs. (9.21 and (9.27)), depends on the veloity distribution in the granularsample:

τgranA (E) =

∫
σ(E − vgran

c
E0) Pgran(vgran) dvgran nA fA dA

=

∫
τ restA (E − vgran

c
E0) Pgran(vgran) dvgran . (9.31)The onvolution (9.31) relates the absorption length of the dynamial granular sample to theabsorption at rest and the granular veloity distribution. We note that the latter onvolu-tion (9.31) appears in the exponent of the observable transmission probability, in ontrast tothe previous onvolution with the soure line (9.30). With Eqs. (9.30) and (9.31) we havethe expliit e�et of granular motion on the Mössbauer spetrum (9.29). We summarize thisresult using the onvenient ∗-notation for the onvolution of funtions.

I(vS) = I0 [1 − fS (1 − Ptrans(vS))] (9.32)
Ptrans(vS) = PBW ∗

[e−(τ restA ∗Pgran)
]
(vS) (9.33)Energies and veloities are impliitly understood to be linearly related by c ∆E = E0 ∆v.The maximal intensity of the Mössbauer spetrum is I0 = ISe−µAdA .9.6 Reonstrution of the Veloity DistributionAside from the neglet of multiple absorption and re-emission proesses (ausing resonanebroadening), the result (9.32-9.33) does not involve an approximation (suh as the wide-spread thin-absorber approximation, appliable for τA < 1). We further simplify the analysiswithout signi�ant error: the line width ΓS of the soure is of the order 0.1 mm/s, whih is 20times �ner than the strutures in the spetrum Fig. 9.6. We an therefore approximate theBreit-Wigner distribution PBW by a delta distribution in the onvolution (9.33). This yields

− lnPtrans = τ restA ∗ Pgran . (9.34)The transmission probability is related to the intensity Eq. (9.32):
− lnPtrans = − ln

[
1 − 1 − I/I0

fS ]
≈ 1 − I/I0

fS . (9.35)By virtue of the Eqs. (9.34) and (9.35), we arrive at the entral formula for granular Mössbauerspetrosopy,
τ restA ∗ Pgran =

1 − I/I0
fS , (9.36)whih relates intensity and veloity distribution. The measurement at rest (spetrum ofFig. 9.6) has Pgran(vgran) = δ(vgran), so that the intrinsi resolution funtion τ restA , whihomprises the nulear absorption properties of our sample, is known:

τ restA =
1 − Irest/Irest0

fS . (9.37)
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Figure 9.7: Preliminary experimental results on the granular veloity distribution. In theourse of the deonvolution a Welh window was used to �lter high frequeny noise fromthe measurement. (A) The small partile fration (250-355 µm, dry). Sinusoidal motion withpeak aeleration 30 g drives the system in the gas state. The measured granular temperatureis T/m =
〈
∆v2

〉
= (38 ± 6 mm/s)2. The veloity distribution is on the narrow veloityrange indistinguishable from a Gaussian. Deviations from the equilibrium distribution aretheoretially expeted for the high veloity tails at v2 > T/m [27℄. The dotted urve is thebest �t of a Gaussian segment. The veloities are signi�antly shifted with a onvetive driftof 〈v〉 = 2.0 ± 0.4 mm/s in the horizontal plane. (B) As we swith to the large partilefration (500-710µm) and redue the driving amplitude to the aeleration 12 g, the fullstationary veloity distribution enters the range of veloities, whih are resolved by the driveof our Mössbauer soure. For this vigorous �uid, the veloity distribution follows withinexperimental sattering an exponential P�uid ∝ exp (−|v − v0|/v). The granular temperatureis T/m = 2v2 = (8.2± 1.0 mm/s)2. A small drift, v0 = 0.93± 0.20mm/s, remains observable.



202 Chapter 9. The Veloity Distribution Measured by the Mössbauer E�etIt is therefore a straightforward numerial proedure to deonvolute the `response funtion'
τ restA out of the main formula (9.36) with Fourier transformation (denoted by )̃, to arrive atthe granular veloity distribution:̃

Pgran =
˜(I0 − I)

˜(Irest0 − Irest) . (9.38)Some remarks are here in order. The funtions I and Irest result from the experiment withdi�erent disretizations in general. The wider veloity range of I has to be mapped arefullyon the �ner disretization of Irest, and the narrower range of Irest is to be ontinued withthe onstant Irest0 . The deonvolution signi�antly inreases the information gained from themeasured signal I, beause the resolution in veloity spae is determined by the smallest dipstruture of the rest spetrum, whereas the diret signal only reveals strutures of the veloitydistribution whih are larger than the splitting of the dips. Of ourse, no information on velo-ities below the width of the dips in the rest spetrum is measurable. This physial limitationan be re�eted mathematially by a zero (or very small value) of the denominator in (9.38),whih is in reiproal spae loated at the inverse dip width. In this ase, the resummation ofFourier modes has to stop before this zero. If the Fourier transform of the rest spetrum hasno zero (whih is in pratie the ase for this omplex valued funtion), the onvolution an beompletely undone. Noise in the signal I is then the only limitation. (Established tehniquesof optimal �ltering in this ontext of deonvolution are niely desribed in Se. 13.3 of [175℄.)Before transforming bak to the veloity spae, the Fourier transformed distribution (9.38)is onveniently used to extrat the umulants of the veloity distribution (in the ase of asymmetri shape):
ln P̃gran(s) =

∞∑

k=1

c2k
(−1)k

(2k)!
s2k . (9.39)The granular temperature T = c2 is given by the seond umulant, and the fourth umulant

c4 is the kurtosis, whih indiates the deviation from a Gaussian. A preliminary experimentalresult is presented in Fig. 9.7. The range of veloities whih an be resolved is set by themaximum speed of the Mössbauer soure. Our driving mehanism allows up to 30 mm/s.On this veloity interval the gas state of the small partiles annot be distinguished froma Gaussian distribution (Fig. 9.7A). Here the peak aeleration is 30 g and the shakingfrequeny is 100 Hz. We therefore inrease the partile mass and redue the driving amplitudeat onstant frequeny to the aeleration 12 g. The result is shown in (Fig. 9.7B), where thefull distribution falls in the observed veloity range. The deviation from a Gaussian veloitydistribution is obvious. Within the experimental sattering, the data agrees very well withan exponential distribution
P�uid =

1

2v
e− |v−v0|

v . (9.40)Experimental values for the granular temperature and drift veloity are given in the aptionof Fig. 9.7. While there are exellent experimental results on the veloity distribution forgranular monolayers and surfaes [146℄, this is to the author's knowledge the �rst experimentalobservation of exponential tails in the bulk, as predited theoretially [3, 174℄.
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204 Chapter 9. The Veloity Distribution Measured by the Mössbauer E�et9.7 How to Measure Translation and Rotation of Granular Par-tilesSo far we treated the driven granulate as a spatially homogeneous system of (nuleus) density
φnA. That is, we distinguished the 57Fe nulei in veloity spae, when writing (9.34)

Ptrans = e−τ restA ∗Pgran . (9.41)This implies that the veloity distribution Pgran(vgran) is the distribution of the (horizontal)veloity omponent of the 57Fe nulei, whih is not idential with the veloity of the granularpartiles.In what follows it is outlined how partile veloity and partile rotation an be extratedfrom the granular Mössbauer experiment. There is substantial interest in the orrelation ofthese quantities for nonequilibrium statistial physis [28℄. The rigid body motion of the glassspheres is desribed by translation and rotation, so that the granular ensemble is desribedby the distribution Ptr(vm, ωrot), where vm is the veloity of the partile's enter of mass,and the axial vetor ωrot desribes the angular veloity and the rotation axis.We onsider the absorption of a glass sphere in detail. For this we need the energy de-pendent absorption length λA(E), i.e. the resonane absorption length inside a 57Fe-enrihedsphere whih is at rest. This funtion has been determined by the Mössbauer spetrum atrest, using the speial ase of Eq. (9.34) with Pgran = δ, and the spatial intensity
τ restA (E) = drestA /λA(E) (9.42)of the Poisson proess desribing the resonane absorption.The transverse o�set of the photons, whih are uniformly distributed over the ross se-tion, is desribed by the impat parameter b (f. Fig. 9.8) relative to the position of thesphere. There is a ruial anisotropy in the physial transmission and detetion proess. Thetransverse diretions are additive for the transmission probability, sine the detetor does notresolve where the photon enters its window. In ontrast, the survival probability of a photonis multipliative in the longitudinal diretion. This is expressed by the x-integration in theexponent of the transmission probability:

Ptrans(vS) =
1

πR2

∫ 2π

0
dϕ

∫ R

0
db b

exp

[
φ

drestA ∫ √R2−b2

0
dx

∫
dvm ∫ dωrot τ restA (vS − v‖) Ptr(vm, ωrot)] (9.43)with the veloity

v‖ = [vm + ωrot × r(x, b, ϕ)]x (9.44)projeted on the diretion of the photon wave vetor (longitudinal x-diretion of the exper-iment). Aside from the trivial ϕ integration, the general expression (9.43) is, admittedly,ompliated aording to the generality of the joint distribution Ptr for translation and ro-tation. First one should motivate an ansatz for Ptr. The parameters of this ansatz are thendetermined by several measurements with di�erent atomi densities nA of 57Fe in the glassspheres. We remind that in the integral (9.43), τ restA is proportional to the onentration of
57Fe. The numerial inversion of (9.43) is possible, beause with di�erent 57Fe onentrationsthe absorption length λA is varied. This in�uenes the preferred subvolume inside the glassspheres for absorption. The in�uene of the onentration is skethed in Fig. 9.9. Sine this



9.8. Conlusions 205subvolume also depends on the rotation state, the ωrot-dependene of Ptr is probed. We �-nally remark that the spatial depth up to whih the veloity distribution is measured insidea very large granular sample, is easily adjusted by substituting some pure glass spheres for
57Fe-enrihed spheres, to adapt the transpareny for the Mössbauer photons.9.8 ConlusionsIn this hapter we disussed the appliation of the Mössbauer e�et to the steady nonequi-librium states of granular matter. It was demonstrated analytially and experimentally, thatthe Mössbauer spetrum is diretly related to the granular veloity distribution. The typ-ial granular veloities and the resolution of the Mössbauer e�et suit naturally, for whihreason the method provides easy aess to the nonequilibrium veloity distribution funtion.The e�etiveness of the method has been demonstrated with a �rst experiment, and an ex-ponential veloity distribution was observed in the volume of �uidized granular matter. Themethod is sensitive to the di�erent spatial veloity omponents, so that an anisotropi veloitydistribution an be measured.This opens up interesting appliations. The onvetive motion reported in this hapteran be studied by hanging the horizontal position and the height at whih the beam traversesthe granulate. Measurements whih inlude the partile rotations have been pointed out, andwould allow the experimental observation of orrelations predited theoretially [28℄.





Chapter 10Phase Transitions and Coexistene farfrom EquilibriumWhile the physis of equilibrium phase transitions has meanwhile reahed a state of maturetextbook knowledge, similar phenomena observed in systems far from thermal equilibrium arestill quite elusive. In partiular transitions in wet granular matter, suh as soil liquefation dueto earthquakes and �uidization by vibration, are still far from being understood [160, 191, 122,98, 114℄. In this thesis, the experiment in Chap. 8 demonstrated that the �uidization transitionis disontinuous and a �uid/gas transition was disovered with simulations in Chap. 4 for onedimension. This hapter uni�es these results and presents the nonequilibrium transitions ofa vertially agitated wet granular medium in two and three dimensions.Starting with the fundamental phase spae dynamis, it is lari�ed why the logarithm ofthe phase spae volume is not a measure for entropy prodution in granular matter. Thephase spae dynamis is extended by pseudo-Liouville operators for the apillary bridges, anda derivation of ontinuum equations for wet granular matter is disussed. Here the resultsabout the haotiity of wet granular matter and the hystereti pair orrelation of previoushapters are applied.The global phase diagram is presented, both experimentally and by simulations, and quan-titative agreement is found. The phase diagrams omprises the aforementioned transitions.Five nonequilibrium steady states are shown to exist: the solid, �uid, and gas phase, as wellas the oexistenes of solid/gas, and �uid/gas. For the latter, the interfaial pro�les are om-puted with the ontinuum model, and qualitative agreement is found. Order parameters arede�ned and measured numerially.Two prinipal mehanism for phase transitions far from equilibrium are revealed: Thesolid/�uid transition sets in when the harateristi fore of the driving overomes the intrinsifore of the liquid bridges. This transition is ontrolled by the aeleration of the driving. The�uid/gas transition is an energy-driven transition. The balane of power is shown analytiallyto have a subritial instability with the driving veloity as the ontrol parameter. Thisexplains why the �uid/gas transition is disontinuous and determined by the apillary energy,as is on�rmed experimentally.All nonequilibrium states are explained solely by the hystereti formation and rupture ofapillary bridges, whih provide the harateristi energy sale of the system. Other detailsof the interation are shown to be remarkably irrelevant, suggesting onsiderable universalityfor the reported transitions far from equilibrium.Finally, the oalesene dynamis of �uid droplets, embedded in a gas phase, is observed.This proess is shown to be very distint from the oarsening of `usual' non-dissipative �uids.The dissipative oarsening is tightly aompanied by a self-organized inrease of the granulartemperature, whih an give rise to abrupt on�guration hanges.207



208 Chapter 10. Phase Transitions and Coexistene far from Equilibrium10.1 Balane EquationsStarting from the mirosopi equations of motion, this setion disusses the derivation ofhydrodynami equations by trunating the BBGKY-hierarhy with the extended hysteretiEnskog funtion derived in Chap. 7. The peuliarity of wet granular matter to inrease entropywithout phase spae ontration is explained. A larifying omment on an open issue [156℄onerning phase spae ontration in inelasti gases is given.10.1.1 The Phase Spae Flow of Wet Granular MatterThe dynamis of a lassial N -partile system1, not neessarily an energy onserving one, anbe ast into the form
Γ̇(t) = F(t,Γ) , (10.1)whih is a non-linear �rst-order system of di�erential equations. The anonial speial aseof the general system (10.1) are Hamiltonian systems, whose phase spae �ow is generated bythe vetor �eld F with
F = S ∇ΓH . (10.2)For the anonial dynamis the �ow �eld F is the gradient of the Hamiltonian funtion H,multiplied by the matrix S of the sympleti form (as introdued in Chap. 4). The dependeneof a solution Γ(t,Γ0) on its initial value Γ(0,Γ0) = Γ0 is di�erentiable2. As we have seen inSe. 4.6.2 the orresponding map M in tangent spae,

(δx0, δp0) → (δx(t), δp(t)) = M(t) (δx0, δp0) , (10.3)is sympleti for wet granular matter:MT(t) S M(t) = S . (10.4)Wet granular matter is a dissipative pieewise Hamiltonian system. (The apillary bridges anbe seen as `Maxwell-Demons' whih swith on and o� the hystereti fores, and give rise to atime-dependent Hamiltonian.) It is most onvenient to desribe the disrete bridge dynamisfor the ensemble, whih is the subjet of Se. 10.1.2. Here we onstrut the ontinuous phasespae evolution for the ensemble from the solutions Γ(t,Γ0) of (10.1). The initial distributionof the ensemble be f0, whih is onvoluted with the initial state Γ0 of the general solution.This gives the phase spae density
f(t,Γ) =

∫
dΓ0 δ(Γ(t,Γ0) − Γ) f0(Γ0) =:

(
Û (t) f0

)
(Γ) (10.5)at any later time t. Di�erentiating (10.5) with respet to time and using (10.1) yields

∂tf + div (Ff) = 0 . (10.6)This is the ontinuity equation in phase spae. As with every lassial probability urrent,from the ontinuity equation (10.6) follows that the phase spae �ow onserves the L1 norm:∫
f(t,Γ) dΓ ≡ 1 for all times t. In the speial ase of a Hamiltonian system (10.2), Eq. (10.6)redues to the Liouville equation ∂tf + {f,H} = 0. The onservation of the sympletistruture of phase spae (10.4) by the dissipative liquid bridge interation has the followingtwo onsequenes.1Physially, ollisions are di�erentiable w.r.t. time, albeit they may be approximated as disontinuity inphase spae to simplify simulations. Moreover, the system (10.1) inludes the phase spae evolution Γ = (x,p)of wet granular matter with disontinuous and �nite fores. When we ome to simulations, we will apply bothtime- and event-driven methods in this hapter.2The tangent spae dynamis is well-de�ned also for temporal disontinuities, suh as instantaneous olli-sions or bridge rupture events.



10.1. Balane Equations 209Conservation of Phase Spae Volume and Entropy ProdutionEntropy prodution is in the ontext of dynamial systems3 identi�ed with the logarithmirate at whih phase spae ontrats [76, 41, 118, 75, 89℄ aording to the Boltzmann formulafor entropy4. Dry granulates modeled by inelasti ollisions redue their phase spae volumein every ollision. However, for suh a dry model system with veloity-independent restitutionoe�ient (as disussed in Chap. 3) numerial results [156℄ showed no linear relation betweendissipation (in the sense of energy loss) and the phase spae ontration rate. The relationwas found in simulations [156℄ to be quadrati. Sine this quadrati relation was pointedout to be an open question in [156℄, it is brie�y remarked that the analyti explanation forthe quadrati relation between dissipation power and phase spae ontration rate, observednumerially in [156℄, is as follows. The dissipation power is proportional to ε2Tfoll(T ) indry granular matter with the restitution oe�ient ε, while phase spae shrinks linearly inthe momentum diretion aording to the ollisions: d ln detM/dt = εfoll(T ). Sine thetemperature was kept onstant by a Gaussian thermostat in [156℄, the quadrati relation ofdissipation power and phase spae ontration was observed as ε was varied.With wet granular matter aording to the apillary model we have a striking ounter ex-ample to the traditional expetation of a linear relation: The hysteri liquid bridge interationgives rise to well de�ned dissipation, while at the same time the phase spae volume is exatlyonserved.The onservation of phase spae volume follows5 from the determinant of Eq. (10.4),
detM(t) ≡ 1 , (10.7)so that a neighborhood of systems in phase spae may be strongly deformed by the timeevolution, but its volume remains onstant. For the ontinuous dynamis (10.1), phase spaeonservation is equivalent to6 divF = 0 , (10.8)i.e. the phase spae �ow is inompressible. Therefore the traditional term Ṡ�ow = −divF inthe general expression (5.61) for entropy prodution is absent in wet granular matter, andentropy prodution is exlusively due to the rupture and binding events7 (desribed by theterms in the seond line of Eq. (5.61)).3Systems whih use a Gaussian thermostats thermostat to reah a steady state under an external driving,suh as an eletri �eld ating on a Lorentz gas, are the lassial examples for phase spae ontration. Insuh systems the phase spae ontration is due to the ation of the thermostat.4Ṡ = −divF follows also as the speial ase of formula (5.61) in the absene of apillary bridges.5Eq. (10.4) implies |detM(t)| = 1, and it is always detM > 0.6The tangent spae dynamis follows from di�erentiating the solution Γ(t,Γ0) with respet to the initialstate Γ0 under usage of the evolution Eq. (10.1):Ṁ = (∇⊗ F) ◦M ,where the formal solution for the initial ondition M(0) = 1I isM(t) = TteR

t

0 dt′ (∇⊗F(t′,Γ)) .The symbols ◦ and ⊗ stand for matrix multipliation and the tensor produt respetively. The time orderingoperator Tt has to be applied if the matries ∇ ⊗ F(t,Γ) do not ommute for di�erent times t. Takingthe determinant, the time ordering operator drops out by virtue of the determinant multipliation theorem,
det(A ◦B) = det(A) det(B), yielding

detM = etr (∇⊗F) = edivF ,so that (10.7) is equivalent to (10.8).7Here we think for example of the freely ooling system in Chap. 6.



210 Chapter 10. Phase Transitions and Coexistene far from EquilibriumUnitarity of the Evolution in Phase SpaeFurthermore, the time evolution of the phase spae distribution, f(t,Γ) = Û (t)f0(Γ), is uni-tary, Û = Û †, beause we an pull F out of the div -operator in (10.6) by virtue of Eq. (10.8),whih allows us to rewrite the ensemble evolution as
∂tf = iL̂�ow(t,Γ)f , (10.9)with the Liouville operator L̂�ow(t,Γ) = i F(t,Γ) ◦ ∇. The evolution operator

Û (t) = Ttei
R t
0 dt′L̂�ow(t′,Γ) , (10.10)for the phase spae distribution is unitary with the Hermitian8 Liouville operator in theexponent9.10.1.2 The Pseudo-Liouville Operator for the Hystereti Bridge DynamisThe state (Γ,b) = ((x,p),b) of wet granular matter is extended by the liquid bridge status

b = (. . . , bij , . . . ) for all pairs (i, j) of partiles (f. 5.8). The mean apillary oordinationis K = 2|b|/N = 2
∑

i<j bij/N . The swithing of the binary status of the apillary bridges iselegantly desribed by an additional term, L̂b, in the pseudo-Liouville operator:
∂tf = iL̂f =

(
iL̂�ow + iL̂b) f . (10.11)The expliit form of the apillary operator is

L̂b =
∑

i<j

[
L̂ij,bind + L̂ij,rupt] , (10.12)wherein the bridge formation between partile i and j is triggered by

iL̂ij,bind = δbij ,0 |(vij , r̃ij)| θ(−vij, r̃ij) δ(rij − di/2 − dj/2)
(
b̂
(+)
ij − 1

)
. (10.13)(The supersript ∼ denotes the unit vetor, and (., .) is the salar produt.) The bridge isbroken by

iL̂ij,rupt = δbij ,1 |(vij , r̃ij)| θ(vij, r̃ij) δ(rij − di/2 − dj/2 − srit) (b̂(−)
ij − 1

)
. (10.14)The reation and annihilation operators for apillary bridges, b̂(±)

ij , are de�ned by the ation:
b
(±)
ij f

(
t,Γ, (. . . ,

0
1
, . . . )

)
= f

(
t,Γ, (. . . ,

1
0
, . . . )

)
. (10.15)8With one partial integration, we readily see:

〈g| L̂†�ow |h〉 = −i 〈g|
←−
∇ ◦F(t,Γ) |h〉 = i 〈g|F(t,Γ) ◦

−→
∇ + divF(t,Γ) |h〉 = 〈g| L̂�ow |h〉 .9If one wants to reover unitarity for inelasti granular gases [228, 121, 244, 27℄, the author suggests tointrodue an adapted salar produt 〈g|h〉 = R

gh γdΓ with a positive weighting funtion γ. To ompensate forthe phase spae ontration, divF < 0, the weighting funtion γ has to ful�ll the equation divF = −F◦∇ ln γ.The existene of a solution γ is not obvious.



10.1. Balane Equations 21110.1.3 Projeted Phase Spae DensityAs the �rst step towards a marosopi or hydrodynami desription of wet granular matterin terms of loal granular temperature, density, pressure, and �ow in spae, we are interestedin the spatial density and veloity of single partiles in the sample, instead of the detailedphase spae distribution. The distribution of a single partile (or a pair of partiles) derivesfrom the full distribution, f (N) = f , by integrating out N − 1 (respetively N − 2) partiles.This is a projetion of the high-dimensional N -partile phase spae density, f (N), onto theone- and two-partile distribution10 (denoted by supersript indies):
f (N)(t,Γ,b) →





f (1)(t,Γ1)

f (2)(t,Γ1,Γ2, b12)... , (10.16)Integrating the left- and right-hand side of the ensemble evolution (10.11) over the partiles
2, . . . N , yields the evolution of the single partile density11

(
∂t +

p1

m
◦ ∇x1 + Fext ◦ ∇p1

)
f (1)(t,Γ1)

+
∑

b12=0,1

∫
dΓ2 Fint(s12, b12) ◦ ∇p1f

(2)(t,Γ1,Γ2, b12) = 0 . (10.17)This equation is physially obvious: The �rst term represents the interationless motion ofa partile, whih may be subjet to some external fore, Fext, typially gravity. The seondterm in (10.17) takes pair interation into aount, whih is why it depends on the distribution
f (2) for pairs of partiles12. The partile separation13 is denoted by s12 as the argument of thepair fore Fint. The evolution equation (10.17) for the one-partile distribution f (1) does notdepend on higher dimensional distribution funtions (f (3), . . . ) provided 3- and many-body10The projetion of the detailed distribution f (N)(Γ) onto the N ′-partile level is given by the expetationvalue of N ′ δ-distributions:

f (N′)(t,Γ1, . . . ,ΓN′ ,b′) =

„

N ′

N

«

X

i1<i2<...

D

δb′,b∗′

i
δ(Γ1 − Γ

∗
i1) . . . δ(ΓN′ − Γ

∗
i
N′

)
E

f(N)with 〈. . . 〉f(N) :=
P

b∗

R

f (N)(t,Γ∗,b∗) . . . dΓ∗, the binomial for the Gibbs fator, b′ = (b′12, b
′
13, . . . ) beingthe bridge status on the left-hand side, and the permutated status b∗′

i = (b′i1,i2 , b′i1,i3 , . . . ) whih is summedon the right-hand side.11Eq. (10.17) for the one-partile distribution funtion is the �rst equation out of a series of N equationsforming the BBGKY-hierarhy (Bogoliubov (1937), Born (1949), Green (1949), Kirkwood (1935) and Yvon(1935)). The full hierarhy is equivalent to the high-dimensional evolution (10.11). Using the one-partileLiouville operator L̂(1) to abbreviate the �rst term in (10.17), we have
(∂t − iL̂(1))f (1)(t,Γ1) +

X

b12

Z

dΓ2 F2→1 ◦ ∇p1f (2)(t,Γ1,Γ2, b12) = 0 .We write F2→1 = Fint for the two-body fore ating on one partile. The N ′-partile equation of the BBGKY-hierarhy has the analogous form,
(∂t − iL̂(n))f (N′)(t,Γ1, . . . ,Γn,b′) +

X

Z

dΓn+1 Fn+1→n ◦ ∇(p1,...,pn)f
(N′+1)(t,Γ1, . . . ,Γn+1,b

′′) = 0with b′′ = (b′, bN′+1,1, . . . bN′+1,N′).12In the limit ase of hard-ore potentials Eq. (10.17) redues to the Boltzmann equation as the seond termbeomes the ollision integral.13As done throughout this thesis, it is appropriate to use the partile separation s instead of the enterdistane r, sine s is the relevant length for the apillary bonds.
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Figure 10.1: The ontributions from neighbors with and without bridges to the two-partiledistribution f (2)(t,Γ1,Γ2) = f (2)(t,Γ1,Γ2, 0) + f (2)(t,Γ1,Γ2, 1) give rise to two di�erent pairorrelation funtions.fores are absent. This is ful�lled beause the amount of wetting liquid whih we add to thegranulate does not allow for objets more omplex than `binary' liquid bridges. Fluoresentmirosopy and tomography studies of wet granular matter at rest show that the formation ofapillary objets onneting three partiles sets in when the loal volume fration of the liquidphase exeeds W = 2% w.r.t. the total jammed volume14 [197℄. Three-partile interationwill be further suppressed in the �uidized or gas state. The experiments and simulations thatwill be disussed in this hapter were done with liquid volume frations between W = 0.15%and W = 1.0%. This is why there is no f (3)-term in (10.17).10.1.4 Hystereti Enskog Correlation for a Closed Evolution EquationThe seond step to a ontinuum desription uses the hypothesis of `moleular haos', whihis the assumption that the initial veloities of olliding partiles are independent,

f (2)(t,Γ1,Γ2, b12) = g(s12, b12) f
(1)(t,Γ1) f

(1)(Γ2) . (10.18)This lassial assumption is frequently used for hard sphere �uids and granular systems (forinstane p.134 in [27℄). At the present stage in this thesis, we are in the bene�ial situationthat the omputation of the Kolmogorov-Sinai entropy15 in Chap. 5 has shown that the timesale for orrelations to be smeared out by haos is indeed set by the ollision frequeny: theKolmogorov-Sinai entropy hKS was found to be greater than the partile ollision frequenymultiplied by the number of partiles.Furthermore, Chap. 7 was devoted to the omputation of the isotropi pair orrelationfuntion16 g(s12, b12) by taking the bond status and the hystereti interation into aount.Therewith, we have all information at hand to insert expression (10.18) for the pair distri-bution into the evolution equation (10.17), to arrive at a losed equation for the one-partile14The range of the liquid ontent W for the apillary pair interation is disussed in the introdution to theEquation of State in Chap. 7.15The omputation foused on the positive Lyapunov exponents in veloity spae, whih orrelations arehere onsidered.16The hystereti pair orrelation derived for the Equation of State is atually more detailed: the sign of theradial relative veloity is a further argument of the funtion. This detailed orrelation is neessary to omputebinding and rupture frequenies.
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(
∂t +

p1

m
◦ ∇x1

)
f (1)(t,x1,p1)

+


Fext(x1) + n(t,x1)

∑

b12=0,1

∫
dvol(x2) Fint(s12, b12) g(s12, b12)

◦∇p1f
(1)(t,x1,p1) = 0 . (10.19)The hystereti orrelation funtion
g(s12, b12) = δb12,0 g

u(s12) + δbij ,1g
b(s12) (10.20)generalizes the Enskog fator, whih aounts in the dry limiting ase for exluded volumee�ets. We are onerned with a funtion over the apillary interation length in wet granularmatter, instead of the fator of the ontat value. The loal partile density

n(t, r) =

∫
f (1)(t, r,v) dv (10.21)an be expressed equivalently by the dimensionless oupied volume fration φ, and the fun-tions gu/b(s12) depend on φ and the granular temperature T . The omputation of the pairorrelation in Chap. 7 overed the full density range.10.1.5 The Hydrodynami FieldsLoal hydrodynami �elds follow by averaging over the partile veloities,

〈. . . 〉v (t, r) :=

∫
dvf (1)(t, r,v) . . .

n(t, r)
. (10.22)Therewith, the nonequilibrium distribution funtion f de�nes the loal �ow u and the loal(granular) temperature T :

u(t, r) = 〈v〉v (t, r) (10.23)
T (t, r) =

m

D

〈
(v − u)2

〉
v

(t, r) . (10.24)The loal energy density ǫ(t, r) is the sum of the kineti omponent, ǫ(t, r) = n(t, r) D T (t, r)/2,and the apillary energy density
ǫb(t, r) =

n2(t, r)

2
Fb ∫

0<s<srit s gb(s) dvol(s) . (10.25)The detailed pair orrelation funtions gu and gb (whih di�erentiate neighbors with andwithout apillary bond) have been derived in the Eqs. (7.58) and (7.59) in Chap. 7. Therewe omputed analytially as well the isotropi stress tensor σ = σkin + σfore = −P1I in theabsene of shear fores in Eq. (7.74).The balane equations for mass, momentum, and energy follow from the evolution equation(10.17) of f (1) (f. e.g. [26℄ or pp. 168-174 in [27℄):mass ∂tn+ div (un) = 0 (10.26)momentum ∂tu + u ◦ ∇ru =
divσ
nm

+
Fext
m

(10.27)energy Dn

2
(∂tT + u ◦ ∇rT ) + divq + (∂t + u ◦ ∇r) ǫb

= σkin : ∇ru + Pinj − Pdiss (10.28)
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Figure 10.2: Unsaled experimental data. To reveal the in�uene of the surfae tension of thewetting liquid, the author measured the onset of the oexistene with water and n-nonane asthe wetting liquids. First, we see that the phase segregation is a vertial line orrespondingto a de�ned energy sale mv2/2 with the wall veloity v. Seond, the transition is shifted tohigher veloities as the surfae tension is inreased.In the balane of energy (10.28) the bridge energy has been added. The olon denotes theprodut between seond rank tensors (i.e. ontrated twie), and the term where it appearsdesribes shear indued heat.10.2 Stationary States of Wet Granular MatterThe ase of free ooling on the mean-�eld level17 was studied in Chap. 6:momentum: homogeneous pressureenergy: Dn

2
∂tT + ∂tǫb = −Pdiss .In this hapter we are interested in the steady nonequilibrium states, so that all termswith time derivatives drop out in (10.26)-(10.28). Motivated by the numerial observation ofthe �uid/gas transition in 4.5, we pursue this predition of a disontinuous nonequilibriumtransition experimentally, as reported here. Simulation results are presented in the Ses. 10.3-10.5 The ontinuum model will be solved in 10.6 to follow the experimental setup.As a well-de�ned granular system, spherial glass beads with 6% polydispersity in diameterwere hosen. Di�erent wetting liquids were added to the dry partiles and well mixed. A wideylindrial ontainer (glass petri dish) was used to hold the granular material in order toeliminate side wall e�ets. In this geometry, energy is injeted by the bottom and top plateand not by the tangential motion of side walls, whih are e�etively shifted `to in�nity'. This17The analyti model for the free ooling distinguished the gap lengths and bridge lengths as the only spatialdependenies.



10.2. Stationary States of Wet Granular Matter 215emulates the driving by the two end points in 4.5, yet here we have the additional lateraldimensions. When the ontainer was set in osillatory vertial motion, z(t) = A cos(ωt), thegranulate was driven into a nonequilibrium state. The ontrol parameter is the dimensionlesspeak aeleration, Γ = Aω2/g, where g is the aeleration. For Γ below and around one, thegrains remained �xed at all frequenies, representing a solid ondensed state. Fluidizationours at a threshold aeleration, Γsf, whih manifests itself by the onset of a mild movementof the grains, as revealed by diret visual inspetion. Various wetting liquids (ontat anglebelow 10 degrees) were used as additives. As it was shown before in [114℄, the attrativeinteration exerted by apillary bridges between spheres gives rise to an inrease of Γsf, whihis proportional to the apillary fore at ontat, F0 = 2πRγ cos θ. R is the radius of thegrains, γ is the surfae tension of the liquid, and θ is the ontat angle [237, 196℄. Con�rmingthe measurements in Chap. 8 and [196℄ of the �uidization point in very di�erent drivinggeometries, Γsf was found to be largely independent of frequeny, as long as the latter wasnot too small. This is shown in Fig. 10.2 by the square data points, whih form a horizontalline, with the highest and lowest frequeny indiated.At higher partile veloities, however, a ompletely di�erent behavior was observed. Whenthe amplitude was inreased above a ritial value, a situation as shown in Fig. 10.3A emerges.One learly observes phase separation into a dense `�uid' phase and a `gaseous' bubble o-existing with it. The bubble is found to wander around in the ontainer, whih shows thatthis phenomenon is not driven by a lateral inhomogeneity in the exitation amplitude, butis intrinsi to the system under study. The olor ode in Fig. 10.3B, whih was obtained byoptial autoorrelation of the images, shows the large di�erene in the `granular temperature'(i.e. 2/3 of the average kineti energy of the grains) between the gaseous phase and the densephase. If the amplitude is further inreased, a homogeneous gas phase emerges whih �lls theontainer homogeneously.It is enlightening to plot the loi of the observed transitions in the plane spanned by thepeak aeleration, Γ, and the peak veloity, v = Aω, of the ontainer walls (bottom and lid).The ontainer veloity v an be envisaged to set the sale for the kineti energy injeted intothe system, and serves as a seond ontrol parameter. The experimental result is shown inFig. 10.2. While the transition from the solid to the �uid phase is desribed by the almosthorizontal sequene of blue squares, we see that the onset of the oexistene falls on vertiallines, depending on the wetting liquid hosen. The phase separation transition is thereforedetermined by a de�ned veloity v or energy m
2 v

2 (where m is the mass of an individualglass bead). This is in lear ontrast to the ritial aeleration Γsf whih is assigned to the�uidization transition. It is remarked that all data are taken for driving amplitudes well belowthe partile size, so that partile motion remains stohasti and ouples losely to the veloitysale set by driving, instead of the ballisti deoupling whih sets in at high amplitudes (f.lower right orner in Fig. 10.2).We sale the ontainer veloity v in Fig. 10.4 with respet to the harateristi veloityat whih the rupture energy of the liquid apillary bridges, Eb ∝ R2γ
√
w (f. Eq. (3.10)in Chap. 3 and [144, 158, 203, 114℄), equals the kineti energy sale. w denotes the liquidontent of the sample de�ned as the volume of the added liquid divided by the total volumeof all glass spheres18. We thus used the quantity v∗ = v

√
m/2Eb as the absissa. Theperfet mathing of the data obtained for water (losed) and n-nonane (open), the surfaetension of whih is by a fator of three smaller19 than that of water, strongly suggests that18In ontrast to the apital W whih is de�ned in this thesis and the literature on wet granular matter asthe liquid volume divided by the total volume of the jammed granulate19The surfae tension of pure water at room temperature is 71.99 mN/m, and 22.85 mN/m for nonane, sothat these signi�antly di�er. In ontrast their (shear) visosities are low, very similar (η ≈ 0.8 mN s/m2),and have been shown in Chap. 3 not to in�uene the wet granular dynamis.
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Figure 10.3: Gas bubble nuleation. (A) Top view of the experimental setup at high exitation.In the middle of the sample, a large gas bubble is learly visible, while the outer part is �lledwith a ondensed �uidized phase. (B) Same snapshot as in (A) but olored using temporalautoorrelation of the digital image. The olor sale extends from blue (slow movement) tored (fast movement). (C) and (D) show snapshots of event-driven simulations in 3D, at early(C) and late (D) stages. The olor odes the kineti energy of the individual grains, similarto (B). The shadow aounts for the areal density of the partiles.
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Figure 10.4: Phase diagram of wet granular matter far from equilibrium. (A) Experimentalphase diagram of the system (R = 850µm, w = 0.41%, the spheres oupy one third of theontainer volume). The lower right is not aessible to our apparatus. The data for water(losed, Eb = 21nJ) and nonane (open, Eb = 6.6nJ) ollapse when saled with the apillaryenergy Eb, whih is proportional to the surfae tension of the wetting liquid (Measurementsof the single bridge energies are desribed in Chap. 3). The inset shows the dependene on thesurfae tension as a result from diret simulations. We observe that the transition lines salepreisely with the bridge energy Eb. A best �t of the fators of proportionality yields m
2 v

2 =
(1.52 ± 0.02)Eb for the transition to the pure gas (squares) and m

2 v
2 = (1.00 ± 0.09)Eb forthe �uid/gas oexistene (irles). (B) Phase diagram out of simulations with 1 200 partilesin 2D. The horizontal boundary of the solid phase is learly obtained, as well as the vertial�uid/gas boundaries whih are also seen in the experiment. The insets show the hysteretiinteration `potentials' hosen (dotted: approah; solid: retrat).
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Figure 10.5: Snapshot of moleular dynamis type simulation of 1 200 partiles at parameterswhere �uid/gas oexistene ours (box at the top). Blue grains have at least one liquidbridge, red grains have none. Main panel: Plot of the granular temperature (red urve)and the paking density (blak urves) on the same sale as the simulation box above. Thetemperature varies laterally over two orders of magnitude, being high in the gas, but very lowwithin the �uid plug. The density pro�le is also shown for event-driven simulations (dashedblak urve). The inset shows the solution of the ontinuum model.our saling of v with respet to the rupture energy is appropriate. Figure 10.4 furthermoreontains the transition line where the oexistene (white) terminates into the homogeneousgas (red). Solid states are indiated in gray and the domain of the �uid phase is shown inblue. In short, the solid/�uid transition is determined by the apillary bridge fore, while the�uid/gas transition is determined by the apillary bridge energy.10.3 Simulated Phase Diagram and the Hystereti InterationIn order to demonstrate the essential role of the apillary bridges, we perform moleular dy-namis type simulations with ideally spherial, fritionless partiles20. The attrative pairwisehystereti interation `potential'21 illustrated in the right-hand inset of Fig. 10.4B models theapillary bridges (dotted: approah; solid: retrat). A gravitational fore ating in the vertialdiretion is inluded. The liquid ontent per grain was assumed to be the same everywhere.This is justi�ed from the experimental observation in Chap. 3 that the liquid inside the apil-lary bridge redistributes quite evenly on eah sphere after the rupture of the bridge. At the topof Fig. 10.5, a snapshot of a two-dimensional stationary state is shown. It is learly seen thatthe simulation produes a dense plug as well as a gaseous region, whih are in oexistene witheah other. In the main panel of Fig. 10.5, the density as well as the granular temperature Tin units of the rupture energy are plotted as a funtion of the lateral oordinate, on the same20Partile ollisions are omputed aording to the Hertz fore, Eq. (3.1), with the measured Young modulusof glass spheres inserted. Sine the ontat time and the time sale set by apillary osillations di�er by morethan �ve orders of magnitude, the integration algorithm adapts the time-steps.21The linear `potential' is what is referred to as the Minimal Capillary model [114℄ throughout this thesis,as introdued in Chap. 3.
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Figure 10.6: The �ve stationary states of wet granular matter under vertial agitation. Snapshots of 2D simulation (using the time-driven method) are shown. Partiles without apillarybonds are shown in blue, those with at least one apillary bond (either shared with anotherpartile, or to the wall) are given a red olor. The lines to the left indiate the topology inthe isohori phase diagram for diret transitions. The two states of oexistene (�uid/gasand solid/gas) do not share a transition line in the plane spanned by the external drivingparameters.sale as the simulation box above. The granular temperature is found to vary over two ordersof magnitude. This learly demonstrates that the observed phenomenon is by no means akinto oexistene between thermodynami phases, but is an intrinsially nonequilibrium state.Figure 10.4B shows the phase diagram as obtained from the simulations, in the same planeas the experimental results in Fig. 10.4A, but on log/linear sale to better reveal the details.We learly see the horizontal line separating the solid from the �uid phase, augmented by asolid/gas oexistene at higher v. This peuliar phase is related to the strength of the bridgefore, whih is in simulations and the experiment four times higher than the gravitationalfore Fg of a single partile. With the strength of the apillary fore, the partiles of the solidphase are virtually glued to the bottom plate. Snapshots of the �ve di�erent stationary statesof wet granular matter under vertial driving are olleted in Fig. 10.6.As found in the experiments, the vertial transition line delimiting the �uid state is veryprominent, showing to its right the oexistene of a gas phase and a granular �uid. Theoexistene region terminates abruptly at some larger ritial veloity, giving way to a ho-mogeneous gas-like state. In the orresponding transition line, a bulge is loated where theexitation amplitude A equals the rupture length srit of the apillary bridges. It may bequalitatively understood that this leads to some extra dissipation at the ontainer walls, andtherefore shifts the transition to higher driving veloities. Unfortunately, saling the simula-tion parameters aording to the experimental onditions22 reveals that this bulge is slightlyout of the range aessible to our experimental setup. It ould therefore not be observedexperimentally so far.22The position of the bulge is loated at the intersetion of the oexistene/gas transition line and the urvede�ned by the equivalene of the driving amplitude A and the rupture length srit. The latter ondition, A = scis a parabola in the Γ-v-plane. Sine the oexistene/gas transition is shifted to higher driving veloities bythe inelasti ollisions, the bulge is shifted to aelerations beyond 100 g in the experimental system, whihare unreahable for our equipment. Note the simulated phase diagram is for two dimensions.



220 Chapter 10. Phase Transitions and Coexistene far from EquilibriumIn the inset of Fig. 10.4A, we replotted the oexistene region in the plane spannedby the `wall temperature' and the apillary bridge energy. We resaled them as Ẽkin =
1
2mv

2/(Fgsrit) = v2/(2gsrit) and Ẽcb = Eb/(Fgsrit), respetively. The aurate linearsaling of the transition points shows that this e�et depends exlusively on the apillaryinteration, while the gravitational energy sale naturally separates out, in ontrast to drygranulates [103℄. The only marked di�erene between the simulation and the experiment isthat the energy-driven transition to oexistene ours at a saled veloity around one in theformer, but around eight in the latter. This an be shown to be due to inelastiity of the glassbeads used in the experiments. Their restitution oe�ient, as determined experimentally forpartile-wall ollisions, was found to be ε ≈ 0.90± 0.01 . Inluding this inelastiity (ε < 1) inthe simulations, we observed that the transition lines are shifted to higher driving veloitiesby a fator of 2.7 in 2D, and a fator of 5.5 in 3D. Qualitatively, the phase diagram remainedunhanged. In view of the neglet of tangential frition in simulations, the agreement betweenthe simulation and the measurements is remarkable. In addition, the harateristi Y-shapeat the oexistene region, as seen in the experiment, is very reminisent of the struture foundin the simulation results.In earlier experiments, where agitation was applied to mixtures of glass beads in ompletelydi�erent settings, evidene was found for a qualitative transition in the dynamial behaviorof the material [191, 98℄, whih seemed to be driven by the energy injeted into the samplerather than by aeleration. The orresponding energy sale was shown to be set by therupture energy, Eb [114, 98℄. The present results strongly suggest to identify this transitionwith the vertial lines in Fig. 10.4A and B.10.4 Order Parameters to Detet the Transition LinesThe position of the transition lines in the phase diagram 10.4B an be based on visual in-spetion, sine the snap shots of the states (f. Fig. 10.6) have a very distint appearane.However it is preferable to de�ne order parameters suited to this dynamial system.10.4.1 An Order Parameter for Phase Coexistene
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∆nb = maxnb − minnb . (10.29)Figure 10.8 shows its appliation within a setion of the phase diagram (f. the blak arrow inthe inset indiating the setion). As we move from �uid to oexistene, the order parameterhanges disontinuously. It is remarked that the granular temperature is also disontinuousupon rossing this transition line. A step in the temperature as funtion of the driving veloitywas also found in Fig. 4.11 of Chap. 4 at the �uid/gas transition in the one-dimensionalsystem. Of ourse a state of oexistene has been impossible in 1D where there is no lateralextent for phase separation. Here a remark on the typial granular temperatures of the wetgranular �uid is in order. For the one-dimensional system we found (f. Fig. 4.11) thatthe granular temperature is T = (2.8 ± 0.2)Eb lose to the �uid/gas transition. For thegranular temperature in two dimensions, this limit at the transition line separating �uid to�uid/gas oexistene is remarkably independent of Γ with the value T = (2.9 ± 0.1)Eb. Wetherefore have also a remarkable independene with respet to the dimensionality. As thedriving veloity is further inreased in the two-dimensional system, we traverse the transitionline to the pure gas state, where the order parameter ∆nb rapidly drops to zero.10.4.2 A Dynamial Order Parameter for Fluidization and SublimationBefore melting, the mildly exited, still solid state has a high ollision frequeny with dis-plaements far below the partile diameter. The breaking of the solid granular state (notneessarily but preferably in the ase of wet granular matter) is haraterized by the onset23The bridge density n is �rst averages over the z-diretion of gravity, so that ∆nb = 0 for a laterallyhomogeneous system, whih ould without z-projetion be perturbed away from zero by the vertial densitygradient under gravity.
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Figure 10.9: Delaunay triangulation de�nes a dynamial order parameter. First the partilepositions are triangulated to have a valid set of Delaunay triangles. It is important that tri-angles lose to degeneration (having an angle below 10◦) are dropped. This prevents spuriousontributions from the wall ordering. An event of loation hange is de�ned by the �ippingof a triangle.
Figure 10.10: Example taken at the interfae of the solid/gas oexistene for a Delaunaytriangulation, whih is sensitive to the loal relative partile motion. (Partiles are given ared olor if they have a apillary bond.)of partile motion, whih is strong enough to allow the partiles to reorder. The followingmethod has been implemented to quantify this transition.The enter positions of the grains are Delaunay triangulated at time t1. The Delaunaytriangulation aptures information about the relative position of loal groups of three24 parti-les. Under the evolution of the dynamial system, the loal order of the partiles may hange.This is preisely what we want to detet, for example, at the onset of �uidization. The loalreordering auses a triangle, de�ned by the moving partile enters, to �ip its orientation.This is illustrated in Fig. 10.9. The dynamial order parameter is de�ned as the frequenyof these loal reordering25 events and denoted by flo. It gives us the rate of loal on�gu-ration hanges. Note that the Delaunay ondition26 for the triangulation is violated beforethe orientation of a triangle �ips. After suh an event, the triangulation bonds are updatedto form again a valid Delaunay triangulation. Figure 10.10 gives an example of suh a trian-gulation at the �uid interfae when sublimation ours (the fourth state in Fig. 10.6). Theritial aeleration is learly marked by the sudden rise of flo, whih is shown in Fig. 10.11for a setion of onstant driving veloity (indiated by the blak arrow in the inset). As thesublimation of wet granular matter sets in, flo takes on positive values (with an apparentlynon-analyti dependene on the driving parameter Γ). Upon rossing the transition line tothe homogeneous �uid, flo disontinuously drops to a onstant value. The fat that flo isonstant, while the shaking frequeny f is inreased, is due to the onstany of the granulartemperature, T ≈ 3Eb, mentioned above for this �uid regime.10.5 Universality with respet to the Fore LawIn order to investigate whether the observed behavior is of appreiable universality, we variedthe potential used in the simulations. In Fig. 10.4B, the irles represent simulations assum-24Indiretly, the existene of a Delaunay triangle also depends on a fourth partile, beause of bond �ipping.25It is noted, that in a dense glassy state, this frequeny might be related to the age breaking frequeny.26A valid Delaunay triangulation has no partile enter within the irumirle of any triangle.
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critFigure 10.12: The di�erene of the potentials ((A) linear and (B) square well) appliablefor the (A) time- and (B) event-driven simulation tehnique, is demonstrated for the motionof a bound 2-partile state. In the square-well potential, the mean partile separation isindependent of the binding energy. Sine partiles at high densities move loally withoutbinding fores, the solid state melts at lower driving fore in Fig. 10.4B. This is the onlymarked di�erene ompared to the Minimal Capillary model (A). In general, an event-driventehnique requires the trajetory to be pieewise integrable, so that the time for the nextevent an be predited analytially. This is not ful�lled for non-vanishing pair fores betweenmore than two partiles (f. also the disussion in 5.7.1).
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Figure 10.13: A seond shape of the oexistene in the �at three-dimensional system. Insteadof the irular shape (f. Fig. 10.3C), the oexistene spontaneously breaks the four-foldsymmetry of the simulation domain (with periodi boundaries). In about one out of threeases, starting with the homogeneous initial gas state, the system enters a stable stationarystate as shown. The �uid phase (blue) is elongated aross the system length. This behavioris very reminisent to what one would expet in a desription in terms of interfaial tensionas a loal minimum in on�guration spae. However it is emphasized that the notion of a freeenergy does not exist for suh a state far from thermal equilibrium.ing a onstant apillary fore upon retration (right-hand inset), the squares were obtainedassuming a box-like retration potential, representing the limiting ase of a delta-funtionfore loated at the rupture distane (left-hand inset). As the �gure learly shows, even theseextreme ases give almost idential results. The only marked di�erene is in the position ofthe solid/�uid transition at small driving veloities, whih is expeted due to the vanishingontat fore F0 for the box-like potential. The di�erene in the pair dynamis is illustrated inFig. 10.12. All other details do not depend ruially on the interation harateristis, asidefrom their hystereti dissipation with a de�ned intrinsi energy sale Eb.A partiular signi�ane of the square-well potential is that it leads to vanishing foresexept for a set of zero measure on the time axis. This enables event-driven simulations, whihare muh more eonomi in omputational power than the full integration of the equation ofmotion. For the square-well potential, we an thus perform simulations with very many par-tiles, and in three dimensions. A three dimensional simulation at parameters orrespondingto �uid/gas oexistene is shown in Fig. 10.3C. The similarity with the experimental resultsdisplayed in Fig. 10.3B is obvious. As we let the bubble of Fig. 10.3C expand to system size,it �nally reahes the boundaries of the box. Due to the periodi boundary onditions, this



10.6. The Continuum Solutions 225orresponds to a diamond-shaped ondensed region entered at the orner between four adja-ent replias of the simulation boxes. Fig. 10.3D shows the situation somewhat later. Clearly,the diamond shaped ondensate region has rounded to a irular spot, strongly suggesting thepresene of an interfaial tension. Further evidene for the existene of an interfaial tensionfollows from a seond stable shape of the oexistene far from equilibrium, whih is shown inFig. 10.13. The plot at the top presents the loal density, with the orresponding snapshot ofthe granular bed underneath, and the energy olor ode for partiles as before. Here the �uidphase happened to ondense out of the initial gas state, suh to interat with itself arossthe periodi boundaries in one diretion. This on�guration is very reminisent to what onewould expet as the loal minimum of a free energy � if it existed. It appears therefore asan interesting future topi of researh to investigate this, sine interfaial tensions are usu-ally de�ned as equilibrium free energies, whih ertainly does not apply here. Note also thatthe di�erene between the solid (full integration) and the dashed (event-driven) blak urvein Fig. 10.5 shows that there is a minor in�uene of the fore law on the struture of theinterfaial pro�le.10.6 The Continuum SolutionsLet us try to understand our �ndings in a more general framework. From the `traditional'onditions invoked for the desription of equilibrium phase transitions, only the homogeneityof the lateral pressure arries over to driven steady states, due to the required fore balaneat the phase boundaries. In ontrast, the familiar uniformity of temperature was observedto break down. In what follows, we ask for the mehanism by whih the lateral translationsymmetry of the initially homogeneous system is broken, and how the system �nds its steadystate within the broken symmetry.It is su�ient to onsider one lateral setion of the system. Let us denote the horizontaland vertial axes by x and z. Mehanial stability requires the lateral tension, σxx, to beonstant aross the phase boundary, beause the fore on eah volume element vanishes inthe steady state (f. the balane equation (10.27)):
−fx = ∂xσxx + ∂zσzx . (10.30)The stress tensor is diagonal beause all fores at radially between the partile enters andthere are no marosopi (onvetive) �ows that ould give rise to shear fores in this system.Hene, σxx = onst. in the entire system, as on�rmed diretly by simulations. In the region

Γ ≫ 1 of the phase diagrams in Fig. 10.4, where the �uid/gas oexistene takes plae, gravity isnegligible so that the system is homogeneous in the z-diretion. The simulations show indeedthat the orthogonal omponent, σyy, losely follows σxx, so that we an use the isotropiEquation of State of Chap. 7 for the global (homogeneous) pressure P (φ, T ) = (σxx + σzz)/2to relate the loal density
φ(x) = φ(T (x), P ) (10.31)diretly to the granular temperature T (x) for a given system pressure P .Based on the experimental and simulation results, we are interested in stationary solutionsof the ontinuum desription without onvetion, u = 0, whih dramatially simpli�es thebalane equations (10.26)-(10.28): the heat equationdivq = Pinj − Pdiss (10.32)



226 Chapter 10. Phase Transitions and Coexistene far from Equilibriumremains to be solved. For simpliity we assume that heat transport (in the x-diretion) is dueto partile ollisions desribed by the Fourier law
q = −κE ∂xT (10.33)with the Enskog expression27

κE =
2vth
dg (1 + 3gφ+

(
9

4
+

4

π

)
(gφ)2

) (10.34)for the thermal ondutivity κE(φ, T ) = κE(φ(T, P ), T ), where we insert the Equation of Stateto replae density in favor of pressure (10.31). When the veloity distribution is su�ientlylose to a Gaussian we have the thermal veloity sale vth = v θ(v) =
√

T
πm , whih enters(10.34), as well as the frequenies for bridge binding and rupture. With suh frequenies weevaluate the right-hand side of (10.32).10.6.1 The Energeti SinksThe power density of dissipation, Pdiss in (10.32), is due to the loal rupture events of apillarybridges. There are apillary bridges between partiles, and furthermore bonds to the drivingwalls:

Pdiss = P
(pp)diss + P

(pw)diss . (10.35)We assume in simulation as well as the ontinuum desription, that the rupture of bothkinds of bridges gives rise to a hystereti loss Eb in potential energy. The partile-partiledissipation is
P

(pp)diss = nEb frupt/2 , (10.36)wherein frupt is the rupture frequeny per partile. To �nd the rupture frequeny per volumewe have multiplied by the partile density n in (10.36), and there is a fator 1/2 sine onebridge is shared by two partiles. Expliit formulas for the partile frequenies under thehystereti pinh-o� dynamis were derived in the ontext of the Equation of State with theresulting Eqs. (7.44) and (7.43):
frupt =

〈
L̂12,rupt〉 = 2D+1D vth φ

d
gb→©r γvol(srit) . (10.37)The appearane of the pair orrelation fators at rupture is also evident from the δ-funtionsin the orresponding pseudo-Liouville operator (10.14). The partile-wall dissipation followsanalogously with the partile-wall pair orrelation28. Sine partile-partile dissipation isquadrati in the density, the linear wall dissipation dominates in the gas state.10.6.2 The Energeti SoureEnergy is injeted into the system by the wall motion in the vertial z-diretion. The z-omponent of wall and partile veloity are denoted by vw and vj (with the partile index

j), respetively. The partile-wall separation of the partile j is denoted by sw,j. Then the27κE is written for D = 2 so that we have an ordinary di�erential equation after averaging the z-diretion,and an ompare with the simulations.28Sine we average over the z-diretion, the units of partile-wall and partile-partile dissipation are equalafter multiplying the latter with the system height.



10.6. The Continuum Solutions 227pseudo-Liouville operator for the partile-wall ollisions is (for the wall at the bottom and
vrel,j = vj − vw):

iLw =
∑

j

|vrel,j| θ(−vrel,j) δ(sw,j)
(
b̂j(vw) − 1

)
. (10.38)The operator b̂j(vw) reverses vrel,j = vj−vw (the partile veloity in the instantaneous inertialframe of the wall), so that the energy of the partile hanges by ∆Ej =
(
b̂j(v) − 1

)
mv2

j/2 =

2mvw(vw − vj), whih is negative when the wall moves outwards as seen from the system,
vw < 0. The ensemble average gives the injeted power per wall area:

Pinj = 〈iLwE〉 = ngwall ∫ v

−v
dvw ϕw(vw)

∫ vw
−∞

dvj f(vj) 2vw(vw − vj)
2 . (10.39)The upper integration limit in the seond integral is due to the absene of a ollision whenthe partile is faster than the wall. The �rst integral depends on our driving parameter

v, whih is the maximum wall veloity on the horizontal axis of the phase diagram. Thepartile-wall ontat orrelation originates from the δ-funtion in the Liouville operator andwe approximately related it to the known partile-partile ontat orrelation g by Eq. (7.8).The partile and the wall veloities are assumed to be independent with Gaussian partileveloities. The wall veloity is distributed aording to the sinusoidal motion with peakveloity v:
ϕw(vw) =

1

π

1√
v2 − v2w . (10.40)The double integral (10.39) an be performed analytially with the result

Pinj =

√
2T

πm

ngwallmv2

3
e−mv2/4T

×
[
(3 +mv2/T ) I0

(
mv2

4T

)
+ (1 +mv2/T ) I1

(
mv2

4T

)]
. (10.41)(Ij are the modi�ed Bessel funtions.) The power injeted into the system, Pinj = Pinj(T, v),is a funtion of the granular temperature, after eliminating the density dependene with theEquation of State.10.6.3 Stable SolutionsFor a stable phase, the power injeted into the system from the osillating walls, Pinj, must bebalaned at eah lateral position within the sample by dissipation, Pdiss. Assuming a ertainveloity distribution for the grains both quantities an be evaluated as shown above. Aftereliminating density by virtue of the equation of state, the net power ∆P (T ) = Pdiss−Pinj anbe obtained as a funtion of temperature.Figure 10.14 shows the result obtained using the Gaussian veloity distribution (as de-sribed in Se. 10.6.2), displayed for three values of the saled peak veloity, v∗. For v∗ < 0.83,we obtain just one stable (i.e. positive slope) zero, whih is at low temperature. It orrespondsto a moderately dense state, whih has just enough free volume for the ritial separation sritto be exeeded frequently enough to balane the injeted power, Pinj. Any drop in the tem-perature would inrease the density, implying a derease in rupture frequeny, suh that thesystem would reheat. On the other hand, for v∗ > 1.49, we have again only one stable zero,
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Figure 10.14: Plot of the net power, ∆P = Pdiss−Pinj, as a funtion of the granular tempera-ture. Depending on the saled peak veloity v∗ of the ontainer boundaries, we obtain eitherone (ases drawn in blue and red) or two (blak urve) stable zeros, orresponding to a singlephase or two-phase oexistene respetively. The arrows denote the response of the systemto small �utuations. The inset is the integrated e�etive nonequilibrium potential.
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0.83 1.49Figure 10.15: Sketh of the stable (solid) and unstable (dotted) solutions of ∆P (T ) = 0.Aording to this simpli�ed desription, the transition from the �uid to the oexistene stateis subritial and therefore disontinuous in the granular temperature T as a funtion of theontrol parameter v∗.
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Figure 10.16: Stationary solution of the balane equations. (A) The net power as a funtionof spae. Injetion and dissipation is balaned inside the homogeneous phases. (B) The heaturrent in the system.but this orresponds to a high temperature. It represents a dilute phase, the temperatureof whih is determined mainly by the balane of the energy uptake from the motion of theboundaries with the dissipation due to the `wet' impats with them.At intermediate veloities (blak urve in Fig. 10.14), two stable zeros (blak irles)are obtained, one for low and one for high temperature. This is to be identi�ed with the�uid/gas oexistene observed in the simulations as well as in the experiments for intermediateveloities. Sine this ontinuum theory does not take gravity into aount, it is intrinsiallyindependent of the parameter Γ used in Fig. 10.4, and thus orresponds to the vertial linesin the phase diagram. The mean-�eld model predits the oexistene in the stripe 0.83 <
v∗ < 1.49 of the phase diagram, whih ompares quite favorably with Fig. 10.4B for Γ ≫ 1(where gravity is irrelevant) given the rudeness of the involved assumptions. Before we takethe thermal oupling between the oexisting phases into aount, it is remarked that the setof solutions of ∆P = 0, skethed in Fig. 10.15, has the harateristi shape of a subritialtransition.The solutions of the ontinuum model for the driving parameter in the range of oexistene,show that the net power is very losely balaned within eah phase, but not at the �uid/gasphase interfae, as we see in Fig. 10.16A. The orresponding heat urrent, from the gas into the�uid phase, is shown in Fig. 10.16B under periodi boundary onditions as in the simulation.10.6.4 Comparison of Analyti and Simulation ResultsFrom the solution of the heat equation T (x), we an infer with the equation of state theloal paking density φ(x). The result is inluded as inset in Fig. 10.5 and shown besides thetime-driven simulation result in Fig. 10.17 (panel (A1) ontinuum model, (B1) simulation).The simulation shows broader phase boundaries beause the stationary state exhibits someadditional osillatory motion of the �uid plug embedded in the granular gas atmosphere, andthe simulation results are long time averages. In the seond line in Fig. 10.17, the loaldissipation is shown. From the bulk perspetive, dissipation is highest within the �uid phase.This is expeted sine the high density of bridges leads to many rupture events. Note that thepaking density is lose but below the limit for the ordering transition (φo = 0.71 disussedin detail in Chap. 7, Fig. 7.3), so that the partiles stay mobile within the �uid phase whilerapidly reforming the apillary network for dissipation. Dissipation is additionally inreased atthe interfae when hot gas partiles bombard the dense surfae of the �uid, whih gives rise topeaks in the ontinuum model. The breathing mode also broadens these peaks of dissipationin the simulation. The temperature is signi�antly overestimated by the ontinuum model.
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Figure 10.17: Comparison between the ontinuum theory and the simulation aording to theMinimal Capillary Model. The pro�les of density (1), dissipation power (2), and tempera-ture (3) are qualitatively reprodued by the ontinuum model. The phase boundaries of allthree �elds are sharper in the ontinuum model. This is beause the �uid phase in the fullsimulation has in addition a breathing mode weakly exited. The overshooting of the loaldissipation power at the interfae is due to the fast gas partiles imposing their high kinetienergy on the dense apillary network of the �uid. (As the system is two-dimensional and weintegrate over the vertial axis, dissipation has the units power per length.)
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Figure 10.18: The relation between the number of �uid phases and the granular temperaturein the sample. (A) The solutions of the heat equation are periodi. These stationary solutionof the ontinuum theory explain the origin of the harateristi length sale due to heatondutivity and the e�etive potential Ve� (shown as inset in Fig. 10.14). The theoretialestimate disussed in the text expets that the length sale between the phases is set by theheat ondutivity κE ∝
√
T . (B) Indeed we �nd in 2D-simulations (1 200 partiles, usingthe time-driven tehnique) that √

T inreases by a fator 1.7 (lose to 3/2, as the 3 phasesrearranging into 2 phases), and 2.1 (lose to 2, when the two-phase state rearranges into asingle phase). (C) The bridge density as gray sale plot as a funtion of time (in units of theshaking frequeny f).This is so beause we negleted orrelation between partile and wall veloity in (10.39), whihoverestimates the injeted power. Overall we an onlude that the interfaial pro�les of theoexistene state are qualitative reprodued by the simple ontinuum model.10.7 The Coarsening Dynamis of the Coexistene StateIn this �nal setion we disuss another peuliarity of the subritial �uid/gas transition farfrom equilibrium, whih distinguishes it from �rst order equilibrium transitions. We take abrief look at the onset of the �uid/gas oexistene as a homogeneous nuleation proess.In equilibrium situations we think of a Gibbs energy barrier whih a �uid nuleus has tooverome in order to grow out of the gas. A later generi proess for oarsening ould beOstwald ripening, where bigger droplets `eat up' the smaller ones due to a size instability29.A third, �nal regime is dominated by oalesene. The oarsening dynamis of wet granularmatter is distint from both.A typial simulation of a two-dimensional system (under periodi boundary onditions),whih is ten times wider than the previous ones, is shown in Fig. 10.19. At time t0 the �rst �uid29Ostwald ripening gives rise to a self-similar evolution of the average droplet size.
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Figure 10.19: An approximate 5-to-1 transition in a system that is ten times as wide (12 000partiles, using the event-driven tehnique) as the preeding one in Fig. 10.18. The timeevolution of temperature (A) and the bridge density (B) (projeted on the lateral axis, whereblak represents the density maximum) are shown. Time on the horizontal axis is given inunits of the shaking frequeny f . At t0, �uid droplets nuleate out of the initially homogeneousgas state with a harateristi separation length, as in Fig. 10.18. This length sale bars thesystem from droplet oalesene. To minimizing its interfaial area, wet granular matteradapts its temperature in a self-organized manner. It heats up at t2 until the temperaturedependent separation length equals the system size, so that a single phase an ondense outof the transient gas. The inrease in temperature orresponds, aording to the estimate inthe text, to a hange of 5.3 �uid phases (at time t1) merging into one. (Giving half weightto the three thin phases at t1, and ounting the four massive phases as full phases, yields intotal 5.5 �uid phases.)



10.7. The Coarsening Dynamis of the Coexistene State 233droplets preipitate out of the gas30 and grow slowly. After the time t1 we observe that thebiggest droplet suddenly beomes unstable and starts to perform an ever inreasing breathing-like osillation (reminisent to the osillation reported in [242℄ for a one-dimensional system)whih eventually leads to the burst of this �uid droplet. By the time t2, the shok frontwhih goes out from this event31, has triggered the evaporation of all other �uid droplets.In the absene of the ooling �uid phases, the granular temperature rises rapidly. (Ṫ ismaximal at t2.) One might at �rst glane expet the system to settle in this gas state. Rathersurprisingly, the system develops a single larger �uid phase embedded in the granular gas asthe �nal nonequilibrium steady state.Without resolving the omplex detailed dynamis of this proess, whih is an interestingsubjet of future researh, we an qualitatively understand the most striking property: the�uid phases do not oalese, but abruptly evaporate and nuleate again to reah the stable�nal state. Figure 10.14 explains that the nonequilibrium steady states are determined by thebalane of power. In the oexistene state, power is not only balaned loally. There is a heaturrent from the hot gas to the old �uid phase as shown in Fig. 10.16B. This lateral ouplingis due to the seond order di�erential equation (10.32) for the nonequilibrium temperature
T (x) with the power urrents of Fig. 10.14 as the driving fores. Hene, the nonequilibriumtemperature hanges in spae aording to the e�etive potential32 Ve�(T ) =

∫ T
∆P (T ′) dT ′.Flutuations of the energy urrent q that exeed the threshold qmin, push the system overthe barrier into a state with two oexisting phases. Remarkably, the notion of a thresholdis resumed in this nonequilibrium situation. Here it is a threshold for the energy urrent q,and not an energeti barrier as for equilibrium nuleation. A orresponding solution for thedensity, shown in Fig. 10.18A, osillates spatially between the �uid and the gas phase. Statesof multiple `drops' are transient, so that there is no time for the ideal periodi order to develop.Therefore a preferred wave length λ is present but not easily seen in Fig. 10.19B. Clearly visibleare the instability of the biggest �uid phase after t1 and the omplete evaporation at t2, bywhih the system rearranges its spatial struture globally, as if to minimize its interfaial area.The way by whih wet granular matter reahes its �nal state without violating the length sale

λ is rather elegant � and entirely self-organized: λ depends on temperature, whih inreases,as shown in the upper panel (A) of Fig. 10.19. For a rough theoretial estimate, we remindthat the heat ondutivity κE sales with the square root of temperature. We therefore expetthat λ ∝
√
T , so that the number of �uid droplets, Nd, whih share the lateral system size L,are related to the granular temperature aording to

L/Nd = λ ∝
√
T . (10.42)Hene, as a rule of thumb, the mean granular temperature T is related to the number ofdroplets Nd by

T ∝ 1

N2d . (10.43)Aording to this idealized relation, wet granular system would assume a disrete tempera-ture spetrum under isohori onditions. On the level of its rude derivation, this is niely30The initial temperature of the gas was hosen suh that the mean kineti energy per partile is twie thegravitational energy of the system height, and the partiles were plaed homogeneously in spae. The drivingonditions are onstant with parameters well inside the �uid/gas oexistene regime (Γ = 30, v∗ = 1.13).31The author veri�ed that its propagation speed is very lose to the known speed of sound of the hard dissystem at the present density.32In analogy to point mehanis, temperature plays here the role of position, position plays the role of time,and the heat urrent q replaes the momentum. The potential arises from the net power ∆P and is skethedas inset in Fig. 10.14.



234 Chapter 10. Phase Transitions and Coexistene far from Equilibriumon�rmed by the simulations, with few quantitative examples presented in the aptions ofthe Figs. 10.18 (for the transitions Nd = 3 → 2 → 1) and 10.19 (for the abrupt transition ofmultiple phases into a single one).10.8 ConlusionsThis hapter presented the phase spae evolution of the wet granular ensemble, and disussedthe derivation of ontinuum equations on the basis of haotiity and the extended hysteretipair orrelation. The global nonequilibrium behavior was mapped onto the plane spanned byaeleration and driving veloity in Fig. 10.4. This revealed two distint mehanisms for phasetransitions in wet granular matter: the solid/�uid transition (`�uidization') by fore and the�uid/gas transition (`evaporation') whih is determined by energy. The solid state generiallyterminates into a mobile phase by fore-driven transitions, whih inlude sublimation. Thetransitions loated at ritial driving energies, were explained as a subritial instability of thepower balane. The density pro�les of the �uid/gas oexistene omputed by the ontinuumtheory reprodued all harateristis of the simulation results, inluding an overshooting ofdissipation where the surfae of the �uid is bombarded by fast gas partiles. The dynamialorder parameter flo was introdued as the rate at whih loal triangles �ip their orientation.It was shown to preisely detet the nonequilibrium phase transitions of granular melting (by adisontinuity) and sublimation (with a sudden rise). The oalesene dynamis of wet granulardroplets revealed a peuliar relation to the granular temperature: the squared number of �uidphases was found to be proportional to the inverse temperature.The essential role of the hystereti loss of energy in ollisions was demonstrated by thequantitative omparison between experiments and simulations. With the replaement of theonstant bridge fore by a delta-fore, the simulated phase diagram was shown to be remark-ably independent of the atual fore-distane harateristis. Hene the paradigm systeman be viewed to represent a whole lass of dissipative olletive systems. Furthermore, wetgranular matter is a partiularly simple system with high experimental aessibility. It thusappears as a very promising system to ahieve a deeper understanding of universal aspets ofsystems far from equilibrium.Future analyti work will be devoted to the derivation of a oe�ient of heat ondutivity,whih takes the transport of energy by the apillary bonds into aount. The sharpness of thephase boundaries suggests to study non-linear gradients (Burnett order) of heat transport.10.9 Appendix: Comment on Model DetailsThe square well potential models the fore law of a rupturing `thread' instead of a apillary bridge, whiha�ets some dynamial details to hange. Firstly the pair orrelation funtion, whose logarithmi derivative
∂ ln g/∂s is the e�etive fore, is disontinuous at the rupture length due to the delta fore ating at rupture.Hene gsw(s) drops down at s = srit. The pair orrelation has been reported [224℄ to have a peak rising fromthe lower side, srit−. The reason for this is that the rupture shell in on�guration spae is equivalent to apartially re�eting wall, and at on�guration boundaries there are generially peaks. Seondly, the vanishingontat fore redues the ritial aeleration for �uidization as we disussed.Furthermore a omment on the shear visosity in both models is here in order. Shear visosity desribesthe lateral �ow of momentum, σxy > 0. A sheared granular system, τ = γxy = ∂yux > 0, has in its loalenter of mass two `lanes' of partiles streaming in opposite diretions. The shear visosity of dry granulatesis due to the granular-thermal motion whih auses partiles to interhange the `lanes'. This lateral exhangeof momentum auses the resistane τ against the shearing γ. If shear bands form, typially ourring athigh strain rates γ, this frition is strongly redued beause the partiles follow the tra� rules. However inwet granular matter the lateral exhange of momentum is further enhaned by apillary bridges `between thelanes'. Yet this lateral �ow of momentum τ does not grow with the strain rate γ for the following reason.Under steady shearing, there is an average number of apillary bridges between the lanes depending on the



10.9. Appendix: Comment on Model Details 235system density. If we inrease the strain rate at �xed density, the frequeny of bridge formation and rupture isinreased, but the mean number of bridges between the lanes does not grow. Therefore the apillary bridgesare responsible for the typial plastiity of wet granular τrit, while partile ollisions similar to the dry aseontribute to the visous term in τ = τrit+ηγ. This is orretly desribed by the minimal apillary model. Inthe square well model, the hange in veloity is aording to v′ =
p

v2 − 2Eb/m, whih is equal to an exhangeof momentum ∆p = m(v′ − v) = Eb/v for a �uidized state with granular temperature TD/2 = Ekin > Eb.There is also a geometri fator sin ϕ for the angle ϕ between the strain and the diretion of the apillarybridge. The rupture frequeny is proportional to v/d, so that the momentum exhanged via bridges is of theorder ∆p v/d = (Eb/d) sin ϕ = Fb sin ϕ srit/d with the e�etive bridge fore Fb = Eb/srit. Hene we�nd, as for the minimal apillary model, that the shear stress τ is independent of the shear rate γ ∝ v inthe �uidized state. Yet there ould be di�erenes between the models when the shearing is at lower granulartemperatures, analogously to the �uidization threshold for the solid/�uid transition mentioned above.Finally, with time-driven simulations the author has veri�ed that an interation with more parameters,suh as taking a �nite time for the apillary bridges to grow into aount, and the visous damping of theliquid (similar to the fore law in Eq. (3.3)), do not signi�antly in�uene the oexistene state for realistiparameters as those disussed in Chap. 3.





Chapter 11Conluding Summary and OutlookNonequilibrium statistis and dynamis are very ative �elds of ontemporary physis. TheFlutuation Theorem is among the few general results whih we have for nonequilibriumsystems so far. Sine its initial formulation for dynamial systems in steady states [89℄,the Flutuation Theorem has been fairly extended, e.g. to quantum [189℄ and relativisti(Chap. 2) systems. It is fasinating to see that under onditions where there is no First Lawof thermodynamis (suh as osmi expansion disussed in Chap. 2 whih slows down partilemotion), the Seond Law and, moreover, the Flutuation Theorem hold. However we haveshown (Chap. 4) that the Flutuation Theorem does not apply to a tabletop system suh as agranular gas. This observation is very larifying sine existing reports of on�rmation [78, 10℄annot be explained by the derivations of the Flutuation Theorem [90, 77℄, whih requiretime-reversal symmetry. It was shown that the Flutuation Theorem still holds for small�utuations (with `small' given a quantitative meaning in Chap. 4). By this, the ontraditionis resolved as a mere onsequene of the measurement range.We have given reasons in this thesis why wet granular matter is � besides its appliationalrelevane � a paradigm system to investigate omplex non-linear dynamis and dissipative ol-letive phenomena suh as nonequilibrium phase transitions. The breaking of time-reversalsymmetry was shown (Chap. 3) to be exeptionally luid in wet granular matter by the for-mation and rupture of apillary bridges. For wet granular matter it was shown (Chap. 4)that the violation of the funtional form of the Flutuation Theorem is diretly related tothe onset of the nonequilibrium �uid/gas transition. This was our initial observation pointingto the tight onnetion between dynamial system properties (here represented by the Flu-tuation Theorem) and olletive phenomena. Building upon this onnetion, the dynamialproperties of wet granular matter have been investigated in this thesis with the physial ob-jetive to reveal and understand its olletive nonequilibrium behavior. There are essentiallytwo parameters whih desribe the partile interation: the rupture length and the apillaryenergy. This simple but hystereti interation aounts for all marosopi nonequilibriumproperties reported in this thesis. The �rst qualitative observation (Chap. 3) resulted from atwo-dimensional simulation, whih showed the �oulent strutures whih ondense out of thewet granular gas and form solid apillary networks, in ontrast to the density louds formedin dry granular matter assuming a restitution model.For a quantitative theory, we are interested in a statistial and ontinuum desription,whih rests upon the haotiity of the system [61, 64℄ to ensures the exponential deay oforrelations and the onvergene to de�ned loal states. The dynamial haos is quanti�ed bythe Kolmogorov-Sinai entropy whih has been omputed (Chaps. 4 and 5). We took advantageof the �uid/gas transition in one dimension (Chap. 4) to evaporate �uid lusters, whihrevealed the importane of apillary bonds for the haoti dynamis: although the partile237



238 Chapter 11. Conluding Summary and Outlookmotion is slower in the wet granular �uid, it was shown that in the �uid state with its manyapillary bridges the Kolmogorov-Sinai entropy is approximately �ve times higher (so thatorrelations deay faster) as ompared to the gas. This result was extended by the analytiomputation of the Kolmogorov-Sinai entropy for D > 1 dimensions in the following Chap. 5.Also for the gas state it has been shown that the Kolmogorov-Sinai entropy rapidly rises as afuntion of the apillary energy. Another dynamial property is the sympleti tangent spaeevolution of wet granular matter. This is a onsequene of the expliit hystereti interation(in sharp ontrast to models where dissipation is hidden in the moment of ollision) and equipsthe dissipative wet granular system with Hamiltonian properties, suh as the symmetry of itsLyapunov spetrum (omputed with the generalized Dellago-Posh formula in the Chaps. 4and 5).We applied the inreased haotiity and the pieewise Hamiltonian struture to omputethe binding and rupture frequenies in freely ooling one-dimensional wet granular matter(Chap. 6). The resulting set of equations on the mean-�eld level ould quantitatively repro-due the full simulations on logarithmi sales. In isohori systems above a ritial value ofthe density, the number of transient lusters is no longer monotoni in time: as the granulartemperature falls below the apillary energy, dense granular droplets preipitate out of thehomogeneous initial state. In the �nal regime these droplets oalese as a stiky gas, in whihthe luster size sales with time. As with the dynamial system desription, the statistialdesription was extended to D > 1 dimensions in the following Chap. 7. We foused on thetwo-dimensional system whih has already non-trivial1 partile orrelations desribed by theEnskog fator in the absene of the hystereti apillary interation. Due to the �nite intera-tion length of the apillary bridges, the ontat orrelation (Enskog fator) is not su�ient todesribe wet granular matter. The three main ideas of Chap. 7 whih allow to extend the sta-tistial desription to the hystereti interation of wet granular matter are as follows: Firstly,expliit expressions for the near-ontat pair orrelation in the dry system have been derived.The expression for the dense regime desribes in partiular the formation of the delta-peak inthe jamming limit, whih orresponds to 2D exat ontats in D dimensions (in agreementwith the aepted value for isostati pakings in existing simulations). For the dilute regimean expression has been derived based on the omputation of orrelated three-partile ollisionevents. Seondly, the hystereti interation of wetted partiles breaks detailed balane andgives rise to persistent mirosopi probability �uxes. An equation system has been derivedwhih desribes theses �uxes. Its steady state solution yields a set of six orrelation fators,whih generalize the single Enskog fator. Thirdly, at low temperatures many degrees offreedom are frozen within lusters. This has been desribed by a reiproal two-�uid model.The theory inludes the following results: We have expliit expressions for the near-ontatpair orrelation, the apillary oordination number (as on�rmed numerially), and the pres-sure in wet granular matter over the full density and temperature range. Remarkably, thenonequilibrium isotherms of wet granular matter were shown to have a van-der-Waals-likemehanial instability. The ritial density and the ritial temperature of this instabilityfor D = 2 (expressed in redued variables using the apillary length and energy) are verylose to those of the simulation in D = 1. These theoretial preditions for the existene ofa ritial point have been veri�ed experimentally in Chap. 8. A granulate of steel sphereshas been wetted with a ondutive liquid. The partile segregation aused by the mehanialinstability gives rise to a large inrease in the global eletrial resistane. The ritial densityand temperature were found to quantitatively agree with the theory. Sine this segregation orunlustering transition is desribed by an instability of the isotherms of wet granular matter,1For example, as remarked in Chap. 7, the question of the existene of a Kosterlitz-Thouless transition isstill open for this system.



239it is emphasized that this transition ours in exited states of wet granular matter when thetemperature is (lose to) homogeneous and the system is very dense (aording to the ritialvalue of density in Chap. 7).An important property of nonequilibrium states of dissipative gases and �uids are deviationfrom the Maxwell veloity distribution. Over-oupied tails are frequently enountered, as wehave seen in the free ooling simulation in Chap. 6, and have been reported for driven states[113℄. The veloity distribution entered in virtually all analytial omputations of this thesis,notably in the disussion of the Flutuation Theorem (Chap. 4) and the omputation of theKolmogorov-Sinai entropy (Chap. 5). Therefore a method to measure the granular veloitydistribution in steady nonequilibrium states has been suggested (Chap. 9). This method usesthe Mössbauer e�et. One advantage of nulear resonane is that the veloity is measureddiretly, while other methods that detet partile positions have to derive the partile veloityindiretly from several measurements. The Mössbauer spetrum is a `veloity spetrum' byvirtue of the relativisti Doppler shift. The veloity sales of nulear resonane �t naturallyto the requirements in most granular experiments, so that the Mössbauer spetrum is diretlyrelated to the veloity distribution. The method is sensitive to anisotropies and the possibilityto derive partile rotations has been disussed. For a vigorously driven granular �uid, a�rst experiment has been presented whih showed an exponential veloity distribution in thevolume.We �nally return to one of our main objetives: the nonequilibrium phase transitions.In the preeding experiment (Chap. 7) whih used the ondutive liquid to follow the dy-namis of the apillary network in wet granular matter, the formation of a dilute gas phasewas exluded due to the high density. It provided (besides the measurement of the ritialpoint) the opportunity to observe the solid/�uid transition. This transition may be viewedas a strong physial idealization of the geologial phenomenon of ground liquefation ausedby earthquakes, whih an lead to land slides. While an optial detetion of the �uidiza-tion transition is limited to partiles on the surfae, the ondutivity method is sensitive tothe bulk struture and allows to determine the transition point with remarkable preision.The experiment demonstrated learly that the solid/�uid transition is disontinuous with re-spet to the driving aeleration. The last hapter uni�ed and generalized the results on thissolid/�uid transition and the previous �uid/gas transition of wet granular matter. Moderateoverall densities provided spae for large phase segregation. The global phase diagram of ver-tially agitated wet granular matter has been derived from experiments (in three dimensions)and simulations (in two and three dimensions), whih agreed quantitatively. Two prinipalmehanisms for nonequilibrium transitions have been revealed: Firstly, there are fore-driventransitions whih are determined by the externally applied aeleration as ompared to theapillary fore. The solid/�uid transition and the disovered wet granular sublimation belongto this lass. Seondly, there are energy-driven transitions, of whih the �uid/gas transition isthe most prominent one. Suh transitions our at a ertain veloity of the driving. This wallveloity de�nes an energy sale whih is to be ompared with apillary energy. The balaneof dissipated and injeted power was shown analytially to have a subritial instability withrespet to the driving veloity, whih explains the existene of the �uid/gas oexistene, andthe �nal transition to the pure gas state. Marked as nonequilibrium states, the �uid andgas phase were shown to oexist at temperatures whih di�er by two orders of magnitude.Besides temperature and density di�erenes, a dynamial order parameter has been de�ned,all of whih demonstrated the disontinuity of these transitions as a funtion of the drivingparameters. In view of these mehanisms for nonequilibrium phase transition, we an overalldistinguish three of them: the mehanial instability whih ours in very dense systems (asdesribed by the equation of state), the fore-driven, and the energy-driven transitions. While



240 Chapter 11. Conluding Summary and Outlookthe �rst is an intrinsi mehanism (for whih reason it ours as well in the free ooling), thelatter two annot be onsidered independently of the boundary onditions de�ned by thedriving. Based on the theoretial results onerning the dynamial haos (Chap. 5) and thehystereti pair orrelation funtion (Chap. 7), a derivation of ontinuum equations has beendisussed. Solutions for the states of �uid/gas oexistene showed qualitative agreement withthe pro�les of temperature, density, and dissipation power measured in the simulations. Fur-thermore, the details of the fore law in the hystereti interation have been strongly varied inthe simulations, whih showed that the resulting phase diagram is remarkable independent ofsuh details. This suggests that wet granular matter is truly a paradigm system representinga larger lass of dissipative systems.Future work will be onerned with the derivation of the oe�ient of heat ondutivityfor wet granular matter. The presented results on the Kolmogorov-Sinai entropy and the gen-eralization of the Boltzmann-Enskog kinematis established in this thesis for the hysteretiinteration, provide the starting point to derive suh transport oe�ients. The generaliza-tion of the Flutuation Theorem for wet granular matter as a pieewise Hamiltonian system istempting, beause the wet granulate appears so losely related to a Hamiltonian system (forwhih derivations exist), while at the same time the system breaks time-reversal symmetryand is strongly dissipative. The onstrution developed in Chap. 3 to reover the FlutuationTheorem may here serve as a lead. Finally, with the results presented in the last hapter, avery fundamental question of nonequilibrium systems arose: is there a `potential' whih deter-mines the nonequilibrium steady state as its minimum? The simulation has shown di�erenton�gurations for the �uid/gas oexistene, whih are reminisent of what one might expetto result from the minimization of the interfaial area. However, so far interfaial tensionsan only be derived from the free energy as the appropriate thermodynami potential in equi-librium. Furthermore, the last setion in Chap. 10, presenting the oalesene dynamis inwet granular matter, has demonstrated learly the in�uene of the global onstraints imposedby heat urrents. Therefore the quest for a nonequilibrium `potential', if it exists, will haveto take these nonloal onditions into aount.
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