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Abstract

We study the influence of the spin-orbit interaction on the electronic transport
through quantum dots and quantum wires of correlated electrons. Starting with a
one-dimensional infinite continuum model without Coulomb interaction, we analyze
the interplay of the spin-orbit interaction, an external magnetic field, and an ex-
ternal potential leading to currents with significant spin-polarization in appropriate
parameter regimes. Since lattice models are known to often be superior to contin-
uum models in describing the experimental situation of low-dimensional mesoscopic
systems, we construct a lattice model which exhibits the same low-energy physics
in terms of energy dispersion and spin expectation values. Confining the lattice to
finite length and connecting it to two semi-infinite noninteracting Fermi liquid leads,
we calculate the zero temperature linear conductance using the Landauer-Büttiker
formalism and show that spin-polarization effects also evolve for the lattice model
by adding an adequate potential structure and can be controlled by tuning the over-
all chemical potential of the system (quantum wire and leads). Next, we allow for
a finite Coulomb interaction and use the functional renormalization group (fRG)
method to capture correlation effects induced by the Coulomb interaction. The
interacting system is thereby transformed into a noninteracting system with renor-
malized system parameters. For short wires (∼ 100 lattice sites), we show that the
energy regime in which spin polarization is found is strongly affected by the Coulomb
interaction. For long wires (> 1000 lattice sites), we find the power-law suppres-
sion of the total linear conductance on low energy scales typical for inhomogeneous
Luttinger liquids while the degree of spin polarization stays constant. Considering
quantum dots which consist of two lattice sites, we observe the well-known Kondo
effect and analyze, how the Kondo temperature is affected by the spin-orbit interac-
tion. Moreover, we show how the linear conductance and the spin-polarization can
be controlled by tuning the spin-orbit interaction in an Aharonov-Bohm interfero-
meter with a quantum dot in one arm. Finally, an estimation of the magnitude of the
spin-orbit interaction in e.g. semiconductor heterojunctions shows that the system
parameters used in our simulations are achievable in experiments. Therefore, the
theoretical results obtained in this thesis might also be observable experimentally
pointing out the relevance for future spintronic applications.
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Zusammenfassung

In der vorliegenden Dissertation wird der Einfluss der Spin-Bahn-Wechselwirkung
auf den elektronischen Transport durch Quantenpunkte und Quantendrähte kor-
relierter Elektronen untersucht. Von einem eindimensionalen unendlichen Kontinu-
umsmodel ohne Coulomb-Wechselwirkung ausgehend wird zunächst das Zusammen-
spiel zwischen Spin-Bahn-Wechselwirkung, externem Magnetfeld und externer Po-
tentialstruktur diskutiert und gezeigt, dass Ströme mit signifikanter Spin-Polarisation
für geeignet gewählte Systemparameter möglich sind. Da Gittermodelle die ex-
perimentelle Situation in niedrig-dimensionalen meso-skopischen Systemen häufig
besser beschreiben als entsprechende Kontinuumsmodelle, wird ein Gittermodell
konstruiert, welches bezüglich Energiedispersion und Spinpolarisation die gleichen
Niedrigenergie-Eigenschaften wie das Kontinuumsmodell aufweist. Anschließend
wird das Gitter auf eine endliche Länge beschränkt und mit zwei halbunendlichen
wechselwirkungsfreien Zuleitungen, die als Fermi-Flüssigkeiten beschrieben werden
können, verbunden. Eine Berechnung des linearen Leitwerts im Rahmen des Landauer-
Büttiker-Formalismus zeigt, dass spinpolarisierte Ströme durch geeignete Param-
eterwahl auch für das Gittermodell auftreten, wobei der Grad der Spinpolarisa-
tion über das chemische Potential des Gesamtsystems gesteuert werden kann. Um
die durch die Coulomb-Wechselwirkung induzierten Korrelationseffekte korrekt zu
beschreiben, wird die funktionale Renormierungsgruppenmethode (fRG) benutzt.
Für kurze Drähte (∼ 100 Gitterplätze) wird gezeigt, dass die Coulomb-Wechselwirkung
den Energiebereich, in dem Spinpolarisation zu beobachten ist, stark modifizieren
kann. Für lange Drähte (> 1000 Gitterplätze) beobachtet man eine Unterdrückung
des linearen Leitwerts in Form eines Potenzgesetzes auf niedrigen Energieskalen, was
charakteristisch für das Verhalten inhomogener Luttinger-Flüssigkeiten ist, wohinge-
gen der Grad der Spinpolarisation erhalten bleibt. Bei der Untersuchung von Quan-
tenpunkten (zwei Gitterplätze) wird der Kondo-Effekt beobachtet und der Einfluss
der Spin-Bahn-Wechselwirkung auf die Kondo-Temperatur analysiert. Weiterhin
wird für ein Aharonov-Bohm-Interferometer mit einem Quantenpunkt in dem einen
Arm gezeigt, dass auch in komplizierteren Netzwerken der lineare Leitwert und
die Spin-Polarisation durch Anpassung der Spin-Bahn-Kopplung gesteuert werden
können. Eine Betrachtung der Stärke der Spin-Bahn-Kopplung in z.B. Halbleiter-
Heterostrukturen zeigt, dass die hier gewählten Systemparameter experimentell rea-
lisierbar sind. Die in dieser Arbeit theoretisch diskutierten Ergebnisse könnten somit
von bedeutender Relevanz für zukünftige Anwendungen in der Spintronik sein.
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Chapter 1

Introduction

Modern microelectronics has undergone a matchless development in the past 20
years. The emerging field of spintronics is often believed to continue this story
of success. The birth of spintronics is dated to 1988 with the discovery of the
giant magnetoresistance effect [1, 2]. Since then, many theoretical and experimental
studies have been performed on spin-dependent electronic transport in order to get
a clear understanding of the underlying physics and to investigate the possibility
of fabricating spintronic devices [3, 4, 5]. In general, the term spintronics can be
understood as spin-based electronics in which not only the electron charge, but
also the electron spin carries information. This offers the opportunity of creating
a new generation of devices by implementing spin-dependent effects into standard
microelectronics [6].

Quantum dots and quantum wires with spin-orbit interaction are very well suited
examples of physical systems which may provide a good starting point for a spin-
tronic device setup. These low-dimensional electron systems are strongly affected
by the two-particle Coulomb interaction making an exact theoretical description
difficult or even impossible. However, during roughly the same period in which the
fabrication of such well-defined low-dimensional systems has become possible due to
the fast development of vacuum deposition and epitaxial growth technology on the
one hand and elaborate measurement techniques for a precise investigation of the
physical properties of these systems on the other hand, many theoretical tools and
methods have been developed to tackle the influence of the Coulomb interaction on
the low-energy behavior of interacting low-dimensional electron systems.

In this thesis, the recently developed functional renormalization group method
(fRG) is used to estimate and predict correlation effects due to Coulomb interac-
tion in electron systems with spin-orbit interaction. The fRG is based on Wilson’s
general RG idea [7] and starts with the introduction of an infrared cutoff to the
free propagator of the system under consideration, therefore neglecting all modes
with energy below this cutoff. Derivation with respect to this cutoff parameter leads
to an exact hierarchy of flow equations for the one-particle irreducible vertex func-
tions, which are obtained from a generating functional by derivation with respect
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CHAPTER 1. INTRODUCTION

to external source fields. In practice, this hierarchy of flow equations needs to be
truncated in order to be integrated numerically [8, 9]. Since the numercial effort of
the fRG within our approach is quite small compared to other RG methods such as
the numerical renormalization group (NRG) [7, 10] or the density-matrix renormal-
ization group (DMRG) method [11, 12, 13], very large systems of up to 106 lattice
sites can be addressed with this method in the case of spinless fermions (Hubbard
model) and up to 104 lattice sites for systems of spinful fermions (extended Hub-
bard model). Systems of this size with impurities are known to show characteristics
of inhomogeneous Luttinger liquids, namely a power-law behavior of correlation
functions over some energy range with interaction-dependent exponents [14]. One
example for the great success of the fRG in the last few years is the prediction of the
correct exponents in leading order of the Coulomb interaction strength compared
to the analytical solution which is possible by Bethe ansatz for special integrable
cases [15, 16, 17, 18]. Moreover, fRG accounts for aspects of correlation effects in
quantum dots, e.g. the Kondo effect [19, 20]. It will be shown that the fRG method
is also the appropriate computational tool for investigating the low-energy behavior
of zero- and one-dimensional quantum systems with spin-orbit interaction.

The spin-orbit interaction (SOI) is a relativistic effect of order O(v2/c2), which
follows directly from the Dirac equation by expansion in v/c and is known to be re-
sponsible for many interesting quantum effects affecting the electron spin in systems
with large gradients of the electrostatic potential, e.g. heavy atoms or semiconduc-
tor heterostructures [21]. The latter define a two-dimensional electron gas (2DEG)
which can be confined further by applying a structure of gate electrodes to form
a one- or even zero-dimensional electron system. Due to this sharp confinement,
any classical or semi-classical description of the electrons breaks down and quantum
mechnical properties like the electron spin must be taken into consideration.

It has recently be shown by conductance measurements and excited-state spec-
troscopy that carbon nanotubes which are known of being well-described by one-
dimensional systems of correlated electrons reveal a remarkable SOI [22]. Besides
their outstanding mechanical properties and the possibility of applying electrical
gates to the carbon nanotubes as well as connecting them to higher-dimensional
leads, the occurence of SOI makes carbon nanotubes being a prominent candidate
for spintronic applications.

Another realization of a physical system with considerable SOI is a quantum dot
formed by applying gate electrodes to a two-dimensional electron gas (2DEG) at the
interface of a semiconductor hetero-structure. GaAs quantum dots reveal prodigious
SOI induced effects as has been shown by measurements and theoretical analysis of
conductance oscillations [23, 24]. The SOI in GaAs quantum dots is caused by
the intrinsic asymmetry of the underlying atomic Zinkblende structure of GaAs on
the one hand and the sharp gradients of the ambient scalar potential confining the
electrons on the other hand. The resulting electric fields and therefore the SOI can
be tuned by an external gate voltage. Hence, one may hope to be able to control
the electron spin by controlling the strength of the SOI.

This thesis is organized as follows. In Chapter 2, we give a short derivation of the
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SOI Hamiltonian for an infinite one-dimensional continuum model and discuss the
low-energy properties such as energy dispersion and spin expectation values of the
lowest energy subband. The interplay of SOI and an arbitrary external magnetic
field will be shown to lead to subtle spin polarization effects considering the electronic
transport across a potential step and a potential barrier.

Chapter 3 starts with the construction of a tight-binding lattice model which
exhibits the same low-energy physics as the continuum model in terms of energy
dispersion and spin expectation values. We examine a lattice system of finite length
being attached to two electron reservoirs which can be regarded as Fermi liquids.
This setup matches the experimental situation often better than the infinite con-
tinuum model. We study the linear conductance at zero temperature (T = 0) and
the spin polarization of this system in presence of a potential step and a potential
barrier the latter of which can be thought of an impurity atom, thus meeting quite
a realistic experimental situation.

The functional renormalization group method which will be proved to be a suit-
able numerical tool to tackle the Coulomb interaction in electron systems with SOI
is presented in Chapter 4.

Chapter 5 is the sequel to Chapter 3 but with focus on the finite Coulomb interac-
tion and its influence on the linear conductance and the spin polarization. Luttinger
liquid behavior will manifest itself in these systems and the influence of SOI on the
power law decay of correlation functions, like the linear conductance, will be inves-
tigated. Moreover, we will explore the asymptotic behavior of the spin polarization.

In Chapter 6, we study a very short lattice system of only two sites representing
a two-level quantum dot in the spin-degenerate case. Again, the system under
consideration is coupled to two higher-dimensional leads. A detailed analysis of the
influence of SOI, magnetic field and Coulomb interaction on the energy level splitting
and on the linear conductance and the spin polarization will be given. Especially,
we will analyse the impact of the SOI on the Kondo effect and its relevant energy
scale, the Kondo temperature. Furthermore, we will study interference effects in an
Aharonov-Bohm interferometer with the double quantum dot of correlated electrons
in one arm and a spin-dependent hopping in the other.

Chapter 7 contains a short description of recent experiments matching the dif-
ferent situations described theoretically in this thesis. We will give a profound
estimation of the parameters used in our model taking into account data from ab-
initio calculations as well as from experiments. Whenever the reader feels to get lost
in technical details, he/she may read through this chapter to hold up a clear view
of the motivation behind our calculations.

Finally in Chapter 8, we will sum up the results obtained in this thesis and give
an outlook of further investigations which could be performed with the methods
presented here. Furthermore, we will shortly address additional effects that have
been omitted in our models.
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Chapter 2

Spin-orbit interaction (SOI) in
continuum

In this chapter, we address the spin-orbit interaction (SOI) as a relativistic effect
following directly from the Dirac equation in second order O(v2/c2) and investigate
its influence on the energy eigenvalues and spin expectation values of a homogeneous
one-dimensional continuum model. Starting from the general three-dimensional
case, in which the SOI Hamiltonian (in SI-units) can be written as

HSO = − e~

4m2c2
σ ·
[

E ×
(

p− e

c
A
)]

, (2.1)

with the electric field E = −∇V/e (e < 0 is the electron charge) being the gradient
of an ambient scalar potential V , we will confine the system to one dimension and
discuss the effect of the SOI.

2.1 Origin of the SOI

Before we discuss the effect of SOI on the physical properties of a homogeneous
continuum model, we first derive the Hamiltonian Eq. (2.1) from the Dirac equation
by an expansion in v/c.

The Dirac equation for a particle with massm, charge e and canonical momentum
p reads for time-independent problems [25]

(

cα
(

p− e

c
A
)

+ βmc2 + V 14

)

ψ = Eψ (2.2)

with arbitrary scalar potential V , vector potential A and

α =

(
0 σ

σ 0

)

and β =

(
12 0
0 −12

)

. (2.3)

σ is the three-component vector consisting of the Pauli spin matrices which are given
by

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

(2.4)
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2.1. ORIGIN OF THE SOI

for spin quantization along the z-direction. In the following, we omit writing down
the n-dimensional identity matrices 1n explicitely in favor of a brief notation. ψ
denotes a four-component spinor and can be split into an upper and a lower two-
component part, ψ = (ψA, ψB)T . In this notation, we obtain the two coupled
equations

σ

(

p− e

c
A
)

ψB =
1

c

(

Ẽ − V
)

ψA

σ

(

p− e

c
A
)

ψA =
1

c

(

Ẽ − V + 2mc2
)

ψB (2.5)

with Ẽ = E − mc2. This can be transformed into an eigenvalue equation for the
upper component ψA,

σ

(

p− e

c
A
)

c2
(

Ẽ − V + 2mc2
)−1

σ

(

p− e

c
A
)

ψA =
(

Ẽ − V
)

ψA . (2.6)

Since the inverse of a diagonal matrix is also diagonal, we can expand
(

Ẽ − V + 2mc2
)−1

in the non-relativistic limit,
(

Ẽ − V
)

/2mc2 ≪ 1, into

c2
(

Ẽ − V + 2mc2
)−1

=
1

2m

[

1 − Ẽ − V

2mc2
+ O

(
v3

c3

)]

(2.7)

and obtain the approximate eigenvalue equation

HAψA =

[

σ

(

p− e

c
A
) 1

2m

(

1 − Ẽ − V

2mc2

)

σ

(

p − e

c
A
)

+ V

]

ψA = ẼψA . (2.8)

However, this equation contains several problems. Firstly, the Hamiltonian HA

contains the eigenenergy Ẽ and is not a Hermitian operator. Secondly, one should
note that ψA itself is not normalized to unity, but

∫
d3r ψ†ψ =

∫
d3r (ψ†

AψA +

ψ†
BψB) = 1. Therefore, one defines a new two-component wave function ψ via

ψ̃ = ΩψA =

[

12 +
σ

(
p− e

cA
)

8m2c2

]

ψA , (2.9)

which is normalized up to O(v2/c2). Thus, the new eigenvalue equation for the
normalized wave function ψ̃ reads

Ω−1HAψA = Ω−1HAΩ−1ψ̃ = Ẽ
(
Ω−1

)2
ψ̃ (2.10)

with Ω−1 given by

Ω−1 = 12−
[
σ

(
p− e

cA
)]2

8m2c2
+O

(
v3

c3

)

= 12−
(
p− e

cA
)2

8m2c2
+
e~σB

8m2c3
+O

(
v3

c3

)

(2.11)
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CHAPTER 2. SPIN-ORBIT INTERACTION (SOI) IN CONTINUUM

with the magnetic field B = ∇× A.
In the following, we use the Lorenz gauge, ∇A = 0 (for time-independent scalar

potential V ). Assuming that the second partial derivatives of A commute, ∂i∂jA =
∂j∂iA with i, j = x, y, z, we also get ∇B = 0. Writing the gradient of the scalar
potential as an electric field, i.e. pV = ie~E, we can transform Ω−1HAΩ−1 in
Eq. (2.10) into

Ω−1HAΩ−1 = V +
2mc2 − Ẽ

4m2c2

[(

p− e

c
A
)2

− e~

c
σB

]

− e~

4m2c2

[

E ×
(

p− e

c
A
)]

σ

+
e~

4m3c3
p (σB)p− e~2 divE

8m2c2
−
(
p− e

cA
)4

8m3c2

+
e~σB

4m3c3

(

p− e

c
A
)2

− e2~
2B2

8m3c4
+

e~

8m3c3

(

p2 − 2e

c
Ap

)

(σB) ,(2.12)

where the underscore indicates that the momentum operator just acts on the under-
scored part and not on the subsequent wave function. Note that, despite the fact
that pB = 0, p (σB) 6= 0 in general.

Using

(
Ω−1

)2
= 1 −

(
p− e

cA
)2

4m2c2
+
e~σB

4m2c3
+ O

(
v3

c3

)

, (2.13)

we finally can write down the so-called Pauli equation

H̃ψ̃ = Ẽψ̃ (2.14)

with

H̃ =

(
p − e

cA
)2

2m
+ V − e~

4m2c2
σ

[

E ×
(

p− e

c
A
)]

− e~

2mc
σB

−
(
p− e

cA
)4

8m3c2
+

e~

8m3c3

(

p− e

c
A
)2

(σB) +
e~

8m3c3
(σB)

(

p− e

c
A
)2

−e
2
~

2B2

8m3c4
− e~2 divE

8m2c2
. (2.15)

In the following, we only take the first line of Eq. (2.15) into account, where we
abandon the correction −eA/c to the canonical momentum, which is a valid ap-
proximation in the limit of a weak magnetic field leading to a magnetic length larger
than the width of the ambient confining potential. The first and second term are
the kinetic and potential energy, respectively, the third term is the spin-orbit in-
teraction and the fourth is the Zeeman term. The higher order corrections to the
Zeeman term and the kinetic energy in the second and third line of Eq. (2.15) will
be omitted. The last term in the third line is known as the Darwin term, which is
responsible for the breakdown of exact localization, i.e. the position of the particle
under consideration fluctuates in an area given by the Compton wave length. This
effect will not be taken into account either.

6



2.2. 1D CONTINUUM MODEL, SOI AND ZEEMAN EFFECT

In the next subsection, we will investigate the influence of the spin-orbit in-
teraction on the energy dispersion, eigenvectors and spin expectation values of a
homogenous one-dimensional continuum model. The interplay between the SOI and
the Zeeman effect will be of particular interest.

2.2 1D continuum model, SOI and Zeeman effect

The transport properties of non-interacting electrons in quasi one-dimensional quan-
tum wires with SOI and Zeeman effect have already been studied in Refs. [26, 27, 28,
29, 30, 31, 32], but mostly under a very particular aspect and strong restrictions to
the system parameters. Therefore, we give a more general overview of the interplay
of the SOI and the Zeeman effect.

Starting from a three-dimensional (3D) system of free electrons, one can cre-
ate a well-defined 1D electron system (in x-direction) by considering a confining
scalar potential V with large gradients (in y- and z-direction). Potentials which
confine the electrons at least in one direction occur naturally at the interface of
semiconductor heterojunctions, e.g. GaAs/AlGaAs or GaAs/InGaAs [21], and form
a two-dimensional electron gas. The confinement in the second direction orthogonal
to the first is normally achieved by applying an electrode structure to the 2DEG such
that the strengh of the lateral confinement can be tuned very accurately. Another
example of experimentally feasible 1D electron systems are carbon nanotubes, which
are of particular interest for modern applications due to their excellent mechanical
and electrical properties [33].

Considering the electron motion to be possible only in the x-direction, i.e. p =
(px, 0, 0), we obtain from Eq. (2.15) the spin-orbit Hamiltonian

H1D
SO = − e~

4m2c2
(σyEz − σzEy) px =

~αy

m
σzpx − ~αz

m
σypx (2.16)

with the SOI coupling parameters

αy =
4mc2

e
Ey and αz =

4mc2

e
Ez , (2.17)

which are proportional to the electric field induced by the gradient of the surrounding
scalar potential V . αy and αz are assumed to be constant in space, i.e. on the x-axis
in our model. The Hamiltonian Eq. (2.16) is often referred to as Rashba Hamiltonian

(see e.g. [34]).
With the above-mentioned restrictions to Eq. (2.15), the Hamiltonian for the 1D

continuum model with SOI and Zeeman term is given by

H =
p2

x

2m
− ~αz

m
σypx +

~αy

m
σzpx − ge~

4m0c
σ ·B , (2.18)

where we account for neglected effects by considering m as an effective electron mass
[35]. Compared to Eq. (2.15), where we implicitely assumed a Landé factor g = 2, we
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CHAPTER 2. SPIN-ORBIT INTERACTION (SOI) IN CONTINUUM

modified the expression of the Zeeman term with m0 being the electron mass in vac-
uum and g being the effective Landé factor. The parameters m and g both strongly
depend on the details of the experimental setup like the choice of the material and
the precise form of the confinement structure [21]. In contrast to most cases found
in the literature, we allow for a magnetic field B = B(sin θ cosϕ, sin θ sinϕ, cos θ),
pointing in arbitrary direction. The normalized eigenstates are characterized by
quantum numbers k and s = ± and are given by the product of a plane wave (in
x-direction) and a two-component spinor

φ
(s)
k (x) =

1√
2π
eikx

(

A
(s)
k

B
(s)
k

)

. (2.19)

Applying the Hamiltonian Eq. (2.18) to this ansatz, we obtain

(
k2 + 2αyk + 2k2

Z cos θ − ǫ, 2ikαz + 2k2
Ze

−iϕ sin θ
2ikαz + 2k2

Ze
iϕ sin θ, k2 − 2αyk − 2k2

Z cos θ − ǫ

)(

A
(s)
k

B
(s)
k

)

= 0 (2.20)

with ǫ = 2mE/~2, αy = eEy/(4mc
2), αz = eEz/(4mc

2), and k2
Z = −gemB/(4~m0c).

Note that due to the negative electron charge αy, αz < 0 for Ey, Ez > 0 in our no-
tation. One obtains the eigenenergy (divided by ~

2/2m)

ǫ(s)(k) = k2 + 2s sgn(k − k0)
√

C(k) , (2.21)

with C(k) = (α2
y + α2

z)k
2 + 2k2

Zk(αy cos θ − αz sin θ sinϕ) + k4
Z and

k0 = −k2
Z (αy cos θ − αz sin θ sinϕ) /(α2

y + α2
z) being the wave number at which the

“energy gap” EG = 4
√

C(k) becomes smallest [see Fig. 2.1]. At a given energy
ǫ outside the gap, we obtain a fourfold degeneracy, i.e. four allowed states with
different k, but the same ǫ. Note that it is not an energy gap in the strong sense,
but more a “pseudo gap”, since there are still two allowed states (one left-moving
and one right-moving state) for energies in this region. However, we simply call it
the energy gap in the following. The corresponding eigenfunctions are

φ
(s)
k (x) =

1

√
2π

√

1 +
∣
∣
∣a

(s)
k

∣
∣
∣

2
eikx

(

a
(s)
k
1

)

, (2.22)

with

a
(s)
k =

−iαzk − k2
Ze

−iϕ sin θ

αyk + k2
Z cos θ − s sgn(k − k0)

√

C(k)
(2.23)

and the spin expectation values are given by

〈σx + iσy〉k,s = 2

(

a
(s)
k

)∗

1 +
∣
∣
∣a

(s)
k

∣
∣
∣

2 , 〈σz〉k,s =
−1 +

∣
∣
∣a

(s)
k

∣
∣
∣

2

1 +
∣
∣
∣a

(s)
k

∣
∣
∣

2 . (2.24)
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Figure 2.1: Dispersion and spin expectation values on the (s = +)-branch for a
magnetic field in a) x- , b) y- and c) z-direction, αy/α = −0.6, αz/α = −0.8,
kZ/α = 0.5. The spin on the (s = −)-branch points in the opposite direction,
i.e. 〈σi〉k,s = −〈σi〉k,−s. The shape of the dispersion and the k-value at which the
energy gap becomes smallest clearly depends on the direction of the magnetic field.

As can be seen from Eq. (2.24), the necessary condition 〈σx〉2k,s+〈σy〉2k,s+〈σz〉2k,s =
1 holds for all values of s and k. The existence of the confinement in y-direction
(represented by αy) leads to a rotation of the spin out of the x-y-plain into the z-
direction. This indicates that the ratio of αy and αz is crucial for the spin direction.

The energy dispersion Eq. (2.21) and the spin expectation values on the (s = +)-

branch are shown in Fig. 2.1 as a function of k, with k given in units of α =
√

α2
y + α2

z

and the energy in units of Eα = ~
2α2/2m. For |k| & α, the spin expectation values

reach their asymptotic k-independent values. The spin on the (s = −)-branch
points in the opposite direction, i.e. 〈σi〉k,s = −〈σi〉k,−s, and is not shown explicitly
here. In combination with the fact that for B = (B, 0, 0) 〈σy〉k,s and 〈σz〉k,s are
symmetric with respect to k = 0 on both branches, this explains why the ground
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CHAPTER 2. SPIN-ORBIT INTERACTION (SOI) IN CONTINUUM

state magnetization

Mi =

EF∫

E0

dǫ(s)(k)〈σi〉k,s , i = x, y, z (2.25)

vanishes in the y- and z-direction for B being parallel to the wire. However, integrat-
ing 〈σx〉k,s according to Eq. (2.25) from the minimum E0 of the energy dispersion up
to the Fermi energy EF over all possible k-values and both s-branches accounting
for Eq. (2.21) leads to a nonvanishing ground state magnetization in the x-direction,
since 〈σx〉k,s = −〈σx〉−k,s.

The energy gap is given by 4
√

C(k0) [see Eq. (2.21)] and does not necessarily
decrease from its maximum value 4k2

Z , if B is tilted against ex as stated in Ref. [26].
In units of the Zeeman energy EZ = 2~

2k2
Z/2m, the size of the gap EG for an

arbitrary magnetic field B = B(sin θ cosφ, sin θ sinφ, cos θ) is given by

EG

EZ
= 2 − 2

(αy cos θ − αz sin θ sinφ)2

α2
. (2.26)

Therefore, a finite αy term is necessary for opening the gap for B||ey, i.e. θ = φ =
π/2. We chose the parameter set (αy, αz, kZ)/α = (−0.6,−0.8, 0.5) in Fig. 2.1 in
order to exemplify this effect.

In many experimental systems, the confining potential in the y-direction might
be much weaker than in the z-direction. In this case |αy| ≪ |αz|, but subband
mixing becomes relevant. The latter strongly affects the spin-dependent transport
properties as e.g. investigated in Ref. [29], and the polarization effects discussed
here can be expected to vary or even disappear. A strong confinement in the y-
direction leading to a sizable αy is thus essential to achieve spin polarization in
the present setup. The lower dispersion branch in Fig. 2.1 has a “W”-like shape.
For B = (B, 0, 0), the condition for this behavior is α2

y + α2
z > 2k2

Z and becomes
much more complex for an arbitrary direction of the magnetic field. We now focus
on the situation in which B = (B, 0, 0) and investigate and compare the electronic
transport and spin polarization at a potential step and a potential barrier.

2.3 Transport and spin polarization

At first, we implement a potential step in our model and calculate the transmission
and spin polarization of an electron with a certain energy EF [see Fig. 2.2 a)].
Although such a potential step might be difficult to realize experimentally without
any unintentional side-effects, it is nevertheless a very good model to get a first
insight into spin-dependent transport.

This potential step setup was first suggested by Strěda and Sěba in Ref. [26].
However, they neglected αy and therefore did not account for a sharp confinement
in y-direction, which is neccessary to obtain a well-defined one-dimensional system.
The transmissions tss′ of an electron at fixed Fermi energy EF passing a potential

10
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Figure 2.2: a) A potential step of height V0 and b) a potential barrier of height V0

and width 2xc. The corresponding dispersions in the different regions are sketched
(solid line: s = +, dashed line: s = −).

step in the wire direction [see Fig. 2.2 a)] are obtained by assuming continuity of
the wave functions and their derivatives at the interface. It was argued in Ref. [36]
that one has to consider the continuity of the wave function’s flux and not simply
its derivative, but in our setup both conditions lead to the same equations as we
consider a homogeneous SOI. The first index in tss′ labels the s-branch of the electron
state on the left side and the second index labels the branch on the right side of the
potential step.

Since we assume a translational invariant system, we can choose the x-coordinate
such that the potential step is at x = 0.

Therefore, the continuity condition of the wave function and its first derivative
gives the system of linear equations

φ
(s)
k1

(0) +Aφ
(+)
k2

(0) +Bφ
(−)
k3

(0) = Cφ
(+)
k4

(0) +Dφ
(−)
k5

(0)

k1φ
(s)
k1

(0) +Ak2φ
(+)
k2

(0) +Bk3φ
(−)
k3

(0) = Ck4φ
(+)
k4

(0) +Dk5φ
(−)
k5

(0) , (2.27)

which needs to be solved for the coefficients A,B,C,D. k1 is the wave number of
the incoming wave with either s = + or s = −, k2, k3 belong to the reflected wave
with s = ± and k4, k5 belong to the transmitted wave with s = ±, respectively. All
wave numbers kj with j ∈ {1, ..., 5} belong to the same Fermi energy EF . For the
right region of the potential step, i.e. for k4 and k5, one has to consider a dispersion
shifted by V0. Moreover, determining kj from the corresponding dispersion at given
EF , one has to account for the sign of the Fermi velocity vj at kj (left- or right-
moving states) to get a clear one-to-one correspondence between kj and EF . The
Fermi velocity is thereby given by the gradient of the dispersion at a certain k-value,

v(s)(k) =
∂ǫ(s)(k)

∂k
. (2.28)

One needs to be careful in the case in which the Fermi energy lies in the energy gap
region, since there exists only one s-branch for propagating states, s = − for right-
moving and s = + for left-moving states. Instead of a plain wave eikx, an evanescent,
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CHAPTER 2. SPIN-ORBIT INTERACTION (SOI) IN CONTINUUM

i.e. exponentially decaying, wave e−k̃|x| must be used instead in Eq. (2.19) for the
other s-value leading to the eigenfunction (for B‖ex)

ψk̃(x) =
1

kZ

√

2(k2
Z − αz k̃)

e−k̃|x|

(

iαy k̃ ±
√

k4
Z −

(
α2

y + α2
z

)
k̃2

−k2
Z + αz k̃

)

(2.29)

which is normalized in spin space. One could multiply ψ by
√

2k̃ to get a nor-
malization in the product of position and spin space. The sign in the first com-
ponent in Eq. (2.29) depends on k̃, i.e. “+” for k̃2 < k4

Z/(α
2
y + α2

z) and “-” for

k̃2 > k4
Z/(α

2
y + α2

z). The wave number k̃, belonging to a given EF , can be obtained
from the dispersion [see Eq. (2.21)] by allowing for an imaginary wave number κ
and setting k̃ = −iκ, k̃ ∈ R

>0. Inserting ψ instead of φ in Eq. (2.27) for the corre-
sponding wave gives the continuity condition for the case with EF being within the
energy gap.

The systems of linear equations for the different energy regions can be solved
numerically or by computer algebra programs for the coefficients A,B,C,D in
Eq. (2.27). The transmission is just the absolute square of the corresponding coeffi-
cient multiplied by the ratio of the Fermi velocities, e.g. setting s = − in Eq. (2.27)
gives

t−+ = |C|2 v4
v1

and t−− = |D|2 v5
v1

. (2.30)

t++ and t+− are obtained analogously. The total transmission T is the sum of the
four components t++, t+−, t−+, and t−−. To the right of the potential step and for
momentum |k| & α, one can assign spins with quantum numbers ↑, ↓ and a properly
chosen quantization axis to the branches s = +,− because of the independence of
〈σ〉k,s from k.

The polarization vector P = (Px, Py, Pz) is given by

P =
t++ + t−+

T
〈σ〉k,+ +

t+− + t−−

T
〈σ〉k,− . (2.31)

2.3.1 Homogenous system, V0 = 0

To get a first insight into the transport behavior of a system with SOI and magnetic
field, we first of all consider the trivial limit V0 = 0, i.e. a perfectly homogenous
system. The four transmission components tss′ with s, s′ = ± are shown in Fig. 2.3
a) as a function of the Fermi energy EF for α = 2. Choosing the energy offset such
that EF = 0 corresponds to the middle of the energy gap leads to a minimum energy
ǫmin for allowed states given by

ǫmin

EZ
= −α

4/k4
Z + 1

2α2/k2
Z

. (2.32)

The transmission t++ vanishes for energies inside the energy gap, but t++ = 1 for
EF being outside the gap, i.e. EF ∈ (ǫmin,−EZ)∪(EZ ,∞), while t−− = 1 and t+− =
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Figure 2.3: Transmission current and polarization for a homogeneous system, V0 = 0,
as a function of the Fermi energy EF .
a) Transmission components tss′ for α/kZ = 2. The minimum energy ǫmin is marked
by the arrow. t++ = 1(0) outside (inside) the energy gap reaching from −EZ to EZ .
t−− = 1 and t+− = t−+ = 0 holds for all energies. Note that the components do not
depend on α.
b) Total polarization P and c) contribution of Px for α/kZ = 2, 3, 5. One observes
P = 1 inside the gap (indicated by the black arrows) and a drop outside the gap,
almost independent of α. Px is negligible inside the gap and decreases with increasing
α, but strongly dominates the total polarization outside the gap, independent of α.

t−+ = 0 holds for all energies. This behavior is independent of the SOI coupling
parameters αy and αz and is also obtained in the trivial case αy = αz = 0, where
ǫmin corresponds to the lower boundary of the energy gap. The total polarization

P = |P| =
√

P 2
x + P 2

y + P 2
z (2.33)

and the polarization Px parallel to the wire (and the magnetic field) only depends
on α and not on the separate choice of αy and αz. The two SOI parameters only
determine the ratio of the orthogonal polarization via |αy/αz| = |Pz/Py|. As can
be seen from Fig. 2.3 b) and c), the contribution of Px to the total polarization P
decreases with increasing α, but P itself is almost independent of α.

The example of V0 = 0 shows that spin polarization is possible without a potential
step, which might seem astoninishing, since 〈σi〉k,s = −〈σi〉k,−s. However, at given
EF the allowed states on the (s = +)-branch have a different k-value than those
on the (s = −)-branch, which leads to a finite spin polarization. But this spin
polarization is homogenous in the entire system and one cannot control or modify
it properly by adjusting the system parameters.
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Figure 2.4: Transmission components at a potential step as a function of the Fermi
energy for V0/EZ = 15 and α/kZ = 1, 2, 3, 5. The t++ component is suppressed for
energies in the gap, EF /EZ ∈ (−1, 1), where t−− dominates the total transmission
and t−+ gets a growing impact. t+− can be disregarded for all energies, whereas
t−− becomes energy-independent for large α and tends towards unity.

2.3.2 Potential step

We now focus on a finite potential step V0 > 0 and investigate, how spin polarized
currents can be controlled by tuning the system parameters.

Fig. 2.4 shows the four transmission components tss′ , s, s
′ = ±, as a function of

the Fermi energy for V0/EZ = 15 and α/kZ = 1, 2, 3, 5. Referred to the Zeeman
energy, the energy gap is given by EF /EZ ∈ (−1, 1). The components t++ and t+−

are exactly zero in this region, since there are no propagating (s = +)-states in the
left area of the potential step for these energies. Whereas t+− can be disregarded
for all energies, t++ has significant values outside the gap, which increase with
increasing α. t−− is strictly monotonic increasing with increasing energy and tends
to the unitary limit for large α, i.e. t−− → 1, independent of the energy. t−+

plays an important role for energies inside the gap and is drastically suppressed
with increasing α. It is clear from Figs. 2.1 and 2.2 that the Fermi energy needs to
exceed a certain value E0 in order to allow for propagating states and therefore a
finite transmission. E0 grows with decreasing α and is just the lower boundary of
the energy gap for α/kZ = 1.

As shown in Fig. 2.5 a), the total polarization P = |P| of the current passing
the potential step is large for energies in the gap and increases with α. Similar
to the transmissions tss′ , P as well as the parallel polarization Px depend only
on V0, kZ , and α for B||ex and not on αy and αz independently. The relevant
energy scale of the polarization shown in Fig. 2.5 is given by EZ , which defines
the size of the gap [see Eq. (2.26)]. Therefore, energies are given in units of EZ
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Figure 2.5: Polarization of the transmission current at a potential step as a function
of the Fermi energy.
a) constant V0/EZ = 15 and α/kZ = 1, 2, 3, 5. The total polarization P is sizable
for energies in the gap (indicated by the black arrows). In this regime it is mostly
carried by Py and Pz. The polarization becomes negligible for energies outside the
gap where Px dominates.
b) constant α/kZ = 2 and V0/EZ = 0.5, 1, 2, 5. The arrows indicate the corre-
sponding lower boundary of the energy gap (being either on the left or the right side
of the step). The height of V0 controls the sign of Px for small energies.

and wave vectors in units of kZ . The parameters in Fig. 2.5 are V0/EZ = 15, and
α/kZ = 1, 2, 3, 5. The energy offset is chosen such that EF/EZ = 0 corresponds to
the middle of the gap. The parallel polarization Px gives the main contribution to
the total polarization as the energy departs from the gap, Px/P → 1. For energies
beyond the gap, however, the total polarization is negligible and within the gap,
the parallel component plays an inferior role. The ratio of the two perpendicular
polarizations is given by |Pz/Py| = |αy/αz|. Therefore, the orthogonal polarization
P⊥ = (0, Py , Pz) can be rotated within the y-z-plane by adjusting αy and αz.

Fig. 2.5 b) shows the total polarization and the relative polarization parallel to
the wire (in x-direction) for constant SOI coupling α/kZ = 2 and different height
of the potential step, V0/EZ = 0.5, 1, 2, 5. The coloured arrows indicate the lower
boundary of the energy gap of the dispersion on the right side of the potential step
for the different V0. For V0/EZ < 1, there is an energy interval, which meets the
energy gap on the left side of the step as well as the energy gap on the right side.
For EF ∈ (ǫmin,−EZ), both branches on the left side allow for propagating states,
but there might be only one propagating (and one evanescent) state on the right
side. Here, ǫmin denotes the minimum energy on the left side of the step.

Independent from whether or not there are one or two propagating states on the
left side, i.e. whether or not EF is in or below the left energy gap, P = 1, as long
as EF meets the energy gap on the right side of the step.

Let us take the black curve in Fig. 2.5 b) (V0/EZ = 0.5) to clarify this. The
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left gap in units of EZ is given by the interval (−1, 1) and the minimum energy
on the left side is ǫmin/EZ = −17/8 according to Eq. (2.32). Starting at ǫmin, the
polarization increases with energy until it reaches unity at EF /EZ = −1.5 which
is the lower boundary of the right gap. At EF /EZ = 0.5, the upper boundary
of the right gap is reached and the polarization decreases slightly until the upper
boundary of the left gap is reached at EF/EZ = 1 and the polarization drops very
sharply. The x-component Px of the polarization has the opposite sign at small
energies compared to the regime in which V0 ≫ EZ . Moreover, Fig. 2.5 a) shows for
the large V0 regime that Px gains relative importance only for energies with almost
negligible total polarization. However, in the regime V0 . EZ , the total polarization
is carried almost by Px alone for EF > EZ and takes non-negligible values of up to
0.3 slightly above EZ [see Fig. 2.5 b)].

This very interesting case of small potential steps has not been reported in
Refs. [26, 35], but might be of even greater importance for generating spin po-
larized currents than the case of large potential steps considerd in the literature so
far, since in the small V0 regime perfect spin polarization in the gap can be achieved
for smaller SOI strength than in the large V0 regime [see Fig. 2.5].

2.3.3 Potential barrier

We next study the transmission current at a potential barrier of height V0 and
width 2xc [see Fig. 2.2 b)]. This situation might be more realistic than a simple
potential step, if one thinks of further structuring by applying gates to the quantum
wire or inserting one or a small number of impurity atoms. The four transmission
components tss′ are obtained in exactly the same way as for the potential step. The
only difference is that one has to take into account the continuity condition of the
wave function and its first derivative at both ends (±xc) of the barrier.

Large barrier height

Fig. 2.6 a) shows the four components of the transmission as a function of EF /EZ

for α/kZ = 1, 2, 3, V0/EZ = 15, and kZxc = 1. Again, the SOI affects the
transmissions tss′ only via α. The energy offset is chosen such that the energy
gap in the middle region [see Fig. 2.2 b)] corresponds to the interval (−EZ , EZ).
Interestingly and in contrast to the potential step, the s-flipping transmissions are
degenerate, t+− = t−+. This can be understood, if one considers the possible s-
flips at the two interfaces leading to an overall s-flip. Labeling the left interface
(1) and the right interface (2), one simply has to take the sum of the products of
transmissions at each interface and obtains

t+− = t++(1)t+−(2) + t+−(1)t−−(2) ,

t−+ = t−−(1)t−+(2) + t−+(1)t++(2) . (2.34)

An analysis of the potential step problem shows that the s-conserving transmissions
t++ and t−− are independent of the sign of V0 and the s-flipping transmissions just
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Figure 2.6: Partial transmissions and polarization at a potential barrier as a function
of the Fermi energy EF for α/kZ = 1, 2, 3. and barrier parameters xckZ = 1 and
V0/EZ = 15.
a) The high energy regime of t++ and t−− is dominated by strong oscillations. t+−

and t−+ are degenerate and have their maximum values near the energy gap, but
also have non-negligible values well beyond it.
b) The total polarization P is sizable for energies well beyond the gap (indicated by
the arrows) and shows oscillatory behavior. The x-component Px is only relevant in
regimes in which the total polarization is small.

swap, i.e. t+−(1) = t−+(2) and t−+(1) = t+−(2). This leads to exactly the same
values of t+− and t−+ in Eq. (2.34). The exponential suppression of t++(1) and
t−+(1) for energies within the gap does not affect this behavior. The s-conserving
transmissions t++ and t−− show an oscillatory behavior, which is a well-known
phenomenon of the standard quantum mechanical scattering problem at a potential
barrier without SOI. However, especially for low energies, the amplitude strongly
depends on α. The s-flipping transmissions t+− and t−+ oscillate as well. The
second peak of t++, which lies in the energy gap, is suppressed compared to t−−,
since right-moving (s = +)-waves are exponentially damped in the barrier region
and therefore, as shown in Ref. [26], t−− is the dominant component at each interface
in this energy range.

Fig. 2.6 b) shows the total polarization P and its x-component Px/P for the
same parameters as in the left plot. Similarly to the potential step case, P = |P|
and Px only depend on α and not on αy and αz independently. Surprisingly, the
polarization now has a sizable value in an energy interval much bigger than the gap,
which just reaches from −EZ to EZ [see the arrows in Fig. 2.6 b)]. This behavior
must be contrasted to the polarization in the case of a potential step [see Fig. 2.5].
It can be traced back to the energy dependence of t+− and t−+ shown in Fig. 2.6
a). Both have finite weight well beyond the energy gap. This might be due to
interference effects of transmitted and reflected waves in the barrier region.
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Figure 2.7: Transmission component t++ over the Fermi energy EF for α/kZ = 2
and phase shift ∆E as a function of α.
a) The barrier height V0 only affects the oscillation amplitude but not its frequency
for high energies.
b) The oscillation frequency is proportional to the barrier width xc for high energies.
c) The phase shift ∆E shows a perfectly quadratic dependence on α.

Transmission oscillations

The oscillations of the transmission components t++ and t−− for high energies are
another interesting feature which was not present in the simple potential step case.
Figs. 2.7 a) and b) show the influence of the barrier parameters on the oscillatory
behavior of the t++ component for constant SOI coupling α/kZ = 2. Whereas the
barrier height V0 affects only the oscillation amplitude (for constant barrier width)
and not the oscillation frequency, the barrier width xc leads to the opposite effect
and one observes a clear proportional dependence of the oscillation frequency ωosc on
xc, but the oscillations’ envelope function is independent of xc for constant V0. These
results are in analogy to the spin-degenerate case (no SOI and no magnetic field)
known from quantum mechanical textbooks. Moreover, the period of the oscillations
is independent from α for high energies, but the oscillation phase is shifted by α.
Taking the (α = 1)-curve as reference, the shift ∆E of the curves is given by

∆E

EZ
= 0.5 − 0.5

α2

k2
Z

, (2.35)

independent from the barrier parameters V0 and xc [see Fig. 2.7 c)]. All these results
also hold for t−−, t+− and t−+, but are not so obvious for the latter two due to the
suppression of the s-flipping components for high energies.

Small barrier height

We now focus on the case in which V0/EZ . 1 is small and, therefore, one also
has to consider the energy gaps of the dispersions on the left and right side of the
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Figure 2.8: Transmission components tss′ over the Fermi energy EF for xckZ = 1
and V0/EZ = 1.
a) t++, t+− and t−+ vanish inside the energy gap (−2EZ , 0) of the left/right side of
the barrier, since there are no propagating states. t−− shows characteristic dips at
certain energies depending on α.
b) The transmission minima of t−− are shifted towards lower energies and their
width decreases for increasing α. The inset shows that the minima tend towards the
lower boundary of the energy gap of the left/right side of the barrier.

barrier.
As can be seen from Fig. 2.8 a), the transmission components t++, t+− and t−+

vanish in the energy gap of the left/right side of the barrier, which is the interval
(−2EZ , 0) for the barrier parameters xckZ = 1 and V0/EZ = 1 chosen here. This is
clear from the fact that states with this energy cannot propagate in the left/right
region. The s-flipping components can be neglected, whereas t++ → 1 outside
the gap, except for the decay at the lower boundary ǫL,R

min of the dispersion on the
left/right side of the barrier given by

ǫL,R
min

EZ
= −α

4/k4
Z + 1

2α2/k2
Z

− V0

EZ
. (2.36)

The component t−− shows characteristic dips at certain energies which depend on
α. This is shwon in Fig. 2.8 b). The inset shows the position Emin of the minimum
of t−− as a function of α. One observes a monotonic decay and a saturation

Emin

EZ
→ − V0

EZ
− 1 for α→ ∞ , (2.37)

which holds for arbitrary V0 . EZ . Since there occur more dips for larger xc, this
might be a destructive interference effect resulting from reflected waves on both ends
of the barrier.

It is interesting to note that the dips of t−− do not affect the spin polarization,
neither for small nor for large barrier width xc [see Fig. 2.9]. Especially for small
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Figure 2.9: Total polarization and x-component Px (parallel to the wire) over the
Fermi energy EF for small height of the potential barrier, V0/EZ = 1. The black
(red) arrows indicate the energy gap of the left/right (barrier) region.
a) small barrier width (xckZ = 1): the total polarization P is comparable to the
case V0 = 0 [see Fig. 2.3] with the modification that the decay of P at the upper
boundary of the gap in the left/right region is slowed down for small α. The parallel
component Px shows the same qualitative behavior as in the V0 = 0 case, but the
increase of Px for energies between the upper boundary of the left/right gap and the
upper boundary of the barrier gap is broadened for small α.
b) large barrier width (xckZ = 5): the total polarization and Px strongly differs from
the small xc regime for energies between the upper boundaries of the two energy gaps
(between the right black and right red arrow), but coincides outside this interval.
Px shows oscillations for energies slightly above the upper boundary of the energy
gap in the barrier region. These oscillations become less pronounced with increasing
α.

xc, a potential barrier with height V0 = 1 does not seem to play a role for the
polarization compared to the V0 = 0 case shown in Fig. 2.3. Solely for small α, one
observes a difference for energies in the interval Eub between the upper boundary
of the energy gap on the left/right side of the barrier and the upper boundary of
the energy gap in the barrier region (defined by the right black and right red arrow
in Fig. 2.9). The decrease of P is nearly linear in this interval for small α, but
shows the same steepness like in the V0 = 0 case, if α becomes large. The same
behavior is observed for the parallel component Px, which also shows astonishing
correspondence to the situation with vanishing barrier height except for energies
in the interval Eub. Again, the tendency of reaching the asymptotic high energy
polarization is slowed down for small α. Fig. 2.9 b) shows the polarization for large
barrier width (xckZ = 5). The region in which P ≈ 1 and Px ≈ 0, is enlarged by
the interval Eub, if α becomes not too large. Moreover, Px shows oscillations for
energies slightly above the upper boundary of the energy gap of the barrier region,
which are stongly pronounced for small α, but vanish as α is increased.
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The conditions for the experimental realization of a spin-polarized current are
discussed in Ref. [26] and can be extended straightforwardly to the setups considered
here. We will discuss this issue in detail in Chapter 7.

2.4 Summary

The starting point of this chapter was the expansion of the relativistic Dirac equation
up to second order in v/c yielding the SOI Hamiltonian. We implemented this
Hamiltonian, represented by Rashba fields αy and αz, into a homogenous continuum
model for the one-dimensional motion (in x-direction) of non-interacting electrons.
Furthermore, we accounted for a Zeeman effect induced by a magnetic field B in
arbitrary direction and studied the eigenvalues (energy dispersion), eigenstates and
spin expectation values of the resulting Hamiltonian. Besides the wave number k,
an additional quantum number s = ± was introduced to unambigiously classify the
different energy eigenvalues and eigenstates.

Being interested just in the low-energy behavior of the system, we focused on
the lowest energy subband and omitted any subband mixing, which is an admissible
simplification, since the energy subbands are well-separated in the spatially strongly
confined electron systems under our consideration.

The quadratic dispersion of free electrons in 1D is spin-degenerate. We have
shown that SOI leads to a splitting of the two degenerate parabulas in k-direction,
whereas an additional magnetic field causes an energy gap due to Zeeman splitting.
The interplay of SOI and Zeeman effect turned out to have also great influence on
the spin expectation values allowing for almost every orientation of the spins by
carefully tuning the parameters αy, αz and B.

In order to generate spin-polarized currents, which are of great experimental
interest for spintronic applications, we then implemented a potential step in the
system and studied the quantum mechanical scattering problem in terms of the
transmissions tss′ with s, s′ = ±. The tss′ as functions of the Fermi energy were
shown to stongly depend on the SOI, especially in the magnetic field induced energy
gap. For energies within the gap, we also observed significant spin polarization
depending on the ratio of SOI and magnetic field and the height of the potential
step. For large SOI fields, the polarization was shown to reach the limit of perfect
polarization, P → 1, within a certain energy range.

We also studied the experimentally more realistic situation of a potential barrier
of finite width. Again, perfect polarization could be achieved by carefully tuning
the system parameters. The oscillatory behavior of the transmission, which is well-
known for the scattering at a potential barrier in the absence of SOI, was also
observed for the tss′ and led to interesting interference phenomena.

In the next chapter, we will construct a lattice model with SOI and Zeeman term
which shows the same low-energy behavior in terms of energy dispersion and spin
expectation values. We will study the transport properties of the lattice model and
compare them with the results obtained above for the continuum model.
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Chapter 3

Transport properties of a
non-interacting lattice model
with SOI

As discussed in the previous chapter in relation to the continuum model, spin-orbit
interaction (SOI) can strongly alter the system’s transport properties and generate
spin-polarized currents. The polarization can be tuned by including a potential step
or a potential barrier in the system.

However, it is a widely accepted fact that lattice models have given proof of
being indispensible in mesoscopic solid state physics, not only due to many formal
advantages [37], but also because they often model experimental situations in meso-
scopic regimes far better than corresponding continuum models, especially in low
dimensions.

Firstly, we aim at constructing an infinite tight-binding lattice model which
shows, in appropriate parameter regimes, similar low-energy physics as the con-
tinuum model in terms of energy dispersion and spin expectation values. Secondly,
we investigate how the transport properties regarding the linear conductance of this
lattice model are modified by the SOI and whether spin polarization is possible for
an appropriate potential structure.

In order to study transport phenomena, we will confine the lattice model under
consideration to a finite size and attach it to two semi-infinite lattice systems without
SOI and without a magnetic field. This situation is often found in experiments where
a mesoscopic low-dimensional quantum system is attached to higher-dimensional
leads.

3.1 Lattice model with SOI and Zeeman term

We start with a representation of the Hamiltonian in terms of Wannier states |j, σ〉
with j ∈ Z labeling the lattice site and σ =↑, ↓ labeling the spin. The spin quan-
tization is chosen along the z-direction. With c†j,σ being the creation operator of
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3.1. LATTICE MODEL WITH SOI AND ZEEMAN TERM

an electron at site j with spin σ, the lattice model Hamiltonian for an arbitrary
magnetic field B = B (sin θ cosϕ, sin θ sinϕ, cos θ) can be written as

H = H0 +Hpot +HR +HZ , (3.1)

with the free part

H0 = ǫ
∑

j,σ

c†j,σcj,σ − t
∑

j,σ

(

c†j+1,σcj,σ + c†j,σcj+1,σ

)

, (3.2)

containing the on-site energy and the conventional (spin-conserving) hopping, ex-
ternal potential (e.g. due to nano-device structuring)

Hpot =
∑

j,σ

Vj,σc
†
j,σcj,σ , (3.3)

the SOI (Rashba) hopping terms

HR = −αz

∑

j,σ,σ′

(

c†j+1,σ (iσy)σ,σ′ cj,σ′ + H.c.
)

(3.4)

+αy

∑

j,σ,σ′

(

c†j+1,σ (iσz)σ,σ′ cj,σ′ + H.c.
)

,

and the Zeeman term

HZ = γB
∑

j,σ,σ′

c†j,σ

[

(σx)σ,σ′ sin θ cosϕ (3.5)

+ (σy)σ,σ′ sin θ sinϕ+ (σz)σ,σ′ cos θ
]

cj,σ′ .

The Zeeman coupling constant γ = 2k2
Z/B is introduced here in order to keep

the notation short. The SOI Hamiltonian Eq. (3.5) consists of a spin-flip hopping
αz due to the confinement in z-direction which already was observed in Ref. [28]
and, additionally, a complex spin-conserving hopping αy due to confinement in y-
direction. Note that if we would have chosen the spin quantization axis to point in
y-direction, the αy-term would habe been modelled by a spin-flip hopping and the
αz-term by a complex spin-conserving hopping. We assume a lattice constant a = 1
in order to make the wave vector k a dimensionless quantity (for convenience). All
system parameters are assumed to be constant over the entire system, a condition
we will drop later on. We show the analogy to the continuum case suppressing Hpot

and take as an ansatz for the corresponding eigenstates

|k, s〉 =
∑

j,σ

as
σ(k)eikj |j, σ〉 . (3.6)

This leads to the eigenenergies

E(s)(k) = ǫ− 2t cos k + 2s sgn(k − k0)
√

D(k) , (3.7)
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with

k0 = arcsin
[
−k2

Z(αy cos θ − αz sin θ sinϕ)/(α2
y + α2

z)
]

(3.8)

and

D(k) = (α2
y + α2

z) sin2 k + k4
Z + 2k2

Z sin k (αy cos θ − αz sin θ sinϕ) . (3.9)

Eq. (3.7) has almost the same form as the continuum version Eq. (2.21). In fact,
choosing the on-site energy ǫ = 2t, which corresponds just to an overall energy shift,
and substituting cos k by 1−k2/2 and sin k by k, which is a valid approximation for
sufficiently small |k|, we get exactly the same form. Note however that, in contrast
to the continuum case, αy, αz and k2

Z now have the unit of energy. We choose

as
↓(k) = 1 for the eigenstates Eq. (3.6) and obtain as

↑(k) = c
(s)
k with

c
(s)
k =

−iαz sin k − k2
Ze

−iϕ sin θ

αy sin k + k2
Z cos θ − s sgn(k − k0)

√

D(k)
(3.10)

being dimensionless. Therefore, the lattice spin expectation values

〈σx + iσy〉k,s = 2

(

c
(s)
k

)∗

1 +
∣
∣
∣c

(s)
k

∣
∣
∣

2 , 〈σz〉k,s =
−1 +

∣
∣
∣c

(s)
k

∣
∣
∣

2

1 +
∣
∣
∣c

(s)
k

∣
∣
∣

2 (3.11)

have the same form as those in the continuum model, at least for small |k|. The
energy dispersions and the spin expectation values for magnetic fields pointing in
x-, y-, and z-direction are shown in Fig. 3.1. Besides the cosine-like structure, which
becomes particularly relevant near the upper band edges (k ≈ ±π), the dispersion
and spin expectation values have the same shape as in the continuum model. A direct
comparison of Fig. 3.1 and Fig. 2.1 shows that our lattice model reproduces the low
energy physics, i.e. for |k − k0| < π/2, which have been observed in the continuum.
Again, we only show the spin expectation values on the (s = +)-branch. The spin
on the (s = −)-branch points in the opposite direction, i.e. 〈σi〉k,s = −〈σi〉k,−s. The
direct relation between the dispersion and the spin expectation values for energies
of the order of the “gap” is the essential feature leading to the remarkable scattering
properties of the continuum model (and eventually a spin polarized conductance)
at steps and barriers. One can thus expect similar transport characteristics to be
realized in the lattice model. In particular, one also obtains spin polarized currents
in analogy to the continuum model by carefully tuning the system parameters, as
will be shown below.

3.2 Preliminary discussion about transport on a lattice

Before we analyze the influence of the SOI on the transport properties of the lattice
model, some preliminary discussion is neccessary.
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Figure 3.1: Lattice dispersion and spin expectation values on the (s = +)-branch
for a magnetic field in a) x- , b) y- and c) z-direction for t/α = 1, αy/α = −0.6,
αz/α = −0.8, kZ/α = 0.5. The spin on the (s = −)-branch points in the opposite
direction, i.e. 〈σi〉k,s = −〈σi〉k,−s. For |k − k0| < π/2 one obtains exactly the same
behavior as in the continuum case.

3.2.1 Setup

We couple a finite lattice system, consisting of N lattice sites and being described
by the Hamiltonian Eq. (3.1), to two semi-infinite leads which can be regarded as
Fermi liquids (see Fig. 3.2). We will call the inner part the quantum wire or just the
system for convenience.

The leads are modeled by semi-infinite lattices with conventional hopping t̃L,R

and SOI (Rashba) hopping α̃y;L,R and α̃z;L,R with L,R labeling the left/right lead.
The lead Hamiltonian reads

H lead
L,R =

∑

j

∑

σ,σ′

[
d†j+1,σ

(
− t̃L,Rδσ,σ′ + α̃y;L,R (iσz)σ,σ′

−α̃z;L,R (iσy)σ,σ′

)
dj,σ′ + H.c.

]
, (3.12)

with d†j,σ being the creation operator of an electron at lattice site j with spin σ,
whereupon j = −∞, ..., 0 for the left lead and j = N + 1, ...,∞ for the right lead.

As will be seen below, we need to calculate the local components gσσ′ (z) of the
Green’s function (local in the sense of a propagator along a closed path) in order
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to account for the leads’ influence on the system properties. After a lengthy but
straightforward calculation [see App. A] one obtains the local Green’s function of
the leads

gL,R
↑↑ (z) =

z + µL,R ∓
√

z2 + 2zµL,R + µ2
L,R − 4(t̃2L,R + α̃2

y;L,R + α̃2
z;L,R)

2(t̃2L,R + α̃2
y;L,R + α̃2

z;L,R)

gL,R
↑↓ (z) = 0

gL,R
↓↑ (z) = 0

gL,R
↓↓ (z) =

z + µL,R ∓
√

z2 + 2zµL,R + µ2
L,R − 4(t̃2L,R + α̃2

y;L,R + α̃2
z;L,R)

2(t̃2L,R + α̃2
y;L,R + α̃2

z;L,R)
.

(3.13)

The sign is chosen such that lim
|z|→∞

gσσ(z) = 0. We have added chemical poten-

tials µL,R for the left/right lead, since our analysis of the transport properties of
the system will be performed within a grand-canonical calculation allowing for
adding/removing electrons to the system. We consider the equilibrium situation
µL = µR in the following.

The fact that there are no spin-flip components in the leads’ Green’s function
Eq. (3.13) can be understood by considering the different closed paths an electron
can ”choose” to propagate from the outermost lattice site of the lead into the system
or further into the lead and back again. The reader will find a descriptive proof in
App. A. It is based on the time-inversion symmetry of the leads, which is not broken
by SOI [38].

The electrons can enter and leave the left and right lead via the hopping matrix
elements tL,R (conventional hopping) and αy;L,R, αz;L,R (Rashba hopping). The
hybridization Hamiltonian describing the connection between the quantum wire and

�

lead L

tL
x6 x6
t± iαy

x
?

αz

x6x
?

�
�lead R

tR

Figure 3.2: Linear geometry of the non-interacting quantum wire with conven-
tional hopping t and SOI parameters αy and αz connected to two semi-infinite
non-interacting leads via hopping amplitudes tL and tR. For convenience, the inner
part is just called the system.
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the leads is given by

HQW−leads =
∑

σ,σ′

[
c†1,σ

(
− tLδσ,σ′ + αy;L (iσz)σ,σ′

−αz;L (iσy)σ,σ′

)
d0,σ′

+d†N+1,σ

(
− tRδσ,σ′ + αy;R (iσz)σ,σ′

−αz;R (iσy)σ,σ′

)
cN,σ′ + H.c.

]
. (3.14)

In order to avoid backscattering into the left lead at the left interface and into the
quantum wire at the right interface, all parameters of the quantum wire which are
not present in the leads (i.e. magnetic field and SOI) are turned on/off adiabatically
over a certain number m1 of lattice sites with a smooth weight function

f(j) =
1

2

(

1 − cos

(
j

m1
π

))

for j = 1, ...,m1 and

f(j) =
1

2

(

1 + cos

(
j − 1 −N +m1

m1
π

))

for j = N −m1, ...,N . (3.15)

We emphasize that the precise shape of this weight function does not have any
influence on the results as long as m1 is large enough and N ≫ 2m1 [39].

We get rid of the leads by a Feshbach projection (see below), i.e. we project
the influence of the left (right) lead to the leftmost (rightmost) lattice site of the
quantum wire and end up with a 2N×2N problem for N lattice sites of the quantum
wire system (factor 2 is included because of the spin).

3.2.2 Projection of the leads

The reader can find a detailed description of the projection technique in e.g. Refs. [17,
40]. We just resume the results here and show how this technique can be applied in
one-to-one correspondence to the case with SOI, if one accounts for the 2×2-matrix
algebra induced by the spin representation.

We define projection operators P to the quantum wire andQ to the leads, P+Q =
1, and obtain for the Hamiltonian of the complete system

H̃ =

(
H̃PP H̃PQ

H̃QP H̃QQ

)

. (3.16)

As a result of this projection, the influence of the leads gives a contribution to
the quantum wire’s self energy Σi,j(σ, σ

′). The left lead is projected onto the left
boundary site (j = 1) of the wire and, similarly, the right lead is projected onto the
right boundary site (j = N) via

Σ1,1(z) =





(

t2L + α2
y;L

)

gL
↑↑(z) + α2

z;Lg
L
↓↓(z) 0

0
(

t2L + α2
y;L

)

gL
↓↓(z) + α2

z;Lg
L
↑↑(z)



 ,
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ΣN,N (z) =





(

t2R + α2
y;R

)

gR
↑↑(z) + α2

z;Rg
R
↓↓(z) 0

0
(

t2R + α2
y;R

)

gR
↓↓(z) + α2

z;Rg
R
↑↑(z)



 .

(3.17)
As can be seen from Eqs. (3.17) and (3.13) the leads’ hopping contributions t̃L,R,
α̃y;L,R and α̃z;L,R enter the system’s self energy via an effective hopping

t̃effL,R =
√

t̃2L,R + α̃2
y;L,R + α̃2

z;L,R . (3.18)

Although it will be pointed out in App. A that a finite SOI in the leads might have
consequences for the process of measuring spin polarization, we can disregard the
Rashba hopping in the leads at this point and set t̃L,R = 1, i.e. all energies are given
in units of the effective lead hopping. This choice of an energy scale will be used
consequently throughout the remaining part of this thesis.

In addition to the fact that the lead contribution to the self energy of the system
is diagonal in the spin index, because of gL,R

↑↓ = gL,R
↓↑ = 0 [see Eq. (3.13)], we see from

Eq. (3.17) that αz;L,R is the spin-flip hybridization and tL,R and αy;L,R couple to an
effective spin-conserving hybridization. Therefore, we can abandon αy;L,R without
loss of generality. If the spin-conserving components of the leads’ Green’s function
are degenerate, gL

↑↑ = gL
↓↓ and gR

↑↑ = gR
↓↓, which is the case if no external magnetic

field is applied to the leads, we have the same structure as in Eq. (3.18). Since we
assume no magnetic field in the leads, we just take tL,R into account.

Note that the lead’s contribution to the self energy can also be absorbed into
the free propagator G0 of the wire, since the full propagator is given by the Dyson
equation

G =
(
G−1

0 − Σ
)−1

, (3.19)

which also holds in presence of Coulomb interaction [see Chapter 5 and 6].

3.2.3 The linear conductance

As discussed in Ref. [41], the linear conductance G is a convenient physical quantity
for investigating transport properties of an electron system, since G can be measured
very accurately in voltage probe experiments even for more-terminal setups. On the
other hand, the linear conductance can be calculated within the Landauer-Büttiker
formalism. We want to resume the most important steps here.

The full conductance Gtotal is normally defined as the proportionality factor be-
tween the current I through a given sample and the voltage V applied to it (Ohm’s
law) and is therefore a sample-specific quantity, in difference to the conductivity,
which is just a property of the underlying material.

The linear conductance is given by the Kubo formula (see e.g. Ref. [42])

G = lim
ω→0

ℜ
(
ie2

ω
CR

II(ω)

)

(3.20)
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with CR
II(ω) being the Fourier transform of the time-dependent retarded current-

current correlation function

CR
II(t− t′) = −iθ(t− t′)〈[Î(t), Î(t′)]〉 (3.21)

and Î being the current operator.
According to the Landauer-Büttiker formalism (see e.g. Refs. [41] and [42]), the

current I is connected to the amplitude T of the transmission through the sample.
Taking spin-flip terms into account, we have to assign the transmission amplitude
with two spin indices T → Tσσ′ with σ, σ′ ∈ {↑, ↓} with respect to a given spin
quantization axis (chosen to point in the z-direction). Thus, the linear conductance
(also assigned with two spin indices) at temperature T and chemical potential µ can
be written as

Gσσ′(T, µ) =
e2

h

W/2−µ∫

−W/2−µ

d ǫ

(

−∂f
∂ǫ

)

|Tσσ′(ǫ)|2 , (3.22)

with W being the bandwith and f(ǫ) = 1/(exp[β(ǫ−µ)]+1) being the Fermi function
with β = 1/T being the inverse temperature, setting the Boltzmann constant kB = 1.

In the following, we will always assume T = 0. The derivative of the Fermi
function with respect to ǫ therefore reduces to a (negative) δ-function with the peak
being at the chemical potential. The transmission probability can be expressed by
the (1, N) matrix element G(1, N) of the system’s Green’s function, i.e.

Tσσ′ = 2tLtR sin(kF )Gσσ′(1,N) . (3.23)

kF is the Fermi wave number defined by the leads energy dispersion

ǫL,R = −2t̃L,R cos(k) = −2 cos(k) with t̃L = t̃R = 1. (3.24)

As discussed above, we assume identical leads (left/right) and set tL = tR = 1
(smooth contacts between the system and the leads). The chemical potential is the
same all over the system and we obtain from Eq. (3.24)

kF = arccos
(

−µ
2

)

. (3.25)

We omit a detailed derivation of Eq. (3.23), but refer to Refs. [17, 40], in which the
calculation has been carried out in great detail for the spinless case. For electrons
with spin and in presence of SOI, the formulas remain the same with additionally
assigning two spin indices to the transmission Tσσ′ and the conductance Gσσ′ [see
Eqs. (3.22) and (3.23)].

3.3 The four components of the linear conductance

We calculate the linear conductance as a function of the chemical potential µ which
is the same in the leads and the quantum wire in the equilibrium situation considered
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Figure 3.3: Setup for µ-dependent calculation of the linear conductance. The disper-
sion of the non-interacting leads without SOI and magnetic field have a cosine-like
shape (dashed curve). The chemical potential µ (dotted line) is tuned over the whole
bandwidth of the leads. Since we choose t̃L = t̃R, the left lead and the right lead
have the same width and dispersion. The influence of the Coulomb interaction on
the transport properties of the system will be addressed in Chapter 5 and 6.

here. We believe that this approach is more convenient than setting the filling of
the entire system [17, 43], especially for experimental realization.

The setup is shown in Fig. 3.3. This corresponds to the energy-dependent calcu-
lations, which are common for continuum models [26, 35]. The total conductance is
given by the sum of the components Gσσ′ [defined in Eq. (3.22)]

Gtotal = G↑↑ +G↑↓ +G↓↑ +G↓↓ . (3.26)

Due to the choice of the z-axis as spin quantization axis the spin polarization in
z-direction can be defined as

Pz =
G↑↑ +G↓↑ −G↑↓ −G↓↓

Gtotal
. (3.27)

We emphasize that this definition differs from the continuum polarization which was
defined in terms of spin expectation values [see Eq. (2.31)]. However, the lattice setup
and consequently the process of measuring the polarization is somewhat different
from the continuum version due to the presence of the leads. As we assume the
SOI and the magnetic field to vanish in the leads, the spin is a conserved quantity
there, i.e. the spin transport through the system is entirely determined by Gσσ′ and
Eq. (3.27) is the correct definition of the spin polarization.

The conductance components and spin polarization in the x- and y-direction can
be obtained by a simple base transformation. The transmission amplitudes with
respect to the x- and y-direction as spin quantization axis are given by

T (x)
↑↑ = (T↑↑ + T↑↓ + T↓↑ + T↓↓) /2

T (x)
↑↓ = (T↑↑ − T↑↓ + T↓↑ − T↓↓) /2

T (x)
↓↑ = (T↑↑ + T↑↓ − T↓↑ − T↓↓) /2

T (x)
↓↓ = (T↑↑ − T↑↓ − T↓↑ + T↓↓) /2 (3.28)
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and

T (y)
↑↑ = (T↑↑ − iT↑↓ + iT↓↑ + T↓↓) /2

T (y)
↑↓ = (−iT↑↑ + T↑↓ + T↓↑ + iT↓↓) /2

T (y)
↓↑ = (iT↑↑ + T↑↓ + T↓↑ − iT↓↓) /2

T (y)
↓↓ = (T↑↑ + iT↑↓ − iT↓↑ + T↓↓) /2 . (3.29)

Inserting Eqs. (3.28) and (3.29) into Eq. (3.22) yields the conductance components

G
(x)
σσ′ and G

(y)
σσ′ . We then receive the spin polarization in x- and y-direction according

to Eq. (3.27). The total conductance is independent from the direction of the spin
quantization axis. If not written down explicitely, Gσσ′ denotes the conductance
components with respect to the z-direction.

Before we consider correlation effects [see Chapter 5 and 6], we firstt investigate
the simpler situation without Coulomb interaction here and discuss the influence
of the magnetic field and the SOI on the conductance components and the spin
polarization. In the following, we choose the SOI parameters αy, αz > 0 in contrast
to Chapter 2 and Fig. 3.1. However, as we have shown in Chapter 2, the SOI
parameters are given by αi = eEi/(4mc

2), i = y, z, with e being the (negative)
electron charge andm being the effective mass. The electric field Ei as the gradient of
the confining scalar potential can, naturally, be negative here leading to αy, αz > 0.
However, we emphasize that the total conductance is independent of the sign of αy

and αz and the polarization components Pi might merely change their sign. We
think that this approach with αy, αz > 0 is more convenient, as all other hopping
amplitudes are also positive numbers. This convention is also quite intuitive, if one
thinks of the hopping amplitudes being expectation values of the kinetic energy
related to some electron hopping processes.

Fig. 3.4 shows the conductance of a system withN = 100 lattice sites and hopping
t = 1 as a function of the chemical potential µ in presence of SOI (αy = 0.3, αz =
0.5). The system is perfectly coupled to the leads, i.e. tL = tR = 1. As can be
seen from Fig. 3.4 a), a sharply turned on/off SOI (m1 = 0) leads to oscillations
of the total conductance even in the energy range far away from the band edges,
since the SOI can be seen as hopping impurities in this case. Furthermore, one
observes a drastic reduction of the conductance at the band edges. Obviously, it is
sufficient to turn on/off the SOI smoothely over m1 = 20 to avoid these oscillations
and obtain a perfect conductance Gtotal = 2e2/h over the entire band width of the
leads, µ ∈ (−2, ..., 2) [see Fig. 3.4 b)].

Although the conductance components strongly depend on the ratio of t, αy and
αz, the total conductance depends on these hopping terms only via

teff =
√

t2 + α2
y + α2

z . (3.30)
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Figure 3.4: Total conductance and the four conductance components over the chem-
ical potential µ for a system parameters N = 100, t = tL = tR = 1, αy = 0.3,
αz = 0.5.
a) Turning on/off the SOI (αy, αz) sharply leads to oscillations and a severe reduc-
tion of the conductance near the band edges.
b) The SOI is turned on/off smoothly over m1 = 20 lattice sites. This ensures perfect
conductance over the whole band width and a suppression of the oscillations.
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Figure 3.5: a) Total conductance and the four conductance components over the
number of lattice sites in presence of SOI. The system is perfectly coupled to the
leads (tL = tR = 1) and the SOI (αy = 0, αz = 0.1) is turned on/off smoothly over
m1 = 20 lattice sites to obtain a perfect total conductance. The components are
pairwise degenerate, G↑↑ = G↓↓, G↑↓ = G↓↑, and show a characteristic oscillatory
behavior.
b) Oscillation period for different SOI strengths. The numerical data can be fitted
well by a hyperbola, Nosc ∼ 1/α.
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Due to rotational symmetry around the x-axis, G
(x)
σ,σ′ depends only on the total

SOI strength α =
√

α2
y + α2

z. Since no external potential or magnetic field is present,

the two spin-conserving and the two spin-flipping components are degenerate for

every direction, i.e. G
(x,y,z)
↑↑ = G

(x,y,z)
↓↓ and G

(x,y,z)
↑↓ = G

(x,y,z)
↓↑ . Clearly, there are no

spin-flipping components in y- (z-) direction, if αy = 0 (αz = 0).
It has been pointed out in Ref. [3] that the ratio of spin-conserving and spin-

flipping conductance components depends on the system length. Plotting the con-
ductance components as a function of the system length N for constant µ, one finds
an oscillatory behavior with a period Nosc depending on the strength of the Rashba
hopping [see Fig. 3.5 a)]. As can be seen from Fig. 3.5 b), the period is inversely
proportional to α

Nosc ∼
1

α
, (3.31)

at least if α does not become too large.

3.4 Interplay of SOI and magnetic field

In addition to the SOI, we now account for a finite magnetic field Bx (in direction
of the wire) which is also turned on/off smoothly over m1 = 20 lattice sites in order
to avoid backscattering and oscillations of the total conductance.

Fig. 3.6 shows the effect of a magnetic field γBx = 0.6 on the conductance
of a system with N = 100 lattice sites. The energy range with two conducting
channels, i.e. Gtotal = 2e2/h, is shrinked from both sides by γBx, which is clear

if one considers the Zeeman effect on the components G
(x)
σ,σ′ . Besides the fact that

the spin-flip components vanish, G
(x)
↑↓ = G

(x)
↓↑ , there are no propagating states in the

spin-up subband for µ ∈ (−2,−2+γBx), and, analogously, there are no propagating
states in the spin-down subband for µ ∈ (2 − γBx, 2). However, it is much more

interesting to plot the components G
(z)
σ,σ′ , because they show an oscillatory behavior

which is not clear a priori due to base rotation of the G
(x)
σ,σ′ . Since the magnetic field

is orthogonal to the spin quantization axis, the degeneracy G↑↑ = G↓↓, G↑↓ = G↓↑

still holds.
This degeneracy is lifted, if one considers a finite SOI. As can be seen from

Fig. (3.7), the behavior of the conductance components strongly depends on the
angle φ = − arctan(αy/αz) between the spin quantization axis and the effective SOI
field which is defined by

~α = (0, αy , αz) = α(0,− sin φ, cosφ) . (3.32)

For φ ∈ {0, π}, αy = 0 and αz = 0.8, we observe a degeneracy G↑↑ = G↓↓ over the
entire band, whereas the degeneracy G↑↓ = G↓↑ only holds in the middle region and
is lifted slightly outside this region. Still, there are oscillations of the conductance
components as a function of µ in the middle region, but the energy period seems to
be enlarged by the SOI compared to Fig. 3.6.
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Figure 3.6: Conductance components over the chemical potential in presence of a
magnetic field without SOI. The system parameters are N = 100, m1 = 20, t = 1,
tL = tR = 1, γBx = 0.6. The total conductance has plateaus at Gtotal = 1e2/h of
width γBx at the band edges. In this area there is only one conducting channel due
to the Zeeman splitting. The four components reveal a fourfold degeneracy in the
area with one conducting channel and a severe spin precession in the area with two
conducting channels while being pairwise degenerate, G↑↑ = G↓↓, G↑↓ = G↓↑.
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Figure 3.7: Conductance components over the chemical potential in presence of a
magnetic field and SOI. The system parameters are N = 100, m1 = 20, t = 1,
tL = tR = 1, γBx = 0.6.
a) For αy = 0 and αz = 0.8, there is a degeneracy G↑↑ = G↓↓ over the entire band,
whereas the degeneracy G↑↓ = G↓↑ only holds in the middle region and is lifted
slightly outside this region.
b) For αy = 0.8 and αz = 0, we obtain G↑↓ = G↓↑ for all µ. There are only small
oscillations, but a very large split of G↑↑ and G↓↓ outside the middle region.
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For φ = π/2 (αy = 0.8, αz = 0), G↑↓ = G↓↑ holds for all µ. The oscillations of
the components almost vanish, but there is a very large split of G↑↑ and G↓↓ outside
the middle region. Note however that

G↑↑(µ) = G↓↓(−µ)

G↑↓(µ) = G↓↑(−µ) , (3.33)

independent of φ.

3.4.1 Potential step

We now implement a potential step into our setup. The potential of height V0

is turned on smoothly with the same function as αy, αz and Bx and is turned off
sharply in the middle of the system as shown in Fig. 3.8. The three different regions
(left lead, quantum wire, right lead) are plotted with their corresponding energy
dispersion. The leads have a cosine-like dispersion, whereas there are two non-
degenerate branches (distinguished by some quantum number s = ±) in the quantum
wire as discussed in Chapter 2 and Ref. [35]. The dispersion in the left part of the
wire is shifted by V0. The energy gap due to the Zeeman effect is EG = 2γBx, and
the horizontal shift between (s = +)-branch (solid line) and the (s = −)-branch
(dashed line) comes from the SOI.

As can be seen from Fig. 3.9 for a system with the same parameters as in Fig. 3.7,
but with an additional potential step V0 = 0.4, the region with perfect total conduc-
tance, i.e. Gtotal = 2e2/h, is confined to the interval (−2+γBx+V0, 2−γBx) and the
component oscillations in the middle region are symmetric around µ = V0/2. How-
ever, the component oscillations start at µ0 = −2+γBx. Thus, µ0 is a characteristic
point for given magnetic field Bx, independent from V0, αy and αz.

Figure 3.8: Schematic picture of the system under consideration with qualitative
dispersions of the different regions. The leads have a cosine-like dispersion, whereas
the dispersion in the quantum wire has two non-degenerate branches, i.e. s = +
(solid line) and s = − (dashed line). The on-site potential structure is indicated by
the dashed-dotted curve. The energy band of the leads is confined by the dotted
line.
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Figure 3.9: Conductance components over the chemical potential in presence of a
magnetic field, SOI and a potential step with system parameters N = 100, m1 = 20,
t = 1, tL = tR = 1, αy = 0, αz = 0.8, γBx = 0.6 and V0 = 0.4. Perfect conductance
is obtained for µ ∈ (−2 + γBx + V0, 2 − γBx). The inset shows the degeneracy
change of the conductance components at the interface of the left region (G↑↑ = G↓↑,
G↑↓ = G↓↓) and the middle region (G↑↑ = G↓↓, G↑↓ = G↓↑).

Another interesting feature is plotted in the inset of Fig. 3.9. In the middle
region, one obtains the same degeneracy as in the case without potential step [see
Fig. 3.7], i.e. G↑↑ = G↓↓, G↑↓ = G↓↑. This degeneracy is changed into G↑↑ = G↓↑,
G↑↓ = G↓↓ at the left interface and into G↑↑ = G↑↓, G↓↑ = G↓↓ at the right interface.

In terms of simple scattering theory, the behavior of the conductance shown in
this subsection can at least roughly be explained by a qualitative picture as shown
in Fig. 3.8.

Lets think of a single electron coming out of the left lead with energy µ close
to the lower dotted line, i.e. µ ∈ (−2,−2 + δ). If the potential V0 is as large as
shown for clarity in Fig. 3.8, there are no propagating states in the left part of
the quantum wire with this energy and the electron can only be transmitted by an
evanescent wave. Indeed, we can observe such a tunnel mechanism for very short
systems (N < 10). For V0 < γBx, there is always one conducting branch for small
µ in both areas of the quantum wire and therefore Gtotal = 1e2/h. For µ > γBx,
the right part of the wire provides two branches, but since the left part’s dispersion
is shifted by V0, the region of perfect conductance starts at µ0 = −2 + γBx + V0.
The lower branch of the dispersion in the right part stops at µ1 = 2 − γBx. Thus,
perfect conductance is restricted to µ ∈ (µ0, µ1), at least for long systems in which
all tunneling processes can be neglected.

The analysis of the different conductance components in this picture is much more
difficult, as the z-component of the electron spin is not conserved within the quantum
wire due to SOI and all of the spin expectation values depend on the wave number
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Figure 3.10: Spin polarization in x-, y- and z-direction for a) a homogeneous system
(V0 = 0) and b) a system with potential step V0 = 0.4. The other system parameters
are the same as in Fig. 3.9. Inside the region with two conducting channels, there is
no significant spin polarization. The high and low energy polarization is independent
from V0 in good approximation. Only for µ ∈ (−2+γBx,−2+γBx +V0), we obtain
modifications due to the interplay of SOI with the potential step.

k and thus on µ. One would need to solve the entire scattering problem analytically
with exact eigenstates, which is a complicated but feasible task in continuum (see
Ref. [26]), but impossible for the lattice setup presented here.

Instead of deepening this problem, we focus on the spin polarization. Fig. 3.10
shows the spin polarization Px, Py, Pz in x-, y- and z-direction for a homogeneous
system [a) V0 = 0] and a system with potential step [b) V0 = 0.4]. The other
parameters are the same as in Fig. 3.9. The curves show a large spin polarization
in x- and y-direction for µ 6∈ (−2 + γBx + V0, 2 − γBx), i.e. as long as there is only
one conducting channel. This is in close analogy to the continuum case. By direct
comparison of Figs. 3.10 a) and b), one observes that, at least in good approximation,
each polarization component is independent from V0 in the high-energy regime, i.e.
for µ > 2− γBx, as well as in the low-energy regime, i.e. for µ < −2 + γBx. For the
homogeneous system (V0 = 0), we obtain polarizations Pi which are perfectly point-
symmetric with respect to (µ,Pi) = (0, 0), i = x, y, z. In analogy to the continuum
case, the spin expectation values of the lattice system have opposite sign on the
different branches (s = +,−) of the energy dispersion, if the wave number k is the
same, i.e. 〈σi〉k,s = −〈σi〉k,−s. Moreover, the quantum number s is conserved in a
homogeneous system and the energetic range (within the energy band of the leads)
in which only (s = +)-states propagate and the range where only (s = −)-states
propagate cover exactly the same interval in k-space [see Fig. 3.8 with V0 = 0].
Therefore, we get the point-symmetry obtained in Fig. 3.10 a).

However, the most interesting part for our purpose is the region µ ∈ (−2 +
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γBx,−2 + γBx + V0) in Fig. 3.10 b), which is, up to band edge effects, the same
region, where spin polarization was observed in the continuum case. In this interval
of width V0, we observe sizeable oscillations of the Pi. This also leads to finite values
of Pz which was shown to vanish for αy = 0 in the continuum case. As we have
pointed out in Chapter 2 and Ref. [35] for the continuum model, the polarization
Px (in x-direction) only depends on the absolute value α and not on the direction
of the effective SOI field and |Py/Pz| = |αz/αy|. Averaging over the polarization
oscillations, this also holds in very good approximation for the lattice model, al-
though the lattice polarization is defined by Eq. (3.27) and not in terms of spin
expectation values (see Ref. [26]). However, we emphasize that a correspondence to
the continuum model can be at least qualitatively, since we investigate a different
system here due to the finite length of the quantum wire and the connection to the
leads matching a somewhat more realistic situation, if one thinks of experimental
implementation.

However, the occurence of large oscillations means that the spin polarization
reacts very sensitively to changes in the chemical potential µ. Conversely, one could
hope that the spin polarization can be tuned by altering the chemical potential of
the system, which should be feasible in experiments by applying a gate voltage to
the leads and the quantum wire itself.

3.4.2 Single impurity

Another interesting polarization effect occurs, if we insert a single impurity of
strength V1 in the middle of our system. This can be realized by setting Vj,σ in
Eq. (3.3) to V1 for j = [N/2] and σ =↑, ↓ and Vj,σ = 0 for j 6= [N/2]. Experimen-
tally, there might be several possibilities to obtain V1 6= 0. It might be difficult to
contact a single lattice site (a single atom) in order to apply a gate voltage to it,
but one can think of inserting an impurity atom or exciting a host atom by laser
radiation in order to tune V1 very precisely [44].

Fig. 3.11 shows the conductance and spin polarization of a system with N = 101
lattice sites with a single impurity V1 in the middle of the system for a magnetic
field γBx = 0.6 and different SOI couplings αz (αy = 0). The exact position of V1

is not relevant as long as it is far away from the contacts to the leads. As can be
seen from Fig. 3.11 a), the system without SOI and without any impurity (V1 = 0)
shows a perfect step-like polarization in x-direction, whereas Py = Pz = 0. The
spins are aligned along the direction of the magnetic field Bx, i.e. x-direction, and
show the normal Zeeman splitting behavior. Both spin directions are possible for
µ ∈ (−2 + γBx, 2 − γBx) leading to Px = 0 in this interval. Moreover, there is a
range of width γBx (starting at the band edges) in which only one spin direction is
energetically possible leading to a perfect polarization, Px = ±1. Choosing γBx = 2,
one would be able to swap Px between −1 and +1 just by a small variation of the
chemical potential around µ = 0. However, we are more interested in controlling the
spin arbitrarily in the sphere, defined by Pi ∈ [0, 1] and

∑
P 2

i = 1 with i = x, y, z.

Fig. 3.11 b) shows that a smooth tuning of Px is possible in presence of a strong
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Figure 3.11: Conductance and spin polarization for a system of N = 101 lattice sites
with a single impurity V1 in the middle of the system in presence of a magnetic field
γBx = 0.6 and different SOI couplings αz (αy = 0). a) The homogeneous system
shows a perfect step-like polarization in x-direction. b) The shape of Px is washed
out in presence of a strong single impurity V1 = 4 and the conductance is severely
decreased. c) Small SOI coupling αz = 0.2 leads to finite Py, Pz and polarization
oscillations. d) The oscillations are enhanced by increasing αz.

single impurity V1 = 4, but the total conductance is severely decreased in this case.
As αy = αz = 0, there is no polarization in y- and z-direction.

For small SOI, αz = 0.2, Px is still the dominant polarization component, but
Py and Pz become finite. All polarization components show oscillations for µ ∈
(−2+ γBx, 2− γBx), which become heavily pronounced at the edges of this interval
[see Fig. 3.11 c)].

As shown in Fig. 3.11 d) for large SOI, αz = 0.8, we observe the same behavior
for µ /∈ (−2 + γBx, 2 − γBx) as in the impurity-free case [see Fig. 3.10 a)] with Pz

playing only a minor role. The oscillations of the polarization components are more
pronounced compared to the case with small αz, especially for Px. Moreover, the
total conductance is enlarged due to the smaller ratio of V1 and the effective hopping√
t2 + α2. Due to the occurrence of such large oscillations, each spin polarization

component reacts very sensitively to changes in µ and can therefore be tuned by
adjusting µ.

We also observe in Fig. 3.11 that the point symmetry of each polarization com-
ponent is conserved in presence of a single impurity.

If we change the direction of the magnetic field, e.g. B = (B, 0, 0) → B =
(0, 0, B), we, qualitatively, obtain no new results. For αy = 0, αz 6= 0, we obtain the
same conductance and Px → Pz, Py → Py and Pz → −Px, i.e. changing the direction
of the magnetic field from x- to z-direction leads to a rotation of the polarization
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Figure 3.12: Conductance and spin polarization for a system of N = 101 lattice
sites with a single impurity V1 in the middle of the system in presence of SOI,
αy = αz = 0.5, and a magnetic field in z-direction, γBz = 0.6.
a) The main part of the polarization is carried by Py and Pz , whereas Px is negligi-
ble.
b) Even for small impurity strength, V1 = 1, one obtains oscillations in all polar-
ization components starting at the energy crossover between one and two coducting
channels. The conductance is slightly decreased and its symmetry G(µ) = G(−µ) is
broken.
c) and d) For intermediate (strong) impurity strength, V1 = 2 (V1 = 4), the con-
ductance is further decreased and the polarization oscillations are more pronounced
leading to a non-neglibible Px.

vector of π/2 around the y-axis, independent of αz.

If, however, αy 6= 0 and αz = 0, we get different results for the conductance and no
link between the polarization components for B pointing either in x- or z-direction.
This is clear from the fact that the SOI coupling αy causes a spin rotation in z-
direction for electrons moving along the x-direction, whereas αz rotates the spin into
the y-direction avoiding any Zeeman splitting for B = Bex or B = Bez. Another
effect is that the conductance symmetry G(µ) = G(−µ) is broken in presence of a
magnetic field and an impurity, whereas the polarization symmetry Pi(µ) = −Pi(−µ)
is conserved for i = x, y, z.

Another example for the subtle interplay of SOI, magnetic field and single im-
purity is shown in Fig. 3.12 for N = 101 lattice sites, αy = αz = 0.5 and magnetic
field in z-direction, γBz = 0.6. In the case without impurity [see Fig. 3.12 a)], we
again get a perfect step-like conductance with Gtotal = e2/h in the region with one
conducting channel and Gtotal = 2e2/h in the region with two conducting channels.

The polarization components Py and Pz would be of the same size without mag-
netic field, since αy = αz, but Pz is favored here because of B = (0, 0, B). Whereas
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the x-polarization Px is negligible in the case without impurity, it becomes sizeable
for finite impurity strength V1 due to the induced polarization oscillations. For en-
ergies close to the band edges with only one conducting channel the polarization
is comparable to the impurity-free case. Thus, the polarization P = (Px, Py, Pz)
can be tuned over quite a wide range in presence of SOI, magnetic field and single
impurity by adjusting the chemical potential at the energy crossover between one
and two conducting channels.

The systems under consideration in this chapter consisted of N ∼ 100 lattice
sites, which corresponds to a quantum wire length of tens of nm assuming a lattice
spacing of several angstroms. This is far below the limit of L ∼ 1µm feasible in
recent experiments [45]. However, as long as the Coulomb interaction and therefore
correlation effects are disregarded, an increase of the system size beyond N ∼ 100
does not affect the results obtained and discussed in this chapter.

Our next aim is to include the Coulomb interaction in our model and study
correlation effects influencing the linear conductance and the spin polarization. We
add a local (Hubbard like) Coulomb interaction via

H1 =
∑

j,σ,σ′

U1(j)c
†
j,σcj,σc

†
j,σ′cj,σ′(1 − δσ,σ′) (3.34)

and a nearest-neighbor Coulomb interaction U2 via

H2 =
∑

j,σ,σ′

U2(j)c
†
j+1,σcj+1,σc

†
j,σ′cj,σ′ (3.35)

to the Hamiltonian introduced in Eq. (3.1), where the lattice site argument j in
U1(j) and U2(j) allows for an inhomogeneous strength of the Coulomb interaction
along the wire.

The new Hamiltonian cannot be analyzed by simple one-particle scattering theory
as in this chapter, but a conceptual new approach is neccessary accounting for
the many-particle behavior of the underlying physics. This new approach will be
presented in the next chapter.

3.5 Summary

In this chapter, we constructed a lattice model which exhibits the same low-energy
physics as the continuum model discussed in Chapter 2 in terms of energy dispersion
and spin expectation values. However, in order to study the transport properties of
this lattice model, some important modifications have been made in comparison to
the situation in which transport was studied in the continuum model framework.

As the idea of infinite systems is an academical tool rather than a realistic assump-
tion feasible in experiments, we restricted the system to a finite number of lattice
sites and attached it to two semi-infinite Fermi liquid leads via hopping amplitudes
tL,R, which corresponds to an experimental situation of a finite size quantum wire
connected to higher-dimensional leads by some tunnel junctions. The leads were
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modelled by a simple tight-binding Hamiltonian with conventional spin-conserving
hopping amplitudes. We showed that additional SOI hopping elements in the leads
and/or at the junctions can be absorbed into an effective hopping. However, a finite
SOI in the leads would necessitate a different definition of spin polarization regard-
ing the process of measuring the spin, since its orientation would depend on the
position in the lead where it is measured. This would not match the experimental
situation we had in mind here though and we therefore abandoned the SOI from the
leads.

We chose a representation of electronical Wannier states |j, σ〉 in a lattice-spin
base and used the Kubo formula and the Landauer-Büttiker formalism in order to
define the linear conductance Gσσ′ in terms of transmission amplitudes Tσσ′ with
σ, σ′ =↑, ↓ labelling the z-component of the spin in our representation. The linear
conductance with respect to any other spin quantization axis could be obtained by
a simple base tranformation. Since the spin is conserved in the leads, Gσσ′ is a
measure for the transport of electrons which are injected into the system from the
left lead with spin σ and enter the right lead with spin σ′. Thus, the dependence of
Gσσ′ on the system parameters was used to give a detailed insight into how the spin
can be manipulated and used for information transfer in this setup.

Expressing Tσσ′ in terms of the (1,N) matrix element Gσσ′(1,N) of the systems
Green’s function, we studied the dependence of Gσσ′ on the SOI parameters and the
magnetic field. In order to allow for an analog to the energy-dependent measure-

ments in the continuum case, we varied the overall chemical potential of the system
and the leads, which defines the Fermi energy. The total linear conductance as a
function of the chemical potential was shown to be seperated in regions with zero,
one or two conducting channels. The size of these regions was easy to manipulate by
the magnetic field, whereas the SOI parameters led to an oscillatory behavior of the
different conductance components. Furthermore, we showed that spin polarization
can be obtained and tuned over a wide range by adjusting the system parameters,
if we insert a single impurity or a potential step into the system. Due to its feasible
experimental implementation in terms of inserting an impurity atom into the quan-
tum wire, the single impurity case might particularly be interesting for upcoming
experiments .

Up to now, we have omitted any Coulomb interaction between the electrons. Due
to the small spatial dimension of the mesoscopic systems under consideration, this
effect certainly must be accounted for in order to give a realistic description. How-
ever, this cannot be done in the single-particle picture described so far. Conventional
methods like first- or second-order perturbation theory as well as the self-consistent
Hartree-Fock approximation are known to lead to artifacts, if they are applied to
such systems in order to calculate correlation functions. Therefore, more subtle in-
struments, like renormalization group methods, are neccessary here. The functional
renormalization group (fRG) method will shape up as appropriate numerical method
for addressing the Coulomb interaction. We therefore present the main ideas of the
fRG in the following chapter and study correlation effects on the conductance and
spin polarization induced by the Coulomb interaction in Chapter 5 and 6.
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Chapter 4

The functional renormalization
group (fRG)

The functional renormalization group (fRG) method is based on Wilson’s renormal-
ization group (RG) idea, which, originally, was motivated by problems of strong
interaction in quantum field theory [46]. However, the Wilson RG is a very gen-
eral approach to interacting systems with many degrees of freedom (on different
energy scales). Thus, it is possible to extend this idea to interacting many-particle
quantum systems (see e.g. [8]). These systems are known to often suffer from
infrared-divergencies in low dimensions leading to a breakdown of the conventional
perturbation theory.

The functional integral approach to many-particle physics constitutes the basis
of the fRG. One introduces a scale parameter Λ (e.g. on the energy scale) which
cuts off all modes with energy below Λ to the free propagator in the generating
functional for the single-particle irreducible m-particle vertex functions γm, which
therefore become Λ-dependent, γm → γΛ

m. Differentiating these vertex functions
with respect to Λ leads to an infinite hierarchy of differential equations, also known
as fRG flow equations. Although this hierarchy needs to be truncated in practice, it
is at least in principle exact. The set of coupled differential equations is integrated
from Λ = ∞ down to Λ → 0, resulting in the original cutoff-free problem, but with
renormalized parameters, which account for the modifications due to interactions. In
the past five years, the fRG has been applied to many different physical situations,
e.g. the single-impurity Anderson model [47], which is quite a generic model of
a single quantum dot coupled to leads, and a variety of quantum dot geometries
[20]. Moreover, characteristics of inhomogeneous Luttinger liquids manifesting as
power law properties of correlation functions could be obtained with the fRG in
one-dimensional quantum wires of correlated electrons [17, 18].

Our derivation of the fRG flow equations mainly follows Ref. [9].
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4.1 Functional integral and vertex functions

As a very good description of the functional integral approach to many-particle
physics can be found in e.g. Ref. [48], we refrain from giving a detailed introduction
to this field, but start directly with the formalism needed to set up the fRG flow
equations.

The continuum imaginary-time version of the grand canonical partition function
of a fermionic many-particle system can be written as a functional integral

Z =

∫

Dψψ exp






−1

~

β~∫

0

dτ

[
∑

l

~ψl(τ + 0)
dψl(τ)

dτ
+ H({ψ}, {ψ})

]




(4.1)

with H being the system’s Hamiltonian (with a free and an interaction part), ψ,ψ
being Graßmann fields and τ being the imaginary time. The index l denotes an
arbitrary set of quantum numbers in which the free Hamiltonian is diagonal. The
Graßmann fields obey the boundary condition ψl(β~) = ζψl(0) and ψl(β~) = ζψl(0)
with ζ = 1 for bosons and ζ = −1 for fermions. The Fourier transformed version of
this integral in which the imaginary time τ is replaced by Matsubara frequencies ωn

obeying

ωn =
π

β~

{
2n for bosons
2n+ 1 for fermions

(4.2)

is much more convenient for our purposes and Eq. (4.1) can be rewritten as

Z =

∫

Dψψ exp

(

−1

~
S

)

(4.3)

with the action S given by

S =
∑

l

∑

n

(−~)ψl(iωn)
[
G0

l (iωn)
]−1

ψl(iωn)

+
1

β~

∑

i,j

∑

m,n

Vi,jδm,nψi(iωm)ψj(iωn)

+
1

4β~

∑

i,j,k,l

∑

m,m′,n,n′

vi,j,k,lδm+m′,n+n′ψi(iωm)ψj(iωm′)ψl(iω
′
n)ψk(iωn)

= S0 + Sint , (4.4)

with S0 being the free action and Sint accounting for one-particle scattering, induced
e.g. by an external scalar potential V , and two-particle interaction, induced e.g. by a
Coulomb potential v for charged particles. G0

l (iωn) is the free propagator, Vi,j is the
(i, j) matrix element of the external scalar potential, vi,j,k,l is the antisymmetrized
matrix element of the two-particle interaction and the Kronecker δ ensures energy
conservation. A convergence factor exp(iωn0+) in the first two terms of Eq. (4.4)

44



4.1. FUNCTIONAL INTEGRAL AND VERTEX FUNCTIONS

is essential in order to circumvent ill-defined expressions. However, we omit writing
down this factor explicitely for convenience.

In order to write down and calculate expectation values of products of the Graß-
mann fields, like e.g. m-particle Green’s functions, more easily, we define a generat-
ing functional

W({η}, {η}) =
1

Z0

∫

Dψψ exp

{

−1

~

[
S0 + Sint +

(
ψ, η

)
+ (η, ψ)

]
}

=

〈

exp

{

−
∑

l

∑

n

[
ψl(iωn)ηl(iωn) + ηl(iωn)ψ(iωn)

]

}〉

(4.5)

with external source fields ηl, ηl. Z0 is the partition function of the non-interacting
system represented by the action S0. To keep the notation short, we introduce a
multi-index k = (ωn, l) and set ~ = 1. Differentiating Eq. (4.5) with respect to η
and η gives the m-particle Green’s functions. Following this way, one would also
account for unimportant Feynman diagrams which cancel out later on anyway.

Therefore, we define the functional

Wc({η}, {η}) = ln [W({η}, {η})] (4.6)

and obtain by differentiating Wc with respect to (η, η) the connected Green’s func-
tions

Gc
m(k′1, ..., k

′
m; k1, ..., km) = ζm〈ψk′

1
...ψk′

m
ψkm

ψk1
〉c

=
δm

δηk′

1
...δηk′

m

δm

δηkm
...δηk1

Wc({η}, {η})
∣
∣
∣
∣
∣
η=0=η

.(4.7)

In a final step, we take the Legendre transform of Eq. (4.6) in order to obtain a
generating functional Γ for the connected one-particle irreducible Green’s functions
which are the vertex functions γm which play a central role in the fRG formalism.
By introducing

φk = − δ

δηk

Wc({η}, {η})
∣
∣
∣
∣
η=0=η

(4.8)

and

φk = −ζ δ

δηk
Wc({η}, {η})

∣
∣
∣
∣
η=0=η

(4.9)

as the new fields, we obtain

Γ({φ}, {φ}) = −Wc({η, {η}) − (φ, η) − (η, φ) +
(

φ,
[
G0
]−1

φ
)

. (4.10)

The last summand on the rhs has been added just for later convenience. In analogy
to Eq. (4.7), the vertex functions are given by

γm(k′1, ..., k
′
m; k1, ..., km) =

δm

δφk′

1
...δφk′

m

δm

δφkm
...δφk1

Γ({φ}, {φ})
∣
∣
∣
∣
∣
φ=0=φ

.(4.11)
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γ0 can be interpretated as the grand canonical potential induced by the action Sint

[49]. γ1 is the systems self energy Σ (up to a sign), i.e.

γ1(k
′, k) = ζΣk′,k (4.12)

with ζ = 1(−1) for bosons (fermions). γ2 is often referred to as effective interaction
and is given by

γ2(k
′
1, k

′
2; k1, k2) = −

∑

q′
1
,q′

2
,q1,q2

[G]−1
k′

1
,q′

1

[G]−1
k′

2
,q′

2

[G]−1
q2,k2

[G]−1
q1,k1

Gc
2(q

′
1, q

′
2; q1, q2) . (4.13)

4.2 Infrared cutoff and flow equations

Interacting fermionic many-particle systems often suffer from analytical divergen-
cies at the Fermi surface, particularly in low dimensions. If these divergencies occur
without any counterterms of the same diagrammatic order, one can expect a break-
down of the perturbation theory in the low-energy limit. For the one-dimensional
translational invariant electron gas with two-particle interaction ṽ, an example of
such a divergency can already be found for the two-particle Green’s function in
second order ṽ. The divergency in this model is logarithmic and stems from the sin-
gular behavior of the free propagator in the low-energy limit. But other electronic
models, especially lattice models, also suffer from this difficulty and need a special
treatment.

The idea is to provide the free propagator with an infrared-cutoff parameter
Λ > 0 which neglects all contributions with frequency |ωn| < Λ. The easiest and
most intuitive cutoff is a Θ-function

G0,Λ
q (iωn) = Θ(|ωn| − Λ)G0

q , (4.14)

but a smooth cutoff is also conceivable and might be advantageous, depending on
the special situation. Naturally, the generating functionals W, Wc and Γ now also
depend on Λ.

The RG idea is to differentiate the vertex functions with respect to Λ in order to
obtain a system of coupled ordinary differential equations (ODE). The solutions of
this ODE system are regular in many cases, even for Λ → 0, and correspond to the
vertex functions of the original cutoff-free model in this limit. We will only sum up
the most important steps, since a detailed description of this procedure is given in
Ref. [9].

We first need to differentiate Γ with respect to Λ. For a given free propagator
G0,Λ, we define the full propagator GΛ via

GΛ =
[(
G0,Λ

)−1 − ΣΛ
]−1

(4.15)
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with ΣΛ being the system’s cutoff dependent self energy, which accounts for inter-
action effects. Introducing

Vφ,φ(ΓΛ,G0,Λ) =

(
δ2ΓΛ

δφδφ
− ζ(G0,Λ)−1 δ2ΓΛ

δφδφ
δ2ΓΛ

δφδφ
δ2ΓΛ

δφδφ
−
[
(G0,Λ)−1

]t

)−1

(4.16)

and

Ṽφ,φ(ΓΛ,GΛ) = −Vφ,φ(ΓΛ,G0,Λ)

(
ζGΛ 0
0 [GΛ]t

)−1

, (4.17)

we can write

Γ̇Λ = −ζTr
(

˙[G0,Λ]−1G0,Λ
)

+ ζTr
(

GΛ ˙[G0,Λ]−1Ṽ1,1

φ,φ
(ΓΛ,G0,Λ)

)

(4.18)

whith Ṽ1,1

φ,φ
(ΓΛ,GΛ) denoting the (1, 1) element (which itself is a matrix) of Ṽφ,φ(ΓΛ,GΛ).

Here and in the following, the dot denotes the derivative with respect to the cutoff
parameter Λ. Using Eq. (4.7), we can expand ΓΛ in the fields φ and φ with the
vertex function γΛ

m being the coefficient of m-th order, i.e.

ΓΛ({φ}, {φ}) =

∞∑

m=0

ζm

(m!)2

∑

k′

1
,...,k′

m

∑

k1,...,km

γΛ
m(k′1, ..., k

′
m; k1, ..., km)φk′

1
...φk′

m
φkm

...φk1
.

(4.19)
Comparison of the derivative of this expression with Eq. (4.18) in each order of
the fields φ and φ yields the system of coupled differential equations for the vertex
functions mentioned above. We obtain in zeroth order

γ̇Λ
0 = −ζTr

(
˙[G0,Λ]−1G0,Λ

)

+ ζTr
(

˙[G0,Λ]−1GΛ
)

, (4.20)

which means that the flow of γΛ
0 couples to γΛ

1 . As γΛ
0 itself does not appear on

the right-hand side of Eq. (4.20), this equation can directly be integrated, at least
formally, but is of no further interest here.

With γΛ
2 (k′, ; k, ) denoting the matrix with elements

[
γΛ
2 (k′, ; k, )

]

q′,q
= γΛ

2 (k′, q′; k, q) , (4.21)

the flow equation of first order reads

γ̇Λ
1 (k′; k) = ζΣ̇Λ

k′,k = Tr
(

GΛ ˙[G0,Λ]−1GΛγΛ
2 (k′, ; k, )

)

. (4.22)

Thus, the flow of γΛ
1 is coupled to itself and the two-particle vertex γΛ

2 . This
is diagrammatically shown in Fig. 4.1. The line with the dash corresponds to
GΛ(∂Λ[G0,Λ]−1)GΛ and is often referred to as the single-scale propagator.
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k k’ k k’

Figure 4.1: Diagrammatic representation of the flow equation for the one-particle
vertex (self energy), see Eq. (4.22).
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Figure 4.2: Diagrammatic representation of the flow equation for the two-particle
vertex, see Eq. (4.23).

In second order, we obtain

γ̇Λ
2 (k′1, k

′
2; k1, k2) = Tr

(

GΛ ˙[G0,Λ]−1GΛγΛ
3 (k′1, k

′
2 ; k1, k2, )

)

+ζTr
(

GΛ ˙[G0,Λ]−1GΛγΛ
2 ( , ; k1, k2)

[
GΛ
]t
γΛ
2 (k′1, k

′
2; , )

)

+ζTr
(

GΛ ˙[G0,Λ]−1GΛγΛ
2 (k′1, ; k1, )GΛγΛ

2 (k′2, ; k2, )

+ζ[k′1 ↔ k′2] + ζ[k1 ↔ k2] + [k′1 ↔ k′2, k1 ↔ k2]
)
, (4.23)

with [q ↔ q′] in the last line standing for the third line with a permutation of q and
q′. As can be seen from Fig. 4.2, there are different contributions to the flow of γΛ

2 .
The first diagram in the first line of Fig. 4.2 represents the coupling to the three-
particle vertex γΛ

3 , the second diagram in the first line accounts for particle-particle
processes and the diagrams in the second line for particle-hole processes.

We could continue building up this hierarchy of flow equations with γ̇Λ
m being

coupled to γΛ
n with 0 < n ≤ m + 1. This would lead to an infinite system of

differential equations, which would yield the exact vertex functions in all orders.
Such an infinite system is, naturally, impossible to solve. Hence, we will neglect all
m-particle vertex functions γΛ

m with m ≥ 3 in the following, which has been shown
by comparison to other RG methods to lead to very good results [17, 20, 43, 47],
since γΛ

3 is generated only from terms of third in the two-particle vertex γΛ
2 , which
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are small as long as γΛ
2 becomes not too large. Thus, we establish a closed system

of coupled differential equations for γΛ
1 and γΛ

2 .
In order to solve the obtained differential equations, one needs to consider a

starting value Λ0 for the cutoff parameter. We choose Λ0 such that G0,Λ0 = 0,
i.e. all degrees of freedom in the free propagator are turned off at the beginning
of the RG flow. We do not want to address the issue of mathematical peculiarities
which can arise due to the choice of Λ0, but choose a more descriptive way. Since
G0,Λ0 = 0, only the bare interaction vertices occur in the diagrammatic description
of the m-particle vertex functions at Λ = Λ0. It follows for the generating functional

ΓΛ0({φ}, {φ}) = Sint({φ}, {φ}) (4.24)

and for the m-particle vertex functions

γΛ0

0 = 0

γΛ0

1 (k′; k) = ζΣΛ0

k′,k = ζVk′,k

γΛ0

2 (k′1, k
′
2; k1, k2) = vk′

1
,k′

2
,k1,k2

γΛ0

m (k′1, ..., k
′
m; k1, ..., km) = 0 for m ≥ 3 . (4.25)

Since we only account for fermions here, we set ζ = −1 in the following.

4.3 Numerical realization

In general, it is impossible to solve the flow equations analytically. However, the
computational effort to solve them numerically is quite small in the approximation
we use here.

Naturally, the starting value Λ0 = ∞ of the cutoff parameter must be finite for
any numerical algorithm. One would think intuitively that all degrees of freedom
are sufficiently taken into account, if Λ0 is chosen large enough. However, due to
the convergence factor exp(iω0+) mentioned shortly in the discussion of Eq. (4.3)
we obtain a finite contribution cΛ0

m by integrating the flow equation for γΛ
m over Λ

from infinity down to Λ0. As carried out in great detail in e.g. Refs. [43, 50], this
contribution is given in first order by

cΛ0

1 (k′; k) = −1

2

∑

q

vk′,q,k,q . (4.26)

We thus obtain

γΛ0

1 (k′; k) = −ΣΛ0

k′,k = −Vk′,k − 1

2

∑

q

vk′,q,k,q

γΛ0

2 (k′1, k
′
2; k1, k2) = vk′

1
,k′

2
,k1,k2

, (4.27)

since the starting condition for the two-particle vertex γΛ
2 is not affected by this

integration.
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Following e.g. Ref. [43], we neglect the frequency dependence of γΛ
2 . As a con-

sequence, γΛ
1 also becomes frequency independent. Since the bare interaction is

frequency independent by definition, this approximation leads to errors in second
order of the interaction strength for the self energy and in third order for the two-
particle vertex function on the Fermi surface. It has been shown in Refs. [20, 43]
that all questions addressed here regarding the low-energy properties of the systems
under consideration in this thesis can be captured with this simplification not only
qualitatively, but also quantitatively with high accuracy.

We therefore carry out the frequency integration in Eqs. (4.22), (4.23) and obtain

γ̇Λ
1 = −ΣΛ =

1

2π

∑

ω=±Λ

∑

2,2′

G̃Λ
2,2′(iω)γΛ

2 (1′, 2′; 1, 2) (4.28)

and

γ̇Λ
2 (1′, 2′; 1, 2) =

1

2π

∑

ω=±Λ

∑

3,3′

∑

4,4′

[
1

2
G̃Λ

3,3′(iω)G̃Λ
4,4′(−iω)γΛ

2 (1′, 2′; 3, 4)γΛ
2 (3′, 4′; 1, 2)

+ G̃Λ
3,3′(iω)G̃Λ

4,4′(iω)
(
−γΛ

2 (1′, 4′; 1, 3)γΛ
2 (3′, 2′; 4, 2) + γΛ

2 (2′, 4′; 1, 3)γΛ
2 (3′, 1′; 4, 2)

)]

,

(4.29)

with the indices 1, 2 etc. representing a full set of quantum numbers for single-
particle states (e.g. in a lattice site and spin base) without frequencies. The propa-
gator G̃Λ is defined by a Dyson equation with a frequency independent self energy

G̃Λ(iω) =
[
G−1

0 (iω) − ΣΛ
]−1

. (4.30)

A standard numerical algorithm to solve these flow equations works as follows.
One starts by setting up the starting condition according to Eq. (4.27) at Λ = Λ0 and

initializes the inverse
(

G̃Λ(iΛ0)
)−1

=
(
GΛ

0

)−1
(iΛ0)−ΣΛ0 of the full propagator given

by Eq. (4.30) and obtains the full propagator itself by inversion of that expression.
Note that this inversion can be done by an O(N)-algorithm even in presence of
SOI and magnetic field [see App. B]. The result for G̃ is inserted into Eqs. (4.28)
and (4.29) giving the derivative of γΛ=Λ0

2 and ΣΛ=Λ0. With an adaptive step size
algorithm (e.g. Runge-Kutta or Adams algorithm [51]), a new Λ1 < Λ0 is chosen,

depending on the value of Σ̇Λ=Λ0 and γ̇Λ=Λ0

2 . One initializes
(

G̃Λ1

)−1
, achieves the

new propagator and calculates Σ̇Λ=Λ1 and γ̇Λ=Λ1

2 . This procedure is repeated until
Λn = 0.

All modifications of the system parameters due to the one-particle interaction V
and the two-particle interaction v are contained in the self energy ΣΛ=0 at the end
of the fRG flow and one is left with an interaction-free renormalized model.

Using the Dyson equation Eq. (4.30) with ω = Λ = 0 thereafter, one obtains the
full propagator of the effective model and can insert it into Eq. (3.23) in order to
get the linear conductance and the spin polarization. Moreover, one can calculate
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the expectation value of the particle number 〈nj,σ〉 ∈ [0, 1] of electrons at lattice site
j with spin σ. According to

〈nj,σ〉 =
1

2π

∞∫

−∞

dω G̃σσ′(iω; j, j) exp(iωδ)δσσ′

δ→0
=

1

2
− 1

π

Λ0∫

0

dωℜ[G̃σσ(iω; j, j)] ,

(4.31)
one simply has to integrate the diagonal elements of the full propagator over ω.
Again, Λ0 is a large but finite value and the summand 1/2 accounts for the contri-
bution of the integration over [Λ0,∞). The average particle number (the filling of
the quantum wire) is given by the sum

〈n〉 =
1

N

N∑

j=1

∑

σ=↑,↓

〈nj,σ〉 . (4.32)

Note that we can calculate 〈nj,σ〉 just approximately with Eq. (4.31), since we
do not know G̃σσ′(iω; j, j) exactly. Another approach to obtain the local particle
number 〈nj,σ〉 is to define it via a generating functional (e.g. the grand canonical
potential) and derive a separate flow equation for the density response vertex. This
approach is superior to our approximation regarding e.g. the prediction of the power-
law decay of the amplitude of Friedel oscillations in presence of impurities in the
quantum wire, but reveals artifacts like 〈nj,σ〉 > 1 or 〈nj,σ〉 < 0 in certain parameter
regimes (especially for quantum dots), in which our approach still leads to correct
values. However, the average particle number of the quantum wire is correct within
both approximations as has been pointed out in Ref. [43]. The same holds for the
frequencies of Friedel oscillations in presence of impurities in the wire. Since we will
not address the power-law decay of the amplitude of the Friedel oscillations, but
are more interested in a correct prediction of the local particle number for quantum
dots, we will use Eqs. (4.31) and (4.32) in the following.

4.4 Summary

In this chapter, we presented the main idea of the functional renormalization group
method. Starting from a functional integral representation for the grand canon-
ical partition function of a general fermionic many-particle system, we derived a
generating functional for the connected one-particle irreducible vertex functions.
The first-order vertex function is the system’s self energy (up to a sign) and the
second-order vertex function can be understood as effective two-particle (Coulomb)
interaction.

In order to avoid low-energy divergencies at the Fermi surface, which often occur
in interacting fermionic many-particle systems, especially in low dimensions, we
introduced an infrared-cutoff Λ > 0 to the free propagator of the system suppressing
all energy scales below Λ. The full propagator, defined by the Dyson equation, and
the vertex functions therefore became Λ-dependent quantities. Deriving the vertex
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functions with respect to Λ and setting all vertex functions of third and higher order
to zero led to a closed system of differential equations.

Starting from a large but finite initial value Λ0, we are able to integrate the
flow equations down to Λ = 0 numerically and account for all interaction-induced
modifications of the system properties by considering the finite self energy ΣΛ=0

of the system. At the end of the fRG flow (Λ = 0), one again obtains a single-
particle picture, but with renormalized system parameters (conventional hopping,
SOI, magnetic field etc.).

Note, however, that this procedure also is just an approximation. But since
contributions of diagrams of higher (than first) order are contained in the self energy,
this method is justified to be thought of being superior to first-order perturbation
theory and also to the self-consistend Hartree-Fock approximation, which leads to
artifacts like charge density waves in presence of a single impurity in the quantum
wire.

The fRG method avoids these artifacts and, furthermore, it is a very fast compu-
tational tool for studying correlation effects even regarding large systems and thus
appropriate to investigate the behavior of interacting electrons in quantum wires
with SOI and magnetic field.
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Chapter 5

Quantum wires of correlated
electrons with SOI and
magnetic field

Electron correlations in one-dimensional quantum systems induced by the Coulomb
interaction are a very subtle topic of research in modern condensed matter physics
[52]. Especially in the past 15 years, much effort has been spent on developing
numerical methods in order to get insight into the physics of such systems in which
conventional perturbation theory breaks down.

Similarly to the non-interacting case [see Fig. 3.2], the system is connected to
two semi-infinite non-interacting leads via hopping amplitudes tL abd tR. The con-
ventional hopping t and the SOI parameters αy, αz also have the same meaning as
before. Whenever two electrons are at the same lattice site, they naturally must
have opposite spin due to Pauli’s exclusion principle and are repelled from each
other by the repulsive local Coulomb interaction U1 > 0. Electrons being located
at neighboring lattice sites feel the repulsive nearest-neighbor Coulomb interaction
U2 > 0, independent of their spin [see Fig. 5.1].

As the continuum Coulomb interaction potential between two electrons decreases
just with 1/r (r being the distance between the two electrons), in contrast to the

�

lead L

tL
x6 x6
t± iαy

U2

x
?

αz

x6x
?

U1

�
�lead R

tR

Figure 5.1: Linear geometry of quantum wire with SOI and local (U1) and nearest-
neighbor (U2) Coulomb interaction connected to two semi-infinite non-interacting
leads via hopping amplitudes tL, tR.
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different hopping parameters which are thought of being induced by tunneling pro-
cesses and, therefore, decay exponentially with r, one could argue that one would
still have a finite repulsion induced by next-nearest-neighbor interaction U3 and so
on. However, we consider these interactions to be negligible, since they might be
extremely weak in reality due to screening effects of the electron charges, and fun-
damental correlation effects are obtained already with implementation of U1 and
U2.

We add the Coulomb interaction to our system via the Hamiltonians

H1 =
∑

j,σ,σ′

U1(j)c
†
j,σcj,σc

†
j,σ′cj,σ′(1 − δσ,σ′) (5.1)

for the local part U1 and

H2 =
∑

j,σ,σ′

U2(j)c
†
j+1,σcj+1,σc

†
j,σ′cj,σ′ (5.2)

for the nearest-neighbor part U2. Like the other system parameters, U1(j) and U2(j)
are also given in units of the lead hopping t̃L = t̃R and the lattice site argument j
will enable us to turn on/off the interaction smoothly at the lead contacts to avoid
any unintended backscattering effects.

We apply the fRG method presented in Chapter 4 to treat correlation effects
ending up with an effective non-interacting model with the renormalized parameters
being included in the system’s self energy ΣΛ=0 at the end of the fRG flow.

As the flow equations of the two-particle vertex γ2 derived in Ref. [18] rest upon
the spin rotational invariance, we cannot apply them in our context with finite SOI.
However, the flow of γ2 can be neglected for short quantum wires of N ∼ O(102)
lattice sites, if U1 and U2 do not become too large. Therefore, in Sect. 5.1 we first
investigate, how the linear conductance and the spin polarization in short systems
such as in Sect. 3.4 are altered due to the Coulomb interaction. Since we obtain an
effective interaction-free model at the end of the fRG flow, we can use Eqs. (3.22) and
(3.23) as before (but with a modified Green’s function) to calculate the conductance
components Gσσ′ .

In Sect. 5.2, we then address long quantum wires with impurities which are known
to reveal characteristics of inhomogeneous Luttinger liquids in terms of power laws of
correlation functions. In principal, the flow of γ2 must be accounted for, but tuning
the 2kF -backscattering component g1,⊥ to zero by choosing a special ratio U1/U2

for given µ, we can suppress the importance of the flow of γ2. The details of this
technical trick will also be discussed in Sect. 5.2. We will then analyze the influence
of the SOI on the power-law scaling of the linear conductance as a function of the
system size in presence of impurities and show whether or not the spin polarization
reveals a similar power-law behavior.

54
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5.1 Transport properties of short quantum wires with

SOI, magnetic field and Coulomb interaction

It has been shown in Fig. 3.4 for the non-interacting case that sharply turning
on/off the system parameters like the SOI αy and αz leads to severe oscillations of
the conductance components as a function of the chemical potential µ and a decrease
of the total conductance towards the band edges. These oscillations are increased
for finite Coulomb interaction U1 and U2, as the SOI parameters represent hopping
impurities which are effectively enlarged by the Coulomb interaction and the terms
with U1 and U2 themselves can be seen as impurities if sharply turned on/off [17].
However, we can entirely suppress these oscillations by turning on/off the Coulomb
interaction (and accordingly the other system parameters) over m1 lattice sites with
the smooth weight function defined in Eq. (3.15). We observe that m1 = 20 is
sufficient in order to obtain a perfect conductance Gtotal = 2 e2/h over the entire
band for the impurity-free system of up to N = 400 lattice sites. If not explicitely
stated otherwise, we therefore choose m1 = 20 in the following.

In order to get a first insight into how the Coulomb interaction alters the system’s
transport properties, Fig. 5.2 shows the evolution of the magnetic field γBx, the
conventional hopping t and the SOI αy and αz as functions of the flow parameter Λ
during the fRG flow for a system with N = 100 at µ = 0. The Coulomb interaction
is U1 = 1 and U2 = 0.5 and we choose start parameters γBx(Λ0) = 0.6, t(Λ0) = 1,
αy(Λ0) = 0.3 and αz(Λ0) = 0.5. As expected, the important renormalization of all
parameters takes place in quite a small interval Λ ∈ (0.1, 10) (compared to the entire
flow), which is roughly confined by the bandwidth and the inverse system size.
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Figure 5.2: Renormalization of the system parameters as a function of the flow
parameter Λ during the fRG flow for a system with N = 100 and interactions
U1 = 1, U2 = 0.5 at µ = 0. The start parameters are γBx(Λ0) = 0.6, t(Λ0) = 1,
αy(Λ0) = 0.3 and αz(Λ0) = 0.5.
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We emphasize that for the setup chosen in Fig. 5.2 the hopping parameters t,
αy and αz are renormalized by the nearest-neighbor interaction U2 only, whereas
the magnetic field γBx being an on-site property of the system is renormalized by
U1. However, the renormalization behavior of the system parameters becomes much
more complex in presence of impurities, but is not within our scope here. Instead,
we concentrate on how the linear conductance and the spin polarization are altered
due to the Coulomb interaction in presence of impurities.

5.1.1 Potential step

A comparison of the original system parameters and the renormalized system pa-
rameters (at the end of the fRG flow at Λ = 0) as a function of the lattice site
index j in presence of a potential step V0 = 1.5 is shown in Fig. 5.3 for a system
with N = 100 lattice sites, chemical potential µ = 0 and Coulomb interactions
U1 = 1 and U2 = 0.5. The original system parameters t = 1, αy = αz = 0.5,
γBx = 0.6 are turned on/off adiabatically over m1 = 20 lattice sites. The original
spin-degeneracy of the potential V0, i.e. V0,↑(j) = V0,↓(j), is lifted during the fRG
flow leading to V0,↑(j) 6= V0,↓(j). Similarly, we obtain αy(j) 6= αz(j) at the end
of the flow, although these two parameters coincided originally. The potential step
is dramatically decreased due to the influence of the Coulomb interaction, whereas
the other system parameters are increased. Moreover, a slight dependence on the
lattice site index j is induced for all system parameters due to the potential step.
This dependence increases with increasing V0 and increasing U1 and U2 and cannot
be observed within first-order perturbation theory.
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Figure 5.3: Comparison of the original and the renormalized system parameters as
a function of lattice site index j in presence of a potential step V0 = 1.5 for a system
with N = 100 lattice sites, chemical potential µ = 0 and interactions U1 = 1 and
U2 = 0.5. The original system parameters αy = αz = 0.5, γBx = 0.6 are turned
on/off adiabatically over m1 = 20 lattice sites, whereas t = 1 is constant to match
the boundary condition (with respect to the leads).
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Figure 5.4: Total conductance and spin polarization over the chemical potential µ
for a system with N = 100 lattice sites, potential step V0 = 0.4, magnetic field
γBx = 0.6 and different Coulomb interaction U = U1 = 2U2.
a)-c) Increasing the Coulomb interaction for constant SOI αz = 0.8 (αy = 0) leads
to a broadening of the middle part with two open conducting channels. The spin
polarization vanishes in this area, but reveals a strong dependence on µ in the area
with only one conducting channel.
d) For αz = 0 and U = 1, there is just a very small area with only one conducting
channel left at the lower band edge, where the spin is completely polarized in x-
direction.

Fig. 5.4 shows the total conductance and spin polarization over the chemical
potential µ for a system with N = 100 lattice sites, potential step V0 = 0.4 and
magnetic field γBx = 0.6. As in the non-interacting case, the scalar potential is
turned on adiabatically over m1 lattice sites up to its maximum value V0 and is
sharply turned off in the middle of the system. We consider a constant ratio of local
and nearest-neighbor interaction, U1/U2 = 2, call the local interaction U1 simply the
interaction U and study its influence on Gtotal and Pi, i = x, y, z. Comparing Fig. 5.4
a)-c), where the SOI parameters are αy = 0 and αz = 0.8, one notes that an increase
of U leads to a broadening of the middle part with two open conducting channels
with Gtotal ∼ 2 e2/h and Pi = 0. However, we are most interested in the parameter
regime which leads to a finite spin polarization. For large Coulomb interaction U ,
spin polarization can only be obtained for a chemical potential close to the lower
band edge. In this range, the Pi reveal a strong dependence on µ and can therefore
be tuned over a wide range by only a small modification of µ. Note that for large
magnetic fields one can also observe a decrease of the middle region’s width with
increasing U . Thus, one can argue that there should be a critical magnetic field γBc

x

for which the division into band intervals with one and two conducting channels is
independent of U . However, this critical field is very sensitive to the other system
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parameters and we do not want to deepen this aspect here.

For vanishing SOI, αy = αz = 0, the range with two conducting channels ranges
almost over the entire bandwidth for U = 1 [see Fig. 5.4 d)] leaving only a narrow
interval at the lower band edge in which spin polarization can be achieved. However,
as there is no SOI, the spin polarization can not be tuned by changing µ, but the
spin is completely polarized antiparallel to the magnetic field, Px = −1.

This shows that even in presence of Coulomb interaction the SOI can be used in
order to gain control over the spin by modifying the chemical potential of a system
with potential step.

5.1.2 Potential barrier

We now study the dependence of the conductance and the spin polarization on
the Coulomb interaction for a system with a potential barrier realized by a single
impurity V1 in the middle of the system.

Fig. 5.5 shows the total conductance Gtotal and polarization components Pi, i =
x, y, z, for a system with N = 101 lattice sites, SOI parameters αy = αz = 0.5
and magnetic field γBx = 0.6 in x-direction for V1 = 0 [see Fig. 5.5 a), b) ] and a
single impurity in the middle of the system, V1 = 2 [see Fig. 5.5 c), d) ]. We see in
the impurity-free case that the range with two conducting branches, i.e. Gtotal =
2e2/h, is enlarged with increasing Coulomb interaction. Consequently, the energy
range in which we can obtain spin polarization shrinks. Note that one can also
obtain parameter combinations, e.g. large magnetic fields and U2 = 0, where the
opposite behavior is observed. This is due to the subtle interplay of the different
parameters in the fRG flow leading to renormalized parameters which can not always
be predicted a priori, not even qualitatively. For the parameters in Fig. 5.5 however,
we could extend the range with two conducting channels over the whole energy band
of the leads, i.e. µ ∈ (−2, 2), by further increasing U . This would lead to a total
suppression of the polarization.

Comparing Fig. 5.5 c) and d), one realizes that the Coulomb interaction further
reduces the total conductance in presence of a single impurity and the area of size-
able polarization shrinks due to the enlargement of the area with two conducting
channels. The polarization oscillations induced by the impurity start at the new
interface of the areas with one and two conducting channels, but are altered only
quantitatively. Moreover, the point symmetry Pi(µ) = −Pi(−µ) with i = x, y, z
observed in the non-interacting case is destroyed by the Coulomb interaction.

The way towards long wires

It has been argued in Refs. [43, 53] that one has to be careful in applying the fRG
method to large systems of correlated electrons without taking the flow of the two-
particle vertex into account. For arbitrary interactions U1, U2 and filling n (chemical
potential µ), the flow of the two-particle vertex must be kept at least in lowest (that
is second) order to obtain the scaling behavior of correlation functions to leading
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Figure 5.5: Total conductance and spin polarization components for a system with
N = 101 lattice sites, SOI coupling parameters αy = αz = 0.5 and magnetic field in
x-direction, γBx = 0.6.
a) The conductance and spin polarization in the impurity-free non-interacting case
shows the typical step-like behavior.
b) The energy range with two conducting channels, Gtotal = 2e2/h, is enlarged with
increasing Coulomb interaction, U = U1 = 0.6, U2 = 0.3.
c) A single impurity V1 = 2 in the middle of the system for the non-interacting case
reduces the conductance and leads to polarization oscillations.
d) In presence of Coulomb interaction, U = U1 = 0.6, U2 = 0.3, the conductance is
further decreased and the polarization oscillations are altered quantitatively.

order in the interaction for systems with large N .
In the absence of SOI, this is already known from the so-called ”g-ology” model

[54]. It was shown by an RG analysis of this model that the two-particle scattering
of electrons with opposite spin and momentum transfer 2kF , the so-called g1,⊥ term
given (for the extended Hubbard model) by

g1⊥ = U1 + 2cos(2kF )U2 = U1 + (µ2 − 2)U2 , (5.3)

flows to zero. For large N , this scaling must be accounted for in order to obtain
correct results (in first order) for the correlation functions like e.g. the linear con-
ductance. Since we cannot use the parametrization of the flow of the two-particle
vertex proposed in Ref. [18], which is based on spin conservation, we choose a dif-
ferent approach here.

We choose the local and nearest-neighbor interaction U1 and U2 at a given chem-
ical potential µ such that g1⊥ = 0 at the beginning of the fRG flow. If it is zero
initially, it will not be generated in a RG analysis of the corresponding ”g-ology”
model (for vanishing SOI). Being interested in the behavior of correlation functions
in leading order in the interaction, one can neglect the flow of the two-particle al-
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Figure 5.6: Total conductance Gtotal of a system with N = 400 lattice sites over the
interaction strength U at half filling for qualitatively different parameter settings.
The effect that Gtotal decreases with increasing U in presence of a potential step V0

is damped for finite magnetic field as well as for finite SOI.

together. Neglecting terms of order U2
1,2αy,z the same reasoning holds if the SOI is

included.
Although we believe that the situation is far less critical for comparatively small

systems of N ∼ 100 lattice sites justifying our results mentioned above, we follow
that way from now on in order to deal appropriately with somewhat larger systems
as well.

For given µ and U = U1, we choose U2 = U/(2 − µ2) in order to obtain g1⊥ = 0
[see Eq. (5.3)]. Moreover, we tune the artificial one-particle potential ν(U,µ), which
was introduced in Chapter 4 to cancel the starting value of the self energy at the
beginning of the fRG flow such that the filling of the 1D quantum wire with electrons
in presence of U1 and U2 corresponds to the filling n in the non-interacting case at
given µ (without ν). According to Ref. [18], due to the integration of the flow
equations from Λ = ∞ down to Λ = Λ0 the starting values of the self energy at
lattice site j are given by

ΣΛ0

σσ′(j; j
′) =

(
1

2
U1(j) + 2U2(j)

)

δj,j′δσ,σ′ , j ∈ [2,N − 1]

ΣΛ0

σσ′(j; j
′) =

(
1

2
U1(j) + U2(j)

)

δj,j′δσ,σ′ , j ∈ {1,N}. (5.4)

In order to demonstrate the influence of the Coulomb interaction, we study the total
conductance as a function of the interaction strength U = U1. Fig. 5.6 shows Gtotal

of a system with N = 400 lattice sites at half filling, µ = 0, for qualitatively different
parameter settings. As could have been expected, we obtain perfect conductance
in systems without potential step or any other inhomogeneities. However, care
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Figure 5.7: Conductance components G
(x,y,z)
σσ′ , polarization Px,y,z and total conduc-

tance Gtotal as a function of the interaction strength U at half filling for magnetic

field γBx = 0.6, SOI hopping αz = 0.5 and potential step V0 = 0.5. G
(x,y,z)
σσ′ reveal

remarkable oscillations, which depend on whether the components in a) x- b) y- or
c) z-direction are considered. As the spin-conserving and the spin-flip conductance
components are almost degenerate, respectively, the polarization is insignificant.

must be taken for large U regarding the process of adiabatically turning on/off
the interaction. For m1 = 20 and U = 4, we obtain small deviations from the
perfect conductance, but these deviations can be suppressed below 10−5, if we choose
m1 = 50, what has been done in Fig. 5.6. In presence of a potential step V0, Gtotal

decreases with increasing U . Interestingly, this effect is damped in presence of a
magnetic field. Independent of whether or not there is a magnetic field present
in the potential step case, an additional SOI hopping αz (or equally αy) further
increases the conductance. Despite these modifications, the qualitative behavior of
Gtotal for large U is governed by the potential step V0. However, it can happen for
filling n 6= 1 and consequently chemical potential µ 6= 0 that one crosses a boundary
between regimes with two and one conducting channels for increasing U due to the
increased renormalization of the system parameters for larger U .

Fig. 5.7 shows the conductance components G
(i)
σσ′ , i = x, y, z, for a system with

parameters N = 400, αz = 0.5, γBx = 0.6 and V0 = 0.5 [see orange curve in

Fig. 5.6]. The conductance components G
(i)
σσ′ for spin quantization axis i = x, y, z
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reveal remarkable oscillations with period Uosc ∼ 2 and slowly decreasing ampli-
tude. Since the mean value also decreases with U , we observe the decrease of the
total conductance already shown in Fig. 5.6. The spin-conserving conductance com-

ponents G
(x,y,z)
σσ and the spin-flipping components G

(x,y,z)
σ−σ are almost degenerate,

respectively. Thus, the polarizations Px,y,z are insignificant here, as could have been
guessed from the fact that µ = 0 at half filling setting the system deep into the
two conducting channel regime, where polarization has been shown to play no role.
The ratio between spin-conserving and spin-flipping components strongly depends
on the direction of the spin quantization axis. Since the magnetic field Bx leads to a
distinction of σ =↑ and σ =↓ in x-direction and the SOI hopping αz drives the spin
into the y-direction, in first order there is no difference between σ =↑ and σ =↓ in
z-direction. Consequently, the oscillating spin-conserving and spin-flipping compo-
nents with respect to the z-direction as functions of U only differ by a phase ∆φ = π,
but otherwise have the same oscillation amplitude and mean value [see Fig. 5.7 c)].
In x- and y-direction, the phase between spin-conserving and spin-flipping compo-
nents also is ∆φ = π, but the oscillation amplitude is reduced in comparison to the

z-direction. Whereas it is still large enough in x-direction to create crossings of G
(x)
σσ

and G
(x)
σ−σ [see Fig. 5.7 a)], the spin-conserving components G

(y)
σσ in y-direction are

significantly larger than G
(y)
σ−σ for all U [see Fig. 5.7 c)].

Further analysis shows that the ratio of G
(y,z)
σσ and G

(y,z)
σ−σ depends on the (renor-

malized) magnetic field Bx and the renormalization of Bx naturally depends on the

interaction strength U . The components G
(x)
σσ reveal no oscillations with only a

magnetic field (in x-direction) being present, but due to the spin rotation out of
the x-direction for finite SOI and the fact of Gtotal being independent of the spin

quantization axis, we obtain the oscillatory behavior also for the G
(x)
σσ .

We now focus on large systems of up to N ∼ 104 lattice sites. Such 1D systems
of correlated electrons are known to show Luttinger liquid behavior, i.e. they reveal
a power law decay of correlation functions, e.g. the linear conductance. This will be
explored in the following section.

5.2 Luttinger liquid behavior in long quantum wires

The so-called Luttinger liquids contain a large class of physical systems, e.g. in-
teracting spinless fermions, interacting spin-1/2-fermions, Bose fluids, finite-density
gas of solitons of the Sine-Gordon theory and also some kinds of spin systems. The
underlying model was proposed in 1963 by J.M. Luttinger [14] and explicitely solved
by Mattis and Lieb in 1965 [55]. Apparently, Luttinger was unaware of Tomonaga’s
work from 1950 [56], who treated a similar model, but did not realize the anomalous
decay of correlation functions. However, it rather seems to be a historical fact that
one does not call this class of systems Tomonaga-Luttinger liquids. A very good
review on the broad spectrum of properties of Luttinger liquids can be found in
Refs. [57, 58].
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Figure 5.8: Comparison of the exponent β obtained from the power law decay of
the linear conductance for increasing system size with the theoretical value obtained
from perturbation theory calculations of leading order in U . The filling of the system
is n = 0.9 and the asymptotical exponent is obtained for N > 2000 lattice sites in
the strong impurity regime, V1 = 8.

The probably most important property of an inhomogeneous Luttinger liquid
for one-dimensional transport is the power-law decay of correlation functions with
temperature T → 0 [59]. Since the linear conductance is defined as a current-current
correlation function, this behavior should be observable in our setup as well. Instead
of exploring the conductance as a function of T , we vary the system length N the
inverse of which is the relevant energy scale (up to a constant factor) of the system’s
low-energy excitations.

5.2.1 Correlated electrons in systems with single impurity

We now focus on a situation in which all system parameters like chemical potential µ,
Coulomb interaction U , SOI coupling αy, αz , magnetic field Bx and single impurity
V1 are given and the system length N is varied, as the relevant infrared energy scale
for low-energy excitations is given by δ = vF /N (~ = 1) with vF being the Fermi
velocity. In the absence of SOI and a magnetic field, inhomogeneities such as single
impurities and potential steps, are known to lead to a power-law suppression of the
linear conductance as a function of infrared energy scales [17, 18, 59, 60, 61, 62].

Our aim is to investigate how this power-law suppression is modified in presence
of SOI and whether or not a similar behavior holds for the spin polarization.

Without SOI, we indeed obtain a power law decay of the conductance with expo-
nents which correspond very well with those predicted earlier (see e.g. Refs. [59, 63])
for linear order in U as shown examplarily in Fig. 5.8 for filling n = 0.9 (n = 1 cor-
responds to half filling for spinful systems). The theoretical value of the exponent
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Figure 5.9: Exponent β obtained from the power law decay of the linear conductance
for increasing system size for interaction U = 0.3, filling n = 0.75, impurity strength
V1 = 8 and different SOI parameters αz (αy = 0) leading to different teff . The
first theoretical curve is according to Eq. (5.5) with the hopping parameter t being
replaced by the unrenormalized teff . For the second theoretical curve, a relative
increase of 5% is assumed for teff due to renormalization.

β as a function of the interaction U (leading order), the filling n and the chemical
potential µ is given by [63]

β(U, n, µ) = − µ2 − 4 cos(πn)

(2 − µ2)(2πt sin(πn/2))
U . (5.5)

The filling is set to n = 0.9 by tuning ν(U,µ), corresponding to a chemical potential
µ = −0.313. We choose a strong single impurity V1 = 8 in the middle of the system
in order to obtain the power law behavior already for systems of intermediate size.
In fact, the exponent β saturates for systems larger than N = 2000 lattice sites.

If we now allow for finite SOI couplings αy and αz, Eq. (5.5) still is a good
approximation, but with t in the denominator replaced by the effective hopping

teff =
√

α2
y + α2

z + t2 . (5.6)

This is shown in Fig. 5.9 for different SOI parameters αz (αy = 0). Again, the
exponent β has been determined from the power law decay of the linear conductance.
The filling was set to n = 0.75 and the interaction strength to U = 0.3, i.e. U1 =
0.3, U2 = 0.212. As set out in Fig. 5.8, we allow for an absolute error of ±0.01 in
determining β, which is a rather rough estimation in this case. The data points in
Fig. 5.9 are slightly below the red curve obtained from Eq. (5.5) with the hopping
parameter t being replaced by teff according to Eq. (5.6). Note, however, that one
has to insert, in theory, the renormalized hopping parameters obtained at the end
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Figure 5.10: Suppression of the total conductance with increasing system size N in
presence of a single impurity V1 in the middle of the system, Coulomb interaction
U = 0.8, SOI αy = αz = 0.5 and magnetic field γBx = 0.6 at n = 0.9 (µ =
−0.313). The spin polarizations show oscillations with amplitude, frequency and
phase relation being independent of N (for large N), both for a) small, V1 = 1, and
b) large, V1 = 8, impurity strength.

of the fRG flow into Eqs. (5.5) and (5.6), but can also get good results with the
unrenormalized parameters, since the renormalization of αy, αz and t is quite small
as long as U becomes not too large. A good measure is to assume an increase of
these hopping parameters by 5− 15% compared to the unrenormalized parameters.
For the comparatively small interaction strength U = 0.3 in Fig. 5.9, an increase
of teff by 5% (blue curve) leads to a good estimation of the lower boundary of
|β|. Although the conductance (in the chosen parameter regime) is decreased with
increasing magnetic field Bx, β is independent of Bx.

Polarization

Another interesting question is whether or not the spin polarization shows a sim-
ilar power law behavior with increasing system size. Fig. 5.10 a) shows the total
conductance Gtotal and spin polarization Pi, i = x, y, z, over the system size N for
small single impurity strength, V1 = 1, at half filling (n = 1). The SOI couplings
are αy = αz = 0.5. In this regime, Gtotal still takes quite large values and shows the
typical suppression with increasing N , which becomes a power-law decay in the limit
of large N . The Pi, however, show oscillatory behavior with constant amplitude and
frequency for large N . The phase relation between the different Pi also remains the
same, independent of N , as can be seen from the inset in Fig. 5.10 a).

In Fig. 5.10 b), we chose V1 = 8, i.e. the strong impurity regime, but otherwise
used the same system parameters. One observes that the total conductance is very
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Figure 5.11: Local spectral function ρj1−1(ω) next to a strong single impurity V1 = 8
at site j1 = [N/2 + 1] in the middle of a system with N = 2001 lattice sites for in-
teraction strengths U = 0, 0.2, 0.4, 0.6, 0.8.
a) At filling n = 1, one observes a singularity of the spectral function at the Fermi
level, i.e. at ω = 0.
b) For n = 0.75, an additional suppression occurs at an interaction-dependent fre-
quency ωd.

small, Gtotal < 0.1 e2/h even for a small system and the regime of a power-law decay
is already reached for an intermediate system size of N ∼ 500. The spin polarization
shows oscillations with amplitude, frequency and phase relation being independent
of N for smaller systems as well. Note that the polarization is increased by a factor
of 10 compared to the small V1 regime while exhibiting the same frequency and
phase relation. All these features remain valid, if the system size is increased any
further.

Thus, although the spin polarization does not depend on the system size, apart
from the oscillatory behavior, one would obtain a reduced spin current for larger
systems due to the Luttinger liquid behavior, i.e. the power law decay of the total
conductance.

In the following, we show that the exponent of the power law extracted from the
local spectral function next to the impurity corresponds to the result obtained from
the decay of the linear conductance.

Spectral function

Another approach to determine the exponent β is to consider the local spectral
function ρj(ω) defined by

ρj(ω) = − 1

π
ℑ
(
GΛ=0

j,j (ω + i0)
)

= − 1

π
ℑ
([
ω + i0 + G−1

0 − ΣΛ=0
]−1

j,j

)

(5.7)
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with some real frequency ω. Having integrated the flow equations for the self energy
ΣΛ down to Λ = 0, we obtain an approximation to the physical self energy ΣΛ=0

and the single-particle propagator GΛ=0 from which all properties of single-particle
excitations can be extracted. Fig. 5.11 shows the local spectral function ρj1−1(ω)
next to a strong single impurity V1 = 8 at site j1 = [N/2 + 1] in the middle of a
system with N = 2001 lattice sites. Note that the exact position of the impurity is
irrelevant as long as it is far away from the lead contacts. At half filling, n = 1 [see
Fig. 5.11 a)], one observes finite values of ρj1−1(ω) for ω being within the energy
band, i.e. ω ∈ (−2, 2) (in units of the lead hopping). Besides the vanishing towards
the band edges one observes a dip at the Fermi energy ω = 0, which is the more
pronounced the larger U . This certainly is a correlation effect, as it does not occur
in the non-interacting case. For n = 0.75 [see Fig. 5.11 b)], the overall chemical
potential is µ = −0.765 and one observes finite values of the local spectral function
for ω ∈ (−2+µ, 2+µ). In addition to the dip at ω1 = 0, one finds a slight dip at an
interaction-dependent frequency ωd. As pointed out in Ref. [64], this effect comes
from the fact that the narrow potential V1 in lattice space is a longe-range potential
in k-space with interaction-induced Friedel oscillations of frequency 2kF . Thus, not
only states with momenta close to kF = πn/2 are scattered at this potential, but
also states with momenta close to π− kF . Essentially, the second dip is expected to
be located at ω2 = ǫ̃(π − kF ) − µ with

ǫ̃(k) = −2t̃eff cos(k) + Ṽ (5.8)

being the renormalized dispersion. t̃eff is the renormalized effective hopping and
the additional one-particle potential Ṽ being created within the fRG flow accounts
for the fact that the chemical potential µ = ǫ̃(kF ) is constant in the entire setup
(system and leads). This is assured by the careful tuning of ν. From Fig. 5.11 b),
one obtains the position of the second dip ωd. The following table shows a very good
correspondence to the theoretical value ω2. The values of Ṽ and t̃eff obtained from
the self energy ΣΛ=0 at the end of the fRG flow are also shown for convenience.

n = 0.75 U ωd ω2 t̃eff Ṽ

0.2 1.591 1.593 1.041 0.031
0.4 1.651 1.655 1.081 0.062
0.6 1.710 1.713 1.119 0.091
0.8 1.764 1.770 1.156 0.119

The relation ωd = ω2 should hold for all fillings n. Indeed, we observe an analogue
correspondence for n = 0.9.

n = 0.9 U ωd ω2 t̃eff Ṽ

0.2 0.645 0.646 1.033 0.010
0.4 0.665 0.666 1.065 0.020
0.6 0.685 0.686 1.097 0.030
0.8 0.705 0.706 1.129 0.040

67



CHAPTER 5. QUANTUM WIRES OF CORRELATED ELECTRONS WITH
SOI AND MAGNETIC FIELD

A comparison of the two tables also shows that the renormalization of the additional
one-particle potential V and the effective hopping teff is increased, if one goes further
away from half filling.

It is a pecularity of half filling, n = 1, that there is only one dip in the spectral
function at ω1 = 0, since kF = πn/2 = π − kF and therefore ω1 = ω2 [see Fig. 5.11
a)].

Coming back to our original purpose, namely the identification of the exponent
β from the spectral function, there are two possible ways. A thorough investigation
shows that ρj1−1 can be fitted very well on either side of ω = ±0 by a power law with
exponent β+

L for ω → 0+ and β−L for ω → 0− with the natural symmetry β+
L = β−L .

Similarly, we obtain β+
R = β−R for the exponents from fitting ρj1+1 around ω = ±0.

It will be shown in Sect. 5.2.2 that the exponents on the left/right side of the single
impurity can be different in presence a potential step. However, with just a single
impurity present, we obtain a degeneracy of all four exponents. Taking the sum
of these exponents, we obtain exactly the exponent βG which was determined from
the decay of the linear conductance with increasing system size up to a numerical
deviation of O(10−3).

Another possibility is to examine the values of ρj1−1(ω = 0) and ρj1+1(ω = 0)
as a function of system size N . Again, one obtains power laws with exponents
βL(ω = 0) for ρj1−1(ω = 0) and βR(ω = 0) for ρj1+1(ω = 0), which exactly match
the corresponding sums

βL(ω = 0) = (β+
L + β−L )/2

βR(ω = 0) = (β+
R + β−R )/2 (5.9)

and therefore

βG = βL(ω = 0) + βR(ω = 0) (5.10)

with βG being the exponent extracted from the power law decay of the total con-
ductance.

5.2.2 Correlated electrons in systems with potential step

We now analyze whether a power law behavior of the linear conductance can also
be observed in presence of a potential step V0. It was shown above that one needs
to implement quite large single impurities, V1 ∼ 8, into the system in order to
observe a well-pronounced power law decay of the linear conductance already for an
intermediate system size N ∼ 103.

Although the simple one-particle picture described in Fig. 3.8 does not hold in
presence of Coulomb interaction, one could intuitively guess that the conductance
will be zero, if V0 is chosen too large, as there will be no propagating states on the
left side of the potential step with energies matching the energies of propagating
states of the right side (trivial band effect). Such behavior can indeed be observed,
even for comparatively small systems with N ∼ 100 lattice sites.
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Figure 5.12: Average particle number 〈nj〉 over lattice site j for a system of size
N = 400 with a potential step of height V0 = 2 in the middle of the system. V0

is turned on adiabatically over m1 = 50 lattice sites and extends over the left part
of the system. 〈nj〉 strongly depends on U on the left side, but is independent
from U on the right side. One observes typical Friedel oscillations with frequency
corresponding to the particular filling.

Particle density

Fig. 5.12 shows the profile of the particle density 〈nj〉 = 〈nj,↑〉 + 〈nj,↓〉 for a system
of size N = 400 at µ = 0 (n = 1, half filling) for different interaction strengths U
without SOI and magnetic field.

Note that the case n = 1 has one peculiarity. It has been shown for the Hubbard
model with vanishing SOI that the system at half filling is driven towards a Mott
insulator phase for large N in presence of impurities [65]. However, this phase
transition is not captured within our fRG approach and the results are continuous
with respect to n. Therefore, our results obtained for n = 1 are to be understood in
this continous limit.

Again, the interaction has been tuned such that U1 = U and U2 = U1/2 in order
to achieve g1⊥ = 0. A potential step of height V0 = 2 is included in the middle
of the system. The potential is turned on adiabatically and extends over the left
part of the system. As mentioned in the previous section, we also included the
one-particle potential ν(U,µ = 0) that ensures the correct filling n = 1 (for µ = 0)
for the homogeneous system. One observes impurity-induced density fluctuations,
known as Friedel oscillations, which start at the potential step with quite a large
amplitude and decay towards the boundaries of the system. As pointed out in
Sect. 4.3, our definition of 〈nj,σ〉 according to Eq. (4.31) is just an approximation
which does not account for the correct power-law decay of the Friedel oscillations’
amplitude as a function of distance from the impurity. However, the average particle
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Figure 5.13: a) Filling nL on the left side of the system under consideration in
Fig. 5.12 for different heights V0 of the potential step. In presence of SOI, αz = 0.5,
nL is increased especially for small interaction strength U .
b) The linear conductance Gtotal is increased for finite αz = 0.5 for all U and V0.
The vanishing of Gtotal for V0 = 2 and U → 0 corresponds to the behavior of nL in
this parameter regime.

number (the filling) and the frequency of the Friedel oscillations are correct within
our approximation [43].

As can be seen from the right inset in Fig. 5.12, the particle density on the right
side oscillates around n = 1 with period josc = 2, independent of U . In contrast, the
particle density on the left side is almost zero for the non-interacting case (in fact,
n ∼ 10−3) and is strongly increased with U . The non-interacting case corresponds
very well to the picture described by Fig. 3.8. Since we chose V0 = 2, the left
dispersion is just shifted by ǫ = 2 matching µ = 0 only at the very bottom of its
energy branches which are degenerate, because there is no SOI and no magnetic
field. Therefore, one can expect that these parameters just indicate the boundary
between zero and finite transmission. This behavior is also reflected in the (almost)
vanishing particle density. The most astonishing feature of the left inset in Fig. 5.12
is that 〈nj〉 is severely increased with U . A thorough investigation shows that the
frequency of the corresponding oscillation corresponds very well to the Fermi wave
vector kF = πn/2 such that the particle profile in the bulk of the left part can
be modelled for each interaction by a superposition of the corresponding filling nL

(average particle number on the left side) and the Friedel oscillations via

nj = n+A(j) sin(πnj + Φ) (5.11)

with all parameters depending on U . A(j) accounts for the decaying amplitude of
the oscillations and Φ is an additional phase shift with no physical meaning. The
filling nL of the left part of the system is defined by the arithmetic mean of nj for
j being in the left bulk, i.e.

nL =
1

N/2 −m1

N/2
∑

j>m1

nj , (5.12)

70



5.2. LUTTINGER LIQUID BEHAVIOR IN LONG QUANTUM WIRES

0 100 200 300 400
j

0.5

1

1.5

2

<
n j>

~0.1
n=1
n=0.9
n=0.75

140 160 180 200

0.5

0.6

0.7

0.8

~0.15

Figure 5.14: Profile of the particle number 〈nj〉 for constant interaction strength
U = 0.6, potential step V0 = 1 and fillings n = 1, 0.9, 0.75. The average particle
number on the right side corresponds very well to the predetermined filling. The
average particle number on the left side is decreased by a certain amount independent
from n, as shown in the inset.

and is analyzed in Fig. 5.13 a). Naturally, nL decreases with increasing V0, whereas
the U -dependence of nL strongly increases for V0 → 2, which was shown to define the
crossover between zero and finite conductance in the non-interacting case. Assuming
finite SOI, αz = 0.5, leads to larger nL, especially for small interaction strength U ,
but the asymptotic value of nL which seems to exist for very large U does not seem to
depend significantly on αz. One should note that the influence of αz (or accordingly

αy) can again be absorbed into an effective hopping teff =
√

t2 + α2
y + α2

z.

Fig. 5.13 b) shows the linear conductance Gtotal for the corresponding parameters.
Gtotal is increased for all V0 and U in presence of SOI, αz = 0.5, in correspondence to
the increased filling nL. Taking the potential step into account as an impurity, one
would expect that Gtotal scales down with increasing U . For V0 = 2 however, one
observes an increase of Gtotal for small U up to a maximum value and a subsequent
decrease for larger U . This behavior has no direct analogue to the filling nL, but at
least the suppression Gtotal → 0 for U → 0 is connected to the disappearance of the
particles on the left side.

Going away from half-filling, we observe for the case with U = 0.6, αz = 0 and
otherwise the same system parameters as above that again the filling nR on the right
side of the system is the predetermined filling set by the chemical potential µ of the
leads and the interacting region [see Fig. 5.14]. The small dent in the n = 0.75-
curve on the right system boundary is just a numerical peculiarity, since U1 and U2

need to be switched on/off with the same function entering the initial values of the
self energy, but need to be switched on/off with different functions in the fRG flow
equation accounting for the fact that U1 is an on-site and U2 a nearest-neighbor
property of the system, but this has no physical relevance. Furthermore, one should
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Figure 5.15: Difference ∆n between the filling on the right side and the left side of
the potential step at the end of the fRG flow for initial filling n = 1, 0.9, 0.75.
a) For constant V0 = 1, ∆n becomes independent of the initial filling n, if U is
increased.
b) For constant U = 0.6, ∆n is independent of n and grows linearly for small V0,
but splits up for V0 > 0.5.

note that due to the condition g1,⊥ = 0, i.e. U = U1 = U2(2 − µ2), U2 depends
on n for constant U , since µ depends on n. However, a direct comparison of the
curves with the same U but different n should give, at least qualitatively, a rough
understanding of the underlying physics.

The difference ∆n = nR − nL between the fillings on the right side and the left
side does not seem to depend significantly on n, as should be clear from the inset of
Fig. 5.14, since the difference between the fillings nL on the left side is the difference
between the fillings nR on the right in good approximation.

However, a more thorough investigation shows that this is not the case for the
entire parameter regime. Fig. 5.15 a) clarifies that ∆n decreases for all fillings
n = 1, 0.9, 0.75 as a function of U for constant potential step height V0 = 1. Starting
from a significant dependence on n for the non-interacting case, the different curves
converge for larger U . For constant U = 0.6, Fig. 5.15 b) shows that ∆n is degenerate
with respect to n and grows linear for small V0. For V0 > 0.5, the n-degeneracy is
lifted and the increase of ∆n is enhanced the more the smaller n. Thus, one can
expect a competitive behavior of V0 and U in affecting ∆n.

Although the filling nL on the left side of the potential step, i.e. the area where
there actually is a one-particle potential V0, strongly depends on the system param-
eters, the filling nR on the right side seems to be independent of any parameters
but the predetermined filling n. This clearly conflicts with Ref. [66] which refers to
a slightly different situation. The setup under consideration there was a system of
interacting electrons with impurity in the middle of the system and two different
Fermi wave vectors kF = kL,R on the left/right side of the scatterer. In a way, this
corresponds to our setup with the one-particle potential V0 on the left side and the
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Figure 5.16: Renormalized potential Ṽ0 over the lattice index j for a system with
N = 400 lattice sites and interaction strength U = 0, 0.1, 0.2, 0.4, 0.8 at half filling,
n = 1. The adiabatic turning-on of the potential over m1 = 50 lattice sites and the
potential step in the middle of the system can clearly be observed. The interaction
U leads to a decrease of Ṽ0 in the left region, but does not induce a potential in
the right region. The typical Friedel oscillations can be seen on both sides with
frequencies corresponding to the respective fillings.

potential step in the middle of the system leading to different fillings nL,R and there-
fore different Fermi wave vectors kF = kL,R on both sides. However, no leads were
included in the model studied in Ref. [66] and the authors assumed two connected
semi-infinite systems with kF = kL and kF = kR, respectively. For this setup, one
observes two different frequencies ωL,R of Friedel oscillations corresponding to the
particular kL,R for the non-interacting case. For finite interaction, one should ob-
serve an additional peak in the spectrum of density oscillations at the counterpart
kR,L leading to a beating pattern in the Friedel oscillations, i.e. a superposition of
two density oscillations with frequency ωL,R [66]. However, we do not observe such
behavior in our setup with a finite system connected to the non-interacting leads.

In order to get a deeper insight into the observed phenomena, we now focus on
the renormalized potential Ṽ0 which can be calculated from the diagonal elements
ΣΛ=0

j,j (σ, σ) of the self energy at the end of the fRG flow. Fig. 5.16 shows the profile of

the renormalized potential Ṽ0 for a system with N = 400 lattice sites and interaction
srength U = 0, 0.1, 0.2, 0.4, 0.8. The unrenormalized potential V0 entering the initial
condition of the system’s self energy again is turned on adiabatically over m1 = 50
lattice sites and abruptly turned off in the middle of the system leading to a potential
step of height V0 = 1. Besides the Friedel oscillations, no potential is generated in
the right area. This explains why no change in the filling nR on the system’s right
side was observed in Figs. 5.12 and 5.14. According to Eq. (5.11), the frequency of
the oscillation is determined by the particular filling. nR = 1 on the right side of the
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Figure 5.17: Total conductance Gtotal over system size N for n = 0.75 and potential
step height V0 = 0.5, 1, 1.5, 2.
a) For U = 0.2, Gtotal vanishes for V0 = 2 independent from the system size. The
conductance for smaller potential steps obtains sizeable values and depends only
weakly on the system size.
b) For U = 0.8, the V0 = 2-conductance is finite and reveals a slight increase with
N . Gtotal decreases for smaller V0 with increasing N .

system leads to ωR = πnR = π as can be seen from the right inset in Fig. 5.16. The
left filling is nL = 0.693 and the corresponding frequency ωL = πnL used for the fit
in the left inset is a fairly good approximation to the oscillations of Ṽ0 (naturally, one
could not expect a perfect correspondence, as the lattice space is discrete). Thus,
we obtain a universal frequency of the Friedel oscillations holding not only for the
filling but also for the renormalized potential.

Conductance

For the single impurity case, we have shown in Sect. 5.2.1 that only in the strong
impurity regime (V1 ∼ 8) a well-defined power law decay of the conductance with
increasing system size can be observed. Thus, it is questionable whether we can
obtain such behavior in systems with potential step V0, in which one is much more
limited in choosing the height of V0 in order to still obtain a finite conductance.
Indeed, one has seen in Fig. 5.13 that a certain V0 exists which defines a crossover
value leading to a severely suppressed total conductance Gtotal for small interaction
strength U . In presence of a single impurity, one observed a decrease of Gtotal with
increasing system size N . However, Fig. 5.17 shows that in presence of a potential
step V0 the opposite behavior can be observed as well. For e.g. U = 0.2 and
V0 = 1.5, the total conductance increases with growing system size [see Fig. 5.17 a)].
The same behavior is observed in Fig. 5.17 b) for U = 0.8 and V0 = 2. However,
the most interesting feature is the fact that one obtains a quite sizeable conductance
Gtotal ∼ 1 e2/h for V0 = 2 and U = 0.8, whereas it vanishes for V0 = 2 and U = 0.2.
This fact fits very well to the picture mentioned above for the vanishing particle
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densities. Whereas we observed finite particle densities in the left half of the system
in Fig. 5.12 for V0 = 2 and U = 0.2 at n = 1, i.e. µ = 0, the particle density in the
left half vanishes for the same parameters at n = 0.75, i.e. µ = −0.765, establishing
once more the idea set out in Fig. 3.8.

Furthermore, all curves in Fig. 5.17 have in common that any fit according to a
power law suffers from large discrepancy to the data, as the 2kF scattering compo-
nent Ṽ0(2kF ) of the renormalized Fourier-transformed potential is not large enough
in order to drive the system into the power-law regime. Choosing larger V0 would
lead to a total suppression of Gtotal due to the trivial band effects.

Thus, we implement a strong single impurity V1 = 8 in the middle of the system
in addition to the potential step in order to force the system into the parameter
regime in which a power law behavior can be observed. Indeed, we achieve a decay
of the linear conductance with increasing system size, which can be fitted well by a
power law, at least for comparatively small height of the potential step, i.e. V0 < 1.

Since we have shown above that a potential step leads to two subsystems with

different fillings nL,R, one could expect that one can derive the exponents β
+/−
L,R and

βL,R(ω = 0) from the spectral function [see Sect. 5.2.1], which correspond to the
particular filling on the left/right side of the potential step according to Eq. (5.5).
However, we will see that this is not the case in the present setup.

In the same manner as for the single impurity case in Sect. 5.2.1, we observe the
relationship

βL(ω = 0) = (β+
L + β−L )/2

βR(ω = 0) = (β+
R + β−R )/2 (5.13)

and

βG = βL(ω = 0) + βR(ω = 0) . (5.14)

As expected, the exponents βR(ω = 0) and β
+/−
R taken from the spectral function

ρj1+1 on the right side do not depend on the height V0 of the potential step. This
corresponds to the fact that the filling nR on this side of the system is also indepen-
dent from V0. The right exponents therefore correspond very well to the theoretical
prediction [see Eq. (5.5)]. As the minimum of Eq. (5.5) is at half filling for all inter-

actions U , one would expect an increase of the left exponents βL(ω = 0) and β
+/−
L

for finite V0, since nL departs from n = 1 in this case. Fig. 5.18 shows the compar-
ison of βL(ω = 0) as a function of U for different potential steps, V0 = 0, 0.5, 0.8.
The original filling was set to n = 1, which equals nL for V0 = 0. Increasing V0 at
constant U leads to a reduced nL. The theoretical values have been obtained from
Eq. (5.5) with n being replaced by nL. Although still being increased with U the
slope of the data shows the opposite trend than would be expected from the theory.

This behavior can not be explained in our framework. We emphasize that the
tuning g1,⊥ = 0 does not hold in this setup, since the filling on the left side does not
correspond to the chemical potential. The quality of our data might suffer from this
fact. However, our data show an unexpected trend even for the situation of very
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Figure 5.18: Comparison of the exponent βL(ω = 0) for a system with filling n = 1,
single impurity V1 = 8 and potential step V0 = 0, 0.5, 0.8 with the theoretical value,
which follow from Eq. (5.5) for the corresponding filling nL on the left side of the
system. The data shows the opposite trend as would be expected from the theory.

small U in which g1,⊥ 6= 0 might not be that crucial. This indicates that the idea of
two individual subsystems with filling nL,R on the left/right side of the potential step
inducing two different exponents βL,R(ω = 0) should be considered with caution.

5.3 Summary

The repulsive Coulomb interaction has been modelled by an on-site part U1 and a
nearest-neighbor part U2 in analogy to the extended Hubbard model. It has been
shown that sharply turned on/off system parameters which are not present in the
leads result in severe conductance oscillations for finite U1 and U2. Therefore, we
chose a smooth weight function to turn on/off the Coulomb interaction, SOI and
magnetic field over a certain number m1 of lattice sites. m1 ∼ 20 emerged to be
sufficient for short wires (N . 400) and in order to suppress these oscillations and
to obtain a perfect conductance over the entire bandwidth. For long wires of up to
N = 104 lattice sites, we got perfect conductance for m1 ∼ 50.

Analyzing the conductance as function of the chemical potential, we observed a
modification of the areas with zero, one and two conducting channels, which has been
attributed to the renormalization of the magnetic field and the SOI parameters. This
resulted also in a change of the parameter range where spin polarization is achieved.

Since we omitted the flow of the two-particle vertex in our approach, we chose
a certain µ-dependent ratio U1/U2 = −2 cos(2kF ) = 2 − µ2 in order to tune the
2kF -backscattering component g1,⊥ to zero and to guarantee the correctness of our
results for larger systems of up to N ∼ 104 lattice sites as well.

The conductance as function of the interaction strength U at half filling was
shown to severely decrease in presence of even small potential steps V0. However,
this decrease could be damped for finite magnetic field or finite SOI hopping. How-
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ever, the qualitative conductance behavior for large U depends mainly on V0. The
conductance components plotted over U revealed pronounced oscillations the ampli-
tude of which depending on the direction of the spin quantization axis. The origin
of these oscillations could be traced back to the subtle interplay of SOI and mag-
netic field both of which are effectively changed for finite Coulomb interaction due
to renormalization.

Luttinger liquid behavior in form of a power law decay of the conductance with
increasing system size could be observed in presence of a strong single impurity V1

in the middle of the system. The power law exponent β was shown to fit very well
to the theoretical predictions for linear order in U . The influence of SOI could be
absorbed into an effective hopping teff and led to an exponent β ∼ 1/teff . For finite
Coulomb interaction, we observed two dips in the local spectral function ρj1±1(ω) on
the lattice site j1 ± 1 next to the single impurity. The dips indicated the scattering
of states with momentum kF and π − kF off the single impurity which, in k-space,
could be seen as a long-range potential with interaction-induced Friedel oscillations
of frequency 2kF . The decay of ρj1±1(ω) for ω → 0± and the decay of ρj1±1(ω = 0)
for increasing system size led to the same exponent as the one being extracted from
the conductance.

Thereafter, we studied systems of correlated electrons with a broad potential
V0 which was turned on adiabatically in the left part of the system and turned
off sharply in the middle of the system leading to a potential step. The filling
nR on the right system side shaped up as being independent of the interaction
strength and the height of the potential step and matching exactly the filling n
which was predetermined by the overall chemical potential, whereas the filling nL on
the left side revealed a strong dependence on the system parameters and eventually
(almost) vanished for large V0. This could be explained, at least qualitatively, by
the energetical rupture of the system in a one-particle picture with renormalized
parameters. For given µ and large V0, there were no propagating states in the left
half of the system and transport could only take place via a tunneling mechanism.
Indeed, we could observe a residual conductance for very small systems of N < 15
lattice sites. However, an analysis of the renormalized potential Ṽ0 indicated that
the potential is decreased with increasing U . With U being chosen large enough,
we could therefore obtain finite nL for system parameters which lead to nL = 0 for
U = 0.

The local particle densities 〈nL,R(j)〉 on the left/right side of the potential step as
well as the renormalized potential Ṽ0(j) exhibited strongly pronounced Friedel oscil-
lations with frequencies determined just by the corresponding fillings nL,R. With nR

being independent from the interaction, only the frequency of the Friedel oscillations
on the left side of the system showed a dependence on the interaction strength U .

The conductance was entirely suppressed in the regime of large V0 with nL = 0,
but also achieved finite values with increasing U . However, we were not able to
enter the parameter regime in which a power law decay of the conductance could
be observed. We therefore introduced an additional strong single impurity V1 in the
middle of the system (right at the potential step) in order to force the system into
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the Luttinger liquid regime. Actually, we could observe a power law decay of the
conductance with increasing system size, but the exponents did not correspond to
the theory for any combination of the fillings nL,R. We obtained exponents βL,R from
the local spectral functions on the left/right side of the potential step. βR fitted very
well to the theoretical prediction made for a single impurity at the corresponding
filling nR, but this was not the case for βL. Whereas the theory predicted an increase
of βL with V0 due to the smaller filling nL, we found a decrease of βL. Nevertheless,
a linear dependence on U was also observed in this case.

In the following chapter, we will shrink our system to a zero-dimensional quantum
dot consisting of only N = 2 lattice sites. The case N = 1 is unimportant here, as
SOI is connected to a modification of the hopping amplitudes in the system requiring
at least two lattice sites to be detectable.
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Chapter 6

Quantum dots of correlated
electrons with SOI and
magnetic field

Quantum dots have gained much interest in the past years, in particular due to the
possibility of their experimental feasibility and their possible application to nano-
devices and quantum information processing [67].

A quantum dot can be realized by a single atom or molecule, but also by some
semiconductor device in which a suitable electrode structure confines the electrons
to a region with a diameter of 10−50 nm [68]. Due to the strong spatial confinement,
the energy levels of the quantum dot are quantized and well-seperated, which allows
for a treatment that only takes a few levels in the vicinity of the relevant energy
scale (e.g. the chemical potential of the attached leads) into account. Ideally, the
density of states of a decoupled dot is a δ-function, but in reality, fluctuations in the
confinement lead to a broadening.

In order to study these properties, the quantum dot is attached to higher-dimen-
sional leads via tunneling barriers. It is experimentally achievable to design an elec-
trode structure of metallic gates which enables the application of an additional gate
voltage VG to control the dot’s energy levels. In a simple one-particle picture, one
would expect a current to flow in the zero-temperature limit, if the dot’s eigenenergy
matches the Fermi energy of the leads and a small source-drain voltage is impressed
on the dot. This should lead to a Lorentzian peak structure in the profile of the
linear conductance G(VG) as function of the gate voltage. The peaks are broadened
due to the hybridization of the dot and the leads. However, contrary to this theory
conductance measurements on quantum dots reveal conductance plateaus instead
of conductance peaks in the low-temperature limit [68]. This can be explained by
the famous Kondo effect which dominates the physics of a quantum dot for energies
below a certain energy scale, the so-called Kondo temperature TK (see below).

We will study the spin-dependent transport properties of a serial double quantum
dot (consisting of N = 2 lattice sites) in Sect. 6.1 and give a detailed analysis of
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the eigenvalue problem of the decoupled non-interacting dot in presence of SOI and
a magnetic field. Furthermore, we will discuss the influence of SOI on the Kondo
physics of the interacting dot. In Sect. 6.2, we will include the double dot in one
arm of an Aharonov-Bohm interferometer and study interference effects and how
the linear conductance and the spin polarization can be controlled by tuning the
system parameters.

6.1 Transport through a serial quantum dot with SOI
and magnetic field

We can directly transfer the Hamiltonian we used in the previous chapter to model
the quantum wire to describe a serial quantum dot consisting of N lattice sites.
The lattice site index j in Eqs. (3.1), (5.1) and (5.2) runs from j = 1 to N with
N = 2 for the double dot considered here. The hybridization Hamiltonian modeling
the tunneling contact to the leads is given by Eq. (3.12) such that the setup is the
same as in Fig. 5.1, just with a reduced number of lattice sites. The external scalar
potential Vj,σ in Eq. (3.3) is replaced by a common gate voltage VG leading to the
gate Hamiltonian

Hgate = VG

N∑

j=1

∑

σ=↑,↓

c†j,σcj,σ . (6.1)

In the following, we will tune the gate voltage VG and investigate the system’s
reaction, i.e. the modification of the linear conductance. In analogy to the linear
conductance of the quantum wire, we must take the four conductance components
Gσσ′ with σ, σ′ =↑, ↓ into account. If not explicitely mentioned, the spin quantization
axis is in z-direction. The conductance components with respect to spin quantization
along the x- or y-axis are given by Eqs. (3.28) and (3.29).

6.1.1 Non-interacting case

Before we start analyzing correlation effects like the Kondo effect, we focus on the
situation without Coulomb interaction, i.e. U1 = U2 = 0, and investigate the inter-
play of SOI and magnetic field.

Figs. 6.1 a) and b) show the total linear conductance Gtotal and the conductance
components Gσσ′ of a double dot (N = 2) at µ = 0 for SOI αz = 0 and αz = 0.5,
respectively. The dot is coupled to the two semi-infinite leads via hopping amplitudes
tL = tR = 0.2. Without SOI, the conductance is fully carried by the spin-conserving
components Gσσ and shows Lorentzian peaks of width Γ = t2L + t2R at VG = ±t
with conventional hopping t = 1 according to the Breit-Wigner formula. Since no

magnetic field is present, we obtain G↑↑ = G↓↓. Note that the components G
(x,y,z)
σσ′

are also degenerate with respect to the spin quantization axis in this case. For finite
SOI (αy = 0, αz = 0.5), the peaks are shifted to VG = ±

√

t2 + α2
z, but the peak

width remains unchanged. A certain fraction of the total conductance is carried

80



6.1. TRANSPORT THROUGH A SERIAL QUANTUM DOT WITH SOI AND
MAGNETIC FIELD

0

1

2

G
 / 

(e
2 /h

)

G
total

G↑↑
G↑↓
G↓↑
G↓↓

-4 -2 0 2 4
V

G

0

1

2

α
z
=0

α
z
=0.5

a)

b)

-4 -2 0 2 4
V

G

0

1

2

3

4

n

α
z
=0

α
z
=0.5

α
z
=1

c)

Figure 6.1: Linear conductance and particle number of a double quantum dot
(N = 2) coupled to semi-infinite leads via tL = tR = 0.2 as a function of gate voltage
VG.
a) Without SOI, the conductance is fully carried by the spin-conserving components
Gσσ and shows Lorentzian peaks of width Γ = t2L + t2R at VG = ±t with hopping
amplitude t = 1.
b) For αz = 0.5 (αy = 0), the peaks are shifted to VG = ±

√

t2 + α2
z, but their

width remains unchanged. A small fraction of the total conductance is carried by
the spin-flip components Gσ−σ .
c) The particle number n of the double dot shows a steplike behavior with the
position of odd particle numbers matching the corresponding conductance peak po-
sitions.

by the spin-flip components Gσ−σ . A thorough analysis shows that this fraction
strongly depends on the direction with respect to which the spins are ’measured’.
For arbitrary hopping amplitudes αy, αz and t, we obtain

G
(x)
↑↓ (VG) = G

(x)
↓↑ (VG) =

α2

2t2eff
Gtotal(VG)

G
(y)
↑↓ (VG) = G

(y)
↓↑ (VG) =

α2
z

2t2eff
Gtotal(VG)

G
(z)
↑↓ (VG) = G

(z)
↓↑ (VG) =

α2
y

2t2eff
Gtotal(VG) (6.2)

with α =
√

α2
y + α2

z and teff =
√

t2 + α2
y + α2

z being already defined in Sect. 3.3.

This is in correspondence with the intuitive picture already discussed in the contin-
uum case that the SOI parameters αy (αz) rotate the spin into the z- (y-) direction to
a certain amount which depends on the relative fraction of their absolute values. We
emphasize this fact, since it might be crucial for the spatial measurement geometry,
e.g. Stern-Gerlach apparatus, in order to detect spin polarization in experiments.

In contrast to the previous chapter in which n denoted the normalized particle
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Figure 6.2: Linear conductance and particle number of a double quantum dot with
the same parameters as in Fig. 6.1 but finite magnetic field γBz = 0.6.
a) Without SOI, the spin degeneracy is lifted which leads to a splitting of the con-
ductance peaks to VG = ±(t± γBz). The peak width is not altered by the magnetic
field.
b) For αz = 0.5 (αy = 0), the peaks are positioned at VG = ±

√

(t± γBz)2 + α2
z.

The spin-flip components Gσ−σ are still degenerate, but have less impact on the
outer peaks than on the inner peaks.
c) The steplike shape of the particle number n is subdivided by the magnetic field
and a change of n by one electron corresponds to a conductance peak.

number, i.e. the filling of the quantum wire, in this chapter it is defined via

n =

N∑

j=1

∑

σ=↑,↓

〈nj,σ〉 (6.3)

and therefore counts the total number of electrons on the dot. Due to the Pauli
principle, n ∈ [0, 2N ] holds for a dot of N lattice sites.

The particle number n as a function of VG is shown in Fig. 6.1 c) for αz = 0, 0.5, 1.
n shows characteristic plateaus leading to a steplike shape. A steep gradient of n
is observed at VG = ±teff . It follows from Fig. 6.1 a) and b) that we obtain a
conductance peak, whenever the dot’s occupation number n changes. Without an
external magnetic field, i.e. in the spin-degenerate case, n always changes by 2.
Therefore, the plateaus only occur for even particle numbers. As mentioned in
the introduction to this chapter, a change in the dot’s occupancy can be expected,
whenever the gate voltage passes over an eigenenergy of the dot. Before we analyze
this in detail, we will shortly investigate the behavior of an external magnetic field
and address the eigenvalue problem afterwards in general.

We account for an external magnetic field B = (Bx, By, Bz) applied to the dot by
a Zeeman Hamiltonian as given in Eq. (3.6). Fig. 6.2 a) shows the influence of the
magnetic field γBz = 0.6 on the conductance components for the case without SOI.
The spin degeneracy is lifted, but we obtain the symmetry G↑↑(VG) = G↓↓(−VG). As
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expected, there are four conductance peaks at VG = ±(t± γBz), two are carried by
G↑↑ and the other two byG↓↓. The spin-flip components come into play for finite SOI
as shown in Fig. 6.2 b) for αz = 0.5 (αy = 0) and are still degenerate, G↑↓(VG) =

G↓↑(VG). The peaks are positioned at VG = ±
√

(t± γBz)2 + α2
z, i.e. Bz is only

coupled to t and not to αz. The inset shows that, although the total conductance is
mainly carried by G↓↓, G↑↑ also shows a maximum which is not present in the case
without SOI. The spin-flip components are much more pronounced in the two inner
peaks, which will be explained below.

The particle number n for magnetic field γBz = 0.6 and SOI parameters αz =
0, 0.5, 1 (αy = 0) are shown in Fig. 6.2 c). In contrast to the case without magnetic
field, we find a subdivision of the steps such that plateaus also occur for odd occu-
pancy numbers. Again, a change in n is linked to a conductance peak in Fig. 6.2
a) and b) and the plateaus correspond to the almost vanishing conductance in be-
tween. In order to analyze all these observations in more detail, we now focus on
the eigenvalue problem of the double dot.

The double dot’s eigenvalue problem

Since we omit the Coulomb interaction in the present setup, the one-particle Hamil-
tonian of the isolated double dot (without the leads) can be written as a com-
plex 4 × 4-matrix H in the lattice-spin representation of Wannier states |j, σ〉 [see
Sect. 3.1]. In its most general form with chemical potential µ, arbitrary magnetic
field B = (Bx, By, Bz), conventional hopping amplitude t and SOI parameters αy

and αz this matrix is given by

H =







µ+ γBz γ(Bx − iBy) −t+ iαy αz

γ(Bx + iBy) µ− γBz −αz −t− iαy

−t− iαy −αz µ+ γBz γ(Bx − iBy)
αz −t+ iαy γ(Bx + iBy) µ− γBz







. (6.4)

The Hermitian structure of H guarantees that the four eigenvalues

λ1 = µ+

√

α2 + t2 + γ2B2 + 2γ
√

t2B2 + (αyBz + αzBy)2

λ2 = µ+

√

α2 + t2 + γ2B2 − 2γ
√

t2B2 + (αyBz + αzBy)2

λ3 = µ−
√

α2 + t2 + γ2B2 − 2γ
√

t2B2 + (αyBz + αzBy)2

λ4 = µ−
√

α2 + t2 + γ2B2 + 2γ
√

t2B2 + (αyBz + αzBy)2 (6.5)

with α =
√

α2
y + α2

z and B =
√

B2
x +B2

y +B2
z are real. The most interesting feature

of Eq. (6.5) is that αy couples directly to Bz and αz to By in the last term. However,
this interplay could have been guessed from the fact that αy (αz) leads to a spin-
rotation into the z- (y-) direction, i.e. the direction in which Bz (By) induces a spin
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Figure 6.3: Coupling between the leads and the four energy levels µ±δ1,2 of the dou-

ble dot in energy representation. The effective hopping amplitudes tL,R
i (σ) depend

on the energy level and the spin direction.

splitting effect. The eigenvectors of H can be obtained easily by a computer algebra
program, but are too cumbersome to write down here.

We therefore concentrate on the special situation shown in Fig. 6.2 with αy = 0
and Bx = By = 0. Defining

δ1 =
√

α2
z + (t+ γBz)2

δ2 =
√

α2
z + (t− γBz)2 , (6.6)

the eigenvalues simplify to

λ1 = µ+ δ1

λ2 = µ+ δ2

λ3 = µ− δ2

λ4 = µ− δ1 . (6.7)

The eigenvectors and further explanations are given in App. C. Fig. 6.3 shows
the coupling of the leads to the four energy levels µ± δ1,2 of the double dot in the
energy representation [for a definition of Ni see App. C]. The amplitude of the
effective hybridization depends on the corresponding energy level λi and on the spin
direction σ =↑, ↓. Note, however, that no spin can be assigned to electrons on a
certain energy level due to the base transformation, but the spin quantum number
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σ only refers to electrons in the leads. It is shown in App. C that the two outer
levels λ1 = µ+ δ1 and λ4 = µ− δ1 are coupled to each other via hopping processes
induced by t and αz. The same holds for the inner levels λ2 = µ+δ2 and λ3 = µ−δ2.
Interestingly, there is no coupling between the inner and the outer levels.

For a single dot without SOI, it has been shown by Meir and Wingreen in Ref. [69]
that the conductance can also be derived directly from the spectral weight of the
dot at the chemical potential. This approach also applies for the case with Coulomb
interaction and has been discussed in Ref. [20] within the fRG framework. How-
ever, as it is not clear, how this could be transferred quantitatively to our much
more complicated situation (even without Coulomb interaction), we just take some
qualitative considerations into account to explain the behavior of the conductance
components in Fig. 6.2. We define the hybridizations

ΓL,R
i (σ) = |tL,R

i (σ)|2 (6.8)

between the left/right lead and the i-th energy level λi. Since we assumed symmetric
coupling to the leads in the lattice-spin base, i.e. tL = tR, we obtain ΓL

i (σ) = ΓR
i (σ)

from Fig. 6.3. Using the same values as in Fig. 6.2, i.e. µ = 0, t = 1, αz = 0.5 and
γBz = 0.6, we get

ΓL
1 (↑) = ΓR

1 (↑) = 0.49 , ΓL
1 (↓) = ΓR

1 (↓) = 0.01

ΓL
2 (↑) = ΓR

2 (↑) = 0.09 , ΓL
2 (↓) = ΓR

2 (↓) = 0.41

ΓL
3 (↑) = ΓR

3 (↑) = 0.41 , ΓL
3 (↓) = ΓR

3 (↓) = 0.09

ΓL
4 (↑) = ΓR

4 (↑) = 0.01 , ΓL
4 (↓) = ΓR

4 (↓) = 0.49 . (6.9)

Obviously, the symmetry λ1 = −λ4 and λ2 = −λ3 leads to a symmetry ΓL,R
1 (σ) =

ΓL,R
4 (−σ) and ΓL,R

2 (σ) = ΓL,R
3 (−σ). Furthermore, all energy levels are equally

coupled to the leads, if we take into account the sum of the respective (σ =↑)- and
(σ =↓)-hybridizations. Let us assume in a naive picture that the linear conductance
Gσσ′ via the energy level λi is proportional to the product ΓL

i (σ)ΓR
i (σ′), which can

actually be taken as a modified statement from Ref. [69]. We obtain for the two inner
levels (λ2 and λ3) ΓL

2,3(σ)ΓR
2,3(−σ) = 0.037 in comparison to ΓL

1,4(σ)ΓR
1,4(−σ) = 0.005

for the outer levels (λ1 and λ4). Thus, it is quite reasonable to expect the spin-flip
components Gσ−σ to be much more pronounced at VG = λ2,3 than at VG = λ1,4.
The same argument explains the alternation of G↑↑ and G↓↓ in contributing to the
four peaks at VG = λi.

Naturally, this view lacks from disregarding any coupling between the different
energy levels. However, it is shown in App. C that the inner levels are decoupled
from the outer levels. The coupling between λ1 and λ4 as well as between λ2 and λ3

might achieve reasonable values, but transport via different energy levels at a fixed
gate voltage can be omitted, as the level spacing is too large to allow for two energy
levels being close to the Fermi energy of the leads simultaneously.
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Figure 6.4: Total conductance and spin polarization of a double dot as a function
of the gate voltage VG for γBz = 0.6.
a) For αy = 0 and αz = 0.5 the spins are partially rotated from the z-direction
into the x-direction. We observe oscillations and a point symmetry with respect to
(VG, Pi) = (0, 0) of all polarization components, but the magnitude of Py can be
disregarded. Px and Pz reveal sizeable values, especially close to the conductance
peaks.
b) For αy = 0.5 and αz = 0, Px = Py = 0 vanish for all VG and we obtain perfect
spin polarization Pz = ±1 at the conductance peaks.

Spin polarization

We now analyze the spin-polarization of the linear current through the double
dot. The polarization vector P = (Px, Py, Pz) for the double dot is defined in
the same way as for the quantum wire, i.e. via the conductance components

G
(x,y,z)
σσ′ [see Eqs. (3.27), (3.28) and (3.29)]. We have observed the degeneracies

G↑↑(VG) = G↓↓(VG) and G↑↓(VG) = G↓↑(VG) in Fig. 6.1 for the case without a mag-
netic field and just SOI being present. Thus, one cannot expect a spin-polarized
current.

Fig. 6.4 a) shows the total conductance and the spin-polarization for the same
parameters as in Fig. 6.2 b), i.e. with a finite magnetic field γBz = 0.6. Due to the
finite SOI αz = 0.5, the spins are rotated partially out of the z-direction, which is
preferred due to the magnetic field Bz. Interestingly and in contrast to the situa-
tions studied in Sect. 3.4, the finite αz does not rotate the spin into the y-direction
but into the x-direction. The interplay of αz and Bz leads to an almost perfect de-

generacy G
(y)
↑↑ = G

(y)
↓↓ and G

(y)
↑↓ = G

(y)
↓↑ suppressing any sizeable spin polarization Py.

Although G
(x)
↑↑ = G

(x)
↓↓ holds for the same parameters, we observe a large difference

between G
(x)
↑↓ and G

(x)
↓↑ close to the conductance peaks which leads to the pronounced
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polarization Px. We find for the total polarization P =
√

P 2
x + P 2

y + P 2
z = 1 at the

conductance peaks, i.e. a direction exists in which perfect spin polarization can be
obtained.

In Fig. 6.4 b), we rotate the Rashba field into the y-direction, i.e. αy = 0.5 and
αz = 0, and obtain perfect spin polarization Pz = ±1 at the conductance peaks,
whereas Px = Py = 0 for all VG.

One should keep in mind that a sizeable spin polarization does not automatically
lead to a sizeable spin polarized current, especially in situations in which the total
conductance shows a pronounced peak structure. Thinking of spin transistors, the
product of spin polarization and total conductance is a more meaningful quantity
for applications. Although the spin polarization in Fig. 6.4 is sizeable in quite a
large neighborhood of the peaks, a gate voltage in just a very small interval around
the conductance peaks would lead to useful spin currents.

6.1.2 Coulomb interaction

We now include the Coulomb interaction in our model via

H1 = U1

N∑

j=1

∑

σ,σ′

c†j,σcj,σc
†
j,σ′cj,σ′(1 − δσ,σ′) (6.10)

for the local part U1 and

H2 = U2

N∑

j=1

∑

σ,σ′

c†j+1,σcj+1,σc
†
j,σ′cj,σ′ (6.11)

for the nearest-neighbor part U2.
As shown for quantum dots without SOI in Ref. [20] by comparison to results

obtained by NRG, the fRG method provides very good results, if one takes into
account the flow of the two-particle vertex. For quantum dots of up to N = 3 lattice
sites, it is numerically feasible to account for the fRG flow of the two-particle vertex
γΛ
2 according to Eq. (4.23) without any further parametrization, even for finite SOI

and magnetic field. Therefore, we will use this scheme in the following. Fig. 6.5
shows the conductance components Gσσ′ and occupation number n for the same
parameters as in Fig. 6.1, but finite Coulomb interaction U1 = 1 and U2 = 0.5. In
Fig. 6.5 a), one observes a characteristic broadening of the Lorentzian peaks which
have been observed in the non-interacting case [see Fig. 6.1]. This broadening is
due to the Kondo effect, which occurs for an odd number of electrons on the dot.
The magnetic moments (spins) of the lead electrons interact collectively with the
localized (”pinned”) spin on the dot forming an effective non-magnetic ground state,
which leads to an enhanced conductance [70]. Furthermore, the Kondo plateaus are
shifted to larger |VG| in comparison to the Lorentzian peaks in the non-interacting
case, which can be explained by the renormalization of the effective hopping. As can
be seen from Fig. 6.5 b), finite SOI does not destroy the Kondo resonances. This has

87



CHAPTER 6. QUANTUM DOTS OF CORRELATED ELECTRONS WITH SOI
AND MAGNETIC FIELD

0

1

2

G
 / 

(e
2 /h

)

G
total

G↑↑
G↑↓
G↓↑
G↓↓

-4 -2 0 2 4
V

G

0

1

2

α
z
=0

α
z
=0.5

a)

b)

-4 -2 0 2 4
V

G

0

1

2

3

4

n

α
z
=0

α
z
=0.5

α
z
=1

c)

Figure 6.5: Linear conductance and particle number of a double quantum dot with
the same parameters as in Fig. 6.1 but finite Coulomb interaction U1 = 1 and
U2 = 0.5.
a) The conductance peaks observed in the non-interacting case are broadened to
characteristic plateaus.
b) The plateaus are shifted towards larger |VG| due to SOI. The spin-flip components
Gσ−σ give a finite contribution to the total conductance.
c) The finite Coulomb interaction leads to the formation of plateaus for odd occu-
pation numbers n. These plateaus are driven to larger |VG|, if the effective hopping
via SOI parameters αz = 0, 0.5, 1 is increased.

already been pointed out in Refs. [38, 71] and has also been observed in experiments
[72]. Nevertheless, this is a quite astonishing result, as the spin is not a conserved
physical quantity on the dot in presence of SOI and, therefore, it is not clear how
spin-scattering as a collective many-body effect can take place on the dot in order
to reveal a Kondo resonance. However, as shown in App. A, the SOI does not lead
to finite spin-flip components of the local Green’s function which might explain the
”survival” of the Kondo effect in presence of SOI.

The ratio of spin-conserving and spin-flipping components is not altered due to
Coulomb interaction, but Eq. (6.2) still holds. This means that the conventional
and the SOI hopping are renormalized by the same factor.

Fig. 6.5 c) shows the effect of the SOI (αz = 0, 0.5, 1) on the particle number
for U1 = 1, U2 = 0.5. The formation of plateaus at odd occupation numbers is
not hampered by the SOI. The plateaus are just driven to larger |VG| due to the
increased effective hopping.

Kondo temperature

We now account for a finite magnetic field B = (0, 0, Bz). Fig. 6.6 a) shows the
conductance components of a system with the same parameters as in Fig. 6.5 b),
but γBz = 0.6. The Kondo effect is destroyed and each plateau has split up into two
well-separated conductance peaks. In comparison to Fig. 6.2 b) in which the same
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Figure 6.6: Influence of a magnetic field γBz on the conductance of a double dot.
a) Conductance components for parameters αz = 0.5, γBz = 0.6, U1 = 1 and
U2 = 0.5. The Kondo plateaus split up into two separated conductance peaks.
b) For small magnetic fields, one observes a continuously increasing dip in the plateau
region (here for U1 = 1, U2 = 0 and no SOI).

parameters were chosen except for the finite Coulomb interaction, one observes that
all peaks are shifted to larger |VG| due to the increased renormalized hopping. The
separation of the peaks at positive/negative VG also has increased by a factor of 1.7
indicating that the magnetic field also has been renormalized significantly due to
the Coulomb interaction. The peak position and the particular contribution of the
components to the total conductance can be understood in the same way as in the
non-interacting case [see Sect. 6.1.1], but with renormalized system parameters.

Fig. 6.6 b) shows that the Kondo effect is destroyed continuously with increasing
magnetic field. It seems as if γBz has to exceed a certain critical value in order to
drive the conductance peaks out of the plateau region.

The magnetic field γBz, which causes a dip to Gtotal = 1 e2/h, defines the char-
acteristic energy scale of our system and corresponds to the Kondo temperature TK .
It has been shown in Ref. [20] for a single quantum dot without SOI that this is a
suitable approach and yields the same behavior of TK as obtained by NRG (in the
NRG approach, TK is obtained from the width of the spectral funcion).

In the following, we determine TK as a function of U1, U2 and α (since we just
consider the total conductance, the ratio αy/αz has no influence). Fig. 6.7 shows the
Kondo temperature as a function of U1 for parameters U2 and α. The logarithmic
plot reveals an exponential behavior

TK = A exp(−CU1/Γ) (6.12)

with Γ = t2L+t2R. A and C are parameters which are independent of U1. The analogy
of the original Kondo model to the single impurity Anderson model (corresponding
to a single quantum dot without SOI in our setup) has been shown by Schrieffer and
Wolff (so-called Schrieffer-Wolff transformation) [73]. The Kondo problem has been
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Figure 6.7: Kondo temperature TK of a double dot as a function of U1 for different
U2 and α and t = 1, tL = tR = 0.2. One observes an exponential behavior TK ∼
exp(−CU1/Γ), C = const.

solved exactly by Bethe ansatz for the single impurity Anderson model yielding a
prefactor C = π/8 in first order O(U1) [70]. However, this result has to be modified
to C = 1/π within our fRG approximation. Thus, we obtain a theoretical value of
Cth = 0.32. Fitting the results in Fig. 6.7 yields C = 0.30 and thus a very good
correspondence to the theory.

The prefactor A in Eq. (6.12) and its dependence on the nearest-neighbor in-
teraction U2 is determined in Fig. 6.8. The data can be fitted by an exponential
law

A = A0 exp(−DU2/Γ) (6.13)

with A0 and D being independent of U2. We obtain D = 0.29 being only slightly
smaller than the constant C. The prefactor A0 in Eq. (6.1.2) reveals a quadratic
dependence on the SOI coupling at least for small α. With p(α2) being the polyno-
mial of second order fitting the prefactor A0 we can write the Kondo temperature
as

TK = p(α2) exp[−(CU1 +DU2)/Γ] . (6.14)

It follows that a larger (renormalized) magnetic field is neccessary to cause a con-
ductance dip to Gtotal = 1 e2/h within the Kondo plateau, if α and, consequently,
the effective hopping teff =

√
t2 + α2 is increased. Considering the non-interacting

case, the eigenvalues µ ± δ1,2 [see Eq. (6.7)] define the effective energy scale of the
system. As can be seen from Fig. 6.7, TK and, therefore, the (unrenormalized)
magnetic field is very small in the Kondo regime, i.e. γBz < 0.01. Using µ = 0 in
our case, the eigenvalues and, consequently, the energy scale can be approximated
by ǫs =

√
t2 + α2. Assuming that the effective magnetic field is given by the ratio
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Figure 6.8: Prefactor A in TK = A exp(−CU1Γ) as a function of U2 for different α.
The data reveal an exponential dependence on U2 and a quadratic dependence on
α.

γBz/ǫs, this can be expanded to

γBz

ǫs
=

γBz√
t2 + α2

=
γBz

t

[

1 − α2

t2
+ O

(
α4

t4

)]

. (6.15)

For the parameters t and α chosen here, we can truncate this series after the
quadratic term, which confirms our results obtained in Fig. 6.8. Going back to
the case with Coulomb interaction, one could simply try to use this explanation
with the Coulomb interaction being accounted for by taking the renormalized sys-
tem parameters at the end of the fRG flow. However, the Kondo effect cannot be
explained in such a one-particle picture. Therefore, the explanation above should
not be taken too literally, but more as an rough estimation.

As far as we know, there are neither analytical nor numerical solutions of the
Kondo problem of a double dot problem with finite U1, U2 and SOI. Nevertheless,
the exponential dependence of the Kondo temperature on U2 and the quadratic
dependence of the prefactor D on the SOI coupling α obtained in our approach
both seem reasonable.

Spin polarization

Investigating the influence of the Coulomb interaction on the spin polarization, we
concentrate on two different situations. Fig. 6.9 a) shows the total conductance
Gtotal and spin polarization Pi as a function of the gate voltage VG for a double
dot with Coulomb interaction U1 = 1 and U2 = 0.5 and SOI αy = 0 and αz = 0.5.
The magnetic field γBz = 0.004 is chosen such that the system is just driven out of
the Kondo regime. Both Kondo plateaus have been transformed into two separate
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Figure 6.9: Gtotal and Pi of a double dot as a function of the gate voltage VG for
Coulomb interaction U1 = 1, U2 = 0.5 and SOI αz = 0.5.
a) For a small magnetic field, γBz = 0.004, the spin polarization is negligible.
b) For larger fields, γBz = 0.6, we almost obtain the same results as in the non-
interacting case [see Fig. 6.4 a) ].

peaks, respectively. Since the peak separation is still quite small, the corresponding
energy levels are close to each other. Therefore, the total conductance is not carried
by a single conductance component as it is the case for larger splitting of the energy
levels [see Sect. 6.1.1]. Instead, further analysis reveals G↑↑/G↓↓ ∼ 2 for the left peak
and accordingly G↑↑/G↓↓ ∼ 0.5 for the right peak within the double peak region for
negative and positive VG, respectively. Together with the degeneracy G↑↓ = G↓↑,
this leads to a fairly small polarization. The polarization would become even smaller
(and finally zero) by further decreasing the magnetic field, i.e. allowing the system
to reenter the Kondo regime.

The case of large magnetic fields, i.e. γBz = 0.6, is studied in Fig. 6.9 b) and
shows much larger spin polarization. Except for the finite Coulomb interaction, the
parameters used here are the same as in Fig. 6.4 a). Apart from the altered peak
position due to the renormalization of the system parameters, one obtains the same
results as in the non-interacting case.

Thus, the Coulomb interaction does not seem to reveal any physical effects that
could be helpful in this setup to increase the spin polarization or to create spin-
polarized currents.

In the following, we will therefore study a modified setup with the double dot
discussed in this section being positioned in one arm of an Aharonov-Bohm inter-
ferometer.
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6.2 Aharonov-Bohm interferometer
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�
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Figure 6.10: Geometry of an Aharonov-Bohm interferometer with a double quantum
dot with SOI, magnetic field and Coulomb interaction in the lower arm.

The setup under consideration in this section is shown in Fig. 6.10. The interact-
ing double quantum dot with magnetic field B = (0, 0, Bz), conventional hopping t
and SOI hopping αy and αz is positioned in the lower arm of an Aharonov-Bohm
interferometer (AB interferometer) and connected to the leads by hopping ampli-
tudes tL and tR as before. The direct hopping from the left lead to the right lead via
the upper arm of the interferometer is described by the complex 2 × 2-matrix TAB.
We allow for spin-conserving hopping tSC and spin-flip hopping tSF multiplied by
spin-dependent phases exp(±iφSC) and exp(iφSF), respectively. Thus, TAB is given
by

TAB =

(
−tSC exp(iφSC) tSF exp(iφSF)
−tSF exp(iφSF) −tSC exp(−iφSC)

)

. (6.16)

The hopping from the right lead to the left lead via the upper arm is given by T †
AB.

One can think of φSC and φSF being tuned by a magnetic flux piercing the Aharonov-
Bohm setup in combination with SOI hopping in the upper arm. Whereas the
magnetic flux leads to an overall spin-independent phase for all hopping components,
it has been shown by Sun et al. in Ref. [74] for a slightly different setup with
ferromagnetic leads that the SOI can lead to a spin-dependent phase. Considering
only conventional hopping tAB as well as SOI hopping αy;AB and αz;AB without

a magnetic flux leads to tSF = αz;AB, φSF = 0 and tSC =
√

t2AB + α2
y;AB, φSC =

arccos(t/tSC) [and equivalently, φSC = − arcsin(αy;AB/tSC)]. Although it might be
difficult to tune φSC and φSF independently in experiments, we will consider the
most general case and treat them as independent parameters in the following.
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6.2.1 Non-interacting case

Before we start analyzing the influence of Coulomb interaction induced correlation
effects on the transport properties of the AB interferometer, we first focus on the
non-interacting case to achieve an understanding of the interplay of the different
system parameters.

No SOI and no magnetic field in the lower arm

In a first step, we concentrate on the simplest possibility with no SOI and no mag-
netic field being present in the lower arm of the AB interferometer.

Fig. 6.11 shows the total conductance Gtotal of the non-interacing Aharonov-
Bohm interferometer as a function of the gate voltage VG. In the lower arm, all
parameters besides the hoppings t = 1 and tL = tR = 0.2 vanish. The small hy-
bridization ΓL = ΓR = 0.04 ensures that the double dot in the lower is weakly
coupled to the leads such that its different energy levels are well separated. In
Fig. 6.11 a), the spin-conserving hopping tSC is varied for vanishing phase and van-
ishing spin-flip hopping, i.e. φSC = 0 and tSF = 0. For tSC = 0, electrons can cross
the AB interferometer only via the lower arm and one observes the same results as
for the serial quantum dot, i.e. Lorentzian peaks at VG = ±1.

For finite tSC, a complete suppression of Gtotal is observed for a certain VG. This
phenomenon is known as the Fano effect and has been explained by U. Fano in 1961
(see Ref. [75]) as an interference effect of a discrete state with a continuum of states.
Already in 1934, indication of this effect in a somewhat different system was ob-
served experimentally by Whiddington and Priestley as doubly excited autoionizing
resonances in the excitation spectrum of helium [76].

This Fano suppression of the conductance can be lifted by a finite phase φSC as
can be seen from Fig. 6.11 b). For φSC = π/2, the conductance curve is perfectly
symmetric w.r.t. VG = 1, i.e. more generally w.r.t. to the eigenenergy of the
(separated) dot in the lower arm. One observes a 2π-periodicity of the Gtotal with
respect to φSC as expected from the structure of TAB.

Fig. 6.11 c) shows Gtotal for tSF being changed at φSF = 0 and tSC = 0. Interest-
ingly, no conductance suppression is observed for finite tSF, but rather an emerging
Lorentzian peak at VG = 1 (the double dot’s energy eigenvalue) from a finite ground
level of the conductance at VG = 0 which increases with tSF. At tSF = 1, one ob-
serves a perfect conductance, Gtotal = 2 e2/h, independent of VG. This would also
be expected, if there was not for a lower arm in the AB interferometer, but just a
homogeneous one-dimensional wire without impurities. However, in our situation,
we observe that the double dot is occupied by one electron at VG = 1 establish-
ing transport through the lower arm. Thus, the interference of the two transport
channels is perfectly constructive, but can be destroyed by a finite phase φSF.

Fig. 6.11 d) shows the influence of φSF on the conductance for tSF = 0.5. One
observes a π-periodicity and pronounced minima close to the conductance peak for
φSF = π/2. Note, however, that these minima only occur, if Gtotal(VG = 0) ≥ 1.
For Gtotal(VG = 0) < 1, simply the height of the conductance peak is decreased.
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Figure 6.11: Total conductance Gtotal of a non-interacting Aharonov-Bohm interfer-
ometer as a function of gate voltage VG. Since the graphs are symmetric w.r.t. the
axis VG = 0, only VG ≥ 0 is shown. The parameters of the lower arm are t = 1 and
tL = tR = 0.2. All other parameters are zero.
a) The spin-conserving hopping in the upper arm is varied, tSC = 0, 0.2, 0.5, 1
(φSC = 0), for vanishing spin-flip hopping tSF. The inset shows strongly pronounced
Fano antiresonances.
b) For tSC = 0.5, the phase φSC = 0, π/4, π/2, 3π/4, π is tuned. One observes a
2π-periodicity.
c) The spin-flip hopping in the upper arm is varied, tSF = 0, 0.2, 0.5, 1 (φSF = 0),
for vanishing spin-conserving hopping tSC. The inset shows that there is no Fano
effect.
d) For tSF = 0.5, the phase φSF = 0, π/4, π/2, 3π/4, π is tuned. One observes a
π-periodicity.

SOI in the lower arm

We now allow for finite SOI parameters αy and αz in the lower arm of the AB in-
terferometer and study the interplay of αy, αz and tSC, tSF. Figs. 6.12 a) and c)
exhibit for tSC = 0.5 (φSC = 0) and tSF = 0 that the Fano dip in the total conduc-
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Figure 6.12: Influence of the SOI in the lower arm of an AB interferometer on the
total conductance Gtotal as a function of gate voltage VG.
a) For tSC = 0.5 (φSC = 0) and αy = tSF = 0, we diversify αz. The Fano dip at
αz = 0 is diminished with increasing αz.
b) For tSF = 0.5 (φSF = 0) and αy = tSC = 0, a Fano dip evolves for finite αz which
is the more pronounced the larger αz.
c) For tSC = 0.5 (φSC = 0) and αz = tSF = 0, a variation of αy leads to exactly the
same results as obtained in a) by varying αz.
d) For tSF = 0.5 (φSF = 0) and αz = tSC = 0, a change of αy just leads to a shift of

the conductance peak to
√

t2 + α2
y.

tance Gtotal is lifted, if either αz or αy is finite. Further investigation reveals that
the conductance curves in this situation only depend on the effective SOI hopping

α =
√

α2
y + α2

z and not on the ratio αy/αz . Since the situation with finite spin-

conserving hopping tSC, but vanishing spin-flip hopping tSF in the upper arm could
probably be realized in experiments, one can expect this effect to be measurable.

Setting the upper arm hopping parameters to tSF = 0.5 (φSF = 0) and tSC = 0,
the Lorentzian peak which is present in the case without SOI is transformed into
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a Fano-like resonance for finite αz [see Fig. 6.12 b)]. The Fano dip is the more
pronounced the larger αz. Indeed, for very large αz ≥ 3, the conductance minimum
approaches zero, but this situation will probably not be met in experiments [see
Chapter 7]. Varying αy at αz = 0 merely leads to a shift of the conductance curve.

The conductance peak is at VG =
√

t2 + α2
y, but the shape of the curve remains

unchanged [see Fig. 6.12 d)].

A Fano-like suppression of the conductance has also been observed by Sánchez
et al. in Ref. [77] in linear ballistic quantum wires with local Rashba SOI. They
considered several SOI subbands, thus establishing a discrete bound state. This
state was coupled to the conduction states via Rashba intersubband mixing giving
rise to similar interference effects as in our setup.

It seems quite astonishing that we do not find any spin polarization in all sit-
uations discussed so far, even if we tune the phases tSC and tSF. However, as we
have already seen for the serial dot, the SOI alone cannot lift the degeneracy of the
spin-conserving and spin-flipping conductance components. Therefore, we allow for
a finite magnetic field in the following.

SOI and magnetic field in the lower arm

As the tuning of the spin polarization is still one of our main goals, we apply an
external magnetic field B = (0, 0, Bz) to the double dot in the lower arm of the
AB interferometer. Although this might lead to a magnetic flux through the setup
in reality and would therefore influence the phases tSC and tSF, we consider them
to be independent variables in the following, since these parameters could also be
realized by SOI in the upper arm as discussed earlier. Fig. 6.13 a) shows how the
total conductance Gtotal of the AB interferometer is influenced by a finite magnetic
field Bz for tSC = 0.5 (φSC = 0) and αy = αz = tSF = 0. The typical Fano
structure is doubled in a way that the two evolving Fano structures are separated
by ∆VG = 2γBz. Whereas the amplitude of the Fano structure without magnetic
field is ∆Gtotal = 2 e2/h, i.e. allowing for perfect and totally suppressed conductance,
the amplitude for finite magnetic field is in good approximation ∆Gtotal = 1 e2/h.
Setting tSF = 0.5 (φSF = 0) and αy = αz = tSC = 0, one observes that the Lorentzian
peak is transformed into two Lorentzian dips for finite magnetic field. The two dips
are symmetric w.r.t. VG = 1 and are separated by ∆VG = 2γBz [see Fig. 6.13 b)].

Tuning the SOI parameter αz for fixed tSC = 0.5 (φSC = 0) and γBz = 0.2 leads
to a shift of the double Fano structure towards larger VG [see Fig. 6.13 c)]. The
symmetry point is at VG =

√

t2 + α2
z and the distance between two corresponding

minima (maxima) is reduced to 2γBz/
√

t2 + α2
z. Similarly to the case without any

magnetic field [see Fig. 6.12 a) and c)], the total conductance depends only on

α =
√

α2
y + α2

z and not on the ratio αy/αz as long as tSF = 0.

As can be seen from Fig. 6.13 d), increasing αz for fixed tSC = 0.5 (φSC = 0)
and γBz = 0.2 leads to a formation of a Fano structure, which has already been
observed for the case with vanishing magnetic field [see Fig. 6.12 b)]. Since there is
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Figure 6.13: Influence of a magnetic field Bz in the lower arm of an AB interferometer
on the total conductance Gtotal as a function of gate voltage VG in presence of SOI
αz (αy = 0). The case with finite αy is discussed in the text.
a) For tSC = 0.5 (φSC = 0) and αz = tSF = 0, two Fano-like structures with smaller
amplitude occur for finite magnetic field, which are separated by 2γBz .
b) For tSF = 0.5 (φSC = 0) and αz = tSC = 0, the Lorentzian peak is transformed
into two Lorentzian dips for finite magnetic field. The dips are separated by 2γBz

and the dip minimum is at Gtotal ∼ 1 e2/h, independent of γBz.
c) For tSC = 0.5 (φSC = 0), γBz = 0.2 and tSF = 0, increasing αz leads to a shift of
the Fano double structure to larger VG. The symmetry point is at VG =

√

t2 + α2
z.

d) For tSF = 0.5 (φSC = 0), γBz = 0.2 and tSC = 0, two Fano-like structures evolve
for increasing αz. The two minima are symmetric w.r.t. VG =

√

t2 + α2
z.

a finite magnetic field present, two structures are observed. However, the sum of the
amplitudes of the left and right structure is exactly the same as the amplitude of the
single structure in the case without magnetic field for corresponding αz. Varying αy

in this situation only leads to a shift of the (α = 0)-curve. The analog symmetry

point is at VG =
√

t2 + α2
y. This influence of αy for tSF 6= 0 and tSC = 0 has also

been observed in the case without magnetic field [see Fig. 6.12 d) for comparison].
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Figure 6.14: Effect of SOI on the spin polarization P of a current flowing across
the AB interferometer. The corresponding total conductance Gtotal is also shown as
reference.
a) For tSC = 0.5 (φSC = 0) and tSF = 0, one observes two dips in the polarization
with P → 0 for αz = 0 and two maxima with P = 1. The dips vanish for finite
αz and the positions of the polarization maxima coincide with the positions of the
minima of the corresponding conductance curve.
b) For tSF = 0.5 (φSF = 0) and tSC = 0, the polarization reveals a double peak
structure, both for αz = 0 and αz = 0.6. Finite SOI just leads to a shift of this
structure towards larger |VG|.

Spin polarization

Fig. 6.14 shows the influence of SOI on the polarization P =
√

P 2
x + P 2

y + P 2
z of

a current flowing across the AB interferometer. The individual components Pi are
not within our scope at the moment. P is plotted over the gate voltage VG and
the corresponding total conductance Gtotal is also shown as a reference, since the
application of spin polarization in terms of spintronic devices (spin transistor etc.) is
favorable in regimes in which the total conductance is sizeable. As can be seen from
Fig. 6.14 a) for the case with tSC = 0.5 (φSC = 0) and tSF = 0, the spin polarization
reveals maxima with P = 1 at the same position as the conductance minima for
αz = 0 as well as for αz = 0.6. The shift of the conductance curve for finite SOI has
been discussed earlier, thus it is not remarkable that the polarization also shows this
trend. The interesing feature is that the polarization dips with P → 0 being present
at the conductance maxima for αz = 0 do not exist for finite αz. This cannot be
explained by the increased effective hopping in the lower arm, but is more likely due
to the interplay of the different phases of αz, t and tSC. Changing the phase φSC for
αz = 0 namely does not lead to a lift of the polarization dips.

For only spin-flip hopping being present in the upper arm, i.e. tSF = 0.5 (φSF = 0)
and tSC = 0 [see Fig. 6.14 b)], the spin polarization curve is just horizontally shifted
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Figure 6.15: Influence of the on-site Coulomb interaction U1 on Gtotal as a function
of VG.
a) For U1 = 0, increasing tSC leads to a larger asymptotic value of Gtotal. The
position of the Fano maximum/minimum only shows a sparse dependence on tSC.
b) For U1 = 1, the asymptotic values of Gtotal in good approximation remains the
same compared to a), but in the Kondo region (for tSC) a combined structure of
Kondo and Fano effect evolves for tSC > 0.

by ∆VG =
√

t2 + α2
z − t for αz = 0.6 (taking the (αz = 0)-curve as reference),

but the shape remains exactly the same. Again, the position of the polarization
maxima corresponds to the position of the conductance minima for both αz = 0 and
αz = 0.6, but one does not observe any polarization dips.

We have only considered the total polarization so far. For real spintronic applica-
tions, one would naturally have to account for the direction of the spin polarization
as well. Furthermore, tuning the phases φSC and φSF while varying the ratio tSC/tSF

might also lead to some interesting interference phenomena which should be reflected
in the conductance and the spin polarization.

6.2.2 Coulomb interaction

We now include the Coulomb interaction via an on-site interaction U1 and a nearest-
neighbor interaction U2 [see Fig. 6.10]. The total conductance was shown in Sect. 6.1.2
to exhibit Kondo plateaus in presence of Coulomb interaction. We now investigate
how the Kondo effect interacts with the Fano effect in the present setup.

Fig. 6.15 b) shows the total conductance as a function of the gate voltage for
constant U1 = 1 (U2 = 0). The hopping parameters in the lower arm are t = 1
and tL = tR = 0.2 and we tune tSC in the upper arm. The Kondo plateau which
is observed for tSC = 0 is destroyed for tSC > 0, but the gate voltage interval
between the conductance minimum and the conductance maximum is of the width
of the Kondo plateau meaning that the Kondo temperature still is the important
energy scale of our system. The conductance within this interval is decreased with
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Figure 6.16: Influence of the SOI on the polarization and total conductance for finite
Coulomb interaction U1 = 1 and U2 = 0.5.
a) For tSC = 0.5 (φSC = 0) and tSF = 0, the polarization P vanishes at the position
of the conductance peaks for αz = 0. These dips disappear for finite αz = 0.6. In
comparision to the non-interacting case [see Fig. 6.14 a)], the separation of the two
polarization maxima is enlarged due to the increased renormalized magnetic field.
b) For tSF = 0.5 (φSF = 0) and tSC = 0, P and Gtotal qualitatively reveal the same
behavior as in the non-interacting case, both for αz = 0 and αz = 0.6. Again, the
finite Coulomb interaction causes an enlargement of the polarization peak separa-
tion.

increasing tSC. The wave-like shape of the conductance curve for tSC = 0.6 seems
to be a numerical artifact at first sight. However, the vertex functions within the
fRG flow do not become too large, which is an indication for a good numerical
quality of the results. As the wave-structure reveals two inflection points, it might
also come from the fact that a double dot is included in the lower arm of the AB
interferometer. Anyway, the qualitative observation of the interplay of the Kondo
and the Fano effect is not affected by this.

For VG outside the Kondo region, Gtotal tends towards the non-interacting con-
ductance [see Fig. 6.15 a)]. This means that transport is mainly conducted via the
upper arm in this regime and explains the strong dependence of the asymptotic
conductance on tSC.

Fig. 6.16 a) shows the total conductance and spin polarization for finite Coulomb
interaction U1 = 1 and U2 = 0.5 and tSC = 0.5 (φSC = 0) and tSF = 0. Again,
the hopping parameters of the lower arm are t = 1 and tL = tR = 0.2. The
two characteristic dips with vanishing polarization for αz = 0 are lifted for finite
SOI αz = 0.6. This effect has already been observed in the case without Coulomb
interaction [see Fig. 6.14 a)]. Comparing Fig. 6.16 b), where the same parameters
have been used as in a), except for tSF = 0.5 (φSF = 0) and tSC = 0, with the non-
interacting equivalent [see Fig. 6.14 b)], also does not reveal any new features which
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could be traced back to collective behavior induced by the Coulomb interaction.

Overall, Fig. 6.16 indicates that there are only minor quantitativ changes due
to the Coulomb interaction in the chosen parameter regime. The separation of
the polarization maxima is increased due to the increased Zeeman splitting caused
by the renormalized magnetic field. For gate voltages outside this characteristic
structure, the values of total conductance and spin polarization correspond in good
approximation to those obtained in the non-interacing case.

6.3 Summary

In this chapter, we have first studied the spin-dependent transport through a serial
quantum dot described by a tight-binding model with two lattice sites connected
to two semi-infinite Fermi liquid leads. As the SOI is reflected in spin-flip hopping
and complex spin-conserving hopping, a double dot is the smallest system which can
account for this effect.

The linear conductance as a function of an applied gate voltage in the non-
interacting case revealed Lorentzian peaks the width of which is given by the hy-
bridization Γ = t2L + t2R of the quantum dot and the semi-infinite leads and which
occurred whenever the dot’s occupation number was changed. The peak position
was predetermined by the energy eigenvalues of the decoupled quantum dot. In
the lattice-spin base, the double dot’s eigenvalue problem could be solved even in
presence of SOI αy and αz and an external magnetic field Bz. It was shown that the
SOI does not lift the spin degeneracy of the eigenvalues, but only causes a shift of

the energy levels from ±t towards ±
√

α2
y + α2

z + t2, i.e. the SOI could be absorbed

into an effective hopping for vanishing magnetic field.

For finite magnetic field, however, the spin degeneracy of the dot’s eigenvalues
was shown to be lifted due to the Zeeman splitting and the ratio αy/αz gained
importance, especially with respect to the direction of the spin polarization which
revealed absolute values of P = 1, i.e. perfect polarization, at the conductance
peaks as long as the peaks were well-separated. Spin polarization could not be
achieved just by tuning the SOI parameters, but a finite magnetic proved itself to
be neccessary.

The Coulomb interaction was modeled by an on-site contribution U1 and a
nearest-neighbor contribution U2 and led to a broadening of the conductance peaks,
the Kondo effect. The Kondo effect arose to be inured to the SOI, as the time-
inversion symmetry is not affected by the SOI, but could be destroyed by an exter-
nal magnetic field which caused a conductance dip within the plateau region in the
small field regime. For larger magnetic fields, the dip was broadened and the two
resulting conductance maxima were separated by 2γBz. We identified the strength
of the magnetic field which caused a dip down to Gtotal = 1 e2/h with the Kondo
temperature TK , i.e. the energy scale relevant for the low-energy physics of our sys-
tem. TK was determined as a function of all the system parameters and showed an
exponential decreasing dependence on U1 and U2 (with slightly different prefactors)
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and a quadratic dependence on α.
In the second part of this chapter, we studied the transport properties of an

Aharonov-Bohm interferometer with the interacting double dot in one arm coupled
to the reservoirs by tL and tR and a spin-dependent hopping channel in the other
arm. The phase of the spin-dependent hopping could be thought of being tuned by
a magnetic flux piercing the AB ring or otherwise being altered by allowing for SOI
induced spin-flip and complex spin-conserving hopping parameters.

We observed Fano antiresonances leading to a vanishing conductance at a certain
gate voltage. This dip in the conductance was scaled down with increasing SOI
strength such that even for small SOI parameters a finite conductance was obtained
at the position of the Fano antiresonance. On the other hand, a Fano-like structure
could be generated from a Lorentzian structure by allowing for spin-flip hopping in
the upper arm and a finite αz in the lower arm. This was not observed for finite αy

in the lower arm indicating that αy and αz play entirely different roles in this setup.
However, assuming the upper channel being governed by spin-conserving hopping
alone, αy and αz led to the same results.

A finite magnetic field in the lower arm led to a split of the Fano structure and
made a significant spin polarization possible. The maxima of the spin polarization
conincided with the Fano dips of the total conductance independent of the SOI.
For vanishing SOI, however, dips occured in the polarization, P = 0, if transport
via the upper arm was only possible by spin-conserving hopping. This feature was
abandoned by a finite SOI.

Allowing for finite Coulomb interaction in the lower arm, the Fano structure was
broadened to an interval of the Kondo plateau width. For a sizeable magnetic field,
however, the total conductance and spin polarization revealed the same behavior as
in the non-interacting case. We only observed minor quantitative modifications due
to the renormalization of the system parameters.

In the final chapter of this thesis, we will give a short overview of the experimental
situation regarding quantum dots and quantum wires. Based on results of ab initio
calculations and experimental measurements, we will give a rough estimation of
the magnitude of the parameters used in our models and discuss the experimental
feasibility of building nanoscale devices which allow for spin polarization.
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Chapter 7

Towards experimental
realization

The experimental realization of quantum dots and quantum wires has gained much
attention in the past decade. Filed growth techniques of semiconductor heterojunc-
tions as well as the implementation of metallic electrodes on top of these junctions
allow for confining electrons to a very small spatial area which in good approximation
can be seen as a zero- or one-dimensional electron system.

7.1 Realization of quantum dots

Quantum dots are usually implemented by confining electrons in a 2DEG with an
array of metallic gate electrodes. GaAs/AlGaAs heterojunctions are often used to
establish the 2DEG with a thin AlGaAs layer of ∼ 100 nm being grown on the GaAs
substrate using molecular beam epitaxy. The electrodes are mounted on top of the
AlGaAs layer using e.g. photolithography.

Fig. 7.1 shows a scanning electron microscope (SEM) picture of such a GaAs
double quantum dot. The metallic gates L and R define the double dot in the
2DEG about 100 nm below the surface by depletion of this area, ideally allowing for
single electron transport. The tunnel barrier between the left dot and the right dot
can be tuned via the upper electrode in the middle. Applying a gate voltage to the
lower three electrodes changes the dot’s energy. (This gate voltage is exactly the
parameter we used in Chapter 6 to modify the double dot’s transport properties.)
The source and drain contacts are not shown here. Quantum point contacts (QPC)
on the left and right side measure the conductances gls and grs which reflect the
average occupation of the left/right dot. This setup has been used in Ref. [78] to
study the triplet-singlet spin relaxation via the nuclei of the host atoms in presence
of a magnetic field. It has also been shown in Ref. [79] that coherent manipulation
of coupled electron spins can be achieved with this setup. The spin dephasing time
usually limited to ∼ 10 ns by hyperfine interactions with the GaAs host nuclei could
thereby be extended to a coherence time larger than 1µs for a two-electron spin state.

104



7.1. REALIZATION OF QUANTUM DOTS

Thus, one can think of these double dots being a first attempt towards realization
of a spin qubit.

The Kondo effect has been observed for quantum dots in GaAs [68] as well as in
InAs [72], both being materials which reveal a strong SOI. However, although this
indicates that the Kondo effect is not destroyed by the SOI, its quantitative effect
on the Kondo scale TK has not yet been investigated experimentally. Therefore, it is
important to achieve control over the SOI strength by external electric fields. These
fields can be implemented easily by additional gate electrodes, but the parameter
range in which the SOI can be tuned without any unintentional side effects might
be small.

The possibility of non-local spin control has been reported in Ref. [80] for a system
consisting of a double quantum dot with the left dot and the right dot being coupled
by an open conducting region. It was shown that Kondo resonances in one dot could
be suppressed by changing the electron number and the coupling of the other dot.
However, this effect could not be observed within our framework.

Figure 7.1: SEM picture of a GaAs
double quantum dot in a 2DEG de-
fined between two metallic gates L
and R. The tunnel barrier between
the left and the right dot is tuned by
a gate voltage applied to the upper
electrode in the middle. The three
lower electrodes are used to change
the dot’s energy. QPCs on the left
and right measure the conductances
gls and grs which reflect the average
occupation of each dot. Reprinted
by permission from Macmillan Pub-
lishers Ltd: Nature 435, 925, copy-
right 2005.

Figure 7.2: SEM picture of an
Aharonov-Bohm ring in a 2DEG
formed at a GaAs/AlGaAs hetero-
junction. The side gates M1,M2,M3

and M4 together with an island gate
P define the AB ring. The source
and drain contacts are shown. An
additional quantum dot with its
properties being controlled by the
voltages Vg and Vd and a QPC de-
tector are placed to detect charges
trapped inside the upper interfer-
ometer arm. Reprinted by per-
mission from Macmillan Publishers
Ltd: Nature 4, 205, copyright 2008.
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A more subtle setup is depicted in Fig. 7.2. The SEM picture shows an Aharonov-
Bohm interferometer fabricated in the 2DEG formed at a GaAs/AlGaAs heterojunc-
tion. The AB ring is defined by the gates M1,M2,M3, and M4 together with an island
gate P. The lower arm can be pinched off by applying a large negative voltage to
M1 and M2, thus allowing for a separate study of the transport properties of the
quantum dot in the upper arm. The dot’s occupation number is determined by
measuring the conductance at the QPC detector. The tunnel barrier to the higher-
dimensional environment (the leads in our model) is tuned by the gates Q1 and
Q2. This setup has been used in Ref. [81] to study Aharonov-Bohm oscillations and
quantum interference.

7.2 Realization of quantum wires

Basically, three methods exist to experimentally realize quantum wires. The first is
similar to the method described in the previous section. Two parallel gate electrodes
on top of a semiconductor heterojunction can be used to confine the electrons in
the 2DEG in a second direction leaving the possibility of electronic motion in one
direction only. Experimentally, this might be the most difficult realization.

Another possibility is to use the cleaved-edge overgrowth technique [82, 83]. Using
this method, one cleaves a sample with a semiconductor heterojunction orthogonal
to the junction twice and overgrows the cleavage planes with single quantum wells
in order to confine the electrons to one dimension.

However, nowadays most attention is spent on carbon nanotubes as realization
of quantum wires. They can be deposited by e.g. spin-coating on a semiconductor
substrate and besides their outstanding mechanical properties like tensile strength
and elastic modulus they also reveal excellent electronic properties. Coiled up from
a flat sheet of graphene, the nanotube’s conductance behavior strongly depends on
the chiral vector, i.e. the coil direction, and can show semiconducting as well as
metallic behavior.

Fig. 7.3 shows an atomic force microscope (AFM) picture of a single-wall carbon
nanotube with Pt electrodes on top of a Si/SiO2 substrate as used in Ref. [45]. The
electrode in the upper left corner is used to change the electrostatic potential of the
nanotube via an applied gate voltage and a bias voltage is applied between the other
two electrodes.

It has been pointed out in Ref. [84] that single-wall carbon nanotubes can be
spin-polarized in low magnetic fields. Furthermore, a change of the electronic spec-
trum as well as induced spin-flips by changing the applied gate voltage have been
reported giving rise to the assumption that electron-electron interactions play an im-
portant role. Recently, a sizeable spin-orbit interaction has been observed in carbon
nanotubes by excited-state spectroscopy [22].

These observations make carbon nanotubes ideal candidates for experimental se-
tups in which the spin-polarization effects described in this thesis could be measured.
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Figure 7.3: AFM picture of a carbon nanotube on top of a Si/SiO2 substrate with
Pt electrodes. The electrode in the upper left corner is used to change the elec-
trostatic potential of the nanotube via an applied gate voltage. A bias voltage is
applied between the other two electrodes. Reprinted by permission from Macmillan
Publishers Ltd: Nature 386, 474, copyright 1997.

7.3 The system parameters

In general, lattice models are believed to be superior to continuum models in terms
of adequate modeling microscopic solid state materials, especially in low dimensions.
We therefore estimate the magnitude of the parameters used in our model in order
to show the experimental feasibility.

A common guess for the conventional hopping matrix element is t ∼ 1 eV [85].
Unfortunately, in the literature one finds huge deviations of the values for the
Coulomb interaction matrix elements U1 (local) and U2 (nearest-neighbor), depend-
ing on the numerical method and asumptions made to the underlying physics, e.g.
material under consideration and screening of the electron charge. Without screen-
ing effects, U1 ∼ 20 − 25 eV and U2 ∼ 5 eV have been obtained for 3d transition
metals using Wannier functions in a spherical-harmonics expansion [86]. It was
pointed out in Ref. [86] that constrained local density approximation calculations,
which include some screening effects, yield values of the same order for U1 and U2.
However, U1 = 2 − 4 eV has also been reported for the same group of materials us-
ing self-consistent Hartree-Fock approximation [87]. For GaAs, which is a material
much more common for quantum wires than a 3d metal, U1 = 0.56 eV has been
obtained by density functional theory [88]. Thus, we believe that the values for U1

and U2 chosen in this thesis should at least roughly give a good estimate.

The strength of the Rashba spin-orbit field is believed to be in the range of
0.5−4×10−11 eVm for InAs with theoretical and experimental values corresponding
quite well [89]. This would lead to a spin-orbit coupling parameter α ∼ 0.1 eV
for our lattice model, assuming a lattice spacing of several angstrom. The values
reported in Ref. [89] refer to the bulk of InAs and not a heterostructure interface,
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which is necessary to obtain a well defined quantum wire. One can assume that the
electric field is enlarged at such an interface leading to a somewhat larger spin-orbit
coupling. Moreover, it has been shown experimentally that the SOI strength in
semiconductor heterostructures can be tuned by applying a gate voltage [90, 91, 92].
In our calculations, we chose systems consisting of N ∼ 100 − 5000 lattice sites.
This corresponds to an overall length of 50 − 2500 nm for a lattice spacing of half a
nanometer, which should be a realistic guess and also feasible in experiments.

Thus, all system parameters assumed in this thesis should at least roughly be
achievable in experimental setups. Furthermore, we believe that attaching a 1D
quantum wire to higher-dimensional leads which can be regarded as Fermi liquids is
a suitable approach to model the experimental situation.

108



Chapter 8

Conclusions and outlook

In this thesis, we investigated the influence of the (Rashba) spin-orbit interaction
(SOI) on the transport properties of correlated electrons in quantum wires and
quantum dots and analyzed in which parameter regimes spin polarization can be
obtained.

In the first part, we neglected the Coulomb interaction and started with the
derivation of the SOI Hamiltonian in the continuum form as a relativistic effect fol-
lowing directly from the Dirac equation in second order O(v2/c2). We then confined
the system to one dimension showing that the SOI plays a role, whenever the elec-
trons are confined by an external scalar potential with large gradients. For a strictly
one-dimensional confinement, the scalar potential had to be chosen in a way that two
SOI parameters αy and αz emerged (for transport in x-direction). We also allowed
for a magnetic field in arbitrary direction being represented by the Zeeman Hamil-
tonian and solved the corresponding eigenvalue problem. The interplay of the SOI
leading to a splitting of the quadratic energy dispersion ǫ(s)(k) in k-direction (with
s = ± labeling the different dispersion branches) with the magnetic field inducing a
Zeeman gap was discussed.

Aiming for control over the spin polarization in terms of spin expectation val-
ues, we expanded the setup originally proposed by Strěda & Sěba in Ref. [26] and
addressed the scattering problem at a potential step and a potential barrier for the
special case of the magnetic field being parallel to the quantum wire in presence
of the two SOI parameters αy and αz. A sizeable spin polarization was shown to
be feasible and controllable by tuning the energy of the incoming electrons within
a suitable parameter regime for energies close to the gap of the energy dispersion.
The SOI was shown to play a crucial role regarding the size and the direction of
the spin polarization. The ratio of the SOI parameters was shown to determine the
direction of the polarization orthogonal to the wire via |αy/αz| = |Pz/Py|, whereas

the total polarization was determined by the SOI strength α =
√

α2
y + α2

z.

In Chapter 3, we constructed a lattice model in terms of localized Wannier states
which exhibited the same low-energy properties as the continuum model in terms
of energy dispersion and spin expectation values. We confined the lattice model to
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a finite size of N lattice sites and attached it to two semi-infinite leads via hopping
amplitudes tL,R thereby matching a situation which is far more realistic than the
infinite continuum model. Projecting out the leads by a Feshbach projection, we
were left with a finite scattering problem for 2N × 2N -matrices which yielded the
propagator G.

The linear transport through the system was studied within the Landauer-Büttiker
formalism (see e.g. Ref. [41]). We calculated the linear conductance Gσσ′ from the
transmission Tσσ′ both of which were shown to exhibit two spin indices σ, σ′ ∈ {↑, ↓}
(four conductance components) in our case with SOI the first index labeling the
(z-component of the) spin of the (incoming) electron in the left lead and the sec-
ond index labeling the (z-component of the) spin of the (outgoing) electron in the
right lead. Using the Kubo formula (see e.g. Ref. [42]), we obtained Tσσ′ from the
(1, N)-matrix element Gσσ′(1, N) of the propagator.

Studying the linear conductance as a function of the chemical potential µ of
the entire system (quantum wire and leads), we matched a situation analog to al-
tering the Fermi energy of the incoming energies in the continuum case. Due to
the finite band width of the leads, however, the chemical potential was restricted
to µ ∈ (−2, ..., 2) (in units of the lead hopping). In order to avoid backscattering
into the leads, we adiabatically turned on/off all system parameters (like SOI and
magnetic field) which were not present in the leads and obtained a perfect total
conductance (being the sum of the four components) Gtotal = 2 e2/h. We neglected
any SOI and magnetic field in the leads, which would make the measurement of
spin polarization difficult, as the spin would be no conserved quantitiy in the leads.
However, a finite SOI in the leads could be absorbed into an effective lead hopping

teff =
√

t2 + α2
y + α2

z and the same was shown to hold for the contacts between the

leads and the quantum wire.

Similar to the Datta & Das-transistor, we observed an oscillatory behavior of the
conductance components with the system length N with an oscillation period being

inverse proportional to the SOI strength, Nosc ∼ 1/α with α =
√

α2
y + α2

z. The spin-

conserving and spin-flip components were degenerate, respectively, i.e. G↑↑ = G↓↓

and G↑↓ = G↑↓. In presence of a magnetic field γBx (in x-direction), we obtained
an energy range with two open conducting channels and, consequently, Gtotal =
2 e2/h for µ being in the energetic bulk of the leads and two ranges of width γBx

at the band edges with one conducting channel and Gtotal = 1 e2/h. This was
identified as a trivial band effect due to the Zeeman splitting. The components Gσσ′

revealed a strong oscillatory behavior inside the range with two conducting channels,
which could be altered by the SOI. Even in presence of SOI the above-mentioned
degeneracy of the components was conserved. Outside this range, this degeneracy
was lifted and no significant oscillations could be observed.

For a finite potential step V0 in the middle of the quantum wire, we discovered an
energy range of width V0 (just below the range with two conducting channels) within
which a sizeable spin polarization could be observed which was shown to react very
sensitively on the chemical potential µ. Increasing V0 beyond a critical value led to
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a vanishing linear conductance which was explained within a single-particle picture
as an energetical rupture of the bands.

Furthermore, we studied the linear conductance and spin polarization in presence
of a single impurity V1 representing the potential barrier discussed in the continuum
case. Whereas Gtotal was discreased with V1 and the step-like shape of the ranges
with one and two conducting channels was washed out, the spin polarization could
be tuned over a wide range by setting the SOI and the magnetic field accordingly
and also showed a strong dependence on V1.

As conventional methods like first-order perturbation theory and self-consistent
Hartree-Fock approximation are known to break down in low-dimensional systems
with Coulomb interaction, we gave a short introduction to the functional renormal-
ization group method (fRG) in Chapter 4. Starting with the generating functional
for the m-particle vertex functions, we introduced an infrared cutoff Λ to the free
propagator, G0 → G0,Λ. Derivation of this functional w.r.t. Λ led to an exact hierar-
chy of flow equations for the vertex functions. This hierarchy had to be truncated in
order to integrate the remaining flow equations from a large starting value Λ0 down
to Λ = 0. At the end of the fRG flow, we were left with an effective one-particle
problem with the renormalization of the system parameters being included in the
system’s self energy ΣΛ=0.

In Chapter 5, we included the Coulomb interaction into our model via a local
part U1 and a nearest-neighbor part U2. Using the fRG method, we first studied
short quantum wires in relation to which the flow of the two-particle vertex could
be neglected. Due to the renormalization of the system parameters, the linear con-
ductance and the spin polarization were altered in our systems with potential step
or single impurity, but the qualitative results remained the same.

Thereafter, we studied long quantum wires with single impurities which are
known to reveal characteristics of inhomogeneous Luttinger liquids like power-law
scaling of correlation functions like the linear conductance (see e.g. Ref. [57]). For
given µ, we chose the ratio U1/U2 = −2 cos(2kF ) = 2 − µ2 in order to tune the
backscattering component g1,⊥ to zero which, again, allowed us to neglect the flow
of the two-particle vertex. We calculated the linear conductance as a function of
the system size N with δ = vF /N being the relevant energy scale for the low-energy
excitations and obtained the expected power laws. In presence of SOI, we obtained
the same exponents as those predicted in leading order [59, 63] by replacing the

conventional hopping t with an effective hopping teff =
√

t2 + α2
y + α2

z. However,

the spin polarization did not reveal any power law behavior, but showed oscillations
with constant frequency and amplitude as a function of the system size.

Including a potential step V0 into the system caused a step in the profile of the
particle density 〈nj〉. Although power laws could be extracted from the spectral
function on each side of the step, the exponents did not correspond to the respective
filling, even when we drove the system into the asymptotic limit by an additional
strong single impurity V1.

In Chapter 6, we studied the transport properties of a double dot (N = 2 lattice
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sites) in presence of SOI and a magnetic field. As before, the dot was attached to
two non-interacting leads without SOI and magnetic field. For the non-interacting
case, all properties of the linear conductance could be explained by analyzing the
eigenvalue problem of the decoupled dot. Since the quantum dot was much easier
to handle numerically than the quantum wires, we were able to account for the
flow of the two-particle vertex in this setup. We studied the linear conductance
as a function of a gate voltage applied to the dot. Electron correlations led to the
transformation of the Lorentzian conductance peaks into Kondo plateaus which were
affected by the SOI just by the effective hopping teff , but did not change their shape.
However, the Kondo plateaus were destroyed by an external magnetic field and we
identified the magnetic field which led to a dip Gtotal = 1 e2/h within the Kondo
plateau region with the Kondo temperature TK , i.e. the relevant energy scale in this
situation. We observed an exponential dependence of TK on U1 and U2 with slightly
different exponential prefactors. The prefactor for U1 corresponded very well with
the one predicted in first order [70], but no reference was found for the prefactor of
U2. Furthermore, TK revealed a quadratic dependence on the SOI strength α.

In a next step, we included the double dot in one arm of an Aharonov-Bohm (AB)
interferometer and studied spin-dependent interference effects and the interplay of
the Kondo and the Fano effect. For certain parameter regimes, dips in the polariza-
tion could be lifted by a finite SOI on the quantum dot. In addition, interference
effects revealed to stongly influence the total conductance.

Finally, in Chapter 7 we gave a short overview of experiments which have been
performed on quantum dots and quantum wires showing that the setups discussed
in this thesis might match realistic experimental situations and, therefore, the po-
larization effects obtained here might also be observable experimentally. Finally, we
compared the dimension of the different system parameters used in this thesis with
values found in the literature finding quite a good agreement.

The parametrization of the two-particle vertex in presence of SOI and the solution
of the corresponding flow equations remains a major task for the future. Further-
more, subband mixing was neglected in our approach, but is known to reveal subtle
effects on the spin polarization and the transport properties for finite SOI. Further
structuring of quantum wires by potential steps and several single impurities would
certainly lead to an interesting behavior of the linear conductance and the spin po-
larization. Last but not least, higher order SOI (following from an expansion of the
Dirac equation in higher than second order) might also be taken into account.
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Appendix A

The Green’s function of the
leads

The derivation of the Green’s function of the leads in presence of SOI follows the
same idea as in the case without SOI (see Refs. [17, 40]). Consider a semi-infinite
lead described by the Hamiltonian H lead

L,R defined in Eq. (3.12). We only derive gL
σσ′ ,

the Green’s function of the left lead. Assuming the left lead and the right lead being
identical, we obtain gR

σσ′ = gL
σσ′ .

The lattice site index runs from −∞ up to some j and we identify the Green’s
function at this rightmost site with the resolvent of the lead Hamiltonian, projected
to this site, i.e. gσσ′ (z) = (z − H lead

L )−1
σσ′(j; j). We now add one lattice site j + 1

with the same hopping parameters t, αy and αz to the right of our semi-infinite
lead. Since the lead is semi-infinite and homogeneous the Green’s function g̃σσ′(z)
at the new site j + 1 should be the same as gσσ′(z). In the same way as for the case
without SOI (see Ref. [17] for details), we therefore obtain

g̃−1
σσ′ (z) =

(

z −H lead
L

)

σσ′

(j + 1; j + 1)

−
∑

σ′′,σ′′′

(

H lead
L

)

σσ′′

(j + 1; j)
(

z −H lead
L

)−1

σ′′σ′′′

(j; j)
(

H lead
L

)

σ′′′σ′

(j; j + 1)

= (z + µ)δσσ′

−
∑

σ′′,σ′′′

{[−tδσσ′′ − αzδσ−σ′′ (δσ↑ − δσ↓) + iαyδσσ′′(δσ↑ − δσ↓)] gσ′′σ′′′(z)

× (−tδσσ′′ − αzδσ−σ′′(δσ↑ − δσ↓) + iαyδσσ′′ (δσ↑ − δσ↓)]}
!
= g−1

σσ′ (z) (A.1)

also allowing for a chemical potential µ in the leads. For convenience, we did not ex-
plicitely write the˜sign over the different hopping amplitudes. Multiplying Eq. (3.13)
with the 2× 2-matrix (gσσ′(z)) from the left, we obtain a system of quadratic equa-

113



APPENDIX A. THE GREEN’S FUNCTION OF THE LEADS

tions for the Green’s function gσσ′ (z) which is given in matrix notation by
(

0 0
0 0

)

=

(
1 0
0 1

)

−
(
z + µ 0

0 z + µ

)(
g↑↑ g↑↓
g↓↑ g↓↓

)

−
(
g↑↑ g↑↓
g↓↑ g↓↓

)(
−t+ iαy −αz

αz −t− iαy

)

×
(
g↑↑ g↑↓
g↓↑ g↓↓

)(
−t− iαy −αz

αz −t+ iαy

)

,

(A.2)

using the short-hand notation gσσ′ instead of gσσ′(z). This matrix equation can be
solved by a computer algebra program leading to several solutions all of which are
impossible for physical reasons except for Eq. (3.13).

We now give a general proof for the fact that the spin-flip components of the left
and right lead’s Green’s function vanish, i.e. gL,R

↑↓ = gL,R
↓↑ = 0. The different hopping

terms provided by Eq. (3.12) are visualized in Fig. A.1. Again, we do not explicitely
write the˜sign over the leads’ hopping amplitudes for convenience. We can combine

conventional
hopping

u u-�
−t
−t

for σ =↑⇒ σ′ =↑ u u-�
−t
−t

for σ =↓⇒ σ′ =↓

SOI (αy)
hopping

u u-�
iαy

−iαy

for σ =↑⇒ σ′ =↑ u u-�
−iαy

iαy

for σ =↓⇒ σ′ =↓

SOI (αz)
hopping

u u-
�
−αz

αz

for σ =↑⇒ σ′ =↓ u u-
�
αz

−αz

for σ =↓⇒ σ′ =↑

Figure A.1: Visualization of the conventional hopping and the SOI hopping.

the conventional hopping and the SOI (αy) hopping to an effective spin conserving
hopping with amplitude −t± iαy, depending on σ and the hopping direction. The
spin-flip hopping is given by ±αz.

Let n ∈ N
≥2. An arbitrary closed path of nth order (n hopping steps) accom-

plishes

n = nx + n−x

= n(sc, ↑↑) + n(sc, ↓↓) + n(sf, ↑↓) + n(sf, ↓↑) (A.3)
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and
nx = n−x (A.4)

with nx and n−x being the number of hopping steps in direction ±x and n(sc, σσ′),
n(sf, σσ′) being the number of spin conserving and spin-flip hopping steps, respec-
tively. The first spin index labels the initial state, the second spin index labels the
final state after one hopping process. Naturally, the equation

∑

σ

n(sf, σ − σ) = 2m+ 1 , m = 0, 1, 2, ... . (A.5)

must hold in order to get an effective spin-flip. Following Fig. A.1 the hopping steps
of a path S can be decomposed into

n(S) = nx(sc) + nx(sf)
︸ ︷︷ ︸

nx

+n−x(sc) + n−x(sf)
︸ ︷︷ ︸

n−x

and give the contribution

B(S) = (−t+ iαy)
nx(sc,↑↑)(−t− iαy)

nx(sc,↓↓)

×(−αz)
nx(sf,↑↓)(αz)

nx(sf,↓↑)

×(−t− iαy)
n−x(sc,↑↑)(−t+ iαy)

n−x(sc,↓↓)

×(αz)
n−x(sf,↑↓)(−αz)

n−x(sf,↓↑) (A.6)

to the corresponding Green’s function.
For any closed path S the inverse path S̃ exists, which means that all lattice

points are passed in reversed order but with the same processes (i.e. conserving
or flipping the spin). Note that the total number of spin flips is conserved and
regarding to the sequence of different processes, the direction σ → σ′ of a spin-flip
process between each lattice sites remains the same, but, of course, in the opposite
spatial direction. The spin conserving hopping processes also happen between the
same lattice sites as for the path S, but with the opposite spin. Therefore, we obtain

spin conserving hopping : ñ±x(sc, ↑↑) = n∓x(sc, ↓↓)
ñ±x(sc, ↓↓) = n∓x(sc, ↑↑)

spin-flip hopping : ñ±x(sf, ↑↓) = n∓x(sf, ↑↓)
ñ±x(sf, ↓↑) = n∓x(sf, ↓↑)

(A.7)

Since Eq. (A.5) holds for the inverse path as well, we get

B(S̃) = (−t+ iαy)
ñx(sc,↑↑)(−t− iαy)

ñx(sc,↓↓)

×(−αz)
ñx(sf,↑↓)(αz)

ñx(sf ,↓↑)

×(−t− iαy)
ñ−x(sc,↑↑)(−t+ iαy)

ñ−x(sc,↓↓)

×(αz)
ñ−x(sf,↑↓)(−αz)

ñ−x(sf ,↓↑)

= (−1)nx(sf,↑↓)+nx(sf,↓↑)+n−x(sf,↑↓)+n−x(sf,↓↑)B(S)

= (−1)2m+1B(S) = −B(S) . (A.8)
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Therefore, the contribution of any closed path S to the Green’s functions gL,R
↑↓ and

gL,R
↓↑ is cancelled by the contribution of their reversed path S̃ and we obtain

gL,R
↑↓ = gL,R

↓↑ = 0 . (A.9)
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Appendix B

O(N )-algorithm for matrix
inversion in presence of SOI

According to Eq. (4.30), calculating the inverse of a large 2N -dimensional matrix,
i.e. the full propagator G̃Λ, for a system with N lattice sites (factor 2 because of
spin) in each step of the numerical integration of the fRG flow equations plays a
crucial role with respect to computational effort. A full inversion can be done by an
O(N3)-algorithm, which severely slows down the calculations for large N . Even if
one neglects the fRG flow of the two-particle vertex, the calculation of a conductance
curve for a system with N = 1000 lattice sites with e.g. 200 data points takes over
one day on a single-core pentium 4 processor with 3GHz. However, as we do not
account for next-nearest neighbor effects in the hopping or the Coulomb interaction,
we only need the tridiagonal part of the full propagator and the self energy for inte-
grating the flow equations. For a conventional Hubbard Model, a short introduction
to how this can be done by an O(N)-algorithm was given in Ref. [43].

B.1 Matrix representation in presence of SOI

Indeed, things become more complicated in presence of SOI. Having chosen a lattice-
spin base for describing the Hamiltonian results in a matrix representation G̃Λ

j,j′(σ, σ
′)

and ΣΛ
j,j′(σ, σ

′) for the propagator and the self energy. One can interpret this tensor
product of lattice and spin space as a conventional lattice representation with matrix
elements Aj,j′ being itself complex 2 × 2-matrices representing the spin space, i.e.

Aj,j′ =

(
Aj,j′(↑↑) Aj,j′(↑↓)
Aj,j′(↓↑) Aj,j′(↓↓)

)

. (B.1)

As an illustration, we write down the matrix elements of the inverse of the free
propagator being inserted into the Dyson equation [see Eq. (4.30)]. For an arbitrary
magnetic field B = (Bx, By, Bz), chemical potential µ, conventional hopping t and
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PRESENCE OF SOI

SOI components αy, αz, the diagonal elements are given by

(
G0

j,j

)−1
(iΛ) =

(
iΛ + µ− γBz γ(−Bx + iBy)
γ(−Bx − iBy) iΛ + µ+ γBz

)

, (B.2)

the upper secondary diagonal elements by

(
G0

j,j+1

)−1
(iΛ) =

(
t− iαy −αz

αz t+ iαy

)

(B.3)

and the lower secondary diagonal elements by

(
G0

j+1,j

)−1
(iΛ) =

(
t+ iαy αz

−αz t− iαy

)

. (B.4)

Obviously, the elements of the lower secondary diagonal are the adjoints of the
upper secondary diagonal, but the corresponding 2 × 2-matrices themselves are not
Hermitian. This structure remains conserved, if we subtract the self energy according
to Eq. (4.30) with the influence of the leads and one-particle potentials induced by
a potential step or other impurities being included in the self energy. Thus, the
inverse of the full propagator can be written as

T =
(

G̃Λ
)−1

=












A1 B1 0 · · · 0

B†
1 A2

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . BN−1

0 · · · 0 B†
N−1 AN












(B.5)

with A1, ..., AN and B1, ..., BN−1 being complex 2 × 2-matrices. We now use a
modification of the standard LU -decomposition [51]. We decompose the matrix T
into the product of a lower-diagonal matrix L, a diagonal matrix D and an upper-
diagonal matrix U (LDU -decomposition) via

T =









12 0 0

L1 12
. . .

. . .
. . . 0

0 LN−1 12

















D1 0 0

0 D2
. . .

. . .
. . . 0

0 0 DN

















12 U1 0

0 12
. . .

. . .
. . . UN−1

0 0 12









,

(B.6)
with L1, ..., LN−1,D1, ...,DN , U1, ..., UN−1 ∈ C

(2,2). Similarly, we establish an ŨD̃L̃
decomposition

T = ŨD̃L̃ (B.7)

with an upper-diagonal matrix Ũ , a diagonal matrix D̃ and a lower-diagonal matrix
L̃ with Ũ , D̃, L̃ ∈ C

(2N,2N). Note that in contrast to the Hubbard model in which
Uj = Lj holds with Uj, Lj ∈ R (see e.g. Ref. [43]), we do not have any further

118



B.1. MATRIX REPRESENTATION IN PRESENCE OF SOI

symmetry between Uj and Lj, but Lj = U †
jD

†
jD

−1
j 6= U †

j , since Dj is not Hermitian.
By a simple comparison of the coefficients in Eqs. (B.6) and (B.7), we get

D1 = A1, Ui = D−1
i Bi, Di+1 = Ai+1 − LiBi for i = 1, ...,N − 1 (B.8)

and

D̃N = AN , Ui = BiD̃
−1
i+1, D̃i = Ai −BiL̃i for i = 1, ...,N − 1 . (B.9)

Thus, we can get all matrix elements of the LDU - and ŨD̃L̃-decomposition by
successive insertion. Using TG = GT = 12N with G = (Gi,j) and Gi,j ∈ C

(2,2) for
i, j = 1, ..., N , we obtain from the LDU -decomposition by comparison of coefficients

GN,N = D−1
N , Gi,i = D−1

i − UiGi+1,i, Gi,i+1 = −UiGi+1,i+1, Gi+1,i = −Gi+1,i+1Li

(B.10)
for i = 1, ..., N − 1 and from the ŨD̃L̃-decomposition

G1,1 = D̃−1
1 , Gi,i = D̃−1

i − L̃i−1Gi−1,i, Gi,i+1 = −Gi,iŨi, Gi+1,i = −L̃iGi,i

(B.11)
for i = 2, ..., N . Finally, we can perform a steplike successive calculation.

G1,1 = D̃−1
1

ŨD̃L̃−→ G1,2 = −G1,1Ũ1

G2,1 = −L̃1G1,1

LDU−→ G2,2 = −U−1
1 G12

G2,2 = −U−1
1 G12

ŨD̃L̃−→ G2,3 = −G2,2Ũ2

G3,2 = −L̃2G2,2

LDU−→ G3,3 = −U−1
2 G23

...
...

...

GN−1,N−1 = · · · ŨD̃L̃−→ · · · LDU−→ · · · ⇒ finished

In this way, we obtain all tridiagonal, i.e. diagonal and upper/lower secondary
diagonal, matrix elements Gij of the full propagator G̃ from the LDU - and ŨD̃L̃-
decomposition in N calculation steps. Furthermore, the numerical effort for per-
forming the LDU - and ŨD̃L̃-decomposition according to Eqs. (B.8) and (B.9) is of
O(N). Thus, the complete algorithm is of O(N) as well.

Care must be taken in the case of matrices which are invertible but not LDU -
(or ŨD̃L̃-) decomposable. Naturally, such matrices exist. Indeed, sometimes we
have suffered from numerical problems in presence of SOI and magnetic field for
very large systems, but this was due to imprecise intermediate data during the inte-
gration of the fRG flow equations rather than an immanent problem of the method.
However, varying the system parameters slightly and increasing the accuracy of the
numerical integration of the flow equations, we got rid of these problems, at least in
the majority of cases.
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PRESENCE OF SOI

B.2 Calculation of the G1,N matrix element of the full

propagator

As clarified in Eqs. (3.22) and (3.23), the matrix element G1,N of the full propagator
at the end of the fRG flow is essential in order to calculate the linear conductance.
Certainly, G1,N can not be calculated in the scheme mentioned above, but it is not
neccessary to perform a full O(N3)-inversion. Having obtained the self energy ΣΛ=0

at the end of the flow, we set up the inverse T of the full propagator up according to
Eq. (4.30) again and perform a LDU -decomposition according to Eq. (B.6). Defining
new matrices P = L and Q = DU , we obtain

T = PQ =









12 0 0

L1 12
. . .

. . .
. . . 0

0 LN−1 12

















D1 D1U1 0

0 D2
. . .

. . .
. . . DN−1UN−1

0 0 DN









. (B.12)

Generally, the inverse matrices V = (Vi,j) = P−1 and W = (Wi,j) = Q−1 are full
lower and upper triangular matrices, respectively. Using V P = 12N and WQ = 12N ,
we get

Vi,j = 0 for i < j

Vi,j = 12 for i = j

Vi,j = −Li−1Vi−1,j for i > j

Wi,j = −UiWi+1,j for i < j

Wi,j = D−1
i for i = j

Wi,j = 0 for i > j (B.13)

(B.14)

with Vi,j,Wi,j ∈ C
(2,2) for i, j = 1, ...,N .

Inverting the equation T = PQ leads to

G̃ = T−1 = Q−1P−1 = WV (B.15)

and especially

G1,N =
N∑

i=1

W1,iVi,N = W1,NVN,N , (B.16)
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B.2. CALCULATION OF THE G1,N MATRIX ELEMENT OF THE FULL
PROPAGATOR

since Vi,j = 0 for i < j according to Eq. (B.13). We further obtain

G1,N = W1,NVN,N = W1,N

= −U1W2,N

= (−U1)(−U2)W3,N

...

= (−U1) · · · (−UN−1)WN,N = (−U1) · · · (−UN−1)D
−1
N

=

[
N−1∏

i=1

(−Ui)

]

D−1
N . (B.17)

(B.18)

Thus, we can calculate G1,N in a single loop from the LDU -decomposition of T .
The algorithms presented in this chapter are very similar to those used for the

conventional Hubbard model, despite the fact that we have to deal with an algebra
of complex 2 × 2-matrices and not just complex (or even real) numbers. Taking
into account this matrix algebra, one can use more or less the same routines for the
calculations.
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Appendix C

The eigenvalue problem of the
double dot

The Hamiltonian describing the double dot with SOI and magnetic field can be
written as a matrix in lattice-spin representation leading to

H =







µ+ γBz γ(Bx − iBy) −t+ iαy αz

γ(Bx + iBy) µ− γBz −αz −t− iαy

−t− iαy −αz µ+ γBz γ(Bx − iBy)
αz −t+ iαy γ(Bx + iBy) µ− γBz







. (C.1)

The eigenvalues and eigenvectors in this most general case can easily be obtained by
a computer algebra program, but are quite cumbersome. We therefore concentrate
on the situation given in Fig. 6.2 where Bx = 0, By = 0 and αy = 0. In this case,
we obtain the four eigenvalues

λ1 = µ+ δ1

λ2 = µ+ δ2

λ3 = µ− δ2

λ4 = µ− δ1 (C.2)

with

δ1 =
√

α2
z + (t+ γBz)2

δ2 =
√

α2
z + (t− γBz)2 . (C.3)
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The normalized eigenvectors are given by

a1 = 1
N1









t+ γBz + δ1
αz
1

−t− γBz − δ1
αz
1









with N1 =

(

2 +
(t+ γBz + δ1)

2

α2
z

)1/2

a2 = 1
N2









−t+ γBz + δ2
αz
−1

−t+ γBz + δ2
αz
1









with N2 =

(

2 +
(t− γBz − δ2)

2

α2
z

)1/2

a3 = 1
N3









−t+ γBz − δ2
αz
−1

−t+ γBz − δ2
αz
1









with N3 =

(

2 +
(t− γBz + δ2)

2

α2
z

)1/2

a4 = 1
N4









t+ γBz − δ1
αz
1

−t− γBz + δ1
αz
1









with N4 =

(

2 +
(t+ γBz − δ1)

2

α2
z

)1/2

.(C.4)

The matrix M = (a1,a2,a3,a4) built of these eigenvectors is just the transforma-
tion matrix from the lattice-spin representation to the energy representation of our
model. We can therefore transform the Hamiltonian Eq. (3.12) describing the con-
tact between the dot and the leads in order to determine the coupling of the four
energy levels to the leads. It is shown in Fig. 6.3 that electrons with different spin
σ =↑ couple to the energy levels in a way different from electrons with σ =↓. Now we
would like to address the question how the energy levels are coupled to each other.
We therefore analyze the influence of the hopping terms t and αz on the transformed
expressions c†i cj with i, j ∈ 1, ..., 4 and c†i (ci) denoting the creation (annihilation)
operator of the electrons on energy level λi. This is shown in Table C.1.

The two outer levels λ1 = µ+δ1 and λ4 = µ−δ1 are coupled to each other via hopping
processes induced by t and αz. The same holds for the inner levels λ2 = µ+ δ2 and
λ3 = µ− δ2. Interestingly, there is no coupling between inner and outer levels.
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operator contribution induced by t contribution induced by αz

c†1c1
−2t(α2

z − (δ1 + γBz + t)2)

α2
zN

2
1

4(δ1 + γBz + t)

N2
1

c†1c2 0 0

c†1c3 0 0

c†1c4
−4t
N1N4

4(γBz + t)
N1N4

c†2c2
2t(α2 − (δ2 + γBz − t)2)

α2
zN

2
2

4(δ2 + γBz − t)

N2
2

c†2c3
4t

N2N3

4(γBz − t)
N2N3

c†2c4 0 0

c†3c3
2t(α2

z − (δ2 − γBz + t)2)

α2
zN

2
3

4(−δ2 + γBz − t)

N2
3

c†3c4 0 0

c†4c4
−2t(α2

z − (δ1 − γBz − t)2)

α2
zN

2
4

4(−δ1 + γBz + t)

N2
4

Table C.1: Contributions to the operators c†i cj induced by t and αz. c
†
i (ci) denotes

the creation (annihilation) operator of an electron with energy λi.
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