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Chapter 1

Introduction

The coherent propagation of electrons in a given crystal potential is the under-
lying principle for a variety of effects in condensed matter physics. These include
electron focusing, Friedel oscillations, Fermi-surface nesting, charge-/spin density os-
cillations, Ruderman-Kittel-Kasuya-Yosida interactions and the interlayer-exchange
coupling among others. Historical developments and the wish to focus on that
description which is most appropriate for the particular experiment are the main
reasons for this Babel of nomenclature.

Apart from a different terminology the mentioned effects are usually described using
different physical key-quantities. When investigating macroscopic electron transport
through single crystals, explanations use the group-velocities vGr = ∇kE(k) of the
electrons. They are normal to the Fermi surface of the particular system. An
accumulation of these vectors in a certain direction results in an enhanced electron
flux. This is the so-called electron focusing [1]. Fermi-surface nesting is the prevalent
mechanism explaining charge- and spin-density oscillations [2] like those that occur
in interlayer exchange coupling structures. Such experiments are mainly interpreted
by estimating extremal callipering vectors of a given system [3]. Single defects in
solids lead to a disturbance that is minimized in energy by a rearrangement of
the electron sea. This is the generic screening which Friedel [4] showed to be an
oscillatory variation of the charge density 〈n(x)〉 around the defect [5]. Within the
free-electron model, the asymptotic oscillations depend only on the absolute value
of the Fermi wavevector kF . If a magnetic impurity scatters spin-up and spin-down
electrons differently, the resulting spatial oscillatory behavior of spin-polarization
is termed RKKY-oscillation [6, 7]. The underlying physics may be reduced to the
difference 〈σz(x)〉 = 〈n↑(x)〉 − 〈n↓(x)〉 of Friedel oscillations for each spin species.

1



2 CHAPTER 1. INTRODUCTION

Since all mentioned effects are related to the propagation of conduction band elec-
trons they can be described using one unifying physical quantity: the quantum-
mechanical Propagator [8] of the given system.

The work described in this thesis was initiated by an unexpected experimental ob-
servation. It was found by low temperature Scanning Tunnelling Microscopy (STM)
that buried impurities produce highly anisotropic oscillations of the electron den-
sity at the surface. These oscillations appeared to be of long range and allowed
an identification of single impurities placed more than 15 atomic layers below the
surface. We will show that the characteristic signatures are related to the shape of
the conduction-electron Propagator which is directly associated with the geometry
of the Fermi surface of bulk electrons.

In the first part of this thesis we will analyze how the Fermi surface is linked to
the interference patterns of the subsurface defects. An impurity which is incor-
porated in a metal leads to a rearrangement of the surrounding electrons. This
results in an oscillatory behavior of electron density versus distance. This concept
of Friedel oscillations can be commonly found in standard textbooks but the de-
scription is exclusively performed on isotropic systems using the dispersion of a free
electron. It is well known that the band-structure of every material deviate from a
free-electron dispersion. There are only a few examples in nature, where a nearly
isotropic, free-electron-like dispersion is found. Examples are the 2D surface states
on (111) surfaces of noble metals [9]. These simple cases attract particular attention
in the scientific community, because they can be understood using basic textbook
knowledge only.

Since the vast majority of elements has an anisotropic electronic structure, aniso-
tropic Friedel oscillations are expected in every material. This generalization to
realistic systems has been developed decades ago [10, 11]. However the physical
understanding of ansiotropic Friedel oscillations has not become a matter of com-
mon knowledge yet. Although the oscillations of charge density near an impurity
are ground-states properties of the perturbed system (ideal host + impurity), they
may be viewed as a scattering experiment of the unperturbed eigenstates at the
impurity. The necessary physical concepts for a proper description can be found in
scattering theory [12]. The wave function of an incoming electron interferes with the
scattered (outgoing) wave and produces a standing wave pattern, i.e. a stationary
modulation of the probability density. Thus the physics can be described by two
sub processes: i) the propagation of the electrons before and after the collision and
ii) the interaction of the electrons with the impurity potential.

The first process changes dramatically if an electron propagates within different
crystal potentials. This will be discussed in detail later but we will already give
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Figure 1.1: Different k-space geometries of the Fermi surface (a,c) cause different
shapes of the ”Huygens”-wave (b,d) in real space. A spherically symmetric Fermi
surface (a) leads to isotropic propagation (b) and hence to isotropic Friedel oscilla-
tions. If the FS in non-spherical (c), a standing wave pattern may be present only
in certain directions (d) from the impurity (electron focusing).

some illustrative examples here. The ”Huygens” wave1 is a well-known physical
concept that describes the retarded propagation of probability amplitude from a
point-like source. This propagation has been plotted in Figure 1.1 for two different
model band structures: the isotropic system that is characterized by a spherical
Fermi surface (blue contour, Fig. 1.1a) shows a spherically symmetric Huygens wave
(Fig. 1.1b). In the second case (Fig. 1.1c), where the Fermi surface is anisotropic, the
”Huygens”-wave of the electrons looks completely different and shows a preferred
propagation in certain directions. The connection between these directions and the
distribution of Fermi velocities (red arrows in Fig.1.1a,c) is obvious. This relates
the Friedel oscillations to the electron focusing effect mentioned earlier.

The strongly directional propagation of electrons causes the anisotropy of the Friedel
oscillations. Thus the first part of this thesis is to analyze the shape of the oscillations
and to provide understanding of their connection to the band-structure of the host

1we will use the term single-particle Green function or Propagator for this concept in the
following
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material.

In the second part of this thesis a new approach to the physics of Kondo-systems will
be described. Systems of magnetic impurities in non-magnetic metals are known to
show a variety of low-temperature anomalies, which are summarized by the term
Kondo effect [13]. The most prominent experimental observation is an increase of re-
sistivity when the temperature is decreased [14]. In a more microscopic picture it was
shown [15] that a narrow many-body resonance (the Abrikosov-Suhl resonance [16])
builds up in the one-particle spectrum of the impurity at the chemical potential if the
temperature is decreased below a specific temperature TK , the Kondo-temperature.
Since the charge transport is dominated by quasi-particles near the Fermi energy
[17] and this resonance implies a strong scattering at the chemical potential, the
behavior of the electrical resistance can be understood.

A strong scattering of conduction band electrons in turn results in large amplitudes
of the standing wave pattern around the impurity. Furthermore it is well known from
elementary quantum-mechanics that a scattering resonance produces an energy de-
pendent phase-shift of the wave functions. The enhanced scattering amplitude and
the phase-shift both impress the local density of states %(x, ε), a quantity that can be
measured by STM. Most of the experimental work concerning the Kondo Effect was
performed on macroscopic systems and large ensembles of magnetic impurities. The
development of the Scanning Tunnelling Microscope (STM) by Binnig and Rohrer
[18] provided a new approach to the Kondo effect - the local spectroscopy of indi-
vidual impurity atoms [19, 20]. This has been performed on magnetic atoms that
have been adsorbed on a noble metal surface. A tunnelling spectrum taken directly
above a Cerium atom showed a sharp anti-resonance at zero bias which was inter-
preted as the spectral signature of the Kondo Effect. Many other groups followed
these pioneering experiments using different magnetic ad-atoms on several surfaces
[21, 22, 23, 24]. All previous STM experiments showed that the spectroscopic sig-
natures rapidly vanished if the tip is moved away from the impurity atom [25]. In
contrast to this, theoretical work [26, 27] predicted a long range influence on the
conduction electrons.

In this thesis we approach the Kondo Effect from a conduction-band electron’s ”point
of view” as the magnetic impurities were buried below the surface. Different depths
of the impurities below the surface correspond to different distances between the
impurities and the STM tip. Our analysis combines two physical concepts that are
normally treated separately. One of them is usually discussed in real-space. It is
the oscillatory behavior of charge density (”Friedel oscillations”) [4] in the vicinity
of an impurity. The second concept is spectroscopy which in general measures
physical quantities only versus energy. These experiments either average over large
length scales or are only sensitive to specific aspects of the experimental system
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Figure 1.2: Local density of states in the vicinity of an infinitely strong point scatterer
at x = 0 within a one-dimensional electron gas having linear dispersion. The charge-
density n(x) shows Friedel oscillatios. The oscillations in the DOS (blue curve) will
converge towards the red curve for large systems.

(e.g. core levels). If a tunnelling spectrum is recorded with the STM-tip placed at
specific position only (e.g. direct above a magnetic adsorbate), information about
the spatial distribution of spectral density in not obtained.

This is demonstrated in Figure 1.2. It shows the example of an infinitely strong
repulsive point scatterer that is placed in a one-dimensional electron gas.2 The local
density of states %(x, ε) describes the sum of probability densities |Ψν(x)|2 of all
states at a certain energy ε. It shows oscillations, whose spatial periodicity depend
on the energy (as expected from the chosen dispersion relation). The charge density
〈n(x)〉 is the integral of this quantity including all energies up to the Fermi energy

2for simplicity we assumed a linear dispersion in order to avoid divergencies in the density of
states.
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εF . If integration is performed over the spatial dimension, this yields the density
of states %0(ε). It is obvious that both quantities 〈n(x)〉 and %0(ε) contain less
information than ρ(x, ε).

We noted earlier that the Kondo Effect is characterized by a strong scattering of
quasi-particles near the Fermi energy. A strong scattering will result in an enhanced
amplitude of the LDOS-oscillations in this energy range. Since the STM has access
to the spatial and the energetic dimension of %(x, ε), it should be observable. Thus
we will use the STM to study the behavior of subsurface impurities versus energy
and analyze whether a scattering resonance can be observed. This will be done in
Chapter 4. Using a theory that will be developed in Chapter 3 we will extract the
energy dependence of scattering amplitudes and phase-shifts from the STM-data.
We will show that both show indeed strong Kondo signatures.

In Chapter 2 the sample preparation and the low-temperature STM will be shortly
described. Chapter 3 will concentrate on the spatial dimension of the LDOS, while
the regarded energy is fixed to the chemical potential. We will focus on the oscilla-
tions in the spectral density of the conduction band electrons and combine experi-
mental and theoretical methods to demonstrate that these oscillations are strongly
anisotropic if the Fermi surface of the host material is not spherical. We show that
the electron density around the impurity is modulated only in very narrow direc-
tions linked with regions of small curvature on the Fermi surface. In Chapter 4 the
Kondo Effect will be accessed. For this we have to analyze the energy-dependent
behavior of the system. Since the Kondo resonance of Fe impurities in copper is
extremely narrow, a strong change of the STM patterns can be observed very close
to zero-bias. We will perform scanning tunnelling spectroscopy versus position and
energy. In Chapter 5 some possible applications and the connection to other physi-
cal effects will be discussed. In particular, we will show that the strong directional
propagation of electrons can be used to study buried interfaces. Chapter 6 will give
a short summary of this thesis.



Chapter 2

Experimental setup

The task of this work is to prepare isolated magnetic atoms beneath a noble metal
surface and to investigate their influence on the surrounding electronic structure by
Scanning Tunnelling Spectroscopy at low temperatures. This chapter will give a
brief description of the experimental setup and provide specific information about
the preparation procedures.

2.1 Sample preparation

Both components, the host metal and the impurity material were deposited on a
clean single crystal substrate using two electron beam evaporators. One of them,
operating at moderate fluencies (≈ 1 layer/min), performs a homo-epitactical growth
of the matrix material. The second one, kept at much lower deposition rates, carries
out an admixture of the impurity atoms at specific times during the growth process
by pulsed shutter operation.

The preparation has to meet several requirements. In order to avoid a coupling be-
tween the individual impurities and to keep their STM-signatures discriminable, low
dopant concentrations are needed. Furthermore the number of residual (unwanted)
impurities has to be kept far below these concentrations so that a clear attribution
of the observed signatures to the added chemical element is possible. Finally the
surface has to contain large, atomically flat terraces in order to obtain well-defined
tunnelling geometries. Therefore the preparation has to be performed under ultra
high vacuum (UHV) conditions using high purity evaporants and a carefully cleaned
substrate.

7



8 CHAPTER 2. EXPERIMENTAL SETUP

2.1.1 UHV metal epitaxy chamber

The sample preparation was carried out in a mobile UHV chamber that is at-
tachable to various scanning tunnelling microscopes as well as to a stand-alone
LEED/AES (low energy electron diffraction/Auger electron spectroscopy) charac-
terization unit. It allows an immediate transfer of the prepared samples to the
subsequent experiments without breaking the vacuum. UHV is achieved using a
530 l/s turbo-molecular pump and a LN2 cooled titanium-sublimation pump. 24
hours after bake-out a base pressure of p < 5 · 10−11mbar is achieved that can be
temporarily lowered to p ≈ 2 · 10−11mbar by sublimation of titanium.

The chamber is equipped with multiple facilities for UHV sample preparation allow-
ing ion bombardment and the deposition of up to three materials at variable sub-
strate temperatures. A CF250 cluster flange at the bottom of the chamber carries a
Ar+-ion sputter source (IQE11/35 by SPECS, Berlin), three electron-beam evapora-
tors (e-beam by TECTRA, Frankfurt), and a pyrometer (IM120 by IMPAC, Frank-
furt) for non-contact temperature monitoring during the preparation. The sample is
placed centrally in the chamber and can be positioned using xyz-micrometer drives.
It is attached to a device allowing LN2-cooling and sample heating by electron bom-
bardment or resistive heating. Additionally it provides six electrical contacts to the
multi-segment sample holder. In our case one of these contacts was used to apply
a high voltage to the sample in order to perform electron-beam heating. Detailed
information about the sample preparation chamber can be found in [28, 29].

2.1.2 Single crystal preparation

One of the most important prerequisites for a well defined epitactical film growth
is a clean and atomically flat substrate surface. Additionally it is desired to reduce
the number of residual impurities close to the surface. A comprehensive review of
different preparation procedures to obtain such conditions for a variety of materials
can be found in [30]. Concerning the cleaning process of the single crystal we
conformed to the described procedures.

Substrate material

For the experiments we used single crystals of copper that were commercially ac-
quired from MATECK, Jülich. They were 1 mm in thickness and fabricated in a
hat-like shape with diameters of 8.5 mm and 6 mm respectively. The surfaces were
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Mo-plate

Single crystal

Sapphire slab

Figure 2.1: Constructional sketch of sample holder

oriented normal to the [100] and [111] directions with a accuracy < 0.1◦ and polished
to a roughness < 30nm. An annealing procedure in a hydrogen/argon atmosphere
was performed by the manufacturer to reduce the number of residual impurities
(mostly sulfur and carbon).

Sample holder

The crystal was placed in a sample holder combining a good thermal contact to
the cryostat with the electrical insulation necessary for electron beam heating. A
molybdenum top plate gently presses the crystal onto a sapphire slab that is fixed
on a multi-segmented, dovetail-shaped bar made of stainless steal. A picture of the
sample holder can bee seen in Figure 2.1. A hole in the bar and sapphire plate
allows access to the reverse side of the crystal for electron bombardment.

To avoid contamination of the crystal surface by the sample-holder material (stain-
less steel, molybdenum) due to secondary sputtering effects during the cleaning
procedure, the topmost parts of the sample holder were covered by multiple µm of
copper. Additionally, due to the crystal’s hat-shaped geometry, the crystal surface is
placed above the Mo-plate avoiding direct particle trajectories between the sample
holder and the crystal surface.
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Ar+-ion bombardment

The single crystals were prepared by repeated cycles of Ar+-ion sputtering and subse-
quent annealing by electron-beam heating. The sputtering procedure was performed
with 700eV ion-beam energy at a fluency of 2µA ion current hitting the sample
holder. During the sputtering process the chamber pressure raised to 2 · 10−6mbar
due to the inlet of argon gas. The initial ion bombardment was performed for two
hours to remove the oxide film as well as residua of previous thin film depositions.
The following repetitive sputtering periods were of 20 minutes duration.

Annealing

The annealing causes both a smoothing of the surface morphology producing large,
atomically flat terraces and a segregation of bulk point-defects towards the surface.
These can be removed during the subsequent sputtering process. Sample heating
was performed by electron bombardment. A thoriated tungsten cathode was brought
close to the back of the crystal. Filament currents IFil up to 6A led to thermionic
emission of electrons that were accelerated onto the sample by an electrical field of
800 V. The filament current IFil was adjusted while monitoring both the emission
current Iem and the substrate temperature. The crystal was heated to a temperature
of 720 K for 10 minutes. For this purpose emission currents of Iem ≈ 15mA were
sufficient according to a power of 12W applied to the crystal. A computer controlled
closed loop feedback system provided constant sample temperature or constant e-
beam power by adjusting IFil. The sample temperature was measured using a
pyrometer with a selected emissivity of 11% that has previously been shown to be
adequate [28]. In cases where substrate temperatures were below the detection limit
(160◦C) of the pyrometer or if interfering IR-sources (operating evaporators, ...)
were present, the primary control parameter was the e-beam power.

Substrate characterization

After 15 sputtering/annealing cycles the prepared surfaces were characterized by
STM and LEED. An STM constant current topography of a freshly prepared Cu(100)
surface can be seen in Figure 2.2a). It shows large, atomically flat terraces. This is
confirmed by the LEED pattern showing very sharp diffraction peaks.
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a) b)

Figure 2.2: Characterization of the prepared Cu(100) single crystal: a) STM image
(165nm × 165nm, 0.5 nA, 100 mV) of a freshly prepared substrate surface showing
large, atomically flat terraces, b) a LEED pattern taken at 100 eV electron energy
revealing sharp diffraction peaks.

2.1.3 Epitaxy

After having achieved a clean and atomically flat substrate, thin films of dilute
magnetic alloys were prepared using computer-controlled evaporator and shutter
equipment.

Electron beam evaporators

The electron beam evaporators used here apply a high positive voltage VEv to the
evaporant, which is either placed in a tungsten crucible (Cu) or directly evaporated
from a rod (Co, Fe). Electrons, emitted from a surrounding thoriated tungsten
filament are accelerated onto the crucible/rod and heat the evaporant. A fraction
of the vapor-phase atoms is positively ionized by the electron beam. These are used
for flux monitoring and detected by an electrode placed outside the evaporator (see
Figure 2.3). In order to prevent ubiquitous electrons from compensating the positive
charge of the ions, a negative voltage (≈ −20V ) was applied to the flux electrode.
Obtainable ion currents IFlux are in the order of 1nA...10µA and monitored by the
computer. A feedback loop provided flux control by adjusting the filament current
IFil.
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shutter

flux electrode

water-cooled
radiation shield

filament

Co - rod

fixture and acceleration 
high-voltage contact

Figure 2.3: Constructional sketch and image of the electron-beam evaporators used
for the thin-film deposition

As the ionization probability and therefore the fraction of ionized atoms is pro-
portional to the thermionic emission current Iem, this parameter needs also to be
considered. Iem was monitored by the computer and used as the primary control
variable during heat-up, until a sufficient IFlux was detected. It was taken care that
calibration and deposition were performed at identical emission currents. The high
voltage UEv was manually adjusted until the desired deposition flux was obtained
at predetermined emission currents (20mA crucible, 12mA rod).

In previous experiments it turned out that the positively charged atoms, albeit
helpful in controlling the deposition rate, have a negative impact on the morphol-
ogy of the achieved films. They are repelled by the crucible and accelerated onto
the sample causing ion currents at the sample holder of ≈ 1µA (in the case of
Cu at 1ML/min). This is comparable to the currents obtained during the Ar+-
bombardment and causes a significant sputtering damage resulting in a strongly
enhanced surface roughness. These observations are described in detail in [31].

In the current experiments we avoided this ion bombardment by applying a high
positive voltage to the crystal during the evaporation. The chosen voltage was higher
than the voltage applied to the evaporants. In some sample preparations this high
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voltage was also used for sample heating during deposition.

The evaporant materials have been purchased from ALFA AESAR and had specified
purities of 99.995%(Co,Fe) and 99.9999%(Cu). Before the deposition, an out-gasing
procedure was performed for several hours by slowly increasing IFlux slightly above
the targeted deposition flux. For the thin film deposition, the Cu evaporator was
operated at IFlux = 1.3µA, IEm = 20mA, UEv = 800V corresponding to 1ML/min.
The impurity evaporators (Fe,Co) were kept at the lowest possible fluencies compat-
ible with a stable flux control. We used (IFlux = 5nA, IEm = 12mA, UEv = 800V )
corresponding to deposition rates of 0.05ML/min (Co) and 0.35ML/min (Fe), re-
spectively.

For a further reduction of the impurity concentration, stepper motors were attached
to the shutters allowing deposition times down to 50ms. These actuators were
computer controlled assuring well-defined and reproducible deposition sequences.

2.1.4 Deposition of dilute magnetic films

A final sputtering/annealing cycle was performed after the out-gasing procedure
with both evaporators on temperature. The annealing step was shortened to 5
minutes and was lower in temperature (670K) to avoid surface contamination due
to a segregation of bulk defects. The film preparation started with a deposition
of 10ML of pure copper. Thereafter the impurity metal was added in the topmost
10-15 ML. Within 30 minutes after film deposition the samples were transferred into
the LN2 pre-cooled STM-cryostat. The final cool down to 5K was performed after
un-docking the mobile metal epitaxy chamber within 90 minutes after preparation.

The applied deposition sequences and substrate temperatures varied for the different
prepared systems:

Co in Cu(100)

The best results were obtained by heating the crystal with an e-beam power of 3W
during deposition. As the temperature was below the detection threshold of the
pyrometer (160◦C) a constant-power feedback was required for sample heating and
the prevailing sample temperature is unknown.
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Fe in Cu(100)

Preparing isolated subsurface iron atoms turned out to be a much more challenging
task because iron atoms have a much higher diffusibility in copper than cobalt atoms.
First preparation attempts resulted in a high number of Fe clusters in the surface
layer similar to those reported by [32].

Therefore the crystal was cooled down to 80K prior to deposition. The film was
grown onto the cold substrate with additional 5ML of pure copper on top. In
order to achieve a flat surface, the film was shortly annealed by heating up the
sample using an e-beam power of 30W until the pyrometer indicated a temperature
T > 160◦C. Then the power was reduced to 6W for 30 seconds and the sample
was immediately cooled down to 80K afterwards. Although a significant number of
Fe impurities stayed isolated below the surface and could be successfully analyzed,
several Fe-clusters were still observed in the surface layer. Thus, the procedure still
has room for improvement.

Co in Cu(111)

The experimental data of Co in Cu(111) presented in this thesis were prepared using
higher Cu-fluencies (3µA) and without simultaneous sample heating. Details on the
preparation can be found in the Ph.D thesis of Quaas [28, 29].

2.2 Scanning tunnelling microscopy

The Scanning Tunnelling Microscope is the most powerful tool to investigate the
morphology and the electronic structure of conductive solid surfaces in real space
with atomic resolution. It was developed in 1981 by Binnig and Rohrer [18] who
received the Nobel-prize in physics five years later. A comprehensive introduction
in scanning tunnelling microscopy can be found in [33] [34]. Here we will give a brief
description of the basic principles, the specific setup and the STM-Theory of Tersoff
and Harmann. An introduction in Scanning Tunnelling Spectroscopy (STS) as well
as the description of the different graphical STS-representations used in this thesis
can be found in Chapter 4.3.
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2.2.1 Basic principles of STM

In an STM, a sharp metal tip is brought in close proximity to the sample surface
resulting in an overlap of tip and sample wave functions. This causes nonzero
transmission probabilities of electrons so that an applied bias voltage VT results in
a net current IT (usually nA). This tunnelling current is very sensitive to the tip-
sample distance h and is stabilized using piezo-ceramic actuators and a closed-loop
control.

The acquisition of two-dimensional images is performed by scanning the tip laterally.
In this work we exclusively used constant current mode where the tip-sample distance
h is continuously adjusted in order to keep IT constant. This mode provides contours
h(x‖) of constant IT at every scan-point x‖ = (x, y). h(x‖) contains structural
information about surface e.g. mono-atomic steps, dislocations as well as the atomic
lattice. An example can be seen in Figure 2.2a), where information about the size
of mono-atomic terraces was extracted from constant current topographies. For this
thesis the morphology of the surface was of secondary importance while the STM-
signatures originating from the electronic structure of the sample were of primary
interest. Above areas of reduced electron density the tip has to be moved closer to
the surface to obtain the set tunnelling current. In contrast the tip will be retracted
above regions of increased electron density. More precisely it is only a small spectral
fraction of the charge density that contributes to the tunnelling current and thus
influences h(x‖). This fraction is sensitive to the chosen bias voltage VT which allows
the extraction of spectroscopic information.

2.2.2 STM-Theory of Tersoff and Harmann

Shortly after the development of the Scanning Tunnelling Microscope by Binnig and
Rohrer in 1981, Tersoff and Harmann presented a theory to explain the physical
information contained in STM-topographies. They based their theory on the work
of Bardeen, presented in 1961 who had described planar tunnelling devices using
first order perturbation theory. The transitions of electrons across the tunnelling
junction take place from filled tip-states Ψµ into empty sample states Ψν and from
filled sample states into empty tip states. Using the Fermi distributions f(ε) =
(1 + exp (ε/kBT ))−1 for tip and sample the tunnelling current I can be derived
using Fermi’s golden rule:

I =
2π

h̄
e2V

∑
µ,ν

|Mµν |2 (f(Eµ − ε
(T )
F )− f(Eν − ε

(S)
F ))δ(Eν − Eµ − eV ) (2.1)
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h0

h

Figure 2.4: Schematic picture of the tunnelling geometry taken from [35]. Of im-
portance for the interpretation of STM-images is the surface LDOS at position r0 -
well within the STM-tip

For low temperatures and low bias voltages only states at the Fermi energy con-
tribute to the tunnelling current. An expression for the tunnelling matrix element
Mµν was derived by Bardeen [36]:

Mµν =

∫

Ω

d~SΨµ∇Ψν −Ψν∇Ψµ (2.2)

where the integral is performed over any surface Ω lying entirely within the gap
region between tip and surface.

Tersoff and Hamann [35, 37] approximated the tip as an s-like wave function and
calculated the matrix element for a tip-sample geometry shown in Fig. 2.4. They
related the tunnelling current to the local density of states (LDOS) of the sample

%(x, ε) =
∑

α

|Ψα(x)|2δ(ε− Eα) (2.3)

Although the integration contour Ω is located anywhere between tip and sample, the
final expression contains only the sample LDOS at position r0, i.e. in the middle of
the STM-tip:

I ∝ V φ%t(εF )R2κ−4e2κR%(r0, εF ) (2.4)
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With %(h) ∝ e−2κh = e−2κ(h0+R) this gives a current I ∝ R2e−2κh0 . This current is
proportional to the surface area of the tip (∝ R2) and decays exponentially with
increasing distance h0 between tip and sample. Thus if the LDOS at the position
of the tip changes from %0(x, εF ) to %0(x, εF ) + ∆%(x, εF ) this is compensated by a
change of the tip-sample distance:

∆h(x‖) =
1

2κ
ln

(
1 +

∆%(x‖, εF )

%0(εF )

)
≈ ∆%(x‖, εF )

2κ%0(εF )
(2.5)

The last approximation holds only for |∆%| ¿ %0. Using a work function of 4eV a
variation of LDOS by one decade results in a 1Å change of the tip-sample distance.
The normalization ∆%/%0 will be commonly used in the next chapters.

2.2.3 Low temperature STM

The experiments presented in this thesis were performed using a custom-built low
temperature STM working at 5K. The construction of the STM-cryostat is depicted
in Figure 2.5. The core is a Besocke-type [38] piezo-unit, attached to a liquid
helium (LHe) bath cryostat. The LHe-tank is a spring-suspended, Viton damped
pendulum surrounded by a liquid-nitrogen cooled vessel, shielding the heat radiation.
The setup allows optical access and in-situ tip and sample exchange[39, 40]. STM-
scanner and sample support are thermally coupled to the LHe-tank using sapphire
plates and Indium foil. The tip is coupled to the cryostat using several thin silver
wires. Temperature at the sample support can be monitored using a CernoxTM-
sensor. Temperatures of 5.4K are commonly achieved with one LHe filling lasting
for a time period of 20 hours.

The STM-tips were electro-chemically etched from a 250 µm tungsten wire in a
KOH solution. Inside the UHV they were electrically heated to ≈ 1000K, sputtered
with 4keV Ar+ ions and characterized by field-emission. A detailed description of
the tip preparation including a SEM (Scanning Electron Microscopy)-study of the
achieved apex-radii can be found in [41].
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Figure 2.5: low temperature STM



Chapter 3

Electron propagation in real space

In this chapter, the influence of isolated subsurface impurities on the Local Density of
States at the surface is discussed. For convenience, we will start with the description
of experimental facts (3.1). For this we will have a look at a few STM measurements
of single subsurface cobalt and iron atoms in copper, which will later be analyzed in
detail. The subsequent task is to theoretically understand the observed signatures
and to develop a model that reproduces the STM-measurements. This process will
be conceptionally divided into three underlying processes. First of all we will regard
the propagation (3.2) of conduction band electrons within the unperturbed crystal
potential of the host metal. In particular we will discuss the influence of anisotropies
within the host metal’s band structure on the propagation. While the band struc-
ture is a property of the bare host metal the insertion of an impurity atom causes
perturbations within the host, which will be treated as an interaction (3.3) of the
otherwise unperturbed conduction band electrons with the impurity potential. The
third process is the detection (3.4) of the LDOS modulations with the STM. Since
the tip is positioned a few Ångstrøms above the surface and is of finite width, the
results of the STM measurements are affected by the properties of the tip and the
tunnelling junction. After having discussed these three processes a comparison (3.5)
between experiments and calculations will be performed allowing a depth classifica-
tion of the experimentally observed defect patterns. The influence of the spectral
properties of the impurity on the LDOS at the surface will be discussed in the next
chapter.

19
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a) Cu(111) 9x9 nm b) Cu(100) 10x10 nm c) Cu(100) 4x4 nm

1

2

Figure 3.1: STM Topographies of subsurface Co-impurities buried in different depths
below the (111)(a) and (100)(b,c) surfaces of copper. The used tunnelling parameters
were a) VT=-80mV,IT=1nA, b) VT=10mV,IT=0.8nA, c)VT=-50mV,IT=1nA. Red
lines in b) indicate the positions of the cross-sections analyzed in Fig. 3.2. The ori-
entation of the patterns arising from deeply buried defects is rotated by 45◦ compared
with those of surface-near impurities (red squares in c).

3.1 STM topographies of buried impurities

It is known from the Thomas-Fermi theory of screening [42] that defects incorporated
in metals are screened within distances of a few Å. Applied to copper, the host metal
of the systems prepared in this work, a screening length of rTF = 0.55Å is obtained.
This is much shorter than the inter-atomic distance (2.55Å). From this, it appears
quite questionable whether impurities buried up to 15 layers (≈ 30Å) below the
surface are causing any perturbations that can be detected with the STM.

In strong contrast to this expectation the experimental findings reveal that the
impurities can be clearly identified in the STM-measurements. Fig. 3.1a) shows
a 9nm×9nm image that illustrates the influence of different Co atom depths (6,7,9
and 10ML) below the Cu(111)-surface on a constant current topography. Two major
observations can be made here: i) a long-wavelength standing wave pattern caused
by surface state electrons that are scattered at a mono-atomic step-edge in the
upper left corner and ii) four ring-like structures, corresponding to short-wavelength
oscillations with an amplitude of about 2 pm. They vary in diameter but are constant
in their radial envelope width (≈ 1.5 oscillations). The long-wave modulations of
the surface-state electrons are unperturbed by the impurities. Since the LDOS of
the surface state electrons decays into the crystal within the first five atomic layers
[43], it can be concluded that the impurities must be positioned below the 5th
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Figure 3.2: Cross-sections of the defect patterns depicted in figure 3.1b : a) defect
close to the surface (section 1) b): raw data of a deeply buried impurity (section 2) -
defect signature below the noise level c): same defect but after averaging 20 parallel
scan lines shows 500fm modulations of the tip-sample distance.

layer. It will be proven later that the features having a larger diameter correspond
to impurities buried deeper below the surface. Therefore the LDOS seems to be
unmodified within a certain angle above the impurity.

Fig 3.1 b) and c) show the patterns induced by subsurface Co atoms that are buried
below the Cu(100) surface. Here fourfold symmetric patterns are observed. For the
deeply buried defects (large patterns in Fig. 3.1 b)) the electron density seems to
be little influenced directly above the defect. The orientation of the features arising
from deep defects seems to be rotated by 45◦ compared with the pattern arising
from the impurities being closer to the surface (Fig. 3.1 c)).

Although clear signatures of the impurity atoms can be identified, the measured
STM-signals are very weak. This can be seen in figure 3.2. The variations of tip-
sample distance arising from the deepest defects (section 2 in Fig. 3.1b) are about
500fm and therefore 400 times smaller than the height of a mono atomic step. It
is a good rule of thumb for the interpretation of STM-data that (assuming a work
function of 4eV) a change of the tip-sample distance of 1Å results in a variation of
tunnelling current by one decade. Consequently, the LDOS modulations that cause
a 500fm change of tip-sample distance are in the order of 0.6%.

We can summarize that subsurface impurities in copper produce short wavelength
LDOS oscillations with a significant anisotropy in the STM-topographies. Espe-
cially at larger distances from the impurity atoms, the LDOS is influenced only in
narrowly confined directions from the impurity atom. From the short wavelength
and the characteristic symmetry of the observed patterns we conclude that the os-
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cillations are due to scattering of bulk electrons at the subsurface defects, which
produce a standing wave pattern in their vicinity. Therefore the physics behind
these observations should be found in the band structure of the host metal. This
connection between the band structure and the characteristic shapes of the observed
LDOS-patterns will be elucidated in the following.

3.2 Electron propagation in the crystal lattice

”If you want to learn about nature, to appreciate nature, it is necessary
to understand the language that she speaks in.”

Richard P. Feynman

From the symmetry and the short wavelength of the described impurity signatures
it is evident that the band structure of the host metals has a major impact on the
observed patterns. We will now show that the shape of the observed patterns is
directly connected to a fundamental property of electronic structure, the quantum-
mechanical propagator or single-particle Green function G. After a short introduc-
tion in the physical meaning of G we will show the relationship between G and the
Fermi surface (FS) of a particular system. The impact of crystal anisotropies on the
propagation of electrons will then be discussed using simple toy models. In order to
correctly describe the propagation in the host metal of our experimental systems,
the band structure and the propagator of copper are then calculated using an LCAO
(linear combination of atomic orbitals) approach.

3.2.1 The single electron propagator

In physics there exist different variants of Green functions and hence countless pos-
sibilities to introduce them. For a comprehensive review and formal deviations the
reader is referred to literature [17] [12]. We will use the most general definition of
the single particle Green function:

Gλ,ν(t− t′) = −i〈|T cλ(t)c
†
ν(t

′)|〉 (3.1)

The expectation value in the above expression has to be calculated using the ground-
state. The operators c/c† annihilate/create a particle in a state with quantum
number λ/ν at time t/t′; T is the time-ordering operator. If c† acts prior to c
(t′ < t), Gλ,ν describes the propagation of a electron from state ν to λ. Otherwise,
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Figure 3.3: wave propagation in an isotropic system

if an electron is removed from the ground state and reinserted later (t′ > t), the
propagation of a hole is described. Only two Green functions are of particular
interest in the context of this work. In the first one used in this chapter c† and c
are the field-operators ψ̂†(x)/ψ̂(x′) that create/annihilate an electron at a certain
positions x/x′ in the crystal. The second one will be used later and corresponds to
a creation/annihilation of an electron in an impurity d-orbital using the operators
c†d/cd. Throughout the following we will use the Fourier transforms with respect to
the time G(x,x′, ε) and Gdd(ε) respectively.

We now focus on the Green function G(x,x′, ε) of the conduction electrons. This
property describes, how electrons of energy ε propagate from a point-source at x′

to other positions x in the crystal. The ripple extending from a drop falling into
still water (Fig. 3.3) and the Huygens wave in optics are examples of propagators
in other fields of physics. The drop example corresponds to an excitation that
is δ-like in space and time and would be described by the time-dependent Green
function G(x,x′, t − t′) of equation 3.1. Thus the corresponding analog for the
energy-dependent propagator G(x,x′, ε) is the wave extending from a needle being
continuously dipped into the water at position x′ with a constant angular frequency
ω = ε/h̄.

The single electron propagator in vacuum is a spherical wave similar to the Huygens
wave in free space or isotropic optical media. This is not the case if an electron prop-
agates within a crystal potential. Using spectral representation, G can be expanded
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using the eigenfunctions Ψk(x) and the band structure E(k):

G(x,x′, ε) = lim
η→0

∫

k

d3k
Ψk(x)Ψ∗

k(x
′)

ε− E(k) + iη
(3.2)

We can gain further insight into implications of equation 3.2 by using the identity:

1

ε− E(k) + iη
−→limη→0 P

1

ε− E(k)
− iπδ(ε− E(k)) (3.3)

where P denotes the principal value of the above integral. From this it can be seen
that the local density of states (LDOS), that was defined in Chapter 2, is related to
the imaginary part of G for x = x′

%(x, ε) =
∑

k

|Ψk(x)|2 δ(ε− E(k)) = − 1

π
ImG(x,x, ε) (3.4)

The second conclusion that can be derived from equation 3.3 is that the imaginary
part of the propagator can be expressed as a superposition of all wave functions
having identical Energy ε

ImG(x,x′, ε) = −π
∑
k

Ψk(x)Ψ∗
k(x

′)δ(ε− E(k))

= −π
∑

k∈Ω(ε)

uk(x)u∗k(x
′)eik(x−x′)

(3.5)

In the previous equation uk(x) is the lattice-periodic part of the Bloch functions.
One can see that the G is directly associated with the geometry of the corresponding
iso-energy surface Ω(ε) because the δ-function selects only those states having the
correct energy ε. Thus the shape of the Fermi surface (FS) is of particular interest
if the propagation of electrons at the Fermi energy εF is considered.

In the following we will neglect the lattice-periodicity of the wave functions uk(x) =
1. This will cause the propagator to depend only on the difference vector x − x′.
If uk(x) is only weakly varying with k, our approach would describe an envelope
function of the exact propagator. If the variation of uk(x) across the iso-energy
surface is significant, one possibility would be to expand the lattice periodic part in
terms of atomic wave functions similar to the LCAO ansatz that will be used later to
determine E(k) of copper (section 3.2.3). This would lead to a matrix equation for
G, similar to those obtained within a KKR (Kohn, Koringa, Rostocker) formalism
[44]. However, we leave this part to the ab-initio experts (see 3.5.5) and will maintain
this simplifying assumption throughout the following.
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3.2.2 G of anisotropic media, electron focusing

We will now demonstrate how the propagation of electrons is influenced by the
shape of the Fermi surface using a few illustrative examples. With uk(x) = 1 our
system gained full translational invariance instead of lattice periodicity - it is now
homogeneous but may still possess anisotropies. We can set the position of the
source to the origin x′ = 0 and analyze the interrelation between the shape of the
propagator and the geometry of several fictitious iso-energy surfaces. For simplicity,
this is performed in 2 dimensions. Furthermore we concentrate on the imaginary
part of the propagator and assume that (within a band) the main characteristics
(wavelength, directional dependence, spatial decay...) can already be derived from
the ImG. A more detailed discussion of ReG can be found in Appendix B.

Since the imaginary part (equation 3.5) is a simple superposition of plane waves,
the mechanism behind all effects elucidated in the following is constructive and
destructive interference of eigenfunctions.

Model Fermi surfaces

We start the discussion with an isotropic band structure. In this case the Fermi sur-
face is a sphere with radius kF , and the corresponding Green function is a spherical
wave decaying with |x−x′|−1 in amplitude (|x−x′|−1/2 in 2 dimensions) [Fig 3.4a].
For the vast majority of crystals the Fermi surface deviates from a spherical shape.
Interesting effects can arise in this case, which will be demonstrated using rather
extreme FS geometries.

In the most extreme case (Fig. 3.4b) where the Fermi surface is composed of flat
areas1, the wave functions of equation 3.5 interfere constructively in beam-like re-
gions perpendicular to these facets and interfere destructively elsewhere in space.
In contrast to the isotropic example, the Green functions amplitude does not decay
along the beams, which is similar to the Green function of a one-dimensional system.
This implies that electrons emitted from point-like sources or scattered at point-like
defects do not propagate in a spherical wave like in free space, but are in general
focused in preferential directions and are detectable in much larger distances from
the source than in the case of an isotropic band structure. In this case the Huygens
wave assumes a much more complex shape.

1the Fermi surface of the two-dimensional non-interacting s-band Hubbard-model has such a
geometry at half filling, if only nearest-neighbor hopping processes are considered
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I:   Fermisurface / group velocity

II:  Propagator

a)

d)

c)b)

e) f)

a)

d)

c)b)

e) f)

Figure 3.4: Illustration of the relationship between the geometry of the Fermi surface
(I) (blue contours), the group velocities (red arrows) and the corresponding propa-
gator (II) of a given system: constructive interference of the wave-functions occurs
in the directions of the group velocities. Flat or weakly curved areas on the Fermi
surface produce an accumulation of electron flux in certain directions.
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If the inclination of the facets is modified (Fig. 3.4c) the directions of preferred
propagation change in the same way but stay perpendicular to the flat areas. Here
one can even observe that the wave-fronts are not necessarily perpendicular to the
direction of propagation. Fig. 3.4d) shows that an enlargement of the Fermi surface
does not change the directional characteristic but reduces the wavelength and the
width of the beam-like propagation paths. The FS does not need to be such ”square-
edged” as the examples discussed above in order to produce electron focusing effects.
In Fig. 3.4e) we show a model FS of rounded square geometry i.e. it is flat in certain
regions and has a constant curvature elsewhere. This example illustrates that the
corresponding Green function shows a non-decaying propagation within beams in
the diagonal directions and a decreasing amplitude in the other directions. The
Fermi surface of Figure 3.4f), which is slightly curved on all facets, still shows a
strongly directional propagation. But as the ”beams” diverge, the amplitude of G
does decay with increasing distance.

These examples help to get a feeling for the relationship between the Green function
and the geometry of the iso-energy surface. It was shown that if the FS is non-
spherical, the propagator is anisotropic and has high intensities in the directions
connected with the normal vectors on the FS. In the case of flat regions (equivalent
to zero curvature) the normal vectors point in identical direction and the beam does
not diverge. If a slight curvature is present on the FS, the distribution of normal
vectors explains how the propagation paths diverge with increasing distance. The
physical reason why normal vectors and surface curvatures seem to be important in
the connection between G(x− x′, ε) and Ω(ε) will be extracted in the next section.

Stationary phase

We stated before that, since equation 3.5 is an ordinary superposition of plane
waves, all effects and anisotropies we observed on the toy models can be attributed
to constructive and destructive interference. The question is, how the positions
x, at which constructive interference occurs, depend on the chosen set of states
Ω(ε) = {k|E(k) = ε} that are superposed. For this discussion we go back to the
three-dimensional case.

The behavior can be generally understood with the well-known concept of stationary
phase from wave mechanics. The wave functions of equation 3.5 possess a k- and
x-dependent phase Φ = kx. If this phase varies during the integration over the
Fermi surface, rapid oscillation of the waves will result in cancellation. Maximum
constructive interference occurs at those positions x, where the phase is stationary,
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i.e. ∇Φ = 0. If the iso-energy surface is parameterized using two coordinates ϕ, θ,
this gives:

dk

dθ
x =

dk

dϕ
x = 0 =⇒ x ‖

[
dk

dϕ
× dk

dθ

]
(3.6)

Stationary phase and therefore maximum constructive interference occurs in direc-
tions normal to the surface. Alternatively, with Φ = kx− ωt, the stationary phase
condition yields: x/t = ∇kω(k) = vGr(k) i.e. the positions of constructive inter-
ference are determined by the group-velocity. This gives the same result, since the
group velocities are always normal vectors on the iso-energy surfaces.

The model Fermi surfaces indicated that the amplitude does not decay along the
focusing beams in the case of flat facets on the FS while the Green function does
decay perpendicular to curved regions. Concerning this spatial decay of G, we
perform a Taylor approximation of Ω(ε) near k0:

k(ϕ, θ) = k0 + ϕ
dk

dϕ
+ θ

dk

dθ
+

ϕ2

2

d2k

dϕ2
+

θ2

2

d2k

dθ2
(3.7)

The orientation of the coordinates ϕ and θ was chosen appropriately so that d2k
dϕdθ

=
0. This means that the second derivatives in eq. 3.7 correspond to the principal
curvatures Kj = d2k

dj2 |k0 (j = ϕ, θ) at k0. The iso-surface integration is then:
∫∫

eik(ϕ,θ)xdϕdθ = eik0x

[∫
eiϕ( dk

dϕ
x+ϕ

2
Kϕx)dϕ

] [∫
eiθ( dk

dθ
x+ θ

2
Kθx)dθ

]
(3.8)

Here the integrals in brackets can be regarded separately and recomposed later. If
the curvature in the particular direction (ϕ or θ) is zero, evaluating the integral
yields an envelope function that confines the beam laterally:

∆/2∫

−∆/2

eiϕ dk
dϕ

xdϕ =
2 sin ∆ dk

dϕ
x

dk
dϕ

x
= ∆sinc

(
∆

dk

dϕ
x

)
(3.9)

The lateral width of this envelope function depends on the extension ∆ of the flat
area. When ∆ is increased, the beam becomes narrower and higher in amplitude.
This behavior was observed with the toy-model, where the beams of the larger Fermi
surface in Fig. 3.4d) were thinner than those of the small square FS in Fig. 3.4a).
The above expression does not include any terms that would cause a decay of the
amplitude with increasing distance.

If a curvature around k0 is present in the particular direction (ϕ or θ), the evaluation
of the integral in the directions of stationary phase yields:

∞∫

−∞

ei ϕ2

2
Kϕxdϕ =

(
− π

2|Kix|
)1/2

ei π
4
sn(Kx) (3.10)
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the last term gives e−iπ/4 / e+iπ/4 phase shifts, if the surface is concave/convex near
k0. The important property is the spatial decay ∝ 1/

√
|x||Ki|. If the principal

curvature Ki is reduced, the decay becomes weaker but stays ∝ |x|−1/2 unless Ki =
0.

Finally it is only important whether both, one or none of the brackets in eq. 3.8 give
an |x|−1/2- behavior. If both principal curvatures are non-zero (Ki, Kj 6= 0), which
is the case for spherical, ellipsoidal or hyperboloidal areas, this results in a |x|−1

decay of G. A |x|−1/2 decay arises from cylindrical facets (Ki = 0, Kj 6= 0), where
one principal curvature vanishes while the area is curved in the other direction.
A non-decaying propagation will occur perpendicular to flat regions (Ki, Kj = 0).
A similar derivation of indirect exchange interaction of systems with non-spherical
Fermi surfaces was performed by Roth et al.[11]. The overall phase shift of both
terms in brackets will be +π/2 (ellipsoidal maximum), +π/4 (cylindrical maximum),
0 (flat area or saddle point), −π/4 (cylindrical minimum), and −π/2 (ellipsoidal
minimum).

If G is known, normal vectors, principle curvatures and phase-shifts are of minor
relevance. But they are useful for a qualitative estimation of the shape of G from a
”quick look” at the iso-energy surfaces Ω(ε) without performing the integration of
equation 3.5.

3.2.3 Calculating G of the Host

After the discussion of simple Fermi surface geometries we will now analyze the
realistic FS of the host material (copper) used for the experiments. As demonstrated
in the last section, the propagator of a certain system is directly associated with the
iso-energy-surfaces. Therefore it is of particular interest whether the band structure
of copper shows anisotropies that could explain the experimental observations.

The Fermi surface of copper is well known from extensive experimental and theo-
retical studies. In contrast to the complex Fermi surfaces of other materials it looks
rather normal, being ”nearly” spherical with eight neck-like band gaps in the L-
directions. It will now be shows that these small deviations from a spherical shape
are responsible for the observed interference patterns. An overview of the Fermi
surfaces of many materials can be found in [45]. Our analysis will be initially per-
formed using this published data. Thereafter it will be necessary to calculate the
iso-energy surfaces for various energies ε using an LCAO-technique.
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Fermi surface from an Internet-Database

The most quick and easy way to analyze the propagation of electrons in copper is to
use published Fermi surface data and to perform the identical analysis that was al-
ready done to our ”toy model” examples. The URL www.phys.ufl.edu/fermisurface
[45] contains Fermi surfaces for a large number of solid elements. They are available
in both graphical data formats and as vrml-files (Virtual Reality Modeling Lan-
guage). The latter one is a file format for interactive 3-dimensional vector graphics
that allows the user to look at a 3D object from different perspectives. Within the
file, the Fermi surface is stored as a 3D polygon, whose vertices are listed in plain
text and can be easily extracted. This also allows to directly perform the identical
analysis on any other material.

The vrml -files contain about 6700 k-points, which are irregularly distributed over the
Fermi surface. In some regions, which are stronger curved (e.g. the ”necks” of the
Fermi surface), a high density of k-points is present while the file contains a smaller
k-point density in other areas. Consequently the first step is to interpolate this data
into a regular grid in spherical coordinates, which gives kF (ϕ, θ). The set of co-
ordinates [ϕ, θ, kF (ϕ, θ)] was transferred to cartesian coordinates [kx(ϕ, θ), ky(ϕ, θ),
kz(ϕ, θ)]. From this the Jacobian determinant J(ϕ, θ) was calculated, describing
the surface area of each grid ”tile”. Finally, by superposing all states lying on the
Fermi surface, we obtained2:

− 1

π
ImG(x− x′, εF ) ∝

∑

ϕ,θ

J(ϕ, θ)eik(ϕ,θ)(x−x′) =
∑

ϕ,θ

J(ϕ, θ) cos(k(ϕ, θ)(x− x′))

(3.11)
In the last term the antisymmetric part of the exponential function was omitted
because of time-inversion symmetry leading to E(k) = E(−k).

This quick and simple calculation already gives a general insight into the electron
propagation in copper. The obtained Green function of copper is depicted in Fig-
ure 3.5 and demonstrates that significant effects of electron focusing are present in
the host metal. Due to the crystal potential, the spherically symmetric propagator
of a free electron constricts into eight slightly distorted hollow cones around the
[111] directions. The propagation is strongly suppressed within a certain angle β
around [111] that is much larger than the angle α, within which no states exist at
the Fermi energy due to the pseudo-band gap in the L-directions. This directly ex-
plains, why the interference patterns observed on the (111) surface become larger in
their diameter the deeper the defects were buried below the surface. An interesting

2equation 3.11 is approximate, since the summation lacks a factor |vGr(ϕ, θ)|−1 that is not
obtainable from the vrml -files
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Figure 3.5: a) Fermi surface (cross section) of copper showing areas of reduced
curvature b,c) corresponding propagator of copper: strong electron focusing onto
hollow-cones around [111].

detail in Figure 3.5 is that the wall width of the focusing cone does not broaden with
increasing distance. This in turn explains, why the width of the radial envelope was
constant for the different observed STM patterns (≈ 1.5 oscillations).

Calculation of E(k) by LCAO

In the following (especially in chapter 4) we will be interested in the energetic behav-
ior of the propagation. Thus the iso-energy-surfaces for values different from εF are
needed. Furthermore, as we will also need the real part of G0, the whole band struc-
ture E(k) of copper has to be calculated. In this work we used a LCAO-technique
(linear combination of atomic orbials) for this purpose. The data available in the
Fermi surface database had been calculated using identical method and parameters
[46] as we are using here.

To calculate the band structure of copper, a set of 9 basis functions (1 s-state,
3 p-states and 5 d-states) was used. The required k-dependent overlap Sij(k) and
Hamiltonian matrices Hij(k) were calculated from a set of LCAO parameters. These
were taken from literature [46]. The authors obtained the parameters by fitting the
band structures to the results of ”first-principle” calculations. By this they obtain
RMS deviation from the ab-initio results of 7meV and a maximum error of 15meV.
Consequently it is possible to obtain realistic data of the host-metal’s band structure
by easy calculations. A brief introduction into the LCAO-technique as well as the
expressions for the matrix elements (Sij(k), Hij(k)) and the parameters we used can
be found in Appendix A.
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Figure 3.6: Fermi surface calculated using the LCAO technique. A specialized curvi-
linear coordinate system was used to seamlessly cover the Fermi surface while re-
flecting the symmetries of the fcc-point-group. A 10x10 Grid within the irreducible
part of the first Brillouin zone is plotted in red.

Since the fcc-Brillouin zone is invariant under various symmetry transformations,
computational effort can be reduced by restricting the calculations to the irreducible
part of the first Brillouin zone (iFBZ). The iFBZ is 1/48 of the full Brillouin zone.
In order to seamlessly cover the Fermi surface, a special angular grid was used. This
can be seen in Figure 3.6 and is described in Appendix A. The computational time
for a such a 10x10 grid is 15 seconds and gives already acceptable results in the
subsequent calculation of G. For most of the calculations we used a 20x20 grid
which corresponds to a total number of 19200 k-points.

At every grid point (ϕ, θ), Fermi wavevector k(ϕ, θ), the Jacobi determinant J(ϕ, θ)
and the group-velocity vGr(ϕ, θ) (which was not available in the vrml -files) were
determined. From this, the imaginary part of the propagator was calculated:

ImG(x− x′, ε) = −iπ
∑

k∈Ω(ε)

J(k)

|vGr(k)|e
ik(x−x′) (3.12)



3.2. ELECTRON PROPAGATION IN THE CRYSTAL LATTICE 33

b)a)

Figure 3.7: a) the sign of the Gaussian curvature and b) the inverse mass tensor are
represented on the Fermi surface with colors. a) red regions are local maxima while
blue regions correspond to saddle points b) red values correspond to low curvatures
and hence to high intensities in the resulting Green function. The calculation was
performed using the LCAO technique.

The real part of G was either calculated using the Kramers-Kronig relation [47, 48]
from a set of ImG(ε) at different energies ε or approximately from the iso-energy
surface Ω(ε). For sake of readability this is described in Appendix B.

As stated before the propagator can be obtained directly from the band structure
E(k) and without the prior calculation of group-velocities, effective mass tensors,
curvatures etc. However, these concepts are useful in understanding why the propa-
gator has high intensities in some directions and electron flux is suppressed in other
directions. Before coming back to the description of subsurface impurities we want
to analyze some topological properties of the copper FS. Figure 3.7a) shows the sign
of the Gaussian curvature on different parts of the Fermi surface. The Gaussian
curvature is the product of both principal curvatures, i.e. it is positive in the case
of minima and maxima and negative in the case of saddle-points. We can see that
the Fermi surface is convex in cross-like regions centered around [100], while the
blue-regions have a negative Gaussian curvature. Obviously, along the connection
line between both regions the Gaussian curvature has to be zero. This means that at
least one of both principal curvatures has to be zero at these positions which in turn
produces an electron focusing effect. Figure 3.7b) shows the inverse effective mass
tensor of the quasi-particles at the Fermi energy. This concept is also commonly
used in the theory of interlayer-exchange coupling [3]. It is a direct measure of the
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flatness of the particular area and describes the strength of the electron flux in the
particular direction. Of course this concept breaks down, if one principal curvature
is zero. From the inverse mass tensor we can see that high intensities occur at the
junctions between the red and blue areas of Fig. 3.7a).

From analyzing the geometry of the host metal’s Fermi surface and from the the
deduced shape of the conduction electron propagator we can already understand the
experimental observations. The bulk electrons that are scattered at the subsurface
atoms are focused in preferential directions. Thus the standing wave pattern has
high intensities in these directions. Up to now we did not calculate any local density
of states and regarded only the ”Huygens wave” of electrons in copper. We now
require a physical concept that properly describes the perturbation of the conduction
electrons by the impurity.

3.3 Interaction: single impurity scattering

So far we regarded G, a property of the infinite, unperturbed host metal describing
the response of such a system to a mono-energetic, point like excitation. The next
step is to introduce perturbations in this system and to analyze how these affect the
local density of states.

3.3.1 The t-matrix

In general, the effect of any perturbations (surface, interfaces, impurities) can be
subsumed in a specific t-Matrix t(x,x′, ε) which is due the potential change ∆V =
V −Vhost between the perturbed system and ideal host. We will now term the Green
function of the ideal host G0. The propagator G of the perturbed system can then
be obtained from the unperturbed propagator G0 and the t-matrix using the Dyson
equation [49]:

G(x,x′, ε) = G0(x,x′, ε) +

∫∫
d3x′′d3x′′′G0(x,x′′′, ε)t(x′′′,x′′, ε)G0(x

′′,x′, ε) (3.13)

The most simple perturbation is a single point scatterer. In this case the t-Matrix
is reduced to a complex number timp(ε) = t(xi,xi, ε) at the position of the impurity
xi. The Green function of the system including the impurity is then modified by
an additional term, describing the propagation from x′ to the impurity at xi, the
scattering described by timp(ε) and the propagation to x

G(x,x′, ε) = G0(x,x′, ε) + G0(x,xi, ε)timp(ε)G0(xi,x
′, ε) (3.14)
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The complex number timp(ε) describes the scattering amplitude and -phase shift of
the electrons due to the interaction with the impurity.

3.3.2 LDOS in the vicinity of a single impurity

For the STM-experiment we are interested in the local density of states in the vicinity
of the impurity. Thus we need the diagonal elements (x = x′) of the perturbed
propagator G, as they correspond to the stationary part of the spectral electron
density :

%(x, ε) = − 1

π
ImG(x,x, ε) = %0(ε) + ∆%(x, ε) (3.15)

Here the unperturbed local density of states %0 is independent of the position x as we
neglected the lattice-periodic part uk(x) in the Green function. This first term just
produces the ”grey background” in the STM-images. Due to time-inversion sym-
metry, the values of G0 for the propagation to and forth the impurity are identical.
The observed oscillations in the LDOS are contained in the last term of equation
3.15, which is:

∆%(x, ε) = − 1

π
Im

[
timp(ε)G0(x,xi, ε)

2
]

(3.16)

Consequently, with the assumption of a point-scatterer, the three dimensional LDOS-
oscillations in the vicinity of the impurity can be directly obtained, once the prop-
agator is calculated. The envelope of these oscillations is solely determined by G0.
The quantity describing the position of LDOS maxima and -minima within this
envelope is the phase of the unknown complex number timp(ε).

If the impact of the surface (reflections) on the propagation is neglected - we will
abandon this assumption later - the LDOS at the surface corresponds to two-
dimensional cross-sections normal to certain directions and in certain distances
through the three-dimensional LDOS-modulation described by equation 3.16. An
example of (111) sections in distances of 6,8,10 and 12 ML from the point scatterer
can be seen in figure 3.8 3.

The results for [100] and [111] planes in certain distances from the impurity are
shown in Fig. 3.9. They show some qualitative similarity to the measured STM-
images, i.e. they show features increasing in size with increasing distance from the
impurity that poses a significant anisotropy. The latter is also directly connected to
the host metals band structure (3-fold symmetry for (111) and 4-fold symmetry for

3In reality G0 was calculated only on these planes instead of computing three-dimensional data
and discarding most of it afterwards
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lateral position [Å] lateral position [Å]

6 ML

8 ML

10 ML

12 ML

Figure 3.8: LDOS oscillations on planes in distances of 6,8,10 and 12 ML to the
impurity and perpendicular to the [111] direction

(100) planes) and explains, why no LDOS modulation is present within a certain
angle above an impurity below the (111) surface.

Although the result show some similarity to the experiments, there are some sig-
nificant differences. A quantitative comparison reveals that the wavelength of the
calculated oscillations is shorter than in the experiments. Additionally, the calcu-
lations appear ”wrinkled” and show beams extending in radial directions. These
beams are along the intersections of the ”surface” and the cones which are oriented
in a certain angle relative to the surface. In the case of the (111)-surface, these
are the focusing cones around [111], [111] and [111] which produce open curves at
the surface. The identical mechanism is responsible for the 4 beams on the (100)-
planes that arise from intersecting [111], [111], [111] and [111] oriented cones. This
is sketched in Figure 3.10.

In fact we do not observe any of these conic sections in the experiments and thus the
presented results are unsatisfactory. Therefore we have to remember what the STM
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d=5Å d=10Å d=15Å

(100) Planes (6x6 nm)

(111) Planes (6x6 nm)

[010]

[0
11

]

[112]

[110]

[112]

d=20Å

Figure 3.9: calculated LDOS on planes in different distances (5Å,10Å,15Å and 20Å)
from the impurity and normal to certain directions ((100) and (111)).

is sensitive to and we have to consider the way, how the model needs to be modified in
order to reproduce the experimental observations. Obviously an important physical
effect has not been considered so far. Most probably this is the role of the surface,
which was treated in a very unrealistic way so far.

3.4 Detection

In the previous section it was described, how the LDOS is modulated in the vicinity
of a single subsurface point scatterer. It was shown that due to the electron-focusing
effect, the LDOS is influenced only in narrowly confined directions from the impurity.
Therefore the standing wave pattern is mainly restricted to eight slightly distorted
hollow cones around the {111}-directions. Intersecting [111] planes therefore show
LDOS modulations in a ring-like area while [100] planes show square-like patterns.
In this section we will include one final physical effect in order to correctly describe
the experimental data. This is the role of the surface and the tunnelling-junction.
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[111]

[-111] [11-1]

[1-11]
[1-11] [111]

[1-1-1] [11-1]

(100)-planes (111)-planes

Figure 3.10: Sketch to illustrate the sections of the focusing cones that are oriented
in certain angles relative to the surface.

As was described in Chapter 2 (STM Theory of Tersoff and Harmann) the sample
LDOS inside the vacuum at a certain distance h - corresponding to a position well
within the STM-tip - is mathematically adequate to describe the measured tunnelling
current. This distance h is basically the sum of the tip-sample separation h0 and the
tip’s curvature radius R. Both may vary under different experimental conditions,
although the particular values are usually not known with absolute precision. h0 can
be modified by changing the tunnelling resistance VT /IT while R can be changed
by modifying the tip’s morphology using in-situ tip preparations, i.e. voltage pulses
or gentle tip-sample contacts. Before investigating this experimental behavior, we
want to analyze how the vacuum LDOS in certain distances h from the surface is
modified by the presence of the impurity. Our model, which presently contains only
the (anisotropic) propagation within the bulk and the scattering at the impurity
has to be extended by a third physical process: the reflection of the electrons by the
surface and their exponential decay into the vacuum.

3.4.1 Vacuum LDOS at different distances - a first approach

The tunnelling current has contributions of multiple states, which are decaying dif-
ferently into the vacuum. If we assume full translational invariance parallel to the
surface, the parallel component of wave vector k‖ is conserved. Inside the vacuum
the electrons obey the Schroedinger equation [50] of a free-electron:

h̄2

2m
(k2
‖ − κ2) = ∆E − Φ (3.17)
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x,y
h

Figure 3.11: Sketch to illustrate the effect of an k‖-dependant exponential decay on
the vacuum LDOS. The short wavelength contribution gets suppressed and will not
be detected for higher tip-sample distances h.

Here Φ is the work function of the material and ∆E = E − µ the electron energy
with respect to the chemical potential. From this a k‖-dependant decay constant κ
can be derived:

κ(k‖) =

√
2m

h̄2 (Φ−∆E) + k2
‖ (3.18)

This equation is the most important reason, why the LDOS oscillations calculated in
the previous section had only a fair agreement with the experimental observations.
The above expression shows that states with high k‖-values have a higher κ and
therefore decay faster into the vacuum. Consequently the STM is more sensitive to
states near the center of the surface Brillouin-zone, while short-wavelength contri-
butions to the LDOS oscillations will be suppressed. This is sketched in Fig. 3.11
showing that at higher distances h, the wave function is dominated by the long
wavelength contributions.
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In the vacuum, the wave-function of state |k〉 is then:

Ψ(x‖, h) ∼ exp
(
ik‖x‖

) · exp
(
−h

√
k2
‖ + κ2

0

)
(3.19)

where we defined κ0 ≡ κ(k‖ = 0) =
√

2m(∆E − Φ)/h̄. In order to get an idea how
this effect influences the observed patterns we perform a Taylor approximation of
eq. 3.19 up to third order: √

k2
‖ + κ2

0 ≈ κ0 +
k2
‖

2κ0

(3.20)

This approximation is valid for k‖ < κ0. For the case of copper this is a good
treatment of states having k‖ < 1.1Å−1 while states having higher k‖ values are over-
suppressed (the approximate radii of the Cu-Fermi surface are ≈ 1.3Å−1 in [110] and
≈ 1.45Å−1 in [100] direction). Inserting 3.20 in 3.19 gives a handy expression:

exp (−κh) ≈ exp (−κ0h) · exp

(
−

k2
‖h

2κ0

)
(3.21)

This is, apart from a general attenuation (exp (−κ0h)) of the wave function’s am-
plitude, a Gaussian with a standard deviation of σk = κ0/h. This implies that one
can transform the wave functions from a smaller distance h1 to greater distances h2

by a convolution (symbol ∗) with a Gaussian of standard deviation σx = h/κ0:

Ψ(x‖, h2) = exp (−κ0(h2 − h1)) ·Ψ(x‖, h1) ∗ exp

(
−

x2
‖

2σx

)
(3.22)

This is very helpful as the effect of the tip-sample distance h can be described by
a simple Gauss filtering. If we increase h either by choosing tunnelling conditions,
where the tip is at a larger distance from the surface or by using a blunter tip, the
wave functions probed by the tip will be increasingly smeared out. If the approxima-
tion 3.21 is not valid, the convolution has to be performed using a function different
from a Gaussian (the Fourier transform of the last term in eq. 3.19), but the whole
effect can still be understood as a kind of smoothing filter. This convolution can also
be applied to any superposition of wave functions as well as to the Green functions.

For a moment we assume that the intersecting planes of the 3-dimensional Friedel
oscillation calculated in the previous section are the surface LDOS at h = 0. This
approach neglects reflections of the electrons induced by surface and will be aban-
doned later. In this case we can obtain the vacuum LDOS at distances h > 0 by
the procedure described above: the Green function G0 describing the propagation
of electrons from the position of the impurity to the ”surface” is convoluted with
a Gaussian of width σx(h). Thereafter the obtained propagator G0(x,xi, h, ε) is
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h = 0Å h = 4Å

*

Figure 3.12: Impact of different tip-sample distances h on the calculated LDOS:
enlarging h suppresses short-wavelength contributions.

inserted in equation 3.16. The result is depicted in Figure 3.12 for h = 0Å and
h = 4Å. This brings the results of the calculations more closely to the experimental
data: as short wavelength states are suppressed, increasing h increases the observed
wavelength. The six beams (∗) visible in the LDOS of the (111) surface - they cor-
respond to the intersections of the focusing cones around [111],[111]and[111] - have
disappeared. Finally, the whole pattern, which appeared rather wrinkled at h = 0
becomes more smoothed for higher tip-sample distances.

Obviously the propagation of the electrons in the vacuum is also an important
physical process in our experimental system. The convolution technique gives an
illustrative insight into the impact of these effect on the experimental observations.
As a last refinement of this model we will now include the effect of surface reflections
in a more detailed approach. After that we will go back to the experimental data
and perform a detailed comparison with the results of the calculations.

3.4.2 Implementing a semi-infinite crystal geometry

Previously, the behavior within the bulk and the vacuum have been treated sepa-
rately. The unperturbed propagator of the host material showed strong anisotropies
that explained the directional dependence of the LDOS modulations while the k‖-
dependent decay within the vacuum could be approximated by the effect of a simple
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z

(x,y)

I (z>0):Vacuum

II (z<0):  Crystal

r‘=(x‘,y‘,z‘)=(x‘,y‘.h)

r=(x,y,z)=(x,y,-d)

G
0 CV(x-x‘,y-y‘,d,h)

h=z‘

d=-z

Figure 3.13: Coordinate system used for the semi-infinite crystal geometry. The
propagator GCV describes the propagation from a position r′ within the vacuum to a
position r inside the crystal.

Gauss filter. Up to now, we did not match these two processes together so that the
continuity of wave function’s derivative at the surface was not given. The impact
of the surface on the bulk propagation (reflections) was completely ignored. These
effects should not be neglected, especially since they can easily be implemented
without increasing the computational effort.

We now choose the z-axis perpendicular to the surface and define two adjacent
subspaces ”vacuum” (V) (z > 0) and ”crystal” (C) (z <= 0) in which the wave

functions are denoted Ψ
(V )
k and Ψ

(C)
k , respectively. In order to clarify whether a

position is within C or V, we will use the variables d (”depth”, d = −z|z <= 0) and
h (”height”; h = z|z > 0) for the two subspaces. The chosen geometry is depicted
in Fig. 3.13.

We again assume a full translational invariance parallel to the surface so that k‖ is

conserved. The perpendicular wave vector component k
(i)
⊥ of an incident electron

is now reflected into k
(r)
⊥ . The connection between k

(i)
⊥ and k

(r)
⊥ depends on the

symmetry of the band structure with respect to the particular surface direction. In
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Figure 3.14: The role of the surface: an incident electron (k‖, k
(i)
⊥ ) is reflected by the

surface into state (k‖, k
(r)
⊥ ), which depends on the symmetry of Ω(ε) with respect to

the particular surface direction.

Figure 3.14a) this is sketched for a Fermi surface, which does not have reflection
symmetry in the surface direction. If the surface constitutes a mirror plane of the
crystal, which is the case for (100) and (110) surfaces, this results in k

(r)
⊥ = −k

(i)
⊥

(Figure 3.14b).

A certain state |k〉 is described inside the crystal by the wave function

Ψ
(C)
k (x‖, d) = n(k)eik‖x‖

[
e−ik

(i)
⊥ d + a(k)e−ik

(r)
⊥ d

]
(3.23)

and within the vacuum by the wave-function

Ψ
(V )
k (x‖, h) = n(k)b(k)eik‖x‖−κ(k)h (3.24)

with x‖ = (x, y) and k‖ = (kx, ky). n(k) = (V (1 + |a(k)|2))−1/2 is a normalization
constant with V being the crystal volume. The coefficients a(k)(reflection) and
b(k)(transmission) have to be chosen to meet the boundary conditions ∇Ψ(C) =
∇Ψ(V ) and Ψ(C) = Ψ(V )at the surface h = d = 0. This results in:

a(k) = − ik
(i)
⊥ + κ(k‖)

ik
(r)
⊥ + κ(k‖)

b(k) =
i(k

(r)
⊥ − k

(i)
⊥ )

ik⊥ + κ(k‖)
(3.25)

with κ(k‖) being the decay constant that was defined in equation 3.18.

From the last equation it is evident that high k‖-components are suppressed in
vacuum LDOS not only due to their faster decay but also because of their lower
transmissivity b(k) at the surface.
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By knowing the wave functions in both subspaces we can now define four possible
Green functions that depend on whether the electron is created or annihilated in
crystal and vacuum, respectively. This is again done using the spectral representa-
tion:

GV V (x,xi, ε) =

∫

k

d3k G(k, ε)Ψ
(V )
k (x)Ψ

∗(V )
k (xi) (3.26)

GV C(x,xi, ε) =

∫

k

d3k G(k, ε)Ψ
(V )
k (x)Ψ

∗(C)
k (xi) (3.27)

GCV (x,xi, ε) =

∫

k

d3k G(k, ε)Ψ
(C)
k (x)Ψ

∗(V )
k (xi) (3.28)

GCC(x,xi, ε) =

∫

k

d3k G(k, ε)Ψ
(C)
k (x)Ψ

∗(C)
k (xi) (3.29)

Here we used G(k, ε) = (ε−E(k)+ i0+)−1. Computational effort can be reduced by
calculating only those quantities that are really needed for the current topic. The
impurity atom will always be positioned within the crystal (C) and our primary
interest is restricted to the LDOS %(x‖, h) within the vacuum (V). Without the
impurity the vacuum LDOS would be

%0(h, ε) = − 1

π
ImGV V (x,x, ε) =

∫

k

d3kδ(ε− E(k))|n(k)b(k)|2e−2κ(k)h (3.30)

The insertion of the impurity requires the consideration of additional propagation
paths to the impurity (GCV ) and back (GV C). Due to time-inversion symmetry these
two quantities are equal and need to be calculated only once. With ∆x‖ = x‖ − x′‖
we obtain the expression:

GV C(∆x‖, h, d, ε) =

∫

k

d3k G(k, ε)|n(k)|2b(k)ei(k‖∆x‖+k⊥d)−κ(k‖)h (3.31)

In the context of single impurity scattering, the propagator GCC is not needed. The
vacuum LDOS in a distance h from the surface, which is modified by a single point
defect having the scattering behavior timp(ε) and being placed in a depth d below
the surface, is described by:

%(x‖, h, ε) = %0(h, ε)− 1

π
Im

[(
GV C(x‖, h, d, ε)

)2
timp(ε)

]
(3.32)

This is the final expression that will be used throughout the following.

After this last refinement we included all prominent physical effects: i) the (aniso-
tropic) propagation of the electrons in the host metal, ii) the scattering at a (single)
impurity and iii) the role of the surface resulting in reflections of the electrons and
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in a (k‖-dependent) decay into the vacuum. All these effects have been considered
in the simplest possible way. Concerning the propagation the lattice-periodic part
of the wave-functions has been neglected. The impurity has been simplified to a
point-scatterer and the surface was assumed to be step-like with full translational
invariance parallel to the surface (instead of lattice-periodicity).

It is now time to go back to the experimental data and to analyze if the effects we
saw in the model can be observed in ”reality”. We start with the last process added
to the model and analyze how different tip-qualities and tunnelling resistances affect
the observed STM-images and if calculations with different values of h can reproduce
the effect.

3.4.3 Impact of the tip quality

It is a matter of common experience to all STM-users that different tip conditions
result in different acuities of the obtained images. These are usually attributed to
”dull” or ”sharp” tips and tip preparations by applying voltage pulses or gentle tip-
sample contacts can significantly affect the image quality. As described in section
2.2.2, when assuming an s-like tip, the effects of different tip curvature radii R can
be included by regarding the sample LDOS ”in the middle” of the tip. This is quite
reasonable since in the case of a ”dull” tip having a big curvature radius, the LDOS
has to be regarded at larger distances than in the case of tips having a small radius
of curvature. Since we know that the wave functions at greater distances can be
approximately obtained by Gauss filtering the wave function at smaller distances,
it is obvious that the STM images obtained with ”dull” tips are more smeared out.

In the experiments performed within the context of this work, these effects played
a prominent role. Identical defects measured with the same tunnelling parameters
(VT , IT ) but with different tip qualities showed unresembling topographies. On
the left side of Figure 3.15 experimental data with atomic resolution can be seen.
The resolved lattice allows an attribution of the individual defect pattern to even
and odd impurity depths. On the right side data obtained with a mediocre tip is
shown. The two identical defects in Fig. 3.15a) - they will later be attributed to third
layer Co-atoms - show a central elevation. From this, it could be presumed that the
observed data in Fig. 3.15f), obtained with a dull tip, also shows 3rd layer impurities
because the patterns are of comparable size and also shows a central elevation. For
a closer analysis we convoluted the topographies obtained with the sharp tip by a
Gauss function. This is depicted in the middle column of Figure 3.15. Although
in principle only the wave-functions at different values of h can be transformed
by a Gaussian convolution and this procedure is not valid for the transformation of
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Figure 3.15: Effect of different tip-conditions on STM-measurements (3.5×3.5nm)
taken at identical tunnelling parameters (UB = −50mV IT = 1nA): The left side
shows the unfiltered data taken with a new tip. The identical data is shown in the
middle after convolution with a σ = 1.8Å Gaussian. The right side shows data
measured after several tip-sample collisions.
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Figure 3.16: Calculations (3.5×3.5nm) for differernt tip-sample distances h. The
imapct of different tip-qualities can be reproduced in the calculations.

LDOS-distributions, the filtered images have a striking similarity to the topographies
measured with a dull tip. Under inferior tip conditions 3rd layer impurities are
imaged as broad depressions. The patterns in Fig. 3.15f), however, correspond to
4th layer impurities, whose atomically resolved STM-image is depicted in Fig. 3.15d).
The identical effect can also be observed on 5th-layer defects (Fig. 3.15i)), which
have a plateau-like maximum at mediocre tunnelling conditions and are thus similar
to the 4th layer atoms of Fig. 3.15d). The atomically resolved 5th-layer impurity,
however, shows a minimum in the center of the defect pattern, which is also the case
for non-atomically resolved 6th-layer impurities.

We will now test, if the calculations can reproduce this observe behavior. If all
approximations are valid, the measured topographies should be described by the
identical parameters d and timp, while h should be larger for the topographies mea-
sured using the ”dull” tip. For this current analysis we use those values of d and
timp that will later be shown to be appropriate for these impurities and calculate
the LDOS for different parameters h. This is done in Figure 3.16
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3.4.4 Impact of the tunnelling resistance

Another possibility to check the influence of the tip-sample distance h on the mea-
sured patterns is to change the tunnelling resistance. In order to avoid voltage-
dependent effects (that will be intensively described in Chapter 4) this analysis is
most suitably done by varying the set point current IT , while keeping the bias volt-
age VT constant. The dynamics in tip-sample distance achieved by this approach
are very limited as high currents increase the risk of tip-modifications while small
values of IT worsen the signal to noise ratio.

In Figure 3.17 IT was varied over three decades between 2pA and 1.8nA. Here
we used a data acquisition mode, in which every scan line was measured 16 times
with different set-point currents IT before proceeding to the subsequent scan line
(multi-bias spectroscopy, see Chapter 4.3.1). This mode allows a direct ”pixel-by-
pixel” comparison of the relative tip-sample distances h(x‖) at different tunnelling
parameters. Since the chosen values of IT followed an exponential sequence, the
single STM-traces are almost equally separated. The span of h is slightly above 3Å
which is, as IT is varied about three orders of magnitude, in good agreement with
our ”rule of thumb”. As a variation of 3 Å is small compared to the dynamic of
h-values observed in the previous section, we can expect the effect of the different
set-point currents IT on the topographies to be smaller than the impact of different
tip conditions.

Figure 3.17 c) shows the STM cross-sections of a 5th-layer Fe atom below the
Cu(100)-surface whose topographies are depicted in Figure 3.17 d). These corre-
spond to set-point currents of 1.8nA and 20pA, respectively and thus to a difference
in tip-sample distance h of ≈ 2Å. The STM-patterns look quite similar for all set-
point values although the size of the local minima directly at and in 0.7 nm distance
from the center of the pattern is reduced. Although one could imagine that the
IT = 20pA pattern is a smoothed IT = 1.8nA STM-image, the effect of a ∆h = 2Å
is not as significant than the effect of different tip qualities.

As a second aspect we can focus on the analysis of the ”grey background” in the
data-set i.e. the relative tip-sample distances on the free surface - a property that
should be described by %0(εF , h). The plot of the logarithmic set-point current versus
the relative tip-sample distances follows a perfect linear behavior. A fit results in a
slope of κeff = 1.050(4)Å−1, which would correspond to a work function of 4.20eV
in a 1D- tunnelling model. However, we discussed earlier that states of different k‖
have a different κ. The overall decay of LDOS should be larger at smaller distances
and converge to the κ0 at larger distances. This behavior can be observed in the
calculations but obviously not in the experimental data.
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Figure 3.17: Impact of the setpoint-current IT on the STM-measurements. a) direct
comparison of the STM-traces - at IT=3pA the tip is in 3Å larger distance to the
sample then for IT=1.8nA; b) the relative tip-sample distances on the free surface
follow an exponential behavior; c) STM traces taken in ≈ 2Å different tip-sample
distances; d) corresponding constant current topographies.
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This discrepancy between the expected decay of LDOS into the vacuum and the
measured I(h)-characteristic was already elucidated in the early days of STM by
Binnig himself [51]. He analyzed the tunnelling current versus tip-sample distance
and showed that it unexpectedly follows a purely exponential behavior. He showed
that the classic image-potential of an STM tip placed near a metal surface indeed
produces a constant logarithmic derivative of the tunnelling current with respect to
the distance. The measured decay constant is the square-root of the average work
function of tip and sample. Here the Tersoff-Harmann approximation, which our
calculations are based on, gives inaccurate results.

3.5 Comparison between experiments and calcu-

lation

With the knowledge achieved in the last sections, we can now try a detailed com-
parison between experiments and the calculations. It will now be revealed whether
all the assumptions and approximations (uk(r) = 1, point scatterer, step-function
surface potential) are legitimate.

The model contains the smallest possible number of parameters while considering
all prominent physical effects. Attempts to improve the model e.g. by assuming an
extended impurity potential, by modeling the surface in a more realistic way or by
including uk(x) would inevitably result in additional parameters, which are neither
a-priori known nor under experimental control. In our approach we only have three
parameters:

1. d: the depth of the impurity below the ”surface”

2. h: the distance between the ”surface” and the center of the STM-tip

3. timp: the (complex) t-matrix containing scattering amplitude and -phaseshift.

The possible depths d of the impurity should differ by integer multiples of the layer
spacings a[100] = a0/2, with a0 = 3.61Å being the lattice constant of copper. Of
specific interest is the unknown quantity as in Figure 3.18, the distance between
the plane of the topmost nuclei and the ”surface”, i.e. the supposed plane, where
the electrons switch from an oscillatory propagation to an exponential decay. If the
atoms were treated as hard spheres, as would correspond to 0.7a[100]. The nucleus
of e.g. a 4th layer impurity would in this case be expected 3.7 mono-layers (ML)
below the ”surface”. However, since we do not want to restrict ourselves to a hard
sphere picture, d is leaved as an continuous parameter in the model.
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Figure 3.18: Overview of model parameters and notations of impurity depths. The
distance from the topmost nuclei to the ”surface” is denoted by as. First layer
impurities correspond to defects in the surface layer and are described with d = as.

3.5.1 Data processing and fitting

In order to perform a quantitative comparison between the experimental data and
the calculations, it has to be assured that the STM data is properly calibrated. As
atomic resolution was achieved at least once during the experiments of each prepared
sample, direct information about the orientation of crystallographic directions, the
inaccuracy of the chosen piezo constants and the mis-angle of x and y-axis are avail-
able. These atomically resolved data were used to calibrate the STM-topographies
of the entire data-set. For this a 2× 2-Matrix M was calculated defining a shearing,
stretching and rotation of the image’s coordinate system. This procedure is shown
in Figure 3.19. The raw data were Fourier transformed and the positions of the the
lattice peaks were determined. After that a matrix M̃ was obtained that mapped
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Figure 3.19: Procedure used for the calibration of the STM-data

the k-space positions of the lattice peaks onto the desired positions by solving a
system of linear equations. The required matrix M necessary to correct the real
space coordinates can be obtained from the ”k-space” matrix M̃ by M = (M̃ †)−1.
The calibrated images were oriented with the [001] axis parallel to the x-axis. The
STM-data on the corrected coordinate grid were finally interpolated into an regular,
orthogonal grid.

This procedure has been performed on every data set that was used for the com-
parison. After these calibrations cross sections were taken along high-symmetry
directions through the center of the measured STM-pattern. To determine the ap-
propriate parameters (d,timp,h) of our model it was attempted to fit the LDOS - as
calculated along a line - to these experimental cross-sections. From the theoreti-
cal side, the Green function GV C was calculated for a variety of different impurity
depths d (0..15ML, increment 0.1ML) and tip-sample distances h (0..20Å, increment
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1Å), while ∆x‖ = x‖−x′‖ was restricted to the one crystallographic direction, which

was also chosen for the cross-section (mostly [001]). For any pair of values (h, d) a
nonlinear least-squares data-fitting routine was used to obtain the optimal values
for scattering amplitude and phase shift (parameter timp(h, d)) and the squared 2-
norm of the residual χ2(h, d). The latter is a measure for the quality of the obtained
agreement. For those values of d and h that gave the best agreement, GV C was
calculated unrestricted in ∆x‖ to allow the computation of two-dimensional LDOS
patterns.

It should be noted that the measured topographies can - to a certain extend - be
fitted with different parameters. Although the accuracy in d is better than 1 mono
layer (i.e. the attempt to fit a 5th-layer calculation to a 4th layer topography will
result in a poor agreement), a small variation in d of +0.1ML can be compensated
by a reduction of the scattering phase-shift φ of about −0.14π: if we move the
impurity away from the surface, the phase fronts have to be pushed outward from
the impurity in order to obtain a comparable pattern at the surface. This may
result in confusion because the fitting of different impurities may result in different
values of as, which in turn results in non-uniform phase-shifts. To avoid this we
now present only data with a preselected as = 1.3a[100], which turned out to give the
most consistent results for all analyzed experimental data. If the possible impurity
depths are restricted to d = X.3 ML, this results in a uniform phase shift of ≈ 1.1π.
This will be shown in the next section.

3.5.2 Defects below the Cu(100)-surface

The comparison will be performed using a calculated %(x, εF ) at the Fermi energy
and measured constant current topographies taken at bias voltages close to 0V .
Although only little change can be observed in the measured topographies within
±10mV for the case of cobalt atoms, the observed modulations of Fe atoms are
very sensitive to the applied bias voltage close to 0V . This energy dependence
will be extensively discussed in the next chapter. From this it is important for the
present analysis to compare all impurity depths at identical tunnelling voltages and
to use the identical impurity species. The following comparison was performed at
VB = −10mV and IT = 1.8nA using cobalt impurities. This choice has been made
because for these tunnelling paramteres the largest amount of experimental data
was available.

Since the presented calculations are based on the (anisotropic) propagation of elec-
trons in copper there must be at least one layer of host material between the impurity
and the surface. We therefore start the classification with 2nd layer defects. They
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are depicted in figure 3.20 a) and are characterized by a sharp minimum of topog-
raphy in the center of the defect pattern surrounded by a weak, halo-like elevation.
The distinctness of this halo depends on the tip quality. An atomically resolved
2nd-layer Co atom was already depicted in Figure 3.15 a). In general one has to
be very careful not to mix up these defect patterns with some kind of adsorbates
(e.g. CO, H2) that also produce depressions in the constant current topographies
and are also of small lateral extension. This discrimination can be more clearly
done for impurities deeper in the bulk because they reveal oscillations rather than
just a depression. Anyhow, the calculations show that such narrow signatures are
expected from 2nd layer point scatters and can be reproduced using the identical
values for h and timp that will also show to be appropriate for the other impurity
depths.

The STM signatures produced by third layer impurities are also depressions but
are more broadened compared to those of the 2nd-layer Co atoms. Here, tiny local
maxima can be observed in the middle of the signature and in a lateral distance of
5Å. In this case the term LDOS-oscillation is more justified than for the 2nd layer
defects since more than one wavelength can be identified. Here, the characteristic
four-fold symmetry can also be observed, which is related to the symmetry of the
Fermi surface in [100] direction.

The four fold symmetry and the clear presence of oscillations in the STM-pattern
can also be seen for all impurities that are buried deeper below the surface. Here
the lateral envelope due to the electron focusing effect has sufficiently widened to
observe more than one oscillation.

3.5.3 Defects below the Cu(111)-surface

We now want to have a quick look at the Cu(111)-data. Here, only systems of sub-
surface cobalt impurities have been prepared. As could be seen in Figure 3.1a) an
isotropic surface state is present on these surfaces and produces omnipresent and
long-range standing wave-patterns near step-edges and point-defects. While these
observations are fascinating in some way, they hinder the analysis of the subsur-
face defects as the amplitude of the surface state oscillations is comparable to the
amplitudes of the LDOS-modulations induced by subsurface defects. This can be
seen in Figure 3.21 where long-wavelength surface state oscillations and four short-
wavelength signatures of deeply buried defects can be observed.

The impurities in general show different signatures depending on their depths be-
low the surface. Adsorbates or impurities in the surface layer produce only strong,
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Figure 3.20: Comparison between the experimental data and the calculations for
inpurities in the layers 2 to 6. In the depicted cross-sections blue markers correspond
to measured topographies while red lines are calculations.
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Figure 3.21: Constant current topography Co impurities in Cu(111): interference
patterns of surface-states (long wavelength) and bulk states (short wavelength).

circular symmetric interference pattern of the surface state electrons. If the im-
purities are positioned within the first five subsurface layers the long wavelength
pattern becomes weaker and additional, short wavelength modulations can be ob-
served. Impurities which are buried deeply below the surface (as seen in Fig.3.1 a))
do not show any perturbation of the surface state and show the ring-like focusing
patterns that were discussed previously. All these different patterns are described
in detail in the author’s diploma thesis [29] as well as in the Ph.D-thesis of Quaas
[28, 52].

The presented model is based on the bulk band structure and does not contain any
surface states. Also processes where an incident surface state electron is scattered
into a bulk state and vice-versa are not included. Thus, only impurities being out
of range of the surface state electrons can be properly described by the model.
According to [43] this applies to impurities below the 5th layer.

To allow a successful fitting of the calculations to the experimental data, the surface
state oscillations have to be removed. This was done by Fourier filtering and is shown
in the upper part of Figure 3.22. The extracted bulk-state interference patterns show
a slight threefold symmetry as it is expected from the symmetry of fcc Brillouin zone
in [111]-direction. The same symmetry can also be observed on the calculations,
which are depicted below. From this, the four subsurface impurities can be allocated
to the 6th, 7th 9th and 10th layer.

Especially the fact that the surface state patterns have to be removed by Fourier fil-
tering to allow a successful fitting hinders the further spectroscopic investigation of
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Figure 3.22: impurities below the Cu(111) surface. The upper part shows the removal
of the long wavelength oscillations arising from the surface state electrons by Fourier
filtering. The filtered STM signatures and the corresponding calculations are depicted
below.
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Figure 3.23: a) experimental cross-sections of impurities in layers 2-10 are plotted in
series; b) calculated −Im(timpG

2
0) for continuous values of d and c) for d = X.3ML

X=2..10 and a phase-shift of 1.15π.

the subsurface defects. If the bias voltage is modified the standing wave-patterns of
the surface state electrons change significantly. This is impressed on the information
contained in dI/dV -spectra. If a spectrum is considered only at a single position
these contributions from surface- and bulk-states cannot be distinguished. And even
if STS data at different lateral positions is compared, a separation of both contri-
butions is only approximately possible. Thus, the further spectroscopic analysis of
subsurface defects was only performed on impurities below the (100) surface.

3.5.4 Reconstruction of the propagator from STM-data

As stated before, the LDOS-pattern in the vicinity of the impurity is associated
with interference term G0timpG0 containing the squared propagator and the scat-
tering behavior timp of the impurity. The comparison between experiments and
our calculations revealed a roughly constant scattering phase-shift for all impurity
depths. Thus, if we assemble the measured topographies in the correct order, this
should allow a direct mapping of the squared Green function. This was performed
in Figure 3.23 a). Here, the cross-sections of Co impurities buried 2-10 ML below
the Cu(100) surface have been plotted in series. It can be seen that this procedure
provides a consistent pattern and that the positions of the maxima shift outward
linearly if the depth is increased. This indicates that the depth classification was
done correctly and that a reconstruction of the propagator should be possible.
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We now use those values for h and timp that successfully described the experimental
observation and plot the function −Im(timpG

2
0) versus x‖ and d (Fig. 3.23b)). Since

the fitting worked well, this should give a pattern comparable with Fig. 3.23a).
However, a striking difference to the experimental results can be seen. The phase
fronts of the calculated propagator have a completely different orientation than those
of the ”measured” (squared) Green function.

The explanation for this effect is an aliasing between the wavelength of the LDOS
oscillations and the periodicity of the atomic lattice. The size of Fermi surface is close
to the extension of the first Brillouin-zone. In some directions the Fermi wavevector
even reaches the zone boundary. This means that the wavelength π/kF of the LDOS
oscillations is marginally larger than the inter-atomic distances. Although the STM
can probe the LDOS pattern with a high resolution parallel to the surface, it can
sample the perpendicular direction only in integer multiples of 1.8Å. This is because
the possible positions of the impurities differ by integer lattice spacings. The effect
can be reproduced, if the calculated function −Im(timpG

2
0) is plotted only for integer

distances to the impurity (Fig. 3.23 c)).

3.5.5 Comparison with ab-initio calculations

The results presented before showed a good agreement with the experiments al-
though many important points were neglected. While taking care of the correct
shape of the Fermi surface the lattice-periodic part uk(r) of Bloch wave functions
kept unconsidered. The crystal surface entered as a step-like switch-over from oscil-
latory propagation to exponential decay without considering a more realistic surface
potential. The existence and possible perturbation of surface states for the case
of Cu(111) was also not included in the calculations. The physical details of the
impurity atom were parameterized as reflectivity and phase-shift. These parameters
had to be adjusted as fitting parameters to obtain agreement with the experiment.
However. this procedure produces accurate results within a few minutes of compu-
tational time.
In contrast to this, an ab-initio approach results in heavy calculations since the
LDOS is disturbed in large regions resulting in hundreds of unit-cells that have to be
considered. Lounis et al [53] met the challenge and simulated up to 3000 atomic cells
using the full-potential, scalar-relativistic Korringa-Kohn Rostoker (KKR) Green
function method within Density Functional Theory. He constructed a slab of 18
layers copper enclosed 6 ”vacuum” layers on top and below. For this system he
calculated the Green function, which - in contrast to the one used in this work -
included surface states and the lattice periodic part of the wave functions. He af-
terwards calculated the t-matrix of a single cobalt atom within an infinite copper
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Figure 3.24: Results of DFT calculations performed by Lounis et al [53] showing the
vacuum LDOS of a buried Co-atom in copper: a) (3x3nm) 7 ML below the Cu(111)
surface and b) (4x4 nm) 9ML below Cu(100).

crystal and combined these two quantities to a Green function of the perturbed sys-
tem using the Dyson equation. The results of the local density of states are shown in
Figure 3.24. They are in quite nice agreement with both, our experimental results
and the LDOS distribution obtained by our calculations.



Chapter 4

Kondo Effect of subsurface
magnetic atoms

The previous chapter dealt with the identification of single subsurface impurity
atoms in STM topographies and their allocation to different depths. We presented a
simple model based on the host metal’s band structure that showed good agreement
with both, the experiments and the results of more elaborate ab-initio calculations.
Up to now we did not consider the fact that magnetic impurities have been prepared
below the copper surface. As mentioned in the introduction such systems are known
to show characteristic low-temperature anomalies, which are summarized by the
term ”Kondo Effect” [13, 15]. The task of this chapter is to study the Kondo
signatures of bulk-impurities in real space with the STM.

After a short introduction into the phenomenology of the Kondo Effect, the single
impurity Anderson model (SIAM)[54] will be discussed. It is one of the two impor-
tant models for Kondo systems and will help to deduce the physical key-quantities.
Using a toy model we will demonstrate the influence of a Kondo impurity on the
spectral density of the surrounding electrons. This knowledge will then be trans-
ferred to our experimental system by including the realistic band structure of copper.
Thereafter Scanning Tunnelling Spectroscopy (STS) and the different graphical rep-
resentations used in this work will be introduced. The experimental investigation
of the prepared systems will start with the most simple approach: the comparison
of Co and Fe impurities concerning the bias dependence of their constant current
topographies near VT = 0. We will show that Fe and Co atoms show different
behaviour near zero bias. Thereafter, a detailed analysis of STS measurements per-
formed on both impurity species in different depths will be presented. Using the
Green function of copper that was calculated in the last chapter we will finally fit

61
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energy dependent LDOS calculations to the measured STS-spectra in order to de-
termine the scattering phase shift and scattering amplitude as a function of energy.
This will allow to extract the dynamics of the impurity.

4.1 Phenomenology

The liquefaction of helium, developed by H. K. Onnes in 1908, opened the door
to a new world of physics, which directly led to the discovery of many new effects
in the following years. Immediately after gaining the possibility to achieve low
temperatures, he discovered superconductivity on mercury [55]. The abrupt loss
of electrical resistance below a critical temperature TC demonstrated that many
aspects of charge transport were not yet understood.

In the following years, the low temperature behaviour of many materials was inten-
sively studied. In 1933 Hildebrand et al [14] discovered an increase in the resistance
with decreasing temperature leading to a resistivity minimum around a specific
temperature. Later the temperature, around which the increase of resistivity was
observed, was termed Kondo temperature TK . For both cases, superconductivity
as well as the observed resistivity minimum, the application of a magnetic field B
destroyed the observed anomalies [56] [57] if the corresponding Zeeman energy µBB
exceeded the specific energies scales kBTK and kBTC , respectively.

Jun Kondo [13] showed in 1964 using perturbation theory that a resistivity minimum
can be explained by the presence of magnetic impurities. By including scattering
processes, where the spin of both the impurity and a conduction electron is likewise
flipped, he described experimental observations around TK correctly but got an
unphysical divergence of resistivity at T = 0. In contrast the experiments revealed
a saturation of the electrical resistance for T ¿ TK . This fact initiated intensive
theoretical interest in the field of the Kondo Effect leading to the development of
new techniques (e.g. the renormalization group [58] or the variational 1/N expansion
[59]). It was shown that a narrow many-body resonance (the Abrikosov-Suhl [16]
resonance) builds up in the one-particle spectrum of the impurity at the chemical
potential if the temperature is decreased below TK . Since the charge transport is
dominated by quasi-particles near the Fermi energy and this resonance implies a
strong scattering at the chemical potential, the behaviour of the electrical resistance
was explained.

Near the characteristic temperature TK , which depends on the combination of im-
purity and host material, multiple physical quantities as the susceptibility, the ther-
moelectric power, the specific heat among others show characteristic features. They
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are summarized in [15]. As an example the susceptibility shows that the magnetic
impurity apparently loses its magnetic moment for T < TK . This is due to the fact
that the many-body ground state of the system is a singlet and the spin of the impu-
rity is screened by the conduction band electrons. Thus the spin-expectation value
of both the impurity and the conduction band electrons is zero but a correlation of
both spins is present near the impurity.

4.2 Energy dependence of %(x, ε) near an impurity

In this chapter we are particularly interested in those aspects of the Kondo Effect
that can be measured with STM. As was mentioned in chapter 2 the STM is sensitive
to the local density of states %(x, ε). While topographies with bias voltages close to
0V correspond to the LDOS at the Fermi energy, Scanning Tunnelling Spectroscopy,
which will be introduced in Chapter 4.3, will give us access to the energetic dimension
of the quantity %(x, ε).

In a many-body system the term density of states has to be replaced by the single-
particle spectral density at a certain position and a certain energy [17]. We will use
the same symbol for both quantities, since their formalism concerning the Green
functions and t-matrices is identical.

We now want to analyze how %(x, ε) is modified in the vicinity of an impurity and
how this property is affected by the Kondo Effect. We will again start with a simple
one-dimensional toy-model and apply the achieved knowledge to the realistic band
structure of copper afterwards.

4.2.1 Resonant impurity scattering and Fano line shapes

A standard model to describe the interaction between a localized state and a con-
tinuum of conduction band states is the Anderson impurity model [54], which is -
in addition to the sd-model [60] - commonly used in the context of Kondo physics.
The corresponding Hamiltonian is:

H =
∑

k,σ

E(k)c†kσckσ + εdc
†
dσcdσ +

∑

k,σ

(
Vkc

†
kσcdσ + V ∗

k c†dσckσ

)
+ Uc†d↓cd↓c

†
d↑cd↑ (4.1)
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Here the operators c†kσ/ckσ create/annihilate an electron with spin σ in a conduction

band state |k〉 with energy E(k), c†d/cd create/annihilate an electron in the impurities
localized orbital |d〉 at energy εd and Vk describes the hybridization between the
conduction band and the impurity. U is the coulomb repulsion between two electrons
within the localized orbital.

One-particle example (1D)

First of all we want to analyze how the LDOS is influenced in a one-particle system.
For convenience this is performed in one dimension and the generalization to the
3D many-particle case will be done later. With only one particle in the system, the
two-particle interaction U is of no relevance. This non-interacting Anderson model
can be solved analytically as described in the book of Mahan (Chapter 4.1) [17].
The example presented here was solved by computational matrix diagonalization.

|d>

|k i> 

„site coupled“ to Vk

1D-electron gas

localized orbital

Figure 4.1: geometry of the one-dimensional impurity model.

By using the basis set {|d〉, |k1〉, |k2〉, ..., |kn〉} the ansatz for the single-particle wave
functions is

Ψα = v1,α|d〉+
n∑

i=1

v1+i,α|ki〉 = v1,αc†dσ|0〉+
n∑

i=1

v1+i,αc†ki
|0〉 (4.2)

Within this representation the single-particle Hamilton matrix is:

H =




εd Vk1 Vk2 · · · Vkn

V ∗
k1

εk1 0 · · · 0

V ∗
k2

0
. . . . . .

...
...

...
. . . . . . 0

V ∗
kn

0 · · · 0 εkn




(4.3)

As we intend to show only the qualitative behaviour, we can freely choose appro-
priate parameters: i) a linear dispersion E(k) ∝ |k| resulting in a constant, energy-
independent LDOS %0 of the unperturbed system, ii) a k-independent Vk = V re-
sulting in point-like hybridization at position x = 0 and iii) εd inside the energetic
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Figure 4.2: Influence of a scattering resonance on the LDOS in the vicinity of the im-
purity. The impact of the bare dispersion is indicated by a punctuated line. Coming
from the low-energy side the wave pattern additionally ”shrinks” about half a wave-
length within the resonance. At the positions a)-f) according to different distances
from the impurity, spectroscopic signatures of varying symmetry can be observed
near εR.
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range of the conduction band states. Diagonalizing the matrix H gives (n + 1)
eigenenergies Eα and eigenvectors vi,α. From this one can obtain the d-orbital DOS
%d(ε):

%d(ε) =
∑

α

|v1,α|2δ(Eα − ε) (4.4)

as well as the conduction band local density of states %(ε, x) using |k〉 = exp(ikx):

%(x, ε) =
∑

α

δ(Eα − ε)

∣∣∣∣∣
∑

i

v1+i,α exp(ikix)

∣∣∣∣∣

2

(4.5)

Without hybridization V = 0, the conduction band local density of states %(x, ε) is
constant in x and ε (due to linear dispersion in 1D) while %d(ε) is a δ-function at
energy εd. If V is increased oscillations in %(x, ε) appear as depicted in Figure 4.2.

Such a graphical representation, where the LDOS (or the differential conductance
dI/dV in STS) is depicted with colors versus position and energy, is termed Spectrum

section in the following. As we currently discuss a 1D-model the full information
of %(ε, x) can be represented in this way. Later, after generalizing to more spatial
dimensions the coordinate x will correspond to the one direction of interest (mostly
[100]).

Horizontal cross-sections correspond to the spatial arrangement of spectral electron
density at a fixed energy. The wavelength of these LDOS oscillations in Figure
4.2 decreases with increasing energy as it is expected from the chosen dispersion
relation: λ = π/k ∝ 1/ε. Additionally it is observed that the amplitude of the
oscillations shows a maximum around a certain energy εR. In the identical energetic
range, the positions of maxima and minima are shifted half a wavelength towards
the position of the impurity. The punctuated line represents the trajectory of the
phase fronts due to the bare dispersion.

The d-orbital density of states %d(ε) of this system essentially shows a Lorentzian
at energy εR with a spectral line width (HWHM)

∆ = π|V |2%0 (4.6)

Generally this Lorentzian needs not be centered at the energy of the un-hybridized
orbital εd but can be shifted in energy by a certain amount ReΣd - the real part of
the d-orbital self-energy Σ (compare [17] for analytical expressions).

If the LDOS at a fixed position x0 is plotted versus energy this will be termed
a Single spectrum throughout the following. It corresponds to a vertical cross-
section through the depicted conduction band LDOS %(x, ε) of figure 4.2. At dif-
ferent positions denoted by a-f one can observe lineshapes that strongly depend on
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the distance to the impurity. Directly at the position of the impurity a symmetri-
cal antiresonance can be observed (section a). Moving away from the impurity the
line shape becomes more asymmetric (section b), turns into a positive resonance
at position c and back into an asymmetric line shape at position d. These spectral
features are called Fano line shapes [61] and can be described by a formula including
an asymmetry parameter q:

(q∆ + ε− εR)2

(ε− εR)2 + ∆2
(4.7)

The corresponding values of q for the different positions are: a) q = 0 b) q = +1
c) q = ∞ and d) q = −1. If the distance from the impurity is further increased,
additional oscillations can be seen in the single spectra (e,f). These are caused by
the dispersion. Formula 4.7 does not account for these effects and can be applied
only at short distances from the impurity.

The physical meaning of the parameter q in our case is somehow different to that
originally presented in Fano’s paper. He had discussed the impact of interfering
transition channels on the measured intensities in situations where an experiment
(such as photoemission) probes both, the d-level electrons and the conduction band
states. In his case q was associated with the relative strength of the competitive
transition channels. In contrast to this we solely discuss the conduction band LDOS
but at different positions x. This effect is also nicely described in the work of Ujsaghy
et al [27].

Although Fano’s q-parameter is commonly used in literature, it is rather inconve-
nient since values of q = ∞ are needed to reproduce a positive Lorentzian line-shape.
Thus we define a ”q-phase” φq which can be related to the Fano parameter using
q = tan (0.5φq). With this we can replace equation 4.7 by

ε̃ sin φq − cos φq

ε̃2 + 1
(4.8)

where we defined ε̃ = (ε−εR)/∆. The single spectra of Fig. 4.2 can then be described
using ”q-phases” of a) φq = 0 b) φq = 0.5π c) φq = π and d) φq = 1.5π. The q-phase
increases linearly with the distance to the impurity and has a periodicity of π/k(εR).

In conclusion, a single-particle scattering resonance produces Fano line shapes in
the single spectra, whose asymmetry depends on the distance to the impurity. The
LDOS oscillations at certain energies show a phase-shift of π around εR meaning
that the standing wave patterns at energies below and above the resonance are
approximately inverted compared to each other.
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t-matrix of this system

As described in Chapter 3, modulations of the LDOS are caused by an interference
term G0timpG0 containing the propagation G0 within the unperturbed host and the
scattering timp at the impurity. Therefore, if an energy dependence of the LDOS is
observed, this is either due to changes in G0 or in timp, or both. As the propagator
is directly connected to the band structure, changes in G0 are due to dispersion: a
change of the Ω(ε) versus energy results in a different wavelength and, potentially, in
a modified spatial propagation characteristic. Changes in timp(ε) can be connected
with scattering resonances. Thus the result for %(x, ε) that was calculated by matrix
diagonalization can be also obtained by combining the conduction electron Green
function of the unperturbed one-dimensional electron gas:

G0(x,x′, ε) = −iπ%0e
i|k(ε)(x−x′)| (4.9)

with suitable t-matrix timp(ε) that correctly describes the scattering amplitude and
phase-shift of the conduction band electrons due to the interaction with the impurity
|d〉. The t-matrix of this system is directly connected to the d-orbital Green function
Gdd(ε), which is a local quantity:

timp(ε) = |V |2Gdd(ε) (4.10)

Due to the hybridization V , the possible propagation paths of a conduction band
electron are extended by processes, where it hops into the localized orbital (V ∗),
propagates within |d〉 (described by Gdd(ε)) and escapes back into the band (V ).
The above formula is the product of these three processes. In the same way as
the conduction band LDOS was associated with the imaginary part of G(x, x, ε)
(equation 3.4), the d-orbital DOS can be obtained from Gdd(ε):

%d(ε) = − 1

π
ImGdd(ε) (4.11)

In the presently discussed case, where the system shows a scattering resonance
around εR, the localized orbital Green function is a complex Lorentzian:

Gdd(ε) =
1

ε− εR + i∆
(4.12)

If the hybridization V is further increased, bound states will appear and timp(ε) is
only weakly energy dependent within the band. We omit the discussion of this case
and refer to the literature [17].
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Generalizing this example from 1D to higher dimensions (2D, 3D) will result in a
decay of the amplitude of the standing wave pattern with increasing distance from
the impurity. But this behaviour is fully incorporated in the spatial decay of the
corresponding conduction electron propagator in higher dimensions (see Chapter
3.2.2 - electron focusing). The connection between the scattering behaviour timp(ε)
and the impurities dynamics Gdd(ε) remains valid.

Generalization to the many-body case

If particle interactions are neglected (U = 0) the Hamiltonian contains only single-
particle operators. Therefore, apart from a shift in the chemical potential, the result
keeps unchanged even if the system contains more than one particle. This situation
changes if the Coulomb interaction is switched on. The single-particle properties
will be modified by many-body effects. In the Anderson model, the particles are
interacting only within the d-orbital while electron-electron interaction within the
conduction band is neglected. Thus these modifications can be derived from a
renormalized d-orbital Green function Gdd(ε) that now accounts for many-body
effects. The single particle spectral density %(x, ε) in certain distances from the
impurity can be still calculated using equation 3.16 with using a suitable t-matrix
timp(ε). The relation between the scatting behaviour timp(ε) and the dynamics
Gdd(ε) of the impurity (eq. 4.10) can be derived directly from the equations of
motion of the Anderson model 4.1 (see [15] Chapter 5.2) and is universally valid
even in the many-body case. Gdd(ε) is the key quantity that describes the behaviour
of our system.

Gdd(ε) in various parameter regimes

In contrast to the non-interacting case discussed above the d-orbital Green function
for U 6= 0 reveals a rich structure that depends on the temperature and the param-
eter regime of the system. Its calculation requires elaborate many-body techniques
[15, 17]. Here we shortly summarize the general behaviour.

If µ−εd À ∆ and εd+U−µ À ∆ the d-orbital is single occupied 〈nd〉 = 1 and charge
fluctuations are suppressed (”local moment” regime). %d(ε) within this parameter
regime is depicted in Figure 4.3 for different temperatures. For temperatures below
the Kondo temperature a sharp peak, the Kondo resonance or Abrikosov-Suhl [16]
resonance gets superimposed to the d-electrons spectral function at energy εK near
the chemical potential. As charge transport is dominated by quasi-particles near
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Figure 4.3: d-orbital spectral function for the symmetric Anderson model at different
temperatures: for T ¿ TK (red curve) a sharp many-body resonance is present at
ε = 0, which vanishes above the Kondo temperature (blue curve). Figure reproduced
from [62].

the chemical potential [17] and the strength of the impurity scattering is associated
with |V |2Gdd(ε), the building up of this resonance for low temperatures explains the
increase of electrical resistivity that was mentioned in the introduction.

Below and above the chemical potential at energies εd and εd + U broad resonances
of width ∆ can be observed, which are termed lower and upper Hubbard band. They
correspond to charge excitations where nd is decreased/increased by one electron.

The Kondo resonance is centered at an energy εK , whose position depends on the
filling of the orbital, i.e. on the ratio between the number 〈nd〉 of electrons in the
localized orbital and its degeneracy Nd. This can be derived from the Friedel sum
rule (see Hewson [15], chapter 5.3)

〈nd〉
Nd

=
1

2
− 1

π
tan−1

(
εK

kBTK

)
(4.13)
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In the case of particle-hole symmetry, which implies 〈nd〉 = Nd/2, the Kondo res-
onance lies directly at the Fermi energy. For impurities having less then half filled
d- or f-shells (e.g. cerium) the Kondo resonance is above εF . For impurities with
an occupation 〈nd〉 > Nd/2 (e.g. cobalt), the position of the resonance is below
the Fermi energy. It has to be considered that the actual degeneracy Nd including
possible modifications due to spin-orbit or crystal-filed splittings is important.

In the local moment regime Ujsaghy et al [27] proposed to model the d-electrons
Green function as a sum over three Lorentzians1:

Gdd(ε) =
Zd

ε− εd + i∆
+

ZU

ε− εd − U + i∆
+

ZK

ε− εk + ikBTK

(4.14)

In the above formula Zd, ZU and ZK are quasi-particle renormalization factors de-
scribing the spectral weight of each of the three resonances. It can be seen in Figure
4.3 that spectral weight gets transferred from the Hubbard bands to the Kondo res-
onance if the temperature is decreased. For T ¿ TK the Kondo resonance reaches
the unitary limit resulting in ZK ≤ πkBTK/∆ [63]. For ε = εK and deep within
the Kondo regime this gives timp(εK) = −i/(πρ0), meaning unitary scattering. In
the above 1D-example this would result in a complete depletion of spectral electron
density at x = 0 and ε = εK .

The behaviour in parameter regimes different from the Kondo regime is approxi-
mately sketched in Figure 4.4. The single particle spectral density %d(ε) describes
the probability that system changes its total energy by a certain amount ε if a sin-
gle electron is added to the impurities d-orbital or removed from it. If the d-orbital
is double occupied such single-particle processes will only result in a single occu-
pied orbital. Therefore the spectral weight of the lower Hubbard band is strongly
reduced resulting in Zd → 0. The situation in the empty orbital -regime is the oppo-
site and suppresses the spectral weight of the upper Hubbard band ZU → 0. In the
mixed valence regime a Hubbard band crosses the Fermi level resulting in non-integer
occupation numbers nd. Here the decomposition of Gdd(ε) into three separate quasi-
particle resonances is no longer possible. Hence, the spectral densities of the mixed
valence regime plotted in Figure 4.4 are unrealistic [64, 65].

Reason for the Kondo resonance

The Kondo resonance appears in %d(ε) only if the d-orbital is neither completely
empty nor fully occupied. In this regime the impurity has an internal degree of

1here we changed the sign of the imaginary part in the denominators compared to Ref. [27] in
order to maintain the retarded representation of Gdd used throughout this text.
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Figure 4.4: Estimated sketch of the d-orbital spectral function in various parameter
regimes: green dots represent εd while red dots correspond to εd + U . Please note
that the plotted line shapes in the mixed valence regime are unrealistic.

freedom - there exist scattering processes that change the internal quantum numbers
of the impurity without changing the total energy. In the above example the degree
of freedom was the spin of the electron in the localized orbital; the peak near µ
is associated with spin fluctuations. In general this degree of freedom can also be
connected with an orbital degeneracy (”orbital Kondo Effect”).

We keep in mind that - if we know the conduction band propagator G0(x,x′, ε) of
the unperturbed host - the system is completely characterized by one complex scalar
function of energy timp(ε) that depends on the spectral properties of the impurity.
If equation 4.14 is valid and the Kondo resonance can be described by a Lorentzian,
the surrounding LDOS would be modified in the identical way than in the case of
a single-particle resonance. The only difference is that the spectroscopic features
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arising from the Kondo resonance are always centered at an energy εK near the
Fermi energy. We therefore expect a phase-shift of the LDOS-oscillations and Fano
lines shapes at or near zero bias.

4.2.2 %(x, ε) in Copper

In Chapter 3 the conduction electron propagator was calculated only for ε = εF

in order to obtain the local density of states at the Fermi energy. To include the
effects of dispersion the iso-energy surfaces Ω(ε) in the irreducible part of the first
Brillouin zone were calculated for energies within [-2.3eV,+4eV] i.e. within the entire
6th band of the copper band structure. From this ImGV C

0 (x, d, h) and ImGV V
0 (h)

were obtained for one lateral coordinate x (along [010]) and different values of h and
d by integration over Ω(ε). The real part was obtained using the Kramers-Kronig
relation[47, 48]. From this one can calculate spectrum sections ∆%(x, ε)/%0(ε) as
well as single spectra in the same way as described in Chapter 3:

∆%(x‖, ε)
%0(ε)

=
Im

[
GV C

0 (x‖, d, h, ε)2 · timp(ε)
]

ImGV V
0 (h, ε)

(4.15)

We will later discuss a method how to extract this quantity ∆%/%0 from the experi-
mental data. This will allows a direct comparison of STS-data and the calculations.
Therefore this normalization will be used throughout the following.

The unknown quantity for the this purpose is the energy dependence of the t-matrix
timp(ε) that is connected with the dynamics of the impurity. Realistic spectral func-
tions of Co and Fe impurities in copper are not accessible. Many-body techniques
are usually based on highly idealized model-Hamiltonians and are valuable in show-
ing the general behaviour in the different physical regimes. Their results depend
on a number of parameters, whose particular values for our systems are unknown.
Ab-initio-calculations in contrast are solely based on the atomic numbers, but they
have up to now difficulties in treating electron correlations in a realistic way. Al-
though DTF calculations of Co and Fe atoms in Cu are possible and give reasonable
predictions of many physical properties [53], the Kondo resonance can not be re-
produced by this technique. Currently efforts are being made in combing these two
methods [66]. First-principles techniques could be used in obtaining the parameters
of a given experimental system as %0(ε), εd, V and approximately U . Thereafter
state-of-the-art many-body calculations can be used to calculate the dynamics. In
the following we will treat timp(ε) of our systems as a well-defined but unknown
quantity.
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Figure 4.5: calculated LDOS of a d=3.3ML impurity in h=7Å above the surface

The impact of timp(ε) will now be discussed for two cases. In the first one the
impurity scattering is energy-independent i.e. the phase of timp(εF ) at the Fermi
energy obtained by the fitting the constant current topographies in Chapter 3 is
used for all energies ε and the amplitude of timp(ε) is fixed at 1/(πρ0)(ε) (unitary
limit). This gives the reference, where all effects are due to dispersion and no
scattering resonance is present. In the second case we use equation 4.14 to obtain
a hypothetical t-matrix. For this we used guessed values of εd = −1V , εK = 0V ,
U = 3V , ∆ = 100mV and TK = 500K. This shows the behaviour if the scattering is
purely due to the interaction with the localized orbital |d〉, if the (Nd = 2)-Anderson
model is suitable for describing a ”real” Co or Fe atom and if no additional scattering
channels are present. Possible ”background”-scattering could be due to a local strain
field or a hybridization with the impurity’s s-orbital [67].

We will always consider LDOS-sections with the spatial coordinate in [010] direction
and a single spectrum which is calculated directly above the impurity atom (i.e. at
position x‖ = 0). Both quantities are both normalized to ∆%/%0. As was already
mentioned, the experiments described later will also give access to the quantity
∆%/%0. Thus the calculated spectra sections correspond to the experiment in which
the STM tip is scanned along a line in [010]-direction at a distance of h above the
surface centrally through the interference pattern produced by an impurity in a
depth d below the surface. The single spectrum will correspond to the (normalized)
tunnelling spectrum taken in the middle of the defect pattern. Here blue curves
correspond to the measured STS-data for the non-resonant case while red curves
show the single spectra that are obtained using the hypothetical resonant t-matrix.
Modified Fano functions described in eq. 4.8 (which use the ”q-phase” Φq instead of
the q-parameter q) are fitted to the single spectrum for the resonant case as this will



4.2. ENERGY DEPENDENCE OF %(X, ε) NEAR AN IMPURITY 75

lateral position [A]

E
ne

rg
y 

[e
V

]

non−resonant

−20 −10 0 10 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

lateral position [A]

E
ne

rg
y 

[e
V

]

resonant

−20 −10 0 10 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.2 −0.1 0 0.1 0.2

−25

−20

−15

−10

−5

0

5

10

15

20

25

Energy [eV]

∆ρ
/ρ

0 [%
] T

K
 = 498 K

ε
K
 = −0.133 mV

Φ
q
 = 1.75 π

Amp = 21.6

Figure 4.6: calculated LDOS of a d=3.3ML impurity in h=3Å above the surface

also be later performed to the experimental data. This should help to analyze how
the depth d of the impurity and the tip-sample distance h influence the resulting
line shapes and the obtained fitting results.

We start with a 3rd layer impurity (d=3.3ML) probed at 7Å above the surface.
On the left of Figure 4.5 side the non-resonant case using a constant phase-shift of
1.1π is shown. Here no significant changes in the LDOS can be observed and the
broad minimum that was visible in the constant current topographies of 3rd layer
Co atoms (see Chapter 3) is present for all energies within ±300mV . The single
spectrum of the non-resonant case shows a −5%...−15% depletion of LDOS directly
above the impurity. In contrast, the resonant case shows a full π-phase shift around
zero bias in the spectrum section. The LDOS far above ε = 0 is approximately
inverted compared with the LDOS for ε ¿ 0. The amplitude of the oscillations
becomes weaker the further the energy ε is chosen away from the resonance at εK .
A clear anti-resonance can be observed in the single-spectrum and the Fano-fit nearly
perfectly reproduces the Kondo temperature of 500K inserted into the t-matrix.

As discussed in chapter 3 the parameter h combining the tip-sample distance and the
”sharpness” of the tip has a strong influence on the observed topographies. It was
demonstrated in Figure 3.15 that a 3rd layer Co atom is imaged under mediocre tip
conditions as a broad minimum in topography near zero bias while with tips permit-
ting atomic resolution a central maximum can be observed. Whether a minimum or
a local maximum is observed in the topographies directly depends on the electron’s
average phase-relation between the position of the impurity and the position of the
tip. Therefore this effect does also play an essential role in the obtained LDOS-
spectra. This can be seen in figure 4.6, where the 3rd layer impurity of figure 4.5 is
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Figure 4.7: calculated LDOS of a d=6.3ML impurity in h=7Å above the surface

probed in 3Å distance. The measured Kondo temperature obtained by fitting the
Fano-function is insensitive to this effect and reproduces the ”correct” value. The
line shape however and hence the q-phase differs from the results obtained in 7Å dis-
tance. From this one can conclude that the line-shape and the amplitude of LDOS
modulation are sensitive to the prevailing tip-condition and may differ between mea-
surements using different tips. Probing the vacuum LDOS in larger distances from
the surface will result in increased q-phases in the spectral line-shapes. This can be
easily understood if we remember that moving the tip away from the surface sup-
presses the contribution of high k‖ states to the tunnelling current. In the case of a
spherical or nearly-spherical Fermi surface these high k‖ states have a low perpen-
dicular wave-vector component k⊥. As the q-phase at a position directly above the
impurity (i.e. with x‖ = 0) is directly proportional to the perpendicular wave-vector
component and to the distance between impurity and surface, an increased value of
h results in a higher average k⊥-value of the contributing electrons and hence in a
higher q-phase. Thus we cannot expect that all experimental data performed on a
certain impurity species in a certain depths below the surface will show the identical
line shapes.

We now want to analyze which behaviour is expected if the impurity is placed
at larger distances below the surface. While the non-resonant case did not show
a significant bias dependence for the 3rd layer defects an impurity in 6 ML depths
shows (Fig. 4.7) a significant slope of the phase fronts within ±300mV causing nearly
an inversion of the interference pattern from −300mV to +300mV even without a
scattering resonance. Anyhow, this crossover happens continuously over the full
energy range and the single spectrum still shows a monotonous behaviour. It is
clearly discriminable from the resonant case which now shows a peak like resonance
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Figure 4.8: calculated LDOS of a d=14.3ML impurity in h=7Å above the surface

with a q-phase close to π.

The spectrum sections calculated for the 14th layer impurity show that in the non-
resonant case the bare dispersion already causes a shift of the phase fronts at the
surface of more than half a wavelength i.e. the maxima and minima move signif-
icantly towards the center of the LDOS pattern even without a Kondo resonance.
This could be misinterpreted as a phase shift of π. The single spectrum shows an
oscillatory energy dependence for the non-resonant case which could be mixed up
with a broad resonance. However, the lineshape of the resonant case is clearly dis-
tinguishable but the fitted Fano-function reveals a lower Kondo temperature than
the one entered into the model t-matrix. The additional oscillations in the single
spectra that are caused by the dispersion, constrict the observed resonance. This
leads to an underestimation of the Kondo temperature if only the single spectrum is
regarded. A similar behaviour was observed in the 1D example. Here the spectra in
Fig.4.2f) shows an anti-resonance that appears much narrower than the one directly
at the position of the impurity (Fig.4.2a).

As we have seen the impact of the dispersion becomes stronger for defects buried
deeper below the surface. This is obvious: if the dispersion causes a change in the
wavelength of ∆λ the n-th wavefront will be shifted by an amount n ·∆λ. Thus the
shift of maxima and minima due to the dispersion increases linearly with distance:

dr

dε
=

r

kF vGr

(4.16)

In contrast to this the phase-shift due to a scattering resonance shows an arc tangent
behaviour versus energy and has the steepest slope in the middle of the resonance
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corresponding to a λ/2 shift within πkBTK . This λ/2 shift occurs at all distances
from the impurity and corresponds to a ”movement” of the phase fronts due to
Kondo resonance of:

dr

dε
=

1

2kF kBTK

(4.17)

It becomes more difficult to distinguish between both effects the more the distance
to the impurity is increased. This was already observed in the one-dimensional
example (Fig. 4.2). The dispersion and the resonant phase-shift have comparable
impact on the LDOS in a critical distance rc:

rc =
vGr

2kBTK

≡ 0.5ξK (4.18)

The quantity ξK is the Kondo coherence length [15, 68, 69, 70]. It is a length scale
that also describes spatial decay of correlation between the spins of impurity and
the conduction band electrons and thus the extension of the Kondo screening cloud.
We should note that any ordinary single-particle resonance of identical width and
energetic position has the same impact on the single-particle spectral density as the
Kondo resonance.

In the case of copper as the host metal the mean Fermi velocity, as obtained from
the LCAO calculations (see Appendix A), is ≈ 7.5eV ·Å. Thus an impurity having a
Kondo temperature of TK = 500K can be clearly distinguished from a non-resonant
point scatterer up to a depth of rc=48 ML. From the opposite point of view it can
be derived that the Kondo Effect of a 16th-layer impurity can be identified unless
the Kondo temperature exceeds 1500 K. A 3rd layer impurity may have an Kondo
temperature up to 8100 K without masking the resonance by dispersive effects.

After showing that %(x, ε) is indeed modified by the Kondo Effect we want to discuss
now, how these physical quantities can be extracted from an STM-experiment. After
that we will show experimental data and check whether all calculated effects can be
also observed in ”reality” .

4.3 Scanning Tunnelling Spectroscopy

Up to now the interpretation of the STM-topographies was based on the theory
of Tersoff and Harmann [35, 37], which states that for low bias voltages and low
temperatures the tunnelling current I is proportional to the local density of states
at the Fermi energy εF . In the following we will maintain the assumption of low
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Figure 4.9: Schematic representation of the tunnelling junction at different bias
voltages. The energy dependence of the transmission factor T is indicated by arrows
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temperatures but regard the situation at variable bias voltages V . This will give us
access to spectroscopic information.

If a finite bias voltage V is applied to the tunnelling junction, the Fermi levels of tip
and sample are shifted relatively by an amount eV as it is depicted in Figure 4.9.
In the experiment V is applied to the sample while the tip is virtually grounded by
an I/V converter. The tunnelling current I is the result of a spatial overlap between
occupied states of one electrode and empty states of the other electrode. Using a set
of sample states |µ〉 with energies εµ and tip states |ν〉 with energies εν one obtains:

I(V ) =
4πe

h̄

∑
µν

[
f(εν − ε

(T )
F )− f(εµ − ε

(S)
F )

]
|Mµν |2δ(εµ − εν − eV ) (4.19)

where f(ε) are the Fermi-Dirac distributions and Mµν is the tunnelling matrix ele-
ment that was already defined in Chapter 2. The difference of the Fermi distributions
of tip and sample defines an energetic window of states, which contribute to the tun-
nelling current. For low temperatures the Fermi functions can be replaced by step
functions so that the above equation can be transformed into an integral containing
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only transitions within a finite energy range between εF and εF + eV :

I(V,x‖) ∝
∫ εF +eV

εF

dε%(x‖, ε)%T (ε− eV )T (ε, V, h(x‖)) (4.20)

here %(x‖, ε) and %T (ε) are the local density of states of sample and tip, respectively.
T is an energy- and bias-dependent transmission factor that can be related to an
effective barrier height Φeff = 0.5 · [(ΦS − eV ) + ΦT ] using the WKB approximation
[34]:

T (ε, V, h) = exp

(
−2h

√
2m

h̄

√
ΦT + ΦS + eV

2
− ε

)
(4.21)

where ΦT and ΦS denote the work functions of tip and sample and h is the tip-sample
distance.

4.3.1 Multi bias spectroscopy

If the tip-sample distance is adjusted in order to keep the tunnelling current con-
stant at every scan point x‖, the corresponding topography h(x‖) is a function,
which leaves integral 4.20 invariant. If the work function of the sample is later-
ally constant, the only x‖ dependent term is the sample LDOS %(x‖, ε). Therefore
this measurement provides contours on which the integrated LDOS within εF and
εF + eVT is constant. The energy dependent weighting factor within this integral is
the tip DOS %T (ε) and the transmissivity T , so that states of different energy may
contribute differently to the tunnelling current and hence may differently influence
the topography h(x‖). If the variations of %T (ε) and T (h, V, ε) are negligible within
εF and εF + eVT , the obtained contours are proportional to the average LDOS in
this energetic interval.

In multi-bias mode, every scan line is scanned n-times using different tunnelling
parameters (V

(n)
T , I

(n)
T ) before proceeding to the subsequent scan line. This allows a

pixel-by-pixel comparison of the obtained contours h(n)(x‖).

4.3.2 I(V) - spectroscopy

In this spectroscopy mode the tip scans the surface in constant current mode at a
given set of tunnelling parameters (VT ,IT ). At every scan point the feedback loop
is temporarily deactivated, holding the tip in a fixed distance to the sample, and a
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I(V ) spectrum is recorded within a certain voltage range. After that, the feedback
loop is switched on again and the tip is moved to the subsequent scan point. This
measurement records a three dimensional data set I(V,x‖) along with the constant
current topography h(x‖).

The quantity, which is of primary physical interest, is the sample LDOS (or single
particle spectral density) %(x‖, ε) at a certain lateral position x‖ and a certain energy
ε. This quantity can be approximately derived from the differential conductance
dI/dV (V ) at a certain bias voltage V . Using Leibnitz’s rule, the derivative of
equation 4.20 with respect to the bias voltage gives three terms2:

dI

dV
(V,x‖, h) ∝ %(x‖, eV )%T (0)T (eV, V, h) (4.22)

+

∫ eV

0

dε%(x‖, ε)%T (ε− eV )
dT (ε, V, h)

dV

+

∫ eV

0

dε%(x‖, ε)
d%T (ε− eV )

dV
T (ε, V, h)

If the spectroscopy is performed at voltages close to 0V the bias dependence of
the transmission factor T can be neglected. If furthermore the tip LDOS %t(ε) is
assumed to be structureless the latter two terms in eq. 4.22 are zero and one obtains
a handy expression:

dI

dV
(V,x‖, h) ∝ %(x‖, eV )%T (0)T (eV, V, h) (4.23)

Within this approximation, the differential conductance still depends on the un-
known tip LDOS at the Fermi energy and the transmission factor T of the tunnelling
junction at the chosen tunnelling parameters (VT ,IT ). In other words, spectroscopies
performed with the tip closer to the sample show in general higher values of dI/dV
than spectra obtained at larger distances. In order to allow a quantitative compari-
son of the STS data taken with different tips and at different tunnelling parameters,
we again decompose the sample LDOS %(x‖, ε) in an unperturbed part %0(ε) plus a
local variation ∆%(x‖, ε). We can then try to eliminate both %T (ε) and T (ε, V, h) by
relating I(V ) to a reference spectrum I0(V ) taken on the free surface, i.e. obtained
in an area where ∆%(x‖, ε) = 0:

dI
dV

(V )− dI0
dV

(V )
dI0
dV

(V )
=

∆%(x‖, eV )%t(0)T (eV, V, h)

%0(eV )%T (0)T (eV, V, h)
=

∆%(x‖, eV )

%0(eV )
(4.24)

2in the following we will measure the energy of tip and sample states relative to the correspond-
ing Fermi energy ε

(T )
F and ε

(S)
F , respectively.
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and %T (ε) have been ”marked” with oscillations of different frequency. b) the nor-
malization (∆dI/dV )/(dI0/dV ) underestimates the strength of spectral features for
negative bias voltages and vice versa.

The above expression is only valid, if both I(V ) and I0(V ) are taken at identical
tip-sample distance h so that the transmission factors can be cancelled down. This is
in general not true since tip-sample distance is changed by the feedback loop above
areas of modified LDOS in order to keep I constant. Since the topography h(x‖) is
recorded simultaneously to the spectroscopy, the I(V ) curves can be normalized to
a constant tip-sample distance h0 afterwards. This procedure will be described in
the next section.

It can directly be seen that equation 4.23 contains an unphysical asymmetry con-
cerning a permutation of tip and sample. The differential conductance at a certain
voltage V is related to the sample LDOS at the particular energy eV , the tip LDOS is
only required at the Fermi level and T is monotonically increasing with bias voltage.
If tip and sample were identical the dI/dV -spectrum has to be symmetrical around
V = 0V . Obviously this is not satisfied by eq. 4.23. If the exponent of eq. 4.21
is replaced by approximation 3.20 (see Chapter 3), a more realistic expression for
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dI/dV is obtained:

dI

dV
(V ) =

1

2
[%(eV )%T (0)T (eV, V, h) + %(0)%T (−eV )T (−eV,−V, h)] (4.25)

+
1

2

∫ eV

0

dε [%′(ε)%T (ε− eV )− %(ε)%′T (ε− eV )] T (ε, V, h)

Here %′(ε) denote the derivatives of LDOS with respect to the energy. It can be
seen that the dI/dV(V)-spectrum is dominated by the tip DOS at negative bias
voltages and by the sample LDOS at positive values of V . This behaviour can also
be observed in Figure 4.10 a) where a dI/dV -spectrum has been calculated directly
from equation 4.20 using ΦT = ΦS = 4eV and h = 6Å. For a better discrimination
between tip and sample properties, 5%-modulations of different frequency have been
added to the LDOS of tip and sample, respectively. The blue and black lines are
the first and second terms of equation 4.25. This shows that in the strict sense
the obtained identity (∆dI/dU)/(dI0/dU) = ∆%/%0 is only valid at V = 0. This
can be seen in figure 4.10 b). For negative bias voltages the normalization 4.24
underestimates the magnitude of spectroscopic features while for positive voltages
the obtained values of (∆dI/dU)/(dI0/dU) are larger than the actual relative change
of LDOS ∆%/%0. Additionally one can observe that spectroscopic features of the tip
cannot be completely removed by this normalization. However, unless a better
normalization is found, this is the best we can do.

The recorded spectroscopic information is a three dimensional data set and can be
displayed in several ways:

1. Single dI/dV-Spectra: dI/dV (V )|x0,y0 show the differential conductance
versus bias voltage at one lateral position (x0,y0)

2. dI/dV-Maps: dI/dV (x, y)|V0-Maps depict the spatial arrangement of differ-
ential conductance at a fixed bias voltage V0.

3. Spectrum Sections: dI/dV (s, V )|x(s),y(s) display the differential conductance
versus bias and one spatial coordinate s along a line (x(s), y(s)).

Since the latter two compare spectroscopic information at different lateral posi-
tions, they are in general sensitive to artifacts, which are due to a local variation
of tip-sample distance (topography). This in turn depends on the chosen tunnelling
parameters (VT ,IT ) used for the constant-current feedback. As the elimination of
these effects is important for the interpretation of some STS-data presented later,
we will now discuss the origin of these artifacts.
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4.3.3 STS normalization

If the tip is stabilized in constant current mode, the set-point current IT is obtained
at the chosen bias voltage VT . Furthermore, if thermo voltages [71] across the
tunnelling junction are neglected, the current I vanishes at V = 0. These two values
I(0,x‖) = 0 and I(VT ,x‖) = IT are fixed throughout the data set, i.e. ∀ x‖. If for
example %(x, ε) is modulated laterally but constant in energy within εF and εF +eVT ,
the local variations of the LDOS are fully compensated by the tip-sample distance.
In this case, both the I(V )-characteristic and dI/dV (V ) will not differ laterally
within this energy range, although the sample-LDOS is laterally dependent. The
spectroscopy is ”blind” within a certain energy range due to a partial compensation
of spectroscopic information by the non-constant tip-sample distance. If we drop
the assumption of an energy-independent LDOS, the I(V )-curves will vary from one
position to another, but since I(0) and I(VT ) are fixed, the mean value of dI/dU will
be constant within εF and εF + eVT for all positions. Consequently the comparison
of STS-data taken at different positions will always be afflicted with topographic
artifacts.

An example is shown in Figure 4.11. Here the identical defect (a 5th layer Fe atom
in Cu(100)) has been measured twice with the constant current feedback working
at VT = +150mV and VT = −150mV , respectively. The local variations of tip-
sample distance in both measurements are depicted in Figure 4.11a,b and differ
significantly for both values of VT . In the spectrum sections (Fig. 4.11c,d), which
are depicted below the topography cross-sections, the artifacts due to non-uniform
tip-sample distances can be clearly seen. The VT = +150mV measurement contains
spectroscopic information only for U < 0. The situation for VT = −150mV is the
opposite.

The information contained in a single dI/dV spectra at a certain position is less
sensitive to these effects. This can be seen in Figure 4.11 g). For both values
of VT single spectra are taken directly above the impurity at position (*), which
corresponds to a vertical cross-section of the Spectrum section as indicated by a
black line. Both spectra look similar but are shifted vertically by a certain amount.
As the VT = +150mV data was achieved at a ≈ 2pm larger distance, it is obvious
that the dI/dV values are smaller.

If the reference spectrum I0(V ) was measured in distance h0 the obtained normalized
change of differential conductance is:

∆dI(V )/dV

dI0(V )/dV
=

∆%(x‖, eV )

%0(eV )
· T (eV, V, h)

T (eV, V, h0)
+

T (eV, V, h)

T (eV, V, h0)
− 1 (4.26)
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Using a work funcion of 4.6eV a change in tip-sample distance of h− h0 = 2pm re-
sults in T (0, 0, h)/T (0, 0, h0) = 0.97. Therefore the spectrum taken at h = h0 +2pm
is shifted vertically by -3%. Furthermore the amplitude spectroscopic features (e.g.
the peak near 0V) is reduced to 97%, which is a less prominent effect. The gen-
eral spectroscopic information (energetic position of peaks, line-widths, line-shapes)
is identical in both cases and hence less sensitive to this effect. However, when
interested in lateral dependence of differential conductance (Spectrum sections,
dI/dV-maps) these artifacts have to be corrected.

For this purpose the STS-data were normalized to a constant tip-sample distance
h0. This distance was defined as the average value of h(x‖) on the free surface, i.e.
far away from the defect. I(V)-curves taken at distances closer to the surface have
to be attenuated while spectra obtained at h(x‖) > h0 need to be amplified. This
was done using:

I(x‖, V )norm = I(x‖, V ) · exp(−2κ0(h(x‖)− h0)) (4.27)

The important quantity for this purpose is the average work function of tip and
sample. For this a value of Φ = 4.6eV turned out to be appropriate. The corrected
spectrum sections are depicted in Figure 4.11 e,f).

For most of the data presented here, the measurement was performed twice with
bias voltages VT chosen symmetrically around 0V , i.e. a spectroscopy taken from
-300mV to +300mV was measured twice with set-points at VT = −300mV and
VT = +300mV , respectively. This allowed cross-checking the efficiency of the to-
pography normalization and to determine the work function needed in order to
achieve agreement between both data sets.

4.4 Topographies at different bias voltages

We now want to proceed with the analysis of the experiments and investigate,
whether the Kondo Effect can be observed in real space. Subsurface impurities
of two different chemical elements have been prepared in this work, namely iron and
cobalt. From numerous macroscopic experiments on large ensembles of Co and Fe
impurities in copper, the Kondo temperatures of these systems are roughly known.
They are summarized in [72] and are 5-50 K for Fe in Cu and 250-1000 K for cobalt
impurities in copper. As the Kondo temperatures of both systems are different, the
phase-shift observed in the calculations should occur in different energy intervals
around 0V. This should be observable in the constant current topographies taken
at different bias voltages.
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Since states with energies within εF and εF + eVT contribute to the tunnelling cur-
rent IT , the topography h(x‖) is a contour of constant integrated LDOS. The weight-
ing of states in this integration depends on %T ip(ε) and the transmission factor T .
Therefore, especially at higher bias voltages, a quantitative interpretation of these
measurements is difficult and not as straightforward as that of the differential con-
ductance. But the analysis provides indications of energy dependent effects: if there
is a significant variation of h(x‖) in a certain bias voltage range, there also has to
be a change of sample LDOS in the particular energy interval. It is the most quick
and simple kind of STM-experiment to perform constant current topographies at
different bias voltages.

Indeed striking differences between both impurity species can be observed concern-
ing the bias dependence of the measured STM-patterns. Figures 4.12 and 4.13
show a direct comparison of 3rd layer cobalt and iron impurities at different bias
voltages. The patterns induced by both species are in general similar concerning
their lateral extension and their amplitude in tip-sample distance but they show
significant differences in their energetic behaviour. In the depicted cross-sections
the red lines correspond to the trace of the STM tip at positive bias voltages and
the blue traces correspond to negative voltages. It has to be noted that the pre-
sented measurements of the cobalt atoms were taken at ±300mV ,±200mV ,±100mV
and ±10mV , while the depicted Fe data have been measured at bias voltages of
±312mV ,±30mV ,±10mV and ±3mV .

In the case of cobalt impurities only minor changes in the topographies can be
observed within ±10mV . In the identical energy range a significant effect can be
observed for iron impurities. Here the size of the maximum in the center of the
pattern is reduced. The interference pattern ”shrinks” from negative to positive
voltages and the wave-fronts observed at positive voltages are slightly shifted towards
the center of the pattern compared with the data taken at negative bias voltages.
This can be observed for Fe even within ±3mV while for cobalt an effect of bias
voltage can be seen only for ±100mV and, more significantly, for ±200mV . The
patterns induced by cobalt impurities develop into an minimum centrally above the
impurity. In the case of iron atoms a tiny local maximum persists even for +312mV .
It can be clearly seen that this crossover is more abruptly around zero bias for the
Fe atoms.

It was shown that Fe and Co impurities differ strongly in their voltage dependent
behaviour. In the case of iron significant effects can be observed within ±10mV
around zero bias. In such a small energy range, the band structure of copper can
be assumed to be constant and the LCAO band structure calculation we used in
Chapter 3 reveals changes of |k| in the order of (min: +0.06%, mean: +0.16% max:
+0.23%). Thus the effect has to be related to a property of the impurity. The
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Figure 4.12: Bias dependence of constant current topographies of Co impurities in
the 3rd subsurface layer

signatures arising from cobalt impurities show only minor variations within ±10mV
but here an effect can seen between within ±100mV which becomes more promi-
nent within ±200mV . These energy ranges (±100mV and ±200mV ) correspond to
maximal changes in |k| of (min: +0.58%, mean: +1.7% max: +2.3%) and (min:
+1.2%, mean: +3.4% max: +4.8%), respectively. This is an energy range where
the band structure of copper does show significant modifications.

In accordance with the above estimation of a 0.2% change in the band structure
of copper within ±10mV we can assume the host Green-function to be constant
G0(x,x′, εF − 10mV ) = G0(x,x′, εF + 10mV ). In this case the maximum possible
change in ∆%(x) is an inversion of the LDOS-pattern and corresponds to a change
in the scattering phase-shift by π. We can thus use the Green function calculated
at the Fermi energy and fit the measured topographies of the Fe impurities in the
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Figure 4.13: Bias dependence of constant current topographies of Fe impurities in
the 3rd subsurface layer. The effect within ±10mV is much stronger than for the
Co atoms.

identical way as performed in Chapter 3. The result is shown in Figure 4.14 and
reveals a change of the phase-shift of 0.25π within ±30mV and of 0.15π even within
±3mV .

As stated before, the topographies at a certain bias voltage VT cannot be interpreted
as the LDOS of the sample at the particular energy but rather as the (tip-DOS
weighted) average LDOS between εF and εF + eVT . Thus the changes in the sample
LDOS that are responsible for the observed effects have to be even larger than those
observed in the topographies. The fitting of the topographies reveal a (weighted)
average value of timp(ε) within εF and εF + eVT . As a phase-shift of 0.25π can be
already observed in the constant current topographies this indicates that the phase-
shift of %(x, ε) around zero bias has to be larger than 0.25π. Consequently, for the



90 CHAPTER 4. KONDO EFFECT OF SUBSURFACE MAGNETIC ATOMS

VT=-30 mV VT=+30 mV

∆Φ=+0.25π

phase-shift
vs

bias voltage

-10 -5 0 5 10
-3

-2

-1

0

1

2

3
d = 3.3ML,   Φ = 0.923 π,   h = 5A°

lateral position [A°]

to
po

gr
ap

hy
 [p

m
]

-10 -5 0 5 10

d = 3.3ML,   Φ = 1.17 π,   h = 5A°

lateral position [A°]

-40 -20 0 20 40
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Bias Voltage [mV]

sc
a

tte
rin

g 
ph

a
se

 s
hi

ft 
[ π]

Figure 4.14: Calculations of LDOS at εF (red curves) fitted to the constant current
topographies of 3rd layer Fe atoms (blue markers) at different bias voltages. The
scattering phase-shift changes by 0.25π within ±30mV .

case of Fe the observed effects cannot be due to dispersion but have to be due to a
change in the ”scattering behaviour” timp(ε) of the impurity.

This significantly different voltage dependence of both species can be also observed
for different depths of the impurity below the surface. In order to show that, we
now briefly compare the topographies of impurities in the layers 4-6 only for bias
voltages of ±10mV and ±100mV .

For the 4th-layer (Fig. 4.15) atoms the height and the lateral extension of the local
maximum centrally above the impurity is reduced. As a local maximum stays a local
maximum, the effect is less obvious in the grey-scale coded STM-topographies than
it was the case for the 3rd-layer impurities. The cross-sections however show that
the STM-traces taken at positive voltages (red curves) are shifted inwards compared
to those obtained at negative voltages (blue curves). This can be clearly seen for
±10mV for Fe impurities while subsurface Co atoms do not produce any significant
effects within this energetic interval.

The 5th layer impurities (Fig. 4.16) show a more prominent effect, since a local
minimum being present in the center of the interference pattern for negative bias
voltages develops into a plateau-like maximum that (depending on the tip-quality)
may still possess a slight central dimple. Thus, similar to the 3rd-layer impurities,
the different bias dependency of both impurity species can be already identified
during the STM-measurements without the necessity of a detailed comparison of
cross-sections.
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Figure 4.15: Comparison of the bias dependence of Co and Fe impurities in the 4th
subsurface layer. The Fe impurities show a phase-shift within ±10mV .
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Figure 4.16: Comparison of the bias dependence of Co and Fe impurities in the
5th subsurface layer. For Fe a local minimum turns into a local maximum within
±10mV .

If cobalt or iron impurities are buried in the 6th subsurface layer (Fig. 4.17) the
resulting STM-patterns are ring-like enhancements of LDOS. The diameter of these
rings is reduced if the bias voltage is raised above 0V . The same reduction applies
to the depth and lateral extension of the local minimum in the center of the STM
pattern. This different behaviour of Co and Fe was consistently observed on multiple
prepared samples using different STM-tips. Thus it seems to be a genuine property
of the particular impurity species.

For the correct interpretation of the presented data and the conclusion that the
observed effects are due to an energy dependence of the sample’s LDOS we have to
exclude one mechanism that can also cause differences in the STM-topographies of
subsurface impurities. This was discussed in Section 3.4.4 when the impact of the
tunnelling resistance on the measured patterns was discussed. Different bias voltages
as applied here result in different tunnelling resistances and hence in different tip-
sample distances h. As the obtained interference patterns depend on the tip-sample
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Figure 4.17: Comparison of the bias dependence of Co and Fe impurities in the 6th
subsurface layer. Again a significant difference between both impurity species can be
observed.
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distance, it has to be assured that the topographies discussed above were taken in
comparable distance from the sample. The necessary information for that purpose
is contained in the experimental data since the topographies for all tunnelling pa-
rameters were recorded simultaneously and the relative tip-sample distances can be
extracted. This analysis reveals that the measurements at the identical absolute
bias voltage but with different polarities (e.g. +10mV and −10mV ) were always
taken in nearly identical tip-sample distance and showed a ∆h of less than 4pm.
In contrast to that, the STM-measurements at VT = ±10mV are taken in ≈ 1Å
smaller distance to the sample than those performed at VT = ±100mV . Thus the
impact of different tip-sample distances on the topographies might be a problem for
the comparison of data taken at +10mV and +100mV . However, if a difference in
the topographies is observed between +10mV and −10mV or between +100mV and
−100mV is, this can be clearly attributed to an energy dependence of the sample’s
LDOS.

It can already be excluded that the bulk-dispersion is solely responsible for the ob-
served energy dependence. If that were the case both impurity species (Co, Fe)
would show an identical behaviour. In addition we saw from the calculations that
the dispersion in copper is negligible within ±10mV and cannot explain the drastic
changes observed on the iron impurities. The changes observed on the cobalt impu-
rities however occur within a larger energy range. From the topographies and the
LDOS calculations it is not clear whether these changes are due to the dispersion or
due to an energy dependent scattering behaviour of the impurity. In order to reveal
this question, we now proceed with the STS-analysis of the experimental system.
As we saw in the calculations, a scattering resonance is also characterized by Fano
line shapes in the dI/dV curves.

4.5 STS of subsurface impurities

The constant current topographies described in the previous section indicated strong
energy dependent effects near zero bias for the Fe impurities. Thus we will start
the description of the STS-data on this impurity species. After that the sub-surface
cobalt atoms will be discussed. First of all this will be be performed from a purely
experimental point of view. The analysis will focus on the position, widths, asym-
metry and amplitude of the Kondo resonance in the dI/dV-curves. This analysis is
relatively insensitive to the artifacts that were discussed in Chapter 4.3.3 and are
due a local variation of tip-sample distance (topography). It only produces a vertical
shift of the single dI/dV-spectra and hence does not affect the energetic positions or
line shapes of spectroscopic features. The analysis gives the identical fitting results
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Figure 4.18: STS-data of 3rd layer Fe impurities: a) sharp anti-resonance near V =
0 b) atomically resolved 3rd layer Fe impurity: different line-shape but comparable
Kondo temperature

without normalizing the STS-data to a constant tip-sample distance. Nevertheless,
we will present data that is already properly normalized. Thereafter we will attempt
to find a function timp(ε) that describes the experimental observations. This will be
done by fitting the calculated LDOS-sections to measured spectrum sections. This
will be a much more sophisticated task since it is sensitive to prevalent artifacts.
But since it gives access to the key quantity of the experimental system, we will give
it a try.

4.5.1 Fe impurities

In total 19 STS-measurements have been performed on subsurface Fe atoms in
Cu(100) which each take about two hours of acquisition time. Only a small se-
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lection of this data will be presented here in detail but all experiments have been
analyzed concerning the width and position of the Kondo resonance. In all cases
Fano functions have been fitted to the single STS-spectra taken in the middle of the
defect pattern. This entirety of fitting results will be compared later but first of all
a few characteristic spectrum-sections and single spectra will be presented.

The bias dependency of 3rd layer impurities was characterized in the constant cur-
rent topographies by an abrupt reduction of size of the central maximum near zero
bias. Obviously the tunnelling current is strongly reduced at this position from
negative to positive voltages and this is compensated by placing the tip in closer
distances to the sample. This loss of tunnelling current across 0V is equivalent to a
negative peak in its derivative dI/dV. Indeed a sharp anti-resonance can be observed
in the (normalized) dI/dV spectrum (Figure 4.18a). This spectroscopic feature is
located near V = 0V and causes an ≈ 11% reduction of LDOS in the middle of
the resonance. A Fano function can be successfully fitted to the dI/dV curve and
gives a Kondo temperature of 87 K and a q-phase of Φq ≈ −0.3π. In the (topogra-
phy normalized) spectrum section it can be observed that the central maximum is
strongly reduced in size but persists for positive voltages. This is inconsistent with a
full π-phase shift that would cause an inversion of the standing wave pattern across
the resonance.

The calculations of chapter 4.2.2 showed a dependence of the obtained line-shapes on
the tip-sample distance h. Indeed such effects were also observed in the experiments.
Figure 4.18b) shows spectroscopic data of an atomically resolved 3rd layer Fe atom.
In contrast to the previous example this data has been taken in a smaller energy-
range of ±100mV so that the Kondo resonance may appear broader in the single
spectrum. However, the width and amplitude of the resonance are comparable to the
experiment without atomic resolution. The line-shape however differs strongly and
the q-phase is≈ 0.4π smaller. This behaviour is expected from the calculations, since
we showed that lower tip-sample distances result in lower q-phases. The spectrum
section of this defect again shows a significant phase-shift around 0V. This is again
smaller than λ/2 and hence smaller than the expected value of π.

If the tip is moved laterally away from the center of the defect pattern, the distance to
the impurity is enlarged. From the 1D-model an increase of the q-phase is expected
for this case. This effect can be in general observed in all measured STS data and
will be demonstrated using one data-set, where the effect is particularly pronounced.
Figure 4.19 shows the spectroscopic data taken on 5th layer Fe impurity. From the
analysis of the multi-bias topography it was evident that a local minimum directly
above the impurity atom vanishes from negative to positive voltages. The tip has
to retract relative to the free surface if the bias voltage is raised above 0V . This
is equivalent to a tunnelling current which is larger than on the free surface and
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Figure 4.19: 5th layer Fe atoms show a peak-like spectroscopic signature at V = 0
directly above the impurity. If the lateral distance to the center of the pattern is
increased, the line shapes become asymmetric and the q-phase increases

consequently a peak can be seen in the tunnelling spectrum in the center of the
defect pattern. The width of this resonance is comparable to that of the anti-
resonance observed on the 3rd layer impurity. The spectrum section reveals that
the phase-fronts are shifted inwards around 0V. A central minimum develops into
a plateau-like maximum but overall phase-shift is again smaller than π. Single
dI/dV spectra taken at positions 2-4 in Fig. 4.19 correspond to different lateral
positions. They show different Fano line-shapes with an increasing q-phase the
further the tip is moved away from the center of the pattern. Thus, the behaviour
that was demonstrated in the 1D-model and that was also predicted by theoretical
investigations [27] can be observed in reality.
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4.5.2 Co impurities

We will now perform the identical analysis on the cobalt impurities. Here 17 mea-
surements have been analyzed but we will again only show some representative
examples. In general the spectral signatures of Co impurities are similar to those of
Fe atoms as for instance a 3rd layer impurity also shows an anti-resonance in the
dI/dV-curves and a disappearance of the central maximum from negative to positive
voltages. The striking difference is the width of the spectroscopic features. Unlike
the Kondo resonance of Fe atoms, which had a line width (HWHM) of ≈ 7meV , the
features of Co atoms show a width of ≈ 100meV . In general this can be explained
by the higher Kondo temperature of Co in Cu, which defines the width of the Kondo
resonance.

A few spectroscopies of impurities in layers 3 to 6 are depicted in Figure 4.20

4.5.3 Comparison of the fitting results

Fe in Cu

In total 19 STS-measurements on different impurities using different STM tips
have been analyzed. The results are summarized in Figure. 4.21. All these STS-
measurements showed sharp spectroscopic features near zero bias with comparable
line-width corresponding to a Kondo temperature of Fe in Cu of

TK = (84.8± 2.5)K

The Kondo resonance is located at at the Fermi energy and the average position is:

εK = (−0.14± 0.24)mV

Using the Friedel-sum rule [15] the occupancy of the d-orbital can be estimated:

nd/Nd = (51± 1)%

Assuming a 10-fold degenerate d-orbital this would correspond an occupation num-
ber of nd ≈ 5. This is smaller than expected, as an isolated Fe atom has nd ≈ 6,
which is slightly increased nd ≈ 6.44 according to DFT calculations [73], if the
atom is incorporated in a copper environment. Thus we would expect the Kondo
resonance further below 0V . A possible explanation for this discrepancy will be
discussed later.
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Figure 4.20: STS-data of subsurface Co-impurities in 3 to 6 layers below the Cu(100)
surface. A phase shift can be observed in all cases and the single dI/dV spectra can
show Fano line shapes.
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Figure 4.21: Comparison of the fitting results obtained on subsurface Fe atoms:
Kondo temperatures around 80 K. The q-phase apparently decreases with increasing
depth which turns out to be an aliasing effect.

In the upper right corner of Figure 4.21 a plot of the obtained q-phases versus
the impurity depths is depicted. Apart from one single value corresponding to
the atomically resolved 3rd layer impurity all other values show a linear decrease
of q-phase with increasing distance. As was seen in the calculations, a better tip
corresponding to lower values of h results in lower q-phases. This explains why
the q-phase of the atomically resolved 3rd layer Fe atom is about 0.4π lower. A
linear fit reveals a slope of −0.44π/ML if the deviant data point is excluded. This
slope corresponds to a periodicity of 4.6ML in the observed line shapes. At a first
glance this is in striking contrast to the results of the 1D-model. From this one
would expect an increasing q-phase with increasing distance and a periodicity of
half the Fermi wavelength. Of course the q-phase is 2π-periodic and hence the
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observations are also equivalent to a +1.56π/ML-slope of q-phase. This is now in
accordance to the expected behaviour and corresponds to a periodicity of 1.28ML.
The negative slope is due to an aliasing between the periodicity of the lattice and the
wavelength of the LDOS oscillations. This was already observed in Chapter 3 when
a 3D reconstruction of the propagator was performed. Since the lattice constant of
copper is well known (1ML≡ 1.8Å) the slope of q-phase allows a determination of
the Fermi wavelength. This periodicity of 1.28ML = 2.31Å corresponds to a Fermi
wave-vector of 1.36Å−1. The LCAO band structure gives values for |kF | of 1.3 in
[110] and 1.45 in [100] direction. Therefore the observed slope of q-phase is in very
good agreement with the expected behaviour.

Co in Cu

The Kondo resonance observed on the subsurface cobalt atoms was much broader
than in the case of Fe atoms. The average Kondo temperature obtained from 17
analyzed spectroscopies is:

TK = (1253± 42)K

The position of the Kondo resonance was located below 0V for all cases but varied
between −50mV and −100mV . The average value was determined as:

εK = (−76± 11)mV

This indicates that the d-orbital is more than half filled, as expected. We can again
obtain the occupancy of the d-orbital from the ratio of both quantities by using the
Friedel sum rule[15]:

nd/Nd = (69± 3)%

This correspond to nd = 6.9 electrons, if we assume a 10-fold degeneracy of the d-
orbital. In the same way as in the case of the Fe atoms, where a ratio nd/Nd = (51±1)
was determined, this value is lower than expected. Although this value is close to
nd = 7, which is expected for a free Co atom, one would expect a nd = 8.0 according
to DFT calculations [73] if the Co atom is incorporated in copper. One possible
explanation for the above discrepancy could be the crystal-field splitting of the d-
orbitals, which reduces the degeneracy to Nd(t2g) = 6 and Nd(eg) = 4. However, this
consideration depends on the actual degeneracy and the internal configuration of the
impurity atom in the host-metal’s environment. Even for ab-initio calculations, the
determination of such information is a challenging task, since correlation effects can
have a great impact on these properties. Thus, we leave the determined values of
nd/Nd as they are and do not deduce any conclusions about the orbital configuration
from them.
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Figure 4.22: Summary of the fitting results of Co impurities in Cu(100): monotonous
decrease of Amplitude, Kondo temperature around 1250K and a linear decrease of
q-phase with increasing depth (aliasing)

The obtained values of Φq again show a linear decrease with increasing depth. This
is again an aliasing between the wavelength of the LDOS-oscillations and the peri-
odicity of the atomic lattice. A linear fit reveals a slope of dΦq/dd = −0.42π/ML ≡
+1.58π/ML. The identical analysis that was also performed to the Fe-data gives a
Fermi wave vector of 1.37Å−1.

The plot of amplitude versus depths shows a monotonous decrease with increasing
depths. The values for the particular depths are in general larger than those deter-
mined on the Fe atoms. A 3rd layer Co atom shows a mean amplitude of ≈ 17%
while a 3rd layer Fe atom showed a ≈ 10% reduction of normalized differential con-
ductance in the middle of the Kondo resonance. Although the amplitude shows a
smooth decay as with increasing depth, it cannot be described by a pure d−1 or
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d−2 behaviour. This would be expected if the Fermi-surface is solely cylindrical and
ellipsoidal, respectively.

4.5.4 Discussion of the experimental findings

All described data of cobalt and iron impurities showed spectroscopic signatures
in the dI/dV-curves near zero bias that could be successfully fitted with Fano-
functions. The fitting provided comparable line-widths for each system and the
measured Kondo temperatures were (85 ± 3)K for Fe in Cu and (1253 ± 42)K for
Co in Cu. In all cases the q-phase increased if tip is moved away laterally from
the center of the defect pattern and apparently decreased with increasing depth of
the impurity. The latter observation was identified as an aliasing effect so that all
measurements consistently describe an increase of q-phase versus distance. This is
the behaviour that is expected from a generic scattering resonance and was also
reproduced by the 1D-model described in section 4.2.1.

Although this behaviour was predicted by theory [27, 26] it was up to now not
observed in STM-experiments. In the measurements of Manoharan et al [25] the
amplitude of the Kondo resonance decreased as the tip was moved away from the
magnetic impurity but the line-shape stayed identical. Knorr et al [21] showed
a decrease of the q-value versus the lateral distance for Co impurities that were
adsorbed on the Cu(100) surface. This is the opposite behaviour of what is expected.
Most probably these disagreements are due to the fact that their experiments were
performed on adsorbates and thus the comparison of different lateral positions is
always attended with comparison of different tunnelling geometries. The approach
presented here obviously avoids this difficulty as the impurities were buried below
the surface. Hence the tunnelling of electrons always occurs between the STM-tip
and an atomically flat copper surface.

The Kondo temperatures obtained in this work are in general higher than those
reported in literature. As mentioned earlier the Kondo Effect influences multiple
physical properties and can be therefore investigated using different methods. The
measurement of resistivity versus temperature is the most prominent manifestation
of the Kondo Effect. But many other quantities as the magnetic susceptibility, the
thermoelectric power among others show anomalies that can be used to determine
the Kondo temperature of a given system. A review of such measurements can be
found in [72]. Figure 4.23 shows a comparison of the measured Kondo temperatures
of various 3d elements in copper. They show values of 200-1000K for cobalt and
5-50 K for iron impurities. In general macroscopic measurements average over large
ensemble of impurities so that the prepared samples can potentially also contain
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this work

Figure 4.23: Comparison of the Kondo temperatures for 3d-transition metals in cop-
per: red dots indicate the values we obtained by the fitting of Fano-functions to
dI/dV-curves. They are in general larger than those values determined by thermo-
dynamic measurements (ρ: resistivity, χ: susceptibility, S: thermoelectric power, C:
specific heat and M: Mössbauer). Figure reproduced from [72]

dimers and clusters. However, it appears more probable that the Kondo tempera-
tures determined here are too high than that all values of TK measured by other
groups are too low.

It could also be observed that all measured spectrum-sections showed a much lower
phase-shift than the value of π that is expected from the Anderson-model. All
presented calculations always showed an inversion of the LDOS pattern across the
resonance. These were the 1D-model, solved by diagonalizing the non-interacting
Anderson-model, and the LDOS sections that were obtained by combining the host
Green function with a hypothetical t-matrix. In contrast to that the experiments
showed a phase-shift that was of much smaller size - most probably below 0.5π.
Nevertheless, a phase shift can be clearly identified and turned out to be the striking
fingerprint of the Kondo Effect in the STM-topographies. Impurities that showed
a strong voltage dependence of the constant current topographies near zero bias
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always revealed sharp spectroscopic features in the STS-measurements. Regarding
the extent of the phase-shift the observations deviate from the expected behaviour.
We want to discuss now what the reason for that might be.

4.5.5 Background scattering

The Anderson model is an approximate description of an impurity which is incor-
porated in a metal. From a conduction band electron’s point of view the only
perturbation is a hybridization with the impurities d-orbital. Apart from that no
additional scattering processes are included. The amplitude of the observed LDOS
oscillations is proportional to the amplitude of the t-matrix while the positions of
LDOS-maxima and -minima are determined by the phase of timp(ε). The proposed
t-matrix for the local moment regime (eq.4.14) consists of three scattering reso-
nances, which are each assumed to be describable by a complex Lorentzian. As
a consequence the scattering amplitude decreases monotonically with the energetic
distance |ε− εK |, unless ε gets into the energetic range of the Hubbard bands. This
was also observable in the calculated spectra sections (Chapter 4.2.2) where the
LDOS-oscillations at ±300mV were of low amplitude compared with the pattern at
0V . In contrast to that the experiments of Fe in Cu(100) showed that although the
Kondo resonance was extremely narrow a significant amplitude of the LDOS oscil-
lations was still observable at energies of ±300mV i.e. far away from the resonance.

One possible explanation for this could be an additional, approximately energy-
independent ”background”-scattering. Of course this could be due to the tails of
the Hubbard bands and would then be already included in the Anderson model.
But also scattering processes due to a local strain field or a hybridization with the
s-orbital of the impurity are possible and such processes would not be considered in
equation 4.14 so far.

It will now be analyzed how a background scattering would affect the measured
spectrum sections and the corresponding single spectra. For simplicity we ”switch
off” the Hubbard bands (Zd = 0, ZU = 0) and include only the Kondo resonance in
the model t-matrix. This leaves one complex Lorentzian whose general properties
are summarized in Figure 4.24. Its real part is an antisymmetric function around
ε = εK while the imaginary part is negative for all energies and shows minimum for
ε = εK . A helpful concept to visualize a complex function is the Nyquist plot[74]. It
describes of positions of timp(ε) in the complex plane for different energies. Another
representation is the plot of amplitude and phase versus energy, which is also termed
Bode plot[75]. Both are depicted in Figure 4.24. The Nyquist plot of a complex
Lorentzian is a circle that is adjacent to the real axis. The red marker indicates
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Figure 4.24: Properties of a complex Lorentian: the Nyquist-plot shows a circle in
the complex plane that is adjacent to the real axis

the value of timp for ε = εK i.e. in the middle of the resonance while the black dot
is the value of the t-matrix for |ε − εK | → ∞ i.e. far away from the resonance.
In Figure 4.24 the energetic spacing between two subsequent points was chosen to
0.2 · kBTK . Thus it can be seen that the t-matrix changes rapidly near εK . The
overall phase-shift of the resonance is π as the values of timp are near the negative
real axis for energies far below the resonance and approach the positive real axis for
ε → +∞.

An energy independent scattering process can be described by a constant t-matrix
which is just some complex number. The total t-matrix would then be sum of the
resonant and the non-resonant (background) channel. The Nyquist plot then shows
a circle that is moved away from the origin in some direction. It is obvious that the
behaviour of the system depends on the relative strength and the relative phase of
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Figure 4.25: Calculated LDOS sections and spectra for different ”background” scat-
tering processes. Left side: Nyquist-plot of the t-matrix - black dots indicate ε ¿ εK
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and overestimation of Kondo temperature c) additional destructively interfering pro-
cess: phase-shift of 2π and underestimation of Kondo temperature.



108 CHAPTER 4. KONDO EFFECT OF SUBSURFACE MAGNETIC ATOMS

the resonant and the background process. This is demonstrated for three cases.

Fig.4.25 a) shows the Nyquist-plot, the spectrum-section and the single spectrum
without any background scattering for a 6th layer impurity. The spectrum sec-
tion shows a π-phase shift and a low amplitude of the LDOS-modulations for
ε = ±300mV . If the background channel interferes constructively for ε = εK (Fig.
4.25b) the spectrum section show a much smaller phase-shift than in example a).
In the Nyquist-plot the reason for this behaviour can be clearly seen. The locations
of the different values of timp in the complex plane are limited to an angle ϕ which
is much smaller than π. As an interesting detail it can be observed that fitting
a Fano-function gives a ”measured” Kondo temperature that is about 20% larger
than the ”real” value of 500K. In the third case (Fig. 4.25c), the background chan-
nel interferes destructively with the resonant channel for ε = εK . Here the Nyquist
plot of the t-matrix is a circle that surrounds the origin. In the presented case the
amplitude of timp is constant for all energies and the calculated LDOS-section shows
oscillations, whose amplitude does not change versus energy. The phase however
shows stronger variations than for the case of the pure Lorentzian of Fig. 4.25a.
This is obvious since the t-matrix completely circles the origin of the complex plane
which corresponds to a phase-shift of ϕ = 2π. The Fano function shows an inferior
agreement to the calculated spectrum and the obtained Kondo temperature is more
than 20% lower than the value entered in the resonant part of the t-matrix.

In the experiments we observed a reduced phase-shift and a scattering amplitude
even for energies that are far away from the resonance. Consequently the experi-
mental behaviour is similar to the example of (Fig. 4.25b.) where the background
process and the resonant channel were constructively interfering for ε = εK . In this
example the fitting of a Fano-function provided higher values of TK than the one
inserted in the t-matrix. This could explain why the experimentally obtained Kondo
temperatures were larger than those reported in literature. However, in principle
a variety of different relative phases and relative strengths of the resonant and the
background channel are possible and each one of these t-matrices will produce a
different LDOS-section and potentially different fitting results. We will now try an
approach to analyze the behaviour of the experimental system in more detail. Its
purpose is to extract the t-matrix of the magnetic impurities from the experimental
data.

4.5.6 Experimental determination of timp(ε)

As noted earlier the key quantity of our system is timp(ε). It is a complex function
describing the scattering amplitude and phase-shift of the impurity versus energy.
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Previously different ”guesstimates” for this function have been made. A complex
Lorentzian, describing a circle in the complex plane produces a phase shift of π,
if no additional scattering processes are present i.e. if the scattering amplitude
vanishes far away from the resonance. If an additional background scattering is
assumed, the phase-shift can be less than π or 2π depending on the relative phase
and strength of the resonant and the background process. Every of these approaches
for timp(ε) approximately produces Fano line shapes in the single spectra and it is
obvious that different functions of timp(ε) may produce the identical single spectrum
if only one lateral position x‖ is considered. This ambiguity can be removed if the
correct description of spectra at different lateral positions x‖ is attempted with
the identical t-matrix. In other words the t-matrix has to correctly reproduce the
measured spectrum sections. Instead of guessing a t-matrix we now want to try
the opposite approach and fit the calculations to the measured spectrum sections in
order to determine timp(ε) experimentally.

The lateral comparison of STS-data is a challenging task, since a thorough elimina-
tion of artifacts due to the non-constant tip-sample distance is necessary. This was
described in the beginning of this chapter. If not done properly, it may produce non-
sensical results. In the uncorrected data of Figure 4.11 no LDOS-oscillations can be
observed in that part of the energy range between 0V and the set-point voltage VT .
Therefore the fitting would erroneously provide a vanishing scattering amplitude for
these energies. The following analysis was performed using STS-data of defects that
were measured twice using different set-point voltages VT and it was assured that
both provided comparable results.

For this the lateral distribution of differential conductance was analyzed and the
calculations were fitted to the experimental data for every energy and using fixed
values of d and h. This procedure was done similar to the one applied to the
constant current topographies in Chapter 3. Since both the calculations and the
experiments are properly normalized to ∆%/%0 the fitting provides the absolute
value and the phase of timp for every energy. The fitting was done automatically
using one spectrum section and the Green functions for different energies. The
resulting t-matrix is plotted as a Nyquist-plot, where a red marker now indicates
the position of V = 0V , and as well as the functions Re timp(ε), Im timp(ε), |timp(ε)|
and Φ(timp(ε)) versus energy. Additionally, a calculated spectrum section using the
obtained t-matrix is generated allowing a direct comparison of the fitting results
with the experimental data.

We start with the 3rd layer impurities. Figure 4.26 shows the fitting results obtained
on a subsurface Co atom. One can see that the fitting works very well and a perfect
agreement between the experimental observation and the calculated spectrum can
be obtained. The plot of the scattering amplitude versus energy clearly shows a
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Figure 4.26: Extracted t-matrix of a 3rd layer Co atom in copper. Fitting was
performed using d = 3.3ML, h = 7Å and using an energetic step size of 10mV.

resonance around zero bias. Additionally a positive shift of the scattering phase can
be observed between V = −150mV and V = +50mV . The extent of this shift is
slightly above 0.25π. This can be also observed in the Nyquits-plot of timp in the
complex plane which shows a clear loop which is entirely within the third quadrant
of the complex plane. This loop is not a circle (as a complex Lorentzian would be)
but shows a more elongated shape. It is clearly not adjacent to the origin. This
indicates that a background process is present.

The results of this investigation depend on the chosen parameter d. Of course a bad
agreement is achieved if d is chosen far away from the ”correct” value but a small
variation in the order of ±0.1ML leaves the shape of the loop unchanged but rotates
the whole pattern in the complex plane by ∓0.15π. This was already observed when
fitting the topographies in Chapter 3: if the impurity is moved away from the surface,
the phase-fronts have to be pushed outward in order to obtain a comparable pattern
at the surface. This leads to a negative shift of scattering phase if d is enlarged. The
obtained scattering amplitudes are enlarged if d is increased. This can also be easily
understood as G0 becomes more attenuated for larger distances. The t-matrix has
to compensate this decay if the modulation of LDOS is of identical strength. If a fit
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Figure 4.27: Extracted t-matrix of a 5rd layer Fe atom in copper. Fitting was per-
formed using d = 5.3ML, h = 7Å and using an energetic step size of 10mV.

is performed for instance using d = 3.5, the the overall scattering amplitude even
exceeds the unitary limit. This demonstrates, that the procedure cannot determine
the absolute value of the scattering amplitude and the absolute orientation of the
resonance loop in the complex plane certainly.

If a 5th- layer Co atom is fitted using d = 5.3 (Fig.4.27) both the Nyquist-plot and
the functions of phase and amplitude versus energy look comparable to the result
of the 3rd layer impurity. Again a peak-like resonance can be seen in the plot of
amplitude versus energy and a ≈ 0.3π shift of scattering phase is present. The
extracted t-matrix of a 3rd layer Fe impurity (Fig.4.28) looks similar concerning the
orientation in the complex plane but is lower in amplitude. This agrees with the
lower amplitudes of the fitted Fano-curves for Fe impurities. The resonance loop is
more circular than for Co impurities and the phase-shift is again ≈ 0.3π.

Although the described procedure shows a good agreement between the fitting
results and the measured data, the results should not be over-interpreted. At
the beginning of this chapter it has been explained that the assumed identity
∆%/%0 = (∆dI/dU)/dI0/dU is not precisely correct. The normalized differential
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Figure 4.28: Extracted t-matrix of a 3rd layer Fe atom in copper. Fitting was per-
formed using d = 3.3ML, h = 3Å and using an energetic step size of 2.5mV.

conductance overestimates the strengths of spectral features in ∆%/%0 above V = 0
and vice versa. This might explain why the measured loop is somehow distorted
and not of a circular shape. Especially in the case of Co, where the Kondo res-
onance is extended over a larger energy interval, the differences between ∆%/%0

and (∆dI/dU)/dI0/dU could effect the shape of the resonance loop. The Kondo-
resonance of Fe however occurs in a very small energy range so that the normalization
should be valid. Here a more circular shape is observed.

In conclusion it was shown that in principle the key-quantity of a Kondo system
can be accessed by combining STS-experiments and calculations of the host-metal
Green function. However, a quantitative determination of the ”real” t-matrix is only
approximately possible. This is because the results depend on the chosen value of
d, the agreement between the calculated Fermi surface and the ”real” Fermi surface
and the correctness of the STS-normalization we used for this analysis.



Chapter 5

Outlook

In this chapter we will briefly discuss possible applications of the electron focusing
effect. As was demonstrated previously in this thesis, the main physical reason
for the particular shape of sub-surface impurities in the STM-topographies can be
found in the shape of the propagator of the unperturbed host material. Although
surface reflections and a k‖-dependent decay within the vacuum were necessary to
achieve a quantitative agreement with the experimental observations, a qualitative
understanding was already achieved in section 3.2 with the knowledge of G0 only.
The ”shape” of G0 in turn can be quickly obtained from the Fermi-surface.

Indeed the Fermi-surfaces of all solids deviate from a spherical shape. Hence the
corresponding propagators are anisotropic and this fact will reveal new effects in
well known materials.

Nano-sonar

For copper and many other materials showing electron focusing (e.g. Pb), the ex-
istence of beam-like propagation paths could be used to construct a ”nano-sonar”
(Fig. 5.1a). Such a device could determine not only the depths of the impurities
themselves (as done here) but also the depth and reflectivity of buried interfaces.
Here, in addition to the previously described LDOS-oscillations caused by processes
of direct propagation between impurity and surface, larger, concentric rings should
appear that are produced by electrons being scattered by the impurity and reflected
at the interface. The effect can be nicely observed in the ab-initio calculations of
Lounis et al. Due to the slab technique, a highly reflecting ”interface” (the lower
boundary of the slab) is present 18 ML below the surface. This produces a second
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Figure 5.1: Applications based on focusing properties of the single electron prop-
agator: a) Nano-Sonar: a buried interface below the impurity produces a second,
concentric LDOS-modulation. An STM-investigation of the surface LDOS would
gain access to the depths and the reflectivity of both impurity and interface. b)
Spin-Filter: in a ferromagnetic material a spin-unpolarized current emitted from a
point-contact (S↑↓) splits up due to the different Fermi-surfaces and thus different
propagators of majority and minority spins. c) (conduction electron related) indirect
exchange interaction between two magnetic atoms in Copper: strong and long-range
interaction only between impurities 1 and 2b, i.e. in the directions of the focused
beams.
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ring-like LDOS oscillation having a larger diameter. From the knowledge of G0

it is easy to obtain the depths of interface and impurity below the surface using
trigonometric relations.

The possibility to study buried structures with the STM was shown on subsurface
Argon bubbles in Aluminum [76]. They presented calculations based on a Jellium
model i.e. with a free-electron like dispersion to explain their observations. Recently
these Argon-induced nano-cavities were also observed in Cu(100)[77].

Although not being a ”nano-sonar” in the above sense (which requires a single
impurity and a interface) the next example demonstrates that the width of the os-
cillations’s envelope in the radial direction does not diverge with increasing distance.
Fig 5.2 shows a single Fe atom in the 5th layer and a deeply buried linear defect of
unknown origin. The latter one produces a large elongated pattern of ≈ 6 × 8nm
size. Here we can again nicely observe that the focusing cone is still ≈ 1.5 oscilla-
tions in width. From the knowledge of the propagator’s geometry we can assume
that the defect is in a depths of 22-24 ML, approximately 8 atomic distances in
length and oriented in [110] direction. The reason for this elongated pattern could
be a dislocation or a buried chain of impurities, but it is sure that this defect is
not a singe Fe atom. Within ±10mV the singe 5th layer Fe atom again shows the
Kondo-specific phase-shift that was described in Chapter 4. The pattern arising
from the deep linear defect however does not change within ±10mV . From this
it is obvious that the dispersion of electrons in Copper is completely negligible in
this energy interval and cannot be responsible for the variations observed on the Fe
impurities.

Spin-filter

Ferromagnetic materials possess different Fermi-surfaces and therefore different prop-
agators for electrons having majority and the minority spin. This should allow the
design of effective spin-filters (Fig. 5.1b) if both propagators show a focused propa-
gation in different directions. A mixture of both spin-species enters the ferromagnet
at a point-like source contact (S↑↓) from which ↑ and ↓ propagate in different direc-
tions and are collected at different drain-contacts D↑ and D↓. According to recent
theoretical calculations [78] bcc-Europium may be a good candidate for this purpose.

RKKY and IEC

We have demonstrated highly anisotropic charge density oscillations due to sub-
surface point defects. If a magnetic impurity scatters spin-up and spin-down differ-
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Figure 5.2: STM topographies of a 5th layer Fe impurity and a deeply buried linear
defect of unknown origin.

ently, this leads to an oscillatory behavior of spin density which are called RKKY
(Ruderman-Kittel-Kasuya-Yosida)-oscillations [6]. A second magnetic atom may
sense the spin-polarization induced by the first atom giving rise to a (conduction
electron related) indirect exchange interaction. This long range interaction oscillates
between a ferromagnetic and anti-ferromagnetic coupling with a periodicity of half
the Fermi-wavelength. In Figure 5.1c we plotted the calculated LDOS-oscillations
onto the atomic lattice. Although the impurities 2a, 2b and 2c are placed in ap-
proximately identical distance to impurity 1, a strong magnetic coupling will only
take place to impurity 2b. This is because it is positioned on the focusing beam of
the first impurity. Since the interaction is mediated by the conduction-band elec-
trons, their propagator is the physical quantity that defines the directionality and
the spatial decay of the interaction.
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The step from coupling two separated magnetic atoms to coupling magnetic layers
is straightforward. If magnetic layers (e.g. Co) are separated by non-magnetic
spacers (e.g. Cu) the magnetic coupling depends on the spacer material and its
crystallographic orientation. The interlayer exchange interaction (IEC) is strong
and long-range, if the layers are oriented perpendicular to directions of preferred
propagation. In deed the theory of the interlayer exchange coupling [3] depends
on the geometry of the Fermi-surface and uses the same concepts (effective mass
tensor, principal curvatures, group velocities), that were also discussed in Section
3.2 For copper as spacer material, the predicted coupling strengths of (110)-oriented
layers are 9 times higher than those having (111)-orientation. As can be seen from
the calculated propagator (Fig.3.5) the [110] direction is in line with the focusing
beam.
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Chapter 6

Summary

In this work we presented a comparative STM and STS study of single subsurface
iron and cobalt atoms in copper. The experimental systems were prepared under
UHV conditions by co-deposition of the host metal and the impurity atoms onto
single crystals of Cu(100) and Cu(111).

The STM topographies taken at 6K showed strongly anisotropic short wavelength
oscillations of the local density of states (LDOS) in the vicinity of the defects.
Impurities located up to 15 ML below the surface could be clearly identified in
the STM topographies. It was shown that the observed anisotropies arise from
the non-spherical Fermi-surface of copper which causes a preferred propagation of
bulk electrons in narrowly confined directions. This produces an electron focusing
effect leading to four-fold symmetric patterns on the (100) surface and to three-
fold symmetric patterns on the (111) surface. These characteristic signatures of
subsurface impurities were reproduced by calculations based on the host metal’s
band structure that also included the effect of the surface and of the k‖-dependent
decay of the wave functions into the vacuum. We obtained a good agreement of the
calculations to the experiments and to the result of ab-initio-calculations.

In the second part the Kondo Effect of subsurface impurities was analyzed. In
the case of Fe impurities the bulk state interference patterns changed significantly
close to zero bias. This effect could even be observed within ±3mV bias voltage
range. It was excluded that this effect can be caused by the energy dependence of
the host metal’s band structure, i.e. its dispersion E(k). We have shown that the
observations are related to a change of the scattering phase shift around zero bias.
This was identified as the fingerprint of the Kondo effect in real space.
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Using Scanning Tunnelling Spectroscopy it was shown, that both species of impu-
rities show characteristic Kondo features on distinctly different energy scales. The
dI/dV spectra reveal Fano line shapes whose asymmetries depend the on depth of
the impurity below the surface and the lateral position with respect to the cen-
ter of the defect pattern. It was shown that the q-phase increased if the tip was
moved away laterally and apparently decreased with increasing depths of the impu-
rity below the surface. The latter effect was identified as an aliasing between the
wavelength of the LDOS-oscillations and the periodicity of the atomic lattice. The
obtained Kondo-Temperatures of the investigated systems were 84K foe Fe impuri-
ties and 1250K for subsurface Co atoms. These values are both slightly higher than
those reported previously.

Additionally it was shown, that the Kondo specific phase-shift, as observed in the
STS-data, is smaller than the expected value of π. A non-resonant background
scattering process was proposed as a possible explanation. Using the Green function
of the host metal, we extracted the energy dependence of the impurity t-matrix from
the STS measurements. Both the scattering amplitude as well as the scattering
phase-shift as a function of energy showed signatures of the Kondo-resonance.



Appendix A

Computational details: LCAO

Most of the calculations presented in this thesis were based on the band structure of
copper, which was obtained using an linear combination of atomic orbitals (LCAO)
technique[79, 80]. The idea of LCAO (or tight-binding) is to expand the lattice-
periodic part uk(x) of the Bloch functions Ψk(x) by wave functions φα(x) of atomic
orbitals with quantum numbers α = {s, px, ..., dxy, ...}

Ψk(x) = eikx · uk(x) =
∑

α

vα(k)ϕα(k,x) (A.1)

with
ϕα(k,x) = eikx

∑
Ri

φα(x−Ri) (A.2)

Here Ri denote the atomic positions and vα(k) are the expansion coefficients, de-
scribing whether Ψk(x) is for example more ”s-like” or ”d-like”. With the exception
of high symmetry points in the Brillouin Zone (e.g. Γ = [000]) the eigenfunctions
in general possess contributions from all these basis states.

Although the atomic orbitals φα(x) are orthogonal, this is not valid for the delo-
calized basis states ϕα(k,x). Therefore, the first step is to create an orthogonal
set of basis functions for each value of k. For this, we used Löwdin’s method of
symmetric orthogonalization [81]. Its purpose is to find a projection Matrix W (k),
that maps the initial basis states ϕα(k,x) onto an orthogonal and normalized set of
basis functions ϕ′α(k,x) with 〈ϕ′α(k)|ϕ′β(k)〉 = δαβ.

For this an overlap matrix Sα,β(k) = 〈ϕα(k)|ϕβ(k)〉 is calculated and subsequently
diagonalized, giving S = TDT−1. The diagonal matrix D is used to construct a
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matrix D̃−1/2 by replacing each diagonal element of D by its inverse square root.
Obviously, this gives:

1 = D̃−1/2DD̃−1/2 = TD̃−1/2T−1STD̃−1/2T−1 = WSW (A.3)

which yields the required projector W = TD−1/2T−1.

The Hamilton matrix Hαβ(k) = 〈ϕα|H|ϕβ〉 calculated using the non-orthogonal basis
is then transformed into a new matrix H2 = WHW and diagonalized E = V −1H2V .
This gives the eigenenergies E and the eigenvectors V (the expansion coefficients)
with respect to the new basis. Since the projector W and consequently the new
basis is different for each wave-vector k the eigenvectors V are projected back onto
the initial basis, which is the same for all values of k.

The computation was performed using MATLAB. As this software provides a num-
ber of functions for matrix operations, the source code of the procedure described
above is very short:

[T, D] = eig(S); % diagonalize Overlap− Matrix S

W = T ∗ (1./sqrt(DS)) ∗ inv(T); % calculate orthonormal Projector W

H2 = W ∗ H ∗ W; % calculate new Hamiltonian

[V, E] = eig(H2); % diagonalize new Hamiltonian H2

EV = W ∗ V; % transfer eigenvector to initial basis

The result is a Matrix EV containing the n expansion coefficients of the n eigen-
functions and a matrix E containing the n eigenenergies on its diagonal elements.
n is the number of basis functions used for the expansion A.1. In our case we used
1 s-, 3 p- and 5 d-states giving n=9.

These calculations requires the knowledge of k-dependant Hamilton and overlap-
matrices Hα,β(k) and Sα,β(k). If the crystal potential V (x) and the atomic wave-
functions φα(x) are known, these can directly be calculated by:

Hα,β(k) =
∑
Rj

exp ik(Ri −Rj)

∫
d3xφ∗α(x−Ri)Hφβ(x−Rj) (A.4)

Sα,β(k) =
∑
Rj

exp ik(Ri −Rj)

∫
d3xφ∗α(x−Ri)φβ(x−Rj) (A.5)

Since the integrals in the above equations do not depend on the k-vector, they can
be expressed as a set of material specific tight-binding parameters Eα−β

[xyz] and Oα−β
[xyz]

for each lattice vector [xyz] = Ri − Rj and each combination (α, β) of angular
momenta. In this case no detailed knowledge of the atomic wave-functions and the
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effective crystal potential is needed. Moreover the value of these parameters can be
obtained by fitting the LCAO band-structure to the result of more realistic ab-initio
calculations.

By numbering the basis states in the following way

[s, px, py, pz, dxy, dyz, dxz, dx2−y2 , dz2−r2 ] (A.6)

and by including up to second nearest neighbour interactions (i.e. with the lattice
vectors Ri − Rj = [000], 1

2
[110] and [100]), the required matrix elements for fcc

symmetry are:

H11(k) = Es−s
[000] + 4Es−s

[110][cos kx cos ky + cos ky cos kz + cos kz cos kx]

+2Es−s
[200][cos 2kx + cos 2ky + cos 2kz]

H12(k) = −4Es−x
[110] sin kx[cos ky + cos kz] + 2Es−x

[200] sin 2kx

H13(k) = −4Es−x
[110] sin ky[cos kx + cos kz] + 2Es−x

[200] sin 2ky

H14(k) = −4Es−x
[110] sin kz[cos ky + cos kx] + 2Es−x

[200] sin 2kz

H15(k) = −4Es−xy
[110] sin kx sin ky

H16(k) = −4Es−xy
[110] sin ky sin kz

H17(k) = −4Es−xy
[110] sin kz sin kx

H18(k) = 2
√

3Es−d2

[110] cos kz[cos ky − cos kx] +
√

3Es−d2

[002] [cos 2kx − cos 2ky]

H19(k) = −2Es−d2

[110] [−2 cos kx cos ky + cos ky cos kz + cos kz cos kx]

+Es−d2

[002] [− cos 2kx − cos 2ky + 2 cos 2kz]

H22(k) = Ex−x
[000] + 4Ex−x

[110] cos kx[cos ky + cos kz] + 4Ex−x
[011] cos ky cos kz

+2Ex−x
[200] cos 2kx + 2Eyy[200][cos 2ky + cos 2kz]

H23(k) = −4Ex−y
[110] sin kx sin ky

H24(k) = −4Ex−y
[110] sin kx sin kz

H25(k) = 4 sin ky[E
x−xy
[110] cos kx + Ex−xy

[011] cos kz] + 2Ex−xy
[020] sin 2ky

H26(k) = 0
H27(k) = 4 sin kz[E

x−xy
[110] cos kx + Ex−xy

[011] cos ky] + 2Ex−xy
[020] sin 2kz

H28(k) = 2
√

3Ez−d2

[011] sin kx[cos ky + cos kz] +
√

3Ez−d2

[002] sin 2kx

+2Ez−d1

[011] sin kx[cos ky − cos kz]

H29(k) = −2Ez−d2

[011] sin kx[cos ky + cos kz]− Ez−d2

[002] sin 2kx

+2
√

3Ez−d1

[011] sin kx[cos ky − cos kz]

H34(k) = −4Ex−y
[110] sin ky sin kz

H35(k) = 4 sin kx[E
x−xy
[110] cos ky + Ex−xy

[011] cos kz] + 2Ex−xy
[020] sin 2kx

H36(k) = 4 sin kz[E
x−xy
[110] cos ky + Ex−xy

[011] cos kx] + 2Ex−xy
[020] sin 2kz

H37(k) = 0

H38(k) = −2
√

3Ez−d2

[011] sin ky[cos kz + cos kx]−
√

3Ez−d2

[002] sin 2ky

−2Ez−d1

[011] sin ky[cos kx − cos kz]
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H39(k) = −2Ez−d2

[011] sin ky[cos kz + cos kx]− Ez−d2

[002] sin 2ky

−2
√

3Ez−d1

[011] sin ky[cos kz − cos kx]

H44(k) = Ex−x
[000] + 4Ex−x

[110] cos kz[cos kx + cos ky] + 4Ex−x
[011] cos kx cos ky

+2Ex−x
[200] cos 2kz + 2Eyy[200][cos 2kx + cos 2ky]

H45(k) = 0
H46(k) = 4 sin ky[E

x−xy
[110] cos kz + Ex−xy

[011] cos kx] + 2Ex−xy
[020] sin 2ky

H47(k) = 4 sin kx[E
x−xy
[110] cos kz + Ex−xy

[020] cos ky] + 2Ex−xy
[020] sin 2kx

H48(k) = 4Ez−d1

[011] sin kz[cos ky − cos kx]

H49(k) = 4Ez−d2

[011] sin kz[cos ky + cos kx] + 2Ez−d2002 sin 2kz

H55(k) = Exy−xy
[000] + 4Exy−xy

[110] cos kx cos ky + 4Exy−xy
[011] cos kz[cos kx + cos ky]

+2Exy−xy
[200] [cos 2kx + cos 2ky] + 2Exy−xy

[002] cos 2kz

H56(k) = −4Exy−xz
[011] sin kx sin kz

H57(k) = −4Exy−xz
[011] sin ky sin kz

H58(k) = 0

H59(k) = −4Exy−d2

[110] sin kx sin ky

H66(k) = Exy−xy
[000] + 4Exy−xy

[110] cos ky cos kz + 4Exy−xy
[011] cos kx[cos ky + cos kz]

+2Exy−xy
[200] [cos 2kz + cos 2ky] + 2Exy−xy

[002] cos 2kx

H67(k) = −4Exy−xz
[011] sin kx sin ky

H68(k) = −2
√

3Exy−d2

[110] sin ky sin kz

H69(k) = 2Exy−d2

[110] sin ky sin kz

H77(k) = Exy−xy
[000] + 4Exy−xy

[110] cos kx cos kz + 4Exy−xy
[011] cos ky[cos kx + cos kz]

+2Exy−xy
[200] [cos 2kx + cos 2kz] + 2Exy−xy

[002] cos 2ky

H78(k) = 2
√

3Exy−d2

[110] sin kx sin kz

H79(k) = 2Exy−d2

[110] sin kx sin kz

H88(k) = Ed2−d2

[000] + 3Ed2−d2

[110] cos kz[cos kx + cos ky] + 4Ed1−d1

[110] [cos kx cos ky

+ cos kx cos kz/4 + cos ky cos kz/4] + (3/2)Ed2−d2

[002] [cos 2kx + cos 2ky]

+2Ed1−d1

[002] [cos 2kx/4 + cos 2ky/4 + cos 2kz]

H89(k) =
√

3 cos kz[cos kx − cos ky](E
d2−d2

[110] − Ed1−d1

[110] )

+
√

3/2[cos 2ky − cos 2kx](E
d2−d2

[002] − Ed1−d1

[002] )

H99(k) = Ed2−d2

[000] + 4Ed2−d2

[110] [cos kx cos ky + cos kx cos kz/4 + cos ky cos kz/4]

+3Ed1−d1

[110] cos kz[cos kx + cos ky] + (3/2)Ed1−d1

[002] [cos 2kx + cos 2ky]

+2Ed2−d2

[002] [cos 2kx/4 + cos 2ky/4 + cos 2kz]

The lower triangular matrix can be padded using Hα,β(k) = Hβ,α(k)∗. The overlap

matrix Sα,β is obtained similar to the above by replacing the parameters Eα−β
[xyz] in the

equations by Oα−β
[xyz]. The required integrals Xα−β

[xyz] (X = E, O) in the above matrix

elements were taken from [46]. For the case of copper they are:
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Energy [Ry] X = E Overlap X = O
On Site
Xs−s

[000] 0,60246 1

Xx−x
[000] 1,22779 1

Xxy−xy
[000] 0,37675 1

Xd2−d2
[000] 0,37520 1

First Neighbour
Xs−s

[110] -0.05801 0.08495

Xs−x
[110] 0.04580 -0.08397

Xs−xy
[110] -0.03557 0.00492

Xs−d2
[110] 0.02037 0.00966

Xx−x
[110] 0.07153 -0.05392

Xx−x
[011] 0.06447 0.06951

Xx−y
[110] -0.01376 -0.12072

Xx−xy
[110] -0.03287 -0.00862

Xx−xy
[011] -0.01085 -0.06060

Xz−d2

[011] -0.01180 -0.06334

Xz−d1

[110] 0.01291 -0.01291

Xxy−xy
[110] -0.01429 0.01400

Xxy−xy
[011] 0.00421 -0.00696

Xxy−xz
[011] 0.00315 -0.01384

Xxy−d2

[110] 0.01009 0.00006

Xd2−d2

[110] 0.00069 0.02228

Xd1−d1

[110] 0.01766 0.00209

Second Neighbour
Xs−s

[200] -0.02041 -0.00003

Xs−x
[200] 0.05037 0.00468

Xs−d2

[002] -0.01651 -0.02370

Xx−x
[200] 0.13434 0.03163

Xy−y
[200] 0.03834 0.02838

Xx−xy
[020] -0.01329 -0.03333

Xz−d2

[002] -0.04240 -0.07768

Xxy−xy
[200] -0.00150 -0.00499

Xxy−xy
[002] -0.00126 -0.00235

Xd2−d2

[002] -0.00484 -0.00218

Xd1−d1

[002] 0.00116 0.00519
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The laborious part of the LCAO method is typing in all these Matrix elements and
material specific parameters. But as this technique only deals with 9×9-matrices the
calculation of the eigenenergies and eigenvectors is very fast giving approximately
6000 k-points/sec. Moreover, since the above energy- and overlap integrals were
determined by fitting the LCAO band-structures to the results of more accurate
ab-initio calculations, they provide realistic information. For the 6th-band, which
we are particularly interested in because it is the one that crosses the Fermi-level,
the RMS deviation from ab-initio results is 7 meV and the maximum error is 15
meV.

The band-structure of copper obtained by this method is depicted in Figure A.1.
With colors we represented the corresponding ”character” of the wave functions
(s = |v1(k)|2, p =

∑4
α=2 |vα(k)|2, t2g =

∑7
α=5 |vα(k)|2, eg =

∑9
α=8 |vα(k)|2). Here it

can be seen that the parabolic band around −9eV has mainly s-character while the
so called ”d-bands” emerge between −2eV and −4eV and show a strong crystal-field
splitting.

The fcc-Brillouin zone is invariant under various symmetry transformations. It is
sufficient to restrict the calculation to the irreducible part of the first Brillouin zone
(IFBZ) and transform every k into the other regions using the 48 matrices:

Mx =



−1 0 0
0 1 0
0 0 1




a

·



1 0 0
0 −1 0
0 0 1




b

·



1 0 0
0 1 0
0 0 −1




c

·



0 0 1
0 1 0
1 0 0




d

·



0 0 1
1 0 0
0 1 0




e

(A.7)
with a, b, c, d ∈ {0, 1} and e ∈ {0, 1, 2}. The first three matrices in the above
equation are reflections at the x-, y-, and z-plane, respectively. The forth matrix is
a (101)-reflection and the last term a 120◦-rotation around [111]. With the help of
this procedure the computational time of a Fermi-surface calculation can be reduced
to 1/48.

Within the IFBZ a specialized grid of directions was used. It is derived from spherical
coordinates with the zenith oriented in [111]-direction and distorted properly to
cover the IFBZ. This is depicted in Figure A.2. First, the opening angle θneck(ε) of
the [111]-”neck” was determined for the particular energy by performing the band
structure calculation along a line L → U . For n × m points in the IFBZ with
u = 1...n, v = 1...m we used the zenith angles:

θ(u, v) =
π

2
− θneck − u− 1

n− 1

(
arccos

(√
2

3− 2 tan2
(

v−1
m−1

· π
3

)
)
− θneck

)
(A.8)

and the azimuth angle:

ϕ(u, v) =
3π

2
+

v − 1

m− 1
· π

3
(A.9)
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Figure A.1: Band structure of copper calculated using the LCAO technique. The
”character” of wave-functions is represented with colors.
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u=m

u=1
v=1

v=n

Figure A.2: Grid of directions in the IFBZ used for the computation of the fcc-Fermi
surfaces. Red and green dots mark grid points whose area has to be reduced to 1/4
and 1/2, respectively.

For every direction within the IFBZ a zero-finding routine based on Newton’s
method was used to determine the length of the k-vector that satisfies E(k)−ε = 0.
This gives a contour k(u, v) = [kx(u, v), ky(u, v), kz(u, v)] for which the normal vec-
tor was determined at each point. In direction of the normal vector the slope of
dispersion |vGr|(u, v) was calculated. Furthermore, the Jacobi-determinant J(u, v)
describing the area of each grid ”tile” was extracted. When assembling the Fermi
surface from the 48 parts it has to be considered that k-points located at the edges
(green dots in Fig. A.2) and vertices (red dots in Fig. A.2) of the fragments overlap
with those of neighbouring cells. Thus, their area J(u, v) has to be divided by 2 and
4, respectively.

The total density of states can then easily be obtained from the area of the Fermi
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Figure A.3: Total density of states calculated using different grid sizes within IFBZ.
The ripples above +1.6eV are due to the emergence of a [100] pseudo band-gap and
the consequent ”flaking” of single grid ”tiles”.

surface and the group velocities:

DOS(ε) = 48 · 2

(2π)3
·
∑
u,v

J(u, v)

|vGr(u, v)| (A.10)

The result for different grid-sizes can be seen in Figure A.3. The result is a smooth
function within ±1V while irregularities can be observed above +1.6V. These are
due to an emerging pseudo band-gap in [100]-direction. These artifacts become less
obvious if the grid-size is increased.

The required computation time for a 10×10-grid is≈15 s. The calculations presented
in this work were performed using 20× 20 points in the IFBZ although the result of
the LDOS calculations do not differ markedly from those calculated using a 10× 10
grid.



130 APPENDIX A. COMPUTATIONAL DETAILS: LCAO

Figure A.4: Fermi-surfaces calculated using the LCAO technique. The ”character”
of wave-functions is represented on the Fermi-surfaces with colors.



Appendix B

The real part of G0

When the relationship between the propagation of electrons within the host material
and the geometry of the Fermi-surface was explained in Chapter 3, we restricted the
discussion to that of the imaginary part of G0(x,x′, ε) and assumed that (within a
band) the real part shows the identical characteristics concerning e.g. wavelength
and directional dependency. Later, when the local density of states in certain dis-
tances from the impurity was computed, we used the full Green function without
describing the calculation details of how the real part was obtained. This lengthy
discussion was avoided for sake of readability and we want to make up for further
explanations here.

In spectral representation, the Green function can be obtained by integration of
k-states within the first Brillouin-zone [17, 12]:

G0(x,x′, ε) = lim
η→0

∑
ν

∫

FBZ

d3k
Ψk,ν(x)Ψ∗

k,ν(x
′)

ε− E(k, ν) + iη
(B.1)

Here the band-index ν was included to show that in general the integration has to be
performed using a complete set of states. This includes multiple bands and states
Ψk,ν(x) whose energies E(k, ν) may differ strongly from the energy of interest ε.
While it can be shown using the residue theorem that for the imaginary part only
states with E(k) = ε are of importance, one obtains an expression for the real part
that contains the principal value of the above intergral:

ReG0(x,x′, ε) = P
∫

FBZ

d3k
Ψk,ν(x)Ψ∗

k,ν(x
′)

ε− E(k, ν)
(B.2)
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Figure B.1: : Propagators for certain energies: for ε outside the band (ε1, ε3) Im G0

vanishes while Re G0 shows evanescent behavior. For energies inside the continuum
(ε2) both parts differ only in a π/2 phase shift.

This again requires all k-states and the full band structure E(k, ν). A last possibility
to access ReG0 is to use the Kramers-Kronig relation[47, 48]:

Re G0(x,x′, ε) =
1

π
P

∫ ∞

−∞
dε′

ImG0(x,x′, ε′)
ε− ε′

(B.3)

which allows to obtain the real part by integrating the imaginary part over an infinite
energy range. In all these cases, states within a large energy interval are necessary
for the calculation of ReG0.

From the above information it seems to be not justified to derive any properties
of the real part only from that states having E(k) = ε (i.e. form the iso-energy
surface Ω(ε)) or to assume any ”similarity” between ReG0 and ImG0 as it was done
in Chapter 3. We will now show that such a similarity does not exist in general but
can be assumed if the energy ε lies within a continuum of sates. For this we will use
a simple, 1-dimensional example to demonstrate the connection between the real
and imaginary part of the propagator in various energy regimes. This is depicted in
Figure B.1 using a cosine-shaped band structure E(k) = −W

2
cos ka.

If ε is chosen outside a band continuum (|ε| > W
2

, which corresponds to energies ε1

and ε3 in Figure. B.1), the imaginary part of the propagator is zero. This is obvious
for two reasons: i) the density of states %0(ε) that can be derived from ImG0,
vanishes at these energies and ii) ImG0 can solely be obtained from an integration
over the iso-energy surface Ω(ε), which does not exist within a band-gap. However,
the real part of G0 is non-zero for these energies and shows an evanescent character.
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It is exponentially damped and shows similarities to those band-states which are
closest in energy: it is non-oscillatory damped for ε3 being closest to states having
k = 0 and shows damped oscillations for ε3 being near to states with k = π/a.
The real part for these energies contains all information about possible localized
states that may emerge in the vicinity of defects (impurities, interfaces, surfaces)
if their corresponding T-matrix has a non-zero imaginary part. In other word with
G0 ∈ R and Im t 6= 0 the perturbed system would show a localized density of states
Im G = Im[G0tG0] 6= 0 within the band gap.1

This example illustrates, that it is in general not possible to obtain Re G0(ε) from
Im G0(ε) at the identical energy ε or from the iso-energy surface Ω(ε). Furthermore it
demonstrates that the real part is influenced by states that are in energetic proximity.
As was shown on the above equations one needs the full band-structure to compute
ReG0 for an arbitrary energy. But in the the case of |ε| < W

2
(ε2 in Fig. B.1) where

ε is chosen inside a continuum of band states, the quantities Re G0 and Im G0

have substantial similarity. They both show identical wavelength λ = 2π/k(ε2)
and spatial envelope but differ in a π/2 shift of the real part towards the position
of the source x′. In this case the question arises whether it is really necessary
to perform a time-consuming integration over a large energy range if the Green
function is required only for energies inside a continuum of band states. Without
giving mathematical proof we now present a method that was found empirically.
It performs an approximation of ReG0(ε) from the iso-energy surface Ω(ε). The
method is exact for the case of a free electron in three dimensions and this physical
system will also be used to introduce the procedure.

The iso-energy surfaces of a 3-dimensional free electron gas are spheres with radius
k(ε) = h̄−1

√
2mε. As discussed in chapter 3, the corresponding propagator is a

spherical wave decaying with |x− x′|−1 in amplitude:

G0(x,x′, ε) = π%0(ε)

(
cos(k(ε)|x− x′|)

k(ε)|x− x′| − i
sin(k(ε)|x− x′|)

k(ε)|x− x′|
)

(B.4)

Its imaginary and real parts are also proportional to the regular and irregular solu-
tion of the radial Schroedinger equation for zero angular momentum. The superpo-
sition

− iπ
∑

k∈Ω(ε)

J(k)

|vGr(k)|e
ik(x−x′) (B.5)

1These localized wave functions are sometimes associated with non-normalizable continuum
states having a complex k-vector (”complex band structure”). The above example however shows,
that the continuum wave-functions of real k-value and their (real) band structure E(k) are sufficient
for the physical description of these evanescent states.
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of all states |k〉 = exp(ikx) lying on the iso-energy surface, as done throughout the
thesis, yields only the regular solution i.e. an expression ∝ sin(k|x−x′|)/(k|x−x′|).
The reason for that is the inversion symmetry of the iso-energy surfaces. Every
state |k〉 on the iso-energy surface has its counterpart |−k〉 so that the antisym-
metric part of the wave-functions cancels out during the integration. This can be
avoided by replacing the exponent of the wave functions by its absolute value giv-
ing |k̃〉 = exp(i|kx|). This leaves the imaginary part unchanged but provides a
”preliminary” real part whose physical meaning is first of all unclear. In the case
of the 3-dimensional free electron gas the superposition of all these modified wave
functions |k̃〉 yields an expression which is ”nearly” the exact Green function:

G̃0(x,x′, ε) = π%0(ε)

(
cos(k(ε)|x− x′|) + 1

k(ε)|x− x′| − i
sin(k(ε)|x− x′|)

k(ε)|x− x′|
)

(B.6)

Its real part shows the correct oscillatory behavior and decay but is shifted up-
wards compared to the exact expression by a smooth, non-oscillatory function
∝ 1/(k|x − x′|). A comparison of the correct real part and the one obtained by
the above expression is depicted in figure B.2. This figure also shows, that if ReG0

is not calculated correctly, the absolute value of the Green function shows unphysical
oscillations.

If this procedure is performed using the Fermi surface of copper the identical ef-
fect can be observed. The preliminary real part looks appropriate but it is shifted
upwards and is ”not aligned” with the imaginary part. Hence, if one finds a correc-
tion function (the difference between the preliminary and the exact real part) that
properly ”pulls down” the calculated real part, this would allow to calculate the
full Green function from the iso-energy surface. In the case of copper the correction
function of the isotropic case (∝ |x−x′|−1) seems to apply well so that the following
approximation showed to be appropriate:

G0(x− x′, ε) ≈ −iπ
∑

k∈Ω(ε)

J(k)

|vGr(k)| |a(k)|
[
ei|k(x−x′)+φ(a(k))| − i

|k||x− x′|
]

(B.7)

here a complex pre-factor a(k) having phase φ (a (k)) = arctan(Ima(k)/Rea(k)) was
included. This pre-factor can be the reflection/transmission coefficients of section
3.4.2 that were used to calculate GCV

0 and GV V
0 .

Several attempts have been made to find the exact correction-function for an ar-
bitrary Fermi-surface. One idea is depicted in figure B.2: the positions directly
between the zero crossings of the imaginary part are determined. At these posi-
tions, the values of the preliminary real part (indicated by black arrows in fig. B.2)
define, how much ReG̃0 has to be ”pulled down” in order to match with ReG0. The
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Im G0 (exact + eq. B6) 

Re G0 (exact) 

|G0| (exact)

|G0| (eq. B6)

Re G0 (eq B6) 

0
|x-x‘|

Figure B.2: Exact and ”preliminary” Green functions of a 3-dimensional free elec-
tron gas

values of the correction function for other positions can be obtained by interpola-
tion. However, the realization of such a procedure in three dimensions turned out to
be much more complicated. Since equation B.7 gives satisfactory results at least for
the case of copper, these efforts were not continued. Finally we used two different
methods for the calculation of ReG0 depending on how important the accuracy of
the result has been:
For the fitting of the constant current topographies, the simulation of spectra sec-
tions and for the experimental determination of the t-matrix, it is of great impor-
tance that the real part is calculated correctly and that it is free of artifacts. In these
cases G0 was requited only along one lateral dimension so that the calculations are
less time-consuming. Here the real part was calculated using the Kramers-Kronig
relation by integration over a large energy range. For this, we used ImG0(h, d, x, ε)
for energies between -2.3V and +4V with an energetic step-size of 25mV. This pro-
duces good results but takes some time. For the calculation of two-dimensional
LDOS-maps or whenever a rough estimations of G0 was sufficient, the real part was
approximated using equation B.7. By this, the simulation of a STM-topography
takes less than one minute including the LCAO-calculation of the Fermi surface
(10x10 points in the IFBZ) and the subsequent integration in order to obtain G0.
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Appendix C

List of Abbreviations

f ∗ g convolution of two functions f and g
cλ fermionic destructor of state λ

c†λ fermionic constructor of state λ
d depth of the impurity below the surface
ε energy
εd energy of d-orbital
εF Fermi-energy
E(k) band structure
FWHM full width half maximum
FS Fermi surface = Ω(εF )
G Propagator
G0 Propagator of the unperturbed system
Gdd d-orbital Green function
h height of the tip above the surface
HWHM half width half maximum
I (tunnelling) current
IEm emission current
IFil filament current
IT set-point (tunnelling) current
J Jacobi determinant
K principal curvature
κ decay constant
kB Boltzmann-constant 8.62 ∗ 10−5eV/K
LCAO linear combination of atomic orbitals
LDOS local density of states
LHe liquid helium
LN2 liquid nitrogen
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nd d-level occupation number
Nd degeneracy of the d-orbital
ω angular frequency
Ω(ε) iso-energy surface for energy ε
P principal value
ϕ azimuth angle
φ(a) phase of a complex number a (≡ arctan(Ima/Rea))
φ scattering phase-shift (= φ(timp))
φq q-phase of Fano-lineshapes φq = 2 · arctan(q)
Ψk(x) Bloch wavefunction
q Fano asymmetry parameter
%(x, ε) local density of states / single-particle spectral density at x
%0(ε) (local) density of states of the unperturbed system
%d(ε) d-orbitals single-particle spectral density
%t(ε) tip density of states
STM Scanning Tunnelling Microscope
STS Scanning Tunnelling Spectroscopy
timp t-Matrix of the impurity
T time ordering operator
T temperature
TK Kondo Temperature
θ zenith angle
uk(x) lattice periodic part of the Bloch functions
U Coulomb repulsion
UHV ultra high vacuum p < 10−9mbar
V (bias) voltage
Vkd hybridization between localized orbital |d〉 and band state |k〉
VT bias voltage used for the constant current topography
vGr group velocity
W bandwidth
x position
xi position of the impurity
x‖ vector parallel to the surface x‖ = (x, y)
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reihen. Das Verhalten von gelöstem Kobalt und Rhodium’, Ann. d. Physik 30,
593 (1937).

[15] A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University
Press, 1993).

[16] H. Suhl, ‘Dispersion theory of the Kondo effect’, Phys. Rev. 138, A515 (1965).

[17] Gerald D. Mahan, Many-Particle Physics (Kluwer Academics/Plenum Publish-
ers, 2000), third edn.

[18] G. Binnig and H. Rohrer, ‘Scanning tunneling microscopy’, Helv. Phys. Acta
55, 726 (1982).

[19] J.T. Li, W.D. Schneider, R. Berndt, and B. Delley, ‘Kondo scattering observed
at a single magnetic impurity’, Phys. Rev. Lett. 80, 2893 (1998).

[20] V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, and N.S. Wingreen,
‘Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo
resonance’, Science 280, 567 (1998).

[21] N. Knorr, M.A. Schneider, L. Diekhöner, P. Wahl, and K. Kern, ‘Kondo effect
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09-2001 : Ärztliche Vorprüfung
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