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Abstract

In this thesis, the stability and the dynamics of wet granular materials under shear are explored.

Inspired by the Green’s function approach, a theoretical model for yielding of a wet pile on

an inclined plane is presented. It enables one to predict thecritical inclination angle at which

the pile fluidizes. The theory is based on the balance of forces acting on each particle at the

vicinity of the fluidization and has two major consequences.First, the theory shows that yield-

ing of a wet pile does depend on the gravitational acceleration, whereas a dry pile fluidizes

for any arbitrary small non-zero gravitational acceleration when the inclination angle exceeds

a certain value depending on the geometry. Second, the theory shows that a wet pile yields

in the bottom layer where the pile touches a non-slip boundary. There is excellent agreement

between the theory and extensive MD-type simulations whereone calculates forces between

each individual pair of particles. The dynamics of driven wet particles is studied in two differ-

ent ways. First, we explore dynamics of wet particles in a channel driven by gravity. Second,

we apply a spatially sinusoidal driving force. In both caseswe find discontinuous hysteretic

solid-fluid transitions, i.e. solid-to-fluid and fluid-to-solid transitions and encountered at dif-

ferent forcing of the system. We calculate phase diagrams separating solid and fluid states and

thresholds for the solid-to-fluid and the fluid-to-solid transitions. Beside that, we study the

spatial and temporal distributions of drift velocity, granular temperature, area fraction, stress

tensor, interparticle force etc.
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Kurzzusammenfassung

In dieser Arbeit wird die Stabiliẗat und Dynamik feuchter granularer Medien unter der Ein-

wirkung von Scherkr̈aften untersucht. In Anlehung an den Greenschen Formalismums wird

ein theoretisches Model für das Brechen und Abrutschen eines feuchten granularen Haufens

auf einer geneigten Ebene vorgestellt. Dieses Model erlaubt eine Vorhersage des kritischen

Neigungswinkels, also des Winkels, an dem das Material zu rutschen beginnt. Die Theo-

rie beruht auf dem Gleichgewicht der Kräfte in der N̈ahe des Fluidisierungspunktes und hat

zwei weitreichende Folgen: Zunächst zeigt die Theorie, dass das Nachgeben des granularen

Haufens von der Grösse der Erdschleunigung abhängt. Ein trockener Haufen hingegen flui-

disiert im verwendeten Model bei jeder noch so kleinen Normalbeschleunigung, sobald der

Neigungswinkel einen bestimmten Wertüberschritten hat. Desweiteren zeigt die Theorie,

dass der granulare Haufen in der Höhe der Auflage nachgibt, sofern dort eine Randbedin-

gung ohne Schlupf angenommen wird. Die theoretischen Vorhersagen werden im Detail von

MD Simulationen bestätigt, die auf der Berechnung der individuellen Kräfte zwischen be-

nachbarten Teilchen beruhen. Das dynamische Verhalten vonfeuchten Granulaten, die durch

äussere Kr̈afte angetrieben werden, wird anhand von zwei Modelsystemen untersucht. Auf der

einen Seite wird die Dynamik eines feuchten Granulats in einem Kanal unter der Einwirkung

der Schwerkraft betrachtet. Auf der anderen Seite wird der granular Haufen einer räumlich

sinusf̈orming variierenden externen Kraft unterworfen. In beidenFällen findet man einen un-

stetigen und hysteretischen dynamischenÜbergang, d.h die Grösse der̈ausseren Kr̈afte, bei

dem das System von einem fluidisierten in einen festen Zustand bzw. von einem festen in

einen fluidisierten Zustand̈ubergeht, sind nicht identisch. DerÜbergang zwischen beiden dy-

namischen Zuständen des Systems wird anhand von Phasendiagrammen veranschaulicht wer-

den. Desweiteren werden die zeitlichen und räumlichen Verteilung einer Reihe physikalischer

Grössen, wie z.B. der Driftgeschwindigkeit des Granulats, dergranularen Temperatur, der

Dichte, der mechanischen Spannungen sowie der Kräfte zischen den Teilchen des Granulats,
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betrachtet.
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Chapter 1

Introduction

Due to frictional forces and inelastic collisions between grains, granular material exhibit a rich

variety of emergent properties [1]. Granular material may behave like an unusual solid. When

granulates such as wheat or rice are kept in a silo, due to the force chains inside the bulk and

the frictional forces between grains and sides of the container, pressure does not depend on

the height of the material. Furthermore, granular materialmay behave like an unusual fluid.

Granular material can be fluidized and flow like a liquid. To describe such a fluid in particular

its dynamics , it is useful to have a continuum theory of granular matter. Since granular fluids

are extremely heterogeneous, continuum models are being debated. Granular matter may also

behave like an unusual gas. Due to inelastic collisions between granulates, in any collision,

the energy is dissipated according to the restitution coefficient. The velocity distribution of the

particles does not follow the Maxwell-Boltzmann distribution, and one can not carry over the

equilibrium statistical mechanics.

These unusual properties of granular materials tempt scientists and engineers to study

granular matter. Most studies on granular media have focused on dry granular matter, where

the effects of adhesion due to interstitial fluid have not been takeninto the account. In the

real world, however, we often find wet granular material suchas beach sand. Wet granular

materials are cohesive due to the surface tension of the wetting liquid [2]. Due to complex-

ity of wet granular matter, in the last decades, many people who studied granular material,

avoided the humidity in their studies. Even in some cases, the experiments have been done

in vacuum chambers [3] and humidity was seen as a nuisance. The complexity of granular

matter increases when the humidity is added into the system [4].

Dry sand and water are not pasty. However, when a small amountof water is mixed into

1



2 Chapter 1. Introduction

dry sand, eventually a pasty material will emerge which allows to sculpture a stable sand

castle. A satisfactory theory of wet granular matter has been launched in recent years [5–

7]. The stability of a pile of wet granular material is causedby numerous capillary bridges

between grains which act as glue. When liquid is added to dry granular matter, in the ideal

case, each grain has a thin liquid layer. As soon as two grainstouch each other, at the contact

region, a sharp bend forms on surface of the liquid film. That sharp bend gives rise to a

large negative Laplace pressure which sucks the liquid towards the contact region as long as

the liquid surface acquires a spatially constant mean curvature which can be interpreted as

equilibrium and a capillary bridge [2]. However, if the amount of liquid is larger than about

7% of the total volume, there no longer will be any capillary bridge and structure of clusters

will grow [8].

Results of the investigations on wet granular material can beapplied on Industrial Phar-

macology, food processing, dynamics of snow [9], and applications on civil engineering,e.g.

huge and expensive civil work projects like the construction of the Kansai international airport

on a man-made island in Japan [10]. Most of natural hazards, such as landslides and debris

flows, happen after a period of heavy rain. In these catastrophic phenomena, fluidized wet

granular matter plays an essential role.

We are interested to study the stability and the dynamics of wet granular matter under

shear [11]. Wet and dry granular matter under shear have tempted many groups to investigate

their dynamics, both theoretically and experimentally [12–14]. Losertet al. [15] studied

experimentally particle dynamics of dry granular matter ina Couette geometry with an inner

rotating wall. They explored the velocity profile of the system and showed that the velocity

profile is strongly nonlinear and decreases with distance from the moving wall. They proposed

that such a nonlinear granular flow can be well described by a Newtonian fluid with local

temperature and density dependent viscosity. They found that there may be a useful analogy

between dynamics of granular material and the behavior of the super cooled liquids close to

glass transition.

Xu et al. [16] performed molecular dynamics simulations of soft frictionless dry particles

with a moving wall. They studied the influence of packing fraction on the velocity profile, and

found a non-linear velocity profile for high density fractions. A critical boundary velocity (uc)

exists above which the mean velocity profile is nonlinear, and below which the mean velocity

profile becomes linear.

Although most studies on granular matter under shear are restricted to dry granular matter,

there are a few reports on wet granular matter under shear. Schulz et al. [11] studied numeri-



1.1. Landslides 3

cally cohesive spheres in 3D under a spatially periodic external force. They used particles that

are very soft when they touch each other, but become extremely repulsive when they overlap

more. They found a solid-fluid transition, when the amplitude of the external force field ex-

ceeds a critical value. In their model, dissipation is only due to the capillary bridge rupture

events.

There are still many open questions about the dynamics of wetgranular matter under shear.

How does a wet granular pile yield? Does a fluid-solid transition exist and is it hysteretic? How

does the fluidization threshold depend on rupture separation of the liquid bridges, density

fraction, system size etc? How does viscosity depend on granular temperature, shear rate,

density fraction etc. How does the inter-particle force distribution look like? Is there any

specific symmetry that can describe the stress field in wet granular matter? These question are

our objectives in this thesis.

1.1 Landslides

Landslides are the natural form of fluidization of granular materials. They are geological

phenomena which include a wide range of ground movements [17–21]. Accordingly, there

are many different definitions to landslides. Cruden [22] defines landslide as a movement of a

mass of rock, earth or debris down a slope.

According to Varens [23], it is a downward and outward movement of slope forming ma-

terials under the influence of gravity. Hutchinson [24–28] classifies slope movements into the

eight categories:

1. Rebound: movements associated with human excavation and naturallyeroded valleys.

2. Creep: slow downward progression of rock and soil down a low grade slope.

3. Sagging of mountain slopes.

4. Rotational and compound slides

5. Topples: forward rotation of a mass of rock, or soil about a pivot or hinge on a hill slope.

6. Falls: free movement of material away from steep slopes such as cliffs.

7. Complex slope movement
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8. Debris movement of fluidized form: dry and wet debris flow

We are interested in the last category of Hutchinson’s classification. After a heavy rain,

when wet soil becomes too heavy and exceeds its yield stress,it fluidizes and produces a land-

slide. Observations show that a fluidized landslide normally starts with sliding, then fluidizes,

and changes into a debris flow [29]. Liquefaction is an important mechanism in such a land-

slide which fluidization occurs along the sliding surface. Bishop [30] notes that fluidization

can be distinguished from general sliding, which usually has an intact soil mass above the

sliding surface. Huntchinson mentions that:

flow-like motion consequent to fluidization is a neglected and little-understood

group of movements [28].

Furthermore, geological data show that during the flow of a fluidized landslide, the highest

shear stresses are concentrated within a thin shear layer located deep inside the landslide,

whereas the upper cap remains relatively undisturbed [31, 32].

1.1.1 La Conchita Landslide, California

As an example of a fluidized landslide, we report the landslides occurred at la Conchita,

California. These landslides has been well documented by theU.S. Geological Survey [33].

1995 was an extraordinarily wet season for La Conchita. Fig.1.1a shows the rainfall at La

Conchita from October 1, 1994, through March 31, 1995. Landslide failed on March 4, 1995,

and one can count at least 7 heavy rainfalls from Fig.1.1a in just a period of 1 month before

the first landslide. Moreover, on March 4, 1995 at 2:03 pm, theLa Conchita first landslide

failed and moved tens of meters in a few minutes. Fortunately, nobody was injured or killed,

but it destroyed nine houses. On March 10, a subsequent debris flow damaged five additional

houses in the northwestern part of La Conchita. In particular, the extraordinary rainfall of

January 1995 probably was the principal contribution factor to the landslide movement.

On January 10, 2005, another landslide struck the communityof La Conchita, destroying

or seriously damaging 36 houses. The second landslide occurred at the culmination of 15-day

high rainfall period. Unfortunately, 10 people were buriedin debris flow.

The first landslide in 1995, was a deep, coherent slump-earthflow that deformed plastically

and moved slow enough that people could get out of its way. Thesecond landslide in 2005

was a shallower fluidization of the very same material into a rapid, highly fluid debris flow.

However, due to the heavy rainfalls before both landslides,it is clear why these landslides
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failed, however why and how the same material fluidized twicein 10 years by fundamentally

different flow behavior, will certainly be the object of future research on physics of fluidized

wet grains.

(a)

    (b)

Figure 1.1: (a) Daily rainfall at La Conchita from October 1, 1994 through March 31, 1995.
The 1995 landslide occurred more than 1 month after the heaviest rainfall of the season. (b)
Snapshot of La Conchita, after 1995 landslide (nobody was injured [33]). There is a trail on
the slope which has a curve shape after the landslide, being ahint for plastic deformation of
the material during the landslide.

1.1.2 Mobility of the fluidized landslides

One of the challenging questions about fluidized landslidesis to understand the mobility of

a landslide [34, 35]. Numerous suggestions have been put forward to explain the mobility of

large landslides. Some researchers have suggested mechanisms based on lubrication by an air

layer trapped underneath the landslide [31], acoustic fluidization due to high-frequency acous-

tic waves travelling through the granular medium [36], dispersive forces exerted by powder-

sized grains [37], mechanical fluidization [38–40]. Habib [41] and Goguel [42] independently

suggest that there is so much heat generated in the slippage plane that water will be quickly

brought to the boiling point and transform into vapor. The consequent build of water vapor

pressurized could act as a lubricant in the shear layer, thusincreasing the landslide mobility.

Apparently there are some mechanisms which reduce frictionand increase the lubrication of

a fluidized landslide, but to find the dominant mechanism one has to to construct simple mod-
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1) The highest shear stresses are localized within a thin
shear layer deep inside the landslide [31, 32].

2) Fluidized landslides occur normally after a period of
heavy rainfall, hence water content is essential for fluidized
landslides.

Table 1.1: Two common features of fluidized landslides.

els to explore the influence of each mechanism individually.Inspired from landslides, in the

current study we construct simple models to understand yielding of wet granular matter.

1.1.3 Modeling a fluidized landslide

Due to complex fractal geometry of soil grains and diverse interparticle interactions be-

tween them, it is not easy to create a simple model which describes fluidized landslide [43]s.

There are some attempts to explore fluidized landslides using numerical experiments. Most of

them are based on continuum models [34]. They do not take intoaccount microscopic inter-

actions between the grains. However, we are interested to develop a microscopic model which

allows us to study the influence of interparticle interactions between the individual grains on

the behavior of large systems. There are many parameters which play an important role in

such systems,e.g. the shape of the particles, friction, moisture etc.. Friction is one of the

parameters which depends on the shape of the particles as well as their material structure. For

instance, sand beads made by water erosion have less friction than many other kinds of the

grains. Moisture is also another important parameter to study fluidized landslides. When two

neighbor grains are wet, due to the surface tension of liquidfilm at the contact point an at-

traction force acts between neighbors which is hysteretic,i.e. when two grains approach each

other there is no capillary interaction. Finding the commonfeatures of fluidized landslides

could probably help us to know which features play a dominantrole. Studying portfolios of

fluidized landslides, one finds that they all have the following two main features: As an exam-

ple to demonstrate impact of moisture on fluidized landslides, Fig.1.2 shows an experiment to

induce a fluidized landslide by artificial rainfall has been done by Hirotaka Ochiaiet al. [29],

at Mt. Kaba-san, Japan 2004. Average slope gradient was 33◦, and the rainfall intensity was

78 mm/h. They found also a curve shape during plastic deformation ofthe artificial landslide

(marked by the yellow arrow), similar to La Conchita 1995 landslide.
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Figure 1.2: A fluidized landslid caused by an artificial rainfall.

1.2 Physical model for wet granular matter

1.2.1 Overview

In this section, we present our simplified physical model which describes wet granular matter.

For simplicity, the grains are supposed to be circular 2D disks in our model. We use soft disks

that interact via repulsive forces when they ’overlap’. In addition, in section 1.2.3 we take

capillary bridge interaction into account.

1.2.2 Repulsive interactions

When two adjacent soft disks touch each other and subsequently ’overlap’, they interact via

a short range repulsive force. Several methods have been suggested to model the repulsive

interactions. We introduce some of those models in the following.

Hard core model is used in event-driven molecular dynamics simulations of soft particles.

F(r i j ) =















∞ if r i j ≤ Ri + Rj;

0 if r i j > Ri + Rj .

in whichRi andRj are radii of particles i and j, andr i j is the center to center distance between

between two particles.

Spring-like forcesare a class of repulsive forces that can be used in the force-based molec-

ular dynamics simulations.
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0 0.2 0.4 0.6 0.8 1
rij /(Ri+Rj)

0
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1

F
or

ce
/ε

Linear spring
Hertz force
Non-linear spring

Softest
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Figure 1.3: Repulsive interparticle force as a function of the rescaled distance. The blue curve
shows the nonlinear spring force. The linear spring depicted by the red curve and the black
curve shows the Hertz force. Y axis (force) is rescaled on theǫ.

F(r i j ) =















ǫ(Ri + Rj − r i j )α r i j ≤ Ri + Rj

0 r i j > Ri + Rj

wherer i j is the center to center distance between particles, whileRi andRj are the radii

of the particles i and j. The exponentα = {0.5,1,1.5} correspond to nonlinear spring, linear

spring, and Hertzian force respectively. The radius dependent prefactorǫ = A·(Ri ·Rj)/(Ri+Rj)

and A is a constant.

Schultz’s Forceis another type of the repulsive forces [11]. It is given by:

U(r i j ) =















(ξ−13
+ (ξ − 1)ξ−13

0 /(ξ0 − 1)) ξ ≤ ξ0
0 ξ > ξ0

whereξ = r i j/(Ri + Rj), andξ0 = 1.05. This model is a mix of repulsive Lennard-Jones and

repulsive spring. When two particles overlap the spring force is dominant and as one decreases

the particle indentation, the first part will dominate.
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r

2R

Sc

Figure 1.4: Formation (left) and rupturing (right) of a liquid bridge.Top-left: two wet grains
are approaching. The liquid films depicted by blue thin layers on the surface of two grains.
Left-center: two wet grains touch each other.Bottom-left: a capillary bridge forms at the
contact region.Bottom-right : when two grains are pulled out, a pendular bridge forms.
Top-right : capillary bridge ruptures as the separation between two grains exceeds the rupture
separationSc.

1.2.3 Capillary bridges

When a wetting liquid is added to granular material, a thin liquid film forms on surface of

each particle. As soon as two adjacent grains touch each other, a sharp bend in the liquid film

at the contact region results to a high negative Laplace pressure. Due to the negative Laplace

pressure in the contact region, most of the liquid in the film will be sucked into the contact

region and eventually a capillary bridge will form. The process of formation of a capillary

bridge is shown in Fig.1.4.

The capillary attractive force between two wet grains is a consequence of interfacial ten-

sion of the liquid, as well as the difference of pressure between the liquid and the gas phase.

Subsequently, a liquid bridge forms and entails to an attractive force between particles as soon

as two adjacent grains touch each other. The force switches off as the capillary bridge rup-

tures. This happens at a limit difference being larger than the separation at which the bridge is

formed. Furthermore, the critical separation depends on the liquid content in the system. Ex-

periments prove that the attractive liquid bridge force decreases exponentially with increasing

the separation between the grains. It was recently shown by Soulie et al. [44] that the capillary
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Figure 1.5:Top-left: capillary bridge force as a function of the distance between particles.
1: two grains approach each other. 2: as soon as they touch each other a capillary bridge
forms and entails to an attractive force. 3: the force decreases particles are stretched. 4:
the force switches off as the capillary bridge ruptures. At the endEloss =

∫ Sc

0
F(r)dr is

dissipated.Bottom-left: the particle energy as a function of the distance.Top-right : capil-
lary bridge force versus the distance in the minimal capillary model in which the capillary
force is constant as two disks are stretched.Bottom-right : particle energy versus the distance
in the minimal capillary model.

force can be cast into the form:

F(r) = −πγs

√

R1R2[exp(Ar + B) +C] (1.1)

whereR1 andR2 are radii of the contacting spheres (R1 < R2), γs is the liquid surface tension,

and r is the particles separation. A, B, and C are the fitting parameters and function of the

liquid volumeVb and the contact angleθ.

Formation and rupturing of a capillary bridges is illustrated in Fig.1.5-left.

One can simplify the capillary interaction, which is a function of distance between parti-

cles, to a minimal force that does not depend on distance between grains. Fig.1.5-right, shows

this simplified capillary model. In the minimal capillary model, the capillary bridge force is

assumed to be constant as the capillary bridge is stretched.This model has been successfully

used to describe the dynamics of wet granular material [4, 45–47].
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Symbol Description
< d >=average diameter of the disks Length unit
mass over area of each disk Mass unit
fLB=minimal capillary force Force unit

Table 1.2: The rescaled units of simulations.

1.2.4 Rescaled units

Here, we introduce the rescaled units that will be used for all the simulations in this thesis.

The units of simulation is briefly listed in tab. 1.2.

We choose the average diameter of particles as the unit of thelength, the minimal capillary

force as the unit of the force, and the mass over area of each particle as the unit of the density.

This means that mass of each particle equals its corresponding area.

1.2.5 Physical quantities

The best mathematical tool to study the stress field is thestress tensor1 [48]. The stress

tensor is composed of two parts:

1. Kinetic part : It characterizes the thermal kinetic energy transported into different de-

grees of freedom by the thermal motion of particles.

2. Static part: It characterizes the amount of the momentum transported bythe interac-

tions between particles. The static part increases when thearea fraction is increased

such that there are more contacts.

The stress tensor in 2D can be written as:

S =
1
A















∑

i(vix − Ux)2 ∑

i(vix − Ux)(viy − Uy)
∑

i(vix − Ux)(viy − Uy)
∑

i(viy − Uy)2















+
1
A















∑

i< j r i j xFi j x

∑

i< j r i j xFi j y
∑

i< j r i j yFi j x

∑

i< j r i j yFi j y















(1.2)

in whichvi is the velocity of particle i,Ux andUy are projections of the drift velocity along X

and Y direction,r i j = r j − r i, Fi j is the interparticle force between particles i and j, and A is

area of the region where the stress tensor is measured.

1Derivation of the stress tensor is given in Appendix sect.C.
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Thegranular temperatureis defined as the random kinetic energy of particles. Here, the

randomness means that the drift velocity is subtracted fromvelocity of each particle, so that

the temperature can be written as:

TG =

N
∑

i=1

1
2

mi(< v2
ix > − < vix >

2
+ < v2

iy > − < viy >
2) (1.3)

wheremi is mass of particle i, andvix andviy are components of velocity of particle i along X

and Y directions respectively.

1.3 Numerical implementation

Due to the large number of the particles within a typical granular system, and the complicated

interparticle forces, the equation of the motion of each particle can not be solved analytically.

Numerical methods must be implemented. Our numerical implementation is based on calcu-

lating trajectories of the center of mass of each particle from Newton’s equation of motion

individually on each particle. The calculation of the trajectories of all particles of the system,

is calledMolecular Dynamics. The idea of the Molecular Dynamics was pioneered in 1957

by Adler and Wainwright [49] [50] [51] who attempted to simulate molecular gases and simple

liquids [49]. Molecular Dynamics simulations of granular systems are very expensive due to

short range interactions of the particles [52]. There are two kinds of the molecular dynamics

simulations:

1. Event-driven Molecular Dynamics: in systems where the typical duration of a colli-

sion is much shorter than the mean time between two successive collisions in the whole

system, event-driven Molecular Dynamics is efficient. Hence, the system should be di-

lute like a granular gas [53]. The algorithm is focused on thecalculation of the next

collision, and thus the forces in the system has been not taken into the account. Event-

driven Molecular Dynamics has been used to study free cooling of dry [54] and wet [55]

granular gas.

2. Force-based Molecular Dynamics: in systems where the typical duration of a collision

is much larger than the mean time between successive collisions, force-based Molecular

Dynamics is efficient. It means that the system is densely packed and particles are

in enduring contact. In this case, an event-driven algorithm must fail. Furthermore,
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in force-based Molecular Dynamics, one can include external force fields like driving

force in the system. Force-based Molecular Dynamics has been proven as a powerful

method to study dry [56–59] and wet [60] [61] granular matterunder shear.

Accordingly, the force-based molecular dynamics is the method of choice to simulate

dense granular matter which is our aim. We developed the force-based molecular dynamics to

explore the physics of wet granular matter under shear. To perform the molecular dynamics

simulation, one should solve the Newton’s equation of motion. Newton’s equation is a second

order ordinary differential equation:

d2r i(t)
dt2

=
1
mi

∑

j

Fi j (1.4)

where
∑

j Fi j is the force between particlesi and j, andmi is mass of particlei. During the

preparation of the initial state, a viscous frictionFdrag is applied individually on each particle

to dissipate the injected energy:

Fdrag = −bvi (1.5)

a‘virtual fluid’ in the background being proportional to thevelocity vi of the disks. The con-

stantb describes the strength of the damping and is usually set tob = 0.1

A standard method to solve such an ordinary differential equation is the Gear method

[62, 63]. The advantage of the Gear method is that forces are calculated once in each time

step. In the next section, we will explain the method on detail.

To solve the euq.(1.4) for a system consistingN particle during calculation of the total

forces acting on each individual particle, we deal with aN2 problem. To decrease that number,

the so-called linked-cell method has been implemented [62]. In this method, the simulation

box is divided into a regular lattice ofM×M cells. Particles in each cell interact only with their

neighbor cells. This decreases the computational effort to a linear dependence of the number

of particlesN. Since interactions in granular material are short range, this is a suitable method

for such projects. It is clear that the length of the cells should be smaller than the diameter of

particles.

To measure the physical quantities, the simulation box is divided into rectangular bins

along the direction of the flow. The width of each bin equals toone average particle diameter

and its length is equal to the system size. Accordingly, the number of the bins equals the

system size. Once the system has reached the stationary state, the measurements are done in

each bin within a long simulation time. At the end of the simulations, a spatial profile can be
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obtained by averaging over the temporal profiles during the measurements. The final profiles

are calculated by averaging over 10000 profiles during a longsimulation time.

1.3.1 5th order Gear method

The idea of the 5th order Gear method is to extrapolate solutions for each particle as an initial

guess from the Taylor expansion, and correct the predicted values according to difference

of the predicted force and the real force which can be calculated directly. If the difference

becomes zero then the predicted values are accepted and algorithm proceeds to the next time

step2. Otherwise, the algorithm corrects the solution in the Corrector step.

Predictor step: Given positions, velocities etc. of particles at timet, we attempt to obtain

the positions, velocities etc. at the timet + δt. Due to continuity of the classical trajectories of

the particles, one can use the Taylor expansion to extrapolate the initial solutions:

r i(t + δt) = r i(t) ·C(0)+ vi(t) ·C(1)+ ai(t) ·C(2)+ bi(t) ·C(3)+ ci(t) ·C(4). (1.6)

vi(t + δt) = vi(t) ·C(0)+ ai(t) ·C(1)+ bi(t) ·C(2)+ ci(t) ·C(3). (1.7)

ai(t + δt) = ai(t) ·C(0)+ bi(t) ·C(1)+ ci(t) ·C(2). (1.8)

bi(t + δt) = bi(t) ·C(0)+ ci(t) ·C(1). (1.9)

ci(t + δt) = ci(t) ·C(0) (1.10)

in which,C(i) = dti/i!, anddt is the integration time step.v,a,b, c are the first, second, third,

and fourth derivatives of the position r. Therefore, in thisstep, using the Taylor expansion, we

speculate the position and its derivatives at timet + δt, giving the position and its derivatives

at the timet.

Calculation of inter-particle forces: In this step we calculate real total force that act on

each particle i:

2In reality, it never happens
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Cr Cv Cb Cc

G(0) ·C(2) G(1) ·C(2)/C(1) G(3) ·C(2)/C(3) G(4) ·C(2)/C(4)

Table 1.3: Coefficients of the corrector step.

fi(t + δt) =
∑

j

Fi j (1.11)

Where fi is the total force that acts on particle i at timet + δt, and
∑

j Fi j is a sum on

all neighbors j around particle i interacting by forceFi j . To give a feedback into the system,

difference of the real acceleration and the predicted acceleration should be calculated.

Feedbacki = ∆i = fi(t + δt)/mi − ai(t + δt) (1.12)

If ∆i = 0 then we accept the extrapolated values and proceed to the next time step. For∆i , 0,

we correct the predicted values according to the∆i.

Corrector step: In order to correct the initial extrapolated solutions, the feedback quantity

∆i is used as:

r i = r i + ∆i ·Cr . (1.13)

vi = vi + ∆i ·Cv. (1.14)

ai = fi/mi . (1.15)

bi = bi + ∆i ·Cb. (1.16)

ci = ci + ∆i ·Cc. (1.17)

The coefficientsCi are given by: while the Gear coefficients3 G(i) equal:

To summarize the Gear method, a flowchart of the algorithm is sketched in Fig.1.6.

A major advantage of the Gear method in comparison with the other methods such as

3Please note that the Gear coefficients are different for different ODE’s
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G(0) G(1) G(2) G(3) G(4)
19
120

3
4 1 1

2
1
12

Table 1.4: The Gear coefficients for second order ODE’s.

∆=0

∆>0

Force calculation

Predictor

Corrector

Feedback

Next time step

Figure 1.6: Flowchart of the 5th order Gear method illustrated.
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Runge-Kutta method [62] is that one should calculate the the interparticle forces only once.

1.3.2 Accuracy of the Gear method for different interaction forces

In order to check the numerical accuracy of the Gear method, we explore the energy conser-

vation in a gas of soft discs that interact via short range repulsive forces as described above.

Fig.1.7 shows the standard deviation of the total energy of the system as a function of the time

step dt. We explore the energy conservation for both monodisperse and bidisperse discs in

which the ratio of the radii is 1.4. The number of the particles is N = 100. They are equally

distributed between large and small particles for the bidisperse case. The monodisperse and

bidisperse particles are marked by M and B respectively. Theinterparticle forces are:

• Schultz’s potential

• Lennard-Jones (LJ)

• Non-linear spring where the prefactor is set toA = 103

• Hertz where the prefactor is set toA = 103

For all systems the energy conservation is well observed. The fluctuations∆E disappear

like a power law with decreasing the time step∆t of the algorithm,∆E ∼ ∆tγ. The exponent

γ is noted in the graph. Furthermore, Fig.1.7 proves that the class of the spring forces,i.e. the

Hertz or the nonlinear spring, are the most stable forces forthis algorithm.
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Figure 1.7: Logarithm of the average standard deviation of the total energy as a function of the
logarithm of the time step dt. The simulation is done for bothmonodisperse and polydisperse
discs. A power law scaling behavior is found. The corresponding exponent of each curve is
written inside the graph.



Chapter 2

Stability of a granular pile

In this chapter we explore the stability of granular piles. One can prepare different kinds

of granular piles based on the coordination numberz of the particles. There are two main

categories of granular piles [64, 65]:

1. Isostatic pile: The coordination number of each particle equals two times of the dimen-

sion of the systemz= 2d.

2. Hyperstatic pile: The coordination number of each particle is greater than two times of

the dimension of the systemz> 2d. 1

Accordingly, in an isostatic pile of two dimensional monodisperse disks, the coordination

number is 4. In a hyperstatic pile of such a system, the coordination number is greater than 4.

The hexagonal arrangement of monodisperse disks is an example of a hyperstatic packing. If

one make a regular gap between disks the pile will become a regular isostatic pile.

2.1 Motivation

We start with snapshots from simulation of a simple model fora dry isostatic pile con-

sisting three layers of monodisperse disks (Fig.2.1). The brown disks (lowermost row ) are

immobilized in order to mimic a rough bed and the red disks aresettled in the valleys between

the brown disks resembling a hexagonal packing. There are regular gaps between disks given

by δ and each disk has four neighbors. The disks are frictionlessand interact via a nonlinear

1Pouring frictional spheres into a vessel, often ends up witha hyperstatic packing.

19
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spring force when they overlap. The snapshots are parts of a much longer pile in the direc-

tion parallel to the wall. The gravitational acceleration is g = 1, and the inclination angle is

θ = 80◦. Fig.2.1-bottom shows a snapshot of the pile configuration at time t = 3.5 where

the pile is being fluidized. By that time all the red disks move simultaneously. Although the

symmetry of the pile is conserved, and disks no longer touch each other.

Let’s take exactly the same system as it is already describedin Fig.2.1 and add capillary

bridges at the contact points of disks in order to make the pile wet. In Fig.2.2 top-left a

wet pile consisting of three layers and capillary bridges between them att = 0 depicted. The

gravitational acceleration isg = 1, and the inclination angle isθ = 80◦. Fig.2.2 top-right shows

a snapshot of the system att = 1.2 where the pile started to move and the supporting capillary

bridges in the deepest layer are significantly stretched. Fig.2.2 bottom-left the supporting

capillary bridges ruptured such that each disk in the deepest layer keeps its contact with the

brown disks only via a single capillary bridge. Fig.2.2 bottom-right is snapshot of the system

at t = 7 where the pile is flying. Since some of disks in the middle layer have five contacts,

isostaticity and periodicity of the pile are broken.

Accordingly, there is a dramatic difference between physics of a wet pile on an inclined

plane and that of the dry pile. In a dry pile all layers of the pile fluidize simultaneously when

the pile is tilted. In the wet case, the fluidization starts inthe deepest layer. Why do wet piles

break close to their support? Can one quantitatively predictfluidization threshold of wet piles?

2.2 Theoretical formalism

2.2.1 Critical angle

As explained above, we choose a pile in which there are regular gapsδ between adjacent

disk in a layer. In Fig.2.3 we zoom in one of the red disk in the first layer. The disk is

supported by two brown disks. Since disks are monodisperse,one can draw an isosceles

triangle that connects the centers of the disks A, B, and C (theblack triangle). The length of

the sides of the triangle are (2R,2R+δ,2R) respectively. The critical angleθc is defined as half

of the ABC cone, such that:

sinθc =
R+ 0.5δ

2R
(2.1)

In the next section we will show that if an external force,e.g. gravity, acts on the red disk, it

will not move and will be stable as long as the force points somewhere inside the ABC cone.
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Y

X

θ mg
t = 0

t = 3.5

Figure 2.1: Snapshots taken from simulation of a dry isostatic pile on an inclined plane at
different simulation times. The radius of each particle isR = 0.5, the mass of each disk is
m = π · R2, the gravitational acceleration isg = 1, the regular gap isδ = 0.125, and the
inclination angle isθ = 80◦.



22 Chapter 2. Stability of a granular pile

Y
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θ mg
t = 0 t = 1.2

t = 7t = 2.5

Figure 2.2: Snapshots taken from simulation of a wet isostatic pile on inclined plane at
different simulation time. Radius isR = 0.5, the rupture separation isSc = 0.1, the capillary
bridge force isfLB = 1, the mass of each disk ism = π · R2, the gravitational acceleration is
g = 1, the regular gap isδ = 0.125, and the inclination angle isθ = 80◦.
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Figure 2.3: The critical angleθc in a system at which grains are separated from one another
by a regular gapδ and disks in each layer sit in the valleys of the supporting disks.

2.2.2 Isostatic dry pile

Let’s start with the simplest possible configuration for a pile of dry disks. Fig.2.4 shows

sketch of a monodisperse pile in which the red disks are settled in valleys of the immobilized

brown disks. The regular gap between disks in a row isδ, and the inclination angle is smaller

than the critical angleθ < θc. There are three forces acting on each red particle as follows:

1. mg: the gravitational force

2. F1: the repulsive force from the right side supporting disk

3. F2: the repulsive force from the left side supporting disk

Because the direction of the inclination of the pile is normalto the plane, the right brown

disk in Fig.2.4-top has to support more than the left one, thus F1 > F2. In order to have a

static equilibrium in the pile, the forces acting on the red disks should balance:

F1 + F2 +mg = 0 (2.2)

If one projects equ.(2.2) into the parallel and vertical directions to the inclination plane:















(F1 + F2) cosθc = mgcosθ

(F1 − F2) sinθc = mgsinθ
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F2

F1

mg

θ
c

θ

δ

Y

X

θ

Figure 2.4: An isostatic pile of monodisperse dry disks on aninclined plane. The brown disks
are immobilized and the red disks are settled in the valleys of the brown disks. A regular
gapδ between disks in each row is implemented to make an regular isostatic packing. The
inclination angle is smaller thanθc.
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one can calculateF1 andF2 as a function of the gravity and the inclination angle:















F1 = mgsin(θc + θ)/ sin 2θc
F2 = mgsin(θc − θ)/ sin 2θc

This shows that asθ → θc, F1 increases andF2 decreases and approaches zero. Atθ = θc

the left side brown disk no longer supportsF1 = 0, and the right side brown disk fully supports

the weight of the red diskF2 = mg.














F1 = mg

F2 = 0

Due to periodicity of packing in X-direction, this picture is true for all the red disks in the

first layer. Therefore, atθ = θc the system is at vicinity of the fluidization. In conclusion,one

sees that the critical angleθc is related to stability of the pile,i.e. for θ < θc the pile is stable

and forθ > θc the pile fluidizes.

Let us consider a similar pile with an arbitrary large numberof layers. Each particles in a

layer is settled in the valley of two supporting disks in the lower layer. In the bulk of the pile,

each particle has four contacts with the surrounding disks.

Fig.2.5 shows the forces acting on the red disk at the center.There are four repulsive

forces acting on the red disk as well as the gravitational force. In the static equilibrium all

forces should balance as:

F1 + F2 + F3 + F4 +mg = 0 (2.3)

The angles ofF1,F2,F3, andF4 with a line vertical to the inclined plane areθc, π−θc, π+θc,

and−θc. Consequently the projection of equ.(2.3) into the paralleland vertical directions to

the inclination plane are:















(F1 − F3 + F2 − F4) cosθc = mgcosθ

(F1 − F3 − (F2 − F4)) sinθc = mgsinθ

Lets supposeF′ = F1 − F3 andF′′ = F2 − F4:















(F′ + F′′) cosθc = mgcosθ

(F′ − F′′) sinθc = mgsinθ
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Then:














F′ = mgsin(θc + θ)/ sin 2θc
F′′ = mgsin(θc − θ)/ sin 2θc

and if θ = θc:














F′ = mg

F′′ = 0

the critical fluidization pointθc does not change as one increases the number of layers. For

θ > θc there is a forceF2 − F4 acting away from the wall, which triggers fluidization.

F3

F4

F2

mg

θ
c

F1

δ

Y

Xθ

Figure 2.5: Forces acting on each disk in bulk of a pile consisting an arbitrary large number
of layers depicted. The inclination angle is smaller thanθc.

In conclusion, we analytically showed that fluidization of adry pile occurs if the inclination

angle exceeds the critical angleθc. Note that the fluidization point is independent from two

physical parameters:

1. The number of the layers in the pile.

2. The gravitational acceleration.

This means that forθ < θc the pile does not fluidize irrespective of the strength of thegravi-

tational acceleration. On the other hand, forθ > θc the pile fluidizes for any arbitrary gravita-
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tional acceleration. In the next section, we will show that this picture completely changes for

a wet pile.

2.2.3 Isostatic wet pile

To study stability of a wet pile we start again with the simplest possible isostatic pile of

monodisperse disks. Fig.2.6 shows a sketch of the system consisting of one layer of monodis-

perse disks prepared on a layer of immobilized brown disks. There are capillary bridges at the

contact points of the disks.δ is the gap between disks in each layer. Due to support of the

capillary bridges at the contact points of the disks, the pile will still be stable if the inclination

angle exceedsθc. Forθ > θc the repulsive force at equ.(2.2) can be substituted by an attractive

force f coming from the supporting capillary bridge (Fig.2.6).

If in equ.(2.2) one substitutes F byF2 and f byF1, at the vicinity of the fluidization where

g = gc, those three forces should balance:

f + F +mgc = 0 (2.4)

leading to the following:

gc =
f
m
·

sin(2θc)
sin(θ − θc)

(2.5)

Therefore, for a given capillary bridge force, there is a corresponding critical gravitational

acceleration which makes the capillary bridge unstable, and the fluidization is caused by rup-

turing of such an unstable capillary bridge. In order to understand the equ.(2.5), we notice

thatmgc · sin(θ − θc) is a force that pulls the disk out in the direction normal to the line that

connects the red disk to the supporting disk at the right side. Accordingly, equ.(2.5) gives rise

to a reasonable scaling law that can be understood by the physical intuition.

Now the next question is that what happens if one adds more layers of the red disks? Since

the repulsive force from the brown disks increases linearlywith the number of the red layers,

to balance equ.(2.4)mgc should decrease. We expect that the critical gravitationalforce is

proportional to the inverse of the number of layersl:

gc =
f

l ·m
·

sin2θc
sin(θ − θc)

(2.6)

It implies that the critical gravitational acceleration that makes the capillary bridges unstable,

decreases as one approaches to the lowermost layer. Accordingly, this shows that a wet pile
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cmg

θ
c

F

θ

f

θ

Y

Xδ

Figure 2.6: The brown disks are glued to the bottom in order toapply non-slip boundary
condition. At the vicinity of the fluidization, there are three forces acting on each red disk that
should balance. An attractive force from the supporting capillary bridge f , a repulsive force
from the supporting disk, and the gravitational force of thegolden disk.θ is the inclination
angle, andθc is the critical angle.
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yields in the bulk close to the wall. However, in a dry pile, usually particles on the surface

of a pile are subject to move. This result completely changesour way of thinking about

fluidization of granular piles. We will check the equ.(2.6) by extensive numerical simulations

in the following sections.

In conclusion, the fluidization in a wet granular pile is caused by pinching off the capillary

bridges in deepest layer. In contrast, in a dry pile fluidization occur simultaneously in all the

layers of the pile as soon as the critical angle is exceeded. One sees that the fascinating aspect

of capillary bridges in a granular pile is not only that one can sculpture a statue, but it gives rise

to a fundamentally different physics that can be applicable to our understanding ofavalanches

and landslides.

2.3 Numerical simulations of monodisperse disks

2.3.1 An isostatic wet pile

In the previous section, we presented a theoretical model todescribe the stability of a wet

isostatic pile. In the current section, we check this model by numerical simulations. Fig.2.7-

left depicts the fluidization threshold for one, two, and three layers of monodisperse disks for

a pile with θc = 34.22◦. The red, blue, and violet lines show the theoretical prediction and

the solid points are the corresponding simulation data. We find an excellent agreement of the

theoretical prediction and the simulation data. To show thedeviations of the simulation data

from the theoretical line, one may move all the parameters inequ:(2.6) to one side as:

sin(θ − θc)
sin 2θc

mgc =
1
l

(2.7)

wherel is number of the layers. The right hand side of equ.(2.7) is a constant number in-

dependent from the tilting angle. Therefore, if one plots the left hand side of equ.(2.7) for

each inclination angle one can have a chance to see the deviations of the simulation data from

the theory. Fig.2.7-right shows sin(θ − θc)sin 2θcmgc versus the inclination angle. For one,

two, and three layers the theory predicts 1, 0.5, and 0.3333.One sees that deviations of the

simulation data from the theoretical lines are indeed very small.
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Figure 2.7: Fluidization threshold of a wet isostatic pile consisting one, two, and three layers
of monodisperse disks. The solid points show the simulationdata, and the solid lines show
the theoretical prediction. We find a perfect agreement of the simulation data and the theory.
The radius of each particle isR= 0.5, the rupture separation isSc = 0.01, the capillary bridge
force is fLB = 1, the critical angle isθc = 34.22◦, the regular gap isδ = 0.125, the system size
L = 18, and the mass of each disk ism= π · R2.

2.3.2 An isostatic wet pile with height disorder

In this section, we introduce disorder in the system and study its influence on the fluidiza-

tion threshold. One of the easiest ways to implement disorder in the system is by breaking the

translational invariance of the system. To that end, we add asingle disk on top of the pile and

study its influence on the fluidization threshold. Fig.2.8-top shows the sketch of the system

consisting of three complete layers as well as one single disk on top of the pile. Each layer has

16 disks with regular gapsδ = 0.125. Surprisingly, the simulation data in Fig.2.8-bottom for

the fluidization threshold lie perfectly on the theoreticalline for 4 complete layers. Therefore,

when the pile is isostatic whether one adds a single disk on top of the pile or one fills up the

whole layer, the fluidization threshold shifts to a one higher layer. Adding a single disk on

top of an inclined isostatic pile can trigger fluidization. The explanation for this observation

is straightforward.The pile yields at the point where 4 disks are pulling.

In order to increase the disorder in the system, we make an isostatic pile with a complicated

height profile. A sketch of the system depicted in Fig.2.9-top.

One sees that the system consists 6 complete layers as well as2 incomplete layers, and

there are regular gaps between disksδ = 0.125. The 7th incomplete layer has two holes, and

8th incomplete layer is just a single disk. If our observation in Fig.2.8 holds in general, one
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Figure 2.8: Fluidization threshold of an isostatic pile consisting 3 complete layers as well as
a single disk on top of it depicted. The black circles are the simulation data and the red line
shows the theoretical prediction for 4 complete layers. Thedeviations are due to the thermal
motion of particles. The radius of each particle isR= 0.5, the rupture separation isSc = 0.01,
the capillary bridge force isfLB = 1, the critical angle isθc = 34.22, the regular gapδ = 0.125,
and the mass of each disk ism= π · R2.
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should expect that the fluidization threshold of this systemlies on the fluidization threshold of

8 complete layers. In Fig.2.9-middle the fluidization threshold of the system is presented. The

black circles, which are the simulation data, lie on the theoretical prediction for 8 complete

layers. One can see the deviations from the theoretical linemore clearly in Fig.2.9-bottom

where the theory predicts a horizontal line at height 1/8. The compressibility of the system

results to thermal motion of particles when the gravitational force acts, and the thermal motion

entails the deviations of the simulation data from the theoretical prediction. This example

proves that Fig.2.8 is not an exceptional case. For isostatic packings adding a single disk

on top of a complete layer has the same effect as adding a complete layer. The fluidization

threshold of both cases will be identical.

2.3.3 A hyperstatic wet pile

When the coordination number in a two dimensional packing of monodisperse disks is

greater than 4 the packing is hyperstatic [64]. Since each particle in a hyperstatic packing has

more than 4 contacts, the force distribution in a hyperstatic packing becomes more sophis-

ticated than the force distribution in a static packing. Does the force distribution caused by

configuration of the pile affect the stability of the pile? To answer that question, we make

initially a hyperstatic pile by setting the gap between disks to zero and study the fluidization

threshold in the pile. While the gap between disks in each row is zero the number of the

contacts for each particle in the bulk will be 6 such that the pile is hyperstatic.

Fig.2.10-left shows the critical gravitational acceleration versus sine of the subtracted in-

clination angle,i.e. sin(θ − θc), in which the radius of each particle isR = 0.5, the rupture

separation isSc = 0.01, the liquid bridge force isfLB = 1, and the mass of each disk is

m = π · R2
= 0.7853. The black circles show the simulation data of the fluidization threshold

for one layer of the wet disks, and the red line is the corresponding theoretical prediction. Sub-

sequently, the black squares and black diamonds are the fluidization points for two and three

layers respectively. The blue and violet lines are the corresponding theoretical lines. Although

in the theory for stability of a wet pile it is supposed that the pile is isostatic, we still find a

perfect agreement between the theoretical prediction for aisostatic pile and the numerical sim-

ulations for a hyperstatic pile. Fig.2.10 proves that our simple picture of the balanced forces

at the vicinity of the fluidization might also be useful to predict the fluidization threshold of a

hyperstatic wet pile in different inclination angles. When the pile is translationally invariant,

the forces acting on each particle in a row from its neighborsat the same row do not affect the
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Figure 2.9: Fluidization threshold of 8 incomplete layers in an isostatic pile. The black circles
are the simulation data for the system and the red line is the theoretical prediction for 8 com-
plete layers. The radius of each particle isR = 0.5, the rupture separation isSc = 0.01, the
capillary bridge force isfLB = 1, the critical angle isθc = 34.22, and the mass of each disk is
m= π · R2.
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stability of that grain.
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Figure 2.10: Fluidization threshold for one, two, and threelayers of the wet disks in a hyper-
static wet pile. The solid points show the simulation data, and the solid lines show the theo-
retical prediction. The radius of each particle isR = 0.5, the rupture separation isSc = 0.01,
the capillary bridge force isfLB = 1, the critical angle isθc = 30◦, and the mass of each disk is
m= π · R2

= 0.7853.

2.3.4 A hyperstatic wet pile with height disorder

We showed that in a hyperstatic pile with translational invariance the simulation data,

corresponding to the fluidization of the pile, sit on top of the theoretical prediction for an

isostatic pile. By adding one single disk on top of the pile we break the translational invariance

and explore whether the simulation data fit on the theoretical curve of l + 1 layers. We choose

l = 3 and add one single disk on top of the pile. Fig.2.11-left shows the fluidization threshold

of the system. The solid circles illustrate the simulation data and the red line is the theoretical

prediction for only 3 complete layers. In Fig.2.11-right one sees that the simulation data

are slightly below the transition line for three layers. Thus, in a hyperstatic pile without

translational invariance, the additional contacts tend tosupport the particles and make the

pile more stable. The stability threshold remains close to the value for 3 layers rather than

threshold for 4 layers.
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Figure 2.11: Fluidization threshold of a hyperstatic pile consisting of 3 layers as well as one
single disk on top of the pile. The black circles show the simulation data, and the red line
depicts the theoretical prediction for three layers. The radius of each particle isR = 0.5, the
rupture separation isSc = 0.01, the capillary bridge force isfLB = 1, the critical angle is
θc = 30, and the mass of each disk ism= π · R2

= 0.7853.

2.3.5 Rupture length and stability of a wet pile

Our theoretical considerations on the stability of a wet pile are based on the balance of the

forces of each disk in the pile with its supporting disks. Therupture separation of the cap-

illary bridges, which is related to the energy considerations, should not affect the fluidiza-

tion threshold. To check that fact we performed numerical simulations for ten different rup-

ture separationsSc = {0.01,0.02,0.03, ...1.0}. Fig.2.12 shows the fluidization threshold of

an isostatic wet pile consisting of one, two, and three layers depicted by the red, blue, and

brown colors respectively for two different rupture separationSc = {0.01,0.1}. We plotted

mgc sin(θ − θc)/ sin 2θc versusθ. The data corresponding toSc = 0.1 are shifted by 90◦. For

one layermgc sin(θ− θc)/ sin 2θc = 1 and simulation data forSc = {0.01,0.1} illustrated by the

circles and squares respectively. One sees that both data sets lie on the theoretical curve (the

red curve). For two and three layers also the data sets corresponding for two differentSc lie

on the theoretical lines. In conclusion, the rupture separation does not change the stability of

a regular pile.
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Figure 2.12: Fluidization threshold for one, two, and threelayers of an isostatic pile for two
different rupture separationsSc = {0.01,0.1}.. The data corresponding toSc = 0.1 are shifted
by 90◦. The Y axis ismgc sin(θ − θc)/ sin 2θc and the X axis isθ. The solid symbols show
the simulation data and the solid lines show the theoreticalline. The radius of each particle is
R = 0.5, the rupture separation isSc = 0.01, the capillary bridge force isfLB = 1, the critical
angle isθc = 34.22◦, and the mass of each disk ism= π · R2

= 0.7853.

2.4 Numerical investigations of the stability of bidisperse

piles

In the previous section, we started with the simplest possible configuration of a granular

pile, i.e. monodisperse disks in an isostatic and hyperstatic packing. Step by step by adding a

few disks on top of the pile we introduced disorder in the system. In the present section, we

consider a much more disordered pile consisting of bidisperse disks. In order to avoid crys-

tallization, we use bidisperse disks with a ratio of radii equal to 1.4. The material properties

of dry bidisperse disks have been studied by O’Hern’s group [66] and this type of the systems

have been accepted as a standard system for bidisperse spheres in which crystallization and

segregation do not occur. The bidisperse soft disks interact via two forces. A non-linear re-

pulsive spring force acts between two disks when they overlap. The particles are wet and we

use the minimal capillary force to model the capillary interactions.
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2.4.1 Preparation step

Since one can not simply calculate the initial positions of abidisperse system in a densely

packed state, one needs a preparation step. To prepare a dense packing we use a two step

procedure:

1. Random sequential addition: in each step, a new disk is added at a random position

into the box. The new disk is accepted if it does not overlap with the other disks,

otherwise it is rejected. Adding new disks will stop once thenumber of particles reaches

the desired amount. We enforce a restriction that the numberof the small disks should

be equal to the number of large ones2.

2. Sedimentation: a vertical force acts on each particle. A viscoelastic force is used to

dissipate the injected energy by gravity.

After the sedimentation step, the disks touching the bottomlayer are immobilized. Peri-

odic boundary conditions are used in horizontal direction.

2.4.2 Protocol of the numerical simulation

We use the units of the simulation as outlined in chapter 1, section 1.2.4. The initial sample

is prepared during the sedimentation timetsed. = 200, at which a linear drag force as outlined

in chapter 1 , section 3.2, is applied.

At the end of the preparation interval, the sedimented disksdo not move.

Time Description
Equilibration 0< t < 67 g = 0, θ = 0, b = 0
Sedimentation 67< t < 133 g , 0, θ = 0, b = 0.5
Sedimentation 133< t < 200 g , 0, θ = 0, fLB = 1, b = 0.5
Inclinationt > 200 g , 0, θ , 0, fLB = 1, b = 0
Measurementst > 1000 g , 0, θ , 0, fLB = 1, b = 0

Table 2.1: The total simulation time is divided into severaltime intervals to prepare the initial
state and to measure the physical parameters. The number of particles isN = 200.

After sedimentation of the disks, we tilt the gravitationalforce. Depending on the rupture

separationSc, there is a well defined critical gravitational force above which the material

2In order to avoid crystallization, the number of the large and small disks should be equal.
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yields (fluidized state). After a relaxation time, the system reaches a dynamical stationary

state which will further be characterized (chap.3).

2.4.3 Critical angle of a bidisperse dry pile

In order to calculate the critical angle, after the preparation procedure we tilt the gravita-

tional force, and we measure the critical angle above which the center of mass of the system

runs away. When the capillary bridges are switched off, no capillary force are acting. Thereby

the critical angle should not depend on the gravitational acceleration. Fig.2.13 shows how we

track center of the mass of the system in order to determine whether it runs away. The initial

position of the center of mass should be around (X = 9,Y = 9). At the sedimentation period

the center of mass goes down (the red curved arrow shows the direction). At the end of the

sedimentation the center of mass reached (X ≈ 9,Y ≈ 5). The gravitational acceleration at the

sedimentational step isgsed. = 0.3 which makes enough pressure to prepare a densely packed

pile. Afterwards the gravitational acceleration is decremented tog = 0.15 and simultaneously

it is tilted. The inclination angle,i.e. angle between the gravitational force and normal vector

of the plane, isθ = 4◦. Because the vertical component of the gravitational acceleration is

smaller thangsed., i.e. gcos 4◦ < gsed., the center of mass moves a little up after the sedi-

mentation step. Although the pile is not fluidized, the center of mass moves in the horizontal

direction until it stops at about (X = 6.065,Y = 9.8). The inset, which is a blow up around the

final position of the center of mass, shows that the center of mass jiggles around and does not

run away. Therefore, in this configuration,θ = 4◦ is below the critical angle. By increment-

ing the inclination angleθ to a slightly larger angle, one can calculate the border between the

jiggling and runaway of the center of mass which marks the critical angle.

The initial configuration of particles at the first step of thepreparation procedure,i.e. the

random sequential addition, can be changed by the seed of therandom number generator in the

program. Accordingly, by changing the seed, the configuration of the immobilized particles

at the bottom layer will be also changed. On the other hand, each configuration is related

to a certain critical angleθc. In Fig.2.14 we show the cumulative probability of the critical

angleθc calculated for simulations on 20 different configurations. We probe angles between

0◦ < θ < 10◦, and that interval is divided to 50 equidistance intervalsδθ = 0.2◦. The red

and blue colors show the cumulative probability for 200 and 300 disks respectively. In both

cases, the critical angle lies almost certainly between 4.2◦ < θc < 8.6◦, and maridian of the

probability for both curves lies atθmax.
c = 5.8◦. Hence, the critical angle of the system does not



2.4. Numerical investigations of the stability of bidisperse piles 39

9.2 9.4 9.6 9.8

X
5

6

7

8

9

10

Y

9.4 9.5 9.6 9.7 9.8

X

6.06

6.065

6.07

6.075

Y

Figure 2.13: Path of the center of mass of the system. The inclination angle isθ = 4◦, the
gravitational acceleration isg = 0.15, the number of disks isN = 200, the system size is
L = 18, and the capillary force isfLB = 0. The inset shows how the center of mass jiggles
around at the final position.
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change when one increases the number of the disks in the system. This shows that this angle

is again a universal parameter which is independent of the number of particles.
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Figure 2.14: Cumulative distribution function of the critical angleθc. The red and blue curves
correspond toN = 200 andN = 300.

In conclusion, the center of mass of the system of dry disks oninclined plane has two

possibility:

1. Run away: it runs away and shows that the inclination angle is larger than the critical

angle.

2. Jiggling: after a little shift of the center of mass, it jiggles aroundand does not runaway.

This tells us that the inclination angle is smaller than the critical angle.

This observation in dry bidisperse disks, has a very important consequence for the fluidization

threshold when the capillary bridges are added. Fluctuation in the system, caused by jiggling

of the center of mass, injects a small amount of granular temperature in the system. There-

fore, the pile can gain a little granular temperature beforethe fluidization, and the fluidization

threshold of the pile will depend not only on the balance of the forces, but it will depend on

the granular temperature as well. If that granular temperature is close to the bound energy,i.e.

capillary bridge energyfLB × Sc, the pile will fluidize.
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2.4.4 Stability of a wet bidisperse pile

In the previous section, we presented measurements on the the critical angle of a pile

consisting of bidisperse disks. These information enable us to explore the fluidization thresh-

old of the wet pile. Fig.2.15-top shows the the fluidization transition line of 200 bidisperse

disks for 9 different initial configuration. The rupture separation isSc = 0.01. Similar to

the measurements on the monodisperse piles, the vertical axis shows the critical gravitational

accelerationgc at which the pile fluidizes and the horizontal axis is the sineof the inclination

angle subtracted from the corresponding critical angle. Since each initial configuration is re-

lated to a corresponding critical angle, there will be a different fluidization threshold for each

critical angle. That is why one sees 9 different simulation data set with differentθc. A solid

black line is drawn to show thatgc scales with 1/ sin(θ − θc), which is similar to the scaling

behavior of the fluidization threshold of monodisperse system. The simulation data scatter at

small inclination angles, close to the critical angle.

Fig.2.15-bottom shows the fluidization threshold for the same system, except the rupture

separation is increased toSc = 0.1. As anticipated in the previous section, the rupture separa-

tion in a bidisperse pile can influence the fluidization threshold. The stability of a bidisperse

pile increases upon increasing the rupture separation, andthe critical gravitational acceleration

scales with the inverse sine of the inclination angle subtracted from the the critical angle:

gc ∼ sin(θ − θc)
−1 (2.8)

So far, we explained quantitatively and qualitatively how piles of wet disks consisting of

monodisperse and bidisperse disks respectively fluidize. We showed that adding the disorder

to the system, by either considering monodisperse piles that are not translationally invariant or

considering bidisperse piles, the critical gravitationalacceleration scales with inverse of sine

of the subtracted inclination angle. This scaling appears to be a universal scaling. It does not

depend on details of the configuration of the pile.
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Figure 2.15: The critical gravitational acceleration versus sine of the reduced inclination an-
gle for 9 different critical angles. Top: the fluidization threshold of 9 different critical angles
corresponding 9 different configurations for rupture separationSc = 0.01. Bottom: the flu-
idization threshold of 9 different critical angles corresponding 9 different configurations for
rupture separationSc = 0.1. The number of disks isN = 200, , the average mass ism= 0.875,
and the system size isL = 18.



Chapter 3

Wet disks running down an inclined plane

In the following chapter, we study flow properties of wet bidisperse disks running down

on an inclined plane. In the absence of a top wall, such a system never reaches a steady state.

It shows a runaway towards a gassy state with ever increasingkinetic energy. The systems are

bidisperse and prepared as outlined in chapter 2, section 2.4. To avoid this runaway we study

systems with a fixed number of disks set toN = 200 and fixed widthL = 18 and varying

channel height betweenH = 18 andH = 40. For various heights, we explore properties of the

flow. The rheology of the system depends on the height of the channel. For successively lower

average density, we observe plastic flow, stable and bistable gas flow, and eventually thermal

runaway. Our main concern in this chapter will be to identifyof flow properties of fluidized

states as solid-fluid transitions.

3.1 Convergence to the steady state

The evolution of the kinetic energy indicates whether the system has settled into a steady

state. Appropriate plots of the kinetic energy versus time are depicted in Fig.3.1 for different

channel heightsH = {18,20...,40}. As one increases the channel height, the kinetic energy of

the system increases. As for all, the system becomes more dilute such that the number of col-

lisions and rupture events and hence dissipation rate decreases. Consequently, the system also

needs more time to settle down into a steady state. To accountfor that fact, we renormalized

the time in that plot by the rupture frequency per particle:

t′ =
t · fR

N
(3.1)

43
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heret is the natural time,fR is the rupture frequency, and N the is number of particles.t′ tells us

after how many rupture events per particle the system reaches a stationary state. Almost all the

curves reach a plateau after a few thousand rupture events per particle. Irrespective the height

of the channel, the system reaches stationary state when each particle ruptures approximately

5000 capillary bridges. We show that in such a stationary state the injected and dissipated

energy balance1.
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Figure 3.1: Kinetic energy per particle in the system versusrescaled time for different channel
height. The black curve, lowermost energy, corresponds toH = 18, and for subsequent curves
H increases by 2. The uppermost (maroon) curve, correspondsto H = 40. The number of
particles isN = 200, the rupture separation isSc = 0.01, the inclination angle isθ = 30◦, and
the gravitational acceleration isg = 1.

3.2 Profiles

In this section we present spatial profiles of various characteristics of the flow, like the

granular temperature, and the local area fraction. The profiles are calculated as outlined in

chapter 1, section .

1More information is given in appendix sec.B
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3.2.1 Downhill velocity

Bagnold’s law [67] describes the velocity profile of dry frictional grains running down an

inclined plane. The Bagnold’s law predicts that the downhillvelocity should be proportional

to height to power 1.5,i.e. Vx(y) ∼ y1.5. However, the Bagnold’s law does not hold for wet

frictional grains [68]. In the current study, we address whether Bagnold’s law can describe the

downhill velocity profile of wet frictionless disks.

To measure the velocity profile in the system, we wait for at leastt′ = 5000, and afterwards

compute the average drift velocity for different channel height. Fig.3.2 shows the drift velocity

versus height for different channel height. Since the relation between shear stress and shear

rate in our system is linear with an offset, the velocity profile should have a quadratic profile2.

The black solid curve shows the quadratic trendVx(y) = 0.2 + 0.155y − 0.00255y2. Such

quadratic profile provides a much better fit to the simulationdata rather than the Bagnold

profile. Furthermore, it seems that there are two categoriesfor the profiles. The maximum of

profiles forH > 30 is smaller than the ones forH < 30. It seems that upon increasing the

channel height, it initially decreased, but then it decreases.
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Figure 3.2: Average velocity versus height for different channel height. The black solid line
shows the quadratic trend. The number of particles isN = 200, the rupture separation is
Sc = 0.01, the inclination angle isθ = 30◦, and the gravitational acceleration isg = 1.

2More information in sec.3.7.1
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The change of the velocity profiles might be a hint that the rheological properties of the

flow changes where crossingH ≈ 30. To distinguish different rheologies, we look at the static

and kinetic parts of the stress tensor3. Fig.3.3 shows the static and kinetic parts of the diagonal

elements of the stress tensor. There indeed is a cross over atH ≈ 30 above which the kinetic

part of the stress tensor dominates the static part, and for smaller channel heights the static part

becomes dominant. Consequently, forH < 30 there is a plastic flow regime and forH ≥ 30

we are dealing with a granular gas. Furthermore, in Fig.3.3Sxx andSyy sit on top of each other

showing that the stress field is isotropic.
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Figure 3.3: The static and kinetic parts of the diagonal elements of the stress tensor versus the
channel height. There is a cross over aroundH ≈ 30 above which the kinetic part dominates
the dynamics of the system. The number of particles isN = 200, the rupture separation is
Sc = 0.01, the inclination angle isθ = 30◦, and the gravitational acceleration isg = 1.

Next We estimate the total average velocity per particle. The total average velocityV is

related to the average kinetic energy per particleK by the relation:

V =













2K
m













0.5

(3.2)

wherem is the average mass. Fig.3.4 shows the average velocity of the system versus the

channel height in spite of the fact that the maximum velocitydecreases beyondH ≈ 30. The
3The extensive information on the stress tensor is given in Appendix sec.C
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average velocity increases linearly with the channel height for all investigated systems. The

average velocity is well described by:

V � 0.58 · (H − 13) (3.3)

Therefore, equ.3.3 implies that atH � 13 the drift velocity should tend to zero. The height

of the pile after sedimentation is approximately 200/18 = 11.11 which is very close to that

number. For very shallow channels, there will be no place forthe pile to dilate, and the system

is frozen in a jammed state.
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Figure 3.4: Average velocity per particle versus height of the channel. The number of particles
is N = 200, the rupture separation isSc = 0.01, the inclination angle isθ = 30◦, and the
gravitational acceleration isg = 1.

3.2.2 Local area fraction and granular temperature

The local area fraction is calculated by total area of the particles inside each bin divided by

the area of the bin. Width of the bin is one average particle diameter and its length 18 times

of average particle diameters. Fig.3.5 shows the local areafraction as a function of height

for four different channel heightsH = {18,24,30,36}. The local area fraction of the first

immobilized layer is about 0.83 and has been excluded from the data. For the system with the

channel height equal toH = 18 close to the bottom layer and the top reflective wall, the local
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density decreases, whereas it is constant at the bulk. Sincethe area of the system is 18× 18

and there are 200 particles that fill almost half of the box. Accordingly, the average local area

fraction is close to 0.5. ForH = 24 the local area fraction decreases just at first and last bins,

and the local area fraction in the bulk is constant. ForH = 30 andH = 36 the local area

fraction does not depend on the height. ForH = 36 since the total area of the box is 18× 36,

and the number of particles is 200 which occupy almost 1/4 of the box, hence the average

local area fraction is close to 0.25.
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Figure 3.5: spatial profiles of the local area fraction for different channel heightsH =

{18,24,30,36}. The number of particles isN = 200, the rupture separation isSc = 0.01,
the inclination angle isθ = 30◦, and the gravitational acceleration isg = 1.

Fig.3.6 shows spatial profiles of the local granular temperature for different channel height

H = {18,24,30,36}. The granular temperature stays constant for all the channel heights and

is independent of the height.

Comparing profiles of the granular temperature and the local area fraction, one concludes

that upon increasing the channel height the system becomes homogeneous. Despite, for the

system with channel height atH = 18, there are a little inhomogeneity close to the top and

bottom walls.

Fig.3.7 shows the average granular temperature as a function of the channel height (the red

circles). One can compare the granular temperature and the total average kinetic energy per
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Figure 3.6: spatial profiles of the local granular temperature for different channel heights
H = {18,24,30,36}. The number of particles isN = 200, the rupture separation isSc = 0.01,
the inclination angle isθ = 30◦, and the gravitational acceleration isg = 1.

particle from equ.(3.3) as follows:

< K >=
1
2

m · V
2
=

1
2

m(−7.35+ 0.58× H)2 (3.4)

this curves is shown by the black curve. The total kinetic energy has two parts: the first

part is the granular temperature, and the second part comes from the downhill drift velocity.

Accordingly, the average kinetic energy should be larger than the granular temperature, but

one sees that both curves are very close to each other. This means that contribution of the

downhill drift velocity to the total kinetic energy of the particles is small. The motion in the

system is dominated by the random thermal motion of the particles.

3.2.3 capillary bridges

The spatial distribution of capillary bridges is another parameter which is important to

explore whether the system is homogeneous. In Fig.3.8 the spatial distribution of the capillary

bridge is depicted for different channel heights. One sees that the capillary bridges are homo-

geneously distributed, except for a little inhomogeneity close to the bottom layer where one
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Figure 3.7: The red circles show the average granular temperature versus the channel height,
and the black curve is the total kinetic energy of the system.The number of particles is
N = 200, the rupture separation isSc = 0.01, the inclination angle isθ = 30◦, and the
gravitational acceleration isg = 1.

layer of disks was immobilized.

The average number of capillary bridges decreases as the height of the channel is increased.

Since the total number of particles is fixed toN = 200, upon increasing the channel height, the

number of particles per unit of the area decreases. Accordingly, the number of liquid bridges

decreases. One sees that the capillary bridges are homogeneously distributed in the system

independently of the channel height.

3.2.4 Stress field

Fig.3.9 shows profiles ofSxx, Syy, andSxy, by black, green, and red colors as a function of

the channel height. In all the figures,Sxx andSyy sit on top of each other, showing that the

pressure field is isotropic. As one increases the channel height, the internal pressure increases.

On the other hand, the pressure does not depend on the channelheight. As expected, the shear

stressSxy, which is depicted by red color, takes its maximum in the bottom layer, and it tends

to zero as one goes to the upper layers.

To see how the pressure increases with channel height, average of the diagonal elements of
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Figure 3.8: Spatial distribution of capillary bridges for different channel heights. The grav-
itational acceleration isg = 0.1, the inclination angle isθ = 30◦, the rupture separation is
Sc = 0.01, and the number of the disks isN = 200.
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Figure 3.9: The components of theSxx, Syy, andSxy of the stress tensor are shown in black,
green, and red colors respectively. The number of disks isN = 200, the rupture separation is
Sc = 0.01
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the stress tensor is depicted versus the channel height in Fig.3.10. The pressure, is the average

of the diagonal elements of the stress tensor,P = (Sxx + Syy)/2. It increases linearly with the

channel height.

P � 1.36 · (H − 12) (3.5)

Accordingly, euq.(3.5) shows that the pressure vanishes atH ≈ 12.

Just as for the mean velocity of particles, this is very closeto the height of the channel

after sedimentation which is approximately 200/18= 11.11. The physical reason is that when

the upper boundary is very close to the pile, there will be no place for the pile to dilate, and

therefore the system will no longer be a fluid and there will bea transition from the fluid to

the solid state.
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Figure 3.10: The diagonal elements of the stress tensor as a function of the height.Sxx and
Syy are depicted by black and red colors respectively. The number of disks isN = 200, the
rupture separation isSc = 0.01

3.3 Longer capillary bridges

So far, we explored the dynamics of the fluidized disks as a function of the channel height

for a constant rupture separationSc = 0.01, and we showed that the system settles down into

a homogeneous gas state. Now, we are going to increase the rupture separation, and study the
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dynamics of the system.

Fig.3.11 shows the local area fraction versus height for different rupture separations. By

increasing the rupture separation, the system becomes moreheterogeneous, and it seems that

the particles tend to accumulate near the top of the channel,and the system becomes dilute

close to the bottom layer. Furthermore, the longer the rupture separation, the more the hetero-

geneous the system becomes. ForSc = 0.15 (the violet line), which is the maximum possible

rupture separation, the heterogeneity at the local area fractions is dramatically pronounced.

By looking at the movies for the heterogeneous states, we observed that these states are not

stable. The heterogeneous states switch randomly from one state to another one. In one of

the states, a plug on top of the channel appears, and after some times it disappears. However,

when there is no plug flow, the system is still heterogeneous,cold on top of the channel and

hot in the bottom.
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Figure 3.11: Local area fraction vs perpendicular positionfor five different rupture separations.
The inclination angle isθ = 30◦, the gravitational acceleration isg = 0.1, and the channel
height isH = 36.

To quantitative amount of the heterogeneity, we define an order∆ρ parameter as the dif-

ference of maximumρ> and minimumρ< of the local area fraction:

∆ρ = ρ> − ρ< (3.6)
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The different flow regions can then conveniently be represented as a function of∆ρ andSc.

Fig.3.12 shows the order parameter (∆ρ), as a function of the rupture separationSc. Since the

transition from the gas state to the bistable state is crossover, one can not build a well defined

border between a homogeneous gas state and the bistable state.

In the gas state, the order parameter scatters around very small values. However, in the

bistable state, the order parameter increases linearly∆ρ = 0.87(Sc − 0.085). The diagram

tells us that the dynamics of the wet disks after fluidizationdoes depend strongly on the the

rupture separation of capillary bridges. For small ruptureseparations, we find a homogeneous

gas state, and for larger rupture separations we observe a bistable regime while the system

becomes heterogeneous.
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Figure 3.12: Difference∆ρ of the local area fraction of the densest and most dilute layers
vs rupture separationSc. The inclination angle isθ = 30◦, the gravitational acceleration is
g = 0.1, and the channel height isH = 36.

3.4 Formation of capillary bridges

The formation of capillary bridges in the fluidized state significantly affects the dynamics

of the system. First we study the temporal distribution of capillary bridges in the system.

In Fig.3.13-inset shows the number of capillary bridge in a steady-state system versus time.
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We want to know whether formation of the capillary bridges isa random process. We found

that irrespective of channel height the probability distribution of NLB(t) is Poissonian. The

Poissonian distribution ofNLB(t) is a hint that the formation of the capillary bridges can be

considered to be a random process. The autocorrelation function is another parameter that

shows in more details the process of the formation of capillary bridges. The autocorrelation

functionS(τ) of NLB(t) can be defined as:

S(τ) =
1
T

∫ T

0
dt(NLB(t + τ) − NLB)(NLB(t) − NLB)/NLB (3.7)

whereτ is the time interval between successive formation of the capillary bridges,NLB(t) is

the number of capillary bridges at timet, NLB(t + τ) is the number of capillary bridges at time

t + τ, andNLB is the average number of liquid bridges. Fig.3.13 shows the autocorrelation

function versus rescaled timeτ/2dt where dt is the time step of the integration (dt = 10−4).

The correlation drops to zero for∆t > 4dt. Measurements on the autocorrelation function

show that formation of the capillary bridges is a random process. Furthermore, it shows that

the life time of each capillary bridge is a very small time, and as soon as a capillary bridge

forms, it ruptures after a very tiny time∆t = 4×10−4, which is just four times of the integration

step.

Let us now try to understand the correlation time that came out from Fig.3.13. If we

suppose that the system is dilute and hot, which both are the case, one can calculate mean free

path from:
1
l2
=

N
LH

(3.8)

in which l is the mean free path,N = 200 is number of the particles,H = 36 is the channel

height, andL = 18 is the width of the system. We find:

l = 1.8 (3.9)

On the other hand, one can calculate the average thermal velocity of each particle from:

v =













2TG

m













0.5

(3.10)

wherev is the average thermal velocity,TG is the average granular temperature, andm is

the average mass of particles. From Fig.3.6 the average granular temperature isTG ≈ 60. For
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Figure 3.13: Autocorrelation function of formation of capillary bridges versus rescaled time.
The integration time step isdt = 10−4. Inset: temporal profile of the number of capillary
bridges. The correlation length is equal to four times of theintegration time step.θ = 30◦,
g = 0.1, H = 36, Sc = 0.01, The time interval is chosen between 10000 and 12000, during
which the system has reached the stationary state.
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a average massm≈ 0.807, we hence obtain:

v = 13 (3.11)

Therefore, the mean time between two collisions can be calculated as:

t =
l
v
= 0.15 (3.12)

Subsequently, if one multiplies the correlation time to thenumber of the particles, in order

to find the time to go to the next configuration, one obtains:

∆t × N = 4× 10−4 × 200≈ 0.1 (3.13)

which is a number very close to that of the mean time between two collisions. Therefore, one

concludes that the formation of liquid bridges is a random process, and can be understood

from a simple mean field approximation of the collisions in a dilute-hot gas.

3.5 Hysteretic solid-fluid transitions

3.5.1 Phase diagrams

In this section, we explore whether the solid-fluid transitions of wet disks on an inclined

plane is hysteretic. Once the disks are sedimented, there isa percolation cluster of liquid

bridges. As discussed in sec.3.2 this percolation cluster has a certain mechanical yield stress,

above which the liquid bridge network breaks. Subsequently, the system fluidizes. We choose

the average drift velocity of the particles as an order parameter to characterize the flow. Ac-

cording to chap.2, the control parameter is the gravitational acceleration in the direction of

the inclined plane. Fig.3.14 shows the drift velocity versus gsinθ. The tilt angleθ increases

stepwise for∆t = 5000 after each step. The gravitational acceleration isg = 0.1. The red

squares show the beginning of the process from the horizontal level θ = 0◦. Doing so, is a

unique way to measure the yield point of the system.

As expected (in sec.3.2), the red squares end up atθF = 30◦, where the material fluidized,

and the order parameter, jumps from zero to a finite value. Therefore, fluidization transition is

a discontinuous nonequilibrium process.

After fluidization of the system, we decrease the tilting angle stepwise, fromθ = 30◦ to
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the horizontal levelθ = 0◦, in order to solidify the system (blue diamonds). As one decreases

the tilting angle, the average drift velocity of the disks decreases linearly, and it jumps to

zero atθ = 5◦, where the system freezes to a disordered state. Apparently, the solidification

transition is also a discontinuous transition. Hence, regarding the fact that|θF − θS| , 0◦, we

conclude that the wet disks on an inclined plane undergo to ahysteretic discontinuous phase

transition .
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Figure 3.14: Average velocity as a function of the gravitational acceleration in the direction
of the plane. The gravitational accelerations isg = 0.1, and the inclination angle is changed
stepwise. The fluidization transition line (the blue diamonds) shows a linear behaviorVx =

18(sinθ + 0.0002). The channel height isH = 36, the average mass ism = 0.807, and
Sc = 0.01.

In Fig.3.14 the drift velocity is proportional to the gravitational downhill acceleration

gsinθ. This linear dependence is a hint that one can model such a system with a linear drag

force with background. Keeping in mind such a linear dependence, we assume that there is a

drag force in the system which depends linearly to the velocity:

max = −γVx + Fx (3.14)

Wherem is the average mass of the disks,γ is the friction coefficient,Vx is the average velocity

of the disks along the horizontal axis X, andFx = mgsinθ is the downhill gravitational force.
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In the stationary state, one expects thatax = 0, then 0= −γVx + Fx. Therefore, the fraction

coefficient can be obtained as:

γ =
mgsinθ

Vx
(3.15)

Sincem= 0.807,g = 0.1, andVx/(gsinθ) ≈ 18 is the slope of the line in Fig.3.14, and equals

to 18.398, the coefficient of the friction is:

γ = 0.0044 (3.16)

Hence, the drag force in the stationary state can be written as:

Fdrag = −0.0044· Vx (3.17)

We will show later in the current section in Fig.3.16, where we explore the hysteretic transition

by changing the gravitational acceleration at a fixed inclination angle, that equ.3.17 fits our

data.
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Figure 3.15: The largest variation of the density∆ρ as a function ofgsinθ. The channel height
is H = 36, the average mass ism= 0.807, andSc = 0.01.

To interpret this data we check whether the system is homogeneous. We look again at

the difference of the local area fraction between densest and most dilute regions in the system

as a function of the inclination angle for the fluidized state(Fig.3.15). For largegsin(θ) the
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system is homogeneous, but for smallgsin(θ) the inhomogeneity gradually becomes larger,

and finally it solidifies atgsin(θ) ≈ 0.013. As described in sec.3.3, these heterogeneous states

are bistable. However, one can not distinguish the border between homogeneous and bistable

states. One can summarize these regions as the following:

Gas=⇒ Bistable=⇒ Solid

• Gas regime: For largegsinθ , after the fluidization, system is homogeneous without

any gradient in the local area fraction.

• Bistable regime: For smallgsinθ close to the solidification point, the system becomes

heterogeneous.

• Solid regime: For θ < 5◦, the material is solidified.

The fluidized wet disks do not turn directly from a fluidized state into a solidified one.

Whereas there is an intermediate step between the solidified and fluidized states in which the

system becomes heterogeneous and bistable.

If one looks at the gap between the fluidization and the solidification angles|θF − θS| =

25◦, one finds an astonishing big gap. Why does the system have sucha big memory (or

hysteresis)? To answer to that question, we refer to the dissipation mechanism of the system.

Dissipation occurs when a capillary bridge ruptures, and capillary bridges rupture in the gas-

like state when the relative kinetic energy of two adjacent colliding disks is larger than the

energy barrier caused by the capillary bridge interaction.However, in the gas-like state close

to θF the average granular temperature of the system is already about 600 times larger than

the capillary bridge energy. One has to go to much smaller downhill accelerationsgsinθ to

reach systems with temperatures where the bridge energy is strong enough to allow for the

formation of stable capillary bridges.

As it is described in the phase diagram of bidisperse disks oninclined plane (Fig.2.15), we

chose two parameters as the principal parameters to describe the phase diagram of the tilted

wet disks. Namely the gravitational accelerationg, and the tilting angleθ. In the current sec-

tion, we study the existence of the hysteresis for a case in which, the gravitational acceleration

is set tog = 0.1, and the tilting angle is the control parameter. Now we set the tilting angle to

θ = 30◦, and explore the hysteresis by stepwise incrementing and decrementing the gravita-

tional acceleration. Fig.3.14 shows the hysteretic loop for that case. After the sedimentation of

the wet disks, the gravitational acceleration is increasedstepwise fromg = 0, until the pile is
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fluidized. Subsequently, namely the red squares, atgF = 0.1, the gravitational acceleration is

decremented stepwise in the same way (blue diamonds). The drift velocity decreases linearly

with gsinθ, and now we can check whether the theoretical prediction of equ.(3.17) fits to our

simulation data. According to equ.(3.17) the relation between the gravitational downhill force

and the drag force should be:

Fdrag = −0.0044· Vx = −mgsin(θ) (3.18)

Since we haveθ = 30◦, the relation between the average velocity andgsinθ should be:

Vx ≈ 180gsin(θ) (3.19)

Therefore, the theory predicts that slope of the blue diamonds in Fig.3.14 should be 180. The

green line in Fig.3.14 shows such a slope, and one can see thatthe slope perfectly fits to the

data.
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Figure 3.16: Average velocity vs the gravitational downhill accelerationgsinθ. The rectangle
box shows the region in whichgsinθ is small and the system needs a very long time to settle
down into a stationary state. The inclination angle is fixed to θ = 30◦, the channel height is
H = 36, the length of the system isL = 18, the rupture separation isSc = 0.01, and the
average mass ism= 0.807.

We look again on the order parameter∆ρ to see whether the system remains homogeneous.
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Fig.3.17 shows∆ρ versusgsinθ. Fig.3.15, forgsinθ > 0.3, the order parameter∆ρ is very

small. The system is homogeneous. However, for 0.01 < gsinθ < 0.03 the order parameter

increases dramatically, and the system becomes again densein the top of the channel, and

dilute close to the bottom layer.
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Figure 3.17: Difference of the maximum and minimum of the local area fraction in the system
(∆ρ) as a function ofgsinθ in the hysteretic loop. The inclination angle is fixed toθ = 30◦,
the channel height isH = 36, the length of the system isL = 18, the rupture separation is
Sc = 0.01, and the average mass ism= 0.807.

3.6 Leidenfrost state

In order to look at details of the bistable states, we discussnow the density profiles in

the gas-like state. Fig3.18 shows the local area fraction asa function of the height. One can

see for large gravitational accelerations the system is homogeneous, but as one approaches

towards the solidification point by decreasing the gravitational acceleration, the particles tend

to accumulate near the upper wall. This accumulation of particles in a high density phase

floating on top of a low-density phase is reminiscent to a Leidenfrost state [69].

We argued in the last section that such a heterogeneous stateis bistable. To prove this idea,

in Fig.3.19 we show snapshots at the end of the hysteresis transition where the gravitational
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Figure 3.18: Profiles of the local area fraction for different gravitational accelerations. The
tilting angle is set toθ = 30◦. As one decreases the gravitational acceleration the system
becomes more heterogeneous.

acceleration isg = 0.005, and the inclination angle isθ = 30◦. There are three different colors

for the disks:

1. Blue: If a particle has a capillary bridge.

2. Red : If a particle has no capillary bridge.

3. Maroon: Immobilized disks in the bottom layer.

Fig.3.19-top is snapshot of the system att = 96071. There are a lot of particles accumulated

in the top layers. The granular temperature close to the bottom layer is much higher than

the granular temperature near the top wall. The bottom-right panel is snapshot of the system

at t = 96316. Although the plug on top of the system has become thinner, there are still a

lot of particles accumulated on top of the system, and there is still a gradient in the granular

temperature. The bottom-left panel is taken att = 96716. The plug on top of the system

is gone, but the system is still heterogeneous. This processin Fig.3.19 repeats irregularly in

time, and it is not an oscillation with a certain period.

To get more insight into the temporal evolution states, we look at the kinetic energy of the

system as a function of the time. Fig.3.20 shows the kinetic energy of the system in the bistable
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Figure 3.19: Snapshots of the system att = 96071 (top),t = 96316 (bottom-right), and
t = 96716 (bottom-left). The gravitational acceleration isg = 0.005, the inclination angle is
θ = 30◦, and the rupture separation isSc = 0.01.
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state. The time where the snapshots are taken in Fig.3.19 aremarked. The figure demonstrates

that the switching shown in the Fig.3.19 is not an oscillation. The system switches randomly

from one state, in which a plug flows on top of the system, to another state, where the plug is

gone.

95000 96000 97000 98000 99000 1e+05
t

1

1.5

2

2.5

K

Figure 3.20: Kinetic energy per particleK versus time. Snapshots show how the system looks
like at different times. The gravitational acceleration isg = 0.005, the inclination angle is
θ = 30◦, and the rupture separation isSc = 0.01.

Let us explain Fig.3.20 in more details. At the first snapshotwheret = 96071, a plug on

top of the system slides over a hot gas, and one can see that thekinetic energy increases. At

the same time the drift velocity of the plug increases too.

At t ≈ 96316, where the second snapshot is taken, the kinetic energy reaches its local

maximum. By that time, the plug on the upper side of the system has become thinner. After the

second snapshot, the kinetic energy decreases resulting toan increase in the random motion of

the disks. Att = 96716 the plug is gone, and the random motions of the particles is increased.

It means that the granular temperature is increased. Therefore, one can explain the bistable

state as the following:

1. A plug slides over a gas, and the velocity of the plug increases.

2. Due to the collisions between the plug and the gas, the temperature of the gas increases.

3. The hot gas melts the plug such that it disappears.
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4. Since the gravity is relatively low, the particles tend toescape from the bottom layer

where the granular temperature is very high, and eventuallya plug forms again in the

upper side of the system.

3.6.1 Summary

We saw that for small gravitational accelerations the system becomes bistable. At the end

of the loop whereg = 0 the system enters to a free cooling scenario in which the plug on

top of the system moves for an arbitrary long time on a hot gas.Since the force-based MD

simulations are not appropriate to study the free cooling, we can not explore that state. Finally,

we summarize the hysteretic transition as the following:

Gas=⇒ Bistable=⇒ Free cooling

• Gas regime: For large gravitational accelerations, the fluidized disks are homoge-

neously distributed in the system. There are no granular temperature gradient, or the

local area fraction gradient.

• Bistable regime: For small gravitational accelerations, the system becomes bistable.

We observed a Leidenfrost state and the system becomes visibly heterogeneous.

• Free cooling: For g = 0, one deals with a free cooling scenario. The hot gas layer

interacts with the immobilized disks in the bottom, as well as the sliding plug. One

expects that as the hot gas cools down the bloc in the upper side of the system becomes

larger and absorbs the gas.

In conclusion, if one fixes the gravitational acceleration and changes the inclination angle,

for small gravitational downhill accelerations the material solidifies. Whereas, if one fixes the

inclination angle, and changes the gravitational acceleration, for small gravitational downhill

accelerations the material does not solidifies and a free cooling scenario begins.

3.7 Appendix

3.7.1 Quadratic velocity profile

As we mentioned earlier in this chapter, the best fit to the velocity profile of wet disk

running down on an inclined plane is a quadratic profile. In this section, we attempt to derive
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such a profile. The shear stressSxy(y) in the system can be given as:

Sxy(y) = mgsinθ(H − y) (3.20)

wheremgθ is the gravitational downhill force,H is the channel height, andy is the vertical

component to the plane. Subsequently, since the system possesses a yield stress, then the

relation between the shear stress and the shear rate∂yVx(y) can be written as:

Sxy(y) = S∗xy+ η∂yVx(y) (3.21)

hereS∗xy is the yield stress of the system, andη is the viscosity. Using equ.(3.20) and equ.(3.21)

the velocity profile can be derived as:

Vx(y) = c1y
2
+ c2y+ c3 (3.22)

wherec1 = −
mgsinθ

2η , c2 =
1
η
(mgHsinθ − S∗xy), andc3 is a constant depending on the boundary

conditions. equ.(3.22) shows that the velocity profile of the system can be expressed as a

quadratic function.





Chapter 4

Isochoric model for avalanches

In the last chapter, we presented the results of a simple avalanche model for a 2D wet granular

pile on a rough inclined plane. As the inclination angle is changed the system undergoes a

discontinuous-hysteretic dynamic phase transition between a fluidized and a solid state. We

want to know whether the discontinuity and the hysteresis are universal features of solidifica-

tion and fluidization transitions in wet disks.

Using the same bidisperse disks that were being used in chapter 3 we will investigate an

isochoric model for avalanches in wet disks,i.e. in systems where the total area fraction is

conserved. We drive the system with a spatially heterogeneous external force and follow the

same procedure which we used in chapter 3 to study the dynamics of a wet pile of disks on

an inclined plane. At first, we will explain the preparation of a dense assembly of wet disks

in the isochoric system. Subsequently, we will study spatial and temporal profiles of the drift

velocity, the granular temperature, the area fraction and other relevant physical quantities.

There are several open questions to be answered for the isochoric system. First of all, is

the fluidization transition under isochoric conditions still discontinuous? Is there an up-down

transition,i. e. fluidized-to-solid transition [70, 71]. Does the system reach a stationary state

in which the injected power and the dissipated power balanceor does the system exhibit a

temperature runaway in a certain range of control parameters?

4.1 Description of the model

The simulation under isochoric conditions were performed using the 2D model employed in

the simulation of a wet granular pile on an inclined plane, see chapter 2. In order to prevent

69
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crystallization and segregation we use a bidisperse mixture of disks with a ratio between the

large radiusRs and the small radiusRl of 1.4. Overlapping disks interact via a soft core

repulsive interaction and a short ranged hysteretic capillary force. The value of the prefactorǫ

controlling the hardness of the disks is set to 103, while the rupture lengthSc of the capillary

bridges is varied. In the sequel we make use of dimensionlessrescaled units for time, length

and mass as outlined in chapter 1, section 1.2.4. The simulation box is a square of sizeL ×

L. Periodic boundary conditions are applied in both horizontal and vertical directions. A

predictor corrector method is used to integrate Newton’s equation of motion. The time step of

integration is set todt = 10−4.

In order to agitate the disks we apply an external force similar to the gravitational force

driving the disks down the inclined plane as described in chapter 3. Here, we employ an

external force as it has been used by Schultzet al. in Ref. [11] to study the fluidization

transition in a three dimensional assembly of wet spheres. It is given by

Fex
i = ey F0 cos

(

2πxi

L

)

, (4.1)

whereFex
i is the external force acting on particlei, ey the unit vector pointing into y-direction,

F0 the amplitude of the external force,xi the x-coordinate of particlei, andL the dimension

of the simulation box. The number of disks in the system is generally set toN = 506 if not

stated otherwise.

Because of the spatial heterogeneity of the external force one may expect that the distri-

bution of physical observables in the system will be as well heterogeneous. Hence, physical

quantities such as granular temperature, area fraction, components of the stress tensor, and

density should be calculated locally. A definition of these quantities can are found in chapter

1.

In the regime of strong driving the fluidized assembly of disks may undergo the Kol-

mogorov flow instability leading the system being heterogeneous intoy-direction, seee. g. Refs. [72,

73]. At moderate strength of the external force, however, weexpect the system to remain ho-

mogeneous into the y-direction and we divide the system intoseveral bins along the direction

of the flow, i. e. into the vertical direction. The width of each bin equals theaverage disk

diameter〈D〉. We will calculate local physical quantities in each bin as time averages.
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4.1.1 Preparation

In the previous chapters 2 and 3 we investigated the stability and dynamics of assemblies of

disks that have sedimented on a plane under the action of gravity. In the isochoric system

considered here we have to apply a different preparation method in order to produce spatially

homogeneous disk packings. This can be achieved in two main steps:

1. Random sequential addition: disks are randomly added to the box and are accepted as

new disks if the added disk does not overlap with any of the disks that have already been

successfully deposited. In order to obtain a bidisperse packing with the same number

of small and large disks the type of disk is alternated once a disk has been successfully

placed. The largest area fraction that can be reached by thismethod is approximately

φ ≃ 0.62. To reach larger area fractions a further mechanism should be engaged.

2. Lubachevsky-Stillinger algorithm: since we want to span a wide range of area frac-

tions up toφ = 0.84, being the limit of random close packing we use the Lubachevsky-

Stillinger algorithm to reach area fractions aboveφ ≃ 0.62. The algorithm can be simply

expressed as blowing up the disks at thermostated temperature [74].

Figure 4.1(top) displays a snapshot of the system after random sequential addition with

a total area fraction ofφ = 0.62. At this point the simulation time is set tot = 0. Because

random sequential addition generates disk packings which are free of overlaps there are no

liquid bridges present. By applying the Lubachevsky-Stillinger algorithm the area fraction of

the system is increased until the desired value is reached. Figure 4.1(bottom) shows a packing

with an area fraction ofφ = 0.72 which has been generated by the Lubachevsky-Stillinger

algorithm. Blue spots illustrate capillary bridges betweentouching disks.

During the blow up of disks a certain amount of energy is injected into the system and since

we want to obtain an initial packing of resting disks, the injected energy should be dissipated

before the external driving force according to equ. (4.1) isswitched on. We use a viscous

friction as outlined in chapter 1, section 3.2, to dissipatethe injected energy.

The blow up of disks takes fromt = 0 to approximatelyt1 = 20. The dissipative force

according to equ. (1.5) is switched on untilt2 = 100 in order to ensure that most of the injected

energy has been dissipated.

The actual simulation starts at timet2 where the external driving force is switched on. Time

averaging of local quantities such as the granular temperature, components of the stress tensor,

drift velocity, rupture frequency of capillary bridges, and area fraction of small and large disks
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Time Description
0 < t < t1 F0 = 0, b , 0, fLB = 0, 〈D〉 < 1
t1 < t < t2 F0 = 0, b , 0, fLB = 0, 〈D〉 = 1
t2 < t F0 , 0, b = 0, fLB = 1, 〈D〉 = 1
t3 < t Averaging starts

Table 4.1: Protocol of the numerical simulations.

starts at timet3 = 500. Definitions and details of the way these quantities are calculated are

given in chapter 1, section 1.2.5. A short summary of the simulation times is found in table

4.1.1.

4.2 Results

4.2.1 Time evolution

Figure 4.2 shows the local drift velocity in the first and central bin as a function of time. The

box is divided into 18 bins along the vertical direction

The drift velocity is zero untilt = t2 = 100 during which the initial packing is prepared.

The external driving force is applied att = t2 when the disks in the first bin start to move

upwards (black curve) while the disks in the central bin begin to move downwards (red curve).

However, at aboutt ≈ 114 the magnitude of the drift velocity start to decrease. Attimes larger

thant ≈ 135 the drift velocity in both the first and the central bin fluctuate around a value close

to zero. The same fluctuations can be observed for the drift velocity in the remaining bins.

A closer inspection of the data reveals that all drift velocities fluctuate around the same

value which increases linearly in time. From this observation one may conclude that the whole

system behaves like a rigid body which is accelerated due to anon-zero total force acting on

the disks. Owing to the disorder in the assembly there will always be an imbalance between

the magnitude of forces pulling the disks up and pushing themdown. Hence, the direction of

the drift is randomly distributed among different realizations of the system. The global drift

clearly indicates the existence of a rigid cluster which comprises the majority of disks.

After switching on the external driving force, the system needs a certain finite time to

reach a solid state. This relaxation time decreases as one increases the total area fraction of

the disks. During relaxation, the disks rearrange and finally form a percolating network of
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t=0
φ=0.62

t=100
φ=0.72

Figure 4.1: (Top) Att = 0 a pre-initial packing with an area fraction ofφ = 0.62 is generated
using random sequential addition. The disks do not overlap.(Bottom) The area fraction of the
system is increased toφ = 0.72 employing the Lubachevsky-Stillinger algorithm [74]. The
number of particles isN = 506, the system sizeL = 18, and the rupture separationSc = 0.01.
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Figure 4.2: Drift velocity in the first and central bin as a function of time as depicted by
the black and red curves, respectively. The number of particles isN = 506, the system size
L = 18, the rupture separationSc = 0.01, the amplitude of the external forceF0 = 5 · 10−3,
and the area fractionφ = 0.72.

capillary bridges which is strong enough to sustain the stress created by the external force.

As one can see in Fig. 4.2 the drift velocities in the final solid state exhibit large fluctuations.

This observation can be explained by the work received from the external field in the transient

fluidized state. During the formation of the solid network this work is dissipated into thermal

energy and as long as the granular temperature is smaller than the energy∆E required to break

a capillary bridge this thermal energy will remain in the system.

At small amplitudesF0 = 5 · 10−3 of the external driving force the system is found in a

transient fluidized state before it eventually reaches a solid state, cf. Fig4.2. For an amplitude

F0 = 1 · 10−2, however, the system does not relax into a solid state. The time evolution of the

drift velocity in Fig. 4.4 illustrates that the system instead remains in a fluidized state in which

the magnitude of the drift velocity in the first bin (black curve) almost equals the magnitude

of the drift velocity in the central bin (red curve). Therefore, by increasing the amplitude of

the external driving force, the system can be held in a fluidized state.

The long time evolution of the drift velocity demonstrates (up to t ≃ 103 and longer) that

the fluidized state can be viewed as a stationary state. Fluctuations of the drift velocities may

become strong for dense systems close to the RCP limit and it becomes necessary to average

over relatively long periods of time. Furthermore, we checked for the balance of injected
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φ=0.72
t=350

Figure 4.3: Snapshot of the system att = 350 in which the system reached a solid state
and moves like a rigid body downwards. The spatial variationof the external driving force
depicted by the black curve. The number of particles isN = 506, the system sizeL = 18, the
rupture separationSc = 0.01, and the area fractionφ = 0.72.
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Figure 4.4: Local drift velocity as a function of time in the first and and central bin as depicted
by the black and red curves respectively. The number of particles isN = 506, the system size
L = 18, the rupture separationSc = 0.01, the amplitude of the external forceF0 = 1 ·10−2, and
the area fractionφ = 0.72.

power,i.e. the work received from the external driving field, and the power dissipated in the

rupture of capillary bridges. Both quantities are almost constant in time and match within a

small relative error. This corroborates the stationary of the fluidized state on the one hand and

validates the simulation code on the other hand1. The results and a detailed discussion of the

power balance is found in Appendix B.

4.2.2 Fluidized-to-solid transition

In the last sections, we showed that once the external driving force is applied to the assembly

of wet disks the system eventually reaches either a solid or fluidized state after a certain re-

laxation time. The final state depends on the magnitude of theexternal field. This observation

immediately poses a number of questions: What is the smallestamplitudeFmin
0 of the external

force field for the system to reach a fluidized state? Does the fluidization point change if we

start the simulation from a solid state at smallF0? And, does the system solidify at the same

point if we start with a fluidized system at a sufficiently largeF0.

Besides the conditions under which the initial state of the system is created there are four

1A detailed disscusion is given in Chapter B
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t=305
φ=0.72

Figure 4.5: Snapshot of the system att = 305 where the system reaches a fluidized state. The
spatial variation of the external driving force is illustrated by the black curve. The number of
particles isN = 506, the system sizeL = 18, the rupture separationSc = 0.01, and the area
fractionφ = 0.72.



78 Chapter 4. Isochoric model for avalanches

obvious control parameter of the system: the amplitude of the driving forceF0, the global area

fraction of disksφ, the system sizeL, and the rupture length of the capillary bridgesSc. To

distinguish between the solid and the fluidized state we choose the average difference

∆vy = 〈vy〉x=L − 〈vy〉x=L/2 , (4.2)

of the y-components of drift velocities at the side of the box, 〈vy〉x=L, and in the center of the

box,〈vy〉x=L/2, as an order parameter of the transition. Here, we assume that the system follows

the symmetry of the external field,i.e. that there will be non component of the drift velocity

into the x-direction. This assumption has to be checked during the simulation. If the final state

is solid, the disks move as a rigid body and we have∆vy = 0. If the material is partially or

fully fluidized we should observe∆vy , 0.

Figure 4.6 shows the order parameter∆vy as a function of time for a series of amplitudes of

the external forceF0 = {4.5 · 10−3,8 · 10−3,8.5 · 10−3}. In those cases, the system can be found

in a transient fluidized state before it finally reaches a permanent solid state at times larger

than∆trelax ≈ {33,180,180}, respectively. Here,∆trelax is the relaxation time during which the

disks rearrange and build a network of capillary bridges that can bear the applied shear stress.

However, at amplitude of the external forceF0 = {9 · 10−3,1.3 · 10−2,1.8 · 10−2}, we observe a

relaxation into a fluidized state, cf. Fig.4.6.

The order parameter as function of the strength of the external field is shown in Fig. 4.7.

For solid states we have∆vy = 0. For the fluidized states, a long time average of the order

parameter is computed, cf. Fig. 4.6. It is rather obvious that the transition from the fluidized

state to the solid state is adiscontinuous transition. The order parameter as function of the

control parameter is obtained via the inverse functionF0 = C0 +C1 ∆vy +C2 ∆v2
y +C3∆v3

y +

O(∆v4
y) with C0 = 0.03798,−C1 = 0.1377,C2 = 0.1875, andC3 = −0.0667 shows that the

drift velocity exhibits a square root scaling with a finite offset at the transition point. According

to the fit, the transition point is approximately at an amplitude of the external force ofFc =

8.75 · 10−3.

Accordingly, the transition of the system from the fluidizedto the solid state appears to be a

subcritical bifurcation of dynamic states [75]. Hence, we expect that the branch of solid states

continues to amplitudes of the external force being larger than the value at the solidification

transition atFc.

Since the transition point is the smallest driving amplitude where the system ends up in

a fluidized state and since for driving amplitudes slightly smaller thanFc the system reaches
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Figure 4.6: The order parameter∆vy as a function of time for solid and fluidized states. The
black, red and green curves correspond to an amplitude of theexternal forceF0 = {4.5·10−3,8·
10−3,8.5 · 10−3} where the system is found in a solid state. The blue, dark green, and brown
curves correspond toF0 = {9 · 10−2,1.3 · 10−2,0.18 · 10−2}, respectively, where the system is
in a fluidized state. The total area fraction isφ = 0.7, the system sizeL = 18, the number of
particlesN = 506, and the rupture separationSc = 0.01.
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Figure 4.7: Illustration of the fluidized-to-solid transition. In the fluidized state, the drift
velocity shows a square root scaling close the the transition point. The total area fraction is
φ = 0.7, the system sizeL = 18, the number of particlesN = 506, and the rupture separation
Sc = 0.01.

a final solid state, we argue that the transition which is depicted in Fig. 4.7 is a transition

between a stationary fluidized state and a solid state.

There are several open question about this fluidized-to-solid transition: Is the solidification

under an applied shear stress due to a jamming of disks,i.e. is there a build up of permanent

compressive forces chains which prevent moving of the disks? Does the fluidized-to-solid

transition depend on the rupture distanceSc of the capillary bridges? Does the system size

L influence the critical transition point? How does the transition point depend on the total

area fractionφ? If one starts from a solid state, is there a solid-to-fluidized transition, and if

so, does this transition occur at the same value of driving strengthF0? We will address those

questions in the sequel of this chapter.

4.2.3 Dry disks under external driving

We claimed that the fluidized-to-solid transition of wet disks being subject to an external

driving force is due to the network of capillary bridges between the disks. To test this idea, we

switch off the capillary bridge forces and apply the external driving force to an assembly of

‘dry’ disks. All the steps that are detailed in the protocol of the simulation for wet disks hold
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also for the simulation of the dry disks, except that the minimal capillary force is set to zero.

To prevent heating,i.e. accumulation of kinetic energy in the system, an alternative dissi-

pation mechanism is implemented. Here, we made use of an additional viscous force that is

effective as long as two disks interact. The elastic part is still given by the non-linear spring

force as outlined in chapter 1, section 1.2.2. The trajectories of the disks are obtained by

solving Newtons equation of motion

mi
d2r i

dt2
=

∑

j

[

Fr
i j −

vi − v j

Ri + Rj
· ei j

]

ei j + Fex , (4.3)

wheremi and r i are the mass and position of diski, Fr
i j is the non-linear spring repulsive

force, Ri andRj are the radii of the disks,vi andv j are the corresponding velocities,ei j =

(r i − r j)/|r i − r j | the unit vector pointing from particlei to particle j, andFex the external

driving force. The sum
∑

j runs over all disksj that overlap withi.

Figure 4.8 shows the order parameter∆vy as a function of the applied driving amplitude

F0. We probed six decades of the driving amplitude, starting from F0 = 10−5 and ending at

F0 = 1, and computed the corresponding order parameter∆vy once a stationary state has been

reached. In contrast to the dry case we still find the assemblyof disks in a fluidized state at the

smallest amplitudeF0 = 10−5 of our simulations, and no transition between a fluidized and

a solid state. The order parameter as function of the drivingstrength presented in Fig. 4.8 is

well described by a power law

∆vy = A Fη0 , (4.4)

with A = 9.24 andη = 0.64. This shows that the order parameter∆vy should be zero only if

the applied driving force is switched off. As long as the control parameterF0 is not equal to

zero the system is in the fluidized state.

This is a clear proof that assemblies of frictionless viscoelastic disks under isochoric con-

ditions do not exhibit a yield stress below the limit of random close packing. However, if one

introduces a hysteretic short ranged attractive interaction such as the minimal capillary force,

the system will develop a yield stress below the limit of random close packing.

4.3 Distribution of physical quantities

Applying a spatially heterogeneous force to the assembly ofdisks will lead to a heterogeneous

distribution of observables in the system. As mentioned at the end of section 4.1 we expect the
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Figure 4.8:∆Vy as a function of the amplitude of the external driving forceF0 for viscoelastic
disks without capillary bridges. The system is fluidized andno transition from a fluidized to
solid state is observed. The total area fraction isφ = 0.70, the system sizeL = 18, the number
of particlesN = 506, and the rupture separationSc = 0.01.

system to follow the symmetry of the external field at small amplitudes of the driving force.

The exact shape of the profiles is determined by the dissipation rate,i.e. the rupture frequency

of capillary bridges. On the one hand the dissipated power depends on the local shear rate, ˙γ,

the local granular temperature,TG, and the local density of disks,ρ, and, on the other hand

on the transport coefficients of energy and momentum,i.e., heat conductivity and viscosity,

respectively. The latter will also depend on ˙γ, TG andρ. In particular, we will focus on the

local viscosity of the wet disk fluid.

In the sequel we present spatial profiles and probability distributions of certain observables

in both the solid and the fluidized state. If not explicitly stated, the system size is set toL = 40,

the number of particles toN = 1540, while the the rupture separation isSc = 0.01. The total

area fraction equalsφ = 0.70.

4.3.1 Profiles of drift velocity and shear rate

Figure 4.9(left) shows a comparison of the time averaged drift velocity 〈vy〉 into the y-direction

as function of the lateral positionx in the solid and fluidized state. The black circles show the

velocity profile in the solid state where the amplitude of theexternal force is set toF0 = 1·10−3
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F0 A0 A1 A2 A3

0.0066
(red)

-0.0405 0.8181 -0.11023 0.02086

0.0132
(blue)

0.084 1.1571 -0.104 0.00117

Table 4.2: Fitting parameters of co-sinusoidal harmonics on velocity profiles corresponding
to two different applied driving amplitudes.

and the drift is almost zero. Squares and diamonds indicate the velocity profile in the fluidized

state for amplitudes of the external forceF0 = {6.6 · 10−3,1.32 · 10−2}, respectively. It is

apparent that a harmonic or, to be precise, a cosine shaped velocity profile does not fit the

simulation data. Therefore we employ the second and third odd harmonics

〈vy〉(x) = A0 + A1 cos

(

2πx
L

)

+ A2 cos

(

6πx
L

)

+ A3 cos

(

10πx
L

)

(4.5)

whereL is the system size. One sees that the red and blue curves fit perfectly to the data.

The fitting coefficients are obtained as: Coefficients of the second and third odd harmonics

decrease as one increases the amplitude of the external driving. This observation tells us that

the spatial variation of the drift velocity approaches the profile of the external driving force at

height driving strength.

Figure 4.9(right) shows the local shear rate as a function ofthe lateral position. Because

the drift velocity 〈vx〉 into the direction of the applied external force is zero the local shear

rate can be simply obtained as the spatial derivative ˙γ = ∂x〈vy〉. The black curve shows the

shear rate in the solid state in whichF0 = 1 · 10−3 while the red and blue curves display the

shear rate in the fluidized state whereF0 = {6.6 · 10−3,1.32· 10−2} respectively. The shear rate

has a maximum at the inflexion points of the drift velocity profile where〈vy〉 ≈ 0. The shear

rate increases as the applied driving amplitude increases.Furthermore, the width of shear rate

curve also increases by increasing the applied driving amplitude. The shear rate in the solid

state is on the order of ˙γ ≈ 10−5, which shows that the shear rate is negligible in the system.

4.3.2 Area fraction and granular temperature

Figure 4.10(left) shows the local area fractionρ as a function of the lateral positionx for both

a solid and a fluidized state. The blue curve is the local area fraction of the solid state for
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Figure 4.9: (Left) Drift velocity〈vy〉 as function of the lateral positionx in the solid (black)
and fluidized (red and blue) states. (Right) shear rate as function of the lateral position. The
applied driving amplitudes areF0 = {1 ·10−3,6.6 ·10−3,1.32·10−2} for the black, red, and blue
curve respectively. The total area fraction isφ = 0.7, the rupture separationSc = 0.01, and the
system sizeL = 40.

F0 = 10−3. The average of the blue curve equals ¯ρ = 0.7 which is the total area fractionφ of

the system. The width of the fluctuation around the average value is about 14% of the total

area fractionφ. Therefore, one can conclude that the system is homogeneousin the solid state.

The top black and red curves show the local area fractionρ in the fluidized state for am-

plitudes of the external driving forceF0 = {6.6 · 10−3,1.32· 10−2}, respectively. The local area

fraction attains a minimum where the shear rate has a maximum, i.e. at aboutx ≈ 10 and

x ≈ 30. However, atx = 0 andx = 20, where the shear rate is in a minimum, disks accumu-

late. The local density around those points is aboutρ ≈ 0.8. Since this value is smaller than

the value at random close packingφRCP ≃ 0.84, these disks are still mobile. The local area

fraction in the dense regions does not change significantly as the driving strength is increased

while the local area fraction increases in the dilute regions.

One may suspect that in the fluidized state the small and largedisks of the bidisperse

mixture segregate, as it the case in the ‘dry’ and ‘wet’ brazil nut effect, cf. Refs. [76, 77].

Therefore, we calculated the local area fraction for small and large disks separately. The result

is shown in Fig. 4.10(left). The bottom curves show the area fraction for the small disks and

the central curves show the area fraction for the large disks(the color code is same as for the

top curves). Both the area fraction for small and for large disks exhibit the same trend and as

one increases the amplitude of the external force (red curves), the trend does not significantly

change. Therefore, bidisperse disks do not segregate in thefluidized state.
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Figure 4.10: (Left-top) the local area fraction for the solid (blue) and fluidized states (black
and red). The local area fraction for large and small disks depicted in left-middle and left-
bottom. (Right-top) the granular temperature as a function of the lateral position for two
fluidized states. (Right-top) the granular temperature as a function of the lateral position for
solid state. The total area fraction isφ = 0.7, the rupture separation isSc = 0.01, and the
system size isL = 40.

Profiles of the local granular temperature are illustrated in Fig. 4.10(right). The black

curve shows that the granular temperature in the solid statedoes not depend on the lateral

position and that the granular temperature is non-zero. Compared to the solid state the granular

temperature increases one order of magnitude in the fluidized state. The spatial distribution of

the granular temperature has two maxima which coincide withthe maxima of the shear rate,

i.e. at aroundx = 10 andx = 30. For the particular values of the control parameter in our

example the ratio between the amplitude of the external driving amplitudes is almost two. The

ratio of the granular temperatures, however, is approximately five. This significant change in

the granular temperature between the solid and fluidized state shows the dramatic difference

concerning the granular temperature.

4.3.3 Liquid bridge number and rupture frequency

In addition to the drift velocity, the local area fraction and the granular temperature we cal-

culated the density of capillary bridges and their rupture frequency as function of the lateral

position. Figure 4.11(left) displays profiles of the density of capillary bridges. In the solid

state (black curve) this density does not depend on the lateral position and we find an average

number of capillary bridges per disk ofNLB = 4. The red and blue curves in Fig. 4.11 display
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the number of capillary bridges in the fluidized state for amplitudesF0 = {6.6·10−3,1.32·10−2}

of the external driving force. A comparison of Fig. 4.10 and Fig. 4.11(left) shows that the local

average number of capillary bridges per disk,N̄LB, exhibits the same behavior as the local area

fraction,ρ. The average number of capillary bridges per disk reachesN̄LB ≈ 4 in the solid

state (black curve) where the local area fraction isρ ≈ 0.8 at aroundx = 0 andx = 20 in the

solid state (black curve). The number of capillary bridges per disk decreases untilNLB ≈ 1

where the system is rather dilute with a local area fraction of ρ ≈ 0.45. The total number of

capillary bridges in the system decreases by increasing theamplitude of the external driving

force.

Figure 4.11(right) illustrates the rupture frequency of capillary bridges as a function of

the lateral position. One may expect that there would not be any rupture event in the solid

state. However, there are some rare rupture events, and the black curve shows that the spa-

tial distribution of these events is homogeneous. The red and blue curves show the rupture

frequency in a series of fluidized states atF0 = {6.6 · 10−3,1.32 · 10−2}, respectively. The rup-

ture frequency decreases more than two orders of magnitude as the material transforms from

the fluidized state to the solid state. In general, the rupture frequency in the fluidized state is

heterogeneously distributed and attains its maximum wherethe system is dilute and hot. The

global rupture frequency in the system increases as one increases the amplitude of the external

driving force.

A data collapse of the local number of capillary bridges per disks as a function of the local

area fraction is displayed in Fig. 4.12. The data were obtained from a series of simulations

for a system size ofL = 40. We chose values for the amplitude of the driving forceF0 =

{Fs,1.5Fs,2Fs,3Fs}, whereFs is the amplitude at the solidification transition. The totalarea

fraction was varied betweenφ = 0.62 andφRCP = 0.84, while the rupture separation was

Sc = 0.01 in all simulations. The color code indicates the granulartemperature.

On the one hand, the number of capillary bridges per disk,NB, shown in Fig. 4.12 dis-

plays a well defined boundary to small values ofNB where a large fraction of the data points

accumulate. On the other hand,NB does not exceed 4.1 while the local density stays below

ρ ≈ 0.85. These values coincide with the number of contacts in a isostatic packing of friction-

less hard disks (i.e. in two dimensions), and the limit of random close packingφRCP = 0.84

for the bidisperse mixture used in our simulations.
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Figure 4.11: (Left) Average number of capillary bridges as function of the lateral position
for a solid (black) and a fluidized (red and blue) state. (Right) Average rupture frequency as
function of the lateral position. The color code is the same as for the left plot. The total area
fraction isφ = 0.7, the rupture separationSc = 0.01, and the system sizeL = 40.
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Figure 4.12: (Left) Local liquid bridge number as a functionof the local area fraction for
the fluidized wet discs. The data are sorted according to their local granular temperature.
The hottest points form a well defined boundary. (Right) Localliquid bridge number as a
function of the local area fraction for the fluidized wet discs. The data are sorted according to
their applied driving amplitude. Two limits are found: 4 liquid bridges, and the random-close
packing. System sizeL = 40, and rupture separationSc = 0.01.
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4.3.4 Stress field

Figure 4.13(right) shows components of the stress tensor inthe solid state for an amplitude of

the driving force ofF0 = 10−3. The red squares are simulation data of the shear stressSxy as

a function of the lateral positionx. In a stationary state the shear stress caused by the applied

driving forceFex(x) = ey F0 sin(2πx/L) can be calculated from a balance of forces. Assuming

a homogeneous densityn of particles per area one obtains

Sxy(x) =
n L F0

2π
sin

(

2πx
L

)

, (4.6)

whereL is the system size. A derivation of equ. (4.6) can be found in the appendix 4.5.1.

Inserting numbers into the prefactor of equ. (4.16) leads toan estimate

n L F0

2π
≈ 0.006, (4.7)

which is depicted by the black curve. The calculated shear stress fits quite well to the shear

stress that has been directly measured in the simulation. The diagonal elements of the stress

tensor,Sxx andSyy, are depicted in the inset as black and blue curves. Compared to Syy, the

stress componentSxx exhibits smaller spatial fluctuations and does not depend onthe lateral

position. This finding is as expected since the stationary state follows the symmetry of the

external field. The latter observation together with the continuity of momentum transfer into

x-direction leads to the conclusion that the stress component Sxx has to be independent onx

(it is trivial to mention that none of the stress components depend ony).

Figure 4.13(right) shows components of the stress tensor inthe fluidized state. The red

squares indicate the shear stress as a function of the lateral position. It appears that the shear

stress has a sinusoidal shape as well but because the system is heterogeneous one cannot use

equ. (4.6) to explain the profile of the shear stress. As one expectsSxx corresponding to the

back curve does not depend on the lateral positionx. The remaining diagonal elementSyy

has two maxima aroundx = 10 andx = 30 coinciding with the maxima of the granular

temperature. A comparison of the profiles forSxx and forSyy clearly demonstrates that the

pressure field is not isotropic.

As mentioned before, the system becomes heterogeneous in the fluidized state and the

number of disks per unit area,n, depends on the lateral positionx. Starting from the general
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Figure 4.13: (Left) Profiles of components of the stress tensor in the solid state forF0 = 10−3.
Red squares are simulation data of the shear stress while the solid black curve is a prediction
according to equ. (4.9). The inset shows the diagonal elementsSxx andSyy of the stress tensor.
(Right) profiles of components of the stress tensor in the fluidized state atF0 = 6.6 ·10−3. The
red, black , and blue squares correspond toSxy, Sxx, andSyy. The total area fraction isφ = 0.7,
the rupture separationSc = 0.01, and the system sizeL = 40.

form of the transport equation of momentum one arrives at thesimple form

∂x Sxy(x) = n(x) Fy(x) (4.8)

for a stationary state being homogeneous intoy-direction and withFx = 0. Details of the

derivation can be found in Appendix 4.5.1.

Integration of equ. (4.8) leads to a shear stress

Sxy(x) =
∫ x

0
dx̃ n(x̃) Fy(x̃) + S0

xy . (4.9)

Periodic boundary conditions in principle allow the constant S0
xy to be non-zero. Inspection of

our simulation data shows thatS0
xy equals zero within statistical errors. Equation (4.9) can be

solved numerically as the number densityn(x) can be calculated directly from the simulation.

Figure 4.14 displaysn as a function of the lateral positionx.

The red curve shown in Fig. 4.15 shows the numerical solutionof the integral equ. (4.9)

while the black circles correspond to direct measurements of Sxy from the simulation. One

observes that the red curve fits onto the black circles. Therefore, equ. (4.9) is well suited to

describe the relation between the applied driving force andthe shear stress in the fluidized

state.



90 Chapter 4. Isochoric model for avalanches

0 10 20 30 40
lateral position

0

0.2

0.4

0.6

0.8

1
nu

m
be

r/
ar

ea

Figure 4.14: The number of particles per unit of area,n, in the fluidized state. The total
area fraction isφ = 0.7, the rupture separationSc = 0.01, the amplitude of the external force
F0 = 6.6 · 10−3, and the system sizeL = 40.
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Figure 4.15: The black circles show the direct measurementsof the shear stress in the fluidized
state while the red curve corresponds to the integral equ. (4.8). The total area fraction is
φ = 0.7, the rupture separationSc = 0.01, the applied driving amplitudeF0 = 6.6 · 10−3, and
the system sizeL = 40.
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Figure 4.16: The black, red, and blue squares are the kinetic, static, and total stress component
Sxx as function of the lateral positionx in the fluidized state. The total area fraction isφ = 0.7,
the rupture separationSc = 0.01, the applied driving amplitudeF0 = 6.6·10−3, and the system
sizeL = 40.

The stress tensor can be decomposed into two parts. This is, on the one hand, the kinetic

part of the stress tensor which depends only on the momenta and velocity of the disks, and,

on the other hand, the static part being fully determined by the position of the disks and their

mutual forces. In our simulation we computed the spatial distribution of both parts separately.

Because the driving force is applied intoy-direction, one intuitionally expects thatSxx does

not depend on the lateral position. The blue squares in Figure 4.16 show that the total stress

componentSxx is indeed independent onx. As mentioned before this observation can be

explained by the continuity of the momentum flux.

However, the kinetic part of the componentSxx as indicated by the black squares in

Fig. 4.16 is position dependent and appears to be correlatedto the local granular tempera-

ture. For the total area fraction ofφ = 0.70, the static part is approximately six times larger

than the kinetic part. Because the disks are in enduring mutual contact and because the inter-

particle diffusion of the disks is rather slow the static part of the stresstensor should be the

dominant contribution in the total momentum transfer.

In Figure 4.17 the kinetic and static parts of the stress componentSyy as well as their

sum is depicted by black, red, and blue squares, respectively. The kinetic part exhibits two

maxima, one atx = 10 and a second atx = 30, similar to the spatial distribution of granular
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Figure 4.17: The black, red, and blue squares are the kinetic, static, and totalSyy versus the
lateral position in fluid state. The total area fraction isφ = 0.7, the rupture separation is
Sc = 0.01, the applied driving amplitude isF0 = 6.6 · 10−3, and the system size isL = 40.

temperature. The static part, which is almost one order of magnitude larger than the kinetic

part increases at aroundx = 10 andx = 30. This observation is also true for the sum of both

parts.

Figure 4.18 shows the kinetic, the static, and total shear stressSxy as a function of the

lateral positionx as the black, red, and blue curve, respectively. As it was thecase for the

stress componentsSxx andSyy, the magnitude of the kinetic part is smaller than the magnitude

of the static part. The kinetic part has a maximum at aroundx = 10 andx = 30 where the

shear rate ˙γ is maximal. The static part (red squares) increases as one approaches the center

but reaches a plateau for 5.5 < x < 14.5. For valuesx > 14.5 it decreases and approaches

zero. The symmetry of the static part ofSxy in the first half of the simulation box is repeated

in the second half, and there is again a plateau for 25.5 < x < 35.5.

4.3.5 Viscosity

In a Newtonian fluid the shear stress is proportional to the local shear rate. The corresponding

proportionality constant is the shear viscosity or simply the viscosity of the fluid2. Coming

2The second viscosity is related to a pressure contribution during a compressive or dilative motion of a
compressible fluid
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Figure 4.18: The black, red, and blue squares are the kinetic, static, and total shear stressSxy

as function of the lateral positionx in fluidized state. The total area fraction isφ = 0.7, the
rupture separationSc = 0.01, the applied driving amplitudeF0 = 6.6 · 10−3, and the system
sizeL = 40.

from a microscopic picture one can define the viscosity as a transport coefficient related to the

diffusion of momentum. In an ideal gas the viscosity increases with temperature because the

average velocity of the gas particles increases with temperature which implies an increase of

the collision frequency. Most liquids exhibit the oppositebehavior. Their resistance against

shearing decreases as the temperature increases. In a shearflow the liquid particles have to be

thermally activated in order to change their relative position.

In this subsection we are going to discuss the viscosity of anassembly of fluidized wet

disks under isochoric conditions. At first, we present the generic form of a viscosity profile

in the fluidized state. A collapse of data from a series of simulations for different total area

fraction and amplitudes of the driving force allows us to assess the dependence of the viscosity

on the local area fraction and the granular temperature.

The viscosity of granular material is defined as the ratio of sum of off-diagonal elements

of the stress tensor to twice of the shear rate [78]:

η =
Sxy+ Syx

2γ̇
, (4.10)

whereSxy andSyx are the off-diagonal elements of the stress tensor, and ˙γ is the local shear
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rate. Because our particles are symmetric and frictionless,the stress tensor is symmetric and

we have

η =
Sxy

γ̇
. (4.11)

Hence, the viscosity can be calculated as the ratio of the local shear stress to the local shear

rate. The viscosity profile according to the definition equ. 4.11 is depicted in Fig. 4.19 for

two amplitudes of the external forceF0 = {6.6 · 10−3,1.32 · 10−2} as red and blue squares,

respectively. It is obvious that the viscosity decreases where the shear rate increases and vice

versa. Errors become large aroundx = 0 andx = 20 where the shear rate is small.

To explore the dependence of the viscosityη on the densityρ and granular temperature

TG we employ a data collapse of a series of simulations for different total area fractions and

driving strengths similar to the plot shown in Fig. 4.12. Theparameter of the simulations are

identical to those given in subsection 4.3.3.

Figure 4.20(top) displays the viscosity of the fluidized wetdiscs as a function of the local

reduced area fractionρc−ρ. The color code corresponds to the local granular temperature. It is

apparent from Fig. 4.20(top) that the overwhelming majority of data points fall into a narrow

band. The distribution of granular temperatures in this band seems not to follow a visible rule.

A comparison to the dashed line, however, indicates an approximate scalingη ∼ (ρc − ρ)−1 of

the viscosity with the local area fractionρ.

Figure 4.20(bottom), however, shows the same data as in Fig.4.20(bottom) but now the

granular temperature is on the abscissa while the density isencoded in the color of the data

points. In contrast to Fig. 4.20(top), the data points are spread over a wide region. From the

distribution of colors one can anticipate the existence of isolines of constant local densityρ in

the plane spanned byTG andη. A comparison of the plots Fig. 4.20(top) and Fig. 4.20(bottom)

reveals that the local density of disks has a much stronger impact on the viscosity compared

to granular temperature. Furthermore, the viscosity appears to diverge when approaching the

limit of random close packing atφRCP= 0.84

Interestingly, a similar divergence in the shear viscositywith and exponent around−1 was

found by Ludinget al. in a fluid of monodisperse elastic hard disks in thermal equilibrium

[79]. The area fraction of disks at the divergence, however,is φ = 0.71±0.01, i.e. much lower

than the value of random close packing of our bidisperse disks. In addition to the divergence

of viscosity, the coefficient of self diffusion tends to zero at the same area fraction [79].
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Figure 4.19: Viscosityη as function of the lateral positionx in fluidized state. The red and blue
squares correspond to amplitudes of the external forceF0 = {6.6·10−3,1.32·10−2} respectively.
The total area fraction isφ = 0.7, the rupture separationSc = 0.01, and the system sizeL = 40.

4.3.6 Interparticle forces

The statistics of interparticle forces crucially determine the bulk properties of the assembly,

e.g. its load bearing capability , sound transmission, and shockpropagation [80–87]. In gran-

ular systems the stress transmission is spatially heterogeneous and occurs in the form of force

chains [88–90]. Since the discovery of force chains the probability distribution of compressive

forces in a granulate has been a subject of granular physics [91–93]. Several model calcula-

tions [94–96], computer simulations [97–99], and experiments on shear cells [100–102] have

proven the existence of exponential tail in the limit of large compressive forces.

Studying of force distributions in granular material became of significant importance when

the dynamic arrest in granular systems was linked to the presence of force chains between the

grains. In Ref. [103] O’Hernet al. studied the distribution of normal contact forces near

the jamming transition. They have found that the probability distribution of forces develops a

peak whose height increases with increasing total packing fraction and decreasing shear stress.

They propose that the appearance of that peak signals to development of a yield stress.

In our simulations we measured the probability distribution of interparticle forces for a

series of total area fractions and amplitudes of the external driving force in both the fluidized

and in the solid state. To obtain a satisfactory statistics we use a system sizeL = 30 with up to
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Figure 4.20: Local viscosity,η, as function of the local reduced area fraction,ρ (top) and
granular temperature,TG (bottom). The color encodes the local granular temperature(top)
and the local density (bottom). The dashed line indicates a scalingη ∼ (ρc − ρ)−1. The system
size isL = 40, and rupture separationSc = 0.01.
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N = 1500 disks. As it was mentioned in the last chapter, we solidify and fluidize the assembly

of wet disks using a spatially heterogeneous external driving force.

Figure 4.21 shows the probability distributionP(F) of normal forceF between two disks.

While our wet discs interact via attractive (negative sign) and repulsive (positive sign) forces,

F varies from−1 until Fmax. The smallest value of the force is given byFmin = −1 corre-

sponding to a capillary bridge between two non-overlappingdisks.

A finite fraction of the forces between two neighboring disksis due to the presence of a

capillary bridge only. The corresponding pair of disks has collided in the past but does not

overlap anymore. A finite fraction of all pairs of disks with anon-zero force exhibit such a

‘stretched’ capillary bridge. The probability to find a stretched capillary bridge is depicted

in Fig. 4.22 as function of the amplitude of the external force and for a series of total area

fractions. Here, we used the standard preparation protocoldescribed in section 4.1.1 such that

the system is initially in a fluidized state.

Inspection of Fig. 4.22 reveals a sharp drop of the number of stretched capillary bridges in

the assembly of disks as the amplitude of the applied external force is lowered. Apparently,

this drop is associated with the fluidized-to-solid transition. For total area fractionsφ = 0.62

andφ = 0.7, we find a plateaus of the probability atP ≈ 0.38 in the fluidized and a probability

of P ≈ 0.24 in the solid state, cf. Fig.4.22. At high total area fractionsφ = 0.82, however,

the probability in both the fluidized and the solid state are significantly smaller. In addition,

the drop appears to be ‘rounded off’, i. e. one observers a decrease in the probability in the

fluidized state close to the step.

Moreover, we are interested in the spatial probability density to find the contact with the

largest force in the system. Figure 4.23 shows the probability density in both the solid and the

fluidized state. The green circles illustrate that an extreme event in the solid state can appear

everywhere in the system because there is no a systematic dependence of the probability den-

sity on the lateral position. However, the red squares show that these extreme events in the

fluidized state are localized where the shear rate and the granular temperature are maximal.

The observation that the largest force between disks is moreor less equally distributed in

the solid state can be viewed as a contradiction to continuummechanics. One would expect

that the extreme events are localized in regions where the magnitude of the stress components

are large. This is indeed the case for the spatial distribution of extreme forces in the fluidized

state. We can argue that this difference is due to chains of compressive forces between the

disks which build up in the solid state. In the fluidized state, however, these force chains are

absent or at least exist for such a short period of time that onaverage their effect cannot be
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Figure 4.21: Probability distribution,P(F), of normal forcesF. (Top) The total area fraction
is φ = 0.62. In the solid state the distribution is semi-Gaussian. A shoulder appears in the
fluidized state which is followed by an exponential tail to larger values ofF. The amplitude of
the external force at the solidification point isFs = 3.5 ·10−3. (Middle) Area fractionφ = 0.70
and force amplitudeFs = 5 · 10−3. The shoulder seen in (top) has disappeared. (Bottom) Area
fractionφ = 0.82 and force amplitudeFs = 1.4 · 10−2. No shoulder is visible.
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Figure 4.22: Probability to find a stretched capillary bridge among all pairs of interact-
ing disks as function of the amplitude of the external force.A sharp transition is found
for the fluidized-to-solid transition. The total area fraction areφ = {0.62,0.7,0.82} with
corresponding amplitudes of the external force at the fluidized-to-solid transition areFs =

{3.5 · 10−3,5.0 · 10−3,1.4 · 10−2}. The system size isL = 30, the rupture separationSc = 0.01.

observed.

4.4 Hysteretic transitions

In the last chapter we observed that wet disks on an inclined plane go through a hysteretic

fluidization transition as the inclination angle is changed. In other words, there is a range of

control parameter where the dynamic state of the system is not uniquely defined by the values

of the control parameter. The system can be found in one out oftwo or more possible dynamic

states.

The observation made for wet disks on an inclined plane posesthe important question

whether the hysteresis of the solid-to-fluidized transition is a universal property of wet disks.

Does this hysteresis depend on the driving mechanism that shears the system? Is the hysteresis

caused by the fact that the capillary bridge interaction is itself a hysteretic interaction?

Let us first explain how we will explore the existence of a hysteretic transition under iso-

choric conditions. The initial driving amplitude should belarge enough to go beyond the

fluidized-to-solid transition, the system eventually should reach fluidized state. Afterwards,
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Figure 4.23: Spatial probability density to find the strongest force between two disks as
function of the lateral position. The extreme events are randomly distributed in the solid
state (green circles). However, in the fluidized state (red squares), these extreme events are
localized where the shear rate has its maxima. The total areafraction isφ = 0.70, the number
of particlesN = 506, and the rupture separationSc = 0.01.

we decrease the amplitude of the external force in small steps. At each step we give the system

enough time to let the system reach a stationary state. The magnitude of the steps should be

sufficiently small. Large changes in the external force would pose a perturbation to the system.

Starting from a stationary fluidized state at high external driving force we continuously

decrement its magnitude until the material has fully solidified. The value of the amplitude

of the external force at which the material solidifies is shown by Fs. Once the material is

solidified, we again increase the magnitude of the external force in small steps. A solid-to-

fluidized transition should occur while increasing the external force when the shear stress in

the system exceeds the yield stress of the disk packing. The corresponding amplitude of the

external force at which the material fluidizes is denoted byF f . Whenever we find thatF f is

larger thanFs and we will be able to say whether hysterisis exists in this system.

In order to answer this question we chose our standard simulation parameter,i.e. we set

the total area fraction toφ = 0.70, the rupture separation toSc = 0.01, the number of particles

to N = 506, and the system size toL = 18. Figure 4.24 shows the order parameter∆vy as a

function of the time. The initial amplitude of the external force isF0 = 8.8 · 10−3. For this

setting the relaxation time of the system to reach a stationary fluidized state is approximately
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∆trelax ≈ 4 · 102. After each decrement of the applied driving amplitude we waited a time

∆tstep= 103. The step width of the external force was∆Fstep= 2 · 10−4. The red curve shows

∆vy as function of time while decrementingF0 while the violet curve shows the amplitude of

the external force as function of time. The amplitude of the external force is decremented until

t = 4 ·103 with an amplitudeF0 = 8 ·10−3 where the order parameter∆vy = 0, i.e. the material

has solidified. Note, that this value is identical to the amplitude of the external force at the

fluidized-to-solid transition described in section 4.2.2.Therefore, we chose the solidification

point to be atFs = (8.1± 0.1) · 10−3.

In order to find the fluidization point we increased the amplitude of the external force,F0,

at timest > 4 · 103 by the same procedure,i.e. with a waiting time of∆tstep = 103 and in

steps of∆Fstep = 2 · 10−4. If there would not be any hysteresis in the system the material

should fluidize atF0 = 8.2 · 10−3. However, the system is still solid att = 9 · 103. Finally, at

t = 1.4·104 whereF0 = 1.3·10−2, the system fluidizes. In order to save computational time we

set the magnitude of the step in the external force to∆Fstep= 10−3. We choseF f = 1.25·10−2

as the fluidization point and the corresponding error bar is∆F f = 5 · 10−4. The ratio of the

amplitude of the external force at the fluidization and the solidification points isF f /Fs ≈ 1.54.

Therefore, the fluidized-to-solid transition (solidification) and the solid-to-fluidized transition

(fluidization) occur at different applied driving amplitudes which proves the hysteretic nature

of this transition.

Figure 4.25 displays the dynamic order parameter∆vy, as a function of the amplitude of

the external force,F0. The red squares show the first part of the hysteretic transition where we

started by applyingF0 = 8.8 · 10−3 and decremented the amplitude in steps of∆F0 = 2 · 10−4.

The material solidified atFs = 8.1 · 10−3. Subsequently, we incremented the amplitude of the

external force until the material fluidized atF f = 1.25 · 10−2.

4.4.1 Phase diagram

In the last section, we presented data for the strength of theexternal driving at the solidification

and the fluidization point for a total area fraction ofφ = 0.70. It is obvious that both values

should depend on the total area fraction,φ, the rupture separationSc, and the system sizeL.

First of all we will focus on the area fraction while we keep the remaining parameter of the

system fixed. Hence, we construct a phase diagram that is based on the total area fraction of

disks,φ, and the amplitude of the external force,F0.

Figure 4.26 shows the solidification and the fluidization transition lines as function of the
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Figure 4.24: The dynamic order parameter∆vy (the red and blue curves) and amplitude of the
external forceF0 (the violet curve) as function of time. The total area fraction isφ = 0.7, the
rupture separationSc = 0.01, and the system sizeL = 18.
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Figure 4.25: The dynamic order parameter,∆vy, as function of the amplitude of the external
force,F0. The solidification occurred atF0 = Fs = 8.110−3 and the fluidization atF0 = F f =

1.25 · 10−2. The total area fraction isφ = 0.70, the rupture separationSc = 0.01, and the
system sizeL = 18.
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total area fraction. We probe the area fraction fromφmin ≃ 0.525 toφmax≃ 0.84. Forφ > φmax

fluctuations in the drift velocity become so large that one can not measureδvy with a reliable

error-bar. The value ofφmax coincides with the RCP limitφRCP = 0.84 for the bidisperse

system under consideration [104]. At total area fractionsφ < φmin it may happen that the

initially randomly distributed disks condense into two solid bands, one moving up while the

other band is moving down. The evolution of the system can be totally different: On the one

hand, the bands may collide and heat up. In this case, the system is attracted to a stationary

fluidized state. On the other hand, the bands may not touch. Inthis case, the system stays cool

and the two solid bands persist. Therefore, forφ < φmin the dynamics of the system depends

on the initial configuration of the disks. However, for area fractionsφ > φmin the stationary

state is independent from the particular realization of thesystem in the initial state,i.e. after

preparation.

Figure 4.26 displays the dynamic phase diagram for a system of wet disks under isochoric

conditions being subject to a spatially heterogeneous external driving force. The plane is

spanned by the amplitude of the external driving force multiplied to the system lengthF0 L

on they-axis and the total area fractionφ on they-axis. We will show in appendix 4.5.1 that

the force amplitudeF0 at both the fluidization and solidification point exhibit a simple scaling

F0 ∼ L−1 with the system sizeL.

The black curve in Fig. 4.26 indicates the solidification transition while the red curve

in Fig. 4.26 corresponds to the fluidization transition. As discussed in section 4.2.2 we can

estimate the amplitude of the external force at the solidification point from the time evolution

of an ensemble of systems for different values of the driving force. We checked for different

area fractions that the alternative protocol, where the driving force is slowly reduced until the

the disks solidify, and the ensemble method lead to identical values. This observation can be

explained by the nature of the initial state in the ensemble method. Due to the preparation the

system is found in a fluidized at the beginning of the simulation. Depending on the magnitude

of the driving force, the system may be permanently fluidizedor the fluidized state may only

be a transient state.

Determining the fluidization line takes more computationalefforts. The preparation of the

solid state requires a slow decrease of the external drivingforce. Fluidization, or yielding, of

the solidified disks requires a sufficiently slow increase of the external driving force. Hence,

each point on the red curve takes more than one month of computational time. One sees that

as one approaches to the limit of random close packing the amplitude of the external force at

fluidization increases.
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Figure 4.26: The rescaled amplitude of the external force,F0 · L, as a function of the total area
fractionφ. The black curve shows the solidification line. The red curveis the corresponding
fluidization curve. The rupture separation for the black andred line isSc = 0.01. The Blue
curve is the solidification line forSc = 0.05.

The rescaled amplitude at the solidification point for a rupture separationSc = 0.05 is de-

picted by the blue curve. The blue curve lies above the red curve. This is a clear indication that

wet disks with a larger rupture length solidify already at larger driving forces when compared

to wet disk with a smaller rupture length.

Now we would like to explore how the amplitude of the externalforce at solidification

depends on the rupture separation of capillary bridges for agiven total area fraction. Figure

4.27 shows the rescaled driving forceFs · L as a function of the rupture separationSc. The

total area fraction is fixed toφ = 0.70 while the rupture separation is chosen in the range

between 10−4 and 0.1. The blue squares are the solidification thresholds for different rupture

separations. We find an excellent collapse of our data into a power law scaling

Fs ∼ Sξc (4.12)

with the exponentξ = 0.74±0.03. This plot shows that as the rupture separation tends to zero

the solidification threshold vanishes.
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Figure 4.27: The rescaled amplitude of the external force atsolidification,Fs · L, as function
of the rupture separationSc. We find a power law behavior for the solidification line with an
exponent 0.74± 0.03.

4.4.2 Why hysteretic-discontinuous transition?

So far, by studying dynamics of wet disks on inclined plane (in last chapter) as well as wet

disks driven by cosine shearing force, we observed that wet disks undergo through a hysteretic-

discontinuous transition in both cases. Is the hysteretic-discontinuous transition caused by the

fact that the liquid bridge force is in principle a discontinuous-hysteretic interaction (discon-

tinuous in the sense that as soon as two grains touch each other a liquid bridge forms and

entails to an attractive force). The answer is, however, “No”. Furthermore, to explain why

the answer is no, we refer to series of earlier reports about the similar issue. Daniel Bonn et

al.[70, 71] explored the rheological properties of dry granular matter, gels, foams, and emul-

sions. They showed that these materials, i.e. dry grains, gels, emulsions etc., undergo through

a hysteretic-discontinuous transition between fluidized and solid states3 and they argued that

such transition, i.e. hysteretic-discontinuous transition, belong to all the athermal materials

that possessyield stress. Our results show that wet granular material should be also included

into that category [105].

3Or in their language jamming and unjamming transition.
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4.5 Appendix

4.5.1 Relation between driving force and shear stress

In this section we will derive a relation between the external force and the shear stress being

valid for a stationary state bearing a certain symmetry. Letus first consider the Navier-Stokes

equation:

ρ (∂tv + v · ∇ v) = −∇P+ ∇ · S+ f , (4.13)

wherev is the velocity,ρ the fluid density,P the pressure,S the stress tensor, whilef represents

the body forces (per unit volume) acting on the disks, and∇ the nabla operator.

In a stationary state, the first term on the RHS of equ. (4.13) vanishes while the second

term is zero owing the particular symmetry of the velocity field. The velocity field depends

exclusively on the lateral positionx and has a non-zero component only intoy-direction,i.e.

the direction of the applied force. Hence, equ. (4.13) simplifies to a balance

∇ · S= f (4.14)

between the mechanical stress tensor and the external force. In Cartesian components, equ. (4.14)

assumes the form

∂x Sxx + ∂y Syx = fx and ∂x Sxy+ ∂y Syy = fy . (4.15)

Due to the translational invariance iny-direction, we have∂ySyy = 0 and∂ySxy = 0. Then,

together withfx = 0 it follows from equ. (4.15) that

∂x Sxx = 0 and ∂x Sxy = fy . (4.16)

An integration of equ. (4.16) leads to

Sxx = const. and Sxy(x) =
∫ x

0
dx̃ n(x̃) Fy(x̃) , (4.17)

wheren(x) is the number of disks per area andFy(x) they-component of the external driving

force according to equ. (4.1) as function of the lateral position x. The dependence of the
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Total area fraction Linear fit
φ = 0.70 Fcrt. = 0.148L−1

φ = 0.82 Fcrt. = 0.46L−1

Table 4.3: Relation between the critical driving amplitude and the system size for two different
area fractions.

external force on the coordinatex is given by:

Fy(x) = F0 cos

(

2πx
L

)

(4.18)

whereF0 is the amplitude of the external force andL the dimension of the simulation box.

Inserting the RHS of (4.18) into the integral in equ. (4.17), we arrive at

Sxy(x) =
n L F0

2π
sin

(

2πx
L

)

, (4.19)

where we assumed the densityn to be position independent.

In the fluidized state,n may become a function of the lateral position and the integral

in equ. (4.17) cannot be evaluated in form of a closed analytical expression. In this case,

we have to employ numerical data from our MD simulation and evaluate the integral (4.19)

numerically.

In the following we will assume that the concepts of continuum mechanics apply to the

isochoric system of sheared wet disks under consideration.Locality requires that the points

of solidification and fluidization should be related to a certain characteristic value of the shear

stress being a function of purely local quantities such as density, granular temperature. When-

ever this is the case and, in addition, these quantities are system size independent, the prefactor

of the sine in equ. (4.19) shows that the amplitude of the driving force at the fluidization and

solidification point should scale asF0 ∼ L−1.

We checked the dependence of the amplitude of the external force at fluidization and so-

lidification for three different values of the system sizeL = {18,24,30} and two different total

area fractionφ = {0.70,0.82}. Figure 4.28 shows the amplitude of the external force at so-

lidification, Fs, as a function of the inverse system length,L−1. The red circles correspond to

φ = 0.70, and the blue squares correspondφ = 0.82.
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Chapter 5

Conclusion

In this thesis, we studied the stability and the dynamics of wet granular material under shear.

Our goal was to show that the hysteresis and the discontinuity of the fluidization transition

are generic features of wet granular materials. In chapter 2we compare and explore the

stability of dry and wet granular piles. A dry granular pile fluidizes if the inclination angle

exceeds a critical angle which depends on the configuration of the particles. At a certain

critical angle the fluidization occurs simultaneously everywhere in regular frictionless dry

piles. In contrast, when the pile is wet, it can be tilted beyond the critical angle due to support

of the capillary bridges between particles. For inclination angles beyond the critical angle, the

highest tensile force acts on the capillary bridges in the bottom layer supporting the pile. The

pile fluidizes when the tensile force becomes larger than thestrength of the capillary bridges.

Accordingly,a wet granular pile yields in the bottom layer. This changes our thoughts about

yielding of granular piles where traditionally surface fluxes are considered. Extensive MD-

type simulations prove the predictive power of the theory.

In chapter 3 we studied the dynamics of wet disks in a channel.The fluidized system is

homogeneous for small rupture separationsSc and becomes heterogeneous for largerSc. The

solidification occurs if the inclination angle is sufficiently decreased below the fluidization

point. The difference between the solidification and fluidization points shows that wet disks

undergo a hysteretic dynamic transition. For small gravitational downhill forces, the system

becomes heterogeneous. It is dilute close to the stick boundary and packed near the upper wall

such that it resembles aLeidenfrost state.

The dynamics of wet disks under a spatially heterogeneous driving force is explored in

chapter 4. There is a well defined applied force amplitude below which the system undergoes
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a fluidized-to-solid transition. The solidified system re-fluidizes if the applied driving force

can overcome adhesion due to the capillary bridges. A phase diagram showing the fluidization

and solidification transition thresholds is presented. From our perspective the phase diagram

is an example of a jamming phase diagram. It proves that interactions between particles in-

fluence the structure of the jamming phase diagram. Aboveφ ≈ 0.525 a percolation cluster

developing yield stress emerges after a fluidized-to-solidtransition irrespective of the initial

position of the particles. Furthermore,Fs and F f are independent from the initial configu-

ration of particles. Below, the dynamics of the system strongly depends on the preparation

process at the beginning of the simulation. We truly believethatφ ≈ 0.525 is a point that has

unique physical properties which has not yet fully been explored and is a subject for future

studies. Viscosity is another physical quantity that has been intimately studied in chapter 4.

We showed that local viscosity of the fluidized state is dominated by the local area fraction

φ and not the granular temperatureTG. We found an approximate scalingη ∼ (ρc − ρ)−1 of

the viscosity with the local area fractionρ. In chapter 4 we also studied the force distribution

in the solid and fluid states. The force distribution is a key tool to study the force chains in a

granular systems. We showed that in the solidified state the stability of the assembly is dom-

inated by the stretched capillary bridges. The probabilityto find a stretched capillary bridge

sharply increases as the system fluidizes.
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Symbols and notations
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Symbol Description
PL Laplace Pressure
RCP Random Close Packing
fLB Capillary Force
Sc Rupture Separation
φ Total Area Fraction
φc Area Fraction of RCP
TG Granular Temperature
g Gravitational Acceleration
gsed. g of Sedimentation
tsed. Sedimentation Time
Fdrag Background Drag Force
φ Total Area Fraction
ρ Local Area Fraction
δρ Difference of Local Area Fraction
NLB Number of Liquid Bridges
fR Rupture Frequency
Ŝ Stress Tensor
Sxy Shear Stress
Syy Normal Stress
Sxx Tangential Stress
S∗xy Yield Stress
g Gravitational Acceleration
gc Critical Gravitational Acceleration
θ Inclination Angle
θc Critical Inclination Angle
δ Gap Between Disks
Dtime Damping Time
Fs Solidification Driving Amplitude
F f Fluidization Driving Amplitude
n Number of Particles in Unit Area
γ̇ Shear Rate
Γ̇ Shearing Tensor
β Effective Compressibility



Appendix B

Energy balance

In the current section, we explore the balance of the injected and dissipated energies in flu-

idized states both for the cosine shearing and for wet disks running down on an inclined plane.

Fig.B.1 shows the dissipated and the injected powers as a function of the time by the black

and red curves respectively. The total area fraction isφ = {0.60,0.70} for the top and bottom

graphs respectively. One sees that the dissipated power fluctuates more than the injected en-

ergy but both seem to have the same average. Integration of the injected and dissipated powers

with respect to the time is shown by the green and blue curves respectively.

A quantitative explanation for the energy balance comes outwhen one calculates the rela-

tive difference of the injected and the dissipated energies. FigB.2 shows the relative difference

of the injected and dissipated energies as a function of the total area fraction. There is no any

systematic dependence on the total area fraction. Subsequently, the average relative difference

is:

<

∫

Pin j · dt−
∫

Pdiss · dt
∫

Pin j · dt
>= 0.000543577 (B.1)

The equ.(B.1) proves that our integration scheme is very accurate, and on the other hand,

it shows that as one intuitively expects, in the stationary state, the injected and dissipated

energies balance.

Similar calculations are done for wet disks running down on an inclined plane. We have

shown that the same accuracy also holds for such a system.
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Figure B.1: (Top) The injected and dissipated power and theirintegration forφ = 0.60. (Bot-
tom) The injected and dissipated power and their integration for φ = 0.70. The black, red,
green , and blue curves show the dissipated power, the injected power, the dissipated energy,
and the injected energy respectively.
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Appendix C

Derivation of stress tensor

C.1 Tensorial form of the Virial theorem

The stress tensor is a mathematical tool to explore the momentum transfer in the system.

One of the main tools that strongly equipped us to study dynamics of wet discs under shear.

Therefore, in this section, we want to present derivation ofthe stress tensor from the tensorial

form of the Virial theorem.

The tensorial form of the Virial quantity can be defined as:

〈ξ〉 =

〈

1
V

∑

i

~r i ⊗ ~pi

〉

(C.1)

in whichξ is the Virial quantity, V is the volume of the homogeneous sample,~r i and~pi are

the position and momentum vectors of the particle i.⊗ is the tensor product andmi is mass of

the particle i.

Sinceξ describes interactions of particles which are inside a homogeneous portion, then

<
dξ
dt > should be equal zero. By virtue of equ.C.1, one can write:

<
1
V

∑

i

~pi ⊗ ~pi > + <
1
V

∑

i

~r i ⊗ ~Fi >= 0 (C.2)

For the simplicity, we define:

χ =<
1
V

∑

i

~r i ⊗ ~Fi > (C.3)

We separate the interactions of particlei with the particles that are inside and outside the
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portion.

χ =<
1
V

∑

i

~r i ⊗ ~Fi
int. > + <

1
V

∑

i

~r i ⊗ ~Fi
ext. >= χ1 + χ2 (C.4)

Where:

χ1 =<
1
V

∑

i

~r i ⊗ ~Fi
int. > (C.5)

χ2 =<
1
V

∑

i

~r i ⊗ ~Fi
ext. > (C.6)

In the case of granular material, in which the interactions are short range limited to the

neighbors of particles, each particle can have maximum 6 or 12 neighbors in two and three di-

mension respectively.χ2 consists the interactions of particles near the boundary with particles

outside the portion. Therefore, we change the summation inχ2 to an integral on surface of the

portion:

<
∑

i

>=⇒

∮

bound.

∑

γ

dAγ (C.7)

The dyadic form ofχ2 can be written as:

(χ2)dyad=
1
V

∮

bound.

∑

γ

(~r ⊗ ~F)βγdAγ =
1
V

∮

bound.

∑

γ

(rγ(Sβγ + ρUβUγ))dAγ

=
1
V

∮

∑

γ

∇γ(rγ(Sβγ + ρUβUγ))d
3r (C.8)

(χ2)dyad=
1
V

(Sβγ + ρUβUγ)
∮

∑

γ

∇γ · ~rγd
3r (C.9)

Therefore,χ2 can be simplified as:

χ2 = S + ρ ~U ⊗ ~U (C.10)

Where~U is the drift velocity in the portion, andρ is the density.

χ1 can be interpreted as an expression which consists interactions of the particles with each

other inside the portion:
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χ1 =<
1
V

∑

i

~r i ⊗ ~Fi
int. >=<

1
V

∑

j>i

~r i j ⊗ ~Fi j
int. >

=
1
V
~R⊗ ~F int. (C.11)

Therefore, we can simplify the stress tensor as a function ofthe internal and boundary

interactions as well as the drift velocity in the portion:

S =
1
V

∑

i

(~vi − ~U) ⊗ (~vi − ~U) +
1
V
~R⊗ ~F int. (C.12)

C.2 Stress Tensor in 2D

The stress tensor in dyadic form is:

S =
1
A

∑

i

(~vi − ~U) ⊗ (~vi − ~U) +
1
A
~R⊗ ~F int. (C.13)

In which A is area of the portion. The stress tensor in 2D is a 2× 2 matrix:

S =
1
A

∑

i

((vix −Ux)î + (viy −Uy) ĵ)2
+

1
A

(RxFx
int î î +RxFy

int î ĵ +RyFx
int ĵ î +RyFy

int ĵ ĵ) (C.14)

Or:

S =
1
A















∑

i(vix − Ux)2 ∑

i(vix − Ux)(viy − Uy)
∑

i(vix − Ux)(viy − Uy)
∑

i(viy − Uy)2















+
1
A















RxFx
int RxFy

int

RyFx
int RyFy

int















(C.15)

One can calculate the effective viscosityη, the effective compressibilityβ, pressureP of

the system as the following:

υ = −
(Sxy+ Syx)

2Γ

P = tr(S)

β = A
P

2K
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WhereK is the drift subtracted kinetic energy of the system.



References

[1] H. M. Jaeger, S. R. Nagel, R. P. Behringer,Rev. of Mod. Phys., 684, (1996).

[2] S. Herminghaus,Advances in Physics, 54221, (2005).

[3] M. Bertz, J.B. Cunningham, P.L. Kurczynski, F. Nori,Phys. Rev. Lett., 692431, (1992).

[4] A. Fingerle, S. Herminghaus, V. Yu. Zaburdaev,Phys. Rev. E, 7561301, (2007).

[5] L. Boqcuet , E. Charlaix, S. Ciliberto J. Crassous,Nature, 396732, (1998).

[6] N. Fraysse, H. Thome and L. Petit,Eur. Phys J. B, 11615, (1999).

[7] G. D. Anna ,Phys. Rev. E, 6262982, (2000).

[8] M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel, A. Sheppard, B. Breiden- bach,

S. Herminghaus,Nature Materials, 7 189, (2008).

[9] P. Bartlet, B. Othmar,Physics World, 1425, (2001).

[10] Kansai International Airport Co. Ltd. Brief summary of settlement, www.kaiac.co.jp

[11] M. Schulz , B. M. Schulz, S. Herminghaus,Phys. Rev. E, 675, (2003).

[12] X. Y. Yang, C. Huan, D. Candela, R. W. Mair, R. L. Walsworth ,Phys. Rev. Lett., 88

44301, (2002).

[13] B. Utter, R. P. Behringer,Phys. Rev. E, 6931308, (2004).

[14] P. A. Thompson, G. S. Grest,Phys. Rev. Lett., 671751, (1991).

123



124 References

[15] W. Losert, L. Bocquet, T. C. Lubensky, J. P. Gollub,Phys. Rev. Lett., 857, (2000).

[16] N. Xu, C. S. O’Hern, L. Kondic ,Phys. Rev. Lett., 9416001, (2005).

[17] R. Dikau, D. Brunsden, L. Schrott, M. L. Ibsen,Landslide Recognition, Wiley (1996).

[18] D. K. Keefer,Bulletin of the Geological Society of America, 95406, (1984).

[19] N. Caine,Geografiska Annale, 6223, (1980).

[20] D. J. Varnes,United Nations Educational, Scientific and Cultural Organization, (1984).

[21] C. J. Chung, A. G. Fabbri,Photogrammetric engineering and remote sensing, 651389,

(1999).

[22] D. M. Cruden ,Bulletin International Association fpr Engineering Geology, 43 27,

(1991).

[23] D. J. Varnes,Landslide Analysis and Control, 17611, (1978).

[24] J. N. Hutchinson ,5th. Int. Symp. on Landslide, 1 3, (1988).

[25] J. N. Hutchinson ,Proc. Geotech. Conf., 1 113, (1967).

[26] J. N. Hutchinson ,Encylopaedia of Geomorphology, (1968).

[27] J. N. Hutchinson ,Geotechnique, 20412, (1970).

[28] J. N. Hutchinson ,J. Japan Landslide Socitey, 211, (1984).

[29] H. Ochiai et al.,Landslides, 3 211, (2004).

[30] A. W. Bishop,Q. J. Eng. Geol., 6 335, (1973).

[31] R. L. Shreve,Geol. Soc. Am. Spec. Pap., 10847, (1968).

[32] T. H. Erismann, G. Abele,Springer, (2001).

[33] E. C. Spiker and P. L. Gori,National Landslides Mitigation Strategy, (2003).

[34] F. V. De Blasio,Rock Mechanics and Rock Engineering, 41219 (2008).



125

[35] S. Smith-Shaller,Review of proposed mechanisms for Sturzstroms (long-runout land-

slides), 185, (1996).

[36] H. J. Melosh,Journal of Geophy. Res., 847513, (1979).

[37] K. J. Hs̈u, Geol. Soc. Am Bull, 86129, (1975).

[38] T. R. H. Davies,Rock Mechanics, 159, (1982).

[39] C. S. Campbell, P. W. Cleary, M. Hopkins,Journal of Geophys. Res., 1008267, (1995).

[40] S. Straub,Particulate Gravity Currents, 31 (2001).

[41] P. Habib,Rock Mechanics and Rock Engineering, 7 , 193 (1975).

[42] J. Goguel,Geothermics, McGraw-Hill, New York (1976).

[43] J. P. Hyslip, L. E. Vallejo,Engineering Geology, 48231 (1997).

[44] F. Soulie, F. Cherblane, M. S. El Youssoufi, C. Saix,Int. J. Numer. Analyt. Mech Ge-

omech., 30213, (2006).

[45] A. Fingerle, S. Herminghaus, V. Zaburdaev,Phys. Rev. Lett, 95198001 (2005).

[46] A. Fingerle and S. Herminghaus,Phys. Rev. Lett., 9778001 (2006)

[47] V. Yu. Zaburdaev and S. Herminghaus,Phys. Rev E, 7531304 (2007).

[48] L. D. Landau, E. M. Lifshitz, A M Kosevich, L P Pitaevskii, Theory of elasticity, (1986).

[49] B. J. Adler, T. E. Wainwright,J. Chem. Phys., 271208, (1957).

[50] B. J. Adler, T. E. Wainwright,J. Chem. Phys., 31, 459, (1950).

[51] B. J. Adler, T. E. Wainwright,J. Chem. Phys., 331439, (1960).
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