Solid-Fluid Transitions in Wet Granular
Material

Dissertation

zu Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen
Fakultaten der Georg-August-Universitit zu Gottingen

vorgelegt von

S. H. Ebrahimnazhad Rahbari

geboren in Tabriz (West Azarbayjan), Iran

Gottingen, 2009



Referent:  Prof. Dr. Stephan Herminghaus,

Koreferent: Prof. Dr. Markus Miler

Tag der niindlichen Piafung :



To:
Ata,
Ana,
Hadi,
and sand castles






Abstract

In this thesis, the stability and the dynamics of wet granmiaterials under shear are explored.
Inspired by the Green’s function approach, a theoreticalehor yielding of a wet pile on
an inclined plane is presented. It enables one to prediatritieal inclination angle at which
the pile fluidizes. The theory is based on the balance of foacting on each particle at the
vicinity of the fluidization and has two major consequendéesst, the theory shows that yield-
ing of a wet pile does depend on the gravitational accetaratvhereas a dry pile fluidizes
for any arbitrary small non-zero gravitational accelenativhen the inclination angle exceeds
a certain value depending on the geometry. Second, theytlsbomws that a wet pile yields
in the bottom layer where the pile touches a non-slip boundérere is excellent agreement
between the theory and extensive MD-type simulations whaeecalculates forces between
each individual pair of particles. The dynamics of drivert particles is studied in two ter-
ent ways. First, we explore dynamics of wet particles in anclehdriven by gravity. Second,
we apply a spatially sinusoidal driving force. In both casesfind discontinuous hysteretic
solid-fluid transitions, i.e. solid-to-fluid and fluid-t@igl transitions and encountered at dif-
ferent forcing of the system. We calculate phase diagraperaéng solid and fluid states and
thresholds for the solid-to-fluid and the fluid-to-solidrisétions. Beside that, we study the
spatial and temporal distributions of drift velocity, gudar temperature, area fraction, stress
tensor, interparticle force etc.






Kurzzusammenfassung

In dieser Arbeit wird die Stabilt und Dynamik feuchter granularer Medien unter der Ein-
wirkung von Scherkiften untersucht. In Anlehung an den Greenschen Formatmsnwird
ein theoretisches Modelif das Brechen und Abrutschen eines feuchten granularerertauf
auf einer geneigten Ebene vorgestellt. Dieses Model erlaine Vorhersage des kritischen
Neigungswinkels, also des Winkels, an dem das Material &chen beginnt. Die Theo-
rie beruht auf dem Gleichgewicht der &fte in der Nahe des Fluidisierungspunktes und hat
zwei weitreichende Folgen: Zaohst zeigt die Theorie, dass das Nachgeben des granularen
Haufens von der @sse der Erdschleunigung alrtgt. Ein trockener Haufen hingegen flui-
disiert im verwendeten Model bei jeder noch so kleinen Ndbeschleunigung, sobald der
Neigungswinkel einen bestimmten Wenberschritten hat. Desweiteren zeigt die Theorie,
dass der granulare Haufen in dedl¢ der Auflage nachgibt, sofern dort eine Randbedin-
gung ohne Schlupf angenommen wird. Die theoretischen Yealgen werden im Detail von
MD Simulationen beéttigt, die auf der Berechnung der individuellenaite zwischen be-
nachbarten Teilchen beruhen. Das dynamische Verhaltefeushten Granulaten, die durch
aussere Kafte angetrieben werden, wird anhand von zwei Modelsystamtersucht. Auf der
einen Seite wird die Dynamik eines feuchten Granulats iereiKanal unter der Einwirkung
der Schwerkraft betrachtet. Auf der anderen Seite wird dangar Haufen eineraumlich
sinusbrming variierenden externen Kraft unterworfen. In bei&afien findet man einen un-
stetigen und hysteretischen dynamischisergang, d.h die @Gsse defusseren Kafte, bei
dem das System von einem fluidisierten in einen festen Zddtaw. von einem festen in
einen fluidisierten Zustanitbergeht, sind nicht identisch. DEbergang zwischen beiden dy-
namischen Zugéinden des Systems wird anhand von Phasendiagrammen Veralndtt wer-
den. Desweiteren werden die zeitlichen uadmlichen Verteilung einer Reihe physikalischer
Grossen, wie z.B. der Driftgeschwindigkeit des Granulats, gtanularen Temperatur, der
Dichte, der mechanischen Spannungen sowie daft&eischen den Teilchen des Granulats,



betrachtet.
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Chapter 1
Introduction

Due to frictional forces and inelastic collisions betweesigs, granular material exhibit a rich
variety of emergent properties [1]. Granular material melgdve like an unusual solid. When
granulates such as wheat or rice are kept in a silo, due tatbe €hains inside the bulk and
the frictional forces between grains and sides of the coatapressure does not depend on
the height of the material. Furthermore, granular matenay behave like an unusual fluid.
Granular material can be fluidized and flow like a liquid. Teck&e such a fluid in particular
its dynamics , it is useful to have a continuum theory of glanonatter. Since granular fluids
are extremely heterogeneous, continuum models are bebagaete Granular matter may also
behave like an unusual gas. Due to inelastic collisions éetwgranulates, in any collision,
the energy is dissipated according to the restitutiorifument. The velocity distribution of the
particles does not follow the Maxwell-Boltzmann distrilautj and one can not carry over the
equilibrium statistical mechanics.

These unusual properties of granular materials tempt sstigrand engineers to study
granular matter. Most studies on granular media have facasedry granular matter, where
the dfects of adhesion due to interstitial fluid have not been takenthe account. In the
real world, however, we often find wet granular material sastbeach sand. Wet granular
materials are cohesive due to the surface tension of thengditjuid [2]. Due to complex-
ity of wet granular matter, in the last decades, many people studied granular material,
avoided the humidity in their studies. Even in some casesekperiments have been done
in vacuum chambers [3] and humidity was seen as a nuisance.cdinplexity of granular
matter increases when the humidity is added into the systém [

Dry sand and water are not pasty. However, when a small antdwwdter is mixed into

1
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dry sand, eventually a pasty material will emerge whichvedldo sculpture a stable sand
castle. A satisfactory theory of wet granular matter hasadaanched in recent years [5—
7]. The stability of a pile of wet granular material is caussdnumerous capillary bridges

between grains which act as glue. When liquid is added to cagiidar matter, in the ideal

case, each grain has a thin liquid layer. As soon as two gtaiuth each other, at the contact
region, a sharp bend forms on surface of the liquid film. Thntrg bend gives rise to a
large negative Laplace pressure which sucks the liquidrdsvihe contact region as long as
the liquid surface acquires a spatially constant mean turwavhich can be interpreted as
equilibrium and a capillary bridge [2]. However, if the amnmbwf liquid is larger than about

7% of the total volume, there no longer will be any capillaridhge and structure of clusters
will grow [8].

Results of the investigations on wet granular material caadmied on Industrial Phar-
macology, food processing, dynamics of snow [9], and appbas on civil engineering.g.
huge and expensive civil work projects like the construttibthe Kansai international airport
on a man-made island in Japan [10]. Most of natural hazauts, as landslides and debris
flows, happen after a period of heavy rain. In these catdsicqghenomena, fluidized wet
granular matter plays an essential role.

We are interested to study the stability and the dynamicseifgvanular matter under
shear [11]. Wet and dry granular matter under shear havetéghmpany groups to investigate
their dynamics, both theoretically and experimentally-{12]. Losertet al. [15] studied
experimentally particle dynamics of dry granular matteai@ouette geometry with an inner
rotating wall. They explored the velocity profile of the srstand showed that the velocity
profile is strongly nonlinear and decreases with distara® the moving wall. They proposed
that such a nonlinear granular flow can be well described bywatdhian fluid with local
temperature and density dependent viscosity. They fousitkitiere may be a useful analogy
between dynamics of granular material and the behavioreoktiper cooled liquids close to
glass transition.

Xu et al. [16] performed molecular dynamics simulations of softtfdoless dry particles
with a moving wall. They studied the influence of packing fiac on the velocity profile, and
found a non-linear velocity profile for high density fract® A critical boundary velocityu)
exists above which the mean velocity profile is nonlinead, laglow which the mean velocity
profile becomes linear.

Although most studies on granular matter under shear atrécted to dry granular matter,
there are a few reports on wet granular matter under shelanlZst al. [11] studied numeri-



1.1. Landslides 3

cally cohesive spheres in 3D under a spatially periodicragidorce. They used particles that
are very soft when they touch each other, but become extyer@ellsive when they overlap

more. They found a solid-fluid transition, when the ampltud the external force field ex-

ceeds a critical value. In their model, dissipation is onle do the capillary bridge rupture
events.

There are still many open questions about the dynamics ofsaeular matter under shear.
How does a wet granular pile yield? Does a fluid-solid tramsiexist and is it hysteretic? How
does the fluidization threshold depend on rupture separatidhe liquid bridges, density
fraction, system size etc? How does viscosity depend onugaatemperature, shear rate,
density fraction etc. How does the inter-particle forcerdisition look like? Is there any
specific symmetry that can describe the stress field in welgmamatter? These question are
our objectives in this thesis.

1.1 Landslides

Landslides are the natural form of fluidization of granulatemials. They are geological
phenomena which include a wide range of ground movement2fll]7 Accordingly, there
are many dterent definitions to landslides. Cruden [22] defines landsdisla movement of a
mass of rock, earth or debris down a slope.

According to Varens [23], it is a downward and outward movetw slope forming ma-
terials under the influence of gravity. Hutchinson [24—-28ksifies slope movements into the
eight categories:

1. Reboundmovements associated with human excavation and nat@mtied valleys.
2. Creep slow downward progression of rock and soil down a low grddpes

3. Sagging of mountain slopes.

4. Rotational and compound slides

5. Topples forward rotation of a mass of rock, or soil about a pivot arda on a hill slope.
6. Falls: free movement of material away from steep slopes suchf#s.cli

7. Complex slope movement
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8. Debris movement of fluidized form: dry and wet debris flow

We are interested in the last category of Hutchinson’s iflaggon. After a heavy rain,
when wet soil becomes too heavy and exceeds its yield sirfisgjizes and produces a land-
slide. Observations show that a fluidized landslide nowyrstlirts with sliding, then fluidizes,
and changes into a debris flow [29]. Liquefaction is an imgatrmechanism in such a land-
slide which fluidization occurs along the sliding surfacesHgip [30] notes that fluidization
can be distinguished from general sliding, which usually &a intact soil mass above the
sliding surface. Huntchinson mentions that:

flow-like motion consequent to fluidization is a neglected étile-understood
group of movements [28].

Furthermore, geological data show that during the flow of @ifted landslide, the highest
shear stresses are concentrated within a thin shear |layatetb deep inside the landslide,
whereas the upper cap remains relatively undisturbed [31, 3

1.1.1 La Conchita Landslide, California

As an example of a fluidized landslide, we report the landslidccurred at la Conchita,
California. These landslides has been well documented by i8eGeological Survey [33].
1995 was an extraordinarily wet season for La Conchita.' Hig.$hows the rainfall at La
Conchita from October 1, 1994, through March 31, 1995. Lade$hiled on March 4, 1995,
and one can count at least 7 heavy rainfalls from Fig.1.1ashg period of 1 month before
the first landslide. Moreover, on March 4, 1995 at 2:03 pm,LtheConchita first landslide
failed and moved tens of meters in a few minutes. Fortunatelyody was injured or killed,
but it destroyed nine houses. On March 10, a subsequensdtdwi damaged five additional
houses in the northwestern part of La Conchita. In particuke extraordinary rainfall of
January 1995 probably was the principal contribution fatddhe landslide movement.

On January 10, 2005, another landslide struck the commuohity Conchita, destroying
or seriously damaging 36 houses. The second landsliderectcat the culmination of 15-day
high rainfall period. Unfortunately, 10 people were buriedebris flow.

The first landslide in 1995, was a deep, coherent slump-#avitihat deformed plastically
and moved slow enough that people could get out of its way. sEeend landslide in 2005
was a shallower fluidization of the very same material intad, highly fluid debris flow.
However, due to the heavy rainfalls before both landslidess, clear why these landslides
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failed, however why and how the same material fluidized twic0 years by fundamentally
different flow behavior, will certainly be the object of futuresearch on physics of fluidized
wet grains.

(a) Ojai Daily Rainfall
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Figure 1.1: (a) Daily rainfall at La Conchita from October 9% through March 31, 1995.
The 1995 landslide occurred more than 1 month after the astrainfall of the season. (b)
Snapshot of La Conchita, after 1995 landslide (nobody wasedi [@3]). There is a trail on
the slope which has a curve shape after the landslide, benmg #or plastic deformation of
the material during the landslide.

1.1.2 Mobility of the fluidized landslides

One of the challenging questions about fluidized landslslesunderstand the mobility of
a landslide [34, 35]. Numerous suggestions have been puafdrto explain the mobility of
large landslides. Some researchers have suggested n&uokdased on lubrication by an air
layer trapped underneath the Iandsl‘ie [31], acousticifiattbn due to high-frequency acous-
tic waves travelling through the granular medium [36], digive forces exerted by powder-
sized grainle?], mechanical quidizati£[40]. Ha@][and Gogue@Z] independently
suggest that there is so much heat generated in the slippage that water will be quickly
brought to the boiling point and transform into vapor. Thassquent build of water vapor
pressurized could act as a lubricant in the shear layer,ittuusasing the landslide mobility.
Apparently there are some mechanisms which reduce frietnmhincrease the lubrication of
a fluidized landslide, but to find the dominant mechanism @seth to construct simple mod-
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1) The highest shear stresses are localized within a |thin
shear layer deep inside the landslide [31, 32].
2) Fluidized landslides occur normally after a period||of
heavy rainfall, hence water content is essential for fl@diz
landslides.

N

Table 1.1: Two common features of fluidized landslides.

els to explore the influence of each mechanism individudfigpired from landslides, in the
current study we construct simple models to understandipiglof wet granular matter.

1.1.3 Modeling a fluidized landslide

Due to complex fractal geometry of soil grains and divergerparticle interactions be-
tween them, it is not easy to create a simple model which tecfluidized landslide [43]s.
There are some attempts to explore fluidized landslidegumimerical experiments. Most of
them are based on continuum models [34]. They do not takeaittount microscopic inter-
actions between the grains. However, we are interested/@afea microscopic model which
allows us to study the influence of interparticle interatsidetween the individual grains on
the behavior of large systems. There are many parametechphdy an important role in
such systemse.g. the shape of the particles, friction, moisture etc.. Foittis one of the
parameters which depends on the shape of the particles basteir material structure. For
instance, sand beads made by water erosion have lessrfribtam many other kinds of the
grains. Moisture is also another important parameter tystiuwidized landslides. When two
neighbor grains are wet, due to the surface tension of li§jlmdat the contact point an at-
traction force acts between neighbors which is hystereéicivhen two grains approach each
other there is no capillary interaction. Finding the comnfieatures of fluidized landslides
could probably help us to know which features play a domimal&. Studying portfolios of
fluidized landslides, one finds that they all have the follggviwo main features: As an exam-
ple to demonstrate impact of moisture on fluidized landsliéfég.1.2 shows an experiment to
induce a fluidized landslide by artificial rainfall has beemed by Hirotaka Ochiagt al. [29],
at Mt. Kaba-san, Japan 2004. Average slope gradient wasa88 the rainfall intensity was
78 mnyh. They found also a curve shape during plastic deformatidgheartificial landslide
(marked by the yellow arrow), similar to La Conchita 1995 Isiik.
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Figure 1.2: A fluidized landslid caused by an artificial ralhf

1.2 Physical model for wet granular matter

1.2.1 Overview

In this section, we present our simplified physical modelohldescribes wet granular matter.
For simplicity, the grains are supposed to be circular 2Rsis our model. We use soft disks
that interact via repulsive forces when they 'overlap’. tdaion, in section 1.2,3 we take
capillary bridge interaction into account.

1.2.2 Repulsive interactions

When two adjacent soft disks touch each other and subseyueverlap’, they interact via
a short range repulsive force. Several methods have begestieg to model the repulsive
interactions. We introduce some of those models in theviatig.

Hard core modelis used in event-driven molecular dynamics simulation®fsarticles.

oo ifriji <R +R;;
F(rij) = ! :
0 Iif rij > R + Rj.

in which R, andR; are radii of particles i and j, ang} is the center to center distance between
between two particles.

Spring-like forcesare a class of repulsive forces that can be used in the fasedmolec-
ular dynamics simulations.
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1 : , : , : , . ,
— Linear spring
— Hertz force
— Non-linear spring
Hardest
L
)
Q0.5 -
o
L
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0 L L L L L L L L .
0 0.2 0.4 0.6 0.8 1
r /(R+R))
ij i

Figure 1.3: Repulsive interparticle force as a function efriascaled distance. The blue curve
shows the nonlinear spring force. The linear spring de@ibtethe red curve and the black
curve shows the Hertz force. Y axis (force) is rescaled orgthe

F(ri)) = eR+R—1j)* rj<R+R
;= 0 rij > R + R]

whererj; is the center to center distance between particles, vitindR; are the radii
of the particles i and j. The exponemt= {0.5,1, 1.5} correspond to nonlinear spring, linear
spring, and Hertzian force respectively. The radius depetprefactoe = A-(R-R;)/(R+R;)

and A is a constant.

Schultz’s Forceis another type of the repulsive forces [11]. It is given by:

-13 -1 -13 -1
U(r”):{éf +E - 156 1) iiiﬁ

where¢ = rij/(R + R;), and&, = 1.05. This model is a mix of repulsive Lennard-Jones and
repulsive spring. When two particles overlap the springdascdominant and as one decreases

the particle indentation, the first part will dominate.
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Figure 1.4: Formation (left) and rupturing (right) of a ligubridge. Top-left: two wet grains
are approaching. The liquid films depicted by blue thin layan the surface of two grains.
Left-center: two wet grains touch each otheBottom-left: a capillary bridge forms at the
contact region.Bottom-right : when two grains are pulled out, a pendular bridge forms.
Top-right : capillary bridge ruptures as the separation between tamgexceeds the rupture
separatiors,.

1.2.3 Capillary bridges

When a wetting liquid is added to granular material, a thimitigfilm forms on surface of
each particle. As soon as two adjacent grains touch each atBbearp bend in the liquid film
at the contact region results to a high negative Laplacespres Due to the negative Laplace
pressure in the contact region, most of the liquid in the filith be sucked into the contact
region and eventually a capillary bridge will form. The pess of formation of a capillary
bridge is shown in Fig.1.4.

The capillary attractive force between two wet grains is mseguence of interfacial ten-
sion of the liquid, as well as theftierence of pressure between the liquid and the gas phase.
Subsequently, a liquid bridge forms and entails to an dtix@torce between particles as soon
as two adjacent grains touch each other. The force switcfiess dhe capillary bridge rup-
tures. This happens at a limitftBrence being larger than the separation at which the bridge i
formed. Furthermore, the critical separation depends etidid content in the system. Ex-
periments prove that the attractive liquid bridge forcerdases exponentially with increasing
the separation between the grains. It was recently showmbleset al. [44] that the capillary
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Figure 1.5: Top-left: capillary bridge force as a function of the distance betwparticles.
1: two grains approach each other. 2: as soon as they touthottaer a capillary bridge
forms and entails to an attractive force. 3: the force dem®aarticles are stretched. 4:

the force switches f6 as the capillary bridge ruptures. At the eBgss = fosc F(r)dr is
dissipatedBottom-left: the particle energy as a function of the distan@ep-right: capil-
lary bridge force versus the distance in the minimal capillmodel in which the capillary
force is constant as two disks are stretcHgottom-right : particle energy versus the distance
in the minimal capillary model.

force can be cast into the form:

F(r) = —mysVRiR:[exp(Ar + B) + C] (1.1)

whereR; andR; are radii of the contacting spherd® (< Ry), ys is the liquid surface tension,
and r is the particles separation. A, B, and C are the fittingipaters and function of the
liquid volumeV, and the contact angle

Formation and rupturing of a capillary bridges is illustehin Fig.1.5-left.

One can simplify the capillary interaction, which is a fuoatof distance between parti-
cles, to a minimal force that does not depend on distancedegtgrains. Fig.1.5-right, shows
this simplified capillary model. In the minimal capillary uhel, the capillary bridge force is
assumed to be constant as the capillary bridge is stretdriesl.model has been successfully
used to describe the dynamics of wet granular material [444pb
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| Symbol | Description
< d >=average diameter of the disks | Length unit
mass over area of each disk Mass unit
fug=minimal capillary force Force unit

Table 1.2: The rescaled units of simulations.

1.2.4 Rescaled units

Here, we introduce the rescaled units that will be used fathal simulations in this thesis.
The units of simulation is briefly listed in tab. 1.2.

We choose the average diameter of particles as the unit tdrilgéh, the minimal capillary
force as the unit of the force, and the mass over area of eatitbl@as the unit of the density.
This means that mass of each particle equals its corresppadea.

1.2.5 Physical quantities

The best mathematical tool to study the stress field istress tensdr[48]. The stress
tensor is composed of two parts:

1. Kinetic part: It characterizes the thermal kinetic energy transpontéal different de-
grees of freedom by the thermal motion of particles.

2. Static part: It characterizes the amount of the momentum transportethdynterac-
tions between particles. The static part increases wheartee fraction is increased

such that there are more contacts.

The stress tensor in 2D can be written as:

_1 Yivi, — Uy)? 2i(vi, = U (v, = Uy) ) N }( 2i<i TixFiiy Zi<j TijxFiiy
Al i, = Ud(vi, - Uy) Yi(vi, = Uy)? Al ZiciniyFiie  Zie fiiyFify
(1.2)
in which; is the velocity of particle iU, andU, are projections of the drift velocity along X
and Y directionr;; = rj —r;, Fjj is the interparticle force between particles i and j, and A is

area of the region where the stress tensor is measured.

1Derivation of the stress tensor is given in Appendix sect.C.
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The granular temperatures defined as the random kinetic energy of particles. Heee, th
randomness means that the drift velocity is subtracted frelocity of each particle, so that
the temperature can be written as:

N
To=)
i=1

wherem is mass of particle i, andy andvi, are components of velocity of particle i along X
and Y directions respectively.

NI =

M(< Vi > = <Vix > + <V > — < vy >?) (1.3)

1.3 Numerical implementation

Due to the large number of the particles within a typical gtansystem, and the complicated
interparticle forces, the equation of the motion of eachiglarcan not be solved analytically.
Numerical methods must be implemented. Our numerical imptgation is based on calcu-
lating trajectories of the center of mass of each partidenfiNewton’s equation of motion
individually on each patrticle. The calculation of the tc@ies of all particles of the system,
is calledMolecular Dynamics. The idea of the Molecular Dynamics was pioneered in 1957
by Adler and Wainwright [49] [50] [51] who attempted to siraté molecular gases and simple
liquids [49]. Molecular Dynamics simulations of granulgsgems are very expensive due to
short range interactions of the particles [52]. There a®kimds of the molecular dynamics
simulations:

1. Event-driven Molecular Dynamics: in systems where the typical duration of a colli-
sion is much shorter than the mean time between two sucesssliisions in the whole
system, event-driven Molecular Dynamics ti@ent. Hence, the system should be di-
lute like a granular gas [53]. The algorithm is focused ondakeulation of the next
collision, and thus the forces in the system has been non tiake the account. Event-
driven Molecular Dynamics has been used to study free cgaolinlry [54] and wet [55]
granular gas.

2. Force-based Molecular Dynamicsin systems where the typical duration of a collision
is much larger than the mean time between successive oabisiorce-based Molecular
Dynamics is €icient. It means that the system is densely packed and gartaoke
in enduring contact. In this case, an event-driven algorithust fail. Furthermore,
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in force-based Molecular Dynamics, one can include extdamee fields like driving
force in the system. Force-based Molecular Dynamics has pew/en as a powerful
method to study dry [56—59] and wet [60] [61] granular matteder shear.

Accordingly, the force-based molecular dynamics is theho@tof choice to simulate
dense granular matter which is our aim. We developed thefbased molecular dynamics to
explore the physics of wet granular matter under shear. Tonme the molecular dynamics
simulation, one should solve the Newton’s equation of notidewton’s equation is a second
order ordinary dterential equation:

d’ri(t)y 1
e = m D Fi (1.4)
J
where}; Fj; is the force between particlésand j, andm is mass of particle. During the
preparation of the initial state, a viscous frictiBg.g is applied individually on each particle
to dissipate the injected energy:
Farag = —bV; (1.5)

a'virtual fluid’ in the background being proportional to thelocity v; of the disks. The con-
stantb describes the strength of the damping and is usually dett0.1

A standard method to solve such an ordinarffestential equation is the Gear method
[62, 63]. The advantage of the Gear method is that forcesaoelated once in each time
step. In the next section, we will explain the method on dletai

To solve the euq.(1.4) for a system consistMgarticle during calculation of the total
forces acting on each individual particle, we deal witd’problem. To decrease that number,
the so-called linked-cell method has been implemented [BR2this method, the simulation
box is divided into a regular lattice &l x M cells. Particles in each cell interact only with their
neighbor cells. This decreases the computatiofialteto a linear dependence of the number
of particlesN. Since interactions in granular material are short rarige j¢ a suitable method
for such projects. It is clear that the length of the cellsudtitve smaller than the diameter of
particles.

To measure the physical quantities, the simulation boxvgldd into rectangular bins
along the direction of the flow. The width of each bin equalerie average particle diameter
and its length is equal to the system size. Accordingly, thealer of the bins equals the
system size. Once the system has reached the stationayte@ameasurements are done in
each bin within a long simulation time. At the end of the siatigns, a spatial profile can be
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obtained by averaging over the temporal profiles during teasarements. The final profiles
are calculated by averaging over 10000 profiles during a gomglation time.

1.3.1 5th order Gear method

The idea of the 5th order Gear method is to extrapolate swolsifior each particle as an initial
guess from the Taylor expansion, and correct the predicéakes according to fference
of the predicted force and the real force which can be catedldirectly. If the diference
becomes zero then the predicted values are accepted amidhafgproceeds to the next time
ste&. Otherwise, the algorithm corrects the solution in the Guimestep.

Predictor step: Given positions, velocities etc. of particles at titpg/e attempt to obtain
the positions, velocities etc. at the time 6t. Due to continuity of the classical trajectories of
the particles, one can use the Taylor expansion to extrggtbla initial solutions:

it + 6t) = ri(t) - C(0) + Vi(t) - C(1) + a(t) - C(2) + bi(t) - C(3) + Gi(t) - C@).  (1.6)
Vit + 6t) = Vi(t) - C(0) + a(t) - C(1) + bi(t) - C(2) + G(t) - C(3). (1.7)

a(t + ot) = a(t) - C(0) + bi(t) - C(1) + (1) - C(2). (1.8)

bi(t + ot) = bi(t) - C(0) + G (t) - C(L). (1.9)

Gi(t + ot) = ¢ (t) - C(0) (1.10)

in which, C(i) = dt/i!, anddt s the integration time step, a, b, ¢ are the first, second, third,
and fourth derivatives of the position r. Therefore, in stisp, using the Taylor expansion, we
speculate the position and its derivatives at timest, giving the position and its derivatives
at the timet.

Calculation of inter-particle forces: In this step we calculate real total force that act on
each particle i:

2In reality, it never happens
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Cr Cv Cb CC
G(0)-C(2) G(1)-C(2)/C(1) | G(3)-C(2)/C(3) | G(4)-C(2)/C(4)

Table 1.3: Cof#ficients of the corrector step.

ﬁa+&):§jﬁj (1.11)
]

Where f; is the total force that acts on particle i at tirhe 6t, and }}; Fj; is @ sum on
all neighbors j around particle i interacting by forEg. To give a feedback into the system,
difference of the real acceleration and the predicted acdelesttould be calculated.

Feedback= A;j = fi(t + 6t)/m — a(t + 6t) (1.12)

If Aj = 0then we accept the extrapolated values and proceed toxhgme step. Fon\; # 0,
we correct the predicted values according toshe

Corrector step: In order to correct the initial extrapolated solutiong teedback quantity
A is used as:

ri=ri+A-C. (1.13)
Vi =V, + A - C,. (1.14)

a = fi/m. (1.15)
bi = b + A - Cy. (1.16)
G=6+A-C. (1.17)

The codficientsC; are given by: while the Gear cﬁ?mients@ G(i) equal:
To summarize the Gear method, a flowchart of the algorithrkasched in Fig.1.6.
A major advantage of the Gear method in comparison with theramnethods such as

3Please note that the Gear fteents are dferent for diferent ODE’s
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G(0) G(1) G(2) G(3) G(4)
19 3 1 I T
120 4 2 12

Table 1.4: The Gear cfigcients for second order ODE's.

Next time step

Force calculation

K
Predictor
e cauon

A#0
Feedback

A>0

Corrector —

Figure 1.6: Flowchart of the 5th order Gear method illusttat
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Runge-Kutta method [62] is that one should calculate therttezparticle forces only once.

1.3.2 Accuracy of the Gear method for diferent interaction forces

In order to check the numerical accuracy of the Gear methedexplore the energy conser-
vation in a gas of soft discs that interact via short rangellsge forces as described above.
Fig.1.7 shows the standard deviation of the total energlg@tystem as a function of the time
step dt. We explore the energy conservation for both mopedse and bidisperse discs in
which the ratio of the radii is 1.4. The number of the parsaeN = 100. They are equally
distributed between large and small particles for the pelise case. The monodisperse and
bidisperse particles are marked by M and B respectively.ifitegparticle forces are:

e Schultz’s potential
e Lennard-Jones (LJ)
¢ Non-linear spring where the prefactor is set fo= 10°

e Hertz where the prefactor is set o= 10°

For all systems the energy conservation is well observee. fllictuationsAE disappear
like a power law with decreasing the time st&fpof the algorithm AE ~ At”. The exponent
v is noted in the graph. Furthermore, Fig!1.7 proves thatldes®f the spring forcese. the
Hertz or the nonlinear spring, are the most stable forcethfsralgorithm.
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-/ A—A B, Schultz, expo.=0.16778 i
w—v M, Schultz, expo.=0.24686

15 M, LJ, expo.=1.7594 ]
94— B, LJ, expo.=1.7987
A—A M, Nonlin.-spr., expo.=2.3651
o B, Nonlin.-spr., expo.=2.2110]

M, Hertz, expo.=2.9039
v—v B, Hertz, expo.=2.9868

4 -3

Ln(dt)

Figure 1.7: Logarithm of the average standard deviatioh@total energy as a function of the
logarithm of the time step dt. The simulation is done for boitnodisperse and polydisperse
discs. A power law scaling behavior is found. The correspunéxponent of each curve is

written inside the graph.



Chapter 2
Stability of a granular pile

In this chapter we explore the stability of granular pilesie@an prepare fierent kinds
of granular piles based on the coordination numbef the particles. There are two main
categories of granular piles [64, 65]:

1. Isostatic pile: The coordination number of each particle equals two tinfiéseodimen-
sion of the systera = 2d.

2. Hyperstatic pile: The coordination number of each particle is greater thartimes of
the dimension of the system> 2d.

Accordingly, in an isostatic pile of two dimensional mongukrse disks, the coordination
number is 4. In a hyperstatic pile of such a system, the coatidin number is greater than 4.
The hexagonal arrangement of monodisperse disks is an éxafng hyperstatic packing. If
one make a regular gap between disks the pile will becomewdareigostatic pile.

2.1 Motivation

We start with snapshots from simulation of a simple modelafalry isostatic pile con-
sisting three layers of monodisperse disks (Fig.2.1). Tegvb disks (lowermost row ) are
immobilized in order to mimic a rough bed and the red diskssatded in the valleys between
the brown disks resembling a hexagonal packing. There greéaregaps between disks given
by 6 and each disk has four neighbors. The disks are frictiordadsnteract via a nonlinear

1Pouring frictional spheres into a vessel, often ends up avltlgperstatic packing.

19
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spring force when they overlap. The snapshots are parts afci honger pile in the direc-
tion parallel to the wall. The gravitational acceleratisryi= 1, and the inclination angle is
6 = 80C°. Figl2.1-bottom shows a snapshot of the pile configuratioimae t = 3.5 where
the pile is being fluidized. By that time all the red disks mowewtaneously. Although the
symmetry of the pile is conserved, and disks no longer toach ether.

Let’s take exactly the same system as it is already descibEdy.2.1 and add capillary
bridges at the contact points of disks in order to make the wiét. In Fig.2.2 top-left a
wet pile consisting of three layers and capillary bridgetsveen them at = 0 depicted. The
gravitational acceleration gg= 1, and the inclination angle &= 80°. Fig.2.2 top-right shows
a snapshot of the systemtat 1.2 where the pile started to move and the supporting capillary
bridges in the deepest layer are significantly stretched) 2 bottom-left the supporting
capillary bridges ruptured such that each disk in the dedpgsr keeps its contact with the
brown disks only via a single capillary bridge. Fig./2.2 battright is snapshot of the system
att = 7 where the pile is flying. Since some of disks in the middlesfdyave five contacts,
isostaticity and periodicity of the pile are broken.

Accordingly, there is a dramatic ftierence between physics of a wet pile on an inclined
plane and that of the dry pile. In a dry pile all layers of thie fiuidize simultaneously when
the pile is tilted. In the wet case, the fluidization startthe deepest layer. Why do wet piles
break close to their support? Can one quantitatively préldidization threshold of wet piles?

2.2 Theoretical formalism

2.2.1 Critical angle

As explained above, we choose a pile in which there are regalass between adjacent
disk in a layer. In Fig.2.3 we zoom in one of the red disk in thstfilayer. The disk is
supported by two brown disks. Since disks are monodisperse,can draw an isosceles
triangle that connects the centers of the disks A, B, and Chének triangle). The length of
the sides of the triangle areR2R+ 6, 2R) respectively. The critical angl® is defined as half

of the ABC cone, such that:
R+ 0.56

2R
In the next section we will show that if an external foregg. gravity, acts on the red disk, it
will not move and will be stable as long as the force pointseehere inside the ABC cone.

sing, = (2.1)
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000000000

IITIIIIIXIITITX
9o sieisivisielelel

t=3.5

Figure 2.1: Snapshots taken from simulation of a dry is@sfate on an inclined plane at
different simulation times. The radius of each particlRis 0.5, the mass of each disk is
m = n - R?, the gravitational acceleration g = 1, the regular gap i§ = 0.125, and the

inclination angle i® = 80°.
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t=0 X t=1.2

LI LD LD Il
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Figure 2.2: Snapshots taken from simulation of a wet isiwsfate on inclined plane at
different simulation time. Radius B= 0.5, the rupture separation & = 0.1, the capillary

bridge force isf g = 1, the mass of each disk s = r - R?, the gravitational acceleration is
g = 1, the regular gap i& = 0.125, and the inclination angle és= 80°.
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Figure 2.3: The critical anglé; in a system at which grains are separated from one another
by a regular gap and disks in each layer sit in the valleys of the supportirsgsli

2.2.2 Isostatic dry pile

Let’s start with the simplest possible configuration for ke pif dry disks. Fig.2.4 shows
sketch of a monodisperse pile in which the red disks areeskittl valleys of the immobilized
brown disks. The regular gap between disks in a rosy @and the inclination angle is smaller
than the critical anglé < 6.. There are three forces acting on each red particle as fellow

1. mg: the gravitational force
2. Fy: the repulsive force from the right side supporting disk
3. F,: the repulsive force from the left side supporting disk

Because the direction of the inclination of the pile is nortoahe plane, the right brown
disk in Fig.2.4-top has to support more than the left ones #iu> F,. In order to have a
static equilibrium in the pile, the forces acting on the reskdl should balance:

F1+F2+mg:0 (22)
If one projects equ.(2.2) into the parallel and verticagdiions to the inclination plane:

(F1 + F,) cosh. = mgcosh
(F1 — F2) sinf; = mgsiné
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Figure 2.4: An isostatic pile of monodisperse dry disks omahned plane. The brown disks
are immobilized and the red disks are settled in the valldythe brown disks. A regular
gapd between disks in each row is implemented to make an reguatasc packing. The
inclination angle is smaller thaf.
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one can calculate; andF; as a function of the gravity and the inclination angle:

F1 = mgsin@. + 8)/ sin 2.
F, = mgsin(@. — 6)/ sin 29,

This shows that a8 — 6., F; increases an#f, decreases and approaches zerod At6,
the left side brown disk no longer suppois = 0, and the right side brown disk fully supports
the weight of the red disk, = mg

Fi1=mg

Due to periodicity of packing in X-direction, this picturetrue for all the red disks in the
first layer. Therefore, & = 6. the system is at vicinity of the fluidization. In conclusiame
sees that the critical angtg is related to stability of the pila,e. for 6 < 6. the pile is stable
and foro > 6, the pile fluidizes.

Let us consider a similar pile with an arbitrary large numbidiayers. Each particles in a
layer is settled in the valley of two supporting disks in tbeér layer. In the bulk of the pile,
each particle has four contacts with the surrounding disks.

Figl2.5 shows the forces acting on the red disk at the ceritkere are four repulsive
forces acting on the red disk as well as the gravitationaleforn the static equilibrium all
forces should balance as:

Fi+F,+F3+Fs+mg=0 (2.3)

The angles oF,, F,, F3, andF, with a line vertical to the inclined plane afg n—6., n+06,
and-6.. Consequently the projection of equ.(2.3) into the paraltel vertical directions to
the inclination plane are:

(F1 — F3 + F5 — F4) cosf. = mgcosd
(F1 — F3 — (F2 — F4)) sing, = mgsing
Lets suppos€’ = F, — FzandF” = F, — Fy:

(F" + F”)cosf. = mgcosh
(F" = F”)sin6; = mgsiné
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Then:

F’ = mgsin(. + 6)/ sin 2,
F” = mgsin@. — )/ sin 2,

and ifo = 6.:

F' =mg

F"=0
the critical fluidization point. does not change as one increases the number of layers. For
0 > 0. there is a forcd-, — F4 acting away from the wall, which triggers fluidization.

Figure 2.5: Forces acting on each disk in bulk of a pile cdimgisan arbitrary large number
of layers depicted. The inclination angle is smaller than

In conclusion, we analytically showed that fluidization afrg pile occurs if the inclination
angle exceeds the critical angle Note that the fluidization point is independent from two
physical parameters:

1. The number of the layers in the pile.

2. The gravitational acceleration.

This means that fof < 6. the pile does not fluidize irrespective of the strength ofgheevi-
tational acceleration. On the other hand,for 6. the pile fluidizes for any arbitrary gravita-
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tional acceleration. In the next section, we will show tlas picture completely changes for
a wet pile.

2.2.3 Isostatic wet pile

To study stability of a wet pile we start again with the singplpossible isostatic pile of
monodisperse disks. Fig.2.6 shows a sketch of the systesistinig of one layer of monodis-
perse disks prepared on a layer of immobilized brown diskerd are capillary bridges at the
contact points of the disksi is the gap between disks in each layer. Due to support of the
capillary bridges at the contact points of the disks, the will still be stable if the inclination
angle exceed&. Ford > 6. the repulsive force at equ.(2.2) can be substituted by aactitte
force f coming from the supporting capillary bridge (Fig.2.6).

If in equ.(2.2) one substitutes F I and f byF, at the vicinity of the fluidization where
g = g., those three forces should balance:

f+F+mg.=0 (2.4)
leading to the following:
_Fsin(26,)
“"m sin@ - 6.) (2:5)

Therefore, for a given capillary bridge force, there is aregponding critical gravitational
acceleration which makes the capillary bridge unstabld the fluidization is caused by rup-
turing of such an unstable capillary bridge. In order to ustésd the equ.(2.5), we notice
thatmg. - sin(6 — 6.) is a force that pulls the disk out in the direction normalhe tine that
connects the red disk to the supporting disk at the right $\deordingly, equ.(2.5) gives rise
to a reasonable scaling law that can be understood by thecphyrguition.

Now the next question is that what happens if one adds moeedaf the red disks? Since
the repulsive force from the brown disks increases lineaitls the number of the red layers,
to balance equ.(2.4ng. should decrease. We expect that the critical gravitatiforake is
proportional to the inverse of the number of laykers

Cf sing
“1-m sin@-6.)

Qe (2.6)

It implies that the critical gravitational acceleratiomtimakes the capillary bridges unstable,
decreases as one approaches to the lowermost layer. Agglyrdhis shows that a wet pile
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Figure 2.6: The brown disks are glued to the bottom in ordemply non-slip boundary
condition. At the vicinity of the fluidization, there are #®& forces acting on each red disk that
should balance. An attractive force from the supportinglizayp bridge f, a repulsive force
from the supporting disk, and the gravitational force of goéden disk. is the inclination

angle, and). is the critical angle.
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yields in the bulk close to the wall. However, in a dry pilepyaby particles on the surface
of a pile are subject to move. This result completely chargesway of thinking about
fluidization of granular piles. We will check the equ.(2.§)dxtensive numerical simulations
in the following sections.

In conclusion, the fluidization in a wet granular pile is cadi®y pinching & the capillary
bridges in deepest layer. In contrast, in a dry pile fluidaabccur simultaneously in all the
layers of the pile as soon as the critical angle is exceedrd.sBes that the fascinating aspect
of capillary bridges in a granular pile is not only that ona saulpture a statue, but it gives rise
to a fundamentally dilerent physics that can be applicable to our understandiagadénches
and landslides.

2.3 Numerical simulations of monodisperse disks

2.3.1 Anisostatic wet pile

In the previous section, we presented a theoretical mod#dsoribe the stability of a wet
isostatic pile. In the current section, we check this mogehbmerical simulations. Fig.2.7-
left depicts the fluidization threshold for one, two, andethtayers of monodisperse disks for
a pile withg, = 34.22°. The red, blue, and violet lines show the theoretical pteaticand
the solid points are the corresponding simulation data. Wedn excellent agreement of the
theoretical prediction and the simulation data. To showdingations of the simulation data
from the theoretical line, one may move all the parameteeg)in(2.6) to one side as:

sin@ — 6;) 1

sind, ETT 2.7)

wherel is number of the layers. The right hand side of equ.(2.7) isrsst@ant number in-
dependent from the tilting angle. Therefore, if one plots lgft hand side of equ.(2.7) for
each inclination angle one can have a chance to see theidasiaf the simulation data from
the theory. Fig.2.7-right shows sih{ 6.)sin 20.mg. versus the inclination angle. For one,
two, and three layers the theory predicts 1, 0.5, and 0.388% sees that deviations of the
simulation data from the theoretical lines are indeed verglb
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Figure 2.7: Fluidization threshold of a wet isostatic piasisting one, two, and three layers
of monodisperse disks. The solid points show the simuladata, and the solid lines show
the theoretical prediction. We find a perfect agreement@simulation data and the theory.
The radius of each particle B= 0.5, the rupture separation® = 0.01, the capillary bridge
force isf g = 1, the critical angle i8, = 34.22°, the regular gap i8 = 0.125, the system size
L = 18, and the mass of each diskis= 7 - R?.

2.3.2 Anisostatic wet pile with height disorder

In this section, we introduce disorder in the system andysitisdnfluence on the fluidiza-
tion threshold. One of the easiest ways to implement disondée system is by breaking the
translational invariance of the system. To that end, we asldgle disk on top of the pile and
study its influence on the fluidization threshold. Fig.2B-shows the sketch of the system
consisting of three complete layers as well as one singleatigop of the pile. Each layer has
16 disks with regular gap$ = 0.125. Surprisingly, the simulation data in Fig.2.8-bottam f
the fluidization threshold lie perfectly on the theoretiaé for 4 complete layers Therefore,
when the pile is isostatic whether one adds a single disk protohe pile or one fills up the
whole layer, the fluidization threshold shifts to a one higlager. Adding a single disk on
top of an inclined isostatic pile can trigger fluidizationheél'explanation for this observation
is straightforwardThe pile yields at the point where 4 disks are pulling.

In order to increase the disorder in the system, we make atatsopile with a complicated
height profile. A sketch of the system depicted in[Fig.29-to

One sees that the system consists 6 complete layers as welhasmplete layers, and
there are regular gaps between digks 0.125. The 7th incomplete layer has two holes, and
8th incomplete layer is just a single disk. If our observaiio Fig.2.8 holds in general, one
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Figure 2.8: Fluidization threshold of an isostatic pile sisting 3 complete layers as well as
a single disk on top of it depicted. The black circles are theukation data and the red line
shows the theoretical prediction for 4 complete layers. démdations are due to the thermal
motion of particles. The radius of each particl&is 0.5, the rupture separation® = 0.01,
the capillary bridge force i§ g = 1, the critical angle i8, = 34.22, the regular gap = 0.125,

and the mass of each diskris= r - R2.
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should expect that the fluidization threshold of this sysliesion the fluidization threshold of
8 complete layers. In Fig.2.9-middle the fluidization thrasl of the system is presented. The
black circles, which are the simulation data, lie on the tagcal prediction for 8 complete
layers. One can see the deviations from the theoreticalniaee clearly in Fig.2.9-bottom
where the theory predicts a horizontal line at heigl8.1The compressibility of the system
results to thermal motion of particles when the gravitadidarce acts, and the thermal motion
entails the deviations of the simulation data from the thgcal prediction. This example
proves that Fig.2.8 is not an exceptional case. For isospatkings adding a single disk
on top of a complete layer has the sanfieet as adding a complete layer. The fluidization
threshold of both cases will be identical.

2.3.3 A hyperstatic wet pile

When the coordination number in a two dimensional packing ohodisperse disks is
greater than 4 the packing is hyperstatic [64]. Since eadicfgin a hyperstatic packing has
more than 4 contacts, the force distribution in a hyperstagicking becomes more sophis-
ticated than the force distribution in a static packing. ®twee force distribution caused by
configuration of the pile fect the stability of the pile? To answer that question, we enak
initially a hyperstatic pile by setting the gap between digk zero and study the fluidization
threshold in the pile. While the gap between disks in each swero the number of the
contacts for each particle in the bulk will be 6 such that tie i hyperstatic.

Fig.2.10-left shows the critical gravitational accelaratversus sine of the subtracted in-
clination anglej.e. sin@@ — 6;), in which the radius of each particle B = 0.5, the rupture
separation isS. = 0.01, the liquid bridge force i g = 1, and the mass of each disk is
m = - R? = 0.7853. The black circles show the simulation data of the fhaition threshold
for one layer of the wet disks, and the red line is the corredpg theoretical prediction. Sub-
sequently, the black squares and black diamonds are theé#tiah points for two and three
layers respectively. The blue and violet lines are the spwading theoretical lines. Although
in the theory for stability of a wet pile it is supposed thag thile is isostatic, we still find a
perfect agreement between the theoretical predictionifosatic pile and the numerical sim-
ulations for a hyperstatic pile. Fig.2.10 proves that oor@e picture of the balanced forces
at the vicinity of the fluidization might also be useful to gie the fluidization threshold of a
hyperstatic wet pile in dierent inclination angles. When the pile is translationallyariant,
the forces acting on each patrticle in a row from its neighldtee same row do notfact the
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Figure 2.9: Fluidization threshold of 8 incomplete layeran isostatic pile. The black circles
are the simulation data for the system and the red line istherétical prediction for 8 com-
plete layers. The radius of each particleRis= 0.5, the rupture separation & = 0.01, the

capillary bridge force id g = 1, the critical angle i¥, = 34.22, and the mass of each disk is
m=n-R.
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stability of that grain.
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Figure 2.10: Fluidization threshold for one, two, and thegers of the wet disks in a hyper-
static wet pile. The solid points show the simulation data] the solid lines show the theo-
retical prediction. The radius of each particléRis= 0.5, the rupture separation & = 0.01,
the capillary bridge force i§ g = 1, the critical angle ig. = 30°, and the mass of each disk is
m=n-R?=0.7853.

2.3.4 A hyperstatic wet pile with height disorder

We showed that in a hyperstatic pile with translational iamce the simulation data,
corresponding to the fluidization of the pile, sit on top oé ttmeoretical prediction for an
isostatic pile. By adding one single disk on top of the pile ek the translational invariance
and explore whether the simulation data fit on the theoreticae ofl + 1 layers. We choose
| = 3 and add one single disk on top of the pile. [Fig.2.11-lefirsghthe fluidization threshold
of the system. The solid circles illustrate the simulatiatedand the red line is the theoretical
prediction for only 3 complete layers. In Fig.2.11-righteosees that the simulation data
are slightly below the transition line for three layers. $hin a hyperstatic pile without
translational invariance, the additional contacts tengdupport the particles and make the
pile more stable. The stability threshold remains closéneovalue for 3 layers rather than
threshold for 4 layers.
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Figure 2.11: Fluidization threshold of a hyperstatic pibmsisting of 3 layers as well as one
single disk on top of the pile. The black circles show the ¢ation data, and the red line
depicts the theoretical prediction for three layers. TiBusof each particle iR = 0.5, the
rupture separation iS, = 0.01, the capillary bridge force i§ g = 1, the critical angle is
6. = 30, and the mass of each disknis= 7 - R? = 0.7853.

2.3.5 Rupture length and stability of a wet pile

Our theoretical considerations on the stability of a wee gite based on the balance of the
forces of each disk in the pile with its supporting disks. Tapture separation of the cap-
illary bridges, which is related to the energy consideratjoshould not féiect the fluidiza-
tion threshold. To check that fact we performed numericalusations for ten dterent rup-
ture separationS, = {0.01,0.02 0.03,...1.0}. Figl2.12 shows the fluidization threshold of
an isostatic wet pile consisting of one, two, and three ykapicted by the red, blue, and
brown colors respectively for two filerent rupture separatid®. = {0.01,0.1}. We plotted
mg: sin(@ — 6.)/ sin 29, versusy. The data corresponding & = 0.1 are shifted by 90 For
one layemg. sin(@ —6.)/ sin 2. = 1 and simulation data fd&. = {0.01, 0.1} illustrated by the
circles and squares respectively. One sees that both datkesen the theoretical curve (the
red curve). For two and three layers also the data sets pomdsg for two diferentS, lie

on the theoretical lines. In conclusion, the rupture sdmaraloes not change the stability of
aregular pile.
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Figure 2.12: Fluidization threshold for one, two, and thiegeers of an isostatic pile for two
different rupture separatioss = {0.01, 0.1}.. The data corresponding & = 0.1 are shifted
by 9¢°. The Y axis ismg.sin@@ — 6.)/ sin 2. and the X axis i¥. The solid symbols show
the simulation data and the solid lines show the theoreimal The radius of each particle is
R = 0.5, the rupture separation & = 0.01, the capillary bridge force i g = 1, the critical
angle isf. = 34.22°, and the mass of each diskis= = - R? = 0.7853.

2.4 Numerical investigations of the stability of bidisperse
piles

In the previous section, we started with the simplest ptssibnfiguration of a granular
pile, i.e. monodisperse disks in an isostatic and hyperstatic pacKtep by step by adding a
few disks on top of the pile we introduced disorder in the eystIn the present section, we
consider a much more disordered pile consisting of bidspeisks. In order to avoid crys-
tallization, we use bidisperse disks with a ratio of raduiaioto 14. The material properties
of dry bidisperse disks have been studied by O’Hern'’s gré@p &nd this type of the systems
have been accepted as a standard system for bidispersesjh&rhich crystallization and
segregation do not occur. The bidisperse soft disks intetadwo forces. A non-linear re-
pulsive spring force acts between two disks when they opeflée particles are wet and we
use the minimal capillary force to model the capillary iaierons.
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2.4.1 Preparation step

Since one can not simply calculate the initial positions difidisperse system in a densely
packed state, one needs a preparation step. To prepare & Brisng we use a two step
procedure:

1. Random sequential addition in each step, a new disk is added at a random position
into the box. The new disk is accepted if it does not overlath ilie other disks,
otherwise itis rejected. Adding new disks will stop oncenlienber of particles reaches
the desired amount. We enforce a restriction that the numibise small disks should
be equal to the number of large J;L.es

2. Sedimentation a vertical force acts on each particle. A viscoelasticéascused to
dissipate the injected energy by gravity.

After the sedimentation step, the disks touching the boteyar are immobilized. Peri-
odic boundary conditions are used in horizontal direction.

2.4.2 Protocol of the numerical simulation

We use the units of the simulation as outlined in chapterctiael1.2.4. The initial sample
is prepared during the sedimentation titgg = 200, at which a linear drag force as outlined
in chapter 1, sectian 3.2, is applied.

At the end of the preparation interval, the sedimented diskisot move.

] Time
Equilibration O< t < 67
Sedimentation 6% t < 133

| Description
9=0,6=0,b=0
g#0,0=0,b=05

Sedimentation 133 t < 200 g#0,0=0,fg=1,b=05
Inclinationt > 200 g#0,0+0,fg=1,b=0
Measurements> 1000 g#0,0+0,fg=1,b=0

Table 2.1: The total simulation time is divided into sevéralke intervals to prepare the initial
state and to measure the physical parameters. The numbartiafgs isN = 200.

After sedimentation of the disks, we tilt the gravitatiof@ice. Depending on the rupture
separationS, there is a well defined critical gravitational force abovkish the material

2In order to avoid crystallization, the number of the largd amall disks should be equal.
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yields (fluidized state). After a relaxation time, the systeeaches a dynamical stationary
state which will further be characterized (chap.3).

2.4.3 Critical angle of a bidisperse dry pile

In order to calculate the critical angle, after the preparaprocedure we tilt the gravita-
tional force, and we measure the critical angle above wiielcenter of mass of the system
runs away. When the capillary bridges are switchgdrm capillary force are acting. Thereby
the critical angle should not depend on the gravitationeékration. Fig.2.13 shows how we
track center of the mass of the system in order to determiregheh it runs away. The initial
position of the center of mass should be aroudd=(9, Y = 9). At the sedimentation period
the center of mass goes down (the red curved arrow shows rinetidn). At the end of the
sedimentation the center of mass reach€é (©, Y ~ 5). The gravitational acceleration at the
sedimentational step tkeq = 0.3 which makes enough pressure to prepare a densely packed
pile. Afterwards the gravitational acceleration is deceated tog = 0.15 and simultaneously
it is tilted. The inclination angld,e. angle between the gravitational force and normal vector
of the plane, i99 = 4°. Because the vertical component of the gravitational acaiba is
smaller thangseq, I.6. gCOS4 < gseq, the center of mass moves a little up after the sedi-
mentation step. Although the pile is not fluidized, the cenfemass moves in the horizontal
direction until it stops at abouX(= 6.065 Y = 9.8). The inset, which is a blow up around the
final position of the center of mass, shows that the centerasisnijiggles around and does not
run away. Therefore, in this configuratioh= 4° is below the critical angle. By increment-
ing the inclination angl® to a slightly larger angle, one can calculate the border éetwhe
jiggling and runaway of the center of mass which marks thgcatiangle.

The initial configuration of particles at the first step of fhreparation procedureg. the
random sequential addition, can be changed by the seed@riiem number generator in the
program. Accordingly, by changing the seed, the configomatif the immobilized particles
at the bottom layer will be also changed. On the other hanch eanfiguration is related
to a certain critical anglé.. In Fig.2.14 we show the cumulative probability of the ciati
angled. calculated for simulations on 20ftkrent configurations. We probe angles between
0° < 8 < 10, and that interval is divided to 50 equidistance intendls= 0.2°. The red
and blue colors show the cumulative probability for 200 af@ d8isks respectively. In both
cases, the critical angle lies almost certainly betwe@h 4 6. < 8.6°, and maridian of the
probability for both curves lies #&"®* = 5.8°. Hence, the critical angle of the system does not
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Figure 2.13: Path of the center of mass of the system. Thaaiwn angle i) = 4°, the
gravitational acceleration ig = 0.15, the number of disks I8l = 200, the system size is

L = 18, and the capillary force i§ g = 0. The inset shows how the center of mass jiggles
around at the final position.
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change when one increases the number of the disks in thersy$tes shows that this angle
is again a universal parameter which is independent of th&eu of particles.

T L = T B L S

— N=300
0.8~ — N=200

P(®,)

0.4

0.2

| TR U I BT |
0O 08 16 24 32 4 4856 64 72 8 88 96

0||I||I||I||I||I||

C

Figure 2.14: Cumulative distribution function of the criti@ngled.. The red and blue curves
correspond tdN = 200 andN = 300.

In conclusion, the center of mass of the system of dry diskgholmed plane has two
possibility:

1. Run away. it runs away and shows that the inclination angle is largantthe critical
angle.

2. Jiggling: after a little shift of the center of mass, it jiggles arowamdi does not runaway.
This tells us that the inclination angle is smaller than thigcal angle.

This observation in dry bidisperse disks, has a very impbdansequence for the fluidization
threshold when the capillary bridges are added. Fluctnatidhe system, caused by jiggling
of the center of mass, injects a small amount of granular ézatpre in the system. There-
fore, the pile can gain a little granular temperature befoesfluidization, and the fluidization
threshold of the pile will depend not only on the balance effibrces, but it will depend on
the granular temperature as well. If that granular tempeeas close to the bound energg.
capillary bridge energy, g x S, the pile will fluidize.
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2.4.4 Stability of a wet bidisperse pile

In the previous section, we presented measurements on gheritltal angle of a pile
consisting of bidisperse disks. These information enabl®@explore the fluidization thresh-
old of the wet pile. Fig.2.15-top shows the the fluidizaticensition line of 200 bidisperse
disks for 9 diferent initial configuration. The rupture separatiorSis= 0.01. Similar to
the measurements on the monodisperse piles, the vertisadtaows the critical gravitational
acceleratiorg. at which the pile fluidizes and the horizontal axis is the sihthe inclination
angle subtracted from the corresponding critical anglac&each initial configuration is re-
lated to a corresponding critical angle, there will be féedent fluidization threshold for each
critical angle. That is why one sees 3tdrent simulation data set withftBrentd.. A solid
black line is drawn to show thaj, scales with 1sin@ — 6.), which is similar to the scaling
behavior of the fluidization threshold of monodisperseaystThe simulation data scatter at
small inclination angles, close to the critical angle.

Figl2.15-bottom shows the fluidization threshold for thmeaystem, except the rupture
separation is increased 8 = 0.1. As anticipated in the previous section, the rupture separ
tion in a bidisperse pile can influence the fluidization tho#d. The stability of a bidisperse
pile increases upon increasing the rupture separatiortharatitical gravitational acceleration
scales with the inverse sine of the inclination angle sabdhfrom the the critical angle:

ge ~ SiN(@ — 6;)™* (2.8)

So far, we explained quantitatively and qualitatively hale of wet disks consisting of
monodisperse and bidisperse disks respectively fluidize skéwed that adding the disorder
to the system, by either considering monodisperse pilésatkeanot translationally invariant or
considering bidisperse piles, the critical gravitatioaeteleration scales with inverse of sine
of the subtracted inclination angle. This scaling appeatseta universal scaling. It does not
depend on details of the configuration of the pile.
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Figure 2.15: The critical gravitational acceleration wersine of the reduced inclination an-
gle for 9 diferent critical angles. Top: the fluidization threshold ofiffatent critical angles
corresponding 9 dlierent configurations for rupture separattén= 0.01. Bottom: the flu-
idization threshold of 9 dierent critical angles corresponding 9fdrent configurations for
rupture separatio. = 0.1. The number of disks id = 200, , the average massis= 0.875,
and the system size is= 18.



Chapter 3
Wet disks running down an inclined plane

In the following chapter, we study flow properties of wet Bpkrse disks running down
on an inclined plane. In the absence of a top wall, such amyséxer reaches a steady state.
It shows a runaway towards a gassy state with ever incre&siegic energy. The systems are
bidisperse and prepared as outlined in chapter 2, sectdor@.avoid this runaway we study
systems with a fixed number of disks setNo= 200 and fixed widthL = 18 and varying
channel height betweéf = 18 andH = 40. For various heights, we explore properties of the
flow. The rheology of the system depends on the height of taarél. For successively lower
average density, we observe plastic flow, stable and bestgs flow, and eventually thermal
runaway. Our main concern in this chapter will be to identifyfflow properties of fluidized
states as solid-fluid transitions.

3.1 Convergence to the steady state

The evolution of the kinetic energy indicates whether theteay has settled into a steady
state. Appropriate plots of the kinetic energy versus timeedepicted in Fig.3.1 for flierent
channel height#l = {18, 20...,40}. As one increases the channel height, the kinetic energy of
the system increases. As for all, the system becomes matte dilich that the number of col-
lisions and rupture events and hence dissipation rate @eese Consequently, the system also
needs more time to settle down into a steady state. To acémutiat fact, we renormalized
the time in that plot by the rupture frequency per particle:

t-fr

t/ = T (31)

43
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heret is the natural timefr is the rupture frequency, and N the is number of partidfdslis us
after how many rupture events per particle the system resachttionary state. Almost all the
curves reach a plateau after a few thousand rupture evenpaiele. Irrespective the height
of the channel, the system reaches stationary state wharpadicle ruptures approximately
5000 capillary bridges. We show that in such a stationarie dtee injected and dissipated
energy balan@

100

kinetic energy
S
B

. | . | .
0 10000 20000 30000
rescaled time

Figure 3.1: Kinetic energy per particle in the system versgsaled time for dierent channel
height. The black curve, lowermost energy, corresponds 018, and for subsequent curves
H increases by 2. The uppermost (maroon) curve, corresponds= 40. The number of
particles isN = 200, the rupture separation$s = 0.01, the inclination angle i = 30°, and
the gravitational accelerationgs= 1.

3.2 Profiles

In this section we present spatial profiles of various charatics of the flow, like the
granular temperature, and the local area fraction. Thelpsofire calculated as outlined in

chapter 1, section .

IMore information is given in appendix sec.B
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3.2.1 Downhill velocity

Bagnold’s law [67] describes the velocity profile of dry frartal grains running down an
inclined plane. The Bagnold’s law predicts that the downlelbcity should be proportional
to height to power 1.5,e. Vi(y) ~ y*°. However, the Bagnold's law does not hold for wet
frictional grains [68]. In the current study, we address thkeBagnold’s law can describe the
downbhill velocity profile of wet frictionless disks.

To measure the velocity profile in the system, we wait forasteé = 5000, and afterwards
compute the average drift velocity forffiirent channel height. Fig.3.2 shows the drift velocity
versus height for dierent channel height. Since the relation between sheasstred shear
rate in our system is linear with arteet, the velocity profile should have a quadratic p&xﬁle
The black solid curve shows the quadratic trangy) = 0.2 + 0.155y — 0.00255. Such
qguadratic profile provides a much better fit to the simulatiata rather than the Bagnold
profile. Furthermore, it seems that there are two categtwrabe profiles. The maximum of
profiles forH > 30 is smaller than the ones fét < 30. It seems that upon increasing the
channel height, it initially decreased, but then it decesas
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Figure 3.2: Average velocity versus height foffdient channel height. The black solid line

shows the quadratic trend. The number of particledl iss 200, the rupture separation is
S = 0.01, the inclination angle i = 30°, and the gravitational accelerationgs- 1.

2More information in sec.3.7.1
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The change of the velocity profiles might be a hint that theldgical properties of the
flow changes where crossihj~ 30. To distinguish dferent rheologies, we look at the static
and kinetic parts of the stress tetr&d?ig@ shows the static and kinetic parts of the diagonal
elements of the stress tensor. There indeed is a cross oMer &80 above which the kinetic
part of the stress tensor dominates the static part, andfalter channel heights the static part
becomes dominant. Consequently, Fbr< 30 there is a plastic flow regime and fdr > 30
we are dealing with a granular gas. Furthermore, in Fig53,&ndS,, sit on top of each other
showing that the stress field is isotropic.
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Figure 3.3: The static and kinetic parts of the diagonal el@sof the stress tensor versus the
channel height. There is a cross over arotthg 30 above which the kinetic part dominates
the dynamics of the system. The number of particleN is 200, the rupture separation is
S. = 0.01, the inclination angle i@ = 30°, and the gravitational accelerationgs- 1.

Next We estimate the total average velocity per particlee fhal average velocity is
related to the average kinetic energy per particley the relation:

— .05
V= (%) (3.2)

wherem is the average mass. Fig.3.4 shows the average velocityeasytstem versus the
channel height in spite of the fact that the maximum velod#greases beyorid ~ 30. The

3The extensive information on the stress tensor is given ipefglix sec.C
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average velocity increases linearly with the channel hdighall investigated systems. The
average velocity is well described by:

V =058 (H - 13) (3.3)

Therefore, equ.3.3 implies that Ht = 13 the drift velocity should tend to zero. The height
of the pile after sedimentation is approximately 208 = 1111 which is very close to that
number. For very shallow channels, there will be no placétferpile to dilate, and the system
is frozen in a jammed state.

15— | — <V>=-7.35+0.58*H Ll

=
o

average velcoity

ol

18 20 22 24 26 28 30 32 34 36 38 40
H

Figure 3.4: Average velocity per particle versus heighhef¢hannel. The number of particles
is N = 200, the rupture separation & = 0.01, the inclination angle i8 = 30°, and the
gravitational acceleration = 1.

3.2.2 Local area fraction and granular temperature

The local area fraction is calculated by total area of théigdes inside each bin divided by
the area of the bin. Width of the bin is one average partickendter and its length 18 times
of average particle diameters. Fig/3.5 shows the local fieedion as a function of height
for four different channel heightd = {18,24,30,36}. The local area fraction of the first
immobilized layer is about.83 and has been excluded from the data. For the system with the
channel height equal td = 18 close to the bottom layer and the top reflective wall, tlwallo
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density decreases, whereas it is constant at the bulk. $iecarea of the system is 1818
and there are 200 particles that fill almost half of the boxcaxdingly, the average local area
fraction is close to 0.5. Fdd = 24 the local area fraction decreases just at first and last bin
and the local area fraction in the bulk is constant. Hoe 30 andH = 36 the local area
fraction does not depend on the height. Foe 36 since the total area of the box is &6,
and the number of particles is 200 which occupy almggt df the box, hence the average
local area fraction is close to 0.25.
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Figure 3.5: spatial profiles of the local area fraction foffatent channel heightsl =
{18, 24,30,36}. The number of particles isl = 200, the rupture separation & = 0.01,
the inclination angle i = 30°, and the gravitational accelerationgs- 1.

Fig.3.6 shows spatial profiles of the local granular temipeesfor diferent channel height
H = {18 24, 30, 36}. The granular temperature stays constant for all the chdmaights and
is independent of the height.

Comparing profiles of the granular temperature and the |lageal fraction, one concludes
that upon increasing the channel height the system becoamedeneous. Despite, for the
system with channel height & = 18, there are a little inhomogeneity close to the top and
bottom walls.

Figl3.7 shows the average granular temperature as a faraftthe channel height (the red
circles). One can compare the granular temperature anathleaiverage kinetic energy per
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Figure 3.6: spatial profiles of the local granular tempemtior different channel heights
H = {18 24, 30, 36}. The number of particles N = 200, the rupture separation$g = 0.01,
the inclination angle i = 30°, and the gravitational accelerationgs- 1.

particle from equ.(3.3) as follows:
1 2 1_ ’
<K>=3Sm- V' = SW(-7.35+058x H) (3.4)

this curves is shown by the black curve. The total kineticrgyédnas two parts: the first
part is the granular temperature, and the second part caorestiie downhill drift velocity.
Accordingly, the average kinetic energy should be larganttihe granular temperature, but
one sees that both curves are very close to each other. Tlssntleat contribution of the
downhill drift velocity to the total kinetic energy of the ftigles is small. The motion in the
system is dominated by the random thermal motion of thegesti

3.2.3 capillary bridges

The spatial distribution of capillary bridges is anothergmaeter which is important to
explore whether the system is homogeneous. In Fig.3.8 tit@sdistribution of the capillary
bridge is depicted for dlierent channel heights. One sees that the capillary bridgeasoao-
geneously distributed, except for a little inhomogeneltse to the bottom layer where one
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40

Figure 3.7: The red circles show the average granular teatyperversus the channel height,
and the black curve is the total kinetic energy of the systéfhe number of particles is
N = 200, the rupture separation & = 0.01, the inclination angle i = 30(°, and the
gravitational acceleration = 1.

layer of disks was immobilized.

The average number of capillary bridges decreases as it loéthe channel is increased.
Since the total number of particles is fixedNo= 200, upon increasing the channel height, the
number of particles per unit of the area decreases. Acagigdithe number of liquid bridges
decreases. One sees that the capillary bridges are honoagnéistributed in the system
independently of the channel height.

3.2.4 Stress field

Figl3.9 shows profiles db.y, Syy, andS,y, by black, green, and red colors as a function of
the channel height. In all the figureS,, and Sy, sit on top of each other, showing that the
pressure field is isotropic. As one increases the channgthhehe internal pressure increases.
On the other hand, the pressure does not depend on the changtel As expected, the shear
stressS,,, which is depicted by red color, takes its maximum in thedrottayer, and it tends
to zero as one goes to the upper layers.

To see how the pressure increases with channel height geveféhe diagonal elements of
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Figure 3.8: Spatial distribution of capillary bridges faffdrent channel heights. The grav-
itational acceleration ig = 0.1, the inclination angle i8 = 30°, the rupture separation is
S; = 0.01, and the number of the disksNs= 200.
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Figure 3.9: The components of ti&g,, Syy, andS,y of the stress tensor are shown in black,
green, and red colors respectively. The number of diské 45200, the rupture separation is

Sc=0.01
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the stress tensor is depicted versus the channel heighy.iB.ED. The pressure, is the average
of the diagonal elements of the stress tenBot, (S« + Syy)/2. It increases linearly with the
channel height.

P=136-(H-12) (3.5)

Accordingly, euq.(3.5) shows that the pressure vanishels=atl2.

Just as for the mean velocity of particles, this is very climsthe height of the channel
after sedimentation which is approximately 208 = 11.11. The physical reason is that when
the upper boundary is very close to the pile, there will be laggfor the pile to dilate, and
therefore the system will no longer be a fluid and there wilblteansition from the fluid to
the solid state.
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Figure 3.10: The diagonal elements of the stress tensor @scidn of the heightS,, and
S,y are depicted by black and red colors respectively. The numibeisks isN = 200, the
rupture separation iS, = 0.01

3.3 Longer capillary bridges

So far, we explored the dynamics of the fluidized disks as etiom of the channel height
for a constant rupture separatip = 0.01, and we showed that the system settles down into
a homogeneous gas state. Now, we are going to increase tioeergpparation, and study the
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dynamics of the system.

Fig:3.11 shows the local area fraction versus height fiedint rupture separations. By
increasing the rupture separation, the system becomeshat@mgeneous, and it seems that
the particles tend to accumulate near the top of the chaandlthe system becomes dilute
close to the bottom layer. Furthermore, the longer the nepgaparation, the more the hetero-
geneous the system becomes. gk 0.15 (the violet line), which is the maximum possible
rupture separation, the heterogeneity at the local aresidres is dramatically pronounced.
By looking at the movies for the heterogeneous states, weradb¢hat these states are not
stable. The heterogeneous states switch randomly fromtateete another one. In one of
the states, a plug on top of the channel appears, and after thoves it disappears. However,
when there is no plug flow, the system is still heterogenecalsl, on top of the channel and
hot in the bottom.
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Figure 3.11: Local area fraction vs perpendicular positiwtive different rupture separations.
The inclination angle i® = 30°, the gravitational acceleration gs= 0.1, and the channel
height isH = 36.

To quantitative amount of the heterogeneity, we define aerakd parameter as the dif-
ference of maximunp. and minimunmo.. of the local area fraction:

Ap = ps — p< (3.6)
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The diferent flow regions can then conveniently be represented ascéidn of Ap andS..
Fig.3.12 shows the order parametap], as a function of the rupture separati®n Since the
transition from the gas state to the bistable state is cv@ssone can not build a well defined
border between a homogeneous gas state and the bistable stat

In the gas state, the order parameter scatters around vedy\satues. However, in the
bistable state, the order parameter increases linéarly- 0.87(S; — 0.085). The diagram
tells us that the dynamics of the wet disks after fluidizatioes depend strongly on the the
rupture separation of capillary bridges. For small rupseparations, we find a homogeneous
gas state, and for larger rupture separations we observ&abla regime while the system
becomes heterogeneous.
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Figure 3.12: DiferenceAp of the local area fraction of the densest and most diluterfaye
Vs rupture separatio8.. The inclination angle i® = 30°, the gravitational acceleration is
g = 0.1, and the channel heightli$ = 36.

3.4 Formation of capillary bridges

The formation of capillary bridges in the fluidized statengfigantly afects the dynamics
of the system. First we study the temporal distribution gfikary bridges in the system.
In Fig.3.13-inset shows the number of capillary bridge irnemdy-state system versus time.
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We want to know whether formation of the capillary bridges isndom process. We found
that irrespective of channel height the probability dizition of N g(t) is Poissonian. The
Poissonian distribution ol g(t) is a hint that the formation of the capillary bridges can be
considered to be a random process. The autocorrelatioidans another parameter that
shows in more details the process of the formation of capileidges. The autocorrelation
function S(7) of N g(t) can be defined as:

i
S(r) =7 [ dNea(t+ 1) - Nia)(Mee(®) - Nos) /N 3.7)

wherer is the time interval between successive formation of thelleap bridges,N_g(t) is
the number of capillary bridges at timeN, g(t + 7) is the number of capillary bridges at time
t + 7, andN_g is the average number of liquid bridges. Fig.3.13 shows thecarrelation
function versus rescaled timg2dt where dt is the time step of the integratialt & 107%).
The correlation drops to zero fait > 4dt. Measurements on the autocorrelation function
show that formation of the capillary bridges is a random pssc Furthermore, it shows that
the life time of each capillary bridge is a very small timedas soon as a capillary bridge
forms, it ruptures after a very tiny timt = 4x 1074, which is just four times of the integration
step.

Let us now try to understand the correlation time that cantefrmm Fig.3.13. If we
suppose that the system is dilute and hot, which both areatbes one can calculate mean free

path from:

1 N

ZTH (3.8)
in which | is the mean free patN = 200 is number of the particles] = 36 is the channel
height, and. = 18 is the width of the system. We find:

=18 (3.9)

On the other hand, one can calculate the average thermaityabd each particle from:
— 05
2T
V= (TG) (3.10)
m

whereV is the average thermal velociffs is the average granular temperature, anis
the average mass of particles. From[Fig.3.6 the averagelgraemperature i$ ~ 60. For
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Figure 3.13: Autocorrelation function of formation of clguiy bridges versus rescaled time.
The integration time step idt = 10*. Inset: temporal profile of the number of capillary
bridges. The correlation length is equal to four times ofititegration time stepd = 30°,

g=0.1,H = 36,S. = 001, The time interval is chosen between 10000 and 12000ngluri

which the system has reached the stationary state.
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a average masa ~ 0.807, we hence obtain:
v=13 (3.11)

Therefore, the mean time between two collisions can be ledbmnlias:

=015 (3.12)

Subsequently, if one multiplies the correlation time totkienber of the particles, in order
to find the time to go to the next configuration, one obtains:

Atx N =4x10"%x200~ 0.1 (3.13)

which is a number very close to that of the mean time betweerctdlisions. Therefore, one
concludes that the formation of liquid bridges is a randowcpss, and can be understood
from a simple mean field approximation of the collisions inlatd-hot gas.

3.5 Hysteretic solid-fluid transitions

3.5.1 Phase diagrams

In this section, we explore whether the solid-fluid trawmsii of wet disks on an inclined
plane is hysteretic. Once the disks are sedimented, thexgercolation cluster of liquid
bridges. As discussed in sec.3.2 this percolation clusterahcertain mechanical yield stress,
above which the liquid bridge network breaks. Subsequgthitysystem fluidizes. We choose
the average drift velocity of the particles as an order patanto characterize the flow. Ac-
cording to chap.2, the control parameter is the gravitatiaeceleration in the direction of
the inclined plane. Fig.3.14 shows the drift velocity vergsing. The tilt angled increases
stepwise forAt = 5000 after each step. The gravitational acceleratiam4s0.1. The red
squares show the beginning of the process from the horizlaviel 6 = 0°. Doing so, is a
unique way to measure the yield point of the system.

As expected (in sec.3.2), the red squares end dp at30°, where the material fluidized,
and the order parameter, jumps from zero to a finite valuereFbee, fluidization transition is
a discontinuous nonequilibrium process.

After fluidization of the system, we decrease the tiltinglarsgiepwise, fromp = 30° to
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the horizontal leved = 0°, in order to solidify the system (blue diamonds). As one eases
the tilting angle, the average drift velocity of the diskimses linearly, and it jumps to
zero atd = 5°, where the system freezes to a disordered state. Appardrelgolidification
transition is also a discontinuous transition. Hence, naigg the fact thaigr — 65| # 0°, we
conclude that the wet disks on an inclined plane undergdisteeretic discontinuous phase
transition.
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8 [— Vv =18.34sin6+0.037
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Figure 3.14: Average velocity as a function of the gravitaéil acceleration in the direction
of the plane. The gravitational accelerationgis 0.1, and the inclination angle is changed
stepwise. The fluidization transition line (the blue diami®nhshows a linear behavidf, =
18(sind + 0.0002. The channel height il = 36, the average massi®s = 0.807, and
Sc = 0.01.

In Fig!3.14 the drift velocity is proportional to the grational downhill acceleration
gsing. This linear dependence is a hint that one can model sucht@nsysith a linear drag
force with background. Keeping in mind such a linear depandewe assume that there is a
drag force in the system which depends linearly to the vgjoci

ma, = —yVy + Fy (3.14)

Wheremis the average mass of the diskss the friction codficient,V, is the average velocity
of the disks along the horizontal axis X, aRg = mgsiné is the downhill gravitational force.
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In the stationary state, one expects that 0, then 0= —yV, + F,. Therefore, the fraction
codficient can be obtained as:

59

mgsiné
’}/ =

Vi
to 18398, the cofficient of the friction is:

(3.15)
Sincem = 0.807,g = 0.1, andV,/(gsind) ~ 18 is the slope of the line in Fig.3.14, and equals

y = 0.0044

Hence, the drag force in the stationary state can be wrigen a

(3.16)
Farag = —0.0044- V, (3.17)
We will show later in the current section in Fig.3.16, wheeaxplore the hysteretic transition
by changing the gravitational acceleration at a fixed iratlon angle, that equ.3.17 fits our
data.
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Figure 3.15: The largest variation of the dengigyas a function ofysin6. The channel height
is H = 36, the average massris= 0.807, andS, = 0.01.

To interpret this data we check whether the system is honemgen We look again at

the diference of the local area fraction between densest and nhotgt chgions in the system

as a function of the inclination angle for the fluidized st@#.3.15). For larggsin(@) the
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system is homogeneous, but for sngdlin(@) the inhomogeneity gradually becomes larger,
and finally it solidifies agsin(@) ~ 0.013. As described in sec.3.3, these heterogeneous states
are bistable. However, one can not distinguish the bordsvden homogeneous and bistable
states. One can summarize these regions as the following:

Gas = Bistable = Solid

e Gas regime For largegsiné , after the fluidization, system is homogeneous without
any gradient in the local area fraction.

e Bistable regime For smallgsiné close to the solidification point, the system becomes
heterogeneous.

e Solid regime Foré < 5°, the material is solidified.

The fluidized wet disks do not turn directly from a fluidizedtstinto a solidified one.
Whereas there is an intermediate step between the solidiictfiladized states in which the
system becomes heterogeneous and bistable.

If one looks at the gap between the fluidization and the dalation anglesor — 0s| =
25°, one finds an astonishing big gap. Why does the system haveasbighmemory (or
hysteresis)? To answer to that question, we refer to th@dissn mechanism of the system.
Dissipation occurs when a capillary bridge ruptures, amudlleay bridges rupture in the gas-
like state when the relative kinetic energy of two adjaceniliding disks is larger than the
energy barrier caused by the capillary bridge interactidowever, in the gas-like state close
to 6r the average granular temperature of the system is alreauyt &80 times larger than
the capillary bridge energy. One has to go to much smallemtidiraccelerationg siné to
reach systems with temperatures where the bridge energsorggsenough to allow for the
formation of stable capillary bridges.

As it is described in the phase diagram of bidisperse disksaimed plane (Fig.2.15), we
chose two parameters as the principal parameters to degbelphase diagram of the tilted
wet disks. Namely the gravitational acceleratgrand the tilting angl®. In the current sec-
tion, we study the existence of the hysteresis for a case ichwthe gravitational acceleration
is set tog = 0.1, and the tilting angle is the control parameter. Now welsetitting angle to
0 = 30°, and explore the hysteresis by stepwise incrementing acienting the gravita-
tional acceleration. Fig.3.14 shows the hysteretic loopHat case. After the sedimentation of
the wet disks, the gravitational acceleration is increasepwise frong = 0, until the pile is
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fluidized. Subsequently, namely the red squaregy at 0.1, the gravitational acceleration is
decremented stepwise in the same way (blue diamonds). Ttheedocity decreases linearly
with gsing, and now we can check whether the theoretical predictiomof(8.17) fits to our
simulation data. According to equ.(3.17) the relation leetwthe gravitational downhill force
and the drag force should be:

Since we havé = 307, the relation between the average velocity gisth6 should be:
Vy ~ 180gsin(9) (3.19)

Therefore, the theory predicts that slope of the blue diadaam Fig.3.14 should be 180. The
green line in Fig.3.14 shows such a slope, and one can seth¢hslope perfectly fits to the
data.
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Figure 3.16: Average velocity vs the gravitational dowhhdceleratiorg sind. The rectangle
box shows the region in whiahsing is small and the system needs a very long time to settle
down into a stationary state. The inclination angle is fixed & 30°, the channel height is

H = 36, the length of the system Is = 18, the rupture separation & = 0.01, and the
average mass im = 0.807.

We look again on the order parametgrto see whether the system remains homogeneous.
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Fig!3.17 shows\p versusgsind. Fig.3.15, forgsing > 0.3, the order parameteéyp is very
small. The system is homogeneous. However, f0i6: gsind < 0.03 the order parameter
increases dramatically, and the system becomes again detise top of the channel, and
dilute close to the bottom layer.
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Figure 3.17: Diference of the maximum and minimum of the local area fractidhe system
(Ap) as a function ofysing in the hysteretic loop. The inclination angle is fixedbte: 30°,
the channel height isl = 36, the length of the system is = 18, the rupture separation is
Sc = 0.01, and the average massns= 0.807.

3.6 Leidenfrost state

In order to look at details of the bistable states, we discusg the density profiles in
the gas-like state. Fig3.18 shows the local area fracticmfasction of the height. One can
see for large gravitational accelerations the system isdgemeous, but as one approaches
towards the solidification point by decreasing the grantetl acceleration, the particles tend
to accumulate near the upper wall. This accumulation ofigdast in a high density phase
floating on top of a low-density phase is reminiscent to a éeftbst state [69].

We argued in the last section that such a heterogeneoussstéttable. To prove this idea,
in Figi3.19 we show snapshots at the end of the hysteresisiticm where the gravitational
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Figure 3.18: Profiles of the local area fraction foffelient gravitational accelerations. The
tilting angle is set t® = 30°. As one decreases the gravitational acceleration themsyste
becomes more heterogeneous.

acceleration ig = 0.005, and the inclination angle és= 30°. There are three fierent colors
for the disks:

1. Blue: If a particle has a capillary bridge.
2. Red: If a particle has no capillary bridge.
3. Maroon: Immobilized disks in the bottom layer.

Fig.3.19-top is snapshot of the systent at 96071. There are a lot of particles accumulated
in the top layers. The granular temperature close to thetvotayer is much higher than
the granular temperature near the top wall. The bottom:-pghel is snapshot of the system
att = 96316. Although the plug on top of the system has become ¢hitthere are still a
lot of particles accumulated on top of the system, and trestill a gradient in the granular
temperature. The bottom-left panel is takert a 96716. The plug on top of the system
is gone, but the system is still heterogeneous. This praneSig).3.19 repeats irregularly in
time, and it is not an oscillation with a certain period.

To get more insight into the temporal evolution states, vak lat the kinetic energy of the
system as a function of the time. Fig.3.20 shows the kinecgy of the system in the bistable
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Figure 3.19: Snapshots of the systemt at 96071 (top),t = 96316 (bottom-right), and
t = 96716 (bottom-left). The gravitational acceleratiomis 0.005, the inclination angle is
0 = 30, and the rupture separationSs = 0.01.
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state. The time where the snapshots are taken in Fig.3.18ated. The figure demonstrates
that the switching shown in the Fig.3/19 is not an oscillatidhe system switches randomly
from one state, in which a plug flows on top of the system, tdlearcstate, where the plug is
gone.

L 1 L 1 L 1 L 1 L
9%000 96000 97000 98000 99000 1le+05
t

Figure 3.20: Kinetic energy per partidkeversus time. Snapshots show how the system looks
like at different times. The gravitational acceleratiorgis= 0.005, the inclination angle is
6 = 30, and the rupture separationSs = 0.01.

Let us explain Fig.3.20 in more details. At the first snapshioéret = 96071, a plug on
top of the system slides over a hot gas, and one can see thdh#ie energy increases. At
the same time the drift velocity of the plug increases too.

At t ~ 96316, where the second snapshot is taken, the kinetic \eneaghes its local
maximum. By that time, the plug on the upper side of the syst@srblecome thinner. After the
second snapshot, the kinetic energy decreases resultimgorease in the random motion of
the disks. At = 96716 the plug is gone, and the random motions of the pastislecreased.
It means that the granular temperature is increased. Tdretefne can explain the bistable
state as the following:

1. Aplug slides over a gas, and the velocity of the plug ineesa
2. Due to the collisions between the plug and the gas, thedsatye of the gas increases.

3. The hot gas melts the plug such that it disappears.
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4. Since the gravity is relatively low, the particles tendesrape from the bottom layer
where the granular temperature is very high, and eventaatiijug forms again in the
upper side of the system.

3.6.1 Summary

We saw that for small gravitational accelerations the sydiecomes bistable. At the end
of the loop whereg = 0 the system enters to a free cooling scenario in which thg piu
top of the system moves for an arbitrary long time on a hot gasce the force-based MD
simulations are not appropriate to study the free coolirggcan not explore that state. Finally,
we summarize the hysteretic transition as the following:

Gas = Bistable = Free cooling

e Gas regime For large gravitational accelerations, the fluidized diske homoge-
neously distributed in the system. There are no granulapéeature gradient, or the
local area fraction gradient.

¢ Bistable regime For small gravitational accelerations, the system besobigtable.
We observed a Leidenfrost state and the system becomely\Vistierogeneous.

e Free cooling Forg = 0, one deals with a free cooling scenario. The hot gas layer
interacts with the immobilized disks in the bottom, as wallthe sliding plug. One
expects that as the hot gas cools down the bloc in the uppepéitie system becomes
larger and absorbs the gas.

In conclusion, if one fixes the gravitational acceleratiod ahanges the inclination angle,
for small gravitational downhill accelerations the madésolidifies. Whereas, if one fixes the
inclination angle, and changes the gravitational acctterafor small gravitational downhill
accelerations the material does not solidifies and a frekngpscenario begins.

3.7 Appendix

3.7.1 Quadratic velocity profile

As we mentioned earlier in this chapter, the best fit to th@aigt profile of wet disk
running down on an inclined plane is a quadratic profile. Ia ffection, we attempt to derive
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such a profile. The shear stre8g(y) in the system can be given as:
Sxyly) = mgsiné(H —y) (3.20)

wheremg is the gravitational downhill forceld is the channel height, andis the vertical
component to the plane. Subsequently, since the systenegsessa yield stress, then the
relation between the shear stress and the sheafi\étg/) can be written as:

Sxly) = Sy + ndyVx(y) (3.21)

hereS;, is the yield stress of the system, apig the viscosity. Using equ.(3.20) and equ.(3.21)
the velocity profile can be derived as:

Vi(y) = &1y + Coy + C3 (3.22)

wherec; = —mgzsni”g, Cy = %(mgHsin@ — S;,), andc; is a constant depending on the boundary

conditions. equ.(3.22) shows that the velocity profile & flystem can be expressed as a
guadratic function.







Chapter 4
Isochoric model for avalanches

In the last chapter, we presented the results of a simplaastaé model for a 2D wet granular
pile on a rough inclined plane. As the inclination angle iamed the system undergoes a
discontinuous-hysteretic dynamic phase transition betvaefluidized and a solid state. We
want to know whether the discontinuity and the hysteregsiaiversal features of solidifica-
tion and fluidization transitions in wet disks.

Using the same bidisperse disks that were being used inah&pte will investigate an
isochoric model for avalanches in wet diskg, in systems where the total area fraction is
conserved. We drive the system with a spatially heterogenegternal force and follow the
same procedure which we used in chapter 3 to study the dysarhi wet pile of disks on
an inclined plane. At first, we will explain the preparatidnacdense assembly of wet disks
in the isochoric system. Subsequently, we will study spatd temporal profiles of the drift
velocity, the granular temperature, the area fraction dhdraelevant physical quantities.

There are several open questions to be answered for theoisoslystem. First of all, is
the fluidization transition under isochoric conditiondl stiscontinuous? Is there an up-down
transition,i. e. fluidized-to-solid transition [70, 71]. Does the systemciea stationary state
in which the injected power and the dissipated power balanakoes the system exhibit a
temperature runaway in a certain range of control paraseter

4.1 Description of the model

The simulation under isochoric conditions were performsidgithe 2D model employed in
the simulation of a wet granular pile on an inclined plane, cleapter 2. In order to prevent

69
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crystallization and segregation we use a bidisperse naxatidisks with a ratio between the
large radiusR, and the small radiu® of 1.4. Overlapping disks interact via a soft core
repulsive interaction and a short ranged hysteretic @apifborce. The value of the prefacter
controlling the hardness of the disks is set td, Mhile the rupture lengt. of the capillary
bridges is varied. In the sequel we make use of dimensiondsssiled units for time, length
and mass as outlined in chapter 1, section 1.2.4. The siimlbox is a square of size x

L. Periodic boundary conditions are applied in both horiaband vertical directions. A
predictor corrector method is used to integrate Newtoniséqgn of motion. The time step of
integration is set talt = 104,

In order to agitate the disks we apply an external force sintd the gravitational force
driving the disks down the inclined plane as described irptdra3. Here, we employ an
external force as it has been used by Schattal. in Ref. [11] to study the fluidization
transition in a three dimensional assembly of wet sphetés given by

27-[ .
F*=¢Fo cos(TX') , (4.1)
whereFis the external force acting on partigles, the unit vector pointing into y-direction,
Fo the amplitude of the external force, the x-coordinate of particle andL the dimension
of the simulation box. The number of disks in the system isegally set toN = 506 if not
stated otherwise.

Because of the spatial heterogeneity of the external foreenmay expect that the distri-
bution of physical observables in the system will be as welerogeneous. Hence, physical
guantities such as granular temperature, area fractianpooents of the stress tensor, and
density should be calculated locally. A definition of thesautities can are found in chapter
1.

In the regime of strong driving the fluidized assembly of diskay undergo the Kol-
mogorov flow instability leading the system being heter@pers intoy-direction, see. g. Refs. [72,
73]. At moderate strength of the external force, howeverewgect the system to remain ho-
mogeneous into the y-direction and we divide the systemseateral bins along the direction
of the flow, i. e. into the vertical direction. The width of each bin equals &verage disk
diameter D). We will calculate local physical quantities in each biniastaverages.
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4.1.1 Preparation

In the previous chapters 2 and 3 we investigated the stabifitl dynamics of assemblies of
disks that have sedimented on a plane under the action oitygrdm the isochoric system
considered here we have to apply &elient preparation method in order to produce spatially
homogeneous disk packings. This can be achieved in two rteps:s

1. Random sequential addition disks are randomly added to the box and are accepted as
new disks if the added disk does not overlap with any of thiesdisat have already been
successfully deposited. In order to obtain a bidispers&ipgavith the same number
of small and large disks the type of disk is alternated oncslalths been successfully
placed. The largest area fraction that can be reached bynitisod is approximately
¢ ~ 0.62. To reach larger area fractions a further mechanism dlmuéngaged.

2. Lubachevsky-Stillinger algorithm: since we want to span a wide range of area frac-
tions up top = 0.84, being the limit of random close packing we use the Lubasihe
Stillinger algorithm to reach area fractions abgve 0.62. The algorithm can be simply
expressed as blowing up the disks at thermostated tempe[Zt].

Figure 4.1(top) displays a snapshot of the system afterorarsequential addition with
a total area fraction op = 0.62. At this point the simulation time is set to= 0. Because
random sequential addition generates disk packings whiglirae of overlaps there are no
liquid bridges present. By applying the Lubachevsky-3iyjér algorithm the area fraction of
the system is increased until the desired value is reachgdreé.1(bottom) shows a packing
with an area fraction o$ = 0.72 which has been generated by the Lubachevsky-Stillinger
algorithm. Blue spots illustrate capillary bridges betwemiching disks.

During the blow up of disks a certain amount of energy is itgddnto the system and since
we want to obtain an initial packing of resting disks, theegtgd energy should be dissipated
before the external driving force according to equ. [(4.13vistched on. We use a viscous
friction as outlined in chapter 1, section 3.2, to dissighteinjected energy.

The blow up of disks takes from= 0 to approximatelyt; = 20. The dissipative force
according to equ. (1.5) is switched on umfik= 100 in order to ensure that most of the injected
energy has been dissipated.

The actual simulation starts at tigevhere the external driving force is switched on. Time
averaging of local quantities such as the granular temperatomponents of the stress tensor,
drift velocity, rupture frequency of capillary bridges,cearea fraction of small and large disks
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| Time | Description |
O<t<ty Fo=0,b#0,fg=0,(D)<1
thh<t<t, Fo=0,b#0,fig=0,(D)=1

t, <t Fo#0,b=0,fg=1,(D)=1

t3<t Averaging starts

Table 4.1: Protocol of the numerical simulations.

starts at timd; = 500. Definitions and details of the way these quantities aleutated are
given in chapter 1, section 1.2.5. A short summary of the Ktmn times is found in table
4.1.1.

4.2 Results

4.2.1 Time evolution

Figure 4.2 shows the local drift velocity in the first and eahbin as a function of time. The
box is divided into 18 bins along the vertical direction

The drift velocity is zero untit = t, = 100 during which the initial packing is prepared.
The external driving force is applied at= t, when the disks in the first bin start to move
upwards (black curve) while the disks in the central bin begimove downwards (red curve).
However, at about~ 114 the magnitude of the drift velocity start to decreasdimes larger
thant ~ 135 the drift velocity in both the first and the central bin flete around a value close
to zero. The same fluctuations can be observed for the dfdtipg in the remaining bins.

A closer inspection of the data reveals that all drift veiesi fluctuate around the same
value which increases linearly in time. From this obseoratine may conclude that the whole
system behaves like a rigid body which is accelerated duentimazero total force acting on
the disks. Owing to the disorder in the assembly there wilbgk be an imbalance between
the magnitude of forces pulling the disks up and pushing tdewn. Hence, the direction of
the drift is randomly distributed amongffrent realizations of the system. The global drift
clearly indicates the existence of a rigid cluster which pases the majority of disks.

After switching on the external driving force, the systened® a certain finite time to
reach a solid state. This relaxation time decreases as oreases the total area fraction of
the disks. During relaxation, the disks rearrange and firfalm a percolating network of
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Figure 4.1: (Top) At = 0 a pre-initial packing with an area fraction = 0.62 is generated
using random sequential addition. The disks do not ove(Bpttom) The area fraction of the
system is increased = 0.72 employing the Lubachevsky-Stillinger algorithﬁ[M]heT

number of particles il = 506, the system sizZe = 18, and the rupture separati8g = 0.01.
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Figure 4.2: Drift velocity in the first and central bin as a ¢tion of time as depicted by
the black and red curves, respectively. The number of pestisN = 506, the system size
L = 18, the rupture separatid®. = 0.01, the amplitude of the external forég = 5- 1073,
and the area fractiop = 0.72.

capillary bridges which is strong enough to sustain thesstozeated by the external force.
As one can see in Fig. 4.2 the drift velocities in the finalgstate exhibit large fluctuations.
This observation can be explained by the work received flwerekternal field in the transient
fluidized state. During the formation of the solid networlstiork is dissipated into thermal
energy and as long as the granular temperature is smaltetite@&nergyE required to break
a capillary bridge this thermal energy will remain in thetsys.

At small amplitudes, = 5- 1072 of the external driving force the system is found in a
transient fluidized state before it eventually reachesid stdte, cf. Fig4.2. For an amplitude
Fo = 1- 1072, however, the system does not relax into a solid state. Titne éivolution of the
drift velocity in Fig. 4.4 illustrates that the system irmtieemains in a fluidized state in which
the magnitude of the drift velocity in the first bin (black ea) almost equals the magnitude
of the drift velocity in the central bin (red curve). Theredpby increasing the amplitude of
the external driving force, the system can be held in a flediiztate.

The long time evolution of the drift velocity demonstratep ot ~ 10° and longer) that
the fluidized state can be viewed as a stationary state.Udtichs of the drift velocities may
become strong for dense systems close to the RCP limit andatiecnecessary to average
over relatively long periods of time. Furthermore, we clegtlfor the balance of injected
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t=350
¢=0.7

Figure 4.3: Snapshot of the systemtat 350 in which the system reached a solid state
and moves like a rigid body downwards. The spatial variagbthe external driving force
depicted by the black curve. The number of particlel is 506, the system size = 18, the
rupture separatio§. = 0.01, and the area fractiah= 0.72.
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Figure 4.4: Local drift velocity as a function of time in thestiand and central bin as depicted
by the black and red curves respectively. The number ofghestisN = 506, the system size
L = 18, the rupture separatiSp = 0.01, the amplitude of the external forg = 1- 102, and
the area fractiog = 0.72.

power,i.e. the work received from the external driving field, and the podissipated in the
rupture of capillary bridges. Both quantities are almoststant in time and match within a
small relative error. This corroborates the stationanhefftuidized state on the one hand and
validates the simulation code on the other Iﬁar‘ﬂwe results and a detailed discussion of the
power balance is found in Appendix B.

4.2.2 Fluidized-to-solid transition

In the last sections, we showed that once the external driarce is applied to the assembly
of wet disks the system eventually reaches either a solicu@lZed state after a certain re-
laxation time. The final state depends on the magnitude aéxtexnal field. This observation
immediately poses a number of questions: What is the smaleglitudeF"" of the external
force field for the system to reach a fluidized state? Does tidiZhtion point change if we
start the simulation from a solid state at s And, does the system solidify at the same
point if we start with a fluidized system at afBaiently largeF.

Besides the conditions under which the initial state of tretesy is created there are four

1A detailed disscusion is given in Chapter B
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Figure 4.5: Snapshot of the systent at 305 where the system reaches a fluidized state. The
spatial variation of the external driving force is illugtd by the black curve. The number of
particles isN = 506, the system size = 18, the rupture separatid = 0.01, and the area

fractiong = 0.72.
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obvious control parameter of the system: the amplitudeefitiving forceF,, the global area
fraction of disksy, the system siz&, and the rupture length of the capillary bridggs To
distinguish between the solid and the fluidized state we sttize average flierence

AVy = <Vy>x:L - <Vy>x:L/2 > (4-2)

of the y-components of drift velocities at the side of the b@)«-., and in the center of the
box, (w)x-L/2, as an order parameter of the transition. Here, we assurtiaésystem follows
the symmetry of the external fielde. that there will be non component of the drift velocity
into the x-direction. This assumption has to be checkedhduhe simulation. If the final state
is solid, the disks move as a rigid body and we have = 0. If the material is partially or
fully fluidized we should observav, # 0.

Figure 4.6 shows the order parametey as a function of time for a series of amplitudes of
the external forc&, = {4.5-1073,8-1073,8.5-1073}. In those cases, the system can be found
in a transient fluidized state before it finally reaches a pent solid state at times larger
thanAt.eax = {33,180 180}, respectively. Heretqax is the relaxation time during which the
disks rearrange and build a network of capillary bridges ¢ha bear the applied shear stress.
However, at amplitude of the external forEg = {9-1073,1.3-102,1.8- 1072}, we observe a
relaxation into a fluidized state, cf. Fig.4.6.

The order parameter as function of the strength of the eatdeld is shown in Fig. 4.7.
For solid states we haweyv, = 0. For the fluidized states, a long time average of the order
parameter is computed, cf. Fig. 4.6. It is rather obvious tina transition from the fluidized
state to the solid state isdiscontinuous transitian The order parameter as function of the
control parameter is obtained via the inverse funciign= Co + C; Avy + C; AV + C3 AV +
O(Avy) with Cy = 0.03798,-C; = 0.1377,C;, = 0.1875, andC; = —0.0667 shows that the
drift velocity exhibits a square root scaling with a finitéset at the transition point. According
to the fit, the transition point is approximately at an amyalé of the external force d¥. =
8.75-1073.

Accordingly, the transition of the system from the fluidizedhe solid state appears to be a
subcritical bifurcation of dynamic states [75]. Hence, wpext that the branch of solid states
continues to amplitudes of the external force being largan the value at the solidification
transition at-..

Since the transition point is the smallest driving amplgwdhere the system ends up in
a fluidized state and since for driving amplitudes slighttyadler thanF. the system reaches
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Figure 4.6: The order paramet&y, as a function of time for solid and fluidized states. The
black, red and green curves correspond to an amplitude ektieenal forceé=, = {4.5-1073, 8-
1073,8.5- 1073} where the system is found in a solid state. The blue, darkngaesd brown
curves correspond By = {91072 1.3-102,0.18- 1072}, respectively, where the system is
in a fluidized state. The total area fractionpis= 0.7, the system size = 18, the number of
particlesN = 506, and the rupture separatiSp= 0.01.
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Figure 4.7: lllustration of the fluidized-to-solid traneit. In the fluidized state, the drift

velocity shows a square root scaling close the the transgant. The total area fraction is

¢ = 0.7, the system sizke = 18, the number of particldd = 506, and the rupture separation
S. = 0.01.

a final solid state, we argue that the transition which is ctegiin Fig. 4.7 is a transition
between a stationary fluidized state and a solid state.

There are several open question about this fluidized-to-gahsition: Is the solidification
under an applied shear stress due to a jamming of digkss there a build up of permanent
compressive forces chains which prevent moving of the @isk®es the fluidized-to-solid
transition depend on the rupture distar&eof the capillary bridges? Does the system size
L influence the critical transition point? How does the traosipoint depend on the total
area fractionp? If one starts from a solid state, is there a solid-to-fl@dizransition, and if
so, does this transition occur at the same value of drivirepgthF,? We will address those
guestions in the sequel of this chapter.

4.2.3 Dry disks under external driving

We claimed that the fluidized-to-solid transition of wetlkdisbeing subject to an external
driving force is due to the network of capillary bridges beém the disks. To test this idea, we
switch df the capillary bridge forces and apply the external driviagcé to an assembly of
‘dry’ disks. All the steps that are detailed in the protocbtie simulation for wet disks hold
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also for the simulation of the dry disks, except that the madicapillary force is set to zero.

To prevent heating,e. accumulation of kinetic energy in the system, an altereadigsi-
pation mechanism is implemented. Here, we made use of atiaddiviscous force that is
effective as long as two disks interact. The elastic part isgtien by the non-linear spring
force as outlined in chapter 1, section 1.2.2. The trajezdoof the disks are obtained by
solving Newtons equation of motion

d?r; Vi =V
m— = E Fr— 1 1 .a
a2 j[” R+R, i

wherem andr; are the mass and position of diskF;; is the non-linear spring repulsive
force, R andR; are the radii of the disksy; andv; are the corresponding velocities; =
(ri = r;)/Ir; = r;| the unit vector pointing from particleto particle j, andF®* the external
driving force. The sun}; runs over all diskg that overlap with.

Figure 4.8 shows the order parametey, as a function of the applied driving amplitude
Fo. We probed six decades of the driving amplitude, startiognfF, = 10-° and ending at
Fo = 1, and computed the corresponding order paranietgonce a stationary state has been
reached. In contrast to the dry case we still find the asseaildligks in a fluidized state at the
smallest amplitudé, = 107° of our simulations, and no transition between a fluidized and
a solid state. The order parameter as function of the dristrgngth presented in Fig. 4.8 is
well described by a power law

Qj + Fex’ (43)

Avy = AF!, (4.4)

with A = 9.24 andn = 0.64. This shows that the order paramei&y should be zero only if
the applied driving force is switchedfo As long as the control parametég is not equal to
zero the system is in the fluidized state.

This is a clear proof that assemblies of frictionless viszstec disks under isochoric con-
ditions do not exhibit a yield stress below the limit of randolose packing. However, if one
introduces a hysteretic short ranged attractive inteyactuch as the minimal capillary force,
the system will develop a yield stress below the limit of ramdclose packing.

4.3 Distribution of physical quantities

Applying a spatially heterogeneous force to the assembdysék will lead to a heterogeneous
distribution of observables in the system. As mentionetl@end of section 4.1 we expect the
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Figure 4.8:AV, as a function of the amplitude of the external driving foFgefor viscoelastic
disks without capillary bridges. The system is fluidized aondransition from a fluidized to
solid state is observed. The total area fractiop #50.70, the system sizke = 18, the number
of particlesN = 506, and the rupture separatip= 0.01.

system to follow the symmetry of the external field at smalpatdes of the driving force.
The exact shape of the profiles is determined by the diseipadite,.e. the rupture frequency
of capillary bridges. On the one hand the dissipated poweemi#s on the local shear raje,
the local granular temperaturég, and the local density of diskg, and, on the other hand
on the transport cdicients of energy and momentumg., heat conductivity and viscosity,
respectively. The latter will also depend ¢nTg andp. In particular, we will focus on the
local viscosity of the wet disk fluid.

In the sequel we present spatial profiles and probabilityidigions of certain observables
in both the solid and the fluidized state. If not explicitlgted, the system size is setlic= 40,
the number of particles tN = 1540, while the the rupture separatiorSis= 0.01. The total
area fraction equalg = 0.70.

4.3.1 Profiles of drift velocity and shear rate

Figure 4.9(left) shows a comparison of the time averagdthatiocity (v) into the y-direction
as function of the lateral positianin the solid and fluidized state. The black circles show the
velocity profile in the solid state where the amplitude ofékeernal force is set tbg = 1-1073
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Fo Ao A A As
0.0066 -0.0405 0.8181 -0.11023 | 0.02086
(red)

0.0132 0.084 1.1571 -0.104 0.00117
(blue)

Table 4.2: Fitting parameters of co-sinusoidal harmonitselocity profiles corresponding
to two different applied driving amplitudes.

and the drift is almost zero. Squares and diamonds indibatedlocity profile in the fluidized
state for amplitudes of the external forg = {6.6 - 10°3,1.32- 1072}, respectively. It is
apparent that a harmonic or, to be precise, a cosine shapacityerofile does not fit the
simulation data. Therefore we employ the second and thiddhadmonics

(VW)(X) = Ao+ Aq cos(?) + A cos(G%X) + Az COS(@) (4.5)

L
wherelL is the system size. One sees that the red and blue curvesfétiheto the data.
The fitting codficients are obtained as: Q&eients of the second and third odd harmonics
decrease as one increases the amplitude of the externialgdrivhis observation tells us that
the spatial variation of the drift velocity approaches thefite of the external driving force at
height driving strength.

Figure 4.9(right) shows the local shear rate as a functigdhefateral position. Because
the drift velocity (v,) into the direction of the applied external force is zero theal shear
rate can be simply obtained as the spatial derivative d,(vy). The black curve shows the
shear rate in the solid state in whi€lg = 1- 10-3 while the red and blue curves display the
shear rate in the fluidized state whéig= {6.6- 1073, 1.32- 1072} respectively. The shear rate
has a maximum at the inflexion points of the drift velocity fdeowhere(v,) ~ 0. The shear
rate increases as the applied driving amplitude incred&sethermore, the width of shear rate
curve also increases by increasing the applied driving énci@. The shear rate in the solid
state is on the order of ~ 10°°, which shows that the shear rate is negligible in the system.

4.3.2 Areafraction and granular temperature

Figure 4.10(left) shows the local area fractj@as a function of the lateral positioafor both
a solid and a fluidized state. The blue curve is the local amazibén of the solid state for
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Figure 4.9: (Left) Drift velocity(vy) as function of the lateral positioxin the solid (black)
and fluidized (red and blue) states. (Right) shear rate agifumof the lateral position. The
applied driving amplitudes aié, = {1-1073,6.6- 1073, 1.32- 1072} for the black, red, and blue
curve respectively. The total area fractiowis: 0.7, the rupture separatid@y, = 0.01, and the
system sizé. = 40.

Fo = 1073, The average of the blue curve equals 0.7 which is the total area fractiap of
the system. The width of the fluctuation around the averageevia about 14% of the total
area fractionp. Therefore, one can conclude that the system is homogenethessolid state.

The top black and red curves show the local area fragtionthe fluidized state for am-
plitudes of the external driving forde, = {6.6- 1073, 1.32- 1072}, respectively. The local area
fraction attains a minimum where the shear rate has a maxjmamat aboutx ~ 10 and
x ~ 30. However, ak = 0 andx = 20, where the shear rate is in a minimum, disks accumu-
late. The local density around those points is akost 0.8. Since this value is smaller than
the value at random close packipgcp ~ 0.84, these disks are still mobile. The local area
fraction in the dense regions does not change significasttii@driving strength is increased
while the local area fraction increases in the dilute reglion

One may suspect that in the fluidized state the small and @igies of the bidisperse
mixture segregate, as it the case in the ‘dry’ and ‘wet’ braat effect, cf. Refs. [76, 77].
Therefore, we calculated the local area fraction for smradllarge disks separately. The result
is shown in Fig. 4.10(left). The bottom curves show the araetion for the small disks and
the central curves show the area fraction for the large dislescolor code is same as for the
top curves). Both the area fraction for small and for larg&slexhibit the same trend and as
one increases the amplitude of the external force (red slrttee trend does not significantly
change. Therefore, bidisperse disks do not segregate fluttized state.
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Figure 4.10: (Left-top) the local area fraction for the ddblue) and fluidized states (black
and red). The local area fraction for large and small disksated in left-middle and left-
bottom. (Right-top) the granular temperature as a functibthe lateral position for two
fluidized states. (Right-top) the granular temperature amaetion of the lateral position for
solid state. The total area fractiongs= 0.7, the rupture separation & = 0.01, and the
system size i& = 40.

Profiles of the local granular temperature are illustratedfig. 4.10(right). The black
curve shows that the granular temperature in the solid siads not depend on the lateral
position and that the granular temperature is non-zero. @osoto the solid state the granular
temperature increases one order of magnitude in the flulditege. The spatial distribution of
the granular temperature has two maxima which coincide thighmaxima of the shear rate,
i.e. at aroundx = 10 andx = 30. For the particular values of the control parameter in our
example the ratio between the amplitude of the externairdri@mplitudes is almost two. The
ratio of the granular temperatures, however, is approxipdive. This significant change in
the granular temperature between the solid and fluidized steows the dramatic fiierence
concerning the granular temperature.

4.3.3 Liquid bridge number and rupture frequency

In addition to the drift velocity, the local area fractiondatihe granular temperature we cal-
culated the density of capillary bridges and their ruptuegifiency as function of the lateral
position. Figure 4.11(left) displays profiles of the deysif capillary bridges. In the solid
state (black curve) this density does not depend on thelgiesition and we find an average
number of capillary bridges per disk b g = 4. The red and blue curves in Fig. 4.11 display
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the number of capillary bridges in the fluidized state for dmgesF, = {6.6-10°3,1.32.1072}

of the external driving force. A comparison of Fig. 4.10 angl B.11(left) shows that the local
average number of capillary bridges per diskg, exhibits the same behavior as the local area
fraction, p. The average number of capillary bridges per disk reathgs~ 4 in the solid
state (black curve) where the local area fractiop is 0.8 at aroundx = 0 andx = 20 in the
solid state (black curve). The number of capillary bridges gisk decreases unt g ~ 1
where the system is rather dilute with a local area fractiop s 0.45. The total number of
capillary bridges in the system decreases by increasingrti@itude of the external driving
force.

Figure 4.11(right) illustrates the rupture frequency opittary bridges as a function of
the lateral position. One may expect that there would notriyerapture event in the solid
state. However, there are some rare rupture events, andatle durve shows that the spa-
tial distribution of these events is homogeneous. The reddue curves show the rupture
frequency in a series of fluidized statesgt= {6.6 - 1073, 1.32- 1072}, respectively. The rup-
ture frequency decreases more than two orders of magnisitteeanaterial transforms from
the fluidized state to the solid state. In general, the rgplquency in the fluidized state is
heterogeneously distributed and attains its maximum wtineraystem is dilute and hot. The
global rupture frequency in the system increases as onedses the amplitude of the external
driving force.

A data collapse of the local number of capillary bridges pgkslas a function of the local
area fraction is displayed in Fig. 4.12. The data were obthinom a series of simulations
for a system size of = 40. We chose values for the amplitude of the driving folFge=
{Fs, 1L5F, 2Fg, 3Fs}, whereFs is the amplitude at the solidification transition. The tateda
fraction was varied betweep = 0.62 andgrcp = 0.84, while the rupture separation was
Sc = 0.01 in all simulations. The color code indicates the grantdaerperature.

On the one hand, the number of capillary bridges per digk,shown in Fig! 4.12 dis-
plays a well defined boundary to small valued\gfwhere a large fraction of the data points
accumulate. On the other hardg does not exceed.# while the local density stays below
p ~ 0.85. These values coincide with the number of contacts instasio packing of friction-
less hard disksi.¢. in two dimensions), and the limit of random close packipgp = 0.84
for the bidisperse mixture used in our simulations.
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Figure 4.11: (Left) Average number of capillary bridges asction of the lateral position

for a solid (black) and a fluidized (red and blue) state. (Rigkerage rupture frequency as
function of the lateral position. The color code is the saséoathe left plot. The total area
fraction is¢p = 0.7, the rupture separatid® = 0.01, and the system size= 40.
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Figure 4.12: (Left) Local liquid bridge number as a functiointhe local area fraction for
the fluidized wet discs. The data are sorted according to tbheal granular temperature.
The hottest points form a well defined boundary. (Right) Ldiplid bridge number as a
function of the local area fraction for the fluidized wet dis@he data are sorted according to
their applied driving amplitude. Two limits are found: 4uig bridges, and the random-close
packing. System size = 40, and rupture separati@ = 0.01.
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4.3.4 Stress field

Figure 4.13(right) shows components of the stress tengbeisolid state for an amplitude of
the driving force ofFy = 103. The red squares are simulation data of the shear kgss

a function of the lateral positior. In a stationary state the shear stress caused by the applied
driving forceF®{(x) = &, F( sin(2rx/L) can be calculated from a balance of forces. Assuming
a homogeneous densityof particles per area one obtains

(4.6)

LFo . (2n
sM@=n%OW(Lﬁ,

wherelL is the system size. A derivation of equ. (4.6) can be fountdénappendix 4.5.1.

Inserting numbers into the prefactor of equ. (4.16) leadmtestimate

nLFy
2n

~ 0.006, (4.7)

which is depicted by the black curve. The calculated sheassffits quite well to the shear
stress that has been directly measured in the simulatioa.didgonal elements of the stress
tensor,S,x andSy,, are depicted in the inset as black and blue curves. Compai®g, tthe
stress componel8,, exhibits smaller spatial fluctuations and does not depenth@iateral
position. This finding is as expected since the stationaatedbllows the symmetry of the
external field. The latter observation together with thetiomity of momentum transfer into
x-direction leads to the conclusion that the stress compgddgrhas to be independent on
(it is trivial to mention that none of the stress componergahd ory).

Figure 4.13(right) shows components of the stress tenstiveirfluidized state. The red
squares indicate the shear stress as a function of thellptesiion. It appears that the shear
stress has a sinusoidal shape as well but because the sgdteteriogeneous one cannot use
equ. [(4.6) to explain the profile of the shear stress. As ope@sS,, corresponding to the
back curve does not depend on the lateral positioThe remaining diagonal elemegy,
has two maxima around = 10 andx = 30 coinciding with the maxima of the granular
temperature. A comparison of the profiles 8y, and forS,, clearly demonstrates that the
pressure field is not isotropic.

As mentioned before, the system becomes heterogeneous ffuitized state and the
number of disks per unit aren, depends on the lateral positian Starting from the general
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Figure 4.13: (Left) Profiles of components of the stressdeimsthe solid state foF, = 1073.
Red squares are simulation data of the shear stress whilelttidkck curve is a prediction
according to equ. (4.9). The inset shows the diagonal elesgpandS,, of the stress tensor.
(Right) profiles of components of the stress tensor in theiflaiistate aF, = 6.6- 1073, The
red, black , and blue squares correspon8p Sy, andS,,. The total area fraction is = 0.7,
the rupture separatid, = 0.01, and the system size= 40.

form of the transport equation of momentum one arrives asitigle form
9x Sxy(X) = n(x) Fy(X) (4.8)

for a stationary state being homogeneous wtirection and withF, = 0. Details of the
derivation can be found in Appendix 4.5.1.
Integration of equ! (4.8) leads to a shear stress

Sy(X) = L dXn(X) Fy(X) + Sgy : (4.9)

Periodic boundary conditions in principle allow the com@y to be non-zero. Inspection of
our simulation data shows tthjy equals zero within statistical errors. Equation (4.9) can b
solved numerically as the number densifx) can be calculated directly from the simulation.
Figure 4.14 displays as a function of the lateral position

The red curve shown in Fig. 4.15 shows the numerical soluifahe integral equ. (4.9)
while the black circles correspond to direct measuremeh&,pfrom the simulation. One
observes that the red curve fits onto the black circles. Toergequ./(4.9) is well suited to
describe the relation between the applied driving force thedshear stress in the fluidized
state.
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area fraction i® = 0.7, the rupture separatids, = 0.01, the amplitude of the external force
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Figure 4.15: The black circles show the direct measurenoétih® shear stress in the fluidized
state while the red curve corresponds to the integral eq8).(4The total area fraction is
¢ = 0.7, the rupture separatid®, = 0.01, the applied driving amplitudé, = 6.6 - 103, and
the system sizé = 40.
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Figure 4.16: The black, red, and blue squares are the kjrstaitic, and total stress component
Syx as function of the lateral positianin the fluidized state. The total area fractiopis 0.7,
the rupture separatid®. = 0.01, the applied driving amplitudé, = 6.6-1073, and the system
sizeL = 40.

The stress tensor can be decomposed into two parts. This teeane hand, the kinetic
part of the stress tensor which depends only on the momentaedacity of the disks, and,
on the other hand, the static part being fully determinedieyptosition of the disks and their
mutual forces. In our simulation we computed the spatiatigistion of both parts separately.
Because the driving force is applied ingalirection, one intuitionally expects th&, does
not depend on the lateral position. The blue squares in €igLir6 show that the total stress
componentS,, is indeed independent o As mentioned before this observation can be
explained by the continuity of the momentum flux.

However, the kinetic part of the componesi, as indicated by the black squares in
Fig.[4.16 is position dependent and appears to be correlatdte local granular tempera-
ture. For the total area fraction ¢f= 0.70, the static part is approximately six times larger
than the kinetic part. Because the disks are in enduring rhatuiact and because the inter-
particle ditusion of the disks is rather slow the static part of the sttessor should be the
dominant contribution in the total momentum transfer.

In Figure[4.17 the kinetic and static parts of the stress araptS,, as well as their
sum is depicted by black, red, and blue squares, respactiVile kinetic part exhibits two
maxima, one ak = 10 and a second at= 30, similar to the spatial distribution of granular
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Figure 4.17: The black, red, and blue squares are the kjraétic, and totab,, versus the
lateral position in fluid state. The total area fractionpis= 0.7, the rupture separation is
S. = 0.01, the applied driving amplitude ¥ = 6.6 - 1073, and the system size is= 40.

temperature. The static part, which is almost one order afnitade larger than the kinetic
part increases at around= 10 andx = 30. This observation is also true for the sum of both
parts.

Figure( 4.18 shows the kinetic, the static, and total sheass$,, as a function of the
lateral positionx as the black, red, and blue curve, respectively. As it wac#se for the
stress componeng,, andS,y, the magnitude of the kinetic part is smaller than the maigieit
of the static part. The kinetic part has a maximum at aroxird 10 andx = 30 where the
shear ratey is maximal. The static part (red squares) increases as gneaghes the center
but reaches a plateau forSb< x < 14.5. For valuesx > 14.5 it decreases and approaches
zero. The symmetry of the static part®§y in the first half of the simulation box is repeated
in the second half, and there is again a plateau fds 25x < 35.5.

4.3.5 \Viscosity

In a Newtonian fluid the shear stress is proportional to thallshear rate. The corresponding
proportionality constant is the shear viscosity or simplg viscosity of the qui@. Coming

2The second viscosity is related to a pressure contributiming a compressive or dilative motion of a
compressible fluid
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Figure 4.18: The black, red, and blue squares are the kjsttitic, and total shear streSg,
as function of the lateral positioxin fluidized state. The total area fractiongis= 0.7, the
rupture separatio. = 0.01, the applied driving amplitudé, = 6.6 - 103, and the system
sizeL = 40.

from a microscopic picture one can define the viscosity asresport cofficient related to the
diffusion of momentum. In an ideal gas the viscosity increast#stemperature because the
average velocity of the gas particles increases with teatper which implies an increase of
the collision frequency. Most liquids exhibit the oppodehavior. Their resistance against
shearing decreases as the temperature increases. In dlelahe liquid particles have to be
thermally activated in order to change their relative posit

In this subsection we are going to discuss the viscosity aissembly of fluidized wet
disks under isochoric conditions. At first, we present theegie form of a viscosity profile
in the fluidized state. A collapse of data from a series of atns for diferent total area
fraction and amplitudes of the driving force allows us tce@sshe dependence of the viscosity

on the local area fraction and the granular temperature.
The viscosity of granular material is defined as the ratiounh ®f of-diagonal elements
of the stress tensor to twice of the shear rate [78]:
S+ S
= 2 (4.10)
2y

whereS,, andSy, are the &-diagonal elements of the stress tensor, amgithe local shear
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rate. Because our particles are symmetric and frictiontessstress tensor is symmetric and

we have
Sxy

Y
Hence, the viscosity can be calculated as the ratio of the kltear stress to the local shear
rate. The viscosity profile according to the definition equl14is depicted in Fig. 4.19 for
two amplitudes of the external ford&, = {6.6 - 10°3,1.32- 1072} as red and blue squares,
respectively. It is obvious that the viscosity decreasesre/the shear rate increases and vice
versa. Errors become large arouneg 0 andx = 20 where the shear rate is small.

N = (4.11)

To explore the dependence of the viscositgn the density and granular temperature
Te we employ a data collapse of a series of simulations ffiednt total area fractions and
driving strengths similar to the plot shown in Fig. 4.12. agameter of the simulations are
identical to those given in subsection 4.3.3.

Figure 4.20(top) displays the viscosity of the fluidized wistcs as a function of the local
reduced area fractign.—p. The color code corresponds to the local granular temprexaltuis
apparent from Fig. 4.20(top) that the overwhelming majarsitdata points fall into a narrow
band. The distribution of granular temperatures in thisksaems not to follow a visible rule.
A comparison to the dashed line, however, indicates an appate scaling; ~ (oc — p)* of
the viscosity with the local area fractign

Figure 4.20(bottom), however, shows the same data as iMEg(bottom) but now the
granular temperature is on the abscissa while the denségadeded in the color of the data
points. In contrast to Fig. 4.20(top), the data points area over a wide region. From the
distribution of colors one can anticipate the existenceaolimes of constant local densjtyin
the plane spanned By andn. A comparison of the plots Fig. 4.20(top) and Fig. 4.20 (it
reveals that the local density of disks has a much strongeadton the viscosity compared
to granular temperature. Furthermore, the viscosity ajgpgeadiverge when approaching the
limit of random close packing &ircp = 0.84

Interestingly, a similar divergence in the shear viscosity» and exponent aroundl was
found by Ludinget al. in a fluid of monodisperse elastic hard disks in thermal éoyuiim
[79]. The area fraction of disks at the divergence, howaser= 0.71+0.01,i.e. much lower
than the value of random close packing of our bidispersesdikkaddition to the divergence
of viscosity, the cofficient of self difusion tends to zero at the same area fraction [79].
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Figure 4.19: Viscosity as function of the lateral positionin fluidized state. The red and blue
squares correspond to amplitudes of the external fégce {6.6-1073, 1.32-1072} respectively.
The total area fraction ig = 0.7, the rupture separati@, = 0.01, and the system site= 40.

4.3.6 Interparticle forces

The statistics of interparticle forces crucially deterenthe bulk properties of the assembly,
e.g.its load bearing capability , sound transmission, and slpoogagation [80-87]. In gran-
ular systems the stress transmission is spatially hetesmyes and occurs in the form of force
chains [88—90]. Since the discovery of force chains the @odiby distribution of compressive
forces in a granulate has been a subject of granular phy&le®9B]. Several model calcula-
tions [94-96], computer simulations [97—-99], and expenta®n shear cells [100-102] have
proven the existence of exponential tail in the limit of Ri@pmpressive forces.

Studying of force distributions in granular material beeawhsignificant importance when
the dynamic arrest in granular systems was linked to theepoesof force chains between the
grains. In Ref. [103] O’Herret al. studied the distribution of normal contact forces near
the jamming transition. They have found that the probahbdistribution of forces develops a
peak whose height increases with increasing total packawgibn and decreasing shear stress.
They propose that the appearance of that peak signals ttogevent of a yield stress.

In our simulations we measured the probability distribaited interparticle forces for a
series of total area fractions and amplitudes of the exteinang force in both the fluidized
and in the solid state. To obtain a satisfactory statistiesige a system size= 30 with up to
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N = 1500 disks. As it was mentioned in the last chapter, we dplathd fluidize the assembly
of wet disks using a spatially heterogeneous externalrdyiforce.

Figure 4.21 shows the probability distributi®(F) of normal forceF between two disks.
While our wet discs interact via attractive (negative sigmj eepulsive (positive sign) forces,
F varies from-1 until F,«. The smallest value of the force is given By, = —1 corre-
sponding to a capillary bridge between two non-overlappiisgs.

A finite fraction of the forces between two neighboring digkslue to the presence of a
capillary bridge only. The corresponding pair of disks hallided in the past but does not
overlap anymore. A finite fraction of all pairs of disks witman-zero force exhibit such a
‘stretched’ capillary bridge. The probability to find a stieed capillary bridge is depicted
in Fig./4.22 as function of the amplitude of the external éoend for a series of total area
fractions. Here, we used the standard preparation protiesaribed in section 4.1.1 such that
the system is initially in a fluidized state.

Inspection of Fig. 4.22 reveals a sharp drop of the numberetfched capillary bridges in
the assembly of disks as the amplitude of the applied extéorze is lowered. Apparently,
this drop is associated with the fluidized-to-solid traosit For total area fractiong = 0.62
and¢ = 0.7, we find a plateaus of the probabilityRt- 0.38 in the fluidized and a probability
of P ~ 0.24 in the solid state, cf. Fig.4.22. At high total area franti¢ = 0.82, however,
the probability in both the fluidized and the solid state agaificantly smaller. In addition,
the drop appears to be ‘roundeff’pi. e. one observers a decrease in the probability in the
fluidized state close to the step.

Moreover, we are interested in the spatial probability dgrie find the contact with the
largest force in the system. Figure 4.23 shows the prolabd#insity in both the solid and the
fluidized state. The green circles illustrate that an exérenent in the solid state can appear
everywhere in the system because there is no a systemagéodi=pce of the probability den-
sity on the lateral position. However, the red squares slhawthese extreme events in the
fluidized state are localized where the shear rate and tmeligratemperature are maximal.

The observation that the largest force between disks is woess equally distributed in
the solid state can be viewed as a contradiction to continong@chanics. One would expect
that the extreme events are localized in regions where tigmioge of the stress components
are large. This is indeed the case for the spatial distobuti extreme forces in the fluidized
state. We can argue that thigfdrence is due to chains of compressive forces between the
disks which build up in the solid state. In the fluidized std®wever, these force chains are
absent or at least exist for such a short period of time thavemage their ffect cannot be
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Figure 4.21: Probability distributior?(F), of normal forced=. (Top) The total area fraction

is ¢ = 0.62. In the solid state the distribution is semi-Gaussian.hdusder appears in the
fluidized state which is followed by an exponential tail togler values of. The amplitude of

the external force at the solidification pointis = 3.5- 103, (Middle) Area fractionp = 0.70

and force amplitud&s = 5- 10°3. The shoulder seen in (top) has disappeared. (Bottom) Area
fractiong = 0.82 and force amplitudEs = 1.4 - 10-2. No shoulder is visible.
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Figure 4.22: Probability to find a stretched capillary bedgmong all pairs of interact-
ing disks as function of the amplitude of the external fore&.sharp transition is found
for the fluidized-to-solid transition. The total area fiaotare¢ = {0.62 0.7,0.82} with
corresponding amplitudes of the external force at the fteidito-solid transition aré&s =
{35-1073,5.0-1073,1.4- 10°2}. The system size ik = 30, the rupture separatiy = 0.01.

observed.

4.4 Hysteretic transitions

In the last chapter we observed that wet disks on an inclid@depgo through a hysteretic
fluidization transition as the inclination angle is changkdother words, there is a range of
control parameter where the dynamic state of the systent ismquely defined by the values
of the control parameter. The system can be found in one dwicobr more possible dynamic
states.

The observation made for wet disks on an inclined plane ptisegmportant question
whether the hysteresis of the solid-to-fluidized transii®a universal property of wet disks.
Does this hysteresis depend on the driving mechanism teatskhe system? Is the hysteresis
caused by the fact that the capillary bridge interactiotsisli a hysteretic interaction?

Let us first explain how we will explore the existence of a bBystic transition under iso-
choric conditions. The initial driving amplitude should lz@ge enough to go beyond the
fluidized-to-solid transition, the system eventually ddawach fluidized state. Afterwards,
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Figure 4.23: Spatial probability density to find the strostgierce between two disks as
function of the lateral position. The extreme events araloanly distributed in the solid
state (green circles). However, in the fluidized state (gpehses), these extreme events are
localized where the shear rate has its maxima. The totalfeaet#on is¢ = 0.70, the number
of particlesN = 506, and the rupture separatiSp= 0.01.

we decrease the amplitude of the external force in smalsst&feach step we give the system
enough time to let the system reach a stationary state. Tlhaitude of the steps should be
suficiently small. Large changes in the external force woulde@ogerturbation to the system.

Starting from a stationary fluidized state at high externalinly force we continuously
decrement its magnitude until the material has fully sékdi. The value of the amplitude
of the external force at which the material solidifies is shdwy Fs. Once the material is
solidified, we again increase the magnitude of the extewrakfin small steps. A solid-to-
fluidized transition should occur while increasing the ex& force when the shear stress in
the system exceeds the yield stress of the disk packing. dfmresponding amplitude of the
external force at which the material fluidizes is denoted~py Whenever we find the; is
larger thanFs and we will be able to say whether hysterisis exists in thidesy.

In order to answer this question we chose our standard siimolparameter.e. we set
the total area fraction t¢ = 0.70, the rupture separation & = 0.01, the number of particles
to N = 506, and the system size to= 18. Figure 4.24 shows the order parametey as a
function of the time. The initial amplitude of the externatde isFy = 8.8 - 10°3. For this
setting the relaxation time of the system to reach a statyoihaidized state is approximately
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Atelax ~ 4 - 107. After each decrement of the applied driving amplitude wétedha time
Atsep= 10°. The step width of the external force wAB gep= 2- 10°4. The red curve shows
Avy as function of time while decrementirtg while the violet curve shows the amplitude of
the external force as function of time. The amplitude of tktemnal force is decremented until
t = 4-10° with an amplitudeF = 8-1072 where the order parametay, = 0, i.e. the material
has solidified. Note, that this value is identical to the atage of the external force at the
fluidized-to-solid transition described in section 4.2TPerefore, we chose the solidification
point to be afF¢ = (8.1+0.1)- 1073

In order to find the fluidization point we increased the aroplié of the external forcés,,
at timest > 4 - 10° by the same proceduree. with a waiting time ofAtsep, = 10° and in
steps ofAFgep, = 2- 1074, If there would not be any hysteresis in the system the nadteri
should fluidize aF, = 8.2- 10°3. However, the system is still solid ait= 9- 10%. Finally, at
t = 1.4-10° whereF, = 1.3-1072, the system fluidizes. In order to save computational time we
set the magnitude of the step in the external forcARg., = 1073. We chosé¢ = 1.25- 1072
as the fluidization point and the corresponding error barFs = 5- 104, The ratio of the
amplitude of the external force at the fluidization and tHelg@ation points isF¢/Fs ~ 1.54.
Therefore, the fluidized-to-solid transition (solidificat) and the solid-to-fluidized transition
(fluidization) occur at dierent applied driving amplitudes which proves the hystereture
of this transition.

Figure 4.25 displays the dynamic order parameter as a function of the amplitude of
the external forcek-o. The red squares show the first part of the hysteretic tiansithere we
started by applying, = 8.8- 102 and decremented the amplitude in stepaBf = 2- 1074
The material solidified as = 8.1 - 10°3. Subsequently, we incremented the amplitude of the
external force until the material fluidized &t = 1.25- 10°2.

4.4.1 Phase diagram

In the last section, we presented data for the strength @xteznal driving at the solidification
and the fluidization point for a total area fractiongt 0.70. It is obvious that both values
should depend on the total area fractignthe rupture separatid®.,, and the system size.
First of all we will focus on the area fraction while we keep tlemaining parameter of the
system fixed. Hence, we construct a phase diagram that id lbaste total area fraction of
disks,¢, and the amplitude of the external forée,

Figure 4.26 shows the solidification and the fluidizatiomsition lines as function of the



102 Chapter 4. Isochoric model for avalanches

0.8

o
(22}
I
|
o
o
=
N
a

A drift velocity
| |
o o
o O
o P
(e}

0.006:=
0.004 &
—0.002

o
N
T
]

A

. 2l . ) . 1 .
0 5000 10000 15000 20000

time
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external force~g (the violet curve) as function of time. The total area fractis¢ = 0.7, the
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Figure 4.25: The dynamic order parametgy,, as function of the amplitude of the external
force, Fo. The solidification occurred &, = F¢ = 8.110°2 and the fluidization aF = F; =
1.25- 102, The total area fraction i = 0.70, the rupture separatid®, = 0.01, and the
system sizé. = 18.
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total area fraction. We probe the area fraction fréy, ~ 0.525 t0¢nax =~ 0.84. FOr¢ > ¢dmax
fluctuations in the drift velocity become so large that one vat measurévy, with a reliable
error-bar. The value ofmay coincides with the RCP limitprcp = 0.84 for the bidisperse
system under consideration [104]. At total area fractipns ¢n, it may happen that the
initially randomly distributed disks condense into twoidddands, one moving up while the
other band is moving down. The evolution of the system carotadly different: On the one
hand, the bands may collide and heat up. In this case, thersystattracted to a stationary
fluidized state. On the other hand, the bands may not touchidicase, the system stays cool
and the two solid bands persist. Therefore,dot ¢nmin the dynamics of the system depends
on the initial configuration of the disks. However, for areactionsgy > ¢nmin the stationary
state is independent from the particular realization ofsysem in the initial state,e. after
preparation.

Figure 4.26 displays the dynamic phase diagram for a systevetalisks under isochoric
conditions being subject to a spatially heterogeneousreit@lriving force. The plane is
spanned by the amplitude of the external driving force rpliétd to the system lengthg L
on they-axis and the total area fractignon they-axis. We will show in appendix 4.5.1 that
the force amplitudd, at both the fluidization and solidification point exhibit anpile scaling
Fo ~ L1 with the system sizé.

The black curve in Fig. 4.26 indicates the solidificatiomsiéion while the red curve
in Fig.[4.26 corresponds to the fluidization transition. Ascdssed in section 4.2.2 we can
estimate the amplitude of the external force at the solalifon point from the time evolution
of an ensemble of systems forfldirent values of the driving force. We checked fdfetient
area fractions that the alternative protocol, where thardyiforce is slowly reduced until the
the disks solidify, and the ensemble method lead to identadaes. This observation can be
explained by the nature of the initial state in the ensemidéhod. Due to the preparation the
system is found in a fluidized at the beginning of the simalatDepending on the magnitude
of the driving force, the system may be permanently fluidiaethe fluidized state may only
be a transient state.

Determining the fluidization line takes more computaticetidrts. The preparation of the
solid state requires a slow decrease of the external driargg. Fluidization, or yielding, of
the solidified disks requires aficiently slow increase of the external driving force. Hence,
each point on the red curve takes more than one month of catnmel time. One sees that
as one approaches to the limit of random close packing thditachg of the external force at
fluidization increases.
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Figure 4.26: The rescaled amplitude of the external fdfgel, as a function of the total area
fraction¢. The black curve shows the solidification line. The red cusvine corresponding
fluidization curve. The rupture separation for the black esdiline isS. = 0.01. The Blue
curve is the solidification line fo; = 0.05.

The rescaled amplitude at the solidification point for a uoptseparatios, = 0.05 is de-
picted by the blue curve. The blue curve lies above the regecurhis is a clear indication that
wet disks with a larger rupture length solidify already ag&x driving forces when compared
to wet disk with a smaller rupture length.

Now we would like to explore how the amplitude of the exterftate at solidification
depends on the rupture separation of capillary bridges fyven total area fraction. Figure
4.27 shows the rescaled driving forEg - L as a function of the rupture separatiBp The
total area fraction is fixed t¢ = 0.70 while the rupture separation is chosen in the range
between 10* and 01. The blue squares are the solidification thresholds fdemint rupture
separations. We find an excellent collapse of our data intamaeplaw scaling

Fo~ S (4.12)

with the exponenf = 0.74+ 0.03. This plot shows that as the rupture separation tendsto ze
the solidification threshold vanishes.



4.4. Hysteretic transitions 105

m simulation data - i
- F.=432 8" =
s c =
=
.I
/'/
0.1:— /t/‘/ __
| ke
lJ_u7 ‘/E
./‘I‘
X

L
0.0001 0.01

S

C

Figure 4.27: The rescaled amplitude of the external foreEdification,Fs - L, as function
of the rupture separatio®.. We find a power law behavior for the solidification line with a
exponent (074 + 0.03.

4.4.2 Why hysteretic-discontinuous transition?

So far, by studying dynamics of wet disks on inclined plameldst chapter) as well as wet
disks driven by cosine shearing force, we observed thatiskes dndergo through a hysteretic-
discontinuous transition in both cases. Is the hystediticontinuous transition caused by the
fact that the liquid bridge force is in principle a discontius-hysteretic interaction (discon-
tinuous in the sense that as soon as two grains touch eachaotigeliid bridge forms and
entails to an attractive force). The answer is, however,”'Neurthermore, to explain why
the answer is no, we refer to series of earlier reports alh@usimilar issue. Daniel Bonn et
al.[70, 71] explored the rheological properties of dry gian matter, gels, foams, and emul-
sions. They showed that these materials, i.e. dry graihs, @@ulsions etc., undergo through
a hysteretic-discontinuous transition between fluidized solid state and they argued that
such transition, i.e. hysteretic-discontinuous traasitibelong to all the athermal materials
that possesgield stress Our results show that wet granular material should be alsloided
into that category [105].

30r in their language jamming and unjamming transition.
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4.5 Appendix

4.5.1 Relation between driving force and shear stress

In this section we will derive a relation between the exteéfoece and the shear stress being
valid for a stationary state bearing a certain symmetry.usdirst consider the Navier-Stokes
equation:

pOVv+Vv-VV)=-VP+V.-S+f, (4.13)

wherev is the velocityp the fluid densityP the pressureSthe stress tensor, whifeepresents
the body forces (per unit volume) acting on the disks, ¥®ritle nabla operator.

In a stationary state, the first term on the RHS of equ. (4.18)stas while the second
term is zero owing the particular symmetry of the velocitydieThe velocity field depends
exclusively on the lateral positionand has a non-zero component only igtdirection,i.e.
the direction of the applied force. Hence, equ. (4.13) sifieglto a balance

vV.S=f (4.14)

between the mechanical stress tensor and the external for€artesian components, equ. (4.14)
assumes the form

0xSuc+0ySy=f,  and  8,S,y+0,Sy=1,. (4.15)

Due to the translational invariance yrdirection, we have,S,, = 0 andd,S,, = 0. Then,
together withf, = 0 it follows from equ.|(4.15) that

0xSxx=0 and 0;S, = fy. (4.16)
An integration of equ. (4.16) leads to
X
Sxx=const and Sy/(X) = f dX n(X) Fy(X) , (4.17)
0

wheren(x) is the number of disks per area aRg(x) they-component of the external driving
force according to equl. (4.1) as function of the lateral fimsix. The dependence of the
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] Total area fraction \ Linear fit \
¢ = 0.70 Fcrt. = 0.148__1
¢ = 0‘82 Fcrt‘ = O.46L_1

Table 4.3: Relation between the critical driving amplitudd ¢he system size for twofterent
area fractions.

external force on the coordinaxds given by:

Fy(¥) = Fo cos(?() (4.18)

whereF, is the amplitude of the external force abdhe dimension of the simulation box.
Inserting the RHS of (4.18) into the integral in equ. (4.178,avrive at

Sy(X) = (4.19)

nLFg sin 21X
2r L)’

where we assumed the dengityo be position independent.

In the fluidized staten may become a function of the lateral position and the integra
in equ. [(4.17) cannot be evaluated in form of a closed amalygxpression. In this case,
we have to employ numerical data from our MD simulation analuste the integral (4.19)
numerically.

In the following we will assume that the concepts of contimumnechanics apply to the
isochoric system of sheared wet disks under considerationality requires that the points
of solidification and fluidization should be related to a agricharacteristic value of the shear
stress being a function of purely local quantities such asitie granular temperature. When-
ever this is the case and, in addition, these quantities/aters size independent, the prefactor
of the sine in equ! (4.19) shows that the amplitude of themlyiforce at the fluidization and
solidification point should scale & ~ L.

We checked the dependence of the amplitude of the externrea & fluidization and so-
lidification for three diferent values of the system sike= {18, 24, 30} and two diferent total
area fractionp = {0.70,0.82}. Figure 4.28 shows the amplitude of the external force at so-
lidification, Fs, as a function of the inverse system lendtht. The red circles correspond to
¢ = 0.70, and the blue squares correspand 0.82.
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Figure 4.28: Using the assumption that the yield stressldhmat depend on the system size,
one can predict the; has to scale linearly with 1. In this figure,F; depicted as a function
of L=%. The blue and red squares correspon@te {0.70,0.82} respectively. We find a
perfect agreement with the theoretical prediction basecbatinuum mechanics. The rupture

separation i = 0.01.



Chapter 5
Conclusion

In this thesis, we studied the stability and the dynamics e&f gvanular material under shear.
Our goal was to show that the hysteresis and the discontinfiithe fluidization transition
are generic features of wet granular materials. In chaptee Zompare and explore the
stability of dry and wet granular piles. A dry granular pilaiflizes if the inclination angle
exceeds a critical angle which depends on the configuratidgheoparticles. At a certain
critical angle the fluidization occurs simultaneously gvdrere in regular frictionless dry
piles. In contrast, when the pile is wet, it can be tilted beythe critical angle due to support
of the capillary bridges between particles. For inclinatmgles beyond the critical angle, the
highest tensile force acts on the capillary bridges in thébolayer supporting the pile. The
pile fluidizes when the tensile force becomes larger thastiteagth of the capillary bridges.
Accordingly,a wet granular pile yields in the bottom layefrhis changes our thoughts about
yielding of granular piles where traditionally surface #sxare considered. Extensive MD-
type simulations prove the predictive power of the theory.

In chapter 3 we studied the dynamics of wet disks in a chanfted fluidized system is
homogeneous for small rupture separatiSpand becomes heterogeneous for lagerThe
solidification occurs if the inclination angle is figiently decreased below the fluidization
point. The diference between the solidification and fluidization pointsaghthat wet disks
undergo a hysteretic dynamic transition. For small gréaiteal downhill forces, the system
becomes heterogeneous. Itis dilute close to the stick yrathd packed near the upper wall
such that it resembleslaidenfrost state

The dynamics of wet disks under a spatially heterogeneaumgiforce is explored in
chapter 4. There is a well defined applied force amplitudevb@thich the system undergoes
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a fluidized-to-solid transition. The solidified system naidizes if the applied driving force
can overcome adhesion due to the capillary bridges. A phageasin showing the fluidization
and solidification transition thresholds is presented.nfour perspective the phase diagram
is an example of a jamming phase diagram. It proves thataatiens between particles in-
fluence the structure of the jamming phase diagram. Algoxe0.525 a percolation cluster
developing yield stress emerges after a fluidized-to-dodidsition irrespective of the initial
position of the particles. FurthermorEg andF¢ are independent from the initial configu-
ration of particles. Below, the dynamics of the system stipdgpends on the preparation
process at the beginning of the simulation. We truly belignat¢ ~ 0.525 is a point that has
unique physical properties which has not yet fully been exqa and is a subject for future
studies. Viscosity is another physical quantity that haankbatimately studied in chapter 4.
We showed that local viscosity of the fluidized state is dated by the local area fraction
¢ and not the granular temperatufg. We found an approximate scaligg~ (oc — p)~* of
the viscosity with the local area fractign In chapter 4 we also studied the force distribution
in the solid and fluid states. The force distribution is a kayl to study the force chains in a
granular systems. We showed that in the solidified statetdiglity of the assembly is dom-
inated by the stretched capillary bridges. The probahittfind a stretched capillary bridge
sharply increases as the system fluidizes.
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Chapter A. Symbols and notations

Symbol | Description

PL
RCP
fLB
Sc

¢

¢c
T

g
Osed
tsed
I:drag

Laplace Pressure

Random Close Packing
Capillary Force

Rupture Separation

Total Area Fraction

Area Fraction of RCP

Granular Temperature
Gravitational Acceleration

g of Sedimentation
Sedimentation Time
Background Drag Force

Total Area Fraction

Local Area Fraction

Difference of Local Area Fraction
Number of Liquid Bridges
Rupture Frequency

Stress Tensor

Shear Stress

Normal Stress

Tangential Stress

Yield Stress

Gravitational Acceleration
Critical Gravitational Acceleration
Inclination Angle

Critical Inclination Angle

Gap Between Disks

Damping Time

Solidification Driving Amplitude
Fluidization Driving Amplitude
Number of Particles in Unit Area
Shear Rate

Shearing Tensor

Effective Compressibility



Appendix B

Energy balance

In the current section, we explore the balance of the ingeated dissipated energies in flu-
idized states both for the cosine shearing and for wet disksing down on an inclined plane.

Fig.B.1 shows the dissipated and the injected powers as &daraf the time by the black
and red curves respectively. The total area fractigh #s{0.60, 0.70} for the top and bottom
graphs respectively. One sees that the dissipated powéundtes more than the injected en-
ergy but both seem to have the same average. Integratioa ofjftted and dissipated powers
with respect to the time is shown by the green and blue cuessectively.

A gquantitative explanation for the energy balance comesvbigin one calculates the rela-
tive difference of the injected and the dissipated energies. FigBwgsstie relative dference
of the injected and dissipated energies as a function ofotla¢ drea fraction. There is no any
systematic dependence on the total area fraction. Subsibygube average relative fiierence
is:

3 J Pinj - dt— [ Puiss- dt
[ Pinj - dit
The equi(B.1) proves that our integration scheme is veryrateuand on the other hand,
it shows that as one intuitively expects, in the stationdages the injected and dissipated
energies balance.
Similar calculations are done for wet disks running down onrelined plane. We have

>= 0.000543577 (B.1)

shown that the same accuracy also holds for such a system.
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Figure B.1: (Top) The injected and dissipated power and th&ggration for¢ = 0.60. (Bot-
tom) The injected and dissipated power and their integndioo ¢ = 0.70. The black, red,
green , and blue curves show the dissipated power, the édiguiwer, the dissipated energy,
and the injected energy respectively.
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Appendix C

Derivation of stress tensor

C.1 Tensorial form of the Virial theorem

The stress tensor is a mathematical tool to explore the mtumetransfer in the system.
One of the main tools that strongly equipped us to study dycsof wet discs under shear.
Therefore, in this section, we want to present derivatiothefstress tensor from the tensorial
form of the Virial theorem.

The tensorial form of the Virial quantity can be defined as:

©=(g Xren) ©)

in which ¢ is the Virial quantity, V is the volume of the homogeneous gknT; and; are
the position and momentum vectors of the particte is the tensor product and is mass of
the particle .

Since¢ describes interactions of particles which are inside a lggneous portion, then
< % > should be equal zero. By virtue of equ.C.1, one can write:

<\%Zﬁi®p’i>+<%2ﬁ®ﬁi>:0 (C.2)
For the simplicity, we define:
1
X:<v2ﬁ®ﬁi> (C.3)
We separate the interactions of particleith the particles that are inside and outside the
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portion.
1 N |f‘int. 1 > ﬁext
X:<V2ri® i >+<v2ri® i >= X1t X2 (C4)
i i
Where: 1

X1 =< vZﬁ‘@'fiim' > (C.5)

i
<23 (C.6)

X2 = v i i :
i

In the case of granular material, in which the interactioresshort range limited to the
neighbors of particles, each particle can have maximum @ eelghbors in two and three di-
mension respectively, consists the interactions of particles near the boundaty particles
outside the portion. Therefore, we change the summatign io an integral on surface of the
portion:

< Z >= 9§0und Zy: dA, (C.7)

The dyadic form ofy, can be written as:
(o= O D FOPdA =3 3 (r(Sy +pUUNNIA
\ bound b \ bound Y
1
= 56 Z V,(r,(Sp, + pUsUp))dr (C.8)
Y

1 "
(x2)dyad = v(Sﬁy +pUgUy) Eﬁz \P ryd3r (C.9)
Y
Thereforey, can be simplified as:

v2=S+pUeU (C.10)

WhereU is the drift velocity in the portion, and is the density.

x1can be interpreted as an expression which consists int@macif the particles with each
other inside the portion:
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1w, o 1o, =)
X1=<eri®lf'i'”">:<vzfij®ﬁj'”t'>

j>i
1 int
= ZRgFm (C.11)
\Y
Therefore, we can simplify the stress tensor as a functiothefinternal and boundary

interactions as well as the drift velocity in the portion:

S = %Z(\z—d)m\z—ﬂn%ﬁ@ Fint (C.12)

C.2 Stress Tensorin 2D

The stress tensor in dyadic form is:

S - %Z(vi _U)e @ -U)+ %Rf@ = (C.13)

In which A is area of the portion. The stress tensor in 2D is@Z2matrix:

S= %Z((Vix — Ui+, — Uy)J)+ %(RXFX"“ﬁ + ReFy™ ] + RF™ji + RFy™]]) (C.14)

Or:

1 2ilvi, — U,)? 2iVi, — Ux)(Viy - Uy) ) 1 ( R(Fx™ Rx':yint

A — . . C.15
Al -Udu-Uy)  Sv-Uy ) ALRFM RyFy""]( )

A

One can calculate thefective viscosityn, the dfective compressibilitys, pressureP of
the system as the following:

_ (Sxy + Syx)
- 2r
P =1tr(S)
P

=A—
P 2K
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WhereK is the drift subtracted kinetic energy of the system.
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